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Summary 

 

This thesis is dedicated to progress in the field of colloidal self-assembly and colloidal crystals 

as well as their potential application for the preparation of transparent, conducting electrodes. 

Colloidal crystals are periodic structures formed by particles with dimensions between 1 nm 

and 1 µm and are widely used for the preparation of functional surfaces with tailored physical 

properties. Their application requires the fast production of large-area, homogeneous structures 

with nanometer-sized features and minimal defect-densities. Colloidal self-assembly meets 

these expectations and offers a rapid and cost-effective fabrication of periodic patterns by 

employing the intrinsic properties of the single particles. 

This thesis is divided into three parts, which present contributions to (I) the defined self-

assembly of polymer particles and the properties of particle monolayers (chapters 3 - 5), (II) 

the directed self-assembly of polymer colloids into gold nanohole arrays (chapter 6), and (III) 

the fabrication of optical devices based on gold nanohole arrays (chapters 7 - 9). For this 

purpose, the self-assembly of spherical polystyrene particles with diameters between 0.1 µm 

and 2.5 µm was induced at the water/air interface, which yields purely two-dimensional 

colloidal crystals with large single-crystalline domains. 

 

In chapter 3, I analyzed the optical properties of colloidal monolayers with subwavelength-scale 

particle diameters (< 0.2 µm). These monolayers can be regarded as an effective medium and 

can act as single-layer antireflective coatings. Thereby, the effective refractive index of the 

coating and the wavelength of maximum transmittance can be adjusted independently. This 

supplements the optical characterization of colloidal particle arrays with the properties of 

monolayers with subwavelength-sized particles. 

Based on the exceptionally high long-range order of the colloidal crystal, collective vibrational 

modes were detected for the first time across the entire Brillouin zone in a monolayer of large 

polystyrene spheres (1.5 µm) (chapter 4). An analytical model was developed, which well 

describes the experimental results, taking into account the particle-particle and particle-

substrate contacts. 

Usually, colloidal assembly methods yield hexagonal, close-packed particle monolayers 

limiting the variety of structures attainable with colloidal self-assembly. In chapter 5, I 

demonstrated the fabrication of non-close-packed particle arrays with symmetries of all 

possible two-dimensional Bravais lattices starting from hexagonal, close-packed monolayers 
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floating at the water/air interface. As the monolayers are purely one-dimensionally stretched 

upon transfer onto hydrophobic substrates, this presents a scalable method for the preparation 

of colloidal crystals with arbitrary lattice symmetry. 

 

Via colloidal lithography, the structures generated by colloidal particles can be replicated into 

various materials. In chapter 6, I used gold nanohole arrays, prepared by colloidal lithography, 

as templates for the directed self-assembly of polymer colloids. Exploiting a tailored surface 

charge contrast with feature sizes in the range of the single particles, negatively charged 

polymer particles were site-selectively trapped from the bulk dispersion, forming non-close-

packed particle monolayers. Thus, hierarchical structures are accessible with high structural 

control over large areas. 

 

Nanohole arrays in thin metal films, prepared by colloidal lithography, offer a versatile platform 

for optically active surfaces that support surface plasmon polaritons (SPP). These SPP 

resonances, collective oscillations of the conduction band electrons, efficiently couple to 

incident light due to the periodic perforation of the metal film and are easily tunable by adjusting 

the nanoscale geometry. Therefore, nanohole arrays are highly attractive as an electrode 

material for solar cells. 

A drawback of employing colloidal lithography for the fabrication of metal nanohole arrays is 

that it is limited to few substrate materials due to the inherent plasma etching step. By 

introducing a plasma-stable sacrificial layer, the transfer of nanohole arrays onto arbitrary 

substrates via the water/air interface was shown (chapter 7). This broadens the fabrication 

flexibility considerably and enables the preparation of plasmonic metal-insulator-metal 

multilayers and free-standing nanohole arrays. 

The optical properties of these multilayers were drastically altered compared to the single layer 

nanohole array, which was in good agreement with numerical and analytical models (chapter 8). 

This detailed analysis of the optical effects occurring in nanoscale materials is essential for the 

specific manipulation of light in potential applications. 

Finally, I integrated gold nanohole arrays into polymer solar cells as transparent, conducting 

electrodes (chapter 9). A cavity SPP, confined between the nanohole array electrode and the 

silver back-electrode, was observed and increased the power conversion efficiency at the 

absorption edge of the photoactive polymer. However, the nanohole arrays exhibited high losses 

due to reflection and absorption in the gold layer leading to an overall lower efficiency 

compared to indium tin oxide reference electrodes. 
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Altogether, the interface-assisted self-assembly of colloidal polystyrene particles was used to 

prepare functional surface patterns on a macroscopic scale. This thesis revealed fundamental 

optical and acoustic properties of self-assembled colloidal crystals and considerably extended 

the range of structures attainable with colloidal self-assembly. Furthermore, the complex optical 

properties of gold nanohole arrays, integrated into metal-insulator-metal absorbers as well as 

organic solar cells, were investigated. 
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Zusammenfassung 

 

Diese Arbeit behandelt Fortschritte auf den Gebieten der kolloidalen Selbstanordnung und 

kolloidalen Kristalle sowie deren mögliche Anwendung zur Herstellung von transparenten 

Elektroden. Kolloidale Kristalle sind periodische Strukturen aus Partikeln mit einer Größe 

zwischen 1 nm und 1 µm und werden zur Herstellung funktionaler Oberflächen mit definierten 

physikalischen Eigenschaften verwendet. Voraussetzung für die praktische Anwendung 

kolloidaler Kristalle ist die Möglichkeit Strukturen im Nanometer-Bereich großflächig, 

homogen und mit minimaler Defektdichte herstellen zu können. Das Verfahren der kolloidalen 

Selbstanordnung erfüllt diese Voraussetzung indem es die intrinsischen Eigenschaften der 

einzelnen Kolloidpartikel ausnutzt. 

Diese Dissertation ist in drei Teile gegliedert und enthält Beiträge zu (I) der definierten 

Selbstanordnung von Polymerpartikeln und den Eigenschaften von Partikelmonolagen 

(Kapitel 3 - 5), (II) der hierarchischen Anordnung von Polymerpartikeln in Lochgittern 

(Kapitel 6) und (III) der Herstellung optischer Bauelemente basierend auf Goldlochmasken 

(Kapitel 7 - 9). Für diese Arbeit wurden rein zweidimensionale kolloidale Kristalle mit großen, 

einkristallinen Domänen verwendet. Diese wurden durch die Selbstanordnung von sphärischen 

Polystyrolpartikeln mit Durchmessern zwischen 0.1 µm und 2.5 µm an der Wasser/Luft-

Grenzfläche gebildet. 

 

In Kapitel 3 untersuchte ich die optischen Eigenschaften kolloidaler Monolagen mit 

Partikeldurchmessern unterhalb der Wellenlänge des sichtbaren Lichts (< 0.2 µm). Diese 

Monolagen können als effektives Medium betrachtet werden und fungieren als 

Antireflexbeschichtung. Der effektive Brechungsindex der Beschichtung und die Wellenlänge 

mit den optimalen Antireflexeigenschaften können dabei unabhängig voneinander eingestellt 

werden. Dies ergänzt die bekannten, optischen Eigenschaften kolloidaler Kristalle mit den 

Eigenschaften von Partikelmonolagen mit Partikeldurchmessern, die unterhalb der betrachteten 

Wellenlänge liegen. 

Aufgrund der außergewöhnlich langreichweitigen Ordnung der kolloidalen Kristalle wurden in 

Monolagen aus großen Polystyrolpartikeln (1.5 µm) zum ersten Mal kollektive 

Vibrationsmoden in der gesamten Brillouin-Zone detektiert (Kapitel 4). Die experimentellen 

Daten konnten durch ein analytisches Modell, welches die Partikel-Partikel- sowie die Partikel-

Substrat-Kontakte berücksichtigt, gut beschrieben werden. 
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Kolloidale Selbstanordnungsverfahren ergeben normalerweise hexagonal dicht gepackte 

Partikelmonolagen. Dadurch ist die Zahl der Strukturen, die über kolloidaler Selbstanordnung 

erreicht werden können, stark einschränkt. In Kapitel 5 zeigte ich die Herstellung nicht dicht 

gepackter Partikelmonolagen mit Symmetrien aller möglichen zweidimensionalen 

Bravaisgitter, ausgehend von hexagonal dicht gepackten Monolagen an der Wasser/Luft-

Grenzfläche. Da diese beim Übertrag auf hydrophobe Substrate ausschließlich eindimensional 

verstreckt werden, stellt dies eine einfache und skalierbare Methode zur Herstellung von 

Kolloidkristallen mit beliebiger Gittersymmetrie dar. 

 

Mit Hilfe der Kolloidlithographie können durch Kolloidpartikel erstellte Strukturen in 

zahlreiche Materialien überführt werden. In Kapitel 6 verwendete ich durch 

Kolloidlithographie hergestellte Goldlochmasken als Überstruktur zur gerichteten Anordnung 

kolloidaler Polymerpartikel. Dazu wurde auf dem Substrat gezielt ein Kontrast in der 

Oberflächenladung in der Größenordnung der Partikel erzeugt. Anschließend konnten negativ 

geladene Partikel einer Polymerdispersion selektiv in der Templatstruktur adsorbiert werden 

und bildeten nicht dicht gepackte Partikelmonolagen. Dies ermöglicht die Herstellung 

großflächiger, hierarchischer Strukturen. 

 

Geordnete Lochstrukturen in dünnen Metallfilmen sind außerdem ein vielseitiger Baustein für 

optisch aktive Oberflächen, die Oberflächenplasmonen nutzen. Oberflächenplasmonen sind 

kollektive Oszillationen der Leitungsbandelektronen, welche aufgrund der periodischen 

Struktur des Metallfilms durch eingestrahltes Licht angeregt werden können. Die Eigenschaften 

der Oberflächenplasmonen sind dabei durch die geometrischen Parameter der Nanostruktur 

bestimmt. Deshalb sind per Kolloidlithographie hergestellte Lochmasken attraktive Kandidaten 

als Elektrodenmaterial für Solarzellen. 

Ein Nachteil der Kolloidlithographie besteht in der geringen Auswahl an verfügbaren 

Substraten aufgrund der inhärenten Plasmabehandlung während der Strukturbildung. Indem 

eine plasmastabile Opferschicht eingefügt wurde, konnte der Übertrag von Lochmasken auf 

beliebige Substrate über die Wasser/Luft-Grenzfläche gezeigt werden (Kapitel 7). Dies erhöht 

die Zahl der möglichen Strukturen beträchtlich und ermöglicht die Herstellung plasmonisch 

aktiver Metall-Isolator-Metall Multilagen sowie freistehender Lochmasken. 

Die optischen Eigenschaften dieser Multilagen unterschieden sich stark von denen der 

einlagigen Lochmasken, was durch numerische und analytische Modelle bestätigt wurde 
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(Kapitel 8). Solch detaillierte Untersuchungen der optischen Effekte in derartigen nanoskaligen 

Materialien sind für potentielle Anwendungen unablässig. 

Schließlich integrierte ich Goldlochmasken als transparente Elektrode in Polymer-Solarzellen 

(Kapitel 9). Ein Oberflächenplasmon, lokalisiert zwischen der Lochmaske und der rückseitigen 

Silberelektrode, erhöhte die Effizienz der Solarzelle an der Absorptionskante des fotoaktiven 

Polymers. Allerdings führten die gleichzeitig auftretenden, hohen Verluste aufgrund der 

Reflexion der Goldschicht und der Absorption in der Goldschicht zu einer insgesamt 

niedrigeren Effizienz verglichen mit den Referenzelektroden aus Indiumzinnoxid. 

 

Zusammenfassend wurde die Selbstanordnung von kolloidalen Polystyrolpartikeln an der 

Wasser/Luft-Grenzfläche zur Herstellung makroskopischer, funktionaler 

Oberflächenstrukturen verwendet. Diese Arbeit enthüllte dabei fundamentale optische und 

akustische Eigenschaften selbstangeordneter kolloidaler Kristalle und vergrößerte die 

Bandbreite der Strukturen, welche durch die Selbstanordnung von Kolloiden verwirklicht 

werden können. Außerdem wurden die komplexen optischen Eigenschaften von 

Goldlochmasken in Metall-Isolator-Metall Absorbern und organischen Solarzellen untersucht. 
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1 Introduction 

 

The term nanotechnology has attracted tremendous attention during the last decade, not only in 

the respective scientific areas but also in public life. Regularly present in mass media, 

nanotechnology is often praised for revolutionizing the world as we know it today. Futuristic 

images are drawn showing incredible possibilities such as miniaturized machines traveling 

through our blood vessels to fight diseases.1 Others visualize a lift leaving the earth atmosphere 

ascending along cables consisting of carbon nanotubes.2 

Although these scenarios remain science-fiction, many applications indeed already entered our 

daily life. They range from transistors with features only a few nanometers in size,3 quantum 

dot emitters enhancing the brightness in liquid crystal displays,4 self-cleaning surfaces,5 

antibacterial clothing6 to light-absorbing particles in sunscreens.7 

Nanotechnology is highly interdisciplinary, covering several fields of science including 

physics, chemistry, and biology as well as material science and engineering. The criterion 

combining these fields under the term nanotechnology is merely the dimension of the structures 

that are used. According to the definition of the International Organization for Standardization 

(ISO), nanotechnology explores materials with at least one dimension typically, but not 

necessarily, being below 100 nm.8 

In this size range, the properties of materials can be significantly different from those of the 

bulk materials.9 The surface to volume ratio drastically increases when decreasing the structure 

dimensions, changing, for example, the catalytic properties of a material. Additionally, the 

small size leads to an electronic confinement giving rise to strongly size-dependent quantum 

effects, which influence properties such as color or conductivity. 

A fast progressing subfield within nanotechnology is nanophotonics and more specific 

plasmonics. Nanophotonics studies the manipulation of light by objects on the nanometer scale. 

With its help, new applications are developed in the fields of microscopy, lighting or lasers. 

Plasmonics more specifically studies the interaction of light with nanometer-sized metal 

structures. When metal structures of deep-subwavelength dimensions are excited at resonance, 

collective oscillations of electrons arise.10 These oscillations result in a substantial absorption 

and scattering of the incident light. Consequently, plasmonic structures are already used in 

several applications such as plasmonic sensors11,12 or surface enhanced Raman spectroscopy.13 

Furthermore, plasmonic structures are discussed as waveguiding materials for optical circuits 

with nanometer-sized features,14 color filtering,15-19 drug-delivery20 or nanometer-sized lasing 
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devices.21-23 In optoelectronic devices like photodetectors, light emitting diodes or solar cells 

plasmonic structures might increase the conversion efficiency.24-27 

The recent progress in the field of nanotechnology, and plasmonics in particular, is benefitted 

by advances in fabrication and characterization techniques with nanometer resolution, which 

were mainly driven by the miniaturization in the semiconductor industry. Extraordinary high 

control over size, shape, orientation, and arrangement of the nanostructures is vital to achieve 

the desired properties.28,29 Applying top-down lithographic approaches like electron beam 

lithography, interference lithography or focused-ion-beam milling arbitrary nanostructures can 

be deliberately designed with high precision.30,31 At the same time, characterization methods 

like transmission electron microscopy or atomic force microscopy have further advanced, now 

being able to study matter in the sub-nanometer regime.32-34 

Top-down lithographic methods start from the bulk material, “writing” the desired structure 

into the material. However, these techniques suffer from several severe limitations. 

Sophisticated equipment is needed for the processes, which often need a high vacuum (electron 

beam lithography, focused-ion-beam milling). Moreover, the processes are very time-

consuming and thus hardly scalable, leading to high production costs. Finally, lithographic 

processes are still limited in resolution. Thus, alternative techniques for the large-scale, high-

resolution fabrication of nanostructures is still subject to intensive research. 

In contrast, solution processed bottom-up approaches could offer a fast, cost-effective and 

large-scale production of nanomaterials.35 Bottom-up approaches rely on the fabrication of 

structures starting from smaller building blocks such as atoms, molecules or particles. For this, 

the building blocks are combined into larger structures using self-assembly or self-organization 

strategies exploiting the intrinsic properties of the individual building blocks. Further control 

can be achieved using directed self-assembly methods providing a templating structure, which 

defines the dimensions of the self-assembled structure.36 Nevertheless, self-assembly methods 

still suffer from a lack of reproducibility and precision regarding the structural control and 

defect density.  

 

In this work, the fabrication and characterization of photonic and plasmonic surfaces by 

colloidal means is described. In the beginning, the theoretical background is summarized, 

starting with the principal self-assembly concepts for colloidal particles (chapter 1.1). 

Following this, the technique of nanosphere lithography is introduced in chapter 1.2 as a simple 

bottom-up approach towards nanostructured surfaces. In chapter 1.3 the fundamentals of 

surface plasmon polaritons are briefly covered followed by a brief description of the optics of 
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gold nanohole arrays. Chapter 1.4 gives insight into the application of colloids for light 

management purposes in optoelectronic devices including dielectric and plasmonic particles as 

well as structures prepared by colloidal lithography. On this basis, the main results of this thesis 

and its integration into the field of research are reviewed in chapter 2. In this context, the 

contribution of all authors is outlined. In the second part of the thesis, the publications are 

presented in detail (chapter 3 - 9). Finally, the future perspectives of colloidal self-assembly 

strategies for optical devices are discussed. 
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1.1 Self-Assembly of Colloidal Particles in Two Dimensions 

 

According to the IUPAC definition, colloids are objects dispersed in a medium with at least one 

dimension in between 1 nm and 1 µm.37 In this size range the interaction forces and dynamics 

are ranged in between those of single molecules and macroscopic objects. While still being 

subject to Brownian motion, the particles are already affected by gravitational forces, which are 

strongly dependent on the size and density of the particles.38 Thus colloidal systems are usually 

metastable, and phase separation only takes place on a relatively large time scale. Due to the 

complex interaction of forces in this so-called “mesoscale”, colloidal particles can self-

assemble into ordered structures. These have been named “colloidal crystals” because of their 

resemblance to atomic crystal structures. 

The interactions present in colloidal systems and thus the ability to self-assemble thereby are 

highly sensitive towards the size, shape, and uniformity of the dispersed particles. Especially, 

an extremely high uniformity is a prerequisite for the preparation of highly ordered colloidal 

assemblies. Consequently, a vast variety of synthesis methods has been developed to obtain 

highly monodisperse colloids. Polymerization methods including emulsion polymerization,39-

41 dispersion polymerization,42 precipitation polymerization43 or suspension polymerization44 

readily yield spherical polymer particles. Analogously, sol-gel synthesis45 or particle formation 

via the reduction of ionic precursors46 are used to obtain inorganic colloids. 

Colloidal crystals are widely used for the preparation of functional surfaces featuring an 

immense range of applications. Particle arrays on solid substrates have been used to generate 

self-cleaning5,47 or antireflective properties,48-50 as well as to tune wettability.51 Using 

nanosphere lithography, complex nanostructures can be prepared in various materials starting 

from self-assembled colloids.52 The possibility to create structures with periodic changes in 

refractive index in the wavelength range of visible light fosters unique optical properties like 

waveguiding53 or photonic band gaps.54,55 The emergence of photonic band gaps readily results 

in structural colors56-58 and is regularly exploited for sensing applications.59,60 Similarly, regular 

arrangements can be used to control the propagation of mechanical waves inside the colloidal 

crystal.61,62 Moreover, two-dimensional colloidal crystals can be used to study defect formation 

in crystalline structures.63,64 

 

The wide range of applications leads to the development of myriads of assembly methods for 

two-dimensional colloidal crystals, which are discussed in plenty of reviews.35,36,65 As a 

straightforward technique for the preparation of large-area monolayers, the dry assembly of 
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spherical polymer colloids by rubbing was described.66 However, most assembly methods start 

from particles dispersed in a liquid medium. Here, multiple forces are acting simultaneously. 

Achieving control over the complex forces interacting thereby is essential for high quality, 

defect-free assemblies.  

In the bulk phase, colloidal particles are mainly stabilized by Coulomb interactions and steric 

stabilization. Coulomb interactions act between charged particles. Owing to their high surface 

area, colloidal particles usually are highly charged in polar, liquid media due to ion adsorption 

or the dissociation of functional groups. Thus, Coulomb interactions are one of the most 

important forces for colloidal systems. For like-charged particles, the electrostatic potential is 

repulsive preventing particle agglomeration. Quantitatively, the potential is given by the 

Poisson-Boltzmann equation. Analogously to capacitors, the Poisson-Boltzmann equation 

describes the electrical potentials of ions accumulated in a double-layer near the surface of the 

charged particles.67 Directly derived from the Poisson-Boltzmann equation, the Debye length 

provides the length scale of electrostatic repulsion. At a distance from the charged interface 

equal to the Debye length, the potential decays to 1/e of the potential at the interface. The Debye 

length is inversely proportional to the square root of the ionic strength in the medium. 

Therefore, increasing the ionic strength decreases the Debye length and thus the electrostatic 

stabilization of the colloid. 

Attractive van-der-Waals forces counteract the repulsive forces and favor particle 

agglomeration once the particles are in contact. The interplay of electrostatic interactions and 

van-der-Waals forces is described by the DLVO theory, a fundamental theory of colloidal 

stability (Figure 1.1a).68,69 In DLVO theory, the net attractive or repulsive potential depending 

on the distance between two particles is derived from the sum of electrostatic and van-der-

Waals forces. This results in a global minimum at small interparticle distances and a second 

minimum at larger distances resulting from attractive van-der-Waals forces. At intermediate 

distances, the electrostatic repulsion dominates. To attain a high degree of order, controlling 

the balance of repulsive and attractive interactions is vital. The repulsive interactions at 

intermediate distances act as an energy barrier impeding the random aggregation of particles, 

stabilizing only the minimum free-energy position with a maximum of adjacent particles, which 

is within the (hexagonal) lattice. A more detailed insight into the interaction forces in liquid 

systems is given in several articles.36,67,70 
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Figure 1.1. Forces acting in the colloidal regime. (a) Potential U vs. interparticle distance d plot 

of the forces relevant for the DLVO theory: The interaction of repulsive electrostatic forces (Ψ) 

and attractive van-der-Waals forces (UvdW) results in a net force (UDLVO) comprising a global 

minimum at small interparticle distances (I), a net repulsion at intermediate distances (II) and a 

minimum at larger distances (III). The Born potential (UBorn) prevents particle overlapping. (b) 

The symmetric dissociation of ionic groups on the surface of particles trapped at the interface 

induces a repulsive dipole force. (c) Immersion capillary forces and flotation capillary forces 

of particles sitting at the interface. Reproduced from Ref. 35 with permission from The Royal 

Society of Chemistry. 

 

The colloidal stability can be further influenced by additional forces. Apart from electrostatic 

interactions, colloids can be stabilized sterically by large polymer ligands.71,72 Moreover, the 

addition of dissolved polymers or smaller particles can yield attractive flocculation and 

depletion forces.73,74 

Especially for larger particles, gravitational forces cause particle sedimentation, which can 

result in the formation of colloidal crystals depending on the distinct height of the energy barrier 

caused by the repulsive interactions. However, sedimentation generally yields three-

dimensional colloidal crystals.75 Electrostatic attraction to an oppositely charged substrate leads 

to random sequential adsorption of the particles giving particle monolayers with low surface 

coverage and high degree of disorder.76-78 

External forces such as electrophoretic direct current79 and alternating current80 can be applied 

to electrical conductive substrates immersed into the particle dispersion to generate ordered 

particle monolayers. 

Other forces dominate for particles near interfaces. As discovered by Pieranski et al., colloidal 

particles are trapped at liquid/gas or liquid/liquid interfaces.81 When trapped at an interface 

between media with different polarity, the asymmetric dissociation of ionic groups on the 

particle surface provides dipole like charge distributions (Figure 1.1b). As these dipoles are 

oriented parallel for all particles at the interface,  a repulsive force emerges. 
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Moreover, flotation and immersion capillary forces have to be considered (Figure 1.1c).82,83 

Particles at an interface deform the interface depending on the wettability of the particles. For 

large particles, gravitational and buoyancy forces further influence the deformation of the 

interface. When the curvature of the meniscus extends into the same direction, the urge to 

minimize the free-energy by minimizing the interfacial area of the system results in an attractive 

flotation force between two particles. Attractive immersion capillary forces act when particles 

are trapped at a solid interface in a liquid film distinctly thinner than the particle diameter. 

Immersion capillary can influence even very small colloidal particles. Flotation and immersion 

capillary forces thereby are susceptible towards the particle wettability, size, shape, the density 

of the particles compared to the density of the liquid media as well as surface modifications of 

solid substrates. 

 

Convective assembly is a commonly used method for the production of two-dimensional and 

three-dimensional colloidal crystals capitalizing on immersion capillary forces on solid 

substrates. On hydrophilic substrates, a thin liquid film is formed at the three-phase-contact 

line, and immersion capillary forces drag the particles into the colloidal crystal. Driven by 

solvent evaporation in the meniscus region, the particles are convectively transported from the 

bulk dispersion to the three-phase-contact line.82 

Convective assembly can be observed in drying colloid dispersions drop cast onto hydrophilic 

substrates.84 By slowly moving the meniscus across the substrate the colloidal crystal film is 

continuously deposited, and the coffee-ring effect is avoided. Experimentally, this can be 

realized by vertical85 or horizontal86 deposition techniques or by confining the dispersion in 

wedge-shaped evaporation cells (Figure 1.2).87,88 Similarly, immersion capillary forces are 

exploited in spin-coating based assembly methods.89,90 However, spin-coating often results in 

small domain sizes and the realization of high quality, defect-free monolayers is challenging. 

 



Introduction 

20 

 

Figure 1.2. Convective assembly methods. The meniscus is formed by (a) vertically lifting the 

substrate out of a particle dispersion or (b) horizontally withdrawing the particle dispersion. (c) 

Optical microscopy image of a close-packed particle monolayer growing at the three-phase-

contact line. The meniscus is moving from left to right. The particles are driven to the contact 

line by convection. (d) Convective assembly in a wedge-shaped cell. The photograph depicts a 

monocrystalline colloidal crystal assembled in a wedge-shaped cell. (c) Reprinted with 

permission from Ref. 86. ©2007 American Chemical Society. (d) Reprinted with permission 

from Ref. 88. ©2013 American Chemical Society. 

 

In general, high degrees of order can be achieved with interface assisted methods. Here, the 

colloidal crystal is generated at a liquid interface and transferred to a solid substrate in a 

subsequent step. During the assembly stage, the particles are trapped at the interface and are 

subject to a purely lateral motion. The Langmuir-Blodgett method is highly reproducible but 

needs sophisticated equipment.91 The particles at the liquid interface are compressed 

mechanically by barriers to form a close-packed monolayer. This technique can be supported 

by a simultaneous measurement of pressure-area isotherms. 

In a more convenient method, the particles are applied directly to the liquid/air interface through 

a thin cannula.92,93 The cannula tip is positioned in contact with the interface forming a 

meniscus. Based on the Marangoni effect, the particles are radially pushed away from the 

cannula tip, and a close-packed particle monolayer is growing from the boundaries of the 

interface inwards. By carefully controlling the flow rate and spreading of the particle dispersion, 

large-area monolayers can be generated very fast. 

Likewise, particles can be applied to water/oil interfaces. Thus, attractive capillary forces can 

be reduced, and non-close-packed monolayers are obtained.94-96 By additionally introducing a 

curvature to the water/oil interface, Ershov et al. were able to create non-close-packed square 
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arrays of colloidal particles.97 However, the transfer of non-close-packed particle arrays from 

the water/oil interface to solid substrates is not trivial due to the onset of capillary forces. 

Vogel et al. introduced a method for the wafer-scale production of particle monolayers (Figure 

1.3a,b).98 The aqueous colloidal dispersion, diluted with the same amount of ethanol, is applied 

to the water interface via a hydrophilic glass slide immersed in a sodium dodecyl sulfate 

solution with a tilt angle of approximately 45 °. Thus, the particle flow into the subphase is 

considerably reduced, minimizing defect formation when transferring the monolayer onto solid 

substrates. A close-packed particle monolayer is formed directly at the three-phase contact line. 

 

 

Figure 1.3. Colloidal crystal formation at the water/air interface. (a) Colloidal crystal assembly 

by addition of the colloid dispersion via a tilted glass slide. (b) Silicon wafer covered with a 

monolayer of 1 µm polymer colloids. (c) A substrate with sparsely distributed particles is 

prepared by spin-coating of the particle dispersion onto a positively charged substrate. The 

colloidal crystal is formed by immersion of the particle coated substrate. (b) Reprinted with 

permission from Ref. 98. ©2011 Wiley-VCH. 

 

An alternative method to trap colloidal particles at the water/air interface was developed by 

Retsch et al.99 The particles are spin-coated on a cationically functionalized glass slide to form 

a layer of sparsely distributed particles (Figure 1.3c). Subsequently, the coated glass slide is 

immersed into the subphase. Upon immersion, the particles detach from the glass slide at the 

three-phase-contact line and immediately form a close-packed particle monolayer. A small 

amount of sodium dodecyl sulfate is added to the subphase to provide an additional force, which 

pushes the particles together when detaching from the glass slide. Thus, the assembly via 
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flotation or immersion capillary forces is confined to a single particle monolayer, and the 

evolution of particle multilayers is avoided. The particle monolayer can then be transferred to 

an arbitrary substrate either by draining the subphase or pushing or lifting the substrate through 

the floating monolayer. Simultaneously, the dissociation of functional groups on the particle 

surface and thus the interparticle repulsion by electrostatic forces can be tuned by adjusting the 

pH of the subphase. This drastically influences the quality of the particle monolayer. 

 

Post processing at the water/air interface can further enhance the order of the floating 

monolayer. While floating at the interface, defects in the monolayer can be eliminated by 

annealing with expansion-compression cycles or ultrasound.100 Similarly, recrystallization was 

induced by shear forces generated with a stream of compressed nitrogen.101 

Binary colloidal crystals consisting of two different sizes have been prepared with several of 

the methods discussed above.35,36 Depending on the size ratio and stoichiometry of the particles, 

complex superstructures can be formed. 

Substrate-supported, non-hexagonally ordered arrays are not directly accessible with colloidal 

self-assembly. Instead, non-hexagonal assemblies can be obtained starting from hexagonal 

monolayers on elastomeric substrates. By swelling or stretching the substrate, the particle arrays 

can be distorted, and different geometries can be generated.102 

 

Finally, topographical or chemical patterning of the substrate allows for the creation of 

hierarchical structures with colloidal particles. Topographically patterned substrates are usually 

coated via convective assembly methods. When moving across the structure, the meniscus is 

pinned to the topographical features, which results in a directed deposition of the colloids.86,103-

105 With feature sizes in the range of single particles, individually separated particles can be 

deposited,86,106-108 (Figure 1.4a) and close-packed or non-close-packed arrays with various 

lattice geometries can be prepared.86,106 Feature sizes much larger than the single particle are 

usually used to generate superstructures with patches of hexagonal, close-packed 

monolayers.109 By confining multiple particles in patterns tuned to the lattice period, the lattice 

symmetry and orientation can be controlled.106,107 
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Figure 1.4. Particle deposition on patterned substrates. (a) Single particles deposited in 

topographical features via capillary assembly. (b) Deposition of single particles and particle 

clusters using a contrast in the surface charge by patterning with polyelectrolytes. (c) Patterned, 

close-packed colloidal crystal deposited on a substrate with wettability contrast. (a) Reprinted 

with permission from Ref. 86. ©2007 American Chemical Society. (b) Reprinted with 

permission from Ref. 110. ©2002 Wiley-VCH. (c) Reprinted with permission from Ref. 111. 

©2005 American Chemical Society. 

 

Chemical patterning of the substrate can generate surface areas with a contrast in surface charge 

or wettability. This contrast is often achieved using polyelectrolytes, silane or thiol 

chemistry.111-113 By structuring the surface charge, the placement of single particles or small 

particle clusters is possible via electrostatic attraction (Figure 1.4b).110 Larger domains of 

ordered close-packed arrays, however, are not directly accessible due to the strong binding of 

the particles to the surface. Thus the particle assembly driven by capillary forces is impeded.112 

On the contrary, introducing a contrast in wettability may result in larger, ordered assemblies 

directed to the areas preferably wetted by the particle dispersion (Figure 1.4c).111,114 

More complex geometries are possible using the directed self-assembly of non-isotropic 

particles with engineered binding sites.115,116 
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1.2 Nanosphere Lithography 

 

Starting from self-assembled colloidal structures, nanosphere lithography or colloidal 

lithography presents a simple and cheap alternative to top-down lithographic techniques. 

Therefore, since its introduction by van Duyne et al.117 in 1995, the method evolved rapidly and 

has been used to prepare a plethora of different nanostructures.35,52,65,118-122 

 

Van Duyne et al. used hexagonal, close-packed monolayers and double-layers of polystyrene 

spheres as a template for metal evaporation.117 After lift-off of the particle array by dissolving 

in dichloromethane, ordered arrays of triangularly shaped nanoparticles as well as round 

nanodots remained for the monolayer and double-layer masks, respectively (Figure 1.5a,b). 

Soon after, the plasmonic properties of these nanoparticle arrays were investigated with regard 

to the dielectric environment123 as well as the size,124 shape,125 and material126 of the particles. 

Kosiorek et al. thermally annealed a polystyrene particle monolayer with microwave pulses 

partially closing the interstices of the monolayer. Like this, Co nanodots were fabricated with 

diameters as small as 30 nm but large interparticle spacings at the same time.127  

 

 

Figure 1.5. Plasmonic particle arrays prepared templated by close-packed colloidal crystals. (a) 

Triangularly shaped Ag nanoparticles were prepared by Ag deposition through a monolayer of 

polystyrene particles. (b) The Ag deposition through the interstices of a bilayer of polystyrene 

spheres results in Ag nanodot arrays. (c) Split-ring resonators formed by incomplete sample 

rotation during gold evaporation. (a,b) Reprinted with permission from Ref. 125. ©2001 

American Chemical Society. (c) Reprinted with permission from Ref. 128. ©2009 Wiley-VCH. 
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The small apertures prepared by monolayer annealing were also used for the fabrication of 

nanorings. For this, a further level of complexity was added by varying the sample angle for 

metal evaporation. During evaporation at an angle of 25 °, the sample stage was rotated yielding 

Fe nanoring arrays129. Similarly, an incomplete sample rotation during evaporation results in 

split-ring resonators (Figure 1.5c).128  

 

An additional parameter is introduced when using non-close-packed monolayers as shadow 

masks. Most often, non-close-packed arrays are produced by plasma etching.36,98 Starting from 

a close-packed monolayer, the particle diameter is reduced depending on the etching time 

without changing the interparticle distance.130,131 Analogously, the particle diameter can be 

reduced by shrinking close-packed hydrogel particles89,132 or degrading133,134 the polymer shell 

of core/shell particles without affecting the order of the colloidal crystal. Alternatively, non-

close-packed particle monolayers are accessible by swelling elastomeric substrates bearing a 

close-packed monolayer135 or directly via spin-coating.136 Metal evaporation onto non-close-

packed particle monolayers readily yields nanohole arrays after lift-off of the particle template 

(Figure 1.6a).137 

Line structures and grid structures can be fabricated by multiple, angled deposition and rotating 

the sample in between the deposition steps (Figure 1.6b).138  

By combining angled metal evaporation with reactive ion beam etching nanocrescent 

arrays139,140 and binary nanocrescent arrays141,142 were fabricated (Figure 1.6c). For this, the 

metal is deposited through a non-close-packed particle layer at an oblique angle. Then, the 

structure is exposed to reactive ion beam etching perpendicular to the substrate removing all 

excess metal not shaded by the particle template. Finally, the particle template is removed 

revealing the nanocrescents. 

A more sophisticated two-step method for the preparation of split-ring resonators143 or metal 

nanodiscs144 is based on hole-mask colloidal lithography (Figure 1.6d). For hole-mask colloidal 

lithography, a metal nanohole array is prepared by colloidal lithography on top of a sacrificial 

polymer layer. After the polymer layer is selectively etched beneath the holes of the metal film, 

the apertures in the metal film are finally used as evaporation mask.144 

Etching colloidal particle multilayers results in anisotropically etched particles as the upper 

particle layers act as shadow masks for the underlying layers.145 Thus, various more complex 

geometries such as binary particle arrays can be realized. Using a double layer of hexagonal, 

close-packed polystyrene spheres as evaporation mask, in which the particles of the second 

layer sit in the interstices of the bottom layer, resulted in shuttlecock-shaped particles.146 If the 
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second particle layer is rotated with respect to the bottom layer, Moiré patterns emerge, which 

were used as evaporation mask in a method coined Moiré nanosphere lithography.147,148 

Further, metal evaporation presents a simple method for the fabrication of Janus particles149 or 

hollow metal hemispheres.150 

 

 

Figure 1.6. Metal nanostructures prepared using non-close-packed particle monolayers as a 

template. (a) Ag nanohole array prepared by evaporation normal to the surface. (b) Grid 

structures are accessible via angled metal evaporation. (c) Nanocrescent arrays can be prepared 

by angled metal evaporation and subsequent reactive ion beam etching normal to the surface. 

(d) Split-ring resonators produced by hole-mask colloidal lithography. The inset shows a 

schematic of the fabrication. The sample is rotated during evaporation of metal through a 

nanohole template. (a) Reprinted with permission from Ref. 137. ©2009 American Chemical 

Society. (b) Reprinted with permission from Ref. 138. ©2007 American Chemical Society. (c) 

Reprinted with permission from Ref. 139. ©2009 Wiley-VCH. (d) Reprinted with permission 

from Ref. 143. ©2012 American Chemical Society. 

 

As an alternative to metal evaporation, which requires high vacuum, metal can be deposited by 

electroless plating. Here, the metal film is formed in a wet chemical process by reduction of 

ionic metal precursors in solution. Controlling the nucleation is vital to achieve smooth films 

and impede secondary nucleation yielding metal particles. Gold nanohole arrays151,152, as well 

as nanoring arrays153 made of platinum, gold, and copper, have been prepared using electroless 

plating and colloidal crystals as templates. 



Introduction 

27 

 

Electrochemical deposition can be used to fabricate gold hole arrays154 as well as hollow 

particles made of ZnO155 or Ag.156 For this, however, a conductive substrate is needed. 

Silver honeycomb meshes were prepared by coating a close-packed monolayer of polystyrene 

particles using ink bar coating and a commercial silver ink followed by thermal annealing and 

lift-off of the particle template.157 

Nanobowl arrays were fabricated using atomic layer deposition of TiO2,
158 

electropolymerization,159 or the infiltration of a colloidal monolayer with WO3 precursors.160 

The infiltration of three-dimensional colloidal crystals results in a material class called inverse 

opals. However, inverse opals are a research field on its own and will not be covered here.161-

163 Nevertheless, a two-dimensional inverse opal can be prepared by infiltration of a colloidal 

monolayer.164 

 

Furthermore, colloidal monolayers can be used as a shadow mask to etch the structure into the 

substrate itself. Nanowires were etched into a silicon substrate through non-close-packed 

particle monolayers by SF6
165 or chlorine5 reactive ion etching (Figure 1.7a). Analogously, 

“candle stands” were etched into a gallium antimonide substrate with chlorine reactive ion 

etching.166 Nanotriangles prepared by colloidal lithography were used as an etching mask to 

obtain Si nanopillars.167 Moreover, colloidal monolayers can be employed for the preparation 

of etching masks to pattern thin polymer films.168 Nanodiscs composed of Co/Pt alloy were 

created using perpendicular reactive ion beam etching of a thin Co/Pt film shaded by non-close-

packed particle monolayers.169 

 

 

Figure 1.7. Patterned substrates via colloidal lithography. (a) Silicon nanowires were fabricated 

via SF6 reactive ion etching through a non-closed-packed particle monolayer. (b) Nanovolcanos 

were prepared by metal evaporation onto photoresist nanocones and subsequent removal of the 

resist. The nanocones were prepared via reactive ion etching through a close-packed colloidal 

crystal. (c) Anisotropic silicon etching through a chromium nanohole array yields inverted 

nanopyramid arrays, which can be replicated into metal films by template-stripping. (a) 

Reprinted with permission from Ref. 165. ©2010 American Chemical Society. (b) Reprinted 

with permission from Ref. 170. ©2013 Wiley-VCH. (c) Reprinted with permission from Ref. 

171. ©2007 American Chemical Society. 
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Ai et al. etched nanocones into a photoresist layer using a close-packed monolayer of 

polystyrene spheres as a template (Figure 1.7b). Subsequent metal deposition and particle lift-

off resulted in an array of nanovolcanos.170 

 

Anisotropic silicon etching was used by Sun et al. to fabricate periodic arrays of metal 

nanopyramids (Figure 1.7c). During the wet etching of the silicon substrate, the KOH 

preferentially etches the <100> plane of silicon. To obtain the array of nanopyramids, a non-

close-packed monolayer of silica particles was prepared by spin-coating and used as a template 

for the deposition of a chromium mask. The resulting chromium nanohole array then acted as 

an etching mask defining the size and spacing of the inverted nanopyramids. After removing 

the chromium, a metal film was deposited and finally template-stripped yielding the metal 

nanopyramids.171 

When depositing the metal layer without previously removing the chromium mask, free-

standing metal nanopyramids can be produced.172 

 

Nanopillars can also be prepared by directed growth techniques. Hexagonally shaped, single 

crystalline ZnO pillars were grown from solution on zinc foils using a colloidal monolayer 

template.173 Thereby, the pillars grew in the interstices of a monolayer of polystyrene spheres 

itself or in the unmasked area of the inverted hole structure. 

Amorphous TiO2 was deposited by pulsed laser deposition by Li et al.174 Upon annealing, the 

amorphous TiO2 crystallized into polycrystalline anatase TiO2 nanopillars. 

Au nanoparticle arrays prepared by colloidal lithography were used to grow vertically aligned 

silicon175 and ZnO176-178 nanopillars by vapor-liquid-solid mechanisms with several techniques. 

Similarly, Ni catalyst arrays can be used to grow periodic carbon nanotube arrays.179-181 

 

Recently, colloidal monolayers were used as templates not only on solid substrates but directly 

at the liquid/gas interface. By chemical polymerization of aniline or pyrrole in the presence of 

a floating particle monolayer, nanobowls of conducting polymers were fabricated.182 Ag 

nanobowls183 and Ag2S nanonets184 were prepared via interface reactions with reactive gas and 

metal precursors dissolved in the liquid phase. Ye et al. obtained ZnS nanobowl arrays by 

floating a colloidal monolayer on a precursor solution. The decomposition of the precursors 

was then triggered by temperature.185 Similarly, Sun et al. trapped a monolayer of polystyrene 

spheres at the liquid/air interface above a solution of HAuCl4 and Na2SO3. The irradiation with 

UV light then induced the formation of Au hollow sphere arrays.186  
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A three-dimensional gold nanohole array was created by Ai et al. using a close-packed 

monolayer of polystyrene spheres.187 After gold deposition, the gold hemispheres were partially 

embedded in P4VP to selectively etch the exposed top layer using a commercial gold etching 

solution. After removing the P4VP layer and the particle template by dissolution in ethanol and 

toluene, respectively, the three-dimensional gold nanohole array remained.  

Colloidal monolayers have also been used for evaporation induced self-assembly. CdSe 

quantumdots188 or carbon nanotubes189 were driven into the interstices between the substrate 

and the colloidal particles by capillary forces, thus creating nanoring arrays. 

Finally, self-assembled polymer spheres containing metal particles were converted into ordered 

arrays of metallic nanoparticles by plasma combustion of the organic content followed by 

thermal annealing.190 

 

Altogether, colloidal lithography offers the possibility to prepare a tremendous variety of 

nanostructures relying on colloidal building blocks. Most prominently, nanosphere lithography 

is used to transfer the structures obtained by colloidal self-assembly into metallic surfaces. Due 

to the possibility to create structures with a feature size smaller than the wavelength of visible 

light, these structures feature exceptional plasmonic properties in this wavelength range.118,191 

Thus, nanosphere lithography has been exploited to produce nanostructures for sensing,185,192 

surface enhanced fluorescence,193 and Raman spectroscopy.13 

Moreover, plasmonic nanostructures are discussed to enhance the power conversion efficiency 

in light emitting diodes194,195 and solar cells24-27,196 because of their ability to confine light in 

deep subwavelength volumes.197 Colloidal lithography also features a simple approach towards 

metamaterials.128,139,198 The fascinating plasmonic properties of nanostructured metallic 

surfaces are described in the following chapter.  
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1.3 Surface Plasmon Polaritons 

 

1.3.1 The Drude Theory of Metals 

 

As already mentioned, plasmons are collective oscillations of electrons in a solid. Three types 

of plasmons can be distinguished: Bulk plasmons are longitudinal electron density oscillations 

in the bulk material. Surface plasmon polaritons (SPP) are two-dimensional, transverse 

oscillations of electrons bound to a metal/dielectric interface. Localized surface plasmon (LSP) 

resonances are in-phase oscillations of electrons in deep-subwavelength-scale particles. 

In general, a high density of free electrons is needed in a material to excite these oscillations. 

Thus, although also found in metal oxides199 and organic materials200 plasmons are mainly 

observed in metals. This chapter focuses on the fundamental properties of metals and their 

connected ability to support surface plasmon polaritons. 

The most apparent macroscopic properties of metals are their conductivity and their high 

reflectivity. Both can be well described, though simplified, on a microscopic level by the Drude 

theory, which was proposed by Paul Drude around 1900.201 In the Drude theory, metals are 

described as compounds consisting of positively charged ions and much smaller, negatively 

charged electrons. In contrast to the heavy ions, which are assumed immobile, the electrons are 

considered to be delocalized, forming a freely floating “electron gas” within the matter. When 

an electric field 𝐸⃗  is applied, these electrons follow the field. Otherwise, based on the kinetic 

gas theory, the electrons are regarded to be moving in a constant, random motion and electron-

electron interactions are neglected. However, collisions of electrons with the positively charged 

ions lead to changes in the direction and velocity of the electrons, which is described by a 

damping factor  

𝛾 =
1

𝜏
 , 1.1 

 

with 𝜏 being the average time between two collisions.202 Following these assumptions, the time-

dependent motion equation of an electron in an electric field 𝐸⃗  equals to 

−𝑒𝐸⃗ (𝑡) = 𝑚𝑥̈ + 𝑚𝛾𝑥̇, 1.2 

 

with 𝑒 and 𝑚 being the charge and mass of an electron, 𝑡 being the time and 𝑥 being the 

displacement. Applying an oscillating electric field 

𝐸⃗ (𝑡) = 𝐸⃗ 0𝑒
−𝜔𝑡, 1.3 
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with an amplitude 𝐸⃗ 0 and the angular frequency 𝜔 the displacement of the electron can be 

expressed as 

𝑥 (𝑡) =
𝑒

𝑚(𝜔2 + 𝑖𝛾𝜔)
𝐸⃗ (𝑡). 1.4 

 

For a linear, isotropic medium 𝑖, the relation between the macroscopic polarization 𝑃⃗  and the 

electric field is given by 

𝑃⃗ (𝑡) = −𝑁𝑒𝑥 (𝑡) = (𝜀𝑖 − 1)𝜀0𝐸⃗ (𝑡), 1.5 

 

with the number density of charge carriers 𝑁, the vacuum permittivity 𝜀0 and the relative 

permittivity of the medium 𝜀𝑖. This directly yields the dielectric function of metals with the 

plasma frequency 𝜔𝑃: 

𝜀𝑖 = 1 −
𝑁𝑒2

𝜀0𝑚(𝜔2 + 𝑖𝛾𝜔)
= 1 −

𝜔𝑃
2

(𝜔2 + 𝑖𝛾𝜔)
 1.6 

 

𝜔𝑃
2 =

𝑁𝑒2

𝜀0𝑚
 1.7 

 

The dielectric function can be separated into its real part and its imaginary part: 

𝜀𝑖(𝜔) = 𝜀𝑖′(𝜔) + 𝑖𝜀𝑖′′(𝜔) 1.8 

 

𝜀𝑖′ = 1 −
𝜔𝑃

2𝜏2

(1 + 𝜔2𝜏2)
 1.9 

 

𝜀𝑖′′ =
𝜔𝑃

2𝜏

𝜔(1 + 𝜔2𝜏2)
 1.10 

 

In Figure 1.8 the wavelength dependent real and imaginary part of the dielectric function of 

gold is depicted. The real part changes its sign at the plasma frequency. The plasma frequency 

is the eigenfrequency of the bulk plasmon, which is a longitudinal, collective oscillation of the 

electron gas within its volume. Below the plasma frequency, the real part becomes negative, 

connected to a very high imaginary part. This is reflected in a high reflectivity of the metal as 

the electrons respond to an external electric field. Above the plasma frequency, however, the 

real permittivity of the metal is positive, and the oscillations of an electromagnetic wave are too 

fast for the electrons to follow. Thus, the metal becomes transparent above its plasma frequency. 
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For real metals, the plasma frequency is usually located in the ultraviolet region. In this region, 

interband transitions occur, which are not considered in the Drude theory. 

 

 

Figure 1.8. Real and imaginary part of the dielectric function of gold calculated by the Drude 

model. The values of 𝜏 = 7 ∗ 10−15𝑠 and 𝜔𝑃 = 1.22 ∗ 1016  
1

𝑠
 were adapted from Ref. 203. 

 

 

1.3.2 Bound Electromagnetic Waves 

 

In modern physics, the interaction of light and matter is described by Maxwell’s equations, 

which form the fundament of classical electromagnetism. Maxwell’s equations explain how 

charges and currents evoke electric and magnetic fields, respectively. Furthermore, the 

interaction between electric and magnetic fields can be explained as well as their spatial- and 

time-dependent evolution. 

The interaction of an electromagnetic wave with a metal/dielectric interface can be derived from 

the macroscopic Maxwell’s equations, which involve matter given by macroscopic parameters: 

the relative permittivity 𝜀𝑖 and the relative permeability 𝜇𝑖.
202 Additionally, free and bound 

charges and currents are taken into account by using the electric displacement field 𝐷⃗⃗  and the 

magnetizing field 𝐻⃗⃗ . In a linear, isotropic medium, these values are connected to the electric 

field 𝐸⃗  and the magnetic field 𝐵⃗  by the following expressions: 

𝐷⃗⃗ = 𝜀𝑖𝜀0𝐸⃗  1.11 

 

𝐵⃗ = 𝜇𝑖𝜇0𝐻⃗⃗  1.12 
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Implying only harmonic oscillations, a time-independent form of Maxwell’s equations can be 

used: 

∇⃗⃗ ∙ 𝐷⃗⃗ = 𝜌𝑓 1.13 

 

∇⃗⃗ ∙ 𝐵⃗ = 0 1.14 

 

∇⃗⃗ × 𝐸⃗ = −𝑖𝜔𝐵⃗ = −𝑖𝜔𝜇𝑖𝜇0𝐻⃗⃗  1.15 

 

∇⃗⃗ × 𝐻⃗⃗ = 𝐽 𝑓 + 𝑖𝜔𝐷⃗⃗ = 𝜎𝐸⃗ + 𝑖𝜔𝜀𝑖𝜀0𝐸⃗  1.16 

 

𝜌𝑓 equals the density of free charges, 𝜎 is the conductivity, and 𝐽 𝑓 is the free current density. 

For electromagnetic waves, free charge carriers can be neglected (𝜌𝑓 = 0, 𝐽 𝑓 = 0, 𝜎 = 0). 

Thus, Maxwell’s equations simplify to 

∇⃗⃗ ∙ 𝐷⃗⃗ = 0 1.17 

 

∇⃗⃗ ∙ 𝐵⃗ = 0 1.18 

 

∇⃗⃗ × 𝐸⃗ = −𝑖𝜔𝜇𝑖𝜇0𝐻⃗⃗  1.19 

 

∇⃗⃗ × 𝐻⃗⃗ = 𝑖𝜔𝜀𝑖𝜀0𝐸⃗ . 1.20 

 

 

Figure 1.9. Scheme of an interface between two half-spaces of materials i with relative 

permittivities 𝜀𝑖 and relative permeabilities 𝜇𝑖. 

 

For the description of surface waves, Maxwell’s equations are solved for an interface between 

two half-spaces with relative permittivities 𝜀𝑖 and relative permeabilities 𝜇𝑖 (Figure 1.9). By 

implying that neither the geometry nor the fields changes in y direction, it follows that: 
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𝜕

𝜕𝑦
 = 0 1.21 

 

Thus, the curl equations (equations 1.19 and 1.20) can be split into an equation system: 

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= −𝑖𝜔𝜇𝑖𝜇0𝐻𝑦 1.22 

 

−
𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝜔𝜀𝑖𝜀0𝐸𝑥 1.23 

 

−
𝜕𝐻𝑦

𝜕𝑥
= 𝑖𝜔𝜀𝑖𝜀0𝐸𝑧 1.24 

 

𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= −𝑖𝜔𝜇𝑖𝜇0𝐸𝑦 1.25 

 

−
𝜕𝐸𝑦

𝜕𝑧
= 𝑖𝜔𝜀𝑖𝜀0𝐻𝑥 1.26 

 

−
𝜕𝐸𝑦

𝜕𝑥
= 𝑖𝜔𝜀𝑖𝜀0𝐻𝑧 1.27 

 

In the following, only the TM-mode (equations 1.22 - 1.24) is considered with the electric field 

aligned perpendicular to the interface. Moreover, the propagation constant 𝛽 is introduced, with 

𝜕𝐸𝑥

𝜕𝑧
= 𝑖𝛽𝐸𝑥 1.28 and 

𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝛽𝐻𝑥, 1.29 

 

which leads to  

𝑖𝛽𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
= −𝑖𝜔𝜇𝑖𝜇0𝐻𝑦 1.30 

 

−𝑖𝛽𝐻𝑥 = 𝑖𝜔𝜀𝑖𝜀0𝐸𝑥 1.31 

 

−
𝜕𝐻𝑦

𝜕𝑥
= 𝑖𝜔𝜀𝑖𝜀0𝐸𝑧 . 1.32 

 

A surface wave, which is bound to the interface, has to decay exponentially in x-direction with 

the decay constant 𝜅𝑖, while being periodic in z-direction. Therefore, the following solution can 

be assumed: 

𝐸⃗ 𝑖(𝑧) = [
𝐸𝑥,𝑖

𝐸𝑧,𝑖
] 𝑒−𝜅𝑖|𝑥|𝑒𝑖𝛽𝑧 1.33 
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𝐻⃗⃗ 𝑖(𝑧) = 𝐻𝑦,𝑖𝑒
−𝜅𝑖|𝑥|𝑒𝑖𝛽𝑧 1.34 

 

Introducing this possible solution results in the following equation systems for the two 

respective media: 

𝑖𝛽𝐸𝑥,1 + 𝜅1𝐸𝑧,1 = −𝑖𝜔𝜇1𝜇0𝐻𝑦,1 1.35 

 

−𝑖𝛽𝐻𝑦,1 = 𝑖𝜔𝜀1𝜀0𝐸𝑥,1 1.36 

 

−𝜅1𝐻𝑦,1 = 𝑖𝜔𝜀1𝜀0𝐸𝑧,1 1.37 

 

𝑖𝛽𝐸𝑥,2 + 𝜅2𝐸𝑧,2 = −𝑖𝜔𝜇2𝜇0𝐻𝑦,2 1.38 

 

−𝑖𝛽𝐻𝑦,2 = 𝑖𝜔𝜀2𝜀0𝐸𝑥,2 1.39 

 

−𝜅2𝐻𝑦,2 = 𝑖𝜔𝜀2𝜀0𝐸𝑧,2 1.40 

 

Solving these equation systems directly yields the dispersion relation of a surface wave, with 

𝑘0 being the free space wavevector in vacuum: 

𝑘0
2𝜇𝑖𝜀𝑖 = 𝛽2 − 𝜅𝑖

2 1.41 

 

Moreover, at the interface, the tangential components of the electric and magnetic fields have 

to be continuous across the interface: 

𝐸𝑧,1 = 𝐸𝑧,2 1.42 and 𝐻𝑦,1 = 𝐻𝑦,2 1.43 

 

This gives the existence condition for surface plasmon polaritons: 

𝜀2 = −𝜀1

𝜅2

𝜅1
 1.44 

 

For surface waves, the decay constants have to be positive values. Thus, the dielectric constants 

have to have opposite signs, which is only possible when using a metal below its plasma 

frequency for one of the materials. 

Combining equations 1.41 and 1.44, and assuming non-magnetic media (𝜇𝑖 = 1) the dispersion 

relation of surface plasmon polaritons can be expressed as: 

𝛽 = 𝑘0√
𝜀1𝜀2

𝜀1 + 𝜀2
 1.45 
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As one of the materials has to be a metal, the permittivity 𝜀2 can be approximated using the 

Drude theory. For a very small damping term 𝛾 the dielectric function can be reduced to 

𝜀2 = 1 −
𝜔𝑃

2

𝜔2
 . 1.46 

 

The surface plasma frequency 𝜔𝑆𝑃 is obtained when inserting the dielectric function into the 

dispersion relation (equation 1.45) and assuming 𝜔 = 𝜔𝑆𝑃, 𝑘0 = 𝜔𝑆𝑃/𝑐, and 𝛽 → ∞: 

𝜔𝑆𝑃 =
𝜔𝑃

√1 + 𝜀1

 1.47 

 

The received dispersion relation for surface plasmon polaritons is depicted in Figure 1.10. At 

low frequencies, the SPP nearly behaves like free-space electromagnetic waves. For high 

frequencies, it approaches 𝜔𝑆𝑃. Above the plasma frequency, the dispersion of the bulk plasmon 

is visible. Over the whole frequency range, however, the SPP dispersion is below the dispersion 

of the free photons. 

 

 

Figure 1.10. Dispersion relation of a surface plasmon at the gold/air interface. The dashed lines 

denote the plasma frequency 𝜔𝑃 and the surface plasma frequency 𝜔𝑆𝑃 of gold, the solid black 

line the momentum of the free photon in air. The arrow indicates the momentum mismatch 

between the surface plasmon polariton and the free photon. 

 

As shown in Figure 1.10, the dispersion of the surface plasmon polariton does not cross the 

light line of a free-space photon. Therefore, independent of the incident frequency, the SPP 

cannot be excited due to a momentum mismatch. To still be able to excite SPPs, this momentum 

mismatch, which is denoted by the arrow in Figure 1.10, has to be overcome. The missing 
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momentum can be provided by using high index dielectric materials. In the Kretschmann and 

Otto configuration, the total internal reflection in high index prisms is used. When the prism is 

close enough to the metal surface, the evanescent wave caused by the total internal reflection 

can excite a surface plasmon polariton. For a given frequency, the momentum is then matched 

by tuning the angle of incidence. 

Alternatively, the momentum mismatch can be compensated by introducing a periodic 

corrugation of the metal/dielectric interface. According to the grating equation, the grating 

provides an additional momentum, equal to a multiple integer 𝑚 of the reciprocal lattice vector 

𝐾⃗⃗ , which adds to the in-plane component 𝑘⃗ 𝑥 of the incident light (Figure 1.11).204 This directly 

yields the excitation condition for surface plasmon polaritons using a grating coupler: 

𝛽 = 𝑘⃗ 𝑥 + 𝑚𝐾⃗⃗ = 𝑘⃗ 0 ∗ 𝑛1 ∗ sin𝛩 + 𝑚𝐾⃗⃗  1.48 

 

𝑛1 = √𝜀1 refractive index of the dielectric 

 

 

Figure 1.11. Coupling of a surface plasmon polariton with incident light via a metal grating 

with period P. 

 

The period of the grating thereby has to be in the order of the wavelength of the incident light. 

Therefore, a metal surface has to be patterned with sub-micron resolution to allow for the 

excitation of surface plasmon polaritons in the visible spectrum. 
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1.3.3 Nanohole Arrays 

 

Metal nanohole arrays or nanomeshes present a prevalent example for nanostructured materials 

that support surface plasmon polaritons. These structures have attracted much interest since the 

discovery of their extraordinary optical transmission.205 For infinitely thin metal films, Bethe 

theoretically derived a simple correlation between the transmission efficiency and the radius r 

of the holes, in which the transmission efficiency scales with (r/λ)4.206 Thus, the transmittance 

is expected to decay exponentially as soon as the radius of the hole is smaller than the 

wavelength of interest. However, this assumption did not hold for optical thick metal layers 

perforated with subwavelength holes. For both, single apertures and subwavelength hole arrays, 

a transmittance maximum was observed that was much higher than predicted by Bethe’s law.207 

This phenomenon was assigned to the excitation of surface plasmons.208-210 The incident light 

excites the surface plasmon, which then tunnels the energy through the holes to the surface 

plasmon confined to the other metal/dielectric interface.211 There, the energy is re-emitted again 

by coupling back to the free wave. 

Metal nanohole arrays have been prepared by various methods. Electron beam lithography or 

focused ion beam milling (FIB) are often used as they give nanohole arrays with arbitrary 

symmetries and without lattice defects, nevertheless with the aforementioned drawbacks of low 

throughput and small sample sizes.209,212 Instead, nanoimprint lithography can be applied to 

fabricate large areas.213,214  

An elegant method to produce large-scale nanohole arrays without sophisticated equipment is 

based on nanosphere lithography (Figure 1.12). The preparation of nanohole arrays via 

nanosphere lithography starts from close-packed polymer particle monolayers, which are 

obtained from arbitrary self-assembly strategies (Figure 1.12a). For hard spheres, such as 

polystyrene particles, the particles are then etched using reactive ion etching, which allows for 

a precise tuning of the particle diameter (Figure 1.12b). Subsequently, the desired metal can be 

deposited by thermal evaporation (Figure 1.12c). The optical properties of these metal coated 

particle arrays already resemble those of nanohole arrays as their spectral properties are 

governed by the underlying lattice.215 Finally, the particle template is removed using adhesive 

tape and ultrasonication, leaving behind the nanohole array (Figure 1.12d). Whereas the hole 

diameter d is given by the etching time, the period P of the received nanohole array is solely 

defined by the initial diameter d0 of the polymer spheres. 
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Figure 1.12. Fabrication of nanohole arrays by nanosphere lithography. (a) Side-view scanning 

electron microscopy image of a hexagonal, close-packed monolayer of polystyrene particles. 

(b) Non-close-packed monolayer after plasma etching. (c) 100 nm gold deposited onto non-

close-packed particle monolayer by thermal evaporation. (d) Gold nanohole array. 

 

However, in contrast to top-down lithographic methods, nanosphere lithography typically 

yields multi-crystalline monolayers, with domains of different crystal orientation, and includes 

lattice defects. Furthermore, the tunability of the hole size is bound to the array period. Hole 

diameters much smaller than 60 % of the initial particle diameter are hardly accessible, as the 

particles lose their shape after prolonged plasma treatment.130,216 Moreover, nanosphere 

lithography is usually confined to a hexagonal symmetry. 

Nevertheless, nanosphere lithography is a widespread technique for the lab-scale production of 

nanohole arrays due to its simplicity. The tunability of the spectral properties of nanohole arrays 

alongside with their dimensions makes metal nanohole arrays an ideal system for fundamental 

research in the fields of sensing applications,212,217 color filters,15,17,18,218 metamaterials,217 and 

transparent electrodes.219 

As metal nanohole arrays are also two-dimensional gratings, they can provide the momentum 

that is necessary to excite SPP modes. Figure 1.13 shows the denotation of the direct lattice 

vectors i and j for a hexagonal array. The reciprocal lattice vector 𝐾⃗⃗  for this lattice can be written 

as 

𝐾 = |𝐾⃗⃗ | =
2𝜋

√3
2

⁄ 𝑃

√𝑖2 + 𝑖𝑗 + 𝑗2 . 1.49 

 

 

Figure 1.13. Definition of the direct lattice vectors.  
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Combined with the excitation condition for SPPs in grating couplers (equation 1.48) and the 

dispersion relation of SPPs (equation 1.45), this yields an expression for the SPP resonance 

wavelengths 𝜆0 at normal incidence: 

𝜆0 =
𝑃

√4
3
(𝑖2 + 𝑖𝑗 + 𝑗2)

∗ √
𝜀1𝜀2

𝜀1 + 𝜀2
 1.50 

 

For non-normal illumination, an additional term for the angle of incidence Θ is added:220 

𝜆0 =
𝑃

√4
3
(𝑖2 + 𝑖𝑗 + 𝑗2)

∗ (√
𝜀1𝜀2

𝜀1 + 𝜀2
− 𝑛1 ∗ sin Θ) 1.51 

 

These equations, however, do not consider the metal thickness or the influence of the holes on 

the permittivity and thus have to be regarded as a rough approximation.221 It can be seen, that 

multiple diffraction orders (i,j) exist, which propagate in distinct directions, defined by the 

symmetry of the lattice. Some of these diffraction orders are degenerated at normal incidence 

and can be separated by increasing the angle of incidence, which results in a rich plasmonic 

behavior (Figure 1.14). 

In experiments, usually two sets of resonances appear because the metal nanohole arrays are 

typically prepared on solid substrates and the dielectric constant 𝜀1 of the medium in contact 

with the metal film is different on either side.213 Therefore, one can allocate the resonances to 

the respective metal/dielectric interfaces as denoted in Figure 1.14a. Higher diffraction orders 

(i,j) are expected at shorter wavelengths but are not visible in the present spectra. At 

wavelengths shorter than the onset of interband transitions at approximately 516 nm for gold, 

no SPP is observed due to strong damping.222 

In Figure 1.14b, the transmittance, reflectance, and absorption of the gold nanohole array are 

given for an angle of incidence of 6 °. The SPP resonance of gold nanohole arrays prepared by 

nanosphere lithography is characterized by a rather weak and broad absorption, which in 

transmittance measurements expresses itself as a minimum in transmittance followed by a 

transmittance maximum. Concomitantly, the reflectance spectrum shows a nearly mirrored 

trace with a reflectance maximum followed by a minimum. Due to this asymmetry, the line 

shape can be described as a Fano resonance, in which constructive and destructive interference 

between a continuum state and a discrete state lead to an asymmetric resonance.223 For metal 

nanohole arrays, the coupling of directly transmitted light or hole LSP resonances with the SPP 

resonances is proposed to cause this interference.224,225 Alternatively, Sannomiya et al. assigned 
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the transmittance maxima to LSP resonances of the holes and the transmittance minima to the 

SPP resonances.226 This is substantiated experimentally by large spectral shifts of the 

transmittance maximum when the shape of the holes is altered without changing the lattice 

period.227 

 

 

Figure 1.14. Optical properties of a gold nanohole array with P = 570 nm. (a) Angle-resolved 

UV-vis spectroscopy. The solid and dashed lines indicate the theoretical values for the SPP 

resonances confined to the Au/glass and Au/air interface according to equation 1.51. The colors 

denote the transmittance in percent. (b) Transmittance, reflectance and absorption spectra at an 

angle of incidence of 6 °. 

 

In Figure 1.15 the influence of the geometrical parameters on the transmittance spectra of gold 

nanohole arrays is illustrated. Increasing the lattice period P leads to a strong shift of the 

resonances towards longer wavelengths (Figure 1.15a). Thus, by adjusting the lattice period, 

the resonances can be easily tuned across the whole visible and near-infrared (NIR) spectral 

range. 

The effect of the hole size is depicted in Figure 1.15b. For large d/d0 ratios (equivalent to 

short etching times during fabrication) isolated, triangularly shaped nanoparticles are 

obtained, which show one reflectance dip in the NIR region associated with the LSP resonances 

of the particles. Increasing the etching time first results in larger nanoparticles and a shift of 

the resonance wavelength to longer wavelengths.124 When further decreasing the d/d0 ratio, the 

interstices between the nanoparticles vanish, and the particles fuse to larger structures. 

Once a continuous gold film is formed, the optical properties change drastically. This sharp 

transition upon closing the interparticle gaps was thoroughly addressed by several 

groups.198,228,229 For continuous nanohole arrays, the hole diameter has only little influence on 

the resonance wavelength. Instead, the thickness of the gold layer has a much higher influence 

on the spectral properties. Equation 1.51 is only valid for thick metal films (> 50 nm), in which 

the SPP resonances of the two interfaces are not coupled. In thin metal films, the SPP modes 
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on the different interfaces of the film are strongly coupled. This coupling results in the evolution 

of two new modes, a symmetric mode at lower energy and an anti-symmetric mode at higher 

energy than the SPP mode in the uncoupled case.211,230,231 While the low-energy mode broadens, 

the high-energy mode is very sharp and shows an unusually long propagation length. Thus, the 

low-energy and high-energy modes are also denoted as short-range and long-range SPP modes, 

respectively.232 Indeed, for thinner gold layers the resonances increasingly broaden and shift to 

longer wavelengths (Figure 1.15c). These resonances thus correspond to the low-energy mode. 

The high-energy modes are not visible in the spectra.233 

 

 

Figure 1.15. Correlation of geometrical parameters and optical response of gold nanohole 

arrays. (a) Transmittance spectra of nanohole arrays with a thickness of tAu = 100 nm and 

varying periods. The hole diameters are adjusted to a d/d0 ratio of 0.7. (b) Transmittance spectra 

of nanohole arrays with tAu = 100 nm, P = 570 nm, and varying hole diameters. The numbers 

represent different d/d0 ratios. (c) Transmittance spectra of nanohole arrays with P = 570 nm, 

d/d0 = 0.7 and varying film thicknesses. 

 

As the SPP resonances are highly sensitive towards the surrounding refractive index, metal 

nanohole arrays have been employed for molecular sensing devices.226 According to 

equation 1.51, the resonances shift to longer wavelengths with increasing refractive index of 

the adjacent medium. For thick metal films (> 50 nm), the resonances bound to the interfaces 

on either side of the film can be tuned independently as shown in Figure 1.16.212 
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Figure 1.16. Influence of the surrounding medium. (a) Comparison of the transmittance spectra 

of gold nanohole arrays (tAu = 100 nm, P = 570 nm, d/d0 ratio of 0.7) on substrates with 

different refractive index (nglass ≈ 1.54; nZnO ≈ 1.9). (b) Comparison of the transmittance 

spectra of gold nanohole arrays (tAu = 100 nm, P = 570 nm, d/d0 ratio of 0.7) on glass covered 

with air (nair ≈ 1.00) or 30 nm PMMA (nPMMA ≈ 1.48). 
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1.4 Colloidal Light Management in Thin-Film Photovoltaics 

 

The term “thin-film photovoltaics” summarizes several new types of solar cells and is primarily 

based on the production process of the solar cells rather than the materials used, as the absorbing 

layer can be organic or inorganic. Typical inorganic materials, which are commercially used in 

thin-film solar cells, are cadmium telluride (CdTe), copper indium gallium diselenide (CIGS) 

or amorphous silicon (a-Si).234 Apart from that, organic and hybrid materials are still part of 

ongoing research such as polymer solar cells, perovskite solar cells or dye-sensitized solar 

cells.235-237 Thin-film solar cells are prepared by coating processes like printing or vacuum 

deposition and rely on extremely thin layers of the photoactive material, with a thickness of 

usually below one micrometer. This allows for a cheaper production and a shorter energy 

payback time compared conventional solar cells made of crystalline silicon, which are very 

costly, especially regarding the high energy needs in production. Moreover, thin-film solar cells 

can be prepared on flexible substrates or curved surfaces, making them attractive for mobile 

and integrated applications.238 Furthermore, the cells are very efficient at weak (diffuse) light 

conditions. 

However, the thickness of the absorbing layer is limited not only because of the coating 

processes but also due to the limited exciton diffusion length and low charge carrier mobility 

in these materials. Commercial, crystalline silicon solar cells use light harvesting layers with a 

thickness of up 200 µm to ensure a complete absorption of the incident light above the bandgap. 

In thin-film solar cells, the absorber thickness is often not sufficient for an efficient absorption 

of the incident light. Thus, semiconductor materials with high absorption coefficients are 

needed. One promising candidate is perovskite, which exhibits high charge carrier mobilities 

and an absorption near unity within its bandgap for only 400 nm thick films.235,239 

Apart from new absorber materials, light management is used in state-of-the-art solar cells to 

optimize the absorption within the light-harvesting layer. For this, the cell structures are 

modified by introducing antireflective coatings, waveguiding structures, structured back-

electrodes, microlens arrays or microcavity structures.196,240-245 Wet-chemically prepared 

colloidal structures can be a very cheap and simple way to realize light management concepts 

and thus to overcome the inefficient light absorption in thin-film solar cells.24,25 Here, the 

colloids are not implemented to allow for the solution-processability of the photoactive layers 

or electrodes but to enhance the efficiency of the devices.246-251 

Colloidal particles have been introduced at various positions in thin-film solar cells. Dielectric 

particles can act as antireflective coatings when placed at the glass/air interface on top of the 
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transparent electrode (Figure 1.17a).252,253 Analogously, metal nanoparticles can scatter light 

into a higher-index substrate and have been used as antireflective coating on top of a thin-film 

silicon solar cell.254-256 

 

 

Figure 1.17. Light management in thin-film solar cells with colloidal particles. (a) 

Antireflective coating based on mesoporous silica nanoparticles. (b) SiO2/Ag/SiO2 

core/shell/shell particles as back-scatterers on top of the absorber layer of a dye-sensitized solar 

cell. (c) Ag/SiO2 core/shell particles placed in the hole-transport layer and the active layer of 

polymer solar cells as light-scattering centers. (d) Monolayer of SiO2 spheres assembled on the 

transparent electrode of an amorphous silicon thin-film solar cell for light incoupling into the 

photoactive layer. (a) Reprinted with permission from Ref. 253. ©2012 American Chemical 

Society. (b) Reprinted with permission from Ref. 257. ©2016 American Chemical Society. (c) 

Reprinted with permission from Ref. 258. ©2013 American Chemical Society. (d) Reprinted 

with permission from Ref. 259. ©2013 Wiley-VCH. 

 

Moreover, metal nanoparticles have been incorporated into the active layer or the charge 

transport layer. The impact of metal particles and the exact mechanisms leading to enhanced 

efficiencies are complex and hard to distinguish. Metal nanoparticles show strong absorption 

peaks at the LSP resonance and concomitantly exhibit very high scattering cross-sections. 

Usually, the noble metals gold or silver are used due to the overlap of their LSP resonances 

with the solar spectrum and their relatively low absorption losses. In many cases, the enhanced 

efficiency is assigned to scattering of the incident light at the particles and thus a longer path 
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length of the photons in the absorber resulting in a higher absorption probability. This typically 

results in an increased short-circuit current density of the devices.260,261 

The balance between absorption and scattering can be adjusted by tuning the size and shape of 

the particles.24 Baek et al. introduced silver nanoparticles of distinct sizes into the hole 

conducting layer near the ITO electrode.260 The optimum efficiency was found for particles 

with a diameter of 67 nm, which showed the highest ratio of forward scattered power. Particles 

with more corners were found to exhibit stronger scattering and thus a higher efficiency 

enhancement when mixed into the hole transport layer or the active layer.262,263 

When placed near the back-electrode, metal nanoparticles can efficiently scatter light that is 

transmitted through the active layer back into the absorber (Figure 1.17b).264,265 Dabirian et al. 

placed wavelength-scale SiO2/Ag/SiO2 core/shell/shell particles on top of the mesoporous layer 

in a dye-sensitized solar cell. The particles efficiently scattered the transmitted light and 

significantly improved the short-circuit current density of the devices.257 

Scattering was also identified as the primary mechanism for enhanced efficiencies in solar cells 

with particles introduced into or near the active layer.261 Choi et al. additionally ascribed the 

increase in efficiency to a contribution of the enhanced electric near-field. Therefore, silver 

nanoparticles placed in the active layer outperformed particles in the hole conducting layer due 

to the shorter distance between the particles and the active layer (Figure 1.17c).258 The increased 

absorption spectrally coincides with the LSP resonances of the particles. Thus, by incorporating 

both, silver and gold nanoparticles, the absorption can be enhanced in a broader absorption 

region.266 A broader absorption enhancement can also be reached by using metal nanoparticle 

clusters.267,268 Moreover, the impact of metal nanoparticles on the electrical device properties 

has been studied. A passivation with a dielectric shell is often used to prevent exciton quenching 

and charge recombination at the metal surface.258,269,270 However, the shell has to be thin enough 

for the electric field induced by the metal core to protrude into the active layer.271 Furthermore, 

metal nanoparticles mixed into the active layer or the charge transport layers have been 

discussed to enhance the exciton dissociation as well as the hole transport properties.266,272,273 

While the open circuit voltage is usually not affected by the integration of metal nanoparticles, 

this results in a slightly increased fill factor. 

In order to obtain reproducible and controllable devices, self-assembled structures can be used 

for a higher control over the particle density and distribution.274 Besides, particle arrays can 

evoke collective coupling effects, which can prove beneficial in thin-film solar cells.24,196 For 

example, a monolayer of dielectric spheres on top of a thin-film amorphous silicon solar cell 

can enhance the efficiency of the device by coupling light into the absorber by Fabry-Pérot 
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resonances and resonant photonic crystal modes (Figure 1.17d).259 Moreover, this coupling 

mechanism is mostly insensitive towards the angle of incidence. 

 

Instead of directly introducing particles into the solar cells, colloids can also act as a template 

structure. By evaporating metal though a close-packed monolayer of polymer spheres, highly 

uniform metal nanoparticle arrays were fabricated on the ITO electrode of bulk-heterojunction 

polymer solar cells (Figure 1.18a).275,276 In both examples from literature, the device absorption 

and thus the short-circuit current density was increased around the LSP resonance of the 

particles. 

 

 

Figure 1.18. Light management structures in thin-film solar cells fabricated by colloidal 

lithography. (a) Nanopyramid array on the transparent ITO electrode for near-field 

enhancement in the active layer. (b) Colloidal quantum dot solar cell prepared on a nanohole 

patterned glass substrate. (c) Silicon nanoshell absorber fabricated by chemical vapor 

deposition of silicon onto colloidal silica spheres. (d) Gold nanohole array integrated as 

transparent electrode in a polymer solar cell. (a) Reprinted with permission from Ref. 276. 

©2012 American Chemical Society. (b) Reprinted with permission from Ref. 277. ©2013 

Nature Publishing Group. (c) Reprinted with permission from Ref. 278. ©2012 Nature 

Publishing Group. (d) Reprinted with permission from Ref. 279. ©2012 AIP Publishing LLC. 

 

Furthermore, colloidal lithography can be applied to pattern specific elements of the device 

such as the front- or back-electrode or the substrate. Colloidal monolayers of silica or polymer 

particles have been applied to etch the glass substrate280,281 or the active material.282-285 The 
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resulting nanocone or nanopillar arrays exhibit highly efficient antireflective properties over a 

broad range of incident angles. 

Alternatively, Li et al. used a close-packed monolayer of polystyrene spheres to create an array 

of TiO2 nanopyramids on top of a thin-film quantum-well solar cell.286 The array acted as a 

gradient refractive index antireflective coating and scattered light into guided modes within the 

semiconductor. 

Thin-film silicon solar cells have also been prepared on nanohole structured glass substrates 

(Figure 1.18b).277 The nanohole arrays were prepared by depositing metal onto non-close-

packed particle monolayers and using the resulting metal nanohole array as an etching mask. 

Due to the conformal coating of the device layers, the colloidal quantum dot solar cells 

benefited from both, an antireflective effect at the glass/ITO interface and an enhanced electric 

field at the back-electrode. 

 

Similarly, patterned back-electrodes have been fabricated by metal deposition on metal 

nanohole arrays287 as well as on nanohole288 and nonocone289 structured glass substrates, which 

were made by colloidal lithography. Alternatively, electrodeposition of silver through close-

packed particle monolayers readily yields nanobowl arrays, which were used as back-electrode 

for thin-film silicon solar cells by Lal et al.290 In all studies, the absorption of the devices was 

effectively increased. This was explained with an efficient back-scattering of the light 

impinging on the electrode and enhanced field intensities within the absorber layer due to the 

excitation of SPP and LSP resonances as well as guided modes. Nishimura et al. prepared TiO2 

inverse opals on dye-sensitized photoelectrodes. The inverse opals acted as a dielectric mirror 

and the device exhibited an increased short-circuit photocurrent efficiency.291 

Alternatively, the semiconductor itself can be structured using colloids as a sacrificial template. 

Wavelength-scale silicon nanoshells show an enhanced absorption compared to flat silicon due 

to the absorption of resonant whispering gallery modes (Figure 1.18c).278 The nanoshells were 

prepared via chemical vapor deposition of silicon onto silica particles as a template. In another 

study, Wei et al. formed PEDOT nanobowl arrays on ITO by electrodeposition through close-

packed colloidal monolayers.292 This lead to an increased light path in the active layer in the 

assembled device as well as an increased interface between the PEDOT and the absorber CuPc 

and thus a higher charge collection efficiency. 

 

Finally, the metal nanohole arrays described in chapter 1.3.3 have been studied as transparent 

conducting electrodes for thin-film solar cells (Figure 1.18d).157,293,294 In addition to the possible 
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light trapping properties of the nanohole pattern, nanohole arrays could be used as a 

replacement for ITO. 

Indeed, metal nanohole array electrodes prepared by colloidal lithography have been shown to 

enhance the efficiency of small-molecule thin-film solar cells. The enhanced efficiency was 

ascribed to the increased interfacial area between hole and electron conductor and high electric 

fields in close vicinity to the perforated electrode due to the excitation of surface plasmons.295 

Moreover, guided modes localized in the active layer were discussed to contribute to the light 

trapping capability of metal nanohole arrays.296,297 

However, in polymer solar cells, the incorporation of metal nanohole arrays resulted in high 

losses in the short-circuit current density due to the limited transmittance of the 

electrodes.279,298,299 Unfortunately, this loss in transmittance compared to ITO cannot be 

avoided by increasing the hole size without sacrificing the high conductivity of metal nanohole 

arrays due to the percolation threshold.219,300 Obviously, it is not a trivial task to replace ITO by 

nanohole electrodes while retaining or even enhancing the power conversion efficiency of the 

device. Nevertheless, metal nanohole arrays remain an attractive tool to reveal the distinct 

interactions of plasmonic resonances and diffracted modes with absorber layers in general and 

thin-film solar cell devices in specific. 
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2 Overview of the Thesis 

 

 

 

Figure 2.1. Overview of the thesis. 
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The objective of this thesis is the preparation of functional devices using colloidal self-

assembly. The thesis consists of seven individual contributions, which all address structures 

prepared by colloidal self-assembly. They can be grouped into three blocks: 

The first contributions are dedicated to the fabrication of highly regular colloidal monolayers 

via an interface-mediated self-assembly process and their optical and acoustic characterization. 

In chapter 3, the antireflective properties of non-close-packed monolayers of colloidal 

polystyrene spheres are examined. Following this, the mechanical properties of colloidal 

crystals are studied by determining the interaction of a close-packed particle array with surface 

acoustic waves (chapter 4). Next, the preparation of non-close-packed particle monolayers with 

all two-dimensional Bravais lattices is described in chapter 5.  

In the second part, the fabrication of gold nanohole arrays with tailored adhesive properties 

starting from self-assembled particle monolayers and their application for directed self-

assembly is presented. Precise tuning of the electrostatic forces acting at the solid-liquid 

interface allows for the controlled self-assembly of particles into the nanohole template 

(chapter 6). 

The last part is devoted to the assembly and characterization of optical devices based on gold 

nanohole arrays. In chapter 7 metal-insulator-metal multilayer structures based on nanohole 

arrays were prepared by a newly developed transfer technique, followed by a thorough optical 

characterization of three-layered metal-insulator-metal absorbers in chapter 8. Finally, gold 

nanohole arrays were integrated into organic solar cells as transparent conductive electrodes 

(chapter 9). The following overview will summarize the main results of this thesis. 
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Colloidal monolayers have been widely investigated for the fabrication of photonic crystals. 

These photonic crystals can interact with electromagnetic waves by creating a periodic 

modulation of the dielectric constant. Analogously to the interaction of electrons with atomic 

crystals, this results in photonic band gaps. To manipulate light in the visible spectrum, the 

modulation of the dielectric constant has to be on the length scale of visible light. For feature 

sizes much smaller than the wavelength of interest, the structure does not diffract the 

electromagnetic wave but behaves like a homogeneous, effective medium. In this way, a 

subwavelength colloidal monolayer can be regarded as a layer with an effective refractive index 

that can be adjusted by tuning the volume fraction of the colloids. Consequently, in this first 

contribution, monolayers of subwavelength-sized polystyrene particles were used as 

antireflective coatings. 

The amount of light that is reflected at an interface is dependent on the difference of the 

refractive indices of the two materials and can be calculated using the Fresnel equations. These 

reflections often limit the performance of optical components. A simple way to reduce 

reflections is to replace the interface by a layer of a material, which exhibits a refractive index 

in between that of the two materials. Although in this way two new interfaces are formed, the 

combined reflectivity of the two interfaces is lower than that of the original interface. For the 

simplified case of normal incident light and an interface between air and common glass, the 

Fresnel equations yield a desired refractive index of 𝑛𝑐 = √𝑛𝑔𝑙𝑎𝑠𝑠𝑛𝑎𝑖𝑟 = √1.49 ∙ 1.00 = 1.23 

for the antireflective coating. Such low refractive indices are hardly accessible with bulk 

materials but can be realized with colloidal monolayers due to their porous structure. 

For this purpose, polystyrene particles with diameters between 102 nm and 181 nm were used 

to prepare monolayers via colloidal self-assembly at the water/air interface. Starting from close-

packed particle arrays, the diameter 2r of the polymer particles was reduced using plasma 

etching while the interparticle distance was defined by the initial particle diameter D0 (Figure 

2.2a). This decreases the polymer volume fraction in the particle monolayer and leads to a lower 

refractive index. 

In a first series, particle arrays with an initial particle diameter of 140 nm were etched to vary 

the particle diameter between 140 nm and 85 nm. Assuming spherical particles, this 

corresponds to a volume fraction between 60.5 % and 24.3 %. While all samples exhibit a 

transmittance superior to the naked glass substrate in the visible wavelength range, a maximum 

transmittance of 95.5 % is observed at a volume fraction of 46.3 % (a particle area fraction of 

61.1 %) after 150 s of plasma treatment (Figure 2.2b). This value is close to the optimum 
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volume fraction of 43.3 % (the optimum particle area fraction of 64.2 %) derived from the 

Maxwell-Garnett effective medium approximation. 

Concomitant to the decreasing volume fraction, the thickness d of the effective layer formed by 

the colloidal monolayer inevitably decreases with increasing etching times. This results in a 

shift of the wavelength of maximum transmittance 𝜆𝑚𝑎𝑥 to shorter wavelengths according to 

the condition of destructive interference of the reflected light 𝜆𝑚𝑎𝑥 = 4 ∙ 𝑛𝑐 ∙ 𝑑 for single layer 

antireflective coatings. Moreover, the optimum transmittance can be well correlated to a 

minimum in n = nc – nopt with nopt = 1.23 (Figure 2.2c). Too long or too short etching times 

result in a refractive index deviating from the optimum value and thus a reduced transmittance. 

 

 

Figure 2.2. Antireflective properties of colloidal monolayers. (a) Top-view and side-view 

scheme of a colloidal monolayer. (b) Transmittance spectra of a continuously etched 

polystyrene monolayer with an initial particle diameter D0 of 140 nm. The dashed line 

represents a neat glass substrate. (c) Deviation of the refractive index of the coating nc from the 

optimum refractive index nopt = 1.23 and averaged transmittance for particle monolayers with 

varying particle area fraction reached after distinct etching times. (d) Transmittance spectra of 

particle monolayers with different initial particle diameters approximately etched to the 

optimum particle area fraction of 64.2 %. (e) Peak positions from (d) as a function of the particle 

diameter 2r after etching. The dashed line indicates the theoretical values. (f) Photograph of the 

reflection colors of monolayers with different initial particle diameters etched to the optimum 

surface coverage. Reproduced from Macromolecular Chemistry and Physics 216, 1682-1688 

(2015) with permission from Wiley-VCH. 

 

In a second series, monolayers with initial particle diameters between 102 nm and 181 nm were 

etched to the optimum volume fraction of 43.3 %. Thus, all samples exhibit a refractive index 

near the optimum value of nopt = 1.23 and consequently a peak transmittance exceeding 94.5 % 

(Figure 2.2d). By using different initial particle diameters, the effective layer thickness can be 
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tuned independently of the effective refractive index of the coating. Therefore, the wavelength 

of maximum transmittance can be tuned across the whole visible range from 515 nm to 810 nm 

(Figure 2.2e). As a result, the samples show distinct colors in reflection dependent on the initial 

particle size and complementary to the wavelength of maximum transmittance 𝜆𝑚𝑎𝑥 

(Figure 2.2f). 

Antireflective coatings made of colloidal monolayers are certainly not competitive to modern 

gradient refractive index structures with regard to the scratch resistance and angle-insensitivity. 

However, this work describes the optical properties of subwavelength colloidal monolayers 

complementary to the existing studies of wavelength-scale photonic crystals. 

 

Apart from optical properties, the phononic properties of granular matter and colloidal crystals 

attract more and more attention. Rather than the periodic modulation of the refractive index, 

the density modulation and the modulation of the elastic modulus in colloidal crystals are 

responsible for exciting mechanical characteristics. Using a laser-induced transient grating 

technique, we analyzed the vibrational dynamics of a hexagonal, close-packed particle 

monolayer. For the first time, a single-crystalline domain with dimensions exceeding the 

measurement spot was probed, enabling the detection of vibrational modes across the entire 

Brillouin zone. 

For this, a monolayer of polystyrene spheres with diameters of 1.5 µm was prepared at the 

water/air interface and transferred onto a 100 nm aluminum film (Figure 2.3a). A transient 

grating was formed by the interference pattern of two laser pulses crossed at the sample 

inducing Rayleigh surface waves propagating in the Γ-Κ direction of the colloidal crystal. A 

probe laser, diffracted by the grating, was used to detect the acoustic modes present in the 

sample (Figure 2.3b). All modes can be described mathematically by considering rigid particles 

with spring contacts between the particles and the substrate (KS and KN) as well as between two 

adjacent particles (GS and GN) (Figure 2.3c). 

The Rayleigh surface wave excited in the aluminum substrate shows a dispersion with constant 

slope and is folded back at the Brillouin zone boundary (Figure 2.3d). Additionally, spheroidal 

and contact-based modes of the particle monolayer are observed with rather flat dispersions. 

Between 50 MHz and 300 MHz, three contact-based modes are visible. The most prominent of 

these modes (V) can be described by a predominantly vertical motion of the particles, while the 

two smaller modes mainly correspond to horizontal (HR) and rotational (RH) dislocations of 

the particles. Due to the single crystalline nature of the particle monolayer, particle-particle 

interactions affect the dispersion of the contact-based modes leading to a wavevector-
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dependency of these modes (Figure 2.3e). This allowed for the extraction of both, the particle-

substrate and particle-particle spring constants by fitting the dispersion of the vertical mode V 

with a mathematical model. 

 

 

Figure 2.3. Vibrational dynamics of colloidal monolayers. (a) Scanning electron microscopy 

image of the polystyrene monolayer. (b) Scheme of the experimental setup. (c) Side-view and 

top-view scheme of the particle monolayer with particle-particle contacts G and particle-

substrate contacts K. The red crosses indicate particle-particle contact springs, the red arrow 

denotes the wave propagation direction. (d) Measured dispersion diagram of a single crystalline 

particle monolayer. The dashed, blue line corresponds to the Rayleigh mode R, the dashed red 

line denotes the Brillouin zone boundary BZ. The spheroidal modes S0, S2, S3, S4 are labeled 

according to their angular number L. (e) Dispersion of the vertical V and horizontal contact-

based modes RH and HR. The dash-dotted lines represent theoretical calculations. (f) 

Dispersion of the spheroidal mode S2. The red dotted lines give the frequencies for an isolated 

sphere. The red solid line represents theoretical calculations. Reproduced from Physical Review 

B 96, 024303 (2017) with permission from American Physical Society. 

 

Furthermore, the contact-based modes interact with the Rayleigh surface wave propagating in 

the substrate. While the avoided crossing of the vertical mode V and the Rayleigh surface wave 

is outside the measurement range, the interaction of the predominantly rotational (RH) mode 

and the Rayleigh surface wave can be deduced from the peak width of the Rayleigh peak. 

Although the interaction cannot be observed directly, the broadened peak width at the expected 

intersection point is an evidence for a resonant attenuation of the Rayleigh peak. 

At higher frequencies, four spheroidal modes SL emerge, which can be characterized by a polar 

number L, an azimuthal number m, and a radial number n. In the absence of the substrate, the 

m = 2L + 1 branches of the SL modes degenerate. Due to the presence of the substrate, this 
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degeneracy is lifted for the intense S2 mode (Figure 2.3f). The dispersion of the branches of the 

S2 mode again indicates the influence of particle-particle interactions. Moreover, the SL, m = 0 

branch distinctly shows a strong interaction with the Rayleigh surface wave yielding an avoided 

crossing behavior at 695 MHz. 

Capitalizing on the high long-range order of the particle monolayer prepared by self-assembly, 

these new phenomena provide an insight into the interaction of acoustic waves with granular, 

periodic materials. 

 

Additional to the particle size and the lattice period, the symmetry of the lattice crucially 

influences how waves interact with a colloidal crystal. Thus, controlling the symmetry is 

decisive to attain full control over the phononic and photonic properties of these assemblies, 

like the position of stop-bands. However, while the particle size and the lattice period are easily 

tunable using bottom-up approaches, the self-assembly of spherical particles nearly solely leads 

to the formation of hexagonal (two-dimensional) or face-centered-cubic (three-dimensional) 

arrangements. These structures present the thermodynamic minimum with a maximum of 

adjacent particle neighbors within the crystal. Different lattice symmetries are not readily 

accessible by colloidal assembly on a large scale. Therefore, a fabrication method was 

developed that allows for the preparation of particle monolayers with arbitrary lattice 

symmetry. 

For this purpose, polymer particles with a diameter of 434 nm were assembled at the water/air 

interface giving hexagonal, close-packed particle monolayers. Subsequently, these floating 

monolayers were transferred onto hydrophobic substrates upon immersion of the substrate into 

the water sub-phase (Figure 2.4a). During this transfer step, the monolayer was stretched 

resulting in a change of the lattice symmetry. Nevertheless, when removing the particle-loaded 

substrate from the aqueous phase, the particle pattern was destroyed due to the capillary forces 

acting upon drying. This resulted in a loss of long-range order and clustered particles. To 

impede the capillary forces from distorting the structure during the drying step, the particles 

were fixed on the substrate. In this contribution, this was realized by heating the sample above 

the glass transition temperature of either the particles or a thin polymer coating on the substrate 

prior to the removal of the substrate. 

The change of the lattice symmetry caused by the transfer onto hydrophobic substrates can be 

explained by a purely one-dimensional stretching of the originally hexagonal monolayer. This 

process can be described by the stretching vector 𝑆 , with the stretching factor 𝑆 = |𝑆 | 
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determining the degree of stretching and the stretching angle 𝛽 = 𝛼 − 𝛿. The stretching angle 

includes the orientation of the particle monolayer on the water/air interface 𝛿 and the immersion 

direction of the substrate defined by the angle 𝛼 (Figure 2.4b). 

 

 

Figure 2.4. Non-hexagonal particle monolayers. (a) Scheme of the transfer process. (b) Scheme 

of the stretching parameters. (c) Stretching factor S as a function of the substrate contact angle. 

(d) Particle monolayers stretched into the five possible two-dimensional Bravais lattices. Scale 

bars are 1 µm. (e) Phase diagram of stretched particle monolayers as a function of the stretching 

factor S and the stretching angle β. (f) Laser diffraction at distinct spots on one sample with 

𝑆 ~ 1.7 show four different symmetries according to distinct stretching angles β. From left to 
right: Rectangular, close-packed particle lines, oblique and square. Reproduced from 
Langmuir 35, 973-979 (2019) with permission from American Chemical Society. 
 

The stretching of the monolayer is a result of the hydrodynamic flow pattern of the liquid phase 

in proximity to a moving, hydrophobic substrate. It is known that for substrates with small 

contact angles, the water phase shows a split-injection streamline upon immersion of the 

substrate and the water/air interface moves away from the water/air/substrate contact line. 

Above a critical contact angle of the substrate, the water/air interface moves towards the 

substrate making a transfer of monolayers onto hydrophobic substrates possible. The velocity 

of the water interface approaching the contact line thereby is dependent on not only the 

immersion velocity of the substrate but also the contact angle of the substrate. The difference 

between the immersion velocity of the substrate and the velocity of the water interface thereby 

causes the stretching of the particle monolayer, with a stretching factor that is defined by the 

ratio of the two velocities. Accordingly, the stretching factor can be adjusted by tuning the water 

contact angle of the substrate (Figure 2.4c). While contact angles close to the critical angle 
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(~ 65 ° in our case) yield extremely large stretching factors of 𝑆 > 4, high contact angles of 

𝜃 = 106 ° result in almost no stretching of the particle monolayer. 

By tuning the stretching factor and the stretching angle, any of the possible two-dimensional 

Bravais lattices can be accessed: square, hexagonal, centered rectangular, rectangular and 

oblique (Figure 2.4d). The lattice symmetries obtained for given combinations of 𝑆 and 𝛽 can 

be extracted from the calculated phase diagram given in Figure 2.4e. 

Although the particle monolayers prepared at the water/air interface are multi-crystalline, the 

size of the individual single-crystalline domains is large enough for diffraction experiments 

using a focused laser beam (Figure 2.4f). Due to the different orientation of the individual 

domains of the original, hexagonal monolayer, distinct lattice symmetries are attained within 

the same stretched monolayer. These lattice symmetries are defined by the same stretching 

factor but different stretching angles, which results in distinct scattering patterns for the 

individual domains of the stretched monolayer. 

As the stretching takes place at the water/air/substrate contact line, the stretching mechanism is 

purely one-dimensional without the inherent transverse contraction when stretching particle 

monolayers on flexible substrates. Consequently, the stretching process is solely limited by the 

domain size of the original monolayer. This renders this process unique concerning the 

scalability and the large stretching factors accessible. 

 

Manifold periodic structures can be replicated into different materials using colloidal 

lithography as described in chapter 1.2. The obtained surfaces offer structures in the colloidal 

size range and can, in turn, be used to direct the self-assembly of colloidal particles. Templated 

self-assembly strategies provide an additional tool for the fabrication of hierarchically 

structured materials with designed geometries. The concept of this contribution is based on the 

self-assembly of colloidal polystyrene particles into the holes of gold nanohole arrays solely by 

controlling the electrostatic interactions between the particles and the substrate (Figure 2.5a). 

The used gold nanomeshes feature hole diameters that are in the size range of the single 

particles. In order to realize a highly defined site-selective adsorption of the polymer particles, 

the electrostatic properties of the gold nanohole array and the underlying glass substrate were 

adjusted separately via chemical functionalization. To attract the negatively stabilized particles, 

a positive surface charge was created on the glass surface by covalently introducing an amino-

terminated silane. Simultaneously, the gold surface was functionalized with a hydroxy-

terminated thiol, which presents a negative charge in aqueous media and thus repels the 
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particles. The particles were then immobilized by immersing the functionalized substrate into 

the aqueous particle dispersion. 

 

 

Figure 2.5. Particle assembly directed by gold nanohole arrays. (a) Schematic representation 

of the self-assembly process. Polystyrene particles with diameters of (b) 166 nm, (c) 320 nm, 

(d) 570 nm, (e) 740 nm, (f) 1040 nm and (g) 1500 nm assembled into a gold nanohole arrays 

with a period P = 1040 nm and hole diameters of d = 870 nm. The insets show the frequency 

distribution of the number of particles per hole in percent. (h) Average particles per hole and 

surface coverage as a function of pH and ionic strength for 320 nm particles assembled into a 

gold nanohole arrays with a period P = 1040 nm and hole diameters of d = 870 nm. Red: 

particles on gold, black: particles on glass. (i) Force versus distance profiles on the gold and 

glass surface at two different pH values measured in an AFM force experiment with a 

polystyrene colloidal probe. Red symbols depict the force during the approach, blue the force 

during the retraction of the colloidal probe. Reproduced from Nanoscale 8, 14556-14564 (2016) 

with permission from The Royal Society of Chemistry. 

 

In Figure 2.5b-g the adsorption patterns of particles with distinct particle diameters in gold 

nanohole arrays with a lattice period of P = 1040 nm and a hole diameter of d = 870 nm are 

shown. As the assembly in nanohole arrays leads to non-close-packed particle arrangements, 

the assembled structures are very sensitive towards capillary forces upon drying, similar to the 

particle monolayers stretched into non-hexagonal symmetries. In this project, the capillary 

forces were minimized by exchanging the aqueous particle dispersion with ethanol and finally 
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hexane, which exhibits a considerably lower surface tension. The random sequential adsorption 

mechanism and the effective screening of the capillary forces resulted in the absence of direct 

particle-particle contacts even within one hole, which is not possible using convective assembly 

strategies. Because of the electrostatic repulsion between the particles, the self-assembly is 

limited to the first particle layer. 

A highly selective adsorption was achieved for particles between 166 nm and 1040 nm. For 

particle diameters smaller than the hole radius, multiple particles are deposited in one hole 

(Figure 2.5b,c). Single particles are adsorbed for particle diameters between the hole radius and 

the hole diameter with more than 99 % of the holes being occupied (Figure 2.5d,e). Particles 

with a diameter equal to the lattice period cannot occupy adjacent holes due to the interparticle 

repulsion (Figure 2.5f). Even larger particles show no site-selective adsorption. As the particles 

are much larger than the surface structure, the particles only recognize an effective surface 

charge (Figure 2.5g). 

Moreover, the influence of the ionic strength and the pH conditions were evaluated as depicted 

in Figure 2.5h. At constant pH conditions, the number of particles immobilized per hole can be 

controlled by varying the ionic strength of the particle dispersion. With increasing ionic strength 

the Debye length of the particles is more and more reduced. Thus, the average number of 

particles per hole is increased from 1.15 for an ionic strength of < 0.1 mM NaCl to 3.22 for an 

ionic strength of 10 mM NaCl leading to a higher particle coverage on the glass surface (black 

bars in Figure 2.5h). Higher salt concentrations result in a high amount of particles adsorbed on 

the gold surface (red bars in Figure 2.5h) and, therefore, in a loss of selectivity. Furthermore, 

the assembly process is sensible towards the pH of the particle dispersion. While the particle 

adsorption is selective at neutral and slightly acidic pH conditions, the selectivity is lost at pH 3. 

In contrast, no particles are adsorbed at high pH values. The forces acting between the particles 

and the substrate surface were in-situ measured with spatial resolution using atomic force 

microscopy (AFM) with a polystyrene colloidal probe in slightly acidic (pH 4) and alkaline 

(pH 10) conditions at constant ionic strength (Figure 2.5i). At pH 4 a distinct long-range 

attractive force was observed on the glass surface in the approach profile. In contrast, a slight 

repulsion was measured on the gold surface. This contrast in electrostatic forces results in the 

directed adsorption of the particles on the glass surface. Once in contact with the surface, the 

particles show a strong, irreversible adhesion independent of the surface material in the 

retraction profile. Under alkaline conditions, repulsive interactions are dominant on both the 

gold and the glass surface. This repulsion is explained by the accumulation of hydroxyl ions at 
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the substrate surface, screening even the long-range attractive forces of the amino-terminated 

silane. Consequently, the adsorption of particles is impeded. 

Altogether, using gold nanohole arrays, the particle-substrate interaction can be designed on a 

sub-micrometer size range facilitating the site-selective adsorption of colloidal particles with a 

high long-range order following the symmetry of the underlying template. 

 

The last part of this thesis addresses the assembly of optical devices via colloidal lithography. 

For this purpose, the concept of colloidal lithography was expanded to enable the fabrication 

of gold nanohole arrays on arbitrary substrates. As colloidal lithography often applies harsh 

conditions such as plasma etching of the particles, the technique was hitherto confined to inert 

substrates such as glass or silicon. To enhance the variability of the structures accessible with 

colloidal lithography, a process for the transfer of metal nanohole arrays was established. The 

altered fabrication process is depicted in Figure 2.6a.  

 

 

Figure 2.6. Interface mediated transfer of gold nanohole arrays. (a) Schematic representation 

of the preparation and transfer process. (b) Photograph of the detachment process. (c) Free-

standing Au nanohole array with period P = 2560 nm on a copper grid. (d) Side-view scanning 

electron microscopy image of a five-layer stack of alternating Au nanohole arrays and SiO2 

layers. (e) Transmittance spectrum of two Au nanohole arrays separated by 126 nm PMMA 

compared to a single nanohole array and two nanohole arrays stacked without spacer layer. The 

Au/glass and Au/air SPP resonances are highlighted by the black arrows, the metamaterial 

resonance of the stacked device is indicated by the red arrow. Reproduced from Advanced 

Materials Interfaces 5, 1800154 (2018) with permission from Wiley-VCH. 

 

Prior to the assembly of the particles, a glass substrate was coated with a zinc oxide sacrificial 

layer. The particles were self-assembled into a hexagonal, close-packed monolayer at the 
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water/air interface and transferred onto the sacrificial layer under alkaline conditions. In 

contrast to organic sacrificial layers, zinc oxide is not degraded during the plasma etching step 

used for the size reduction of the particles. A gold layer was subsequently deposited by thermal 

evaporation followed by the removal of the particle template resulting in the gold nanohole 

array. In order to transfer the gold nanohole array onto the target substrate, the zinc oxide layer 

was dissolved by slowly immersing the support substrate into an acidic solution (Figure 2.6b). 

Due to the surface tension, the nanohole array was trapped at the water/air interface and 

subsequently deposited onto the target substrate. 

In this way, nanohole arrays can be fabricated on surfaces that were not accessible before 

because of the aforementioned limitations such as flexible polymer materials. Likewise, 

transferring the detached nanohole arrays onto copper grids yielded free-standing nanohole 

arrays with self-supporting areas of 204 x 204 µm2 at a film thickness of only 100 nm 

(Figure 2.6c). Furthermore, by introducing a silica insulator layer directly on the sacrificial 

layer before the deposition of the particles, the combination of the insulator layer and the metal 

nanohole array was transferred. This allows for a very fast production of metal-insulator-metal 

(MIM) structures with high spatial uniformity and an arbitrary number of layers (Figure 2.6d). 

However, the transfer process does not permit the alignment of the nanohole patterns between 

individual layers. Together with the multi-crystalline nature of the nanohole arrays, this results 

in distinct Moiré patterns attributed to distinct in-plane rotational offsets of the nanohole arrays. 

Nevertheless, a three-layer stack comprising two gold nanohole arrays separated by a PMMA 

spacer layer features excellent optical properties (Figure 2.6e). Compared to a sample without 

the spacer layer, the transmittance is considerably enhanced. Besides, additional to the 

reflectance minima corresponding to the Au/glass and Au/air SPP resonances, which are also 

visible for a single nanohole array, a magnetic metamaterial resonance was identified. This 

metamaterial resonance originates from the coupling between the metal layers and is strongly 

dependent on the thickness of the spacer layer. 

 

The developed transfer protocol for gold nanohole arrays was then applied to fabricate three-

layered MIM structures consisting of a gold nanohole array, a polymeric insulator layer and a 

continuous gold back-reflector (Figure 2.7a,b). These structures exhibit pronounced plasmonic 

coupling effects, which were examined using angle-resolved UV-vis-NIR spectroscopy 

(Figure 2.7c). The spectral properties of the MIM structures drastically differ from the spectra 

of individual nanohole arrays. Narrow reflectance dips are observed and assigned to the 

resonant excitation of SPP modes of the MIM structures resulting in bright reflection colors of 
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the macroscopic samples. A high spatial homogeneity can be inferred from the uniformity of 

these reflection colors (insets in Figure 2.7c). For self-assembled materials, surprisingly high 

Q-factors of up to 14 for the strongest resonance were obtained in the visible wavelength range. 

This resonance was found to be strongly dependent on the lattice period of the nanohole array. 

 

 

Figure 2.7. Optical properties of nanohole array MIM structures. (a) Schematic illustration of 

the MIM setup. (b) Side-view scanning electron microscopy image of a MIM structure. Scale 

bar is 1 µm. (c) Total reflectance of MIM structures with different lattice periods measured with 

unpolarized light at an angle of incidence of Θ = 10 °. The insets are photographs and show the 

macroscopic reflectance colors of a 5 x 5mm2 sample area. (d) Angle-resolved specular 

reflectance of a MIM structure with P = 570 nm and t2 = 50 nm measured in 3 ° steps between 

Θ = 6 ° and Θ = 60 °with p-polarized light. (e) Electric field distributions normalized to the 

incident electric field evaluated for modes B and C along the horizontal and vertical cross-

sections of the unit cell for light incident at an angle of Θ = 22 °. (f) Analytical derivation of the 

resonance wavelengths for distinct gap thicknesses. The dashed and dotted lines indicate the 

first and second order grating dispersion. The solid lines give the propagation constant β of the 

guided modes supported by the structure. Resonant excitation is possible where the dispersions 

of the guided modes and the grating intersect. k0 is the light wavenumber in vacuum. (g) Total 

reflection of MIM structures with different gap thicknesses measured with unpolarized light at 

an angle of incidence of Θ = 10 °. Reproduced from Nanoscale 10, 17983-17989 (2018) with 

permission from The Royal Society of Chemistry. 

 

Finite-difference time domain (FDTD) simulations complemented by analytical calculations 

considering the diffraction phase-matching conditions of the SPP resonances were applied to 

analyze the rich plasmonic response revealed by angle-resolved UV-vis-NIR spectroscopy 
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(Figure 2.7d). All resonances can be ascribed to only two SPP modes localized at the Au/air 

interface (SPPair) and inside the insulator layer (SPPgap), respectively (Figure 2.7e). For a grating 

period of P = 570 nm and small angles of incidence, the first and second order of the SPPgap 

resonance are visible at approximately 900 nm (mode B in Figure 2.7d) and 700 nm (mode A). 

When increasing the angle of incidence the second order SPPgap mode mixes with the SPPair 

(mode C) resonance, which shows a strong dispersion in accordance with the diffraction 

coupling condition. Moreover, additional dispersive modes appear at 1200 nm (mode D), which 

were also attributed to the first order SPPgap mode. Remarkably, the branch of the first order 

SPPgap mode at 900 nm exhibits a non-dispersive behavior, which was explained by Bragg-

scattering of the resonance. 

The influence of the gap thickness was evaluated in experiment and simulation (Figure 2.7f,g). 

When decreasing the gap thickness, the SPPgap modes strongly shift to longer wavelengths, and 

higher order SPPgap modes appear at shorter wavelengths. In contrast, the SPPair resonance is 

only marginally affected by the gap thickness. In a final series, the sensitivity of the MIM 

structures towards the refractive index environment was investigated. As expected, in contrast 

to the SPPair resonance, the SPPgap resonance is not sensitive to changes in the surrounding 

refractive index as its electric field is mainly confined inside the structure. Instead, the SPPgap 

resonance can be affected by changing the refractive index in between the two gold layers. 

Accordingly, removing the polymer beneath the holes of the nanohole array by plasma etching 

leads to a shift of the SPPgap resonance to shorter wavelengths. 

 

After analyzing the plasmonic coupling effects in metal-insulator-metal stacks with non-

absorbing insulator layers, plasmonic cavity modes were investigated in state-of-the-art organic 

solar cells. For this purpose, the transparent conducting indium tin oxide (ITO) electrode was 

replaced by gold nanohole arrays with distinct lattice periods. Together with the silver back-

electrode, an optical cavity is formed, which supports SPP resonances. This contribution aimed 

to investigate the impact of these SPP resonances on the power conversion efficiency of the 

devices. For all periods, the hole diameter to period ratio was adjusted to d/P = 0.8 to assure a 

constant area fraction to be covered by gold. Therefore, the transmittance was comparable for 

all samples in the visible range of approximately 40-60 %, which is considerably lower than for 

the reference ITO electrode exhibiting more than 80 %. When increasing the lattice period from 

202 nm to 2560 nm, this loss in transmittance is more and more caused by a strong reflection 

of the metal layer, while the absorption dominates for small periods. As all nanohole arrays 



Overview of the Thesis 

82 

exhibit an electrical conductivity comparable to ITO, all changes in the device performance are 

ascribed to the optical properties of the electrodes. 

In a first series, bulk heterojunction solar cells were fabricated with the standard photoactive 

material P3HT:PC61BM (Figure 2.8a,b). Compared to the reference device comprising the ITO 

electrode, the power conversion efficiency is deteriorated for all devices based on a reduction 

of the short-circuit current (JSC). The efficiency increases with increasing grating period up to 

a period of P = 1040 nm, which is explained with the decreasing parasitic absorption in the gold 

electrode. For larger periods, the efficiency was found to decline again caused by the increasing 

reflectance of the electrodes. 

 

 

Figure 2.8. Au nanohole electrodes. (a) Schematic representation of the solar cell device 

structure. (b) Side-view scanning electron microscopy image of a P3HT:PC61BM device. (c) 

Measured device absorption and (d) external quantum efficiency of P3HT:PC61BM solar cells 

with gold nanohole electrodes with distinct lattice periods compared to a P3HT:PC61BM solar 

cell with ITO electrode (dashed lines). (e) Measured device absorption and (f) external quantum 

efficiency of PTB7:PC70BM solar cells with gold nanohole electrodes with distinct lattice 

periods compared to a PTB7:PC70BM solar cell with ITO electrode. (g) Electric field intensity 

distribution of a PTB7:PC70BM device with nanohole period P = 375 nm at 675 nm and (h) 

750 nm. The arrows in (e) and (f) indicate the wavelengths used for the calculation of the 

electric field intensity. Reproduced from Scientific Reports 7, 42530 (2017) with permission 

from Nature Publishing Group. 

 

To correlate the device efficiency with the optical properties, UV-vis measurements of the 

assembled solar cells were performed (Figure 2.8c). Notably, the devices with the nanohole 

electrodes show an additional absorption peak, which is not present in the reference device. 

This absorption peak is located at the absorption edge of the photoactive layer and is only 

slightly shifting to longer wavelength for increasing periods. However, this additional 
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absorption does not contribute to the device efficiency, as no increased photocurrent generation 

was observed in the external quantum efficiency (EQE) (Figure 2.8d). Instead, the EQE is 

reduced throughout the whole absorption range of the photoactive layer. 

In a second series, the photoactive layer was replaced by the low-bandgap polymer blend 

PTB7:PC71BM, which absorbs up to a wavelength of 750 nm. Surprisingly, the absorption 

peaks, attributed to an SPP resonance supported by the nanohole array structures, again become 

apparent at the absorption edge of the polymer (Figure 2.8e). Likewise, all nanohole array 

devices exhibit a reduced device performance compared to the reference device. The best 

performance is again found for the grating period of P = 1040 nm. This trend is substantiated 

by a strong, uniform decrease in the EQE (Figure 2.8f). However, for small lattice periods, the 

EQE spectra displays an asymmetric line shape, which peaks at the spectral position of the SPP 

resonance. Additionally, for the period P = 375 nm, P = 570 nm and P = 1040 nm, the EQE 

spectra of the nanohole devices even slightly exceed the EQE of the reference device at the 

absorption edge of the polymer. 

FDTD simulations were applied for a PTB7:PC71BM device with P = 375 nm at the maximum 

EQE signal (Figure 2.8g) and the absorption edge of the polymer (Figure 2.8h) to identify the 

nature of the observed SPP resonances. At the lower wavelength, a dipolar plasmonic resonance 

is excited in the nanohole electrode and weakly couples to the silver back-electrode. The 

resonance is strongly damped by the absorption of the photoactive layer and, therefore, cannot 

contribute to the photocurrent generation of the device. In contrast, at the band edge of the 

polymer, a strong field enhancement is detected in the photoactive layer compared to the 

reference device, which elucidates the enhanced photocurrent generation at this wavelength. 

Thus, SPP resonances supported by structured metal electrodes actually can contribute to the 

device performance of organic solar cells. Nevertheless, this contribution is marginally small. 

Instead, the device performance is governed by the balance between reflectance and absorption 

losses caused by the nanohole electrode. 
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Subwavelength Etched Colloidal Monolayers: A 

Model System for Tunable Antireflective Coatings 
 

Christian Stelling, Christoph Bernhardt, and Markus 

Retsch 
 

The antireflective properties of well-defined 

colloidal monolayers with sub-200 nm polystyrene 

particles are investigated. The key parameters, 

effective refractive index and layer thickness, can be 

adjusted precisely and independently to serve as single 

layer antireflection coating. This is realized by the 

fabrication of large area colloidal monolayers on glass 

substrates with ensuing plasma treatment. 
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Vibrational Dynamics of a Two-Dimensional 

Microgranular Crystal 

 

Alejandro Vega-Flick, Ryan A. Duncan, Sam P. 

Wallen, Nicholas Boechler, Christian Stelling, Markus 

Retsch, Juan J. Alvarado-Gil, Keith A. Nelson, and 

Alexei A. Maznev 
 

The acoustic dynamics of a hexagonal, close-

packed monolayer of polystyrene microspheres 
adhered to a solid substrate was studied using a laser-

induced transient grating technique. Collective 

contact-based modes and spheroidal vibrations of the 

microspheres were identified across the entire 

Brillouin zone. Further, a resonance splitting of a 

spheroidal resonance and an avoided crossing between 

surface Rayleigh waves and a spheroidal mode were 

detected and described analytically. 
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Ordered Particle Arrays via a Langmuir Transfer 

Process: Access to Any Two-Dimensional Bravais 

Lattice 
 

Miriam E.J. Hummel‡, Christian Stelling‡, Bernd A.F. 

Kopera, Fabian A. Nutz, Matthias Karg, Markus 

Retsch, and Stephan Förster 

‡ These authors contributed equally. 
 

Two-Dimensional, non-close-packed particle 

monolayers with all possible Bravais lattices can be 

prepared by stretching hexagonal, close-packed 

particle arrays upon transfer from the water/air 

interface onto solid substrates. The symmetry of the 

lattice can be fully controlled by tuning the contact 

angle of the substrate and the monolayer orientation. 
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Showing Particles their Place: Deterministic Colloid 

Immobilization by Gold Nanomeshes 
 

Christian Stelling, Andreas Mark, Georg 

Papastavrou, and Markus Retsch 
 

Deterministic particle immobilization is a key 

technique for the fabrication of functional materials 

via directed self-assembly. Electrostatic interactions 

allow to selectively adsorb latex particles onto gold 

nanomesh arrays. Surface functionalization in 

combination with pH, ionic strength, and particle size 

allow for the preparation of non-close-packed 

monolayers with high surface coverage. 
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Nanomeshes at Liquid Interfaces: From Free-

Standing Hole Arrays toward Metal-Insulator-

Metal Architectures 
 

Christian Stelling and Markus Retsch 
 

A bottom-up approach for the assembly of 

multilayer metal-insulator-metal structures based 

on metal nanohole arrays is demonstrated. Gold 

nanohole arrays were prepared via nanosphere 

lithography on a zinc oxide sacrificial layer, which 

allows for an interface-mediated transfer of the 

nanohole arrays onto hydrophilic or hydrophobic 

substrates. The high mechanical stability of only 

100 nm thick arrays is underlined by the preparation 

of free-standing nanomeshes. 
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Surface Plasmon Modes of Nanomesh-on-Mirror 

Nanocavities Prepared by Nanosphere Lithography 
 

Christian Stelling, Stefan Fossati, Jakub Dostálek, and 

Markus Retsch 
 

Metal-insulator-metal structures comprising gold 

nanohole arrays and opaque gold back-reflectors 

were prepared by colloidal lithography. Unusually 

narrow gap plasmon modes were identified by angle-

resolved UV-vis-NIR spectroscopy, FDTD simulation, 

and analytical theory. The spectral position of the gap 

mode can be controlled by tuning the grating period as 

well as the thickness and the refractive index of the 

dielectric spacer.  
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Plasmonic Nanomeshes: Their Ambivalent Role as 

Transparent Electrodes in Organic Solar Cells 
 

Christian Stelling, Chetan R. Singh, Matthias Karg, 

Tobias A. F. König, Mukundan Thelakkat, and Markus 

Retsch 
 

Periodic nanomeshes are studied as transparent 

conducting electrodes in organic solar cells. In the 

device, a cavity mode is excited, which contributes to 

the power conversion efficiency. However, as the 

mode is confined to the absorption edge of the active 

layer material for all periodicities, the plasmonic 

enhancement is negligible compared to the absorption 

losses in the nanomesh. 
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2.2 Contributions to Joint Publications 

 

The publications presented in this thesis were prepared in collaboration with colleagues and 

other research groups. In the following, the individual contributions of all authors are specified 

in detail. 

 

 

Chapter 3: Subwavelength Etched Colloidal Monolayers: A Model System for Tunable 

Antireflective Coatings 

 

by Christian Stelling, Christoph Bernhardt and Markus Retsch 

 

I prepared the particle monolayers, characterized the samples by scanning electron microscopy, 

atomic force microscopy, UV-vis spectroscopy, and ellipsometry, carried out the data analysis, 

prepared the figures and corrected the manuscript. 

Christoph Bernhardt helped with the preparation of particle monolayers. 

Markus Retsch synthesized some of the particle dispersions, supervised the project and wrote the 

manuscript. 

 

 

Chapter 4: Vibrational Dynamics of a Two-Dimensional Microgranular Crystal 

 

by Alejandro Vega-Flick, Ryan A. Duncan, Sam P. Wallen, Nicholas Boechler, Christian 

Stelling, Markus Retsch, Juan J. Alvarado-Gil, Keith A. Nelson and Alexei A. Maznev 

 

Alejandro Vega-Flick conducted the measurement, evaluated the data, prepared the figures, and 

wrote the manuscript. 

Ryan A. Duncan was involved in the measurement and the data evaluation and proofread the 

manuscript. 

Sam P. Wallen developed the theoretical model, was involved in scientific discussions and 

proofread the manuscript. 

Nicholas Boechler developed the theoretical model, was involved in scientific discussions and 

proofread the manuscript. 



Overview of the Thesis 

88 

I prepared the particle monolayers, characterized the samples by scanning electron microscopy, 

wrote the sample preparation part of the manuscript, and proofread the manuscript. 

Markus Retsch supervised the project, was involved in scientific discussions and proofread the 

manuscript. 
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Abstract 

 

Colloidal monolayers represent a versatile material class to fabricate nanostructures with high 

quality. The length scale of the nanostructured film is given by the size of the colloidal 

nanoparticles. Importantly, colloidal monolayers, though being of hexagonal, close-packed 

symmetry, still embody a high amount of free volume. This reduces the effective refractive 

index of thin colloidal monolayer films significantly. For particles and periodicities < 200 nm 

the heterogeneous layer can be approximated by an effective medium theory. The amount of 

free volume can be further fine-tuned by a controlled size reduction of the constituting spheres, 

for instance by plasma etching. This can be utilized to realize an optimum refractive index for 

the application of colloidal monolayers as antireflective coatings. In contrast previously 

reported > 200 nm monolayers demonstrate distinct extinction peaks due to grating diffraction. 

Rational design by the use of differently sized particles further allows shifting the best 

performance across the visible spectrum. Colloidal monolayers, though representing single 

layer antireflective coatings, exhibit broadband AR properties and are ideally suited to 

demonstrate the influence of refractive index and layer thickness, independently. 

 

 

3.1 Introduction 

 

Antireflective (AR) coatings are important and widespread components of optical devices. The 

key challenge in the fabrication of suitable antireflective coatings lies in the limited availability 

of low refractive index materials. This can be understood when looking at the Fresnel equation, 

which quantifies the amount of reflected light depending on the angle of incidence and the 

refractive index of the substrate (nglas) and surrounding medium (nair). 

For the case of normal incidence the reflection R is given by the Fresnel equation  

𝑅 = (
𝑛𝑐

2 − 𝑛𝑔𝑙𝑎𝑠𝑠𝑛𝑎𝑖𝑟

𝑛𝑐
2 + 𝑛𝑔𝑙𝑎𝑠𝑠𝑛𝑎𝑖𝑟

)

2

 3.1 

 

It yields a minimum in reflection for the case that the optical thickness of the antireflective 

coating layer with refractive index nc amounts to a fourth of the wavelength 𝜆 of consideration. 

This resembles the case of destructive interference for reflection at the air-coating and coating-

substrate interface. For the common case of AR coatings on glass substrates, the minimum in 
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reflectivity is obtained by 𝑛𝑐 = √𝑛𝑔𝑙𝑎𝑠𝑠𝑛𝑎𝑖𝑟 = √1.49 ∙ 1.00 = 1.23.1 However, that low 

refractive indices are not known for dense materials. 

A general approach to realize such low refractive indices is to utilize porous materials. Here, 

the low refractive index of air is introduced in such a way into the material that light scattering 

at these structures is suppressed, as the porosity is notably smaller than the wavelength of visible 

light.1,2 Quite commonly, (meso)porous nanoparticles on the order of less than 200 nm in 

diameter are used, which can be applied via spin-coating to adjust a distinct layer thickness.1,3 

Other approaches comprise the fabrication of hollow nanoparticles with an even lower effective 

refractive index due to the air-filled core.4-7 Colloidal assembly structures may further lower 

the effective refractive index of the layer by a considerable amount of free volume between the 

particles. 

Colloidal monolayers represent a particularly well-defined particle superstructure, which is 

characterized by a highly ordered two-dimensional hexagonal lattice and layer thickness, both 

given by the constituting particle. A vast range of methods has been developed to access high 

quality colloidal monolayers, which are summarized in a recent review.8 The optical properties 

of colloidal monolayers consisting of non-absorbing dielectric spheres such as polystyrene (PS) 

or silica have already been reported for particle sizes in the range of visible light.9,10 In this 

case, a distinct (angle dependent) dip in the transmittance can be observed due to Bragg 

diffraction at the periodic grating. Going to sub-wavelength particle sizes and periodicities, the 

distinct diffraction peak vanishes and broad anti-reflective properties emerge.11,12 However, in 

previous studies the lattice spacing still exceeded 200 nm12 or limited control over the long 

range order and therefore the effective refractive index was reported.11 Other reports have used 

silica particle monolayers to increase the overall transmission through a glass slide.13,14 One 

should note that not only a reduced refractive index can lower the reflectivity, but that also the 

spherical topography and consequently the gradual variation of the refractive index can 

influence the refraction of light.14 The particles were either be arranged on a regular hexagonal 

lattice13 or can be electrostatically adsorbed in a random fashion.15 The use of silica 

nanospheres, however, limits the possibility to precisely adjust the effective refractive index 

and the layer thickness on glass. This is due to the same chemical composition of the substrate 

(glass) and the SiO2 particles. Etching of the SiO2 spheres would simultaneously etch the 

supporting glass surface. 

In order to complete the optical property characterization of simple dielectric colloidal 

monolayers we devote this study to sub-wavelength, highly ordered particle monolayers 
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consisting of polystyrene spheres. We demonstrate periodicities and layer thicknesses below 

200 nm and can therefore treat the colloidal coating as an effective medium layer. We further 

investigate the intricate influence of the free volume between the constituting spheres on the 

antireflective properties of these monolayers. It shall be noted that the same type of colloidal 

monolayers can be used as template to fabricate even better antireflective coatings based on 

etched gradient structures. The interested reader for these kinds of moth-eye antireflective 

coatings is referred to recent reviews in this field.16,17 

 

 

3.2 Results and Discussion 

 

In this contribution we want to solely focus on the possibility to use the interstitial space of 

well-defined colloidal superstructures as a method to fabricate low refractive index, single-layer 

antireflective coatings. The use of polymer nanoparticle monolayers offers the possibility to 

tune the particle dimensions by plasma etching without harming the supporting glass substrate, 

due to their orthogonal chemical stability.10,18 As reported by Vogel et al. the size reduction 

upon plasma etching leads to a shift of the Bragg refraction caused by interference and can be 

seen by a change of the colour of the coating layer.10 However, they used colloidal particles of 

> 400 nm in diameter. Taking into account that the wavelength of the optimum performance 

max of a single-layer coating can be calculated by 

𝜆𝑚𝑎𝑥 = 4 ∙ 𝑛𝑐 ∙ 𝑑 3.2 

 

one notices, that an effective layer thickness d ranging from 80 – 160 nm should be realized to 

cover the visible regime on glass for the case of perpendicular illumination. Therefore, polymer 

particles in the range between 100 nm and 200 nm diameter should be used as starting material, 

as the particle size is reduced in the following procedure. This particle size is considerable 

smaller than the wavelength of visible light and thus diffuse scattering is minimized. A colloidal 

monolayer of such particles can therefore be approximated by an effective medium theory, 

where the interstitial space between the constituting spheres contributes to a reduced refractive 

index. This concept is outlined in Figure 3.1. 
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Figure 3.1. a) Top view and b) Side view of a colloidal monolayer. The interparticle spacing is 

given by the initial particle diameter D0 and remains constant during the size-reduction step. 

The layer thickness d depends on the size 2r of the anisotropically etched particles. c) Three-

dimensional model of an etched colloidal monolayer on a glass substrate. 

 

By simple geometric considerations one can deduce that the area fraction  of a colloidal 

monolayer is given by 

Θ =
2 ∙ 𝑟2 ∙ 𝜋

𝐷0
2 ∙ √3

 3.3 

 

and the volume fraction Φ is given by 

Φ =
4 ∙ 𝑟2 ∙ 𝜋

3 ∙ 𝐷0
2 ∙ √3

 3.4 

 

with r being the particle radius and D0 being the interparticle distance (see Figure 3.1), which 

is given by the initial particle diameter D0. 

For the case of unetched colloidal monolayers this becomes independent of the absolute particle 

size and leads to  = 90.7 % and  = 60.5 %, when taking the particle diameter 2r as layer 

thickness. Using the Maxwell-Garnet effective medium approximation 

𝑛𝑒𝑓𝑓
2 = 𝑛𝑎𝑖𝑟

2
2 ∙ (1 − Φ) ∙ 𝑛𝑎𝑖𝑟

2 + (1 + 2Φ) ∙ 𝑛𝑃𝑆
2

(2 + Φ) ∙ 𝑛𝑎𝑖𝑟
2 + (1 − Φ) ∙ 𝑛𝑃𝑆

2  3.5 

 

one notices that a perfect, defect-free colloidal monolayer will have an effective refractive index 

nc = 1.33, when a refractive index of nPS = 1.59 is assumed for polystyrene. This is n = 0.1 

larger than the optimum nc = 1.23 required according to the Fresnel equation 3.1. Decreasing 

the volume fraction of the PS spheres will proportionally reduce the refractive index, which can 

be precisely achieved by plasma etching. Concomitantly, this will reduce the layer thickness, 

which will shift the optimum antireflective performance to lower wavelengths. When assuming 

a Maxwell-Garnett behavior, we expect to get an optimum performance at a volume fraction of 

 = 43.3 % (for the simplified case of isotropic particle etching). This corresponds to an area 
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fraction  = 64.2 % and a reduction of the diameter of the initial polymer sphere to 2𝑟𝑜𝑝𝑡 =

0.84 ∙ 𝐷0. 

Plasma etching allows for a precise control in the fine-tuning of the size of polymer particles. 

By choosing the appropriate gas mixture and etching time combination one can reduce the 

diameter by a defined amount (Supporting information Figure S3.1)10 and thereby adjust the 

effective refractive index accordingly. Figure 3.2 shows the evolution of the optical 

transmission through a colloidal monolayer with an initial particle diameter of 140 nm (PS140) 

with increasing etching time. (UV/VIS spectra covering a range from 350 nm to 2500 nm are 

displayed in Figure S3.2.) 

 

 

Figure 3.2. a) Transmission spectra of a colloidal PS monolayer with an initial particle diameter 

of 140 nm. Continued plasma etching leads to a size reduction of the PS spheres, which blue-

shifts the maximum transmittance (dashed line: glass spectrum). b) The maximum 

transmittance max monotonically shifts to lower wavelengths as the PS spheres are etched to 

63 % of their initial size. The x-error bars indicate the standard deviation of the size of the 

etched particles, the y-error bars indicate the wavelength range at which the transmittance 

decreased by 0.2 % relative to the maximum position. 

 

Two trends can be recognized, which follow the theoretical predictions. With increasing plasma 

etching time, the particle size decreases monotonically from initially 140 nm down to approx. 
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85 nm after 390 s. This results in a gradual blue-shift of the maximum light transmission from 

max = 950 nm to max = 400 nm (Figure 3.2b) as the effective layer thickness d is gradually 

decreasing, too. At the same time, the absolute transmission Tmax at the optimum wavelength 

passes through a maximum, which is reached after 150 s etching at a value of Tmax = 95.5 %. 

This is very close to the theoretical transmission of Tmax = 96 % for an ideal, single sided AR 

coating on glass (the other 4 % are being lost at the second glass-air interface). The difference 

to the ideal value can be rationalized by a small amount of additional scattering at point- and 

line-defects, which are typically present in self-assembled colloidal monolayers or by a 

roughening of the particle surface during the etching process. 

We further investigated the optical properties of the etched colloidal monolayers by 

ellipsometry (Figure 3.3). Using a Cauchy fit model, we fitted the layer thickness and the 

refractive index to the ellipsometric angles  and  (Figure S3.3). The ellipsometric data 

confirm the trend that has been observed in the spectroscopic transmission. The correlation 

between the covered area fraction and the refractive index measured by ellipsometry is depicted 

in Figure S3.4. The reduction of the particle diameter leads to a reduction in the optical layer 

thickness of the particle coating. However, one has to bear in mind that plasma etching of PS 

spheres typically leads to a slightly anisotropic etching, which results in spheroid-shaped 

objects rather than isotropically shrunk spheres.19 This discrepancy becomes apparent, when 

comparing the diameter of the plasma-etched particles measured with scanning electron 

microscopy (SEM) 2r (which resembles a top-view projection on the sample plane) to the layer 

thicknesses obtained from the ellipsometric fit and atomic force microscopy (AFM) 

measurements d (see Figure S3.7). As expected for spheroids, the actual layer thickness d is 

systematically less than the diameter of the projected PS particle 2r. Nevertheless, the layer 

thicknesses from the ellipsometric fit and the AFM measurement agree very well with only a 

small deviation for the samples of the longest etching time. A potential reasons for this deviation 

could be an increase in surface roughness on the PS particles, which is often observed for longer 

etching times (Figure S3.1), which may lead to more scattering. Concomitant with the decrease 

in layer thickness is an increase in free volume between the nanoparticles. This results in a 

monotonic decrease of the effective refractive index of the colloidal monolayer (solid symbols 

in Figure 3.3a), which follows the Maxwell-Garnett plot.  
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Figure 3.3. Ellipsometry data, Maxwell-Garnett plot and angle-dependent transmittance. a) ■ 

Refractive index and ○ layer thickness of PS140 with increasing etching time determined with 

the Cauchy model. The solid line represents the theoretically expected Maxwell-Garnett 

behavior of the effective refractive index. b) ■ deviation of the measured refractive index from 

the optimum refractive index (n = 1.23), ○ averaged transmittance of PS140 series with 

increasing etching time as a function of the covered area fraction. c) Transmittance at 633 nm 

for ■ glass and ○ PS140 etched for 100 s in dependence of the incident angle. 

 

The dashed line in Figure 3.3a marks the optimum refractive index, which indeed is realized by 

a size reduction of about 80 – 85 % of the initial particle diameter. Further etching leads to a 

refractive index < 1.23. As already discussed in Figure 3.2a, the absolute transmission therefore 
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runs through a maximum, which is quantitatively analyzed in Figure 3.3b. For this, we averaged 

the transmittance from  = 380 – 800 nm and related it to n = nc – nopt. The transmittance data 

exhibits a peak at an area fraction  of about 60 %, which matches well to the theoretical 

standard deviation of the average transmittance is rather large for low etching times, which is 

indicative of a substantial amount of light being reflected for small wavelengths (compare 

Figure 3.2a). Upon reaching the optimum parameters, the transmittance features a broad 

maximum over a large wavelength range, resulting in a fairly broadband AR behavior and a 

small standard deviation. In Figure 3.3c the angle-dependency of the transmittance at 633 nm 

(wavelength of maximum transmittance at normal incidence) is shown for a monolayer of 

PS140 etched for 100 s (spectra are shown in Figure S3.2). The typical behavior of a single-

layer AR coating is observed, where the transmittance exhibits a strong dependency on the 

angle of incidence. Nevertheless, the transmittance of the coated glass substrate is always higher 

than the untreated glass substrate even at large angles. However, compared to state-of.-the-art 

gradient refractive index structures, the angle dependent AR performance of colloidal 

monolayers is inferior. Moth-eye AR coatings exhibit very low reflectivities up to angles of 

more than 50°.16 

Colloidal monolayer AR coatings can be tuned to a desired optimum transmission wavelength 

by selecting the appropriate initial particle diameter. The optimum AR performance will always 

be reached after size-reducing the initial spheres to an area fraction of  = 64 % or 2r = 0.84 

D0, which results in nc = 1.23, whereas different layer thicknesses d will be obtained. The 

maximum transmittance is given by equation 3.2 and will therefore shift in accordance to the 

obtained layer thickness d. We demonstrate this influence with PS particles ranging from 102 

nm to 181 nm (Figure 3.4a).  
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Figure 3.4. a) Spectra of monolayers with different initial particle diameter etched to a surface 

coverage of approximately 64%. b) Peak positions as a function of the etched particle diameter 

(including expected peak position as dashed line). c) Photograph of optimum monolayers with 

different particle sizes on black glass. Uncoated black glass under illumination to the right. 

 

For all samples we achieved a transmittance of > 94.5 % at the optimum layer thickness. The 

transmittance peak, which always exhibits a broad maximum covering a few hundred 

nanometers, shifts along with the initial particle diameter (Figure 3.4a). Particles PS140 and 

PS151 mark an exception in this trend, which we relate to an inferior monolayer quality of the 

PS151 spheres. This leads to more defects and consequently free volume at the optimum etching 

conditions (2r/D0 ≈ 0.84). With the samples under investigation here, we were able to cover a 

range from 800 nm to 500 nm in maximum transmittance. The experimental results follow the 

linear trend expected from equation 3.2 (dashed line in Figure 3.4b). A good quantitative 
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agreement is achieved, when using the particle diameter as layer thickness. Considering the 

anisotropic etching as discussed above, the maximum transmittance is slightly red-shifted 

compared to the actual layer thickness (see Figure S3.8). The efficiency of the colloidal 

monolayer AR coating can be inspected in Figure 3.4c, where we compare six monolayers of 

different particle sizes, i.e. layer thicknesses, to an uncoated black glass substrate. All 

monolayers have been plasma etched to  = 64 %. A strong reduction in reflectivity can be 

observed for all samples. 

However, the coating with the largest particles PS151 – PS181 feature a clear bluish hue, which 

originates from the inferior AR performance of these layers at small wavelengths (< 600 nm). 

The best visual performance is obtained for the samples PS113 and PS124, which cover all 

parts of the visible regime. When using even smaller particles sizes (PS102) the AR 

performance in the red regime deteriorates leading to a bronze/brownish coloration. 

 

 

3.3 Conclusion 

 

In summary, we investigated the optical properties of colloidal monolayers in the 

subwavelength range. They can serve as model systems for single-layer antireflective coatings. 

The strength of this material class is its well-defined structure, which can be tuned to a specific 

refractive index and layer thickness. We were able to demonstrate two well-known properties 

of single-layer AR coatings with this widely available thin film coating. At first, the refractive 

index needs to be adjusted to the optimum value of nc = 1.23. This can be achieved by controlled 

plasma etching, were the PS particles retain their periodicity and the interstitial space is 

increased. The highest transmittance is only observed at the optimum etching condition, which 

agrees well to the theoretically expected value of  = 64 %. Further size reduction leads to even 

lower refractive indices, which will in turn increase the reflectivity. Additionally, the layer 

thickness of colloidal monolayer coatings can be tuned by varying the initial particle diameter. 

Single-layer AR coatings exhibit an optimum wavelength of transmission, where the criterion 

of destructive interference between the air-coating and coating-glass interface is fulfilled. Using 

particles ranging from 102 nm to 181 nm we were able to adjust the maximum transmittance 

over the entire visible regime. The best performance in terms of broadband reflection 

suppression was achieved for particles with a diameter of 113 nm and 124 nm. Polymeric 

colloidal monolayers will certainly not rival commercially established AR technologies in 

particular with respect to its durability, scratch-resistance, or angle-independence. However, it 
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allows valuable insight into the applicability of the Maxwell-Garnett effective medium theory 

of heterostructured materials and gives a thorough background on the most important design 

parameters for single-layer AR coatings. Furthermore, our study extends the optical properties 

characterization of colloidal monolayers to the < 200 nm range, which are increasingly used as 

starting platform for other nanostructured materials and interfaces. 

 

 

3.4 Experimental Section 

 

The monomer styrene, the initiator potassium peroxodisulfate (KPS), and the comonomer 

sodium para-styrene sulfonate were purchased from Sigma Aldrich and used as received. 

Silicon wafers were obtained from (Microchemicals, Germany). As glass slides, standard 

microscopy slides (Menzel, Braunschweig, Germany) were used. 

Monodisperse polystyrene nanospheres were synthesized using emulsifier free emulsion 

polymerization. The procedure was similar for all samples used. Styrene was dispersed in 

MilliQ water, degassed by bubbling with argon gas for 30 min, heated to 80°C and stirred at 

850 rpm for 30 min. The comonomer (sodium styrene sulfonate or acrylic acid) was dissolved 

in 5 ml MilliQ water and added to the mixture. After 5min, the initiator, potassium 

peroxodisulfate (KPS), dissolved in 5 ml MilliQ water, was added to the mixture. After 

nucleation, the stirring speed was reduced to 550 rpm and the solution was refluxed for 24 h at 

80 °C under argon atmosphere. After cooling to room temperature, the dispersion was filtered 

using a 125 μm nylon filter sieve and dialyzed against MilliQ water. 

Monolayers were prepared according to the procedure of Vogel et al.20 Prior to the preparation 

of the monolayers the glass substrate was cleaned for 20 min in an ultrasonic bath with a 2 % 

aqueous Hellmanex (Hellma GmbH, Mühlheim, Germany) solution (in MilliQ water). The 

surfactant was extensively rinsed off with MilliQ water and the substrates were placed in the 

ultrasonic bath in ethanol for 10 minutes. Afterwards the substrate was dried with compressed 

air. A hydrophilic glass slide was partially immersed in a vessel filled with a 0.1 mM sodium 

dodecyl sulfate (SDS) solution in MilliQ water with a tilt angle of approximately 45 °. The 

aqueous colloidal dispersion was diluted with the same amount of ethanol and slowly dropped 

on the glass slide with a syringe trying to reach a constant flow of the particle dispersion. The 

formed monolayers were transferred to a silicon wafer or a hydrophilic glass substrate by 

immersing the substrate into the water phase below the monolayer and slowly withdrawing 
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under a sheer angle. The transferred monolayers were dried in air under an angle of 

approximately 30 °. 

The prepared monolayers were etched in a plasma reactor MiniFlecto (Plasma Technology 

GmbH, Herrenberg, Germany) with an argon flow of 4 sccm and 100 % power at a pressure of 

~0.2 mbar. The temperature of the bottom plate of the plasma chamber was controlled by an IR 

detector. 

SEM images were taken on a LEO 1530 Gemini Field Emmission SEM (Carl Zeiss AG, 

Oberkochen, Germany) at 3.00 kV. The images were evaluated with the software ImageJ.21 

Atomic force microscopy was performed in tapping mode on a Dimension 3100 microscope 

(Veeco, USA) with a Nanoscope IV controller and Mikromasch NSC15/AlBS cantilevers. The 

AFM images were analyzed with the software Nanoscope Analysis. To determine the film 

thickness at least two cross sections were measured for each sample (see Figure S3.5 and 

Figure S3.6). The local maxima were averaged to get the actual film thickness. 

UV/VIS spectra were measured using a V-670 Spectrophotometer (Jasco Germany GmbH, 

Gross-Umstadt, Germany) between 350 and 2500 nm with an UV-bandgap of 1 nm, an IR-

bandgap of 4 nm, a data interval of 0.5 nm and a scan speed of 1000 nm/min. The spectra were 

normalized to the lamp spectrum. Steps in the spectra deriving from the grating change at 

850 nm were removed manually. Angle dependent spectra were conducted on a Cary 5000 UV-

Vis-NIR Spectrophotometer (Agilent Technologies) with attached Universal Measurement 

Accessory between 300 and 2500 nm with an UV-bandgap of 1 nm, an IR-bandgap of 4 nm, a 

data interval of 1 nm, a UV/VIS scan speed of 120 nm/min and a NIR scan speed of 

600 nm/min. 

Ellipsometry was performed using a SE850 spectrometric ellipsometer (Sentech Instruments 

GmbH, Berlin, Germany). For each sample three independent measurements at three individual 

spots were conducted between 360 and 680 nm at angles of 60, 65 and 70°. The data was fitted 

with the program Spectraray using a Cauchy model to determine the layer thickness as well as 

the refractive index and absorption coefficients. The Cauchy model consisted of a silicon 100 

(Jellison) substrate, a 4 nm SiO2 (Palik) layer, the undefined polymer layer and air. 
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3.5 Supporting Information  

 

Derivation of optimum etching parameter 

Maxwell-Garnett: 

𝑛2
𝑒𝑓𝑓 = 𝑛2

𝑎𝑖𝑟

2(1 − Φ)𝑛𝑎𝑖𝑟
2 + (1 + 2Φ)𝑛𝑃𝑆

2

(2 + Φ)𝑛𝑎𝑖𝑟
2 + (1 − Φ)𝑛𝑃𝑆

2
 3.6 

 

Volume Fraction Φ for neff = 1.23 with PS (nPS = 1.59): 

Φ𝑠𝑝ℎ𝑒𝑟𝑒𝑠 =
𝑛𝑒𝑓𝑓

2 − 𝑛𝑎𝑖𝑟
2

𝑛𝑒𝑓𝑓
2 + 2𝑛𝑎𝑖𝑟

2 ∗
𝑛𝑃𝑆

2 + 2𝑛𝑎𝑖𝑟
2

𝑛𝑃𝑆
2 − 𝑛𝑎𝑖𝑟

2
=

1.232 − 1.00

1.232 + 2.00
∗
1.592 + 2.00

1.592 − 1.00

= 0.433 

3.7 

 

For optimum neff, new particle diameter dopt, based on initial diameter D0: 

𝑟2

𝐷0
2 =

Φ ∙ 3 ∙ √3

4 ∙ 𝜋
 3.8 

 

𝑟

𝐷0
= √

0.433 ∙ 3 ∙ √3

4 ∙ 𝜋
= 0.421 3.9 

 

𝑑𝑜𝑝𝑡 = 0.842 ∙ 𝐷0 3.10 

 

This corresponds to an area fraction Θ: 

Θ =
0.5 ∙ 𝑟2 ∙ 𝜋

𝐷0
2 ∙ √3

4
⁄

=
2 ∙ 𝑟2 ∙ 𝜋

𝐷0
2 ∙ √3

=
2 ∙ (0.421 ∙ 𝐷0)

2 ∙ 𝜋

𝐷0
2 ∙ √3

= 0.642 3.11 

 

Area fraction for unetched monolayers (D0 = 2r): 

Θ =
0.5 ∙ 𝑟2 ∙ 𝜋

4𝑟2 ∙ √3
4

⁄
=

𝜋

2 ∙ √3
= 0.907 3.12 

 

Volume fraction for unetched monolayer (D0 = 2r): 

Φ =
0.5 ∙

4
3 ∙ 𝑟3 ∙ 𝜋

2𝑟 ∙ 𝐷0
2 ∙ √3

4
⁄

=
4 ∙ 𝑟2 ∙ 𝜋

3 ∙ 𝐷0
2 ∙ √3

=
𝜋

3 ∙ √3
= 0.605 3.13 
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Etching kinetics of PS140 

 

Figure S3.1. Etching kinetics of PS140. a) SEM images with increasing etching time. b) 

Diameter as a function of etching time. c) Ratio of diameter to initial diameter as a function of 

etching time. 
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UV/VIS Spectra 

 

Figure S3.2. a) UV-VIS spectra of PS140 with increasing etching time. b) UV-VIS spectra of 

monolayers with different initial particle diameter etched to an area fraction of approximately 

64%. c) UV-VIS spectra of PS140 etched for 100 s at five different positions. d) UV-VIS 

spectra of PS140 etched for 100 s at various angles of incidence. The dashed curves depict the 

spectra measured at negative angles.  

 

 

Exemplary ellipsometric fits using the Cauchy model 

 

Figure S3.3. Wavelength dependence of Ψ (a) and Δ (b) of PS140 (etched for 60s) measured 

at  60°, 65° and 70° including the fits using the Cauchy model as dashed lines. 
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Correlation between area fraction and refractive index 

 

Figure S3.4. Dependence of refractive index on covered area fraction for PS140. 

 

 

AFM height evaluation 

 

Figure S3.5. AFM micrographs of PS140 with increasing etching. 

 

 

Figure S3.6. a) AFM micrograph of PS102 after 90s of plasma etching. b) Cross-section 

following the white line in a). 
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Comparison between layer thickness (AFM and ellipsometry) and particle diameter 

(SEM) 

 

Figure S3.7. Relation of particle height (i.e. layer thickness) measured by AFM (○) and layer 

thickness determined via ellipsometry (■) with respect to the particle diameter measured in 

SEM. The solid line represents perfectly round particles. 

 

 

Maximum transmittance in dependence of the layer thickness (AFM) 

 

Figure S3.8. Maximum transmittance as a function of the actual layer thickness measured by 

AFM. 
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Abstract 

 

We study the dynamics of an ordered hexagonal monolayer of polystyrene microspheres 

adhered to a glass substrate coated with a thin aluminum layer. A laser-induced transient grating 

technique is employed to generate and detect three types of acoustic modes across the entire 

Brillouin zone in the −K direction: low-frequency contact-based modes of the granular 

monolayer, high-frequency modes originating from spheroidal vibrations of the microspheres, 

and surface Rayleigh waves. The dispersion relation of contact-based and spheroidal modes 

indicates that they are collective modes of the microgranular crystal controlled by particle-

particle contacts. We observe a spheroidal resonance splitting caused by the symmetry breaking 

due to the substrate, as well as an avoided crossing between the Rayleigh and spheroidal modes. 

The measurements are found to be in agreement with our analytical model. 

 

 

4.1 Introduction 

 

Vibrations of periodic arrays of spheres interacting via Hertzian contacts initially attracted 

attention following the discovery of solitary wave propagation in the ``sonic vacuum'' regime 

of a 1D chain of uncompressed spheres.1,2 Subsequent studies were extended to 2D and 3D 

systems and yielded an array of novel acoustic phenomena.3 Granular crystals, as these systems 

became known, can be considered a class of phononic crystal4 with unique behavior specific to 

granular media. For instance, in addition to nonlinear effects such as solitons and discrete 

breathers2,3, unusual linear phenomena such as the existence of rotational acoustic modes have 

been revealed.5,6 Due to the nonlinearity of Hertzian contacts, the acoustic properties of granular 

crystals can be easily tuned, for example by applying static compression, which makes them 

attractive for potential applications.3 

Until very recently, granular crystal studies were conducted with macroscopic particles such as 

ball bearings. A new frontier was opened by laser-based experiments on 2D self-assembled 

monolayers of micron-sized particles on a solid substrate. 7-11 These experiments revealed the 

crucial role of adhesion, which is negligible for large particles but becomes an important factor 

in determining the contact stiffness at the microscale. The initial efforts focused on the vertical 

contact resonance of microspheres, arising due to contact with the substrate, and its interaction 

with surface acoustic waves (SAWs). In these initial studies, the observed phenomena, such as 
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an avoided crossing in the Rayleigh SAW dispersion7 and the resonant attenuation of SAWs by 

microspheres,9 could be well accounted for by a simple model where microspheres did not 

interact with each other.7 Refined measurements of the resonant attenuation of SAWs revealed 

horizontal-rotational modes enabled by interparticle interactions.10 However, none of the 

experiments performed on self-assembled microgranular monolayers were done on a “single 

crystal” sample with long-range order extending over distances comparable to the measurement 

spot size. The observed phenomena were limited to the regime in which the acoustic wavelength 

was much greater than the sphere size and the long-range periodic order was not essential. The 

purpose of this work is to study vibrational properties of a well-ordered “single crystal” lattice 

of microspheres, i.e., a true 2D microscale granular crystal. 

An analogy can be drawn between a 2D granular crystal and a 2D lattice of atoms such as 

graphene. However, there is an important difference, as vibrations of a granular monolayer 

involve rotations of the spheres.10,12 Spheres also have internal mechanical degrees of freedom; 

consequently, in addition to contact-based modes, one would expect to see collective modes 

originating from spheroidal vibrations of the spheres.13 The presence of the substrate 

significantly alters the dispersion of contact-based modes14 and adds Rayleigh SAWs in the 

substrate, which interact with the vibrational modes of the monolayer.10,14 In this work, we 

characterize the dispersion of these three types of modes (contact-based, spheroidal, and 

Rayleigh) and their interaction across the entire Brillouin zone (BZ) for a chosen high symmetry 

direction of a 2D microgranular crystal. 

 

 

4.2 Methodology 

 

Sample Description 

Our sample is a 2D monolayer of (1.5 ± 0.023)-µm-diameter polystyrene spheres adhered to a 

float glass substrate coated with a 100-nm aluminum film. The microspheres are arranged in a 

highly ordered hexagonal lattice shown in Figure 4.1a. The sample preparation followed the 

approach described by Retsch et al. 15. Briefly, a 3 wt % dispersion of particles in ultrapure 

(MiliQ) water was spin-coated on a cationically functionalized glass slide at a speed of 4000 

rpm. The particle-coated substrate was slowly immersed into a 0.1 mM SDS solution in MiliQ 

water, which was adjusted to pH 12 with aqueous amonium hydroxide solution. The particles 

were assembled at the air/water interface into a freely floating monolayer, which was finally 

transferred to an aluminum coated glass substrate and dried in air. 
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Figure 4.1. (a) Scanning electron microscope image of the microsphere monolayer. (b) 

Schematic of the experiment. (c) Diffraction pattern produced by the probe laser beam in 

reflection. (d) Reciprocal lattice and the first BZ of the microgranular crystal; red-line shows 

the wavevector range used in the experiment. 

 

 

Experiment 

A laser-induced transient grating technique16,17 was used to excite and probe acoustic modes of 

the structure. Two excitation pulses derived from the same laser source (515-nm wavelength, 

60-ps pulse duration, 0.6-µJ total energy at the sample, 860-µm spot diameter at 1/e2 intensity 

level) were overlapped at the sample as shown in Figure 4.1b, forming an interference pattern 

of period λ. Absorption of the laser light by the aluminum film induced rapid thermal expansion, 

which generated counter-propagating acoustic modes with wavelength λ.17 The wavelength can 

be varied by switching the diffraction grating pattern used to produce the excitation beams pair 

and fine-tuned by tilting it.18 The detection of acoustic vibrations was accomplished via 

diffraction of a quasi-cw probe laser beam (532-nm wavelength, 200-µm spot diameter, 160-

mW power at the sample) with optical heterodyne detection.19,20 The optical diffraction pattern 

from the microspheres was monitored, as shown in Figure 4.1c, to ensure that the laser spot was 

located in a highly ordered area, and to align the acoustic wavevector along the Γ-Κ direction 

of the reciprocal lattice as shown in Figure 4.1d. 
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Figure 4.2. (a) Signal waveforms for three different wavevectors and (b) corresponding Fourier 

spectra. Peaks labeled V and R correspond to the vertical contact resonance mode and SAWs, 

respectively. Spheroidal modes are labeled S0, S2, S3, S4 according to their angular number L. 

(c) Measured dispersion of different modes labeled as in (b). Blue dashed line corresponds to 

SAW velocity for the substrate, red vertical dashed line corresponds to the BZ boundary. The 

dashed-dotted line corresponds to the transverse velocity of the substrate 𝑐𝑠𝑇. (d) Dispersion in 

the range 0.05-0.3 GHz. Solid markers represent the predominantly vertical V mode, smaller 

hollow markers the horizontal-rotational HR and RH modes. Dashed-dotted lines are theoretical 

calculations. Horizontal arrow indicates the maximum SAW attenuation. (e) Fourier spectra for 

two representative wavevectors showing the HR and RH peaks. 

 

Figure 4.2a shows typical signal waveforms measured at three different acoustic wavevectors. 

The corresponding Fourier spectra shown in Figure 4.2b reveal the presence of many acoustic 

modes. By plotting the identified frequencies for each wavevector,21 we obtained the dispersion 

curves shown in Figure 4.2c. Three different types of acoustic modes can be identified: a mode 

labeled R with a nearly constant dispersion slope corresponding to the SAW velocity of the 

substrate; low frequency modes (HR, V, RH) with weaker frequency dependence, which we 

identify as contact-based modes14 and high frequency nearly flat branches (S) corresponding to 

spheroidal vibrational modes of the spheres. 

The Rayleigh mode dispersion is ``zone-folded'' at the BZ boundary (in Figure 4.2b this zone-

folding is seen in the presence of two Rayleigh peaks at q = 1.7 µm-1). The zone-folding of the 

SAW dispersion at the expected location of the BZ boundary in the Γ-Κ direction confirms the 

“single crystal” structure of the sample and the correct orientation of the acoustic wavevector 

with respect to the microsphere lattice. Otherwise the SAW is virtually unaffected by the 

microspheres, with the exception of avoided crossings discussed below. 
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4.3 Contact-Based Modes 

 

Figure 4.2d presents a more detailed view of the dispersion of low frequency contact-based 

modes. The mode labeled V corresponding to the most prominent peak in the spectra, as shown 

in Figure 4.2e, has been previously identified as the vertical contact resonance mode.7,9,10 Figure 

4.2e also shows small peaks to either side of the V mode peak which we assigned to horizontal-

rotational modes labeled HR and RH following Ref.14. The avoided crossing between the 

vertical resonance mode and the SAW, studied in previous works,7,9 is just outside the 

wavevector range of our measurements. In the absence of inter-particle interactions, the contact 

resonance frequency, past the avoided crossing with the SAW, is expected to be independent 

of the wavevector.7 The interaction between microspheres should result in dispersion, predicted 

in Ref.14 but not observed in previous studies due to the lack of long-range order in the samples. 

As can be seen in Figure 4.2d, our data clearly show the expected dispersion, indicating that we 

observe a collective mode of the microgranular crystal rather than vibrations of non-interacting 

particles. 

A model describing vibrations of a monolayer of spheres on a substrate accounting for both 

sphere-substrate and sphere-sphere contacts has been developed for a square lattice14 and 

subsequently modified for a hexagonal lattice.22 The model yields three vibrational modes 

polarized in the sagittal plane;23 one of them predominantly involves vertical displacements 

while the other two have primarily horizontal-rotational character. The diffraction of the probe 

beam is most sensitive to the vertical mode, which is the most prominent in the data. 

The model treats the sphere-substrate and sphere-sphere contacts as normal and shear springs, 

with spring constants KN, KS corresponding to sphere-substrate and GN, GS to sphere-sphere 

contacts, where subscripts N and S refer to normal and shear, respectively. For a Hertz-Mindlin 

contact,24 the ratio of normal and shear spring constants is determined by the elastic constants 

of the contacting materials.22 Thus the model only has two independent parameters, KN and GN. 

We calculated the dispersion by fitting the experimental data of the V mode with the theoretical 

model,22 using the contact stiffnesses KN and GN as fitting parameters. Since the HR and RH 

peaks are much smaller and noisier compared to the V mode, we felt that their assignment to 

the respective dispersion branches needs to be verified. Therefore we only used the V mode in 

the fitting procedure; small HR and RH peaks were not used. The calculated results are shown 

in Figure 4.2d as dashed-dotted curves.25 
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Figure 4.3. Relative amplitudes of the displacements and rotations for each contact-based 

vibrational mode. Z and X denote the amplitudes of the vertical and horizontal displacements 

of the spheres, while Θ denotes the amplitude of the “rotational displacement”, i.e. the product 

of the rotation angle and the sphere radius. The amplitudes are normalized such that 𝑍2 + 𝑋2 +
Θ2 = 1. 

 

The fitted values of the contact stiffnesses are KN = 864 N/m, and GN = 135 N/m. The 

corresponding shear stiffness values are KS = 684 N/m and GS = 106 N/m. As in prior studies,10 

the sphere-substrate contacts are found to be stiffer than the sphere-sphere contacts. 

The calculated dispersion curves confirm the assignment of the HR and RH branches. In 

particular, the calculated HR branch is in good agreement with the measured peaks. The 

calculated RH branch, on the other hand, is lower than the measured values. As can be seen in 

Figure 4.2e, the RH peak is fairly broad; the discrepancy between the calculated and measured 

values is within the peak width, although the precision of the peak position measurement that 

can be assessed from the point-to-point scatter in the data is better than the peak width. 

The discrepancy can be caused by inaccuracy of the Hertz-Mindlin contact model due to, for 

example, surface roughness or bending rigidity.  

Figure 4.3 shows relative contributions of the sphere displacements and rotations for each 

contact-based mode across the BZ. These modes correspond to the calculated dispersion curves 

(V, HR, RH) shown in Figure 4.2d. It can be observed that the V mode involves predominantly 

vertical displacements while the HR and RH modes involve mainly horizontal and rotational 

motion of the spheres. 
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We also found indirect evidence of an intersection between the RH and SAW branches in the 

increased attenuation of the latter. As shown in Figure 4.4, the Rayleigh peak width in the 

Fourier spectrum has a distinct maximum at 235 MHz, while the model predicts the branch 

crossing at 223 MHz. We note that the presence of such resonant attenuation is consistent with 

previous observations.10 

 

 

Figure 4.4. (a) SAW Fourier peaks in the frequency range 200-270 MHz. (b) FWHM of Fourier 

peaks versus SAW frequency. Peak broadening indicates resonant absorption of SAWs 

centered at 235 MHz. 

 

Having determined the sphere-substrate contact stiffness, we estimate the width of the SAW 

bandgap at the BZ boundary. Treating contact springs as a periodic perturbation, we obtained 

the following expression for the width of the bandgap (see Appendix A), 

Δ = 
𝐾𝑁 − 𝜒2𝐾𝑆

2𝜔𝑅𝑀𝐴𝐶
 4.1 

 

where 𝐴𝐶  is the unit-cell area, 𝜔𝑅 is the (unperturbed) SAW frequency at the BZ boundary, 𝜒 

is the elipticity of the SAW and 𝑀 is a constant defined in Ref.26. The calculated bandgap width 

is 1.85 MHz, which is much smaller than the Rayleigh peak width (~ 16 MHz) and hence 

cannot be resolved in our measurements; this explains why no bandgap in the SAW dispersion 

at the BZ boundary is visible in Figure 4.2c. 
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4.4 Spheroidal Vibrational Modes 

 

Sphere-substrate interaction 

Turning our attention to the flat branches in the frequency range 600 – 1500 MHz, we attribute 

them to spheroidal vibrations of the microspheres,27-29 corresponding to four spheroidal modes 

labeled SL with angular numbers L = 0, 2, 3, 4 and radial number n = 0. Table 4.1 shows 

measured and calculated frequencies of these modes averaged over the entire wavevector range. 

The calculations were done for an isolated sphere on a substrate: we start by calculating the 

spheroidal mode of a free-sphere,27,28, then account for the contact with the substrate using a 

perturbation approach.22 The calculations required the density and acoustic velocities 

(longitudinal and transverse) of polystyrene, as well as sphere-substrate spring constants KN 

and KS, previously obtained from the dispersion of the vertical contact mode. The density of 

polystyrene ρ = 1.04 g/cm3 was provided by the particle supplier, but the precise values of 

acoustic velocities were unknown, as for a polymer these may depend on the manufacturing 

procedure. Therefore, we treated the acoustic velocities as fitting parameters. Our fitted values 

cL = 2323 m/s and cT = 1174 m/s are in agreement with previously reported values.29 

 

Table 4.1. Measured frequencies (in MHz) for observed spheroidal modes and calculated 

frequencies for an isolated sphere with and without interaction with the substrate. 

Mode Measured frequency Sphere/substrate Free sphere 

𝑆0 1351 ± 4 1351 1347 

𝑆2
𝑚=0 700 ± 5 689 660 

𝑆2
𝑚=1 662 ± 2 667 660 

𝑆3 1007 ± 5 1020 983 

𝑆4 1295 ± 4 1305 1262 

 

 

Mode splitting 

As shown in Table 4.1, the calculations including the substrate effect are quite close (within 

1.5 %) to the measured values. Our calculations account for the splitting of the S2 mode seen at 

large wavevectors in Figure 4.2c and shown in detail in Figure 4.5. We ascribe this splitting to 

degeneracy lifting between modes with different azimuthal numbers m due to interaction with 

the substrate. In the case of free-sphere vibrations, a mode SL has 2L + 1 fold degeneracy with 

an azimuthal number m = -L,...,L for each degenerate mode. The n = 0, S2 mode of the free-
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sphere yields 5 degenerate modes with m = 0, ±1, ±2. For 𝑆2
𝑚=0, the sphere surface 

displacement at the contact point is vertical, for 𝑆2
𝑚=1 (for the purpose of this discussion, we 

treat m = ±1 modes as a single mode) the displacement is horizontal, and for 𝑆2
𝑚=2 the 

displacement at the contact is zero, hence the latter mode is unaffected by the substrate. Since 

the spheres are optically transparent at the excitation wavelength, spheroidal vibrations can only 

be excited through the interaction with the substrate. The vertical motion of the substrate surface 

in the small wavevector limit can only excite the mode 𝑆2
𝑚=0. The substrate horizontal motion 

occurs on the time scale λ/cR, where cR is the Rayleigh velocity, and is too slow to excite the 

spheroidal mode at small wavevectors. Therefore, we expect the 𝑆2
𝑚=1 mode to become 

observable only at higher wavevectors. 

Thus, we identify the main S2 peak as the 𝑆2
𝑚=0 mode whereas a smaller lower frequency peak 

emerging at high wavevectors is ascribed to the 𝑆2
𝑚=1 mode; as seen in Table 4.1, this 

assignment agrees with the calculations. Such spheroidal mode splitting due to symmetry 

breaking by the substrate is not unexpected but has not been previously reported. Indeed, in a 

more typical measurement with the laser spot centered on an individual particle30-32 only the 

𝑆𝐿
𝑚=0modes can be excited due to symmetry constraints. We expect similar mode splitting to 

take place for S3 and S4 modes; however, the signal from those modes is too weak to detect this 

phenomenon. 

 

 

Figure 4.5. (a) Representative spectral peaks of the spheroidal mode S2 for three wavevectors, 

showing the mode splitting which becomes apparent at large wavevectors. (b) Dispersion of the 

S2 mode. Open circles show the measured frequencies. Blue dashed line corresponds to SAW 

velocity for the substrate, red solid lines corresponds to theoretical calculation for a monolayer 

of interacting spheres, red dashed lines show calculated frequencies for an isolated sphere.  
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Spheroidal dispersion and interaction with surface Rayleigh waves 

Further examination of the 𝑆2
𝑚=0 mode data shown in Figure 4.5b reveals a small but 

appreciable dispersion across the BZ as well as a narrow avoided crossing with the SAW. The 

dispersion indicates that we are dealing with a collective mode of a microgranular crystal rather 

than vibrations of individual particles as was assumed in the calculations shown in Table 4.1. 

The particle-particle interaction can be taken into account using a perturbation approach22 to 

obtain an equation relating the frequency 𝜔1 of the 𝑆2
𝑚=0 mode to the wavevector q: 

𝜔1
2 = 𝜔0

2 + 𝐶𝑁

𝐾𝑁

𝑀0
+ 𝑆𝑁

4𝐺𝑁

𝑀0
[2 + cos(𝑞𝐷√3/2)], 4.2 

 

where 𝜔0 is the free-sphere frequency, D is the sphere diameter, 𝑀0 is the sphere mass, 𝐶𝑁 and 

𝑆𝑁 are dimensionless constants calculated based on the displacement pattern in the free-sphere 

mode22: 𝐶𝑁 = 3.32, 𝑆𝑁 = 0.83. The second term represents the frequency shift due to the sphere-

substrate contact while the third describes the dispersion due to the sphere-sphere contact. 

Next we modified the effective medium model7 to describe the interaction of spheroidal 

vibrations with the SAW in the substrate. This resulted in the following dispersion relation (see 

Appendix B): 

(𝜔1
2 − 𝜔2) [(2 −

𝜔2

𝑞2𝑐𝑠𝑇
2 ) − 4√1 −

𝜔2

𝑞2𝑐𝑠𝑇
2 √1 −

𝜔2

𝑞2𝑐𝑠𝐿
2 ]

=

𝐾𝑁𝜔2 (𝜔1
2 − 𝐶𝑁

𝐾𝑁

𝑀0
− 𝜔2)√1 −

𝜔2

𝑞2𝑐𝑠𝐿
2

𝑞3𝐴𝑐𝜌𝑠𝑐𝑠𝑇
4  

4.3 

 

where 𝜌𝑠 = 2.44 g/cm3, csT = 3438 m/s and csL = 5711 m/s are the density, transverse and 

longitudinal wave speeds of the substrate, respectively. 𝜔1 is the spheroidal mode frequency 

given by Eq. 4.2. The term in brackets in the left-hand side is the Rayleigh determinant yielding 

the frequency of the Rayleigh SAW.27 The right side of Eq. 4.3 represents the coupling term 

between the Rayleigh wave and the spheroidal vibrations, effectively determining the width of 

the avoided crossing. 

Figure 4.5b shows the calculated dispersion relation to be in good agreement with the 

experimental data. This is achieved without any fitting parameters, as the contact spring 

constants GN and KN used in Eqs. 4.2 and 4.3 were previously determined from the dispersion 

of the vertical contact mode.  



Vibrational Dynamics of a Two-Dimensional Microgranular Crystal 

124 

4.5 Conclusion 

 

In summary, we studied the linear dynamics of a fully ordered 2D microgranular crystal in the 

frequency range 0.05 - 2 GHz and investigated the behavior of three kinds of acoustic modes 

(contact-based, spheroidal, and Rayleigh) across the entire BZ. A range of previously 

unexplored phenomena have been revealed, including the dispersion of contact-based and 

spheroidal modes due to particle-particle interactions, the splitting of a spheroidal resonance 

due to symmetry breaking by the substrate, and the avoided crossing between a spheroidal mode 

and the SAW. The experimental results are well described by our analytical models. The two 

contact stiffnesses obtained from the vertical contact mode dispersion have been shown to 

describe the observations involving the spheroidal mode dispersion, the Rayleigh-spheroidal 

avoided crossing, and the absence of the Rayleigh bandgap at the BZ boundary. 

We hope this report will stimulate further studies of wave phenomena in ordered microgranular 

lattices. Non-linear propagation of high-amplitude waves, 2D lattices with more complicated 

unit-cells and 3D lattices, dissipation in microgranular systems and thermal transport properties 

at low temperatures (when low-frequency vibrations control heat transport) present rich 

opportunities for exploration. The interaction of contact-based and spheroidal modes with 

SAWs may enable applications in SAW devices and sensors. Another avenue for future 

research is scaling the particle size down to nanometers, eventually leading to the borderline 

between granular and molecular crystals. 
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4.6 Appendices 

 

Appendix A: Bragg band gap of the Rayleigh mode 

In order to find the frequencies of the Rayleigh mode at the BZ boundary, we followed the 

approach in Sec. IV of Ref.1. We treat the contact springs as a perturbation increasing the 

potential energy of the SAW. Since the SAW frequency at the BZ boundary is much larger than 

the contact resonance frequency, we disregard the center of mass motion of the spheres and 

assume that the deformation of the contact springs are determined by the SAW surface 

displacement. 

For the even mode (all terms and notations as in Ref.1), the perturbation of the potential energy 

is given by  

∆𝐻𝑒𝑣𝑒𝑛 =
1

2𝐴𝑐
𝐾𝑁𝑢2, 4.4 

 

where u is the vertical surface displacement amplitude and 𝐴𝑐 is the area of the unit cell. For 

the odd mode, it is given by  

∆𝐻𝑜𝑑𝑑 =
1

2𝐴𝑐
𝐾𝑆𝜒

2𝑢2, 4.5 

 

where 𝜒 is the ellipticity of the Rayleigh wave (see Eq. (24) of Ref.1). Consequently, the 

frequencies will be given by  

𝜔𝑒𝑣𝑒𝑛 = 𝜔𝑅 (1 +
𝐾𝑁

2𝐾𝐴𝑐
) 4.6 

 

𝜔𝑜𝑑𝑑 = 𝜔𝑅 (1 +
𝜒2𝐾𝑆

2𝐾𝐴𝑐
) 4.7 

 

where 𝜔𝑅 is the Rayleigh frequency and 𝐾 = 𝑀𝜔𝑅
2 , where 𝑀 is given by Eq. (23) of Ref.1. The 

bandgap width is given by  

∆ = 𝜔𝑒𝑣𝑒𝑛 − 𝜔𝑜𝑑𝑑 = 𝜔𝑅

𝐾𝑁 − 𝜒2𝐾𝑆

2𝐾𝐴𝑐
 4.8 
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Appendix B: Spheroidal-Rayleigh wave interaction 

In order to calculate the spheroidal interaction with the SAW we consider a vertical force 𝐹 

acting on a single sphere at the contact point with the substrate. The equation of motion for the 

radial displacement 𝑢𝑟,𝐿,𝑚 at the sphere-substrate contact can be expressed as  

𝑀𝐿,𝑚𝑢̈𝑟,𝐿,𝑚 = −𝐾𝐿,𝑚𝑢𝑟,𝐿,𝑚 − 𝐹 4.9 

 

where 𝑀𝐿,𝑚 and 𝐾𝐿,𝑚 are constants defined in Ref.2 and related by the expression 𝐾𝐿,𝑚 =

𝜔0𝑀𝐿,𝑚, where 𝜔0 is the free sphere vibration frequency. The force exerted by the contact 

spring is 

𝐹 = 𝐾𝑁(𝑢𝑟,𝐿,𝑚 + 𝑢𝑧) 4.10 

 

where 𝑢𝑧 is the vertical surface displacement due to elastic waves in the substrate. Applying a 

Fourier-transform in the time domain we obtain the following relationship for the Fourier-

amplitudes of the sphere displacement 

𝑢̃𝑟,𝐿,𝑚 =
−𝐾𝑁𝑢̃𝑧

𝐾𝐿,𝑚 + 𝐾𝑁 − 𝑀𝐿,𝑚𝜔2
=

−𝐾𝑁𝑢̃𝑧

𝑀𝐿,𝑚 (𝜔0
2 + 𝐶𝑁

𝐾𝑁

𝑀0
− 𝜔2)

 
4.11 

 

where 𝐶𝑁 = 𝑀𝑜/𝑀𝐿,𝑚 is a dimensionless constant calculated based on the displacement pattern 

in the free sphere mode.2 Using Eq. 4.11 we can determine the vertical force acting on a unit 

area of the substrate, leading to the following boundary conditions for the SAW at 𝑧 = 0: 

𝜎𝑧𝑧 =
𝐾𝑁(𝑢̃𝑟 + 𝑢̃𝑧)

𝐴𝑐
=

𝐾𝑁𝑢̃𝑧(𝜔0
2 − 𝜔2)

𝐴𝑐 (𝜔0
2 + 𝐶𝑁

𝐾𝑁

𝑀0
− 𝜔2)

, 𝜎𝑧𝑥 = 0, 4.12 

 

where 𝐴𝑐 = √3𝐷2/2 is the area of the unit cell, and 𝑀0 is the mass of the sphere. We follow 

the standard procedure of deriving the Rayleigh wave dispersion,3 substituting the stress-free 

boundary condition by Eq. 4.12 to obtain the following dispersion relation: 

[(2 −
𝜔2

𝑞2𝑐𝑠𝑇
2 ) − 4√1 −

𝜔2

𝑞2𝑐𝑠𝑇
2 √1 −

𝜔2

𝑞2𝑐𝑠𝐿
2 ]

=

𝐾𝑁𝜔2(𝜔0
2 − 𝜔2)√1 −

𝜔2

𝑞2𝑐𝑠𝐿
2

𝑞3𝐴𝑐𝜌𝑠𝑐𝑠𝑇
4 (𝜔0

2 + 𝐶𝑁
𝐾𝑁

𝑀0
− 𝜔2)

 

4.13 
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where 𝜌𝑠 is the substrate density and 𝑐𝑠𝐿 and 𝑐𝑠𝑇 are the longitudinal and transverse wave speeds 

of the substrate respectively. In the case of interacting spheres, we include the effect of the 

sphere-sphere interaction by substituting  

𝜔0
2 → 𝜔0

2 + 𝑆𝑁

4𝐺𝑁

𝑀0
[2 + cos(𝑞𝐷√3/2)] 4.14 

 

into Eq. 4.13, where 𝑆𝑁 is a dimensionless constant defined in Ref.2 This leads to the following 

dispersion relation  

(𝜔1
2 − 𝜔2) [(2 −

𝜔2

𝑞2𝑐𝑠𝑇
2 ) − 4√1 −

𝜔2

𝑞2𝑐𝑠𝑇
2 √1 −

𝜔2

𝑞2𝑐𝑠𝐿
2 ]

=

𝐾𝑁𝜔2 (𝜔1
2 − 𝐶𝑁

𝐾𝑁

𝑀0
− 𝜔2)√1 −

𝜔2

𝑞2𝑐𝑠𝐿
2

𝑞3𝐴𝑐𝜌𝑠𝑐𝑠𝑇
4  

4.15 

 

where 𝜔1 is given by Eq. 4.2 of the main text. The effective medium approximation we used4 

requires the SAW wavelength to be much greater than the granular lattice constant. In our case, 

the SAW wavelength amounts to about four lattice constants. 
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Abstract 

 

We demonstrate how to directly transform a close-packed hexagonal colloidal monolayer into 

non-close-packed particle arrays of any two-dimensional symmetry at the air/water interface. 

This major advancement in the field of nanoparticle self-assembly is based on a simple one-

dimensional stretching step in combination with the particle array orientation. Our method goes 

far beyond existing strategies and allows access to all possible two-dimensional Bravais lattices. 

A key element of our work is the possibility to macroscopically stretch a particle array in a truly 

one-dimensional manner, which has not been possible up to now. We achieve this by stretching 

the nanoparticle array at an air/water interface during the transfer process. The degree of 

stretching is simply controlled by the wettability of the transfer substrate. To retain the 

symmetry of the transferred structure, the capillary forces upon drying have to be circumvented. 

We demonstrate two concepts based on thermal fixation for this. It allows for the first time to 

fabricate non-close-packed, nonhexagonal colloidal monolayers on a macroscopic length scale. 

 

 

5.1 Introduction 

 

Solid substrates patterned with particle arrays are a key component for the fabrication of 

functional surfaces and thin film devices. They have applications in lithography,1-3 optics,4 

photonics,5 high-density data storage as well as adhesive/non-adhesive surfaces.6 Established 

preparation methods are based on block copolymers,7,8 direct assembly of colloidal particles on 

solid substrates,9 or liquid interface-mediated assembly.10 These techniques readily yield 

hexagonal, close-packed (hcp) particle arrays. For many applications, it is highly desirable to 

use non-close-packed particle arrays with tunable interparticle distances, and non-hexagonal 

symmetries to control optical, adhesive or magnetic surface properties, e.g., in the case of anti-

reflective coatings11 or photonic band gap devices.12 

However, non-close-packed particle arrays are not readily accessible. One fabrication route is 

based on the assembly of colloidal particles at the oil/water interface. Here, attractive capillary 

forces, which lead to the formation of close-packed arrays, are screened, and repulsive 

electrostatic interactions become dominant. This method allows increasing the interparticle 

distances up to several times the particle diameter.13,14 However, the colloidal monolayers lose 
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their non-close-packed character during transfer from the oil/water interface to a solid substrate 

due to the onset of attractive capillary forces. 

A second fabrication method starts from hcp particle arrays on solid substrates. The monolayers 

are then transformed into non-close-packed arrays by plasma etching, which reduces the 

diameter of the colloids without affecting their position.10,15 Here, the initial particle diameter 

predetermines the interparticle distance, and the particle size cannot be reduced indefinitely due 

to limitations of the etching process.16,17 Further methods to prepare non-close-packed particle 

monolayers comprise spin-coating18, substrate swelling19, shrinking of close-packed 

particles20,21 or degradation22,23 of a polymer shell of core/shell particles. However, all these 

approaches merely produce hexagonal arrays. 

Non-hexagonally ordered arrays are not accessible with standard self-assembly methods and 

usually require multiple step procedures. One approach to non-close-packed, non-hexagonal 

arrangements is based on a combination of isotropic swelling and anisotropic stretching of 

close-packed monolayers on elastomeric substrates. Depending on the individual stretching 

steps, the particles are separated along given directions yielding more complex arrays.24 

Besides, structured substrates have been used as templates to assemble colloidal particles in 

close-packed or non-close-packed arrays with various lattice geometries.25-27 The combination 

of hard and soft colloidal particles alongside with a restriction of the available surface area has 

also been demonstrated to result in nonhexagonal and non-close-packed particle 

arrangements.28 This experimental work is supported by modeling based on a hard core−soft 

shell interaction potential (Jagla potential).29 Overall, there is currently no simple method 

available that could produce ordered non-close-packed arrays of any symmetry in a controlled 

manner. 

Here, we report a straightforward fabrication method for non-close-packed particle arrays with 

any of the possible two-dimensional Bravais lattice symmetries. It starts from readily accessible 

hcp-monolayers, which are assembled at the water/air interface and collected on solid 

substrates. The transfer to the substrate induces a controlled, purely one-dimensional stretching 

of the hcp-array leading to a variety of symmetries depending on the transfer angle and degree 

of stretching. This method can be applied to colloidal particles of various composition and 

yields nanostructured areas of macroscopic size. 

  



Ordered Particle Arrays via a Langmuir Transfer Process: Access to Any Two-Dimensional 

Bravais Lattice 

134 

5.2 Results and Discussion 

 

We prepared the particle monolayers at the water/air interface via an established method.30 As 

model particles, we chose spherical polymer colloids (poly(n-butyl acrylate-co-methyl 

methacrylate) (P(nBA-co-MMA)) with a diameter of 434 ± 12 nm. The monolayers consist of 

large single-crystalline domains, resulting in intense iridescent colors. These monolayers were 

subsequently transferred onto solid substrates to fabricate the desired non-close-packed and 

non-hexagonal particle arrays (Figure 5.1). 

 

 

Figure 5.1. Fabrication of non-close-packed monolayers. (a) A hcp monolayer from the 

water/air interface is transferred to the lower side of a hydrophobic substrate by submerging the 

substrate through the monolayer into the subphase. Thereby the particle monolayer is stretched 

into a non-close-packed array. (b) The particles are immobilized on the substrate via thermal 

fixation near the glass transition temperature (Tg) of the particles or the substrate. In the final 

step, the substrate with the monolayer can be recovered from the solution while the structure is 

preserved. 

 

We first tested the conventional transfer of a monolayer onto a hydrophilic substrate, which is 

withdrawn from the water (Z-type deposition31). As expected, this leads to the formation of 

ordered hcp particle arrays (Figure S5.1a).30 The preparation of non-close-packed arrays 

requires transferring the monolayer onto a hydrophobic substrate by immersion into water (X-

type deposition). This is possible if the contact angle of the substrate is larger than a critical 

angle, in our case 𝜃𝑐 ~ 65 °. The monolayer is then deposited on the lower side of the substrate. 

We hypothesized, that during the transfer of the monolayer to the substrate, the monolayer 

would align and stretch into the transfer direction, such that non-close-packed ordered arrays 

are accessible (Figure 5.1a). Unfortunately, the subsequent removal of the substrate from the 

aqueous solution resulted in the formation of a collapsed particle assembly (Figure S5.1b). This 

is a consequence of attractive capillary forces acting during the removal and drying. 
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Nevertheless, a closer inspection of the SEM images revealed that the particles were not 

completely disordered, but showed a preferential alignment along the diagonals of the image. 

This indicated that the particles have indeed become aligned into non-close-packed arrays, but 

then rearranged into close-packed structures and lost their order during removal of the substrate 

from the aqueous solution. 

 

 

Figure 5.2. Stretched particle arrays. (a) Definition of the initial hcp-domain orientation angle 

𝛿, stretching angle 𝛼 and stretching vector 𝑆 . (b) Dependence of the stretching factor 𝑆 on the 

contact angle 𝜃 of the substrates. (c) Polymer particles on substrates with different contact 

angles: SU-8 (𝜃 = 69 °), P(S-co-nBA) (𝜃 = 86 °), PS (𝜃 = 96 °), PTFE film (𝜃 = 106 °). The 

stretching factor S decreases with increasing contact angle with at a constant stretching 

direction 𝛽. Scale bars are 1 µm. 

 

To suppress the rearrangement, we immobilized the particle arrays prior to the removal from 

the aqueous solution by increasing their adhesive contact area on the substrate (Figure S5.2). 

For polymer particles with moderate glass transition temperatures (Tg), this can be conveniently 

done by thermal fixation near the Tg of the particles (Figure 5.1b). We also provide an 

alternative concept for arbitrary particles. These can be thermally immobilized on substrates 

coated with a thin polymer interlayer with adequately low glass transition temperature 

(Figure S5.3). One can imagine further fixation strategies such as chemical crosslinking or an 
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exchange of the solvent.13 After this fixation step, we were able to recover the substrate from 

the aqueous solution without affecting the particle positions (Figure S5.1c). An example for a 

successful immobilization of a non-close-packed particle array with non-hexagonal order 

covering the entire substrate (1 x 1 cm2) is shown in Figure S5.4. This demonstrates that the 

transfer onto hydrophobic substrates can generate large-area, non-close-packed particles arrays, 

and that a fixation step is crucial to maintaining the structure. 

The broad implication of this transfer method bases on the fact that the obtained type of particle 

array is completely defined by the transfer direction and the stretching factor and can be 

theoretically predicted as shown in Figure 5.2a. We derive this mathematically, starting from 

the base vectors 𝑒1⃗⃗  ⃗ and 𝑒2⃗⃗  ⃗ of the hexagonal unit cell of the hcp-layer which are given as  

𝑒1⃗⃗  ⃗ = (
1
0
) ; 𝑒2⃗⃗  ⃗ = (

−0.5

−0.5√3
) 5.1 

 

The orientation of the hcp-domain at the water/air interface before it is transferred to the 

substrate is specified by the rotation angle 𝛿. 

The base vectors 𝑎 , 𝑏⃗  for the oriented hcp-domain prior to transfer can be calculated using a 

rotation matrix 

𝑎 = [
cos 𝛿 − sin 𝛿
sin 𝛿 cos 𝛿

] ∘ 𝑒1⃗⃗  ⃗ 5.2 

 

𝑏⃗ = [
cos 𝛿 − sin 𝛿
sin 𝛿 cos 𝛿

] ∘ 𝑒2⃗⃗  ⃗ 5.3 

 

The stretching vector 𝑆  with a stretching factor 𝑆 = |𝑆 | determines the degree of stretching 

upon transfer of the hcp-domain to the substrate. Additionally, the direction is defined by the 

angle 𝛼 between the stretching vector 𝑆  and the y-axis. (Figure 5.2a). Mathematically, the 

stretching process can be described by a sequence of a rotation by an angle – 𝛼 (𝑀−𝛼), followed 

by an uniaxial stretching along the y-axis (𝑀𝑆), and finally a back rotation (𝑀𝛼) with the 

matrices 

𝑀𝛼 = [
cos𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

] 5.4 

 

𝑀𝑆 = [
1 0
0 𝑆

] 5.5 

 

This results in the following stretching matrix (𝑀 = 𝑀𝛼 ∘ 𝑀𝑆 ∘ 𝑀−𝛼) and the stretched vectors 

𝑎′⃗⃗  ⃗ and 𝑏′⃗⃗⃗   of the final particle array 
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𝑀 = [
𝑐𝑜𝑠² 𝛼 + 𝑠𝑖𝑛² 𝛼 ∙ 𝑆 𝑠𝑖𝑛 𝛼 ∙ 𝑐𝑜𝑠 𝛼 ∙ (1 − 𝑆)

𝑠𝑖𝑛 𝛼 ∙ 𝑐𝑜𝑠 𝛼 ∙ (1 − 𝑆) 𝑐𝑜𝑠² 𝛼 ∙ 𝑆 + 𝑠𝑖𝑛² 𝛼
] 5.6 

 

𝑎′⃗⃗  ⃗ = 𝑀 ∘ 𝑎  5.7 

 

𝑏′⃗⃗⃗  = 𝑀 ∘ 𝑏⃗  5.8 

 

With this calculation, we show that the obtained two-dimensional arrays, characterized by the 

base vectors 𝑎′⃗⃗  ⃗ and 𝑏′⃗⃗⃗  , are completely determined by the parameters 𝛿, 𝛼 and 𝑆. 

In the reversed case where the stretching factor and direction need to be determined from the 

observed array, the equations to calculate 𝛿, 𝛼 and 𝑆 are given in the SI (Equation 5.10 and 

5.11) The two orientation angles 𝛿 and 𝛼 are fully determined by the domain orientation and 

immersion direction and can be reduced to an angle 𝛽 = 𝛼 − 𝛿, which describes the effective 

stretching direction with respect to the direction of the hcp-array at the water/air interface. Due 

to its 6-fold rotational symmetry it is sufficient to consider an angular range 0 ° ≤ |𝛽| ≤ 30 °. 

The same structures evolve for all angles |𝛽 ± 𝑛 ∗ 60 °|, when keeping 𝑆 constant, with n being 

an integer. 

We further demonstrate that also the stretching factor 𝑆 can be well controlled experimentally. 

This is possible by adjusting the substrate contact angle 𝜃 as shown in Figure 5.2b.31 A wide 

range of contact angles was realized by spin-coating glass substrates with different polymers or 

directly using a polytetrafluoroethylene (PTFE) film. We thus covered a range of contact angles 

from PTFE (𝜃 = 106 °), polystyrene (PS) (𝜃 = 96 °), poly(n-butyl acrylate-co-styrene) 

(P(nBA-co-S)) (𝜃 = 86 °), SU-8 photoresist (𝜃 = 69 °) to poly(methyl methacrylate) (𝜃 =

68 °). Using the different substrates leads to a large variation of the stretching parameter 𝑆, 

starting from the same floating hcp-monolayer (Figure 5.2c). Substrates with a very high 

contact angle (𝜃 = 106 °) exhibit almost no stretching and the observed structures usually show 

a hexagonal, close-packed arrangement. Lowering the contact angle leads to increasing 

stretching factors of the original monolayer. Contact angles near the critical angle (𝜃 = 69 °) 

result in remarkably large stretching factors, which promote the formation of particle lines and 

large tetragons. We want to stress two important properties of this interfacial stretching concept: 

(1) Since we work at the air-water interface, a truly one-dimensional stretching is accessible. 

Lateral shear forces are negligible, which is in contrast to previous stretching strategies 

employing elastomeric substrates.19,32 This strongly increases the macroscopic homogeneity of 
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the transferred structure. (2) High stretching factors up to 400 % can be realized, simply by 

adjusting the hydrophobicity of the target substrate. 

The observed dependence of the stretching factor 𝑆 on the substrate contact angle 𝜃 can be well 

rationalized in terms of the flow pattern in the water subphase during immersion of the substrate 

(Figure S5.5). This has been described in detail in literature.31 For contact angles smaller than 

𝜃𝑐  ~ 65 ° the subphase shows a split-injection streamline such that the monolayer moves away 

from the contact line. Thus X-type monolayer transfer is impossible. For slightly larger contact 

angles the monolayer starts to flow towards the contact line, but at a velocity smaller than the 

immersion velocity of the substrate. This leads to a large ratio between immersed substrate area 

Asub and transferred monolayer area Amon, which determines the stretching factor 

𝑆 = 𝐴𝑠𝑢𝑏/𝐴𝑚𝑜𝑛. Increasing the contact angle beyond 𝜃𝑐   increases the flow velocity of the 

monolayer towards the substrate, thus decreasing the stretching factor. At high contact angles, 

as e.g. for PTFE, the monolayer transfer and substrate immersion velocity eventually become 

equal. This results in a transfer ratio close to unity, so that the stretching factors approach 𝑆 ~ 1. 

With this, we show that the stretching factor can also be well controlled experimentally over a 

large range (between 𝑆 ~ 1 and 𝑆 ~ 4) via the substrate contact angle. 

Figure 5.3a demonstrates the full potential of this simple approach. All possible two-

dimensional Bravais lattices symmetries are accessible by tuning both the stretching factor 𝑆 

and the effective stretching direction 𝛽. A square array of particles is obtained by stretching 

with a factor of 𝑆 = √3 ≈ 1.73 and a stretching direction along one of the vectors defining the 

initial hexagonal unit cell (𝛽 = 30 °). An ideal non-close-packed hexagonal array can be 

realized by stretching with a factor of 𝑆 = 3 along one of the initial vectors (𝛽 = 30 °), whereas 

a centered rectangular array is the result for 𝑆 ≠ 1.73 and 𝑆 ≠ 3 at 𝛽 = 30 °. For rectangular 

arrays, there exist various discrete combinations of stretching factors and directions that fulfill 

the following equation 

𝑆 =
1

√
sin 𝛽 ∙ (√3 − tan𝛽)

√3 ∙ sin 𝛽 + cos𝛽

 

5.9 

 

which is indicated by the branch Σ. For all other parameter combinations and 𝛽 ≠ 30 ° and 𝛽 ≠

0 ° oblique lattices are obtained. Close-packed particle lines, corresponding to highly extended 

oblique lattices, can be fabricated by choosing 𝛽 = 0 °. Thus, non-close-packed particle arrays 

for any of the five two-dimensional Bravais lattices (square, hexagon, rectangular, centered 
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rectangular, oblique) can be realized by a suitable combination of domain orientation and 

stretching factor. 

 

 

Figure 5.3. Particle array symmetries determined by 𝛽 and 𝑆. (a) Phase diagram for Bravais 

lattice structures as a function of the stretching factor 𝑆 and stretching angle 𝛽. (b) Particle 

monolayers are stretched to yield the five possible Bravais lattices in the two-dimensional 

space. (from left to right) Square, hexagonal, centered rectangular, rectangular, oblique. Scale 

bars are 1 µm. 

 

Our findings have broad implications for the fabrication of ordered particle arrays, as the 

method should generally apply to all nano- and microscale particles that can be assembled at 

the water/air interface and transferred to a hydrophobic substrate. A crucial step is the 

immobilization of the particles on the substrate. For this purpose, we thermally fixated the 

monolayers to increase adhesive contact to the substrate, but also covalent or other non-covalent 

binding strategies are well conceivable. The fixation chemistry may thereby originate from the 

particle itself (e.g. its Tg), or the target substrate (e.g. spin-coated interlayer with appropriate 

Tg). We note that the immersion velocity of the substrate (1 mm/min – 1 cm/s) has no significant 

influence on the resulting particle arrays. At these time scales the advancing contact angle can 

be assumed constant, which completely defines the magnitude of stretching.31 Moreover, the 

immersion angle (30 ° – 90 °) can also be neglected as only the local contact angle has to be 

considered. 
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Figure 5.4. Uniform stretching of multi-crystalline monolayers. (a) Optical microscopy image 

of large area, single-crystalline domains and correlative electron microscopy on a sample with 

𝑆 ~ 1.7 (PS). Scale bars are 50 µm (optical microscopy) and 2 µm (electron microscopy). (b) 

Laser diffraction at various spots on one sample with 𝑆 ~ 1.7. Four distinct array symmetries 

can be found when scanning across the substrate: (from left to right) Rectangular, close-packed 

particle lines, oblique, and square. 

 

In contrast to the stretching of monolayers on rubber substrates, which inherently show a 

contraction in the direction perpendicular to the strain direction, our method yields a uniform 

and purely one-dimensional stretching across the whole substrate. In Figure 5.4a, an optical 

microscopy image is shown of a monolayer transferred to a PS substrate. Two extended single-

crystalline domains can be discerned from the distinct scattering colors corresponding to 

different domain orientations. We demonstrate that these distinct lattices are well-explained by 

the same degree of stretching; solely their initial orientation to the stretching direction differs. 
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The absolute stretching value is constant across the whole image (𝑆 ~ 1.7) and identical 

structures are found within the whole singe-crystalline areas. 

A possible limitation for the preparation of large-area arrays could be the size limitation of the 

monocrystalline hcp-domains. However, the area of monocrystalline domains formed by the 

method outlined above30 is already sufficiently large for micro-optical applications.33 A series 

of diffraction measurements on our samples, using a focused laser beam shows distinct 

scattering patterns, which can be attributed to monocrystalline areas with a specific symmetry 

(Figure 5.4b). 

Finally, excellent techniques have been reported to reach uniform domain orientation of even 

larger size.34,35 The combination of such improved methods for monocrystalline colloidal 

monolayer formation with in situ techniques to assess the monolayer lattice orientation will 

finally allow to fix the stretching direction β and consequently to deterministically fabricate a 

specific pre-defined Bravais lattice. Depending on the particle size (length scale) and 

composition (contrast), different methods can be envisioned for this task. Most straightforward 

will be laser diffraction experiments or direct optical microscopy at the air/water interface. 

More challenging will be grazing-angle X-ray scattering methods, which, however, will be able 

to address the sub-100 nm length scale as well. 

 

 

5.3 Conclusion 

 

In conclusion, we demonstrated a convenient and versatile method for the preparation of 

ordered non-close-packed particle arrays with symmetries of any of the two-dimensional 

Bravais lattices. We are able to predict and experimentally realize a variety of ordered particle 

arrays by tuning only two parameters, the contact angle of the substrate and the stretching 

direction relative to the monolayer orientation. Compared to existing routes to non-close-

packed colloidal crystals, our approach is superior with respect to its simplicity, variability, and 

scalability. Up to now many of the fabricated array symmetries that we show have not been 

accessible by other self-assembly methods. 

The presented technique offers a new approach to enable the preparation of a large variety of 

defined ordered particle arrays to tune their optical, photonic and wetting properties to specific 

applications. Furthermore, the method is compatible with batch and continuous solution surface 

processing methods with immediate implications for the generation of ordered particle arrays 

on a variety of solid and flexible substrates.  
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5.4 Experimental Section 

 

Synthesis of P(nBA-co-MMA) particles: Monodisperse P(nBA-co-MMA) particles were 

prepared by emulsifier-free emulsion polymerization. 450 mL milliQ water were mixed with 

35 mL MMA and 15 mL nBA, respectively. The mixture was equilibrated at 75 °C under a 

slight argon flow for 15 minutes. Subsequently, 2 mL of acrylic acid were added to the mixture 

followed by a further equilibration step for 5 min. The polymerization was started by a rapid 

injection of 150 mg potassium peroxodisulfate dissolved in 5 mL milliQ water. The reaction 

was carried out overnight. The polymerization was quenched by exposure to air. Residual 

educts were removed by dialysis against water for five days, changing water twice a day. 

Particles with a mean diameter of 434 ± 12 nm and with a glass transition temperature of 61 °C 

were obtained. 

Preparation of hydrophobic substrates: Hydrophobic substrates were prepared by spin-coating 

glass slides with either PS, P(nBA co S) or PMMA and subsequent annealing at 200 °C for 5 

min. SU 8 substrates were obtained by spin-coating SU 8 2050. After soft bake at 65 °C for 1 

min and 95 °C for 7 min, the substrate was exposed to UV light 2 x 4 s. A post exposure bake 

was carried out at 65 °C for 1 min and 95 °C for 6 min. PTFE films were used as received. 

Preparation of colloidal crystals: The preparation of hcp monolayers is described in detail in 

reference 25. Aqueous particle dispersions with a concentration of 2.5 wt% were spin-coated 

on cationically functionalized glass slides at a speed of 4000 rpm. Freely floating monolayers 

were assembled at the water/air interface by slow immersion of the particle coated glass 

substrate into a 0.1 mM SDS solution in milliQ water. The aqueous phase was adjusted to pH 

12 by adding 30 % aqueous NH3. A hydrophobic substrate was immersed through the floating 

monolayer at an angle of 45 ° relative to the water surface and was left at the bottom of the 

beaker with the monolayer facing upwards. After heating the water near the glass transition 

temperature of the particles for 5 min on a hotplate, the monolayers were removed from the 

solution and dried at ambient conditions. 

Characterization: SEM images were taken on a LEO 1530 Gemini Field Emission SEM (Carl 

Zeiss AG, Oberkochen, Germany) at 3.00 kV. Particle positions and diameters were determined 

from the SEM images using MATLAB’s circle detection function (Figure S5.6). From the 

particle positions, the average stretched basis vectors (a')   and (b')   were then determined by 

averaging all interparticle vectors with a Python script (Figure S5.7). Contact angle 

measurements were performed on an OCA 20 (DataPhysics Instruments GmbH, Filderstadt, 

Germany).  
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5.5 Supporting Information 

 

 

 

Figure S5.1. SEM images of particle monolayers on hydrophilic and hydrophobic substrates. 

The insets show the corresponding fast Fourier transform (FFT). (a) Particles on a hydrophilic 

glass substrate (hcp structure). (b) Particles on a hydrophobic substrate without thermal fixation 

(collapsed line structure). (c) Particles on a hydrophobic substrate with thermal fixation (non-

close-packed oblique structure). Scale bars are 5 µm. 

 

 

 

Figure S5.2. Side view SEM images of (a) non-immobilized and (b) immobilized particles. 

Without thermal annealing, the particles can be viewed as hard spheres which feature a 

minimum contact area on the substrate. Upon drying of the monolayer, these particles are 

subject to capillary forces that lead to a shift to new particle positions. Thermal annealing of 

the particles above their glass transition temperature Tg leads to an increase of the contact area 

on the substrate. In the viscous state, the particles fuse onto the substrate and become 

immobilized at their positions even under capillary stress. Scale bars are 500 nm. 
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Figure S5.3. SEM images of particle monolayers immobilized on hydrophobic substrates with 

moderate glass transition temperature. PS Particles (Tg ≈ 105 °C) with a diameter of (a) 453 

nm and (b) 2560 nm thermally fixated on spin-coated P(nBA-co-MMA) layer  (Tg ≈ 55 °C). 

Scale bars are 5 µm. 

 

 

Figure S5.4. Immobilized particle monolayer. (a) Photograph of an immobilized particle 

monolayer on a hydrophobic substrate. The iridescent color preserved after drying of the 

monolayer indicate an intact positional arrangement of the particles. (b) Laser diffraction of an 

immobilized particle monolayer. The sharp peaks confirm the high order of the particles in the 

monolayer. Scale bars are 1 cm. 

 

 

Calculation of 𝜹, 𝜶 and 𝑺  

Experimentally found structures can be assigned to specific stretching parameters 𝛿, 𝛼 and 𝑆. 

For this the stretched vectors 𝑎′⃗⃗  ⃗ and 𝑏′⃗⃗⃗   with the coordinates 𝑥𝑎′, 𝑦𝑎′ and 𝑥𝑏′, 𝑦𝑏′ have to be 

extracted from SEM images. The coordinates are inserted into the following two equations to 

calculate 𝛼 and 𝑆. In order to determine the right parameters, the results of both 𝑎′⃗⃗  ⃗ and 𝑏′⃗⃗⃗   have 

to be screened with respect to 𝛿. 

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑡
𝑦′ − 𝑦(𝛿)

𝑥′ − 𝑥(𝛿)
 5.10 

 

𝑆 =
𝑥′ − 𝑥(𝛿) ∙ 𝑐𝑜𝑠2 𝛼 + 𝑦(𝛿) ∙ 𝑠𝑖𝑛 𝛼 ∙ 𝑐𝑜𝑠 𝛼

𝑥(𝛿) ∙ 𝑠𝑖𝑛2 𝛼 + 𝑦(𝛿) ∙ 𝑠𝑖𝑛 𝛼 ∙ 𝑐𝑜𝑠 𝛼
 5.11 
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Figure S5.5. Streamline profiles upon immersion of a solid substrate at different contact 

angles.[1] The dotted line indicates the critical angle 𝜃𝑐 below which an X-type is impossible. 

 

[1] R. L. Cerro, J. Colloid Interface Sci. 2003, 257, 276. 

 

 

 

 
Figure S5.6. SEM image of a stretched monodomain. The red circles indicate the particles 

found by MATLAB’s circle detection function after optimizing the search parameters 

manually. 
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Figure S5.7. 2D Histogram of the distance between particle pairs and the corresponding angle 

with the x-axis for the SEM image in Figure S5.7. Each black dot represents an inter-particle 

connection. A Gaussian kernel density estimator is used to calculate the smooth distribution 

function (color). Local maxima in the distribution, with small interparticle distances, represent 

possible candidates for the stretched basis vectors 𝑎′⃗⃗  ⃗ and 𝑏′⃗⃗⃗   in polar coordinates. 
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Abstract 

 

The defined immobilization of colloidal particles on a non-close-packed lattice on solid 

substrates is a challenging task in the field of directed colloidal self-assembly. In this 

contribution the controlled self-assembly of polystyrene beads into chemically modified 

nanomeshes with a high particle surface coverage is demonstrated. For this, solely electrostatic 

interaction forces were exploited by the use of topographically shallow gold nanomeshes. 

Employing orthogonal functionalization, an electrostatic contrast between the glass surface and 

the gold nanomesh was introduced on a sub-micron scale. This surface charge contrast promotes 

a highly site-selective trapping of the negatively charged polystyrene particles from the liquid 

phase. AFM force spectroscopy with a polystyrene colloidal probe was used to rationalize this 

electrostatic focusing effect. It provides quantitative access to the occurring interaction forces 

between the particle and substrate surface and clarifies the role of the pH during the 

immobilization process. Furthermore, the structure of the non-close-packed colloidal 

monolayers can be finely tuned by varying the ionic strength and geometric parameters between 

colloidal particles and nanomesh. Therefore one is able to specifically and selectively adsorb 

one or several particles into one individual nanohole. 

 

 

6.1 Introduction 

 

Colloidally assembled structures have been widely applied over the past years to prepare a 

broad range of functional nano- and mesostructured materials.1 Despite the fact that complex 

two- and three-dimensional ensembles can be fabricated by fairly simple methods, this research 

field is still very active due to the many degrees of freedom inherent in colloidal assemblies, 

such as packing geometry, inter-particle spacing, or particle material.2,3 In any preparation 

method under consideration, the tight control over the mutual colloidal interaction forces, the 

adsorption kinetics, and the drying conditions is of paramount importance in order to obtain the 

desired colloidal superstructure in two or three dimensions. These assemblies show many new 

properties in terms of their optical appearance,4,5 thermal conductance,6 or reflection 

properties,7,8 which can be tuned by varying the colloidal dimensions and order parameters. 

While these structures can extend in all three dimensions, it is often the first layer on the 

substrate that crucially defines the growing conditions of the following layers.9,10 
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In order to build 2-dimensional colloidal structures with maximal degrees of freedom, the 

underlying interactions governing the assembly of colloidal structures have to be finely 

controlled. Previous wet-chemical approaches can be classified as either convective or 

electrostatic assembly.2 In topographically controlled assembly structures a particular substrate 

pattern, which is commensurate or larger than the colloidal particle under consideration, is 

fabricated with a distinct height. Suitable patterns of various symmetry and periodicity have 

been produced for example by e-beam lithography or photolithography. The colloidal order is 

driven by capillary forces, which take place at the liquid-gas interfaces and drive the particle in 

the topographically lower regions of the pattern. Consequently, a dry colloidal monolayer or 

crystal is obtained at the end of the assembly process. The topographic template substrates 

provide access to hierarchical two-dimensional colloidal arrays,11-13 non-close-packed 

ensembles,14,15 larger mono-crystalline domains,16,17 and predefined lattice symmetries.9,18,19 

Additionally, very precise particle positioning on sparsely distributed topographic features has 

been demonstrated, which allows to prepare few oriented particle clusters on a flat substrate.20 

Capillary forces commonly dominate electrostatic interaction between the particles during the 

drying procedure.21 However, in the absence of such capillary forces, e.g. by transfer to a 

solvent with a lower surface tension22 the original structure remains intact. If the particle-

substrate interaction is sufficient to prevent rearrangement of adsorbed particles, one finds the 

so-called extended random-sequential adsorption,23,24 which includes the inter-particle forces 

due to diffuse layer overlap. However, the single particle positions are stochastically distributed 

despite the presence of characteristic separation distance between the particles. 

The electrostatic immobilization of colloidal particles on chemically modified patches, which 

are considerably larger than the particle itself is a commonly utilized strategy to obtain a 

deterministic placement of particles at defined places.21,25-27 The necessary surface modification 

has been achieved by molecular self-assembled monolayers,25 polyelectrolytes,26 microcontact 

printing,21 or functional silanes.27 Nevertheless, the mutual order within these large area patches 

is still governed by random sequential adsorption or hexagonal packing in the case that capillary 

forces dominate. 

In order to implement inter-particle spacing that show well-defined order parameters extending 

over nearest neighbors, different strategies have to be followed. One possibility is defined 

chemical modification in combination with highly specific interactions, such as receptor-ligand 

pairs or DNA-hybridization.28,29 However, these preparation techniques require sophisticated 

equipment in order to prepare samples with sub-micron features. 
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Here, we present a more elegant method that is based on nano-mesh structures, which are 

obtained by evaporation of noble metals on pre-adsorbed and etched colloidal monolayers. This 

so-called nanosphere lithography is well-established and has been described previously by 

various research groups.30-34 Subsequently, we orthogonally modify the two different surface 

materials (i.e. gold and glass) with thiols and silanes, respectively, in order to obtain highly 

defined surface areas of opposite charge. The term orthogonally expresses that this independent 

functionalizing can provide surface areas with opposite characteristics, such as sign of surface 

charge. During particle deposition these surface charges on the structured collector surface lead 

to a defined adsorption of the particles that depends solely on the particle-surface interaction 

and not on inter-particle interaction. Hence, particle spacing superior to the ones obtainable by 

inter-particle forces can be achieved – yet at a high surface coverage. We demonstrate that one 

can obtain a highly selective process by which a defined number of small particles can be 

assembled in defined sub-micron surface areas. The required tuning of the particle/substrate 

and particle/particle interaction parameters can be achieved by adjustment of the ionic strength 

and the pH. We investigate the self-assembly process for pattern patches, which are larger, 

equal or smaller than the colloid size under investigation. The underlying interaction 

mechanisms during the particle deposition process have been quantified by direct force 

measurement based on the colloidal probe technique.35 In particular, direct force measurements 

demonstrate that the surface charge and not topographic features are responsible for the 

observed, irreversible adsorption process. 

 

 

6.2 Results and Discussion 

 

In Figure 6.1 the concept of selective particle deposition into the nanomesh is outlined. The 

different materials of the nanohole array allow an orthogonal functionalization of glass and 

gold. The glass holes are selectively functionalized with an aminosilane to obtain positively 

charged holes in acidic and neutral pH conditions, thus attracting the negatively charged 

polystyrene particles. In contrast, the Au-mesh is treated with OH-terminated thiol, which has 

been found to be negatively charged at pH 4.36 This modification introduces a repulsive 

potential while being hydrophilic and thus resulting in good wetting properties of the entire 

surface. 
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Figure 6.1. Schematic representation of self-assembly of polystyrene particles on a nanohole 

array. 

 

Although directed electrostatic adsorption of nanoparticles by chemically patterned surfaces 

has been shown before for 40 nm Au colloids,29 a quantitative investigation of the underlying 

mechanism is still missing. For the first time, we directly determined the forces responsible for 

the particle adsorption by colloidal probe AFM measurements and studied the influence particle 

size, pH and ionic strength in detail. Furthermore we extended the size range applicable to 

colloidal particles between 150 nm and 1500 nm. Atomic force microscopy is utilized to study 

the long-range interactions on the orthogonally functionalized Au-nanohole arrays in order to 

understand particle immobilization on these substrates. By using a polystyrene bead as colloidal 

probe static force measurements can be performed to directly reveal the interaction behaviour 

between the particles and the sample. This allows a direct comparison of AFM measurements 

and macroscopic particle immobilization experiments. Exemplary force versus distance profiles 

on both the Au-mesh and the NR4
+-modified glass are shown in Figure 6.2 for measurements 

in pH 4 und pH 10 solution. When using HCl and NaOH to adjust the pH value, for pH 4 and 

pH 10 the ionic strength of the solution equals 0.1 mM. Thus, differences in the adsorption 

process can be directly referred to the pH value. All AFM measurements were conducted in 

aqueous solutions with a low total ionic strength of 0.2 mM to achieve sufficiently large Debye 

lengths. 

At pH 4 (Figure 6.2b,d) the force profiles on the approach part (red curve) significantly differ 

between the Au-mesh and the NR4
+-glass, whereas the retraction parts (blue curve) show 

comparable trends for the adhesion once the particles are in contact with the surface. On the 

NR4
+-modified glass a distinct long-range attraction for the polystyrene particles used as probe 

particles is observed. For the thiol-modified Au-surface, however, an absence of long-range 

attractive forces and a slight repulsion is observed. Particles adhere strongly at this pH to both 

surface types, suggesting an irreversible adsorption of particles once they are in contact with 

the surface. 
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Figure 6.2. (a) Schematic illustration of an AFM force experiment with a polystyrene colloidal 

probe on an Au-nanohole array. (b-e) Resulting force versus distance profiles for measurements 

in an aqueous solution at pH 4 and pH 10. Depiction of the approach (red) and retraction (blue) 

part of force versus distance profiles on the Au-mesh (b,c) and NR4
+-glass (d,e). 

 

At pH 10 (Figure 6.2c,e) the long-range attraction forces between the cationic glass surface and 

the polystyrene probe vanish and instead a repulsive interaction is observed. Additionally, the 

repulsive interactions on the Au-surface areas increase. The combination of both effects leads 

to an effectively repulsive substrate for the negatively charged PS particles for pH 10. However, 

the retraction curves show again adhesion, albeit lower than for pH 4. Monolayers of hydroxy-

terminated thiols are known to have a negative surface potential even in slightly acidic 

environment due to preferential accumulation of anions at the monolayer surface, while at pH 

10 an increased adsorption of hydroxyl ions and thus a more negative surface charge.36-38 The 

weak repulsive forces at pH 10 for the aminosilane-modified glass can be attributed to 
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hydroxyl-ion adsorption as well as an incomplete silane layer with an underlying highly 

negatively charged glass substrate.  

Due to sulfate moieties, the particles are negatively charged over the whole pH-range as 

confirmed by zeta potential measurements for three different particle sizes (Figure S6.11). 

Nevertheless, the magnitude of the zeta potential increases in alkaline conditions due to a higher 

dissociation of the sulfate moieties, leading stronger substrate-particle repulsion. 

The adhesion forces have found to be almost independent of the position on the nanohole array. 

Once a particle is in contact with the surface it adsorbs irreversibly. Based on these interaction 

profiles, we expect the long-range interaction forces to be the crucial key for a selective 

guidance of the particles into the holes. 

A more detailed study of the local interaction forces is important for the rational understanding 

of the process of electrostatic focusing. Figure 6.3a shows a topography image resulting from 

a force mapping experiment. 

 

 

Figure 6.3. (a) Topography image resulting from the force mapping experiment at pH 4. The 

symbols indicate the positions of a line scan of force profiles across one hole. (b) Approaching 

force versus distance profiles corresponding to the symbols in (a).  

 

The hexagonally patterned Au-mesh can be inferred from the topographic image with the black 

areas marking the glass surface. The thickness of the gold-mesh amounts to ~ 45 nm. The 

different symbols mark the position of individual force profiles resulting in a cross-section over 

one nanohole. The corresponding approach part of the force profiles is depicted in Figure 6.3b. 

A clear trend of increasing attractive forces towards the center of the hole is observable. The 

attractive forces vanish at the edges and even turn repulsive on the Au-mesh. Since the effective 

apex diameter of the probe is comparable to the hole dimensions, the gradual transition of the 

interaction forces may be the result of mixed contributions from both the Au-mesh and the 

NR4
+-glass. Minor deviations from the trend may be attributed to a certain sample roughness. 



Showing Particles their Place: Deterministic Colloid Immobilization by Gold Nanomeshes 

158 

This line scan demonstrates that the particles will be exclusively attracted towards the glass 

surface, caused by the electrostatic interaction, which we refer to as electrostatic focusing. We 

want to stress that these experiments have been carried out on completely water-submersed 

substrates. Therefore, contributions from capillary or convective forces can be ruled out. Also 

hydrophobic contributions will not play a role due to the hydrophilic moieties on the Au-mesh 

(hydroxyl-terminated) and glass surface (quarternary-amine terminated). 

Based on the AFM force mapping experiments, we can now predict the macroscopic adsorption 

behavior of negatively charged PS beads. In the following we will demonstrate that the particle 

immobilization can be tuned by pH and ionic strength, as well as the respective size ratios 

between particle, hole diameter, and lattice periodicity. Furthermore, we established a protocol 

allowing us to transfer this fully immersed system into the dry state.  

 

Tuning by pH 

In Figure 6.4 the adsorption of PS spheres on functionalized Au nanomeshes is depicted in 

dependence of the pH value of the particle dispersion. The pH was adjusted to pH 5 and pH 10 

with HCl and NaOH, respectively. For all experiments nanomeshes with a center-to-center 

distance of Lh-h = 1.04 µm and a hole diameter of dh = 0.87 µm were used. The in-situ assembly 

dynamics of commercial fluorescent 606 nm PS particles into the nanomeshes can be monitored 

using confocal laser scanning microscopy. No further functionalization of the PS particles is 

necessary. A video showing the first 10 min of the assembly process for both pH values is 

shown in the SI. Figure 6.4a and b display off-equilibrium snapshots of the adsorbed particles 

(green) 10 min after the addition of the particle dispersion on the nanomesh at pH 5 and pH 10, 

respectively. A clear correlation between the pH value of the particle dispersion and the particle 

adsorption can be recognized. At pH 5 a fast adsorption of the negatively charged particles 

predominantly on the NR4
+-functionalized glass surface can be observed with 26 % of the holes 

being occupied after 10 min. Due to the electrostatic repulsion of the like-charged particles in 

solution, no particle agglomeration is observed and further particles are repelled once a hole is 

occupied. Moreover, the irreversible nature of the adsorption onto the glass areas is visible in 

the video, which supports the mechanistic results of the colloidal probe measurements. In 

contrast, at pH 10 hardly any particle adsorption can be found, with less than 6 % occupied 

holes after 10 min. The few particles on the surface show a rather undefined adsorption behavior 

and no clear tendency towards the glass surface. 
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Figure 6.4. Dependence of particle adsorption on pH dependence. Top row: in-situ confocal 

laser scanning microscopy of fluorescent polystyrene spheres (green) with a diameter of 606 nm 

at pH 5 (a) and pH 10 (b) after 10 min. Bottom row: SEM micrographs of 320 nm negatively 

charged PS particles on Au nanomeshes at pH 5 (c) and pH 10 (d). Insets in (c) and (d) show 

the frequency distribution of the number of particles per hole in percent. Both experiments were 

carried out with 1.04 µm Lh-h and a hole diameter of ~ 0.87 µm. 

 

This trend is consistent with the predictions from the force-distance measurements, which 

showed a repulsive force for both, the NR4
+-functionalized glass and the 

hydroxy-functionalized Au surface at pH 10 resulting in no particle immobilization. At pH 4, 

however, the extraordinary long-ranged electrostatic attraction of the glass surface drives the 

particles into the nanomesh holes. The same behavior can be seen in SEM images of 

nanomeshes after 15 h immersion in a dispersion of monodisperse 320 nm PS particles at pH 5 

(Figure 6.4c) and pH 10 (Figure 6.4d) and subsequent drying. After 15 h a plateau in the particle 

coverage is reached due to the particle-particle repulsion. Whereas the pH 5 sample is almost 

fully covered with selectively immobilized particles, practically no electrostatic adsorption 

takes place at pH 10. The sample prepared at pH 5 exhibits a high occupation rate with more 

than 92 % of the holes being occupied by one or more particles. Additionally, a high selectivity 

is discernible. Approximately 99 % of the immobilized particles are trapped on the glass 
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surface, which covers about 51.6 % of the surface. Since high concentrations of colloidal 

dispersions (6 wt%) were used for the colloidal assembly, this implies a self-quenching 

behavior of the particle adsorption process after the first particle layer. For pH 10 the repulsive 

surface potential results in a very low surface coverage of less than 3.3 particles per 100 µm2, 

which corresponds to only 2 % occupied holes. 

The transfer of the assembled particle structure into the dry state requires tight control on the 

capillary forces during the transfer process. Otherwise, the colloidal pattern formed in the wet 

state can be disrupted by strong capillary forces acting on liquid bridges between adjacent 

particles. Therefore, the solvent is systematically exchanged to first ethanol and then hexane 

prior to the drying step.22,39 

The spatial uniformity of the dried samples can be seen in Figure S6.1. Moreover, correlative 

optical microscopy and electron microscopy images of the 320 nm particles assembled at pH 5 

are shown in Figure S6.2. The samples are uniformly covered on a macroscopic scale on the 

range of several mm2 without drying effects and particle clusters. The good control of the 

capillary forces during the drying procedure can be inferred from the spatially separated beads, 

even within one mesh in the Au grid. Many of such particle pairs are separated by less than 100 

nm, yet, the strong adsorption to the glass surface prevented them from aggregating during 

drying. Thus, using an electrostatic adsorption mechanism instead of convective assembly,20 a 

particle monolayer without direct interparticle contact even within the nanoholes is attained. 

The number of particles per hole for the corresponding sample is evaluated in the insets in 

Figure 6.4c and d. To check the reproducibility of our method, two samples were prepared 

separately at equal conditions and compared in Figure S6.3. Both, the variation of the average 

number of particles per hole at different spots on one sample as well as the variation on different 

samples lies within the standard deviation of one particular spot. 

To expand the influence of the pH, additional samples were prepared at pH 3 (Figure S6.4a) 

and pH 12 (Figure S6.4b). pH 3 yields a nonselective adsorption of the particles onto the 

substrate. At this pH the repulsion of the Au surface is strongly reduced while the glass surface 

remains highly attractive. Therefore, the PS particles are strongly attracted towards the surface 

with approximately 36 % becoming immobilized on the Au surface. Concomitant with the 

reduced pH is a reduction of the Debye screening length of the particles, which results in a 

higher loading of the particles on the surface and a decreased interparticle distance compared 

to pH 5 (see Figure S6.5). Nevertheless, despite the high surface coverage no particle 

agglomeration but clearly separated spheres are noticeable. At pH 12 no significant difference 

can be seen compared to pH 10, with no adsorption being observable.  
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Overall, the choice of the pH of the particle dispersion is critical for the controlled 

immobilization. Weak acidic conditions are favorable to achieve high selectivity at a 

concomitantly high surface coverage. 

 

Tuning by ionic strength 

To separately investigate the contribution of the Debye length without the influence of the pH, 

the ionic strength was varied by adding NaCl while pH 5 was kept constant. In Figure 6.5 the 

adsorption of 320 nm PS particles into the Au nanomeshes is displayed for NaCl concentrations 

of 1 mM (a), 10 mM (b) and 100 mM (c) and a constant assembly time of 15 h. Low 

magnification SEM images are depicted in Figure S6.6. 

 

 

Figure 6.5. Dependence of the adsorption of 320 nm negatively charged PS particles on the 

NaCl salt concentration on Au nanomeshes with 1.04 µm Lh-h and a hole diameter of 0.87 µm. 

NaCl concentrations of 1 mM (a), 10 mM (b) and 100 mM (c) were used. Insets show the 

frequency distribution of the number of particles per hole in percent. 

 

For an ionic strength of 1 mM, the average number of trapped particles is increased to 1.88 

particles per hole compared to 1.15 particles per hole for the sample with an ionic strength of 

< 0.1 mM (Figure 6.4c). Nonetheless, a high selectivity is preserved with 99 % of the particles 

being adsorbed on the glass surface. Increasing the ionic strength to 10 mM, even 3.22 particles 

per hole can be reached, while the selectivity suffers only by 3 %. Further increasing the ionic 

strength to 100 mM, however, results in a complete loss of selectivity (55 % of particles 

adsorbed on glass) and a random sequential adsorption of the PS particles is obtained. This 

trend can be corroborated with the nearest neighbor distance (lNND) determined by the radial 

distribution functions, which correlates to the mutual distance between all trapped particles 

(Figure S6.7). Due to the increasing Debye screening, the lNND slightly decreases for higher 

ionic strength from 447 nm for a salt concentration of less than 0.1 mM to 382 nm for 100 mM. 

Yet, the particles are clearly separated and no agglomeration is visible even for high ionic 

strengths. One can also infer the selectivity of the adsorption process from the RDF profiles by 

the presence of clear correlation peaks at the positions corresponding to the hexagonally ordered 
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nanomesh indicated by the vertical lines. The peaks are being smeared out with increasing ionic 

strength. 

A summary regarding the selectivity and surface coverage of the particle adsorption for the case 

of 320 nm particles in 0.87 µm holes at various pH values and salt concentrations is given in 

Figure 6.6. 

 

 

Figure 6.6. Summary of the controlled deposition of 320 nm negatively charged PS particles 

on Au nanomeshes with 1.04 µm Lh-h and a hole diameter of 0.87 µm. The area fraction of glass 

is 51.6 %. Average number of particles per hole (top) and surface coverage (bottom) of the 

samples in dependence of the different pH values and the overall ionic strengths. Red: particles 

on Au, black: particles on glass. 

 

Increasing the ionic strength decreases the Debye screening length, and consequently leads to 

a higher amount of particles, which can be fitted into one single glass mesh. However, the 

selectivity is destroyed by too high salt concentrations (100 mM). Meanwhile, changing the pH 

drastically reduces the mutual electrostatic interaction. The selectivity is already lost at an HCl 

concentration of 1 mM (pH3). Higher pH leads to strong repulsive forces on Au and glass 

resulting in almost no particle deposition. 

 

Tuning by geometry 

As the underlying nanomesh and the adsorbed particles are prepared independently, both the 

size of the particles and the geometry of the hole array can be tuned individually. Nevertheless, 

the size of the particles relative to the geometrical parameters of the nanomesh has a significant 
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influence on the adsorption process. In this case, we kept Lh-h = 1.04 µm and dh = 0.87 µm of 

the nanomesh constant and varied the particle diameter from 170 nm up to 1500 nm (see 

Figure S6.9 for nanomeshes with different Lh-h and dh). pH 5 was used for the assembly as the 

particle dispersions in MilliQ water lead to pH 5 without the addition of HCl or NaOH. Thus 

the Debye lengths are not reduced by any electrolyte. All particles under investigation exhibited 

similar surface chemistry (see Table 6.1 for zeta potential measurements). SEM images of the 

obtained structures are depicted in Figure 6.7. Overview SEM images are depicted in 

Figure S6.8.  

 

 

Figure 6.7. PS particles of different diameter immobilized in nanohole arrays with dh = 0.87 µm 

and Lh-h = 1.04 µm. PS particles have a diameter of (a) 166 nm (b) 320 nm (c) 570 nm (d) 

740 nm (e) 1040 nm, and (f) 1500 nm. Insets show the frequency distribution of the number of 

particles per hole in percent. 

 

A highly controlled adsorption is feasible over a wide range of particle diameters with high 

regioregularity up to a particle diameter of 1040 nm. As the topographical contribution of the 

nanomesh can be neglected with respect to dh, a highly selective adsorption of nearly 100 % is 

possible even for particle diameters that exceed dh (Figure 6.7e). Nonetheless, for particles with 

a diameter much larger than dh (Figure 6.7f) a loss of regularity is observed. This can be due to 

gravitational forces, which are more critical for larger particles. Moreover, as the particle 

dimensions are much greater than the surface structure, the particles may not recognize a strong 

chemical contrast between the NR4
+-functionalized glass surface and the 

hydroxy-functionalized Au surface, reducing the possibility for electrostatic focusing. 

The number of particles immobilized per hole is evaluated in the insets of Figure 6.7. In Figure 

6.8a the average number of particles per hole is given as a function of the particle diameter. 
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Apparently, single loading of the holes is only possible in a small size range between 0.5 dh and 

dh. Accordingly, for the particles with 570 nm (Figure 6.7c) and 740 nm (Figure 6.7d) excellent 

hole occupation with single spheres surpassing 99 % is achieved. In contrast to previous 

works,27 we constricted the pattern size to the sub micrometer dimension allowing the 

production of non-close-packed particle arrays with interparticle distances controlled by the 

template. Below the threshold of 0.5 dh multiple deposition of particles per hole is noticeable, 

with 1.15 particles per hole for a particle diameter of 320 nm and 2.11 particles per hole for a 

particle diameter of 166 nm. Furthermore, particles below this threshold will always exhibit a 

more or less broad distribution of particles trapped per hole, depending on the ionic strength of 

the particle dispersion as discussed above. 

When the particle diameter exceeds dh and is in the range of the lattice parameter of the 

nanomesh, the adsorption process is constricted by the interparticle electrostatic repulsion. 

Particles with a diameter of 1040 nm (Figure 6.7e), which is equal to Lh-h, do not occupy 

adjacent holes as this would imply unfavorable direct contact of the particles. This results in a 

theoretical maximum of 0.25 particles per hole assuming that particles cannot be trapped in 

adjacent spots once a particle is immobilized in one hole. In practice, a number of 

approximately 0.21 particles per hole is reached as the random fashion of the adsorption process 

is taken into account. To accomplish an occupation rate approaching 100 % with these large 

spheres, however, Lh-h has to be increased (Figure S6.9c). 

For a quantitative analysis of the obtained, two-dimensional colloidal patterns, the center-of-

mass coordinates of the adsorbed particles were determined in ImageJ and used to calculate the 

radial distribution function g(r) (Figure 6.8b-g). This function displays the frequency of the 

occurring particle-particle distances. The presence of defined peaks up to high distances 

corresponding to the most likely distances occurring in the pattern indicates a system with good 

long-range order. Assumptions about the short-range order can be made by evaluating the 

position and width of the first peak (lNND). The solid ticks indicate the peak positions of the 

given ideal hexagonal structure of the underlying nanomesh with the first tick representing Lh-h. 

For all particles up to a diameter of 1040 nm short-range order is detectable, with a well-defined 

lNND and a low value of g(r) at dp (dashed line) indicating the absence of particle agglomeration. 

Moreover, long-range order is visible for all particles except the 1500 nm particles. The 

predominant occupation of the glass surface results in clear peaks occurring at the distances 

corresponding to the hexagonal lattice of the hole array. 
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Figure 6.8. a) Particle coverage as a function of particle diameter. Vertical dashed lines mark 

important geometric transition regions. Radial distribution functions g(r) for various particles 

immobilized in a nanomesh with 1.04 µm Lh-h and hole diameter dh = 0.87 µm: b) 166 nm c) 

320 nm d) 570 nm e) 740 nm f) 1040 nm g) 1500 nm. The dotted lines indicate the particle 

diameter, the solid ticks indicate the g(r) of the underlying Au-nanomesh. 

 

The particles with a diameter of 166 nm (Figure 6.8b) and 320 nm (Figure 6.8c) exhibit an lNND 

of 270 nm and 447 nm, respectively, which is smaller than Lh-h but greater than dp as multiple 

particles are trapped per hole. For the particles diameters of 570 nm (Figure 6.8d) and 740 nm 

(Figure 6.8e) g(r) is congruent with the g(r) of the hole array with the lNND equal Lh-h. The 

relatively high standard deviation of the peaks despite of the single loading of the holes is given 

by the random, non-centrosymmetric position of the immobilized spheres. 

No occupation of Lh-h is noticeable for a particle diameter of 1040 nm (Figure 6.8f). Instead, 

lNND of the particles is present at the preferred second distance of the nanomesh lattice. 

However, a particular well-defined long-range order is observed at higher distances due to the 

uniformly centered position of the particles. 
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A different case is discernible for the particle diameter of 1500 nm (Figure 6.8g). The maximum 

of g(r) at dp correlates to the presence of direct interparticle contacts. Furthermore, no 

long-range order is inferable, which associates with random sequential adsorption. 

Finally, the adsorption process is highly reproducible not only for a broad range of particle 

diameters but universally applicable for negatively charged polymer colloids. This generality 

of the method is depicted in Figure S6.10 for colloidal PMMA particles with a diameter of 

260 nm. As the self-assembly process simply relies on electrostatic interactions, the concept 

can be readily conveyed to arbitrary negatively stabilized colloids. Therefore, a sophisticated 

surface functionalization of the particles is not necessary. 

 

 

6.3 Conclusion 

 

In summary, we investigated the controlled placement of polystyrene particles into Au nanohole 

arrays by electrostatic modelling of the substrate. An orthogonal functionalization of gold and 

glass is exploited to introduce a selective electrostatic attraction of the particles towards the 

glass surface. In this study, we demonstrate the highly reproducible immobilization of 

polystyrene particles over a broad range of particle diameters ranging from 170 nm to 1040 nm. 

Tailoring the ratio of the diameter of the particles and the geometric parameter of the nanohole 

arrays enables one to switch between different adsorption regimes, with multiple particles per 

hole or highly defined single particle adsorption. 

Furthermore, we found that the tuning of the experimental parameters such as pH and ionic 

strength during the assembly process is important to control the adsorption pattern. Colloidal 

probe atomic force microscopy revealed a high sensitivity of the effective interaction potentials 

towards the pH. The attractive potential of the NR4
+-functionalized glass can be switched off 

when increasing the pH from pH 3 to pH 10 giving a uniform repulsive potential and an 

impeded particle adsorption. In addition, the ionic strength of the particle dispersion determines 

the Debye lengths of the electrostatic forces deriving from the nanomesh and the particles. Thus, 

the average number of particles in one hole can be controlled by ionic strength maintaining a 

good selectivity up to 10 mM NaCl. Higher salt concentrations result in random adsorption of 

the particles. By adjusting an ionic strength of 10 mM the number of particles per hole was 

nearly tripled. 

This selective particle deposition occurs foremost in the dispersed liquid state without the aid 

of topography, convective or capillary forces. Confocal microscopy hints towards an 
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irreversible adsorption of the particles onto the glass surface, which is supported by adhesive 

profiles in the retracting curves of colloidal probe force measurements. We could successfully 

transfer this immersed structure into the dry state by exchanging the dispersion medium and 

thereby controlling the capillary forces. Finally, this structuring concept works universally for 

polymer particles with a negative surface charge.  

To our knowledge, this is the first paper, in which the immobilization of particles is shown in 

nanohole arrays made by bottom-up nanosphere lithography. The electrostatic adsorption 

allows to direct particles into hole arrays with very shallow topographic contrast, which are not 

accessible with convective or capillary particle assembly. This represents a simple and versatile 

route for the assembly of particles on optically active metal substrates, which might be utilized 

to create complex plasmonic waveguide structures or sensing devices in the future. 

 

 

6.4 Experimental Section 

 

Materials: Polystyrene particles were purchased at Microparticles GmbH (Berlin) or 

synthesized using emulsifier free emulsion polymerization. N-Trimethoxysilylpropyl-N,N,N-

trimethylammonium chloride (ABCR GmbH, Karlsruhe, Germany, 50% in methanol), 3-

Mercapto-1-propanol (ABCR GmbH, Karlsruhe, Germany, > 96%), Sodium Dodecyl Sulfate 

(Serva Electrophoresis GmbH, Heidelberg, Germany), Hellmanex III (Hellma GmbH, 

Müllheim, Germany), ethanol (Sigma-Aldrich GmbH, Munich, Germany, ≥ 99.8 %), n-hexane 

(VWR International GmbH, Darmstadt, Germany, > 98 %), NaCl (Sigma-Aldrich GmbH, 

Munich, Germany, ≥ 99.0 %), NaOH (Sigma-Aldrich GmbH, Munich, Germany, ≥ 98 %), 

ammonium hydroxide solution (Sigma-Aldrich GmbH, Munich, Germany, 28.0-30.0 %), HCl 

(Grüssing GmbH, Filsum, Germany, 1 M) were used as received. Standard microscopy slides 

(Menzel, Braunschweig, Germany) were used. 

Fabrication of Au nanomeshes: Monolayers were prepared according to the procedure of 

Retsch et al.40 In brief cationically functionalized glass slides were spin-cast with a 3 wt% 

particle dispersion (1.04 ± 0.04 µm diameter) at a speed of 4000 rpm. Freely floating 

monolayers were assembled at an air/water interface by slow immersion of the particle coated 

glass substrate into a 0.1 mM SDS solution in MilliQ water. The aqueous phase was adjusted 

to pH 12 by adding a few drops of NH3. The floating monolayer was finally transferred to a 

glass substrate and dried in air. The prepared monolayers were etched in a plasma reactor 

MiniFlecto (Plasma Technology GmbH, Herrenberg, Germany) with 75 % argon and 25 % 
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oxygen at 80 W power at a pressure of 0.14 mbar. Etching was conducted for 20 min in order 

to obtain non-close-packed monolayers with particles of 870nm diameter. A 3 nm chromium 

layer and 50 nm Au were deposited using a Balzers BA360 thermal evaporation chamber. The 

layer thickness was monitored via a SQM 160 microbalance (Sigma Instruments, Schaefer 

Technologie GmbH). The particles were removed using Scotch® tape (3M) giving the nanohole 

arrays. The Au substrates were cleaned for 10 min in an ultrasonic bath with a 2 % aqueous 

Hellmanex (Hellma GmbH, Mühlheim, Germany) solution in MilliQ water. The surfactant was 

extensively rinsed off with MilliQ water and the substrates were placed in the ultrasonic bath 

in ethanol for 10 minutes and dried with compressed air.  

Chemical functionalization of Au nanomeshes: After hydrophilization in 100 % oxygen 

plasma at 0.2 mbar for 30 s the nanohole arrays were immersed in a 1 vol% solution of N-

Trimethoxysilylpropyl-N,N,N-trimethylammonium chloride in MilliQ water for 1 hour. Excess 

silane was rinsed off with MilliQ water and the substrates were placed in a 1 vol% solution of 

3-Mercapto-1-propanol in ethanol for 2 hours. After rinsing with ethanol the substrates were 

dried at 90 °C for 1 hour. 

Particle immobilization on nanomeshes: The nanohole arrays were placed in the particle 

dispersion for at least 2 hours. The pH was adjusted with HCl and NaOH, respectively. To 

remove excess particles, the supernatant was repeatedly diluted with MilliQ water. Care was 

taken that the substrates do not run dry during this rinsing procedure. Finally, the solvent was 

exchanged consecutively with ethanol and hexane and the sample was dried in air. 

Characterization: Confocal Laser Scanning Microscopy was performed on a TSC SP8 STED 

3x (Leica) using an oil immersion objective (63x augmentation), a 514 nm laser for excitation 

and 4 frames per second. SEM images were taken on a LEO 1530 Gemini Field Emmission 

SEM (Carl Zeiss AG, Oberkochen, Germany) at 3.00 kV. The images were evaluated with the 

software ImageJ.41 Particle positions were extracted using the “Find Maxima” tool and the 

radial distribution functions were calculated using a self-written software (details are given in 

the supporting information). For the statistical analysis the occupation of at least 450 holes was 

evaluated for each sample, i.e. 1000 – 2000 particles were analyzed for the 151 nm – 1040 nm 

particles. 406 particles were analyzed for the particles with a diameter of 1500 nm (random 

adsorption). For the particles assembled at pH 10 and pH 12, 85 and 53 particles were counted, 

respectively. 

The preparation of colloidal probes used here, has been described previously.38,42 Tipless AFM 

cantilevers (NSC-12, MikroMasch, Tallinn, Estonia) were cleaned with a series of solvents 

(ethanol, water, aceton) directly before preparation. A single polystyrene particle with an 
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average diameter of 3.00 µm (micro particles, Berlin, Germany) was attached to the end of a 

tipless cantilever by means of a micromanipulator (STM3, Märzhäuser, Wetzlar, Germany), 

which was mounted next to a fixed stage optical microscope (Axio Examiner D1, Zeiss, Jena, 

Germany). The particle was immobilized by UV-curable glue (Norland Optical Adhesive 63, 

Norland Products, Cranbury, NJ) that was cured directly on the microscope stage by means of 

the mercury lamp illumination. The spring constants of the cantilevers has been determined 

previously by the thermal noise method,43 i.e. before gluing the colloidal particles onto the 

lever. Measurements of interaction forces were performed with an AFM equipped with a 

closed-loop scanner for all three axes (MFP-3D, Asylum Research, Santa Barbara, CA). The 

AFM was placed in an acoustic shielding. Force curves were acquired with a cantilever velocity 

of about 200 nm/s and a maximum loading force of about 5 nN. The surface topography was 

calculated from the set of consecutive force curves acquired on a grid with 3x3 µm size 

consisting of 30x30 points, which results in a surface map where the single data points have a 

separation of 100 nm. The measured deflection versus displacement curves were converted to 

force versus distance curves by means of a set of custom evaluation procedure written in IGOR 

PRO (Wavemetrics, Portland, OR).42,44 The direct force measurements were performed in 

aqueous solution at pH 4 and 10 and a total ionic strength of 0.2 mM.e. 
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Figure S6.1. Optical microscopy. Bright field (left) and dark field (right) images of PS particles 

of different diameter immobilized in nanohole arrays with dh = 0.87 µm and Lh-h = 1.04 µm. 

The diameter of the PS particles is indicated at the top left. Insets show a photograph of the 

samples. 
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Figure S6.2. Correlative optical and electron microscopy of 320nm particles adsorbed at pH 5 

in a nanohole array with dh = 0.87 µm and Lh-h = 1.04 µm. (a) Optical microscopy and (b) 

electron microscopy showing the same sample section. (1) – (4) Higher magnification images 

of the sample spots marked in (a). 
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Figure S6.3. SEM images of 320 nm PS particles assembled on two independent nanohole 

arrays with dh = 0.87 µm and Lh-h = 1.04 µm at equal conditions. (a) and (b) are different spots 

on sample 1, (c) and (d) show independent spots on sample 2. 

 

 

 

 

Figure S6.4. SEM images of 320 nm PS particles adsorbed at (a) pH 3 and (b) pH 12 in 

nanohole arrays with dh = 0.87 µm and Lh-h = 1.04 µm.  Insets show the frequency distribution 

of the number of particles per hole in percent. 
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Figure S6.5. Radial distribution functions g(r) for 320 nm particles immobilized in nanomeshes 

with dh = 0.87 µm and Lh-h = 1.04 µm at (a) pH 5 and 1 mM NaCl (b) pH 3 (1 mM HCl). The 

dotted lines indicate the particle diameter, the solid ticks indicate the g(r) of the underlying Au-

nanomesh. 

 

Particle positions were extracted using the “Find Maxima” tool in ImageJ. The radial 

distribution functions g(r) were calculated using a self-written software. The g(r) was calculated 

by determining all distances r within the extracted coordinates. These distances were binned to 

give a histogram of 600 different distance values with a fixed spacing of dr. Then in order to 

calculate the g(r) from this histogram the area of the circle with a thickness of dr is calculated 

at every of the 600 bins. The number of particles that are to be expected on average on this area 

is calculated by multiplying the circle area with the number density. This value is the average 

number of particles on this area. Then the histogram value that belongs to that dr (or circle area) 

is divided by this average and the result is the value for the g(r) at rdr. 
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Figure S6.6. Overview SEM images of 320 nm particles immobilized in nanomeshs with dh = 

0.87 µm and Lh-h = 1.04 µm at (a) pH 5 and 1 mM NaCl, (b) pH 5 and 10 mM NaCl, (c) pH 5 

and 100mM NaCl, (d) pH 3, (e) pH 10 and (f) pH 12. 

 

 

 

Figure S6.7. Radial distribution functions g(r) for 320 nm particles immobilized in a nanomesh 

with dh = 0.87 µm and Lh-h = 1.04 µm at (a) 1 mM NaCl (b) 10 mM NaCl and (c) 100 mM 

NaCl. The dotted lines indicate the particle diameter, the solid ticks indicate the g(r) of the 

underlying Au-nanomesh. 
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Figure S6.8. Overview SEM images of PS particles immobilized in nanomeshes with dh = 

0.87 µm and Lh-h = 1.04 µm. (a) 166 nm (b) 320 nm (c) 570 nm (d) 740 nm (e) 1040 nm, and 

(f) 1500 nm. 

 

 

 

Figure S6.9. PS particles immobilized in nanohole arrays with variable Lh-h. (a) 258 nm 

particles on a nanomesh with dh = 0.41 µm and Lh-h = 0.57 µm (b) 1040 nm particles on a 

nanomesh with dh = 0.87 µm and Lh-h = 1.04 µm (c) 1040 nm particles on a nanomesh with dh 

= 0.83 µm and Lh-h = 1.50 µm.  
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Figure S6.10. SEM micrograph of 238 nm PMMA particles in a nanohole array with dh = 

0.87 µm and Lh-h = 1.04 µm. 

 

 

Table 6.1. Zeta potential of the used PS particles at pH 4. 

Partikel Zetapotential [mV] 

166nm -54 

320nm -39 

570nm -42 

740nm -42 

1040nm -47 

1500nm -51 

 

The zeta potential was measured using a Zetasizer Nano ZS (Malvern) at 25 °C, a total ionic 

strength of 10 mM adjusted with NaCl and a particle concentration of 0.001 wt%. The pH was 

adjusted with HCl and NaOH, respectively. 
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Figure S6.11. Zeta potential of the PS particles with 166 nm, 320 nm and 740 nm in 

dependence of the pH. 
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Abstract 

 

The superior optical properties of metamaterials often rely on hierarchical structures in the sub-

wavelength regime comprising stacks of individually patterned layers. For the fabrication of 

metamaterials in the visible regime, specific top-down lithographic methods have been 

developed. These techniques, however, have several inherent drawbacks such the lack of 

scalability and low production speeds. Here, a simple and modular approach for the 

construction of multilayer metal-insulator-metal structures based on the transfer of metal 

nanohole arrays via liquid interfaces is demonstrated. Gold nanohole arrays are used as model 

systems that are prepared via nanosphere lithography on a zinc oxide sacrificial layer. 

Exploiting an interface mediated method, the prepared nanohole arrays are subsequently 

transferred onto arbitrary hydrophilic or hydrophobic substrates without compromising the high 

quality of the nanomeshes. Two approaches to stack such nanostructured layers with nanometer 

precision in a rapid way are demonstrated. Finally, the high mechanical stability of only 100 

nm thick gold nanohole arrays allows for the preparation of free-standing nanomeshes in the 

order of several hundreds of square-micrometers. 

 

 

7.1 Introduction 

 

Metallic nanohole arrays present an attractive building block for optical metasurfaces as well 

as 3D metamaterials. Since the discovery of extraordinary optical transmission by Ebbesen et 

al., metal nanohole arrays have been extensively studied.1 Due to the periodic perforation, metal 

nanohole arrays exhibit surface plasmon polaritons, which can be easily tuned by varying the 

period, diameter or shape of the hole structure.2,3 Nanohole arrays have been used for surface-

enhanced spectroscopy, as optical sensors, color filters or transparent conducting electrodes.4-9 

Recently, multilayer structures consisting of two or more layers of metal nanohole arrays have 

been explored. Tang et al. observed a new resonance and increasingly high quality factors for 

silver nanohole array/dielectric multilayers due to the coupling of the hole arrays.10 Moreover, 

stacked nanohole arrays, sometimes also referred to as double fishnet structures, give rise to 

negative refraction.11-17 

However, the majority of these metal-insulator-metal (MIM) structures are fabricated using top-

down methods like e-beam lithography or focused-ion-beam milling. These techniques not only 
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are very time-consuming but also need sophisticated equipment making the production process 

expensive and hardly applicable to large areas. Especially, multilayer structures are difficult to 

access using classical top-down methods. Consequently, fabrication techniques suitable for the 

fast and cost-effective production of MIM structures still remain a challenge. Bottom-up 

approaches could overcome these problems by capitalizing on self-assembly strategies in the 

colloidal regime.18 Tagliabue et al. prepared periodic MIM arrays with a perforated metal 

structure and an (unperforated) metal back reflector employing nanosphere lithography (NSL) 

without a transfer step.19,20 For this purpose, successive e-beam evaporation of a silver or gold 

layer and an insulating silica layer was followed by the deposition of a gold layer through a 

particle template. A similar approach was used by Zhou et al. to prepare MIM structures with 

two perfectly aligned silver nanohole arrays, which supported magnetic cavity modes in the 

visible and NIR range.21 As multiple layers are deposited onto the same particle monolayer, the 

number of layers in the MIM structure is limited by the height of the templating structure. 

Gong et al. reported a self-assembled MIM structure consisting of two stacked silver nanohole 

arrays. The hole arrays were consecutively prepared by NSL combined with electrochemical 

metal deposition. Although the self-assembly process inherently yielded misaligned hole 

arrays, the structures showed a negative index of refraction in the visible regime.22 Misaligned, 

stacked nanohole arrays even exhibit interesting chiroptical effects, which depend on the in-

plane rotational offset of the nanohole arrays.23 

To further facilitate the production of MIM structures, the direct transfer of readily prepared 

hole arrays is highly desirable. The transfer procedures currently available usually rely on the 

dissolution of thick silicon, aluminum or copper substrates or the chromium adhesive layer 

under harsh conditions.23-27 Alternatively, silver or polymer sacrificial layers have been used, 

which limits the freedom of fabrication regarding the nanohole array materials.28,29 

Nanoimprint lithography can be used to transfer nanohole arrays prepared by top-down 

lithographic techniques, but is not compatible with NSL due to the high adhesion of the metal 

layer on the substrate.30,31 Furthermore, free-standing nanomeshes are not accessible by 

nanoimprint lithography. 

Employing NSL directly at the liquid/gas interface is a promising alternative to attain free-

standing hole arrays, which can then be transferred to solid substrates.32 However, this 

technique is limited to nanomesh materials such as Ag2S that can be synthesized in liquid/gas 

interface reactions. Thus, there is a need for readily accessible methods that can transfer 

individual metal nanohole arrays onto arbitrary substrates. 
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7.2 Results and Discussion 

 

In this work, we present a simple protocol for the transfer of gold nanohole arrays based on a 

ZnO sacrificial layer approach. The choice of ZnO as a sacrificial layer is essential as it 

possesses several unique properties, which are critical for the fabrication procedure. Previously, 

ZnO has been used to epitaxially grow and transfer GaN and metal oxide films due to the 

matching crystal structures.33-35 Here, we make use of the possibility to trigger the solubility of 

ZnO by changing the pH value, while staying in an aqueous environment. Whereas ZnO 

dissolves in acidic solutions allowing the detachment of the nanohole array, its stability at high 

pH values is crucial for the transfer of the particle monolayers.36 This method is easily scalable 

and can be extended to rapidly construct multilayer MIM architectures. The fabrication of the 

gold nanohole arrays via NSL starts with the preparation of close-packed monolayers of 

spherical polystyrene particles at the water/air interface. Here, we used an established 

procedure, which yields large single-crystalline domains.36  

 

 

Figure 7.1. Fabrication and transfer of gold nanohole arrays. (a) Transfer of a hexagonal, close-

packed particle monolayer onto the parental substrate. (b) Preparation of a non-close-packed 

particle monolayer by reactive ion etching. (c) Gold deposition. (d) Removal of the particle 

template. (e) Detachment of the hole array from the parental substrate. (f) Transfer of a hole 

array to a solid substrate. 
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The particle monolayers are then transferred to the parental glass substrate coated with a thin 

(~ 40 nm) ZnO layer (Figure 7.1a). Subsequently, the particle diameter is reduced by plasma 

etching to obtain non-close-packed particle monolayers (Figure 7.1b).  

Unlike organic sacrificial layers, ZnO is not degraded by the O2/argon plasma used to etch the 

particles. Gold nanohole arrays are then received by sequential deposition of gold via thermal 

evaporation (Figure 7.1c) and removal of the templating particles (Figure 7.1d). Finally, the 

parental substrate is slowly immersed into an acidic aqueous solution. Thereby, the ZnO 

sacrificial layer is dissolved, and the nanohole array is detached from the parental substrate 

(Figure 7.1e). The detached nanohole array remains trapped at the water/air interface and can 

finally be picked up by an arbitrary substrate (Figure 7.1f). 

The periodicity dh-h of the gold nanohole arrays is determined by the initial diameter of the 

polystyrene spheres. The hole diameter dh can be tuned by the diameter of the spheres after 

plasma etching. If not stated otherwise the nanohole arrays used here exhibit a thickness of 

tAU = 50 nm, a periodicity of dh-h = 570 nm and a hole diameter of approximately dh = 430 nm.  

In Figure 7.2a, the detachment of a 10 x 25 mm2 gold nanohole array is shown. The immersion 

of the parental substrate is performed at pH 1 using a dip-coater system at a constant speed of 

1 mm/min. The immersion speed and the pH of the aqueous phase have to be carefully tuned 

to achieve a uniform detachment of the nanohole array. Both, too fast and too slow immersion 

result in crack-formation. For too low immersion speeds the dissolution of the ZnO layer 

progresses faster than the nanohole array reaches the three-phase-contact-line. In contrast, if 

the substrate is immersed too quickly, the hole array is not trapped at the interface and forced 

into the aqueous subphase. An immersion angle of approximately 45 ° with respect to the water 

surface was applied to minimize bending tensions in the metal film, which can also result in 

crack-formation.37The interface assisted lift-off of the nanohole arrays leads to higher ZnO 

dissolution rates compared to the complete immersion of the sample, as the metal layer is 

simultaneously separated from the substrate. This facilitates the diffusion of the etchant to the 

etching front and allows for the large scale fabrication.38,39  

After detachment, the floating nanohole array can be transferred to a broad range of substrates. 

Both, hydrophilic and hydrophobic substrates can be used. Consequently, nanohole arrays can 

be prepared on substrates that were inapplicable beforehand. For example, large-area nanohole 

arrays can be fabricated on flexible PDMS substrates employing the transfer method as shown 

in Figure 7.2b. Thereby, despite its limited thickness of only 50 nm, the structure of the 

nanohole arrays remains intact on a macroscopic and microscopic level as depicted in Figure 

7.2c. 
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Figure 7.2. Transferred gold nanohole arrays. (a) Transfer setup. (b) Gold nanohole array 

transferred onto a PDMS substrate. (c) Atomic force microscopy image of a nanohole array 

after transfer to PDMS. (d) Transmittance spectra before and after transfer to glass. 

 

Care must be taken concerning the roughness of the ZnO layer.40 Under usual conditions, the 

roughness of the ZnO did not exceed the roughness of the evaporated gold layer. The 

topography of the ZnO layer is fully replicated into the gold coating. This roughness, in turn, 

will then limit the precise distance tuning in MIM structures in the low (< 20 nm) nanometer 

range. An example for the replication of a rather rough ZnO layer is given in Figure S7.1, where 

the top and bottom surface are imaged by atomic force microscopy. For a higher degree of 

precision (< 5 nm range), one needs to resort to well-known template-stripping methods, which 

have been established for ultra-smooth gold surfaces.41 

The extraordinary stability of the nanomeshes upon transfer is also verified by the optical 

properties of the transferred nanohole arrays. In Figure 7.2d, far-field transmittance 

measurements of the same nanohole array before and after the transfer to glass are shown. 

Spectra of three different sample spots are depicted for both cases. In the spectra of the nanohole 

array before the transfer, two distinct minima can be observed at wavelengths of 780 nm and 

520 nm, which correspond to the propagating surface plasmons located at the Au/ZnO and 

Au/air interface according to equation 7.1.42,43 The minimum at 720 nm is shifted towards a 

shorter wavelength after the transfer. As this minimum corresponds to the surface plasmon 
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propagating at the bottom Au interface, this can be simply explained by the lower refractive 

index of the receiving glass substrate (n = 1.54) compared to ZnO (n > 1.9). The transmittance 

minimum at 520 nm (Au/air plasmon), however, does not change regarding the resonance 

wavelength or the intensity. Together with the low spatial variation of the optical spectra, this 

demonstrates the high reproducibility of the transfer process. 

The mechanical stability of the nanohole arrays was further examined by transferring the 

metallic structure onto curved substrates and free-standing grids. For this, nanohole arrays with 

periods of 570 nm and 1040 nm were deposited on polystyrene microspheres with a diameter 

of 52 µm (Figure 7.3a and b). The nanomeshes tightly wrap around the microspheres without 

ripping. In Figure 7.3c, a nanomesh was deposited on a trimeric structure of microspheres.  

 

 

Figure 7.3. Free-standing nanohole arrays. Nanohole arrays with periods of (a) dh-h = 570 nm 

and (b) dh-h = 1040 nm transferred onto microspheres with a particle diameter of 52 µm. (c) 

Free-standing nanohole array with a period of dh-h = 570 nm between three microspheres. Free-

standing nanohole arrays with periods of (d) dh-h = 570 nm, (e) dh-h = 1040 nm, and (f) 

dh-h = 2560 nm on copper grids. 

 

Thereby, the nanomesh is spanned between the three particles giving a free-standing nanohole 

array over several hundreds of square-micrometers. This underlines the exceptional flexibility 

as well as the mechanical stability of the perforated metal films despite a thickness of only 

50 nm. To approach truly macroscopic, free-standing films, the gold layer thickness was 

increased to 100 nm. Nanohole arrays with 570 nm, 1040 nm, and 2560 nm periodicity were 

then transferred onto copper grids with hole widths of 204 x 204 µm2. Figure 7.3d-e 

demonstrate that these areas can be fully covered with intact nanomeshes. Nevertheless, owing 
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to the strong capillary forces during the drying process from water also some ruptured parts 

were obtained. These defects can be certainly mitigated either by even thicker gold layers 

(> 100 nm) or by a solvent exchange to liquids with a much lower interfacial tension.44,45  

Having verified the stability of the nanomeshes upon transfer, we now focus on the assembly 

of MIM structures. First, we used poly(methyl methacrylate) (PMMA) as spacer material, 

which can be easily deposited onto a glass supported nanohole array by spin-coating. 

Subsequently, a second nanohole array with a thickness of 50 nm was placed on top of the 

PMMA layer using the interfacial transfer introduced above (Figure 7.4a). 

 

 

Figure 7.4. Stacked nanohole arrays with PMMA spacer. (a) Side-view electron microscopy 

image and (b) AFM height image of the Au/PMMA/Au structure. (c) Transmittance spectrum 

of Au/PMMA/Au structure compared to spectra of a single nanohole array and two nanohole 

arrays stacked without spacer layer. 

 

For a 126 nm thick PMMA spacer layer the nanohole array uniformly covers the PMMA 

surface. An influence of the bottom nanohole array topography on the top layer is not 

discernible (Figure 7.4b). In Figure 7.4c, the transmittance spectrum of the Au/PMMA/Au 

structure is compared to the spectra of a single Au nanohole array and two stacked nanohole 

arrays without the PMMA layer. Without the dielectric spacer, the peaks corresponding to the 

Au/glass and Au/air interface are only slightly red-shifted compared to the single nanohole 

array due to the increased effective refractive index environment. Concomitantly, the 

transmittance intensity is strongly reduced throughout the whole spectrum. Interestingly, when 

introducing the PMMA spacer layer, the loss in transmittance is strongly reduced or even 

comparable to the single nanomesh layer (~1250 nm). Additionally, a new peak appears at a 

wavelength of 663 nm, which can be assigned to a magnetic metamaterial resonance.21 This 

resonance is confined to the gap between the metal layers and thus exhibits a strong dependence 

on the thickness of the PMMA spacer layer (Figure S7.2). Thus, this simple spectroscopic 
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analysis demonstrates that indeed, interesting coupling effects comparable to perfectly 

registered nanohole array MIM stacks can be found in these misaligned structures based on 

NSL and interfacial transfer. However, for very thin insulating layers polymer coatings are only 

partially suitable for the preparation of highly defined MIM materials. When the PMMA layer 

thickness is commensurate with the Au thickness, the PMMA conformally coats the bottom 

nanohole array, filling the holes of the structure. Consequently, the distance between the two 

gold layers spatially varies, impeding the precise tuning the spacer thickness when depositing 

the upper nanohole array. 

Therefore, we introduced the dielectric spacer directly into the fabrication process of the 

nanohole array. For this, a silica layer was sputtered on top of the ZnO sacrificial layer before 

immobilizing the particle monolayer. Thus, the nanohole array is fabricated directly on the 

insulator layer, and the combination of both layers can be deposited in the transfer process 

(Figure 7.5a). This parallel deposition allows for a very fast production of multilayer MIM 

stacks. The silica interlayers, in contrast to polymer interlayers, do not adapt to the topography 

of underlying hole arrays and thus are highly uniform in thickness (Figure 7.5b). Moreover, due 

to the higher mechanical stability of the double layer and the good adhesion of the gold layer 

on the silica, the formation of defects upon transfer is further reduced. Therefore, a higher 

number of layers can be stacked without affecting the uniformity of the sample, which is a 

major advantage of this extension of our technique. It is furthermore readily conceivable to use 

any other spacer layer instead of SiO2, as long as it withstands O2 plasma treatment and the 

basic and acidic aqueous transfer process. 

 

 

Figure 7.5. Nanohole array multilayer structures. (a) Scheme of the transfer process of SiO2/Au 

double layer. (b) Side-view electron microscopy image of a five-layer stack of alternating Au 

and SiO2 layers. 
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The method used here for the production of the particle monolayers yields polycrystalline 

monolayers with a decent grain size, owing to the NSL process. Therefore, multiple orientations 

of the hexagonal, close-packed monolayer can be found on one sample. Thus, the sequential 

stacking of such two-dimensional multi-grain materials does not allow for a registration 

between the individual layers. Figure 7.6a-d show scanning electron microscopy (SEM) images 

of different sample spots on a double-layer MIM stack. Using a suitably high accelerating 

voltage, the top and bottom nanohole array can be imaged at the same time. We find distinct 

Moiré patterns on the same sample corresponding to different mutual orientations of the 

nanohole arrays. 

 

 

Figure 7.6. Top-view electron microscopy images of double layer nanohole array (a)-(d) and 

reconstructed Moiré patterns by rotation of the blue nanohole array by (e) 1 °, (f) 9 °, (g) 14 °, 

(h) 24 °. 

 

In general, the superposition of two identical patterns can result in a Moiré effect, when the two 

patterns are slightly rotated or displaced with respect to each other. The Moiré patterns visible 

in Figure 7.6 can be reproduced by merely rotating the top (blue) nanohole array versus the 

bottom (red) pattern as shown in Figure 7.6e-h. Due to the 6-fold symmetry, all patterns can be 

found using rotation angles between 0 ° and 30 °. Thereby, the larger the rotation angle, the 

smaller is the repetition unit of the Moiré pattern. 

Currently, the evolution of these Moiré patterns is inevitable for this sort of fabrication process 

and can be regarded as the major limiting factor towards high-quality metamaterials. 

Nevertheless, to further optimize the structural uniformity of the stacks, techniques are already 

accessible in literature, which yield large-scale, nearly single crystalline particle 

monolayers.46,47 Applying light scattering, this would also permit determine the orientation of 

the nanohole pattern in the nanohole arrays floating at the water/air interface during the transfer 

step. Consequently, one could control the in-plane rotational offset of the nanohole arrays. 
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Moreover, it was reported that a small degree of misalignment does not affect the optical 

properties of the MIM structure.22 

 

 

7.3 Conclusion 

 

In summary, we developed a convenient method for the production of MIM multilayer 

structures, based on the transfer of metal nanohole arrays. Via the detachment at the water/air 

interface, the nanohole arrays can be easily transferred to arbitrary organic or inorganic solid 

substrates, independent of the substrate wetting behavior. Even macroscopically free-standing 

nanohole arrays can be obtained by the transfer to grid substrates. Decoupling the preparation 

of the individual nanohole arrays and the stacking of the multilayer structure presents a versatile 

and modular approach for the rational fabrication of optical metamaterials. Compared to 

classical top-down lithographic methods, our technique capitalizes on NSL and offers high 

fabrication speeds, low costs, and compatibility with many materials as well as scalability.  

 

 

7.4 Experimental Section 

 

Materials: Polystyrene particles were purchased from Microparticles GmbH (Berlin). 

Substrates: The ZnO layers were prepared using a sol-gel method. For this, glass slides were 

cleaned for 10 min by ultrasonication in 2 % aqueous Hellmanex (Hellma GmbH, Mühlheim, 

Germany) solution in MilliQ water. After rinsing off the surfactant with MilliQ water, the 

substrates were further sonicated for 10 minutes in ethanol and finally dried with compressed 

air. Subsequently, the ZnO films were formed by spin-coating a zinc acetate solution (110 mg 

zinc acetate in 30 µl 2-aminoethanol and 1 ml 2-methoxyethanol) at 2000 rpm for 50 s and 

subsequent baking at 150 °C for 5 min. The poly(methyl methacrylate) spacer layers were 

prepared by spin-coating. 

Fabrication of Au nanomeshes: Monolayers of polystyrene particles were prepared according 

to the procedure of Retsch et al.36 Cationically functionalized glass slides were spin-coated with 

a 3 wt% particle dispersion at 4000 rpm. Subsequently, the coated glass substrates were 

immersed in a 0.1 mM sodium dodecyl sulfate solution in MilliQ. The aqueous phase was 

adjusted to pH 12 by adding a few drops of NH3. A monolayer was formed at the liquid/air 

interface by the self-assembly of the detaching particles. The monolayer was transferred to the 
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ZnO coated glass substrates and dried in air. The monolayers were etched in a plasma reactor 

MiniFlecto (Plasma Technology GmbH, Herrenberg, Germany) with 75 % argon and 25 % 

oxygen at 80 W at a pressure of 0.14 mbar to obtain non-close-packed monolayers. A 3 nm 

chromium layer and the respective layer thickness of gold were deposited using a Balzers 

BA360 thermal evaporation chamber. The layer thickness was monitored via an SQM 160 

microbalance (Sigma Instruments, Schaefer Technologie GmbH). SiO2 was deposited by 

sputtering. Afterwards, the particles were removed using Scotch® tape (3M) giving the 

nanohole arrays. The Au substrates were cleaned by ultrasonication for 10 min in 

tetrahydrofuran and dried with compressed air. All samples were stored under inert gas. 

Transfer of Au nanomeshes: The Au nanohole arrays were detached from their parental 

substrate by immersion into an aqueous hydrochloric acid solution (pH 1) with a speed of 

1 mm/min and an immersion angle of 45 ° using a home built dip-coater system. After complete 

detachment of the gold film, the nanohole array is transferred when lifting the (hydrophilic) 

receiving substrate out of the water phase or immersing a (hydrophobic) substrate into the water 

phase. 

Characterization: UV/VIS spectra were measured using a Cary 5000 UV-Vis-NIR 

Spectrophotometer (Agilent Technologies). SEM images were taken on a LEO 1530 Gemini 

Field Emission SEM (Carl Zeiss AG, Oberkochen, Germany). The images were evaluated with 

the software ImageJ.48 Atomic force microscopy was performed in tapping mode on a 

Dimension 3100 microscope (Veeco, USA) with a Nanoscope IV controller and OTESPA-R3 

cantilevers (Bruker). The AFM images were analyzed with the software Nanoscope Analysis. 
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7.5 Supporting Information 

 

 

 

Figure S7.1. AFM micrographs of (a) a reference gold layer (b) bottom side and (c) top side of 

a transferred gold film with a thickness of 50 nm. 

 

For normal incidence the plasmon equation for hexagonal nanohole arrays is given by 

 

𝜆0 =
𝑃

√4
3
(𝑖2 + 𝑖𝑗 + 𝑗2)

∗ √
𝜀1𝜀2

𝜀1 + 𝜀2
 7.1 

 

The root meen square averaged roughness of the gold films equals to 2.4 nm for the reference 

film, 5.01 nm for the bottom interface and 5.87 nm for the top interface of the gold film 

transferred from ZnO. 

 

 

Figure S7.2. Transmittance spectra of Au/PMMA/Au structures with distinct PMMA layer 

thicknesses. 
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Abstract 

 

Metal-insulator-metal (MIM) structures show great potential for numerous photonic 

applications due to their ability to confine light energy to volumes with deeply sub-wavelength 

dimensions. Here, MIM structures comprising hexagonal gold nanohole arrays were prepared 

by nanosphere lithography. Angle-resolved UV-vis-NIR spectroscopy revealed a series of 

narrow, dispersive and non-dispersive modes, which were attributed to the excitation of surface 

plasmon polariton (SPP) modes. Applying finite-difference time-domain (FDTD) simulations 

and analytical diffraction phase-matching theory all resonances can be ascribed to only two SPP 

modes traveling at the outer gold surface and in the gap layer sandwiched between two metal 

films. Metamaterial resonances, as reported in literature for similar structures, are not needed 

to fully explain the reflectance spectra. Bragg scattering of the symmetric gap SPP mode results 

in a gap resonance, which is insensitive to the angle of incidence over a broad angular range. 

The spectral position of this flat band can be controlled by tuning the grating period of the 

nanohole array as well as the thickness and the refractive index of the dielectric gap. 

 

 

8.1 Introduction 

 

Metallic nanohole arrays have been subject to extensive research after the seminal discovery of 

their extraordinary optical transmission.1 They exhibit exceptional optical properties that are 

associated with the excitation of surface plasmon polariton (SPP) as well as localized surface 

plasmon (LSP) modes. As a consequence, metal nanohole arrays have been implemented into 

optical devices that serve as optical sensors2, color filters3 or transparent conducting 

electrodes.4-6 

When placed near an unperforated metal film, the arrays of nanoholes allows for the coupling 

of light to a metal-insulator-metal (MIM) structure. Such architecture exhibits rich 

characteristics including near perfect absorption7-9 and coupling to magnetic resonances, similar 

to that found for nanoparticle arrays.10,11 Near perfect absorbers were realized at visible 

frequencies7,8 and for the near infrared part of the spectrum.9 The optical response of perforated 

MIM structure is often assigned to the excitation of Fabry-Pérot resonances in the trilayer 

structures12,13 as well as to the resonant excitation of coupled SPP modes located at the opposite 

metal/dielectric interfaces.14 
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Due to their relatively simple structure, perforated MIM-type metasurfaces can be readily 

prepared via lithographic methods.8,10 Thereby, the optical properties are mainly defined by the 

precisely tuned structure of the material. Top-down lithographic processes such as e-beam 

lithography or focused-ion-beam milling give structural control on the nanometer range, thus 

being capable of fabricating metamaterials for wavelengths down to the visible spectrum.14 

Nevertheless, for the sake of large-scale production, much effort is put into the development of 

solution-processed techniques, which capitalize on self-assembly methods.15 Nanohole arrays 

coupled to thin metal films were, therefore, prepared using nanosphere lithography (NSL).16 

The wavelength of the primary resonance satisfied both the grating equation of the nanohole 

array and the Fabry-Pérot condition, thus showing a strong dependence on the distance between 

the nanohole array and the metal film.13 Closely connected are nanohole-dielectric-nanohole 

structures, which equally show the existance of gap modes.17-19 

Here we present a full and comprehensive understanding of a MIM structure, which is prepared 

by a facile and scalable implementation of NSL. The MIM architecture comprises a highly 

ordered nanohole arrays separated from a continuous gold film by a thin polymer layer. Using 

angle-resolved UV-vis-NIR spectroscopy, we were able to fully assign the rich plasmonic 

response of the resulting nanocavity arrays to diffraction coupling to only two SPP modes. We 

explored the structure-property relationship concerning the gap size and period of the nanohole 

arrays in detail and identified rules to prepare structures with remarkably narrow resonances 

exhibiting high absorption efficiency. 

 

 

8.2 Results and Discussion 

 

The preparation of the MIM structures starts with the fabrication of gold nanohole arrays on a 

sacrificial layer via NSL (Figure 8.1a). Subsequently, the nanohole arrays were transferred onto 

the target substrate comprising the readily prepared spacer layer (poly(methyl methacrylate) 

(PMMA)) on top of a continuous gold film, following the recently published, interface-

mediated method.17 This transfer process allowed for a fast and modular production of 

metasurface areas at square centimeter scale with highly uniform and reproducible optical 

properties. In Figure 8.1b the geometrical parameters of the assembled structures are displayed. 

The lattice period p and the hole diameter d of the gold nanohole arrays are determined by the 

initial particle diameter and the particle diameter after plasma etching, respectively. An SEM 

image of a typical sample is shown in Figure 8.1c. 
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Figure 8.1. Metal-insulator-metal structures. (a) Scheme of transfer of gold nanohole arrays via 

the water/air interface. (b) Schematic illustration of the MIM geometry. (c) Side-view scanning 

electron microscopy image of a prepared MIM structure. Scale bar is 1 µm. 

 

In order to characterize the optical properties of the prepared MIM nanostructures, series of 

reflectance measurements were carried out for varied angles of incidence and wavelengths in 

the visible and near-infrared part of the optical spectrum. Firstly, the reflectance measurements 

were performed at an angle of incidence fixed at Θ = 10 ° for samples with different lattice 

period p. We chose periods of p = 375 nm, p = 570 nm and p = 1040 nm while keeping the d/p 

ratio constant at 0.75. The thickness of the PMMA gap layer and the perforated metallic film 

was adjusted to tgap = 40 nm and thole = 90 nm, respectively. As the thickness of the bottom gold 

layer was set to tgold = 100 nm, the transmittance through the structure is negligible. As seen in 

the photographs in the inset of Figure 8.2 and the optical microscopy images (Figure S8.1), the 

samples with varied geometry exhibit distinct colors. The uniformity of these colors suggests 

an excellent spatial homogeneity over a sample area of > 1 cm2 that can be fabricated on very 

short timescales. As can be seen in Figure 8.2, the perceived color of the gold MIM 

nanostructures is due to a series of narrow dips in the reflectivity spectrum, which occur in the 

visible and NIR part of the spectrum.  
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Figure 8.2. Influence of the lattice period. Total reflectance of MIM structures with distinct 

lattice periods of the nanohole arrays measured at an angle of incidence of Θ = 10 ° with 

unpolarized light. The inset shows a photograph of the macroscopic samples with p = 375 nm, 

p = 570 nm and p = 1040 nm (from left to right). Scale bar is 10 mm. 

 

In general, by increasing the lattice period p the spectral position of the reflectance dips shifts 

to longer wavelengths. For example, the MIM nanostructure with p = 375 nm exhibits the most 

prominent reflectivity dip at a wavelength of 665 nm, while it is strongly redshifted to 926 nm 

for p = 570 nm and further to 1363 nm for p = 1040 nm., These resonances exhibit 

extraordinarily high Q-factors compared to other self-assembled materials.23 The corresponding 

Q-factors (calculated by dividing the resonance wavelength by the full width at half minimum 

of the resonance) are equal to 14, 8 and 6 for the samples with periods of 375 nm, 570 nm, and 

1040 nm, respectively. These high values are surprising considering the defects that are 

inevitable when using a bottom-up approach and support the robustness of our method. The 

dependence of the determined Q factors on the wavelength can be attributed to varied coupling 

strength for the chosen d/p ratio (which may cause over-coupling of the longer wavelength 

resonances) and higher sensitivity to defects of the lattice that is attributed to the increasing 

propagation length of SPPs with the wavelength. Additionally, a broad absorption band is 

visible below 500 nm which does not change with the period p and which originate from the 

decreased reflectivity from gold above its plasma frequency. The narrow dips occurring in the 

red and NIR part of the spectrum are attributed to the resonant excitation of SPP modes 

supported by the MIM structure with a dielectric gap layer sandwiched between the flat bottom 

gold layer and the gold film with the nanohole arrays. These resonances are not visible for 

nanohole arrays without the bottom gold layer (Figure S8.2) and rapidly vanish when reducing 

the thickness of the bottom gold layer to a thickness comparable to the skin depth of gold 
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(~ 20 -45 nm) (Figure S8.3). As soon as the bottom gold film exceeds the skin depth of gold, 

however, the optical properties are hardly affected by the film thickness.24 

To clarify the nature of the observed resonances, we performed reflectance measurements with 

incident angles between Θ = 6 ° and Θ = 60 °. Figure 8.3a shows an example of the measured 

spectra for a structure with p = 570 nm and tgap = 50 nm. These results show a rich set of 

spectral features that shift with the angle of incidence, particularly at around 700 nm, and which 

appear non-dispersive for the resonance close to 900 nm. Additional reflectance dips are 

observed at longer wavelengths of around 1160 nm for non-normal angles of incidence, and 

they split into three branches for increasing angles of incidence. All these resonances depend 

on the grating period p of the nanohole array (Figures S8.5 and S8.6). 

 

 

Figure 8.3. Influence of angle of incidence. Angle-resolved reflectance measurements (a) and 

FDTD simulations (b) for a sample with p = 570 nm and tgap = 50 nm and p-polarized light. The 

measurements in (a) were conducted in 3 ° steps. Spectra in (b) were calculated at Θ = 0 °,4 °, 

8 °, 14 °, 18 °, 22 °, 26 °, 30 °, 34 °. The angle of incidence is defined in the inset of (b). 

 

Interestingly, the observed optical properties of MIM nanostructures are in stark contrast to that 

of nanohole arrays without the bottom gold film, which represents a well-characterized system 

(Figure S8.4). In order to elucidate the nature of the observed resonances at perforated MIM 

structures, finite-difference time-domain (FDTD) simulations were employed, and these results 

were complemented by an analytical theory based on diffraction phase-matching to surface 

plasmon waves. The modal analysis was performed for non-perforated top gold films, and it 

revealed that only two surface plasmon modes with transverse magnetic (p) polarization are 

supported by the MIM structure. The first surface plasmon mode, SPair, propagates at the top 

Au/air interface. The second gap surface plasmon, SPgap, confines its energy in the PMMA layer 

sandwiched between two metallic films. This mode exhibits a symmetric profile of the electric 
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field. Moreover, additional anti-symmetric gap surface plasmon can occur but the investigated 

thicknesses of the PMMA gap tgap < 100 nm are below its cutoff, and therefore this mode is not 

present.25 

The light incident at the periodically perforated MIM structure can couple to SPair and SPgap by 

diffraction. The resonant excitation of these modes occurs when the phase-matching condition 

is fulfilled, and the real part of the mode propagation constant Re{ß} is matched to that of the 

parallel component of incident light k0sin(Θ) by the grating momentum 2π/p. In general, the 

diffraction coupling to surface plasmon modes on a grating with hexagonal symmetry depends 

on the orientation of the lattice with respect to the incident plane and can occur via different 

diffraction orders (Figure S8.7). It is worth noting that the measurements were performed on 

areas of several mm2, which is much larger than the single crystalline domain size of the 

prepared MIM 2D crystal structures. Therefore, the measured resonances due to the diffraction 

coupling become averaged over different orientations of the lattice. 

Figure 8.3b compares the simulated reflectance spectra with those experimentally measured, 

which are presented in Figure 8.3a. Due to the angular dispersion of the plane wave source, the 

angular range for which the simulation can be carried out is limited. For the smallest angle of 

incidence Θ = 6 °, two resonances are observed in the measured data at a wavelength of about 

690 nm, and 910 nm and simulations predict almost identical results with two resonance dips 

located at 700 and 900 nm (field distributions are discussed in Figure 8.4). According to the 

analytical theory, these two modes are associated with the first and second order diffraction 

coupling to SPgap and first diffraction order coupling to SPair on a hexagonal grating with 

p = 570 nm. As can be seen in Figure S8.7a, analytical phase matching-based model predicts 

the appearance of these modes at longer wavelengths of 770 nm and 1200 nm. This discrepancy 

can be attributed to changes in the propagation constant ß due to the perforation, which is not 

taken into account by the analytical model. When increasing the angle of incidence Θ, the 

experimentally observed short wavelength resonance splits into two branches, which indicates 

diffraction coupling. In addition, one can see a spectrally broad decrease in the reflectivity in 

between these two measured branches. However, the simulations indicate richer spectrum of 

modes appearing in the same spectral window when increasing the angle of incidence Θ, which 

can be attributed to the mixing of the second order excitation of SPgap with the first order 

excitation of SPair. This discrepancy can be attributed to the potential smearing of these features 

in the measured reflectivity spectrum that can be ascribed to the averaging over differently 

oriented lattices occurring in the colloidal crystal. In contrast to shorter wavelength resonances, 

the first order SPgap resonance located at about 900 nm does not shift with the angle of incidence 
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Θ as observed experimentally as well as captured by simulations. Instead, a series of dispersive 

bands appears at longer wavelengths around 1200 nm and 1400 nm when increasing the angle 

of incidence Θ. The fact that these modes disappear at normal incidence and that the SPgap mode 

at 900 nm is non-dispersive qualitatively agrees with the simulations and can be explained by 

strong Bragg-scattering of the SPgap modes, which is known to flatten the dispersion relation of 

propagating surface plasmons.26 

Following this, we simulated the near-field distribution of the electromagnetic field for specific 

reflectivity dips at normal (Θ = 0 °) and tilted (Θ = 22 °) illumination of the structure with the 

period of p=570 nm (Figure 8.4a). The spatial distribution of the electric field intensity |E|2 was 

normalized with that of the incident light beam |E0|
2 and showed as a cross-section parallel and 

perpendicular to the structure (indicated as a dashed line in the inset of Figure 8.3b). At normal 

incidence, only two resonances are distinctively visible in the simulated spectra at 923 nm and 

670 nm. The corresponding near-field distributions predict an extreme electric field intensity 

confinement within the gap between the two metal films, indicating a gap-like nature of the 

resonances (Figure 8.4c). A dipolar characteristic is clearly apparent for the longer wavelength 

resonance (B) reaching an enhancement factor |E|2/|E0|
2 of approximately 25. The resonance at 

670 nm (A) shows a higher order field distribution and the field is partially confined outside 

the structure at the air interface. Thus, these observations agree with the hypothesis of 1st and 

2nd order diffraction coupling to SPgap and partial mixing with the excitation of SPair at the outer 

interface. 

Tilting the angle of incidence Θ leads to the splitting of the resonances for different diffraction 

orders, which are otherwise degenerated and excited simultaneously at normal incidence.27,28 

Therefore, new resonances are observed in the numerically simulated data between 650 nm and 

780 nm and at 1194 nm (Figure 8.4b). The near-field distribution of the series of resonances 

noted as I - VI (as indicated in Figure 8.4b) is presented in Figure 8.4c. Interestingly, the field 

distribution of the strongest non-dispersive resonance (V) is not altered by changing the angle 

of incidence Θ. The electric field maps of the short wavelength modes I – IV show a mixed 

nature due to the overlap of the SPgap, and the SPair and particularly resonance II exhibits 

substantial field confinement at the outer interface. When compared with the experiments, 

probably only mode IV is visible, and the other resonances are smeared by averaging over 

lattice orientations. The longer wavelength resonances such as VI exhibit solely the SPgap nature 

as seen in the respective near-field plots. Thus, all resonances, including the non-dispersive 

modes, can be attributed to either SPair or SPgap. This highlights the simplicity of the given 
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description which provides an alternative view to previous interpretations using magnetic, 

localized hole plasmons or Fabry-Pérot resonances.9,10,13 

 

 

Figure 8.4. Simulation of the electric near-field distribution. (a) Simulated reflectance spectrum 

at normal incidence. (b) Simulated reflectance spectrum at Θ = 22 °. (c) Electric field intensity 

|E|2 distributions normalized to the incident electric field intensity |E0|
2 for the resonance 

wavelengths assigned in (a) and (b). The electric field enhancement was evaluated along the 

horizontal and vertical cross-sections shown in the inset of Figure 8.3b.  
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The influence of the gap layer thickness was examined experimentally as well as theoretically 

(Figure 8.5). In the experiments, the gap PMMA film thickness tgap was controlled between 

25 nm and 77 nm by adjusting the spin-coating parameters, and layers with a smaller thickness 

between 1 nm and 15 nm were prepared using a layer-by-layer approach. When decreasing the 

thickness tgap from 77 nm to 1 nm, the strongest SPgap resonance drastically shifts from 826 nm 

to 1417 nm. This observation is confirmed by numerical simulations (see Figure 8.5c), and the 

same trend is predicted by the phase-matching model due to the increased propagation constant 

of SPgap when decreasing the gap thickness tgap (see Figure S8.7c). Concomitantly, the higher 

order SPgap resonances become strongly apparent at shorter wavelength, and they shift towards 

longer wavelengths when decreasing tgap. In contrast, the resonance below 600 nm that is 

ascribed to the excitation of SPair is weakly affected by changing the gap thickness tgap as only 

a small portion of its electric field intensity is confined in the gap. For narrow gaps, gap 

resonances can be observed even for high angles of incidence (Figure S8.8 and Figure S8.9). In 

contrast, for thick gap layers, all resonances appear in a narrow wavelength range leading to 

strong coupling between SPgap and SPair modes at larger angles of incidence (Figure S8.10 and 

Figure S8.11). This results in a mixed nature of the resonance at large angles of incidence 

showing a dispersive behavior. 

 

 

Figure 8.5. Influence of gap thickness. (a) Reflectance of MIM structures with distinct gap 

thickness measured at Θ = 10 ° with unpolarized light. Gap layers with a thickness of 

tgap < 20 nm were prepared using a layer-by-layer approach. Layer thicknesses with 

tgap > 20 nm were prepared by spin-coating of PMMA. (b) Peak positions in dependence of the 

gap thickness obtained from reflectance measurements. Modes IV and VI were extracted from 

angle-resolved measurements. The inset shows macroscopic photographs of 7×7 mm2 MIM 

structures with gap thickness tgap = 32 nm, 40 nm, 61 nm and 77 nm. (c) Simulated reflectance 

of MIM structures with distinct gap thickness for normal incident light. 

 

A complementary approach to shed light on the observed resonances was performed based on 

examining the influence of the refractive index environment. For this purpose, the samples were 

immersed in glycerine-water mixtures with different compositions. Thereby, the refractive 
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index above the structure can be tuned between 1.33 (pure water) and 1.47 (pure glycerine). At 

first, the effect of the surrounding medium was analyzed using the as-prepared MIM structure 

(p = 570 and tgap = 50 nm). When increasing the surrounding refractive index from 1.33 to 1.47, 

the SPP confined to the outer Au interface (SPair) shifts to longer wavelengths by approximately 

53 nm (Figure 8.6a). In accordance with the field profiles predicted by numerical simulations, 

the resonances occurring at longer wavelengths (SPgap) are not sensitive to changes in the 

refractive index as their electric field is mainly confined inside the structure. 

 

 

Figure 8.6. Refractive index sensitivity. (a) Reflectance of the as-prepared MIM structure 

immersed in glycerine-water mixtures with distinct refractive indices. (b) Reflectance of the 

MIM structures in air after different times of plasma etching. (c) Reflectance of the MIM 

structure etched for 150 s, immersed in glycerine-water mixtures with distinct refractive 

indices. 

 

Next, capitalizing on the organic gap layer, we varied the refractive index of the dielectric gap 

layer with an initial thickness of tgap = 51 nm by plasma etching (Figure 8.6b). In consecutive 

etching steps, the PMMA within the holes of the nanohole array is gradually removed until the 

bottom gold layer is reached after 120 s. This can be inferred from the increasing depth of the 

holes measured by atomic force microscopy (see Figure S8.12). Nevertheless, the distance 

between the metal films and the homogeneity of the sample are not affected. Due to the strongly 

decreasing refractive index environment in the gap, all resonances (including SPgap) are shifting 

to shorter wavelengths. Further etching results in an ongoing shift of the resonance wavelength 

as now the gold-covered PMMA between the holes is removed (underetching). Thus, a quasi-

free-standing nanohole array is produced. The smallest shift of 54 nm after 150 s is observed 

for the mode confined to the Au/air interface (SPair). A higher sensitivity to a change in the 

refractive index was expected for the gap modes because of the high electric field intensities 

within the dielectric gap. Indeed, a strong spectral shift from 824 nm to 714 nm is seen for SPgap 

resonance. We then immersed the MIM sample with a quasi-freestanding nanohole array into 

glycerine-water mixtures (Figure 8.6c). Thus, the liquid medium can penetrate the nanohole 
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arrays and change the refractive index between the two gold films. As expected, with a spectral 

shift of 60 nm, the sensitivity of the SPair resonance in the etched sample is comparable to the 

non-etched sample. At the same time, the resonance wavelength of the SPgap mode is now 

influenced. A shift of 39 nm can be observed when increasing the surrounding refractive index 

from 1.33 to 1.47. Altogether, the sensitivity of the MIM-stack results in 379 nm/RIU and 429 

nm/RIU for the SPair mode in the unetched and etched sample and 279 nm/RIU for the SPgap 

mode. 

 

 

8.3 Conclusion 

 

In summary, we demonstrated the production of trilayer MIM cavities via a simple bottom-up 

approach. By using an interface-mediated transfer of gold nanohole arrays prepared via 

nanosphere lithography, high-quality metamaterials were fabricated on a substrate with square 

centimeter area. We thoroughly characterized the optical properties of the resulting MIM stacks 

composed of an opaque gold film, a polymer gap layer and a second gold film comprising the 

nanohole array. The rich plasmonic response can be assigned to the coupling to only two 

propagating surface plasmon modes, which is strongly dependent on the grating period of the 

nanohole array and the thickness of the dielectric gap. The resonant excitation of the symmetric 

SPgap resonance is insensitive to the angle of incidence and shows an unusually high Q-factor 

for self-assembled materials comparable to those prepared by top-down lithography techniques. 

The detailed understanding of the presented phenomena in combination with absorbing layers 

is of great importance for light harvesting devices.4,29,30 

 

 

8.4 Experimental Section 

 

Materials: Polystyrene particles were purchased at Microparticles GmbH (Berlin). 

Fabrication of ZnO coated substrates: The ZnO layers were prepared using a sol-gel method. 

For this, glass slides were cleaned for 10 min by ultrasonication in 2 % aqueous Hellmanex 

(Hellma GmbH, Mühlheim, Germany) solution in MilliQ water. After rinsing off the surfactant 

with MilliQ water, the substrates were further sonicated for 10 minutes in ethanol and finally 

dried with compressed air. Subsequently, the ZnO films were formed by spin coating a zinc 
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acetate solution (110 mg zinc acetate in 30 µl 2-aminoethanol and 1 ml 2-methoxyethanol) at 

2000 rpm for 50 s and subsequent baking at 150 °C for 5 min. 

Fabrication of Au nanomeshes: Monolayers of polystyrene particles were prepared according 

to the procedure of Retsch et al.20 Cationically functionalized glass slides were spin-coated with 

a 3 wt% particle dispersion at 4000 rpm. Subsequently, the coated glass substrates were 

immersed into a 0.1 mM SDS solution in MilliQ. The aqueous phase was adjusted to pH 12 by 

adding a few drops of NH3. A monolayer was formed at the liquid/air interface by self-assembly 

of the detaching particles. The monolayer was transferred to the ZnO coated glass substrates 

and dried in air. The monolayers were etched in a plasma reactor MiniFlecto (Plasma 

Technology GmbH, Herrenberg, Germany) with 75 % argon and 25 % oxygen at 80 W at a 

pressure of 0.14 mbar to obtain non-close packed monolayers. A 3 nm chromium layer and 

50 nm gold were deposited using a Balzers BA360 thermal evaporation chamber. The layer 

thickness was monitored via an SQM 160 microbalance (Sigma Instruments, Schaefer 

Technologie GmbH). Afterwards, the particles were removed using Scotch® tape (3M) giving 

the nanohole arrays. The Au substrates were cleaned by ultrasonication for 10 min in THF and 

dried with compressed air. All samples were stored under inert gas. 

Fabrication of MIM structures: 100 nm thick gold film was deposited on cleaned microscopy 

slides. Subsequently, the gap layer was prepared by spin-coating commercially available 

poly(methyl methacrylate) (PMMA). Thin gap layers (1 nm – 15 nm) were made via a layer-

by-layer approach. For this, one layer of polyethylenimine followed by alternating layers of 

poly(styrene sulfonate) and poly(allylamine hydrochloride) were applied by spray-coating. The 

Au nanohole arrays were detached from their parental substrate by immersion into an aqueous 

hydrochloric acid solution (pH 1) with a speed of 1 mm/min and an immersion angle of 45 ° 

using a home built dip-coater system. After complete detachment of the gold film, the nanohole 

array is transferred when lifting the receiving substrate out of the water phase. 

Characterization: UV-vis-NIR spectra were measured using the Diffuse Reflectance 

Accessory of a Cary 5000 UV-vis-NIR Spectrophotometer (Agilent Technologies) at 10 ° angle 

of incidence with unpolarized light. Angle-resolved UV-vis-NIR spectroscopy was conducted 

with the Universal Measurement Accessory of the same spectrometer with 3 ° increment with 

p- and s-polarized light. To examine the effect of the refractive index environment the samples 

were immersed in glycerine/water mixtures with refractive indices of 1.33 (pure water), 1.36 

(20 % glycerine), 1.41 (60 % glycerine) and 1.47 (pure glycerine). 

SEM images were taken on a LEO 1530 Gemini Field Emission SEM (Carl Zeiss AG, 

Oberkochen, Germany). The images were evaluated with the software ImageJ.31 
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Atomic force microscopy was performed in tapping mode on a Dimension 3100 microscope 

(Veeco, USA) with a Nanoscope IV controller and OTESPA-R3 (Bruker) cantilevers. The AFM 

images were analyzed with the software Nanoscope Analysis. 

FDTD simulations: A commercial package by Lumerical that relies on the finite-difference 

time-domain method was used to simulate optical properties of gold nanomeshes.32 As shown 

in Figure S8.13, a rectangular unit cell with the hexagonal arrays of holes was used. Bloch 

boundary conditions were applied at the interfaces of the unit cell that are perpendicular to the 

structure surface while perfectly matched layers were used on its top and bottom. The 

investigated structure was approximated by a stack of a perforated gold layer with the thickness 

of thole
 = 50 nm, an intermediate layer of PMMA with a thickness of tgap and a flat gold layer 

with a thickness of tgold=100 nm. Refractive index of PMMA of nPMMA = 1.4848 was used in 

the whole spectral range, and the refractive index of gold was determined by fitting to CRC 

data.33 BK7 glass substrate with nsubstrate = 1.52 was assumed below the plasmonic stack of 

layers. The excitation light beam was generated with a plane wave source in air above the 

structure, and it was made incident on the perforated gold film. In the used version of FDTD 

solutions, planar sources exhibit angular dispersion if the beam does not propagate normal to 

the source. To minimize the angular dispersion, simulations were carried out for wavelength 

range 550 nm to 900 nm and 900 nm to 1500 nm separately, and the spectra were subsequently 

stitched. Field intensity and power monitors were placed above or below the unit cell in order 

to obtain reflectivity and transmission spectra. Electric near-field intensity profiles were 

calculated by using monitors placed inside the structure. Convergence of the simulation results 

was confirmed by variation of mesh size and comparison of reflectance results (Figure S8.14). 
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8.5 Supporting Information 

 

 

Figure S8.1. Optical microscopy images of MIM structures with (a) distinct spacer thicknesses 

and (b) distinct lattice periods. Scale bars are 500 µm. 

 

 

 

Figure S8.2. Measured absorption (1-reflectance) of a MIM structure with p = 570 nm, 

t1 = 100 nm, t2 = 50 nm and t3 = 90 nm compared to an isolated gold nanohole array with 

p = 570 nm. 
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Figure S8.3. Influence mirror thickness. Transmittance, specular reflectance, diffuse 

reflectance and absorption for MIM structures with p = 570 nm, t2 = 30 nm, t3 = 80 nm and (a) 

t1 = 13 nm (b) t1 = 21 nm (c) t1 = 40 nm (d) t1 = 100 nm. 

 

 

 

Figure S8.4. Angle-resolved reflectance measurements with (a) s-polarized and (b) p-polarized 

light of an isolated gold nanohole array with p = 570 nm. 
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Figure S8.5. Angle-resolved reflectance measurements with (a) s-polarized and (b) p-polarized 

light of a MIM structure with p = 375 nm, t1 = 100 nm, t2 = 40 nm and t3 = 90 nm. 

 

 

 

 

 

Figure S8.6. Angle-resolved reflectance measurements with (a) s-polarized and (b) p-polarized 

light of a MIM structure with p = 1040 nm, t1 = 100 nm, t2 = 40 nm and t3 = 90 nm. 

  



Surface Plasmon Modes of Nanomesh-on-Mirror Nanocavities Prepared by Nanosphere 

Lithography 

218 

 

Figure S8.7. Analytically derived dispersion curves of the two SPP modes present in the MIM 

structures. (a) Influence of the lattice period at normal incidence. (b) Influence of the angle of 

incidence for p = 570 nm. Assumed coupling via all (0,1), (1,0), (1,1), (0,1), (1,0) and (1,1) 

orders. The plane of incidence was assumed to be parallel with (0,1) and (0,1) orders. (c) 

Influence of the spacer thickness for p = 570 nm at normal incidence. β is the propagation 

constant of guided modes, k0 is the light wavenumber in vacuum. 
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Figure S8.8. Angle-resolved reflectance measurements with (a) s-polarized and (b) p-polarized 

light of a MIM structure with p = 570 nm, t1 = 100 nm, t2 = 1 nm and t3 = 90 nm. 

 

 

 

 

Figure S8.9. Angle-resolved reflectance measurements with (a) s-polarized and (b) p-polarized 

light of a MIM structure with p = 570 nm, t1 = 100 nm, t2 = 15 nm and t3 = 90 nm. 
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Figure S8.10. Angle-resolved reflectance measurements with (a) s-polarized and (b) p-

polarized light of a MIM structure with p = 570 nm, t1 = 100 nm, t2 = 50 nm and t3 = 90 nm. 

 

 

 

 

 

Figure S8.11. Angle-resolved reflectance measurements with (a) s-polarized and (b) p-

polarized light of a MIM structure with p = 570 nm, t1 = 100 nm, t2 = 77 nm and t3 = 90 nm. 
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Figure S8.12. Plasma etching of MIM structure. (a) Depth profile of the MIM structure 

measured with AFM after consecutive etching steps. (b) Depth of the plasma etched MIM 

structure with increasing etching time. (c) Side-view SEM image of the MIM structure etched 

for 150 s. (d) AFM images of the MIM structure after each etching step, Scale bars are 1 µm. 

 

 

 
Figure S8.13. Schematic of geometry used in FDTD simulation for hexagonal nanomeshes 

with a rectangular unit cell. (a) Top view. The red rectangle indicates simulation volume with 

Bloch boundary conditions. A vertical cross-section is shown in (b) with the definition of the 

angle of incidence θ and E-field orientation E0 for p-polarization. 
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Figure S8.14. Convergence of the simulation was tested on selected by increase of mesh 

resolution. Simulations were run with a uniform mesh of (x,y,z) = (5 nm, 5 nm, 2 nm) unit cell 

size. The Mesh size was reduced to (x,y,z) = (2 nm, 2 nm, 2 nm) for selected configurations to 

confirm the convergence of results. Here, the convergence test for the shorter wavelength part 

of the spectrum is shown for the geometry used to study near field distribution in Figure 8.4 for 

(a) normal incident light and (b) excitation with Θ = 22 ° angle of incidence. 
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Abstract 

 

In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes 

in polymer solar cells are systematically studied. For this, thin gold nanomeshes with 

hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared 

by colloidal lithography. In combination with two different active layer materials 

(P3HT:PC61BM and PTB7:PC71BM), the optical properties are correlated with the power 

conversion efficiency (PCE) of the solar cells. A cavity mode is identified at the absorption 

edge of the active layer material. The resonance wavelength of this cavity mode is hardly 

defined by the nanomesh periodicity but rather by the absorption of the photoactive layer. This 

constitutes a fundamental dilemma when using nanomeshes as ITO replacement. The highest 

plasmonic enhancement requires small periodicities. This is accompanied by an overall low 

transmittance and high parasitic absorption losses. Consequently, larger periodicities with a less 

efficient cavity mode, yet lower absorptive losses were found to yield the highest PCE. 

Nevertheless, ITO-free solar cells reaching ~ 77 % PCE compared to ITO reference devices are 

fabricated. Concomitantly, the benefits and drawbacks of this transparent nanomesh electrode 

are identified, which is of high relevance for future ITO replacement strategies. 

 

 

9.1 Introduction 

 

Transparent conducting electrodes (TCEs) are inevitable in modern electro-optical devices such 

as organic light-emitting diodes, touch displays, photodetectors or solar cells. However, 

materials that combine a high optical transparency and a high electrical conductivity are very 

rare.1 The state-of-the-art transparent electrode materials are conducting oxides like indium tin 

oxide (ITO). Such oxides offer a high transmittance surpassing 90 % over the whole visible 

range, and a low sheet resistance down to 10 /□.2 However, a lot of effort is put into the 

development of alternative electrode materials due to the well-known drawbacks of ITO: 

Besides the scarcity and thus high costs of indium, the conductivity of ITO strongly depends 

on its thickness. Additionally, ITO is very brittle, limiting the beneficial properties of polymer 

solar cells, which are their applicability for low-cost roll-to-roll processing onto flexible 

substrates.3 The use of carbon nanotubes4, thin metal films5, solution-processed metal 
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nanowires6, metal grids prepared by lithography7,8, printing9 or cracked tamplates10,11 and metal 

nanohole arrays12-14 have been discussed to replace ITO. 

However, carbon nanotube grids still suffer from low stability under ambient conditions, while 

metal nanowire networks and thin metal films are limited due to their reduced transmittance 

compared to ITO.7,15 Furthermore, solution processed nanowires exhibit a high resistance at 

junctions and easily cause electrical short-circuits due to wires penetrating through the blocking 

layer.16 

A promising alternative to ITO could be periodic metal nanohole arrays, also referred to as 

nanomeshes. Due to their exceptional optical properties such as extraordinary optical 

transmittance (EOT)17 they have been suggested as transparent conducting electrodes for both 

inorganic18 and organic19 solar cells. This is based on their ability to support surface plasmon 

polaritons (SPP).20-22 The role of surface plasmons in the performance of thin film solar cells 

has extensively been studied in the past years.23-28 Surface plasmons have been proposed to trap 

incident light at the metal/semiconductor interface and thus enhance the light absorption in 

photovoltaic devices due to an increased interaction time between the light and the active layer 

and an enhanced field intensity in the device. Yet, there is still a controversy whether or not 

nanomesh plasmonic electrodes are better suitable candidates as TCE by combining both their 

transmission and plasmonic properties. Unambiguous and consistent reports on clear plasmonic 

contributions, exceeding the improvements obtainable by simple scattering mechanisms are 

scarce. 

Usually the better suitability of such nanomeshes is demonstrated just by testing them in devices 

and comparing with ITO references. An increase in the power conversion efficiency was shown 

for a silver nanohole array in a small-molecule solar cell compared to an unpatterned silver film 

and ITO as reference.29 In that case, the active layer was in direct contact with the 12 nm thick 

nanohole array (400 nm period), which was prepared by colloidal lithography. The enhanced 

efficiency of such devices can originate from plasmonic enhancement in direct proximity to the 

nanomesh as well as from an increase in the interfacial area between hole and electron 

conductor. 

Beside their application as transparent electrodes, the introduction of nanohole arrays as back 

reflectors in organic solar cells resulted in an enhanced device absorption by coupling of the 

light to SPP modes in experimental30 and numerical studies31-33 for ultrathin active layers of 

P3HT blended with fullerenes. 

Some work has been done on integrating nanohole arrays as transparent electrodes for polymer 

solar cells. Randomly ordered nanoholes showed high losses in the JSC due to the limited 
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transmittance of the electrodes.34,35 Nevertheless, the IPCE measurements hint at a contribution 

of SPPs to the device performance. Numerical studies show the excitation of a guided mode 

localized in the P3HT:PC61BM active layer at long wavelengths beyond the absorption edge of 

P3HT.19 

Zhu et al. used colloidal lithography to fabricate an electrode with a thickness of 18 nm, a hole 

diameter of 357 nm and an initial particle diameter of 430 nm.36 The reduction in JSC compared 

to the state-of-the-art electrode ITO was attributed to the reduced transparency. 

Morfa et al. described the influence of the hole diameter on the sheet resistance of bare Ag 

nanohole arrays prepared by nanosphere lithography followed by plasma etching to reduce the 

initial particle diameter.37 Short etching times yield high sheet resistances due to a 

discontinuous metal structure or wire thicknesses in the range of the mean free path of the 

electrons in silver. Longer etching times, on the contrary, result in a rapidly decreased 

transmittance. This demonstrates a fundamental dilemma and it is not clear up to now whether 

periodically structured metal electrodes can provide a net improvement. 

For polymer solar cells, Chou et al. reported higher efficiencies for a subwavelength square 

array of nanoholes.38 The bulk heterojunction devices with P3HT:PC61BM as active layer 

showed a drastic decrease in reflectance when incorporating the nanohole array into the device. 

By choosing an appropriate active layer thickness, which supports a coupling between the front 

and back-electrode, the incident light was confined in the active layer of the device. Therefore, 

the absorption of the device was radically boosted, exceeding even the efficiency of the 

reference ITO device. This effect was not maintained for the bare array or devices with a 

PMMA layer of the same thickness. 

Overall, the distinct optical loss mechanisms related to parasitic absorption and reflectance for 

nanohole array electrodes have not been studied systematically and clarified properly. It is 

therefore not possible to evaluate the advantages and shortcomings of periodic nanohole 

electrodes on a broader scale. This, however, will be of great importance, if nanohole electrodes 

were to be considered as ITO replacements in current and future optoelectronic devices. 

Therefore, in this paper, we focus on two main aspects, which are decisive for light management 

in any solar cell. First, we vary the periodicity of gold nanohole array from 202 nm up to 

2560 nm and thereby fully address the relevant optical range from visible to near-infrared. 

Secondly, we investigate the interplay of different optical and electrical properties of these 

electrodes in photovoltaic devices with two different and well-known bulk-heterojunction 

photoactive layers, P3HT:PC61BM and PTB7:PC71BM in an inverted solar cell device 

architecture. P3HT:PC61BM was selected as it is the most studied material composition in 
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polymer photovoltaic research.39 On the other hand, up to 9 % power conversion efficiency has 

been reported with a highly optimized PTB7:PC71BM system.40 We have purposefully selected 

these material systems as universal prototypes in which the absorption edge of donor polymers 

varies from the visible to the near-infrared region. We rationalize our findings by finite-

difference-time-domain (FDTD) simulations to provide a full understanding of the optical 

properties and assess the potential of metal nanomeshes as transparent conducting electrodes. 

 

 

9.2 Results and Discussion 

 

We fabricated our large area nanohole arrays via colloidal lithography with a metal layer 

thickness of 50 nm.41-44 We used non-close-packed polystyrene particle monolayers prepared 

by self-assembly at the liquid/air interface and subsequent dry etching of the particles.42 These 

monolayers then act as templates for the deposition of a gold layer by thermal evaporation. 

Finally, the particle template is removed yielding the hexagonally ordered nanohole array. In 

this periodic arrangement, the localized excitation of the surface plasmon resonance of the 

metallic nanoholes interferes with the far-field from the Bragg diffraction mode of the lattice 

(Rayleigh anomaly) leading to a Fano-type surface lattice resonance with narrow and 

asymmetric line shape.45,46 The spectral position of the SPP resonances thereby depends on the 

predefined periodicity P (center-to-center distance between the holes).17 P is given by the initial 

diameter of the polystyrene particles. Using polystyrene particles with diameters of 202 nm, 

375 nm, 570 nm, 1040 nm and 2560 nm we were able to cover the optical range from visible to 

near-infrared. SEM images of the resulting gold patterns are shown in Figure 9.1a. The diameter 

of the holes d was adjusted to a constant d/P value of approximately 0.8 to obtain a constant 

area fraction. Consequently, around 40 % of the device area, independent of the periodicity, 

was covered by gold. The sheet resistance for Au was in the range of 8 – 18 Ω/□ for this surface 

coverage.37 Further increasing the diameter of the holes would result in higher sheet resistances 

and might cause a reduction in the charge extraction in the solar cell devices due to the limited 

diffusion length of the charge carriers.37 Since the sheet resistance of the nanomesh electrodes 

is comparable to standard ITO substrates, differences in the device performance can be solely 

attributed to the optical and plasmonic properties of these electrodes. Figure 9.1b and c depict 

the optical properties of the uncoated nanohole arrays with a systematic variation in periodicity 

on a glass substrate. 
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Figure 9.1. Electron microscopy and optical characterization of gold electrodes with constant 

gold area fraction. The corresponding hole diameters are listed in Table 9.1. (a) SEM images 

of gold nanohole arrays with different periodicities. The numbers given in (a) indicate the 

corresponding periodicity P. (b) Specular transmittance, (c) total reflectance and (d) absorption 

spectra of ITO (dashed line) and nanohole arrays (solid lines). The arrows indicate the positions 

of the SPP resonances. 

 

For all periodicities, the transmittance ranges between 40 – 60 % in a wavelength range of 

350 nm to 800 nm and is therefore significantly lower compared to the reference ITO electrode 

which has more than 80% transmittance. (Figure 9.1b). However, the transmittance data only 

provide limited information for tailoring the light management in a solar cell device. In 

particular, for plasmonic structures the discrimination between scattering, reflection and 

absorption is essential. Thus, the optical measurements were performed in an integrating sphere 

with the light incident onto the gold structures through the glass substrate. The wavelength 

dependent contribution of the total reflectance and absorption are shown in Figure 9.1c and d, 
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respectively. At wavelengths below 370 nm, all nanohole arrays are less reflective than ITO, 

due to the different band transitions of gold and ITO. Yet, their strong absorption at higher 

wavelengths results in an overall lower transmittance. 

At the same time one can clearly discern periodicity-dependent changes of the optical 

properties. The nanohole arrays with P = 202 nm and P = 375 nm exhibit a lower reflectance 

compared to ITO across the whole range of interest. With increasing periodicity the reflectance 

increases, whereas the absorption decreases. This behavior is reminiscent of isolated plasmonic 

particles, which also show a size-dependence of their scattering to absorption ratio.24 

Additionally, these overall trends are superimposed by characteristic dips in the transmittance 

spectra. These originate from the excitation of SPP modes and are based on dipolar mode 

oscillations (simulated spectra of the pure nanomeshes and electric field distributions at the 

respective resonance wavelengths are given in Figure S9.1 and Figure S9.2). These 

transmittance minima correspond to slightly redshifted maxima in the absorption spectra 

(highlighted in Figure 9.1d) and thus show an asymmetric signature of the Fano resonance line 

shape. The SPP resonance strongly shifts to higher wavelength with increasing periodicities. 

Hence, in the relevant wavelength range for organic solar cells studied here (300 nm – 800 nm), 

the plasmonic resonances are visible only for the periods P = 375 nm at 585 nm and for 

P = 570 nm at 715 nm. Moreover, for the smallest period (P = 202 nm) no resonance is 

discernible due to high losses in the gold near the intraband transition. 

The fundamental question we want to address is, whether the expectedly high optical losses 

caused by the lower transmittance compared to the ITO reference, can be compensated by 

potential plasmonic enhancement effects. From a solar cell light management point of view, the 

resonance wavelength of the SPP mode should overlap with the absorption of the active 

medium. In that case, the enhancement of the electric field due to the resonance may result in 

additional absorption in the photoactive material. In a functional photovoltaic device, the light 

management will be further complicated by the interaction of the SPP mode with the metallic 

back-electrode. This is known to result in an additional mode known as mirror charged mode, 

cavity mode (metal-active layer-metal) or magnetic mode.47-49  

Solar cells were fabricated using two different photoactive layers (P3HT:PC61BM and 

PTB7:PC71BM) on top of nanomesh electrodes introduced above. The exact inverted cell layout 

is given in Figure 9.2a and b for the nanomesh devices and in Figure S9.3 for the ITO reference 

device. Figure 9.2c shows the J-V curves under illumination of the P3HT:PC61BM devices for 

all periodicities (dark current characteristics are shown in Figure S9.4). The solar cell 

performance for each case was checked for reproducibility and consistency by repeating the 
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experiment on different days. Table 9.1 summarizes the best and averaged (in parenthesis) solar 

cell performance parameters obtained for each case. The reference solar cell devices on an ITO 

electrode showed a power conversion efficiency (PCE) of 2.6 % for the P3HT:PC61BM 

photoactive layer. In general, all nanohole array based solar cells showed a reduced PCE in 

comparison to the reference solar cell. 

 

 

Figure 9.2. P3HT:PC61BM solar cells based on gold nanohole arrays. (a) SEM cross-section of 

a P3HT:PC61BM device with P = 202 nm (a cross-section measured with the backscattered 

electron (BSE) detector is given in Figure S9.5). (b) Schematic illustration of the inverted 

device structure with a gold nanohole electrode. (c) Current-density – voltage characteristics 

under illumination of solar cells built on ITO (dashed) and gold nanohole arrays with different 

periodicities. 

 

Compared to the ITO reference the JSC dropped from 6.8 mA/cm2 to 4.2 mA/cm2 for the 

smallest periodicity. Nevertheless, the JSC and consequently the PCE increased monotonically 

with P up to a maximum for 1040 nm followed by a decrease at 2560 nm. The maximum PCE 

for the P3HT:PC61BM active layer with nanomesh electrode (P = 1040 nm) was 2.0 %, which 

is ~ 77 % of the ITO reference device. It should also be noted that within each case, the open 

circuit voltage (VOC) and the fill factor (FF) values remained nearly constant. This suggests the 

absence of excessive leakage currents and that the ZnO layer fully covered the nanomeshes. 

Besides that, the observed high FF value also indicates that the metal nanohole array was 

homogeneously closed. The nanomeshes offered a comparable electrical conductivity relative 
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to the conventional ITO electrode. Finally, even for the largest apertures (~ 2100 nm), the solar 

cells are not restricted by the charge carrier diffusion length in the ZnO blocking layer. Thus, 

we conclude that the nanomesh based solar cells were not electrically limited and that any 

deviations from the ITO reference were optically driven. 

 

Table 9.1. Optimum and average of five (in parenthesis) P3HT:PC61BM device parameters. P: 

nanomesh periodicity, d: hole diameter, AFAu: area fraction of gold, Rsh: nanomesh sheet 

resistance, JSC: short-circuit current density, VOC: open circuit voltage, FF: fill factor and PCE: 

power conversion efficiency of P3HT:PC61BM devices. 

P 

[nm] 

d 

[nm] 

AFAu 

[%] 

Rsh 

[Ω/□] 

JSC 

[mA/cm2] 

VOC 

[V] 

FF 

[%] 

PCE 

[%] 

ITO reference - - 17.4 7.3 (6.8) 0.58 (0.59) 61 (62) 2.6 (2.5) 

202 155 46 15.7 4.3 (4.2) 0.56 (0.56) 60 (60) 1.4 (1.4) 

375 293 46 10.0 4.6 (4.6) 0.57 (0.56) 58 (53) 1.5 (1.4) 

570 462 43 8.5 5.1 (5.1) 0.57 (0.56) 55 (53) 1.6 (1.5) 

1040 853 37 17.3 5.7 (5.7) 0.59 (0.58) 58 (60) 2.0 (2.0) 

2560 2077 37 8.5 5.4 (5.4) 0.58 (0.58) 58 (58) 1.8 (1.8) 

 

Therefore, changes in JSC can be rationalized by the optical properties of the fully assembled 

solar cell devices (Figure 9.3). The absorption (A) of the solar cells was calculated from the 

total reflectance (R) measurements via A = 1 – R. In the range from 400 nm to 750 nm, the 

overall device absorption (Figure 9.3a) is significantly higher than that of the reference device 

with ITO (dashed line). The smaller the period P, the greater the absorption compared to the 

reference device, which is in good accordance with the absorption measurements of the pure 

nanomeshes (Figure 9.1d). Furthermore, an additional absorption peak appears close to the 

absorption edge of P3HT (600 nm – 650 nm) for the nanomesh based devices, which is not 

visible for the ITO reference device. This peak shifts red from 625 nm to 700 nm for increasing 

lattice periods. It is most pronounced for P = 1040 nm and disappears again for P = 2560 nm. 

We attribute this additional absorption to light trapping caused by the electrode grating. 
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Figure 9.3. Influence of nanohole arrays on absorption and photocurrent generation in 

P3HT:PC61BM solar cells. (a) Absorption spectra of P3HT:PC61BM solar cells with gold 

nanohole electrodes with different periodicities (solid lines), of the same solar cell without the 

nanomesh (dash-dotted line), and of the P3HT:PC61BM reference device on ITO (dashed line). 

(b) Contribution of the nanohole electrode to the device absorption. The nanomesh absorption 

is obtained by subtracting the absorption (A = 1-R) of the same solar cell device without a 

nanomesh electrode (Rblank, dash-dotted line, Figure 9.3d) from the device absorption with 

nanomesh electrode (Rmesh, solid line). (c) EQE spectra of the P3HT:PC61BM solar cells with 

nanomesh electrodes (solid lines) compared to the ITO reference cell (dashed line). (d) 

Schematic presentation of the solar cell devices used for the reflectance measurements with 

(top) and without (center) the nanohole array electrode and with the ITO electrode (bottom). 

 

To single out the contribution of the nanomesh electrodes to the device absorption we calculated 

the nanomesh absorption. This was done by subtracting the absorption of the device stack 

without the nanomesh electrode (Ablank = 1 – Rblank) from the absorption of the device stack with 

the nanohole array electrode (Amesh = 1 – Rmesh) and is displayed in Figure 9.3b and d. This is 

the most insightful optical characterization as it provides a direct measure of the absorption 

within the device (based on the absorption properties of the photoactive layer and the reflective 

back-electrode) and the contribution of the nanohole electrode. As surface plasmons are highly 
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sensitive towards the refractive index environment, the absorption of nanohole arrays in the 

device differs from the absorption of the neat metal arrays. Thus, a correlation between the 

device performance and the optical properties of the pure meshes is not always directly possible. 

One can infer quite clearly that the absorption of the device is mainly dictated by the photoactive 

layer. From 300 nm to 550 nm only a slight broadband offset in the absorption can be assigned 

to the nanohole array. However, approaching the absorption band-edge of the photoactive 

polymer a strong increase of the entire device absorption can be seen for all but the largest 

periodicity P = 2560 nm. The maximum of the nanomesh contribution to the absorption was 

found for P = 375 nm. However, this additional absorption does not contribute to the device 

performance as inferred from the external quantum efficiency (EQE). Figure 9.3c shows EQE 

only in the absorption range of the photoactive layer. Since no enhancement of the EQE in the 

wavelength range from 550 nm to 750 nm is observed, it can be concluded that the high 

absorption within the nanohole arrays does not lead to photon to electron conversion. Moreover, 

the EQE is reduced for nanomesh based solar cells in the whole visible range compared to the 

ITO reference device. The smaller the grating period and thus the larger the additional 

absorption due to the nanomesh, the lower the EQE of the device. Therefore, the increasing 

PCE for larger periodicities can rather be assigned to the decrease of the parasitic absorption 

losses, which are in good agreement with Figure 9.1d. Additionally, for the largest periodicity 

(P = 2560 nm) the reflectance losses at the nanomesh front electrode result in a decreased 

device absorption. Thus, a periodicity of P = 1040 nm presents the best trade-off to minimize 

both the parasitic absorptive and the reflectance losses. 

In order to capitalize on the increased absorption between 600 nm and 700 nm due to the 

nanohole electrode, we prepared solar cell devices based on a low band-gap polymer PTB7 and 

the fullerene derivative PC71BM. The PTB7:PC71BM blend absorbs up to a wavelength of 

750 nm, thus covering the wavelength range of the maximum nanomesh absorption in Figure 

9.3b. The inverted device structure and the J-V curves of the PTB7:PC71BM devices are shown 

in Figure 9.4. 
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Figure 9.4. Device characteristics of PTB7:PC71BM solar cells based on gold nanohole arrays. 

(a) SEM cross-section of a PTB7:PC71BM device with P = 202 nm. (b) Schematic illustration 

of the inverted device structure with a gold nanohole electrode. (c) Current-density – voltage 

characteristics under illumination of solar cells built on ITO (dashed line) and gold nanohole 

array TCEs with different periodicities. 

 

A similar trend compared to the P3HT:PC61BM solar cells was observed for the solar cell 

parameters of the PTB7:PC71BM devices with the various periodicities of the nanomesh TCE 

(Table 9.2). The JSC drops from 12.8 mA/cm2 to 7.7 mA/cm2 for the smallest periodicity. 

Increasing P monotonically increases the JSC, which again decreases beyond P = 1040 nm. The 

maximum PCE was 4.6 % for P = 1040 nm compared to 6.0 % for the reference solar cell 

devices based on ITO. Again, no excessive leakage currents were observed for the nanohole 

devices and the open circuit voltage (VOC) and the fill factor (FF) values were nearly constant 

for all periodicities. The corresponding device absorption is given in Figure 9.5a. 
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Table 9.2. Optimum and average of five (in parenthesis) PTB7:PC71BM device parameters. P:  

nanomesh periodicity, d: hole diameter, AFAu: area fraction of gold, Rsh: nanomesh sheet 

resistance, JSC: short-circuit current density, VOC: open circuit voltage, FF: fill factor and PCE: 

power conversion efficiency of PTB7:PC71BM devices. 

P 

[nm] 

d 

[nm] 

AFAu 

[%] 

Rsh 

[Ω/□] 

JSC 

[mA/cm2] 

VOC 

[V] 

FF 

[%] 

PCE 

[%] 

ITO reference - - 17.4 12.9 (12.8) 0.71 (0.69) 65 (66) 6.0 (5.9) 

202 155 46 13.4 7.9 (7.7) 0.69 (0.68) 66 (67) 3.6 (3.4) 

375 293 46 8.8 8.7 (8.6) 0.68 (0.68) 66 (67) 3.9 (3.9) 

570 462 43 8.5 9.2 (8.8) 0.70 (0.70) 65 (65) 4.2 (4.1) 

1040 853 37 13.9 10.2 (9.6) 0.70 (0.69) 65 (65) 4.6 (4.3) 

2560 2077 37 11.7 9.3 (9.3) 0.68 (0.68) 67 (63) 4.2 (4.0) 

 

Compared to the P3HT:PC61BM devices, a similar trend in the device absorption was obtained 

for the PTB7:PC71BM devices. The absorption steadily decreases with increasing lattice 

periodicity. This can be attributed to the decreasing plasmonic absorption and increasing 

reflectance of the nanohole arrays. In contrast to P3HT:PC61BM, the absorption of the 

PTB7:PC71BM nanomesh devices hardly exceeds the absorption of the ITO reference device in 

the range up to 700 nm, where the active layer is strongly absorbing. Instead, for large 

periodicitiesd the total absorption decreases compared to the ITO reference device. Again, the 

overall device absorption profile is strongly dictated by the absorption properties of the 

photoactive polymer, which extends up to the absorption edge (750 nm) of PTB7:PC71BM 

blend. Surprisingly, the additional absorption peaks evoked by the plasmonic properties of the 

nanohole arrays are now strongly redshifted compared to those in the P3HT:PC61BM systems. 

For P = 375 nm, P = 570 nm and P = 1040 nm additional absorption peaks are visible at the 

absorption edge of the polymer between 700 nm and 750 nm. We note that the highest 

nanomesh absorption is now observed for the P = 570 nm electrode instead of the P = 375 nm 

for the P3HT:PC61BM blends (Figure 9.5b). Interestingly, the absorption of the nanohole 

electrode with P = 202 nm incorporated in the PTB7:PC71BM device stack exhibits a spectrally 

flat behavior similar to ITO, while a distinct absorption peak is visible for the same structure in 
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the P3HT:PC61BM device. Again, the absorption related to the plasmonic electrode is absent 

for the largest grating period (P = 2560 nm). 

 

 

Figure 9.5. Influence of nanohole array on absorption and photocurrent generation in 

PTB7:PC71BM solar cells. (a) Absorption spectra of PTB7:PC71BM solar cells with gold 

nanohole electrodes for different periodicities (solid lines), of the same solar cell without the 

nanomesh (dash-dotted line), and of the PTB7:PC71BM reference device on ITO (dashed line). 

(b) Contribution of the nanohole electrode to the device absorption. The nanomesh absorption 

is obtained by subtracting the absorption (A = 1-R) of the same solar cell device without a 

nanomesh electrode (Rblank, dash-dotted line) from the device absorption with nanomesh 

electrode (Rmesh, solid line, compare Figure 9.3d). (c) EQE spectra of the PTB7:PC71BM solar 

cells. 

 

Similar to the P3HT:PC61BM devices, the EQE of the PTB7:PC71BM devices is also reduced 

compared to the ITO reference device. However, among the nanomesh devices the EQE 

increases in a broad range from 350 nm to 650 nm for larger periodicities due to a decrease of 

the parasitic absorption losses (Figure 9.5c). Moreover, for PTB7:PC71BM the EQE of the 

devices with P = 202 nm and P = 375 nm exhibit asymmetric line shapes with a strong increase 

in the EQE above 550 nm, whereas larger grating periods yield rather flat EQE spectra. For 
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wavelengths above 720 nm, in a range where the absorption of the PTB7:PC71BM blend is 

already strongly reduced, the EQE of the nanohole devices even surpasses the EQE of the ITO 

reference device. 

This EQE enhancement spectrally coincides with the absorption peaks assigned to the 

plasmonic resonances and redshifts with increasing periodicity of the nanomesh electrode. 

Thus, we attribute this increase in EQE above 550 nm to the light trapping behavior of the 

plasmonic electrode. Consequently, the plasmonic resonances induced by nanohole arrays 

indeed contribute to the photocurrent of the device. Therefore, we can claim that plasmonic 

absorption enhancement is possible via these periodically structured electrodes. However, the 

gain in EQE is not sufficient to outweigh the inevitable transmission losses in the range from 

350 nm – 700 nm, where the polymer is highly absorbing. Compared to the ITO device, the 

EQE spectra of the nanohole devices are only enhanced above 720 nm, where the absorption of 

the polymer is the limiting factor for the device efficiency. For the largest periodicity 

P = 2560 nm, no enhancement in the EQE can be observed presumably due to its predominantly 

reflecting behavior at the wavelength range of interest. This trend strongly indicates that for 

large lattice periodicities, the plasmonic influence is negligible and the electrodes have to be 

optimized for their overall transmittance in the first place. 

The comparison between the P3HT:PC61BM and PTB7:PC71BM devices reveals an intriguing 

dilemma when trying to make use of plasmonic enhancement and replacing the ITO electrode 

simultaneously. Whereas the resonance wavelength of the pure meshes is strongly dependent 

on the grating periodicity, the overall device absorption is more strongly determined by the 

absorption of the photoactive layer. The previously broadband SPP resonances become strongly 

confined to the narrow spectral range, which is defined by the absorption edge of the active 

layer material. Thus, although the same electrode periodicities have been used for both blend 

systems, the high plasmonic absorption between 600 nm and 650 nm of the P3HT:PC61BM 

devices was redshifted to the band-edge of PTB7:PC71BM devices (700 nm – 750 nm), where 

the exciton conversion is again less efficient. Even worse, the optimum coupling was observed 

for P = 375 nm and P = 570 nm. Yet, the optimum PCE is found for P = 1040 nm. This 

demonstrates even more drastically that losses in the transmittance cannot be counteracted by 

a plasmonic enhancement. 

To understand the impact of the nanomesh optics on the two different photoactive material 

systems in more detail, the electric field distributions of the plasmonic modes were simulated 

by the finite-difference time-domain (FDTD) method (Figure 9.6). The simulated device 

absorption spectra for P3HT:PC61BM (Figure 9.6a) and PTB7:PC71BM (Figure 9.6f) 
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qualitatively match the experimental trend (for transmittance and reflectance spectra see 

Figure S9.6 and Figure S9.7). Especially, the experimentally observed redshift of plasmonic 

absorption from P3HT:PC61BM to the PTB7:PC71BM is clearly supported by the simulation 

curves. In the region of strong photoactive layer absorption, the device absorption decreases 

with increasing nanohole periodicities. At the absorption edge pronounced absorption peaks are 

visible, which redshift with P and become less intense. 

 

 

Figure 9.6. FDTD simulation of the P3HT:PC61BM (top row, a - e) and PTB7:PC71BM (bottom 

row, f – j) solar cell devices. Simulated spectra of (a) P3HT:PC61BM and (f) PTB7:PC71BM 

solar cells with gold nanohole electrodes and different periodicities are compared to those of 

ITO reference devices. The arrows indicate the two characteristic incident wavelengths used 

for the simulation of the electric field enhancement as shown in (b), (d) (g) and (i). Electric field 

intensity |E|2 distributions normalized to the incident electric field intensity |E0|
2 for 

P3HT:PC61BM at 500 nm (b) and 640 nm (d) and for PTB7:PC71BM at 675 nm (g) and 750 nm 

(i). The electric field enhancement shown in (b), (d), (g) and (i) were evaluated along the cross-

section (dashed line) in the inset of (f) for P = 375 nm in all cases. In (c), (e), (h) and (j) electric 

field enhancement averaged over the xy-plane of the unit cell is depicted along the z-coordinate 

for the respective wavelength for the ITO device (dashed line) and the nanomesh device (solid 

line). 

 

The electric field distribution was simulated in three dimensions and plotted along the cross-

section (dashed line) shown in the inset of Figure 9.6f for both active layer materials at two 

different characteristic wavelengths (bold arrows in Figure 9.6a and f) for a nanohole electrode 

with P = 375 nm. The enhancement of the electric field intensity |E|2 in the device structure 

compared to the incident light intensity |E0|
2 is depicted for the P3HT:PC61BM devices in Figure 

9.6b and d and for the PTB7:PC71BM devices in Figure 9.6g and i. In Figure 9.6c, e, h and j the 

corresponding electric field profiles |E|2/|E0|
2 averaged over the whole unit cell along the layer 
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stack direction are given for the nanomesh devices (solid lines) compared to the ITO reference 

devices (dashed lines). The electric field distributions for the ITO reference devices are depicted 

in Figure S9.8. 

At first, we want to assess the field distribution at a wavelength, which is lower than the 

absorption edge and dominated by the active medium absorption. Therefore, the field 

distribution was calculated at 500 nm (Figure 9.6b) and 675 nm (Figure 9.6g) for 

P3HT:PC61BM and PTB7:PC71BM, respectively. In each case, a nanohole array with 

P = 375 nm was simulated, since this periodicity demonstrated a strong contribution of the 

nanohole absorption in either case (Figure 9.3a and Figure 9.5a). At these wavelengths, the 

corresponding photoactive layers absorb very strongly, and the solar cells are mainly limited 

by parasitic absorption and reflectance losses. For P3HT:PC61BM (Figure 9.6b) the simulation 

shows the scattering of the incoming light at the nanomesh with a close confinement of the 

electric field to the edges of the gold structure and a field profile, which exponentially decays 

into the active layer. The nanomesh is strongly reflecting resulting in high normalized field 

intensities exceeding unity in the glass layer (Figure 9.6c). In general, owing to the high 

attenuation of the photoactive layer, the electric field intensity in the layer stack is mainly 

reduced compared to the incident light intensity. Moreover, the electric field intensity in the 

photoactive layer is reduced for the nanomesh device relative to the ITO reference device. This 

gives rise to a decreased absorption in the nanomesh device at this wavelength. For the 

PTB7:PC71BM active layer at 675 nm (Figure 9.6g) a dipolar plasmon resonance is excited, 

which is weakly coupling to the silver back-electrode. This can be inferred from the field 

enhancement in the photoactive layer and the MoO3 layer (Figure 9.6h). Nevertheless, the 

electric field intensity in the photoactive layer of the nanomesh device does not surpass the ITO 

reference device, which features a maximum of the field profile in the photoactive layer. 

Consequently, the contribution of the plasmonic resonance to the photocurrent of the device is 

negligible. This corroborates the experimental finding that the optical properties of the device 

are predominantly governed by the photoactive layer. A high absorption in the photoactive layer 

attenuates the coupling between the nanomeshes and the back-electrode and consequently it 

inhibits the evolution of confined plasmonic modes in the wavelength region of interest. 

However, to get some considerable improvements, these confined plasmonic modes are 

required to efficiently generate a surplus of excitons to outweigh the losses originating from the 

reduced transmittance through the nanohole electrode. 

Field distribution simulation was also carried out near the absorption edge of the respective 

photoactive systems: at 640 nm and 750 nm for P3HT:PC61BM and PTB7:PC71BM, 
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respectively. Contrary to the field distribution observed within the absorption range of the 

photoactive layer discussed above, in the region of the absorption edge of the respective 

photoactive layers the electric field is less confined to the nanomesh electrode. Instead, the 

electric field intensity within the active layer of the devices is enhanced with respect to the 

incident intensity. For P3HT:PC61BM the electric field in the photoactive layer is moderately 

enhanced by a factor of 1.2 when excited at 640 nm, attributed to the resonance of the gold 

structure. Mirror charges are induced at the back-electrode with high field intensities occurring 

in the MoO3 layer near the Ag surface (Figure 9.6e). Symmetrically enhanced electric fields at 

the edges of the gold structure indicate a strong coupling of the incident light with the plasmonic 

resonance. The localization of the electric field inside the active layer clearly indicates the 

presence of a cavity mode at this wavelength.19 Inside the photoactive layer of the nanomesh 

device the electric field intensity even exceeds the intensity observed in the photoactive layer 

of the ITO reference device. Thus the light entrapment at this wavelength could indeed 

contribute to a plasmonically driven enhanced exciton generation. 

An even stronger electric field enhancement was found for the PTB7:PC71BM device around 

the absorption maximum of the metal electrode at 750 nm in Figure 9.6i, showing an 

enhancement factor of up to 15 in the MoO3 layer and 5.6 averaged over the photoactive layer. 

We assign this higher electric field enhancement to the smaller distance (70 nm) between the 

two metallic electrodes in the PTB7:PC71BM devices compared to that (120 nm) in the 

P3HT:PC61BM devices. The plasmonic resonance emerging from the nanohole electrode is 

enhanced by the presence of the Ag back-electrode, which depends on the length of the cavity 

between the electrodes.19,50 For thinner devices the coupling between the structured front and 

the flat back-electrode is expected to be stronger. Although the 70 nm photoactive layer 

thickness used here may not be the optimum thickness to attain a maximum EQE enhancement 

at the absorption edge, even an optimized active layer thickness would not prevent the 

reflectance and absorption losses of the gold structure at the more relevant lower wavelengths 

(300 – 600 nm). 

The low field intensity at the gold/glass interface (Figure 9.6j) points towards a low reflectance 

and absorption of the gold nanomesh. Here the electrode predominantly couples the incident 

light forward into the photoactive layer. Consequently, the losses caused by the gold nanomesh 

are minimal at this wavelength leading to the desired light concentration in the photoactive 

layer. Whereas PTB7 is only weakly absorbing at 750 nm, the plasmonic field enhancement 

still leads to a higher exciton generation in the active layer compared to the ITO device. This 

manifests itself in a higher EQE as shown in Figure 9.5c. At an even higher wavelength of 
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800 nm, which is off-resonance, one can still observe a field enhancement in the active layer 

(Figure S9.9). However, it is more confined to the ZnO rather than the active layer. In 

combination with the low polymer absorption at this wavelength no additional exciton 

generation and thus no contribution to the photocurrent in the EQE spectrum is seen. Simulated 

field distribution maps at the absorption maximum of all other periodicities for both photoactive 

layers also demonstrate the evolution of a cavity mode (see Figure S9.10 and Figure S9.11). 

While this can be excited with a broad range of periodicities, the coupling strength decreases 

with increasing P. 

The discrepancy between losses in the short wavelength region and EQE enhancement at long 

wavelengths has already been described for Au nanowire electrodes7 and nanoparticle arrays 

placed on the ITO electrode.51 While the particles reduced the efficiency at small wavelength 

due to absorption and reflectance losses, a slightly enhanced efficiency was found at the 

absorption edge of the active layer attributed to a diffractive scattering or collective plasmonic 

mode. This scattering mode can only exist at the absorption edge of the active layer as the 

electric field from the particles would be suppressed by a higher attenuation of the polymer.52 

Instead, nanostructured back contacts result in an EQE enhancement pinned to the absorption 

edge of the polymer, but naturally without transmittance losses.26,53-56 

To further clarify the nature of the cavity resonance, additional FDTD simulations were 

conducted in which we substituted the gold of a nanomesh with P = 375 nm by ITO 

(Figure S9.12). ITO does not show any plasmonic resonances in the wavelength range of 

interest and is purely scattering the incident light due to the periodic nanostructure. Thus, the 

absence of the absorption maximum at 750 nm clearly indicates that this resonance is of 

plasmonic origin. 

 

 

9.3 Conclusion 

 

In summary, we systematically investigated the chances and limitations of thin plasmonic 

nanomeshes as transparent conducting electrodes for polymer solar cells. We, therefore, 

prepared gold nanohole arrays by colloidal lithography covering periodicities from 202 nm up 

to 2560 nm. These plasmonic nanohole arrays support SPP modes, which are governed by the 

underlying periodicity, and cover a broad optical range. 

The nanohole electrodes were incorporated into organic solar cells consisting of two different 

photoactive layer polymer blends, the standard material P3HT:PC61BM and the low band-gap 
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material PTB7:PC71BM. No losses in the VOC and FF of the devices indicated the absence of 

excessive leakage currents and high conductivities of the metal meshes. This renders such 

electrodes electrically comparable to the ITO reference. For both photoactive polymers, we 

found appreciable PCEs in our ITO-free devices reaching up to 77% of the reference solar cells. 

This decreased PCE was not surprising based on the strongly reduced transmittance of the 

nanohole electrode. Interestingly, the PCE increased with the grating period of the nanomeshes. 

An optimum was found in both polymer blend cases for P = 1040 nm, which was attributed to 

an optimum balance between low losses by parasitic absorption and low losses by increasing 

the reflectivity of the nanomesh.  

Plasmonic field enhancement due to the excitation of SPP and cavity modes within the solar 

cell stack was expected to be able to counteract these losses. We indeed did observe additional 

absorption peaks in the spectra of the nanomesh devices but only at the absorption edge of the 

respective polymer. Using FDTD simulation we were able to assign these to the excitation of a 

cavity mode. However, since this enhanced mode only exists at or below the absorption edge 

of the particular polymer, no enhancement of the photocurrent was observable for 

P3HT:PC61BM. For PTB7:PC71BM the cavity mode led to an EQE enhancement beyond 720 

nm, however, this additional contribution was marginal compared to parasitic absorption and 

reflection losses at lower wavelengths. Consequently, surface plasmon resonances play an 

ambivalent role in the device optimization of polymer solar cells. They are capable of 

improving the absorption within a small spectral region. However, the broadband losses at any 

other wavelength cannot be compensated. To replace ITO without any losses in PCE, traditional 

methods to increase the overall transmittance such as decreasing the metal layer thickness or 

reducing the metal surface coverage are expected to have a greater impact (as long as the 

electrical properties are not compromised). Nevertheless, we want to conclude that this 

approach is still capable of producing ITO-free solar cells with reasonable PCE’s based on 

standard photoactive material systems. 

 

 

9.4 Experimental Section 

 

Materials: Polystyrene particles were purchased from Microparticles GmbH (Berlin) or 

synthesized using emulsifier-free emulsion polymerization. P3HT (Rieke Metals – 4002-EE), 

PTB7 (Solarmer – ZP002), PC61BM (Solenne) and PC71BM (American Dye Source) were 
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obtained from commercial suppliers and used without any further purification. The thickness 

and the sheet resistivity of our reference ITO substrates were 213 nm and 10 /□, respectively. 

Fabrication of Au nanomeshes: Monolayers of polystyrene particles were prepared according 

to the procedure of Retsch et al.42 Cationically functionalized glass slides were spin-cast with a 

3 wt% particle dispersion at a speed of 4000 rpm. Subsequently, the coated glass substrates 

were immersed in a 0.1 mM SDS solution in MilliQ. The aqueous phase was adjusted to pH 12 

by adding a few drops of NH3. A monolayer was formed at the liquid/air interface by self-

assembly of the detaching particles. The monolayer was transferred to a 1 × 1 inch glass 

substrate and dried in air. The monolayers were etched in a plasma reactor MiniFlecto (Plasma 

Technology GmbH, Herrenberg, Germany) with 75 % argon and 25 % oxygen at 80 W at a 

pressure of 0.14 mbar to obtain non-close-packed monolayers. A 3 nm chromium layer and 

50 nm gold were deposited using a Balzers BA360 thermal evaporation chamber. The layer 

thickness was monitored via a SQM 160 microbalance (Sigma Instruments, Schaefer 

Technologie GmbH). Afterwards, the particles were removed using Scotch® tape (3M) giving 

the nanohole arrays. The Au substrates were cleaned for 10 min in an ultrasonic bath with a 

2 % aqueous Hellmanex (Hellma GmbH, Mühlheim, Germany) solution in MilliQ water. The 

surfactant was extensively rinsed off with MilliQ water, and the substrates were placed in the 

ultrasonic bath in ethanol for 10 minutes and dried with compressed air. 

Solar cell fabrication: Solar cell devices were prepared by spin-coating a zinc acetate solution 

(109.75 mg zinc acetate dehydrate, 30.5 µL ethanol amine and 1 ml methoxyethanol) onto 

cleaned substrates with patterned nanomeshes, followed by 150 °C baking for 5 min in air to 

convert zinc acetate to zinc oxide. The reference devices were on ITO glass substrates. The film 

thickness of the ZnO films was around 40 nm. Subsequently, the substrates were transferred to 

a glovebox for the deposition of the photoactive layer in a nitrogen environment. 

P3HT:PC61BM films (~115 nm) were prepared by spin-coating (850 rpm) 80 µl of a solution 

containing 16.8 mg of P3HT and 13.2 mg of PC61BM in 1 ml of chlorobenzene. Subsequently, 

the P3HT:PC61BM films were annealed at 135°C for 15 min. PTB7:PC71BM films (~80 nm) 

were prepared by spin-coating (1000 rpm) 90 µl of a solution containing 12 mg PTB7, 19.2 mg 

PC71BM and 50 µl of 1,8-diiodooctane (DIO) in 1 ml of o-xylene. The films were dried in a 

glovebox anti-chamber for 30 min to remove residual DIO. The respective active layer 

thicknesses were adjusted to the optimum charge carrier mobility in the devices. Top electrodes 

consisting of MoO3 (10 nm) capped by Ag (150 nm) were deposited by vacuum evaporation at 

~1 × 10-6 mbar. 
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Characterization: I-V measurements were performed under an inert environment with a 

Keithley 2400 source measure unit under 100 mW/cm2 illumination from an AM 1.5 class A 

solar simulator. The active area of 9 mm2 was defined by the overlap of a black mask aperture 

area, the ITO or nanomesh electrode, and the evaporated top electrode. External quantum 

efficiency (EQE) measurements were performed under both dark and white light bias conditions 

at short-circuit conditions via a Bentham PVE 300 assembly unit. More details have been 

published elsewhere.57 UV/VIS spectra were measured using a Cary 5000 UV-Vis-NIR 

Spectrophotometer (Agilent Technologies) with attached Diffuse Reflectance Accessory 

between 300 and 1200 nm at an angle of incidence of 8° with an UV-bandgap of 3 nm, an IR-

bandgap of 12 nm, a data interval of 1 nm, and a scan speed of 600 nm/min. The sheet resistance 

of the nanomeshes was measured with a Lucas Signatone SYS-301 and a SP4 probe head. SEM 

images were taken on an LEO 1530 Gemini Field Emission SEM (Carl Zeiss AG, Oberkochen, 

Germany) and an Ultra plus Field Emission SEM (Carl Zeiss AG, Oberkochen, Germany). The 

images were evaluated with the software ImageJ.58 

FDTD Simulation: To determine the refractive index of the glass substrate, ZnO, MoO3, 

P3HT:PC61BM and PTB7:PC71BM we used an M2000 spectroscopic ellipsometer from J.A. 

Woollam Co. in the wavelength range from 245 nm to 1600 nm (D2 and QTH lamps). 

Ellipsometric data from all samples were acquired at five different angles of incidence in five-

degree steps. To determine the refractive index of all materials we used a general oscillator 

layer model within the CompleteEASE (Version 5.07) software. All modeling approximation 

were physical reasonable (parametrization to fulfill Kramers–Kronig relations) and showed a 

mean square error (MSE) below five. The optical response in transmission and reflection at 

normal incidence and unpolarized light was simulated using a commercial software from 

Lumerical Solutions, Inc. (FDTD Solutions, Version 8.11.422). We used a hexagonal hole 

structure with periodic boundary condition (BC) in later direction and perfect match layer 

(PML) BC in beam direction with a linear polarized plane wave source. Hole diameters, 

periodicity, the amount of multilayer materials and thickness were obtained from the 

experiment. In beam direction, the FDTD simulation total length was chosen to be 4 µm with 

transmission monitors located at both ends. The simulation setup has been placed in the center 

of the FDTD simulations, and the plane wave source was injected starting from the glass layer. 

For a broadband source simulation (λ = 300 – 800 nm), the FDTD software approximates the 

refractive index of the materials by a polynomial function (the refractive indices determined via 

spectral ellipsometry and the FDTD approximations are given in Figure S9.13 – Figure S9.17). 

All optical constants were approximated with an RMS error below 0.21. An anisotropic mesh 
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overwrite region were used according to the specific periodicity and hole diameter (mesh in 

lateral direction: between 2 nm mesh for P = 202 nm and 6 nm mesh for P = 2560 nm, mesh in 

beam direction: always 2 nm). All simulations reached the auto shut-off level of 10−5 before 

reaching 1000 fs simulation time. To determine the electric field distribution and surface charge 

densities, we simulated the model at the plasmonic mode frequency at a pulse length of ~20 fs 

(optimized for long pulse length). 
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9.5 Supplementary Information 

 

 

 

Figure S9.1. FDTD simulation of the pure nanomeshes on glass normalized to the glass 

substrate with variable periodicity P and constant gold area fraction of 40 %. Normal incident 

specular transmittance (a), absorbance (b), specular reflectance (c) and absorption (d) spectra 

calculated with unpolarized light. The arrows in (b) indicate the Bragg diffraction modes for 

P = 375 nm and P = 570 nm. 
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Figure S9.2. Simulated electric field distributions |E|2/|E0|
2 for the pure nanomeshes with 

variable periodicity on glass. Cross-section electric field profile (a) and top view electric field 

profile (b) for P = 202 nm and a wavelength of 550 nm. Cross-section electric field profile (c) 

and top view electric field profile (d) for P = 375nm and a wavelength of 575 nm. Cross-section 

electric field profile (e) and top view electric field profile (f) for P = 570 nm and a wavelength 

of 740 nm. 
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Figure S9.3. ITO reference devices. Schematic illustration of the ITO reference device 

structure with (a) P3HT:PC61BM and (c) PTB7:PC71BM active layer. SEM cross-section of the 

ITO reference device with (c) P3HT:PC61BM and (d) PTB7:PC71BM active layer. 

 

 

Figure S9.4. Dark current-density characteristics. Dark current-density - voltage curves of (a) 

P3HT:PC61BM and (b) PTB7:PC71BM solar cells for different hole-to-hole distances on 

nanomesh electrode.  
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Figure S9.5. BSE image of nanomesh solar cell. SEM cross-section of the nanomesh device 

with P3HT:PC61BM active layer and P = 202 nm measured with the backscattered electron 

(BSE) detector. 

 

 

 

Figure S9.6. FDTD simulation of the P3HT:PC61BM solar cell devices with gold nanohole 

electrodes and different periodicities compared to ITO reference devices. Normal incident 

specular transmittance (a), absorbance (b), specular reflectance (c) and absorption (d) spectra.  
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Figure S9.7. FDTD simulation of the PTB7:PC71BM solar cell devices with gold nanohole 

electrodes and different periodicities compared to ITO reference devices. Normal incident 

specular transmittance (a), absorbance (b), specular reflectance (c) and absorption (d) spectra. 
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Figure S9.8. Electric field distributions of ITO reference devices. Cross-section electric field 

distributions |E|2/|E0|
2 of the ITO reference devices for P3HT:PC61BM at 500 nm (a) and 640 nm 

(b) and for PTB7:PC71BM at 675 nm (c) and 750 nm (d). 

 

 

 

Figure S9.9. FDTD simulation of the PTB7:PC71BM solar cell device with a gold nanomesh 

electrode and P = 375 nm. Cross-section electric field distributions |E|2/|E0|
2 at 575 nm (a) and 

800 nm (b). 
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Figure S9.10. FDTD simulation of the P3HT:PC61BM solar cell devices with gold nanomesh 

electrodes and variable nanomesh periodicities. Cross-section electric field distributions 

|E|2/|E0|
2 at 600 nm (a) and 800 nm (b) for P = 202 nm, at 640 nm (c) and 690 nm (d) for 

P = 375 nm, at 630 nm (e) and 670 nm (f) for P = 570 nm, at 675 nm (g) and 690 nm (h) for 

P = 1040 nm.  
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Figure S9.11. FDTD simulation of the PTB7:PC71BM solar cell devices with gold nanomehs 

electrodes and variable nanomesh periodicities. Cross-section electric field distributions 

|E|2/|E0|
2 at 675 nm for P = 202 nm (a), at 760 nm for P = 570 nm (b), at 760 nm for 

P = 1040 nm (c). 

 

 

 

Figure S9.12. FDTD simulation of PTB7:PC71BM solar cell devices with gold nanomesh 

electrodes and ITO nanomehs electrodes with P = 375 nm compared to the planar ITO 

reference device. Normal incident specular transmittance (a), absorbance (b), specular 

reflectance (c) and absorption (d) spectra. 
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Figure S9.13. Refractive index of glass. Complex refractive index (RI) of the glass layer 

(standard microscopy slides, Menzel, Braunschweig, Germany) determined with spectral 

ellipsometry (material data) and FDTD approximation with a polynomial function (FDTD 

model). For further usage the raw data (material data) will be available at 

http://refractiveindex.info/. 

 

 

 

Figure S9.14. Refractive index of ZnO. Complex refractive index (RI) of the ZnO layer 

determined with spectral ellipsometry (material data) and FDTD approximation with a 

polynomial function (FDTD model). 
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Figure S9.15. Refractive index of PTB7:PC71BM. Complex refractive index (RI) of the 

PTB7:PC71BM layer determined with spectral ellipsometry (material data) and FDTD 

approximation with a polynomial function (FDTD model). 

 

 

 

Figure S9.16. Refractive index of P3HT:PC61BM. Complex refractive index (RI) of the 

P3HT:PC61BM layer determined with spectral ellipsometry (material data) and FDTD 

approximation with a polynomial function (FDTD model). 
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Figure S9.17. Refractive index of MoO3. Complex refractive index (RI) of the MoO3 layer 

determined with spectral ellipsometry (material data) and FDTD approximation with a 

polynomial function (FDTD model). 

 

 

Gold was taken from Johnson and Christy (JC) [Johnson, P. B.; Christy, R. W. Optical 

Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370-4379.] 

Ag was taken from Hagemann et al. (CRC) [Hagemann, H. J.; Gudat, W.; Kunz, C. Optical 

Constants from the Far Infrared to the X-Ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and A12O3. 

J. Opt. Soc. Am. A 1975, 65, 742-744.] 

ITO from was taken from the CompleteEASE (Version 5.07) refractive index database. 
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10 Outlook 

 

The concepts presented in this thesis consort to the tremendous efforts that have been made in 

the field of photonic and plasmonic crystals during the last decades. In the ongoing race of 

miniaturization, colloidal crystals play an essential role due to their ability to manipulate light 

analogously to electrons in semiconductors. To realize the dream of purely photonic circuits, 

colloidal self-assembly could offer a cost-effective alternative to conventional lithography 

techniques. Apart from optical circuits, many applications of colloidal assemblies or their 

replica are already within reach such as molecular sensing devices, structural coloration or dirt-

repellant and antifouling coatings.1,2 

A plethora of synthesis and assembly protocols are available for spherical colloidal particles 

with engineered optical properties. However, much work has still to be done to overcome the 

inherent drawbacks of colloidal assembly. Point defects and grain boundaries caused by 

vacancies or impurities dramatically deteriorate the optical performance of a photonic crystal. 

Thus, considerable effort is put into the development of large-scale and defect-free fabrication 

of colloidal crystals. At the same time, hierarchical structures and highly defined defects have 

to be introduced to channel and manage light with low losses. The defects can facilitate the 

nanoscale light generation, waveguiding or light localization.1 Likewise, the specific 

introduction of defects into phononic crystals would allow for the engineered propagation and 

localization of acoustic waves. Template-directed self-assembly could enable these low-defect, 

hierarchical assemblies.3 Further work has to be conducted to expand the accessible lattice 

symmetries, not only in two-dimensions but also in three-dimensional colloidal crystals. 

Moreover, the existing self-assembly methods have to be extended to active building blocks, 

allowing for stimuli-responsive architectures that are switchable by for example light or current. 

For this, efficient synthesis and purification strategies for more complex building blocks and 

anisotropic particles have to be established. For example, plasmonic nanoparticles or 

fluorescent particles self-assembled into gold nanohole arrays might yield highly efficient 

sensing or lasing devices, respectively. Moreover, the modification of the single particle e.g. by 

introducing binding sites can push the concept of directed self-assembly to the next level.4,5  

Similarly, plasmonic structures prepared by colloidal assembly open up huge possibilities for 

future applications and often directly rival purely dielectric colloidal crystals. Nevertheless, at 

this point, the high absorption losses of plasmonic structures are the most prominent 

impediment to their application. While the careful incorporation of metal nanoparticles into 
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thin-film solar cells proofed beneficial for the power conversion efficiency, it is more 

challenging to implement plasmonic grating structures as transparent conductive electrodes. 

Minimizing the high losses of plasmonic structures by optimizing the structure and materials 

remains one of the most important goals in plasmonic research. Furthermore, the interaction of 

plasmonic structures and absorbing materials has to be further understood to be able to 

deliberately design efficient optical devices. 

However, for both, dielectric and plasmonic colloidal structures, numerous obstacles still have 

to be resolved to be able to compete with conventional technologies. 
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