Sport-Strategy Optimization with Markov
Decision Processes

Von der Universitit Bayreuth
zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

von

Susanne Hoffmeister

aus Grof3-Umstadt

1. Gutachter Prof. Dr. J6rg Rambau
2. Gutachter Prof. Dr. Gautier Stauffer

Tag der Einreichung: 19. Dezember 2018
Tag des Kolloquiums: os. April 2019

Zusarnrnenfassung

Sport-Strategie Optimierung behandelt strategische Fragestellungen im Sport, die von Trainern oder
Spielern getroften werden. Durch die steigende Menge an erfassten Daten wihrend eines Sportspiels,
steigt auch der Bedarf an einer datengetriebenen Entscheidungshilfe. Miissen zwei gegenliufige Effekte
abgewogen werden, so kann ein datengetriebener Ansatz neue Erkenntnisse erzielen, die durch eine
rein qualitative Betrachtung nicht méglich wiiren.

Das zu Grunde liegende mathematische Werkzeug dieser Thesis sind Markov Decision Problems
(MDPs). Die Arbeit beinhaltet eine theoretische Analyse geeigneter MDDPs, ihre Anwendung auf
Beachvolleyball und einen neuen Ansatz, der zwei MDPs mit unterschiedlichem Detaillierungsgrad
kombiniert.

Es wird eine neue Klasse namens Sport-Strategy Optimization MDPs (SSO-MDPs) eingefiihre, die
sich zur Modellierung von Sportspielen eignet. SSO-MDPs maximieren die Gewinn-Wahrscheinlichkeit
eines Spiels, wihrend jede Aktion eine positive Fehlerwahrscheinlichkeit besitzt. In einer theoretis-
chen Analyse von SSO-MDPs wird bewiesen, dass die Optimality Equations tiir SSO-MDDPs einen
eindeutigen Fixpunkt haben und der Dynamic Programming Operator angewandt auf SSO-MDPs
eine Kontraktionsabbildung definiert. Dartiber hinaus wird ein lineares Programm fiir SSO-MDPs
hergeleitet.

Diese Arbeit beinhaltet zwei SSO-MDPs, die eine sportstrategische Frage im Beachvolleyball mod-
ellieren. Beide Modelle haben sehr unterschiedliche Detaillierungsgrade, die zu modellspezifischen
Vor- und Nachteilen fithren. In einem neuen Ansatz namens Two-Scale Approach (2-MDP approach)
werden beiden SSO-MDPs kombiniert, um deren Nachteile zu iiberwinden.

Die einzelnen SSO-MDPs und der 2-MDP approach werden am Beispiel des Beachvolleyballfi-
nales im Rahmen der Olympischen Spiele 2012 in London ausgewertet. Fiir diesen Zweck wurden
umfangreiche Daten aus Videoaufzeichnungen erhoben. Die eingangs gestellten spielstrategischen
Fragen werden sowohl durch Auswertung der einzelnen SSO-MDPs und als auch mit Hilfe des 2-MDP
approach beantwortet. Die tatsichlichen Realisierungen im Finale werden zur Validierung der Modelle
herangezogen.

Basierend auf dem 2-MDP approach werden zwei Werkzeuge fiir Trainer und Spieler entwickelt.
Strategy-Skill Score Cards vereinen zwei Sensitivititsanalysen in einem Diagramm. Anhand des Dia-
gramms koénnen Spielsituationen identifiziert werden, bei denen die optimale Strategie von kleinen
Unterschieden in der Tagesform abhingt. Das zweite Werkzeug ist eine farbkodierte Tabelle eines
constant-sum matrix-games, mit der vielversprechende Strategiemuster identifiziert werden konnen.

Abstract

Sport-strategy optimization deals with strategic questions in sports games that are made by coaches and
players. As the amount of collected data from sports games increases, the need for a data-driven decision
support increases, too. Especially if opposing effects need to be weighed up, a data-driven approach can
uncover insights that are not available from a solely qualitative analysis.

The underlying mathematical framework used in this thesis are Markov decision problems (MDPs).
The thesis is divided up in: a theoretical analysis of suitable MDPs, their application to beach volleyball
and a new approach that combines two MDPs with different granularity.

A new class of MDPs suitable to model sports games is introduced and called Sport-Strategy Opti-
mization MDPs (SSO-MDPs). SSO-MDPs maximize the probability of winning a match while every
action has a positive probability to fail. A theoretical analysis of SSO-MDPs proves that the optimality
equations of SSO-MDPs have a unique fixed point and the dynamic programming operator applied to
SSO-MDPs is a contraction mapping. Furthermore, a linear programming formulation for SSO-MDPs
is deduced.

This thesis includes two SSO-MDPs that model the same sport-strategic question in beach volleyball.
The two models have different levels of detail which lead to different advantages and disadvantages. To
overcome the downsides of the individual models, an approach called Two-Scale Approach (2-MDP
approach) is introduced that combines two SSO-MDPs.

The single SSO-MDPs and the 2-MDP approach are evaluated and compared on real data sets that
were collected from the beach volleyball final of the Olympic games 2012 in London. The realizations in
the final match are used for validating the individual SSO-MDPs and the 2-MDP approach.

Two tools for coaches and players are developed based on the 2-MDP approach. A Straregy-Skill
Score Card combines two sensitivity analyses in one diagram. These diagrams can be used to identify
critical situations where the optimal strategy is affected by small differences of the player’s performance.
The other tool is a table of a constant-sum matrix-game that can be used to identify promising strategy
patterns.

Contents

1 Introduction to Sport-Strategy Optimization 11
2 Theory of Markov Decision Problems 15
2.1 Basic Definition of Markov Decision Problems (MDPs) 16
2.1.1 Markov Decision Processes 16

2.2 Optmality Criteria o oL 19

2.2 FiniteHorizon MDDPs 21
221 Policy Evaluation oo oo 22

222 Optimality Equations and Backward Induction 23

2.3 Infinite-Horizon Expected Total Reward MDPs 24
231 Classification o 25

2.3.2 VectorNotation e e 36

233 Optimality Equations 36

2.3.4 Solutions of the Optimality Equations 38

2.3.5 Valuelteration 43

2.3.6 DPolicyIteration L 44

2.3.7 Linear Programming Formulation 49

2.4 Graph Theory and Maximum Flow Problems 61
2.5 Relationto MarkovGames 66
3 MDPs for Sport-Strategy Optimization 71
3.1 Introduction to MDPsin Sports Games L L 71
3.2 Definition of Sport-Strategy Optimization MDPs (SSO-MDDPs) 75
3.3 Classification L e e 79
3.4 Theoretical Analysis L L 82
3.5 Linear Programming Formulations 86
3.5.1 A Primal Linear Programming Formulation 87

3.5.2 A Dual Linear Programming Formulation 90

3.6 Flow Networks associated with SSO-MDPs 93
3.61 BasicDefinitions 94

3.6.2 Induced Flow of anSSO-MDP, 96

3.6.3 Maximum Flow Problem for SSO-MDPs 108

3.7 Transforming SSO-MDDPso 136

CONTENTS

3.8 Further Extensionsof SSO-MDPs 149
3.81 Randomized Strategies oL 149
3.8.2 ExtensiontoMarkovGames 150
Application to Beach Volleyball 155
4.1 Introduction to Beach Volleyball 155
411 Literature Overview — Modeling Return Plays 155
412 Summary of Beach Volleyball Rules 156
4.2 An SSO-MDP foraBeach Volleyball Set 158
420 Definition 158
4.2.2 Transformation 163
4.2.3 Mathematical Analysiso o L oL 166
4.2.4 Winning Probability of the Tie-Game 168
4.2.5 ApplicationtoaMatch L L L oo 169
4.3 AnSSO-MDP foraBeach VolleyballRally 173
431 Definition e 174
432 DefiningaDecisionRule o0 0000 187
433 ApplicationtoaMatch L L L oo 193
4.3.4 Solving theRally-SSO-MDP 204
A Two-Scale Approach 209
s General Procedure 209
s Sport-Strategic Question Lo 209
sa12 Modeling Granularity o0 o 0oL Lo 211
5.1.3 The UnderlyingIdea 213
5.4 Formalization 214
5.2 ATwo-Scale Approach for Beach Volleyball 217
s2.1 Implementation for Beach Volleyball 218
s.2.2 Validating the Implementation 220
5.2.3 Answering Strategic Questions L. 222
s.2.4 Comparisonof Results 223
s.2.5 Sensitivity Analysis oL L Lo 225
5.2.6 Two-Person-Constant-Sum Game 232
Conclusion and Outlook 237
Rally-SSO-MDP: Skill Estimates 241
Aax Brink ... 241
A2 Reckermann. e 243
Az Alison e 245
A4 Emanuel 247

Rally-SSO-MDP: Simulation 251

CONTENTS 9

C Rally-SSO-MDP: Basic Decision Rule 255
C.a Definition of the Basic DecisionRule 255
Crr ServingStates 256

Cr2 ReceptionStates 258

Ci3 DefenseStates e 261

Cirg SettingStates 263

Crs AttackingStates L L 267

D Set-SSO-MDP: Strategy Estimates of Team Q 271

E Dataand Software 273

10

CONTENTS

Chapter1

Introduction to Sport-Strategy
Optimization

Sport-Strategy optimization supports strategic decisions in sports games that concern a particular team
facing a specific opponent in an upcoming match.

A (team-)strategy makes a set of individual players to become a real team. Furthermore, a superior
strategy can lead the technical inferior team or player to win. For example, Terroba et al. considered in
Terroba et al. (2013) the 2010 Australian Open Women’s Semi Final between Na Li and Serena Williams
and found a strategy with which Na Li could have beaten Serena Williams. It is the coaches’ and team
leaders’ job to determine the strategy to play in a match. Those experts have a vast wealth of experience.
However, in some situation where it is not clear which strategy outperforms the other strategies, data-
driven decision support may help the coaches to make their decision. In these situations sport-strategy
optimization can make a difference: It can support the coaches to make their decisions, it can be a tool to
justify those decisions, it can quantify how large the gap between several strategies is, and it can give the
coach a hint to consider a completely different strategy. However, sport-strategy optimization is only
meant to be a support for the coaches. It should not replace the decision makers since in sports games
there will always exist extraordinary situations which are not adequately represented in the model.

At the beginning of Chapter 3, an overview of existing work in the field of sport-strategy optimization
is given. This literature overview does not include purely statistical investigations. In sports science,
there exists much literature that uses statistical methods to, e.g., compare playing characteristics (Koch
and Tilp, 2009b). Some statistical investigations regarding beach volleyball or volleyball, which will be
the investigated type of sports in this thesis, are presented in Chapter 4. However, the main literature
overview presented in Chapter 3 focuses on work that tries to model the system dynamics explicitly.
The mathematical tool that is used most of the time to reflect the system dynamics of a sports game is a
Markov process. One notices when going through the presented examples that many works investigate
a general principle (Turocy, 2008; Anbarci, Sun, and Unver, 2015; Wright and Hirotsu, 2003), or the
optimal decision rule is determined in dependence of some probabilities that are difficult to estimate
a-priori a match. For example, Norman (1985) and Chan and Singal (2016) require the point-winning
probabilities in tennis of each player as an input. If a particular pairing of teams or players has not
occurred recently, it may be hard to estimate those required point-winning probabilities since they
depend on both teams or players participating in the match.

II

12 CHAPTER 1. INTRODUCTION TO SPORT-STRATEGY OPTIMIZATION

In my opinion, there exists a research gap for methods that are applicable prior to a match in
connection to a particular opponent. Alternatively, at least methods that include a procedure how the
required input probabilities can be estimated prior to a match. This thesis tries to narrow or close this

described gap.

The development of this thesis started with the idea to use Markov decision processes (MDPs) to
handle sport-strategic decision problems. The choice of beach volleyball as the first considered sports
game was quickly made since beach volleyball offers a good mixture of predefined structure and player
interactions. Also, the decision question that should act as a benchmark question and be answered by
the derived MDDPs was quickly determined. Without any formalization, the benchmark question to be
answered is: “Does risky play or a more safer play lead to a higher winning probability in a particular
match against a certain opponent team?” This question was found to be an appropriate benchmark
question since from a bird’s eye view there exists a trade-off between a higher probability for scoring
but at the same time also a higher risk of failing. In chronological order according to the creation of
the chapters, Chapter 4 that captures two MDDP:s for beach volleyball would have been the first chapter.
A reader who is mainly interested in the application can start reading in Chapter 4. The theoretical
background that is needed is linked at the appropriate places.

There always exist several opportunities to model the same question appropriately when modeling
a decision problem. So, two models have been developed that model the same benchmark question.
The models differed in their granularity, and it was soon apparent that each level of granularity had
something to offer. So both models have been pushed to the most extreme levels of granularity such that
the benchmark question was still appropriately modeled, but the advantages and disadvantages of the
different granularity levels appear clearly. The two models are called set-SSO-MDP and rally-SSO-MDP
and are both presented in Chapter 4 where their strengths and weaknesses are described. Especially,
when trying to apply those models to a real match situation these strengths and weaknesses appear.
The final match of the beach volleyball tournament at the Olympic games 2012 in London was used
as a case study for the described benchmark question. Collecting appropriate input-data for both
models contained some unexpected hurdles. Besides software tools that were needed to support the
data collection process, also routines to check the integrity of the significant number of observations
needed to be developed. Furthermore, general concepts, like an aggregation scheme, were developed
and adjustments of the models were made to make them suitable for data collected from real matches.

After having developed first models for sport-strategy optimization problems, there arose two paths
that were followed. The first direction was to identify similarities in the developed models to characterize
a class of MDPs that might generally be suitable to model sports games. The second direction was to
develop a method that combines the strengths of different model granularities.

The first path ended up with a definition of so-called Sport-Strategy Optimization MDPs (SSO-
MDPs), see Definition 3.2.2. Those MDDPs are constructed such that strategies with the highest proba-
bility of winning the considered sports game are optimal strategies. Also, an important characteristic of
SSO-MDPs was identified: Every action in an SSO-MDPs relates in some way to a physical action of a
player and has therefore always a positive probability to fail. This observed characteristicis captured in an
assumption on SSO-MDPs. From this assumption, a special structure can be followed for SSO-MDDs.
By exploiting this structure, convergence results of solution algorithms, a special linear programming
formulation, and a transformation algorithm could be developed. Those theoretical results related to
SSO-MDPs are presented in Chapter 3. For completeness, the underlying basic definitions and theory

3

of general MDPs are presented in Chapter 2. Chapter 2 may be a good starting point for readers that
search for a general introduction to MDPs. Those who are familiar with the general MDP-theory may
skip that chapter and start reading in Chapter 3 on the theoretical properties of SSO-MDPs.

The second direction examined led to the so-called Two-Scale Approach (2-MDP approach), which
combines the advantages of two models with a different granularity in one procedure. The general
description and motivation of this procedure are presented in Chapter s. The coarser of the two models
is called the strategic-MDP (s-MDP) whereas, the more detailed model is called the gameplay-AMDP
(¢-MDP). The combined models need to capture the same sport-strategic question and a particular
relation called s-g-implementation between states and actions in both models needs to be specified.
Afterward, in Section 5.2, the 2-MDDP approach was implemented for the two models of different
granularity developed for beach volleyball. It was evaluated for the benchmark question concerning
the final match of the Olympic games. The results were compared to those derived from a single
model. Besides that, the 2-MDP approach gives new opportunities for analyzing a sports game. Those
opportunities are presented at the end of Chapter s and show the strengths of the new procedure.

The last chapter, Chapter 6, concludes this thesis with a summary and valuation of the results. An
outlook to further developments is given.

14

CHAPTER 1. INTRODUCTION TO SPORT-STRATEGY OPTIMIZATION

Chapter 2

Theory of Markov Decision Problems

This chapter provides an overview on the theory of Markov decision problems (MDDPs). It focuses
on infinite-horizon MDPs under the total expected reward criterion as they will be the main tool for
analyzing a sport-strategic question in the next chapter. Before starting with the basic definition of
an MDD, a short overview of the most well-known results from the MDP theory is given. Further
references on more detailed results are given in the individual sections in this chapter.

One of the first occurrences of MDPs in the literature are Bellman (1957a) and Bellman (1957b), where
Bellman used dynamic programming to compute the optimal value function of an MDP and analyzed
its asymptotic behavior. He proved the fundamental result that there exists an optimal stationary policy
and developed the value iteration algorithm for solving MDPs.

Howard (1960) wrote a book on MDDPs that includes a computational technique for solving Markov
decision processes called policy iteration.

D’Epenoux (1963) discovered that MDPs can be formulated by linear programs and therefore be
solved in (weakly) polynomial time by either the ellipsoid method or the interior-point algorithm
(Karmarkar, 1984; Khachiyan, 1980).

Papadimitriou and Tsitsiklis (1987) showed that the complexity of MDDPs (finite horizon, infinite
horizon discounted, infinite horizon average cost) are P-complete. Furthermore, they showed that for
MDPs with deterministic transition functions the problem is strongly polynomial. The algorithms
solved the deterministic MDDPs very fast in parallel.

A modification of the policy iteration called simple policy iteration is equivalent to the simplex
method of Dantzig when applied to solve an MDP. In the simple policy iteration the policy is only
updated in a single state whereas the classic policy iteration corresponds to a block pivoting simplex
algorithm. The simplex method (Dantzig, 1963) is the most popular algorithm for solving linear
programs and performs well in practice. However, it has been shown that Dantzig’s pivoting rule can
lead to an exponential number of iterations (Klee and Minty, 1972). The counterexamples for certain
simplex pivoting rules can not be directly transferred to MDPs since the set of linear programs resulting
from MDDPs may not include the counterexamples (Littman, Dean, and Kaelbling, 1995). Indeed, Ye
(2011) showed that the simplex method with the most-negative-reduced-cost pivoting rule of Dantzig
are strongly polynomial-time algorithms for solving MDPs with a fixed discount rate. As the classical
policy iteration outperforms simple policy iteration (Littman, Dean, and Kaelbling, 1995), the classic
policy-iteration method is also a strongly polynomial-time algorithm for solving the MDPs with a fixed

15

16 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

discount rate.
Well-known textbooks on MDDPs are Puterman (2005), Bertsekas (2005), and Bertsekas (2001).

2.1 Basic Definition of Markov Decision Problems (MDDPs)

In this section the basic notation for Markov decision problems (MDDPs) which will be use in the
following of this work is defined. Most of the notation is according to Puterman (200s). A Markov
decision problem is a Markov decision process together with an optimality criterion.

2.1.1 Markov Decision Processes

A Markov decision process is defined in the following way:

Definition 2.1.1 (Markov Decision Process).
A discrete-time Markov decision process is a collection of objects

(T3S, 4, p:(:s 2), (s, 2))
with the following meaning:
* T={1,2,..., N -1}, N < oois the set of decision epochs.
* §is the set of possible system states.
« A = U;cgA, is the set of all actions, where A4, defines the set of allowable actions in state s.

* p:(-|s, a) is the transition probability distribution function in state s € S at time # € 7 under
action a € A,.

* 7¢(s, a) is the expected reward when choosing action 2 € A, in state s € S at decision epoch
t € T;rn(s) is the terminal reward of a finite horizon Markov decision process (N < co) when
the process ends in state s € S at decision epoch N.

Throughout this thesis, only Markov decision processes with a finite state and finite action set are
considered. From now on, it will be assumed that |S| = 7 < co as well as | 4| = m < co.
The transition probability distribution function p,(-|s, 2) denotes by

Pt(j|33 ﬂ)

the probability that the system evolves in the next epoch to state j when it is at time 7 in state s and
action « is chosen. Since p;(-|s, 4) defines a probability distribution over the set of states, it holds

> pljlsa)=1, Vi € T, Va e A,
jEes

2.1. BASIC DEFINITION OF MARKOV DECISION PROBLEMS (MDZPS) 17

The expected reward 7:(s,) of choosing action « in state s at time ¢ can be calculated from the reward
received for a transition from state s to j under action 4, which is denoted by 7,(s, 4, f), in the following
way:
7i(s, a) = Z 7:(s, 4,))pe(jls, a), Vs € S, Vr € T.
jE€S
We call a Markov decision process stationary if p,(jls, 2) = p(jls, a), YVt € T for the transition function
aswell as 7,(s, 4, j) = 7(s5, 4, j), Vt € T for the reward function holds.

A decision rule specifies how a decision maker in a Markov decision process selects an action. In
general, a decision rule may depend on the complete history of the Markov decision process. However,
in this thesis only Markov decision rules, which are decision rules that depend only on the current state
of the system, are considered.

Definition 2.1.2 (Markovian Decision Rule).
A Markovian decision rule is a function

d[. S — (p(As),

which specifies for each state a probability distribution over the set of available actions in that state.
When using decision rule d; and the system occupies state s at decision epoch 7, an action « is chosen
according to the specified probability distribution.

If the probability distribution g,,(,)(+) € P(A;) is degenerated, i.e., for some z € A, the probability
of choosing that action in state s at time # is g,4,(;(2) = 1, the decision rule is called deterministic. For a
randomized decision rule, the expected rewards satisfy

(s, dis) =) 745 @) 0(a)

a€A;

and the transition probabilities satisfy

Pells dd9) = " pelils Aga(a).

a€A;

Definition 2.1.3 (Markovian Policy).

A Markovian policy 7 is a sequence of Markovian decision rules, i.e.,
w=(dy,d,...,dnN-1)

where d, fort =1,2,..., N — 1is a Markovian decision rule.

A policy is stationary if d; = d forall t € T. We abbreviate 7 = (d, d, d, ...) by d*.
For MDPs, it can be shown that for any given history-dependent policy and starting state, a ran-
domized Markov policy can be constructed that yields the same reward stream (Puterman, 2005, Thm.

18 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

5.5.1). DMR is defined as the set of all randomized Markov decision rules, DYP € DMR a5 the set of all
deterministic Markov decision rules and analogously [T#R and IT*P C TT#R 35 the sets of randomized
respectively deterministic Markov policies.

A Markov decision process together with a Markovian policy 7 and an initial distribution P; induces
a stochastic Markov process. Consider a probability model (€, F, P) where Q denotes a sample space,
F a g-algebra over Q and P a probability measure on F. The sample space of the stochastic process
induced by a Markov decision process is Q := {S x A}N"1 x § respectively Q := {S X A} for an
infinite horizon Markov decision process. For finite sets S and .4, the sample space € contains at most
countably many elements and F can be chosen as the set of all subsets of €, which is denoted by 2.

The pairs (S, 25) and (4, 27) are discrete measure spaces. The random variables X; and ¥; on

(Q, 22 PP) are defined by
Xl’ . Q i S Yt . Q i A
w i Xi(w) =5, w > Yi(w) = a.
Let 7 = (d, d», ...) € IR be a randomized Markov policy and P; an initial distribution of the
system state. Then 7 induces a probability distribution P” on (€, 2?). A summary of the knowledge

about the distribution of X; and Y; in an MDP under a policy # to determine P” is given in the
following: The probability of the initial state is given through P;:

PW{Xl = 5} = Pl(J).

Since # is assumed to be a Markov policy, the probability of an action 2 € A at time ¢ is only
depending on the state 5; and given by

PHY, =a|Xi=s, i =a,..., X, =5}
= P{Y;,=alX, =y}
= th(ft)(ﬂ)'

Due to the nature of a Markov decision process, the transition probabilities depend only on the last
state and the chosen action. The probability of a transition from state s; to state 5.1 under action 4,
equals

a
P X =5 | =, i=a,..., Xy =5, Y = ar}
a
= P{Xm=sn| X =5, Y = a}

Pe(sestlses ar).

This determines the probability of an event w = (s1, 41, 52, ..., 5n7) € Q as

P*{(s1, a1, 52, ..., 5N)}

= Pi(s)- q:il(;l)(ﬂl) : P1(52|51; ap) ... q;zN,l(:N,l)(ﬂN—l) : PN—1(5N|5N—11 aN-1).

{X,,t € T}and {Y,, ¢t € T} iscalled the induced stochastic process by the Markov decision process
and the policy 7. Moreover, {X;, t € T'} is a discrete time Markov chain since it satisfies the Markov
property. For

Pﬁ{(.fl, al, ..., .Yt)} >0,

2.1. BASIC DEFINITION OF MARKOV DECISION PROBLEMS (MDZPS) 19

the Markov property holds since

PW{(dtJ St+lr e -yn) | ("‘17 Ay ee e -ft)}

P™{(s, a1, ..., 5,)}

PW{(SIJ ﬂl) e 5!)}

Pi(s1) - qayy(@) - - Gasy(an) - oo pa1(Sulsn—15 an-1)
Pi(s1) - le(:l)(ﬂl) teee 'Pt—l(»‘tl»‘t—b ar-1)

= ga)(a) . paa1(alsn-1, an-1)

PW{(ﬂD jt+l) ceey Sn) | jl‘}'

This shows that the evolution of the process depends only on the current state 5, and not on the full
history (s, a1, ..., 5¢).

The stochastic process {(Xy, 7:(X}, Y7)), £ € T'} is called the Markov reward process. Itis a sequence
of states and a stream of expected rewards generated by the Markovian policy 7.

For a real valued random variable /7 on the probability model (€, F, P™), the expected value of
W is defined as

E"{W} = Z W(w) - P"{w} = Z w-P™{w: W(w) = w}.

w€eQ) weR

2.1.2 Optimality Criteria

Popular optimality criteria for Markov decision processes are the expected rotal reward criterion, the
expected discounted reward criterion and the average reward criterion. The expected total reward criterion
is often used for finite as well as for infinite horizon Markov decision processes. The expected discounted
and the average reward criterion are mainly used for infinite horizon Markov decision processes.

Let X; be a random variable that represents the state of the system at time 7 and Y be a random
variable that represents the selected action at time #. Assume that policy 7 € [T*R is followed and the
system starts in a fixed state s.

Definition 2.1.4 (Expected Total Reward Criterion).
In the setting of a finite horizon Markov decision process (N < 00) the expected total reward of policy
7 is defined as

N-1
oF(s) = EF { 3 X, ¥ + m(XN)} .
=1

In the setting of an infinite horizon Markov decision process, where no terminal reward exists, the
expected total reward of policy # is defined as

N

v(9) = lim BT {Z (X m} = lim o%(0) (2)

t=1

20 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

If an initial distribution Py € P(S) of the starting state is given, the expected total reward of a policy
7 is defined as

Z Pi(s)vy,(s) resp. Z Pi(s)v" (s).

ses seS

The same applies to the following reward criteria.

Definition 2.1.5 (Expected Discounted Reward Criterion).
The expected discounted reward of policy 7 is defined as

N
f() = lim BT {Z N (X, Yt)} (2.2)

=1

for0 <A< 1.

Definition 2.1.6 (Average Reward Criterion).
The average reward of policy 7 is defined as

N
w : 1 Va : 1 w
&= lim ~NE {Z 0. Yt)} = Jlim_ ﬁvNH(J)- (23)

r=1

For general infinite horizon Markov decision processes, the limits in Equations 2.1, 2.2 and 2.3 need
not exist. Some criteria for the expected discounted and the average reward criterion that ensure that
the limits exist are summarized in the following:

* The limit in the definition of the expected discounted reward criterion (2.2) exists when the
expected reward function is bounded by some finite constant (Puterman, 200s, Sec. s.1).

* Thelimitin the definition of the average reward criterion (2.3) exists for Markov decision processes
with a finite state space (Puterman, 200s, Sec. 8.1.2).

In Subsection 2.3.1, different classes of Markov decision processes under the expected total reward
criterion are investigated. The Markov decision processes of the considered classes fulfill characteristics
which ensure the existence of v” (s).

When the limit in Equation 2.1 exists and the interchange of the limit with the expectation is valid,

it is possible to write
v"(s) = E;?r {Z (X, Yt)} .

t=1

In an MDD, a policy with the largest value function is sought. In the following Definition 2.1.7, an
optimal policy under the introduced optimality criteria is characterized. For the expected total reward
criterion, the finite horizon case is stated in brackets.

2.2. FINITE HORIZON MDPS 21

Definition 2.1.7 (Optimal Policy).
A policy 7" is total reward optimal if 7™ satisfies

V" (s) > 0" (s) [UKI(J) > o3 ()| Vse§ Vre MR,
A policy 7" is discount optimal if for fixed A, 0 < A < 1,
vl (5) = of(s) Vs € S, Vo e TMR,
A policy #* € Il is average optimal if w* satisfies

gW*(J) >¢"(s)Vse S, Vwe MR,

Definition 2.1.8 (Value of an MDP).
The value of an MDP is defined by

v'(s) = sup 0"(s) [v;](:) = sup U;\r,(s)] , SES.

welIMR well

The value of an MDP under the discounted or average reward criterion is defined analogously.

An optimal policy 7" € TTMR exists when
V" (5) = " (s5) Vs € S.

Observe, that an optimal policy achieves the value of the MDP for each initial state s € S.

2.2 Finite Horizon MDPs

In this subsection a finite horizon MDP (NN < 00) under the expected total reward criterion is assumed.
Dynamic programming (or backward induction) is the fundamental recursion for evaluating policies.
Together with the optimality equations, it is an efficient method for determining an optimal policy in
finite-horizon MDPs.

22 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

2.2.1 Policy Evaluation

First, Algorithm 1 describes how a deterministic policy 7 = (dy, da, ..., dn-1) € TP can be evaluated
by dynamic programming.

Algorithm 1: Finite-Horizon Policy Evaluation
Data: Finite-Horizon MDP (T, S, A, pi(-ls, a), (s, a)), N < oo, 7 € [TMP
Result: 2 (s) = v3,(5)

1 t «— N;

u3,(sn) < rn(sn) forall sy € 85

while # > 1 do

»

3
4 te—r—1;

s foreach s, € Sdo

6 ‘ Compute] (s;) = 7:(sz, de(s;)) + Zjespt(jbt: dt(»‘t))”gl(j);
- end

s end

As aresult, the policy evaluation algorithm computes the expected total reward of a fixed policy 7.
The function #] (s;) equals the expected total reward obtained by using policy # from decision epoch ¢
onwards starting in state 5.

N-1
%;r(jt‘) = E;: {Z rt(Xm dn(Xn)) + VN(XN)} 5

n=t

where X, is random variable representing the state of the system at time 7. This relation can be verified
by backward induction (Puterman, 2005, Thm. 4.2.1). As a consequence #]"(s) = v},(s) foralls € §
which is the expected total reward of policy 7.

The policy evaluation algorithm can be generalized to randomized decision rules by replacing the
equation in line 6 by

6 = Y (@) 7 a) + Y piljlsn () ¢

a€ Ay, JES

The policy evaluation algorithm calculates the expected total reward of a policy by evaluating N — 1
times a one-period calculation. Assume, there are 7 possible states for s; at each time step #. Then the
policy evaluation algorithm evaluates (N — 1) - z equations where the sum in each equation is calculated
over 7 realizations of the next state.

An enumeration over all realizations would require evaluating the expectation over the joint proba-
bility distribution of 7N realizations under policy 7. The reduction of an (N — 1)-period problem
to (N — 1) many 1-period problems is the key idea of dynamic programming. It is also used for finding
an optimal policy.

2.2. FINITE HORIZON MDZPS 23

2.2.2 Optimality Equations and Backward Induction

The optimality equations (or Bellmann equations) are the basis for determining optimal policies by
dynamic programming. They are given by

u(sr) = max{rds, @)+) el () (2.4)
K jES
unGN) = rNGN). (2:5)

Let

”;k(ft) = réll_?[lﬂ?fm ”?—(Jt)
Va

be the optimal value function from period ¢ on. Let #,(-) be a solution of equation 2.4 and 2.5. Then
u(s;) = uj(s;) foralls; € S, ¢ =1,..., N and #,(s51) = v}\;(s1) (Puterman, 2005, Thm. 4.3.2) which
means that a solution of the optimality equations gives the optimal reward from period # onwards and
the value of the MDP. The principle of optimality described by the optimality equations can be verbally
stated by:

“An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” (Bellman, 1957b)

However, there exist optimality criteria for which the optimality equations do not hold.
Any policy that uses a decision rule

di(s;) € argmax | 7,(s;, @) + Zpt(jbt, a)u; ()

aEAJt jGS

is an optimal policy. For MDPs with a finite state set and a finite action set, there always exists a
deterministic Markovian policy which is optimal (Puterman, 200s, Thm. 4.3.3, Prop. 4.4.3). The
mentioned theorem is helpful since it allows to restrict to deterministic Markov policies, which are
easier to implement and evaluate than randomized Markov policies.

The backward induction algorithm, Algorithm 2, solves the optimality equations and saves in
each iteration the actions at which the maximum in equation 2.4 is attained. Any policy that selects
only actions from the optimal action sets A4 , is an optimal policy. So, with the backward induction
algorithm the value of the MDP as well as optimal policies can be computed.

For |S| = nand | 4| = m the backward induction algorithm requires (N — 1) - 7 iterations.
Where in each iteration a maximum over 7 actions is computed. And each computation requires 7
multiplications for calculating the 1-period expectation. In total (N — 1) - 7 - »* multiplications are
needed to compute an optimal policy. In contrast, there are 72~V deterministic Markovian policies.
For directly evaluating one of these policies, one would need (N — 1) - »* multiplications. So, the

24 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

backward induction algorithm decreases the number of computations significantly.

Algorithm 2: Backward Induction Algorithm

Data: Finite-Horizon MDP (T, S, A, p:(-ls, a), (s, a)), N <
Result: #(s) = v},(s)

1 — N;

2 4y (5n) (o) forall s € S;

3 whiler > 1do

4 te—1r-—1;

s foreach s, € Sdo

6 Compute 7 (s;) = max,e 4, {rt(st, a) + Zjespt(ﬂst, az)u;l(j)};
, Set A, = argmax, ;. {r,(;[, &)+ Byes pljlsn 1)}

8 end

o end

2.3 Infinite-Horizon Expected Total Reward MDPs

In this sections on infinite-horizon MDDPs focuses on infinite-horizon expected total reward MDDPs
with finite sets of states and actions. The infinite horizon will be omitted in the MDP description.
Furthermore, an MDP with stationary problem data is assumed. From a finite number of states and
actions, it follows that the reward function takes only finitely many values. Each value of the reward
function is assumed to be finite and can therefore be bounded by some constant. Assumption 2.3.1
summarizes the assumptions made in this section.

Assumption 2.3.I:
The assumptions for this section on infinite-horizon MDPs under the expected rotal reward criterion are

* The horizon N = .
* The decision process has stationary problem data p(-|s, a) and r(s, a).

* The set of states and the set of actions are finite. Let |S| = n be the number of states and | A| = m
be the number of actions.

* The reward function is bounded by a constant M, i. e.,

|7(s, 2, 5)| < M, Vs, s" €S, a€ A,

Let 7" (5, 2) = max{r(s, 2), 0} and »~ (5, 2) = max{—7(s5, 2), 0} and define

N
vI() = lim EF {Z (X, m}

t=1

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 25

and

t=1

N
o() = lim BT {Z (X, Yt)} .

For v7(s) or v”(s) finite, the limit v”(s) = limn_— o0

03741 () is well-defined and

0" (s) = 07 (s) — 07 (s).

For this chapter and the rest of this thesis, we will only consider MDPs where the following assump-
tion is satisfied such that the expected total reward is well-defined for each policy #:

Assumption 2.3.2 (Well defined expected total reward):
For all w € MR gnd s € S, v7(s) or v™(s) is finite.

This section starts by presenting different classes of infinite-horizon MDPs. Afterwards, a vector
notation and the optimality equations for infinite-horizon MDDPs are introduced. Furthermore, this
section presents a linear programming formulation for infinite-horizon MDDPs and the algorithms value
iteration and policy iteration that can be used for determine an optimal policy of an infinite-horizon
MDP.

2.3.1 Classification

There exist some investigated classes of infinite-horizon expected total reward MDDs, which are intro-
duced in this subsection. The presented MDP classes come from different authors and are adapted to
the reward based notation of this thesis.

Positive bounded and negative models

Puterman (2005) focuses on two classes called positive bounded models and negative models. The idea
behind the two classes of MDPs is to guarantee that the sum of positive or the sum of negative rewards
is finite.

Definition 2.3.3 (Positive Bounded Model).
An MDP (S, A, p(-|s,), 7(s, a)) is a positive bounded model (POSB) if the following holds:

* 07(s) < oo foralls € Sand 7 € TR and

* Foreach s € S there exists at least one 2 € A, with (5, 2) > 0.

26 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Definition 2.3.4 (Negative Model).
An MDP (S, A4, p(-|s, a), (s, a)) is a negative model (NEG) if the following holds:

* v7(s) = O foralls € Sand 7 € TTMR and

HMR

* There exists a policy 7 € with v”(s) > —co forall s € S.

Maximizing negative expected rewards is equivalent to minimizing the expected costs. So, negative
models can be formulated for problems of minimizing non-negative costs.

Stochastic Shortest Path Problems

Bertsekas (2001) defines a stochastic shortest path problem. Usually, stochastic shortest path problems
are defined in a minimizing expected cost environment. However, for consistency, the reward function
is defined as the negative cost function and the notation is adapted to the one used for maximization
problems:

Definition 2.3.5 (Stochastic Shortest Path Problem).
An MDP

(S, 4, p(-s, a), (s,)
together with a set of goal states G C S is a stochastic shortest path (SSP) problem

(S, 4, p(-ls, @), (s, a), G)
if it satisfies
* plglg a) = 1forallg € G,z € A,
* r(ga)=0forallg € G,a € 4,

The first property ensures that each goal state ¢ € G is absorbing, i. e., once the process has entered
g itwill stay in g. From the second property, it follows that no rewards are accumulated when staying

ing.

Bertsekas makes two more assumptions on the considered SSP MDDs:
Assumption 2.3.6:
Assumptions on SSP MDPs considered by Bertsekas are
1. There exists at least one complete proper policy, i. ., a stationary policy d™ with
P {X,¢ G| Xi=s} <1, VseS
where n = |S| and P*" means that decision rule d is Jollowed at each decision epoch.

2. For every improper policy d%, i. e., for every policy that is not proper, the reward v* (s) is —co
for at least one state s € S.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 27

Note that in the terminology of this thesis an SSP MDP is just an MDP with goal states without
any further assumptions. An SSP MDP that satisty Assumption 2.3.6 is called a Bertsekas-SSP MDP:

Definition 2.3.7 (Bertsekas-SSP MDP).
An SSP MDP that satisfies Assumptions 2.3.6 is a Bertsekas-SSP MDDP.

The first condition of Assumption 2.3.6 assures that there exists a policy such that each state is
connected to a goal state by a path with a positive probability. This condition implies that under such a
complete proper policy a goal state is reached with probability 1 from every state 5. This can be seen as
follows: Define

ed = maxP?* {X, ¢ G| X, = s},
seS

then
00 k
P {X, ¢ G| Xy =5} < gL”J, VseS. (2.6)

For complete proper policies, ¢; < 1 holds. So, the probability of not reaching a goal state after & steps
converges to zero as k goes to infinity.

For a bounded expected reward function, the value of a complete proper policy exists and is finite
since the expected reward in the &-th period is bounded by

1£]

M.

k
e max (s d(9)] < ¢
For complete proper policies, the reward structure is similar to a Markov decision process under the
discounted reward criterion. The difference is that the discount factor is not fixed. But, in stage & - 7 the
discount factor is less or equal gfl.

If there exists a dead end 5, i. e., a state that is not connected by a path to a goal state, the assumption
of the existence of a complete proper policy can not be satisfied. Starting in this dead end would lead to
P*" {X, ¢ G| X; =5} = 1forall k£ € Nand all decision rules d € DX,

In Bertsekas (2001), a policy that satisfies the first assumption is named a proper policy. However,
some of the following MDP classes require proper policies that are policies which reach a goal state with
a probability of 1 but only from a specified starting state 5. In those SSP MDPs, there can exist dead
ends which are not connected to s; under a proper policy. So, for a better distinction, the policies that
are proper in every state of the state space are called complete proper policies.

The second assumption is satisfied if each cycle that does not contain a goal state has negative
expected rewards. Sometimes, the stronger assumption that the expected reward function is strictly
negative except for transitions from the absorbing states is used. This assumption has the advantage
that it can be easier verified.

Generalized Stochastic Shortest Path Problems

Kolobov et al. (2011) introduce a new class of MDPs, called generalized stochastic shortest path (GSSP)
problem that generalizes the class of Bertsekas-SSP problems:

28 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Definition 2.3.8 (Generalized Stochastic Shortest Path Problem).
An SSP MDP extended by a starting state 5; € Sisa tuple

(S, A, p(-ls, a), (s, a), G, 11) .
It is a generalized stochastic shortest path (GSSP) problem if the following assumptions hold

1. There exists at least one proper policy rooted at s, i. e., a stationary policy 4 that reaches a goal
state with probability 1 starting from s;.

2. The expected sum of nonnegative rewards of any policy is bounded from above:

N
o s S e
t=1

for every state s reachable from s;.

One difference between a Bertsekas-SSP MDP and a GSSP MDP is that the GSSP MDP only requires
a proper policy in the known starting state while the Bertsekas-SSP MDD requires the existence of a
complete proper policy. In a GSSP MDD, there could exist states s € S for which no proper policy exists.
So, there may exist dead ends, but they may not be reachable under a proper policy starting from s;. In
terms of Assumption 2.3.6, the first condition can be written as: There exists a policy 4 such that

P{X, ¢ G| X; =5 d} <1Vsreachable from 5 by following 4,

and 7 is the number of reachable states from 5 by following 4.

The second assumptions of a GSSP MDP ensures that the value of any policy is well-defined since
the value v”(s) of a policy exists whenever v (s) or v”(s) is finite (Puterman, 200s, p. 279).

Furthermore, the reward maximizing policy does not need to be proper in a GSSP MDP. In contrast,
the second assumption of 2.3.6 of Bertsekas on SSP MDPs guarantees that the reward maximizing policy
in a Bertsekas-SSP MDD is proper. In a GSSP MDP, there could exist a 0-reward cycle. If additionally
going to a goal state requires incurring a negative reward, a reward maximizing policy would stay in
the 0-reward cycle and not go for a goal state. As a consequence Kolobov et al. (2011) formulates the
objective of a GSSP MDP as finding the reward maximizing policy over all proper policies:

Definition 2.3.9 (Optimal Policy of GSSP MDP).
A policy 7" is an optimal policy in a GSSP MDP if it satisfies

0" (51) = 0" (s1) ¥ proper 7 € MR,

Accordingly, the value of a GSSP MDP is defined as:

Definition 2.3.10 (Value of the GSSP MDP).
We define the value of the GSSP MDP by

v*(s1) = sup 0" (s).
proper welIMR

Note that sup) = —c0. So, if no proper policy in state s exists, then v*(s;) = —oo0.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 29

SSPADE and SSPUDE

Kolobov, Mausam, and Weld introduce in their paper (Kolobov, Mausam, and Weld, 2012) two further
MDP classes that extend the class of Bertsekas-SSP MDPs by dead ends. To be consistent with the
previous sections, the definition is adapted to a reward based setting. The first class is named srochastic
shortest path problem with avoidable dead ends (SSPADE MDP):

Definition 2.3.11 (Shortest Path Problem with avoidable dead ends).
A stochastic shortest path problem with avoidable dead ends (SSPADE AMDP) is an SSP MDP with a
starting state s; € S

(S, A, p(-ls, a), (s, a), G, 51)

where the following assumptions hold
1. There exists at least one proper policy rooted at ;.

2. Every improper policy must have a value of —co in at least one state reachable from s5; under that

improper policy.

The SSPADE MDP definition relaxes the first condition for Bertsekas-SSP MDDPs by not requiring
a complete proper policy. However, the SSPADE MDP class is only a subclass of the GSSP MDP class
since the second condition excludes zero-reward dead ends reachable from ;.

The second class of MDPs introduced in (Kolobov, Mausam, and Weld, 2012) is named stochastic
shortest path problem with unavoidable dead ends (SSPUDE MDP). This class contains SSP MDDPs
where the probability of running into a dead end starting at 5, is positive for all policies. An SSPUDE
MDP is a Bertsekas-SSP MDP where no proper policy at state s; exists, which is called a Bertsekas-SSP
MDP that is improper in s;.

Definition 2.3.12 (Shortest Path Problem with unavoidable dead ends).
A stochastic shortest path problem with unavoidable dead ends (SSPUDE MDP) is an SSP MDP that is
improper at s; extended by a penalty:

(S, A, p(ls, a), (s, a), G, P, 51) .

The penalty P € R™ U {—oo} is incurred if an agent decides to abort the process in a non-goal state.
Further, the second Bertsekas-SSP MDP definition must hold:

* Every improper policy 7 has a value v” (5) of —o0 in every state s € S where # is improper.

If P > —oo the MDP is called a finite stochastic shortest path problem with unavoidable dead
ends (fSSPUDE MDP).If P = —oco the MDP is called a infinite stochastic shortest path problem with
unavoidable dead ends (iSSPUDE MDP). In an fSSPUDE MDP, the price of ending in a dead end can
be compensated while in an iSSPUDE MDP a dead end is truly irrecoverable.

30 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Since in fSSPUDE MDD there can exist non-dead-end state that yield a smaller reward than dead-
ends, Kolobov, Mausam, and Weld define a modified value function for fSSPUDE MDDPs as follows:

vp(s) == max {P, v"(s)}.

This modified value function is always finite and can be interpreted as a lower bound on any state’s
reward. If a state has an expected reward of less or equal P the process aborts. An optimal policy in an
tSSPUDE MDP is a policy #™ satisfying

0% (5) = max v%(s) Vs € S.
FO)= max of)

For iSSPUDE MDPs Kolobov, Mausam, and Weld define a two-ordered criteria by defining the
reward of a state as an ordered pair

o7 (s) = (PEGs), [0"[PE]GS))

where P7(5) is called a goal-probability function that gives the probability of reaching the goal from
state s under policy 7:

Pg(s)::ZP”{Xt:ge G X,=5¢G V<t <t X =5}

t=1

The function [v"|PZ] is the expected total reward restricted to states for which P{,(s) > 0 holds.

Kolobov, Mausam, and Weld define a random variable X 7 that denotes a distribution over states s’
with PZ(s") > 0. Having that, [0”|P7] can be defined as

[o"IPEIs) = BT {Z (X7, m}
=0
This two ordered criterion is used as follows: A policy #” is preferable to # at 5, which is written as

7(s) < 7’ (s), whenever o7 (5) < D}’J(S). v7(s) < v}r/ (s) holds whenever

PZ(s) < P%(s) V (Pg(s) = PZ () A [0"IPZ](s) < [™ |Pg’](;)) .
Hence, a policy is an optimal policy #* of an iSSPUDE MDP if it satisfies

7*(s) € argmax vy (s) Vs € S.
<7

Kolobov, Mausam, and Weld (2012) show that for big enough dead-end penalty costs the optimal
policies of fSSPUDE and iSSPUDE are identical. Further, they show in Kolobov, Mausam, and Weld
(2012) that every fSSPUDE MDP can be converted in a Bertsekas-SSP MDP with the same set of optimal
policies.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 31

MAXPROB

MAXPROB problems can be derived from GSSP MDPs that do not have any proper policy at state s;.
If no proper policy at state s; exists, the value of the GSSP MDP is —co since the supremum over an
empty set of proper policies is defined as —co. To distinguish between the improper policies, that all
do not reach a goal state with certainty, one tries to find the policy that has the highest probability of
reaching a goal state. A MAXPROB problem can be derived from a GSSP MDP by assigning a reward
of 0 to all transitions to non goal states and a reward of 1 to transitions to a goal state. Kolobov and

Mausam (2012) define a MAXPROB problem in the following way:

Definition 2.3.13 (MAXPROB).
A MAXPROB MDP is an SSP MDP

(S, A, p(-ls, a), (s, a), G)
where the reward function obeys two conditions:
L 7(s,45)=0,Vs s ¢G, ac A,

2. 7(549)=1, Vs¢ G, g€ G, ac A,

The expected total reward v”(s) in a MAXPROB MDP equals the probability of reaching a goal state
when policy # is used and the process starts in s. An optimal policy #* is a policy that maximizes the
probability of reaching a goal state, i.e.,

7" € argmax P7(s) Vs € S.
aIIMR

Hence, the optimal value function v*(s) of a MAXPROB MDP is 1 for all states where a proper policy
exists and 0 for dead ends.

Summary

This subsection summarizes the hierarchy of the presented infinite-horizon MDP classes. Some relations
between the MDP classes are already investigated in (Kolobov et al., 2011). The remaining relations,
where no author is mentioned, are added by me. Remember that in this work an SSP MDP is defined as
an infinite-horizon MDP with goal states without any further assumptions. In some literature, the term
SSP MDP corresponds to our Bertsekas-SSP MDP definition. Since GSSP MDDPs, SSPADE MDD,
Bertsekas-SSP MDPs, MAXPROB MDPs and SSPUDE MDPs are all infinite horizon MDPs with goal
states, it is clear that they form subsets of the set of general SSP MDPs. POSB MDDPs and NEG MDPs
are not goal oriented, however it is possible to show that they can be converted into goal oriented SSP
MDPs that actually meet the GSSP MDP assumptions. In the following, the relation between those
MDP:s classes will be proven and summarized.

32 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Theorem 2.3.14:
SSPUDEN GSSP =0

Proor. An SSPUDE MDP is by definition 2.3.12 an SSP MDP that is improper at state s, i.e., there
exists no proper policy for the starting state 5;. A GSSP MDP requires at least one proper policy rooted
ats;. Therefore, there can not exist an SSP MDP that belongs to the class of SSPUDE MDDPs and GSSP
MDPDPs at the same time.]

Theorem 2.3.15:
Bertsekas-SSP ¢ SSPADE c GSSP c SSP

Proo¥. Since Bertsekas-SSP, SSPADE as well as GSSP problems impose additional conditions on the
basic class of SSP problems, it is clear that they all form subsets of the basic SSP problems.

GSSP problems form a strict subset of SSP problems because they require the existence of a proper
policy for a specified starting state 5. In contrast, SSP problems contain instances where there does not
exist a proper policy from any state.

Firstitis shown thatan SSPADE MDP is also a GSSP MDP. Both problems require a proper policy
rooted in 5. So, an SSPADE MDP obviously satisfies the first condition of a GSSP problem. All proper
policies terminate with probability 1 in a goal state. It was already remarked that the value of a proper
policy is finite. Since all improper policies in an SSPADE MDP have a value of —oo in at least one state
reachable from s;, the nonnegative reward v7 (s) must be finite after Assumption 2.3.2 which states that
either v”(s), or v (5)- has to be finite for each policy #. So in conclusion, all policies satisfy v7 (s) < oo
for all s reachable from 5 and the second condition of the definition of GSSP problems is satisfied."
The set of GSSP problems may contain problems that are no SSPADE MDPs: For example, a GSSP
problem may contain a dead end with 0-reward reachable from s such that there exists an improper
policy rooted in s; that has a finite reward in every state reachable from s;.

Every Bertsekas-SSP MDP is an SSPADE MDP since in a Bertsekas-SSP MDP every improper pol-
icy has a reward of —co in at least on state 5. So, an improper policy rooted in s; must have a value of
—oo in at least on state s reachable from s;. The set of Bertsekas-SSP problems is a strict subset of SS-
PADE MDPs since an SSPADE MDP requires only a proper policy rooted in the starting state 5; while
a Bertsekas-SSP MDP requires a proper policy for every state s in the state space. So, in an SSPADE
MDP, there may exist states not reachable from 5; under a proper policy for which no proper policy
exist. n

"The relation SSPADEC GSSP can also be found in Theorem 2 of Kolobov and Mausam (2012). The proof is only
sketched and a reference to Kolobov et al. (2011) is given. However in Kolobov et al. (2011), I can not find this proof.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 33

Kolobov et al. (2011) investigate the relation of the non-goal-oriented MDP classes NEG and POSB:

Theorem 2.3.16 (Kolobov et al. (20m)):
NEG c GSSP

Theorem 2.3.17 (Kolobov et al. (2011)):
POSB c GSSP

The proofs of NEG C GSSPand POSB C GSSP are based on constructing a GSSP MDP from an
original NEG or POSB MDP with identical optimal solutions.

The idea for proving the relation POSB C GSSPis the following: Consider the reachability graph
of aPOSB MDP. It can be shown that in the directed reachability graph, there must exist at least one
strongly connected component. That strongly connected component has no outgoing edge and all
internal actions have an expected total reward of 0. So, the set of states in these strongly connected
components can be defined as goal states of the derived GSSP MDP.

For NEG MDD, it can be shown that the second assumption equals to requiring the existence of a
proper policy. Analogously to POSB MDDPs, NEG MDDPs can be converted into GSSP MDDs.

Theorem 2.3.18 (Kolobov et al. (2011)):
MAXPROB c POSB

Proo¥. Every MAXPROB MDP is a POSB MDP: Since there exist only 0 and 1-reward actions, the
first condition of POSB, that there must exist an action with a non-negative expected reward in every
state, is obviously satisfied. Also v (s) is finite since a strictly positive reward is only distributed for a
transition to a goal state. Since a goal state is an absorbing state, no further strictly positive rewards can
be accumulated. n

There is one important remark to be made on the last theorems. From the relation M AXPROB C
POSB and POSB C GSSP, one can conclude that MAXPROB MDPs are a subset of GSSP. However,
in contrast to the POSB MDP definition a MAXPROB MDP is goal-oriented, which means that a set
G of goal-states is explicitly specified. In the proof of POSB C GSSP, a set of goal states is constructed
according to some properties. So, when consideringa MAXPROB MDP as a GSSP, the set of goal
states may have to be modified according to the proof of Theorem 2..3.17.

34 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

@ ﬂl ______ e

goal state

N
)

a; |action

available action
- - > p(s]s, a): transition

7 (s, a 5) reward

<— — — — — - - - - -
—_

Figure 2.1: Example MAXPROB problem that is no Bertsekas-SSP

This thesis focuses on MDDPs with an explicit set of goal-states. So, a M AXPROB is always consid-
ered with its originally specified set of goal-states. In the following, non-goal oriented MDPs are not
considered any further and the relations of A4.4XPROB to the other classes with explicit goal states is
investigated.

Observation 2.3.19:
MAXPROB ¢ Bertsekas-SSP

The example MDP in Figure 2.1 is constructed by me and shows a MAXPROB problem that is no
Bertsekas-SSP problem. The example MDP is a MAXPROB problem because only the transition to
the goal state gives a reward of 1. All other rewards are 0. It is no Bertsekas-SSP problem since a policy
that selects action 43 in state 5, is an improper policy. However, this policy would have a value of 0 and
not —co.

However, it is possible to construct a MAXPROB problem that is a Bertsekas-SSP problem.

Observation 2.3.20:
MAXPROB N Bertsekas-SSP # 0

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 35

Bertsekas-SSP

Figure 2.2: Hierarchy of MDP classes

Since in a MAXPROB problem all rewards are either 0 or 1, an improper policy in a MAXPROB
problem can never have a value of —co. However, MAXPROB problems where only proper policies
exist are Bertsekas-SSP problems. Consider for instance the MDP of Figure 2.1 without the actions
a3, a4 and without the state s3. This is a MAXPROB problem where only one policy exists and this
policy is proper.

Since a MAXPROB problem has only restrictions on the reward structure and does not require

any proper policy, an MDP where there exists no transition to a goal state from any other state is a valid
MAXPROB problem. This MAXPROB MDP has no proper policy. So, it can not be a GSSP problem.

Observation 2.3.21:

MAXPROB ¢ GSSP

Asmentioned above, ina MAXPROB problem, there exist only non-negative rewards. An SSPUDE
is improper in 5. So if the problem contains actions, there must exist an improper policy with a reward
of —co. This can not be possible in a MAXPROB problem because there every policy has a non-negative
reward.

Observation 2.3.22:
MAXPROBN SSPUDE = ()

Figure 2.2 summarizes the relations between the presented MDP classes without NEG MDPs and
POSB MDPs.

36 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

2.3.2 Vector Notation

A finite state and action spaces is assumed throughout this thesis, so a vector notation can be used for
MDPs. For d € DMP, the reward vector r; € R” is defined as

(72); := (5, d(s)) Vs € S

and analogous for d € DMR 45

(ra)s = Z 9d(s)(a)r(s, a) Vs € 8.

a€ A

The transition probabilities under a decision rule 4 can be captured in a transition probability matrix

P, € R™" Ford € DMP the (s, j)-th entry of P, is defined as

(Pa)sj = pljls, d(s))

and ford € DMR analogously as

(Pa)sj =) qa(@p(jls, 2).

a€ A

Let V' = R” be the vector space of all possibles values of the MDP where a component equals the value
of the MDP in state sin S. A vector v € V will also be considered as the value function or value vector
of the MDP. Then, evaluating a one-period MDP with terminal reward » € R” under decision rule 4
gives the value

rg+ Pyr.

It can be shown that under Assumption 2.3.1 of this section, the resulting vector is again in ' = R”
(Puterman, 2005, Lemma 5.6.1).

The vector notation leads to a clearer representation of the policy evaluation introduced in Equa-
tion 2.1. The probability distribution that a system starting in s occupies in decision epoch 7 + 1 state ;
can be read off the transition matrix P, which is calculated by multiplying Py, - Py, - ... - Py,. So,

(PL)ej = [Pay - Pay - - - Py =P" { X1 = j | Xq = 5}.

Given that the value of a policy v exists, it can be written in vector notation as
[
T o_ t—1
o™= (P (2.7)
=1

2.3.3 Optimality Equations

The goal is to derive the optimality equations in vector notation for infinite-horizon MDPs under the
expected total reward criterion. As in this subsection, the introduced vector notation is used to express
the optimality equations for infinite-horizon MDPs under the expected total reward criterion, assume

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 37

that the limit of Equation 2.7 exists for all policies 7 and the value of the MDP is well-defined. Then,
Equation 2.7 can be rewritten as

[oe]
v = Z Py

r=1

r4 + Pd1 (de + Pd2743 +..)

=74 + Py ",

where 7 = (dy, dj,). For a stationary, deterministic policy 4 this equation simplifies to
Z)d =ry+ Pdvd »
so v’ isa fixed point of the linear transformation (r; + £;) (v). For MDPs under the expected dis-
counted reward criterion, it can be shown that v* is the unique solution of 74 + P,;. However, this is
not in general the case for MDPs under the expected total reward criterion.
We can write the optimality equations 2.4 of finite horizon MDDPs as

0(s) = max{r(sa)+ Z 215 @)vii(j) b, Ve € T, Vs € 8.
A
a€ A, =
As we assume A, to be finite in each s, the maximum is attained in each state and we do not need a
supremum in the stated equations. Applying the limit # — oo to the last equations, we derive

o(s) = max r(s, a) + Zp(ﬂs, a)(j) ¢, Vs € 8. (2.8)
acA; JES
We refer to equations 2.8 as the optimality equations for infinite-horizon MDDPs. Equations 2.8 can be
written in vector notation as

v = max {ry;+ Pyv}. 2.
deDMR{d AU} (2.9)

Note, that we have not said anything yet about the optimality equations. It remains to show under
which conditions there exists a solution to the optimality equations for infinite-horizon MDPs under
the expected total reward criterion and when this solution equals the value of the MDP.

As for finite-horizon MDPs, it can be shown that the maximum in Equation 2.9 only needs to be
evaluated over all deterministic Markovian policies while attaining the same maximum value (Puterman,
2005, Prop. 6.2.1). For later use and further simplification, we define a linear operator, sometimes called
dynamic programming operator or Bellmann operator, B as

Definition 2.3.23 (Dynamic Programming Operator).

Bv:= max {ry;+ P,v}. 2.10
deDMD{d AU} (2.10)

So, as a result we can summarize the optimality equations by
v = B (2.1m)

A solution of the optimality equations is a fixed point of the dynamic programming operator B.

38 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

2.3.4 Solutions of the Optimality Equations

In contrast to MDDPs under the expected discounted reward criterion, the dynamic programming
operator applied to total reward models is not necessarily a contraction mapping. For MDPs under
the expected discounted reward criterion, this property of the dynamic programming operator makes
it possible to apply the Banach fixed point theorem. The existence and uniqueness of a fixed point
can then be followed from the Banach fixed point theorem. Furthermore, a sequence of value vectors
derived from the dynamic programming operator starting with an arbitrary v € R” will converge to the
unique fixed point. Together with the result that the fixed point of the dynamic programming operator
equals the value of the considered discounted MDD, a basis for algorithms that yield an optimal policy
for a discounted MDP is given. By examples, it will be shown that these conclusions can not generally
be made for MDPs under the expected total reward criterion. Weaker results that hold for arbitrary
expected total reward models are summarized. Furthermore, assumptions and special classes of expected
total reward models are presented, where properties similar to those of discounted reward models hold.
From the definition of the value of an MDD, it can be shown that:

Theorem 2.3.24 (Puterman (200s), Thm. 7.1.3.):
The value v* of an MDP under the total expected reward criterion satisfies the optimality equa-
tions 2.11.

If one considers an MDP where only one decision rule 4 is available, the value of the MDP is
obviously v* = A Applying Theorem 2.3.24 yields
75 A®° A% A%
" = Bv =max{r+Pv }=V+PU.
Je D d d d d

The dynamic programming operator B of MDPs under the expected total reward criterion, defined
in Definition 2.3.23, is a monotone function. Furthermore, if the value function is increased by a
constant in each state, the result of the dynamic programming operator also increases in each state by
this constant. The following Lemma shows these properties:

Lemma 2.3.25 (Puterman (200s), Lemma 7.1.5):
1. Forallu,ve V withu < v, Bu < Bo.

2. ForallceR, veV, Blv+cl) = Bv+ cl.

ProoF. The proof of this Lemma uses that P is a transition matrix, where each row specifies a prob-
ability distribution.

1. Letu,v € V with # < v. Then, there exists a decision rule 4 € D*P at which the maximum is
attained, such that Bz = r; + P,u. It follows

Bu=rg+Pju<ry+ Py < B,

where the first inequality uses that 2, has only positive entries and # is component wise smaller
than v.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 39

2. Letce R, veVT.

31)"‘[]1 = max 7, +P U+C]l
() . D{d d()}
= max 7, +PU+CP]1
Je {d d d}
= max 7, +PU +[]].
. {d d}

= Bv+ 1.

In the second to last equation, it is used that for each 4 € DMP the rows of Pysumuptol. m

In contrast to discounted models, v* is not a unique fixed point of B. For any scalar ¢ € R, v* + ¢1
is also a fixed point:
Lemma 2.3.25
B(v" + 1) = Bv* +cll =v* + 1.
We summarize results of total reward MDP classes, where the fixed point v* is unique or can be charac-
terized:

* For Bertsekas-SSP MDPs, Bertsekas shows in Bertsekas, 2001, Prop. 2.1.2 that the dynamic
programming operator B has at most one fixed point. The proof does not rely on the Banach
fixed point theorem. It uses that the value of a proper policy »* is the unique solution of

v=ry+ Py

This in turn is a consequence of Equation 2.6 that shows that for proper policies the probability
for not reaching a goal state after 7 steps goes to zero as n — oo. Since in a goal state no further
reward is accumulated we get

lim Pjv =0, YveT.

k—0c0
So, the reward from using a deterministic decision rule 4 infinitely often converges to the value
o4 of the stationary deterministic policy for every v € V:

k—1

k— 00 00
ZPZ’rd+P§v =7
m=0

Therefore, if any other value function v’ satisfies v’ = 4 + Pyv’, we can recursively insert the

equation for " and get v’ = limj e Z/fn_:lo rd + Pju' which converges to v*" . So v/ must be

v*" and the solution of v = 77 + Pyvis unique.

Finally, Bertsekas shows that the dynamic programming operator has a unique solution by using
the uniqueness of v = 7,4 + P4v in the following way: Assume two fixed points #and v’ of B. For
Bertsekas-SSP MDP with a finite action set, there must exist two proper decision rules d and 4’

at which the maximum of B is attained. From the uniqueness of the fixed point of v = 4 + Py,

it follows that o = v and v’ = 74" .

40 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

We have v = By = B*vVk > 1and all fixed points v. From that we get

k—o0

k—1
7> lim Z Plry + Pj,v =" =
=0

and analogous v” > 2. So the fixed point of B must be unique.

As a side note, there exists a special case of Bertsekas-SSP MDDPs where B is a contraction in terms
of a weighted supremum norm. This is the case if all policies are proper (Bertsekas, 2001, Ex.

2.14).

* Let " C V be the set of positive bounded value functions. For positive bounded models, it can
be shown that v* is the component-wise minimal fixed point of Bin V* (Puterman, 200s, Thm.
7.2.3). When evaluating a stationary deterministic policy 4, the value »*~ of this policy is also
the component-wise minimal solution of

v=rg+ Py
in V* for positive bounded models.

* Let ¥V~ C V be the set of negative bounded value functions. For negative models, it can be
shown that v* is the component-wise maximal fixed point of Bin /'~ (Puterman, 2005, Thm.
7.3.3). When evaluating a stationary deterministic policy 4°°, the value o4 of this policy is also
the component-wise maximal solution of

v=rg+ Py
in '~ for negative models.

In discounted MDD, it is easy to identify an optimal decision rule. If a decision rule 4* is conserving
which means

rge + Ppot =07,

it follows that the deterministic stationary policy (4*)* is an optimal decision rule (Puterman, 200s,
Thm. 6.2.7). However, in MDDPs under the expected total reward criterion, it is only a necessary not a
sufficient condition that is conserving.

Example 2.1:
Figure 2.3 shows an example from (Puterman, 200s, Ex. 7.2.3) with two states s; and 5,. In state s,
there are two actions #; and 4, available, in state s, there is one action 43 available. There exist two
deterministic decision rules. Let d; be the decision rule that chooses action 41 in 5; and 5, be the decision
rule that chooses action 4, in s;. Both decision rules select 43 in s,.

The transition matrices under these decision rules are

10 0 1
el pefo)

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 41

a

a3

ap @ state

a; action

—— available action

- - > p(s|, a): transition

r (s, a 5) reward

Figure 2.3: Conserving decision rule is not sufficient (Puterman, 200s, Ex. 7.2.3)

Since the presented MDP is a positive bounded MDP, we can calculate the value of the MDP by
finding a minimal solution v € V" of the optimality equations. The optimality equations for the
example are

v(s1) = max{l + o(s2), v(s1)}
u(s2) = v(s2).
The minimal solution of these equations in V™% is
v*(51) =1, 0°(s) = 0.

Obviously, in this small example d; is optimal and 4} not. This can be seen by computing the value
of those decision rules, which are v2” (s;) = 1and 4" (s) = 0. However, both decision rules are
conserving. We show this by evaluating v* = »; + P,v" for both decision rules:

o ()= ()06 2
o (=)0 4 *

Since requiring a conserving decision rule is not a sufficient criterion, a second condition is needed.
Theorem 2.3.26 (Puterman, 2005, Thm. 7.1.7) characterizes an optimal decision rule in MDPs under
the expected total reward criterion:

42 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Theorem 2.3.26 (Puterman (2005), Thm. 7.1.7):
Ifd € DMP satisfies

vy + Pyv" = 0" and Al]im sup Eflm {v"(Xn+1)} <0,

then d is optimal.

A decision rule that satisfies the second condition of Theorem 2.3.26 is called equalizing. This
condition can be rewritten as limx—,co sup Pa]i\] v*(s) < Oforalls € §in MDPs under the expected
total reward criterion. In discounted models, the discount factor A guarantees that each decision rule is
equalizing. There are classes of expected total reward models, where the same result holds:

* Since in negative models the value of all stationary policies and therefore also the value of the
MDP is always less or equal zero Puterman, 200s, Prop. 7.3.1.

lim sup Pfi\]v* <0

N—oo
is satisfied for all decision rules. So, in negative models all decision rules are equalizing.

* For proper decision rules
lim sup P)v =0

N—>o0

holds for all v € V" and therefore every proper decision rule is equalizing. Since in Bertsekas-SSP
MDPs all improper policies have a reward of —co and there exists at least one proper policy, it can
be concluded that every policy that is conserving in a Bertsekas-SSP MDP is an optimal policy.

In positive bounded models, there may exist conserving decision rules that are not equalizing.

Example 2.1 (continued):
Revisiting Example 2.1, we see that d; is equalizing, while dj is not. The transition matrix for N steps

10 0 1
N _ N _
2=l p=(o)

from which ij = (1) and PNy = (0) follows for all N. So,
0 0) 0

are

]\;iinoo sup sz*(.f) =0VseS

holds, and 4, is equalizing. We can apply Theorem 2.3.26 to identify d as an optimal stationary deter-
ministic policy. *

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 43

After identifying a stationary deterministic optimal policy, the question is open whether there
always exists a stationary deterministic optimal policy. Puterman relies on the proof for discounted
models and uses a non-decreasing sequence of discount factors converging to 1 to prove the existence of
a stationary deterministic optimal policy. For completeness, we restate the assumptions made in this
section.

Theorem 2.3.27 (Puterman (200s), Thm. 7.1.9):
Suppose an MDP under the expected total reward criterion with a finite state and actions space that
satisfies Assumption 2.3.2. Then, there exists a stationary deterministic optimal policy.

For Bertsekas-SSP MDD, the existence of a stationary deterministic optimal policy can be proved
without relying on discounted models (Bertsekas, 2001, Prop. 2.1.2).
2.3.5 Value Iteration

Value iteration is based on the convergence of the sequence {¢”} defined by
z)n+1 = B

to the value of the MDP v*. In discounted models, this convergence is guaranteed for any v € 7 by the
Banach fixed point theorem. In MDPs under the expected total reward criterion, the convergence of
{v""} does not hold in general.

Example 2.2:
Consider again the MDP of Figure 2.3. We choose o° = (3, 2)T € V and define v"*! = Bv". The next

values of the sequence are
p (max{1+2,3}) (3
v 2 2

) (max{l1+2,3}) (3
v) =15

Since (3,2)7 is another fixed point of the optimality equations, the sequence will stay in (3, 2)7. Ob-
viously, this is not the value of the MDP. *

Algorithm 3 shows the general value iteration algorithm. If it converges to the value of the MDP v*

and the termination criterion |[o'!
vl‘+1

— || < € is met, suboptimal error bounds of the returned solution
can be computed. However, the bounds are not as powerful as for discounted MDPs and additional
knowledge is required. For instance for Bertsekas-SSPs, the expected number of steps until reaching a
goal state needs to be known (Hansen, 2017).

Some results regarding the convergence of the value iteration algorithm for the presented MDP
classes of Subsection 2.3.1 are:

44 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

* For Bertsekas-SSP MDDPs, we have already seen that v* is the unique fixed point of B. The
sequence {v"} generated by the dynamic programming operator converges to the value of the
MDP for every v € V" (Bertsekas, 2001, Prop. 2.1.2). So, for Bertsekas-SSP MDDPs value iteration
converges for every value function v € ¥ to the value of the MDP.

* For positive bounded MDD, value iteration converges if 0 < 1° < v* holds (Puterman, 200s,
Cor. 7.2.13).

» In negative MDPs with a finite the state set S value iteration converges whenever 0 > ° > v*
(Puterman, 200s, Cor. 7.3.12).

Algorithm 3: Value Iteration

Data: Infinite-Horizon MDP (S, A, p(:|s, a), (s, 2))
Select o° € V appropriate, € > 0;

t «— 0;

Compute v'*! = B';

if ||/ = || < € then
£+1,
b

-

N

‘ return v

[R)

else
te—t+1;
8 Go to line 3;

~N

o end

In general, value iteration may require an infinite number of iterations and each iteration has a
running time of O(mn*) (Littman, Dean, and Kaelbling, 1995).

For Bertsekas-SSP MDDPs that contain an optimal stationary deterministic decision rule whose
transition probability graph is acyclic, it can be shown that value iteration will yield the value of the
MDP after at most 7 steps (Bertsekas, 2001, Sec. 2.2.1). A consistently improving policy d**, is a policy
that satisfies forall; € S

Vj € Swith p(jli, d*(i)) > 0 = v () > v°()).

The transition probability graph of a consistently improving policy is acyclic. So, if there exists a
consistently improving policy, it can be derived that value iteration terminates after finitely many
iterations.

When applying the value iteration algorithm to discounted MDDPs or Bertsekas-SSP MDPs, an
optimal stationary deterministic policy 4* can be derived by just remembering the action at which the
maximum of the dynamic programming operator was attained. However, since in MDPs under the
total expected reward criterion only a conserving policy that is also equalizing is an optimal stationary
deterministic policy there need to be further considerations done, when identifying an optimal policy.

2.3.6 Policy Iteration

The general policy evaluation algorithm, presented by Algorithm 4, relies on the existence of an optimal
stationary deterministic decision rule and not, like the value iteration algorithm, on finding a fixed point.
It terminates at an optimal stationary deterministic decision rule after a finite number of iterations

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 45

for discounted models with a finite state and action space (Puterman, 200s, Thm. 6.4.2). The proof
is based on the property that the sequence of value functions generated in the policy evaluation step
is monotonically increasing and that there exist only finitely many different deterministic stationary
policies.

Also for Bertsekas-SSP MDPs, it can be shown that the new policy generated by the policy iteration
is either strictly better than the current policy or an optimal policy (Bertsekas, 2001, Sec. 2.2). This can
be seen as follows: Let d be the current decision rule with value +" and 4 be the policy at which the
maximum of Bv?" is attained. Then

r;i+P;ivd = B 2 g+ Pyt =0,

By using the monotonicity of 7; + Pyu > r; + Pyv, Yu > v, u,v € I and the convergence of

=~

—1

/e—)oo “jo0
P2”73+P§v 504 ,Yvel
0

3
I

for proper decision rules, we get "7 > 17 So, either there exists an i € § such that o (i) > v* (i) or
we get " = Br?” and d® is an optimal policy. The shown property implies, that the policy iteration
algorithm terminates after a finite number of steps for Bertsekas-SSP MDPs.

For expected total reward MDPs, the policy evaluation, step 3 in Algorithm 4, may not be possible.
This is the case if the selected policy dj is a policy with an infinite value |%| = co. For example in
negative models, there may exist a stationary deterministic policy with v = —oco. But even if the
algorithm starts with a decision rule dj that has a finite value, the policy evaluation step may not have a
unique solution.

Example 2.3:
Consider again the MDP presented by Figure 2.3. Assume, the decision rule di(s;) = 4 and di(s2) = a3

is selected as the initial decision rule in the policy iteration algorithm. Then the policy evaluation step
would be to find a solution of

- Pdl)v =74
1 0 0
= (=5 3] ()
- 0 0y (0
0o 0/ o)
Anyv € R2 solves this system of equations. *

It appears reasonable to select the minimal solution of v € V" in positive bounded models and
in negative models the maximal solution which is automatically in v € J"~. This would guarantee, in

46 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

step 3 of Algorithm 4, that the value of the stationary deterministic policy 4’ is finite.

Algorithm 4: Policy Iteration — General

Data: Infinite-Horizon MDP (S, A, p(-ls, a), 7(s, a))
Select dy € DD,

2t «— 0

3 Obtain v” by solving

—

(L =Py)v=ry, (Policy Evaluation)

4 Choose d,1 to satisfy

dy41 € argmax {r; + Pyv"} (Policy Improvement)
deDMD

setting d,,+1 = d, when possible;
if d,41 = d, then

‘ return d,,;

N«

else

~N

8 ‘ Go to line 3;
9 end

If the policy evaluation is well-defined and the policy improvement steps leads to a termination
of the algorithm, a decision rule d,41 = d, has been found that can not be improved further. From

d,1 = d, follows

d, € argmax {ry + Pyv"}

deDMD
= max {ry+Pp"} =ry + Py " =0"
de DMD
= B ="

The last equation shows, that if the policy iteration algorithm terminates, a fixed point of the optimality
equation has been found. In discounted models and Bertsekas-SSP MDD, there exists only a unique
fixed point which is v* and it follows that d,, is a conserving decision rule. As mentioned earlier,
deterministic stationary policies d,° derived from a conserving policy d,, are optimal in discounted
models and Bertsekas-SSP MDDs.

In total reward models, this conclusions can not be made. Even if we can correctly evaluate all
policies, we can not ensure the algorithm to terminate at the value of the MDP. So, the derived stationary
deterministic policy can be suboptimal. Example 2.4 from Puterman, 200s, Ex. 7.3.1 shows a negative
model, for which the policy iteration algorithm terminates at a suboptimal policy. This issue results
from the fact that the set of recurrent states changes for different policies.

Example 2.4:
Consider the NEG MDP presented in Figure 2.4. Let 9 be a decision rule that selects action 4; in 5 and
v be a decision rule that selects action 4, in 5. Both decision rules use 43 in 5.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 47

a a F----- 1H=1---» a3
~ /'
S--1t0 7
@state

4; |action

available action

- -+ (5|, a): transition

7 (s, a) reward

Figure 2.4: Policy Iteration may terminate with a suboptimal policy

Assume the policy iteration, Algorithm 4, starts with 9. According to our reasoning before, the
maximal solution of (/ — Py)v = r,, is determined in the policy evaluation step such that we get a
solution that equals the value of the considered policy. For our initial decision rule 7, the system of
equations is

I=P)v=r,

01 -1
-0)= (o)
= v(s) —v(s2) = =1 A ov(s) =0

= maximal solution: °(s1) = =1, 1°(5,) = 0
At the policy improvement step, we determine the set of improving policies:

arg max {rd + Pdvo}
deDMD

= arg max {r(; + P;UO, 7y, + Pyvo}

()) G B G

Since y is in the set of improving policies, the policy algorithm terminates and returns . But o* (s1) =
0>-1=¢" (51), so 7y is suboptimal. *

We have seen that there exist difficulties when defining a policy iteration algorithm for general
expected total reward MDPs that terminates after a finite number of steps at an optimal deterministic
stationary policy. Since positive bounded models play a role in the next chapters of this thesis, we present
amodified policy iteration algorithm for positive bounded models in Algorithm 5. As mentioned earlier,
the value v ofa stationary policy is the component-wise minimal solution of v = r, + Pyvin V'*. So
in the first step of the algorithm, a decision rule dy is chosen with 7, > 0. This choice of dy guarantees
that the first value function ¢° and all further value functions v” will be in ’*. Another modification

48 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

occurs in step 3, where the minimal solution is computed. By computing the minimal solution and not
an arbitrary solution, we know that the calculated value function equals v .

Algorithm s: Policy Iteration - POSB MDDPs

Data: Infinite-Horizon MDP (S, A, p(-ls, a), (s, oz))
Select dy € DMP with 74y = 05

2t 0

3 Obrtain v” by finding the minimal solution of

-

(L =Py)v=ry, (Policy Evaluation)

4+ Choose d,1 to satisfy

Ayt € argmax {ry + Pyv"} (Policy Improvement)
deDMD

setting d,4+1 = d, when possible;
s if d,41 = d, then
6 ‘ return d,;
- else
8 ‘ Go to line 3;
o end

Suppose the policy iteration algorithm has terminated. Then we have found a d,, that satisfies

d, € arg max {rd + Pdvd”m} .
de DMD
Inother words, o satisfies v = Bv™" , i.e., itis a solution of the optimality equations. By definition
of the value of an MDP v* > v holds. As stated in the last section, in POSB models ¢* is the minimal
solution of the optimality equations, so v* = " must be true.
We have seen that if the policy iteration algorithm for POSB models terminates, it terminates at the
value of the POSB MDP and returns an optimal deterministic stationary policy. It remains to determine
whether the algorithm terminates. Indeed, it can be shown that for finite-state MDPDPs, there exists a

strict improvement in step 4.

Theorem 2.3.28 (Puterman (200s), Thm. 7.2.16):

Suppose a POSB MDP with finite state and action spaces. Let {v"} denote the sequence of value
functions generated by Algorithm s. Then for some finite N v™ = v* and the returned d,,” is
optimal.

In an MDP with 7 states and 7 actions, there exists #” distinct deterministic, stationary policies,
such policy iteration for SSO-MDP can take at most 7™ iterations. The policy improvement step can be
performed in O(m - n*) and the policy evaluation step in O(7?) (Littman, Dean, and Kaelbling, 1995).

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 49

2.3.7 Linear Programming Formulation

For positive bounded models with finite state and action spaces, it is possible to formulate a linear
program (LP), whose optimal value corresponds to the value of the POSB MDP. As stated above, the
minimal solution v € V" of v = Bv equals the value of the MDP v*. This is equivalent to

min. solution v
s.t. v = max e pmp {7y + Pyv}
velt

min. solution v
& | sto>ry+ Py, Vd € DMP
velVt

min. solution v
& | stoo(s)— Zjesp(jlj, a)u(j) > r(s,a), Va € A, Vs€ S
v(s) >0, Vs €S.

By a minimal solution, a component-wise minimal solution is meant. So, the minimal solution can
be computed by minimizing a positive weighted sum of the components. It can be shown, that the
derived optimal decision rule from the linear program is independent of the choice of the weights as
long as they are strictly positive (Puterman, 200s, Prop. 7.2.19). However, to give them an interpretation
as a distribution over the state set, it will be assumed that the weights w € R’} satisfy >’ c¢ w(s) = 1. All
together, the primal linear programming formulation for positive bounded models is:

min ¥ g w(s)o(s)
s.t. o(s) — Zjesp(jly, a)v(f) r(s,a), Vae A, Vs €S (primal LP)
vu(s) = 0,Vses.

v

The difference to a linear programming formulation for discounted models is that no discount factor
occurs and that only solutions v € V" are considered. The primal LP has ;¢ |4| many inequalities
and |S| many variables with non-negativity constraints.

The primal LP formulation without the non-negativity conditions can also be applied to Bert-
sekas-SSP MDDs. As Bfv converges to v* for all v € /" and the dynamic programming operator B is a
monotone function, the following implication holds:

v> Bv=v 20" = B

So, the value of a Bertsekas-SSP MDP is also the minimal solution that satisfies v > ‘Bv. The non-
negativity conditions ensured v € V" for POSB models. Since in Bertsekas-SSP MDDPs the convergence
of the dynamic programming operator to the value of the MDP holds for all v € " and v need not be
an element of 7™, the non-negativity conditions must be omitted in the primal LP formulation for
Bertsekas-SSP MDPs.

Determining an optimal deterministic stationary decision rule of a POSB MDP by the primal LP is
especially useful if there exists a single conserving decision rule. In that case, for exactly one action in

each state the inequality v(s) — 2jes p(ils, @)v(j) = 7(s, a) is satisfied with equality. The decision rule

50 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

that selects this actions is conserving. In expected total reward models, a decision rule must necessarily be
conserving to be an optimal policy and, by Theorem 2.3.27, there always exists an optimal deterministic
stationary policy. So, if the found decision rule is the only conserving decision rule, it must be an optimal
decision rule. If there exist more than one conserving decision rule, it is necessary to establish which of
them is also equalizing.

The dual linear program to the primal LP presented before equals:

max Z;GS ZﬂGA; 7(51 ﬂ)x(-f’ ﬂ)
s.t. ZﬂeAj x(j, @) = Yses 2igea PUls x(s,2) < a(f), V€S (dual LP)
x(s,a) > 0,Vae A, VseS.

For discounted models and Bertsekas-SSP MDD, the primal linear program has no non-negativity
condition v(s) > 0. Thus, the dual linear programming formulation for those MDPs has equalities
instead of less or equal inequalities. This leads to a one-to-one relation between feasible solutions of the
dual program and randomized decision rules for discounted MDDPs and Bertsekas-SSP. Thereby, from a
decision rule d € DMR the feasible solution x,(s,) to the dual program is defined as

x4(5,) = Z aw(f) Z)\”_I]Pdm {Xn =5 YV, =a|Xy =]} . (2.12)

j€s n=1

And the other way around, for a feasible solution x(s5,) of the dual program, it can be shown that
2zeq, %(sa") > 0holds forall s € S and a randomized decision rule 4;° is well-defined by

x(s, a)

P{d.(s) = a} = S 26

VseS. (2.13)
Further, it can be shown that the corresponding x4, (s, 2) from the constructed decision rule d, is feasible
to the dual program and x4 (5, 2) = x(s,) holds for all z € A4, s € § (Puterman, 200s, Thm. 6.9.1).

For POSB MDPs, the solution x(s5, 2) = 0, Va € A,, Vs € §is always a feasible solution of the dual
LP. So, due to the inequalities in the dual program the condition ., ¢ 4 (s, 4) > 0 need not hold for
any s € S. Example 2.5 shows that for POSB models, there exist multiple feasible dual solutions that
correspond to the same decision rule.

Example 2.5:

Suppose the POSB MDP presented in Figure 2.5 with two states s; and s,. The state s; has two actions
ay and 4, available. The absorbing state s, has one available action which is 23. The dual linear program
for this example is

max x(s, 41) + x(s1, 42)
s.t.x(sy, ap) + x(s, 22) < w(sy)
x(s2, a3) — x(s1,) — x(51, az) — x(52, 43) < w(s7)
x(s,4) >0Vae A, Vs€S

Suppose the initial starting distribution is, e.g., «w(s;) = 0.8 and w(s;) = 0.2. Then, for all ¢ € R the
solution:

x(sl, ﬂl) =0.2

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS SI

a

a3

ap @ state

a; action

—— available action

- - > p(s|, a): transition

r (s, a 5) reward

Figure 2.5: Many feasible dual solutions to a decision rule

x(.fl, ﬂz) =0.2

x(s2, a3) = ¢ € Ry,

is a feasible solution to the dual linear program. We can calculate a decision rule & from this feasible
solution by using Equation 2.13 for states with . /¢ 4 x(s, 4") > 0. For 5, we get that P{d(s;) = a1} =
P{d(s1) = a2} = 0.5. In state 5, the variable x(5,, 23) = ¢ may be zero, but for all x(s,, 23) > 0, we get
d(s2) = a3. So, there exist multiple feasible solutions of the dual program for a POSB MDP that lead
to the same decision rule.

If we construct a feasible solution x, following Equation 2.12 with A = 1 from the calculated
decision rule 4, we obtain

%4(s1, a1) = 0.4
%4(s1, 22) = 0.4

x4(s2, a3) = 00,

Obviously, x,4(s, 24) = x(s, 2) does not hold. However, the conducted decision rule from x, according
to Equation 2.13 equals d in state 5. *

As Puterman (2005) captures for POSB models only a statement about optimal basic solutions,
which will be stated later, it will be figured out in this thesis how a decision rule can be derived from

52 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

any feasible solution. The feasible solution need not necessarily be a basic solution of the dual LP.
Furthermore, it will be shown how the objective value of an arbitrary feasible solution is related to the
expected total reward of the derived decision rule.

First, a decision rule derived from an arbitrary feasible solution of the dual LP is defined. This
definition extends the prescription of 2.13, which defined a decision rule corresponding to a feasible
solution of the dual linear program for discounted MDDs.

Definition 2.3.29 (Decision rule from feasible solution).
Let x be a feasible solution of the dual LP and #(s) := ¥ /¢ 4 x(s, 4), Vs € S. We define a correspond-
ing decision rule 4, as

x(s,a))
P{ds)=a}={ ") Vs € S with u(s) > 0
q € (‘P(Ax) elSC.

In the case where #(s) = 0 holds, an arbitrary probability distribution can be chosen. Let §* C § be
the set of states where #(s) > 0 holds. If § = §* holds, Definition 2.3.29 defines a unique d.. But, if
there exists an s € S\ §*, there exist infinitely many decision rules d, corresponding to x following
Definition 2.3.29. Before we show the relationship between the objective value of x and % we define
two LPs that are similar to the primal LP and the dual LP but correspond to an MDP where only
one decision rule d is available. Let LP; be a primal linear program for a POSB MDP where only one
decision rule 4 is available:

T

min w” v
st.o—Pw > ry (LPy)
v > 0.

Thelinear program L2, has |S| many inequalities and | S| many variables with non-negativity constraints.
Its dual linear program is denoted by DP; and equals:

max r;x
s.t.x — Pde < w (DPy)
x = 0.

Recap from Subsection 2.3.2 the definition of P; € R™” as the transition matrix under decision rule
d and the definition of 7; € R” as the expected reward from using decision rule d. The LPs LP; and
DP, are special variants of primal LP and dual LP where only one decision rule exists. From earlier
investigations of Subsection 2.3.3 or from the fact that in the case of a POSB MDP with one decision
rule v* equals the value of that decision rule, we know that the optimal solution of LP, equals v .
The following Theorem 2.3.30 fills the mentioned gap in Puterman (2005) by examining the
relationship between the objective value of a feasible solution of the dual LP (the general dual LP
including all decision rules) and the value of the derived decision rule 4, of that feasible solution x.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 53

Theorem 2.3.30:

Let x be a feasible solution of the dual LP and d, be the decision rule derived from x following
Definition 2.3.29. Then:

L ws) = Y yeq x(s,a"), Vs € S is feasible for DP ..

2. If dy is a decision rule with a non-negative value, then

7(s, a)x(s, a Sa)Tvd
>0 s s a)

s€S a€ A,

Proor. 1. Obviously, #(s) > 0 holds for all s € S. We show that the other inequalities are also
satisfied. Let §* := {s € S| #(s) > 0} and observe that from #(s) = 0 and the non-negativity of
x, it follows that x(s, 2) = 0, Va € A,. Letj € S, then

u(f) — (PdT) "

= Z x(f, a) — Z Pd o #(s)

acd; SES
IR Z ga.(@p(ls a)] (s)
a€d; s€S lLaeA,
= Y st - Y | Y i a)u@] 3 [Z Ja@pGls a)] e
acd; SES* La€A, seS\S* LacA;
=Y wGa)= > > plilsaxta)— Y [Z 2. @p(jls a)u(.r)}
acd; SES* a€ A, seS\S* Lae A,
=0
= Z x(f, a) — Z Z p(ls, a)x(s, a) - Z Z p(ils, a)x(s,)
acd; SES* a€ A, seS\S* a€ A,
=0
=Y wGa)= > > plils @)l a) <).
a€d; SES acA;

The last inequality follows since x is a feasible solution of the dual LP. Hence, we have shown
u(f) — (PdT) u< (), VjeS
X J*

and « is feasible for DP,.

54 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

2. We prove this statement by showing that

Z Z r(s, a)x(s, a) = Z 74.(s)s),

s€S a€ A, seS

where # is defined as in the first statement of this theorem. Since v > 0 holds by assumption,

% is feasible for LP; with d = d,. By the first part of this theorem, « is feasible for DP; with
d = d.. So, we can follow from weak duality that 75 # < w! v holds and hence

Z Z (s, a)x(s, @) < w’ v&

s€S a€ A,

is shown. It is left to show the equality of the objective functions

Z Z (5, 2)x(s, a)

s€S ac A,

x(s5,2)=0, sziA;, VseS\S* Z Z }"(S, ﬂ)x(-f(; ;l) u(.f)
u\s

seS* a€ A,

= Z u(s) Z 7(s, 4)qu,(5(a)

SES* a€ A,

= > a9

ses*

D us)ra)

seS§

— T
= de u.

(5)=0, ¥seS\S*

As argued above the statement follows from weak duality. n

We can easily construct an example where the value of the objective function is strictly smaller than
the value of the corresponding decision rule.

Example 2.5 (continued):

The vector x(s,2) = 0, Va € A, Vs € §is feasible for the dual program of any POSB MDP. The
objective value of that solution is 0. When constructing a decision rule following Definition 2..3.29 ac-
cording to this feasible solution, we can choose at each state s € S an arbitrary probability distribution
q4,(s)- If there exists any decision rule d, in the MDP with a strictly positive value, we get

0= Z Z (5, 2)x(s, 2) < Z w()0™ (5).
SES ac A, €S
In the POSB MDP presented in Figure 2.5, we could for instance choose d.(s1) = 41 and dy(s2) = a3,

which has a value of 1. *

The following Theorem 2..3.31 was developed in the connection with this thesis. It derives a unique
feasible solution x4 for the dual LP from a decision rule d. If x,4(s) is finite for all s € S, the objective
value of x,; equals the value of the stationary policy 4.

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 55
Theorem 2.3.31:
Let d be a decision rule in a POSB MDP whose value v is non-negative. Define
x4(s, a) == Z a(f) Z p*” {Xn =5, Y, =a| X, =]} (2.14)
JjE€S n=1
and x,4(s) := X 4e 4, %4(5, a). Then if x4(s) < oo for all s € S, it holds:
1. x4(s) is feasible for DP; and satisfies all inequalities with equality.
2. x4(s, a) is feasible for dual LP.
3. The objective value of x4 in dual LP satisfies
D s apas) = Y s ().
s€S a€ A, seS
4. x4 15 an optimal solution of DP,.
PrOOF. 1. Obviously, x4(s) > 0, Vs € S holds.
It has to be shown that x; — P;xd = wholds. Let s € S be an arbitrary state, then
() =) xalsa)
a€ A
= Z Zw(j)ZPd“’ (X, =5 Y, =a| Xi =}
acA; | jES n=1
= Zw(j)ZZPdm {Xn=5, Yn=a|X1=j} (2.15)
j€S n=1 ac€ A,
= > w() Y P X, =51 X =}
jE€s n=1

Do) | D P X = s Xy =} + P {0 = 5| X =5}
jE€S n=1

Z a(j) i P Xt = | Xo = 7} + a(s)

j€S n=1

(o)

D)D) D qaw(@pll a) Y P {X, =k Y, = a| Xy =4} | + ()

j€Ss keS acA, n=1

56

CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

D20 quwl@pllka) | D w() i P, = kY, = a| Xo =)} | + als)

keS acA, Jj€S n=1
= > paGl) > xalk, @) + ()

keS a€A,
= Z palslk)x (k) + w(s).

keS

The terms of the infinite sum can be rearranged, like e.g. in line 2.15, since by assumption the
limit is finite and only non-negative terms appear. Therefore, it is an absolute convergent series
and a reordering does not change the limit of the series. We have shown that x is feasible for
DP, and satisfies all inequalities of DP; with equality. In an example following this theorem, it
is shown that this result does not hold if there exist an s € S with x4(s) = oo.

. Obviously, x4(s, 2) > 0 holds forall 2 € A4, s € S. We can use that x; is feasible for DP to

proof the other inequalities:

Z x4(5, a)

a€A;

%4(5)

D palslk)a(k) + a(s)

keS

DU quw(@plsle, axa(k) + (o)

keS acA,

Z Z p(slk, a)xq(k, a) + w(s), Vs € 8.

k€S ac A,

We again used from above that

xa(k) = Y o)) BT {X, = k| X =}

j€s n=1

and hence g,z (a) - x4(k) = x4(k, a). So, x,4(k, a) is also feasible for the dual LP.

. We first show that

D raxals) = Y w0,

SES seS
We have already shown that x,(s) is feasible for DP; and satisfies
Xy = Pded + w.
We can insert x, recursively in this equation and get
N-1

= (PdT)” o+ (PdT)Nxd.

n=0

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 57

We transpose this equation and multiply it from right with 7,;:

N-1

T T T N
X7 = W Z (Py)" ra+xy (Pg)™ 74
n=0

Next, we take the limit N — co. Since by the assumption of a POSB model v~ < oo holds
together with the assumption of this theorem that 4 has a non-negative value, we know that
the first term on the right hand side converges to the finite value @’ v . It is a necessary condi-
tion for Zi\]:?)l (P4)" 74 to be a convergent series that the sequence of (P,)" 74 is a null sequence.
Hence, the second term on the right hand side of the last equation converges to zero. All in all
we get:

xgrd =wlv" .

It remains to show that the objective value of x; in dual LP is identical to the objective value of

x4 in DPy:

Z Z (s, a)x (s, a)
s€S ac A,

- Z Z r(s,) Z“(f)ipdw {Xy =5 ¥, =al X = j}
s€S ac A, _jeS n=1

= Y e | S e Y B (Y= al X = X =B (X, = X =)
SE€S acA, _jGS n=1

= D2 A), w(f)i qa)(@P {X, = 5| X1 =/}
s€S a€A, | /€S n=1 i

= > > b aguy@|) w(j)ipdw {Xo =51 X =/}
SES a€ A, jEs n=1]

= D) Zw(j)iw‘” (X, = sl X1 = j}
seS§ jE€S n=1

= Z r4(5)x4(5).
seS

4. By weak duality »” x < @ v*” holds for all x feasible for DP,. Since x, is feasible for DP,; and

rgxd = w! v, it must be an optimal solution. n

The assumption x,4(s) < 00, Vs € §is crucial such that Theorem 2.3.31 holds:

58 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Example 2..6:
Consider again the POSB MDP presented in Figure 2.5. We define a decision rule d(s;) = 4;and d(s,) =
a3 together with a start distribution w(s;) = 0.2, w(s2) = 0.8. Under this decision rule x,(s2, a3) =
x4(s2) = o0 as seen before. So the assumption of Theorem 2.3.31 does not hold.

The DP, corresponding to the defined decision equals

max x(s51)
s.t.x(s)) <02
—x(s1) <0.8

x(s) =0VseS

From the first inequality and the non-negativity constraints, it follows that x(s;) € [0, 0.2] and hence
the second inequality can not be satisfied with equality. *

The reader may notice that in a POSB MDP with a finite number of action and states, there will
always exist at least one s € § with x,(s5) not being finite. This can be seen as follows: As we have a closed
system no probability mass can be lost or generated and at each point in time # a probability mass of 1
develops from one state to another, i.e.,

DY P X =j X =i} =1, Ve e T

i€S jeS§

And as we consider an infinite horizon, we get in total an infinite probability mass that is divided up
by Equation 2.14 on finitely many variables x,(s, 2). So there must exist at least one x,(s, 2) which is
infinite and the condition x,;(5) < o can not hold for all s € S.

However, it is possible to allow x,(s) to be unbounded on some subset of states S such that

Z Z r(s, a)xy (s, a) = Z w(s)o™ (5)

s€S acA; ses

still holds. Define S:= {5 € 8| x4(s) = oo}. If we go through the proof, we see that it still holds if all
s € § satisfy that

- 5 € Sisreward free,ie., 7(s,2) = 0,Va € A,,
- s5eSis absorbing, i.e., p(sls, 2) = 1Va € A,
- and the start-distribution is 0, i.e., w(s) = 0, Vs € S.

In part 1 of Theorem 2.3.31, the equation

54(5) =) palslk)ea(k) +)

keS

still holds foralls € S\ Sas Y, kes pa(slk)xa(k) = 2, $\8 pd(s|k)x(k) < 0o and we still have an absolute

convergent series that can be rearranged. For all s € §, the inequality becomes

- Z Pd(slk)xa(k) < 0

keS\S

2.3. INFINITE-HORIZON EXPECTED TOTAL REWARD MDPS 59

since s is absorbing and w(s) = 0 for all s € S. So, x,4(s) is feasible for DP; and forall s € S\ S the
inequalities are satisfied with equality.

The second part of Theorem 2..3.31 holds by the same arguments as part 1.

The third and the fourth part stays valid since

D ra@xa) = D ralsyeals) = Y @@ () = D a9 (o)

s€s JES\§ JES\E s€§

Note that in Example 2.6, S= {52} but w(s,) = 1. So in that example the required properties of S
do not hold.

Furthermore, the reader may notice that we end up with a Bertsekas-SSP MDP. The reward free
states correspond to the goal states. And as in POSB MDPs v < oo holds together with the assump-
tion of this theorem that v? is non-negative, we are particular considering proper policies in this
Theorem 2.3.31.

Some observations can be made about the feasible solution x; derived from a decision rule 4, see
Equation 2.14. In all states s with x,(s) = 0, it can be concluded that the Markov chain derived from
using decision rule 4 will not reach that state.

Proposition 2.3.32:

Let x4 be a the vector computed from decision rule d by Equation 2.14. Define S* := {s € §
Yiaea, Xd(s, a) > O}, then the Markov chain derived from using decision rule d will not reach the states
inS\S*.

PrOOF. Letsbeastatein S\ S*. Then ¥, ¢ 4 x4(s, 2) = 0. Using the non-negativity of x,(s,), we
can conclude that x,(s, 2) = 0, Va € A,. By using Equation 2.14, we can follow

S a) Y B, =5 Y, =al Xi=j} =0, Vac A,
JjE€S n=1

The probability that a Markov chain according to decision rule 4 reaches state 5 starting with an initial
starting distribution w equals

Z a(j) i P X, = 5|X; = 7}

€S n=1
= Dle) D Y X, =5 ¥, = dlX; =}
jES n=1 ac A,
= 0.
So, the Markov chain resulting from using decision rule 4 will never reach state s € '\ §*. m

As alast proposition, it is shown that if a decision rule is calculated from x, according to Defini-
tion 2.3.29, decision rule d is preserved in all states s € S*.

60 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Proposition 2.3.33:
Lerd € DMP be a decision rule and x, derived from that decision rule after Equation 2.14 . Furthermore,
let d, be the decision rule calculated from x4 according to Definition 2.3.29. Then

P{d.(s) = a} = P{d(s) = a} Va € A, Vs S \S.

ProOF. Suppose d, x, and d; as described in the proposition. Then, for s € §* \ S

Pldi)=a) = 202
%4(5)
B Dijes W) Xy P X, =5, Y, = alXi =}
ZjeS w(]) 220:1 P4 {Xn = 5|Xl :]}
C Zhi Yjes w(f) - PUAX, =5, ¥, = alXy = j}
Dot Zjes @) - P4 {Xn = s|X; =j}
NPT X, =5 Y, = a)
I P {X, =5}
X PU{Y, = al X, =5} PUX, =5}
- T P X, = 5}
_ Pld6) = a) 52 P (X, =)
220:1 P4 {Xn = -‘}
= P{d(s) =a} Vae A,
which proves the proposition. ™

When regarding optimal basic solutions of the dual LP of POSB models, one can prove that there
exists a decision rule with x(s, 2) > 0 for at most one action z in each state 5, which is useful for deter-
mining an optimal stationary deterministic policy. Theorem 2..3.34 shows a result of (Puterman, 200s),
who showed the existence of an optimal basic solution and a construction of an optimal deterministic
decision rule from that basic solution.

Theorem 2.3.34 (Puterman (200s), Thm. 7.2.18):
Suppose a POSB MDP with finite state and action spaces.

1. Then there exists an optimal basic solution x* to the dual LP with a finite objective value.

2. Let x(s, a) be a basic solution of the dual LP. Then for each s € S, x(s, a) > 0 for at most one
a€ A,

3. Define
ifx*(s,a) >0 ands € §*
arbitrary ifs € S\ §*
with§* :={s €8 : Y, e.4 x(s,a) > 0}, then d* is optimal.

d(s) =

2.4. GRAPH THEORY AND MAXIMUM FLOW PROBLEMS 61

The principle ideas for the proof of Theorem 2.3.34 can be summarized as follows: The proof of
the first statement is based on the assumptions of a POSB MDP from which a finite optimal value
of the primal LP can be concluded. By using duality theory and the existence of a feasible solution
(x(5,2) =0, Ya € A;, Vs € §) for the dual LP, the statement follows.

The second statement is proved by exploiting the structure of a basic solution. First, the problem is
augmented by slack variables. Since there exist || many constraints in the dual LP and the right hand
side w(s) are strictly greater than zero for each s € S, it can be concluded that either the slack variable or
at most one x(s, 2) per constraints can be greater than zero.

From the second statement follows that the decision rule defined in the third statement is well-
defined. It is shown that the objective function of the optimal basic solution x™ is less or equal than the
w-weighted sum of the value of 4. Then by using duality theory the equality w” v* = &’ v*" can be
followed and the optimality of 4 is shown.

Finally, a few more general remarks on the linear programming formulation for MDPs under the
total expected reward criterion:

When using the simplex algorithm on the dual LP, this corresponds to the policy iteration algorithm
where in each iteration only an action « that gives the maximum improvement over all states is updated.
Or vice versa, the policy iteration algorithm equals a simplex algorithm where one action per state is
pivoted.

In contrast to POSB models, it is not possible to define a general linear program for negative models.
As mentioned above, the value of a negative model is the maximal solution that satisfies v < Bv. Asa
consequence, in a LP formulation, we would have to determine the maximal solution of v € V'~ over

os) < max { r(s @) + Z 2(ils, 2)olj) ¢ Vs € 8. (2.16)
! jES

Example 2.7 is from Problem 7.22 of Puterman (2005) and presents a negative model for which the
feasible regions defined through these inequalities are not convex. Therefore, the linear programming

theory, that is based on polyhedrons, can not be applied.

Example 2.7:
Figure 2.6 shows a NEG MDP. The inequalities of a potential LP formulation according to Equa-
tions 2.16 for the presented MDP are:

v(s1) < max{-1+ v(sp), =3 + v(53)}
v(s52) < max{v(s), =1 + v(53)}

v(s3) < v(s3). *

Figure 2.7 shows the feasible region for v(s3) = 0 which is obviously not convex.

2.4 Graph Theory and Maximum Flow Problems

This section summarizes some basic definitions from graph theory, introduces a flow network and
defines the maximum flow problem. We start with the definition of a directed graph:

62 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

a
A
N
N
N
‘1.-1
N
N
A
N
Py
51 52
AN @ state
N
N
N
170 4; |action
A A . .
N available action
- =+ p(s|s, a): transition
a3 r (s, a) reward
a a4
A 7/
N .
N .
N .

a4

Figure 2.6: LP formulation for NEG models: non convex feasible regions

2.4. GRAPH THEORY AND MAXIMUM FLOW PROBLEMS

v(s2)
AN {b,\
N
,0\6.’1'
\/X

3

+\‘/

2

&
5
N ~
2 ¢ 4
Q) N0
@\
\0
‘27+

&

1 Y
>
'\'3\./
> v(s1)
4 3 2 -1 1 2 3

Figure 2.7: Illustration of non convex feasible regions of Example 2.7

64 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Definition 2.4.1 (Directed Graph).
A directed graph G = (N, E) consists of a set N of nodes and a set £ of directed edges whose elements
are ordered pairs of distinct nodes.

Assume for the following a directed graph G = (N, E). We introduce some notation that helps to
specify sets of edges or nodes in a compact way. This notation will mainly be used in Subsection 3.7 where
a transformation algorithm for graphs resulting from MDPs suited for sport-strategy optimization
problems is presented.

For each edge ¢ = (i, j) € E, let start(e) = i be the node at which e starts and end(e) = j the node at
which e ends.

Let N C N be a subset of nodes. Define z?mt(f\}) as the set of outgoing edges ofﬁ, a\m(f\}) as the
set of incoming edges to N and x(N) as the set of edges inside of N':

3pu(N) := {¢ € E | stari(¢) € N, end(e) ¢ N}
dn(N) := {e € E | end(e) € N, start(e) ¢ N}
2N) := {e € E | start(e) € N, end(e) € N}.

We briefly summarize some elementary objects in a directed graph.

Definition 2.4.2 (Walk).

A walk from # € N tov € N oflength kis a sequence of edges w,,, = (e1,..., e) € X E* of the graph
(N, E) that connects node # with node v, i.e., start(e}) = u, end(e;) = vand start(e;) = end(e;—1) for
al2<i<k

We defined a walk as a sequence of edges. Sometimes, also the set of nodes occurring in a walk
is needed. Let ¥((ey, €2, ..., €)) be the set of nodes 7; € N that lie in a sequence (ey, €, ..., €) of
edges, i.e.,

(e e ...,er) ={n€ N |3e€ (e,e...,e) with stari(e) = n V end(e) = n}.

Definition 2.4.3 (Path).
A path e,,, from u to vis a walk w,,, without any repetition of nodes, i.e., if [¥(e,,0)| = |e40| + 1.

As ashorthand, v; — v, — ... — v}, will sometimes be used to denote the path ((v1, v2), ..., (Vg—1, V&),
v €N, ¥j= 1L...,k

A path ¢, , together with an edge (v, #) defines a circle. Formally, a circle is defined as a sequence of
nodes:

2.4. GRAPH THEORY AND MAXIMUM FLOW PROBLEMS 65

Definition 2.4.4 (Circle).
A circle C € N* of length k is a sequence of nodes C = (7, ..., n;), where (n;_1, n;) is an edge in £
forall2 < 7 < kand all nodes are distinct except 7, = ;.

To get the set of edges in a circle, we define
ec :={e € E|e=(n;nu1), ni, iy are subsequent nodes in C'}.

Observe that ¢¢ is no path since it is a set and no tuple. Furthermore, it contains a repetitive node
ny = ng.
Finally, we specify some basic graph properties.

Definition 2.4.5 (Acyclic Graph).
A directed graph G = (N, E) is acyclic if it contains no circle.

Definition 2.4.6 (Bipartite Graph).

Adirected graph G = (N, E) is bipartiteif the node set N can be partitioned in two sets Nj and N, such
that N = NJUN; and foreach e € Eeitherstart(e) € NiAend(e) € Ny orstart(e) € NoAend(e) € Ny
holds.

In Subsection 2.3.7, a linear programming formulation is deduced for sport-strategy optimization
MDPs. Thereby, a flow network corresponding to the considered MDP is used to formulate a maximum
flow problem.

Definition 2.4.7 (Flow Network).
A directed flow nerwork is a directed graph G = (N, E) where the nodes or edges have associated
numerical values like, e.g., capacities or costs.

In the maximum flow problem, we wish to find the maximum flow from a source node s € N to a
sink node t € N. Ahuja, Magnanti, and Orlin consider a non-negative capacitated network and defines
the maximum flow problem as:

Definition 2.4.8 (Maximum Flow Problem (Ahuja, Magnanti, and Orlin, 1993)).

Let G = (N, E) be a capacitated network with a non-negative capacity #;; associated with each edge
(,7) € E. Lets € N be asource node and r € N be a sink node. Then, the maximum flow problem
can be stated as

v fori=s

2ii)eE Xij — LjGiee %, = 0 foralli € N\ {s ¢} (max flow)
—v fori=t¢

0<x;; < uy Y(j) €L

The variables x are considered as flow variables and the scalar variable v as the value of the flow.

66 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

2.5 Relation to Markov Games

A Markov Game (MG) is a stochastic game in an MDP-like environment. Stochastic games were
introduced by Shapley (1953) as a play that is controlled by two players and moves from position to
position according to transition probabilities. Instead of one decision maker, there exists a whole set
of players. At each decision epoch, each player chooses an action from his action set. The transition
probabilities and rewards incorporate the decisions of all players. Definition 2.5.1 presents a general
definition of discrete-time stationary Markov games.

Definition 2.5.1 (Markov Game).
A discrete-time stationary Markov game is a collection of objects

(T;S 1, Af,p(-|5, a, .. ap), (s ay ..., a))
with the following meaning:
* T={1,2,..., N}, N < oois the set of decision epochs.
* Sis the set of possible system states with a single-decision game defined for each state.
* I is the set of players with [/| = & < co.
» A is the set of all actions of player 7 at state s.

* p(-ls, a1, ..., a) is the transition probability function depending on the current state and the
players’ choices of actions.

* (s, a1, ..., a) is the expected reward for player i in state s given the players’ choices of actions
Al ... ap; V;V(S) is the terminal reward for player 7 when the process ends in state s at decision
epoch N.

An MG gets complex by the potentially different optimality criteria of the players. Assume that
each player tries to maximize his expected sum of total rewards. Let 7' be the policy of player 7. In the
context of MGs, let 7 be the tuple of all player-policies, i.e., 7 = X;=1 ;7. Then,

.....

N-1
U;’\;r(.f) = E;r {Z ri(Xt, Ylt) cees Y/et) + ’}\](XN)}
t=1

is the value function of player i. The random process {X;, Y1,,..., Y, }se7 is a Markov chain if the
used policies are Markov policies.

Policies that are simultaneous best responses are in the focus of interest. Definition 2.5.2 characterizes
a Nash Equilibrium in an MG with & players. The notation 7 = (7, #7%) isused to distinguish between
the policy 7/ of player i and the policy 7~ of all other players.

2.5. RELATION TO MARKOV GAMES 67

Definition 2.5.2 (Nash Equilibrium).
A tuple of strategies 7 = (#'%,..., Wk*) is a Nash equilibrium if

i,(7ri, ﬂ'ii)(s)

7' € argmax vy (2.17)

7l elll

for all players i € / and all states s € .

Depending on the current state of the system, there exist different reward streams and transition
functions for each player. If we assume that there exists only one state in the MG, so S| = 1, we get
a simultaneous move game (Anderson et al., 2007, p. 9) which is played at every decision epoch. In
a setting with a finite number of states and actions, a simultaneous move game can be specified by
explicitly listing all possible strategies and value functions of all players in a matrix. Furthermore, Nash
(1951) proved that a simultaneous move game with a finite set of players and a finite set of actions has a
Nash equilibrium of randomized policies.

The problem of finding a Nash equilibrium is PPAD-complete even for two-player games in
standard form (Anderson et al., 2007, p. 16). PPAD means Polynomial Parity Arguments on Directed
graphs and was introduced by Papadimitriou (1994). PPAD is a subclass of NP. NP-completeness is an
inappropriate tool for the problem of finding a Nash-equilibrium since Nash equilibria always exist.

In the following, we focus on the simultaneous move game that occurs in a single decision epoch of
an MG. For a given state, the simultaneous move game can be represented in normal form by a pay-off
matrix. A two-person zero-sum game is a special two-person simultaneous move game, where the win
of one player is the loss of the other player. Since the rewards of one player may be negative whereas the
reward of an other player may be positive, we will use the term payoff instead of reward or costs in this
context. So, the sum of the payoffs in a two-person zero-sum game is zero for any choices of strategies.

Definition 2.5.3 (Two-Person Zero-Sum Game).

Let M € R”" be the payoff matrix. The strategies of player 7 correspond to the rows of A and the
strategies of player j to the columns of 44. An entry M; specifies the amount that the column player
j must pay to the row player 7.

Since in a simultaneous move game the state is fixed, we can write a policy 7 of player 7 as a vector
of R” where the j-th entry is the probability that player 7 chooses action 7. When using strategies 7*
and 77, the expected payoff paid by the column player to the row player is

T M.
Von Neumann (1928) showed that for two-person zero-sum games the value v* of the game equals

v* = max min 77 Mn' = min max 7' M.
atell’ o/ ellV 7l €IV #tell’
If policy 7 of the row player is known, then (#* T M)77 is a linear function in #7. An optimal
strategy of the column player is to select the column with the minimum entry of #* TM . Loomi’s
Lemma (Borodin and El-Yaniv, 2005, p.113, Lemma 8.2) establishes that observation.

68 CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Lemma 2.5.4 (Loomi’s Lemma (Borodin and El-Yaniv, 20053)):
Let

: (T . T i
v, = max min 7' Me; and v, = min maxe; Mn’.
wtelll j w el 1

Then

v,=v. =0,

Proo¥. Only the proof for v, is presented. The proof for v, can be done analogously. By definition
of v,, we get v, > v*:

v, = max min 7'’ Me; > max min 77 Mnl = o,
atellt J atell? o/ eIl

Let 7°* and 77/* be the optimal strategies of both players such that v* = #*7 247/* and such that Nash
equilibrium strategies exist (Nash, 1951). Assume v, > v*, then Wi*TMc‘j > v* for all j and we could

have
7y &
o' = (WZ*TM({]') "> Z vt =0
k=1 k=1
which is a contradiction, hence v, = v*. n

Loomi’s Lemma makes it possible to compute the value of a two-person zero-sum game by a linear
program, see 2.18 and 2.19. Observe, that without Loomi’s Lemma, we would have had to concern
infinitely many constraints to assure that v in 2.18 is smaller than all randomized strategies of the column
player respectively that v in 2.19 is larger than all randomized strategies of the row player.

v, = maxv
(#TM); > v Vie{l,..., m;}
S g =] (2.18)
k=1 "
7 > 0
v, = minv
(Mn)y, < v, Vee{l,...,m} (2.19)
mp 2.19
25 7’J1 =1
w > 0

The linear program 2.18 can also be found in (Anderson et al., 2007) and is exactly the dual of 2.19.
From duality theory of linear programs, we know that both programs have an optimal solution with
the same optimal value if and only if there exists a feasible solution for each program. It can be seen that
both linear programs are feasible (just choose an arbitrary deterministic policy and v as the minimal
respectively maximum entry of A). So, the existence of mixed Nash-equilibrium strategies also follows
from linear programming duality theory.

Indeed an equivalence between linear programming and two-person zero-sum games was shown
in Dantzig (1951) and Adler (2010). Adler completed the reduction of linear programs to two-person
zero-sum games for the case that was left open by Dantzig.

2.5. RELATION TO MARKOV GAMES 69

Now, we go back from simultaneous move games to Markov games. Littman (1994) defines a
specialization of MGs, called two-player zero-sum Markov game. It is a combination of a two-player
Markov game with a zero-sum game in that sense that at each state s € § a zero-sum game occurs. Sport-
Strategy-Optimization Markov games, defined in Subsection 3.8.2, are special two-player zero-sum
Markov games.

70

CHAPTER 2. THEORY OF M ARKOV DECISION PROBLEMS

Chapter 3

MDPs for Sport-Strategy Optimization

3.1 Introduction to MDPs in Sports Games

This section summarizes publications that handle sport-related questions by Markov processes. Since
Markov chains, Markov decision processes and Markov games are closely related, approaches that use
any of these frameworks are of interest. The underlying structure of all three frameworks is a stochastic
process that satisfies the Markov property. The Markov property states that the next state may only
depend on the current state and the chosen action, and not on the complete history of realized states.

The advantage of modeling a sports game by a stochastic process is that the evolution of the system
is traceable. In contrast, a descriptive statistical analysis might determine factors that are correlated
to a particular outcome. But, how these factors are influenceable may not be clear. An exaggerated
example that illustrates this point: Assume, you are searching for a strategic improvement for your team
in soccer. You may find by a statistical analysis that the number of penalty shots for your team is highly
correlated with the number of scored goals. So, your conclusion might be that increasing the number
of penalty shots for your team would be a strategic improvement. But unfortunately, a match starts
with a kick-off, and it is not clear how to increase the number of penalty shots when starting from a
kick-off. Of course, this example is not realistic, and a reviewer might answer that one could also find
a correlation between an action, e.g., an important passing action, and the number of scored goals.
Clearly, this action is influenceable by the players. However, if you observe at the match-day a different
line-up of your opponent, you may be insecure whether the identified passing action is still valuable.
You are not sure what mechanisms influenced your statistical results. The new line-up might have no
effect up to a significant leverage effect on the value of the passing. With a dynamic model like a Markov
process that accurately captures the game mechanisms, it is possible to analyze different circumstances
(like a different line-up, varying day performances, etc.) with the same model.

In this thesis, a sport-strategic question is modeled from the view of a player or a team participating
in a specified match. There are only a few Markov approaches that tackle strategic questions that are
related to a team or a player and can be evaluated prior to a particular match. Often there is not enough
data to create a model tailored to the teams participating in an upcoming game. In most of the cases
where a Markov process models a sports-related question, it is an investigation of a general rule or
principle.

In the following, an overview over literature that uses Markov processes to model a sport-related

71

72 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

issue is presented. The literature is sorted according to whether a Markov chain (MC), a Markov decision
process (MDP) or a Markov game (MG) is employed. First, a summary of publications that use a Markov
chain (MC) to model a sports game is provided. Since there are some works that employ a Markov
chain, only works that consider volleyball or beach volleyball are presented in detail.

Florence et al. (2008) model the sequence of events occurring during a ball possession phase in
women’s volleyball as an MC. The data is recorded for the entire 2006 home volleyball season of
the Brigham Young University Women’s Volleyball Team. For each skill (pass, set, attack, etc.) the
probability of an outcome (point for Brigham, point for the opponent, continuation of the rally) is
evaluated by calculating the unconditional probability for that outcome from the transition probability
matrix. The distribution for each unconditional probability is calculated using Gibbs sampling and
determines the variability of the unconditional probability point estimates. The implications from
that investigation are general recommendations for Brigham Young University Women’s Volleyball
Team like: “If the high and inside delivery can be avoided the attack has a good probability of being
successful.” (Florence et al., 2008, p. 14)

Similar Miskin, Fellingham, and Florence (2010) investigate skill importance in women’s volleyball.
The authors model play sequences as discrete absorbing MCs by using a Bayesian approach to estimate
the transition probabilities from the data gathered. The data was collected during the 2006 competitive
season of a single women’s Division I volleyball team of the National Collegiate Athletic Association in
the United States. The 36 states consolidated in this analysis are moves that consist of a skill and a rating
combination, e.g., a set is rated according to its distance from the net. The importance score of a skill is
a metric that incorporates its impact on the desired outcome and its uncertainty. It is computed by the
posterior distribution associated with the skill.

Ferrante and Fonseca (2014) use an MC approach for volleyball to compute an explicit formula for
the serving team’s winning probability in a set. Besides this, the mean duration of a set is computed
regarding the expected number of rallies. The authors assume that the probability of winning a single
rally is independent of the other rallies and constant during the game. The states in their model
correspond to different scores that may occur in a set together with an indicator which team serves next.
The winning probability is computed concerning two parameters which represent the likelihood of
winning a rally depending on the serving team. MC properties and combinatorial arguments are used
to derive the explicit formula for the winning probability.

Besides volleyball, there are other works using MC-approaches in different sports like, e.g., Newton
and Aslam (2009) in tennis, Heiner, Fellingham, and Thomas (2014) and Liu and Hohmann (2013) in
soccer, Pfeiffer, Zhang, and Hohmann (2010) in elite table tennis, Bukiet, Harold, and Palacios (1997) in
baseball, Shirley (2007) and Strumbelj and Vraéar (2012) in basketball, and McGarry and Franks (1994)
in squash.

Next, works are presented that employ Markov decision processes (MDDs) for tackling a sports-
related issue. The literature is sorted by the sport studied:

Tennis:

Clarke and Norman (2012) as well as Nadimpalli and Hasenbein (2013) investigate an MDP for tennis
games to determine when a player should challenge a line call. The latter one is the more detailed model.
It is described briefly in the following: A decision point occurs when an opportunity to challenge
the umpire arises. The states include the outcome of the point, the score, the number of challenges
remaining, the probability that the call is incorrect, and the result of a successful challenge. There are

3.1. INTRODUCTION TO MDZPS IN SPORTS GAMES 73

two possible actions in each state: challenge and do not challenge. Further parameters of the model
are the relative strength of the players and the fallibility of the officials. These parameters are used to
generate the transition probabilities for the model. They use the standard linear programming approach
for multi-chain, average cost MDDPs to obtain optimal policies under a variety of parameter settings.

Chan and Singal (2016) use an MDP to compute an optimization-based handicap system for tennis.
The weaker player gets ’free points’ at the start of the match, such that the match-win probability of
both players is equalized. The input of the model is the point-win probability of each player. A standard
policy iteration solves the model. The resulting optimal policy specifies at which point the weaker player
should use a free point.

Norman (198s) builds an aggregated MDP for tennis games to tackle the question when to serve
fast or when to serve slow at each stage of a game. The model is solved analytically using a monotonicity
property of the optimal cost function and dynamic programming. The optimal strategy specifies,
depending on the point-winning probability for fast and slows serves, which kind of service should be
used throughout the match.

Terroba et al. (2013) develop a more detailed MDP-based framework for tennis matches. The
information needed to build the model is semi-automatically gathered from broadcast sports videos.
Machine learning algorithms are executed to identify optimal policies due to the large state space (= 10°
state-action pairs). A Monte Carlo tree search algorithm is applied to estimate the value function.
Famous tennis matches of the past are investigated in experiments (the 2010 Australian Open Women’s
Semi Final between Na Li and Serena Williams as well as the 2009 French Open fourth Round match
between Rafael Nadal and Robin S6derling). The results of the Monte Carlo tree search algorithm are
state-action pairs with a high estimated value function. They present how the player who has lost in
reality could have won the match with identical skills, just by using a different policy.

Soccer:

Hirotsu and Wright model soccer as a four-state Markov Process. They make general tactical considera-
tion as in some cases “[...] the players do not have time to pause and consider rationally what exactly
to do next. This means that tactical considerations are most valuable when they can be expressed in
terms of general principles, for the benefit of coaches as much as players.” (Wright and Hirotsu, 2003,
p- 1). Their tactical considerations concern the optimal timing of a substitution (Hirotsu and Wright,
2002), the best strategy for changing the configuration of a team (Hirotsu and Wright, 2003b), and to
determine under which circumstances a team may benefit from a professional foul (Wright and Hirotsu,
2003).

Cricket:

Clarke and Norman (1998) formulate an MDDP for cricket to determine whether the batsman should
take an offered run when maximizing the probability that the better batsman is on strike at the start of
the next over. The model is solved analytically by dynamic programming. The optimal policy takes
the run or not depending on the relation between the scoring probabilities of the good and the bad
batsman. A similar analysis with a different objective is done in Clarke and Norman (1999).

Baseball:

Hirotsu and Wright (2003a) formulate a Markov model for baseball to calculate an optimal pinch-hitting
strategy under the "Designated Hitter Rule’. Their method can be applied to a specific match by using
the probability of each player to achieve a single, double, triple, home run, walk or out.

Most of the presented models (all except the detailed model of Terroba et al. (2013)) require as an

74 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

input a point-winning probability or scoring probability. These aggregated transition probabilities
include the opponent’s skills and strategy. Therefore, it may be hard to apply those models to a particular
match for instance if the teams have not recently played against each other. In contrast, the larger models
(like the model of Terroba et al. (2013)) which require only transition probabilities that capture smaller
events are not solvable by classical algorithms for MDPs. Instead, some local search or approximation
algorithm is used to identify valuable actions.

To the best of our knowledge, there exist only a few publications that model a sport-strategic
question by a Markov game (MG). This may be the case because determining a Nash-Equilibrium is in
general PPAD-complete (Anderson et al., 2007).

However, baseball is a special case. The sequential and discrete nature of the sports makes it possible
to use dynamic programming for determining a Nash-equilibrium. For instance, Kira et al. (2015)
formulate an MG for baseball and compute Markov perfect equilibria. The transition probabilities of
the MG are assumed to depend only on the probability parameters for the hitting skills of the players.
They use a dynamic programming algorithm for solving the Bellman equations that characterize the
value function of the game for both teams. This approach is possible since the actions are chosen
sequentially and not simultaneously.

Again, the decision question often concerns a general rule or principle, and the input probabilities
contain large parts of the game mechanisms. For instance, Turocy (2008) uses MGs fed with a lot of
historical data to clarify whether there bas been a “last-up” advantage in baseball on average in the past,
or Anbarci, Sun, and Unver (2015) try to decide on the fairness of tie-break mechanisms in soccer on the
basis of MG models.

Sarkar (2018) is another author who examines a general principle. He tries to find evidence for the
inverse relation between crosses and goals in soccer. A simultaneous move game with two defending
strategies (high defensive line, low defense line) and two attacking strategies (cross, short through pass)
is constructed. The payoffs are winning probabilities multiplied with the magnitude of gain respectively
loss. The winning probabilities are calculated from very rough probabilities like the probability of
breaking the offside trap or the goalkeeper’ save rate. A mixed Nash equilibrium is calculated that
suggest that teams with a greater chance of scoring from crosses use the crosses less frequently. The
reason for it is that the defending team uses an offside trap more regularly for better teams.

Routley and Schulte (2015) employ MGs to rank ice-hockey players according to their skills. An
upgraded MG of (Schulte et al., 2017) also includes location information.

Walker, Wooders, and Amir (2011) use binary Markov games to model sports games like tennis.
They show that under specific monotonicity properties optimal policies to win the match are a repeated
application of an optimal policy to win a rally. This finding fits to the analytical result found for the
rougher SSO-MDP presented in the next chapter.

From the described literature, it can be seen that there exist some works that consider a Markov
process as a basis for modeling a sports game. Regardless of whether an MC, an MDP or an MG is used,
all works face the same conflict: Either a manageable model with rough transitions is built that can be
solved, or a model with more detailed transitions is developed, but those models get so large such that
only an approximate solution can be found. The small, manageable models mostly require transition
probabilities that include events of both teams participating in the match. Those are hard to estimate
for a particular pairing of teams. Therefore, those models are often used to examine general questions
or principles such that an optimal policy depending on the transition probabilities can be computed.

3.2. DEFINITION OF SPORT-STRATEGY OPTIMIZATION MDPS (SSO-MDPS) 75

However, how these probabilities can be estimated for a match, which has not yet taken place, stays
often unclear.

3.2 Definition of Sport-Strategy Optimization MDPs (SSO-MDPs)

In this section, a general class of MDPs suitable for modeling sports games and answering strategic
questions is specified. Before defining a special MDP class, it is motivated why Markov decision processes
and not Markov games are used to model a sport-strategic question. A formalization of a sport-strategic
question is given in Definition s.r.r in Chapter 5. For the moment, a sport-strategic question can be
considered as a question that asks for the best playing strategy in a particular match against a particular
opponent team.

Since this thesis focuses on sports games, which are often team sports, the term “team” will be used
throughout this chapter. However, all considerations are also applicable for sports games where teams
consist only of one player — like e.g. tennis. Furthermore, in a sport-related context, the term “strategy”
is used if formally a decision rule of a stationary policy is meant.

The solution of a Markov game (MG) is a Nash equilibrium, which consists of simultaneous best
strategies of both teams. This means, the optimal strategy of a team in an MG is the best response to a
strategically perfect playing opponent. In sports games, the participants of a match behave according to
practiced playing patterns and try to perform best when sticking to their strategic plan. By “performing
best”it is meant that each player tries to carry out an action as best as possible in a given situation. For
example in soccer, a pass that is part of a playing sequence and can be performed more or less precisely.
Of course, each player tries to pass as accurately as possible. But, no player would suddenly deviate
from the playing pattern and pass to another player if that is totally unpredictable for his teammates.
Especially in team sports, where a coordination between the players is necessary, a player would rather
stick to the playing pattern instead of doing an action that might be optimal but unpredictable for his
teammates.

Also in an MDD, it is possible to model an opponent team completely analogous to the team whose
strategy should be optimized. But instead of solving a minimax problem, the opponent plays a fixed
strategy. By fixing the opponent’s strategy, the opponent team becomes a part of the environment and
can be captured in the transition probabilities. But still, it is possible to analyze optimal strategies against
different opponent strategies. Solving several MDDPs with respect to different opponent strategies leads
to a Markov game with a discrete set of strategies.

In all sports games, the objective of each team is to win the match. Winning or losing a match is
determined by the rules of the respective sports game. Some sports games are won if a certain condition
of the score is met, other sports games have a fixed time period after which the winner of the match
is determined. In most leagues or tournaments it is only of second interest whether the match is won
by a large lead or not. In first case, it matters whether the match is won, lost or, if possible, a draw
occurred. This fact leads to the idea of modeling a sports game by an MDP with absorbing states which
correspond to states at which the match has terminated. And furthermore, to use a reward function
that returns a reward of 1 for a transition to a winning state while all other transitions are 0-reward
transition. Together with the expected total reward criterion (Definition 2.1.4), the objective in such an
MDP is equivalent to maximize the probability of winning the match, which will be formally shown in
Subsection 3.4.

76 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

By modeling a losing state as an absorbing state and maximizing the probability of reaching a
winning state, the losing states can be viewed as dead ends that can not be compensated and must be
avoided in any case. This modeling decision can be justified from a sporting perspective: For example,
in tournaments, e.g., in a quarterfinal of a world championship, a loss of the match and therefore an
“out” of the tournament cannot be compensated. Also in a regular season, losing several matches, but
having, e.g., the best passing performance, can not balance out the lost points in the league table at
the end of the season. This reasoning suggests that it is not appropriate to model a losing state with
some finite penalty that could be compensated by some “well performed” actions that may have a small
positive reward. Instead, as described in the last paragraph, losing states should be modeled as dead ends
that must be avoided in any case. This is modeled by the objective that maximizes the probability of
ending in a winning state.

Since the strategy of a team which is participating in the match should be optimized, the decisions in
the MDP will correspond in some way to action choices of the team. Without specifying the definition
of a team action further, one can easily think of sports games where the number of team actions — and
therefore the number of decision points — is not known a priori the match. For example, in beach
volleyball a team action could be modeled as a field attack of a team. The number of field attacks a
team performs in a rally or a set is not known and differs between matches. An MDP with absorbing
states is an adequate tool to model an indefinite-horizon MDP. As the system reaches a goal state, no
further rewards or costs are accumulated. Furthermore, it is not predetermined after how many steps
the system reaches an absorbing state.

In a sports game, the set of possible starting states of a match or set is known. For example, in soccer,
a match starts with a kick-off; or in tennis a match starts with a serve. Even if only a set of possible
starting states is known, an artificial starting state can be introduced that has transitions to all possible
starting states. The transition probability from the artificial starting state to each possible starting
state may equal a meaningful distribution of the initial state. Therefore, it is no restriction to assume
a single starting state s5; for SSO-MDPs. The knowledge of a starting state is crucial when applying
heuristic methods. Some states may become irrelevant when starting from a certain initial state and an
investigation of the entire state space may be avoidable.

Finally, a crucial assumption that characterizes sports games is made: In a sports game, there will
always exist a maybe small but strictly positive probability that the match is lost even if the team is
dominating the opponent team and plays the strategical optimal strategy. Asa support of this hypothesis,
OddsShark presents statistics about the win percentage of underdogs. These are especially in the Major
League Baseball and the National Hockey League very high (above 40%). Furthermore, the property
that no team can win for sure is a fact that may explain why sports games are so popular. Even if your
preferred team is the complete outsider in a match, there exists a, maybe little but positive, chance that
your team will win the match.

Let X; be a random variable that captures the state of the process at time #. Furthermore, let L be
the set of losing states and ¥ be the set of winning states. The described assumption can be formalized
as follows:

3.2. DEFINITION OF SPORT-STRATEGY OPTIMIZATION MDPS (SSO-MDPS) 77

Assumption 3.2.1 (No policy guarantees winning):
For all states s € S\ (L U W) and every policy w € 11, there exists a strictly positive probability of
losing the game, i.c.,

Pr() =) PT{X, € L, Xy ¢ LUW, Vi’ <1, X; =5} >0,

t=1

Finally, all properties of a sport-strategy-optimization-MDP (SSO-MDP) described above are
summed up in the following definition:

Definition 3.2.2 (Sport-Strategy-Optimization-MDP).
A sport-strategy-optimization-MDP (SSO-MDP) is a tuple

(S, A4, pCls, a), (s, 2), W, L, 51)
that satisfies Assumption 3.2.1 and where
+ Sis afinite set of 7 states.
+ A is afinite set of m actions with 4, # 0 Vs € S.
* p(-|s, a) is a stationary transition probability function which satisfies

pGls,a)=1 Vse W UL, Vae A,
* 7(s, a) is a stationary expected reward function which satisfies

, , VseS\(WUL),s eW, ac A,

r(s,as) =
0, else.

* W C Sisanon-empty set of winning states.

* L C Sisanon-empty set of losing states which satisfy L N 177 = 0.

+ 51 C Sisaknown starting state.

Since an SSO-MDDP has by definition only finitely many states, it can be concluded from Assump-
tion 3.2.1 that already after » many steps there must occur a positive probability for a transition to a
losing state:

ZP”{X,GL, X, ¢ LUW, Ve <t, Xy =35} >0, Vse S\ (LUW), V7 eI

t=1

78 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

‘/’ RN
aw
_
- p \/

a) a3 !

\ 1
N \ /
N \ , state
060 \ 0.6 1

/

! ‘ winning state
vy , N

i
s

i 1)losing state
/o SO,

; ~ -

7z ! \
s / \
0.6 0 0.
/

/ .60 . .
/ v available action
s ! \ ‘s
e / | - -+ p(sls, a): transition
L
\ 7 (s, a s) reward
\
a a4 :
[~ ~ o \
T~ ~ < N \
~ o N \
=< - N \
-~ N .
0.410 04001 \
=< N \
S < N
~ \
~ . N _---110 ~ .
Sl T - <
~ s v
[\ a
\ l ! 1

Figure 3.1: SSO-MDP Example

Figure 3.1 illustrates a graphical representation of an SSO-MDP example. A formal definition of a
graph associated with an SSO-MDP is given in Subsection 3.6. In the graphical representation of an
SSO-MDP, each action must have a unique predecessor state. Therefore, for general non-unique action
sets 4 an augmented action set .4 consisting of state-action pairs is defined in the following way:

A CSx A,
Al ={(s,a)|a € A}

In the augmented action set, the state is included in the action. Thereby, an action 2 € .4, which
may be available in more than one state, becomes unique in 4’. It is possible to evaluate .4’ -1 by
A7) = A5, a) =s.

As described in the legend of Figure 3.1, the available actions in a state are connected to the state via
a solid line. From each action, the outgoing dashed lines mark the possible transitions together with the
transition probabilities and the rewards. The special states w € 77" and [€ L have a special look which
indicates that they are absorbing states.

For verifying that the MDP presented in Figure 3.1is an SSO-MDP besides the requirements on
the absorbing states and the reward function, Assumption 3.2.1 has to be checked. Due to the small
problem size, it can be seen that from each action there exists a path to the losing state / state where all

3.3. CLASSIFICATION 79

transition probabilities are greater zero. So, it can be concluded that starting from all s € § and using
any policy 7 € II the probability of losing the game is greater zero.

The reader may ask how hard or easy it will be to check Assumption 3.2.1 for larger SSO-MDDPs,
where the structure of the problem can not be presented on half a page. As it will be seen later, when
investigating concrete SSO-MDPs for sports games, the actions in an SSO-MDP will correspond in
some degree of granularity to team actions. And at this point, it becomes important that the model
captures a sports game. An action in a sports game is a physical effort which has always an opportunity
to fail. The reader may remember, e.g., soccer scenes where the goalkeeper fails to control a shot that
was targeted on him with a normal speed. Although those events happen only very rarely, even the best
goalkeepers make such big mistakes, e.g., Karius in the Champions League final of 2018.

3.3 Classification

This sections classifies SSO-MDPs, see Definition 3.2.2, according to the SSP MDP classes presented in
Subsection 2.3.1. The definition of an SSO-MDP does not explicitly specify a set of goal states G. Itis not
goal oriented like MDP classes directly derived from SSP MDDPs. However, two sets of absorbing states,
which are called winning states /7" and losing states Z, are defined. In the following, different choices of
G for SSO-MDPs are considered together with the implications that follow from these choices.

But first, it is shown that an SSO-MDP belongs to the class of POSB MDPs which is also a non-goal
oriented class.

Theorem 3.3.1:
SSO-MDP c POSB MDP

Proo¥. To show that every SSO-MDP is a POSB MDP, the two conditions of a POSB MDP, which
are v (s) < oo forall s € S and w € Il and for each s € S there exists at least one a € A; with r(s, a) > 0,
have to be verified.

Since a strictly positive reward occurs only from a transition to an absorbing winning state w, each
process can only accumulate once a strictly positive reward. Therefore, the sum of positive rewards
v (s) is finite for all states s and all policies 7.

In an SSO-MDP, there exist only non-negative rewards and each state s contains at least one action.
So, the second assumption of a POSB MDP is satisfied for each state s € S. n

In Subsection 2..3.1, a proof of Kolobov, Mausam, and Weld is cited. They show that every POSB
MDP can be converted into a GSSP MDP with identical optimal policies. In the stated conversion, all
strongly connected components without outgoing edges and whose internal edges correspond only
to O-reward actions are considered as goal states of the resulting GSSP MDP. Of course, this kind of
conversion is also possible for SSO-MDPs. However, the set of goal states should be specified explicitly
like in the definition of an SSP MDP.

By setting G := 7, a MAXPROB MDP is received from the SSO-MDP. But, an SSO-MDP with
goal states defined like this will not be a GSSP MDP. From an intuitive view, this can be justified as

8o CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

follows: A proper policy is a policy that reaches with probability 1 a goal state which would be in this
setting a winning state of the sports game. This is a contradiction to Assumption 3.2.1 which states that
for each policy in each state the probability of losing the game is strictly greater than zero.

Observation 3.3.2:
Assume an SSO-MDP and define G := W. Then an SSO-MDP with the defined set of goal states is a
MAXPROB MDP but no GSSP MDP.

ProOF. AnSSO-MDP with G := W satisfies the definition of a MAXPROB MDP (Definition 2.3.13):
The reward function fulfills the requirement of a MAXPROB MDP that every transition to a goal state
yields a reward of 1 while all other transitions are 0-reward transitions.

Assume an SSO-MDP is a GSSP. Then there would exist a proper policy in s, i.e., a stationary
policy 4 that satisfies

P {X, ¢ G| X; = s} <1, Vs € S reachable from s,

where 7 is the number of states reachable from s5;. By Assumption 3.2.1 of an SSO-MDDP, a losing state
[€ Lis reachable from s; under each decision rule d. However, as [is an absorbing state

P (X, ¢ G| Xy =1}
PT{X, e W | X =1}
P X, e L| Xy =1}
1,

v

which is a contradiction.
So, in SSO-MDPs there can not exist a proper policy starting in 5. SSO-MDPs with G := I can
not be GSSP MDDPs. n

In the following, an SSO-MDP is considered as an SSP MDP with goal states G := 177 U L. By
using this definition for the set of goal states and the reward function, the SSO-MDP does not fulfill
the requirements of a MAXPROB MDP:

Observation 3.3.3:
Let G := W U L. Then, SSO-MDP ¢ MAXPROB MDP.

Proor. A MAXPROB MDP requires that each transition to a goal states gives a reward of 1. When
considering the losing states and winning states as goal states, this requirement is not satisfied. A tran-
sition to a losing state only gives a reward of 0. n

However, an SSO-MDP with G := W U Lisa GSSP MDP:

Theorem 3.3.4:
Let G := W U L. Then, SSO-MDP c GSSP MDP.

33. CLASSIFICATION 81

Proor. To show that an SSO-MDP with G := W U L is a GSSP MDP, two conditions have to be
verified: There must exist a proper policy rooted at 5 and the sum of non-negative rewards of any
policy is finite in every state s reachable from s5;. The second condition is clearly fulfilled since it was
already shown in Theorem 3.3.1 that an SSO-MDP is a POSB MDP.

For proving the existence of a proper policy, itis used that each SSO-MDP satisfies Assumption 3.2.1:

P7(5)>0Vse S\(LUW), Vmell
where P7(s) is defined as
ZP”{X, €L, Xy ¢ LUW, VYt <1, X =s}.
=1

Since we face an MDP with |S| = 7 and stationary data, for every policy # € IT and every starting state
s €S\ (LUW)thereexistsat < nwith

P"{X, e, Xp g LUW,Vt' <, X1 =s}>0.

All losing states [€ L are absorbing state. If the process reaches [at time # < #, it will stay in /. The
probability that after 7 time steps the process is in state / can be calculated by

P"{X, €L, X;=s¢ LUW}

= ZP”{XteL, X, ¢ LUW, VY <1, X; = s}

r=1

and is greater zero. So, for every policy # € Il and ever states € S\ (L U I¥)

0 < PW{XnEL, XIZJ}
= 1-P"{X,eS\L, X =5}
WULCS
< 1-P"{X,eS\(LUW), X, =5}
G=WUL

1-P"{X, ¢ G, X; = s}

The last equation can be reformulated as
Vrell, Vse S\G : P"{X,¢G, X1 =5} <1

which proves that every policy # € II from every starting state Xj = s is proper. n

Theorem 3.3.5:
Let G := W U L. Then, SSO-MDP C Bertsekas-SSP MDP

82 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Bertsekas-SSP

Figure 3.2: MDP classes hierarchy SSO-MDPs included

ProoF. Wehave shown in the proof of Theorem 3.3.4 that there exists a proper policy for each starting
state s € S. So the first assumption of Bertsekas-SSP MDD is satisfied.

Since in the proof of Theorem 3.3.4 it is shown that all policies in an SSO-MDP are proper, the
second condition of Bertsekas-SSP MDPs, which is every improper policy must incur a reward of —oo,
does not concern any policy. n

Summing all results up, we get that every SSO-MDP is a POSB MDP. By setting the set of goal
states to /77U L an SSO-MDP is also a Bertsekas-SSP MDP with the property that every policy is proper.
In Figure 3.2, SSO-MDDPs are included in the diagram of SSP classes considered in this thesis.

3.4 Theoretical Analysis

This section analyses the structure of SSO-MDDPs and the properties that can be concluded from it.
Those properties are of importance when an SSO-MDP is solved for analyzing a sports-related issue.
This section starts with a formal proof that the objective value of a policy equals the winning probability.
It goes on with convergence statements regarding policy iteration and value iteration. Finally, it is shown
that the dynamic programming operator applied to SSO-MDPs is a contraction mapping. An explicit
formula of the contraction factor and its interpretation in the context of SSO-MDDPs is given.

Due to the special structure of the reward function in an SSO-MDDP, the expected total reward of a
policy 7 equals the probability that the system reaches a winning state.

Proposition 3.4.1 (Objective Function of an SSO-MDP):
Assume an SSO-MDP starting in a state s € S\ {W U L} and a policy w, then

) = Y PXa ¢ W, X, €W | Xy =3}
=2

3.4. THEORETICAL ANALYSIS 83

ProoF. The expected value of the reward process concerning policy 7 is defined as

0" ()
= E7{) (X, 1)
P
= Z Z 7(sp ap, 5e01) | PHAX =5, T = a1, Xo = 5,0 | X1 =5},

(Il,ﬂl,fz,‘..)G(SXA)oo r=1

where P” is the probability for the sample path (51, 41, 52, ...) € (S X A4)™ under policy 7. An investi-
gation of P” can be found in Subsection 2.1.1.

Consider a sample path (s;, 21, 5,...) € (S X A)™. If there exists a point in time at which the
realization occupies a winning state, the reward of the transition to the winning state is 1. If no such
point in time exists, the sum over all rewards is 0. So, the last sum simplifies to:

(9]

Z 7(ses agy se41) | - PHAXL =5, V1= a1, Xo = 5p,... | X1 = 5}

(51,41,32,...)€(S><A)°° t=1
with 3teN : 5, el

Once a winning state has been entered, the random process stays in the winning state due to its absorb-
ing property. Therefore, any realization that enters a winning states does it only once and generates a
reward of 1. All sample paths that enter at time # the first time a winning state can be summed up,
which is

0o
Z Z I'PW{XI251,Y1Idl,XZIJ‘z,...,XtZSthlIS}.
=1 (s,a1,52,...) €(SXA)™
with s,1€W, s, €W
Since the starting state s is assumed not to be in }#, the sample path starts with s and cannot be in
a winning state at time 7 = 1. Therefore, the last sum equals

(o)
Z Z P”{Xl=5,)/1:ﬂl,Xzzjz,...,Xt:_gt}
=2 (5,a1,50,...) €(SX A)™

with 5,_1¢W,s, €W

Hence, the expected total reward from using policy # equals the probability that under # the random
process enters at some point in time a winning state given that the process has started in state s €
S\ {W U L} which can also be written as

Z P™{w= (5, a1,5...) € (SX A : Xiy(w) & W, X() € W}
=2

=N PXa g W, X € W | Xy =5} .
=2

84 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

For Bertsekas-SSP MDD, it is known that the optimality equations have a unique fixed point.
This is outlined in Subsection 2.3.4 and based on the result of Bertsekas, 2001, Prop. 2.1.2. In the last
subsection, we have seen that SSO-MDPs with G := L U I are special Bertsekas-SSP MDPs. So, this
result also follows for SSO-MDPs.

Theorem 3.4.2:
The optimality equations for SSO-MDPs bave a unique fixed point.

ProoF. SSO-MDDPs are special Bertsekas-SSP MDPs, see Theorem 3.3.5, and optimality equations for
Bertsekas-SSP MDPs have a unique fixed point (Bertsekas, 2001, Prop. 2.1.2). n

Since the value of an MDP under the total expected reward criterion satisfies the optimality equa-
tions (Theorem 2.3.24), it can be followed from Theorem 3.4.2 that value iteration converges to an
e-approximation of the value of the SSO-MDP for every value function v € V. Remember that this
does not hold for general MDPs under the total expected reward criterion.

Corollary 3.4.3 (Value Iteration converges for SSO-MDPs):
For SSO-MDPs, value iteration converges to an €-approximation of the value of the SSO-MDP for every
value function v € V.

For Bertsekas-SSP MDPs policy iteration generates in each step a strictly better policy (Bertsekas,
2001, Sec. 2.2). So again, this also holds for SSO-MDPs, and it can be derived that the policy iteration
algorithm terminates after finitely many steps at an optimal policy.

Corollary 3.4.4 (Policy Iteration converges for SSO-MDPs):
For SSO-MDPs, policy iteration converges after finitely many iterations to an optimal policy.

In SSO-MDPs there is not only a proper policy for every start state. Even every policy is proper.
This was already shown in the proof of Theorem 3.3.4 in the last subsection.

Theorem 3.4.5:
Every policy w in an SSO-MDP is proper.

Proo¥. In proof of Theorem 3.3.4, we have already shown that all policies are proper policies in an
SSO-MDP. n

For MDPs under the total expected reward criterion for which all policies are proper policies, it can
be shown that the dynamic programming operator is a contraction mapping.

3.4. THEORETICAL ANALYSIS 8s

Theorem 3.4.6 (Dynamic Programming Operator is contraction [Bertsekas (2001), p. 94):
In SSO-MDPs, the dymzmic programming operator is a contraction mapping. This means, there
exists positive constants w; for all i € S and a constant y € [0,1) such that

[[Bv = Bul[* < yllv - ul|”

for all value functions v, u € R".

In this notation, || - ||* is the Lo,-norm where each vector is scaled by . This means,
[l = max |- a7
i=l,..,n

Thus, the inequality of Theorem 3.4.6 can be written as

1
max —|(Bv); — (Bu);| < max y- — - |v; — u.
Wi i=l,..,n

i=1,. @i
Tseng gives in Tseng (1990) a proof of Theorem 3.4.6 and specifies, in contrast to (Bertsekas, 2001), the
contraction factor . In the following some steps of the proof of Tseng, 1990, Lemma 3 are reviewed to
gain insights into the contraction factor of SSO-MDPs:

In SSP MDDPs, where only proper policies exist, all states except the goal states G can be partitioned
into non-empty subsets Sy, ..., S, such that forany s € {1,...,7},7 € S, and « € A, there exists some
j € GUS U...US,such that p(j’|7, 2) > 0. Then, Tseng defines the weights w as

wi=1-9v",YieS, ¥s=1,...,7,
where v; := min,e 4, ;es{p(jli 2) | p(jli, 2) > 0}. With this weights the contraction factor y is

1-— VZV—I

1—9% "

'}/:

So, the contraction factor depends on the number of state subsets 7 and the minimal smallest transition
probability v specified in the model.

In the following, it is outlined how this result can be interpreted in the context of SSO-MDDPs. First,
the contraction factor y is monotone decreasing for v € (0, 1). This can be seen from the derivative

2 1—v1 3 V2 (=7 + 2r(v = 1) + 1)
w\ 1-v | (1 —92)2

Forv € (0, 1), the denominator and the first factor in the numerator are always positive. The second
factor in the numerator it holds

g (—1/2’ +2r(r=1)+1) = 2r (1 - vzr_l) > 0.
v [—
>0

86 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

The second factor of the numerator is monotone increasing in v and from » € (0, 1) it follows
7+ 2 (=D +1< 17 +271-1D)+1=-1+1=0.

So, the derivative is strictly negative for v € (0, 1).

The smaller the contraction factor v, the faster is the convergence of the contraction mapping. So,
alarge v is desired for a better convergence rate. In terms of an SSO-MDP, this can be interpreted as
follows: If there exists an action that can be played almost perfectly, the probability of failure will be
minimal. Such an action would lead to a very small v and a bad contraction factor which would be close
tol.

As we have seen that SSO-MDPs can be converted to discounted MDDPs, a summary over the
worst-case running times of policy iteration and value iteration regarding the number of arithmetic
expressions is presented. It has been shown by Tseng (1990) that for a fixed discount rate value-iteration
converges to the optimal policy in polynomial time. Since policy iteration is at least as fast as value-
iteration (Puterman, 200s, proof of Thm. 6.4.6), this result can be transferred to policy iteration. This
conclusion is made by Littman, Dean, and Kaelbling (1995).

In 2011, Ye proved that

“the classic policy-iteration method [...] and the original simplex method with the most-
negative-reduced-cost pivoting rule of Dantzig are strongly polynomial-time algorithms
for solving the Markov decision problem (MDP) with a fixed discount rate.”(Ye, 2011)

The same pivoting rule of the simplex method on general linear programs was shown to be ex-
ponential by Klee and Minty (1972). So, linear programs resulting from MDDPs must obey a specific
structure such that this result is possible.

3.5 Linear Programming Formulations

Next, a linear programming formulation suited to the special structure of SSO-MDPs is derived. For
this purpose, the input parameters of SSO-MDPs are resumed in matrix-vector notation. Let # = |§| be
the finite number of states and 7 = | A4| be the finite number of actions of the considered SSO-MDPDP.
Furthermore, let 4" be the augmented action set consisting of state-action pairs

A CSx A,
A ={a=(s2)|aec A}

The augmented action set has at most cardinality 7 - m. Assume in the following, it is exactly 7 - m.
Let P € RO™™X% he the transition matrix, where an entry P, ; equals the transition probability
under action 2 € A" to state 5, which is p(s|2). Since state-action pairs are considered, the “from state
in the transition probability term need not be specified and is included in the action. A second matrix
J € {0, 13" s ysed that states which action is available in which state. So, J,; = 1ifand only if
action « is available in state s. For unique action sets, like the considered state-action pairs 2 = (s,), the
matrix / has exactly one single 1 per row which is in the column corresponding to state s. It should be

»

stressed that in this subsection the matrices P and / contain the transitions to the absorbing states and

3.5. LINEAR PROGRAMMING FORMULATIONS 87

the artificial actions at the absorbing states. In the setting of Bertsekas-SSP MDDPs in Bertsekas, 2001,
Ch. 2 this is not the case.

Furthermore, a possibly randomized decision rule 4 can simply be written as a # X m-dimensional
vector 4 € [0,1]” instead of a function depending on the state 5. The component d(a) is the
probability that action @ = (5, 2) € A" is chosen under decision rule d:

d(a) = d((5, 2)) := 4,(a).

3.5.1 A Primal Linear Programming Formulation

As astarting point for a linear programming formulation, the standard linear programming formulation
for positive bounded infinite horizon MDDPs, which was presented in Subsection 2.3.7, is used. It would
also be possible to use the linear programming formulation of Bertsekas-SSP MDPs since SSO-MDPs
belong to this class of MDPs. The linear programming formulation of Bertsekas-SSP MDPs difters
from that of POSB MDPs in the way that it has no non-negativity constraints on the variables v and
the matrices / and P do not contain the artificial actions. However, in this thesis the formulation for
POSB MDPs is used as a starting point to see where the characteristic properties of SSO-MDPs make
a difference. Adapted to the matrix-vector notation of this section, the primal linear programming
formulation for POSB MDDPs equals

min &’ v
J-Pw = r (primal POSB LP)
v > 0.

The primal LP formulation for POSB MDDPs has a constraint for each action available in each state
and therefore in the current setting of state-action pairs 7 - m constraints and 7 variables. The vector
r € R is a reward vector containing the expected total reward of performing an action 2 € A4". It
should be clarified that (/ — P)v > 7 is indeed equivalent to

o(s) — Z 215 2)v(j) > r(s,2) Ya € A, Vs €8,
j€S

which are the inequalities of the primal LP from Section 2.3.7. This can be seen as follows:

(J-Pw=>r
N Z(/ — P)ojolf) = r(a), Va=(s2) € A
jE€s
& > Leat(i) =). plila)e() = #(a), Va=(5a) € A’
JjE€S j€Ss
& os) - Z 2(ils, 2)0(j) > #(s, 2), Yz € A, Vs € S.
jE€S

This formulation is now adapted to the specific properties of an SSO-MDP. As the starting state in

SSO-MDPs is known, the objective function min w” v can be replaced by min v,,.

88 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Furthermore, all transitions give a reward of 0 except a transition to a winning state, which gives a
reward of 1. For a state-action pair 2 = (5, z) inastate s € S \ (J#7 U L), the inequality

o(5) = > p(jlay(y) = r(a) (3.1)
j€S
simplifies to

o) = " plilaye) = " pljla)

JjEs JEW

S - > pilael) -) pila) [o) +1] = 0.

jeS\w jew

Since all losing and all winning states are absorbing states, there exist only artificial actions z € A, for
s € W U L. With probability 1 these actions return to s while generating a reward of zero. So, for
all artificial actions in the absorbing state, which means for all z € A4, with s € W U L inequality 3.1
simplifies to
v(s) — v(s) = 0.
This inequality is always satisfied and constraints belonging to the artificial actions in the absorbing
states could be removed from the linear program. However, in this subsection they are left in the
program such that the matrices / and P need not be formally redefined.
As next, we make a renaming of the variables: Define

5 1= v(s)+1 forseW
s v(s) else.

Then, the linear programming formulation equals

min #(s)
i(s) — Xjesp(ls 2)o(j) = 0, Vae A withse S\ (W U L)
os)—o(s) = 0,VYae A;withse W UL
o(s) = ovls)+1, VselW (2)
o(s) = ols), Vse S\ W
u(s) = 0,Vses.

We notice that in the first inequality set only actions z € 4, withs € S\ (W U L) are considered.
So, o(s) for s € W U L may only occur in the sum — Djes P(jls, 2)9(j) in the first inequality set. Since
p(jls, @) and o(s) are non-negative for all j, s € S, Z € A, the >-inequality can only become more relaxed
if we decrease 9(s) for s € W U L. So, the objective function will not increase if v(s) is decreased for
s € WU L. Zero is alower bound for v(s), s € W U L. Therefore, v(s) can be set to 0 fors € 77 U L
without increasing the optimal objective value. The resulting linear programming formulation is

min v(s;)
o(s) — Xjesp(ls 2)o(j) > 0, Vae A withse S\ (W U L)
o(s)—o(s) > 0,Vae A withse WUL
os) = L, VseW (3:3)
o) = 0, Vsel
o(s) = 0,Vses.

3.5. LINEAR PROGRAMMING FORMULATIONS 89

Since now v(s) does not occur any more in the linear program, the variables are again denoted by v.

The non-negativity constraints of v in the primal LP of the POSB MDDPs guarantee that a minimal
solution v € V" = Ry is found, which corresponds to the value of the POSB MDP. As in SSO-MDPs
all policies are proper, for each z € A, the inequality

o(s) — Z 2(jls, 2)0(j) = 0, Va € A, withs € S\ (W U L)
j€s

can be transformed by replacing v(f) recursively by this inequality until

o(s) > Z ZP{Xt =5 Y, = 2, X4y = j}oj), Va € A, withs € S\ (W U L).
JEWUL t=1

The right side of the inequality is non-negative since v(s) = 1fors € W and v(s) = 0 fors € L.
Therefore, the non-negativity conditions of v can be omitted in the primal LP formulation for SSO-
MDPs.

Altogether, a valid primal linear programming formulation for SSO-MDPs is:

min vy,
- >
v f()sl)) - 8 Vse L (primal LP for SSO-MDDPs)
us) = L, VseW

This primal linear programming formulation for SSO-MDPs has 7 variables and 2 - n + || + | L|
constraints.

Comparison to other LP formulations

A short comparison of the derived formulation to other primal linear programming formulations of
different MDP classes is given.

Let P be the transition matrix restricted to non-goal states and non-artificial actions of non-goal
states. Similarly, let / contain only state-action pairs 2 = (s, z) with z € A4, withs € S\ (W U L). Then,
the standard primal linear program of Bertsekas-SSP MDPs converted to the reward-based setting is

min vy,

J-Pw > n

Observe that this linear program has only variables v(s) for s € S\ {/#” U L} and no non-negativity
constraints. In Bertsekas-SSP MDDs, the dynamic programming operator has a unique fixed point and
therefore no non-negativity constraints on v are needed. Also the value function of the absorbing states
W U Lis reward free. By some similar transformations, the LP formulation of Bertsekas-SSP MDPs
can also be converted into the primal LP formulation SSO-MDPs presented above.

Furthermore, the primal SSO-MDP formulation can be seen as a reward based formulation of the
dual linear programm of Guillot and Stauffer (2017) applied to a special MDP class. The dual linear
programm of Guillot and Staufter (2017) is

max 1 Ty o —min]lT(_)’)
J-Py < ¢ J=-P)(-y) = -¢

90 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

where ¢ € R” is a cost vector and the variables are y € R”. The objective value of the SSO-MDP
formulation equals the negative of the objective value of Guillot and Stauffer’s linear program.

3.5.2 A Dual Linear Programming Formulation

The dual linear program of the primal LP for SSO-MDPs of the last subsection in matrix vector notation
is:

max) .y w(s)
1 s=49
J-plx = {79 €W (dual LD for SSO-MDPs)
-l selL
0 else.
x = 0

Dual variables x,, 2 = (s, 2), Va € A, are used for the inequalities (/ — P)v > 0 of the primal LP for
SSO-MDPs. For the last two sets of constraints, which define the value function of the winning and
losing states, the dual variables w;, Vs € W and [, Vs € L are introduced. This linear programming
formulation has #z rows and m - n + || + | L| variables.

The dual LP formulation contains constraints that can be interpreted as flow constraints. This
interpretation is also used by Littman, Dean, and Kaelbling (1995) who write

“Under this interpretation, the constraints are flow conservation constraints that say that
the total flow exiting state j is equal to the flow beginning at state ; (always 1) plus the
flow entering state ; via all possible combinations of states and actions weighted by their
probability” (Littman, Dean, and Kaelbling, 1995).

The difference to an ordinary flow condition is the inclusion of the transition probabilities. The
transition probabilities distribute the incoming flow of an action to the states. This flow distribution by
the transition probabilities can be viewed as exogenous flow variables y,,, := p(s|a)x,, Va€ A’, s€ S
that specify the outgoing flow of an action and can not be influenced by the decision maker. In an
ordinary flow problem, the flow conservation constraints would be

D oxa= D la)=0Vse S\ (s} U U L) (3.4)
acA] acA
Zy(5|a) -x,=0Vae A" (3.5)
seS

Since in an MDP the transition probabilities define a probability distribution the second equation is
always satisfied:

Z}’a,; X2 = ZP(SM)’C;: — %X, =%x,—%x,=0.

seS seS

So, we do not need to incorporate flow constraints for actions in the linear program as the transition
probabilities determine which fraction of the incoming flow x,, goes to which state.

3.5. LINEAR PROGRAMMING FORMULATIONS o1

A stationary policy d* can be determined from the flow variables in the following way: For a state s
with X\ze 4 %52 > 0 define

d(a) = d((s, 7)) = 2’57

In all other states, define d as an arbitrary probability distribution over the set of available actions. This
is according to Definition 2.3.29 of the previous chapter. So, d(a) is the fraction of the flow in a state
node that goes out to an action node. If the complete flow in a state node goes out to one single action
node, we will get a deterministic policy 4.

Littman, Dean, and Kaelbling write in Littman, Dean, and Kaelbling (199s) that the objective
value of the dual linear program can be interpreted as the expected total costs — which equals in the
setting of this thesis the expected total reward — of this stationary policy. Furthermore, they state how
a deterministic optimal policy can be computed from a dual solution. The following equation is an
adaptation of Littman, Dean, and Kaelbling notation to the notation of this thesis. Furthermore, the
computation of a deterministic optimal policy was expanded to the case where | argmax , " Xz| > 10

1 ifze€arg max,, . 4 %5z and d((s, k)) = 0 Vk € arg max, . 4 Xz \ {2},

d(a) = d((5,2)) = { 0 else

In the next Subsection 3.6, the connection between a realization of the Markov process under a
certain policy and the flow in the dual LP is examined in detail. But first, an example of an SSO-MDP,
its dual LP formulation and the derived stationary policy from an optimal solution of the dual LP is
presented.

Example 3.1:

Figure 3.3 shows a slightly modified version of the example in Figure 3.1 from the beginning of this

section. The difference from the original example problem is that it contains a cycle, namely (55, 43, 52).
In the Example presented by Figure 3.3, the number of actions 7 equals 6 and then number of

states 7 equals 4. For the ordering (a1, 42, a3, a4, 4y, ;) of the actions and (sy, 52, w, [) of the states, the

matrices of the dual LP for SSO-MDDPs formulation can be specified as

0 06 04 0 1 000
0 06 0 04 1 000
0 05 02 03 010 0
P_000.60.4’]_0100'
0 0 1 0 001 0
0 0 0 1 0 0 01

Note that the artificial actions in the absorbing states w and / could be removed from the matrices
and need not be included in the model as they are redundant. However, to be consistent with the
definitions of P and J of this subsection, they are included in this formulation.

92

a

az

CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

. ~
Aw
//V
’/// /4‘ v
/// // 7
- , /
0.471 0201 !
/" 7z /
7 /
4 /
4 /
!
/
a3 A
1
\ /
\ 1
! 4 state
\]
\ 0.6 1
\ 1
\ / L
\ , Wll’ll’lll’lg state
vy
\y /’\\
' ! I losing stat
N \) losing state
7\ N ’,

4; |action

(= e
)
<

available action

- -+ p(sls, a): transition

\ 7y, a s) reward
\
a4 \
\
N \
N \
~ N \
-~ N .
0410 04107 \
< N .
S < N
o _--1000
ARV e ~.
~ -
1 1
\ l ! dl

Figure 3.3: SSO-MDP Example

The dual LP for SSO-MDPs formulation applied to this example is

1
-0.6
-0.4

0

1
-0.6
0
-0.4

max w
Xz
0 0 0 0\ [x, 1
0.5 1 0 0Of |x4 0
-02 -06 0 Of [x,]| |-w
-03 -04 0 0/ |z, —/
Xy
x > 0

An optimal solution of this linear program is

1
0
0
=106 , w=076, [=024
0
0

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 93

Ay

state

winning state
4 - N
e
{ !losing state

,

4; |action

\
\
. . 0310 . .
0 ,0 ¢l 0.c /) v available action
7’ \
e / \ - -+ plals,s): transition

\ 7 (s, a) reward

\
2 g 4 \ Xa . x,d,

.’\

1 1 l aj

Figure 3.4: Solution of SSO-MDP Example

with an objective value of 0.76. This translates into the optimal decision rule

—_ = O O

The solution is presented in Figure 3.4. The first blue number denotes the action flow x,, and the second
number the derived decision rule d(4). The optimal decision rule selects action 4 in 5 and action a4
in s1. *

3.6 Flow Networks associated with SSO-MDPs

In the last section, the dual variables of the dual LP for SSO-MDPs where interpreted as flow variables.
The goal of this section is to define a flow network for SSO-MDPs and to clarify how a flow described
by the dual linear programming formulation corresponds to a realization of a Markov process under a

94 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

given decision rule. This section is relatively long and technical. The main result is the static maximum
flow formulation 3.12 which is equivalent to the dual linear programming formulation seen in the last
section. However, starting from scratch in an own setup, Theorem 3.6.23 proves that the linear program
can be used for finding an optimal decision rule of the SSO-MDP without relying on any other result
of linear programming formulations for MDDPs.

In general a flow in a network, as for example a solution of the maximum flow problem (Defini-
tion 2.4.8), assigns a non-negative flow value x;; to each edge such that the flow conditions and capacity
restrictions are met. The flow values x;; are not time depended, instead they describe a static flow that
can be send from the sink node to the source node. At each point in time, the flow per time unit is x;;;
on edge (4, /).

In contrast, an SSO-MDP relies on a stochastic process that evolves over time. The random process
consists of a random variable X, that describes the state of the system at time 7 and a second random
variable Y, that describes which action is selected at time # according to a, possibly randomized, decision
rule Y; = d(X;). If the decision rule is deterministic, 4(X) is also deterministic and does not have to be
expressed by a separate random variable.

3.6.1 Basic Definitions

Graphical representations of SSO-MDPs were already used in the examples like, e.g., in Figure 3.1. As
indicated, unique actions are necessary for a clearly arranged graphical representation. If actions are
available in different states and the transition probabilities differ depending on the state in which the
action is chosen, it would not be possible to associate a single transition probability with the edges that
connect the action with its successors. Therefore, in this section an augmented action set A consisting
of state-action pairs is assumed.

Before defining a flow network associated to an SSO-MDP under a policy # € [TMR
associated to an SSO-MDP is formally defined as:

, a graph

Definition 3.6.1 (Graph associated with an SSO-MDP).
An associated graph G = (N, E, 8) of an SSO-MDP

(S, A4, p(ls, a), (s, a), W, L, 51)

is a directed graph with a node set N := {1,...,|S U 4|} and a bijection @ that maps the states and
actions of the SSO-MDDP to nodes of the graph:

Bg:SUA—->N
i B(0).
The edge set £ C N X N is defined as

E={G)): B) =s€S8,) e A}
U{()): M) =ae 4,87()=s€S, pllA™a),a) > O}.

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 95

By definition, in an associated graph of an SSO-MDP, there exist only edges between nodes that
correspond to states and nodes that correspond to actions in the MDP. Therefore, an associated graph
of an SSO-MDP is always a bipartite graph, where N splits into two disjoint sets of nodes N' = N 4UNg
with

Ng:={ne N|B(n) e A}
Ns:={ne N|g(n) S}

Observe that no two nodes in N 4, respectively Ny, are adjacent.

Observation 3.6.2:
Let G be an associated graph of an SSO-MDP, then G is a bipartite graph.

The nodes n € N 4 are called action nodes and the nodes n € Ny are called state nodes. Note that most
of the time, the artificial action nodes in the absorbing states will not be explicitly named or drawn.
However, they are included in E. The set of winning states is denoted by the symbol N, SW and the set
of losing states by N

Following definition 2.4.7, a flow network is a directed graph where nodes or arcs have associated
numerical values. For the flow network of an associated graph of an SSO-MDP, for all edges ¢ € E an
edge weight a(e) € [0, 1] is defined. The terms are called “edge weight” because they specify a share of
flow: For an edge e = (4,) the edge weight a(e) is the fraction of flow in 7 that leaves 7 over edge e. The
edge weight of an edge from a state node to an action node is defined to be 1 while the edge weight of an
edge from an action node to a state node is derived from the transition probabilities of the SSO-MDDP.
The following definition specifies the edge weights et formally.

Definition 3.6.3 (A Flow Network associated with an SSO-MDP).
The flow network of an associated graph G = (N, E,) of an SSO-MDP is a tuple (N, E, 3, «) where
the edge weights « are defined as

i) = L if(i,7) € E B0 €S, B71(j) € 4,
7 26l ANa), a), f(Gj)€E BN i)=aec A) =s€S.

Later, the edge weight of a path in the graph is needed. The edge weight of a path from # to v is the
fraction of flow available in # that follows the path and enters v. Therefore, the edge weight of a path
¢4,» must be the product of all edge weights occurring on that path:

“(eu,v) = Hfégma(")-

In the flow network of an associated graph of an SSO-MDP, there are no capacity restrictions on
the edges nor costs for traversing an edge. The reward structure of an SSO-MDP is uniquely defined by
the set of winning states. So, there is no need to encode a reward function in the flow network. For a
given starting state sy, a set of winning states /%" and a set losing states L, the flow network (N, E, 8, o)
uniquely defines an SSO-MDP.

In the following example, a simple SSO-MDP is considered and the flow network of an associated
graph of that SSO-MDDP is presented.

96 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Example 3.2 (Flow Network of an associated graph of an SSO-MDDP):

Consider an SSO-MDP with three states S = {51, w, [}. Assume the states w and / are absorbing states
such thatwisa winningstate and /is alosing state. In this example and in the following of this thesis, the
explicit notation and drawing of the artificial action nodes in the absorbing states is left out. Instead,
the winning states and losing states are colored in red to distinguish them from ordinary transient
states. Let s; be a state where an action 4 is available. Furthermore, let the transitions probabilities
after choosing action 4; in s; be:

p(w|51, ﬂl) =0.2 p(ll_fl, ﬂl) =0.2 p(.fll.fl, ﬂl) = 0.6.

Then, an associated graph of this example MDP is G = (N, E,) with N = {1, 2,3, 4} and

BG1) =1 Bla) =2
B =3 B(w) = 4.

The edge setequals £ = {(1, 2), (2,1), (2, 3), (2, 4)}. According to the definition of an associated flow
network, we get for the edge weights

a(1,2) = 1 a(2,1) = 0.6
a(2,3) = 0.2 (2, 4) = 0.2.
Figure 3.5 is a graphical illustration of the flow network (N, E, 8,) defined in this example. *

3.6.2 Induced Flow of an SSO-MDP

As next, it is shown how the random process induced by an SSO-MDP and a stationary policy 7 = d*
corresponds to a flow in an associated flow network of that SSO-MDDP.!

To define a random process induced by a policy 4 in the flow network of an associated graph of
an SSO-MDP, a random variable Z, that takes values in the node set N is introduced:

" The induced stochastic process of an MDP under policy # is explained in Section 2..1.

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 97

ﬁ(»‘l) =1 state node

action node

winning node

’ .
| 1 'losing node
7
/ ~-7

4 --+> edgee

<— — — — — == - = - —

ale) edge weight a(e)

[\
N
—~
&
Ry
~
Il
[\

/"\f \\(
R NIEE ‘ o) = 4

Figure 3.5: Flow network example of an SSO-MDP

Definition 3.6.4 (Random Variable of the flow network).
Let (Q, F, P) be a probability space of an MDP as described in Subsection 2.1.1. Define Z; as a random
variable that maps w = (51, 41, 52, ...) € Q to the measure space (N, 2N) by

Zt :Q —- N
.f = 1 d 2’
Z(w) = Blse+)/2) 1 ¢ mo
B(as/2) ifr=0 mod 2.

So, Zi(w) = B(s1), Zo(w) = B(ar), Z3(w) = B(s2) and so on. Obviously, the random variable Z, is
alternating between nodes in Ng and N 4.

A realization of the random variable Z, can be interpreted as a random walk in the associated flow
network of an SSO-MDP. To visualize this random walk over time in a network, a time-expanded flow
network of an SSO-MDP is used. In a time-expanded network, the node set is copied for each point in
time # and for each edge (7, /) € E there exists an edge from the node 7 at time ¢ to the node ; at time
r+1.

Definition 3.6.5 (Time-Expanded Flow Network of an SSO-MDP).
Assume an associated flow network (N, E, 8, &) of an SSO-MDP. Then, the time-expanded flow net-
work (N, EY, B, &') is defined as

N :={(t,i)|teN, ie N}

98 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

E={((4),(t+1,)) |t €N, (i) € E}
@ {NX{SUA} - N

(%, 1) = (1, 8(2));
. |E —[0,1]
" (50, e+ 1)) e al));

Example 3.3 (Random walk in flow network):

Consider the SSO-MDP of Example 3.2. Assume the SSO-MDDP starts in s; and uses a decision rule d
that selects action 4; in state 5;. A possible realization of the Markov chain resulting from this MDP
and the decision rule 4 is

w = (Jl) al, S, a,, w, ..)

This realization ends in the winning state after two transitions and stays there forever. Accordingly,
the random variable Z, takes the values

Z; =1 Z, =2 Z3 =1 Zy=12 Zs =4

The time-expanded network of this example is presented in Figure 3.6. The realization of this example
corresponds to a walk along the following nodes (7, 7) € N*:

L) = (22) - (3,1) = (4,2) — (5,4) — (6, 4).... «

Z, is by definition of Z, always a state node. Since Z; is alternating between state and action nodes
and those sets are disjoint, it can be concluded from the value of Z, whether ¢ is even or not. And the
other way around, it can be deduced from ¢ whether Z; € Ny or Z; € N 4 holds by using the definition
of Z,. So,

Z;,€Ng & t=1 mod?2
Z,e€Ngy © t=0 mod 2.

In an MDD, we are interested in the expected total reward of a decision rule instead of the reward
of one realization. Proposition 3.6.6 relates the value of a policy 4 in an SSO-MDDP to the probability
distribution of the random variable Z, in the flow network:

Proposition 3.6.6 (Expected total reward of SSO-MDP and Z;):
The value of a policy d™ in an SSO-MDP starting in a state s € S\ {W U L} equals the probability
that Z, enters a node in NSW :

v (5) = Zpdm {Zo13 ¢ N;V; Zy1 € NgV | Z1 = B(s)}.
=)

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 99

ProoF. The expected total reward of a stationary policy 4 equals:

o (5) = Eiim {i (X, Yt)}

t=1

Prop. 3.4. > 00

DN B X g W X €W X =)
=2

= ZPdw{(xl,ﬂl,sz,...)EQ c 5 €W, ss € W |5 = s}
=2

Def. Z, = LIPS _ _

=7 Y P (Zas) ¢ W8T (Zan) €W | BTN = 5}
=2

= Z P Zy 5 ¢ N;V) Zo1 € NSW | Zy = B(s)}.
=2

The result directly follows from Proposition 3.4.1 and the definition of Z;. n

The last proposition related the probability distribution of the random variable Z, to the expected total
reward of a decision rule. This motivates to examine the distribution of Z; under a policy d*.

As already observed, Z, is alternating between state nodes and action nodes, which are disjoint
sets. We know that for ¢ even, Z, takes a value in N4 independent of the used policy 4. Hence,
the probability P{Z, € N} is zero for every even time point r = 2k, k£ € N. Also, the probability
P{Z, € N 4} is zero for every odd time point # = 2k + 1, k € Ny independent of the used policy 4.

Observation 3.6.7:
Let Z, be a random variable in the flow network of an associated graph of an SSO-MDP that is constructed
after Definition 3.6.4. Then,
P {Zy € N5} =0, Vk=1,2,3..., Vd° e TMR
P {Zpte1 € Ny} = 0, Vo =0,1,2,..., ¥d™ e TV,

The goal is to calculate the probability that the random walk Z; is at node j at time 7 when the
process has started in node 7 at time #” < £ and policy d* is used. So, we want to determine

P4 {Z, = j|Zy =i} fort’,r € Nwitht > ¢,

The edge weight « of state-action edges can be adapted to the used policy 4 such that the mentioned
probability equals the sum of the weights of all paths from (#’, 7) to (%, 7) in the time-expanded network
associated to the SSO-MDP.

Proposition 3.6.8 (Probability distribution of Z; under 4*):

Let d° € MR be a stationary Markovian policy and Py a distribution of the initial state. Define the
adapted edge weight function oz~ under d> as

o Jaan@ - aG), ifGf)€E B =5€S B()=ac 4,
ago(bf) =4 "
(i,), else.

100 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Let a;m be the time-expanded adapted edge weights in the time-expanded graph based on o .

Then, the probability that the random variable Z, is at node j at time t when the process has started
in node i at time t'" and a stationary policy d* is used equals the sum of the weights of all paths from
(¢', i) to (t,)) in the adapted time-expanded nerwork (N*, E, 3, oc;w) of the SSO-MDP:

PdW{Zt =J | Zy =i}

= > [[eet@], va= e ™,
¢ path from (¢',i) ro (1)) | €<€e
in (N, E")
forallt,t' € Nwitht > t" and P {Z, = i} > 0.

Proor. Since Z; is alternating between state and action nodes, a case distinction whether 7 and ¢’ are
even or not can be made. Assume # =1 mod 2and # =1 mod 2. Then, it holds 871(Z,) € Ny as
well as 871(Z,) € Ny and

Pdm{Zr :j | Zy = i}
Pz =i, Z, =}
Pa*{Z, = i}
P {(s1, a1, 52,...) € Q ¢ sranya = B0 sz = B7G)}
P (s, a1, 52,...) € Q ¢ sz = B7HE)}
2Hw€Q : sy =B D=8} P01 - G (@) - ploalsy, ar) - ...

2w€Q : sipayp=8-10) P11 - Ga) (@) - ploalsy, ar) - ...

The definition of Z, is inserted in Equation 3.6.

In the last equation, the probability of an elementary element w € Q is inserted, which is explained
in Section 2.1. The sum of the numerator contains all events where the system is in 8() at time (' +1) /2
and in B(f) at time (# + 1)/2. For a given history until (¢ + 1)/2 that fulfills this condition, all possible
extensions are included in the sum. Since the conditional probabilities of all extensions sum up to 1,
the sum can be restricted to all histories up to (¢ + 1)/2 that fulfill our requirements. An analogous
simplification is possible for the denominator and the fraction simplifies to:

= Z Pi(s1) - qugsy)(ar) - p(s2lse, 1) - qay)(a2) - ...
{1,215 5(p41)12) ESXA) V2K -
s 41)2=8 " DS 2=671() }
-1

Pi(51) - qacs)(ar) - p(salsi, a1) - gac,) (@) - ...
(G115 +1)/2) €SX A IS
s 2=871 ()}

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 101

Every history that is in 87}(¢) at time (¢ + 1)/2 is included in the denominator. In the numerator,
each of these histories is extended by all sample paths that go from 87(7) to 87(j) in (¢ — ') /2 time
steps. So, the sum of all histories that are at time (¢ + 1)/2 in 871(7) can be excluded in the sum of the
numerator. After the division by the denominator, it remains:

Z Q{5) (A 41)/2) * - - PS(e1)/2150-1) /2> A1) /2)-
5w 42=B71 @), s 2=871 (D}

The probability of a sample path of the last sum equals the adapted edge weight oc;m of a path in the
time-expanded network that goes from i to j in #* — # time steps. This is true since the time extend
network is circle free and the edge weight of a path is defined as the product of the edge weights of
edges on that path. Therefore, the last sum equals

[BERG

¢ path from (#',i) to (7) | €€e
in (N*,E")
t
- DI
¢ path from (#',7) to (2,7)
in (N*,E")

In case that # or ¢’ is even, the same argumentation holds. The only difference is that for ¢ even, Z,
must be in N 4 and our sample paths end with an action 4, 5. n

Example 3.4 (Probability distribution of Z;):

Consider the SSO-MDP of Example 3.2 and assume the decision rule d(s;) = 4. Since 4 is the only
action available in s; and d chooses a; with certainty, the adapted weight function o/, is identical to
al.

Let Z; be the random variable according to Definition 3.6.4. Let 5 be the starting state of the SSO-
MDP. Since B(s1) = 1, the probability that the random walk Z, is at node i when the process has started
in node 1 at time # = 1is considered.

In Figure 3.6, the probability distribution of Z; in the adapted time-expanded network for # =
1,2,3,4,5 is denoted. If the probability p4” {Z, = i| Z; = 1} is greater zero, the node is highlighted
in green and the probability is denoted as a small number at the bottom of the node. *

8-

=3

r=1 fw) =4

Figure 3.6: Flow generated by random process of SSO-MDP in time-extended network

40} §

NOILLF ZIWILdO ADTLF YLS-LIOdS 401 SdAW € JALIF HO

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 103

In the time-expanded network of the flow network associated with an SSO-MDP, the probability
distribution of Z; generates a flow in that network. First, time-dependent flow variables x! . are defined
that are induced by Z; in the time-expanded flow network and show afterwards that they are a valid
flow in the time-expanded network.

Definition 3.6.9 (Time varying flow induced by random variable Z;).
Let t € N be a point in time and (7, /) be an edge in E. Then,

xf,j =P* {Zin=j2 =i}

is the time-dependent flow induced by the distribution of the random variable Z,.

The goal is to show that {x:.:j, t €N, (4,7) € E}isavalid flow in the time-expanded network of
an SSO-MDP. By a valid flow, it is meant that {le',j’ t €N, (i,5) € E} satisfies the flow conservation
constraint in each node. The flow condition requires that in each node the amount of incoming flow
equals the amount of outgoing flow, see Section 2.4 for more on general flow networks. Intuitively, it
might be clear that x; is a valid flow: By construction of the flow network and the definition of Z;, a
realization of {Z;, ¢ € N} is a random walk in the time-expanded network and Z; moves only along the
edges in the time-expanded network. By Proposition 3.6.8 the probability distribution of Z; is related
to path weights in the network. No probability mass of a random variable can be lost or generated. It
shifts from one node to the next according to the distribution of Z; under d* respectively the edge
weight oc;w

However, this should be proven formally on the next few pages even if only technical reformulations
are mainly required. Proposition 3.6.10 shows that the sum of outgoing flow in a node at time ¢ equals
the probability that Z, is at that node. Also the sum of incoming flow in a node at time ¢ — 1 equals the
probability that Z, is at that node.

Proposition 3.6.10 (Probability of Z; being at a node):
Let x_ . be defined according to definition 3.6.9 which is the induced time-dependent flow by the random
varmﬁlle Z;. Then,

¥, =PT{Z, =i}, VieN, Vie N,
i) eE
D M =PTZ =), VreNay, Vie N
JGi)eE

holds.

Proor. Lett € N. Then,

Def.3.6.9 00 . .
Z xzj = Z P4 {Zin =42 =1i}.

j:Gif)€E J:@j)EeE

104 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

For PY"{Z, = i} = 0, we have that P* {Z,,; = j,Zy =i} = 0forall (4) € E and the statement
holds. Otherwise, it holds

Z Pdm {Zt+l =j; Z; = i} = Z Pdm {Zr+1 :j | Z = i} ‘Pdm {Zt = i}-
Jjiif)€E Jjiif)€E
If i € Ng holds, it is known that

P Zw1 =1 Z0 = i} = qag(a), for f(s) = i, B(a) = j.

Since d specifies a probability distribution over all actions available in s and for each of those actions

a = 7(j) an edge (i, /) € E exists, it holds

D Pz =12 =} PTZ = 1)

JiG))EE
=) 2@ PT{Z =i}, for) =i B(a) =
Ji(i))€E
= P{Z =i} D quola), forB6) =i Bla) =
Ji(ij)€E
= PY{z =i

If i € N 4 holds, it is known that
P Z1 =1 Z, = i} = p(s| A7), a), for B(a) = i, B(s) = .

Since p(-| 47 (a), a) specifies a probability distribution over all transitions possible from zand for each
of those transitions to a state s = 87(7) an edge (4, /) € E exists, we get

D, Pz =j1Z =y Pz = 1)

Jiij)eE
= > pelaa),a) PTZ = 1), fora) =1 B() =
J@)eE
= PU{Z, =1} Z 25147 (a), a), for B(a) = i, B(s) =
Jiij)eE
= Pz =i}

For the second statement, a similar proof is possible. Let # € N, # > 2. Then,
1 Def3.69 o . .
Z P Z PZ =0, Z =)
j:(j,i)GE j:(j,i)EE

Again, for P¥{Z, = i} = 0, wehave that P* {Z, = 4,Z,_; = j} = Oforall (i) € E and the
statement holds. Otherwise, due to the definition of E, there must exist at least one j with (7, 7)) € E
and P {Z,_, =j} > 0. Hence, it holds

D B Z=iza= =), PZ=ilZa =} PT{Za =)
J:Gi)EE J:(ij)€E
P4 (Z,.1=/}>0

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 105

This time for i € N, it holds

PU{Z, = i| Ziy =} = pls| A7 (a), a), for B(a) =, B(s) = i
and hence

PUNZ =i Zi =} PU{Z =}
Ji(ij)€E
P47 {Z, 157150
> plaN @), a) P Ziy =), forla) =), B() = i
j:Gf)€E
P {Z1=1}>0

= PY{z =i}

In the last equality, it was used that for each action 871(;) that has a positive probability for a transition
to B71(i) an edge (j, i) € E exists. Fori € N4

PONZ = 0| Zio =) = qu (@), for () =, Bla) = i
and the same argumentation applies. m

Theorem 3.6.11 is a direct application of the two statements of the last Proposition. It shows that
x; derived from Z; after Definition 3.6.9 is a valid flow in each node at time ¢ > 2. The theorem holds

only for ¢ > 2 since {x 3 (4,7) € E} is not defined.

Theorem 3.6.11 (Time varying flow induced by Z; meets flow condition):
Let xt . i be the induced time-dependent flow by Z, defined according to definition 3.6.9. Then x sa
valid flow in the time-expanded flow network with adapted edge weights, i.e.,

D= > at=0, V22, VieN.

jiiy)eE j:(j,i)EE

We have seen that the time depending flow variables induced by Z; satisfy the flow condition in the
time-expanded flow network. As the name suggest, the flow on one edge is not static and may change
over time. In our Example of Figure 3.6, the time varying flows on the edge (1, 2) are:

xé1’2)=1

é@zo

(12) = 0.6
=0....

(1,2)

106 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

However, the reader may observe that the fraction of flow available in a node that traverses an
edge is static. In our example, if there is an incoming flow to node 1, the fraction of outgoing flow that
traverses the edge (1, 2) is always 1 which equals ds;.

The static fraction always equals the adapted edge weight a4, which is, depending on the edge
type, either equal to the probability of a transition or to the probability by which an action is chosen
under the considered decision rule. This formally is shown by the next two theorems, whose proofs are

based on our previous propositions:

Theorem 3.6.12 (Relation induced flow to decision rule):
Assume an SSO-MDP and a stationary policy d™. Let (N, E, 3, o 4~) be an associated flow network
of that SSO-MDP and Z, be the random variable of Definition 3.6.4. Then, for any node i € Ng

x"

ﬁ = 24 1)@ k), Vk: (k) € E
/(i) €E X7

PrOOF. According to Proposition 3.6.10

PR SR A

j:(j,i)EE

For P {Z, =i} > 0 the following equation holds:

xlik _ Pdm {Zz+1 = k: Z = i}
Yigoer %) P{Z = 1)
= PdW{ZHl =k | Zy = i}
Prop. 3.6.8
= (i k) (3.7)

= a1 (B (k).

In Equation 3.7, Proposition 3.6.8 is used and the property of the time-expanded graph that there exists
only one path from (,) to (¢ + 1, k), which equals the direct edge (1, 7) — (¢ + 1, k). n

A similar relation holds for action nodes i € N 4 as shown in Theorem 3.6.13. For a shorter notation,
p(sla) := p(s|471(a), a) is used for the transition probability from action 2 € A to state s € S.

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 107

Theorem 3.6.13 (Relation transition probabilities induced flow):

Assume an SSO-MDP and a stationary policy d*. Let (N, E, B, ay~) be an associated flow network

of that SSO-MDP and Z, be the random variable of Definition 3.6.4. Then, for any node i € N 4
X,

—— =p(8 (BB (@), Vk: (k) € E

2j,i)eE %,

Jorall t > 2 with ¥ e %7 > 0.

Proo¥. Again, according to Proposition 3.6.10

=Pz =i}

i
j:(j,i)GE

For P {Z, = i} > 0 the following equation holds:

xi/e _ Pdm {Zt+1 = k, Z = i}
2ji(i)eE x;;l P{Z, = i}
= P Zu=klZ =1
Prop. 3.6.8 .
= g (i, k) (3.8)

= pBRIBTE).

In Equation 3.8, Proposition 3.6.8 is used again as well as the property of the time-expanded graph that
there exists only one path from (%, 7) to (# + 1, k), which equals the direct edge (z,7) — (z + 1, k). In
contrast to the last theorem, (7,) — (£ +1, k) is an edge from an action node to a state node, so a4 (7, k)

equals the transition probability p(87(k)|871(2)). n

The last two theorems capture all nodes N in the flow network, since all nodes belong either to N
or to N 4. As we are in a setting with stationary transition probabilities and consider only stationary
policies, it can be followed from the last two theorems that the fraction of the available flow in a node
that traverses an edge (7) is constant over time.

Corollary 3.6.14:
Assume an SSO-MDP and a stationary policy d. Let (N, E, B, ay~) be an associated flow network of
that SSO-MDP and Z, be the random variable of Definition 3.6.4. Then for nodes i with 3.1, 1 e x/;.l >

0 and ¥ g ek xz,i_l > 0 the equation

7
Vi Yij

— -1
Zk:(/e,i)EE Xy i Zk:(/e,i)eE X i

holds for all t,t' > 2.

108 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

In the case Y.t ek x/’m. = 0, the incoming flow to node 7 at time ¢ is zero, which means, that the
probability that Z, is at time 7 in node 7 is zero. Since x* satisfies the flow condition, it follows that all
outgoing flows of node 7 at time # + 1 must be zero, too. So, xi}rl =0forall (35) € E.

It may be the case that X4,k x/tm. = 0 holds for some # but not for all. Consider for example
node 2 in Example 3.4. The incoming flow at time # = 2 is

Z x/‘iz =1

k:(k,2) e E

while at time ¢ = 3 this sum is 0. However, for all points in time where the incoming flow into a node is
positive, the fraction of flow on an outgoing edge is always the same. Nodes which never have a positive
incoming flow are not visited by Z, under the considered decision rule.

In the current subsection, the properties of the induced flow of the random variable Z; are analyzed
for a fixed stationary policy 4*. In the next subsection, this view will be inverted. Coming from a valid
flow in the flow network of an SSO-MDP a stationary policy 4* is derived. It is shown that the random
variable Z, under 4% induces exactly the flow from which it was derived.

3.6.3 Maximum Flow Problem for SSO-MDPs

In this section, a linear programming formulation for SSO-MDPs is derived by considering the associated
flow network of an SSO-MDP. The maximum flow problem formulation of Definition 2.4.8 is adapted
to flow networks of SSO-MDPs such that for each feasible solution of the linear program, a decision
rule can be found under which Z,’s probability of reaching a winning state equals the objective value of
that solution.

The objective of an SSO-MDP is to find an optimal stationary policy 4 such that the probability
of reaching a winning state is maximized, which is shown in Proposition 3.4.1. In the time-expanded
flow network of an associated graph of that SSO-MDD, this objective translates to maximizing the
probability that the random variable Z; enters a winning node of the node set N, ;/V , see Proposition 3.6.6.
In the last subsection in Proposition 3.6.11, we have seen that the probability distribution of Z, induces
a valid flow in the time-expanded network. This leads to the idea of formulating a maximum flow
problem for SSO-MDPs. In the maximum flow problem formulation, the evolution of Z; is considered
until it reaches a winning state. Therefore, in this section an associated graph of an SSO-MDP is used
where the node set does not include the artificial action nodes at the absorbing states. This definition is
important such that the resulting linear program will be well defined. So, in this section an associated
linear programming graph G'* = (N, E, E) of an SSO-MDP is considered. Its sets are defined as
follows:

Ni={L..,ISU A\ Uewpurd}
E:={(,j)€E ije N}
andﬁis abijection from SU A\ {Uepprur A} to N. The associated flow network based on an associated

linear programming graph GEP is denoted by (ZA\?) E, E, o) and a is defined according to Definition 3.6.3
but based on G Similar, the time-extended flow network of an SSO-MDP can be constructed
according to Definition 3.6.5 based on an associated linear programming graph G and is denoted by

(ZA\?I‘; E[J ﬁt: at)'

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 109

The meaning of the objective function of an SSO-MDP and the properties of Z; in the time-
expanded network lead to the idea of using a maximum flow formulation as a starting point for the
linear program. The basic max flow formulation of Subsection 2.4 for a capacitated network with a
non-negative capacity #;; based on a graph G = (N, E) is:

max v
v fori=s

2ii)eE Xij — Ljiee %, = 0 foralli € N\ {s ¢} (max flow)
—v fori=t¢

0<x;; < uy Y(j) €L

There are obviously some general differences between the network considered in Definition 2.4.7 and
the time-expanded network (N' t EY, ﬁt , &) of an SSO-MDP.

First, there are no capacities on the edges E' If the starting flow v is increased from the source node,
we would be able to route the full amount v over the paths in the network. And if there exists a path to
a winning node, the objective function would be unbounded. However, the flow in the time-expanded
network should equal the flow induced by the random variable Z,. So, it makes sense to fix the amount
of flow v entering the network from the outside to 1. In fact, the initial distribution P; of the starting
state is used to model the incoming flow to the network. Even if in SSO-MDPs the starting state s; is
known, in this subsection a generalized initial distribution P; for the starting state is used. The initial

distribution Py always satisfies
D=) PE W) =1
seS n€Ng

For not having problems with the domain space of P, P is extended to the action space and Pj(4) = 0
forall 2 € A. For modeling the incoming flow, the edge set ' of the time-expanded flow network of
an SSO-MDP is extended by edges E°:= {((0, 5), (1, 7)), i € Ng} that connect an artificial source node
s with each state node of the time-expanded flow network at time 0.

Instead of capacities, there exist edge weights o’ in a time-expanded flow network of an SSO-MDP.
As seen in Proposition 3.6.8, the adapted edge weight o/, of an edge (1, 7) — (¢ + 1,;) equals the
probability P4 {Z, = j | Z; = i}. Since the flow in the network should correspond to the probability
distribution of the random variable Z;, further equalities are added to the program that ensure that
the flow available in a node is distributed by the edge weights over the outgoing edges. Since we are
searching for a decision rule 4, the adapted edge weights &/, can not be used. Instead, variables d(7) are
defined for the distribution of the probability mass along edges that go from a state node to an action
node.

Furthermore, there are several sink nodes N X { N, SW U N, SL} C N,. A flow value variable v} is used
for eachnodei € N, SW U N, SL to capture the incoming flow in a winning or losing node at each point in
time.

The program resulting from this considerations on basis of the maximum flow problem is presented
in Definition 3.6.15. It has a countable infinite number of variables and the objective function is an
infinite series over time that sums up the amount of flow entering a winning node at each point in time.
Since the total flow entering the network is bounded by 1 through the initial distribution P, and no

110 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

additional flow can be generated, the objective function is bounded by 1. Therefore, the series must
converge to a finite value.

Definition 3.6.15 (Time expanded Maximum Flow Problem for SSO-MDPs).
The time-expanded maximum flow problem of the time-expanded flow network (N', EY, ﬂt *)ofan
SSO-MDP and an initial distribution P of the starting state is defined as

max Xeny ZieNSW v
ZjieRe K, = P@E), VieN,
Ziaper ¥y~ Lygoer i = O Vie N\{NY UNE}, reN,
_Zj:(j,i)ez"%;l it o= -, Vie N” UNg, reN, (3.9)
%= o)) Dpgpepcr % = O Vi) € EL, i€ Ny t€N,
%4 = 00) Dpperar 5 = 0, V(i j) € Ef, i€ Ns teN,
xl{j > 0, V(i) € E%], t € Ny,

where xf)j, d(7) as well as o’ are variables. Furthermore, E' is extended by £ .= {((0,5), (L,7)), i €
Ns}and E%{ is defined as

EL = {G) [(50), (£ +1,) € E}, Vi € No.

In the following, the first three sets of equalities in the program are referenced as flow constraints and
the last two sets of equalities as flow distribution constraints.

For easier notation, Ei is used for all # € Ny which is defined as a projection of the time-expanded

edges at time 7 on edges between the static nodes i € N. Since an SSO-MDDPs has stationary parameters,
forall € N, which does not include 0, it holds that Z\f, restricted to the node component equals N,
E;V equals E and o' (i,) = ali, f).

The flow distribution constraints for state nodes are non-linear which is why the whole program is
not a linear program. The non-linear flow distribution constraints are needed to ensure a stationary
decision rule in the time expanded setting. However, in the static reformulation of this program the
non-linear constraint can be omitted such that the static reformulation is a linear program.

From every feasible solution of problem 3.9, a decision rule d can be defined such that the induced
flow of Z; under d* equals the feasible solution x£ - This is shown in the next theorem:

Theorem 3.6.16 (Feasible solution of 3.9 characterizes decision rule):
Assume the time-extended flow network (N, E', 8, a*) of an associated graph of an SSO-MDP
and an initial distribution Py of the starting state. Let xi 7 vf. and 9(j) be a feasible solution of

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS I

program 3.9 defined for that time-expanded network. Define a decision rule d € DMR 45

a(7) for all i € Ng with 3r € N s.z.
Zk:(k,i)efgl x>0,

P{d(s) = a} := g5(a) arbitrary s.t.

Yaea 95(a) =1, else

g:(a) =2 0,

Jorall a € A; wherej = E(a) and i = E(:) Then,
1. the decision rule d € DR s well-defined,
2 PPz =1} = Dk(ikeE le',/e’

3 P2 =52, =i} = xf.)j, V(i j) € E, teN.

PrOOF. Let xij, v} and 9(7) be a feasible solution of program 3.9. Define a decision rule d € DMR 4
described in the theorem. Remember, for SSO-MDPs 175%[= Eforallz € N.

1. First, it is shown that 4 is well-defined. For every s € S, the decision rule 4 must specify a

probability distribution over the available actions in 5. This means s = 871(i) with

FeN: Y Ao
(b e Fr-1
kb

J must satisfy:

Z d@a)=1 A 3@a)=0,VYaeA,seS

a€ A
such that d is well-defined. From the flow distribution equation of the program for state nodes,
it follows
xl
()= —L —

-1
Zk:(k,i)ef%;l X
After Corollary 3.6.14, any time point # with 3, 71 xi 1> 0yields to the same (7). The
2 N 1
. t
non-negativity of d follows directly from the non-negativity of X

By the definition of the edges in the flow network of an associated graph of an SSO-MDP, the
following equation holds:

SaE@ = Y dp= Y (), vieN.

a€d, i) EEL Jjilif)eE

2 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Using that x; y satisfies the flow condition, it holds for :

x!

P > <l

—Zt—l
e -~ NeTt-1 X
J:Gf)eE Jiif)eE k(i) €ELT ki

t
.X'i)]-

—a
\ Lk reE %
](l,])eE Z/e(l,k)EE%{ l,k
U
_ ot
Zk:(l}k)eE x,‘)k
1.

If there exists no ¢ such that the incoming flow of a state node 7 greater zero, the decision rule
d is set to an arbitrary probability distribution over the available actions in 871(¢). So, 4 is well
defined in any state s.

Itis now proven that Z; under 4 induces a flow that is equivalent to x; j:

2. Zy is distributed according to the initial start distribution P;. Due to the first inequality in the
program the following equation holds:

4%° . =—1, ~ Initial Cons. o Flow Cons. 1 1
PPz =i = P@ @) TR Y e N = 3

(b eE° T =
/e.(/e,z)eEﬁ k(i k) €EL k:(i,k)€E

3. By induction, it is shown that PP {Z, =52, =i} = xzj, V(i f) € E teN.
Induction start: Let t = 1.

Case), ki) B, xg)l. > 0: Then due to the initial constraint, it holds that Pl(ﬁ_l(i)) > 0and

hence 7 must be a state node. From the definition of 4 it follows

P2y =4, 21 = i) = @) - PUHAE @) = B}
initial Cons. .
tial ¢ Z xg)i -3()
k:(/e,i)ez%[
flow disér. Cons. Xll’J

The last equality follows from the flow distribution equality for state nodes in the program.

Case Z/e:(k,i)ef% xg}i =0:1In thiS case, Pdoo {21 = z} =0 because

0= Z x), = P(B7'() = B {Z1 = i),

(b e F0
(ki) €S,

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 113

From P*"{Z; = i} = 0, it can be concluded that
P2y =4, 21 =i} =0

forallj € N, (4,7) € L. So, it has to be shown that le‘,j is zero for all j € N, (4,7) € E. This is
obviously satisfied because of the flow distribution constraints: If 7 is a state node, it holds

0 = () Z x), =xb, V(i j) € Ex, Va() € [0,1]
k;(/e,i)ejé%

| ——
=0

If i is an action node, it holds
0=alhj) Y. x, =x, V) eEL, Yal)) €[0,1]

. N~ 70
(k) € EY

~—_——
=0

Induction Step: Assume for r — 1 € N the induction hypothesis holds for all (7, ;) € E.

Case Y. k(i)Y x/i;.l > 0:If € Ng, it follows

Pdm {Zt+1 :j) Z = i} = Pdoo {Zt+1 :j | Z = i} : Pdw {Zt = i}
= PUHE) =8O} Y Pz =i Z = k)
keﬁ/{

(7H) ; _
= ap-| D w

k:(kyi)eE
= x P
Ifie N ' 4, it follows
Pdm {Zt+1 :j; Z = i} = Pdm {Zt+1 :j | Z = i} 'Pdw {Zt = i}
= PEGIBTD Y Pz =i Z = k)
keNg

(IH) .. -1

= e | D
k:(k,i)€E

= x P

Case 3, (i) B x/;—il = 0: The probability P4 {Z, = i} = 0, since

0= > &1 N Pz =iz =h.

/e:(/e,i)eE%;l k:(kyi)eE

114 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

From P*"{Z, = i} = 0, it can be derived that
i {Zin1 =/ Z, =i} =0

forallj € N, (i, j) € E. So, it has to be shown that xf)j is zero forallj € N, (5, /) € E. Thisis obviously
satisfied because of the flow distribution constraints: If 7 is a state node, it holds

0=03() Y af!=xl, V) eE Vi) e[0,1].
ki(ki)eE

| ——
=0

If i is an action node, it holds

= (i, f) Z xkl = xlj, V(i) € E, Va(i, j) € [0,1].
k(i) e E
—_———
=0 |

From the last theorem and the characterization of the value of a policy in an SSO-MDDP, it can be
concluded that the objective value of a feasible solution of program 3.9 corresponds to the value of the
derived stationary policy in the SSO-MDP:

Corollary 3.6.17 (Objective value of a feasible solution):
Assume the time-extended flow network (N', EY, ﬁ[") of an associated graph of an SSO-MDP and
an initial distribution Py of the starting state. Let xld, Vi and 3(f) be a feasible solution of program 3.9

defined for that time-expanded network. Define a decision rule d € DMR 45 in Theorem 3.6.16. It can be
concluded that the objective value of xij, vi and 8(j) in program 3.9 equals the value of the stationary

policy v* under the initial distribution P,:

Z Z v = Z Udm(f) - Pi(s) + Z Py(s).

reN iGNSW seS\w sew

ProoF. Letx] : be a feasible solution of program 3.9. Then,

DI

reN ieNSW

EDIPIND)

teN l'GNSWj:(]‘,i) eE};l

EDIDNDIELDINDY

1€N ieNY j.(ji)eE ieNSVVj;(j,i)eE%
Thm. 3.6.16 00 . . A1y
2 Y Pz =iZo=jb+ Y RETO)
1€N ieNY j.(ji)eE ieNy

Def. (N, E) " oo 3
T N B Z e N, Za e NP Y+ Y PE@)

t=2 ieNY

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 115

odd - 00 =_1,.
N P Zus ¢ NV 2y e NP Y+ Y PETD)
t=2

ieNY

= Z Zpdm{zzt—3 ¢ N, Zy e N |2y =i} - PV {2 = i}
iEN\NY : Pi(B71(1)>0 V=2

+ > PEE)

ieNy¥W
Prop. 3.6.6 00
= DO PG+ D P,
seS\w 1374

Even if it is not possible to implement program 3.9 due to its infinite number of inequalities and
variables, the formulation for the example problem is stated in the example below:

Example 3.5 (Time expanded formulation):
Consider the time-expanded graph of Figure 3.6, which is associated with the SSO-MDP of Exam-

ple 3.2. Assume the initial distribution Pl(ﬁ_l(l)) = 1. The time-expanded maximum flow formula-

116 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

tion for this example is:

r
max Y en Uy
0o _
Xy = 1,
0o _
X, = 0,
0o _
X3 = 0,
0o _
Xy = 0,
1.0 _
Xo—%; = 0
xiz - xi_ll = 0, Vt € Ny,
1 1 1 .0 _
1txstx—x, = 0,
xil + x§)3 + x£,4 - xle = 0, YVt € Nso,
0 _ 1
X3 = Uy
—xi_; = vg, Vt € Ny,
0o _ 1
X, = Uy (3.10)
—x;}l = vi, Vt € Nso,
1 L0
X1 0.6 X, = 0,
x5, =06-x5 = 0, VreNy,
1 L0
%3 0.2 X, = 0,
x§)3 -0.2- xle = 0, Vt € N3,
1 0
X) 4 0.2 X, = 0,
x§’4 -0.2- xi_zl = 0, Vt € N3,
1 0
x5 3(2) Xy = 0,
xiz -4(2) -xi_ll = 0, YVt € Nso,
0 .0 .0 .0
XX pXpX, = 0,
r r I I
X) 90 %5 15 %5 3, X9 4 > 0, VreN.
*

The goal is now to find a formulation that is easier to handle than the time-expanded maximum
flow formulation. First, a linear program is derived from the last formulation. After it has been refined
and it will be proven that the linear program determines an optimal decision rule of the SSO-MDP.

Consider program 3.9 and sum for each 7 € N \{N. SW UN, SL} over the initial distribution constraint
and all flow constraints:

0 -1 =1y
2 | 2 e 2 | =RE O
7:d) eZ‘% teN | :(4,) €E JAEES!

The sum can be rearranged and E %{ = E, VYt € N can be used such that

D 2t 2y Dki=PE).

jili)eE tEN j(ii)eE t€N

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 1y

Define x;; := X en %] ; and replace 3 en X} ; by x;;. I called the result the aggregated flow constraint

Z X = Z %= PB(@), Vie N\ (N UNg).

G €E 7Gi)EE

For the nodes i € N U N¥, the sum over all flow constraints can be computed as

2, Gty 2, i =hE W)

ir(7.7) €EX teN . neE-1 teN
].(J,z)EEN]'(j’l)EEKI
0 t_ p(p-l; 3
2. Z x];l-+z Z x, =P8 (Z))"‘Z”i
JGii)€EY, t€N j(ii)eE reN
ro_ t 0
ONPIEEDIEDIE
t€N j(ii)eE teN JGA)EEY,
(o)
ro_ t
OIDIE AP
1€N (i i)eE =2

Ifagain 3, o xﬁj is replaced by x; ; and v; is defined by 3172, ¢/, the resulting aggregated flow constraints
of winning or losing nodes are

. w L
- Z xj; = —v;, Vi€ Ny U Ny
7:Gi)EE

Also, for each i € N the sum over all flow distribution equalities is:

D= | D Al =0 VG eE i€ Ny
reN reN k;(/e,i)efsgl
D= o) Y x| =0, Y€k ieNs
reN reN k:(k,z)efgl

Since a3, j) and J() are stationary, they can be excluded from the sum and), o xgj can be replaced by

xiJ:

%y — ali,) Z xpi+ PETND) | =0, V(i j) € E, i € Ny,
k:(kyi)€E

xij=)| . mi+ @) =0, VG) € E i€ N,
k:(k,i)€E

118 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

The resulting program is

max yenpw 0+ Len PB(0)
o eE %if — ZagacE i = PE@), Vie N\{NF UNE,
—Xjgoer i = v Vi€ N UNg,
5ij = (i) (Sagner e + PE@)) = O VG eE ie Ny
51 = 30) (Sagner e + HE@)) = 0 VG eE ieNs
0, V(;) € E.

(3.1)

v

xl-J

This program can be simplified by deleting redundant variables and constraints. After having
developed the final program, the relation between both programs will be investigated in detail.

First, for all i € N4 the initial distribution P; (E_l(i)) is zero, because P; is a distribution over states.
Furthermore, since the edge weights a are set to the transition probabilities, they define a probability
distribution over the outgoing edges of an action node. Therefore, the flow condition in an action node
is always satisfied:

G €E Ji(i)eE
= Z ali, f) Z i+ PUBT@) | - Z i
JHaj)eE k(i) <E jthi)eE
= D, mit A - Y w
ke(k i) e E JGi)€E

P(B7Y(4)), Vi e N

Furthermore, this program can be simplified by inserting x;; = a(j, 1) . (k)€ E Xk forj e N4 in the

flow conditions at a state node 7. After this transformation all x;; with 7 € N4 are eliminated in the
program and these variables are not needed any more.

Also, the variables d(;) and the corresponding equation can be removed from the program. This
makes the aggregated program a linear program. In the time-expanded version, () was necessary to
ensure a stationary policy. In the static program, there is no time dependence any more. Because of the
flow condition, we can compute from any partition of the incoming flow in a state node a stationary
decision rule. It will soon be established that a policy directly determined from wx;; satisfies our needs.

Because P; (E‘l(i)) is a parameter of the SSO-MDP and not a variable, this constant term can be
removed from the objective function. The resulting optimal solution will not change. However, it must
be kept in mind that the objective value of the optimal solution in the refined program differs by this
constant from the original value.

It would also be possible to eliminate the v; for i € N, SL and the corresponding equations. How-
ever, it is an easy check of the parameters if we can convince ourselves that for a feasible solution
Die NP UNE Vi = 1 holds. The refined static linear program is:

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 119

Definition 3.6.18 (Static Maximum Flow Problem for SSO-MDPs).
The static maximum flow problem of a flow network (N, E, B, &) of an SSO-MDP and an initial dis-
tribution Py of the starting state is defined as

max ZieNSI/V v;

Pu(B(0), Vie Ng\ {NJV UN[}
—v;, Vi€ Ny UN{
0, ¥(ij) € E, i € Ns.

Zj;(i,j)e?; Xij — Zj;(j,i)ef a(j, 7) Zk:(/e,j)ez-" Xk,j
= 2iyeE b) Do) E by
xi,j

(3.12)

v

In the following, it will be examined how the refined static maximum flow problem 3.12 is related
to the time-dependent maximum flow problem 3.9. Even if the static maximum flow problem 3.12 is
derived by equivalence transformations from the time-dependent maximum flow problem 3.9, it should
be shown that for every feasible solution of the time-expanded program there exists a feasible solution
of the static program.

Proposition 3.6.19: o
Assume the flow network (N, E, 3,) of an associated graph of an SSO-MDP and an initial distribution
Py of the starting state. Let

{x, (j) € E%[, t e Ny},
(3(), j € N4}, be feasible for 3.9,
{v}, ie NV UNE, reN},

where 3.9 is defined for the time-expanded flow network of (N, E, E, o). Then,

{xi)j = ZtENxzt',j’ (l,j) € E, i€ NS

is feasible for 3.12
{Ui = Yoy U, L€ NSW U NSL} , f f

defined for (N, E, B, @) and Spexy Zien v = Sien 05 + Sien PE (D).

ProOF. Assume xfj, d(j) and v} are feasible for 3.9 and define x; ; and v; as described in the Proposition.

It has to be shown that x; 7 18 feasible for the linear program 3.12 defined for (Kf , E, E,). Since x£ g >0

holds, x; is also non-negative. The following equations show that x;; satisfies the flow constraints for
i€ Ns\{NJY UNEY:

Z Xij = Z off, 7) Z Xk, j

i) eE Jj,i)eE ki(kyj) €E

D VDD W DR VIS

Ji(ij)eE tEN (i) eE ki) € E tEN

120 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

EPIDE D IPIC LIPS

Ji(ij)eE tEN (i) eE tEN ki(k,j) €E
Flow distr.3.9 ¢ r+1

D VDI WPIL

Ji(ij)eE tEN (i) eE t€N

[Se] [s6]

— ! r
DD

G)eE =1 (i) eE =2

(o) (o8]

_ 1 2 ' ’
DI A I LD NI D WPIE S (1)

i) eE i) eE jiij)eE =3 (i) eE =2

~—_————
=0
N
_ P . r t—1 N
=A@+ Jim (YD - Y e D N
=3 \j.(ij)eE (i) eE (i) eE

= REG)+ lim Y

(E@)+ lim Y)

JGi)eE

In Equation 3.13, it was used that

Flow cons.3.9 1,
2 =T) w=hE)

(N T N T0
J:G))eE J'(J’Z)EEN

and that

2 1
2. % 2 i

J:G)€E G EE

2 i),
(G, EE /e:(/e,j)efg.V

> ald - @)

(G, EE

jENA
= 0.

From the last equation, it can be seen that x;; satisfies the flow constraint if and only if

lim x; =0, Vie Ng\ {NY UNEY.

70 EeE
Fortunately, this property is always satisfied by SSO-MDPs since

Jim, %, = lim, P Zin =52 = i)

JG)EE JG)EE

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 121

where d is derived from the feasible solution of problem 3.9 as described in Theorem 3.6.16. Every
policy in an SSO-MDP is proper, which means that the stochastic process reaches with a probability
of one in an absorbing state and the probability for a transition at time point # from 7 to j converges to
zero for t — oo. Therefore, it is known that

lim Z P {Zs1 =), Z, = i} = 0, ¥d € DMK,

7:Gi)EE

Observe, that the edge set £ of formulation 3.9 does not contain the artificial edges at the absorbing
nodes. So, x;; derived from x} ! satisfies the flow constraints of the static maximum flow problem 3.12

fori € Ng\ {N. SW U N, SL} It has to be shown that the flow constraint is also satisfied by the defined
v;and x;; at nodes i € N;V U NSL

[se]
Def. ;
v; = v;
=2
[ee]
Flow cons. of 3.9 —1
= E E X
It

=2 ..(; -1
].(],z)EEﬁ
(o)
— t
=)
JGi)eE =1
(o]
_ ¢ 1
= 2t
ji(i)eE =2 jij,i)€E
Flow distr. in 3.9 S ¢ .. 0
D NDR DN LRI
ji(i)eE =2 i) eE /e:(/e,j)EE%
Flow cons. of 3.9 - ¢ . =1,
2003 S 3] i AED)
ji(j,i)eE =2 Jj,i)eE 0
JEN4 N t
=
ji(,i)eE =2
_ t+1
=)
(i) eE 1N
— . r
= e)y),
(i) eE ki(kj)€E tEN
= Z 0(,(]', l) Z .X'k)j.
(G, EE ki(kyj)€E

Finally, it is shown that for those pairs of feasible solutions the objective function values differ

122 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

exactly by the constant 3} N Py (E_l(i)):

2, 2.t

M &M8

%

€N jeN) NY
ieNSW ieNY j(]l)efgj
~ 1
= > u+ Y PEG). .
ieNY ieNY

The subsequent Example 3.6 shows that if there are non-proper policies Proposition 3.6.19 does not
hold.

Example 3.6:
Figure 3.7 shows a modified version of Example 3.2 which is no SSO-MDP any more. Assume that
Pi(s1) = 1. Then, a feasible solution of the time-expanded maximum flow problem is:

x;0,1 =1,x22=0 x§)3=0 xo =0,
x5t =1, 5 =1, Vr €N,,

3(2):1,
y=0v,=0,VreN

However, the static maximum flow problem is

max v4
x2—1-x2 = 1
0 = -u, (3.14)
0 = -—uv4
x2 = 0
It has no solution since x;2 —1- %10 = 0 # 1. *

The goal of this subsection is to determine whether the static maximum flow problem can be used
to find an optimal decision rule for a given SSO-MDP. So, it is interesting to investigate whether a
time-dependent solution feasible for the time-dependent maximum flow problem can be derived from
a feasible solution of the static maximum flow problem with the same objective value — except for a
constant. This is more or less the inverse statement of the previous theorem.

From the static solution, a time-dependent solution can be calculated by starting with the given
start distribution and distributing the flow according to the distribution of the static solution. Since
every policy in an SSO-MDP is proper, every node is connected to an absorbing node. Therefore, only a
fraction smaller 1 of a flow entering a circle may stay in that circle. This property is important such that
the sum of all xf.’j, t € N converges to the static solution x;; and the objective values of both solutions

differ only by 3. N P (E_l(i))-

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 123

ﬁ(»‘l) =1 state node

action node

winning node

— — — — — —=— — — — —

1
//’ .I L) losing node
) s edgee
ale) edge weight a(e)
2 Bla) =2

L3 B =3 ‘ B(w) = 4

Figure 3.7: Flow network example of an SSO-MDP

Proposition 3.6.20:

Assume the flow network (N, E, E, o) of an associated graph of an SSO-MDP and an initial distribution
Py of the starting state. Let

{xi,j) (Z)]) € E} i€ NS}

T b b 12,
(v, i€ N UNL) e feasible for 3

where 3.12 is defined for (Xf) E E, o). Define

Zle;(i,/e)e}fxi,/e _f07‘ all (17]) €L, i€ NS with
3() = Ek:(i,k)EE Xik > 0,
V) - '
arbitrary s.t. else.

2eE o) =1,9() 2 0
> = PE0), Vie Ny,
j:(j,i)eE%
i ai,f) - Y e Ll V) e E, i€ Ny t€N,
SN PR e %Y V@j)€eE i€eNg teN
(=) L Vie N UNE rel

e Tl
].(],L)EEI.\.J

<
Il

124 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Then, xzj, 9(j) and v; are feasible for 3.9 defined for the time-expanded flow network of (f\? , E E, o) and

DD =D uw > REG).
€N jeN) ieNy ieNY
PRrOOF. Letx;; and ¢ be feasible for 3.12 and define xf,j, d(7) and o' as described in the proposition.
First, it is shown that d(f) specifies a probability distribution over all j with (3, 7) € E= E%] ,t €N
for a fixed i € Ng. Consider a state node i € Ng with Z/e:(/e,i)eE ki > 0. Asx;; > 0 holds, the
non-negativity of d(f) is given. Furthermore,

3 ag) P —

_ T
i) <E ey DlipyeE ik

2 1j:(i) €E Y]

Zk:(i,/e) eL ik
holds. In all other state nodes i € NJ, dis set to an arbitrary probability distribution over the outgoing
edges (4,) € E.
It needs to be checked that xfj satisfies the flow conditions of 3.9. The flow distribution constraints

of 3.9 are obviously satisfied by the definition of xz y in the proposition. For i € N4, t €N, it holds:

. Def.xf’f 1
> S e 3
jiif)eE jiif)eE k:(k,i)efgl
.. -1
- [Zew]| ¥
N . N - Tr—1
\j:(4,/) €E k.(k,l)EEN
— t—1
= Z ki -
(b e -1
ki) €ES

And fori € Ny analogous transformations are possible as it was shown that J(;) specifies a probability
distribution over all j with (7, j) € E for afixed i € Ng.
It remains to show that the objective values of those pairs of corresponding solutions are identical.

If it can be shown that
Z Z xf;j = Z x;j, 1 € N, (3.15)
t€N (i) eE jif)eE

this can be used to show that the objective functions are identical up to the constant 3}, NI Pl(ﬁ_l(i)):

D d= > PEo) (3.16)

1€N jeN) ieNY

Def.; -1 _ 0
= X i Xii

reN iENSWj:(j,i)EE}\;I ieN;Vj:(j,i)eE%

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 125

DI

ieNY ji(i)eE =1

DI TI N

ieNY j(ji)eE =1 k:(k,j)eEle

D 2 DD T Y (3.7)

ieNY j(ji)eE 1=1 keky)€EL ki(kj)€EY,
N—— ———
=0
Def. x} . bl
DY WETN DY o) Y,
ieNY j(ji)eE =1 ki(ky)eE l:(l,k)EE%[1
Fl .39 .. - ;
ow cons Z Z zx(], l) . Z 3(]) . Z xlte,l
ieNY ji(ji)eE =1 ki(k)eE L:(k))€E

_ Z Z oc(j,i) (ag) Z Z X, (3.18)
ieNY ji(ji)eE =1 (g l)eE
Equ. 3.15 .
= DD aGi)- (ag) o
ieNY ji(ii)eE ki(k,j) € L:(k1)eE
Def. 4(j) . Xk,j
S VDY T HED YR (. Sy)
ieNY ji(ji)eE ke(kj)€E, with 3, 50,50 \ THRDEE b LneE
=) 2, i))y
ieNY ji(ji)€E ki) €E
x feasible Z
= v;.
ieNY

In Equation 3.17, it was used that j must be an action node, if 7 is a state node and (7, /) is an edge in E. As
the distribution of the starting state is a distribution only over states, it holds P (E_l(])) =0,Vje Na.
In Equation 3.18, k is a state node and 2,y 2 Ik, D)<E k1 €N be substituted by 2, 1) < E Xk -

So, it remains to show Equation 3.15. First, assume an acyclic static flow network and prove the
statement by induction over a topological ordering of the state nodes. As a forward reference to the
next Section, there always exists an equivalent acyclic representation of an SSO-MDP. Afterwards,
Equation 3.15 is proven for static flow networks that contain circles.

Assume that the associated flow network (K] N E E, o) of the SSO-MDP is acyclic. Let (44, ..., iy)

126 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

be a topological ordering of the state nodes such that for all paths i —j —i" = ((7, /), (7, #’)) that connect
two state nodes 7, i’ € Ny the node 7 is a predecessor of 7’ in the topological ordering. Observe that
in paths of an associated graph of an SSO-MDP, there always exists an action node between two state
nodes. In the example path j is an action node.

Equation 3.15 is proven by induction over the topological ordering (i, ..., 7,).

Induction start: For i, the set of predecessors {7 | 3 € N 4 (4,)) € E teN, (,0) € E }is
empty. Together with the feasibility of x;; for the static flow constraint, it holds

feas. 1. .. =1,
DU wy EAE@)+ Y aGih) Yy =PE @)
Jiliv)€eE j:Gi)€E ki(kyj)€E
—_————
=0
The feasibility of xz g for the flow constraints of the time-expanded maximum flow formulation is used

and that 3 b)eRL xgd' = Pl(ré_l(j)) = 0 is satisfied for action nodes j. This leads to

¢ Flow cons. 3.9 -1
INDIE T DI =

t€N i,/ eE teN i) eEH
— r 0
DR
t€N j(iq)eE i) €EY,

Defy Z a(j, it) Z Z X+ Z x) g + P (@)

7:Gi)€E 1€N (k) eE ki(kyf) e}é%
— ————
=0 -0

i1no Pred.

(B (@),

So, the induction hypothesis holds for 7.
Induction hypothesis: Assume for all predecessors of 7, Equation 3.15 holds.
Induction step: Then,

2
2, 2 %

t€N (i, /) eE

Flow cons. 3.9 -1
SPIRDINE T

teN ji(jip) B

— t 0
=2 Tt 2

teNj:(j,i/e)EE j:(j,ik)EE%

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 127

Def.xé o ~
=7 D aGw|), DL s D, A |FAC @) (o)

Jiir)€E €N ki(k,)eE k:(k,j)ef%

N’
=0

(IH) .. =1,
= Do oatii) > e+ P (@).

7:Griz)€E ki(kyf)eE

In Equation 3.19, it was used again that isan action node and P (E_l(])) =0, Vje N.4. Also, the same
transformation need to be applied as in Equation 3.17 to apply Equation 3.15. The induction hypothesis
can be applied since k is a state node and a predecessor of 7.

Equation 3.15 holds also for flow networks that contain circles. Let

C= (il)jZ: i3) cee)j/e) ll)

be an elementary circle in the flow network of an SSO-MDDP. For a better understanding of the idea
and not getting lost in the notation, some assumptions on the circle are made. At the end of the proof,
it will be argued why this proof applies also to generalized circles. Assume that only node 7 has an
incoming edge from a node not contained in the circle and that 7 is the only state node of the circle
for which P(E_l(il)) > 0 holds. Furthermore, let p¢ be the circle path 4y — j» — ... = ji — i and a(pc)
the product (j2) - a2, 3) - ... - I(j) - a(jx, i1). And assume for a simpler notation that € Cis only
connected to 7; via a the circle path of C.

Due to the assumption P(ﬁ_l(il)) > 0, for each state node 7 of the circle k(ikyeE Yk > 0 holds
and 9(y) is therefore for all state nodes of the circle defined as the fraction of flow that goes along the
edge (4,), which will be use at some point in the proof.

Under the made assumptions, the following holds:

t
20 2

t€N iy, eE

Flow cons. 3.9 Z Z -1
- Xiiy

reN j:(j,il)efgl

— t 0
DI

t€N (i i)eE i) €EY,

Def.xl’.,. o ~
=1 Y G|y, Y A Y [+ AT
(i) €E €N ki(k,j)eE k;(/e,j)eE%
———

=0

128

jEj\-flq

Ass. C

Def. x* .
— ZJ

Flow cons. 3.9

(IH)

Def. xf ;

Ass. C

Flow cons. 3.9

CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

a(j, 1) 2 |+ P (@)
o]

jii)€E €N ki(kj)eE
DoaGi| > > x> D x|+ AE @)
Jii)€E L€N ki(kj)€E,keC €N Lk, j)EE,kgC

2RI Y I DYDY

o |+ P @)

teN Jia)€eE €N ki(kf)€E, kg C
i) D x> G| D D) >+ @ @)
teN jih)€E €N ki(kj)eE,kgC r:(r,/e)ez’sg
i) D x> aGi)| DL). D x|+ R @)
teN Ji)€E k(k)€EkEC €N p(kr)eE
i) D& o+ > ai)| DL A D w |+ P (@)
teN Jii)€E k:(kj) €E, kg C (k) €E
=K
i) D) Y A +K
reN (i) eE";.;l
ol i) - 3G - Y +K (3.20)
teN
ol it) - 3Ge) - ol iz) - D ko, + K

teN

ol i) - 3Ge) - ol 3)00) - Do DL A H K

[ENj:(j,il)GE}\;l
a(pc)-z Z xf-hj+K

t€N ji(ir,j)eE

In Equation 3.20, the assumption that all state nodes 7 € C, i # 7 do not have any incoming edge
from outside the circle and the assumption that there exists a unique path between the nodes of the
circle were used.

Altogether, a recursive equation for 3}, ¢ Zj:(il,j) < xfl j Was found. Observe that a(pc) < 1 holds

since we face an SSO-MDP. So, the geometric sum can be applied to evaluate an infinite application of

this recursive equation:

13
2, 2

t€N iy, eE

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 129

K‘*‘OC(PC)‘Z Z x;)j

t€N iy, /) eE

K + alpc) - K+0L(PC)‘Z Z X

1€N iy, eE

K-> alpe)t
k=0
Geom. series . 1
1-a(pc)

For the right side Zj:(ihj) 7 Xi,; of Equation 3.15, which is currently proved, it holds

D g
ji(an,j)EE

Flowcozns. 3.12 Pl(ﬁ_l(il))-'- Z oc(j, il) Z Xhj

7:Giir)€E ki(kyf)eE

= (BN (@)) + Z alf, i1) Z Xy + Z alj, i1) Z Xij

7:Gir)€E ki(kyf) €E, kg C (i) eE k:(kyj)€E, keC

’

=:K
- K'+ Y alii) >y
7:Gi1)€E ki(kyj)€E,keC
Ass. C ..
= K’ + OC(]/e, ll) . xl'kfbjk
. Xig 1,k
K’ + 06(]/6, ll) R Xip i
) i-(ipr,f) €E k-1 e
S\ te-1] Jilip-1,/)€E

mult. by 1

ef. I(f
D — (]) K/ + ‘x(]k’ ll) . 3(]/6) . Z xi/e—l:j
j:(ik_l,j)EE
= K+ a(jp i) - 3Gr) - ... 4(j») Z Xaj
Jiaf)eE

K’ +0€(]7C) . Z Xiyj

(i) €E

So, an analogous recursive equation for Zj:(il,j) 7 Xi,j is found. Again, the limit of the geometric series

can be used to evaluate an infinite application of this equation:
2. %
i) EE

= K'+a(pc)- Z Xiy,f

Jia)eE

130 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

K'+a(pc)- K’+a(])c)' Z Xiyj

(i) EE
= K alpe)
k=0

Geom. series ’ ;
1-a(pc)

Finally, it remains to show K = K”:

K = > aGi)| >) Y |+ AE @)
7:Ghi1)€E k:(k,j) €E, ke C r(k,r)€E
Def. 4()) o ~

= Z a(j ir) Z ﬁ Z x|+ P8 (@)
(G, eE k() eEpgC S bnEE TR GO

= Z lf, 1) Z Xp,j + Pl(ﬁ‘l(il))
7:Gi)€E k:(kyf)€E, ke C

= K’

The idea of the proof is that there exists some incoming flow from outside the circle for which the
induction hypothesis can be applied and for the flow staying inside the circle the limit of the geometric
series can be applied. The proof was done for a simplified circle. However, it is possible to generalize
this result to an arbitrary circle. If there is another node 7 € C, 7 # 7 that has an incoming path from a
state node not in the circle, the induction hypothesis can be applied to its predecessor and the incoming
flow to the circle can be encapsulated in the constant K respectively K. If the second assumption is
relaxed and there is a path from a circle node 7 € C to another circle node j € C, the flow incoming
to node 7 can still be expressed by a factor times the flow outgoing of 7;. Since C contains only finitely
many nodes, we will at some step return in 7 and therefore the incoming flow of 7 can be expressed by
a constant that is less than 1 times the outgoing flow of 7. So, the geometric series can still be applied.m

Theorem 3.6.21 (Feasible solution of static maximum flow problem characterizes value of policy):
Assume the flow network (N, E, B, &) of an associated graph of an SSO-MDP and an initial
distribution Py of the starting state. Let x;; and v; be a feasible solution of the linear program 3.12
defined for that network. Define a decision rule d € DM a5

Zk kx;;j‘X}" fbrﬂll(l,]) EE} ZGNSI.L
:(k,i)EE Rt
Zk:(k,i)eE Xpi > 0,
P{d(s) = a} := q(a) arbitrary s.t.
ZaeA: q:(ﬂ) =1, else.
qf(ﬂ) 2 OJ

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 131

forall a € A, wherej = B(a) and i = B(s). Then,

Z Pi(s)o® (s) = Z v

seS\W ieNY

ProOOE. Define d as described in the theorem and observe that
PA@(2) = B7'()} = 9(), ¥) € E, i € Ngwith) x>0,
k(i k)€E

for 4(j) defined according to Proposition 3.6.20. Following Proposition 3.6.20, from x; ; and v; a feasible
solution x! ; and v} can be constructed for program 3.9. For the objective value of that feasible solution

holds
~ 1 Prop.3.6.20
Z v; + Z Pl(ﬁ 1(1)) op: Z Z Uﬁ.
ieNY ieNY 1€N jeN”

From Corollary 3.6.17, it can be derived that the objective value equals the value of the stationary policy
A% under the initial distribution P;:

Z Z o Cor. 3.6.17 Z vd""(s) - Pi(s) + Z Pi(s).

reN iENSW seS\W seW
Since ;¢ NI Pl(ﬁ_l(i)) = > e Pi(s), the desired result holds. m

Example 3.7 (Max flow formulation):
Consider the time-expanded graph of Figure 3.6, which is associated with the SSO-MDP of Exam-
ple 3.2. The maximum flow formulation for this example is:

max v4

X2 —x1 = 1

X1+ x3+x4—x2 = 0,
—X23 = —U3,
—Xp4 = U4

X2,1 — 0.6 - X1,2 = 0,

X2,3 — 0.2 - X1,2 = O,

x2)4 - 0.2 . xl’z = 0,

x20 = 9(2) - (%1 +1) = 0,

x1,2, X0,1, X2,3, X046 = 0,

132 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

The equivalent refined formulation is:

max vy
X1,2 — 0.6 - X1,2 = 1,
-0.2 - X1,2 = U3
-0.2 - X1,2 = TU4
x2 = 0,

The unique solution of this linear program is x;, = 2.5. The corresponding decision rule is

25
25
The probability of winning the SSO-MDP is v4 = 0.5. *

P {d(s)) = m} = L

Finally, all results of this and the last subsection can be combined to get the main result. Theo-
rem 3.6.22 shows the correspondence between a stationary policy of an SSO-MDP and a feasible solution
of the static maximum flow problem.

Theorem 3.6.22 (Stationary policy corresponds to solution of static maximum flow problem):
Assume the flow network (N, E, B, &) of an associated graph of an SSO-MDP and an initial
distribution Py of the starting state.

Then, for every stationary policy d* of the SSO-MDP there exists a feasible solution of the
linear program 3.12 and vice versa. Furthermore, it holds for the value of the policy and the objective

value of the feasible solution that
Z () - Pus) = Z v;.

seS\W ieNy

PrROOF. “==” Assume a stationary policy 4 of the SSO-MDP. Define
¥ =P 2 =42, =i}, Ve eN, V() e ECE

as in Definition 3.6.9. Then, by Theorem 3.6.11, xf.j satisfies the flow constraints of the time-expanded

maximum flow problem 3.9 forall # > 2, forall i € N\ {NSW U NSL}, which is a subset of N. Also,

the edge set E differs from E only by the edges adjacent to the artificial action nodes at the absorbing
states. Define

E = {((ti),(t+1,))|Gj) € E, t € N}.

Add edges E) :={((0, 5), (1, £)), i € Ng} that connect an artificial source node s with each state node
of the time-expanded flow network at time 0 and define

2= P(B7Y(0), Vie N.

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 133

Thus, x? satisfies the first constraints of the time-expanded maximum flow problem 3.9. Furthermore,
it holds that {xfj, t € Ny, (4,)) € 175%[} is also valid for the flow constraint at # = 1. This can be seen
by Proposition 3.6.10 and

Prop. 3.6.10 00 . ~ 1, . =
Do, ET Pz = =PE @) ==) A, Vie N\ (N UN{).

(A=l (2N =10
].(z,_])EEX]]A(],Z)EEN

Define
vl = Z 2, Vie NOUNY, e,

P |
].(],z)EEX]

such that the flow conditions for the winning and losing nodes of the time-expanded maximum flow
problem 3.9 are also satisfied.

It remains to show that the flow distribution constraints are satisfied in the action nodes and in
the state nodes such that the constructed solution is feasible for problem 3.9. Assume an action node
. . -1 .

i € Ngwith 2iner x>0, then by Theorem 3.6.13 it holds that

xlt’] —1/ —1/. .o P Tt
— =@ DB @) = ali)), ¥ j) € E, Vi > 2.
ki) E X PEOIE Y 7=ty

With the defined edge set E%, the proof of Theorem 3.6.13 can be extended to # = 1. In a state node
i € Ny with 2 xj‘:l > 0, it is known by Theorem 3.6.12 that

2
xl.).

= -1 e
Srter il Ja oy (B D) V(i j) € Ex, Vi 22,

The proof of Theorem 3.6.12 can also be extended to # = 1 due to our definition ofE%]. So, 4(j) can be
defined as

() = qag10) B () V(i j) € E, i € Ns

and the flow distribution constraint is satisfied.
If the condition 2. ye £ th ;1 > 0 does nothold, the flow distribution constraints are still satisfied.
In this case, from the flow conditions it is derived that all outgoing edges xf]. are zero and thus it holds

Z 1 3() = 0-9() = 0 =xi, V(ij) € F Vi€ Ny, Va(j) € [0,1], r € N
k:(k,i)eE

and
Z At alij)=0-alhj)=0=xl, V(ij) € E Yie Nyt €N
k(i) e E
So it was shown that the defined xzj, vf. and J(;) are a feasible solution for the time-expanded maximum
flow problem.

134 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

From Corollary 3.6.17, it follows that the objective value of the feasible solution equals the value of
the stationary policy 4 plus the constant 3,y Pi(s):

D k=) WA+) P (3.21)

reN ieNSW seS\w SeEW

Note, that the decision rule used in Corollary 3.6.17 was derived from the variable J and therefore equals
the considered decision rule 4 of the SSO-MDP.

According to Proposition 3.6.19, a feasible solution of the static maximum flow problem can be
constructed by

{Xi,j =Y, ek ie NS},

reN

{vi :=va, iEN{VUNSL}.

=2

For this feasible solution of the static maximum flow problem, it holds according to Proposition 3.6.19

QLU=) h=) AE =), TP

iEN;V teN ieNSW ieN;’V seS\Ww

The last equation followed from the previous equation 3.21.
&= Assume a feasible solution {x;;, (3,) € E, i € Ns}, {v;, i € NSW U NSL} of the linear
program 3.12. Then, from Theorem 3.6.21, a decision rule & of the SSO-MDP can be constructed by

Xij forall (,j) € E, i € Nys.t.

~ ~ _ Dile(liyeE ki > 0,
PLAB™' (D) = 87()} = %@-1(,-))(@_1(]')) arbitrary s.t.
— _ ~_1 B _
Zﬂ’l(j)E/Iﬂg_l(m qd(ﬁ*l(i))(ég () =1 else
24G-1) @) 2 0,

such that

D PO =)

seS\W ieNY

holds. []

Finally, it can be conclude that the static maximum flow problem can be used to determine an
optimal policy of an SSO-MDP:

3.6. FLOW NETWORKS ASSOCIATED WITH SSO-MDPS 135

Theorem 3.6.23 (Optimal stationary policy is characterized by static maximum flow formulation):

Assume the flow network (N, E, B,) of an associated graph of an SSO-MDZP and an initial
distribution Py of the starting state.

Then, an optimal solution of the static maximum flow problem 3.12 characterizes an optimal
stationary policy d* of the SSO-MDP.

PrOOF. Assumean optimal solution {x;;, (4 /) € E, i€ Ny, {vs, i€ NSW UNSL} of the static maxi-
mum flow problem. After Theorem 3.6.22, a stationary policy 4 of the SSO-MDP can be constructed

such that
Z () - Pus) = Z v;.
seS\W ieNy

Assume 4 is not an optimal policy of the SSO-MDP. Since there exists an optimal stationary policy
in an SSO-MDDP, there must be another stationary policy 4 with

D@ A6 > Y 0T 6) - Pils),
seS seS
Due to the absorbing property of all states s € }7, it holds

2,0 P =) A

sew seW

for all stationary policies 4 € ITMR So, it can be concluded that

3O R > Y) P

seS\W seS\Ww

must hold. However after Theorem 3.6.22, a feasible solution x; i V(@))€ E ic Ng, v, Vi €
N U N{ of linear program 3.12 can be found with

ZE> Zvl».

. w . w
i€Ny ieNy

This is a contradiction to the assumption that x;;, v; is an optimal solution of the linear program 3.12.
So, d* must be an optimal policy for the SSO-MDP. n

The result of the last theorem is already mentioned in Subsection 3.5.2. However, the proof of
Theorem 3.6.23 relies only on the results of this section which is why the theorem is included a second
time in this thesis.

The next example revisits the SSO-MDP of Example 3.1 and illustrates the relation between the
time-dependent flow variables and the found static solution of Example 3.1.

136 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Example 3.8:
This example illustrates the relationship of the time-dependent flow and the static flow variables in the
SSO-MDP of Example 3.1. Let

xl = xij with E(z) = A Ya), E(J) =a
be the time-dependent flow variable for choosing action # at time 7. And

X = xij with :8'(1) =a, E(]) =

the time-dependent flow variable for a transition to a state s after having chosen action « at time #. As
shown by Proposition 3.6.19 and Proposition 3.6.20, the relation

[Se]
2
X, = E X,

t=1

is valid. The proof of Proposition 3.6.20 can be illustrated on the circle of this example. Consider the
static flow variable x,, of the circle s, — 43 — 5,. The probability of staying in this circle is 0.5. The only
2

incoming flows to this circle that are unequal to zero are x5 . and x7 , . So, we have

=x23 +0.5 -x;’S +0.5” -x23 +...

=x, i(o.s)i
=0

3

xa3

:1 - 0.5 - 2x23 =2 (qd(&)(ég)) (xﬁb.fz + xﬁz,xz))-

As in the optimal solution g,(;,)(43) is zero, we have x,, = 0 and x),, = O forall# € N. *

The main result of this Subsection is the static maximum flow formulation 3.12 together with

Theorem 3.6.23 which proves the linear program can be solved for finding an optimal decision rule of
the SSO-MDDP.

3.7 Transforming SSO-MDPs

Value iteration applied to general infinite-horizon MDPs under the total expected reward criterion may
take an infinite number of iterations (Littman, Dean, and Kaelbling, 1995). However, if the underlying
graph of the SSO-MDP is acyclic, it can be shown that value iteration terminates after at most 7 steps at
the optimal value function (Bertsekas, 2001, Sec. 2.2.1).

3.7. TRANSFORMING SSO-MDPS 137

This motivates to develop an algorithm that transforms any network associated with an SSO-MDP
in an acyclic network. Bertsekas explains in (Bertsekas, 2001, Sec. 2.2.2) how self-transitions can be
eliminated. The algorithm presented in this section is a generalization to arbitrary circles that may
occur in the graph of an SSO-MDP. Furthermore, Bertsekas considered a graph of only states where
the transition probabilities are fixed to a certain policy. In the algorithm presented in this section the
graph contains nodes related to actions and the resulting graph can be used to determine an optimal
deterministic and stationary policy.

Assumption 3.2.1 of SSO-MDDPs leads to some useful properties of a graph G = (N, E,) associated
with an SSO-MDDP. A definition of a graph associated with an SSO-MDP is given in Definition 3.6.1. In
an associated graph of an SSO-MDP, there exist only edges from states to actions and visa versa. We
have already seen that the graph is bipartite and splits into two disjoints set of nodes N 4 and Ng which
are called action nodes and state nodes, see Subsection 3.6.1. The graph extended by edge weights «
according to Definition 3.6.3 is an associated flow network of an SSO-MDP.

An associated graph of an SSO-MDP may contain circles. A circle is a path in the graph, i.e., a
sequence of edges in the graph, where the first and the last node are identical and no other node appears
twice in the path. Remember, a circle C is denoted by C = (v, ..., vg), where (v, v;) is an edge in E
and all nodes are distinct except v, = vy, see Definition 2.4.4. The set of edges contained in a circle is
denoted by ¢c. Sometimes circles are also called elementary circuits. There exist several algorithms for
finding all elementary circles in a directed connected graph. For instance, Johnson presents in Johnson
(1975) an algorithm that finds all elementary circuits of a directed graph in linear time in terms of the
number of nodes and edges. Most of the algorithms for finding circles rely on a depth-first search.

Before presenting an algorithm that transforms a network of an SSO-MDP in an acyclic network,
another preliminary consideration is made. It can be shown that every node that has an incoming edge
from a node not in the circle, must be a state node.

Proposition 3.7.1:
Let C be a circle in the associated graph G of an SSO-MDP. Let v; € C be a node with an incoming
flow from a node not in C, i.e., |8in(v;) N 3in(C)| > 0, then v; € Ny holds.

Proor. Assume C = (v}, ..., v). Furthermore, let v; € N4 be a node that corresponds to an action
of the SSO-MDP. Assume that |d;,(v;) N 3;,(C)| > 0 holds. Let e be an edge in d;,(v;) N 9;,(C). Then
start(¢) must be a state node since G is bipartite, and there exists only edges between state and action
nodes. From e € 4;,(C), we can follow that start(e) ¢ C and start(e) can not be equal to v;; € C.
But, v;; € C is another state node that is connected to v;. This is a contradiction to our assumption
of unique actions.]

Algorithm 6 transforms a network of an SSO-MDP in an acyclic network. In the subsequent
theorem, the correctness of that algorithm is proved and a relation between deterministic decision rules
in the SSO-MDP derived from the transformed network and deterministic decision rules in the original
SSO-MDP is specified afterwards.

For each circle C, the algorithm iterates over all edges that are outgoing edges of a node in C and do
not lie in the set of edges ¢¢ contained in C. In concrete terms, this J-(C) is defined as

0-(C):={e€ E|Tve C:e€dlv)Neéec)

138 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Observe, that d-(C) # ,,(C) since J-(C) may contain an edge from an action node to a state
node which may be both in C. For example, assume C = (v, vy, 0y,, Us, V5,), Which is a circle, and
assume there exists an edge ¢ = (v, v,). Then, ¢ € J-(C) holds, bute ¢ d,,,(C).

Algorithm 6 gets as input data a network obtained from an SSO-MDP and a set of circles. The set
of circles should not contain the artificial circles at the absorbing nodes that belong to states in /77 U L.
The algorithm iterates over all circles, and treats every circle separately. Thereby, for each node v; of a
circle C that has an incoming edge from a node which is not in C the following transformation is done:
Each outgoing edge of a circle node that is not in the circle path, i.e., each edge in 4-(C), is replaced
by a new edge starting directly at ;. Depending on the type of the end node of the outgoing edge, a
different treatment is carried out:

+ If there exists an end node that is a state node, an artificial action node 7; is inserted. This artificial
action node will later correspond to a deterministic decision rule that chooses all actions of the
circle. The weight of the new edge from the inserted action node to the end of the original
outgoing edge is set to the cumulated probability of reaching that end of the outgoing edge.
Figure 3.8 illustrates this treatment.

* If the end node of the outgoing edge of the circle is an action node, a copy of that node is made
and an edge from v; to the copied action node is added. The transition probabilities outgoing
from that copied action node are multiplied by the probability of the path from v; to the copied
action node. Additional edges from the copied action node to every state that is adjacent to an
outgoing edge of the path from v; to the copied action node are generated. So, the copied action
node corresponds to a deterministic decision rule that chooses all actions on that path from v; to
the copied action node. This situation is illustrated in Figure 3.9. If the considered action node is
chosen with certainty, which is the case in a deterministic decision rule, there does not remain
any flow in the circle. So, the cumulated probability of staying in the circle is not needed.

For calculating the cumulated transition probabilities of the artificial action node ;, the limit of the
geometric series is used. Due to our Assumption 3.2.1 of SSO-MDDPs, the probability p, calculated by
the loop in line 4, is always strictly smaller than 1. Therefore, the limit of the infinite geometric series is
well defined and equals 1+p Another implication of Assumption 3.2.1is that -(C) # 0. So, we do not

3.7. TRANSFORMING SSO-MDPS 139

need to handle the case -(C) = 0 in the algorithm.

Algorithm 6: Acyclic Transformation

Data: G = (N, E,) with edge weights « associated to an SSO-MDP;
Y setof all circleswithVo e C, Ce W : vg LUW
Result: G' = (N’, E’, ") with edge weights a” acyclic

1 Set N« N,E' — E, B « B, o' —

2 forall C = (vy,...,v) € ¥do

3 p <0

4 foralle € ec do

s ‘ p e p-ale);

6 end

7 compute y ﬁ;

8 for all v; € C with |0y, (v;) N 3, (C)| > 0do

9 ifde € E : e € d-(C) with end(e) € Ny then

10 add an action node 7; to N/;

u setedge & «— (v;, 0;), &' (8) « 1;

u insert edge 2 in £’

3 set lg,_l(l')i) ={ae 4| B(a) € C}

14 end

15 fore € 0-(C), e € Edo

16 if end(¢) € Ny then

17 determine gy, 4,,) With edgesin ec;

18 setedge & «— (0;, end(e)), o' (2) < ¥ - oy, stare(e)) - 2(€);
19 insert edge zin E’;
20 else

21 add action node z; to N

2 insert edge & «— (v;, 4;), a’(2) < 1in E’;

23 determine ¢ < @, cnd(e) in E with ¢y,) edges in ec;
24 set 3N z;) = {a € A|p(a) € ey, end(e)}s
25 fore € 9-(¢), e € E with end(e) € Ngdo
26 determine gz < @y, ;10r(z) With edges in g;
27 setedge & < (7, end(e)), a’(e) < alez) - a(e);
28 insert edge ¢ in E;

29 end

30 end

31 end

32 end

3 fore € 0-(C), e € Edo

34 if end(¢) € N4 then

35 for e € dyu(end(e)) do

36 ‘ remove ¢ from E’;

37 end

38 remove end(e) from N’, @';

39 end
40 remove ¢ from E’

41 end

4 remove all ¢ € ¢¢ with e € E from E;

3 remove all v € C with |9;,(v)| = 0 from N’, 8

44 end

140 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

G =(N,EB):

a\L‘_\-l Jstart(e)

/ N

«~

G = (N’, E,, ‘g/):

a(a\vwfzarl((?)) : “(5)

[5, |

Figure 3.8: Illustration of Algorithm 6 fore € E : e € J-(C) with end(e) € Ng

Note that the returned mapping 8’ is no bijection between the original set of states and actions of
the SSO-MDP, and the new nodes N”’. This is a requirement of Definition 3.6.1 of a graph associated
with an SSO-MDP. However, if one summarizes actions in the SSO-MDP to new cumulated actions
as in the algorithm, 8’ is again a bijection. In Theorem 3.7.4, where the acyclic SSO-MDP is needed,
an action set A; is defined that consists of action sets such that 8’ is a bijection to the nodes in the
transformed acyclic graph.

In the circle set ¥, there may be circles that have common nodes. After one circle has been processed
by the algorithm, all circles that had nodes in common with this circle are still contained in G”. But their
notation must be updated to the new nodes in N that occurred from the processing of the previous
circles.

We start showing that the returned network is indeed acyclic. Furthermore, we show that the
structure in terms of states, actions, rewards and transitions suites to an SSO-MDP.

Proposition 3.7.2:
Let G' = (N', E', B') with edge weights o’ be the network returned from Algorithm 6. Then:

1. G’ is a connected and acyclic directed nerwork.

2. (N, E', @, ") is an associated flow network of an SSO-MDP according to Definition 3.6.3 with
starting state s, winning states W and losing states L from the original SSO-MDP.

3.7. TRANSFORMING SSO-MDPS 141

G = (N, E) ~

i .
777777777 >@ @ o Uﬂl é>©
P

Q)
G' = (N, E', 8): o~ Q

a0)

777777777 " di 6’@

N
N
N

Figure 3.9: Illustration of Algorithm 6 fore € E : e € 9-(C) with end(e) € N4

142 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

ProOF. 1. The input graph G of Algorithm 6 is connected since it is an associated graph of an
SSO-MDP. We show that the resulting graph G* = (N’, E’, #’) is a connected graph. At the
initialization, the set of nodes N is set to N and the set of edges £’ to E. Let C € ¥ be an
arbitrary circle. In lines 10 and 21 new nodes are added to N”. However, these new nodes are
both, in the subsequent step, connected by an edge & to a node v; € C which has an incoming
edge. Before line 33, where edges and nodes are removed, G’ is connected. In line 33, in a for loop,
all edges starting in a node of C that are not in ¢¢ are removed from £’. We show that the end
nodes of these outgoing edges are still connected to other nodes of the graph. If the end node
end(e) is a state node, an edge from the artificial action node 7; to the end node end(e) exists.
If end(e) is an action node, all outgoing edges ¢ of that action node are replaced by edges from
the artificial action node z; to end(). So, we have a connection from v; over z; to all successors
of end(e). Removing e € 9-(C), end(e) € N 4and all & € J,,(end(e)) still yields a connected
graph. Since in line 43 only nodes with no incoming edge from outside the circle are removed
from the graph, all v; with an incoming edge will stay in N’. Therefore, the artificial action
nodes 7; and #; remain connected to the graph. Finally, removing edges that are in ¢¢ do not
lead to a disconnected graph since either v; € C has an incoming edge from outside the circle
and is therefore connected to the rest of the graph, or it will be removed from N’.

¥ is a complete enumeration of all circles (elementary circuits) except the artificial circles at the
absorbing state nodes that belong to 77 U L. Roughly speaking, Algorithm 6 replaces all edges
inside a circle by new paths that connect each node with an incoming edge from a non-circle
node with all nodes that were adjacent to the circle. Since all edges with both ends in C are
removed from £’, C can not be a circle any more. The artificial action nodes generated by the
algorithm connects a circle node with a non-circle node. Furthermore, the artificial action nodes
are newly generated for each node v; with an incoming edge. Obviously, after handling a single
circle by Algorithm 6, the handled circle is removed.

Next, it is shown that no new circles may occur after the transformation. Assume Algorithm 6
has processed all circles. Let C” be a new circle that has occurred after applying the algorithm.
If C’ was contained in ¥ before, it would have been removed. So, C’ can not have been in V.
Since C’ was not in 'V, in ¢¢ there must be at least one new edge generated by the algorithm.
Algorithm 6 generates only new edges that start or end at an artificial action node. These action
nodes have a unique predecessor, a state node v; with an incoming edge from a node not con-
tained in the circle. So, a circle C* occurred from a newly generated edge, must contain also an
artificial action node and its predecessor which is a state node v; that was a partof acircle C € .

Suppose, C* = (vy,..., v}, v1) is a new circle evolved after the application of the algorithm.
Assume C’ has nodes vp; in common with C;,i = 1,...,/and C,..., C; € ¥ is a subset of
circles. So w.l.o.g., C" must be of the form

Cl _ ~ ~
= (Ul e o5 Ups Bpps e s Uppy Dpps o5 Uk 01),

where 7, is an artificial action node generated by the algorithm. All artificial action nodes con-
nect only nodes that were a priori connected by a path in G. We can replace all v, plus the
artificial action nodes 7, in C” by a path existing in G. Or more precisely, if 7, was an artificial
action node generated in line 10, we can replace (vy,, ;) by a path in ¢c plus an edge in 9-(C).

3.7. TRANSFORMING SSO-MDPS 143

And if 5, was an artificial action node generated in line 21, we can replace it by a path in ¢¢ plus
an edge e in d-(C) and an edge & € J,,.(end(e)). So, we can conclude that the following path
must have existed a priori in G:

(01) e vpl—lj g(upp Up1+1); e Upl_l’ g(vpl’ Up[+1)7 R U/e; vl)-

This is a circle with nodes in N, edges in E. This circle or at least its elementary sub-circles
must have been contained in ¥ and therefore must have been eliminated by the algorithm. We
have seen that there can not arise new circles from the transformation of Algorithm 6 and the
transformed graph G’ is acyclic.

2. Inorder to prove that (N’, £/, #’, ") is an flow network associated with an SSO-MDP, we have
to show that G’ contains only edges from states to action nodes and vice versa. Furthermore, the
weight of every edge from a state node to an action node should be 1 and the weights of all edges
outgoing from an action node to connected state nodes should define a probability distribution.

Let C € ¥ be a circle and N¢ = Nj U N, SC be the nodes of that circle, which can be dis-
tinguished in state nodes N¢ and action nodes NG. In the next step, it is shown that after
processing C, the weights of the edges £’ fulfill the mentioned requirements. We know from
Proposition 3.7.1 that all nodes with an incoming edge from a node notin C must be a state node.
Let N, SC; be all state nodes of C with an incoming edge from nodes notin C. All new generated
edges in Algorithm 3.2.1 start either at a state node v; € N or at an artificial action node #; or
2;. Observe, that at the end of the algorithm all v € N€'\ NSC_, alle € g¢ U J-(C) and all nodes
with v € N4 with (-, v) € J-(C) and its edges J,,,(v) are removed. We can summarize that after
processing C, modified edges occur only in d,,(v;) with v; € NSC_, and 9,,,(9;) U 8,,/a;). All
other nodes are either removed or stayed unchanged.

We first consider edges in d,,,(v;), v; € N, SC_. These are edges generated in line 11 or line 22 which
go to an artificial action node and have a weight of 1.

Next, it is verified that the edge weights of edges in d,,,(?;) specify a probability distribution
outgoing from that action node. The algorithm generates an artificial action node #; when pro-
cessing v; € N, SC_ . For easier reading, in the following an action node of C is denoted by v,,, a
state node by vy,. Furthermore, any path ¢,,,, between nodes v and w using only edges in C is
denoted by ¢S, Figure 3.8 illustrates this situation and the transformation that is carried out.
Let

C = (Vs> Vays + - - » Usp Vg V5.
Without loss of generality, we can assume that v; € N, SC_ is the first node v, of C. Then,

Z o' (e)

€€, (;)

Y “(gg)mﬁ(e)) - afe)
e€d_(C) with end(e) e Ng

Z v “(gg,fmrt(e))) 06((,’)

e€d-(C) with start(e) eNj

144 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

y D e) D, al
valeC

EE;o%t(Ual)ﬂa\—‘(C)

= Y ZC a(ewl’”a[)(l “(ev‘ll’l}‘lﬂ))
€
= Y ZC (a(gvfl’vﬂl) zx(ev‘l’”‘l*—l))
€
u(l):ifﬁai)zl C ¢
— 'y ZC (a(el{rl:vﬂ[) - a’(ev_rl;l’ahl))
€

v (e) - (e,)6,)

= (e, - e,)26,)
1-
(1-p=—L=1
v (=p)= 1 »
In the sixth equation, it is used that G is a graph associated to an SSO-MDP. Therefore, we
know that each edge from a state node to an action node has weight 1. As a weight of a path is
the product of all weights on the path, we can follow that “(fg.,ujz 1) = zx(gg_)% 1). At the end,

telescope sum

the formula of ¢ from the algorithm is used and the fact that p was calculated in the algorithm
by multiplying all weights of the edges on the circle which equals “(ggp”»q).

Finally, it is shown that the edges in J,,,(2;) specify a probability distribution. Let again C =
(Vs> Vags + - - » Usy» Vay» ¥5y) and assume again that the currently processed v; € N, SC_ is the first node
v, of C. Lete € d-(C) be the edge that was considered, when generating z; in the algorithm

(line 21). Assume ¢ = (v, v,,), where vy, is a node in C and v,, ¢ C. Furthermore, let ¢ =

C
v;,start(e)
illustrates that situation and the transformation that is carried out by the algorithm.

@u,,end(e) s in the algorithm, where ¢ isa pathin C as specified in the algorithm. Figure 3.9

The proof is divided into parts to make it better readable. The idea is to go backwards from v,,
to v, along the path by finding probability distributions that sum up to 1. In the first step, we
get rid of the final node v,,,:

> 4@

Z’Ea\out(zzi)
Alg. line 2
#= olgz) - ()
e€d-(e), end(e)eNg
= > age) - al?)

g€l (gvjl)yai), end(e)€Ng

_ Z aeu, end(z)) (322)
e€d., (gvjl g)N0ut(a;)

+ Z a(evjl,end(é))
z’ea\ﬁ(ffujl »Va;)\a\am(vﬂi): e”d(é) ENS

3.7. TRANSFORMING SSO-MDPS 145

D aleu) (@) (3:23)

€€0ur(v2;)

+ Z a(@vjl,md(é))
e€d, (ﬁv;l,vﬂl.)\a\om(vai)) e”d(z’) €N

= “(é’v;y%) + Z oc(gvjl ,end(é))
2€d-(ey, 5), end(2)€Ng

= “(efi,yﬁ,) + Z a(gvjl,md(i’)) (3‘2'4>

Z’Ed!(ggl,vjj), end(e)€Ng

When in the last equations a path €0, .04, 1 used, it is assumed to be an extension of the path
gvcl_ s, bY (vjj, v,,). Furthermore, Cu, ,end(z) 18 also assumed to be a path in C except for edge e. In
5 ,

Equation 3.22, the edge set a\ﬁ(gyjl,,,ﬂl_) is divided in a set of edges that start in v,, and a set of
edges which do not start in v,,. Since G is bipartite, all edges in d,,,(v,,) satisfy end(e) € Ns. In
Equation 3.23, it is used that all outgoing edges of d,,.(v,,) are included in {& € E | ‘L(quzvﬂi)}‘
This holds since all ¢ in d,,,,(v,,) are incident to node v,, which is a node of €u,,00; and at the same
time ¢y, ,u,, does not contain edges of 9,,(v,,). In Equation 3.24, it is used that oc(vjj, v,) =1
since it is a state-action edge in an SSO-MDDP.

We arrived at a sum over edges that are incident with edges of the path gch »,, butare notincluded
7

in that path. Observe that the path 5vC;1,v,- is a part of ¢c. In the next step, the sum over the edges

belonging to the last state and action is simplified. So, the considered path has been shortened
by the last action and the last state.

“(é’ch,u) + Z a(evjl,fnd(é))

5
£€d-(gliy uy)» end(@)eNG

= algy)+ Z aleu, end(e))

J
EEL(&CH,”&.)m‘;out(vaj_l)

+ Z “(ev,l,end(é))

Z’ek(eil,ujj Noue(va;_y), end(e)eNs
— C C
- a(evjl,uﬂj_l)a‘(evﬂj_l,vjj)

+ Z oc(g,f1 ,yﬂj_l)oc(é) (3.25)

¢l)\ (v po05)

+ Z “(fvjl ,end(&))

£€3 (68 gy Nty s end(@)eNs

= “(egl,vde) + Z “(evi,md(é))

e€d, (egl)vﬂj_l)\‘%m(zjﬂj_l)> E”d(z’) €Ng

c
- “(6%:”&-71) + Z aeu, end(@))
?fef?ﬂ(eil,vjj_l), end(2)€Ng

146 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Again, when in the last equations a path €u, ,end(z) 1 used, it is assumed to be an extension of
. _ . C
a path in C by the edge e. The sum over all edges in L(g”:p”sj) is again split up according to
whether the edges are in J,,(v,; ,) or not. In Equation 3.25, it is used that v, is a node on the
C . . C S 1
path Cun 04y, So, all edges in J, (v ,) are alsoin d-, (gvjl’%__l) except the edge (v, ,, v;), which is
an edge of the circle.

This procedure is used until we arrive at v,

0‘(6151,1;;2) + Z ‘x(fvl,end(é))

e€d, (g,gl 5y), end(2) € Ng

ael L)ales)+ D alel ,)a@)

EEa\O%[(Uﬂl)\(Uﬂllvfz)

C
= aley o,)
=1

It has been shown that at all artificial action nodes inserted by the algorithm the transition prob-
abilities define a valid probability distribution and the requirements on the edge weights « are
satisfied.]

The following technical lemma shows a relation between the edge weights of G and G’. Namely,
that the sum over the weights of all walks from a non-deleted state node of a circle through the circle
to a state node adjacent to this circle remains the same under the transformation of Algorithm 6.
From Lemma 3.7.3 and Proposition 3.7.2, it also follows that the SSO-MDP derived from G’ satisfies
Assumption 3.2.1 of SSO-MDDs.

Lemma 3.7.3:

Let G = (N, E, B) with edge weights o. be the associated network of an SSO-MDP and G" = (N, E’, #')
with edge weights o' be the acyclic network computed from G and o by Algorithm 6. Let C =
(Vs> Vags « - +» sy Vay» Usy) be a circle of G, vy, a state node with an incoming flow from outside of C
and Ny, E| the sets of new nodes and edges generated by Algorithm 6 when processing vy,. Then, for all
v, € Ny with an edge e € I-(C) and end(e) = v,

Z “(wvji,vj) = Z “,(wv&.,vj)

Doy, v with Do, start(e) eC Doy, 05 QEJ,Z'
holds.

ProoF. Assume v, € N with end(e) = v;and e € 9-(C). Since C is an elementary circle, there exists

aunique path g, 4 in C. Furthermore, in the acyclic graph G, there exists after construction only
l

the path (v, 9y,, v;) in E;, that connects v;; with v;.

D, (@)

’
Wus;,05 EE&.

3.7. TRANSFORMING SSO-MDPS 147

DC’((UJI-: DJ,‘J US))
= DL,((U;l-, Z)ﬂ)) : “/((Z)w v))
= 1- a “(evjiljtﬂrt(g)) . 0(,((5[617'1‘(5), Z);)) (326>

1
= q “(gv;i,v;)

= “(el&i;l}s) Zpk
k=0

= “(ev;,-:v;) Z “(ev;i:v;i)k (32‘7>
k=0

Z ‘x(wv;l.,v;)'

Doy, v with @y, start(e) eC

In Equation 3.26, line 11 of the Algorithm 6 was used and in Equation 3.27, it was applied that p is the
probability of staying in the circle C. n

If a graph G and edge weights a associated with an SSO-MDP are transformed by Algorithm 6, the
derived SSO-MDP from the outputted graph G’ and edge weights &’ is called the transformed acyclic
SSO-MDP and denoted by SSO-MDP)i SSO-MDP,,,;c contain actions, states according to the
new generated action nodes and the remaining state nodes. Define the state set as

Sacyclic = {ﬂl_l(vj) lvs € N_é})

which are just the states according to the remaining state nodes in N”’. The new generated actions
correspond to aggregated original actions. For this reason, A4, is defined as a set of action sets:

Aﬂcyclic = {ﬁ_l(vﬂ) | Ua € N/,I}

This is a set of action sets since e.g. 871(#;) is mapped by the algorithm to all actions of the processed
circle.

As a final result, it is shown that every deterministic stationary policy 4 of an SSO-MDP is
equivalent to a stationary deterministic policy 4" of the transformed acyclic SSO-MDP,, ;. in the
sense that it has the same winning probability.

Theorem 3.7.4 (Acyclic Transformation):

Let SSO-MDP,oyiic be the transformed acyclic SSO-MDP derived from the graph G’ of Algorithm 6.
Ler d® be a deterministic stationary policy of the SSO-MDP. Define a deterministic stationary
policy A’ of the SSO-MDP,qyic as

d'(A')=1,4" € Ayagc © da)=1, Vae A'.

Then, the value of '™ in the SSO-MDP, equals the value of A in the original SSO-MDP.

cyclic

148 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Proor. The set of losing states and winning state have not changed through the transformation by
Algorithm 6. From Lemma 3.7.3, it follows that for two arbitrary states s, 5, that are both in Ng and
N, the sum of all edge weights of walks from s to 5, remains unchanged in SSO-MDP ;-

Decision rule d chooses the action nodes along a path if and only if 4 chooses the action set that
resulted from the transformation of that path. So, the sum of edge weights of walks to a winning state
under a given policy stays unchanged. As this corresponds to the probability of reaching the winning
state under this policy, it equals the value of the policies according to Proposition 3.4.1.

Observe that it is not possible to find a decision d” of the SSO-MDP,,,;, that is equivalent to a
truly randomized decision rule 4 of the SSO-MDP. This can be seen as follows: Assume d chooses all
actions along the circle path with probability g and with probability g — 1 it leaves the circle. Let p again
be the probability of staying in the circle if all actions along the circle are chosen with certainty. Then
the probability of not leaving the circle under 4 equals

- 1
(7= ——.
;M o

Obviously this probability is not linear in 4. In the transformed SSO-MDP 4., there exists an action
set in A that contains all actions contained in the circle. The probability included in the transitions

from that new generated actions is L and corresponds to the probability of staying in the circle if all

I-p
actions on the circle are chosen with certainty. Now g - ﬁ is obviously unequal to $ forg # 1and
it can be seen that we can not define a decision rule 4’ as a randomization of deterministic actions in the
SSO-MDP ;.- We would have to define new action nodes with different transition probabilities for
every randomized decision rule d. As there exists infinitely many randomized decision rules such an
approach would not be useful. However, this is no damage since we know that there exists an optimal

stationary and deterministic decision rule in each MDP.

Corollary 3.7.5:
For every SSO-MDP there is a transformed SSO-MDP whose states bave a topological order and which
bas the same value.

Proo¥F. It was shown that every directed graph belonging to an SSO-MDP can be transformed via
Algorithm 6 in an acyclic directed graph. Every directed acyclic graph admits a topological sorting
Jungnickel, 2008, Thm. 2.6.3. In Theorem 3.7.4, it was shown that for each deterministic stationary
policy of the acyclic SSO-MDP 4, there exists an equivalent deterministic stationary policy of the
original SSO-MDP. As among the optimal policies there always exists an optimal stationary policy the
values of both MDPs must be identical. n

As already motivated at the beginning of this Subsection, the topological ordering can be used to
show that value iteration applied to SSO-MDPs terminates after at most 7 steps at the optimal value
function.

3.8, FURTHER EXTENSIONS OF SSO-MDPS 149

3.8 Further Extensions of SSO-MDPs

3.8.1 Randomized Strategies

In an MDP with a finite state and action space, there always exists a stationary deterministic optimal
policy, see Section 2..3. Therefore, a randomized strategy in an SSO-MDP will never be strictly better than
every deterministic strategy. However, in a sports game, there exist situations in which a randomized
strategy should be strictly preferred over all pure strategies.

Consider, for example, beach volleyball: If each serve has an identical direction, the opponent team
will after some time adapt themselves to that serve. Randomizing between some targets fields may be
preferred such that the opponent team may not predict the direction of the serve. Physical exhausting
actions are another example: For example in soccer, if a player should perform a sprinting action many
times with only short or no breaks, he may be exhausted after a while. The sprinting actions will get
slower and loose its desired effect. An insertion of a short break in form of a trot would help the player
to regenerate. So, a randomization between sprints and trots may be preferred over sprinting all the
time.

There are more examples of sports game situations where a randomized strategy should be strictly
preferred. We want to propose an extension of SSO-MDPs, called constraint SSO-AMDPs, that will
achieve the desired result. Let .4” be again the augmented action set consisting of state-action pairs
a=(sa)eA.

Definition 3.8.1 (Constraint SSO-MDDPs).

A constraint SSO-MDP is an SSO-MDP with lower bounds /(4) or upper bounds #(4) on some de-
cisions d(a), a € A'. Let C C A’ be the subset of state-action pairs that are constrained, and / and «
functions C — R that map an action 2 € C to its lower bound /() respectively upper bound ().

To include those constraints on the decision rule in the dual linear programming formulation of
SSO-MDPs, we have to calculate constraints for the flow variables x, with 2 = (s, z) in the following

way:
lla) < d(a) <ula), VaeC
& l(a) Z < x, < ua) Z x, Ya=(s2)€C
a€ A, a€A;

For actions 2 = (s5,2) € C with };c 4 x, > 0, the equivalence holds by definition of a decision
rule derived from a feasible solution of the dual linear program, see Definition 2.3.29. For actions
a=(s5a) € A with ¥ ;¢ 4 x, = 0, the inequalities above simplify to 0 < x, < 0 & «x, = 0. Since
2izea %o = 0ifand onlyifx, = O forall 2 = (5, 2) € A], this inequalities above does not change the
feasibility set. Furthermore, in the case ;¢ 4 %, = 0 an arbitrary decision rule can be chosen after
Definition 2.3.29. So, also a decision rule is chosen in such a way that the lower and upper bounds are
met — provided that the upper and lower bounds do not constitute a contradiction.

150 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

The dual LP for SSO-MDPs with the action constraints equals:

max Z:GW w(-f)
1 s=4
U-P)x = —w(s) sel

—ls) selL (constraint SSO-MFP)
0 else.

X, = ”(d) : (]T):,* X 4= (S’ ZZ)’ a€C

xg 2 la)-(J7),,% a=(52), a€ C

x = 0,)

We want to show how this simple extension can be used to model the examples mentioned at
the beginning of this subsection. Consider the sprinting soccer player. Assume the coach knows
that sprinting in more than, e.g. 70% of playing situations will significantly impair the performance.
We can model two kinds of sprinting actions with different outcomes, a recovered sprinting and an
exhausted sprinting action. The recovered sprinting action should have a higher probability for a
successful outcome than an exhausted sprint. In a standard SSO-MDP, the optimal decision rule would
always select the recovered sprint. But introducing an upper bound of 0.7 on the recovered sprinting
action forces the decision maker to decide between an exhausted sprint and a trot. Depending on the
transitions probabilities of those two actions, he will decide to include trotting breaks in his strategy or
not. Figure 3.10 sketches this example with transition probabilities such that the trot would be preferred
over exhausted sprinting.

The critical point of this extension is the required expert knowledge. It may be difficult to determine
the upper or lower bounds. Moreover, the estimation of the change in the transition probabilities when
exceeding a bound needs specific observations.

3.8.2 Extension to Markov Games

Although it was argued at the beginning of this section that an MDP is more appropriate for modeling
a sports game than a Markov game, it should be outlined how SSO-MDDPs can be extended to sport-
strategy-optimization Markov games (SSO-MGs).

In a Markov game, at each state, each team simultaneously selects its next action and the transition
probabilities depend on the selected actions. Since a sports game consists of two teams, the parties
participating in the game will be called in the following team 1 and team 2. The corresponding action
sets in state 5 are denoted by 4! and 4?. The objective in an SSO-MG of team 1 is to maximize the
expected total reward while the objective of team 2 is to minimize it. The reward functions of both
teams are equal and summarized in one reward function. Like in SSO-MDDPs there exists a starting
state s; and goal states that are distinguished in winning states /% of team 1 and losing states L from the
perspective of team 1.

Definition 3.8.2 (Sport-Strategy Optimization MG (SSO-MG)).
A sport-strategy optimization Markov game (SSO-MG) is an extended infinite-horizon MG (see Defi-
nition 2.5.1)

(S, I, A p(-ls, ar, a2), 7(s, a1,), W, L, 1)

with the following properties:

3.8.

FURTHER EXTENSIONS OF SSO-MDPS ISI

good situation

recovered sprint

laying situation exhausted sprint

trot

Figure 3.10: Modeling a sprint in soccer as constraint SSO-MDP

* Sisaset of possible system states with a single-decision game defined for each state.
* I is the set of teams participating in the match with 7 = {1, 2}.
+ A'is the action set of of team 7 € {1, 2} in state s.

* p(|s, a1, a2) is a stationary transition probability function depending on the current state and
the selected actions.

* 7(s, a1, a2) is the expected reward function of both teams (players). The reward function has the
same properties as in an SSO-MDP:

L, VseS\(WUL),s €W, q€ A, ay € A

r(s, a, ap, 5') =
0, else.

* W C Sis the set winning states for team 1, which are losing states for team 2.
* L C Sis the set of losing states for team 1, which are winning states for team 2.

* 51 € Sis the known starting state.

152 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

Let 7 be a policy of team i and 7 = (7', 7%) a policy configuration of both teams. The total
expected reward from that policy configuration for both teams is

N
v"(s) =]\}13100 E;W {Z; "Xy, Y1y YZ:)} =]\}'lgloo U;\r]ﬂ(f)-
t=

Team 1 tries to maximize v” (s) while team 2 tries to minimize it. Since

min v”(s) = — min —0"(s),
w2ell, w2 ell,

the reward structure can be interpreted such that team 2 has to pay v” (s) to team 1. So, at each state s, a
zero-sum matrix game is played where the payoffs are equal to the expected total reward:

1,2 1
max min #”°")(s) = min max v(W’”l)(s).
W‘IEHI W‘ZEHZ 7!'261_[2 7!'161_[1

This shows, that the SSO-MGs are two-player zero-sum Markov games as defined by Littman (1994).
Definition 3.8.3 characterizes Nash Equilibriums in SSO-MGs.

Definition 3.8.3 (Nash Equilibrium in SSO-MG).
A tuple of strategies (#'*, 72*) is a Nash equilibrium in an SSO-MG if

1, 1%
a'* € arg max o)
7!'16]-[1

and
2w
7" € argmin A7),

W‘ZEHZ

holds forall s € S.

The example SSO-MDP of Figure 3.1 has been extended to an SSO-MG by including actions for
team 2 in each state. Furthermore, the example has been modified by introducing transitions from an
action available in 5, back to 5,. The resulting SSO-MG example is presented in Figure 3.11.

The goal is to find a linear programming formulation for an SSO-MG by extending the dual LP
for SSO-MDPs formulation of SSO-MDPs. As in MDPs, in MGs with stationary problem data, there
always exists a stationary optimal policy. Consider as before for each team 7 a set of state-actions pairs
A'". A decision rule d’ used in a stationary policy of team 7 can be written as a vector with cardinality
m; = |A"|. Letx,, a = (5,), 2 € A be the flow variable that corresponds to the decision rule d' of
team 1 and y;, & = (5, l;) € ASZ be the flow variable that corresponds to the decision rule of team 2.
Then, the flow constraint of the dual LP for SSO-MDPs formulation for a state s that is not the starting
state and no winning or losing state can be rewritten as

Z Xa)p — Z p(sla, b)xy, = 0.

ac Al be A? ac AL be A2

3.8, FURTHER EXTENSIONS OF SSO-MDPS 153

/ , . R
/ , . R
/ / R .
, , R N
0411 K . s
// 4 R N
’ \
’ , \\ .
/ 7 . .
' \
' 0.5 L1 0411 .
' ’ \\ \
’ \
/ , .
/ ’ . .
- R .
/ _ - . \
/ -
/! / =TTy 060 ~ R
- . .
by { by | 0570) . il
: ’ // \\\ N
l - - TTTT T 0500 ~ 3
K / ’ - Y .~ .5 0_“\‘_;\ .
1 ai S I Y2 e 2 — e [
_ 0570~ TT06000
4--" | |
ap Iy S-=--_ //\ ”4’4__/7 5
N - B o
\ \ = ~0600" - N - ~ !
N N ~-_-_--0510 v ,
' A // //
\\ \\ //)
state . \\ // //
\ N I/ ,
\\ 0.4 0 0570 g
winning state N . p)
\ N B //
= . .) /
. X) |
/ s 0570 N e 0.47°0
v ‘losmgstate ! .))
N / . .) B
- . X P /
N N)
i ~ DR B
4; | action team 1 ~ .« \\‘ .
- -
>\ [/4
b |action team 2 L
matrix game
- = > plsla, bj): transition
7 r(s a; by) reward

Figure 3.1:: SSO-MG Example

The flow conditions in the starting state and in the absorbing states can be adapted analogously:

Sowg— Y. plale by =1

a€ Ay be A}, ac A\ be A2
— Z pGsla, b)xzyp = —w(s), Vs e W
ac At be A2
- Z p(sla, b)xgyp = —I(s), Vs € L.
a€ A be A>

Let m be the number of different action combinations of team 1 and team 2 occurring in the
game. The maximum number of combinations is 72 - m,. In the example of Figure 3.11, m = 8 and
my - my = 16. For technical considerations, an ordering of the combinations is defined by going rowwise
through the matrices starting from the first action of team 1. The ordering of action combinations in
the example of Figure 3.11 is

(a1, 1), (a1, b2), (a2, by), (a2, b2), (a3, b3), (a3, bs), (a4, b3), (a4, bs).

Furthermore, let C! € R”™ and C? € R” be matrices that indicate whether an action is part of

154 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

the combination. The entry C¥, is 1 if action j of team k is part of the i-th action combination and 0
else. In the example of Figure 3.1, the combination matrices are

1 000 1 000
1 000 01 00
0100 1 000

. o1 0 0 >, o1 00

¢ = 00 1 0 C"oo 1 0
0010 0 0 0 1
0 0 0 1 0010
0 0 0 1 0 0 0 1

Then by a pointwise multiplication of C 1y and C?y, which is denoted by C Ix ® C?y, a vector with the
flow value of an action combination can be determined.

Let P be in the context of SSO-MG be a transition matrix with 7 rows and 7z columns where each
row corresponds to one action combination. The entry P, ;),; equals the transition probability p(i|4, b).
Let/ € R”" a matrix that indicates if action combination («, &) is available in 5. Then we can formulate
a max-min problem for SSO-MGs:

max, min, ey w(s)
1 S=5
—w(s) seW
-PI(Ckocy) = { ¢
U=PCx0C) “l5) sel
0 else.
xy =2 0

Obviously, this is not a linear program since there exit products of variables, and the objective function
maximizes a minimum. Also, the relationship between a feasible solution of this optimization problem
and a policy configuration needs to be examined. Probably an assumption like Assumption 3.2.1 for
SSO-MDPs is necessary to draw conclusions from an optimal solution of this optimization problem.

However, this formulation is useful, if different opponents’ strategies should be analyzed. For this
purpose, the opponents’ strategy can be set to a fixed probability distribution. The resulting maximiza-
tion problem is an SSO-MDP if Assumption 3.2.1 is satisfied. Deriving an SSO-MDP from an SSO-MG
has the advantage that the opponents’ strategy is parametrized in the transition probabilities.

In the example of Figure 3.11, assume the opponent plays &, in 5; and b3 ins s,. Then an optimal
strategy for team 1 would be to select in 5 action 41 and in s, action 3. With this strategy, team 1 wins
with a probability of 1 against the opponent. So, in the case of this example, the SSO-MDP resulting
from the SSO-MG does not satisfy Assumption 3.2.1.

If the value function of the SSO-MG is solved for every strategy combination, the resultis a constant-
sum matrix game with finite strategy sets of both teams. An example of this extension of an SSO-MDP
to game theory can be found in Section 5.2.6.

Chapter 4

Application to Beach Volleyball

4.1 Introduction to Beach Volleyball

Beach volleyball was chosen as a first application of SSO-MDPs to a sports game. Beach volleyball
belongs to the group of return plays, like tennis or badminton. In return plays, successful recovery
of the ball to the opposing team or player is required. A net separates the court in two halves and on
each half a team, or a player is located. Due to the return play and the division of the court in two
halves, those sports games have a natural structure which is advantageous for modeling it as an MDP.
Beach volleyball was chosen instead of tennis or badminton since in beach volleyball a team consists of
two players. Therefore, there also exist some direct intra-team interactions. The modeling of player
interactions may give some insights that are useful for sports games with larger team size, like handball
or soccer, where many direct player interactions exist.

In this section, an overview of different modeling approaches for return plays is given. Afterward,
the most relevant rules of beach volleyball are summarized.

4.1 Literature Overview — Modeling Return Plays

Some works on volleyball or beach volleyball using a Markov process approach have already been
mentioned in Section 3.1 (Miskin, Fellingham, and Florence, 2010; Florence et al., 2008). In this
subsection, some additional references to statistical investigations in connection with volleyball or
beach volleyball are made, which do not necessarily use Markov chains. Furthermore, works from the
field of informatics are presented that are related to beach volleyball and might have an impact on the
application of SSO-MDDs.

Koch and Tilp found that the temporal position within a rally did neither affect the type nor the
quality of the attack-hit (Koch and Tilp, 2009a). This result is an indication that stationary data can be
reasonably assumed for a professional beach volleyball rally.

Busca et al. investigated the influence of service characteristics on performance in men’s and women’s
high-standard beach volleyball. When the speed of the ball was categorized into three groups, they found
a relationship between serve ball speed and its effectiveness both for men and women (Busca et al., 2012).
These results were not observed when the speed was recorded using a radar gun. This investigation is
interesting as the rally-SSO-MDP presented in Subsection 4.3.3 also requires a classification of whether

155

156 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

a ball was played hard or not.

In beach volleyball, a call is a suggestion of the setter to his or her partner where to place the attack
in the opponent’s court. Kiinzell et al. found that women use calls more often than men. Moreover
for both the success rate of attacks increases with a call but the differences where only significant for
women’s beach volleyball (Kiinzell et al., 2014).

Natali et al. analyzed differences between males and females concerning the duration of point rallies,
work rest ratio and the number of jumps and hits performed by the players according to their role
(blockers and defenders). They did not show significant differences between males and females but
between the jumps performed by blockers and defenders (Natali et al., 2017).

In 2002 the Fédération Internationale de Volleyball (FIVB) officially changed the scoring system
from side-out scoring to rally point system. The goal was to stabilize the match duration. Several works
are investigating the effects of the new scoring system like (Giatsis, 2003) and (Palao, Valades, and Ortega,
2012).

Canal-Bruland, Mooren, and Savelsbergh showed that players and coaches, who have a perceptual-
motor expertise, may contribute to successful action anticipation in beach volleyball (Cafal-Bruland,
Mooren, and Savelsbergh, 2011). Successtul action anticipation is not only useful for players or referees
participating in a match. When a video analysis is done by hand like for generating the input data of the
rally-SSO-MDP of Subsection 4.3.3 successful action anticipation is helpful.

There exist some works on tracking player’s position and contact time points from videos in beach
volleyball (Gomez et al., 2014). Advances in the field of automated tracking are of interest for the
application of SSO-MDPs. A computerized tracking procedure that generates the required input data
for SSO-MDPs is crucial such that SSO-MDPs with large numbers of parameters, like the rally-SSO-
MDP defined in Subsection 4.3.3, can be set-up for a particular match in a short period. Cortell-Tormo
et al. also track video sequences but for analyzing and comparing movement patterns and direction of
locomotion in professional men’s beach volleyball (Cortell-Tormo et al., 2011).

4.2 Summary of Beach Volleyball Rules

A short overview over beach volleyball based on the official beach volleyball rules 2017-2020 (Fédération
Internationale De Volleyball, 2016) is given. Readers who are familiar with the rules of beach volleyball
can skip this subsection without reservation. Rules regarding facilities and equipment, interruptions
and delays, participants’ conduct or referees will not be mentioned below and can be looked up in
Fédération Internationale De Volleyball (2016).

Beach volleyball is a sports game between two teams playing on a court of sand. , and each team is
located on one half of the court. A team has three hits for returning the ball on the other court half.
Beach volleyball is played according to a rally point system, which means that each win of a rally gives
one point. The team who won the last rally gains the right to serve next. The serving player of each
team must alternate each time the serving right is won.

A team wins a match when it has won two sets. A set is won if 21 points are scored by one team
with a minimum lead of two points. In the case that each team has won one set, there is a deciding third
set. The third set is played up to 15 points with a minimum lead of 2. If the minimum lead of 2 points is
not fulfilled, the set goes on until one team has a lead of 2 points.

After this first, short characterization a more detailed description of some rules stated in Fédération
Internationale De Volleyball (2016) is given. These rules are considered in the more detailed model of a

4.1. INTRODUCTION TO BEACH VOLLEYBALL

beach volleyball rally presented in Subsection 4.3.

Facilities:

The playing area includes the playing court and the free zone. The playing court
is a rectangle measuring 16 X 8 meters, surrounded by a free zone, which is a
minimum of 3 meters wide on all sides. The free playing space above the playing
area shall measure a minimum of 7 meters in height. For FIVB, World and Official
Competitions, the free zone must be between s and 6 meters, and free playing
space must measure a minimum of 12.5 meters.

The service zone is located outside of the court behind the ground line of each
team. It is 8 m wide and extends to the edges of the free space.

The net height is 2.43 m for men and 2.24 m for women. On each side of the
net a 1.80 m long antenna is fastened.

Winning a Rally:

A rally is a sequence of playing actions. It starts with a serve and ends when the
ball is out of play. If the rally results in the award of a point, it is called a completed
rally. The team who wins the rally scores a point and serves next. If the team was
the receiving team before, the serving player must be alternated. A team scores a
point by successfully grounding the ball on the opponent’s court, and when the
opposing team commits a fault or receives a penalty.

Positions and the serve:

There are no determined positions on the court, except that each team must be
within its court half at the moment the server hits the ball. The server himself is
outside the court in the service zone and must not touch the court. When playing
the ball, each team plays within its playing area. However, the ball may be retrieved
from the free zone.

“In” and “Out™

“Hits™:

A ballis “in” when it touches the surface of the playing court including the bound-
ary lines. The ball is “out”, when it falls on the ground completely outside the
boundary lines, touches an object outside the court, crosses the vertical plane of
the net either partially or totally outside the crossing space during a service or
during the third hit of the team or crosses completely the lower space under the
net. The allowed crossing space is the part of the vertical plane of the net limited by
the top of the net from below and by the antennae and their imaginary extension
at the side.

A “hit” is a contact with the ball by a player in the play. The ball may be touched
with any part of the body. All actions which direct the ball towards the opponent,
except for services and blocks, are considered as attack hits. Hits which preclude
the ball from hitting the ground after the opponent team plays a serve are called
receives. A defending is similar to a receiving with the difference that it is made to
defend against an attack hit. By a serting the ball and the teammate are brought
into a good position for the next artacking hit.

157

158 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

Faults:
When executing a hit, the ball must not be thrown or caught, else an execution
fault occurs. There are more rules on how to execute a service, an attack hitor a
block correctly. Infringement of these rules should be summarized under the term
execution fault in this thesis.

A team has a maximum of three hits, including the block, for returning the
ball over the net. If this maximum is exceeded a four hits fault occurs. A player
must not hit the ball two times consecutively else a double contact fanlt happens.
There is one exception of the double contact rule: The first hit after the block may
be executed by any player including the one who has touched the ball during the
block.

Two players may touch the ball simultaneously. Except for a simultaneous
blocking this is counted as two hits.

Another fault is to complete an attack hit on the opponent’s service when the
ball is entirely higher than the top of the net. Furthermore, it is forbidden to block
an opponent’s service.

The basic structure of a rally is as follows: It starts with a serve of one team. The other team then
receives the ball, sets the ball and attacks the serving team. As next, the serving team starts defending the
attack hit and prepares its next attack by a set.

The sequence of receiving/defending — setting — attacking is called a complex. On average in
professional men’s beach volleyball matches there are two to three complexes during a rally. Ahmann
found in his structure analysis Ahmann (2001) that 59% of the rallies in professional men’s beach
volleyball matches end after four or five ball contacts. Four or five ball contacts correspond to the
sequence: serve — receive — setting — attack — block/defending. It should be pointed out that there
need not be three ball contacts during a complex. Sometimes an attack hit at the second contact may be
efficient if the opponent does not expect it. However, this occurs only in 6.3% of all played attacks in
men’s professional beach volleyball, see Ahmann (2001).

The summarized rules give an overview of possible situations that can occur in beach volleyball.
Furthermore, they outline the available actions in a given situation of the game.

4.2 An SSO-MDP for a Beach Volleyball Set

In this section, an SSO-MDP is defined that models a beach volleyball set. The model should be designed
as simple as possible while giving the opportunity to evaluate different serving and field attack strategies
against a specified opponent team. The presented model is a generalization of the s-MDP defined in
the working paper of Hoffmeister and Rambau (Hoffmeister and Rambau, 2017b). A first version
that differs in larger parts from the one specified in this section was presented in Hoffmeister [formerly
Borner] (2014).

4.21 Definition

Let team P be the team whose strategy should be optimized, and team Q be team P’s opponent. Assume
team P can choose between finitely many serving strategies servey, , serve,,, and finitely many field

4.2. AN SSO-MDP FOR A BEACH VOLLEYBALL SET 159

attacks attacky, . . . , attack,,,. A field attack is considered as the whole sequence of
reception/defending — setting — attack bit.

It is assumed that team P can play any strategy at any time and wants to evaluate at which score in the
set they should play which kind of serving or field attack strategy. Formally in an SSO-MDP, an optimal
stationary decision rule is sought. In a sports context, it is common to speak of strategies instead of
decision rules. Therefore, the term strategy will be used in this thesis if the context is less formal.

Based on team P’s question of interest, a state has to contain the current score, which team starts
the next attack and an indicator of whether the state is a serving state or not. Thus, the simplest possible
state space with respect to the regarded question is {(x, y kD) |xy €Ny, ke {P0}, [€{0, 1}}
Here, x and y denote the scores of Team P and Q, respectively. The parameter k specifies which team
possesses the ball, and / encodes whether it is a serving state (/ = 1) or a field attack state (/ = 0). If this
state definition is used for the complete set including a tie, the result would be an infinite state space.
Starting from a tie (20, 20, &, [), there is an infinite number of states possible where no team gains a
lead of 2 points.

As an SSO-MDP requires a finite number of states, a different state representation is used for the
tie-game. Instead of remembering the number of points for team P and team Q separately, only the
point difference of the two teams is denoted in a state. So, the states of the tie game are

S = {(z k [) |z € {-2,-1,0,1,2}, ke {P, O}, [€ {0,1}},

which are only finitely many states, namely 20. This kind of state representation is not possible in the
regular set, since the absolute number of 21 points must be reached to win a set. In the tie-game, only a
relative criterion must be fulfilled. The relative notation for the tie-game states affects that there are
now finitely many states left that describe the regular game. These are

S ={(x, 9,k) |x,y€{0,...,21} with(x <19V y <19), ke {P,Q}, [€ {0,1}}.

The state set J#” should contain all states, where team P has won the set. The winning states of
the regular game are all states where P has 21 points. Observe that the state set of the regular match
contains only states where at least one team has no more than 19 points. So, all states of the regular state
set where team P has 21 points are winning states. Furthermore, all states in the tie-game with z = 2
are winning states. Analogously, the state set L contains all states, where team P has lost the set, i.e., all
states of the regular game where team Q has 21 points and all states of the tie-game with z = —2. As
specified in the definition of an SSO-MDP, the states in J#” U L are modeled as absorbing states.

A decision epoch starts when team P gains control over the ball and begins its field attack. The
decision epoch ends when Team P makes a fault or a point, or when the offense is successful but
Team Q gains control over the ball and starts its field attack. For each state s = (x, y, &, [) € §™8 or state
s=(z k, [) € S thatisa serving state of team P, i.e., a state with £ = P and [= 1, the action set in that
state of team P is A; = {servey, ..., serve,, }. If the state is a field attack state of team P, which means
k=Pand/=0ins, 4, = {attacky, ..., attack,,, }. For all states with & = Q, the action set of team P is
empty, i.e., 4, = 0. In each absorbing state 77 U L, there exists an artificial action. However, those
artificial actions are not explicitly listed in the following of this section.

As described in Subsection 3.8.2, it can be advantageous to model the opponent team analogously
to the decision-making team. Therefore, the SSO-MDP is constructed with a symmetric view on the

160 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

teams P and Q. However, since an MDP and no MG is considered, team Q is assumed to play a fixed
decision rule independent of the current score. So, there are no action sets defined for team Q and the
fixed decision rule played by team Q is expressed by constant transition probabilities.

Let p, [p.] be the probability that Team P playing action 4 € A, directly wins [loses] the rally. By
directly, it is meant that there is no further field attack played by either team until the rally is completed.
A superscript serve o field on p, respectively p, denotes whether it was a transition belonging to a service
or a field attack. The corresponding probabilities of Team Q are denoted by ¢ and g, respectively. As
abbreviations, the probabilities that none of this happens is denoted by p,, := 1-p,—p,and § := 1-g—7,
respectively. So, with probability p, [4] a subsequent field attack by the other team is started. In total,
the evolution of the system is governed by the probabilities

attack type - attack rype b _ b
Pa P P yp ; qatmc type, qﬂﬁﬂ[type,

where 2 € A, is the playing strategy and attack type € {serve, field} denotes the type of the attack.
These probabilities induce all transitions by incrementing points and changing the right to serve
in the obvious way. All transitions that have a positive probability are explicitly listed in Table 4.1.
Furthermore, in Figure 4.1, the resulting transition diagram for the case that P serves first in a simplified
set is illustrated that requires only two (instead of 21) points for a win. From the states (1, 0, &, /) and
(0,1, k1), k € {P, 9}, [€ {0, 1} atransition to one of the tie-game states (0, 2, 1) or (0, Q, 1) is possible.
These tie-game states correspond to states (1,1, P, 1) and (1, 1, Q, 1) in the state notation of the regular

game.
1,0,P,1) _ L @ory . i
cerve /' @
Pa _—
4
¢ _ el
Pe ; (1,0,Q,0) v
e /
0 plieid ‘: gfield
b \
(0,0,P,1) ° X (1,0,P,0)
prerve
e,
;0,00
‘;" 7 \ (// Leld
ﬁfj”w [gfietd \
\ _field T
"lL
\ (0,0, P,0)

(f],"u ld ;

Figure 4.1: Set-SSO-MDP

The transitions of the tie-game are illustrated in Figure 4.2. They are divided into two sub figures.
The left subfigure contains only transitions related to a service while the right subfigure contains all
transitions that may occur after a field attack.

4.2. AN SSO-MDP FOR A BEACH VOLLEYBALL SET 161

[i/u:hl

1,P,0 1,Q,0 1,P,0

o p/amw

° 2,P1 :) 1

0,P1 0,Q,1

Ad

gfield /‘}u

Tl

a

-1,Q,0 =i, /2,0 -1,Q,0 =i, 120

(a) Tie-game with serving transitions (b) Tie-game with transitions after field attacks

Figure 4.2: Tie-game

162 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

set-SSO-MDP Beach Volleyball Set between Team P and Team Q
Decision Epochs: 7" ={1,2,3,...}
S =§"8 y st
S ={(x, 5, kb)| x,y€{0,...,21} withx <19V y <19,
ke{P, 0}, 1€{0,1}}

State Sets:)
S ={(zk)|z€{-2,...,2}, ke {P, 0}, [€{0,1}}
W ={(2L, y, k, 1) € S8} U {(2, k, I) € §™}
L={(x,21, k1) € S8} U {(=2, k,[) € $}
{servey, ..., serve,, } Vs=(x,9P1) € 8% 5= (g Pl)€ Stie
Action Set: A, = {{attacky, ..., attack,,,} Vs = (x,9, P,0) €8S, s=(zP,0) € Stie
0 else.
There exists an artificial action in each absorbing state s € 77 U L.
Transitions: regular game and transition to tie-game

Lets = (x,9, 0, 1) € S8\ {W U L}.

oy +L QD[=g""if (xy) # (20,19), p((0,0,1)]5) = 47 if (x, y) = (20, 19).

p+Ly, P =77 if (x) # (19,20), p((0, P,1)]s) =7 if (x,y) = (19, 20).
P((x)_y)]), 0) | _f) — ?—(EVUE

Lets=(x,) A1) e S\ {W UL}, ac A.
px+ 1Ly P1)|sa) =p, " if (x,9) # (19,20), p((0,P1)]s,a) =p;"if (x,) = (19, 20).

p((x;)' +1, _Q; 1) | 5, 61) =]_);Emg if (x;)’) * (20, 19),]7((0, Q, 1) | 5 d) —]—);Erve i (x) _y) _ (207 19)
P9, 0,0) | s,a) = pi™

Lets = (x,9 0,0) € S\ {IW U L}.

Py +1,0,1)|9) = Fif (%, y) # (20,19), p((0, Q,1) | 5) = 4 if (x, y) = (20,19).

P +1,9 P 1) |5) = 7if (x, 9) 2 (19,20), p((0, B,1) | 5) = 7 if (x,) = (19, 20).
P, P, 0) | 5) = 9t

Lets = (x,9, P,0) € S\ {W UL}, a€ A,

A+ 1, P15 a) = P (6 9) # (19,20), p((0, 1) | 5a) = gL if (x, 9) = (19, 20).

W6y +1,01) | 5a) =54 (v 9) # (20,19), p((0,0,1) | 5a) = T if (x, y) = (20, 19).
p(x%9,0,0)|5a) = po

4.2. AN SSO-MDP FOR A BEACH VOLLEYBALL SET 163

Transitions: tie-game

Lets = (3 Q,1) € S\ {W UL} Lets=(3P1)eSC\{WUL},a€ A,
p(z=L01)[s) =g, p(z+1LP1)]|sa)=p"",
p(z+1LP1)]s5) =79, z-1,01) |54 =p,",

(5 P,0)|5) = 5 P(z0,0) |5 a) = p;"
Lets = (3,0,0) € S\ {W UL}, Lets=(3P0)eS\{W UL}, a€ A,
p-101) 5 = 4%, AE+1L P52 =f",
2z +1,P1)|5) =7 W(z=1,01)]s52) =g

P((z P,0)|5) = 5 2(50,0)|5,a) = J

W U L are modeled as absorbing states and all other transitions have zero probability.

1 ifseW,sselW
Rewards: r(s,as) = ifs ¢ ’

0 else
Objective: maximize the total expected reward

Table 4.1: An SSO-MDP modeling a beach volleyball set (set-SSO-MDP)

As in every SSO-MDDP, entering a winning state yields a reward of one and all other transitions
have a reward of zero. Table 4.1 summarizes the complete SSO-MDPfor a beach volleyball set. It will be
abbreviated in the following as set-SSO-MDDP.

After having defined the set-SSO-MDP, we want to convince ourselves that Assumption 3.2.1 is
satisfied. Since we consider playing strategies of a sports game, it is appropriate to assume that for no
strategy 4 € A, the transition probability p, is 1. If this would be the case, team P would always play
that strategy, and no optimization problem would be needed. Also, it is appropriate to assume that
each strategy has a positive probability to fail, which means, that p,, is greater 0 for each 2 € A4;. Of
course, the same assumptions hold for the opponent’s transition probabilities. From these properties, it
can be concluded that under all strategies each state of the set-SSO-MDP is connected to a losing state
by a path that has a probability greater than zero. So, Assumption 3.2.1 s satisfied and the presented
MDP is an SSO-MDP according to Definition 3.2..2.

4.2.2 Transformation

The goal of this subsection is to redefine the set-SSO-MDDP to get a representation that is better suited
for mathematical analysis. The main idea is to remove cycles and to concatenate paths. In particular,
states in which no decision is made by team P should be eliminated. The executed transformation in
this subsection is in principle an application of the general transformation algorithm for SSO-MDPs
presented in Subsection 3.7. However, the transformation algorithm is not followed step by step as
the circles in the set-SSO-MDP are of a slightly different but simpler kind. Namely, as in a state where
team Q is in possession of the ball the action set of team P is empty, there exist circles of the form

164 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

“state-state”. Of course, an artificial action could be inserted such that the transformation algorithm
can be applied. However, this effort is saved, and the transformations carried out are explained more
intuitively.

First the cycles between pairs of field attack states where only the team in possession of the ball differs
should be eliminated, i.e., cycles between (x;, y, P, 0) and (x, y, Q, 0) of the regular game respectively
cycles between (z, P, 0) and (2, Q, 0) of the tie-game. The probability of staying in such a cycle is p, - §
which is by assumption of an SSO-MDP smaller than 1 since p, = 1 — p, — p, and p, is greater 0.
The transformation will be illustrated on the example of a state belonging to the regular game. As the
transition structure in the regular game is identical to that in the tie-game, this transformation can be
analogously carried out for the states and transitions of the tie-game.

The state (x, y, P, 0) should be kept and (x;, y, Q, 0) should be eliminated. The state (x, y, Q, 0) has
two outgoing transitions, one to (x + 1, y, P, 1) and one to (x, y + 1, 0, 1) in the regular game. At the
states (19, 20, Q, 0) the first transition is replaced by a transition to the state (0, P, 1) of the tie-game and
at the state (20, 19, Q, 0) the second transition is replaced by a transition to the tie-game state (0, Q, 1).
For simpler notation, the transformation is illustrated at a state that has no transition to a tie-game
state. Let (x, y, P, 0) and (x + 1, y, P, 1) be state nodes of the regular game. As there exists an optimal
stationery and deterministic policy, the decision rule used in a state is time-independent. Furthermore,
a deterministic decision rule chooses an action with certainty each time a state is met such that

p((x +1, % P, 1)|(x, % P, O), ﬂ) _]Jjeld +ﬂgldéﬁgld i (]A]]zeldéﬁeld) . (p/Zeld +ﬁj€ld§ﬁgld) " (]Ajzeldéﬁeu)z .

As in the transformation algorithm, this is a geometric series. Its limit can be used to calculate the
aggregated probability for a transition from (x, y, 2, 0) to (x + 1, y, P, 1):

P/Zeld N f),zezd_ ol
Ac+1,9 P 1)y, P0)a) =12 T

1 _ﬁg“ld&ﬁeld '

An analogous aggregation can be done for the transition form (x, y, 2, 0) to (x, y + 1, Q, 1):

—field | Afield fo14
AT
Afield , :
1— p/Zf Gfeld
The eliminated circle has an incoming edge from the corresponding serving state (x, y, &, 1). Since

(%, 9, ©, 0) will be eliminated all transitions from (x, y, &, 1) that go over (x; y, Q, 0) to a subsequent state
are replaced by a direct transition from (x; y, k, 1). As an example,

Py + 10, 1)|(x 9, P,0),a) =

P+ 1,3 2Dl 2, P 1)) = 7+ gl

Figure 4.3 illustrates the outcome of this transformation for the two-point set-SSO-MDP. For simpler
notation of the result, the following terms are defined:

aﬁglg,’,P B p/;ield + ﬁ/Zeld_ eld ‘gﬁeld,P 3 f;;ield 4]A)]zeld qﬁdd
a T 1 _ﬁ,jddg]ﬁdd 4 . l_ﬁ;zezd&ﬁdd

4.2. AN SSO-MDP FOR A BEACH VOLLEYBALL SET 165

The superscript field indicates that it is a transition from a field state and the subscript 2 indicates that the
first field attack is executed by team P. The subscript 4 is the parameter for the field attack strategy. For

ld,P ld,P Id,P
can be calculated. Note that zx}:e + @ =1,

. d,P . .1 .. . Id, P
which should be intuitive, since “,zg is the probability for gaining the next point and g’f for

eld,P e
each field attack strategy, the terms ocg and G,

making the next fault at some point in the future. As one of these events must occur in a sports game,
these probabilities should sum up to 1.

pscr'uc +pscr'u(%qﬁcld
wory " @oPy i

_ w\d - 1dF
,5(,("““ q“ ﬁse'r've(iﬁeld aj;‘* ‘
gel ve X Pe ¢ X):;Y(y-7 -
Po ? - %
;ixv/\(\'A (1707 P7 0)

oo \\\

\
(0,0, P, 1) (0, P,1)
) £ 7(;5(' ve . . |
ﬁaarucqﬁ,ald ﬁ:‘;‘(‘mp tie game ‘
9ty

(0,0, P,0) gfieta,p 0,@,1)

(07 17 Q? 1)

—

(]«5(Tve
qstl‘/‘lﬁti
Ha

Figure 4.3: Refined regular SSO-MDP

By choosing not only the serving strategy but also the field attack strategy in a serving state of team P,
the regular game can be further simplified. In a serving state of team P, the cumulated probability of
gaining, or losing a point if serving strategy « and field attack strategy & is played, is:

P . _ ,serve | pserve —field | rserve afield eld, P
% =Pa tTPa qﬁ * P2 qﬁ OJZ

P _ serve | Aserve eld | pserve | afield lgﬁeldzp
Iga,b'_pa P qﬁ * P2 qﬁ Py .

The terms are computed for every combination of a serving strategy « with a field attack strategy 4. In a
serving state of team Q, team P has only to choose a field attack strategy 4. The cumulated probability
of gaining, or losing, a point if field attack strategy & is played is:

“g = ?erve + éserve . a}Zeld,P ﬁg = q,(erve + érerve . ‘g]ZEld,P.

Figure 4.4 shows the final transformed and aggregated regular game.

The tie-game can be transformed analogously. Figure 4.5 visualizes the tie-game using the introduced
notation of the aggregated transition probabilities. Observe, that the cumulated probabilities for the
next point of the aggregated tie-game are identical to the cumulated probabilities in the regular game.

166 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

a,b
(1,0,P,1) @oPn

ool

(0,0,P,1)

s
%6

Figure 4.4: Aggregated regular SSO-MDP

2,P,1 :>1

0,Q,1

A

Figure 4.5: Aggregated Tie-Game

4.2.3 Mathematical Analysis

Some results of previous work that are related or can be applied to the presented set-SSO-MDP are:
An MDP for beach volleyball similar to the presented set-SSO-MDP was analyzed by Hoffmeister
[formerly Borner] in (Hoffmeister [formerly Borner], 2014). The MDP presented in Hoffmeister
[formerly Borner] (2014) does not contain a differentiation between serving states and field attack states.
Hoftmeister [formerly Bérner] showed a monotonicity property of the optimal value function. In
Hoffmeister and Rambau (2017b), the authors present two MDDPs for beach volleyball. The s-MDP
of that manuscript has the same structure as the model presented here. The only difference is that the

4.2. AN SSO-MDP FOR A BEACH VOLLEYBALL SET 167

s-MDP of Hoffmeister and Rambau (2017b) is already formulated for a certain benchmark question
that considers a concrete set of playing strategies. Therefore, the results of Hoffmeister and Rambau
are also applicable to the model presented here.

Two Lemmas are cited that are proven by Hoftmeister and Rambau in Hoffmeister and Rambau
(2017b) and describe the monotonicity of the maximum total expected reward function. As proven in
general, for SSO-MDPs the total expected reward function of a decision rule equals the probability
of winning the match when playing according to the decision rule. The first lemma states that for a
fixed team k € {P, Q} and a fixed type of state [/ € {serve, field}, the maximum total expected reward is
increasing in the own number of points and decreasing in the opponents number of points.

Lemma 4.2.1 (Hoffmeister and Rambau (2017b)):
The maximum total expected reward v* of a state (x, y, k, [) € S satisfies

vy kD) <V (x+ 1,9,k D) (kD) = v (6 y + 1k, 1),
or all (x, 9, k,) € S.
Nz

The second lemma then describes a relation between serving states of different teams.

Lemma 4.2.2 (Hoffmeister and Rambau (2017b)):
The maximum total expected reward v* in a serving state satisfies

U*(x + 1;}); P, 1) 2 U*(x:)’ + 1’ Q’ 1)1
Jor all (x, y, k, [) € S.

The proofs of both lemmas can be found in Hoffmeister and Rambau (2017b). They can also be applied
to the tie-game, as the structure of transitions is identical.

Due to the described monotonicity property, a myopic policy that maximizes the probability to win
the next point is optimal. This result was independently developed from Walker, Wooders, and Amir
(2011), who proved that given a monotonicity property a myopic policy is optimal for binary Markov
games.

Since the transition probabilities are identical in every stage of the game, the optimal myopic policy
stays the same throughout the game. Due to the structure of the transition probabilities, it is enough to
maximize the point probability for the best service-field attack combination in a service state of team P.
The determined field attack strategy is then also optimal for rallies where team Q is the serving team
since aci , Is increasing in the point probability of a field attack state. The main theoretical result for the
analytic solution of the SSO-MDP is the following:

Theorem 4.2.3 (Optimal Policy):
There exists a stationary optimal policy that chooses in each serving state (x, y, P, 1) € 8% [(z, P, 1) €

S%] the serving strategy a* € {servey, ..., serve,, } and in each non serving state (x, y, P, 0) € 8%
[(z, P,0) € S] the field attack strategy b* € {attacky, ..., attack,,, } with

ocf;)b* > aib, Va € {servey, ..., serve,, }, b € {attacky, ..., attack,,, }.

168 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

ProoF. After the transformation, the optimality equations in a serving state (x, y, P, 1) are:

v'(x, 9, P 1) = max {aibv*(x +Ly, 1)+ (1- aib)v*(x,y +1,0, 1)}

AESETVELrrySETVE
beattacky,..., attackm2

It can be directly followed that team P chooses the combination 4, & that maximizes ocf , since

v'(x+1,9% P 1) > v'(x,y+1,0,1) by Lemma 4.2.2.
For a non-serving state (x, y, P, 0) € §*8 [(3, P, 0) € St the cumulated probability for reaching
(x+19P1)[(z+1P1)]is ;Zd’P and for reaching (x, y + 1, 9, 1) [(z — 1, @, 1)] is ﬁieu’P, compare

Figure 4.3. Applying Lemma 4.2.2 again, it can be derived that team P tries to maximize “;Zeld,P. As

serve | Aserve eld | prserve afield eld, P
ab_pﬂ + P, qﬁ + P, qﬁ DC/Z ’

. eld, P
ocf » 1 monotonically increasing in ocﬁ . Therefore, if 4%, b* is a maximizing combination of ocf b and

A ld, P
preree - gfeld < 0 holds, it follows that b* is also a maximizer of ocﬁ i n

4.2.4 Winning Probability of the Tie-Game

It is even possible to find an analytical expression for the probability of winning the tie-game. In the
following the winning probability v(z, P, 1) of team P under the serving strategy 2 and the field attack
strategy & is abbreviated by 021; Analogously, the winning probability v(z, @, 1) of team P under the

playing strategy 4, b is denoted by vzg Due to the monotonicity lemmas and the structure of the
optimal policy, compare Theorem 4.2.3, there exists a unique combination 4, b of strategies which is
played in each state of the tie-game. Therefore, the following system of equations holds for 02’5 and

0,9
Ua,b :

0P _ P P, P L0
Ua,b - aa,b Ua,b + 48 a,b Ua,b
L,P _ P P 0,0
Uﬂ,b - aﬂ,b'l—l—@ﬂb.vab
09 _ 0 Q —IQ
v, = % + ﬂ
-9 _ 0 O,P Q
vy = ey v, T, 0
Solving this system of equations yields to
P \2 Q _ Q P
Pm 0P = () Lo 00 o, b(“a W8y — ey, t 1) (4
ab ™ Tab (l_aQP)z ok QPﬁQ ab ' “ab (l_aQP)z ob QPBQ +
b ﬂ b b b b ﬂ b b b

After this analysis, different service and field attack strategies can be compared if the governing
transition probabilities are known.

4.2. AN SSO-MDP FOR A BEACH VOLLEYBALL SET 169

4.2.5 Application to a Match

The beach volleyball final of Olympic games 2012 in London was chosen as a first application of the
set-SSO-MDP. In the final match, the German team Brink-Reckermann won against the Brazilians
Alison-Emanuel in three sets (23 : 21,16 : 21,16 : 14). The final match and all pre-final matches of the
finalists are publicly available on the Olympics YouTube channel.

From the video recording of the final match, it is possible to estimate the transition probabilities of
the set-SSO-MDP for the played decision rules in the final match. For this purpose, every played rally in
the final match was recorded as a sequence of a service and subsequent field attacks of the participating
teams. This annotation was carried out with the support of a student, Fabian Buck, who has practical
experiences in beach volleyball. The services were denoted by Serve P respectively Serve Q depending
on whether it was a serve of team P or a serve of team Q. The field attacks are abbreviated by Field P
and Field Q. With this notation, e.g., the first rally of the final match is

Serve Q — Field P — Point Q,

where team Q are the Brazilians and team P the Germans. The collected rallies were saved together with
a time-stamp of their position in the video in a text file with the extension . sdata. The extension is
called . sdata because in Chapter s.2 the set-SSO-MDP will be called s-MDP. From the annotated
rallies, the set-SSO-MDP transition probabilities of the played decision rules can be estimated by a
maximum likelihood estimation as

serve _ # Serve P — Point P” Pﬁdd _ #“Field P — Point P”
~ #Serve P” = #Field P”

Fserve _ #“Serve P — Point _Q” fﬁdd _ #“Field P — PointQ”
#“Serve P” # “Field P”

rserve T Serve P— Field Q” wed _ # “Field P — Field Q”
B #“Serve P” pﬁ - # “Field P”

The number of the matching substrings in the s-data strings can, e.g., be determined by a search with
regular expressions. A technical note: There exists a small number of rallies in the s-data that contain the
substring Field P-Field P or Serve P-Field P. Such sequences were recorded when a ball was blocked and
went back over the net or when the opposing team did not play a full field attack, but the ball crosses the
net for instance at the reception. In this count, we evaluated Field P-Field P and Serve P-Field P as a
case where a subsequent field attack and no direct point or fault follows. So, the number of occurrences
b respectively p¢. The corresponding transition
probabilities of the opponent team can be estimated analogously. For the final match and the final
strategy, abbreviated by final, we estimated the following transition probabilities for the German team
Brink-Reckermann:

of these sequences were added to the numerator of

1 eld 34
—serve 2 —fleld 12
Fii- <o A= =
Aserve 52 pfeld 24
Phnal = 55 % 945% pﬁﬁnﬂl =70 ¥

"https://www.youtube.com/user/olympic

https://www.youtube.com/user/olympic

170 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

For the Brazilian team Alison-Emanuel, we estimated the transition probabilities:

2 eld _ 40
erve . Z 0 -~ 0
Gt = 5o = 36% Tt = 53 ~ 548%
—serve __ 8 ~ _eld_12~
i = =2 ~14:3% Tt = 53 ~ 16:4%
wserve %6 Jeld 21
i = <~ 82.1% Yoo = ~y ~ 288%

The counted number of direct points and errors after a service or a field attack are presented in
the numerator of the fractions and can be compared to publicly available match statistics, for instance,
Database (2018). The match statistics provided by Database (2018) contain the number of aces, service
errors, kills and attack errors. A kill is a field attack that can not be defended and leads to a point.
Table 4.2 shows the match statistic after Database (2018). The number of aces equals the number of
direct points we counted after a service and also the number of service errors equals our counted number
of faults in a serving situation. The total number of services is not available in this source, and we could
not find any other source related to the Olympic final of 2012 containing the total number of services.
The total number of attacks, observed by us, is larger than the total number of field attacks listed in the
match statistic. A reason for this may be that we also counted a reception or defense followed by a set and
aplanned shot as a field attack. It may be the case that only smashes were counted in the match statistics.
The number of kills equals our counted number of direct points after field attack for the Germans.
However, we counted one more direct point after a field attack for Brazil. The most significant difference
between our counted values and the presented statistic is the number of errors. The match statistic states
that no field attack errors occurred. However, an example of an attack fault which proves that zero attack
errors cannot be correct is: In the very first rally of the final match, Brazil starts with a serve and the
subsequent field attack of Germany is blocked such that a point for Brazil is counted. Another example
is the field attack of Germany at 10 minutes and 2 seconds, where the attack hit of Brink goes behind
the baseline and the ball is out. We classify both examples as faults after a field attack hit. The reader
may watch this sequence in the video https://www.youtube.com/watch?v=H7iQ4sAf00E on
YouTube.*

Player attacks kills errors services aces service errors
Brink 25 12 0 ? 0 1
Reckermann 39 22 0 ? 1 1
Alison 17 12 0 ? 1 5
Emanuel 57 29 0 ? 1 3

Table 4.2: Match statistics of the final match at the Olympic Beach Volleyball Tournament 2012 in
London (Database, 2018)

It may be interesting to determine how large the winning probability of Germany is in our model
given the estimated transition probabilities for the played strategy in the final match. Formula 4.1 can

*Through an e-mail conversation with the administrator of the www . bvbinfo . com website (that hosts the beach volley-
ball database), I got the information that the numbers of attack errors were not available for that tournament.

https://www.youtube.com/watch?v=H7iQ4sAf0OE
www.bvbinfo.com

4.2. AN SSO-MDP FOR A BEACH VOLLEYBALL SET 171

be used to calculate the winning probability of Germany in the tie-game which results in

~ (af, e
(1 - af@l,)? — ol a6l 67
N (0.3372)?
~ (1 — 0.6369 - 0.6628)2 —0.3372 - 0.6369 - 0.6628 - 0.3631

P
va, b

= 0.4029,

The variables ocf » ﬁf » ag and ﬂg are computed according to the formulas of Subsection 4.2.3. This
result means that if Germany starts with a serve at a score of 19 : 19, the probability that Germany
achieves a lead of 2 points and wins the tie-game is 40.29%. The value vf , €an be used as a terminal

reward in state (19, 19, P, 1) of the regular game, and vfb, which equals 0.5328, as a terminal reward
in state (19,19, Q, 1). With this modification the regular game is a finite MDP and can be solved by
dynamic programming.? By dynamic programming, it follows that Germany has a probability of 40.8%
for winning a set if the set starts with a serve of Germany and a winning probability of 44.66% if the set
starts with a serve of Brazil. Following these computational results of the set-SSO-MDP, one would
suggest that it has been more likely that Brazil wins the Olympic final. However, Germany has won the
match. So, the question may arise whether these findings tell something about the model-validity? A
major challenge of sport-strategy optimization is that each match or set is just one realization of the
random process. It may be the case, that the model maps the dynamics of the match well, and in the long
run Germany will only win around 43% of the sets, but in the small sample of 3 sets, it may nevertheless
be that the Germans win 2 of 3 sets and become Olympic Champions. However, it may also be the case,
that the model does not reflect reality well enough.

However, the main purpose of sport-strategy optimization is to give strategic recommendations,
and the absolute winning probability is not the most important information. It may be more valuable
information to know which strategy from a given set of strategies has the highest winning probability
and is relatively the best strategy. Given a set of strategies together with the transition probabilities
Pa paand p, for each strategy z in the serving and the field attack situation, it is easy to evaluate which
strategy is the best. One only needs to calculate the winning probability of each strategy, like it was
done for the final strategy, and compare them to each other. The strategy with the highest winning
probability is the best strategy compared to the other strategies. Alternatively, even easier, it is enough
to calculate the aggregated probability for the next point of each strategy, which is zxi b and compare

those values to each other. According to Theorem 4.2.3, the strategy with the largest ocZ , 1s the strategy
with the highest winning probability.

The difficulty of giving a strategic recommendation using this set-SSO-MDP does not lie in the
evaluation of a strategy. However, it is much more difficult to estimate the correct transition probabilities
of a particular strategy. The transition probabilities in the set-SSO-MDP depend on both teams, since,
e.g., ata field attack, the quality of the hit of the attacking team, and the defending skills of the opponent
team affect whether the attack is a direct point, a fault or is successfully defended. Due to the dependence
on the opponent team, the transition probabilities should be estimated only from rallies of matches
between the teams under investigation. However, the number of matches between the same teams

3Formally, also the artificial actions in the absorbing state have to be removed to make the SSO-MDP a finite-horizon
MDP. The absorbing states L and 77 have to be changed to terminal states with a terminal reward of 0.

172 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

during a season or a particular tournament is not high. For example at the Olympic games 2012 in
London, Brink-Reckermann did not face Alison-Emanuel before the final match.

Nevertheless, assume it should be compared whether it is better for Germany to play at high risk or
to play safe. Let risky be a strategy that is characterized by jump serves into border fields in the serving
situation and smashes into border fields in field attack situations. On the other hand, the strategy safe
should be characterized by float serves and planned shots both towards non-border fields.

The final is used to estimate the transition probabilities of the different serving and field attack
strategies. After classifying all serves and field attacks of the final, 1 risky serve of Germany and 38 safe
serves are counted. Compared to the total number of 55 serves of Germany in the final match, 16 serves
could not be classified as 7isky or safe. Serves cannot be classified as 7isky or safe if a jump-serve is played
in a non-border field or a float serve into a border field. In the field attack situation, only 23 of 70 field
attacks could be classified. A field attack can not be classified if a smash is played in a non-border field
or a planned shot into a border field. Table 4.3 summarizes the estimation results of the transition
probabilities for the strategies 7isky and safe based on the final match. The number of observations got
smaller for estimating transition probabilities according to defined strategies. If the number of strategies
increases or the strategies are characterized by more specific criteria, the number of observations will
become even smaller.

Transition probabilities based on the final match

strategy # o pe Fmg # pﬁg ld fﬁdd
risky-risky 1 0% 0% 12 42% 25%
risky-safe 1 0% 0% 11 64% 9%
safe-risky 38 3% 0% 12 42% 25%
safe-safe 3832 3% 0% 11 64% 9%

Table 4.3: Estimated transition probabilities from the final match

Nevertheless, given the estimated transition probabilities for 7isky and safe in the serving and
the field attack situation, Theorem 4.2.3 can be applied to compute an optimal decision rule. The
strategy safe-safe generates the largest aggregated probability of winning the next point, which is a.” forafe
Therefore, according to Theorem 4.2.3, it is optimal to play throughout the whole set floats serves
and planned shots into non-border fields, which is the characterization of safe-safe. If the winning
probability of each strategy combination is computed by dynamic programming, the resulting values
confirm our findings of Theorem 4.2.3. All estimated transition probabilities and winning probabilities
are summarized in Table 4.4.

It is remarkable that the winning probability of the optimal strategy safe-safe is markedly greater
than 50%. The actual played final strategy final has only a winning probability of 43%. Both strategies
are evaluated against the same opponent. So, the model suggests that choosing the right strategy can
make the difference on who wins the match more likely. It is impossible to test whether Germany would
have won the final match more clearly if they had played safe-safe. Moreover, even if it would be possible
to reproduce the Olympic final and let Germany play safe-safe against the Brazilians in London, several
sets are needed to get a proper sample size. In any case, the findings should always be combined with

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 173

Based on rally records of final match

- ld —field L
strategy a-b # pi p # p/ze p/zf ai , Wwinning Prob

risky-risky 1 0% 0% 12 42% 25% 31% 21%

risky-safe I 0% 0% 11 64% 9% 38% 82%

safe-risky 38 3% 0% 12 42% 25% 33% 25%

safe-safe 38 3% 0% 11 64% 9% 39% 85%

final 55 2% 4% 70 4% 17% 34% 43%
qxerve ?EVUE # qﬁeld éﬁgld

final 56 4% 14% 73 55% 16%

Table 4.4: Comparing strategies against the final strategy of Brazil

expert knowledge to confirm the results or to reject them as an artifact.

The question may arise whether it is possible to give such a strategic recommendation prior to the
final match. As mentioned above, due to the dependence of the transition probabilities on both teams,
matches between Brink-Reckermann and Alison-Emanuel apriori the final would have been needed. A
way out could be to classify other teams participating at the Olympic games according to their similarity
to the Brazilian team. With such a proceeding it could be possible to use the pre-final matches and get a
more significant number of observations.

The general problem of this rough set-SSO-MDDP is to find data that suites to the analyzed strategies.
The more is captured by the transition probabilities, the more properties must be fulfilled such that a
match can be used as an information base to estimate transition probabilities. However, the advantage
of this rough SSO-MDP is that it is easy to determine an optimal decision rule or to compute the
winning probability of a particular decision rule.

4.3 An SSO-MDP for a Beach Volleyball Rally

This section defines a second infinite-horizon, stationary SSO-MDDP for beach volleyball. This time
the model captures only a beach volleyball rally instead of a complete set. The presented model in
this section is identical to the g-MDP presented in the manuscript Hoffmeister and Rambau (2017b).
However, the system dynamic and strategy definition are presented in more detail. The motivation for
the very technical description is that the rally-SSO-MDP could be reimplemented by the reader.

Let again P and Q be the teams participating in the match. P and P, should be the players of
team P; Q1 and @, the players of team Q. As before, team P is the team whose playing strategy shall
be optimized, whereas team Q is the uncontrolled opposing team. As in the set-SSO-MDP, team P is
the decision-making team, and the behavior of team Q is part of the system disturbance and included
in the transition probabilities. However, the model is again built with a symmetric view on team P
and team Q. So, team Q’s action sets will be analogously modeled to the action sets of team P while
team Q plays a fixed probability distribution over the available actions. The transition probabilities are
determined by the randomized choices of Q’s actions and the system disturbances.

174 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

As seen in the last section, if large parts of the game dynamics are included in one transition, it gets
hard to find suitable data for estimating the transition probabilities. This problem can be avoided by
modeling the game mechanism in a rally more explicitly. As a consequence, the transitions decompose
and capture smaller parts of the game mechanism. So, it gets easier to find appropriate data that fits the
considered transition. The focus of the rally-SSO-MDP should be on estimable transition probabilities
while accepting a probably large and complex SSO-MDP. A team action will be split up into two
individual player actions. Moreover, any player action will be defined as a combination of a hit and
a move. The decomposition of a team action into actions of single players will allow building the

SSO-MDP solely on individual player probabilities.

4.3.1 Definition

The decision epochs are modeled as the points in time at which one of the players hits the ball, or the
ball touches the ground. If some player contacts the ball during a blocking action or accidentally with
some part of his body, no decision point should be defined. Each time a decision point occurs, the
current state is observed, and each player has to decide about his next hit and his next movement. The
rally is completed when the ball hits the ground, or a player makes a fault. As it is characteristic for
SSO-MDPs, the rally will end for sure after a finite but undefined number of contacts. The points in
time in a rally, where the state of the system is observed, define the decision epochs 7" = {1,2,3,...}
where # € T is the total number of ball contacts minus the blocking contacts in the rally so far.

The court is divided in a grid as the position of a player relative to the ball is important to determine
which player can perform a hit, and as the absolute position on the court influences the player’s hitting
performance. The grid is presented in Figure 4.6. The exact division of the court was determined by
evaluating the observed data of hits which were used to estimate the individual player skills. As described
in Section 4.3.3, the original data was saved with exact coordinates and made it possible to examine
different divisions of the field. The presented division is the one that was finally used. However, when
considering a match on a different skill level or concerning a different issue, a modification of the grid is
generally possible.

In the following, a function pos(+) is used that returns the position of a player or the ball according
to the specified grid. A state is defined as a combination of several state variables. The complete state
space is factored into constituent variables which are the players’ positions, the ball’s position, a counter
for the number of contacts, the information which player last contacted the ball, a boolean variable that
indicates the hardness of the last hit and the designated blocking player of the defending team for the
next attack. A general formulation of a state is

(pos(Pr), pos(P2), pos(Qr), pos(Q2), pos(ball), counter, lastContact, bardness, blockingPlayer).

Such a description of an MDP is called a factored MDP (Kolobov and Mausam, 2012, Def. 2.22, p. 23).
The constituent variables are also called fearure variables. The domains of the feature variables are

dom(pos(Pr)) = dom(pos(P2)) = {P00, POL,..., P34, P35}
dom(pos(Q1)) = dom(pos(Q>)) = {Q00, Q01,..., 034, 035}
dom(pos(ball)) = {P00, POL, ..., P34, P35, 000, Q01, ..., 034, 035}
dom(counter) = {-1,0,1, 2,3}

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 175

P05 P15 P25 120 Q10 Q00

Q30

P04 P14 P24 g Q21 Q11 E Qo1

()31

P03 P13 P23 &

Q)32

v
)
P32
)33

Q23 Q13 ZQo3

P01 P11 P21 Q24 Q14 EQo4

P31

4m 3.5m

P00 P10 P20 @25 Q15 Q05

035 &= 051
=]

P30

Figure 4.6: Court grid

dom(lastContact) = {Py, P>, Q1, Q2, 0}
dom(bardness) = {bhard, normal, 0}
dom(blockingPlayer) = {P1, P2, Q1, Q2, 0}.

The 0 in the domain sets are used to denote some “null” value. The feature variables counter and
lastContact are needed to implement the three-hits or the double contact rule. The state variable counter
takes values from the set {-1, 0, 1, 2, 3}. The case counter = —1 marks serving states, such that it is
possible to forbid blocking actions on serves. The counter stays —1 if the ball crosses the net after a
serve. This helps to distinguish whether a reception or defense action is available in the action set of the
players of the opposing team. Consequently, if the counter is 0, the ball crossed the net via an attack-hit
performed at the end of a field attack. The state variable lastContact takes values in {Py, P>, Q1, 0>, 0}.
If the ball has just crossed the net or the state is a serving state, a @-sign shows that both players are
allowed to execute the next hit. The boolean state variable hardness indicates the speed of the landing
ball. If hardness = 1, the ball has a high speed, when reaching the field, else the ball has normal speed.
Finally, the state variable blockingPlayer takes values in { Py, P, Q1, Q2, 0} and indicates the designated
blocking player of the currently defending team. It is necessary to save the blockingPlayer in the state
since the decision about the blocking player is made once at the beginning of the opponents attack
plan and then followed for more than one decision epoch. Besides these generic states, the SSO-MDP
contains the absorbing states point and fault which constitute the winning states W = {point} and
losing states L = {faulr}. They are denoted from the perspective of team P.
The serving states of team P are defined as

§5rv = {(P02, P13, 012, 013, P02, -1, 0,0, 0),
(P03, P13, 012, 013, P03, -1, 0, 0, 0),
(P12, P02, Q12, 013, P02, -1, 0, 0, 0),

176 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

category description counter further requirement
§ree receiving state -1 notin §3" U S‘é’”g
st defending state 0
Seet setting state 1
Settack attacking state 2

Table 4.5: State Categories

(P12, P03, 012, Q13, P03, -1, 0,0, 0)},

which are all states where one player of team P is in the serving zone and all other players are on a central
field in their half. As described above, counter = —1in all serving states. Furthermore, there has not been
any contact with the ball before a serve and the hardness is 0 since the ball rests and the opposing team
has not determined the blocking player yet. The serving states S‘é’ ¥ of team Q are defined analogously.
Of course there exist more states which could be considered as serving states, e.g., serving from a corner
which would be field P01. However, the listed states were the most common serving states, we observed
when watching the videos of the beach volleyball tournaments of the Olympic games.

Besides the explicit naming of all serving states, all other states are also divided into four categories of
states. This categorization helps when a decision rule is defined for this huge rally-SSO-MDP. Table 4.5
characterizes all categories of states. All categories are further differentiated according to the team
controlling the ball. So, a state is, e.g. a receiving state for team Q if counter = —1, it is no state in
§37 U 85 and the ball is on team Q’s court side.

The cardinality of the state space S can be computed from the cardinalities of the domains of the
feature variables. It equals 24*- 485535, which is more then 5.9 -10” states. There is a small number
of states in the state space that will not occur in a beach volleyball rally. For example, a combination
of counter = =1 and lastContact # 0 is not meaningful in a rally. The feature variable counter = -1
indicates that it is a serving situation and there should have been no contact by a player before this
serving situation. Later in this section, it will be investigated how many states can be excluded due to
non-meaningful combinations of feature variables.

Actions and Preconditions

The following action sets are defined only for team P. However, as already mentioned before, team Q’s
action sets are defined analogously. In general, a team action consists of a specification of the next
blocking player and two individual player actions. The player actions, in turn, consist of a hit and a
movement. Depending on the current state, the available action sets differ. It is too much effort to
specify the actions available in a state explicitly. Instead, A, is defined as a factored set of feature actions
together with preconditions on the feature actions which implicitly determine 4. Let Z4p be a team
action of team P. It consists of a specification of the blocking player and two player actions:

TAp = (ep, PAp1, PApy).
The blocking player can be an arbitrary player of the team or not be specified, which is denoted by 0:
dom(ey) = {P1, P, 0}.

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 177

The player actions are themselves combinations of a hit with a movement:
PA = (t‘%bmiger; [X—)
The domain space of the feature actions are

dom(techapger) = dom(tech) X dom(targer) x {0}
dom(tech) = {SE, SJ, 7, r, 5, FS, FE, FP, d, d,,,}
dom(target) = {P00, P01, ..., P34, P35, Q00, Q01,..., O34, 035}
dom(w) = {my, mp, My, My, 1y, My, My, e, My, M, My, Mj, b, 0}

An explanation of the abbreviations for the different techniques, which constitute the domain space
of tech, is contained in Table 4.6. The domain space of the target field equals the whole court grid.
The domain space of « contains all player movements. The movements abbreviated with 7 are one-
field movements and the movements with A4 are movements over two fields. The direction of the
movement is specified relative to the net by a subscript letter. The meanings of the subscript letters are:
[= forward, r = right, b = backward and [= left. A blocking b is a special move since it is the only
move which has a precondition. It belongs to the group of movements because a ball possession is not
required to perform a block. All movements are compiled in Table 4.7.

The constitutional variables of a state must satisty preconditions such that a feature action is
available in the actions set of that state. The availability of a hit tech;sy., is independently regulated
from the availability of a movement w through two different precondition functions. Later, functions
are defined that consider the combinations of feature actions.

Let techiger € dom(techzpye:) be a technique combined with a target field, then

precy,, S X dom(techyze:) X {P1, P2, Q1, @2} — {0,1}
(51 tfc}omrget: e) = P”“bi,(f) tec}]tmget) 6)
evaluates whether the hit tech; 4y, is available for player ¢ in s. If precy, (s, techiaper, ¢) = 1, the tech e is
available for player ¢ in s else not. All hitting techniques with their possible target fields and preconditions
are listed in Table 4.6. For an efficient description of the preconditions, a function neighbour(field) is
used that returns the set of all neighboring fields of field according to the grid presented in Figure 4.6

including the field itself. In some states, the available action set of a player contains only the hit “no hit”
which is denoted by 0. Some examples picked from Table 4.6 are:

* A serving action is only allowed if counter = —1. So:

Precy; (5, SFyaer, €) = 0V player g, ¥ target-fields target if counter # —lin s.

* A reception with a move, requires that the ball is in a neighbor field of the player:

P7€Cs; (S, Pomtargers P1) = 1V target-fields target,
if pos(ball) € neighbour(pos(Py)) and counter = —1in s.

178 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

tech target Description Preconditions
counter Position

0 - no hit none none
Serve

SF Q11 — Q24 float serve =-1 pos(e) = pos(ball) € PO1 — P04

S/ ol - Q24 jump serve (hard) =-1 pos(e) = pos(ball) € P01 — P04
Reception

r P11 — P34 receive =-1 pos(ball) = pos(g), s & Sp*e *

Tm P11 - P34 receive with move =-1 pos(e) € neighbour(pos(ball)), pos(¢) # pos(ball), s ¢ S5
Setting

s neighbour(pos(e)) \ (Q,-) set >0 pos(e) = pos(ball)
Actack-Hit

ES 011 — Q24 smash (hard) >1 pos(e) = pos(ball) or pos(¢) + ms = pos(ball)
FE 011 — Q24 emergency shot >1 pos(e) € neighbour(pos(ball))
Fp 011 — Q34 planned shot >0 pos(e) = pos(ball)
Defense

d P11 — P34 defense # -1 pos(ball) = pos(e)

d,, P11 — P34 defense with move # —1 pos(e) € neighbour(pos(ball)), pos(e) # pos(ball)

Table 4.6: Hit specification for player ¢ of team P and ball ball; requires always ¢ # lastContact except
the action no hir

The hitting techniques and preconditions of a player of team Q are defined analogously.

The only movement that has a precondition is the block. It can only be performed if the player
¢ € {1, P,} isin afield close to the net which is a field in {P31,. .., P34}. The precondition function
for movements can be written compactly:

prec,,,.. S X dom(u) X { Py, P, Q1, @2} — {0,1}

() 0 ifp=>bApos(e) ¢ {P3L,..., P34} ins
"-J ol
e 1 else.

All possible movements of team P are listed in Table 4.7. The movements of the players that belong to
team Q are defined analogously.

The model contains rules that restrict the possible combinations of a hit with a move to a player
action as well as restrictions on the combination of two player actions to a team action. Reasons for these
restrictions are general observations in real beach volleyball matches. The conditions are implemented
by functions called combc which evaluate whether a combination of feature actions is allowed. The first
function combcp 4 evaluates a combination of a hit with a movement:

combep 4 : (dom(techpge:) U dom(n)) — {0, 1}
(teChtmget: [U‘) = CO’”bCPA(Z‘“bmgﬂ: ‘Uf)

The combinations for which combcp A(fffbmrget) w) = 0 are:

#Forbids that a rally is started by a receive; is needed in the system dynamic to update counter.

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 179

Symbol Specification Description Requirements
0 - stay none
m b, b bL LI move one field none
M frnbl move two fields none
b block pos(e) € {P31,..., P34}, counter # —1

Table 4.7: Move specification for ¢ belonging to team P

1. Ifa player makes a real hit, i.e., a hit that is not “no hit” (0), only a one-field movement is allowed
(due to timing reasons):

If techamer # O A 0 € { My, My, My, My} = combep 4(techiapges, p) = 0.

2. Ifaplayer makesahit thatincludes ajump, i.e., ajump serve or a smash, only a one-field movement
in forward direction (i.e., towards the net) is allowed to follow:

If tech € {S], FS} A & {myg, 0} = combep 4(techzper, 1) = 0.

3. If the hit requires a movement before executing the hit, no additional movement afterwards is
allowed:

If tech € {7, d} N # O = combep 4(techigger, 1) = 0,
If tech = FE A pos(ball) # pos(e) A e # 0 = combeps(tech amer,) = 0.

Furthermore, a restriction on the combination of player actions is incorporated into the model
through the function

combery : (dom(PApy) U dom(PApy)) — {0, 1}
(PAp1, PApy) — comber(PApy, PApy).

The model contains only one restriction on the combination of player actions: If two player actions are
combined to a team action, only one player may make a real hit:

If techm,gg[# Qof PAp; A z‘ec/am,ggt # O of PApy = comber(PApy, PApy) = 0.

Furthermore, there exists a precondition when the designated blocking player ¢, of the team action
may have a value unequal 0. From the perspective of team P: Only if team P is the defending team and
not in possession of the ball, i.e., if side(pos(ball)) = Q, the designated blocking player ¢;, of the team
action can be P; or P,. This holds analogously for a team action of team Q.

Team actions that themselves or whose player actions do not follow these rules are not available in
the model - for both teams. Further conceivable restrictions could be easily implemented in the model
whenever they only depend on the current state.

180 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

Transition Functions

The transition probabilities are determined by a transition function that is also decomposed into smaller
probabilistic effects. This subsection uses a lot of notation and case distinctions to specify the transition
probabilities in detail. The following might be very technical and difficult to read, however, it is necessary
such that the rally-SSO-MDP can be implemented.

The transition function gets a state s and a feasible team action T4p € A, of team P and a feasible
team action Z4p € A’; of the opponent team. Even if the opponent team is a part of the environment,
a team action of the opponent team can be selected according to the fixed policy of team Q. The team
action T4y of the opponent can be viewed as a disturbance that is incorporated in the transitions. The
output of the transition function f7ans is a probability distribution P(S) over the set of states:

trans : SX A; X A’y — P(S)
(5;, TAp, TAQ) g l‘?‘ﬂnf(st, TAp, TAQ).

The resulting probability distribution is derived from smaller probabilistic effects of the feature actions
on the domain variables. In general, a conditional probability distribution specifies the probabilistic
effect of a feature action on specific domain variables.

Example 4.1 (Conditional probability distribution):

For illustration, a short example of a probabilistic effect of a feature action is described: Consider the
feature action tech ye; which is a hitting technique with a specified target field. Under the condi-
tion that tec/am,ga is performed by player P; of team P (abbreviated by tecbm,get € PAp;) from field
field = pos(Py) in the current state s and the opponent’s team action does not include a blocking action
(abbreviated by b ¢ TAp), the probability that the domain variable pos(ball) equals target in the next
state is determined by the individual success probability of the hitting player P;:

P {po;(ball) = target|tech e € PApy, field = pos(Py), b ¢ TAQ} = Psuce,p; fleld, techm@g[) -

A decomposition in probabilistic effects only works if the decomposed effects are independent.
If there exists a correlation between the effects of several feature actions, one would have to specify
a joint conditional probability distribution for that set of correlated feature actions. However, this
rally-SSO-MDP is designed on the basis of, so-called, individual player skills which are assumed to be
independent probabilistic effects. So, the decomposition of the transition probabilities into smaller
probabilistic effects is beneficial.

This definition of the transition probabilities is similar to that used by the Relational dynamic
influence diagram language (RDDL), described in Sanner (2010). In an RDDL-representation, for each
action and each domain variable, a conditional probability distribution over the values of that variable
in the next state is specified. This representation is useful if many objects evolve independently and
simultaneously.

In the following, a list of all probabilities on which the independent probabilistic effects are based
is presented. These probabilities are required as input probabilities for the rally-SSO-MDDP. As they
depend only on the skills of a single player, they are called individual player skills.

Assume, for each player ¢ being on any position field and for each hitting technique tech;zy; the
success probability

Psucce (field, z‘ec/o,ﬂw[) = P(post“(ball) = taryet | field, techm,get)

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 181

is known. It is the probability that the specified target field zarger from ¢’s position is met. In the
notation used above, the terms field and teclomwt show the dependence the player’s position and the hit
he uses. The probability is time-independent. The 7 on the right-hand side of the last equation is only
used to indicate that pos”(ball) is the position of the ball in the subsequent state.

Similar, assume for each player ¢ using any hit tecbm,ggt from any position field the probability of an
execution fault

Dfauee (feld, tecbm,gg,) = P(s* 1= Jault | field, techm,get)

is known. An execution fault includes hits where the ball is not correctly hit such that the referee
terminates the rally with a fault for the hitting player. For serves and attack-hits an execution fault also
includes that the ball is hit into the net. In addition to a successful hit and an execution fault, the model
also contains the possibility of a “nearly successful hit” or a deviation. A deviation is a hit that lands in a
neighbor field of the target field. Of course, the deviation can result in an outside-field if the original
target field is a border field. The remaining probability

1 = Psucce (ﬁé‘ld, fefhm;get) — Pfaslrg (ﬁé‘ld, fefbtmget) =: Pdevye (ﬁeld; t“htmget)

is the probability that the ball lands in a neighboring field of the target field. It is assumed that each
neighboring field of the target field is equally probable.

For the defending techniques 7, 7,,, 4 and d,,,, it is also distinguished between a reception or defense
of a hard and a normal ball. So, for those techniques, the individual player probabilities do also depend
on the hardness of the ball in the current state. Since this dependence does not apply to all types of hits,
itis denoted in brackets, i.e., Py, (post (e), techiamer, [/mrdnesy]).

Furthermore, assume that the blocking skills of each player are known. The parameter p, piock
denotes the probability that player ¢ touches the ball when performing the block & against an adequate
attack-hit from the opponent’s side of the court. The probability p, 1 is independent of the skills of the
attacking player and should be measured against an average attack hit. There are three possible outcomes
of a blocking player who gets the ball. The block can be strong such that it is impossible for the opposing
team to defend the returned ball, and the blocking team wins the rally. This probability is denoted by
Pe,block,poins- Furthermore, the block can result in a fault with probability p, pioct, funir- This happens if the
ball is blocked into the net and cannot be regained or the blocking player touches the net, which is an
execution fault. None of the above happens with probability p, pisck,ok = Pe,block—Pe,block,point—Pe,block, fasir-
This is called an “ok”-block, and the ball lands in a random field on the court. It is assumed that each
field on both sides of the net is equally probable. The probability that the blocking player fails to get
his hands on the ball is defined as p, s biock := 1 = pgpiock- In this case, the direction of the ball and its
landing field is not affected by the block. In total, the blocking probabilities are

pg,no block T+ pg,block,point + pg,bloc/e,ﬁmlt + Pg,black,ok =1L

P o, block

182 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

After having specified all input probabilities, it is explained how the independent decomposed effects
are combined, and the next state is determined. The transition function is defined as a decomposition
of three functions:

trans(s;, TAp, TAg) = (transge, © transyjoe © transy)(s;, TAp, TAg)

with
transp;; 2 SX AX A — SXAXA X POS)
transpipe : SXAX A XPES) — SxXAXA XPOS)
transjy : SXAXA XPES) — POS).

In the function declaration above, S is the state set, .4 is the set of all team actions of team P, A’
the set of all team actions of team Q and P(S) the set of all probability distribution over S. As the
names of the transition functions suggest, the #7475y, captures the probabilistic effect related to the
hitting skills and #74nsp,., the probabilistic effect related to the blocking skills. The #7ans,,, function
includes all deterministic transitions that follow from the results of t7ansy,;, and transy,q, like, e.g., the
new player-positions or increments of the counter. The final result is a probability distribution over the
set of states. The intermediate probability distributions may be coarse probability distributions, i.e.,
they only assign probabilities to sets of states. However, in each function, the probability distribution
becomes more and more detailed such that at the end a probability is defined for each state. The original
state and the team actions are also passed to the next function such that the necessary information for
the transition is available in each of the three functions.

The first probabilistic effect comes through the hitting skills into the system dynamics and specifies
the ball’s next position. The resulting probability distribution consists of four sets, which are named S,
Sdevs Stuudr A0 Spoins. These are the only sets to which a probability greater than zero may be assigned.
The state set Sz, will either consists only of the state fault or the state point. It no hitting player exists
or the hitting player is of team P, S, := {fault}. If the hitting player is of team Q, S, := {point}.
Accordingly, the set Sy, contains the point or fanlt. In contrast to the absorbing states faxlt and point,
which are defined from the perspective of team P, the sets Syyns and Sg; are always defined from the
perspective of the hitting team. The state set S, and S, may contain a large number of possible
subsequent states. However, they may also be empty. In the following, it is explained how these sets are
defined and which probabilities are assigned to them.

Assume that one of the team-actions 74p or T4 contains a real hit tecbm,get ande¢ € {P, P>, 1, O»}
is the hitting player. As only feasible team actions are considered, there is — due to the preconditions
and the combination conditions — at most one player who is hitting the ball. The function #7ans,;, first
checks the double-contact-rule and the four-hits-rule. This means, if lastContact = ¢ or counter = 3 in
the current state, the resulting probability distribution regarding the subsequent state s;4; is

P{st+1 € Sguar} := L

In this case, the sets S, and Sy, are not further specified and empty sets, and the probability of all
other sets different from Sg,,; is zero.

If no rule is violated, the probability distribution over the state sets Sy, Suey and Sz is defined
according to the individual skills of ¢:

Seuce := {5011 € S| pos"™ (ball) = target in 5,41}

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 183

P{sr41 € Ssucc | epla}’s tefhtmget} = Psucce (Po-ft(é’)) tffhtmget: [bﬂrd”af]) 5

Sier = {5141 €S| pof“(bﬂll) € neighbour(target) \ {target} in s;41}
P{st41 € Sgev | epla}’s tefhtmget} = Pdev,e (POS[(Q’), fffhtmget: [hardness]) 5

P{s:+1 € Sgaute | ¢ plays techiuger} = Plante,e (p05'(e)s teChramer, [hardness]) .

The parameters pos’(¢) and hardness are the domain variables of the current state 5;. Observe, that S
respectively S, contain quite a number of states since besides pos(ball) no other domain variable is
specified. In the state set Sz, the position of the ball may be any neighbor field of the target field but
not the target field itself. The dependency of the individual player skills on the hardness of the ball in
the current state is denoted in brackets and applies only to receptions and defenses.

If neither 74p nor TAg contains a real hit either Syyin; Or gy is assigned a probability of 1 depending
on the current position of the ball and the last contact. As an abbreviation for ball is on Team P's side of
the net the term pos(ball) € side(P) is used. Furthermore, pos(ball) € out denotes that the ball is in an
outside field. With this abbreviations, the outcome of #74#nsj,;; when no player is hitting can be specified
as:

1 if pos(ball) € out A lastContact € {Py, P>},
P{sr+1 € Sguir | nobody hits } = §1 if pos(ball) ¢ out A pos(ball) € side(P),

0 else,
1 if pos(ball) € out N lastContact € {Q1, 01},
P{st41 € Spoins | nobody hits } =1 if pos(ball) ¢ out A pos(ball) € side(Q),

0 else.

In this case, all other sets are empty and have zero probability.

All cases related to a potential hitting action were now considered. The outcome of transy,; is a
definition of the state sets Sy, Sievs Sganir and Spoins together with a specified probability assigned to
each of the sets. Asin the next step the probabilities of these sets are redefined, it is denoted by Py, {-}
the probability distribution defined by 7ansy;,.

In the next step, this probability distribution is further refined by the function zransyj,. As a
blocking action is classified as a movement, there may be more than one player who blocks. Observe
that the domain variable blockingPlayer does not pretend the blocking player, its only purpose is that a
team can specify a defense strategy that relies on the same designated blocking player over more than
one decision epoch. For all players that perform a blocking action, it is evaluated in the first step whether
their block may have an impact on the ball. A block must be performed in a field at a net to have an
impact. This is satisfied by all blocking player as only feasible team actions are considered. Also, the
blocking player has to face the hitting player. So, if the hitting player ¢ is in field Péj [Q7] on the court,
the blocking player ¢, must be on the opposed side of the net in field Q3(5 — ;) [P3(5 —)]. The function
blockMayHavelmpact specifies this condition on the block by using the current state s, and the current
positions of the hitting player ¢ and the blocking player ¢,

1 col(pos’(e)) = col(pos‘(ep)) A side(pos’(e)) # side(pos’(ep))

blockMayHavelmpact(s,, ¢, ep) =
0 else.

184 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

The function col(field) does return the second index variable of a field according to numbering in the
grid. The only case where the block of two players may have an impact at the same time is when both
players are positioned in the same field at the net facing the hitting player. In this case, the blocking
skills of the two players are mixed with a factor 0.5 which can be interpreted as if every player comes to
a block with a probability of 0.5. In the following, assume g;, is the only blocking player who may be, in
the case that two players blocking in the same field, imagined as an artificial player with the combined
skills of both players.

The blocking skills of player g, are used to further specify the probability distribution. With
probability pg, 4o biock the blocking player g, misses the ball and the flight trajectory of the ball does
not change. Therefore, the probability of Sy and S, is multiplied with p,, ., sioce- The result is the
probability that the hit is successful (respectively a deviation) and the balls flight trajectory was not
changed by the block:

P{JHI € Sma} = Ptmmhi,{fﬂ—l € S:mc} 'p,gb,no block>

IE»{5t+1 € Sdev} =]P)tmmhi,{-ft-%—l € Sdeu} 'ng,,no block-

The blocking player makes with probability p,, sioct, poins @ block that can not be successtully defended.
This results in a direct point for the blocking team which is a fault for the hitting team. So, the probability
of Stz is updated by:

P{-fz‘+1 € S_ﬁmlt} ::Ptmmbi,{ft+l € S_ﬁmlt} + (szm;ﬂ-,{'ft+l € Smw} + Ptrﬂmbit{5t+l € Sdev}) 'pgb,bloc/e,paint-

The blocking team makes a fault and the hitting team gains a point if the block is a bad block. A bad
block hits the ball into the net or into an outside field. Also the block may be executed in a forbidden
way such that the referee indicates a fault which may happen if, e.g., the blocking player touches the net.
So, the probability of the state set Sy;x; is updated by

P{s;41 € Spoim‘} = szmhi,{fﬁl € Spoint} + (Ptmm;ﬂ-[{-"tﬂ € Soucct + Pz‘mmb,‘f{5z‘+1 € Sdfv}) * Pey, block,fanlr-

Due to the blocking action, a new set of states with a positive probability arises. If a block is neither a
point nor a fault but the ball is blocked, it is called an ok-block. As it is not distinguish between different
blocking directions, the resulting field from an ok-block is just a random field of the court without the
outside fields. Define S,.,,,; := {s € S| pos(ball) € {P11... P34, Q11... Q34}}, then

IED{Jz‘+1 € Smnd} = (Ptramhi,{5t+l € Smcr} + Pmm_rhi,{-ft+1 € Sdev}) 'pgb,bloc/e,ale-

The reader may observe that the probabilities of all specified sets still sum up to 1. If there is no player
that performs a block that may have an impact on the ball, the p,, 4, pioct is set to 1and in doing so the
probabilities of Syycc, Syevs Stuuls and Sy, stay unchanged.

There is another edge case that is treated appropriately: If the result of the hitting action was for
sure a state in Sz, the blocking action does not change this already completed rally. Namely, in this
case Pryng,, {5r41 € Ssuccy and Py, {5141 € Sgev} is zero, such that the modification with the blocking
skills has no impact.

After the probabilistic effects of hits and blocks are incorporated into the model, the t7ans,,, function
evaluates all remaining transitions. Since the potential subsequent states are compiled in sets Stuule> Ssuces

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 185

Sdev and 8,4, all remaining transitions are deterministic — conditioned by the set in which the states
are contained. The #7ans,4,, function includes transitions that determine the new players’ positions and
the values of the domain variables counter, lastContact, hardness and blockingPlayer. It first reduces
the state sets Sy, Sgep and S, to states that have values according to the deterministic transitions
and then specifies the final probability distribution. In the following, it is explained, which values the
domain variables of states in Sy, S 4., or S,,,4 should have:

A movement which is not a block is no probabilistic effect since it is assumed to be always successful.
As the list of all possible outcomes of movements starting from different fields is very long, an auxiliary
function

makeStep : { P00, POL, ..., Q34, 035} X dom(u) — {P00, POL,..., O34, O35}
(field,, p) > field,

is defined. It returns the field field, resulting from a movement w starting from field, . Field field, is
selected according to the grid presented in Figure 4.6 and the specified direction in . For example,

makeStep(P21, myr) = P32 and makeStep(Q33, M) = Q13.

If a movement goes beyond the fields specified in the grid, the last field in the desired direction is
returned. To distinguish between positions in the current state s, and positions in the subsequent state
St+1, pos” is used for the current position and pos” * for the positions belonging to the subsequent state
sr+1. For all states remaining in Sy, Sgey OF Syn4, it should hold for the position of the non-hitting

player e:
pos' +1(6) = makeStep(pos’ (), 12,)-

For the hitting player, the step starts at the old position of the ball. This is relevant as hits like 7, or d,,,
contain movements prior to the hit. So, the new position of the hitting player ¢ is

pos () = makeStep(pos' (ball), Le)-

If no real hit is contained in the team actions, the sets S, and S, are already empty. So, assume
player ¢ performs a real hit techyge;. Then, from the sets Sq and Sg,, all states with lastContact = ¢
are selected. Furthermore, only states where the counter is incremented in a correct way, stay in the set
Suce and S, Depending on the hitting technique, it is distinguished whether the ball crossed the net
after a serve or a field attack. In the first case, only states with counter = —1 may stay in the sets, in the
latter case only states with counter = 0. If the ball did not cross the net, the counter is incremented by
1. However, after a receiving situation, the counter is set from —1 to 1. The following table gives an
overview over the described new values of counter:

side(post“(bozll)) # side(pos’ (ball))? tech counter'*!
yes € {S], SF} -1
yes ¢ {SJ, SF} 0
no € {7) Vm} 1

no ¢ {r,rn} lastContact’ +1

186 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

The set 8,4 is handled similar: If no adequate blocking action is contained in the team actions, the
set S,,n4 is empty. Assume there exists an adequate block executed by player ¢;. Let 5, be the current
state of the rally-SSO-MDP which was passed to the #7ans function. Then, all states 5,41 € S,,,7 with
lastContact = ¢, and counter = 1 are selected by transg,, it the ball was played over the net, i.e., if
side(pos™ (ball)) # side(pos*(ball)). This is the case when the blocking player has touched the ball
and maybe changed the ball’s flight trajectory, but the ball crossed the net. If side(pos'™(ball)) =
side(pos* (ball)), all states with lastContact = O and counter = 0 may remain in the set S,,,4. This
corresponds to the case, when the ball is blocked back to the attacking team’s side. The following table,
characterizes all combinations of counter and lastContact that remain in the state set S,,,,4:

side(pos’(ball)) # side(pos'(ball))? counter'™! lastContact™™!

yes 1 eb
no 0 0

At this point, we see that it is not possible to evaluate the #74#s,4,, function prio to the other transition
functions. Depending on the considered set, the values of the deterministic domain variables differ. For
example, if the ball crossed the net after a field attack, it depends on whether the state is from §,,,,,4 or
S,uee U S, to determine the last contact.

Finally, the parameters hardness and blockingPlayer are determined and all states in 4, S;ec and
Siev that contain other values are removed. If the hitting player executed a smash FS or a jump serve S/,
the domain variable bardness is set to hard and otherwise to normal:

hard if tech € {FS, SJ}

normal else.

bardness = {

If the team action of the defending team specifies a new designated blocking player, i.e., ¢ is
unequal to 0, the domain variable blockingPlayer is set to that player. If the ball changes the courtside,
the blockingPlayer is automatically reset to (.

In the last step trans,., specifies the final probability distribution. For each state s in each state set
Se {Ssuce» Sdev> Stauits Spoint> Srand} the probability is computed as

1 . ~
P{s;y1 =5|s€ 8} := {ISl W’“bzo[k{ }

0 else.

For all other states, not being in any of the sets, the probability is set to zero. Observe that this is the first
probability distribution that specifies a probability for each single state. After the elimination of states
in these sets by the t7ans4,, function, the intersection of the sets Syce; Sevr Stanits Spoint> Srand 1s empty.
So, the probability of each subsequent state is well defined. Furthermore, all probabilities sum up to 1.

The reward structure of the SSO-MDP is defined according to the definition: All transitions have
zero rewards except the transition to the state point, which has reward 1.

The presented SSO-MDP satisfies Assumption 3.2.1: For hits in a beach volleyball match, it is
reasonable to assume that pz.1 (field, z‘c‘c/om,ggt) > 0 holds. Since an execution fault directly leads to a
fault, the SSO-MDP assumption follows if Pant,e (ﬁeld, techmwt) > 0 holds for all hits.

SIn the special case of two player blocking in the same field, the set S,,,,,; may contain all states where lastContact equals

one of both players.

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 187

However, this is only mainly supported by the data presented in Subsection 4.3.3. For example,
the float serves of Julius Brinks estimated from observations of the final have a zero fault probability,
compare Table A.1. In comparison in Table 4.12, the fault probability of a float serve of Julius Brink is
greater than zero. This supports the statement that pg, (field, tecbm,gﬁ) > 0 is reasonable for hits in
a beach volleyball rally if the estimates are based on a large enough number of observations.

4.3.2 Defining a Decision Rule

In an SSO-MDP, an optimal stationary policy is defined by a decision rule. A decision rule specifies
for each state a probability distribution over the set of available actions, see Definition 2.1.2. In large
MDPs with a large number of states, it may get complicated to specify a probability distribution for
each state explicitly. Furthermore, when different decision rules should be compared, it may be hard to
overlook the differences between the decision rules under considerations. Nevertheless, a specification
of a probability distribution for the next action choice in each state is necessary to be able to compare
different decision rules.

Assume, different serving techniques (float serve versus jump serve) and different techniques for
a field attack (smash versus shot) should be compared in the rally-SSO-MDP. A simple approach for
specifying decision rules that allow comparing those techniques is:

* In states where a choice between the hitting techniques under considerations is made, specify a
probability distribution that represents the decision rule under investigation.

* In all other states, choose evenly distributed an arbitrary action from the set of available actions.

If the rally-SSO-MDDP is simulated over 1000 sets using such a decision rule, the characteristics of the
resulting rallies do not match those observed from a real beach volleyball rally. In a simulation® of the
rally-SSO-MDP with real skill estimates but using the described decision rule, the average number of
field attacks of one team in a set is 2.6 with a standard deviation of 1.5. These numbers are too low in
comparison with statistics of real beach volleyball matches. For instance, Giatsis and Panagiotis collected
data of 118 sets from the first 2003 FIVB men’s beach volleyball tournament in Rhodes, Greece and got
on average around 40 attacks per team for a match with two sets (Giatsis and Panagiotis, 2008). Another
example is the match recap of the Olympic Games Gold Medal Match of 2012, where 64 attacks by
Germany and 74 by Brazil were made over 3 sets (Database, 2018). So, a decision rule that just uniformly
randomizes over the set of available actions provides too little coordination between the players and
also bad positioning on the field such that services cannot be received or field attack attempts are poorly
coordinated.

Having these observations in mind, a concept was parametrized basic decision rule developed. It
should be a trade-off between guaranteeing reasonable play dynamics and focusing on the differences of
the decision rules under consideration. First, the concept of a basic decision rule is explained which is
afterward extended by a parametrization.

The basic decision rule is a decision rule that specifies a probability distribution over the set of
available actions so precisely such that the characteristics of a beach volleyball set are kept. It should
exclude unrealistic and non-optimal combinations of player actions. At the same time, the decision rule

6Screenshots of the simulation can be found in Appendix B and the simulation itself in the supplementary material

provided in Appendix E.

188 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

tries to be as less specific as possible. This is ensured by choosing the actions equally distributed over
the set of reasonable actions. In the rally-SSO-MDP, the hit 7o hbit and the move stay were included
such that in each state it is possible that both players do nothing. It is assumed, that this default action,
which is always available in 4}, is included in R; if no other action is considered as reasonable. With this
assumption, the basic decision rule can be defined as follows:

Definition 4.3.1 (Basic decision rule).
Let R; € A, be a set of reasonable actions with |R;| > 0. Then, the basic decision rule with regard to
R, is defined as

dbmic 8- ‘P(Rs))

1
5 g0 () st qag(a) = R

Al

In the rally-SSO-MDP, each state is classified according to the categories: serving state, receiving
state, defending state, setting state or attacking state, see Table 4.5. The defined basic decision rule
for the rally-SSO-MDP selects a team action of the reasonable action set. The reasonable action sets
are based on the class of the state, see Appendix C for more details on the basic decision rule of the
rally-SSO-MDP. There is one change in the basic decision rule in comparison to the basic decision rule
used in Hoffmeister and Rambau (2017b). After a serve the hitting player makes a one-field movement
towards the net. This modification is reasonable from a practitioner’s view and yields a slightly better fit
to the realized probabilities, which can be seen in the next subsection.

If the rally-SSO-MDP is again simulated over 1000 sets using the same skill estimates, but this time
the basic decision rule as specified in Appendix C, the average number of field attacks per team per set is
31 with a standard deviation of 6. This number fits better to the statistics from real matches presented
above. It may be a bit too large, which could be a hint that the players are too well coordinated.

The reader may ask whether a basic decision rule and the preconditions on the available actions
could be combined. The answer is that preconditions contain negative characteristics of actions which
restrict the set of available actions while the basic decision rule specifies positive characteristics of actions
that should be chosen in each state with a positive probability. Of course, it would be possible to exclude
in the preconditions all actions that are not positively characterized in the basic decision rule. However,
this would be an unfavorable way.

A parametrization of the basic decision rule is included in states where the question of decision plays
arole. At those states, a parameter modifies the uniform distribution. However, still, only reasonable
actions may be chosen. If the question of interest is a binary decision like, e.g., a float serve or a jump
serve, a border field or a non-border field, the parametrization can be implemented by using a single
parameter in [0, 1]. The following definition specifies what is considered as a binary parametrization of
the basic decision rule:

Definition 4.3.2 (Binary parametrization of the basic decision rule).
Consider a basic decision rule dj,,; with R, being the set of reasonable actions in state s € S. A binary
question specifies two distinguished subsets R and R? of R, with R,' > 0and R;> > 0 that each

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 189

contain one variant of the binary property under consideration. Then, a binary parametrization of the
basic decision rule is implemented by a single parameter # € [0, 1]:

Lr ifae R

IR}
qd(J)(d) = IIZZI ifae RJZ
0 else.

Definition 4.3.2 specifies a valid probability distribution over R;: For each z € R, it holds g,(,)(«) > 0

and
2. " _
Z qa(a) = Z qgas)(a) + Z qd»(@) = |R;] | R1| IR |R2| b

a€R; a€R! acR?

Observe that if R U R;> = R, holds, the basic decision rule can be regained by setting 7 =
is noted in the following observation:

Proposition 4.3.3:

Let dyygic be the basic decision rule with regard to the reasonable action sets R, s € S. Let R and R? be
a partition of R; that is parametrized by w € [0, 1] according to Definition 4.3.2.

. _ IR

Then, setting w = R

Proor. Since R,! and R,? are a partition of R;, for each 2 € R; it either holds z € R} ora € Rf‘.
Assume, a4 € R} holds. Then,

(l—lR—‘zl) 2 1
qag@) = L IRIZIRE__IR] 1
© IR IR R |R|-[R] IR
Assume, 2 € R? holds. Then,
IR,
qa(s)(a) = R __IRA 1
@)=

|R2| |R|- IR R
So, the resulting probability distribution corresponds to that of the basic decision rule. m

Similar to the example question in the set-SSO-MDDP of Section 4.2, the following set of example
questions has been implemented in the rally-SSO-MDP by binary parameterizations of the basic decision
rule:

* Should player 2 or player 1 be the blocking player? ()
* Should a float serve or a jump serve be performed by player ¢? (ff’”"h(g))

h,tec

* Should the service be made towards a non-border field or a border field by player ¢? (ﬂJ””:[4(8))

* Should a shot or a smash be performed by player ¢ (7rﬁ)

190 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

* Should the field attack be made towards a non-border field or a border field by player ¢? (W/ZSZZ 4(8))

* Should the service be made on opponent player 2 or opponent player 1? (7)

The parameters used for modeling the questions are specified in brackets behind the corresponding
question. Let for each question, R! always be the set of reasonable actions for which the property first
mentioned in the question holds. As a mnemonic, this is for questions regarding a hitting situation
always the safer opportunity. According to Definition 4.3.2, the value of the binary parameter equals
the probability of the more risky opportunity for hitting decisions. For example,

parameter value

(=)

h
e 1)
e (Py)
Tyl PY)
e\ F2)
e (Py)
W]Z ﬁgld(P 2)

s

—_ = O O = = O O

=)

is a parametrization of the basic decision rule, where player 2 is always the blocking player, both players
use a float serve towards a non-border field and a smash towards a border field, and a service is made
always on the opponent player 2.

As in the example questions, it may happen that several binary question concern the same states.
(4 erve H H H
,(P1) and 7 el ,(P1) both concern states where player Py is serving. A simultane-

For instance, 7:‘1’:’”
), tec

ous implementation of binary questions is defined as a straight forward generalization of the binary
parametrization:

Definition 4.3.4 (Simultaneous binary parametrization of the basic decision rule).
Consider the basic decision rule d,,; with regard to the reasonable action sets R;, s € S.

Assume 7 binary question that concern the same state 5 in S. Each binary question i € {1,..., n}
specifies two distinguished subsets R,'(7) and R;*(7) of R, each containing a variant of the binary prop-
erty under consideration such that |R,}()| > 0 and |R*(¢)| > 0 holds. Then, a simultaneous binary
parametrization of the basic decision rule is implemented by 7 parameters #; € [0,1], i € [n] :=
{1,..., n} as follows: For each 2 € A, define an index set /, C [#] such that

_Jo if3i: a¢ R()Aag R(D)
Jai= {ﬂi:aeR}(z’){i} else.
Using that index set /,,, the basic decision rule is defined as
[ies, (0=) - Tiepapy, 7
INics, R 0 Niepuyy, R

q4s)(a) =

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 191

for a with J, # 0 and else as g,(,(a) = 0.

Analogously to a single binary parametrization, we can convince ourselves that the specified probabilities
defines a probability distribution over R;: All specified probabilities are non-negative and we have

2 94

a€R;
~ Z Z [Tie/Q = 7)) - [iepupy 7
Jcln 4€R, : |mi€] Rxl(i) N ﬂie[n]\] sz(i)’

a€R,\(i), Vie]
A a€R(i), Vie[n]\J

=> [Ja=-m-] =

JElnl | €] i€[nl\J

= > A[]a=-m- [m@-m)+m)
J<ln-1] [i€/ i€[n-1]\J

= Z l_[(l - Wi) : l_[i
Jelnm11 | ie/ ieln-11V/

= =(l-m)+m =1

In the case of simultaneous binary parametrization, it is also possible to regain the basic decision
rule if all questions 7 partition the complete set R, into Rland R>.

Proposition 4.3.5:

Let dyysic be the basic decision rule with regard to the reasonable action sets R, s € S. Let Ri) and

R2(i) be partitions of R, according ro question i, i € {1,..., n}. Assume n parameters m; € [0,1], i €

(7] :={L,..., n} that simultaneously parametrize the basic decision rule according to Definition 4.3.4.
Then, choosing for all i € [n] the parameter w; such that

o1 RAG) N Nyeponys R
l_[(l_Wi)' 1—[Wi:lﬂ 7 R N Niepapy R@)

ie] i€[n]\J IRl

regains the basic decision rule.
ProoOF. Letbe an action in R,. Since all questions partition the complete set R;, there must exist a

J € [n] witha € R'(i), Vi € Janda € R*(i), Vi € [n] \ /. Define #; according to the proposition.
Then the probability of action z is

q4()(a)
_ Hiej(l — i) - nie[n]\] i
|mz‘ej Rsl(i) N ﬂz’e[n]\j sz(i)|

192 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

_|ﬂiej RA(@) O Niepuy RO ' 1
|R5| |miej Rxl(i) N mie[n]\/ sz(i)|
_ 1
IR’
which is equivalent to the probability under the basic decision rule. n

Note, that a simultaneous parametrization of binary questions can be used to model a non-binary
question.

In Appendix C, the basic decision rule used for the rally-SSO-MDP is specified together with a
parametrization of the decision questions presented above. Looking at the reasonable action sets and
the parameterizations in Appendix C, it is observed that each binary question splits the set of reasonable
actions in two equally large sets. Also, in serving states, where two binary questions simultaneously
apply, each intersection of subsets is equally large. In this particular case, it is possible to set 7r; to 3 for
all binary questions 7 and the basic decision rule is regained.

Observation 4.3.6:
Assume the setting of Proposition 4.3.5 with the additional property that

ArROn) R =|R'On () RXD)|, VI < [nl
i€ i€[n]\J i)’ i€[n]\J’

Then, setting w; = % Jor all i € [n] regains the basic decision rule.

Proor. Since R,'(7)and R,*(7) for each iisa partition of R;, the intersections ;¢ 5 R;l(i)ﬂﬂie[n]v R2(d)
ofall / C [n] also form a partition of R;. Since all intersections are equally large, they must contain
exactly (%)n - |R,| elements. By setting 7; = % forall i € [n], we get

1\ (1\" |R, o7 R 0 Nyepop s R2G
[Ta-m-[] m:(z) :(5) .:R:JQEJ (>|Rf?euv ()
ie/ ielnl\y g :

and by Proposition 4.3.5 the resulting probability distribution for this parameter values regains the
basic decision rule. n

In the field attack situation, where also two binary questions simultaneously apply, the intersections
of subsets are not equally large. This can be seen in the implementation of the basic decision rule in
Listing C.14. The possible target fields of a planned shot include — in contrast to the smash — the fields
directly at the net. Therefore, the number of reasonable border/non-border fields for a planned shot
differs from the number of reasonable border/non-border fields of a smash. However, the parameter

W/foih(])l) can be set to 0.4 and W‘Z;Zld(Pl) to 0.5 such that the requirement of Proposition 4.3.5 is

satisfied. So, for the example questions, the basic decision rule equals:

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 193

parameter value Describes probability that...

T 0.5 ...player1isblocking.
n'Z’;ifb(Pl) 0.5 ...player 1 makes ajump serve.
71";%”2 4P1) 05 ...player 1aims with his serve into a border field.
Wfoib(Pl) 0.4 ...player 1 makes a smash.
ﬂJZjZ[4P 0.5 .. player 1 aims with his attack into a border field.

e (Py) 0.5 ...player 2 makesajump serve.

b, tec
wfj’é’e"[,P2) 0.5 ...player 2 aims with his serve into a border field.
W/Zifih(])z) 0.4 ...player 2 makes a smash.

Wijéfl J(P2) 0.5 ...player 2 aims with his attack into a border field.

w5 0.5 ...itis served on opponent player 1.
Table 4.8: Parameters settings for regaining basic decision rule

4.3.3 Application to a Match

The rally-SSO-MDP should be applied to the beach volleyball tournament of the Olympic games
2012 in London. Analogously to the set-SSO-MDP the goal is to give the German team a strategic
recommendation for the final match.

The input data for the rally-SSO-MDP are the individual player skills described in Subsection 4.3.1.
Since the tournament lies in the past, only existing video material from the tournament can be used to
estimate the player skills of both teams. In general, this is not the preferred way to determine the players’
skills. The advantage of individual player skills is that they only depend on an individual player and not
on other players participating in a match. So, it is possible to estimate them from individual training
sessions. However, in the given situation, where no direct contact to the teams exists, it is at least also
possible to use all videos of the pre-final matches of both teams to estimate the individual player skills.

Data Collection

All videos of matches of Brink-Reckermann have been evaluated to give a strategic recommendation for
the German team Brink-Reckermann regarding the Olympic final. The opponent team in the Olympic
final were the Brazilians Alison and Emanuel. The matches of the Brazilian players were evaluated too
to get an estimate of their skills. In total six matches for each team plus the Olympic final have been
analyzed.

The data was extracted from publicly available video material of the Olympics channel” on YouTube.
The videos cover almost all matches completely. Only five to ten rallies were not covered or not recog-
nizable on the video material available on YouTube.

7https://www.youtube.com/user/olympic

https://www.youtube.com/user/olympic

194 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

A special software, called Beach Volleyball Tracker, was developed by Ronan Richter, a student
assistant, for an easier annotation and data processing. The Beach Volleyball Tracker is a JavaScript
application that runs in a browser. Figure 4.7 presents the interface used for the annotation of the
videos. On the left half of the screen, the user can load and watch a video. There are different options for
controlling the playback speed. On the right half of the screen, a sketch of the court is presented. The
user can record the positions of the players or the ball by clicking on the corresponding points of the
court sketch. In the lower half, there are options to classify hits according to the rally-SSO-MDP. Finally,
the outcome of the hit or block can be specified. With some experience and the use of short-cuts, around
1.5 times the real match time is needed to analyze one match for one of the teams. The annotation of
the 13 videos (6 pre-final matches for each team plus the final match) was done in several iterations and
with the support of Ronan Richter and Fabian Buck, who is a sports student with practical experience

in beach volleyball.

® © ® () Beachvolleyball Tracker X e

<« C | @ localhost:8888 a % @ & 3
BeachVolleyball Tracker
Video mode YouTube mode Live mode Collected data Evaluation Collect s-MDP data Evaluate s-MDP data

Datei auswéhlen GER_BR-B...ale.mpd Choose Player: Player 1 Player 2

Tracked Team - Opponent

P 20:26 / 1:23:45 - o) * I &

Playback speed:

GoBack10s | GoBack5s = GoBack2s

Video second: GoTo

Float Serve Jump Serve Smash Emergency Shot Planned Shot

Defense Reception Set Block hard
o]

Success Deviation Fault Reset Delete last data

good Bleck ok block bad block no black

Figure 4.7: Beach Volleyball Tracker — User Interface

For estimating the individual player skills, each execution of a hitting technique zech has been
classified according to the rally-SSO-MDP. An estimate of the blocking skills is required for the transition
function of the rally-SSO-MDP. Therefore, also all blocks were annotated. By definition, a block is a

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 195

move and no hit and has other possible outcomes than a hit.
For a single event, which may be a hit, a hitting attempt or a block, the following data is saved

time stamp, pos,, y)(Pl)’ pos,, 5 (P2), hitting player, tech, hardness, poséx}y)(ball), pwf;/)(ball), @.

The first value is a time stamp containing the second of the video at which the event occurred. The
function pos) € [-0.5, 1.5] describes the position of an object (player or ball) on the court regarding
relative coordinates. The upper left corner has the relative coordinates (0, 0) and the lower right corner
the coordinates (1, 1). Since the ball may also be outside the border lines, there are also values less than 0
and greater than 1 possible. At this stage, coordinates and no field names were used to be able to change
the definition of the court grid. If the court grid changed for some reason, the collected data could be
evaluated according to the new court grid. The Beach Volleyball Tracker is designed for evaluating one
team at a time. Therefore a whole data stream, like in Figure 4.8, is collected for one team only. Assume
the data stream belongs to a team P. In one observation, the position of the players P1 and P2 of the
observed team is saved, and by bitting player € {1, 2}, it is denoted which of the two players performed
the hit. The hitting technique or block is denoted by tech € {S/, SF, FS, FE, FP, 7, 1, 5, d, d, b}. The
variable bardness indicates whether the ball was played hard or normal when arriving at poszx)y)(lmll).

The information about the hardness of the ball is important for receiving and defending actions. In the
rally-SSO-MDP, different receiving [defending] skills are used for modeling the reception [defense]

of hard and normal balls. Finally, the resulting position pmf;;)(ball) of the ball is saved as well as the

outcome w of the hit or the block. In a training session, it would be possible to obtain information
about the player’s target position. In a video recording of a real match, we do not have that information.
However, we inferred that no player would on purpose hit the ball into an outside field. So, every hit
that landed in an outside field has been marked with the outcome w = dewv. All other hits that are no
Jault have been marked as succ. Through this simplification, the deviation rate is lower as if the target
fields were known, while the success rate is higher. However, the system dynamics of the simulation
tool presented later have been adapted to that issue. The outcome of a block is different from a hit and
either a block-point, block-fault, block-ok or noblock.

Figure 4.8 shows a small data example that was collected with the Beach Volleyball Tracker. All
collected data was saved in a text file. This text file is called the raw data file of the rally-SSO-MDP and
has the extension . gdata in reference to the name the rally-SSO-MDP has in the Two-Scale approach.
In total, this means, we collected 1857 events of the Brazilians Alison and Emanuel and 1635 events of
the Germans Brink and Reckermann including the Olympic final. In the following the raw data of the
rally-SSO-MDP will be called g-data.

Validity of Raw Data

A comparison with available statistics on the Internet is made to check the validity of the collected
g-data. Two sources that contain statistics of the Olympic beach volleyball tournament in London
have been found. One source is from the Fédération International de Volleyball (FIVB) and contains
player- as well as team-statistics of the tournament (Fédération Internationale De Volleyball, 2012b;
Fédération Internationale De Volleyball, 2012a). The other source (Database, 2018) is called Beach
Volleyball Database and includes besides player- and team-statistics also match wise statistics. None of
the found data sources contained positional data. However, parts of the statistics can be compared to
aggregated values of the data collection for the rally-SSO-MDP.

196 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

® O ® /(O Beachvolleyball Tracker x e

< C | @ localhost:8888/data.php a w| O & 3

BeachVolleyball Tracker

Videomode YouTubemode Livemode = Collected data Evaluation Collect s-MDP data Evaluate s-MDP data

At Second P1X P1Y P2X P2y player action hardness fromx fromy tox toy result delete

1229 04391 0322 -00241 06740 2 SF true -00159 06244 07431 08189 success Delete

1233 04432 04133 02530 08189 1 b false 0.4494 04547 05591 07485 okBlock Delete

1237 04536 06161 01517 03926 1 b false 0.6604 06244 00110 05126 noBlock Delete
1

1238 04350 06120 0.0462 0.4216 d false 0.0896 04133 03233 06699 deviation Delete

Save File
Datei auswahlen Keine ausgewanit

Load File # File contains time stamps

clear Data.

Figure 4.8: Beach Volleyball Tracker — Example Data

Although both sources are slightly different, all information contained in both sources is completely

identical. Table 4.9 gives a summary of the information extracted from the Internet statistics that can
be related to data collected for the rally-SSO-MDDP.

Player attacks kills errors services aces service errors
Brink 163 81 0 156 10 16
Reckermann 177 104 0 151 13 23
Alison 123 73 0 170 8 27
Emanuel 254 128 0 164 3 14

Table 4.9: Internet statistics of the Olympic Beach Volleyball Tournament 2012 in London — Final
match included

The corresponding aggregated values of the g-data events were calculated to compare the collected
g-data with the presented statistics from the Internet sources. By using regular expressions as search
strings, this can be done without much overhead. All used search strings aggregate over the different
positions and hitting techniques that belong to a particular class of hits. For example, to compare the
total number of field attacks, it has been searched for all events where a FS, FP or FE was used by a
specified player from any position on the court. Tables 4.10 and 4.11 present the used search strings and
the corresponding number of occurrences in the raw data file regarding field attacks and services.

The collected g-data contains two more attacks (342) of the German team than the Internet statistics
(five more attacks of Brink and three attacks less of Reckermann). For the Brazilian team, we observed
in total eight attacks more. The maximum deviation between the Internet statistics and the collected
g-data is for a single player less than 3.5%.

The number of successful attacks in the collected g-data is of course much higher than the number
of kills denoted in the Internet statistics. A successful attack in terms of the rally-SSO-MDP means the

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 197

S {1)2}1 tech € {FSM;FP,FS}

observed properties o = suce 0 = fards
Searchstring e e;F.x ;e F.*;succ ;e;F.*x;fault
Brink 1 168 150 6
Reckermann 2 174 162 5

Alison 1 127 114 6
Emanuel 2 258 229 12

Table 4.10: Attack Statistic from collected g-data — final match included

hit could be performed successfully and the ball landed in the targeted field. It does, in contrast to a kill,
not include that the opponent team was not able to defend the attack and a point was made. So, the
high number of successful attacks is no contradiction to the small number of kills, and those numbers
should not be compared as they describe different things.

However, the number of attack faults should correspond to the number of errors. An attack fault
in terms of the rally-SSO-MDP means that an execution fault occurred and the ball did not cross the
net. According to the Internet statistics, none of the finalists has made an attack error in the whole
tournament. An example of an attack fault proves that zero attack errors cannot be correct: An attack
error of the Brazilian team can be found in the match Brazil versus Lativa in the second set. Ata standing
of 10 to 9 for Brazil, the Latvian team is serving, Emanuel receives the ball and Alison attacks by a smash.
Alison’s smash goes right into the net and Brazil loses the point. The reader may watch this sequence on
the YouTube video https: //www.youtube . com/watch?v=vKgm9jg2m6c at the 31st minute.’

¢ € {1, 2}, rech € {8, Sr}

observed properties w = succ w = fault w € {fault, dev}
Search string e ;e;8.% ;e;S.*k;succ e;S.k;fault ;e;S.*; (faultldev)
Brink 1 153 137 8 16
Reckermann 2 150 127 10 23

Alison 1 170 143 9 27

Emanuel 2 164 149 10 15

Table 4.11: Serve Statistic from collected g-data — final match included

The total number of serves listed in the g-data is of the same magnitude as stated in the Internet
statistics. For the Brazilians, the number of serves from the Internet statistics is for each player even the
same as the number of observed serves listed in the g-data. The maximum deviation for the number of
serves of the German players is less than 2%. This deviation for the number of serves of the German
players can probably be explained by the fact that there four serves of the German team missing in the

8 As mentioned before, the information is got by an e-mail conversation with the admin of the www.bvbinfo.com
webpage that the number of attack errors was not available for that tournament.

https://www.youtube.com/watch?v=vKgm9jg2m6c
www.bvbinfo.com

198 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

video sequences.

Asin the attack case, the number of successful serves is per definition much larger than the number of
aces. A successful serve in terms of the rally-SSO-MDP means that the serve was successfully performed
and the ball landed in the targeted field. The serve may or may not be successfully received by the
opponent team. So, the number of successful serves includes the number of aces and many more serves.

The number of service errors of the Internet statistic is up to twice as large as the number of
executions faults in the data. The reason for this difference is that a point loss may also occur if the
ball crossed the net but deviated into an outside field. So in general, it must hold that the number of
serves with an outcome w € {succ, dev} is greater or equal than the number of serving errors. In the
particular case of the data collection from video sequences, a deviation was only inferred if the ball
landed in an outside field. So in this case, the number of serving errors should be equal to the number
of observed execution faults plus the number of deviations of all serving techniques. If these values are
compared, it can be seen that the values are nearly equal. Only for Emanuel, we observed one service
error or deviation more than counted in the Internet statistics.

Summarizing this comparison up: There are differences between the collected data and the data
sources available on the Internet. Except for the attack errors, all the differences are relatively small in
comparison to the total number of collected events. For the case of the attack faults, it is known that
there is misinformation in the Internet statistics.

A further check of the collected data was done by comparing them to the collected s-data. For this
purpose, sequences of collected hits in the data were composed to field attack complexes (subsequences
of reception/defence-set-attack hit). The resultis a sequence of services and field attacks. This composing
of hits to field attack complexes is done in the script evaluate-sdata. js that can be found in the
supplementary material of this thesis, see Appendix E. The sequence of services and field attacks has
been compared to the collected s-data of the match. Note, that the g-data file contains only hits of
one team. The constructed sequence of services and field attacks can be compared to the s-data of one
team. Thereby, it has been ensured that both data collections are in perfect synchronization. Of course,
at the beginning, the s-data was not perfectly aligned to the g-data. However, when a difference was
detected by using the evaluate-sdata. js-script, the corresponding rally was watched again and
depending on the situation either the s-data or g-data was changed to the underlying situation. The
resulting sequence of services and field attacks composed from the g-data can be found in the files with
the ending . sprobs.

Evaluation of Raw Data

Asafirststep, the P05) coordinates must be evaluated to determine the corresponding field of the court
grid. For this purpose, the JavaScript file evaluate-gdata. js is used. The court grid, presented in
Figure 4.6, is translated to the following vertical and horizontal lines in terms of the relative coordinates:

vertical lines: 0 0.21875 0.46875 0.5 0.53125 0.78125 1
horizontal lines: 0 0.125 0.5 0.875 1

A JavaScript function finds the lines between which the P95, coordinates lie, from which in
turn the field description can be determined. However, even if seven matches are regarded, not all
combinations of every player positions and target fields appear in the collected data. This is due to the
large number of required input probabilities:

43. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 199

hit
composition hit cross net
serve att a‘(‘,k
receptions defences I Float Serve l I Smash l
Reception Defence Set
without Move without Move
| Jump Serve | Planned
Shot
Reception Defence
with Move with Move
Emergency
Shot

Figure 4.9: Aggregation Scheme

For example, a serve can be played from four different player positions (01 — P04) to eight different
target fields (Q11 — Q24). Together with two different hitting techniques, there exist 64 different service
types for one player. Roughly half of the 1635 events of the Brink-Reckermann team belong to one
player. So, in total around 800 observations per player have been collected. It is likely that there are
combinations with only a few or even no observations.

To overcome this problem at least partially, an aggregation of fields to field categories is made. A
field category is defined as a set of fields that has the same distance to the net. For example, Q21 — 024
is one field category. It is assumed that a player may successfully hit the ball in one of the fields of a
category with the same probability. The absolute number of observations from this aggregation is
stated in the #-column of the Tables 4.12 to 4.18. In Appendix A, the same g-data is presented for each
player with the difference that the observations are split up into events observed in pre-final matches
and events from the final match only.

Especially for the attack hits, there are still some cases with very small or no observed events. An
approach to handle this is to collect more g-data events from matches not belonging to the Olympic
tournament. However, there may still be some cases with no observed events because the player does
not perform this hit due to strategic considerations or individual preferences. As mentioned before,
the best would be to get in touch with the teams and design individual training sessions to collect the
players’ skills. However, in the given situation, a further aggregation is made to get a reasonable amount
of observations per specified hit.

In a first step, the aggregation scheme, which is presented in Figure 4.9, has been defined. The ten
hitting techniques of the rally-SSO-MDDP are described in the inner gray boxes. Similar techniques are
grouped into categories, which are again grouped into larger categories until they become the most
general category, which is just a general hir. For each specified hit and each category of hits, the individual
success [or fault] probability can be estimated by dividing the number of desired events through the
total number of events in that category. This estimation is a common maximum likelihood estimation

200 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

(Mitchell, 2017). Let poucc,e(techiamer), respectively pris o(tech zyge), be that maximum likelihood estima-
tion for a hit of player ¢. Assume, the reasonable number £ € N of observations that is needed as a
minimum to estimate an individual success probability py, is known. Then, for a hit tecbm,gg, with
n < k observations the aggregation works as follows:

Definition 4.3.7 (Aggregated Skill Estimates).

Let k£ € N be the minimum number of observations needed and tech; g be a hit with 7 < k observa-
tions for a player ¢. Let car be the least aggregated category that contains at least £ observations and in-
cludes the observations of the specified hit tech;zye;. The notation pyy. 0(cat), type € {succ, fault, dev}
is used for the maximum likelihood estimate using the number of events in the category cat.

Then, the aggregated skill estimates are defined as

* Prypee(t€Chiaper) + (k= 1) + prype,(cat
Poypee(techiage) := " Popeslehtage) k(") Popestca), type € {succ, fault, dev}.

So, the probability of the specified hit s filled up to & observations with the estimated probability of
the next category that contains at least & events. Finally, the question arises how the minimum number
k for a reasonable estimation is determined. Missing a general concept for this?, several & values were
tested in a simulation of the rally-SSO-MDDP for the data set. The value £ = 11 was determined as the
smallest & for which the results of a rally-SSO-MDP simulation stopped making large jumps.

In Tables 4.12 to 4.18, the skill estimations based on the described aggregation procedure with k£ = 11
are presented. In round brackets, the original maximum likelihood estimation before the aggregation
is denoted. The reader may keep in mind that the presented probabilities do not need to sum up to 1
since the outcome of a hit may be a success, a fault or a deviation. So, the remaining probability is the
probability of a deviation. If the number of observations is zero, it is denoted with “-” that there did not
exist a maximum likelihood estimate before the aggregation. Remember that in the rally-SSO-MDP
serves, smashes and emergency shots may not be played in a target field directly behind the net. The
observations collected in the g-data confirmed this assumption. So the Q31 — Q34 [P31 — P34] column
is empty for services, smashes and emergency shots.

9Krause developed a concept to derive the optimal amount of representative information by optimizing between estimator
convergence and heterogeneity of the data. However, for applying this concept, a distance function would be needed.
Quantification of the similarity of different hits shifts the problem to a new estimation issue.

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 201

Brink
target fields Qu-Qu4 Q21-Q24 Q31-Q34
performance # succ Jfault # succ Jault # succ Sfault
Serve
SE porp 45 091(091) 0.00(0.00) 53 091(0.91) 0.09(0.09) - ; -
S OOt 38 092(0.92) 0.00(0.00) 17 076(0.76) 0.18(018) - - -
Actack-Hit
out 0 088(-) 002(-) 0 08(-) 002(-) - - -
s Pu-Pig 0 088(-) 002(-) 0 08(-) 002(-) - ; -
PaPag 65 0.88(0.88) 0.03(0.03) 21 0.90(0.90) 0.00(0.00) - - -
P3P34 9 0.80(0.78) 0.00(0.00) 3 091(L00) 0.01(0.00) - - -
out 0 071(-) 010(-) 1 074(L00) 0.09(0.00) - - -
g PrPu 0 071(-) 010(-) 1 074(L00) 0.09(0.00) - - -
Par-Pag 8 065(063) 012(0.13) 9 077(0.78) 011(011) - . -
P3i-P4 1 065(0.00) 0.09(0.00) 1 074(L00) 0.09(0.00) - - -
out 0 096(-) 004(-) 0 096() 004(-) 0 09(-) 004(-)
o Pir-Prg 0 09(-) 004(-) 0 09() 004(-) 0 09(-) 004(-)
Pa1-Pag 9 0.99(L00) 0.01(0.00) 35 0.97(0.97) 0.03(0.03) 0 096(-) 0.04(-)
P31-P34 2 097(1L00) 0.03(0.00) 3 088(0.67) 0.12(033) 0 096(-) 0.04(-)
Table 4.12: Input data from all matches: Julius Brink - Serves and Attack-Hits
attack strength normal bard
performance # succ Janlt # suce fault
Defen d 24 0.83(0.83) 0.08(0.08) 23 0.57(0.57) 0.35(0.35)
erense dy 45 0.69(0.69) 0.27(0.27) 29 0.34(0.34) 0.59(0.59)
Recention , 35 0.97(0.97) 0.03(0.03) 10 0.81(0.80) 0.09(0.10)
P - 53 0.94(0.94) 0.02(0.02) 6 0.98(1.00) 0.01(0.00)
Set 5 157 0.99(0.99) 0.00(0.00) - - -
performance # block-point block-ok block-fanlt noblock
Block b 6 0.17 0.17 0.17 0.50

Table 4.13: Input data from all matches: Julius Brink — Defense, Reception, Set, Block

202 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

Reckermann
target fields Qu-Qi4 Q21-Q24 Q31-Q34
performance # succ Jault # succ Janlt # succ Jault
Serve
SE porpo 39 0.82(0.82) 0.00(0.00) 43 093(0.93) 0.05(0.05) - - -
s 44 083(0.83) 0.02(0.02) 27 074(0.74) 0.26(026) - ; -
Attack-Hit
out 0 095(-) 002(-) 0 09(-) 002(-) - - -
s Pi-Pig 0 095(-) 002(-) 0 09(-) 002(-) - - -
PuPag 68 097(0.97) 0.00(0.00) 33 0.88(0.88) 0.06(0.06) - - -
P31-P34 9 099(L00) 0.00(0.00) 3 0.96(L00) 0.01(0.00) - - -
out 0 093(-) 000() 1 094(L00) 0.00(0.00) - - -
5 Pu-Pig 0 093(-) 000(-) 0 09(-) 000(-) - - -
P2r-Pay 7 0.88(0.86) 0.00(0.00) 5 0.96(L00) 0.00(0.00) - - -
P31-P34 0 093(-) 000(-) 1 094(L00) 0.00(0.00) - - -
out 0 089(-) 004(-) 0 08(-) 004(-) 0 08(-) 004(-)
. Pu-Pig 0 08(-) 004(-) 0 08(-) 004(-) 0 08(-) 004(-)
Par-Pag 4 075(050) 0.03(0.00) 33 094(0.94) 0.03(0.03 1 0.90(L00) 0.04(0.00)
P31-P34 0 08(-) 004(-) 8 088(0.8) 010(0.13) 0 089(—) 0.04(-)
Table 4.14: Input data from all matches: Jonas Reckermann — Serves and Attack-Hits
attack strength normal hard
performance # succ fault # succ Jault
Defon d 28 0.86(0.86) 0.07(0.07) 2 0.77(0.50) 0.05 (0.00)
clense dyy 25 0.84(0.84) 0.08(0.08) 1 0.73(0.00) 0.20 (1.00)
Recention r 34 100(L00) 0.00(0.00) 12 0.83(0.83) 0.08(0.08)
p o 75 0.95(0.95) 0.03(0.03) 10 0.81(0.80) 0.09(0.10)
Set 5 152 0.97(0.97) 0.01(0.01) - - -
performance # block-point block-ok block-fanlt noblock
Block b 263 0.11 0.12 0.14 0.63

Table 4.15: Input data from all matches: Jonas Reckermann — Defense, Reception, Set

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 203

Alison
target fields Pu-Pi4 P21-P24 P31-P34
performance # succ Jault # succ Jault # succ Janlt
Serve
SE Qo 51 0.86(0.86) 0.00(0.00) 48 0.96(0.96) 0.04(0.04)
S OLTRO% 52 073(073) 0.06(0.06) 19 0.79(0.79) 0.21(0.21)
Attack-Hit
out 0 088(-) 006(-) 0 08(-) 006(-)
s QrQu 0 088(-) 006(-) 0 08(-) 006(-)
Qu-Qa4 56 091(0.91) 0.04(0.04) 24 0.83(0.83) 0.08(0.08)
QirQi4 9 098(L00) 0.01(0.00) 6 0.77(0.67) 0.21(0.33)
out 0 092(-) 000(-) 0 092(-) 000(-) - ;
o QuQu 1 093(L00) 0.00(0.00) 1 093(L00) 0.00(0.00) - ;
Qu-Qz4 5 087(0.80) 0.00(0.00) 5 0.96(L00) 0.00(0.00) - .
QirQi¢ 0 092(-) 000(-) 1 093(L00) 0.00(0.00) - -
out 0 095(-) 000(-) 0 09(-) 000(-) 0 09(-) 000(-)
o QurQu 0 095(-) 000(-) 0 09(-) 000(-) 0 09(-) 000(-)
QuQa4 2 0.87(0.50) 0.00(0.00) 10 L00(L00) 0.00(0.000 0 095(—) 0.00(-)
Qr-Qi4 2 096(L00) 0.00(0.00) 5 097(L00) 0.00(0.00) 0 095(—) 0.00(-)
Table 4.16: Input data from all matches: Alison Cerutti — Serves and Attack-Hits
attack strength normal hard
performance # succ Jault # succ Jfanlt
Defen d 36 078(0.78) 0.08(0.08) 8 0.46(0.38) 0.21(0.25)
crense dyy 23 0.74(0.74) 0.22(0.22) 7 0.41(0.29) 0.47(0.57)
Recention , 32 0.94(0.94) 0.00(0.00) 6 0.98(1.00) 0.00 (0.00)
P - 4 098(0.98) 0.00(0.00) 1 0.87(0.00) 0.11(1.00)
Set 5 232 0.98(0.98) 0.00(0.00)
performance # block-point block-ok block-fanlt noblock
Block b 303 0.12 0.14 0.14 0.60

Table 4.17: Input data from all matches: Alison Cerutti — Defense, Reception, Set, Block

204 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

Emanuel
target fields Pu-Pry P21-P24 P31-P34
performance # succ Jault # succ Jault # succ Jault
Serve
Sk y 52 0.96(0.96) 0.02(0.02) 53 087(0.87) 011(011) - -
S Qot-Qo4 41 (98(098) 0.00(0.00) 17 076(076) 018(0.18) - -
Artack-Hit
out 0 087(-) 006(-) 0 08(-) 006(-) - ;
e QrQu 0 08(-) 006(-) 0 08(-) 006(-) - -
QurQag 104 090(0.90) 0.03(0.03) 71 080(0.80) 010(010) - ;
QirQz¢ 17 094(0.94) 0.00(0.00) 8 078(0.75) 020(0.25) - -
out 0 100(-) 000(-) 0 1L00(-) 000(-) - ;
e Qs 1 100(L00) 0.00(0.00) ©0 1.00(-) 000(-) - -
QurQz4 14 100(LO0) 0.00(0.00) 5 100(L00) 0.00(0.00) - -
Q31-Qi4 0 100(-) 000(-) 2 1.00(L0O0) 0.00(0.00) - -
out 0 094(-) 000(-) 0 09(-) 000(-) 0 09() 000(-)
o Qs 0 094(-) 000() 0 09(-) 000(-) 0 09() 000(-)
Qar-Q24 5 097(L00) 0.00(0.00) 25 0.92(0.92) 0.00(0.00) 1 0.95(L00) 0.00(0.00)
QirQ34 0 094(—) 000(-) 4 096(L00) 0.00(0.00) 0 094(—) 0.00(-)
Table 4.18: Input data from all matches: Emanuel Rego — Serves and Attack-Hits
attack strength normal hard
performance # succ Jault # succ Jault
Defonse d 29 0.86(0.86) 0.07(0.07) 37 024(024) 0.46(0.46)
dm 54 0.65(0.65) 0.31(0.31) 29 0.34(0.34) 0.45(0.45)
R tion 7 82 0.93(0.93) 0.05 (0.05) 20 0.65 (0.65) 0.05 (0.05)
ecepeo o 75 0.93(0.93) 0.01(0.01) 3 0.95(L00) 0.01(0.00)
Set 5 107 1.00(L00) 0.00(0.00) .
performance # block-point block-ok block-fanlt noblock
Block b 13 0.08 0.38 0.08 0.46

Table 4.19: Input data from all matches: Emanuel Rego — Defense, Reception, Set, Block

4.3.4 Solving the Rally-SSO-MDP

Unless otherwise specified, all computations in this section are made on a standard personal computer
(MacBook Pro with 2.7GHz Intel Core is, 8 GB 1867 MHz DDR3).

In general, SSO-MDPs can be solved by the linear programming formulations presented in Sec-
tion 3.5. In the dual LP for SSO-MDPs formulation, there exist one constraint for each state and a
variable for each state-action pair.

A straightforward approach to solve the rally-SSO-MDP is to construct the dual or the primal
linear program and solve it by an LP-solver. For this purpose, a list of all states is needed. As a Java-

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 205

implementation of the rally-SSO-MDP was already available from a simulation of the rally-SSO-MDP*°,
a Java-program was used for constructing the linear program. The Java-implementation contains Java-
classes or Enums for each feature variable of a state. By iterating over all combinations of values of
feature variables, an enumeration of all states was attempted. After generating around 4 millions of
states, an “out of memory overflow” error occurred. The Java Garbage Collection limit was exceeded.
This error means that more than 98 % of the total time has been spent on garbage collection and less
than 2 % of the heap is recovered. So, even if the application would run further, the progress would be
too small. The default maximum heap size of a Java application is 1 GB.(Java SE 6 HotSpot[tm] Virtual
Machine Garbage Collection Tuning) Certainly, there exist other programming languages which could
perform better. However, most likely it is also not possible to enumerate all states of the rally-SSO-MDP
in a different programming language.

As mentioned in Subsection 4.3.1, there are some states of the rally-SSO-MDP that can be excluded
from the state space due to beach volleyball rules that forbid them. The following rules describe
restrictions of the state space due to beach volleyball specific characteristics. The factor behind each
characteristic estimates the proportion of the remaining states of the original state space.

* Iterate only over blocking players that are not from the team who will perform the next hit.

(factor %)
* For counter = —1, set lastContact = O, blockingPlayer = 0 and hardness = (. (factor <
1 1y _ 101
1-50- %)= 15)

* For counter = 0, set lastContact = (. (factor < 1 — —(1 %)

By using the described rules, the state space can be shrunken at maximum to 2 of the complete state
space. When comparing the number of states at which the Garbage Collection limit was exceeded
the state space needs to be shrunken to s of it. So, even if one or two more characteristics of beach
volleyball that exclude states can be found, probably the remaining number of states will not be small
enough.

In the rally-SSO-MDP, there exists a basic decision rule that guarantees a reasonable game flow, see
Section 4.3.2. In each state, the basic decision rule uniformly selects an action under all reasonable actions.
Under the assumption that the basic decision rule excludes only actions that are dominated by other
actions, it might be justifiable to determine an optimal policy that uses only reasonable actions. This
idea is only beneficial if the restriction to reasonable actions shrinks the set of reached states significantly.
For getting more insights, a simulation procedure is used that determines the number of distinct states
that occurred in a simulation run.

The results of the simulation procedure are presented in Table 4.20. The number of new explored
states relative to the increase in the number of simulated rallies decreases. The absolute number of
generated states does not stop to increase. However, the number of visited states under the basic decision
rule is significantly smaller that than the total state space (factor 107¢). Since the number of explored
states under the basic decision rule seems not to reach a steady level of states, it is not clear which states
cannot be reached under the basic decision rule.

°The simulation can be found in the supplementary material provided in Appendix E. It is used in the context of the
two-scale approach in next chapter.

206 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

#rallies | # generated states milli sec. %
10 44 16 -
100 365 46 3.57
1000 1813 169 161
10000 7122 653 0.59
50000 18098 2567 0.27
100000 | 29314 2986 0.22
500000 54539 13234 0.06
1000000 | 77946 29198 0.05
5000000 | 124454 507146 0.01

Table 4.20: Generated state space by basic decision rule

These computational experiences show that algorithm that needs to enumerate all states are not
suitable for solving the rally-SSO-MDP. Simulation-based approaches, like reinforcement learning,
could be one way to tackle the rally-SSO-MDP. Reinforcement learning belongs to the area of machine-
learning and tries to find an optimal policy in an environment. This environment of a reinforcement
learning problem can, for instance, be a large MDP.

In general, simulation-based approaches must weigh up exploiting what is known to maximize
immediate rewards against exploring new information that may improve future performance. There
exist several sampling methods that try to handle this trade-oft: For instance, Thompson sampling, also
called posterior sampling, is a sampling method that can be applied to reinforcement learning (Russo
et al., 2018). It outperforms other sampling methods like greedy-sampling and dithering as it explores
purely understood actions and does not waste too much exploration effort.

When applying Thompson sampling to Markov decision problems, a deep exploration is necessary as
actions may have delayed effects. Osband et al. describes in Osband et al. (2017) an approach that extends
Thompson sampling to deep exploration in the context of reinforcement learning for MDDPs. This
approach is applicable for MDPs with an uncertain horizon in which all policies almost surely terminate
in finite time. This assumption made by Osband et al. is satisfied by SSO-MDDPs, see Theorem 3.4.5. In
contrast to other existing reinforcement learning algorithms that lead to deep exploration in MDPs,
the randomized value function approach of Osband et al. is computationally tractable for huge state
spaces. Furthermore, the proposed method recovers a polynomial regret bound when used with linear
value functions. So, it could be worth to apply a randomized least-squares value iteration algorithm to
approximate an optimal policy of the rally-SSO-MDDP.

Another idea for solving the rally-SSO-MDP is to use a decomposition approach and to generate
variables or constraints dynamically. The advantage would be that not all constraints and variables have
to be listed explicitly in advance. If such a decomposition approach would work well, depends on the
structure of the rally-SSO-MDP.

The rally-SSO-MDP has become so complex and large since the focus during the modeling process
lied on using estimable transition probabilities. An SSO-MDP with this objective for other types of
sports will probably be even more complicated. So, even if it would be possible to solve this particular
rally-SSO-MDP by some problem specific method, it is more desirable to find a solution approach that

4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 207

can tackle arbitrary large SSO-MDPs for different types of sports. In the next chapter such an approach
is presented and called rwo scale approach.

208 CHAPTER 4. APPLICATION TO BEACH VOLLEYBALL

Chapter s

A Two-Scale Approach

The two-scale approach (2-MDP approach) is a general procedure that uses SSO-MDDPs to answer
strategic questions in sports games. It combines two SSO-MDPs of different granularity to benefit
from the particular advantages of each model. In the last chapter, two different SSO-MDPs for beach
volleyball have been introduced. The set-SSO-MDP models a beach volleyball set on a very rough level.
In contrast, the rally-SSO-MDP is a much more detailed model and captures a beach volleyball rally.
Both models have advantages and disadvantages as highlighted in the corresponding sections of the last
chapter. In particular, it was shown that in both models there exist weaknesses when answering a strategic
question prior to a match. The 2-MDP approach is a procedure for overcoming these weaknesses and
answering sport-strategic questions adequately. The introduced pair of beach volleyball SSO-MDPs is a
perfect candidate for the 2-MDP approach to be presented in this chapter. However, this chapter starts
with a general definition of the 2-MDDP approach as this approach is also applicable to other pairs of
SSO-MDDPs. After the general definition, a concrete implementation of the 2-MDP approach using the
beach volleyball SSO-MDPs is given and applied to the Olympic final 2012 in London. The results are
compared to those of Chapter 4 from using a single SSO-MDP. Finally, some new possibilities that
arise from using the 2-MDP approach are presented.

5.1 General Procedure

In Chapter 3, theoretical aspects of SSO-MDPs have been analyzed. Due to modeling decisions, SSO-
MDPs that model a similar strategic question can become very different as shown in the last chapter.
This section focuses on the implications of certain modeling decisions for SSO-MDDs. It starts with a
formal definition of a sport-strategic question. Afterward, advantages and disadvantages of different
model granularities are summarized to motivate the 2-MDP approach. Finally, the s-g-implementation
and the 2-MDP approach are introduced.

s..1 Sport-Strategic Question

The purpose of an SSO-MDP is to answer a sport-strategic question. Sport-strategic questions have
already been formulated in the last chapter in connection with the set-SSO-MDP and the rally-SSO-
MDP. Nevertheless, this section starts with characterizing a sport-strategic question and contains a

209

210 CHAPTER 5. ATWO-SCALE APPROACH

formal definition.

A sport-strategic question should consider a decision that can be made by a coach or player before a
match. The answer should take the opponent team participating in the match into account. Therefore,
the best strategy may be different for different opponents. So, a sport-strategic question is not the
investigation of a general rule or principle that applies against every opponent.

Furthermore, the decision should regard an aspect that can directly and in the short term be
influenced by the team or the player. One example that is not directly and in the short term influenceable
by the players is the expected goal probability from a penalty kick. The team would probably have
to train penalty kicks over several weeks to significantly increase this probability. Capabilities like
turning a penalty kick into a goal are regarded as skills of a team or an individual player. There exist
several papers that examine the importance of different skills (Heiner, Fellingham, and Thomas, 2014;
Miskin, Fellingham, and Florence, 2010) or try to determine how an improvement of a skill effects
the probability of winning a match (Pfeiffer, Zhang, and Hohmann, 2010; Pfeiffer, 2005). However,
a sport-strategic question is considered in the short term prior to a match, and it is assumed that the
skills of all participants in the game can not be changed in that short period. A sport-strategic question
regards decisions that rely on those skills and can be directly put into practice.

Next, a sport-strategic question is formalized. This chapter uses the terminology of a team sport,
but all considerations also apply to individual sports like, e. g., tennis or badminton. Let team P be the
team whose strategy should be optimized and whose winning probability should be maximized while
team Q should be the opponent team in the match under consideration. Both teams are characterized
by a general skill set that is assumed to be fixed for the upcoming game:

Skill(team), team € {P, Q}.

Depending on the strategic question the skill set of a team can be characterized by different parameters.
Most of the time these parameters are probabilities that describe the capabilities of a team.

It is assumed that the number of different playing variants or strategies is finite in a sports game.
This assumption can be justified by the fact that there are finitely many humans participating in a sports
game and their discrimination between different actions is not infinitely accurate. For instance, consider
a serve in a tennis match and let the speed of the ball be the subject of the strategic question. Then, first
of all, there exist a minimum velocity and a maximum velocity the player can perform. Furthermore,
depending on the skills of the player, he can discriminate between several speeds in between. However,
there are only finitely many characteristics between which the player can distinguish deliberately. Also
for a decision considering a line-up or a substitution of a player, the number of possibilities is finite
since the number of players in a team is finite. Let 7 be the finite number of different strategies, which
are denoted by

Strat = {ay, a>, ..., an}.

Furthermore, the sport-strategic question concerns a particular game. The conditions of a game
influence the decision. For example, for outdoor sports games the weather conditions could play a role,
or in tennis, the floor covering of a match influences the decision. All these environmental parameters
that characterize the particular game are summarized in a parameter set Env.

s.. GENERAL PROCEDURE 211

Now, all described parameters can be summed up in a sport-strategic question:

Definition s.1.1 (Sport-Strategic Question).
A sport-strategic question concerns a type of sports and is characterized by

(Env, Skill(P), Skill(Q), Strat),

where

* Env contains the environmental parameters that characterize the special match under consider-
ation.

* Skill(P), Skill(Q) are the skill sets of the teams participating in the match.
* Strat is a set of strategies that can be played by team P.

The sport-strategic question asks which strategy Stzar of team P leads to the highest probability of P
to win the match.

If the winning probability ‘WinProb(-) of each strategy in the match under considerations was
known, the answer could easily be given by evaluating

a" = argmax{ WinProb(a;)}.

a; €EStrat

However, a direct estimation of these winning probabilities from historical data is often not possi-
ble. As defined in the sport-strategic question there are a bunch of parameters that characterize the
regarded match. For a standard maximum likelihood estimation of the strategies’ winning probability
‘WinProb(-), matches are needed where the strategy under consideration is played and which fit to all
the parameters defined in the strategic question. However, in most of the time, a team faces a certain
opponent only once or twice in a certain tournament or season of a league. Furthermore, relying on
matches that lie further in the past is not possible since the skill sets of the teams probably have changed.
There may be new players in a team, or players’ skills may have improved or deteriorated. If the estima-
tion of winning probabilities from historical data gets hard, this is the point where sport-strategy-MDDPs
(SSO-MDPs) can help to evaluate the winning probabilities of the strategies.

s.1.2 Modeling Granularity

For every strategic question, there always exist more than one SSO-MDP that model the subject of
interest in an adequate way. In general, an SSO-MDP replaces the black box covered by the winning
probability of a strategy with a model of the game mechanism. Thereby, the game mechanism can be
modeled on different levels of detail. The more detailed the game mechanism is modeled, the less is
captured by a single transition probability and the more insights into the game mechanisms are required.

The winning probability ‘WinProb(-) of a strategy can be interpreted as an extreme variant of an
SSO-MDP where the complete game is considered as a black box and captured in a single transition.
Such an extreme variant of an SSO-MDP is illustrated in the upper half of Figure 5.1. The other extreme

212 CHAPTER 5. ATWO-SCALE APPROACH

o black box !

s-g-implmentation

Figure s.1: Modeling Decision — Degrees of Detail

is to model every independent random influence by a single transition. Due to the knowledge of the
game mechanisms, it may be possible to identify and model those independent random influences. The
resulting decomposition of a transition probability leads to the fact that a smaller subset of parameters
may influence the decomposed transition. For instance, if the transition describes the outcome of
a shot from a specific position by an individual soccer player, only the skills of that player and the
goalkeeper instead of the whole teams may determine that transition. Of course, also a more detailed
state description is necessary to be able to differentiate between transitions that only depend on a subset
of the parameters of the strategic question. The lower half of Figure s.1illustrates an SSO-MDP with a
higher level of detail for the same sport-strategic question.

As the reader may notice from the illustration of Figure s.1, the described modeling granularity has
an impact on the resulting SSO-MDP. The more detailed the game mechanism is modeled, the larger is
the state and the action space. However, the transition probabilities will depend on fewer parameters,
and therefore, it will be easier to find appropriate data records for estimating the transition probabilities.
At the same time, of course, also a more significant number of different transition probabilities is needed.
In a rough SSO-MDP, the number of states, actions, and required transition probabilities may be very
small, and it may be possible to find an analytical solution for such an SSO-MDDP. However, if there
exists no, or not enough data that fits the parameter setting, the transition probabilities cannot be
estimated, and the analytical solution cannot be evaluated for the match under consideration.

Table 5.1 summarizes the trade off between a rough and a detailed model formulation of an SSO-
MDP.

s.. GENERAL PROCEDURE 213

rough SSO-MDP detailed SSO-MDP

game mechanism black box system dynamics
transition probabilities depend on many parameters depend only on a subset of parameters

size of the SSO-MDP small state and action space large state and action space
appropriate records small estimation basis larger estimation basis

Table s.1: Comparison rough versus detailed SSO-MDP

5..3 The Underlying Idea

The two-scale approach tries to combine the advantages of two different granularity levels to answer
strategic questions. Assume that the same strategic question is modeled by two SSO-MDDPs. One
SSO-MDP is very rough and considered as the strategic MDP (s-MDP). The other SSO-MDP is very
detailed and will be called the gameplay MDP (g-MDP). The g-MDP should be a refined version of
the s-MDP. A mapping between the states and actions of the models must be defined such that both
models can be combined. This mapping is called an s-g-implementation. It will be formally defined in
the next section. In Figure 5.1, an s-g-implementation of the states is illustrated.

Given an s-MDP, a g-MDP and an s-g-implementation regarding a strategic question, the two scale
approach works as follows: The s-g-implementation translates the strategies Stzat that are contained in
the s-MDP to g¢-MDP decision rules. The transition probabilities of the g-MDDP are estimated from
appropriate data records such that the g-MDP can be simulated with the decision rule defined by the
s-g-implementation for a strategy. The simulation is validated by historical data and refined if the
gameplay mechanism is not correctly represented in the g-MDP. The result of a valid g-MDP simulation
is an estimate for the s-MDP transition probabilities. Finally, the s-MDP is solved using the estimated
transition probabilities from the g-MDP simulation. If an analytical solution of the s-MDP can be
determined, it is evaluated with the estimated transition probabilities of the simulation. If no analytical
solution exists, an algorithmic solution of the s-MDP with the estimated transition probabilities needs
to be found. Since the state and action spaces of the s-MDDP are small, a solution calculated, e.g., by
the linear programming formulation of Chapter 3 should not cause many difficulties. The general
procedure of the two-scale approach is illustrated in Figure s.2.

The reader may ask himself what the benefit of the two-scale approach is compared to a single
SSO-MDP. Assume, only the g-MDP is considered to answer a strategic question. Then, of course, a
simulation can be used to determine the winning probability of a g-MDP-strategy. However, even if an
optimal g-MDDP-strategy is identified, this strategy would define an action choice in every state of the
g-MDDP. Due to a large number of different states in a detailed g-MDDP, this optimal g-MDP-strategy
could be challenging to handle and hard to remember for a player. Coming from an s-MDP as in
the two-scale approach, there always exists an initial strategic question and a set of s-MDDP-strategies.
Together with the s-g-implementation, there automatically exists a practical and realizable description
of the optimal g-MDP-strategy. Another drawback from considering only the g-MDP is that solving
the g-MDDP is in general harder than solving the s-MDP.

On the other hand, if only an MDP as rough as the s-MDDP is recognized, an analytical solution
may be found, but probably one runs into troubles when estimating the transition probabilities. As

214 CHAPTER 5. ATWO-SCALE APPROACH

E (Env, Skill(P), Skill(Q), Strat) yat = argmax,, ¢, WinProb(a;)
8
3
o
)
)
8
o
b=
8
,, N
WinProb(a; s-MDDP trans probs
— I .
£ model s-MDP - - argmax, g, WinProb(a;)
= mathematical analysis
5 I
=
2 f bset of
t to a subset of
data data records? L i @ > s-MDP trans probs
w, Skill(P), Skill(Q)
,, N

S validation X X
& model g-MDP simulation
2 I
| @)
3 fi ller subset of imat
s} t to a smaller subset of estimation

data data records g-MDP trans probs

Env, Skill(P), Skill(Q)

Figure s5.2: Two Scale Approach

mentioned before, it could be possible that merely no applicable data to the parameters characterizing
the strategic question can be found. Furthermore, more insights about the sensitivity of an optimal
strategy are possible if an analytical solution of the s-MDP can be enriched with results of the g-MDDP.

After having illustrated and motivated the idea of the two-scale approach, the next section presents
a formalization of the s-g-implementation.

5..4 Formalization

Consider two different SSO-MDPs that model the same strategic question. According to our terminol-
ogy, the coarser model is called strategic MDP (s-MDP), and its parameters are denoted by

(S5, A4, pCls, a)', (s, a), W’, L, s]) .
The second model is called the gameplay MDP (g-MDP) and its parameters are denoted by
(Sg, A8, p(-ls, a)f, r(s, a), W4, L5, ff) .

According to underlying idea of the two-scale approach, the g-MDP is the more detailed model and the
following relation between the state sets needs to hold

|41 > 1S°).

An s-g-implementation describes the relation between the s-MDP and the g-MDP. Consider a
mapping
TS S“f g ng

S 7g(s’) e 88

s.. GENERAL PROCEDURE 215

that maps an s-MDP-state to a set of g-MDP states. The idea behind this function is to map a state 5°
to all states & of the g-MDP that are a refinement of the state s°. Since several states in the g-MDP can
be a refinement of the same s-MDP state, the codomain of the mapping is the powerset of the set of
all ¢-MDP states. The mapping 7 is not surjective since there may be states that have no counterpart
in the s-MDP. However, it will be required that the images of different s-MDP states have no g-MDP
states in common. So, no £ is contained in the image of more than one s-MDP-state. This requirement
expresses that the g-MDP is a refinement and no aggregation of the s-MDP.

Sometimes one is interested in the state 5 € §’ that is a coarsening of a g-MDDP state . Therefore,
the inverse mapping 'rgl is defined as

75 18>S U0
s ifthereexistsan s s.t. 8 € 75(5),
S
0 else.

Since there may exist some g-MDP-states that are no refinement of an s-MDP-state, the codomain of
frgl also contains an artificial element (0. According to the definition of an s-g-implementation presented

below, it is required that the image of 7 satisfies the condition 75(s;) N 75(s2) = O for each pair of
-MDP- S§* with Theref Lisal 1l-defined and can be derived fi

s states 51, 55 € S with sy # 5. Therefore, 7" is always well-defined and can be derived from 7.

The following definition summarizes the conditions for an s-g-implementation:

Definition 5.1.2 (s-g-implementation).
Assume an s-MDP and a g-MDP that are both SSO-MDPs. The mapping 75 : §° — 2% isan s-g-
implementation if

* 75(s1) N 75(s2) = O for each pair of s-MDP-states s1, 5, € &’ with sy # 5.

The definition of an s-g-implementation assures formal correctness of the mapping. However,
by only adhering to that definition, meaningless implementations are still possible. The states can be
mapped in a feasible manner while the available actions and transitions between state pairs could model
different parts of the game mechanism. This is the reason why a second mapping 7 4 that maps s-MDP
actions to g-MDP decision rules is required such that the s-g-implementation becomes meaningful:

In the s-MDP, a transition probability covers a game mechanism which is to some degree explicitly
modeled in the g-MDP. This replacement of a black box by a sequence of transitions must correctly
reproduce the s-MDDP transition probability such that the s-g-implementation is meaningful:

Definition s.1.3 (Meaningful s-g-implementation).
An s-g-implementation 75 : 8 — 2% is meaningful if for every action 4’ € 4 and every state 5] € §*
there exists a g-decision rule #¢ € DR such that

Pl @Y = B Xy € 75(5) | X € 75(5), 75 (Kea) = OVi € {1, k= 1}},
k=1
Vs, €8, reN,

where {X;, r € N} is the induced Markov process under decision rule ¢ in the g-MDP. The mapping
7418 X A — DR srores for each state-action pairs one corresponding decision rules.

216 CHAPTER 5. ATWO-SCALE APPROACH

A meaningful s-g-implementation assures that for every state-action pair (5}, #°) in the s-MDP there
exists a decision rule in the g-MDP that reflects the transitions of the s-MDP in the g-MDP. A transition
(fl, @', 5,) in the ssMDDP may correspond to a sequence of transitions (xf B di’) fg, L) in the g-MDP
with ff € 75(s;) and fi € 75(s)). However, during that sequence of transitions there may only occur
g-MDP states which have no pre-image in &, i.e., 'rgl(ff) = O foralll < i < k. This condition is
necessary such that a g-MDP decision rule combined from the decision rules given by the mapping 7 4
can reflect an s-MDP decision rule.

Algorithm 7 describes how an s-MDP decision rule 4’ can be simulated in the g-MDP by using a
meaningful s-g-implementation. The simulation starts at an image flg € 75(s)) of a predefined starting
state 5;. The s-MDP decision rule 4’ is evaluated in 5] to the first action choice 4. The g-MDP decision
rule 4% is then initialized by the decision rule = ,4(;1‘, a’). After this initialization the algorithm works
as follows: As long as the current state flg of the g¢-MDP is not a winning or a losing state, the system
dynamics of the g-MDDP is evaluated using the decision rule d8. Each time the current state of the
g-MDP has a pre-image in the state space §°, the s-MDP decision rule d* is evaluated to an action choice
' and the g-MDP decision rule d¢ gets updated by 7 4(75'(s}), 2°). The output of the algorithm is a
realization of g-MDP states (:g, e, fgv)

Algorithm 7: Simulate s-MDP decision rule

Data: s-MDP with a decision rule 4* and a starting state 57, g&-MDP, meaningful
s-g-implementation with functions 75, 7 4

Result: (J‘f, e, ng) — a realization of g-MDP states

11— 1;

2 choose flg € 75(5);

3 evaluate &' < d'(s));

4 setd8 «— 7',4(1{, a);

5 while;lg ¢ We U Ifdo

6 i—i+];

- flg — evaluate g-MDP in xf_l using ds;

8 if 'rgl(f) # (then

9 evaluate 4/ «— d’ (7‘51(3‘5));
10 set d «— 7',4(7'51(;‘?), a);
u end

r end

From a realization of the g-MDP generated by Algorithm 7, estimates for the s-MDP transition
probabilities under decision rule *, which may also be a randomized decision rule, can be made. In
Section 2.1, transition probabilities of randomized decision rules are defined as

Pls d9) = " plils a)ga @)

a€A;

Proposition s.1.4 describes how a maximum likelihood estimation for an s-MDP transition probability
P55, d°(s))’ can be made. The function 1,cx used in Proposition 5.1.4 is L if x € X holds and 0 else.
So, the numerator of Proposition 5.1.4 counts how often an image of state s; is directly followed by an

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 217

image of 5} in the g-MDP realization. The denominator counts how often an image of s occurred in
the g-MDP realization.

Proposition s.1.4 (Estimate s-MDP transition probabilities form 2-MDP approach):
Let (ff, e, 6\]) be a realization of a g-MDZP simulation according to Algorithm 7. Furthermore, let
(.flgl) fi e, ffN/) be a subsequence of (fg s fir) that contains all flg but only these of the realization with
7)) # 0.

Then, the transition probability from 5, under use of d' to 5, can be estimated by

iyl

N'-1
Zimt Lopgyms Lop =
P A ~ .

N’-1
L Logg g

When applying the 2-MDP approach to a real match, all transition probabilities are only estimated
and not entirely known. Therefore, Definition s.1.3 may probably not be exactly met by any decision
rule. However, one should keep in mind that the transition probabilities of the s-MDP as well as the
transition probabilities of the g-MDP are only estimates. In the next section, a 2-MDP approach for
beach volleyball is implemented and validated. The result of this validation should be interpreted
together with the estimation accuracy of the transition probabilities.

A 2-MDP approach with a meaningful s-g-implementation opens up new possibilities. Assume
an s-g-implementation is validated on an adequate dataset to be meaningful. If then the SSO-MDPs
are applied to a new data set, where, for instance, only the g-MDP transition probabilities can be well
estimated, the s-g-implementation can be used to derive analytical bounds for the s-MDP transition
probabilities. The described procedure is carried out in (Hoffmeister and Rambau, 2017a) for the
s-MDP approach for beach volleyball present in the next section. However, the derived bounds are not
very tight due to the size of the sets in the co-domains of 75 and 7 4. In this case, a simulation of the
g-MDP is more useful to get estimates of the s-MDP transition probabilities.

5.2 A Two-Scale Approach for Beach Volleyball

This section defines a meaningful s-g-implementation for the set-SSO-MDP and the rally-SSO-MDP
presented in the last chapter. In the second subsection of this section, the s-g-implementation is validated
using data of the beach volleyball tournament at the Olympic games 2012 in London. In Subsection s.2.3,
the strategic question of the set-SSO-MDP is evaluated by the 2-MDP approach. These computational
results are compared to the results presented in the last chapter using only the set-SSO-MDP.

At the end of this section, two new tools for coaches and players are presented that can be gener-
ated with the help of a meaningful s-g-implementation. One tool is called a Skill-Strategy-Score-Card,
see Subsection s.2.5, and should help coaches to decide between two alternative strategies when the
skills of the own players or the performance of the opposing team vary. The other tool is a constant-
sum-matrix-game, see Subsection 5.2.6, that helps to detect patterns of strategy parameters that are
promisingly against a particular opponent team. Without a meaningful s-g-implementation and the
2-MDP approach, it would be hard or even impossible to generate such outputs.

218 CHAPTER 5. ATWO-SCALE APPROACH

s.2.1 Implementation for Beach Volleyball

After having introduced the 2-MDP approach formally, a concrete implementation for beach volleyball
is specified in this subsection. It will be assumed that the reader is familiar with the definitions of the
set-SSO-MDP and the rally-SSO-MDDP presented in Chapter 4.

The set-SSO-MDP is the coarser of the two models and takes, therefore, the role of the strategic
MDP (s-MDP) in the 2-MDP approach. In the following of this subsection the term s-MDP is used as
a synonym for the set-SSO-MDP. In the same way, the rally-SSO-MDDP is considered as the g-MDP in
the two-scale approach implementation of this subsection.

According to the definition of the set-SSO-MDP, the state space of the s-MDP is defined as

S5 — Stie U Sreg
S ={(z k1) |z€{-2,-1,0,1,2}, ke {P,Q}, L € {0,1}},
S8 = {(x, 3,k) | %,y € {0,..., 21} with (x < 19V y < 19), k€ {P,Q}, [€ {0,1}}.

The set S contains 20 states and the state set S of the regular game 1920 states.
The state space of the g-MDP is huge and contains more than 5.9 - 10” states that are of the form

(pos(Py), pos(P2), pos(Qr), pos(Q2), pos(ball), counter, lastContact, bardness, blockingPlayer).

In Subsection 4.3.1in Table 4.5, a categorization of the g-MDP states is defined. The categories partition
the complete state set and each category is distinct such that

S = S}g’rve U Sgrve uUS*®uU quf US“u Satmc/e Uweuy L.

Each state set § € {8, Sdef, goet - gartack } is further differentiated in Sp respectively So regarding
the possession of the ball. For example, s € §™ is a receiving state of team P, i.e., s € S5 if
side(pos(ball)) = P. The state-categories of the g-MDP are used when defining the state mapping
75 of the s-g-implementation.

Having recapitulated the state sets of both SSO-MDDPs, it has become clear that the condition
|S¢] > |8°| is satisfied. For the considered SSO-MDPs define the mapping 75 : §* — 2% as

75(x, 9, P, 1) = S5,
75(x%, % Q1) — ng,
75(x, 3, P, 0) > S
75(x, %, Q,0) = Sgt

Since all state categories are disjoint, the mapping 7 fulfills the condition of an s-g-implementation
according to Definition s.1.2. A field attack state of the s-MDP is mapped by 7 to the state set of setting
states in the g-MDP. This decision comes from the fact that in a reception or defending state it is not
clear whether the ball can be brought under control and the team starts a field attack. The results of the
validation of the s-g-implementation, see Subsection s.2.2, support that decision.

The strategic question which is evaluated by the set-SSO-MDP in Subsection 4.2..5 asks whether a
risky or safe play in a serving situation combined with a 7isky or safe play in the field attack situation

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 219

-MDP ¢ MDP
erve erve eld eld
(37,0 T (0), Wy () 7 ()

Fes £ a8 | m =P e= P, 7
(9, P, 1) basic basic 0.5 (0.5,0.5, 0.4, 0.5) (0.5,0.5, 0.4, 0.5) 0.5
(2, 9, P,) risky risky 0.5 (1,1,1,1) (1,1,1,1) 0.5
@pPl) safe safe 0.5 (0,0,0,0) (0,0,0,0) 0.5
WPl fina final | 002 (0.19,0.04,074,026) (0.24,0.17,0.69,0.33) 027
(o P0) prefinal prefinal | 0.02 (0.39,0.19,0.65,0.39) (0.50,0.36,0.72,0.45) 0.5

s a 7 4(5, a°) ‘) e=0 e=0> s
(%, 90,0 basic basic 0.5 (0.5,0.5,0.4,0.5) (0.5,0.5,0.4,0.5) 0.5
(%900 risky risky 0.5 (1,L,1,1) 11,11 0.5
(%% 0,1 safe safe 0.5 (0,0,0,0) (0,0,0,0) 0.5

(6% 0,0 final final | 096 (0.68,0.16,0.93,0.43) (0.37,0.27,0.81,0.54) 0.35
(6,5 Q1) prefinal prefinal | 096 (0.37,0.18,0.82,0.36) (0.35,0.17,0.86,0.31) 0.5

Table 5.2: Meaningful s-g-implementation 7 4(s°, 4') — =

has the higher winning probability. Besides these two s-MDP actions, which are sometimes also called
strategies, another action, named final, has been investigated in Subsection 4.2.5. The final action
represents the actually played strategy in the final. Similar, to the final action a prefinal action is now
introduced that represents the played strategy in the pre-final matches. For completeness, also a basic
decision rule for the ssMDP is included in the action set. So, the action set of the ss-MDP is

A; = {risky, safe, final, prefinal, basic}

for serving states (5 with / = 1) as well as for field attack states (3 with [= 0).

In contrast, the action sets available in a state of the rally-SSO-MDDP are too large to list them
explicitly. That is why the concept of a parameterized basic decision rule has been introduced in
Subsection 4.3.2. Its purpose is to eliminate unrealistic decision rules. It helps to focus on the strategic
questions raised in Subsection 4.3.2. The parameters of the basic decision rule for the rally-SSO-MDP

are
7rb WY@}"V@ 7r’flt () i
h sit bytech\S sit € {serve, field},
w =7y, T = e B 7 = ’ ,
7r1: ’ (”Z ld) g (7'—1;,;‘1’51;[(6) e €{P, P>}

Table 4.8 presents the parameter settings for a uniform distribution over all reasonable actions. This
parameter setting of the basic decision rule will be called basic. In the following, the mapping 7 4 of a
meaningful s-g-implementation will be defined.

Under the assumption of a meaningful s-g-implementation implementation, there must exist for
every state-action pair (s°, 2’) of the s-MDDP, a decision rule d¢ that reflects the transitions of the s-MDP
in the g-MDP. Table 5.2 presents state-action pairs (s’, #') and a corresponding g-MDP decision rule
w = 7 4(5°, 2') with its parameter settings. The parameters of the basic decision rule basic are those
specified in Table 4.8. The risky action of the s-MDP is implemented in the g-MDP by always choosing

220 CHAPTER 5. ATWO-SCALE APPROACH

the riskier opportunity. So, the parameters (71“;:: v (@), W"Z;;fld(e), ﬂjzetlib(g), WZ;ZZ ,(¢)) areall sec to 1 for
all players ¢ of a team. Analogously, the safe action is mapped to the parameters (0, 0, 0, 0) for all players
¢ of a team.

To describe the played s-MDP actions final and prefinal with adequate parameters of the basic
decision rule, an estimation from the raw data has been made: For this purpose, all services and field
attacks played in the finale match respectively in the pre-final matches have been classified. The classi-
fication has been done by the script evaluate-gdata. js that gets the raw data file . gdata from
the Beach Volleyball Tracker as an input and outputs a file named * . gprobs. csv. The output file
* . gprobs. csv contains the estimated parametrization of the basic decision rule. The script and all
data files can be found in the supplementary material provided in Appendix E. The estimates are the
relative frequencies of a technique or a target field used in the g-data. For instance, Brink has made in
the final match 26 services from which 1landed in a border field and 25 in a non-border field. So, the
parameter of Brink that describes the proportion of serves into a border field is

1
serve —_ ~
m, ,ﬁeld(Pl) =% 0.04.

The counted absolute frequencies are outputted by the script evaluate-gdata. js when the function
calculateStrat (logToConsole) is called with the argument true.

The parameter estimates for the prefinal strategy are based on the g-data files containing all hits
in pre-final matches. As this includes several matches against different opponents, it is not reasonable
to calculate how often a service was made on a certain player of the opponent team. Therefore, the
parameter 7 is set to 0.5 in the g-MDDP strategy prefinal.

Table 5.2 specifies the mapping 7 4(s°,) = #. For simulating an s-MDP decision rule that, e.g.,
consists of a 7isky service and a safe field attack, Algorithm 7 can be applied. It combines the g-MDP
decision rules given by the s-g-implementation 75 and 7 4.

Having specified an s-g-implementation by the mappings 75 and 7 4, it needs to be evaluated
whether the g-MDP decision rules # reflect the s-MDP transitions. Therefore, in the next subsection, a
validation of the s-g-implementation is made to check whether the s-g-implementation is meaningful.

s.2.2 Validating the Implementation

To validate whether the presented s-g-implementation of the last subsection is meaningful, ssMDP
transition probabilities have to be compared with its estimates from a g-MDP simulation. Screenshots of
the used g-MDP simulation can be found in Appendix B and the simulation itself in the supplementary
material provided in Appendix E. The realization of g-MDDP states is generated by Algorithm 7 that
simulates a s-MDP decision rule in the g-MDP. The estimation of the s-MDP transition probabilities
from a realization of g-MDP states is done according to Proposition s.1.4.

However, the “real” s-MDDP transition probabilities are also not known in sports games and must
be estimated too. As described at the beginning of this chapter and visualized in Figure 5.2, appropriate
data records for the s-MDP needs to fulfill a bunch of parameters. In particular, for this implementation
of the 2-MDP approach for beach volleyball, data records must be from a match where the participating
teams are Brink-Reckermann and Alison-Emanuel. This is the case since s-MDP transition probabilities
depend, in contrast to the g-MDP transitions, on the abilities of both teams. So, the only match from
which “real” s-MDP transition probabilities can be estimated is the final match of the Olympic beach

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 221

estimation method

— — eld —field eld —field
b B 0o Toe o Phat Tt T
realized probabilities final 2% 4% 4% 14% 49% 17% 55% 16%

simulating the g-MDDP with

skills of all matches except final 2% 14% 3% 15% 33% 16% 29% 21%
skills of all matches 2% 12% 4% 14% 37% 17% 40% 21%
skills of final only 1% 2% 6% 10% 47% 14% 54% 17%

Table 5.3: Validation of simulated s-MDP transition probabilities

volleyball tournament. The played s-MDP decision rule in the final match uses per definition only
the final action. So, the only possibility to validate the s-g-implementation is to compare estimates of
s-MDP transition probabilities under the final strategy.

The reader may remember that in Subsection 4.2.5 in Table 4.3 also estimates for s-MDP transition
probabilities from the s-data for the isky and safe strategy are presented. However, the observations
used for that estimations are a subset of the observations used for estimating the final strategy. So
validating the s-g-implementation with the 7isky or safe strategy would contain the same but less data
points while the same g-MDP mechanism is used.

Table 5.3 contains all estimates of s-MDP transition probabilities for the final strategy. The first line
contains an estimate based on the realized transitions in the final match. These values are estimated from
the collected s-data and the rounded version of the probability estimates presented in Subsection 4.2.5.

The last three lines of Table 5.3 contain estimates based on realizations of g-MDP states according to
Proposition 5.1.4. The g-MDP was simulated using the decision rule 7, for both teams with different
skill estimates. One estimation is based on 500 simulation runs with each containing 100 rallies. The
different skill estimates have an impact on the probability estimates as the probability presented in
one column varies. The last line of Table 5.3 corresponds to a g&-MDP simulation in which the skills
of all players are only estimated from the final match. So, these skills describe the performance of the
players in the final match. Together with the final strategy, the last line of Table 5.3 is a line with “perfect
knowledge” for the g-MDP. On average, the estimated probabilities of the last line are closest to those
in the first line. The remaining difference can either be justified by the estimation fault of the “real”
s-MDP decision probabilities presented in the first line or by not entirely perfect modeling the game
mechanism in the g-MDP. Most likely it is a mixture of both.

The average absolute difference of the first and the fourth line is 2 percent points. In comparison
when the skills are estimated from the pre-final matches, this average difference is 7.5 percent points.

The reader may ask whether this accuracy is good enough to assume a meaningful s-g-implementation?
The validation results presented in Table 5.3 are of course gone through several iterations of validation
and modifications of the g¢-MDP system dynamics. However, the g-MDP system dynamics were only
adapted if there was a reason for it. For instance, as the data was collected from video sequences and not
in an organized training session, the targeted field of a hit could only be guessed. And as described in
Subsection 4.3.3, a deviation was only counted if the ball landed in an outside field. So, there existed a
reason to adopt the system dynamics of the g-MDP such that a deviation will always lead to an outside

field if the targeted field is a border field.

222 CHAPTER 5. ATWO-SCALE APPROACH

It should be noted that the g-MDP does not contain a general or global fitting parameter. The
use of such a global fitting parameter may be discussed for some reasons. However, in this case, it was
omitted since this could lead to an over-fitting to the final match which is also only one sample case for
validation of the 2-MDP approach.

5.2.3 Answering Strategic Questions

Finally, the 2-MDP approach is applied to the strategic question raised for the s-MDP in Subsection 4.2.5.
It should be evaluated whether high risk or safe play of Germany leads to a higher winning probability.
The ultimate goal is to give a justifiable strategy recommendation prior to the final match.

Asvisualized in Figure 5.2, in the 2-MDP approach, the g-MDP is simulated to generate estimates for
the s-MDP transition probabilities. These s-MDP transition probabilities of different s-MDDP strategies
are then evaluated by using the analytical formula for the s-MDP. The strategy with the highest winning
probability is returned as the recommended strategy.

Skill estimation from pre-final matches

serpe Serve eld —field P ..
strategy a4 p ?, pg pﬁ a,, winning Prob

risky-risky 5% 20% 42% 18% 45% 78%
riskysafe 5% 20% 18% 15% 39% 29%
saferisky 1% 13% 42% 18% 47% 82%
safe-safe 1% 13% 18% 15% 40% 32%
prefinal 2% 16% 33% 16% 44% 68%

erve —serve e —field
A S A
prefinal 2% 12% 27% 19%

(a) pre-final setting

Skill estimation from final match

— eld —field ..
strategy a2 pi*° pfmf p/j p’j ¢ ocf , Wwinning Prob

risky-risky 3% 8% S4% 15% 34% 46%
risky-safe 3% 8% 40% 13% 32% 20%
safe-risky 1% 2% 54% 15% 35% 49%
safesafe 1% 2% 40% 13% 32% 22%
final 1% 2% 47% 13% 34% 36%

q;erve ? erve qﬁeld éﬁ(ild
final 6% 10% 54% 15%

(b) post-final setting

Table s5.4: Estimation of s-MDP probabilities from g-MDP simulation

Table 5.4 contains the estimation results for the s-MDP transition probabilities together with
their winning probabilities. Each estimation was again based on 500 runs with 100 rallies. The 95%-
confidence interval of the g-MDP simulation with 500 batches with 100 runs is smaller than 0.01. As

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 223

the g¢-MDP is itself based on input probabilities, which are the skills of the players, two different types
of simulations were carried out. In the upper half of Table 5.4, the skill estimates are based on pre-final
matches while in the lower half the skills estimates are only based on the final match. So, if the strategic
question shall be answered priori to the final match, the values in the lower half would not be available.
Observe, that according to Theorem 4.2.3 the parameter ocf: , is sufficient to determine an optimal
strategy for the ssMDDP. The winning probability presented in the rightmost column is calculated by
dynamic programming and gives supplementary information. The recommended strategy prior to the
final match is to play safe in the serving situation and risky in the field attack situation. This strategy has
a winning probability of 82% percent.

This strategy is also the recommended strategy a posteriori the final match. However, the winning
probabilities decreased significantly to 49%. The reason for this change may lie in the different skill
estimates used for both teams. The reader may compare the tables in Appendix A that contains for
each player tables with skill estimates based on the final match and skill estimates based on all pre-final
matches. The number of observations for estimating the skills solely from the final match is very small
which can be seen by the values in the #-column of the corresponding table. In cooperation with a team,
there are more reliable methods than analyzing video sequences of matches to estimate the player skills.
For instance, specified training sessions could be designed. In this study, the skill estimations based
on the final were made such that the a priori recommendation could be compared to an a posteriori
recommendation while taking a higher estimation error into account.

Besides these variations in the performance of both teams, also the played strategy of the Brazilians
changed from the pre-final matches to the final match. The differences between the prefinal and the
final strategy of Brazil can be seen in Table 5.2. The proportion of jump serves made by Alison increased
from 37% to 68% and the proportion of field attacks in a border field made by Emanuel increased from
31% to 54%. These are the two most significant differences that may result from the more challenging
opponent Germany.

For completeness, Table 5.4 also contains the estimates for the final and prefinal strategy of Germany.
The estimated values for the final strategy, based on skills of the final match, are generated in the same
setting as those presented in the last line of Table 5.3. The minor differences occur because the values
are generated in a different simulation run. The results show that with the recommended safe-risky
strategy, the winning probabilities of Germany would have been higher.

s.2.4 Comparison of Results

After having answered the strategic question regarding the s-MDP decision rule two times, a comparison
between the approaches will be made in this section. Handling the strategic question only by considering
the set-SSO-MDP, which was done in Subsection 4.2..5, will in the following be called the direct approach.
The results of the direct approach will be compared to those of the 2-MDP approach presented in the
last subsection.

The two approaches are first compared qualitatively, which will be followed by a quantitative
evaluation of the recommendations.

In the setting of this thesis, it is not possible to answer the strategic question prior to the final match
with the direct approach. The reason is that no appropriate data records for the s-MDP exist before the
final match. In contrast, the 2-MDP approach can be evaluated with skill estimates based on pre-final
matches and the strategy safe-risky is reccommended.

224 CHAPTER 5. ATWO-SCALE APPROACH

Obviously, a second SSO-MDP, the g-MDDP, is needed for the 2-MDP approach. The g-MDP
requires knowledge of the game mechanism and has to be validated. A posteriori the final match the
2-MDP approach recommends the same strategy (safe-risky). In contrast, the direct approach evaluates
safe-safe has the best strategy.

For a quantitative comparison, an adequate measurement is needed. Ideally, the final match could
be repeated several times with the two strategy recommendations. The strategy that yields the higher
expected winning probability can then be evaluated as the better recommendation. However, it is
not possible to replay the final match several times. So, another measurement is needed. The final
match is the only match between Brink-Reckermann and Alison-Emanuel, and the only strategies
that were realized in the final match are the final strategies. The final strategy can be described as a
mixture of the 7isky and safe serves respectively field attacks. To measure the correctness of the estimated
probabilities for the risky and the safe strategy, the transition probabilities of the final strategy will be
calculated as a mixture of the estimated probabilities for 7isky and safe. The quantitative measure for
both approaches is then the difference of the result of the mixed strategy probabilities and the realized
transition probabilities of the final match.

Table 5.2 already contains a representation of the final strategy of the g-MDDP as a mixture of the
risky and the safe strategy. For instance, the final strategy played by Brink is a mixture of 39% jump
services and 61% float services, which are the hitting techniques of the risky respectively safe service
strategy.

For the s-MDP, the mixture of risky and safe service respectively field estimates played by the
Germans can be found in Table 4.4. The proportion is specified as the relative amount of risky serves
[field attacks] on all serves [field attacks] that can be classified as 7isky or safe. So, the final-mix played
by Brink-Reckermann is:

1 12
final-mix ,, = i 3% final-mixg,,, = 73~ 52%.
The estimated s-MDP transition probabilities for the 7isky respectively safe strategy are mixed with the
proportion of the final-mix. The resulting s-MDP transition probabilities can be found in Table 5.5b.

Ignoring the fact that the pre-final matches are played against different opponents. All services
and field attacks of the pre-final matches are also classified and estimations for 7isky and safe transition
probabilities based on the pre-final matches are made. The values are presented in Table 5.5a. With
these estimated s-MDP transition probabilities, the direct approach would have recommended playing
safe-risky. This recommendation equals the recommendation of the 2-MDP approach. However, it is
stressed out again that this result is a recommendation based on matches against different opponents.
And therefore, this recommendation does not take into account which team is the opponent team in
the final match.

Table 5.6b finally presents the realized probabilities of the final match together with the estimation
based on a mixture of the 7isky and the safe strategy estimates. This procedure feels a little bit awkward
but is the only way found to evaluate the estimates for the risky and safe strategy. The simulated values
from the g-MDP are the same as already presented in the validation subsection of the g-MDDP, see
Table 5.3. The last column presents the average total difference between the realized probabilities and
the estimated probabilities in the corresponding row. The variations of both approaches lie in the
same magnitude. Only in the pre-final setting, the estimates resulting from the g-MDP simulation are

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 225

Based on pre-final matches

— ld L
strategy 4 #oopee Pt %]/Ze p’j cld afi , winning Prob

a

risky-risky 32 16% 22% 58 66% 17% 37% 77%
riskysafe 32 16% 22% 33 48% 0% 36% 60%
safe-risky 102 4% 9% 58 66% 17% 34% 69%
mﬁ’-mﬁ’ 102 4% 9% 33 48% 0% 32% 50%
prcﬁndl—mix 134 7% 12% 91 59% 1% 34% 65%

qjerve ?JEVW # qﬁeld gﬁdd

prefinal-mix 165 2% 10% 105 S8% 15%

(a) pre-final setting

Based final match

— ld - L
strategya # pi p # p/ze pﬁ cld ai , Wwinning Prob

a

risky-risky 1 0% 0% 12 42% 25% 29% 14%
risky-safe 1 0% 0% 1 64% 9% 34% 73%
safe-risky 38 3% 0% 12 42% 25% 30% 18%
safe-safe 38 3% 0% 11 64% 9% 36% 77%
ﬁmzl—mix 39 3% 0% 23 S2% 17% 33% 44%

q;eruc ?EVUE # qﬁcld ?ﬁeld
Sfinal-mix 28 4% 14% 39 5S9% 15%

(b) post-final setting

Table s.5: Direct estimation of s-MDP probabilities

significantly worse. However, in the post-final setting, the estimated transition probabilities from the
g-MDP outperform the direct approach.

Using the 2-MDP approach opens up new possibilities that are not available from a direct approach.
Two of these new possibilities are presented in the following subsections.

s.2.5 Sensitivity Analysis

The strategic recommendations made by the 2-MDP approach are based on input probabilities that are
only estimates. Since any estimate incorporates some error, also the output probabilities of the 2-MDP
approach is affected by these errors. A sensitivity analysis can help to recognize whether an error in the
input data can lead to a fundamentally different recommendation.

A Strategy-Skill-Score-Card (SSSC) is a tool that is generated by the 2-MDP approach and visualizes
two sensitivity analyses in one diagram. It may take some time for a practitioner or coach to understand
an SSSC completely. However, if the structure is recognized, the information provided by a card can be
gathered fast.

In principle, an SSSC determines the preferred strategy of two given strategies in a particular
situation. In all example SSSCs presented in this subsection, the risky strategy (risky service and risky

226 CHAPTER 5. ATWO-SCALE APPROACH

estimation method data dec. rule p f“m g g Avg IL'-Error
realized probabilities final 2% 4% 4% 14% -
simulating the g-MDP pre-final skills final 2% 14% 3% 15% 3.19%
direct estimations pre-final matches final-mix 4% 9% 2% 12% 2.86%
simulating the g-MDP final skills final 1% 2% 6% 10% 2.34%
direct estimations final matches final-mix 3% 0% 4% 14% 1.10%

(a) s-MDP transition probabilities for serving situation.

estimation method data dec. rule pﬁ"ld fﬁdd qﬁ"ld Z]ﬁdd Avg. [-Frror
realized probabilities final 49% 17% 55% 16% -
simulating the g-MDP pre-final skills final 33% 16% 29% 21% 11.74%
direct estimations pre-final matches final-mix 57% 9% 60% 17% 5.71%
simulating the g-MDP final skills final 47% 14% 53% 17% 1.63%
direct estimations final matches final-mix 52% 17% 59% 15% 2.27%

(b) s-MDP transition probabilities for field attack situation.

Table 5.6: Comparison between 2-MDP approach and direct approach

field attack) is compared to the safe strategy (safe service and safe field attack) by subtracting the winning
probability of the risky strategy from the winning probability of the safe strategy. If the result is a
positive value, which is encoded by a green color, the safe is the recommended strategy. A negative value
is encoded by a red color and means that 7isky is the preferred strategy. Yellow color means that both
strategies have a very similar winning probability.

As mentioned before, an SSSC simultaneously visualizes two sensitivity analyses. In one analy-
sis, the skills of the considered team are parametrized for a certain hitting technique. Thereby, the
individual success probability peu, (ﬁeld, tech) and the individual fault probability Plasdre (field, tech)
are varied from 0 to 1 in 0.1-steps. Those two probabilities determine the probability of a deviation
Pdev,e (field, tech). In the four example SSSCs presented in this thesis, the smashing skills of both players
of team P are varied in Figure s.3, the skills for a planned shot in Figure 5.4, the skills for a jump serve in
Figure 5.5, and finally, the skills for a float serve in Figure 5.6. These techniques are chosen since they are
the main characteristics of the 7isky and the safe strategy. As described in Table 5.2, a jump serve and an
attack hit are played in the risky strategy while a float serve and a planned shot are performed in the safe
strategy.

The other sensitivity analysis concerns the s-MDDP probabilities of the opponent team. Hereby, the
direct point probability ¢ and the fault probability 7% of a field attack of team Q are varied from 0
to 1in 0.2-steps. The two probabilities determine the probability 4 that describes the probability of a
subsequent field attack.

These two parameterizations are captured in one graphic in the following way: An SSSC s a large
triangular chart that consists of several smaller triangular chart. In each smaller chart, the s-MDP
transition probabilities of the opponent team are fixed to values determined by the location of the
smaller chart. Inside a small chart, the skills of the considered team are varied. Each square inside a small

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 227

chart results from a simulation with 500 batches with 100 rallies and corresponds to a skill setting of the
considered team and an opponent characterized by the s-MDP transition probabilities. The simulation
is carried out with the pre-final skill estimations of both teams. The color of the square represents the
preferred strategy in that setting.

An SSSC should be read by a coach or a practitioner in the following way: First, the opponent team
needs to be classified concerning its s-MDP transition probabilities. For instance, “the probability of a
direct point after a field attack is around 0.4 and the probability of a fault also at 0.4”. So, the coach
should look at the smaller chart in the third row and the third column counted from the origin. Then,
the coach needs to estimate the skills of his team. For instance, “my team can normally do a smash with
a success rate of 0.4 and a fault rate of 0.5”. In this case, the coach has to consider the square in the fifth
row and the sixth column — again counted from the origin —, and sees that the safe strategy is preferred
to the risky strategy. The coach may ask “What if my team performs better today and can achieve a 0.5
success rate for the smash with the same fault rate?”. He may have a look at the same chart and finds
that still safe is the preferred strategy. All squares in the neighborhood of the original square under
consideration are green, so he knows that the safe strategy is quite robust to skill changes of his team.

Furthermore, it is also possible to examine a scenario where the opponent’s characteristic changed.
For instance, in our example, a stronger opponent with a fault probability of 0.2 corresponds to the
smaller chart in the third row and the second column. This smaller chart is more yellow than green.
So, against a stronger opponent the safe strategy does not outperform the risky strategy anymore. The
reader may have a look at Figure 5.3 to recover these findings.

After the general introduction to SSSCs, the presented figures are analyzed in more detail. In
Figure 5.3, the smashing skills of Brink-Reckermann are parametrized. Since the figure is generally
yellow or green, it can be concluded that most of the time it does not matter whether risky or safe is
played and otherwise safe is the better strategy. Only if Germany can play the smash excellent (success
rate larger than 0.9), there exist some opponents where a risky strategy is preferred. By the lines in the
smaller charts, the real values of smashing skills of Germany are presented. It can be seen that their
smashing skills lie around 0.9. Therefore, it may be valuable for them to play a smash which corresponds
to the recommendation given in Subsection s.2.3. In Table 5.4 for the pre-final setting the risky-risky
strategy is preferred to the safe-safe strategy. Note that the SSSCs are generated for the pre-final setting
and compare the strategies risky-risky to safe-safe.

In Figure 5.4, the planned shot, which is the counterpart of the smash, is parametrized. The figure
is only yellow or red which means that there does not exist any configuration where a safe strategy is
preferred to the isky one. The powerful smashing skills of Germany can explain the dominance of one
strategy. A smaller chart at the top corresponds to a strong opponent whose direct point probability
is very close to 1. In Figure 5.4, those smaller charts are mainly yellow, which means that the winning
probability of both strategies is very similar. The opponent is so strong that the strategy choice has no
impact on the winning probability — which is very low. A smaller chart at the right corresponds to a very
weak opponent. In Figure 5.4, there also occur more yellow squares the more one looks at the bottom
right. In those cases, the opponent is so weak that the strategy choice will also have no impact on the
winning probability. For the opponent Brazil, the pre-final direct point probabilities are qﬁ"’ld =027
and ﬁﬁeld = 0.19, compare Table 5.4a. These direct point probabilities lead to the smaller chartin the
second column and the second or third row — since the step size is 0.2 the real value lies between the
two drawn charts.

Tfield

228

0.0

CHAPTER 5. ATWO-SCALE APPROACH

LL§4 real skill Team P COlOI’ key
3 =
~ 1 2
< 0.4 B
g Q
02 8
B ;
0.5 o £
%
02 &
e
~04 2
5

Figure 5.3: Skill-Strategy Score Card: safe versus risky play for varying smash skills (£S)

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL

229

RS
O
S A =
S : 2 real skill Team P Color key
1 = 3 04 T
iy @ N
\ 02
| @msmssssgs g 2 ¢
s
= " 0.5 0 /E
0.8 =9 1 9 <
\\ \\ _0.2 %
,,,,,,, RN SR 2
1 —04 E
B
0.6
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1
Qﬁeld

Figure 5.4: Skill-Strategy Score Card:safe versus risky play for varying shot skills (FP)

CHAPTER 5. ATWO-SCALE APPROACH

230

Color key

(Aysre)qoruim-(afvs)qoiuim

real skill Team P

q field

Figure s.5: Skill-Strategy Score Card: safe versus risky play for varying jump serve skills (S;)

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 231

I
O
§ A & Color key

\: T § real skill Team P g

1] S 04 =

n N

§ N

d Espsmnmmnme: < 0.2 E

=)

0 5

0.8 g

-0.2 =

e

T —04 E

B
0.6
0.4
0.2

0.0 B
DE‘:.
HHEHEHEHEHE—
| | | | | N
| | | | | 7
0.0 0.2 0.4 0.6 0.8 1
qﬁeld

Figure 5.6: Skill-Strategy Score Card: safe versus risky play for varying float serve skills (Sr) and
Pﬁmlt,g (ﬂeld, S]:)

232 CHAPTER 5. ATWO-SCALE APPROACH

In Figure 5.5 and Figure 5.6, an analysis of the serving skills of Brink-Reckermann is done. Similar
findings to those of the last two figures can also be made here. For the jump serve, the transition, where
the preferred strategy changes, seems to be sharper and lies more central in the smaller charts. So, for a
success probability of 0.7 for the jump serve, the risky service can be preferred against some opponents.

In the smaller charts of hitting techniques that correspond to the safe strategy (float serve and
planned shot), a principle difference to the risky techniques can be seen: The gradient of the color
changes is not parallel to one of the axis. Instead, the gradient’s slope has an angle of circa 45 degrees.
In contrast, in a smaller chart of a smash or a jump serve, this gradient is parallel to the x-axis. These
findings can be interpreted in the following way: For a safe hit, a deviation is nearly as good as a success,
while for a risky hit a deviation is as bad as a fault. However, this finding can be explained by the fact that
in the 7isky strategy a risky hit is always played in a border field, while a safe hit is played in a non-border
field.

5.2.6 Two-Person-Constant-Sum Game

This subsection introduces constant-sum-matrix-games that are generated by the 2-MDP approach. A
constant-sum-matrix-game encodes the winning probability of a team for different g-MDP parameteri-
zations of their own and the opponent’s strategy. By changing the strategy of both teams, the scope
of Markov decision processes is left towards game theory. The game-matrix can be used to identify
Nash equilibriums. Furthermore, by detecting graphic patterns, it is possible to identify dominating
parameter settings.

Table 5.7 and Table 5.8 present a constant-sum-matrix-game for the final match of the Olympic
games 2012 between Brink-Reckermann and Alison-Emanuel. They are generated by the 2-MDP
approach implementation defined in this section. The difference between both tables is that Table 5.7
contains results generated by a g-MDP in which all skill estimates are based on pre-final matches while
in Table 5.8 the final match was used as a data basis for the skill-estimates.

Each colored, small square corresponds to a simulation of the g-MDP with 100 batches with 100
rallies each. The color of a square represents the winning probability of Germany. A green colored
square means that Germany will win the match with a probability of 100%, a red colored square means
that Germany loses with a probability 0of 100% and yellow indicates close to equal winning probabilities
of both teams. Note, that in contrast to SSSCs the color corresponds to the winning probability in a
particular strategy setting and not to the difference of the winning probabilities of two distinct strategies.

The played strategy combinations of both teams are encoded at the sidelines by white and gray
squares. Each square corresponds to one parameter of the basic decision rule. A white square corresponds
to the value 0 and a gray square to a value of 1. In the presented game-matrices, the following five
parameters are alternating between 0 and 1:

serve eld serve eld
(7 (e, e, w7(e2), e (2)). (5)

Observe that the used technique and the target field of one situation are combined in one parameter.
The serving strategy #; is in the pre-final setting is fixed to 0.5 and in the post-final setting to the

observed value of 7, in 7"

. By alternating these five parameters between 0 and 1, the resulting matrix
is a 32 X 32-matrix that contains the most extreme strategies. For example, the first line in both tables
corresponds to Germany playing the strategy 0, 0, 0, 0, 0, which means that player 2, is always blocking

and both players play a safe service, and a safe field attack.

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 233

The small square in the upper left corner of both tables visualizes the winning probability of
Germany for the strategies played by both teams in the final match.

Based on input parameters (skills) estimated from pre-final matches

Strategy Brazil

Strategy Germany

Table 5.7: Winning probabilities of Germany regarding different strategy combinations in the pre-final
setting.

234 CHAPTER 5. ATWO-SCALE APPROACH

Based on input parameters (skills) estimated from final match

Strategy Brazil

Wﬁnal

Strategy Germany

B
Table 5.8: Winning probabilities of Germany regarding different strategy combinations in the post-
final setting.

Looking at the tables from a bird’s eye perspective, one may detect patterns in both tables. These
patterns lead back to parameter values that have a major influence on the winning probability. Depend-
ing on the frequency of the pattern, and the ordering of the alternated parameters, the corresponding

5.2. ATWO-SCALE APPROACH FOR BEACH VOLLEYBALL 235

parameter can be determined.
For instance, in Table 5.7, every second row is a bit greener than the other rows. As this pattern occurs
every second row, it can be concluded that the last parameter of the tuple in line 5.1 is responsible for this

pattern. The last parameter is nZid(Pz) such that the pattern can be interpreted in the following way:
If Reckermann, who is player 2 of Germany, plays a risky field attack, i.e., a smash into a border-field, it
has a positive impact on the winning probability of Germany.

Another example is the left half of Table 5.8, which seems to be redder than the right half. The first
parameter 7, of Brazil’s strategy is responsible for this pattern. The left half corresponds to a value of
0 for the parameter 7. It can be concluded that it is promisingly for Brazil that Emanuel (Player 2)
is the blocking player. The recommendation of Emanuel as the blocking player is an exciting finding
since Alison is the taller player that goes more often to the block (96%). However, this finding may
be an artifact of the estimation of Emanuel’s blocking skills. Table A.14 shows that the estimation of
Emanuel’s blocking skills is based on two observations in the post-final setting.

As the lower half seems to be more green than the upper half, the game-matrix recommends setting
7 = 1 for the German team. So Brink is suggested to be the blocking player. Since Reckermann is, in
general, the blocking player of Germany, this is also a similarly surprising result as for the Brazilians. This
finding may also be an artifact of the small estimation basis for Brink’s blocking skills in the post-final
setting, compare Table A.2.

However, even if Brink has done fewer blocks than Reckermann and Emanuel fewer blocks than
Alison, this does not mean that their estimated skills are ordered in the same manner. For example,
Brink has a direct point rate after a block of 0.2 in the pre-final matches while Reckermann has only a
direct point rate of 0.12. It is not possible to determine just from the blocking skill estimates the “better”
blocking-player of both teams since there are opposite effects. An opposing effect may be that one
player has a higher direct point probability, but he also has a higher fault or no-block probability. So,
by only looking at the input-skills the block recommendation of the game-matrix cannot be validated
nor refuted. Of course, it has to be carefully checked that these findings are no artifact of the g-MDDP.
But, in a general view, this finding shows the benefit of an MDP: Sometimes it is not clear to state solely
from the data which of two opposing eftects is dominating the other. This trade-off can be evaluated by
an MDP to come to a result.

In general Table 5.8 is redder than Table 5.7, this indicates a lower winning probability of Germany
when the skills are estimated from the final match. A reason for the lower winning probability may be
that Germany’s performance dropped while Brazil’s performance improved in the final match. Another
reason may be that the teams did not need to show their full potential in the pre-final matches such that
the Brazilian’s skills are underestimated from the pre-final matches.

The most promising strategy for Germany in Table 5.8 is the strategy

=1,
(P = 0,
) -1,
mT(Py) = 1,

Ty (P2) = 1

236 CHAPTER 5. ATWO-SCALE APPROACH

This strategy recommendations matches to the recommendation of safe-7isky for the final match from
Subsection 5.2.3.

The presented example findings showed, how general patterns and essential parameters could be
identified with the help of a constant-sum-matrix-game. Without a 2-MDP approach, it would likely
not be possible to generate a table with 32 X 32-strategy combinations from solely one tournament or
one season. Furthermore, it could be that some of these strategy-combinations have never been played
in reality, but a coach wants to investigate some hypothetical scenarios, which is possible with a 2-MDP

approach.

Chapter 6

Conclusion and Outlook

After five chapters with content related to sports strategy optimization, the most important results are
repeated together with an assessment in the next paragraphs:

The theoretical results regarding MDPs that model a sport-strategic question are presented in
Chapter 3. Definition 3.2.2 introduces a class of MDDPs, called SSO-MDDPs, that is suitable for sports
strategy optimization. Assumption 3.2.1 is identified as the underlying characteristic of SSO-MDDPs. In
Figure 3.2, SSO-MDPs are set in relation to other known SSO-MDDPs.

The definition of an MDP class for sports strategy optimization problems provides a basis for
general findings regarding MDPs modeling a sports game. The existing literature focuses in most of
the cases on a special MDDPs — one exception is Walker, Wooders, and Amir (2011) who analyze general
Markov Games that satisfy a specific monotonicity criterion. However, the definition of a class of
Markov decision processes is novel and an essential step towards findings that apply to a complete class
of MDDPs.

The most important findings for SSO-MDPs, presented in this thesis, are: The optimality equations
have a unique fixed point (Theorem 3.4.2). All policies of SSO-MDPs are proper (Theorem 3.4.5). The
dynamic programming operator is a contraction mapping (Theorem 3.4.6). Furthermore, a primal and
adual linear programming formulation of SSO-MDDPs has been specified (primal LP for SSO-MDPs
respectively dual LP for SSO-MDPs).

As the dual linear programming formulation can be interpreted as a static maximum flow problem,
Section 3.6 investigates the relationship between a dynamic SSO-MDP and its static flow network for-
mulation. It has been shown that feasible solutions of the time expanded maximum flow formulation
(Problem 3.9) characterize decision rules (Theorem 3.6.16) of the corresponding SSO-MDP. Further-
more, the value of a feasible solution of the time expanded linear program corresponds to the value of
the derived stationary policy (Corollary 3.6.17). The static maximum flow problem is defined in 3.6.18. A
feasible solution of the static maximum flow problem can be derived from a feasible solution of the time
expended maximum flow problem (Proposition 3.6.19) and the other way around (Proposition 3.6.20).
The objective values are identical up to a constant that is defined by the distribution of the starting state.
The main result of Section 3.6 is Theorem 3.6.23 which combines all previous results to prove that the
static maximum flow problem can be used to characterize an optimal policy of an SSO-MDP.

This result is an independent proof of the validity of the dual linear programming formulation
for SSO-MDPs. It does not rely on the primal linear programming formulation for positive bounded

237

238 CHAPTER 6. CONCLUSION AND OUTLOOK

MDPs and duality theory which have been used in Subsection 2.3.7 to derive the linear programming
formulations. The result of Theorem 3.6.23 is not new. However, the different approach gives some
insights. For instance, in the proof of Proposition 3.6.20, the properties of SSO-MDPs are explicitly
utilized. It explains why a static maximum flow formulation cannot be used for general MDPs to
determine an optimal policy.

Since value iteration terminates faster for SSO-MDPs with an underlying acyclic graph, Section 3.7
provides an algorithm (Algorithm 6) that transforms a graph associated with an SSO-MDP (Defini-
tion 3.6.1) into an acyclic graph. In Bertsekas (2001), it is sketched how self-transitions can be eliminated.
The generality and the degree of detail of Algorithm 6 is an significant improvement to be able to
implement a transformation algorithm for arbitrary SSO-MDPs.

Chapter 4 and Chapter s involve findings from the application of SSO-MDDPs to beach volleyball.
First, two new SSO-MDPs for beach volleyball are presented in Chapter 4. The definition of the
set-SSO-MDP is summarized in Table 4.1. It is a coarse model whose optimal policies can be determined
analytically (Theorem 4.2.3). This analytical result is compatible with that of Walker, Wooders, and
Amir (2011) but was developed independently. Also, the winning probability of the tie game can be
computed from the input probabilities, see Subsection 4.2.4. In Subsection 4.2.s, the set-SSO-MDP is
applied to the final match of the beach volleyball tournament of the Olympic games 2012 in London.
After an evaluation of the analytical findings, the set-SSO-MDDP is used to answer a strategic question.
The results are presented in Table 4.4.

The second SSO-MDP, the rally-SSO-MDP, is a very complex model with a large state space. It is
defined in Subsection 4.3.1. Due to the huge state and action sets, it is not possible to define those sets
explicitly. Functions that specify conditions on the combination of actions or evaluate independent
parts of the transitions are introduced to be able to describe the action sets and the system dynamics.
Furthermore, the concept of a parameterized basic decision rule is introduced in Subsection 4.3.2. A
parameterized basic decision rule eliminates unreasonable strategies and helps to focus on particular
strategic decisions. The rally-SSO-MDP is one of the largest MDPs contained in the literature related
on sports strategy optimization. To handle such a huge MDP new concepts were developed that may
also be useful for other large SSO-MDPs.

To apply the rally-SSO-MDDP to a real match, a massive amount of data needed to be collected
and processed to get valid and useful input data. This part of work is described in Subsection 4.3.3. It
involved a lot of time and required the development of software tools. Furthermore, the use of real
data without direct contact to the teams led to new challenges. For instance, an aggregation scheme
has been defined to be able to get estimates for all required input probabilities. Ideally, a sport strategic
decision is addressed together with a team. A cooperation with a team leads to new possibilities for the
generation of adequate input data. In this thesis, however, all data had to be collected from publicly
accessible material.

The evaluation of a rally-SSO-MDDP is, in this thesis, limited to a simulation of the model. Due
to the size of the rally-SSO-MDP, no optimal policy could be determined with standard methods for
infinite-horizon Markov decision problems.

After analyzing two SSO-MDDPs of different granularity, a new method, called 2-MDP approach, is
proposed in Chapter s. The 2-MDP approach tries to combine the advantages of both granularities.
A general description of the method is presented in the first subsection of the chapter, while the next
section, Section 5.2, implements the 2-MDP approach for the two beach volleyball SSO-MDPs. One of

239

the biggest challenges of this thesis was to validate the 2-MDP approach. Since each match is just a very
small sample and it is not possible to repeat a match several times, all evaluations and comparisons must
be considered with caution. The main results of the 2-MDP approach can be found in Table 5.4, where
the strategic question of Section 4.2.5 is answered a second time by the new approach. A comparison
between the results of the approaches is presented in Table 5.6b. The skill estimates for the pre-final
and the final setting, used in the g-MDP simulation, were not as static as assumed. However, in the
final context, only one match was used as an estimation basis. One match contains probably far too few
observations for reliable skill estimates. Hopefully, this weakness can be eliminated if there exists direct
contact with the teams and therefore a deeper understanding of their skills.

Finally, Subsection 5.2.5 and Subsection 5.2.6 present two new tools that can be helpful for coaches
and players: A skill strategy score card presents two sensitivity analyses in one chart, see Figures 5.3, 5.4, 5.5
and 5.6. The constant-sum matrix games in Tables 5.7 and 5.8 help to identify crucial parameters of
a strategy. These new tools can be generated by the 2-MDP approach. Feedback from coaches and
practitioners regarding those tools would be exciting.

Further research that could follow this work could be an application of SSO-MDDPs to other sports
games. Especially, applying the 2-MDP approach to a less structured type of sports, like handball or
soccer, would be interesting. Regarding the SSO-MDPs of this thesis, it may be interesting to apply
methods like column generation to the rally-SSO-MDP and test whether is possible to determine an
optimal policy.

Hopefully, research in other fields like automatic video tracking will help to grow the field of sports
strategy optimization further. If there exists easier access to suitable databases, there will emerge more
mathematical optimization problems. The tools and solutions provided by mathematical optimization
will help the coaches and teams to extract valuable information from those data records.

240 CHAPTER 6. CONCLUSION AND OUTLOOK

Appendix A

Rally-SSO-MDP: Skill Estimates

This chapter presents supplementary g-data to Subsection 4.3.3. For each player, the observations are
split up into events observed in pre-final matches and events from the final match only.

A Brink
target fields Qu-Q14 Q21-Q24 Q31-Q34
performance # succ Jault # succ fault # succ Jault
Serve
S porp 100(1L00) 0.00(0.00) 10 1.00(L00) 0.00(0.00)
s or-to4 0.81(0.75) 0.00(0.00) 1 0.89(100) 0.00(0.00)
Attack-Hit
out 0 094(-) 000(-) 0 09() 000(—)
- Pu-Piy 0 094(-) 000(-) 0 09() 000(—)
PaP2y 10 099(L00) 0.00(0.00) 4 0.87(0.75) 0.00(0.00)
P31-P34 2 0.95 (1.00) 0.00 (0.00) 1 0.95 (1.00) 0.00 (0.00)
out 0 075(-) 0l(-) 1 076(L00) 0.11(0.00)
i Pu-Prig 0 075(-) O0l(-) 0 075(-) 0l(-)
P21-P24 1 0.67 (0.00) 0.11 (0.00) 2 0.68 (0.50) 0.20 (0.50)
P31-P34 0 075(-) o011(-) 0 075(-) o011(-)
out 0 095(-) 002(-) 0 09(-) 002(-) 0 095(-) 002(-)
s DPuPu 0 095(—) 002(-) 0 095(-) 002(-) 0 09(-) 002(-)
Par-Pay 1 096(L00) 0.01(0.00) 5 100(L0O0) 0.00(0.00) 0 095(—) 0.02(-)
P3P3q 0 095(-) 002(-) 0 09(-) 002(-) 0 095(-) 002(-)

Table A.1: Input data from final match: Julius Brink — Serves and Attack-Hits

241

242 APPENDIX A. RALLY-SSO-MDP: SKILL ESTIMATES

attack strength normal hard

performance # succ Jault # succ Jfanlt
Defonse d 4 057(075) 0.38(0.25) 9 0.36(0.33) 0.54(0.56)
A 16 025(0.25) 0.75(0.75) 16 0.25(0.25) 0.75(0.75)
Recepion r 1 059(0.00) 0.23(1.00) 1 0.59(0.00) 0.14(0.00)
T 1 091(0.91) 0.00(0.00) 3 0.95(1.00) 0.0 (0.00)

Set s 40 0.98(0.98) 0.00(0.00) - ; ;
performance # block-point block-ok block-fanlt noblock
Block b 1 0.00 0.00 0.00 1.00

Table A.2: Input data from final match: Julius Brink — Defense, Reception, Set, Block

target fields Qur-Qi4 Q21-Q24 Q31-Q34
performance # suce fault # succ Jault # succ Janlt
Serve
SE perp 34 0.88(0.88) 0.00(0.00) 43 0.88(0.88) 012(0.12) - - -
S OOt 34 094(0.94) 0.00(0.00) 16 075(0.75) 0.19(0.19) - - -
Attack-Hit
out 0 08(-) 002(-) 0 08(-) 002(-) - . -
- Pu-Pig 0 08(-) 002(-) 0 08(-) 002(-) - ; -
P21-P24 55 0.85(0.85) 0.04(0.04) 17 0.94(0.94) 0.00(0.00) - - -
P3-P34 7 077(071) 0.01(0.00) 2 0.89(L00) 0.02(0.00) - . -
out 0 076(-) 006(-) 0 076(-) 006(~) - - -
e Pir-Prg 0 076(-) 006(-) 1 079(L00) 0.05(0.00) - - -
Pa1-Pag 7 073(071) 011(0.14) 7 0.82(0.86) 0.02(0.00) - - -
P31-P34 1 070(0.00) 0.05(0.00) 1 0.79(L00) 0.05(0.00) - - -
out 0 095(-) 005(-) 0 09(-) 005(-) 0 09(-) 005(-)
. Pu-Pig 0 095(-) 005(-) 0 09(-) 005(-) 0 09(-) 005(-~)
P21-Pag 8 099(1.00) 0.01(0.00) 30 097(0.97) 0.03(0.03) 0 095(—) 0.05(-)
P31-P34 2 096(100) 0.04(0.00) 3 088(0.67) 012(033) 0 095(—) 0.05(-)

Table A.3: Input data from all matches except final: Julius Brink - Serves and Attack-Hits

Az2. RECKERMANN 243
attack strength normal hard
performance # succ Jault # succ Janlt
Def d 20 0.85(0.85) 0.05(0.05) 14 0.71(0.71) 0.21(0.21)
crense dy, 29 0.93(0.93) 0.00(0.00) 13 0.46 (0.46) 0.38(0.38)
Recention , 34 100(L00) 0.00(0.00) 9 0.90(0.89) 0.10(0.11)
eceptio Fon 4 095(0.95) 0.02(0.02) 3 0.97 (1.00) 0.02(0.00)
Set s 17 0.99(0.99) 0.00(0.00) ;
performance # block-point block-ok block-fanlt noblock
Block b 5 0.20 0.20 0.20 0.40
Table A.4: Input data from all matches except final: Julius Brink — Defense, Reception, Set, Block
A.2 Reckermann
target fields Qu-Qi4 Q21-Q24 Q31-Q34
performance # succ Jault # succ Jault # succ Jault
Serve
S porp 14 093(093) 0.00(0.00) 8 099(L00) 0.00(0.00) -
S oot 3 100(L00) 0.00(0.00) 4 100(L00) 0.00(0.00) -
Attack-Hit
out 0 093(-) 000(-) 0 09(-) 000(-) -
- Pu-Piy 0 093(-) 000(-) 0 09(-) 000(-) -
PaPay 19 0.89(0.89) 0.00(0.00) 8 0.98(L00) 0.00(0.00) -
P31-P34 0 09(-) 000(-) 0 09(-) 000(-) -
out 0 092(-) 000(-) 0 092(-) 000(-) -
g PPu 0 092(-) 000(-) 0 092(-) 000(-) -
Par-Pay 0 092(-) 000(-) 0 092(-) 000(-) -
DP31-P34 0 092(-) 000(-) 0 092(-) 000(-) -
out 0 092(-) 000(-) 0 092(-) 000(-) 0 092(-) 000(-)
s PoPu 0 092(-) 000(-) 0 092(-) 000(-) 0 092(-) 000(-)
P21-Payg 1 083(0.00) 000(0.00) 10 099(L00) 0.00(0.00) 0 092(—) 0.00(-)
P3P34 0 092(-) 000(-) 1 092(L00) 0.00(0.00) 0 092(—) 000(-)

Table A.s: Input data from final match: Jonas Reckermann — Serves and Attack-Hits

244 APPENDIX A RALLY-SSO-MDP: SKILL ESTIMATES
attack strength normal hard
performance # succ Jault # succ Janlt
Def d 8 0.88(0.88) 0.00(0.00) 1 0.89(1.00) 0.01(0.00)
erense dyy 6 078(0.83) 0.22(0.17) 1 0.68(0.00) 0.31(1.00)
Recention r 7 097(100) 0.00(0.00) 5 0.86(0.80) 0.00(0.00)
ceeptio i 14 093(0.93) 0.07(0.07) 7 0.77(0.71) 0.13(0.14)
Set s 24 0.88(0.88) 0.04(0.04) ; ; ;
performance # block-point block-ok block-fanlt noblock
Block b 63 0.08 0.10 0.16 0.67
Table A.6: Input data from final match: Jonas Reckermann — Defense, Reception, Set
target fields Qu-Q14 Q21-Q24 Q31-Q34
performance # succ Janlt # suce Jault # suce Jault
Serve
SE ber-De 25 076(0.76) 0.00(0.00) 35 091(0.91) 0.06(0.06) - - -
Sy 438 082(0.82) 0.03(0.03) 23 070(0.70) 030(0.30) - - -
Attack-Hit
out 0 095(-) 002(-) 0 09(-) 002(-) - - -
s Pir-Prg 0 095(-) 002(-) 0 09(-) 002(-) - - -
ParPag 49 100(L00) 0.00(0.00) 25 0.84(0.84) 0.08(0.08) - - -
P31-P34 9 0.99(L00) 0.00(0.00) 3 0.97(L00) 0.02(0.00) - - -
out 0 093(-) 000(-) 1 094(100) 0.00(0.00) - - -
E Pi-Prg 0 093(-) 000(-) 0 09(-) 000(-) - - -
P21-Pag 7 0.88(0.86) 0.00(0.00) 5 0.96(1L00) 0.00(0.00) - - -
P31-P34 0 093(-) 000(-) 1 094(1L00) 0.00(0.00) - - -
out 0 088(-) 006(-) 0 08(-) 006(-) 0 08(-) 006(-)
. Pir-Prg 0 08(-) 006(-) 0 08(-) 006(-) 0 08(—-) 006(-)
P21-Pag 3 082(067) 0.04(0.00) 23 091(0.91) 0.04(0.04) 1 0.89(L00) 0.05(0.00)
P31-P34 0 088(-) 006(-) 7 087(08) 011(014) 0 088(-) 0.06(-)

Table A.7: Input data from all matches except final: Jonas Reckermann — Serves and Attack-Hits

A3z ALISON 245
attack strength normal hard
performance # succ Jault # succ Janlt
Def d 20 0.85(0.85) 0.10(0.10) 1 0.74(0.00) 0.09(0.00)
crense Ay 19 0.84(0.84) 0.05(0.05) 0 084(=) 0.05(-)
Recenri , 27 100(L00) 0.00(0.00) 7 0.90(0.86) 0.10(0.14)
eception Fon 61 095(0.95) 0.02(0.02) 3 0.97 (1.00) 0.01(0.00)
Set 5 128 0.98(0.98) 0.00(0.00) - - -
performance # block-point block-ok block-fanlt noblock
Block b 200 0.12 0.13 0.14 0.62
Table A.8: Input data from all matches except final: Jonas Reckermann - Defense, Reception, Set
A3 Alison
target fields Pr1-Pi4 P21-P24 P31-P34
performance # succ Janlt # succ Janlt # succ Jaulr
Serve

SE Qor-Qos & 070(067) 0.00(0:00) 2 080(100) 0.00(0:00) ;

sy 415 080(0.80) 0.07(0.07) 2 0.86(L00) 0.05(0.00) ;
Attack-Hit
out 0 100(—) 000(-) 0 1L00(-) 000(-) ;

o QuQ4 0 100(-) 000(-) 0 100(-) 000(-) ; ;
Qu-Qas 9 100(L00) 0.00(0.00) 1 100(L00) 0.00(0.00) - ;
Q31-Qi34 1 100(L00) 0.00(0.00) 2 100(L00) 0.00(0.00) ;

out 0 100(—) 000(-) 0 1.00(-) 000(-) ; ;

s QuQa 0 L00(=) 000(-) 0 L00(-) 0.00(-) - -
Qar-Qas 1 100(L00) 0.00(0.00) 1 100(L00) 0.00(0.00) ;
QrQs4 0 100(-) 000(—) 1 100(L00) 0.00(0.00) ; ;

out 0 100(—) 000(-) 0 1.00(-) 000(-) 0 1.00(-) 000(-—)

o Qi 0 100(—) 000(-) 0 100(-) 000(-) 0 100(-) 000(-)
QuQzs 0 100(—) 000(-) 0 1.00() 000(-) 0 100(-) 000(—)
Q-Qs4 1 100(L00) 0.00(0.000 0 100(—) 0.00(-) 0 100(-) 000(-)

Table A.9: Input data from final match: Alison Cerutti — Serves and Attack-Hits

246 APPENDIX A RALLY-SSO-MDP: SKILL ESTIMATES
attack strength normal hard
performance succ Jault # suce Janlt
Def d 0.57(0.57) 0.29(0.29) 0 056(=) 030(-)
crense Ay 0.59(0.67) 0.35(0.33) 2 0.41(0.00) 0.39(0.50)
Recention ’ 0.69(0.67) 0.00(0.00) 1 0.77(100) 0.00(0.00)
eceprio Fon 0.98(1.00) 0.00 (0.00) 0 091(—) 0.00(-)
Set s 52 100(L00) 0.00(0.00) -
performance block-point block-ok block-fanlt noblock
Block b 49 0.06 0.16 0.10 0.67
Table A.10: Input data from final match: Alison Cerutti — Defense, Reception, Set, Block
target fields Pu-Pi4 P21-P24 P31-P34
performance # succ Jault # succ Jault # succ Janlt
Serve
Sp 45 0.89(0.89) 0.00(0.00) 46 0.96(0.96) 0.04(0.04)
5 Qo-Qo4+ 37 170(070) 005(005) 17 076(0.76) 0.24(0.24)
Attack-Hit
out 0 087(-) 007(-) 0 08(-) 007(-)
/e QrQu 0 087(-) 007(-) 0 087(-) 007(-)
QurQas 47 0.89(0.89) 0.04(0.04) 23 0.83(0.83) 0.09(0.09)
Qi-Qss 8 096(L00) 0.02(0.00) 4 0.73(0.50) 0.23(0.50) -
out 0 09(-) 000(-) 0 09(-) 000(-) -
e QQu 1 091(1L00) 0.00(0.00) 1 0.91(L00) 0.00(0.00)
Qu-Qus 4 085(075) 0.00(0.00) 4 0.94(1L00) 0.00(0.00)
QuQ4 0 090(-) 000(-) 0 09(-) 000(-)
out 0 094(-) 000(-) 0 09(-) 000(-) 0 09() 000(-)
o Qs 0 094(-) 000(-) 0 09(-) 000(-) 0 094() 000(-)
Qu-Qas 2 086(050) 0.00(0.00) 10 0.99(L00) 0.00(0.00) 0 094(—) 0.00(-)
Qi-Qs4 1 095(L00) 0.00(0.00) S5 0.97(L00) 0.00(0.00) 0 094(—) 0.00(-)

Table A.u1: Input data from all matches except final: Alison Cerutti — Serves and Attack-Hits

A4 EMANUEL 247
attack strength normal hard
performance # succ Jault # succ Jault
Def d 29 0.83(0.83) 0.03(0.03) 8 0.47(0.38) 0.20(0.25)
crense dp 17 076(0.76) 0.18(0.18) 5 055 (0.40) 0.42(0.60)
Recention , 26 1.00(L00) 0.00(0.00) 5 1.00(1.00) 0.00(0.00)
eceptio Tn 36 0.97(0.97) 0.00(0.00) 1 0.86(0.00) 0.12(1.00)
Set s 180 0.98(0.98) 0.00(0.00)
performance # block-point block-ok block-fault noblock
Block b 254 0.13 0.13 0.15 0.59
Table A.12: Input data from all matches except final: Alison Cerutti — Defense, Reception, Set, Block
A.4 Emanuel
target fields Pu1-Pi4 P21-P24 P31-P34
performance # succ Janlt # succ Jault # succ Jault
Serve
Sr i’ 10 090(0.90) 0.00(0.00) 9 0.99(L00) 0.00(0.00) -
S Qor-Qo4 9 (89(0.89) 0.00(0.00) 2 093(100) 0.00(0.00) -
Attack-Hit
out 0 08(-) 005(-) 0 08(-) 005(-) -
ES Qur-Qi4 0 0.86(—) 0.05(-) 0 0.86(—) 005(-) -
QurQzg 21 090(0.90) 0.05(0.05) 14 079(0.79) 0.07(0.07) -
Qi-Qs4 5 0.83(0.80) 0.02(0.00) 4 091(L00) 0.03(0.00) -
out 0 091(-) 003(-) 0 09(-) 003(-) -
e QQu 0 091(-) 003(-) 0 09(-) 003(-) -
QurQz4 2 093(1L00) 0.02(0.00) 0 091(—) 0.03(-) -
Q-Qs4 0 091(-) 003(-) 1 092(L00) 0.02(0.00) -
out 0 090(-) 000(-) 0 09(-) 000(-) 0 09(-) 000(-)
sp QrQu 0 090(-) 000(-) 0 09(-) 000(-) 0 09(-) 000(-)
Qu-Qa4 1 091(L00) 0.00(0.00) 7 087(0.86) 0.00(0.00) 0 090(-) 0.00(-)
Q-Qs4 0 09(-) 000(-) 2 092(L00) 0.00(0.000 0 090(-) 0.00(-)

Table A.x3: Input data from final match: Emanuel Rego — Serves and Attack-Hits

248 APPENDIX A RALLY-SSO-MDP: SKILL ESTIMATES
attack strength normal bard
performance # succ Jfanlt # succ Janlt
Def d 7 075(0.86) 0.20(0.14) 13 0.38(0.38) 0.38(0.38)
crense dp 18 033(0.33) 0.61(0.61) 7 0.19(0.14) 0.69(0.71)
Recention r 13 085(0.85) 0.00(0.00) 1 0.71(0.00) 0.00 (0.00)
ecepto P 27 0.85(0.85) 0.04(0.04) 0.85(—) 0.04(-)
Set s 12 100(L00) 0.00(0.00) ; ;
performance # block-point block-ok block-fanlt noblock
Block b 2 0.00 0.50 0.00 0.50
Table A.14: Input data from final match: Emanuel Rego — Defense, Reception, Set, Block
target fields Pu-Pi4 P21-P24 P31-P34
performance # succ Jault # succ Sfault # succ Jault
Serve
Sp] 42 098(0.98) 0.02(0.02) 44 0.84(0.84) 014(0.14) - -
S Qor-Qo4 35 100(L00) 0.00(0.00) 15 073(073) 020(020) - -
Attack-Hit
out 0 087(-) 006(-) 0 08(-) 006(-) - ;
e QrQu 0 087(-) 006(-) 0 08(-) 006(-) - -
Qa-Qz4 83 090(0.90) 0.02(0.02) 57 0.81(0.81) 011(0.01) - -
QirQ34 12 100(L00) 0.00(0.00) 4 073(050) 0.22(050) - -
out 0 100(-) 000(-) 0 100(-) 000(-) - ;
e QurQu 1 100(L00) 0.00(0.000 0 1L00(-) 000(-) -
Q21-Q24 12 1.00 (1.00) 0.00 (0.00) 5 1.00 (1.00) 0.00 (0.00) - -
Qr-Qi4 0 L00(—) 000(—) 1 100(L00) 0.00(0.00) -
out 0 09(-) 000(-) 0 09(-) 000(-) 0 09(-) 000(-)
o QrQu 0 09(-) 000(-) 0 09(-) 000(-) 0 09(-) 000(-)
Qu-Qz4 4 097(L00) 0.00(0.00) 18 0.94(0.94) 0.00(0.00) 1 0.96(1.00) 0.00(0.00)
QrQ3¢ 0 096(-) 000(-) 2 097(1L00) 0.00(0.00) 0 096(-) 0.00(-)

Table A.xs: Input data from all matches except final: Emanuel Rego — Serves and Attack-Hits

A4 EMANUEL

attack strength normal bard

performance # succ Jault # suce Jfanlt
Defonse d 22 0.86(0.86) 0.05(0.05) 2% 017(0.17) 0.50(0.50)
A 36 081(0.81) 0.17(0.17) 2 0.41(0.41) 0.36(0.36)
Reception r 69 0.94(0.94) 0.06(0.06) 19 0.68(0.68) 0.05(0.05)
o 48 0.98(0.98) 0.00(0.00) 3 0.99(L00) 0.00(0.00)

Set s 95 100(L00) 0.00(0.00) ; - .
performance # block-point block-ok block-fanlt noblock
Block b 1 0.09 0.36 0.09 0.45

Table A.16: Input data from all matches except final: Emanuel Rego — Defense, Reception, Set, Block

249

250

APPENDIX A. RALLY-SSO-MDP: SKILL ESTIMATES

Appendix B

Rally-SSO-MDP: Simulation

Screenshots of the g-MDP Simulation

o0 e
Opponent Team Settings
Team Mame | Germany
Skills ceptFinal /GER_allMatchesExceptFinal.gprobs.csv Search...
Player 1 Player 2
Name Brink Name Reckermann
SF S 0.5 SF s s) 0.5
inside border 0.5 inside \/ border 0.5
FP FS 0.5 FP \ FS 0.5 Safe
inside border 0.5 inside \/ border 0.5 Risky
Serve: Block:
Reset
Bl B2 0.5 Al \ A2 0.5

(a) Settings of Team P

251

252

APPENDIX B. RALLY-SSO-MDP: SIMULATION

e0e
vour e SRR Serings |
Team Name | Brazil| J
Skills ceptFinal /[BRA_allMatchesExceptFinal.gprobs.csv. Search... |
Player 1 Player 2
Name Alisan Name Emanuel
SF)/ SJ 0.5 SF T/ 5 0.5
inside ~— " border0.5 inside ~ . border 0.5
P o 5 05 P 5 05 | Safe |
inside " border0.5 inside . border 0.5 | Risky |
Serve: Block:
| Reset |
Al L e A2 0.5 Bl . B2 0.5

conce (S

(b) Settings of Team Q

. Your Team Opponent Team

Number of Sets [100 |
Speed slow ——————— ~————— fast
Gui [Watch Game

conce (S

(c) General Settings

[X°XS)

View Simulation

Sets to play: 100

Played Sets:

Speed:

Hit Info:

successful hit

Block Info:

Attack In...

serve attack B

Team Germany
Hit Brink v

reception & move

Hit Reckermannfill

Team Brazil
Hit Alison v

Hit Emanuel [l

%

Germany 1] (1]

(A12, A13, BOZ, B13, A22, Alison, -1, Alison, NORMAL, -,)

Brazil

Close Speed Up

(d) Simulation Screen

Results n=100

Germany Serves

R
covariance
correlation

SD(R)

(e) Results: Serves

Brazil Serves Germany Field Attacks Brazil Field Attacks Summary
Strategy: stratAfromSlider: true, 0.5, {{0.5, 0.5, 0.5, 0.54{0.5, 0.5, 0.5, 0.5}}, 0.5000;
Serve Statistic mean sd
#serves 19.99 2.042453
#direct points 0.68 0.85138
#direct faults 3.36 1678864

points/serves faults/serves

0.034017 0.168084
0.431111 -0.006465
0.247921 -0.001885
0.004186 0.008575

Repeat

253

254 APPENDIX B. RALLY-SSO-MDP: SIMULATION

e0e Results n=100

| Germany Serves Brazil Serves Germany Field Attacks m.

Strategy: stratBfromSlider: false, 0.5, {{0.5, 0.5, 0.5, 0.5}{0.5, 0.5, 0.5, 0.5}}, 0.5000;

Field Attack Statistic mean sd
#attacks 36.28 7.362312
#direct points 7.65 2.660504
#direct faults 5.79 2.531798

points/attacks faults/attacks

R 0.21086 0.159592
covariance 6.583838 6.210909
correlation 0.336125 0.333205

SD(R) 0.007141 0.006643

-_C lose Repeat

(f) Results: Attacks

ece Results n=100
| Germany Serves Brazil Serves ~ Germany Field Attacks Brazil Field Attacks

Validation
Waon sets by team Germany 75
Set-winning-probability 0.75

-C lose Repeat

(g) Results: Summary

Figure B.1: Screenshots g-MDP simulation

Appendix C

Rally-SSO-MDP: Basic Decision Rule

C.1 Definition of the Basic Decision Rule

The basic decision rule is used as a default decision rule in the SSO-MDP for a Beach volleyball rally
of Section 4.3, which is also called the g-MDP in context of the 2MDP-approach. The basic decision
rule specifies a uniform probability distribution over the set of reasonable actions, see Definition 4.3.1.
It thereby makes it possible to have some kind of default behavior such that a decision rule regarding
binary questions of interest can be characterized by a set of parameters that modify the basic decision
rule. In this section, the definition of the basic decision rule is listed in Java-code and supplemented by
some explanations.

The basic decision rule is implemented as a Java class and used in the Java simulation of the rally-SSO-
MDP respectively the g-MDP. According to the list of binary question, presented in Subsection 4.3.2,
the basic decision rule is parametrized by ten parameters, which are

h gerve ‘ - () .
A S borech\E sit € {serve, field},
m=|m, wp =\ Fed|> my = g ,
g (B () e

In Listing C.1, the constructor of the parametrized basic decision rule is presented. The class is named
Strategy since, in a sport context, it is the commonly used term. Besides the specification of the parameters
a central field for each player is set depending whether the strategy is a strategy of team P or of team Q.
The name of the strategy is just a meaningful string that helps to identify a specified parametrization.

public Strategy(String name, boolean isTeamA, double pi_b,
double [J[] pi_h, double pi_o1){
this.name = name;
this.isTeamA = isTeaml;
this.pi_b = pi_b;
this.pi_h = pi_h;
this.pi_ol = pi_ol;

"The description variables or functions in the the presented pseudo-code uses the letters A respectively B instead of P and
Qtoname the participating teams.

255

256 APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

if (isTeamA){
centralFieldP1 = Field.A22;
centralFieldP2 = Field.A23;
}else{
centralFieldP1 = Field.B22;
centralFieldP2 = Field.B23;

Listing C.1: Constructor parametrized rally-SSO-MDP strategy

In this implementation, the basic decision rule specifies the reasonable action sets R; depending on
the category of state the s, see Table 4.5. In the remainder of this section, we specify these reasonable
action sets for each state category and whether the team is in possession of the ball or not. In each
decision rule, it is specified whether it is a decision rule of team P. Therefore, it is possible to determine
from the current position of the ball whether the team who chooses its next team action is in possession
of the ball or not.

As already mentioned in Subsection 4.3.2, each of the binary decision questions will partition the
reasonable action sets in two sets. The basic decision rule can be regained from the parametrization
presented in Table 4.8.

Assume in the following, a decision rule that is a decision rule of team P. This assumption helps
to avoid writing “the team who is using this decision rule” and to avoid annoying case distinctions.
All reasonable action sets can analogously be constructed for a decision rule of team Q since the rally
SSO-MDP is built with a symmetric view on team P and team Q.

C.L1 Serving States

If the current state s is a serving state of team P, i.e., s € S5, it is first determined whether player
1 or player 2 is hitting. As all serving states of team P are explicitly listed in the set S5, also two
subsets can be specified to distinguish between serving states of player 1 and player 2. This is done in a
natural manner and used to determine the hitting player. In the next step, a hit and a movement are
determined for the hitting player according to the parametrization of the decision rule. The function
chooseServeAfterStrat determines the hitting technique and the target field. It is listed and
explained in Listing C.3. If the chosen hit is a jump serve, the server makes one step forward to the net
else he moves towards a field on the side of the field that is not covered by the other player. Thereby
the function moveTowardsField returns a one-step movement in the direction towards the specified
field. And getCentralField0fOtherHalf (field) isa function that returns the central field that
is on the court half not containing field. The central fields are specified in the strategy class as P23
and P22 for team P. The non-hitting player stays in his field and does nothing. Finally, the returned
team action is constructed. Depending on whether player 1 or player 2 is the hitting player, the player
actions must be the first or the second player action in the constructor of the team action.

public TeamAction servingRule(State s, double r) {
// which player is hitting
int playerNumber;
if (Arrays.asList(State.START_STATES_A1).contains(s)){
playerNumber = 1;

C.r. DEFINITION OF THE BASIC DECISION RULE 257

}elsed
playerNumber = 2;
}

// determine hit
Hit h = Hit.chooseServeAfterStrat (isTeamh,
pi_h[playerNumber -1]1[0], pi_h[playerNumber -1]1[1], pi_ol);

Move moveServer;
if (h.isHitWithJump ()){

moveServer = Move.m_f;
Yelsed{
if (Arrays.asList(Field.OUT_A).contains (£fP1)){
moveServer =
fP1 .moveTowardsField(getCentralField0f0OtherHalf (£P2));
}else{
moveServer =
fP2.moveTowardsField (getCentralField0fOtherHalf (£P1));
}
}
if (playerNumber == 1)
return new TeamAction(new PlayerAction(h,moveServer), new
PlayerAction (Hit.nohit, Move.stay));
else

return new TeamAction(new PlayerAction(Hit.nohit, Move.stay),
new PlayerAction(h,moveServer));

Listing C.2: Reasonable action sets of serving states

The function chooseServeAfterStrat, listed in Listing C.3, determines a serving technique
and a target field according to the probability distribution specified by W"Z’:ﬁb(é’) and 7!';:;)2 ,(e). Also
the parameter 7 is taken into account to determine the court half of the target field. The function
MainSim.countRandomCalls () isafunction thatreturns a random double value in [0, 1) computed
by the Java Function nextDouble () of the Random class. The drawing of random numbers is en-
capsulated in a function for debugging reasons. For instance, in MainSim. countRandomCalls ()
the total number of random calls is counted and only a single Random object is used such that the
specification of a certain seed is possible. So, after the first draw of a random number, it is evaluated
whether this number is smaller than 7% (¢) or not. If it is smaller the a §/ is chosen else a SF. This

,tech
leads to a probability distribution where a §/ is chosen with probability 7,7 (¢) as desired. Similarly,

the target field is determined. First, it is evaluated from another drawing ofb frﬁndom number whether
the target field is a border field or not, and second, whether it is a field of the right or the left half of
the opponent’s court. By definition of the serving states, player 1 of the opponent team is placed in
field Q12 and player 2 in field Q13. Observe, that only the side edge fields without the fields at the net

are considered as border fields; these are precisely 4 fields on each court half and thus as many as the
non-border fields that are no fields at the net.

258 APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

public static Hit chooseServeAfterStrat(boolean isTeamA, double
pi_serve_tech, double pi_serve_field, double pi_ol){
HitTechnique tech;
Field f£f;

if (MainSim.countRandomCalls () < pi_serve_tech){
tech = HitTechnique.S_J;

}elsed{
tech = HitTechnique.S_F;

}

if (MainSim.countRandomCalls () < pi_serve_field)({
if (MainSim.countRandomCalls () < pi_o1){
f = Field.chooseRandomField (new Field[]{Field.Bi11,
Field.B211});
}elseq{
f = Field.chooseRandomField(new Field[]{Field.B14,
Field.B241});
}
Yelse{
if (MainSim. countRandomCalls () < pi_ol){
f = Field.chooseRandomField(new Field[]{Field.B12,
Field.B22});
}elseq
f = Field.chooseRandomField (new Field[]{Field.B13,
Field.B23});
}

return new Hit(tech, f);

Listing C.3: Choose Service

SJ erve

If the current state s is a serving state of the opponent team, i.c., s € the team does nothing.

The team action doNothing is defined by two player actions that consists of the hit 7o bir and the
move stay.
public TeamAction otherTeamServingRule(State s, double r) {

return TeamAction.doNothing;

}

Listing C.4: Reasonable action sets of other team serving

C.2 Reception States

The general idea of the reception rule, listed in Listing C.s, is to let one player make a reception towards
the central field of the other half of the court and let the other player move towards this target field.
If a player is in the same field as the ball, the technique 7 is used. If a player is only in a neighbor field
of the ball a reception with a move, 7,,, is used. As a reception with a move is, in general, a more
difficult hit compared to a reception without a movement, it is first tested whether a player is at the

C.r. DEFINITION OF THE BASIC DECISION RULE 259

position of the ball and only if both players do not fulfill that, it is determined whether a player is
in a neighbor-field of the ball. Since both players may be in the same field or both players are in a
neighbor-field of the ball, it is selected with an equal probability which player’s position is tested first.
The function ballIsInsideMyCourtSide () determines whether the ball is inside the court on the
team’s side and prevents from receiving a ball that is in an outside field. If no player can receive the ball,
the doNothing team action is returned. As in the next step, the rally will be completed if no real hit is
performed, a movement wouldn’t have any influence in any case.

public TeamAction receptionRule(State s, double r) {
/* randomize which player is tested first */

int order = 1;
if (r < 0.5)
order = 1;
Yelsed{
order = 2;
}
for (int i = 0; i < 2; i++){
switch (order)d{
case 1:
if (fP1 == fBall && balllsInsideMyCourtSide ()){

Field targetField = getCentralField0fOtherHalf (fP1);
Hit h = new Hit(HitTechnique.r, targetField);
return new TeamAction(new PlayerAction(h, Move.stay),
new PlayerAction(Hit.nohit,
fP2 .moveTowardsField(targetField))) ;

}
order = 2;
break;
case 2:
if (fP2 == fBall && balllsInsideMyCourtSide ()){
Field targetField = getCentralFieldOfOtherHalf (fP2);
Hit h = new Hit(HitTechnique.r, targetField);
return new TeamAction(new PlayerAction (Hit.nohit,
fP1.moveTowardsField(targetField)), new
PlayerAction(h, Move.stay));
}
order = 1;
break;
}
}
for (int i = 0; i < 2; i++)A{
switch (order){
case 1:

if (fP1.isNeighbour (fBall) && balllIsInsideMyCourtSide ()){
Field targetField = getCentralFieldOfOtherHalf (fP1);
Hit h = new Hit(HitTechnique.r_m, targetField);

260 APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

return new TeamAction(new PlayerAction(h, Move.stay),
new PlayerAction(Hit.nohit,
fP2.moveTowardsField(targetField))) ;
}
order = 2;
break;
case 2:
if (fP2.isNeighbour (fBall) && ballIsInsideMyCourtSide ()){
Field targetField = getCentralFieldOfOtherHalf (£fP2);
Hit h = new Hit(HitTechnique.r_m, targetField);
return new TeamAction(new PlayerAction(Hit.nohit,
fP1.moveTowardsField (targetField)), new
PlayerAction(h, Move.stay));
}
order = 1;
break;

}

return TeamAction.doNothing;

}

Listing C.s: Reasonable action sets of receiving states

If the current state is a receiving state of the other team, both players start positioning themselves on
the field to defend the next attack hit, see Listing C.6. The function determineBlockingPlayer is
listed below and determines a designated blocking player according to the parameter 7. The designated
blocking player moves — if he is not already there — forward to the net, while the non-blocking player
moves to the central field on the other court half of the blocking player. The decision who is the
designated blocking player of the next attack is part of the team action and as specified in the system
dynamic in the next state. This inclusion in the state means that this decision can be accessed at the next
time step.

public TeamAction otherTeamReceptionRule(State s, double r) {

// non-blocking player moves towards the central fields

Move moveP1l =
fP1 .moveTowardsField(getCentralField0fOtherHalf (£P2));

Move moveP2 =
fP2.moveTowardsField (getCentralField0fOtherHalf (£fP1));

TeamAction result = new TeamAction (new PlayerAction(Hit.nohit,
moveP1), new PlayerAction(Hit.nohit, moveP2));

Player blockingPlayer = determineBlockingPlayer (r);
result.setDesignatedBlockingPlayer (blockingPlayer) ;

// blocker moves forward except he is already at the net
Move moveBlocker;
if (blockingPlayer.isAtTheNet ()){
moveBlocker = Move.stay;
}elsed{

C.r. DEFINITION OF THE BASIC DECISION RULE 261

moveBlocker = Move.m_f;

b

// overwrite player action of blocking player

result.setPlayerActionOfPlayer (blockingPlayer, new
PlayerAction(Hit .nohit, moveBlocker));

return result;
Listing C.6: Reasonable action sets of other team receiving

private Player determineBlockingPlayer (double r){
if (r < pi_b){
return Game.getInstance () .getTeamA () .getPlayerl1();
Yelsed{
return Game.getInstance().getTeamA () .getPlayer2();
}

Listing C.7: Determine the blocking player

C.1.3 Defense States

The defending rule is similar to the reception rule. The only differences are that a defense technique
instead of a receiving technique is used. Furthermore, only a player who is not in a field directly at the
net should perform that defense hit. As in the receiving states, if no defense action is possible by both
players the team action do nothing is returned.

public TeamAction defendingRule(State s, double r) {
/* randomize which player is tested first */

int order = 1;
if (r < 0.5)
order = 1;
Yelsed{
order = 2;
}
for (int i = 0; i < 2; i++){
switch (order){
case 1:
if (fP1 == fBallé&&

('Arrays.asList (Field .AT_THE_NET_A) .contains (fP1) &&
ballIsInsideMyCourtSide ()){
Field targetField = getCentralFieldOfOtherHalf (fP1);
Hit h = new Hit(HitTechnique.d, targetField);
return new TeamAction(new PlayerAction(h, Move.stay),
new PlayerAction(Hit.nohit,
fP2 .moveTowardsField(targetField)));

262

APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

order=2;
break;
case 2:
if (fP2 == fBallé&&
(YArrays.asList (Field . AT_THE_NET_A).contains (fP2) &&
ballIsInsideMyCourtSide ()){
Field targetField = getCentralFieldOfOtherHalf (fP2);
Hit h = new Hit(HitTechnique.d, targetField);
return new TeamAction(new PlayerAction(Hit.nohit,
fP1 .moveTowardsField(targetField)), new
PlayerAction(h, Move.stay));
}
order=1;
break;

}

}

for (int i = 0; i < 2; i++){

}

switch (order){
case 1:
if (fP1.isNeighbour (fBall) &&
(YArrays.asList (Field .AT_THE_NET_A) .contains (fP1) &&
ballIsInsideMyCourtSide ()){
Field targetField = getCentralFieldOfOtherHalf (fP1);
Hit h = new Hit(HitTechnique.d_m, targetField);
return new TeamAction(new PlayerAction(h, Move.stay),
new PlayerAction(Hit.nohit,
fP2 .moveTowardsField (targetField)));
}
order=2;
break;
case 2:
if (fP2.isNeighbour (fBall) &&
(YArrays.asList (Field . AT_THE_NET_A) .contains (fP2) &&
ballIsInsideMyCourtSide ()){
Field targetField = getCentralFieldOfOtherHalf (£fP2);
Hit h = new Hit(HitTechnique.d_m, targetField);
return new TeamAction(new PlayerAction(Hit.nohit,
fP1.moveTowardsField (targetField)), new
PlayerAction(h, Move.stay));
}
order=1;
break;
}
}

return TeamAction.doNothing;

Listing C.8: Reasonable action sets of defending states

C.r. DEFINITION OF THE BASIC DECISION RULE 263

If the other team is defending, exactly the same team action is returned as when the other team is
receiving the ball after a service.

public TeamAction otherTeamDefendingRule (State s, double r) {
// mnon-blocking player moves towards the central fields
Move movePl = fP1l.moveTowardsField(centralFieldP1);
Move moveP2 = fP2.moveTowardsField(centralFieldP2);
TeamAction result = new TeamAction(new PlayerAction(Hit.nohit,
moveP1l), new PlayerAction(Hit.nohit, moveP2));

Player blockingPlayer = determineBlockingPlayer (r);
result.setDesignatedBlockingPlayer (blockingPlayer) ;

// blocker moves forward except he is already at the net
Move moveBlocker;
if (blockingPlayer.isAtTheNet ()){

moveBlocker = Move.stay;
}elsed{
moveBlocker = Move.m_f;

b

// overwrite player action of blocking player

result.setPlayerActionOfPlayer (blockingPlayer, new
PlayerAction(Hit .nohit, moveBlocker));

return result;

Listing C.9: Reasonable action sets of other team defending

C1.4 Setting States

The settingRule specified in Listing C.10 defines the team action for setting states of team P. Again
the order in which the players are tested is randomized. The first tested player who is in the same position
as the ball, and who has not last touched the ball will perform the set. As for the setting technique, only
a neighbor-field of player’s current position is allowed, it is tested whether the central field of the other
court half belongs to the neighbor-fields of the own field. If that’s the case, a set towards the central field
of the other court half'is made, and the non-hitting player moves towards that target field. If that’s not
the case a fall-back to the reception rule is made. A reception has fewer requirements than a setting, so it
may be the case that no setting is possible but a reception can be performed. A fall-back to a reception
and not to defense is made since a regain of the ball after a failed setting is easier than defending an
attack hit and therefore more similar to a reception.

public TeamAction settingRule(State s, double r) {
/* randomize which player is tested first */
int order = 1;
if (r < 0.5)1
order = 1;
}elsed
order

23

264

}

APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

for (int i = 0; i < 2; i++){

switch (order){
case 1:
if (fP1 == fBall && s.getLastContact() !=

Game .getInstance () .getTeamA () .getPlayerl ()){

Field targetField = getCentralFieldOfOtherHalf (fP1);
if (targetField.isNeighbourOrOwnField (fP1)){

Hit hitP1 = new Hit(HitTechnique.s,targetField);
Field moveTargetField;
moveTargetField = targetField;
return new TeamAction(new PlayerAction(hitP1,
Move.stay), new PlayerAction(Hit.nohit,
fP2 .moveTowardsField (moveTargetField)));

order = 2;
break;
case 2:
if (fP2 == fBall && s.getLastContact() !=

Game .getInstance () .getTeamA () .getPlayer2 ()){

Field targetField = getCentralFieldOfOtherHalf (fP2);
if (targetField.isNeighbourOrOwnField (£fP2)){

Hit hitP2 = new Hit (HitTechnique.s,targetField);

Field moveTargetField;

moveTargetField = targetField;

return new TeamAction(new PlayerAction (Hit.nohit,
fP1.moveTowardsField (moveTargetField)), new
PlayerAction (hitP2, Move.stay));

order = 1;
break;

return receptionRule(s,r);

Listing C.10: Reasonable action sets of setting states

If the other team does the setting prior to their next attack, the positioning on the court for defending

the nextattack hitis done. First, it is estimated which player will possibly perform the next attack hit. The
function £indCol0fPossiblyAttackingPlayer returns an estimate of the column from which
the next attack hit will be performed. The function £indCol0fPossiblyAttackingPlayer is
described and listed below in more detail. Having an estimate of the column of the next attack hit, the
blocking player moves towards a field at the net of this column. If the blocking player is already at the
net, he may move left or right to be in the column of the estimated next attack. If he is in the correct

C.r. DEFINITION OF THE BASIC DECISION RULE 265

column and at the net, he stays there. The non-blocking player positions himself in the central field
on the court half that is not covered by the blocking player. Finally, depending on whether player 1 or
player 2 is blocking, the team action is constructed from both player actions.

public TeamAction otherTeamSettingRule(State s, double r) {

// determine column of the player who probably will do the
attack hit in the next step

int col_possiblyAttackingCol =
findColOfPossiblyAttackingPlayer (s);

PlayerAction blockPlayerAction;

Field blockerField;

Player designatedBlocker;

if (s.getBlocker () == null){
// this could be the case if the ball was directly before
blocked
designatedBlocker = determineBlockingPlayer (r);
}elsed
designatedBlocker = s.getBlocker();

3

if (designatedBlocker ==
Game.getInstance () .getTeamA () .getPlayerl ())
blockerField = fP1;
else
blockerField = fP2;

if (col_possiblyAttackingCol < blockerField.getColumn()){
if (Arrays.asList(Field.AT_THE_NET_A).contains(blockerField)){
blockPlayerAction = new PlayerAction(Hit.nohit, Move.m_r);
Yelsed{
// blocker one step forward-right
blockPlayerAction = new PlayerAction(Hit.nohit, Move.m_fr);
}
}else if (col_possiblyAttackingCol > blockerField.getColumn()){
if (Arrays.asList(Field.AT_THE_NET_A).contains(blockerField)){
blockPlayerAction = new PlayerAction(Hit.nohit, Move.m_1);
Yelsed{
// blocker one step forward-left
blockPlayerAction = new PlayerAction(Hit.nohit, Move.m_1f);
¥
}elsed{
if (Arrays.asList(Field.AT_THE_NET_A) .contains(blockerField)){
blockPlayerAction = new PlayerAction(Hit.nohit, Move.stay);
Yelseq
// blocker one step forward
blockPlayerAction = new PlayerAction(Hit.nohit, Move.m_f);
}
}

// mnon blocking player moves towards the central field of the

266

court half which is not covered by the block
PlayerAction nonblockingPlayerAction;
Field nonBlockingPlayerField;
if (designatedBlocker ==
Game .getInstance () .getTeamA () .getPlayerl ()){
nonBlockingPlayerField = £fP2;
Yelseq
nonBlockingPlayerField = fP1;
}

if (col_possiblyAttackingCol <=
nonBlockingPlayerField.getColumn ()){
nonblockingPlayerAction = new PlayerAction(Hit.nohit,
nonBlockingPlayerField.moveTowardsField(centralFieldP2));
}elsed{
nonblockingPlayerAction = new PlayerAction(Hit.nohit,
nonBlockingPlayerField . moveTowardsField (centralFieldP1));
}

if (designatedBlocker ==
Game .getInstance () .getTeamA () .getPlayerl ()){
return new TeamAction(blockPlayerAction,
nonblockingPlayerAction, designatedBlocker);
}elsed{
return new TeamAction(nonblockingPlayerAction,
blockPlayerAction, designatedBlocker);

Listing C.1x: Reasonable action sets of other team setting

APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

The function findCol0fPossiblyAttackingPlayer is listed in Listing C.12. It suggests, de-
pending on the current state, the player who will perform a hit in the next step. This suggestion is made
by determining whether one of the players is currently in the same position as the ball. If that’s the case,
it is assumed that this player will perform a hit in the current state and the other player will perform a
hit in the next state. Therefore, the column of the player who is not in possession of the ball is returned.
The column of a field is defined as the second index. So, for example, the field P23 is in column 3. The
columns correspond to the rows in Figure 4.6 because we horizontally draw the court. If none of the
players is at the same position as the ball, it can not be suggested who will perform a hit in the current
state. In that case, the column of the position of the ball is returned.
private int findColOfPossiblyAttackingPlayer (State s){

// find column of the player who is not in possession of the
ball and who will probably perform the attack hit
int col_possiblyAttackingCol;

if (s.getFieldBall() == s.getFieldB1())
col_possiblyAttackingCol = s.getFieldB2().getColumn();
else if (s.getFieldBall() == s.getFieldB2())

col_possiblyAttackingCol = s.getFieldB1().getColumn();

C.r. DEFINITION OF THE BASIC DECISION RULE 267

else
// if the attacking player can not be guessed return the
column of the ball
col_possiblyAttackingCol = s.getFieldBall().getColumn();

return col_possiblyAttackingCol;

Listing C.12: Find Column of Possibly Attacking Player

Cas Attacking States

In an attacking state of team P, it is determined whether one of the players can make a proper attack
(smash or planned shot), or whether at least an emergency shot is possible. If none of those options is
possible, the doNothing team action is returned, as shown at the end in Listing C.13. A fall-back to a
defense or a receiving action makes no sense since those techniques only allow to choose a target field on
the own courtside, see Table 4.6. Since, according to the classification of an attacking state, the counter
is already 2, the ball must cross the net at this point, else the three-hits-rule is violated in the next step.
If one player is at the position of the ball, he chooses the technique and target field according to the
parametrization of the decision rule. This is done in the function chooseFieldAttackAfterStrat
described below. The non-hitting player does nothing. If no player is in the correct position, an
emergency shot can still be allowed if a player is in a neighbor-field of the ball. In this case, a random
shot from all shots available is selected.

public TeamAction attackingRule(State s, double r) {
int playerNumber = O0;

// determine attacking player
if (fP1==fBall && s.getLastContact () !=
Game .getInstance () .getTeamA () .getPlayerl ()){
playerNumber=1;
}
if (fP2==fBall && s.getLastContact() !=
Game.getInstance () .getTeamA () .getPlayer2()){
playerNumber=2;

}
Hit h;
if (playerNumber != 0){

// determine hit according to parametrization
h = Hit.chooseFieldAttackAfterStrat (isTeamA,
pi_h[playerNumber -1][2], pi_h[playerNumber -1][3]);
if (playerNumber == 1){
return new TeamAction(new PlayerAction(h, Move.stay),
PlayerAction.doNothing);
} else if (playerNumber == 2){
return new TeamAction(PlayerAction.doNothing, new
PlayerAction(h, Move.stay));

268 APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

}

Yelseq
// no player at the ball -> emergency shot
// ball in neighbour-field

if (fBall.isNeighbour (fP1) && s.getLastContact() !=
Game .getInstance () .getTeamA () .getPlayerl ()){
h = Hit.chooseRandomHit (Hit.SHOT_TEAMA) ;
return new TeamAction(new PlayerAction(h, Move.stay),
PlayerAction.doNothing) ;
}
if (fBall.isNeighbour (fP2) && s.getLastContact() !=
Game.getInstance () .getTeamA () .getPlayer2 ()){
h = Hit.chooseRandomHit (Hit.SHOT_TEAMA);
return new TeamAction(PlayerAction.doNothing, new
PlayerAction(h, Move.stay));

return TeamAction.doNothing;

3

Listing C.13: Reasonable action sets of attacking states

The function chooseFieldAttackAfterStrat, listed in Listing C.14, determines an attack hit

el eld

according to the probability distribution specified by W/Z tib(g) and W/Z ﬁeu(g). First, the used technique

. . . ld .
is determined. If the drawn random number is smaller than ermb(g), a smash FS is chosen, else a

planned shot FP. Afterwards the target field is determined according to WZEZh(g). Since a planned shot
can have a field directly behind the net as a target field, the sets of border fields and non-border fields
from which a random target field is selected, differs for the S and the FP.

public static Hit chooseFieldAttackAfterStrat(boolean isTeamA,
double pi_field_tech, double pi_field_field)({
HitTechnique tech;
Field f£f;

if (MainSim.countRandomCalls () < pi_field_tech){
tech = HitTechnique.F_SNM;

}elsed{
tech = HitTechnique.F_P;

}

if (MainSim.countRandomCalls () < pi_field_field)({
if (tech!=HitTechnique.F_SM){
// border fields including fields at the net
f = Field.chooseRandomField(new Field[]{Field.B11,
Field.B21, Field.B31, Field.B14, Field.B24, Field.B341});
Yelsed{
// border fields excluding fields at the net

C.r. DEFINITION OF THE BASIC DECISION RULE 269

f = Field.chooseRandomField(new Field[]J]{Field.B11,
Field.B21, Field.B14, Field.B241});
}
Yelse{
if (tech!=HitTechnique.F_SM){
// non-border fields including fields at the net
f = Field.chooseRandomField(new Field[]J{Field.B12,
Field.B22, Field.B32, Field.B13, Field.B23, Field.B33});
}else{
// non-border fields excluding fields at the net
f = Field.chooseRandomField(new Field[]{Field.B12,
Field.B22, Field.B13, Field.B231});
}
}
return new Hit(tech, f);

}
Listing C.14: Choose attack hit

Finally, we have the decision rule of team P for states, where team Q makes an attack hit, see
Listing C.1s. Independent from the specified designated blocking player of the current state, the
blocking player is determined as the player who is at the net. If the player is in the same column as the
ball, he performs a blocking action. If he is not in the correct column, he moves one step backward to
be able to make a defense action. The non-blocking player moves, if he is not already there, towards the
central field on the other court half. Depending on whether player 1 or player 2 is the blocking player, a
team action is constructed and returned from these player actions.

public TeamAction otherTeamAttackingRule(State s, double r) {

Player blocker = s.getBlocker();

PlayerAction blockingPlayerAction;

Field blockingPlayerField;

PlayerAction nonBlockingPlayerAction;

Field nonBlockerField;

// determine field of blocking player from position

if (s.getBlocker () ==

Game.getInstance () .getTeamA () .getPlayerl1 ()){

blockingPlayerField = fP1;
nonBlockerField = fP2;

}

else {
blockingPlayerField = £fP2;
nonBlockerField = fP1;

}

// blocking player is in the correct column?
if (s.getFieldBall().isInSameColumn(blockingPlayerField)
&% blocker.isAtTheNet ()){
// yes -> perform block
blockingPlayerAction = new PlayerAction(Hit.nohit, Move.Db);
}elsed

270

APPENDIX C. RALLY-SSO-MDZP: BASIC DECISION RULE
// mo -> move backwards
blockingPlayerAction = new PlayerAction(Hit.nohit, Move.m_b);
}
// mnon-blocking player moves to central field on other court
half
if (blockingPlayerField.getColumn () <= 2){
nonBlockingPlayerAction = new PlayerAction(Hit.nohit,

nonBlockerField.moveTowardsField(centralFieldP2)) ;
Yelse{
nonBlockingPlayerAction = new PlayerAction(Hit.nohit,
nonBlockerField.moveTowardsField(centralFieldP1));
}

if (blocker == Game.getInstance().getTeamA().getPlayerl ()){
return new TeamAction(blockingPlayerAction,
nonBlockingPlayerAction) ;
Yelseq
return new TeamAction(nonBlockingPlayerAction,
blockingPlayerAction) ;

Listing C.15: Reasonable action sets of other team attacking

Appendix D

Set-SSO-MDP: Strategy Estimates of
Team Q

Based on pre-final matches

strategy # q;erve 7{37‘06 # qﬁeld éﬁeld

risky-risky 19 5% 32% 78 65% 21%
risky-safe 19 5% 32% 27 37% 0%
safe-risky 146 1% 7% 78 65% 21%
safe-safe 146 1% 7% 27 37% 0%

(a) pre-final setting

Based final match

strategy # g g # qﬁdd Z]ﬁ"ld

risky-risky 6 17% 33% 32 69% 19%
viskysafe 6 17% 33% 7 14% 0%
safe-risky 22 0% 9% 32 69% 19%
safe-safe 22 0% 9% 7 14% 0%

(b) post-final setting

Table D.1: Direct estimation of s-MDP probabilities for team Q

271

272 APPENDIX D. SET-SSO-MDP: STRATEGY ESTIMATES OF TEAM Q

Appendix E

Data and Software

273

274 APPENDIX E. DATA AND SOFTWARE

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
33
3.4
3.5

3.7
3.8
3.9
3.10
3.11

4.1
4.2
43
4.4
45

4.7
4.8
4.9

5.1
5.2
5-3

Example MAXPROB problem that is no Bertsekas-SSP. 34
Hierarchyof MDPclasses 35
Conserving decision rule is not sufficient (Puterman, 2005, Ex. 7.2.3) 41
Policy Iteration may terminate with a suboptimal policy 47
Many feasible dual solutions to adecisionrule 51
LP formulation for NEG models: non convex feasible regions 62
Illustration of non convex feasible regions of Example2.7 63
SSO-MDPExample L 78
MDP classes hierarchy SSO-MDPsincluded 82
SSO-MDPExample 92
Solution of SSO-MDP Example L. 93
Flow network example of an SSO-MDP 97
Flow generated by random process of SSO-MDP in time-extended network 102
Flow network example of an SSO-MDP L. 123
lustration of Algorithm 6 fore € £ : e € 0.(C) withend(e) € Ng 140
ustration of Algorithm 6 fore € E : e € 0_(C)withend(e) e Ny 141
Modeling a sprint in soccer as constraint SSO-MDP ISI
SSO-MGExample L 153
Set-SSO-MDP e 160
Tie-game 161
Refined regular SSO-MDP Lo 165
Aggregated regular SSO-MDP Lo 166
Aggregated Tie-Game Lo 166
Courtgrid 175
Beach Volleyball Tracker — User Interface 194
Beach Volleyball Tracker - Example Data 196
AggregationScheme L L L 199
Modeling Decision — Degreesof Detail 212
TwoScale Approach L o 214
Skill-Strategy Score Card: safe versus risky play for varying smash skills (£5) 228

275

276

5-4
5

B

LIST OF FIGURES

Skill-Strategy Score Card:safe versus risky play for varying shot skills (FP) 229
Skill-Strategy Score Card: safe versus risky play for varying jump serve skills (S7) . . . 230
Skill-Strategy Score Card: safe versus risky play for varying float serve skills (Sf) and

Plauit,e (ﬁeld, SE) e 231

Screenshots g-MDPsimulationo oo 254

List of Tables

4.1
4.2

43
4.4
45
4.6
4.7
4.8
4.9

4.10
4.11

4.12
413

4.14
4.15

4.16
4.17
4.18
4.19
4.20

5.1
5.2
53
5.4
5-5
5.6
57

5.8

An SSO-MDP modeling a beach volleyball set (set-SSO-MDP)
Match statistics of the final match at the Olympic Beach Volleyball Tournament 2012
in London (Database,2018)
Estimated transition probabilities from the finalmaech 0.
Comparing strategies against the final strategy of Brazil
State Categories
Hitspecificationforteam P
Move specification for g belongingtoteam P
Parameters settings for regaining basic decisionrule00
Internet statistics of the Olympic Beach Volleyball Tournament 2012 in London —
Final matchincluded
Attack Statistic from collected g-data — final matchincluded
Serve Statistic from collected g-data — final matchincluded
Input data from all matches: Julius Brink — Serves and Attack-Hits
Input data from all matches: Julius Brink — Defense, Reception, Set, Block
Input data from all matches: Jonas Reckermann — Serves and Attack-Hits
Input data from all matches: Jonas Reckermann — Defense, Reception, Set
Input data from all matches: Alison Cerutti — Serves and Attack-Hits
Input data from all matches: Alison Cerutti — Defense, Reception, Set, Block

Input data from all matches: Emanuel Rego — Serves and Attack-Hits
Input data from all matches: Emanuel Rego — Defense, Reception, Set, Block
Generated state space by basic decisionrule oo 0oL

Comparison rough versus detailed SSO-MDP
Meaningful s-g-implementation 7 4(s, &) =7o L L oL
Validation of simulated s-MDP transition probabilities
Estimation of s-MDP probabilities from g-MDP simulation
Direct estimation of s-MDP probabilities
Comparison between 2-MDP approach and directapproach
Winning probabilities of Germany regarding different strategy combinations in the

prefinalsetting. L
Winning probabilities of Germany regarding different strategy combinations in the

post-final setting. L

278

A
A
Ay
Ags
A6

D.

LIST OF TABLES

Input data from final match: Julius Brink — Serves and Attack-Hits 241
Input data from final match: Julius Brink — Defense, Reception, Set, Block 242
Input data from all matches except final: Julius Brink — Serves and Attack-Hits 242
Input data from all matches except final: Julius Brink — Defense, Reception, Set, Block 243
Input data from final match: Jonas Reckermann — Serves and Attack-Hits 243
Input data from final match: Jonas Reckermann — Defense, Reception, Set 244

Input data from all matches except final: Jonas Reckermann — Serves and Attack-Hits 244
Input data from all matches except final: Jonas Reckermann — Defense, Reception, Set 245

Input data from final match: Alison Cerutti — Serves and Attack-Hits 245
Input data from final match: Alison Cerutti — Defense, Reception, Set, Block 246
Input data from all matches except final: Alison Cerutti — Serves and Attack-Hits . . 246
Input data from all matches except final: Alison Cerutti — Defense, Reception, Set, Block 247
Input data from final match: Emanuel Rego — Serves and Attack-Hies 247
Input data from final match: Emanuel Rego — Defense, Reception, Set, Block 248
Input data from all matches except final: Emanuel Rego — Serves and Attack-Hits . . 248

Input data from all matches except final: Emanuel Rego — Defense, Reception, Set, Block 249

Direct estimation of s-MDP probabilities forteam Q 271

Acronyrns

Bertsekas-SSP MDP
GSSP MDP
MAXPROB MDP
NEG MDP

POSB MDP
SSO-MDP
SSO-MG

SSP MDP
SSPADE

SSPUDE

¢-MDP

s-MDP

2-MDP approach
MDP

MG

Bertsekas Shortest Path MDP

General Stochastic Shortest Path MDP

Maximum Probability MDP

Negative MDP

Positive Bounded MDP

Sport-Strategy Optimization MDP

Sport-Strategy Optimization MG

Stochastic Shortest Path MDP

Stochastic Shortest Path MDP with avoidable Dead Ends
Stochastic Shortest Path MDP with unavoidable Dead Ends
Gameplay MDP

Strategic MDP

Two-MDP Approach

Markov Decision Problem

Markov Game

279

280 Acronyms

Symbols

A Set of actions available in state s

A Set of state-action pairs available in state s

T Decision points

ds Decision rule in state s

q,(a) Probability of choosing action « in state s under decision rule d
B Dynamic programming operator

N Horizon

Number of actions

n Number of states

7 Policy

" Optimal policy

da” Stationary policy

24 Powerset of set A

P(A) Probability distribution over set A4

P Probability measure

7(s,) Expected reward from action « in state s at time ¢
7:(s,4,5’) Reward from transition from state s under actions to state s’ at time ¢
N (5) Terminal reward in state s

74 Expected reward vector from decision rule 4

Y Random variable for action of Markov process
Z Random variable for node in flow network

X Random variable for state of Markov process

A Set of actions

281

282 Symbols

D Set of all decision rules

DMDP Set of all deterministic Markovian decision rules
DMR Set of all randomized Markovian decision rules
e Set of all deterministic Markovian policies

G Set of goal states

L Set of losing states

II Set of all policies

MR Set of all randomized Markovian policies

S Set of states

v Set of value functions

w Set of winning states

A Set of state-actions pairs

/ Losing state

51 Starting state

w Winning state

p:(s’|s, a) Transition probability from state s under actions 4 to state s” at time #

Py Transition matrix under decision rule 4

v Value function of an MDP

v*(s) Value of MDP starting in state s (infinite horizon)

v (5) Value of MDP starting in state s (finite horizon)

g7 () Expected average reward of policy # (infinite horizon)

3 (5) Expected discounted reward of policy # (infinite horizon)
0" (s) Expected total reward of policy # (infinite horizon)

3, (5) Expected total reward of policy # in (finite Horizon)

Bibliography

Adler, Ilan (2010). “On the Equivalence of Linear Programming Problems and Zero-Sum Games.” In:
Optimization Online 1.June, pp. 1-7.

Ahmann, Jorg (2001). Vergleichende Struktur- und Sachanalyse beim internationalen Beach-Volleyball
der Herren hinsichtlich Regelinderungen zur Saison 2001. Tech. rep. Sonder-Lehrgang A-Trainer
des DVV.

Ahuja, Ravindra, Thomas Magnanti, and James Orlin (1993). Network Flows: Theory, algorithms, and
applications, p. 846. 1SBN: 0-13-617549-x. DOI: 10.1016/0166-218X(94)90171-6.

Anbarci, Nejat, Ching-Jen Sun, and M. Utku Unver (2015). Designing Fair Tiebreak Mechanisms: The
Case of Penalty Shootouts. Tech. rep., pp. 1-52.

Anderson, Ross et al. (2007). “Algorithmic Game Theory.” In: Algorithmic Game Theory, p. 754.
ISSN: 00010782. DOI: 10.1145/1785414.1785439. arXiv: 0907 .4385.

Bellman, Richard (1957a). A4 Markovian decision process. po1: 10.1007/BF02935461.

Bellman, Richard (1957b). Dynamic programming. Princeton, NJ, USA: Princeton University Press,
p- 339
Bertsekas, Dimitri P. (2001). Dynamic Programming and Optimal Control. Volume II. 2nd ed. Belmont,

Massachusetts: Athena Scientific, p. 303. 1SBN: 1-886529-27-2.

Bertsekas, Dimitri P. (2005). Dynamic Programming and Optimal Control. Volume I. 3rd ed. Belmont,
Massachusetts: Athena Scientific, p. 543. ISBN: 1-886529-26-4.

Borodin, Allan and Ran El-Yaniv (2005). Online computation and competitive analysis. Cambridge
University Press.

Bukiet, Bruce, Elliotte Rusty Harold, and José Luis Palacios (1997). “A Markov chain approach to base-
ball.” In: Operations Research 4s.1, pp. 14—23.

Busca, Bernatetal. (2012). “The influence of serve characteristics on performance in men’s and women’s
high-standard beach volleyball.” In: Journal of Sports Sciences 30.3, pp. 269—276. po1: 10.1080/
02640414.2011.635309.

283

https://doi.org/10.1016/0166-218X(94)90171-6
https://doi.org/10.1145/1785414.1785439
http://arxiv.org/abs/0907.4385
https://doi.org/10.1007/BF02935461
https://doi.org/10.1080/02640414.2011.635309
https://doi.org/10.1080/02640414.2011.635309

284 BIBLIOGRAPHY

Canal-Bruland, Rouwen, Merel Mooren, and Geert J. Savelsbergh (2011). “Differentiating experts’ an-
ticipatory skills in beach volleyball.” In: Research Quarterly for Exercise and Sport 82.4, pp. 667~
674. ISSN: 21683824. DO1: 10.1080/02701367.2011.10599803.

Chan, Timothy C. Y. and Raghav Singal (2016). “A Markov Decision Process-based handicap system
for tennis.” In: Journal of Quantitative Analysis in Sports 1.4, pp. 179-189. ISSN: 1559-0410. DOTL:
10.1515/jqas-2016-0057.

Clarke, Stephen R. and John M. Norman (1998). “Dynamic programming in cricket: Protecting the
weaker batsman.” In: Asia Pacific Journal of Operational Research 1s.1. ISSN: 02175959.

Clarke, Stephen R. and John M. Norman (1999). “To run or not?: Some dynamic programming models
in cricket.” In: Journal of the Operational Research Society 50.5, pp. 536—545. ISSN: 0160-5682. DOI:
10.1057/palgrave. jors.2600705.

Clarke, Stephen R. and John M. Norman (2012). “Optimal challenges in tennis.” In: Journal of the
Operational Research Society 63.12, pp. 1765-1772. ISSN: 0160-5682. DOI: 10.1057/jors.2011.
147.

Cortell-Tormo, Juan M. et al. (2011). “Analysis of Movement Patterns by Elite Male Players of Beach
Volleyball.” In: Perceptual and Motor Skills 112.1, pp. 21-28. ISSN: 0031-5125. DOI: 10 .2466/05.
27.PMS.112.1.21-28.

Dantzig, George B. (1951). “A proof of the equivalence of the programming problem and the game
problem.” In: Activity analysis of production and allocation 13, pp. 330—338.

Dantzig, George B. (1963). Linear Programming and Extensions.

Database, Beachvolleball (2018). Beach Volleyball Database. URL: http : / /www . bvbinfo . com/
Tournament . asp?ID=2594{\&}Process=Matches (visited on 05/22/2018).

D’Epenoux, Francois (1963). “A Probabilistic Production and Inventory Problem.” In: Management
Science 10.1, pp. 98-108. DOI: 10.1287/mnsc.10.1.98.

Fédération Internationale De Volleyball (2012a). Player Ranking by Skill. URL: http://www.fivb.
org/en/olympics/london2012/PDF/B6-MLON2012. pdf (visited on 05/28/2018).

Fédération Internationale De Volleyball (2012b). Team Ranking by Skill. Tech. rep., p. 1. URL: http:
//www.fivb.org/en/olympics/london2012/PDF/B5-MLON2012. pdf.

Fédération Internationale De Volleyball (2016). Official Volleyball Rules 2017-2020. URL: http://www.
fivb.org/en/Refereeing-Rules/documents/FIVB-Volleyball{\ _}Rules2013-
EN{_}v2{_}20130422. pdf.

Ferrante, Marco and Giovanni Fonseca (2014). “On the winning probabilities and mean durations of
volleyball.” In: Journal of Quantitative Analysis in Sports 10.2, pp. 1-8. ISSN: 1559-0410. DOI: 10.
1515/ jqas-2013-0098.

Florence, Lindsay W. etal. (2008). “Skill Evaluation in Women’ s Volleyball.” In: Journal of Quantitative
Analysis in Sports 4.2, p. 14. ISSN: 1559-0410. DOI: 10.2202/1559-0410.1105.

https://doi.org/10.1080/02701367.2011.10599803
https://doi.org/10.1515/jqas-2016-0057
https://doi.org/10.1057/palgrave.jors.2600705
https://doi.org/10.1057/jors.2011.147
https://doi.org/10.1057/jors.2011.147
https://doi.org/10.2466/05.27.PMS.112.1.21-28
https://doi.org/10.2466/05.27.PMS.112.1.21-28
http://www.bvbinfo.com/Tournament.asp?ID=2594{\&}Process=Matches
http://www.bvbinfo.com/Tournament.asp?ID=2594{\&}Process=Matches
https://doi.org/10.1287/mnsc.10.1.98
http://www.fivb.org/en/olympics/london2012/PDF/B6-MLON2012.pdf
http://www.fivb.org/en/olympics/london2012/PDF/B6-MLON2012.pdf
http://www.fivb.org/en/olympics/london2012/PDF/B5-MLON2012.pdf
http://www.fivb.org/en/olympics/london2012/PDF/B5-MLON2012.pdf
http://www.fivb.org/en/Refereeing-Rules/documents/FIVB-Volleyball{_}Rules2013-EN{_}v2{_}20130422.pdf
http://www.fivb.org/en/Refereeing-Rules/documents/FIVB-Volleyball{_}Rules2013-EN{_}v2{_}20130422.pdf
http://www.fivb.org/en/Refereeing-Rules/documents/FIVB-Volleyball{_}Rules2013-EN{_}v2{_}20130422.pdf
https://doi.org/10.1515/jqas-2013-0098
https://doi.org/10.1515/jqas-2013-0098
https://doi.org/10.2202/1559-0410.1105

BIBLIOGRAPHY 285

Giatsis, George (2003). “The effect of changing the rules on score fluctuation and match duration in
the FIVB women’s beach volleyball.” In: International Journal of Performance Analysis in Sport
3.1, pp. 57-64. DOI: 10.1080/24748668 . 2003 . 11868275.

Giatsis, George and Zahariadis Panagiotis (2008). “Statistical Analysis of Men’s FIVB Beach Volleyball
Team Performance.” In: International Journal of Performance Analysis in Sport 8.1, pp. 31-43.
DpoI1: 10.1080/24748668.2008.11868420.

Gomez, Gabriel et al. (2014). “Tracking of Ball and players in beach volleyball videos.” In: PLOS ONE
9.11, pp. I-19. ISSN: 19326203. DOL: 10.1371/journal . pone.0111730.

Guillot, Matthieu and Gautier Staufter (2017). “The Stochastic Shortest Path Problem: A polyhedral

combinatorics perspective.”

Hansen, Eric A. (2017). “Error bounds for stochastic shortest path problems.” In: Mathematical Meth-
ods of Operations Research 86.1, pp. 1—27. 1SSN: 1432-5217. DOI: 10.1007/500186-017-0581-5.

Heiner, Matthew, Gilbert W. Fellingham, and Camille Thomas (2014). “Skill importance in women’s
soccer.” In: Journal of Quantitative Analysis in Sports 0.0, pp. 287—302. ISSN: 1559-0410. DOI:
10.1515/jqas-2013-0119.

Hirotsu, Nobuyoshi and Mike Wright (2002). “Using a Markov process model of an association foot-
ball match to determine the optimal timing of substitution and tactical decisions.” In: Journal of
the Operational Research Society s3.1, pp. 88—96. ISSN: 0160-5682. DOI: 10 . 1057 /palgrave/
jors/2601254.

Hirotsu, Nobuyoshi and Mike Wright (2003a). “A Markov Chain Approach To Optimal Pinch Hit-
ting Strategies in a Designated Hitter Rule Baseball Game.” In: Journal of the Operations Research

Society of Japan 46.3, pp. 353371
Hirotsu, Nobuyoshi and Mike Wright (2003b). “Determining the best strategy for changing the con-

figuration of a football team.” In: Journal of the Operational Research Society 54.8, pp. 878—887.
ISSN: 0160-5682. DOI: 10.1057/palgrave. jors.2601591.

Hoffmeister, Susanne and Jorg Rambau (2017a). “Sport Strategy Optimization in Beach Volleyball -
How to bound direct point probabilities dependent on individual skills.” In: AMathSport Proceed-

ings, pp- 184-193.
Hoffmeister, Susanne and Jérg Rambau (2017b). “Strategy Optimization in Sports — A Two-Scale Ap-

proach via Markov Decision Problems.” URL: http : //www . wm . uni - bayreuth . de/de/
download/xcf2d3wd41kj2/preprint{_}sso{_}bv.pdf.

Hoftmeister [formerly Bérner], Susanne (2014). “Markovsche Entscheidungsprobleme fiir Sportspiele.”
Masterarbeit. University of Bayreuth.

Howard, Ronald A. (1960). Dynamic Programming and Markov Processes. Published jointly by the
Technology Press of the Massachusetts Institute of Technology and.

Johnson, Donald B. (1975). “Finding All the Elementary Circuits of a Directed Graph.” In: SIAM
Journal on Computing 4.1, pp. 77—-84. ISSN: 0097-5397. DOI: 10.1137/0204007.

https://doi.org/10.1080/24748668.2003.11868275
https://doi.org/10.1080/24748668.2008.11868420
https://doi.org/10.1371/journal.pone.0111730
https://doi.org/10.1007/s00186-017-0581-5
https://doi.org/10.1515/jqas-2013-0119
https://doi.org/10.1057/palgrave/jors/2601254
https://doi.org/10.1057/palgrave/jors/2601254
https://doi.org/10.1057/palgrave.jors.2601591
http://www.wm.uni-bayreuth.de/de/download/xcf2d3wd4lkj2/preprint{_}sso{_}bv.pdf
http://www.wm.uni-bayreuth.de/de/download/xcf2d3wd4lkj2/preprint{_}sso{_}bv.pdf
https://doi.org/10.1137/0204007

286 BIBLIOGRAPHY

Jungnickel, Dieter (2008). Graph, Networks, and Algorithms. Vol. 5. 7. Springer-Verlag Berlin Heidel-
berg, p. 781. ISBN: 978-3-642-32277-8. DOI: 10.1007/978-3-642-32278-5.

Karmarkar, Narendra (1984). “A new polynomial-time algorithm for linear programming.” In: Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing, pp. 302—311.

Khachiyan, Leonid G. (1980). “Polynomial algorithms in linear programming.” In: USSR Computa-
tional Mathematics and Mathematical Physics 20.1, pp. 53-72.

Kira, Akifumi etal. (2015). “A dynamic programming algorithm for optimizing baseball strategies.” In:
MI Preprint Series. Vol. 10, p- 30.

Klee, Victor and Georg J. Minty (1972). How Good. is the Simplex Algorithm? Tech. rep., pp. 159-175.

Koch, Christina and Markus Tilp (2009a). “Analysis of Beach Volleyball Action Sequences of Female
Top Athletes.” In: Journal of Human Sport £ Exercise 4.3, pp. 272—283. DOI: 10.4100/ jhse.

Koch, Christina and Markus Tilp (2009b). “Beach Volleyball Techniques and Tactics: A Comparison
of Male and Female Playing Characteristics.” In: Kinesiology 41, pp. 52—59.

Kolobov, Andrey and Mausam (2012). Planning with Markov Decision Processes. Morgan & Claypool
Publishers. 1SBN: 9781608458868.

Kolobov, Andrey, Mausam, and S. Weld (2012). “Stochastic Shortest Path MDPs with Dead Ends.” In:
ICAPs workshop: Heuristics and Search for Domain Independent Planning. Sao Paulo, pp. 78-86.
URL:http://icapsl2.icaps-conference.org/workshops/hsdip2012-proceedings.
pdf.

Kolobov, Andrey et al. (2011). “Heuristic search for generalized stochastic shortest path MDDPs.” In:
Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling,

pp- 130-137.
Krause, Jakob (2017). “Is more data always better ? Optimal data usage in non-stationary systems.”

Kiinzell, Stefan et al. (2014). “Effectiveness of the call in beach volleyball attacking play.” In: Journal of
Human Kinetics 44.1, pp. 183—191. ISSN: 18997562. DOI: 10.2478/hukin-2014-0124.

Littman, Michael L. (1994). “Markov games as a framework for multi-agent reinforcement learning.”
In: Proceedings of the International Conference on Machine Learning. Vol. 157. 1, pp. 157-163. ISBN:
1-55860-335-2. DOI: 10.1.1.48.8623.

Littman, Michael L., Thomas L. Dean, and Leslie P. Kaelbling (1995). “On the complexity of solving
Markov decision problems.” In: Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pp. 394—402. ISBN: 1-55860-385-9. DOI: 10.1007/11871842. arXiv: 1302.4971.

Liu, Tianbiao and Andreas Hohmann (2013). “Applying the Markov Chain theory to Analyze the
Attacking Actions between FC Barcelona and Manchester United in the European Champions
League final.” In: International Journal of Sports Science and Engineering 07.02, pp. 79—86.

https://doi.org/10.1007/978-3-642-32278-5
https://doi.org/10.4100/jhse
http://icaps12.icaps-conference.org/workshops/hsdip2012-proceedings.pdf
http://icaps12.icaps-conference.org/workshops/hsdip2012-proceedings.pdf
https://doi.org/10.2478/hukin-2014-0124
https://doi.org/10.1.1.48.8623
https://doi.org/10.1007/11871842
http://arxiv.org/abs/1302.4971

BIBLIOGRAPHY 287

McGarry, Tim and Ian M. Franks (1994). “A stochastic approach to predicting competition squash
match-play.” In: Journal of Sports Sciences 12.6, pp. 573—584. ISSN: 1466447X. DOI: 10 . 1080/
02640419408732208.

Miskin, Michelle A., Gilbert W. Fellingham, and Lindsay W. Florence (2010). “Skill Importance in
Women'’s Volleyball Skill Importance in Women’s Volleyball.” In: Journal of Quantitative Analysis
in Sports 6.2. ISSN: 1559-0410. DOI: 10.2202/1559-0410.1234.

Mitchell, Tom M. (2017). “Estimating Probabilities.” In: Machine Learning. Chap. 2, pp. 1-11. ISBN:
0070428077.

Nadimpalli, Vamsi K. and John J. Hasenbein (2013). “When to challenge a call in tennis: A Markov
decision process approach.” In: Journal of Quantitative Analysis in Sports 9.3, pp. 229-238.

Nash, John (1951). “Non-Cooperative Games.” In: Annals of Mathematics s4.2, pp. 286-295.

Natali, Simone et al. (2017). “Physical and technical demands of elite beach volleyball according to
playing position and gender.” In: The Journal of sports medicine and physical fitness November,
pp- 1-18. ISSN: 1827-1928. DOI: 10.23736/50022-4707.17.07972-5.

Newton, Paul K. and Kamran Aslam (2009). “Monte Carlo Tennis: A Stochastic Markov Chain Model.”
In: Journal of Quantitative Analysis in Sports 5.3. 1SSN: 1559-0410. DOI: 10.2202/1559-0410.
1169.

Norman, John M. (198s). “Dynamic programming in tennis - when to use a fast serve.” In: Journal
Operational Research Society 36.1, pp. 75—77.

OddsShark (2017). odds shark. URL: http: //www . oddsshark . com/sports-betting/which-
sport-do-betting-underdogs-win-most-often (visited on 11/03/2017).

Oracle. Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning. URL: http: //www .
oracle.com/technetwork/java/javase/gc-tuning-6-140523 . html{\#}par{_
}gc . oom (visited on 08/24/2017).

Osband, Ian et al. (2017). “Deep exploration via randomized value functions.”

Palao, Jos¢ Manuel, David Valades, and Enrique Ortega (2012). “Match duration and number of rallies
in men’s and women’s 2000-2010 FIVB world tour beach volleyball.” In: Journal of Human Kinetics
34.1, PP. 99—104. ISSN: 16405544. DOI: 10.2478/v10078-012-0068-7.

Papadimitriou, Christos H. (1994). “On the complexity of the parity argument and other inefficient
proofs of existence.” In: Journal of Computer and System Sciences 48.3, pp. 498—532. ISSN: 1090272.4.
por: 10.1016/S0022-0000(05)80063-7.

Papadimitriou, Christos H. and John N. Tsitsiklis (1987). “The complexity of Markov Decision Pro-
cesses.” In: Operations Research 12.3, pp. 441-450.

Pfeifter, Mark (2005). Leistungsdiagnostik im Nachwuchstraining. Sport und Buch Straufi.

Pfeiffer, Mark, Hui Zhang, and Andreas Hohmann (2010). “A Markov chain model of elite table tennis
competition.” In: International Journal of Sports Science and Coaching 5.2, pp. 205—222.

https://doi.org/10.1080/02640419408732208
https://doi.org/10.1080/02640419408732208
https://doi.org/10.2202/1559-0410.1234
https://doi.org/10.23736/S0022-4707.17.07972-5
https://doi.org/10.2202/1559-0410.1169
https://doi.org/10.2202/1559-0410.1169
http://www.oddsshark.com/sports-betting/which-sport-do-betting-underdogs-win-most-often
http://www.oddsshark.com/sports-betting/which-sport-do-betting-underdogs-win-most-often
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html{\#}par{_}gc.oom
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html{\#}par{_}gc.oom
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html{\#}par{_}gc.oom
https://doi.org/10.2478/v10078-012-0068-7
https://doi.org/10.1016/S0022-0000(05)80063-7

288 BIBLIOGRAPHY

Puterman, Martin L. (2005). Markov Decision Processes Discrete Stochastic Dynamic Programming.
New York: John Wiley & Sons, p. 649. ISBN: 0-471-72782-2.

Routley, Kurt and Oliver Schulte (2015). “A Markov Game Model for Valuing Player Actions in Ice
Hockey.” In: Uncertainty in Artificial Intelligence (UAI), pp. 782—791.

Russo, Daniel J. et al. (2018). “A tutorial on thompson sampling.” In: Foundations and Trends in
Machine Learning 111, pp. 1-96.

Sanner, Scott (2010). Relational dynamic influence diagram language (vddl): Language description.
Tech. rep.

Sarkar, Sumit (2018). “Paradox of crosses in association football (soccer) - A game-theoretic explana-
tion.” In: Journal of Quantitative Analysis in Sports 14.1, pp. 25—36. ISSN: 15590410. DOI: 10. 1515/
jgqas-2017-0073.

Schulte, Oliver et al. (2017). “A Markov Game model for valuing actions, locations, and team perfor-
mance in ice hockey.” In: Data Mining and Knowledge Discovery. 1sSN: 1384-5810. DOI: 10.1007/
s10618-017-0496-z.

Shapley, Lloyd S. (1953). “Stochastic Games.” In: Proceedings of the National Academy of Sciences 39.10,
Pp- 1095—1100. ISSN: 0027-8424. DOI: 10.1073/pnas.39.10.1095.

Shirley, Kenny (2007). “A Markov model for basketball.” In: New England Symposium for Statistics in
Sports, pp. 82—82.

Strumbelj, Erik and Petar Vraéar (2012). “Simulating a basketball match with a homogeneous Markov
model and forecasting the outcome.” In: International Journal of Forecasting 28.2, pp. s32—542.

Terroba, Antonio etal. (2013). “Finding Optimal Strategies in Tennis From Video Sequences.” In: Inter-
national Journal of Pattern Recognition and Artificial Intelligence 2.7.06, pp. 1-31. ISSN: 0218-0014.
por: 10.1142/50218001413550100.

Tseng, Paul (1990). “Solving H-horizon, stationary Markov decision problems in time proportional to
log(H).” In: Operations Research Letters 9.5, pp. 287-297. ISSN: 01676377. DOI: 10.1016/0167-
6377(90)90022-W.

Turocy, Theodore L. (2008). “In Search of the "Last-Ups” Advantage in Baseball: A Game-Theoretic
Approach.” In: Journal of Quantitative Analysis in Sports 4.2. ISSN: 1559-0410. DOIL: 10 . 2202/
1559-0410.1104.

Von Neumann, John (1928). “Zur Theorie der Gesellschaftsspiele.” In: Mathematische Annalen 100.1,
PpP- 295—-320. ISSN: 00255831. DOI: 10.1007/BF01448847.

Walker, Mark, John Wooders, and Rabah Amir (2011). “Equilibrium play in matches: Binary Markov
games.” In: Games and Economic Bebavior 71.2, pp. 487-502. ISSN: 08998256. DOI: 10.1016/j .
geb.2010.04.011.

https://doi.org/10.1515/jqas-2017-0073
https://doi.org/10.1515/jqas-2017-0073
https://doi.org/10.1007/s10618-017-0496-z
https://doi.org/10.1007/s10618-017-0496-z
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1142/S0218001413550100
https://doi.org/10.1016/0167-6377(90)90022-W
https://doi.org/10.1016/0167-6377(90)90022-W
https://doi.org/10.2202/1559-0410.1104
https://doi.org/10.2202/1559-0410.1104
https://doi.org/10.1007/BF01448847
https://doi.org/10.1016/j.geb.2010.04.011
https://doi.org/10.1016/j.geb.2010.04.011

BIBLIOGRAPHY 289

Wright, Mike and Nobuyoshi Hirotsu (2003). “The professional foul in football: Tactics and deter-
rents.” In: Journal of the Operational Research Society $4.3, pp. 213—221. ISSN: 0160-5682. DOI:
10.1057/palgrave. jors.2601506.

Ye, Yinyu (2011). “The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov
Decision Problem with a Fixed Discount Rate.” In: Mathematics of Operations Research 36.4,

PpP- 593—603. ISSN: 0364-765X. DOL: doi : 10. 1287 /moor . 1110.0516. arXiv: arXiv: 1208.
5083v1.

https://doi.org/10.1057/palgrave.jors.2601506
https://doi.org/doi:10.1287/moor.1110.0516
http://arxiv.org/abs/arXiv:1208.5083v1
http://arxiv.org/abs/arXiv:1208.5083v1

290 BIBLIOGRAPHY

Own Publications

Hoffmeister, Susanne and Jérg Rambau (2017). “Sport Strategy Optimization in Beach Volleyball -
How to bound direct point probabilities dependent on individual skills.” In: AdathSport Proceed-

ings, pp- 184-193.

291

292 OWN PUBLICATIONS

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbststindig verfasst und keine
anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erklire ich, dass ich die Hilfe von gewerblichen Promotionsberatern bzw. -vermittlern oder
ihnlichen Dienstleistern weder bisher in Anspruch genommen habe, noch kiinftig in Anspruch nehmen
werde.

Zusitzlich erklire ich hiermit, dass ich keinerlei frithere Promotionsversuche unternommen habe.

Bayreuth, den

293

	Introduction to Sport-Strategy Optimization
	Theory of Markov Decision Problems
	Basic Definition of Markov Decision Problems (MDPs)
	Markov Decision Processes
	Optimality Criteria

	Finite Horizon MDPs
	Policy Evaluation
	Optimality Equations and Backward Induction

	Infinite-Horizon Expected Total Reward MDPs
	Classification
	Vector Notation
	Optimality Equations
	Solutions of the Optimality Equations
	Value Iteration
	Policy Iteration
	Linear Programming Formulation

	Graph Theory and Maximum Flow Problems
	Relation to Markov Games

	MDPs for Sport-Strategy Optimization
	Introduction to MDPs in Sports Games
	Definition of Sport-Strategy Optimization MDPs (SSO-MDPs)
	Classification
	Theoretical Analysis
	Linear Programming Formulations
	A Primal Linear Programming Formulation
	A Dual Linear Programming Formulation

	Flow Networks associated with SSO-MDPs
	Basic Definitions
	Induced Flow of an SSO-MDP
	Maximum Flow Problem for SSO-MDPs

	Transforming SSO-MDPs
	Further Extensions of SSO-MDPs
	Randomized Strategies
	Extension to Markov Games

	Application to Beach Volleyball
	Introduction to Beach Volleyball
	Literature Overview – Modeling Return Plays
	Summary of Beach Volleyball Rules

	An SSO-MDP for a Beach Volleyball Set
	Definition
	Transformation
	Mathematical Analysis
	Winning Probability of the Tie-Game
	Application to a Match

	An SSO-MDP for a Beach Volleyball Rally
	Definition
	Defining a Decision Rule
	Application to a Match
	Solving the Rally-SSO-MDP

	A Two-Scale Approach
	General Procedure
	Sport-Strategic Question
	Modeling Granularity
	The Underlying Idea
	Formalization

	A Two-Scale Approach for Beach Volleyball
	Implementation for Beach Volleyball
	Validating the Implementation
	Answering Strategic Questions
	Comparison of Results
	Sensitivity Analysis
	Two-Person-Constant-Sum Game

	Conclusion and Outlook
	Rally-SSO-MDP: Skill Estimates
	Brink
	Reckermann
	Alison
	Emanuel

	Rally-SSO-MDP: Simulation
	Rally-SSO-MDP: Basic Decision Rule
	Definition of the Basic Decision Rule
	Serving States
	Reception States
	Defense States
	Setting States
	Attacking States

	Set-SSO-MDP: Strategy Estimates of Team Q
	Data and Software

