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Zusammenfassung

Sport-Strategie Optimierung behandelt strategische Fragestellungen im Sport, die von Trainern oder
Spielern getroffen werden. Durch die steigendeMenge an erfassten Daten während eines Sportspiels,
steigt auch der Bedarf an einer datengetriebenen Entscheidungshilfe. Müssen zwei gegenläufige Effekte
abgewogen werden, so kann ein datengetriebener Ansatz neue Erkenntnisse erzielen, die durch eine
rein qualitative Betrachtung nicht möglich wären.

Das zu Grunde liegende mathematischeWerkzeug dieser Thesis sindMarkov Decision Problems
(MDPs). Die Arbeit beinhaltet eine theoretische Analyse geeigneter MDPs, ihre Anwendung auf
Beachvolleyball und einen neuen Ansatz, der zwei MDPs mit unterschiedlichemDetaillierungsgrad
kombiniert.

Es wird eine neue Klasse namens Sport-Strategy Optimization MDPs (SSO-MDPs) eingeführt, die
sich zurModellierung von Sportspielen eignet. SSO-MDPsmaximieren die Gewinn-Wahrscheinlichkeit
eines Spiels, während jede Aktion eine positive Fehlerwahrscheinlichkeit besitzt. In einer theoretis-
chen Analyse von SSO-MDPs wird bewiesen, dass die Optimality Equations für SSO-MDPs einen
eindeutigen Fixpunkt haben und derDynamic Programming Operator angewandt auf SSO-MDPs
eine Kontraktionsabbildung definiert. Darüber hinaus wird ein lineares Programm für SSO-MDPs
hergeleitet.

Diese Arbeit beinhaltet zwei SSO-MDPs, die eine sportstrategische Frage im Beachvolleyball mod-
ellieren. Beide Modelle haben sehr unterschiedliche Detaillierungsgrade, die zu modellspezifischen
Vor- und Nachteilen führen. In einem neuen Ansatz namens Two-Scale Approach (2-MDP approach)
werden beiden SSO-MDPs kombiniert, um deren Nachteile zu überwinden.

Die einzelnen SSO-MDPs und der 2-MDP approach werden am Beispiel des Beachvolleyballfi-
nales im Rahmen der Olympischen Spiele 2012 in London ausgewertet. Für diesen Zweck wurden
umfangreiche Daten aus Videoaufzeichnungen erhoben. Die eingangs gestellten spielstrategischen
Fragen werden sowohl durch Auswertung der einzelnen SSO-MDPs und als auch mit Hilfe des 2-MDP
approach beantwortet. Die tatsächlichen Realisierungen im Finale werden zur Validierung der Modelle
herangezogen.

Basierend auf dem 2-MDP approach werden zwei Werkzeuge für Trainer und Spieler entwickelt.
Strategy-Skill Score Cards vereinen zwei Sensitivitätsanalysen in einemDiagramm. Anhand des Dia-
gramms können Spielsituationen identifiziert werden, bei denen die optimale Strategie von kleinen
Unterschieden in der Tagesform abhängt. Das zweite Werkzeug ist eine farbkodierte Tabelle eines
constant-sum matrix-games, mit der vielversprechende Strategiemuster identifiziert werden können.

3



4



Abstract

Sport-strategy optimization deals with strategic questions in sports games that are made by coaches and
players. As the amount of collected data from sports games increases, the need for a data-driven decision
support increases, too. Especially if opposing effects need to be weighed up, a data-driven approach can
uncover insights that are not available from a solely qualitative analysis.

The underlying mathematical framework used in this thesis areMarkov decision problems (MDPs).
The thesis is divided up in: a theoretical analysis of suitable MDPs, their application to beach volleyball
and a new approach that combines twoMDPs with different granularity.

A new class of MDPs suitable to model sports games is introduced and called Sport-Strategy Opti-
mization MDPs (SSO-MDPs). SSO-MDPs maximize the probability of winning a match while every
action has a positive probability to fail. A theoretical analysis of SSO-MDPs proves that the optimality
equations of SSO-MDPs have a unique fixed point and the dynamic programming operator applied to
SSO-MDPs is a contraction mapping. Furthermore, a linear programming formulation for SSO-MDPs
is deduced.

This thesis includes two SSO-MDPs thatmodel the same sport-strategic question in beach volleyball.
The two models have different levels of detail which lead to different advantages and disadvantages. To
overcome the downsides of the individual models, an approach called Two-Scale Approach (2-MDP
approach) is introduced that combines two SSO-MDPs.

The single SSO-MDPs and the 2-MDP approach are evaluated and compared on real data sets that
were collected from the beach volleyball final of the Olympic games 2012 in London. The realizations in
the final match are used for validating the individual SSO-MDPs and the 2-MDP approach.

Two tools for coaches and players are developed based on the 2-MDP approach. A Strategy-Skill
Score Card combines two sensitivity analyses in one diagram. These diagrams can be used to identify
critical situations where the optimal strategy is affected by small differences of the player’s performance.
The other tool is a table of a constant-sum matrix-game that can be used to identify promising strategy
patterns.
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Chapter 1

Introduction to Sport-Strategy
Optimization

Sport-Strategy optimization supports strategic decisions in sports games that concern a particular team
facing a specific opponent in an upcoming match.

A (team-)strategy makes a set of individual players to become a real team. Furthermore, a superior
strategy can lead the technical inferior team or player to win. For example, Terroba et al. considered in
Terroba et al. (2013) the 2010 Australian OpenWomen’s Semi Final between Na Li and Serena Williams
and found a strategy with which Na Li could have beaten SerenaWilliams. It is the coaches’ and team
leaders’ job to determine the strategy to play in a match. Those experts have a vast wealth of experience.
However, in some situation where it is not clear which strategy outperforms the other strategies, data-
driven decision support may help the coaches to make their decision. In these situations sport-strategy
optimization canmake a difference: It can support the coaches tomake their decisions, it can be a tool to
justify those decisions, it can quantify how large the gap between several strategies is, and it can give the
coach a hint to consider a completely different strategy. However, sport-strategy optimization is only
meant to be a support for the coaches. It should not replace the decision makers since in sports games
there will always exist extraordinary situations which are not adequately represented in the model.

At thebeginningofChapter 3, anoverviewof existingwork in the field of sport-strategyoptimization
is given. This literature overview does not include purely statistical investigations. In sports science,
there exists much literature that uses statistical methods to, e.g., compare playing characteristics (Koch
and Tilp, 2009b). Some statistical investigations regarding beach volleyball or volleyball, which will be
the investigated type of sports in this thesis, are presented in Chapter 4. However, the main literature
overview presented in Chapter 3 focuses on work that tries to model the system dynamics explicitly.
The mathematical tool that is used most of the time to reflect the system dynamics of a sports game is a
Markov process. One notices when going through the presented examples that many works investigate
a general principle (Turocy, 2008; Anbarci, Sun, and Ünver, 2015; Wright and Hirotsu, 2003), or the
optimal decision rule is determined in dependence of some probabilities that are difficult to estimate
a-priori a match. For example, Norman (1985) and Chan and Singal (2016) require the point-winning
probabilities in tennis of each player as an input. If a particular pairing of teams or players has not
occurred recently, it may be hard to estimate those required point-winning probabilities since they
depend on both teams or players participating in the match.
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12 CHAPTER 1. INTRODUCTION TO SPORT-STRATEGY OPTIMIZATION

In my opinion, there exists a research gap for methods that are applicable prior to a match in
connection to a particular opponent. Alternatively, at least methods that include a procedure how the
required input probabilities can be estimated prior to a match. This thesis tries to narrow or close this
described gap.

The development of this thesis started with the idea to use Markov decision processes (MDPs) to
handle sport-strategic decision problems. The choice of beach volleyball as the first considered sports
game was quickly made since beach volleyball offers a good mixture of predefined structure and player
interactions. Also, the decision question that should act as a benchmark question and be answered by
the derived MDPs was quickly determined. Without any formalization, the benchmark question to be
answered is: “Does risky play or a more safer play lead to a higher winning probability in a particular
match against a certain opponent team?” This question was found to be an appropriate benchmark
question since from a bird’s eye view there exists a trade-off between a higher probability for scoring
but at the same time also a higher risk of failing. In chronological order according to the creation of
the chapters, Chapter 4 that captures twoMDPs for beach volleyball would have been the first chapter.
A reader who is mainly interested in the application can start reading in Chapter 4. The theoretical
background that is needed is linked at the appropriate places.

There always exist several opportunities to model the same question appropriately when modeling
a decision problem. So, two models have been developed that model the same benchmark question.
The models differed in their granularity, and it was soon apparent that each level of granularity had
something to offer. So bothmodels have been pushed to themost extreme levels of granularity such that
the benchmark question was still appropriately modeled, but the advantages and disadvantages of the
different granularity levels appear clearly. The twomodels are called set-SSO-MDP and rally-SSO-MDP
and are both presented in Chapter 4 where their strengths and weaknesses are described. Especially,
when trying to apply those models to a real match situation these strengths and weaknesses appear.
The final match of the beach volleyball tournament at the Olympic games 2012 in London was used
as a case study for the described benchmark question. Collecting appropriate input-data for both
models contained some unexpected hurdles. Besides software tools that were needed to support the
data collection process, also routines to check the integrity of the significant number of observations
needed to be developed. Furthermore, general concepts, like an aggregation scheme, were developed
and adjustments of the models were made to make them suitable for data collected from real matches.

After having developed first models for sport-strategy optimization problems, there arose two paths
that were followed. The first directionwas to identify similarities in the developedmodels to characterize
a class of MDPs that might generally be suitable to model sports games. The second direction was to
develop a method that combines the strengths of different model granularities.

The first path ended up with a definition of so-called Sport-Strategy Optimization MDPs (SSO-
MDPs), see Definition 3.2.2. Those MDPs are constructed such that strategies with the highest proba-
bility of winning the considered sports game are optimal strategies. Also, an important characteristic of
SSO-MDPs was identified: Every action in an SSO-MDPs relates in some way to a physical action of a
player and has therefore always a positive probability to fail. This observed characteristic is captured in an
assumption on SSO-MDPs. From this assumption, a special structure can be followed for SSO-MDPs.
By exploiting this structure, convergence results of solution algorithms, a special linear programming
formulation, and a transformation algorithm could be developed. Those theoretical results related to
SSO-MDPs are presented in Chapter 3. For completeness, the underlying basic definitions and theory
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of general MDPs are presented in Chapter 2. Chapter 2 may be a good starting point for readers that
search for a general introduction toMDPs. Those who are familiar with the general MDP-theory may
skip that chapter and start reading in Chapter 3 on the theoretical properties of SSO-MDPs.

The second direction examined led to the so-called Two-Scale Approach (2-MDP approach), which
combines the advantages of two models with a different granularity in one procedure. The general
description and motivation of this procedure are presented in Chapter 5. The coarser of the two models
is called the strategic-MDP (s-MDP) whereas, the more detailed model is called the gameplay-MDP
(g-MDP). The combined models need to capture the same sport-strategic question and a particular
relation called s-g-implementation between states and actions in both models needs to be specified.
Afterward, in Section 5.2, the 2-MDP approach was implemented for the two models of different
granularity developed for beach volleyball. It was evaluated for the benchmark question concerning
the final match of the Olympic games. The results were compared to those derived from a single
model. Besides that, the 2-MDP approach gives new opportunities for analyzing a sports game. Those
opportunities are presented at the end of Chapter 5 and show the strengths of the new procedure.

The last chapter, Chapter 6, concludes this thesis with a summary and valuation of the results. An
outlook to further developments is given.
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Chapter 2

Theory of Markov Decision Problems

This chapter provides an overview on the theory of Markov decision problems (MDPs). It focuses
on infinite-horizonMDPs under the total expected reward criterion as they will be the main tool for
analyzing a sport-strategic question in the next chapter. Before starting with the basic definition of
an MDP, a short overview of the most well-known results from the MDP theory is given. Further
references on more detailed results are given in the individual sections in this chapter.

Oneof the first occurrences ofMDPs in the literature areBellman (1957a) andBellman (1957b), where
Bellman used dynamic programming to compute the optimal value function of anMDP and analyzed
its asymptotic behavior. He proved the fundamental result that there exists an optimal stationary policy
and developed the value iteration algorithm for solving MDPs.

Howard (1960) wrote a book onMDPs that includes a computational technique for solvingMarkov
decision processes called policy iteration.

D’Epenoux (1963) discovered that MDPs can be formulated by linear programs and therefore be
solved in (weakly) polynomial time by either the ellipsoid method or the interior-point algorithm
(Karmarkar, 1984; Khachiyan, 1980).

Papadimitriou and Tsitsiklis (1987) showed that the complexity of MDPs (finite horizon, infinite
horizon discounted, infinite horizon average cost) are P-complete. Furthermore, they showed that for
MDPs with deterministic transition functions the problem is strongly polynomial. The algorithms
solved the deterministic MDPs very fast in parallel.

A modification of the policy iteration called simple policy iteration is equivalent to the simplex
method of Dantzig when applied to solve an MDP. In the simple policy iteration the policy is only
updated in a single state whereas the classic policy iteration corresponds to a block pivoting simplex
algorithm. The simplex method (Dantzig, 1963) is the most popular algorithm for solving linear
programs and performs well in practice. However, it has been shown that Dantzig’s pivoting rule can
lead to an exponential number of iterations (Klee andMinty, 1972). The counterexamples for certain
simplex pivoting rules can not be directly transferred to MDPs since the set of linear programs resulting
fromMDPs may not include the counterexamples (Littman, Dean, and Kaelbling, 1995). Indeed, Ye
(2011) showed that the simplex method with the most-negative-reduced-cost pivoting rule of Dantzig
are strongly polynomial-time algorithms for solvingMDPs with a fixed discount rate. As the classical
policy iteration outperforms simple policy iteration (Littman, Dean, and Kaelbling, 1995), the classic
policy-iteration method is also a strongly polynomial-time algorithm for solving the MDPs with a fixed

15



16 CHAPTER 2. THEORY OF MARKOV DECISION PROBLEMS

discount rate.
Well-known textbooks onMDPs are Puterman (2005), Bertsekas (2005), and Bertsekas (2001).

2.1 Basic Definition of Markov Decision Problems (MDPs)

In this section the basic notation for Markov decision problems (MDPs) which will be use in the
following of this work is defined. Most of the notation is according to Puterman (2005). AMarkov
decision problem is a Markov decision process together with an optimality criterion.

2.1.1 Markov Decision Processes

AMarkov decision process is defined in the following way:

Definition 2.1.1 (Markov Decision Process).
A discrete-timeMarkov decision process is a collection of objects(T, S,A, pt(·|s, a), rt(s, a))
with the following meaning:

• T = {1, 2, . . . , N − 1}, N ≤ ∞ is the set of decision epochs.

• S is the set of possible system states.

• A = ∪s∈SAs is the set of all actions, whereAs defines the set of allowable actions in state s.

• pt(·|s, a) is the transition probability distribution function in state s ∈ S at time t ∈ T under
action a ∈ As.

• rt(s, a) is the expected reward when choosing action a ∈ As in state s ∈ S at decision epoch
t ∈ T ; rN (s) is the terminal reward of a finite horizonMarkov decision process (N < ∞) when
the process ends in state s ∈ S at decision epochN .

Throughout this thesis, only Markov decision processes with a finite state and finite action set are
considered. From now on, it will be assumed that |S | = n < ∞ as well as |A | = m < ∞.

The transition probability distribution function pt(·|s, a) denotes by

pt(j |s, a)

the probability that the system evolves in the next epoch to state j when it is at time t in state s and
action a is chosen. Since pt(·|s, a) defines a probability distribution over the set of states, it holds∑

j∈S
pt(j |s, a) = 1, ∀t ∈ T, ∀a ∈ As.
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The expected reward rt(s, a) of choosing action a in state s at time t can be calculated from the reward
received for a transition from state s to j under action a, which is denoted by rt(s, a, j), in the following
way:

rt(s, a) =
∑
j∈S
rt(s, a, j)pt(j |s, a), ∀s ∈ S, ∀t ∈ T.

We call a Markov decision process stationary if pt(j |s, a) = p(j |s, a), ∀t ∈ T for the transition function
as well as rt(s, a, j) = r(s, a, j), ∀t ∈ T for the reward function holds.

A decision rule specifies how a decision maker in a Markov decision process selects an action. In
general, a decision rule may depend on the complete history of the Markov decision process. However,
in this thesis only Markov decision rules, which are decision rules that depend only on the current state
of the system, are considered.

Definition 2.1.2 (Markovian Decision Rule).
AMarkovian decision rule is a function

dt : S → P(As),

which specifies for each state a probability distribution over the set of available actions in that state.
When using decision rule dt and the system occupies state s at decision epoch t, an action a is chosen
according to the specified probability distribution.

If the probability distribution qdt (s)(·) ∈ P(As) is degenerated, i.e., for some a ∈ As the probability
of choosing that action in state s at time t is qdt (s)(a) = 1, the decision rule is called deterministic. For a
randomized decision rule, the expected rewards satisfy

rt(s, dt(s)) =
∑
a∈As

rt(s, a)qdt (s)(a)

and the transition probabilities satisfy

pt(j |s, dt(s)) =
∑
a∈As

pt(j |s, a)qdt (s)(a).

Definition 2.1.3 (Markovian Policy).
AMarkovian policy π is a sequence of Markovian decision rules, i.e.,

π = (d1, d2, . . . , dN−1)

where dt for t = 1, 2, . . . , N − 1 is a Markovian decision rule.

A policy is stationary if dt = d for all t ∈ T . We abbreviate π = (d, d, d, . . .) by d∞.
For MDPs, it can be shown that for any given history-dependent policy and starting state, a ran-

domizedMarkov policy can be constructed that yields the same reward stream (Puterman, 2005, Thm.



18 CHAPTER 2. THEORY OF MARKOV DECISION PROBLEMS

5.5.1). DMR is defined as the set of all randomizedMarkov decision rules,DMD ⊆ DMR as the set of all
deterministic Markov decision rules and analogouslyΠMR andΠMD ⊆ ΠMR as the sets of randomized
respectively deterministic Markov policies.

AMarkov decision process togetherwith aMarkovian policyπ and an initial distributionP1 induces
a stochastic Markov process. Consider a probability model (Ω,F,P)whereΩ denotes a sample space,
F a σ-algebra over Ω and P a probability measure on F. The sample space of the stochastic process
induced by a Markov decision process isΩ := {S × A}N−1 × S respectivelyΩ := {S × A}∞ for an
infinite horizonMarkov decision process. For finite sets S andA, the sample spaceΩ contains at most
countably many elements andF can be chosen as the set of all subsets ofΩ, which is denoted by 2Ω.

The pairs (S, 2S) and (A, 2A) are discrete measure spaces. The random variables Xt and Yt on
(Ω, 2Ω,P) are defined by

Xt : Ω→ S Yt : Ω→ A
ω 7→ Xt(ω) = st ω 7→ Yt(ω) = at .

Let π = (d2, d2, . . .) ∈ ΠMR be a randomizedMarkov policy and P1 an initial distribution of the
system state. Then π induces a probability distribution Pπ on (Ω, 2Ω). A summary of the knowledge
about the distribution of Xt and Yt in an MDP under a policy π to determine Pπ is given in the
following: The probability of the initial state is given through P1:

Pπ{X1 = s} = P1(s).
Since π is assumed to be a Markov policy, the probability of an action a ∈ A at time t is only

depending on the state st and given by

Pπ{Yt = a | X1 = s1, Y1 = a1, . . . , Xt = st}
= Pπ{Yt = a | Xt = st}
= qdt (st )(a).

Due to the nature of a Markov decision process, the transition probabilities depend only on the last
state and the chosen action. The probability of a transition from state st to state st+1 under action at
equals

Pπ{Xt+1 = st+1 | X1 = s1, Y1 = a1, . . . , Xt = st , Yt = at}
= Pπ{Xt+1 = st+1 | Xt = st , Yt = at}
= pt(st+1 |st , at).

This determines the probability of an event ω = (s1, a1, s2, . . . , sN ) ∈ Ω as

Pπ{(s1, a1, s2, . . . , sN )}
= P1(s1) · qd1(s1)(a1) · p1(s2 |s1, a1) · . . . · qdN−1(sN−1)(aN−1) · pN−1(sN |sN−1, aN−1).

{Xt , t ∈ T } and {Yt , t ∈ T } is called the induced stochastic process by theMarkov decision process
and the policy π. Moreover, {Xt , t ∈ T } is a discrete timeMarkov chain since it satisfies the Markov
property. For

Pπ{(s1, a1, . . . , st)} > 0,
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the Markov property holds since

Pπ{(at , st+1, . . . , sn) | (s1, a1, . . . , st)}

=
Pπ{(s1, a1, . . . , sn)}
Pπ{(s1, a1, . . . , st)}

=
P1(s1) · qd1(s1)(a1) · . . . · qdt (st )(at) · . . . · pn−1(sn |sn−1, an−1)

P1(s1) · qd1(s1)(a1) · . . . · pt−1(st |st−1, at−1)
= qdt (st )(at) · . . . · pn−1(sn |sn−1, an−1)
= Pπ{(at , st+1, . . . , sn) | st}.

This shows that the evolution of the process depends only on the current state st and not on the full
history (s1, a1, . . . , st).

The stochastic process {(Xt , rt(Xt , Yt)), t ∈ T } is called theMarkov reward process. It is a sequence
of states and a stream of expected rewards generated by the Markovian policy π.

For a real valued random variableW on the probability model (Ω,F,Pπ), the expected value of
W is defined as

Eπ{W } :=
∑
ω∈Ω
W (ω) · Pπ{ω} =

∑
w∈R
w · Pπ{ω : W (ω) = w}.

2.1.2 Optimality Criteria

Popular optimality criteria for Markov decision processes are the expected total reward criterion, the
expected discounted reward criterion and the average reward criterion. The expected total reward criterion
is often used for finite as well as for infinite horizonMarkov decision processes. The expected discounted
and the average reward criterion are mainly used for infinite horizonMarkov decision processes.

LetXt be a random variable that represents the state of the system at time t and Yt be a random
variable that represents the selected action at time t. Assume that policy π ∈ ΠMR is followed and the
system starts in a fixed state s.

Definition 2.1.4 (Expected Total Reward Criterion).
In the setting of a finite horizonMarkov decision process (N < ∞) the expected total reward of policy
π is defined as

vπN (s) = Eπs
{N−1∑
t=1
rt(Xt , Yt) + rN (XN )

}
.

In the setting of an infinite horizon Markov decision process, where no terminal reward exists, the
expected total reward of policy π is defined as

vπ(s) = lim
N→∞

Eπs

{ N∑
t=1
rt(Xt , Yt)

}
= lim
N→∞

vπN+1(s). (2.1)
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If an initial distribution P1 ∈ P(S) of the starting state is given, the expected total reward of a policy
π is defined as ∑

s∈S
P1(s)vπN (s) resp.

∑
s∈S
P1(s)vπ(s).

The same applies to the following reward criteria.

Definition 2.1.5 (Expected Discounted Reward Criterion).
The expected discounted reward of policy π is defined as

vπλ (s) = lim
N→∞

Eπs

{ N∑
t=1
λt−1rt(Xt , Yt)

}
(2.2)

for 0 ≤ λ < 1.

Definition 2.1.6 (Average Reward Criterion).
The average reward of policy π is defined as

gπ(s) = lim
N→∞

1
N E

π
s

{ N∑
t=1
rt(Xt , Yt)

}
= lim
N→∞

1
N v

π
N+1(s). (2.3)

For general infinite horizonMarkov decision processes, the limits in Equations 2.1, 2.2 and 2.3 need
not exist. Some criteria for the expected discounted and the average reward criterion that ensure that
the limits exist are summarized in the following:

• The limit in the definition of the expected discounted reward criterion (2.2) exists when the
expected reward function is bounded by some finite constant (Puterman, 2005, Sec. 5.1).

• The limit in the definition of the average reward criterion (2.3) exists forMarkov decision processes
with a finite state space (Puterman, 2005, Sec. 8.1.2).

In Subsection 2.3.1, different classes of Markov decision processes under the expected total reward
criterion are investigated. TheMarkov decision processes of the considered classes fulfill characteristics
which ensure the existence of vπ(s).

When the limit in Equation 2.1 exists and the interchange of the limit with the expectation is valid,
it is possible to write

vπ(s) = Eπs
{ ∞∑
t=1
rt(Xt , Yt)

}
.

In anMDP, a policy with the largest value function is sought. In the following Definition 2.1.7, an
optimal policy under the introduced optimality criteria is characterized. For the expected total reward
criterion, the finite horizon case is stated in brackets.
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Definition 2.1.7 (Optimal Policy).
A policy π∗ is total reward optimal if π∗ satisfies

vπ∗(s) ≥ vπ(s)
[
vπ∗N (s) ≥ vπN (s)

]
∀s ∈ S, ∀π ∈ ΠMR.

A policy π∗ is discount optimal if for fixed λ, 0 ≤ λ < 1,

vπ∗λ (s) ≥ vπλ (s) ∀s ∈ S, ∀π ∈ ΠMR.

A policy π∗ ∈ Π is average optimal if π∗ satisfies

gπ∗(s) ≥ gπ(s) ∀s ∈ S, ∀π ∈ ΠMR.

Definition 2.1.8 (Value of anMDP).
The value of anMDP is defined by

v∗(s) = sup
π∈ΠMR

vπ(s)
[
v∗N (s) = sup

π∈Π
vπN (s)

]
, s ∈ S.

The value of anMDP under the discounted or average reward criterion is defined analogously.
An optimal policy π∗ ∈ ΠMR exists when

vπ∗(s) = v∗(s) ∀s ∈ S.

Observe, that an optimal policy achieves the value of the MDP for each initial state s ∈ S.

2.2 Finite HorizonMDPs

In this subsection a finite horizonMDP (N < ∞) under the expected total reward criterion is assumed.
Dynamic programming (or backward induction) is the fundamental recursion for evaluating policies.
Together with the optimality equations, it is an efficient method for determining an optimal policy in
finite-horizonMDPs.
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2.2.1 Policy Evaluation

First, Algorithm 1 describes how a deterministic policyπ = (d1, d2, . . . , dN−1) ∈ ΠMD can be evaluated
by dynamic programming.

Algorithm 1: Finite-Horizon Policy Evaluation
Data: Finite-HorizonMDP

(T, S,A, pt(·|s, a), rt(s, a)) ,N < ∞, π ∈ ΠMD
Result: uπ1 (s) = vπN (s)

1 t ← N ;
2 uπN (sN ) ← rN (sN ) for all sN ∈ S;
3 while t > 1 do
4 t ← t − 1;
5 foreach st ∈ S do
6 Compute uπt (st) = rt(st , dt(st)) +

∑
j∈S pt(j |st , dt(st))uπt+1(j);

7 end
8 end

As a result, the policy evaluation algorithm computes the expected total reward of a fixed policyπ.
The function uπt (st) equals the expected total reward obtained by using policy π from decision epoch t
onwards starting in state st :

uπt (st) = Eπst
{N−1∑
n=t
rt(Xn, dn(Xn)) + rN (XN )

}
,

whereXn is random variable representing the state of the system at time n. This relation can be verified
by backward induction (Puterman, 2005, Thm. 4.2.1). As a consequence uπ1 (s) = vπN (s) for all s ∈ S
which is the expected total reward of policy π.

The policy evaluation algorithm can be generalized to randomized decision rules by replacing the
equation in line 6 by

uπt (st) =
∑
a∈Ast

qdt (st )(a)
rt(st , a) +

∑
j∈S
pt(j |st , a)uπt+1(j)

 .
The policy evaluation algorithm calculates the expected total reward of a policy by evaluatingN − 1

times a one-period calculation. Assume, there are n possible states for st at each time step t. Then the
policy evaluation algorithm evaluates (N − 1) · n equations where the sum in each equation is calculated
over n realizations of the next state.

An enumeration over all realizations would require evaluating the expectation over the joint proba-
bility distribution of n(N−1) realizations under policy π. The reduction of an (N − 1)-period problem
to (N − 1)many 1-period problems is the key idea of dynamic programming. It is also used for finding
an optimal policy.
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2.2.2 Optimality Equations and Backward Induction

The optimality equations (or Bellmann equations) are the basis for determining optimal policies by
dynamic programming. They are given by

ut(st) = max
a∈Ast

rt(st , a) +
∑
j∈S
pt(j |st , a)uπt+1(j)

 (2.4)

uN (sN ) = rN (sN ). (2.5)

Let
u∗t (st) = max

π∈ΠMR
uπt (st)

be the optimal value function from period t on. Let ut(·) be a solution of equation 2.4 and 2.5. Then
ut(st) = u∗t (st) for all st ∈ S, t = 1, . . . , N and u1(s1) = v∗N (s1) (Puterman, 2005, Thm. 4.3.2) which
means that a solution of the optimality equations gives the optimal reward from period t onwards and
the value of theMDP. The principle of optimality described by the optimality equations can be verbally
stated by:

“An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” (Bellman, 1957b)

However, there exist optimality criteria for which the optimality equations do not hold.
Any policy that uses a decision rule

dt(st) ∈ arg max
a∈Ast

rt(st , a) +
∑
j∈S
pt(j |st , a)u∗t+1(j)


is an optimal policy. For MDPs with a finite state set and a finite action set, there always exists a
deterministic Markovian policy which is optimal (Puterman, 2005, Thm. 4.3.3, Prop. 4.4.3). The
mentioned theorem is helpful since it allows to restrict to deterministic Markov policies, which are
easier to implement and evaluate than randomizedMarkov policies.

The backward induction algorithm, Algorithm 2, solves the optimality equations and saves in
each iteration the actions at which the maximum in equation 2.4 is attained. Any policy that selects
only actions from the optimal action setsA∗st ,t is an optimal policy. So, with the backward induction
algorithm the value of the MDP as well as optimal policies can be computed.

For |S | = n and |A | = m the backward induction algorithm requires (N − 1) · n iterations.
Where in each iteration a maximum overm actions is computed. And each computation requires n
multiplications for calculating the 1-period expectation. In total (N − 1) · m · n2 multiplications are
needed to compute an optimal policy. In contrast, there aremn(N−1) deterministic Markovian policies.
For directly evaluating one of these policies, one would need (N − 1) · n2 multiplications. So, the



24 CHAPTER 2. THEORY OF MARKOV DECISION PROBLEMS

backward induction algorithm decreases the number of computations significantly.
Algorithm 2: Backward Induction Algorithm
Data: Finite-HorizonMDP

(T, S,A, pt(·|s, a), rt(s, a)) ,N < ∞
Result: u∗1 (s) = v∗N (s)

1 t ← N ;
2 u∗N (sN ) ← rN (sN ) for all sN ∈ S;
3 while t > 1 do
4 t ← t − 1;
5 foreach st ∈ S do
6 Compute u∗t (st) = maxa∈Ast

{
rt(st , a) +

∑
j∈S pt(j |st , a)u∗t+1(j)

}
;

7 SetA∗st ,t = arg maxa∈Ast
{
rt(st , a) +

∑
j∈S pt(j |st , a)u∗t+1(j)

}
;

8 end
9 end

2.3 Infinite-Horizon Expected Total RewardMDPs

In this sections on infinite-horizon MDPs focuses on infinite-horizon expected total reward MDPs
with finite sets of states and actions. The infinite horizon will be omitted in the MDP description.
Furthermore, anMDPwith stationary problem data is assumed. From a finite number of states and
actions, it follows that the reward function takes only finitely many values. Each value of the reward
function is assumed to be finite and can therefore be bounded by some constant. Assumption 2.3.1
summarizes the assumptions made in this section.

Assumption 2.3.1:
The assumptions for this section on infinite-horizon MDPs under the expected total reward criterion are

• The horizon N = ∞.
• The decision process has stationary problem data p(·|s, a) and r(s, a).
• The set of states and the set of actions are finite. Let |S | = n be the number of states and |A | = m
be the number of actions.

• The reward function is bounded by a constantM , i. e.,

|r(s, a, s′)| ≤ M, ∀s, s′ ∈ S, a ∈ As.

Let r+(s, a) = max{r(s, a), 0} and r−(s, a) = max{−r(s, a), 0} and define

vπ+(s) = lim
N→∞

Eπs

{ N∑
t=1
r+(Xt , Yt)

}
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and

vπ−(s) = lim
N→∞

Eπs

{ N∑
t=1
r−(Xt , Yt)

}
.

For vπ+(s) or vπ−(s) finite, the limit vπ(s) = limN→∞ vπN+1(s) is well-defined and

vπ(s) = vπ+(s) − vπ−(s).

For this chapter and the rest of this thesis, we will only considerMDPs where the following assump-
tion is satisfied such that the expected total reward is well-defined for each policy π:

Assumption 2.3.2 (Well defined expected total reward):
For all π ∈ ΠMR and s ∈ S, vπ+(s) or vπ−(s) is finite.

This section starts by presenting different classes of infinite-horizonMDPs. Afterwards, a vector
notation and the optimality equations for infinite-horizonMDPs are introduced. Furthermore, this
section presents a linear programming formulation for infinite-horizonMDPs and the algorithms value
iteration and policy iteration that can be used for determine an optimal policy of an infinite-horizon
MDP.

2.3.1 Classification

There exist some investigated classes of infinite-horizon expected total rewardMDPs, which are intro-
duced in this subsection. The presentedMDP classes come from different authors and are adapted to
the reward based notation of this thesis.

Positive bounded and negative models

Puterman (2005) focuses on two classes called positive bounded models and negativemodels. The idea
behind the two classes of MDPs is to guarantee that the sum of positive or the sum of negative rewards
is finite.

Definition 2.3.3 (Positive BoundedModel).
AnMDP

(S,A, p(·|s, a), r(s, a)) is a positive bounded model (POSB) if the following holds:

• vπ+(s) < ∞ for all s ∈ S and π ∈ ΠMR, and

• For each s ∈ S there exists at least one a ∈ As with r(s, a) ≥ 0.
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Definition 2.3.4 (Negative Model).
AnMDP

(S,A, p(·|s, a), r(s, a)) is a negative model (NEG) if the following holds:
• vπ+(s) = 0 for all s ∈ S and π ∈ ΠMR, and
• There exists a policy π ∈ ΠMR with vπ(s) > −∞ for all s ∈ S.

Maximizing negative expected rewards is equivalent to minimizing the expected costs. So, negative
models can be formulated for problems of minimizing non-negative costs.

Stochastic Shortest Path Problems

Bertsekas (2001) defines a stochastic shortest path problem. Usually, stochastic shortest path problems
are defined in a minimizing expected cost environment. However, for consistency, the reward function
is defined as the negative cost function and the notation is adapted to the one used for maximization
problems:

Definition 2.3.5 (Stochastic Shortest Path Problem).
AnMDP (S,A, p(·|s, a), r(s, a))
together with a set of goal statesG ⊆ S is a stochastic shortest path (SSP) problem(S,A, p(·|s, a), r(s, a), G)
if it satisfies

• p(g |g, a) = 1 for all g ∈ G, a ∈ Ag
• r(g, a) = 0 for all g ∈ G, a ∈ Ag

The first property ensures that each goal state g ∈ G is absorbing, i. e., once the process has entered
g, it will stay in g. From the second property, it follows that no rewards are accumulated when staying
in g.

Bertsekas makes two more assumptions on the considered SSPMDPs:

Assumption 2.3.6:
Assumptions on SSP MDPs considered by Bertsekas are

1. There exists at least one complete proper policy, i. e., a stationary policy d∞ with

Pd
∞ {Xn < G | X1 = s} < 1, ∀s ∈ S

where n = |S | and Pd∞ means that decision rule d is followed at each decision epoch.

2. For every improper policy d∞, i. e., for every policy that is not proper, the reward vd∞(s) is −∞
for at least one state s ∈ S.
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Note that in the terminology of this thesis an SSPMDP is just anMDP with goal states without
any further assumptions. An SSPMDP that satisfy Assumption 2.3.6 is called a Bertsekas-SSP MDP:

Definition 2.3.7 (Bertsekas-SSPMDP).
An SSPMDP that satisfies Assumptions 2.3.6 is a Bertsekas-SSP MDP.

The first condition of Assumption 2.3.6 assures that there exists a policy such that each state is
connected to a goal state by a path with a positive probability. This condition implies that under such a
complete proper policy a goal state is reached with probability 1 from every state s. This can be seen as
follows: Define

ρd := max
s∈S
Pd
∞ {Xn < G | X1 = s} ,

then
Pd
∞ {Xk < G | X1 = s} ≤ ρ b

k
n c
d , ∀s ∈ S. (2.6)

For complete proper policies, ρd < 1 holds. So, the probability of not reaching a goal state after k steps
converges to zero as k goes to infinity.

For a bounded expected reward function, the value of a complete proper policy exists and is finite
since the expected reward in the k-th period is bounded by

ρ b
k
n c
d max

i=1,...,n
|r(s, d(s))| ≤ ρ b

k
n c
d M.

For complete proper policies, the reward structure is similar to a Markov decision process under the
discounted reward criterion. The difference is that the discount factor is not fixed. But, in stage k · n the
discount factor is less or equal ρkd .

If there exists a dead end s̄, i. e., a state that is not connected by a path to a goal state, the assumption
of the existence of a complete proper policy can not be satisfied. Starting in this dead end would lead to
Pd
∞ {Xk < G | X1 = s̄} = 1 for all k ∈ N and all decision rules d ∈ DMR.
In Bertsekas (2001), a policy that satisfies the first assumption is named a proper policy. However,

some of the followingMDP classes require proper policies that are policies which reach a goal state with
a probability of 1 but only from a specified starting state s1. In those SSPMDPs, there can exist dead
ends which are not connected to s1 under a proper policy. So, for a better distinction, the policies that
are proper in every state of the state space are called complete proper policies.

The second assumption is satisfied if each cycle that does not contain a goal state has negative
expected rewards. Sometimes, the stronger assumption that the expected reward function is strictly
negative except for transitions from the absorbing states is used. This assumption has the advantage
that it can be easier verified.

Generalized Stochastic Shortest Path Problems

Kolobov et al. (2011) introduce a new class of MDPs, called generalized stochastic shortest path (GSSP)
problem that generalizes the class of Bertsekas-SSP problems:
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Definition 2.3.8 (Generalized Stochastic Shortest Path Problem).
An SSPMDP extended by a starting state s1 ∈ S is a tuple(S,A, p(·|s, a), r(s, a), G, s1) .
It is a generalized stochastic shortest path (GSSP) problem if the following assumptions hold

1. There exists at least one proper policy rooted at s1, i. e., a stationary policy d∞ that reaches a goal
state with probability 1 starting from s1.

2. The expected sum of nonnegative rewards of any policy is bounded from above:

vπ+(s) = lim
N→∞

Eπs

{ N∑
t=1
r+(Xt , Yt)

}
< ∞,

for every state s reachable from s1.

One difference between a Bertsekas-SSPMDP and a GSSPMDP is that the GSSPMDP only requires
a proper policy in the known starting state while the Bertsekas-SSPMDP requires the existence of a
complete proper policy. In a GSSPMDP, there could exist states s ∈ S for which no proper policy exists.
So, there may exist dead ends, but they may not be reachable under a proper policy starting from s1. In
terms of Assumption 2.3.6, the first condition can be written as: There exists a policy d∞ such that

P {Xn < G | X1 = s, d} < 1 ∀s reachable from s1 by following d,
and n is the number of reachable states from s1 by following d.

The second assumptions of a GSSPMDP ensures that the value of any policy is well-defined since
the value vπ(s) of a policy exists whenever vπ+(s) or vπ−(s) is finite (Puterman, 2005, p. 279).

Furthermore, the rewardmaximizing policy does not need to be proper in aGSSPMDP. In contrast,
the second assumption of 2.3.6 of Bertsekas on SSPMDPs guarantees that the rewardmaximizing policy
in a Bertsekas-SSPMDP is proper. In a GSSPMDP, there could exist a 0-reward cycle. If additionally
going to a goal state requires incurring a negative reward, a reward maximizing policy would stay in
the 0-reward cycle and not go for a goal state. As a consequence Kolobov et al. (2011) formulates the
objective of a GSSPMDP as finding the reward maximizing policy over all proper policies:

Definition 2.3.9 (Optimal Policy of GSSPMDP).
A policy π∗ is an optimal policy in a GSSPMDP if it satisfies

vπ∗(s1) ≥ vπ(s1) ∀ proper π ∈ ΠMR.

Accordingly, the value of a GSSPMDP is defined as:

Definition 2.3.10 (Value of the GSSPMDP).
We define the value of the GSSPMDP by

v∗(s1) = sup
proper π∈ΠMR

vπ(s1).

Note that sup ∅ = −∞. So, if no proper policy in state s1 exists, then v∗(s1) = −∞.
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SSPADE and SSPUDE

Kolobov, Mausam, andWeld introduce in their paper (Kolobov, Mausam, andWeld, 2012) two further
MDP classes that extend the class of Bertsekas-SSP MDPs by dead ends. To be consistent with the
previous sections, the definition is adapted to a reward based setting. The first class is named stochastic
shortest path problem with avoidable dead ends (SSPADEMDP):

Definition 2.3.11 (Shortest Path Problem with avoidable dead ends).
A stochastic shortest path problem with avoidable dead ends (SSPADEMDP) is an SSPMDP with a
starting state s1 ∈ S (S,A, p(·|s, a), r(s, a), G, s1) ,
where the following assumptions hold

1. There exists at least one proper policy rooted at s1.

2. Every improper policy must have a value of−∞ in at least one state reachable from s1 under that
improper policy.

The SSPADEMDP definition relaxes the first condition for Bertsekas-SSPMDPs by not requiring
a complete proper policy. However, the SSPADEMDP class is only a subclass of the GSSPMDP class
since the second condition excludes zero-reward dead ends reachable from s1.

The second class of MDPs introduced in (Kolobov, Mausam, andWeld, 2012) is named stochastic
shortest path problem with unavoidable dead ends (SSPUDEMDP). This class contains SSPMDPs
where the probability of running into a dead end starting at s1 is positive for all policies. An SSPUDE
MDP is a Bertsekas-SSPMDP where no proper policy at state s1 exists, which is called a Bertsekas-SSP
MDP that is improper in s1.

Definition 2.3.12 (Shortest Path Problem with unavoidable dead ends).
A stochastic shortest path problem with unavoidable dead ends (SSPUDEMDP) is an SSPMDP that is
improper at s1 extended by a penalty:(S,A, p(·|s, a), r(s, a), G, P, s1) .
The penalty P ∈ R− ∪ {−∞} is incurred if an agent decides to abort the process in a non-goal state.
Further, the second Bertsekas-SSPMDP definition must hold:

• Every improper policy π has a value vπ(s) of −∞ in every state s ∈ S where π is improper.

If P > −∞ the MDP is called a finite stochastic shortest path problem with unavoidable dead
ends (fSSPUDEMDP). If P = −∞ the MDP is called a infinite stochastic shortest path problem with
unavoidable dead ends (iSSPUDE MDP). In an fSSPUDEMDP, the price of ending in a dead end can
be compensated while in an iSSPUDEMDP a dead end is truly irrecoverable.
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Since in fSSPUDEMDPs there can exist non-dead-end state that yield a smaller reward than dead-
ends, Kolobov, Mausam, andWeld define a modified value function for fSSPUDEMDPs as follows:

vπF (s) := max {P, vπ(s)} .

This modified value function is always finite and can be interpreted as a lower bound on any state’s
reward. If a state has an expected reward of less or equal P the process aborts. An optimal policy in an
fSSPUDEMDP is a policy π∗ satisfying

vπ∗F (s) = max
π∈ΠMR

vπF (s) ∀s ∈ S.

For iSSPUDEMDPs Kolobov, Mausam, andWeld define a two-ordered criteria by defining the
reward of a state as an ordered pair

vπI (s) :=
(
PπG(s), [vπ |PπG](s)

) ,
where PπG(s) is called a goal-probability function that gives the probability of reaching the goal from
state s under policy π:

PπG(s) :=
∞∑
t=1
Pπ

{
Xt = g ∈ G, Xt′ = s′ < G, ∀1 ≤ t ′ < t, X1 = s

}
.

The function [vπ |PπG] is the expected total reward restricted to states for which PπG(s) > 0 holds.
Kolobov, Mausam, andWeld define a random variable X̃πt that denotes a distribution over states s′
with PπG(s′) > 0. Having that, [vπ |PπG] can be defined as

[vπ |PπG](s) := Eπs

{ ∞∑
t=0
r(X̃πt , Yt)

}
This two ordered criterion is used as follows: A policy π′ is preferable to π at s, which is written as
π(s) ≺ π′(s), whenever vπI (s) ≺ vπ

′
I (s). vπI (s) ≺ vπ

′
I (s) holds whenever

PπG(s) < Pπ
′
G (s) ∨

(
PπG(s) = Pπ

′
G (s) ∧ [vπ |PπG](s) < [vπ

′ |Pπ′G ](s)
)
.

Hence, a policy is an optimal policy π∗ of an iSSPUDEMDP if it satisfies

π∗(s) ∈ arg max
≺π

vπI (s) ∀s ∈ S.

Kolobov, Mausam, andWeld (2012) show that for big enough dead-end penalty costs the optimal
policies of fSSPUDE and iSSPUDE are identical. Further, they show in Kolobov, Mausam, andWeld
(2012) that every fSSPUDEMDP can be converted in a Bertsekas-SSPMDPwith the same set of optimal
policies.
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MAXPROB

MAXPROB problems can be derived from GSSPMDPs that do not have any proper policy at state s1.
If no proper policy at state s1 exists, the value of the GSSPMDP is −∞ since the supremum over an
empty set of proper policies is defined as −∞. To distinguish between the improper policies, that all
do not reach a goal state with certainty, one tries to find the policy that has the highest probability of
reaching a goal state. AMAXPROB problem can be derived from a GSSPMDP by assigning a reward
of 0 to all transitions to non goal states and a reward of 1 to transitions to a goal state. Kolobov and
Mausam (2012) define a MAXPROB problem in the following way:

Definition 2.3.13 (MAXPROB).
AMAXPROBMDP is an SSPMDP (S,A, p(·|s, a), r(s, a), G)
where the reward function obeys two conditions:

1. r(s, a, s′) = 0, ∀s, s′ < G, a ∈ As
2. r(s, a, g) = 1, ∀s < G, g ∈ G, a ∈ As

The expected total reward vπ(s) in a MAXPROBMDP equals the probability of reaching a goal state
when policy π is used and the process starts in s. An optimal policy π∗ is a policy that maximizes the
probability of reaching a goal state, i.e.,

π∗ ∈ arg max
πΠMR

PπG(s) ∀s ∈ S.

Hence, the optimal value function v∗(s) of a MAXPROBMDP is 1 for all states where a proper policy
exists and 0 for dead ends.

Summary

This subsection summarizes the hierarchy of the presented infinite-horizonMDP classes. Some relations
between the MDP classes are already investigated in (Kolobov et al., 2011). The remaining relations,
where no author is mentioned, are added by me. Remember that in this work an SSPMDP is defined as
an infinite-horizonMDPwith goal states without any further assumptions. In some literature, the term
SSPMDP corresponds to our Bertsekas-SSP MDP definition. Since GSSPMDPs, SSPADEMDPs,
Bertsekas-SSPMDPs, MAXPROBMDPs and SSPUDEMDPs are all infinite horizonMDPs with goal
states, it is clear that they form subsets of the set of general SSPMDPs. POSBMDPs and NEGMDPs
are not goal oriented, however it is possible to show that they can be converted into goal oriented SSP
MDPs that actually meet the GSSPMDP assumptions. In the following, the relation between those
MDPs classes will be proven and summarized.
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Theorem 2.3.14:
SSPUDE ∩ GSSP = ∅

Proof. An SSPUDEMDP is by definition 2.3.12 an SSP MDP that is improper at state s1, i.e., there
exists no proper policy for the starting state s1. AGSSPMDP requires at least one proper policy rooted
at s1. Therefore, there can not exist an SSPMDP that belongs to the class of SSPUDEMDPs andGSSP
MDPs at the same time. �

Theorem 2.3.15:
Bertsekas-SSP ⊂ SSPADE ⊂ GSSP ⊂ SSP

Proof. Since Bertsekas-SSP, SSPADE as well as GSSP problems impose additional conditions on the
basic class of SSP problems, it is clear that they all form subsets of the basic SSP problems.

GSSP problems form a strict subset of SSP problems because they require the existence of a proper
policy for a specified starting state s1. In contrast, SSP problems contain instances where there does not
exist a proper policy from any state.

First it is shown that an SSPADEMDP is also aGSSPMDP.Both problems require a proper policy
rooted in s1. So, an SSPADEMDPobviously satisfies the first condition of aGSSPproblem. All proper
policies terminate with probability 1 in a goal state. It was already remarked that the value of a proper
policy is finite. Since all improper policies in an SSPADEMDP have a value of−∞ in at least one state
reachable from s1, the nonnegative reward vπ+(s)must be finite after Assumption 2.3.2 which states that
either vπ(s)+ or vπ(s)− has to be finite for each policyπ. So in conclusion, all policies satisfy vπ+(s) < ∞
for all s reachable from s1 and the second condition of the definition of GSSP problems is satisfied.1
The set of GSSP problems may contain problems that are no SSPADE MDPs: For example, a GSSP
problem may contain a dead end with 0-reward reachable from s1 such that there exists an improper
policy rooted in s1 that has a finite reward in every state reachable from s1.

Every Bertsekas-SSPMDP is an SSPADEMDP since in a Bertsekas-SSPMDP every improper pol-
icy has a reward of −∞ in at least on state s. So, an improper policy rooted in s1 must have a value of
−∞ in at least on state s reachable from s1. The set of Bertsekas-SSP problems is a strict subset of SS-
PADEMDPs since an SSPADEMDP requires only a proper policy rooted in the starting state s1 while
a Bertsekas-SSP MDP requires a proper policy for every state s in the state space. So, in an SSPADE
MDP, there may exist states not reachable from s1 under a proper policy for which no proper policy
exist. �

1The relation SSPADE⊂ GSSP can also be found in Theorem 2 of Kolobov and Mausam (2012). The proof is only
sketched and a reference to Kolobov et al. (2011) is given. However in Kolobov et al. (2011), I can not find this proof.
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Kolobov et al. (2011) investigate the relation of the non-goal-orientedMDP classesNEG and POSB:

Theorem 2.3.16 (Kolobov et al. (2011)):
NEG ⊂ GSSP

Theorem 2.3.17 (Kolobov et al. (2011)):
POSB ⊂ GSSP

The proofs ofNEG ⊂ GSSP and POSB ⊂ GSSP are based on constructing a GSSPMDP from an
original NEG or POSBMDP with identical optimal solutions.

The idea for proving the relation POSB ⊂ GSSP is the following: Consider the reachability graph
of a POSBMDP. It can be shown that in the directed reachability graph, there must exist at least one
strongly connected component. That strongly connected component has no outgoing edge and all
internal actions have an expected total reward of 0. So, the set of states in these strongly connected
components can be defined as goal states of the derived GSSPMDP.

For NEGMDPs, it can be shown that the second assumption equals to requiring the existence of a
proper policy. Analogously to POSBMDPs, NEGMDPs can be converted into GSSPMDPs.

Theorem 2.3.18 (Kolobov et al. (2011)):
MAXPROB ⊂ POSB

Proof. Every MAXPROBMDP is a POSBMDP: Since there exist only 0 and 1-reward actions, the
first condition of POSB, that there must exist an action with a non-negative expected reward in every
state, is obviously satisfied. Also vπ+(s) is finite since a strictly positive reward is only distributed for a
transition to a goal state. Since a goal state is an absorbing state, no further strictly positive rewards can
be accumulated. �

There is one important remark to be made on the last theorems. From the relationMAXPROB ⊂
POSB and POSB ⊂ GSSP, one can conclude that MAXPROBMDPs are a subset of GSSP. However,
in contrast to the POSBMDP definition a MAXPROBMDP is goal-oriented, which means that a set
G of goal-states is explicitly specified. In the proof of POSB ⊂ GSSP, a set of goal states is constructed
according to some properties. So, when considering a MAXPROBMDP as a GSSP, the set of goal
states may have to be modified according to the proof of Theorem 2.3.17.
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ai action
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p(s |s′, a): transition

r r(s′, a, s) reward

Figure 2.1: Example MAXPROB problem that is no Bertsekas-SSP

This thesis focuses onMDPs with an explicit set of goal-states. So, aMAXPROB is always consid-
ered with its originally specified set of goal-states. In the following, non-goal orientedMDPs are not
considered any further and the relations ofMAXPROB to the other classes with explicit goal states is
investigated.

Observation 2.3.19:
MAXPROB * Bertsekas-SSP

The example MDP in Figure 2.1 is constructed by me and shows a MAXPROB problem that is no
Bertsekas-SSP problem. The example MDP is a MAXPROB problem because only the transition to
the goal state gives a reward of 1. All other rewards are 0. It is no Bertsekas-SSP problem since a policy
that selects action a3 in state s2 is an improper policy. However, this policy would have a value of 0 and
not −∞.

However, it is possible to construct a MAXPROB problem that is a Bertsekas-SSP problem.

Observation 2.3.20:
MAXPROB ∩ Bertsekas-SSP , ∅
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Figure 2.2: Hierarchy of MDP classes

Since in a MAXPROB problem all rewards are either 0 or 1, an improper policy in a MAXPROB
problem can never have a value of −∞. However, MAXPROB problems where only proper policies
exist are Bertsekas-SSP problems. Consider for instance the MDP of Figure 2.1 without the actions
a3, a4 and without the state s3. This is a MAXPROB problem where only one policy exists and this
policy is proper.

Since a MAXPROB problem has only restrictions on the reward structure and does not require
any proper policy, an MDP where there exists no transition to a goal state from any other state is a valid
MAXPROB problem. This MAXPROBMDP has no proper policy. So, it can not be a GSSP problem.

Observation 2.3.21:
MAXPROB * GSSP

Asmentioned above, in aMAXPROBproblem, there exist only non-negative rewards. An SSPUDE
is improper in s1. So if the problem contains actions, there must exist an improper policy with a reward
of−∞. This can not be possible in aMAXPROB problem because there every policy has a non-negative
reward.

Observation 2.3.22:
MAXPROB ∩ SSPUDE = ∅

Figure 2.2 summarizes the relations between the presentedMDP classes without NEGMDPs and
POSBMDPs.
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2.3.2 Vector Notation

A finite state and action spaces is assumed throughout this thesis, so a vector notation can be used for
MDPs. For d ∈ DMD, the reward vector rd ∈ Rn is defined as

(rd)s := r(s, d(s))∀s ∈ S

and analogous for d ∈ DMR as

(rd)s :=
∑
a∈As

qd(s)(a)r(s, a)∀s ∈ S.

The transition probabilities under a decision rule d can be captured in a transition probability matrix
Pd ∈ Rn×n. For d ∈ DMD, the (s, j)-th entry of Pd is defined as

(Pd)s,j := p(j |s, d(s))

and for d ∈ DMR analogously as

(Pd)s,j :=
∑
a∈As

qd(s)(a)p(j |s, a).

Let V = Rn be the vector space of all possibles values of the MDP where a component equals the value
of the MDP in state s in S. A vector v ∈ V will also be considered as the value function or value vector
of the MDP. Then, evaluating a one-periodMDP with terminal reward r ∈ Rn under decision rule d
gives the value

rd + Pdr.
It can be shown that under Assumption 2.3.1 of this section, the resulting vector is again in V = Rn
(Puterman, 2005, Lemma 5.6.1).

The vector notation leads to a clearer representation of the policy evaluation introduced in Equa-
tion 2.1. The probability distribution that a system starting in s occupies in decision epoch t + 1 state j
can be read off the transition matrix Ptπ which is calculated by multiplying Pd1 · Pd2 · . . . · Pdt . So,

(Ptπ)s,j := [Pd1 · Pd2 · . . . · Pdt ]s,j = Pπ
{
Xt+1 = j | X1 = s

}
.

Given that the value of a policy vπ exists, it can be written in vector notation as

vπ =
∞∑
t=1
(Pt−1
π )rd . (2.7)

2.3.3 Optimality Equations

The goal is to derive the optimality equations in vector notation for infinite-horizonMDPs under the
expected total reward criterion. As in this subsection, the introduced vector notation is used to express
the optimality equations for infinite-horizonMDPs under the expected total reward criterion, assume
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that the limit of Equation 2.7 exists for all policies π and the value of the MDP is well-defined. Then,
Equation 2.7 can be rewritten as

vπ =
∞∑
t=1
Pt−1
π rd

= rd1 + Pd1(rd2 + Pd2rd3 + . . .)
= rd1 + Pd1vπ

′,
where π = (d2, d3, . . .). For a stationary, deterministic policy d∞ this equation simplifies to

vd∞ = rd + Pdvd
∞ ,

so vd∞ is a fixed point of the linear transformation (rd + Pd) (v). For MDPs under the expected dis-
counted reward criterion, it can be shown that vd∞ is the unique solution of rd + Pd . However, this is
not in general the case for MDPs under the expected total reward criterion.

We can write the optimality equations 2.4 of finite horizonMDPs as

vt(s) = max
a∈As

r(s, a) +
∑
j∈S
p(j |s, a)vt+1(j)

 , ∀t ∈ T, ∀s ∈ S.
As we assumeAs to be finite in each s, the maximum is attained in each state and we do not need a
supremum in the stated equations. Applying the limit t →∞ to the last equations, we derive

v(s) = max
a∈As

r(s, a) +
∑
j∈S
p(j |s, a)v(j)

 , ∀s ∈ S. (2.8)

We refer to equations 2.8 as the optimality equations for infinite-horizonMDPs. Equations 2.8 can be
written in vector notation as

v = max
d∈DMR

{rd + Pdv} . (2.9)

Note, that we have not said anything yet about the optimality equations. It remains to show under
which conditions there exists a solution to the optimality equations for infinite-horizonMDPs under
the expected total reward criterion and when this solution equals the value of the MDP.

As for finite-horizonMDPs, it can be shown that the maximum in Equation 2.9 only needs to be
evaluated over all deterministicMarkovian policies while attaining the samemaximum value (Puterman,
2005, Prop. 6.2.1). For later use and further simplification, we define a linear operator, sometimes called
dynamic programming operator or Bellmann operator,B as

Definition 2.3.23 (Dynamic Programming Operator).

Bv := max
d∈DMD

{rd + Pdv} . (2.10)

So, as a result we can summarize the optimality equations by

v = Bv. (2.11)

A solution of the optimality equations is a fixed point of the dynamic programming operatorB.
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2.3.4 Solutions of the Optimality Equations

In contrast to MDPs under the expected discounted reward criterion, the dynamic programming
operator applied to total reward models is not necessarily a contraction mapping. For MDPs under
the expected discounted reward criterion, this property of the dynamic programming operator makes
it possible to apply the Banach fixed point theorem. The existence and uniqueness of a fixed point
can then be followed from the Banach fixed point theorem. Furthermore, a sequence of value vectors
derived from the dynamic programming operator starting with an arbitrary v ∈ Rn will converge to the
unique fixed point. Together with the result that the fixed point of the dynamic programming operator
equals the value of the considered discountedMDP, a basis for algorithms that yield an optimal policy
for a discountedMDP is given. By examples, it will be shown that these conclusions can not generally
be made for MDPs under the expected total reward criterion. Weaker results that hold for arbitrary
expected total rewardmodels are summarized. Furthermore, assumptions and special classes of expected
total reward models are presented, where properties similar to those of discounted reward models hold.

From the definition of the value of anMDP, it can be shown that:

Theorem 2.3.24 (Puterman (2005), Thm. 7.1.3.):
The value v∗ of an MDP under the total expected reward criterion satisfies the optimality equa-
tions 2.11.

If one considers an MDP where only one decision rule d is available, the value of the MDP is
obviously v∗ = vd∞ . Applying Theorem 2.3.24 yields

vd∞ = Bvd∞ = max
d∈DMD

{
rd + Pdvd

∞}
= rd + Pdvd

∞ .

The dynamic programming operatorB ofMDPs under the expected total reward criterion, defined
in Definition 2.3.23, is a monotone function. Furthermore, if the value function is increased by a
constant in each state, the result of the dynamic programming operator also increases in each state by
this constant. The following Lemma shows these properties:

Lemma 2.3.25 (Puterman (2005), Lemma 7.1.5):
1. For all u, v ∈ V with u ≤ v, Bu ≤ Bv.
2. For all c ∈ R, v ∈ V , B(v + c1) = Bv + c1.

Proof. The proof of this Lemma uses that Pd is a transition matrix, where each row specifies a prob-
ability distribution.

1. Let u, v ∈ V with u ≤ v. Then, there exists a decision rule d ∈ DMD at which the maximum is
attained, such thatBu = rd + Pdu. It follows

Bu = rd + Pdu ≤ rd + Pdv ≤ Bv,
where the first inequality uses that Pd has only positive entries and u is component wise smaller
than v.
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2. Let c ∈ R, v ∈ V .

B(v + c1) = max
d∈DMD

{rd + Pd(v + c1)}

= max
d∈DMD

{rd + Pdv + cPd1}

= max
d∈DMD

{rd + Pdv} + c1

= Bv + c1.

In the second to last equation, it is used that for each d ∈ DMD the rows of Pd sum up to 1. �

In contrast to discounted models, v∗ is not a unique fixed point ofB. For any scalar c ∈ R, v∗ + c1
is also a fixed point:

B(v∗ + c1) Lemma 2.3.25
= Bv∗ + c1 = v∗ + c1.

We summarize results of total reward MDP classes, where the fixed point v∗ is unique or can be charac-
terized:

• For Bertsekas-SSP MDPs, Bertsekas shows in Bertsekas, 2001, Prop. 2.1.2 that the dynamic
programming operatorB has at most one fixed point. The proof does not rely on the Banach
fixed point theorem. It uses that the value of a proper policy vd∞ is the unique solution of

v = rd + Pdv.

This in turn is a consequence of Equation 2.6 that shows that for proper policies the probability
for not reaching a goal state after n steps goes to zero as n→∞. Since in a goal state no further
reward is accumulated we get

lim
k→∞

Pkdv = 0, ∀v ∈ V.

So, the reward from using a deterministic decision rule d infinitely often converges to the value
vd∞ of the stationary deterministic policy for every v ∈ V :

k−1∑
m=0
Pmd rd + Pkdv

k→∞→ vd∞ .

Therefore, if any other value function v′ satisfies v′ = rd + Pdv′, we can recursively insert the
equation for v′ and get v′ = limk→∞

∑k−1
m=0 Pmd rd + Pkdv′ which converges to vd

∞ . So v′must be
vd∞ and the solution of v = rd + Pdv is unique.
Finally, Bertsekas shows that the dynamic programming operator has a unique solution by using
the uniqueness of v = rd + Pdv in the following way: Assume two fixed points v̄ and v′ ofB. For
Bertsekas-SSPMDP with a finite action set, there must exist two proper decision rules d̄ and d′
at which the maximum ofB is attained. From the uniqueness of the fixed point of v = rd + Pdv,
it follows that v̄ = vd̄∞ and v′ = vd′∞ .
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We have v = Bv = Bkv ∀k ≥ 1 and all fixed points v. From that we get

v̄ ≥ lim
k→∞

k−1∑
m=0
Pmd′rd′ + Pkd′v = vd

′∞
= v′

and analogous v′ ≥ v̄. So the fixed point ofBmust be unique.

As a side note, there exists a special case of Bertsekas-SSPMDPs whereB is a contraction in terms
of a weighted supremum norm. This is the case if all policies are proper (Bertsekas, 2001, Ex.
2.14).

• LetV+ ⊆ V be the set of positive bounded value functions. For positive bounded models, it can
be shown that v∗ is the component-wise minimal fixed point ofB in V+ (Puterman, 2005, Thm.
7.2.3). When evaluating a stationary deterministic policy d∞, the value vd∞ of this policy is also
the component-wise minimal solution of

v = rd + Pdv

in V+ for positive bounded models.

• Let V− ⊆ V be the set of negative bounded value functions. For negative models, it can be
shown that v∗ is the component-wise maximal fixed point ofB in V− (Puterman, 2005, Thm.
7.3.3). When evaluating a stationary deterministic policy d∞, the value vd∞ of this policy is also
the component-wise maximal solution of

v = rd + Pdv

in V− for negative models.

In discountedMDPs, it is easy to identify an optimal decision rule. If a decision rule d∗ is conserving
which means

rd∗ + Pd∗v∗ = v∗,
it follows that the deterministic stationary policy (d∗)∞ is an optimal decision rule (Puterman, 2005,
Thm. 6.2.7). However, in MDPs under the expected total reward criterion, it is only a necessary not a
sufficient condition that d is conserving.

Example 2.1:
Figure 2.3 shows an example from (Puterman, 2005, Ex. 7.2.3) with two states s1 and s2. In state s1,
there are two actions a1 and a2 available, in state s2, there is one action a3 available. There exist two
deterministic decision rules. Letd1 be the decision rule that chooses action a1 in s1 andd2 be the decision
rule that chooses action a2 in s1. Both decision rules select a3 in s2.

The transition matrices under these decision rules are

Pd1 =

(
1 0
0 1

)
Pd2 =

(
0 1
0 1

)
.
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p(s |s′, a): transition

r r(s′, a, s) reward

Figure 2.3: Conserving decision rule is not sufficient (Puterman, 2005, Ex. 7.2.3)

Since the presented MDP is a positive bounded MDP, we can calculate the value of the MDP by
finding a minimal solution v ∈ V+ of the optimality equations. The optimality equations for the
example are

v(s1) = max{1 + v(s2), v(s1)}
v(s2) = v(s2).

The minimal solution of these equations in V+ is
v∗(s1) = 1, v∗(s2) = 0.

Obviously, in this small example d2 is optimal and d1 not. This can be seen by computing the value
of those decision rules, which are vd2

∞(s1) = 1 and vd1
∞(s1) = 0. However, both decision rules are

conserving. We show this by evaluating v∗ = rd + Pdv∗ for both decision rules:

d1 :
(

1
0

)
=

(
0
0

)
+

(
1 0
0 1

)
·
(

1
0

)
d2 :

(
1
0

)
=

(
1
0

)
+

(
0 1
0 1

)
·
(

1
0

)
∗

Since requiring a conserving decision rule is not a sufficient criterion, a second condition is needed.
Theorem 2.3.26 (Puterman, 2005, Thm. 7.1.7) characterizes an optimal decision rule inMDPs under
the expected total reward criterion:
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Theorem 2.3.26 (Puterman (2005), Thm. 7.1.7):
If d ∈ DMD satisfies

rd + Pdv∗ = v∗ and lim
N→∞

supEd
∞
s {v∗(XN+1)} ≤ 0,

then d∞ is optimal.

A decision rule that satisfies the second condition of Theorem 2.3.26 is called equalizing. This
condition can be rewritten as limN→∞ supPNd v∗(s) ≤ 0 for all s ∈ S in MDPs under the expected
total reward criterion. In discounted models, the discount factor λ guarantees that each decision rule is
equalizing. There are classes of expected total reward models, where the same result holds:

• Since in negative models the value of all stationary policies and therefore also the value of the
MDP is always less or equal zero Puterman, 2005, Prop. 7.3.1.

lim
N→∞

supPNd v∗ ≤ 0

is satisfied for all decision rules. So, in negative models all decision rules are equalizing.

• For proper decision rules
lim
N→∞

supPNd v = 0

holds for all v ∈ V and therefore every proper decision rule is equalizing. Since in Bertsekas-SSP
MDPs all improper policies have a reward of−∞ and there exists at least one proper policy, it can
be concluded that every policy that is conserving in a Bertsekas-SSPMDP is an optimal policy.

In positive bounded models, there may exist conserving decision rules that are not equalizing.

Example 2.1 (continued):
Revisiting Example 2.1, we see that d2 is equalizing, while d0 is not. The transition matrix forN steps
are

PNd0
=

(
1 0
0 1

)
PNd2
=

(
0 1
0 1

)
,

from which PNd0
v∗ =

(
1
0

)
and PNd2

v∗ =
(
0
0

)
follows for allN . So,

lim
N→∞

supPNd2
v∗(s) = 0 ∀s ∈ S

holds, and d2 is equalizing. We can apply Theorem 2.3.26 to identify d2 as an optimal stationary deter-
ministic policy. ∗
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After identifying a stationary deterministic optimal policy, the question is open whether there
always exists a stationary deterministic optimal policy. Puterman relies on the proof for discounted
models and uses a non-decreasing sequence of discount factors converging to 1 to prove the existence of
a stationary deterministic optimal policy. For completeness, we restate the assumptions made in this
section.

Theorem 2.3.27 (Puterman (2005), Thm. 7.1.9):
Suppose an MDP under the expected total reward criterion with a finite state and actions space that
satisfies Assumption 2.3.2. Then, there exists a stationary deterministic optimal policy.

For Bertsekas-SSPMDPs, the existence of a stationary deterministic optimal policy can be proved
without relying on discounted models (Bertsekas, 2001, Prop. 2.1.2).

2.3.5 Value Iteration

Value iteration is based on the convergence of the sequence {vn} defined by

vn+1 = Bvn

to the value of the MDP v∗. In discounted models, this convergence is guaranteed for any v ∈ V by the
Banach fixed point theorem. InMDPs under the expected total reward criterion, the convergence of
{vn} does not hold in general.
Example 2.2:
Consider again the MDP of Figure 2.3. We choose v0 = (3, 2)T ∈ V and define vn+1 = Bvn. The next
values of the sequence are

v1 =

(
max{1 + 2, 3}

2

)
=

(
3
2

)
v2 =

(
max{1 + 2, 3}

2

)
=

(
3
2

)
.

Since (3, 2)T is another fixed point of the optimality equations, the sequence will stay in (3, 2)T . Ob-
viously, this is not the value of the MDP. ∗

Algorithm 3 shows the general value iteration algorithm. If it converges to the value of the MDP v∗
and the termination criterion | |vt+1 − vt | | < ε is met, suboptimal error bounds of the returned solution
vt+1 can be computed. However, the bounds are not as powerful as for discountedMDPs and additional
knowledge is required. For instance for Bertsekas-SSPs, the expected number of steps until reaching a
goal state needs to be known (Hansen, 2017).

Some results regarding the convergence of the value iteration algorithm for the presentedMDP
classes of Subsection 2.3.1 are:
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• For Bertsekas-SSP MDPs, we have already seen that v∗ is the unique fixed point of B. The
sequence {vn} generated by the dynamic programming operator converges to the value of the
MDP for every v ∈ V (Bertsekas, 2001, Prop. 2.1.2). So, for Bertsekas-SSPMDPs value iteration
converges for every value function v ∈ V to the value of the MDP.

• For positive boundedMDPs, value iteration converges if 0 ≤ v0 ≤ v∗ holds (Puterman, 2005,
Cor. 7.2.13).

• In negative MDPs with a finite the state set S value iteration converges whenever 0 ≥ v0 ≥ v∗
(Puterman, 2005, Cor. 7.3.12).

Algorithm 3: Value Iteration
Data: Infinite-HorizonMDP

(S,A, p(·|s, a), r(s, a))
1 Select v0 ∈ V appropriate, ε > 0;
2 t ← 0;
3 Compute vt+1 = Bvt ;
4 if | |vt+1 − vt | | < ε then
5 return vt+1;
6 else
7 t ← t + 1;
8 Go to line 3;
9 end

In general, value iteration may require an infinite number of iterations and each iteration has a
running time ofO(mn2) (Littman, Dean, and Kaelbling, 1995).

For Bertsekas-SSP MDPs that contain an optimal stationary deterministic decision rule whose
transition probability graph is acyclic, it can be shown that value iteration will yield the value of the
MDP after at most n steps (Bertsekas, 2001, Sec. 2.2.1). A consistently improving policy d∗∞, is a policy
that satisfies for all i ∈ S

∀j ∈ S with p(j |i, d∗(i)) > 0⇒ v∗(i) > v∗(j).

The transition probability graph of a consistently improving policy is acyclic. So, if there exists a
consistently improving policy, it can be derived that value iteration terminates after finitely many
iterations.

When applying the value iteration algorithm to discounted MDPs or Bertsekas-SSP MDPs, an
optimal stationary deterministic policy d∗∞ can be derived by just remembering the action at which the
maximum of the dynamic programming operator was attained. However, since inMDPs under the
total expected reward criterion only a conserving policy that is also equalizing is an optimal stationary
deterministic policy there need to be further considerations done, when identifying an optimal policy.

2.3.6 Policy Iteration

The general policy evaluation algorithm, presented by Algorithm 4, relies on the existence of an optimal
stationary deterministic decision rule and not, like the value iteration algorithm, on finding a fixed point.
It terminates at an optimal stationary deterministic decision rule after a finite number of iterations
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for discounted models with a finite state and action space (Puterman, 2005, Thm. 6.4.2). The proof
is based on the property that the sequence of value functions generated in the policy evaluation step
is monotonically increasing and that there exist only finitely many different deterministic stationary
policies.

Also for Bertsekas-SSPMDPs, it can be shown that the new policy generated by the policy iteration
is either strictly better than the current policy or an optimal policy (Bertsekas, 2001, Sec. 2.2). This can
be seen as follows: Let d be the current decision rule with value vd∞ and d̄ be the policy at which the
maximum ofBvd∞ is attained. Then

rd̄ + Pd̄vd
∞
= Bvd∞ ≥ rd + Pdvd

∞
= vd∞ .

By using the monotonicity of rd̄ + Pd̄u ≥ rd̄ + Pd̄v, ∀u ≥ v, u, v ∈ V and the convergence of

k−1∑
m=0
Pmd̄ rd̄ + P

k
d̄v
k→∞→ vd̄∞ , ∀v ∈ V

for proper decision rules, we get vd̄∞ ≥ vd∞ . So, either there exists an i ∈ S such that vd̄∞(i) > vd∞(i) or
we get vd∞ = Bvd∞ and d∞ is an optimal policy. The shown property implies, that the policy iteration
algorithm terminates after a finite number of steps for Bertsekas-SSPMDPs.

For expected total reward MDPs, the policy evaluation, step 3 in Algorithm 4, may not be possible.
This is the case if the selected policy d0 is a policy with an infinite value |vd∞0 | = ∞. For example in
negative models, there may exist a stationary deterministic policy with vd∞0 = −∞. But even if the
algorithm starts with a decision rule d0 that has a finite value, the policy evaluation step may not have a
unique solution.

Example 2.3:
Consider again theMDPpresented by Figure 2.3. Assume, the decision rule d1(s1) = a1 and d1(s2) = a3
is selected as the initial decision rule in the policy iteration algorithm. Then the policy evaluation step
would be to find a solution of

(I − Pd1)v = rd1

⇔
(
I −

(
1 0
0 1

))
v =

(
0
0

)
⇔

(
0 0
0 0

)
v =

(
0
0

)
.

Any v ∈ R2 solves this system of equations. ∗

It appears reasonable to select the minimal solution of v ∈ V+ in positive bounded models and
in negative models the maximal solution which is automatically in v ∈ V−. This would guarantee, in
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step 3 of Algorithm 4, that the value of the stationary deterministic policy d∞0 is finite.

Algorithm 4: Policy Iteration – General
Data: Infinite-HorizonMDP

(S,A, p(·|s, a), r(s, a))
1 Select d0 ∈ DMD;
2 t ← 0;
3 Obtain vn by solving

(I − Pdn)v = rdn (Policy Evaluation)

4 Choose dn+1 to satisfy

dn+1 ∈ arg max
d∈DMD

{rd + Pdvn} (Policy Improvement)

setting dn+1 = dn when possible;
5 if dn+1 = dn then
6 return dn;
7 else
8 Go to line 3;
9 end

If the policy evaluation is well-defined and the policy improvement steps leads to a termination
of the algorithm, a decision rule dn+1 = dn has been found that can not be improved further. From
dn+1 = dn follows

dn ∈ arg max
d∈DMD

{rd + Pdvn}

⇒ max
d∈DMD

{rd + Pdvn} = rdn + Pdnvn = vn

⇒ Bvn = vn.

The last equation shows, that if the policy iteration algorithm terminates, a fixed point of the optimality
equation has been found. In discounted models and Bertsekas-SSPMDPs, there exists only a unique
fixed point which is v∗ and it follows that dn is a conserving decision rule. As mentioned earlier,
deterministic stationary policies d∞n derived from a conserving policy dn are optimal in discounted
models and Bertsekas-SSPMDPs.

In total reward models, this conclusions can not be made. Even if we can correctly evaluate all
policies, we can not ensure the algorithm to terminate at the value of theMDP. So, the derived stationary
deterministic policy can be suboptimal. Example 2.4 from Puterman, 2005, Ex. 7.3.1 shows a negative
model, for which the policy iteration algorithm terminates at a suboptimal policy. This issue results
from the fact that the set of recurrent states changes for different policies.

Example 2.4:
Consider theNEGMDPpresented in Figure 2.4. Let δ be a decision rule that selects action a1 in s1 and
γ be a decision rule that selects action a2 in s1. Both decision rules use a3 in s2.
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s1a1 a2 s2 a3
1 0

1 −1

1 0

si state

ai action

available action
p(s |s′, a): transition

r r(s′, a, s) reward

Figure 2.4: Policy Iteration may terminate with a suboptimal policy

Assume the policy iteration, Algorithm 4, starts with γ. According to our reasoning before, the
maximal solution of (I − Pdn)v = rdn is determined in the policy evaluation step such that we get a
solution that equals the value of the considered policy. For our initial decision rule γ, the system of
equations is

(I − Pγ)v = rγ
⇔

(
I −

(
0 1
0 1

))
v =

(−1
0

)
⇒ v(s1) − v(s2) = −1 ∧ v(s2) = 0

⇒ maximal solution: v0(s1) = −1, v0(s2) = 0

At the policy improvement step, we determine the set of improving policies:

arg max
d∈DMD

{
rd + Pdv0}

= arg max
{
rδ + Pδv0, rγ + Pγv0}

= arg max
{(

0
0

)
+

(
1 0
0 1

) (−1
0

)
,
(−1

0

)
+

(
0 1
0 1

) (−1
0

)}
={δ, γ}.

Since γ is in the set of improving policies, the policy algorithm terminates and returns γ. But vδ∞(s1) =
0 > −1 = vγ∞(s1), so γ is suboptimal. ∗

We have seen that there exist difficulties when defining a policy iteration algorithm for general
expected total rewardMDPs that terminates after a finite number of steps at an optimal deterministic
stationary policy. Since positive boundedmodels play a role in the next chapters of this thesis, we present
amodified policy iteration algorithm for positive boundedmodels in Algorithm 5. Asmentioned earlier,
the value vd∞ of a stationary policy is the component-wise minimal solution of v = rd + Pdv in V+. So
in the first step of the algorithm, a decision rule d0 is chosen with rd ≥ 0. This choice of d0 guarantees
that the first value function v0 and all further value functions vn will be in V+. Another modification
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occurs in step 3, where the minimal solution is computed. By computing the minimal solution and not
an arbitrary solution, we know that the calculated value function equals vdn∞ .
Algorithm 5: Policy Iteration - POSBMDPs
Data: Infinite-HorizonMDP

(S,A, p(·|s, a), r(s, a))
1 Select d0 ∈ DMD with rd0 ≥ 0;
2 t ← 0;
3 Obtain vn by finding the minimal solution of

(I − Pdn)v = rdn (Policy Evaluation)

4 Choose dn+1 to satisfy

dn+1 ∈ arg max
d∈DMD

{rd + Pdvn} (Policy Improvement)

setting dn+1 = dn when possible;
5 if dn+1 = dn then
6 return dn;
7 else
8 Go to line 3;
9 end

Suppose the policy iteration algorithm has terminated. Then we have found a dn that satisfies

dn ∈ arg max
d∈DMD

{
rd + Pdvdn

∞} .
In otherwords, vdn∞ satisfies vdn∞ = Bvdn∞ , i.e., it is a solution of the optimality equations. By definition
of the value of anMDP v∗ ≥ vdn∞ holds. As stated in the last section, in POSBmodels v∗ is the minimal
solution of the optimality equations, so v∗ = vdn∞ must be true.

We have seen that if the policy iteration algorithm for POSB models terminates, it terminates at the
value of the POSBMDP and returns an optimal deterministic stationary policy. It remains to determine
whether the algorithm terminates. Indeed, it can be shown that for finite-state MDPs, there exists a
strict improvement in step 4.

Theorem 2.3.28 (Puterman (2005), Thm. 7.2.16):
Suppose a POSB MDP with finite state and action spaces. Let {vn} denote the sequence of value
functions generated by Algorithm 5. Then for some finite N vN = v∗ and the returned dn∞ is
optimal.

In anMDPwith n states andm actions, there exists nm distinct deterministic, stationary policies,
such policy iteration for SSO-MDP can take at most nm iterations. The policy improvement step can be
performed inO(m · n2) and the policy evaluation step inO(n3) (Littman, Dean, and Kaelbling, 1995).
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2.3.7 Linear Programming Formulation

For positive bounded models with finite state and action spaces, it is possible to formulate a linear
program (LP), whose optimal value corresponds to the value of the POSBMDP. As stated above, the
minimal solution v ∈ V+ of v = Bv equals the value of the MDP v∗. This is equivalent to

min. solution v
s.t. v = maxd∈DMD {rd + Pdv}

v ∈ V+

⇔
min. solution v

s.t. v ≥ rd + Pdv, ∀d ∈ DMD
v ∈ V+

⇔
min. solution v

s.t. v(s) −∑
j∈S p(j |s, a)v(j) ≥ r(s, a), ∀a ∈ As, ∀s ∈ S

v(s) ≥ 0, ∀s ∈ S.
By a minimal solution, a component-wise minimal solution is meant. So, the minimal solution can

be computed by minimizing a positive weighted sum of the components. It can be shown, that the
derived optimal decision rule from the linear program is independent of the choice of the weights as
long as they are strictly positive (Puterman, 2005, Prop. 7.2.19). However, to give them an interpretation
as a distribution over the state set, it will be assumed that the weights ω ∈ Rn+ satisfy

∑
s∈S ω(s) = 1. All

together, the primal linear programming formulation for positive bounded models is:

min
∑
s∈S ω(s)v(s)

s.t. v(s) −∑
j∈S p(j |s, a)v(j) ≥ r(s, a), ∀a ∈ As, ∀s ∈ S

v(s) ≥ 0, ∀s ∈ S.
(primal LP)

The difference to a linear programming formulation for discounted models is that no discount factor
occurs and that only solutions v ∈ V+ are considered. The primal LP has∑s∈S |As | many inequalities
and |S | many variables with non-negativity constraints.

The primal LP formulation without the non-negativity conditions can also be applied to Bert-
sekas-SSPMDPs. AsBkv converges to v∗ for all v ∈ V and the dynamic programming operatorB is a
monotone function, the following implication holds:

v ≥ Bv⇒ v ≥ v∗ = Bv∗.

So, the value of a Bertsekas-SSP MDP is also the minimal solution that satisfies v ≥ Bv. The non-
negativity conditions ensured v ∈ V+ for POSB models. Since in Bertsekas-SSPMDPs the convergence
of the dynamic programming operator to the value of the MDP holds for all v ∈ V and v∗ need not be
an element of V+, the non-negativity conditions must be omitted in the primal LP formulation for
Bertsekas-SSPMDPs.

Determining an optimal deterministic stationary decision rule of a POSBMDP by the primal LP is
especially useful if there exists a single conserving decision rule. In that case, for exactly one action in
each state the inequality v(s) −∑

j∈S p(j |s, a)v(j) ≥ r(s, a) is satisfied with equality. The decision rule
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that selects this actions is conserving. In expected total rewardmodels, a decision rulemust necessarily be
conserving to be an optimal policy and, by Theorem 2.3.27, there always exists an optimal deterministic
stationary policy. So, if the found decision rule is the only conserving decision rule, it must be an optimal
decision rule. If there exist more than one conserving decision rule, it is necessary to establish which of
them is also equalizing.

The dual linear program to the primal LP presented before equals:

max
∑
s∈S

∑
a∈As r(s, a)x(s, a)

s.t.
∑
a∈Aj x(j, a) −

∑
s∈S

∑
a∈As p(j |s, a)x(s, a) ≤ ω(j), ∀j ∈ S

x(s, a) ≥ 0, ∀a ∈ As, ∀s ∈ S.
(dual LP)

For discounted models and Bertsekas-SSPMDPs, the primal linear program has no non-negativity
condition v(s) ≥ 0. Thus, the dual linear programming formulation for those MDPs has equalities
instead of less or equal inequalities. This leads to a one-to-one relation between feasible solutions of the
dual program and randomized decision rules for discountedMDPs and Bertsekas-SSP. Thereby, from a
decision rule d ∈ DMR the feasible solution xd(s, a) to the dual program is defined as

xd(s, a) :=
∑
j∈S
ω(j)

∞∑
n=1
λn−1Pd

∞ {
Xn = s, Yn = a | X1 = j

}
. (2.12)

And the other way around, for a feasible solution x(s, a) of the dual program, it can be shown that∑
a′∈As x(s, a′) > 0 holds for all s ∈ S and a randomized decision rule d∞x is well-defined by

P {dx(s) = a} = x(s, a)∑
a′∈As x(s, a′)

∀s ∈ S. (2.13)

Further, it can be shown that the corresponding xdx (s, a) from the constructed decision rule dx is feasible
to the dual program and xdx (s, a) = x(s, a) holds for all a ∈ As, s ∈ S (Puterman, 2005, Thm. 6.9.1).

For POSBMDPs, the solution x(s, a) = 0, ∀a ∈ As, ∀s ∈ S is always a feasible solution of the dual
LP. So, due to the inequalities in the dual program the condition

∑
a′∈As x(s, a′) > 0 need not hold for

any s ∈ S. Example 2.5 shows that for POSBmodels, there exist multiple feasible dual solutions that
correspond to the same decision rule.

Example 2.5:
Suppose the POSBMDP presented in Figure 2.5 with two states s1 and s2. The state s1 has two actions
a1 and a2 available. The absorbing state s2 has one available actionwhich is a3. The dual linear program
for this example is

max x(s1, a1) + x(s1, a2)
s.t. x(s1, a1) + x(s1, a2) ≤ ω(s1)

x(s2, a3) − x(s1, a1) − x(s1, a2) − x(s2, a3) ≤ ω(s2)
x(s, a) ≥ 0 ∀a ∈ As, ∀s ∈ S

Suppose the initial starting distribution is, e.g., ω(s1) = 0.8 and ω(s2) = 0.2. Then, for all c ∈ R≥0 the
solution:

x(s1, a1) = 0.2
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s1

a1

a2

s2 a3

1 1

1 1

1 0

si state

ai action

available action
p(s |s′, a): transition

r r(s′, a, s) reward

Figure 2.5: Many feasible dual solutions to a decision rule

x(s1, a2) = 0.2
x(s2, a3) = c ∈ R≥0,

is a feasible solution to the dual linear program. We can calculate a decision rule d from this feasible
solution by using Equation 2.13 for states with

∑
a′∈As x(s, a′) > 0. For s1, we get that P{d(s1) = a1} =

P{d(s1) = a2} = 0.5. In state s2, the variable x(s2, a3) = cmay be zero, but for all x(s2, a3) > 0, we get
d(s2) = a3. So, there exist multiple feasible solutions of the dual program for a POSBMDP that lead
to the same decision rule.

If we construct a feasible solution xd following Equation 2.12 with λ = 1 from the calculated
decision rule d, we obtain

xd(s1, a1) = 0.4
xd(s1, a2) = 0.4
xd(s2, a3) = ∞.

Obviously, xd(s, a) = x(s, a) does not hold. However, the conducted decision rule from xd according
to Equation 2.13 equals d in state s1. ∗

As Puterman (2005) captures for POSB models only a statement about optimal basic solutions,
which will be stated later, it will be figured out in this thesis how a decision rule can be derived from
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any feasible solution. The feasible solution need not necessarily be a basic solution of the dual LP.
Furthermore, it will be shown how the objective value of an arbitrary feasible solution is related to the
expected total reward of the derived decision rule.

First, a decision rule derived from an arbitrary feasible solution of the dual LP is defined. This
definition extends the prescription of 2.13, which defined a decision rule corresponding to a feasible
solution of the dual linear program for discountedMDPs.

Definition 2.3.29 (Decision rule from feasible solution).
Let x be a feasible solution of the dual LP and u(s) :=

∑
a′∈As x(s, a′), ∀s ∈ S. We define a correspond-

ing decision rule dx as

P {dx(s) = a} =
{ x(s,a)
u(s) ∀s ∈ S with u(s) > 0
q ∈ P(As) else.

In the case where u(s) = 0 holds, an arbitrary probability distribution can be chosen. Let S∗ ⊂ S be
the set of states where u(s) > 0 holds. If S = S∗ holds, Definition 2.3.29 defines a unique dx. But, if
there exists an s ∈ S \ S∗, there exist infinitely many decision rules dx corresponding to x following
Definition 2.3.29. Before we show the relationship between the objective value of x and vd∞x , we define
two LPs that are similar to the primal LP and the dual LP but correspond to an MDP where only
one decision rule d is available. Let LPd be a primal linear program for a POSBMDP where only one
decision rule d is available:

minωT v
s.t. v − Pdv ≥ rd

v ≥ 0.
(LPd)

The linear programLPd has |S |many inequalities and |S |many variableswith non-negativity constraints.
Its dual linear program is denoted byDPd and equals:

max rTd x
s.t. x − PTd x ≤ ω

x ≥ 0.
(DPd)

Recap from Subsection 2.3.2 the definition of Pd ∈ Rn×n as the transition matrix under decision rule
d and the definition of rd ∈ Rn as the expected reward from using decision rule d. The LPs LPd and
DPd are special variants of primal LP and dual LP where only one decision rule d exists. From earlier
investigations of Subsection 2.3.3 or from the fact that in the case of a POSBMDPwith one decision
rule v∗ equals the value of that decision rule, we know that the optimal solution of LPd equals vd∞ .

The following Theorem 2.3.30 fills the mentioned gap in Puterman (2005) by examining the
relationship between the objective value of a feasible solution of the dual LP (the general dual LP
including all decision rules) and the value of the derived decision rule dx of that feasible solution x.
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Theorem 2.3.30:
Let x be a feasible solution of the dual LP and dx be the decision rule derived from x following
Definition 2.3.29. Then:

1. u(s) :=
∑
a′∈As x(s, a′), ∀s ∈ S is feasible for DPdx .

2. If dx is a decision rule with a non-negative value, then∑
s∈S

∑
a∈As

r(s, a)x(s, a) ≤ ωT vd∞x .

Proof. 1. Obviously, u(s) ≥ 0 holds for all s ∈ S. We show that the other inequalities are also
satisfied. Let S∗ := {s ∈ S | u(s) > 0} and observe that from u(s) = 0 and the non-negativity of
x, it follows that x(s, a) = 0, ∀a ∈ As. Let j ∈ S, then

u(j) −
(
PTdx

)
j∗
u

=
∑
a∈Aj

x(j, a) −
∑
s∈S

(Pdx ) s,j u(s)
=

∑
a∈Aj

x(j, a) −
∑
s∈S

[∑
a∈As

qdx(s)(a)p(j |s, a)
]
u(s)

=
∑
a∈Aj

x(j, a) −
∑
s∈S∗

[∑
a∈As

x(s, a)
u(s) p(j |s, a)u(s)

]
−

∑
s∈S\S∗

[∑
a∈As

qdx(s)(a)p(j |s, a)
]
u(s)

=
∑
a∈Aj

x(j, a) −
∑
s∈S∗

∑
a∈As

p(j |s, a)x(s, a) −
∑
s∈S\S∗

[∑
a∈As

qdx(s)(a)p(j |s, a)u(s)
]

︸                                  ︷︷                                  ︸
=0

=
∑
a∈Aj

x(j, a) −
∑
s∈S∗

∑
a∈As

p(j |s, a)x(s, a) −
∑
s∈S\S∗

∑
a∈As

p(j |s, a)x(s, a)︸                       ︷︷                       ︸
=0

=
∑
a∈Aj

x(j, a) −
∑
s∈S

∑
a∈As

p(j |s, a)x(s, a) ≤ ω(j).

The last inequality follows since x is a feasible solution of the dual LP. Hence, we have shown

u(j) −
(
PTdx

)
j∗
u ≤ ω(j), ∀j ∈ S

and u is feasible forDPd .
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2. We prove this statement by showing that∑
s∈S

∑
a∈As

r(s, a)x(s, a) =
∑
s∈S
rdx (s)u(s),

where u is defined as in the first statement of this theorem. Since vd∞x ≥ 0 holds by assumption,
vd∞x is feasible for LPd with d = dx. By the first part of this theorem, u is feasible forDPd with
d = dx. So, we can follow from weak duality that rTdxu ≤ ω

T vd∞x holds and hence∑
s∈S

∑
a∈As

r(s, a)x(s, a) ≤ ωT vd∞x

is shown. It is left to show the equality of the objective functions∑
s∈S

∑
a∈As

r(s, a)x(s, a)

x(s,a)=0, ∀a∈As , ∀s∈S\S∗
=

∑
s∈S∗

∑
a∈As

r(s, a)x(s, a)u(s) u(s)

=
∑
s∈S∗
u(s)

∑
a∈As

r(s, a)qdx(s)(a)

=
∑
s∈S∗
u(s)rdx (s)

u(s)=0, ∀s∈S\S∗
=

∑
s∈S
u(s)rdx (s)

= rTdxu.

As argued above the statement follows from weak duality. �

We can easily construct an example where the value of the objective function is strictly smaller than
the value of the corresponding decision rule.

Example 2.5 (continued):
The vector x(s, a) = 0, ∀a ∈ As, ∀s ∈ S is feasible for the dual program of any POSB MDP. The
objective value of that solution is 0. When constructing a decision rule following Definition 2.3.29 ac-
cording to this feasible solution, we can choose at each state s ∈ S an arbitrary probability distribution
qdx(s). If there exists any decision rule dx in the MDP with a strictly positive value, we get

0 =
∑
s∈S

∑
a∈As

r(s, a)x(s, a) <
∑
s∈S
ω(s)vd∞x (s).

In the POSBMDP presented in Figure 2.5, we could for instance choose dx(s1) = a1 and dx(s2) = a3,
which has a value of 1. ∗

The following Theorem 2.3.31 was developed in the connection with this thesis. It derives a unique
feasible solution xd for the dual LP from a decision rule d. If xd(s) is finite for all s ∈ S, the objective
value of xd equals the value of the stationary policy d∞.
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Theorem 2.3.31:
Let d be a decision rule in a POSB MDP whose value vd∞ is non-negative. Define

xd(s, a) :=
∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s, Yn = a | X1 = j

}
. (2.14)

and xd(s) :=
∑
a∈As xd(s, a). Then if xd(s) < ∞ for all s ∈ S, it holds:

1. xd(s) is feasible for DPd and satisfies all inequalities with equality.

2. xd(s, a) is feasible for dual LP.
3. The objective value of xd in dual LP satisfies∑

s∈S

∑
a∈As

r(s, a)xd(s, a) =
∑
s∈S
ω(s)vd∞(s).

4. xd is an optimal solution of DPd .

Proof. 1. Obviously, xd(s) ≥ 0, ∀s ∈ S holds.
It has to be shown that xd − PTd xd = ω holds. Let s ∈ S be an arbitrary state, then

xd(s) =
∑
a∈As

xd(s, a)

=
∑
a∈As


∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s, Yn = a | X1 = j

}
=

∑
j∈S
ω(j)

∞∑
n=1

∑
a∈As
Pd
∞ {
Xn = s, Yn = a | X1 = j

}
(2.15)

=
∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s | X1 = j

}
=

∑
j∈S
ω(j)

[ ∞∑
n=1
Pd
∞ {
Xn+1 = s | X1 = j

}
+ Pd

∞ {
X1 = s | X1 = j

}]
=

∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn+1 = s | X1 = j

}
+ ω(s)

=
∑
j∈S
ω(j)


∑
k∈S

∑
a∈Ak

qd(k)(a)p(s|k, a)
∞∑
n=1
Pd
∞ {
Xn = k, Yn = a | X1 = j

} + ω(s)
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=
∑
k∈S

∑
a∈Ak

qd(k)(a)p(s|k, a)

∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = k, Yn = a | X1 = j

} + ω(s)
=

∑
k∈S
pd(s|k)

∑
a∈Ak

xd(k, a) + ω(s)

=
∑
k∈S
pd(s|k)xd(k) + ω(s).

The terms of the infinite sum can be rearranged, like e.g. in line 2.15, since by assumption the
limit is finite and only non-negative terms appear. Therefore, it is an absolute convergent series
and a reordering does not change the limit of the series. We have shown that xd is feasible for
DPd and satisfies all inequalities ofDPd with equality. In an example following this theorem, it
is shown that this result does not hold if there exist an s ∈ S with xd(s) = ∞.

2. Obviously, xd(s, a) ≥ 0 holds for all a ∈ As, s ∈ S. We can use that xd is feasible for DPd to
proof the other inequalities:∑

a∈As
xd(s, a) = xd(s)

=
∑
k∈S
pd(s|k)xd(k) + ω(s)

=
∑
k∈S

∑
a∈Ak

qd(k)(a)p(s|k, a)xd(k) + ω(s)

=
∑
k∈S

∑
a∈Ak

p(s|k, a)xd(k, a) + ω(s), ∀s ∈ S.

We again used from above that

xd(k) =
∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = k | X1 = j

}
and hence qd(k)(a) · xd(k) = xd(k, a). So, xd(k, a) is also feasible for the dual LP.

3. We first show that ∑
s∈S
rd(s)xd(s) =

∑
s∈S
ω(s)vd∞(s).

We have already shown that xd(s) is feasible forDPd and satisfies

xd = PTd xd + ω.

We can insert xd recursively in this equation and get

xd =
N−1∑
n=0

(
PTd

)n
ω +

(
PTd

)N
xd .
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We transpose this equation and multiply it from right with rd :

xTd rd = ωT
N−1∑
n=0
(Pd)n rd + xTd (Pd)N rd .

Next, we take the limitN → ∞. Since by the assumption of a POSB model vd∞+ < ∞ holds
together with the assumption of this theorem that d∞ has a non-negative value, we know that
the first term on the right hand side converges to the finite value ωT vd∞ . It is a necessary condi-
tion for

∑N−1
n=0 (Pd)n rd to be a convergent series that the sequence of (Pd)n rd is a null sequence.

Hence, the second term on the right hand side of the last equation converges to zero. All in all
we get:

xTd rd = ωT vd
∞ .

It remains to show that the objective value of xd in dual LP is identical to the objective value of
xd inDPd :∑

s∈S

∑
a∈As

r(s, a)xd(s, a)

=
∑
s∈S

∑
a∈As

r(s, a)

∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s, Yn = a | X1 = j

}
=

∑
s∈S

∑
a∈As

r(s, a)

∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Yn = a | Xn = s, X1 = j

}
Pd
∞ {
Xn = s| X1 = j

}
=

∑
s∈S

∑
a∈As

r(s, a)

∑
j∈S
ω(j)

∞∑
n=1
qd(s)(a)Pd

∞ {
Xn = s| X1 = j

}
=

∑
s∈S

∑
a∈As

r(s, a)qd(s)(a)

∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s| X1 = j

}
=

∑
s∈S
rd(s)


∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s| X1 = j

}
=

∑
s∈S
rd(s)xd(s).

4. By weak duality rTd x ≤ ωT vd
∞ holds for all x feasible forDPd . Since xd is feasible forDPd and

rTd xd = ωT vd
∞ , it must be an optimal solution. �

The assumption xd(s) < ∞, ∀s ∈ S is crucial such that Theorem 2.3.31 holds:
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Example 2.6:
Consider again thePOSBMDPpresented inFigure 2.5. Wedefine adecision ruled(s1) = a1 andd(s2) =
a3 together with a start distribution ω(s1) = 0.2, ω(s2) = 0.8. Under this decision rule xd(s2, a3) =
xd(s2) = ∞ as seen before. So the assumption of Theorem 2.3.31 does not hold.

TheDPd corresponding to the defined decision equals

max x(s1)
s.t. x(s1) ≤ 0.2
−x(s1) ≤ 0.8
x(s) ≥ 0 ∀s ∈ S

From the first inequality and the non-negativity constraints, it follows that x(s1) ∈ [0, 0.2] and hence
the second inequality can not be satisfied with equality. ∗

The reader may notice that in a POSBMDPwith a finite number of action and states, there will
always exist at least one s ∈ S with xd(s) not being finite. This can be seen as follows: As we have a closed
system no probability mass can be lost or generated and at each point in time t a probability mass of 1
develops from one state to another, i.e.,∑

i∈S

∑
j∈S
Pd
∞{Xt = j, Xt+1 = i} = 1, ∀t ∈ T.

And as we consider an infinite horizon, we get in total an infinite probability mass that is divided up
by Equation 2.14 on finitely many variables xd(s, a). So there must exist at least one xd(s, a) which is
infinite and the condition xd(s) < ∞ can not hold for all s ∈ S.

However, it is possible to allow xd(s) to be unbounded on some subset of states S̃ such that∑
s∈S

∑
a∈As

r(s, a)xd(s, a) =
∑
s∈S
ω(s)vd∞(s)

still holds. Define S̃ := {s ∈ S | xd(s) = ∞}. If we go through the proof, we see that it still holds if all
s ∈ S̃ satisfy that

• s ∈ S̃ is reward free, i.e., r(s, a) = 0,∀a ∈ As,
• s ∈ S̃ is absorbing, i.e., p(s|s, a) = 1∀a ∈ As,
• and the start-distribution is 0, i.e., ω(s) = 0, ∀s ∈ S̃.
In part 1 of Theorem 2.3.31, the equation

xd(s) =
∑
k∈S
pd(s|k)xd(k) + ω(s)

still holds for all s ∈ S \ S̃ as∑k∈S pd(s|k)xd(k) = ∑
k∈S\̃S pd(s|k)xd(k) < ∞ andwe still have an absolute

convergent series that can be rearranged. For all s ∈ S̃, the inequality becomes

−
∑
k∈S\̃S

pd(s|k)xd(k) ≤ 0



2.3. INFINITE-HORIZON EXPECTED TOTAL REWARDMDPS 59

since s is absorbing and ω(s) = 0 for all s ∈ S̃. So, xd(s) is feasible for DPd and for all s ∈ S \ S̃ the
inequalities are satisfied with equality.

The second part of Theorem 2.3.31 holds by the same arguments as part 1.
The third and the fourth part stays valid since∑

s∈S
rd(s)xd(s) =

∑
s∈S\̃S

rd(s)xd(s) =
∑
s∈S\̃S

ω(s)vd∞(s) =
∑
s∈S
ω(s)vd∞(s).

Note that in Example 2.6, S̃ = {s2} but ω(s2) = 1. So in that example the required properties of S̃
do not hold.

Furthermore, the reader may notice that we end up with a Bertsekas-SSPMDP. The reward free
states correspond to the goal states. And as in POSBMDPs vd∞+ < ∞ holds together with the assump-
tion of this theorem that vd∞ is non-negative, we are particular considering proper policies in this
Theorem 2.3.31.

Some observations can be made about the feasible solution xd derived from a decision rule d, see
Equation 2.14. In all states s with xd(s) = 0, it can be concluded that the Markov chain derived from
using decision rule d will not reach that state.

Proposition 2.3.32:
Let xd be a the vector computed from decision rule d by Equation 2.14. Define S∗ := {s ∈ S :∑
a∈As xd(s, a) > 0}, then the Markov chain derived from using decision rule d will not reach the states

in S \ S∗.

Proof. Let s be a state in S \ S∗. Then ∑
a∈As xd(s, a) = 0. Using the non-negativity of xd(s, a), we

can conclude that xd(s, a) = 0, ∀a ∈ As. By using Equation 2.14, we can follow∑
j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s, Yn = a | X1 = j

}
= 0, ∀a ∈ As.

The probability that aMarkov chain according to decision rule d reaches state s starting with an initial
starting distribution ω equals ∑

j∈S
ω(j)

∞∑
n=1
Pd
∞ {
Xn = s|X1 = j

}
=

∑
j∈S
ω(j)

∞∑
n=1

∑
a∈As
Pd
∞ {
Xn = s, Yn = a|X1 = j

}
= 0.

So, the Markov chain resulting from using decision rule d will never reach state s ∈ S \ S∗. �

As a last proposition, it is shown that if a decision rule is calculated from xd according to Defini-
tion 2.3.29, decision rule d is preserved in all states s ∈ S∗.
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Proposition 2.3.33:
Let d ∈ DMD be a decision rule and xd derived from that decision rule after Equation 2.14 . Furthermore,
let dx be the decision rule calculated from xd according to Definition 2.3.29. Then

P {dx(s) = a} = P {d(s) = a} ∀a ∈ As, ∀s ∈ S∗ \ S̃.
Proof. Suppose d, xd and dx as described in the proposition. Then, for s ∈ S∗ \ S̃

P {dx(s) = a} = xd(s, a)
xd(s)

=

∑
j∈S ω(j)

∑∞
n=1 P

d∞ {
Xn = s, Yn = a|X1 = j

}∑
j∈S ω(j)

∑∞
n=1 P

d∞ {
Xn = s|X1 = j

}
=

∑∞
n=1

∑
j∈S ω(j) · Pd

∞ {
Xn = s, Yn = a|X1 = j

}∑∞
n=1

∑
j∈S ω(j) · Pd∞

{
Xn = s|X1 = j

}
=

∑∞
n=1 P

d∞ {Xn = s, Yn = a}∑∞
n=1 P

d∞ {Xn = s}

=

∑∞
n=1 P

d∞ {Yn = a | Xn = s} · Pd∞ {Xn = s}∑∞
n=1 P

d∞ {Xn = s}

=
P {d(s) = a} ·∑∞n=1 P

d∞ {Xn = s}∑∞
n=1 P

d∞ {Xn = s}
= P {d(s) = a} ∀a ∈ As,

which proves the proposition. �

When regarding optimal basic solutions of the dual LP of POSBmodels, one can prove that there
exists a decision rule with x(s, a) > 0 for at most one action a in each state s, which is useful for deter-
mining an optimal stationary deterministic policy. Theorem 2.3.34 shows a result of (Puterman, 2005),
who showed the existence of an optimal basic solution and a construction of an optimal deterministic
decision rule from that basic solution.

Theorem 2.3.34 (Puterman (2005), Thm. 7.2.18):
Suppose a POSB MDP with finite state and action spaces.

1. Then there exists an optimal basic solution x∗ to the dual LP with a finite objective value.

2. Let x(s, a) be a basic solution of the dual LP. Then for each s ∈ S, x(s, a) > 0 for at most one
a ∈ As.

3. Define

d(s) :=

{
a if x∗(s, a) > 0 and s ∈ S∗
arbitrary if s ∈ S \ S∗

with S∗ := {s ∈ S :
∑
a∈As x(s, a) > 0}, then d∞ is optimal.
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The principle ideas for the proof of Theorem 2.3.34 can be summarized as follows: The proof of
the first statement is based on the assumptions of a POSB MDP from which a finite optimal value
of the primal LP can be concluded. By using duality theory and the existence of a feasible solution
(x(s, a) = 0, ∀a ∈ As, ∀s ∈ S) for the dual LP, the statement follows.

The second statement is proved by exploiting the structure of a basic solution. First, the problem is
augmented by slack variables. Since there exist |S | many constraints in the dual LP and the right hand
side ω(s) are strictly greater than zero for each s ∈ S, it can be concluded that either the slack variable or
at most one x(s, a) per constraints can be greater than zero.

From the second statement follows that the decision rule defined in the third statement is well-
defined. It is shown that the objective function of the optimal basic solution x∗ is less or equal than the
ω-weighted sum of the value of d∞. Then by using duality theory the equality ωT v∗ = ωT vd∞ can be
followed and the optimality of d∞ is shown.

Finally, a few more general remarks on the linear programming formulation for MDPs under the
total expected reward criterion:

When using the simplex algorithm on the dual LP, this corresponds to the policy iteration algorithm
where in each iteration only an action a that gives the maximum improvement over all states is updated.
Or vice versa, the policy iteration algorithm equals a simplex algorithm where one action per state is
pivoted.

In contrast to POSBmodels, it is not possible to define a general linear program for negative models.
As mentioned above, the value of a negative model is the maximal solution that satisfies v ≤ Bv. As a
consequence, in a LP formulation, we would have to determine the maximal solution of v ∈ V− over

v(s) ≤ max
a∈As

r(s, a) +
∑
j∈S
p(j |s, a)v(j)

 ∀s ∈ S. (2.16)

Example 2.7 is from Problem 7.22 of Puterman (2005) and presents a negative model for which the
feasible regions defined through these inequalities are not convex. Therefore, the linear programming
theory, that is based on polyhedrons, can not be applied.

Example 2.7:
Figure 2.6 shows a NEG MDP. The inequalities of a potential LP formulation according to Equa-
tions 2.16 for the presentedMDP are:

v(s1) ≤ max{−1 + v(s2),−3 + v(s3)}
v(s2) ≤ max{v(s1),−1 + v(s3)}
v(s3) ≤ v(s3). ∗

Figure 2.7 shows the feasible region for v(s3) = 0 which is obviously not convex.

2.4 Graph Theory andMaximum Flow Problems

This section summarizes some basic definitions from graph theory, introduces a flow network and
defines the maximum flow problem. We start with the definition of a directed graph:
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Figure 2.6: LP formulation for NEGmodels: non convex feasible regions
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Figure 2.7: Illustration of non convex feasible regions of Example 2.7
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Definition 2.4.1 (Directed Graph).
A directed graphG = (N,E) consists of a setN of nodes and a set E of directed edges whose elements
are ordered pairs of distinct nodes.

Assume for the following a directed graphG = (N,E). We introduce some notation that helps to
specify sets of edges or nodes in a compactway. This notationwillmainly be used in Subsection 3.7where
a transformation algorithm for graphs resulting from MDPs suited for sport-strategy optimization
problems is presented.

For each edge e = (i, j) ∈ E, let start(e) = i be the node at which e starts and end(e) = j the node at
which e ends.

Let Ñ ⊆ N be a subset of nodes. Define δout(Ñ ) as the set of outgoing edges of Ñ , δin(Ñ ) as the
set of incoming edges to Ñ and χ(Ñ ) as the set of edges inside of Ñ :

δout(Ñ ) := {e ∈ E | start(e) ∈ Ñ , end(e) < Ñ }
δin(Ñ ) := {e ∈ E | end(e) ∈ Ñ , start(e) < Ñ }
χ(Ñ ) := {e ∈ E | start(e) ∈ Ñ , end(e) ∈ Ñ }.

We briefly summarize some elementary objects in a directed graph.

Definition 2.4.2 (Walk).
A walk from u ∈ N to v ∈ N of length k is a sequence of edges ωu,v = (e1, . . . , ek) ∈ ×Ek of the graph
(N,E) that connects node u with node v, i.e., start(e1) = u, end(ek) = v and start(ei) = end(ei−1) for
all 2 ≤ i ≤ k.

We defined a walk as a sequence of edges. Sometimes, also the set of nodes occurring in a walk
is needed. Let ν((e1, e2, . . . , ek)) be the set of nodes ni ∈ N that lie in a sequence (e1, e2, . . . , ek) of
edges, i.e.,

ν((e1, e2, . . . , ek)) := {n ∈ N | ∃e ∈ (e1, e2, . . . , ek) with start(e) = n ∨ end(e) = n}.

Definition 2.4.3 (Path).
A path ρu,v from u to v is a walk ωu,v without any repetition of nodes, i.e., if |ν(ρu,v)| = |ρu,v | + 1.

As a shorthand, v1 − v2 − . . . − vk will sometimes be used to denote the path ((v1, v2), . . . , (vk−1, vk)),
vj ∈ N, ∀j = 1, . . . , k.

A path ρu,v together with an edge (v, u) defines a circle. Formally, a circle is defined as a sequence of
nodes:
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Definition 2.4.4 (Circle).
A circle C ∈ N k of length k is a sequence of nodes C = (n1, . . . , nk), where (ni−1, ni) is an edge in E
for all 2 ≤ i ≤ k and all nodes are distinct except nk = n1.

To get the set of edges in a circle, we define

ρC := {e ∈ E | e = (ni, ni+1), ni, ni+1 are subsequent nodes in C }.
Observe that ρC is no path since it is a set and no tuple. Furthermore, it contains a repetitive node
n1 = nk.

Finally, we specify some basic graph properties.

Definition 2.4.5 (Acyclic Graph).
A directed graphG = (N,E) is acyclic if it contains no circle.

Definition 2.4.6 (Bipartite Graph).
Adirected graphG = (N,E) is bipartite if thenode setN canbepartitioned in two setsN1 andN2 such
thatN = N1∪N2 and for each e ∈ E either start(e) ∈ N1∧end(e) ∈ N2 or start(e) ∈ N2∧end(e) ∈ N1
holds.

In Subsection 2.3.7, a linear programming formulation is deduced for sport-strategy optimization
MDPs. Thereby, a flow network corresponding to the consideredMDP is used to formulate amaximum
flow problem.

Definition 2.4.7 (Flow Network).
A directed flow network is a directed graph G = (N,E) where the nodes or edges have associated
numerical values like, e.g., capacities or costs.

In the maximum flow problem, we wish to find the maximum flow from a source node s ∈ N to a
sink node t ∈ N . Ahuja, Magnanti, and Orlin consider a non-negative capacitated network and defines
the maximum flow problem as:

Definition 2.4.8 (Maximum Flow Problem (Ahuja, Magnanti, and Orlin, 1993)).
Let G = (N,E) be a capacitated network with a non-negative capacity ui,j associated with each edge
(i, j) ∈ E. Let s ∈ N be a source node and t ∈ N be a sink node. Then, the maximum flow problem
can be stated as

max v∑
j:(i,j)∈E xi,j −

∑
j:(j,i)∈E xj,i =


v for i = s
0 for all i ∈ N \ {s, t}
−v for i = t

0 ≤ xi,j ≤ ui,j, ∀(i, j) ∈ E.

(max flow)

The variables x are considered as flow variables and the scalar variable v as the value of the flow.
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2.5 Relation toMarkov Games

A Markov Game (MG) is a stochastic game in an MDP-like environment. Stochastic games were
introduced by Shapley (1953) as a play that is controlled by two players and moves from position to
position according to transition probabilities. Instead of one decision maker, there exists a whole set
of players. At each decision epoch, each player chooses an action from his action set. The transition
probabilities and rewards incorporate the decisions of all players. Definition 2.5.1 presents a general
definition of discrete-time stationary Markov games.

Definition 2.5.1 (Markov Game).
A discrete-time stationary Markov game is a collection of objects(T, S, I, Ais , p(·|s, a1, . . . , ak), ri(s, a1, . . . , ak)

)
with the following meaning:

• T = {1, 2, . . . , N },N ≤ ∞ is the set of decision epochs.

• S is the set of possible system states with a single-decision game defined for each state.

• I is the set of players with |I | = k < ∞.

• Ais is the set of all actions of player i at state s.

• p(·|s, a1, . . . , ak) is the transition probability function depending on the current state and the
players’ choices of actions.

• ri(s, a1, . . . , ak) is the expected reward for player i in state s given the players’ choices of actions
a1, . . . , ak; riN (s) is the terminal reward for player i when the process ends in state s at decision
epochN .

AnMG gets complex by the potentially different optimality criteria of the players. Assume that
each player tries to maximize his expected sum of total rewards. Let πi be the policy of player i. In the
context of MGs, let π be the tuple of all player-policies, i.e., π = ×i=1,...,kπi. Then,

vi,πN (s) = Eπs
{N−1∑
t=1
ri(Xt , Y1t , . . . , Ykt) + riN (XN )

}
is the value function of player i. The random process {Xt , Y1t , . . . , Ykt}t∈T is a Markov chain if the
used policies are Markov policies.

Policies that are simultaneous best responses are in the focus of interest. Definition 2.5.2 characterizes
aNash Equilibrium in anMGwith k players. The notationπ = (πi, π−i) is used to distinguish between
the policy πi of player i and the policy π−i of all other players.
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Definition 2.5.2 (Nash Equilibrium).
A tuple of strategies π∗ = (π1∗, . . . , πk∗) is a Nash equilibrium if

πi∗ ∈ arg max
πi∈Πi

vi,(πi ,π−i)N (s) (2.17)

for all players i ∈ I and all states s ∈ S.

Depending on the current state of the system, there exist different reward streams and transition
functions for each player. If we assume that there exists only one state in the MG, so |S | = 1, we get
a simultaneous move game (Anderson et al., 2007, p. 9) which is played at every decision epoch. In
a setting with a finite number of states and actions, a simultaneous move game can be specified by
explicitly listing all possible strategies and value functions of all players in a matrix. Furthermore, Nash
(1951) proved that a simultaneous move game with a finite set of players and a finite set of actions has a
Nash equilibrium of randomized policies.

The problem of finding a Nash equilibrium is PPAD-complete even for two-player games in
standard form (Anderson et al., 2007, p. 16). PPADmeans Polynomial Parity Arguments on Directed
graphs and was introduced by Papadimitriou (1994). PPAD is a subclass of NP. NP-completeness is an
inappropriate tool for the problem of finding a Nash-equilibrium since Nash equilibria always exist.

In the following, we focus on the simultaneous move game that occurs in a single decision epoch of
anMG. For a given state, the simultaneous move game can be represented in normal form by a pay-off
matrix. A two-person zero-sum game is a special two-person simultaneous move game, where the win
of one player is the loss of the other player. Since the rewards of one player may be negative whereas the
reward of an other player may be positive, we will use the term payoff instead of reward or costs in this
context. So, the sum of the payoffs in a two-person zero-sum game is zero for any choices of strategies.

Definition 2.5.3 (Two-Person Zero-SumGame).
LetM ∈ Rmi×mj be the payoff matrix. The strategies of player i correspond to the rows ofM and the
strategies of player j to the columns ofM . An entryMij specifies the amount that the column player
j must pay to the row player i.

Since in a simultaneous move game the state is fixed, we can write a policy π of player i as a vector
of Rm where the j-th entry is the probability that player i chooses action i. When using strategies πi
and πj , the expected payoff paid by the column player to the row player is

πiTMπj .

Von Neumann (1928) showed that for two-person zero-sum games the value v∗ of the game equals

v∗ = max
πi∈Πi

min
πj ∈Πj

πiTMπj = min
πj ∈Πj

max
πi∈Πi

πiTMπj .

If policy πi of the row player is known, then (πiTM )πj is a linear function in πj . An optimal
strategy of the column player is to select the column with the minimum entry of πiTM . Loomi’s
Lemma (Borodin and El-Yaniv, 2005, p.113, Lemma 8.2) establishes that observation.
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Lemma 2.5.4 (Loomi’s Lemma (Borodin and El-Yaniv, 2005)):
Let

vr = max
πi∈Πi

min
j
πiTMej and vc = min

πj ∈Πj
max
i
eTi Mπj .

Then
vr = vc = v∗.

Proof. Only the proof for vr is presented. The proof for vc can be done analogously. By definition
of vr , we get vr ≥ v∗:

vr = max
πi∈Πi

min
j
πiTMej ≥ max

πi∈Πi
min
πj ∈Πj

πiTMπj = v∗.

Letπi∗ andπj∗ be the optimal strategies of both players such that v∗ = πi∗TMπj∗ and such thatNash
equilibrium strategies exist (Nash, 1951). Assume vr > v∗, then πi∗TMej > v∗ for all j and we could
have

v∗ =
mj∑
k=1

(
πi∗TMej

)
πj∗ >

mj∑
k=1

v∗πj∗ = v∗

which is a contradiction, hence vr = v∗. �

Loomi’s Lemma makes it possible to compute the value of a two-person zero-sum game by a linear
program, see 2.18 and 2.19. Observe, that without Loomi’s Lemma, we would have had to concern
infinitely many constraints to assure that v in 2.18 is smaller than all randomized strategies of the column
player respectively that v in 2.19 is larger than all randomized strategies of the row player.

vr = max v
(πiTM )ℓ ≥ v, ∀ℓ ∈ {1, . . . , mj}∑mi

k=1 πik = 1
πi ≥ 0

(2.18)

vc = min v
(Mπj)k ≤ v, ∀k ∈ {1, . . . , mi}∑mj
ℓ=1 π

j
ℓ = 1
πj ≥ 0

(2.19)

The linear program 2.18 can also be found in (Anderson et al., 2007) and is exactly the dual of 2.19.
From duality theory of linear programs, we know that both programs have an optimal solution with
the same optimal value if and only if there exists a feasible solution for each program. It can be seen that
both linear programs are feasible (just choose an arbitrary deterministic policy and v as the minimal
respectively maximum entry ofM ). So, the existence of mixed Nash-equilibrium strategies also follows
from linear programming duality theory.

Indeed an equivalence between linear programming and two-person zero-sum games was shown
in Dantzig (1951) and Adler (2010). Adler completed the reduction of linear programs to two-person
zero-sum games for the case that was left open by Dantzig.
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Now, we go back from simultaneous move games to Markov games. Littman (1994) defines a
specialization of MGs, called two-player zero-sum Markov game. It is a combination of a two-player
Markov game with a zero-sum game in that sense that at each state s ∈ S a zero-sum game occurs. Sport-
Strategy-Optimization Markov games, defined in Subsection 3.8.2, are special two-player zero-sum
Markov games.
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Chapter 3

MDPs for Sport-Strategy Optimization

3.1 Introduction toMDPs in Sports Games

This section summarizes publications that handle sport-related questions byMarkov processes. Since
Markov chains, Markov decision processes andMarkov games are closely related, approaches that use
any of these frameworks are of interest. The underlying structure of all three frameworks is a stochastic
process that satisfies the Markov property. The Markov property states that the next state may only
depend on the current state and the chosen action, and not on the complete history of realized states.

The advantage of modeling a sports game by a stochastic process is that the evolution of the system
is traceable. In contrast, a descriptive statistical analysis might determine factors that are correlated
to a particular outcome. But, how these factors are influenceable may not be clear. An exaggerated
example that illustrates this point: Assume, you are searching for a strategic improvement for your team
in soccer. You may find by a statistical analysis that the number of penalty shots for your team is highly
correlated with the number of scored goals. So, your conclusion might be that increasing the number
of penalty shots for your team would be a strategic improvement. But unfortunately, a match starts
with a kick-off, and it is not clear how to increase the number of penalty shots when starting from a
kick-off. Of course, this example is not realistic, and a reviewer might answer that one could also find
a correlation between an action, e.g., an important passing action, and the number of scored goals.
Clearly, this action is influenceable by the players. However, if you observe at the match-day a different
line-up of your opponent, you may be insecure whether the identified passing action is still valuable.
You are not sure what mechanisms influenced your statistical results. The new line-up might have no
effect up to a significant leverage effect on the value of the passing. With a dynamic model like a Markov
process that accurately captures the game mechanisms, it is possible to analyze different circumstances
(like a different line-up, varying day performances, etc.) with the same model.

In this thesis, a sport-strategic question is modeled from the view of a player or a team participating
in a specified match. There are only a fewMarkov approaches that tackle strategic questions that are
related to a team or a player and can be evaluated prior to a particular match. Often there is not enough
data to create a model tailored to the teams participating in an upcoming game. In most of the cases
where a Markov process models a sports-related question, it is an investigation of a general rule or
principle.

In the following, an overview over literature that uses Markov processes to model a sport-related
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issue is presented. The literature is sorted according towhether aMarkov chain (MC), aMarkov decision
process (MDP) or aMarkov game (MG) is employed. First, a summary of publications that use aMarkov
chain (MC) to model a sports game is provided. Since there are some works that employ a Markov
chain, only works that consider volleyball or beach volleyball are presented in detail.

Florence et al. (2008) model the sequence of events occurring during a ball possession phase in
women’s volleyball as an MC. The data is recorded for the entire 2006 home volleyball season of
the Brigham Young University Women’s Volleyball Team. For each skill (pass, set, attack, etc.) the
probability of an outcome (point for Brigham, point for the opponent, continuation of the rally) is
evaluated by calculating the unconditional probability for that outcome from the transition probability
matrix. The distribution for each unconditional probability is calculated using Gibbs sampling and
determines the variability of the unconditional probability point estimates. The implications from
that investigation are general recommendations for Brigham Young University Women’s Volleyball
Team like: “If the high and inside delivery can be avoided the attack has a good probability of being
successful.” (Florence et al., 2008, p. 14)

Similar Miskin, Fellingham, and Florence (2010) investigate skill importance in women’s volleyball.
The authors model play sequences as discrete absorbing MCs by using a Bayesian approach to estimate
the transition probabilities from the data gathered. The data was collected during the 2006 competitive
season of a single women’s Division I volleyball team of the National Collegiate Athletic Association in
the United States. The 36 states consolidated in this analysis are moves that consist of a skill and a rating
combination, e.g., a set is rated according to its distance from the net. The importance score of a skill is
a metric that incorporates its impact on the desired outcome and its uncertainty. It is computed by the
posterior distribution associated with the skill.

Ferrante and Fonseca (2014) use anMC approach for volleyball to compute an explicit formula for
the serving team’s winning probability in a set. Besides this, the mean duration of a set is computed
regarding the expected number of rallies. The authors assume that the probability of winning a single
rally is independent of the other rallies and constant during the game. The states in their model
correspond to different scores that may occur in a set together with an indicator which team serves next.
The winning probability is computed concerning two parameters which represent the likelihood of
winning a rally depending on the serving team. MC properties and combinatorial arguments are used
to derive the explicit formula for the winning probability.

Besides volleyball, there are other works using MC-approaches in different sports like, e.g., Newton
and Aslam (2009) in tennis, Heiner, Fellingham, and Thomas (2014) and Liu and Hohmann (2013) in
soccer, Pfeiffer, Zhang, andHohmann (2010) in elite table tennis, Bukiet, Harold, and Palacios (1997) in
baseball, Shirley (2007) and Štrumbelj and Vračar (2012) in basketball, andMcGarry and Franks (1994)
in squash.

Next, works are presented that employ Markov decision processes (MDPs) for tackling a sports-
related issue. The literature is sorted by the sport studied:

Tennis:
Clarke and Norman (2012) as well as Nadimpalli and Hasenbein (2013) investigate anMDP for tennis
games to determine when a player should challenge a line call. The latter one is the more detailed model.
It is described briefly in the following: A decision point occurs when an opportunity to challenge
the umpire arises. The states include the outcome of the point, the score, the number of challenges
remaining, the probability that the call is incorrect, and the result of a successful challenge. There are
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two possible actions in each state: challenge and do not challenge. Further parameters of the model
are the relative strength of the players and the fallibility of the officials. These parameters are used to
generate the transition probabilities for themodel. They use the standard linear programming approach
for multi-chain, average cost MDPs to obtain optimal policies under a variety of parameter settings.

Chan and Singal (2016) use anMDP to compute an optimization-based handicap system for tennis.
The weaker player gets ’free points’ at the start of the match, such that the match-win probability of
both players is equalized. The input of themodel is the point-win probability of each player. A standard
policy iteration solves the model. The resulting optimal policy specifies at which point the weaker player
should use a free point.

Norman (1985) builds an aggregatedMDP for tennis games to tackle the question when to serve
fast or when to serve slow at each stage of a game. The model is solved analytically using a monotonicity
property of the optimal cost function and dynamic programming. The optimal strategy specifies,
depending on the point-winning probability for fast and slows serves, which kind of service should be
used throughout the match.

Terroba et al. (2013) develop a more detailed MDP-based framework for tennis matches. The
information needed to build the model is semi-automatically gathered from broadcast sports videos.
Machine learning algorithms are executed to identify optimal policies due to the large state space (≈ 105

state-action pairs). A Monte Carlo tree search algorithm is applied to estimate the value function.
Famous tennis matches of the past are investigated in experiments (the 2010 Australian OpenWomen’s
Semi Final between Na Li and SerenaWilliams as well as the 2009 French Open fourth Round match
between Rafael Nadal and Robin Söderling). The results of the Monte Carlo tree search algorithm are
state-action pairs with a high estimated value function. They present how the player who has lost in
reality could have won the match with identical skills, just by using a different policy.

Soccer:
Hirotsu andWright model soccer as a four-state Markov Process. They make general tactical considera-
tion as in some cases “[...] the players do not have time to pause and consider rationally what exactly
to do next. This means that tactical considerations are most valuable when they can be expressed in
terms of general principles, for the benefit of coaches as much as players.” (Wright and Hirotsu, 2003,
p. 1). Their tactical considerations concern the optimal timing of a substitution (Hirotsu andWright,
2002), the best strategy for changing the configuration of a team (Hirotsu andWright, 2003b), and to
determine under which circumstances a teammay benefit from a professional foul (Wright andHirotsu,
2003).

Cricket:
Clarke and Norman (1998) formulate anMDP for cricket to determine whether the batsman should
take an offered run when maximizing the probability that the better batsman is on strike at the start of
the next over. The model is solved analytically by dynamic programming. The optimal policy takes
the run or not depending on the relation between the scoring probabilities of the good and the bad
batsman. A similar analysis with a different objective is done in Clarke and Norman (1999).

Baseball:
Hirotsu andWright (2003a) formulate aMarkovmodel for baseball to calculate an optimal pinch-hitting
strategy under the ’Designated Hitter Rule’. Their method can be applied to a specific match by using
the probability of each player to achieve a single, double, triple, home run, walk or out.

Most of the presented models (all except the detailed model of Terroba et al. (2013)) require as an
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input a point-winning probability or scoring probability. These aggregated transition probabilities
include the opponent’s skills and strategy. Therefore, it may be hard to apply thosemodels to a particular
match for instance if the teams have not recently played against each other. In contrast, the largermodels
(like the model of Terroba et al. (2013)) which require only transition probabilities that capture smaller
events are not solvable by classical algorithms for MDPs. Instead, some local search or approximation
algorithm is used to identify valuable actions.

To the best of our knowledge, there exist only a few publications that model a sport-strategic
question by a Markov game (MG). This may be the case because determining a Nash-Equilibrium is in
general PPAD-complete (Anderson et al., 2007).

However, baseball is a special case. The sequential and discrete nature of the sports makes it possible
to use dynamic programming for determining a Nash-equilibrium. For instance, Kira et al. (2015)
formulate anMG for baseball and compute Markov perfect equilibria. The transition probabilities of
the MG are assumed to depend only on the probability parameters for the hitting skills of the players.
They use a dynamic programming algorithm for solving the Bellman equations that characterize the
value function of the game for both teams. This approach is possible since the actions are chosen
sequentially and not simultaneously.

Again, the decision question often concerns a general rule or principle, and the input probabilities
contain large parts of the game mechanisms. For instance, Turocy (2008) uses MGs fed with a lot of
historical data to clarify whether there has been a “last-up” advantage in baseball on average in the past,
or Anbarci, Sun, and Ünver (2015) try to decide on the fairness of tie-break mechanisms in soccer on the
basis of MGmodels.

Sarkar (2018) is another author who examines a general principle. He tries to find evidence for the
inverse relation between crosses and goals in soccer. A simultaneous move game with two defending
strategies (high defensive line, low defense line) and two attacking strategies (cross, short through pass)
is constructed. The payoffs are winning probabilities multiplied with the magnitude of gain respectively
loss. The winning probabilities are calculated from very rough probabilities like the probability of
breaking the offside trap or the goalkeeper’s save rate. A mixed Nash equilibrium is calculated that
suggest that teams with a greater chance of scoring from crosses use the crosses less frequently. The
reason for it is that the defending team uses an offside trap more regularly for better teams.

Routley and Schulte (2015) employMGs to rank ice-hockey players according to their skills. An
upgradedMG of (Schulte et al., 2017) also includes location information.

Walker, Wooders, and Amir (2011) use binary Markov games to model sports games like tennis.
They show that under specific monotonicity properties optimal policies to win the match are a repeated
application of an optimal policy to win a rally. This finding fits to the analytical result found for the
rougher SSO-MDP presented in the next chapter.

From the described literature, it can be seen that there exist some works that consider a Markov
process as a basis for modeling a sports game. Regardless of whether anMC, anMDP or anMG is used,
all works face the same conflict: Either a manageable model with rough transitions is built that can be
solved, or a model with more detailed transitions is developed, but those models get so large such that
only an approximate solution can be found. The small, manageable models mostly require transition
probabilities that include events of both teams participating in the match. Those are hard to estimate
for a particular pairing of teams. Therefore, those models are often used to examine general questions
or principles such that an optimal policy depending on the transition probabilities can be computed.
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However, how these probabilities can be estimated for a match, which has not yet taken place, stays
often unclear.

3.2 Definition of Sport-Strategy OptimizationMDPs (SSO-MDPs)

In this section, a general class of MDPs suitable for modeling sports games and answering strategic
questions is specified. Before defining a specialMDP class, it ismotivatedwhyMarkov decision processes
and not Markov games are used to model a sport-strategic question. A formalization of a sport-strategic
question is given in Definition 5.1.1 in Chapter 5. For the moment, a sport-strategic question can be
considered as a question that asks for the best playing strategy in a particular match against a particular
opponent team.

Since this thesis focuses on sports games, which are often team sports, the term “team” will be used
throughout this chapter. However, all considerations are also applicable for sports games where teams
consist only of one player – like e.g. tennis. Furthermore, in a sport-related context, the term “strategy”
is used if formally a decision rule of a stationary policy is meant.

The solution of a Markov game (MG) is a Nash equilibrium, which consists of simultaneous best
strategies of both teams. This means, the optimal strategy of a team in anMG is the best response to a
strategically perfect playing opponent. In sports games, the participants of a match behave according to
practiced playing patterns and try to perform best when sticking to their strategic plan. By “performing
best”it is meant that each player tries to carry out an action as best as possible in a given situation. For
example in soccer, a pass that is part of a playing sequence and can be performed more or less precisely.
Of course, each player tries to pass as accurately as possible. But, no player would suddenly deviate
from the playing pattern and pass to another player if that is totally unpredictable for his teammates.
Especially in team sports, where a coordination between the players is necessary, a player would rather
stick to the playing pattern instead of doing an action that might be optimal but unpredictable for his
teammates.

Also in anMDP, it is possible to model an opponent team completely analogous to the team whose
strategy should be optimized. But instead of solving a minimax problem, the opponent plays a fixed
strategy. By fixing the opponent’s strategy, the opponent team becomes a part of the environment and
can be captured in the transition probabilities. But still, it is possible to analyze optimal strategies against
different opponent strategies. Solving several MDPs with respect to different opponent strategies leads
to a Markov game with a discrete set of strategies.

In all sports games, the objective of each team is to win the match. Winning or losing a match is
determined by the rules of the respective sports game. Some sports games are won if a certain condition
of the score is met, other sports games have a fixed time period after which the winner of the match
is determined. In most leagues or tournaments it is only of second interest whether the match is won
by a large lead or not. In first case, it matters whether the match is won, lost or, if possible, a draw
occurred. This fact leads to the idea of modeling a sports game by anMDP with absorbing states which
correspond to states at which the match has terminated. And furthermore, to use a reward function
that returns a reward of 1 for a transition to a winning state while all other transitions are 0-reward
transition. Together with the expected total reward criterion (Definition 2.1.4), the objective in such an
MDP is equivalent to maximize the probability of winning the match, which will be formally shown in
Subsection 3.4.
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By modeling a losing state as an absorbing state and maximizing the probability of reaching a
winning state, the losing states can be viewed as dead ends that can not be compensated and must be
avoided in any case. This modeling decision can be justified from a sporting perspective: For example,
in tournaments, e.g., in a quarterfinal of a world championship, a loss of the match and therefore an
“out” of the tournament cannot be compensated. Also in a regular season, losing several matches, but
having, e.g., the best passing performance, can not balance out the lost points in the league table at
the end of the season. This reasoning suggests that it is not appropriate to model a losing state with
some finite penalty that could be compensated by some “well performed” actions that may have a small
positive reward. Instead, as described in the last paragraph, losing states should be modeled as dead ends
that must be avoided in any case. This is modeled by the objective that maximizes the probability of
ending in a winning state.

Since the strategy of a teamwhich is participating in thematch should be optimized, the decisions in
the MDP will correspond in some way to action choices of the team. Without specifying the definition
of a team action further, one can easily think of sports games where the number of team actions – and
therefore the number of decision points – is not known a priori the match. For example, in beach
volleyball a team action could be modeled as a field attack of a team. The number of field attacks a
team performs in a rally or a set is not known and differs between matches. AnMDPwith absorbing
states is an adequate tool to model an indefinite-horizonMDP. As the system reaches a goal state, no
further rewards or costs are accumulated. Furthermore, it is not predetermined after howmany steps
the system reaches an absorbing state.

In a sports game, the set of possible starting states of a match or set is known. For example, in soccer,
a match starts with a kick-off; or in tennis a match starts with a serve. Even if only a set of possible
starting states is known, an artificial starting state can be introduced that has transitions to all possible
starting states. The transition probability from the artificial starting state to each possible starting
state may equal a meaningful distribution of the initial state. Therefore, it is no restriction to assume
a single starting state s1 for SSO-MDPs. The knowledge of a starting state is crucial when applying
heuristic methods. Some states may become irrelevant when starting from a certain initial state and an
investigation of the entire state space may be avoidable.

Finally, a crucial assumption that characterizes sports games is made: In a sports game, there will
always exist a maybe small but strictly positive probability that the match is lost even if the team is
dominating the opponent team and plays the strategical optimal strategy. As a support of this hypothesis,
OddsShark presents statistics about the win percentage of underdogs. These are especially in the Major
League Baseball and the National Hockey League very high (above 40%). Furthermore, the property
that no team can win for sure is a fact that may explain why sports games are so popular. Even if your
preferred team is the complete outsider in a match, there exists a, maybe little but positive, chance that
your team will win the match.

LetXt be a random variable that captures the state of the process at time t. Furthermore, let L be
the set of losing states andW be the set of winning states. The described assumption can be formalized
as follows:
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Assumption 3.2.1 (No policy guarantees winning):
For all states s ∈ S \ (L ∪W ) and every policy π ∈ Π, there exists a strictly positive probability of
losing the game, i.e.,

PπL(s) :=
∞∑
t=1
Pπ {Xt ∈ L, Xt′ < L ∪W, ∀t ′ < t, X1 = s} > 0.

Finally, all properties of a sport-strategy-optimization-MDP (SSO-MDP) described above are
summed up in the following definition:

Definition 3.2.2 (Sport-Strategy-Optimization-MDP).
A sport-strategy-optimization-MDP (SSO-MDP) is a tuple(S,A, p(·|s, a), r(s, a),W, L, s1)
that satisfies Assumption 3.2.1 and where

• S is a finite set of n states.

• A is a finite set ofm actions withAs , ∅ ∀s ∈ S.
• p(·|s, a) is a stationary transition probability function which satisfies

p(s|s, a) = 1 ∀s ∈ W ∪ L, ∀a ∈ As.

• r(s, a) is a stationary expected reward function which satisfies

r(s, a, s′) =
{

1, ∀s ∈ S \ (W ∪ L), s′ ∈ W, a ∈ As
0, else.

• W ⊂ S is a non-empty set of winning states.
• L ⊂ S is a non-empty set of losing states which satisfy L ∩W = ∅.
• s1 ⊂ S is a known starting state.

Since an SSO-MDP has by definition only finitely many states, it can be concluded from Assump-
tion 3.2.1 that already after nmany steps there must occur a positive probability for a transition to a
losing state:

n∑
t=1
Pπ {Xt ∈ L, Xt′ < L ∪W, ∀t ′ < t, X1 = s} > 0, ∀s ∈ S \ (L ∪W ), ∀π ∈ Π.
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Figure 3.1: SSO-MDP Example

Figure 3.1 illustrates a graphical representation of an SSO-MDP example. A formal definition of a
graph associated with an SSO-MDP is given in Subsection 3.6. In the graphical representation of an
SSO-MDP, each action must have a unique predecessor state. Therefore, for general non-unique action
setsA an augmented action setA′ consisting of state-action pairs is defined in the following way:

A′ ⊆ S ×A,
A′s := {(s, a) | a ∈ As}.

In the augmented action set, the state is included in the action. Thereby, an action a ∈ A, which
may be available in more than one state, becomes unique in A′. It is possible to evaluate A′−1 by
A′−1(a′) = A′−1(s, a) = s.

As described in the legend of Figure 3.1, the available actions in a state are connected to the state via
a solid line. From each action, the outgoing dashed lines mark the possible transitions together with the
transition probabilities and the rewards. The special states w ∈ W and l ∈ L have a special look which
indicates that they are absorbing states.

For verifying that the MDP presented in Figure 3.1 is an SSO-MDP besides the requirements on
the absorbing states and the reward function, Assumption 3.2.1 has to be checked. Due to the small
problem size, it can be seen that from each action there exists a path to the losing state l state where all
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transition probabilities are greater zero. So, it can be concluded that starting from all s ∈ S and using
any policy π ∈ Π the probability of losing the game is greater zero.

The reader may ask how hard or easy it will be to check Assumption 3.2.1 for larger SSO-MDPs,
where the structure of the problem can not be presented on half a page. As it will be seen later, when
investigating concrete SSO-MDPs for sports games, the actions in an SSO-MDP will correspond in
some degree of granularity to team actions. And at this point, it becomes important that the model
captures a sports game. An action in a sports game is a physical effort which has always an opportunity
to fail. The reader may remember, e.g., soccer scenes where the goalkeeper fails to control a shot that
was targeted on him with a normal speed. Although those events happen only very rarely, even the best
goalkeepers make such big mistakes, e.g., Karius in the Champions League final of 2018.

3.3 Classification

This sections classifies SSO-MDPs, see Definition 3.2.2, according to the SSPMDP classes presented in
Subsection 2.3.1. The definition of an SSO-MDPdoes not explicitly specify a set of goal statesG. It is not
goal oriented like MDP classes directly derived from SSPMDPs. However, two sets of absorbing states,
which are called winning statesW and losing states L, are defined. In the following, different choices of
G for SSO-MDPs are considered together with the implications that follow from these choices.

But first, it is shown that an SSO-MDP belongs to the class of POSBMDPs which is also a non-goal
oriented class.

Theorem 3.3.1:
SSO-MDP ⊂ POSBMDP

Proof. To show that every SSO-MDP is a POSBMDP, the two conditions of a POSBMDP, which
are vπ+(s) < ∞ for all s ∈ S and π ∈ Π and for each s ∈ S there exists at least one a ∈ As with r(s, a) ≥ 0,
have to be verified.

Since a strictly positive reward occurs only from a transition to an absorbing winning statew, each
process can only accumulate once a strictly positive reward. Therefore, the sum of positive rewards
vπ+(s) is finite for all states s and all policies π.

In an SSO-MDP, there exist only non-negative rewards and each state s contains at least one action.
So, the second assumption of a POSBMDP is satisfied for each state s ∈ S. �

In Subsection 2.3.1, a proof of Kolobov, Mausam, andWeld is cited. They show that every POSB
MDP can be converted into a GSSPMDP with identical optimal policies. In the stated conversion, all
strongly connected components without outgoing edges and whose internal edges correspond only
to 0-reward actions are considered as goal states of the resulting GSSPMDP. Of course, this kind of
conversion is also possible for SSO-MDPs. However, the set of goal states should be specified explicitly
like in the definition of an SSPMDP.

By settingG :=W , a MAXPROBMDP is received from the SSO-MDP. But, an SSO-MDP with
goal states defined like this will not be a GSSP MDP. From an intuitive view, this can be justified as
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follows: A proper policy is a policy that reaches with probability 1 a goal state which would be in this
setting a winning state of the sports game. This is a contradiction to Assumption 3.2.1 which states that
for each policy in each state the probability of losing the game is strictly greater than zero.

Observation 3.3.2:
Assume an SSO-MDP and define G :=W . Then an SSO-MDP with the defined set of goal states is a
MAXPROB MDP but no GSSP MDP.

Proof. AnSSO-MDPwithG :=W satisfies thedefinitionof aMAXPROBMDP(Definition 2.3.13):
The reward function fulfills the requirement of aMAXPROBMDPthat every transition to a goal state
yields a reward of 1 while all other transitions are 0-reward transitions.

Assume an SSO-MDP is a GSSP. Then there would exist a proper policy in s1, i.e., a stationary
policy d that satisfies

Pd
∞ {Xn < G | X1 = s} < 1, ∀s ∈ S reachable from s1,

where n is the number of states reachable from s1. By Assumption 3.2.1 of an SSO-MDP, a losing state
l ∈ L is reachable from s1 under each decision rule d. However, as l is an absorbing state

Pd
∞ {Xn < G | X1 = l}

= Pd
∞ {Xn <W | X1 = l}

≥ Pd
∞ {Xn ∈ L | X1 = l}

= 1,

which is a contradiction.
So, in SSO-MDPs there can not exist a proper policy starting in s1. SSO-MDPs withG :=W can

not be GSSPMDPs. �

In the following, an SSO-MDP is considered as an SSP MDP with goal states G := W ∪ L. By
using this definition for the set of goal states and the reward function, the SSO-MDP does not fulfill
the requirements of a MAXPROBMDP:

Observation 3.3.3:
Let G :=W ∪ L. Then, SSO-MDP * MAXPROBMDP.

Proof. AMAXPROBMDP requires that each transition to a goal states gives a reward of 1. When
considering the losing states and winning states as goal states, this requirement is not satisfied. A tran-
sition to a losing state only gives a reward of 0. �

However, an SSO-MDP withG :=W ∪ L is a GSSPMDP:

Theorem 3.3.4:
Let G :=W ∪ L. Then, SSO-MDP ⊂ GSSPMDP.
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Proof. To show that an SSO-MDP with G := W ∪ L is a GSSP MDP, two conditions have to be
verified: There must exist a proper policy rooted at s1 and the sum of non-negative rewards of any
policy is finite in every state s reachable from s1. The second condition is clearly fulfilled since it was
already shown in Theorem 3.3.1 that an SSO-MDP is a POSBMDP.

Forproving the existenceof aproperpolicy, it is used that eachSSO-MDPsatisfiesAssumption 3.2.1:

PπL(s) > 0 ∀s ∈ S \ (L ∪W ), ∀π ∈ Π
where PπL(s) is defined as

∞∑
t=1
Pπ {Xt ∈ L, Xt′ < L ∪W, ∀t ′ < t, X1 = s} .

Since we face anMDPwith |S | = n and stationary data, for every policyπ ∈ Π and every starting state
s ∈ S \ (L ∪W ) there exists a t ≤ nwith

Pπ {Xt ∈ L, Xt′ < L ∪W, ∀t ′ < t, X1 = s} > 0.

All losing states l ∈ L are absorbing state. If the process reaches l at time t ≤ n, it will stay in l. The
probability that after n time steps the process is in state l can be calculated by

Pπ {Xn ∈ L, X1 = s < L ∪W }

=

n∑
t=1
Pπ {Xt ∈ L, Xt′ < L ∪W, ∀t ′ < t, X1 = s}

and is greater zero. So, for every policy π ∈ Π and ever state s ∈ S \ (L ∪W )

0 < Pπ {Xn ∈ L, X1 = s}
= 1 − Pπ {Xn ∈ S \ L, X1 = s}

W∪L⊂S≤ 1 − Pπ {Xn ∈ S \ (L ∪W ) , X1 = s}
G:=W∪L
= 1 − Pπ {Xn < G, X1 = s} .

The last equation can be reformulated as

∀π ∈ Π, ∀s ∈ S \ G : Pπ {Xn < G, X1 = s} < 1

which proves that every policy π ∈ Π from every starting stateX1 = s is proper. �

Theorem 3.3.5:
Let G :=W ∪ L. Then, SSO-MDP ⊂ Bertsekas-SSPMDP
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Figure 3.2: MDP classes hierarchy SSO-MDPs included

Proof. Wehave shown in the proof ofTheorem 3.3.4 that there exists a proper policy for each starting
state s ∈ S. So the first assumption of Bertsekas-SSPMDPs is satisfied.

Since in the proof of Theorem 3.3.4 it is shown that all policies in an SSO-MDP are proper, the
second condition of Bertsekas-SSPMDPs, which is every improper policy must incur a reward of −∞,
does not concern any policy. �

Summing all results up, we get that every SSO-MDP is a POSBMDP. By setting the set of goal
states toW ∪L an SSO-MDP is also a Bertsekas-SSPMDPwith the property that every policy is proper.
In Figure 3.2, SSO-MDPs are included in the diagram of SSP classes considered in this thesis.

3.4 Theoretical Analysis

This section analyses the structure of SSO-MDPs and the properties that can be concluded from it.
Those properties are of importance when an SSO-MDP is solved for analyzing a sports-related issue.
This section starts with a formal proof that the objective value of a policy equals the winning probability.
It goes on with convergence statements regarding policy iteration and value iteration. Finally, it is shown
that the dynamic programming operator applied to SSO-MDPs is a contraction mapping. An explicit
formula of the contraction factor and its interpretation in the context of SSO-MDPs is given.

Due to the special structure of the reward function in an SSO-MDP, the expected total reward of a
policy π equals the probability that the system reaches a winning state.
Proposition 3.4.1 (Objective Function of an SSO-MDP):
Assume an SSO-MDP starting in a state s ∈ S \ {W ∪ L} and a policy π, then

vπ(s) =
∞∑
t=2
Pπ{Xt−1 <W, Xt ∈ W | X1 = s}.
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Proof. The expected value of the reward process concerning policy π is defined as

vπ(s)

= Eπs

{ ∞∑
t=1
r(Xt , Yt)

}
=

∑
(s1,a1,s2,...)∈(S×A)∞

( ∞∑
t=1
r(st , at , st+1)

)
Pπ{X1 = s1, Y1 = a1, X2 = s2, . . . | X1 = s},

where Pπ is the probability for the sample path (s1, a1, s2, . . .) ∈ (S ×A)∞ under policyπ. An investi-
gation of Pπ can be found in Subsection 2.1.1.

Consider a sample path (s1, a1, s2, . . .) ∈ (S × A)∞. If there exists a point in time at which the
realization occupies a winning state, the reward of the transition to the winning state is 1. If no such
point in time exists, the sum over all rewards is 0. So, the last sum simplifies to:∑

(s1,a1,s2,...)∈(S×A)∞
with ∃t∈N : st ∈W

( ∞∑
t=1
r(st , at , st+1)

)
· Pπ{X1 = s1, Y1 = a1, X2 = s2, . . . | X1 = s}

Once awinning state has been entered, the randomprocess stays in the winning state due to its absorb-
ing property. Therefore, any realization that enters a winning states does it only once and generates a
reward of 1. All sample paths that enter at time t the first time a winning state can be summed up,
which is

∞∑
t=1

∑
(s1,a1,s2,...)∈(S×A)∞
with st−1<W, st ∈W

1 · Pπ{X1 = s1, Y1 = a1, X2 = s2, . . . , Xt = st | X1 = s}.

Since the starting state s is assumed not to be inW , the sample path starts with s and cannot be in
a winning state at time t = 1. Therefore, the last sum equals

∞∑
t=2

∑
(s,a1,s2,...)∈(S×A)∞
with st−1<W,st ∈W

Pπ{X1 = s, Y1 = a1, X2 = s2, . . . , Xt = st}

Hence, the expected total reward from using policyπ equals the probability that underπ the random
process enters at some point in time a winning state given that the process has started in state s ∈
S \ {W ∪ L} which can also be written as

∞∑
t=2
Pπ{ω = (s, a1, s2, . . .) ∈ (S ×A)∞ : Xt−1(ω) <W,Xt(ω) ∈ W }

=

∞∑
t=2
Pπ{Xt−1 <W, Xt ∈ W | X1 = s}. �



84 CHAPTER 3. MDPS FOR SPORT-STRATEGY OPTIMIZATION

For Bertsekas-SSP MDPs, it is known that the optimality equations have a unique fixed point.
This is outlined in Subsection 2.3.4 and based on the result of Bertsekas, 2001, Prop. 2.1.2. In the last
subsection, we have seen that SSO-MDPs withG := L ∪W are special Bertsekas-SSPMDPs. So, this
result also follows for SSO-MDPs.

Theorem 3.4.2:
The optimality equations for SSO-MDPs have a unique fixed point.

Proof. SSO-MDPs are special Bertsekas-SSPMDPs, see Theorem 3.3.5, and optimality equations for
Bertsekas-SSPMDPs have a unique fixed point (Bertsekas, 2001, Prop. 2.1.2). �

Since the value of anMDP under the total expected reward criterion satisfies the optimality equa-
tions (Theorem 2.3.24), it can be followed from Theorem 3.4.2 that value iteration converges to an
ε -approximation of the value of the SSO-MDP for every value function v ∈ V . Remember that this
does not hold for general MDPs under the total expected reward criterion.

Corollary 3.4.3 (Value Iteration converges for SSO-MDPs):
For SSO-MDPs, value iteration converges to an ε -approximation of the value of the SSO-MDP for every
value function v ∈ V .

For Bertsekas-SSPMDPs policy iteration generates in each step a strictly better policy (Bertsekas,
2001, Sec. 2.2). So again, this also holds for SSO-MDPs, and it can be derived that the policy iteration
algorithm terminates after finitely many steps at an optimal policy.

Corollary 3.4.4 (Policy Iteration converges for SSO-MDPs):
For SSO-MDPs, policy iteration converges after finitely many iterations to an optimal policy.

In SSO-MDPs there is not only a proper policy for every start state. Even every policy is proper.
This was already shown in the proof of Theorem 3.3.4 in the last subsection.

Theorem 3.4.5:
Every policy π in an SSO-MDP is proper.

Proof. In proof of Theorem 3.3.4, we have already shown that all policies are proper policies in an
SSO-MDP. �

For MDPs under the total expected reward criterion for which all policies are proper policies, it can
be shown that the dynamic programming operator is a contraction mapping.
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Theorem 3.4.6 (Dynamic Programming Operator is contraction [Bertsekas (2001), p. 94):
In SSO-MDPs, the dynamic programming operator is a contraction mapping. This means, there
exists positive constants ωi for all i ∈ S and a constant γ ∈ [0, 1) such that

| |Bv − Bu| |ω ≤ γ | |v − u| |ω

for all value functions v, u ∈ Rn.

In this notation, | | · | |ω is the L∞-norm where each vector is scaled by ω. This means,

| |u| |ω := max
i=1,...,n

|ui · ω−1
i |.

Thus, the inequality of Theorem 3.4.6 can be written as

max
i=1,...,n

1
ωi
|(Bv)i − (Bu)i | ≤ max

i=1,...,n
γ · 1
ωi
· |vi − ui |.

Tseng gives in Tseng (1990) a proof of Theorem 3.4.6 and specifies, in contrast to (Bertsekas, 2001), the
contraction factor γ. In the following some steps of the proof of Tseng, 1990, Lemma 3 are reviewed to
gain insights into the contraction factor of SSO-MDPs:

In SSPMDPs, where only proper policies exist, all states except the goal statesG can be partitioned
into non-empty subsets S1, . . . , Sr such that for any s ∈ {1, . . . , r}, i ∈ Ss and a ∈ Ai, there exists some
j′ ∈ G ∪ S1 ∪ . . . ∪ Ss−1 such that p(j′ |i, a) > 0. Then, Tseng defines the weights ω as

ωi := 1 − ν2s, ∀i ∈ Ss, ∀s = 1, . . . , r,

where νj := mina∈Ai ,i∈S{p(j |i, a) | p(j |i, a) > 0}. With this weights the contraction factor γ is

γ = 1 − ν2r−1

1 − ν2r .

So, the contraction factor depends on the number of state subsets r and the minimal smallest transition
probability ν specified in the model.

In the following, it is outlined how this result can be interpreted in the context of SSO-MDPs. First,
the contraction factor γ is monotone decreasing for ν ∈ (0, 1). This can be seen from the derivative

∂

∂ν

(
1 − ν2r−1

1 − ν2r
)
=
ν2r−2(−ν2r + 2r(ν − 1) + 1)

(1 − ν2r)2 .

For ν ∈ (0, 1), the denominator and the first factor in the numerator are always positive. The second
factor in the numerator it holds

∂

∂ν
(−ν2r + 2r(ν − 1) + 1

)
= 2r

(
1 − ν2r−1

)
︸      ︷︷      ︸

>0

> 0.
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The second factor of the numerator is monotone increasing in ν and from ν ∈ (0, 1) it follows

−ν2r + 2r(ν − 1) + 1 < −12r + 2r(1 − 1) + 1 = −1 + 1 = 0.

So, the derivative is strictly negative for ν ∈ (0, 1).
The smaller the contraction factor γ, the faster is the convergence of the contraction mapping. So,

a large ν is desired for a better convergence rate. In terms of an SSO-MDP, this can be interpreted as
follows: If there exists an action that can be played almost perfectly, the probability of failure will be
minimal. Such an action would lead to a very small ν and a bad contraction factor which would be close
to 1.

As we have seen that SSO-MDPs can be converted to discounted MDPs, a summary over the
worst-case running times of policy iteration and value iteration regarding the number of arithmetic
expressions is presented. It has been shown by Tseng (1990) that for a fixed discount rate value-iteration
converges to the optimal policy in polynomial time. Since policy iteration is at least as fast as value-
iteration (Puterman, 2005, proof of Thm. 6.4.6), this result can be transferred to policy iteration. This
conclusion is made by Littman, Dean, and Kaelbling (1995).

In 2011, Ye proved that

“the classic policy-iteration method [. . . ] and the original simplex method with the most-
negative-reduced-cost pivoting rule of Dantzig are strongly polynomial-time algorithms
for solving the Markov decision problem (MDP) with a fixed discount rate.”(Ye, 2011)

The same pivoting rule of the simplex method on general linear programs was shown to be ex-
ponential by Klee and Minty (1972). So, linear programs resulting fromMDPs must obey a specific
structure such that this result is possible.

3.5 Linear Programming Formulations

Next, a linear programming formulation suited to the special structure of SSO-MDPs is derived. For
this purpose, the input parameters of SSO-MDPs are resumed inmatrix-vector notation. Let n = |S | be
the finite number of states andm = |A | be the finite number of actions of the considered SSO-MDP.
Furthermore, letA′ be the augmented action set consisting of state-action pairs

A′ ⊆ S ×A,
A′s := {a = (s, ã) | ã ∈ As}.

The augmented action set has at most cardinality n · m. Assume in the following, it is exactly n · m.
Let P ∈ R(n×m)×n be the transition matrix, where an entry Pa,s equals the transition probability

under action a ∈ A′ to state s, which is p(s|a). Since state-action pairs are considered, the “from state”
in the transition probability term need not be specified and is included in the action. A second matrix
J ∈ {0, 1}(n×m)×n is used that states which action is available in which state. So, Ja,s = 1 if and only if
action a is available in state s. For unique action sets, like the considered state-action pairs a = (s, ã), the
matrix J has exactly one single 1 per row which is in the column corresponding to state s. It should be
stressed that in this subsection the matrices P and J contain the transitions to the absorbing states and
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the artificial actions at the absorbing states. In the setting of Bertsekas-SSPMDPs in Bertsekas, 2001,
Ch. 2 this is not the case.

Furthermore, a possibly randomized decision rule d can simply be written as a n ×m-dimensional
vector d ∈ [0, 1]n×m instead of a function depending on the state s. The component d(a) is the
probability that action a = (s, ã) ∈ A′ is chosen under decision rule d:

d(a) = d((s, ã)) := qs(ã).

3.5.1 A Primal Linear Programming Formulation

As a starting point for a linear programming formulation, the standard linear programming formulation
for positive bounded infinite horizonMDPs, which was presented in Subsection 2.3.7, is used. It would
also be possible to use the linear programming formulation of Bertsekas-SSPMDPs since SSO-MDPs
belong to this class of MDPs. The linear programming formulation of Bertsekas-SSP MDPs differs
from that of POSBMDPs in the way that it has no non-negativity constraints on the variables v and
the matrices J and P do not contain the artificial actions. However, in this thesis the formulation for
POSBMDPs is used as a starting point to see where the characteristic properties of SSO-MDPs make
a difference. Adapted to the matrix-vector notation of this section, the primal linear programming
formulation for POSBMDPs equals

minωT v
(J − P)v ≥ r

v ≥ 0.
(primal POSB LP)

The primal LP formulation for POSBMDPs has a constraint for each action available in each state
and therefore in the current setting of state-action pairs n · m constraints and n variables. The vector
r ∈ Rn×m is a reward vector containing the expected total reward of performing an action a ∈ A′. It
should be clarified that (J − P)v ≥ r is indeed equivalent to

v(s) −
∑
j∈S
p(j |s, ã)v(j) ≥ r(s, ã) ∀ã ∈ As, ∀s ∈ S,

which are the inequalities of the primal LP from Section 2.3.7. This can be seen as follows:

(J − P)v ≥ r
⇔

∑
j∈S
(J − P)a,jv(j) ≥ r(a), ∀a = (s, ã) ∈ A′

⇔
∑
j∈S

1a∈A′j v(j) −
∑
j∈S
p(j |a)v(j) ≥ r(a), ∀a = (s, ã) ∈ A′

⇔ v(s) −
∑
j∈S
p(j |s, ã)v(j) ≥ r(s, ã), ∀ã ∈ As ∀s ∈ S.

This formulation is now adapted to the specific properties of an SSO-MDP. As the starting state in
SSO-MDPs is known, the objective function minωT v can be replaced by min vs1 .
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Furthermore, all transitions give a reward of 0 except a transition to a winning state, which gives a
reward of 1. For a state-action pair a = (s, ã) in a state s ∈ S \ (W ∪ L), the inequality

v(s) −
∑
j∈S
p(j |a)v(j) ≥ r(a) (3.1)

simplifies to

v(s) −
∑
j∈S
p(j |a)v(j) ≥

∑
j∈W
p(j |a)

⇔ v(s) −
∑
j∈S\W

p(j |a)v(j) −
∑
j∈W
p(j |a) [v(j) + 1

] ≥ 0.

Since all losing and all winning states are absorbing states, there exist only artificial actions ã ∈ As for
s ∈ W ∪ L. With probability 1 these actions return to s while generating a reward of zero. So, for
all artificial actions in the absorbing state, which means for all ã ∈ As with s ∈ W ∪ L inequality 3.1
simplifies to

v(s) − v(s) ≥ 0.
This inequality is always satisfied and constraints belonging to the artificial actions in the absorbing
states could be removed from the linear program. However, in this subsection they are left in the
program such that the matrices J and P need not be formally redefined.

As next, we make a renaming of the variables: Define

ṽ(s) :=

{
v(s) + 1 for s ∈ W
v(s) else.

Then, the linear programming formulation equals

min ṽ(s1)
ṽ(s) −∑

j∈S p(j |s, ã)ṽ(j) ≥ 0, ∀ã ∈ As with s ∈ S \ (W ∪ L)
ṽ(s) − ṽ(s) ≥ 0, ∀ã ∈ As with s ∈ W ∪ L

ṽ(s) = v(s) + 1, ∀s ∈ W
ṽ(s) = v(s), ∀s ∈ S \W
v(s) ≥ 0, ∀s ∈ S.

(3.2)

We notice that in the first inequality set only actions ã ∈ As with s ∈ S \ (W ∪ L) are considered.
So, ṽ(s) for s ∈ W ∪ Lmay only occur in the sum −∑

j∈S p(j |s, ã)ṽ(j) in the first inequality set. Since
p(j |s, ã) and ṽ(s) are non-negative for all j, s ∈ S, ã ∈ A, the ≥-inequality can only becomemore relaxed
if we decrease ṽ(s) for s ∈ W ∪ L. So, the objective function will not increase if v(s) is decreased for
s ∈ W ∪ L. Zero is a lower bound for v(s), s ∈ W ∪ L. Therefore, v(s) can be set to 0 for s ∈ W ∪ L
without increasing the optimal objective value. The resulting linear programming formulation is

min v(s1)
ṽ(s) −∑

j∈S p(j |s, ã)ṽ(j) ≥ 0, ∀ã ∈ As with s ∈ S \ (W ∪ L)
ṽ(s) − ṽ(s) ≥ 0, ∀ã ∈ As with s ∈ W ∪ L

ṽ(s) = 1, ∀s ∈ W
ṽ(s) = 0, ∀s ∈ L
ṽ(s) ≥ 0, ∀s ∈ S.

(3.3)
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Since now v(s) does not occur any more in the linear program, the variables are again denoted by v.
The non-negativity constraints of v in the primal LP of the POSBMDPs guarantee that a minimal

solution v ∈ V+ = R≥0 is found, which corresponds to the value of the POSBMDP. As in SSO-MDPs
all policies are proper, for each ã ∈ As the inequality

v(s) −
∑
j∈S
p(j |s, ã)v(j) ≥ 0, ∀ã ∈ As with s ∈ S \ (W ∪ L)

can be transformed by replacing v(j) recursively by this inequality until

v(s) ≥
∑
j∈W∪L

∞∑
t=1
P{Xt = s, Yt = ã, Xt+1 = j}v(j), ∀ã ∈ As with s ∈ S \ (W ∪ L).

The right side of the inequality is non-negative since v(s) = 1 for s ∈ W and v(s) = 0 for s ∈ L.
Therefore, the non-negativity conditions of v can be omitted in the primal LP formulation for SSO-
MDPs.

Altogether, a valid primal linear programming formulation for SSO-MDPs is:

min vs1
(J − P)v ≥ 0

v(s) = 0, ∀s ∈ L
v(s) = 1, ∀s ∈ W

(primal LP for SSO-MDPs)

This primal linear programming formulation for SSO-MDPs has n variables andm · n + |W | + |L|
constraints.

Comparison to other LP formulations

A short comparison of the derived formulation to other primal linear programming formulations of
different MDP classes is given.

Let P̃ be the transition matrix restricted to non-goal states and non-artificial actions of non-goal
states. Similarly, let J̃ contain only state-action pairs a = (s, ã)with ã ∈ As with s ∈ S \ (W ∪L). Then,
the standard primal linear program of Bertsekas-SSPMDPs converted to the reward-based setting is

min vs1
(̃J − P̃)v ≥ r.

Observe that this linear program has only variables v(s) for s ∈ S \ {W ∪ L} and no non-negativity
constraints. In Bertsekas-SSPMDPs, the dynamic programming operator has a unique fixed point and
therefore no non-negativity constraints on v are needed. Also the value function of the absorbing states
W ∪ L is reward free. By some similar transformations, the LP formulation of Bertsekas-SSPMDPs
can also be converted into the primal LP formulation SSO-MDPs presented above.

Furthermore, the primal SSO-MDP formulation can be seen as a reward based formulation of the
dual linear programm of Guillot and Stauffer (2017) applied to a special MDP class. The dual linear
programm of Guillot and Stauffer (2017) is

max1T y
(J − P)y ≤ c, ⇔ −min1T (−y)

(J − P)(−y) ≥ −c,
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where c ∈ Rn is a cost vector and the variables are y ∈ Rn. The objective value of the SSO-MDP
formulation equals the negative of the objective value of Guillot and Stauffer’s linear program.

3.5.2 A Dual Linear Programming Formulation

The dual linear programof the primal LP for SSO-MDPs of the last subsection inmatrix vector notation
is:

max
∑
s∈W w(s)

(J − P)Tx =


1 s = s1
−ws s ∈ W
−ls s ∈ L
0 else.

x ≥ 0

(dual LP for SSO-MDPs)

Dual variables xa, a = (s, ã), ∀ã ∈ As are used for the inequalities (J − P)v ≥ 0 of the primal LP for
SSO-MDPs. For the last two sets of constraints, which define the value function of the winning and
losing states, the dual variables ws, ∀s ∈ W and ls, ∀s ∈ L are introduced. This linear programming
formulation has n rows andm · n + |W | + |L| variables.

The dual LP formulation contains constraints that can be interpreted as flow constraints. This
interpretation is also used by Littman, Dean, and Kaelbling (1995) who write

“Under this interpretation, the constraints are flow conservation constraints that say that
the total flow exiting state j is equal to the flow beginning at state j (always 1) plus the
flow entering state j via all possible combinations of states and actions weighted by their
probability” (Littman, Dean, and Kaelbling, 1995).

The difference to an ordinary flow condition is the inclusion of the transition probabilities. The
transition probabilities distribute the incoming flow of an action to the states. This flow distribution by
the transition probabilities can be viewed as exogenous flow variables ya,s := p(s|a)xa, ∀a ∈ A′, s ∈ S
that specify the outgoing flow of an action and can not be influenced by the decision maker. In an
ordinary flow problem, the flow conservation constraints would be∑

a∈A′s
xa −

∑
a∈A′

y(s|a) = 0 ∀s ∈ S \ ({s1} ∪W ∪ L) (3.4)∑
s∈S
y(s|a) − xa = 0 ∀a ∈ A′. (3.5)

Since in anMDP the transition probabilities define a probability distribution the second equation is
always satisfied: ∑

s∈S
ya,s − xa =

∑
s∈S
p(s|a)xa − xa = xa − xa = 0.

So, we do not need to incorporate flow constraints for actions in the linear program as the transition
probabilities determine which fraction of the incoming flow xa goes to which state.
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A stationary policy d∞ can be determined from the flow variables in the following way: For a state s
with

∑
ã∈As xs,ã > 0 define

d(a) = d((s, ã)) :=
xs,ã∑
i∈As xs,i

.

In all other states, define d as an arbitrary probability distribution over the set of available actions. This
is according to Definition 2.3.29 of the previous chapter. So, d(a) is the fraction of the flow in a state
node that goes out to an action node. If the complete flow in a state node goes out to one single action
node, we will get a deterministic policy d.

Littman, Dean, and Kaelbling write in Littman, Dean, and Kaelbling (1995) that the objective
value of the dual linear program can be interpreted as the expected total costs – which equals in the
setting of this thesis the expected total reward – of this stationary policy. Furthermore, they state how
a deterministic optimal policy can be computed from a dual solution. The following equation is an
adaptation of Littman, Dean, and Kaelbling notation to the notation of this thesis. Furthermore, the
computation of a deterministic optimal policy was expanded to the case where | arg maxa′∈As xs,a′ | > 1:

d(a) = d((s, ã)) =
{

1 if ã ∈ arg maxa′∈As xs,a′ and d((s, k)) = 0 ∀k ∈ arg maxa′∈As xs,a′ \ {ã},
0 else.

In the next Subsection 3.6, the connection between a realization of the Markov process under a
certain policy and the flow in the dual LP is examined in detail. But first, an example of an SSO-MDP,
its dual LP formulation and the derived stationary policy from an optimal solution of the dual LP is
presented.

Example 3.1:
Figure 3.3 shows a slightly modified version of the example in Figure 3.1 from the beginning of this
section. The difference from the original example problem is that it contains a cycle, namely (s2, a3, s2).

In the Example presented by Figure 3.3, the number of actions m equals 6 and then number of
states n equals 4. For the ordering (a1, a2, a3, a4, aw, al) of the actions and (s1, s2, w, l) of the states, the
matrices of the dual LP for SSO-MDPs formulation can be specified as

P =

©«

0 0.6 0.4 0
0 0.6 0 0.4
0 0.5 0.2 0.3
0 0 0.6 0.4
0 0 1 0
0 0 0 1

ª®®®®®®®¬
, J =

©«

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®®®®®¬
.

Note that the artificial actions in the absorbing states w and l could be removed from the matrices
and need not be included in the model as they are redundant. However, to be consistent with the
definitions of P and J of this subsection, they are included in this formulation.
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s1

a1

a2

s2

a3

a4

w

l

aw

al

1 0

1 0

0.6 0

0.4 1

0.6 0

0.4 0

0.2 1

0.3 0

0.5 0
0.6 1

0.4 0

si state

w winning state

l losing state

ai action

available action
p(s |s′, a): transition

r r(s′, a, s) reward

Figure 3.3: SSO-MDP Example

The dual LP for SSO-MDPs formulation applied to this example is

maxw

©«
1 1 0 0 0 0
−0.6 −0.6 0.5 1 0 0
−0.4 0 −0.2 −0.6 0 0

0 −0.4 −0.3 −0.4 0 0

ª®®®¬ ·
©«

xa1

xa2

xa3

xa4

xaw
xal

ª®®®®®®®¬
=

©«
1
0
−w
−l

ª®®®¬
x ≥ 0

An optimal solution of this linear program is

©«

xa1

xa2

xa3

xa4

xaw
xal

ª®®®®®®®¬
=

©«

1
0
0

0.6
0
0

ª®®®®®®®¬
, w = 0.76, l = 0.24
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s1

a1

a2

s2

a3

a4

w

l

aw

al

0 1

1 0

0 1

1 0

1 1 0.6 0

0.4 1

0 0 0.6 0

0.4 0

0 0

0.2 1

0.3 0

0.5 0

0.6 1

0.6 1

0.4 0

si state

w winning state

l losing state

ai action

available action
p(a |s′, s): transition

r r(s′, a, s) reward
xa da xa da

Figure 3.4: Solution of SSO-MDP Example

with an objective value of 0.76. This translates into the optimal decision rule

d =

©«

1
0
0
1
1
1

ª®®®®®®®¬
.

The solution is presented inFigure 3.4. The first bluenumber denotes the action flow xa and the second
number the derived decision rule d(a). The optimal decision rule selects action a1 in s1 and action a4
in s1. ∗

3.6 Flow Networks associated with SSO-MDPs

In the last section, the dual variables of the dual LP for SSO-MDPs where interpreted as flow variables.
The goal of this section is to define a flow network for SSO-MDPs and to clarify how a flow described
by the dual linear programming formulation corresponds to a realization of a Markov process under a
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given decision rule. This section is relatively long and technical. The main result is the static maximum
flow formulation 3.12 which is equivalent to the dual linear programming formulation seen in the last
section. However, starting from scratch in an own setup, Theorem 3.6.23 proves that the linear program
can be used for finding an optimal decision rule of the SSO-MDP without relying on any other result
of linear programming formulations for MDPs.

In general a flow in a network, as for example a solution of the maximum flow problem (Defini-
tion 2.4.8), assigns a non-negative flow value xi,j to each edge such that the flow conditions and capacity
restrictions are met. The flow values xi,j are not time depended, instead they describe a static flow that
can be send from the sink node to the source node. At each point in time, the flow per time unit is xi,j
on edge (i, j).

In contrast, an SSO-MDP relies on a stochastic process that evolves over time. The random process
consists of a random variableXt that describes the state of the system at time t and a second random
variable Yt that describes which action is selected at time t according to a, possibly randomized, decision
rule Yt = d(Xt). If the decision rule is deterministic, d(Xt) is also deterministic and does not have to be
expressed by a separate random variable.

3.6.1 Basic Definitions

Graphical representations of SSO-MDPs were already used in the examples like, e.g., in Figure 3.1. As
indicated, unique actions are necessary for a clearly arranged graphical representation. If actions are
available in different states and the transition probabilities differ depending on the state in which the
action is chosen, it would not be possible to associate a single transition probability with the edges that
connect the action with its successors. Therefore, in this section an augmented action setA consisting
of state-action pairs is assumed.

Before defining a flow network associated to an SSO-MDP under a policy π ∈ ΠMR, a graph
associated to an SSO-MDP is formally defined as:

Definition 3.6.1 (Graph associated with an SSO-MDP).
An associated graphG = (N,E, β) of an SSO-MDP(S,A, p(·|s, a), r(s, a),W, L, s1)
is a directed graph with a node setN := {1, . . . , |S ∪ A |} and a bijection β that maps the states and
actions of the SSO-MDP to nodes of the graph:

β : S ∪A → N
i 7→ β(i).

The edge set E ⊆ N ×N is defined as

E :={(i, j) : β−1(i) = s ∈ S, β−1(j) ∈ As}
∪ {(i, j) : β−1(i) = a ∈ A, β−1(j) = s ∈ S, p(s|A−1(a), a) > 0}.
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By definition, in an associated graph of an SSO-MDP, there exist only edges between nodes that
correspond to states and nodes that correspond to actions in the MDP. Therefore, an associated graph
of an SSO-MDP is always a bipartite graph, whereN splits into two disjoint sets of nodesN = NA∪NS
with

NA := {n ∈ N | β−1(n) ∈ A}
NS := {n ∈ N | β−1(n) ∈ S}.

Observe that no two nodes inNA , respectivelyNS , are adjacent.
Observation 3.6.2:
Let G be an associated graph of an SSO-MDP, then G is a bipartite graph.

The nodes n ∈ NA are called action nodes and the nodes n ∈ NS are called state nodes. Note that most
of the time, the artificial action nodes in the absorbing states will not be explicitly named or drawn.
However, they are included in E. The set of winning states is denoted by the symbolNWS and the set
of losing states byNLS .

Following definition 2.4.7, a flow network is a directed graph where nodes or arcs have associated
numerical values. For the flow network of an associated graph of an SSO-MDP, for all edges e ∈ E an
edge weight α(e) ∈ [0, 1] is defined. The terms are called “edge weight” because they specify a share of
flow: For an edge e = (i, j) the edge weight α(e) is the fraction of flow in i that leaves i over edge e. The
edge weight of an edge from a state node to an action node is defined to be 1 while the edge weight of an
edge from an action node to a state node is derived from the transition probabilities of the SSO-MDP.
The following definition specifies the edge weights α formally.

Definition 3.6.3 (A Flow Network associated with an SSO-MDP).
The flow network of an associated graphG = (N,E, β) of an SSO-MDP is a tuple (N,E, β, α)where
the edge weights α are defined as

α(i, j) :=

{
1, if (i, j) ∈ E, β−1(i) ∈ S, β−1(j) ∈ A,
p(s|A−1(a), a), if (i, j) ∈ E, β−1(i) = a ∈ A, β−1(j) = s ∈ S.

Later, the edge weight of a path in the graph is needed. The edge weight of a path from u to v is the
fraction of flow available in u that follows the path and enters v. Therefore, the edge weight of a path
ρu,v must be the product of all edge weights occurring on that path:

α(ρu,v) := Πe∈ρu,vα(e).
In the flow network of an associated graph of an SSO-MDP, there are no capacity restrictions on

the edges nor costs for traversing an edge. The reward structure of an SSO-MDP is uniquely defined by
the set of winning states. So, there is no need to encode a reward function in the flow network. For a
given starting state s1, a set of winning statesW and a set losing states L, the flow network (N,E, β, α)
uniquely defines an SSO-MDP.

In the following example, a simple SSO-MDP is considered and the flow network of an associated
graph of that SSO-MDP is presented.
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Example 3.2 (Flow Network of an associated graph of an SSO-MDP):
Consider an SSO-MDP with three states S = {s1, w, l}. Assume the states w and l are absorbing states
such thatw is awinning state and l is a losing state. In this example and in the followingof this thesis, the
explicit notation and drawing of the artificial action nodes in the absorbing states is left out. Instead,
the winning states and losing states are colored in red to distinguish them from ordinary transient
states. Let s1 be a state where an action a1 is available. Furthermore, let the transitions probabilities
after choosing action a1 in s1 be:

p(w|s1, a1) = 0.2 p(l |s1, a1) = 0.2 p(s1 |s1, a1) = 0.6.

Then, an associated graph of this example MDP isG = (N,E, β)withN = {1, 2, 3, 4} and

β(s1) = 1 β(a1) = 2
β(l) = 3 β(w) = 4.

The edge set equals E = {(1, 2), (2, 1), (2, 3), (2, 4)}. According to the definition of an associated flow
network, we get for the edge weights

α(1, 2) = 1 α(2, 1) = 0.6
α(2, 3) = 0.2 α(2, 4) = 0.2.

Figure 3.5 is a graphical illustration of the flow network (N,E, β, α) defined in this example. ∗

3.6.2 Induced Flow of an SSO-MDP

As next, it is shown how the random process induced by an SSO-MDP and a stationary policy π = d∞
corresponds to a flow in an associated flow network of that SSO-MDP.1

To define a random process induced by a policy d∞ in the flow network of an associated graph of
an SSO-MDP, a random variable Zt that takes values in the node setN is introduced:

1 The induced stochastic process of anMDP under policy π is explained in Section 2.1.
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1

2

3 4

1

0.20.2

0.6

β(s1) = 1

β(a1) = 2

β(l) = 3 β(w) = 4

i state node

j action node

w winning node

l losing node

edge e
α(e) edge weight α(e)

Figure 3.5: Flow network example of an SSO-MDP

Definition 3.6.4 (Random Variable of the flow network).
Let (Ω,F,P) be a probability space of anMDP as described in Subsection 2.1.1. DefineZt as a random
variable that maps ω = (s1, a1, s2, . . .) ∈ Ω to the measure space (N, 2N ) by

Zt : Ω → N

Zt(ω) =
{
β(s(t+1)/2) if t ≡ 1 mod 2,
β(at/2) if t ≡ 0 mod 2.

So, Z1(ω) = β(s1), Z2(ω) = β(a1), Z3(ω) = β(s2) and so on. Obviously, the random variable Zt is
alternating between nodes inNS andNA .

A realization of the random variable Zt can be interpreted as a random walk in the associated flow
network of an SSO-MDP. To visualize this random walk over time in a network, a time-expanded flow
network of an SSO-MDP is used. In a time-expanded network, the node set is copied for each point in
time t and for each edge (i, j) ∈ E there exists an edge from the node i at time t to the node j at time
t + 1.

Definition 3.6.5 (Time-Expanded Flow Network of an SSO-MDP).
Assume an associated flow network (N,E, β, α) of an SSO-MDP. Then, the time-expanded flow net-
work (N t , Et , βt , αt) is defined as

N t := {(t, i) | t ∈ N, i ∈ N }
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Et := {((t, i), (t + 1, j)) | t ∈ N, (i, j) ∈ E}

βt :=

{
N × {S ∪A} → N t
(t, i) 7→ (t, β(i));

αt :=

{
Et → [0, 1]
αt((t, i), (t + 1, j)) 7→ α(i, j);

Example 3.3 (Random walk in flow network):
Consider the SSO-MDP of Example 3.2. Assume the SSO-MDP starts in s1 and uses a decision rule d
that selects action a1 in state s1. A possible realization of the Markov chain resulting from this MDP
and the decision rule d is

ω = (s1, a1, s1, a1, w, . . .).

This realization ends in the winning state after two transitions and stays there forever. Accordingly,
the random variable Zt takes the values

Z1 = 1 Z2 = 2 Z3 = 1 Z4 = 2 Z5 = 4 . . . .

The time-expanded network of this example is presented in Figure 3.6. The realization of this example
corresponds to a walk along the following nodes (t, i) ∈ N t :

(1, 1) − (2, 2) − (3, 1) − (4, 2) − (5, 4) − (6, 4) . . . . ∗

Z1 is by definition of Zt always a state node. Since Zt is alternating between state and action nodes
and those sets are disjoint, it can be concluded from the value of Zt whether t is even or not. And the
other way around, it can be deduced from t whetherZt ∈ NS orZt ∈ NA holds by using the definition
of Zt . So,

Zt ∈ NS ⇔ t ≡ 1 mod 2
Zt ∈ NA ⇔ t ≡ 0 mod 2.

In anMDP, we are interested in the expected total reward of a decision rule instead of the reward
of one realization. Proposition 3.6.6 relates the value of a policy d∞ in an SSO-MDP to the probability
distribution of the random variable Zt in the flow network:

Proposition 3.6.6 (Expected total reward of SSO-MDP and Zt):
The value of a policy d∞ in an SSO-MDP starting in a state s ∈ S \ {W ∪ L} equals the probability
that Zt enters a node in NWS :

vd∞(s) =
∞∑
t=2
Pd
∞{Z2t−3 < NWS , Z2t−1 ∈ NWS | Z1 = β(s)}.
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Proof. The expected total reward of a stationary policy d∞ equals:

vd∞(s) = Ed
∞
s

{ ∞∑
t=1
r(Xt , Yt)

}
Prop. 3.4.1
=

∞∑
t=2
Pd
∞{Xt−1 <W, Xt ∈ W | X1 = s}

=

∞∑
t=2
Pd
∞{(s1, a1, s2, . . .) ∈ Ω : st−1 <W, st ∈ W | s1 = s}

Def. Zt
=

∞∑
t=2
Pd
∞{β−1(Z2t−3) <W,β−1(Z2t−1) ∈ W | β−1(Z1) = s}

=

∞∑
t=2
Pd
∞{Z2t−3 < NWS , Z2t−1 ∈ NWS | Z1 = β(s)}.

The result directly follows from Proposition 3.4.1 and the definition of Zt . �

The last proposition related the probability distribution of the random variable Zt to the expected total
reward of a decision rule. This motivates to examine the distribution of Zt under a policy d∞.

As already observed, Zt is alternating between state nodes and action nodes, which are disjoint
sets. We know that for t even, Zt takes a value in NA independent of the used policy d∞. Hence,
the probability P{Zt ∈ NS} is zero for every even time point t = 2k, k ∈ N. Also, the probability
P{Zt ∈ NA} is zero for every odd time point t = 2k + 1, k ∈ N0 independent of the used policy d∞.
Observation 3.6.7:
LetZt be a random variable in the flow network of an associated graph of an SSO-MDP that is constructed
after Definition 3.6.4. Then,

Pd
∞{Z2k ∈ NS} = 0, ∀k = 1, 2, 3 . . . , ∀d∞ ∈ ΠMR

Pd
∞{Z2k+1 ∈ NA} = 0, ∀k = 0, 1, 2, . . . , ∀d∞ ∈ ΠMR.

The goal is to calculate the probability that the random walk Zt is at node j at time t when the
process has started in node i at time t ′ ≤ t and policy d∞ is used. So, we want to determine

Pd
∞{Zt = j |Zt′ = i} for t ′, t ∈ Nwith t ≥ t ′.

The edge weight α of state-action edges can be adapted to the used policy d∞ such that the mentioned
probability equals the sum of the weights of all paths from (t ′, i) to (t, j) in the time-expanded network
associated to the SSO-MDP.
Proposition 3.6.8 (Probability distribution of Zt under d∞):
Let d∞ ∈ ΠMR be a stationary Markovian policy and P1 a distribution of the initial state. Define the
adapted edge weight function αd∞ under d∞ as

αd∞(i, j) :=

{
qd(s)(a) · α(i, j), if (i, j) ∈ E, β−1(i) = s ∈ S, β−1(j) = a ∈ A,
α(i, j), else.
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Let αtd∞ be the time-expanded adapted edge weights in the time-expanded graph based on αd∞ .
Then, the probability that the random variable Zt is at node j at time t when the process has started

in node i at time t ′ and a stationary policy d∞ is used equals the sum of the weights of all paths from
(t ′, i) to (t, j) in the adapted time-expanded network (N t , Et , βt , αtd∞) of the SSO-MDP:

Pd
∞{Zt = j | Zt′ = i}

=
∑

ρ path from (t′,i) to (t,j)
in (N t ,Et )


∏
e∈ρ
αtd∞(e)

 , ∀d∞ ∈ ΠMR,
for all t, t ′ ∈ N with t ≥ t ′ and Pd∞{Zt′ = i} > 0.

Proof. Since Zt is alternating between state and action nodes, a case distinction whether t and t ′ are
even or not can be made. Assume t ≡ 1 mod 2 and t ′ ≡ 1 mod 2. Then, it holds β−1(Zt) ∈ NS as
well as β−1(Zt′) ∈ NS and

Pd
∞{Zt = j | Zt′ = i}

=
Pd
∞{Zt′ = i, Zt = j}
Pd∞{Zt′ = i}

=
Pd
∞{(s1, a1, s2, . . .) ∈ Ω : s(t′+1)/2 = β−1(i), s(t+1)/2 = β−1(j)}

Pd∞{(s1, a1, s2, . . .) ∈ Ω : s(t′+1)/2 = β−1(i)} (3.6)

=

∑
{ω∈Ω : s(t′+1)/2=β−1(i),s(t+1)/2=β−1(j)} P1(s1) · qd(s1)(a1) · p(s2 |s1, a1) · . . .∑

{ω∈Ω : s(t′+1)/2=β−1(i)} P1(s1) · qd(s1)(a1) · p(s2 |s1, a1) · . . .

The definition of Zt is inserted in Equation 3.6.
In the last equation, the probability of an elementary elementω ∈ Ω is inserted, which is explained

in Section 2.1. The sumof the numerator contains all eventswhere the system is inβ(i) at time (t ′+1)/2
and in β(j) at time (t + 1)/2. For a given history until (t + 1)/2 that fulfills this condition, all possible
extensions are included in the sum. Since the conditional probabilities of all extensions sum up to 1,
the sum can be restricted to all histories up to (t + 1)/2 that fulfill our requirements. An analogous
simplification is possible for the denominator and the fraction simplifies to:

=


∑

{(s1,a1,...,s(t+1)/2)∈(S×A)(t−1)/2×S :
s(t′+1)/2=β−1(i),s(t+1)/2=β−1(j)}

P1(s1) · qd(s1)(a1) · p(s2 |s1, a1) · qd(s2)(a2) · . . .


·


∑

{(s1,a1,...,s(t′+1)/2)∈(S×A)(t
′−1)/2×S :

s(t′+1)/2=β−1(i)}

P1(s1) · qd(s1)(a1) · p(s2 |s1, a1) · qd(s2)(a2) · . . .



−1
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Every history that is in β−1(i) at time (t ′ + 1)/2 is included in the denominator. In the numerator,
each of these histories is extended by all sample paths that go from β−1(i) to β−1(j) in (t − t ′)/2 time
steps. So, the sum of all histories that are at time (t ′ + 1)/2 in β−1(i) can be excluded in the sum of the
numerator. After the division by the denominator, it remains:∑

{(s(t′+1)/2,a(t′+1)/2,...,s(t+1)/2)∈(S×A)(t−t′)/2×S :
s(t′+1)/2=β−1(i), s(t+1)/2=β−1(j)}

qd(s(t′+1)/2)(a(t′+1)/2) · . . . · p(s(t+1)/2 |s(t−1)/2, a(t−1)/2).

The probability of a sample path of the last sum equals the adapted edge weight αtd∞ of a path in the
time-expanded network that goes from i to j in t ′ − t time steps. This is true since the time extend
network is circle free and the edge weight of a path is defined as the product of the edge weights of
edges on that path. Therefore, the last sum equals

∑
ρ path from (t′,i) to (t,j)

in (N t ,Et )


∏
e∈ρ
αtd∞(e)


=

∑
ρ path from (t′,i) to (t,j)

in (N t ,Et )

αtd∞(ρ)

In case that t or t ′ is even, the same argumentation holds. The only difference is that for t even, Zt
must be inNA and our sample paths end with an action at/2. �

Example 3.4 (Probability distribution of Zt):
Consider the SSO-MDP of Example 3.2 and assume the decision rule d(s1) = a1. Since a1 is the only
action available in s1 and d chooses a1 with certainty, the adapted weight function αtd∞ is identical to
αt .

LetZt be the random variable according toDefinition 3.6.4. Let s1 be the starting state of the SSO-
MDP. Since β(s1) = 1, the probability that the randomwalkZt is at node iwhen the process has started
in node 1 at time t = 1 is considered.

In Figure 3.6, the probability distribution of Zt in the adapted time-expanded network for t =
1, 2, 3, 4, 5 is denoted. If the probability Pd∞{Zt = i | Z1 = 1} is greater zero, the node is highlighted
in green and the probability is denoted as a small number at the bottom of the node. ∗
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Figure 3.6: Flow generated by random process of SSO-MDP in time-extended network
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In the time-expanded network of the flow network associated with an SSO-MDP, the probability
distribution of Zt generates a flow in that network. First, time-dependent flow variables xti,j are defined
that are induced by Zt in the time-expanded flow network and show afterwards that they are a valid
flow in the time-expanded network.

Definition 3.6.9 (Time varying flow induced by random variable Zt).
Let t ∈ N be a point in time and (i, j) be an edge in E. Then,

xti,j := Pd
∞{Zt+1 = j, Zt = i}

is the time-dependent flow induced by the distribution of the random variable Zt .

The goal is to show that {xti,j, t ∈ N, (i, j) ∈ E} is a valid flow in the time-expanded network of
an SSO-MDP. By a valid flow, it is meant that {xti,j, t ∈ N, (i, j) ∈ E} satisfies the flow conservation
constraint in each node. The flow condition requires that in each node the amount of incoming flow
equals the amount of outgoing flow, see Section 2.4 for more on general flow networks. Intuitively, it
might be clear that xti,j is a valid flow: By construction of the flow network and the definition of Zt , a
realization of {Zt , t ∈ N} is a randomwalk in the time-expanded network andZt moves only along the
edges in the time-expanded network. By Proposition 3.6.8 the probability distribution of Zt is related
to path weights in the network. No probability mass of a random variable can be lost or generated. It
shifts from one node to the next according to the distribution of Zt under d∞ respectively the edge
weight αtd∞ .

However, this should be proven formally on the next few pages even if only technical reformulations
are mainly required. Proposition 3.6.10 shows that the sum of outgoing flow in a node at time t equals
the probability that Zt is at that node. Also the sum of incoming flow in a node at time t − 1 equals the
probability that Zt is at that node.

Proposition 3.6.10 (Probability of Zt being at a node):
Let xti,j be defined according to definition 3.6.9 which is the induced time-dependent flow by the random
variable Zt . Then, ∑

j:(i,j)∈E
xti,j = Pd

∞{Zt = i}, ∀t ∈ N, ∀i ∈ N,∑
j:(j,i)∈E

xt−1
j,i = P

d∞{Zt = i}, ∀t ∈ N≥2, ∀i ∈ N.

holds.

Proof. Let t ∈ N. Then,∑
j:(i,j)∈E

xti,j
Def.3.6.9
=

∑
j:(i,j)∈E

Pd
∞{Zt+1 = j, Zt = i}.
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For Pd∞{Zt = i} = 0, we have that Pd∞{Zt+1 = j, Zt = i} = 0 for all (i, j) ∈ E and the statement
holds. Otherwise, it holds∑

j:(i,j)∈E
Pd
∞{Zt+1 = j, Zt = i} =

∑
j:(i,j)∈E

Pd
∞{Zt+1 = j | Zt = i} · Pd∞{Zt = i}.

If i ∈ NS holds, it is known that
Pd
∞{Zt+1 = j | Zt = i} = qd(s)(a), for β(s) = i, β(a) = j.

Since d specifies a probability distribution over all actions available in s and for each of those actions
a = β−1(j) an edge (i, j) ∈ E exists, it holds∑

j:(i,j)∈E
Pd
∞{Zt+1 = j | Zt = i} · Pd∞{Zt = i}

=
∑
j:(i,j)∈E

qd(s)(a) · Pd
∞{Zt = i}, for β(s) = i, β(a) = j

= Pd
∞{Zt = i} ·

∑
j:(i,j)∈E

qd(s)(a), for β(s) = i, β(a) = j

= Pd
∞{Zt = i}.

If i ∈ NA holds, it is known that

Pd
∞{Zt+1 = j | Zt = i} = p(s|A−1(a), a), for β(a) = i, β(s) = j.

Since p(·|A−1(a), a) specifies a probability distribution over all transitions possible from a and for each
of those transitions to a state s = β−1(j) an edge (i, j) ∈ E exists, we get∑

j:(i,j)∈E
Pd
∞{Zt+1 = j | Zt = i} · Pd∞{Zt = i}

=
∑
j:(i,j)∈E

p(s|A−1(a), a) · Pd∞{Zt = i}, for β(a) = i, β(s) = j

= Pd
∞{Zt = i} ·

∑
j:(i,j)∈E

p(s|A−1(a), a), for β(a) = i, β(s) = j

= Pd
∞{Zt = i}.

For the second statement, a similar proof is possible. Let t ∈ N, t ≥ 2. Then,∑
j:(j,i)∈E

xt−1
j,i

Def.3.6.9
=

∑
j:(j,i)∈E

Pd
∞{Zt = i, Zt−1 = j}.

Again, for Pd∞{Zt = i} = 0, we have that Pd∞{Zt = i, Zt−1 = j} = 0 for all (j, i) ∈ E and the
statement holds. Otherwise, due to the definition of E, there must exist at least one j with (j, i) ∈ E
and Pd∞{Zt−1 = j} > 0. Hence, it holds∑

j:(j,i)∈E
Pd
∞{Zt = i, Zt−1 = j} =

∑
j:(i,j)∈E

Pd
∞ {Zt−1=j}>0

Pd
∞{Zt = i | Zt−1 = j} · Pd∞{Zt−1 = j}.
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This time for i ∈ NS , it holds

Pd
∞{Zt = i | Zt−1 = j} = p(s|A−1(a), a), for β(a) = j, β(s) = i

and hence ∑
j:(i,j)∈E

Pd
∞ {Zt−1=j}>0

Pd
∞{Zt = i | Zt−1 = j} · Pd∞{Zt−1 = j}

=
∑
j:(i,j)∈E

Pd
∞ {Zt−1=j}>0

p(s|A−1(a), a) · Pd∞{Zt−1 = j}, for β(a) = j, β(s) = i

= Pd
∞{Zt = i}.

In the last equality, it was used that for each action β−1(j) that has a positive probability for a transition
to β−1(i) an edge (j, i) ∈ E exists. For i ∈ NA

Pd
∞{Zt = i | Zt−1 = j} = qd(s)(a), for β(s) = j, β(a) = i

and the same argumentation applies. �

Theorem 3.6.11 is a direct application of the two statements of the last Proposition. It shows that
xti,j derived from Zt after Definition 3.6.9 is a valid flow in each node at time t ≥ 2. The theorem holds
only for t ≥ 2 since {x0

i,j, (i, j) ∈ E} is not defined.

Theorem 3.6.11 (Time varying flow induced by Zt meets flow condition):
Let xti,j be the induced time-dependent flow by Zt defined according to definition 3.6.9. Then xti,j is a
valid flow in the time-expanded flow network with adapted edge weights, i.e.,∑

j:(i,j)∈E
xti,j −

∑
j:(j,i)∈E

xt−1
j,i = 0, ∀t ≥ 2, ∀i ∈ N.

We have seen that the time depending flow variables induced by Zt satisfy the flow condition in the
time-expanded flow network. As the name suggest, the flow on one edge is not static and may change
over time. In our Example of Figure 3.6, the time varying flows on the edge (1, 2) are:

x1
(1,2) = 1

x2
(1,2) = 0

x3
(1,2) = 0.6
x4
(1,2) = 0 . . . .
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However, the reader may observe that the fraction of flow available in a node that traverses an
edge is static. In our example, if there is an incoming flow to node 1, the fraction of outgoing flow that
traverses the edge (1, 2) is always 1 which equals ds1.

The static fraction always equals the adapted edge weight αd∞ , which is, depending on the edge
type, either equal to the probability of a transition or to the probability by which an action is chosen
under the considered decision rule. This formally is shown by the next two theorems, whose proofs are
based on our previous propositions:

Theorem 3.6.12 (Relation induced flow to decision rule):
Assume an SSO-MDP and a stationary policy d∞. Let (N,E, β, αd∞) be an associated flow network
of that SSO-MDP and Zt be the random variable of Definition 3.6.4. Then, for any node i ∈ NS

xti,k∑
j:(j,i)∈E xt−1

j,i
= qd(β−1(i))(β−1(k)), ∀k : (i, k) ∈ E

for all t ≥ 2 with ∑
j:(j,i)∈E xt−1

j,i > 0.

Proof. According to Proposition 3.6.10∑
j:(j,i)∈E

xt−1
j,i = P

d∞{Zt = i}.

For Pd∞{Zt = i} > 0 the following equation holds:

xti,k∑
j:(j,i)∈E xt−1

j,i
=

Pd
∞{Zt+1 = k, Zt = i}
Pd∞{Zt = i}

= Pd
∞{Zt+1 = k | Zt = i}

Prop. 3.6.8
= αd∞(i, k) (3.7)
= qd(β−1(i))(β−1(k)).

In Equation 3.7, Proposition 3.6.8 is used and the property of the time-expanded graph that there exists
only one path from (t, i) to (t + 1, k), which equals the direct edge (t, i) − (t + 1, k). �

A similar relation holds for action nodes i ∈ NA as shown in Theorem 3.6.13. For a shorter notation,
p(s|a) := p(s|A−1(a), a) is used for the transition probability from action a ∈ A to state s ∈ S.



3.6. FLOW NETWORKS ASSOCIATEDWITH SSO-MDPS 107

Theorem 3.6.13 (Relation transition probabilities induced flow):
Assume an SSO-MDP and a stationary policy d∞. Let (N,E, β, αd∞) be an associated flow network
of that SSO-MDP and Zt be the random variable of Definition 3.6.4. Then, for any node i ∈ NA

xti,k∑
j:(j,i)∈E xt−1

j,i
= p(β−1(k)|β−1(i)), ∀k : (i, k) ∈ E

for all t ≥ 2 with ∑
j:(j,i)∈E xt−1

j,i > 0.

Proof. Again, according to Proposition 3.6.10∑
j:(j,i)∈E

xt−1
j,i = P

d∞{Zt = i}.

For Pd∞{Zt = i} > 0 the following equation holds:

xti,k∑
j:(j,i)∈E xt−1

j,i
=

Pd
∞{Zt+1 = k, Zt = i}
Pd∞{Zt = i}

= Pd
∞{Zt+1 = k | Zt = i}

Prop. 3.6.8
= αd∞(i, k) (3.8)
= p(β−1(k)|β−1(i)).

In Equation 3.8, Proposition 3.6.8 is used again as well as the property of the time-expanded graph that
there exists only one path from (t, i) to (t + 1, k), which equals the direct edge (t, i) − (t + 1, k). In
contrast to the last theorem, (t, i)−(t+ 1, k) is an edge from an action node to a state node, so αd∞(i, k)
equals the transition probability p(β−1(k)|β−1(i)). �

The last two theorems capture all nodesN in the flow network, since all nodes belong either toNS
or toNA . As we are in a setting with stationary transition probabilities and consider only stationary
policies, it can be followed from the last two theorems that the fraction of the available flow in a node
that traverses an edge (i, j) is constant over time.
Corollary 3.6.14:
Assume an SSO-MDP and a stationary policy d∞. Let (N,E, β, αd∞) be an associated flow network of
that SSO-MDP andZt be the random variable of Definition 3.6.4. Then for nodes i with∑

k:(k,i)∈E xt−1
k,i >

0 and ∑
k:(k,i)∈E xt

′−1
k,i > 0 the equation

xti,j∑
k:(k,i)∈E xt−1

k,i
=

xt′i,j∑
k:(k,i)∈E xt

′−1
k,i

holds for all t, t ′ ≥ 2.
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In the case
∑
k:(k,i)∈E xtk,i = 0, the incoming flow to node i at time t is zero, which means, that the

probability that Zt is at time t in node i is zero. Since xt satisfies the flow condition, it follows that all
outgoing flows of node i at time t + 1 must be zero, too. So, xt+1

i,j = 0 for all (i, j) ∈ E.
It may be the case that

∑
k:(k,i)∈E xtk,i = 0 holds for some t but not for all. Consider for example

node 2 in Example 3.4. The incoming flow at time t = 2 is∑
k:(k,2)∈E

x2
k,2 = 1

while at time t = 3 this sum is 0. However, for all points in time where the incoming flow into a node is
positive, the fraction of flow on an outgoing edge is always the same. Nodes which never have a positive
incoming flow are not visited by Zt under the considered decision rule.

In the current subsection, the properties of the induced flow of the random variableZt are analyzed
for a fixed stationary policy d∞. In the next subsection, this view will be inverted. Coming from a valid
flow in the flow network of an SSO-MDP a stationary policy d∞ is derived. It is shown that the random
variable Zt under d∞ induces exactly the flow from which it was derived.

3.6.3 Maximum Flow Problem for SSO-MDPs

In this section, a linear programming formulation for SSO-MDPs is derived by considering the associated
flow network of an SSO-MDP. The maximum flow problem formulation of Definition 2.4.8 is adapted
to flow networks of SSO-MDPs such that for each feasible solution of the linear program, a decision
rule can be found under which Zt ’s probability of reaching a winning state equals the objective value of
that solution.

The objective of an SSO-MDP is to find an optimal stationary policy d∞ such that the probability
of reaching a winning state is maximized, which is shown in Proposition 3.4.1. In the time-expanded
flow network of an associated graph of that SSO-MDP, this objective translates to maximizing the
probability that the randomvariableZt enters awinning node of the node setNWS , see Proposition 3.6.6.
In the last subsection in Proposition 3.6.11, we have seen that the probability distribution of Zt induces
a valid flow in the time-expanded network. This leads to the idea of formulating a maximum flow
problem for SSO-MDPs. In the maximum flow problem formulation, the evolution ofZt is considered
until it reaches a winning state. Therefore, in this section an associated graph of an SSO-MDP is used
where the node set does not include the artificial action nodes at the absorbing states. This definition is
important such that the resulting linear program will be well defined. So, in this section an associated
linear programming graph GLP = (Ñ , Ẽ, β̃) of an SSO-MDP is considered. Its sets are defined as
follows:

Ñ := {1, . . . , |S ∪A \ ∪s∈W∪LAs |}
Ẽ := {(i, j) ∈ E, i, j ∈ Ñ }

and β̃ is a bijection from S∪A\{∪s∈W∪LAs} to Ñ . The associated flow network based on an associated
linear programming graphGLP is denoted by (Ñ , Ẽ, β̃, α) and α is defined according to Definition 3.6.3
but based on GLP . Similar, the time-extended flow network of an SSO-MDP can be constructed
according to Definition 3.6.5 based on an associated linear programming graphGLP and is denoted by
(Ñt , Ẽt , β̃t , αt).
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The meaning of the objective function of an SSO-MDP and the properties of Zt in the time-
expanded network lead to the idea of using a maximum flow formulation as a starting point for the
linear program. The basic max flow formulation of Subsection 2.4 for a capacitated network with a
non-negative capacity ui,j based on a graphG = (N,E) is:

max v∑
j:(i,j)∈E xi,j −

∑
j:(j,i)∈E xj,i =


v for i = s
0 for all i ∈ N \ {s, t}
−v for i = t

0 ≤ xi,j ≤ ui,j, ∀(i, j) ∈ E.

(max flow)

There are obviously some general differences between the network considered in Definition 2.4.7 and
the time-expanded network (Ñ t , Ẽt , β̃t , αt) of an SSO-MDP.

First, there are no capacities on the edges Ẽt . If the starting flow v is increased from the source node,
we would be able to route the full amount v over the paths in the network. And if there exists a path to
a winning node, the objective function would be unbounded. However, the flow in the time-expanded
network should equal the flow induced by the random variable Zt . So, it makes sense to fix the amount
of flow v entering the network from the outside to 1. In fact, the initial distribution P1 of the starting
state is used to model the incoming flow to the network. Even if in SSO-MDPs the starting state s1 is
known, in this subsection a generalized initial distribution P1 for the starting state is used. The initial
distribution P1 always satisfies ∑

s∈S
P1(s) =

∑
n∈NS

P1(̃β−1(n)) = 1.

For not having problems with the domain space of P1, P1 is extended to the action space and P1(a) = 0
for all a ∈ A. For modeling the incoming flow, the edge set Ẽt of the time-expanded flow network of
an SSO-MDP is extended by edges Ẽ0 := {((0, s), (1, i)), i ∈ NS} that connect an artificial source node
s with each state node of the time-expanded flow network at time 0.

Instead of capacities, there exist edge weights αt in a time-expanded flow network of an SSO-MDP.
As seen in Proposition 3.6.8, the adapted edge weight αtd∞ of an edge (t, i) − (t + 1, j) equals the
probability Pd∞{Zt+1 = j | Zt = i}. Since the flow in the network should correspond to the probability
distribution of the random variable Zt , further equalities are added to the program that ensure that
the flow available in a node is distributed by the edge weights over the outgoing edges. Since we are
searching for a decision rule d, the adapted edge weights αtd∞ can not be used. Instead, variables δ(j) are
defined for the distribution of the probability mass along edges that go from a state node to an action
node.

Furthermore, there are several sink nodesN × {NWS ∪NLS } ⊆ Ñt . A flow value variable vti is used
for each node i ∈ NWS ∪NLS to capture the incoming flow in a winning or losing node at each point in
time.

The program resulting from this considerations on basis of themaximum flow problem is presented
in Definition 3.6.15. It has a countable infinite number of variables and the objective function is an
infinite series over time that sums up the amount of flow entering a winning node at each point in time.
Since the total flow entering the network is bounded by 1 through the initial distribution P1 and no
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additional flow can be generated, the objective function is bounded by 1. Therefore, the series must
converge to a finite value.

Definition 3.6.15 (Time expandedMaximum Flow Problem for SSO-MDPs).
The time-expandedmaximum flow problem of the time-expanded flow network (Ñ t , Ẽt , β̃t , αt) of an
SSO-MDP and an initial distribution P1 of the starting state is defined as

max
∑
t∈N

∑
i∈NWS v

t
i∑

j:(j,i)∈Ẽ0
Ñ
x0
j,i = P1(̃β−1(i)), ∀i ∈ Ñ ,∑

j:(i,j)∈ẼtÑ
xti,j −

∑
j:(j,i)∈Ẽt−1

Ñ
xt−1
j,i = 0, ∀i ∈ Ñ \ {NWS ∪NLS }, t ∈ N,

−∑
j:(j,i)∈Ẽt−1

Ñ
xt−1
j,i = −vti , ∀i ∈ NWS ∪NLS , t ∈ N,

xti,j − α(i, j)
∑
k:(k,i)∈Ẽt−1

Ñ
xt−1
k,i = 0, ∀(i, j) ∈ ẼtÑ , i ∈ ÑA, t ∈ N,

xti,j − δ(j)
∑
k:(k,i)∈Ẽt−1

Ñ
xt−1
k,i = 0, ∀(i, j) ∈ ẼtÑ , i ∈ NS, t ∈ N,
xti,j ≥ 0, ∀(i, j) ∈ ẼtÑ , t ∈ N0,

(3.9)

where xti,j, δ(j) as well as vti are variables. Furthermore, Ẽt is extended by Ẽ0 := {((0, s), (1, i)), i ∈
NS} and ẼtÑ is defined as

ẼtÑ := {(i, j) | ((t, i), (t + 1, j)) ∈ Ẽt},∀t ∈ N0.

In the following, the first three sets of equalities in the program are referenced as flow constraints and
the last two sets of equalities as flow distribution constraints.

For easier notation, ẼtÑ is used for all t ∈ N0 which is defined as a projection of the time-expanded
edges at time t on edges between the static nodes i ∈ Ñ . Since an SSO-MDPs has stationary parameters,
for all t ∈ N, which does not include 0, it holds that Ñt restricted to the node component equals Ñ ,
ẼtÑ equals Ẽ and αt(i, j) = α(i, j).

The flow distribution constraints for state nodes are non-linear which is why the whole program is
not a linear program. The non-linear flow distribution constraints are needed to ensure a stationary
decision rule in the time expanded setting. However, in the static reformulation of this program the
non-linear constraint can be omitted such that the static reformulation is a linear program.

From every feasible solution of problem 3.9, a decision rule d can be defined such that the induced
flow of Zt under d∞ equals the feasible solution xti,j . This is shown in the next theorem:

Theorem 3.6.16 (Feasible solution of 3.9 characterizes decision rule):
Assume the time-extended flow network (Ñ t , Ẽt , β̃t , αt) of an associated graph of an SSO-MDP
and an initial distribution P1 of the starting state. Let xti,j, vti and δ(j) be a feasible solution of
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program 3.9 defined for that time-expanded network. Define a decision rule d ∈ DMR as

P{d(s) = a} :=



δ(j) for all i ∈ NS with ∃t ∈ N s.t.∑
k:(k,i)∈Ẽt−1

Ñ
xt−1
k,i > 0,

qs(a) arbitrary s.t.∑
a∈As qs(a) = 1, else
qs(a) ≥ 0,

for all a ∈ As where j = β̃(a) and i = β̃(s). Then,
1. the decision rule d ∈ DMR is well-defined,
2. Pd∞{Z1 = i} =

∑
k:(i,k)∈Ẽ x1

i,k,

3. Pd∞{Zt+1 = j, Zt = i} = xti,j, ∀(i, j) ∈ Ẽ, t ∈ N.

Proof. Let xti,j, vti and δ(j) be a feasible solution of program 3.9. Define a decision rule d ∈ DMR as
described in the theorem. Remember, for SSO-MDPs ẼtÑ = Ẽ for all t ∈ N.

1. First, it is shown that d is well-defined. For every s ∈ S, the decision rule d must specify a
probability distribution over the available actions in s. This means s = β̃−1(i)with

∃t ∈ N :
∑

k:(k,i)∈Ẽt−1
Ñ

xt−1
k,i > 0.

δmust satisfy: ∑
a∈As

δ(̃β(a)) = 1 ∧ δ(̃β(a)) ≥ 0, ∀a ∈ As, s ∈ S

such that d is well-defined. From the flow distribution equation of the program for state nodes,
it follows

δ(j) =
xti,j∑

k:(k,i)∈Ẽt−1
Ñ
xt−1
k,i
.

After Corollary 3.6.14, any time point t with ∑
k:(k,i)∈Ẽt−1

Ñ
xt−1
k,i > 0 yields to the same δ(j). The

non-negativity of δ follows directly from the non-negativity of xti,j .
By the definition of the edges in the flow network of an associated graph of an SSO-MDP, the
following equation holds:∑

a∈As
δ(̃β(a)) =

∑
j:(i,j)∈ẼtÑ

δ(j) =
∑
j:(i,j)∈Ẽ

δ(j), ∀t ∈ N.
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Using that xti,j satisfies the flow condition, it holds for i:

∑
j:(i,j)∈Ẽ

δ(j) =
∑
j:(i,j)∈Ẽ

©«
xti,j∑

k:(k,i)∈Ẽt−1
Ñ
xt−1
k,i

ª®¬
=

∑
j:(i,j)∈Ẽ

©«
xti,j∑

k:(i,k)∈ẼtÑ
xti,k

ª®¬
=

∑
j:(i,j)∈Ẽ xti,j∑
k:(i,k)∈Ẽ xti,k

= 1.

If there exists no t such that the incoming flow of a state node i greater zero, the decision rule
d is set to an arbitrary probability distribution over the available actions in β̃−1(i). So, d is well
defined in any state s.

It is now proven that Zt under d induces a flow that is equivalent to xti,j:

2. Z1 is distributed according to the initial start distribution P1. Due to the first inequality in the
program the following equation holds:

Pd
∞{Z1 = i} = P1(̃β−1(i)) Initial Cons.=

∑
k:(k,i)∈Ẽ0

Ñ

x0
k,i

Flow Cons.
=

∑
k:(i,k)∈Ẽ1

Ñ

x1
i,k =

∑
k:(i,k)∈Ẽ

x1
i,k.

3. By induction, it is shown that Pd∞{Zt+1 = j, Zt = i} = xti,j, ∀(i, j) ∈ Ẽ, t ∈ N.
Induction start: Let t = 1.

Case ∑
k:(k,i)∈Ẽ0

Ñ
x0
k,i > 0: Then due to the initial constraint, it holds that P1(̃β−1(i)) > 0 and

hence imust be a state node. From the definition of d it follows

Pd
∞{Z2 = j, Z1 = i} = P1(̃β−1(i)) · Pd∞{d(̃β−1(i)) = β̃−1(j)}

initial Cons.
=

©«
∑

k:(k,i)∈Ẽ0
Ñ

x0
k,i

ª®®¬ · δ(j)
flow distr. Cons.
= x1

i,j .

The last equality follows from the flow distribution equality for state nodes in the program.

Case ∑
k:(k,i)∈Ẽ0

Ñ
x0
k,i = 0: In this case, Pd∞{Z1 = i} = 0 because

0 =
∑

k:(k,i)∈Ẽ0
Ñ

x0
k,i = P1(̃β−1(i)) = Pd∞{Z1 = i}.
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From Pd∞{Z1 = i} = 0, it can be concluded that

Pd
∞{Z2 = j, Z1 = i} = 0

for all j ∈ Ñ , (i, j) ∈ Ẽ. So, it has to be shown that x1
i,j is zero for all j ∈ Ñ , (i, j) ∈ Ẽ. This is

obviously satisfied because of the flow distribution constraints: If i is a state node, it holds

0 = δ(j)
∑

k:(k,i)∈Ẽ0
Ñ

x0
k,i︸        ︷︷        ︸

=0

= x1
i,j, ∀(i, j) ∈ Ẽ1

Ñ , ∀δ(j) ∈ [0, 1].

If i is an action node, it holds

0 = α(i, j)
∑

k:(k,i)∈Ẽ0
Ñ

x0
k,i︸        ︷︷        ︸

=0

= x1
i,j, ∀(i, j) ∈ Ẽ1

Ñ , ∀α(i, j) ∈ [0, 1].

Induction Step: Assume for t − 1 ∈ N the induction hypothesis holds for all (i, j) ∈ Ẽ.
Case ∑

k:(k,i)∈Ẽt−1
Ñ
xt−1
k,i > 0: If i ∈ NS , it follows

Pd
∞{Zt+1 = j, Zt = i} = Pd

∞{Zt+1 = j | Zt = i} · Pd∞{Zt = i}
= Pd

∞{d(̃β−1(i)) = β̃−1(j)} ·
∑
k∈ÑA

Pd
∞{Zt = i, Zt−1 = k}

(IH )
= δ(j) · ©«

∑
k:(k,i)∈Ẽ

xt−1
k,i

ª®¬
= xti,j .

If i ∈ ÑA , it follows
Pd
∞{Zt+1 = j, Zt = i} = Pd

∞{Zt+1 = j | Zt = i} · Pd∞{Zt = i}
= p(̃β−1(j)|̃β−1(i)) ·

∑
k∈NS
Pd
∞{Zt = i, Zt−1 = k}

(IH )
= α(i, j) · ©«

∑
k:(k,i)∈Ẽ

xt−1
k,i

ª®¬
= xti,j .

Case ∑
k:(k,i)∈Ẽt−1

Ñ
xt−1
k,i = 0: The probability Pd∞{Zt = i} = 0, since

0 =
∑

k:(k,i)∈Ẽt−1
Ñ

xt−1
k,i
(IH )
=

∑
k:(k,i)∈Ẽ

Pd
∞{Zt = i, Zt−1 = k}.
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From Pd∞{Zt = i} = 0, it can be derived that

Pd
∞{Zt+1 = j, Zt = i} = 0

for all j ∈ Ñ , (i, j) ∈ Ẽ. So, it has to be shown that xti,j is zero for all j ∈ Ñ , (i, j) ∈ Ẽ. This is obviously
satisfied because of the flow distribution constraints: If i is a state node, it holds

0 = δ(j)
∑

k:(k,i)∈Ẽ
xt−1
k,i︸       ︷︷       ︸

=0

= xti,j, ∀(i, j) ∈ Ẽ, ∀δ(j) ∈ [0, 1].

If i is an action node, it holds

0 = α(i, j)
∑

k:(k,i)∈Ẽ
xt−1
k,i︸       ︷︷       ︸

=0

= xti,j, ∀(i, j) ∈ Ẽ, ∀α(i, j) ∈ [0, 1].

�

From the last theorem and the characterization of the value of a policy in an SSO-MDP, it can be
concluded that the objective value of a feasible solution of program 3.9 corresponds to the value of the
derived stationary policy in the SSO-MDP:

Corollary 3.6.17 (Objective value of a feasible solution):
Assume the time-extended flow network (Ñ t , Ẽt , β̃t , αt) of an associated graph of an SSO-MDP and
an initial distribution P1 of the starting state. Let xti,j, vti and δ(j) be a feasible solution of program 3.9
defined for that time-expanded network. Define a decision rule d ∈ DMR as in Theorem 3.6.16. It can be
concluded that the objective value of xti,j, vti and δ(j) in program 3.9 equals the value of the stationary
policy vd∞ under the initial distribution P1:∑

t∈N

∑
i∈NWS

vti =
∑
s∈S\W

vd∞(s) · P1(s) +
∑
s∈W
P1(s).

Proof. Let xti,j be a feasible solution of program 3.9. Then,∑
t∈N

∑
i∈NWS

vti

=
∑
t∈N

∑
i∈NWS

∑
j:(j,i)∈Ẽt−1

Ñ

xt−1
j,i

=
∑
t∈N

∑
i∈NWS

∑
j:(j,i)∈Ẽ

xtj,i +
∑
i∈NWS

∑
j:(j,i)∈Ẽ0

Ñ

x0
j,i

Thm. 3.6.16
=

∑
t∈N

∑
i∈NWS

∑
j:(j,i)∈Ẽ

Pd
∞{Zt+1 = i, Zt = j} +

∑
i∈NWS

P1(̃β−1(i))

Def. (Ñt ,Ẽ)
=

∞∑
t=2
Pd
∞{Zt+1 ∈ NWS , Zt−1 < NWS } +

∑
i∈NWS

P1(̃β−1(i))
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t odd
=

∞∑
t=2
Pd
∞{Z2t−3 < NWS , Z2t−1 ∈ NWS } +

∑
i∈NWS

P1(̃β−1(i))

=
∑

i∈Ñ\NWS : P1 (̃β−1(i))>0

( ∞∑
t=2
Pd
∞{Z2t−3 < NWS , Z2t−1 ∈ NWS | Z1 = i} · Pd∞{Z1 = i}

)
+

∑
i∈NWS

P1(̃β−1(i))

Prop. 3.6.6
=

∑
s∈S\W

vd∞(s) · P1(s) +
∑
i∈W
P1(s).

�

Even if it is not possible to implement program 3.9 due to its infinite number of inequalities and
variables, the formulation for the example problem is stated in the example below:

Example 3.5 (Time expanded formulation):
Consider the time-expanded graph of Figure 3.6, which is associated with the SSO-MDP of Exam-
ple 3.2. Assume the initial distribution P1(̃β−1(1)) = 1. The time-expanded maximum flow formula-
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tion for this example is:

max
∑
t∈N vt4
x0
s,1 = 1,
x0
s,2 = 0,
x0
s,3 = 0,
x0
s,4 = 0,

x1
1,2 − x0

s,1 = 0,
xt1,2 − xt−1

2,1 = 0, ∀t ∈ N≥2,
x1

2,1 + x1
2,3 + x1

2,4 − x0
s,2 = 0,

xt2,1 + xt2,3 + xt2,4 − xt−1
1,2 = 0, ∀t ∈ N≥2,
−x0
s,3 = −v1

3,
−xt−1

2,3 = −vt3, ∀t ∈ N≥2,
−x0
s,4 = −v1

4,
−xt−1

2,4 = −vt4, ∀t ∈ N≥2,
x1

2,1 − 0.6 · x0
s,2 = 0,

xt2,1 − 0.6 · xt−1
1,2 = 0, ∀t ∈ N≥2,

x1
2,3 − 0.2 · x0

s,2 = 0,
xt2,3 − 0.2 · xt−1

1,2 = 0, ∀t ∈ N≥2,
x1

2,4 − 0.2 · x0
s,2 = 0,

xt2,4 − 0.2 · xt−1
1,2 = 0, ∀t ∈ N≥2,

x1
1,2 − δ(2) · x0

s,1 = 0,
xt1,2 − δ(2) · xt−1

2,1 = 0, ∀t ∈ N≥2,
x0
s,2, x0

s,1, x0
s,3, x0

s,4 ≥ 0,
xt1,2, xt2,1, xt2,3, xt2,4 ≥ 0, ∀t ∈ N.

(3.10)

∗
The goal is now to find a formulation that is easier to handle than the time-expanded maximum

flow formulation. First, a linear program is derived from the last formulation. After it has been refined
and it will be proven that the linear program determines an optimal decision rule of the SSO-MDP.

Consider program 3.9 and sum for each i ∈ Ñ \{NWS ∪NLS } over the initial distribution constraint
and all flow constraints:∑

j:(j,i)∈Ẽ0
Ñ

x0
j,i +

∑
t∈N

©«
∑

j:(i,j)∈ẼtÑ

xti,j −
∑

j:(j,i)∈Ẽt−1
Ñ

xt−1
j,i

ª®®¬ = P1(̃β−1(i)).

The sum can be rearranged and ẼtÑ = Ẽ, ∀t ∈ N can be used such that∑
j:(i,j)∈Ẽ

∑
t∈N
xti,j −

∑
j:(j,i)∈Ẽ

∑
t∈N
xtj,i = P1(̃β−1(i)).
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Define xi,j :=
∑
t∈N xti,j and replace

∑
t∈N xti,j by xi,j . I called the result the aggregated flow constraint∑

j:(i,j)∈Ẽ
xi,j −

∑
j:(j,i)∈Ẽ

xj,i = P1(̃β−1(i)), ∀i ∈ Ñ \ {NWS ∪NLS }.

For the nodes i ∈ NWS ∪NLS , the sum over all flow constraints can be computed as∑
j:(j,i)∈Ẽ0

Ñ

x0
j,i +

∑
t∈N

∑
j:(j,i)∈Ẽt−1

Ñ

xt−1
j,i = P1(̃β−1(i)) +

∑
t∈N
vti

⇔ 2 ·
∑

j:(j,i)∈Ẽ0
Ñ

x0
j,i +

∑
t∈N

∑
j:(j,i)∈Ẽ

xtj,i = P1(̃β−1(i)) +
∑
t∈N
vti

⇔
∑
t∈N

∑
j:(j,i)∈Ẽ

xtj,i =
∑
t∈N
vti −

∑
j:(j,i)∈Ẽ0

Ñ

x0
j,i

⇔
∑
t∈N

∑
j:(j,i)∈Ẽ

xtj,i =
∞∑
t=2
vti .

If again
∑
t∈N xti,j is replaced by xi,j and vi is defined by

∑∞
t=2 vti , the resulting aggregated flow constraints

of winning or losing nodes are

−
∑
j:(j,i)∈Ẽ

xj,i = −vi, ∀i ∈ NWS ∪NLS .

Also, for each i ∈ Ñ the sum over all flow distribution equalities is:

∑
t∈N
xti,j −

∑
t∈N

©«α(i, j)
∑

k:(k,i)∈Ẽt−1
Ñ

xt−1
k,i

ª®®¬ = 0, ∀(i, j) ∈ Ẽ, i ∈ ÑA,

∑
t∈N
xti,j −

∑
t∈N

©«δ(j)
∑

k:(k,i)∈Ẽt−1
Ñ

xt−1
k,i

ª®®¬ = 0, ∀(i, j) ∈ Ẽ, i ∈ NS .

Since α(i, j) and δ(j) are stationary, they can be excluded from the sum and
∑
t∈N xti,j can be replaced by

xi,j:

xi,j − α(i, j) ©«
∑

k:(k,i)∈Ẽ
xk,i + P1(̃β−1(i))ª®¬ = 0, ∀(i, j) ∈ Ẽ, i ∈ ÑA,

xi,j − δ(j) ©«
∑

k:(k,i)∈Ẽ
xk,i + P1(̃β−1(i))ª®¬ = 0, ∀(i, j) ∈ Ẽ, i ∈ NS .
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The resulting program is

max
∑
i∈NWS vi +

∑
i∈NWS P1(̃β−1(i))∑

j:(i,j)∈Ẽ xi,j −
∑
j:(j,i)∈Ẽ xj,i = P1(̃β−1(i)), ∀i ∈ Ñ \ {NWS ∪NLS },

−∑
j:(j,i)∈Ẽ xj,i = −vi, ∀i ∈ NWS ∪NLS ,

xi,j − α(i, j)
(∑
k:(k,i)∈Ẽ xk,i + P1(̃β−1(i))

)
= 0, ∀(i, j) ∈ Ẽ, i ∈ ÑA

xi,j − δ(j)
(∑
k:(k,i)∈Ẽ xk,i + P1(̃β−1(i))

)
= 0, ∀(i, j) ∈ Ẽ, i ∈ NS

xi,j ≥ 0, ∀(i, j) ∈ Ẽ.

(3.11)

This program can be simplified by deleting redundant variables and constraints. After having
developed the final program, the relation between both programs will be investigated in detail.

First, for all i ∈ ÑA the initial distribution P1(̃β−1(i)) is zero, because P1 is a distribution over states.
Furthermore, since the edge weights α are set to the transition probabilities, they define a probability
distribution over the outgoing edges of an action node. Therefore, the flow condition in an action node
is always satisfied: ∑

j:(i,j)∈Ẽ
xi,j −

∑
j:(j,i)∈Ẽ

xj,i

=
∑
j:(i,j)∈Ẽ

α(i, j) ©«
∑

k:(k,i)∈Ẽ
xk,i + P1(̃β−1(i))ª®¬ −

∑
j:(j,i)∈Ẽ

xj,i

=
∑

k:(k,i)∈Ẽ
xk,i + P1(̃β−1(i)) −

∑
j:(j,i)∈Ẽ

xj,i

= P1(̃β−1(i)), ∀i ∈ ÑA .

Furthermore, this program can be simplified by inserting xj,i = α(j, i)
∑
k:(k,j)∈Ẽ xk,j for j ∈ ÑA in the

flow conditions at a state node i. After this transformation all xi,j with i ∈ ÑA are eliminated in the
program and these variables are not needed any more.

Also, the variables δ(j) and the corresponding equation can be removed from the program. This
makes the aggregated program a linear program. In the time-expanded version, δ(j)was necessary to
ensure a stationary policy. In the static program, there is no time dependence any more. Because of the
flow condition, we can compute from any partition of the incoming flow in a state node a stationary
decision rule. It will soon be established that a policy directly determined from xi,j satisfies our needs.

Because P1(̃β−1(i)) is a parameter of the SSO-MDP and not a variable, this constant term can be
removed from the objective function. The resulting optimal solution will not change. However, it must
be kept in mind that the objective value of the optimal solution in the refined program differs by this
constant from the original value.

It would also be possible to eliminate the vi for i ∈ NLS and the corresponding equations. How-
ever, it is an easy check of the parameters if we can convince ourselves that for a feasible solution∑
i∈NWS ∪NLS vi = 1 holds. The refined static linear program is:
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Definition 3.6.18 (Static Maximum Flow Problem for SSO-MDPs).
The static maximum flow problem of a flow network (Ñ , Ẽ, β̃, α) of an SSO-MDP and an initial dis-
tribution P1 of the starting state is defined as

max
∑
i∈NWS vi∑

j:(i,j)∈Ẽ xi,j −
∑
j:(j,i)∈Ẽ α(j, i)

∑
k:(k,j)∈Ẽ xk,j = P1(̃β−1(i)), ∀i ∈ NS \ {NWS ∪NLS }

−∑
j:(j,i)∈Ẽ α(j, i)

∑
k:(k,j)∈Ẽ xk,j = −vi, ∀i ∈ NWS ∪NLS

xi,j ≥ 0, ∀(i, j) ∈ Ẽ, i ∈ NS .

(3.12)

In the following, it will be examined how the refined static maximum flow problem 3.12 is related
to the time-dependent maximum flow problem 3.9. Even if the static maximum flow problem 3.12 is
derived by equivalence transformations from the time-dependent maximum flow problem 3.9, it should
be shown that for every feasible solution of the time-expanded program there exists a feasible solution
of the static program.

Proposition 3.6.19:
Assume the flow network (Ñ , Ẽ, β̃, α) of an associated graph of an SSO-MDP and an initial distribution
P1 of the starting state. Let

{xti,j, (i, j) ∈ ẼtÑ , t ∈ N0},
{δ(j), j ∈ ÑA},
{vti , i ∈ NWS ∪NLS , t ∈ N},

be feasible for 3.9,

where 3.9 is defined for the time-expanded flow network of (Ñ , Ẽ, β̃, α). Then,{
xi,j :=

∑
t∈N xti,j, (i, j) ∈ Ẽ, i ∈ NS

}
,{

vi :=
∑∞
t=2 vti , i ∈ NWS ∪NLS

}
,

is feasible for 3.12

defined for (Ñ , Ẽ, β̃, α) and ∑
t∈N

∑
i∈NWS v

t
i =

∑
i∈NWS vi +

∑
i∈NWS P1(̃β−1(i)).

Proof. Assume xti,j, δ(j) and vti are feasible for 3.9 and define xi,j and vi as described in the Proposition.
It has to be shown that xi,j is feasible for the linear program 3.12 defined for (Ñ , Ẽ, β̃, α). Since xti,j ≥ 0
holds, xi,j is also non-negative. The following equations show that xi,j satisfies the flow constraints for
i ∈ NS \ {NWS ∪NLS }: ∑

j:(i,j)∈Ẽ
xi,j −

∑
j:(j,i)∈Ẽ

α(j, i)
∑

k:(k,j)∈Ẽ
xk,j

Def.
=

∑
j:(i,j)∈Ẽ

∑
t∈N
xti,j −

∑
j:(j,i)∈Ẽ

α(j, i)
∑

k:(k,j)∈Ẽ

∑
t∈N
xtk,j
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=
∑
j:(i,j)∈Ẽ

∑
t∈N
xti,j −

∑
j:(j,i)∈Ẽ

∑
t∈N
α(j, i)

∑
k:(k,j)∈Ẽ

xtk,j

Flow distr.3.9
=

∑
j:(i,j)∈Ẽ

∑
t∈N
xti,j −

∑
j:(j,i)∈Ẽ

∑
t∈N
xt+1
j,i

=
∑
j:(i,j)∈Ẽ

∞∑
t=1
xti,j −

∑
j:(j,i)∈Ẽ

∞∑
t=2
xtj,i

=
∑
j:(i,j)∈Ẽ

x1
i,j +

∑
j:(i,j)∈Ẽ

x2
i,j︸    ︷︷    ︸

=0

+
∑
j:(i,j)∈Ẽ

∞∑
t=3
xti,j −

∑
j:(j,i)∈Ẽ

∞∑
t=2
xtj,i (3.13)

= P1(̃β−1(i)) + lim
N→∞

©«
N∑
t=3

©«
∑
j:(i,j)∈Ẽ

xti,j −
∑
j:(j,i)∈Ẽ

xt−1
j,i

ª®¬ +
∑
j:(j,i)∈Ẽ

xNj,i
ª®¬

= P1(̃β−1(i)) + lim
N→∞

∑
j:(j,i)∈Ẽ

xNj,i .

In Equation 3.13, it was used that∑
j:(i,j)∈Ẽ

x1
i,j

Flow cons.3.9
=

∑
j:(j,i)∈Ẽ0

Ñ

x0
j,i = P1(̃β−1(i))

and that ∑
j:(i,j)∈Ẽ

x2
i,j =

∑
j:(j,i)∈Ẽ

x1
j,i

=
∑
j:(j,i)∈Ẽ

α(j, i) ·
∑

k:(k,j)∈Ẽ0
Ñ

x0
k,j

=
∑
j:(j,i)∈Ẽ

α(j, i) · P1(̃β−1(j))

j∈ÑA
= 0.

From the last equation, it can be seen that xi,j satisfies the flow constraint if and only if

lim
t→∞

∑
j:(j,i)∈Ẽ

xtj,i = 0, ∀i ∈ NS \ {NWS ∪NLS }.

Fortunately, this property is always satisfied by SSO-MDPs since

lim
t→∞

∑
j:(j,i)∈Ẽ

xtj,i = lim
t→∞

∑
j:(j,i)∈Ẽ

Pd
∞{Zt+1 = j, Zt = i}
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where d is derived from the feasible solution of problem 3.9 as described in Theorem 3.6.16. Every
policy in an SSO-MDP is proper, which means that the stochastic process reaches with a probability
of one in an absorbing state and the probability for a transition at time point t from i to j converges to
zero for t →∞. Therefore, it is known that

lim
t→∞

∑
j:(j,i)∈Ẽ

Pd
∞{Zt+1 = j, Zt = i} = 0, ∀d ∈ DMR.

Observe, that the edge set Ẽ of formulation 3.9 does not contain the artificial edges at the absorbing
nodes. So, xi,j derived from xti,j satisfies the flow constraints of the static maximum flow problem 3.12
for i ∈ NS \ {NWS ∪NLS }. It has to be shown that the flow constraint is also satisfied by the defined
vi and xi,j at nodes i ∈ NWS ∪NLS .

vi Def.
=

∞∑
t=2
vti

Flow cons. of 3.9
=

∞∑
t=2

∑
j:(j,i)∈Ẽt−1

Ñ

xt−1
j,i

=
∑
j:(j,i)∈Ẽ

∞∑
t=1
xtj,i

=
∑
j:(j,i)∈Ẽ

∞∑
t=2
xtj,i +

∑
j:(j,i)∈Ẽ

x1
j,i

Flow distr. in 3.9
=

∑
j:(j,i)∈Ẽ

∞∑
t=2
xtj,i +

∑
j:(j,i)∈Ẽ

α(j, i) ·
∑

k:(k,j)∈Ẽ0
Ñ

x0
k,j

Flow cons. of 3.9
=

∑
j:(j,i)∈Ẽ

∞∑
t=2
xtj,i +

∑
j:(j,i)∈Ẽ

α(j, i) · P1(̃β−1(j))︸     ︷︷     ︸
=0

j∈ÑA
=

∑
j:(j,i)∈Ẽ

∞∑
t=2
xtj,i

=
∑
j:(j,i)∈Ẽ

∑
t∈N
xt+1
j,i

=
∑
j:(j,i)∈Ẽ

α(j, i)
∑

k:(k,j)∈Ẽ

∑
t∈N
xtk,j

=
∑
j:(j,i)∈Ẽ

α(j, i)
∑

k:(k,j)∈Ẽ
xk,j .

Finally, it is shown that for those pairs of feasible solutions the objective function values differ
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exactly by the constant
∑
i∈NWS P1(̃β−1(i)):

∑
t∈N

∑
i∈NWS

vti =
∞∑
t=2

∑
i∈NWS

vti +
∑
i∈NWS

v1
i

=
∑
i∈NWS

vi +
∑
i∈NWS

∑
j:(j,i)∈Ẽ0

Ñ

x0
j,i

=
∑
i∈NWS

vi +
∑
i∈NWS

P1(̃β−1(i)). �

The subsequent Example 3.6 shows that if there are non-proper policies Proposition 3.6.19 does not
hold.
Example 3.6:
Figure 3.7 shows a modified version of Example 3.2 which is no SSO-MDP any more. Assume that
P1(s1) = 1. Then, a feasible solution of the time-expanded maximum flow problem is:

x0
s,1 = 1, x0

s,2 = 0, x0
s,3 = 0, x0

s,4 = 0,
x2t+1

1,2 = 1, x2t
2,1 = 1, ∀t ∈ N0,
δ(2) = 1,

vt3 = vt4 = 0, ∀t ∈ N.
However, the static maximum flow problem is

max v4

x1,2 − 1 · x1,2 = 1,
0 = −v3,
0 = −v4,
x1,2 ≥ 0.

(3.14)

It has no solution since x1,2 − 1 · x1,2 = 0 , 1. ∗

The goal of this subsection is to determine whether the static maximum flow problem can be used
to find an optimal decision rule for a given SSO-MDP. So, it is interesting to investigate whether a
time-dependent solution feasible for the time-dependent maximum flow problem can be derived from
a feasible solution of the static maximum flow problem with the same objective value – except for a
constant. This is more or less the inverse statement of the previous theorem.

From the static solution, a time-dependent solution can be calculated by starting with the given
start distribution and distributing the flow according to the distribution of the static solution. Since
every policy in an SSO-MDP is proper, every node is connected to an absorbing node. Therefore, only a
fraction smaller 1 of a flow entering a circle may stay in that circle. This property is important such that
the sum of all xti,j , t ∈ N converges to the static solution xi,j and the objective values of both solutions
differ only by

∑
i∈NWS P1(̃β−1(i)).
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1

2

3 4

1 1

β(s1) = 1

β(a1) = 2

β(l) = 3 β(w) = 4

i state node

j action node

w winning node

l losing node

edge e
α(e) edge weight α(e)

Figure 3.7: Flow network example of an SSO-MDP

Proposition 3.6.20:
Assume the flow network (Ñ , Ẽ, β̃, α) of an associated graph of an SSO-MDP and an initial distribution
P1 of the starting state. Let

{xi,j, (i, j) ∈ Ẽ, i ∈ NS},
{vi, i ∈ NWS ∪NLS }

be feasible for 3.12,

where 3.12 is defined for (Ñ , Ẽ, β̃, α). Define

δ(j) :=



xi,j∑
k:(i,k)∈Ẽ xi,k

for all (i, j) ∈ Ẽ, i ∈ NS with∑
k:(i,k)∈Ẽ xi,k > 0,

arbitrary s.t. else.∑
j:(i,j)∈Ẽ δ(j) = 1, δ(j) ≥ 0∑

j:(j,i)∈Ẽ0
Ñ

x0
j,i := P1(̃β−1(i)), ∀i ∈ NS,

xti,j :=

α(i, j) ·∑k:(k,i)∈Ẽt−1

Ñ
xt−1
k,i , ∀(i, j) ∈ Ẽ, i ∈ ÑA, t ∈ N,

δ(j) ·∑k:(k,i)∈Ẽt−1
Ñ
xt−1
k,i , ∀(i, j) ∈ Ẽ, i ∈ NS, t ∈ N.

vti :=
∑

j:(j,i)∈Ẽt−1
Ñ

xt−1
j,i , ∀i ∈ NWS ∪NLS , t ∈ N.
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Then, xti,j, δ(j) and vti are feasible for 3.9 defined for the time-expanded flow network of (Ñ , Ẽ, β̃, α) and∑
t∈N

∑
i∈NWS

vti =
∑
i∈NWS

vi +
∑
i∈NWS

P1(̃β−1(i)).

Proof. Let xi,j and vi be feasible for 3.12 and define xti,j , δ(j) and vti as described in the proposition.
First, it is shown that δ(j) specifies a probability distribution over all j with (i, j) ∈ Ẽ = ẼtÑ , t ∈ N

for a fixed i ∈ NS . Consider a state node i ∈ NS with
∑
k:(k,i)∈Ẽ xk,i > 0. As xi,j ≥ 0 holds, the

non-negativity of δ(j) is given. Furthermore,∑
j:(i,j)∈Ẽ

δ(j) =
∑
j:(i,j)∈Ẽ

xi,j∑
k:(i,k)∈Ẽ xi,k

=

∑
j:(i,j)∈Ẽ xi,j∑
k:(i,k)∈Ẽ xi,k

= 1

holds. In all other state nodes i ∈ NS , δ is set to an arbitrary probability distribution over the outgoing
edges (i, j) ∈ Ẽ.

It needs to be checked that xti,j satisfies the flow conditions of 3.9. The flow distribution constraints
of 3.9 are obviously satisfied by the definition of xti,j in the proposition. For i ∈ ÑA, t ∈ N, it holds:

∑
j:(i,j)∈Ẽ

xti,j
Def. xti,j
=

∑
j:(i,j)∈Ẽ

©«α(i, j) ·
∑

k:(k,i)∈Ẽt−1
Ñ

xt−1
k,i

ª®®¬
=

©«
∑
j:(i,j)∈Ẽ

α(i, j)ª®¬ ·
©«

∑
k:(k,i)∈Ẽt−1

Ñ

xt−1
k,i

ª®®¬
=

∑
k:(k,i)∈Ẽt−1

Ñ

xt−1
k,i .

And for i ∈ NS analogous transformations are possible as it was shown that δ(j) specifies a probability
distribution over all j with (i, j) ∈ Ẽ for a fixed i ∈ NS .

It remains to show that the objective values of those pairs of corresponding solutions are identical.
If it can be shown that ∑

t∈N

∑
j:(i,j)∈Ẽ

xti,j =
∑
j:(i,j)∈Ẽ

xi,j, i ∈ NS, (3.15)

this can be used to show that the objective functions are identical up to the constant
∑
i∈NWS P1(̃β−1(i)):∑

t∈N

∑
i∈NWS

vti −
∑
i∈NWS

P1(̃β−1(i)) (3.16)

Def.vti
=

∑
t∈N

∑
i∈NWS

∑
j:(j,i)∈Ẽt−1

Ñ

xt−1
j,i −

∑
i∈NWS

∑
j:(j,i)∈Ẽ0

Ñ

x0
j,i
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=
∑
i∈NWS

∑
j:(j,i)∈Ẽ

∞∑
t=1
xtj,i

Def. xt
=

∑
i∈NWS

∑
j:(j,i)∈Ẽ

∞∑
t=1
α(j, i)

∑
k:(k,j)∈Ẽt−1

Ñ

xt−1
k,j

=
∑
i∈NWS

∑
j:(j,i)∈Ẽ

α(j, i) ·

©«
∞∑
t=1

∑
k:(k,j)∈ẼtÑ

xtk,j +
∑

k:(k,j)∈Ẽ0
Ñ

x0
k,j︸        ︷︷        ︸

=0

ª®®®®®®®®¬
(3.17)

Def. xtk,j
=

∑
i∈NWS

∑
j:(j,i)∈Ẽ

α(j, i) ·
©«
∞∑
t=1

∑
k:(k,j)∈Ẽ

©«δ(j) ·
∑

l:(l,k)∈Ẽt−1
Ñ

xt−1
l,k

ª®®¬
ª®®¬

Flow cons. 3.9
=

∑
i∈NWS

∑
j:(j,i)∈Ẽ

α(j, i) · ©«
∞∑
t=1

∑
k:(k,j)∈Ẽ

©«δ(j) ·
∑

l:(k,l)∈Ẽ
xtk,l

ª®¬ª®¬
=

∑
i∈NWS

∑
j:(j,i)∈Ẽ

α(j, i) ·
∑

k:(k,j)∈Ẽ

©«δ(j) ·
∞∑
t=1

∑
l:(k,l)∈Ẽ

xtk,l
ª®¬ (3.18)

Equ. 3.15
=

∑
i∈NWS

∑
j:(j,i)∈Ẽ

α(j, i) ·
∑

k:(k,j)∈Ẽ

©«δ(j) ·
∑

l:(k,l)∈Ẽ
xk,lª®¬

Def. δ(j)
=

∑
i∈NWS

∑
j:(j,i)∈Ẽ

α(j, i) ·
∑

k:(k,j)∈Ẽ,with ∑
l:(k,l)∈Ẽ xk,l>0

©«
xk,j∑

l:(k,l)∈Ẽ xk,l
·

∑
l:(k,l)∈Ẽ

xk,lª®¬
=

∑
i∈NWS

∑
j:(j,i)∈Ẽ

α(j, i) ·
∑

k:(k,j)∈Ẽ
xk,j

x feasible
=

∑
i∈NWS

vi.

In Equation 3.17, it was used that jmust be an actionnode, if i is a state node and (i, j) is an edge in Ẽ. As
the distribution of the starting state is a distribution only over states, it holdsP1(̃β−1(j)) = 0,∀j ∈ ÑA .
In Equation 3.18, k is a state node and∑

t∈N
∑
l:(k,l)∈Ẽ xk,l can be substituted by

∑
l:(k,l)∈Ẽ xk,l .

So, it remains to show Equation 3.15. First, assume an acyclic static flow network and prove the
statement by induction over a topological ordering of the state nodes. As a forward reference to the
next Section, there always exists an equivalent acyclic representation of an SSO-MDP. Afterwards,
Equation 3.15 is proven for static flow networks that contain circles.

Assume that the associated flow network (Ñ , Ẽ, β̃, α) of the SSO-MDP is acyclic. Let (i1, . . . , in)
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be a topological ordering of the state nodes such that for all paths i− j− i′ = ((i, j), (j, i′)) that connect
two state nodes i, i′ ∈ NS the node i is a predecessor of i′ in the topological ordering. Observe that
in paths of an associated graph of an SSO-MDP, there always exists an action node between two state
nodes. In the example path j is an action node.

Equation 3.15 is proven by induction over the topological ordering (i1, . . . , in).
Induction start: For i1, the set of predecessors {i | ∃ j ∈ ÑA, (i, j) ∈ Ẽ, t ∈ N, (j, i1) ∈ Ẽ} is

empty. Together with the feasibility of xi,j for the static flow constraint, it holds∑
j:(i1,j)∈Ẽ

xi1,j
feas.
= P1(̃β−1(i1)) +

∑
j:(j,i1)∈Ẽ

α(j, i1)
∑

k:(k,j)∈Ẽ
xk,j︸      ︷︷      ︸

=0

= P1(̃β−1(i1)).

The feasibility of xti,j for the flow constraints of the time-expandedmaximum flow formulation is used
and that

∑
k:(k,j)∈Ẽ0

Ñ
x0
k,j = P1(̃β−1(j)) = 0 is satisfied for action nodes j. This leads to

∑
t∈N

∑
j:(i1,j)∈Ẽ

xti1,j
Flow cons. 3.9
=

∑
t∈N

∑
j:(j,i1)∈Ẽt−1

Ñ

xt−1
j,i1

=
∑
t∈N

∑
j:(j,i1)∈Ẽ

xtj,i1 +
∑

j:(j,i1)∈Ẽ0
Ñ

x0
j,i1

Def.xti,j
=

∑
j:(j,i1)∈Ẽ

α(j, i1)

©«
∑
t∈N

∑
k:(k,j)∈Ẽ

xtk,j︸      ︷︷      ︸
=0

+
∑

k:(k,j)∈Ẽ0
Ñ

x0
k,j︸        ︷︷        ︸

=0

ª®®®®®®®®¬
+ P1(̃β−1(i1))

i1no Pred.
= P1(̃β−1(i1)).

So, the induction hypothesis holds for i1.
Induction hypothesis: Assume for all predecessors of ik Equation 3.15 holds.
Induction step: Then, ∑

t∈N

∑
j:(ik,j)∈Ẽ

xtik,j

Flow cons. 3.9
=

∑
t∈N

∑
j:(j,ik)∈Ẽt−1

Ñ

xt−1
j,ik

=
∑
t∈N

∑
j:(j,ik)∈Ẽ

xtj,ik +
∑

j:(j,ik)∈Ẽ0
Ñ

x0
j,ik
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Def. xti,j
=

∑
j:(j,ik)∈Ẽ

α(j, ik)

©«
∑
t∈N

∑
k:(k,j)∈Ẽ

xtk,j +
∑

k:(k,j)∈Ẽ0
Ñ

x0
k,j︸        ︷︷        ︸

=0

ª®®®®®®®®¬
+ P1(̃β−1(ik)) (3.19)

(IH)
=

∑
j:(j,ik)∈Ẽ

α(j, ik)
∑

k:(k,j)∈Ẽ
xk,j + P1(̃β−1(ik)).

In Equation 3.19, it was used again that j is an action node andP1(̃β−1(j)) = 0, ∀j ∈ ÑA . Also, the same
transformation need to be applied as in Equation 3.17 to apply Equation 3.15. The induction hypothesis
can be applied since k is a state node and a predecessor of ik.

Equation 3.15 holds also for flow networks that contain circles. Let

C = (i1, j2, i3, . . . , jk, i1)

be an elementary circle in the flow network of an SSO-MDP. For a better understanding of the idea
and not getting lost in the notation, some assumptions on the circle are made. At the end of the proof,
it will be argued why this proof applies also to generalized circles. Assume that only node i1 has an
incoming edge from a node not contained in the circle and that i1 is the only state node of the circle
for which P (̃β−1(i1)) > 0 holds. Furthermore, let pC be the circle path i1 − j2 − . . . − jk − i1 and α(pC )
the product δ(j2) · α(j2, i3) · . . . · δ(jk) · α(jk, i1). And assume for a simpler notation that i ∈ C is only
connected to i1 via a the circle path of C .

Due to the assumption P (̃β−1(i1)) > 0, for each state node i of the circle∑
k:(i,k)∈Ẽ xi,k > 0 holds

and δ(j) is therefore for all state nodes of the circle defined as the fraction of flow that goes along the
edge (i, j), which will be use at some point in the proof.

Under the made assumptions, the following holds:∑
t∈N

∑
j:(i1,j)∈Ẽ

xti1,j

Flow cons. 3.9
=

∑
t∈N

∑
j:(j,i1)∈Ẽt−1

Ñ

xt−1
j,i1

=
∑
t∈N

∑
j:(j,i1)∈Ẽ

xtj,i1 +
∑

j:(j,i1)∈Ẽ0
Ñ

x0
j,i1

Def. xti,j
=

∑
j:(j,i1)∈Ẽ

α(j, i1)

©«
∑
t∈N

∑
k:(k,j)∈Ẽ

xtk,j +
∑

k:(k,j)∈Ẽ0
Ñ

x0
k,j︸        ︷︷        ︸

=0

ª®®®®®®®®¬
+ P1(̃β−1(i1))
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j∈ÑA
=

∑
j:(j,i1)∈Ẽ

α(j, i1) ©«
∑
t∈N

∑
k:(k,j)∈Ẽ

xtk,j
ª®¬ + P1(̃β−1(i1))

=
∑

j:(j,i1)∈Ẽ
α(j, i1) ©«

∑
t∈N

∑
k:(k,j)∈Ẽ,k∈C

xtk,j +
∑
t∈N

∑
k:(k,j)∈Ẽ,k<C

xtk,j
ª®¬ + P1(̃β−1(i1))

Ass. C
= α(jk, i1)

∑
t∈N
·xtik−1,jk +

∑
j:(j,i1)∈Ẽ

α(j, i1) ©«
∑
t∈N

∑
k:(k,j)∈Ẽ,k<C

xtk,j
ª®¬ + P1(̃β−1(i1))

Def. xti,j
= α(jk, i1) ·

∑
t∈N
xtik−1,jk +

∑
j:(j,i1)∈Ẽ

α(j, i1)
©«
∑
t∈N

∑
k:(k,j)∈Ẽ,k<C

δ(j)
∑

r:(r,k)∈Ẽt−1
Ñ

xt−1
r,k

ª®®¬ + P1(̃β−1(i1))

Flow cons. 3.9
= α(jk, i1) ·

∑
t∈N
xtik−1,jk +

∑
j:(j,i1)∈Ẽ

α(j, i1) ©«
∑

k:(k,j)∈Ẽ,k<C
δ(j)

∑
t∈N

∑
r:(k,r)∈Ẽ

xtk,r
ª®¬ + P1(̃β−1(i1))

(IH)
= α(jk, i1) ·

∑
t∈N
xtik−1,jk +

∑
j:(j,i1)∈Ẽ

α(j, i1) ©«
∑

k:(k,j)∈Ẽ,k<C
δ(j)

∑
r:(k,r)∈Ẽ

xk,rª®¬ + P1(̃β−1(i1))︸                                                                   ︷︷                                                                   ︸
=:K

Def. xti,j
= α(jk, i1) ·

∑
t∈N
δ(jk)

∑
j:(j,ik−1)∈Ẽt−1

Ñ

xt−1
j,ik−1
+ K

Ass. C
= α(jk, i1) · δ(jk) ·

∑
t∈N
xtjk−2,ik−1

+ K (3.20)

= α(jk, i1) · δ(jk) · . . . · α(j2, i3) ·
∑
t∈N
xti1,j2 + K

= α(jk, i1) · δ(jk) · . . . · α(j2, i3)δ(j2) ·
∑
t∈N

∑
j:(j,i1)∈Ẽt−1

Ñ

xt−1
j,i1 + K

Flow cons. 3.9
= α(pC ) ·

∑
t∈N

∑
j:(i1,j)∈Ẽ

xti1,j + K

In Equation 3.20, the assumption that all state nodes i ∈ C, i , i1 do not have any incoming edge
from outside the circle and the assumption that there exists a unique path between the nodes of the
circle were used.

Altogether, a recursive equation for
∑
t∈N

∑
j:(i1,j)∈Ẽ x

t
i1,j was found. Observe that α(pC ) < 1 holds

since we face an SSO-MDP. So, the geometric sum can be applied to evaluate an infinite application of
this recursive equation: ∑

t∈N

∑
j:(i1,j)∈Ẽ

xti1,j
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= K + α(pC ) ·
∑
t∈N

∑
j:(i1,j)∈Ẽ

xti1,j

= K + α(pC ) · ©«K + α(pC ) ·
∑
t∈N

∑
j:(i1,j)∈Ẽ

xti1,j
ª®¬

= K ·
∞∑
k=0

α(pC )k

Geom. series
= K · 1

1 − α(pC )
For the right side

∑
j:(i1,j)∈Ẽ xi1,j of Equation 3.15, which is currently proved, it holds∑

j:(i1,j)∈Ẽ
xi1,j

Flow cons. 3.12
= P1(̃β−1(i1)) +

∑
j:(j,i1)∈Ẽ

α(j, i1)
∑

k:(k,j)∈Ẽ
xk,j

= P1(̃β−1(i1)) +
∑

j:(j,i1)∈Ẽ
α(j, i1)

∑
k:(k,j)∈Ẽ,k<C

xk,j︸                                                ︷︷                                                ︸
=:K ′

+
∑

j:(j,i1)∈Ẽ
α(j, i1)

∑
k:(k,j)∈Ẽ,k∈C

xk,j

= K ′ +
∑

j:(j,i1)∈Ẽ
α(j, i1)

∑
k:(k,j)∈Ẽ,k∈C

xk,j

Ass. C
= K ′ + α(jk, i1) · xik−1,jk

mult. by 1
= K ′ + α(jk, i1) ·

xik−1,jk∑
j:(ik−1,j)∈Ẽ xik−1,j

·
∑

j:(ik−1,j)∈Ẽ
xik−1,j

Def. δ(j)
= K ′ + α(jk, i1) · δ(jk) ·

∑
j:(ik−1,j)∈Ẽ

xik−1,j

= K ′ + α(jk, i1) · δ(jk) · . . . · δ(j2)
∑

j:(i1,j)∈Ẽ
xi1,j

= K ′ + α(pC ) ·
∑

j:(i1,j)∈Ẽ
xi1,j

So, an analogous recursive equation for
∑
j:(i1,j)∈Ẽ xi1,j is found. Again, the limit of the geometric series

can be used to evaluate an infinite application of this equation:∑
j:(i1,j)∈Ẽ

xi1,j

= K ′ + α(pC ) ·
∑

j:(i1,j)∈Ẽ
xi1,j
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= K ′ + α(pC ) · ©«K ′ + α(pC ) ·
∑

j:(i1,j)∈Ẽ
xi1,j

ª®¬
= K ′ ·

∞∑
k=0

α(pC )k

Geom. series
= K ′ · 1

1 − α(pC )
Finally, it remains to showK = K ′:

K =
∑

j:(j,i1)∈Ẽ
α(j, i1) ©«

∑
k:(k,j)∈Ẽ,k<C

δ(j)
∑

r:(k,r)∈Ẽ
xk,rª®¬ + P1(̃β−1(i1))

Def. δ(j)
=

∑
j:(j,i1)∈Ẽ

α(j, i1) ©«
∑

k:(k,j)∈Ẽ,k<C

xk,j∑
r:(k,r)∈Ẽ xk,r

∑
r:(k,r)∈Ẽ

xk,rª®¬ + P1(̃β−1(i1))

=
∑

j:(j,i1)∈Ẽ
α(j, i1)

∑
k:(k,j)∈Ẽ,k<C

xk,j + P1(̃β−1(i1))

= K ′.
The idea of the proof is that there exists some incoming flow from outside the circle for which the

induction hypothesis can be applied and for the flow staying inside the circle the limit of the geometric
series can be applied. The proof was done for a simplified circle. However, it is possible to generalize
this result to an arbitrary circle. If there is another node i ∈ C, i , i1 that has an incoming path from a
state node not in the circle, the induction hypothesis can be applied to its predecessor and the incoming
flow to the circle can be encapsulated in the constant K respectively K ′. If the second assumption is
relaxed and there is a path from a circle node i ∈ C to another circle node j ∈ C , the flow incoming
to node i can still be expressed by a factor times the flow outgoing of i1. Since C contains only finitely
many nodes, we will at some step return in i1 and therefore the incoming flow of i can be expressed by
a constant that is less than 1 times the outgoing flow of i1. So, the geometric series can still be applied.�

Theorem 3.6.21 (Feasible solution of static maximum flow problem characterizes value of policy):
Assume the flow network (Ñ , Ẽ, β̃, α) of an associated graph of an SSO-MDP and an initial
distribution P1 of the starting state. Let xi,j and vi be a feasible solution of the linear program 3.12
defined for that network. Define a decision rule d ∈ DMR as

P{d(s) = a} :=



xi,j∑
k:(k,i)∈Ẽ xk,i

for all (i, j) ∈ Ẽ, i ∈ NS s.t.∑
k:(k,i)∈Ẽ xk,i > 0,

qs(a) arbitrary s.t.∑
a∈As qs(a) = 1, else.
qs(a) ≥ 0,
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for all a ∈ As where j = β̃(a) and i = β̃(s). Then,∑
s∈S\W

P1(s)vd∞(s) =
∑
i∈NWS

vi.

Proof. Define d as described in the theorem and observe that

P{d(̃β−1(i)) = β̃−1(j)} = δ(j), ∀(i, j) ∈ Ẽ, i ∈ NS with
∑

k:(i,k)∈Ẽ
xi,k > 0,

for δ(j)defined according toProposition 3.6.20. FollowingProposition 3.6.20, from xi,j and vi a feasible
solution xti,j and vti can be constructed for program 3.9. For the objective value of that feasible solution
holds ∑

i∈NWS

vi +
∑
i∈NWS

P1(̃β−1(i)) Prop. 3.6.20
=

∑
t∈N

∑
i∈NWS

vti .

FromCorollary 3.6.17, it can be derived that the objective value equals the value of the stationary policy
d∞ under the initial distribution P1:∑

t∈N

∑
i∈NWS

vti
Cor. 3.6.17
=

∑
s∈S\W

vd∞(s) · P1(s) +
∑
s∈W
P1(s).

Since
∑
i∈NWS P1(̃β−1(i)) = ∑

s∈W P1(s), the desired result holds. �

Example 3.7 (Max flow formulation):
Consider the time-expanded graph of Figure 3.6, which is associated with the SSO-MDP of Exam-
ple 3.2. The maximum flow formulation for this example is:

max v4

x1,2 − x2,1 = 1,
x2,1 + x2,3 + x2,4 − x1,2 = 0,

−x2,3 = −v3,
−x2,4 = −v4,

x2,1 − 0.6 · x1,2 = 0,
x2,3 − 0.2 · x1,2 = 0,
x2,4 − 0.2 · x1,2 = 0,

x1,2 − δ(2) · (x2,1 + 1) = 0,
x1,2, x2,1, x2,3, x2,4 ≥ 0,
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The equivalent refined formulation is:

max v4

x1,2 − 0.6 · x1,2 = 1,
−0.2 · x1,2 = −v3,
−0.2 · x1,2 = −v4,

x1,2 ≥ 0,

The unique solution of this linear program is x∗1,2 = 2.5. The corresponding decision rule is

Pd
∞{d(s1) = a1} = 2.5

2.5 = 1.

The probability of winning the SSO-MDP is v4 = 0.5. ∗

Finally, all results of this and the last subsection can be combined to get the main result. Theo-
rem 3.6.22 shows the correspondence between a stationary policy of an SSO-MDP and a feasible solution
of the static maximum flow problem.

Theorem 3.6.22 (Stationary policy corresponds to solution of static maximum flow problem):
Assume the flow network (Ñ , Ẽ, β̃, α) of an associated graph of an SSO-MDP and an initial
distribution P1 of the starting state.

Then, for every stationary policy d∞ of the SSO-MDP there exists a feasible solution of the
linear program 3.12 and vice versa. Furthermore, it holds for the value of the policy and the objective
value of the feasible solution that ∑

s∈S\W
vd∞(s) · P1(s) =

∑
i∈NWS

vi.

Proof. “=⇒” Assume a stationary policy d∞ of the SSO-MDP. Define

xti,j := Pd
∞{Zt+1 = j, Zt = i}, ∀t ∈ N, ∀(i, j) ∈ Ẽ ⊆ E

as in Definition 3.6.9. Then, by Theorem 3.6.11, xti,j satisfies the flow constraints of the time-expanded
maximum flow problem 3.9 for all t ≥ 2, for all i ∈ Ñ \ {NWS ∪NLS }, which is a subset ofN . Also,
the edge set Ẽ differs from E only by the edges adjacent to the artificial action nodes at the absorbing
states. Define

Ẽt := {((t, i), (t + 1, j) | (i, j) ∈ Ẽ, t ∈ N}.
Add edges Ẽ0 := {((0, s), (1, i)), i ∈ NS} that connect an artificial source node s with each state node
of the time-expanded flow network at time 0 and define

x0
s,i := P1(̃β−1(i)), ∀i ∈ Ñ .
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Thus, x0
s,i satisfies the first constraints of the time-expandedmaximum flow problem 3.9. Furthermore,

it holds that {xti,j, t ∈ N0, (i, j) ∈ ẼtÑ } is also valid for the flow constraint at t = 1. This can be seen
by Proposition 3.6.10 and∑

j:(i,j)∈Ẽ1
Ñ

x1
i,j

Prop. 3.6.10
= Pd

∞{Z1 = i} = P1(̃β−1(i)) = x0
s,i =

∑
j:(j,i)∈Ẽ0

Ñ

x0
j,i, ∀i ∈ Ñ \ {NWS ∪NLS }.

Define
vti :=

∑
j:(j,i)∈Ẽt−1

Ñ

xt−1
j,i , ∀i ∈ NWS ∪NLS , t ∈ N,

such that the flow conditions for the winning and losing nodes of the time-expanded maximum flow
problem 3.9 are also satisfied.

It remains to show that the flow distribution constraints are satisfied in the action nodes and in
the state nodes such that the constructed solution is feasible for problem 3.9. Assume an action node
i ∈ NA with

∑
j:(j,i)∈E xt−1

j,i > 0, then by Theorem 3.6.13 it holds that

xti,j∑
k:(k,i)∈E xt−1

k,i
= p(β−1(j)|β−1(i)) = α(i, j), ∀(i, j) ∈ ẼtÑ , ∀t ≥ 2.

With the defined edge set Ẽ0
Ñ , the proof of Theorem 3.6.13 can be extended to t = 1. In a state node

i ∈ NS with
∑
j:(j,i)∈E xt−1

j,i > 0, it is known by Theorem 3.6.12 that

xti,j∑
k:(k,i)∈E xt−1

k,i
= qd(β−1(i))(β−1(j)), ∀(i, j) ∈ ẼtÑ , ∀t ≥ 2.

The proof of Theorem 3.6.12 can also be extended to t = 1 due to our definition of Ẽ0
Ñ . So, δ(j) can be

defined as
δ(j) := qd(β−1(i))(β−1(j)), ∀(i, j) ∈ Ẽ, i ∈ NS

and the flow distribution constraint is satisfied.
If the condition

∑
j:(j,i)∈E xt−1

j,i > 0 does not hold, the flowdistribution constraints are still satisfied.
In this case, from the flow conditions it is derived that all outgoing edges xti,j are zero and thus it holds∑

k:(k,i)∈E
xt−1
k,i · δ(j) = 0 · δ(j) = 0 = xti,j, ∀(i, j) ∈ E, ∀i ∈ NS, ∀δ(j) ∈ [0, 1], t ∈ N

and ∑
k:(k,i)∈E

xt−1
k,i · α(i, j) = 0 · α(i, j) = 0 = xti,j, ∀(i, j) ∈ E, ∀i ∈ NA, t ∈ N.

So itwas shown that the defined xti,j, vti and δ(j) are a feasible solution for the time-expandedmaximum
flow problem.
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FromCorollary 3.6.17, it follows that the objective value of the feasible solution equals the value of
the stationary policy d∞ plus the constant

∑
i∈W P1(s):∑

t∈N

∑
i∈NWS

vti =
∑
s∈S\W

vd∞(s) · P1(s) +
∑
s∈W
P1(s). (3.21)

Note, that the decision rule used inCorollary 3.6.17was derived from the variable δ and therefore equals
the considered decision rule d of the SSO-MDP.

According to Proposition 3.6.19, a feasible solution of the static maximum flow problem can be
constructed by {

xi,j :=
∑
t∈N
xti,j, (i, j) ∈ Ẽ, i ∈ NS

}
,{

vi :=
∞∑
t=2
vti , i ∈ NWS ∪NLS

}
.

For this feasible solution of the static maximum flow problem, it holds according to Proposition 3.6.19∑
i∈NWS

vi =
∑
t∈N

∑
i∈NWS

vti −
∑
i∈NWS

P1(̃β−1(i)) =
∑
s∈S\W

vd∞(s) · P1(s).

The last equation followed from the previous equation 3.21.
⇐= Assume a feasible solution {xi,j, (i, j) ∈ Ẽ, i ∈ NS}, {vi, i ∈ NWS ∪ NLS } of the linear

program 3.12. Then, from Theorem 3.6.21, a decision rule d of the SSO-MDP can be constructed by

P{d(̃β−1(i)) = β̃−1(j)} :=



xi,j∑
k:(k,i)∈Ẽ xk,i

for all (i, j) ∈ Ẽ, i ∈ NS s.t.∑
k:(k,i)∈Ẽ xk,i > 0,

qd(̃β−1(i))(̃β−1(j)) arbitrary s.t.∑
β̃−1(j)∈Ad(̃β−1(i))

qd(̃β−1(i))(̃β−1(j)) = 1, else

qd(̃β−1(i))(̃β−1(j)) ≥ 0,

such that ∑
s∈S\W

P1(s)vd∞(s) =
∑
i∈NWS

vi

holds. �

Finally, it can be conclude that the static maximum flow problem can be used to determine an
optimal policy of an SSO-MDP:
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Theorem 3.6.23 (Optimal stationary policy is characterized by static maximum flow formulation):
Assume the flow network (Ñ , Ẽ, β̃, α) of an associated graph of an SSO-MDP and an initial
distribution P1 of the starting state.

Then, an optimal solution of the static maximum flow problem 3.12 characterizes an optimal
stationary policy d∞ of the SSO-MDP.

Proof. Assume an optimal solution {xi,j, (i, j) ∈ Ẽ, i ∈ NS}, {vi, i ∈ NWS ∪NLS } of the staticmaxi-
mum flowproblem. AfterTheorem 3.6.22, a stationary policyd∞ of the SSO-MDPcanbe constructed
such that ∑

s∈S\W
vd∞(s) · P1(s) =

∑
i∈NWS

vi.

Assume d∞ is not an optimal policy of the SSO-MDP. Since there exists an optimal stationary policy
in an SSO-MDP, there must be another stationary policy d̃∞ with∑

s∈S
vd̃∞(s) · P1(s) >

∑
s∈S
vd∞(s) · P1(s).

Due to the absorbing property of all states s ∈ W , it holds∑
s∈W
vd∞(s) · P1(s) =

∑
s∈W
P1(s)

for all stationary policies d∞ ∈ ΠMR. So, it can be concluded that∑
s∈S\W

vd̃∞(s) · P1(s) >
∑
s∈S\W

vd∞(s) · P1(s)

must hold. However after Theorem 3.6.22, a feasible solution x̃i,j, ∀(i, j) ∈ Ẽ, i ∈ NS , ṽi, ∀i ∈
NWS ∪NLS of linear program 3.12 can be found with∑

i∈NWS

ṽi >
∑
i∈NWS

vi.

This is a contradiction to the assumption that xi,j, vi is an optimal solution of the linear program 3.12.
So, d∞ must be an optimal policy for the SSO-MDP. �

The result of the last theorem is already mentioned in Subsection 3.5.2. However, the proof of
Theorem 3.6.23 relies only on the results of this section which is why the theorem is included a second
time in this thesis.

The next example revisits the SSO-MDP of Example 3.1 and illustrates the relation between the
time-dependent flow variables and the found static solution of Example 3.1.
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Example 3.8:
This example illustrates the relationship of the time-dependent flow and the static flow variables in the
SSO-MDP of Example 3.1. Let

xta := xti,j with β̃(i) = A−1(a), β̃(j) = a

be the time-dependent flow variable for choosing action a at time t. And

xta,s := xti,j with β̃(i) = a, β̃(j) = s

the time-dependent flow variable for a transition to a state s after having chosen action a at time t. As
shown by Proposition 3.6.19 and Proposition 3.6.20, the relation

xa =
∞∑
t=1
xta

is valid. The proof of Proposition 3.6.20 can be illustrated on the circle of this example. Consider the
static flow variable xa3 of the circle s2 − a3 − s2. The probability of staying in this circle is 0.5. The only
incoming flows to this circle that are unequal to zero are x2

a1,s2 and x2
a2,s2 . So, we have

xa3 =

∞∑
t=1
xta3

=0 + 0 +
∞∑
t=3
xta3

=x3
a3 + 0.5 · x3

a3 + 0.52 · x3
a3 + . . .

=x3
a3

∞∑
i=0
(0.5)i

=
x3
a3

1 − 0.5 = 2x3
a3 = 2 · (qd(s2)(a3) · (x2

a1,s2 + x2
a2,s2)).

As in the optimal solution qd(s2)(a3) is zero, we have xa3 = 0 and xta3 = 0 for all t ∈ N. ∗

The main result of this Subsection is the static maximum flow formulation 3.12 together with
Theorem 3.6.23 which proves the linear program can be solved for finding an optimal decision rule of
the SSO-MDP.

3.7 Transforming SSO-MDPs

Value iteration applied to general infinite-horizonMDPs under the total expected reward criterion may
take an infinite number of iterations (Littman, Dean, and Kaelbling, 1995). However, if the underlying
graph of the SSO-MDP is acyclic, it can be shown that value iteration terminates after at most n steps at
the optimal value function (Bertsekas, 2001, Sec. 2.2.1).
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This motivates to develop an algorithm that transforms any network associated with an SSO-MDP
in an acyclic network. Bertsekas explains in (Bertsekas, 2001, Sec. 2.2.2) how self-transitions can be
eliminated. The algorithm presented in this section is a generalization to arbitrary circles that may
occur in the graph of an SSO-MDP. Furthermore, Bertsekas considered a graph of only states where
the transition probabilities are fixed to a certain policy. In the algorithm presented in this section the
graph contains nodes related to actions and the resulting graph can be used to determine an optimal
deterministic and stationary policy.

Assumption 3.2.1 of SSO-MDPs leads to some useful properties of a graphG = (N,E, β) associated
with an SSO-MDP. A definition of a graph associated with an SSO-MDP is given in Definition 3.6.1. In
an associated graph of an SSO-MDP, there exist only edges from states to actions and visa versa. We
have already seen that the graph is bipartite and splits into two disjoints set of nodesNA andNS which
are called action nodes and state nodes, see Subsection 3.6.1. The graph extended by edge weights α
according to Definition 3.6.3 is an associated flow network of an SSO-MDP.

An associated graph of an SSO-MDP may contain circles. A circle is a path in the graph, i.e., a
sequence of edges in the graph, where the first and the last node are identical and no other node appears
twice in the path. Remember, a circle C is denoted by C = (v1, . . . , vk), where (vi−1, vi) is an edge in E
and all nodes are distinct except vk = v1, see Definition 2.4.4. The set of edges contained in a circle is
denoted by ρC . Sometimes circles are also called elementary circuits. There exist several algorithms for
finding all elementary circles in a directed connected graph. For instance, Johnson presents in Johnson
(1975) an algorithm that finds all elementary circuits of a directed graph in linear time in terms of the
number of nodes and edges. Most of the algorithms for finding circles rely on a depth-first search.

Before presenting an algorithm that transforms a network of an SSO-MDP in an acyclic network,
another preliminary consideration is made. It can be shown that every node that has an incoming edge
from a node not in the circle, must be a state node.

Proposition 3.7.1:
Let C be a circle in the associated graph G of an SSO-MDP. Let vi ∈ C be a node with an incoming
flow from a node not in C , i.e., |δin(vi) ∩ δin(C )| > 0, then vi ∈ NS holds.

Proof. Assume C = (v1, . . . , vk). Furthermore, let vi ∈ NA be a node that corresponds to an action
of the SSO-MDP. Assume that |δin(vi) ∩ δin(C )| > 0 holds. Let e be an edge in δin(vi) ∩ δin(C ). Then
start(e)must be a state node since G is bipartite, and there exists only edges between state and action
nodes. From e ∈ δin(C ), we can follow that start(e) < C and start(e) can not be equal to vi−1 ∈ C .
But, vi−1 ∈ C is another state node that is connected to vi. This is a contradiction to our assumption
of unique actions. �

Algorithm 6 transforms a network of an SSO-MDP in an acyclic network. In the subsequent
theorem, the correctness of that algorithm is proved and a relation between deterministic decision rules
in the SSO-MDP derived from the transformed network and deterministic decision rules in the original
SSO-MDP is specified afterwards.

For each circle C , the algorithm iterates over all edges that are outgoing edges of a node in C and do
not lie in the set of edges ρC contained in C . In concrete terms, this δ¬(C ) is defined as

δ¬(C ) := {e ∈ E | ∃v ∈ C : e ∈ δout(v) ∧ e < ρC }.
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Observe, that δ¬(C ) , δout(C ) since δ¬(C )may contain an edge from an action node to a state
node which may be both in C . For example, assume C = (vs1 , va1 , vs2 , va2 , vs1), which is a circle, and
assume there exists an edge e = (va1 , vs1). Then, e ∈ δ¬(C ) holds, but e < δout(C ).

Algorithm 6 gets as input data a network obtained from an SSO-MDP and a set of circles. The set
of circles should not contain the artificial circles at the absorbing nodes that belong to states inW ∪ L.
The algorithm iterates over all circles, and treats every circle separately. Thereby, for each node vi of a
circle C that has an incoming edge from a node which is not in C the following transformation is done:
Each outgoing edge of a circle node that is not in the circle path, i.e., each edge in δ¬(C ), is replaced
by a new edge starting directly at vi. Depending on the type of the end node of the outgoing edge, a
different treatment is carried out:

• If there exists an end node that is a state node, an artificial action node ṽi is inserted. This artificial
action node will later correspond to a deterministic decision rule that chooses all actions of the
circle. The weight of the new edge from the inserted action node to the end of the original
outgoing edge is set to the cumulated probability of reaching that end of the outgoing edge.
Figure 3.8 illustrates this treatment.

• If the end node of the outgoing edge of the circle is an action node, a copy of that node is made
and an edge from vi to the copied action node is added. The transition probabilities outgoing
from that copied action node are multiplied by the probability of the path from vi to the copied
action node. Additional edges from the copied action node to every state that is adjacent to an
outgoing edge of the path from vi to the copied action node are generated. So, the copied action
node corresponds to a deterministic decision rule that chooses all actions on that path from vi to
the copied action node. This situation is illustrated in Figure 3.9. If the considered action node is
chosen with certainty, which is the case in a deterministic decision rule, there does not remain
any flow in the circle. So, the cumulated probability of staying in the circle is not needed.

For calculating the cumulated transition probabilities of the artificial action node ṽi, the limit of the
geometric series is used. Due to our Assumption 3.2.1 of SSO-MDPs, the probability p, calculated by
the loop in line 4, is always strictly smaller than 1. Therefore, the limit of the infinite geometric series is
well defined and equals 1

1−p . Another implication of Assumption 3.2.1 is that δ¬(C ) , ∅. So, we do not
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need to handle the case δ¬(C ) = ∅ in the algorithm.
Algorithm 6: Acyclic Transformation
Data: G = (N,E, β)with edge weights α associated to an SSO-MDP;
Ψ set of all circles with ∀v ∈ C, C ∈ Ψ : v < L ∪W
Result: G′ = (N ′, E ′, β′)with edge weights α′ acyclic

1 SetN ′← N , E ′← E, β′← β, α′← α;
2 for all C = (v1, . . . , vk) ∈ Ψ do
3 p← 0;
4 for all e ∈ ρC do
5 p← p · α(e);
6 end
7 compute γ← 1

1−p ;
8 for all vi ∈ C with |δin(vi) ∩ δin(C )| > 0 do
9 if ∃e ∈ E : e ∈ δ¬(C ) with end(e) ∈ NS then
10 add an action node ṽi toN ′;
11 set edge ẽ← (vi, ṽi), α′(ẽ) ← 1;
12 insert edge ẽ in E ′;
13 set β′−1(ṽi) = {a ∈ A | β(a) ∈ C }
14 end
15 for e ∈ δ¬(C ), e ∈ E do
16 if end(e) ∈ NS then
17 determine ρvi ,start(e) with edges in ρC ;
18 set edge ẽ← (ṽi, end(e)), α′(ẽ) ← γ · α(ρvi ,start(e)) · α(e);
19 insert edge ẽ in E ′;
20 else
21 add action node ãi toN ′;
22 insert edge ẽ← (vi, ãi), α′(ẽ) ← 1 in E ′;
23 determine ϱ← ρvi ,end(e) in E with ρvi ,start(e) edges in ρC ;
24 set β′−1(ãi) = {a ∈ A | β(a) ∈ ν(ρvi ,end(e))};
25 for ē ∈ δ¬(ϱ), ē ∈ E with end(ē) ∈ NS do
26 determine ϱē ← ρvi ,start(ē) with edges in ϱ;
27 set edge ẽ← (ãi, end(ē)), α′(ẽ) ← α(ϱē) · α(ē);
28 insert edge ẽ in E ′;
29 end
30 end
31 end
32 end
33 for e ∈ δ¬(C ), e ∈ E do
34 if end(e) ∈ NA then
35 for ē ∈ δout(end(e)) do
36 remove ē from E ′;
37 end
38 remove end(e) fromN ′, β′;
39 end
40 remove e from E ′
41 end
42 remove all e ∈ ρC with e ∈ E from E ′;
43 remove all v ∈ C with |δin(v)| = 0 fromN ′, β′;
44 end
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G = (N,E, β):

vsi vsj

δvsi ,start(e)

eC
p

G′ = (N ′, E ′, β′):

vsi ṽsi vsjẽ

1
1−p ·

α(δvsi ,start(e)) · α(e)

Figure 3.8: Illustration of Algorithm 6 for e ∈ E : e ∈ δ¬(C )with end(e) ∈ NS

Note that the returned mapping β′ is no bijection between the original set of states and actions of
the SSO-MDP, and the new nodesN ′. This is a requirement of Definition 3.6.1 of a graph associated
with an SSO-MDP. However, if one summarizes actions in the SSO-MDP to new cumulated actions
as in the algorithm, β′ is again a bijection. In Theorem 3.7.4, where the acyclic SSO-MDP is needed,
an action setAacyclic is defined that consists of action sets such that β′ is a bijection to the nodes in the
transformed acyclic graph.

In the circle setΨ, there may be circles that have common nodes. After one circle has been processed
by the algorithm, all circles that had nodes in common with this circle are still contained inG′. But their
notation must be updated to the new nodes inN that occurred from the processing of the previous
circles.

We start showing that the returned network is indeed acyclic. Furthermore, we show that the
structure in terms of states, actions, rewards and transitions suites to an SSO-MDP.

Proposition 3.7.2:
Let G′ = (N ′, E ′, β′) with edge weights α′ be the network returned from Algorithm 6. Then:

1. G′ is a connected and acyclic directed network.

2. (N ′, E ′, β′, α′) is an associated flow network of an SSO-MDP according to Definition 3.6.3 with
starting state s1, winning statesW and losing states L from the original SSO-MDP.
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G = (N,E, β):

vsi vsj vai

δ ē =
δ v s i,st

art(ē
)

e

ē

ē

ē

ē
δ = δvsi ,start(e)

C
p

G′ = (N ′, E ′, β′):

vsi ãi

ẽ
ẽα(δ ē
) · α
(ē)

ẽ
α(δē) · α(ē)

ẽ

Figure 3.9: Illustration of Algorithm 6 for e ∈ E : e ∈ δ¬(C )with end(e) ∈ NA
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Proof. 1. The input graph G of Algorithm 6 is connected since it is an associated graph of an
SSO-MDP. We show that the resulting graph G′ = (N ′, E ′, β′) is a connected graph. At the
initialization, the set of nodes N ′ is set to N and the set of edges E ′ to E. Let C ∈ Ψ be an
arbitrary circle. In lines 10 and 21 new nodes are added to N ′. However, these new nodes are
both, in the subsequent step, connected by an edge ẽ to a node vi ∈ C which has an incoming
edge. Before line 33, where edges andnodes are removed,G′ is connected. In line 33, in a for loop,
all edges starting in a node of C that are not in ρC are removed from E ′. We show that the end
nodes of these outgoing edges are still connected to other nodes of the graph. If the end node
end(e) is a state node, an edge from the artificial action node ṽi to the end node end(e) exists.
If end(e) is an action node, all outgoing edges ē of that action node are replaced by edges from
the artificial action node ãi to end(ē). So, we have a connection from vi over ãi to all successors
of end(e). Removing e ∈ δ¬(C ), end(e) ∈ NA and all ē ∈ δout(end(e)) still yields a connected
graph. Since in line 43 only nodes with no incoming edge from outside the circle are removed
from the graph, all vi with an incoming edge will stay in N ′. Therefore, the artificial action
nodes ṽi and ãi remain connected to the graph. Finally, removing edges that are in ρC do not
lead to a disconnected graph since either vi ∈ C has an incoming edge from outside the circle
and is therefore connected to the rest of the graph, or it will be removed fromN ′.
Ψ is a complete enumeration of all circles (elementary circuits) except the artificial circles at the
absorbing state nodes that belong toW ∪ L. Roughly speaking, Algorithm 6 replaces all edges
inside a circle by new paths that connect each node with an incoming edge from a non-circle
node with all nodes that were adjacent to the circle. Since all edges with both ends in C are
removed from E ′, C can not be a circle any more. The artificial action nodes generated by the
algorithm connects a circle nodewith a non-circle node. Furthermore, the artificial action nodes
are newly generated for each node vi with an incoming edge. Obviously, after handling a single
circle by Algorithm 6, the handled circle is removed.

Next, it is shown that no new circles may occur after the transformation. Assume Algorithm 6
has processed all circles. Let C ′ be a new circle that has occurred after applying the algorithm.
If C ′ was contained in Ψ before, it would have been removed. So, C ′ can not have been in Ψ.
Since C ′ was not in Ψ, in ρC ′ there must be at least one new edge generated by the algorithm.
Algorithm 6 generates only new edges that start or end at an artificial action node. These action
nodes have a unique predecessor, a state node vi with an incoming edge from a node not con-
tained in the circle. So, a circle C ′ occurred from a newly generated edge, must contain also an
artificial action node and its predecessor which is a state node vi that was a part of a circleC ∈ Ψ.
Suppose, C ′ = (v1, . . . , vk, v1) is a new circle evolved after the application of the algorithm.
Assume C ′ has nodes vpi in common with Ci, i = 1, . . . , l and C1, . . . , Cl ∈ Ψ is a subset of
circles. So w.l.o.g., C ′must be of the form

C ′ = (v1, . . . , vp1 , ṽp1 , . . . , vpl , ṽpl , . . . , vk, v1),

where ṽpi is an artificial action node generated by the algorithm. All artificial action nodes con-
nect only nodes that were a priori connected by a path in G. We can replace all vpi plus the
artificial action nodes ṽpi in C ′ by a path existing in G. Or more precisely, if ṽpi was an artificial
action node generated in line 10, we can replace (vpi , ṽpi ) by a path in ρC plus an edge in δ¬(C ).
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And if ṽpi was an artificial action node generated in line 21, we can replace it by a path in ρC plus
an edge e in δ¬(C ) and an edge ē ∈ δout(end(e)). So, we can conclude that the following path
must have existed a priori inG:

(v1, . . . , vp1−1, ρ(vp1 , vp1+1), . . . , vpl−1, ρ(vpl , vpl+1), . . . , vk, v1).

This is a circle with nodes in N , edges in E. This circle or at least its elementary sub-circles
must have been contained inΨ and therefore must have been eliminated by the algorithm. We
have seen that there can not arise new circles from the transformation of Algorithm 6 and the
transformed graphG′ is acyclic.

2. In order to prove that (N ′, E ′, β′, α′) is an flow network associatedwith an SSO-MDP,we have
to show thatG′ contains only edges from states to action nodes and vice versa. Furthermore, the
weight of every edge from a state node to an action node should be 1 and the weights of all edges
outgoing from an action node to connected state nodes should define a probability distribution.

Let C ∈ Ψ be a circle and NC = NCA ∪ NCS be the nodes of that circle, which can be dis-
tinguished in state nodes NCS and action nodes NCA . In the next step, it is shown that after
processing C , the weights of the edges E ′ fulfill the mentioned requirements. We know from
Proposition 3.7.1 that all nodeswith an incoming edge fromanodenot inC must be a state node.
LetNCS− be all state nodes of C with an incoming edge from nodes not in C . All new generated
edges in Algorithm 3.2.1 start either at a state node vi ∈ NCS− or at an artificial action node ṽi or
ãi. Observe, that at the end of the algorithm all v ∈ NC \NCS−, all e ∈ ρC ∪ δ¬(C ) and all nodes
with v ∈ NA with (·, v) ∈ δ¬(C ) and its edges δout(v) are removed. We can summarize that after
processing C , modified edges occur only in δout(vi) with vi ∈ NCS−, and δout(ṽi) ∪ δout(ãi). All
other nodes are either removed or stayed unchanged.

We first consider edges in δout(vi), vi ∈ NCS−. These are edges generated in line 11 or line 22 which
go to an artificial action node and have a weight of 1.

Next, it is verified that the edge weights of edges in δout(ṽi) specify a probability distribution
outgoing from that action node. The algorithm generates an artificial action node ṽi when pro-
cessing vi ∈ NCS−. For easier reading, in the following an action node of C is denoted by vai , a
state node by vsi . Furthermore, any path ρv,w between nodes v and w using only edges in C is
denoted by ρCv,w. Figure 3.8 illustrates this situation and the transformation that is carried out.
Let

C = (vs1 , va1 , . . . , vsk , vak , vs1).
Without loss of generality, we can assume that vi ∈ NCS− is the first node vs1 of C . Then,∑

e∈δout(ṽi)
α′(e)

=
∑

e∈δ¬(C )with end(e)∈NS
γ · α(ρCvi ,start(e)) · α(e)

=
∑

e∈δ¬(C )with start(e)∈NCA

γ · α(ρCvi ,start(e)) · α(e)
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= γ
∑
val ∈C

α(ρCvs1 ,val )
∑

e∈δout(val )∩δ¬(C )
α(e)

= γ
∑
val ∈C

α(ρCvs1 ,val )(1 − α(ρ
C
val ,vsl+1

))

= γ
∑
val ∈C

(
α(ρCvs1 ,val ) − α(ρ

C
vs1 ,vsl+1

)
)

α(vsi ,vai )=1
= γ

∑
val ∈C

(
α(ρCvs1 ,val ) − α(ρ

C
vs1 ,val+1

)
)

telescope sum
= γ

(
α(ρCvs1 ,va1 ) − α(ρ

C
vs1 ,vak )α(ρ

C
vak ,va1 )

)
= γ

(
α(ρCvs1 ,va1 ) − α(ρ

C
vs1 ,vak )α(ρ

C
vak ,vs1 )

)
= γ · (1 − p) = 1 − p

1 − p = 1.

In the sixth equation, it is used that G is a graph associated to an SSO-MDP. Therefore, we
know that each edge from a state node to an action node has weight 1. As a weight of a path is
the product of all weights on the path, we can follow that α(ρCvsi ,vsl+1

) = α(ρCvsi ,val+1
). At the end,

the formula of γ from the algorithm is used and the fact that p was calculated in the algorithm
by multiplying all weights of the edges on the circle which equals α(ρCvs1 ,vs1 ).
Finally, it is shown that the edges in δout(ãi) specify a probability distribution. Let again C =
(vs1 , va1 , . . . , vsk , vak , vs1) and assume again that the currently processed vi ∈ NCS− is the first node
vs1 of C . Let e ∈ δ¬(C ) be the edge that was considered, when generating ãi in the algorithm
(line 21). Assume e = (vsj , vai ), where vsj is a node in C and vai < C . Furthermore, let ϱ =
ρvi ,end(e) as in the algorithm, where ρCvi ,start(e) is a path inC as specified in the algorithm. Figure 3.9
illustrates that situation and the transformation that is carried out by the algorithm.

The proof is divided into parts to make it better readable. The idea is to go backwards from vai
to vs1 along the path by finding probability distributions that sum up to 1. In the first step, we
get rid of the final node vai : ∑

ẽ∈δout(ãi)
α′(ẽ)

Alg. line 27
=

∑
ē∈δ¬(ϱ), end(ē)∈NS

α(ϱē) · α(ē)

=
∑

ē∈δ¬(ρvs1 ,vai ), end(ē)∈NS
α(ϱē) · α(ē)

=
∑

ē∈δ¬(ρvs1 ,vai )∩δout(vai )
α(ρvs1 ,end(ē)) (3.22)

+
∑

ē∈δ¬(ρvs1 ,vai )\δout(vai ), end(ē)∈NS
α(ρvs1 ,end(ē))
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=
∑

ē∈δout(vai )
α(ρvs1 ,vai ) · α(ē) (3.23)

+
∑

ē∈δ¬(ρvs1 ,vai )\δout(vai ), end(ē)∈NS
α(ρvs1 ,end(ē))

= α(ρvs1 ,vai ) +
∑

ē∈δ¬(ρvs1 ,vsj ), end(ē)∈NS
α(ρvs1 ,end(ē))

= α(ρCvs1 ,vsj ) +
∑

ē∈δ¬(ρCvs1 ,vsj ), end(ē)∈NS
α(ρvs1 ,end(ē)) (3.24)

When in the last equations a path ρvs1 ,vai is used, it is assumed to be an extension of the path
ρCvi ,vsj by (vsj , vai ). Furthermore, ρvs1 ,end(ē) is also assumed to be a path in C except for edge ē. In
Equation 3.22, the edge set δ¬(ρvs1 ,vai ) is divided in a set of edges that start in vai and a set of
edges which do not start in vai . SinceG is bipartite, all edges in δout(vai ) satisfy end(ē) ∈ NS . In
Equation 3.23, it is used that all outgoing edges of δout(vai ) are included in {ē ∈ E | δ¬(ρvs1 ,vai )}.
This holds since all e in δout(vai ) are incident to node vai which is a node of ρvs1 ,vai and at the same
time ρvs1 ,vai does not contain edges of δout(vai ). In Equation 3.24, it is used that α(vsj , vai ) = 1
since it is a state-action edge in an SSO-MDP.
We arrived at a sumover edges that are incidentwith edges of the path ρCvs1 ,vsj but are not included
in that path. Observe that the path ρCvs1 ,vsj is a part of ρC . In the next step, the sum over the edges
belonging to the last state and action is simplified. So, the considered path has been shortened
by the last action and the last state.

α(ρCvs1 ,vsj ) +
∑

ē∈δ¬(ρCvs1 ,vsj ), end(ē)∈NS
α(ρvs1 ,end(ē))

= α(ρCvs1 ,vsj ) +
∑

ē∈δ¬(ρCvs1 ,vsj )∩δout(vaj−1 )
α(ρvs1 ,end(ē))

+
∑

ē∈δ¬(ρCvs1 ,vsj )\δout(vaj−1 ), end(ē)∈NS
α(ρvs1 ,end(ē))

= α(ρCvs1 ,vaj−1
)α(ρCvaj−1 ,vsj )

+
∑

ē∈δout(vaj−1 )\(vaj−1 ,vsj )
α(ρCvs1 ,vaj−1

)α(ē) (3.25)

+
∑

ē∈δ¬(ρCvs1 ,vaj−1
)\δout(vaj−1 ), end(ē)∈NS

α(ρvs1 ,end(ē))

= α(ρCvs1 ,vaj−1
) +

∑
ē∈δ¬(ρCvs1 ,vaj−1

)\δout(vaj−1 ), end(ē)∈NS
α(ρvi ,end(ē))

= α(ρCvs1 ,vsj−1
) +

∑
ē∈δ¬(ρCvs1 ,vsj−1

), end(ē)∈NS
α(ρvs1 ,end(ē))
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Again, when in the last equations a path ρvs1 ,end(ē) is used, it is assumed to be an extension of
a path in C by the edge ē. The sum over all edges in δ¬(ρCvs1 ,vsj ) is again split up according to
whether the edges are in δout(vaj−1) or not. In Equation 3.25, it is used that vaj−1 is a node on the
path ρCvs1 ,vaj−1

. So, all edges in δout(vaj−1) are also in δ¬(ρCvs1 ,vaj−1
) except the edge (vaj−1 , vsj ), which is

an edge of the circle.

This procedure is used until we arrive at vs1 :

= α(ρCvs1 ,vs2 ) +
∑

ē∈δ¬(ρCvs1 ,vs2 ), end(ē)∈NS
α(ρv1,end(ē))

= α(ρCvs1 ,va1 )α(ρ
C
va1 ,vs2 ) +

∑
ē∈δout(va1 )\(va1 ,vs2 )

α(ρCvs1 ,va1 )α(ē)

= α(ρCvs1 ,va1 )
= 1.

It has been shown that at all artificial action nodes inserted by the algorithm the transition prob-
abilities define a valid probability distribution and the requirements on the edge weights α are
satisfied. �

The following technical lemma shows a relation between the edge weights ofG andG′. Namely,
that the sum over the weights of all walks from a non-deleted state node of a circle through the circle
to a state node adjacent to this circle remains the same under the transformation of Algorithm 6.
From Lemma 3.7.3 and Proposition 3.7.2, it also follows that the SSO-MDP derived fromG′ satisfies
Assumption 3.2.1 of SSO-MDPs.

Lemma 3.7.3:
LetG = (N,E, β) with edge weights α be the associated network of an SSO-MDP andG′ = (N ′, E ′, β′)
with edge weights α′ be the acyclic network computed from G and α by Algorithm 6. Let C =
(vs1 , va1 , . . . , vsk , vak , vs1) be a circle of G, vsi a state node with an incoming flow from outside of C
and N ′si , E ′si the sets of new nodes and edges generated by Algorithm 6 when processing vsi . Then, for all
vs ∈ NS with an edge e ∈ δ¬(C ) and end(e) = vs∑

ωvsi ,vs with ωvsi ,start(e)∈C
α(ωvsi ,vs ) =

∑
ωvsi ,vs ⊆E′si

α′(ωvsi ,vs )

holds.

Proof. Assume vs ∈ NS with end(e) = vs and e ∈ δ¬(C ). Since C is an elementary circle, there exists
a unique path ρvsi ,start(e) in C . Furthermore, in the acyclic graphG′, there exists after construction only
the path (vsi , ṽsi , vs) in E ′si that connects vsi with vs.∑

ωvsi ,vs ∈E′si
α′(ωvsi ,vs )
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= α′((vsi , ṽsi , vs))
= α′((vsi , ṽsi )) · α′((ṽsi , vs))
= 1 · γ · α(ρvsi ,start(e)) · α((start(e), vs)) (3.26)

=
1

1 − pα(ρvsi ,vs )

= α(ρvsi ,vs )
∞∑
k=0

pk

= α(ρvsi ,vs )
∞∑
k=0

α(ρvsi ,vsi )k (3.27)

=
∑

ωvsi ,vs with ωvsi ,start(e)∈C
α(ωvsi ,vs ).

In Equation 3.26, line 11 of the Algorithm 6 was used and in Equation 3.27, it was applied that p is the
probability of staying in the circle C . �

If a graphG and edge weights α associated with an SSO-MDP are transformed by Algorithm 6, the
derived SSO-MDP from the outputted graphG′ and edge weights α′ is called the transformed acyclic
SSO-MDP and denoted by SSO-MDPacyclic. SSO-MDPacyclic contain actions, states according to the
new generated action nodes and the remaining state nodes. Define the state set as

Sacyclic := {β′−1(vs) | vs ∈ N ′S },
which are just the states according to the remaining state nodes in N ′. The new generated actions
correspond to aggregated original actions. For this reason,Aacyclic is defined as a set of action sets:

Aacyclic := {β−1(va) | va ∈ N ′A}.
This is a set of action sets since e.g. β−1(ṽi) is mapped by the algorithm to all actions of the processed
circle.

As a final result, it is shown that every deterministic stationary policy d∞ of an SSO-MDP is
equivalent to a stationary deterministic policy d′∞ of the transformed acyclic SSO-MDPacyclic in the
sense that it has the same winning probability.

Theorem 3.7.4 (Acyclic Transformation):
Let SSO-MDPacyclic be the transformed acyclic SSO-MDP derived from the graphG′ of Algorithm 6.
Let d∞ be a deterministic stationary policy of the SSO-MDP. Define a deterministic stationary
policy d′∞ of the SSO-MDPacyclic as

d′ (A′) := 1, A′ ∈ Aacyclic ⇔ d(a) = 1, ∀a ∈ A′.
Then, the value of d′∞ in the SSO-MDPacyclic equals the value of d∞ in the original SSO-MDP.
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Proof. The set of losing states and winning state have not changed through the transformation by
Algorithm 6. From Lemma 3.7.3, it follows that for two arbitrary states s1, s2 that are both inNS and
N ′S , the sum of all edge weights of walks from s1 to s2 remains unchanged in SSO-MDPacyclic.

Decision rule d chooses the action nodes along a path if and only if d′ chooses the action set that
resulted from the transformation of that path. So, the sum of edge weights of walks to a winning state
under a given policy stays unchanged. As this corresponds to the probability of reaching the winning
state under this policy, it equals the value of the policies according to Proposition 3.4.1.

Observe that it is not possible to find a decision d′ of the SSO-MDPacyclic that is equivalent to a
truly randomized decision rule d of the SSO-MDP. This can be seen as follows: Assume d chooses all
actions along the circle path with probability q and with probability q − 1 it leaves the circle. Let p again
be the probability of staying in the circle if all actions along the circle are chosen with certainty. Then
the probability of not leaving the circle under d equals

∞∑
k=1

(q · p)k = 1
1 − q · p .

Obviously this probability is not linear in q. In the transformed SSO-MDPacyclic, there exists an action
set inAacyclic that contains all actions contained in the circle. The probability included in the transitions
from that new generated actions is 1

1−p and corresponds to the probability of staying in the circle if all
actions on the circle are chosen with certainty. Now q · 1

1−p is obviously unequal to
1

1−q ·p for q , 1 and
it can be seen that we can not define a decision rule d′ as a randomization of deterministic actions in the
SSO-MDPacyclic. We would have to define new action nodes with different transition probabilities for
every randomized decision rule d. As there exists infinitely many randomized decision rules such an
approach would not be useful. However, this is no damage since we know that there exists an optimal
stationary and deterministic decision rule in eachMDP.

Corollary 3.7.5:
For every SSO-MDP there is a transformed SSO-MDP whose states have a topological order and which
has the same value.

Proof. It was shown that every directed graph belonging to an SSO-MDP can be transformed via
Algorithm 6 in an acyclic directed graph. Every directed acyclic graph admits a topological sorting
Jungnickel, 2008, Thm. 2.6.3. In Theorem 3.7.4, it was shown that for each deterministic stationary
policy of the acyclic SSO-MDPacyclic there exists an equivalent deterministic stationary policy of the
original SSO-MDP. As among the optimal policies there always exists an optimal stationary policy the
values of bothMDPs must be identical. �

As already motivated at the beginning of this Subsection, the topological ordering can be used to
show that value iteration applied to SSO-MDPs terminates after at most n steps at the optimal value
function.
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3.8 Further Extensions of SSO-MDPs

3.8.1 Randomized Strategies

In anMDPwith a finite state and action space, there always exists a stationary deterministic optimal
policy, see Section 2.3. Therefore, a randomized strategy in an SSO-MDPwill never be strictly better than
every deterministic strategy. However, in a sports game, there exist situations in which a randomized
strategy should be strictly preferred over all pure strategies.

Consider, for example, beach volleyball: If each serve has an identical direction, the opponent team
will after some time adapt themselves to that serve. Randomizing between some targets fields may be
preferred such that the opponent teammay not predict the direction of the serve. Physical exhausting
actions are another example: For example in soccer, if a player should perform a sprinting action many
times with only short or no breaks, he may be exhausted after a while. The sprinting actions will get
slower and loose its desired effect. An insertion of a short break in form of a trot would help the player
to regenerate. So, a randomization between sprints and trots may be preferred over sprinting all the
time.

There are more examples of sports game situations where a randomized strategy should be strictly
preferred. We want to propose an extension of SSO-MDPs, called constraint SSO-MDPs, that will
achieve the desired result. LetA′ be again the augmented action set consisting of state-action pairs
a = (s, ã) ∈ A′.

Definition 3.8.1 (Constraint SSO-MDPs).
A constraint SSO-MDP is an SSO-MDP with lower bounds l(a) or upper bounds u(a) on some de-
cisions d(a), a ∈ A′. Let C ⊆ A′ be the subset of state-action pairs that are constrained, and l and u
functions C → R that map an action a ∈ C to its lower bound l(a) respectively upper bound u(a).

To include those constraints on the decision rule d in the dual linear programming formulation of
SSO-MDPs, we have to calculate constraints for the flow variables xa with a = (s, ã) in the following
way:

l(a) ≤ d(a) ≤ u(a), ∀a ∈ C
⇔ l(a)

∑
ã∈As

xa ≤ xa ≤ u(a)
∑
ã∈As

xa, ∀a = (s, ã) ∈ C.

For actions a = (s, ã) ∈ C with
∑
ã∈As xa > 0, the equivalence holds by definition of a decision

rule derived from a feasible solution of the dual linear program, see Definition 2.3.29. For actions
a = (s, ã) ∈ A′ with∑

ã∈As xa = 0, the inequalities above simplify to 0 ≤ xa ≤ 0 ⇔ xa = 0. Since∑
ã∈As xa = 0 if and only if xa = 0 for all a = (s, ã) ∈ A′s , this inequalities above does not change the

feasibility set. Furthermore, in the case
∑
ã∈As xa = 0 an arbitrary decision rule can be chosen after

Definition 2.3.29. So, also a decision rule is chosen in such a way that the lower and upper bounds are
met – provided that the upper and lower bounds do not constitute a contradiction.
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The dual LP for SSO-MDPs with the action constraints equals:

max
∑
s∈W w(s)

(J − P)Tx =


1 s = s1
−w(s) s ∈ W
−l(s) s ∈ L
0 else.

xa ≤ u(a) · (JT ) s,∗ x, a = (s, ã), a ∈ C
xa ≥ l(a) · (JT ) s,∗ x, a = (s, ã), a ∈ C
x ≥ 0,

(constraint SSO-MFP)

We want to show how this simple extension can be used to model the examples mentioned at
the beginning of this subsection. Consider the sprinting soccer player. Assume the coach knows
that sprinting in more than, e.g. 70% of playing situations will significantly impair the performance.
We can model two kinds of sprinting actions with different outcomes, a recovered sprinting and an
exhausted sprinting action. The recovered sprinting action should have a higher probability for a
successful outcome than an exhausted sprint. In a standard SSO-MDP, the optimal decision rule would
always select the recovered sprint. But introducing an upper bound of 0.7 on the recovered sprinting
action forces the decision maker to decide between an exhausted sprint and a trot. Depending on the
transitions probabilities of those two actions, he will decide to include trotting breaks in his strategy or
not. Figure 3.10 sketches this example with transition probabilities such that the trot would be preferred
over exhausted sprinting.

The critical point of this extension is the required expert knowledge. It may be difficult to determine
the upper or lower bounds. Moreover, the estimation of the change in the transition probabilities when
exceeding a bound needs specific observations.

3.8.2 Extension toMarkov Games

Although it was argued at the beginning of this section that an MDP is more appropriate for modeling
a sports game than aMarkov game, it should be outlined how SSO-MDPs can be extended to sport-
strategy-optimizationMarkov games (SSO-MGs).

In a Markov game, at each state, each team simultaneously selects its next action and the transition
probabilities depend on the selected actions. Since a sports game consists of two teams, the parties
participating in the game will be called in the following team 1 and team 2. The corresponding action
sets in state s are denoted byA1

s andA2
s . The objective in an SSO-MG of team 1 is to maximize the

expected total reward while the objective of team 2 is to minimize it. The reward functions of both
teams are equal and summarized in one reward function. Like in SSO-MDPs there exists a starting
state s1 and goal states that are distinguished in winning statesW of team 1 and losing states L from the
perspective of team 1.

Definition 3.8.2 (Sport-Strategy OptimizationMG (SSO-MG)).
A sport-strategy optimization Markov game (SSO-MG) is an extended infinite-horizonMG (see Defi-
nition 2.5.1) (S, I, Ais , p(·|s, a1, a2), r(s, a1, a2),W, L, s1

)
with the following properties:
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playing situation

recovered sprint

exhausted sprint

trot

good situation

bad situation

u(a) =
0.7

0.9 0

0.1 0

0.4 0

0.6 0

0.5 0

0.5 0

Figure 3.10: Modeling a sprint in soccer as constraint SSO-MDP

• S is a set of possible system states with a single-decision game defined for each state.

• I is the set of teams participating in the match with I = {1, 2}.

• Ais is the action set of of team i ∈ {1, 2} in state s.

• p(·|s, a1, a2) is a stationary transition probability function depending on the current state and
the selected actions.

• r(s, a1, a2) is the expected reward function of both teams (players). The reward function has the
same properties as in an SSO-MDP:

r(s, a1, a2, s′) =
{

1, ∀s ∈ S \ (W ∪ L), s′ ∈ W, a1 ∈ A1
s , a2 ∈ A2

s
0, else.

• W ⊂ S is the set winning states for team 1, which are losing states for team 2.

• L ⊂ S is the set of losing states for team 1, which are winning states for team 2.

• s1 ∈ S is the known starting state.
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Let πi be a policy of team i and π = (π1, π2) a policy configuration of both teams. The total
expected reward from that policy configuration for both teams is

vπ(s) = lim
N→∞

Eπs

{ N∑
t=1
r(Xt , Y1t , Y2t)

}
= lim
N→∞

vπN+1(s).

Team 1 tries to maximize vπ(s)while team 2 tries to minimize it. Since

min
π2∈Π2

vπ(s) = − min
π2∈Π2

−vπ(s),

the reward structure can be interpreted such that team 2 has to pay vπ(s) to team 1. So, at each state s, a
zero-summatrix game is played where the payoffs are equal to the expected total reward:

max
π1∈Π1

min
π2∈Π2

v(π1,π2)(s) = min
π2∈Π2

max
π1∈Π1

v(π1,π2)(s).

This shows, that the SSO-MGs are two-player zero-sumMarkov games as defined by Littman (1994).
Definition 3.8.3 characterizes Nash Equilibriums in SSO-MGs.

Definition 3.8.3 (Nash Equilibrium in SSO-MG).
A tuple of strategies (π1∗, π2∗) is a Nash equilibrium in an SSO-MG if

π1∗ ∈ arg max
π1∈Π1

v(π1,π−1∗)(s)

and
π2∗ ∈ arg min

π2∈Π2

v(π2,π−2∗)(s).

holds for all s ∈ S.

The example SSO-MDP of Figure 3.1 has been extended to an SSO-MG by including actions for
team 2 in each state. Furthermore, the example has been modified by introducing transitions from an
action available in s2 back to s2. The resulting SSO-MG example is presented in Figure 3.11.

The goal is to find a linear programming formulation for an SSO-MG by extending the dual LP
for SSO-MDPs formulation of SSO-MDPs. As in MDPs, in MGs with stationary problem data, there
always exists a stationary optimal policy. Consider as before for each team i a set of state-actions pairs
A′i. A decision rule di used in a stationary policy of team i can be written as a vector with cardinality
mi = |A′i |. Let xa, a = (s, ã), ã ∈ A1

s be the flow variable that corresponds to the decision rule d1 of
team 1 and yb, b = (s, b̃) ∈ A2

s be the flow variable that corresponds to the decision rule of team 2.
Then, the flow constraint of the dual LP for SSO-MDPs formulation for a state s that is not the starting
state and no winning or losing state can be rewritten as∑

a∈A1s ,b∈A2s

xayb −
∑

a∈A1,b∈A2

p(s|a, b)xayb = 0.
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bi action team 2
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p(s |ai , bj): transition

r r(s, ai , bj) reward

Figure 3.11: SSO-MG Example

The flow conditions in the starting state and in the absorbing states can be adapted analogously:∑
a∈A1s1 ,b∈A2s1

xayb −
∑

a∈A1,b∈A2

p(s1 |a, b)xayb = 1

−
∑

a∈A1,b∈A2

p(s|a, b)xayb = −w(s), ∀s ∈ W

−
∑

a∈A1,b∈A2

p(s|a, b)xayb = −l(s), ∀s ∈ L.

Let m be the number of different action combinations of team 1 and team 2 occurring in the
game. The maximum number of combinations ism1 · m2. In the example of Figure 3.11,m = 8 and
m1 ·m2 = 16. For technical considerations, an ordering of the combinations is defined by going rowwise
through the matrices starting from the first action of team 1. The ordering of action combinations in
the example of Figure 3.11 is

(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b3), (a3, b4), (a4, b3), (a4, b4).
Furthermore, let C 1 ∈ Rm×m1 and C2 ∈ Rm×m2 be matrices that indicate whether an action is part of
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the combination. The entry C ki,j is 1 if action j of team k is part of the i-th action combination and 0
else. In the example of Figure 3.11, the combination matrices are

C 1 =

©«

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

ª®®®®®®®®®®®®¬
C2 =

©«

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1

ª®®®®®®®®®®®®¬
.

Then by a pointwise multiplication of C 1x and C2y, which is denoted by C 1x � C2y, a vector with the
flow value of an action combination can be determined.

Let P be in the context of SSO-MG be a transition matrix withm rows and n columns where each
row corresponds to one action combination. The entry P(a,b),i equals the transition probability p(i |a, b).
Let J ∈ Rm×n amatrix that indicates if action combination (a, b) is available in s. Thenwe can formulate
a max-min problem for SSO-MGs:

maxx miny
∑
s∈W w(s)

(J − P)T (C 1x � C2y) =


1 s = s1
−w(s) s ∈ W
−l(s) s ∈ L
0 else.

x, y ≥ 0

Obviously, this is not a linear program since there exit products of variables, and the objective function
maximizes a minimum. Also, the relationship between a feasible solution of this optimization problem
and a policy configuration needs to be examined. Probably an assumption like Assumption 3.2.1 for
SSO-MDPs is necessary to draw conclusions from an optimal solution of this optimization problem.

However, this formulation is useful, if different opponents’ strategies should be analyzed. For this
purpose, the opponents’ strategy can be set to a fixed probability distribution. The resulting maximiza-
tion problem is an SSO-MDP if Assumption 3.2.1 is satisfied. Deriving an SSO-MDP from an SSO-MG
has the advantage that the opponents’ strategy is parametrized in the transition probabilities.

In the example of Figure 3.11, assume the opponent plays b2 in s1 and b3 ins s2. Then an optimal
strategy for team 1 would be to select in s1 action a1 and in s2 action a3. With this strategy, team 1 wins
with a probability of 1 against the opponent. So, in the case of this example, the SSO-MDP resulting
from the SSO-MG does not satisfy Assumption 3.2.1.

If the value function of the SSO-MG is solved for every strategy combination, the result is a constant-
summatrix game with finite strategy sets of both teams. An example of this extension of an SSO-MDP
to game theory can be found in Section 5.2.6.



Chapter 4

Application to Beach Volleyball

4.1 Introduction to Beach Volleyball

Beach volleyball was chosen as a first application of SSO-MDPs to a sports game. Beach volleyball
belongs to the group of return plays, like tennis or badminton. In return plays, successful recovery
of the ball to the opposing team or player is required. A net separates the court in two halves and on
each half a team, or a player is located. Due to the return play and the division of the court in two
halves, those sports games have a natural structure which is advantageous for modeling it as anMDP.
Beach volleyball was chosen instead of tennis or badminton since in beach volleyball a team consists of
two players. Therefore, there also exist some direct intra-team interactions. The modeling of player
interactions may give some insights that are useful for sports games with larger team size, like handball
or soccer, where many direct player interactions exist.

In this section, an overview of different modeling approaches for return plays is given. Afterward,
the most relevant rules of beach volleyball are summarized.

4.1.1 Literature Overview –Modeling Return Plays

Some works on volleyball or beach volleyball using a Markov process approach have already been
mentioned in Section 3.1 (Miskin, Fellingham, and Florence, 2010; Florence et al., 2008). In this
subsection, some additional references to statistical investigations in connection with volleyball or
beach volleyball are made, which do not necessarily use Markov chains. Furthermore, works from the
field of informatics are presented that are related to beach volleyball and might have an impact on the
application of SSO-MDPs.

Koch and Tilp found that the temporal position within a rally did neither affect the type nor the
quality of the attack-hit (Koch and Tilp, 2009a). This result is an indication that stationary data can be
reasonably assumed for a professional beach volleyball rally.

Buscà et al. investigated the influence of service characteristics on performance inmen’s andwomen’s
high-standard beach volleyball. When the speed of the ball was categorized into three groups, they found
a relationship between serve ball speed and its effectiveness both for men and women (Buscà et al., 2012).
These results were not observed when the speed was recorded using a radar gun. This investigation is
interesting as the rally-SSO-MDP presented in Subsection 4.3.3 also requires a classification of whether

155
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a ball was played hard or not.
In beach volleyball, a call is a suggestion of the setter to his or her partner where to place the attack

in the opponent’s court. Künzell et al. found that women use calls more often than men. Moreover
for both the success rate of attacks increases with a call but the differences where only significant for
women’s beach volleyball (Künzell et al., 2014).

Natali et al. analyzed differences betweenmales and females concerning the duration of point rallies,
work rest ratio and the number of jumps and hits performed by the players according to their role
(blockers and defenders). They did not show significant differences between males and females but
between the jumps performed by blockers and defenders (Natali et al., 2017).

In 2002 the Fédération Internationale de Volleyball (FIVB) officially changed the scoring system
from side-out scoring to rally point system. The goal was to stabilize the match duration. Several works
are investigating the effects of the new scoring system like (Giatsis, 2003) and (Palao, Valades, andOrtega,
2012).

Cañal-Bruland, Mooren, and Savelsbergh showed that players and coaches, who have a perceptual-
motor expertise, may contribute to successful action anticipation in beach volleyball (Cañal-Bruland,
Mooren, and Savelsbergh, 2011). Successful action anticipation is not only useful for players or referees
participating in a match. When a video analysis is done by hand like for generating the input data of the
rally-SSO-MDP of Subsection 4.3.3 successful action anticipation is helpful.

There exist some works on tracking player’s position and contact time points from videos in beach
volleyball (Gomez et al., 2014). Advances in the field of automated tracking are of interest for the
application of SSO-MDPs. A computerized tracking procedure that generates the required input data
for SSO-MDPs is crucial such that SSO-MDPs with large numbers of parameters, like the rally-SSO-
MDP defined in Subsection 4.3.3, can be set-up for a particular match in a short period. Cortell-Tormo
et al. also track video sequences but for analyzing and comparing movement patterns and direction of
locomotion in professional men’s beach volleyball (Cortell-Tormo et al., 2011).

4.1.2 Summary of Beach Volleyball Rules

A short overview over beach volleyball based on the official beach volleyball rules 2017-2020 (Fédération
Internationale De Volleyball, 2016) is given. Readers who are familiar with the rules of beach volleyball
can skip this subsection without reservation. Rules regarding facilities and equipment, interruptions
and delays, participants’ conduct or referees will not be mentioned below and can be looked up in
Fédération Internationale De Volleyball (2016).

Beach volleyball is a sports game between two teams playing on a court of sand. , and each team is
located on one half of the court. A team has three hits for returning the ball on the other court half.
Beach volleyball is played according to a rally point system, which means that each win of a rally gives
one point. The team who won the last rally gains the right to serve next. The serving player of each
teammust alternate each time the serving right is won.

A team wins a match when it has won two sets. A set is won if 21 points are scored by one team
with a minimum lead of two points. In the case that each team has won one set, there is a deciding third
set. The third set is played up to 15 points with a minimum lead of 2. If the minimum lead of 2 points is
not fulfilled, the set goes on until one team has a lead of 2 points.

After this first, short characterization a more detailed description of some rules stated in Fédération
Internationale De Volleyball (2016) is given. These rules are considered in the more detailed model of a
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beach volleyball rally presented in Subsection 4.3.
Facilities:

The playing area includes the playing court and the free zone. The playing court
is a rectangle measuring 16 × 8 meters, surrounded by a free zone, which is a
minimum of 3 meters wide on all sides. The free playing space above the playing
area shall measure a minimum of 7 meters in height. For FIVB,World and Official
Competitions, the free zone must be between 5 and 6 meters, and free playing
space must measure a minimum of 12.5 meters.

The service zone is located outside of the court behind the ground line of each
team. It is 8 m wide and extends to the edges of the free space.

The net height is 2.43 m for men and 2.24 m for women. On each side of the
net a 1.80 m long antenna is fastened.

Winning a Rally:
A rally is a sequence of playing actions. It starts with a serve and ends when the
ball is out of play. If the rally results in the award of a point, it is called a completed
rally. The team who wins the rally scores a point and serves next. If the team was
the receiving team before, the serving player must be alternated. A team scores a
point by successfully grounding the ball on the opponent’s court, and when the
opposing team commits a fault or receives a penalty.

Positions and the serve:
There are no determined positions on the court, except that each teammust be
within its court half at the moment the server hits the ball. The server himself is
outside the court in the service zone and must not touch the court. When playing
the ball, each teamplays within its playing area. However, the ball may be retrieved
from the free zone.

“In” and “Out”:
A ball is “in" when it touches the surface of the playing court including the bound-
ary lines. The ball is “out", when it falls on the ground completely outside the
boundary lines, touches an object outside the court, crosses the vertical plane of
the net either partially or totally outside the crossing space during a service or
during the third hit of the team or crosses completely the lower space under the
net. The allowed crossing space is the part of the vertical plane of the net limited by
the top of the net from below and by the antennae and their imaginary extension
at the side.

“Hits”:
A “hit” is a contact with the ball by a player in the play. The ball may be touched
with any part of the body. All actions which direct the ball towards the opponent,
except for services and blocks, are considered as attack hits. Hits which preclude
the ball from hitting the ground after the opponent team plays a serve are called
receives. A defending is similar to a receiving with the difference that it is made to
defend against an attack hit. By a setting the ball and the teammate are brought
into a good position for the next attacking hit.
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Faults:
When executing a hit, the ball must not be thrown or caught, else an execution
fault occurs. There are more rules on how to execute a service, an attack hit or a
block correctly. Infringement of these rules should be summarized under the term
execution fault in this thesis.

A team has a maximum of three hits, including the block, for returning the
ball over the net. If this maximum is exceeded a four hits fault occurs. A player
must not hit the ball two times consecutively else a double contact fault happens.
There is one exception of the double contact rule: The first hit after the block may
be executed by any player including the one who has touched the ball during the
block.

Two players may touch the ball simultaneously. Except for a simultaneous
blocking this is counted as two hits.

Another fault is to complete an attack hit on the opponent’s service when the
ball is entirely higher than the top of the net. Furthermore, it is forbidden to block
an opponent’s service.

The basic structure of a rally is as follows: It starts with a serve of one team. The other team then
receives the ball, sets the ball and attacks the serving team. As next, the serving team starts defending the
attack hit and prepares its next attack by a set.

The sequence of receiving/defending – setting – attacking is called a complex. On average in
professional men’s beach volleyball matches there are two to three complexes during a rally. Ahmann
found in his structure analysis Ahmann (2001) that 59% of the rallies in professional men’s beach
volleyball matches end after four or five ball contacts. Four or five ball contacts correspond to the
sequence: serve – receive – setting – attack – block/defending. It should be pointed out that there
need not be three ball contacts during a complex. Sometimes an attack hit at the second contact may be
efficient if the opponent does not expect it. However, this occurs only in 6.3% of all played attacks in
men’s professional beach volleyball, see Ahmann (2001).

The summarized rules give an overview of possible situations that can occur in beach volleyball.
Furthermore, they outline the available actions in a given situation of the game.

4.2 An SSO-MDP for a Beach Volleyball Set

In this section, an SSO-MDP is defined thatmodels a beach volleyball set. Themodel should be designed
as simple as possible while giving the opportunity to evaluate different serving and field attack strategies
against a specified opponent team. The presented model is a generalization of the s-MDP defined in
the working paper of Hoffmeister and Rambau (Hoffmeister and Rambau, 2017b). A first version
that differs in larger parts from the one specified in this section was presented in Hoffmeister [formerly
Börner] (2014).

4.2.1 Definition

Let team P be the teamwhose strategy should be optimized, and teamQ be team P’s opponent. Assume
team P can choose between finitely many serving strategies serve1, . . . , servem1 and finitely many field
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attacks attack1, . . . , attackm2 . A field attack is considered as the whole sequence of

reception/defending – setting – attack hit.

It is assumed that team P can play any strategy at any time and wants to evaluate at which score in the
set they should play which kind of serving or field attack strategy. Formally in an SSO-MDP, an optimal
stationary decision rule is sought. In a sports context, it is common to speak of strategies instead of
decision rules. Therefore, the term strategy will be used in this thesis if the context is less formal.

Based on team P’s question of interest, a state has to contain the current score, which team starts
the next attack and an indicator of whether the state is a serving state or not. Thus, the simplest possible
state space with respect to the regarded question is

{(x, y, k, ℓ) | x, y ∈ N0, k ∈ {P, Q}, ℓ ∈ {0, 1}
}
.

Here, x and y denote the scores of Team P and Q, respectively. The parameter k specifies which team
possesses the ball, and ℓ encodes whether it is a serving state (ℓ = 1) or a field attack state (ℓ = 0). If this
state definition is used for the complete set including a tie, the result would be an infinite state space.
Starting from a tie (20, 20, k, ℓ), there is an infinite number of states possible where no team gains a
lead of 2 points.

As an SSO-MDP requires a finite number of states, a different state representation is used for the
tie-game. Instead of remembering the number of points for team P and team Q separately, only the
point difference of the two teams is denoted in a state. So, the states of the tie game are

Stie = {(z, k, ℓ) | z ∈ {−2,−1, 0, 1, 2}, k ∈ {P, Q}, ℓ ∈ {0, 1}},
which are only finitely many states, namely 20. This kind of state representation is not possible in the
regular set, since the absolute number of 21 points must be reached to win a set. In the tie-game, only a
relative criterion must be fulfilled. The relative notation for the tie-game states affects that there are
now finitely many states left that describe the regular game. These are

Sreg = {(x, y, k, ℓ) | x, y ∈ {0, . . . , 21} with (x ≤ 19 ∨ y ≤ 19), k ∈ {P, Q}, ℓ ∈ {0, 1}}.
The state setW should contain all states, where team P has won the set. The winning states of

the regular game are all states where P has 21 points. Observe that the state set of the regular match
contains only states where at least one team has no more than 19 points. So, all states of the regular state
set where team P has 21 points are winning states. Furthermore, all states in the tie-game with z = 2
are winning states. Analogously, the state set L contains all states, where team P has lost the set, i.e., all
states of the regular game where team Q has 21 points and all states of the tie-game with z = −2. As
specified in the definition of an SSO-MDP, the states inW ∪ L are modeled as absorbing states.

A decision epoch starts when team P gains control over the ball and begins its field attack. The
decision epoch ends when Team P makes a fault or a point, or when the offense is successful but
Team Q gains control over the ball and starts its field attack. For each state s = (x, y, k, ℓ) ∈ Sreg or state
s = (z, k, ℓ) ∈ Stie that is a serving state of team P, i.e., a state with k = P and ℓ = 1, the action set in that
state of team P isAs = {serve1, . . . , servem1}. If the state is a field attack state of team P, which means
k = P and ℓ = 0 in s,As = {attack1, . . . , attackm2}. For all states with k = Q, the action set of team P is
empty, i.e.,As = ∅. In each absorbing stateW ∪ L, there exists an artificial action. However, those
artificial actions are not explicitly listed in the following of this section.

As described in Subsection 3.8.2, it can be advantageous to model the opponent team analogously
to the decision-making team. Therefore, the SSO-MDP is constructed with a symmetric view on the
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teams P and Q. However, since anMDP and noMG is considered, team Q is assumed to play a fixed
decision rule independent of the current score. So, there are no action sets defined for teamQ and the
fixed decision rule played by team Q is expressed by constant transition probabilities.

Let pa [p̄a] be the probability that Team P playing action a ∈ As directly wins [loses] the rally. By
directly, it is meant that there is no further field attack played by either team until the rally is completed.
A superscript serve or field on pa respectively p̄a denotes whether it was a transition belonging to a service
or a field attack. The corresponding probabilities of Team Q are denoted by q and q̄, respectively. As
abbreviations, the probabilities that none of this happens is denoted by p̂a := 1−pa−p̄a and q̂ := 1−q−q̄,
respectively. So, with probability p̂a [q̂] a subsequent field attack by the other team is started. In total,
the evolution of the system is governed by the probabilities

pattack typea , p̄attack typea , qattack type, q̄attack type,

where a ∈ As is the playing strategy and attack type ∈ {serve, field} denotes the type of the attack.
These probabilities induce all transitions by incrementing points and changing the right to serve

in the obvious way. All transitions that have a positive probability are explicitly listed in Table 4.1.
Furthermore, in Figure 4.1, the resulting transition diagram for the case that P serves first in a simplified
set is illustrated that requires only two (instead of 21) points for a win. From the states (1, 0, k, ℓ) and
(0, 1, k, ℓ), k ∈ {P, Q}, ℓ ∈ {0, 1} a transition to one of the tie-game states (0, P, 1) or (0, Q, 1) is possible.
These tie-game states correspond to states (1, 1, P, 1) and (1, 1, Q, 1) in the state notation of the regular
game.
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Figure 4.1: Set-SSO-MDP

The transitions of the tie-game are illustrated in Figure 4.2. They are divided into two sub figures.
The left subfigure contains only transitions related to a service while the right subfigure contains all
transitions that may occur after a field attack.
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Figure 4.2: Tie-game
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set-SSO-MDP Beach Volleyball Set between Team P and Team Q
Decision Epochs: T = {1, 2, 3, . . .}

State Sets:

S =Sreg ∪ Stie
Sreg ={(x, y, k, ℓ) | x, y ∈ {0, . . . , 21} with x ≤ 19 ∨ y ≤ 19,

k ∈ {P, Q}, ℓ ∈ {0, 1}}
Stie ={(z, k, ℓ) | z ∈ {−2, . . . , 2}, k ∈ {P, Q}, ℓ ∈ {0, 1}}
W ={(21, y, k, ℓ) ∈ Sreg} ∪ {(2, k, ℓ) ∈ Stie}
L ={(x, 21, k, ℓ) ∈ Sreg} ∪ {(−2, k, ℓ) ∈ Stie}

Action Set: As =

{serve1, . . . , servem1} ∀s = (x, y, P, 1) ∈ Sreg, s = (z, P, 1) ∈ Stie
{attack1, . . . , attackm2} ∀s = (x, y, P, 0) ∈ Sreg, s = (z, P, 0) ∈ Stie
∅ else.

There exists an artificial action in each absorbing state s ∈ W ∪ L.
Transitions: regular game and transition to tie-game

Let s = (x, y, Q, 1) ∈ Sreg \ {W ∪ L}.
p((x, y + 1, Q, 1) | s) = qserve if (x, y) , (20, 19), p((0, Q, 1) | s) = qserve if (x, y) = (20, 19).
p((x + 1, y, P, 1) | s) = qserve if (x, y) , (19, 20), p((0, P, 1) | s) = qserve if (x, y) = (19, 20).
p((x, y, P, 0) | s) = q̂serve

Let s = (x, y, P, 1) ∈ Sreg \ {W ∪ L}, a ∈ As.
p((x + 1, y, P, 1) | s, a) = pservea if (x, y) , (19, 20), p((0, P, 1) | s, a) = pservea if (x, y) = (19, 20).
p((x, y + 1, Q, 1) | s, a) = pservea if (x, y) , (20, 19), p((0, Q, 1) | s, a) = pservea if (x, y) = (20, 19).
p((x, y, Q, 0) | s, a) = p̂servea

Let s = (x, y, Q, 0) ∈ Sreg \ {W ∪ L}.
p((x, y + 1, Q, 1) | s) = qfield if (x, y) , (20, 19), p((0, Q, 1) | s) = qfield if (x, y) = (20, 19).
p((x + 1, y, P, 1) | s) = qfield if (x, y) , (19, 20), p((0, P, 1) | s) = qfield if (x, y) = (19, 20).
p((x, y, P, 0) | s) = q̂field

Let s = (x, y, P, 0) ∈ Sreg \ {W ∪ L}, a ∈ As.
p((x + 1, y, P, 1) | s, a) = pfielda if (x, y) , (19, 20), p((0, P, 1) | s, a) = pfielda if (x, y) = (19, 20).
p((x, y + 1, Q, 1) | s, a) = pfielda if (x, y) , (20, 19), p((0, Q, 1) | s, a) = pfielda if (x, y) = (20, 19).
p((x, y, Q, 0) | s, a) = p̂fielda
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Transitions: tie-game
Let s = (z, Q, 1) ∈ Stie \ {W ∪ L}. Let s = (z, P, 1) ∈ Stie \ {W ∪ L}, a ∈ As.
p((z − 1, Q, 1) | s) = qserve,
p((z + 1, P, 1) | s) = qserve,
p((z, P, 0) | s) = q̂serve

p((z + 1, P, 1) | s, a) = pservea ,
p((z − 1, Q, 1) | s, a) = pservea ,
p((z, Q, 0) | s, a) = p̂servea

Let s = (z, Q, 0) ∈ Stie \ {W ∪ L}. Let s = (z, P, 0) ∈ Stie \ {W ∪ L}, a ∈ As.
p((z − 1, Q, 1) | s) = qfield,
p((z + 1, P, 1) | s) = qfield,
p((z, P, 0) | s) = q̂field

p((z + 1, P, 1) | s, a) = pfielda ,
p((z − 1, Q, 1) | s, a) = pfielda ,
p((z, Q, 0) | s, a) = p̂fielda

W ∪ L are modeled as absorbing states and all other transitions have zero probability.

Rewards: r(s, a, s′) =
{

1 if s <W, s′ ∈ W
0 else.

Objective: maximize the total expected reward

Table 4.1: An SSO-MDPmodeling a beach volleyball set (set-SSO-MDP)

As in every SSO-MDP, entering a winning state yields a reward of one and all other transitions
have a reward of zero. Table 4.1 summarizes the complete SSO-MDPfor a beach volleyball set. It will be
abbreviated in the following as set-SSO-MDP.

After having defined the set-SSO-MDP, we want to convince ourselves that Assumption 3.2.1 is
satisfied. Since we consider playing strategies of a sports game, it is appropriate to assume that for no
strategy a ∈ As the transition probability pa is 1. If this would be the case, team P would always play
that strategy, and no optimization problem would be needed. Also, it is appropriate to assume that
each strategy has a positive probability to fail, which means, that p̄a is greater 0 for each a ∈ As. Of
course, the same assumptions hold for the opponent’s transition probabilities. From these properties, it
can be concluded that under all strategies each state of the set-SSO-MDP is connected to a losing state
by a path that has a probability greater than zero. So, Assumption 3.2.1 is satisfied and the presented
MDP is an SSO-MDP according to Definition 3.2.2.

4.2.2 Transformation

The goal of this subsection is to redefine the set-SSO-MDP to get a representation that is better suited
for mathematical analysis. The main idea is to remove cycles and to concatenate paths. In particular,
states in which no decision is made by team P should be eliminated. The executed transformation in
this subsection is in principle an application of the general transformation algorithm for SSO-MDPs
presented in Subsection 3.7. However, the transformation algorithm is not followed step by step as
the circles in the set-SSO-MDP are of a slightly different but simpler kind. Namely, as in a state where
team Q is in possession of the ball the action set of team P is empty, there exist circles of the form
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“state-state”. Of course, an artificial action could be inserted such that the transformation algorithm
can be applied. However, this effort is saved, and the transformations carried out are explained more
intuitively.

First the cycles between pairs of field attack states where only the team in possession of the ball differs
should be eliminated, i.e., cycles between (x, y, P, 0) and (x, y, Q, 0) of the regular game respectively
cycles between (z, P, 0) and (z, Q, 0) of the tie-game. The probability of staying in such a cycle is p̂a · q̂
which is by assumption of an SSO-MDP smaller than 1 since p̂a = 1 − pa − p̄a and p̄a is greater 0.
The transformation will be illustrated on the example of a state belonging to the regular game. As the
transition structure in the regular game is identical to that in the tie-game, this transformation can be
analogously carried out for the states and transitions of the tie-game.

The state (x, y, P, 0) should be kept and (x, y, Q, 0) should be eliminated. The state (x, y, Q, 0) has
two outgoing transitions, one to (x + 1, y, P, 1) and one to (x, y + 1, Q, 1) in the regular game. At the
states (19, 20, Q, 0) the first transition is replaced by a transition to the state (0, P, 1) of the tie-game and
at the state (20, 19, Q, 0) the second transition is replaced by a transition to the tie-game state (0, Q, 1).
For simpler notation, the transformation is illustrated at a state that has no transition to a tie-game
state. Let (x, y, P, 0) and (x + 1, y, P, 1) be state nodes of the regular game. As there exists an optimal
stationery and deterministic policy, the decision rule used in a state is time-independent. Furthermore,
a deterministic decision rule chooses an action with certainty each time a state is met such that

p((x + 1, y, P, 1)|(x, y, P, 0), a) = pfielda + p̂fielda qfield + (p̂fielda q̂field) · (pfielda + p̂fielda qfield) + (p̂fielda q̂field)2 · . . .

As in the transformation algorithm, this is a geometric series. Its limit can be used to calculate the
aggregated probability for a transition from (x, y, P, 0) to (x + 1, y, P, 1):

p((x + 1, y, P, 1)|(x, y, P, 0), a) = p
field
a + p̂fielda qfield

1 − p̂fielda q̂field
.

An analogous aggregation can be done for the transition form (x, y, P, 0) to (x, y + 1, Q, 1):

p((x, y + 1, Q, 1)|(x, y, P, 0), a) = p
field
a + p̂fielda qfield

1 − p̂fielda q̂field
.

The eliminated circle has an incoming edge from the corresponding serving state (x, y, k, 1). Since
(x, y, Q, 0)will be eliminated all transitions from (x, y, k, 1) that go over (x, y, Q, 0) to a subsequent state
are replaced by a direct transition from (x, y, k, 1). As an example,

p((x + 1, y, P, 1)|(x, y, P, 1), a) = pservea + p̂servea qfield.

Figure 4.3 illustrates the outcome of this transformation for the two-point set-SSO-MDP. For simpler
notation of the result, the following terms are defined:

αfield,Pa :=
pfielda + p̂fielda qfield

1 − p̂fielda q̂field
βfield,Pa :=

pfielda + p̂fielda qfield

1 − p̂fielda q̂field
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The superscript field indicates that it is a transition from a field state and the subscriptP indicates that the
first field attack is executed by team P. The subscript a is the parameter for the field attack strategy. For
each field attack strategy, the terms αfield,Pa and βfield,Pa can be calculated. Note that αfield,Pa + βfield,Pa = 1,
which should be intuitive, since αfield,Pa is the probability for gaining the next point and βfield,Pa for
making the next fault at some point in the future. As one of these events must occur in a sports game,
these probabilities should sum up to 1.
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Figure 4.3: Refined regular SSO-MDP

By choosing not only the serving strategy but also the field attack strategy in a serving state of teamP,
the regular game can be further simplified. In a serving state of team P, the cumulated probability of
gaining, or losing a point if serving strategy a and field attack strategy b is played, is:

αPa,b := pservea + p̂servea · qfield + p̂servea · q̂field · αfield,Pb

βPa,b := pservea + p̂servea · qfield + p̂servea · q̂field · βfield,Pb .

The terms are computed for every combination of a serving strategy awith a field attack strategy b. In a
serving state of teamQ, team P has only to choose a field attack strategy b. The cumulated probability
of gaining, or losing, a point if field attack strategy b is played is:

αQb := qserve + q̂serve · αfield,Pb βQb := qserve + q̂serve · βfield,Pb .

Figure 4.4 shows the final transformed and aggregated regular game.
The tie-game can be transformed analogously. Figure 4.5 visualizes the tie-gameusing the introduced

notation of the aggregated transition probabilities. Observe, that the cumulated probabilities for the
next point of the aggregated tie-game are identical to the cumulated probabilities in the regular game.
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Figure 4.5: Aggregated Tie-Game

4.2.3 Mathematical Analysis

Some results of previous work that are related or can be applied to the presented set-SSO-MDP are:
AnMDP for beach volleyball similar to the presented set-SSO-MDP was analyzed by Hoffmeister

[formerly Börner] in (Hoffmeister [formerly Börner], 2014). The MDP presented in Hoffmeister
[formerly Börner] (2014) does not contain a differentiation between serving states and field attack states.
Hoffmeister [formerly Börner] showed a monotonicity property of the optimal value function. In
Hoffmeister and Rambau (2017b), the authors present twoMDPs for beach volleyball. The s-MDP
of that manuscript has the same structure as the model presented here. The only difference is that the
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s-MDP of Hoffmeister and Rambau (2017b) is already formulated for a certain benchmark question
that considers a concrete set of playing strategies. Therefore, the results of Hoffmeister and Rambau
are also applicable to the model presented here.

Two Lemmas are cited that are proven by Hoffmeister and Rambau in Hoffmeister and Rambau
(2017b) and describe the monotonicity of the maximum total expected reward function. As proven in
general, for SSO-MDPs the total expected reward function of a decision rule equals the probability
of winning the match when playing according to the decision rule. The first lemma states that for a
fixed team k ∈ {P, Q} and a fixed type of state l ∈ {serve, field}, the maximum total expected reward is
increasing in the own number of points and decreasing in the opponents number of points.
Lemma 4.2.1 (Hoffmeister and Rambau (2017b)):
The maximum total expected reward v∗ of a state (x, y, k, ℓ) ∈ S satisfies

v∗(x, y, k, ℓ) ≤ v∗(x + 1, y, k, ℓ) v∗(x, y, k, ℓ) ≥ v∗(x, y + 1, k, ℓ),
for all (x, y, k, ℓ) ∈ S.

The second lemma then describes a relation between serving states of different teams.
Lemma 4.2.2 (Hoffmeister and Rambau (2017b)):
The maximum total expected reward v∗ in a serving state satisfies

v∗(x + 1, y, P, 1) ≥ v∗(x, y + 1, Q, 1),
for all (x, y, k, ℓ) ∈ S.
The proofs of both lemmas can be found inHoffmeister and Rambau (2017b). They can also be applied
to the tie-game, as the structure of transitions is identical.

Due to the described monotonicity property, a myopic policy that maximizes the probability to win
the next point is optimal. This result was independently developed fromWalker, Wooders, and Amir
(2011), who proved that given a monotonicity property a myopic policy is optimal for binary Markov
games.

Since the transition probabilities are identical in every stage of the game, the optimal myopic policy
stays the same throughout the game. Due to the structure of the transition probabilities, it is enough to
maximize the point probability for the best service-field attack combination in a service state of team P.
The determined field attack strategy is then also optimal for rallies where team Q is the serving team
since αPa,b is increasing in the point probability of a field attack state. The main theoretical result for the
analytic solution of the SSO-MDP is the following:

Theorem 4.2.3 (Optimal Policy):
There exists a stationary optimal policy that chooses in each serving state (x, y, P, 1) ∈ Sreg [ (z, P, 1) ∈
Stie ] the serving strategy a∗ ∈ {serve1, . . . , servem1} and in each non serving state (x, y, P, 0) ∈ Sreg
[ (z, P, 0) ∈ Stie ] the field attack strategy b∗ ∈ {attack1, . . . , attackm2} with

αPa∗,b∗ ≥ αPa,b,∀a ∈ {serve1, . . . , servem1}, b ∈ {attack1, . . . , attackm2}.
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Proof. After the transformation, the optimality equations in a serving state (x, y, P, 1) are:

v∗(x, y, P, 1) = maxa∈serve1,...,servem1 ,
b∈attack1,...,attackm2

{
αPa,bv∗(x + 1, y, P, 1) + (1 − αPa,b)v∗(x, y + 1, Q, 1)

}
It can be directly followed that team P chooses the combination a, b that maximizes αPa,b since

v∗(x + 1, y, P, 1) ≥ v∗(x, y + 1, Q, 1) by Lemma 4.2.2.
For a non-serving state (x, y, P, 0) ∈ Sreg [(z, P, 0) ∈ Stie], the cumulated probability for reaching

(x + 1, y, P, 1) [(z + 1, P, 1)] is αfield,Pb and for reaching (x, y + 1, Q, 1) [(z − 1, Q, 1)] is βfield,Pb , compare
Figure 4.3. Applying Lemma 4.2.2 again, it can be derived that team P tries to maximize αfield,Pb . As

αPa,b = pservea + p̂servea · qfield + p̂servea · q̂field · αfield,Pb ,

αPa,b is monotonically increasing in α
field,P
b . Therefore, if a∗, b∗ is a maximizing combination of αPa,b and

p̂servea · q̂field < 0 holds, it follows that b∗ is also a maximizer of αfield,Pb . �

4.2.4 Winning Probability of the Tie-Game

It is even possible to find an analytical expression for the probability of winning the tie-game. In the
following the winning probability v(z, P, 1) of team P under the serving strategy a and the field attack
strategy b is abbreviated by vz,Pa,b . Analogously, the winning probability v(z, Q, 1) of team P under the
playing strategy a, b is denoted by vz,Qa,b . Due to the monotonicity lemmas and the structure of the
optimal policy, compare Theorem 4.2.3, there exists a unique combination a, b of strategies which is
played in each state of the tie-game. Therefore, the following system of equations holds for v0,P

a,b and
v0,Q
a,b :

v0,P
a,b = αPa,b · v1,P

a,b + β
P
a,b · v

−1,Q
a,b

v1,P
a,b = αPa,b · 1 + βPa,b · v

0,Q
a,b

v0,Q
a,b = αQb · v1,P

a,b + β
Q
b · v

−1,Q
a,b

v−1,Q
a,b = αQb · v0,P

a,b + β
Q
b · 0

Solving this system of equations yields to

vPa,b := v0,P
a,b =

(αPa,b)2

(1 − αQb βPa,b)2 − αPa,bα
Q
b βPa,bβ

Q
b
vQa,b := v0,Q

a,b =
αPa,bα

Q
b (αPa,bβ

Q
b − α

Q
b βPa,b + 1)

(1 − αQb βPa,b)2 − αPa,bα
Q
b βPa,bβ

Q
b
. (4.1)

After this analysis, different service and field attack strategies can be compared if the governing
transition probabilities are known.
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4.2.5 Application to a Match

The beach volleyball final of Olympic games 2012 in London was chosen as a first application of the
set-SSO-MDP. In the final match, the German team Brink-Reckermann won against the Brazilians
Alison-Emanuel in three sets (23 : 21, 16 : 21, 16 : 14). The final match and all pre-final matches of the
finalists are publicly available on the Olympics YouTube channel1.

From the video recording of the final match, it is possible to estimate the transition probabilities of
the set-SSO-MDP for the played decision rules in the final match. For this purpose, every played rally in
the final match was recorded as a sequence of a service and subsequent field attacks of the participating
teams. This annotation was carried out with the support of a student, Fabian Buck, who has practical
experiences in beach volleyball. The services were denoted by Serve P respectively Serve Q depending
on whether it was a serve of team P or a serve of team Q. The field attacks are abbreviated by Field P
and Field Q. With this notation, e.g., the first rally of the final match is

Serve Q − Field P − Point Q,
where teamQ are the Brazilians and team P the Germans. The collected rallies were saved together with
a time-stamp of their position in the video in a text file with the extension .sdata. The extension is
called .sdata because in Chapter 5.2 the set-SSO-MDP will be called s-MDP. From the annotated
rallies, the set-SSO-MDP transition probabilities of the played decision rules can be estimated by a
maximum likelihood estimation as

pserve = #“Serve P − Point P”
#“Serve P” pfield = #“Field P − Point P”

#“Field P”
pserve = #“Serve P − Point Q”

#“Serve P” pfield = #“Field P − Point Q”
#“Field P”

p̂serve = #“Serve P − Field Q”
#“Serve P” p̂field = #“Field P − Field Q”

#“Field P” .

The number of the matching substrings in the s-data strings can, e.g., be determined by a search with
regular expressions. A technical note: There exists a small number of rallies in the s-data that contain the
substring Field P-Field P or Serve P-Field P. Such sequences were recorded when a ball was blocked and
went back over the net or when the opposing team did not play a full field attack, but the ball crosses the
net for instance at the reception. In this count, we evaluated Field P-Field P and Serve P-Field P as a
case where a subsequent field attack and no direct point or fault follows. So, the number of occurrences
of these sequences were added to the numerator of p̂serve respectively p̂field. The corresponding transition
probabilities of the opponent team can be estimated analogously. For the final match and the final
strategy, abbreviated by final, we estimated the following transition probabilities for the German team
Brink-Reckermann:

pservefinal =
1

55
≈ 1.8% pfieldfinal =

34
70
≈ 48.6%

pservefinal =
2

55
≈ 3.6% pfieldfinal =

12
70
≈ 17.1%

p̂servefinal =
52
55
≈ 94.5% p̂fieldfinal =

24
70
≈ 34.3%

1https://www.youtube.com/user/olympic

https://www.youtube.com/user/olympic
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For the Brazilian team Alison-Emanuel, we estimated the transition probabilities:

qservefinal =
2

56
≈ 3.6% qfieldfinal =

40
73
≈ 54.8%

qservefinal =
8

56
≈ 14.3% qfieldfinal =

12
73
≈ 16.4%

q̂servefinal =
46
56
≈ 82.1% q̂fieldfinal =

21
73
≈ 28.8%

The counted number of direct points and errors after a service or a field attack are presented in
the numerator of the fractions and can be compared to publicly available match statistics, for instance,
Database (2018). The match statistics provided by Database (2018) contain the number of aces, service
errors, kills and attack errors. A kill is a field attack that can not be defended and leads to a point.
Table 4.2 shows the match statistic after Database (2018). The number of aces equals the number of
direct points we counted after a service and also the number of service errors equals our counted number
of faults in a serving situation. The total number of services is not available in this source, and we could
not find any other source related to the Olympic final of 2012 containing the total number of services.
The total number of attacks, observed by us, is larger than the total number of field attacks listed in the
match statistic. A reason for thismay be that we also counted a reception or defense followed by a set and
a planned shot as a field attack. It may be the case that only smashes were counted in the match statistics.
The number of kills equals our counted number of direct points after field attack for the Germans.
However, we counted onemore direct point after a field attack for Brazil. Themost significant difference
between our counted values and the presented statistic is the number of errors. Thematch statistic states
that no field attack errors occurred. However, an example of an attack fault which proves that zero attack
errors cannot be correct is: In the very first rally of the final match, Brazil starts with a serve and the
subsequent field attack of Germany is blocked such that a point for Brazil is counted. Another example
is the field attack of Germany at 10 minutes and 2 seconds, where the attack hit of Brink goes behind
the baseline and the ball is out. We classify both examples as faults after a field attack hit. The reader
may watch this sequence in the video https://www.youtube.com/watch?v=H7iQ4sAf0OE on
YouTube.2

Player attacks kills errors services aces service errors

Brink 25 12 0 ? 0 1
Reckermann 39 22 0 ? 1 1

Alison 17 12 0 ? 1 5
Emanuel 57 29 0 ? 1 3

Table 4.2: Match statistics of the final match at the Olympic Beach Volleyball Tournament 2012 in
London (Database, 2018)

It may be interesting to determine how large the winning probability of Germany is in our model
given the estimated transition probabilities for the played strategy in the final match. Formula 4.1 can

2Through an e-mail conversation with the administrator of the www.bvbinfo.comwebsite (that hosts the beach volley-
ball database), I got the information that the numbers of attack errors were not available for that tournament.

https://www.youtube.com/watch?v=H7iQ4sAf0OE
www.bvbinfo.com
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be used to calculate the winning probability of Germany in the tie-game which results in

vPa,b =
(αPa,b)2

(1 − αQb βPa,b)2 − αPa,bα
Q
b βPa,bβ

Q
b

≈ (0.3372)2
(1 − 0.6369 · 0.6628)2 − 0.3372 · 0.6369 · 0.6628 · 0.3631

= 0.4029,

The variables αPa,b, βPa,b, α
Q
b and β

Q
b are computed according to the formulas of Subsection 4.2.3. This

result means that if Germany starts with a serve at a score of 19 : 19, the probability that Germany
achieves a lead of 2 points and wins the tie-game is 40.29%. The value vPa,b can be used as a terminal
reward in state (19, 19, P, 1) of the regular game, and vQa,b, which equals 0.5328, as a terminal reward
in state (19, 19, Q, 1). With this modification the regular game is a finite MDP and can be solved by
dynamic programming.3 By dynamic programming, it follows that Germany has a probability of 40.8%
for winning a set if the set starts with a serve of Germany and a winning probability of 44.66% if the set
starts with a serve of Brazil. Following these computational results of the set-SSO-MDP, one would
suggest that it has been more likely that Brazil wins the Olympic final. However, Germany has won the
match. So, the question may arise whether these findings tell something about the model-validity? A
major challenge of sport-strategy optimization is that each match or set is just one realization of the
random process. It may be the case, that themodel maps the dynamics of thematch well, and in the long
run Germany will only win around 43% of the sets, but in the small sample of 3 sets, it may nevertheless
be that the Germans win 2 of 3 sets and become Olympic Champions. However, it may also be the case,
that the model does not reflect reality well enough.

However, the main purpose of sport-strategy optimization is to give strategic recommendations,
and the absolute winning probability is not the most important information. It may be more valuable
information to know which strategy from a given set of strategies has the highest winning probability
and is relatively the best strategy. Given a set of strategies together with the transition probabilities
pa, p̄a and p̂a for each strategy a in the serving and the field attack situation, it is easy to evaluate which
strategy is the best. One only needs to calculate the winning probability of each strategy, like it was
done for the final strategy, and compare them to each other. The strategy with the highest winning
probability is the best strategy compared to the other strategies. Alternatively, even easier, it is enough
to calculate the aggregated probability for the next point of each strategy, which is αPa,b and compare
those values to each other. According to Theorem 4.2.3, the strategy with the largest αPa,b is the strategy
with the highest winning probability.

The difficulty of giving a strategic recommendation using this set-SSO-MDP does not lie in the
evaluation of a strategy. However, it ismuchmore difficult to estimate the correct transition probabilities
of a particular strategy. The transition probabilities in the set-SSO-MDP depend on both teams, since,
e.g., at a field attack, the quality of the hit of the attacking team, and the defending skills of the opponent
team affect whether the attack is a direct point, a fault or is successfully defended. Due to the dependence
on the opponent team, the transition probabilities should be estimated only from rallies of matches
between the teams under investigation. However, the number of matches between the same teams

3Formally, also the artificial actions in the absorbing state have to be removed to make the SSO-MDP a finite-horizon
MDP. The absorbing states L andW have to be changed to terminal states with a terminal reward of 0.
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during a season or a particular tournament is not high. For example at the Olympic games 2012 in
London, Brink-Reckermann did not face Alison-Emanuel before the final match.

Nevertheless, assume it should be compared whether it is better for Germany to play at high risk or
to play safe. Let risky be a strategy that is characterized by jump serves into border fields in the serving
situation and smashes into border fields in field attack situations. On the other hand, the strategy safe
should be characterized by float serves and planned shots both towards non-border fields.

The final is used to estimate the transition probabilities of the different serving and field attack
strategies. After classifying all serves and field attacks of the final, 1 risky serve of Germany and 38 safe
serves are counted. Compared to the total number of 55 serves of Germany in the final match, 16 serves
could not be classified as risky or safe. Serves cannot be classified as risky or safe if a jump-serve is played
in a non-border field or a float serve into a border field. In the field attack situation, only 23 of 70 field
attacks could be classified. A field attack can not be classified if a smash is played in a non-border field
or a planned shot into a border field. Table 4.3 summarizes the estimation results of the transition
probabilities for the strategies risky and safe based on the final match. The number of observations got
smaller for estimating transition probabilities according to defined strategies. If the number of strategies
increases or the strategies are characterized by more specific criteria, the number of observations will
become even smaller.

Transition probabilities based on the final match

strategy # pserve pserve # pfield pfield

risky-risky 1 0% 0% 12 42% 25%
risky-safe 1 0% 0% 11 64% 9%
safe-risky 38 3% 0% 12 42% 25%
safe-safe 38 3% 0% 11 64% 9%

Table 4.3: Estimated transition probabilities from the final match

Nevertheless, given the estimated transition probabilities for risky and safe in the serving and
the field attack situation, Theorem 4.2.3 can be applied to compute an optimal decision rule. The
strategy safe-safe generates the largest aggregated probability of winning the next point, which is αPsafe,safe.
Therefore, according to Theorem 4.2.3, it is optimal to play throughout the whole set floats serves
and planned shots into non-border fields, which is the characterization of safe-safe. If the winning
probability of each strategy combination is computed by dynamic programming, the resulting values
confirm our findings of Theorem 4.2.3. All estimated transition probabilities and winning probabilities
are summarized in Table 4.4.

It is remarkable that the winning probability of the optimal strategy safe-safe is markedly greater
than 50%. The actual played final strategy final has only a winning probability of 43%. Both strategies
are evaluated against the same opponent. So, the model suggests that choosing the right strategy can
make the difference on whowins the matchmore likely. It is impossible to test whether Germany would
have won the final matchmore clearly if they had played safe-safe. Moreover, even if it would be possible
to reproduce the Olympic final and let Germany play safe-safe against the Brazilians in London, several
sets are needed to get a proper sample size. In any case, the findings should always be combined with
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Based on rally records of final match

strategy a-b # pservea pservea # pfieldb pfieldb αPa,b winning Prob

risky-risky 1 0% 0% 12 42% 25% 31% 21%
risky-safe 1 0% 0% 11 64% 9% 38% 82%
safe-risky 38 3% 0% 12 42% 25% 33% 25%
safe-safe 38 3% 0% 11 64% 9% 39% 85%
final 55 2% 4% 70 49% 17% 34% 43%

# qserve qserve # qfield qfield

final 56 4% 14% 73 55% 16%

Table 4.4: Comparing strategies against the final strategy of Brazil

expert knowledge to confirm the results or to reject them as an artifact.
The question may arise whether it is possible to give such a strategic recommendation prior to the

final match. As mentioned above, due to the dependence of the transition probabilities on both teams,
matches between Brink-Reckermann and Alison-Emanuel apriori the final would have been needed. A
way out could be to classify other teams participating at the Olympic games according to their similarity
to the Brazilian team. With such a proceeding it could be possible to use the pre-final matches and get a
more significant number of observations.

The general problem of this rough set-SSO-MDP is to find data that suites to the analyzed strategies.
The more is captured by the transition probabilities, the more properties must be fulfilled such that a
match can be used as an information base to estimate transition probabilities. However, the advantage
of this rough SSO-MDP is that it is easy to determine an optimal decision rule or to compute the
winning probability of a particular decision rule.

4.3 An SSO-MDP for a Beach Volleyball Rally

This section defines a second infinite-horizon, stationary SSO-MDP for beach volleyball. This time
the model captures only a beach volleyball rally instead of a complete set. The presented model in
this section is identical to the g-MDP presented in the manuscript Hoffmeister and Rambau (2017b).
However, the system dynamic and strategy definition are presented in more detail. The motivation for
the very technical description is that the rally-SSO-MDP could be reimplemented by the reader.

Let again P and Q be the teams participating in the match. P1 and P2 should be the players of
team P; Q1 and Q2 the players of team Q. As before, team P is the team whose playing strategy shall
be optimized, whereas teamQ is the uncontrolled opposing team. As in the set-SSO-MDP, team P is
the decision-making team, and the behavior of teamQ is part of the system disturbance and included
in the transition probabilities. However, the model is again built with a symmetric view on team P
and team Q. So, team Q’s action sets will be analogously modeled to the action sets of team P while
team Q plays a fixed probability distribution over the available actions. The transition probabilities are
determined by the randomized choices of Q’s actions and the system disturbances.
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As seen in the last section, if large parts of the game dynamics are included in one transition, it gets
hard to find suitable data for estimating the transition probabilities. This problem can be avoided by
modeling the game mechanism in a rally more explicitly. As a consequence, the transitions decompose
and capture smaller parts of the game mechanism. So, it gets easier to find appropriate data that fits the
considered transition. The focus of the rally-SSO-MDP should be on estimable transition probabilities
while accepting a probably large and complex SSO-MDP. A team action will be split up into two
individual player actions. Moreover, any player action will be defined as a combination of a hit and
a move. The decomposition of a team action into actions of single players will allow building the
SSO-MDP solely on individual player probabilities.

4.3.1 Definition

The decision epochs are modeled as the points in time at which one of the players hits the ball, or the
ball touches the ground. If some player contacts the ball during a blocking action or accidentally with
some part of his body, no decision point should be defined. Each time a decision point occurs, the
current state is observed, and each player has to decide about his next hit and his next movement. The
rally is completed when the ball hits the ground, or a player makes a fault. As it is characteristic for
SSO-MDPs, the rally will end for sure after a finite but undefined number of contacts. The points in
time in a rally, where the state of the system is observed, define the decision epochs T = {1, 2, 3, . . .}
where t ∈ T is the total number of ball contacts minus the blocking contacts in the rally so far.

The court is divided in a grid as the position of a player relative to the ball is important to determine
which player can perform a hit, and as the absolute position on the court influences the player’s hitting
performance. The grid is presented in Figure 4.6. The exact division of the court was determined by
evaluating the observed data of hits whichwere used to estimate the individual player skills. As described
in Section 4.3.3, the original data was saved with exact coordinates and made it possible to examine
different divisions of the field. The presented division is the one that was finally used. However, when
considering a match on a different skill level or concerning a different issue, a modification of the grid is
generally possible.

In the following, a function pos(·) is used that returns the position of a player or the ball according
to the specified grid. A state is defined as a combination of several state variables. The complete state
space is factored into constituent variables which are the players’ positions, the ball’s position, a counter
for the number of contacts, the information which player last contacted the ball, a boolean variable that
indicates the hardness of the last hit and the designated blocking player of the defending team for the
next attack. A general formulation of a state is

(pos(P1), pos(P2), pos(Q1), pos(Q2), pos(ball), counter, lastContact, hardness, blockingPlayer).

Such a description of anMDP is called a factored MDP (Kolobov andMausam, 2012, Def. 2.22, p. 23).
The constituent variables are also called feature variables. The domains of the feature variables are

dom(pos(P1)) = dom(pos(P2)) = {P00, P01, . . . , P34, P35}
dom(pos(Q1)) = dom(pos(Q2)) = {Q00, Q01, . . . , Q34, Q35}

dom(pos(ball)) = {P00, P01, . . . , P34, P35, Q00, Q01, . . . , Q34, Q35}
dom(counter) = {−1, 0, 1, 2, 3}



4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 175

L

R
F

B
R

L

F

B

Q05

Q04

Q03

Q02

Q01

Q00

Q15

Q14

Q13

Q12

Q11

Q10

Q25

Q24

Q23

Q22

Q21

Q20

Q
35

Q
34

Q
33

Q
32

Q
31

Q
30

P00

P01

P02

P03

P04

P05

P10

P11

P12

P13

P14

P15

P20

P21

P22

P23

P24

P25

P
30

P
31

P
32

P
33

P
34

P
35

1m
3m

3m
1m

3.5m4m0.5m

Figure 4.6: Court grid

dom(lastContact) = {P1, P2, Q1, Q2, ∅}
dom(hardness) = {hard, normal, ∅}

dom(blockingPlayer) = {P1, P2, Q1, Q2, ∅}.

The ∅ in the domain sets are used to denote some “null” value. The feature variables counter and
lastContact are needed to implement the three-hits or the double contact rule. The state variable counter
takes values from the set {−1, 0, 1, 2, 3}. The case counter = −1 marks serving states, such that it is
possible to forbid blocking actions on serves. The counter stays −1 if the ball crosses the net after a
serve. This helps to distinguish whether a reception or defense action is available in the action set of the
players of the opposing team. Consequently, if the counter is 0, the ball crossed the net via an attack-hit
performed at the end of a field attack. The state variable lastContact takes values in {P1, P2, Q1, Q2, ∅}.
If the ball has just crossed the net or the state is a serving state, a ∅-sign shows that both players are
allowed to execute the next hit. The boolean state variable hardness indicates the speed of the landing
ball. If hardness = 1, the ball has a high speed, when reaching the field, else the ball has normal speed.
Finally, the state variable blockingPlayer takes values in {P1, P2, Q1, Q2, ∅} and indicates the designated
blocking player of the currently defending team. It is necessary to save the blockingPlayer in the state
since the decision about the blocking player is made once at the beginning of the opponents attack
plan and then followed for more than one decision epoch. Besides these generic states, the SSO-MDP
contains the absorbing states point and fault which constitute the winning statesW = {point} and
losing states L = {fault}. They are denoted from the perspective of team P.

The serving states of team P are defined as

SserveP := {(P02, P13, Q12, Q13, P02,−1, ∅, 0, ∅),
(P03, P13, Q12, Q13, P03,−1, ∅, 0, ∅),
(P12, P02, Q12, Q13, P02,−1, ∅, 0, ∅),
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category description counter further requirement

Srec receiving state −1 not in SserveP ∪ SserveQ
Sdef defending state 0
Sset setting state 1
Sattack attacking state 2

Table 4.5: State Categories

(P12, P03, Q12, Q13, P03,−1, ∅, 0, ∅)},
which are all states where one player of team P is in the serving zone and all other players are on a central
field in their half. As described above, counter = −1 in all serving states. Furthermore, there has not been
any contact with the ball before a serve and the hardness is 0 since the ball rests and the opposing team
has not determined the blocking player yet. The serving states SserveQ of team Q are defined analogously.
Of course there exist more states which could be considered as serving states, e.g., serving from a corner
which would be field P01. However, the listed states were the most common serving states, we observed
when watching the videos of the beach volleyball tournaments of the Olympic games.

Besides the explicit naming of all serving states, all other states are also divided into four categories of
states. This categorization helps when a decision rule is defined for this huge rally-SSO-MDP. Table 4.5
characterizes all categories of states. All categories are further differentiated according to the team
controlling the ball. So, a state is, e.g. a receiving state for team Q if counter = −1, it is no state in
SserveP ∪ SserveQ and the ball is on team Q’s court side.

The cardinality of the state space S can be computed from the cardinalities of the domains of the
feature variables. It equals 244 ·48 ·5 ·5 ·3 ·5, which is more then 5.9 · 109 states. There is a small number
of states in the state space that will not occur in a beach volleyball rally. For example, a combination
of counter = −1 and lastContact , ∅ is not meaningful in a rally. The feature variable counter = −1
indicates that it is a serving situation and there should have been no contact by a player before this
serving situation. Later in this section, it will be investigated howmany states can be excluded due to
non-meaningful combinations of feature variables.

Actions and Preconditions

The following action sets are defined only for team P. However, as already mentioned before, team Q’s
action sets are defined analogously. In general, a team action consists of a specification of the next
blocking player and two individual player actions. The player actions, in turn, consist of a hit and a
movement. Depending on the current state, the available action sets differ. It is too much effort to
specify the actions available in a state explicitly. Instead,As is defined as a factored set of feature actions
together with preconditions on the feature actions which implicitly determineAs. Let TAP be a team
action of team P. It consists of a specification of the blocking player and two player actions:

TAP = (ρb,PAP1,PAP2).
The blocking player can be an arbitrary player of the team or not be specified, which is denoted by ∅:

dom(ρb) = {P1, P2, ∅}.
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The player actions are themselves combinations of a hit with a movement:

PA = (techtarget , µ).

The domain space of the feature actions are

dom(techtarget) = dom(tech) × dom(target) × {∅}
dom(tech) = {SF, SJ, r, rm, s, FS, FE, FP, d, dm}

dom(target) = {P00, P01, . . . , P34, P35, Q00, Q01, . . . , Q34, Q35}
dom(µ) = {mf , mfr, mr, mrb, mb, mbl , ml , mlf ,Mf ,Mr,Mb,Ml , b, ∅}.

An explanation of the abbreviations for the different techniques, which constitute the domain space
of tech, is contained in Table 4.6. The domain space of the target field equals the whole court grid.
The domain space of µ contains all player movements. The movements abbreviated withm are one-
field movements and the movements withM are movements over two fields. The direction of the
movement is specified relative to the net by a subscript letter. The meanings of the subscript letters are:
f = forward, r = right, b = backward and l = left. A blocking b is a special move since it is the only
move which has a precondition. It belongs to the group of movements because a ball possession is not
required to perform a block. All movements are compiled in Table 4.7.

The constitutional variables of a state must satisfy preconditions such that a feature action is
available in the actions set of that state. The availability of a hit techtarget is independently regulated
from the availability of a movement µ through two different precondition functions. Later, functions
are defined that consider the combinations of feature actions.

Let techtarget ∈ dom(techtarget) be a technique combined with a target field, then

prechit : S × dom(techtarget) × {P1, P2, Q1, Q2} → {0, 1}
(s, techtarget , ρ) 7→ prechit(s, techtarget , ρ)

evaluates whether the hit techtarget is available for player ρ in s. If prechit(s, techtarget , ρ) = 1, the techtarget is
available for player ρ in s else not. All hitting techniqueswith their possible target fields andpreconditions
are listed in Table 4.6. For an efficient description of the preconditions, a function neighbour(field) is
used that returns the set of all neighboring fields of field according to the grid presented in Figure 4.6
including the field itself. In some states, the available action set of a player contains only the hit “no hit”
which is denoted by ∅. Some examples picked from Table 4.6 are:

• A serving action is only allowed if counter = −1. So:

prechit(s, SFtarget , ρ) = 0 ∀ player ρ, ∀ target-fields target if counter , −1 in s.

• A reception with a move, requires that the ball is in a neighbor field of the player:

prechit(s, rm,target , P1) = 1 ∀ target-fields target,
if pos(ball) ∈ neighbour(pos(P1)) and counter = −1 in s.
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tech target Description Preconditions
counter Position

∅ - no hit none none

Serve

SF Q11 − Q24 float serve = −1 pos(ρ) = pos(ball) ∈ P01 − P04
SJ Q11 − Q24 jump serve (hard) = −1 pos(ρ) = pos(ball) ∈ P01 − P04

Reception

r P11 − P34 receive = −1 pos(ball) = pos(ρ), s < SserveP
4

rm P11 − P34 receive with move = −1 pos(ρ) ∈ neighbour(pos(ball)), pos(ρ) , pos(ball), s < SserveP
Setting

s neighbour(pos(ρ)) \ (Q, ·) set > 0 pos(ρ) = pos(ball)
Attack-Hit

FS Q11 − Q24 smash (hard) > 1 pos(ρ) = pos(ball) or pos(ρ) +mf = pos(ball)
FE Q11 − Q24 emergency shot > 1 pos(ρ) ∈ neighbour(pos(ball))
FP Q11 − Q34 planned shot > 0 pos(ρ) = pos(ball)
Defense

d P11 − P34 defense , −1 pos(ball) = pos(ρ)
dm P11 − P34 defense with move , −1 pos(ρ) ∈ neighbour(pos(ball)), pos(ρ) , pos(ball)

Table 4.6: Hit specification for player ρ of team P and ball ball; requires always ρ , lastContact except
the action no hit

The hitting techniques and preconditions of a player of team Q are defined analogously.
The only movement that has a precondition is the block. It can only be performed if the player

ρ ∈ {P1, P2} is in a field close to the net which is a field in {P31, . . . , P34}. The precondition function
for movements can be written compactly:

precmove : S × dom(µ) × {P1, P2, Q1, Q2} → {0, 1}

(s, µ, ρ) 7→
{

0 if µ = b ∧ pos(ρ) < {P31, . . . , P34} in s
1 else.

All possible movements of team P are listed in Table 4.7. The movements of the players that belong to
team Q are defined analogously.

The model contains rules that restrict the possible combinations of a hit with a move to a player
action as well as restrictions on the combination of two player actions to a team action. Reasons for these
restrictions are general observations in real beach volleyball matches. The conditions are implemented
by functions called combc which evaluate whether a combination of feature actions is allowed. The first
function combcPA evaluates a combination of a hit with a movement:

combcPA : (dom(techtarget) ∪ dom(µ)) → {0, 1}
(techtarget , µ) 7→ combcPA(techtarget , µ)

The combinations for which combcPA(techtarget , µ) = 0 are:
4Forbids that a rally is started by a receive; is needed in the system dynamic to update counter.
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Symbol Specification Description Requirements
∅ - stay none

m f, fr, r, rb, b, bl, l, lf move one field none

M f, r, b, l move two fields none

b - block pos(ρ) ∈ {P31, . . . , P34}, counter , −1

Table 4.7: Move specification for ρ belonging to team P

1. If a player makes a real hit, i.e., a hit that is not “no hit” (∅), only a one-field movement is allowed
(due to timing reasons):

If techtarget , ∅ ∧ µ ∈ {Mf ,Mr,Ml ,Mb} ⇒ combcPA(techtarget , µ) = 0.

2. If a playermakes a hit that includes a jump, i.e., a jump serve or a smash, only a one-fieldmovement
in forward direction (i.e., towards the net) is allowed to follow:

If tech ∈ {SJ, FS} ∧ µ < {mf , ∅} ⇒ combcPA(techtarget , µ) = 0.

3. If the hit requires a movement before executing the hit, no additional movement afterwards is
allowed:

If tech ∈ {rm, dm} ∧ µ , ∅ ⇒ combcPA(techtarget , µ) = 0,
If tech = FE ∧ pos(ball) , pos(ρ) ∧ µ , ∅ ⇒ combcPA(techtarget , µ) = 0.

Furthermore, a restriction on the combination of player actions is incorporated into the model
through the function

combcTA : (dom(PAP1) ∪ dom(PAP2)) → {0, 1}
(PAP1,PAP2) 7→ combcTA(PAP1,PAP2).

The model contains only one restriction on the combination of player actions: If two player actions are
combined to a team action, only one player may make a real hit:

If techtarget , ∅ of PAP1 ∧ techtarget , ∅ of PAP2 ⇒ combcTA(PAP1,PAP2) = 0.

Furthermore, there exists a precondition when the designated blocking player ρb of the team action
may have a value unequal ∅. From the perspective of team P: Only if team P is the defending team and
not in possession of the ball, i.e., if side(pos(ball)) = Q, the designated blocking player ρb of the team
action can be P1 or P2. This holds analogously for a team action of team Q.

Team actions that themselves or whose player actions do not follow these rules are not available in
the model – for both teams. Further conceivable restrictions could be easily implemented in the model
whenever they only depend on the current state.
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Transition Functions

The transition probabilities are determined by a transition function that is also decomposed into smaller
probabilistic effects. This subsection uses a lot of notation and case distinctions to specify the transition
probabilities in detail. The followingmight be very technical and difficult to read, however, it is necessary
such that the rally-SSO-MDP can be implemented.

The transition function gets a state s and a feasible team action TAP ∈ As of team P and a feasible
team action TAQ ∈ A′s of the opponent team. Even if the opponent team is a part of the environment,
a team action of the opponent team can be selected according to the fixed policy of team Q. The team
action TAQ of the opponent can be viewed as a disturbance that is incorporated in the transitions. The
output of the transition function trans is a probability distributionP(S) over the set of states:

trans : S ×As ×A′s → P(S)
(st ,TAP ,TAQ) 7→ trans(st ,TAP ,TAQ).

The resulting probability distribution is derived from smaller probabilistic effects of the feature actions
on the domain variables. In general, a conditional probability distribution specifies the probabilistic
effect of a feature action on specific domain variables.
Example 4.1 (Conditional probability distribution):
For illustration, a short example of a probabilistic effect of a feature action is described: Consider the
feature action techtarget which is a hitting technique with a specified target field. Under the condi-
tion that techtarget is performed by player P1 of team P (abbreviated by techtarget ∈ PAP1) from field
field = pos(P1) in the current state s and the opponent’s team action does not include a blocking action
(abbreviated by b < TAQ), the probability that the domain variable pos(ball) equals target in the next
state is determined by the individual success probability of the hitting player P1:

P
{
pos(ball) = target |techtarget ∈ PAP1, field = pos(P1), b < TAQ

}
= psucc,P1

(field, techtarget ) . ∗
A decomposition in probabilistic effects only works if the decomposed effects are independent.

If there exists a correlation between the effects of several feature actions, one would have to specify
a joint conditional probability distribution for that set of correlated feature actions. However, this
rally-SSO-MDP is designed on the basis of, so-called, individual player skills which are assumed to be
independent probabilistic effects. So, the decomposition of the transition probabilities into smaller
probabilistic effects is beneficial.

This definition of the transition probabilities is similar to that used by the Relational dynamic
influence diagram language (RDDL), described in Sanner (2010). In an RDDL-representation, for each
action and each domain variable, a conditional probability distribution over the values of that variable
in the next state is specified. This representation is useful if many objects evolve independently and
simultaneously.

In the following, a list of all probabilities on which the independent probabilistic effects are based
is presented. These probabilities are required as input probabilities for the rally-SSO-MDP. As they
depend only on the skills of a single player, they are called individual player skills.

Assume, for each player ρ being on any position field and for each hitting technique techtarget the
success probability

psucc,ρ
(field, techtarget ) := P

(post+1(ball) = target | field, techtarget
)
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is known. It is the probability that the specified target field target from ρ’s position is met. In the
notation used above, the terms field and techtarget show the dependence the player’s position and the hit
he uses. The probability is time-independent. The t on the right-hand side of the last equation is only
used to indicate that post+1(ball) is the position of the ball in the subsequent state.

Similar, assume for each player ρ using any hit techtarget from any position field the probability of an
execution fault

pfault,ρ
(field, techtarget ) := P

(st+1 = fault | field, techtarget
)

is known. An execution fault includes hits where the ball is not correctly hit such that the referee
terminates the rally with a fault for the hitting player. For serves and attack-hits an execution fault also
includes that the ball is hit into the net. In addition to a successful hit and an execution fault, the model
also contains the possibility of a “nearly successful hit” or a deviation. A deviation is a hit that lands in a
neighbor field of the target field. Of course, the deviation can result in an outside-field if the original
target field is a border field. The remaining probability

1 − psucc,ρ
(field, techtarget ) − pfault,ρ (field, techtarget ) =: pdev,ρ

(field, techtarget )
is the probability that the ball lands in a neighboring field of the target field. It is assumed that each
neighboring field of the target field is equally probable.

For the defending techniques r, rm, d and dm, it is also distinguished between a reception or defense
of a hard and a normal ball. So, for those techniques, the individual player probabilities do also depend
on the hardness of the ball in the current state. Since this dependence does not apply to all types of hits,
it is denoted in brackets, i.e., psucc,ρ

(post(ρ), techtarget , [hardness]) .
Furthermore, assume that the blocking skills of each player are known. The parameter pρ,block

denotes the probability that player ρ touches the ball when performing the block b against an adequate
attack-hit from the opponent’s side of the court. The probability pρ,block is independent of the skills of the
attacking player and should bemeasured against an average attack hit. There are three possible outcomes
of a blocking player who gets the ball. The block can be strong such that it is impossible for the opposing
team to defend the returned ball, and the blocking team wins the rally. This probability is denoted by
pρ,block,point. Furthermore, the block can result in a fault with probability pρ,block,fault. This happens if the
ball is blocked into the net and cannot be regained or the blocking player touches the net, which is an
execution fault. Noneof the abovehappenswithprobability pρ,block,ok := pρ,block−pρ,block,point−pρ,block,fault.
This is called an “ok”-block, and the ball lands in a random field on the court. It is assumed that each
field on both sides of the net is equally probable. The probability that the blocking player fails to get
his hands on the ball is defined as pρ,no block := 1 − pρ,block. In this case, the direction of the ball and its
landing field is not affected by the block. In total, the blocking probabilities are

pρ,no block + pρ,block,point + pρ,block,fault + pρ,block,ok︸                                     ︷︷                                     ︸
pρ,block

= 1.
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After having specified all input probabilities, it is explainedhow the independent decomposed effects
are combined, and the next state is determined. The transition function is defined as a decomposition
of three functions:

trans(st ,TAP ,TAQ) = (transdet ◦ transblock ◦ transhit)(st ,TAP ,TAQ)

with
transhit : S ×A ×A′ → S ×A ×A′ ×P(S)

transblock : S ×A ×A′ ×P(S) → S ×A ×A′ ×P(S)
transdet : S ×A ×A′ ×P(S) → P(S).

In the function declaration above, S is the state set, A is the set of all team actions of team P, A′
the set of all team actions of team Q and P(S) the set of all probability distribution over S. As the
names of the transition functions suggest, the transhit captures the probabilistic effect related to the
hitting skills and transblock the probabilistic effect related to the blocking skills. The transdet function
includes all deterministic transitions that follow from the results of transhit and transblock like, e.g., the
new player-positions or increments of the counter. The final result is a probability distribution over the
set of states. The intermediate probability distributions may be coarse probability distributions, i.e.,
they only assign probabilities to sets of states. However, in each function, the probability distribution
becomes more andmore detailed such that at the end a probability is defined for each state. The original
state and the team actions are also passed to the next function such that the necessary information for
the transition is available in each of the three functions.

The first probabilistic effect comes through the hitting skills into the system dynamics and specifies
the ball’s next position. The resulting probability distribution consists of four sets, which are named Ssucc ,
Sdev, Sfault and Spoint . These are the only sets to which a probability greater than zero may be assigned.
The state set Sfault will either consists only of the state fault or the state point. If no hitting player exists
or the hitting player is of team P, Sfault := {fault}. If the hitting player is of team Q, Sfault := {point}.
Accordingly, the set Spoint contains the point or fault. In contrast to the absorbing states fault and point,
which are defined from the perspective of team P, the sets Spoint and Sfault are always defined from the
perspective of the hitting team. The state set Ssucc and Sdev may contain a large number of possible
subsequent states. However, they may also be empty. In the following, it is explained how these sets are
defined and which probabilities are assigned to them.

Assume that oneof the team-actionsTAP orTAQ contains a real hit techtarget and ρ ∈ {P1, P2, Q1, Q2}
is the hitting player. As only feasible team actions are considered, there is – due to the preconditions
and the combination conditions – at most one player who is hitting the ball. The function transhit first
checks the double-contact-rule and the four-hits-rule. This means, if lastContact = ρ or counter = 3 in
the current state, the resulting probability distribution regarding the subsequent state st+1 is

P{st+1 ∈ Sfault} := 1.

In this case, the sets Ssucc and Sdev are not further specified and empty sets, and the probability of all
other sets different from Sfault is zero.

If no rule is violated, the probability distribution over the state sets Ssucc, Sdev and Sfault is defined
according to the individual skills of ρ:

Ssucc := {st+1 ∈ S | post+1(ball) = target in st+1}
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P{st+1 ∈ Ssucc | ρ plays techtarget} = psucc,ρ
(post(ρ), techtarget , [hardness]) ,

Sdev := {st+1 ∈ S | post+1(ball) ∈ neighbour(target) \ {target} in st+1}
P{st+1 ∈ Sdev | ρ plays techtarget} = pdev,ρ

(post(ρ), techtarget , [hardness]) ,
P{st+1 ∈ Sfault | ρ plays techtarget} = pfault,ρ

(post(ρ), techtarget , [hardness]) .
The parameters post(ρ) and hardness are the domain variables of the current state st . Observe, that Ssucc
respectively Sdev contain quite a number of states since besides pos(ball) no other domain variable is
specified. In the state set Sdev, the position of the ball may be any neighbor field of the target field but
not the target field itself. The dependency of the individual player skills on the hardness of the ball in
the current state is denoted in brackets and applies only to receptions and defenses.

If neitherTAP norTAQ contains a real hit eitherSpoint orSfault is assigned aprobability of 1depending
on the current position of the ball and the last contact. As an abbreviation for ball is on Team P’s side of
the net the term pos(ball) ∈ side(P) is used. Furthermore, pos(ball) ∈ out denotes that the ball is in an
outside field. With this abbreviations, the outcome of transhit when no player is hitting can be specified
as:

P{st+1 ∈ Sfault | nobody hits } =


1 if pos(ball) ∈ out ∧ lastContact ∈ {P1, P2},
1 if pos(ball) < out ∧ pos(ball) ∈ side(P),
0 else,

P{st+1 ∈ Spoint | nobody hits } =


1 if pos(ball) ∈ out ∧ lastContact ∈ {Q1, Q2},
1 if pos(ball) < out ∧ pos(ball) ∈ side(Q),
0 else.

In this case, all other sets are empty and have zero probability.
All cases related to a potential hitting action were now considered. The outcome of transhit is a

definition of the state sets Ssucc, Sdev, Sfault and Spoint together with a specified probability assigned to
each of the sets. As in the next step the probabilities of these sets are redefined, it is denoted byPtranshit{·}
the probability distribution defined by transhit.

In the next step, this probability distribution is further refined by the function transblock. As a
blocking action is classified as a movement, there may be more than one player who blocks. Observe
that the domain variable blockingPlayer does not pretend the blocking player, its only purpose is that a
team can specify a defense strategy that relies on the same designated blocking player over more than
one decision epoch. For all players that perform a blocking action, it is evaluated in the first step whether
their block may have an impact on the ball. A block must be performed in a field at a net to have an
impact. This is satisfied by all blocking player as only feasible team actions are considered. Also, the
blocking player has to face the hitting player. So, if the hitting player ρ is in field Pij [Qij] on the court,
the blocking player ρbmust be on the opposed side of the net in fieldQ3(5− j) [P3(5− j)]. The function
blockMayHaveImpact specifies this condition on the block by using the current state st and the current
positions of the hitting player ρ and the blocking player ρb

blockMayHaveImpact(st , ρ, ρb) =
{

1 col(post(ρ)) = col(post(ρb)) ∧ side(post(ρ)) , side(post(ρb))
0 else.
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The function col(field) does return the second index variable of a field according to numbering in the
grid. The only case where the block of two players may have an impact at the same time is when both
players are positioned in the same field at the net facing the hitting player. In this case, the blocking
skills of the two players are mixed with a factor 0.5 which can be interpreted as if every player comes to
a block with a probability of 0.5. In the following, assume ρb is the only blocking player who may be, in
the case that two players blocking in the same field, imagined as an artificial player with the combined
skills of both players.

The blocking skills of player ρb are used to further specify the probability distribution. With
probability pρb,no block the blocking player ρb misses the ball and the flight trajectory of the ball does
not change. Therefore, the probability of Ssucc and Sdev is multiplied with pρb,no block. The result is the
probability that the hit is successful (respectively a deviation) and the balls flight trajectory was not
changed by the block:

P{st+1 ∈ Ssucc} := Ptranshit{st+1 ∈ Ssucc} · pρb,no block,
P{st+1 ∈ Sdev} := Ptranshit{st+1 ∈ Sdev} · pρb,no block.

Theblockingplayermakeswithprobability pρb,block,point a block that cannot be successfully defended.
This results in a direct point for the blocking teamwhich is a fault for the hitting team. So, the probability
of Sfault is updated by:

P{st+1 ∈ Sfault} :=Ptranshit{st+1 ∈ Sfault} +
(
Ptranshit{st+1 ∈ Ssucc} + Ptranshit{st+1 ∈ Sdev}

) · pρb,block,point.
The blocking teammakes a fault and the hitting team gains a point if the block is a bad block. A bad

block hits the ball into the net or into an outside field. Also the block may be executed in a forbidden
way such that the referee indicates a fault which may happen if, e.g., the blocking player touches the net.
So, the probability of the state set Spoint is updated by

P{st+1 ∈ Spoint} := Ptranshit{st+1 ∈ Spoint} +
(
Ptranshit{st+1 ∈ Ssucc} + Ptranshit{st+1 ∈ Sdev}

) · pρb,block,fault.
Due to the blocking action, a new set of states with a positive probability arises. If a block is neither a

point nor a fault but the ball is blocked, it is called an ok-block. As it is not distinguish between different
blocking directions, the resulting field from an ok-block is just a random field of the court without the
outside fields. Define Srand := {s ∈ S | pos(ball) ∈ {P11 . . . P34, Q11 . . . Q34}}, then

P{st+1 ∈ Srand} :=
(
Ptranshit{st+1 ∈ Ssucc} + Ptranshit{st+1 ∈ Sdev}

) · pρb,block,ok.
The reader may observe that the probabilities of all specified sets still sum up to 1. If there is no player
that performs a block that may have an impact on the ball, the pρb,no block is set to 1 and in doing so the
probabilities of Ssucc, Sdev, Sfault and Spoint stay unchanged.

There is another edge case that is treated appropriately: If the result of the hitting action was for
sure a state in Sfault , the blocking action does not change this already completed rally. Namely, in this
case Ptranshit{st+1 ∈ Ssucc} and Ptranshit{st+1 ∈ Sdev} is zero, such that the modification with the blocking
skills has no impact.

After the probabilistic effects of hits andblocks are incorporated into themodel, the transdet function
evaluates all remaining transitions. Since the potential subsequent states are compiled in sets Sfault , Ssucc ,
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Sdev and Srand, all remaining transitions are deterministic – conditioned by the set in which the states
are contained. The transdet function includes transitions that determine the new players’ positions and
the values of the domain variables counter, lastContact, hardness and blockingPlayer. It first reduces
the state sets Ssucc, Sdev and Srand to states that have values according to the deterministic transitions
and then specifies the final probability distribution. In the following, it is explained, which values the
domain variables of states in Ssucc, Sdev or Srand should have:

Amovement which is not a block is no probabilistic effect since it is assumed to be always successful.
As the list of all possible outcomes of movements starting from different fields is very long, an auxiliary
function

makeStep : {P00, P01, . . . , Q34, Q35} × dom(µ) → {P00, P01, . . . , Q34, Q35}
(field1, µ) 7→ field2

is defined. It returns the field field2 resulting from a movement µ starting from field1. Field field2 is
selected according to the grid presented in Figure 4.6 and the specified direction in µ. For example,

makeStep(P21, mlf ) = P32 andmakeStep(Q33,Mb) = Q13.

If a movement goes beyond the fields specified in the grid, the last field in the desired direction is
returned. To distinguish between positions in the current state st and positions in the subsequent state
st+1, post is used for the current position and post+1 for the positions belonging to the subsequent state
st+1. For all states remaining in Ssucc, Sdev or Srand, it should hold for the position of the non-hitting
player ρ:

post+1(ρ) = makeStep(post(ρ), µρ).

For the hitting player, the step starts at the old position of the ball. This is relevant as hits like rm or dm
contain movements prior to the hit. So, the new position of the hitting player ρ is

post+1(ρ) = makeStep(post(ball), µρ).

If no real hit is contained in the team actions, the sets Ssucc and Sdev are already empty. So, assume
player ρ performs a real hit techtarget . Then, from the sets Ssucc and Sdev, all states with lastContact = ρ
are selected. Furthermore, only states where the counter is incremented in a correct way, stay in the set
Ssucc and Sdev. Depending on the hitting technique, it is distinguished whether the ball crossed the net
after a serve or a field attack. In the first case, only states with counter = −1 may stay in the sets, in the
latter case only states with counter = 0. If the ball did not cross the net, the counter is incremented by
1. However, after a receiving situation, the counter is set from −1 to 1. The following table gives an
overview over the described new values of counter:

side(post+1(ball)) , side(post(ball))? tech countert+1

yes ∈ {SJ, SF } −1
yes < {SJ, SF } 0
no ∈ {r, rm} 1
no < {r, rm} lastContact t + 1
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The set Srand is handled similar: If no adequate blocking action is contained in the team actions, the
set Srand is empty. Assume there exists an adequate block executed by player ρb. Let st be the current
state of the rally-SSO-MDPwhich was passed to the trans function. Then, all states st+1 ∈ Srand with
lastContact = ρb5 and counter = 1 are selected by transdet if the ball was played over the net, i.e., if
side(post+1(ball)) , side(post(ball)). This is the case when the blocking player has touched the ball
and maybe changed the ball’s flight trajectory, but the ball crossed the net. If side(post+1(ball)) =
side(post(ball)), all states with lastContact = ∅ and counter = 0 may remain in the set Srand. This
corresponds to the case, when the ball is blocked back to the attacking team’s side. The following table,
characterizes all combinations of counter and lastContact that remain in the state set Srand:

side(post+1(ball)) , side(post(ball))? countert+1 lastContact t+1

yes 1 ρb
no 0 ∅

At this point, we see that it is not possible to evaluate the transdet functionprio to the other transition
functions. Depending on the considered set, the values of the deterministic domain variables differ. For
example, if the ball crossed the net after a field attack, it depends on whether the state is from Srand or
Ssucc ∪ Sdev to determine the last contact.

Finally, the parameters hardness and blockingPlayer are determined and all states in Srand, Ssucc and
Sdev that contain other values are removed. If the hitting player executed a smash FS or a jump serve SJ ,
the domain variable hardness is set to hard and otherwise to normal:

hardness :=

{
hard if tech ∈ {FS, SJ }
normal else.

If the team action of the defending team specifies a new designated blocking player, i.e., ρb is
unequal to ∅, the domain variable blockingPlayer is set to that player. If the ball changes the courtside,
the blockingPlayer is automatically reset to ∅.

In the last step transdet specifies the final probability distribution. For each state s in each state set
S̃ ∈ {Ssucc, Sdev, Sfault , Spoint , Srand} the probability is computed as

P{st+1 = s | s ∈ S̃} :=

{
1
|̃S | if Ptransblock{S̃} > 0

0 else.

For all other states, not being in any of the sets, the probability is set to zero. Observe that this is the first
probability distribution that specifies a probability for each single state. After the elimination of states
in these sets by the transdet function, the intersection of the sets Ssucc, Sdev, Sfault , Spoint , Srand is empty.
So, the probability of each subsequent state is well defined. Furthermore, all probabilities sum up to 1.

The reward structure of the SSO-MDP is defined according to the definition: All transitions have
zero rewards except the transition to the state point, which has reward 1.

The presented SSO-MDP satisfies Assumption 3.2.1: For hits in a beach volleyball match, it is
reasonable to assume that pfault,ρ

(field, techtarget ) > 0 holds. Since an execution fault directly leads to a
fault, the SSO-MDP assumption follows if pfault,ρ

(field, techtarget ) > 0 holds for all hits.
5In the special case of two player blocking in the same field, the set Srand may contain all states where lastContact equals

one of both players.
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However, this is only mainly supported by the data presented in Subsection 4.3.3. For example,
the float serves of Julius Brinks estimated from observations of the final have a zero fault probability,
compare Table A.1. In comparison in Table 4.12, the fault probability of a float serve of Julius Brink is
greater than zero. This supports the statement that pfault,ρ

(field, techtarget ) > 0 is reasonable for hits in
a beach volleyball rally if the estimates are based on a large enough number of observations.

4.3.2 Defining a Decision Rule

In an SSO-MDP, an optimal stationary policy is defined by a decision rule. A decision rule specifies
for each state a probability distribution over the set of available actions, see Definition 2.1.2. In large
MDPs with a large number of states, it may get complicated to specify a probability distribution for
each state explicitly. Furthermore, when different decision rules should be compared, it may be hard to
overlook the differences between the decision rules under considerations. Nevertheless, a specification
of a probability distribution for the next action choice in each state is necessary to be able to compare
different decision rules.

Assume, different serving techniques (float serve versus jump serve) and different techniques for
a field attack (smash versus shot) should be compared in the rally-SSO-MDP. A simple approach for
specifying decision rules that allow comparing those techniques is:

• In states where a choice between the hitting techniques under considerations is made, specify a
probability distribution that represents the decision rule under investigation.

• In all other states, choose evenly distributed an arbitrary action from the set of available actions.

If the rally-SSO-MDP is simulated over 1000 sets using such a decision rule, the characteristics of the
resulting rallies do not match those observed from a real beach volleyball rally. In a simulation6 of the
rally-SSO-MDPwith real skill estimates but using the described decision rule, the average number of
field attacks of one team in a set is 2.6 with a standard deviation of 1.5. These numbers are too low in
comparison with statistics of real beach volleyball matches. For instance, Giatsis and Panagiotis collected
data of 118 sets from the first 2003 FIVB men’s beach volleyball tournament in Rhodes, Greece and got
on average around 40 attacks per team for a match with two sets (Giatsis and Panagiotis, 2008). Another
example is the match recap of the Olympic Games Gold Medal Match of 2012, where 64 attacks by
Germany and 74 by Brazil were made over 3 sets (Database, 2018). So, a decision rule that just uniformly
randomizes over the set of available actions provides too little coordination between the players and
also bad positioning on the field such that services cannot be received or field attack attempts are poorly
coordinated.

Having these observations in mind, a concept was parametrized basic decision rule developed. It
should be a trade-off between guaranteeing reasonable play dynamics and focusing on the differences of
the decision rules under consideration. First, the concept of a basic decision rule is explained which is
afterward extended by a parametrization.

The basic decision rule is a decision rule that specifies a probability distribution over the set of
available actions so precisely such that the characteristics of a beach volleyball set are kept. It should
exclude unrealistic and non-optimal combinations of player actions. At the same time, the decision rule

6Screenshots of the simulation can be found in Appendix B and the simulation itself in the supplementary material
provided in Appendix E.
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tries to be as less specific as possible. This is ensured by choosing the actions equally distributed over
the set of reasonable actions. In the rally-SSO-MDP, the hit no hit and the move stay were included
such that in each state it is possible that both players do nothing. It is assumed, that this default action,
which is always available inAs, is included in Rs if no other action is considered as reasonable. With this
assumption, the basic decision rule can be defined as follows:

Definition 4.3.1 (Basic decision rule).
Let Rs ⊆ As be a set of reasonable actions with |Rs | > 0. Then, the basic decision rule with regard to
Rs is defined as

dbasic : S → P(Rs),
s 7→ qd(s)(·) s.t. qd(s)(a) =

1
|Rs | .

In the rally-SSO-MDP, each state is classified according to the categories: serving state, receiving
state, defending state, setting state or attacking state, see Table 4.5. The defined basic decision rule
for the rally-SSO-MDP selects a team action of the reasonable action set. The reasonable action sets
are based on the class of the state, see Appendix C for more details on the basic decision rule of the
rally-SSO-MDP. There is one change in the basic decision rule in comparison to the basic decision rule
used in Hoffmeister and Rambau (2017b). After a serve the hitting player makes a one-field movement
towards the net. This modification is reasonable from a practitioner’s view and yields a slightly better fit
to the realized probabilities, which can be seen in the next subsection.

If the rally-SSO-MDP is again simulated over 1000 sets using the same skill estimates, but this time
the basic decision rule as specified in Appendix C, the average number of field attacks per team per set is
31 with a standard deviation of 6. This number fits better to the statistics from real matches presented
above. It may be a bit too large, which could be a hint that the players are too well coordinated.

The reader may ask whether a basic decision rule and the preconditions on the available actions
could be combined. The answer is that preconditions contain negative characteristics of actions which
restrict the set of available actions while the basic decision rule specifies positive characteristics of actions
that should be chosen in each state with a positive probability. Of course, it would be possible to exclude
in the preconditions all actions that are not positively characterized in the basic decision rule. However,
this would be an unfavorable way.

A parametrization of the basic decision rule is included in states where the question of decision plays
a role. At those states, a parameter modifies the uniform distribution. However, still, only reasonable
actions may be chosen. If the question of interest is a binary decision like, e.g., a float serve or a jump
serve, a border field or a non-border field, the parametrization can be implemented by using a single
parameter in [0, 1]. The following definition specifies what is considered as a binary parametrization of
the basic decision rule:

Definition 4.3.2 (Binary parametrization of the basic decision rule).
Consider a basic decision rule dbasic with Rs being the set of reasonable actions in state s ∈ S. A binary
question specifies two distinguished subsets Rs1 and Rs2 of Rs with Rs1 > 0 and Rs2 > 0 that each
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contain one variant of the binary property under consideration. Then, a binary parametrization of the
basic decision rule is implemented by a single parameter π ∈ [0, 1]:

qd(s)(a) =


1−π
|R1s | if a ∈ R1

s
π
|R2s | if a ∈ R2

s
0 else .

Definition 4.3.2 specifies a valid probability distribution over Rs: For each a ∈ Rs, it holds qd(s)(a) ≥ 0
and ∑

a∈Rs
qd(s)(a) =

∑
a∈R1s

qd(s)(a) +
∑
a∈R2s

qd(s)(a) = |R1
s | ·

1 − π
|R1s |

+ |R2
s | ·

π
|R2s |
= 1.

Observe that if Rs1 ∪ Rs2 = Rs holds, the basic decision rule can be regained by setting π = |Rs
2 |
|Rs | . This

is noted in the following observation:

Proposition 4.3.3:
Let dbasic be the basic decision rule with regard to the reasonable action sets Rs, s ∈ S. Let Rs1 and Rs2 be
a partition of Rs that is parametrized by π ∈ [0, 1] according to Definition 4.3.2.

Then, setting π = |Rs2 ||Rs | regains the basic decision rule.

Proof. Since Rs1 and Rs2 are a partition of Rs, for each a ∈ Rs it either holds a ∈ R1
s or a ∈ R2

s .
Assume, a ∈ R1

s holds. Then,

qd(s)(a) =

(
1 − |Rs2 ||Rs |

)
|R1s |

=
|Rs | − |R2

s |
|Rs | · |R1s |

=
|R1
s |

|Rs | · |R1s |
=

1
|Rs | .

Assume, a ∈ R2
s holds. Then,

qd(s)(a) =
|Rs2 |
|Rs |
|R2s |

=
|Rs2 |
|Rs | · |R2s |

=
1
|Rs | .

So, the resulting probability distribution corresponds to that of the basic decision rule. �

Similar to the example question in the set-SSO-MDP of Section 4.2, the following set of example
questions has been implemented in the rally-SSO-MDPbybinary parameterizations of the basic decision
rule:

• Should player 2 or player 1 be the blocking player? (πb)

• Should a float serve or a jump serve be performed by player ρ? (πserve
h,tech(ρ))

• Should the service be made towards a non-border field or a border field by player ρ? (πserve
h,field(ρ))

• Should a shot or a smash be performed by player ρ? (πfield
h,tech(ρ))
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• Should the field attack bemade towards a non-border field or a border field byplayer ρ? (πfield
h,field(ρ))

• Should the service be made on opponent player 2 or opponent player 1? (πs)
The parameters used for modeling the questions are specified in brackets behind the corresponding
question. Let for each question, Rs1 always be the set of reasonable actions for which the property first
mentioned in the question holds. As a mnemonic, this is for questions regarding a hitting situation
always the safer opportunity. According to Definition 4.3.2, the value of the binary parameter equals
the probability of the more risky opportunity for hitting decisions. For example,

parameter value
πb 0

πserve
h,tech(P1) 0
πserve
h,field(P1) 0

πfield
h,tech(P1) 1
πfield
h,field(P1) 1
πserve
h,tech(P2) 0
πserve
h,field(P2) 0

πfield
h,tech(P2) 1
πfield
h,field(P2) 1
πs 0

is a parametrization of the basic decision rule, where player 2 is always the blocking player, both players
use a float serve towards a non-border field and a smash towards a border field, and a service is made
always on the opponent player 2.

As in the example questions, it may happen that several binary question concern the same states.
For instance, πserve

h,tech(P1) and πserve
h,field(P1) both concern states where player P1 is serving. A simultane-

ous implementation of binary questions is defined as a straight forward generalization of the binary
parametrization:

Definition 4.3.4 (Simultaneous binary parametrization of the basic decision rule).
Consider the basic decision rule dbasic with regard to the reasonable action sets Rs, s ∈ S.

Assume n binary question that concern the same state s in S. Each binary question i ∈ {1, . . . , n}
specifies two distinguished subsetsRs1(i) andRs2(i) ofRs each containing a variant of the binary prop-
erty under consideration such that |Rs1(i)| > 0 and |Rs2(i)| > 0 holds. Then, a simultaneous binary
parametrization of the basic decision rule is implemented by n parameters πi ∈ [0, 1], i ∈ [n] :=
{1, . . . , n} as follows: For each a ∈ As define an index set Ja ⊆ [n] such that

Ja :=

{
∅ if ∃i : a < R1

s (i) ∧ a < R2
s (i)⋂

i:a∈R1s (i){i} else.

Using that index set Ja, the basic decision rule is defined as

qd(s)(a) =
∏
i∈Ja(1 − πi) ·

∏
i∈[n]\Ja πi��⋂i∈Ja Rs1(i) ∩⋂

i∈[n]\Ja Rs2(i)
��
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for awith Ja , ∅ and else as qd(s)(a) = 0.

Analogously to a single binary parametrization, we can convince ourselves that the specified probabilities
defines a probability distribution over Rs: All specified probabilities are non-negative and we have∑

a∈Rs
qd(s)(a)

=
∑
J ⊆[n]

∑
a∈Rs :

a∈Rs1(i), ∀i∈J
∧ a∈Rs2(i), ∀i∈[n]\J

∏
i∈J (1 − πi) ·

∏
i∈[n]\J πi��⋂i∈J Rs1(i) ∩⋂

i∈[n]\J Rs2(i)
��

=
∑
J ⊆[n]


∏
i∈J
(1 − πi) ·

∏
i∈[n]\J

πi


=
∑
J ⊆[n−1]


∏
i∈J
(1 − πi) ·

∏
i∈[n−1]\J

πi ((1 − πn) + πn)


=
∑
J ⊆[n−1]


∏
i∈J
(1 − πi) ·

∏
i∈[n−1]\J

πi


= . . . = (1 − π1) + π1 = 1

In the case of simultaneous binary parametrization, it is also possible to regain the basic decision
rule if all questions i partition the complete set Rs into Rs1 and Rs2.
Proposition 4.3.5:
Let dbasic be the basic decision rule with regard to the reasonable action sets Rs, s ∈ S. Let Rs1(i) and
Rs2(i) be partitions of Rs according to question i, i ∈ {1, . . . , n}. Assume n parameters πi ∈ [0, 1], i ∈
[n] := {1, . . . , n} that simultaneously parametrize the basic decision rule according to Definition 4.3.4.

Then, choosing for all i ∈ [n] the parameter πi such that∏
i∈J
(1 − πi) ·

∏
i∈[n]\J

πi =
|⋂i∈J Rs1(i) ∩⋂

i∈[n]\J Rs2(i)|
|Rs |

regains the basic decision rule.

Proof. Let a be an action in Rs. Since all questions partition the complete set Rs, there must exist a
J ⊆ [n]with a ∈ Rs1(i), ∀i ∈ J and a ∈ Rs2(i), ∀i ∈ [n] \ J . Define πi according to the proposition.
Then the probability of action a is

qd(s)(a)

=

∏
i∈J (1 − πi) ·

∏
i∈[n]\J πi��⋂i∈J Rs1(i) ∩⋂

i∈[n]\J Rs2(i)
��
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=

��⋂i∈J Rs1(i) ∩⋂
i∈[n]\J Rs2(i)

��
|Rs | · 1��⋂i∈J Rs1(i) ∩⋂

i∈[n]\J Rs2(i)
��

=
1
|Rs | ,

which is equivalent to the probability under the basic decision rule. �

Note, that a simultaneous parametrization of binary questions can be used to model a non-binary
question.

In Appendix C, the basic decision rule used for the rally-SSO-MDP is specified together with a
parametrization of the decision questions presented above. Looking at the reasonable action sets and
the parameterizations in Appendix C, it is observed that each binary question splits the set of reasonable
actions in two equally large sets. Also, in serving states, where two binary questions simultaneously
apply, each intersection of subsets is equally large. In this particular case, it is possible to set πi to 1

2 for
all binary questions i and the basic decision rule is regained.

Observation 4.3.6:
Assume the setting of Proposition 4.3.5 with the additional property that������⋂i∈J Rs1(i) ∩ ⋂

i∈[n]\J
Rs2(i)

������ =
������⋂i∈J ′ Rs1(i) ∩ ⋂

i∈[n]\J ′
Rs2(i)

������ , ∀J, J ′ ⊆ [n].
Then, setting πi = 1

2 for all i ∈ [n] regains the basic decision rule.

Proof. SinceRs1(i) andRs2(i) for each i is a partitionofRs, the intersections
⋂
i∈J Rs1(i)∩

⋂
i∈[n]\J Rs2(i)

of all J ⊆ [n] also form a partition of Rs. Since all intersections are equally large, they must contain
exactly

( 1
2
)n · |Rs | elements. By setting πi = 1

2 for all i ∈ [n], we get∏
i∈J
(1 − πi) ·

∏
i∈[n]\J

πi =
(

1
2

)n
=

(
1
2

)n
· |Rs ||Rs | =

|⋂i∈J Rs1(i) ∩⋂
i∈[n]\J Rs2(i)|

|Rs |

and by Proposition 4.3.5 the resulting probability distribution for this parameter values regains the
basic decision rule. �

In the field attack situation, where also two binary questions simultaneously apply, the intersections
of subsets are not equally large. This can be seen in the implementation of the basic decision rule in
Listing C.14. The possible target fields of a planned shot include – in contrast to the smash – the fields
directly at the net. Therefore, the number of reasonable border/non-border fields for a planned shot
differs from the number of reasonable border/non-border fields of a smash. However, the parameter
πfield
h,tech(P1) can be set to 0.4 and πfield

h,field(P1) to 0.5 such that the requirement of Proposition 4.3.5 is
satisfied. So, for the example questions, the basic decision rule equals:



4.3. AN SSO-MDP FOR A BEACH VOLLEYBALL RALLY 193

parameter value Describes probability that . . .
πb 0.5 . . .player 1 is blocking.

πserve
h,tech(P1) 0.5 . . .player 1 makes a jump serve.

πserve
h,field(P1) 0.5 . . .player 1 aims with his serve into a border field.

πfield
h,tech(P1) 0.4 . . .player 1 makes a smash.

πfield
h,field(P1) 0.5 . . .player 1 aims with his attack into a border field.

πserve
h,tech(P2) 0.5 . . .player 2 makes a jump serve.

πserve
h,field(P2) 0.5 . . .player 2 aims with his serve into a border field.

πfield
h,tech(P2) 0.4 . . .player 2 makes a smash.

πfield
h,field(P2) 0.5 . . .player 2 aims with his attack into a border field.

πs 0.5 . . . it is served on opponent player 1.

Table 4.8: Parameters settings for regaining basic decision rule

4.3.3 Application to a Match

The rally-SSO-MDP should be applied to the beach volleyball tournament of the Olympic games
2012 in London. Analogously to the set-SSO-MDP the goal is to give the German team a strategic
recommendation for the final match.

The input data for the rally-SSO-MDP are the individual player skills described in Subsection 4.3.1.
Since the tournament lies in the past, only existing video material from the tournament can be used to
estimate the player skills of both teams. In general, this is not the preferred way to determine the players’
skills. The advantage of individual player skills is that they only depend on an individual player and not
on other players participating in a match. So, it is possible to estimate them from individual training
sessions. However, in the given situation, where no direct contact to the teams exists, it is at least also
possible to use all videos of the pre-final matches of both teams to estimate the individual player skills.

Data Collection

All videos of matches of Brink-Reckermann have been evaluated to give a strategic recommendation for
the German team Brink-Reckermann regarding the Olympic final. The opponent team in the Olympic
final were the Brazilians Alison and Emanuel. The matches of the Brazilian players were evaluated too
to get an estimate of their skills. In total six matches for each team plus the Olympic final have been
analyzed.

The datawas extracted frompublicly available videomaterial of theOlympics channel7 onYouTube.
The videos cover almost all matches completely. Only five to ten rallies were not covered or not recog-
nizable on the video material available on YouTube.

7https://www.youtube.com/user/olympic

https://www.youtube.com/user/olympic
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A special software, called Beach Volleyball Tracker, was developed by Ronan Richter, a student
assistant, for an easier annotation and data processing. The Beach Volleyball Tracker is a JavaScript
application that runs in a browser. Figure 4.7 presents the interface used for the annotation of the
videos. On the left half of the screen, the user can load and watch a video. There are different options for
controlling the playback speed. On the right half of the screen, a sketch of the court is presented. The
user can record the positions of the players or the ball by clicking on the corresponding points of the
court sketch. In the lower half, there are options to classify hits according to the rally-SSO-MDP. Finally,
the outcome of the hit or block can be specified. With some experience and the use of short-cuts, around
1.5 times the real match time is needed to analyze one match for one of the teams. The annotation of
the 13 videos (6 pre-final matches for each team plus the final match) was done in several iterations and
with the support of Ronan Richter and Fabian Buck, who is a sports student with practical experience
in beach volleyball.

Figure 4.7: Beach Volleyball Tracker – User Interface

For estimating the individual player skills, each execution of a hitting technique tech has been
classified according to the rally-SSO-MDP.An estimate of the blocking skills is required for the transition
function of the rally-SSO-MDP. Therefore, also all blocks were annotated. By definition, a block is a
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move and no hit and has other possible outcomes than a hit.
For a single event, which may be a hit, a hitting attempt or a block, the following data is saved

time stamp, pos(x,y)(P1), pos(x,y)(P2), hitting player, tech, hardness, post(x,y)(ball), post+1
(x,y)(ball), ω.

The first value is a time stamp containing the second of the video at which the event occurred. The
function pos(x,y) ∈ [−0.5, 1.5] describes the position of an object (player or ball) on the court regarding
relative coordinates. The upper left corner has the relative coordinates (0, 0) and the lower right corner
the coordinates (1, 1). Since the ball may also be outside the border lines, there are also values less than 0
and greater than 1 possible. At this stage, coordinates and no field names were used to be able to change
the definition of the court grid. If the court grid changed for some reason, the collected data could be
evaluated according to the new court grid. The Beach Volleyball Tracker is designed for evaluating one
team at a time. Therefore a whole data stream, like in Figure 4.8, is collected for one team only. Assume
the data stream belongs to a team P. In one observation, the position of the players P1 and P2 of the
observed team is saved, and by hitting player ∈ {1, 2}, it is denoted which of the two players performed
the hit. The hitting technique or block is denoted by tech ∈ {SJ, SF, FS, FE, FP, r, rm, s, d, dm, b}. The
variable hardness indicates whether the ball was played hard or normal when arriving at post(x,y)(ball).
The information about the hardness of the ball is important for receiving and defending actions. In the
rally-SSO-MDP, different receiving [defending] skills are used for modeling the reception [defense]
of hard and normal balls. Finally, the resulting position post+1

(x,y)(ball) of the ball is saved as well as the
outcome ω of the hit or the block. In a training session, it would be possible to obtain information
about the player’s target position. In a video recording of a real match, we do not have that information.
However, we inferred that no player would on purpose hit the ball into an outside field. So, every hit
that landed in an outside field has been marked with the outcome ω = dev. All other hits that are no
fault have been marked as succ. Through this simplification, the deviation rate is lower as if the target
fields were known, while the success rate is higher. However, the system dynamics of the simulation
tool presented later have been adapted to that issue. The outcome of a block is different from a hit and
either a block-point, block-fault, block-ok or noblock.

Figure 4.8 shows a small data example that was collected with the Beach Volleyball Tracker. All
collected data was saved in a text file. This text file is called the raw data file of the rally-SSO-MDP and
has the extension .gdata in reference to the name the rally-SSO-MDP has in the Two-Scale approach.
In total, this means, we collected 1857 events of the Brazilians Alison and Emanuel and 1635 events of
the Germans Brink and Reckermann including the Olympic final. In the following the raw data of the
rally-SSO-MDP will be called g-data.

Validity of Raw Data

A comparison with available statistics on the Internet is made to check the validity of the collected
g-data. Two sources that contain statistics of the Olympic beach volleyball tournament in London
have been found. One source is from the Fédération International de Volleyball (FIVB) and contains
player- as well as team-statistics of the tournament (Fédération Internationale De Volleyball, 2012b;
Fédération Internationale De Volleyball, 2012a). The other source (Database, 2018) is called Beach
Volleyball Database and includes besides player- and team-statistics also match wise statistics. None of
the found data sources contained positional data. However, parts of the statistics can be compared to
aggregated values of the data collection for the rally-SSO-MDP.
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Figure 4.8: Beach Volleyball Tracker – Example Data

Although both sources are slightly different, all information contained in both sources is completely
identical. Table 4.9 gives a summary of the information extracted from the Internet statistics that can
be related to data collected for the rally-SSO-MDP.

Player attacks kills errors services aces service errors

Brink 163 81 0 156 10 16
Reckermann 177 104 0 151 13 23

Alison 123 73 0 170 8 27
Emanuel 254 128 0 164 3 14

Table 4.9: Internet statistics of the Olympic Beach Volleyball Tournament 2012 in London – Final
match included

The corresponding aggregated values of the g-data events were calculated to compare the collected
g-data with the presented statistics from the Internet sources. By using regular expressions as search
strings, this can be done without much overhead. All used search strings aggregate over the different
positions and hitting techniques that belong to a particular class of hits. For example, to compare the
total number of field attacks, it has been searched for all events where a FS, FP or FE was used by a
specified player from any position on the court. Tables 4.10 and 4.11 present the used search strings and
the corresponding number of occurrences in the raw data file regarding field attacks and services.

The collected g-data contains twomore attacks (342) of the German team than the Internet statistics
(five more attacks of Brink and three attacks less of Reckermann). For the Brazilian team, we observed
in total eight attacks more. The maximum deviation between the Internet statistics and the collected
g-data is for a single player less than 3.5%.

The number of successful attacks in the collected g-data is of course much higher than the number
of kills denoted in the Internet statistics. A successful attack in terms of the rally-SSO-MDPmeans the
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observed properties ρ ∈ {1, 2}, tech ∈ {FSM , FP , FS}
ω = succ ω = fault

Search string ρ ;ρ;F.* ;ρ;F.*;succ ;ρ;F.*;fault
Brink 1 168 150 6
Reckermann 2 174 162 5

Alison 1 127 114 6
Emanuel 2 258 229 12

Table 4.10: Attack Statistic from collected g-data – final match included

hit could be performed successfully and the ball landed in the targeted field. It does, in contrast to a kill,
not include that the opponent team was not able to defend the attack and a point was made. So, the
high number of successful attacks is no contradiction to the small number of kills, and those numbers
should not be compared as they describe different things.

However, the number of attack faults should correspond to the number of errors. An attack fault
in terms of the rally-SSO-MDPmeans that an execution fault occurred and the ball did not cross the
net. According to the Internet statistics, none of the finalists has made an attack error in the whole
tournament. An example of an attack fault proves that zero attack errors cannot be correct: An attack
error of the Brazilian team can be found in thematch Brazil versus Lativa in the second set. At a standing
of 10 to 9 for Brazil, the Latvian team is serving, Emanuel receives the ball and Alison attacks by a smash.
Alison’s smash goes right into the net and Brazil loses the point. The reader may watch this sequence on
the YouTube video https://www.youtube.com/watch?v=vKgm9jg2m6c at the 31st minute.8

observed properties ρ ∈ {1, 2}, tech ∈ {SJ , SF }
ω = succ ω = fault ω ∈ {fault, dev}

Search string ρ ;ρ;S.* ;ρ;S.*;succ ;ρ;S.*;fault ;ρ;S.*;(fault|dev)
Brink 1 153 137 8 16
Reckermann 2 150 127 10 23

Alison 1 170 143 9 27
Emanuel 2 164 149 10 15

Table 4.11: Serve Statistic from collected g-data – final match included

The total number of serves listed in the g-data is of the same magnitude as stated in the Internet
statistics. For the Brazilians, the number of serves from the Internet statistics is for each player even the
same as the number of observed serves listed in the g-data. The maximum deviation for the number of
serves of the German players is less than 2%. This deviation for the number of serves of the German
players can probably be explained by the fact that there four serves of the German teammissing in the

8As mentioned before, the information is got by an e-mail conversation with the admin of the www.bvbinfo.com
webpage that the number of attack errors was not available for that tournament.

https://www.youtube.com/watch?v=vKgm9jg2m6c
www.bvbinfo.com
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video sequences.
As in the attack case, the number of successful serves is per definitionmuch larger than the number of

aces. A successful serve in terms of the rally-SSO-MDPmeans that the serve was successfully performed
and the ball landed in the targeted field. The serve may or may not be successfully received by the
opponent team. So, the number of successful serves includes the number of aces and many more serves.

The number of service errors of the Internet statistic is up to twice as large as the number of
executions faults in the data. The reason for this difference is that a point loss may also occur if the
ball crossed the net but deviated into an outside field. So in general, it must hold that the number of
serves with an outcome ω ∈ {succ, dev} is greater or equal than the number of serving errors. In the
particular case of the data collection from video sequences, a deviation was only inferred if the ball
landed in an outside field. So in this case, the number of serving errors should be equal to the number
of observed execution faults plus the number of deviations of all serving techniques. If these values are
compared, it can be seen that the values are nearly equal. Only for Emanuel, we observed one service
error or deviation more than counted in the Internet statistics.

Summarizing this comparison up: There are differences between the collected data and the data
sources available on the Internet. Except for the attack errors, all the differences are relatively small in
comparison to the total number of collected events. For the case of the attack faults, it is known that
there is misinformation in the Internet statistics.

A further check of the collected data was done by comparing them to the collected s-data. For this
purpose, sequences of collected hits in the data were composed to field attack complexes (subsequences
of reception/defence-set-attack hit). The result is a sequence of services and field attacks. This composing
of hits to field attack complexes is done in the script evaluate-sdata.js that can be found in the
supplementary material of this thesis, see Appendix E. The sequence of services and field attacks has
been compared to the collected s-data of the match. Note, that the g-data file contains only hits of
one team. The constructed sequence of services and field attacks can be compared to the s-data of one
team. Thereby, it has been ensured that both data collections are in perfect synchronization. Of course,
at the beginning, the s-data was not perfectly aligned to the g-data. However, when a difference was
detected by using the evaluate-sdata.js-script, the corresponding rally was watched again and
depending on the situation either the s-data or g-data was changed to the underlying situation. The
resulting sequence of services and field attacks composed from the g-data can be found in the files with
the ending .sprobs.

Evaluation of RawData

As a first step, the pos(x,y) coordinatesmust be evaluated to determine the corresponding field of the court
grid. For this purpose, the JavaScript file evaluate-gdata.js is used. The court grid, presented in
Figure 4.6, is translated to the following vertical and horizontal lines in terms of the relative coordinates:

vertical lines: 0 0.21875 0.46875 0.5 0.53125 0.78125 1
horizontal lines: 0 0.125 0.5 0.875 1

A JavaScript function finds the lines between which the pos(x,y) coordinates lie, from which in
turn the field description can be determined. However, even if seven matches are regarded, not all
combinations of every player positions and target fields appear in the collected data. This is due to the
large number of required input probabilities:
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Figure 4.9: Aggregation Scheme

For example, a serve can be played from four different player positions (P01−P04) to eight different
target fields (Q11−Q24). Together with two different hitting techniques, there exist 64 different service
types for one player. Roughly half of the 1635 events of the Brink-Reckermann team belong to one
player. So, in total around 800 observations per player have been collected. It is likely that there are
combinations with only a few or even no observations.

To overcome this problem at least partially, an aggregation of fields to field categories is made. A
field category is defined as a set of fields that has the same distance to the net. For example,Q21 − Q24
is one field category. It is assumed that a player may successfully hit the ball in one of the fields of a
category with the same probability. The absolute number of observations from this aggregation is
stated in the #-column of the Tables 4.12 to 4.18. In Appendix A, the same g-data is presented for each
player with the difference that the observations are split up into events observed in pre-final matches
and events from the final match only.

Especially for the attack hits, there are still some cases with very small or no observed events. An
approach to handle this is to collect more g-data events frommatches not belonging to the Olympic
tournament. However, there may still be some cases with no observed events because the player does
not perform this hit due to strategic considerations or individual preferences. As mentioned before,
the best would be to get in touch with the teams and design individual training sessions to collect the
players’ skills. However, in the given situation, a further aggregation is made to get a reasonable amount
of observations per specified hit.

In a first step, the aggregation scheme, which is presented in Figure 4.9, has been defined. The ten
hitting techniques of the rally-SSO-MDP are described in the inner gray boxes. Similar techniques are
grouped into categories, which are again grouped into larger categories until they become the most
general category, which is just a general hit. For each specified hit and each category of hits, the individual
success [or fault] probability can be estimated by dividing the number of desired events through the
total number of events in that category. This estimation is a common maximum likelihood estimation
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(Mitchell, 2017). Let psucc,ρ(techtarget), respectively pfault,ρ(techtarget), be that maximum likelihood estima-
tion for a hit of player ρ. Assume, the reasonable number k ∈ N of observations that is needed as a
minimum to estimate an individual success probability psucc,ρ is known. Then, for a hit techtarget with
n < k observations the aggregation works as follows:

Definition 4.3.7 (Aggregated Skill Estimates).
Let k ∈ N be the minimum number of observations needed and techtarget be a hit with n < k observa-
tions for a player ρ. Let cat be the least aggregated category that contains at least k observations and in-
cludes the observations of the specified hit techtarget . The notation ptype,ρ(cat), type ∈ {succ, fault, dev}
is used for the maximum likelihood estimate using the number of events in the category cat.

Then, the aggregated skill estimates are defined as

p̄type,ρ(techtarget) :=
n · ptype,ρ(techtarget) + (k − n) · ptype,ρ(cat)

k , type ∈ {succ, fault, dev}.

So, the probability of the specified hit is filled up to k observations with the estimated probability of
the next category that contains at least k events. Finally, the question arises how the minimum number
k for a reasonable estimation is determined. Missing a general concept for this9, several k values were
tested in a simulation of the rally-SSO-MDP for the data set. The value k = 11 was determined as the
smallest k for which the results of a rally-SSO-MDP simulation stopped making large jumps.

In Tables 4.12 to 4.18, the skill estimations based on the described aggregation procedure with k = 11
are presented. In round brackets, the original maximum likelihood estimation before the aggregation
is denoted. The reader may keep in mind that the presented probabilities do not need to sum up to 1
since the outcome of a hit may be a success, a fault or a deviation. So, the remaining probability is the
probability of a deviation. If the number of observations is zero, it is denoted with “-” that there did not
exist a maximum likelihood estimate before the aggregation. Remember that in the rally-SSO-MDP
serves, smashes and emergency shots may not be played in a target field directly behind the net. The
observations collected in the g-data confirmed this assumption. So theQ31−Q34 [P31− P34] column
is empty for services, smashes and emergency shots.

9Krause developed a concept to derive the optimal amount of representative information by optimizing between estimator
convergence and heterogeneity of the data. However, for applying this concept, a distance function would be needed.
Quantification of the similarity of different hits shifts the problem to a new estimation issue.
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Brink

target fields Q11-Q14 Q21-Q24 Q31-Q34
performance # succ fault # succ fault # succ fault

Serve

SF P01 - P04 45 0.91 (0.91) 0.00 (0.00) 53 0.91 (0.91) 0.09 (0.09) - - -
SJ 38 0.92 (0.92) 0.00 (0.00) 17 0.76 (0.76) 0.18 (0.18) - - -

Attack-Hit

FS
out 0 0.88 ( – ) 0.02 ( – ) 0 0.88 ( – ) 0.02 ( – ) - - -

P11-P14 0 0.88 ( – ) 0.02 ( – ) 0 0.88 ( – ) 0.02 ( – ) - - -
P21-P24 65 0.88 (0.88) 0.03 (0.03) 21 0.90 (0.90) 0.00 (0.00) - - -
P31-P34 9 0.80 (0.78) 0.00 (0.00) 3 0.91 (1.00) 0.01 (0.00) - - -

FE
out 0 0.71 ( – ) 0.10 ( – ) 1 0.74 (1.00) 0.09 (0.00) - - -

P11-P14 0 0.71 ( – ) 0.10 ( – ) 1 0.74 (1.00) 0.09 (0.00) - - -
P21-P24 8 0.65 (0.63) 0.12 (0.13) 9 0.77 (0.78) 0.11 (0.11) - - -
P31-P34 1 0.65 (0.00) 0.09 (0.00) 1 0.74 (1.00) 0.09 (0.00) - - -

FP
out 0 0.96 ( – ) 0.04 ( – ) 0 0.96 ( – ) 0.04 ( – ) 0 0.96 ( – ) 0.04 ( – )

P11-P14 0 0.96 ( – ) 0.04 ( – ) 0 0.96 ( – ) 0.04 ( – ) 0 0.96 ( – ) 0.04 ( – )
P21-P24 9 0.99 (1.00) 0.01 (0.00) 35 0.97 (0.97) 0.03 (0.03) 0 0.96 ( – ) 0.04 ( – )
P31-P34 2 0.97 (1.00) 0.03 (0.00) 3 0.88 (0.67) 0.12 (0.33) 0 0.96 ( – ) 0.04 ( – )

Table 4.12: Input data from all matches: Julius Brink – Serves and Attack-Hits

attack strength normal hard
performance # succ fault # succ fault

Defense d 24 0.83 (0.83) 0.08 (0.08) 23 0.57 (0.57) 0.35 (0.35)
dm 45 0.69 (0.69) 0.27 (0.27) 29 0.34 (0.34) 0.59 (0.59)

Reception r 35 0.97 (0.97) 0.03 (0.03) 10 0.81 (0.80) 0.09 (0.10)
rm 53 0.94 (0.94) 0.02 (0.02) 6 0.98 (1.00) 0.01 (0.00)

Set s 157 0.99 (0.99) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 6 0.17 0.17 0.17 0.50

Table 4.13: Input data from all matches: Julius Brink – Defense, Reception, Set, Block
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Reckermann

target fields Q11-Q14 Q21-Q24 Q31-Q34
performance # succ fault # succ fault # succ fault

Serve

SF P01 - P04 39 0.82 (0.82) 0.00 (0.00) 43 0.93 (0.93) 0.05 (0.05) - - -
SJ 41 0.83 (0.83) 0.02 (0.02) 27 0.74 (0.74) 0.26 (0.26) - - -

Attack-Hit

FS
out 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – ) - - -

P11-P14 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – ) - - -
P21-P24 68 0.97 (0.97) 0.00 (0.00) 33 0.88 (0.88) 0.06 (0.06) - - -
P31-P34 9 0.99 (1.00) 0.00 (0.00) 3 0.96 (1.00) 0.01 (0.00) - - -

FE
out 0 0.93 ( – ) 0.00 ( – ) 1 0.94 (1.00) 0.00 (0.00) - - -

P11-P14 0 0.93 ( – ) 0.00 ( – ) 0 0.93 ( – ) 0.00 ( – ) - - -
P21-P24 7 0.88 (0.86) 0.00 (0.00) 5 0.96 (1.00) 0.00 (0.00) - - -
P31-P34 0 0.93 ( – ) 0.00 ( – ) 1 0.94 (1.00) 0.00 (0.00) - - -

FP
out 0 0.89 ( – ) 0.04 ( – ) 0 0.89 ( – ) 0.04 ( – ) 0 0.89 ( – ) 0.04 ( – )

P11-P14 0 0.89 ( – ) 0.04 ( – ) 0 0.89 ( – ) 0.04 ( – ) 0 0.89 ( – ) 0.04 ( – )
P21-P24 4 0.75 (0.50) 0.03 (0.00) 33 0.94 (0.94) 0.03 (0.03) 1 0.90 (1.00) 0.04 (0.00)
P31-P34 0 0.89 ( – ) 0.04 ( – ) 8 0.88 (0.88) 0.10 (0.13) 0 0.89 ( – ) 0.04 ( – )

Table 4.14: Input data from all matches: Jonas Reckermann – Serves and Attack-Hits

attack strength normal hard
performance # succ fault # succ fault

Defense d 28 0.86 (0.86) 0.07 (0.07) 2 0.77 (0.50) 0.05 (0.00)
dm 25 0.84 (0.84) 0.08 (0.08) 1 0.73 (0.00) 0.20 (1.00)

Reception r 34 1.00 (1.00) 0.00 (0.00) 12 0.83 (0.83) 0.08 (0.08)
rm 75 0.95 (0.95) 0.03 (0.03) 10 0.81 (0.80) 0.09 (0.10)

Set s 152 0.97 (0.97) 0.01 (0.01) - - -

performance # block-point block-ok block-fault noblock
Block b 263 0.11 0.12 0.14 0.63

Table 4.15: Input data from all matches: Jonas Reckermann – Defense, Reception, Set
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Alison

target fields P11-P14 P21-P24 P31-P34
performance # succ fault # succ fault # succ fault

Serve

SF Q01 - Q04 51 0.86 (0.86) 0.00 (0.00) 48 0.96 (0.96) 0.04 (0.04) - - -
SJ 52 0.73 (0.73) 0.06 (0.06) 19 0.79 (0.79) 0.21 (0.21) - - -

Attack-Hit

FS
out 0 0.88 ( – ) 0.06 ( – ) 0 0.88 ( – ) 0.06 ( – ) - - -

Q11-Q14 0 0.88 ( – ) 0.06 ( – ) 0 0.88 ( – ) 0.06 ( – ) - - -
Q21-Q24 56 0.91 (0.91) 0.04 (0.04) 24 0.83 (0.83) 0.08 (0.08) - - -
Q31-Q34 9 0.98 (1.00) 0.01 (0.00) 6 0.77 (0.67) 0.21 (0.33) - - -

FE
out 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – ) - - -

Q11-Q14 1 0.93 (1.00) 0.00 (0.00) 1 0.93 (1.00) 0.00 (0.00) - - -
Q21-Q24 5 0.87 (0.80) 0.00 (0.00) 5 0.96 (1.00) 0.00 (0.00) - - -
Q31-Q34 0 0.92 ( – ) 0.00 ( – ) 1 0.93 (1.00) 0.00 (0.00) - - -

FP
out 0 0.95 ( – ) 0.00 ( – ) 0 0.95 ( – ) 0.00 ( – ) 0 0.95 ( – ) 0.00 ( – )

Q11-Q14 0 0.95 ( – ) 0.00 ( – ) 0 0.95 ( – ) 0.00 ( – ) 0 0.95 ( – ) 0.00 ( – )
Q21-Q24 2 0.87 (0.50) 0.00 (0.00) 10 1.00 (1.00) 0.00 (0.00) 0 0.95 ( – ) 0.00 ( – )
Q31-Q34 2 0.96 (1.00) 0.00 (0.00) 5 0.97 (1.00) 0.00 (0.00) 0 0.95 ( – ) 0.00 ( – )

Table 4.16: Input data from all matches: Alison Cerutti – Serves and Attack-Hits

attack strength normal hard
performance # succ fault # succ fault

Defense d 36 0.78 (0.78) 0.08 (0.08) 8 0.46 (0.38) 0.21 (0.25)
dm 23 0.74 (0.74) 0.22 (0.22) 7 0.41 (0.29) 0.47 (0.57)

Reception r 32 0.94 (0.94) 0.00 (0.00) 6 0.98 (1.00) 0.00 (0.00)
rm 41 0.98 (0.98) 0.00 (0.00) 1 0.87 (0.00) 0.11 (1.00)

Set s 232 0.98 (0.98) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 303 0.12 0.14 0.14 0.60

Table 4.17: Input data from all matches: Alison Cerutti – Defense, Reception, Set, Block
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Emanuel

target fields P11-P14 P21-P24 P31-P34
performance # succ fault # succ fault # succ fault

Serve

SF Q01 - Q04 52 0.96 (0.96) 0.02 (0.02) 53 0.87 (0.87) 0.11 (0.11) - - -
SJ 41 0.98 (0.98) 0.00 (0.00) 17 0.76 (0.76) 0.18 (0.18) - - -

Attack-Hit

FS
out 0 0.87 ( – ) 0.06 ( – ) 0 0.87 ( – ) 0.06 ( – ) - - -

Q11-Q14 0 0.87 ( – ) 0.06 ( – ) 0 0.87 ( – ) 0.06 ( – ) - - -
Q21-Q24 104 0.90 (0.90) 0.03 (0.03) 71 0.80 (0.80) 0.10 (0.10) - - -
Q31-Q34 17 0.94 (0.94) 0.00 (0.00) 8 0.78 (0.75) 0.20 (0.25) - - -

FE
out 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) - - -

Q11-Q14 1 1.00 (1.00) 0.00 (0.00) 0 1.00 ( – ) 0.00 ( – ) - - -
Q21-Q24 14 1.00 (1.00) 0.00 (0.00) 5 1.00 (1.00) 0.00 (0.00) - - -
Q31-Q34 0 1.00 ( – ) 0.00 ( – ) 2 1.00 (1.00) 0.00 (0.00) - - -

FP
out 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – )

Q11-Q14 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – )
Q21-Q24 5 0.97 (1.00) 0.00 (0.00) 25 0.92 (0.92) 0.00 (0.00) 1 0.95 (1.00) 0.00 (0.00)
Q31-Q34 0 0.94 ( – ) 0.00 ( – ) 4 0.96 (1.00) 0.00 (0.00) 0 0.94 ( – ) 0.00 ( – )

Table 4.18: Input data from all matches: Emanuel Rego – Serves and Attack-Hits

attack strength normal hard
performance # succ fault # succ fault

Defense d 29 0.86 (0.86) 0.07 (0.07) 37 0.24 (0.24) 0.46 (0.46)
dm 54 0.65 (0.65) 0.31 (0.31) 29 0.34 (0.34) 0.45 (0.45)

Reception r 82 0.93 (0.93) 0.05 (0.05) 20 0.65 (0.65) 0.05 (0.05)
rm 75 0.93 (0.93) 0.01 (0.01) 3 0.95 (1.00) 0.01 (0.00)

Set s 107 1.00 (1.00) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 13 0.08 0.38 0.08 0.46

Table 4.19: Input data from all matches: Emanuel Rego – Defense, Reception, Set, Block

4.3.4 Solving the Rally-SSO-MDP

Unless otherwise specified, all computations in this section are made on a standard personal computer
(MacBook Pro with 2.7GHz Intel Core i5, 8 GB 1867MHz DDR3).

In general, SSO-MDPs can be solved by the linear programming formulations presented in Sec-
tion 3.5. In the dual LP for SSO-MDPs formulation, there exist one constraint for each state and a
variable for each state-action pair.

A straightforward approach to solve the rally-SSO-MDP is to construct the dual or the primal
linear program and solve it by an LP-solver. For this purpose, a list of all states is needed. As a Java-
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implementation of the rally-SSO-MDPwas already available from a simulation of the rally-SSO-MDP10,
a Java-program was used for constructing the linear program. The Java-implementation contains Java-
classes or Enums for each feature variable of a state. By iterating over all combinations of values of
feature variables, an enumeration of all states was attempted. After generating around 4 millions of
states, an “out of memory overflow” error occurred. The Java Garbage Collection limit was exceeded.
This error means that more than 98 % of the total time has been spent on garbage collection and less
than 2 % of the heap is recovered. So, even if the application would run further, the progress would be
too small. The default maximum heap size of a Java application is 1 GB.(Java SE 6 HotSpot[tm] Virtual
Machine Garbage Collection Tuning) Certainly, there exist other programming languages which could
perform better. However, most likely it is also not possible to enumerate all states of the rally-SSO-MDP
in a different programming language.

As mentioned in Subsection 4.3.1, there are some states of the rally-SSO-MDP that can be excluded
from the state space due to beach volleyball rules that forbid them. The following rules describe
restrictions of the state space due to beach volleyball specific characteristics. The factor behind each
characteristic estimates the proportion of the remaining states of the original state space.

• Iterate only over blocking players that are not from the team who will perform the next hit.
(factor 3

5 )

• For counter = −1, set lastContact = ∅, blockingPlayer = ∅ and hardness = ∅. (factor ≤
1 − 1

5 (1 − 1
25 ) = 101

125 )

• For counter = 0, set lastContact = ∅. (factor ≤ 1 − 1
5 (1 − 1

5 ) = 21
25 )

By using the described rules, the state space can be shrunken at maximum to 2
5 of the complete state

space. When comparing the number of states at which the Garbage Collection limit was exceeded
the state space needs to be shrunken to 1

1000 of it. So, even if one or two more characteristics of beach
volleyball that exclude states can be found, probably the remaining number of states will not be small
enough.

In the rally-SSO-MDP, there exists a basic decision rule that guarantees a reasonable game flow, see
Section 4.3.2. In each state, the basic decision rule uniformly selects an action under all reasonable actions.
Under the assumption that the basic decision rule excludes only actions that are dominated by other
actions, it might be justifiable to determine an optimal policy that uses only reasonable actions. This
idea is only beneficial if the restriction to reasonable actions shrinks the set of reached states significantly.
For getting more insights, a simulation procedure is used that determines the number of distinct states
that occurred in a simulation run.

The results of the simulation procedure are presented in Table 4.20. The number of new explored
states relative to the increase in the number of simulated rallies decreases. The absolute number of
generated states does not stop to increase. However, the number of visited states under the basic decision
rule is significantly smaller that than the total state space (factor 10−6). Since the number of explored
states under the basic decision rule seems not to reach a steady level of states, it is not clear which states
cannot be reached under the basic decision rule.

10The simulation can be found in the supplementary material provided in Appendix E. It is used in the context of the
two-scale approach in next chapter.
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# rallies # generated states milli sec. ∆states
∆rallies

10 44 16 -
100 365 46 3.57
1000 1813 169 1.61
10000 7122 653 0.59
50000 18098 2567 0.27
100000 29314 2986 0.22
500000 54539 13234 0.06
1000000 77946 29198 0.05
5000000 124454 507146 0.01

Table 4.20: Generated state space by basic decision rule

These computational experiences show that algorithm that needs to enumerate all states are not
suitable for solving the rally-SSO-MDP. Simulation-based approaches, like reinforcement learning,
could be one way to tackle the rally-SSO-MDP. Reinforcement learning belongs to the area of machine-
learning and tries to find an optimal policy in an environment. This environment of a reinforcement
learning problem can, for instance, be a large MDP.

In general, simulation-based approaches must weigh up exploiting what is known to maximize
immediate rewards against exploring new information that may improve future performance. There
exist several sampling methods that try to handle this trade-off: For instance, Thompson sampling, also
called posterior sampling, is a sampling method that can be applied to reinforcement learning (Russo
et al., 2018). It outperforms other sampling methods like greedy-sampling and dithering as it explores
purely understood actions and does not waste too much exploration effort.

When applyingThompson sampling toMarkovdecisionproblems, a deep exploration is necessary as
actionsmay have delayed effects. Osband et al. describes inOsband et al. (2017) an approach that extends
Thompson sampling to deep exploration in the context of reinforcement learning for MDPs. This
approach is applicable forMDPs with an uncertain horizon in which all policies almost surely terminate
in finite time. This assumption made by Osband et al. is satisfied by SSO-MDPs, see Theorem 3.4.5. In
contrast to other existing reinforcement learning algorithms that lead to deep exploration inMDPs,
the randomized value function approach of Osband et al. is computationally tractable for huge state
spaces. Furthermore, the proposed method recovers a polynomial regret bound when used with linear
value functions. So, it could be worth to apply a randomized least-squares value iteration algorithm to
approximate an optimal policy of the rally-SSO-MDP.

Another idea for solving the rally-SSO-MDP is to use a decomposition approach and to generate
variables or constraints dynamically. The advantage would be that not all constraints and variables have
to be listed explicitly in advance. If such a decomposition approach would work well, depends on the
structure of the rally-SSO-MDP.

The rally-SSO-MDP has become so complex and large since the focus during the modeling process
lied on using estimable transition probabilities. An SSO-MDPwith this objective for other types of
sports will probably be even more complicated. So, even if it would be possible to solve this particular
rally-SSO-MDP by some problem specific method, it is more desirable to find a solution approach that
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can tackle arbitrary large SSO-MDPs for different types of sports. In the next chapter such an approach
is presented and called two scale approach.
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Chapter 5

ATwo-Scale Approach

The two-scale approach (2-MDP approach) is a general procedure that uses SSO-MDPs to answer
strategic questions in sports games. It combines two SSO-MDPs of different granularity to benefit
from the particular advantages of each model. In the last chapter, two different SSO-MDPs for beach
volleyball have been introduced. The set-SSO-MDPmodels a beach volleyball set on a very rough level.
In contrast, the rally-SSO-MDP is a much more detailed model and captures a beach volleyball rally.
Both models have advantages and disadvantages as highlighted in the corresponding sections of the last
chapter. In particular, itwas shown that in bothmodels there existweaknesseswhen answering a strategic
question prior to a match. The 2-MDP approach is a procedure for overcoming these weaknesses and
answering sport-strategic questions adequately. The introduced pair of beach volleyball SSO-MDPs is a
perfect candidate for the 2-MDP approach to be presented in this chapter. However, this chapter starts
with a general definition of the 2-MDP approach as this approach is also applicable to other pairs of
SSO-MDPs. After the general definition, a concrete implementation of the 2-MDP approach using the
beach volleyball SSO-MDPs is given and applied to the Olympic final 2012 in London. The results are
compared to those of Chapter 4 from using a single SSO-MDP. Finally, some new possibilities that
arise from using the 2-MDP approach are presented.

5.1 General Procedure

In Chapter 3, theoretical aspects of SSO-MDPs have been analyzed. Due to modeling decisions, SSO-
MDPs that model a similar strategic question can become very different as shown in the last chapter.
This section focuses on the implications of certain modeling decisions for SSO-MDPs. It starts with a
formal definition of a sport-strategic question. Afterward, advantages and disadvantages of different
model granularities are summarized to motivate the 2-MDP approach. Finally, the s-g-implementation
and the 2-MDP approach are introduced.

5.1.1 Sport-Strategic Question

The purpose of an SSO-MDP is to answer a sport-strategic question. Sport-strategic questions have
already been formulated in the last chapter in connection with the set-SSO-MDP and the rally-SSO-
MDP. Nevertheless, this section starts with characterizing a sport-strategic question and contains a

209
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formal definition.
A sport-strategic question should consider a decision that can be made by a coach or player before a

match. The answer should take the opponent team participating in the match into account. Therefore,
the best strategy may be different for different opponents. So, a sport-strategic question is not the
investigation of a general rule or principle that applies against every opponent.

Furthermore, the decision should regard an aspect that can directly and in the short term be
influenced by the team or the player. One example that is not directly and in the short term influenceable
by the players is the expected goal probability from a penalty kick. The team would probably have
to train penalty kicks over several weeks to significantly increase this probability. Capabilities like
turning a penalty kick into a goal are regarded as skills of a team or an individual player. There exist
several papers that examine the importance of different skills (Heiner, Fellingham, and Thomas, 2014;
Miskin, Fellingham, and Florence, 2010) or try to determine how an improvement of a skill effects
the probability of winning a match (Pfeiffer, Zhang, and Hohmann, 2010; Pfeiffer, 2005). However,
a sport-strategic question is considered in the short term prior to a match, and it is assumed that the
skills of all participants in the game can not be changed in that short period. A sport-strategic question
regards decisions that rely on those skills and can be directly put into practice.

Next, a sport-strategic question is formalized. This chapter uses the terminology of a team sport,
but all considerations also apply to individual sports like, e. g., tennis or badminton. Let team P be the
team whose strategy should be optimized and whose winning probability should be maximized while
teamQ should be the opponent team in the match under consideration. Both teams are characterized
by a general skill set that is assumed to be fixed for the upcoming game:

Skill(team), team ∈ {P, Q}.
Depending on the strategic question the skill set of a team can be characterized by different parameters.
Most of the time these parameters are probabilities that describe the capabilities of a team.

It is assumed that the number of different playing variants or strategies is finite in a sports game.
This assumption can be justified by the fact that there are finitely many humans participating in a sports
game and their discrimination between different actions is not infinitely accurate. For instance, consider
a serve in a tennis match and let the speed of the ball be the subject of the strategic question. Then, first
of all, there exist a minimum velocity and a maximum velocity the player can perform. Furthermore,
depending on the skills of the player, he can discriminate between several speeds in between. However,
there are only finitely many characteristics between which the player can distinguish deliberately. Also
for a decision considering a line-up or a substitution of a player, the number of possibilities is finite
since the number of players in a team is finite. Letm be the finite number of different strategies, which
are denoted by

Strat = {a1, a2, . . . , am}.
Furthermore, the sport-strategic question concerns a particular game. The conditions of a game
influence the decision. For example, for outdoor sports games the weather conditions could play a role,
or in tennis, the floor covering of a match influences the decision. All these environmental parameters
that characterize the particular game are summarized in a parameter set Env.
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Now, all described parameters can be summed up in a sport-strategic question:

Definition 5.1.1 (Sport-Strategic Question).
A sport-strategic question concerns a type of sports and is characterized by

(Env, Skill(P), Skill(Q), Strat),

where

• Env contains the environmental parameters that characterize the special match under consider-
ation.

• Skill(P), Skill(Q) are the skill sets of the teams participating in the match.
• Strat is a set of strategies that can be played by team P.

The sport-strategic question asks which strategy Strat of team P leads to the highest probability of P
to win the match.

If the winning probabilityWinProb(·) of each strategy in the match under considerations was
known, the answer could easily be given by evaluating

a∗ = arg max
ai∈Strat

{WinProb(ai)}.

However, a direct estimation of these winning probabilities from historical data is often not possi-
ble. As defined in the sport-strategic question there are a bunch of parameters that characterize the
regarded match. For a standard maximum likelihood estimation of the strategies’ winning probability
WinProb(·), matches are needed where the strategy under consideration is played and which fit to all
the parameters defined in the strategic question. However, in most of the time, a team faces a certain
opponent only once or twice in a certain tournament or season of a league. Furthermore, relying on
matches that lie further in the past is not possible since the skill sets of the teams probably have changed.
There may be new players in a team, or players’ skills may have improved or deteriorated. If the estima-
tion of winning probabilities from historical data gets hard, this is the point where sport-strategy-MDPs
(SSO-MDPs) can help to evaluate the winning probabilities of the strategies.

5.1.2 Modeling Granularity

For every strategic question, there always exist more than one SSO-MDP that model the subject of
interest in an adequate way. In general, an SSO-MDP replaces the black box covered by the winning
probability of a strategy with a model of the game mechanism. Thereby, the game mechanism can be
modeled on different levels of detail. The more detailed the game mechanism is modeled, the less is
captured by a single transition probability and themore insights into the gamemechanisms are required.

The winning probabilityWinProb(·) of a strategy can be interpreted as an extreme variant of an
SSO-MDPwhere the complete game is considered as a black box and captured in a single transition.
Such an extreme variant of an SSO-MDP is illustrated in the upper half of Figure 5.1. The other extreme
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Figure 5.1: Modeling Decision – Degrees of Detail

is to model every independent random influence by a single transition. Due to the knowledge of the
game mechanisms, it may be possible to identify and model those independent random influences. The
resulting decomposition of a transition probability leads to the fact that a smaller subset of parameters
may influence the decomposed transition. For instance, if the transition describes the outcome of
a shot from a specific position by an individual soccer player, only the skills of that player and the
goalkeeper instead of the whole teams may determine that transition. Of course, also a more detailed
state description is necessary to be able to differentiate between transitions that only depend on a subset
of the parameters of the strategic question. The lower half of Figure 5.1 illustrates an SSO-MDP with a
higher level of detail for the same sport-strategic question.

As the reader may notice from the illustration of Figure 5.1, the described modeling granularity has
an impact on the resulting SSO-MDP. The more detailed the game mechanism is modeled, the larger is
the state and the action space. However, the transition probabilities will depend on fewer parameters,
and therefore, it will be easier to find appropriate data records for estimating the transition probabilities.
At the same time, of course, also amore significant number of different transition probabilities is needed.
In a rough SSO-MDP, the number of states, actions, and required transition probabilities may be very
small, and it may be possible to find an analytical solution for such an SSO-MDP. However, if there
exists no, or not enough data that fits the parameter setting, the transition probabilities cannot be
estimated, and the analytical solution cannot be evaluated for the match under consideration.

Table 5.1 summarizes the trade off between a rough and a detailed model formulation of an SSO-
MDP.
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rough SSO-MDP detailed SSO-MDP

game mechanism black box system dynamics
transition probabilities depend on many parameters depend only on a subset of parameters

size of the SSO-MDP small state and action space large state and action space
appropriate records small estimation basis larger estimation basis

Table 5.1: Comparison rough versus detailed SSO-MDP

5.1.3 The Underlying Idea

The two-scale approach tries to combine the advantages of two different granularity levels to answer
strategic questions. Assume that the same strategic question is modeled by two SSO-MDPs. One
SSO-MDP is very rough and considered as the strategic MDP (s-MDP). The other SSO-MDP is very
detailed and will be called the gameplayMDP (g-MDP). The g-MDP should be a refined version of
the s-MDP. Amapping between the states and actions of the models must be defined such that both
models can be combined. This mapping is called an s-g-implementation. It will be formally defined in
the next section. In Figure 5.1, an s-g-implementation of the states is illustrated.

Given an s-MDP, a g-MDP and an s-g-implementation regarding a strategic question, the two scale
approach works as follows: The s-g-implementation translates the strategies Strat that are contained in
the s-MDP to g-MDP decision rules. The transition probabilities of the g-MDP are estimated from
appropriate data records such that the g-MDP can be simulated with the decision rule defined by the
s-g-implementation for a strategy. The simulation is validated by historical data and refined if the
gameplaymechanism is not correctly represented in the g-MDP. The result of a valid g-MDP simulation
is an estimate for the s-MDP transition probabilities. Finally, the s-MDP is solved using the estimated
transition probabilities from the g-MDP simulation. If an analytical solution of the s-MDP can be
determined, it is evaluated with the estimated transition probabilities of the simulation. If no analytical
solution exists, an algorithmic solution of the s-MDP with the estimated transition probabilities needs
to be found. Since the state and action spaces of the s-MDP are small, a solution calculated, e.g., by
the linear programming formulation of Chapter 3 should not cause many difficulties. The general
procedure of the two-scale approach is illustrated in Figure 5.2.

The reader may ask himself what the benefit of the two-scale approach is compared to a single
SSO-MDP. Assume, only the g-MDP is considered to answer a strategic question. Then, of course, a
simulation can be used to determine the winning probability of a g-MDP-strategy. However, even if an
optimal g-MDP-strategy is identified, this strategy would define an action choice in every state of the
g-MDP. Due to a large number of different states in a detailed g-MDP, this optimal g-MDP-strategy
could be challenging to handle and hard to remember for a player. Coming from an s-MDP as in
the two-scale approach, there always exists an initial strategic question and a set of s-MDP-strategies.
Together with the s-g-implementation, there automatically exists a practical and realizable description
of the optimal g-MDP-strategy. Another drawback from considering only the g-MDP is that solving
the g-MDP is in general harder than solving the s-MDP.

On the other hand, if only anMDP as rough as the s-MDP is recognized, an analytical solution
may be found, but probably one runs into troubles when estimating the transition probabilities. As
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Figure 5.2: Two Scale Approach

mentioned before, it could be possible that merely no applicable data to the parameters characterizing
the strategic question can be found. Furthermore, more insights about the sensitivity of an optimal
strategy are possible if an analytical solution of the s-MDP can be enriched with results of the g-MDP.

After having illustrated and motivated the idea of the two-scale approach, the next section presents
a formalization of the s-g-implementation.

5.1.4 Formalization

Consider two different SSO-MDPs that model the same strategic question. According to our terminol-
ogy, the coarser model is called strategic MDP (s-MDP), and its parameters are denoted by(Ss, As, p(·|s, a)s, r(s, a)s,W s, Ls, ss1

) .
The second model is called the gameplay MDP (g-MDP) and its parameters are denoted by(Sg , Ag , p(·|s, a)g , r(s, a)g ,W g , Lg , sg1

) .
According to underlying idea of the two-scale approach, the g-MDP is the more detailed model and the
following relation between the state sets needs to hold

|Sg | > |Ss |.

An s-g-implementation describes the relation between the s-MDP and the g-MDP. Consider a
mapping

τS : Ss → 2S
g

ss 7→ τS(ss) ∈ Sg
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that maps an s-MDP-state to a set of g-MDP states. The idea behind this function is to map a state ss
to all states sg of the g-MDP that are a refinement of the state ss. Since several states in the g-MDP can
be a refinement of the same s-MDP state, the codomain of the mapping is the powerset of the set of
all g-MDP states. The mapping τS is not surjective since there may be states that have no counterpart
in the s-MDP. However, it will be required that the images of different s-MDP states have no g-MDP
states in common. So, no sg is contained in the image of more than one s-MDP-state. This requirement
expresses that the g-MDP is a refinement and no aggregation of the s-MDP.

Sometimes one is interested in the state ss ∈ Ss that is a coarsening of a g-MDP state sg . Therefore,
the inverse mapping τ−1

S is defined as

τ−1
S : Sg → Ss ∪ ∅

sg 7→
{
ss if there exists an ss s.t. sg ∈ τS(ss),
∅ else.

Since there may exist some g-MDP-states that are no refinement of an s-MDP-state, the codomain of
τ−1
S also contains an artificial element ∅. According to the definition of an s-g-implementation presented

below, it is required that the image of τS satisfies the condition τS(s1) ∩ τS(s2) = ∅ for each pair of
s-MDP-states s1, s2 ∈ Ss with s1 , s2. Therefore, τ−1

S is always well-defined and can be derived from τS .
The following definition summarizes the conditions for an s-g-implementation:

Definition 5.1.2 (s-g-implementation).
Assume an s-MDP and a g-MDP that are both SSO-MDPs. The mapping τS : Ss → 2Sg is an s-g-
implementation if

• τS(s1) ∩ τS(s2) = ∅ for each pair of s-MDP-states s1, s2 ∈ Ss with s1 , s2.

The definition of an s-g-implementation assures formal correctness of the mapping. However,
by only adhering to that definition, meaningless implementations are still possible. The states can be
mapped in a feasible manner while the available actions and transitions between state pairs could model
different parts of the game mechanism. This is the reason why a second mapping τA that maps s-MDP
actions to g-MDP decision rules is required such that the s-g-implementation becomes meaningful:

In the s-MDP, a transition probability covers a game mechanism which is to some degree explicitly
modeled in the g-MDP. This replacement of a black box by a sequence of transitions must correctly
reproduce the s-MDP transition probability such that the s-g-implementation is meaningful:

Definition 5.1.3 (Meaningful s-g-implementation).
An s-g-implementation τS : Ss → 2Sg ismeaningful if for every action as ∈ As and every state ss1 ∈ Ss
there exists a g-decision rule dg ∈ DMR such that

p(ss2 |ss1, as)s =
∞∑
k=1

Pd
g {Xt+k ∈ τS(ss2) | Xt ∈ τS(ss1), τ−1

S (Xt+i) = ∅ ∀i ∈ {1, . . . , k − 1}} ,
∀ss2 ∈ Ss, t ∈ N,

where {Xt , t ∈ N} is the inducedMarkov process under decision rule dg in the g-MDP. Themapping
τA : Ss ×As → DMR stores for each state-action pairs one corresponding decision rules.
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Ameaningful s-g-implementation assures that for every state-action pair (ss1, as) in the s-MDP there
exists a decision rule in the g-MDP that reflects the transitions of the s-MDP in the g-MDP. A transition
(ss1, as, ss2) in the s-MDPmay correspond to a sequence of transitions (sg1 , a

g
1 , s
g
2, . . . , s

g
k) in the g-MDP

with sg1 ∈ τS(ss1) and s
g
k ∈ τS(ss2). However, during that sequence of transitions there may only occur

g-MDP states which have no pre-image in Ss, i.e., τ−1
S (s

g
i ) = ∅ for all 1 < i < k. This condition is

necessary such that a g-MDP decision rule combined from the decision rules given by the mapping τA
can reflect an s-MDP decision rule.

Algorithm 7 describes how an s-MDP decision rule ds can be simulated in the g-MDP by using a
meaningful s-g-implementation. The simulation starts at an image sg1 ∈ τS(ss1) of a predefined starting
state ss1. The s-MDP decision rule ds is evaluated in ss1 to the first action choice as. The g-MDP decision
rule dg is then initialized by the decision rule τA(ss1, as). After this initialization the algorithm works
as follows: As long as the current state sgi of the g-MDP is not a winning or a losing state, the system
dynamics of the g-MDP is evaluated using the decision rule dg . Each time the current state of the
g-MDP has a pre-image in the state space Ss, the s-MDP decision rule ds is evaluated to an action choice
as and the g-MDP decision rule dg gets updated by τA(τ−1

S (s
g
i ), as). The output of the algorithm is a

realization of g-MDP states (sg1 , . . . , s
g
N ).

Algorithm 7: Simulate s-MDP decision rule
Data: s-MDP with a decision rule ds and a starting state ss1, g-MDP, meaningful

s-g-implementation with functions τS, τA
Result: (sg1 , . . . , s

g
N ) – a realization of g-MDP states

1 i← 1;
2 choose sgi ∈ τS(ss1);
3 evaluate as ← ds(ss1);
4 set dg ← τA(ss1, as);
5 while sgi <W g ∪ Lg do
6 i← i + 1;
7 sgi ← evaluate g-MDP in sgi−1 using dg ;
8 if τ−1

S (s
g
i ) , ∅ then

9 evaluate as ← ds(τ−1
S (s

g
i ));

10 set dg ← τA(τ−1
S (s

g
i ), as);

11 end
12 end

From a realization of the g-MDP generated by Algorithm 7, estimates for the s-MDP transition
probabilities under decision rule ds, which may also be a randomized decision rule, can be made. In
Section 2.1, transition probabilities of randomized decision rules are defined as

p(j |s, dt(s)) =
∑
a∈As

p(j |s, a)qdt (s)(a).

Proposition 5.1.4 describes how a maximum likelihood estimation for an s-MDP transition probability
p(ss2 |ss1, ds(ss1))s can be made. The function 1x∈X used in Proposition 5.1.4 is 1 if x ∈ X holds and 0 else.
So, the numerator of Proposition 5.1.4 counts how often an image of state ss1 is directly followed by an
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image of ss2 in the g-MDP realization. The denominator counts how often an image of ss1 occurred in
the g-MDP realization.

Proposition 5.1.4 (Estimate s-MDP transition probabilities form 2-MDP approach):
Let (sg1 , . . . , s

g
N ) be a realization of a g-MDP simulation according to Algorithm 7. Furthermore, let

(sgi1 , s
g
i2 , . . . , s

g
iN ′ ) be a subsequence of (s

g
1 , . . . , s

g
N ) that contains all s

g
i but only these of the realization with

τ−1
S (s

g
i ) , ∅.
Then, the transition probability from ss1 under use of ds to ss2 can be estimated by

p(ss2 |ss1, ds(ss1))s ≈
∑N ′−1
k=1 1τ−1

S (s
g
ik
)=ss1 · 1τ−1

S (s
g
ik+1
)=ss2∑N ′−1

k=1 1τ−1
S (s

g
ik
)=ss1

.

When applying the 2-MDP approach to a real match, all transition probabilities are only estimated
and not entirely known. Therefore, Definition 5.1.3 may probably not be exactly met by any decision
rule. However, one should keep in mind that the transition probabilities of the s-MDP as well as the
transition probabilities of the g-MDP are only estimates. In the next section, a 2-MDP approach for
beach volleyball is implemented and validated. The result of this validation should be interpreted
together with the estimation accuracy of the transition probabilities.

A 2-MDP approach with a meaningful s-g-implementation opens up new possibilities. Assume
an s-g-implementation is validated on an adequate dataset to be meaningful. If then the SSO-MDPs
are applied to a new data set, where, for instance, only the g-MDP transition probabilities can be well
estimated, the s-g-implementation can be used to derive analytical bounds for the s-MDP transition
probabilities. The described procedure is carried out in (Hoffmeister and Rambau, 2017a) for the
s-MDP approach for beach volleyball present in the next section. However, the derived bounds are not
very tight due to the size of the sets in the co-domains of τS and τA . In this case, a simulation of the
g-MDP is more useful to get estimates of the s-MDP transition probabilities.

5.2 A Two-Scale Approach for Beach Volleyball

This section defines a meaningful s-g-implementation for the set-SSO-MDP and the rally-SSO-MDP
presented in the last chapter. In the second subsection of this section, the s-g-implementation is validated
using data of the beach volleyball tournament at theOlympic games 2012 in London. In Subsection 5.2.3,
the strategic question of the set-SSO-MDP is evaluated by the 2-MDP approach. These computational
results are compared to the results presented in the last chapter using only the set-SSO-MDP.

At the end of this section, two new tools for coaches and players are presented that can be gener-
ated with the help of a meaningful s-g-implementation. One tool is called a Skill-Strategy-Score-Card,
see Subsection 5.2.5, and should help coaches to decide between two alternative strategies when the
skills of the own players or the performance of the opposing team vary. The other tool is a constant-
sum-matrix-game, see Subsection 5.2.6, that helps to detect patterns of strategy parameters that are
promisingly against a particular opponent team. Without a meaningful s-g-implementation and the
2-MDP approach, it would be hard or even impossible to generate such outputs.
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5.2.1 Implementation for Beach Volleyball

After having introduced the 2-MDP approach formally, a concrete implementation for beach volleyball
is specified in this subsection. It will be assumed that the reader is familiar with the definitions of the
set-SSO-MDP and the rally-SSO-MDP presented in Chapter 4.

The set-SSO-MDP is the coarser of the two models and takes, therefore, the role of the strategic
MDP (s-MDP) in the 2-MDP approach. In the following of this subsection the term s-MDP is used as
a synonym for the set-SSO-MDP. In the same way, the rally-SSO-MDP is considered as the g-MDP in
the two-scale approach implementation of this subsection.

According to the definition of the set-SSO-MDP, the state space of the s-MDP is defined as

Ss = Stie ∪ Sreg
Stie = {(z, k, ℓ) | z ∈ {−2,−1, 0, 1, 2}, k ∈ {P, Q}, ℓ ∈ {0, 1}},
Sreg = {(x, y, k, ℓ) | x, y ∈ {0, . . . , 21} with (x ≤ 19 ∨ y ≤ 19), k ∈ {P, Q}, ℓ ∈ {0, 1}}.

The set Stie contains 20 states and the state set Sreg of the regular game 1920 states.
The state space of the g-MDP is huge and contains more than 5.9 · 109 states that are of the form

(pos(P1), pos(P2), pos(Q1), pos(Q2), pos(ball), counter, lastContact, hardness, blockingPlayer).
In Subsection 4.3.1 in Table 4.5, a categorization of the g-MDP states is defined. The categories partition
the complete state set and each category is distinct such that

Sg = SserveP ∪ SserveQ ∪ Srec ∪ Sdef ∪ Sset ∪ Sattack ∪W g ∪ Lg .

Each state set S ∈ {Srec, Sdef, Sset, Sattack} is further differentiated in SP respectively SQ regarding
the possession of the ball. For example, s ∈ Srec is a receiving state of team P, i.e., s ∈ SrecP if
side(pos(ball)) = P. The state-categories of the g-MDP are used when defining the state mapping
τS of the s-g-implementation.

Having recapitulated the state sets of both SSO-MDPs, it has become clear that the condition
|Sg | > |Ss | is satisfied. For the considered SSO-MDPs define the mapping τS : Ss → 2Sg as

τS(x, y, P, 1) 7→ SserveP ,
τS(x, y, Q, 1) 7→ SserveQ ,
τS(x, y, P, 0) 7→ SsetP
τS(x, y, Q, 0) 7→ SsetQ

Since all state categories are disjoint, the mapping τS fulfills the condition of an s-g-implementation
according to Definition 5.1.2. A field attack state of the s-MDP is mapped by τS to the state set of setting
states in the g-MDP. This decision comes from the fact that in a reception or defending state it is not
clear whether the ball can be brought under control and the team starts a field attack. The results of the
validation of the s-g-implementation, see Subsection 5.2.2, support that decision.

The strategic question which is evaluated by the set-SSO-MDP in Subsection 4.2.5 asks whether a
risky or safe play in a serving situation combined with a risky or safe play in the field attack situation
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s-MDP g-MDP
(πserve
h,tech(ρ), πserve

h,field(ρ), π
field
h,tech(ρ), π

field
h,field(ρ))

ss ∈ Ss as τA(ss, as) πb ρ = P1 ρ = P2 πs
(x, y, P, ℓ) basic basic 0.5 (0.5, 0.5, 0.4, 0.5) (0.5, 0.5, 0.4, 0.5) 0.5
(x, y, P, ℓ) risky risky 0.5 (1, 1, 1, 1) (1, 1, 1, 1) 0.5
(x, y, P, ℓ) safe safe 0.5 (0, 0, 0, 0) (0, 0, 0, 0) 0.5
(x, y, P, ℓ) final final 0.02 (0.19, 0.04, 0.74, 0.26) (0.24, 0.17, 0.69, 0.33) 0.27
(x, y, P, ℓ) prefinal prefinal 0.02 (0.39, 0.19, 0.65, 0.39) (0.50, 0.36, 0.72, 0.45) 0.5
ss as τA(ss, as) πb ρ = Q1 ρ = Q2 πs

(x, y, Q, ℓ) basic basic 0.5 (0.5, 0.5, 0.4, 0.5) (0.5, 0.5, 0.4, 0.5) 0.5
(x, y, Q, ℓ) risky risky 0.5 (1, 1, 1, 1) (1, 1, 1, 1) 0.5
(x, y, Q, ℓ) safe safe 0.5 (0, 0, 0, 0) (0, 0, 0, 0) 0.5
(x, y, Q, ℓ) final final 0.96 (0.68, 0.16, 0.93, 0.43) (0.37, 0.27, 0.81, 0.54) 0.35
(x, y, Q, ℓ) prefinal prefinal 0.96 (0.37, 0.18, 0.82, 0.36) (0.35, 0.17, 0.86, 0.31) 0.5

Table 5.2: Meaningful s-g-implementation τA(ss, as) 7→ π

has the higher winning probability. Besides these two s-MDP actions, which are sometimes also called
strategies, another action, named final, has been investigated in Subsection 4.2.5. The final action
represents the actually played strategy in the final. Similar, to the final action a prefinal action is now
introduced that represents the played strategy in the pre-final matches. For completeness, also a basic
decision rule for the s-MDP is included in the action set. So, the action set of the s-MDP is

Ass̃ = {risky, safe, final, prefinal, basic}

for serving states (s̃ with ℓ = 1) as well as for field attack states (s̃ with ℓ = 0).
In contrast, the action sets available in a state of the rally-SSO-MDP are too large to list them

explicitly. That is why the concept of a parameterized basic decision rule has been introduced in
Subsection 4.3.2. Its purpose is to eliminate unrealistic decision rules. It helps to focus on the strategic
questions raised in Subsection 4.3.2. The parameters of the basic decision rule for the rally-SSO-MDP
are

π = ©«
πb
πh
πs

ª®¬ , πh =
(
πserve
h
πfield
h

)
, πsit

h =

(
πsit
h,tech(ρ)
πsit
h,field(ρ)

)
, sit ∈ {serve, field},
ρ ∈ {P1, P2}.

Table 4.8 presents the parameter settings for a uniform distribution over all reasonable actions. This
parameter setting of the basic decision rule will be called basic. In the following, the mapping τA of a
meaningful s-g-implementation will be defined.

Under the assumption of a meaningful s-g-implementation implementation, there must exist for
every state-action pair (ss, as) of the s-MDP, a decision rule dg that reflects the transitions of the s-MDP
in the g-MDP. Table 5.2 presents state-action pairs (ss, as) and a corresponding g-MDP decision rule
π = τA(ss, as) with its parameter settings. The parameters of the basic decision rule basic are those
specified in Table 4.8. The risky action of the s-MDP is implemented in the g-MDP by always choosing
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the riskier opportunity. So, the parameters (πserve
h,tech(ρ), πserve

h,field(ρ), π
field
h,tech(ρ), π

field
h,field(ρ)) are all set to 1 for

all players ρ of a team. Analogously, the safe action is mapped to the parameters (0, 0, 0, 0) for all players
ρ of a team.

To describe the played s-MDP actions final and prefinal with adequate parameters of the basic
decision rule, an estimation from the raw data has been made: For this purpose, all services and field
attacks played in the finale match respectively in the pre-final matches have been classified. The classi-
fication has been done by the script evaluate-gdata.js that gets the raw data file *.gdata from
the Beach Volleyball Tracker as an input and outputs a file named *.gprobs.csv. The output file
*.gprobs.csv contains the estimated parametrization of the basic decision rule. The script and all
data files can be found in the supplementary material provided in Appendix E. The estimates are the
relative frequencies of a technique or a target field used in the g-data. For instance, Brink has made in
the final match 26 services from which 1 landed in a border field and 25 in a non-border field. So, the
parameter of Brink that describes the proportion of serves into a border field is

πserve
h,field(P1) = 1

26
≈ 0.04.

The counted absolute frequencies are outputted by the scriptevaluate-gdata.jswhen the function
calculateStrat(logToConsole) is called with the argument true.

The parameter estimates for the prefinal strategy are based on the g-data files containing all hits
in pre-final matches. As this includes several matches against different opponents, it is not reasonable
to calculate how often a service was made on a certain player of the opponent team. Therefore, the
parameter πs is set to 0.5 in the g-MDP strategy prefinal.

Table 5.2 specifies the mapping τA(ss, as) = π. For simulating an s-MDP decision rule that, e.g.,
consists of a risky service and a safe field attack, Algorithm 7 can be applied. It combines the g-MDP
decision rules given by the s-g-implementation τS and τA .

Having specified an s-g-implementation by the mappings τS and τA , it needs to be evaluated
whether the g-MDP decision rules π reflect the s-MDP transitions. Therefore, in the next subsection, a
validation of the s-g-implementation is made to check whether the s-g-implementation is meaningful.

5.2.2 Validating the Implementation

To validate whether the presented s-g-implementation of the last subsection is meaningful, s-MDP
transition probabilities have to be comparedwith its estimates from a g-MDP simulation. Screenshots of
the used g-MDP simulation can be found in Appendix B and the simulation itself in the supplementary
material provided in Appendix E. The realization of g-MDP states is generated by Algorithm 7 that
simulates a s-MDP decision rule in the g-MDP. The estimation of the s-MDP transition probabilities
from a realization of g-MDP states is done according to Proposition 5.1.4.

However, the “real” s-MDP transition probabilities are also not known in sports games and must
be estimated too. As described at the beginning of this chapter and visualized in Figure 5.2, appropriate
data records for the s-MDP needs to fulfill a bunch of parameters. In particular, for this implementation
of the 2-MDP approach for beach volleyball, data records must be from amatch where the participating
teams are Brink-Reckermann and Alison-Emanuel. This is the case since s-MDP transition probabilities
depend, in contrast to the g-MDP transitions, on the abilities of both teams. So, the only match from
which “real” s-MDP transition probabilities can be estimated is the final match of the Olympic beach
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estimation method pservefinal pservefinal qservefinal qservefinal pfieldfinal pfieldfinal qfieldfinal qfieldfinal

realized probabilities final 2% 4% 4% 14% 49% 17% 55% 16%

simulating the g-MDP with

skills of all matches except final 2% 14% 3% 15% 33% 16% 29% 21%
skills of all matches 2% 12% 4% 14% 37% 17% 40% 21%
skills of final only 1% 2% 6% 10% 47% 14% 54% 17%

Table 5.3: Validation of simulated s-MDP transition probabilities

volleyball tournament. The played s-MDP decision rule in the final match uses per definition only
the final action. So, the only possibility to validate the s-g-implementation is to compare estimates of
s-MDP transition probabilities under the final strategy.

The reader may remember that in Subsection 4.2.5 in Table 4.3 also estimates for s-MDP transition
probabilities from the s-data for the risky and safe strategy are presented. However, the observations
used for that estimations are a subset of the observations used for estimating the final strategy. So
validating the s-g-implementation with the risky or safe strategy would contain the same but less data
points while the same g-MDPmechanism is used.

Table 5.3 contains all estimates of s-MDP transition probabilities for the final strategy. The first line
contains an estimate based on the realized transitions in the final match. These values are estimated from
the collected s-data and the rounded version of the probability estimates presented in Subsection 4.2.5.

The last three lines of Table 5.3 contain estimates based on realizations of g-MDP states according to
Proposition 5.1.4. The g-MDPwas simulated using the decision ruleπfinal for both teams with different
skill estimates. One estimation is based on 500 simulation runs with each containing 100 rallies. The
different skill estimates have an impact on the probability estimates as the probability presented in
one column varies. The last line of Table 5.3 corresponds to a g-MDP simulation in which the skills
of all players are only estimated from the final match. So, these skills describe the performance of the
players in the final match. Together with the final strategy, the last line of Table 5.3 is a line with “perfect
knowledge” for the g-MDP. On average, the estimated probabilities of the last line are closest to those
in the first line. The remaining difference can either be justified by the estimation fault of the “real”
s-MDP decision probabilities presented in the first line or by not entirely perfect modeling the game
mechanism in the g-MDP. Most likely it is a mixture of both.

The average absolute difference of the first and the fourth line is 2 percent points. In comparison
when the skills are estimated from the pre-final matches, this average difference is 7.5 percent points.

The readermay askwhether this accuracy is good enough to assume ameaningful s-g-implementation?
The validation results presented in Table 5.3 are of course gone through several iterations of validation
and modifications of the g-MDP system dynamics. However, the g-MDP system dynamics were only
adapted if there was a reason for it. For instance, as the data was collected from video sequences and not
in an organized training session, the targeted field of a hit could only be guessed. And as described in
Subsection 4.3.3, a deviation was only counted if the ball landed in an outside field. So, there existed a
reason to adopt the system dynamics of the g-MDP such that a deviation will always lead to an outside
field if the targeted field is a border field.
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It should be noted that the g-MDP does not contain a general or global fitting parameter. The
use of such a global fitting parameter may be discussed for some reasons. However, in this case, it was
omitted since this could lead to an over-fitting to the final match which is also only one sample case for
validation of the 2-MDP approach.

5.2.3 Answering Strategic Questions

Finally, the 2-MDP approach is applied to the strategic question raised for the s-MDP in Subsection 4.2.5.
It should be evaluated whether high risk or safe play of Germany leads to a higher winning probability.
The ultimate goal is to give a justifiable strategy recommendation prior to the final match.

As visualized in Figure 5.2, in the 2-MDP approach, the g-MDP is simulated to generate estimates for
the s-MDP transition probabilities. These s-MDP transition probabilities of different s-MDP strategies
are then evaluated by using the analytical formula for the s-MDP. The strategy with the highest winning
probability is returned as the recommended strategy.

Skill estimation from pre-final matches

strategy a pservea pservea pfielda pfielda αPa,b winning Prob

risky-risky 5% 20% 42% 18% 45% 78%
risky-safe 5% 20% 18% 15% 39% 29%
safe-risky 1% 13% 42% 18% 47% 82%
safe-safe 1% 13% 18% 15% 40% 32%
prefinal 2% 16% 33% 16% 44% 68%

qserve qserve qfield qfield

prefinal 2% 12% 27% 19%

(a) pre-final setting

Skill estimation from final match

strategy a pservea pservea pfielda pfielda αPa,b winning Prob

risky-risky 3% 8% 54% 15% 34% 46%
risky-safe 3% 8% 40% 13% 32% 20%
safe-risky 1% 2% 54% 15% 35% 49%
safe-safe 1% 2% 40% 13% 32% 22%
final 1% 2% 47% 13% 34% 36%

qserve qserve qfield qfield

final 6% 10% 54% 15%

(b) post-final setting

Table 5.4: Estimation of s-MDP probabilities from g-MDP simulation

Table 5.4 contains the estimation results for the s-MDP transition probabilities together with
their winning probabilities. Each estimation was again based on 500 runs with 100 rallies. The 95%-
confidence interval of the g-MDP simulation with 500 batches with 100 runs is smaller than 0.01. As
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the g-MDP is itself based on input probabilities, which are the skills of the players, two different types
of simulations were carried out. In the upper half of Table 5.4, the skill estimates are based on pre-final
matches while in the lower half the skills estimates are only based on the final match. So, if the strategic
question shall be answered priori to the final match, the values in the lower half would not be available.
Observe, that according to Theorem 4.2.3 the parameter αPa,b is sufficient to determine an optimal
strategy for the s-MDP. The winning probability presented in the rightmost column is calculated by
dynamic programming and gives supplementary information. The recommended strategy prior to the
final match is to play safe in the serving situation and risky in the field attack situation. This strategy has
a winning probability of 82% percent.

This strategy is also the recommended strategy a posteriori the final match. However, the winning
probabilities decreased significantly to 49%. The reason for this change may lie in the different skill
estimates used for both teams. The reader may compare the tables in Appendix A that contains for
each player tables with skill estimates based on the final match and skill estimates based on all pre-final
matches. The number of observations for estimating the skills solely from the final match is very small
which can be seen by the values in the #-column of the corresponding table. In cooperation with a team,
there are more reliable methods than analyzing video sequences of matches to estimate the player skills.
For instance, specified training sessions could be designed. In this study, the skill estimations based
on the final were made such that the a priori recommendation could be compared to an a posteriori
recommendation while taking a higher estimation error into account.

Besides these variations in the performance of both teams, also the played strategy of the Brazilians
changed from the pre-final matches to the final match. The differences between the prefinal and the
final strategy of Brazil can be seen in Table 5.2. The proportion of jump serves made by Alison increased
from 37% to 68% and the proportion of field attacks in a border field made by Emanuel increased from
31% to 54%. These are the two most significant differences that may result from the more challenging
opponent Germany.

For completeness, Table 5.4 also contains the estimates for the final and prefinal strategy ofGermany.
The estimated values for the final strategy, based on skills of the final match, are generated in the same
setting as those presented in the last line of Table 5.3. The minor differences occur because the values
are generated in a different simulation run. The results show that with the recommended safe-risky
strategy, the winning probabilities of Germany would have been higher.

5.2.4 Comparison of Results

After having answered the strategic question regarding the s-MDPdecision rule two times, a comparison
between the approacheswill bemade in this section. Handling the strategic question only by considering
the set-SSO-MDP,whichwas done in Subsection 4.2.5, will in the following be called the direct approach.
The results of the direct approach will be compared to those of the 2-MDP approach presented in the
last subsection.

The two approaches are first compared qualitatively, which will be followed by a quantitative
evaluation of the recommendations.

In the setting of this thesis, it is not possible to answer the strategic question prior to the final match
with the direct approach. The reason is that no appropriate data records for the s-MDP exist before the
final match. In contrast, the 2-MDP approach can be evaluated with skill estimates based on pre-final
matches and the strategy safe-risky is recommended.
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Obviously, a second SSO-MDP, the g-MDP, is needed for the 2-MDP approach. The g-MDP
requires knowledge of the game mechanism and has to be validated. A posteriori the final match the
2-MDP approach recommends the same strategy (safe-risky). In contrast, the direct approach evaluates
safe-safe has the best strategy.

For a quantitative comparison, an adequate measurement is needed. Ideally, the final match could
be repeated several times with the two strategy recommendations. The strategy that yields the higher
expected winning probability can then be evaluated as the better recommendation. However, it is
not possible to replay the final match several times. So, another measurement is needed. The final
match is the only match between Brink-Reckermann and Alison-Emanuel, and the only strategies
that were realized in the final match are the final strategies. The final strategy can be described as a
mixture of the risky and safe serves respectively field attacks. Tomeasure the correctness of the estimated
probabilities for the risky and the safe strategy, the transition probabilities of the final strategy will be
calculated as a mixture of the estimated probabilities for risky and safe. The quantitative measure for
both approaches is then the difference of the result of the mixed strategy probabilities and the realized
transition probabilities of the final match.

Table 5.2 already contains a representation of the final strategy of the g-MDP as a mixture of the
risky and the safe strategy. For instance, the final strategy played by Brink is a mixture of 39% jump
services and 61% float services, which are the hitting techniques of the risky respectively safe service
strategy.

For the s-MDP, the mixture of risky and safe service respectively field estimates played by the
Germans can be found in Table 4.4. The proportion is specified as the relative amount of risky serves
[field attacks] on all serves [field attacks] that can be classified as risky or safe. So, the final-mix played
by Brink-Reckermann is:

final-mixserve =
1

39
≈ 3% final-mixfield =

12
23
≈ 52%.

The estimated s-MDP transition probabilities for the risky respectively safe strategy are mixed with the
proportion of the final-mix. The resulting s-MDP transition probabilities can be found in Table 5.5b.

Ignoring the fact that the pre-final matches are played against different opponents. All services
and field attacks of the pre-final matches are also classified and estimations for risky and safe transition
probabilities based on the pre-final matches are made. The values are presented in Table 5.5a. With
these estimated s-MDP transition probabilities, the direct approach would have recommended playing
safe-risky. This recommendation equals the recommendation of the 2-MDP approach. However, it is
stressed out again that this result is a recommendation based on matches against different opponents.
And therefore, this recommendation does not take into account which team is the opponent team in
the final match.

Table 5.6b finally presents the realized probabilities of the final match together with the estimation
based on a mixture of the risky and the safe strategy estimates. This procedure feels a little bit awkward
but is the only way found to evaluate the estimates for the risky and safe strategy. The simulated values
from the g-MDP are the same as already presented in the validation subsection of the g-MDP, see
Table 5.3. The last column presents the average total difference between the realized probabilities and
the estimated probabilities in the corresponding row. The variations of both approaches lie in the
same magnitude. Only in the pre-final setting, the estimates resulting from the g-MDP simulation are
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Based on pre-final matches

strategy a # pservea pservea # pfielda pfielda αPa,b winning Prob

risky-risky 32 16% 22% 58 66% 17% 37% 77%
risky-safe 32 16% 22% 33 48% 0% 36% 60%
safe-risky 102 4% 9% 58 66% 17% 34% 69%
safe-safe 102 4% 9% 33 48% 0% 32% 50%
prefinal-mix 134 7% 12% 91 59% 11% 34% 65%

# qserve qserve # qfield qfield

prefinal-mix 165 2% 10% 105 58% 15%

(a) pre-final setting

Based final match

strategy a # pservea pservea # pfielda pfielda αPa,b winning Prob

risky-risky 1 0% 0% 12 42% 25% 29% 14%
risky-safe 1 0% 0% 11 64% 9% 34% 73%
safe-risky 38 3% 0% 12 42% 25% 30% 18%
safe-safe 38 3% 0% 11 64% 9% 36% 77%
final-mix 39 3% 0% 23 52% 17% 33% 44%

# qserve qserve # qfield qfield

final-mix 28 4% 14% 39 59% 15%

(b) post-final setting

Table 5.5: Direct estimation of s-MDP probabilities

significantly worse. However, in the post-final setting, the estimated transition probabilities from the
g-MDP outperform the direct approach.

Using the 2-MDP approach opens up new possibilities that are not available from a direct approach.
Two of these new possibilities are presented in the following subsections.

5.2.5 Sensitivity Analysis

The strategic recommendations made by the 2-MDP approach are based on input probabilities that are
only estimates. Since any estimate incorporates some error, also the output probabilities of the 2-MDP
approach is affected by these errors. A sensitivity analysis can help to recognize whether an error in the
input data can lead to a fundamentally different recommendation.

A Strategy-Skill-Score-Card (SSSC) is a tool that is generated by the 2-MDP approach and visualizes
two sensitivity analyses in one diagram. It may take some time for a practitioner or coach to understand
an SSSC completely. However, if the structure is recognized, the information provided by a card can be
gathered fast.

In principle, an SSSC determines the preferred strategy of two given strategies in a particular
situation. In all example SSSCs presented in this subsection, the risky strategy (risky service and risky
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estimation method data dec. rule pserve pserve qserve qserve Avg. L1-Error

realized probabilities final 2% 4% 4% 14% -

simulating the g-MDP pre-final skills final 2% 14% 3% 15% 3.19%
direct estimations pre-final matches final-mix 4% 9% 2% 12% 2.86%

simulating the g-MDP final skills final 1% 2% 6% 10% 2.34%
direct estimations final matches final-mix 3% 0% 4% 14% 1.10%

(a) s-MDP transition probabilities for serving situation.

estimation method data dec. rule pfield pfield qfield qfield Avg. L1-Error

realized probabilities final 49% 17% 55% 16% -

simulating the g-MDP pre-final skills final 33% 16% 29% 21% 11.74%
direct estimations pre-final matches final-mix 57% 9% 60% 17% 5.71%

simulating the g-MDP final skills final 47% 14% 53% 17% 1.63%
direct estimations final matches final-mix 52% 17% 59% 15% 2.27%

(b) s-MDP transition probabilities for field attack situation.

Table 5.6: Comparison between 2-MDP approach and direct approach

field attack) is compared to the safe strategy (safe service and safe field attack) by subtracting the winning
probability of the risky strategy from the winning probability of the safe strategy. If the result is a
positive value, which is encoded by a green color, the safe is the recommended strategy. A negative value
is encoded by a red color and means that risky is the preferred strategy. Yellow color means that both
strategies have a very similar winning probability.

As mentioned before, an SSSC simultaneously visualizes two sensitivity analyses. In one analy-
sis, the skills of the considered team are parametrized for a certain hitting technique. Thereby, the
individual success probability psucc,ρ

(field, tech) and the individual fault probability pfault,ρ (field, tech)
are varied from 0 to 1 in 0.1-steps. Those two probabilities determine the probability of a deviation
pdev,ρ

(field, tech) . In the four example SSSCs presented in this thesis, the smashing skills of both players
of team P are varied in Figure 5.3, the skills for a planned shot in Figure 5.4, the skills for a jump serve in
Figure 5.5, and finally, the skills for a float serve in Figure 5.6. These techniques are chosen since they are
the main characteristics of the risky and the safe strategy. As described in Table 5.2, a jump serve and an
attack hit are played in the risky strategy while a float serve and a planned shot are performed in the safe
strategy.

The other sensitivity analysis concerns the s-MDP probabilities of the opponent team. Hereby, the
direct point probability qfield and the fault probability qfield of a field attack of teamQ are varied from 0
to 1 in 0.2-steps. The two probabilities determine the probability q̂ that describes the probability of a
subsequent field attack.

These two parameterizations are captured in one graphic in the following way: An SSSC is a large
triangular chart that consists of several smaller triangular chart. In each smaller chart, the s-MDP
transition probabilities of the opponent team are fixed to values determined by the location of the
smaller chart. Inside a small chart, the skills of the considered team are varied. Each square inside a small
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chart results from a simulation with 500 batches with 100 rallies and corresponds to a skill setting of the
considered team and an opponent characterized by the s-MDP transition probabilities. The simulation
is carried out with the pre-final skill estimations of both teams. The color of the square represents the
preferred strategy in that setting.

An SSSC should be read by a coach or a practitioner in the following way: First, the opponent team
needs to be classified concerning its s-MDP transition probabilities. For instance, “the probability of a
direct point after a field attack is around 0.4 and the probability of a fault also at 0.4”. So, the coach
should look at the smaller chart in the third row and the third column counted from the origin. Then,
the coach needs to estimate the skills of his team. For instance, “my team can normally do a smash with
a success rate of 0.4 and a fault rate of 0.5”. In this case, the coach has to consider the square in the fifth
row and the sixth column – again counted from the origin –, and sees that the safe strategy is preferred
to the risky strategy. The coach may ask “What if my team performs better today and can achieve a 0.5
success rate for the smash with the same fault rate?”. He may have a look at the same chart and finds
that still safe is the preferred strategy. All squares in the neighborhood of the original square under
consideration are green, so he knows that the safe strategy is quite robust to skill changes of his team.

Furthermore, it is also possible to examine a scenario where the opponent’s characteristic changed.
For instance, in our example, a stronger opponent with a fault probability of 0.2 corresponds to the
smaller chart in the third row and the second column. This smaller chart is more yellow than green.
So, against a stronger opponent the safe strategy does not outperform the risky strategy anymore. The
reader may have a look at Figure 5.3 to recover these findings.

After the general introduction to SSSCs, the presented figures are analyzed in more detail. In
Figure 5.3, the smashing skills of Brink-Reckermann are parametrized. Since the figure is generally
yellow or green, it can be concluded that most of the time it does not matter whether risky or safe is
played and otherwise safe is the better strategy. Only if Germany can play the smash excellent (success
rate larger than 0.9), there exist some opponents where a risky strategy is preferred. By the lines in the
smaller charts, the real values of smashing skills of Germany are presented. It can be seen that their
smashing skills lie around 0.9. Therefore, it may be valuable for them to play a smash which corresponds
to the recommendation given in Subsection 5.2.3. In Table 5.4 for the pre-final setting the risky-risky
strategy is preferred to the safe-safe strategy. Note that the SSSCs are generated for the pre-final setting
and compare the strategies risky-risky to safe-safe.

In Figure 5.4, the planned shot, which is the counterpart of the smash, is parametrized. The figure
is only yellow or red which means that there does not exist any configuration where a safe strategy is
preferred to the risky one. The powerful smashing skills of Germany can explain the dominance of one
strategy. A smaller chart at the top corresponds to a strong opponent whose direct point probability
is very close to 1. In Figure 5.4, those smaller charts are mainly yellow, which means that the winning
probability of both strategies is very similar. The opponent is so strong that the strategy choice has no
impact on the winning probability – which is very low. A smaller chart at the right corresponds to a very
weak opponent. In Figure 5.4, there also occur more yellow squares the more one looks at the bottom
right. In those cases, the opponent is so weak that the strategy choice will also have no impact on the
winning probability. For the opponent Brazil, the pre-final direct point probabilities are qfield = 0.27
and qfield = 0.19, compare Table 5.4a. These direct point probabilities lead to the smaller chart in the
second column and the second or third row – since the step size is 0.2 the real value lies between the
two drawn charts.
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Figure 5.3: Skill-Strategy Score Card: safe versus risky play for varying smash skills (FS)
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Figure 5.4: Skill-Strategy Score Card:safe versus risky play for varying shot skills (FP)
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Figure 5.5: Skill-Strategy Score Card: safe versus risky play for varying jump serve skills (SJ )
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In Figure 5.5 and Figure 5.6, an analysis of the serving skills of Brink-Reckermann is done. Similar
findings to those of the last two figures can also be made here. For the jump serve, the transition, where
the preferred strategy changes, seems to be sharper and lies more central in the smaller charts. So, for a
success probability of 0.7 for the jump serve, the risky service can be preferred against some opponents.

In the smaller charts of hitting techniques that correspond to the safe strategy (float serve and
planned shot), a principle difference to the risky techniques can be seen: The gradient of the color
changes is not parallel to one of the axis. Instead, the gradient’s slope has an angle of circa 45 degrees.
In contrast, in a smaller chart of a smash or a jump serve, this gradient is parallel to the x-axis. These
findings can be interpreted in the following way: For a safe hit, a deviation is nearly as good as a success,
while for a risky hit a deviation is as bad as a fault. However, this finding can be explained by the fact that
in the risky strategy a risky hit is always played in a border field, while a safe hit is played in a non-border
field.

5.2.6 Two-Person-Constant-SumGame

This subsection introduces constant-sum-matrix-games that are generated by the 2-MDP approach. A
constant-sum-matrix-game encodes the winning probability of a team for different g-MDP parameteri-
zations of their own and the opponent’s strategy. By changing the strategy of both teams, the scope
of Markov decision processes is left towards game theory. The game-matrix can be used to identify
Nash equilibriums. Furthermore, by detecting graphic patterns, it is possible to identify dominating
parameter settings.

Table 5.7 and Table 5.8 present a constant-sum-matrix-game for the final match of the Olympic
games 2012 between Brink-Reckermann and Alison-Emanuel. They are generated by the 2-MDP
approach implementation defined in this section. The difference between both tables is that Table 5.7
contains results generated by a g-MDP in which all skill estimates are based on pre-final matches while
in Table 5.8 the final match was used as a data basis for the skill-estimates.

Each colored, small square corresponds to a simulation of the g-MDP with 100 batches with 100
rallies each. The color of a square represents the winning probability of Germany. A green colored
square means that Germany will win the match with a probability of 100%, a red colored square means
that Germany loses with a probability of 100% and yellow indicates close to equal winning probabilities
of both teams. Note, that in contrast to SSSCs the color corresponds to the winning probability in a
particular strategy setting and not to the difference of the winning probabilities of two distinct strategies.

The played strategy combinations of both teams are encoded at the sidelines by white and gray
squares. Each square corresponds to oneparameter of the basic decision rule. Awhite square corresponds
to the value 0 and a gray square to a value of 1. In the presented game-matrices, the following five
parameters are alternating between 0 and 1:(

πb, πserve
h,∗ (ρ1), π

field
h,∗ (ρ1), πserve

h,∗ (ρ2), π
field
h,∗ (ρ2)

)
. (5.1)

Observe that the used technique and the target field of one situation are combined in one parameter.
The serving strategy πs is in the pre-final setting is fixed to 0.5 and in the post-final setting to the
observed value ofπs in πfinal. By alternating these five parameters between 0 and 1, the resulting matrix
is a 32 × 32-matrix that contains the most extreme strategies. For example, the first line in both tables
corresponds to Germany playing the strategy 0, 0, 0, 0, 0, which means that player 2‚ is always blocking
and both players play a safe service, and a safe field attack.
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The small square in the upper left corner of both tables visualizes the winning probability of
Germany for the strategies played by both teams in the final match.

Based on input parameters (skills) estimated from pre-final matches

Strategy Brazil

πfinal

St
ra
te
gy

G
er
m
an
y

Table 5.7: Winning probabilities ofGermany regarding different strategy combinations in the pre-final
setting.
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Based on input parameters (skills) estimated from final match

Strategy Brazil

πfinal

St
ra
te
gy

G
er
m
an
y

Table 5.8: Winning probabilities of Germany regarding different strategy combinations in the post-
final setting.

Looking at the tables from a bird’s eye perspective, one may detect patterns in both tables. These
patterns lead back to parameter values that have a major influence on the winning probability. Depend-
ing on the frequency of the pattern, and the ordering of the alternated parameters, the corresponding
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parameter can be determined.
For instance, inTable 5.7, every second row is a bit greener than the other rows. As this pattern occurs

every second row, it can be concluded that the last parameter of the tuple in line 5.1 is responsible for this
pattern. The last parameter is πfield

h,∗ (P2) such that the pattern can be interpreted in the following way:
If Reckermann, who is player 2 of Germany, plays a risky field attack, i.e., a smash into a border-field, it
has a positive impact on the winning probability of Germany.

Another example is the left half of Table 5.8, which seems to be redder than the right half. The first
parameter πb of Brazil’s strategy is responsible for this pattern. The left half corresponds to a value of
0 for the parameter πb. It can be concluded that it is promisingly for Brazil that Emanuel (Player 2)
is the blocking player. The recommendation of Emanuel as the blocking player is an exciting finding
since Alison is the taller player that goes more often to the block (96%). However, this finding may
be an artifact of the estimation of Emanuel’s blocking skills. Table A.14 shows that the estimation of
Emanuel’s blocking skills is based on two observations in the post-final setting.

As the lower half seems to be more green than the upper half, the game-matrix recommends setting
πb = 1 for the German team. So Brink is suggested to be the blocking player. Since Reckermann is, in
general, the blocking player of Germany, this is also a similarly surprising result as for the Brazilians. This
finding may also be an artifact of the small estimation basis for Brink’s blocking skills in the post-final
setting, compare Table A.2.

However, even if Brink has done fewer blocks than Reckermann and Emanuel fewer blocks than
Alison, this does not mean that their estimated skills are ordered in the same manner. For example,
Brink has a direct point rate after a block of 0.2 in the pre-final matches while Reckermann has only a
direct point rate of 0.12. It is not possible to determine just from the blocking skill estimates the “better”
blocking-player of both teams since there are opposite effects. An opposing effect may be that one
player has a higher direct point probability, but he also has a higher fault or no-block probability. So,
by only looking at the input-skills the block recommendation of the game-matrix cannot be validated
nor refuted. Of course, it has to be carefully checked that these findings are no artifact of the g-MDP.
But, in a general view, this finding shows the benefit of anMDP: Sometimes it is not clear to state solely
from the data which of two opposing effects is dominating the other. This trade-off can be evaluated by
anMDP to come to a result.

In general Table 5.8 is redder than Table 5.7, this indicates a lower winning probability of Germany
when the skills are estimated from the final match. A reason for the lower winning probability may be
that Germany’s performance dropped while Brazil’s performance improved in the final match. Another
reason may be that the teams did not need to show their full potential in the pre-final matches such that
the Brazilian’s skills are underestimated from the pre-final matches.

The most promising strategy for Germany in Table 5.8 is the strategy

πb = 1,
πserve
h,∗ (P1) = 0,
πfield
h,∗ (P1) = 1,

πserve
h,∗ (P2) = 1,
πfield
h,∗ (P2) = 1.
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This strategy recommendations matches to the recommendation of safe-risky for the final match from
Subsection 5.2.3.

The presented example findings showed, how general patterns and essential parameters could be
identified with the help of a constant-sum-matrix-game. Without a 2-MDP approach, it would likely
not be possible to generate a table with 32 × 32-strategy combinations from solely one tournament or
one season. Furthermore, it could be that some of these strategy-combinations have never been played
in reality, but a coach wants to investigate some hypothetical scenarios, which is possible with a 2-MDP
approach.



Chapter 6

Conclusion and Outlook

After five chapters with content related to sports strategy optimization, the most important results are
repeated together with an assessment in the next paragraphs:

The theoretical results regarding MDPs that model a sport-strategic question are presented in
Chapter 3. Definition 3.2.2 introduces a class of MDPs, called SSO-MDPs, that is suitable for sports
strategy optimization. Assumption 3.2.1 is identified as the underlying characteristic of SSO-MDPs. In
Figure 3.2, SSO-MDPs are set in relation to other known SSO-MDPs.

The definition of an MDP class for sports strategy optimization problems provides a basis for
general findings regardingMDPs modeling a sports game. The existing literature focuses in most of
the cases on a special MDPs – one exception is Walker, Wooders, and Amir (2011) who analyze general
Markov Games that satisfy a specific monotonicity criterion. However, the definition of a class of
Markov decision processes is novel and an essential step towards findings that apply to a complete class
of MDPs.

Themost important findings for SSO-MDPs, presented in this thesis, are: The optimality equations
have a unique fixed point (Theorem 3.4.2). All policies of SSO-MDPs are proper (Theorem 3.4.5). The
dynamic programming operator is a contraction mapping (Theorem 3.4.6). Furthermore, a primal and
a dual linear programming formulation of SSO-MDPs has been specified (primal LP for SSO-MDPs
respectively dual LP for SSO-MDPs).

As the dual linear programming formulation can be interpreted as a static maximum flow problem,
Section 3.6 investigates the relationship between a dynamic SSO-MDP and its static flow network for-
mulation. It has been shown that feasible solutions of the time expanded maximum flow formulation
(Problem 3.9) characterize decision rules (Theorem 3.6.16) of the corresponding SSO-MDP. Further-
more, the value of a feasible solution of the time expanded linear program corresponds to the value of
the derived stationary policy (Corollary 3.6.17). The static maximum flow problem is defined in 3.6.18. A
feasible solution of the static maximum flow problem can be derived from a feasible solution of the time
expended maximum flow problem (Proposition 3.6.19) and the other way around (Proposition 3.6.20).
The objective values are identical up to a constant that is defined by the distribution of the starting state.
The main result of Section 3.6 is Theorem 3.6.23 which combines all previous results to prove that the
static maximum flow problem can be used to characterize an optimal policy of an SSO-MDP.

This result is an independent proof of the validity of the dual linear programming formulation
for SSO-MDPs. It does not rely on the primal linear programming formulation for positive bounded
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MDPs and duality theory which have been used in Subsection 2.3.7 to derive the linear programming
formulations. The result of Theorem 3.6.23 is not new. However, the different approach gives some
insights. For instance, in the proof of Proposition 3.6.20, the properties of SSO-MDPs are explicitly
utilized. It explains why a static maximum flow formulation cannot be used for general MDPs to
determine an optimal policy.

Since value iteration terminates faster for SSO-MDPs with an underlying acyclic graph, Section 3.7
provides an algorithm (Algorithm 6) that transforms a graph associated with an SSO-MDP (Defini-
tion 3.6.1) into an acyclic graph. In Bertsekas (2001), it is sketched how self-transitions can be eliminated.
The generality and the degree of detail of Algorithm 6 is an significant improvement to be able to
implement a transformation algorithm for arbitrary SSO-MDPs.

Chapter 4 and Chapter 5 involve findings from the application of SSO-MDPs to beach volleyball.
First, two new SSO-MDPs for beach volleyball are presented in Chapter 4. The definition of the
set-SSO-MDP is summarized in Table 4.1. It is a coarse model whose optimal policies can be determined
analytically (Theorem 4.2.3). This analytical result is compatible with that of Walker, Wooders, and
Amir (2011) but was developed independently. Also, the winning probability of the tie game can be
computed from the input probabilities, see Subsection 4.2.4. In Subsection 4.2.5, the set-SSO-MDP is
applied to the final match of the beach volleyball tournament of the Olympic games 2012 in London.
After an evaluation of the analytical findings, the set-SSO-MDP is used to answer a strategic question.
The results are presented in Table 4.4.

The second SSO-MDP, the rally-SSO-MDP, is a very complex model with a large state space. It is
defined in Subsection 4.3.1. Due to the huge state and action sets, it is not possible to define those sets
explicitly. Functions that specify conditions on the combination of actions or evaluate independent
parts of the transitions are introduced to be able to describe the action sets and the system dynamics.
Furthermore, the concept of a parameterized basic decision rule is introduced in Subsection 4.3.2. A
parameterized basic decision rule eliminates unreasonable strategies and helps to focus on particular
strategic decisions. The rally-SSO-MDP is one of the largest MDPs contained in the literature related
on sports strategy optimization. To handle such a hugeMDP new concepts were developed that may
also be useful for other large SSO-MDPs.

To apply the rally-SSO-MDP to a real match, a massive amount of data needed to be collected
and processed to get valid and useful input data. This part of work is described in Subsection 4.3.3. It
involved a lot of time and required the development of software tools. Furthermore, the use of real
data without direct contact to the teams led to new challenges. For instance, an aggregation scheme
has been defined to be able to get estimates for all required input probabilities. Ideally, a sport strategic
decision is addressed together with a team. A cooperation with a team leads to new possibilities for the
generation of adequate input data. In this thesis, however, all data had to be collected from publicly
accessible material.

The evaluation of a rally-SSO-MDP is, in this thesis, limited to a simulation of the model. Due
to the size of the rally-SSO-MDP, no optimal policy could be determined with standard methods for
infinite-horizonMarkov decision problems.

After analyzing two SSO-MDPs of different granularity, a new method, called 2-MDP approach, is
proposed in Chapter 5. The 2-MDP approach tries to combine the advantages of both granularities.
A general description of the method is presented in the first subsection of the chapter, while the next
section, Section 5.2, implements the 2-MDP approach for the two beach volleyball SSO-MDPs. One of
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the biggest challenges of this thesis was to validate the 2-MDP approach. Since each match is just a very
small sample and it is not possible to repeat a match several times, all evaluations and comparisons must
be considered with caution. The main results of the 2-MDP approach can be found in Table 5.4, where
the strategic question of Section 4.2.5 is answered a second time by the new approach. A comparison
between the results of the approaches is presented in Table 5.6b. The skill estimates for the pre-final
and the final setting, used in the g-MDP simulation, were not as static as assumed. However, in the
final context, only one match was used as an estimation basis. One match contains probably far too few
observations for reliable skill estimates. Hopefully, this weakness can be eliminated if there exists direct
contact with the teams and therefore a deeper understanding of their skills.

Finally, Subsection 5.2.5 and Subsection 5.2.6 present two new tools that can be helpful for coaches
and players: A skill strategy score card presents two sensitivity analyses in one chart, see Figures 5.3, 5.4, 5.5
and 5.6. The constant-sum matrix games in Tables 5.7 and 5.8 help to identify crucial parameters of
a strategy. These new tools can be generated by the 2-MDP approach. Feedback from coaches and
practitioners regarding those tools would be exciting.

Further research that could follow this work could be an application of SSO-MDPs to other sports
games. Especially, applying the 2-MDP approach to a less structured type of sports, like handball or
soccer, would be interesting. Regarding the SSO-MDPs of this thesis, it may be interesting to apply
methods like column generation to the rally-SSO-MDP and test whether is possible to determine an
optimal policy.

Hopefully, research in other fields like automatic video tracking will help to grow the field of sports
strategy optimization further. If there exists easier access to suitable databases, there will emerge more
mathematical optimization problems. The tools and solutions provided by mathematical optimization
will help the coaches and teams to extract valuable information from those data records.
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Appendix A

Rally-SSO-MDP: Skill Estimates

This chapter presents supplementary g-data to Subsection 4.3.3. For each player, the observations are
split up into events observed in pre-final matches and events from the final match only.

A.1 Brink

target fields Q11-Q14 Q21-Q24 Q31-Q34
performance # succ fault # succ fault # succ fault

Serve

SF P01 - P04 11 1.00 (1.00) 0.00 (0.00) 10 1.00 (1.00) 0.00 (0.00) - - -
SJ 4 0.81 (0.75) 0.00 (0.00) 1 0.89 (1.00) 0.00 (0.00) - - -

Attack-Hit

FS
out 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – ) - - -

P11-P14 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – ) - - -
P21-P24 10 0.99 (1.00) 0.00 (0.00) 4 0.87 (0.75) 0.00 (0.00) - - -
P31-P34 2 0.95 (1.00) 0.00 (0.00) 1 0.95 (1.00) 0.00 (0.00) - - -

FE
out 0 0.75 ( – ) 0.11 ( – ) 1 0.76 (1.00) 0.11 (0.00) - - -

P11-P14 0 0.75 ( – ) 0.11 ( – ) 0 0.75 ( – ) 0.11 ( – ) - - -
P21-P24 1 0.67 (0.00) 0.11 (0.00) 2 0.68 (0.50) 0.20 (0.50) - - -
P31-P34 0 0.75 ( – ) 0.11 ( – ) 0 0.75 ( – ) 0.11 ( – ) - - -

FP
out 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – )

P11-P14 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – )
P21-P24 1 0.96 (1.00) 0.01 (0.00) 5 1.00 (1.00) 0.00 (0.00) 0 0.95 ( – ) 0.02 ( – )
P31-P34 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – )

Table A.1: Input data from final match: Julius Brink – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 4 0.57 (0.75) 0.38 (0.25) 9 0.36 (0.33) 0.54 (0.56)
dm 16 0.25 (0.25) 0.75 (0.75) 16 0.25 (0.25) 0.75 (0.75)

Reception r 1 0.59 (0.00) 0.23 (1.00) 1 0.59 (0.00) 0.14 (0.00)
rm 11 0.91 (0.91) 0.00 (0.00) 3 0.95 (1.00) 0.00 (0.00)

Set s 40 0.98 (0.98) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 1 0.00 0.00 0.00 1.00

Table A.2: Input data from final match: Julius Brink – Defense, Reception, Set, Block

target fields Q11-Q14 Q21-Q24 Q31-Q34
performance # succ fault # succ fault # succ fault

Serve

SF P01 - P04 34 0.88 (0.88) 0.00 (0.00) 43 0.88 (0.88) 0.12 (0.12) - - -
SJ 34 0.94 (0.94) 0.00 (0.00) 16 0.75 (0.75) 0.19 (0.19) - - -

Attack-Hit

FS
out 0 0.86 ( – ) 0.02 ( – ) 0 0.86 ( – ) 0.02 ( – ) - - -

P11-P14 0 0.86 ( – ) 0.02 ( – ) 0 0.86 ( – ) 0.02 ( – ) - - -
P21-P24 55 0.85 (0.85) 0.04 (0.04) 17 0.94 (0.94) 0.00 (0.00) - - -
P31-P34 7 0.77 (0.71) 0.01 (0.00) 2 0.89 (1.00) 0.02 (0.00) - - -

FE
out 0 0.76 ( – ) 0.06 ( – ) 0 0.76 ( – ) 0.06 ( – ) - - -

P11-P14 0 0.76 ( – ) 0.06 ( – ) 1 0.79 (1.00) 0.05 (0.00) - - -
P21-P24 7 0.73 (0.71) 0.11 (0.14) 7 0.82 (0.86) 0.02 (0.00) - - -
P31-P34 1 0.70 (0.00) 0.05 (0.00) 1 0.79 (1.00) 0.05 (0.00) - - -

FP
out 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – )

P11-P14 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – ) 0 0.95 ( – ) 0.05 ( – )
P21-P24 8 0.99 (1.00) 0.01 (0.00) 30 0.97 (0.97) 0.03 (0.03) 0 0.95 ( – ) 0.05 ( – )
P31-P34 2 0.96 (1.00) 0.04 (0.00) 3 0.88 (0.67) 0.12 (0.33) 0 0.95 ( – ) 0.05 ( – )

Table A.3: Input data from all matches except final: Julius Brink – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 20 0.85 (0.85) 0.05 (0.05) 14 0.71 (0.71) 0.21 (0.21)
dm 29 0.93 (0.93) 0.00 (0.00) 13 0.46 (0.46) 0.38 (0.38)

Reception r 34 1.00 (1.00) 0.00 (0.00) 9 0.90 (0.89) 0.10 (0.11)
rm 42 0.95 (0.95) 0.02 (0.02) 3 0.97 (1.00) 0.02 (0.00)

Set s 117 0.99 (0.99) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 5 0.20 0.20 0.20 0.40

Table A.4: Input data from all matches except final: Julius Brink – Defense, Reception, Set, Block

A.2 Reckermann

target fields Q11-Q14 Q21-Q24 Q31-Q34
performance # succ fault # succ fault # succ fault

Serve

SF P01 - P04 14 0.93 (0.93) 0.00 (0.00) 8 0.99 (1.00) 0.00 (0.00) - - -
SJ 3 1.00 (1.00) 0.00 (0.00) 4 1.00 (1.00) 0.00 (0.00) - - -

Attack-Hit

FS
out 0 0.93 ( – ) 0.00 ( – ) 0 0.93 ( – ) 0.00 ( – ) - - -

P11-P14 0 0.93 ( – ) 0.00 ( – ) 0 0.93 ( – ) 0.00 ( – ) - - -
P21-P24 19 0.89 (0.89) 0.00 (0.00) 8 0.98 (1.00) 0.00 (0.00) - - -
P31-P34 0 0.93 ( – ) 0.00 ( – ) 0 0.93 ( – ) 0.00 ( – ) - - -

FE
out 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – ) - - -

P11-P14 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – ) - - -
P21-P24 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – ) - - -
P31-P34 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – ) - - -

FP
out 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – )

P11-P14 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – ) 0 0.92 ( – ) 0.00 ( – )
P21-P24 1 0.83 (0.00) 0.00 (0.00) 10 0.99 (1.00) 0.00 (0.00) 0 0.92 ( – ) 0.00 ( – )
P31-P34 0 0.92 ( – ) 0.00 ( – ) 1 0.92 (1.00) 0.00 (0.00) 0 0.92 ( – ) 0.00 ( – )

Table A.5: Input data from final match: Jonas Reckermann – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 8 0.88 (0.88) 0.00 (0.00) 1 0.89 (1.00) 0.01 (0.00)
dm 6 0.78 (0.83) 0.22 (0.17) 1 0.68 (0.00) 0.31 (1.00)

Reception r 7 0.97 (1.00) 0.00 (0.00) 5 0.86 (0.80) 0.00 (0.00)
rm 14 0.93 (0.93) 0.07 (0.07) 7 0.77 (0.71) 0.13 (0.14)

Set s 24 0.88 (0.88) 0.04 (0.04) - - -

performance # block-point block-ok block-fault noblock
Block b 63 0.08 0.10 0.16 0.67

Table A.6: Input data from final match: Jonas Reckermann – Defense, Reception, Set

target fields Q11-Q14 Q21-Q24 Q31-Q34
performance # succ fault # succ fault # succ fault

Serve

SF P01 - P04 25 0.76 (0.76) 0.00 (0.00) 35 0.91 (0.91) 0.06 (0.06) - - -
SJ 38 0.82 (0.82) 0.03 (0.03) 23 0.70 (0.70) 0.30 (0.30) - - -

Attack-Hit

FS
out 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – ) - - -

P11-P14 0 0.95 ( – ) 0.02 ( – ) 0 0.95 ( – ) 0.02 ( – ) - - -
P21-P24 49 1.00 (1.00) 0.00 (0.00) 25 0.84 (0.84) 0.08 (0.08) - - -
P31-P34 9 0.99 (1.00) 0.00 (0.00) 3 0.97 (1.00) 0.02 (0.00) - - -

FE
out 0 0.93 ( – ) 0.00 ( – ) 1 0.94 (1.00) 0.00 (0.00) - - -

P11-P14 0 0.93 ( – ) 0.00 ( – ) 0 0.93 ( – ) 0.00 ( – ) - - -
P21-P24 7 0.88 (0.86) 0.00 (0.00) 5 0.96 (1.00) 0.00 (0.00) - - -
P31-P34 0 0.93 ( – ) 0.00 ( – ) 1 0.94 (1.00) 0.00 (0.00) - - -

FP
out 0 0.88 ( – ) 0.06 ( – ) 0 0.88 ( – ) 0.06 ( – ) 0 0.88 ( – ) 0.06 ( – )

P11-P14 0 0.88 ( – ) 0.06 ( – ) 0 0.88 ( – ) 0.06 ( – ) 0 0.88 ( – ) 0.06 ( – )
P21-P24 3 0.82 (0.67) 0.04 (0.00) 23 0.91 (0.91) 0.04 (0.04) 1 0.89 (1.00) 0.05 (0.00)
P31-P34 0 0.88 ( – ) 0.06 ( – ) 7 0.87 (0.86) 0.11 (0.14) 0 0.88 ( – ) 0.06 ( – )

Table A.7: Input data from all matches except final: Jonas Reckermann – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 20 0.85 (0.85) 0.10 (0.10) 1 0.74 (0.00) 0.09 (0.00)
dm 19 0.84 (0.84) 0.05 (0.05) 0 0.84 ( – ) 0.05 ( – )

Reception r 27 1.00 (1.00) 0.00 (0.00) 7 0.90 (0.86) 0.10 (0.14)
rm 61 0.95 (0.95) 0.02 (0.02) 3 0.97 (1.00) 0.01 (0.00)

Set s 128 0.98 (0.98) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 200 0.12 0.13 0.14 0.62

Table A.8: Input data from all matches except final: Jonas Reckermann – Defense, Reception, Set

A.3 Alison

target fields P11-P14 P21-P24 P31-P34
performance # succ fault # succ fault # succ fault

Serve

SF Q01 - Q04 6 0.70 (0.67) 0.00 (0.00) 2 0.80 (1.00) 0.00 (0.00) - - -
SJ 15 0.80 (0.80) 0.07 (0.07) 2 0.86 (1.00) 0.05 (0.00) - - -

Attack-Hit

FS
out 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) - - -

Q11-Q14 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) - - -
Q21-Q24 9 1.00 (1.00) 0.00 (0.00) 1 1.00 (1.00) 0.00 (0.00) - - -
Q31-Q34 1 1.00 (1.00) 0.00 (0.00) 2 1.00 (1.00) 0.00 (0.00) - - -

FE
out 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) - - -

Q11-Q14 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) - - -
Q21-Q24 1 1.00 (1.00) 0.00 (0.00) 1 1.00 (1.00) 0.00 (0.00) - - -
Q31-Q34 0 1.00 ( – ) 0.00 ( – ) 1 1.00 (1.00) 0.00 (0.00) - - -

FP
out 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – )

Q11-Q14 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – )
Q21-Q24 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – )
Q31-Q34 1 1.00 (1.00) 0.00 (0.00) 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – )

Table A.9: Input data from final match: Alison Cerutti – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 7 0.57 (0.57) 0.29 (0.29) 0 0.56 ( – ) 0.30 ( – )
dm 6 0.59 (0.67) 0.35 (0.33) 2 0.41 (0.00) 0.39 (0.50)

Reception r 6 0.69 (0.67) 0.00 (0.00) 1 0.77 (1.00) 0.00 (0.00)
rm 5 0.98 (1.00) 0.00 (0.00) 0 0.91 ( – ) 0.00 ( – )

Set s 52 1.00 (1.00) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 49 0.06 0.16 0.10 0.67

Table A.10: Input data from final match: Alison Cerutti – Defense, Reception, Set, Block

target fields P11-P14 P21-P24 P31-P34
performance # succ fault # succ fault # succ fault

Serve

SF Q01 - Q04 45 0.89 (0.89) 0.00 (0.00) 46 0.96 (0.96) 0.04 (0.04) - - -
SJ 37 0.70 (0.70) 0.05 (0.05) 17 0.76 (0.76) 0.24 (0.24) - - -

Attack-Hit

FS
out 0 0.87 ( – ) 0.07 ( – ) 0 0.87 ( – ) 0.07 ( – ) - - -

Q11-Q14 0 0.87 ( – ) 0.07 ( – ) 0 0.87 ( – ) 0.07 ( – ) - - -
Q21-Q24 47 0.89 (0.89) 0.04 (0.04) 23 0.83 (0.83) 0.09 (0.09) - - -
Q31-Q34 8 0.96 (1.00) 0.02 (0.00) 4 0.73 (0.50) 0.23 (0.50) - - -

FE
out 0 0.90 ( – ) 0.00 ( – ) 0 0.90 ( – ) 0.00 ( – ) - - -

Q11-Q14 1 0.91 (1.00) 0.00 (0.00) 1 0.91 (1.00) 0.00 (0.00) - - -
Q21-Q24 4 0.85 (0.75) 0.00 (0.00) 4 0.94 (1.00) 0.00 (0.00) - - -
Q31-Q34 0 0.90 ( – ) 0.00 ( – ) 0 0.90 ( – ) 0.00 ( – ) - - -

FP
out 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – )

Q11-Q14 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – ) 0 0.94 ( – ) 0.00 ( – )
Q21-Q24 2 0.86 (0.50) 0.00 (0.00) 10 0.99 (1.00) 0.00 (0.00) 0 0.94 ( – ) 0.00 ( – )
Q31-Q34 1 0.95 (1.00) 0.00 (0.00) 5 0.97 (1.00) 0.00 (0.00) 0 0.94 ( – ) 0.00 ( – )

Table A.11: Input data from all matches except final: Alison Cerutti – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 29 0.83 (0.83) 0.03 (0.03) 8 0.47 (0.38) 0.20 (0.25)
dm 17 0.76 (0.76) 0.18 (0.18) 5 0.55 (0.40) 0.42 (0.60)

Reception r 26 1.00 (1.00) 0.00 (0.00) 5 1.00 (1.00) 0.00 (0.00)
rm 36 0.97 (0.97) 0.00 (0.00) 1 0.86 (0.00) 0.12 (1.00)

Set s 180 0.98 (0.98) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 254 0.13 0.13 0.15 0.59

Table A.12: Input data from all matches except final: Alison Cerutti – Defense, Reception, Set, Block

A.4 Emanuel

target fields P11-P14 P21-P24 P31-P34
performance # succ fault # succ fault # succ fault

Serve

SF Q01 - Q04 10 0.90 (0.90) 0.00 (0.00) 9 0.99 (1.00) 0.00 (0.00) - - -
SJ 9 0.89 (0.89) 0.00 (0.00) 2 0.93 (1.00) 0.00 (0.00) - - -

Attack-Hit

FS
out 0 0.86 ( – ) 0.05 ( – ) 0 0.86 ( – ) 0.05 ( – ) - - -

Q11-Q14 0 0.86 ( – ) 0.05 ( – ) 0 0.86 ( – ) 0.05 ( – ) - - -
Q21-Q24 21 0.90 (0.90) 0.05 (0.05) 14 0.79 (0.79) 0.07 (0.07) - - -
Q31-Q34 5 0.83 (0.80) 0.02 (0.00) 4 0.91 (1.00) 0.03 (0.00) - - -

FE
out 0 0.91 ( – ) 0.03 ( – ) 0 0.91 ( – ) 0.03 ( – ) - - -

Q11-Q14 0 0.91 ( – ) 0.03 ( – ) 0 0.91 ( – ) 0.03 ( – ) - - -
Q21-Q24 2 0.93 (1.00) 0.02 (0.00) 0 0.91 ( – ) 0.03 ( – ) - - -
Q31-Q34 0 0.91 ( – ) 0.03 ( – ) 1 0.92 (1.00) 0.02 (0.00) - - -

FP
out 0 0.90 ( – ) 0.00 ( – ) 0 0.90 ( – ) 0.00 ( – ) 0 0.90 ( – ) 0.00 ( – )

Q11-Q14 0 0.90 ( – ) 0.00 ( – ) 0 0.90 ( – ) 0.00 ( – ) 0 0.90 ( – ) 0.00 ( – )
Q21-Q24 1 0.91 (1.00) 0.00 (0.00) 7 0.87 (0.86) 0.00 (0.00) 0 0.90 ( – ) 0.00 ( – )
Q31-Q34 0 0.90 ( – ) 0.00 ( – ) 2 0.92 (1.00) 0.00 (0.00) 0 0.90 ( – ) 0.00 ( – )

Table A.13: Input data from final match: Emanuel Rego – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 7 0.75 (0.86) 0.20 (0.14) 13 0.38 (0.38) 0.38 (0.38)
dm 18 0.33 (0.33) 0.61 (0.61) 7 0.19 (0.14) 0.69 (0.71)

Reception r 13 0.85 (0.85) 0.00 (0.00) 1 0.71 (0.00) 0.00 (0.00)
rm 27 0.85 (0.85) 0.04 (0.04) 0 0.85 ( – ) 0.04 ( – )

Set s 12 1.00 (1.00) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 2 0.00 0.50 0.00 0.50

Table A.14: Input data from final match: Emanuel Rego – Defense, Reception, Set, Block

target fields P11-P14 P21-P24 P31-P34
performance # succ fault # succ fault # succ fault

Serve

SF Q01 - Q04 42 0.98 (0.98) 0.02 (0.02) 44 0.84 (0.84) 0.14 (0.14) - - -
SJ 32 1.00 (1.00) 0.00 (0.00) 15 0.73 (0.73) 0.20 (0.20) - - -

Attack-Hit

FS
out 0 0.87 ( – ) 0.06 ( – ) 0 0.87 ( – ) 0.06 ( – ) - - -

Q11-Q14 0 0.87 ( – ) 0.06 ( – ) 0 0.87 ( – ) 0.06 ( – ) - - -
Q21-Q24 83 0.90 (0.90) 0.02 (0.02) 57 0.81 (0.81) 0.11 (0.11) - - -
Q31-Q34 12 1.00 (1.00) 0.00 (0.00) 4 0.73 (0.50) 0.22 (0.50) - - -

FE
out 0 1.00 ( – ) 0.00 ( – ) 0 1.00 ( – ) 0.00 ( – ) - - -

Q11-Q14 1 1.00 (1.00) 0.00 (0.00) 0 1.00 ( – ) 0.00 ( – ) - - -
Q21-Q24 12 1.00 (1.00) 0.00 (0.00) 5 1.00 (1.00) 0.00 (0.00) - - -
Q31-Q34 0 1.00 ( – ) 0.00 ( – ) 1 1.00 (1.00) 0.00 (0.00) - - -

FP
out 0 0.96 ( – ) 0.00 ( – ) 0 0.96 ( – ) 0.00 ( – ) 0 0.96 ( – ) 0.00 ( – )

Q11-Q14 0 0.96 ( – ) 0.00 ( – ) 0 0.96 ( – ) 0.00 ( – ) 0 0.96 ( – ) 0.00 ( – )
Q21-Q24 4 0.97 (1.00) 0.00 (0.00) 18 0.94 (0.94) 0.00 (0.00) 1 0.96 (1.00) 0.00 (0.00)
Q31-Q34 0 0.96 ( – ) 0.00 ( – ) 2 0.97 (1.00) 0.00 (0.00) 0 0.96 ( – ) 0.00 ( – )

Table A.15: Input data from all matches except final: Emanuel Rego – Serves and Attack-Hits
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attack strength normal hard
performance # succ fault # succ fault

Defense d 22 0.86 (0.86) 0.05 (0.05) 24 0.17 (0.17) 0.50 (0.50)
dm 36 0.81 (0.81) 0.17 (0.17) 22 0.41 (0.41) 0.36 (0.36)

Reception r 69 0.94 (0.94) 0.06 (0.06) 19 0.68 (0.68) 0.05 (0.05)
rm 48 0.98 (0.98) 0.00 (0.00) 3 0.99 (1.00) 0.00 (0.00)

Set s 95 1.00 (1.00) 0.00 (0.00) - - -

performance # block-point block-ok block-fault noblock
Block b 11 0.09 0.36 0.09 0.45

Table A.16: Input data from all matches except final: Emanuel Rego – Defense, Reception, Set, Block
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Appendix B

Rally-SSO-MDP: Simulation

Screenshots of the g-MDP Simulation

(a) Settings of Team P

251
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(b) Settings of Team Q

(c) General Settings
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(d) Simulation Screen

(e) Results: Serves
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(f) Results: Attacks

(g) Results: Summary

Figure B.1: Screenshots g-MDP simulation



Appendix C

Rally-SSO-MDP: Basic Decision Rule

C.1 Definition of the Basic Decision Rule

The basic decision rule is used as a default decision rule in the SSO-MDP for a Beach volleyball rally
of Section 4.3, which is also called the g-MDP in context of the 2MDP-approach. The basic decision
rule specifies a uniform probability distribution over the set of reasonable actions, see Definition 4.3.1.
It thereby makes it possible to have some kind of default behavior such that a decision rule regarding
binary questions of interest can be characterized by a set of parameters that modify the basic decision
rule. In this section, the definition of the basic decision rule is listed in Java-code and supplemented by
some explanations.

The basic decision rule is implemented as a Java class and used in the Java simulation of the rally-SSO-
MDP respectively the g-MDP. According to the list of binary question, presented in Subsection 4.3.2,
the basic decision rule is parametrized by ten parameters, which are

π = ©«
πb
πh
πs

ª®¬ , πh =
(
πserve
h
πfield
h

)
, πsit

h =

(
πsit
h,tech(ρ)
πsit
h,field(ρ)

)
, sit ∈ {serve, field},
ρ ∈ {P1, P2}.

In Listing C.1, the constructor of the parametrized basic decision rule is presented. The class is named
Strategy since, in a sport context, it is the commonly used term. Besides the specification of the parameters
a central field for each player is set depending whether the strategy is a strategy of team P or of team Q.1
The name of the strategy is just a meaningful string that helps to identify a specified parametrization.

1 public Strategy(String name , boolean isTeamA , double pi_b ,
double [][] pi_h , double pi_o1){

2 this.name = name;
3 this.isTeamA = isTeamA;
4 this.pi_b = pi_b;
5 this.pi_h = pi_h;
6 this.pi_o1 = pi_o1;
7

1The description variables or functions in the the presented pseudo-code uses the lettersA respectively B instead of P and
Q to name the participating teams.

255
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8 if (isTeamA){
9 centralFieldP1 = Field.A22;
10 centralFieldP2 = Field.A23;
11 }else{
12 centralFieldP1 = Field.B22;
13 centralFieldP2 = Field.B23;
14 }
15 }

Listing C.1: Constructor parametrized rally-SSO-MDP strategy

In this implementation, the basic decision rule specifies the reasonable action sets Rs depending on
the category of state the s, see Table 4.5. In the remainder of this section, we specify these reasonable
action sets for each state category and whether the team is in possession of the ball or not. In each
decision rule, it is specified whether it is a decision rule of team P. Therefore, it is possible to determine
from the current position of the ball whether the team who chooses its next team action is in possession
of the ball or not.

As already mentioned in Subsection 4.3.2, each of the binary decision questions will partition the
reasonable action sets in two sets. The basic decision rule can be regained from the parametrization
presented in Table 4.8.

Assume in the following, a decision rule that is a decision rule of team P. This assumption helps
to avoid writing “the team who is using this decision rule” and to avoid annoying case distinctions.
All reasonable action sets can analogously be constructed for a decision rule of team Q since the rally
SSO-MDP is built with a symmetric view on team P and team Q.

C.1.1 Serving States

If the current state s is a serving state of team P, i.e., s ∈ SserveP , it is first determined whether player
1 or player 2 is hitting. As all serving states of team P are explicitly listed in the set SserveP , also two
subsets can be specified to distinguish between serving states of player 1 and player 2. This is done in a
natural manner and used to determine the hitting player. In the next step, a hit and a movement are
determined for the hitting player according to the parametrization of the decision rule. The function
chooseServeAfterStrat determines the hitting technique and the target field. It is listed and
explained in Listing C.3. If the chosen hit is a jump serve, the server makes one step forward to the net
else he moves towards a field on the side of the field that is not covered by the other player. Thereby
the function moveTowardsField returns a one-step movement in the direction towards the specified
field. And getCentralFieldOfOtherHalf(field) is a function that returns the central field that
is on the court half not containing field. The central fields are specified in the strategy class as P23
and P22 for team P. The non-hitting player stays in his field and does nothing. Finally, the returned
team action is constructed. Depending on whether player 1 or player 2 is the hitting player, the player
actions must be the first or the second player action in the constructor of the team action.

1 public TeamAction servingRule(State s, double r) {
2 // which player is hitting
3 int playerNumber;
4 if (Arrays.asList(State.START_STATES_A1).contains(s)){
5 playerNumber = 1;
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6 }else{
7 playerNumber = 2;
8 }
9

10 // determine hit
11 Hit h = Hit.chooseServeAfterStrat(isTeamA ,

pi_h[playerNumber -1][0] , pi_h[playerNumber -1][1] , pi_o1);
12

13 Move moveServer;
14 if (h.isHitWithJump ()){
15 moveServer = Move.m_f;
16 }else{
17 if (Arrays.asList(Field.OUT_A).contains(fP1)){
18 moveServer =

fP1.moveTowardsField(getCentralFieldOfOtherHalf(fP2));
19 }else{
20 moveServer =

fP2.moveTowardsField(getCentralFieldOfOtherHalf(fP1));
21 }
22 }
23

24 if (playerNumber == 1)
25 return new TeamAction(new PlayerAction(h,moveServer), new

PlayerAction(Hit.nohit , Move.stay));
26 else
27 return new TeamAction(new PlayerAction(Hit.nohit , Move.stay),

new PlayerAction(h,moveServer));
28 }

Listing C.2: Reasonable action sets of serving states

The function chooseServeAfterStrat, listed in Listing C.3, determines a serving technique
and a target field according to the probability distribution specified by πserve

h,tech(ρ) and πserve
h,field(ρ). Also

the parameter πs is taken into account to determine the court half of the target field. The function
MainSim.countRandomCalls() is a function that returns a randomdouble value in [0, 1) computed
by the Java Function nextDouble() of the Random class. The drawing of random numbers is en-
capsulated in a function for debugging reasons. For instance, in MainSim.countRandomCalls()
the total number of random calls is counted and only a single Random object is used such that the
specification of a certain seed is possible. So, after the first draw of a random number, it is evaluated
whether this number is smaller than πserve

h,tech(ρ) or not. If it is smaller the a SJ is chosen else a SF . This
leads to a probability distribution where a SJ is chosen with probability πserve

h,tech(ρ) as desired. Similarly,
the target field is determined. First, it is evaluated from another drawing of a random number whether
the target field is a border field or not, and second, whether it is a field of the right or the left half of
the opponent’s court. By definition of the serving states, player 1 of the opponent team is placed in
field Q12 and player 2 in field Q13. Observe, that only the side edge fields without the fields at the net
are considered as border fields; these are precisely 4 fields on each court half and thus as many as the
non-border fields that are no fields at the net.
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1 public static Hit chooseServeAfterStrat(boolean isTeamA , double
pi_serve_tech , double pi_serve_field , double pi_o1){

2 HitTechnique tech;
3 Field f;
4

5 if (MainSim.countRandomCalls () < pi_serve_tech){
6 tech = HitTechnique.S_J;
7 }else{
8 tech = HitTechnique.S_F;
9 }
10

11 if (MainSim.countRandomCalls () < pi_serve_field){
12 if(MainSim.countRandomCalls () < pi_o1){
13 f = Field.chooseRandomField(new Field []{ Field.B11 ,

Field.B21});
14 }else{
15 f = Field.chooseRandomField(new Field []{ Field.B14 ,

Field.B24});
16 }
17 }else{
18 if(MainSim.countRandomCalls () < pi_o1){
19 f = Field.chooseRandomField(new Field []{ Field.B12 ,

Field.B22});
20 }else{
21 f = Field.chooseRandomField(new Field []{ Field.B13 ,

Field.B23});
22 }
23 return new Hit(tech , f);
24 }

Listing C.3: Choose Service

If the current state s is a serving state of the opponent team, i.e., s ∈ SserveQ the team does nothing.
The team action doNothing is defined by two player actions that consists of the hit no hit and the
move stay.

1 public TeamAction otherTeamServingRule(State s, double r) {
2 return TeamAction.doNothing;
3 }

Listing C.4: Reasonable action sets of other team serving

C.1.2 Reception States

The general idea of the reception rule, listed in Listing C.5, is to let one player make a reception towards
the central field of the other half of the court and let the other player move towards this target field.
If a player is in the same field as the ball, the technique r is used. If a player is only in a neighbor field
of the ball a reception with a move, rm, is used. As a reception with a move is, in general, a more
difficult hit compared to a reception without a movement, it is first tested whether a player is at the
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position of the ball and only if both players do not fulfill that, it is determined whether a player is
in a neighbor-field of the ball. Since both players may be in the same field or both players are in a
neighbor-field of the ball, it is selected with an equal probability which player’s position is tested first.
The function ballIsInsideMyCourtSide() determines whether the ball is inside the court on the
team’s side and prevents from receiving a ball that is in an outside field. If no player can receive the ball,
the doNothing team action is returned. As in the next step, the rally will be completed if no real hit is
performed, a movement wouldn’t have any influence in any case.

1 public TeamAction receptionRule(State s, double r) {
2 /* randomize which player is tested first */
3 int order = 1;
4 if (r < 0.5){
5 order = 1;
6 }else{
7 order = 2;
8 }
9

10 for (int i = 0; i < 2; i++){
11 switch (order){
12 case 1:
13 if (fP1 == fBall && ballIsInsideMyCourtSide ()){
14 Field targetField = getCentralFieldOfOtherHalf(fP1);
15 Hit h = new Hit(HitTechnique.r, targetField);
16 return new TeamAction(new PlayerAction(h, Move.stay),

new PlayerAction(Hit.nohit ,
fP2.moveTowardsField(targetField)));

17 }
18 order = 2;
19 break;
20 case 2:
21 if (fP2 == fBall && ballIsInsideMyCourtSide ()){
22 Field targetField = getCentralFieldOfOtherHalf(fP2);
23 Hit h = new Hit(HitTechnique.r, targetField);
24 return new TeamAction(new PlayerAction(Hit.nohit ,

fP1.moveTowardsField(targetField)), new
PlayerAction(h, Move.stay));

25 }
26 order = 1;
27 break;
28 }
29 }
30

31 for (int i = 0; i < 2; i++){
32 switch (order){
33 case 1:
34 if (fP1.isNeighbour(fBall) && ballIsInsideMyCourtSide ()){
35 Field targetField = getCentralFieldOfOtherHalf(fP1);
36 Hit h = new Hit(HitTechnique.r_m , targetField);



260 APPENDIX C. RALLY-SSO-MDP: BASIC DECISION RULE

37 return new TeamAction(new PlayerAction(h, Move.stay),
new PlayerAction(Hit.nohit ,
fP2.moveTowardsField(targetField)));

38 }
39 order = 2;
40 break;
41 case 2:
42 if (fP2.isNeighbour(fBall) && ballIsInsideMyCourtSide ()){
43 Field targetField = getCentralFieldOfOtherHalf(fP2);
44 Hit h = new Hit(HitTechnique.r_m , targetField);
45 return new TeamAction(new PlayerAction(Hit.nohit ,

fP1.moveTowardsField(targetField)), new
PlayerAction(h, Move.stay));

46 }
47 order = 1;
48 break;
49 }
50 }
51

52 return TeamAction.doNothing;
53 }

Listing C.5: Reasonable action sets of receiving states

If the current state is a receiving state of the other team, both players start positioning themselves on
the field to defend the next attack hit, see Listing C.6. The function determineBlockingPlayer is
listed below and determines a designated blocking player according to the parameterπb. The designated
blocking player moves – if he is not already there – forward to the net, while the non-blocking player
moves to the central field on the other court half of the blocking player. The decision who is the
designated blocking player of the next attack is part of the team action and as specified in the system
dynamic in the next state. This inclusion in the state means that this decision can be accessed at the next
time step.

1 public TeamAction otherTeamReceptionRule(State s, double r) {
2 // non -blocking player moves towards the central fields
3 Move moveP1 =

fP1.moveTowardsField(getCentralFieldOfOtherHalf(fP2));
4 Move moveP2 =

fP2.moveTowardsField(getCentralFieldOfOtherHalf(fP1));
5 TeamAction result = new TeamAction(new PlayerAction(Hit.nohit ,

moveP1), new PlayerAction(Hit.nohit , moveP2));
6

7 Player blockingPlayer = determineBlockingPlayer(r);
8 result.setDesignatedBlockingPlayer(blockingPlayer);
9

10 // blocker moves forward except he is already at the net
11 Move moveBlocker;
12 if (blockingPlayer.isAtTheNet ()){
13 moveBlocker = Move.stay;
14 }else{
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15 moveBlocker = Move.m_f;
16 }
17 // overwrite player action of blocking player
18 result.setPlayerActionOfPlayer(blockingPlayer , new

PlayerAction(Hit.nohit , moveBlocker));
19

20 return result;
21 }

Listing C.6: Reasonable action sets of other team receiving

1 private Player determineBlockingPlayer(double r){
2 if (r < pi_b){
3 return Game.getInstance ().getTeamA ().getPlayer1 ();
4 }else{
5 return Game.getInstance ().getTeamA ().getPlayer2 ();
6 }
7 }

Listing C.7: Determine the blocking player

C.1.3 Defense States

The defending rule is similar to the reception rule. The only differences are that a defense technique
instead of a receiving technique is used. Furthermore, only a player who is not in a field directly at the
net should perform that defense hit. As in the receiving states, if no defense action is possible by both
players the team action do nothing is returned.

1 public TeamAction defendingRule(State s, double r) {
2 /* randomize which player is tested first */
3 int order = 1;
4 if (r < 0.5){
5 order = 1;
6 }else{
7 order = 2;
8 }
9

10 for (int i = 0; i < 2; i++){
11 switch (order){
12 case 1:
13 if (fP1 == fBall&&

(! Arrays.asList(Field.AT_THE_NET_A).contains(fP1) &&
ballIsInsideMyCourtSide ()){

14 Field targetField = getCentralFieldOfOtherHalf(fP1);
15 Hit h = new Hit(HitTechnique.d, targetField);
16 return new TeamAction(new PlayerAction(h, Move.stay),

new PlayerAction(Hit.nohit ,
fP2.moveTowardsField(targetField)));

17 }
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18 order =2;
19 break;
20 case 2:
21 if (fP2 == fBall&&

(! Arrays.asList(Field.AT_THE_NET_A).contains(fP2) &&
ballIsInsideMyCourtSide ()){

22 Field targetField = getCentralFieldOfOtherHalf(fP2);
23 Hit h = new Hit(HitTechnique.d, targetField);
24 return new TeamAction(new PlayerAction(Hit.nohit ,

fP1.moveTowardsField(targetField)), new
PlayerAction(h, Move.stay));

25 }
26 order =1;
27 break;
28 }
29 }
30

31 for (int i = 0; i < 2; i++){
32 switch (order){
33 case 1:
34 if (fP1.isNeighbour(fBall) &&

(! Arrays.asList(Field.AT_THE_NET_A).contains(fP1) &&
ballIsInsideMyCourtSide ()){

35 Field targetField = getCentralFieldOfOtherHalf(fP1);
36 Hit h = new Hit(HitTechnique.d_m , targetField);
37 return new TeamAction(new PlayerAction(h, Move.stay),

new PlayerAction(Hit.nohit ,
fP2.moveTowardsField(targetField)));

38 }
39 order =2;
40 break;
41 case 2:
42 if (fP2.isNeighbour(fBall) &&

(! Arrays.asList(Field.AT_THE_NET_A).contains(fP2) &&
ballIsInsideMyCourtSide ()){

43 Field targetField = getCentralFieldOfOtherHalf(fP2);
44 Hit h = new Hit(HitTechnique.d_m , targetField);
45 return new TeamAction(new PlayerAction(Hit.nohit ,

fP1.moveTowardsField(targetField)), new
PlayerAction(h, Move.stay));

46 }
47 order =1;
48 break;
49 }
50 }
51 return TeamAction.doNothing;
52 }

Listing C.8: Reasonable action sets of defending states
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If the other team is defending, exactly the same team action is returned as when the other team is
receiving the ball after a service.

1 public TeamAction otherTeamDefendingRule(State s, double r) {
2 // non -blocking player moves towards the central fields
3 Move moveP1 = fP1.moveTowardsField(centralFieldP1);
4 Move moveP2 = fP2.moveTowardsField(centralFieldP2);
5 TeamAction result = new TeamAction(new PlayerAction(Hit.nohit ,

moveP1), new PlayerAction(Hit.nohit , moveP2));
6

7 Player blockingPlayer = determineBlockingPlayer(r);
8 result.setDesignatedBlockingPlayer(blockingPlayer);
9

10 // blocker moves forward except he is already at the net
11 Move moveBlocker;
12 if (blockingPlayer.isAtTheNet ()){
13 moveBlocker = Move.stay;
14 }else{
15 moveBlocker = Move.m_f;
16 }
17 // overwrite player action of blocking player
18 result.setPlayerActionOfPlayer(blockingPlayer , new

PlayerAction(Hit.nohit , moveBlocker));
19

20 return result;
21 }

Listing C.9: Reasonable action sets of other team defending

C.1.4 Setting States

The settingRule specified in Listing C.10 defines the team action for setting states of team P. Again
the order inwhich the players are tested is randomized. The first tested player who is in the same position
as the ball, and who has not last touched the ball will perform the set. As for the setting technique, only
a neighbor-field of player’s current position is allowed, it is tested whether the central field of the other
court half belongs to the neighbor-fields of the own field. If that’s the case, a set towards the central field
of the other court half is made, and the non-hitting player moves towards that target field. If that’s not
the case a fall-back to the reception rule is made. A reception has fewer requirements than a setting, so it
may be the case that no setting is possible but a reception can be performed. A fall-back to a reception
and not to defense is made since a regain of the ball after a failed setting is easier than defending an
attack hit and therefore more similar to a reception.

1 public TeamAction settingRule(State s, double r) {
2 /* randomize which player is tested first */
3 int order = 1;
4 if (r < 0.5){
5 order = 1;
6 }else{
7 order = 2;
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8 }
9

10 for (int i = 0; i < 2; i++){
11 switch (order){
12 case 1:
13 if(fP1 == fBall && s.getLastContact () !=

Game.getInstance ().getTeamA ().getPlayer1 ()){
14 Field targetField = getCentralFieldOfOtherHalf(fP1);
15 if (targetField.isNeighbourOrOwnField(fP1)){
16 Hit hitP1 = new Hit(HitTechnique.s,targetField);
17 Field moveTargetField;
18 moveTargetField = targetField;
19 return new TeamAction(new PlayerAction(hitP1 ,

Move.stay), new PlayerAction(Hit.nohit ,
fP2.moveTowardsField(moveTargetField)));

20 }
21 }
22 order = 2;
23 break;
24 case 2:
25 if(fP2 == fBall && s.getLastContact () !=

Game.getInstance ().getTeamA ().getPlayer2 ()){
26 Field targetField = getCentralFieldOfOtherHalf(fP2);
27 if (targetField.isNeighbourOrOwnField(fP2)){
28 Hit hitP2 = new Hit(HitTechnique.s,targetField);
29 Field moveTargetField;
30 moveTargetField = targetField;
31 return new TeamAction(new PlayerAction(Hit.nohit ,

fP1.moveTowardsField(moveTargetField)), new
PlayerAction(hitP2 , Move.stay));

32 }
33 }
34 order = 1;
35 break;
36 }
37 }
38

39 return receptionRule(s,r);
40 }

Listing C.10: Reasonable action sets of setting states

If the other teamdoes the setting prior to their next attack, the positioning on the court for defending
the next attack hit is done. First, it is estimatedwhich playerwill possibly perform the next attack hit. The
function findColOfPossiblyAttackingPlayer returns an estimate of the column from which
the next attack hit will be performed. The function findColOfPossiblyAttackingPlayer is
described and listed below in more detail. Having an estimate of the column of the next attack hit, the
blocking player moves towards a field at the net of this column. If the blocking player is already at the
net, he may move left or right to be in the column of the estimated next attack. If he is in the correct
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column and at the net, he stays there. The non-blocking player positions himself in the central field
on the court half that is not covered by the blocking player. Finally, depending on whether player 1 or
player 2 is blocking, the team action is constructed from both player actions.

1 public TeamAction otherTeamSettingRule(State s, double r) {
2 // determine column of the player who probably will do the

attack hit in the next step
3 int col_possiblyAttackingCol =

findColOfPossiblyAttackingPlayer(s);
4 PlayerAction blockPlayerAction;
5 Field blockerField;
6 Player designatedBlocker;
7 if (s.getBlocker () == null){
8 // this could be the case if the ball was directly before

blocked
9 designatedBlocker = determineBlockingPlayer(r);
10 }else{
11 designatedBlocker = s.getBlocker ();
12 }
13

14 if (designatedBlocker ==
Game.getInstance ().getTeamA ().getPlayer1 ())

15 blockerField = fP1;
16 else
17 blockerField = fP2;
18

19 if(col_possiblyAttackingCol < blockerField.getColumn ()){
20 if (Arrays.asList(Field.AT_THE_NET_A).contains(blockerField)){
21 blockPlayerAction = new PlayerAction(Hit.nohit , Move.m_r);
22 }else{
23 // blocker one step forward -right
24 blockPlayerAction = new PlayerAction(Hit.nohit , Move.m_fr);
25 }
26 }else if (col_possiblyAttackingCol > blockerField.getColumn ()){
27 if (Arrays.asList(Field.AT_THE_NET_A).contains(blockerField)){
28 blockPlayerAction = new PlayerAction(Hit.nohit , Move.m_l);
29 }else{
30 // blocker one step forward -left
31 blockPlayerAction = new PlayerAction(Hit.nohit , Move.m_lf);
32 }
33 }else{
34 if (Arrays.asList(Field.AT_THE_NET_A).contains(blockerField)){
35 blockPlayerAction = new PlayerAction(Hit.nohit , Move.stay);
36 }else{
37 // blocker one step forward
38 blockPlayerAction = new PlayerAction(Hit.nohit , Move.m_f);
39 }
40 }
41 // non blocking player moves towards the central field of the
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court half which is not covered by the block
42 PlayerAction nonblockingPlayerAction;
43 Field nonBlockingPlayerField;
44 if (designatedBlocker ==

Game.getInstance ().getTeamA ().getPlayer1 ()){
45 nonBlockingPlayerField = fP2;
46 }else{
47 nonBlockingPlayerField = fP1;
48 }
49

50 if (col_possiblyAttackingCol <=
nonBlockingPlayerField.getColumn ()){

51 nonblockingPlayerAction = new PlayerAction(Hit.nohit ,
nonBlockingPlayerField.moveTowardsField(centralFieldP2));

52 }else{
53 nonblockingPlayerAction = new PlayerAction(Hit.nohit ,

nonBlockingPlayerField.moveTowardsField(centralFieldP1));
54 }
55

56 if (designatedBlocker ==
Game.getInstance ().getTeamA ().getPlayer1 ()){

57 return new TeamAction(blockPlayerAction ,
nonblockingPlayerAction , designatedBlocker);

58 }else{
59 return new TeamAction(nonblockingPlayerAction ,

blockPlayerAction , designatedBlocker);
60 }
61

62 }

Listing C.11: Reasonable action sets of other team setting

The function findColOfPossiblyAttackingPlayer is listed in Listing C.12. It suggests, de-
pending on the current state, the player who will perform a hit in the next step. This suggestion is made
by determining whether one of the players is currently in the same position as the ball. If that’s the case,
it is assumed that this player will perform a hit in the current state and the other player will perform a
hit in the next state. Therefore, the column of the player who is not in possession of the ball is returned.
The column of a field is defined as the second index. So, for example, the field P23 is in column 3. The
columns correspond to the rows in Figure 4.6 because we horizontally draw the court. If none of the
players is at the same position as the ball, it can not be suggested who will perform a hit in the current
state. In that case, the column of the position of the ball is returned.

1 private int findColOfPossiblyAttackingPlayer(State s){
2 // find column of the player who is not in possession of the

ball and who will probably perform the attack hit
3 int col_possiblyAttackingCol;
4 if (s.getFieldBall () == s.getFieldB1 ())
5 col_possiblyAttackingCol = s.getFieldB2 ().getColumn ();
6 else if (s.getFieldBall () == s.getFieldB2 ())
7 col_possiblyAttackingCol = s.getFieldB1 ().getColumn ();
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8 else
9 // if the attacking player can not be guessed return the

column of the ball
10 col_possiblyAttackingCol = s.getFieldBall ().getColumn ();
11

12 return col_possiblyAttackingCol;
13 }

Listing C.12: Find Column of Possibly Attacking Player

C.1.5 Attacking States

In an attacking state of team P, it is determined whether one of the players can make a proper attack
(smash or planned shot), or whether at least an emergency shot is possible. If none of those options is
possible, the doNothing team action is returned, as shown at the end in Listing C.13. A fall-back to a
defense or a receiving action makes no sense since those techniques only allow to choose a target field on
the own courtside, see Table 4.6. Since, according to the classification of an attacking state, the counter
is already 2, the ball must cross the net at this point, else the three-hits-rule is violated in the next step.
If one player is at the position of the ball, he chooses the technique and target field according to the
parametrization of the decision rule. This is done in the function chooseFieldAttackAfterStrat
described below. The non-hitting player does nothing. If no player is in the correct position, an
emergency shot can still be allowed if a player is in a neighbor-field of the ball. In this case, a random
shot from all shots available is selected.

1 public TeamAction attackingRule(State s, double r) {
2 int playerNumber = 0;
3

4 // determine attacking player
5 if(fP1==fBall && s.getLastContact () !=

Game.getInstance ().getTeamA ().getPlayer1 ()){
6 playerNumber =1;
7 }
8 if(fP2==fBall && s.getLastContact () !=

Game.getInstance ().getTeamA ().getPlayer2 ()){
9 playerNumber =2;
10 }
11

12 Hit h;
13 if (playerNumber != 0){
14 // determine hit according to parametrization
15 h = Hit.chooseFieldAttackAfterStrat(isTeamA ,

pi_h[playerNumber -1][2] , pi_h[playerNumber -1][3]);
16 if (playerNumber == 1){
17 return new TeamAction(new PlayerAction(h, Move.stay),

PlayerAction.doNothing);
18 } else if (playerNumber == 2){
19 return new TeamAction(PlayerAction.doNothing , new

PlayerAction(h, Move.stay));
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20 }
21 }else{
22 // no player at the ball -> emergency shot
23 // ball in neighbour -field
24 if(fBall.isNeighbour(fP1) && s.getLastContact () !=

Game.getInstance ().getTeamA ().getPlayer1 ()){
25 h = Hit.chooseRandomHit(Hit.SHOT_TEAMA);
26 return new TeamAction(new PlayerAction(h, Move.stay),

PlayerAction.doNothing);
27 }
28 if(fBall.isNeighbour(fP2) && s.getLastContact () !=

Game.getInstance ().getTeamA ().getPlayer2 ()){
29 h = Hit.chooseRandomHit(Hit.SHOT_TEAMA);
30 return new TeamAction(PlayerAction.doNothing , new

PlayerAction(h, Move.stay));
31 }
32 }
33

34 return TeamAction.doNothing;
35 }

Listing C.13: Reasonable action sets of attacking states

The function chooseFieldAttackAfterStrat, listed in Listing C.14, determines an attack hit
according to the probability distribution specified by πfield

h,tech(ρ) and π
field
h,field(ρ). First, the used technique

is determined. If the drawn random number is smaller than πfield
h,tech(ρ), a smash FS is chosen, else a

planned shot FP. Afterwards the target field is determined according to πfield
h,tech(ρ). Since a planned shot

can have a field directly behind the net as a target field, the sets of border fields and non-border fields
from which a random target field is selected, differs for the FS and the FP.

1 public static Hit chooseFieldAttackAfterStrat(boolean isTeamA ,
double pi_field_tech , double pi_field_field){

2 HitTechnique tech;
3 Field f;
4

5 if (MainSim.countRandomCalls () < pi_field_tech){
6 tech = HitTechnique.F_SM;
7 }else{
8 tech = HitTechnique.F_P;
9 }
10

11 if (MainSim.countRandomCalls () < pi_field_field){
12 if (tech!= HitTechnique.F_SM){
13 // border fields including fields at the net
14 f = Field.chooseRandomField(new Field []{ Field.B11 ,

Field.B21 , Field.B31 , Field.B14 , Field.B24 , Field.B34});
15 }else{
16 // border fields excluding fields at the net
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17 f = Field.chooseRandomField(new Field []{ Field.B11 ,
Field.B21 , Field.B14 , Field.B24});

18 }
19 }else{
20 if (tech!= HitTechnique.F_SM){
21 // non -border fields including fields at the net
22 f = Field.chooseRandomField(new Field []{ Field.B12 ,

Field.B22 , Field.B32 , Field.B13 , Field.B23 , Field.B33});
23 }else{
24 // non -border fields excluding fields at the net
25 f = Field.chooseRandomField(new Field []{ Field.B12 ,

Field.B22 , Field.B13 , Field.B23});
26 }
27 }
28 return new Hit(tech , f);
29 }

Listing C.14: Choose attack hit

Finally, we have the decision rule of team P for states, where team Q makes an attack hit, see
Listing C.15. Independent from the specified designated blocking player of the current state, the
blocking player is determined as the player who is at the net. If the player is in the same column as the
ball, he performs a blocking action. If he is not in the correct column, he moves one step backward to
be able to make a defense action. The non-blocking player moves, if he is not already there, towards the
central field on the other court half. Depending on whether player 1 or player 2 is the blocking player, a
team action is constructed and returned from these player actions.

1 public TeamAction otherTeamAttackingRule(State s, double r) {
2 Player blocker = s.getBlocker ();
3 PlayerAction blockingPlayerAction;
4 Field blockingPlayerField;
5 PlayerAction nonBlockingPlayerAction;
6 Field nonBlockerField;
7 // determine field of blocking player from position
8 if (s.getBlocker () ==

Game.getInstance ().getTeamA ().getPlayer1 ()){
9 blockingPlayerField = fP1;
10 nonBlockerField = fP2;
11 }
12 else {
13 blockingPlayerField = fP2;
14 nonBlockerField = fP1;
15 }
16

17 // blocking player is in the correct column?
18 if (s.getFieldBall ().isInSameColumn(blockingPlayerField)
19 && blocker.isAtTheNet ()){
20 // yes -> perform block
21 blockingPlayerAction = new PlayerAction(Hit.nohit , Move.b);
22 }else{
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23 // no -> move backwards
24 blockingPlayerAction = new PlayerAction(Hit.nohit , Move.m_b);
25 }
26

27 // non -blocking player moves to central field on other court
half

28 if (blockingPlayerField.getColumn () <= 2){
29 nonBlockingPlayerAction = new PlayerAction(Hit.nohit ,

nonBlockerField.moveTowardsField(centralFieldP2));
30 }else{
31 nonBlockingPlayerAction = new PlayerAction(Hit.nohit ,

nonBlockerField.moveTowardsField(centralFieldP1));
32 }
33

34 if (blocker == Game.getInstance ().getTeamA ().getPlayer1 ()){
35 return new TeamAction(blockingPlayerAction ,

nonBlockingPlayerAction);
36 }else{
37 return new TeamAction(nonBlockingPlayerAction ,

blockingPlayerAction);
38 }
39

40 }

Listing C.15: Reasonable action sets of other team attacking



Appendix D

Set-SSO-MDP: Strategy Estimates of
TeamQ

Based on pre-final matches

strategy # qserve qserve # qfield qfield

risky-risky 19 5% 32% 78 65% 21%
risky-safe 19 5% 32% 27 37% 0%
safe-risky 146 1% 7% 78 65% 21%
safe-safe 146 1% 7% 27 37% 0%

(a) pre-final setting

Based final match

strategy # qserve qserve # qfield qfield

risky-risky 6 17% 33% 32 69% 19%
risky-safe 6 17% 33% 7 14% 0%
safe-risky 22 0% 9% 32 69% 19%
safe-safe 22 0% 9% 7 14% 0%

(b) post-final setting

Table D.1: Direct estimation of s-MDP probabilities for teamQ
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