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German Abstract

In der vorliegenden Arbeit werden Cosseratoperatoren hoherer Ordnung auf
beschriankten Gebieten G CC R™, n > 2 (mit geniigend glattem Rand 0G)
untersucht. Dies sind (die Grofle m € N bezeichnet die Ordnung) Operatoren
der Form (die Raume B "(G) bezeichnen die Raume der mittelwertfreien
m-harmonischen Hj'~"9(G)-Funktionen)

1
Z{m — Sld: Bl M(G) — B M(G), 1<g<oo

wobei Zém) =divoT ém) (unterstrichene Groflen bezeichnen Vektoren oder
vektorwertige Operatoren) und I(gm) jedem p € Hy' (@) die eindeutige
Losung u € H{"?(G) der Funktionalgleichung

By, [u, @] = By,—1 [p,div @] fiir alle @ € C°(G)

zuordnet. Die Bilinearformen B,, [+, ] sind dabei folgendermaflen definiert:
Fiir ® € H™(G) und ¥ € H™? (G) (wobei % + % = 1) setzen wir

(AZ®, A2 T) fir gerades m

B, [, U] := ot ot
(VA™2 @& VA 7 V) fir ungerades m

Fiir Vektoren ® € HI™(G) und ¥ € H™ (G) setzen wir
By [@,¥] :=> " B, [®;, U]
i=1

Der Operator T ((Im) ist also ein schwacher Losungsoperator fiir die Differen-
tialgleichungen
Ay, =A™ p, i=1,...,n

mit homogenen Randwerten fiir die u;.

Mit einigem Aufwand (fiir einen groben Uberblick des Vorgehens siehe Ab-
schnitt 1) werden wir in dieser Arbeit zeigen kénnen, dass die so definierten
Cosseratoperatoren kompakt sind (siche die Theoreme 6.5 und 9.11). Dies
hat weitreichende Konsequenzen. Die wichtigsten davon sind:



e Wir bekommen eine Strukturaussage fiir die Raume Hy"?(G), namlich
die Giiltigkeit der direkten Zerlegung

Hg"(G) = {u € Hg™(G)] divu =0} & M{™(G),

wobei M‘(Im)((}') = Zém)(H&lO_Lq(G)) (wir bezeichnen mit H[To_l’q(G)
den Raum der mittelwertfreien Hy' "¢(G)-Funktionen) und die Ein-
schrénkung des Operators div auf M ((]m)(G) (mit Bild H LHU(G)) eine
stetige Inverse besitzt.

Diese Aussage ist eng verwandt mit dem folgenden Satz, der auf M. E.
Bogovskii (siehe [4], [5]) zurtickgeht:

Gegeben sei ein Gebiet G CC R”, n > 2 mit lokalem Lipschitzrand,
und 1 < ¢ < oo, m > 0. Dann gibt es eine Konstante C' = C'(m, ¢, G),
so dass fiir jedes f € Hy"¥(G) mit

/Gfdx:()

es ein (nicht notwendigerweise eindeutig bestimmtes) v € HJ" (@)
gibt mit
dive = f

und
[0l s1q < C U Fllng -

Zusétzlich kann man, falls f € C3°(G), das Vektorfeld v aus Ci°(G)
wahlen.

Unter unseren zusétzlichen Voraussetzungen an das Gebiet G' (ndmlich
Beschranktheit und eine gewisse Glattheit des Randes) gelingt es uns
mit der Giiltigkeit der obigen Zerlegung, zu vorgegebenem f € Hy"(G)
mit | o fdr =0, die Gleichung divy = f auf stetige Weise im Raum
Mflm)(G) eindeutig zu lésen.

e Mit diesen Kenntnissen sind wir in der Lage, das folgende Stokes-
ahnliche Problem zu behandeln: Zu vorgegebenem F € <ﬂ ?’q/(G)> ,

finde ein u € Hy"!(G) und ein p € Hg?o_l’q(G), so dass

B [tt, ®] + By [p,div®] = F(®) fiir alle ® € H™ (G)



und
divu = 0.

In seiner Arbeit [17] hat C. G. Simader dieses Problem im Hilbertraum-
fall fiir m = 2 untersucht. Thm ist es gelungen, dieses Problem ohne
Verwendung der Kompaktheit des entsprechenden Cosseratoperators
zu l6sen, indem er die Giiltigkeit einer Divergenzungleichung (siehe
unser Theorem 7.11) zeigte. Dabei spielt der oben erwéhnte Satz von
Bogovskii eine wesentliche Rolle.

Wir erhalten aus unserem Zugang iiber den Cosseratoperator nicht nur
ein Losbarkeitsresultat fiir obiges System, sondern zudem noch Regu-
laritatsaussagen. Dabei stiitzt sich unser Vorgehen auf Ideen aus [13],
wo ein einfacher und eleganter Zugang zur Regularitat des Stokesschen
Systems mit Hilfe des Cosseratoperators (der Ordnung 1) beschritten
wird.
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Part 1
Cosserat Operators of Order
Two

1 Introduction and Overview

Starting point for this work were questions arising from an investigation of
the operator

div: HY*(G) — Hyi(G)

by Joachim Naumann (Humboldt-University Berlin), where Ho?(G) is the
space of vector fields on a bounded domain G C R™ with every component in
H;*(G) (underlinings are used throughout to mark objects as vector valued)
and Héﬁ (G) denotes the space consisting of the p € Hy*(G) satisfying the
compatibility condition
/ pdx =0,
e

which must be fulfilled for divergences of vector fields from Hy?(G), as is
easily seen by approximation and by Gaufl’ Divergence Theorem.

Looking at the operator div from above in this Hilbert space setting, the
question for the adjoint operator div* : Héy’g(G) — HY*(G) arises naturally.
If we equip the spaces Hé”g(G) and Hy?(G) with the inner products

n

(9, M) g1z = (V9: Vi) 2y 1= > (9ig, 0:h) 12y and

i=1

(u, Q>E(2),2(G) = (Au, Av) 12 = Z(Aui, Av;) 12() respectively,
i=1
we are searching (for a given p € HS,’S(G)) av € HY*(G) satistying for every
® € H*(G) the functional equation

(Av, A®) = (Vp, V div ). (1)

(In the following, we will omit a detailed specification of (-, -) with the use of
an index. As we only use it either in the L2-sense or in the sense of the dual
LI9-L9 -pairing, the meaning of it should be clear from the context.)



This leads to the definition of the operator adjoint to div, namely T' =
div* assigning to each p € Hé”g (G) the unique solution v € HY*(G) to the
functional equation (1).

In Simader’s paper [17], this operator is investigated further in the Hilbert
space setting described above. The main results are:

e There is a subspace of Hy (@), called M?(G), such that the restric-
tion of div to M?(G) is continuously invertible. We have M*(G) =
I(H&’g (G)) and validity of the following orthogonal decomposition:

Hy*(G) = D*(G) @ M*(G),

where

D*(G)={ve H}*(G): divu=0}.

e On M*(G) C HZ*(G), we have |V div-||, as an equivalent norm to
|A-]|,. Furthermore, for every p € H&}’S(G) the following inequality is
valid with a constant C' = C(G) > 0:

i
IVpl, <C sup (Vp, Vdivy)
0£veM?(G) |V div vlf

e With this, treatment of the following Stokes-like system of fourth order
becomes quite simple:

For a given F € (HY*(G))*, find u € HY*(G) and p € H&’S(G) such
that

(Au, A®) + (Vp, V div @) = F(®) for all @ € Hy*(G)

and divu = 0.

(2)

A sketch of proof is given below for motivation.

In the first part, we will find analogous results to the first two of the above
mentioned results in the Banach space setting, where ¢ # 2, which means
that we are looking at

div : ﬂg’q(G) — H&}’S(G) and T, H&}’S(G) — ﬂﬁ’q(G)
assigning to each p € H&}’S(G) the unique v € Ho(G) satisfying
(Av, AD) = (Vp, V div ®) for all ® € H>7(G).

The heart of our approach is the generalization of an ansatz which was intro-
duced by Crouzeix in [6] and already used by Weyers in [22] yielding results

2



similar to the ones we search, but in a different setting. The main point
for the proof of our central compactness Theorem 6.5 is showing that the
operator under consideration (which is Z, — %I d restricted to a suited sub-
space Bi(G) C Hé:g(G), namely the subspace of harmonic H&’S(G)—functions,
where Z, := divoT}), has it’s image not only in Hév’g(G) but even in H*(G)
and that the mapping Z, — %I d (which defines what we call a “Cosserat op-
erator”) is even continuous with respect to these spaces. Then, compactness
of the operator Z, — %I d is simply a direct consequence of the compact em-
bedding from H*(G) into H(G). Once we have validity of an inequality
of the form

(e )

with a C' > 0 depending only on G and ¢, this inequality carries over by an
approximation argument to all p € Bi(G), see Theorems 5.1 and 6.4. So
the situation is somewhat better than hoped for. Showing inequality (3) is
the point where Crouzeix’ idea is applying: At first, we construct a function
[ € H*1(G) which depends continuously on p € Hg:g (G) and assumes the
boundary-values of Z,(p) — 3p in the sense that

< C||Vp||, for all p € B{(G)NH>(G)  (3)
q

27

f—= <Zq(p) - %p> € Hy'(G).

Then we have Miiller’s variational inequality at hand which is valid for
H(G)-functions and helps us showing inequality (3).

The construction of an f € H*Y(G) which depends continuously on p and
which assumes the boundary values of Z,(p) — ip (see Theorems 6.2 and 6.3)
is the complicated part of the proof and the success of the made ansatz is at
first sight not evident at all. For the reader of [6] and [22], the ansatz which
is given there might be seemingly strange. Therefore, it was not easy to
find the right generalization of the original Crouzeix-ansatz to our problem
right away. However, having found the suitable generalization after some
fiddling about it, the idea behind it comes more to light. Therefore, at the
beginning of Section 6, we give a motivation for this ansatz for Weyers’ case
where we try to find a suitable candidate for f via a kind of product-ansatz
with one factor consisting of the given dates p and u = fq(p) and the other
factor consisting of “free” functions, which are to be found. After some
calculation, rather reasonable requirements for the unspecified functions are
found, and one is led quite naturally to the ansatz made by Crouzeix. The
compactness Theorem 6.5 for the Cosserat operator makes it easy to prove the



generalizations for the first two of the above given main results by Simader,
see our Theorems 7.6, 7.8, Remark 7.9 and Theorems 7.10 and 7.11.

At different points, for example the continuous dependency of f from p (The-
orem 6.2 and 6.3) or the regularity Theorems 10.3, 10.4 and 10.6 for the
Crouzeix-construction and for Zém) — 21d in Part II, we use the important
Theorems 6.1, 10.1 on Elliptic Regularity from Simader’s [15]. The role of
Theorems 6.1 and 10.1 must not be underestimated: The Crouzeix-ansatz
and all the regularity theorems (even the one in Part II for a kind of general-
ized Stokes-problem, see Theorem 11.2) are proved using merely the regular-
ity Theorems 6.1 and 10.1 for the uniformly strongly elliptic regular Dirichlet
bilinear forms in the sense of [15], see Definition 2.11, which are associated
to A™ (for a precise definition of these By, [-,-], see (4)). Especially for our
Stokes-like-system in Part II, no results on elliptic systems need to be used,
but only regularity for A™ and the regularity of the respective Cosserat op-
erator (which is also proved using regularity for A™). This beautiful and
elegant approach to regularity is due to C. G. Simader and his [13].

In the second part, we generalize our procedure from the first part to higher
orders, that is: We concentrate then on the operators

div: Hi"(G) — Hg’fgl’q(G)

and
T (@) — Hy (@),

which assigns to each p € Hg?o_l’q(G) the unique v € Hy"(G) satistying
By [0, ®] = Byoy [p, div @] for all & € Hy™ (G),

where B, and B,,_; are uniformly strongly elliptic regular Dirichlet bilinear
forms B, [-,:] in the sense of [15] which are associated to A™ respectively
A™=1 This means that for m € N, ® € H™(G) and ¥ € H™ (G) we
define

(AT ®, AT W) for even m

m—1

m—1 4
(VA7 & VA 2 ) for odd m )

By [®, 0] := {

Once one has found the right generalization of the Crouzeix-ansatz to this
situation, results similar to those from the first part can be derived quite
easily from the respective compactness Theorem 9.10. This general account
covers the case of our first part (for m = 2) and also Weyers’ situation from
[22] (for m = 1) in the case of bounded domains. Here, in the special case
of Weyers’ situation, we get weaker requirements for the regularity of 0G as

4



in [22], which is actually only a benefit of using the notion of the trace (see
Section 4).

In the second part, we are also looking at the generalization of the Stokes-
like system (2) treated by Simader in [17] to the Banach space setting and in
higher orders, see Section 11. As a motivation for our account, we will give
a brief sketch of the proof of solvability for the system (2):

e At first, the n scalar Dirichlet problems are solved: There exists a
w € Ho*(G) such that

(Aw, A®) = F(®) V& e Hy*(G).

e Thendivw =: 7 € H&’g(G) and thus we find a unique v € M?*(G) such
that dive = «. Therefore we have u := w—v € Hg*(G) and divu = 0.
We also have, as v € M*(G), ap € H&’g(G) such that

(Av, AD) = (Vp,Vdiv®) V& e Hy*(G).

e So, all in all, we have for ® € Ho*(G):
F(@) = (Aw, A®) = (Au, AD) + (Av, A®) =
~ (Au, AD) + (Vp, Vdiv @)

and divu = 0.

This motivates us to consider for the fourth order Stokes’ system the term
(Vp,Vdiv®) (which generalizes later in order m to what we denote with
Bp—1 [p,div ®@]) as the natural candidate for the generalized pressure func-
tional and we regard thus the system (2) as the appropriate generalization
of the usual Stokes’ system.

In [3], Amrouche and Girault looked at another way of generalizing Stokes’
system: Their homogeneous version (i.e. with finding a solution vector field
with boundary values zero and divergence zero) of a fourth-order Stokes’-like
system reads

A’u+Vp = [,

divu =0,
du
u=0on0dG and — =0 on 0G
on
and as a generalization to higher orders they suggest the system

A"y + Vp = f,

b}



Contrary to this, the “classical” or “strong” form of our generalization reads
A"y 4+ VA™ p = f

and the weak form we investigate is the following:

For m € N, given a functional F' € <ﬂ6n’q/(G)> , we are looking for an
u € Hy"(G) and a p € Hyy "(G) such that

By [, ®] + By [p, div®] = F(®)  for all ® € Hy" (G)

and

divu =0,
where By, [-,-] and B, 1 [-,-] again are our bilinear forms representing A™
and A™1,

The reason to prefer this generalization to the generalization by Amrouche
and Girault is it’s connection to the operators div and T gm). If we analyze
the sketch of proof of solvability given above for the system in question, we
see that the use of the operators div and L(]m) and knowledge about them
plays the central role in the proof, resulting in a very elegant way of proving
solvability (and regularity) for the investigated system. For regularity of their
variant, Amrouche and Girault have to cite the very general and complicated
theory of Agmon, Douglis and Nirenberg. However, with regularity for our
system at hand, it would be easy to derive regularity theorems for the system
of Amrouche and Girault.

2 Preliminaries

2.1 Notations

Throughout the whole first part of the paper (Sections 2 to 8) let n € N
with n > 2 and G C R” denote a bounded domain (that is G is open and
connected) with G € C°. OG € C° means that for every p € G we find an
open set U C R™ with p € U and a function f € C3(U) with V f(p) # 0 and

QNU={xeU: f(r)>0} and IQNU ={x € U: f(z)=0}.

As Vf(p) # 0 and 0;f (: = 1,...n) is continuous in U, we find a smaller
open set V' C U with p € V such that for a certain i € {1,...,n} we have
O;if #0in V. After a permutation of variables we may assume that i = n
and by the implicit function theorem we find a function ® € C*(A) with



A=]p—0,p1+0[x - X]pp_1—0,pn_1+ 0 C R for asufficiently small
0 > 0 and an open set W C V with p € W such that

{z = (2 2,) €e 0GNW} ={z = (2',2,) e R": 2’ € A and z,, = (2')}.
We can also see that we can take as W a set of the form

W= J {2} x]0(2) —e,®(2) + ¢

€A

for a sufficiently small 0 < ¢ and that we can achieve that
W={zx= (2" 2,) eW: z, >0} U{z=(a2,) eW: 2, =)} U

U{z = (2/,2,) e W 2, < P(2')}

and either

or

WnQ={z= (" z,) eW: z, <P()}.

Such local representations of G will be used later where we show claims
locally and use a partition of unity to show the claim in general. Note that
due to the boundedness of GG, G is a compact set and we thus can assume
that OG is covered by finitely many open sets of the type of the above defined
w.

Further let 1 < ¢ < oo and ¢ := q%l. For two sets U,V C R™ we use the
notation V' CC U to denote that U and V' are open sets, V' is bounded and
V C U. By |G| we denote the Lebesgue-measure of G.

For f € LI(G) we write

1l = 1o = ( /G I dx)q |

Regarding elements of L4(G) we tend to be a little sloppy and will not always
distinguish between an element f of L?(G) which is by definition an equiv-
alence class of functions with respect to the equivalence relation “equality
almost everywhere” and a certain representative of this equivalence class. In
this regard a statement like

f € LY(G) has the property (P)
where (P) is a pointwise property means:

There is representative of f for which (P) is valid.



2.2 The Relevant Spaces

We now introduce the relevant spaces and the notations we use in conjunction
with them:

Definition 2.1.

e For k € N we denote by H*4(G) the usual Sobolev spaces of functions
f € LIY(Q) which possess for any multiindex o = (v, ..., o) € (Ng)»
with |of == "1 a; < k a weak a-derivative in LY(G), that is a function
fa € LYG) which admits partial integration, that is for every ® €
C°(G) we have

/GfDaq>dx_(—1)lal/Gfaq>dx,

where D is the derivative Baaa11 ...g%. We often write D*f for f,
J?l LTn

and for |a| = 1 with a; = 1 we write simply O;f for D*f. By the

definition

Q=

1 g = 1l = | D IDfI

la| <k

for f € H*4(Q) the space H®4(G) becomes a reflevive (we have through-
out 1 < ¢ < o0) Banach space and for ¢ = 2 even a Hilbert space with
inner product

(Fg) = S (DD = 3 [ DfDgda
lal <k o<k 7 C
where (-, )9 denotes the usual L*-product. In case q # 2, we understand
(-,-) as the LI-LY dual-pairing
()= [ foda, for f € L7(G). g € L7(G).
a

e By HY'(G) we denote the closure of C3°(G) in H*9(G) with respect to
the above defined norm.

e Due to the boundedness of G we can make use of the elementary Poincaré
mequality:



There is a constant Cpyincare = CPoincare(q, G) > 0 such that

1
n q
Hqu < CPoz'ncaré ||quq = CPomcaré <Z ||(9]u||;1>

j=1
for allu € Hy'(Q).

By (for k > 1 iterated) application of the elementary Poincaré inequal-
ity we get norms which are equivalent to the above defined ones on the
closed subspace Hy'(G) in H®(G). These are:

= [IIly,, defined by

i

n .
1 = IVl = (Z H@M\Z) :
j=1

= |Illa,, defined by

lullyg = VVull, = (Z ||5’j5’kUIIZ> :

Jk=1

— |Ill3,, defined by

lully = IVVVull, = (Z ||3j3k3ZUIIZ> :

J,k, =1

e Beside the elementary Poincaré inequality, we also have a kind of
Poincaré inequality which is valid for mean-value-free functions:
For every bounded domain G CC R™ with 0G € C', 1 < q < oo, there
exists a constant Cpy; = Cpoi(G, q) such that
[ullg.c < Cpoi [Vully e

holds for every w € HY(G) satisfying [, udx = 0.
For a proof, see for example, [7], Theorem 1 in 5.8.1., page 275.

e By an application of the Calderon-Zygmund estimate, one can show the
following theorem (for a proof, see [18], page 280):



For 1 < q < oo there exists a constant Ccy = Coz(n,q) > 0 such that
for all uw € C°(R™) we have:

1

<Z HajakUHZ) < Cezl|Aulf,

jk=1

Due to this estimate, we can employ new norms on Hy(G), Hy'(G)
. . / / .
which are equivalent to the norms |-\l and ||-|[5, given above:

— |Il5,, defined by
1
[ully, = [[Aul,

— |5, defined by

lulls o = IV Aull, == (Z ||3jAuI|Z> :
j=1

In the following we will prefer the direct and more suggestive notations

like [[VA-[|, to the above defined ones like ||||gq
H&}’S(G) ={pe HyY(G) Jopdz =0}

HY(G) = (Hg’q(G))n denotes the space of vector fields v = (vq, ..., v,)
with components v; € Hg’q(G). We will throughout use underlinings to
mark a certain object as vector valued. However, we will use these
underlinings also for constants € R, should they arise in a suited sit-
uation where it is appropriate to distinguish between a “vector-case”
and a “non-vector-case”.

Remark 2.2. Foru € H>(G), p € HY(G), we will often use the following
formula:

(V divu, Vp) = (Au, Vp)

To show this formula, we approximate u with a sequence (®,) C Co°(G) with
respect to the H*9(G)-norm. Then we have

(Vdivu, Vp) = lim (Vdiv &, Vp) = — lim (Adiv &y, p) =

— lim (div A®,, p) = klim (AD,, Vp) = (Au, Vp).

k—oo

The following theorems about H'9(G)-functions will be used later:

10



Theorem 2.3. For G C R" open, 1 < q < oo and u € HY(G) let
Zu):={zreG: u(r)=0}.
Then foriv=1,...,n it is
diu(z) = 0 for almost every x € Z(u).
For a proof, see [16], Satz 6.15, pages 151-152.

Theorem 2.4. Let G C R" be open, 1 < q < oo and u € H"(G) (resp.
€ HyY(G)). Then |ul, uy, u_ € HY(G) (resp. € Hy'(G)), where

uy (z) := max {u(x),0}
for almost every x € G,
u_(z) := min {u(z),0}

for almost every x € G.
Further

o fori=1,...,n

diu(x), for almost every x € G with u(z) >0
(0; Ju]) (z) = <0, for almost every x € G with u(z) =0
—0iu(z), for almost every x € G with u(x) < 0

i.e. 0; |u| = sgn(u)ou,

(Oiuy) (z)

{@u(m), for almost every x € G with u(x) > 0

0, otherwise
and

Oiu(x), for almost every x € G with u(z) < 0

(Ohu_) () = {

0, otherwise

e the assignments u — |u|, u — uy, u — u_ from HY(GQ) to HY(Q)
(resp. from HyY(G) to Hy(G)) are continuous with respect to these
spaces.

For a proof, see [16], Satz 6.17, pages 153-156.

11



2.3 Friedrichs’ Mollification and it’s Fundamental Prop-
erties

In this subsection we will only cite some of the fundamental properties of
Friedrichs’ mollification process, which we will need in the following. The
respective proofs can be found in almost any book on partial differential
equations, we simply refer to [16]. In the following, let j € C§°(R") with
j >0, j(x) =0for ||| > 1 and [, j(x)dr = 1. Such functions exist, a
widely known example is the (only radially depending)

1
. ce -I=1Z for ||z]| < 1
o ol
0 for ||z|| > 1

where ¢ > 0 is the constant scaling j to satisfy fan(:z:) dex =1. Fore >0
we further define j.(z) := e7"j(%). It is immediately seen that j. € C5°(R")
and by the transformation formula for integrals we see fR" Je(x) dx = 1.

Theorem 2.5. Friedrichs’ mollification
Let G C R™ be open. For f € LY(G) we define for x € R™ the new function

fox) = /G Jo(e — 9) f(y) dy.

Then we have:

i) f- € C>®(G) for all e > 0.
it) For alle >0 it is f. € LYG) and ||f — fel, ¢ =0,

wi) If f € HY(G) and there is a compact set K C G such that f(z) =0
for almost every x € G\ K, we have for every 0 < ¢ < dist(K, 0G):

(f) € (@)
and for every x € R", 0 < e € R:

(0if)e(z) =0i(fo)(z), i=1,...,n

Concerning Friedrichs” mollification, we also state an important property of
harmonic functions (which is indeed characterizing harmonic functions), for
a proof, we refer to [14], Lemmas 2.5 and 2.6, pages 765, 766:

Theorem 2.6. Let G C R™ be open, G' CC G and u be harmonic in G.
Then for every 0 < e < dist(G’, 0G) we have

us(xr) = u(x)

for every x € G'. In particular, uw € C*(G).

12



2.4 Solvability of the Weak Dirichlet Problem in L9
with Homogeneous Boundary Conditions for A?
and A3

In this subsection we cite the important variational inequalities and solvabil-
ity theorems which will be used in the following.

Theorem 2.7. Miiller’s variational inequality in Hy'(G) (see [10], Haupt-
satz, page 191):

Let G C R" be a bounded domain with 0G € C?, 1 < q < oo with ¢’ := q%l.
Then there is a constant Cyrq > 0 depending only on G and q such that

(Au, AD)

|Aul|, < Cy, sup RN
I ! A,

0£BeH>T (G)

holds for all u € HY(G).

For a proof, we refer to [10], pages 191-194.

In fact Miiller proved this variational inequality not just for the case of
bounded domains but also for exterior domains. We also have a vector-
version of this variational inequality:

Theorem 2.8. Miiller’s variational inequality in HY(G):
Let G C R™ be a bounded domain with 0G € C?, 1 < q < oo with ¢’ == -4

—1-
Then there is a constant C); > 0 depending only on G and q such that
(Au, AD)

|Aull, < C sup
7= =Ma A2,

0£2eHY" (Q)

holds for all u € HY(G).
Proof. We have for u € Hy'(G):

1
[Aull, = (Z HAujHZ>
j=1

and as for y = 1,...,n we have

q

<Auj7 A@)

A 119 < Cq
|| U’]Hq — M,q sup ”ACDHq/

0£PeH> (G)
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by Theorem 2.7, we find

1
a9\ «
a Au;, AD
|Aul, < Cor [ S| sup 222D
: 20 o |1AP]
j=1 \0£deH>" (@) q
But we have for j =1,...,n
sup — sup -
07&@6}13«4'(@) HACI)H(]/ Oiﬁeﬂg’q,(G) HA@Hq'
and so we find
NE
g Au, AD
SR -
j=1 \0£ecH>(Q) =llg
Au, AD
= CM,qné sup <§?T_>
— 0¢Qeﬁg’q’(g) || —Hq’
—Ciryg

]

Validity of Miiller’s variational inequalities for ¢ and ¢’ are equivalent to the
unique solvability of the weak Dirichlet problem for A? in L? and LY with
homogeneous boundary conditions. For a proof, we refer to [10], Lemma
II1.15. on page 164, but for the analogous problem (Theorem 2.17) for A3
we will give a proof below, see Theorem 2.17.

Theorem 2.9. Let F' be a bounded linear functional € (Hg’ql(G)> . Then

there is exactly one u € Hy'(G) with
(Au, AD) = F(®) for all ® € H> (G).
Moreover, the solution u satisfies

el < Co IF ] gt -

with a Caz = Caz2(q,G) > 0.

For a proof, see [10], Lemma II1.15., page 164.

In [10], Satz IV.1.1., page 195, Miiller gives the following regularity result in
a version for exterior domains. We state the theorem in another version for
our domains which we will give a proof for:

14



Theorem 2.10. Let 1 < ¢,5 < 0o and u € Hy*(G) satisfying

(Au, AD)
sup  ———— < 00. (5)
secec) |1AP|,

Then u € Hy*(G).

Proof. In the case 1 < s < ¢ < oo the statement u € Hg*(G) is shown
easily: For s = ¢ everything is clear and for s < ¢ the statement is merely a
consequence of the boundedness of G and the Holder inequality. In this case
we do not even need the validity of assumption (5).
So look now at the case 1 < ¢ < s < co. Let first 0 # ® € C°(G). By (5)
we see that by

F(®) := (Au, AD)

we have

|<AU, A(I>>| ||ACI)HSI < sup <Au7 A\IJ>

F(@)| = |(Au, ag)| = (2022 ST
AP, ozvece(@) AV,

|A®],, .

As C°(G) is dense in H>*' (G) with respect to the norm |A-],, there is an
unique linear and continuous extension £ € <H§’SI(G)> of F'. By Theorem

2.9 we find an unique v € H*(G) with
(Av, A®) = F(®) for all & € H>* (G).
As s > ¢ we find that v € H>(G), too. For all ® € C°(G) we find that:
(A(v—u), AD) =0
and thus by the uniqueness in Theorem 2.9 we conclude u = v € Hg *(G@). O

For the solvability of the analogous problem to Theorem 2.9 for A% we have
to refer to [15], Theorems 7.5.and 7.6., which apply not only to A® but to
uniformly strongly elliptic regular Dirichlet bilinear forms of given order m
in the sense of [15], Definitions 1.3 and 1.4, pages 14-16. This means:

Definition 2.11. Let G CC R" be open, n,m € N with n > 2 and m >
1. Let for every a, 8 € (Ng)" with |a|,|B] < m a complex-valued bounded
measurable function a, g defined in G be given. For ®, ¥ € C3°(G) let

B[®,U] := ) (aasD*®, D’V).

la|<m

1B]<m

15



and
Lp:=(-1)" Y aup(-)D*D".
la|=[8]=m
Then B is called an uniformly strongly elliptic Dirichlet bilinear form of order
m in G, if the differential operator Lg is uniformly strongly elliptic of order
2m in G, that is:

o For every fized (Iy,...,l,—1) =: 1 € R"1\ {0} and every x € G the
polynomial in 7 € C
P(rlz)= Y au(@)l® ot a=(d,a,),8=(8,5)
la|=|B8]=m

has exactly m roots with positive and m roots with negative imaginary
part.

o There exists a constant E > 0 such that
(—D)™Re Y aap(x)l*™? > EJIP"
|a|=]8]=m
holds for every x € G and |l € R™ .

Moreover, by reqularity of B, it is meant that the functions asp admit for
la| = |B] = m a continuous continuation to G and are bounded in G for
o] = 18] <m.

Remark 2.12. All the bilinear forms we will use in the following are defined
for some m € N by

(AZ®, ATV for even m

(VA" &, VA" U) for odd m

B, [®, 0] := {

Now it is quickly seen that B, defines an uniformly strongly elliptic reqular
Dirichlet bilinear form of order m in the above introduced sense:
We see that we can write

By[®, U] = > (a,sD"®, D W)
laf<m

1B|<m

with all the a,g > 0 constant.
Next, we see that the differential operator L associated to the bilinear form
B = B,, has the form

Ly = (—1)™(—1)"A™ = A™.

The requirements from Definition 2.11 are quickly verified:
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o The regularity assumptions on the a.g are trivially fulfilled, for they
are all constant.

e The polynomial P(7,1,x) with [ € R"*\ {0}, 7 € C can be written as

(—Hm™ ("i IZ + 72> )

This polynomial has the same zeros T as the polynomial Z?:_ll 2+ 72

2
but with m-times as much multiplicities. As the polynomial Zn_l 2472

=1 "i

has real coefficients, the zeros occur in pairs of complex conjugates and
as | # 0, there can be no real zeros. So the original polynomial must
have one zero with positive imaginary part (with multiplicity m) and

one zero with negative imaginary part (with multiplicity m ).

e Looking at
m m |7]2m 2m
(=)™ Re ((=D)™ 1) = [II™"

we see that we can choose = 1.

Having now verified that our B,, |-, ] are admissible for Simader’s theory
from [15], we cite the important theorems from there which we are going to
use in order to get our solvability statements:

Theorem 2.13. (Compare [15], Theorem 7.5., page 129)
Let m > 1 be an integer and let G C R™ (n > 2) be a bounded open set with
boundary 0G € C™. Let B[®,V] be an uniformly strongly elliptic regular
Dirichlet bilinear form of order m and q,q" two real numbers with 1 < q,q' <
oo and 1+ 1 =1.

q q
Let

N, := {w € H"(G): Blw,®] =0 for every ® € Hgl’q/(G)}

q
and let

Ny = {z e H™'(G): BI[U,z] =0 for every ¥ € Hgn’q(G)}.

Then dim N, = dim N, = d < co. For F € (Hg”’q'(G))* the functional

equation /
Blu,®] = F(®) for every ® € H)" (G)

has a solution u € Hy"*(G) if and only if F(z) =0 for every z € N,.
Particularly, in case of d = 0, the equation is uniquely solvable for arbitrary

Fe (Hgnvq’(c;))*.
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To show in our case that d = 0, we use the following theorem:

Theorem 2.14. (Compare [15], Theorem 7.6., page 131) Let m > 1 be an
integer and let G C R™ (n > 2) be a bounded open set with boundary 0G €
C™. Let B[®,V] be an uniformly strongly elliptic reqular Dirichlet bilinear
form of order m, let q be a real number with 1 < ¢ < oo and u € H)"(G)
such that

Blu,®] =0 for every ® € C5°(G).

Then u € Hy""(GQ) for every 1 < r < co.

Remark 2.15. So in our case, where m := 3, B[V, ®] := (VAV VAD),
look at an v € N,. Then for every ® € C5°(G) we find

(VAu, VAD) = 0

and with Theorem 2.1 we conclude that u € Hy*(G) and u € Ny(G), too.
Thus taking u itself as a testing function (which can be justfied by approxi-
mating u in the Hy”(G)-sense by C3°(G)-functions), we see that

(VAu, VAu) =0
and thus ©w = 0.

This leads us to the following solvability theorem:

Theorem 2.16. Let F' be a bounded linear functional € (HS’QI(G)> . Then
there is exactly one u € Hy'(G) satisfying

(VAu, VA®) = F(®) for all ® € H3 (G). (6)

Moreover, there is a Cas = Cas(q, G) > 0 such that for every F € (Hg’q/(G)>

and u with (6) we have the estimate

IV Al < Cas 1Fl ) 7)

Proof. The existence of an unique u € Hg’ (@) satisfying
(VAu, VA®) = F(®) for all ® € H> (G) (8)

is a direct consequence of Theorem 2.13 and Remark 2.15. The only thing
that remains to be shown is the existence of a Cas = Cas(q, G) such that

||VAU||Q S OAB ||F||(H3’q/(G))* .
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With Theorem 9.11 in [15] (see our Theorem 6.1 (with m = 3, j = 0)) we
get with (8) the estimate

ol <3 (D gy + Dl ) 9

where 7 is dependent only on ¢ and G (note that m, j and B, as they were
called in Theorem 6.1 are fixed here and n is already coded in G). In view
of the equivalence of the norms ||[VA-|| and ||-||;  on HJ9(@), it is sufficient
to show that for u we have an estimate of the form

lull, < €I (10)
with a C' = C(¢,G) > 0. As we have
Jull, < llulls,
it suffices to show validity of an estimate of the form
g < CIFl (g (1)

with a C' = C(q,G) > 0. Then estimate (7) follows easily with (9).
Assume (11) were false. Then we could find a sequence (F,), .y C (Hg o (G))
and (u,),cy C Hy*(G) with

(VAu,, VA®) = F,(®) for all ® € C°(G), v €N

with
Junllz, =1 (12)

and

[l g > v HFVH< (13)

B @)
With (12) and (13) we conclude

3,q’ *
F, () 0.

By (12) the sequence (u,),.y C Hg?(G) is bounded in Hy(G) and we can
assume (by passing to a subsequence) without loss of generality that there is
an u € Ho'(G) with

weakly in Hg’q(G)

Uy
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and
strongly in Hg’q(G)

Uy

by Rellich’s compact embedding from HoY(G) into Hy(G), see for example
[2], A6.1, pages 256, 257.

weakly in Hg’q(G’)

3,q, G *
By u, u and F, <H0 ( ))

0 we see easily that

(VAu, VA®) = 0

for all € Hg’q/(G) and by the unique solvability already verified, we see
u = 0. By the inequality (9) and the convergence of u, in LI(G) to 0, we see
that

o =l <7 (15 = Bll gy + s =l ) <

U, V— 00
<1 (g oy + 1B gy + ol + sl ) 25 0
and so (u,,) is a Cauchy-sequence in Hg?(G) and thus has a limit v € HY(G).
But then (u,) converges also weakly in Hy%(G) to v and by uniqueness of
the weak limit we have v = v and thus (u,) converges strongly to u = 0.

This, however, is a contradiction to [[u,[|;, =1 for all v € N. O
With Theorem 2.16 we also get a variational inequality:

Theorem 2.17. 1. There is a Cy = Cy(q,G) > 0 such that for all u €
Hg”q(G) the following inequality is valid:

(VAu, VAD)

IVAu| < Cy sup
I VA,

0£beH>Y (@)

2. The validity of this variational inequality is equivalent to our solvability
Theorem 2.16 in the following sense: If G C R™ is a domain such that
the statement of the variational inequality is valid for 1 < q < oo and
q with % + & =1 then also the solvability theorem is valid for q and ¢
and vice versa.

Proof. At first we will prove the statement of the variational inequality using
the solvability Theorem 2.16, thus showing 1. and one part of the equivalence
in 2.:

Let u € H>(G) be arbitrary. Then by setting for ® € H>'? (G)

F(®) := (VAu, VAD),
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a bounded linear functional F' € (Hg ’q/(G)) is defined. By definition, we

have ,
(VAu, VAD) = F(®) for all d € H>? (G)

and thus by Theorem 2.16 we have

IVAul, < Cas 1Pl gy < Cas  swp  |F(@)| <
SeHIY (G), |B]l5 <1

VAu, VAP
< Cas sup <g’—>
0£beH>Y (@) I Hs,q’

and as for all ® € H>? (G) we have

1 1

[VA®[,, = (Z H@'A@HZ) < <Z ||8i8j8j<1>\|g,> <[],

i=1 i,j=1

and [[®[l,, = 0 & [VA®|, =0 < 0 =& € Hy'(G) we find for all
0+4®e H(G)

(VAu, VAD)| _ [(VAu, VA®)|
1@l = IVA2],

and thus
(VAu, VAD)

[VAu|, < Cas  sup
! VA,

0£BeHY (@)

So, validity of our solvability statement for ¢ implies validity of our variational
inequality for q.

To show the other implication in 2., we assume validity of our variational
inequality for ¢ and ¢’. Take a look at the set T :=

{F c (HS#’(G))* 3u € HY(G) : F(®) = (VAu, VAD)S € cg°<G)} .

By the variational inequality, we see that 1" C (Hg’ ’q/(G)> is a closed linear
subspace: Taking a Cauchy-sequence (F,) C T C <H§’ ’q/(G)) converging to
an F € (Hg’q/(G)> with

u, € HYY(G) such that F,(®) = (VAu,, VA®) for all & € C°(G),
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existing by definition of T', we see by the variational inequality for ¢ applied
to Cauchy differences, that

VA(u, — ,VAD
IVAG, — ), <Cy  sup VAU ). VAD)

0£BeHY (@) HVA(I)”q’
=Cy  sup (B, = Fu)(®) pmoe 0.
0£BeHY (@) VA2,

So, the sequence (u,) converges in Hy?(G) towards an element u. For any
® € C°(G), we have

F(®) = lim F,(®) = lim (VAuw,, VA®) = (VAu, VAD)

V—00

and thus '€ T .
We now want to show that 7" = <H3’ql(G)> : Assume that this were not

so. Then by a consequence of the Hahn-Banach Theorem, we could find a
functional 0 # H € (HS’QI(G)> with H(F) = 0 for all F € T. But as

H3(G) is reflexive, we find an element v € Ho? (G) with H(F) = F(v) for
all F e (Hg”’q/(a)) . We find that for v we have therewith
(VAv, VA®) = 0 for all d € H)(Q),

as every ® € Ho'(G) defines an element Fy € <Hg’q/(G)> by

Fp(T) := (VA®, VAD) for all ¥ € H> (G)
and Fg € T. Then we have
(VAv, VA®) = Fy(v) = H(Fy) =0

and thus by the variational inequality for ¢’ we find:

(VAv, VAD)

VA, < Cy  sup
I VA,

0£PEHY(G)

=0,
so v = 0 and thus H = 0, a contradiction. The uniqueness of the solution is
shown easily: Assume that v € HY/(G) with

(VAu, VA®) =0 for all ® € H? (G).

Then as above with the variational inequality for ¢ we find that v = 0, so
the solution must be uniquely determined in Hy*(G). The continuity of the
solution process is a direct consequence of the variational inequality.

[]
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Remark 2.18. The foregoing account to solvability and validity of a vari-
ational inequality for the problem related to A3 could also have been used
without problems for the problem of A%. However, the cited theorems for the
case of A? were used due to their generality (they also apply to the case of
exterior domains) and the fact that their proof is more elementary than the
proof of the theorems from Simader’s Theory.

2.5 A Decomposition of H,"(G)

Definition 2.19. Between the spaces from Definition 2.1 (equipped with the
respective norms) we have the following continuous linear mappings:

o div: HY(G) — Hé”g(G), v=(v1,...,0,) = > O,

o T, : H&’g(G) — HY(G),p — v where v is the unique element in
HY(G) satisfying

(Av, A®) = (Vp,Vdivd) V& e Hy"(G). (14)

The solvability of (14), the uniqueness of v and the continuity of T,
are gquaranteed by Theorem 2.9.

e By Z,: H&}’S(G) — Hé”g(G) we denote the composition Z, = div oT,.

We state a generalization of Weyl’s Lemma which is valid for arbitrary open
sets G C R™

Weyl’s Lemma 2.20. Assume f € L (G) satisfies
(f,A"®) =0 for every ® € C;°(G). (15)
Then f € C*(G) and A™f = 0.

Proof. A very elementary proof for the cases m = 1,2 making big use of
Friedrichs’ mollification can be found in [14] (see Lemma 2.7, page 767 and
Theorem 3.4, page 770). It can easily be generalized to m € N by a simple
induction argument, the first part already being done. Let m € N, m > 1
and the assumption hold for m — 1 and m = 1. As being C* is a local
property we can look at x € G arbitrary and it suffices to show that f is
C* in an open ball B,(z) C G. So let now z € G be arbitrary, r > 0 be so
small that B,(x) CC G and € > 0 be so small that B, s.(z) CC G. Because
D, (y) := j-(y — 2) is for fixed z € B,(z) a function with compact support in
G, we see with equation (15) that we have

0= /G F)AT .y — 2)dy = /G F)AT . (y — 2)dy =
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_Am / Je(y — 2)f(y)dy = A™.(2)

and thus A™f. = 0 in B,(z). So we have shown for every sufficiently small
e > 0 that A™71f, is harmonic in B,(z). By the property of harmonic
functions that they stay invariant under mollification with an only radially
depending kernel (to be more precise: For h harmonic in G we have h(z) =
he(z) for all z € G with dist(z, 0G) < €) and the fact that for z € B,(z) and
0 < 0 < ¢ we have

(fe)s (2) = (f5): (2)

and
9i (g:) (2) = (0:9). () for g € C*(G) and i € {1,...,n}

used iteratively, we see that for z € B,.(z) we have with 0 < § < ¢ since
A™1(f5) and A™71(f.) are harmonic

Am_1f€<z> = (Am_lfé)(s (Z) =A™ (fs,&) (Z) =A™ (f&,a) (Z> -
= (A" f5)_ (2) = A" f5(2).

So we find for all 0 < § < &:
A" (f5) = A" (f2) on By(x)

Defining g := A™ ! f., we see that ¢ is harmonic on B,(z) and that it is no
restriction to assume g € C . (B,(z)). We can find a h € C (B,(z)) with
A™'h = g: By classical theory we find a hy € C . (B.(z)) with Ahy = ¢
with the representation formula

h(y) = — /B L S=2)g(e)dz

where S denotes the fundamental solution to the Laplacian, see for example
[16], Satz 4.5, page 102. Iterating this process, we finally reach our sought
after h. Taking now a close look at f — h, we see that for & € C3°(G) we
have

(f—h, A" @) = (f, A" '®)—(h, A" 1) = 1ig(1)<f€,Am—1<1>>—<Am—1h, P) =

= lim(f., A" @) — (g, @) = lim ((f:, A™7'®) — (A" ., @) =0,

e—0

and thus by the induction hypothesis we conclude f — h € C* (B,(x)) and
as h € C* (B,(z)) we also find f € C* (B,(x)). O

Definition 2.21. We introduce the spaces
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o AYG):={pe Hy'(G): p=As foranse HG)}
o BUG):={pe Hy!G): [,pA’Pdz=0 VP eC(G)}

Furthermore we write A}(G) = AY(G) N Héy’g(G) and B(G) := BIY(G) N
H&j’g(G). Note that AY(G) = ALG) as can easily be seen by Gauf’ divergence
Theorem.

In view of Weyl’s Lemma 2.20 above we readily see that the space BY(G) is
consisting exactly of the biharmonic HO1 (@)-functions. In particular, every
h € B(G) fulfills h € C=(G).

Theorem 2.22. C35(G) := C*(G) N H&’g(G) is dense in Héy’g(G).

Proof. Let p € Hév’g(G) be arbitrary and f € C3°(G) with f > 0 in G
and [, fdr=1. Aspe Hy (@), we find a sequence (p,)yen C C°(G) with

D — Dy —— 0. Define ¢, := |, p, dx. Then with the Holder inequality
L.q G
we get

’C,,| =

1
oodel = | [ p,— pau S/m_m dz < |G7 |lp, — pll, — 0.
G G G

Let now p, := p, — ¢, - f. We then have p, mean-value-free and thus p, €
Coo(G) and

V—00

1By =l g < leol [1F1ly g + 2w = pll, g = 0.
0

The weak solvability of the Dirichlet problem for A% with zero boundary data,
from Theorem 2.16 gives rise to a direct (if ¢ = 2 orthogonal) decomposition
of Hy'(G) and HS”g(G) similar to the decomposition of L(G) obtained by
Miiller, see [10], Satz IV.2.1, page 201:

Theorem 2.23. We have the direct decompositions
Hy'(G) = A(G) @ BY(G) (16)
Hy3(G) = A§(G) @ B§(G) (17)

These decompositions are orthogonal if ¢ = 2.
If p = As + h according to this decomposition we find the estimate:

IVAs|, + VA, < Co Ve, (18)

with a constant Cp > 0 depending only on G and q.
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Proof. For p € Hy?(G) there exists according to our Theorem 2.16 an unique
s € Ho'(@) satisfying

(VAs, VA®) = (Vp, VAD) Vb e HY(G) (19)

and we have a constant Cas = Cas(q, G) with ||[VAs|[, < Cas [|[Vp||,. Define
h:=p— As € Hy'(G). Then we have for all ® € C°(G):

(h, A2®) = —(Vh, VA®) = (Vp — VAs, VA®) =0

that is h € B?(G) and we have a representation p = As + h as desired.
The uniqueness of the representation of p = As + h with s € HS’Q(G) and
h € B1(G) is due to the unique solvability of (19): Assume that p = As;+hy
and p = Asy+hy. Then we have A(sy —s9) = hy —hy € BY(G) is biharmonic
and therewith

(VA(s1 — 83), VA®) = —(A(s] — 89), A?®) =0 VP € C°(G)

S0 s1 = s9 and then hy = p — As; = p — Asy = hy. So the decomposition is
direct and we have shown (16).

Furthermore, we see that for every p € Hy(G) we have As € H&’g (G) and
thus h € H&’g(G) if and only if p € H&’g(G) yielding (17).

To see that this decomposition is orthogonal in case ¢ = 2 we note that if h €
B%(G), As € A%(G) we find (Vh, VAs) = 0 (through Hy*(G)-approximation
of s by C3°(G)-functions and partially integrating).

Further we have for a given p € H&’Q(G) and p = As + h:

IVAs]l, < Cas [ Vpll, (20)
and
IVhll, = [IVp = VAs|l, < [Vpll, + [VAs|, < (Cas + D [[Vpll,  (21)
Sticking (20) and (21) together we get:

IVAs]l, + VA, < (2Cas + D VDI, -
=C

O

The decomposition (17) and the operator Z, defined in (2.19) are closely
related and so (17) plays an important role in the study of Z,. As a first
insight we have:
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Theorem 2.24. Regarding the restrictions of Z, to A}(G) and to B{(G), we
get

Zul sy - AYG) — AYUG) and Z,(p) =p Vp € AY(G)
Zq‘Bg(G) 3BS(G) - Bg(G>

Proof. Let p € AY(G). Then p = As for an s € HYY(G) and we find
T (p) = Vs, for we have

—q
(AVs, A®) = (VAs, A®) = (Vp, A®) for all € H>? (G)
and so by uniqueness of the solution (Theorem 2.16) we have
T,(p)=Vs, Zy(p) =divVs = As =p
For p € B{(G) we have for ® € C°(G)
(Zy(p), A’®) = (div T, (p), A*®) = — (AT, (p), VAD) = —(Vp,AVD) =
= (p,A*0) =0
and so we conclude Z,(p) € B{(G). O

Regarding eigenvalues of Z, we have due to our direct decomposition from
Theorem 2.23 and Theorem 2.24 the following easy fact:

Theorem 2.25. Suppose A € R and p € H&’g(G) suffice Z,(p) = Ap. Then
we have A =1 or p € BY(G).

Proof. Assume that Z,(p) = Ap. Applying the decomposition (17) from
Theorem 2.23 to p we get p = As + h with s € HyY(G) and h € B{(G). So
we have on the one hand

Zyp) =Ap=AMAs+h) = Ms + b

and on the other hand using Theorem 2.24 we have

Z,(p) =Z,(As+ h) = Z,(As) + Z,(h) = As, + Z,(h).
€AH(@) eBI(G

~

So by the directness of the decomposition (2.23) we have:
As = As and Mho=Z,(h)

The first of these two equalities can only be satisfied if A = 1 or s = 0. So
we have shown: A =1 or p=h € BJ(G).
[
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Note that the “or” in (2.25) is not an exclusive one. The question whether
there are p € B}(G) with Z,(p) = p will be examined later (see subsection
8.2). It will show up that there is a finite dimensional subspace of B{(G) of
such elements and that the dimension of this subspace is only dependent on
topological properties of G.

2.6 Another Decomposition of H,"(G)

In this paper we will make use of the following decomposition of Hé’q(G)
which has already been investigated by C.G.Simader in [17] for the case
q=2:

Theorem 2.26. For Hy'(G) we have the direct decomposition:

Hy"(G) = Hyf(G) @ {g € Hy"(G) 1 (Vg, A) =0 for all @ € CF°(G)}

=:N1(Q)

(22)
Furthermore, for W € Hy9(G) with ¥ = ¥y + Uy where U, € H&:g(G) and
U, € N9(G), we have the estimate

Vo[, + [V, < Ca[VY]], (23)

with a constant Cy = Cy(q, G) > 0.
The space NU(G) is a one dimensional real vector space and independent of

q.
Proof. Let at first ¢ be fixed and g € N%(G). Then Vg satisfies

(Vg,A®) =0 for all & € C3°(G).

By Weyl’s Lemma 2.20 we conclude that for i = 1, ..., n we have 0;g € C*(G)
and consequently

Ag = Z@i@-g € C™(G), too.
i=1
Now we find that for ® € C°(G)
0=(Vg,A®) = —(g,div A®) = —(Ag,div®) = (V(Ag), D)

=

and thus
V(Ag) =0,
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so Ag is constant in G. Furthermore we find that g itself is in C*°(G), for if
we define the constant value of Ag to be called k, we see that the function

ko
f-—g—%m

satisfies Af = k — 2n% = 0 and by Weyl’s Lemma 2.20 it follows that
f € C®(G) and then g = f + £ |z|> € C=(Q).
Regarding the functional equation

(Vh,V®) = (1,®) for all ® € HY" (G), (24)

where 1 denotes the function which is constant with value 1 on GG, we get an
unique h € H& (@) solving the equation. Doing this for two different values
¢ and ¢, of ¢, we find functions hy € Hy™(G), hy € Hy®(G) with

(Vhy, V®) = (1, ®) for all & € HY(G) and

(Vhy, VO) = (1, ®) for all & € Hy®(G).

As G is bounded, we see immediately that hy, hy € Hy™™ %2} (@) and thus
hy — hy € HY™™ (@) and with

(V(hy — hy), V®) =0 for all ® € C°(G)

we find that ho — hy = 0 or hy = h;.

So we have h € Hy?(G) for all 1 < ¢ < oo, solving (24) for every 1 < ¢ < oo.
By the unique solvability of (24) in Hy%(G) we see that for g € N9(G) with
Ag = cin G it must be g = ch. We have shown that N(G) is independent
of ¢ and one dimensional.

We further find for A like above: h(z) > 0 for almost every x € G:

We first define h_ to be the negative part of h, that is

h_(z) := h(z) if h(z) <0

h_(z) := 0 otherwise.
Then h_ € Hy*(G) by Theorem 2.4 and

0 < |[Vh_|l3 = (Vh_,Vh_) = (Vh,Vh_) = (1,h_) <0,

so we see h_ = 0. Because h is not the zero function, we further have

/hdx>0
G

29



and we can define .
hi=——"
fG hdz

with
h >0, and /izd:vzl.
e
Now we can prove the decomposition (22): Let ¥ € Hy(G) be arbitrary.
Then let ¢y := [, ¥dz and we have Uy := U — cgh € H&’g(G), U, :=cgh €
N9(G) and . .
\I/()—l—\I/l :\I/—Cq;h+6q;h:\lf.

For the directness of the sum, suppose, ¥ € HS”S(G) N N,(G). Then ¥ = ah
with o € R and because of

O:/\Ilda::/ozﬁdx:a
G el
we see W = (.

To show the estimate (23), we look at
/\I/da: Sc/ | U] dxﬁc(/ 1dzv>q ||‘I’Hq§
e a e

1
< \C ’G| a CPOincMé(Qa G)J ||V\Ij||q

=:C(q,G)

IV, = lesl |VA] =
~~——

=:c=c(q,G)

So, we have
IV, + [V, = [[V(T = )|, + [V, <

< |[V¥l, +2[[Vi, < 20+ 1) [V, .
::Cd(qu)
0

Remark 2.27. One can easily show that the decomposition from Theorem
2.26 1s orthogonal in the case ¢ = 2 by using Theorem 7.6, which s still to
be shown:

For let r € H&j’g(G) and s € N*(Q), we see that we find due to Theorem 7.6
av € ﬂg’Q(G) satisfying divv = r and thus

(Vr,Vs) = (Vdivy, Vs).
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Approzimating v in the H**(G)-norm by (v,) C C°(G), we see by partial
integration that

(Vdivy,, Vs). = —(Adivy,, s) = —(div Avy, s) = (Av,, Vs) =0,
as s € N*(G) and thus also

(Vr,Vs) = 0.

3 Helpful Theorems

3.1 A Helpful Function

In [22] (Theorem 6.1) Weyers constructed to a given G CC R" with 0G €
CF1 a function ¢ = ((G) € C§(R™) with (|ape = 0 and V(|sc = N where N is
the outward unit normal of G. So in our case of a fixed G with 0G € C°, we
find a ¢ = (@) according to Weyers with ¢ € C3(R"), (|ac = 0 and V(|sg =
N. As ¢ € C5(R™) we find a constant C; > 0 with sup,cg. |[D*¢(z)] < C; for
all a with |a| < 4.

3.2 The Theorems

The following theorems involve a function ¢ meeting varying requirements.
Our ((G) as defined in Subsection 3.1 satisfies all these requirements and is
therefore admissible for each of these theorems. The following theorems are
indeed needed only for the case “¢ = ((G)” and are tailored to the use of
our ¢ from Subsection 3.1. We state and prove the theorems for our fixed G
with G € C° although we even could weaken the requirements for 0G.

Theorem 3.1. For p € HY(G) and { € Ul(G) it follows: p¢ € HY(Q)
and V (p¢) = (Vp + pVC.

Proof. First of all p( is in LY(G) as p € LI(G) and ( is continuous and
bounded in G. Let now i € {1,...,n}. We will show that p{ has a weak
O;-derivative. Let ® € C3°(G). Then according to the classical product rule
we have:

/G(Pg)aiq)dx:/apai (CP) dx—/Gpc?iCCDdx:

and with ® € C$°(G), we also have (® € C3(G). With p € H»(G) it follows
that this is equal to

- / DpC dar / pOCD dr = — / (COp + pdiC) D da,
G (& G
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and (O;p + pd;( € LI(G) because p and O;p are in LI(G) and (,0;¢ are
continuous and bounded in G. O]

Theorem 3.2. Let u € Hy'(G) and ¢ € US(G). Thenu-V¢ =31 u;0;¢ €
Hy"(G).

. H?9(G)
Proof. Take a sequence (u,),en C Cy°(G) with u, —— u. Then we find
that (u, - V)yen C C3(G) C HPY(G) is a Cauchy-sequence in HyY(G) be-
cause for two indices v, u € N we find

A, - V¢ -u, vV u); )

q

uu)z‘ 9iC +2 Z 9; (QV - @u)z’ 0;0iC + Z (Q,, - Qu)z‘ Adi¢
ij=1 i=1

ag +2

Za ), 0,0

7,7=1

q

n

> (w, —w,), A0¢

i=1

_|_

q

ZHA u, =) [, +22H3 Wi, +nZH

i,5=1 =1 —/—’
I,V — 00 W,V — 00 W,V — 00
0 ——0 —0

where C¢ is a constant such that sup, & [D*C(z)| < C; for all « with |a| < 3.
As H}(@G) is complete, the Cauchy-sequence (u, - V(),en converges to an
clement v € HyY(G). Tt is the Theorem of Riesz-Fischer (or better: An
addendum to this Theorem found in any modern book on calculus) that
allows us to pass to a subsequence of (u, - V(),eny which converges almost
everywhere in GG to v. But taking analogously a subsequence of (u,),en
converging almost everywhere in G to u we see that it must be v =u-V( €

HY(@). O

Theorem 3.3. Let f € Hy'(G) N H*>Y(G) with Vf € Hy'(G). Then f €
Hy"(G).

32



Proof. Due to the compactness of G and the smoothness of G we can find
an N € N, open subsets Up,...Uy C R" with Uy CC G, Uﬁio U; D G such
that for 7 > 1 we have

n—1
oG N Ul = {(.T/, (I)Z(.ﬁﬂ,)) . I’l € Az = H]l’@j — 51',1'1'73‘ + (51[}

j=1

after an appropriate permutation of variables with a d; > 0 for a certain
z; = (T1,...,2in) € R" and a certain ®; € C°(A;). We can furthermore
assume that for 4 > 1 we have

GnU = |J {2/} x12:(a), ®i(2') + & (25)
GNU = |J {2} x]0i(2) — &, (') (26)
' eN;

for an ¢; > 0.

We find a partition of unity subordinate to the covering Uy, ..., Uy, that
is we find for i = 0,..., N functions ¥; € C°(U;) with 0 < ¥;(z) < 1 and
SV Ui(z) = 1forallz € G. Assupp(¥,) C Uy CC G we have ¥, € C°(G)
and thus ¥, f € H.Y(G) can be shown easily by approximation as in the proof
of Theorem 3.2. In the following we will show that also for arbitrary ¢ > 1
we have W, f € Hp'(G) which will yield that f = SN W, f € HyY(G). We
fix an ¢ > 1 and suppress in the following the indices. Assume that for UNG
the case (25) applies, case (26) can be treated analogously. We define the
function

2:Ax]0,e] - GNU, z=(2y) — (2, 0(x') +y)
and it can be seen by standard argumentation that with
Ufe Hy(GNU)NH>*(GNU)
we also have
(Uf)oze Hyl(A x]0,e[) N H>(A x 10, €])

and

UfeHYGNU) < (Uf)oze Ho' (A x]0,¢[).
With f:= (Uf) oz and Q := A x ]0,2[ we have f € Hy? (Q) N H?*4(Q) and
Vfe ﬂé’q (@Q). Because of supp(V) C U we find an ¢’ < ¢, with &’ > 0 such
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that with A" = [[/7} Ja! — 6+ &', af +6 — /[ € A =T[5 ] — 6,25 + 6]

we find f(z/,2,) = 0 for all (2/,x,) in Q\ (A’ x (]0,e — £'])).

As f € H}(Q) we find a sequence (uy) ey C C(Q) with u, @, f.
For a fixed v € N we have by the Fundamental Theorem of Calculus for an
arbitrary x = (2/,z,) € Q with 0 <z, < p < e:

u, (2, 2,) = u, (2, 2,) — u, (2/,0) = / O, (2, 1) dt

and thus

q

Tn q p
lu, (2, 2,)]|? < (mn)q’/ |0nu, (2, )| dt < pq’/ |0, (2, 1)|7 dt
0 0

after using the Holder inequality. Integrating this over A x |0, p| yields:

PP
/ |uy (2, 2,)[* da’ dzy, < / / / |0, (2, 8)|* p2~ 1 dt diz,, da’ <
Ax]0,p0] AJo Jo

< p? || Oy, HZ,AX]O,P[

and thus we have for every 0 < p < ¢

||UV||q,A><]O,p[ <p ||8"U”||Q7A><}Ovﬂ[

and finally . .
1fllg.ax10,00 < PO flg,ax10,01 (27)

by approximation. 3
Doing the same with 0, f € Hy(Q) we get

100 f lq.axiopr < PIO Fllg.axiopl (28)

and in the end sticking the two estimates (27) and (28) together

1 llg.axtop0 < 021007 fllq.axjop- (29)

Let now 1 € C*(R) be a function with 0 < n(t) < 1 forallt € R, n(t) =0
for all t € R with ¢ < 1 and n(t) = 1 for all t € R with ¢ > 2. Then
supp(n'),supp(n”) C [1,2]. Define for k € N: ni(t) := n(kt). Then n,(t) =
kn'(kt), ni(t) = k*n"(kt), supp(n,),supp(ny) C [+,%] and we can find a
constant ¢ > 0 such that |n}(t)| < ck and |n} ()| < ck? for all ¢t € R.
Defining f(2', 2n) == f(2', 2n)ne(2,) We see:
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L (i) an(fk(xlv Tn)) = anf(x/>$n)77k<xn) + f(ﬂ?'vﬂfn)%(%)

2. (i) 0pOn(frl(a’, ,)) = N _
= OnOn f (2!, xp) i (2n) + 20, f (2!, ) g () + £, 20 )1 ()

Now we are able to see that the sequence ( fk)keN approximates f with respect
to the H*4(Q)-norm:

e We have

—0

Hf—fk .0 = Hf(l—ﬁk) 0

by Lebesgue’s Dominated Convergence Theorem as (1 — 1) is converg-
ing almost everywhere pointwise to 0 for k£ — oc.

Analogously we see for j # n:

7,Q 7,Q
. ~ ~ ~ ~ ~
|07 = 0. = 0nF —0ufme— i <
7,Q 7,Q
< st +
| I M) 0 I 0
—0 a;rabove
- - (27) o 7
and | < ok < 2o, — 0 with (27
Ik 0 f 2Ax]0.2] / 0.Ax]0.2] (27)
used for p = % by Lebesgue’s Dominated Convergence Theorem.
Arguing analogously (now for f replaced by 0; f), we can see that for
j # n we have
9;0.f — 0;00fr||  — 0.
7,Q
[
’ 8nanf - ananfk 0 = ’ ananf - ananfnk - 2371];772 - fnllcl S
q? q?
< 000 f(1 — +2‘8n~’ +H~”
| S =) " VRS (B (PSS
—0 a:above
The term ‘ On fn;c can be treated as above:
7,Q
|onin]| < ek]jonf k0.7 ?
n ~C n =cC n >~
T 2.Q 2,Q 7.Ax]0,2]
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< 2c

— 0

q,AX]O,%[

[

~
tends to zero by Lebesgue’s Dominated Convergence Theorem

For the term we have:

£

| 7

which again converges to zero by Lebesgue’s Dominated Convergence
Theorem.

(29)
< 4¢ ‘

<ck:2Hf

qA>< 0 2[ q,AX]O,%[

We note that for every k > — the function fi is zero outside the set A/ x

(J1.e —¢'[) as f=0 out81de of A" x ]0,e — €[ and ng(z,,) = 0 for all x with
0<uz, < % Therefore we find a 0 < g, < %dist (A’ X H,é — 5’[, 8@) such

that the Friedrichs mollification ( fk)(ak) of fi satisfies H fo—( fk)(ak)

<
B Q
%. This can be achieved since fj is zero outside of A’ x ]%,z—: - [ and

thus differentiation and mollification commute, see Theorem 2.5. We further
find that (fi)(,) has compact support in @) for £, was chosen to be smaller

than %dist (A’ X ]%, € — 6’[, 8@). The sequence ((fk)(gk)> converges in
~ keN
H?9(Q) to f because

<\If - f
2,q,Q

— 0

2,q,Q

f (f )(Ek

24, Q )
and we thus have f € H2Y(Q) and we get Uf € H2Y(G N U) and finally
I € Hy*'(G).

O]

Theorem 3.4. Let p € H*Y(G) N Hy(G) and ¢ € EQ(G) with Clog = 0.
Then p¢ € HYY(G).

Proof. At first we find with a calculation like in Theorem 3.2 that p( €
H>% N Hy*(G). Furthermore we can apply the product rule (see Theorem
3.1) and get V (p¢) = (Vp+pVC. As ¢ € HyY(G) (see [22] Theorem 6.5, page
101 or our Theorem 4.7) we can see like in Theorem 3.2 that V (p¢) € Hy(G)
and then with Theorem 3.3 we find: p¢ € HyU(G). O
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4 Some Facts about the Trace Operator

In this section we state the existence of the two trace operators which we will
use. These trace operators allow us to talk about boundary values of H(G)-
and H?1(G)-functions. As for our G the boundary 9G is of Lebesgue-measure
zero, it makes a priori no sense to talk in an L"-sense about restrictions of such
functions to the boundary. The following theorems give us the answer that
there is a reasonable way in which we can associate to every such function a
“boundary value”: Although restricting an u € H4(G) to OG obviously has
no sense, any u € H'(G) has the property that the restrictions to G of
elements of each sequence of C* (G)-functions converging in H%(G)-sense to
u also converge in a space L"(0G) (which is still to be defined) to a specific
function which is only depending on u (and not on the chosen sequence) and
which thus in some sense generalizes the notion of boundary value.

In the following, we take a fixed set of charts (A;, Wy, ®;),_, 5 of G in the
sense of G € C°. Note that the following definitions are at first sight depend-
ing highly on the choice of charts. However, being a set of dG-measure zero
does not depend on this choice and the defined norms on L"(0G), H'"(0G)
are in general different for different choices of charts, but how ever two choices
are made, the corresponding norms are equivalent and the corresponding
spaces do not depend on this choice, for details we refer to [11], chapitre 2,
84, chapitre 3, §1. We could also have made these definitions independent of
the choice of charts by including the Gram’s determinant-term. However, as
this term is bounded from below and from above, we will simply ignore it,
which results in different (but still equivalent, which is enough for us as we
are only interested in the respective topologies) norms for different choices
of charts.

The following definitions introduce the important spaces and state the basic
facts which can also be read in [11], chapitre 2, §4, chapitre 3, §1, and in [12],
Kapitel 2, 3, too.

Definition 4.1. A subset V' C 0G is called “of 0G-measure zero” if and
only if for everyi =1,...,n the set (again after an appropriate permutation
of variables)

{x/ e R" . there is an z,, € R such that x = (', x,) € W; N V} C A
is a set of measure zero in R"71.

Having now a concept of zero measure, we have again the possibility of saying
“0G-almost everywhere”.
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Definition 4.2. The spaces L"(0G), 1 < r < oo.
A function f : 0G — R is said to be in L"(0G) if and only if for every
1=1,..., N the function

gi: A = R, 2/ — f(2!, ®;(2)))
is in L7 (A;).

Furthermore,

N 1
|f|Lr(aG) = (Z ng'”:,Ai)
=1

defines a norm on L"(0G).

Definition 4.3. The spaces H'"(0G), 1 < r < oo.
A function f : 0G — R is said to be in H'"(OG) if and only if for every
1=1,..., N the function

gi: A = R 2/ — f(2!, ®;(2)))
is in HY(A;).

Furthermore,

r

N
|f|H1»T(8G’) = (Z ||gi||;,r,Ai)
=1

defines a norm on H'"(0G).

Having now introduced the important spaces, we can state the existence of
the needed trace operators: Let in the following whenever a r is used in
context of a trace operator this r be r = r(q,n) = ’Zq—:qq if 1 < ¢ < n and
r > 1 otherwise. Note that, for our purposes it would suffice, according to
the book [2] (see there A6.6, page 265 and A6.10, page 270), to use r = ¢ in
every case.

Theorem 4.4. (Compare [12] Satz 2.4.1., page and [11] chapitre 2,théoréme
4.2., page 84)

Let G C R™ be a bounded domain with Lipschitz-boundary. Then there exists
exactly one linear continuous map Z* : HY(G) — L"(0G) with Z'(u) = ulsq
for allu € C™(G).

Theorem 4.5. (Compare [12] Satz 3.1.5., page and [11] chapitre 2, théoréme
4.11., page 89)

Let G C R™ be a bounded domain with Lipschitz-boundary. Then there exists
exactly one linear continuous map Z* : H*Y(G) — HY(0G) with Z*(u) =
uloe for allu € C(G).
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Remark 4.6. Studying the proofs of Theorems 4.4 and 4.5 given in [12] and
[11], one easily sees that the theorems can be modified in the following way:

The linear continuous map Z* fulfills even Z*(u) = ulag for all u € zk(G),
k=12

The above defined trace operator Z! gives us another characterization of the
spaces Hy'(@) and HY(G):

Theorem 4.7.
Hy'(G) = {u e H*(G): Z'(u) =0}

For a proof of this Theorem, see [11], chapitre 2, théoreme 4.10., pages 87,
88 or [12], Satz 2.6.3, pages 40-42.

Theorem 4.8.

H(G) = {u € H*(G): Z'(u) =0 and Zn:Zl(é?iu)Ni = 0} :

i=1
where N := (N, ..., N,) denotes the outward unit normal vector.

Proof. This theorem is just a combination of Theorem 4.7, our Theorem 4.10
and Theorem 3.3. For a different proof we refer to [11], chapitre 2, théoréme
4.12., page 90 or [12], Satz 3.2.1, page 45. O

The following theorem tells us that the trace-operator behaves very much
like a restriction with respect to special kinds of products:

Theorem 4.9. Let s € HY(G) and f € C* (G). Then

Z'(fs)(x) = f(x)Z'(s)(x)
for almost every x € 0G.

Proof. Let (s,),en C C (G) be a sequence such that ||s, — sll;, — 0. This
is possible because G is bounded and has continuous boundary, see for ex-
ample [9], 1.1.6, Theorem 2, page 14). Then, as f and 0,;f, i = 1,...,n are
bounded in G, we see that fs € H»(G) and (fs,),en is a Cauchy sequence
in H'9(@) converging to fs. Take a chart (A;, W;, ®;) and note that in this
chart fs,(z/, ®;(2")) converges in L"(A;) to fZ'(s) as f is bounded and s,
converges in L"(A;) to Z'(s), so Z'(fs) must be equal to fZ1(s). O

39



Theorem 4.10. Let s € Hy'(G) N H>4(G). Then we have
ZN(Vs)(z) = (Z"(018)(x), ..., 2" (Ons)(z)) = ANz)N(x)

for almost every x € OG with a function A € L"(0G).

Proof. The proof is done in three steps:

a) Localization by partition of unity

Let G be covered by finitely many open sets Uy, ..., Uy C R™ such
that Uy CC G, 0G is covered by Uy,..., Uy and for ¢ = 1,..., N let
o, € ES(Ai), such that after a permutation of coordinates we have

OGNU; = {(«/,®;(2")) : 2’ € A;} and

GnN Uz = U {.CB/} X ](I)z(x/>7(bl(x/) + Ei[
YA

GNU = |J {2} x10:i(2) — &, i(2")]
r’'eN;
for real numbers £; > 0. We only consider the case
GNU; = | J {2} x)2:(a), ®i(2) + &i] (30)
r’e;
in the following, the other one can be treated in the same manner.

We find a partition of unity ¥;, i = 0,..., N of G subordinate to the
covering U;, 1 =0,..., N.

For j € {1,...,n} we find

N N
ZY(0;8) = Z" (Z \I/lajs> = 7 <Z \plajs) :
=0 =1

as supp ¥y CC G and with Theorem 4.9 we see Z'(¥,0;s) = 0. More-
over, we also see that Z'(9;¥;-s) = 0 with Theorem 4.9 because
s € Hy'(@G). So we get to

7' (0;5) = 7 (Z d; (\I’ls)>

and it suffices to show the claim only for functions of the form W;s.
Moreover, it suffices to show the claim only locally, that is we can take
G N U, as our new G, which we call G’ and we are searching a function
A € L"(0G NU;) such that Z(9;(\0;s)) = AN; almost everywhere on
0G N U;. In the following we will omit the now fixed index [.
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b) Straightening of a local model
By smoothness of G, we find a C?-diffeomorphism

g:Q:=Ax])0,e[ =G, (2 2,) — (2, D(2)) + ),

and without loss of generality, we can assume even g : Q — G’. We
further find with
Us € Hy'(G') N H*(G")

that
5= (Ws) 0 g € HI(Q) N H(Q).

In a point p = (2/, (2’)) € IGNU we have the tangent vectors t,, ..., ¢

T

to 0G with
- (100 (25 )
- (00 (%))
- <o, () )
and with

we see that

is the outward unit normal vector to G in x because we are considering
the case (30). Taking a function ¢ € C* (G") we have for the directional
derivative Dy ¢ of ¢ in direction ¢; in a point p = (2/,z, = ®(2')) €
oGNU,i=1,...,n—1

0 0, 0
agi ®)+ 5 (‘”')axi ®)

Dy .C(p) = V(- L(p) =

andforfzzgogEES(Q)Weﬁndforizl,...,n—l

agj _
Z 895] 8951 (+,0) =

Jf
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— (gl 0) + (gl 0) 5 (@)

SO

Dy ¢(g(2",0)) = 9i¢(', 0). (31)
Taking an approximating sequence ¢, in EOO(G’ ) of Us with respect
to ||l Wwe see that ¢, := (, o g is an approximating sequence in

55(62) of s with respect to ||-||,, and we see by equation (31) applied
to the approximating sequence and Theorem 4.4 that for almost every
p=(2/,®(2')) € 0G NU we have

Zzl< T el 1), (7, 90

In the following, we will show that Z'(9;5) = 0 and thus we will find
that in almost every point p € 9G' N U it is

Zzl( oz, ) p)(t), () =0,i=1,...n—1

and thus in almost every point p € 0G'NU we will then find a A(p) € R
such that by the definition (V(Us));(p) := Z*(9;(¥s))(p) for p € IG'N
U we find:

V(¥s)(p) = Mp)N(p)

It is easily seen that A\ = Ninan(\lfs) is then a measurable function (in
the 0G’ N U-sense) because N,, # 0 is with the help of Weyers’ helpful
function easily to be seen smooth enough, and because of | N|| =1 we
also have almost everywhere on G’ NU: |\(p)| = |[V(¥s)(p)| and thus
A€ L(0G'NU).

The straight problem:

So we just have to show Z'(8;5)(z/,0) = 0 for 2’ € A. As 3 € Hy'(Q)N

H249(Q) we find a sequence (h,)yen C C(Q) with h, Q) 5 With
the definition

fl/ = hu‘AX{O}
we see that
RN
and R
LT
of, LA 7105),i=1,...,n—1
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because h, is also an approximating sequence for s with respect to the
H'9(Q)-norm and 9;h, is one in the same norm for ;3.

But we also know that the f, converge in the H'"(A)-norm to Z3(3)

and by choosing subsequences of f, converging almost everywhere on
A, we conclude Z%(3) = 0 and this means that 9;f, P 0. Because

O;h,, is an H9(Q)-norm approximating sequence for 9;5 we also have
L"(A)

0;f, —> Z1(9;3) and thus Z'(9;3) = 0.

5 An Approximation Theorem

In this section we will find a theorem which will allow us in the next section
to draw back from a p € B{(G) to a p € BL(G) N H>(G).

Theorem 5.1. Let p € B{(G). Then there exists a sequence (py,),oy C
BL(G) N H*4(GQ) with
1Py = plly 4 = 0.

Proof. It suffices by Poincaré’s Lemma to find a sequence (p,),.y C Bg(G)N
H*(G) with [|[Vp, — Vp||, — 0. For p we find according to Theorem 2.22 a
sequence (g,),cy C Coop(G) with [[Vg, — Vp||, — 0. For every v € N we can

find according to Theorem 2.16 an unique s, € Hy%(G) satisfying
(VAs,, VAD) = (Vg,, VA®) for every ® € Ho? (G)

and we even see that s, € H>4(G) by Theorem 6.1, as G € C® and g, €
55 (G).
But this means that for v € N we find that with p, := g, — As, € H>1(G)
we have

—(p,, A?®) = (Vp,, VA®) = (Vg,—VAs,, VAD) = 0 for every & € C°(G)

and thus according to Weyl’'s Lemma 2.20 we conclude p, € C*(G) with
A’p, = 0. As g, € C§5(G) and As € HS”g(G) N H*Y(G), we have p, €
Hyd(G) N H*4(G) and thus p, € BY(G) N H>(G).

Now look at

IVp, = Vpll, = IVg, — VAs, = Vpll, < Vg, — Vp|,+[|[VAs, ||,

N————
—0
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and we see by the variational inequality (Theorem 2.17) that with a constant
Cy >0

(VAs,, VAD)
VA,

Ad
=Cy sup —<Vg,,, VAL) =

|IVAs,||, < Cy sup
! 0£beHS T (G) VA,

0£0eH> Y (G)
(Vg, — Vp, VAD)
[ VAd)Hq,

PeB(G) Cy sup

02 H> Y (G)

< CvC'|Vg, - Vpl, — 0.

6 Compactness of Z, — 11d : B{(G) — B{(G)

In this section we will generalize a proof by Weyers which goes back to
Crouzeix (see [22], [6]).

As Crouzeix’s method is somehow exceptional, we will at first give a moti-
vation for it in the easier case which Weyers examined:

6.1 A Little Motivation for Crouzeix’s Method

First, we will fix notations and describe Weyers’ problem for the case of
bounded G:

For 1 < ¢ < oo, G CC R™ with sufficient smooth boundary (the boundary
smoothness requirements for G used by Weyers can be weakened as in our
approach to G € C*, see Part I1) we have the direct decomposition (see [22],
Theorem 5.2, page 96)

L{(G) = A(G) & B(G),

where

L§(G) = {p € LY(G): /Gpd:v = 0} :

A1G) = {Au: ue HYYG)}

and
BYG) = {h € LYUG) : (h,AD)Y =0 Vb e Hg’q'(G)} .

The proof of this decomposition is similar to our decomposition from Lemma
2.23. Furthermore, Weyers investigated the operator 1", : L{(G) — H h(e)

where iq (p) is the unique element of Hy?(G) such that
(VT,(p), V®) = (p,div ®) for all & € Hy? (G).
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Similarly to our notation, Weyers defined an operator Z,: LYG) — LYG)

by Z, := divo T, . It shows up in analogy to Theorem 2.24, that we have the

following situation:
Zq’Aq(c) 31‘1(1(@)
Zq|ég(G) : By (G)

AYG) and Z,(p) =p Vp € AY(Q)

Bj(G)

In Weyers’ terms, the problem which is analogous to our problem here is to
show that the operator (Zq - %Id) |1§g(G) is compact.

Crouzeix’s idea to show this is now given: Find for given p € B{(G)NH>(G),
u:="T,(p € Hy(G) N H*(G) (we can get rid of the extra premise p €
H?%(G) by approximation just like in Theorems 5.1, 6.4) a v € H"4(G) such
that:

(i) thereis a C'= C(q,G) such that

[vlly,4 < Cllpll, -

(i) v — (divu — 1p) € HyY(@).

If this can be achieved, the rest is not hard and done like in Theorem 6.3
with Miiller’s inequality (theorem 2.7) replaced by Simader’s inequality (see
[18], Chapter II, Theorem 1.1, page 44). We get to

(o0,

and it shows up by approximation that the linear operator (Zq — %I d) :
B{(G) — BY(G) has its image indeed in H“(G) and is continuous with re-
spect to these spaces. Compactness of (Zq — %I d) is then just a consequence
of the compact embedding of H'(G) in LY(G).

!
< el

1,q

Now we finally motivate Crouzeix’s ansatz:

We stick to the model case where p, u have classical derivatives of the respec-
tive orders which are continuous up to the boundary. We could get rid of this
assertion by using the idea of trace from Section 4, but this would not bring
us any new insights and just make the whole procedure a little more compli-
cated. Starting from our ingredients p, u, we first notice that as the system
of partial differential equations which links p and u (the classical formulation
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would be Au = Vp) involves higher derivatives, the only possible chance of
using this linking might be finding a w € Hy%(G) N H>9(G) with an esti-
mate [Jwl],, < C'[[p[| and defining v somehow by w’s derivatives. One other
way of looking at this first step is the idea of using the Theorem on Elliptic
Regularity (Theorem 6.1). This is actually the way we will do it later, but in
Weyers’ case it can be avoided. As we need with this approach (here we have
m = 1 in Theorem 6.1) a function in Hy“(G) to be able to apply Theorem
6.1, we nevertheless need to make this “step up” here, too, defining at first
a function w € Hy(G) N H*(G) in terms of u and p which is satisfying the
above given estimate and then trying to define v via w’s derivatives. For the
connection between these two accounts, we refer the reader to our proof of
Theorem 9.7 where both accounts are in some way present.

One very easy ansatz for w is trying to define

w = Z giui + hp,
i=1

where ¢g;, © = 1,...,n and h are sought after functions which shall be often
enough continuously differentiable and the derivatives shall be continuous up
to the boundary of G. As we are looking for a w € Hy*(G) and u € Hy'(QG)
the reasonable requirement for A is

h =0 on 0G. (32)
Making this ansatz, we can easily see:

lwll, < Crllpll,

As w shall be in Hé (@), we have with Simader’s variational inequality

Vw, Vo Aw, P
|[Vw]|, < Cs  sup <$7T> =Cs sup <VUjT§> <
@EH&’(/(G) H ”q’ @EH&’(]/(G) H Hq’
< C'[|Awl,

using the Poincaré inequality.
With the use of a regularity theorem ([22], Theorem 7.6, page 110) stating
that we have with a C' > 0 an estimate of the form

IVall . < € (JIau

v+ Nl + 1Vl )
valid for every u € Hé’q(G) N H*1(G), the problem of showing the estimate

[wlly,, < Cllpll, (33)
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with a constant C' > 0 reduces to showing an estimate of the form
[Awll, < Clpll,

with a constant C' > 0.
Now taking a look at Aw, we see:

=1 i,j=1 i=1

+2) 0hop+h Ap
=t =0, as p€B(G)

We see that the terms
Z Agiug, 2 Z 0,9:0;u; and Ahp
i=1 ij=1

do not pose us any problems as they contain at most first order derivatives
of u and no derivatives of p. Using now the linking Au = Vp between u and
p, we have for the remaining two terms:

ST gidu +23 " 0h0p =Y (g + 20;h) Oip.
i=1 j=1 i=1
To find this term equal to zero, the plausible requirement is

Having established a w as we searched, we now define

v = i fi0w,
i=1

where f;, 7 =1,...,n are sought after functions which shall be often enough
continuously differentiable and the derivatives shall be continuous up to the
boundary of G. Because of the validity of inequality (33), we have automat-
ically (i) for v. Now we want to find further conditions on g;, h and f; which
are ensuring the validity of (ii). On the boundary 0G, we have:

i=1 =1

J=1
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3
3

i=1 j=1 —0 on 8G =0 on OG

= -2 Z fi0;hO;u; + Z fiOihp
i=1

1,j=1

Our aim is this to be equal to

This

, 1 . 1
divu — P = jzlajuj — 3P

can be achieved with the requirements

—2 zn: fﬁjh@uj = Zn: 6juj.
j=1

ij=1

Asu € ﬂé’q(G), we find for j = 1,...,n a function \; with d;u; = A\;N;
on JG. This leads us to the requirement

—2 zn: fza]h)\]NZ = zn: )\ij
j=1

i =1
As .,
IN*=> N =1,
i=1

a reasonable try for f;, ¢ =1,...,n and 0;h = uN;, j =1,...,n (with
a suitable function p on 0G which can be found as h = 0 on 0G) to
fulfill this requirement seems to be

1
fi:Ni,i:1,...,nand8jh:—§Nj,j:1,...,n (35)
and
= 1
i=1

which is automatically fulfilled with (35).
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Allin all we have the three conditions (32), (34) and (35) which are all valid if
h = —%C , gi = 0;C, fi = 0;C where ( is the function Weyers constructed with
boundary values ( = 0 and V{ = N on 0G. This is for Weyers’ problem
exactly the ansatz of Crouzeix. So the somehow complicated and exotic
construction by Crouzeix is not a kind of coincidence. In order to solve the
problem there seems to be no other easy choice of defining v.

6.2 The Compactness of Z, — 11d : B{(G) — B{(G)

In the following we will need a differentiability theorem due to Christian
G. Simader (see [15], Theorem 9.11., page 156) which we cite in the generality
given in [15]:

Theorem 6.1. Assume

1. that m > 1 and j > 0 (with j < m) are integers and that 1 < p,q < o
are real numbers with % + é =1,

2. that G C R" is a bounded open set with boundary 0G € C™*,

3. that B is an uniformly elliptic, j-smooth reqular Dirichlet bilinear form
of degree m in G,

4. that F € (Hgi_j’q(G))* and u € H)""(G) such that

Blu,®] = F(®) for all ® € C°(G)

Thenu € Hy"P(G)NH™P(G) and there is a constanty = y(n,m, j,p, B,G) >
0 such that

el < 7 (1 sg=soyy” + Nlo, )

In a first step we will show the important estimate under the extra assump-
tion p € H34(G):

Theorem 6.2. Let p € B{(G) N H*(G), u:=1T,(p). Then
1
w:=u-V({— leC € HY(G) N H>(G)

and there is a constant C' = C(G, q) > 0 with

lwllsy < ClIVD, - (37)
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Proof. According to the Theorems 3.2 and 3.4 we have w € HoY(G)NH>9(G).
We now want to apply Theorem 6.1 in a special case. We take m =2, j =1,
the role of p in 6.1 is played by our ¢, B [u,v] := (Au, Av) and the role of u
is played by our w. We now show that there is a continuous linear functional

Fe (H&’q’(G))* such that B[w, ] = F(®) for all ® € C°(G):
Let @ € C°(G) be arbitrary. Then we have

Blw,®] = (Aw, AD) = (A (g V(¢ — im) ,AD) =

s () a0 a0

\ J/

TV
N~ =T
=T

As there will appear in the following many terms which we have to drag
along with us through the whole calculation, we introduce the following short
notation: An expression (A, B) with A consisting of only up to second order
derivatives of the u;, up to first order derivatives of p and up to fourth order
derivatives of ( and B consisting of only up to first order derivatives of ® will
be called an expression “of type L”. Such an expression defines for variable
® a bounded linear functional on H, ’q/(G) with its norm being dominated by
a constant C(4, B) > 0 times || Vp|[, ;. In this context “=p” means equality
up to an additive expression of type L and our aim is to show that B [w, ®]
is for variable ® of type L.

Let’s look first at 17:

= (A (Z u@-@“) AD) = (Aw0i¢, AD) +2 ) (9ui0;0,¢, AD) +
=1

i=1 ij=1

n n

+) (WA, AR) = > (A0 ¢, AD)—

i=1 =1

2 Z (0k0;u;0;0;C + 0;1;0,0;0,C, 0pP) — (Opui A0 C + 1; AOROC, O ®P)
k=1 k=l .
of t;;e L of t;/;e L

n

=1 > (Auwd, ¢, AD) = (Au;, 0,(AD) =
i=1

i=1

50



:Z (Au;, A(0;CD) —2288(8@ O:ACP) = (Au, A (@V())
i=1 J=1

i,j=1 i=0

J/

-

of type L

u=Ty(p)

= (Au, A(DV()) (Vp, A(V(D))

for V(® is a permitted testing function € H g’q/(G). Calculating further we
get:

n n

D (0, A (0:6D) = Y (ip, ADCD) +2Z (0ip, 0;0:0;®) +

i=1 =1 2,7=1

. / ,

TV
of type L of type L

n

+3 (0, 0:CAD) =1 Y (9p0iC, AD)

i=1 i=1

For T5 we find

ATy = (A (p¢) , A®) = (Ap( +2 ) 9;p0;¢ +pAC, AD) = (Ap(, A®) +

J=1

n

+2) (0;p0;¢, AD) =D (DkpAC + pOrA(, 0,P) =

j=1 k=1

J/

TV
of type LL

n

=1, (Ap¢, A®)+2 > "(9;p0;¢, AD).

J=1

With the results for T} and T3 we can write:

Blw,® =T\-Ty = » (0pdi¢, A®)—— ((Apg, AD) +QZ (9;p0;C, A<I>>)

i=1 j=1

1 BN
= —{ApC A) + 5 D (0ip0iC, AP)
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and we find that

~ (BP0 A®) =~ (Ap, CAB) = — (Ap, A(CD) — 29C - T — ACD) =

1 1
- —;(ApAe) +§;<Ap73j<3j¢>+

J/

-~

=0 as CPeH>Y (G) and peBI(G)

1
¥ 1(8p, A¢@) =
N———’
after integrating partially this term is seen to be of type L

n n

1 1
=15 > (0:0kp, 0;C0;®) = — > " (Okp, 0:0;C0;® + 0;(0x0;P) =
g, k=1 g, k=1

n

1 & 1

jk=1 jk=1

N J/

-

of type L

1 n n
=L =5 > " (Okp, 0;00x0;®) = —

Ji:k=1 j.k=1

<8kp8jf, 8k(9j®> =

N | —

<8j8kp8j§, 3k<1>> + (8kp(9j8jg, (9k<1>> =

J,k=1

(DO —

J/

~
of type LL

<3jp, 8k0]C8k<I>> —

1 < 1 < 1 ¢
5 2_ (0P, 0,00k ®) = —3 > (09, 0x0;COcD) 5 > (0p0;¢, A®) =,

1 Jk=1 j=1

J/

~-
of type L

1 n
=1 —5 >_(0p0;¢, A®)

j=1
and all together this means that

n

Z(aﬂ% 5’z‘CA‘I)> =L

i=1

1
B [wv (I)] = Tl - T2 =L _Z<Ap<7 A(I)> +

N | —
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n

1 1 &
> (0;p0;¢, AD) + 5 > (0:p9;¢, A®) =0

= —5

j=1 7j=1

and B [w, -] itself is of type L. Theorem 6.1 yields w € HY*(G)NH>9(G) and
a constant v > 0 such that

iy <3 (1) gy + Dol )

where F'is the element of (Hé’q/(G)) belonging to B [w, ] in the sense of
“being of type L”. Thus there is a constant C' > 0 such that

170 sy ) < € 190l

and as .
w=u- V¢ 0
we have )
Jwll, < llu- V|, + 1 ¢, < OVl
and the desired estimate follows. O

Theorem 6.3. Let p € Bj(G) N H*(G), u:=T,(p) and w =u-V{ — 1pC
as i Theorem 6.2. Then we have

v:=Vw- V(- (divg — 1p) € HY(G)

[\

and there is a constant C' = C(G, q) > 0 with
0]l < C VP, - (38)

Further we have ]
divu — SP€ H*(G)

and there is a constant C' = C(G, q) > 0 with

1
divu — 5P <C|vpl, (39)

2,9
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Proof. As w € HY(G) N H*(G) we see that Vw - V¢ € HyY(G) N H>(G)
and as p € BY(G) N H>4(G) we see by elliptic regularity (see Theorem 6.1)
u € Hy'(G) N H*(G) and thus divu — 1p € Hy'(G) N H*4(G). In view
of Theorem 3.3 we only need to show that Vv € ﬂé’q(G). We have for

1 < k < n and almost every z € G with the trace operator Z! as defined
in Theorem 4.4:

ZH0(Vw - V) (z) ( 00; w@() (z) + Z* Q;woe0;¢ | (x) =
Z ; cH} (@)

N J/

N
=0

= 7! (Z Or0; (Z wO,¢ — iM) 83‘() (z) =
=1 =1

_ 7 (Z O (D;10,C + 1,0,9/C) D;¢ — iz O (0;p¢ + p0;Q) 3j<> (x) =

Lj=1 j=1

akajul(?lC@C + ?julﬁkﬁlg“ajg+?kul(?jalC@jg+g18k8jé)lg(9j€ —

€Hy Q) €Hy Q) €HyY(G)

Lj=1

3

=~ =

ng@C +0;p0kC0;C + Okp0;C0;¢ + pdk0;C0;¢ | | (2) =
\_\,_./

=1
eH1 9@) €HyY(G)

.

=7z (Z 05 0,C0;¢ — EZ (0;pOkC0;¢ + 8kp8jCé’jC)> (z) =

Lj=1 j=1

> 20 NiN; = 1 3~ 2 Op)NiN; = 1 3 210 | ()

l,j=1 j=1 j=1
»J =1 N; J J

where \;; € L"(0G) can be found after application of Theorem 4.10 to the
HyY(G) N H>9(G)-function dyu; and thus

Zl(ﬁk(‘)jul) = Zl(ajakul) = )\kJNj.
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This and application of Theorem 4.10 to p leads us to

1
Z AN NN; — —Zzl ip) N N; — —Zl(akp) (z) =

k=1
I =:uNj; =uNj,

- 1
=1

With a similar calculation we find out that

7 (o (ava- 1)) =2 (530 - ) 0 -

1
(E akalul__akp> E z! Gkﬁlul)——Zl(ﬁkp) (z)
H,_/ 2 ——
=1 =1 =g,V =N

and altogether we have Z'(Vv) = 0. With Theorem 4.7,we conclude that
Vv € H)Y(G) and with Theorem 3.3 it follows v € Hgo(G) and we can
prove the desired estimate (38) with the use of Miiller’s variational inequality
(Theorem 2.7) and the fact that for every ® € C§°(G) we have

1 1
A(divu — =p), A®) = (A i ADP) — —(A AD) =
(A(divy 2p>, )= ( divu ,Ad) 2( p ,A®)=0
=Z4(p)eBJ(G) €B§(G)

and thus this equality is even valid for every ® € H>? (G).
We have with a Cjr, > 0 by Miiller’s variational inequality:

(A (Vw - V(¢ - (divu— 1p)), AD) _

|Av]|, < Cu, sup
I ! A,

0£beHZY (G)
(A (Vw-V(),AD)
A2,

=Cuy sup
0£PeH> (G)

< CugCwlls g0 < CugC"C VI,

To get (39), we noticed already that divu — ip € H*I(G).
By the triangle inequality, we get

< Cug [A(Vw -V, <

+ HVw ’ VgHZ,q :

2,9

1
< va V(= (divu — Ep)

1
divu — -
vy 217

2,9
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Note that .
HVU} -V(¢— (divu — Ep)

= ||v||2,q
2,9

and because of v € HY?(G), we have the estimate [vlly, < Cil|Av], with
(' according to Definition 2.1. By our calculation from above, we see that
we can thus find a constant Cy > 0 with

0]l < C2 [Vl -

Furthermore, we see that the term [[Vw - V(][,, can be estimated against
C3(C) lwlls,, and by Theorem 6.2, we have a respective estimate for this
term. O

Theorem 6.4. Let p € B§(G), u:= T, (p). Then we have
: 1 2
divu — P € H>(Q)

and there is a constant C' = C(G, q) > 0 with

Proof. In Theorem 6.3 we have shown the claim under the extra assumption
that p € H*(G). Approximate now p with a sequence (p,),.y C B§(G) N
H3(G) with ||p, — pll;,, — 0 according to Theorem 5.1. Then the sequence
(u, )ven defined by u,, := T (p,) lies in HY(G)NH*Y(G) and u, — u = T, (p)
in H*1(G), according to our Theorem on Elliptic Regularity.

With Theorem 6.3 we have for v € N:

1
divu — -
vu-—5p

< ClIvpll, (40)

2,9

1
divu, — JPv € H*(@G)

Applying the inequality (39) we get for u, v € N:

1

div (u, —u,) — 5Pa—p)| <

2,9

2

1 1
divu, — spu — (div U, — —p,,)

2 2
7q

H,V—00
<IVp.—p)l, ——0.

and so divy, — 3p, is a Cauchy-sequence in H*9(G) and has a limit in
H?49(G). But after passing to subsequences with pointwise convergence al-
most everywhere we see that the limit must be equal to divu — %p.
The inequality (39) easily carries over by passing to the limit. O]
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Theorem 6.5. The operator Z, — 51d : B§(G) — B{(G) is a compact oper-
ator.

Proof. We have the following situation:

Zg—31d

BY(G) 225 HP(G) X HY(G)

where the first arrow is a continuous map by Theorem 6.4 and the second
arrow is a compact embedding, so the composition is compact, too. O

7 Consequences and Applications

In the preceding section we have proved the compactness of the operator
Zy — iId : BY(G) — B{(G). This has far-ranging consequences. We first
prove a regularity theorem for eigenvectors p of Z, very similar to a regularity
theorem by Weyers (see [22], Theorem 13.1, page 138):

Theorem 7.1. Let A € R, X # 5 and p € Bi(G) satisfying Z,(p) = Ap.
Then for every 1 < r < oco:

p € By(G) and Z,(p) = Z4(p) = Ap

Proof. We have with u := T (p):

1 1
Ap = div u which leads to ()\ — 5) p=divu — 5P, S0
1 . 1 q 24
P=1TT dlvg—ﬁp € Bj(G) N H>(G)
2

according to Theorem 6.4. We have three cases in each of which we will use
the Sobolev Embedding Theorem (see for instance [2], Theorem 8.9, page
328 and Theorem 8.13, page 333):

1. ¢ > n: In this case it follows by the Sobolev Embedding Theorem with
p e H*(G)

that p € El(G).
It follows p € H&}’S(G) for every 1 < r < oo because we have plgc = 0

by p € HyY(G), p € 51(G), Theorem 4.7 and Remark 4.6 and thus
with p € H"(G) and plag = 0 also p € Hy"(G) by Theorem 4.7 and
Remark 4.6.
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We then find p € Bj(G) for every 1 < r < co. Now we show Z,.(p) =
Zq(p):
We have T, (p) € H"(G) and T,p) € Hy'(G).

Applying Theorems 2.8 and 2.10 (in a vector-valued version which can
be derived from Theorem 2.10 easily) we conclude that also T',.(p) €
HY(G) and we have for all ® € C(G):

(A(T,.(p) —T,(p), A2) = (V(p—p),A2) =0

and by density of C;°(G) in H, (2)"1/ (G) and the unique solvability in The-
orem 2.9 in Hy?(G) we can conclude that

T.(p) =T,(p).

. ¢ < n: In this case we define ¢* := n"—_qq > ¢ and we find by Sobolev’s
embedding theorem p € H&’g*(G) and as p is still biharmonic we have

JS Bg*(G). As above, we conclude with Theorem 6.4 again that also
p € H>7 (G). If ¢* > n we are in the first case and done. The rest is a
simple induction argument, the induction step already given:

We define recursively g := g and fori > 1: ¢; == (¢;_1)" = J‘f;—:l > i1
as long as ¢;_1 < n. By the induction step given above for i = 1 above,
we conclude p € H&’gi(G) and p € B{(G). Should it occur that ¢; > n,
we are in the first case and done. Should it occur that ¢; = n for an i,

then we are in the third case and done.

Now we still have to show a statement about the ¢;. We show induc-
tively that ¢; = —4-. This is obviously true for : = 1. For i > 1 we
q
find
ng
ngi—1 N —ti—1)q o ng ng

Con—g n—% n—(i—-1)g—q n—iq

We see that formally for ¢ > %, we have ¢; > n, so there must be a
first ig € N with ¢;, > n and the induction given above stops somewhere
and we finally reach the first or third case.

. ¢ = n: In this case we see by the boundedness of G and the Holder
inequality that p € Bj(G) with r := %n > 1. In analogy to the second
3

2

case, we conclude that ¢* = % = 3n > n and we are in the first case.

N

[]
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Theorem 7.2. The operator Z, : B{(G) — B{(G) is bijective.

Proof. We first prove the injectivity of Z,: Let p € B3(G) with Z,(p) = 0.
Then p is an eigenvector of Z, with eigenvalue 0 and with Theorem 7.1 we
see p € B2(G) and Zy(p) = 0. With u := Ty(p) € H*(G) we thus have
divu = 0 and for all ® € ﬂg’Q(G) we have

(Au, A®) = (Vp, Vdiv D)
Asu € ﬂg’Z(G) is a permitted testing function, we see for ¢ = u:

(Au, Au) = (Vp,Vdivu) =0,
~—~——

=0

sou = 0 and (Vp,Ad) = 0 for all & € H(G). We conclude that p €
NI(G) N H&’S(G) (see the decomposition Theorem 2.26), so p = 0, as the
decomposition is direct.

Because we can write

compact

we see that Z, is a Fredholm operator and thus by injectivity automatically
bijective. O

Analogously to [14], Theorem 3.2., page 174 we find

Theorem 7.3. The bijective operator Z, : B§(G) — B{(G) is a homeomor-
phism.

Proof. We already know that Z, is continuous and bijective, so all that we
need to show is that there is a constant Cy = Cg(q, G) > 0 such that for
every p € B(G) the inequality

IVpll, < Cu [V Z,(p) (41)

g

is valid. Let’s assume that (41) were not valid. Then we could find a sequence
(pv)ven C Bi(G) such that
Vool =1

and
IVZy(p)l, — 0.

As the sequence (p,),eny C BE(G) is bounded in H(G), we can assume
by passing to a subsequence without loss of generality that the sequence is
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weakly convergent to a p € B{(G) (as BI(G) Cc HY(G) is a closed linear
subspace, it is weakly closed, too). By Theorem 6.5, we see that Z, — %Id is
compact. With the representation

Pv —Pu = 2Zq(pu - p,u) - 2Zq<pu - pu) +p— Pu

we find

19, = pll, <21V (Z, ), +2 IV Z, (00, +

-~ -~
v—00 H— 00

—0 —0

+2 V(Zy(py — pp) — %(pu )

-~

q

-

vV, — 00 1 . v, p— 00
— 0 as Zg—5Id is compact and (pv—pp) ——0 weakly

So the sequence (p,),en C B(G) is a Cauchy-sequence in H4(G) and thus
converging strongly to a p’ € B(G). It follows p = p/,

IVpll, =1
and
Zy(p) = lim Zy(p,) = 0.
By injectivity of Z, we find p = 0, a contradiction. O

Remark 7.4. In view of Theorem 7.2 and the decomposition from Theorem
2.23 and Theorem 2.24, we immediately see that Z, is even bijective when
viewed as a mapping from H&j’g(G) on itself.

Moreover, with Theorem 7.3 and the estimate (18) from Theorem 2.23 we eas-
ily see that Z, is a homeomorphism when viewed as a mapping from H&’S(G)
on itself.

Definition 7.5. Set M (G) := T, (Hyd(G)).
Theorem 7.6. For every p € H&’S(G) there is exactly one u € M (G) with
divu = p.
The in this way well defined function
D,: H&}’S(G) — M (G), p > the unique u € M (G) with divu = p

1S continuous.
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Proof. According to Theorem 2.23, we decompose p = p, + po with p, €
B{(G) and py = As € AY(Q) for an s € HJY(G) and we have

IVAsl, +[[Vpll, < Cp [|Vpl],-

As Z, : B{(G) — B{(G) is bijective, we find exactly one h € Bi(G) with
Zy(h) = divT, (h) = p, and by Theorem 7.3 we have with a constant C;

VL], < Cu [Vl

and with u := T (h) we have found an u € M (G) with divu = p, which is
satisfying

1Aull, < CIVh[l, < CCu [Vpsll, < CCuCp [ VP, -

We also have
[VAs], < Cp [IVpl],

and altogether
[A(u+ Vs)||, < CCxCp | Vpll, + Cp [|Vpll, = (CCuCp + Cp) [ V]|, -

So the linear assignment p — D, (p) := u + Vs from Hyd(G) to M, (G) C
HY(G) is continuous. We immediately see that

div(D,(p)) = p,
because
diV(Qq(p)) = div(u+ Vs) = Z,(h) + As = p, + As = p, + po = p-

For the uniqueness, we assume we had two elementsv =1T', (p1),w = T, (p2) €
M (G) with

_q . .
dive =divw = p.

If we take a look at t :=p; — py € H&’g(G), we immediately see that
Z,(t) = div(v —w) = 0.
By Remark 7.4, we have bijectivity of Z, and thus we find ¢t = 0. O
Concerning D, we can also make the following regularity statement:
Theorem 7.7. Let 1 < ¢, < oo and f € M (G) with
div f € Hy(G).
Then we also have f € M, (G).

61



Proof. The proof is rather simple: As div f € H&y’g (G), we can take a look at
f =D, (div f) € M,(G).

But by boundedness of G, as M, (G) D M (G) (in case r < q) or M (G) D
M, (G) (in case ¢ < r), we have

f—feM/G)
or )

f—feM(G),
andasdiv(i—f):(),weseetha f= fGM( ). O

With Theorem 7.6 we get a direct decomposition of Hz(G):

Theorem 7.8.
Hy'(G) = D3(G) & M (@),

where Dg(G) = {v € Hy(G) : divu =0} .

We also have the estimate
[Av, ]|, + |Aws |, < C|Au]l, (42)

with a constant C = C(q,G) > 0 for every v = v, + vy, € HY(G) with
v, € DYY(G) and v, € M (G).

Proof. Let v € Hy9(G) be arbitrary. Then we can define p := dive €
Holj’g(G) and w := D, (p) € M,(G). Then divy = p = divw and so we have
v—w € DY(G) and

v=(@v—-—w)+ w

EQg’q(G) EMq(G)

and the decomposition is shown.

For the directness we see: If v € Qé’q(G) N M,(G), then we have divy = 0.
Asve M q(G), according to Theorem 7.6, we have one unique element u in
M, (G) with divy =0 = divey and as 0 € M (G) we have v = 0.

o
We further see with Theorem 7.6 and w = D, (divv) that

[Awll, < Cp, [V divul| < Cp, Coz || A, ,

where Cp, = Cp, (¢, G) > 0 is the constant existing by Theorem 7.6 such
that
|AD,(p)|, < Cp, IVl

for all p € Hyd(G).
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Further we also have

1A —w)l, < Al + [Aw]l, < (14 Cp,Coz) Al

g
All in all we see that estimate (42) is shown. O

Remark 7.9. Using the fact that T, = D, o Z, : HSV’g(G) — M, (G) is a
homeomorphism we get with Theorem 2.23 even the refined decomposition

Hy"(G) = Dy"(G) @ L,(A§(G)) ® T, (B3(G))

and with the estimate (18) we get also a refined estimate analogous to esti-
mate (42).

The next Theorem provides us with a norm on M (G) which is equivalent
to the norm ||A-[|,:

Theorem 7.10. There is a constant C. = C.(q,G) > 0 such that for every
u € M (G) the inequality

[Aull, < Ce ||V divull,

18 valid.

Proof. Let u € M_(G) be arbitrary. Then we find a p € H&j’g(G) with
u="1T,(p). We have the estimate

[Aull, < VPl

with a C'= C(n, q,G) > 0 by continuity of T, and with Remark 7.4 we have
a C'=C'(n,q,G) > 0 such that

IVpll, < C'[IVZ,(p)ll, = C" IV diva],
with u =T (p) and the theorem is proved. O

We can now prove a divergence inequality:

Theorem 7.11. There is a Cgy, = Caiv(q,G) > 0 such that for every p €
Hy¢(G) we have the estimate

Vp, Vdiv®
IVpl, < Ca  sup 2V IND)
0#£PEM 1 (G) IV div @],

satisfied.
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Proof. AsT, =D, o Z;: Héy’g(G) — M (G) is a homeomorphism, we have
a constant Cr, > 0 such that

IVpll, < Cr, [|AT, )],

and by defining u := T, (p) we find with Miiller’s variational inequality:

Au, AP V. AP
Aul, < Cyy sp DEED gy, RO
Oiﬁéﬂg’ql(G) H _Hq/ O#QEH(Q)’(I,(G) H _Hq/
(Vp, Vdiv®)
=Cy,  SUp Rl
0£2EHG (G) Ellg

Using now for ® € H, g’q/(G) the decomposition of Theorem 7.8 and writing
=2, +2,

where &, € DY (G) and ®, € M, (G), we see by employing estimate (42)
that

1AD, ]|, < C"|A],
with C” > 0 and we also see that with [[A®,[|, = 0 we have & = &, and thus
(Vp, Vdiv®) =0, so we have

Vp, Vdiv® Vp, V div @
0£BeHYY () 1A2]l,, 0£D=0)+&, €HY ! (G),@,#0 1A,

By additionally using div ®, = 0, we get to
CIQQM,q <Vp7 V div g1>

sup <
¢’ Oaﬁé:@ﬁgeﬂg*ql(a),gﬁﬁo HAgl ||q/

IVpll, <

- C’ 0£bEM /(G) HA@Hq/

and applying the fact from Theorem 7.10 that on M, (G) the norms [|A-[],
and ||V div-[|, are equivalent, we have shown the theorem. O

8 Eigenvalues of Z,

Now, as we have achieved the main aims, we take a look at the eigenvalues
of Z,.
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8.1 General Statements

With Theorems 2.25 and 7.1 we have made first steps towards the study
of eigenvalues/eigenvectors of Z,. We have seen that for A # 1 the only
eigenvectors p € ngg (G) to the eigenvalue A lie in B{(G). Having shown in
Theorem 6.5 the compactness of Z, — 31d : B{(G) — B{(G), the spectral
Theorem for compact operators is the right tool for us. We could now try to
use the general spectral theorem for compact operators, as it is for example
given in [2], pages 377-380, but this would require some extra work, most of
which would be introducing some new notation. However, by our Theorem
7.1 about regularity of the respective eigenfunctions p € Bi(G) with Z,(p) =
Ap, A # %, we have seen that also p € B2(G) is a eigenfunction with respect
to Z, for A, and thus, all we have to do is look at the Hilbert space case,
which furthermore gives us more concrete information:

Theorem 8.1. (Spectral theorem for compact operators in Hilbert spaces)
Let H be a Hilbert space and 0 # A : H — H be a compact hermitian
operator. Then there exists a set {®r} of orthonormal eigenelements of A,
which is finite or countably infinite. We denote the eigenvalue for ®; with
Ak, S0 AP = M\®@r. In case of countable infinity, there is limg_ oo A\, = 0.
The eigenspaces

Ex={feH: Af=\f}, X#0

are finite dimensional vector spaces and furthermore we have the following
representation for A:

Af = Z AP, [Y Py for every f € H.
kA #0

Remark 8.2. The operator Zy — 11d : BY(G) — B{(G) is easily seen to
be hermitian. As Id of course is hermitian, all that is to show that Zs is
hermitian. Let r,s € B2(G) C H&,’S(G), w = Ty(r), v:=Ty(s) and take a
look at

(VZy(r),Vs) = (Vdivu, Vs) = (Au, Vs).

As we have here ¢ = 2, ® == u € ﬂ3’2(G) is in the following a permitted
testing function and so by definition of v =T, (s), we see that

(Vs, AD) = (Av, AD) V& € HY*(G)

and thus
(VZy(r),Vs) = (Au, Av).
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By making the calculation from above again, this time for (VZs(s), Vr), we
find that also
(VZ5(s),Vr) = (Av, Vr) = (Au, Av)

and thus for all s,r € B3(G) we have

(VZy(r),Vs) = (Vr,VZ(s)).

Remark 8.3. Making the easy calculation

Zy(p) = Ap <= Z,(p) — %p = <A - %) p

we see that A € R is an eigenvalue of Z, if and only if ()\ — %) is an eigenvalue

for Z, — %]d. So, in order to study eigenvalues of Zg, it suffices to study the
eigenvalues of the (on B3(G) compact) operator Z, — 11d.

Theorem 8.4. The set
1
E = {)\ eER: N\ ¢ {5,1} , there is a0 #p € Hé,’g(G) with Z,(p) = )\p}

15 finite or countably infinite. In the case of countably infiniteness, E has

only one accumulation point (in R) and this accumulation point is 1. For

2
every A € E, the respective eigenspace

Vii={p € Hy3(G) : Zy(p) = Ap}
s finite dimensional.

Proof. This is just a direct application of Theorem 8.1 to the operator Z; —
%] d, additionally using Theorems 2.25, 7.1 and Remark 8.3. O

The following easy calculation shows the connection between eigenfunctions
of Z, to eigenvalues # 0 and elements u € Hy(G) satisfying

(Au, A®) = u(V divu, Vdiv®) for all ¢ € ﬂg’q/(G)

for a p # 0.

Remark 8.5. If we have a A € R\ {0} and a p € H&’S(G) with Z,(p) = \p,
we find with u =T (p):

1
divu = Ap, which is p = " divu
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and thus for all ® € H" (G):
1
(Au, A®) = (Vp, V div @) = 1 (V dive, V div @)

This also works in the other direction: If we have a p € R\ {0} and an
u € Ho'(G) with

(Au, AD) = pu(V divu, Vdiv®) for all ® € H>Y(G),

we have
u="1T,(ndivu)

and we get after applying divergence to this with p :== divu € Héjg(G) :

o 1
p = puZy(p), which is Z,(p) = ;p.

8.2 The Eigenspace for A\ =1

The following characterization of the eigenspace for A = 1 of the eigenvalue
problem Z,(p) = Ap is inspired by Simader’s and Weyers’ characterization of
the analogous problem for their Cosserat problem (see [19], chapters 5,6).
With Theorems 2.24 and 2.25 we already have a first statement about

E:={p€ Hyl(G): Zp) =p}:

We have AJ(G) C E, and the study of eigenvectors p € H&}’S(G) for A =1
reduces as in the case of A\ # 1 to the study of eigenvectors p € B{(G) for
A= 1

To begin, we notice the following:

If p € BY(G) is an eigenvector to the eigenvalue A = 1, we find that

divl,(p) = p. By the regularity Theorem 7.1, we find that p € 50((}’) N
——

Hol,’g(G) and u € Ql(G) N ﬂﬁ””(G) forall 1 < r < .
Now we make some simple calculation for ¥, ® € C°(G):
We have

n

R [\If Q] = % Z <8k85\111 — 8k81\115,8k85<1>l — 8k81<1>5> =

)

k,l,s=1
1 — 1 —
=3 Z (Ok0s V1, 0,0 P — 001 Ps) — 3 Z (OLOVY 4, 0, 05Dy — 0,0, D).
k,l,s=1 k,l,s=1
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By interchanging the names of the variables s and [ in the second summation,
we see that all in all we have

n

% Z <akas\pl - akal\IJsa akasq)l - aI~cal(1)s> = Z <8kaslpla aIfas(I)l - akal(I)s>

k,l,s=1 kls=1

for U, ® € C;°(G). By approximation, we get the validity of these expressions
even for ¥ € H"(G), ® € H>" (G), for every 1 < r < oc.

The statement Z,(p) = p means for u = T (p) € T (B§(G)) that for every
® € H>7 (G) we have:

(Au, A®) = (V divu, AD)
with divu = p.

Looking at the difference of these two expressions, we see by some partial
integrations that

0= (Au, A®) — (Vdive, AD) = Y (fuy, 20) — > (00w, ;) =
k,l,s=1 k,l,s=1
= > (O, 0:0.®)) — Y (OpOuy, 40 Ps) =
k,l,s=1 k,l,s=1

n

= Z <akaslbl, 8k85q)1 - 8kalq)s>7

k,l,s=1

which is by our calculation from above equal to R [u, ®].
As we have seen that u € H 3’2(G), we can plug in u itself as testing function ®
and see from R [u,u] = 0 that for all k, [, s we must have 0y05u; — OrOyus = 0.
For fixed values of s and [, we see that the Hé’q(G)-function ub® = Oyu; — Ous
must satisfy Vu!* = 0 and therefore by the Poincaré inequality u"* must be
equal to 0 on G.
Define

. Ju(x),forzeG

e 0, for x e R*\ G

Then we have, as u € Zl(G) with u = 0 and d;u; = 0 on G a well defined
vector field & € C'(R") and we find by the simply connectedness of R™ by
classical calculus a function ¢ € C*(R™) such that V¢ = @ unique up to a
constant. We also see that the restriction of V® to G is in HyY(G) as it is
equal to u there and that @ satisfies 054 (z) = Ojus(x) for every x € R". As
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R™\ G is an open set with smooth compact boundary, we see that there are
finitely many connected components Cj,...,Cx of R\ G (see for example
[19], Lemma 5.1, page 185), and we see on any fixed C; by definition of @
that V¢ = 0 on C; and therefore we must have a constant ¢; € R with ¢ = ¢;
on C;. This allows us to “norm” our ¢ the following way: By demanding
it to be zero on a fixed C;, (there is always N > 1 and we fix i to be
the unbounded connected component of R” \ G), we dispose of the above
occurring uniqueness of ¢ only up to a constant.

Now we take a look at some helpful functions. If we take fori =1,... N, i #
i functions ¥; € C°(R™) satisfying U; = 1 on (the bounded) C; and ¥; = 0
on every C; with j # i we immediately see that u, := V¥, € Hy(G)NC™ (G)
satisfies for every ® € C;°(G)

(Au,;,, AD) = (AVVY;, AD) = (VdivVV¥,;, AD) = (Vdivy, AD)

and thus with p; := divu; we have u; = T (p;) and thus Z,(p;) = p;.
Further we define for U; a function b; € HY(G) by the unique solution of
the problem

(VAb;, VAg) = (VAU;, VAg) for all g € H (Q).

Having given a certain p € Bi(G) N E and @ and ¢ constructed like above
with ¢ = ¢; on C;, we find out that

N

fr=0— Y c(¥;—b)eHG):

i=1,i%i0
As each b; is in Hy?(G), we just need to show that [ :== ¢ — S, iy CiVi €

HYY(@G). At first we see that | € Ez(G), as ¢ and each ¥, are. Further we
see by definition of the ¢; and ¥; that [ = 0 on 0G. Thus, [ € Hé’q(G) by
Theorem 4.7. Looking at VI = V¢ — Zf\;l’i#io VU, =u— 2511,1#0 VY,
we see that [ € H>Y(G) and by Theorem 3.3, we get by looking at the
boundary values of Vi: VI € Hy“(G) and thus [ € H2Y(G). In analogy to
this, we get with the help of Theorem 9.5 as u € Hy%(G) and each VU, €
HYUG), i #ig: 1 € HY(G).

f is thus satisfying for every g € Hg’q,(G)

N
(VAf,VAg) = (VAR VAg) — »  c{VA(Y; —b), VAg) =
i=1,i#io
N
= (Au, VAg) — Z ci(VA(Y; —b;),VAg),
i=1,i#ig
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where we see by divu € B{(G) that (Au, VAg) = 0 and for i # ig we have
(VA(V; — b;), VAg) = 0 by the definition of the b;. So by the variational
inequality we finally get f = 0 and so

N

i=1,i#10

As V¢ = u and p = divu, we get p = divV® or

N
i=1,iio
All in all we see that
E=AYG)® V(Q), (43)

where V(G) is a finite dimensional vector space spanned by the elements
A(; —b),i=1,...N,i# i

Moreover, we can show that the elements A(W; —b;),i=1,... N, i # iy are
linearly independent: To show this, we notice that due to the linear isomor-
phism div : T (B§(G)) — B§(G), we only have to show linear independence
of the elements

V(U —b),i=1,...N, i 1.
Suppose there are \; € R, i =1,... N, i # ig such that

N
> AV(T —b) =0.

i=1,iig

Then the function

N
g:= > X(¥;—b)eHYG)
i=1,i%io

must be constant: For C':= [, gdz, we have h := g — % € H"(G) mean-
value-free and thus by the Poincaré inequality follows A = 0 which means
that ¢ is constant. Looking now at dC;,, we see that there each V; is zero
and as b; € Ho'(@G), the trace of b; is zero on dC;,, too. But as g is constant,
the trace of g on 0C;, must be equal to this constant, too. Thus this constant
must necessarily be 0. So now we have

N
> (T —by) =0.
i=1i#ig
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On 00}, j # iy, we find ¥; = ¢;; and the trace of each b; vanishing. So we
have the trace of g on dC; equal to \;. But on the other hand it must be 0,
so A\; =0, 7 # i and we have linear independence.

We have proved the

Theorem 8.6. Let G be a bounded domczn with 0G € C® and N > 1 be the
number of connected components of R" \ G. Then

{p € Hy{(G) : Zy(p) = p} = AYG) & V(G),

where V(G) is a finite dimensional real vector space of dimension N — 1.

Part 11

Cosserat Operators of
Arbitrary Order and Study of

Stokes-Like Systems Connected
With Them

9 A Generalization of our Account to the Cos-
serat Spectrum to Arbitrary Orders

This section will give an outline on how to generalize our account to higher
orders. In contrast to the first part, we do not assume a specific fixed regu-
larity of OG and show the theorems for this fixed regularity but we will state
with each theorem the regularity of OG we need for the proof.

At first we give an introduction to the general setting:

9.1 The General Situation

Let in the following m € N be arbitrary but fixed, G CC R”, 1 <qg<
and 1 < ¢’ < oo with ; + 5 = 1. For u € Hy"*(G), v € Hy"* (G) define

By, [u,v] (AZu, A% v) for even m
m (U, v] = - -
u, VATlv) for odd m

(VA=
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First we state a theorem on solvability of the respective weak Dirichlet prob-
lem which can be proved using Simader’s general theory from [15] in an
analogous way as in our proofs of the theorems in Subsection 2.4:

Theorem 9.1. Let G CC R™ with 0G € C™, F € (H(T’q/(G)> . Then there
exists exactly one u € Hy"*(G) such that
B, [u, ®] = F(®) for all ® € H™ (G).
Further there exists a constant C = C(m,q,G) > 0 such that
< N
lllmg < CNEM (pggnary

Along with this solvability statement comes the following variational inequal-
ity:
There exists a C = C(m, q,G) > 0 such that for all u € Hy"*(G) we have
~ B, lu, ®
llu|,. < C  sup %
07$<I>€H6n’q,(G) || ||m,q’

As in Section 2.5 we find a decomposition theorem which is a direct conse-
quence of Theorem 9.1:

Theorem 9.2. Let m € Ny and 0G € C™*? and set for m = 0: H(G) :=
Li(G). With the definitions

HISI(G) = {f € HIM(G) - / fde = 0} ,
€
A™(G) = {f € H"(G): f=As for an s e H""™>(G)},
B™(G) := {f € Hy"(G) : / fA™ O dr =0 for all ® € CSO(G)}
¢
and

AgH(G) == A™I(G) N Hy'(G), By"(G) := B™(G) N Hyg'(G)

(we also have here again Ay"'(G) = A™Y(G) but we will write often the
0-index for consistency), we have the direct decompositions

Hy™(G) = A™(G) @ B™(G)

and

Hy'(G) = Ag™(G) @ By(G).
Moreover, for an f € Hy"(G) with the representation f = As + p with s €
HJ"(G) and p € B™I(G), we have with a constant C = C(G,q,m) > 0:

1A8] g + 1Pl g < ClLF g
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Proof. The proof is a straight-forward generalization of the proof of Theo-
rem 2.23. However, as we need some more detailed information about this
decomposition later in the proof of Theorem 11.2, we will give an outline of
the proof there. O

Let in the following be m € N, m > 1. In analogy to our decomposition (22)
from Theorem 2.26 we have in our general situation

Theorem 9.3. For G CC R" with 0G € C™, we have
HJ'(G) = HW(G) @ N3,(G)
with
N (G) == {g € Hy"'(G) : By [g,div®] =0 for all ® € C3°(G)}.

The space N%(G) is a one dimensional real vector space generated by an
element h € Hy""(G) N C®(G) with

A"h(zx) =1 for every x € G

and [, hdx # 0.
Further we have N2 (G) = N (G) for every 1 < r < oc.

Proof. The proof is a direct generalization of the proof to Theorem 2.26. [J

Now we define the generalizations of the operators T, and Z;:
For p € H(%_l’q(G) define as I((Im) (p) the unique u € H{"*(G) satisfying

By, [, ®] = By [p, div @] for all ® € Hy™" (G).
This u is found by application of Theorem 9.1 to the problems
By [ti, ¢ = B [p, 0i¢] for all p € H™(G), i=1,...,n.
Theorem 9.1 also guarantees us the continuity of
T < Hy(G) — HP(G).
With Igm) now defined, we define
ZMm = divo TU™ : Hy'y M(G) — HYy M(G)

which gets continuous by continuity of T° gm) and div. Regarding our decom-
position from Theorem 9.2 we get an analogy to Theorem 2.24:
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Theorem 9.4. For G CC R" with 0G € C™, we have
Z{" | apragy AT I(G) — ATTHUG) and Z7M (p) =p Vp € A7TH(G)
200 vy B 9(G) — BY9(G)

Proof. The proof is done as the proof of Theorem 2.24. m

Moreover, we need generalizations of our helpful theorems from Section 3,
namely Theorems 3.1, 3.2, 3.3 and 3.4. The Theorems 3.1, 3.2 and 3.4 are
easily seen to be generalizable, the generalization of Theorem 3.3 which we
will need is the following:

Theorem 9.5. Let G CC R™ with 0G € C™ and f € H' "(G) N H™(G)
satisfy
Df € HyY(G) for every o € NI with |a| =m — 1.

Then f € Hy"(G).

Proof. For the proof we will use the notation used in the proof to Theorem
3.3 except calling f and fx now f and fz. As in that proof, we can (using a
localization process as in the proof of Theorem 3.3 via a partition of unity,
this is were we need G € C™) reduce ourselves to the following case:

G=Q=Ax]0,¢[, f e Hy Q)N H™(Q) with
Df € Hy*(Q) for every o € NI with |a| =m — 1
and f(z) = 0 almost everywhere in @ \ (A" x ]0,e — £[)

Now we have to show that f € Hj"(Q). We can make up estimates similar
to the ones made in the proof of Theorem 3.3:

e By approximating f with C5°(Q)-functions u, in the H™ 14(Q)-sense as
it is possible by f € Hg)n_l’q(Q), we can see like in the proof of Theorem
3.3 that with the multiindices o = (o, ..., ), 8 = (a1,...,,-1,0)
with |a| <m —1 and 0 < p < € we get the inequalities

o B
||D f||A><]0,p[,q S D fHAx]O,p[,q'

e Because of D f € Hy9(Q) for every § with |3| = m — 1, we see that
for a with |a| = m and o, > 1, B := (aq, ..., 01,0, — 1) we get by
approximating D? f by Cg°-functions in the H%%(Q)-sense for 0 < p < €
the inequality

HDafHAX]O,p[,q S P HDﬁfHAX]O,p[,q'
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e By sticking the two estimates from above together, we get for every
multiindex « with a,, # 0 and |a| < m the inequality

fe! o B
||D f||A><]0,p[,q < P HD fHAx]O,p[,q'
This inequality obviously is valid for a,, = 0, where 3 = «, too.

Taking again a cut-off function n € C>*°(R) with n(t) = 0 for all ¢ < 1 and
n(t) =1 for all t > 2 and setting n,(t) := n(kt), we see that supp(n,) C [2, 2]
and all the higher derivatives of 1, have this property, too. We also find a
constant ¢ = ¢(n, m) > 0 such that

|0 mi(t)] < ck! for all I < m.

In the following, we will use a generalized Leibniz rule for the derivatives of
fnr, which is shown as in the classical account by iterated use of the product
rule (our Theorem 3.1):

For f € H™(Q), g € C(Q), r < m, we have fg € H™(Q) and for
t=1,...,n we have

r

ortsa) =3 (7)okrorta
=0

So, writing fx(z',x,) = f(a', z,)nk(z,) and letting o = (ay,...,a,) be a
multiindex with |o| < m, §:= (aq,...,a,_1,0), we find because of

aifk(x/7 In) - 8if<x/7 xn)”k(“%) for i 7é n:

D fi =0y (D fir) = 07 (D" fme) =) <O}">32Dﬁfaz“nk

=0

Then we see for every multiindex o with o, > 0, |a] < m, 8 = (o, ..., p,_1,0)
that we have

1D f = Dfill, = <

an—1
D*f — (Dafnk + > (“l) a,iDﬁfa:;n—lnk>
=0

q
anp—1

<10 = Dl + 3 () Woro sotul,,
I =0

q

—0 as in Theorem 3.3
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Looking at the right term, we find with our previous observations and the
fact that supp 9%~ ~n, C [%, %] for | < ay,:

q

|0.0% ot = [ |oh07f ol | do <
4 Q SN——
| |<Chen—1

< quqmn—l)/A 0D | da = CtRA D 0L DP [0 21, <
'x]0,2|
< O piten (z)q(anl) |De e
< ) I3 02
—oa(en—1) %, by Lebesgue’s Domin;ed Convergence Theorem

In the case where «a,, = 0, we have again
1D fr = D*flly = (1 = ne) D* f| g — 0.

So we see that the sequence f; approximates f in the H"™4(Q)-norm. Fur-
thermore, by construction, the f; are all equal to 0 outside a compact set
S = S(k) C Q. By mollifying the f; with small enough mollification param-
eter e, we can, as in the proof of Theorem 3.3, find (f)., € C°(Q) and
(fi)er — f in H™(Q). .

Furthermore, we will need in the following as a generalization of Theorem
5.1 the approximability of a p € By*"%(G) with elements from By "(G) N
Hm-i—lﬂ(G)

Theorem 9.6. Let G CC R" with G € C™ and p € B "(G). Then
there exists a sequence (p,)yen C By~ "U(G)NH™14(G) with ||p — Puollp1.q =
0.

Proof. The proof can be done in analogy to the one from Theorem 5.1:

As in Theorem 2.22, we can show easily that C55(G) is dense in Hg'fo_l’q(G)
with respect to the H™~4(G)-norm. So we find a sequence (g, )ven C C55(G)
with [|g, —pll,,_,, — 0. As G € C™*!, we can solve for each v € N the
problem

Bt [$0,®] = By [g,, A®] for all ® € H'™(G)

with s, € H"™(@). As G € €™ and g, € C°(@), we find with Theorem
6.1 that we even have s, € H™34(G). Looking now at p, := g, — As,,, we
see that p, € H' "(G) N H™14(G) and we find for ® € C°(G):
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Bm [ 2 q)] = Bm [gua (I)u] - Bm [ASU7 (I)] = Bm [gzza (I);] + Berl [51/7 (I)] -

- Bm [gy; (I),] + Bm—l [gm A(I)] - Bm [gua (I)u] - Bm [glh (I)] =0

and we have by Weyl’s Lemma: p, € C*(G) and A™p, = 0. Allin all we have
py € BY 7 H(G)NH™ (@A), Now all left to show is that ||p, — Pllp_1q =0
To see this, we look at

le/ _pHmfl,q = HgV o ASV _pHmfl,q S ng/ _pHmfl,q + HASVHmfl,q

and note that as s, € HJ'"""(G), we have with the generalized variational
inequality from Theorem 9.1

Biny1 [sv, P]
[Asulln1q < llsvllgr,g <C - sup \TIEH—W =
0£Pe HM L (@) m+1,q'
B,,_ Ad B,._ —p, AD
_ C sup m—1 [gm ] _ C sup m—1 [gu D, ] <
07£¢€H6n+1’q/(0) H(DHm—l—l,q/ O?éq)eHg%kl,q/(G) H(I)||m+l,q’
< Cllgy = pllin1,4 =0,

because we have for every ® € H" ™ (G): AP, 1 < [Pl 1,4+ So we
have found an approximating sequence p, satisfying our requirements. O

9.2 The Generalization of Crouzeix’s Ansatz

Now we are able to start the generalized Crouzeix approach. In the first
version, Theorem 9.7, we are (as shows up by comparison with our special
case m = 2 already inspected in Part I) too restrictive on the required regu-
larity of OG. This is done in order to make classical calculation doable: For
the calculations we will do, we will need a relatively high regularity of (. In
the end, however, we will get rid of the too restrictive requirements by an
approximation idea leading to a second statement, Theorem 9.8, with weaker
requirements on 0G.

Theorem 9.7. Let G CC R™ with G € C*"*2 and p € By "(G) N
H™(G), u:= If]m) (p) and let

1 m
w:=u-V(— %p(’ e H"(@G),
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where ¢ € CZ™TH(R™) is Weyers’ helpful function from Section 3.1.
Then w € H™9(G) and there is a constant C = C(m, q, G) such that

[wllirg < CllPln-1g-

Proof. That w € Hy"%(G) is clear by definition of w and the information
we have about u, ( and p: Since u € Hy (@) and ¢ € C3™(R™), we have
w-V¢ € HPY(G) and with p € H* "(G)NH™(G) and ¢ = 0 on G, we see
as in the proof of Theorem 3.4 that p( € Hy"*(G) with use of Theorem 9.5.
In the following we are making a mixture of our account from the motivation
of Crouzeix’ method and our proof from Theorem 6.2. As p € By (@),
we see by Weyl’s Lemma that p € C*°(G). Then we see by an argument very
similar to the one used already in the induction step of our proof of Weyl’s
Lemma (Lemma 2.20) that u € C*(G), too:

With p € C*(G) we conclude Vp € C*(G). For xz € G arbitrary and r > 0
such that B,(x) CC G, we find by classical theory in analogy to our proof
of Lemma 2.20 an & € C (B, (x)) with a 0 < 7/ < 7 such that Ad = Vp on
B,(z). With v :=u — 1 we see for & € C3°(B,(z)):

= Bm [Qv Q] + Bm—l [vpag] - Bm [Qa 9] - Bm—l [p; dlvé] = O

and thus by Weyl’s Lemma we conclude that v € C*(B,(z)) and then u =
v+1a € CP(By(r)).

Because of this and G € C*"*% by which we find ¢ € C;"™(R"), we
conclude that

1
wi=u-V(—5—p¢ € Hy"(G)NC*™(G)
2m

and we can calculate classically:

Am(w) = A (1w V¢ — —pC (44)

w) = u Qmp

Looking first at A™ (u - V(), we see that

A" (u- V() = A™(w) - V(+T, (45)
where 7' stands for terms consisting of derivatives of order < 2m of the wu;

and derivatives of order < 2m + 1 of (, where for each summand we have
that the respective orders of derivatives of the u; and ¢ sum up to 2m + 1.
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Looking at

2m

A™ (—ipc) , (46)

we see by induction that for j € N, j < m we have
AN (pC) = (A'p) ¢+ 2jA7'Vp - V¢ + T, (47)

where T} stands for terms containing derivatives of p of order < 2(j —1) and
derivatives of ( of order < 27, where for each summand we have the sum of
the respective orders of derivatives equal to 2j. For 7 = 1 this is clear by the
formula

A(p¢) = Ap¢ +2Vp - V( + pAC.

The induction step from j to j+1 is just another application of this formula:
AH(pC) = A (AT (pQ)) = A ((A7p) ¢ +2) A7 'Vp - V(+T5) =

= (A*'p) ¢+ 2VA/p - V( + 25 (AVp - V) + Ty,

where T} stands for an expression consisting of derivatives of p of order < 2j
and derivatives of ¢ of order < 2(j + 1), where the orders of the derivatives
sum up in each summand to 2(j + 1). So we can conclude that we have

1 1
A" (——pg> = A™p C—A"1Vp.V(+T, (48)
2m 2m ~—~—

=0, as pGBgnfl’q(G)

where T" denotes terms consisting of derivatives of p of order < 2m — 2 and
derivatives of ( of order < 2m, where the respective orders of derivatives in
each summand add up to 2m.

By partially integrating we see that with u = Iém) (p) we get for all & €
Ci°(G): We have by definition of u

Bm [Q7 Q] - Bm—l [p7 leg] )
which leads to
(A, @) = (VA™ 1p, @) for all & € C°(G)

and it follows that A™uy = VA™ !p, see for example [16], Satz 2.5 (4), page
33.

Using this, we see that the calculated terms A™y-V{ and VA™ 1p.V( from
(45) and (48) cancel out and thus when calculating (44), we see that A™w is
a sum of products of derivatives of the u; of order < 2m — 1 and derivatives
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of ¢ of order < 2m + 1 where in each such product the respective orders of
the derivatives add up to 2m + 1 and products of derivatives of p of order
< 2m — 2 and derivatives of { of order < 2m where in each such product the
orders of the respective derivatives add up to 2m.

So, with ® € C5°(G) we see again by partial integration that

By [w, @] = £(A™w, @) = > (aq5:D% u;D¢, @)+

i=1,...,n
lal<2m
Bl +|e|=2m~+1

+ Z <b’y,5D’pr5C7 (I)>7

[v|<2m—1
8]+ 1v|=2m

with suitable a, 5, and b, 5 € Z. So we can write B, [w, ®] as

> {aapiD* ui, DYC®Y + Y (bysD7p, D). (49)

lal<5m i<z
+|v|=2m
18|+|al=2m+1 K

For the first sum in (49), we look at three cases:

i)

ii)

Looking at a summand (a5, D% u;, D°¢®) from the first sum in (49)
with |a| < 2m and || + |a] = 2m + 1, we see that in the cases where
we have |a| > m we can make || —m partial integrations and get with
an n < « of length |n| = |a| —m to

(0,5 D° u;, D" (D°(P)),
where e = m, 9] < m, e +n = a and |n| + |5] = (la| —m) +
2m+1—|a])=m+ 1.

In the cases where |a| < m, look at a summand from the first sum in
(49) of the form
(@3 D" uz, DPCP)

with || <2m — 1 and |a| + |B| = 2m + 1.

Then we have 3] =2m +1—[a] > 2m +1—m =m+ 1. In this case
we write
(a0,5: D% ui, D’C®) = (ag 5,;D* u;®, DOC)

and make for a multiindex v with v <  and |y| = |#| — m — 2 partial
integrations such that

Bl =Il=m+2, [y <2m+1—-(m+1)=m
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iii)

thus arriving at
:]:(CL,LQ’Z'D’Y (Da Uzq)) s D77<>

with |n| = || —|y| = m+2 and by carrying out the D7-differentiation,
we get a Z-linearcombination of terms of the form

(Du; D" ®, D"C)
with
lel <lal+ v = lal+16l = (m+2) = [a[+2m+1—]a| =m—=2=m—1,
lv| <|y| <m—1and |n| =m+2.

In the case where |a| = m, we see that |3| =2m+1—m =m+ 1.

Analogously, looking at a summand from the second sum in (49) of the form

<b'y,5D’yp> D(SC(I)>7

with |y| < 2m — 1 and [§| + |y| = 2m, we look at two cases:

i)

i)

We can make in the case where |y| > m — 1 some partial integrations.
There are |y| — (m — 1) partial integrations necessary to make the
derivatives on the left side of order m — 1. We thus get to a term of

the form
+(b, sD" p, D” (D‘SCCD)),

where |pu| = m—1, |v| = |y —(m—1) < m—1 and |v| + |0| =
(Wl =(m+1))+(@2m —=h]) =m+1.

In the case where |y| < m — 1, looking at term of the form
<b'y,5D’yp7 D6C®> = <b’y,5D7p(I)7 D6<>

from (49), where we have |§| = 2m — |y| > 2m — (m — 1) = m + 1,
we get with a multiindex € with ¢ < ¢ and |¢| = |0] — (m + 1) after |¢]
partial integrations to

+(b, sD°(D"p®), D"()
with |v| = |0] — |e| = 6] — (]6] — (m + 1)) =m + 1 and
lel+ v =10 —(m+1)+|y|=2m— (m+1) =m —1 and
lel =16 —(m+1) <2m—(m+1)=m—1,
so this can be written as a Z-linearcombination of terms of the form
(DFpD"®, D),

where |u| <m —1, |v| <m—1and |n|=m+ 1.
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All together, reviewing all our inspected cases, we find an N € N and numbers
aij.b; € Z,i=1,...,N,j=1,...,n, such that with ® € C5°(G) we have:

N n N
Bm [w, q)] = Z <ai,jD°”uj, DﬁZCD’YL(I)> + Z(leézp’ DWCDM(I)>,

i=1 j=1 i=1

where |o;| < m, |G, v < m+ 2, |0:], %], || < m — 1. So what we

get is the fact that B,, [w, | defines an element F' from (Hg” _1’q/(G)) with
< : : :
I|E| (H{)”_l’q (G)) <cl|pll,,_14 with a ¢ > 0 depending on G, ¢, ¢, m and with

an application of Theorem 6.1, we can conclude that

w e H™H(G), and ] <l

m+1yq m717q ’

as [lw|l,, can also be estimated against [|p|| as is easily seen from the

definition of w via u,p and (.

m—1,q

]

Theorem 9.8. A weakening of the reqularity requirements for OG in Theo-
rem 9.7
Let G cC R"™ with G € C™ and p € By "(G) N H™(G), u := Iém)(p)
and let

1 m
wi=1u-V(— %]’C € Hy"(G),

where ¢ € Cy2(R™) is Weyers’ helpful function from Section 3.1.
Then w € H™Y9(Q) and there is a constant C = C(m,q,G) such that

[l 114 < C P

m+1,q — m—1,q °

Proof. Looking at the proof of Theorem 9.7, we see that we can take over
the first part of the proof word by word. We also still have here
1
=u-V({— — Hy"(Q).
w:=u-V( QmpC € Hy"(G)
Then we can take a look at B,, [w, ®] for & € C3°(G). As, in our special
setting OG € C™*3, we can just assume ¢ to be in CJ*"?(R™), we can not
proceed as in the proof of Theorem 9.7 and integrate partially, landing at the
term (A™w, ®) and calculate A™w classically. But we can do the following:
By mollification of ¢ € CJ""*(R"), we find a sequence ((x)reny C C°(R™) with
D*(;; — D uniformly in R" for every multiindex a with |a| < m + 2. For

k € N we define .

Wy = u- V( — %PQC
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and find that wy, 2225 w in H™1(@G). So, we find for ® € C3°(G)

B, [w,®] = klim By, [wg, D]
and for each B,, [wy, ®] we can do the calculation from the proof of The-

orem 9.7 (as we did not use any of the specific properties of ( except it’s
differentiability) and find that

N n N
B 8] = 3° 3y D5, DY) + 3 605, DG D)
i=1 j=1 i1

where |a;| < m, |G|, |vi] < m 4+ 2, |6:], %], ] < m — 1 are multiindices
and ¢ =1,..., N for an N € N. It is clear that N, the multiindices «;, 3;,
Yis 0i, [, v; and the a;;,b; € Z do not depend on our specific £ € N. For
example for the a; ;,b; € Z, we see that they emerge only from our “classical
calculation” and applications of the product rule, and thus these a; ;, b; are
the same for every k.

Consequently, the right hand side tends for £ — oo to

N n N
ZZ@LJ’D%W’D&CD%@) + ZU%D&]?; DWC‘DHZ‘(I)>’

=1 j5=1 =1

due to the uniform convergence of the (; to (. Then we are again in the
situation we arrived at in the proof of Theorem 9.7 and the rest of the proof
can be done as we did it there.

]
Theorem 9.9. Let 0G € C™*3, p € By H(G) N H™49(G). Then
. 1 m
v:=Vw- V(- (dlvg — §p) € H"(G)
and we have |
divu — JP € H™(G)
and there is a constant C' = C(m, G, q) > 0 with
. 1
diva—op| < Clplln-1, (50)
m7q
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Proof. v € H™1(G) N HJ" "(G) can be seen easily: As w € H™H4(G) N
H™(G) according to Theorem 9.8, ¢ € CJ"™*(R"), we see that Vw - V( €
H™(G) N H (G). We also have p € HJ" "(G) N H™4(G) and by
Theorem 6.1 (for an explicit application of Theorem 6.1 in this situation,
see our Theorem 10.2), we also have u € Hy"?(G) N H™49(G) and thus
divu € H "(G)nH™ (@), All in all, we get v € H™(G) N HY Q).
We want to use now Theorem 9.5 to show that we even have v € H)"(G).
So we have to show that for arbitrary si,...,s,-1 € {1,...,n} we have
Z" (s, ... 0s,_,v) = 0 almost everywhere on G, where Z* denotes the trace
operator from Theorem 4.4.

In the following we will make for the sake of clarity and readability the cal-
culations as if the corresponding functions were continuously differentiable
and all the upcoming derivatives continuous up to the boundary. Theo-
rem 9.5 and generalizations of the Theorems 3.1, 3.2, 3.4 justify this way of
calculation. Note that in the proofs to the Theorems 9.7, 9.8, we did not
yet need p € H™14(G) but only p € H™4(G). However, in the following,
p € H™9(@G) is implicitly used: As in the following calculations there occur
derivatives of p of order up to m and we have to be able to determine the
trace of these derivatives, we have to assume here p € H™ 14(G).

So look for an z € 0G at

851 c. 8sm71v(x) = 831 ce 35m71 <Z @walg — Z &uz + %p) (:E) =
=1 =1

= a51 cee asm_l (Z (al (Zl urarC - %pC) al<> - Zl azuz + %p> (.17)

=1
We first want to inspect for z € 0G

Oy - Oy | D 011:0,C0C + 1, 0,0,COC | ().

=1
r=1

As u € Hy"(@), we see that for x € G we have D*u,(z) = 0 for all o with
|a| < m and thus this expression reduces to

> 04 ... 05, 00,0 ().
=1
r=1

Writing now 0, = N; and using the fact that for m indices ly, ly,...,l,,_1 €
{0,...,n} we have 0, ..., _,u; € Hy? N H*(G) and thus

aloall c. Glm_lut = )\; lmlelo on 0G

Lyeesy
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for a suited function Aj ;,  defined on JG. For the functions A\j

we note that we have the followmg fact (using the notation lz to denote the
missing of the index [;):

AL Ny=XM - Nyi=1,...,n,

~~~~~ lm—1 10yeesliyecdm—1

which is simply a direct consequence of
810@1 . alnHut = 811010 . 81. . 8lm71ut

and we get

Z@Sl .. Sm laluTa Q@lc Z /\ ..... sm,lNlNTNl(x) =

7“—1 r—l

—Z/\ ..... . 28851.. o (z) = By, ... 0y, divu(z).
So, all Wthh is still to be shown is that on 0G we have

1

- 1
_%asl o0,y lzl a(pQ)o¢ = —5831 - 05, (D)

Looking at the left side, we get

n

Dsr - Os D OUPO)IC = sy -+ sy Y (OpCOC + pOGOIC) =
=1

=1

= ey 0ep s > ODCOC + Dy - Osy D,

as D*pDP(9,¢8,¢) = 0 on G for all |a| < m —2, as p € HJ' "(G) and so,
it remains to show that on 0G

Ouy - Ospy Y OWCOC = (m = 1)Dy, ... Ds,_,p. (51)

Because of (|sg = 0 and p € HJ' "(G) N H™14(G), we see that on dG we
have

-1

Osy 205y > OWCOC = Dy oDy, Dy OOy, COC

=1 =1 j=1

3
3
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because all other terms resulting from applying 0, ... 0 to O;pC0,¢ have

* Y Sm—1

either the form DpDP¢ D¢ with |a] <m —1 or 3 = 0.

We get
n m—1 n m—1
S50, .00 0, 0p0,COC =YY 00y, ... D5, ... O, DN, Ni.
=1 j=1 =1 j=1

By defining for the m — 2 indices ly,...,ln,—2 € {1,...,n}, W, . 1, , to be
the function satisfying on 0G for all [,

aloall . '8lm72p = Ml1,.--,lm72Nl0’

as it is possible by 9, ..., ,p € Hy*(G) with Theorem 4.10, we can write
this as

n m—1 m—1
E E #81...§\j...sm_1NlN8le: E ,usl...sj...sm_1NsJ
=1 j=1 j=1

But we have on 0G

and thus
m—1 m—1
Z Hsl...sy...sm,1Ns7 = Z asl 85m—1p - (m 1)851 asmflp
=1 =1

For the estimate (50), we can at first make use of the variational inequality
from Theorem 9.1: As v € HJ"(G), we find that
B, v, ®
iy <€ swp  TEE
0£PeH (G) m,q’

By [Vw - V¢ = (divu — 3p) , @]

=C sup =
0£PeH™ (G) ”(I)Hm,q’
B, [Vw -V,
=C sup [ (;U < ],
O#‘:I)EHS’L’QI(G) ” Hm,q’

as divu and p are in Bj' "9(G) and the resulting term can be estimated
against
< 00/01/

m+1l,g — ||p||m—1,q )

CC ]

according to Theorem 9.8 with the respective constant called C”.
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With this fact, we can conclude

1 1
divg—ip = Vw-VC—(Vw'VC—(diVQ—§p)) <
m,q m,q
) 1
<190 Vel + Vo Ve (ava— )| <

m.g

<O wlyrg +CCC Pllrg < Clipllsg

<C"Ipllm—1,q
and estimate (50) is shown. O

The rest of the account is easy again: As in Theorem 6.4 we can prove now
with use of Theorem 9.9 and Theorem 9.6 the important

Theorem 9.10. Let 0G € C™*3, p € By "(G). Then we have
1
divu — JP€ H™(G)

and there is a constant C = C(m,G,q) > 0 with

Proof. The proof goes as follows: For p € Bj* "(G) we find according to
Theorem 9.6 a sequence p, € By' "(G) N H™14(G) with

1
divu—gp| <C 2|l (52)

m—1,q

m7q

le/ - p“mfl,q (G) — 0.

Applying Theorem 9.9 to Cauchy differences of the p,, we get for the sequence
(diva, — 3p,) with (u,) = T (p):

< Cllp —pull,,

m?q

1 1
divu, — 2Pv = (div U, — §pu)

and see that the sequence (divy, — 3p,) is a Cauchy-sequence in H™7(G)
and thus has a limit in H"™9(G). We see by passing to subsequences with
pointwise convergence almost everywhere that this limit must be equal to
(divu — 1p) € Hy' "(G) and thus

(divg - %p) e H™(G).

For the estimate (52), we see that Hdivgy — %pyHm’q — ||divg — %pqu and

Ipoll—14 = llPll, 1, and thus the estimate (50) carries over to this case
and we have (52). O
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Now we are able to prove the generalized compactness theorem and draw the
important structural conclusions:

Theorem 9.11. Let G CC R"™ with 0G € C™"3. The operator

1
2y — S1d: ByTH(G) — By TH(G)

q
15 a compact operator.

Proof. We have by Theorem 9.10 the fact that
1
2™ = S1d: By M(G) — H™(G) N By (G)

is continuous and by the compact embedding H™%(G) — H™ 14(G) we have
the compactness of Z\™ — 11d : ByH(G) — ByTMY(G). O

As in Theorem 7.1, we get a statement about regularity of eigenfunctions.

Theorem 9.12. Let G CC R"™ with 0G € C™® and X € R, X\ # L and
p € By UG satisfying Zy(p) = Ap. Then for every 1 < r < co:

p € By (G) and Z,(p) = Z,(p) = \p

Proof. The proof can be done in an analogous fashion to the one of Theorem
7.1. We can make an inductive proof based on the Sobolev Embedding
Theorem and the fact that with an eigenfunction p € Bj'"4(G) to T1#NER

we have
1

A —

p= <divg — %p) e Bgﬁl’q(G) N H™(G)

i
2
with u =T gm) (p) and Theorem 9.10. This simple observation assures us as
in the proof of Theorem 7.1 gaining an order of derivatives in each inductive

step compensating the loss of a derivative which is due to application of the
Sobolev Embedding Theorem. O

Theorem 9.13. Let G CC R™ with G € C™3. Then the operator Z5™
By (@) — B Y(QG) is bijective.

Proof. Again, as in the proof of Theorem 7.2, we see that Zém) Bl M(G) —
By (@) is a Fredholm operator and thus, all we have to show is injectivity.

For injectivity, assume Z(Y”’ (p) = 0 for a p € By "Y(G). Then, as p is an
eigenfunction of Z(gm) for the eigenvalue 0, we conclude with Theorem 9.12
that we can assume that ¢ = 2. Writing u = T5™ (p) € HI"*(G) with

By, [u, ®] = By, [p, div ®] for all ® € HJ"*(G),
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and 0 = Zém) (p) = divu, we see that for & := u we get to
B [u,u] =0

and thus it follows u = 0.
We see thus that

By_1 [p,div®] = 0 for all ® € H]"*(G)

and it follows p € Hg'fo_l’Q(G) N N2 _(G) (see Theorem 9.3). Thus, by The-
orem 9.3 we can conclude p = 0 and injectivity is shown. O

As in the case m = 2 (see Theorem 7.3), we find even continuity of (Zém)> - :
By M(G) — By H(G):

Theorem 9.14. Let G CC R™ with dG € C™*3. Then the operator Zém) :
Bl H(G) — By Y(@G) is a homeomorphism.

Proof. The proof is essentially the same as the proof of Theorem 7.3. [

Remark 9.15. Regarding Theorem 9.4 we also quickly see that ng) 1S even
a homeomorphism if seen as a mapping from HS?O_I"](G) to Hg?o_l’q(G).

Definition 9.16. Let G CC R™ with G € C™3. Then

M{V(G) = T (Hgy (G)).
As a generalization of Theorem 7.6 we arrive at
Theorem 9.17. Let G CC R"™ with 0G € C™3. For p € Hg:‘ofl’q(G) there
is exactly one u € Mém)(G) with

divu = p.

The in this way well defined function
ng) : Hgfofl’q(G) — Mém)(G), p+ the unique u € M (G) with divu =p
1S continuous.

Proof. The proof goes like the proof of Theorem 7.6. O

With Theorem 9.17 now available, we get the accompanying decomposition:

Theorem 9.18. Let G CC R with 0G € C™3. Then we have the direct
decomposition
Hy"(G) = D (G) & M (G),
where
Di(G) :={v e H(G) : diveo =0}

Proof. Again, the proof is a direct consequence of Theorem 9.17, as Theorem
7.8 was a direct consequence of Theorem 7.6. O
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10 Some Regularity Theorems

In the following, we will need a kind of variant of Theorem 6.1, which can be
found as Theorem 9.12 in [15], on the pages 157 and 158:

Theorem 10.1. Assume

(1) that m > 1 and k > 0 are integers and that 1 < p,q < oo are real
numbers with % + % =1,

(2) that G C R" is a bounded open set with boundary 0G € C*™*,

(8) that B is an uniformly elliptic, (m+k)-smooth reqular Dirichlet bilinear
form of degree m in G,

(4) that f € H*?(G),
(5) that uw € Hy""(G) and that B [u, ®] = (f, ®) for all ® € C3°(Q).

Thenu € Hy"(G)NH*™ %P (G) and there is a constant v = y(n,m, k,p, G, B)
such that

[ellm i p < AYUF ey + Nlello )

Applying Theorems 6.1 and 10.1, we can show the following regularity the-
orem:

Theorem 10.2. Let k € Ny, G CC R” and 0G € C™k*1. Then for p €
By (@) N H™H4(G) it is:

T(p) =t u € Hy'(G) N H™H19(@)
and we find a constant C' = C(m, k,q,G) > 0 such that

| < C|lp|

m—+k+1,q m—+k,q

Proof. The proof is only the definition of u = I‘(Im) (p) and the regularity

Theorems 6.1 and 10.1: As u = Iém’ (p), we find that for every ® € H™ (G)
we have

Bm [H7 Q] - Bm—l [p7 div g]

or equivalently, for every i € {1,...,n} we have for all ® € H™ (G)

Bm [u’ia (I)] = Bmfl [p7 azq)] .
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So, in the case k < m, we find with k + 1 partial integrations that B,, [u;, ®]
can be written as a sum of terms of the form

(D*p, D°®),

where [a] = m —1+k+1=m+k and |[f| = m—k —1. So, By, [u;, D]
defines for variable ® an element F' from (H(’)n 7k71’q/(G)> with

HF”(HSH*}C*LQ'(G»* < ¢ ”p||m+k,q

and Theorem 6.1 gives us

lediens <7 (1PN p-sovr e + il ) < € Mol

and thus the Theorem.

For k > m, we use Theorem 10.1 instead:

After m partial integrations, we get that By, [u;, ] can be written as a sum
of terms of the form

(Dp, @),
where |a| = m—14+m = 2m—1and D*p € H™*=Cm=Da(G) = gk-—m+La(@q).
So, according to Theorem 10.1, arguing analogously as above, we conclude
that for every ¢ = 1,...,n we have

u; € H(;n’q(G) N H2m+(k—m+1),q<G)
and we find a constant C” such that

Al <l

m~+k+1,q m+k,q

and the desired estimate follows. O

With some calculations, we can see that we can apply the Theorems 6.1 and
10.1 to w as in the proof of Theorem 9.7 and get estimates for the higher
derivatives of w. We begin with a version using Theorem 6.1. Let in the
following be m > 2. The case m = 1 actually poses no difficulties, but due
to formal reasons we look at it separately later in Theorem 10.5.

Theorem 10.3. Letm € N, m > 2 and k € Ny, k <m —2 and G CC R"
with 0G € C™ 4 p e Bl Y(G) N H™4(G) and set u = Igm)(p) €
HY(G) N H™™ (G (according to Theorem 10.2) and let ¢ be Weyers’
function € CJ3(R™). Further let

1
wi=u- V(= o—pC e HY(G) N H™4(G).
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Then we even findw € H™*+24(G) and there is a constant C = C(m, k,q, G)
such that

[l ihr2q < ClIPlmirg

Proof. We see that we can proceed as in Theorems 9.7, 9.8: All the assump-
tions except regularity from Theorem 9.7 are fulfilled, but with an argument
as in the proof of Theorem 9.8, we can fix this.

Assuming first (we can get rid of this assumption later exactly as we did it in
Theorems 9.7 and 9.8) that ¢ € CZ™"(R") we can find with the calculation
from the proof of Theorem 9.7 that for ® € C3°(G) we have

Bnlw, @ = Y {aapD*wDC®)+ Y (b, sD"pD(, @) (53)
72\1@3 ?\<2n1;1
|8]+|a|=2m+1 |8]4|y|=2m

with the a, g, by,s € Z. Looking at one term of the form
(D°w,DPC,®), o] <2m, |3 <2m+ L lo| + |5l =2m+1,  (54)
we inspect the following three cases:

i) We see that in the cases where |a| > m+k+1 we can (with an o/ < «
of length || — (m + k + 1)) make

| =la| —(m+k+1)<2m—k—-k—1=m—k—1
partial integrations and get to a term of the form
+(D%;, D* (DP¢®))

with @+« = a and |&| + |&/| 4+ | 8| = 2m + 1, which can be written as
a sum of terms of the form

+(D%;, D¢ D D)
with |&| = |a| — |&/| = |a] = (Jo| = (m+ k+ 1)) =m+k + 1,
Iv| < 18|+ || = 2m+1—|al+|a|— (m+k+1) = 2m+1—(m+-k+1) =
=m — k and

o] <] =la] = (m+k+1)<2m—1-m—k—-1=m—k—2

92



ii) In the cases where in (54) we have |a| < m + k + 1, look again at
(D*u;, D°¢®) = (D"u;®, D°()

with [B| =2m —1—|a|>2m+1—-m—-k—-1=m — k.
In the subcases where we find |3| < m + k + 2, we are again in a nice

situation.

In the subcases where |3| > m + k + 2, we search a v < [ with
|v] = 18] — (m + k + 3) and make |y| partial integrations leading us to
terms of the form

(D" (D°w;®), D°C)
with [ B[ = 181 171 = 181 = (18] = (m + k +3)) = m+k+3, 3]+ |a| =
Bl—(m+k+3)+2m+1—|l=m—-—k—-2<m+k+1 and
Iy <2m+1—(m+k+3)=m—k—2.

So, reviewing all the preceding cases, we can rewrite every term of type (54)
as a Z-linearcombination of terms of the form

(D%u;, DP¢DY®),

where |a] <m+k+1, || <m+k+3and |y| <m—k—2.

For variable @, each of these terms defines an element (which we call in the
following F') from (Hgnf(kJrz)’q/(G))* and as ¢ € Cy™*3(R"), we can find
a constant ¢ > 0 such that for every multiindex § with |5] < m + k + 3

we have |DP((z)| < ¢ for all z € R" and as we have constants C] with

Wil s ri1.q < Cillpllyr,, according to Theorem 10.2, we have validity of an

estimate of the form
||F”(H6n*(k+2)vq,(G))* <C ||Ui||m+k+1,q < CC; ||p||m+k},q'
The terms of the form
(D'pD°¢, ®) with |y| < 2m —1, |6] + |v] = 2m (55)
occurring in equation (53) can be treated in a similar way:

i) In the cases where |y| > m + k, we can make with a v < 7 of length
|v] = |v| — (m+ k) the corresponding partial integrations and arrive at
terms of the form

+(D"p, D"(D°¢®))
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with n +v =5, [n] = |y] = |v| = m+k, [v] = [7[ = (m + k) and
0] = 2m — |y|.
By carrying out the DV-differentiation of the product D°(®, we land

at terms of the form
+(D"p, D°(D° )

with
lel < |+ 18] = ]y = (m+E)+2m—|y|=m -k <m+k+2
and

lo| <|v|=y—(m+k)<2m—-2—(m—k)=m—k—2.

ii) In the cases where |y| < m + k in a term of the form (55), we have
|0] = 2m — |y| > m — k. In the subcases where |§] < m + k + 2,
no problems occur, so look in the following at the subcases where we
have |6] > m + k + 2. Here, we can make with a v < § with |v| =
|0] — (m+ k+2) the corresponding partial integrations to land at terms
of the form

+(D"(D"p®), D°()
withe+v =06, |lel =10 —|v| =m+k+2 < m+k+3, v <
2m—(m+k+2) =m—k—2and [v|+|y| = [6| - (m+k+2)+2m—|0| =
m—k—-—2<m-+k.

So here, too, we can in every case transform every term of the form (55) into
a Z-linearcombination of terms of the form

(D°pD¢, D7)

with |a| <m +k, |6 <m+k+3and |y] <m—k—2. Arguing as in the
first part of the proof for the terms involving the u;, we can see here that

these terms define for variable ® elements from (Hgl 7(“2)"1/((?)) for each of

, *
which we have validity of an estimate of the <H0m ~(k+2)g (G)) -norm against
a constant times [|pl],,,, 1 .-
Allin all, we see that B,, [w, ®] defines an element F from <Hgl_(k+2)’q(G)> ,

too. Moreover, we also get for F' an estimate as above.
With Theorem 6.1, we conclude that w € H™*24(@F) and

llnitszg < (CIPlmirg + Il ) -
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As we can estimate [w||, , against ||p| by it’s definition via the u; and
p, we are done.

Concerning the regularity of G needed, we see that we used ¢ € C3"(R")
as in the proof of Theorem 9.7 only to justify classical calculation and in
the end of the calculation we arrive at terms involving derivatives of  only
up to order m + k + 3. As in our proof of Theorem 9.8, we can use here

an approximation argument and get the statement even if we just assume

0G € Cmtktd, ]

m+k,q

In order to get a variant of Theorem 10.3 for £ > m — 2, we simply have to
use Theorem 10.1 instead of Theorem 6.1.

Theorem 10.4. Let m € N, m > 2, k e N, k > m—2 and G CC R"
with 0G € C™ 4, p € By M(G) N H™*4(G) and set u := T (p) €
HY(G) N H™™ (G (according to Theorem 10.2) and let ¢ be Weyers’
function € Cy*™3(R™). Further let

1
wi=u- V(= o—p € H(G) N H™4(G).

Then we even findw € H™ ™ 24(G) and there is a constant C = C(m, k,q, G)
such that

]l <l

m+k+2,q — m—+k,q

Proof. With the same procedure as in the proof of Theorem 10.3, we get
again to

Z|Z\1<’2'r7: ‘6’7\<21’Z—1
18]+ |a|=2m+1 [8]+|~v|=2m

for & € C§°(G). We see that the functions on the left side of the sums in (56)
(a5 D" u; D¢
with |a| < 2m, || + |a] =2m + 1 and
by sDpD°¢

with |y| < 2m — 1, |§] + |y| = 2m have derivatives up to order k —m + 2 in
Li(G):

e As |a] < 2m — 1, we find D*u; to have derivatives of up to order
m+k+1—02m—-1)=k—m+2in LYG).

95



e As |y < 2m — 2, we find D7p to have derivatives of up to order m +
k—(2m—2)=k—m+2in LY(G).

e As 8] < 2m + 1, we find D?¢ to have classical derivatives of up to
order m+k+3—(2m+1) =k —m+ 2 bounded in G.

e As( € 8m+k+3(G) and [0] < 2m, we find D°C to have classical deriva-

tives of up to order m +k+3 —2m =k —m + 3 in LY(G) bounded in
G.

So, also the products (as ( is classically differentiable) D u; D?¢ and D "pD°(
are in H*=m+24(G). Thus, we have found an f € H*™"29(@G) such that
Bw,®] = (f, ®) for all & € C°(G).

Applying now Theorem 10.1 with k := k — m + 2 playing the role of the k
from Theorem 10.1, we conclude that if 0G € C*Tr—m+2 = Cm+h+2 (which
is satisfied), we get

w € HY"(G) N H™™+2(@) and there is a constant + such that

[0l 12,0 < VU Npomyag + 110llo,q)

Again, we can estimate | f|,_,,,o, and [Jwl[,, because of the consistences of
fand w against |[ul|,,, ;. , (Which can again be estimated against [|p||
and ||p| and thus we get the estimate

m+k,q)
m+k,q

Hw”erk’JrQ,q S CFY(HpHerk,q)
with a suited constant C' > 0 depending on G, m, k and q. O

In Theorems 10.3 and 10.4, we made the distinction between the cases k <
m — 2 and k > m — 2 and applied the respective suited regularity Theorem
6.1 or 10.1 which resulted in ignoring the case m = 1. For m = 1, we have
the following regularity Theorem, which is blending well with the regularity
Theorem 10.3 and 10.4:

Theorem 10.5. Let k € Ny and G CC R™ with 0G € C**°, p € ByY(G) N
H*1Y9(G) and set u = T (p) € Hy'(G)NH">U(G) (according to Theorem
10.2) and let ¢ be Weyers’ function € CS™(R™). Further let

1
wi=u- V(- pl € HyY(G) N HFR4(@).

Then we even find w € H*™39(G) and there is a constant C = C(k,q,G)
such that

||wHk+3,q < C ||ka+l,q
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Proof. The proof goes the same way as the proof of Theorems 10.3, 10.4:
Assuming first that ¢ is smooth enough, we can do a classical calculation of
Aw and find out that for & € C°(G) we have

(Vw, V) = —(Aw, &)

and this can be written as

> (aapiD” w;DC, Q)+ Y (bspD°(, B), (57)
’L‘:ll,<1,n |6|=2
18l+|a]=3

with suited aq s, bs € Z which is nothing but the representation (53) from
Theorem 10.3 in the special case m = 1.

Looking at a summand of the form (a, g;D* u;D°(, ®) of the left sum in (57),
we see that the function a, ;D u;DP¢ on left with |a| < 1 and |B]+]a] = 3
has weak derivatives in L(G) up to order k + 1, as with u; € H**24(G) and
la| <1 we have D%u; € H*19(G) and as ¢ € Ci™(R™) and || < 3 we have
DP¢ € CEY(R™).

Furthermore we have an estimate of the form

|D%wi D, ., o < CO) [tillya < COC Plliya,

with C' according to Theorem 10.2.

Looking analogously at a summand of the form (bspD’(, ®) with |§] = 2, we
see that p € H*14(G) and D¢ € C§™ 2(R"™) and thus pD’¢ € HF14(QG)
and we have also here an estimate of the form

[PD°¢[11,4 < C) Pl -

All in all, we see that with Theorem 10.1, we can conclude as in Theorem
10.4 that
w e HyY(G)n H29(Q)

and validity of an estimate of the form
HwHk+2,q <C HkaJrl,q :

After this, we see with an approximation argument as already used repeat-
edly, that the smoothness of ¢ which is needed is ¢ € C5™*(R™) and thus it
suffices to demand from 9G to be in C**+5. O
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Theorem 10.6. Let m € N, k € Ny and G CC R" with 0G € C™+k+4,
and let p € By~ 9(G) N H™*4(G). Then Z{M (p) — Ip e HM(G) N
H™ Y9G and with a constant C = C(m,q,k,G) > 0 we have

< Clpll
m+k+1,q

m—+k,q

Proof. With v = Vw - V¢ — (Z8™(p) — ip) € Hy"(G) as in Theorem
9.9, we see that from v € H™+19(G), we could conclude Z{™ (p) — p €
H™k+L4(G) as Vw - V¢ € H™PEH14(G). This and a respective estimate is

gained again by our Theorems on Elliptic Regularity 6.1, 10.1:
As we have Z\™ (p) — Ip € By "(G) N H™(G), we find

1
B,, {ng (p) — P @] =0 for all ® € C°(G)
and thus
B, [v,®] = B, [Vw - V(, ®].

As Vw - V¢ € H™F14(@3), we can conclude with use of Theorems 6.1, 10.1
that v € Hy"?(G) N H™**149(G) and that there are constants C', C" and C”
such that

< C||Vw- V| < OC" ||w| < cc'c”p|

o]

m+k+1,q m+k+1,g — m+k+2,q — m-+k,q
according to Theorems 10.3, 10.4 and 10.5.
Then we notice:
7(m) 1 < |IVw -V 7(m) 1
d () = 5p < ||Vw-VC— {2, (p) = 5p +
m4k+1,g m4k+1,g

+ va ’ vCHm—i—k—i—l,q S Cl ||p||m+k,q + C2 ||p||m+k,q S C ||p||m+k,q
]

We can now prove the following theorem, which will be very important in
the next section, guaranteeing us the regularity for a Stokes-like system.
The idea of proof of the following theorem and our account to regularity of
our Stokes-like system is due to C.G. Simader, whose program from [13] is
working fine here.

Theorem 10.7. Let m € N, k € Ny, G CcC R" with 0G € C"H 3 p ¢
By M(G) and w = T (p) € Hy(G).
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If Z8™ (p) = divu € H™124(G) then we find
pe B(r)n—l,q(G) N Hm—l—k—l,q(G)’ u € ES%Q(G) mﬂm—l-k,Q(G)
and there exist constants C, C' > 0, depending on m,k,q and G such that

||P||m+k—1,q <C ||diVH||m+k—1,q (58)
and

] < ¢ ||div ul] (59)

m+k,q m+k—1,q

Proof. We will show the theorem by induction over k. Starting with k = 0,
we do not have anything to show:

p € H™"Y9(G) and u € H™(G) are clear and the corresponding estimates
(58) and (59) reduce to

Hp”m—l,q S ¢ Hdng”m—l.q
and
[ll,q < C"[div ull

m—1.q’

which are clear by divu = Z{™(p) and the fact that the operators Z.™ :

B (@) — Bl M(G) and div : Mgm)(G) — Hg:‘ofl’q(G) are homeomor-
phisms by Theorems 9.14 and 9.17.
The inductive step: k& — k + 1. Assume the claim to hold for k. With
divu € H™™9(@G), we find dive € H™*~14(G) and thus by our inductive
assumption:

p € H™H1a(@q).

Applying Theorem 10.6, we find that Z\™ (p) — sp € H™%9(@) and thus

q
——

divue Hm+k.4(GQ)

1
p=—2 <Z§m> — §p> +2  ZM(p) € H"M(G).

By Theorem 10.2, we then find u € Hy"*(G) N H™™**1(@) and a constant
(' such that

||Q||m+k+1,q S Cl ||p||m+k‘,q :

Regarding ||p| we notice with the triangle inequality

m+tk,q’

<2

Pl < \ +2 2|

m+k,q

m 1
Zé )(p) - 5?

m+k,q
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and by Theorem 10.6 again, we see that with a Cy > 0:

< CQ HpHm—&-k—l,q < C2C3 ||dng||m+k—1,q7
m+k,q

where C} is according to our inductive assumption.
So, what we get is

1Pl 5,g < 2C2C5 [[div ull + 2| div aull 4 <

m-+k—1,q

< (2C2C3 +2) || div ]
which is (58) for k& + 1 and thus also

< C1(2C5C5 + 2) [|div ul|

m+k,q

[l

m+k+1,qg m+k,q

which is (59) for k£ + 1. O

Theorem 10.6 also allows us to find out another regularity-result for functions

p € B{" V(@) satistying the eigenvalue-relation

1
2y (p) = Ap, AER, A,

q
saying that these p are as regular as G “allows” them to be:

Theorem 10.8. Let m e N, m > 2, k € N and G CC R" be a domain with
0G € C™ 4 and p € By (G with
Z{" (p) = Ap

q

fora/\E]Rwith)\%%.
Then we also have
P c HerkJrl’q(G).

Proof. By Theorem 9.10, we get Z,(p) — 3p = (A — $)p € H™%(G) and thus
p € H™1(G). Iterated application of Theorem 10.6 proves the theorem. [

11 A Stokes-Like System

In this section we will investigate the natural generalization of the Stokes-like
system which was treated by Simader in [17] in the case m = 2, ¢ = 2. As
we are not in the Hilbert space setting from [17], we have to assume more
regularity for 0G than merely being Lipschitz. We will give solvability and
regularity statements for our generalized Stokes-like system. At first, we
state the problem we are investigating:
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11.1 The Problem

Let m € N, G CcC R" be given with G € C™"3. Given a functional
F e (ﬂg”“G)) , we are looking for an u € Hy"%(G) and a p € Hy, "(G)
such that

By [, ®] + By [p, div®] = F(®)  for all ® € Hy" (G)

and
divu = 0.

11.2 The Solution and Regularity Theorems

With the general theorems from Sections 9 and 10 now available, we can
easily derive unique solvability and regularity theorems for our generalized
Stokes-like system.

Theorem 11.1. Let m € N, G cC R" with 0G € C™3 and let F ¢
(ﬂgn’q/(GD . Then there is exactly one pair (u,p) € Hy"'(G) x H&LO_I’Q(G)
such that

Buy [, @] + By [p, div®] = F(®)  for all ® € HI" (G)

and
divu = 0.

Furthermore, we find a constant C' = C(m,q,G) > 0 with

el + WPl 1.g < CNEW -

Proof. Let’s first show existence of (u,p). Given F € (ﬂ@”*’(G)) , we find
av € Hiy""(G) such that

B, [Q» Q] = F(@) for all [ONS ﬂgz,q’(G)

by Theorem 9.1 and we find |v||,,, < C ||F||<Hm7q/( Asv € H"(Q),
) EZY))

G))*'
we see that divey € H(%_l’q(G) and find by Theorem 9.17 an unique w €
MI™(G) = T (Hyy (G)) with divw = dive. With Theorem 9.17 we
also see that we have

wl],,, , < C [|div vl < Colof,,, < CC ||F||(

m—lg (@)
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So, for u:=v —w € Hy"*(G), we have divu = 0 and

Hm q

ltllng < Wellmg +e2llmg < CoCNEN gy + CNEN ) =

(@)

For p € Hg?ofl’q(G) with I((Im) (p) = w, we also have by Theorems 9.1 and
9.17 that Igm) : Hng*l’Q(G) — Mgm)(G) is a homeomorphism and thus we
find a constant C' such that ||p||
a constant C’

motg < C ||w||m,q and thus we also have with

!
HpHm 1q S C HFH<qu G))*

and the desired estimate is shown for (u,p). (u,p) is indeed a solution, for
we see that for & € Hj"? (G) we have:

By, [u, Q] + By—1 [p, div®] = By, [v — w, @] + By,—1 [p,div @] =

= By [0, @] =B, [w, ] + By [p, div @] = F(®)
S—— —
—F (@) —Bun[w,]
For uniqueness of the solution, we note that if we have two solution pairs

(uy,p1), (uy,p2), the pair (u := u; — uy,p := p1 — pa) is a solution to the
problem with F' = 0. This means dive = 0 and u = T(m) (p), so it follows

Zém)( ) = div(—u) = 0 and thus p = 0 and u = 0 by injectivity of Z O

/N

By Theorem 9.1, we can represent an element F' € ( H gl’q/(G)> by

By [v,®] = F(®) V& e HM (G)

with av € H{"?(G). We will show a regularity theorem stating the following:
The regularity of the v belonging to F' carries over to the regularities of u
and p, the solutions of our problem:

Theorem 11.2. Let m € N, G cC R” with 0G € C™*3 and let v €
H{™(G) N H™™4(G) be given. Then the (by Theorem 11.1 unique) pair
(u,p) € Hy"(G) x Hyo "U(G) satisfying

By [u, &) + Byt [p,div®] = By [0, 8] for all ® € Hy" (G)
and

divu =0
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satisfies even (u, p) € H™™1(G) x Hg:‘grk*l’q(G) and we get the two estimates

@]l g < Crllel

m+k,q — m+k,q

and
||p||m+k;—1,q S CZ ||y||m+k‘7q )

where C1,Cy > 0 are constants depending on m,k,q and G.

Proof. For the proof, we simply try to go through the construction of the
solution in the proof of Theorem 11.1 and show regularity at each step, using
our already established regularity theorems from Section 10. We will give the
corresponding objects the same name as in the proof of Theorem 11.1. Aswv €
H{Y(G) N H™™(@G), we can define r := divy € H&‘O_l’q(G) N H™HF=La(qG)
and represent

r=As+t,

according to Theorem 9.2 with s € HJ™(G) N H™*149(@) and t €
By H(G). Further we have the estimate

||A8Hm,q+ HtH < C’HT‘”m,q'

m,q —

The proof of this decomposition is nothing but use of the solvability statement
9.1, solving the problem

Bi1[s,®] = By [r, A®] for all ® € HS”H’Q/(G),

resulting at
By [As — 7, @] = 0 for all ® € C3°(G)

and thus (As — ) € B "(G). So, regularity of s is simply again elliptic
regularity from Theorems 6.1 and 10.1 leading to

s € H(@Q) n H™Hhay(@)

and then we have also t = r — As € Bj' "(G)N H™*~14(@G) and a constant
C with
< Cllr]l < Cllzf

||S||m+k+1,q —= m+k—1,g — m+k,q

and we also get

||t||m+k—1,q = ||T' - AS”?n-l—/c—l,q < ||T||

+|As|l < (1+C) [lul

m+k—1,q m~+k—1,q m+k,q *

Now we can find due to Theorem 9.17 a vector field z € M ((Im) (G) with
divz =t € BJ'" "(G) N H™*=14(G). As further we have by z € Mgm)(G)
an f € Hyy "(G) with TU™ (f) = z, we find easily that f € B "(G):
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As we have Z\™(f) = divz =t € Bl (@), we see by Theorem 9.4 that f
must also be in By’ _1’q(G). Now we can apply Theorem 10.7 and conclude:

f e H™ 149G and z € H™4(Q)

and

2l skg < €NV 2]y g = C Nt pgpmrg < C A+ O 0l g »

£l 1. < €7 [1div ] < C'(1+C) |zl

m+k—1,q m+k,q

]

The w from Theorem 11.1 must by uniqueness be equal to Vs + x and is
thus also in H™™4(G) and

”w”erk,q = HVS +£Hm+k,q < Hvs”erk,q + H£Hm+k,q <

< sllmrsrg + 12l g < (C+C A+ O 2l

and the p from Theorem 11.1 must be equal to As + f € H™*14(G) and
with an analogous calculation as above we get the estimate

||p||m+kj—17q <(C+C"(1+0C)) ||y||m+k‘,q :
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