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German Abstract

In der vorliegenden Arbeit werden Cosseratoperatoren höherer Ordnung auf
beschränkten Gebieten G ⊂⊂ Rn, n ≥ 2 (mit genügend glattem Rand ∂G)
untersucht. Dies sind (die Größe m ∈ N bezeichnet die Ordnung) Operatoren
der Form (die Räume Bm−1,q

0 (G) bezeichnen die Räume der mittelwertfreien
m-harmonischen Hm−1,q

0 (G)-Funktionen)

Z(m)
q − 1

2
Id : Bm−1,q

0 (G)→ Bm−1,q
0 (G), 1 < q <∞

wobei Z
(m)
q := div ◦T (m)

q (unterstrichene Größen bezeichnen Vektoren oder

vektorwertige Operatoren) und T (m)
q jedem p ∈ Hm−1,q

0 (G) die eindeutige
Lösung u ∈ Hm,q

0 (G) der Funktionalgleichung

Bm [u,Φ] = Bm−1 [p, div Φ] für alle Φ ∈ C∞0 (G)

zuordnet. Die Bilinearformen Bm [·, ·] sind dabei folgendermaßen definiert:

Für Φ ∈ Hm,q
0 (G) und Ψ ∈ Hm,q′

0 (G) (wobei 1
q

+ 1
q′

= 1) setzen wir

Bm [Φ,Ψ] :=

{
〈∆m

2 Φ,∆
m
2 Ψ〉 für gerades m

〈∇∆
m−1

2 Φ,∇∆
m−1

2 Ψ〉 für ungerades m
.

Für Vektoren Φ ∈ Hm,q
0 (G) und Ψ ∈ Hm,q′

0 (G) setzen wir

Bm [Φ,Ψ] :=
n∑
i=1

Bm [Φi,Ψi] .

Der Operator T (m)
q ist also ein schwacher Lösungsoperator für die Differen-

tialgleichungen
∆mui = ∂i∆

m−1p, i = 1, . . . , n

mit homogenen Randwerten für die ui.

Mit einigem Aufwand (für einen groben Überblick des Vorgehens siehe Ab-
schnitt 1) werden wir in dieser Arbeit zeigen können, dass die so definierten
Cosseratoperatoren kompakt sind (siehe die Theoreme 6.5 und 9.11). Dies
hat weitreichende Konsequenzen. Die wichtigsten davon sind:



• Wir bekommen eine Strukturaussage für die Räume Hm,q
0 (G), nämlich

die Gültigkeit der direkten Zerlegung

Hm,q
0 (G) = {u ∈ Hm,q

0 (G)| div u = 0} ⊕M (m)
q (G),

wobei M (m)
q (G) := T (m)

q (Hm−1,q
0,0 (G)) (wir bezeichnen mit Hm−1,q

0,0 (G)

den Raum der mittelwertfreien Hm−1,q
0 (G)-Funktionen) und die Ein-

schränkung des Operators div auf M (m)
q (G) (mit Bild Hm−1,q

0,0 (G)) eine
stetige Inverse besitzt.

Diese Aussage ist eng verwandt mit dem folgenden Satz, der auf M. E.
Bogovskii (siehe [4], [5]) zurückgeht:

Gegeben sei ein Gebiet G ⊂⊂ Rn, n ≥ 2 mit lokalem Lipschitzrand,
und 1 < q <∞, m ≥ 0. Dann gibt es eine Konstante C = C(m, q,G),
so dass für jedes f ∈ Hm,q

0 (G) mit∫
G

f dx = 0

es ein (nicht notwendigerweise eindeutig bestimmtes) v ∈ Hm+1,q
0 (G)

gibt mit
div v = f

und
‖v‖m+1,q ≤ C ‖f‖m,q .

Zusätzlich kann man, falls f ∈ C∞0 (G), das Vektorfeld v aus C∞0 (G)
wählen.

Unter unseren zusätzlichen Voraussetzungen an das Gebiet G (nämlich
Beschränktheit und eine gewisse Glattheit des Randes) gelingt es uns
mit der Gültigkeit der obigen Zerlegung, zu vorgegebenem f ∈ Hm,q

0 (G)
mit

∫
G
f dx = 0, die Gleichung div v = f auf stetige Weise im Raum

M (m)
q (G) eindeutig zu lösen.

• Mit diesen Kenntnissen sind wir in der Lage, das folgende Stokes-

ähnliche Problem zu behandeln: Zu vorgegebenem F ∈
(
Hm,q′

0 (G)
)?

,

finde ein u ∈ Hm,q
0 (G) und ein p ∈ Hm−1,q

0,0 (G), so dass

Bm [u,Φ] +Bm−1 [p, div Φ] = F (Φ) für alle Φ ∈ Hm,q′

0 (G)



und
div u = 0.

In seiner Arbeit [17] hat C. G. Simader dieses Problem im Hilbertraum-
fall für m = 2 untersucht. Ihm ist es gelungen, dieses Problem ohne
Verwendung der Kompaktheit des entsprechenden Cosseratoperators
zu lösen, indem er die Gültigkeit einer Divergenzungleichung (siehe
unser Theorem 7.11) zeigte. Dabei spielt der oben erwähnte Satz von
Bogovskii eine wesentliche Rolle.

Wir erhalten aus unserem Zugang über den Cosseratoperator nicht nur
ein Lösbarkeitsresultat für obiges System, sondern zudem noch Regu-
laritätsaussagen. Dabei stützt sich unser Vorgehen auf Ideen aus [13],
wo ein einfacher und eleganter Zugang zur Regularität des Stokesschen
Systems mit Hilfe des Cosseratoperators (der Ordnung 1) beschritten
wird.
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Part I

Cosserat Operators of Order
Two

1 Introduction and Overview

Starting point for this work were questions arising from an investigation of
the operator

div : H2,2
0 (G)→ H1,2

0,0 (G)

by Joachim Naumann (Humboldt-University Berlin), where H2,2
0 (G) is the

space of vector fields on a bounded domain G ⊂ Rn with every component in
H2,2

0 (G) (underlinings are used throughout to mark objects as vector valued)
and H1,2

0,0 (G) denotes the space consisting of the p ∈ H1,2
0 (G) satisfying the

compatibility condition ∫
G

p dx = 0,

which must be fulfilled for divergences of vector fields from H2,2
0 (G), as is

easily seen by approximation and by Gauß’ Divergence Theorem.
Looking at the operator div from above in this Hilbert space setting, the
question for the adjoint operator div? : H1,2

0,0 (G) → H2,2
0 (G) arises naturally.

If we equip the spaces H1,2
0,0 (G) and H2,2

0 (G) with the inner products

〈g, h〉H1,2
0,0 (G) := 〈∇g,∇h〉L2(G) :=

n∑
i=1

〈∂ig, ∂ih〉L2(G) and

〈u, v〉H2,2
0 (G) := 〈∆u,∆v〉L2(G) :=

n∑
i=1

〈∆ui,∆vi〉L2(G) respectively,

we are searching (for a given p ∈ H1,2
0,0 (G)) a v ∈ H2,2

0 (G) satisfying for every

Φ ∈ H2,2
0 (G) the functional equation

〈∆v,∆Φ〉 = 〈∇p,∇ div Φ〉. (1)

(In the following, we will omit a detailed specification of 〈·, ·〉 with the use of
an index. As we only use it either in the L2-sense or in the sense of the dual
Lq-Lq

′
-pairing, the meaning of it should be clear from the context.)
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This leads to the definition of the operator adjoint to div, namely T =
div? assigning to each p ∈ H1,2

0,0 (G) the unique solution v ∈ H2,2
0 (G) to the

functional equation (1).
In Simader’s paper [17], this operator is investigated further in the Hilbert
space setting described above. The main results are:

• There is a subspace of H2,2
0 (G), called M2(G), such that the restric-

tion of div to M2(G) is continuously invertible. We have M2(G) =
T (H1,2

0,0 (G)) and validity of the following orthogonal decomposition:

H2,2
0 (G) = D2(G)⊕M2(G),

where
D2(G) =

{
v ∈ H2,2

0 (G) : div v = 0
}
.

• On M2(G) ⊂ H2,2
0 (G), we have ‖∇ div ·‖2 as an equivalent norm to

‖∆·‖2. Furthermore, for every p ∈ H1,2
0,0 (G) the following inequality is

valid with a constant C = C(G) > 0:

‖∇p‖2 ≤ C sup
0 6=v∈M2(G)

〈∇p,∇ div v〉
‖∇ div v‖2

• With this, treatment of the following Stokes-like system of fourth order
becomes quite simple:

For a given F ∈ (H2,2
0 (G))?, find u ∈ H2,2

0 (G) and p ∈ H1,2
0,0 (G) such

that

〈∆u,∆Φ〉+ 〈∇p,∇ div Φ〉 = F (Φ) for all Φ ∈ H2,2
0 (G)

and div u = 0.
(2)

A sketch of proof is given below for motivation.

In the first part, we will find analogous results to the first two of the above
mentioned results in the Banach space setting, where q 6= 2, which means
that we are looking at

div : H2,q
0 (G)→ H1,q

0,0(G) and T q : H1,q
0,0(G)→ H2,q

0 (G)

assigning to each p ∈ H1,q
0,0(G) the unique v ∈ H2,q

0 (G) satisfying

〈∆v,∆Φ〉 = 〈∇p,∇ div Φ〉 for all Φ ∈ H2,q′

0 (G).

The heart of our approach is the generalization of an ansatz which was intro-
duced by Crouzeix in [6] and already used by Weyers in [22] yielding results
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similar to the ones we search, but in a different setting. The main point
for the proof of our central compactness Theorem 6.5 is showing that the
operator under consideration (which is Zq − 1

2
Id restricted to a suited sub-

space Bq
0(G) ⊂ H1,q

0,0(G), namely the subspace of harmonic H1,q
0,0(G)-functions,

where Zq := div ◦Tq), has it’s image not only in H1,q
0,0(G) but even in H2,q(G)

and that the mapping Zq − 1
2
Id (which defines what we call a “Cosserat op-

erator”) is even continuous with respect to these spaces. Then, compactness
of the operator Zq − 1

2
Id is simply a direct consequence of the compact em-

bedding from H2,q(G) into H1,q(G). Once we have validity of an inequality
of the form∥∥∥∥(Zq − 1

2
Id

)
(p)

∥∥∥∥
2,q

≤ C ‖∇p‖q for all p ∈ Bq
0(G) ∩H3,q(G) (3)

with a C > 0 depending only on G and q, this inequality carries over by an
approximation argument to all p ∈ Bq

0(G), see Theorems 5.1 and 6.4. So
the situation is somewhat better than hoped for. Showing inequality (3) is
the point where Crouzeix’ idea is applying: At first, we construct a function
f ∈ H2,q(G) which depends continuously on p ∈ H1,q

0,0(G) and assumes the
boundary-values of Zq(p)− 1

2
p in the sense that

f −
(
Zq(p)−

1

2
p

)
∈ H2,q

0 (G).

Then we have Müller’s variational inequality at hand which is valid for
H2,q

0 (G)-functions and helps us showing inequality (3).
The construction of an f ∈ H2,q(G) which depends continuously on p and
which assumes the boundary values of Zq(p)− 1

2
p (see Theorems 6.2 and 6.3)

is the complicated part of the proof and the success of the made ansatz is at
first sight not evident at all. For the reader of [6] and [22], the ansatz which
is given there might be seemingly strange. Therefore, it was not easy to
find the right generalization of the original Crouzeix-ansatz to our problem
right away. However, having found the suitable generalization after some
fiddling about it, the idea behind it comes more to light. Therefore, at the
beginning of Section 6, we give a motivation for this ansatz for Weyers’ case
where we try to find a suitable candidate for f via a kind of product-ansatz
with one factor consisting of the given dates p and u = T̃ q(p) and the other
factor consisting of “free” functions, which are to be found. After some
calculation, rather reasonable requirements for the unspecified functions are
found, and one is led quite naturally to the ansatz made by Crouzeix. The
compactness Theorem 6.5 for the Cosserat operator makes it easy to prove the

3



generalizations for the first two of the above given main results by Simader,
see our Theorems 7.6, 7.8, Remark 7.9 and Theorems 7.10 and 7.11.

At different points, for example the continuous dependency of f from p (The-
orem 6.2 and 6.3) or the regularity Theorems 10.3, 10.4 and 10.6 for the

Crouzeix-construction and for Z
(m)
q − 1

2
Id in Part II, we use the important

Theorems 6.1, 10.1 on Elliptic Regularity from Simader’s [15]. The role of
Theorems 6.1 and 10.1 must not be underestimated: The Crouzeix-ansatz
and all the regularity theorems (even the one in Part II for a kind of general-
ized Stokes-problem, see Theorem 11.2) are proved using merely the regular-
ity Theorems 6.1 and 10.1 for the uniformly strongly elliptic regular Dirichlet
bilinear forms in the sense of [15], see Definition 2.11, which are associated
to ∆m (for a precise definition of these Bm [·, ·], see (4)). Especially for our
Stokes-like-system in Part II, no results on elliptic systems need to be used,
but only regularity for ∆m and the regularity of the respective Cosserat op-
erator (which is also proved using regularity for ∆m). This beautiful and
elegant approach to regularity is due to C. G. Simader and his [13].
In the second part, we generalize our procedure from the first part to higher
orders, that is: We concentrate then on the operators

div : Hm,q
0 (G)→ Hm−1,q

0,0 (G)

and
T (m)
q : Hm−1,q

0,0 (G)→ Hm,q
0 (G),

which assigns to each p ∈ Hm−1,q
0,0 (G) the unique v ∈ Hm,q

0 (G) satisfying

Bm [v,Φ] = Bm−1 [p, div Φ] for all Φ ∈ Hm,q′

0 (G),

where Bm and Bm−1 are uniformly strongly elliptic regular Dirichlet bilinear
forms Bm [·, ·] in the sense of [15] which are associated to ∆m respectively

∆m−1. This means that for m ∈ N, Φ ∈ Hm,q
0 (G) and Ψ ∈ Hm,q′

0 (G) we
define

Bm [Φ,Ψ] :=

{
〈∆m

2 Φ,∆
m
2 Ψ〉 for even m

〈∇∆
m−1

2 Φ,∇∆
m−1

2 Ψ〉 for odd m
. (4)

Once one has found the right generalization of the Crouzeix-ansatz to this
situation, results similar to those from the first part can be derived quite
easily from the respective compactness Theorem 9.10. This general account
covers the case of our first part (for m = 2) and also Weyers’ situation from
[22] (for m = 1) in the case of bounded domains. Here, in the special case
of Weyers’ situation, we get weaker requirements for the regularity of ∂G as

4



in [22], which is actually only a benefit of using the notion of the trace (see
Section 4).

In the second part, we are also looking at the generalization of the Stokes-
like system (2) treated by Simader in [17] to the Banach space setting and in
higher orders, see Section 11. As a motivation for our account, we will give
a brief sketch of the proof of solvability for the system (2):

• At first, the n scalar Dirichlet problems are solved: There exists a
w ∈ H2,2

0 (G) such that

〈∆w,∆Φ〉 = F (Φ) ∀Φ ∈ H2,2
0 (G).

• Then divw =: π ∈ H1,2
0,0 (G) and thus we find a unique v ∈M2(G) such

that div v = π. Therefore we have u := w−v ∈ H2,2
0 (G) and div u = 0.

We also have, as v ∈M2(G), a p ∈ H1,2
0,0 (G) such that

〈∆v,∆Φ〉 = 〈∇p,∇ div Φ〉 ∀Φ ∈ H2,2
0 (G).

• So, all in all, we have for Φ ∈ H2,2
0 (G):

F (Φ) = 〈∆w,∆Φ〉 = 〈∆u,∆Φ〉+ 〈∆v,∆Φ〉 =

= 〈∆u,∆Φ〉+ 〈∇p,∇ div Φ〉
and div u = 0.

This motivates us to consider for the fourth order Stokes’ system the term
〈∇p,∇ div Φ〉 (which generalizes later in order m to what we denote with
Bm−1 [p, div Φ]) as the natural candidate for the generalized pressure func-
tional and we regard thus the system (2) as the appropriate generalization
of the usual Stokes’ system.
In [3], Amrouche and Girault looked at another way of generalizing Stokes’
system: Their homogeneous version (i. e. with finding a solution vector field
with boundary values zero and divergence zero) of a fourth-order Stokes’-like
system reads

∆2u+∇p = f,

div u = 0,

u = 0 on ∂G and
∂u

∂n
= 0 on ∂G

and as a generalization to higher orders they suggest the system

∆mu+∇p = f.

5



Contrary to this, the “classical” or “strong” form of our generalization reads

∆mu+∇∆m−1p = f

and the weak form we investigate is the following:

For m ∈ N, given a functional F ∈
(
Hm,q′

0 (G)
)?

, we are looking for an

u ∈ Hm,q
0 (G) and a p ∈ Hm−1,q

0,0 (G) such that

Bm [u,Φ] +Bm−1 [p, div Φ] = F (Φ) for all Φ ∈ Hm,q′

0 (G)

and
div u = 0,

where Bm [·, ·] and Bm−1 [·, ·] again are our bilinear forms representing ∆m

and ∆m−1.
The reason to prefer this generalization to the generalization by Amrouche
and Girault is it’s connection to the operators div and T (m)

q . If we analyze
the sketch of proof of solvability given above for the system in question, we
see that the use of the operators div and T (m)

q and knowledge about them
plays the central role in the proof, resulting in a very elegant way of proving
solvability (and regularity) for the investigated system. For regularity of their
variant, Amrouche and Girault have to cite the very general and complicated
theory of Agmon, Douglis and Nirenberg. However, with regularity for our
system at hand, it would be easy to derive regularity theorems for the system
of Amrouche and Girault.

2 Preliminaries

2.1 Notations

Throughout the whole first part of the paper (Sections 2 to 8) let n ∈ N
with n ≥ 2 and G ⊂ Rn denote a bounded domain (that is G is open and
connected) with ∂G ∈ C5. ∂G ∈ C5 means that for every p ∈ ∂G we find an
open set U ⊂ Rn with p ∈ U and a function f ∈ C5(U) with ∇f(p) 6= 0 and

Ω ∩ U = {x ∈ U : f(x) > 0} and ∂Ω ∩ U = {x ∈ U : f(x) = 0} .

As ∇f(p) 6= 0 and ∂if (i = 1, . . . n) is continuous in U , we find a smaller
open set V ⊂ U with p ∈ V such that for a certain i ∈ {1, . . . , n} we have
∂if 6= 0 in V . After a permutation of variables we may assume that i = n
and by the implicit function theorem we find a function Φ ∈ C5(∆) with

6



∆ = ]p1 − δ, p1 + δ[×· · ·× ]pn−1 − δ, pn−1 + δ[ ⊂ Rn−1 for a sufficiently small
δ > 0 and an open set W ⊂ V with p ∈ W such that

{x = (x′, xn) ∈ ∂G ∩W} = {x = (x′, xn) ∈ Rn : x′ ∈ ∆ and xn = Φ(x′)} .

We can also see that we can take as W a set of the form

W =
⋃
x′∈∆

{x′} × ]Φ(x′)− ε,Φ(x′) + ε[

for a sufficiently small 0 < ε and that we can achieve that

W = {x = (x′, xn) ∈ W : xn > Φ(x′)} ∪ {x = (x′, xn) ∈ W : xn = Φ(x′)}∪

∪{x = (x′, xn) ∈ W : xn < Φ(x′)}
and either

W ∩ Ω = {x = (x′, xn) ∈ W : xn > Φ(x′)}
or

W ∩ Ω = {x = (x′, xn) ∈ W : xn < Φ(x′)} .
Such local representations of ∂G will be used later where we show claims
locally and use a partition of unity to show the claim in general. Note that
due to the boundedness of G, ∂G is a compact set and we thus can assume
that ∂G is covered by finitely many open sets of the type of the above defined
W .
Further let 1 < q < ∞ and q′ := q

q−1
. For two sets U, V ⊂ Rn we use the

notation V ⊂⊂ U to denote that U and V are open sets, V is bounded and
V ⊂ U . By |G| we denote the Lebesgue-measure of G.
For f ∈ Lq(G) we write

‖f‖q := ‖f‖q,G :=

(∫
G

|f |q dx
) 1

q

.

Regarding elements of Lq(G) we tend to be a little sloppy and will not always
distinguish between an element f of Lq(G) which is by definition an equiv-
alence class of functions with respect to the equivalence relation “equality
almost everywhere” and a certain representative of this equivalence class. In
this regard a statement like

f ∈ Lq(G) has the property (P )

where (P ) is a pointwise property means:

There is representative of f for which (P ) is valid.

7



2.2 The Relevant Spaces

We now introduce the relevant spaces and the notations we use in conjunction
with them:

Definition 2.1.

• For k ∈ N we denote by Hk,q(G) the usual Sobolev spaces of functions
f ∈ Lq(G) which possess for any multiindex α = (α1, . . . , αn) ∈ (N0)n

with |α| :=
∑n

i=1 αi ≤ k a weak α-derivative in Lq(G), that is a function
fα ∈ Lq(G) which admits partial integration, that is for every Φ ∈
C∞0 (G) we have ∫

G

fDαΦ dx = (−1)|α|
∫
G

fαΦ dx,

where Dα is the derivative ∂α1

∂x
α1
1
. . . ∂αn

∂xαnn
. We often write Dαf for fα

and for |α| = 1 with αi = 1 we write simply ∂if for Dαf . By the
definition

‖f‖k,q := ‖f‖k,q,G :=

∑
|α|≤k

‖Dαf‖qq

 1
q

for f ∈ Hk,q(G) the space Hk,q(G) becomes a reflexive (we have through-
out 1 < q <∞) Banach space and for q = 2 even a Hilbert space with
inner product

〈f, g〉 :=
∑
|α|≤k

〈Dαf,Dαg〉2 =
∑
|α|≤k

∫
G

DαfDαg dx

where 〈·, ·〉2 denotes the usual L2-product. In case q 6= 2, we understand
〈·, ·〉 as the Lq-Lq

′
dual-pairing

〈f, g〉 :=

∫
G

fg dx, for f ∈ Lq(G), g ∈ Lq′(G).

• By Hk,q
0 (G) we denote the closure of C∞0 (G) in Hk,q(G) with respect to

the above defined norm.

• Due to the boundedness of G we can make use of the elementary Poincaré
inequality:
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There is a constant CPoincaré = CPoincaré(q,G) > 0 such that

‖u‖q ≤ CPoincaré ‖∇u‖q = CPoincaré

(
n∑
j=1

‖∂ju‖qq

) 1
q

for all u ∈ H1,q
0 (G).

By (for k > 1 iterated) application of the elementary Poincaré inequal-
ity we get norms which are equivalent to the above defined ones on the
closed subspace Hk,q

0 (G) in Hk,q(G). These are:

– ‖·‖′1,q defined by

‖u‖′1,q := ‖∇u‖q :=

(
n∑
j=1

‖∂ju‖qq

) 1
q

.

– ‖·‖′2,q defined by

‖u‖′2,q := ‖∇∇u‖q :=

(
n∑

j,k=1

‖∂j∂ku‖qq

) 1
q

.

– ‖·‖′3,q defined by

‖u‖′3,q := ‖∇∇∇u‖q :=

(
n∑

j,k,l=1

‖∂j∂k∂lu‖qq

) 1
q

.

• Beside the elementary Poincaré inequality, we also have a kind of
Poincaré inequality which is valid for mean-value-free functions:

For every bounded domain G ⊂⊂ Rn with ∂G ∈ C1, 1 ≤ q ≤ ∞, there
exists a constant CPoi = CPoi(G, q) such that

‖u‖q,G ≤ CPoi ‖∇u‖q,G

holds for every u ∈ H1,q(G) satisfying
∫
G
u dx = 0.

For a proof, see for example, [7], Theorem 1 in 5.8.1., page 275.

• By an application of the Calderon-Zygmund estimate, one can show the
following theorem (for a proof, see [18], page 280):
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For 1 < q < ∞ there exists a constant CCZ = CCZ(n, q) > 0 such that
for all u ∈ C∞0 (Rn) we have:(

n∑
j,k=1

‖∂j∂ku‖qq

) 1
q

≤ CCZ ‖∆u‖q

Due to this estimate, we can employ new norms on H2,q
0 (G), H3,q

0 (G)
which are equivalent to the norms ‖·‖′2,q and ‖·‖′3,q given above:

– ‖·‖′′2,q defined by

‖u‖′′2,q := ‖∆u‖q

– ‖·‖′′3,q defined by

‖u‖′′3,q := ‖∇∆u‖q :=

(
n∑
j=1

‖∂j∆u‖qq

) 1
q

.

In the following we will prefer the direct and more suggestive notations
like ‖∇∆·‖q to the above defined ones like ‖·‖′′3,q.

• H1,q
0,0(G) :=

{
p ∈ H1,q

0 (G) :
∫
G
p dx = 0

}
• H2,q

0 (G) :=
(
H2,q

0 (G)
)n

denotes the space of vector fields v = (v1, . . . , vn)

with components vi ∈ H2,q
0 (G). We will throughout use underlinings to

mark a certain object as vector valued. However, we will use these
underlinings also for constants ∈ R+, should they arise in a suited sit-
uation where it is appropriate to distinguish between a “vector-case”
and a “non-vector-case”.

Remark 2.2. For u ∈ H2,q
0 (G), p ∈ H1,q′

0 (G), we will often use the following
formula:

〈∇ div u,∇p〉 = 〈∆u,∇p〉

To show this formula, we approximate u with a sequence (Φk) ⊂ C∞0 (G) with
respect to the H2,q(G)-norm. Then we have

〈∇ div u,∇p〉 = lim
k→∞
〈∇ div Φk,∇p〉 = − lim

k→∞
〈∆ div Φk, p〉 =

− lim
k→∞
〈div ∆Φk, p〉 = lim

k→∞
〈∆Φk,∇p〉 = 〈∆u,∇p〉.

The following theorems about H1,q(G)-functions will be used later:
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Theorem 2.3. For G ⊂ Rn open, 1 ≤ q <∞ and u ∈ H1,q(G) let

Z(u) := {x ∈ G : u(x) = 0} .

Then for i = 1, . . . , n it is

∂iu(x) = 0 for almost every x ∈ Z(u).

For a proof, see [16], Satz 6.15, pages 151-152.

Theorem 2.4. Let G ⊂ Rn be open, 1 ≤ q < ∞ and u ∈ H1,q(G) (resp.
∈ H1,q

0 (G)). Then |u|, u+, u− ∈ H1,q(G) (resp. ∈ H1,q
0 (G)), where

u+(x) := max {u(x), 0}

for almost every x ∈ G,

u−(x) := min {u(x), 0}

for almost every x ∈ G.
Further

• for i = 1, . . . , n

(∂i |u|) (x) =


∂iu(x), for almost every x ∈ G with u(x) > 0

0, for almost every x ∈ G with u(x) = 0

−∂iu(x), for almost every x ∈ G with u(x) < 0

i.e. ∂i |u| = sgn(u)∂iu,

(∂iu+) (x) =

{
∂iu(x), for almost every x ∈ G with u(x) > 0

0, otherwise

and

(∂iu−) (x) =

{
∂iu(x), for almost every x ∈ G with u(x) < 0

0, otherwise
.

• the assignments u 7→ |u|, u 7→ u+, u 7→ u− from H1,q(G) to H1,q(G)
(resp. from H1,q

0 (G) to H1,q
0 (G)) are continuous with respect to these

spaces.

For a proof, see [16], Satz 6.17, pages 153-156.
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2.3 Friedrichs’ Mollification and it’s Fundamental Prop-
erties

In this subsection we will only cite some of the fundamental properties of
Friedrichs’ mollification process, which we will need in the following. The
respective proofs can be found in almost any book on partial differential
equations, we simply refer to [16]. In the following, let j ∈ C∞0 (Rn) with
j ≥ 0, j(x) = 0 for ‖x‖ ≥ 1 and

∫
Rn j(x) dx = 1. Such functions exist, a

widely known example is the (only radially depending)

j(x) :=

{
ce
− 1

1−‖x‖2 for ‖x‖ < 1

0 for ‖x‖ ≥ 1

where c > 0 is the constant scaling j to satisfy
∫

Rn j(x) dx = 1. For ε > 0
we further define jε(x) := ε−nj(x

ε
). It is immediately seen that jε ∈ C∞0 (Rn)

and by the transformation formula for integrals we see
∫

Rn jε(x) dx = 1.

Theorem 2.5. Friedrichs’ mollification
Let G ⊂ Rn be open. For f ∈ Lq(G) we define for x ∈ Rn the new function

fε(x) :=

∫
G

jε(x− y)f(y) dy.

Then we have:

i) fε ∈ C∞(G) for all ε > 0.

ii) For all ε > 0 it is fε ∈ Lq(G) and ‖f − fε‖q,G
ε→0−−→ 0.

iii) If f ∈ H1,q(G) and there is a compact set K ⊂ G such that f(x) = 0
for almost every x ∈ G \K, we have for every 0 < ε < dist(K, ∂G):

(f)ε ∈ C∞0 (G)

and for every x ∈ Rn, 0 < ε ∈ R:

(∂if)ε(x) = ∂i(fε)(x), i = 1, . . . , n

Concerning Friedrichs’ mollification, we also state an important property of
harmonic functions (which is indeed characterizing harmonic functions), for
a proof, we refer to [14], Lemmas 2.5 and 2.6, pages 765, 766:

Theorem 2.6. Let G ⊂ Rn be open, G′ ⊂⊂ G and u be harmonic in G.
Then for every 0 < ε < dist(G′, ∂G) we have

uε(x) = u(x)

for every x ∈ G′. In particular, u ∈ C∞(G).
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2.4 Solvability of the Weak Dirichlet Problem in Lq

with Homogeneous Boundary Conditions for ∆2

and ∆3

In this subsection we cite the important variational inequalities and solvabil-
ity theorems which will be used in the following.

Theorem 2.7. Müller’s variational inequality in H2,q
0 (G) (see [10], Haupt-

satz, page 191):
Let G ⊂ Rn be a bounded domain with ∂G ∈ C2, 1 < q < ∞ with q′ := q

q−1
.

Then there is a constant CM,q > 0 depending only on G and q such that

‖∆u‖q ≤ CM,q sup
06=Φ∈H2,q′

0 (G)

〈∆u,∆Φ〉
‖∆Φ‖q′

holds for all u ∈ H2,q
0 (G).

For a proof, we refer to [10], pages 191-194.

In fact Müller proved this variational inequality not just for the case of
bounded domains but also for exterior domains. We also have a vector-
version of this variational inequality:

Theorem 2.8. Müller’s variational inequality in H2,q
0 (G):

Let G ⊂ Rn be a bounded domain with ∂G ∈ C2, 1 < q < ∞ with q′ := q
q−1

.
Then there is a constant CM,q > 0 depending only on G and q such that

‖∆u‖q ≤ CM,q sup
06=Φ∈H2,q′

0 (G)

〈∆u,∆Φ〉
‖∆Φ‖q′

holds for all u ∈ H2,q
0 (G).

Proof. We have for u ∈ H2,q
0 (G):

‖∆u‖q =

(
n∑
j=1

‖∆uj‖qq

) 1
q

and as for j = 1, . . . , n we have

‖∆uj‖qq ≤ Cq
M,q

 sup
0 6=Φ∈H2,q′

0 (G)

〈∆uj,∆Φ〉
‖∆Φ‖q′

q
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by Theorem 2.7, we find

‖∆u‖q ≤ CM,q

 n∑
j=1

 sup
06=Φ∈H2,q′

0 (G)

〈∆uj,∆Φ〉
‖∆Φ‖q′

q
1
q

.

But we have for j = 1, . . . , n

sup
06=Φ∈H2,q′

0 (G)

〈∆uj,∆Φ〉
‖∆Φ‖q′

≤ sup
06=Φ∈H2,q′

0 (G)

〈∆u,∆Φ〉
‖∆Φ‖q′

and so we find

‖∆u‖q ≤ CM,q

 n∑
j=1

 sup
06=Φ∈H2,q′

0 (G)

〈∆u,∆Φ〉
‖∆Φ‖q′

q
1
q

=

= CM,qn
1
q︸ ︷︷ ︸

=:CM,q

sup
06=Φ∈H2,q′

0 (G)

〈∆u,∆Φ〉
‖∆Φ‖q′

.

Validity of Müller’s variational inequalities for q and q′ are equivalent to the
unique solvability of the weak Dirichlet problem for ∆2 in Lq and Lq

′
with

homogeneous boundary conditions. For a proof, we refer to [10], Lemma
III.15. on page 164, but for the analogous problem (Theorem 2.17) for ∆3

we will give a proof below, see Theorem 2.17.

Theorem 2.9. Let F be a bounded linear functional ∈
(
H2,q′

0 (G)
)∗

. Then

there is exactly one u ∈ H2,q
0 (G) with

〈∆u,∆Φ〉 = F (Φ) for all Φ ∈ H2,q′

0 (G).

Moreover, the solution u satisfies

‖∆u‖q < C∆2 ‖F‖“
H2,q′

0 (G)
”∗

with a C∆2 = C∆2(q,G) > 0.

For a proof, see [10], Lemma III.15., page 164.
In [10], Satz IV.1.1., page 195, Müller gives the following regularity result in
a version for exterior domains. We state the theorem in another version for
our domains which we will give a proof for:
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Theorem 2.10. Let 1 < q, s <∞ and u ∈ H2,q
0 (G) satisfying

sup
Φ∈C∞0 (G)

〈∆u,∆Φ〉
‖∆Φ‖s′

<∞. (5)

Then u ∈ H2,s
0 (G).

Proof. In the case 1 < s ≤ q < ∞ the statement u ∈ H2,s
0 (G) is shown

easily: For s = q everything is clear and for s < q the statement is merely a
consequence of the boundedness of G and the Hölder inequality. In this case
we do not even need the validity of assumption (5).
So look now at the case 1 < q < s < ∞. Let first 0 6= Φ ∈ C∞0 (G). By (5)
we see that by

F (Φ) := 〈∆u,∆Φ〉

we have

|F (Φ)| = |〈∆u,∆Φ〉| = |〈∆u,∆Φ〉|
‖∆Φ‖s′

‖∆Φ‖s′ ≤ sup
06=Ψ∈C∞0 (G)

〈∆u,∆Ψ〉
‖∆Ψ‖s′

‖∆Φ‖s′ .

As C∞0 (G) is dense in H2,s′

0 (G) with respect to the norm ‖∆·‖s′ , there is an

unique linear and continuous extension F̃ ∈
(
H2,s′

0 (G)
)∗

of F . By Theorem

2.9 we find an unique v ∈ H2,s
0 (G) with

〈∆v,∆Φ〉 = F̃ (Φ) for all Φ ∈ H2,s′

0 (G).

As s > q we find that v ∈ H2,q
0 (G), too. For all Φ ∈ C∞0 (G) we find that:

〈∆(v − u),∆Φ〉 = 0

and thus by the uniqueness in Theorem 2.9 we conclude u = v ∈ H2,s
0 (G).

For the solvability of the analogous problem to Theorem 2.9 for ∆3 we have
to refer to [15], Theorems 7.5. and 7.6., which apply not only to ∆3 but to
uniformly strongly elliptic regular Dirichlet bilinear forms of given order m
in the sense of [15], Definitions 1.3 and 1.4, pages 14-16. This means:

Definition 2.11. Let G ⊂⊂ Rn be open, n,m ∈ N with n ≥ 2 and m ≥
1. Let for every α, β ∈ (N0)n with |α| , |β| ≤ m a complex-valued bounded
measurable function aα,β defined in G be given. For Φ,Ψ ∈ C∞0 (G) let

B [Φ,Ψ] :=
∑
|α|≤m
|β|≤m

〈aαβDαΦ, DβΨ〉.
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and
LB := (−1)m

∑
|α|=|β|=m

aαβ(·)DαDβ.

Then B is called an uniformly strongly elliptic Dirichlet bilinear form of order
m in G, if the differential operator LB is uniformly strongly elliptic of order
2m in G, that is:

• For every fixed (l1, . . . , ln−1) =: l ∈ Rn−1 \ {0} and every x ∈ G the
polynomial in τ ∈ C

P (τ, l, x) :=
∑

|α|=|β|=m

aαβ(x)lα
′+β′ταn+βn , α = (α′, αn), β = (β′, βn)

has exactly m roots with positive and m roots with negative imaginary
part.

• There exists a constant E > 0 such that

(−1)m Re
∑

|α|=|β|=m

aαβ(x)lα+β ≥ E |l|2m

holds for every x ∈ G and l ∈ Rn .

Moreover, by regularity of B, it is meant that the functions aαβ admit for
|α| = |β| = m a continuous continuation to G and are bounded in G for
|α| = |β| < m.

Remark 2.12. All the bilinear forms we will use in the following are defined
for some m ∈ N by

Bm [Φ,Ψ] :=

{
〈∆m

2 Φ,∆
m
2 Ψ〉 for even m

〈∇∆
m−1

2 Φ,∇∆
m−1

2 Ψ〉 for odd m
.

Now it is quickly seen that Bm defines an uniformly strongly elliptic regular
Dirichlet bilinear form of order m in the above introduced sense:
We see that we can write

Bm[Φ,Ψ] =
∑
|α|≤m
|β|≤m

〈aαβDαΦ, DβΨ〉

with all the aαβ ≥ 0 constant.
Next, we see that the differential operator LB associated to the bilinear form
B = Bm has the form

LB = (−1)m(−1)m∆m = ∆m.

The requirements from Definition 2.11 are quickly verified:
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• The regularity assumptions on the aαβ are trivially fulfilled, for they
are all constant.

• The polynomial P (τ, l, x) with l ∈ Rn−1 \ {0}, τ ∈ C can be written as

(−1)m

(
n−1∑
i=1

l2i + τ 2

)m

.

This polynomial has the same zeros τ as the polynomial
∑n−1

i=1 l
2
i + τ 2,

but with m-times as much multiplicities. As the polynomial
∑n−1

i=1 l
2
i +τ

2

has real coefficients, the zeros occur in pairs of complex conjugates and
as l 6= 0, there can be no real zeros. So the original polynomial must
have one zero with positive imaginary part (with multiplicity m) and
one zero with negative imaginary part (with multiplicity m).

• Looking at
(−1)m Re

(
(−1)m |l|2m

)
= |l|2m ,

we see that we can choose E = 1.

Having now verified that our Bm [·, ·] are admissible for Simader’s theory
from [15], we cite the important theorems from there which we are going to
use in order to get our solvability statements:

Theorem 2.13. (Compare [15], Theorem 7.5., page 129)
Let m ≥ 1 be an integer and let G ⊂ Rn (n ≥ 2) be a bounded open set with
boundary ∂G ∈ Cm. Let B [Φ,Ψ] be an uniformly strongly elliptic regular
Dirichlet bilinear form of order m and q, q′ two real numbers with 1 < q, q′ <
∞ and 1

q
+ 1

q′
= 1.

Let

Nq :=
{
w ∈ Hm,q

0 (G) : B [w,Φ] = 0 for every Φ ∈ Hm,q′

0 (G)
}

and let

Nq′ :=
{
z ∈ Hm,q′

0 (G) : B [Ψ, z] = 0 for every Ψ ∈ Hm,q
0 (G)

}
.

Then dimNq = dimNq′ = d < ∞. For F ∈
(
Hm,q′

0 (G)
)?

the functional

equation
B [u,Φ] = F (Φ) for every Φ ∈ Hm,q′

0 (G)

has a solution u ∈ Hm,q
0 (G) if and only if F (z) = 0 for every z ∈ Nq′.

Particularly, in case of d = 0, the equation is uniquely solvable for arbitrary

F ∈
(
Hm,q′

0 (G)
)?

.
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To show in our case that d = 0, we use the following theorem:

Theorem 2.14. (Compare [15], Theorem 7.6., page 131) Let m ≥ 1 be an
integer and let G ⊂ Rn (n ≥ 2) be a bounded open set with boundary ∂G ∈
Cm. Let B [Φ,Ψ] be an uniformly strongly elliptic regular Dirichlet bilinear
form of order m, let q be a real number with 1 < q < ∞ and u ∈ Hm,q

0 (G)
such that

B [u,Φ] = 0 for every Φ ∈ C∞0 (G).

Then u ∈ Hm,r
0 (G) for every 1 < r <∞.

Remark 2.15. So in our case, where m := 3, B [Ψ,Φ] := 〈∇∆Ψ,∇∆Φ〉,
look at an u ∈ Nq. Then for every Φ ∈ C∞0 (G) we find

〈∇∆u,∇∆Φ〉 = 0

and with Theorem 2.14 we conclude that u ∈ H3,2
0 (G) and u ∈ N2(G), too.

Thus taking u itself as a testing function (which can be justfied by approxi-
mating u in the H3,2

0 (G)-sense by C∞0 (G)-functions), we see that

〈∇∆u,∇∆u〉 = 0

and thus u = 0.

This leads us to the following solvability theorem:

Theorem 2.16. Let F be a bounded linear functional ∈
(
H3,q′

0 (G)
)∗

. Then

there is exactly one u ∈ H3,q
0 (G) satisfying

〈∇∆u,∇∆Φ〉 = F (Φ) for all Φ ∈ H3,q′

0 (G). (6)

Moreover, there is a C∆3 = C∆3(q,G) > 0 such that for every F ∈
(
H3,q′

0 (G)
)∗

and u with (6) we have the estimate

‖∇∆u‖q ≤ C∆3 ‖F‖“
H3,q′

0 (G)
”∗ . (7)

Proof. The existence of an unique u ∈ H3,q
0 (G) satisfying

〈∇∆u,∇∆Φ〉 = F (Φ) for all Φ ∈ H3,q′

0 (G) (8)

is a direct consequence of Theorem 2.13 and Remark 2.15. The only thing
that remains to be shown is the existence of a C∆3 = C∆3(q,G) such that

‖∇∆u‖q ≤ C∆3 ‖F‖“
H3,q′

0 (G)
”∗ .
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With Theorem 9.11 in [15] (see our Theorem 6.1 (with m = 3, j = 0)) we
get with (8) the estimate

‖u‖3,q ≤ γ

(
‖F‖“

H3,q′
0 (G)

”∗ + ‖u‖q
)
, (9)

where γ is dependent only on q and G (note that m, j and B, as they were
called in Theorem 6.1 are fixed here and n is already coded in G). In view
of the equivalence of the norms ‖∇∆·‖q and ‖·‖3,q on H3,q

0 (G), it is sufficient
to show that for u we have an estimate of the form

‖u‖q ≤ C ‖F‖“
H3,q′

0 (G)
”∗ (10)

with a C = C(q,G) > 0. As we have

‖u‖q ≤ ‖u‖3,q ,

it suffices to show validity of an estimate of the form

‖u‖3,q ≤ C ‖F‖“
H3,q′

0 (G)
”∗ (11)

with a C = C(q,G) > 0. Then estimate (7) follows easily with (9).

Assume (11) were false. Then we could find a sequence (Fν)ν∈N ⊂
(
H3,q′

0 (G)
)∗

and (uν)ν∈N ⊂ H3,q
0 (G) with

〈∇∆uν ,∇∆Φ〉 = Fν(Φ) for all Φ ∈ C∞0 (G), ν ∈ N

with
‖uν‖3,q = 1 (12)

and
‖uν‖3,q > ν ‖Fν‖“H3,q′

0 (G)
”∗ . (13)

With (12) and (13) we conclude

Fν

“
H3,q′

0 (G)
”∗

−−−−−−−→ 0.

By (12) the sequence (uν)ν∈N ⊂ H3,q
0 (G) is bounded in H3,q

0 (G) and we can
assume (by passing to a subsequence) without loss of generality that there is
an u ∈ H3,q

0 (G) with

uν
weakly in H3,q

0 (G)
−−−−−−−−−−→ u
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and

uν
strongly in H2,q

0 (G)
−−−−−−−−−−−→ u

by Rellich’s compact embedding from H3,q
0 (G) into H2,q

0 (G), see for example
[2], A6.1, pages 256, 257.

By uν
weakly in H3,q

0 (G)
−−−−−−−−−−→ u and Fν

“
H3,q′

0 (G)
”∗

−−−−−−−→ 0 we see easily that

〈∇∆u,∇∆Φ〉 = 0

for all Φ ∈ H3,q′

0 (G) and by the unique solvability already verified, we see
u = 0. By the inequality (9) and the convergence of uν in Lq(G) to 0, we see
that

‖uν − uµ‖3,q ≤ γ

(
‖Fν − Fµ‖“H3,q′

0 (G)
”∗ + ‖uν − uµ‖q

)
≤

≤ γ

(
‖Fν‖“H3,q′

0 (G)
”∗ +

∥∥Fµ∥∥“H3,q′
0 (G)

”∗ + ‖uν‖q + ‖uµ‖q

)
µ,ν→∞−−−−→ 0

and so (uν) is a Cauchy-sequence in H3,q
0 (G) and thus has a limit v ∈ H3,q

0 (G).
But then (uν) converges also weakly in H3,q

0 (G) to v and by uniqueness of
the weak limit we have u = v and thus (uν) converges strongly to u = 0.
This, however, is a contradiction to ‖uν‖3,q = 1 for all ν ∈ N.

With Theorem 2.16 we also get a variational inequality:

Theorem 2.17. 1. There is a CV = CV (q,G) > 0 such that for all u ∈
H3,q

0 (G) the following inequality is valid:

‖∇∆u‖q ≤ CV sup
0 6=Φ∈H3,q′

0 (G)

〈∇∆u,∇∆Φ〉
‖∇∆Φ‖q′

2. The validity of this variational inequality is equivalent to our solvability
Theorem 2.16 in the following sense: If G ⊂ Rn is a domain such that
the statement of the variational inequality is valid for 1 < q < ∞ and
q′ with 1

q
+ 1

q′
= 1 then also the solvability theorem is valid for q and q′

and vice versa.

Proof. At first we will prove the statement of the variational inequality using
the solvability Theorem 2.16, thus showing 1. and one part of the equivalence
in 2.:
Let u ∈ H3,q

0 (G) be arbitrary. Then by setting for Φ ∈ H3,q′

0 (G)

F (Φ) := 〈∇∆u,∇∆Φ〉,
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a bounded linear functional F ∈
(
H3,q′

0 (G)
)∗

is defined. By definition, we

have
〈∇∆u,∇∆Φ〉 = F (Φ) for all Φ ∈ H3,q′

0 (G)

and thus by Theorem 2.16 we have

‖∇∆u‖q ≤ C∆3 ‖F‖“
H3,q′

0 (G)
”∗ ≤ C∆3 sup

Φ∈H3,q′
0 (G), ‖Φ‖3,q′≤1

|F (Φ)| ≤

≤ C∆3 sup
06=Φ∈H3,q′

0 (G)

〈∇∆u,∇∆Φ〉
‖Φ‖3,q′

and as for all Φ ∈ H3,q′

0 (G) we have

‖∇∆Φ‖q′ =

(
n∑
i=1

‖∂i∆Φ‖q
′

q′

) 1
q′

≤

(
n∑

i,j=1

‖∂i∂j∂jΦ‖q
′

q′

) 1
q′

≤ ‖Φ‖3,q′

and ‖Φ‖3,q′ = 0 ⇔ ‖∇∆Φ‖q′ = 0 ⇔ 0 = Φ ∈ H3,q
0 (G) we find for all

0 6= Φ ∈ H3,q′

0 (G)

|〈∇∆u,∇∆Φ〉|
‖Φ‖3,q′

≤ |〈∇∆u,∇∆Φ〉|
‖∇∆Φ‖q′

and thus

‖∇∆u‖q ≤ C∆3 sup
0 6=Φ∈H3,q′

0 (G)

〈∇∆u,∇∆Φ〉
‖∇∆Φ‖q′

.

So, validity of our solvability statement for q implies validity of our variational
inequality for q.
To show the other implication in 2., we assume validity of our variational
inequality for q and q′. Take a look at the set T :={

F ∈
(
H3,q′

0 (G)
)∗

: ∃u ∈ H3,q
0 (G) : F (Φ) = 〈∇∆u,∇∆Φ〉∀Φ ∈ C∞0 (G)

}
.

By the variational inequality, we see that T ⊂
(
H3,q′

0 (G)
)∗

is a closed linear

subspace: Taking a Cauchy-sequence (Fν) ⊂ T ⊂
(
H3,q′

0 (G)
)?

converging to

an F ∈
(
H3,q′

0 (G)
)∗

with

uν ∈ H3,q
0 (G) such that Fν(Φ) = 〈∇∆uν ,∇∆Φ〉 for all Φ ∈ C∞0 (G),
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existing by definition of T , we see by the variational inequality for q applied
to Cauchy differences, that

‖∇∆(uν − uµ)‖q ≤ CV sup
06=Φ∈H3,q′

0 (G)

〈∇∆(uν − uµ),∇∆Φ〉
‖∇∆Φ‖q′

=

= CV sup
06=Φ∈H3,q′

0 (G)

(Fν − Fµ)(Φ)

‖∇∆Φ‖q′
µ,ν→∞−−−−→ 0.

So, the sequence (uν) converges in H3,q
0 (G) towards an element u. For any

Φ ∈ C∞0 (G), we have

F (Φ) = lim
ν→∞

Fν(Φ) = lim
ν→∞
〈∇∆uν ,∇∆Φ〉 = 〈∇∆u,∇∆Φ〉

and thus F ∈ T .

We now want to show that T =
(
H3,q′

0 (G)
)∗

: Assume that this were not

so. Then by a consequence of the Hahn-Banach Theorem, we could find a

functional 0 6= H ∈
(
H3,q′

0 (G)
)∗∗

with H(F ) = 0 for all F ∈ T . But as

H3,q′

0 (G) is reflexive, we find an element v ∈ H3,q′

0 (G) with H(F ) = F (v) for

all F ∈
(
H3,q′

0 (G)
)∗

. We find that for v we have therewith

〈∇∆v,∇∆Φ〉 = 0 for all Φ ∈ H3,q
0 (G),

as every Φ ∈ H3,q
0 (G) defines an element FΦ ∈

(
H3,q′

0 (G)
)∗

by

FΦ(Ψ) := 〈∇∆Φ,∇∆Ψ〉 for all Ψ ∈ H3,q′

0 (G)

and FΦ ∈ T . Then we have

〈∇∆v,∇∆Φ〉 = FΦ(v) = H(FΦ) = 0

and thus by the variational inequality for q′ we find:

‖∇∆v‖q′ ≤ C̃V sup
06=Φ∈H3,q

0 (G)

〈∇∆v,∇∆Φ〉
‖∇∆Φ‖q

= 0,

so v = 0 and thus H = 0, a contradiction. The uniqueness of the solution is
shown easily: Assume that u ∈ H3,q

0 (G) with

〈∇∆u,∇∆Φ〉 = 0 for all Φ ∈ H3,q′

0 (G).

Then as above with the variational inequality for q we find that u = 0, so
the solution must be uniquely determined in H3,q

0 (G). The continuity of the
solution process is a direct consequence of the variational inequality.
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Remark 2.18. The foregoing account to solvability and validity of a vari-
ational inequality for the problem related to ∆3 could also have been used
without problems for the problem of ∆2. However, the cited theorems for the
case of ∆2 were used due to their generality (they also apply to the case of
exterior domains) and the fact that their proof is more elementary than the
proof of the theorems from Simader’s Theory.

2.5 A Decomposition of H1,q
0 (G)

Definition 2.19. Between the spaces from Definition 2.1 (equipped with the
respective norms) we have the following continuous linear mappings:

• div : H2,q
0 (G)→ H1,q

0,0(G), v = (v1, . . . , vn) 7→
∑n

i=1 ∂ivi.

• T q : H1,q
0,0(G) → H2,q

0 (G), p 7→ v where v is the unique element in

H2,q
0 (G) satisfying

〈∆v,∆Φ〉 = 〈∇p,∇ div Φ〉 ∀Φ ∈ H2,q′

0 (G). (14)

The solvability of (14), the uniqueness of v and the continuity of T q
are guaranteed by Theorem 2.9.

• By Zq : H1,q
0,0(G)→ H1,q

0,0(G) we denote the composition Zq = div ◦T q.

We state a generalization of Weyl’s Lemma which is valid for arbitrary open
sets G ⊂ Rn:

Weyl’s Lemma 2.20. Assume f ∈ L1
loc(G) satisfies

〈f,∆mΦ〉 = 0 for every Φ ∈ C∞0 (G). (15)

Then f ∈ C∞(G) and ∆mf = 0.

Proof. A very elementary proof for the cases m = 1, 2 making big use of
Friedrichs’ mollification can be found in [14] (see Lemma 2.7, page 767 and
Theorem 3.4, page 770). It can easily be generalized to m ∈ N by a simple
induction argument, the first part already being done. Let m ∈ N, m > 1
and the assumption hold for m − 1 and m = 1. As being C∞ is a local
property we can look at x ∈ G arbitrary and it suffices to show that f is
C∞ in an open ball Br(x) ⊂ G. So let now x ∈ G be arbitrary, r > 0 be so
small that Br(x) ⊂⊂ G and ε > 0 be so small that Br+2ε(x) ⊂⊂ G. Because
Φz(y) := jε(y − z) is for fixed z ∈ Br(x) a function with compact support in
G, we see with equation (15) that we have

0 =

∫
G

f(y)∆m
y jε(y − z)dy =

∫
G

f(y)∆m
z jε(y − z)dy =
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= ∆m

∫
G

jε(y − z)f(y)dy = ∆mfε(z)

and thus ∆mfε = 0 in Br(x). So we have shown for every sufficiently small
ε > 0 that ∆m−1fε is harmonic in Br(x). By the property of harmonic
functions that they stay invariant under mollification with an only radially
depending kernel (to be more precise: For h harmonic in G we have h(z) =
hε(z) for all z ∈ G with dist(z, ∂G) < ε) and the fact that for z ∈ Br(x) and
0 < δ < ε we have

(fε)δ (z) = (fδ)ε (z)

and
∂i (gε) (z) = (∂ig)ε (z) for g ∈ C1(G) and i ∈ {1, . . . , n}

used iteratively, we see that for z ∈ Br(x) we have with 0 < δ < ε since
∆m−1(fδ) and ∆m−1(fε) are harmonic

∆m−1fε(z) =
(
∆m−1fε

)
δ

(z) = ∆m−1 (fε,δ) (z) = ∆m−1 (fδ,ε) (z) =

=
(
∆m−1fδ

)
ε
(z) = ∆m−1fδ(z).

So we find for all 0 < δ < ε:

∆m−1 (fδ) = ∆m−1 (fε) on Br(x)

Defining g := ∆m−1fε, we see that g is harmonic on Br(x) and that it is no
restriction to assume g ∈ C∞ (Br(x)). We can find a h ∈ C∞ (Br(x)) with
∆m−1h = g: By classical theory we find a h1 ∈ C

∞
(Br(x)) with ∆h1 = g

with the representation formula

h1(y) := −
∫
Br(x)

S(y − z)g(z) dz,

where S denotes the fundamental solution to the Laplacian, see for example
[16], Satz 4.5, page 102. Iterating this process, we finally reach our sought
after h. Taking now a close look at f − h, we see that for Φ ∈ C∞0 (G) we
have

〈f−h,∆m−1Φ〉 = 〈f,∆m−1Φ〉−〈h,∆m−1Φ〉 = lim
ε→0
〈fε,∆m−1Φ〉−〈∆m−1h,Φ〉 =

= lim
ε→0
〈fε,∆m−1Φ〉 − 〈g,Φ〉 = lim

ε→0

(
〈fε,∆m−1Φ〉 − 〈∆m−1fε,Φ〉

)
= 0,

and thus by the induction hypothesis we conclude f − h ∈ C∞ (Br(x)) and
as h ∈ C∞ (Br(x)) we also find f ∈ C∞ (Br(x)).

Definition 2.21. We introduce the spaces
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• Aq(G) :=
{
p ∈ H1,q

0 (G) : p = ∆s for an s ∈ H3,q
0 (G)

}
• Bq(G) :=

{
p ∈ H1,q

0 (G) :
∫
G
p∆2Φ dx = 0 ∀Φ ∈ C∞0 (G)

}
Furthermore we write Aq0(G) := Aq(G) ∩ H1,q

0,0(G) and Bq
0(G) := Bq(G) ∩

H1,q
0,0(G). Note that Aq(G) = Aq0(G) as can easily be seen by Gauß’ divergence

Theorem.

In view of Weyl’s Lemma 2.20 above we readily see that the space Bq(G) is
consisting exactly of the biharmonic H1,q

0 (G)-functions. In particular, every
h ∈ Bq(G) fulfills h ∈ C∞(G).

Theorem 2.22. C∞0,0(G) := C∞0 (G) ∩H1,q
0,0(G) is dense in H1,q

0,0(G).

Proof. Let p ∈ H1,q
0,0(G) be arbitrary and f ∈ C∞0 (G) with f ≥ 0 in G

and
∫
G
f dx = 1. As p ∈ H1,q

0 (G), we find a sequence (pν)ν∈N ⊂ C∞0 (G) with

‖(p− pν)‖1,q

ν→∞−−−→ 0. Define cν :=
∫
G
pν dx. Then with the Hölder inequality

we get

|cν | =
∣∣∣∣∫
G

pν dx

∣∣∣∣ =

∣∣∣∣∫
G

pν − p dx
∣∣∣∣ ≤ ∫

G

|pν − p| dx ≤ |G|
1
q′ ‖pν − p‖q −→ 0.

Let now p̃ν := pν − cν · f . We then have p̃ν mean-value-free and thus p̃ν ∈
C∞0,0(G) and

‖p̃ν − p‖1,q ≤ |cν | ‖f‖1,q + ‖pν − p‖1,q

ν→∞−−−→ 0.

The weak solvability of the Dirichlet problem for ∆3 with zero boundary data
from Theorem 2.16 gives rise to a direct (if q = 2 orthogonal) decomposition
of H1,q

0 (G) and H1,q
0,0(G) similar to the decomposition of Lq(G) obtained by

Müller, see [10], Satz IV.2.1, page 201:

Theorem 2.23. We have the direct decompositions

H1,q
0 (G) = Aq(G)⊕Bq(G) (16)

H1,q
0,0(G) = Aq0(G)⊕Bq

0(G) (17)

These decompositions are orthogonal if q = 2.
If p = ∆s+ h according to this decomposition we find the estimate:

‖∇∆s‖q + ‖∇h‖q ≤ CD ‖∇p‖q (18)

with a constant CD > 0 depending only on G and q.
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Proof. For p ∈ H1,q
0 (G) there exists according to our Theorem 2.16 an unique

s ∈ H3,q
0 (G) satisfying

〈∇∆s,∇∆Φ〉 = 〈∇p,∇∆Φ〉 ∀Φ ∈ H3,q′

0 (G) (19)

and we have a constant C∆3 = C∆3(q,G) with ‖∇∆s‖q ≤ C∆3 ‖∇p‖q. Define

h := p−∆s ∈ H1,q
0 (G). Then we have for all Φ ∈ C∞0 (G):

〈h,∆2Φ〉 = −〈∇h,∇∆Φ〉 = 〈∇p−∇∆s,∇∆Φ〉 = 0

that is h ∈ Bq(G) and we have a representation p = ∆s + h as desired.
The uniqueness of the representation of p = ∆s + h with s ∈ H3,q

0 (G) and
h ∈ Bq(G) is due to the unique solvability of (19): Assume that p = ∆s1 +h1

and p = ∆s2 +h2. Then we have ∆(s1−s2) = h2−h1 ∈ Bq(G) is biharmonic
and therewith

〈∇∆(s1 − s2),∇∆Φ〉 = −〈∆(s1 − s2),∆2Φ〉 = 0 ∀Φ ∈ C∞0 (G)

so s1 = s2 and then h1 = p−∆s1 = p−∆s2 = h2. So the decomposition is
direct and we have shown (16).
Furthermore, we see that for every p ∈ H1,q

0 (G) we have ∆s ∈ H1,q
0,0(G) and

thus h ∈ H1,q
0,0(G) if and only if p ∈ H1,q

0,0(G) yielding (17).
To see that this decomposition is orthogonal in case q = 2 we note that if h ∈
B2(G), ∆s ∈ A2(G) we find 〈∇h,∇∆s〉 = 0 (through H3,2

0 (G)-approximation
of s by C∞0 (G)-functions and partially integrating).
Further we have for a given p ∈ H1,q

0 (G) and p = ∆s+ h:

‖∇∆s‖q ≤ C∆3 ‖∇p‖q (20)

and

‖∇h‖q = ‖∇p−∇∆s‖q ≤ ‖∇p‖q + ‖∇∆s‖q ≤ (C∆3 + 1) ‖∇p‖q (21)

Sticking (20) and (21) together we get:

‖∇∆s‖q + ‖∇h‖q ≤ (2C∆3 + 1)︸ ︷︷ ︸
=:CD

‖∇p‖q .

The decomposition (17) and the operator Zq defined in (2.19) are closely
related and so (17) plays an important role in the study of Zq. As a first
insight we have:
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Theorem 2.24. Regarding the restrictions of Zq to Aq0(G) and to Bq
0(G), we

get

Zq|Aq0(G) :Aq0(G)→ Aq0(G) and Zq(p) = p ∀p ∈ Aq0(G)

Zq|Bq0(G) :Bq
0(G)→ Bq

0(G)

Proof. Let p ∈ Aq0(G). Then p = ∆s for an s ∈ H3,q
0 (G) and we find

T q(p) = ∇s, for we have

〈∆∇s,∆Φ〉 = 〈∇∆s,∆Φ〉 = 〈∇p,∆Φ〉 for all Φ ∈ H2,q′

0 (G)

and so by uniqueness of the solution (Theorem 2.16) we have

T q(p) = ∇s, Zq(p) = div∇s = ∆s = p

For p ∈ Bq
0(G) we have for Φ ∈ C∞0 (G)

〈Zq(p),∆2Φ〉 = 〈div T q(p),∆
2Φ〉 = −〈∆T q(p),∇∆Φ〉 = −〈∇p,∆∇Φ〉 =

= 〈p,∆2Φ〉 = 0

and so we conclude Zq(p) ∈ Bq
0(G).

Regarding eigenvalues of Zq we have due to our direct decomposition from
Theorem 2.23 and Theorem 2.24 the following easy fact:

Theorem 2.25. Suppose λ ∈ R and p ∈ H1,q
0,0(G) suffice Zq(p) = λp. Then

we have λ = 1 or p ∈ Bq
0(G).

Proof. Assume that Zq(p) = λp. Applying the decomposition (17) from
Theorem 2.23 to p we get p = ∆s + h with s ∈ H3,q

0 (G) and h ∈ Bq
0(G). So

we have on the one hand

Zq(p) = λp = λ(∆s+ h) = λ∆s︸︷︷︸
∈Aq0(G)

+ λh︸︷︷︸
∈Bq0(G)

and on the other hand using Theorem 2.24 we have

Zq(p) = Zq(∆s+ h) = Zq(∆s) + Zq(h) = ∆s︸︷︷︸
∈Aq0(G)

+ Zq(h)︸ ︷︷ ︸
∈Bq0(G)

.

So by the directness of the decomposition (2.23) we have:

λ∆s = ∆s and λh = Zq(h)

The first of these two equalities can only be satisfied if λ = 1 or s = 0. So
we have shown: λ = 1 or p = h ∈ Bq

0(G).
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Note that the “or” in (2.25) is not an exclusive one. The question whether
there are p ∈ Bq

0(G) with Zq(p) = p will be examined later (see subsection
8.2). It will show up that there is a finite dimensional subspace of Bq

0(G) of
such elements and that the dimension of this subspace is only dependent on
topological properties of G.

2.6 Another Decomposition of H1,q
0 (G)

In this paper we will make use of the following decomposition of H1,q
0 (G)

which has already been investigated by C. G. Simader in [17] for the case
q = 2:

Theorem 2.26. For H1,q
0 (G) we have the direct decomposition:

H1,q
0 (G) = H1,q

0,0(G)⊕
{
g ∈ H1,q

0 (G) : 〈∇g,∆Φ〉 = 0 for all Φ ∈ C∞0 (G)
}︸ ︷︷ ︸

=:Nq(G)

(22)
Furthermore, for Ψ ∈ H1,q

0 (G) with Ψ = Ψ0 + Ψ1 where Ψ0 ∈ H1,q
0,0(G) and

Ψ1 ∈ N q(G), we have the estimate

‖∇Ψ0‖q + ‖∇Ψ1‖q ≤ Cd ‖∇Ψ‖q (23)

with a constant Cd = Cd(q,G) > 0.
The space N q(G) is a one dimensional real vector space and independent of
q.

Proof. Let at first q be fixed and g ∈ N q(G). Then ∇g satisfies

〈∇g,∆Φ〉 = 0 for all Φ ∈ C∞0 (G).

By Weyl’s Lemma 2.20 we conclude that for i = 1, . . . , n we have ∂ig ∈ C∞(G)
and consequently

∆g =
n∑
i=1

∂i∂ig ∈ C∞(G), too.

Now we find that for Φ ∈ C∞0 (G)

0 = 〈∇g,∆Φ〉 = −〈g, div ∆Φ〉 = −〈∆g, div Φ〉 = 〈∇(∆g),Φ〉

and thus
∇(∆g) = 0,
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so ∆g is constant in G. Furthermore we find that g itself is in C∞(G), for if
we define the constant value of ∆g to be called k, we see that the function

f := g − k

2n
|x|2

satisfies ∆f = k − 2n k
2n

= 0 and by Weyl’s Lemma 2.20 it follows that

f ∈ C∞(G) and then g = f + k
2n
|x|2 ∈ C∞(G).

Regarding the functional equation

〈∇h,∇Φ〉 = 〈1,Φ〉 for all Φ ∈ H1,q′

0 (G), (24)

where 1 denotes the function which is constant with value 1 on G, we get an
unique h ∈ H1,q

0 (G) solving the equation. Doing this for two different values
q1 and q2 of q, we find functions h1 ∈ H1,q1

0 (G), h2 ∈ H1,q2
0 (G) with

〈∇h1,∇Φ〉 = 〈1,Φ〉 for all Φ ∈ H1,q′1
0 (G) and

〈∇h2,∇Φ〉 = 〈1,Φ〉 for all Φ ∈ H1,q′2
0 (G).

As G is bounded, we see immediately that h1, h2 ∈ H1,min{q1,q2}
0 (G) and thus

h2 − h1 ∈ H1,min{q1,q2}
0 (G), and with

〈∇(h2 − h1),∇Φ〉 = 0 for all Φ ∈ C∞0 (G)

we find that h2 − h1 = 0 or h2 = h1.
So we have h ∈ H1,q

0 (G) for all 1 < q <∞, solving (24) for every 1 < q <∞.
By the unique solvability of (24) in H1,q

0 (G) we see that for g ∈ N q(G) with
∆g = c in G it must be g = ch. We have shown that N q(G) is independent
of q and one dimensional.
We further find for h like above: h(x) ≥ 0 for almost every x ∈ G:
We first define h− to be the negative part of h, that is

h−(x) := h(x) if h(x) < 0

h−(x) := 0 otherwise.

Then h− ∈ H1,2
0 (G) by Theorem 2.4 and

0 ≤ ‖∇h−‖2
2 = 〈∇h−,∇h−〉 = 〈∇h,∇h−〉 = 〈1, h−〉 ≤ 0,

so we see h− = 0. Because h is not the zero function, we further have∫
G

h dx > 0
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and we can define

h̃ :=
1∫

G
h dx

h

with

h̃ ≥ 0, and

∫
G

h̃ dx = 1.

Now we can prove the decomposition (22): Let Ψ ∈ H1,q
0 (G) be arbitrary.

Then let cΨ :=
∫
G

Ψ dx and we have Ψ0 := Ψ− cΨh̃ ∈ H1,q
0,0(G), Ψ1 := cΨh̃ ∈

N q(G) and
Ψ0 + Ψ1 = Ψ− cΨh̃+ cΨh̃ = Ψ.

For the directness of the sum, suppose, Ψ ∈ H1,q
0,0(G)∩Nq(G). Then Ψ = αh̃

with α ∈ R and because of

0 =

∫
G

Ψ dx =

∫
G

αh̃ dx = α

we see Ψ = 0.
To show the estimate (23), we look at

‖∇Ψ1‖q = |cΨ|
∥∥∥∇h̃∥∥∥

q︸ ︷︷ ︸
=:c=c(q,G)

= c

∣∣∣∣∫
G

Ψ dx

∣∣∣∣ ≤ c

∫
G

|Ψ| dx ≤ c

(∫
G

1 dx

) 1
q′

‖Ψ‖q ≤

≤ c |G|
1
q′ CPoincaré(q,G)︸ ︷︷ ︸

=:C(q,G)

‖∇Ψ‖q

So, we have

‖∇Ψ0‖q + ‖∇Ψ1‖q = ‖∇(Ψ−Ψ1)‖q + ‖∇Ψ1‖q ≤

≤ ‖∇Ψ‖q + 2 ‖∇Ψ1‖q ≤ (2C + 1)︸ ︷︷ ︸
=:Cd(q,G)

‖∇Ψ‖q .

Remark 2.27. One can easily show that the decomposition from Theorem
2.26 is orthogonal in the case q = 2 by using Theorem 7.6, which is still to
be shown:
For let r ∈ H1,2

0,0 (G) and s ∈ N2(G), we see that we find due to Theorem 7.6

a v ∈ H2,2
0 (G) satisfying div v = r and thus

〈∇r,∇s〉 = 〈∇ div v,∇s〉.
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Approximating v in the H2,2(G)-norm by (vk) ⊂ C∞0 (G), we see by partial
integration that

〈∇ div vk,∇s〉. = −〈∆ div vk, s〉 = −〈div ∆vk, s〉 = 〈∆vk,∇s〉 = 0,

as s ∈ N2(G) and thus also

〈∇r,∇s〉 = 0.

3 Helpful Theorems

3.1 A Helpful Function

In [22] (Theorem 6.1) Weyers constructed to a given G ⊂⊂ Rn with ∂G ∈
Ck+1 a function ζ = ζ(G) ∈ Ck0 (Rn) with ζ|∂G = 0 and ∇ζ|∂G = N where N is
the outward unit normal of G. So in our case of a fixed G with ∂G ∈ C5, we
find a ζ = ζ(G) according to Weyers with ζ ∈ C4

0(Rn), ζ|∂G = 0 and ∇ζ|∂G =
N . As ζ ∈ C4

0(Rn) we find a constant Cζ > 0 with supx∈Rn |Dαζ(x)| < Cζ for
all α with |α| ≤ 4.

3.2 The Theorems

The following theorems involve a function ζ meeting varying requirements.
Our ζ(G) as defined in Subsection 3.1 satisfies all these requirements and is
therefore admissible for each of these theorems. The following theorems are
indeed needed only for the case “ζ = ζ(G)” and are tailored to the use of
our ζ from Subsection 3.1. We state and prove the theorems for our fixed G
with ∂G ∈ C5 although we even could weaken the requirements for ∂G.

Theorem 3.1. For p ∈ H1,q(G) and ζ ∈ C
1
(G) it follows: pζ ∈ H1,q(G)

and ∇ (pζ) = ζ∇p+ p∇ζ.

Proof. First of all pζ is in Lq(G) as p ∈ Lq(G) and ζ is continuous and
bounded in G. Let now i ∈ {1, . . . , n}. We will show that pζ has a weak
∂i-derivative. Let Φ ∈ C∞0 (G). Then according to the classical product rule
we have: ∫

G

(pζ)∂iΦ dx =

∫
G

p∂i (ζΦ) dx−
∫
G

p∂iζΦ dx =

and with Φ ∈ C∞0 (G), we also have ζΦ ∈ C4
0(G). With p ∈ H1,q(G) it follows

that this is equal to

−
∫
G

∂ipζΦ dx−
∫
G

p∂iζΦ dx = −
∫
G

(ζ∂ip+ p∂iζ) Φ dx,
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and ζ∂ip + p∂iζ ∈ Lq(G) because p and ∂ip are in Lq(G) and ζ, ∂iζ are
continuous and bounded in G.

Theorem 3.2. Let u ∈ H2,q
0 (G) and ζ ∈ C3

(G). Then u ·∇ζ =
∑n

i=1 ui∂iζ ∈
H2,q

0 (G).

Proof. Take a sequence (uν)ν∈N ⊂ C∞0 (G) with uν
H2,q(G)−−−−→ u. Then we find

that (uν · ∇ζ)ν∈N ⊂ C2
0(G) ⊂ H2,q

0 (G) is a Cauchy-sequence in H2,q
0 (G) be-

cause for two indices ν, µ ∈ N we find

∥∥∆(uν · ∇ζ − uµ · ∇ζ)
∥∥
q

=

∥∥∥∥∥
n∑
i=1

∆
((
uν − uµ

)
i
∂iζ
)∥∥∥∥∥

q

=

=

∥∥∥∥∥
n∑
i=1

∆
(
uν − uµ

)
i
∂iζ + 2

n∑
i,j=1

∂j
(
uν − uµ

)
i
∂j∂iζ +

n∑
i=1

(
uν − uµ

)
i
∆∂iζ

∥∥∥∥∥
q

≤

∥∥∥∥∥
n∑
i=1

∆
(
uν − uµ

)
i
∂iζ

∥∥∥∥∥
q

+ 2

∥∥∥∥∥
n∑

i,j=1

∂j
(
uν − uµ

)
i
∂j∂iζ

∥∥∥∥∥
q

+

+

∥∥∥∥∥
n∑
i=1

(
uν − uµ

)
i
∆∂iζ

∥∥∥∥∥
q

≤

Cζ

 n∑
i=1

∥∥∆
(
uν − uµ

)
i

∥∥
q︸ ︷︷ ︸

µ,ν→∞−−−−→0

+2
n∑

i,j=1

∥∥∂j (uν − uµ)i∥∥q︸ ︷︷ ︸
µ,ν→∞−−−−→0

+n
n∑
i=1

∥∥(uν − uµ)i∥∥q︸ ︷︷ ︸
µ,ν→∞−−−−→0

 ,

where Cζ is a constant such that supx∈G |Dαζ(x)| < Cζ for all α with |α| ≤ 3.
As H2,q

0 (G) is complete, the Cauchy-sequence (uν · ∇ζ)ν∈N converges to an
element v ∈ H2,q

0 (G). It is the Theorem of Riesz-Fischer (or better: An
addendum to this Theorem found in any modern book on calculus) that
allows us to pass to a subsequence of (uν · ∇ζ)ν∈N which converges almost
everywhere in G to v. But taking analogously a subsequence of (uν)ν∈N
converging almost everywhere in G to u we see that it must be v = u · ∇ζ ∈
H2,q

0 (G).

Theorem 3.3. Let f ∈ H1,q
0 (G) ∩ H2,q(G) with ∇f ∈ H1,q

0 (G). Then f ∈
H2,q

0 (G).
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Proof. Due to the compactness of G and the smoothness of ∂G we can find
an N ∈ N, open subsets U0, . . . UN ⊂ Rn with U0 ⊂⊂ G,

⋃N
i=0 Ui ⊃ G such

that for i ≥ 1 we have

∂G ∩ Ui =

{
(x′,Φi(x

′)) : x′ ∈ ∆i :=
n−1∏
j=1

]xi,j − δi, xi,j + δi[

}

after an appropriate permutation of variables with a δi > 0 for a certain
xi = (xi,1, . . . , xi,n) ∈ Rn and a certain Φi ∈ C5(∆i). We can furthermore
assume that for i ≥ 1 we have

G ∩ Ui =
⋃
x′∈∆i

{x′} × ]Φi(x
′),Φi(x

′) + εi[ (25)

or
G ∩ Ui =

⋃
x′∈∆i

{x′} × ]Φi(x
′)− εi,Φi(x

′)[ (26)

for an εi > 0.
We find a partition of unity subordinate to the covering U0, . . . , UN , that
is we find for i = 0, . . . , N functions Ψi ∈ C∞0 (Ui) with 0 ≤ Ψi(x) ≤ 1 and∑N

i=0 Ψi(x) = 1 for all x ∈ G. As supp(Ψ0) ⊂ U0 ⊂⊂ G we have Ψ0 ∈ C∞0 (G)
and thus Ψ0f ∈ H2,q

0 (G) can be shown easily by approximation as in the proof
of Theorem 3.2. In the following we will show that also for arbitrary i ≥ 1
we have Ψif ∈ H2,q

0 (G) which will yield that f =
∑N

i=0 Ψif ∈ H2,q
0 (G). We

fix an i ≥ 1 and suppress in the following the indices. Assume that for U ∩G
the case (25) applies, case (26) can be treated analogously. We define the
function

z : ∆× ]0, ε[→ G ∩ U , x = (x′, y) 7→ (x′,Φ(x′) + y)

and it can be seen by standard argumentation that with

Ψf ∈ H1,q
0 (G ∩ U) ∩H2,q(G ∩ U)

we also have

(Ψf) ◦ z ∈ H1,q
0 (∆× ]0, ε[) ∩H2,q(∆× ]0, ε[)

and
Ψf ∈ H2,q

0 (G ∩ U)⇔ (Ψf) ◦ z ∈ H2,q
0 (∆× ]0, ε[) .

With f̃ := (Ψf) ◦ z and Q := ∆× ]0, ε[ we have f̃ ∈ H1,q
0 (Q)∩H2,q (Q) and

∇f̃ ∈ H1,q
0 (Q). Because of supp(Ψ) ⊂ U we find an ε′ < ε, δ with ε′ > 0 such
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that with ∆′ :=
∏n−1

j=1

]
x′j − δ + ε′, x′j + δ − ε′

[
⊂ ∆ =

∏n−1
j=1

]
x′j − δ, x′j + δ

[
we find f̃(x′, xn) = 0 for all (x′, xn) in Q \ (∆′ × (]0, ε− ε′[)).
As f̃ ∈ H1,q

0 (Q) we find a sequence (uν)ν∈N ⊂ C∞0 (Q) with uν
H1,q(Q)−−−−→ f̃ .

For a fixed ν ∈ N we have by the Fundamental Theorem of Calculus for an
arbitrary x = (x′, xn) ∈ Q with 0 < xn < ρ < ε:

uν(x
′, xn) = uν(x

′, xn)− uν(x′, 0)︸ ︷︷ ︸
=0

=

∫ xn

0

∂nuν(x
′, t) dt

and thus

|uν(x′, xn)|q ≤ (xn)
q
q′

∫ xn

0

|∂nuν(x′, t)|q dt ≤ ρ
q
q′

∫ ρ

0

|∂nuν(x′, t)|q dt

after using the Hölder inequality. Integrating this over ∆× ]0, ρ[ yields:∫
∆×]0,ρ[

|uν(x′, xn)|q dx′ dxn ≤
∫

∆

∫ ρ

0

∫ ρ

0

|∂nuν(x′, t)|q ρq−1 dt dxn dx
′ ≤

≤ ρq ‖∂nuν‖qq,∆×]0,ρ[

and thus we have for every 0 < ρ < ε

‖uν‖q,∆×]0,ρ[ ≤ ρ ‖∂nuν‖q,∆×]0,ρ[

and finally
‖f̃‖q,∆×]0,ρ[ ≤ ρ‖∂nf̃‖q,∆×]0,ρ[ (27)

by approximation.
Doing the same with ∂nf̃ ∈ H1,q

0 (Q) we get

‖∂nf̃‖q,∆×]0,ρ[ ≤ ρ‖∂n2f̃‖q,∆×]0,ρ[ (28)

and in the end sticking the two estimates (27) and (28) together

‖f̃‖q,∆×]0,ρ[ ≤ ρ2‖∂n2f̃‖q,∆×]0,ρ[. (29)

Let now η ∈ C∞(R) be a function with 0 ≤ η(t) ≤ 1 for all t ∈ R, η(t) = 0
for all t ∈ R with t ≤ 1 and η(t) = 1 for all t ∈ R with t ≥ 2. Then
supp(η′), supp(η′′) ⊂ [1, 2]. Define for k ∈ N: ηk(t) := η(kt). Then η′k(t) =
kη′(kt), η′′k(t) = k2η′′(kt), supp(η′k), supp(η′′k) ⊂

[
1
k
, 2
k

]
and we can find a

constant c > 0 such that |η′k(t)| ≤ ck and |η′′k(t)| ≤ ck2 for all t ∈ R.
Defining f̃k(x

′, xn) := f̃(x′, xn)ηk(xn) we see:
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1. (i) ∂n(f̃k(x
′, xn)) = ∂nf̃(x′, xn)ηk(xn) + f̃(x′, xn)η′k(xn)

2. (ii) ∂n∂n(f̃k(x
′, xn)) =

= ∂n∂nf̃(x′, xn)ηk(xn) + 2∂nf̃(x′, xn)η′k(xn) + f̃(x′, xn)η′′k(xn)

Now we are able to see that the sequence (f̃k)k∈N approximates f̃ with respect
to the H2,q(Q)-norm:

• We have ∥∥∥f̃ − f̃k∥∥∥
q,Q

=
∥∥∥f̃(1− ηk)

∥∥∥
q,Q
→ 0

by Lebesgue’s Dominated Convergence Theorem as (1−ηk) is converg-
ing almost everywhere pointwise to 0 for k →∞.

Analogously we see for j 6= n:∥∥∥∂j f̃ − ∂j f̃k∥∥∥
q,Q

=
∥∥∥∂j f̃(1− ηk)

∥∥∥
q,Q
→ 0

• ∥∥∥∂nf̃ − ∂nf̃k∥∥∥
q,Q

=
∥∥∥∂nf̃ − ∂nf̃ηk − f̃η′k∥∥∥

q,Q
≤

≤
∥∥∥∂nf̃(1− ηk)

∥∥∥
q,Q︸ ︷︷ ︸

→0 as above

+
∥∥∥f̃η′k∥∥∥

q,Q

and
∥∥∥f̃η′k∥∥∥

q,Q
≤ ck

∥∥∥f̃∥∥∥
q,∆×]0, 2k [

(27)

≤ 2c
∥∥∥∂nf̃∥∥∥

q,∆×]0, 2k [
→ 0 with (27)

used for ρ = 2
k

by Lebesgue’s Dominated Convergence Theorem.

Arguing analogously (now for f̃ replaced by ∂j f̃), we can see that for
j 6= n we have ∥∥∥∂j∂nf̃ − ∂j∂nf̃k∥∥∥

q,Q
→ 0.

• ∥∥∥∂n∂nf̃ − ∂n∂nf̃k∥∥∥
q,Q

=
∥∥∥∂n∂nf̃ − ∂n∂nf̃ηk − 2∂nf̃η

′
k − f̃η′′k

∥∥∥
q,Q
≤

≤
∥∥∥∂n∂nf̃(1− ηk)

∥∥∥
q,Q︸ ︷︷ ︸

→0 as above

+2
∥∥∥∂nf̃η′k∥∥∥

q,Q
+
∥∥∥f̃η′′k∥∥∥

q,Q

The term
∥∥∥∂nf̃η′k∥∥∥

q,Q
can be treated as above:

∥∥∥∂nf̃η′k∥∥∥
q,Q
≤ ck

∥∥∥∂nf̃∥∥∥
q,Q

= ck
∥∥∥∂nf̃∥∥∥

q,∆×]0, 2k [

(28)

≤
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≤ 2c
∥∥∥∂n∂nf̃∥∥∥

q,∆×]0, 2k [︸ ︷︷ ︸
tends to zero by Lebesgue’s Dominated Convergence Theorem

→ 0

For the term
∥∥∥f̃η′′k∥∥∥

q,Q
we have:

∥∥∥f̃η′′k∥∥∥
q,Q
≤ ck2

∥∥∥f̃∥∥∥
q,∆×]0, 2k [

(29)

≤ 4c
∥∥∥∂n∂nf̃∥∥∥

q,∆×]0, 2k [

which again converges to zero by Lebesgue’s Dominated Convergence
Theorem.

We note that for every k > 1
ε−ε′ the function f̃k is zero outside the set ∆′ ×(]

1
k
, ε− ε′

[)
as f̃ = 0 outside of ∆′ × ]0, ε− ε′[ and ηk(xn) = 0 for all x with

0 < xn <
1
k
. Therefore we find a 0 < εk <

1
2

dist
(
∆′ ×

]
1
k
, ε− ε′

[
, ∂Q

)
such

that the Friedrichs mollification (f̃k)(εk) of f̃k satisfies
∥∥∥f̃k − (f̃k)(εk)

∥∥∥
2,q,Q

<

1
k
. This can be achieved since f̃k is zero outside of ∆′ ×

]
1
k
, ε− ε′

[
and

thus differentiation and mollification commute, see Theorem 2.5. We further
find that (f̃k)(εk) has compact support in Q for εk was chosen to be smaller

than 1
2

dist
(
∆′ ×

]
1
k
, ε− ε′

[
, ∂Q

)
. The sequence

(
(f̃k)(εk)

)
k∈N

converges in

H2,q(Q) to f̃ because∥∥∥f̃ − (f̃k)(εk)

∥∥∥
2,q,Q
≤
∥∥∥f̃ − f̃k∥∥∥

2,q,Q
+
∥∥∥f̃k − (f̃k)(εk)

∥∥∥
2,q,Q
→ 0

and we thus have f̃ ∈ H2,q
0 (Q) and we get Ψf ∈ H2,q

0 (G ∩ U) and finally
f ∈ H2,q

0 (G).

Theorem 3.4. Let p ∈ H2,q(G) ∩ H1,q
0 (G) and ζ ∈ C2

(G) with ζ|∂G = 0.
Then pζ ∈ H2,q

0 (G).

Proof. At first we find with a calculation like in Theorem 3.2 that pζ ∈
H2,q ∩ H1,q

0 (G). Furthermore we can apply the product rule (see Theorem
3.1) and get∇ (pζ) = ζ∇p+p∇ζ. As ζ ∈ H1,q

0 (G) (see [22] Theorem 6.5, page
101 or our Theorem 4.7) we can see like in Theorem 3.2 that∇ (pζ) ∈ H1,q

0 (G)
and then with Theorem 3.3 we find: pζ ∈ H2,q

0 (G).
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4 Some Facts about the Trace Operator

In this section we state the existence of the two trace operators which we will
use. These trace operators allow us to talk about boundary values of H1,q(G)-
andH2,q(G)-functions. As for ourG the boundary ∂G is of Lebesgue-measure
zero, it makes a priori no sense to talk in an Lr-sense about restrictions of such
functions to the boundary. The following theorems give us the answer that
there is a reasonable way in which we can associate to every such function a
“boundary value”: Although restricting an u ∈ H1,q(G) to ∂G obviously has
no sense, any u ∈ H1,q(G) has the property that the restrictions to ∂G of
elements of each sequence of C∞(G)-functions converging in H1,q(G)-sense to
u also converge in a space Lr(∂G) (which is still to be defined) to a specific
function which is only depending on u (and not on the chosen sequence) and
which thus in some sense generalizes the notion of boundary value.
In the following, we take a fixed set of charts (∆i,Wi,Φi)i=1,...,N of ∂G in the

sense of ∂G ∈ C5. Note that the following definitions are at first sight depend-
ing highly on the choice of charts. However, being a set of ∂G-measure zero
does not depend on this choice and the defined norms on Lr(∂G), H1,r(∂G)
are in general different for different choices of charts, but how ever two choices
are made, the corresponding norms are equivalent and the corresponding
spaces do not depend on this choice, for details we refer to [11], chapitre 2,
§4, chapitre 3, §1. We could also have made these definitions independent of
the choice of charts by including the Gram’s determinant-term. However, as
this term is bounded from below and from above, we will simply ignore it,
which results in different (but still equivalent, which is enough for us as we
are only interested in the respective topologies) norms for different choices
of charts.
The following definitions introduce the important spaces and state the basic
facts which can also be read in [11], chapitre 2, §4, chapitre 3, §1, and in [12],
Kapitel 2, 3, too.

Definition 4.1. A subset V ⊂ ∂G is called “of ∂G-measure zero” if and
only if for every i = 1, . . . , n the set (again after an appropriate permutation
of variables){

x′ ∈ Rn−1 : there is an xn ∈ R such that x = (x′, xn) ∈ Wi ∩ V
}
⊂ ∆i

is a set of measure zero in Rn−1.

Having now a concept of zero measure, we have again the possibility of saying
“∂G-almost everywhere”.
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Definition 4.2. The spaces Lr(∂G), 1 < r <∞.
A function f : ∂G → R is said to be in Lr(∂G) if and only if for every
i = 1, . . . , N the function

gi : ∆i → R, x′ 7→ f(x′,Φi(x
′))

is in Lr(∆i).
Furthermore,

|f |Lr(∂G) :=

(
N∑
i=1

‖gi‖rr,∆i

) 1
r

defines a norm on Lr(∂G).

Definition 4.3. The spaces H1,r(∂G), 1 < r <∞.
A function f : ∂G → R is said to be in H1,r(∂G) if and only if for every
i = 1, . . . , N the function

gi : ∆i → R, x′ 7→ f(x′,Φi(x
′))

is in H1,r(∆i).
Furthermore,

|f |H1,r(∂G) :=

(
N∑
i=1

‖gi‖r1,r,∆i

) 1
r

defines a norm on H1,r(∂G).

Having now introduced the important spaces, we can state the existence of
the needed trace operators: Let in the following whenever a r is used in
context of a trace operator this r be r = r(q, n) := nq−q

n−q if 1 < q < n and
r > 1 otherwise. Note that, for our purposes it would suffice, according to
the book [2] (see there A6.6, page 265 and A6.10, page 270), to use r = q in
every case.

Theorem 4.4. (Compare [12] Satz 2.4.1., page and [11] chapitre 2,théorème
4.2., page 84)
Let G ⊂ Rn be a bounded domain with Lipschitz-boundary. Then there exists
exactly one linear continuous map Z1 : H1,q(G)→ Lr(∂G) with Z1(u) = u|∂G
for all u ∈ C∞(G).

Theorem 4.5. (Compare [12] Satz 3.1.3., page and [11] chapitre 2, théorème
4.11., page 89)
Let G ⊂ Rn be a bounded domain with Lipschitz-boundary. Then there exists
exactly one linear continuous map Z2 : H2,q(G) → H1,r(∂G) with Z2(u) =
u|∂G for all u ∈ C∞(G).
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Remark 4.6. Studying the proofs of Theorems 4.4 and 4.5 given in [12] and
[11], one easily sees that the theorems can be modified in the following way:

The linear continuous map Zk fulfills even Zk(u) = u|∂G for all u ∈ Ck(G),
k = 1, 2.

The above defined trace operator Z1 gives us another characterization of the
spaces H1,q

0 (G) and H2,q
0 (G):

Theorem 4.7.

H1,q
0 (G) =

{
u ∈ H1,q(G) : Z1(u) = 0

}
For a proof of this Theorem, see [11], chapitre 2, théorème 4.10., pages 87,
88 or [12], Satz 2.6.3, pages 40-42.

Theorem 4.8.

H2,q
0 (G) =

{
u ∈ H2,q(G) : Z1(u) = 0 and

n∑
i=1

Z1(∂iu)Ni = 0

}
,

where N := (N1, . . . , Nn) denotes the outward unit normal vector.

Proof. This theorem is just a combination of Theorem 4.7, our Theorem 4.10
and Theorem 3.3. For a different proof we refer to [11], chapitre 2, théorème
4.12., page 90 or [12], Satz 3.2.1, page 45.

The following theorem tells us that the trace-operator behaves very much
like a restriction with respect to special kinds of products:

Theorem 4.9. Let s ∈ H1,q(G) and f ∈ C∞(G). Then

Z1(fs)(x) = f(x)Z1(s)(x)

for almost every x ∈ ∂G.

Proof. Let (sν)ν∈N ⊂ C
∞

(G) be a sequence such that ‖sν − s‖1,q → 0. This
is possible because G is bounded and has continuous boundary, see for ex-
ample [9], 1.1.6, Theorem 2, page 14). Then, as f and ∂if , i = 1, . . . , n are
bounded in G, we see that fs ∈ H1,q(G) and (fsν)ν∈N is a Cauchy sequence
in H1,q(G) converging to fs. Take a chart (∆i,Wi,Φi) and note that in this
chart fsν(x

′,Φi(x
′)) converges in Lr(∆i) to fZ1(s) as f is bounded and sν

converges in Lr(∆i) to Z1(s), so Z1(fs) must be equal to fZ1(s).
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Theorem 4.10. Let s ∈ H1,q
0 (G) ∩H2,q(G). Then we have

Z1(∇s)(x) :=
(
Z1(∂1s)(x), . . . , Z1(∂ns)(x)

)
= λ(x)N(x)

for almost every x ∈ ∂G with a function λ ∈ Lr(∂G).

Proof. The proof is done in three steps:

a) Localization by partition of unity

Let G be covered by finitely many open sets U0, . . . , UN ⊂ Rn such
that U0 ⊂⊂ G, ∂G is covered by U1, . . . , UN and for i = 1, . . . , N let

Φi ∈ C
5
(∆i), such that after a permutation of coordinates we have

∂G ∩ Ui = {(x′,Φi(x
′)) : x′ ∈ ∆i} and

G ∩ Ui =
⋃
x′∈∆i

{x′} × ]Φi(x
′),Φi(x

′) + εi[

or
G ∩ Ui =

⋃
x′∈∆i

{x′} × ]Φi(x
′)− εi,Φi(x

′)[

for real numbers εi > 0. We only consider the case

G ∩ Ui =
⋃
x′∈∆i

{x′} × ]Φi(x
′),Φi(x

′) + εi[ (30)

in the following, the other one can be treated in the same manner.
We find a partition of unity Ψi, i = 0, . . . , N of G subordinate to the
covering Ui, i = 0, . . . , N .

For j ∈ {1, . . . , n} we find

Z1 (∂js) = Z1

(
N∑
l=0

Ψl∂js

)
= Z1

(
N∑
l=1

Ψl∂js

)
,

as supp Ψ0 ⊂⊂ G and with Theorem 4.9 we see Z1(Ψ0∂js) = 0. More-
over, we also see that Z1 (∂jΨl · s) = 0 with Theorem 4.9 because
s ∈ H1,q

0 (G). So we get to

Z1 (∂js) = Z1

(
N∑
l=1

∂j (Ψls)

)
and it suffices to show the claim only for functions of the form Ψls.
Moreover, it suffices to show the claim only locally, that is we can take
G∩Ul as our new G, which we call G′ and we are searching a function
λ ∈ Lr(∂G ∩ Ul) such that Z1(∂j(Ψls)) = λNj almost everywhere on
∂G ∩ Ul. In the following we will omit the now fixed index l.
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b) Straightening of a local model

By smoothness of ∂G, we find a C5-diffeomorphism

g : Q := ∆× ]0, ε[→ G′, (x′, xn) 7→ (x′,Φ(x′) + xn),

and without loss of generality, we can assume even g : Q → G′. We
further find with

Ψs ∈ H1,q
0 (G′) ∩H2,q(G′)

that
s̃ := (Ψs) ◦ g ∈ H1,q

0 (Q) ∩H2,q(Q).

In a point p = (x′,Φ(x′)) ∈ ∂G∩U we have the tangent vectors t1, . . . , tn
to ∂G with

t1(p) =

(
1, 0, . . . , 0,

(
∂Φ

∂x1

)
(x′)

)
t2(p) =

(
0, 1, 0, . . . , 0,

(
∂Φ

∂x2

)
(x′)

)
...

tn−1(p) =

(
0, . . . , 0, 1,

(
∂Φ

∂xn−1

)
(x′)

)
and with

Ñ(p) :=

(
∂Φ

∂x1

(x′), . . . ,
∂Φ

∂xn−1

(x′),−1

)
we see that

N :=
Ñ∥∥∥Ñ∥∥∥

is the outward unit normal vector to G in x because we are considering
the case (30). Taking a function ζ ∈ C∞ (G′) we have for the directional
derivative Dti

ζ of ζ in direction ti in a point p = (x′, xn = Φ(x′)) ∈
∂G ∩ U , i = 1, . . . , n− 1

Dti
ζ(p) = ∇ζ · ti(p) =

∂ζ

∂xi
(p) +

∂Φ

∂xi
(x′)

∂ζ

∂xn
(p)

and for ζ̃ := ζ ◦ g ∈ C5
(Q) we find for i = 1, . . . , n− 1

∂iζ̃(x′, 0) =
n∑
j=1

∂ζ

∂xj
(g(x′, 0))

∂gj
∂xi

(x′, 0) =
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=
∂ζ

∂xi
(g(x′, 0)) +

∂ζ

∂xn
(g(x′, 0))

∂Φ

∂xi
(x′),

so
Dti

ζ(g(x′, 0)) = ∂iζ̃(x′, 0). (31)

Taking an approximating sequence ζν in C∞(G′) of Ψs with respect
to ‖·‖2,q, we see that ζ̃ν := ζν ◦ g is an approximating sequence in

C5
(Q) of s̃ with respect to ‖·‖2,q and we see by equation (31) applied

to the approximating sequence and Theorem 4.4 that for almost every
p = (x′,Φ(x′)) ∈ ∂G ∩ U we have

Z1(∂is̃)(x
′, 0) =

n∑
j=1

Z1

(
∂(Ψs)

∂xj

)
(x′,Φ(x′)) (ti)j (x′,Φ(x′)).

In the following, we will show that Z1(∂is̃) = 0 and thus we will find
that in almost every point p ∈ ∂G′ ∩ U it is

n∑
j=1

Z1

(
∂(Ψs)

∂xj

)
(p) (ti)j (p) = 0, i = 1, . . . , n− 1

and thus in almost every point p ∈ ∂G′∩U we will then find a λ(p) ∈ R
such that by the definition (∇(Ψs))j(p) := Z1(∂j(Ψs))(p) for p ∈ ∂G′∩
U we find:

∇(Ψs)(p) = λ(p)N(p)

It is easily seen that λ = 1
Nn
∂n(Ψs) is then a measurable function (in

the ∂G′ ∩ U -sense) because Nn 6= 0 is with the help of Weyers’ helpful
function easily to be seen smooth enough, and because of ‖N‖ = 1 we
also have almost everywhere on ∂G′ ∩U : |λ(p)| = |∇(Ψs)(p)| and thus
λ ∈ Lr(∂G′ ∩ U).

c) The straight problem:

So we just have to show Z1(∂j s̃)(x
′, 0) = 0 for x′ ∈ ∆. As s̃ ∈ H1,q

0 (Q)∩
H2,q(Q) we find a sequence (hν)ν∈N ⊂ C

∞
(Q) with hν

H2,q(Q)−−−−→ s̃. With
the definition

fν := hν |∆×{0}
we see that

fν
Lr(∆)−−−→ 0

and

∂ifν
Lr(∆)−−−→ Z1(∂is̃), i = 1, . . . , n− 1
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because hν is also an approximating sequence for s̃ with respect to the
H1,q(Q)-norm and ∂ihν is one in the same norm for ∂is̃.

But we also know that the fν converge in the H1,r(∆)-norm to Z2(s̃)
and by choosing subsequences of fν converging almost everywhere on

∆, we conclude Z2(s̃) = 0 and this means that ∂ifν
Lr(∆)−−−→ 0. Because

∂ihν is an H1,q(Q)-norm approximating sequence for ∂is̃ we also have

∂ifν
Lr(∆)−−−→ Z1(∂is̃) and thus Z1(∂is̃) = 0.

5 An Approximation Theorem

In this section we will find a theorem which will allow us in the next section
to draw back from a p ∈ Bq

0(G) to a p ∈ Bq
0(G) ∩H3,q(G).

Theorem 5.1. Let p ∈ Bq
0(G). Then there exists a sequence (pν)ν∈N ⊂

Bq
0(G) ∩H3,q(G) with

‖pν − p‖1,q → 0.

Proof. It suffices by Poincaré’s Lemma to find a sequence (pν)ν∈N ⊂ Bq
0(G)∩

H3,q(G) with ‖∇pν −∇p‖q → 0. For p we find according to Theorem 2.22 a
sequence (gν)ν∈N ⊂ C∞0,0(G) with ‖∇gν −∇p‖q → 0. For every ν ∈ N we can

find according to Theorem 2.16 an unique sν ∈ H3,q
0 (G) satisfying

〈∇∆sν ,∇∆Φ〉 = 〈∇gν ,∇∆Φ〉 for every Φ ∈ H3,q′

0 (G)

and we even see that sν ∈ H5,q(G) by Theorem 6.1, as ∂G ∈ C5 and gν ∈
C∞0,0(G).
But this means that for ν ∈ N we find that with pν := gν −∆sν ∈ H3,q(G)
we have

−〈pν ,∆2Φ〉 = 〈∇pν ,∇∆Φ〉 = 〈∇gν−∇∆sν ,∇∆Φ〉 = 0 for every Φ ∈ C∞0 (G)

and thus according to Weyl’s Lemma 2.20 we conclude pν ∈ C∞(G) with
∆2pν = 0. As gν ∈ C∞0,0(G) and ∆s ∈ H1,q

0,0(G) ∩ H3,q(G), we have pν ∈
H1,q

0,0(G) ∩H3,q(G) and thus pν ∈ Bq
0(G) ∩H3,q(G).

Now look at

‖∇pν −∇p‖q = ‖∇gν −∇∆sν −∇p‖q ≤ ‖∇gν −∇p‖q︸ ︷︷ ︸
→0

+ ‖∇∆sν‖q
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and we see by the variational inequality (Theorem 2.17) that with a constant
CV > 0

‖∇∆sν‖q ≤ CV sup
06=Φ∈H3,q′

0 (G)

〈∇∆sν ,∇∆Φ〉
‖∇∆Φ‖q′

= CV sup
06=Φ∈H3,q′

0 (G)

〈∇gν ,∇∆Φ〉
‖∇∆Φ‖q′

=

p∈Bq0(G)
= CV sup

06=Φ∈H3,q′
0 (G)

〈∇gν −∇p,∇∆Φ〉
‖∇∆Φ‖q′

≤ CVC
′ ‖∇gν −∇p‖q → 0.

6 Compactness of Zq − 1
2Id : Bq

0(G)→ Bq
0(G)

In this section we will generalize a proof by Weyers which goes back to
Crouzeix (see [22], [6]).
As Crouzeix’s method is somehow exceptional, we will at first give a moti-
vation for it in the easier case which Weyers examined:

6.1 A Little Motivation for Crouzeix’s Method

First, we will fix notations and describe Weyers’ problem for the case of
bounded G:
For 1 < q < ∞, G ⊂⊂ Rn with sufficient smooth boundary (the boundary
smoothness requirements for G used by Weyers can be weakened as in our
approach to ∂G ∈ C4, see Part II) we have the direct decomposition (see [22],
Theorem 5.2, page 96)

Lq0(G) = Ãq(G)⊕ B̃q
0(G),

where

Lq0(G) :=

{
p ∈ Lq(G) :

∫
G

p dx = 0

}
,

Ãq(G) :=
{

∆u : u ∈ H2,q
0 (G)

}
and

B̃q
0(G) :=

{
h ∈ Lq0(G) : 〈h,∆Φ〉 = 0 ∀Φ ∈ H2,q′

0 (G)
}
.

The proof of this decomposition is similar to our decomposition from Lemma
2.23. Furthermore, Weyers investigated the operator T̃ q : Lq0(G) → H1,q

0 (G)

where T̃ q(p) is the unique element of H1,q
0 (G) such that

〈∇T̃ q(p),∇Φ〉 = 〈p, div Φ〉 for all Φ ∈ H1,q′

0 (G).
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Similarly to our notation, Weyers defined an operator Z̃q : Lq0(G) → Lq0(G)
by Z̃q := div ◦ T̃ q. It shows up in analogy to Theorem 2.24, that we have the
following situation:

Z̃q|Ãq(G) : Ãq(G)→ Ãq(G) and Z̃q(p) = p ∀p ∈ Ãq(G)

Z̃q|B̃q0(G) : B̃q
0(G)→ B̃q

0(G)

In Weyers’ terms, the problem which is analogous to our problem here is to

show that the operator
(
Z̃q − 1

2
Id
)
|B̃q0(G) is compact.

Crouzeix’s idea to show this is now given: Find for given p ∈ B̃q
0(G)∩H2,q(G),

u := T̃ q(p) ∈ H1,q
0 (G) ∩ H3,q(G) (we can get rid of the extra premise p ∈

H2,q(G) by approximation just like in Theorems 5.1, 6.4) a v ∈ H1,q(G) such
that:

(i) there is a C = C(q,G) such that

‖v‖1,q ≤ C ‖p‖q .

(ii) v −
(
div u− 1

2
p
)
∈ H1,q

0 (G).

If this can be achieved, the rest is not hard and done like in Theorem 6.3
with Müller’s inequality (theorem 2.7) replaced by Simader’s inequality (see
[18], Chapter II, Theorem 1.1, page 44). We get to∥∥∥∥(Z̃q − 1

2
Id

)
p

∥∥∥∥
1,q

≤ C ′ ‖p‖q

and it shows up by approximation that the linear operator
(
Z̃q − 1

2
Id
)

:

B̃q
0(G)→ B̃q

0(G) has its image indeed in H1,q(G) and is continuous with re-

spect to these spaces. Compactness of
(
Z̃q − 1

2
Id
)

is then just a consequence

of the compact embedding of H1,q(G) in Lq(G).

Now we finally motivate Crouzeix’s ansatz:
We stick to the model case where p, u have classical derivatives of the respec-
tive orders which are continuous up to the boundary. We could get rid of this
assertion by using the idea of trace from Section 4, but this would not bring
us any new insights and just make the whole procedure a little more compli-
cated. Starting from our ingredients p, u, we first notice that as the system
of partial differential equations which links p and u (the classical formulation
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would be ∆u = ∇p) involves higher derivatives, the only possible chance of
using this linking might be finding a w ∈ H1,q

0 (G) ∩ H2,q(G) with an esti-
mate ‖w‖2,q ≤ C ‖p‖ and defining v somehow by w’s derivatives. One other
way of looking at this first step is the idea of using the Theorem on Elliptic
Regularity (Theorem 6.1). This is actually the way we will do it later, but in
Weyers’ case it can be avoided. As we need with this approach (here we have
m = 1 in Theorem 6.1) a function in H1,q

0 (G) to be able to apply Theorem
6.1, we nevertheless need to make this “step up” here, too, defining at first
a function w ∈ H1,q

0 (G)∩H2,q(G) in terms of u and p which is satisfying the
above given estimate and then trying to define v via w’s derivatives. For the
connection between these two accounts, we refer the reader to our proof of
Theorem 9.7 where both accounts are in some way present.
One very easy ansatz for w is trying to define

w =
n∑
i=1

giui + hp,

where gi, i = 1, . . . , n and h are sought after functions which shall be often
enough continuously differentiable and the derivatives shall be continuous up
to the boundary of G. As we are looking for a w ∈ H1,q

0 (G) and u ∈ H1,q
0 (G)

the reasonable requirement for h is

h = 0 on ∂G. (32)

Making this ansatz, we can easily see:

‖w‖q ≤ C1 ‖p‖q

As w shall be in H1,q
0 (G), we have with Simader’s variational inequality

‖∇w‖q ≤ CS sup
Φ∈H1,q′

0 (G)

〈∇w,∇Φ〉
‖∇Φ‖q′

= CS sup
Φ∈H1,q′

0 (G)

〈∆w,Φ〉
‖∇Φ‖q′

≤

≤ C ′ ‖∆w‖q
using the Poincaré inequality.
With the use of a regularity theorem ([22], Theorem 7.6, page 110) stating
that we have with a C > 0 an estimate of the form

‖∇u‖1,q,G ≤ C
(
‖∆u‖q,G + ‖u‖q,G + ‖∇u‖q,G

)
valid for every u ∈ H1,q

0 (G) ∩H2,q(G), the problem of showing the estimate

‖w‖2,q ≤ C ‖p‖q (33)
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with a constant C > 0 reduces to showing an estimate of the form

‖∆w‖q ≤ C ‖p‖q

with a constant C > 0.
Now taking a look at ∆w, we see:

∆w =
n∑
i=1

∆giui + 2
n∑

i,j=1

∂jgi∂jui +
n∑
i=1

gi∆ui + ∆hp+

+2
n∑
j=1

∂jh∂jp+ h ∆p︸︷︷︸
=0, as p∈B̃q0(G)

We see that the terms

n∑
i=1

∆giui, 2
n∑

i,j=1

∂jgi∂jui and ∆hp

do not pose us any problems as they contain at most first order derivatives
of u and no derivatives of p. Using now the linking ∆u = ∇p between u and
p, we have for the remaining two terms:

n∑
i=1

gi∆ui + 2
n∑
j=1

∂jh∂jp =
n∑
i=1

(gi + 2∂ih) ∂ip.

To find this term equal to zero, the plausible requirement is

gi = −2∂ih, i = 1, . . . , n. (34)

Having established a w as we searched, we now define

v =
n∑
i=1

fi∂iw,

where fi, i = 1, . . . , n are sought after functions which shall be often enough
continuously differentiable and the derivatives shall be continuous up to the
boundary of G. Because of the validity of inequality (33), we have automat-
ically (i) for v. Now we want to find further conditions on gi, h and fi which
are ensuring the validity of (ii). On the boundary ∂G, we have:

v =
n∑
i=1

fi∂iw =
n∑
i=1

fi∂i

(
−2

n∑
j=1

∂jhuj + hp

)
=
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=
n∑
i=1

fi
−2

n∑
j=1

∂i∂jh uj︸︷︷︸
=0 on ∂G

+∂jh∂iuj

+ ∂ihp+ h︸︷︷︸
=0 on ∂G

∂ip

 =

=
n∑
i=1

(
fi

(
−2

n∑
j=1

∂jh∂iuj + ∂ihp

))
=

= −2
n∑

i,j=1

fi∂jh∂iuj +
n∑
i=1

fi∂ihp

Our aim is this to be equal to

div u− 1

2
p =

n∑
j=1

∂juj −
1

2
p.

This can be achieved with the requirements

•

−2
n∑

i,j=1

fi∂jh∂iuj =
n∑
j=1

∂juj.

As u ∈ H1,q
0 (G), we find for j = 1, . . . , n a function λj with ∂iuj = λjNi

on ∂G. This leads us to the requirement

−2
n∑

i,j=1

fi∂jhλjNi =
n∑
j=1

λjNj

As

‖N‖2 =
n∑
i=1

N2
i = 1,

a reasonable try for fi, i = 1, . . . , n and ∂jh = µNj, j = 1, . . . , n (with
a suitable function µ on ∂G which can be found as h = 0 on ∂G) to
fulfill this requirement seems to be

fi = Ni, i = 1, . . . , n and ∂jh = −1

2
Nj, j = 1, . . . , n (35)

• and
n∑
i=1

fi∂ih = −1

2
, (36)

which is automatically fulfilled with (35).
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All in all we have the three conditions (32), (34) and (35) which are all valid if
h = −1

2
ζ, gi = ∂iζ, fi = ∂iζ where ζ is the function Weyers constructed with

boundary values ζ = 0 and ∇ζ = N on ∂G. This is for Weyers’ problem
exactly the ansatz of Crouzeix. So the somehow complicated and exotic
construction by Crouzeix is not a kind of coincidence. In order to solve the
problem there seems to be no other easy choice of defining v.

6.2 The Compactness of Zq − 1
2Id : Bq

0(G)→ Bq
0(G)

In the following we will need a differentiability theorem due to Christian
G. Simader (see [15], Theorem 9.11., page 156) which we cite in the generality
given in [15]:

Theorem 6.1. Assume

1. that m ≥ 1 and j ≥ 0 (with j ≤ m) are integers and that 1 < p, q <∞
are real numbers with 1

p
+ 1

q
= 1,

2. that G ⊂ Rn is a bounded open set with boundary ∂G ∈ Cm+j,

3. that B is an uniformly elliptic, j-smooth regular Dirichlet bilinear form
of degree m in G,

4. that F ∈
(
Hm−j,q

0 (G)
)∗

and u ∈ Hm,p
0 (G) such that

B [u,Φ] = F (Φ) for all Φ ∈ C∞0 (G)

Then u ∈ Hm,p
0 (G)∩Hm+j,p(G) and there is a constant γ = γ(n,m, j, p, B,G) >

0 such that
‖u‖m+j,p ≤ γ

(
‖F‖(Hm−j,q

0 (G))
∗ + ‖u‖0,p

)
In a first step we will show the important estimate under the extra assump-
tion p ∈ H3,q(G):

Theorem 6.2. Let p ∈ Bq
0(G) ∩H3,q(G), u := T q(p). Then

w := u · ∇ζ − 1

4
pζ ∈ H2,q

0 (G) ∩H3,q(G)

and there is a constant C = C(G, q) > 0 with

‖w‖3,q ≤ C ‖∇p‖q . (37)
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Proof. According to the Theorems 3.2 and 3.4 we have w ∈ H2,q
0 (G)∩H3,q(G).

We now want to apply Theorem 6.1 in a special case. We take m = 2, j = 1,
the role of p in 6.1 is played by our q, B [u, v] := 〈∆u,∆v〉 and the role of u
is played by our w. We now show that there is a continuous linear functional

F ∈
(
H1,q′

0 (G)
)∗

such that B [w,Φ] = F (Φ) for all Φ ∈ C∞0 (G):

Let Φ ∈ C∞0 (G) be arbitrary. Then we have

B [w,Φ] = 〈∆w,∆Φ〉 = 〈∆
(
u · ∇ζ − 1

4
pζ

)
,∆Φ〉 =

= 〈∆

(
n∑
i=1

ui∂iζ

)
,∆Φ〉︸ ︷︷ ︸

=:T1

− 1

4
〈∆ (pζ) ,∆Φ〉︸ ︷︷ ︸

=:T2

As there will appear in the following many terms which we have to drag
along with us through the whole calculation, we introduce the following short
notation: An expression 〈A,B〉 with A consisting of only up to second order
derivatives of the ui, up to first order derivatives of p and up to fourth order
derivatives of ζ and B consisting of only up to first order derivatives of Φ will
be called an expression “of type L”. Such an expression defines for variable
Φ a bounded linear functional on H1,q′

0 (G) with its norm being dominated by
a constant C(A,B) > 0 times ‖∇p‖q,G. In this context “=L” means equality
up to an additive expression of type L and our aim is to show that B [w,Φ]
is for variable Φ of type L.
Let’s look first at T1:

T1 = 〈∆

(
n∑
i=1

ui∂iζ

)
,∆Φ〉 =

n∑
i=1

〈∆ui∂iζ,∆Φ〉+ 2
n∑

i,j=1

〈∂jui∂j∂iζ,∆Φ〉+

+
n∑
i=1

〈ui∆∂iζ,∆Φ〉 =
n∑
i=1

〈∆ui∂iζ,∆Φ〉−

2
n∑

i,j,k=1

〈∂k∂jui∂j∂iζ + ∂jui∂k∂j∂iζ, ∂kΦ〉︸ ︷︷ ︸
of type L

−
n∑

i,k=1

〈∂kui∆∂iζ + ui∆∂k∂iζ, ∂kΦ〉︸ ︷︷ ︸
of type L

=L

n∑
i=1

〈∆ui∂iζ,∆Φ〉 =
n∑
i=1

〈∆ui, ∂iζ∆Φ〉 =
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=
n∑
i=1

〈∆ui,∆(∂iζΦ)− 2
n∑
j=1

∂j∂iζ∂jΦ− ∂i∆ζΦ〉 = 〈∆u,∆ (Φ∇ζ)〉

−2
n∑

i,j=1

〈∂i∂jζ∆ui, ∂jΦ〉 −
n∑
i=0

〈∆ui∂i∆ζ,Φ〉︸ ︷︷ ︸
of type L

=L

=L 〈∆u,∆ (Φ∇ζ)〉
u=T q(p)

= 〈∇p,∆ (∇ζΦ)〉

for ∇ζΦ is a permitted testing function ∈ H2,q′

0 (G). Calculating further we
get:

n∑
i=1

〈∂ip,∆ (∂iζΦ)〉 =
n∑
i=1

〈∂ip,∆∂iζΦ〉︸ ︷︷ ︸
of type L

+2
n∑

i,j=1

〈∂ip, ∂j∂iζ∂jΦ〉︸ ︷︷ ︸
of type L

+

+
n∑
i=1

〈∂ip, ∂iζ∆Φ〉 =L

n∑
i=1

〈∂ip∂iζ,∆Φ〉

For T2 we find

4T2 = 〈∆ (pζ) ,∆Φ〉 = 〈∆pζ + 2
n∑
j=1

∂jp∂jζ + p∆ζ,∆Φ〉 = 〈∆pζ,∆Φ〉+

+2
n∑
j=1

〈∂jp∂jζ,∆Φ〉−
n∑
k=1

〈∂kp∆ζ + p∂k∆ζ, ∂kΦ〉︸ ︷︷ ︸
of type L

=L

=L 〈∆pζ,∆Φ〉+2
n∑
j=1

〈∂jp∂jζ,∆Φ〉.

With the results for T1 and T2 we can write:

B [w,Φ] = T1−T2 =L

n∑
i=1

〈∂ip∂iζ,∆Φ〉−1

4

(
〈∆pζ,∆Φ〉+ 2

n∑
j=1

〈∂jp∂jζ,∆Φ〉

)

= −1

4
〈∆pζ,∆Φ〉+

1

2

n∑
i=1

〈∂ip∂iζ,∆Φ〉
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and we find that

−1

4
〈∆pζ,∆Φ〉 = −1

4
〈∆p, ζ∆Φ〉 = −1

4
〈∆p,∆(ζΦ)− 2∇ζ · ∇Φ−∆ζΦ〉 =

= −1

4
〈∆p,∆(ζΦ)〉︸ ︷︷ ︸

=0 as ζΦ∈H2,q′
0 (G) and p∈Bq0(G)

+
1

2

n∑
j=1

〈∆p, ∂jζ∂jΦ〉+

+
1

4
〈∆p,∆ζΦ〉︸ ︷︷ ︸

after integrating partially this term is seen to be of type L

=L

=L
1

2

n∑
j,k=1

〈∂k∂kp, ∂jζ∂jΦ〉 = −1

2

n∑
j,k=1

〈∂kp, ∂k∂jζ∂jΦ + ∂jζ∂k∂jΦ〉 =

= −1

2

n∑
j,k=1

〈∂kp∂k∂jζ, ∂jΦ〉︸ ︷︷ ︸
of type L

−1

2

n∑
j,k=1

〈∂kp, ∂jζ∂k∂jΦ〉 =L

=L −
1

2

n∑
j,k=1

〈∂kp, ∂jζ∂k∂jΦ〉 = −1

2

n∑
j,k=1

〈∂kp∂jζ, ∂k∂jΦ〉 =

=
1

2

n∑
j,k=1

〈∂j∂kp∂jζ, ∂kΦ〉+
1

2

n∑
j,k=1

〈∂kp∂j∂jζ, ∂kΦ〉︸ ︷︷ ︸
of type L

=L

=L
1

2

n∑
j,k=1

〈∂j∂kp, ∂jζ∂kΦ〉 = −1

2

n∑
j,k=1

〈∂jp, ∂k∂jζ∂kΦ〉−

1

2

n∑
j,k=1

〈∂jp, ∂jζ∂k∂kΦ〉 = −1

2

n∑
j,k=1

〈∂jp, ∂k∂jζ∂kΦ〉︸ ︷︷ ︸
of type L

−1

2

n∑
j=1

〈∂jp∂jζ,∆Φ〉 =L

=L −
1

2

n∑
j=1

〈∂jp∂jζ,∆Φ〉

and all together this means that

B [w,Φ] = T1 − T2 =L −
1

4
〈∆pζ,∆Φ〉+

1

2

n∑
i=1

〈∂ip, ∂iζ∆Φ〉 =L
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=L −
1

2

n∑
j=1

〈∂jp∂jζ,∆Φ〉+
1

2

n∑
j=1

〈∂jp∂jζ,∆Φ〉 = 0

and B [w, ·] itself is of type L. Theorem 6.1 yields w ∈ H2,q
0 (G)∩H3,q(G) and

a constant γ > 0 such that

‖w‖3,p ≤ γ

(
‖F‖“

H1,q′
0 (G)

”∗ + ‖w‖q
)

where F is the element of
(
H1,q′

0 (G)
)∗

belonging to B [w, ·] in the sense of

“being of type L”. Thus there is a constant C > 0 such that

‖F‖“
H1,q′

0 (G)
”∗ ≤ C ‖∇p‖q

and as

w = u · ∇ζ − 1

4
pζ

we have

‖w‖q ≤ ‖u · ∇ζ‖q +
1

4
‖pζ‖q ≤ C ′ ‖∇p‖q

and the desired estimate follows.

Theorem 6.3. Let p ∈ Bq
0(G) ∩H3,q(G), u := T q(p) and w = u · ∇ζ − 1

4
pζ

as in Theorem 6.2. Then we have

v := ∇w · ∇ζ −
(

div u− 1

2
p

)
∈ H2,q

0 (G)

and there is a constant C = C(G, q) > 0 with

‖v‖2,q ≤ C ‖∇p‖q . (38)

Further we have

div u− 1

2
p ∈ H2,q(G)

and there is a constant C = C(G, q) > 0 with∥∥∥∥div u− 1

2
p

∥∥∥∥
2,q

≤ C ‖∇p‖q (39)
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Proof. As w ∈ H2,q
0 (G) ∩H3,q(G) we see that ∇w · ∇ζ ∈ H1,q

0 (G) ∩H2,q(G)
and as p ∈ Bq(G) ∩H3,q(G) we see by elliptic regularity (see Theorem 6.1)
u ∈ H2,q

0 (G) ∩ H4,q(G) and thus div u − 1
2
p ∈ H1,q

0 (G) ∩ H2,q(G). In view

of Theorem 3.3 we only need to show that ∇v ∈ H1,q
0 (G). We have for

1 ≤ k ≤ n and almost every x ∈ ∂G with the trace operator Z1 as defined
in Theorem 4.4:

Z1(∂k(∇w · ∇ζ))(x) = Z1

(
n∑
j=1

∂k∂jw∂jζ

)
(x) + Z1

 n∑
j=1

∂jw∂k∂jζ︸ ︷︷ ︸
∈H1,q

0 (G)

 (x)

︸ ︷︷ ︸
=0

=

= Z1

(
n∑
j=1

∂k∂j

(
n∑
l=1

ul∂lζ −
1

4
pζ

)
∂jζ

)
(x) =

= Z1

(
n∑

l,j=1

∂k (∂jul∂lζ + ul∂j∂lζ) ∂jζ −
1

4

n∑
j=1

∂k (∂jpζ + p∂jζ) ∂jζ

)
(x) =

= Z1

 n∑
l,j=1

∂k∂jul∂lζ∂jζ + ∂jul∂k∂lζ∂jζ︸ ︷︷ ︸
∈H1,q

0 (G)

+ ∂kul∂j∂lζ∂jζ︸ ︷︷ ︸
∈H1,q

0 (G)

+ul∂k∂j∂lζ∂jζ︸ ︷︷ ︸
∈H1,q

0 (G)

−

1

4

n∑
j=1

∂k∂jpζ∂jζ︸ ︷︷ ︸
∈H1,q

0 (G)

+∂jp∂kζ∂jζ + ∂kp∂jζ∂jζ + p∂k∂jζ∂jζ︸ ︷︷ ︸
∈H1,q

0 (G)


 (x) =

= Z1

(
n∑

l,j=1

∂k∂jul∂lζ∂jζ −
1

4

n∑
j=1

(∂jp∂kζ∂jζ + ∂kp∂jζ∂jζ)

)
(x) =

=

 n∑
l,j=1

Z1(∂k∂jul)︸ ︷︷ ︸
=λk,lNj

NlNj −
1

4

n∑
j=1

Z1(∂jp)NkNj −
1

4

n∑
j=1

Z1(∂kp)N
2
j

 (x)

where λk,l ∈ Lr(∂G) can be found after application of Theorem 4.10 to the
H1,q

0 (G) ∩H2,q(G)-function ∂kul and thus

Z1(∂k∂jul) = Z1(∂j∂kul) = λk,lNj.
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This and application of Theorem 4.10 to p leads us to n∑
j,k=1

λk,lNjNlNj −
1

4

n∑
j=1

Z1(∂jp)︸ ︷︷ ︸
=:µNj

NkNj −
1

4
Z1(∂kp)︸ ︷︷ ︸

=µNk

 (x) =

=

(
n∑
l=1

λk,lNl −
1

2
µNk

)
(x).

With a similar calculation we find out that

Z1

(
∂k

(
div u− 1

2
p

))
(x) = Z1

(
∂k

n∑
l=1

∂lul −
1

2
∂kp

)
(x) =

= Z1

(
n∑
l=1

∂k∂lul −
1

2
∂kp

)
(x) =

 n∑
l=1

Z1 (∂k∂lul)︸ ︷︷ ︸
=λk,lNl

−1

2
Z1(∂kp)︸ ︷︷ ︸

=µNk

 (x)

and altogether we have Z1(∇v) = 0. With Theorem 4.7,we conclude that
∇v ∈ H1,q

0 (G) and with Theorem 3.3 it follows v ∈ H2,q
0 (G) and we can

prove the desired estimate (38) with the use of Müller’s variational inequality
(Theorem 2.7) and the fact that for every Φ ∈ C∞0 (G) we have

〈∆(div u− 1

2
p),∆Φ〉 = 〈∆ div u︸ ︷︷ ︸

=Zq(p)∈Bq0(G)

,∆Φ〉 − 1

2
〈∆ p︸︷︷︸
∈Bq0(G)

,∆Φ〉 = 0

and thus this equality is even valid for every Φ ∈ H2,q′

0 (G).
We have with a CM,q > 0 by Müller’s variational inequality:

‖∆v‖q ≤ CM,q sup
06=Φ∈H2,q′

0 (G)

〈∆
(
∇w · ∇ζ − (div u− 1

2
p)
)
,∆Φ〉

‖∆Φ‖q′
=

= CM,q sup
06=Φ∈H2,q′

0 (G)

〈∆ (∇w · ∇ζ) ,∆Φ〉
‖∆Φ‖q′

≤ CM,q ‖∆(∇w · ∇ζ)‖q ≤

≤ CM,qC
′ ‖w‖3,q,G ≤ CM,qC

′C ‖∇p‖q
To get (39), we noticed already that div u− 1

2
p ∈ H2,q(G).

By the triangle inequality, we get∥∥∥∥div u− 1

2
p

∥∥∥∥
2,q

≤
∥∥∥∥∇w · ∇ζ − (div u− 1

2
p)

∥∥∥∥
2,q

+ ‖∇w · ∇ζ‖2,q .
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Note that ∥∥∥∥∇w · ∇ζ − (div u− 1

2
p)

∥∥∥∥
2,q

= ‖v‖2,q

and because of v ∈ H2,q
0 (G), we have the estimate ‖v‖2,q ≤ C1 ‖∆v‖q with

C1 according to Definition 2.1. By our calculation from above, we see that
we can thus find a constant C2 > 0 with

‖v‖2,q ≤ C2 ‖∇p‖q .

Furthermore, we see that the term ‖∇w · ∇ζ‖2,q can be estimated against
C3(ζ) ‖w‖3,q and by Theorem 6.2, we have a respective estimate for this
term.

Theorem 6.4. Let p ∈ Bq
0(G), u := T q(p). Then we have

div u− 1

2
p ∈ H2,q(G)

and there is a constant C = C(G, q) > 0 with∥∥∥∥div u− 1

2
p

∥∥∥∥
2,q

≤ C ‖∇p‖q (40)

Proof. In Theorem 6.3 we have shown the claim under the extra assumption
that p ∈ H3,q(G). Approximate now p with a sequence (pν)ν∈N ⊂ Bq

0(G) ∩
H3,q(G) with ‖pν − p‖1,q → 0 according to Theorem 5.1. Then the sequence

(uν)ν∈N defined by uν := T q(pν) lies inH2,q
0 (G)∩H3,q(G) and uν → u := T q(p)

in H3,q(G), according to our Theorem on Elliptic Regularity.
With Theorem 6.3 we have for ν ∈ N:

div uν −
1

2
pν ∈ H2,q(G)

Applying the inequality (39) we get for µ, ν ∈ N:∥∥∥∥div uµ −
1

2
pµ −

(
div uν −

1

2
pν

)∥∥∥∥
2,q

=

∥∥∥∥div
(
uµ − uν

)
− 1

2
(pµ − pν)

∥∥∥∥
2,q

≤

≤ ‖∇ (pµ − pν)‖q
µ,ν→∞−−−−→ 0.

and so div uν − 1
2
pν is a Cauchy-sequence in H2,q(G) and has a limit in

H2,q(G). But after passing to subsequences with pointwise convergence al-
most everywhere we see that the limit must be equal to div u− 1

2
p.

The inequality (39) easily carries over by passing to the limit.

56



Theorem 6.5. The operator Zq − 1
2
Id : Bq

0(G)→ Bq
0(G) is a compact oper-

ator.

Proof. We have the following situation:

Bq
0(G)

Zq− 1
2
Id

−−−−→ H2,q(G)
Id−→ H1,q(G)

where the first arrow is a continuous map by Theorem 6.4 and the second
arrow is a compact embedding, so the composition is compact, too.

7 Consequences and Applications

In the preceding section we have proved the compactness of the operator
Zq − 1

2
Id : Bq

0(G) → Bq
0(G). This has far-ranging consequences. We first

prove a regularity theorem for eigenvectors p of Zq very similar to a regularity
theorem by Weyers (see [22], Theorem 13.1, page 138):

Theorem 7.1. Let λ ∈ R, λ 6= 1
2

and p ∈ Bq
0(G) satisfying Zq(p) = λp.

Then for every 1 < r <∞:

p ∈ Br
0(G) and Zr(p) = Zq(p) = λp

Proof. We have with u := T q(p):

λp = div u which leads to

(
λ− 1

2

)
p = div u− 1

2
p, so

p =
1

λ− 1
2

(
div u− 1

2
p

)
∈ Bq

0(G) ∩H2,q(G)

according to Theorem 6.4. We have three cases in each of which we will use
the Sobolev Embedding Theorem (see for instance [2], Theorem 8.9, page
328 and Theorem 8.13, page 333):

1. q > n: In this case it follows by the Sobolev Embedding Theorem with

p ∈ H2,q(G)

that p ∈ C1
(G).

It follows p ∈ H1,r
0,0(G) for every 1 < r < ∞ because we have p|∂G = 0

by p ∈ H1,q
0 (G), p ∈ C1

(G), Theorem 4.7 and Remark 4.6 and thus
with p ∈ H1,r(G) and p|∂G = 0 also p ∈ H1,r

0 (G) by Theorem 4.7 and
Remark 4.6.
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We then find p ∈ Br
0(G) for every 1 < r < ∞. Now we show Zr(p) =

Zq(p):

We have T r(p) ∈ H
2,r
0 (G) and T q(p) ∈ H

2,q
0 (G).

Applying Theorems 2.8 and 2.10 (in a vector-valued version which can
be derived from Theorem 2.10 easily) we conclude that also T r(p) ∈
H2,q

0 (G) and we have for all Φ ∈ C∞0 (G):

〈∆(T r(p)− T q(p)),∆Φ〉 = 〈∇(p− p),∆Φ〉 = 0

and by density of C∞0 (G) in H2,q′

0 (G) and the unique solvability in The-
orem 2.9 in H2,q

0 (G) we can conclude that

T r(p) = T q(p).

2. q < n: In this case we define q? := nq
n−q > q and we find by Sobolev’s

embedding theorem p ∈ H1,q?

0,0 (G) and as p is still biharmonic we have

p ∈ Bq?

0 (G). As above, we conclude with Theorem 6.4 again that also
p ∈ H2,q?(G). If q? > n we are in the first case and done. The rest is a
simple induction argument, the induction step already given:

We define recursively q0 := q and for i > 1: qi := (qi−1)? = nqi−1

n−qi−1
> qi−1

as long as qi−1 < n. By the induction step given above for i = 1 above,
we conclude p ∈ H1,qi

0,0 (G) and p ∈ Bqi
0 (G). Should it occur that qi > n,

we are in the first case and done. Should it occur that qi = n for an i,
then we are in the third case and done.

Now we still have to show a statement about the qi. We show induc-
tively that qi = nq

n−iq . This is obviously true for i = 1. For i > 1 we
find

qi =
nqi−1

n− qi−1

=
n nq
n−(i−1)q

n− nq
n−(i−1)q

=
nq

n− (i− 1)q − q
=

nq

n− iq

We see that formally for i ≥ n−q
q

, we have qi ≥ n, so there must be a
first i0 ∈ N with qi0 ≥ n and the induction given above stops somewhere
and we finally reach the first or third case.

3. q = n: In this case we see by the boundedness of G and the Hölder
inequality that p ∈ Br

0(G) with r := 3
4
n > 1. In analogy to the second

case, we conclude that q? =
3
4
n2

1
4
n

= 3n > n and we are in the first case.
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Theorem 7.2. The operator Zq : Bq
0(G)→ Bq

0(G) is bijective.

Proof. We first prove the injectivity of Zq: Let p ∈ Bq
0(G) with Zq(p) = 0.

Then p is an eigenvector of Zq with eigenvalue 0 and with Theorem 7.1 we
see p ∈ B2

0(G) and Z2(p) = 0. With u := T 2(p) ∈ H2,2
0 (G) we thus have

div u = 0 and for all Φ ∈ H2,2
0 (G) we have

〈∆u,∆Φ〉 = 〈∇p,∇ div Φ〉

As u ∈ H2,2
0 (G) is a permitted testing function, we see for Φ = u:

〈∆u,∆u〉 = 〈∇p,∇ div u︸ ︷︷ ︸
=0

〉 = 0,

so u = 0 and 〈∇p,∆Φ〉 = 0 for all Φ ∈ H2,q
0 (G). We conclude that p ∈

N q(G) ∩ H1,q
0,0(G) (see the decomposition Theorem 2.26), so p = 0, as the

decomposition is direct.
Because we can write

Zq =
1

2
Id−

(
1

2
Id− Zq

)
︸ ︷︷ ︸

compact

,

we see that Zq is a Fredholm operator and thus by injectivity automatically
bijective.

Analogously to [14], Theorem 3.2., page 174 we find

Theorem 7.3. The bijective operator Zq : Bq
0(G)→ Bq

0(G) is a homeomor-
phism.

Proof. We already know that Zq is continuous and bijective, so all that we
need to show is that there is a constant CH = CH(q,G) > 0 such that for
every p ∈ Bq

0(G) the inequality

‖∇p‖q ≤ CH ‖∇Zq(p)‖q (41)

is valid. Let’s assume that (41) were not valid. Then we could find a sequence
(pν)ν∈N ⊂ Bq

0(G) such that
‖∇pν‖q = 1

and
‖∇Zq(pν)‖q → 0.

As the sequence (pν)ν∈N ⊂ Bq
0(G) is bounded in H1,q(G), we can assume

by passing to a subsequence without loss of generality that the sequence is
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weakly convergent to a p ∈ Bq
0(G) (as Bq

0(G) ⊂ H1,q(G) is a closed linear
subspace, it is weakly closed, too). By Theorem 6.5, we see that Zq − 1

2
Id is

compact. With the representation

pν − pµ = 2Zq(pν − pµ)− 2Zq(pν − pµ) + pν − pµ

we find

‖∇(pν − pµ)‖q ≤ 2 ‖∇(Zq(pν))‖q︸ ︷︷ ︸
ν→∞−−−→0

+2 ‖∇Zq(pµ)‖q︸ ︷︷ ︸
µ→∞−−−→0

+

+ 2

∥∥∥∥∇(Zq(pν − pµ)− 1

2
(pν − pµ))

∥∥∥∥
q︸ ︷︷ ︸

ν,µ→∞−−−−→0 as Zq− 1
2
Id is compact and (pν−pµ)

ν,µ→∞−−−−→0 weakly

.

So the sequence (pν)ν∈N ⊂ Bq
0(G) is a Cauchy-sequence in H1,q(G) and thus

converging strongly to a p′ ∈ Bq
0(G). It follows p = p′,

‖∇p‖q = 1

and
Zq(p) = lim

ν→∞
Zq(pν) = 0.

By injectivity of Zq we find p = 0, a contradiction.

Remark 7.4. In view of Theorem 7.2 and the decomposition from Theorem
2.23 and Theorem 2.24, we immediately see that Zq is even bijective when
viewed as a mapping from H1,q

0,0(G) on itself.
Moreover, with Theorem 7.3 and the estimate (18) from Theorem 2.23 we eas-
ily see that Zq is a homeomorphism when viewed as a mapping from H1,q

0,0(G)
on itself.

Definition 7.5. Set M q(G) := T q
(
H1,q

0,0(G)
)
.

Theorem 7.6. For every p ∈ H1,q
0,0(G) there is exactly one u ∈M q(G) with

div u = p.

The in this way well defined function

Dq : H1,q
0,0(G)→M q(G), p 7→ the unique u ∈M q(G) with div u = p

is continuous.
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Proof. According to Theorem 2.23, we decompose p = pb + p0 with pb ∈
Bq

0(G) and p0 = ∆s ∈ Aq0(G) for an s ∈ H3,q
0 (G) and we have

‖∇∆s‖q + ‖∇pb‖q ≤ CD ‖∇p‖q .

As Zq : Bq
0(G) → Bq

0(G) is bijective, we find exactly one h ∈ Bq
0(G) with

Zq(h) = div T q(h) = pb and by Theorem 7.3 we have with a constant CH

‖∇h‖q ≤ CH ‖∇pb‖q

and with u := T q(h) we have found an u ∈ M q(G) with div u = pb which is
satisfying

‖∆u‖q ≤ C ‖∇h‖q ≤ CCH ‖∇pb‖q ≤ CCHCD ‖∇p‖q .

We also have
‖∇∆s‖q ≤ CD ‖∇p‖q

and altogether

‖∆(u+∇s)‖q ≤ CCHCD ‖∇p‖q + CD ‖∇p‖q = (CCHCD + CD) ‖∇p‖q .

So the linear assignment p 7→ Dq(p) := u + ∇s from H1,q
0,0(G) to M q(G) ⊂

H2,q
0 (G) is continuous. We immediately see that

div(Dq(p)) = p,

because

div(Dq(p)) = div(u+∇s) = Zq(h) + ∆s = pb + ∆s = pb + p0 = p.

For the uniqueness, we assume we had two elements v = T q(p1), w = T q(p2) ∈
M q(G) with

div v = divw = p.

If we take a look at t := p1 − p2 ∈ H1,q
0,0(G), we immediately see that

Zq(t) = div(v − w) = 0.

By Remark 7.4, we have bijectivity of Zq and thus we find t = 0.

Concerning Dq, we can also make the following regularity statement:

Theorem 7.7. Let 1 < q, r <∞ and f ∈M q(G) with

div f ∈ H1,r
0,0(G).

Then we also have f ∈M r(G).
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Proof. The proof is rather simple: As div f ∈ H1,r
0,0(G), we can take a look at

f̃ := Dr(div f) ∈M r(G).
But by boundedness of G, as M r(G) ⊃ M q(G) (in case r < q) or M q(G) ⊃
M r(G) (in case q < r), we have

f − f̃ ∈M q(G)

or
f − f̃ ∈M r(G),

and as div(f − f̃) = 0, we see that f = f̃ ∈M r(G).

With Theorem 7.6 we get a direct decomposition of H2,q
0 (G):

Theorem 7.8.
H2,q

0 (G) = D2,q
0 (G)⊕M q(G),

where D2,q
0 (G) =

{
v ∈ H2,q

0 (G) : div v = 0
}
.

We also have the estimate

‖∆v1‖q + ‖∆v2‖q ≤ C ‖∆v‖q (42)

with a constant C = C(q,G) > 0 for every v = v1 + v2 ∈ H2,q
0 (G) with

v1 ∈ D
2,q
0 (G) and v2 ∈M q(G).

Proof. Let v ∈ H2,q
0 (G) be arbitrary. Then we can define p := div v ∈

H1,q
0,0(G) and w := Dq(p) ∈ M q(G). Then div v = p = divw and so we have

v − w ∈ D2,q
0 (G) and

v = (v − w)︸ ︷︷ ︸
∈D2,q

0 (G)

+ w︸︷︷︸
∈Mq(G)

and the decomposition is shown.
For the directness we see: If v ∈ D2,q

0 (G) ∩M q(G), then we have div v = 0.
As v ∈ M q(G), according to Theorem 7.6, we have one unique element u in
M q(G) with div u = 0 = div v and as 0 ∈M q(G) we have v = 0.
We further see with Theorem 7.6 and w = Dq(div v) that

‖∆w‖q ≤ CDq ‖∇ div v‖ ≤ CDqCCZ ‖∆v‖q ,

where CDq = CDq(q,G) > 0 is the constant existing by Theorem 7.6 such
that ∥∥∆Dq(p)

∥∥
q
≤ CDq ‖∇p‖q

for all p ∈ H1,q
0,0(G).
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Further we also have

‖∆(v − w)‖q ≤ ‖∆v‖q + ‖∆w‖q ≤ (1 + CDqCCZ) ‖∆v‖q

All in all we see that estimate (42) is shown.

Remark 7.9. Using the fact that T q = Dq ◦ Zq : H1,q
0,0(G) → M q(G) is a

homeomorphism we get with Theorem 2.23 even the refined decomposition

H2,q
0 (G) = D2,q

0 (G)⊕ T q(A
q
0(G))⊕ T q(B

q
0(G))

and with the estimate (18) we get also a refined estimate analogous to esti-
mate (42).

The next Theorem provides us with a norm on M q(G) which is equivalent
to the norm ‖∆·‖q:

Theorem 7.10. There is a constant Ce = Ce(q,G) > 0 such that for every
u ∈M q(G) the inequality

‖∆u‖q ≤ Ce ‖∇ div u‖q

is valid.

Proof. Let u ∈ M q(G) be arbitrary. Then we find a p ∈ H1,q
0,0(G) with

u = T q(p). We have the estimate

‖∆u‖q ≤ C ‖∇p‖q

with a C = C(n, q,G) > 0 by continuity of T q and with Remark 7.4 we have
a C ′ = C ′(n, q,G) > 0 such that

‖∇p‖q ≤ C ′ ‖∇Zq(p)‖q = C ′ ‖∇ div u‖q

with u = T q(p) and the theorem is proved.

We can now prove a divergence inequality:

Theorem 7.11. There is a Cdiv = Cdiv(q,G) > 0 such that for every p ∈
H1,q

0,0(G) we have the estimate

‖∇p‖q ≤ Cdiv sup
06=Φ∈Mq′ (G)

〈∇p,∇ div Φ〉
‖∇ div Φ‖q′

satisfied.
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Proof. As T q = Dq ◦ Zq : H1,q
0,0(G) → M q(G) is a homeomorphism, we have

a constant CT q > 0 such that

‖∇p‖q ≤ CT q
∥∥∆T q(p)

∥∥
q

and by defining u := T q(p) we find with Müller’s variational inequality:

‖∆u‖q ≤ CM,q sup
06=Φ∈H2,q′

0 (G)

〈∆u,∆Φ〉
‖∆Φ‖q′

= CM,q sup
06=Φ∈H2,q′

0 (G)

〈∇p,∆Φ〉
‖∆Φ‖q′

=

= CM,q sup
06=Φ∈H2,q′

0 (G)

〈∇p,∇ div Φ〉
‖∆Φ‖q′

Using now for Φ ∈ H2,q′

0 (G) the decomposition of Theorem 7.8 and writing

Φ = Φ0 + Φ1,

where Φ0 ∈ D
2,q′

0 (G) and Φ1 ∈ M q′(G), we see by employing estimate (42)
that

‖∆Φ1‖q ≤ C ′ ‖∆Φ‖q
with C ′ > 0 and we also see that with ‖∆Φ1‖q = 0 we have Φ = Φ0 and thus
〈∇p,∇ div Φ〉 = 0, so we have

CM,q sup
06=Φ∈H2,q′

0 (G)

〈∇p,∇ div Φ〉
‖∆Φ‖q′

= CM,q sup
06=Φ=Φ0+Φ1∈H

2,q′
0 (G),Φ1 6=0

〈∇p,∇ div Φ〉
‖∆Φ‖q′

.

By additionally using div Φ0 = 0, we get to

‖∇p‖q ≤
CT qCM,q

C ′
sup

06=Φ=Φ0+Φ1∈H2,q′
0 (G),Φ1 6=0

〈∇p,∇ div Φ1〉
‖∆Φ1‖q′

≤

≤
CT qCM,q

C ′
sup

06=Φ∈Mq′ (G)

〈∇p,∇ div Φ〉
‖∆Φ‖q′

and applying the fact from Theorem 7.10 that on M q′(G) the norms ‖∆·‖q
and ‖∇ div ·‖q are equivalent, we have shown the theorem.

8 Eigenvalues of Zq

Now, as we have achieved the main aims, we take a look at the eigenvalues
of Zq.
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8.1 General Statements

With Theorems 2.25 and 7.1 we have made first steps towards the study
of eigenvalues/eigenvectors of Zq. We have seen that for λ 6= 1 the only
eigenvectors p ∈ H1,q

0,0(G) to the eigenvalue λ lie in Bq
0(G). Having shown in

Theorem 6.5 the compactness of Zq − 1
2
Id : Bq

0(G) → Bq
0(G), the spectral

Theorem for compact operators is the right tool for us. We could now try to
use the general spectral theorem for compact operators, as it is for example
given in [2], pages 377-380, but this would require some extra work, most of
which would be introducing some new notation. However, by our Theorem
7.1 about regularity of the respective eigenfunctions p ∈ Bq

0(G) with Zq(p) =
λp, λ 6= 1

2
, we have seen that also p ∈ B2

0(G) is a eigenfunction with respect
to Z2 for λ, and thus, all we have to do is look at the Hilbert space case,
which furthermore gives us more concrete information:

Theorem 8.1. (Spectral theorem for compact operators in Hilbert spaces)
Let H be a Hilbert space and 0 6= A : H → H be a compact hermitian
operator. Then there exists a set {Φk} of orthonormal eigenelements of A,
which is finite or countably infinite. We denote the eigenvalue for Φk with
λk, so AΦk = λkΦk. In case of countable infinity, there is limk→∞ λk = 0.
The eigenspaces

Eλ := {f ∈ H : Af = λf} , λ 6= 0

are finite dimensional vector spaces and furthermore we have the following
representation for A:

Af =
∑
k:λk 6=0

λk〈Φk, f〉Φk for every f ∈ H.

Remark 8.2. The operator Z2 − 1
2
Id : B2

0(G) → B2
0(G) is easily seen to

be hermitian. As Id of course is hermitian, all that is to show that Z2 is
hermitian. Let r, s ∈ B2

0(G) ⊂ H1,2
0,0 (G), u := T 2(r), v := T 2(s) and take a

look at
〈∇Z2(r),∇s〉 = 〈∇ div u,∇s〉 = 〈∆u,∇s〉.

As we have here q = 2, Φ := u ∈ H2,2
0 (G) is in the following a permitted

testing function and so by definition of v = T 2(s), we see that

〈∇s,∆Φ〉 = 〈∆v,∆Φ〉 ∀Φ ∈ H2,2
0 (G)

and thus
〈∇Z2(r),∇s〉 = 〈∆u,∆v〉.
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By making the calculation from above again, this time for 〈∇Z2(s),∇r〉, we
find that also

〈∇Z2(s),∇r〉 = 〈∆v,∇r〉 = 〈∆u,∆v〉

and thus for all s, r ∈ B2
0(G) we have

〈∇Z2(r),∇s〉 = 〈∇r,∇Z2(s)〉.

Remark 8.3. Making the easy calculation

Zq(p) = λp⇐⇒ Zq(p)−
1

2
p =

(
λ− 1

2

)
p

we see that λ ∈ R is an eigenvalue of Zq if and only if
(
λ− 1

2

)
is an eigenvalue

for Zq − 1
2
Id. So, in order to study eigenvalues of Zq, it suffices to study the

eigenvalues of the (on Bq
0(G) compact) operator Zq − 1

2
Id.

Theorem 8.4. The set

E :=

{
λ ∈ R : λ /∈

{
1

2
, 1

}
, there is a 0 6= p ∈ H1,q

0,0(G) with Zq(p) = λp

}
is finite or countably infinite. In the case of countably infiniteness, E has
only one accumulation point (in R) and this accumulation point is 1

2
. For

every λ ∈ E, the respective eigenspace

Vλ :=
{
p ∈ H1,q

0,0(G) : Zq(p) = λp
}

is finite dimensional.

Proof. This is just a direct application of Theorem 8.1 to the operator Z2 −
1
2
Id, additionally using Theorems 2.25, 7.1 and Remark 8.3.

The following easy calculation shows the connection between eigenfunctions
of Zq to eigenvalues 6= 0 and elements u ∈ H2,q

0 (G) satisfying

〈∆u,∆Φ〉 = µ〈∇ div u,∇ div Φ〉 for all Φ ∈ H2,q′

0 (G)

for a µ 6= 0.

Remark 8.5. If we have a λ ∈ R \ {0} and a p ∈ H1,q
0,0(G) with Zq(p) = λp,

we find with u := T q(p):

div u = λp, which is p =
1

λ
div u
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and thus for all Φ ∈ H2,q′

0 (G):

〈∆u,∆Φ〉 = 〈∇p,∇ div Φ〉 =
1

λ
〈∇ div u,∇ div Φ〉.

This also works in the other direction: If we have a µ ∈ R \ {0} and an
u ∈ H2,q

0 (G) with

〈∆u,∆Φ〉 = µ〈∇ div u,∇ div Φ〉 for all Φ ∈ H2,q′

0 (G),

we have
u = T q(µ div u)

and we get after applying divergence to this with p := div u ∈ H1,q
0,0(G):

p = µZq(p), which is Zq(p) =
1

µ
p.

8.2 The Eigenspace for λ = 1

The following characterization of the eigenspace for λ = 1 of the eigenvalue
problem Zq(p) = λp is inspired by Simader’s and Weyers’ characterization of
the analogous problem for their Cosserat problem (see [19], chapters 5,6).
With Theorems 2.24 and 2.25 we already have a first statement about

E :=
{
p ∈ H1,q

0,0(G) : Zq(p) = p
}

:

We have Aq0(G) ⊂ E, and the study of eigenvectors p ∈ H1,q
0,0(G) for λ = 1

reduces as in the case of λ 6= 1 to the study of eigenvectors p ∈ Bq
0(G) for

λ = 1.
To begin, we notice the following:
If p ∈ Bq

0(G) is an eigenvector to the eigenvalue λ = 1, we find that

div T q(p)︸ ︷︷ ︸
=:u

= p. By the regularity Theorem 7.1, we find that p ∈ C0
(G) ∩

H1,r
0,0(G) and u ∈ C1

(G) ∩H2,r
0 (G) for all 1 < r <∞.

Now we make some simple calculation for Ψ,Φ ∈ C∞0 (G):
We have

R [Ψ,Φ] :=
1

2

n∑
k,l,s=1

〈∂k∂sΨl − ∂k∂lΨs, ∂k∂sΦl − ∂k∂lΦs〉 =

=
1

2

n∑
k,l,s=1

〈∂k∂sΨl, ∂k∂sΦl − ∂k∂lΦs〉 −
1

2

n∑
k,l,s=1

〈∂k∂lΨs, ∂k∂sΦl − ∂k∂lΦs〉.
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By interchanging the names of the variables s and l in the second summation,
we see that all in all we have

1

2

n∑
k,l,s=1

〈∂k∂sΨl − ∂k∂lΨs, ∂k∂sΦl − ∂k∂lΦs〉 =
n∑

k,l,s=1

〈∂k∂sΨl, ∂k∂sΦl − ∂k∂lΦs〉

for Ψ,Φ ∈ C∞0 (G). By approximation, we get the validity of these expressions

even for Ψ ∈ H2,r
0 (G), Φ ∈ H2,r′

0 (G), for every 1 < r <∞.
The statement Zq(p) = p means for u = T q(p) ∈ T q(B

q
0(G)) that for every

Φ ∈ H2,q′

0 (G) we have:

〈∆u,∆Φ〉 = 〈∇ div u,∆Φ〉

with div u = p.
Looking at the difference of these two expressions, we see by some partial
integrations that

0 = 〈∆u,∆Φ〉 − 〈∇ div u,∆Φ〉 =
n∑

k,l,s=1

〈∂2
kul, ∂

2
sΦl〉 −

n∑
k,l,s=1

〈∂s∂lul, ∂2
kΦs〉 =

=
n∑

k,l,s=1

〈∂k∂sul, ∂k∂sΦl〉 −
n∑

k,l,s=1

〈∂k∂sul, ∂k∂lΦs〉 =

=
n∑

k,l,s=1

〈∂k∂sul, ∂k∂sΦl − ∂k∂lΦs〉,

which is by our calculation from above equal to R [u,Φ].
As we have seen that u ∈ H2,2

0 (G), we can plug in u itself as testing function Φ
and see from R [u, u] = 0 that for all k, l, s we must have ∂k∂sul−∂k∂lus = 0.
For fixed values of s and l, we see that the H1,q

0 (G)-function ul,s := ∂sul−∂lus
must satisfy ∇ul,s = 0 and therefore by the Poincaré inequality ul,s must be
equal to 0 on G.
Define

ũ :=

{
u(x), for x ∈ G
0, for x ∈ Rn \G

.

Then we have, as u ∈ C1
(G) with u = 0 and ∂iuj = 0 on ∂G a well defined

vector field ũ ∈ C1(Rn) and we find by the simply connectedness of Rn by
classical calculus a function φ ∈ C2(Rn) such that ∇φ = ũ unique up to a
constant. We also see that the restriction of ∇Φ to G is in H2,q

0 (G) as it is
equal to u there and that ũ satisfies ∂sũl(x) = ∂lũs(x) for every x ∈ Rn. As
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Rn \G is an open set with smooth compact boundary, we see that there are
finitely many connected components C1, . . . , CN of Rn \ G (see for example
[19], Lemma 5.1, page 185), and we see on any fixed Ci by definition of ũ
that ∇φ = 0 on Ci and therefore we must have a constant ci ∈ R with φ = ci
on Ci. This allows us to “norm” our φ the following way: By demanding
it to be zero on a fixed Ci0 (there is always N ≥ 1 and we fix i0 to be
the unbounded connected component of Rn \ G), we dispose of the above
occurring uniqueness of φ only up to a constant.
Now we take a look at some helpful functions. If we take for i = 1, . . . , N , i 6=
i0 functions Ψi ∈ C∞0 (Rn) satisfying Ψi = 1 on (the bounded) Ci and Ψi = 0
on every Cj with j 6= i we immediately see that ui := ∇Ψi ∈ H2,q

0 (G)∩C∞(G)
satisfies for every Φ ∈ C∞0 (G)

〈∆ui,∆Φ〉 = 〈∆∇Ψi,∆Φ〉 = 〈∇ div∇Ψi,∆Φ〉 = 〈∇ div ui,∆Φ〉

and thus with pi := div ui we have ui = T q(pi) and thus Zq(pi) = pi.

Further we define for Ψi a function bi ∈ H3,q
0 (G) by the unique solution of

the problem

〈∇∆bi,∇∆g〉 = 〈∇∆Ψi,∇∆g〉 for all g ∈ H3,q′

0 (G).

Having given a certain p ∈ Bq
0(G) ∩ E and ũ and φ constructed like above

with φ = ci on Ci, we find out that

f := φ−
N∑

i=1,i 6=i0

ci(Ψi − bi) ∈ H3,q
0 (G) :

As each bi is in H3,q
0 (G), we just need to show that l := φ−

∑N
i=1,i 6=i0 ciΨi ∈

H3,q
0 (G). At first we see that l ∈ C2

(G), as φ and each Ψi are. Further we
see by definition of the ci and Ψi that l = 0 on ∂G. Thus, l ∈ H1,q

0 (G) by
Theorem 4.7. Looking at ∇l = ∇φ−

∑N
i=1,i 6=i0 ci∇Ψi = u−

∑N
i=1,i 6=i0 ci∇Ψi,

we see that l ∈ H3,q(G) and by Theorem 3.3, we get by looking at the
boundary values of ∇l: ∇l ∈ H1,q

0 (G) and thus l ∈ H2,q
0 (G). In analogy to

this, we get with the help of Theorem 9.5 as u ∈ H2,q
0 (G) and each ∇Ψi ∈

H2,q
0 (G), i 6= i0: l ∈ H3,q

0 (G).

f is thus satisfying for every g ∈ H3,q′

0 (G)

〈∇∆f,∇∆g〉 = 〈∇∆Φ,∇∆g〉 −
N∑

i=1,i 6=i0

ci〈∇∆(Ψi − bi),∇∆g〉 =

= 〈∆u,∇∆g〉 −
N∑

i=1,i 6=i0

ci〈∇∆(Ψi − bi),∇∆g〉,
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where we see by div u ∈ Bq
0(G) that 〈∆u,∇∆g〉 = 0 and for i 6= i0 we have

〈∇∆(Ψi − bi),∇∆g〉 = 0 by the definition of the bi. So by the variational
inequality we finally get f = 0 and so

φ =
N∑

i=1,i 6=i0

ci(Ψi − bi).

As ∇φ = u and p = div u, we get p = div∇Φ or

p =
N∑

i=1,i 6=i0

ci∆ (Ψi − bi) .

All in all we see that
E = Aq0(G)⊕ V (G), (43)

where V (G) is a finite dimensional vector space spanned by the elements
∆(Ψi − bi), i = 1, . . . N , i 6= i0.
Moreover, we can show that the elements ∆(Ψi − bi), i = 1, . . . N , i 6= i0 are
linearly independent: To show this, we notice that due to the linear isomor-
phism div : T q(B

q
0(G))→ Bq

0(G), we only have to show linear independence
of the elements

∇(Ψi − bi), i = 1, . . . N, i 6= i0.

Suppose there are λi ∈ R, i = 1, . . . N, i 6= i0 such that

N∑
i=1,i 6=i0

λi∇(Ψi − bi) = 0.

Then the function

g :=
N∑

i=1,i 6=i0

λi(Ψi − bi) ∈ H1,q(G)

must be constant: For C :=
∫
G
g dx, we have h := g − C

|G| ∈ H
1,q(G) mean-

value-free and thus by the Poincaré inequality follows h = 0 which means
that g is constant. Looking now at ∂Ci0 , we see that there each Ψi is zero
and as bi ∈ H3,q

0 (G), the trace of bi is zero on ∂Ci0 , too. But as g is constant,
the trace of g on ∂Ci0 must be equal to this constant, too. Thus this constant
must necessarily be 0. So now we have

N∑
i=1,i 6=i0

λi(Ψi − bi) = 0.
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On ∂Cj, j 6= i0, we find Ψi = δi,j and the trace of each bi vanishing. So we
have the trace of g on ∂Cj equal to λj. But on the other hand it must be 0,
so λj = 0, j 6= i0 and we have linear independence.
We have proved the

Theorem 8.6. Let G be a bounded domain with ∂G ∈ C5 and N ≥ 1 be the
number of connected components of Rn \G. Then{

p ∈ H1,q
0,0(G) : Zq(p) = p

}
= Aq0(G)⊕ V (G),

where V (G) is a finite dimensional real vector space of dimension N − 1.

Part II

Cosserat Operators of
Arbitrary Order and Study of
Stokes-Like Systems Connected
With Them

9 A Generalization of our Account to the Cos-

serat Spectrum to Arbitrary Orders

This section will give an outline on how to generalize our account to higher
orders. In contrast to the first part, we do not assume a specific fixed regu-
larity of ∂G and show the theorems for this fixed regularity but we will state
with each theorem the regularity of ∂G we need for the proof.
At first we give an introduction to the general setting:

9.1 The General Situation

Let in the following m ∈ N be arbitrary but fixed, G ⊂⊂ Rn, 1 < q < ∞
and 1 < q′ <∞ with 1

q
+ 1

q′
= 1. For u ∈ Hm,q

0 (G), v ∈ Hm,q′

0 (G) define

Bm [u, v] :=

{
〈∆m

2 u,∆
m
2 v〉 for even m

〈∇∆
m−1

2 u,∇∆
m−1

2 v〉 for odd m
.
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First we state a theorem on solvability of the respective weak Dirichlet prob-
lem which can be proved using Simader’s general theory from [15] in an
analogous way as in our proofs of the theorems in Subsection 2.4:

Theorem 9.1. Let G ⊂⊂ Rn with ∂G ∈ Cm, F ∈
(
Hm,q′

0 (G)
)?

. Then there

exists exactly one u ∈ Hm,q
0 (G) such that

Bm [u,Φ] = F (Φ) for all Φ ∈ Hm,q′

0 (G).

Further there exists a constant C = C(m, q,G) > 0 such that

‖u‖m,q ≤ C ‖F‖“
Hm,q′

0

”? .
Along with this solvability statement comes the following variational inequal-
ity:
There exists a C̃ = C̃(m, q,G) > 0 such that for all u ∈ Hm,q

0 (G) we have

‖u‖m,q ≤ C̃ sup
06=Φ∈Hm,q′

0 (G)

Bm [u,Φ]

‖Φ‖m,q′
.

As in Section 2.5 we find a decomposition theorem which is a direct conse-
quence of Theorem 9.1:

Theorem 9.2. Let m ∈ N0 and ∂G ∈ Cm+2 and set for m = 0: H0,q
0 (G) :=

Lq(G). With the definitions

Hm,q
0,0 (G) :=

{
f ∈ Hm,q

0 (G) :

∫
G

f dx = 0

}
,

Am,q(G) :=
{
f ∈ Hm,q

0 (G) : f = ∆s for an s ∈ Hm+2,q
0 (G)

}
,

Bm,q(G) :=

{
f ∈ Hm,q

0 (G) :

∫
G

f∆m+1Φ dx = 0 for all Φ ∈ C∞0 (G)

}
and

Am,q0 (G) := Am,q(G) ∩Hm,q
0,0 (G), Bm,q

0 (G) := Bm,q(G) ∩Hm,q
0,0 (G)

(we also have here again Am,q0 (G) = Am,q(G) but we will write often the
0-index for consistency), we have the direct decompositions

Hm,q
0 (G) = Am,q(G)⊕Bm,q(G)

and
Hm,q

0,0 (G) = Am,q0 (G)⊕Bm,q
0 (G).

Moreover, for an f ∈ Hm,q
0 (G) with the representation f = ∆s + p with s ∈

Hm+2,q
0 (G) and p ∈ Bm,q(G), we have with a constant C = C(G, q,m) > 0:

‖∆s‖m,q + ‖p‖m,q ≤ C ‖f‖m,q
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Proof. The proof is a straight-forward generalization of the proof of Theo-
rem 2.23. However, as we need some more detailed information about this
decomposition later in the proof of Theorem 11.2, we will give an outline of
the proof there.

Let in the following be m ∈ N, m ≥ 1. In analogy to our decomposition (22)
from Theorem 2.26 we have in our general situation

Theorem 9.3. For G ⊂⊂ Rn with ∂G ∈ Cm, we have

Hm,q
0 (G) = Hm,q

0,0 (G)⊕N q
m(G)

with

N q
m(G) := {g ∈ Hm,q

0 (G) : Bm [g, div Φ] = 0 for all Φ ∈ C∞0 (G)} .

The space N q
m(G) is a one dimensional real vector space generated by an

element h ∈ Hm,q
0 (G) ∩ C∞(G) with

∆mh(x) = 1 for every x ∈ G

and
∫
G
h dx 6= 0.

Further we have N q
m(G) = N r

m(G) for every 1 < r <∞.

Proof. The proof is a direct generalization of the proof to Theorem 2.26.

Now we define the generalizations of the operators T q and Zq:

For p ∈ Hm−1,q
0,0 (G) define as T (m)

q (p) the unique u ∈ Hm,q
0 (G) satisfying

Bm [u,Φ] = Bm−1 [p, div Φ] for all Φ ∈ Hm,q′

0 (G).

This u is found by application of Theorem 9.1 to the problems

Bm [ui, φ] = Bm−1 [p, ∂iφ] for all φ ∈ Hm,q′

0 (G), i = 1, . . . , n.

Theorem 9.1 also guarantees us the continuity of

T (m)
q : Hm−1,q

0,0 (G)→ Hm,q
0 (G).

With T (m)
q now defined, we define

Z(m)
q := div ◦T (m)

q : Hm−1,q
0,0 (G)→ Hm−1,q

0,0 (G)

which gets continuous by continuity of T (m)
q and div. Regarding our decom-

position from Theorem 9.2 we get an analogy to Theorem 2.24:
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Theorem 9.4. For G ⊂⊂ Rn with ∂G ∈ Cm+1, we have

Z(m)
q |Am−1,q

0 (G) :Am−1,q
0 (G)→ Am−1,q

0 (G) and Z(m)
q (p) = p ∀p ∈ Am−1,q

0 (G)

Z(m)
q |Bm−1,q

0 (G) :Bm−1,q
0 (G)→ Bm−1,q

0 (G)

Proof. The proof is done as the proof of Theorem 2.24.

Moreover, we need generalizations of our helpful theorems from Section 3,
namely Theorems 3.1, 3.2, 3.3 and 3.4. The Theorems 3.1, 3.2 and 3.4 are
easily seen to be generalizable, the generalization of Theorem 3.3 which we
will need is the following:

Theorem 9.5. Let G ⊂⊂ Rn with ∂G ∈ Cm and f ∈ Hm−1,q
0 (G) ∩Hm,q(G)

satisfy
Dαf ∈ H1,q

0 (G) for every α ∈ Nn
0 with |α| = m− 1.

Then f ∈ Hm,q
0 (G).

Proof. For the proof we will use the notation used in the proof to Theorem
3.3 except calling f̃ and f̃k now f and fk. As in that proof, we can (using a
localization process as in the proof of Theorem 3.3 via a partition of unity,
this is were we need ∂G ∈ Cm) reduce ourselves to the following case:

G = Q = ∆× ]0, ε[ , f ∈ Hm−1,q
0 (Q) ∩Hm,q(Q) with

Dαf ∈ H1,q
0 (Q) for every α ∈ Nn

0 with |α| = m− 1

and f(x) = 0 almost everywhere in Q \ (∆′ × ]0, ε− ε′[)
Now we have to show that f ∈ Hm,q

0 (Q). We can make up estimates similar
to the ones made in the proof of Theorem 3.3:

• By approximating f with C∞0 (Q)-functions uν in theHm−1,q(Q)-sense as
it is possible by f ∈ Hm−1,q

0 (Q), we can see like in the proof of Theorem
3.3 that with the multiindices α = (α1, . . . , αn), β = (α1, . . . , αn−1, 0)
with |α| ≤ m− 1 and 0 < ρ < ε we get the inequalities

‖Dαf‖∆×]0,ρ[,q ≤ ραn
∥∥Dβf

∥∥
∆×]0,ρ[,q

.

• Because of Dβf ∈ H1,q
0 (Q) for every β with |β| = m − 1, we see that

for α with |α| = m and αn ≥ 1, β := (α1, . . . , αn−1, αn − 1) we get by
approximating Dβf by C∞0 -functions in the H1,q(Q)-sense for 0 < ρ < ε
the inequality

‖Dαf‖∆×]0,ρ[,q ≤ ρ
∥∥Dβf

∥∥
∆×]0,ρ[,q

.
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• By sticking the two estimates from above together, we get for every
multiindex α with αn 6= 0 and |α| ≤ m the inequality

‖Dαf‖∆×]0,ρ[,q ≤ ραn
∥∥Dβf

∥∥
∆×]0,ρ[,q

.

This inequality obviously is valid for αn = 0, where β = α, too.

Taking again a cut-off function η ∈ C∞(R) with η(t) = 0 for all t ≤ 1 and
η(t) = 1 for all t ≥ 2 and setting ηk(t) := η(kt), we see that supp(η′k) ⊂

[
1
k
, 2
k

]
and all the higher derivatives of ηk have this property, too. We also find a
constant c = c(η,m) > 0 such that∣∣∂lnηk(t)∣∣ ≤ ckl for all l ≤ m.

In the following, we will use a generalized Leibniz rule for the derivatives of
fηk, which is shown as in the classical account by iterated use of the product
rule (our Theorem 3.1):

For f ∈ Hm,q(Q), g ∈ C∞(Q), r ≤ m, we have fg ∈ Hm,q(Q) and for
i = 1, . . . , n we have

∂ri (fg) =
r∑
l=0

(
r

l

)
∂lif∂

r−l
i g.

So, writing fk(x
′, xn) := f(x′, xn)ηk(xn) and letting α = (α1, . . . , αn) be a

multiindex with |α| ≤ m, β := (α1, . . . , αn−1, 0), we find because of

∂ifk(x
′, xn) = ∂if(x′, xn)ηk(xn) for i 6= n :

Dαfk = ∂αnn
(
Dβfk

)
= ∂αnn

(
Dβfηk

)
=

αn∑
l=0

(
αn
l

)
∂lnD

βf∂αn−ln ηk

Then we see for every multiindex α with αn > 0, |α| ≤ m, β = (α1, . . . , αn−1, 0)
that we have

‖Dαf −Dαfk‖q =

∥∥∥∥∥Dαf −

(
Dαfηk +

αn−1∑
l=0

(
αn
l

)
∂lnD

βf∂αn−ln ηk

)∥∥∥∥∥
q

≤

≤ ‖Dαf −Dαfηk‖q︸ ︷︷ ︸
→0 as in Theorem 3.3

+
αn−1∑
l=0

(
αn
l

)∥∥∂lnDβf∂αn−ln ηk
∥∥
q
.
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Looking at the right term, we find with our previous observations and the
fact that supp ∂αn−ln ηk ⊂

[
1
k
, 2
k

]
for l < αn:

∥∥∂lnDβf∂αn−ln ηk
∥∥q
q

=

∫
Q

∣∣∣∣∣∣∣∂lnDβf ∂αn−ln ηk︸ ︷︷ ︸
|·|≤Ckαn−l

∣∣∣∣∣∣∣
q

dx ≤

≤ Cqkq(αn−l)
∫

∆′×]0, 2k [

∣∣∂lnDβf
∣∣q dx = Cqkq(αn−l)

∥∥∂lnDβf
∥∥q

∆′×]0, 2k [,q
≤

≤ Cq kq(αn−l)
(

2

k

)q(αn−l)
︸ ︷︷ ︸

=2q(αn−l)

‖Dαf‖q
∆′×]0, 2k [,q︸ ︷︷ ︸

0−→ by Lebesgue’s Dominated Convergence Theorem

In the case where αn = 0, we have again

‖Dαfk −Dαf‖q = ‖(1− ηk)Dαf‖q → 0.

So we see that the sequence fk approximates f in the Hm,q(Q)-norm. Fur-
thermore, by construction, the fk are all equal to 0 outside a compact set
S = S(k) ⊂ Q. By mollifying the fk with small enough mollification param-
eter εk, we can, as in the proof of Theorem 3.3, find (fk)εk ∈ C∞0 (Q) and
(fk)εk → f in Hm,q(Q).

Furthermore, we will need in the following as a generalization of Theorem
5.1 the approximability of a p ∈ Bm−1,q

0 (G) with elements from Bm−1,q
0 (G) ∩

Hm+1,q(G):

Theorem 9.6. Let G ⊂⊂ Rn with ∂G ∈ Cm+3 and p ∈ Bm−1,q
0 (G). Then

there exists a sequence (pν)ν∈N ⊂ Bm−1,q
0 (G)∩Hm+1,q(G) with ‖p− pν‖m−1,q →

0.

Proof. The proof can be done in analogy to the one from Theorem 5.1:
As in Theorem 2.22, we can show easily that C∞0,0(G) is dense in Hm−1,q

0,0 (G)
with respect to the Hm−1,q(G)-norm. So we find a sequence (gν)ν∈N ⊂ C∞0,0(G)
with ‖gν − p‖m−1,q → 0. As ∂G ∈ Cm+1, we can solve for each ν ∈ N the
problem

Bm+1 [sν ,Φ] = Bm−1 [gν ,∆Φ] for all Φ ∈ Hm+1,q′

0 (G)

with sν ∈ Hm+1,q
0 (G). As ∂G ∈ Cm+3 and gν ∈ C∞0 (G), we find with Theorem

6.1 that we even have sν ∈ Hm+3,q(G). Looking now at pν := gν −∆sν , we
see that pν ∈ Hm−1,q

0 (G) ∩Hm+1,q(G) and we find for Φ ∈ C∞0 (G):
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Bm [pν ,Φ] = Bm [gν ,Φ, ]−Bm [∆sν ,Φ] = Bm [gν ,Φ, ] +Bm+1 [sν ,Φ] =

= Bm [gν ,Φ, ] +Bm−1 [gν ,∆Φ] = Bm [gν ,Φ, ]−Bm [gν ,Φ] = 0

and we have by Weyl’s Lemma: pν ∈ C∞(G) and ∆mpν = 0. All in all we have
pν ∈ Bm−1,q

0 (G)∩Hm+1,q(G). Now all left to show is that ‖pν − p‖m−1,q → 0.
To see this, we look at

‖pν − p‖m−1,q = ‖gν −∆sν − p‖m−1,q ≤ ‖gν − p‖m−1,q + ‖∆sν‖m−1,q

and note that as sν ∈ Hm+1,q
0 (G), we have with the generalized variational

inequality from Theorem 9.1

‖∆sν‖m−1,q ≤ ‖sν‖m+1,q ≤ C sup
06=Φ∈Hm+1,q′

0 (G)

Bm+1 [sν ,Φ]

‖Φ‖m+1,q′
=

= C sup
06=Φ∈Hm+1,q′

0 (G)

Bm−1 [gν ,∆Φ]

‖Φ‖m+1,q′
= C sup

06=Φ∈Hm+1,q′
0 (G)

Bm−1 [gν − p,∆Φ]

‖Φ‖m+1,q′
≤

≤ C ‖gν − p‖m−1,q → 0,

because we have for every Φ ∈ Hm+1,q′

0 (G): ‖∆Φ‖m−1,q′ ≤ ‖Φ‖m+1,q′ . So we
have found an approximating sequence pν satisfying our requirements.

9.2 The Generalization of Crouzeix’s Ansatz

Now we are able to start the generalized Crouzeix approach. In the first
version, Theorem 9.7, we are (as shows up by comparison with our special
case m = 2 already inspected in Part I) too restrictive on the required regu-
larity of ∂G. This is done in order to make classical calculation doable: For
the calculations we will do, we will need a relatively high regularity of ζ. In
the end, however, we will get rid of the too restrictive requirements by an
approximation idea leading to a second statement, Theorem 9.8, with weaker
requirements on ∂G.

Theorem 9.7. Let G ⊂⊂ Rn with ∂G ∈ C2m+2 and p ∈ Bm−1,q
0 (G) ∩

Hm,q(G), u := T (m)
q (p) and let

w := u · ∇ζ − 1

2m
pζ ∈ Hm,q

0 (G),
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where ζ ∈ C2m+1
0 (Rn) is Weyers’ helpful function from Section 3.1.

Then w ∈ Hm+1,q(G) and there is a constant C = C(m, q,G) such that

‖w‖m+1,q ≤ C ‖p‖m−1,q .

Proof. That w ∈ Hm,q
0 (G) is clear by definition of w and the information

we have about u, ζ and p: Since u ∈ Hm,q
0 (G) and ζ ∈ C2m+1

0 (Rn), we have
u·∇ζ ∈ Hm,q

0 (G) and with p ∈ Hm−1,q
0 (G)∩Hm,q(G) and ζ = 0 on ∂G, we see

as in the proof of Theorem 3.4 that pζ ∈ Hm,q
0 (G) with use of Theorem 9.5.

In the following we are making a mixture of our account from the motivation
of Crouzeix’ method and our proof from Theorem 6.2. As p ∈ Bm−1,q

0 (G),
we see by Weyl’s Lemma that p ∈ C∞(G). Then we see by an argument very
similar to the one used already in the induction step of our proof of Weyl’s
Lemma (Lemma 2.20) that u ∈ C∞(G), too:
With p ∈ C∞(G) we conclude ∇p ∈ C∞(G). For x ∈ G arbitrary and r > 0
such that Br(x) ⊂⊂ G, we find by classical theory in analogy to our proof
of Lemma 2.20 an ũ ∈ C∞(Br′(x)) with a 0 < r′ < r such that ∆ũ = ∇p on
Br′(x). With v := u− ũ we see for Φ ∈ C∞0 (Br′(x)):

Bm [v,Φ] = Bm [u− ũ,Φ] = Bm [u,Φ] +Bm−1 [∆ũ,Φ] =

= Bm [u,Φ] +Bm−1 [∇p,Φ] = Bm [u,Φ]−Bm−1 [p, div Φ] = 0

and thus by Weyl’s Lemma we conclude that v ∈ C∞(Br′(x)) and then u =
v + ũ ∈ C∞(Br′(x)).
Because of this and ∂G ∈ C2m+2, by which we find ζ ∈ C2m+1

0 (Rn), we
conclude that

w := u · ∇ζ − 1

2m
pζ ∈ Hm,q

0 (G) ∩ C2m(G)

and we can calculate classically:

∆m(w) = ∆m

(
u · ∇ζ − 1

2m
pζ

)
(44)

Looking first at ∆m (u · ∇ζ), we see that

∆m (u · ∇ζ) = ∆m(u) · ∇ζ + T, (45)

where T stands for terms consisting of derivatives of order < 2m of the ui
and derivatives of order ≤ 2m + 1 of ζ, where for each summand we have
that the respective orders of derivatives of the ui and ζ sum up to 2m+ 1.
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Looking at

∆m

(
− 1

2m
pζ

)
, (46)

we see by induction that for j ∈ N, j ≤ m we have

∆j(pζ) =
(
∆jp

)
ζ + 2j∆j−1∇p · ∇ζ + Tj, (47)

where Tj stands for terms containing derivatives of p of order ≤ 2(j− 1) and
derivatives of ζ of order ≤ 2j, where for each summand we have the sum of
the respective orders of derivatives equal to 2j. For j = 1 this is clear by the
formula

∆(pζ) = ∆pζ + 2∇p · ∇ζ + p∆ζ.

The induction step from j to j+1 is just another application of this formula:

∆j+1(pζ) = ∆
(
∆j(pζ)

)
= ∆

((
∆jp

)
ζ + 2j∆j−1∇p · ∇ζ + Tj

)
=

=
(
∆j+1p

)
ζ + 2∇∆jp · ∇ζ + 2j

(
∆j∇p · ∇ζ

)
+ Tj+1,

where Tj+1 stands for an expression consisting of derivatives of p of order≤ 2j
and derivatives of ζ of order ≤ 2(j + 1), where the orders of the derivatives
sum up in each summand to 2(j + 1). So we can conclude that we have

∆m

(
− 1

2m
pζ

)
= − 1

2m
∆mp︸︷︷︸

=0, as p∈Bm−1,q
0 (G)

ζ −∆m−1∇p · ∇ζ + T, (48)

where T denotes terms consisting of derivatives of p of order ≤ 2m− 2 and
derivatives of ζ of order ≤ 2m, where the respective orders of derivatives in
each summand add up to 2m.
By partially integrating we see that with u = T (m)

q (p) we get for all Φ ∈
C∞0 (G): We have by definition of u

Bm [u,Φ] = Bm−1 [p, div Φ] ,

which leads to

〈∆mu,Φ〉 = 〈∇∆m−1p,Φ〉 for all Φ ∈ C∞0 (G)

and it follows that ∆mu = ∇∆m−1p, see for example [16], Satz 2.5 (4), page
33.
Using this, we see that the calculated terms ∆mu ·∇ζ and ∇∆m−1p ·∇ζ from
(45) and (48) cancel out and thus when calculating (44), we see that ∆mw is
a sum of products of derivatives of the ui of order ≤ 2m− 1 and derivatives
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of ζ of order ≤ 2m + 1 where in each such product the respective orders of
the derivatives add up to 2m + 1 and products of derivatives of p of order
≤ 2m− 2 and derivatives of ζ of order ≤ 2m where in each such product the
orders of the respective derivatives add up to 2m.
So, with Φ ∈ C∞0 (G) we see again by partial integration that

Bm [w,Φ] = ±〈∆mw,Φ〉 =
∑

i=1,...,n
|α|<2m

|β|+|α|=2m+1

〈aα,β,iDα uiD
βζ,Φ〉+

+
∑

|γ|<2m−1
|δ|+|γ|=2m

〈bγ,δDγpDδζ,Φ〉,

with suitable aα,β,i and bγ,δ ∈ Z. So we can write Bm [w,Φ] as∑
i=1,...,n
|α|<2m

|β|+|α|=2m+1

〈aα,β,iDα ui, D
βζΦ〉+

∑
|γ|<2m−1
|δ|+|γ|=2m

〈bγ,δDγp,DδζΦ〉. (49)

For the first sum in (49), we look at three cases:

i) Looking at a summand 〈aα,β,iDα ui, D
βζΦ〉 from the first sum in (49)

with |α| < 2m and |β| + |α| = 2m + 1, we see that in the cases where
we have |α| > m we can make |α|−m partial integrations and get with
an η ≤ α of length |η| = |α| −m to

±〈aα,β,iDε ui, D
η
(
DβζΦ

)
〉,

where |ε| = m, |η| < m, ε + η = α and |η| + |β| = (|α| − m) +
(2m+ 1− |α|) = m+ 1.

ii) In the cases where |α| < m, look at a summand from the first sum in
(49) of the form

〈aα,β,iDα ui, D
βζΦ〉

with |α| ≤ 2m− 1 and |α|+ |β| = 2m+ 1.

Then we have |β| = 2m+ 1− |α| > 2m+ 1−m = m+ 1. In this case
we write

〈aα,β,iDα ui, D
βζΦ〉 = 〈aα,β,iDα uiΦ, D

βζ〉

and make for a multiindex γ with γ ≤ β and |γ| = |β| −m− 2 partial
integrations such that

|β| − |γ| = m+ 2, |γ| < 2m+ 1− (m+ 1) = m
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thus arriving at
±〈aα,β,iDγ (Dα uiΦ) , Dηζ〉

with |η| = |β|− |γ| = m+2 and by carrying out the Dγ-differentiation,
we get a Z-linearcombination of terms of the form

〈DεuiD
νΦ, Dηζ〉

with

|ε| ≤ |α|+ |γ| = |α|+ |β|−(m+2) = |α|+2m+1−|α|−m−2 = m−1,

|ν| ≤ |γ| ≤ m− 1 and |η| = m+ 2.

iii) In the case where |α| = m, we see that |β| = 2m+ 1−m = m+ 1.

Analogously, looking at a summand from the second sum in (49) of the form

〈bγ,δDγp,DδζΦ〉,

with |γ| < 2m− 1 and |δ|+ |γ| = 2m, we look at two cases:

i) We can make in the case where |γ| > m− 1 some partial integrations.
There are |γ| − (m − 1) partial integrations necessary to make the
derivatives on the left side of order m − 1. We thus get to a term of
the form

±〈bγ,δDµ p,Dν
(
DδζΦ

)
〉,

where |µ| = m − 1, |ν| = |γ| − (m − 1) ≤ m − 1 and |ν| + |δ| =
(|γ| − (m+ 1)) + (2m− |γ|) = m+ 1.

ii) In the case where |γ| ≤ m− 1, looking at term of the form

〈bγ,δDγp,DδζΦ〉 = 〈bγ,δDγpΦ, Dδζ〉

from (49), where we have |δ| = 2m − |γ| ≥ 2m − (m − 1) = m + 1,
we get with a multiindex ε with ε ≤ δ and |ε| = |δ| − (m+ 1) after |ε|
partial integrations to

±〈bγ,δDε(DγpΦ), Dνζ〉

with |ν| = |δ| − |ε| = |δ| − (|δ| − (m+ 1)) = m+ 1 and

|ε|+ |γ| = |δ| − (m+ 1) + |γ| = 2m− (m+ 1) = m− 1 and

|ε| = |δ| − (m+ 1) ≤ 2m− (m+ 1) = m− 1,

so this can be written as a Z-linearcombination of terms of the form

〈DµpDνΦ, Dηζ〉,

where |µ| ≤ m− 1, |ν| ≤ m− 1 and |η| = m+ 1.
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All together, reviewing all our inspected cases, we find anN ∈ N and numbers
ai,j, bi ∈ Z, i = 1, . . . , N , j = 1, . . . , n, such that with Φ ∈ C∞0 (G) we have:

Bm [w,Φ] =
N∑
i=1

n∑
j=1

〈ai,jDαiuj, D
βiζDγiΦ〉+

N∑
i=1

〈biDδip,DνiζDµiΦ〉,

where |αi| ≤ m, |βi| , |νi| ≤ m + 2, |δi| , |γi| , |µi| ≤ m − 1. So what we

get is the fact that Bm [w, ·] defines an element F from
(
Hm−1,q′

0 (G)
)?

with

‖F‖“
Hm−1,q′

0 (G)
”? ≤ c ‖p‖m−1,q , with a c > 0 depending on G, q, ζ,m and with

an application of Theorem 6.1, we can conclude that

w ∈ Hm+1,q(G), and ‖w‖m+1,q ≤ C ‖p‖m−1,q ,

as ‖w‖0,p can also be estimated against ‖p‖m−1,q as is easily seen from the
definition of w via u, p and ζ.

Theorem 9.8. A weakening of the regularity requirements for ∂G in Theo-
rem 9.7
Let G ⊂⊂ Rn with ∂G ∈ Cm+3 and p ∈ Bm−1,q

0 (G) ∩Hm,q(G), u := T (m)
q (p)

and let

w := u · ∇ζ − 1

2m
pζ ∈ Hm,q

0 (G),

where ζ ∈ Cm+2
0 (Rn) is Weyers’ helpful function from Section 3.1.

Then w ∈ Hm+1,q(G) and there is a constant C = C(m, q,G) such that

‖w‖m+1,q ≤ C ‖p‖m−1,q .

Proof. Looking at the proof of Theorem 9.7, we see that we can take over
the first part of the proof word by word. We also still have here

w := u · ∇ζ − 1

2m
pζ ∈ Hm,q

0 (G).

Then we can take a look at Bm [w,Φ] for Φ ∈ C∞0 (G). As, in our special
setting ∂G ∈ Cm+3, we can just assume ζ to be in Cm+2

0 (Rn), we can not
proceed as in the proof of Theorem 9.7 and integrate partially, landing at the
term 〈∆mw,Φ〉 and calculate ∆mw classically. But we can do the following:
By mollification of ζ ∈ Cm+2

0 (Rn), we find a sequence (ζk)k∈N ⊂ C∞0 (Rn) with
Dαζk → Dαζ uniformly in Rn for every multiindex α with |α| ≤ m+ 2. For
k ∈ N we define

wk := u · ∇ζk −
1

2m
pζk
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and find that wk
k→∞−−−→ w in Hm,q(G). So, we find for Φ ∈ C∞0 (G)

Bm [w,Φ] = lim
k→∞

Bm [wk,Φ]

and for each Bm [wk,Φ] we can do the calculation from the proof of The-
orem 9.7 (as we did not use any of the specific properties of ζ except it’s
differentiability) and find that

Bm [wk,Φ] =
N∑
i=1

n∑
j=1

〈ai,jDαiuj, D
βiζkD

γiΦ〉+
N∑
i=1

〈biDδip,DνiζkD
µiΦ〉,

where |αi| ≤ m, |βi| , |νi| ≤ m + 2, |δi| , |γi| , |µi| ≤ m − 1 are multiindices
and i = 1, . . . , N for an N ∈ N. It is clear that N , the multiindices αi, βi,
γi, δi, µi, νi and the ai,j, bi ∈ Z do not depend on our specific k ∈ N. For
example for the ai,j, bi ∈ Z, we see that they emerge only from our “classical
calculation” and applications of the product rule, and thus these ai,j, bi are
the same for every k.
Consequently, the right hand side tends for k →∞ to

N∑
i=1

n∑
j=1

〈ai,jDαiuj, D
βiζDγiΦ〉+

N∑
i=1

〈biDδip,DνiζDµiΦ〉,

due to the uniform convergence of the ζk to ζ. Then we are again in the
situation we arrived at in the proof of Theorem 9.7 and the rest of the proof
can be done as we did it there.

Theorem 9.9. Let ∂G ∈ Cm+3, p ∈ Bm−1,q
0 (G) ∩Hm+1,q(G). Then

v := ∇w · ∇ζ −
(

div u− 1

2
p

)
∈ Hm,q

0 (G)

and we have

div u− 1

2
p ∈ Hm,q(G)

and there is a constant C = C(m,G, q) > 0 with∥∥∥∥div u− 1

2
p

∥∥∥∥
m,q

≤ C ‖p‖m−1,q (50)
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Proof. v ∈ Hm,q(G) ∩ Hm−1,q
0 (G) can be seen easily: As w ∈ Hm+1,q(G) ∩

Hm,q
0 (G) according to Theorem 9.8, ζ ∈ Cm+2

0 (Rn), we see that ∇w · ∇ζ ∈
Hm,q(G) ∩ Hm−1,q

0 (G). We also have p ∈ Hm−1,q
0 (G) ∩ Hm+1,q(G) and by

Theorem 6.1 (for an explicit application of Theorem 6.1 in this situation,
see our Theorem 10.2), we also have u ∈ Hm,q

0 (G) ∩ Hm+2,q(G) and thus
div u ∈ Hm−1,q

0 (G)∩Hm+1,q(G). All in all, we get v ∈ Hm,q(G)∩Hm−1,q
0 (G).

We want to use now Theorem 9.5 to show that we even have v ∈ Hm,q
0 (G).

So we have to show that for arbitrary s1, . . . , sm−1 ∈ {1, . . . , n} we have
Z1
(
∂s1 . . . ∂sm−1v

)
= 0 almost everywhere on ∂G, where Z1 denotes the trace

operator from Theorem 4.4.
In the following we will make for the sake of clarity and readability the cal-
culations as if the corresponding functions were continuously differentiable
and all the upcoming derivatives continuous up to the boundary. Theo-
rem 9.5 and generalizations of the Theorems 3.1, 3.2, 3.4 justify this way of
calculation. Note that in the proofs to the Theorems 9.7, 9.8, we did not
yet need p ∈ Hm+1,q(G) but only p ∈ Hm,q(G). However, in the following,
p ∈ Hm+1,q(G) is implicitly used: As in the following calculations there occur
derivatives of p of order up to m and we have to be able to determine the
trace of these derivatives, we have to assume here p ∈ Hm+1,q(G).
So look for an x ∈ ∂G at

∂s1 . . . ∂sm−1v(x) = ∂s1 . . . ∂sm−1

(
n∑
l=1

∂lw∂lζ −
n∑
i=1

∂iui +
1

2
p

)
(x) =

= ∂s1 . . . ∂sm−1

(
n∑
l=1

(
∂l

(
n∑
r=1

ur∂rζ −
1

2m
pζ

)
∂lζ

)
−

n∑
i=1

∂iui +
1

2
p

)
(x).

We first want to inspect for x ∈ ∂G

∂s1 . . . ∂sm−1

 n∑
l=1
r=1

∂lur∂rζ∂lζ + ur∂l∂rζ∂lζ

 (x).

As u ∈ Hm,q
0 (G), we see that for x ∈ ∂G we have Dαur(x) = 0 for all α with

|α| < m and thus this expression reduces to

n∑
l=1
r=1

∂s1 . . . ∂sm−1∂lur∂rζ∂lζ(x).

Writing now ∂tζ = Nt and using the fact that for m indices l0, l1, . . . , lm−1 ∈
{0, . . . , n} we have ∂l1 . . . ∂lm−1ut ∈ H

1,q
0 ∩H2,q(G) and thus

∂l0∂l1 . . . ∂lm−1ut = λtl1,...,lm−1
Nl0 on ∂G
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for a suited function λtl1,...,lm−1
defined on ∂G. For the functions λtl1,...,lm−1

we note that we have the following fact (using the notation l̂i to denote the
missing of the index li):

λtl1,...,lm−1
Nl0 = λt

l0,...,bli,...lm−1
Ni, i = 1, . . . , n,

which is simply a direct consequence of

∂l0∂l1 . . . ∂lm−1ut = ∂li∂l0 . . . ∂̂li . . . ∂lm−1ut

and we get

n∑
l=1
r=1

∂s1 . . . ∂sm−1∂lur∂rζ∂lζ(x) =
n∑
l=1
r=1

λrs1,...,sm−1
NlNrNl(x) =

=
n∑
r=1

λrs1,...,sm−1
Nr(x) =

n∑
r=1

∂r∂s1 . . . ∂sm−1ur(x) = ∂s1 . . . ∂sm−1 div u(x).

So, all which is still to be shown is that on ∂G we have

− 1

2m
∂s1 . . . ∂sm−1

n∑
l=1

∂l(pζ)∂lζ = −1

2
∂s1 . . . ∂sm−1(p).

Looking at the left side, we get

∂s1 . . . ∂sm−1

n∑
l=1

∂l(pζ)∂lζ = ∂s1 . . . ∂sm−1

n∑
l=1

(∂lpζ∂lζ + p∂lζ∂lζ) =

= ∂s1 . . . ∂sm−1

n∑
l=1

∂lpζ∂lζ + ∂s1 . . . ∂sm−1p,

as DαpDβ(∂lζ∂lζ) = 0 on ∂G for all |α| ≤ m− 2, as p ∈ Hm−1,q
0 (G) and so,

it remains to show that on ∂G

∂s1 . . . ∂sm−1

n∑
l=1

∂lpζ∂lζ = (m− 1)∂s1 . . . ∂sm−1p. (51)

Because of ζ|∂G = 0 and p ∈ Hm−1,q
0 (G) ∩Hm+1,q(G), we see that on ∂G we

have

∂s1 . . . ∂sm−1

n∑
l=1

∂lpζ∂lζ =
n∑
l=1

m−1∑
j=1

∂s1 . . . ∂̂sj . . . ∂sm−1∂lp∂sjζ∂lζ
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because all other terms resulting from applying ∂s1 . . . ∂sm−1 to ∂lpζ∂lζ have
either the form DαpDβζDγζ with |α| < m− 1 or β = 0.
We get

n∑
l=1

m−1∑
j=1

∂s1 . . . ∂̂sj . . . ∂sm−1∂lp∂sjζ∂lζ =
n∑
l=1

m−1∑
j=1

∂l∂s1 . . . ∂̂sj . . . ∂sm−1pNsjNl.

By defining for the m − 2 indices l1, . . . , lm−2 ∈ {1, . . . , n}, µl1,...,lm−2 to be
the function satisfying on ∂G for all l0

∂l0∂l1 . . . ∂lm−2p = µl1,...,lm−2Nl0 ,

as it is possible by ∂l1 . . . ∂lm−2p ∈ H
1,q
0 (G) with Theorem 4.10, we can write

this as
n∑
l=1

m−1∑
j=1

µs1... bsj ...sm−1NlNsjNl =
m−1∑
j=1

µs1... bsj ...sm−1Nsj .

But we have on ∂G

µs1... bsj ...sm−1Nsj = ∂sj∂s1 . . . ∂̂sj . . . ∂sm−1p = ∂s1 . . . ∂sm−1p,

and thus

m−1∑
j=1

µs1... bsj ...sm−1Nsj =
m−1∑
j=1

∂s1 . . . ∂sm−1p = (m− 1)∂s1 . . . ∂sm−1p.

For the estimate (50), we can at first make use of the variational inequality
from Theorem 9.1: As v ∈ Hm,q

0 (G), we find that

‖v‖m,q ≤ C sup
06=Φ∈Hm,q′

0 (G)

Bm [v,Φ]

‖Φ‖m,q′
=

= C sup
06=Φ∈Hm,q′

0 (G)

Bm

[
∇w · ∇ζ −

(
div u− 1

2
p
)
,Φ
]

‖Φ‖m,q′
=

= C sup
06=Φ∈Hm,q′

0 (G)

Bm [∇w · ∇ζ,Φ]

‖Φ‖m,q′
,

as div u and p are in Bm−1,q
0 (G) and the resulting term can be estimated

against
CC ′ ‖w‖m+1,q ≤ CC ′C ′′ ‖p‖m−1,q ,

according to Theorem 9.8 with the respective constant called C ′′.
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With this fact, we can conclude∥∥∥∥div u− 1

2
p

∥∥∥∥
m,q

=

∥∥∥∥∇w · ∇ζ − (∇w · ∇ζ − (div u− 1

2
p

))∥∥∥∥
m,q

≤

≤ ‖∇w · ∇ζ‖m,q +

∥∥∥∥∇w · ∇ζ − (div u− 1

2
p

)∥∥∥∥
m,q

≤

≤ C ′′′ ‖w‖m+1,q︸ ︷︷ ︸
≤C′′‖p‖m−1,q

+CC ′C ′′ ‖p‖m−1,q ≤ C̃ ‖p‖m−1,q

and estimate (50) is shown.

The rest of the account is easy again: As in Theorem 6.4 we can prove now
with use of Theorem 9.9 and Theorem 9.6 the important

Theorem 9.10. Let ∂G ∈ Cm+3, p ∈ Bm−1,q
0 (G). Then we have

div u− 1

2
p ∈ Hm,q(G)

and there is a constant C = C(m,G, q) > 0 with∥∥∥∥div u− 1

2
p

∥∥∥∥
m,q

≤ C ‖p‖m−1,q (52)

Proof. The proof goes as follows: For p ∈ Bm−1,q
0 (G) we find according to

Theorem 9.6 a sequence pν ∈ Bm−1,q
0 (G) ∩Hm+1,q(G) with

‖pν − p‖m−1,q (G)→ 0.

Applying Theorem 9.9 to Cauchy differences of the pν , we get for the sequence
(div uν − 1

2
pν) with (uν) = T (m)

q (p):∥∥∥∥div uν −
1

2
pν −

(
div uν −

1

2
pν

)∥∥∥∥
m,q

≤ C ‖pν − pµ‖m−1,q

and see that the sequence (div uν − 1
2
pν) is a Cauchy-sequence in Hm,q(G)

and thus has a limit in Hm,q(G). We see by passing to subsequences with
pointwise convergence almost everywhere that this limit must be equal to
(div u− 1

2
p) ∈ Hm−1,q

0 (G) and thus(
div u− 1

2
p

)
∈ Hm,q(G).

For the estimate (52), we see that
∥∥div uν − 1

2
pν
∥∥
m,q
→
∥∥div u− 1

2
p
∥∥
m,q

and

‖pν‖m−1,q → ‖p‖m−1,q and thus the estimate (50) carries over to this case
and we have (52).
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Now we are able to prove the generalized compactness theorem and draw the
important structural conclusions:

Theorem 9.11. Let G ⊂⊂ Rn with ∂G ∈ Cm+3. The operator

Z(m)
q − 1

2
Id : Bm−1,q

0 (G)→ Bm−1,q
0 (G)

is a compact operator.

Proof. We have by Theorem 9.10 the fact that

Z(m)
q − 1

2
Id : Bm−1,q

0 (G)→ Hm,q(G) ∩Bm−1,q
0 (G)

is continuous and by the compact embedding Hm,q(G)→ Hm−1,q(G) we have

the compactness of Z
(m)
q − 1

2
Id : Bm−1,q

0 (G)→ Bm−1,q
0 (G).

As in Theorem 7.1, we get a statement about regularity of eigenfunctions.

Theorem 9.12. Let G ⊂⊂ Rn with ∂G ∈ Cm+3 and λ ∈ R, λ 6= 1
2

and

p ∈ Bm−1,q
0 (G) satisfying Zq(p) = λp. Then for every 1 < r <∞:

p ∈ Bm−1,r
0 (G) and Zr(p) = Zq(p) = λp

Proof. The proof can be done in an analogous fashion to the one of Theorem
7.1. We can make an inductive proof based on the Sobolev Embedding
Theorem and the fact that with an eigenfunction p ∈ Bm−1,q

0 (G) to 1
2
6= λ ∈ R

we have

p =
1

λ− 1
2

(
div u− 1

2
p

)
∈ Bm−1,q

0 (G) ∩Hm,q(G)

with u := T (m)
q (p) and Theorem 9.10. This simple observation assures us as

in the proof of Theorem 7.1 gaining an order of derivatives in each inductive
step compensating the loss of a derivative which is due to application of the
Sobolev Embedding Theorem.

Theorem 9.13. Let G ⊂⊂ Rn with ∂G ∈ Cm+3. Then the operator Z
(m)
q :

Bm−1,q
0 (G)→ Bm−1,q

0 (G) is bijective.

Proof. Again, as in the proof of Theorem 7.2, we see that Z
(m)
q : Bm−1,q

0 (G)→
Bm−1,q

0 (G) is a Fredholm operator and thus, all we have to show is injectivity.

For injectivity, assume Z
(m)
q (p) = 0 for a p ∈ Bm−1,q

0 (G). Then, as p is an

eigenfunction of Z
(m)
q for the eigenvalue 0, we conclude with Theorem 9.12

that we can assume that q = 2. Writing u = T
(m)
2 (p) ∈ Hm,2

0 (G) with

Bm [u,Φ] = Bm−1 [p, div Φ] for all Φ ∈ Hm,2
0 (G),
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and 0 = Z
(m)
q (p) = div u, we see that for Φ := u we get to

Bm [u, u] = 0

and thus it follows u = 0.
We see thus that

Bm−1 [p, div Φ] = 0 for all Φ ∈ Hm,2
0 (G)

and it follows p ∈ Hm−1,2
0,0 (G) ∩N2

m−1(G) (see Theorem 9.3). Thus, by The-
orem 9.3 we can conclude p = 0 and injectivity is shown.

As in the case m = 2 (see Theorem 7.3), we find even continuity of
(
Z

(m)
q

)−1

:

Bm−1,q
0 (G)→ Bm−1,q

0 (G):

Theorem 9.14. Let G ⊂⊂ Rn with ∂G ∈ Cm+3. Then the operator Z
(m)
q :

Bm−1,q
0 (G)→ Bm−1,q

0 (G) is a homeomorphism.

Proof. The proof is essentially the same as the proof of Theorem 7.3.

Remark 9.15. Regarding Theorem 9.4 we also quickly see that Z
(m)
q is even

a homeomorphism if seen as a mapping from Hm−1,q
0,0 (G) to Hm−1,q

0,0 (G).

Definition 9.16. Let G ⊂⊂ Rn with ∂G ∈ Cm+3. Then

M (m)
q (G) := T (m)

q (Hm−1,q
0,0 (G)).

As a generalization of Theorem 7.6 we arrive at

Theorem 9.17. Let G ⊂⊂ Rn with ∂G ∈ Cm+3. For p ∈ Hm−1,q
0,0 (G) there

is exactly one u ∈M (m)
q (G) with

div u = p.

The in this way well defined function

D(m)
q : Hm−1,q

0,0 (G)→M (m)
q (G), p 7→ the unique u ∈M q(G) with div u = p

is continuous.

Proof. The proof goes like the proof of Theorem 7.6.

With Theorem 9.17 now available, we get the accompanying decomposition:

Theorem 9.18. Let G ⊂⊂ Rn with ∂G ∈ Cm+3. Then we have the direct
decomposition

Hm,q
0 (G) = Dm,q

0 (G)⊕M (m)
q (G),

where
Dm,q

0 (G) := {v ∈ Hm,q
0 (G) : div v = 0}

Proof. Again, the proof is a direct consequence of Theorem 9.17, as Theorem
7.8 was a direct consequence of Theorem 7.6.
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10 Some Regularity Theorems

In the following, we will need a kind of variant of Theorem 6.1, which can be
found as Theorem 9.12 in [15], on the pages 157 and 158:

Theorem 10.1. Assume

(1) that m ≥ 1 and k ≥ 0 are integers and that 1 < p, q < ∞ are real
numbers with 1

p
+ 1

q
= 1,

(2) that G ⊂ Rn is a bounded open set with boundary ∂G ∈ C2m+k,

(3) that B is an uniformly elliptic, (m+k)-smooth regular Dirichlet bilinear
form of degree m in G,

(4) that f ∈ Hk,p(G),

(5) that u ∈ Hm,p
0 (G) and that B [u,Φ] = 〈f,Φ〉 for all Φ ∈ C∞0 (G).

Then u ∈ Hm,q
0 (G)∩H2m+k,p(G) and there is a constant γ = γ(n,m, k, p,G,B)

such that
‖u‖2m+k,p ≤ γ(‖f‖k,p + ‖u‖0,p)

Applying Theorems 6.1 and 10.1, we can show the following regularity the-
orem:

Theorem 10.2. Let k ∈ N0, G ⊂⊂ Rn and ∂G ∈ Cm+k+1. Then for p ∈
Bm−1,q

0 (G) ∩Hm+k,q(G) it is:

T (m)
q (p) =: u ∈ Hm,q

0 (G) ∩Hm+k+1,q(G)

and we find a constant C = C(m, k, q,G) > 0 such that

‖u‖m+k+1,q ≤ C ‖p‖m+k,q

Proof. The proof is only the definition of u = T (m)
q (p) and the regularity

Theorems 6.1 and 10.1: As u = T (m)
q (p), we find that for every Φ ∈ Hm,q′

0 (G)
we have

Bm [u,Φ] = Bm−1 [p, div Φ]

or equivalently, for every i ∈ {1, . . . , n} we have for all Φ ∈ Hm,q′

0 (G)

Bm [ui,Φ] = Bm−1 [p, ∂iΦ] .
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So, in the case k < m, we find with k+ 1 partial integrations that Bm [ui,Φ]
can be written as a sum of terms of the form

〈Dαp,DβΦ〉,

where |α| = m − 1 + k + 1 = m + k and |β| = m − k − 1. So, Bm [ui,Φ]

defines for variable Φ an element F from
(
Hm−k−1,q′

0 (G)
)?

with

‖F‖“
Hm−k−1,q′

0 (G)
”? ≤ C ‖p‖m+k,q

and Theorem 6.1 gives us

‖ui‖m+k+1,q ≤ γ

(
‖F‖“

Hm−k−1,q′
0 (G)

”? + ‖ui‖0,q

)
≤ C ′ ‖p‖m+k,q

and thus the Theorem.
For k ≥ m, we use Theorem 10.1 instead:
After m partial integrations, we get that Bm [ui,Φ] can be written as a sum
of terms of the form

〈Dαp,Φ〉,
where |α| = m−1+m = 2m−1 andDαp ∈ Hm+k−(2m−1),q(G) = Hk−m+1,q(G).
So, according to Theorem 10.1, arguing analogously as above, we conclude
that for every i = 1, . . . , n we have

ui ∈ Hm,q
0 (G) ∩H2m+(k−m+1),q(G)

and we find a constant C ′′ such that

‖ui‖m+k+1,q ≤ C ′′ ‖p‖m+k,q

and the desired estimate follows.

With some calculations, we can see that we can apply the Theorems 6.1 and
10.1 to w as in the proof of Theorem 9.7 and get estimates for the higher
derivatives of w. We begin with a version using Theorem 6.1. Let in the
following be m ≥ 2. The case m = 1 actually poses no difficulties, but due
to formal reasons we look at it separately later in Theorem 10.5.

Theorem 10.3. Let m ∈ N, m ≥ 2 and k ∈ N0, k ≤ m − 2 and G ⊂⊂ Rn

with ∂G ∈ Cm+k+4, p ∈ Bm−1,q
0 (G) ∩ Hm+k,q(G) and set u := T (m)

q (p) ∈
Hm,q

0 (G) ∩ Hm+k+1,q(G) (according to Theorem 10.2) and let ζ be Weyers’
function ∈ Cm+k+3

0 (Rn). Further let

w := u · ∇ζ − 1

2m
pζ ∈ Hm,q

0 (G) ∩Hm+k,q(G).
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Then we even find w ∈ Hm+k+2,q(G) and there is a constant C = C(m, k, q,G)
such that

‖w‖m+k+2,q ≤ C ‖p‖m+k,q

Proof. We see that we can proceed as in Theorems 9.7, 9.8: All the assump-
tions except regularity from Theorem 9.7 are fulfilled, but with an argument
as in the proof of Theorem 9.8, we can fix this.
Assuming first (we can get rid of this assumption later exactly as we did it in
Theorems 9.7 and 9.8) that ζ ∈ C2m+1

0 (Rn) we can find with the calculation
from the proof of Theorem 9.7 that for Φ ∈ C∞0 (G) we have

Bm [w,Φ] =
∑

i=1,...,n
|α|<2m

|β|+|α|=2m+1

〈aα,β,iDα uiD
βζ,Φ〉+

∑
|γ|<2m−1
|δ|+|γ|=2m

〈bγ,δDγpDδζ,Φ〉 (53)

with the aα,β,i, bγ,δ ∈ Z. Looking at one term of the form

〈DαuiD
βζ,Φ〉, |α| < 2m, |β| ≤ 2m+ 1, |α|+ |β| = 2m+ 1, (54)

we inspect the following three cases:

i) We see that in the cases where |α| ≥ m+ k+ 1 we can (with an α′ ≤ α
of length |α| − (m+ k + 1)) make

|α′| = |α| − (m+ k + 1) < 2m− k − k − 1 = m− k − 1

partial integrations and get to a term of the form

±〈Dα̃ui, D
α′(DβζΦ)〉

with α̃+ α′ = α and |α̃|+ |α′|+ |β| = 2m+ 1, which can be written as
a sum of terms of the form

±〈Dα̃ui, D
γζDδΦ〉

with |α̃| = |α| − |α′| = |α| − (|α| − (m+ k + 1)) = m+ k + 1,

|γ| ≤ |β|+|α′| = 2m+1−|α|+|α|−(m+k+1) = 2m+1−(m+k+1) =

= m− k and

|δ| ≤ |α′| = |α| − (m+ k + 1) ≤ 2m− 1−m− k − 1 = m− k − 2.
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ii) In the cases where in (54) we have |α| < m+ k + 1, look again at

〈Dαui, D
βζΦ〉 = 〈DαuiΦ, D

βζ〉

with |β| = 2m− 1− |α| > 2m+ 1−m− k − 1 = m− k.

In the subcases where we find |β| ≤ m + k + 2, we are again in a nice
situation.

In the subcases where |β| > m + k + 2, we search a γ ≤ β with
|γ| = |β| − (m+ k + 3) and make |γ| partial integrations leading us to
terms of the form

〈Dγ (DαuiΦ) , Dβ̃ζ〉

with
∣∣∣β̃∣∣∣ = |β|− |γ| = |β|− (|β| − (m+ k + 3)) = m+k+3, |γ|+ |α| =

|β| − (m + k + 3) + 2m + 1 − |β| = m − k − 2 ≤ m + k + 1 and
|γ| ≤ 2m+ 1− (m+ k + 3) = m− k − 2.

So, reviewing all the preceding cases, we can rewrite every term of type (54)
as a Z-linearcombination of terms of the form

〈Dαui, D
βζDγΦ〉,

where |α| ≤ m+ k + 1, |β| ≤ m+ k + 3 and |γ| ≤ m− k − 2.
For variable Φ, each of these terms defines an element (which we call in the

following F ) from
(
H
m−(k+2),q′

0 (G)
)?

and as ζ ∈ Cm+k+3
0 (Rn), we can find

a constant c > 0 such that for every multiindex β with |β| ≤ m + k + 3
we have

∣∣Dβζ(x)
∣∣ < c for all x ∈ Rn and as we have constants C ′i with

‖ui‖m+k+1,q ≤ C ′i ‖p‖m+k,q according to Theorem 10.2, we have validity of an
estimate of the form

‖F‖“
H
m−(k+2),q′
0 (G)

”? ≤ C ‖ui‖m+k+1,q ≤ CC ′i ‖p‖m+k,q .

The terms of the form

〈DγpDδζ,Φ〉 with |γ| < 2m− 1, |δ|+ |γ| = 2m (55)

occurring in equation (53) can be treated in a similar way:

i) In the cases where |γ| ≥ m + k, we can make with a ν ≤ γ of length
|ν| = |γ| − (m+ k) the corresponding partial integrations and arrive at
terms of the form

±〈Dηp,Dν(DδζΦ)〉
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with η + ν = γ, |η| = |γ| − |ν| = m + k, |ν| = |γ| − (m + k) and
|δ| = 2m− |γ|.
By carrying out the Dν-differentiation of the product DδζΦ, we land
at terms of the form

±〈Dηp,DεζDσΦ〉

with

|ε| ≤ |ν|+ |δ| = |γ| − (m+ k) + 2m− |γ| = m− k ≤ m+ k + 2

and

|σ| ≤ |ν| = γ − (m+ k) ≤ 2m− 2− (m− k) = m− k − 2.

ii) In the cases where |γ| < m + k in a term of the form (55), we have
|δ| = 2m − |γ| > m − k. In the subcases where |δ| ≤ m + k + 2,
no problems occur, so look in the following at the subcases where we
have |δ| > m + k + 2. Here, we can make with a ν ≤ δ with |ν| =
|δ|− (m+k+2) the corresponding partial integrations to land at terms
of the form

±〈Dν(DγpΦ), Dεζ〉

with ε + ν = δ, |ε| = |δ| − |ν| = m + k + 2 ≤ m + k + 3, |ν| ≤
2m−(m+k+2) = m−k−2 and |ν|+|γ| = |δ|−(m+k+2)+2m−|δ| =
m− k − 2 ≤ m+ k.

So here, too, we can in every case transform every term of the form (55) into
a Z-linearcombination of terms of the form

〈DαpDβζ,DγΦ〉

with |α| ≤ m + k, |β| ≤ m + k + 3 and |γ| ≤ m − k − 2. Arguing as in the
first part of the proof for the terms involving the ui, we can see here that

these terms define for variable Φ elements from
(
H
m−(k+2),q′

0 (G)
)?

for each of

which we have validity of an estimate of the
(
H
m−(k+2),q′

0 (G)
)?

-norm against

a constant times ‖p‖m+k,q.

All in all, we see that Bm [w,Φ] defines an element F from
(
H
m−(k+2),q
0 (G)

)?
,

too. Moreover, we also get for F an estimate as above.
With Theorem 6.1, we conclude that w ∈ Hm+k+2,q(G) and

‖w‖m+k+2,q ≤ γ
(
C ‖p‖m+k,q + ‖w‖0,q

)
.
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As we can estimate ‖w‖0,q against ‖p‖m+k,q by it’s definition via the ui and
p, we are done.
Concerning the regularity of ∂G needed, we see that we used ζ ∈ C2m+1

0 (Rn)
as in the proof of Theorem 9.7 only to justify classical calculation and in
the end of the calculation we arrive at terms involving derivatives of ζ only
up to order m + k + 3. As in our proof of Theorem 9.8, we can use here
an approximation argument and get the statement even if we just assume
∂G ∈ Cm+k+4.

In order to get a variant of Theorem 10.3 for k > m− 2, we simply have to
use Theorem 10.1 instead of Theorem 6.1.

Theorem 10.4. Let m ∈ N, m ≥ 2, k ∈ N, k > m − 2 and G ⊂⊂ Rn

with ∂G ∈ Cm+k+4, p ∈ Bm−1,q
0 (G) ∩ Hm+k,q(G) and set u := T (m)

q (p) ∈
Hm,q

0 (G) ∩ Hm+k+1,q(G) (according to Theorem 10.2) and let ζ be Weyers’
function ∈ Cm+k+3

0 (Rn). Further let

w := u · ∇ζ − 1

2m
pζ ∈ Hm,q

0 (G) ∩Hm+k,q(G).

Then we even find w ∈ Hm+k+2,q(G) and there is a constant C = C(m, k, q,G)
such that

‖w‖m+k+2,q ≤ C ‖p‖m+k,q

Proof. With the same procedure as in the proof of Theorem 10.3, we get
again to

Bm [w,Φ] =
∑

i=1,...,n
|α|<2m

|β|+|α|=2m+1

〈aα,β,iDα uiD
βζ,Φ〉+

∑
|γ|<2m−1
|δ|+|γ|=2m

〈bγ,δDγpDδζ,Φ〉 (56)

for Φ ∈ C∞0 (G). We see that the functions on the left side of the sums in (56)

aα,β,iD
α uiD

βζ

with |α| < 2m, |β|+ |α| = 2m+ 1 and

bγ,δD
γpDδζ

with |γ| < 2m− 1, |δ|+ |γ| = 2m have derivatives up to order k −m+ 2 in
Lq(G):

• As |α| ≤ 2m − 1, we find Dαui to have derivatives of up to order
m+ k + 1− (2m− 1) = k −m+ 2 in Lq(G).
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• As |γ| ≤ 2m − 2, we find Dγp to have derivatives of up to order m +
k − (2m− 2) = k −m+ 2 in Lq(G).

• As |β| ≤ 2m + 1, we find Dβζ to have classical derivatives of up to
order m+ k + 3− (2m+ 1) = k −m+ 2 bounded in G.

• As ζ ∈ Cm+k+3
(G) and |δ| ≤ 2m, we find Dδζ to have classical deriva-

tives of up to order m+ k + 3− 2m = k −m+ 3 in Lq(G) bounded in
G.

So, also the products (as ζ is classically differentiable) Dα uiD
βζ and DγpDδζ

are in Hk−m+2,q(G). Thus, we have found an f ∈ Hk−m+2,q(G) such that
B [w,Φ] = 〈f,Φ〉 for all Φ ∈ C∞0 (G).
Applying now Theorem 10.1 with k̃ := k −m + 2 playing the role of the k
from Theorem 10.1, we conclude that if ∂G ∈ C2m+k−m+2 = Cm+k+2 (which
is satisfied), we get

w ∈ Hm,q
0 (G) ∩Hm+k+2(G) and there is a constant γ such that

‖w‖m+k+2,q ≤ γ(‖f‖k−m+2,q + ‖w‖0,q)

Again, we can estimate ‖f‖k−m+2,q and ‖w‖0,q because of the consistences of
f and w against ‖u‖m+k+1,q (which can again be estimated against ‖p‖m+k,q)
and ‖p‖m+k,q and thus we get the estimate

‖w‖m+k+2,q ≤ Cγ(‖p‖m+k,q)

with a suited constant C > 0 depending on G,m, k and q.

In Theorems 10.3 and 10.4, we made the distinction between the cases k ≤
m− 2 and k > m− 2 and applied the respective suited regularity Theorem
6.1 or 10.1 which resulted in ignoring the case m = 1. For m = 1, we have
the following regularity Theorem, which is blending well with the regularity
Theorem 10.3 and 10.4:

Theorem 10.5. Let k ∈ N0 and G ⊂⊂ Rn with ∂G ∈ Ck+5, p ∈ B0,q
0 (G) ∩

Hk+1,q(G) and set u := T (1)
q (p) ∈ H1,q

0 (G)∩Hk+2,q(G) (according to Theorem

10.2) and let ζ be Weyers’ function ∈ Ck+4
0 (Rn). Further let

w := u · ∇ζ − 1

2
pζ ∈ H1,q

0 (G) ∩H1+k,q(G).

Then we even find w ∈ Hk+3,q(G) and there is a constant C = C(k, q,G)
such that

‖w‖k+3,q ≤ C ‖p‖k+1,q
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Proof. The proof goes the same way as the proof of Theorems 10.3, 10.4:
Assuming first that ζ is smooth enough, we can do a classical calculation of
∆w and find out that for Φ ∈ C∞0 (G) we have

〈∇w,∇Φ〉 = −〈∆w,Φ〉

and this can be written as∑
i=1,...,n
|α|≤1
|β|+|α|=3

〈aα,β,iDα uiD
βζ,Φ〉+

∑
|δ|=2

〈bδpDδζ,Φ〉, (57)

with suited aα,β,i, bδ ∈ Z which is nothing but the representation (53) from
Theorem 10.3 in the special case m = 1.
Looking at a summand of the form 〈aα,β,iDα uiD

βζ,Φ〉 of the left sum in (57),
we see that the function aα,β,iD

α uiD
βζ on left with |α| ≤ 1 and |β|+ |α| = 3

has weak derivatives in Lq(G) up to order k+ 1, as with ui ∈ Hk+2,q(G) and
|α| ≤ 1 we have Dαui ∈ Hk+1,q(G) and as ζ ∈ Ck+4

0 (Rn) and |β| ≤ 3 we have
Dβζ ∈ Ck+1

0 (Rn).
Furthermore we have an estimate of the form∥∥DαuiD

βζ
∥∥
k+1,q

≤ C(ζ) ‖ui‖k+2,q ≤ C(ζ)C̃ ‖p‖k+1,q

with C̃ according to Theorem 10.2.
Looking analogously at a summand of the form 〈bδpDδζ,Φ〉 with |δ| = 2, we
see that p ∈ Hk+1,q(G) and Dβζ ∈ Ck+4−2

0 (Rn) and thus pDδζ ∈ Hk+1,q(G)
and we have also here an estimate of the form∥∥pDδζ

∥∥
k+1,q

≤ C(ζ) ‖p‖k+1,q .

All in all, we see that with Theorem 10.1, we can conclude as in Theorem
10.4 that

w ∈ H1,q
0 (G) ∩Hk+2,q(G)

and validity of an estimate of the form

‖w‖k+2,q ≤ C ‖p‖k+1,q .

After this, we see with an approximation argument as already used repeat-
edly, that the smoothness of ζ which is needed is ζ ∈ Ck+4

0 (Rn) and thus it
suffices to demand from ∂G to be in Ck+5.
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Theorem 10.6. Let m ∈ N, k ∈ N0 and G ⊂⊂ Rn with ∂G ∈ Cm+k+4,
and let p ∈ Bm−1,q

0 (G) ∩ Hm+k,q(G). Then Z
(m)
q (p) − 1

2
p ∈ Hm−1,q

0 (G) ∩
Hm+k+1,q(G) and with a constant C = C(m, q, k,G) > 0 we have∥∥∥∥Z(m)

q (p)− 1

2
p

∥∥∥∥
m+k+1,q

≤ C ‖p‖m+k,q

Proof. With v := ∇w · ∇ζ − (Z
(m)
q (p) − 1

2
p) ∈ Hm,q

0 (G) as in Theorem

9.9, we see that from v ∈ Hm+k+1,q(G), we could conclude Z
(m)
q (p) − 1

2
p ∈

Hm+k+1,q(G) as ∇w · ∇ζ ∈ Hm+k+1,q(G). This and a respective estimate is
gained again by our Theorems on Elliptic Regularity 6.1, 10.1:
As we have Z

(m)
q (p)− 1

2
p ∈ Bm−1,q

0 (G) ∩Hm,q(G), we find

Bm

[
Z(m)
q (p)− 1

2
p,Φ

]
= 0 for all Φ ∈ C∞0 (G)

and thus
Bm [v,Φ] = Bm [∇w · ∇ζ,Φ] .

As ∇w · ∇ζ ∈ Hm+k+1,q(G), we can conclude with use of Theorems 6.1, 10.1
that v ∈ Hm,q

0 (G)∩Hm+k+1,q(G) and that there are constants C, C ′ and C ′′

such that

‖v‖m+k+1,q ≤ C ‖∇w · ∇Φ‖m+k+1,q ≤ CC ′ ‖w‖m+k+2,q ≤ CC ′C ′′ ‖p‖m+k,q ,

according to Theorems 10.3, 10.4 and 10.5.
Then we notice:∥∥∥∥Z(m)

q (p)− 1

2
p

∥∥∥∥
m+k+1,q

≤
∥∥∥∥∇w · ∇ζ − (Z(m)

q (p)− 1

2
p

)∥∥∥∥
m+k+1,q

+

+ ‖∇w · ∇ζ‖m+k+1,q ≤ C1 ‖p‖m+k,q + C2 ‖p‖m+k,q ≤ C ‖p‖m+k,q

We can now prove the following theorem, which will be very important in
the next section, guaranteeing us the regularity for a Stokes-like system.
The idea of proof of the following theorem and our account to regularity of
our Stokes-like system is due to C. G. Simader, whose program from [13] is
working fine here.

Theorem 10.7. Let m ∈ N, k ∈ N0, G ⊂⊂ Rn with ∂G ∈ Cm+k+3, p ∈
Bm−1,q

0 (G) and u = T (m)
q (p) ∈ Hm,q

0 (G).
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If Z
(m)
q (p) = div u ∈ Hm+k−1,q(G) then we find

p ∈ Bm−1,q
0 (G) ∩Hm+k−1,q(G), u ∈ Hm,q

0 (G) ∩Hm+k,q(G)

and there exist constants C, C ′ > 0, depending on m, k, q and G such that

‖p‖m+k−1,q ≤ C ‖div u‖m+k−1,q (58)

and
‖u‖m+k,q ≤ C ′ ‖div u‖m+k−1,q (59)

Proof. We will show the theorem by induction over k. Starting with k = 0,
we do not have anything to show:
p ∈ Hm−1,q(G) and u ∈ Hm,q(G) are clear and the corresponding estimates
(58) and (59) reduce to

‖p‖m−1,q ≤ C ‖div u‖m−1.q

and
‖u‖m,q ≤ C ′ ‖div u‖m−1.q ,

which are clear by div u = Z
(m)
q (p) and the fact that the operators Z

(m)
q :

Bm−1,q
0 (G) → Bm−1,q

0 (G) and div : M (m)
q (G) → Hm−1,q

0,0 (G) are homeomor-
phisms by Theorems 9.14 and 9.17.
The inductive step: k → k + 1. Assume the claim to hold for k. With
div u ∈ Hm+k,q(G), we find div u ∈ Hm+k−1,q(G) and thus by our inductive
assumption:

p ∈ Hm+k−1,q(G).

Applying Theorem 10.6, we find that Z
(m)
q (p)− 1

2
p ∈ Hm+k,q(G) and thus

p = −2

(
Z(m)
q − 1

2
p

)
+ 2 Z(m)

q (p)︸ ︷︷ ︸
div u∈Hm+k,q(G)

∈ Hm+k,q(G).

By Theorem 10.2, we then find u ∈ Hm,q
0 (G) ∩Hm+k+1,q(G) and a constant

C1 such that
‖u‖m+k+1,q ≤ C1 ‖p‖m+k,q .

Regarding ‖p‖m+k,q, we notice with the triangle inequality

‖p‖m+k,q ≤ 2

∥∥∥∥Z(m)
q (p)− 1

2
p

∥∥∥∥
m+k,q

+ 2
∥∥Z(m)

q (p)
∥∥
m+k,q
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and by Theorem 10.6 again, we see that with a C2 > 0:∥∥∥∥Z(m)
q (p)− 1

2
p

∥∥∥∥
m+k,q

≤ C2 ‖p‖m+k−1,q ≤ C2C3 ‖div u‖m+k−1,q ,

where C3 is according to our inductive assumption.
So, what we get is

‖p‖m+k,q ≤ 2C2C3 ‖div u‖m+k−1,q + 2 ‖div u‖m+k,q ≤

≤ (2C2C3 + 2) ‖div u‖m+k,q ,

which is (58) for k + 1 and thus also

‖u‖m+k+1,q ≤ C1(2C2C3 + 2) ‖div u‖m+k,q ,

which is (59) for k + 1.

Theorem 10.6 also allows us to find out another regularity-result for functions
p ∈ B(m−1),q

0 (G) satisfying the eigenvalue-relation

Z(m)
q (p) = λp, λ ∈ R, λ 6= 1

2
,

saying that these p are as regular as ∂G “allows” them to be:

Theorem 10.8. Let m ∈ N, m ≥ 2, k ∈ N and G ⊂⊂ Rn be a domain with
∂G ∈ Cm+k+4 and p ∈ Bm−1,q

0 (G) with

Z(m)
q (p) = λp

for a λ ∈ R with λ 6= 1
2
.

Then we also have
p ∈ Hm+k+1,q(G).

Proof. By Theorem 9.10, we get Zq(p)− 1
2
p = (λ− 1

2
)p ∈ Hm,q(G) and thus

p ∈ Hm,q(G). Iterated application of Theorem 10.6 proves the theorem.

11 A Stokes-Like System

In this section we will investigate the natural generalization of the Stokes-like
system which was treated by Simader in [17] in the case m = 2, q = 2. As
we are not in the Hilbert space setting from [17], we have to assume more
regularity for ∂G than merely being Lipschitz. We will give solvability and
regularity statements for our generalized Stokes-like system. At first, we
state the problem we are investigating:
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11.1 The Problem

Let m ∈ N, G ⊂⊂ Rn be given with ∂G ∈ Cm+3. Given a functional

F ∈
(
Hm,q′

0 (G)
)?

, we are looking for an u ∈ Hm,q
0 (G) and a p ∈ Hm−1,q

0,0 (G)

such that

Bm [u,Φ] +Bm−1 [p, div Φ] = F (Φ) for all Φ ∈ Hm,q′

0 (G)

and
div u = 0.

11.2 The Solution and Regularity Theorems

With the general theorems from Sections 9 and 10 now available, we can
easily derive unique solvability and regularity theorems for our generalized
Stokes-like system.

Theorem 11.1. Let m ∈ N, G ⊂⊂ Rn with ∂G ∈ Cm+3 and let F ∈(
Hm,q′

0 (G)
)?

. Then there is exactly one pair (u, p) ∈ Hm,q
0 (G) ×Hm−1,q

0,0 (G)

such that

Bm [u,Φ] +Bm−1 [p, div Φ] = F (Φ) for all Φ ∈ Hm,q′

0 (G)

and
div u = 0.

Furthermore, we find a constant C = C(m, q,G) > 0 with

‖u‖m,q + ‖p‖m−1,q ≤ C ‖F‖“
Hm,q′

0 (G)
”? .

Proof. Let’s first show existence of (u, p). Given F ∈
(
Hm,q′

0 (G)
)?

, we find

a v ∈ Hm,q
0 (G) such that

Bm [v,Φ] = F (Φ) for all Φ ∈ Hm,q′

0 (G)

by Theorem 9.1 and we find ‖v‖m,q ≤ C ‖F‖“
Hm,q′

0 (G)
”? . As v ∈ Hm,q

0 (G),

we see that div v ∈ Hm−1,q
0,0 (G) and find by Theorem 9.17 an unique w ∈

M (m)
q (G) = T (m)

q

(
Hm−1,q

0,0 (G)
)

with divw = div v. With Theorem 9.17 we
also see that we have

‖w‖m,q ≤ C1 ‖div v‖m−1,q ≤ C2 ‖v‖m,q ≤ C2C ‖F‖“Hm,q′
0 (G)

”? .
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So, for u := v − w ∈ Hm,q
0 (G), we have div u = 0 and

‖u‖m,q ≤ ‖v‖m,q + ‖w‖m,q ≤ C2C ‖F‖“Hm,q′
0 (G)

”? + C ‖F‖“
Hm,q′

0 (G)
”? =

= (C2C + C) ‖F‖“
Hm,q′

0 (G)
”? .

For p ∈ Hm−1,q
0,0 (G) with T (m)

q (p) = w, we also have by Theorems 9.1 and

9.17 that T (m)
q : Hm−1,q

0,0 (G) → M (m)
q (G) is a homeomorphism and thus we

find a constant C̃ such that ‖p‖m−1,q ≤ C̃ ‖w‖m,q and thus we also have with
a constant C ′

‖p‖m−1,q ≤ C ′ ‖F‖“
Hm,q′

0 (G)
”?

and the desired estimate is shown for (u, p). (u, p) is indeed a solution, for

we see that for Φ ∈ Hm,q′

0 (G) we have:

Bm [u,Φ] +Bm−1 [p, div Φ] = Bm [v − w,Φ] +Bm−1 [p, div Φ] =

= Bm [v,Φ]︸ ︷︷ ︸
=F (Φ)

−Bm [w,Φ] +Bm−1 [p, div Φ]︸ ︷︷ ︸
=Bm[w,Φ]

= F (Φ)

For uniqueness of the solution, we note that if we have two solution pairs
(u1, p1), (u2, p2), the pair (u := u1 − u2, p := p1 − p2) is a solution to the
problem with F = 0. This means div u = 0 and u = −T (m)

q (p), so it follows

Z
(m)
q (p) = div(−u) = 0 and thus p = 0 and u = 0 by injectivity of Z

(m)
q .

By Theorem 9.1, we can represent an element F ∈
(
Hm,q′

0 (G)
)?

by

Bm [v,Φ] = F (Φ) ∀Φ ∈ Hm,q′

0 (G)

with a v ∈ Hm,q
0 (G). We will show a regularity theorem stating the following:

The regularity of the v belonging to F carries over to the regularities of u
and p, the solutions of our problem:

Theorem 11.2. Let m ∈ N, G ⊂⊂ Rn with ∂G ∈ Cm+k+3 and let v ∈
Hm,q

0 (G) ∩ Hm+k,q(G) be given. Then the (by Theorem 11.1 unique) pair
(u, p) ∈ Hm,q

0 (G)×Hm−1,q
0,0 (G) satisfying

Bm [u,Φ] +Bm−1 [p, div Φ] = Bm [v,Φ] for all Φ ∈ Hm,q′

0 (G)

and
div u = 0
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satisfies even (u, p) ∈ Hm+k,q(G)×Hm+k−1,q
0,0 (G) and we get the two estimates

‖w‖m+k,q ≤ C1 ‖v‖m+k,q

and
‖p‖m+k−1,q ≤ C2 ‖v‖m+k,q ,

where C1, C2 > 0 are constants depending on m, k, q and G.

Proof. For the proof, we simply try to go through the construction of the
solution in the proof of Theorem 11.1 and show regularity at each step, using
our already established regularity theorems from Section 10. We will give the
corresponding objects the same name as in the proof of Theorem 11.1. As v ∈
Hm,q

0 (G) ∩Hm+k,q(G), we can define r := div v ∈ Hm−1,q
0,0 (G) ∩Hm+k−1,q(G)

and represent
r = ∆s+ t,

according to Theorem 9.2 with s ∈ Hm+1,q
0 (G) ∩ Hm+k+1,q(G) and t ∈

Bm−1,q
0 (G). Further we have the estimate

‖∆s‖m,q + ‖t‖m,q ≤ C ‖r‖m,q .

The proof of this decomposition is nothing but use of the solvability statement
9.1, solving the problem

Bm+1 [s,Φ] = Bm−1 [r,∆Φ] for all Φ ∈ Hm+1,q′

0 (G),

resulting at
Bm [∆s− r,Φ] = 0 for all Φ ∈ C∞0 (G)

and thus (∆s − r) ∈ Bm−1,q
0 (G). So, regularity of s is simply again elliptic

regularity from Theorems 6.1 and 10.1 leading to

s ∈ Hm+1,q
0 (G) ∩Hm+k+1,q(G)

and then we have also t = r−∆s ∈ Bm−1,q
0 (G)∩Hm+k−1,q(G) and a constant

C with
‖s‖m+k+1,q ≤ C ‖r‖m+k−1,q ≤ C ‖v‖m+k,q

and we also get

‖t‖m+k−1,q = ‖r −∆s‖m+k−1,q ≤ ‖r‖m+k−1,q+‖∆s‖m+k−1,q ≤ (1+C) ‖v‖m+k,q .

Now we can find due to Theorem 9.17 a vector field x ∈ M (m)
q (G) with

div x = t ∈ Bm−1,q
0 (G) ∩Hm+k−1,q(G). As further we have by x ∈ M (m)

q (G)

an f ∈ Hm−1,q
0,0 (G) with T (m)

q (f) = x, we find easily that f ∈ Bm−1,q
0 (G):
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As we have Z
(m)
q (f) = div x = t ∈ Bm−1,q

0 (G), we see by Theorem 9.4 that f
must also be in Bm−1,q

0 (G). Now we can apply Theorem 10.7 and conclude:

f ∈ Hm+k−1,q(G) and x ∈ Hm+k,q(G)

and

‖x‖m+k,q ≤ C ′ ‖div x‖m+k−1,q = C ′ ‖t‖m+k−1,q ≤ C ′(1 + C) ‖v‖m+k,q ,

‖f‖m+k−1,q ≤ C ′′ ‖div x‖m+k−1,q ≤ C ′′(1 + C) ‖v‖m+k,q .

The w from Theorem 11.1 must by uniqueness be equal to ∇s + x and is
thus also in Hm+k,q(G) and

‖w‖m+k,q = ‖∇s+ x‖m+k,q ≤ ‖∇s‖m+k,q + ‖x‖m+k,q ≤

≤ ‖s‖m+k+1,q + ‖x‖m+k,q ≤ (C + C ′(1 + C)) ‖v‖m+k,q

and the p from Theorem 11.1 must be equal to ∆s + f ∈ Hm+k−1,q(G) and
with an analogous calculation as above we get the estimate

‖p‖m+k−1,q ≤ (C + C ′′(1 + C)) ‖v‖m+k,q .
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