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Zusammenfassung

In dieser Arbeit werden wechselwirkende ultrakalte Bosonen in inhomogenen
externen Potentialen behandelt. Im ersten Teil geht es um Bose-Einstein-
Kondensate mit repulsiver Wechselwirkung in Speckle-Unordnungspotentia-
len. Im Bogoliubov-Ansatz wird das Vielteilchenproblem aufgespalten in den
Gross-Pitaevskii-Grundzustand (Mean-Field) des Bose-Einstein-Kondensa-
tes und die Bogoliubov-Anregungen, die bosonische Quasiteilchen sind. Die
Unordnung deformiert den Gross-Pitaevskii-Grundzustand, welcher als In-
homogenität in den Hamiltonian für die Bogoliubov-Anregungen eingeht.
Der inhomogene Bogoliubov-Hamiltonian dient als Ausgangspunkt für ei-
ne diagrammatische Störungstheorie, die zur Unordnungs-renormierten Di-
spersionsrelation der Bogoliubov-Quasiteilchen führt. Davon abgeleitet wer-
den insbesondere die mittlere freie Weglänge, sowie Korrekturen der Schall-
geschwindigkeit und der Zustandsdichte. Die analytischen Ergebnisse wer-
den mit einer numerischen Studie der Gross-Pitaevskii-Gleichung und ei-
ner exakten Diagonalisierung des ungeordneten Bogoliubov-Problems unter-
mauert.

Gegenstand des zweiten Teils sind Bloch-Oszillationen von Bose-Einstein-
Kondensaten unter dem Einfluss einer zeitabhängigen Wechselwirkung. Die
Wechselwirkung führt im Allgemeinen zu Dekohärenz und zerstört die
Bloch-Oszillation. Mit Hilfe von Feshbach-Resonanzen ist es möglich, die
Teilchen-Teilchen-Wechselwirkung zu manipulieren. Es wird insbesondere
der Fall einer um Null herum modulierten Wechselwirkung betrachtet. Un-
terschiedliche Modulationen führen entweder zu einer langlebigen periodi-
schen Dynamik des Wellenpaketes oder zu einem schnellen Zerfall. Die Fälle
mit periodischer Dynamik werden mit einem Zeitumkehr-Argument erklärt.
Der Hauptzerfallsmechanismus in den übrigen Fällen besteht in einer dyna-
mischen Instabilität, d.h. dem exponentiellen Anwachsen kleiner Störungen,
die den Bogoliubov-Anregungen aus dem ersten Teil entsprechen.





Abstract

In this thesis, different aspects of interacting ultracold bosons in presence
of inhomogeneous external potentials are studied. The first part deals with
repulsively interacting Bose-Einstein condensates in speckle disorder poten-
tials. In the Bogoliubov approach, the many-body problem is split into the
Gross-Pitaevskii condensate (mean-field) and the Bogoliubov excitations,
which are bosonic quasiparticles. The disorder potential causes an imprint
in the condensate, which makes the Hamiltonian for the Bogoliubov ex-
citations inhomogeneous. The inhomogeneous Bogoliubov Hamiltonian is
the starting point for a diagrammatic perturbation theory that leads to the
renormalized Bogoliubov dispersion relation. From this effective dispersion
relation, physical quantities are derived, e.g. the mean free path and disorder
corrections to the speed of sound and the density of states. The analyti-
cal results are supported by a numerical integration of the Gross-Pitaevskii
equation and by an exact diagonalization of the disordered Bogoliubov prob-
lem.

In the second part, Bloch oscillations of Bose-Einstein condensates in
presence of time-dependent interactions are considered. In general, the in-
teraction leads to dephasing and destroys the Bloch oscillation. Feshbach
resonances allow the atom-atom interaction to be manipulated as function
of time. In particular, modulations around zero are considered. Different
modulations lead to very different behavior: either the wave packet evolves
periodically with time or it decays rapidly. The former is explained by a pe-
riodic time-reversal argument. The decay in the other cases can be described
by a dynamical instability with respect to small perturbations, which are
similar to the Bogoliubov excitations in the first part.
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1. Interacting Bose Gases—Complex
Dynamics in Lattices and Disorder

This work is dedicated to the intriguing interplay of interaction and inhomo-
geneous potentials. Often these elements tend to produce opposite physical
effects. Each of them separately is in general well understood, but together,
they lead to complicated physical problems. A good starting point is solv-
ing the problem of one competitor alone, and then adding the other one.
In part I, we start with the homogeneous interacting Bose gas and then
add a disorder potential as perturbation. In part II, we proceed the other
way around: We start with the non-interacting Bloch oscillation in a tilted
lattice potential, and then switch on the particle-particle interaction.

The main ingredients disorder and interaction are ubiquitous in nature.
Both of them have dramatic effects on transport properties. Disorder can
induce Anderson localization of waves [1], which suppresses diffusion and
conduction. In lattice systems, described by the Bose-Hubbard model, re-
pulsive interaction drives the transition from superfluid to the Mott insulator
[2–4].

The physical system of choice is a Bose-Einstein condensate (BEC)
formed of an ultracold atomic gas. Bose-Einstein condensation is a quantum-
statistical effect that occurs at high phase-space density: at sufficiently low
temperature and high particle density, macroscopically many particles con-
dense into the single-particle ground state. With some efforts, this exotic
state of matter is achieved in the laboratory. The wave function of the con-
densate is a macroscopic quantum object and features macroscopic phase
coherence. Thus, Bose-Einstein condensates can interfere coherently [5, 6],
just like the matter wave of a single particle or coherent light in Young’s
double-slit experiment.

Ultracold-atom experiments are not only a very interesting field of physics
by themselves, but can also serve as model systems for problems from other
fields of physics. For example, the Bose-Hubbard model [4], and the phe-
nomenon of Bloch oscillation [7, 8] are realized experimentally. There are
analogies with completely different fields of physics. For example, dilute
Bose-Einstein condensates are well described by the Gross-Pitaevskii equa-
tion, a prototypical nonlinear wave equation, also known as the nonlinear

1



1. Interacting Bose Gases

Schrödinger equation, which describes, for example, wave packets of water
waves [9] and self-focusing laser pulses in nonlinear optical media [10].

After Anderson’s discovery of localization [1], disordered systems of elec-
trons and bosons have been studied for decades. A major difficulty comes
from the interplay of disorder with interactions. At first, electronic sys-
tems were of interest [11], but with the experimental research on superfluid
Helium, also bosons came into focus. Repulsive interaction among bosons
prevents the condensation into the localized single-particle ground state and
keeps the gas extended. Early works on the so-called dirty boson problem
used renormalization techniques in one dimension [12, 13]. Others studied
bosons on disordered lattices, the disordered Bose-Hubbard model [2, 14, 15],
where a random on-site potential models disorder.

Because of to the complexity of the problem, there are still many open
questions. There is a vast parameter space to cover: lattice vs. continu-
ous systems, uncorrelated vs. correlated disorder, and the dimension of the
system. The theoretical interest is kept alive by experimental progress in
both lattice systems and continuous systems of ultracold atoms, where in-
teraction, artificial disorder and the effective dimension can be controlled
practically at will.

In the following, we consider the basic ingredients lattice, disorder, inter-
action and cold-atom experiments in some more detail.

1.1. Lattices

Physics in lattice potentials is very important for our understanding of
solids. A typical question is, for example, why certain materials are electrical
conductors, while others are insulators.

Many solids, like metals, ice or graphite, have a crystal structure, i.e. the
atoms or molecules of the material are arranged on a lattice with perfect
periodicity. The electrons experience this lattice as a periodic potential.
Even weak lattice potentials have dramatic effects when the de Broglie wave
length of the particle comes close to the lattice period. In momentum space,
this point marks the edge of the Brillouin zone, where a band gap occurs
(section 6.1). If the lattice potential is strong, the system is efficiently
described with a tight-binding ansatz, i.e. a single-band description.

2



1.2. Disorder

1.2. Disorder

Idealized models, like infinitely extended perfect crystals, can explain a great
deal of physical phenomena, but some important features are missed. Dis-
order is nearly always present in nature and can have dramatic effects on
transport properties in all kinds of media. In solid-state physics, disorder
appears in the guise of impurities and displacements in crystals, which in-
fluence the dynamics of electrons and phonons.

Anderson localization and weak localization

Disorder can lead to coherent localization of waves, which means the sup-
pression of diffusion [1, 17]. In the case of electrons, this implies the sup-
pression of electrical conductivity. Localization relies on the interference of
waves and occurs also for other types of waves, like microwaves [18], light
[19, 20], ultrasound [21], water waves [17, Sec. 3.5], and atomic matter waves
[22–26].

Localization phenomena depend crucially on dimension [17, 27]. Scaling
theory [28] allows general statements on localization. In one dimension, all
states are exponentially localized, no matter how weak the disorder. Also
in two dimensions, all states are in principle localized, but the localization
lengths are exponentially large and often exceed the relevant length scales of
experimental setups. In three dimensions, localized and delocalized states
coexist. Phonons are delocalized at low energies, separated by the so-called
mobility edge from high-energy localized states [29, 30]. Electron states are
localized at both upper and lower band edge, with delocalized states in the
center of the band [11, 29].

Originally, Anderson localization is a linear phenomenon, without interac-
tions between the particles playing a role. For electrons, things are compli-
cated by the Coulomb interaction [11]. Pure localization without interaction
effects can, for example, be observed for light propagating through a cold
gas, with the disorder realized by the random positions of the atoms [19, 20].
In cold-atom experiments, one can reverse the roles of light and atoms: in
the speckle field of a laser, the atoms are subject to a random potential pro-
portional to the laser intensity [22, 23]. In both settings, the constructive
interference of paths along closed scattering paths survives the disorder av-
erage and leads to enhanced backscattering. This regime of enhanced return
probability is termed weak localization.

3



1. Interacting Bose Gases

Quantum heat transport

Chains of harmonic oscillators are a simple model for the heat conductivity
by phonons. Due to the integrability of the linear equations of motion, the
heat transport is ballistic and the temperature gradient vanishes. Apart
from the introduction of nonlinearities, disorder contributes to a finite heat
resistance in such systems, because the eigenstates of the chain become
localized. Indeed, in the disordered harmonic chain, a finite temperature
gradient is found [31], however, the heat resistance does not scale linearly
with the length of the chain as one would expect according to Fourier’s law.

1.3. Interaction

Interaction effects among the particles can dramatically change the prop-
erties of physical systems. In contrast to fermions, bosons are not subject
to the Pauli exclusion principle. They can come much closer to each other,
such that interaction effects are more relevant.

Interaction and disorder

The problem of interacting disordered bosonic systems is known as the dirty
boson problem. Historically, it emerged in the context of superfluid Helium
in aerosol glasses (Vycor) [32] and has been subject of theoretical research
for a long time [2, 13]. In absence of interactions, bosons in disordered en-
vironments will condense into the lowest-energy state, which is a localized
state. This phase is known as the Lifshits glass. A repulsive interaction
among the particles causes them to delocalize and finally leads to the disor-
dered BEC phase [33]. The non-interacting Bose gas is extremely sensitive
to external inhomogeneities like disorder. Thus, the non-interacting ground
state is not a good starting point for perturbation theory. For this reason,
the strategy in part I of this work is to start with a homogeneous interacting
system and then to introduce disorder perturbatively.

Interaction and lattices

The Hubbard model describes interacting fermions or bosons (Bose-Hubbard
model) on a lattice within the tight-binding approximation. The interaction
drives the transition from the superfluid to the Mott insulator. At integer
filling factor, i.e. with the same number of particles at each lattice site, the
interaction causes an energy gap that suppresses the motion of the particles.

4



1.4. Cold-atoms—Universal model systems

Even without disorder, the Bose-Hubbard model offers rich physics and its
phase diagram is still a subject of very active research [34].

In part II of this work, an interacting bosonic system will be studied in
the mean-field version of the Bose-Hubbard model, which is known as the
discrete Gross-Pitaevskii equation.

1.4. Cold-atoms—Universal model systems

In experiments with ultracold atoms, lattice potentials, disorder and inter-
actions are brought together. Ultracold atoms are a very exciting topic for
their own sake, but they are also very useful to model problems from dif-
ferent fields of physics [35–37]. In solid-state physics it is difficult to access
and to manipulate system parameters directly. Let us, for example, consider
electrons in a metal. There is no way of changing the lattice spacing, the
lattice strength and the Coulomb interaction. In addition, the experimental
access is limited.

Thanks to the experimental progress in the past years, cold atoms in
magnetic and optical traps have become very well controllable. They can
be used to model solid-state systems, with the system parameters selectively
tunable and a more flexible access for measurements.

Tailoring potentials

By virtue of the Zeeman effect, atomic energy levels are shifted by magnetic
fields, depending on the magnetic quantum number. The Zeeman shift is
proportional to the magnitude of the magnetic field. This allows trapping
a spin-polarized gas in suitable magnetic configurations [38].

The trapped atoms can then be manipulated by optical means. If the field
of a laser couples to an internal transition of the atoms, it induces a light
shift of the energy levels [39]. This results in a potential proportional to the
intensity of the laser field, and allows the potential to be controlled on length
scales of the laser wave length. Optical lattice potentials can be realized
with two counter-propagating laser beams. This allows producing optical
crystals that are much cleaner than real crystals. The phenomenon of Bloch
oscillations in tilted lattices, for example, is so sensitive to dephasing that
it cannot be observed in real solids. In ultracold atoms in optical lattices,
however, Bloch oscillations can be observed [40, 41]. In highly anisotropic
traps, the dynamics in certain directions can be completely frozen. This
allows effectively one-dimensional and two-dimensional experiments to be
realized [42].

5



1. Interacting Bose Gases

Tuning the interactions

In contrast to electrons, the atoms are neutral and have only short-range
interactions. Typically, the average particle distance is much larger than
the scattering length, a length that describes the strength of s-wave scatter-
ing. For many atom species used in cold-atom experiments, the scattering
length for atom-atom scattering can be tuned by means of a Feshbach res-
onance [43–46]. The basic idea is to tune the unbound scattering state into
resonance with a bound state (molecule). This is done using the Zeeman
shift induced by an external magnetic field. At the resonance, the scatter-
ing length has a pole. Together with the background scattering length, this
allows the scattering length to be tuned to arbitrary positive or negative
values. It is even possible to switch off the atom-atom interactions.

1.5. Cold atoms—History and key experiments

Bose-Einstein condensation

Bose and Einstein established the theory of Bose-Einstein statistics in 1924
and 1925 [47, 48]. The key idea is that quantum particles are indistinguish-
able, i.e., two states that differ only by the interchange of two particles are
actually the same state. Considering a non-interacting Bose gas in three di-
mensions, Einstein realized that at a given temperature only a finite number
of particles can populate the excited states. When more particles are added
to the system, they condense into the lowest energy state, whose occupation
number diverges (section 2.1). The critical particle number, however, turned
out to be so large that for many decades it was impossible to reach suffi-
ciently low temperatures and sufficiently high densities without the particles
forming a liquid or a solid, due to their interactions.

The first experiments that came close to Bose-Einstein condensation were
experiments with superfluid helium [49]. However, neither 3He nor 4He
can be regarded as a direct realization of Einstein’s condensate of the non-
interacting gas. 3He atoms are fermions and have to be described by BCS
theory [50], and 4He is dominated by interactions, which makes it more a
liquid than an ideal gas.

In the nineteen-eighties and nineties, a lot of effort was made to create
a weakly interacting BEC of spin-polarized hydrogen and of gases of alkali
atoms. In 1995, the alkali experiments were successful: a sodium BEC was
realized at MIT [51], a rubidium BEC at JILA [38] and a lithium BEC at
Rice University [52]. A few years later, also the hydrogen experiment was
successful [53]. In the past years, alkali BECs have become the workhorses
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1.5. Cold atoms—History and key experiments

Table 1.1.: Typical temperatures and particle densities in BEC experiments

T [µK] ρ[cm−3]

Sodium, [51, MIT] 2 1014

Rubidium, [38, JILA] 0.17 2.5× 1012

Lithium, [52, Rice] ∼ 0.2 not measured

atmosphere 300× 106 3× 1019

for all kinds of experiments. In 2001, E. A. Cornell (JILA), C. E. Wieman
(JILA), and W. Ketterle (MIT) were awarded the Nobel prize in physics
“for the achievement of Bose-Einstein condensation in dilute gases of alkali
atoms, and for early fundamental studies of the properties of the conden-
sates”.

The atom densities in BEC experiments are very limited because most ele-
ments form liquids or a solids at low temperatures, due to their interactions.
At reduced densities, the temperatures required for Bose-Einstein conden-
sation become even lower and demand sophisticated trapping and cooling
techniques (evaporative cooling) [38, 51, 52]. Compared with atmospheric
conditions, temperatures and densities in the alkali BECs are incredibly low
(table 1.1).

With these experiments, the phenomenon of Bose-Einstein condensation
predicted 70 years earlier became directly accessible. The population of
the ground state can be observed rather directly by taking time-of-flight
absorption images [38, 51]. The trapping potential is switched off and the
condensate expands, converting its momentum distribution to a real-space
distribution, which can be observed by taking absorption images. In these
images, a bi-modal distribution consisting of the condensate fraction around

Figure 1.1: The time-of-flight im-
ages from [51] (taken from
JILA web page) show the
momentum-space portrait of
the rubidium cloud: thermal
cloud (left), bi-modal distri-
bution (middle), condensate
(right).
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1. Interacting Bose Gases

Figure 1.2: Observation of sound propagation in
a condensate by nondestructive rapid phase-
contrast imaging. An image was taken every 1.3
ms, beginning 1 ms after switching on the repul-
sive laser in the center. Two pulses travel out-
ward with the speed of sound. Taken from [57].

k = 0 and the thermal cloud marks the transition from the thermal cloud
to the Bose-Einstein condensate, figure 1.1.

Interaction in BECs

In dilute alkali condensates, the atoms interact only weakly. Nevertheless,
interactions play a crucial role. They deform the condensate compared with
the single-particle ground state. In a harmonic trap, the shape of the con-
densate changes from the harmonic-oscillator ground state to the Thomas-
Fermi inverted parabola density-profile (subsection 2.2.3). In presence of
disorder, repulsive interaction stabilizes the condensate against fragmenta-
tion and condensation into the localized lowest-energy state.

Bogoliubov excitations

The low-energy excitations differ significantly from the non-interacting con-
densate. Instead of single particles excited from zero momentum to some
finite momentum, the low-energy excitations are collective, similar to a clas-
sical sound wave, where all the particles oscillate back and forth. As function
of momentum, the excitation spectrum begins linearly. The slope defines the
speed of sound c, which, according to Landau’s criterion, implies superfluid-
ity [54, 55]. Objects moving relative to the condensate with velocities lower
than vc = c cannot create any excitations and the dynamics is completely
dissipationless. This principle was used in one of the early measurements
of the speed of sound in a BEC [56]. There, the condensate was stirred
with a repulsive laser beam and a rapid heating was observed as soon as the
stirring speed exceeded the critical velocity.
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1.5. Cold atoms—History and key experiments

More directly, the speed of sound in a BEC was measured by locally
perturbing the condensate with a repulsive laser beam and by observing the
ensuing propagation in real space [57] (figure 1.2).

A very powerful method is Bragg spectroscopy [58–64]. In a two-photon
process, the response to a given momentum and energy transfer is measured.
This allows determining the static and dynamic structure factors, which
contain the dispersion relation of the excitations, in particular the speed of
sound.

Disorder expansion-experiments

Cold-atom experiments offer the opportunity for the direct observation of
Anderson localization of matter waves [65]. For this purpose, artificial disor-
der is created in the clean experimental setup. Such a disorder potential can
be attained using the speckle field of the random superposition of coherent
waves from a laser [66, 67] (section 3.1). In the expansion experiments in
Palaiseau [25, 67–69] and in Florence [70], a BEC was released from a tight
trap to a one-dimensional wave guide superposed with a disorder potential.
The initial interaction energy is converted into kinetic energy. After the
initial expansion, the interaction energy is negligible and the phenomenon
of Anderson localization of non-interacting particles can be observed. The
atoms populate localized states and the expansion stops. The localization
length is determined from the envelope of the density profile.

Optical lattices

The standing wave of counter-propagating laser beams can be used as a
lattice potential for modeling solid-state systems. This allows implementing
and investigating solid-state models like the Bose-Hubbard model [4]. The
wave phenomenon of Bloch oscillation is very sensitive to dephasing (sec-
tion 6.1). Because of that, Bloch oscillations are not observable in usual
solids, but cold-atom experiments offer very clean conditions, such that the
observation of Bloch oscillations became possible [8]. By taking advantage
of a Feshbach resonance, i.e. by tuning the s-wave scattering length to zero,
it is possible to observe very long-living Bloch oscillations over more than
10 000 cycles [40].
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1. Interacting Bose Gases

1.6. Standing of this work

This thesis consists of two main parts. Both of them try to shed some light
on open questions in the field defined by the corner stones lattice dynamics,
disorder, and interactions.

Part I: The disordered Bogoliubov problem

In the first part, the Bogoliubov excitations [71] of a disordered Bose-
Einstein condensate are studied. These excitations are essential for the
properties of the Bose gas. They determine, for example, the critical veloc-
ity of superfluidity and thermodynamical properties like the heat capacity.
Bogoliubov excitations are the Goldstone modes [72] associated to the U(1)
symmetry breaking of the BEC phase transition. They are intimately con-
nected to that phase transition and have a great importance for the phase
diagram of disordered Bose gases [73–75]. The question about the impact
of disorder on the properties and the phase diagram of interacting Bose
gases can thus be phrased as “How does the disorder potential influence the
elementary excitations of the system?”

After the experiment-oriented point of view in the previous section, let
us now have a look at fundamental theoretical work. The concepts of Bose-
Einstein statistics were derived in the nineteen-twenties by Bose [47] and
Einstein [48], including the prediction of Bose-Einstein condensation. A
milestone in the study of interacting bosons was Bogoliubov’s approach
[71], where the classical treatment of the condensate mode leads to the
concept of quasiparticles, which interpolate between collective low-energy
excitations and free-particle excitations at high energies (subsection 2.3.1).
More detailed studies of the interacting Bose gas followed and took into
account the depletion of the condensate mode due to interactions [76].

What is known about disordered Bogoliubov excitations, what is not?

The works mentioned above aimed mainly on the bulk properties of super-
fluid helium. Some time later, disordered interacting Bose gases came into
focus. Much of our present knowledge on disordered BEC traces back to
Huang and Meng [77] and Giorgini, Pitaevskii and Stringari [78]. In both
works, uncorrelated disorder in three dimensions was considered and quan-
tities like the superfluid fraction and the depletion of the zero-momentum
mode due to disorder and interaction were calculated.

Many other different aspects of disordered interacting bosons were stud-
ied, but the picture is still far from complete in the details. Many approaches
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are restricted to a particular parameter range. There are several works
dealing with Bogoliubov excitations and disorder, using methods that are
restricted to one dimension, like the transfer-matrix approach [79] or the
phase formalism [33, 79]. Often, the disorder is approximated by an un-
correlated white-noise disorder. In present-day experiments, however, the
situation is usually different. For speckle potentials (section 3.1), the finite
correlation length can in general not be neglected.

One of the central quantities of interest is the speed of sound in disordered
Bose gases. I.e. the dispersion relation at low energies, entering the Landau
criterion of superfluidity. The question how the speed of sound is influ-
enced by disorder has been investigated in different parameter regimes and
dimensions with different methods leading to different predictions. Using
perturbation theory, Giorgini et al. [78] find a positive correction for uncor-
related disorder in three dimensions, which has been reproduced by Lopatin
et al. [75] and Falco et al. [80]. Within a self-consistent non-perturbative
approach, Yukalov and Graham [81, 82] report a decrease of the sound ve-
locity in three dimensions, even in the case of δ-correlated disorder, which is
in clear contradiction to [78]. For disordered hard-core bosons on a lattice,
Zhang [83] finds a decrease of c to fourth order in disorder strength, without
information on the second-order effect.

Thus, the knowledge of the speed of sound in disordered systems is far
from comprehensive. A major goal of this work is to provide a formalism
for describing the excitations of disordered BEC, that covers a range of
parameters as wide as possible. In particular, different dimensions and
arbitrary types of disorder should be covered.

The disordered Bogoliubov problem is not expected to be simple. Con-
cerning the spectrum of the non-uniform Bose gas, Nozières and Pines write
in their book Theory of Quantum Liquids [84, chapter 10]:

In practice, one faces enormous mathematical difficulties, ex-
cept in the case of the ground state, for which Φ(r) is constant
. . . The coupled equations (. . . ) [equation (2.65) in this work],
though certainly complex in character, are rich in physical con-
tent. It may be expected that detailed study of these and similar
equations will yield much new information concerning the non-
uniform superfluid Bose liquid.

In this work, this very problem is tackled, in the case where the condensate
is non-uniform due to a disorder potential.
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1. Interacting Bose Gases

Strategy of this work and a short peek at the main results

We are interested in the disordered problem, where the particular poten-
tial is unknown. This makes it impossible and also undesirable to compute
the spectrum and the eigenstates explicitly. Instead, the spectrum is com-
puted in the disorder average, by means of a diagrammatic approach. The
structure of part I “The Disordered Bogoliubov Problem” is as follows.

In chapter 2, the general framework is set up for the treatment of a Bose-
Einstein condensate and its Bogoliubov excitations in presence of a weak ex-
ternal potential. Starting from the very concepts of Bose statistics and Bose-
Einstein condensation, we derive the Gross-Pitaevskii mean-field framework
(subsection 2.2.2). Subsequently, the ground state is treated in a mean-field
manner, but the excited particles are described fully quantized. The ex-
pansion of the many-particle Hamiltonian around the mean-field ground
state leads to the inhomogeneous Hamiltonian for Bogoliubov excitations
(section 2.3). Via the Gross-Pitaevskii equation, this Hamiltonian depends
nonlinearly on the external potential. As a first application, the scattering
of Bogoliubov quasiparticles at a single impurity is discussed in detail (sec-
tion 2.4). Finally, the general structure of the Bogoliubov Hamiltonian is
discussed, in particular the orthogonality relations of its eigenstates.

Chapter 3 is dedicated to the disordered Bogoliubov problem. The ex-
perimentally relevant speckle disorder potential and its statistical properties
are discussed in section 3.1. Then, in section 3.2, a suitable basis for the
disordered Bogoliubov problem is found. All findings then enter in the di-
agrammatic perturbation theory of section 3.3, which leads to the concept
of the effective medium with the disorder-averaged dispersion relation εk,
determined by the self energy Σ. In physical terms, this yields corrections
to quantities like the density of states, the speed of sound and the mean free
path.

The theory derived is indeed valid in a large parameter space: the exci-
tations considered can be particle-like or sound-like, the disorder potential
can be correlated or uncorrelated on the length scale of the wave length,
and the condensate can be in the Thomas-Fermi regime or in the smoothing
regime, depending on the ratio of condensate healing length and disorder
correlation length.
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1.6. Standing of this work

The discussion of the results in the different regimes of the parameter
space deserves a separate chapter, which is given in chapter 4. Concerning
the speed of sound, the main results are:

• The correction due to uncorrelated disorder depends on the dimension.
The leading correction is positive in three dimensions and negative
in one dimension. In two dimensions, the speed of sound remains
unaffected.

• For correlated disorder, the speed of sound is reduced, independent of
the dimension.

In the case of uncorrelated disorder in three dimensions, the result of this
work reproduces previous results [75, 78, 80]. To my knowledge, the results
in lower dimensions and in correlated disorder are new.

The corrections to the speed of sound depend non-monotonically on the
disorder correlation length. In the density of states, this results in an inter-
esting signature. In one dimension, a sharp peak in the density of states is
found at kσ = 1.

The “condensate depletion” computed by Huang and Meng and Giorgini
et al. [77, 78] is interpreted as a mere deformation of the Gross-Pitaevskii
condensate. We compute numerically the “Beyond-Huang-Meng” non-
condensed fraction (subsection 2.5.6 and 4.3.3).

Part II: Bloch oscillations with time dependent
interactions

In part II, lattice dynamics are discussed, more precisely Bloch oscillations
of Bose-Einstein condensates in tilted lattice potentials with time-dependent
interactions. This topic might appear rather exotic and far-fetched at this
point, but as pointed out above, all experimental requirements are available
and interesting new physics waits to be discovered. The main finding of this
part is, that by modulating the interaction in a suitable way it is not only
possible to maintain the Bloch oscillation, but also to make it more robust
against certain perturbations.

A more detailed introduction to the subject is given in section 6.1.
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2. The Inhomogeneous Bogoliubov
Hamiltonian

In this chapter, the framework for describing dilute Bose gases in weak ex-
ternal potentials is derived. Before starting with the actual problem of the
interacting gas in a given external potential, we shortly review the mech-
anism of Bose-Einstein condensation at the example of the ideal Bose gas
(section 2.1). Then, in section 2.2, we formulate the interacting many-
particle problem and perform the mean-field approximation, which allows
the Gross-Pitaevskii ground state to be computed.

The essential of this chapter is the saddlepoint expansion around the
disorder-deformed condensate state (section 2.3). This yields the Hamilto-
nian and the equations of motion for Bogoliubov excitations in presence of
the external potential. For illustration and as a numerical test, scattering
of a Bogoliubov excitation at a single impurity is discussed analytically and
compared to a numerical integration (section 2.4).

The Bogoliubov excitations disclose information beyond the mean-field
ground-state, in particular the fraction of non-condensed atoms that are
present even in the ground state. In section 2.5, important properties of
Bogoliubov eigenstates, in particular their orthogonality relations, are dis-
cussed. The orthogonality to the zero-frequency mode will be of particular
importance when choosing the basis for the disordered problem in chapter 3.

In order to be self-contained, this chapter reports some basic topics that
can be found in books and review articles. For more details, the reader is
referred to the reviews by Dalfovo, Giorgini, Pitaevskii and Stringari [85]
and by Leggett [86], and the books by Pethick and Smith [54] and Pitaevskii
and Stringari [55].

2.1. Bose-Einstein condensation of the ideal gas

In the following, the basic ideas of the phenomenon of Bose-Einstein con-
densation are presented, using the example of the ideal Bose gas. For the
ideal gas, the partition function can be calculated analytically, which leads
to the derivation of Bose-Einstein statistics.
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As a matter of principle, quantum particles and quasiparticles, like elec-
trons, photons, nucleons or atoms, are indistinguishable. Interchanging two
particles may only change the many-particle wave function by a phase fac-
tor eia, but all physical quantities stay invariant. Interchanging the particles
twice recovers the initial state, such that ei2a = 1. The only two possibilities
are eia = ±1, i.e. to change or not to change sign when interchanging two
particles. The former possibility is realized for fermions. For them, the anti-
symmetry results in the Pauli exclusion principle, forbidding more than one
particle in the same single-particle state. The other possibility is realized for
bosons, whose wave functions are symmetric under permutation of particles.
Compared with classical statistics, the statistical weight of permutations is
lost, such that the agglomeration of particles is preferred, although there is
no attractive interaction present. For the basic idea, see also figure 2.1.

2.1.1. Partition function and Bose statistics

Let us quantitatively investigate the phenomenon of preferred agglomeration
by considering the grand canonical partition function Z = tr

{
exp
[
−β(Ĥ −

µN̂)
]}

of an ideal Bose gas. Here, Ĥ is the Hamilton operator, N̂ is the
total particle-number operator, β = (kBT )−1 is the inverse thermal energy,
and the chemical potential µ controls the particle number as a Lagrange
multiplier. The trace is taken in the Fock representation (subsection 2.2.1),
where every many-particle state is defined by the occupation numbers of the
single-particle states of a certain basis. Choosing the energy states of the
non-interacting Hamiltonian as basis, we can express the Hamiltonian and
the total number operator in terms of the number operator n̂i: Ĥ =

∑
i εin̂i,

N̂ =
∑

i n̂i. The number operator n̂i = â†i âi consists of the bosonic creation

Figure 2.1: Bunching of bosons in a minimal system.
In contrast to classical particles, quantum particles
are indistinguishable. The two classical states “red
particle left, blue particle right” and vice versa are
merged to a single state “one particle left and one
particle right”. The probability of finding both
particles at the same site is enhanced from 1/2 to
2/3.

classical bosons
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2.1. Bose-Einstein condensation of the ideal gas

and annihilation operators â†i and âi of the corresponding state. These fulfill
the bosonic commutator relations

[âi, â
†
j] = δij [âi, âj] = 0 = [â†i , â

†
j]. (2.1)

For an ideal gas of non-interacting bosons, the single-particle energy eigen-
states are occupied independently and the grand canonical partition function
factorizes into single-state partition functions

Z =
∑

{n}
〈{n}| e−β(Ĥ−µN̂) |{n}〉 =

∏

i

∞∑

ni=0

e−β(εi−µ)ni =
∏

i

1

1− e−β(εi−µ) .

(2.2)

From the partition function, thermodynamic quantities like the average
energy or the average particle number can be derived. From the total num-
ber of particles

N = kBT
∂

∂µ
ln(Z) =

∑

i

1

eβ(εi−µ) − 1
, (2.3)

the Bose occupation number ni for the state with energy εi is obtained as

ni =
1

eβ(εi−µ) − 1
. (2.4)

The chemical potential µ has to be lower than the lowest energy level, oth-
erwise unphysical negative occupation numbers would occur. Without loss
of generality, the lowest energy level is chosen as the origin of energy ε0 = 0.
All occupation numbers increase monotonically with µ, and the chemical
potential determines

∑
i ni = N .

2.1.2. Bose-Einstein condensation

The Bose occupation numbers ni (2.4) diverge, when the chemical poten-
tial µ approaches the respective energy level εi from below. The chemical
potential has to be lower than all energy levels, so this divergence can only
happen to the occupation of the ground state. This suggests separating the
total particle number N in the ground-state population n0 and the number
of thermal particles NT

N = n0 +NT , (2.5)

with n0 = (eβ|µ|−1)−1 and NT =
∑

i6=0 ni. Already in 1925, Einstein pointed
out, that under certain conditions, the population of the thermal states NT
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is bounded [48]. When even more particles are added to the system, the only
choice to place them is to put them into the ground state. The population
of this single quantum state with a macroscopic number of particles is called
Bose-Einstein condensation.

Let us estimate the maximum number of particles in excited states. This
is reached for the maximum possible value of the chemical potential µ =
ε0 = 0. As we treat the ground state separately, it is adequate to compute
the maximum number of thermal particles at a given temperature in the
continuum approximation

Nmax
T =

∫
dε

ρ(ε)

eβε − 1
, (2.6)

where the density of states ρ(ε) typically follows a power law ρ(ε) = Cαε
α−1,

at least for the most relevant low-energy range. If the parameter α is large
enough, the integral (2.6) converges. For α > 1, the integral can be evalu-
ated as

Nmax
T = Cα(kBT )αΓ(α)ζ(α), (2.7)

where the product of the gamma function Γ(α) =
∫∞

0 dx xα−1e−x and the
Riemann zeta function ζ(α) =

∑∞
n=1 n

−α is a number of order one. The
critical particle number at a given temperature is defined by Nc = Nmax

T (T ).
For free particles in a box with volume Ld, the density of states is given

as

ρ(ε) = Ld
Sd

2(2π)d
(2m/~2)

d
2 ε

d
2−1, (2.8)

with the surface of the d-dimensional unit sphere Sd. That means, the
parameter α = d/2 depends on the dimension. True Bose-Einstein con-
densation cannot occur in one or two dimensions, where the integral (2.7)
diverges. In contrast, in three dimensions the critical particle density is

nc = Nc/L
3 = ζ(3

2)λ−dT , where λT =
√

2π~2

mkBT
is the thermal de Broglie wave

length. As ζ(3
2) ≈ 2.612 is of order one, this condition states that Bose-

Einstein condensation occurs, when the average particle spacing comes close
to the thermal de Broglie wave length, nc(T )λdT = O(1). Remarkably, ideal
Bose-Einstein condensation can occur at any temperature if the particle den-
sity is high enough, or conversely, at any particle density if the temperature
is low enough.

In harmonic traps, the density of states is different from that of free-space,
namely ρ(ε) ∝ εd−1. Consequently, Bose-Einstein condensation occurs also
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in two dimensions. The considerations so far are valid in the thermodynamic
limit. For experimental applications, the concept has to be adapted to a fi-
nite system size and a finite particle number. This leads to corrections of the
critical temperature [87, 88]. In the thermodynamic limit no Bose-Einstein
condensation is predicted in 1D traps and low-dimensional boxes. Never-
theless, macroscopic ground-state populations are found in finite systems
[87]. Also particle-particle interactions should enhance the phase coherence.
In experiments, the coherence length is often larger than the largest length
scale and the Bose gas is regarded as quasi-condensate.

Note that the critical temperature of Bose-Einstein condensation is deter-
mined by the particle density. The condensation typically occurs already for
temperatures much higher than the energy gap to the first excited state ε1.
Thus, it is fundamentally different from the behavior predicted by the clas-
sical Boltzmann factor e−ε/kBT . Bose-Einstein condensation is a statistical
effect, resulting from the indistinguishability and is not caused by attractive
interactions.

2.1.3. Order parameter and spontaneous symmetry
breaking

There is more to Bose-Einstein condensation than just the distribution of
particle numbers. The single-particle state with the macroscopic particle
number defines the condensate function Φ(r) (more precisely, the state as-
sociated with the only macroscopic eigenvalue of the density matrix). This
wave function exists only in the condensed Bose gas and takes the role of
the order parameter of the phase transition to the Bose-Einstein condensate.
The order parameter spontaneously takes a particular phase, breaking the
U(1) symmetry of the non-condensed phase. By virtue of the Goldstone
theorem [72], this spontaneously broken symmetry implies the existence of
Goldstone bosons. Goldstone bosons are excitations related to the broken
symmetry, in this case to a homogeneous phase diffusion with zero frequency
[89]. It will turn out that the Bogoliubov excitations are the Goldstone
bosons of Bose-Einstein condensation.

Experimentally, the phase of the condensate becomes accessible in inter-
ference experiments, where the phase of one condensate with respect to that
of another condensate determines the position of the interference pattern.
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2. The Inhomogeneous Bogoliubov Hamiltonian

2.2. Interacting BEC and Gross-Pitaevskii
mean-field

With the concept of Bose-Einstein condensation (section 2.1) in mind, we
now consider interacting Bose gases. For interacting particles, genuine
many-body theory is the starting point. In a mean-field manner, the so-
called Gross-Pitaevskii theory [55, 90] takes advantage of the macroscopi-
cally occupied ground state of the Bose-Einstein condensate. Fluctuations
are neglected and the condensate wave function is computed.

2.2.1. Basic many-body theory

The state of N indistinguishable bosons is described by a N -particle wave
function ΨN(r1, r2, . . . , rN), which is symmetric with respect to the ex-
change of two particles. In order to avoid the explicit symmetrization, it is
convenient to use the Fock representation. The Fock space is the direct sum
of correctly symmetrized N -particle Hilbert spaces. It is only specified how
many particles are in each single-particle state. The unphysical information,
which of the particles is which, is not included. Starting from the vacuum
state with no particles, general Fock states are constructed by means of
creation operators that create a particle in a certain single-particle state.
Bosonic (fermionic) commutation relations of the creation and annihilation
operators guarantee that any Fock state is symmetric (antisymmetric). In
real-space, the creators and annihilators are called field operators and are
denoted by Ψ̂(r). They obey the bosonic commutator relations
[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r − r′),

[
Ψ̂(r), Ψ̂(r′)

]
= 0 =

[
Ψ̂†(r), Ψ̂†(r′)

]
. (2.9)

For fermions, the commutator [·, ·] is replaced with the anticommutator.
Physically, expectation values containing field operators, like the parti-
cle density n(r, t) =

〈
Ψ̂†(r, t)Ψ̂(r, t)

〉
or the single-particle density matrix

ρ(r, r′, t) =
〈
Ψ̂†(r, t)Ψ̂(r′, t)

〉
are the quantities of interest.

The time-evolution of any physical observable is given by the Heisenberg
equation of motion for operators

i~
d

dt
Â =

[
Â, Ĥ

]
+ i~

∂

∂t
Â, (2.10)

with the Hamiltonian [85]

Ĥ =

∫
ddr Ψ̂†(r)

[−~2

2m
∇2 + V (r)

]
Ψ̂(r) +

g

2

∫
ddr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r).

(2.11)
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The first part contains the kinetic energy and the potential energy due to the
external potential V (r). The interaction potential Vint = gδ(r − r′) in the
second part represents two-body collisions. As the atoms are neutral, this
interaction is short range and the actual physical interaction has been re-
placed by a point interaction. In three dimensions, the parameter g depends
on the s-wave scattering length as as g = 4π~2as/m. This approximation
is good in the dilute-gas limit, where the average particle distance n−1/3

is much larger than the scattering length as. The external potential V (r)
is typically given by the harmonic trapping potential, possibly superposed
with scattering impurities or a disorder potential.

In the Fock representation it is specified how many atoms are in each
single-particle state. From the start, the Fock representation is capable of
handling variable particle numbers. Thus, it is straightforward to relax the
constraint of a fixed particle number by Legendre-transforming to the grand
canonical Hamiltonian Ê = Ĥ−µN̂ . Here, the chemical potential µ controls
the average particle number. In the grand canonical picture, the equation
of motion of the field operator reads

i~
d

dt
Ψ̂(r) =

[
− ~2

2m
∇2 + V (r)− µ

]
Ψ̂(r) + g Ψ̂(r)†Ψ̂(r)Ψ̂(r), (2.12)

according to equation (2.10) with Ĥ replaced by Ê = Ĥ − µN̂ .

2.2.2. Gross-Pitaevskii energy functional and equation of
motion

The description in terms of the many-particle Hamilton operator (2.11)
holds very generally, but suitable approximations are desirable for practical
use.

At sufficiently low temperatures, also the interacting Bose gas is expected
to Bose-Einstein condense. In three dimensions, this can be proven rigor-
ously [91, 92]. In one and in two dimensions, at least a quasi-condensate [93]
should exist, where the phase coherence is not truly long-range, but should
extend over the experimentally relevant length scales.

The macroscopically populated single-particle state is called the conden-
sate state Φ(r). It is defined as the eigenstate associated to the only macro-
scopic eigenvalue of the single particle density matrix. The condensate wave
function takes a particular phase and spontaneously breaks the U(1) sym-

metry of the non-condensed system, such that Ψ(r) =
〈
Ψ̂(r)

〉
is non-zero.

One can separate the field operator into its mean value and its fluctuations

Ψ̂(r) = Ψ(r) + δΨ̂(r) (2.13)
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2. The Inhomogeneous Bogoliubov Hamiltonian

and expand the problem in the quantum fluctuations δΨ̂(r).1 Later, in
subsection 2.5.6, we will see that the small parameter of this expansion is
the gas parameter

√
na3

s [95], i.e. the range of the interaction as compared

with the average particle spacing n−
1
3 .

The Gross-Pitaevskii mean-field approximation consists in neglecting the
quantum fluctuations δΨ̂(r), i.e. the field operators in (2.11) are replaced by
a complex field Ψ(r). Equivalently, the Gross-Pitaevskii approximation is

obtained from the Hamiltonian Ê = Ĥ−µN̂ by a Hartree-Fock ansatz of the
many-particle wave function as a pure product ΨN(ri) = N−N/2

∏
i Ψ(ri).

Then, the operator (2.11) reduces to the Gross-Pitaevskii energy functional

E[Ψ,Ψ∗] =

∫
ddr

{
~2

2m
|∇Ψ(r)|2 +

[
V (r)− µ

]
|Ψ(r)|2 +

g

2
|Ψ(r)|4

}
.

(2.14)

The equation of motion can be derived from the variation of the action∫
ddr dtL with the Lagrangian

L =

∫
ddr

i~
2

[
Ψ∗
∂Ψ

∂t
−Ψ

∂Ψ∗

∂t

]
− E[Ψ,Ψ∗], (2.15)

see e.g. [54, Chapter 7]. The so-called Gross-Pitaevskii equation describes
the time evolution in terms of a functional derivative with respect to the
conjugate field

i~
∂

∂t
Ψ =

δE

δΨ∗
=
[
− ~2

2m
∇2 + V (r)− µ

]
Ψ(r) + g |Ψ(r)|2Ψ(r). (2.16)

Alternatively to the Lagrangian prescription, which might appear a bit ad
hoc at this place, the Gross-Pitaevskii equation is obtained straightforwardly
from the Heisenberg equation of motion (2.12) of the many-particle problem
by inserting equation (2.13) and neglecting the fluctuations. Formally, the
Gross-Pitaevskii equation is very similar to the Schrödinger equation of a
single particle. Kinetic and potential energy appear in the same manner,
the only modification is the interaction term g|Ψ|2. The Gross-Pitaevskii
equation is also called nonlinear Schrödinger equation and appears in many
different fields of physics [9, 10].

1The non-vanishing expectation value of the field operator Ψ̂(r) can be rigorously defined in a coherent
state: The macroscopic population of the ground state, together with the grand canonical ensemble
with variable particle number, allows the construction of coherent states from superpositions of states
with different particle numbers in the condensate state [94].
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2.2. Interacting BEC and Gross-Pitaevskii mean-field

Formulation in terms of density and phase

For the physical interpretation it is useful to express the Gross-Pitaevskii
energy functional and the corresponding equation of motion in terms of the
condensate density and its complex phase. The local condensate density
n(r) = |Ψ(r)|2 is normalized to the total particle number

∫
ddr n(r) = N .

The complex phase of the GP wave-function Ψ(r, t) =
√
n(r, t) exp{iϕ(r, t)}

is given by ϕ(r, t). The energy functional (2.14) then becomes

E[n, ϕ] =

∫
ddr

{
~2

2m

[(
∇
√
n
)2

+ n(∇ϕ)2
]

+ (V (r)− µ)n+
g

2
n2
}
.

(2.17)

The time evolution (2.16) is rephrased and yields the equations of motion
for density and phase

∂

∂t
n =

1

~
δE

δϕ
= − ~

m
∇ · (n∇ϕ) =: −∇ · (nvs) (2.18a)

−~
∂

∂t
ϕ =

δE

δn
= − ~2

2m

∇2
√
n0(r)√

n0(r)
+

~2

2m
(∇ϕ)2 + g n0(r) + V (r)− µ .

(2.18b)

The first equation is the continuity equation of an irrotational fluid with
superfluid velocity proportional to the phase gradient vs = ~

m (∇ϕ) (the
term superfluid is explained on page 31). The second equation (2.18b)
describes the time evolution of the phase, whose gradient determines the
velocity field. The term containing the derivatives of the density stems
from the quantum mechanical kinetic energy. As it has no classical analog,
it is often called quantum pressure.

The superfluid velocity is proportional to the gradient of the phase of the
condensate wave function and is thus irrotational, i.e. a superfluid cannot
rotate freely. The only possibility to rotate the superfluid is to create vortices
in the superfluid [96, 97].

2.2.3. Ground state

In the following, the dynamics of excitations close to the ground state are
of interest. The ground state Φ(r) =

√
n0(r), ϕ0(r) = 0 minimizes the

energy functional (2.14) and is a stationary solution of the equations of
motion (2.18). Obviously, the phase has to be homogeneous, i.e. there is no
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2. The Inhomogeneous Bogoliubov Hamiltonian

superfluid flow. The density profile fulfills the stationary Gross-Pitaevskii
equation

− ~2

2m

∇2Φ(r)

Φ(r)
+ g |Φ(r)|2 = µ− V (r) . (2.19)

In a flat potential V (r) = 0, the density n(r) = n∞ = µ/g is constant.
Interaction and kinetic energy define the characteristic length scale of the
BEC, the healing length ξ = ~/

√
2mgn∞. The condensate changes its den-

sity on this length scale. In presence of an external potential V (r), the
solution of the nonlinear equation (2.19) is non-trivial. The limits of very
strong interaction and no interaction are understood as follows:

• In the Thomas-Fermi (TF) regime, the kinetic energy (quantum pres-
sure) is negligible compared with the interaction energy. The density
profile is determined by the balance of the external potential and the
interaction:

nTF(r) = (µ− V (r))/g for µ > V (r), otherwise zero. (2.20)

Often, the Thomas-Fermi approximation is a reasonable approxima-
tion. However, special care has to be taken at the edges of the trap,
where the condensate density seems to vanish abruptly.

• In the opposite case of a non-interacting system g = 0, the Gross-
Pitaevskii equation reduces to the linear Schrödinger equation. In a
harmonic trap, the ground state is given by the Gaussian wave func-
tion of the harmonic-oscillator ground state. In the homogeneous sys-
tem, the ground state is the k = 0 mode with homogeneous density.
However, this state is very sensitive to weak perturbations, like a weak
disorder potential, because there is no interaction that counteracts the
localization of the wave function. Thus, the unstable non-interacting
gas is not a convenient starting point for perturbation theory of the
ground state.

2.2.4. The smoothed potential

In the case of an extended condensate that is modulated by a weak po-
tential, one can perform a weak disorder expansion in the small parameter
V/µ [99]

√
n0(r) = Φ(r) = Φ0 + Φ(1)(r) + Φ(2)(r) + . . . . (2.21)

With this expansion, the stationary Gross-Pitaevskii equation (2.19) is
solved order by order. There are two mechanisms: (i) scattering of atoms
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2.2. Interacting BEC and Gross-Pitaevskii mean-field

Box 2.1: Feynman diagrams of the condensate function (2.21)

The constituents of the diagrams are

• particles from the k = 0 mode |

• response function S(k) = from (2.22)

• potential scattering Vq =

• particle-particle scattering g =

Drawing Feynman diagrams. Starting from Φ(0) = | , diagrams
of order n are constructed from diagrams of order n′ < n by

• attaching a potential scattering, e.g.

| · · = |

• by combination of several diagrams, e.g.

| · | · | · · = 3 |

|

|

The combinatorial factor three comes from permutations.

The first diagrams read

Φ = |
︸︷︷︸
Φ(0)

+ |
︸ ︷︷ ︸

Φ(1)

+ | + 3 |

|

|︸ ︷︷ ︸
Φ(2)

+ . . .

Computing the diagrams. Each potential contributes to the mo-
mentum. At the vertices, the momentum is conserved, so the outgoing
momentum (open end) is the sum of all momentum transfers by the
external potentials.

Φ(2b)
q = |

q′ q

q − q′
|

|

q′

q − q′

=
1

L
d
2

∑

q′

Vq′S(q′)Vq−q′S(|q − q′|) g S(q)

Finally, all free momenta are summed over.
The diagrams presented in this box are equivalent to the real-space
diagrams in [98], when taken in the case of a real ground-state wave
function.
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2. The Inhomogeneous Bogoliubov Hamiltonian

at the external potential and (ii) scattering processes between atoms. The
above expansion can be nicely written in terms of Feynman diagrams, see
box 2.1.

The first-order correction reads

Φ
(1)
k =

−Vk

2µ+ ε0k
Φ0 =: S(k)VkΦ0 , (2.22)

where the linear response function S(k) contains the kinetic energy of a
free particle ε0k = ~2k2/(2m) and the chemical potential µ. Atoms from
the originally homogeneous condensate are scattered once by the external
potential (first-order diagram in box 2.1). The condensate wave function
shows an imprint of the external potential, similar to the one described by
the Thomas-Fermi formula (2.20), but variations on length scales shorter
than the healing length ξ are suppressed. This smoothing is due to the cost
of the kinetic energy ε0k that was neglected in the Thomas-Fermi formula.
In figure 2.2, the density depression of a rather narrow impurity potential
is shown. The density dip of the first-order result (2.22) is broader and
shallower than that predicted by the Thomas-Fermi formula. The real-
space representation is given as the convolution of the bare potential with
a smoothing kernel given by the d-dimensional inverse Fourier transform of
[2µ+ ε0k]

−1.

The second order contains double scattering processes and reads

Φ
(2)
k = S(k)

1

L
d
2

∑

q

[
Vk−q + 3gΦ0Φ

(1)
k−q

]
Φ(1)

q . (2.23)

The processes contained in this formula are double scattering at the external
potential and interaction of two single-scattered particles, see box 2.1. In
figure 2.2 it is demonstrated, that the second order leads to a very satisfying
agreement with the exact solution of the Gross-Pitaevskii equation, even for
a rather strong potential.

Rephrasing in terms of density and smoothed potential

Motivated by the Thomas-Fermi formula (2.20), one can cast the imprint of
the potential into a smoothed potential Ṽ (r), which is expanded in orders
of the small parameter

n0(r) =
1

g

[
µ− Ṽ (1)(r)− Ṽ (2)(r) + . . .

]
. (2.24)
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Figure 2.2.: The condensate density profile in presence of an impurity V (x) =
V0 exp(−x2/r2

0). For the parameters V0 = 0.75µ and r0 = 0.8ξ, the numerically ob-
tained Gross-Pitaevskii ground state (solid blue) differs significantly from the simple
Thomas-Fermi formula (2.20) (solid red).

The leading orders of the smoothed potential can be obtained from (2.22)
and (2.23)

Ṽ
(1)
k =

2µ

2µ+ ε0k
Vk, Ṽ

(2)
k = − 1

L
d
2

∑

q

ε0k + 2ε0q
2µ+ ε0k

Ṽ
(1)
q Ṽ

(1)
k−q

4µ
. (2.25)

2.3. Bogoliubov Excitations

The Gross-Pitaevskii formalism from the previous section yields the mean-
field ground-state. We now consider quantum fluctuations around this
ground state by separating the fluctuations from the mean-field wave-
function Ψ̂(r) = Φ(r) + δΨ̂(r). Taking advantage of the macroscopic pop-
ulation of the ground state, we consider the Hamiltonian (2.11) only to
leading order in the fluctuations. Again, we use representation in terms of
density and phase

n̂(r) = n0(r) + δn̂(r), ϕ̂(r) = ϕ0(r) + δϕ̂(r), (2.26)

where the phase and density operators are

δn̂(r) = Φ(r)
{
δΨ̂†(r) + δΨ̂(r)

}
, δϕ̂(r) =

i

2Φ(r)

{
δΨ̂†(r)− δΨ̂(r)

}
,

(2.27)

up to higher orders in the fluctuations. Density and phase operators are
conjugate fields, fulfilling the commutator relation

[
δn̂(r), δϕ̂(r′)

]
= i δ(r−

29



2. The Inhomogeneous Bogoliubov Hamiltonian

r′). With this, we expand the grand canonical Hamiltonian Ê = Ĥ − µN̂
(2.11) in orders of δΨ̂ and δΨ̂†. The linear part vanishes, because Φ(r) is
the ground-state of the Gross-Pitaevskii equation. The relevant part is then
the quadratic part F̂ of the Hamiltonian Ê

Ê = E0 + F̂ [δ̂n, δϕ̂]. (2.28)

Third-order and forth-order terms in the fluctuations are neglected. Here,
E0 = E[n0(r), ϕ0(r)] is the Bogoliubov ground-state energy. The quadratic
Hamiltonian is found as

F̂ =

∫
ddr

{
~2

2m

[(
∇ δn̂

2Φ(r)

)2

+

[
∇2Φ(r)

]

4Φ3(r)
δn̂2 + Φ2(r)(∇δϕ̂)2

]
+
g

2
δn̂2
}
.

(2.29)

The potential V (r) does not appear directly in the equations of motion
for the excitations. Instead, it enters via the condensate function Φ(r),
according to the nonlinear equation (2.19).

With (2.29), the problem is reduced to a Hamiltonian that is quadratic
in the excitations. To this order, there are no mixed terms of δn̂ and δϕ̂,
but the Heisenberg equations of motion (2.10) for δϕ̂ and δn̂

∂δϕ̂

∂t
=

1

i~
[
δϕ̂, F̂

]
,

∂δn̂

∂t
=

1

i~
[
δn̂, F̂

]
(2.30)

are coupled, because
[
δn̂(r), δϕ̂(r′)

]
= i δ(r − r′).

2.3.1. The free Bogoliubov problem

Before including the external potential, we consider the excitations of the
homogeneous system V (r) = 0, n0(r) = µ/g. In this case, the Bogoliubov
Hamiltonian (2.29) reduces to

F̂ (0) =

∫
ddr

{
~2

2m

[(
∇ δn̂

2
√
n∞

)2

+ (∇
√
n∞δϕ̂)2

]
+ 2g n∞

(
δn̂

2
√
n∞

)2}

=
∑

k

[
ε0kn∞δϕ̂kδϕ̂−k + (2µ+ ε0k)

δn̂kδn̂−k

4n∞

]
, (2.31)

with ε0k = ~2k2/(2m). The Fourier representation is already diagonal in k,
but the equations of motion (2.30) are still coupled. This can be resolved by
the Bogoliubov transformation [71], a transformation that couples density
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2.3. Bogoliubov Excitations

and phase fluctuations to quasiparticle creation and annihilation operators
γ̂†k and γ̂k

(
γ̂k

γ̂†−k

)
=

(
ak a−1

k

−ak a−1
k

)(
i
√
n∞δϕ̂k
δn̂k

2
√
n∞

)
. (2.32)

A transformation of this kind, with the free parameter ak, guarantees that
the quasiparticles obey bosonic commutation relations analogous to (2.1).
Inserting the inverse of the above transformation

(
i
√
n∞δϕ̂k
δn̂k

2
√
n∞

)
=

1

2

(
a−1
k −a−1

k

ak ak

)(
γ̂k

γ̂†−k

)
(2.33)

into the Hamiltonian (2.31), we find off-diagonal terms γ̂†kγ̂
†
−k and γ̂−kγ̂k.

These can be eliminated by choosing the free parameter as ak =
√
ε0k/εk

with εk =
√
ε0k(2µ+ ε0k). Then the Hamiltonian takes its diagonal form

F̂ (0) =
∑

k

εkγ̂
†
kγ̂k. (2.34)

The famous Bogoliubov dispersion relation [71]

εk =
√
ε0k(2µ+ ε0k) (2.35)

replaces the kinetic energy of free particles ε0k (figure 2.3). In the high-energy
regime, the chemical potential µ is negligible compared with ε0k and the free
dispersion relation, shifted by the chemical potential, is recovered

εk = ε0k + µ+O(µ/ε0k). (2.36)

Superfluidity

In the low-energy regime, the interaction g n = µ dominates over the kinetic
energy. A single excitation involves many individual particles, comparable
to classical sound waves. The dispersion relation is linear εk = ck, with
sound velocity c =

√
µ/m. According to Landau’s argument [54, chapter

10.1], this linear dispersion at low energies implies superfluidity:
In general, an obstacle moving through a fluid with velocity v can dissi-

pate energy by creating elementary excitations. By a Galilei transformation
to the reference frame of the obstacle, the energy of the excitation εk is
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2. The Inhomogeneous Bogoliubov Hamiltonian

Figure 2.3: Bogoliubov dispersion rela-
tion (2.35). Insets: schematic rep-
resentation of the amplitudes δΨ⊥
and δΨ‖ (2.37).
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δΨ̂⊥

δΨ̂⊥

transformed to εk − ~k ·v. The static obstacle cannot transfer energy, so
excitations can only be created if v > εk/(~k). Thus, there is a critical
velocity vc = mink εk/~k = c.

Superfluid flow is one of the key features of Bose-Einstein condensates and
has been subject of many experiments. For example stirring experiments,
where dissipation was observed when the condensate was stirred with ve-
locities above the critical velocity [56], or persistent flow in a toroidal trap
[100].

In the ideal Bose gas (section 2.1), the excitations are still bare particles
with dispersion relation ε0k and zero critical velocity. The phase transition to
the Bose-Einstein condensate phase, together with the interactions, results
in superfluidity.

Signature of a Bogoliubov excitation

Let us split the fluctuation operator δΨ̂(r) = Ψ̂(r) − Φ(r) into its compo-
nents parallel and perpendicular to the order parameter Φ(r)

δΨ̂‖ =
1

2

(
δΨ̂ + δΨ̂†

)
, δΨ̂⊥ =

1

2i

(
δΨ̂− δΨ̂†

)
. (2.37)

With equation (2.27) and the Bogoliubov transformation (2.33), the com-
ponents take the form

δΨ̂‖ =
1

L
d
2

∑

k

ak
2

(
eik·rγ̂k + e−ik·rγ̂†k

)
,

δΨ̂⊥ =
1

L
d
2

∑

k

1

2iak

(
eik·rγ̂k − e−ik·rγ̂†k

)
,

again with the coefficient ak =
√
ε0k/εk. The signature of a Bogoliubov

excitation is a plane wave with amplitudes ak and a−1
k , respectively.
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2.3. Bogoliubov Excitations

At high energies, the coefficient ak tends to one and the components
of the wave parallel and perpendicular to the order parameter are equal.
Then, the Bogoliubov wave resembles the plane wave of a free particle δΨ ∝
exp

[
i(k0 · r − εk0

t/~)
]

(inset in figure 2.3).
At low energies, the spectrum (2.35) changes from quadratic to linear, but

it is still gapless : at low momenta, excitations with arbitrarily low energy
exist. The coefficient ak tends to zero, which means, that the Bogoliubov
excitation γk has hardly any signature in the density, but all the more in
the phase [see inset in figure 2.3]. In the limit k → 0, the Bogoliubov
excitations pass over to a homogeneous shift of the condensate phase. This
connects the Bogoliubov excitations to the broken U(1) symmetry of Bose-
Einstein condensate. The Bogoliubov excitations are the Goldstone modes
[72] associated to this broken symmetry.

2.3.2. The inhomogeneous Bogoliubov problem

Let us come back to the Hamiltonian (2.29) and include the external poten-
tial V (r) and its imprint of the external potential in the condensate density
n0(r). This inhomogeneity breaks translation invariance, which allowed the
diagonalization by the Bogoliubov transformation (2.33) in the free problem,
with two consequences: Firstly, there will be scattering among the Bogoli-
ubov modes, and secondly, the anomalous terms γ̂†kγ̂

†
−k′

and their Hermitian
conjugates do not vanish, which leads to anomalous coupling.

As the Hamiltonian (2.29) is quadratic in the fluctuations without any
term mixing δn̂ and δϕ̂, the general structure of the disorder part F (V ) =
F − F (0) is

F̂ (V )[δn̂, δϕ̂] =
1

2L
d
2

∑

k,k′

{
n∞δϕ̂

†
k′
Sk′kδϕ̂k +

δn̂†
k′
Rk′kδn̂k

4n∞

}
. (2.38)

The density and phase coupling matrices S and R vanish in absence of
disorder. Comparing with (2.29), we find that both the phase coupling-
element and the density coupling element are related to the imprint of the
external potential in the condensate wave-function

√
n0(r) = Φ(r).

Non-perturbative couplings

The phase coupling is proportional to the condensate density n0(r) = Φ(r)2

and can be written as

Sk′k =
1

L
d
2

∑

q

~2

m
k′·k Φk′−qΦq−k. (2.39)
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2. The Inhomogeneous Bogoliubov Hamiltonian

According to the equations of motion (2.30), this is a coupling between
phase and density fluctuations, mediated by particles in the non-uniform
condensate Φ. The density coupling has a different dependence on the non-
uniform condensate. Indeed, by expressing the non-uniform condensate Φ
in terms of the inverse imprint Φ̄(r) = Φ2

0/Φ(r), we can write the density
coupling in a form analogous to (2.39)

Rk′k =
1

L
d
2

∑

q

r̃k′k q Φ̄k′−qΦ̄q−k, (2.40)

with r̃k′k q = ~2
{
q2 − 2(k′ − q)·(q − k) +

[
(k′ − q)2 + (k − q)2

]
/2
}
/m.

Both formulae (2.39) and (2.40) are non-perturbative. That means they
hold for arbitrary external potentials, if only the condensate wave function
Φ and its inverse Φ̄ are determined correctly.

Inhomogeneous Bogoliubov Hamiltonian in the free Bogoliubov basis

For the further analysis, it is useful to transform to Bogoliubov quasiparticles
γ̂k, such that the free Hamiltonian takes its diagonal form (2.34). We use
the Bogoliubov transformation (2.33) of the homogeneous problem. In this
basis every mode is still characterized by its momentum k. Only the saddle
point (n0)k, from where the fluctuations δn̂ = n̂−n0 are measured, is shifted
by the external potential. A detailed discussion about this choice of basis
is found in section 3.2.

Thus, the couplings are transformed in the following way
(
Wk′k Yk′k

Yk′k Wk′k

)
=

1

4

(
a−1
k′ ak′

−a−1
k′ ak′

)(
Sk′k 0

0 Rk′k

)(
a−1
k −a−1

k

ak ak

)
=: Vk′k,

(2.41)

and the Bogoliubov Hamiltonian (2.29) takes the form

F̂ [γ̂, γ̂†] =
∑

k

εkγ̂
†
kγ̂k +

1

2L
d
2

∑

k,k′

(
γ̂†

k′
, γ̂−k′

)(
Wk′k Yk′k

Yk′k Wk′k

)(
γ̂k

γ̂†−k

)
.

(2.42)

This Hamiltonian for the inhomogeneous Bogoliubov problem is the central
achievement of the whole chapter. The equation of motion for the bosonic
Bogoliubov quasiparticles γ̂k reads

i~
∂

∂t
γ̂k′ =

[
γ̂k′, F̂

]
= εk′γ̂k′ +

1

L
d
2

∑

k

{
Wk′kγ̂k + Yk′kγ̂

†
−k

}
. (2.43)
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Figure 2.4: Universal Bogoliubov

scattering vertex (2.41). The

pseudo-spinor
(
γ̂k, γ̂

†
−k

)T
scat-

ters with the condensate wave-
function Φ and its inverse pro-
file Φ̄.

The matrix Wk′k contains the usual scattering between different momentum
states, induced by the inhomogeneous potential. The anomalous scattering
element Yk′k allows the creation or annihilation of excitation pairs. The
reason for the anomalous coupling Y , between γ̂k and the conjugate oper-
ators γ̂†−k′

lies in the expansion of the nonlinear term and the Bogoliubov
approximation.

The anomalous coupling can be handled in a linear manner by defining a

pseudo-spinor Γ̂k =
(
γ̂k, γ̂

†
−k

)T
, which leads to the equation of motion

i~
∂

∂t
Γ̂k′ =

(
1 0
0 −1

){
εk′Γ̂k′ +

1

L
d
2

∑

k

Vk′kΓ̂k

}
. (2.44)

The product of the matrix diag(1,−1) and V from equation (2.41) makes
the time evolution non-Hermitian, which is discussed in more detail in sec-
tion 2.5. As depicted in figure 2.4, the pseudo-spinor Γ̂k is scattered by the
matrix-valued potential V , with the momentum transfer provided by the
condensate wave function Φ and the inverse profile Φ̄ (c.f. equations (2.39),
(2.40) and (2.41)).

In order to keep track of the momentum balance, the momentum of the
creator in the second component of the pseudo-spinor Γ̂k has been chosen
reversed. This concept of a pseudo-spinor containing γ̂k and γ̂†−k has been
adopted from the Nambu formalism, employed in the BCS theory of su-
perconductivity [16, Section 18.5] and will be particularly useful later in
section 3.3.

2.3.3. Disorder expansion of the Bogoliubov Hamiltonian

The coupling elements depend non-perturbatively on the condensate wave-
function, which is the solution of the stationary Gross-Pitaevskii equation
(2.16). In practice this solution is either obtained numerically [cf. sub-
section 2.4.4, section 4.3] or by the systematic perturbative expansion of
subsection 2.2.4. For the analytical treatment, we choose the perturbative
expansion (2.21) of Φ and Φ̄, and expand the scattering elements in orders
of the inhomogeneous potential.
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The first-order scattering amplitudes read

S
(1)
k′k

= −4ξ2k′·k Vk′−k

2 + ξ2(k′ − k)2 , (2.45a)

R
(1)
k′k

= −4ξ2(k′·k − k2 − k′2) Vk′−k

2 + ξ2(k′ − k)2 , (2.45b)

W
(1)
k′k

=
Vk′−k

2 + ξ2(k′ − k)2

[√
ε0kε

0
k′

εkεk′

(
k2 + k′2 − k′·k

)
−
√
εkεk′

ε0kε
0
k′

k′·k
]
ξ2

=: w
(1)
k′k
Vk′−k, (2.45c)

Y
(1)
k′k

=
Vk′−k

2 + ξ2(k′ − k)2

[√
ε0kε

0
k′

εkεk′

(
k2 + k′2 − k′·k

)
+

√
εkεk′

ε0kε
0
k′

k′·k
]
ξ2

=: y
(1)
k′k
Vk′−k. (2.45d)

The most important feature of all first-order couplings is that the potential
factorizes from an envelope function that contains interaction, kinetic energy
and the scattering geometry. The first-order scattering event can be written
as

V (1)
k′k

=

(
w

(1)
k′k

y
(1)
k′k

y
(1)
k′k

w
(1)
k′k

)
Vk′−k = v

(1)
k′k
Vk′−k = ~ . (2.46)

Second-order scattering-amplitudes. The phase coupling element Sk′k is
proportional to the momentum transfer by the ground-state density (n0)k′−k.
According to equations (2.24) and (2.25), the second-order contains a con-
volution of the disorder potential with itself and an envelope function. The
density coupling element R(2) has the same structure with a different enve-
lope function

S
(2)
k′,k

=
1

µL
d
2

∑

q

Vk′−qVq−k s
(2)
k′q k

R
(2)
k′,k

=
1

µL
d
2

∑

q

Vk′−qVq−k r
(2)
k′q k

. (2.47)

The explicit form of the second-order envelope functions is found as

s
(2)
k′q k

= 2ξ2 k′ · k (k′ − k)2 + (q − k′)2 + (q − k)2
[
2ξ−2 + (k′ − k)2

][
2ξ−2 + (q − k′)2

][
2ξ−2 + (q − k)2

] ,

(2.48a)
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r
(2)
k′q k

= ξ2
{
k′′2 + k′2 + k2 + 3

2

[
(q − k′)2 + (q − k)2

]

+
(
k′2 + k2 − k′ · k

) 2ξ−2−(q−k′)2−(q−k)2

2ξ−2+(k′−k)2

}/{
2
[
1 + ξ2(q−k′)2

2

][
1 + ξ2(q−k)2

2

]}
.

(2.48b)

Again, the scattering elements are transformed according to equation (2.41),
which brings us to the structure of the second-order scattering matrix

V (2)
k′k

=
1

L
d
2

∑

q

(
w

(2)
k′q k

y
(2)
k′q k

y
(2)
k′q k

w
(2)
k′q k

)
Vk′−qVq−k

µ
=:

1

µL
d
2

∑

q

Vk′−qv
(2)
k′q k

Vq−k = ~~ .

(2.49)

In particular, the diagonal element of W (2) is needed later. In this case, the
envelope function simplifies to

w
(2)
k k+p k =

kξ√
2 + k2ξ2

(2k2 + 3p2 + k · p)ξ2

(2 + p2ξ2)2 . (2.50)

Higher orders. If needed, higher-order scattering vertices V (n) can be de-
rived systematically with the following prescription.

1. Compute the ground state (2.21) to the desired order, using the ex-
pansion shown in box 2.1.

2. Compute the inverse field Φ̄q = (Φ2
0/Φ)q.

3. S(n) and R(n) are obtained by collecting all terms of order n in equa-
tions (2.39) and (2.40).

4. Finally, apply the transformation (2.41) in order to obtain W (n) and
Y (n).

V = V = ~ + ~~ + ~~~ + . . .

= V (1) + V (2) + V (3) + . . . (2.51)

The inhomogeneous Bogoliubov Hamiltonian is an essential cornerstone
for this entire work. It will be essential for both the single scattering in
section 2.4 and the disordered problem in chapter 3.
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2. The Inhomogeneous Bogoliubov Hamiltonian

2.3.4. Bogoliubov mean-field

So far, the excitations on top of the mean-field condensate Φ(r) have been
treated in a quantized manner. The canonically quantized Bogoliubov
Hamiltonian (2.29) is basal for the rest of part I. It is necessary for the
condensate depletion in section 2.5 and will be fruitful in the diagrammatic
perturbation theory in disordered problem subsection 3.3.2.

For many purposes, however, it is sufficient and useful to treat the Bogoli-
ubov excitations γ̂k in a mean-field manner as a complex field γk. This is
analogous to the mean-field approximation for the condensate and justified
for strongly populated Bogoliubov modes. The mean-field approximation is
equivalent to the excitations on top of the Gross-Pitaevskii ground-state in
the scope of the time dependent Gross-Pitaevskii equation (2.16). The com-
mutators in the equations of motion (2.30) pass over to functional deriva-
tives of the energy functional F that is obtained from (2.29) by replacing
the operators δϕ̂ and δn̂ with their respective classical fields:

∂δϕ

∂t
= −1

~
δF

δ(δn)
,

∂δn

∂t
=

1

~
δF

δ(δϕ)
. (2.52)

This mean-field framework allows very efficient numerical computations. It
will be employed in the single-scattering setup of section 2.4 and in the
disordered setup of section 4.3.

2.4. Single scattering event

In the previous section, we have seen that the plane-wave Bogoliubov exci-
tations are no eigenstates of the inhomogeneous Bogoliubov problem, but
are scattered with scattering amplitudes Wk′k and coupled to their adjoint
via Yk′k. One could try to find the exact eigenstates in presence of some
disorder or impurity potential, an approach discussed later in section 2.5.
Here, however, a scattering process is considered in the momentum basis. A
plane-wave excitation enters a scattering region, where an impurity potential
deforms the local condensate density. The elastically scattered wave is de-
termined both analytically and numerically within the full time-dependent
Gross-Pitaevskii equation. This elastic scattering event can be regarded as
a building block for the disordered problem in chapter 3. The contents of
this section have been published in [101].
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θ

k k′

Figure 2.5: 2D single-scattering setup. A blue-
detuned laser beam focused perpendicularly
through a 2D BEC provides an impurity poten-
tial V (r) = V (0) exp(−r2/r2

0), which scatters an
incident Bogoliubov wave with wave vector k into
modes k′ at scattering angle θ.

2.4.1. Single scattering setting

The following experimental setting is proposed for observing the scattering
of a Bogoliubov excitation off a potential impurity. The basic idea is to
create a BEC in a shallow trap with an impurity and then to imprint a single
plane-wave Bogoliubov excitation. After some time, the wave scattered at
a certain angle is measured.

The experiment should be realized in two dimensions for the following
reasons. In an experiment in one dimension, there is only forward and
backscattering. Thus, no angular dependence is observable. In contrast,
a two-dimensional setup allows observing the angular dependence of the
scattered wave, and the impurity can be realized easily by means of a blue-
detuned laser penetrating perpendicularly through the center of the con-
densate. The two-dimensional setup is sketched in figure 2.5. In three
dimensions, things would become more complicated, because the impurity
cannot be realized using a single laser beam as in d = 2. Moreover, simple
time-of-flight images are more complicated to evaluate, because they show
the integrated density along the vertical dimension.

The trap should be shallow enough, such that the condensate can be
considered as homogeneous around the impurity. Thus, the potential ap-
pearing in the formalism of section 2.3 is given by the impurity potential
alone. The light-shift potential of the laser beam forming the impurity
potential takes the shape of the Gaussian intensity profile of the beam
V (r) = V (0) exp(−r2/r2

0). As discussed in subsection 2.2.3, this poten-
tial causes a depression in the ground-state density of the BEC [see fig-
ure 2.2]. Next, a plane-wave Bogoliubov excitation is imprinted by a Bragg-
spectroscopy technique [60, 61]. Two laser beams with a certain detuning are
radiated onto the condensate at a certain angle. By absorption of a photon
from the one beam and stimulated emission of a photon into the other, the
energy and the momentum for a Bogoliubov quasiparticle are provided. By
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2. The Inhomogeneous Bogoliubov Hamiltonian

this process, a particular Bogoliubov mode is excited very strongly2, which
allows treating the Bogoliubov excitations in the mean-field manner of sub-
section 2.3.4. Equivalently, the time-dependent Gross-Pitaevskii equation
(2.16) can be integrated numerically.

During its propagation, the wave is scattered at the impurity and the scat-
tered wave is detected at scattering angle θ. For the experimental detection,
again a Bragg-spectroscopy technique should be used in order to separate
the excitation from the condensate background making it observable in a
time-of-flight image. This technique has already been used experimentally
for the excitation and detection of Bogoliubov excitations by Vogels et al.
[61], following a proposal by Brunello et al. [60]. The only thing to change
is to detect the scattered wave at an angle θ with respect to the imprinted
wave.

2.4.2. Limiting cases of the elastic scattering amplitude

The Bogoliubov dispersion relation (2.35) interpolates between the sound-
wave regime at low energies and the particle regime at high energies. Before
considering the scattering amplitude in the entire energy range, it is instruc-
tive to consider the limiting cases from a separate point of view.

Scattering of particles

In the single-particle regime of the Bogoliubov spectrum, excitations are
plane matter waves with dispersion relation ε0k = ~2k2/2m. From the mo-
mentum representation of the Schrödinger equation it follows that the am-
plitude of a single-scattering process k 7→ k′ = k + q is proportional to the
Fourier component Vq = L−

d
2

∫
ddrV (r)e−iq·r of the scattering potential. If

the potential V (r) varies on a characteristic length r0, the scattering may
be anisotropic if the wave can resolve this structure, qr0 ≥ 1 [22, 23]. In
the opposite case of a small obstacle such that qr0 � 1, also known as the
s-wave scattering regime, the scattering amplitude is simply proportional to
V0 and can therefore only be isotropic.

Scattering of sound waves

In the other limit, the characteristics of sound waves are very different.
Similar to classical sound waves in air, many particles oscillate collectively

2This technique was employed in an experiment [61], where the number of 40 000 excited atoms corre-
sponds to about 20 000 Bogoliubov quasiparticles at kξ = p/(

√
2mc) ≈ 0.27.
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back and forth. In the regime kξ � 1 and ξ � r0, the Thomas-Fermi
formula (2.20) applies.

Excitations of the superfluid ground state in the regime kξ � 1 are lon-
gitudinal sound waves with density fluctuations δn = n − nTF and phase
fluctuations δϕ. The phase is the potential for the local superfluid velocity
vs = (~/m)∇δϕ. The superfluid hydrodynamics is determined by the con-
tinuity equation (2.18a) ∂tn + ∇ · (nvs) = 0 and by the Euler equation for
an ideal compressible fluid, m [∂tvs + (vs ·∇)vs] = −∇(gn + V ), derived
from (2.18b) in the present limit. To linear order in δn and δϕ, these two
equations can be combined to a single wave equation

m
[
c2∇2 − ∂2

t

]
δn = ∇ ·

(
V (r)∇δn

)
, (2.53)

with the sound velocity c =
√
µ/m from subsection 2.3.1. The gradient-

potential operator on the right-hand side then causes scattering with an
amplitude proportional to −(k · k′)Vk′−k. Hence, the potential component
Vk′−k from above, which must appear in all cases to satisfy momentum
conservation, is multiplied with a dipole (or p-wave) characteristic A(θ) =
− cos θ. This scattering cross-section with a node at θ0 = ±π/2 can be
understood, in the frame of reference where the local fluid velocity is zero, as
the dipole radiation pattern of an impurity that oscillates to and fro, quite
similar to the case of classical sound waves scattered by an impenetrable
obstacle [102].

2.4.3. Analytical prediction for arbitrary kξ

Now, the opposite characteristics of the limiting cases discussed above have
to be unified by the Bogoliubov theory that interpolates between both
regimes. Starting point is the equation of motion (2.43) for Bogoliubov
excitations in the mean-field framework. Transforming from time to fre-
quency domain, equation (2.43) can be written as

γk′(ω) = G0(k
′, ω)

1

L
d
2

∑

k′′

[
Wk′k′′γk′′(ω) + Yk′k′′γ

∗
−k′′(−ω)

]
, (2.54)

where G0(k
′, ω) = [~ω − εk′ + i0]−1 designates the retarded Green function

of the homogeneous condensate, the infinitesimal shift +i0 being due to

causality. The Bogoliubov field γk′ = γ
(0)
k′

+ γ
(s)
k′

is separated into the ini-

tially imprinted wave γ
(0)
k′

(ω) = γ0(ω) δk′k with γ0(ω) ∝ δ(~ω − εk) and the

scattered wave γ
(s)
k′

, which is of order V . The stationary scattering state is
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now determined within the Born approximation, i.e. on the right hand side

of (2.54), γk′′ is replaced with γ
(0)
k′′

.
In order to single out the elastically scattered wave, which is the most

relevant part, we apply the Sokhatsky-Weierstrass theorem [103] [x+i0]−1 =
Px−1− iπδ(x) to the Green function, with P denoting the Cauchy principal
value. We consider the imaginary part of the Green function

ImG0(k
′, ωk) = −πδ(~ωk − εk′) = −π

∣∣∣∣
∂εk′

∂k′

∣∣∣∣
−1

δ(|k′| − k). (2.55)

From the first equality, it is seen that there is no contribution (to order

V ) from the anomalous scattering term, because
(
γ

(0)
−k′′

)∗
has a negative

frequency. Only elastic scattering to k′ with |k′| = k is permitted (second
equality). In order to account for the finite system size, the Dirac δ-function
has to be averaged over the k-space resolution ∆k = 2π/L, which yields a
factor L/(2π). Thus, the elastic scattering amplitude at angle θ is given by

Im
γ(s)(θ)

γ0
= −1

2
L

2−d
2 Wk′k

∣∣∣∣
∂εk
∂k

∣∣∣∣
−1

. (2.56)

The derivative of the dispersion relation can be expressed in terms of the
density of states (3.63) and evaluates as follows

∣∣∣∣
∂εk
∂k

∣∣∣∣
−1

= 2π
ρ0(εk)

~k
=

1

2µξ

√
2 + k2ξ2

1 + k2ξ2 . (2.57)

The other quantity needed for the elastic scattering formula (2.56) is the
scattering element Wk′k. For consistency with the Born approximation, the
first order in the impurity strength is sufficient.

First-order scattering element

The first-order scattering element (2.45c) is the product of the momentum

transfer of the external potential Vk′−k and an envelope function w
(1)
k′k

. The
potential factor is the same as for free particles scattered at the potential
and provides the momentum transfer for scattering from k to k′. The en-
velope function comprises the Bogoliubov dynamics and interaction effects.
It depends only on the dimensionless momenta kξ and k′ξ. Remarkably,
the envelope function features a node which separates forward scattering
from backscattering with opposite sign, figure 2.6(a). Let us come back to
elastic scattering. For εk = εk′ and ε0k = ε0k′, the scattering amplitude (2.45c)
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Figure 2.6.: First-order scattering envelope functions. (a) Envelope function w
(1)

k′k
of the

first-order scattering element (2.45c), plotted in the k′-plane. The circle of elastic scat-
tering is shown as a solid line. There is a node in the scattering amplitude (dashed
line) that separates forward scattering from backscattering with opposite signs. (b) Po-
lar plot [A(kξ, θ)]2 of the angular envelope function (2.59) of elastic scattering for
kξ = 0.2 (red), 0.5, 1, 2, 5 (violet). The envelope is close to a dipole-radiation (p-wave)
pattern for sound waves kξ � 1, and tends to an isotropic (s-wave) pattern for single-
particle excitations kξ � 1. In the intermediate regime, backscattering is favored over
forward scattering.

simplifies significantly. As function of the momentum k and the scattering
angle θ = ](k,k′), the elastic scattering amplitude writes

W
(1)
k′k

∣∣∣
k′=k

=
ε0k
εk
A(kξ, θ)Vk′−k, (2.58)

with a remarkably simple angular envelope

A(kξ, θ) =
k2ξ2(1− cos θ)− cos θ

k2ξ2(1− cos θ) + 1
, (2.59)

see figure 2.6(b). The node of vanishing scattering amplitude of this envelope
is found to be at

cos θ0 =
k2ξ2

1 + k2ξ2 . (2.60)

In the deep sound-wave regime kξ → 0, the envelope A(θ) = − cos(θ)
presents the dipole radiation pattern. In the opposite limit kξ → ∞, the
nodes move to the forward direction. Finally, when the healing length ξ
becomes larger than the system size L, the node angle θ0 ≈

√
2/kξ becomes
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(b) Im(γk′)
Figure 2.7.: Fourier analysis of the stationary scattering state obtained by numerical inte-

gration of the GP equation. (a) Density plot |δΨk′ |2. The components of the scattered
wave are distributed on the elastic circle |k′| = k with characteristic nodes at ±θ0.
(b) Scattering state in terms of the Bogoliubov amplitude Im(γk′). This figure is more
distinct than (a), because the interference of Bogoliubov waves with ±k′ is eliminated.
The sign change across the scattering node θ0 is clearly visible. For the numerical pa-
rameters V (0) = 0.25µ, kξ = 1, kr0 = 0.5, scattering is suppressed around θ0 ≈ π/3.

smaller than the angular k-space resolution 1/kL. Then, the last contri-
bution with negative A(kξ, θ) is the forward scattering element, which can
be absorbed by shifting the origin of the single-particle energy εk, and we
recover the Hamiltonian for the potential scattering of free matter waves
[22, 23].

Finally, we insert the elastic scattering amplitude (2.58) into equation (2.56)
and find for the two-dimensional scattering problem3

Im[γ(s)(θ)/γ0] = − 1

4µξ

kξ

1 + k2ξ2 A(kξ, θ)V2k sin(θ/2) . (2.61)

2.4.4. Numerical verification

The predicted elastic scattering amplitude (2.61) is an ideal opportunity for
a numerical check of the formalism so far. The numerical simulation follows
the experimental proposal from above, recall figure 2.5. In the numerics, the
time-dependent Gross-Pitaevskii equation (2.16) is integrated. It relies nei-
ther on the linearization of small excitation amplitudes, nor on perturbation

3Note that in two dimensions the system size L does not enter explicitly in the formula. In general,
there is a factor L

2−d
2 on the right hand side. The Fourier transforms fk = L−

d
2
∫

ddre−ik·rf(r) of the
quantities f = γ(0), γ(s), V scale differently with L: Vk ∝ L−

d
2 , γ(0) ∝ L d

2 , and γ(s) ∝ L1− d
2 .
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theory for a weak potential. The trapping potential is neglected, instead,
the impurity potential is placed into a finite homogeneous system with pe-
riodic boundary conditions. In order to investigate the interesting envelope
function (2.59) in the scattering amplitude (2.61), the potential factor Vk′−k

should allow scattering in all directions. That means, the impurity should
be pointlike in the sense that its extension r0 should be much smaller than
the wave length kr0 � 1. First, the Gross-Pitaevskii ground state is cal-
culated by imaginary-time propagation, using the forth-order Runge-Kutta
method [104]. Then a plane-wave Bogoliubov excitation of the unperturbed
system is superposed. During the real-time evolution, the wave propagates
and is scattered at the impurity. After some time t, the stationary scatter-
ing state should be reached in a square with edge length L ≈ c t around the
impurity. This part of the system is Fourier transformed and compared to
the condensate ground state without the excitation. In the density plot of
the scattered wave |δΨk′|2, figure 2.7(a), one can already observe the node
of vanishing scattering amplitude (2.60) very clearly.

The data shown in figure 2.7(a) still shows the Gross-Pitaevskii wave
function. One can get more insight in terms of Bogoliubov amplitudes γk′ =
uk′δΨk′+vk′δΨ

∗
−k′

, with uk = (εk+ε0k)/(2
√
εkε0k) and vk = (εk−ε0k)/(2

√
εkε0k).

The corresponding plot of the imaginary part of the Bogoliubov-transformed
amplitude in figure 2.7(b) clearly shows the amplitude sign change across the
scattering node. Note that figure 2.7(b) is much clearer than figure 2.7(a),
because there Bogoliubov excitations with opposite ±k′ interfere in the wave
function densities |δΨk′|2. One may wonder why the superposition of nodes
stemming from opposite wave vectors still gives a density dip as clear as in
figure 2.7(a). In fact, in the single-particle case kξ � 1, vk/uk tends to zero
such that only the node of one component is observed, whereas for sound
waves kξ � 1 both components contribute equally, but now with symmetric
nodes at ±π

2 that superpose exactly. This node robustness should facilitate
the experimental observation.

We extract the scattering amplitude from the data on the elastic scatter-
ing circle in figure 2.7(b) and plot it together with the analytical prediction
(2.61) as function of the scattering angle θ at various wave vectors kξ, as
shown in figure 2.8. The agreement is very good, with residual numerical
scatter due to transients and boundary effects.

Equation (2.61) and figure 2.8 show that the overall magnitude of scat-
tering peaks at kξ ≈ 1, at the crossing from waves to particles. Physically,
this results from two competing scalings in (2.56):

• The Bogoliubov scattering amplitude W (k, θ) ∝ ε0k/εk is proportional
to k for kξ � 1 and saturates to a constant for kξ � 1.
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Figure 2.8.: Elastic scattering amplitude (2.61) in units of f = γ0 V0/(8ξµ) for different
values of kξ, at fixed potential radius kr0 = 0.5. Symbols: Results from numerical
integration of the full GP equation. Solid curves: analytical prediction (2.61). With
increasing k, the node moves to the left, according to (2.60). The overall amplitude has
a maximum at kξ ≈ 1.

• The inverse group velocity (∂k/∂εk) behaves like the constant c−1 for
sound waves (kξ � 1) and decreases as k−1 for particles (kξ � 1).

The product of both contributions therefore has limiting behavior k and k−1,
respectively, with a maximum around the crossover kξ ≈ 1 from phonons
to particles.

2.4.5. One-dimensional setting

In a one-dimensional setting, only forward scattering and backscattering
are present. This allows easily computing the transmission of a Bogoliubov
excitation across an impurity. Now we consider the reflection of an incident

Bogoliubov excitation γ
(0)
k′ = δk′kγ0 and compute the elastically reflected

wave γ
(r)
k′ = δk′ (−k)γr in the Born approximation. The elastically scattered

wave is again singled out by the imaginary part of the Green function, such
that (2.61) applies

Im
γr
γ0

=
L

1
2V−2k

4µξ

kξ

k2ξ2 + 1
. (2.62)

For a point like scatterer, the right hand side is proportional to the weight
of the impurity L

1
2Vk ≈

∫
dxV (x) =: 8µξB. From the elastically reflected

wave, we obtain the reflection amplitude r = 2Imγr/γ0. The factor 2 is
because the reflected wave exists only on one side of the impurity. For
a narrow potential, the transmission intensity T = 1 − |r|2 is shown in
figure 2.9. The impurity is perfectly transparent at long wave lengths. At the
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Figure 2.9: One-dimensional transmis-
sion T of Bogoliubov excitations
across a narrow impurity V (x) with
dimensionless impurity strength B =∫

dxV (x)/(8µξ).

crossover from sound waves to particles, there is a backscattering maximum,
and at high energies the reflection decreases again. The findings of (2.62)
and figure 2.9 are in quantitative agreement with the results of Bilas and
Pavloff [79] in the limit of a weak impurity. Given the tools from section 2.3,
the formalism works very straightforwardly and the problem reduces to the
coupling element W−k,k. In contrast to Bilas and Pavloff, we do not require
the explicit knowledge of Bogoliubov eigenstates, including propagating and
evanescent modes.

To some extent, our result in figure 2.9 can be compared to the work of
Kagan, Kovrizhin, and Maksimov [105], who consider tunneling across an
impurity that suppresses the condensate density very strongly. We agree in
the aspect of perfect transmission at low energies. At high energies, however,
Kagan et al. do not find a revival of transmission. This is reasonable, because
they consider a different regime, where the strong impurity deeply depresses
the condensate. For long wave-length excitations, this depression is on a
short scale and practically invisible, but for wave lengths shorter than the
width of the depression, transmission becomes impossible.

2.5. Exact diagonalization of the Bogoliubov
problem

In this section, the properties of the Bogoliubov eigenbasis are discussed.
The equations of motion for the small excitations derived in section 2.3
stem from the Bogoliubov expansion of the nonlinear Hamiltonian (2.11).
Although the equations of motion for the excitations are linear, the expan-
sion of the nonlinear term implies a fundamental difference compared with
the Schrödinger equation, namely a non-Hermitian time evolution. This
has consequences for the orthogonality properties of the eigenstates and
the spectrum [106]. Especially the orthogonality relation to the condensate

47



2. The Inhomogeneous Bogoliubov Hamiltonian

function is important for the choice of a suitable Bogoliubov basis for the
disorder average in section 3.2.

The explicit knowledge of the Bogoliubov eigenstates reveals more about
the condensate than the Gross-Pitaevskii ground state: The condensate
depletion, i.e. the number of particles that are not in the Gross-Pitaevskii
state, can be computed.

2.5.1. Analogy to other bosonic systems

The commutator relation of density and phase fluctuations
[
δn̂(r), δϕ̂(r′)

]
=

iδ(r − r′) [see section 2.3] is analogous to the commutator of coordinate q
and momentum p of a particles [xi, pj] = i~δij. The Hamiltonian (2.38) can
schematically be written as

F =
1

2

(
pT , qT

)( M C
CT K

)(
p
q

)
, (2.63)

which is the general quadratic bosonic Hamiltonian [107]. It describes a
particle or a set of particles in a harmonic potential. The mass matrix and
the matrix of spring constants are given as M = ε0 +S and K = 2µ+ε0 +R,
respectively. In the general Hamiltonian, off-diagonal blocks C may be
present. Their absence in the Bogoliubov problem (2.38) corresponds to
time-reversal symmetry, which is compatible with the absence of magnetic
fields or rotations. The quadratic “potential” qTKq is harmonic, which is
suitable for describing phonons in random elastic media [31, 107].

By defining creation and annihilation operators of the harmonic oscilla-
tors, the Hamiltonian (2.63) takes a structure analogous to the Bogoliubov
Hamiltonian (2.42)

F =
1

2

(
γ̂†, γ̂

)( Γ ∆
∆† ΓT

)(
γ̂
γ̂†

)
. (2.64)

Note the different sign convention for the second component of the pseudo-
spinors, such that Γk′k = Wk′k, but ∆k′k = Yk′(−k).

From the structure of (2.64), rather general properties follow, like the
chiral symmetry (i.e. the occurrence of frequencies in pairs ±ω) [107]. In
the following, we will derive this and some more properties at the concrete
Bogoliubov problem.

2.5.2. Bogoliubov-de-Gennes equations

How can the general Bogoliubov Hamiltonian (2.63) or (2.64) be diagonal-

ized? For this task, the representation in terms of the field operator δΨ̂ is
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2.5. Exact diagonalization of the Bogoliubov problem

used, instead of density δn̂ and phase δϕ̂. This makes the structure bet-
ter comparable with the Schrödinger equation and helps to point out the
differences. The expansion of the grand canonical Hamiltonian (2.11) reads

F̂ =
1

2

∫
ddr
(
δΨ̂†(r), δΨ̂(r)

)( L G
G∗ L

)(
δΨ̂(r)

δΨ̂†(r)

)
+ cst., (2.65)

with the Hermitian operator L = − ~2

2m∇2 + V (r)− µ + 2g|Φ(r)|2 and G =

gΦ(r)2. The goal is now to find a transformation to quasiparticles β̂ν, such

that the Bogoliubov Hamiltonian F̂ takes the diagonal form

F̂ =
∑

ν

~ωνβ̂†νβ̂ν. (2.66)

The Bogoliubov Hamiltonian was obtained by the expansion around the
saddlepoint. It turns out that the saddlepoint is indeed an energy minimum,
not only in the homogeneous problem (2.3.1), but also in inhomogeneous
systems. Therefore, the spectrum ~ων is positive. The transformation mixes
δΨ̂(r) and δΨ̂†(r), similar to the homogeneous Bogoliubov transformation in
subsection 2.3.1. Furthermore, the inhomogeneous potential and its density
imprint will mix the plane waves, such that the eigenstates will have some
unknown shape. The general transformation to a set of eigenmodes reads

δΨ̂(r) =
∑

ν

[
uν(r)β̂ν − v∗ν(r)β̂†ν

]
, (2.67)

with a set of initially unknown functions uν(r) and vν(r) [106]. Note that
there are different conventions concerning the sign in front of v∗ν. Here and
e.g. in [54, 105, 106], the minus sign is used, with vk(r) = vke

ik·r in the
homogeneous case. In other literature, vν(r) is defined with opposite sign

[55, 79, 85, 86]. The quasiparticle annihilators β̂ν appearing in equation
(2.67) and their creators obey bosonic commutator relations, as will be
verified below.

The equation of motion for δΨ̂(r) is set up using both forms of the Hamil-
tonian (2.65) and (2.66). By equating the coefficients, we find the following
equation on the uν(r) and vν(r)

η

(
L −G
−G∗ L

)

︸ ︷︷ ︸
=:Q

(
uν(r)
vν(r)

)
= ~ων

(
uν(r)
vν(r)

)
, (2.68)

where η = diag(1,−1). This equation is known as the Bogoliubov-de-Gennes
equation for the Bogoliubov eigenmodes [86]. Although both operators Q

49



2. The Inhomogeneous Bogoliubov Hamiltonian

and η are self-adjoint (Hermitian), their product is not, (ηQ)† = Qη 6= ηQ.
But ηQ is intimately connected with its adjoint: (ηQ)† = Qη = η(ηQ)η =
η(ηQ)η−1. This property is called pseudo-Hermiticity with respect to η
[108].

In presence of an arbitrary potential with a corresponding ground-state
density, the determination of the eigenstates is possible only numerically.
However, some analytical statements on their properties can be made.

2.5.3. Zero-frequency mode

The relation of the excitations to the ground state Φ(r) is of particular
interest. A special solution of (2.68) is given by an excitation, where both
u(r) and v(r) are proportional to the ground state, u0(r) = v0(r) = αΦ(r),
α ∈ C. This solution has zero frequency, as can be seen from (L−G)Φ = 0,
because Φ is a stationary solution of the Gross-Pitaevskii equation (2.16).
The contribution of this “excitation” to the field operator (2.67) is given
as 2iIm(α)Φ(r), i.e. it consists only in a global phase shift of the wave
function. Due to the gauge symmetry, there is no restoring force, so it is
not an excitation in the strict sense. This zero-mode is the Goldstone mode
related to the U(1) symmetry breaking of the order parameter [72, 89].

The fact that the zero-mode takes place only in the phase of the con-
densate and not in the density is perfectly compatible with the observation
made in subsection 2.3.1 that the low-energy Bogoliubov-excitations oscil-
late mainly in the phase and hardly in the density (figure 2.3).

2.5.4. Eigenstates of non self-adjoint operators

Before considering the proper excitations with finite frequencies, it is use-
ful to discuss some general properties of the eigenstates of non-Hermitian
operators [109]. Let us assume the eigenstates of a non-Hermitian operator
U 6= U † to be known and investigate their orthogonality relations. In the
following, the orthonormal basis ek, which will in general not be the eigen-
basis of the operator U , will be employed. The standard scalar product
(a, b) = a†b is defined by the conventional matrix product of the adjoint

vector a† with b. The orthonormality then reads e†jek = δj,k. Now we
consider the effect of U on the basis vectors:

U ek =
∑

j

Ujkej U =
∑

j,k

ejUjke
†
k Ujk = e†jU ek (2.69)

50



2.5. Exact diagonalization of the Bogoliubov problem

The eigenvalues λm and the (right) eigenvectors am of U are defined by

∑

j

[Uij − λmδij] (am)j = 0 ⇔ det (Uij − λmδij) = 0 . (2.70)

Analogously the eigenvectors of the adjoint operator U † =
∑

j,k ejU
∗
kje

†
k (or

left eigenvectors of U) can be defined

∑

j

[
U ∗ji − µnδi,j

]
(bn)j = 0 ⇔ det

(
U ∗ji − µnδi,j

)
= 0 . (2.71)

Taking the complex conjugate and interchanging the indices, we see, that µ∗n
and λm satisfy the same equation. Thus, the eigenvalues can be enumerated
such that µ∗n = λn. Finally, we compute the scalar product b†nU am and let
U act both to the right and to the left

b†nU am =
∑

i,j

(b†n)iUij(am)j
(2.70)
=
∑

i

(b†n)iλm(am)i
(2.71)
=
∑

j

µ∗n(b
†
n)j(am)j .

From this, it follows the bi-orthogonality relation

(λm − λn) (bn,am) = 0 . (2.72)

Thus, the eigenvector am is orthogonal to the adjoints of eigenvectors with
different eigenvalues bm. This, however, does not imply that the eigenvec-
tors themselves are pairwisely orthogonal. Only in the case of a Hermitian
operator with Uij = U ∗ji, the left equations of (2.70) and (2.71) imply that
an = bn, which then restores the usual orthogonality of eigenvectors.

2.5.5. Bogoliubov eigenstates with non-zero frequency

Let us express the bi-orthogonality relation derived above in terms of the
Bogoliubov eigenstates. Let aν = ( uνvν ) be an eigenvector of ηQ with eigen-
value ων: ηQaν = ~ων aν. With η2 = 1, it can be seen that the matrix η
relates the eigenvectors to those of the adjoint operator Qη

Qη(ηaν) = η(ηQ)aν = ~ων ηaν ⇒ bν = ηaν. (2.73)

With this, the bi-orthogonality relation (2.72) reads

0 = (ων − ωµ)b†νaµ = (ων − ωµ)

∫
ddr [u∗ν(r)uµ(r)− v∗ν(r)vµ(r)] (2.74)
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for the Bogoliubov states. This condition on the eigenstates takes the place
of the orthogonality in the Schrödinger problem. For Bogoliubov modes
with different frequencies ων 6= ωµ, the integral in equation (2.74) has to
vanish. For degenerate modes, the choice of the eigenbasis is not unique,
but can be chosen such that the integral vanishes for different members of
the same eigenspace as well. Together with a proper normalization (needed
for µ = ν), equation (2.74) takes the form

∫
ddr [u∗ν(r)uµ(r)− v∗ν(r)vµ(r)] = δµ,ν (2.75)

for all modes except for the zero-frequency mode. At this point, we fore-
stall that the normalization constant is +1. Below, we will show that this
corresponds to the bosonic character of the β̂ν.

The zero-mode from subsection 2.5.3 cannot be normalized. However,
condition (2.74) still holds, thus all Bogoliubov modes with finite frequency
fulfill

∫
ddrΦ∗(r) [uν(r)− vν(r)] = 0 , (2.76)

the orthogonality condition with respect to the ground state.

Mean-field total particle number

In the mean-field interpretation of Bogoliubov excitations (subsection 2.3.4),
the Hilbert space representing the excitations has doubled from one complex
function δΨ, to a pseudo-spinor containing u and v. When expanding a
given initial state in the Bogoliubov mean-field framework (subsection 2.3.4)
into Bogoliubov eigenmodes, one has to determine the coefficients αν in
Ψ = Φ +

∑
ν [ανuν(r)− α∗νv∗ν(r)]. If the ground state has no superfluid flow

(i.e. no vortices, no 1D flow like e.g. in [110]), then the ground-state wave
function and the Bogoliubov modes uν(r) and vν(r) can be chosen real. The
deviation from the ground state then reads

δΨ(r, t) = uν(r)e−iωνt − vν(r)eiωνt

=
[
uν(r)− vν(r)

]
cos(ωνt)− i

[
uν(r) + vν(r)

]
sin(ωνt). (2.77)

The real part shifts the local condensate density by δn(r) = 2Φ(r)ReδΨ(r).
The orthogonality condition (2.76) with respect to the ground state has a
simple interpretation: it simply states that the total particle number is not
changed by the excitations. This is reasonable, because the Gross-Pitaevskii
ground state is computed with the particle number given by the initial state
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Ψ(r, t = 0). There is no reason why the deviations from the ground state
should affect the number of particles, they merely deform the wave function.
This relation between the phase-related zero-mode and the particle number
does not come as a surprise, as phase and density are conjugate variables.

Frequency pairs

Due to the time-inversion symmetry, solutions of equation (2.68) occur in
pairs. Defining τ̂ = ( 0 1

1 0 ) and using the commutation relations ητ̂ = −τ̂ η,
τ̂Q = (Qτ̂)∗, we find

ηQ(τ̂a∗ν) = ητ̂Q∗a∗ν = −τ̂(ηQaν)
∗ = −~ων τ̂a∗ν a−ν = τ̂a∗ν (2.78a)

Qη(τ̂b∗ν) = −Qτ̂ηb∗ν = −τ̂(Qηbν)
∗ = −~ων τ̂b∗ν b−ν = τ̂b∗ν . (2.78b)

From these solutions with negative frequencies, another orthogonality rela-
tion follows from equation (2.72) with (b−ν ,aµ) = 0

∫
ddr [vν(r)uµ(r)− uν(r)vµ(r)] = 0 . (2.79)

Together with (2.75), this identity is used to invert the transformation (2.67)
and express the quasiparticle operators in terms of the field operator

β̂ν =

∫
ddr
[
u∗ν(r)δΨ̂(r) + v∗ν(r)δΨ̂†(r)

]
. (2.80)

The identity (2.80) clarifies the meaning of the negative frequencies. The

quasiparticle annihilator β̂−ν of the negative-frequency mode reads

β̂−ν =

∫
ddr
[
vν(r)δΨ̂(r) + uν(r)δΨ̂†(r)

]
= β̂†ν , (2.81)

which coincides with the quasiparticle creator β̂†ν. Thus, negative Bogoli-
ubov frequencies have nothing to do with negative excitation energies, but
simply swap the roles of creators and annihilators. They are not necessary
for the completeness of the Bogoliubov eigenbasis and will be excluded in
the following.

Properties of Bogoliubov eigenstates summed up

• The zero-frequency mode comes from the broken U(1) symmetry and
is not a Bogoliubov excitation in the proper sense.

• Only the excitations with positive frequencies are physically relevant.
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• All finite-frequency modes fulfill the orthogonality (2.76) with respect
to the ground state. This excludes a real overlap of δΨ with the ground
state Φ.

• All eigenstates pairwisely fulfill the bi-orthogonality relation (2.74).

Bogoliubov ground state

The Bogoliubov quasiparticles satisfy the bosonic commutator relations

[β̂µ, β̂
†
ν] = δµ,ν, [β̂†µ, β̂

†
ν] = [β̂µ, β̂ν] = 0, (2.82)

which are easily verified using equations (2.75), (2.79) and (2.80). The oper-

ators β̂†ν and β̂ν create and annihilate Bogoliubov excitations. In particular,
the Bogoliubov ground state is the Bogoliubov vacuum |vac〉, defined by the
absence of Bogoliubov excitations

β̂ν |vac〉 = 0. (2.83)

2.5.6. Non-condensed atom density

Bogoliubov quasiparticles can be excited thermally or by external perturba-
tions. But even in the ground state, not all particles are in the (Gross-
Pitaevskii) condensate state. We are interested in the number of non-
condensed atoms

nnc =
1

Ld

∫
ddr 〈vac| δΨ̂†(r)δΨ̂(r) |vac〉 . (2.84)

It is important to distinguish this density nnc of atoms that are not in the
condensate Φ(r) from the number of particles that are not in the state k = 0.
The latter is sometimes referred to as “condensate depletion” [77, 78], but
it is more a condensate deformation.

The “condensate depletion due to disorder” nR in [77, Eq. (9)] is only due
to the first-order smoothing correction (2.22) of the Gross-Pitaevskii wave
function.

The shift of the non-condensed density due to disorder, which we are
going to compute now, is beyond Huang’s and Meng’s work [77]. In order

to evaluate the non-condensed density, the field operator δΨ̂(r) is expressed
in terms of the Bogoliubov creators and annihilators, using equation (2.67)

nnc =
∑

ν

1

Ld

∫
ddr|vν(r)|2. (2.85)
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In this form, the non-condensed density requires the Bogoliubov eigenstates
to be computed explicitly. This will be done in the numerical study of the
disordered Bogoliubov problem in subsection 4.3.3.

Non-condensed density in the homogeneous BEC

In the homogeneous Bogoliubov problem (subsection 2.3.1), we use equation
(2.27) and (2.33) and write

δΨ̂(r) =
1

L
d
2

∑

k

[
uke

ik·rγ̂k − vke−ik·rγ̂†k
]
, vk =

εk − ε0k
2
√
εkε0k

. (2.86)

Inserting this into equation (2.84), we find the density of non-condensed
atoms as

nnc =
1

Ld

∑

k

′
|vk|2. (2.87)

The prime indicates that the homogeneous condensate mode k = 0 is ex-
cluded from the summation.

Because of the asymptotics |vk|2 ∼ (kξ)−4, there is no UV divergence in
the dimensions d = 1, 2, 3. In three dimensions, the sum is approximated
by an integral, which leads to

nnc =
1

6
√

2π2

1

ξ3 ,
nnc

n
=

8

3
√
π

√
na3

s. (2.88)

The fraction of non-condensed particles scales with the gas parameter
√
na3

s

[77], where as = mg/(4π~2) is the s-wave scattering length.
The non-condensed density nnc (2.88) is a function of the healing length

ξ = ~/
√

2mgn. It depends on the product of total density n and interaction
parameter g. In the ratio nnc/n this is converted to the gas parameter√
na3

s. This is the small parameter that ensures the applicability of Gross-
Pitaevskii theory (subsection 2.2.2). The above reasoning is true not only
in the present homogeneous case, but also for inhomogeneous condensates.

For low momenta, the summand in (2.87) diverges like 1/(kξ). In in
one dimension, this IR divergence forbids evaluating the sum (2.87) in the
continuum approximation. This is consistent with the fact that there is
no true Bose-Einstein condensate in one dimension (subsection 2.1.2). The
long-range order is destroyed by the long wave-length fluctuations. However,
in finite systems, where the quasi-condensate concept holds, the sum can
always be evaluated.

55



2. The Inhomogeneous Bogoliubov Hamiltonian

2.6. Conclusions on Gross-Pitaevskii and
Bogoliubov

The basic idea of the formalism employed in this chapter is splitting the
bosonic field operator into the mean-field Gross-Pitaevskii ground state
and the quantized fluctuations. The Gross-Pitaevskii ground state Φ(r) =〈
Ψ̂(r)

〉
is equivalent to a Hartree-Fock ansatz of a product state.4 This

approximation is good for Bose condensed systems. Due to inhomogeneous
external potentials, the condensate function Φ(r) gets deformed, but within
Gross-Pitaevskii theory the system is still fully condensed. As discussed in
subsection 2.1.2, there actually is no true Bose-Einstein condensate in one
and two dimensions, which is in agreement with general theorems [111] for-
bidding true long-range order in d = 1, 2. For practical purposes, however,
it is usually meaningful to consider the Bose gas as a quasi-condensate with
phase coherence on a sufficiently long scale.

Within the Gross-Pitaevskii framework, there is no information about
those particles that are not in the product state of the condensate. This
is where Bogoliubov theory takes over. Starting with the Gross-Pitaevskii
wave function, it describes those particles that are outside of the condensate
in a quantized manner. The Bogoliubov quasiparticles are characterized by
the functions uν(r) and vν(r), which are simply plane waves in the homo-
geneous case. In presence of an external potential and the corresponding
imprint in the condensate density, however, the eigenstates can in general
only be determined numerically.

The Bogoliubov ground state is conceptually different from the Gross-
Pitaevskii ground state. It is defined abstractly as the vacuum of quasi-
particles β̂ν |vac〉 = 0. Together with the transformation (2.67), this allows
computing the fraction of non-condensed particles (2.84). This condensate
depletion needs to be low in order to verify a posteriori the validity of
the Gross-Pitaevskii approximation. In the homogeneous system, the frac-
tion of the non-condensed particles scales with the gas parameter

√
na3

s.
Thus, the Gross-Pitaevskii approximation is applicable in the dilute Bose
gas

√
na3

s � 1. The question how the non-condensed fraction is influenced
by an external disorder potential will be addressed in subsection 4.3.3.

4In this work, the standard symmetry breaking formulation is used, where the condensate takes a definite
phase, such that

〈
Ψ̂
〉

is finite. More precisely, the system is in a coherent state, i.e. an eigenstate of the
annihilator Ψ̂ with an uncertain number of particles. Other formulations are possible, like Castin’s and
Dum’s number conserving formulation [112]. For the practical purposes within the scope of this work,
however, the symmetry breaking approach is sufficient.
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3. Disorder

In the previous chapter, we have set up the general formalism for describing
Bogoliubov excitations in a weak external potential, and, as a first applica-
tion, we have applied it to the scattering of Bogoliubov waves at a single
impurity. Now it is time to enter the disordered world by specifying the
potential V (r) as a disordered potential with certain statistical properties.
The disorder potential causes an imprint in the condensate density, which
forms an inhomogeneous background for the excitations (figure 3.1).

In section 3.1, the experimentally relevant optical speckle potential is
presented, and its statistical properties are derived. The speckle disorder will
be used throughout this work. In the final results, the two-point correlation
function of the speckle disorder can be replaced with the correlation function
of any other kind of disorder.

The goal of this chapter is to give a useful characterization of the dynam-
ics of Bogoliubov excitations in presence of disorder. Of course, the results
should not depend on the particular realization of disorder, so suitable dis-
order averages are necessary. Before doing so, some considerations about
the choice of the basis for the excitations have to be made. Until now, the
free Bogoliubov basis in terms of density and phase fluctuations has been
used rather intuitively. In section 3.2, it is discussed in detail, why this
basis actually is the only reasonable choice for the disordered Bogoliubov
problem.

All considerations made so far meet in section 3.3, the essential of this
chapter. The propagation of Bogoliubov excitations in the disorder aver-
aged effective medium is described by the average Green function, which
reveals the disorder-broadened dispersion relation, with a finite lifetime and
a renormalized propagation speed of the excitations. The optical analog of
this is the index of refraction and the absorption coefficient in a medium
like glass or water.

Figure 3.1: Schematic representation of the
disordered Bogoliubov setting. The dis-
order potential (red) leaves an imprint in
the condensate (blue). On top of that,
wave excitations (green) are considered.
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Figure 3.2.: Principle of the speckle phenomenon. Waves with random phase originating
from the rough surface on the left interfere and create a speckle pattern E(x) on the right.
The finite correlation length of the speckle pattern can be understood as follows. Let
the interference be constructive at r = 0. What is the shortest scale, where destructive
interference can occur? This distance σ̃ can be estimated by the condition that at least
the waves from the outermost points interfere destructively, i.e. their path difference
increases from zero at x = 0 to 2Rα = 2R σ̃/L = λL/2 at r = σ̃, where λL is the laser
wave length. Thus, the correlation length σ̃ is given by the laser wave length λL over the
numerical aperture σ̃ = λLL/(4R). In the following, the conventional definition of the
correlation length σ = λL

2π
L
R

[23, 115] will be used, which differs by a numerical factor.

3.1. Optical speckle potential

Disorder potentials with very well controlled statistical properties can be
created experimentally with optical laser-speckle fields. The coherent light
of a laser is directed on a rough surface or through a diffusor plate, such
that the elementary waves originating from each point have a random phase.
In the far field, their interference creates a random intensity pattern with
well known statistical properties. In particular, it has a finite correlation
length, which is related to the laser wave length and the aperture of the
speckle optics [66, 67]. Depending on the detuning of the laser frequency
with respect to an internal resonance of the atoms, the speckle intensity is
translated into a repulsive or attractive light shift potential for the atoms.
Speckle disorder has been used in many cold-atoms experiments, for example
the expansion experiments in Palaiseau [25, 67–69] and in Hannover [113],
experiments at Rice University [114] and in Florence [70].
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3.1. Optical speckle potential

3.1.1. Speckle amplitude

The coherent light from a laser is widened and directed on a rough surface
or through a milky plate (diffusor). The roughness is assumed to be larger
than the laser wave length, such that the phases of the emitted elementary
waves are totally random. According to Huygens’ principle, each point on
the diffusor emits elementary waves proportional to eikL|r|/|r| =: h(r). The
electric field E(r) in the plane of observation in some distance L is the
superposition of these elementary waves with phase factors η(r′)

E(r) =

∫
ddr′η(r′)h(r − r′), (3.1)

see figure 3.2. The complex random field η(r′) has zero mean η(r′) = 0 and
is uncorrelated in the sense that its spatial correlation is much shorter than
the laser wave length η∗(r)η(r′) ∝ δ(r − r′)Θ(R − |r|). Here, the finite
radius R of the diffusor is expressed using the Heaviside step function Θ.
The integral over the random numbers can be regarded as a random walk
in the complex plane. According to the central limit theorem, the local
probability distribution is Gaussian

P (Re E , Im E) =
1

πI0
e−
|E|2
I0 , with I0 = |E|2. (3.2)

Due to the finite laser wave length and the finite optical aperture, there is
a spatial correlation length σ. The speckle intensity cannot vary on length
scales shorter than σ, because elementary waves from different points have
to acquire a certain path difference in order to switch from constructive to
destructive interference, see figure 3.2. Let us consider in more detail the
speckle interference pattern in the far-field. If the distance L is sufficiently
large, the Fresnel approximation [116, Chapter 4] can be made. It consists
in an expansion of |r − r| in h(r − r′) in the small parameter |x − x′|/L,
where x and x′ denote the components of r and r′ in the diffusor plane and
the plane of observation, respectively:

h(r − r′) ≈ 1

L
eikLL exp

(
ikL

(x− x′)2

2L

)
(3.3)

Inserting (3.3) into (3.1) and expanding the quadratic term in the exponent,
one finds

Ẽ(x) =
1

L

∫
d2x′ exp

(
−i kL

L
x · x′

)
η̃(x′). (3.4)
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3. Disorder

The quadratic terms have been absorbed as phase factors in

Ẽ(x) = e−i
kL
2Lx

2

e−ikLLE(r) and η̃(x′) = ei
kL
2Lx

′2
η(x′). (3.5)

The mixed term in (3.4) connects Ẽ(x) and η̃(x′) as a Fourier transform.
Up to a complex phase, the field (3.1) is identified as the Fourier transform
of the random field η̃(x′), evaluated at k = kLx/L. Accordingly, the Fourier
components of the field Ẽk are given by the random field η̃(x′) evaluated at
x′ = −Lk/kL. The Fourier components inherit all statistical properties
from the surface of the diffusor:

Ẽ∗kẼk′ ∝ η̃∗(−Lk/kL)η̃(−Lk′/kL) ∝ δ(k − k′)Θ(σ−1 − |k|), (3.6)

with the disorder correlation length σ = L/(RkL). As only the intensity
of the electric fields is relevant for the light-shift potential [see below], we
identify E with Ẽ in the following. In terms of the average intensity in the
plane of observation I0 = |E(x)|2, the field correlator reads

E∗kEk′ =
(2πσ)d

Vol(d)
I0 Θ(1− kσ) (2π)dδ(k − k′) =: γ(k)(2π)dδ(k − k′), (3.7)

which defines the so-called complex degree of coherence γ(k) [23]. Here,
Vol(d) is the volume of the d-dimensional unit sphere. All modes with
k < 1/σ = RkL/L are statistically independent with a common Gaussian
probability distribution.

3.1.2. Generalization to 3D

In the preceding derivation of the speckle correlations, a two-dimensional or
one-dimensional diffusor plate and a corresponding plane of observation was
considered (figure 3.2). The third dimension was needed for the distance L
between both. How can this setup be generalized to three dimensions? Also
in the third dimension, the speckle field has a certain grain size, but this
axial correlation length is typically an order of magnitude longer [66, 67].
Such a 3D speckle field with an anisotropic correlation function has been
used e.g. in an experiment on the 3D Bose-Hubbard model [117]. There, the
transverse correlation length was shorter than the lattice spacing, and the
axial correlation length was of the order of the lattice spacing. In a lattice,
variations on a scale shorter than the lattice spacing do not matter, so the
disorder was effectively uncorrelated in all three dimensions, fulfilling the
demands of the disordered Bose-Hubbard problem.
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3.1. Optical speckle potential

In continuous systems, however, there is no spacing, and the actual cor-
relation length is important, so similar correlation lengths in all directions
are desirable. This could be achieved by the superposition of several speckle
fields, where at least a second speckle field for the third dimension is needed.
This would achieve similar correlation lengths in all directions, but with an
anisotropic correlation function. Ideally, the speckle pattern should be ob-
tained in a closed cavity [23, 24], which restores the isotropy. In this case,
the complex degree of coherence reads γ(k) = 2π2σ2δ(|k|−kL), which results
in a k-space correlator C3(kσ) = (8πkσ)−1Θ(2− |kσ|) with a divergence at
k = 0.

Lacking a simple experimentally realized model, we prefer to follow Pilati
et al. [118] and define the three-dimensional speckle disorder from a more
abstract point of view. Independently of a possible experimental realization,
we declare Eq. (3.7) the definition of the speckle field also in dimension three.
This preliminary isotropic three-dimensional speckle field grasps the impor-
tant features of laser speckles: the asymmetric intensity distribution (3.10)
and the finite support of the correlator in k-space (3.12), see below. Like the
two-dimensional speckle it might have to be adjusted to the experimental
details of future experimental setups, in particular to anisotropies.

3.1.3. Intensity and potential correlations

In typical experimental setups, the laser frequency ωL is chosen to be close to
an internal resonance ω0 of the atom such that ωL/ω0 ≈ 1, but far-detuned
in the sense that the detuning ∆ = ωL−ω0 is larger than the line width Γ of
the transition or the inverse lifetime of the excited state. Then, the energy
levels of the atoms are shifted due to the interaction of their induced dipole
moment with the electric laser field [39]. This shift is proportional to the
laser intensity I(r) = |E(r)|2, where the sign and the magnitude depend on
the detuning

∆E(r) =
3πc2

L

2ω3
0

Γ

∆
2ε0cL I(r). (3.8)

In this formula, ε0 is the vacuum permittivity and cL is the speed of light.
The origin of energy is shifted such that the potential has zero mean

V (r) = V0(I(r)− I0)/I0. (3.9)

Here, the signed disorder strength is defined as V0 = 3πc3
Lε0ΓI0/(ω

3
0∆).

The magnitude of the parameter V0 is the rms value of V (r), V 2
0 = V (r)2.

Its sign is determined by the detuning of the laser frequency and states
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Figure 3.3.: Speckle correlation functions in d = 1, 2, 3. (a) real-space representation.
(b) k-space representation. For the sake of comparable scales, Sd(kσ)dCd(kσ)/(2π)d is
plotted.

whether the speckle potential is repulsive or attractive, see figure 4.8 on
page 97. Because of Eq. (3.2), the intensity probability distribution is a
negative exponential with a baseline at zero intensity and arbitrarily high
peaks in the exponential tail. Then, the potential has the skewed probability
distribution with zero mean

P (w)dw = Θ(w + 1)e−(w+1)dw, with w = V (r)/V0. (3.10)

When computing the two-point correlator of the intensity, the convolution
of the field correlator γ(k) with itself occurs. The potential correlator

VkV−k′ = (2π)dδ(k − k′)σdV 2
0 Cd(kσ) (3.11)

defines the dimensionless k-space correlation function Cd(kσ). Being the
convolution of two d-dimensional spheres of radius σ−1, Cd(kσ) is centered
at k = 0 and vanishes for k > 2σ−1, see figure 3.3(b). In one dimension, the
speckle correlation function

C1(kσ) = π(1− kσ/2) Θ(1− kσ/2) (3.12a)

has the particularly simple shape of a triangle, the convolution of a 1D box
with itself. In two and three dimensions, the convolutions of disks and balls,
respectively, are slightly more complicated

C2(kσ) =
[
8 arccos(kσ/2)− 2kσ

√
4− k2σ2

]
Θ(1− kσ/2)

(3.12b)

C3(kσ) =
3π2

8
(kσ − 2)2(4 + kσ) Θ(1− kσ/2). (3.12c)
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3.2. A suitable basis for the disordered problem

The dimensionless correlators (3.12) are normalized such that
∫ ddα

(2π)dCd(α) =

1 in any dimension. At kσ = 2, they vanish like (2− kσ)
d+1
2 . The real-space

correlation function Cd(r/σ) = V (r)V (0)/V 2
0 decays on the length scale of

the correlation length σ, see figure 3.3(a).
Because of its experimental relevance, the speckle potential will be the

model of choice for most of the rest of this work.

3.2. A suitable basis for the disordered problem

Before applying the Bogoliubov Hamiltonian (2.29) to the disordered prob-
lem, we should think about the basis to work with. In presence of the
disorder potential, one could in principle compute the Bogoliubov eigenba-
sis
{
uν(r), vν(r)

}
(section 2.5), which fulfills the bi-orthogonality relation

(2.75) and the orthogonality to the ground state (2.76). However, for each
realization of the disorder potential V (r), this basis would be different,
precluding any meaningful disorder average. Thus, we want to construct
a basis from momentum states, which satisfies the orthogonality relations
(2.75) and (2.76) as well as possible. In absence of disorder, it should re-
duce to the usual plane-wave Bogoliubov basis (2.32). The price for using
a momentum basis instead of the eigenbasis will be the coupling among the
Bogoliubov modes in the time evolution, similar to equation (2.76).

In the homogeneous Bogoliubov problem (subsection 2.3.1), the field op-
erator can be written in terms of density and phase fluctuations or in terms
of Bogoliubov quasiparticles

δΨ̂(r)
(2.27)
=

δn̂(r)

2Φ(r)
+ iΦ(r)δϕ̂(r) Φ(r) = Φ0 (3.13a)

(2.32)
=

1

L
d
2

∑

k

eik·r
(
ukγ̂k − vkγ̂†−k

)
, (3.13b)

with uk = (εk + ε0k)/(2
√
εkε0k), vk = (εk − ε0k)/(2

√
εkε0k) and u2

k − v2
k = 1.

When the disorder is switched on, the ground state is deformed Φ(r) 6= Φ0,
and equation (3.13a) and (3.13b) are not equivalent any more. Basically
there are two options how to define Bogoliubov quasiparticles in the disor-
dered system:

• Using quasiparticles defined by equation (3.13b)

• Introducing the disorder in equation (3.13a) and then applying the
Bogoliubov transformation (2.32)
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3. Disorder

The difference resides in the order of switching on the disorder and applying
the transformation (2.32). Let us investigate which option better fulfills the
orthogonality conditions (2.75) and (2.76).

3.2.1. Bogoliubov basis in terms of free particle states

Let us start with the simpler looking option (3.13b). By comparison with

equation (2.67), we directly identify the functions ũk(r) = L−
d
2uke

ik·r and

ṽk(r) = L−
d
2vke

ik·r. These are exactly the same functions as in the ho-
mogeneous case, and obviously all Bogoliubov modes k 6= 0 fulfill the bi-
orthogonality (2.75).

In presence of an external potential, however, the condensate state Φ is
deformed and is not orthogonal to the plane waves uk(r) and vk(r) any
more. Testing the condition (2.76), we indeed find

∫
ddrΦ(r)

[
uk(r)− vk(r)

]
= (uk − vk)Φ−k 6= 0.

This overlap with the ground state mixes the modes k 6= 0 with the
zero-frequency mode that cannot be treated as a proper Bogoliubov mode
(subsection 2.5.3). If one tries nevertheless to work with operators b̂k =∫

ddr
[
ũ∗ν(r)δΨ̂(r) + ṽ∗ν(r)δΨ̂†(r)

]
, the inelastic coupling matrices Wk′k are

found to diverge for k → 0. Due to this diverging coupling to low-energy
modes, perturbation theory will break down, even for small values of the
external potential.

3.2.2. Bogoliubov basis in terms of density and phase

Let us try the other option (3.13a), where the disorder is switched on before
the transformation (2.32) is applied. Φ(r) is the disorder-deformed ground-

state and the field operator is expressed in terms of γ̂k and γ̂†k

δΨ̂(r) =
Φ0

Φ(r)

δn̂(r)

2Φ0
+

Φ(r)

Φ0
iΦ0δϕ̂(r)

(2.32)
=

1

2L
d
2

∑

k

eik·r
{[

Φ(r)

Φ0ak
+

Φ0ak
Φ(r)

]
γ̂k −

[
Φ(r)

Φ0ak
− Φ0ak

Φ(r)

]
γ̂†−k

}
,

(3.14)
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3.2. A suitable basis for the disordered problem

with ak =
√
ε0k/εk. By comparison to equation (2.67), we identify the func-

tions

uk(r) =
1

2

(
Φ(r)

Φ0ak
+

Φ0ak
Φ(r)

)
eik·r

Ld/2
, vk(r) =

1

2

(
Φ(r)

Φ0ak
− Φ0ak

Φ(r)

)
eik·r

Ld/2
(3.15)

as disorder-deformed plane-waves. Now we can check their bi-orthogonality
(2.75), which is indeed fulfilled:

∫
ddr [u∗k(r)uk′(r)− v∗k(r)vk′(r)] =

∫
ddr

2Ld

(
ak
ak′

+
ak′

ak

)
e−i(k−k′)·r = δkk′ .

(3.16)

Also the orthogonality with respect to the ground state (2.76) is fulfilled,
because Φ(r) [uk(r)− vk(r)] is a plane wave with zero average for all k 6= 0.

In the sense of the paragraph “Mean-field total particle number” in sub-
section 2.5.5, this compliance was expected, because the Bogoliubov modes
(2.32) are constructed from plane-wave density modulations with zero spa-
tial average, which cannot affect the mean-field particle number.

Conclusion

Only the Bogoliubov quasiparticles (2.32) in terms of density and phase

γ̂k =
1

ak

δn̂k

2Φ0
+ iakΦ0δϕ̂k (3.17)

fulfill the requirements for the study of the disordered Bogoliubov problem.
They are labeled by their momentum k, which is independent of the disorder
realization V (r). Only the ground state Φ(r), from where the fluctuations
are measured, is shifted. The Bogoliubov quasiparticles (2.32) fulfill the
bi-orthogonality relation (2.75), which is necessary for using them as basis,
but most importantly, they decouple from the zero-frequency mode.

The equations of motion (2.43) for the γ̂k for k 6= 0 are coupled, which
will be subject of the perturbation theory in the next section.
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3.3. Effective medium and diagrammatic
perturbation theory

Finally, all preparations for tackling the disordered Bogoliubov problem
have been made. In section 2.3, the Bogoliubov Hamiltonian (2.42) has
been derived and in the previous sections, we have discussed the statistical
properties of the disorder potential. Now it is time to characterize the dy-
namics of Bogoliubov excitations in presence of disorder. The key idea is to
average over the disorder and to understand the disordered Bose-Einstein
condensate as an effective medium for the propagation of Bogoliubov exci-
tations. The effective medium is characterized by quantities like the index
of refraction [subsection 3.4.5] describing the propagation speed, the mean
free path [subsection 3.4.2] or the diffusion constant [Boltzmann transport
length, subsection 3.4.2]. The main information is contained in the single-
(quasi)particle Green-function, also called propagator or resolvent, of the
system.

3.3.1. Green functions

The Bogoliubov excitations are bosonic quasiparticles with the commutator
relations

[
γ̂k, γ̂

†
k′

]
= δkk′,

[
γ̂k, γ̂k′

]
=
[
γ̂†k, γ̂

†
k′

]
= 0. (3.18)

We define the single-(quasi)particle Green-function [16, Chapter 8]

Gkk′(t) :=
1

i~
〈[
γ̂k(t), γ̂†

k′
(0)
]〉

Θ(t) . (3.19)

The average 〈·〉 denotes the thermal average. Here, T = 0 is considered, so
it is simply the expectation value in the ground state. The Green function
contains information, how a quasiparticle created at time 0 in some state k′

propagates to some state k where it is destroyed at time t.
Before starting with the disordered problem, let us determine the un-

perturbed Green function, which is the starting point for the perturbation
theory. In absence of the perturbation terms in (2.43), the time evolution
of the Bogoliubov operators

γ̂k(t) = exp(−iεkt/~)γ̂k(0) (3.20)

is trivial and the free Green function (G0(t))kk′ = G0(k, t)δkk′ is found as

G0(k, t) =
1

i~
exp(−iεkt/~)Θ(t). (3.21)
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3.3. Effective medium and diagrammatic perturbation theory

For the Fourier transform to frequency domain, we introduce a convergence
ensuring parameter η > 0, which appears as an infinitesimal shift of the pole

G0(k, ω) = lim
η→0

1

~ω − εk + iη
=:

1

~ω − εk + i0
. (3.22)

In the disordered problem, the equation of motion (2.43) for γ̂k mixes

with γ̂†−k′
. Thus, we define the anomalous Green function [49]

Fkk′ :=
1

i~
〈[
γ̂†−k(t), γ̂†

k′
(0)
]〉

Θ(t). (3.23)

The equations of motion for the Green functions are coupled

i~
d

dt
Gkk′(t) = εkGkk′(t) +

1

L
d
2

∑

k′′

[Wkk′′Gk′′k′ + Ykk′′Fk′′k′] + δ(t)δk′k

i~
d

dt
Fkk′(t) = −εkFkk′(t) −

1

L
d
2

∑

k′′

[Wkk′′Fk′′k′ + Ykk′′Gk′′k′] . (3.24)

Here, the commutator (3.18) and ∂tΘ(t) = δ(t) were used. In absence
of disorder, the anomalous Green function F vanishes, at least within the
Bogoliubov approximation, i.e. to order O(γ̂2).

It is useful to combine these two coupled equations of motion to one
matrix valued equation. This can be achieved by setting up the equations
of motion for the Hermitian conjugate of the propagators

G†
kk′

(t) =
1

i~
〈[
γ̂†k(t), γ̂k′(0)

]〉
Θ(t), F †

kk′
(t) =

1

i~
〈[
γ̂−k(t), γ̂k′(0)

]〉
Θ(t)

(3.25)

and combining them to the generalized propagator

G =

(
G F †

F G†

)
. (3.26)

The Hermitian conjugates of the propagators are closely related to the ad-
vanced propagators. In frequency domain, the relation G†

kk′
(ω) = GA

k′k
(−ω)

holds. Similar pseudo-spinor structures appear also in other field of physics.
Examples are the Nambu formalism of the BCS theory [16, Chapter 18.5],
where electrons and holes are combined in a spinor, or applications in par-
ticle physics [119].

The equation of motion for the generalized propagator reads

i~
d

dt
G = η

{[(
ε 0
0 ε

)
+

(
W Y
Y W

)]
G +

(
1 0
0 1

)
δ(t)

}
. (3.27)
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In this compact notation, the matrix multiplication implies the sum over
the free momentum L−

d
2

∑
k′. The matrix η is given as diag(1,−1) and

1kk′ = δkk′.
Transforming to frequency space and multiplying by η from the left gives

a compact form amenable to perturbation theory

[
G−1

0 − V
]
G = 1. (3.28)

The unperturbed generalized propagator G0 contains (3.22) and its conjugate

G0(k, ω) =

( 1
~ω−εk+i0 0

0 1
−~ω−εk−i0

)
=

(
G0(k, ω) 0

0 G∗0(k,−ω)

)
. (3.29)

Again, the infinitesimal shifts ±i0 come from the convergence ensuring fac-
tors in the Fourier transform, their sign being determined by the causality
factor Θ(t) in the definition of the propagators. The perturbations are
contained in the Bogoliubov scattering operator V = (W Y

Y W ), which was
introduced in subsection 2.3.2.

3.3.2. The self-energy

With equation (3.28) we can now set up a usual diagrammatic perturbation
theory [16, 23, 120]. Equation (3.28) is solved for the full propagator G by
writing the inverse of operators in terms of a series expansion in powers of
V :

G =
[
G−1

0 − V
]−1

= G0 [1− VG0]
−1

= G0

∞∑

n=0

(VG0)
n = G0 + G0VG0 + G0VG0VG0 + . . . (3.30)

In order to get meaningful results on a random system, the disorder has
to be averaged over. To this end, it is necessary to trace V back to the
speckle field amplitudes, because these are the basic quantities with known
statistical properties and a Gaussian probability distribution. Remember
subsection 2.3.3: The scattering operator depends nonlinearly on the exter-
nal potential V = V (1) + V (2) + V (3) + . . ., where V (n) contains the disorder
potential to the n-th power. At this point, the representation with Feynman
diagrams is again instructive. We start with the expansion (2.51) and draw

V = ~ + ~~ + ~~~ + . . . . (3.31)
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3.3. Effective medium and diagrammatic perturbation theory

Here, we have taken into account that each speckle potential Vk contributes
the electrical fields Eq and E∗k−q, which are drawn as and ∗ , respectively.

Together with the free propagator G0 = , all contributions from (3.30)
can be written as diagrams, for example

V (1)G0V (1) = ~ ~ , V (1)G0V (1)G0V (1) = ~ ~ ~ , V (1)G0V (2) = ~ ~~ .

(3.32)

Now, equation (3.30) is averaged over the disorder, which yields the so-called
Born series

G = G0 + G0VG0 + G0VG0VG0 + . . . . (3.33)

According to the Gaussian moment theorem [121], averages over a product of
several Gauss-distributed random variables separate into averages of pairs,
the so-called contractions. Each summand on the right hand side is obtained
as the sum over its contractions, i.e. the fields (dotted lines) are pairwise
connected using their pair correlation function (3.7), see also box 3.1 on
page 70. Let us have a look at the disorder average of (3.31):

V (1) = ~ = 0 V (2) = ~~ =: ~~ 6= 0 V (3) = ~~~ 6= 0 (3.34)

The first-order term vanishes, because the potential V (r) has been shifted
such that its average vanishes [equation (3.9)]. Any other diagram, where a
field correlator forms a simple loop ~ , i.e. returns to the same sub-vertex,
vanishes as well. The other diagrams in (3.34), however, are non-zero. In
the second-order term, two field correlations (dotted lines) were combined
to a single potential correlation (dashed line). In the non-zero diagram of
V (3), the field correlators form a ring. Similarly, the disorder averages of
(3.32) translate into the following diagrams

V (1)G0V (1) = ~ ~ , V (1)G0V (1)G0V (1) = ~ ~ ~ , V (1)G0V (2) = ~ ~~ .

(3.35)

These averages consist of only one diagram each. Many diagrams of higher
order are reducible, i.e. they separate into independent factors when a single
propagator is removed. The forth-order diagram ~ ~ ~ ~, for example,
separates into twice the first diagram in (3.35), connected with a free prop-
agator. The redundant information of the reducible diagrams in G can be
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Box 3.1: Feynman rules: drawing and computing irreducible diagrams

• Let us compute the self-energy Σ, i.e. the irreducible terms of
(3.30), with V = V (1) + V (2) + . . . . Exemplarily, we choose
G0V (1)G0V (2)G0. We omit the first and last propagator and draw

the “amputated diagram” in terms of vertices
and internal propagators: V (1)G0V (2) = ~ ~~

• The disorder average is done by connecting the field lines pairwisely
in all possible configurations:

V (1)G0V (2) = 2 ~ ~~ + 2 ~ ~~ + ~ ~~ + ~ ~~

– The first diagrams have a combinatorial factor of two, because
of the equivalence of the two sub-vertices in V (2).

– The last two diagrams are reducible and do not belong to Σ.

– All diagrams containing a simple loop vanish, because V = 0.

• We compute the only remaining diagram by

– Labeling each field line with an indepen-
dent momentum qi

– Determining the momenta of the propa-
gators by momentum conservation

k
~ ~~

q1 q2

q3

k+q1−q3 k

– Translating the constituents:

Field correlators (3.7) ∗qi
= γ(qi)

Bogoliubov propagators (3.29)
k

= G0(k, ω)

Envelope functions = v
(1)
k1k2

(2.46) and = v
(2)
k1q k2

(2.49)

The arguments k1 and k2 are given by the incoming and out-
going momentum of the respective vertex. There may also be
internal momenta, like q = k + q2 − q3 in the second-order
vertex.

• Finally, we sum over all free momenta qi. The diagram evaluates
as

1

L
3d
2

∑

q1,q2,q3

γ(q1)γ(q2)γ(q3)v
(1)
k (k+q1−q3)G0(k+q1−q3, ω)v

(2)
(k+q1−q3) (k+q2−q3) k ,

with the external momentum k and frequency ω.
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3.3. Effective medium and diagrammatic perturbation theory

avoided by reorganizing the Born series (3.33). The diagrams are sorted by
the number of irreducible sub-diagrams they contain, and not by their order
in V/µ. The result is the Dyson equation

G = G0 + G0ΣG, (3.36)

where the self-energy Σ contains all irreducible contributions

Σ = ~~ + ~ ~

︸ ︷︷ ︸
Σ(2)

+ 2

[
~ ~ ~ + 2 ~ ~~ + ~~~

]

︸ ︷︷ ︸
Σ(3)

+ . . . (3.37)

Due to the disorder average, each block of Σ is diagonal in k. The contri-
butions to Σ are then sorted by their order in V/µ. The first two terms
are second order in the disorder potential, the others are of higher order.
In principle, any desired order of the above series can be determined in a
systematic way, see box 3.1. In practice, however, the complexity and the
number of diagrams grows very rapidly.

Born approximation

In the following, we will restrict ourselves to the leading order V 2/µ2, i.e.

Σ(2) = ~~ + ~ ~ = V (2) + V (1)G0V (1), (3.38)

which is known as the Born approximation. Note that this leading-order
approximation in the self-energy still implies an infinite number of diagrams
in the correction to the averaged propagator G via the recursive formula
(3.36). This allows a shift of the pole of the propagator (3.22), which would
be impossible in leading-order perturbation theory directly for G.

3.3.3. Computing the self-energy in the Born
approximation

In the Born approximation (3.38), the two field correlators in each diagram
are combined to one intensity correlator ~ ~q =

∫
ddq′ γ(q − q′)γ(q′) =
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3. Disorder

V 2
0 σ

dCd(qσ). We compute the first block of the Born approximation ΣB :=

Σ
(2)
11

ΣB(k, ~ω) =

(
V 2

0 σ
d 1

L
d
2

∑

q

Cd(qσ)
[
v

(2)
k (k+q) k + v

(1)
k k+qG0(k + q)v

(1)
k+q k

])

11

=
V 2

0 σ
d

L
d
2

∑

q

Cd(qσ)


w(2)

k (k+q) k +

(
w

(1)
k(k+q)

)2

~ω − εk+q + i 0
−
(
y

(1)
k(k+q)

)2

~ω + εk+q


 .

(3.39)

The infinitesimally shifted pole in the propagator G0(εk)k′ is split into real
and imaginary part, using the Sokhatsky-Weierstrass theorem [103] [~ω −
εk′ + i0]−1 = P[~ω − εk′]−1 − iπδ(~ω − εk′). Thus, elastic scattering enters
in the imaginary part and inelastic processes are captured by the Cauchy
principal value P of the integral (3.39). For the actual evaluation of the
integral, the first-order and second-order envelope functions wkk′ and ykk′,
given in (2.45c) (2.45d) and (2.50), are needed.

Transferring the results to other types of disorder

In the Born approximation, the self-energy (3.39) depends only on the two-
point correlator of the disorder potential

VkV−k′ = (2π)dδ(k − k′)V 2
0 σ

dC(kσ). (3.40)

The field correlators (3.7) occur only in higher-order diagrams. The self-
energy in the Born approximation is valid also for other types of disorder, like
for example a Gaussian model CG

d (kσ) = (2π)d/2 exp(−k2σ2/2), as employed
e.g. in [122]. In subsection 4.1.4, we will come back to this and compare the
effect of speckle disorder to the effect of Gaussian disorder on the disorder-
averaged density of states.
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3.4. Deriving physical quantities from the self-energy

3.4. Deriving physical quantities from the
self-energy

The self-energy derived in the previous section is the central result of the
present chapter 3 “Disorder”. It allows deriving many physical quantities.

3.4.1. The physical meaning of the self-energy

In order to understand the meaning of the self-energy, it is useful to de-
fine the spectral function S(k, ω) = −2ImG(k, ω) [16], which contains all
information about the frequency and lifetime of the excitations. In the
unperturbed system, the spectral function is given by a Dirac δ-function

S0(k, ω) = −2ImG0(k, ω) = 2πδ(~ω − εk). (3.41)

In presence of disorder, this function may get modified, but in any case it
will stay normalized ∫

dE
S(k,E)

2π
= 1, (3.42)

such that the spectral function is the energy distribution of a quasiparticle
with wave vector k. Let us express the spectral function in terms of the
self-energy ReΣ + i ImΣ. First, the Dyson equation (3.36) has to be solved
for the average propagator, i.e. the 2×2 matrix [G−1

0 −Σ] has to be inverted.
One finds

G(k, ω) =

[
G0(ω)−1 − Σ11(k, ω)− Σ12(k, ω)Σ21(k, ω)

G∗0(−ω)−1 − Σ22(k, ω)

]−1

. (3.43)

The numerator of the last term is quadratic in the self-energy, i.e. fourth
order in V0/µ, whereas G∗0(−ω)−1 = −~ω − εk ≈ 2εk is finite. In the scope
of the Born approximation, i.e. to second order in V0/µ, this term has to be
dropped. Consequently equation (3.43) simplifies

G(k, ω) =
[
G0(k, ω)−1 − ΣB(k, ω)

]−1
, (3.44)

with Σ
(2)
11 = ΣB. This leads to

SB(k, ω) =
−2ImΣB(k, ω)

[~ω − (εk + ReΣB(k, ω))]2 + [ImΣB(k, ω)]2
. (3.45)

The peak of the spectral function is shifted by the real part of the self-energy
and broadened by the imaginary part (which will turn out to be negative,
such that the spectral function is positive and fulfills (3.42)).
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3. Disorder

The poles of the averaged Green function (3.44) define the complex dis-
persion relation

~ω = εk + ΣB(k, ~ω). (3.46)

In the Born approximation, the self-energy is of order V 2
0 /µ

2, and its energy
argument ~ω can be consistently replaced with its on-shell value εk. In
the following, we separate the self-energy into the real and the imaginary
correction of the dispersion relation

~ωk = εk + ΣB(k, εk) = εk

[
1 +

V 2
0

µ2 Λ(k)− i γk
2εk

]
. (3.47)

3.4.2. Mean free path

According to the reasoning in section 3.2 the Bogoliubov modes are ex-
pressed in a basis that is characterized by the momentum k and is not the
eigenbasis of the Bogoliubov Hamiltonian. Thus, k is “not a good quantum
number” and the Bogoliubov modes suffer scattering, which is reflected in
a finite lifetime and the broadening of their dispersion relation.

Scattering rate and mean free path

A Bogoliubov excitation, which evolves like e−iεkt/~ in the unperturbed case,
evolves in the disordered case like e−i(εk+ReΣ)t/~ e−|ImΣ|t/~. That means, its
intensity gets damped by elastic scattering events to other modes. The
imaginary part of the self-energy defines the inverse lifetime or scattering
rate

~γk = −2ImΣB(k, εk). (3.48)

In equation (3.39), the only possibility for an imaginary part to oc-
cur is the imaginary part of the Green function Im(εk − εk+q + i0)−1 =
−πδ(εk − εk+q). This restricts the integral to the energy shell. Physically,
this is not surprising. Because of energy conservation, a Bogoliubov quasi-
particle can only be scattered to modes with the same energy. Other modes
can only be virtually excited, but the quasiparticle has to come back. Such
virtual scattering events will enter the real part of the self-energy, see sub-
section 3.4.5 below.

On the energy shell, the scattering element simplifies, section 2.4. Thus
the scattering rate is given as the d-dimensional angular integral

~γk =
V 2

0

2µ2 (kσ)d
kξ√

2 + (kξ)2(1 + (kξ)2)

∫
dΩd

(2π)d−1Cd
(
2kσ sin θ/2

)
A2(kξ, θ) .

(3.49)
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3.4. Deriving physical quantities from the self-energy

With the group velocity vg = ∂kεk/~, the scattering rate is converted to the
scattering mean free path ls = vg/γk

1

kls
=
V 2

0

4µ2

kdσd

(1 + k2ξ2)2

∫
dΩd

(2π)d−1Cd
(
2kσ sin θ/2

)
A2(kξ, θ). (3.50)

The fraction in front of the integral assures that the mean free path diverges
both for very low momenta kσ � 1 and for high momenta kξ � 1. In-
between, the mean free path scales with µ2/V 2

0 . Thus, describing Bogoliubov
excitations as plane waves also in the inhomogeneous case is well justified.

3.4.3. Boltzmann transport length

In equation (3.50), elastic scattering in all directions contributes to the
inverse mean free path. The forward scattering events, however, do not
randomize the direction of the quasiparticles and do not affect the diffusive
transport. The relevant length for diffusion is the Boltzmann transport
length lB [22, 23], the length of randomization of direction. It is obtained
from equation (3.50) by introducing a factor [1− cos(θ)], which suppresses
forward scattering:

1

klB
=
V 2

0

4µ2

kdσd

(1 + k2ξ2)2

∫
dΩd

(2π)d−1 [1− cos(θ)]Cd
(
2kσ sin θ/2

)
A2(kξ, θ),

(3.51)

In subsection 4.1.2, Boltzmann transport length and mean free path are
compared in the regime of a hydrodynamic Bose-Einstein condensate.

3.4.4. Localization length

In order to determine the localization lengths of the Bogoliubov states in
a disordered Bose-Einstein condensate, the single-particle Green functions
of the previous section are not sufficient. Rather, the intensity propagator
should be considered [22, 23, 123], in order to derive the weak-localization
correction to the diffusion constant. This is beyond the scope of this work,
but nevertheless, we can estimate the localization lengths of Bogoliubov
excitations, based on general results on localization of particles and phonons.

In one-dimensional disordered systems, the backscattering process k 7→
−k that amounts to the inverse Boltzmann transport length (3.51) is known
to induce strong, Anderson localization of the excitation in the disor-
dered potential [17]. The inverse localization length Γloc = 1/(2lB), which
describes exponential localization, is directly proportional to the inverse
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3. Disorder

backscattering length l−1
B [124]. This holds very generally for particle-like

and for phonon-like excitations. From (3.51) we deduce

Γloc =
V 2

8µ2 σ k
2 C1(2kσ)

(1 + k2ξ2/2)2 , (3.52)

which agrees with the findings of [33], and also with [79], where the limits
σ → 0 and ξ → 0 have been investigated. It should be noted that these
approaches employ the phase-formalism that is particularly suited for 1D
systems, whereas our Green-function theory permits to go to higher dimen-
sions without conceptual difficulties.

Also in two dimensions, the localization length is related to the Boltz-
mann transport length lB, but it is not the same scale. By using scaling
theory [17, chapter 8.2], it can be shown that the localization length de-
pends exponentially on klB

lloc = lB exp
(π

2
klB

)
. (3.53)

This result was derived for electrons, i.e. for particles, but also the localiza-
tion length of phonons scales exponentially [29].

In three dimensions, the question of localization is less clear, because local-
ized and delocalized states coexist and phonons and particles have different
characteristics [29] (section 5.3).

3.4.5. Renormalization of the dispersion relation

In this subsection, the (real) shift of the Bogoliubov dispersion relation due
to the disorder potential is derived. In the limit of small kξ, this shift is the
correction of the speed of sound.

In the grand canonical ensemble, which was employed so far, the correc-
tion is directly given by the self-energy, which is here taken in the on-shell
Born approximation. From the real part of (3.46), the disorder-averaged
dispersion relation is found as

εk = εk + ReΣB(k, εk) . (3.54)

We define the relative correction in units of V 2
0 /µ

2, i.e., we take the scaling
of the Born approximation into account

Λµ(k) :=
µ2

V 2
0

εk − εk
εk

=
µ2

V 2
0

ReΣB(k, εk)

εk
. (3.55)

The subscript µ indicates, that the disorder is ramped up at constant chem-
ical potential µ.
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3.4. Deriving physical quantities from the self-energy

Fixed particle number

Let us have a look at the density profile (2.24) of the condensate in pres-
ence of a disorder potential V (r). In the disorder average the first-order
contribution (2.25) vanishes because V = 0. In contrast, the second-
order contribution (2.25) survives the disorder average. With VqVk−q =
(2π)dδ(k)V 2

0 σ
dCd(qσ) (3.11) and Cd(qσ) ≥ 0 (3.12), the shift of the mean

density is found to be positive:

n(r)− n∞
n∞

= −Ṽ
(2)(r)

µ
=
σdV 2

0

µ2

∫
ddq

(2π)d
Cd(qσ)

q2ξ2

(2 + q2ξ2)2 > 0 (3.56)

At constant chemical potential, the disorder attracts more particles from the
grand canonical reservoir into the system. The integral (3.56) is significant
for σ ≈ ξ, because then, the fraction q2ξ2/(2 + q2ξ2)2 and the disorder
correlation function overlap efficiently.

The counter-intuitive increase of the particle density can be under-
stood more directly [14] from the spatial average of the stationary Gross-
Pitaevskii equation (2.19). When the potential is switched on, the right
hand side of equation (2.19) does not change, because V (r) has zero
mean. By integration by parts one sees that the kinetic energy term
− ~2

2m

∫ ddr
Vol(∇

√
n0(r))2/n0(r) has a negative average, which has to be com-

pensated by a positive correction of the averaged interaction term, i.e. an
increase of the average density.

For an experiment it appears very unnatural that the particle number
should change while ramping up the disorder. Once the condensate is cre-
ated, the atom number and the average condensate density should stay con-
stant when the disorder potential is ramped up. For the rest of this work,
we switch to the canonical ensemble with fixed atom number. The increase
of the average density due to the disorder is compensated by an appropriate
shift of the chemical potential ∆µ. Consider the disorder average of (2.24)

with Ṽ (1) = 0 and n∞ = µ/g replaced by (µ+ ∆µ)/g

µ+ ∆µ

g

(
1− Ṽ (2)(r)

µ

)
!

=
µ

g
. (3.57)

Consequently, the chemical potential is shifted by

∆µ

µ
=
Ṽ (2)(r)

µ

(3.56)
= −σ

dV 2
0

µ2

∫
ddq

(2π)d
C(qσ)

q2ξ2

(2 + q2ξ2)2 < 0, (3.58)

up to higher orders in V 2
0 /µ

2. The correction to ReΣ is of higher order,
but the shift ∆µ corrects also the clean dispersion relation εk by ∆µ ∂εk

∂µ .
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Figure 3.4: Geometry of the scattering pro-
cess. In terms of the momentum transfer
q, the elasticity condition k2 = k′2 be-
comes q · (2k + q) = 0, geometrically rec-
ognized in the Thales circle.

q

k

k′

2k + q

Altogether, the relative correction of the speed of sound at fixed particle
number is given as

ΛN(k) = Λµ(k)− σd

2 + k2ξ2

∫
ddq

(2π)d
Cd(qσ) q2ξ2

(2 + q2ξ2)2 . (3.59)

Now, we can combine the above equation with the self-energy ReΣ(k, εk)
(3.39) to a single integral over the disorder correlator

ΛN(k) = P

∫
ddqσ

(2π)d
Cd(qσ)

(2 + q2ξ2)2

[
2
k2ξ2 + q2ξ2

2 + k2ξ2 + h(kξ, qξ)

]
. (3.60)

The first part in the brackets comes from the W (2) term and the transforma-
tion to the canonical ensemble. The other part is due to virtual scattering
processes, which are momentum conserving but not energy conserving. The
function h(kξ, qξ) collects the first-order envelope functions and the propa-
gators from the ~ ~ part in (3.39)

h(k, q) =
num(k, q)

den(k, q) + i0
. (3.61)

After some algebra, numerator and denominator are found as

num(k, q) = 2(2 + k2)(2 + k2 + q2 + 2k · q)(k2 + k · q)2/k2

+ 2(k2 + q2 + 2k · q)(k2 + q2 + k · q)2

− 4(2 + k2)(k2 + q2 + k · q)(k2 + k · q) (3.62a)

den(k, q) = (ε2k − ε2k+q)(2 + k2)

= −q · (2k + q)(2 + 2k2 + q2 + 2k · q)(2 + k2). (3.62b)

The denominator exhibits an elastic-scattering pole at εk = εk+q. Geomet-
rically, the first scalar product q · (2k + q) expresses the elasticity condition
on the Thales circle, figure 3.4.

The correction (3.60) to the dispersion relation εk in will be discussed in
detail in chapter 4.
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Figure 3.5.: Bogoliubov density of states (solid line). At low energies ~ω � µ, the density
of states is phonon-like ρ ∝ ωd−1 (dashed line), whereas at high energies ~ω � µ it is

particle like ρ ∝ (~ω − µ)
d
2
−1 (gray line).

3.4.6. Density of states

The spectral function (3.45) can be regarded as the probability of a Bogoli-
ubov quasiparticle in state k to have energy ~ω. By integrating over all
possible states, we obtain the average density of states, i.e. the probability
to find a state at a given energy ~ω

ρ(ω) =

∫
ddk

(2π)d
S(k, ω)

2π
. (3.63)

The spectral function is modified by the corrections to the free dispersion
relation (3.47), i.e. by ImΣB and ReΣB = V 2

0 Λ/µ2.

Clean density of states

Already in absence of disorder, the density of states shows an interest-
ing feature, namely the transition from sound-wave like excitations to
particle-like excitations. This implies a transition from ρsw(ω) ∝ ωd−1 to

ρparticle(ω) ∝ ω
d
2−1. According to equation (3.41), the clean density of states

is found as

ρ0(ω) =
Sd

(2π)d
kd−1
ω

∣∣∣∣
∂k

∂ω

∣∣∣∣
kω

, ~ω = µ kωξ
√
k2
ωξ

2 + 2. (3.64)

For low-energy excitations with ~ω = c k, this reduces to a phonon-like
dispersion relation ρ ∝ ωd−1, and for high energies it passes over to the
free-particle density of states ρ ∝ ω

d
2−1, see figure 3.5.
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Disorder correction

What is the impact of the self-energy ΣB on the spectral function (3.45)?
The imaginary part broadens the Lorentzian

SB(k, ω) =
−2ImΣB(k, εk)

[~ω − εk]2 + [ImΣB(k, εk)]
2 . (3.65)

This merely has an effect on the density of states (3.64), because as function
of ω, the Lorentzian is still normalized. For the evaluation of the integral
(3.63), we can approximate the Lorentzian with a Dirac δ-distribution at

the corrected dispersion relation εk = εk
(
1 + V 2

0

µ2 ΛN(k)
)
:

ρ(ω) =

∫
ddk

(2π)d
δ(~ω − εk) =

Sd
(2π)d

[
kd−1

∣∣∣∣
∂εk
∂k

∣∣∣∣
−1
]

k=k0

. (3.66)

Here, k0 is defined by ~ω = εk0

(
1 + V 2

0

µ2 ΛN(k0)
)
. To leading order in the

disorder strength, equation (3.66) can be expressed as

ρ(ω) = ρ0(ω)

{
1− V 2

0

µ2

[
d+ k

∂

∂k

]
vph(k)

vg(k)
Λ(k)

}

k=kω

, (3.67)

with ~ω = εkω , the phase velocity vph(k) = εk/(~k), and the group velocity

vg = ∂kεk/~. The velocity ratio vg/vph = 1+k2ξ2/2
1+k2ξ2 is one in the linear sound-

wave part of the spectrum and approaches 1/2 in the regime of the quadratic
particle spectrum.

A detailed study of the disorder-averaged density of states in the hydro-
dynamic regime will be presented in section 4.1.
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The disordered Bogoliubov problem contains three different length scales:
the excitation wave length λ = 2π/k, the healing length ξ, and the disorder
correlation length σ. The physics is not determined by the absolute values
of these length scales, but rather by their values relative to each other. The
three relevant dimensionless parameters are the following:

• The ratio σ/ξ indicates, whether the disordered condensate is in the
Thomas-Fermi regime (σ � ξ) or in the smoothing regime (σ � ξ),
see subsection 2.2.3.

• The parameter kξ indicates, whether the excitations are sound-wave
like (kξ � 1) or particle like (kξ � 1), see subsection 2.3.1.

• The parameter kσ discriminates the point-scatterer regime (kσ � 1)
from a very smooth scattering potential kσ � 1.

These three relevant parameters are not independent, two of them fix the
third one, e.g. σ/ξ = (kσ)/(kξ). The dimension of the parameter space
is reduced from three to two dimensions. This is analog to RGB color
space at fixed lightness. Each of the three dimensionless parameters can be
mapped to one of the three RGB channels. The parameter kξ, for example,
determines the red channel, where kξ → 0 is mapped to cyan and kξ →
∞ to red. Similarly, kσ and σ/ξ define the green and the blue channel,
respectively, which completes the color. The identity (σ/ξ)(kξ)/(kσ) = 1

σ
=

0

k = 0

ξ
=

0

σ
=
∞

k =∞

ξ
=
∞

σ

ξ
= 0

σ

ξ
=∞

kσ = 0

kσ =∞kξ =∞

kξ = 0

Figure 4.1: Illustration of the parameter
space of the full Bogoliubov problem.
The relevant dimensionless parameters
σ/ξ, kξ, kσ are identified with the color
space at fixed lightness. On the edges,
the limiting cases of the following sec-
tions are found.
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Figure 4.2.: Relative correction of the speed of sound ΛN = ∆c µ2/(c V 2
0 ) for 1D speckle

disorder. Full formula (3.60) for kξ = 0.05 (black line). Limiting formulae ΛN(kσ)|ξ=0

[section 4.1, (4.15)] (dotted blue) and ΛN(σ/ξ)|k=0 [section 4.2, (4.31)] (dashed green).
Numerical results of a Gross-Pitaevskii integration, as discussed in section 4.3, are shown
for V0/µ = +0.03 (blue straight marks) and V0/µ = −0.03 (red triangular marks).

fixes the value of the lightness, leaving the two-dimensional space of hue and
saturation, as shown in Fig. 4.1.

Limiting cases, where one of the length scales is zero or infinity, i.e. much
shorter or much longer than the other length scales, are found on the edges.
We focus mainly on the low-energy excitations kξ � 1. Only in the last
section, section 4.4, we consider the transition to particle-like excitations
kξ � 1.

Low-energy excitations

k = 0

ξ
=

0

σ
=
∞

σ
=

0

kξ
= 0.0

5

We are interested in the low-energy features, i.e. the
sound-wave regime kξ � 1. For practical purposes, we
choose a small but finite value kξ = 0.05. In the param-
eter space, the curve defined by kξ = 0.05 appears as a
smooth curve close to the ξ = 0 edge and the k = 0 edge,
as shown in the illustration on the right. Let us consider
the speed of sound, which is a significant physical quantity. In figure 4.2,
the correction (3.60) of the speed of sound due to a one-dimensional speckle
disorder potential is shown. The curve is rather complicated with three
different regimes: a linear increase at very short correlation lengths, a non-
monotonic intermediate range and saturation at long correlation lengths. In
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4.1. Hydrodynamic limit I: ξ = 0

the following sections, we will illuminate the different regimes and elaborate
limiting results.

In addition to excitation wave length and healing length, the disorder cor-
relation length provides a third length scale σ with no a priori constraints.
Thus, the sound limit kξ → 0 can be understood in two different ways:

1. Interaction dominates, and the healing length is the shortest of all
length scales and drops out, ξ → 0. This so-called hydrodynamic
limit leaves kσ as free variable. It is found at the lower right edge in
the parameter space figure 4.1 and is discussed in detail in section 4.1.

2. Conversely, the excitation wave length can be taken as the longest of
all length scales, i.e. k → 0, leaving σ/ξ as free variable. This limit is
found at the lowermost edge of the parameter space and discussed in
section 4.2.

Analytical results from both limits reproduce the exact correction (3.60) for
large σ/ξ and small kσ, respectively, cf. figure 4.2. Finally, in section 4.3, we
verify the perturbative predictions in all regimes with a numerical integra-
tion of the time-dependent Gross-Pitaevskii equation in a one-dimensional
disordered system.

4.1. Hydrodynamic limit I: ξ = 0

ξ
=

0
kσ =∞

kσ = 0

Here, the so-called hydrodynamic regime is discussed,
where the interaction gn = µ dominates over the
quantum pressure, i.e. kinetic energy. For the ground
state this means that the Thomas-Fermi approximation
(2.20) holds, and the excitations are in the sound-wave
regime kξ � 1. The fact that the interaction µ is the
largest energy scale implies that the healing length ξ = ~/

√
2mµ is the

shortest length scale. Thus, the physical results from section 3.4 can be
taken in the limit ξ → 0. All results will then depend only on the ratio σ/λ
of the remaining length scales, respectively on kσ = 2πσ/λ.

Physically, it is more instructive to perform the hydrodynamic limit in
the very beginning and to derive the results from the much simpler hydro-
dynamic equations of motion [115].
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4. Disorder—Results and Limiting Cases

4.1.1. Direct derivation from hydrodynamic equations of
motion

We start from the equations of motion (2.18) for density and phase in the
limit of negligible quantum pressure. For the ground state this means that
the Thomas-Fermi formula (2.20) applies, n0(r) = nTF = (µ − V (r))/g.1

The speed of sound characterizes the dynamics of small deviations δn(r, t) =
n(r, t)−n0(r) and δϕ(r, t) = ϕ(r, t)−ϕ0 from the ground state in the long
wave-length regime kξ � 1. In terms of density and superfluid velocity, the
linearized equations of motion (2.18) read

∂tδn+∇ · [n0(r)v] = 0, (4.1)

∂tv = − g
m
∇δn, (4.2)

and are recognized as the linearized versions of continuity equation and
Euler’s equation for an ideal compressible fluid, respectively. These can be
combined to a single classical wave equation

[
c2∇2 − ∂2

t

]
δn = 1

m∇ · [V (r)∇δn] . (4.3)

Translation invariance of the free equation suggests using a Fourier rep-
resentation in space and time,

[
ω2 − c2k2] δnk =

∫
ddk′

(2π)d
Ṽkk′δnk′. (4.4)

The disorder potential causes scattering k → k′ of plane waves with an
amplitude

Ṽkk′ = − 1

m
(k · k′)Vk−k′. (4.5)

The factor k ·k′ originates from the mixed gradient in (4.3) and implies pure
p-wave scattering of sound waves as discussed in section 2.4, in contrast to
s-wave scattering of independent particles [23].

In contrast to the perturbation theory in section 3.3, the starting point
(4.3) is a second-order equation of motion and does not have the block-
matrix structure. Apart from that, the diagrammatic perturbation theory
works exactly the same way. Analogously to (3.28), the following equation

defines the Green function G̃
(
G̃−1

0 − Ṽ
)
G̃ = 1. (4.6)

1Note that within the Thomas-Fermi approximation, the average particle density does not change. Thus,
we need not distinguish Λµ and ΛN (section 3.4.5) in the present section 4.1.
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4.1. Hydrodynamic limit I: ξ = 0

The free Green function G̃0 = (2π)dδ(k − k′)G̃0(k, ω) is diagonal in k,

G̃0(k, ω) =
[
ω2 − c2k2 + i0

]−1
. (4.7)

The full Green function G̃ is expanded in the same way as in equation (3.30),

G̃ = G̃0 + G̃0Ṽ G̃0 + . . .. Again, we take the disorder average and find

G̃(k, ω) =
[
G̃0(k, ω)−1 − Σ̃(k, ω)

]−1
. (4.8)

The poles of this average Green function at ω2 = c2k2 + Σ̃(k, ω) now de-
termine the effective dispersion relation. In the Born approximation, the
self-energy Σ̃(k, ω) evaluates as

Σ̃(k, ω) = V 2
0 σ

d

∫
ddk′

(2π)d
Cd(|k − k′|σ)

(k′·k)2

m2 G̃0(k
′, ω). (4.9)

The self-energy corrects the quadratic dispersion relation (~ω)2 = c2k2 +

Σ̃(k, ω). To leading order, we can use the on-shell approximation and replace

Σ̃(k, ω) with Σ̃(k, ck), such that ω = ck
[
1 + Σ̃(k, ck)/(2ck)

]
. This converts

to the inverse mean free path (kls)
−1 = −ImΣ̃(k, ck)/(c2k2) and the relative

correction of the speed of sound Λ = ReΣ̃(k, ck)µ2/(2c2k2V 2
0 ).

Before discussing these results in detail, we verify that these results are
in agreement with the result (3.39) from section 3.4 in the limit ξ → 0. The

envelope functions reduce to w(2) = O(kξ), w
(1)
k′k

= −k′·k ξ/
√

2kk′ = −y(1)
k′k

.
With this, we indeed find

lim
ξ→0

ΣB(k, εk) = ~
Σ̃(k, ck)

2ck
. (4.10)

Next, let us consider the central results inverse mean free path and correction
to the speed of sound.

4.1.2. Transport length scales

Mean free path

The imaginary part of the self-energy Σ̃ leads to the inverse mean free path

1

kls
=
V 2

0

4µ2 (kσ)d
∫

dΩd

(2π)d−1Cd
(
2kσ sin θ/2

)
cos2(θ). (4.11)
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Figure 4.3.: (a) inverse mean free path (4.11) and (b) inverse Boltzmann transport length
(3.51) in the hydrodynamic limit ξ = 0 for a speckle disorder (3.12). The insets show
schematically the angular dependence of elastic scattering.

Equivalently, this result is obtained from (3.50) with the elastic envelope
function A2 = cos2(θ) from section 2.4. This result is a function of kσ and
is shown in figure 4.3(a).

For small values of kσ, the correlator Cd can be approximated by Cd(0).
Then, the d-dimensional angular average of cos2(θ) gives 1/d. This result is
due to the “concentration of measure phenomenon” [125]: With increasing
dimension, the measure of the sphere is concentrated at the equator, where
cos θ vanishes. Altogether we find

1

kls
≈ V 2

0

4µ2 (kσ)dCd(0)
Sd

(2π)d−1

1

d
(4.12)

Thus, the inverse mean free path, measured in units of the wave length,
scales like (kσ)d.

For large values of kσ, the potential allows practically only forward scat-
tering. That means, cos2(θ) can be evaluated as 1 and the angular integral
(4.11) over the correlator Cd(2kσ sin(θ/2)) ≈ Cd(kσθ) scales like (kσ)−(d−1),
leading to a linear scaling (kls)

−1 ∝ kσ.

Boltzmann transport length and localization length

By adding a factor 1−cos θ under the angular integral (4.11), we obtain the
inverse Boltzmann transport length (3.51), see figure 4.3(b). At large kσ,
where forward scattering dominates, this suppresses 1/(klB) compared with
1/(kls), see insets of figure 4.3.
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4.1. Hydrodynamic limit I: ξ = 0

In one dimension, there is only the backscattering contribution k → −k

1

klB
=
V 2

0

2µ2

kσ

(1 + k2ξ2)2C1(2kσ). (4.13)

Due to the finite support of the speckle correlation function Cd(2k) (3.12a),
there is no backscattering at all for kσ > 1, and the inverse Boltzmann mean
free path goes to zero, at least within the scope of the Born approximation.
In dimensions d ≥ 2, there are still contributions from scattering angles
between 0 and π/2 [see insets of figure 4.3(b)], thus the inverse Boltzmann
transport length does not go abruptly to zero at kσ = 1, figure 4.3(b).

Conclusion

How strongly are the Bogoliubov excitations affected by elastic scattering?
In order to justify the description in terms of plane-wave states with a
well-defined sound velocity, the Boltzmann length lB and the localization
length lloc should be much larger than the wave length λ = 2π/k. This
is easily fulfilled for the Boltzmann length (3.51). The curves shown in
figure 4.3(b) are bounded and the scaling with V 2

0 /µ
2 guarantees lB � λ.

The localization lengths are equal to or even exponentially larger than the
Boltzmann length. The only thing to keep in mind is that for large values
of kσ, forward scattering events, which produce incoherence in the phase,
may occur frequently.

4.1.3. Speed of sound

We compute the relative correction of the speed of sound Λ = ReΣ̃(k,ck)µ2

2c2k2V 2
0

from the self-energy (4.9)

Λ = −1

2
P

∫
ddk′σ

(2π)d
Cd(|k − k′|σ)

(k · k′)2

k2(k′2 − k2)
. (4.14)

This formula has simplified significantly compared with the principal-value
integral (3.60).
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4. Disorder—Results and Limiting Cases

1D speckle potential

In the 1D speckle case, the correlation function (3.12a) is piecewisely linear,
and the integral (4.14) yields [115, 126]

Λ = −
{

1

2
+
kσ

8
ln

∣∣∣∣
1− kσ
1 + kσ

∣∣∣∣−
k2σ2

8
ln

∣∣∣∣
1− k2σ2

k2σ2

∣∣∣∣
}

= −1

2

{
1 +

kσ

4

[
2kσ ln kσ − (kσ + 1) ln(kσ + 1)− (kσ − 1) ln |kσ − 1|

]}
.

(4.15)

From the last term in the second form, it is apparent that Λ is non-analytic
at kσ = 1, the value beyond which elastic backscattering is suppressed. The
correction (4.15) is a negative correction to the dispersion relation, as shown
schematically in figure 4.4(a).

Limits in d dimensions

In higher dimensions, the integral (4.14) over the correlation functions gets
more complicated, so that analytical solutions like (4.15) are not available
in general. But in all cases, the principle-value integral (4.14) can be evalu-
ated numerically. figure 4.4(b) shows the corresponding curves. Short-range
correlated potentials (kσ � 1) affect low dimensions more than high dimen-
sions and vice versa.

For smooth potentials with k-space correlators Cd(kσ) that decrease suf-
ficiently fast, the limits kσ → 0 and kσ →∞ can be calculated analytically
as follows. It is useful to rewrite equation (4.14) in terms of η = 1/kσ as

Λ = −1

2
P

∫
ddq

(2π)d
Cd(q) [1 + ηq cos β]2

2ηq cos β + η2q2 . (4.16)

Denoting the angular part of the integral by Ad(ηq), one arrives at the
radial integral

∫∞
0 dq qd−1Cd(q)Ad(ηq). In the limit kσ � 1, the parameter

ηq tends to infinity nearly everywhere under the integral. Then

Ad(∞) =

∫
dΩd

(2π)d
(cos β)2 =

Sd
(2π)d

d−1, (4.17)

and with
∫ ddq

(2π)dCd(q) = Cd(r = 0) = 1, we arrive at Λ = −1/2d. In the limit

kσ → ∞ we proceed similarly with η → 0. The angular integrand reduces

to 1 +
[
2η cos β + η2

]−1
, whose principle-value integral evaluates after some

algebra to

Ad(0) =
Sd

(2π)d
d+ 2

4
, (4.18)
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Figure 4.4.: (a) Schematic representation of the disorder-averaged dispersion relation (4.15)
in one dimension. According to (4.19) the relative correction to c k (gray) is −1

2
V 2

0 /µ
2

for small kσ (dashed cyan) and −3
8
V 2

0 /µ
2 for large kσ (dotted blue). The full correction

(4.15) interpolates between the limits (solid black). This plot corresponds to the linear
regime of the Bogoliubov dispersion relation in figure 2.3. (b) Relative correction (4.14)
to the speed of sound in a d-dimensional speckle potential. The limits (4.19) are met at
the edges.

which leads to Λ = −2+d
8 . Summarized, the limits are

Λ = −1

2
×
{
d−1, kσ � 1 , (4.19a)
1
4(2 + d), kσ � 1 . (4.19b)

In figure 4.4(b), these limits are shown together with the full curves (4.14)
for speckle disorder. Note, however, that the limiting values are independent
of the particular type of disorder.

2D speckle disorder

In the case of a two-dimensional speckle disorder, the angular part of equa-
tion (4.14) is solved analytically as a closed-path integral in the complex
plane z = eiβ, β = ](k,k − k′), using the residue theorem

A2(q) = 1−
( q

2k

)2
+

(
1− q2

2k2

)
k2

q
√
q2 − (2k)2

, q = |k − k′|. (4.20)

The last term is imaginary for q < 2k and real for q > 2k. If kσ > 1,
there is no overlap of the correlator Cd(q) with the real part, such that the
correction of the speed of sound (4.14) takes the form

Λ2 = − 1

4π
Re

∫
dqσC2(qσ)A2(q) = −1

2

(
1− 1

8k2σ2

)
, for kσ > 1.

(4.21)
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4. Disorder—Results and Limiting Cases

Concordance with Goldstone theorem

It is important to notice that the relative correction of the Bogoliubov dis-
persion relation (4.14) has been found to be finite for any value of kσ and
in any dimension. That means, it is indeed possible to cast ReΣ into a
correction of the speed of sound, ck + ReΣ = c′k. The spectrum remains
gapless. This is a necessity, because disorder does not affect the U(1) sym-
metry of the (quasi)condensate condensate and the Bogoliubov excitations
must remain gapless Goldstone modes [72].

4.1.4. Density of states

In the present sound-wave regime, phase velocity and group velocity coin-
cide. Thus the average density of states (3.67) reduces to [115]

ρ(ω) = ρ0(ω)

{
1− V 2

0

µ2

[
d+ k

∂

∂k

]
Λ(k)

}
, (4.22)

with ρ0(ω) = Sd(2πc)
−dωd−1. Similarly to [127], we consider the scaling

function gd(ωσ/c) = ρ(ω)/ρ0(ω)− 1, which is computed from the correction
(4.14) of the speed of sound shown in figure 4.4(b). The limiting values from
(4.19) translate to

gd(κ) =
V 2

2µ2 ×
{

1, κ� 1,
d
4(2 + d), κ� 1.

(4.23)

Gurarie and Altland [127] suggested that one should be able to deduce from
the asymptotic values and the curvatures of this scaling function whether the
average density of state exhibits a “boson peak” at intermediate frequency
ω ≈ c/σ. The asymptotics of the scaling function in our case allow for a
smooth, monotonic transition between the limiting values in any dimension
d. Thus one has no reason to expect any extrema in-between.

In figure 4.5(a), numerical results of the full scaling function (4.22), de-
rived from the speed-of-sound correction Λ due to speckle disorder, are
shown. In three dimensions, the scaling function is indeed smooth and
monotonic.

In one dimension, however, the scaling function shows a strikingly non-
monotonic behavior. Using (4.15) and (4.22), we can write down this func-
tion analytically

g1(κ) =
v2

2

(
1 +

κ

2
ln

∣∣∣∣
κ− 1

κ+ 1

∣∣∣∣−
3κ2

4
ln

∣∣∣∣
1− κ2

κ2

∣∣∣∣
)
, κ = ωσ/c. (4.24)
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Figure 4.5.: Correction of the density of states gd(κ) = (ρ− ρ0)/ρ0 divided by the squared
disorder strength v = V/µ as function of reduced momentum κ = ωσ/c in dimension
d = 1, 2, 3. (a) Speckle disorder. At κ = 1, the momentum beyond which elastic
backscattering becomes impossible in the Born approximation, there is a logarithmic
divergence in d = 1, a kink in d = 2, and a curvature discontinuity in d = 3.
(b) Gaussian model of disorder with spatial correlation V (r)V (0) = V 2

0 exp [−r2/(2σ2)]
and CG

1 (kσ) =
√

2π exp(−k2σ2/2) as used in [122]. The sharp features of the speckle
disorder are washed out, but the structure of a local minimum followed by a local
maximum in d = 1 still exists.

It shows a pronounced dip around κ ≈ 0.7 and a sharp logarithmic diver-
gence at κ = 1. This particular structure is a consequence of the Born
approximation, more specifically the non-analyticity of the speckle pair cor-
relation function (3.12a) at the boundary of its support. The existence of
this “boson moat” could not be inferred from the asymptotics of g1(κ) alone
[127]. Indeed, expanding the asymptotic behavior as

gd(κ) = v2 ×
{
β<d (1 + α<d κ

2 + . . . ), κ� 1,

β>d (1 + α>d κ
−2 + . . . ), κ� 1,

(4.25)

we find α<1 = −1− 3
2 | lnκ| < 0 and α>1 = 1

18 > 0 of opposite sign. Together
with the fact that β<1 is larger than β>1 , these asymptotics would be com-
patible with a monotonic behavior and thus are not sufficient to infer the
existence of intermediate extrema.

In two dimensions, a kink separates a monotonic range for κ < 1 from a
totally flat plateau for kσ > 1 figure 4.5(a). This can be traced back to the
exact formula for the correction of the speed of sound (4.21), where the k−2

term cancels when (4.22) is applied. The coefficient α>2 = 0 vanishes, which
seems to happen also in other two-dimensional cases [127].

In three dimensions, the logarithmic singularity has moved to the second
derivative of g3(κ), which is hardly resolvable in the figure. The asymptotics
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4. Disorder—Results and Limiting Cases

α>3 < 0 leaves an all but structureless average density of state, as expected
[127].

As a rule, specific correlation-related features, like the non-analyticities at
κ = 1, tend to be washed out by integration in higher dimensional k-space.
Thus we expect arguments on general grounds [127] to hold more reliably in
higher dimensions. Conversely, the low-dimensional behavior may escape a
bird’s-view approach and require detailed calculations. We have presented
such a calculation for spatially correlated speckle disorder, so that our results
should be of immediate use for cold-atom experiments.

The non-analyticities at κ = 1 are particular features of speckle disorder.
The limiting values (4.23) and the asymptotics, however, are generic and
hold also for other models of disorder, like the Gaussian model [122]. In
figure 4.5(b), the correction of the density of states due to such a Gaussian
disorder is shown. The sharp features of the speckle disorder are washed out,
but limiting values, asymptotics and even the structure of an intermediate
minimum and maximum in one dimension are the same.

4.2. Hydrodynamic limit II: towards δ-disorder

k = 0
σ
ξ

= 0 σ
ξ

=∞

The low-energy regime is defined by excitation energies εk
much smaller than the chemical potential µ. In terms of
length scales, this is phrased as ξ/λ ∝ kξ � 1. In the pre-
vious section, this has been achieved by setting the healing
length ξ to zero. For the third length scale of the system,
the disorder correlation length σ, this implied ξ � σ. In order to cover also
the low-energy excitations in truly uncorrelated disorder σ < ξ, we change
the point of view in this section and realize kξ � 1 by setting k to zero.
This allows describing the low-energy excitations of a disordered BEC with
arbitrary ratio σ/ξ of correlation length and healing length. The price to
pay is that kσ is constrained to be small. Compared with the Bogoliubov
wave length, the bare disorder potential is uncorrelated. The effective po-
tential, i.e. the density profile, is smoothed to different degrees, depending
on the ratio of ξ and σ.

4.2.1. Mean free path

In the present limit k � σ−1, ξ−1, the inverse mean free path (4.11) evaluates
exactly the same way as in the limit (4.12), where ξ � σ, k−1 and kσ � 1
implied kξ � 1 and kσ � 1. According to (4.12), the inverse mean free
path (kls)

−1 scales like (V0/µ)2(kσ)d. Note that the scaling l−1
s ∝ kd−1 is
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4.2. Hydrodynamic limit II: towards δ-disorder

proportional to the surface of the energy shell, equivalently to the density of
states counting the states available for elastic scattering, see equation (3.64).
In the limit k → 0, the elastic energy shell shrinks and the scattering mean
free path diverges, even when measured in units of k−1.

4.2.2. Speed of sound

In the momentum integration of the self-energy (3.39) [equivalently in
(3.60)], an effective cutoff is provided either by the disorder correlator Cd(qσ)
at q = σ−1 or by the smoothing functions included in w(1), y(1) and w(2) at
q = ξ−1. Both cutoffs are much larger than k, such that the accessible k-
space volume of virtual states is much larger than the volume enclosed by
the elastic scattering shell (figure 3.4). A typical virtual scattering event is
sketched in figure 4.6.

Let us now consider the relative correction of the dispersion relation (3.60)
in the limit k = 0. The first part in the bracket reduces to q2ξ2 and the
function h(kξ, qξ) simplifies to

h(0, qξ) = −
[
2 cos2 β +

(qξ)4

2 + (qξ)2

]
, (4.26)

with β = ](k, q). Altogether, equation (3.60) becomes

ΛN = 2σd
∫

ddqσ

(2π)d
Cd(q)

(2 + q2ξ2)2

[
q2ξ2

2 + q2ξ2 − cos2 β

]
. (4.27)

The elastic-scattering pole, which was originally present in (3.39), has disap-
peared from the formula, because practically all relevant virtual scattering
states k′ = k+q are outside the elastic scattering sphere, see figure 4.6. Also,
the angle β = ](k, q) becomes equivalent to the angle θ = ](k,k′). So,
cos2 β represents the p-wave scattering of sound waves, again. In contrast to
the hydrodynamic case in the previous section, where the correction to the
speed of sound is found to be always negative, there are now two competing

q

k

k′

θβ

Figure 4.6: Typical virtual scattering
event in the regime kσ � 1, kξ � 1.
The cutoffs σ−1 and ξ−1 given by the
correlator and by the smoothing fac-
tor, respectively, are much larger than
k. So, most of the virtual scattering
states k′ = k + q are far outside the
elastic scattering shell |k′| = k.
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contributions in (4.27). The positive part comes from the W (2) contribution,
whereas the negative parts enter via (4.26) and stems from the VG0V part.

The first step in evaluating equation (4.27) is to compute the angular inte-
gral over cos2(β), where β is taken as polar angle in d-dimensional spherical
coordinates. The angular average of cos2(β) decreases with the dimension
and is found as 1/d, cf. discussion before (4.12). Thus, in higher dimensions
the negative contribution to the integral (4.27) loses weight with respect to
the positive contribution. The remaining radial integral reads

ΛN = 2
Sd

(2π)d

∫
dq qd−1σd

Cd(qσ)

(2 + q2ξ2)2

[
q2ξ2

2 + q2ξ2 −
1

d

]
. (4.28)

This result is plotted in figure 4.7(a) for speckle disorder in d = 1, 2, 3
dimensions.

Limits

The limit (σξ →∞)k=0 touches the limit (kσ → 0)ξ=0 of the previous section

in the lower right corner ξ � σ � k−1 of the parameter space represented
in figure 4.1. Thus, the result (4.19a) is recovered.

In the other limit of δ-correlated disorder, new results are found: For
ξ � σ, the smoothing factor (2 + q2ξ2)−2 in (4.28) is sharply peaked at
q = 0 with a width of ξ−1, so that the correlator Cd(qσ) can be evaluated
as Cd(0). Substituting y = qξ and integrating the first part in the bracket
of (4.28) by parts, we find

ΛN(k = 0, σ = 0) = 2
Sd

(2π)d
σdCd(0)

ξd

[
d

4
− 1

d

] ∫ ∞

0
dy

yd−1

(2 + y2)2

=
σdCd(0)

ξd
×





− 3
16
√

2
, d = 1

0, d = 2

+ 5
48
√

2π
, d = 3.

(4.29)

Remarkably, the correction is negative in one dimension, vanishes in two
dimensions and is positive in three dimensions. In the scaling with V0/µ
fixed, used so far, the correction vanishes for σ → 0, figure 4.7(a). The limit
of uncorrelated disorder becomes well-defined, when Pd(0) = V 2

0 σ
dCd(0) is

kept fixed while σ is decreased, figure 4.7(b). The 1D result will be studied in
detail by means of a numerical integration of the Gross-Pitaevskii equation
in section 4.3. As expected, the 3D result coincides exactly with the findings
of Giorgini, Pitaevskii and Stringari [78], which have been confirmed by
Lopatin and Vinokur [75] and by Falco et al. [80], but have been contradicted
by Yukalov et al. [82].
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Figure 4.7.: Relative correction of the dispersion relation in the limit k → 0 in d = 1, 2, 3.

In (a), the scaling is chosen as in the previous section, ΛN = ∆εkµ
2

εkV
2
0

. For large values

of σ/ξ, the limit ξ � σ � λ from equation (4.19a) and the left end of figure 4.4(b)
is recovered. In (b) the scaling in units of (σ/ξ)d(V0/µ)2 is suitable for the limit of δ-
correlated disorder. The limiting results from (4.29) are reached on the left. Remarkably,
the correction is negative in d = 1 and positive in d = 3. The latter recovers the result
by Giorgini et al. [78].

Intermediate behavior

In one dimension the correction (4.28) reads

Λ = −4

π

∫
dq σ

C1(qσ)

(2 + q2ξ2)3 . (4.30)

Because of Cd(kσ) ≥ 0 [equations (3.12)], this correction is negative.
In three dimensions, the limiting values (4.29) and (4.19a) imply a sign

change. In two dimensions, the qualitative behavior is less clear. In the case
of speckle disorder (3.12), it is possible to solve (4.28) explicitly:

ΛN(d = 1) = −3

8
z

(
arccot

(
z
)

+
1

3

z

1 + (z)2

)
, (4.31)

ΛN(d = 2) = z3 2z
√

1 + z2 − 1− 2z2
√

1 + z2
(4.32)

ΛN(d = 3) = 7z4 +
5

2
z3 arctan(1/z)− z4(6 + 7z2) log

(
1 + z2

z2

)
(4.33)

with z = σ√
2ξ

, see figure 4.7 and figure 4.2.

Speed of sound—summary

Let us recapitulate the disorder correction of the speed of sound shown in
figure 4.7(a). The right edge of the plot corresponds to the limit ξ � σ � λ,
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4. Disorder—Results and Limiting Cases

represented by the lower right corner in figure 4.1, and coincides with the
limit kσ = 0 in the previous section “Hydrodynamic limit I: ξ = 0”. At this
point, the correction is negative and proportional to 1/d, which is typical
for the angular integral over the p-wave scattering intensity cos2 θ. Starting
from this point σ � ξ, we decrease the disorder correlation length σ. The
correction is described by (4.27), which reveals two facts: (a) The smoothing
factor [1 + q2ξ2/2]−1 weakens the effect of disorder. (b) There is also a
positive correction (Mainly due to W (2) and beyond Thomas-Fermi effects),
which does not diminish with d. In one dimension, the factor −1/d is
strong enough to keep the correction of the speed of sound negative. In
three dimensions, however, the positive part takes over for σ/ξ . 0.75.

4.3. Numerical study of the speed of sound

σ = ξ

σ
=
∞

σ
=

0

kξ
= 0.0

5

In the previous two sections, we have worked out the low-
energy behavior of the Bogoliubov excitations in the limits
ξ = 0 and k = 0, which reproduce nicely the results of the
full theory in the respective regimes. In this section, we
confront the previous results with a direct numerical inte-
gration of the time-dependent Gross-Pitaevskii equation
(2.16). The numerical procedure is similar to the simulation of the single
scattering process in subsection 2.4.4. Essentially, the impurity is replaced
by a disorder potential extending over the whole system and the setup is
reduced from two dimensions to one dimension. Again, the simulation relies
neither on the linearization in the excitations, nor on perturbation theory
in the disorder potential. Thus, it is possible to go beyond leading-order
perturbation theory for weak disorder. Also, we investigate the statistical
distribution of the disorder average and the self-averaging properties of the
speed of sound. As expected, the predictions from the Born approximation
are confirmed very well for sufficiently weak disorder.

In the numerical integration of the original Gross-Pitaevskii equation
(2.16) it is impossible to perform the strict limit k = 0 or ξ = 0 as it
was done in the previous sections. Instead, the parameter kξ is fixed at a
small but finite value. Then the ratio σ/ξ is varied, which allows reaching
both regimes ξ � σ, λ from section 4.1 and λ� σ, ξ from section 4.2.

4.3.1. The numerical scheme

The integration is done in a one-dimensional system of length L with pe-
riodic boundary conditions. The discretization ∆x is chosen smaller than
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Figure 4.8.: Speckle potential V (x)/µ (red) and ground state density profile n0(x)/n∞
(green) for (a) a repulsive speckle potential V0 = +0.1µ, (b) an attractive speckle poten-
tial V0 = −0.1µ. The asymmetric distribution (3.10) of the speckle potential can lead
to occasional deep density depressions (a) or density peaks (b). At σ = ξ, the density
profiles are slightly smoothed, compared with the Thomas-Fermi profile (2.20).

healing length, disorder correlation length and wave length. Due to the fi-
nite system size L, Fourier space becomes discrete, with ∆k = 2π/L. The
first step is to generate the speckle disorder potential. For all k ≤ σ−1, the
independent complex field amplitudes Ek from (3.7) are populated using a
Gaussian random number generator from the gsl library. In real space, the
amplitudes are squared and the mean value is compensated, which gives the
speckle disorder potential (3.9). Then the condensate ground-state is com-
puted by imaginary time evolution, using the fourth-order Runge-Kutta al-
gorithm [104]. Starting point is the homogeneous condensate, which adapts
to the disorder potential during the imaginary time evolution, figure 4.8.
The imaginary time evolution is not unitary, thus it violates the normaliza-
tion of the wave function. This is compensated by re-normalizing the wave
function after each imaginary time step, which corresponds to the shift of
the chemical potential discussed in subsection 3.4.5.

Next, the disordered ground state is superposed with a plane-wave exci-
tation γk of the homogeneous system. According to the Bogoliubov trans-
formation (2.33) the imprints in density and phase read

δn(x) = 2
√
n∞

√
ε0k
εk

Γ cos(kx) δϕ(x) =
1√
n∞

√
εk
ε0k

Γ sin(kx). (4.34)

The amplitude of the phase modulation is much larger than the amplitude in
the density, because of εk � ε0k in the sound-wave regime. Thus, we choose

a small value for the amplitude
√
εk/ε0k Γ = 0.3

√
n∞V0/µ. Then, the time
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Figure 4.9.: Typical histograms of the correction to the speed of sound ΛN = ∆cµ2/(cV 2
0 )

at kξ = 0.05, kσ = 1, σ/ξ = 20 over 50 realizations of disorder. The mean value of
the respective distribution is marked with a solid line, and the Born prediction (4.15)
ΛN = 1

4
ln 2− 1

2
is shown as a dashed line. For V0/µ . 0.1, the width of the distribution

is clearly narrower than the mean value, i.e. the speed of sound shows self-averaging
behavior. For V0 = +0.15µ, the distribution becomes very broad, extending even to
positive values. The repulsive potential is so strong that the condensate density gets
depressed nearly to zero below the highest peaks. Then, it is impossible to imprint a
plane-wave density modulation (4.34). In two out of 50 realizations, no result could be
obtained.

evolution is computed using again the fourth-order Runge-Kutta algorithm.
The excitation propagates with a modified speed of sound and is slightly
scattered at the same time. In order to extract the relevant information,
the deviations of the wave function from the ground state are Bogoliubov
transformed. Then the phase velocity is extracted from the complex phase
of γk ∝ e−iεkt/~. This is done for many realizations of disorder and averaged
over. By comparison with the phase velocity in the clean system, the change
in the speed of sound is obtained. Furthermore, one can monitor the life-
time of the excitations by observing the elastically scattered amplitude γ−k.

4.3.2. Disorder average and range of validity of the Born
prediction

The numerical results for the speed of sound and other quantities (and ex-
perimental results as well) depend on the particular realization of disorder.
For an infinite system, the results would be perfectly self-averaging. For
practical reasons the size of the system was chosen to be 200 disorder corre-
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Figure 4.10.: Correction to the speed of sound at kξ = 0.05, kσ = 1, σ/ξ = 20 as function
of the disorder strength. The perturbative prediction appears as a horizontal line. The
values were obtained by averaging over 50 realizations of disorder, the error bars show
the estimated error of this mean value, which is given by the width of the distribution
divided by the square root of the number of realizations. The histograms corresponding
to the points at v = ±0.03,±0.15 are shown in figure 4.9. At large values of v, the
potential is likely to fragment the condensate. At v = 0.15, this happened in two out of
50 realizations; At v = 0.2 it happened already in five out of 30 realizations, making the
disorder average questionable.

lation lengths. In figure 4.9 the distribution of results is shown for different
disorder strengths V0 at kξ = 0.05 and kσ = 1. As long as the disorder is not
too strong, the distributions are clearly single-peaked with well-defined av-
erages. For larger values of |V0| & 0.1µ, the highest potential peaks or wells
reach the value of the chemical potential µ, which violates the assumptions
of perturbation theory of the Born approximation from chapter 3. In the
case of an attractive (red-detuned) potential with deep wells, V0 < 0, the ef-
fect is not very dramatic. In the opposite case of a repulsive (blue-detuned)
speckle potential, however, the rare high peaks of the speckle potential may
fragment the condensate. In the corresponding panel of V0 = +0.15µ, the
distribution is strongly broadened, including even some points with opposite
sign.

Also the mean values are shifted as function of the disorder strength V0.
This is investigated in figure 4.10, where the mean values of the distributions
in figure 4.9 are shown together with their estimated error. The correction
is shown in units of v2 = V 2

0 /µ
2, such that the Born approximation from

subsection 3.4.5 appears as the horizontal line as function of the disorder
strength V0. At small values of |V0/µ|, the agreement is very good. Then
there is a clear negative linear trend, which is due to the third moment
of the speckle distribution function (3.10). At larger values v & 0.15, the

99



4. Disorder—Results and Limiting Cases

condensate gets already fragmented, due to rare high potential peaks from
the exponential tail in (3.10), see also figure 4.8. This is reflected in the
positive deviation of the mean values and also in the increased width of the
distribution. To sum things up: Beyond-Born effects are clearly visible, but
the Born result remains useful in a rather wide range. The correction stays
negative, even for nearly fragmented condensates.

4.3.3. Non-condensed fraction

Even in the ground state, there are particles that are not in the Gross-
Pitaevskii condensate function Φ, but in excited states (subsection 2.5.6).
In order to verify the preconditions for treating the one-dimensional dis-
ordered problem on grounds of the Gross-Pitaevskii equation, we compute
the fraction of non-condensed particles. We start with the homogeneous
(quasi)condensate and evaluate the sum (2.87). In the thermodynamic limit,
this sum diverges in one dimension. Nonetheless, we can compute the sum
for systems of finite size. For the system size L = 200ξ, used in the previous
subsections, we find nnc|L=200ξ = 0.3488/ξ. Note that the non-condensed

fraction diverges logarithmically with L: for L = 105ξ, for example, we find
nnc|L=105ξ = 1.046/ξ.

We need to relate the non-condensed density to the total density n1D
of the Bose gas. This non-condensed fraction scales like (n1Dξ)

−1, i.e. the
average particle spacing in relation to the healing length [55, chapter 17].

The numerical procedure for computing the non-condensed density in
presence of disorder is as follows. In the same manner as in the Gross-
Pitaevskii integration (subsection 4.3.1), the system is discretized into l
points, the disorder potential is generated, and the Gross-Pitaevskii ground
state is computed. Then, the 2l × 2l real-space matrix (2.68) is set up and
diagonalized numerically. As the matrix is not symmetric, the eigenvectors
(uν(r), vν(r)) are not pairwisely orthogonal. Instead, they satisfy the bi-
orthogonality relation (2.74). The non-condensed density (2.85) is then
evaluated from the relevant modes with positive frequency (section 2.5). In
figure 4.11, results for the parameters used in the previous subsections are
shown. The initial increase is quadratic in the reduced disorder strength
V0/µ. Strong deviations occur at V0 & 0.1µ. At the disorder strength
V0/µ = 0.1, the fraction of non-condensed atoms is increased by about
25%, i.e. the non-condensed fraction is still of the same order as in the
homogeneous case.

In conclusion, the 1D validity condition for Gross-Pitaevskii theory in
the homogeneous case is nnc/n1D ∝ (ξn1D)−1 � 1 [55, chapter 17] (with a
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Figure 4.11: Relative increase of the
non-condensed density nnc due to
disorder. With the parameters of
the present section σ = ξ = L/200.
Note that the increase and the ref-
erence nnc(V = 0) both depend on
the system size L/ξ.

proportionality factor that depends logarithmically on L). As function of
disorder strength, the non-condensed fraction increases, but it stays within
the same order of magnitude, at least in the range of parameters of the
present section.

4.3.4. Speed of sound as function of the correlation length

Having checked the prediction at one particular value of the disorder corre-
lation length, we now investigate different regimes of length scales. Given
the condition kξ = 0.05� 1, the correlation length σ can be the shortest of
all length scales, larger than the healing length but shorter than the wave
length, or the largest of all length scales.

In the intermediate range, the full integral (3.60) interpolates between the
hydrodynamic limit (4.15) and the limit of low-energy excitations (4.31).

In the first case, the prediction (4.31) from section 4.2 holds (green dashed
line in figure 4.2). In the last case, the hydrodynamic limit (4.14) from
section 4.1 is applicable (blue dotted line in figure 4.2). In-between, the full
formula from subsection 3.4.5 has to be evaluated (solid line in figure 4.2). In
figure 4.2 numerical data averaged over 50 realizations of disorder is shown
together with the perturbative prediction from subsection 3.4.5. We find
good agreement, both for V0 > 0 and V0 < 0.
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4. Disorder—Results and Limiting Cases

4.4. Particle regime

In the previous sections of this chapter, we have investigated in detail the
sound-wave excitations in the low-energy regime kξ � 1. The predictions of
the disordered Bogoliubov theory, however, hold more generally and allow
the transition to the particle regime kξ � 1. There, the interaction can
be neglected with respect to the kinetic energy. The Hamiltonian (2.11)
becomes non-interacting, and one could expect that the entire Bogoliubov
problem passes over to the problem of free particles in disorder [22, 23].
However, in the non-interacting limit some subtleties occur because of as-
sumptions made in the derivation of the Bogoliubov Hamiltonian.

k =∞

ξ
=
∞

σ
=
∞

σ
=

0

kξ
= 10

In this section, we firstly discuss the predictions from
section 3.4 in the particle regime kξ = 10 � 1. In pa-
rameter space, the curve kξ = 10 is opposite to that of
section 4.3. The elastic scattering properties agree with
those of free particles, but the real corrections to the spec-
trum turn out to differ. The leading order tends to a
constant that can be absorbed in a shift of the chemical potential. In sub-
section 4.4.3, we compute the disorder averaged dispersion relation in the
Schrödinger particle limit, where the condition µ� V from the Bogoliubov
regime is reversed. Finally, we study numerically the transition between the
two regimes.

4.4.1. Mean free path

Already in the single scattering problem [subsection 2.4.3], we have learned
that in the limit ξ → ∞, the first-order scattering element (2.45c) ap-
proaches the scattering amplitude of a free particle in disorder

W
(1)
k+q k ≈

{
Vq qξ � 1 , (4.35a)

−Vq qξ � 1 . (4.35b)

Only the forward scattering element W
(1)
kk = −V0 [cf. (2.58)] deviates, but

can be absorbed in the chemical potential. Consequently, the imaginary
part of the self-energy, which consists of the angular integral over the elas-
tic scattering shell, passes over to the results of free particles in disorder.
Equation (3.53) reduces to

1

kls
=

(
V0

2ε0k

)2

(kσ)d
∫

dΩd

(2π)d−1Cd
(
2kσ sin θ

2

)
, (4.36)
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which coincides with [23, eq. (34)]. All quantities related to the interaction
have disappeared. The energy scale µ has been replaced with the kinetic en-
ergy ε0k of the particle and the only remaining length scales are combined in
the reduced momentum kσ. In contrast to the sound-wave regime [subsec-
tion 4.1.2], the inverse mean free path of particles diverges at low energies.
Slow particles are scattered strongly, and the perturbation theory breaks
down [22, 23].

4.4.2. Renormalization of the dispersion relation in the
Bogoliubov regime

Let us calculate the real part of the self-energy (3.39), i.e. the disorder cor-
rection of the dispersion relation, in the non-interacting limit µ→ 0. Apart
from W (1), we also need the anomalous scattering element Y (1) (2.45d),
which does not vanish as one might expect for non-interacting particles.
Instead, we find

Y
(1)
k+q k ≈

{
Vq

[
k2 + (k + q)2] /q2 qξ � 1 , (4.37a)

Vq(kξ)2 qξ � 1 . (4.37b)

The real part of the self-energy (3.39), together with the correction fixing
the particle number (3.59), is an integral over the momentum transfer q.
The correlator Cd(qσ) provides a sharp cutoff at q = 2/σ, and also the
smoothing factors contained in the envelope functions suppress the integrand
for qξ � 1. Thus, we can approximate the integrand for small q. Using
(4.35b), (4.37b) and (2.50), we find

M
(0)
N :=

εk
µ

ΛN =

∫
ddq

(2π)d
σdCd(qσ)

q2ξ2

(2 + q2ξ2)2 . (4.38)

Only the anomalous coupling y(1) and the second order w(2) have contributed
to this leading order, but not the normal scattering w(1). Equation (4.38)
holds for kξ � 1 and kσ not too small. It is a strictly positive function of
σ/ξ. In the leading order, there is no dependence on the momentum kξ, thus
it does not affect quantities like the group velocity and the effective mass
(inverse of the second derivative of the dispersion relation). It is interpreted
as a correction of the chemical potential in

εk
(2.36)
= ε0k + µ 7→ ε0k + µ

(
1 +M

(0)
N V 2

0 /µ
2
)
. (4.39)

The integral (4.38) has the same form as the correction (3.59), due to fixing
the particle number. However, it has the opposite sign. The correction
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Figure 4.12.: Relative disorder correction MN = (εk − εk)µ/V 2
0 of the dispersion relation

at kξ = 10, V0 = 0.03µ in one dimension. Solid line: Full correction (3.60) for finite

kξ = 10. Dashed line: Limit (4.40) M
(0)
N (σ/ξ) for kξ →∞. Dots: Numerical integration

in a system of size L = 200σ, averaged over 50 realizations of disorder [Each realization
of disorder was normalized to mean value zero and rms value |V0|]. The red circle marks
kσ = 0.5, cf. figure 4.14

(4.38) is positive although the chemical potential has been lowered in order
to keep the particle number constant. At fixed µ, the correction would be
double, Λµ = 2ΛN .

For the 1D speckle potential, the integral (4.38) can be solved analytically

M
(0)
N =

z

2

[
arctan

(
1

z

)
− z log

(
1 +

1

z2

)]
, z =

σ√
2ξ
. (4.40)

In figure 4.12, this limit is compared to the full correction at a finite value
kξ = 10.

Numerical test: Bogoliubov quasiparticles at kξ = 10. Analogously to
the procedure in section 4.3, we determine numerically the correction to the
dispersion relation in the particle regime kξ = 10, as function of the correla-
tion length σ. In figure 4.12, the numerical results are shown together with
the full Born prediction (3.60) and the limit (4.40), showing good agree-
ment. In contrast to the low-energy excitations, where the 1D correction
[(4.15) and (4.30)] is always negative, it is here found to be positive. Only
for σ/ξ & kξ, which is outside of the plot range, negative values are found.
The correction ΛN = MNµ/εk is much weaker than in the hydrodynamic
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regime, because in the range of validity of the Bogoliubov perturbation the-
ory, the disorder is weaker than the chemical potential, and the chemical
potential is again much lower than the excitation energy ε0k.

4.4.3. Transition to really free particles

How are the Bogoliubov excitations in the particle regime related to really
free particles? In the limit of vanishing interaction gn∞ = µ → 0, ξ →
∞, the Gross-Pitaevskii energy functional (2.17) passes over to the usual
Schrödinger energy functional and the Gross-Pitaevskii equation becomes
the Schrödinger equation, which reads

[
~ω − ε0k

]
Ψk =

∫
ddk′

(2π)d
Vk−k′Ψk′ (4.41)

in Fourier space. Also the Bogoliubov excitations seem to pass into free
particles, as the coefficient ak =

√
ε0k/εk tends to one

γ̂k
(2.32)
= i
√
n∞δϕ̂k + δn̂k/(2

√
n∞)

(2.27)
= δΨ̂k. (4.42)

The second equality relies on the fact that the condensate wave function
Φ(r) is extended. It fails for strong disorder V � µ, when the Bose-Einstein
condensate becomes a fragmented Bose glass [74].

Self-energy in the Schrödinger regime

Before working out the difference between the Bogoliubov regime and the
Schrödinger regime, let us consider the problem of the Schrödinger equation
in presence of weak disorder. From equation (4.41), we write the Born
approximation of the self-energy for the disordered Schrödinger problem

ReΣSg = V 2
0 P

∫
ddk′

(2π)d
σd
Cd(|k − k′|σ)

ε0k − ε0k′
. (4.43)

For the 1D speckle potential, the correlator Cd is piecewisely linear and the
Cauchy principal value can be computed analytically. Similarly to (4.15)
we find

ReΣSg =
1

4

V 2
0√
ε0kEσ

[
ln

∣∣∣∣
1 + kσ

1− kσ

∣∣∣∣+ kσ ln

∣∣∣∣
1− k2σ2

k2σ2

∣∣∣∣
]
, (4.44)

see figure 4.13. The self-energy scales like V 2
0 /
√
ε0kEσ, where Eσ = ~2/(2mσ2)

is the energy scale defined by the disorder correlation length.
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Figure 4.13: Real part of the self-energy
(4.44) for individual atoms in a 1D
speckle potential. The blue circle marks
kσ = 0.5, cf. figure 4.14.
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4.4.4. Closing the gap with a Gross-Pitaevskii integration

Although Bogoliubov excitations in the particle regime and free particles
have the same dispersion relation and the same elastic scattering properties,
the results obtained in the Bogoliubov regime [(4.40), figure 4.12] differ
significantly from those of the Schrödinger regime [(4.44), figure 4.13]. The
differences stem from the different presuppositions in the two regimes.

• In the Bogoliubov regime, plane-wave excitations with amplitude Γ are
considered on top of the extended condensate function Φ(r). In the
scope of the Bogoliubov approximation (section 2.3), the excitations
have to be small Γ� Φ. Conversely, in the Schrödinger regime, there
is no background at all present, i.e. Γ� Φ.

• In the Bogoliubov regime, the condensate wave function Φ provides
an absolute reference for the complex phase of the excitations. The
superposition of the plane-wave excitation with the condensate leads
to a density modulation. In the Schrödinger regime, there is no con-
densate providing an absolute phase and consequently no signature in
the density. The particles can only be tracked by the complex phase
of δΨk. In the following, we use δΨk ∝ e−iωt to obtain the phase ve-
locity instead of the density and phase signature δn and δϕ. We write
MSg instead of MN . In the Bogoliubov regime, these definitions are
essentially equivalent, because the phase of the condensate changes
only very slowly with time.

• The validity conditions for the disorder perturbation theories differ.
In the Bogoliubov regime, the disorder must be weak in the sense that
V (r) � µ. In the Schrödinger regime, µ vanishes and the validity

condition is V0 �
√
ε0kEσ [23]. When passing from the Bogoliubov

regime to the Schrödinger regime, V0 � µ has to be reversed µ� V0.
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Figure 4.14.: Correction of the dispersion relation in the transition from the Bogoliubov
regime to free-particle plane waves. Red dotted line: Bogoliubov limit (4.40), cf. fig-
ure 4.12; dashed line: Schrödinger limit (4.44), cf. figure 4.13; dots: results from the
Gross-Pitaevskii integration. (a) Disorder correction at V0/µ = 0.05 as function of the
wave amplitude Γ/Φ0; (b) Disorder correction at Γ/

√
n∞ = 100 as function of the ra-

tio V0/µ of disorder strength and chemical potential. For explanations, see main text.
Parameters: kξ = 10 and kσ = 0.5

We establish the connection between the Bogoliubov regime and the
Schrödinger regime by means of a Gross-Pitaevskii integration and observe
the disorder averaged propagation speed.

We proceed in two steps. Firstly, we increase the wave amplitude Γ with
respect to the ground-state wave function Φ. We start with a plane wave
with small amplitude on top of the extended Gross-Pitaevskii ground state
and end at the opposite case of the whole condensate propagating as a plane
wave in presence of a small fraction at rest. This transition is to be under-
stood essentially as a formal transition. Physically, it is somewhat pathologi-
cal, because the macroscopically populated traveling wave is a highly excited
state and the Gross-Pitaevskii ansatz is questionable. However, interpreted
as a single Schrödinger particle in a disordered environment, the problem
is well defined [22, 23]. Results are shown in figure 4.14(a). As expected,
they initially agree with the Bogoliubov prediction (4.40) and approach the
Schrödinger prediction (4.44) for Γ� Φ0. The Schrödinger prediction is not
met exactly, which is plausible because the chemical potential is still larger
than the disorder potential.

In the Schrödinger regime, the chemical potential should be the lowest of
all energy scales. Thus, in a second step, we increase the disorder strength V0
beyond the chemical potential and the agreement gets better, figure 4.14(b).
For very high values of V0, the validity condition V0 � ε0k = µk2ξ2 for the
Born approximation in (4.43) is violated and the agreement gets worse again.
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4.4.5. Conclusions on the particle limit

Bogoliubov quasiparticles at high energies and free particles without any
condensate background have the same clean dispersion relation ε0k and the
same elastic scattering amplitude W (1).

Concerning the disorder correction to the dispersion relation, however,
their respective behaviors appear contradictory. The correction derived in
the Schrödinger regime (4.43) is not recovered by the correction in the Bo-
goliubov regime (4.38). The leading-order of the latter can be absorbed in
an overall shift of the chemical potential (4.39), which leaves physical quan-
tities like the effective mass, i.e. the curvature of the dispersion relation
untouched. This is similar to section 2.4, page 44, where we also shifted
the chemical potential in order to recover the equations of motion for free
particles.

It is misleading to expect that the disordered Bogoliubov problem as
treated in chapter 3 should pass over to the problem of single atoms in
disordered potential [22, 23]. Though the underlying Hamiltonians are the
same in the limit g = 0 (or µ = 0, or ξ = ∞), differences occur because of
the approximations made. In the expansion of the Bogoliubov Hamiltonian,
the smoothed potential (2.21) was used, with the validity condition µ� V .
The interactions of Bogoliubov excitations with the condensate background
scale like gn0(r) ∼ µ and will never be negligible compared to the disorder
potential.

After these problems with the real renormalization of the dispersion rela-
tion, it is astonishing that there are no differences in the elastic scattering
processes. This can be understood in the following simplified reasoning:
Schrödinger particles are subject to the external potential only, whereas
Bogoliubov excitations in the particle regime see both, the external poten-
tial and the condensate background. At relevant wave numbers kξ � 1,
the condensate is so smooth that it cannot contribute to the scattering,
thus, the elastic properties of Schrödinger particles and Bogoliubov excita-
tions are the same. However, the homogeneous background does shift the
mean energy, therefrom the shift of the chemical potential found in equation
(4.39).

Beyond the leading correction (4.38), there should be k-dependent cor-
rections, but these are at least one order (kξ)−1 smaller.
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5.1. Summary

A general formalism for the description of the Bogoliubov excitations of in-
homogeneous Bose-Einstein condensates has been set up. The difficulty of
the inhomogeneous many-particle problem has been solved by means of an
inhomogeneous Bogoliubov approximation. Taking advantage of the macro-
scopically populated condensate state, we have separated the problem into
the mean-field condensate function Φ(r) and the quantized inhomogeneous
Bogoliubov problem. Via the Gross-Pitaevskii equation (2.16), the external
potential enters the condensate function Φ(r) nonlinearly. The condensate
function then enters the Bogoliubov Hamiltonian and makes it inhomoge-
neous.

The Bogoliubov Hamiltonian (2.42) depends in a simple way on Φ(r)
and Φ̄(r) = Φ2

0/Φ(r), i.e., if one could solve the Gross-Pitaevskii equation
exactly, one could write down the Bogoliubov Hamiltonian exactly, too. For
practical purposes, however, the Bogoliubov Hamiltonian is expanded in
powers of the external potential in a systematic way.

Already in the first order, interesting physics is observed, namely the
transition from p-wave scattering characteristics in the sound-wave regime
to s-wave scattering in the particle regime (section 2.4).

For the disordered problem, including the renormalization of the disper-
sion relation, some more efforts have been necessary. Firstly, the self-energy
is of second order in the disorder potential, so also the second order of the
Bogoliubov Hamiltonian had to be included in the correction. Secondly, the
basis in presence of disorder had to be chosen correctly (section 3.2). With
the reasoning of section 2.5 and section 3.2, this question has been answered
once and for all: Bogoliubov modes (2.33) defined in terms of plane waves
in density and phase are the only reasonable choice, unless one wants to
exactly diagonalize the disordered Bogoliubov Hamiltonian (2.29).

With the disordered Bogoliubov formalism, physical quantities like the
mean free path and the renormalized speed of sound can be calculated in
the whole parameter space spanned by the excitation wave length, the con-
densate healing length and the disorder correlation length.
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The mean free path is found to be sufficiently long, such that it makes
sense to define a renormalized speed of sound. In three-dimensional un-
correlated disorder, the positive correction of the speed of sound predicted
by Giorgini et al. [78] is recovered. Beyond that, the disorder-averaged
speed of sound is computed for arbitrary correlation length and for arbi-
trary dimension. Interestingly, the positive correction for three-dimensional
uncorrelated disorder changes its sign when going to correlated disorder or
to one dimension.

Non-condensed fraction

The non-condensed fraction due to disorder (subsection 2.5.6 and subsec-
tion 4.3.3) goes beyond the condensate depletion calculated by Huang and
Meng [77] and by Giorgini et al. [78]. There are two small parameters: the
weak-disorder parameter V0/µ and the gas parameter

√
na3

s. The defor-
mation of the Gross-Pitaevskii ground state scales with V0/µ. This is the
condensate depletion of [77, 78]. In this work, the Bogoliubov excitations are
measured from the deformed Gross-Pitaevskii ground state. Consequently,
the deformation of the ground state does not appear as a condensate deple-
tion. The non-condensed fraction (2.85) is of the order

√
na3

s, and its shift

due to disorder is of the order
√
na3

s V
2

0 /µ
2 (subsection 4.3.3).

The non-condensed fraction (2.85) has been computed numerically in a
finite one-dimensional system, in order to verify that the validity of Gross-
Pitaevskii theory is not destroyed by disorder.

5.2. Experimental proposals

From the studies presented in this work, the following proposals for experi-
ments can be made.

Elastic single scattering

The first proposal follows the single scattering process discussed in sec-
tion 2.4. The experimental procedure should essentially follow the numer-
ical scheme. As pointed out in subsection 2.4.1, the setup should be two-
dimensional. Apart from setups with a two-dimensional condensate in a
magnetic trap with a superimposed optical lattice like in [5], the 2D exper-
iment at MIT [42] with a sodium condensate in an optical trap consisting
of a laser light sheet seems to be a particularly suitable starting point. An
additional laser focused perpendicularly through the trap serves as impurity
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potential. The imprint and the detection of the Bogoliubov waves follows
Vogels et al. [61], using Bragg spectroscopy techniques. The crucial point is
the detection of the scattered Bogoliubov wave, because it will be one or two
orders of magnitudes smaller than the imprinted plane wave. In addition,
the detection has to take place with angular sensitivity.

Despite these challenges, the continuous transition from a p-wave scatter-
ing amplitude in the sound-wave regime to an s-wave scattering amplitude
in the particle regime promises to be an interesting object of experimental
study.

Measurement of the speed of sound in disordered BEC

The predicted renormalization of the speed of sound due to disorder, as dis-
cussed in chapter 4, can in principle be measured experimentally. However,
in the perturbative regime of the predictions, the corrections scale quadrat-
ically with the disorder strength, and consequently they are very small. In
a direct observation in real space, as in the experiment [57], the difference
in the propagation speed should be hardly separable from the noise in the
data. A more sophisticated ansatz is measuring the static structure factor
by Bragg spectroscopy and to extract the dispersion relation, similar to the
experiments [59, 62], but with a speckle disorder potential superposed to
the trapping potential. In contrast to the first ansatz, it is possible to excite
certain k values selectively, which allows also probing the transition from
sound-like to particle-like excitations.

5.3. Theoretical outlook

With the inhomogeneous Bogoliubov Hamiltonian (section 2.3) and the
block matrix notation (subsection 3.3.2) at hand, many other questions can
be approached.

Localization

It should be particularly interesting to characterize the localization of Bo-
goliubov excitations across the transition from sound waves to particles. In
three dimensions, phonon and particle regime have opposite characteristics
concerning their localization [29]: Delocalized low-energy phonon states are
separated by a mobility edge ω∗ from localized high-energy states. Inversely,
electrons are localized at the lower band edge, separated from extended
states at the mobility edge E∗. The upper band edge does not apply in the
case of bosons in a continuous system. Phonon regime and particle regime
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Figure 5.1: Density of states in three dimensions
(compare to figure 3.5(c)). For sufficiently
strong disorder, the Bogoliubov excitations in
the crossover region at kξ ≈ 1 are expected
to localize (gray).
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are now combined to the Bogoliubov dispersion relation (2.35), figure 2.3.
Depending on the disorder strength, two regimes are possible:

1. Weak disorder µ < ω∗, E∗ < µ. Phonon and particle regime are
combined without any localized states.

2. Strong disorder ω∗ < µ < E∗. There is a range of localized states
around the crossing from phonon to particle excitations.

The characterization of these localized states between phonons and par-
ticles is an interesting topic for further research. A possible approach is
a diagrammatic perturbation theory analogous to Vollhardt’s and Wölfle’s
approach [123], which allows computing the weak-localization to the diffu-
sion constant. This approach has already been applied to non-interacting
cold atoms in speckle potentials [22, 128]. With the block-matrix notation
employed in subsection 3.3.1, the Bogoliubov propagator follows equivalent
equations of motion. It should be possible to compute the weak-localization
correction to the diffusion constant analogously.

Finite temperature

With the Bogoliubov formalism set up in this work, it is in principle possible,
to consider finite-temperature problems. Similar to the zero-temperature
Green functions in the block-matrix formalism of subsection 3.3.2, also Mat-
subara Green functions could be set up and computed. However, the Bogoli-
ubov formalism relies on the macroscopic occupation of the condensate mode
and neglects the interactions between the Bogoliubov excitations. At higher
temperatures, these interaction effects become relevant and one should take
beyond-Bogoliubov terms into account. These interactions appear as addi-
tional perturbations and might be accessible with methods similar to those
used by Hugenholtz and Pines [76]. However, two perturbations at once,
disorder and the interaction among quasiparticles should make the problem
extremely complicated.

112



Part II.

Bloch Oscillations
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6. Bloch Oscillations and
Time-Dependent Interactions

The second part of this work is somewhat separate from the Bogoliubov
part, as now a lattice system is considered (figure 6.1), in contrast to the
continuous system in part I. Instead of the disorder leading to scattering
and localization, now the tilted lattice localizes the wave packet by the phe-
nomenon of Bloch oscillation. The perturbation comes as a time-dependent
interaction, which in general destroys the wave packet.

There are also strong links to part I. After the smooth-envelope ap-
proximation (6.7), the discrete Gross-Pitaevskii equation takes the form of
the continuous Gross-Pitaevskii equation (which is also known as nonlinear
Schrödinger equation), but now with a time-dependent effective mass.

Additionally to the time-dependent mass, also the interaction can be made
time-dependent by means of a Feshbach resonance. Together they provide a
source of energy for the growth of excitations (dynamical instability). These
excitations are of the same type as the Bogoliubov excitations in part I. The
growth of these excitations is the main mechanism for the destruction of the
coherent wave packet.

The work of this part was done in collaboration with the group of Fran-
cisco Domı́nguez-Adame at Complutense University in Madrid. The essen-
tials have been published in [129, 130].

6.1. Introduction

Historically, the interest in electrons and phonons in crystals has lead to
the investigation of lattice systems. Understanding quantum particles as
waves is the key to understanding the dramatic effects a lattice can have

Figure 6.1: Schematic representation of the
setting for Bloch oscillations. The wave
packet (blue) is located in the wells of a
deep tilted lattice potential (gray)
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Figure 6.2: Sketch of the dispersion rela-
tion in a lattice. The dashed line shows
the free dispersion ε0k = ~2k2/(2m),
folded back into the first Brillouin
zone. The lattice with period d cou-
ples the degenerate states k = +π/d
and k = −π/d at the edges of the Bril-
louin zone, which leads to band gaps
(avoided crossings). In a deep lattice
potential, the band gap becomes large
and excitations from the lowest band
to higher bands can be neglected at low
temperatures. k

ǫ

−π
d

π
d

n = 1

n = 2

n = 3

on the particles. Even if the lattice is weak, in the sense that each site is
only a weak scatterer, the coherent superposition of waves reflected at the
periodic lattice can lead to total reflection if the scattered waves interfere
constructively.

6.1.1. Bloch oscillation of a single particle

The lattice is symmetric under discrete translations by integer multiples of
the lattice vectors. As a consequence, the Bloch theorem [131] states that
every energy eigenstate ψ(r) can be written as the product of a plane wave

eik·r and a lattice-periodic function u
(n)
k (r). The energy states are organized

in energy bands labeled with the index n (figure 6.2).
If the lattice potential is deep, the gap separating the lowest band from

higher bands becomes large, such that tunneling to higher bands (Landau-
Zener tunneling [132]) can be neglected and a description restricted to the
lowest band is sufficient. The dispersion relation ε(k) is proportional to
− cos(kd) (subsection 6.2.1).

The basic concept of Bloch oscillations can be understood within a semi-
classical reasoning. Let us consider a wave packet with a narrow mo-
mentum distribution in a lattice. If the wave packet is accelerated by a
uniform force −F (like gravity or an electric field for charged particles),
then its momentum ~k = −Ft will increase linearly. In a lattice, how-
ever, momentum and velocity do not coincide. Indeed, the velocity is
given by the group velocity, i.e. the first derivative of the dispersion relation
vg = ∂kε(k) ∝ − sin(kd) = sin(Ft). Instead of accelerating uniformly, the
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Figure 6.3: Sketch of the intensity of two counter-
propagating laser beams, which creates the lat-
tice potential for the ultracold atoms. Taken from
[37].

wave packet oscillates in space. This phenomenon is known as Bloch oscilla-
tion and was predicted quite some time ago by Bloch and Zener [131, 133].

Notably, the edge of the Brillouin zone π/d coincides with the momen-
tum, where the de Broglie wave length equals the lattice period. Simply
speaking, Bragg reflection of the particle leads to the oscillating motion. In
subsection 6.2.2, we will consider Bloch oscillations in a more rigorous way
than in this introductory paragraph.

6.1.2. Experimental realization

Bloch oscillations rely on the coherent reflection of waves and are very sen-
sitive to any kind of dephasing, as interaction effects or impurities in the
lattice. In solid-state systems, the lattice spacing d is given by atomic dis-
tances, which is so short that the electrons suffer from scattering events long
before they reach the edge of the Brillouin zone π/d. For the experimental
observation of Bloch oscillations, it was necessary to increase artificially the
lattice spacing, which was achieved in semiconductor superlattices [134, 135].

Later, Bloch oscillations were observed in cold atomic gases in optical
lattice potentials [7, 8]. In cold-atom experiments, the atoms are trapped
in the optical dipole potential (subsection 3.1.3, or [39]) of a laser standing
wave, figure 6.3. The strength of the lattice can be adjusted via the laser
intensity and detuning, and the lattice spacing can be selected via the laser
wave length and the relative angle of the beams [136].

There is also an optical analog of Bloch oscillations. In the experiments
[137, 138], an array of weakly coupled wave guides was prepared with an
index of refraction that increased linearly across the array. Then, a light
beam propagating along the wave-guide array oscillates along the transverse
direction. The longitudinal direction of the array takes the role of the time
axis c t.
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6.1.3. Time dependent interaction g(t)

Via Feshbach resonances [43–46], ultracold-atom experiments open new pos-
sibilities. The s-wave scattering length can be tuned in a wide range, includ-
ing negative values. In particular, a complete suppression of the interaction
is possible. At zero scattering length, very long-living Bloch oscillations
can be observed [40]. However, there are always residual experimental un-
certainties, e.g. an interaction parameter g(t) that fluctuates around zero.
Thus, the question about the effect of such perturbations arises naturally.

We will consider perturbations that are commensurate with the Bloch
frequency. It will turn out that their effect on the dynamics of the Bloch os-
cillation depends sensitively on their phase relative to the Bloch oscillation.
Deliberately modulating the interaction can make the Bloch oscillation more
robust against certain perturbations.

6.2. Model

Let us consider particles subjected to a lattice potential. For the description
of Bloch oscillations, the starting point is the Gross-Pitaevskii equation

i~
∂

∂t
Ψ =

[
− ~2

2m
∇2 + V (r)

]
Ψ(r) + g |Ψ(r)|2Ψ(r), (6.1)

[subsection 2.2.2, equation (2.16)]. Here, we do not include the chemical
potential because we work at fixed particle number. The setting differs
from the Bogoliubov problem of the extended condensate ground state with
the disorder imprint in part I. Here, the condensate is created in a harmonic
trap and then transferred into an optical lattice, and the trap is switched
off (figure 6.1). Obviously, this is not the ground-state configuration, and
the condensate will have the tendency to spread, both due to repulsive
interaction and due to the usual linear dispersion of matter waves.

The phenomenon of Bloch oscillation takes place in one direction. Thus,
we consider a setup in which the transverse degrees of freedom are frozen.
The transverse harmonic-oscillator ground state is integrated out, leading
to a renormalized interaction parameter in the remaining dimension

g1D =
mω⊥
2π~

g3D. (6.2)

Here, ω⊥ is the transverse oscillator frequency (or the geometric mean in
anisotropic configurations). The usual three-dimensional interaction pa-
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z

|Ψ(z)|2
Figure 6.4: Typical initial state

for Bloch oscillations. This
density profile was obtained
as the ground state of the
continuous Gross-Pitaevskii
equation (6.1) with V1D =
V0 cos2(πz/d) + 1

2
mω2

zz
2. The

trap ωz is then switched off.
This state is well described
with a tight-binding ansatz.

rameter g3D = 4π~2as/m is proportional to the s-wave scattering length as.
In the one-dimensional Gross-Pitaevskii equation

i~
∂

∂t
Ψ(z, t) =

[
− ~2

2m
∇2 + V1D(z)

]
Ψ(z, t) + g1D |Ψ(z, t)|2Ψ(z, t), (6.3)

the potential V1D(z) is given as a deep lattice potential V0 cos2(πx/d) with
spacing d. Later-on, the lattice is accelerated in order to observe Bloch
oscillations. This is done by tilting the lattice out of the horizontal plane,
or by accelerating the lattice by optical means.

6.2.1. Tight binding approximation

In sufficiently deep lattice potentials, only the local harmonic-oscillator
ground state in each lattice site is populated. This regime is called the
tight-binding regime (figure 6.4). The condensate is represented by a sin-
gle complex number Ψn(t) at each lattice site [139]. Neighboring sites are
weakly coupled by tunneling under the separating barrier with tunneling
amplitude

J ≈ 4√
π

(V0/Er)
3
4 exp(−2

√
V0/Er)Er, (6.4)

where E = ~2π2/(2md2) is the recoil energy [136]. Here, changes of the local
oscillator function due to the interaction have been neglected. This assump-
tion holds in deep lattices with ~ω‖ � gTB|Ψn|2 (see below). Otherwise, the
tunneling amplitude (6.4) gets modified already for slight deformations of
the Wannier functions [140].
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The tight-binding equation of motion thus reads

i~Ψ̇n = −J(Ψn+1 + Ψn−1) + FdnΨn + gTB(t)|Ψn|2Ψn . (6.5)

Here, we have added a constant force F . The tight-binding interaction
parameter gTB is obtained from the one-dimensional interaction parameter
g1D by integrating out also the harmonic-oscillator ground state in the lon-
gitudinal direction, gTB = N

√
mω‖/2π~g1D. The factor N comes from the

convention that the discrete wave function Ψn is normalized to one instead
of the particle number N .

Using an appropriate Feshbach resonance, the interaction parameter
gTB(t) can be controlled by external magnetic fields. The validity of
(6.5) is limited by the transverse trapping potential |gTB| � ~ω‖/n0, with
n0 = maxn |Ψn|2.

The dispersion relation of this single-band model reads ε(k) = −2J cos(kd).
Its curvature or inverse mass m−1 = 2Jb2 cos(kd)/~2 determines the dynam-
ics of smooth wave-packets. The equation of motion (6.5) can be derived as
iΨ̇n = ∂H/∂Ψ∗n from the nonlinear tight-binding Hamiltonian

H =
∑

n

{
−J(Ψn+1Ψ

∗
n + Ψ∗n+1Ψn) + Fnd|Ψn|2 +

gTB(t)

2
|Ψn|4

}
. (6.6)

6.2.2. Smooth-envelope approximation

Experimentally, the initial state is prepared by loading a Bose-Einstein con-
densate from an optical dipole trap into an optical lattice created by two
counter-propagating laser beams [40]. If this is done adiabatically, the low-
est oscillator states of the lattice are populated according to the profile of
the condensate in the trap (figure 6.4).

In the following, we use J and d as units of energy and length, respectively.
Furthermore, we set ~ = 1 and omit the subscript TB of the interaction
parameter. We tackle Eq. (6.5) by separating the rapidly varying Bloch
phase eip(t)n from a smooth envelope A(z, t) comoving with the center of
mass x(t):

Ψn(t) = eip(t)nA(n− x(t), t)eiφ(t). (6.7)

With p(t) = −Ft, x(t) = x0 + 2 cos(Ft)/F , and φ = φ0 + 2 sin(Ft)/F , the
envelope is found to obey the nonlinear Schrödinger equation

i∂tA = − 1

2m(t)
∂2
zA+ g(t)|A|2A , (6.8)
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with 1/m(t) = 2 cos p(t). Higher spatial derivatives of A have been ne-
glected. Note that we choose an immobile wave packet with p(0) = 0 as
initial condition, which fixes the phase for the subsequent Bloch oscillations.

Let us consider solutions of (6.8) in two simple limits (a) and (b).

(a) Linear Bloch oscillation

In absence of the nonlinear term, a Schrödinger equation with a time-
dependent mass is to be solved. This can be done easily in Fourier space
with Ak(t) ∝ e−ik

2 sin(Ft)/F . For an initial state of Gaussian shape with width
σ0, this results in a breathing wave packet

A(z, t) = (2π)−
1
4

√
σ0

σ(t)
exp

(
− z2

4σ2(t)

)
σ2(t) = σ2

0

[
1 + i

sin(Ft)

Fσ2
0

]
. (6.9)

The time-dependent complex width σ(t) implies a breathing of the width of
the wave packet, as well as a gradient in the phase.

In the first quarter of the Bloch cycle, the mass is positive and the wave
packet spreads, as expected for a free-particle dispersion. When the mass
changes sign, the time evolution is reversed, and the wave packet recovers
its original shape at the edge of the Brillouin zone. Thus, the wave packet
shows perfectly periodic breathing on top of the Bloch oscillation. This
behavior is independent of the particular initial shape of the wave packet.

(b) Rigid soliton

Let us consider the mass m and the interaction parameter g as constant
for the moment. If both have opposite signs, then equation (6.8) admits a
soliton solution

A(z, t) =
1√
2ξ

1

cosh (z/ξ)
e−iωt , (6.10)

with the quasistatic width ξ = −2/(gm) > 0. If the force F changes the
effective mass as function of time, the interaction parameter can be tuned
in such a way that the quasistatic width still exists or even is constant.
A perfectly rigid soliton of width ξ0 can be obtained by modulating the
interaction like

gr(t) = −2/[ξ0m(t)] = −|gr| cos(Ft) with gr = −4/ξ0 < 0. (6.11)

More extensive studies based on this idea have been put forward in [141,
142]. If the quasistatic width ξ(t) = −2/[g(t)m(t)] exists for all times but is
not constant, then the soliton must be able to follow this width adiabatically
in order not to decay. Otherwise its breathing mode will be driven, and other
excitations may be created.
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6. Bloch Oscillations and Time-Dependent Interactions

6.3. Periodic solutions

We can construct a class of functions g(t) that allow a strictly periodic time
evolution of the wave packet. Quite generally, a rigid wave packet is by
no means necessary for persistent Bloch oscillations. Already in the linear
case g(t) = 0 we have seen that the wave packet breathes. Also in the
interacting case, one can find non-trivial functions g(t) that are compatible
with the time-reversal idea of the linear Bloch oscillation. Consider the class
of periodic functions

g(t) = cos(Ft)P
(

sin(Ft)/F
)
, (6.12)

in which a factor cos(Ft) can be separated from a polynomial P (η) in the
bounded time variable

η(t) =
1

2

∫ t

0
m(s)−1ds =

sin(Ft)

F
. (6.13)

Because ∂tη(t) = 2m(t)−1, the explicit time dependence of the mass factor-
izes from all terms in the equation of motion (6.8) for A(z, t) = Ã(z, η(t)):

i∂ηÃ(z, η) =− ∂2
z Ã(z, η) + P (η)|Ã|2Ã(z, η). (6.14)

The ensuing dynamics for Ã(z, η) as function of η may be quite complicated.
However, as η(t) itself is a periodic function of time, also the solution A(z, t)
must be periodic: any dynamics taking place in the first quarter of the Bloch
period, while η runs from 0 to 1/F , is exactly reversed in the next quarter,
when η runs back. Figure 6.5 illustrates this argument by showing the
time-dependence of several key quantities over one Bloch cycle, as well as a
k-space density plot with clearly visible breathing dynamics.

The class of functions (6.12) covers all stable modulations that are Bloch
periodic. The above argument can be generalized for periodic functions
with frequencies commensurate with the Bloch frequency. Let us consider
a modulation with the ν2-fold Bloch period. The fundamental frequency
is then F/ν2, which suggests defining the time variable τ = Ft/ν2 + τ0,
such that cos(Ft) = sin(ν2τ). Trigonometric identities permit this to be
expanded as cos(Ft) = sin(τ)M(cos τ), with some polynomial M . Now,
if g(t) is of the form sin(τ)P (cos(τ)), with some other polynomial P , we
can define the bounded time η′ = −ν2 cos(τ)/F with ∂t = sin(τ)∂η′. Then,
the factor sin(τ) factorizes from all terms of (6.8) and we find an equation
similar to (6.14)

i∂η′Ã(z, η′) =−M(η′)∂2
z Ã(z, η′) + P (η′)|Ã|2Ã(z, η′). (6.15)
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η

−p = Ft

m−1

gr
gb

η

π 2π
−1/F

1/F

00

0

k − p
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c d

Figure 6.5.: Left panel: Time evolution scheme of stable Bloch oscillations. The inverse
mass m−1, the interaction parameter of the rigid soliton (6.11) as well as that of a
breathing soliton gb(t) = g0 cos(Ft) are shown together with the bounded time η =
sin(Ft)/F as function of time or momentum −p = Ft. Right panel: The k-space
density [obtained by numerical integration of Eq. (6.5)] of a breathing wave packet is a
function of η and thus strictly periodic in t: the points in time a and b as well as c and
d show the same distribution, respectively.

Again, the time reversal argument applies. Equation (6.15) is solved as
function of the bounded time η′, which implies that the wave packet is
conserved under modulations given as

g(t) = sin(τ)P (cos(τ)) =
∑

n

gn sin(nτ) =
∑

n

gn sin

(
n

ν2

[
Ft− π

2
(2j + 1)

])
.

(6.16)

With a different but equivalent derivation, we have published this result in
[129].

6.4. Numerical examples

So far, we have made the following predictions on the basis of the contin-
uous nonlinear Schrödinger equation (6.8) with time-dependent mass and
interaction:

• The rigid soliton: With an initial state of soliton shape (6.10) and
an interaction parameter modulated as g(t) = −|gr| cos(Ft), the wave
packet should completely conserve its shape.

• Modulations g(t) that fulfill the simple time-reversal condition (6.12)
or the generalized one (6.16) are predicted to lead to periodic solutions,

123



6. Bloch Oscillations and Time-Dependent Interactions

independently of the particular initial state. The internal dynamics of
these solutions has not been characterized yet.

• For the largest part of the parameter space [g(t) not fulfilling (6.16),
for example g(t) ∝ sin(Ft), g(t) = g0], no periodicity is predicted.
The wave packet is expected to decay, but we do not know how and
how fast.

Let us start the investigations of the open question by directly integrating
the discrete Gross-Pitaevskii equation (6.5), using the forth-order Runge-
Kutta method [104]. As initial state, we choose the Gaussian wave packet,
the ground state of the harmonic trap. For experimental applications, this
appears more generic than the specific soliton shape. We then compute the
time evolution with different functions g(t). The resulting real-space plots
are shown in figure 6.6. The linear Bloch oscillation shown in figure 6.6(a)
is indeed long living. At constant interaction g(t) = g0 (figure 6.6(b)) the
wave packet decays.

Whenever the time-reversal condition (6.16) is fulfilled, the wave packet
is long-living, (c) and (d). When equation (6.16) is not fulfilled [figure 6.6
(e) and (f)], we recognize two decay mechanisms:

• a smooth contraction (or spreading) of the wave packet, figure 6.6(e)

• the growth of perturbations on a short scale, figure 6.6(e) and fig-
ure 6.6(f)

We investigate these decay mechanisms and the internal dynamics in more
detail by means of a collective-coordinates ansatz and a linear stability anal-
ysis in the following sections.

6.5. Collective coordinates

We employ a collective-coordinates ansatz [139] in order to describe the
most important degrees of freedom of a Bloch oscillating wave packet. In
this approach, we assume that the wave packet is essentially conserved and
describe the dynamics of its center of mass (first moment) and its width
(second moment).

Similarly to the smooth-envelope ansatz (6.7), the discrete wave function
is cast into the form

Ψn(t) = eip(t)nA(n− x(t), w(t), b(t))eiφ(t), (6.17)
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6.5. Collective coordinates

(a) g(t) = 0 (b) g(t) = 0.5

(c) g(t) = cos(Ft) (d) g(t) = cos(Ft/2)− sin(Ft/2)

(e) g(t) = sin(Ft) (f) g(t) = 2 cos(2Ft)

Figure 6.6.: Real-space portraits of Bloch oscillations for several modulations g(t). In
the linear case (a), the Bloch oscillation is very long-living. In presence of a constant
interaction (b), the wave packet decays after a few Bloch cycles TB. In (c) and (d), the
interaction parameter is modulated according to (6.16) and the oscillations are indeed
long-living. Only very slight deformations occur in (d). In (e) and (f), the modulation of
the interaction parameter does not comply with (6.16). At g(t) ∝ sin(Ft) (e), the wave
packet is first contracted (t ≈ 3TB), then perturbations on a short scale grow. When
modulating at double Bloch frequency (f), only short-scale perturbations are visible, but
no contraction. Further parameters: F = 0.2, σ0 = 10, Bloch amplitude xB = 2/F = 10
sites.
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6. Bloch Oscillations and Time-Dependent Interactions

Table 6.1.: Collective-coordinates parameters for Gaussian and soliton-shaped wave packets

shape Ã(u) K I

Gaussian (2π)−
1
4 e−

u2

4 1
4

1
4
√
π

soliton
√

π
4
√

3

[
cosh

(
π u
2
√

3

)]−1
1
4

(
π
3

)2 1
4
√
π

(
π
3

) 3
2

with the free variables center-of-mass position x(t) = 〈n〉 =
∑

n n|Ψn(t)|2
and variance w(t) =

〈
(n− x(t))2

〉
and their conjugate momenta p(t) and

b(t), respectively. The momentum p is included in equation (6.17), according
to its generating role −i∂pΨn = nΨn. Similarly, b is included in the wave
function as

A(z, w, b) = w−
1
4eibz

2Ã(z/
√
w) . (6.18)

The even, real function Ã(u) is normalized to one with standard deviation
one,

∫
du|Ã(u)|2 = 1 =

∫
duu2|Ã(u)|2.

The collective-coordinates ansatz (6.17) is inserted into the Hamiltonian
(6.6). Taylor-expanding the discrete gradient to second order, the effective
Hamiltonian is found as

Hcc = Fx− 2 cos p

[
1− K + 4b2w2

2w

]
+ I

g(t)√
w
, (6.19)

with the kinetic integral K =
∫

du|Ã′(u)|2 and the interaction integral I =
1
2

∫
du|Ã(u)|4. In table 6.1, these parameters are given for a Gaussian and

for a soliton-shaped wave packet.
By construction, the collective coordinates obey the canonical equations

of motion

ṗ = −∂Hcc

∂x
= −F, (6.20a)

ẋ =
∂Hcc

∂p
= 2 sin p

[
1− K + 4b2w2

2w

]
= sin p

[
2− (∆k)2] , (6.20b)

ḃ = −∂Hcc

∂w
=
K − 4w2b2

w2 cos p+
1

2
I g(t)w−

3
2 , (6.20c)

ẇ =
∂Hcc

∂b
= 8wb cos p. (6.20d)

Within the scope of collective coordinates, the momentum variance of the
wave packet is given as (∆k)2 = K/w+4b2w. It appears in the Hamiltonian
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Figure 6.7.: Key quantities of the Bloch oscillation with double Bloch period g(t) =
cos(Ft/2) − sin(Ft/2) (figure 6.6(d)). Upper panel: The time dependence of mass m
and interaction g allows the definition of a bounded time η′(t), cf. (6.15). Lower panel:
The width

√
w of the wave packet obtained from collective-coordinates (6.20) and from

the full integration of (6.5), respectively.

(6.19) as part of the kinetic energy. The momentum variance is a good
indicator for the decay of the wave packet. It is experimentally accessible
in time-of-flight images.

6.5.1. Breathing dynamics in the stable cases

As a first application, we use the collective-coordinates equations of mo-
tion (6.20) to describe the breathing dynamics in the stable cases of (6.16).
We choose the modulation with half Bloch frequency (figure 6.6(d)). In
figure 6.7, the collective-coordinates prediction for the width

√
w is com-

pared to the width extracted from the full integration of (6.5). The width
shows a breathing with the double Bloch period, which is a combination
of the free breathing of the linear Bloch oscillation [equation (6.9)] and the
driven breathing due to the modulation of g(t). The phase of the modula-
tion g(t) with respect to the Bloch oscillation complies with (6.16), which
allows the definition of the bounded time η′, shown in the upper panel of
(6.7). Similarly to figure 6.5, the width

√
w can be understood as function

of η′.

6.5.2. Unstable cases—decay mechanisms and other
dynamics

Now, we apply the collective-coordinates equations of motion (6.20) to the
unstable cases shown in figure 6.6(e) and figure 6.6(f). The initial conditions
are w(0) = σ2

0 and b(0) = 0. In the very beginning of the dynamics, we can
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6. Bloch Oscillations and Time-Dependent Interactions

Figure 6.8: The initial contraction of
the wave packet shown in (6.6(e))
(red dots) can be described by col-
lective coordinates (blue). The
green line shows the approxima-
tion (6.22). F = 0.2, gs = 1,
σ0 = 10.
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√
w

assume w = σ2
0 as constant. Using (6.20c), we compute the change of the

momentum b due to the interaction g(t)

∆b(t) = b(t)− b(t)|g=0 =
I

2
w−

3
20

∫ t

0
dt′g(t′). (6.21)

Inserting this into the equation of motion (6.20d) for the width degree of
freedom w, we understand that the modulation with double frequency from
figure 6.6(f) has no average effect on the width.

Sine modulation

The modulation g(t) = gs sin(Ft), considered in figure 6.6(e), however, leads
to an average growth

w(t) ≈ w0 − 2
Igs

F
√
w0

t. (6.22)

This prediction is shown in figure 6.8, together with the full solution of
(6.20) and the width extracted from the integration of the tight-binding
equation of motion. A sine like modulation of the interaction contracts or
broadens the wave packet, before destroying it.

Offset and cosine modulation

Let us consider an interaction parameter with a finite time average and a
cosine modulation g(t) = g0 + gc cos(Ft). In the case gc = 0, this covers
the case of constant interaction shown in figure 6.6(b). The modulation
is compatible with the time reversal, but the offset is expected to destroy
the wave packet. We are interested in the centroid motion (6.20b). We
expect a damping of the oscillation due to the momentum broadening term
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Figure 6.9: The centroid motion of a
Gaussian wave packet under the
interaction parameter g(t) = g0 +
gc cos(Ft) shows a drift. The red
dots are numerical results of (6.5),
the blue line shows the collective-
coordinates prediction (6.20), and
the green lines show the estimate
for the envelope (6.23). Parame-
ters: F = 0.2, g0 = 0.1, gc = 5,
σ0 = 10.

(∆k)2 = K/w + 4b2w. Furthermore, if the product sin(p)(∆k)2 has a non-
zero time average, a drift of the centroid can occur.

The perturbation g(t) enters the k-space width via b2. We make a separa-
tion of time scales and write ∆b2 = B0(t)+Bc(t) cos(Ft)+Bs(t) sin(Ft)+. . . .
In this ansatz, the Bx(t) vary on a much longer time scale than the Bloch
period and their time derivatives are neglected. For equation (6.20b), only

B0(t) = I2g2
0

4w3
0
t2 and Bs = I2g0gs

2Fw3 t are relevant and lead to

x(t) ≈ 2

F
cos(Ft)

[
1− K + I2g2

0t
2/w0

2w0

]
+

1

2

I2g0gc
Fw2

0
t2 (6.23)

As expected, the offset causes damping. More remarkably, the modulated
interaction induces a drift of the oscillating wave packet. In figure 6.9, the
estimate (6.23) is plotted together with the full solution of the collective-
coordinates equations of motion (6.20) and with the numerical results ob-
tained from the integration of the tight-binding equation of motion (6.5).
As expected, the agreement is initially very good, but deviations occur after
about thirty Bloch periods, when the wave packet starts to decay and the
collective-coordinates description breaks down.

Conclusion

The collective coordinates are useful for the description of the stable cases,
where the wave packet is preserved, and for the description of the wave-
packet decay in the very beginning. We have learned that the sine mod-
ulation directly contracts or broadens the wave packet and that a cosine
modulation together with an offset makes the wave packet drift. Later, the
wave packet loses its smooth shape, and the collective-coordinates descrip-
tion is bound to fail. In particular, collective coordinates cannot grasp the
short-scale perturbations that occur in figure 6.6(e) and figure 6.6(f).

129
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6.6. Dynamical instabilities

Time-dependent mass and interaction provide a source of energy for the
growth of perturbations. In section 6.4, we have seen that in some cases per-
turbations on a length scale much shorter than the width of the wave packet
lead to the decay of the wave packet and k-space broadening. These per-
turbations cannot be described by the collective coordinates of section 6.5.
Instead, the sudden broadening shown in figures 6.6(e) and 6.6(f) suggests
an exponential growth of small perturbations.

6.6.1. Linear stability analysis of the infinite wave packet

In order to describe the growth of perturbations quantitatively, we perform
a linear stability analysis on top of an infinitely extended wave function with
density |Ψn|2 = n0

Ψn = [
√
n0 + δΦn] e

ip(t)ne−iϕ(t) . (6.24)

Inserting this into the discrete Gross-Pitaevskii equation (6.5), we determine
the parameters p(t) = −Ft and ϕ̇ = −2 cos(p) + µ(t), µ(t) = g(t)n0 from
the zeroth order in δΦ.

With this, the first-order equation of motion for δΦn is derived. Similarly
to the procedure in subsection 6.2.2, we use a transformation to the moving
reference frame x(t) = 2 cos(Ft)/F in order to eliminate the first derivative
of the Taylor expansion of δΦn±1: s(z) + id(z) = δΦx(t)+z. The Fourier-
transformed equations of motion then read

ḋk = −
[
ε0k(t) + 2n0g(t)

]
sk , ṡk = ε0k(t)dk , (6.25)

with ε0k(t) = k2 cos(Ft). The equations of motion (6.25) are linear, with real,
time-periodic coefficients (provided, the frequency of the external modula-
tion µ(t) = n0g(t) is commensurate with the Bloch frequency F ), which
makes them accessible for Floquet theory [143]. The integration of two

linearly independent initial conditions, e.g. s
(a)
k (0) = 1, d

(a)
k (0) = 0 and

s
(b)
k (0) = 0, d

(b)
k (0) = 1, over one period T yields all information necessary

for the time evolution over n ∈ N periods:

(
sk(t+ nT )
dk(t+ nT )

)
= Mn

(
sk(t)
dk(t)

)
, M =

(
s

(a)
k (T ) s

(b)
k (T )

d
(a)
k (T ) d

(b)
k (T )

)
. (6.26)

The eigenvalues ρ±k of the monodromy matrix M determine the growth of
the perturbations. Liouville’s theorem detM = 1 fixes the product of the

130



6.6. Dynamical instabilities

eigenvalues ρ+
k ρ
−
k = 1, which allows computing the eigenvalues from the

trace of the monodromy matrix ρ±k = ∆k ±
√

∆2
k − 1:

∆k =
1

2
trM =

1

2

{
s

(a)
k (T ) + d

(b)
k (T )

}
. (6.27)

The logarithm λk = log[max(ρ+
k , ρ

−
k )]/T is called Lyapunov exponent and

characterizes the exponentially growing amplitudes sk, dk ∼ eλkt.
For a given g(t), each Fourier component (dk,sk) is integrated over the

common period T of g(t) and cos(Ft), which yields the Lyapunov exponents
λk. This method turns out to be very efficient for interactions with zero
time average. Unfortunately, it does not work correctly in the case of a
finite offset. The constant interaction acts on the width degree of freedom,
which is not included in the infinite wave packet.

6.6.2. Bloch periodic perturbations

For perturbations µ(t) = µ0 cosFt + µ1 sinFt modulated with the Bloch
frequency, it is possible to solve the equations of motion (6.25) explicitly
and to compute the Lyapunov exponent directly. From the criterion (6.16)
we know that the cosine part alone leads to a periodic time evolution. Con-
trarily, the observations in section 6.4, figure 6.6(e) show that the sine part
leads to the growth of perturbations. Thus, a perturbation theory in µ1 will
be performed in the following.

Considering for the moment only the part µ(0)(t) = µ0 cos(Ft), we can
write the equations of motion (6.25) in terms of the bounded time η(t) =
sin(Ft)/F (6.13)

i
∂d

(0)
k

∂η
= −

[
k2 + µ0

]
s

(0)
k i

∂s
(0)
k

∂η
= k2d

(0)
k . (6.28)

The crossed coupling of dk and sk is the same as in the homogeneous Bogoli-
ubov problem (subsection 2.3.1). We Bogoliubov transform the full equation

of motion (6.25) using γk =
√
εk/k2sk+i

√
k2/εkdk and εk =

√
k2(k2 + 2µ0),

cf. equation (2.32)

iγk = cos(Ft)εkγk + µ1
k2

εk
sin(Ft) (γk + γ∗−k) . (6.29)

As expected, the solution of the unperturbed part γ
(0)
k = γ0 e

−iεk sin(Ft)/F

is periodic. In order to solve the first-order correction, we eliminate the
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coupling to γ∗−k by transforming to γ+ = 1
2(γk + γ−k) and γ− = 1

2i(γk− γ−k),
which both obey the equation of motion

iγ = cos(Ft)εkγ + µ1
k2

εk
sin(Ft) (γ + γ∗) . (6.30)

The unperturbed solution reads γ(0) = γ0 e
−iεk sin(Ft)/F and suggests the

ansatz γ(1) = γ1(t) e
−iεk sin(Ft)/F for the first-order correction. The increase

of γ1(t) is integrated over one period

γ1(T ) = µ1
k2

iεk

∫ T

0
dt sin(Ft)

(
γ0 + γ∗0e

2iεk sin(Ft)/F
)

= µ1
k2

εk

2π

F
J1 (2εk/F ) γ∗0 ,

(6.31)

with the Bessel function of the first kind J1. The growth per period is
γ0 → γ0 + γ1(T ) and defines the Lyapunov exponent λT = γ1(T )/γ0. The
factor γ∗0/γ0 takes its extremal values +1 and −1 for γ ∈ R and γ ∈ iR,
respectively. Thus, the Lyapunov exponent is given as

λk =

∣∣∣∣µ1
k2

εk
J1

(
2εk
F

)∣∣∣∣ . (6.32)

This result has been derived under the assumption |µ1| � |k2 + 2µ0| and
holds for both real and imaginary Bogoliubov frequencies. (Imaginary fre-
quencies appear for µ0 < 0 at k2 + 2µ0 < 0.) Remarkably, it also holds at
k2 + 2µ0 = 0, where a calculation similar to the above one yields the result
λ = 2πµ1k

2/F 2, which is exactly the limiting value of (6.32). Also in the
limit µ0 = 0, k2 → 0, the result λ = 0 found from (6.25) is reproduced
correctly by the formula (6.32). In conclusion, the result (6.32) seems to be
valid for all µ1 < max(k2, k2 + µ0), beyond the original validity condition.

6.6.3. Unstable sine

With the Lyapunov exponent (6.32), we understand the growth of the short-
scale perturbations in the case of a sine-like perturbation, figure 6.6(e). With
µ(t) = n0g1 sin(Ft), n0 = 1/(

√
2πσ0), the Lyapunov exponent (6.32) reads

λk = |g1n0J1(2k
2/F )|. Its magnitude is proportional to the strength of the

perturbation g1 and its k dependence is solely determined by J1(2k
2/F ),

with a maximum λmax ≈ 0.582 g1n0 at k2
max ≈ 0.921F . For a quantitative

comparison, we choose a rather wide wave packet and a weak perturbation
(figure 6.10). We find the predicted growth rate λmax of the most unstable
mode in excellent agreement with the results from the numerical integration
of the tight-binding equation of motion (6.5).
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Figure 6.10.: Growth of the most unstable mode. Momentum density |Ψk|2 for selected
k-modes in the unstable case g(t) = g1 sin(Ft). The original wave function is centered
around k = 0. The solid line marks the growth rate λmax of the most unstable mode
as predicted by equation (6.32). The growth of this mode precedes the damping of the
centroid motion that sets in at t ≈ 200TB. Numerical parameters: σ0 = 100, g1n0 = 0.01,
F = 0.2.

6.6.4. Robustness with respect to small perturbations

An important application for the linear stability analysis is the question
“How sensitive are the long-living Bloch oscillations of (6.16) to small per-
turbations?”

Robustness of rigid and breathing wave packets

As shown in figure 6.6(c), the breathing wave packet with g(t) = g0 cos(Ft)
is long living, in accordance with the time-reversal condition (6.12). But its
interaction parameter g(t) always has the same sign as the mass m, thus,
the stability criterion for solitons (6.11) is never fulfilled. The wave packet
would decay if one stopped the Bloch oscillation by switching off the force
F . It survives only because of the time-reversal argument of section 6.3.

How robust with respect to external perturbations can such a wave packet
be? Should not a soliton that is stable at all times be more robust? Even
cold-atom experiments suffer from slight imperfections, such as residual
uncertainties in the magnetic field controlling the interaction term g(t).
For instance, in the Innsbruck experiment [40], the magnetic field is con-
trolled up to 1 mG. The slope of 61a0/G at the zero of the Feshbach reso-
nance turns this into an uncertainty ∆a = 0.06a0 in the scattering length,
a0 ≈ 5.3 10−11m being the Bohr radius. This is converted to the uncer-
tainty of the dimensionless tight-binding interaction ∆g ≈ 0.4. Note that
this uncertainty ∆g is larger than the interaction gr = −4/ξ0 needed to
create a rigid soliton of only moderate width ξ0 & 10. From this point of
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Figure 6.11.: (a) Decay of a rigid (g0 = gr = −0.06, left) and a breathing (g0 = 10, right)
soliton under the harmonic perturbation g1 sin(Ft). Upper panel: growth rate (6.32)
obtained by Floquet analysis of the linear-stability. Lower panel: Stroboscopic plot of the
k-space density on a logarithmic color scale. The central peak of the initial wave packet
is well separated from the excited fluctuations. Inset: Location and growth of the most
unstable mode agree with the Floquet prediction. (b) The corresponding momentum
variance of the breathing wave packet (g0 = 10, blue), the rigid soliton (g0 = −0.06,
green dashed), and the antibreathing wave packet (g = −10, red). Parameters: σ0 = 60,
F = 0.15, g1 = 0.5.

view, realizing a wide rigid soliton is practically equivalent to switching the
interaction off altogether.

We choose to study in detail the effect of Bloch-periodic perturbations
of g(t), which are expected to have the largest impact. We take g(t) =
g0 cos(Ft) + g1 sin(Ft) with g0 = −|gr| and +10 for the rigid soliton and the
breathing wave packet, respectively. The off-phase perturbation g1 sin(Ft)
with an amplitude g1 of order ∆g makes the wave packet unstable. In
both cases, we integrate equation (6.5) numerically. Rather than the strong
force F ≈ 34 in a vertical lattice [40], we choose a smaller force F = 0.15,
corresponding to a slighter tilt. The Bloch period becomes much longer,
making the wave packet more sensitive to dephasing.

For both cases of primary interest—the rigid and the breathing soliton—
the upper panel of figure 6.11(a) shows the Lyapunov exponent (6.32), in-
distinguishable from the value obtained by numerical solution of equation
(6.25), as function of k. Mainly the prefactor k2/|εk| = |1 + 2g0n0/k

2|−1

makes the Lyapunov exponents of the breathing wave packet (g0 = 10)
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Figure 6.12.: Stability map showing the positions of the stable cases in the ω-δ-plane,
according to (6.16). The size of the ellipses represents the robustness of the periodic
cases against detuning in δ, and ω, respectively. At a given detuning of 10−4 the lifetime
of the Bloch excitation is determined by mink 1/λk, which is mapped to the radii. The
largest radii correspond to a lifetime of 5TB or more, the smallest to 1TB or less. On
the ω-axis, all rational numbers ν1/ν2 with ν2 < 12 have been taken into account.
Parameters: F = 0.2, gn0 = 1.

smaller than those of the rigid soliton (g0 = gr = −0.06). The Lyapunov ex-
ponents provide a rather faithful portrait of the k-space evolution obtained
by the numerics, plotted in the lower panels of figure 6.11(a) stroboscopi-
cally, i.e., at integer multiples of TB. Notably, excitations grow exclusively
in the intervals with the largest Lyapunov exponents. The predicted growth
rate of the most unstable mode (indicated by the vertical line) agrees very
well with the numerical data (inset in the upper panels of figure 6.11(a)).
The growth of the Fourier components is directly reflected in the k-space
broadening of the wave packet (figure 6.11(b)). The k-space broadening is an
experimentally accessible quantity that signals the decay of the wave packet
and the destruction of Bloch oscillations in real space. The rigid soliton
shows greater resilience than the strongly antibreathing wave packet, but
the breathing wave packet survives even longer.

Robustness map

Similarly to the above study, we also investigate the robustness of other
stable modulations g(t) from (6.16), namely monochromatic modulations
g(t) = g cos(ωt + δ). In the ω-δ plane, there are only stable points, rather
than regions of stability. How sensitive is the Bloch oscillation to slight
experimental imperfections in frequency and phase?
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We investigate the robustness of the stable points by varying both δ and
ω slightly (by 10−4) and determining the maximum Lyapunov exponent
λ = maxk λk from a numerical integration of (6.25). The inverse Lyapunov
exponent is a measure for the robustness and is mapped to the radius in
the graphical representation in the parameter space figure 6.12. In the
dissymmetry of the points + cos(Ft) and − cos(Ft), we recover the result
from above. The stable points are arranged on a regular pattern, with the
most stable points arranged on lines. With increasing denominator ν2 the
robustness drops very rapidly.

6.7. Conclusions (Part II)

We have treated the problem of Bloch oscillations with a time-dependent
interaction in the framework of the one-dimensional tight-binding model,
i.e. for a deep lattice potential with a strong transverse confinement. For
smooth wave packets, the bounded-time argument allows identifying a class
of interactions g(t) that lead to periodic dynamics.

Beyond the mere existence of these periodic solutions, we have set up
two complementary methods for the quantitative description of stability
and decay of the Bloch oscillating wave packet. The collective-coordinates
approach is valid as long as the wave packet is essentially conserved. This
approach is capable of describing on the one hand the centroid and the
breathing dynamics in the periodic cases, and on the other hand the begin-
ning of the decay in the unstable cases, for example at constant interaction.

The other approach, the linear stability analysis of the infinite wave
packet, is suitable for the quantitative description of the decay of wide wave
packets. More precisely, the relevant excitations have to be well decoupled
in k-space from the original wave packet around k = 0. Perturbations like
the off-phase perturbation in subsection 6.6.4 are well described. Other per-
turbations, like a constant interaction, are missed, because the width of the
wave packet is not properly included in the ansatz of an infinitely wide wave
packet. Together, the two approaches provide a rather complete picture of
the wave-packet dynamics.

The most remarkable physical results of this part are firstly the existence
of long-living Bloch oscillations despite non-zero interaction if the interac-
tion g(t) respects the time-reversal symmetry (6.16). Secondly, a modulation
of the interaction that enhances the breathing of the wave packet can make
the Bloch oscillation more robust with respect to perturbations.
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A. List of Symbols and Abbreviations

Bogoliubov part

ak Coefficient for Bogoliubov transformation (2.32), ak =
√
ε0k/εk

A(kξ, θ) Elastic scattering envelope function

Ad(k) Angular integral in the self-energy in section 4.1

BEC Bose-Einstein condensate

β Inverse temperature (kBT )−1

β̂ν Bogoliubov quasiparticle operator (in eigenbasis)

Cd Disorder correlation function

c Speed of sound

nnc Condensate depletion

d Dimension

εk Bogoliubov energy (2.35)

ε0k Kinetic energy of a free particle

F Anomalous Green function

F̂ Grand canonical Hamiltonian

g Interaction parameter

G Green function

γ̂k Bogoliubov mode

γk Scattering rate

γ(k) Complex degree of coherence (only section 3.1)
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A. List of Symbols and Abbreviations

Ĥ Hamiltonian

η Diagonal matrix diag(1,−1), (section 2.5, subsection 3.3.2)

η(r) Random field on rough surface (only section 3.1)

i Imaginary unit i2 = −1

k Wave vector

L Distance in speckle geometry (only section 3.1)

Λ Relative correction of the dispersion relation [in units of V 2/µ2]

λ Wave length

µ Chemical potential

n Condensate density

P Cauchy principal value

Φ(r) Gross-Pitaevskii ground-state

ϕ̂ Phase operator

Ψ̂(r) Field operator

R Diffusor radius in speckle geometry (only section 3.1)

ρ(ω) Density of states

Sd Surface of the d-dimensional unit sphere

S(k, ω) Spectral function subsection 3.4.1

Σ Self-energy

σ Disorder correlation length

T Transmission coefficient (subsection 2.4.5)

TF Thomas-Fermi (page 26)

t Time

uk Coefficient for Bogoliubov transformation uk = (εk + εk)/(2
√
εkεk)
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uν(r) Bogoliubov eigenstate, normal component

V External potential

Ṽ (n) n-th order of the smoothed potential (2.24)

Ṽ Scattering amplitude (4.5) in the hydrodynamic regime

vν(r) Bogoliubov eigenstate, anomalous component

vk Coefficient for Bogoliubov transformation uk = (εk − εk)/(2
√
εkεk)

W Normal coupling element

ξ Healing length

Y Anomalous coupling element

Z Partition function

Bloch part

Ã(z, t) Envelope function (6.7)

b Collective coordinates (section 6.5): conjugate momentum of the
width degree of freedom w

d Lattice spacing

dk Phase modulation with wavenumber k (section 6.6)

F Force

η Bounded time variable

∆k Quantity related to the Lyapunov exponent, equation (6.27)

J Tunneling amplitude (6.4)

λ Lyapunov exponent

M Monodromy matrix

p Momentum of the wave packet, equation (6.7)

sk Density modulation with wavenumber k (section 6.6)
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A. List of Symbols and Abbreviations

σ0 Initial width of the wave packet

x Collective coordinates (section 6.5): centroid coordinate

ξ Soliton width (6.10)

w Collective coordinates (section 6.5): width degree of freedom
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W. D. Phillips, Observation of persistent flow of a Bose-Einstein con-
densate in a toroidal trap, Phys. Rev. Lett. 99, 260401 (2007).

[101] C. Gaul and C. A. Müller, Anisotropic scattering of Bogoliubov exci-
tations, Europhys. Lett. 83, 10006 (2008).

[102] L. D. Landau and E. M. Lifschitz, Fluid Mechanics, chapter 8, § 78,
Butterworth Heinemann (2004).

[103] E. Merzbacher, Quantum Mechanics, chapter A, Wiley, New York
(1998).

[104] J. C. Butcher, The numerical analysis of ordinary differential equa-
tions, Wiley, New York (1987).

[105] Y. Kagan, D. L. Kovrizhin, and L. A. Maksimov, Anomalous tunneling
of phonon excitations between two Bose-Einstein condensates, Phys.
Rev. Lett. 90, 130402 (2003).

[106] A. L. Fetter, Nonuniform states of an imperfect Bose gas, Annals of
Physics 70, 67 (1972).

[107] V. Gurarie and J. T. Chalker, Bosonic excitations in random media,
Phys. Rev. B 68, 134207 (2003).

149

http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRevLett.84.806
http://dx.doi.org/10.1103/PhysRevLett.87.210402
http://dx.doi.org/10.1103/PhysRevLett.87.210402
http://dx.doi.org/10.1103/PhysRevA.80.063827
http://dx.doi.org/10.1103/PhysRevA.74.053625
http://dx.doi.org/10.1103/PhysRevLett.99.260401
http://dx.doi.org/10.1209/0295-5075/83/10006
http://dx.doi.org/10.1103/PhysRevLett.90.130402
http://dx.doi.org/10.1103/PhysRevLett.90.130402
http://dx.doi.org/10.1016/0003-4916(72)90330-2
http://dx.doi.org/10.1016/0003-4916(72)90330-2
http://dx.doi.org/10.1103/PhysRevB.68.134207


Bibliography

[108] A. Mostafazadeh, Pseudo-hermiticity versus PT-symmetry III: Equiv-
alence of pseudo-Hermiticity and the presence of antilinear symme-
tries, J. Math. Phys. 43, 3944 (2002).

[109] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, chapter
7.5, p. 884, McGraw-Hill, New York (1953).

[110] T. Paul, M. Hartung, K. Richter, and P. Schlagheck, Nonlinear trans-
port of Bose-Einstein condensates through mesoscopic waveguides,
Phys. Rev. A 76, 063605 (2007).

[111] P. C. Hohenberg, Existence of long-range order in one and two dimen-
sions, Phys. Rev. 158, 383 (1967).

[112] Y. Castin and R. Dum, Low-temperature Bose-Einstein condensates in
time-dependent traps: Beyond the U(1) symmetry-breaking approach,
Phys. Rev. A 57, 3008 (1998).

[113] T. Schulte, S. Denkelforth, J. Kruse, W. Ertmer, J. Arlt, K. Sacha,
J. Zakrzewski, and M. Lewenstein, Routes towards Anderson-like lo-
calization of Bose-Einsten condensates in disordered optical lattices,
Phys. Rev. Lett. 95, 170411 (2005).

[114] Y. P. Chen, J. Hitchcock, D. Dries, M. Junker, C. Welford, and R. G.
Hulet, Phase coherence and superfluid-insulator transition in a disor-
dered Bose-Einstein condensate, Phys. Rev. A 77, 033632 (2008).

[115] C. Gaul, N. Renner, and C. A. Müller, Speed of sound in disordered
Bose-Einstein condensates, Phys. Rev. A 80, 053620 (2009).

[116] J. W. Goodman, Introduction to Fourier optics, McGraw-Hill, San
Francisco (1968).

[117] M. White, M. Pasienski, D. McKay, S. Q. Zhou, D. Ceperley, and
B. DeMarco, Strongly interacting bosons in a disordered optical lattice,
Phys. Rev. Lett. 102, 055301 (2009).

[118] S. Pilati, S. Giorgini, and N. Prokof’ev, Superfluid transition in a Bose
gas with correlated disorder, Phys. Rev. Lett. 102, 150402 (2009).

[119] Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary par-
ticles based on an analogy with superconductivity. I, Phys. Rev. 122,
345 (1961).

150

http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1103/PhysRevA.76.063605
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRevA.57.3008
http://dx.doi.org/10.1103/PhysRevLett.95.170411
http://dx.doi.org/10.1103/PhysRevA.77.033632
http://dx.doi.org/10.1103/PhysRevA.80.053620
http://dx.doi.org/10.1103/PhysRevLett.102.055301
http://dx.doi.org/10.1103/PhysRevLett.102.150402
http://dx.doi.org/10.1103/PhysRev.122.345


Bibliography

[120] E. Akkermans and G. Montambaux, Mesoscopic physics of electrons
and photons, Cambridge Univ. Press (2007).

[121] L. Isserlis, On a formula for the product-moment coefficient of any
order of a normal frequency distribution in any number of vari-
ables, Biometrika 12, 134 (1918), http://www.jstor.org/stable/

2331932.

[122] M. Hartung, T. Wellens, C. A. Müller, K. Richter, and P. Schlagheck,
Coherent backscattering of Bose-Einstein condensates in two-
dimensional disorder potentials, Phys. Rev. Lett. 101, 020603 (2008).
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