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Summary

In the scope of this research study two independent sets of experiments were
carried out using MgFeSiO4+H,0O starting composition and a simple Martian
mantle bulk composition (hydrous FMAS). This thesis addresses three different
effects of iron on the properties of nominally anhydrous transition minerals and
dense hydrous magnesium silicates. Furthermore, the potential presence of dense
hydrous Mg-Fe silicates in the Martian interior and the water storage potential

of a hydrous Martian mantle is evaluated.

1. The effect of iron on the water storage capacity of

ringwoodite

The results show that the water storage capacities of iron-rich ringwoodites
of about 0.4-0.7 wt% HyO are considerably reduced compared to pure
Mg-ringwoodite. Thus, the ringwoodite samples show an inverse correlation of
iron- and water content, implying that the water storage capacity of ringwoodite
decreases towards the Fe-endmember. The magnesium-site octahedra represent
the favoured protonation site in ferroan ringwoodites corresponding to the Mg?*
= 2H" water substitution mechanism. In addition, ferric iron diminishes the
water content of ringwoodites due to the reduction of potential protonation sites.
This is caused by the creation of Mg-site vacancies by the oxidation of iron and
the occupation of octahedral sites by Fe-atoms, which are probably not involved
in water substitution mechanism. These results indicate that less water can be

stored in nominally anhydrous mantle silicates of iron-rich planetary mantles.

2. The effect of iron on the compressibility of hydrous

ferroan ringwoodite

The compressibility of mantle minerals is a decisive parameter that is needed to
understand the seismic structure of planetary interiors, observed by geophysical
analyses. The knowledge of the effect of iron on the compressibility of ringwoodite
is particularly important for the interpretation of the structure of iron-rich
planetary interiors such as the Martian mantle. Measurements at ambient
conditions yield to unit-cell lattice parameters of a = 8.1597(6) A and V =
543.28(13) A3 (run 3854) and a = 8.1384(3) A and V = 539.03(7) A3 (run 4218).
The P-V data were fitted with a second-order Birch-Murnaghan equation of state.
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The first pressure derivative of the bulk modulus, K’, was fixed to the value of 4
yielding to the following refined equation of state parameters: Vo = 543.32(7) A3
and Ky = 186.5(9) GPa (run 3854) and V, = 539.01(5) A% and Ky = 184.1(7)
GPa (run 4218). Structural refinements indicate the presence of significant
octahedral vacancies in sample 4218 due to the presence of 0.1 ferric iron atoms
per formula unit and the substitution of ~0.37 wt% H,0O. However, the values of
bulk modulus of (Mg,Fe),SiO4-ringwoodites found in this study are very similar
to that of the Mg- and Fe-endmember ringwoodite, suggesting therefore that the
Fe substitution has little effect on the compressibility of ringwoodite. This also
suggests therefore that the close-packing of oxygens of the spinel structure is the
major factor in determining its compressibility. This cannot be affected by the

presence of up to 0.1 atoms per formula unit of vacancies.

3. The effect of iron on the stability of hydrous mantle

silicates

The results of the experiments obtained on the two different bulk compositions
show that the stability of ringwoodite is extended down to 9 GPa at 750°C
(MgFeSiO4+H>0) and the transformation pressure of olivine to wadsleyite
(simple Martian mantle composition) is lowered by 2 GPa. The shifts of stability
fields toward lower pressures are possibly caused by the presence of ferric iron
and water. The shift of the olivine-wadsleyite transition would result in an
extended upper mantle transition zone, compared to the anhydrous mantle, and
consequently yield an increased water storage potential of the Martian mantle.
The dense hydrous Mg-Fe silicates, phase D and superhydrous B show stabilities
up to 1300°C at 23 GPa (phase D, MgFeSiO4+H,0O bulk composition) and for
the simple Martian mantle composition up to 1450°C at 20.5 GPa (phase D and
superhydrous B), which represents a higher stability of DHMS than previously
reported. This suggests that phase D and superhydrous B are relevant dense

hydrous Mg-Fe silicates in iron-rich mantles of planetary systems.
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4. The potential presence of dense hydrous Mg-Fe silicates
in the Martian interior and the water storage potential of a

hydrous Martian mantle

The experimental study of hydrous Martian mantle silicates indicates that the
Martian mantle consists basically of upper mantle with olivine, garnet and
pyroxene as well as upper and lower transition zone build up by wadsleyite and
ringwoodite together with pyroxene and majoritic-garnet, respectively. The water
contents of wadsleyite with 0.6 wt% H,O and ringwoodite with 1.1 wt% H,O are
reduced compared to the Mg-endmembers. The Martian transition zone, however,
shows the largest water storage capacity since the upper mantle mineral olivine
accommodates up to 0.3 wt% H,O. Pressure and temperature conditions at the
core-mantle boundary are insufficient to reach the perovskite stability field, i.e. a
lower Martian mantle cannot be expected based on the results presented in this
study. Nevertheless, these results imply that significant amounts of water can be
stored in the Martian transition zone as well as the upper mantle. In addition,
dense hydrous Mg-Fe silicates would be stable up to 1450°C at 20.5 GPa in a
hydrous Martian mantle model. On the basis of thermal evolution models of the
Martian mantle, provided in the literature, and iron partitioning data between
mineral phases and melt it is discussed that dense hydrous Mg-Fe silicates may
form in the Martian interior at P-T conditions corresponding to the lower Martian

transition zone.
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Zusammenfassung

Im Rahmen dieser Doktorarbeit wurden zwei unabhingige Serien von
Experimenten mit einer MgFeSiO4+HsO Gesamtzusammensetzung und einer
vereinfachten Mars-Mantel Gesamtzusammensetzung (wasserhaltiges FMAS
System) durchgefiihrt.

In dieser Arbeit werden drei verschiedene Effekte des Eisens auf die Eigenschaften
von nominell wasserfreien Mineralphasen und dichten wasserhaltigen
Magnesiumsilikaten behandelt (DHMS). Des Weiteren wird die Moglichkeit
des Auftretens dichter wasserhaltiger Magnesiumsilikate im Inneren des Mars
und die potenzielle Wasseraufnahmefahigkeit eines wasserhaltigen Marsmantels
diskutiert.

1. Der Einfluss des Eisens auf die Wasseraufnahmefihigkeit

von Ringwoodit

Die Ergebnisse zeigen, dass die Wasseraufnahmefdhigkeiten von eisenreichen
Ringwooditen (0.4-0.7 gew% H50) im Vergleich zu dem reinen Mg-Endglied
deutlich reduziert sind. Ringwoodit zeigt demnach eine negative
Korrelation zwischen Eisen- und Wassergehalt, so dass eine sehr niedrige
Wasseraufnahmefihigkeit des Fe-Endglieds zu erwarten ist. Magnesium-Oktaeder
stellen die bevorzugten Protonierungspositionen in eisenhaltigen Ringwooditen
dar, entsprechend der Substitution Mg*t = 2H*. Eisen reduziert vermutlich
die Anzahl moglicher Protonierungspositionen auf zwei Arten, zum einen durch
die Bildung von Mg-Leerstellen, als Folge der Eisenoxidation. Zum anderen
scheint Eisen nicht direkt an den Wassereinbaumechanismen beteiligt zu sein,
so dass der Einbau von Fe grundsétzlich die Anzahl der Protonierungsstellen
reduziert. Daher ist zusédtzlich zu beobachten, dass der Wassergehalt durch
dreiwertiges Eisen erniedrigt wird. Diese Resultate deuten an, dass weniger
Wasser in eisenreichen planetaren Ménteln durch nominell wasserfreie Silikate

gespeichert werden kann.

2. Der Einfluss des Eisens auf die Kompressibilitit von

wasser- und eisenhaltigem Ringwoodit

Die Kompressibilitdt von Mantelmineralen ist ein entscheidender Faktor, welcher
zur Interpretation geophysikalischer Daten und seismischer Strukturen von

Planeteninneren benétigt wird. Das Wissen iiber den Einfluss des Eisens

xiv



auf die Kompressibilitit von Ringwoodit ist insbesondere wichtig fiir die
Interpretation der Struktur von eisenreichen planetaren Miénteln, wie zum
Beispiel des Marsmantels. Die Messungen bei Umgebungsbedingungen haben
die Elementarzellen-Parameter a = 8.1597(6) A und V = 543.28(13) A® (Exp.
3854) und a = 8.1384(3) A und V = 539.03(7) A® (Exp. 4218) ergeben. Die
Druck-Volumen-Daten wurden mit einer Birch-Murnaghan-Zustandsgleichung
zweiter Ordnung angepasst. Die erste Ableitung des Kompressionsmoduls
nach dem Druck, K’, wurde auf den Wert von 4 festgelegt, was folgende
verfeinerte Zustandsgleichungsparameter ergibt: V, = 543.32(7) A3 und Ky
— 186.5(9) GPa (Exp. 3854) and V, = 539.01(5) A® und Kpy = 184.1(7)
GPa (Exp. 4218).  Strukturverfeinerungen deuten die Anwesenheit von
erheblichen Oktaeder-Leerstellen in der Probe 4218 an, welche durch die
Oxidation von zweiwertigem Eisen und den Einbau von ~0.37 gew% H,O
entstehen. Die ermittelten Kompressionsmodule von (Mg,Fe),SiO4 Ringwooditen
sind vergleichbar mit den Werten des Fe- und Mg-Endglieds, was darauf
hinweist, dass die Eisensubstitution keinen nachweisbaren Einfluss auf die
Kompressibilitdt von Ringwoodit hat. Des Weiteren lésst sich schlussfolgern,
dass die dichteste Kugelpackung der Sauerstoffatome in der Spinell-Struktur
im wesentlichen die Kompressibilitdt von Ringwoodit bestimmt. Selbst bei 0.1
a.p.f.e. Oktaeder-Leerstellen konnte keine Anderung des Kompressionsmoduls

festgestellt werden.

3. Der Einfluss des Eisens auf die Stabilitat von

wasserhaltigen Mantelsilikaten

Die FErgebnisse der Experimente, welche mit den zwei verschiedenen
Gesamtzusammensetzungen durchgefithrt wurden, zeigen, dass die Stabilitat
von Ringwoodit bei niedrigen Temperaturen (750°C) zu niedrigerem Druck
von 9 GPa erweitert ist (MgFeSiO4+H;0O Gesamtzusammensetzung). Des
Weiteren ist der Transformationsdruck des Olivin-Wadsleyit-Ubergangs fiir
die vereinfachte Marsmantel-Gesamtzusammensetzung um 2 GPa verringert.
Diese Stabilitdtsverschiebungen zu niedrigerem Druck sind vermutlich durch
die Gegenwart von dreiwertigem Eisen und Wasser bedingt. Die Verschiebung
des Olivin-Wadsleyit-Ubergangs wiirde im Vergleich zum wasserfreien System
in einer ausgedehnteren oberen Ubergangszone des Marsmantels resultieren,
was einer erhohten Wasseraufnahmefihigkeit des Marsmantels entsprechen

wiirde. Die dichten wasserhaltigen Magnesiumsilikate, Phase D und
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Superhydrous B, sind bis zu Temperaturen von 1300°C bei 23 GPa (Phase
D, MgFeSiO4+H;0O Gesamtzusammensetzung) und 1450°C bei 20.5 GPa
(vereinfachte Marsmantel-Gesamtzusammensetzung) stabil.  Dies stellt eine
erhohte Stabilidt von dichten wasserhaltigen Magnesiumsilikaten in Hinsicht auf
vorhergehende Literaturdaten dar. Demnach kann angenommen werden, dass
Phase D und Superhydrous B in eisenreichen Ménteln von planetaren Systemen

auftreten konnten.

4. Das potenzielle Auftreten von dichten wasserhaltigen
Magnesiumsilikaten im Inneren des Mars und die

Wasseraufnahmefihigkeit eines wasserhaltigen Marsmantels

Die experimentelle Studie von wasserhaltigen Silikaten in einem Mars-dhnlichen
System zeigt, dass der Marsmantel hauptsichlich aus einem oberen Mantel
mit Olivin, Granat und Pyroxen und einer Uberganszone besteht, welche
aus Wadsleyit und Ringwoodit sowie Pyroxen und Majorit-Granat aufgebaut
ist. Die Wassergehalte von Wadsleyit (0.6 Gew% H0O) und Ringwoodit (1.1
Gew% H,0) sind im Vergleich zu dem Mg-Endglied verringert. Dennoch
zeigt die Ubergangszone des Marsmantels die héchste Wasseraufnahmefihigkeit,
da Olivin nur bis zu 0.3 Gew% H,O im oberen Mantel aufnimmt.
Die Druck-Temperatur-Bedingungen an der Kern-Mantel-Grenze sind nicht
ausreichend, um Perowskit zu stabilisieren, d.h. ein unterer Marsmantel
ist aufgrund der vorliegenden Resultate nicht vorstellbar. Dennoch zeigen
diese Ergebnisse, dass bedeutende Mengen an Wasser in der Uberganszone
und dem oberen Mantel des Mars gespeichert werden koénnen. Zusétzlich
ist zu beobachten, dass die dichten wasserhaltigen Magnesiumsilikate,
Phase D und Superhydrous B, bis 1450°C und 20.5 GPa stabil sind.
Daher wurde auf der Grundlage von thermischen Evolutionsmodellen und
Eisenverteilungsdaten zwischen Mineralphasen und Schmelze das potenzielle
Auftreten von dichten wasserhaltigen Magnesiumsilikaten im Marsinneren
erortert. Diese dichten wasserhaltigen Magnesiumsilikate koénnten im
Marsmantel unter Temperatur-Druck-Bedinungen gebildet werden, die der

unteren Uberganszone des Mantels entsprechen.

xvi



Chapter 1

Introduction

Our blue planet Earth, is unique in the solar system. Earth experienced several
random incidences during its evolution which made life possible. Formed at
a convenient distance from the sun, the collision with a smaller planet which
resulted in the formation of the moon, and tilting of the Earth’s rotation axis
provided a proper rotation velocity to cause balanced temperature distribution
and seasons on Earth. Water is believed to be essential for the origin of life, and
according to our knowledge, Earth is the only planet that fulfills the essential
conditions to retain fluid water on its surface over geological time.

On planet Mars surface features have been observed that are similar to fluvial
structures found on Earth, raising the question of whether fluid water was once
present on Mars. Observations of surface features and geochemistry of Mars
provide evidences for liquid water in previous epochs in Mars’ history. Geological
features like large outflow channels and transported material associated with
sedimentation present on the Martian surface provide the evidence that water was
released from within the crust. The atmospheric and climatic conditions on Mars
do not allow liquid water on the surface, therefore quickly released large quantities
of water are necessary to form these channels and to flow certain distances before
freezing (Jakosky and Phillips 2001). The water was probably once stored in the
Martian interior and then liberated to the surface. To understand this process,

knowledge of Martian mantle structure and stability of hydrous phases is required.



1. INTRODUCTION

1.1 The accretion and evolution of Mars

The origin of water on Mars

The origin of water on terrestrial planets is assumed to result from the water
content of about 12 wt% HoO of the chondrite material that accreted during
planet formation (Dreibus et al. 1997). Later, additional water was delivered to
terrestrial planets by impacts during the “late veneer phase”. Clear evidence is
found for an existence of water on Mars such as hydrated minerals on the surface
and fluviatile outflow channels, however the water liberation processes, and the

water storage potential remain unknown.

The Martian evolution after accretion including differentiation, and thermal
evolution, is uncertain and different models exist. Elkins-Tanton (2008) proposed
a model of magma ocean solidification, which shows the progressive solidification
of a magma ocean and the subsequent overturning to form the crust, and a
stably stratified mantle with respect to density. As the magma ocean crystallises,
denser crystals will sink, and less dense crystals float. During this fractional
crystallisation the residual melt will be enriched in iron and volatiles such as
water. Thus, even small initial water contents may result in significant amounts
of water in the Martian mantle stored by the nominally anhydrous mantle

minerals.

The thermal evolution of Mars

Thermal evolution models of the Martian interior depend essentially on model
parameters and as a result different thermal evolution paths are reasonable for
Mars. The Martian thermal gradient and the P-T conditions at the core-mantle
boundary are determined by the physical state, and the size and the composition
of the Martian core. These parameters are still unconstrained and the thermal
structure of the Martian interior remains uncertain. Nevertheless, different
thermal evolution models were presented by Spohn et al. (2001), who showed
that the mantle temperatures depend strongly on the mantle heat transfer
connected to particular environments such as plate tectonics, or the development
and constitution of the lithosphere. According to the different thermal history

models, the mantle temperatures are assumed to be between 1500 K and 2000
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Figure 1.1: Thermal evolution models of the Martian mantle
temperatures as a function of time - showing the different mantle temperatures
due to different heat transfer models connected to particular environments (from
Spohn et al. 2001).

K (plate tectonic model and stagnant lid model, respectively, Figure [1.1]).

The current areotherm (Martian thermal gradient, Figure [1.5) was
experimentally determined by Fei and Bertka (2005), based on the melting
relations in a model Martian core composition, and the physical state of the
core. The P-T conditions at the Martian core-mantle boundary are assumed to
be ~1800 K for an entirely liquid core at 23 GPa (Williams and Nimmo 2004).
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1.2 Earth and Mars - Mineralogical structure of

planetary interiors

I. Earth’s mineralogical inner structure

According to the current static model, planet Earth is composed of several shells
- crust, upper mantle, transition zone, lower mantle, outer and inner core -
each of which consist of different mineral assemblages (Figures , . The
upper mantle mainly consists of olivine accompanied by smaller fractions of
garnet, clino- and orthopyroxene. With increasing pressure and temperature,
i.e. increasing depth in planetary interiors, mineral phases undergo phase
transformations, which result in changes of structural and physical properties
such as density and compressibility. First of all the density, but also the
compressibility of mineral phases determine the velocity of compressional waves
travelling through planetary interiors. Relatively sharp phase transformations,
which result in density changes, cause jumps in seismic wave velocities that are
detected by geophysical observations, the so called seismic discontinuities. At
approximately 14 GPa olivine transforms to a denser high-pressure polymorph
wadsleyite with a higher density and bulk modulus K ~ 170 GPa (Jacobsen 2006).
Because of the lower compressibility than olivine (K ~ 130 GPa, Jacobsen 2006),
this results in increasing elastic-wave velocities at the upper mantle-transition
zone boundary. This phase transformation marks the beginning of the mantle
transition zone and the 410 km seismic discontinuity. At higher pressure,
wadsleyite transforms to denser cubic ringwoodite at 17.5 GPa. Garnet, clino-
and orthopyroxene are stable at upper mantle conditions, while orthopyroxene
starts to breakdown and is accommodated as the majorite component in the
garnet structure. Clinopyroxene also enters the garnet structure at higher
pressure. The incorporation of orthopyroxene and clinopyroxene components
increases with increasing pressure and temperature such that the majoritic
component increases in garnet until almost pure majorite exists in the transition
zone (Frost 2008).

Wadsleyite and ringwoodite, the high pressure polymorphs of olivine,
dominate the transition zone together with majorite-garnet down to a depth
of 660 km. The decomposition of ringwoodite and the transformation of
majorite-garnet into the lower mantle mineral assemblage of magnesium silicate

perovskite, ferropericlase and calcium silicate perovskite results in another major
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seismic discontinuity at 660 km depth (Figures . The lower mantle region
extends down to the core-mantle-boundary at 2,900 km depth (Figure . The
Earth’s core is subdivided into a molten outer core made of iron with 10% of light
elements (S, C or O) and a solid inner core consisting of Fe-Ni alloy (Lodder &
Fegley 1998). An important issue is the global water cycle in order to understand
the dynamics of the Earth’s interior and to interpret geophysical observations.
Subduction zones are crucial for the transport of water to deep mantle regions.
Hydrated minerals in subduction slabs undergo either phase transformations
to form the “Dense hydrous magnesium silicates” at lower temperature, or
decompose with the release of water at higher temperature. Several experimental
studies at high P-T showed that the nominally anhydrous mantle minerals have
the potential to store the water released by the decomposition of hydrated
minerals. The largest amount of accommodated water of up to 2.4 - 3.3 wt% H,O
was determined for ringwoodite and wadsleyite (Kudoh et al. 1996; Kohlstedt et
al. 1996; Smyth et al. 2005). These results demonstrate that there is an enormous
water storage capacity for the Earth’s upper mantle and transition zone (Smyth
& Jacobsen 2006).
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Figure 1.2: Mineralogical Structure of the upper 1000 km Earth’s mantle
- Mineral assemblages of pyrolitic mantle along the oceanic geotherm (small yellow
and beige in the upper right corner represent feldspar and spinel stabilities); from
Frost (2008).
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1.2 Earth’s and Mars’ mineralogical structure

II. Mars’ mineralogical inner structure

Mars is the outermost planet of the terrestrial planets in our solar system.
Mars, with a radius of 3390 km, has almost half the size of Earth (Figure [1.3)).
Fundamental knowledge on Mars was gained by Martian missions, and meteorite
examinations.  Dreibus and Winke (1985) derived a compositional model
for the Martian mantle based on element correlations between the measured
element ratios of SNC meteorites (Martian meteorites), and chondritic element
abundances. This method to derive the model composition is independent
of Mars” moment of inertia, which makes this model suitable as basis for

experimental studies of planet Mars.
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Figure 1.4: Mineralogical Model and thermal gradients (areotherm) of
the Martian interior (Bertka and Fei 1997) - (a) Relative mineral phase
abundances as a function of pressure along the areotherm of Mars indicated by line
a (L.4b); (b) Thermal gradients of the Martian interior assuming a liquid Martian
core after Longhi et al. (1992) - line a; assuming a solid core after Longhi et al.
(1992) - line b; assuming liquid core after Fei & Bertka (1996) - line c; black circles
- experiments by Bertka & Fei 1997 (Dreibus and Wénke (1985) Martian mantle
composition), Core-mantle boundary after Fei et al. (1995), silicate-perovskite
transition boundary after Ito & Takahashi (1989)(dashed line).
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Experimental data by Bertka and Fei (1997) concerning the determination
of Martian mantle mineralogy is based on the Dreibus & Winke (1985)
compositional Martian mantle model. This model depends on geochemical
and geophysical assumptions, while all models predict that the mantle bulk
composition is more iron-rich than the Earth’s mantle. Mars is considered to
have a layer structure, like Earth, consisting of crust, silicate mantle and core.
Figure shows a simplified structure of the Martian interior since the actual
position of the upper mantle - transition zone boundary and the presence of a
lower mantle are still poorly constraint because the depth of these boundaries
depends on the assumed thermal gradient. Mantle mineralogy is predicted to
be similar to that of Earth (Figure [1.4). Bertka and Fei (1997) constrained the
model mineralogy as a function of pressure on the basis of their experiments
along the modeled areotherm, assuming a liquid Martian core after Longhi et al.
(1992) with sulfur-rich compositions (Figure [1.4). More recent publications by
Stevenson (2001) and Yoder et al. (2003), however, point out that the current
Martian core is potentially divided into outer liquid and inner solid core. Further
publications suggest the occurrence of the core-mantle boundary (CMB) at 23
GPa and 1800 K (Fei and Bertka 2005, Williams and Nimmo 2004).
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Figure 1.5: Model of the Martian thermal gradient - Core-mantle boundary
(CMB) after Fei and Bertka (2005), thermal gradients (areotherms) after Fei and
Bertka (2005)(FB05); black solid line - temperatures of liquidus loop intersections
for sulfur contents of the core (Stewart et al. 2007); red solid lines - core areotherms
of Bertka and Fei (1997)(BF97), Williams and Nimmo (2004)(WN04), Hauck and
Phillips (2002)(HP02)



1.2 Earth’s and Mars’ mineralogical structure

Figure [1.5 shows a recent thermal gradient of the Martian interior, which
supports an areotherm similar to the thermal gradient indicated by line b in
figure [1.4p. On the basis of the current mineralogical structure of Mars (Bertka
and Fei 1997), the Martian upper mantle is interpreted to be dominated by olivine
(58%) and minor fractions of ortho- and clinopyroxene (18 and 14%) as well as
garnet (10%). At ~10 GPa, corresponding to 800 km depth, orthopyroxene (opx)
enters as the majorite-component into the garnet (gt). Olivine (ol) transforms to
its high pressure polymorph wadsleyite (wd) at 14 GPa. With increasing pressure
up to 17 GPa, wadsleyite transforms to ringwoodite (rw) and clinopyroxene (cpx)
enters the garnet structure by creating majoritic-garnet (Maj). According to the
model of Bertka and Fei (1997), the Martian mantle transition zone is composed
of 50-60 wt% ringwoodite and 50-40 wt% majoritic garnet between 17 - 22 GPa
(1300 - 1800 km depth). Both mineral phases transform to Mg-perovskite and
magnesiowiistite at 22 GPa, forming a thin lower mantle (Figure [1.4).
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1.3 Wadsleyite and Ringwoodite - Nominally
Anhydrous Minerals in the Earth’s and

Martian transition zones

The mineral phases of the Earth’s transition zone, such as wadsleyite and
ringwoodite, came into special focus after Smyth (1987) showed that water can
be accommodated in their structures. Smyth (1996) suggested that about 4
times the amount of present-day ocean water can be stored in the transition zone,
if ringwoodite and wadsleyite were fully hydrated. The water is accommodated
by certain cation substitution mechanisms, resulting in defect structures of the

nominally anhydrous minerals (NAMs).

I. Wadsleyite

At 14 GPa and 1200°C, forsterite transforms to Mg,SiO4-Wadsleyite, which
has an orthorhombic structure, space group Imma. This transition corresponds
right to the conditions for the 410 km discontinuity. Olivine with 20 mole%
FeySi04 transforms at about 13 GPa and 1600°C into a mixture of wadsleyite and
olivine, with olivine Mg-richer than wadsleyite. Along the MgySiO4-FesSiOy solid
solution, with an increasing Fe,SiO, fraction > 40 mole % Fe,SiOy4, wadsleyite
becomes instable and olivine transforms to a mixture of olivine and ringwoodite
(Figure . The maximum iron content of wadsleyite is about 40 mole% Fe,SiOy4
at Earth’s geotherm conditions (~13 GPa and ~1700°C, Figure . The crystal
structure of wadsleyite consists of three octahedral sites with alternating M1 and
M2 edge-sharing octahedra stacked along the b-axis and M3 double chains parallel
to the a-axis. Octahedra-chains are corner-linked to Si;Os-dimers parallel to
the b-axis (Figure . The iron-substitution in wadsleyite occurs preferentially
in the M1 and M3 octahedral site while Fe is depleted in M2 octahedral sites
(Finger et al. 1993). Potential hydration sites of Mg-wadsleyite are possible
for all oxygen atoms. Hydroxyl ions are highly disordered in wadsleyite with
>0.8 wt% H2O and occupy at least 14 distinct atomic environments (Kohn et
al. 2002). Four potential hydration positions can be assigned for wadsleyite
with lower water content (<0.8 wt% H20), connected to O1, 02, O3 and O4
sites. Hydration of wadsleyite is mainly arranged by protonation of the O1
atom of the M3 site (Figure , an unusual non-silicate oxygen atom, which

is charge balanced by cation vacancies, mainly by Mg-vacancies (M3 site) and

10



1.3 Wadsleyite and Ringwoodite

subordinately by Si-vacancies. Full hydration of the O1 site corresponds to a
theoretical water content of up to 3.3 wt% HoO (Smyth 1987; Smyth et al.
1997). The O2 oxygen atom is also a possible protonation position with two
potential hydrogen sites (Downs 1989). Further possible sites for hydrogen are
the O3 and O4 oxygen atoms if nearby Mg-sites are vacant (Ross et al. 2003).
Synthesised Mg;go-wadsleyite contains up to 3.1 wt% HoO (Inoue et al. 1995),
whereas Fogp-wadsleyite accommodates up to 2.4 wt% HyO (Kohlstedt et al.
1996). In addition, ordering of vacancies with divalent cations and Si in two
non-equivalent M3 octahedral sites may lead to a deviation from orthorhombic
symmetry resulting in a monoclinic structure of hydrous wadsleyite, space group
I2/m (Smyth et al. 1997). However, Smyth et al. (1997) suggested that this
monoclinic structure of hydrous wadsleyite is limited to an iron content of <8
mole% Fe,SiOy4, thus the orthorhombic structure of hydrous wadsleyite, space
group Imma, is more likely in iron bearing systems like Earth and Mars (Figure
1.8). Smyth and Kawamoto (1997) reported a second structure for hydrous
Fogp-wadsleyite, wadsleyite II, with orthorhombic Imma structure. Unit cell
parameters as a- and c-axes are similar to wadsleyite while the b-axis is 2.5
times that of wadsleyite (~29 A). Wadsleyite II contains up to 2.8 wt% H,0, and
was synthesized at 18 GPa and 1400°C (Smyth and Kawamoto 1997).
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Figure 1.6: Pressure-composition diagram of the Mg,SiO4-FesSiO, solid

solution at geotherm conditions - (Gasparik 2003).
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Figure 1.7: Hydrous Mg-wadsleyite - orthorhombic Imma structure, with
three octahedral sites M1, M2 and M3 as well as tetrahedral site Si; left - c-axis
normal to paper plane with a-axis vertical and b-axis horizontal (in paper plane),
right - c-axis vertical and a-b plane horizontal; white circles indicate protonation of
the O1 site of M3 double chains (Smyth 2006).

Figure 1.8: Hydrous wadsleyite II - orthorhombic Imma structure with a- and
c-axes similar to wadsleyite, b-axis is 2.5 times that of wadsleyite (~29 A) and

contains isolated SiO4 as well as SioO7 groups (Smyth 2006).
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II. Ringwoodite

Ringwoodite the highest pressure polymorph of olivine, has a cubic normal
spinel structure, space group Fd3m, with one distinct crystallographic site for
each element. The ringwoodite structure is build up by sequences of OT-layers
(MgOg octahedron and SiO4 tetrahedron) and O-layers (MgOg octahedron)
stacked along the [111] direction (Figure [I.9). The oxygen atoms are arranged
in cubic close packing (ccp) with silicon occupying the tetrahedral interstitial
site and magnesium the octahedral interstitial site, respectively (Blanchard
et al.  2009). The wadsleyite to ringwoodite transformation occurs at 20
GPa and 1600°C for the Mg-endmember composition. Ringwoodite forms
a solid solution between the Mg- and Fe-endmember. With increasing iron
fraction along the Mg,SiOy4-Fe;SiO4 solid solution the transformation pressure for
ringwoodite is shifted toward lower pressure (see also Koch et al. 2004). Hydrous
Mg-ringwoodite possesses the same cubic structure Fd3m as the anhydrous
analogue. Ringwoodite accommodates up to 2.7 wt% HyO (Kohlstedt et al.
1996). The major protonation mechanism of Mg- and (Mgg goFeq 11)-ringwoodite
are octahedral site vacancies (Smyth et al. 2003). However, hydration occurs
for both octahedral and tetrahedral edges (Kudoh et al. 2000; Kohlstedt et
al.  1996), while protonation of the fully occupied tetrahedral site requires
partial occupancy of the tetrahedral site by magnesium, thus hydrous ringwoodite
potentially shows Mg-Si disorder (Kudoh 2000; Smyth et al. 2004). Density
functional theory calculations predict possible proton positions in hydrous
Mg-ringwoodite (Blanchard et al. 2009) these include cation vacancies and
Mg-Si disorder (Figure [1.10). Four defect configurations are suggested involving
[Varg(OH)s)*, Mg-vacancies with protons bound to opposite oxygen atoms of the
vacancy, [Vg;(OH)4|*, Si-vacancies with OH-bonds close to the tetrahedral edges,
[Mgs:(OH)2]*, Mg-substitution for Si in the tetrahedral site compensated by
two protons and [V, (OH)sMgg;Sing|*, Mg-Si disorder with nearby Mg-vacancy

causing protonation of two octahedral oxygen atoms.
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OT-layer

O-layer

Figure 1.9: Ringwoodite structure - dark gray - Si-tetrahedron, gray -
Mg-octahedron arranged in OT and O-layers stacked along [111].

Figure 1.10: Possible proton positions in hydrous Mg-ringwoodite and
associated defects - (a) [Varg(OH)2|*, (b) [Vsi(OH)4|*, (c) [Mgsi(OH)2)*, (d)
[Varg(OH)2Mgg;Sing|*; unlabeled atom denote oxygen atoms (Blanchard et al.
2009).
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The density and compressibility of ringwoodite determine the characteristics
of the lower part of the mantle transition zone e.g. compressional wave
velocities (Figure [L.11). Anhydrous and hydrous Mg,SiO4 ringwoodites have
been studied intensively using different techniques like Brillouin spectroscopy,
ultrasonic interferometry and X-ray diffraction (Hazen 1993; Inoue et al. 1998;
Jackson et al. 2000; Yusa et al. 2000; Li 2003; Sinogeikin et al. 2003; Wang et al.
2003; Jacobsen et al. 2004; Manghnani et al. 2005; Jacobsen and Smyth 2006).
Jackson et al. (2000) and Li (2003) determined an isothermal bulk modulus, Ky,
of 185 GPa for dry Mg-ringwoodite using Brillouin spectroscopy and ultrasonic
interferometry, respectively. Anhydrous iron-bearing ringwoodite with up to
10 mol% iron appears to have a slightly higher bulk modulus (Kro = 188(3)
GPa) than the pure Mg-endmember (Sinogeikin et al. 2003), although given
the uncertainties, the difference is negligible. Anhydrous pure iron-endmember
ringwoodite measured in DACs shows a distinctly higher bulk modulus of 207(3)
GPa (Hazen 1993). In contrast, hydrous Mg-ringwoodite with 2.3 wt% H,O
has a smaller isothermal bulk modulus with Kz ranging between 155(4) and
165.8(5) GPa (Inoue et al. 1998, Wang et al. 2003a). Powder X-ray diffraction
data of hydrous Mg-ringwoodite with 2.8 wt% H,O also resulted in a significantly
smaller bulk modulus of 148(1) GPa (Yusa et al. 2000). Isothermal bulk modulus
of hydrous ferroan ringwoodite (~1 wt% H20; 11 atom% iron) was determined
using ultrasonic interferometry and powder X-ray diffraction and ranges from
175(3) to 177(4) GPa (Manghnani et al. 2005; Jacobsen et al. 2004; Jacobsen
and Smyth 2006). Thus data suggests, that water and iron-substitution into

ringwoodite has opposite effects on the compressibility.
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Figure 1.11: Preliminary Reference Earth Model - illustrating the density
and seismic wave velocities as a function of depth (Anderson 2007 after Dziewonski
and Anderson 1981).
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1.4 Dense hydrous magnesium silicates (DHMS)
- the Alphabet phases

At temperatures below the normal geothermal gradient dense hydrous magnesium
silicates have been synthesised in high-pressure experiments (Figure . These
phases are referred to as the “alphabet phases”. Alphabet phases may play an
important role for water transport into the mantle, if temperatures in subducted
slabs are well below the geothermal gradient. In such a case, the phases called
superhydrous B and phase D are most important for water transport into the
transition zone and even into the lower mantle, because these hydrous phases
show the highest pressure stability (Shieh et al. 1998). Therefore, superhydrous
B (SHyB) and phase D are a focus of this study. However, SHyB and phase D
form at ~16 GPa by transformation from other hydrous phases such as phase
A. Therefore, phase A represents also an important component for the potential

water transport in subduction slabs at lower pressures.
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Figure 1.12: Molar ternary diagram of the dense hydrous magnesium
silicates - showing compositions and their variations; abbreviations are AnB -

anhydrous B, sB - superhydrous B, En - enstatite, « - olivine (Frost 1999).
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1.4 Dense hydrous magnesium silicates (DHMS)

I. Phase D

Phase D was first observed by Yamamoto & Akimoto (1977) and Liu (1986) in
high-pressure studies of the MgO-5i05-H50 system. The ideal formula of phase
D is MgSiosH5Og4, but it can show variable compositions and water contents of
10-18 wt% HoO (Yang et al. 1997). The crystal structure described by Yang
et al.  (1997) consists of hexagonal close packed oxygens (hcp) with silicon
and magnesium occupying octahedral interstitial sites. Phase D has trigonal
symmetry, space group P31m, with unit-cell parameter a = 4.7453(4) A, ¢ =
4.3450(5) A and V = 84.74(2) A3. SiOg and MgQyg octahedra are arranged in two
separate layers stacked along the c-axis. One layer is built up by edge-sharing
SiOg octahedra to form a brucite-like layer, in which one of three octahedral sites
is vacant. The second layer bridges between the SiOg layers and is made of MgQOg
octahedra, with two of three octahedral sites vacant. The MgQOg octahedron is
located above and below the vacancies of the SiOg layer (Figure [1.13)). The O-H
bonds occur exclusively in the MgQOg layer. Phase D is stable from 15 up to 50
GPa (Frost & Fei 1998, Frost 1999) with a maximum thermal stability of 1300°C
at 23 GPa (Ohtani et al. 2000) for the MgsSiOy4 + 15 wt% H2O bulk composition.

Figure 1.13: Crystal structure of phase D - view along c-axis; small spheres
- Hydrogen-atoms, large spheres - Magnesium-atoms, shaded octahedron - SiOg,
unshaded octahedron - MgOg (Yang et al. 1997).
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1. INTRODUCTION

II. Superhydrous B

Superhydrous B (SHyB) was first observed by Gasparik (1990) and has been
synthesised between 15 - 23 GPa and 800-1400°C. ShyB crystallises in the
orthorhombic space group Pnnm, with the mineral formula Mg;(SisH,O1g
containing 5.8 wt% H,0, and unit-cell parameters a = 5.0894(6) A, b =
13.968(7) A ¢ = 8.6956(2) A and V = 618.15 A® (Pacalo and Parise 1992).
The structure consists of an ordered intergrowth of two layers alternating
along the b-axis (Figure . One layer is made of Mg-octahedra and
Si-tetrahedra, consequently called OT-layer. The other layer is called O-layer
and is exclusively made up of Mg and Si in octahedral coordination. Two
OT-layers are interconnected by one O-layer, while the H is located in the

OT-layer bonded to the oxygen atoms around Mg (Pacalo and Parise 1992).

[100]
‘ [001]

Figure 1.14: Crystal structure of superhydrous B - showing protonation (red
spheres) of the OT-layer and O-layer with blue shaded Si-sites and yellow shaded
Mg-sites (Crichton and Ross 2005).
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1.4 Dense hydrous magnesium silicates (DHMS)

I11. Phase A

Yamamoto and Akimoto (1974) determined the mineral formula, Mg;SioHgO14
(12 wt% Hy0), of a hydrous phase designated “phase A” by Ringwood and Major
(1967). It crystallises in hexagonal space group P63, with unit-cell parameters

a = 7.8603(2) A, ¢ = 9.5730(2) A and V = 512.22 A® (Horiuchi et al. 1979). The
stability field of phase A extends from 3-17 GPa with the maximum temperature
of 1100°C at 11 GPa. The structure of phase A consists of slightly distorted ABCB
packing of anions (O*~ and OH™) with Mg occupying 50% of the octahedral sites
and Si filling 1/14" of the tetrahedral sites. Two distinct layers are stacked
along the c-axis (Horiuchi et al. 1979). In the first layer one M(2) octahedron
shows edge-sharing with another M(2) octahedron forming a M3O;5 group. These
groups are linked to one another by the M(3) octahedron. The Si(1) tetrahedra is
located in the interstices of this network sharing corners with M(2). The second
layer is build up by M30;3 groups of three edge-sharing M(1) octahedra (Figure
[1.15)). These groups are interconnected by sharing corners with Si(2) tetrahedra
(Horiuchi et al. 1979). Kagi et al. (2000) identified two hydrogen positions
connected to O2 and O4 positions in the M(1) layer of phase A.

Figure 1.15: Crystal structure of phase A - two alternating layers along the
c-axis: M2 M3013 groups are centered around the edges of the unit cell (upper), blue
shaded - Si-tetrahedra, yellow shaded - Mg-octahedra (Crichton and Ross 2005).
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1. INTRODUCTION

IV. Stabilities of Dense hydrous magnesium silicates

The pressure-temperature stability of superhydrous B and phase D depends on
the water content of the bulk composition. Ohtani et al. (1995) and Kanzaki
(1991) showed that phase D forms at pressures of 15 GPa for a MgySiO, +
20 wt% Hy0O bulk composition. The stability of phase D is shifted to higher
pressure with decreasing water content of the bulk composition (Ohtani et al.
2000). The formation temperature of phase D decreases from ~1400°C to <600°C
between 19 and 24 GPa with decreasing water content of the bulk composition.
Superhydrous B shows less variations of the stability and is stable at higher
temperatures than phase D. Figure[l.16/shows the phase relations for the Mg,SiO,
+ 5 wt% HyO, MgySiOy + 11 wt% HyO and MgySiO4 + 15 wt% HyO bulk
compositions as a function of pressure and temperature. The occurrence of phase

D and superhydrous B based on experimental data is also plotted.
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Figure 1.16: Phase relations for the Mg,SiO4 + 5 wt% H0 (a), Mg,SiOy
+ 11 wt% H-20 (b) and Mg>SiO4 + 15 wt% H-20 (c¢) bulk composition
- abbreviations are L - liquid, E - phase E, St - stishovite, Pv - perovskite, R -
ringwoodite, W - wadsleyite, Pc - periclase, Il - ilmenite, G - phase D (also refered
to phase G/F), SuB - superhydrous B and Bc - brucite (from Ohtani et al. 2000).
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1.4 Dense hydrous magnesium silicates (DHMS)
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1. INTRODUCTION

1.5 Motivation

Wadsleyite and ringwoodite, the high pressure polymorphs of olivine, are
supposed to be the most abundant mineral phases in the Earth’s mantle transition
zone. Both minerals have been studied intensively due to their potential
importance for the global water cycle. Although ringwoodite and wadsleyite
are nominally anhydrous minerals, they are able to accommodate up to 2.4 - 3.3
wt% HoO (Kudoh et al. 1996; Kohlstedt et al. 1996; Smyth et al. 2005), implying
that Earth’s transition zone has an enormous water storage capacity.

Present knowledge about mineral properties and crystallographic details,
however, are based on experimental data obtained on magnesium-rich or pyrolitic
compositions relevant for the Earth. Comparably little is known about phases,
their stabilities and water contents in iron-rich systems that are more relevant
for planet Mars. As previously mentioned, wadsleyite shows a limited stability
with increasing Fe,SiO4-fraction, however the incorporation of Fe3t stabilises
wadsleyite to iron-richer compositions. This effect of the valence state of iron on
the stability of spinelloid phases was studied by Koch et al. (2004). An increasing
iron-fraction lowers transformation pressures, i.e. the transition from upper
mantle to transition zone, as well as the seismic discontinuity, would be located
at shallower depth in iron-rich planetary systems. The transition zone-lower
mantle boundary remains unchanged with increasing Fe;SiO,4-fraction. Thus, the
transition zone would be extended for iron-rich mantles, which leads to larger
amounts of water that may be stored in the associated transition zone.

The primary aim of this thesis is to address three different effects of iron on
nominally anhydrous transition minerals and dense hydrous magnesium silicates:
A set of experiments was conducted on MgFeSiO,+H,O bulk composition
in order to study the effect of iron on the structure of nominally anhydrous
mineral phases and their water storage capacity. As reported for hydrous
wadsleyite, iron-rich compositions can result in the formation of superstructures
such as wadsleyite II. Thus, structural microanalyses using transmission electron
microscopy were aimed at the exploration of potential superstructures of
ringwoodite, or wadsleyite with iron-rich compositions. The stabilisation of
mineral phases to higher pressure and temperature may relate to structural
features of superstructures such as octahedral silica, as suggested by Smyth
and Kawamoto (1997). Furthermore, iron and particularly ferric iron affects
the stability of mineral phases in respect of transformation pressures and

compositions in case of wadsleyite, as mentioned before. Thus, an important
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1.5 Motivation

part of this study is the determination of the effect of iron on the stabilities of
dense hydrous Mg-Fe silicates.

Because the actual position of the upper mantle - transition zone boundary
and the presence of a lower mantle in a hydrous Martian interior are still
uncertain, a second set of experiments was performed with simple hydrous
Mars-like bulk composition. These experiments were aimed at the synthesis of
hydrous Martian mantle silicates using the thermal model of Fei and Bertka
(2005). The synthetic hydrous mineral phases represent the basis to estimate the
potential water storage capacity of a hydrous Martian mantle and to derive the
mineralogical structure of a hydrous Martian interior. The effect of hydration
on the Martian mantle structure can be estimated from such model, for which
derivation mass balance calculations are used. Dense hydrous Mg-Fe silicates
are high-pressure phases stable at lower temperatures and represent important
components of planetary water cycles as reported for the Earth. Because
Earth-like subduction is absent on Mars, element partitioning between mantle
mineral phases and coexisting melt was used to estimate the potential presence
of DHMS in the Martian interior.

High-pressure and high-temperature experiments yield fundamental
knowledge on physical properties of mineral phases in Earth’s interior such
as density and compressibility. These properties are essential to understand
mantle dynamics and to interpret seismic data. Water and iron substitutions
into the ringwoodite structure appear to have opposite effects on its
compressibility.  Therefore, to constrain better the results, a single-crystal
X-ray diffraction compressibility study was performed at room temperature
using well-characterized ringwoodite samples having different iron and H
concentrations. Knowledge of the effect of iron on the compressibility of
ringwoodite is particularly important for the interpretation of the structure of

iron-rich planetary mantles like Mars.
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1. INTRODUCTION

1.6 Aims of the study

The overall aim of this study is to evaluate how much water can be stored in
the Martian interior, and whether DHMS could exist in the Martian mantle. To

accomplish this, the following items were investigated:

(1) To experimentally determine the effect of iron on hydration mechanisms,
and water contents of nominally anhydrous minerals (NAMs) and dense hydrous
magnesium  silicates (DHMS), unpolarised infrared spectroscopic analyses of
NAMs and microprobe analyses of dense hydrous Mg-Fe silicates were carried
out. The related crystal chemistry plays a crucial role in terms of the hydration
mechanisms. The ferric iron content is determined using electron energy-loss

spectroscopy in order to evaluate its effect on the water contents.

(2) Understanding the phase stabilities and structures related to the iron and
water substitutions is essential for the interpretation of geophysical observations
and planetary dynamics. The determination of the phase stabilities of NAMs
and DHMS were made by performing two series of high pressure and high
temperature experiments. By using a simple MgFeSiO, + HyO system the
general effect of iron on phase stabilities was estimated. A simple Martian
mantle composition was used to relate these findings to a planetary system.
Structural properties were assigned by structure refinements and transmission

electron microscopy analyses.

(3) Single-crystal x-ray diffraction experiments are performed to determine
the effect of iron on the compressibility of hydrous ferroan ringwoodite.
This knowledge is important for the interpretation of seismic data and the

determination of the density of ringwoodite under mantle conditions.

(4) To determine element partitionings between mineral phases and melts,
microprobe analyses were made. Element partitioning data are an indicator for
favoured cation substitutions, and essential to interpret chemical compositions of

coexisting mineral phases.
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Chapter 2

Multi anvil technique - Sample

synthesis

Samples were synthesised using two stage 6/8-Kawai type multi anvil presses at
Bayerisches Geoinstitut, University of Bayreuth. During high P-T experiments,
near-hydrostatic conditions are generated by 3 outer steel anvils located in each
of the two guide blocks, which apply forces to 8 tungsten carbide cubes (Figure
. These cubes have corner truncations to form an octahedral cavity, in which
a CryO3z-doped MgO pressure medium is placed. The CryOs-doped (5% CryO3)
MgO-octahedra contain the furnace assembly, the thermocouple and the sample.
The octahedron size corresponds to the corner truncations of the WC cubes
for a particular assembly, which is chosen according to the desired pressure.
Octahedra sizes and corner truncations of the WC cubes for the certain assemblies
as well as the maximum reachable pressures are given in Table The heating
furnace inside the octahedron is made of LaCrOs;. The heater is surrounded
by an insulating ZrO, sleeve, to avoid reactions of the various units during the
experiments. In case of the 18M and 14M assembly this lanthanum-chromate
heater is stepped in order to decrease the thermal gradient in the sample capsule.
The electrical contact between the furnace and the WC cubes is established with
a molybdenum disk and ring at the bottom and top of the furnace, respectively.
Magnesium oxide sleeves separate the sample capsule and the thermocouple from

the resistance heater.
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2. MULTI ANVIL TECHNIQUE
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During experiments, temperature is monitored by a thermocouple, placed
lengthwise inside the furnace in direct contact with the top of the sample capsule.
Temperature measurements are accomplished by utilising the Seebeck effect which
occurs when two distinct metallic conductors form a closed circuit and the two
junctions between the two metals are maintained at different temperatures. This
causes an electrical current to flow which is an indicator of the temperature. The
thermocouple consists of two wires (Wq;Re3 and a WrsReas wires 0.13 mm & for
10/4, 10M and 14M or 0.25 mm & for 18M), which reside in the 4-hole alumina
sleeve and bent at one side to create a junction, which is in contact with the

sample capsule. A schematic illustration of the assembly is shown in Figure 2.2

Table 2.1: Multi anvil assemblies used in this study.

WC cube octahedron max. pressure

assembly corner truncation edge length [GPa]

18M 11 mm 18 mm 12
14M 8 mm 14 mm 16
10M 5 mm 10 mm 20
10/4 4 mm 10 mm 24
7/3 3 mm 7 mm 26

Cr-doped MgO
MgO

ZrO02

LaCrO3

dense Alumina

crushable Alumina

Molybdenum

sample

|
l
4§ 11| s

| coppercaoll

—— thermocouple wire

Figure 2.2: Schematic cross section of the 10/4 octahedron - illustrating

the different elements of the assembly.

Three gaskets made of pyrophyllite surround each truncation of the WC-cubes,
which point toward the octahedral cavity in order to seal the high-pressure region.
The WC-cube faces are isolated by card board and teflon tape, which also support

the gaskets during pressurisation. These gaskets play an important role in terms
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2. MULTI ANVIL TECHNIQUE

WC-cube
gasket

octahedron
(pressure medium)

force
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Figure 2.3: Schematic illustration of the Multi anvil principal - indicating

the position of the crucial gaskets between the Tungsten-Carbide (WC) cubes are

indicated.

of pressure generation since the pyrophyllite will extrude while the WC-cubes
move closer together under the applied force (Figure . This extrusion leads
to frictional loss of force and limits the maximum pressure for the particular
assemblies (Table 2.1)). These effects in combination with the influence of thermal
expansion in the assembly determine the effective pressure in the octahedral
assembly, which is defined by pressure calibrations. The pressure calibration as a
function of applied load and temperature is done using phase transformations
at well known pressure / temperature conditions, which were obtained in
separate calibration experiments. According to the octahedral assembly and
their maximum pressure, respectively, different phase transformations are applied
(Table . As an example, to calibrate the 10/4 assembly the following three
phase transformations are used: forsterite to wadsleyite at 1600°C (Morishima
et al. 1994), wadsleyite to ringwoodite at 1600°C (Suzuki et al. 2000) and
ringwoodite to perovskite plus periclase at 1600°C (Fei et al. 2004b). However,
the inaccuracy of the pressure calibration is about 1 GPa. Further information

of multi-anvil devices is given by Keppler and Frost (2005).
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Table 2.2: Pressure calibration for multi anvil technique (Keppler and Frost 2005)

assembly phase transformation

reference

quartz - coesite

18M . . .
coesite - stishovite Zhang et al. (1996)
1M coesite - stishovite Zhang et al. (1996)
forsterite - wadsleyite Morishima et al. (1994)
LOM forsterite - wadsleyite Morishima et al. (1994)
wadsleyite - ringwoodite Suzuki et al. (2000)
forsterite - wadsleyite Morishima et al. (1994)
10/4 wadsleyite - ringwoodite Suzuki et al. (2000)
ringwoodite - perovskite+periclase Fei et al. (2004b)
forsterite - wadsleyite Morishima et al. (1994)
7/3 wadsleyite - ringwoodite Suzuki et al. (2000)

ringwoodite - perovskite+periclase

Fei et al. (2004b)
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Chapter 3

Characterisation methods

3.1 Electron probe micro analyses and Raman

spectroscopy

Electron Probe Micro Analyses

Chemical analyses were carried out by the electron probe microanalysis technique
using a JEOL JXA-8200 electron microprobe at Bayerisches Geoinstitut and
CAMECA SX-50 at the Institute of Geoscience / University of Jena. Sample GG
2542 was remeasured with both facilities to verify the data reproducibility, which
yielded identical results. Thus, obtained results are comparable even though the
sample was measured with two microprobes. Recovered sample capsules were
cut into halves and mounted in epoxy-resin. The polished sample surface was
carbon coated up to 10 nm thickness in order to avoid charging effects during
measurements. Accurate chemical compositions of the mineral phases were
quantified by wavelength dispersive analysis (WDX). Acceleration current and
high voltage was set to 20 nA and 15 kV for calibration and measurements with
counting rates of 20/10 seconds for sample and background, respectively.

Each element such as magnesium, iron, aluminium and silicon was calibrated
on an adequate standard (Table . Movable analyser crystals located in the
spectrometer separate the wavelengths of the characteristic x-rays, which are

generated by the interaction of the electron beam with the elements in the sample.
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3. CHARACTERISATION METHODS

Table 3.1: Calibration and measurement details for microprobe analyses.

Analyser crystal Conditions Counting time [sec]
element standard JEOL CAMECA current HV  peak background
Si diopside PETH TAP 20nA  15kV 20 10
Mg diopside TAP TAP 20nA  15kV 20 10
hematite

Fe fayalite LIF LIF 20nA  15kV 20 10
(CAMECA)

Al spinel TAP — 20nA  15kV 20 10

LIF - lithiumfluoride 2d = 4.027 A
TAP - thallium-acid-pthalate 2d = 25.76 A
PET - pentaerythritol 2d = 8.742 A

The analyser crystals diffract those characteristic x-rays onto the detector that
satisfy the Bragg’ equation (3.1)):

nA = 2dsinf (3.1)

with A-wavelength, d-interplaner spacing, f-bragg angle.

Sample, analyser crystal and detector are interconnected by the Johannson
geometry, where these three components are located upon the Roland circle
(Figure [3.1). Thus, wavelengths relevant for measurements are selected and
finally collected in the detector (gas detector). Since the Bragg’ angle 6
range is restricted mechanically to 25 - 130° different analyser crystals with
distinct interplanar d-spacings are employed to measure the concentration of
elements, depending on their atomic number (Figure . Several corrections
such as dead time, background and interference correction are required for
quantitative analyses, which are applied to the raw intensities. The matrix
effects, which depend on the sample composition, have to be corrected to achieve
accurate measurements (ZAF correction; Z - atomic number, A - absorption, F -

fluorescence).
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3.1 EPMA and Raman spectroscopy

T analyser crystal

S “"roland circle

Figure 3.1: Spectrometer geometry for wavelength dispersive x-ray
analysis (Johannson geometry) - moveable analyser crystal and detector are
located on the imaginary roland circle and create different diffraction conditions in
order to filter certain x-ray radiation (from Williams 1987).

2d | [ 14. 2.2- 30 38 46 54 E:Z 70 78 86
(nm) C Si Ti Zn Sr Pd Xe Sm Yb Pt Rn
L L (e[ ] el s, | R |

TAP 2.576 Bq 1P 24Cr 41Mb 26Pd : 78AU |
TAPH 2576 | oF 134l 240r 3sBr  47Ag 70Yh
PET | 02 134l 25Mn  36Kr 65T 7Yb
PETH | 0.8742 | 1451 22T 37Rb 56Ba 72Hf Ii
LF | 0.4027 ol -
LIFH 0.4027 20Ca 21Ga 505n 794U

Ko, Lo,s Me, 3,y
Figure 3.2: Range of the elements that can be analysed by the

spectrometer crystals - (reference: JEOL); Ka radiation of the elements were

used for the quantitative measurements.
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3. CHARACTERISATION METHODS

Raman spectroscopy

In addition to the chemical analyses, sample characterisation and phase
identification were also carried out by Raman spectroscopy using a Jobin-Yvon
LABRAM-Raman spectrometer equipped with Olympus BX40 microscope and
CCD detector. Measurements were conducted with visible laser (632 nm) to
distinguish the polymorphs olivine, wadsleyite and ringwoodite as well as garnet,
majorite and pyroxenes. The obtained spectra were compared with reference
data provided by databases (RRUFF) and literature data. Generally, samples
require no special preparation for Raman spectroscopy, thus mainly the same
samples as for microprobe analyses were used. Raman spectroscopy is based on
the eponymous Raman-effect, i.e. scattering of incident monochromatic light,
which changes energy due to inelastic scattering by vibrating molecular groups.
Most of the incident light is scattered elastically without changing energy of the
incident and emitted photons (Rayleigh scattering), whereas a fraction of the

incident photons may gain or lose small amounts of energy because of inelastic

scattering.
’ ' Virtual
states
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states
¥ Y
m
Stokes Rayleigh anti-Stokes

Figure 3.3: Schematic illustration of Raman scattering effect - (from W.E.
Smith & G. Dent 2005); E - energy of the incident light, e - energy of the inelastic
scattered light.
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3.1 EPMA and Raman spectroscopy

The change in energy corresponds to the difference of two energy levels of
the vibration mode: 1. stokes scattering - the vibrational unit is excited to
a higher virtual energy level due to interaction with incident photons, i.e. the
electron cloud is deformed and polarised by interaction with photons, respectively.
The short-lived excitation is followed by the return to the first excitation level
n by emitting a photon with lower energy (higher wavelength) than the incident
photon (E - energy of the incident light, e - energy of the inelastically scattered
light). 2. anti-stokes scattering - the vibrational unit is in the first energy level
state at the moment of the scattering event. The incident photons induce the
excitation of the vibrational unit to another higher virtual energy level before
the vibrational unit relaxes to the ground state m by emitting a photon, which
is higher in energy, i.e. it has a shorter wavelength than the incident photons
(Figure . The energy difference of incident light and the scattered light is
expressed by the Raman shift, given in wavenumbers [cm™!]. In vibrational
spectroscopy, the vibration modes are classified in symmetric and asymmetric
vibrations. Asymmetric vibrations are Raman inactive and symmetric vibrations
are Raman active, when the polarisability, i.e. deformability of the electron cloud
of the vibrational unit, changes during the excitation of the vibrational unit by
the incident light. Various vibration modes give “fingerprints” of mineral phases

expressed as typical Raman spectra.
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3. CHARACTERISATION METHODS

3.2 Fourier transformed infrared spectroscopy

analyses - FTIR analyses

The water contents in nominally anhydrous minerals were determined using
Fourier transform Infrared Spectroscopy (BRUKER IFS 120 high resolution FTIR
spectrometer with IR microscope equipped with a tungsten source). In a FTIR
spectrometer, the generated near infrared radiation (A = 750 - 2500 nm) travels
to the beam splitter of the Michelson-interferometer where 50% of the radiation
is transmitted to a moveable mirror and 50% is deflected to a fixed mirror (Figure
. After reflection at the particular mirrors the infrared radiation is recombined
at the beam splitter and passes through the sample, while the unabsorbed infrared
radiation is finally collected in the narrow-band MCT detector. A Si-coated CaFy

beam splitter was used in case of water content determination.

Fixed mirror

Beam splitter
(Semitransparent

mirror) a

Source

Movable mirror

e

Sample

Sensor to measure the ~— Interferogram
position of movable detector
MIrror.

Figure 3.4: Schematic illustration of the Michelson interferometer of
Fourier-transform infrared spectrometer - (from textbook "Near-Infrared
Spectroscopy", Siesler, HW., Ozaki, Y., Kawata, S. and Heise, M.H. (2002)).
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3.2 Fourier transform infrared spectroscopy

Infrared radiation interacts with the sample and certain IR-frequencies
are absorbed, which correspond to the frequencies of certain molecular
vibrations. Different functional groups absorb different characteristic
IR-radiation frequencies given in wavenumbers [cm™!]. The OH-groups of hydrous
minerals absorb in the range 3200 to 3700 cm™!.

Measured samples were in form of single crystals (sample 3854 and 4218) or
polished sample thin sections up to a thickness of 25-40 pm. The thickness
of the sample including the glue-layer was measured for each sample using a
micrometer gauge. For measurements, thin sections were removed from the
glass with acetone. Thus, the thickness values of the samples are estimations
and introduce a small error on the estimated water concentration values, since
the absorption is thickness dependent as outlined in the Lambert-Beer law.
The particular OH-groups in minerals such as ringwoodite might be oriented in
different directions, thus the spectra of unpolarised measurements may not show
the maximum absorption for OH-groups, if oriented inappropriate. Libowitzky
and Beran (2004) pointed out that unpolarised infrared analyses may lead to
different water concentrations in minerals due to constant absorbance with
increasing thickness of the sample, which is contrary to the Lambert-Beer law.
Such a discrepancy is evident for sample thicknesses >0.8 mm according to
Libowitzky and Beran (2004). This influence was ruled out by using sufficiently
thin samples (~30 pm thickness) so that absorbance and sample thickness
correlate according to the Lambert-Beer law. During the measurements the single
crystals or thin sections were placed on a CakF, plate. Different apertures were
used for the measurements depending on the crystal size in order to avoid mixed
analyses and to measure optically clean areas of the particular crystals. The
determination of the water concentration of the mineral phases was done by the
1

integration of the obtained absorption band in the region of 2000 to 3780 cm™
applying the following formula (3.2)) and the Paterson (1982) calibration (Figure

3.9):

X K@)
Co = T50¢ / B0 -5 (3.2)

The concentration of OH is given in ppm wt (parts per million weight); X;
is the density factor (Table ; ¢ is the orientation factor, which is 1/3 for
unpolarised measurements; K(7) is the absorption coefficient [cm™!| for a given

wavenumber.
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3. CHARACTERISATION METHODS

The density factor is calculated after the formula X; = 10°(18/2d), where
18 is the molar weight of water and d is the density of the mineral phase
lg/1]. The correlation of OH-stretching frequency and absorption coefficient for
ringwoodite is empirical so that water contents are estimations with accuracy
probably between 30-50% (Kohlstedt et al. 1996).

Table 3.2: Density factor X; for water concentration determination

density density density factor

[g/em?®]  [g/1] Xi
Fe,Mg-Ringwoodite 4.204 4204 2141
Fe-Ringwoodite 4.848 4848 1856
Mg-Ringwoodite 3.56 3560 2528
Mg, sFeg 5-Wadsleyite 3.83 3830 2350
Forsterite 3.22 3220 2795
Clinoenstatite 3.21 3210 2804
Stishovite 4.287 4287 2099
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Figure 3.5: Correlation of the integrated molar absorption coefficient ¢;
of OH stretching bands as a function of the wavenumber - (Libowitzky and
Beran 2004).
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3.3 Transmission electron microscopy and

electron energy loss spectroscopy

Transmission electron microscopy (TEM) was used for the microstructural
identification and characterisation of synthesised minerals. For TEM analysis,
samples have to be thinned to electron transparency, i.e. to thicknesses in the
order of less than 100 nm. The sample thinning was carried out by Argon milling
using a GATAN dual ion mill 600. Thin sections of 25 - 50 um thickness were
first glued on 100 um mesh Molybdenum grids. The grid was then ion-milled at
an angle of 13-14° at 4.5 kV high voltage and 1 mA gun current. The milling
duration varies with the constitution of the sample and takes around 15-20 hours
for 25-30 pum thick samples (Figure Figure [3.7). In case of sample GG 2580,
GG 3854 and GG 4218 crystals were crushed to powder and placed as ethanol

suspension on a holey carbon grid with 200 gm mesh (Lacey grid).

\
\
argon —> plasma —» , - <— argon

ion gun \

I  molybdenum grid
I sample

Figure 3.6: Schematic illustration of TEM sample preparation - Argon
milling method.

After the milling procedure the samples were carbon coated to ensure electrical
conductivity and thus to avoid charge effects during measurements. TEM
observations and selected area electron diffraction (SAED) were carried out with
a Philips CM20 FEG transmission electron microscope equipped with a GATAN
parallel electron energy loss spectrometer (PEELS) 666. Electron diffraction was
used to determine the symmetry and interplanar spacings, which is a fingerprint
of mineral phases. Obtained diffraction pattern were evaluated by measuring the

distances of the diffraction spots in reciprocal space, i.e. spot distances in the
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3. CHARACTERISATION METHODS

Figure 3.7: Prepared sample for TEM analyses - showing the transparent
(wedge shaped) crystals in the middle of the sample capsule glued on molybdenum
grid (3 mm o).

diffraction pattern. Interplanar spacings in real space were calculated applying

the formula (3.3)):

_ AL
R

where d is the interplanar spacing in real space [A]; L is the distance between

d (3.3)

sample and photo plate; A is the wavelength of the electrons and R is the distance
of the diffraction spots in reciprocal space [mm]|. The expression AL is called the
camera constant. The calibrated camera constant for the TEM C20 is AL = 23.85
with A = 0.0251 nm and L = 950 nm. Diffraction patterns were indexed and
identified by aid of the EDANA program 9.21 (Kogure, T. 2003) by comparison
of measured and calculated diffraction spot distances in reciprocal space [mm]
and real space [A]. For the calculation of diffraction patterns of relevant phases
the lattice parameters listed in Table were used. FElectron diffraction spot
distances in reciprocal space which reflect the interplanar distances in real space
and even more the angle between sets of lattice planes hik;l; and hsoksls of the
diffraction pattern are crucial for the determination of structures. Extinction
of reflections (“forbidden reflections”) and double diffraction is an important
issue concerning the comparison of measured and reference diffraction patterns.
The systematic absence of certain reflections is called “forbidden reflections” or
extinction of reflections due to destructive interference of scattered electron beams
caused by particular crystallographic symmetry. Thick samples as well as strongly
diffracting lattice planes, however, may cause the appearance of symmetrically
forbidden reflections in the diffraction pattern. This so called “double diffraction”
phenomena occurs when electrons are diffracted from one set of lattice planes and
act as a primary electron beam for further diffraction from a second set of lattice

planes. In order to verify the actual appearance of reflections in the diffraction
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3.3 TEM and EELS

patterns, diffraction spots at conditions outside of zone axis were compared with

visible reflections in zone axis conditions.

Table 3.3: Reference data used for TEM microstructural analyses and phase

identification.

Mineral phase Reference phase

Space group

Lattice

parameter[A]

Reference

Nominally anhydrous minerals

Ringwoodite Fe-ringwoodite Fd3m a = 8.234 Yagi et al. (1974)
a=>5."711
Wadsleyite Mg-wadsleyite Imma b = 11.467 Finger et al. (1993)
c = 8.256
Pyrope TIa3d a = 11.452 Armbruster et al. (1992)
Garnet Majorite Ij1/a j : ﬁzé)(l) Angel et al. (1989)
Majorite + Ii1/a a = 11.480 Heinemann et al. (1994)
19 mole% Pyrope ¢ = 11475
a = 4.728
Akimotoite Mg-akimotoite R3 ¢ = 13.559 Horiuchi et al. (1982)
v = 120°
Dense hydrous magnesium silicates
Phase D Mg-phase D P31m a = 4745 Yang et al. (1997)
c = 4.345
a = 5.089
Superhydrous B Mg-SHyB Pnnm b = 13.968 Pacalo & Parise (1992)
c = 8.696
a = 7.868
Phase A Mg-phase A P63 c = 9.577 Kagi et al. (2000)
v = 120°
Oxides
Magnesiowiistite ~ Wiistite Fm3m a = 4.311 Hazen (1981)
Magnetite Magnetite Fd3m a = 8.394 Fleet (1981)
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3. CHARACTERISATION METHODS

Interactions of the electron beam and a sample leads also to inelastic scattering
events of the electrons whereby the electrons lose certain energy. This energy loss
can be measured and corresponds to the energy which is approximately needed to
ionise particular atoms in the sample. In case of iron, these electron energy-loss
near-edge structure (ELNES) spectra provide information about the valence state.
The ferric to total iron ratio was determined following the procedure described
by van Aken (1998). It requires the integration over two energy windows of the
L3 and L, ionisation edges of iron. The intensity ratio of the L3 and L, ionisation
edge yields the ferric to total iron ratio. ELNES spectra were collected using
an energy-loss spectrometer (Gatan PEELS 666). Depending on the ferric iron
content, the obtained ELNES spectra show a strong double peak at 707.8 eV and
709.5 eV energy loss, which represents the ferrous and ferric iron maxima at the
FelLs-edge, respectively. The peak shape of the Fels-edge changes according to
the relative abundance of ferric and ferrous iron, i.e. an equal ratio of Fe?t and
Fe3* results in two equal peaks of the FeLs-edge (Figure [3.8)).

AND-SKI(18)

AND-SKI(78)

ALM-SKI(41)

Normalized intensity (arb. units)

700 710 720 730
Energy-loss AE(eV)

Figure 3.8: Fel,3-edge Electron energy-loss near-edge structure
(ELNES) spectra of natural a garnet - showing the shape of the Fe?T and
Fe3™ maxima of the FeLs-edge for different ferric to total iron ratios (van Aken
1998).
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3.4 Single-crystal x-ray diffraction method

3.4 Single-crystal x-ray diffraction method

Precise determination of lattice parameters of minerals can be achieved by the
single-crystal x-ray diffraction method. The basis for acquiring lattice-parameters
of minerals is the Bragg law (3.4), which contains information about the

parameters of the lattice and diffraction conditions:

nA = 2dsinf (3.4)

with A-wavelength of the incident x-ray, n - order of interference, d-interplaner
distance, which is a function of the lattice parameter a, b, ¢, a, (#, 7 and
f-Bragg angle. Reflections which fulfill the conditions of the Bragg equation
by constructive interference are detected and essentially required for orientation
measurements and structure refinements. Combination of the diamond-anvil cell
technique and single-crystal x-ray diffraction enables determinations of the lattice
parameters as a function of pressure and the calculation of the equation of state

of mineral phases.

& rotation

R
\

rotation beam trap

)

Figure 3.9: Single-crystal x-ray diffractometer - (a) Huber four-circle
diffractometer (b) schematic illustration of four-circle diffractometer principle
(c) Xcalibur diffractometer (Oxford Diffraction) (d) schematic illustration of

diffractometer principle.
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3. CHARACTERISATION METHODS

X-ray single-crystal diffraction at room pressure

Two ferroan hydrous ringwoodite single-crystals, one for each run-product were
selected for the high-pressure X-ray diffraction experiments. Prior to the
measurements in the diamond anvil cell, intensity data were collected at ambient
conditions using an Xcalibur diffractometer equipped with a CCD detector and
a graphite monochromator (Figure [3.9¢,d). For measurements MoKa radiation
operated at 50 kV and 40 mA was used. The single crystals were mounted on
a glass fiber during x-ray single-crystal diffraction at room pressure. Combined
omega and phi scans were chosen to obtain a coverage of half reciprocal sphere
up to 20max = 80° for sample 4218 and up to 20max = 90° for sample 3854.
The exposure time was 15 s/frame. Lorentz and polarization factors as well
as an analytical absorption correction based on the crystal shape were taken
into account for the correction of the reflection intensities using the CrysAlis
package (Oxford Diffraction 2006). Structure refinements were performed based
on F % (structure factor Fjy, which is closely related to the intensity of the
reflection it describes) using the SHELX97 program package (Sheldrick 1997)
in the WinGX 1.70.01 System (Farrugia 1999) with space group Fd3m and
anisotropic displacement parameters following a similar procedure as described
by Smyth et al. (2003). Fully ionized scattering curves (Ibers and Hamilton
1974) were used for all cations. Since the cation occupancies of light elements
like Si and Mg depends on the scattering curve used for oxygen, at the initial state
of the refinements the distributed scattering factor of the oxygen atom between
the atomic scattering curve and the scattering curve of O*~ (Tokonami 1965)
was refined together with the cation occupancies. This procedure resulted in a
similar scattering distribution for both samples of 50% O and 50% O2?~. This
value was then fixed during the last cycles of refinements. The iron content
from the microprobe analysis was constrained to be at the octahedral site. Mg
and Si occupancies were refined at the octahedral and at the tetrahedral sites,
respectively, without any constraint. Unit-cell parameters, data collection and
refinement details, fractional atomic coordinates, equivalent thermal parameters,

and polyhedral bond lengths obtained in this study are reported in Table [4.9
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3.4 Single-crystal x-ray diffraction method

High-pressure experiments

The two ringwoodite single crystals studied at room conditions and having
dimensions: 120x100x30 pum (sample 3854) and 100x50x30 pm (sample 4218)
were loaded into two diamond-anvil cells (DAC) with diamond culets of 600 pm
in diameter (Figure . Steel gaskets preindented to 90 pum thickness with
250 pm & holes and a 4:1 mixture of methanol:ethanol as pressure transmitting
medium were used. Ruby crystals were also loaded into the DACs for pressure
determination (Mao et al. 1986) during the high-pressure experiments. Unit-cell
parameters were measured as a function of pressure with a Huber four-circle
single-crystal diffractometer equipped with a point detector and a graphite
monochromator at the Bayerisches Geoinstitut operating with MoKa radiation
at 50 kV and 40 mA. During data collection, the crystal is rotated in 4 angles,
0, w, x, ¢ in order to center the peak positions of the reflections (Figure
a,b). Peak positions were determined using the eight-position centering method
(King and Finger 1979) in order to minimize experimental aberrations. Unit-cell
parameters measured up to ~ 9 GPa were obtained using vector-least-square
refinements (Ralph and Finger 1982). The unit-cell parameters of the hydrous
ferroan ringwoodites at different pressures are given in Table

iy
g5

Figure 3.10: Diamond anvil cell - with goniometer-head for high-pressure

experiments.
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Chapter 4

Experimental study of hydrous
iron-bearing mantle silicates in the
MgFeS10,4-H50 system

4.1 Starting material and experimental conditions

The experiments were conducted using a nominal Forsterite 50 (FosoFas) +
H5O bulk composition as starting material. The powder starting material was
made from a synthetic fayalite (Fe2SiO,4) and a 2:1 molar mixture of brucite and
quartz (2 Mg(OH); + SiOs3). The two components were mixed in a 1:1 ratio to
obtain the stoichiometric MgFeSiO4+H,0O bulk composition. Water was added
only in the form of brucite, which yields a starting material with 9.5 wt% H,O
(Table . The dried and powdered components were ground together under
ethanol in an agate mortar. Fractions of the starting material were loaded into
platinum capsules, which were previously sealed one-sided by electrical welding

and finally closed by cold welding after loading the powder.

Table 4.1: Calculated bulk composition of the
MgFeSiO4+1H50 starting material.

hydrous Fos

Si0,  wt% 31.58
MgO  wt% 21.19
FeO  wt% 37.777
H,O  wt% 9.46
by wt% 100
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4. HYDROUS FO;, SYSTEM

Experiments were conducted over a broad pressure range at various
temperatures in order to investigate the stability of nominally anhydrous and
hydrous phases up to the pressure limit of the multi-anvil technique of about
25 GPa (Table £.2). The run conditions varied from 9 to 25 GPa and 750
to 1500°C, whereby most of the experiments in this temperature range were
performed between 15 to 25 GPa. One experiment was repeated with a different
heating duration (30 minutes GG 2542 and 8 hours GG 4236) in order to identify
influences of the run time on the sample synthesis. It turned out that the heating
duration has no influence on the phase assemblages but the run conditions may
become more oxidizing due to the loss of hydrogen from the system by the
dissociation of water. Thus, the ferric iron content may be increased by longer
heating durations. A single experiment at 23 GPa and 1400°C was performed
using platinum/rhodium (PtRh) alloy as capsule material to test the effect of
capsule material on phase assemblages. Despite the different capsule material
(PtRh-capsule), the same mineral phases were synthesised as in experiments at

similar conditions using platinum capsules.

Table 4.2: Experimental run conditions.

Heating Starting

Sample Pressure Temperature duration Capsule composition
GG 2615 6 GPa 500°C 6 h platinum hy Fo 50
GG 3975 6 GPa 750°C 5h platinum hy Fo 50
GG 2580 9 GPa 750°C 2 h platinum hy Fo 50
GG 2895 10 GPa 750°C 8 h platinum hy Fo 50
GG 2539 15 GPa 750°C 3h platinum hy Fo 50
GG 3853 15 GPa 950°C 1h gold* hy Fo 50
GG 3854 15 GPa 1150°C 0.5h gold* hy Fo 50
GG 2540 18 GPa 750°C 2 h platinum hy Fo 50
GG 2541 18 GPa 950°C 1h platinum hy Fo 50
GG 2542 18 GPa 1150°C 0.5h platinum hy Fo 50
GG 4236 18 GPa 1150°C 8 h platinum hy Fo 50
GG 2827 20.5 GPa 950°C 4 h platinum hy Fo 50
GG 2737 20.5 GPa 1150°C 8 h platinum hy Fo 50
GG 2795 20.5 GPa 1300°C 5h platinum hy Fo 50
GG 4218 20.5 GPa 1400°C 3.5h platinum hy Fo 50
GG 2613 23 GPa 950°C 1h platinum hy Fo 50
GG 2736 23 GPa 1150°C 8 h platinum hy Fo 50
GG 2793 23 GPa 1300°C 8 h platinum hy Fo 50
GG 4327 23 GPa 1400°C 1.5h PtRh hy Fo 50
GG 2800 23 GPa 1500°C 5h platinum hy Fo 50
GG 2801 25 GPa 1500°C 4h platinum hy Fo 50
GG 4374 18 GPa 1200°C 2h platinum hy Fo50
foil & tube dry Fo50

* gold capsules to avoid iron loss to the capsule by absorption
since gold is inert in respect to iron (Merrill & Wyllie 1973)
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4.2 General description of experimental run products

4.2 General description of experimental run
products and calculation fundamentals for

presented data

The relative phase abundances (modal%) of the recovered samples were
determined using ImageJ programme (Table . The ringwoodite crystals
developed as single phase are either elongated prismatic with quenched melt
regions (GG 3854, GG 2541) or fine grained isometric with cavities between the
crystals, which indicates the presence of a fluid during the experiment (GG 3853,
Figure ) Ringwoodite crystals are also isometric and fine grained as well as
massive in samples with coexisting dense hydrous Mg-Fe silicates. Generally, the
run products are fine grained crystals when neither fluid nor quenched melt were
observed. Traces of brucite (the so called quench-brucite) are present in almost
all run products and possibly formed during quench when fluid exsolves from the
melt. The size of the quench crystals gives a relative estimation of the viscosity
of the melt, i.e. crystals are larger in low viscosity melts. At 18 GPa and 1150°C
quench crystals are up to 15 pum large, whereas at 20.5 and 1400°C as well as 23
GPa and 1500°C quench crystal size decreases to about 5 um which implies that
the viscosity of the melt increases, which can be correlated with an increasing
silica content of the melt.

The data obtained by EPMAE] measurements, infrared spectroscopy and EELSE]
were used to determine the average mineral composition and to derive the mineral
formulae as provided in Table [£.4] The iron partitioning coefficient Kp between

ringwoodite and magnesiowiistite was determined on the basis of the equation:

Xringwoodite Xmagnesiowues‘cite
Fe

_ Mg
Kp = XmagnesiowuestiteXringwoodite’ (41)
Mg Fe

where is the molar Fe/(Mg+Fe) ratio. The absorption of iron by

Xii/{nggwoodite
platinum capsules was observed in every experimental run, whereas the starting
composition was still retained in several experiments and at elevated temperature
iron-rich magnesiowiistite is formed. This implies that the amount of absorbed

iron is rather small.

Lelectron probe micro analysis
2electron energy-loss spectroscopy
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4.2 General description of experimental run products

) \IJ :{‘ \u ‘ N~
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GG 2542 ' — 90 um —

Figure 4.1: Backscattered electron image of single phase ringwoodite (a)
and the three-phase assemblage (b) - sample GG 3853, 15 GPa and 950°C (a),
sample GG 2542, 18 GPa and 1150°C; Rw - ringwoodite, Mw - magnesiowlistite,
St - stishovite (b).
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4.2 General description of experimental run products

The observed phase assemblages are in agreement with Gibbs’ phase rule
F = C — P+ 2, with C' - minimum number of components to create the
present (mineral) phases, P - number of (mineral) phases, F' - degree of freedom
which is the number of intensive properties (e.g. pressure and temperature) that
are independent of other intensive parameters. The observed brucite phase is
probably a result of experiment quenching. The fluid phase, which formed brucite
upon quenching, was dissolved in the melt during the experiment, thus brucite
and quenched material (observed in some experimental runs) are assumed as the
same phase. The minimum number of components, number of observed phases
and the resulting degrees of freedom are given in Table [4.5]

Table 4.5: Application of Gibbs’ phase rule to observed phase assemblages.

Component | Present Number of Degrees of
system phases (P) Sample | components (C) | freedom (F)*
ringwoodite MgFeSiO
A o GG 3854 | 2 gH2 . 2
ringwoodite FeoSiOy
phase A GG 2539 | 3 Si04 2
B brucite Mg(OH),
ringwoodite FesSiOy
phase D GG 2540 | 3 SiOq 2
brucite Mg(OH)4
ringwoodite Si04
magnesiowiistite MgO
C* . . GG 2800 | 4 2
stishovite FeO
melt Mg(OH)4

*F = C — P+ 2 Gibbs’ phase rule
* applicable also to phase D + SHyB + brucite + mw (sample GG 2827, GG 2736)
T cavities are refered to a fluid phase present during the experiment

observed run products are given in table , note that brucite + melt are considered as same phase

The number of components involves the components which are needed to produce
the present phases of the run product.

The MSH (M - MgO, S - SiO», H - HyO) diagram displays the composition of every
observed mineral phases (Figure . For the sake of clarity, the Mg-endmembers
are considered in order to point out the correlation of run products and the
choice of the component system (brucite refers also to melt or fluid). During the
experiment, temperature and pressure (intensive parameter) were constant, thus
Gibbs’ phase rule was fulfilled and chemical equilibrium was probably reached in

every experiment (F = 0).
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————

0 10 20 30 40 50 i 60 70 80 90 i 100 H
N MgFeSiO,/ S0,
(FeO) Fe,SiO,

Figure 4.2: Ternary diagram of MgO(FeO), SiO; and H3O - showing the
Mg-endmember compositions of phase D (D), phase A (A), superhydrous B (ShyB),
ringwoodite (Rw, MgFeSiOy4 / FesSiOy4), magnesiowiistite (Mw), stishovite (SiO3),
brucite (Br, Mg(OH)2) and water (fluid, H2O); dash dotted line - component system

A, solid line - component system B, dashed line - component system C.
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4.3 Results

4.3 Results on the particular mineral phases

4.3.1 Ringwoodite

Ringwoodite, one of the nominally anhydrous transition zone minerals, is
the dominant high pressure polymorph of olivine covering a broad range of
pressure-temperature conditions (9-23 GPa and 750-1500°C, this study).

4.3.1.1 Microprobe analyses - Compositional variations of

ringwoodite and the coexisting phases

Within the pressure-temperature conditions of 9-23 GPa and 750-1500°C
ringwoodite appears as a single phase and with coexisting dense hydrous
magnesium silicates (alphabet phases) or together with stishovite and
magnesiowiistite (Figure [f.1b, Table [£.3). When occuring as single phase,
ringwoodite retains the starting composition with approximately 50 mole%
FeySiO, (sample GG 3854, GG 3853 and GG 2541; Table . When coexisting
with the dense hydrous magnesium silicate “phase A” in the pressure range
from 9 to 15 GPa at 750°C, ringwoodite shows enhanced iron contents varying
from 52.5 to 65 mole% Fe SiO, (GG 2580, GG 2895, GG 2539). Other dense
hydrous magnesium silicates such as “phase D” and “superhydrous B” coexist with
ringwoodite in the low temperature region (750-1300°C) at pressures between 18
and 23 GPa. Ringwoodite is the dominant phase in sample GG 2540 together
with coexisting “phase D”. The iron fraction of ringwoodite of 55 mole% FeySiOy
deviates slightly from the starting composition. In sample GG 2737, ringwoodite
with ~38 mole% Fe,SiO, is the second most abundant phase together with
magnesiowlistite among the dominant dense hydrous magnesium silicates “phase
D” and “superhydrous B”. The relative phase abundances of present mineral
phases as well as the relative melt fraction are listed in Table [£.3] The three
phase assemblage ringwoodite + stishovite + magnesiowiistite appears at 18 GPa
and 1150°C as well as in the P-T- space between 20-23 GPa and 1400-1500°C
(Figure [4.1p). Ringwoodite is the dominant phase in those samples, whereas the
relative abundance of the concomitant phases varies. Ringwoodites show strong
variations in iron fractions between 51-25.5 mole% Fe,SiO,4, which is a result of
the varying modal fraction of magnesiowiistite, i.e. iron partitions preferentially
into magnesiowiistite (KI]")W/mW = 0.02-0.07, Table , and into the coexisting
melt. The compositional variations are also an effect of pressure, as is obvious
from the three-phase assemblage loop (Figure [4.3] [£.21). In the samples GG
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2580, GG 2895, GG 2539 and GG 2540, which lie below the 50 mole% Mg,SiO,
starting composition, magnesiowiistite is absent and the abundance as well as the
magnesium contents of coexisting phase A and phase D cause the increased iron

fraction in ringwoodite (Figure |4.3).

100 T T T T I L} L} L} T l T T T L} l T T T T
90 _ i
| mw volume fraction >21% .. |
80 . -
i e o .
70 | e .
—_— L H _ 0 LentTTTIT 4
T ol mw volume fraction 5-21% PN i
[)) ®
o - T T
é 50 - ’___-" Q Q ‘.‘ -
< = ¢ E
Q 40 - -
w0, : *
o I 8 mw volume fraction 0-4% T
s 30}k e .
20 + . . . 4
| O ringwoodite (single phase) |
10 L ¢ ringwoodite with DHMS _
L | ® ringwoodite + stishovite + magnesiowustite
0 2 2 ) \ | ' ' : 2 | ) ) ) ' | ) ) 2 2
5 10 15 20 25

pressure [GPa]
Figure 4.3: MgySiO, fraction of ringwoodite as a function of pressure

- indicated are the coexisting modal fractions of magnesiowiistite, dashed line -

starting composition, abbreviation: mw - magnesiowiistite.
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4. HYDROUS FO;, SYSTEM

The occurrence of the three-phase assemblage at 20 GPa and 1400°C as
well as 23 GPa and 1500°C is in agreement with previous studies, whereas the
low temperature (1150°C) experiment at 18 GPa is in contradiction with data
presented for similar temperatures by Fei et al. (1991). The experiments of
this study, however, are reproducible and in order to address the reason for the
occurrence of the rw + mw + st assemblage in the hydrous MgFeSiO,4 system the
experimental run at 18 GPa and 1150°C was repeated with an anhydrous nominal
Foso starting composition (run GG 4374). The three-phase assemblage is also
developed at 18 GPa and 1150°C in the anhydrous MgFeSiO, system but with
distinct ringwoodite and magnesiowiistite compositions of Fogy-ringwoodite and
(Mg 13Feq.87)O. Thus, the addition of water can be excluded as explanation for
the observation of the three phase assemblage at lower pressure. This observation
is probably the result of different redox conditions during the experiment,
which can be due to the dissociation of water in the hydrous system (reaction
and the absorption of iron by the platinum capsule material (reaction
. The oxygen, which is provided by both reactions, decomposes fayalite
to form stishovite and a ferric iron compound such as magnetite (reaction
. However, the Mg in the system may also form a magnesiowiistite and
magnesioferrite component together with magnetite. Nevertheless, the occurrence

of the three-phase assemblage at lower pressure is caused by the oxidation of iron.

F€25i04 — 2F€Pt capsule + SZOQ + 02 (43)
3FeySi0y4 + Oy — 35i0y + 2F eyt Fe*T 0, (4.4)
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4.3 Results

4.3.1.2 TEM examination - Structural properties of ringwoodite and
the valence state of iron at different pressure and temperature

conditions

Different zone axis diffraction patters of ferroan ringwoodite were taken using
TEM and indexed with EDANA program to determine the symmetry and
d-spacings of ringwoodite. On the basis of these diffraction patterns, and observed
absences of reflections, it is confirmed that hydrous iron-rich ringwoodite has
the cubic spinel structure, space group Fd3m. Two different indexed diffraction

patterns of hydrous ferroan ringwoodite are shown in Figure [1.4]

ringwoodite ' ringwoodite
zone axis [111] ¢ - zone axis [001]
. ’ -400
' 0-?2 ' 220 .
- .
2-20 - + -202 0-40 « . 2220
_ . . ' .
2 - « 220 . * 040
20-2 . 220 ®
. . ® 220
0o 400 .
Ringwoodite GG 3854 distance angle
{left) 1 2 3 1.2
G001 950 R [mm] meas. 8.26 8.18 8.16 60°

Rlmmlref. 819 819 8.19
d[Ameas. 289 292 292
diAref. 2,91 291 291

Indexes 0-22 -202 -220 Zone axis [111]

Ringwoodite GG 2542 distance angle
{right) 1 2 3 12
G008 950 R [mm] meas. 783 7.96 11.18 90°

Rlmm]ref. 819 819 1159
d[Almeas. 304 300 213
d[Aref. 291 291 2.06

Indexes  -2-20 -220 -400 Zone axis [001]

Figure 4.4: Electron diffraction patterns of ringwoodite - GG 3854 (left),
GG 2542 (right), Tables show measured and reference (Fe-ringwoodite) distances
of the diffraction pattern.
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High resolution images show a defect-free ringwoodite structure (Figure ,

even the typical {110} stacking faults were not observed in any ringwoodite
sample. These stacking faults are commonly formed by the martensitic solid-state
transformation from olivine to ringwoodite (Kerschhofer et al. 1996), while Smyth
et al. (2003) reports the absence of the typical {110} stacking faults of synthetic
ringwoodite.
Electron energy-loss spectroscopy was combined with structural analyses in order
to determine the ferric iron fraction incorporated into ringwoodite. Electron
energy-loss near-edge structure (ELNES) spectra show a strong peak at 707.8
eV energy loss with a small shoulder at 709.5 eV, which represent the ferrous
and ferric iron maxima at the Fels-edge, respectively. The peak shape of the
FelLs-edge changes corresponding to the relative abundances of ferric and ferrous
iron (Chapter 3.3). The Fe?™ maximum of the Fels-edge is clearly dominant
in four analysed ringwoodite samples, indicating dominantly ferrous iron. A
small Fe3™-fraction in ringwoodite was observed for sample GG 2542 and GG
4218, which is shown by an evolving peak at 709.5 eV of the Fels-edge. The
integration of the FeLy 3 edge intensities yield Fe?" /S Fe ratios of 0.01(5) to 0.13(5)
for ringwoodite (Figure [4.6)).

ringwoodite '
W zone axis [111]

0-22 '™

2-20 - + -202
-

-
-

-
- %

Figure 4.5: High resolution TEM image of Mg,Fe-ringwoodite - zone axis
[111], sample GG 3854 (15 GPa, 1150°C).
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GG 3854
Fe>'/zFe = 0.01(5)

GG 4327
Fe*/zFe = 0.03(5)

GG 2542
Fe>'/=Fe = 0.07(5)

normalised intensity
arb. units

GG 4218
Fe*/sFe = 0.13(5)

695 700 705 710 715 720

energy loss AE [eV]

725

Figure 4.6: Iron L3 electron energy-loss near-edge structure (ELNES)

spectra of Mg,Fe-ringwoodite - synthesised at distinct P-T conditions;

GG 3854 (15 GPa, 1150°C), GG 4327 (23 GPa, 1400°C),
GG 2542 (18 GPa, 1150°C), GG 4218 (20.5 GPa, 1400°C).
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4.3.1.3 FTIR spectroscopy - Water storage capacity and associated

point defect chemistry of iron-bearing ringwoodite
I. Water storage capacity of iron-bearing ringwoodite

Fourier transformed infrared spectroscopy was performed to determine the
concentration of HoO (in form of OH-groups) in the nominally anhydrous
mineral ringwoodite. Six samples synthesised at different pressure-temperature
conditions were selected and measured as described in Characterisation methods,
subchapter 3.2. The results and spectra of four representative samples are shown
in Table 4.7 and Figure 4.7, The OH-absoption band of ringwoodite appears
to be very broad in all spectra from about 2000 to 3800 cm™! with slightly

! and smaller peaks

varying absorbance maxima at 3200 cm™' to 3300 cm™
at lower and higher wavenumbers. The absorption band is broader (FWHM
~800 cm™!, sample GG 3854) than reported for Mg-ringwoodite (FWHM ~410
cm~!, Bolfan-Casanova et al. 2000), which may be due to different atomic
environments of hydroxyl groups in ferroan ringwoodite. The particularly weak
absorption features at lower (2700 cm™!) and higher (3700 cm™!) wavenumbers
are assigned to different types of OH-groups (Bolfan-Casanova et al. 2000).
Therefore the entire absorption feature in the range from 2000 to 3800 cm™! was
integrated for water content estimations, although Bolfan-Casanova et al. (2000)
as well as Chamorro Pérez et al. (2006) suggest that the lower energy band may
be due to overtones of the in-plane X-OH. These vibrational features appear
in the IR-spectra of every sample, while the absorption band at 3700 cm™! is
not visible for sample GG 3854 probably because of the broad main absorption
band. The TR-spectrum of sample GG 3854 shows two additional absorption
bands at 2900 cm™!, which are likely due to some residual methanol-ethanol
(pressure transmitting medium, see chapter 3.4) on the crystal surface. Obtained
spectra were corrected for thickness and background was subtracted in order to
integrate the absorption band using equation in the region of 2000 to 3780
cm~! (Figure [1.7). The calibration of Paterson (1982) was used to estimate the
H-content in ringwoodite, which is shown in Table 1.7 The water content of
ringwoodite synthesised in the MgFeSiO,4 system ranges from ~0.4 to ~0.7 wt%
HO.

Obtained data represent the water storage capacity, the maximum mass fraction
of HyO retained in ferroan ringwoodite at different pressure and temperature
conditions. The concept of water storage capacity of nominally anhydrous

minerals is explained in Hirschmann et al. (2005) who pointed out that the
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4.3 Results

maximum water concentration in minerals changes with mineral composition and
water fugacity, which in turn depends on the assemblage of coexisting mineral
phases and composition of the coexisting fluids, respectively. Thus, water
storage capacity does not necessarily display the maximum water solubility of a
mineral phase, which indeed requires water activity to be unity (water present
as HyO-rich fluid). The water, which is in excess of the water storage capacity
of existing mineral phases, is present as HyO- or silicate-rich fluid (Hirschmann
et al. 2005), i.e. filling cavities between crystals or represented by quenched
material. Despite the observed porosity, there is no clear evidence that points
to the presence of molecular water or water-rich fluid during the experiments so

that the water activity is assumed to be below unity.

150 . . . . T T T T T T T T T T T v T T T
—— GG 3854 3250 cm™
----- GG 2800 3250 cm”
| GG 4218 3300 cm’” 3250 om”
10k GG 4327 3200 cm™

50

absorption coefficient (1/cm)

2000 2500 3000 3500 4000
wavenumber 1/cm

Figure 4.7: Infrared absorption spectra of four Mg,Fe-ringwoodite
samples - wavenumbers represent maximum absorption peaks of the spectra; GG
3854 (15 GPa, 1150°C), GG 4218 (20.5 GPa, 1400°C), GG 4327 (23 GPa, 1400°C),
GG 2800 (23 GPa, 1500°C).
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Table 4.7: Mg Fe-ringwoodite samples used for the determination of water
concentration; synthesis conditions, wavenumber of maximum absorption and

measured water concentration

Absorption H>O concentration

Sample Thickness Pressure Temp. Maximum [ppm] and [wt%]
GG 3854 30 pm 15 GPa 1150°C 3250 cm-1 6656 - 7521 ppm

average 7088 ppm = 0.71 wt%
GG 2800 25 pm 23 GPa 1500°C 3250 cm-1 3485 - 4115 ppm

average 3800 ppm = 0.38 wt%
GG 4218 30 pm 20.5 GPa  1400°C 3300 ¢cm-1 3587 - 3905 ppm

average 3746 ppm = 0.37 wt%
GG 4327 30 pm 23 GPa 1400°C 3200 cm-1 5282 - 7067 ppm

average 6175 ppm = 0.62 wt%

II. Point defect chemistry of iron-bearing ringwoodite

The incorporation of ferrous and ferric iron in the ringwoodite structure is
achieved by substitution predominantly into the Mg-site, since Fe-Si disorder is
predicted to be less than 1%, i.e. less than 0.01 a.p.f.u. of iron (Hazen et al.
1993). Thus, the substitution mechanisms for ferric and ferrous iron into the

magnesium site of ringwoodite are as follows (for notation see Kroger and Vink
1956

Fe?* in Mg-site

FeO + 8i0y = Feéy, + Sit, + 303, (4.5)

which represents the common Fe-Mg substitution of the solid sulotion between

Mg- and Fe-endmember of ringwoodite.

Fe3t in Mg-site

FeyOs + 2810y = 2F e, + 28i%; + 605 + 05 (4.6)
FesOs + 2810y = 2F ey, + 28i%, + Viy, + 708, (4.7)

3Mg§”\/[g - Mg in Mg-site, Og* - O%~ on an interstitial site, Fe’g; - ferric iron in Si-site, V"4
- Mg-vacancy, Fej, - ferric iron in Mg-site; * - neutral site, " - positive undercharge, * - negative
undercharge
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The Mg-site vacancy gives in combination with the interstitial oxygen of equation
the resulting equation [£.§] i.e. creation of octahedral-site vacancies without
hydration:

O + Vi, = MgO. (4.8)

Further possible substitution mechanisms to incorporate water in ringwoodite
involve cation vacancies and cation disorder charge balanced by hydrogen
substitution (Hazen et al. 1993; Blanchard et al. 2009), whereas no clear

evidence was found for Mg-Si disorder in the ringwoodite samples:

’ Mg-site vacancies ‘

Hy0 + Mgy, = Vip, +2H® + MgO (4.9)
| Si-site vacancies]
2H,0 + Sig; = Vg + 4H*® + S0, (4.10)
’Mg—Si disorder‘
Hy0 + Si%, + MgO = Mg?, + 2H* + SiOs. (4.11)

The water substitution mechanisms of hydrous ferroan ringwoodite and the
correlation of the water content and the iron content will be discussed in chapter
4.4 111
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4.3.1.4 Single-crystal x-ray diffraction - Equation of state and

structure refinements of hydrous ferroan ringwoodite
I. Sample characterisation

Two samples of hydrous ferroan ringwoodite synthesised from a stoichiometric
MgFeSiOy starting mixture (FepSiOy4 + Mg(OH)s + SiOs) at 15 GPa and 1150°C
(run 3854) as well as at 20.5 GPa and 1400°C (run 4218) were analysed by
single-crystal x-ray diffraction to determine their compressibility. Ringwoodite
was the only phase present in the synthesis product of run 3854, whereas
it was the dominant phase coexisting with stishovite and magnesiowiistite in
run 4218. Results of the chemical analyses are given in Table Electron
energy-loss near-edge structure (ELNES) spectra were collected for both samples.
Quantification of Fe3*/YFe ratio was done following the procedure described
by van Aken (1998). Integration of the two peaks of the iron Ls and
L, ionisation edge in the spectra yields Fe?™/YFe = 0.01(5) for run 3854
and Fe*™/YFe = 0.13(5) for run 4218. Water concentration of hydrous
ringwoodite was determined by means of Fourier transform infrared spectroscopy.
Obtained spectra were corrected for thickness and the region from 2000 -
3730 cm™! was integrated using the calibration of Paterson (1982) to estimate
the HoO content in wt% (Table [4.8). The resulting formulae of hydrous
ringwoodites are as follows: (MggorFe*™ 1 00)1.07510.08Ho.1304 (tun 3854) and
(Mg1.21F62+0.66Fe3+0.10)1.97Si0.97H0.07O4 (TUH 4218)-

140 - .

120 |- .
3250 cm’™

100 |

80

3300 cm’™
run 3854

absorption coefficient (1/cm)

run 4218

wavenumber 1/cm

Figure 4.8: Infrared spectra of hydrous ferroan ringwoodites - sample GG
3854 (15 GPa, 1150°C) and sample GG 4218 (20.5 GPa, 1400°C)
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Table 4.8:

Chemical analyses of ringwoodite based on electron microprobe

analyses, electron energy loss and IR spectroscopy (Standard deviations are in

parentheses).

oxides [wt%]* run 4218 run 3854
Si09 36.0(2) 35.2(2)
MgO 30.2(3) 23.3(2)
FeO 29.4(4) 42.8(3)
Fe; O3 4.9(1) —
H,0O 0.37 0.71
D) 100.9(3) 102.0(4)
cations based on 4 oxygen atoms

Si 0.97 0.98
Mg 1.21 0.97
Fe?+t 0.66 1.00
Fe?+ 0.10 —
H# 0.07 0.13
b)) 3.01 3.08
Mg/(Mg+Fe) 0.62 0.49
water content based on IR spectra

peak maximum 3300 cm ™! 3250 cm ™!
Hy0O [wt%] ~0.37 ~0.71

*Average of 30 (4218) and 55 (3854) microprobe measurements

# from IR spectroscopy measurements

Fe3t from EELS analyses
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II. Structure refinements of hydrous Fe-bearing ringwoodites

In general, the unit-cell volume of ringwoodite increases with increasing
Fe-content (Figure [4.9). There is some evidence that water substitution also
increases the unit-cell volume of ringwoodite (Smyth et al. 2003) as suggested by
the fit of the hydrated samples which all lie above the linear trend between the
anhydrous end-members (dotted and solid lines, respectively reported in Figure
[1.9). Octahedral, M-O, and tetrahedral, T-O, bond distances obtained from
the structural refinements of our samples are compared with those reported in
the literature for ringwoodites having different Mg/(Mg+Fe) ratios and water
contents (Figure [4.10h,b). The M-O bond distance increases with increasing
Fe-content of ringwoodite (Figure ), whereas the T-O bond distance slightly
decreases with increasing Fe-content (Figures [4.10b). Anhydrous Mg,SiOy
ringwoodite has M-O distances comparable to those of hydrous Mg-ringwoodite

(Figure [4.10p) whereas increasing water content seems to increase the T-O bond
distances (Figure [4.10p).

T T T T T T T T T T
560 - - hydrous ringwoodite  anhydrous ringwoodite ]
L X this study V Hazen etal. (1993)
555 |- @ Smyth et al. (2003) Hazen (1993) -
L B Kudoh et al. (2000) A\ sasakietal. (1982) ]
__ 550 | & VYagietal (1974)
% E > Fingeretal. (1979)
g 545 [ <] Nestolaetal g
S b (submitted) ]
o L ]
> 540 | ]
3 L .
N L ]
T 85 7
S B ]
530 | 2
525 [ 3
N I T R R | 1 1 ]

0 10 20 30 40 50 60 70 80 90 100
Mg/(Mg+Fe)*100

Figure 4.9: Unit cell volume of dry and hydrous ringwoodite as a function
of magnesium content - solid symbols - hydrous ringwoodite (Kudoh et al. [2000]
2 wt% Ho0; Smyth et al [2003] 0.74 wt% H20 Fojgo-ringwoodite, 0.86 wt% H20
Fogg-ringwoodite, 1.07 wt% HoO Fogr-ringwoodite); open symbols - anhydrous
ringwoodite; solid line - linear fit of anhydrous samples, dotted line - linear fit

of hydrous samples.
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Table 4.9: Structure refinement data for the two ringwoodite samples of this study.

Sample run 4218 run 3854
Nineas 12420 15250
Nunique 104 136
Nobs 76 111
Rint 0.0476 0.0299
R 0.0391 0.0291
R, (F>40) 0.0212 0.02
wR2 0.0602 0.0565
GooF 0.862 1.019
Nr. Parameters 10 10
a (A) 8.1384 (3) 8.1597 (6)
V (A3) 539.07 (7) 543.28 (13)
octahedral site
Mg occ 0.540 (3) 0.496 (2)
Fe occ 0.381 (1) 0.495 (1)
Total occupancy 0.921 0.991
Uiy 0.0073 (3) 0.00649 (15)
Ujq -0.0004 (2) -0.00016 (10)
Ueq 0.0073 (3) 0.00649 (15)
M-O (A) 2.0972 (14) 2.1045 (9)
O-M-O (°) 86.73 (7) 86.64 (4)
O-M-O (°) 93.27 (7) 93.36 (4)
0O-O (non-shared) 2.880 (4) 2.888 (2)
0O-0O (shared) 3.050 (4) 3.062 (2)
tetrahedral site
Si occ 0.9904 (7) 1.0007 (4)
U1 (=Ueq) 0.0080 (4) 0.0064 (3)
Si-O (A) 1.657 (2) 1.6580 (15)
0-0 (A) 2.705 (4) 2.708 (2)
O atom site
x 0.24253 (16) 0.24231 (11)
Uys 0.0084 (6) 0.0070 (3)
Uiq 0.0011 (5) -0.0001 (2)
Ueq 0.0084 (6) 0.0070 (3)

Ueq represent the isotropic equivalent of the anisotropic temperature factors
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The Fe substitution also has a strong effect on the OH-stretching mode of
hydrous ringwoodite. Unpolarised infrared spectra of the two samples (Figure
show broad OH-absorption bands with the largest absorption peaks at about 3250
and 3300 cm~! for samples 3854 and 4218, respectively. These bands are clearly
at larger wavenumbers than the OH bands of hydrous Mg,3i0, and iron-bearing
ringwoodite with 12 mole% Fe whose absorbance peaks are centered at 3105 cm™*

and 3140 cm™!, respectively (Smyth et al. 2003).
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Figure 4.10: M-O distances (a) and T-O distances (b) of hydrous
ringwoodite as a function of magnesium number - solid symbols -
hydrous ringwoodite (Kudoh et al. [2000] 2 wt% H2O; Smyth et al [2003] 0.74
wt% HsO Fojgo-ringwoodite, 0.86 wt% HsO Fogp-ringwoodite, 1.07 wt% Ho0O
Fogr-ringwoodite); open symbols - anhydrous ringwoodite; solid line - linear fit

of anhydrous samples, dotted line - linear fit of hydrous samples.
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III. Equations of state

The variations of the unit-cell volumes of samples 3854 and 4218 are shown in
Figure [4.11] as a function of pressure. The continuous trend of the compression
data indicates that no phase transition occurs for both samples in the investigated
pressure range. The plot of normalised stress Fp = P/3fg(1+2f5)>? vs.
Eulerian strain fz = [(Vo/V)?3-1]/2 (Angel 2000) (Figs. 4.12a,b) has a horizontal
slope indicating that the first pressure derivative of the bulk modulus, K’; has a
value of about 4. Accordingly, the P-V data were fitted with a second-order
Birch-Murnaghan EoS using the EOSFIT 5.2 program (Angel 2002) refining
simultaneously the room pressure unit-cell volume, Vy, and the bulk modulus,
Kro. The refined EoS parameters are: Vo = 543.32(8) A% and Ky = 186.5 (9)
GPa for run 3854 and Vo = 539.01(5) A® and K¢ = 184.1 (7) GPa for run 4218.
A 3rd-order Birch-Murnaghan EoS fit of the P-V data yields the same results
given the uncertainties, i.e. Vo = 543.2 (7) A%, Ky = 189 (4) GPa and K’ = 3.4
(8) for run 3854 and Vo = 539.01 (6) A%, Ky = 185 (3) GPa and K’ = 3.9 (7)

for run 4218. The discussion of the results is given in chapter 4.4.

100 L ® run 4218 .
- O run 3854

099 | ]
_oe | ]
2 - -
S ]
097 | ]
096 |- ]

pressure [GPa]

Figure 4.11: Variations of the unit-cell volumes of ferroan ringwoodites
as a function of pressure - The values have been normalized with respect to the
measured volumes at room pressure; solid line - fitted equation of state run 4218,
dotted line - fitted equation of state run 3854.
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Table 4.10: Unit-cell parameter measured as a function of pressure.

run 4218
Pressure (GPa) a (A) V (A?)
0.000(6) 8.1384(3) 539.03(7)
0.64(1) 8.1286(4) 537.10(8)
1.08(5) 8.1217(3) 535.73(7)
1.63(2) 8.1150(3) 534.40(6)
2.23(1) 8.1064(3) 532.70(7)
2.99(0) 8.0957(3) 530.61(6)
3.64(2) 8.0872(3) 528.93(6)
4.07(3)* 8.0806(4) 527.63(7)
5.05(4)* 8.0674(5) 525.05(10)
5.68(0) 8.0597(3) 523.55(7)
6.44(4) 8.0505(5) 521.76(9)
7.21(3) 8.0460(4) 519.83(9)
7.83(3) 8.0328(4) 518.32(7)
8.27(0) 8.0269(3) 517.19(6)
8.54(1) 8.0235(3) 516.52(6)
8.71(2) 8.0211(4) 516.07(8)
8.90(3) 8.0188(3) 515.61(6)
run 3854
Pressure (GPa) a (A) V (A3)
0.0001(1) 8.1597(6) 543.28(13)
0.990(9) 8.1455(3) 540.45(6)
1.44(3) 8.1388(3) 539.11(6)
2.20(2) 8.1290(3) 537.17(7)
2.71(1) 8.1218(4) 535.75(8)
3.30(4) 8.1141(3) 534.23(7)
3.81(1) 8.1068(3) 532.79(6)
4.42(1) 8.0988(4) 531.20(8)
5.50(0) 8.0845(3) 528.40(6)
6.38(0) 8.0732(4) 526.19(7)
6.93(0) 8.0662(3) 524.82(7)
7.31(4) 8.0609(3) 523.79(7)
7.96(1) 8.0532(3) 522.28(6)
8.27(1) 8.0495(3) 521.57(7)
8.31(2)* 8.0494(4) 521.54(8)
8.48(2) 8.0467(3) 521.02(6)
8.77(2) 8.0438(3) 520.47(6)

* data points measured during decompression
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Figure 4.12: Plot of Eulerian strain f versus normalized stress F - The solid
line represents a linear regression fit of data with the zero-pressure bulk modulus
given by the F-axis interception at zero-pressure (a) run 3854, interception at 187.9
GPa (b) run 4218, interception at 184.5 GPa.
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4.3.2 Dense hydrous Mg-Fe silicates in iron-rich systems -

stabilities and mineral phase characteristics

Dense hydrous magnesium silicates, also referred to as “alphabet phases”, were
studied intensively in the MgO-SiO9-H,0O system relevant for the Earth because
of their potential importance for the global water cycle. DHMS are stable
at lower temperatures < 1300°C and high pressures up to 44 GPa (Shieh et
al. 1998) and may serve as water carriers in the mantle. Recovered samples
from experimental runs at 750°C in the pressure range 9 to 15 GPa contain
the hydrous “phase A” coexisting with ringwoodite, while at 18 GPa so called
“phase D” coexists with ringwoodite marking the maximum stability of phase
A to be between 15 and 18 GPa (Figure [£.13). At 20 GPa phase D coexists
with superhydrous B (shyB) and magnesiowiistite up to 1150°C. With increasing
temperature superhydrous B decomposes at first by forming the assemblage
ringwoodite - phase D - magnesiowdistite followed by the decomposition of phase
D beyond 1300°C, which causes the occurrence of melt due to the excess of water.
Superhydrous B and phase D are stable up to 1150°C and 1300°C, respectively,
denoting that phase D represents the dominant dense hydrous magnesium silicate

at elevated pressure and temperature in the MgFeSiO, system (Figure [4.13)).

1500 L L} L} I L} L) L} L) l L) L) T L] I T T T L]
1400 - @ phaseA PhaseDout = 4
1300 |- ® phaseD R o -
) ® phase D + SHyB Ve,
£, 1200 - P y % .
[0) e .. 0
§ 1100 |- -
©
o 1000 [ R
g- 900 ® °
|°_’ B Phase A out 1
800 | i -
o °o o [ J
700 |- —
600 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1
10 15 20 25

Pressure [GPa]

Figure 4.13: Stabilities of dense hydrous Mg-Fe silicates as a function
of pressure and temperature - applying MgFeSiO4 + 9.5 wt% H20 bulk
composition; dashed line - stability (maximum temperature) of superhydrous B
(ShyB), Phase A and Phase D.
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Figure 4.14: Composition of dense hydrous Mg-Fe silicates - a) ternary
diagram showing compositional variations |mole%| in the Fe-Mg-Si triangle,
b) ternary diagram displaying composition of hydrous phases [mole%]| in the
Fe+Mg-Si-H2O system.
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4.3 Results

Mineral formulae including the water content of dense hydrous magnesium

silicates are determined on the basis of deviations of microprobe totals from 100%.

I. Phase A

Phase A, Mgy 73Feq 20511 9sHp.20014 (ideal formula Mg;SioHgO14, Yamamoto and
Akimoto 1974), contains ideally 12 wt% H,O which is also reflected by the lower
microprobe analyses totals (Table . Maximal ~18 wt% FeO is incorporated
in phase A by Mg-Fe substitution, which causes small scatter in compositional
data (Figure . Structural analyses of phase A using transmission electron
microscopy show a hexagonal structure with space group P63. For example, zone
axes [010] and [011] recorded by electron diffraction patterns can be indexed in
consistence with the assumed space group (Figure . Unit cell parameters
ab = 7.896(1) A, ¢ = 9.595(2) A, a,3 = 90°, v = 120° and V = 518.1(1)
A3 determined using single-crystal X-ray diffraction (automated four-cycle
diffractometer) at Bayerisches Geoinstitut are increased in comparison to the
values reported by Kagi et al. (2000) of a,b = 7.8563(2) A, ¢ = 9.5642(5) A and
V = 511.23(2) A3, This expansion of cell parameters could be attributed to the

iron-substitution.

phase A v ¢ -
zone axig [011] ‘ .
- . . .
. . .
. . 100 o .
o 01-1 111 ®
- . -
. .
. . . -
. 1141 011 o
. P 10y -
. .
» . -
-
phase A GG 2580 distance angle
1 2 3 12
G070 950 R [mm] meas 244 3.02 304 66°
R [mm] ref 350 430 430
d [A] meas 978 791 784

d [A] ref 6.81 555 555
indexes 100 1-1 0-11 Zone axis [011]

Figure 4.15: Indexed electron diffraction pattern of phase A - zone axis
[011]; the Table displays measured and reference distances of diffraction spots in
reciprocal space and interplanar distances in real space, as well as corresponding

diffraction spot indices and angles between first and second measured direction.
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II. Superhydrous B

Superhydrous B (SHy B) was observed in three recovered samples synthesised at
20 GPa and 950-1150°C as well as 23 GPa and 950°C. The microprobe totals are
slightly variable for SHyB with an average water content of 4.3 wt%, which is less
compared to the ideal water content of Mg-SHyB of 5.8 wt% H,O. Superhydrous
B contains Fe3* /SFe = 0.29(5) determined by electron energy-loss spectroscopy
(Figure . Thus, the determined mineral formulae of superhydrous B diverges
from the ideal mineral formula Mg;(SisH4O5.

Obtained mineral formula (MggoFe?" ) 53Fe3% 62)10.37513.01H2.56018 (sample GG
2737), however, suggest the incorporation of ferric iron by Mg-Fe3"- as well as
Si-Fe3*-substitution and ferrous iron is accommodated in superhydrous B by
Mg-Fe substitution with a maximum ferrous and ferric iron fraction of ~16 wt%
FeO and ~7 wt% Fe,O3. Compositional variations of superhydrous B are not
reported in the literature while slight scatter in the composition of SHyB is evident
in Figure The cation substitution mechanisms as well as creation of cation
vacancies due to the accommodation of ferric iron likely causes the compositional
variations. The structural properties of SHyB were investigated by analysis of
diffraction patterns obtained by transmission electron microscopy. Evaluation of
the zone axis [111] pattern of sample GG 2737 (Figure reveals d-spacings
that are, within the error limits, compatible with reference data of Mg-endmember

superhydrous B.
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superhydrous B
zoneaxis [1-11]

-101 on 12'1
. .
* -1-10 » ° . 110
. .
121 0141 104
superhydrous B GG 2737 distance angle
1 2 3 12
G049 850 R [mm] meas. 3.19 4.87 6.25 79.58°
R [mm] ref. 3.23 4.99 6.41
d[A]meas. 748  4.90 3.82
d [A] ref. 7.38 478 372
Indexes 011 110 121 Zone axis [1-11]

Figure 4.16: Indexed electron diffraction pattern of superhydrous B - zone

axis [111]; the Table displays measured and reference distances of diffraction spots

in reciprocal space and interplanar distances in real space, as well as corresponding

diffraction spot indices and angles between first and second measured direction.
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ELNES spectra of sample 2737
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Fe*'/sFe = 0.29(5)
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Fe*'/sFe = 0.60(5)
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Figure 4.17: Iron L; 3 electron energy-loss near-edge structure (ELNES)
spectra of superhydrous B and Phase D - sample 2737 (20.5 GPa, 1150°C).
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II1. Phase D

Phase D, MgSiosH2Og (ideal formula) has variable compositions caused by different
water contents resulting for example in Mg-endmember mineral formula
Mgi.11511.80H2.2206 (Yang et al. 1997). Microprobe totals of Fe-bearing phase D
range from 82-89 wt% displaying the variable water content as reported for the
pure Mg-endmember. Phase D is the dense hydrous magnesium silicate, which
incorporates the lowest amount of total iron among the DHMS phases of about ~6
wt% Feigial, which within error limits remains constant throughout the different
samples. The ferric iron content of phase D determined by electron energy-loss
spectroscopy is about Fe?* /SFe = 0.60(5) (Figure [4.17). The resulting mineral
formula of phase D is as follows, (Mg .04Fe*"0.05)1.00(Mgo.13Fe3"0.08S11.70 )2 Ha.1706
(sample GG 2737). Merely the Mg- and Si-fractions vary strongly even within
each sample, which is indicated by the standard deviations of the analyses
given in parentheses in Table Thus, the variable water contents and the
incorporation of iron are mainly charge balanced by silicon (Si-vacancies and
Si-Mg disorder) as indicated by the variations along the Si-Mg joint (Figure
and the decreasing values of Si [pfu], while Mg [pfu| and Fe [pfu] remain relatively
constant (Figure [1.19)). Figure shows that Mg-Si disorder is present in most

of the samples, which enables along with Fe3" in the Si-site the accommodation
of additional water.
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Figure 4.18: Water substitution mechanisms of phase D - dashed lines
represent water substitution mechanisms.
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Figure 4.19: Composition of phase D - Iron, magnesium and silicon atoms
per formula unit (apfu) as a function of water content (hydrogen atoms per formula
unit); dashed lines - linear fit of data; water content estimations are based on the

low microprobe totals.
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The structure of phase D was investigated by electron diffraction indicating
no major differences to the reference data of pure Mg-phase D. For example, zone
axes [001] and [112] were indexed for sample GG 2793 and GG 2737, which are
consistent with the Mg-endmember phase D (Figure .

phase D
zoneaxis [001]

phase D GG 2793 distance angle
1 2 3 1.2
M893 950 R [mm] meas. 577 5.70 577 60°

R[mm]ref. 580 579 577
d[Almeas. 414 418 413

d [A]ref. 4.11 4.12 4.14
Indexes 100 1-10 0-10 Zone axis [001]

Figure 4.20: Indexed electron diffraction pattern of phase D - zone
axis [001]; Table displays measured and reference distances of diffraction spots
in reciprocal space and interplanar distances in real space, as well as corresponding

diffraction spot indices and angles between first and second measured direction.
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4.3.3 Characterisation of oxide phases - stishovite and iron

oxides

The anhydrous Mg,Si04-FesSiO4 phase diagram shows that oxide phases such as

magnesiowiistite and stishovite appear at elevated pressures > 20 GPa and coexist
with ringwoodite (Figure [4.21). Experimental runs at 18 GPa and 1150°C as well
as 20 - 23 GPa and 1400-1500°C yield the three phase assemblage ringwoodite

(rw) + stishovite (st) + magnesiowiistite (mw). More details are mentioned in

subchapter 4.3.1.1.

20

1]

f
)y
=

7 T

—t~Pv+ Mw + 5t ﬁ

I i

O Rw
o
o -4
@ 1
=2 .
218 -
§_: Wads + Rw
o ! "
| |
]
~N ot
|
]
| 4
-
10 :
|
]
~ ]
- ~N
o] i
P ]
|
- |
1 | 1 ] b 1 1 i 3 4
Mg, Si0, 20 40 €0 80 FCZSIO‘

Mole percent

Figure 4.21: Phase diagram of the joint Mg,SiO4-Fe>SiO,4 as a function

of pressure (Presnell 1995) - dashed line represents the nominal Fosg bulk

composition applied in this study.
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4.3 Results

The Mg-Fe oxide phases, which were analysed by EPMA, appear to be
composed of magnesiowiistite, magnesioferrite and magnetite components. This
is obvious from the low microprobe totals, because iron was measured as FeO
and the deviation from 100% EPMA totals is the result of the ferric iron fraction
(Table . However, the amount of ferric iron in the Mg-Fe oxide phases
is unknown and it is difficult to determine the fraction of each component.
Therefore, the Mg-Fe oxides are referred to as magnesiowiistite, since this oxide
phase was observed by TEM analyses (see below).

Magnesiowiistite coexists with dense hydrous magnesium silicates (DHMS) in
the pressure range of 20 - 23 GPa and temperatures between 950 - 1300°C. The
chemical composition of magnesiowiistite varies from 84 - 96 mol% FeO. The
structure of magnesiowlistite was examined using electron diffraction. Measured
diffraction spot distances in reciprocal and real space were compared with
reference data of wiistite FeO (space group Fm3dm, a = 4.311 A). Within the
error limits of electron diffraction, structural properties of magnesiowiistite are
consistent with the reference data. Magnetite is present in sample GG 2613,
GG 2793 and GG 4327 indicating oxidising run conditions, which could be due
to the slightly oxidising character of the platinum capsule as well as the loss of
hydrogen through the platinum capsule resulting from the dissociation of water.
Ferric iron is dominantly present implying that the loss of water is not extensive.
Also, the relative abundance of magnetite compared to magnesiowdiistite is very
small. Bright field TEM images show that magnetite crystals are small (<2pum)
and appear locally in association with magnesiowiistite, hence the dimensions are
to small to resolve the chemical composition of magnetite by EPMA (Figure [1.22]
4.23)). Tt is likely that the Fe3™ contents of the recovered samples differ due to

the extent of hydrogen loss from the capsule depending on the heating duration.
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Figure 4.22: High-resolution TEM image of magnetite - zone axis [110]
sample GG 2613 (23 GPa, 950°C).

Magnesiowiistite
zone axis [011]

Figure 4.23: Bright-field TEM image of magnesiowiistite - enclosing
magnetite grains, sample GG 2613 (23 GPa, 950°C).
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4.4 Discussion and conclusions

In respect of the data presented in this study, the following conclusions are
drawn concerning I. the effect of hydrogen and Fe substitution on the Mg,SiO4
ringwoodite structure, II. the effect of Fe-substitution on the O-H stretching
mode of hydrous ringwoodite, III. the effect of hydrogen and Fe substitution on
the compressibility of Mg,SiO,4 ringwoodite, IV. water substitution mechanisms
and water contents of ferroan ringwoodite and V. the stability of dense hydrous

Mg-Fe silicates in iron-rich systems.

4.4.1 Effect of hydrogen and Fe substitution on the

Mg,SiO4 ringwoodite structure

The two Fe-bearing ringwoodite samples used for this study differ not only in
the water contents, but also in their Fe*" /SFe ratios (Table [1.8). The large
abundance of octahedral vacancies (run GG 4218) is rather the result of the
oxidation of iron (defect equation , which is not balanced by the protonation
of oxygen (McCammon et al. 2004), because the amount of water in sample
4218 of ~0.37 wt% H,O is relatively small. The uncertainties of the microprobe
analyses are such that it is difficult to discriminate whether octahedral vacancies
are present, however the structural refinements (Table clearly indicate that
these are indeed more abundant in sample 4218 and cannot be exclusively due to
H incorporation. The Fe3*-content and vacancies, however, appear to have little
effect on the unit-cell volume of ringwoodite (Figure [1.9), in contrast with what
is reported for non-stoichiometric T (Mgg4Algs)™ (Al;s[y2)O4-spinel (Nestola
et al. 2009), which has a much smaller unit-cell volume than stoichiometric
MgAl,Oy-spinel (Nestola et al. 2007). There is some evidence, at least for the
Mgs,SiOy4-ringwoodite end member that H incorporation increases the unit-cell
volume (Smyth et al. 2003). The hydrous ringwoodite samples (this study)
lie above the straight line connecting the anhydrous end-members (Figure [4.9)
suggesting that such a hypothesis also is valid for iron-rich ringwoodites. The
octahedral bond distance increases with increasing iron content (Figure [4.10p)
and appears to be only slightly affected by the H incorporation. In contrast the
T-O distance appears to have the same value for anhydrous MgySiO,4 and Fe;SiO4
ringwoodites but increases with increasing H content (Figure [4.10b) (Smyth et al
2003). An increase of the T-O bond distance also has been attributed by Hazen
et al. (1993) to Mg / Si disorder between the octahedral and tetrahedral site.

However, the water content of the samples studied by Hazen et al. (1993) was not
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measured and therefore it is difficult to assess the real effect of Mg/Si disorder,
given the difficulty to determine the disorder from X-ray diffraction data due to

the close similarity of the scattering curves of Si and Mg.

4.4.2 Effect of Fe-substitution on the O-H stretching mode

of hydrous ringwoodite

The position of the absorption maxima corresponding to the OH-stretching modes
in the IR spectra of hydrous ringwoodites increases with increasing Fe-content
(Figure . The OH-stretching frequency depends on the bond strength of the
O-H~O bond. With increasing iron content the bond strength A-HB changes
from strong to weak according to the classification given by Emsley (1980). Weak
bonds are defined as those with reduced proton transfer between atom A and B,
i.e. with the hydrogen atom remaining covalently bond to the parent atom A.
This causes the shift of the OH-stretching frequencies to higher wavenumbers
since the interaction between H~B is reduced. Normally, weaker hydrogen
bonds, i.e. higher OH-stretching wavenumbers, are observed when the bond
distance OO increases (Libowitzky and Beran 2004). The structure refinement
of ferroan ringwoodite (this study) indicates no change in O-O distance of the
tetrahedral site with respect to the MgsSiO4-ringwoodite end-member (Sasaki et
al. 1982; Kudoh et al. 2000; Smyth et al. 2003) but an increase of the O-O
distance of shared and unshared edge octahedral sites (Table [4.9). Therefore
both the observation of the presence of octahedral site vacancies as indicated
from structural refinements and the correlation between the O-O octahedral edge
and the wavenumber shift of the OH-mode (Figure point to the octahedral
site as the most favoured protonation site. This is in agreement with a recent
theoretical study, which assigns the main absorption band of the OH-stretching
mode to protons located between the O-O pairs shared by octahedra (Blanchard
et al. 2009).

It appears also that a ferric iron plus vacancies substitution has a strong effect
on the OH-stretching frequencies since the absorption maximum of run 4218
Fogo-ringwoodite with 13% ferric iron is located at 3300 cm™! (Figure [4.8), i.e.

at larger wavenumber than that of run 3854 Fosy-ringwoodite.
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Figure 4.24: Correlation between the OH-stretching wavenumber and
the O-0 distance of the octahedral shared edge - solid circles - Smyth et al.
(2003); solid asterisk - sample GG 3854 (this study), open asterisk - sample GG
4218 (this study).

4.4.3 Effect of hydrogen and Fe substitution on the
compressibility of Mg,SiO4 ringwoodite

The bulk modulus of hydrous ferroan ringwoodites obtained in this study are
very similar (Kpo = 186.5(9) and K7y = 184.1(7) GPa for samples 3854 and 4218
respectively) and have values close to those reported for dry Mg-ringwoodite
(Table 4.13). Hazen (1993) reports for Fegp, Fegy and end-member Fe,SiOy
ringwoodites values of bulk moduli ranging between 203 and 207 GPa with a K’
fixed to the value of 4.8. For comparison we have also used a Birch-Murnaghan
EoS with K’ fixed to the value of 4.8 to fit our P-V data with resulting EoS
parameters:

Vo = 543.38 (8) A% and Ky = 183.1 (9) GPa for run 3854 and V, = 539.05
(6) A% and Kpo = 181.0 (7) GPa for run 4218. Thus, our samples appear to
be more compressible than the ferroan ringwoodites studied by Hazen (2003).

There is some evidence that vacancies associated with the H incorporation
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strongly increase the compressibility of MgsSiO4 ringwoodite (Table . If
we assume that the samples studied by Hazen (1993) were anhydrous ferroan
ringwoodites the decrease of the bulk moduli values observed in our samples may
be a consequence of the presence of vacancies. This suggestion also is supported
by the fact that the sample 4218, which has the larger amount of vacancies due
to iron oxidation, also is slightly more compressible than sample 3854. A strong
increase in compressibility associated with the presence of octahedral vacancies
has also been observed for non-stoichiometric 7'(Mgg 4Algg)™ (Al; g[p.2)O4-spinel
(Nestola et al. 2009). A recent theoretical study by Li et al. (2009) predicts
a linear decrease of bulk modulus with increasing water content of ringwoodite,
i.e. an increasing amount of octahedral vacancies. Ferroan ringwoodite with up
to 0.71 wt% HyO (this study), however, does not show the predicted increase
in compressibility within the analytical accuracy. However, a recent study on
Fe,SiO4-ringwoodite (Nestola et al., submitted to PEPI) reports a value of bulk
modulus very similar to that of (Mg,Fe),SiOy-ringwoodite found in this study,
suggesting therefore that the Fe substitution has little effect on the compressibility
of ringwoodite. This would suggest therefore that the oxygen closed-packing of
the spinel structure plays a major role in determining its compressibility and this
cannot be affected by the presence of less than 1% of water or of up to 0.1 atoms

per formula unit of vacancies.
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4.4.4 'Water substitution mechanisms and water contents

of ferroan ringwoodite
I. Water content of ferroan ringwoodite

Pure Mg-ringwoodite can accommodate up to 2.3 wt% HoO (Wang et al. 2003).
Ferroan ringwoodite with 12 mole% Fe,SiOy4 incorporates about 1 wt% HyO as
reported by Jacobsen et al. (2004) and Manghnani et al. (2005). The current
study showed that ferroan ringwoodite (with 25 - 50 mole% Fe,SiO,4) synthesised
in the MgFeSiO4 + 9.5 wt% H,O system accommodates ~0.4-0.7 wt% H,O which
is slightly less than previously reported for ferroan ringwoodite and considerably
less compared to the Mg-endmember (Figure . This implies a potential
inverse correlation between iron-fraction and water content of ringwoodite, i.e.
the water content decreases with increasing Fe-content of ringwoodite. The effect
of iron on the water storage capacity of ringwoodite appears to be clearly obvious
though not continuous since ringwoodite shows strong variations in Fe-content
(between Foso and Fors) but similar water storage capacities between 0.4 - 0.7 wt%
H50O. The slightly lower water storage capacities were observed for ringwoodite
containing Fe3", which implies that the water substitution is rather diminished
than enhanced by oxidation of iron (Table [1.14).

Table 4.14: Correlation of composition (Fe3'-content) and water-content of

ringwoodite
Fe# [mole%] Fe™/YFe Fe?T content  Water content
sample  Fe/(Mg+Fe)*100  EELS  relative to Fe# [wt%|
GG 3854 90.72 0.01(5) 0.05% 0.71
GG 4327 25.42 0.03(5) 0.76% 0.62
GG 2542 51.28 0.07(5) 3.59% 0.50
GG 4218 38.60 0.13(5) 5.02% 0.37
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Figure 4.25: Water content of Mg- and MgFe-ringwoodite - Illustration
of the inverse correlation between iron-fraction and water-content of ringwoodite;
black symbols denote literature data, blue and red circles represent data obtained

in this study; abbreviations are St - stishovite, Mw - magnesiowiistite.

Hirschmann et al. (2005) postulated that the water storage capacity of nominally
anhydrous minerals is influenced by mineral phase assemblages and can therefore
change with different coexisting phases because the water content is dependent
on water- and iron-partitioning between coexisting mineral phases. According
to the particular temperature, fluid or melt coexist with mineral phases due
to the finite capacity of water incorporation in NAMs (Figure . The
constitution of quenched material indicates that the silica-content of the melt
increases with increasing temperature. This implies that the water activity
decreases and consequently also the water storage capacity of present nominally
anhydrous minerals. Additionally, the water partitioning coefficient between
mineral and melt of DV | Jmelt = 0.01 concerning upper mantle minerals (Hirth
and Kohlstedt 1996) displays the enhanced solubility of water in melt rather
than in mineral phases e.g. ringwoodite. Thus, ringwoodite developed as single
phase (GG 3854) is representative for comparison with literature data, since
further potential influences on the water storage capacity of hydrous ferroan
ringwoodite in addition to the ringwoodite-composition are eliminated such as

melt occurrence.
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Figure [4.25| shows that the water storage capacity of ringwoodite developed
as three phase assemblage with melt is reduced. Even ringwoodite with
lower Fe-fraction does not reach the water content values as reported for
Mggs_g7-ringwoodite by Smyth et al.  (2003) because of the presence of
silicate-rich melt and the subseuqently lower water activity. Ringwoodite crystals
studied by Jacobsen et al. (2004) and Kohlstedt et al. (1996) coexist with
stishovite. It is likely that stishovite does not influence the water storage capacity
of ringwoodite since the water partitioning coefficient between ringwoodite and
stishovite of about DIl ~ 521 (Bolfan-Casanova et al. 2000) shows that it rather
enhances the water content of ringwoodite. Ringwoodite coexists with phase B,
a dense hydrous magnesium silicate, in the sample synthesised by Kohlstedt et
al. (1996) which could affect the water storage capacity of ringwoodite since
the water partitions preferentially in phase B. Thus, the variable water storage
capacity of ringwoodite obtained in this study is a consequence of coupled effects
by composition of coexisting melt, composition of ringwoodite and coexisting

hydrous phases such as dense hydrous magnesium silicates.

(A) low pressure (B) high pressure
" melt fluid
3 fluid
o
S F) 3,
e 3
— P S‘—)
mineral+fluid mineral+fluid
silicate H,O silicate H,0

Figure 4.26: Schematic illustration of the water storage capacity
of nominally anhydrous minerals - mineral phases with finite capacity to
incorporate water (Hirschmann et al. 2005); (A) minerals coexists at low pressure
and low temperature with HyO-rich fluid and with hydrous silicate melt at high
temperature (B) mineral phases coexist at high pressure with water-rich fluid at

low temperature and silicate-rich fluid at high temperature.
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4.4 Discussion and conclusions

II. Water substitution mechanisms of ferroan ringwoodite

The tetrahedral (Smyth et al. 2003; Chamorro Pérez et al. 2006) and octahedral
edges (Kudoh et al. 2000; Ross et al. 2003) have been suggested to be
the most probable protonation sites in ringwoodite. Structure refinement of
hydrous ferroan ringwoodite obtained in this study indicates that octahedral
site vacancies occur due to the accommodation of water (defect equation
and the oxidation of ferrous iron (defect equation . Chemical analyses
and structure refinement show small concentrations of Si-site vacancies (within
the analytical accuracy) which would imply the presence of Si**t = 4 HT
mechanism. Similar scattering factors of Mg and Si complicate the determination
of Mg-Si disorder by x-ray diffraction methods. Thus, Mg-Si disorder can not be
definitely excluded. However, the shifts of the OH-stretching frequency to higher
wavenumbers observed in IR-spectra denote an increase of O-O bond distance
which was exclusively determined for the octahedral site. This implies that the
accommodation of water in ferroan ringwoodite is predominantly accomplished
by protonation of octahedral sites, i.e. Mg-site vacancies (defect equation .
This is consistent with recent theoretical studies based on energy considerations
(Blanchard et al. 2009; Li et al 2009), suggesting that the Mg-substitution
by two protons is the most favorable protonation mechanism, although Li et
al. (2009) argue that both type of defects are abundant in synthetic samples.
Water substitution mechanisms that create Fe-vacancies are not described in the
literature, also Fe-Si disorder was not observed for hydrous ferroan ringwoodites
(Hazen et al. 1993). Iron substitutes preferentially into the octahedral site by
Mg-Fe substitution, and therefore the water incorporation in ferroan ringwoodite
may be limited due to certain amounts of iron occupying octahedral positions,
and the creation of non-protonated Mg-site vacancies as a result of the oxidation
of iron. This consequently reduces the amount of possible protonation sites,
i.e. the water content of ferroan ringwoodites. In summary, water is dominantly

incorporated by Mg-substitution mechanisms in ferroan ringwoodite of this study:

Hy0 + Mgsy, = Vir, +2H* + MgO. (4.12)
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4.4.5 The stability, iron partitioning and point defect
chemistry of dense hydrous Mg-Fe silicates in

iron-rich systems

The development of phase assemblages is affected by water addition since dense
hydrous magnesium silicates, so called “Alphabet phases”, are stabilised and
coexist with nominally anhydrous minerals such as ringwoodite. Figure [4.27]
displays the observed phase assemblages of dense hydrous magnesium silicates
(DHMS) and ringwoodite as well as ringwoodite without DHMS. The comparison
to the diagram by Kawamoto (2004) shows that “phase E” is absent in the hydrous
MgFeSiO, system, which also implies that phase E becomes unstable with certain
iron-contents of the bulk composition. At a temperature of 750°C, ringwoodite
is stable down to 9 GPa, which corresponds to the stability field of olivine and
instead of phase E, ringwoodite coexists with phase A. Phase D was observed in
this study at 23 GPa and 1300°C, which is at higher temperature than reported
for Mg-endmember phase D synthesised from Mg,SiO,4 bulk composition with
a comparable water content of 11 wt% H2O. However, phase D shows larger
thermal stability than superhydrous B, which is contrary to data reported by
Ohtani et al. (2000) and Frost (1999). The stability of phase D is extended
up to the stability field of ringwoodite in comparison to the data by Ohtani et
al. (1997) for Mg-endmember phase D with Mg,SiO4 + 11 wt% H,O (Figure
[1.28). Kawamoto (2004) showed that phase D synthesised from KLB-1 + 13.6
wt% HyO bulk composition decomposes at around 1250°C and superhydrous B
is stable up to ~1300°C at 24 GPa, which is the opposite case in the present
study. However, structural properties of phase D and superhydrous B remain
unaffected by the iron substitution as indicated by similar lattice parameters in
comparison to the Mg-endmembers. Thus, structural reasons can be excluded to
cause this observation. It remains unclear, what causes the transposition of the
thermal stability of superhydrous B and phase D and whether simply the bulk

iron content could be the reason for this observation.
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Figure 4.27: Phase assemblages as a function of pressure and
temperature - right - data from Kawamoto (2004) applying KLB-1 + 13.6 wt%
H50O bulk composition, left - this study applying MgFeSiO4 + 9.5 wt% H2O bulk
composition; dotted line represents the temperature limit of dense hydrous Mg-Fe
silicates (this study), dashed and solid lines - from Kawamoto (2004).
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Figure 4.28: Phase relations for the Mg,SiO; + 11 wt% H>0 bulk
composition - red circles represent the maximum pressure-temperature stability
of phase D obtained in this study; abbreviations are L - liquid, W - wadsleyite, St -

stishovite, Pv - perovskite, R - ringwoodite, Pc - periclase, Il - ilmenite, G - phase
G/D/F, SuB - superhydrous B and Bc - brucite (from Ohtani et al. 2000).

I. Point defect chemistry of dense hydrous Mg-Fe silicates

and iron partitioning between DHMS and ringwoodite

The incorporation of ferrous iron in dense hydrous magnesium silicates occurs

by the common Fe?*-Mg substitution into octahedral sites, whereas ferric iron

occupies Si- and Mg-site. The following equations represent the observed cation-

and water-substitution mechanisms for phase A, superhydrous B and phase D
(for notation see Kroger and Vink 1956)['}

Fe?t in Mg-site

FeO + Si0y = Fely, + Sit, + 30,

(4.13)

4 . . 27 . .. . / .
Mgjy, - Mg in Mg-site, Vg - oxygen vacancy, Og¢* - O°~ on an interstitial site, Fe'g; - ferric
iron in Si-site, V" - Mg-vacancy, Fejy,, - ferric iron in Mg-site;

undercharge, * - negative undercharge
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4.4 Discussion and conclusions

Chemical analyses of phase D showed that iron is not involved in
water-substitution mechanisms, because the Fe-content is constant throughout
the entire variation range of water contents. Thus, higher water contents, which

are observed for phase A and phase D are mainly charge balanced by:

’ Mg-site vacancies ‘

Hy0 + Mgy, = Vip, +2H® + MgO (4.14)
| Si-site vacancies]
2H,0 + Si§, = V&' + 4H* + SiOs, (4.15)

which are dominant in phase A, minor in phase D and insignificant for

superhydrous B and:

Mg-Si disorder

Hy0 + S, + MgO = Mg?, + 2H* + SiO,, (4.16)

which is observed for phase D and superhydrous B, but when ferric iron is present
in SHyB the Mg-Si disorder mechanism is eliminated.

EELS measurements of phase D and superhydrous B yield Fe3* /SFe = 0.60(5)
and Fe?™ /Y Fe = 0.29(5), respectively. Superhydrous B accommodates ferric iron
mainly in the Mg-site (defect equation and to a small extent in the Si-site,
which results in reduced water contents (Table . On the contrary, phase
D incorporates the ferric iron only in the Si-site (based on chemical analyses)
resulting in slightly higher water contents compared to the ideal formula of phase
D:

Fe3t in Mg-site

Fes0s + 2810y = 2F ey, + 25i%; + 608 + O;° (4.17)

Fe3T in Si-site

Fey03 4+ 2MgO = 2F €, + 2M g3y, + 405 + V5", (4.18)

while the created oxygen vacancy is charge balanced by hydroxyl-groups:

H,0 + Vg + 0% = 2(0H)". (4.19)
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Figure shows Mg/Si ratios versus analyses totals (assumed to correspond
to the water content) of phase D, which gives information about the dominant
water subsitution mechanisms. Thus, according to Figure and the calculated
mineral formulae of phase D, it can be estimated that water substitution
mechanisms involving the Si-site are favoured (equation [£.16). This is in
agreement with Frost and Fei (1998) and Frost (1999) who reported that
Si-content and water concentration of phase D are related (Figure [4.29). Yang
et al. (1997) also suggested Mg-Si disorder as water substitution mechanism,
which can be also observed in iron-bearing phase D (this study, Figure .
Subordinate Mg- and Si-site vacancies (equation , are also observed
while Mg-Si disorder is the most common water substitution mechanism in

iron-bearing phase D.

o8 +————--———————H——r——t-r——t—t
Phase D composition
0.75 T +
MgSi. H,
07T 0 = -+
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Figure 4.29: Water substitution mechanisms of phase D - modified diagram
from Frost (1999); red circles represent Mg/Si ratio of iron-bearing phase D (this
study).
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The iron substitution into dense hydrous magnesium silicates - nominal
hydrous minerals - is apparently limited to ~6 wt% Fe;oa for phase D and 17-22
wt% Fegora for phase A and superhydrous B, respectively. Despite the limited
iron substitution of DHMS, these dense hydrous Mg-Fe silicates are stable in
iron-rich systems up to at least 50 mole% Fe,SiO, of the bulk composition. The
iron partitions preferentially into the coexisting ringwoodite (Figure and

phase A, phase D and superhydrous B are stabilised even in iron-rich systems.
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Figure 4.30: Iron partitioning between ringwoodite and dense hydrous
magnesium silicates as a function of Fe;SiO4 mole fraction of ringwoodite
- open symbols - this study, solid triangle - Frost (1999), dashed dotted line -
regression line for phase D, dashed line - regression line for phase A, dotted line -

regression line for superhydrous B (SHyB)

Nevertheless, the estimation of the Margules interaction parameter of the
cation exchange between DHMS and ringwoodite (following the procedure
presented by Frost 2003), which is based on the iron partitioning coefficient Ky,
between DHMS and ringwoodite, indicates that the substitution of iron in DHMS
is energetically unfavored and will lead to the destabilisation of DHMS as the bulk

iron content approaches the iron-endmember of the Mg,SiO4-FesSiOy system.
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Chapter 5

Experimental study of hydrous

silicates 1n the Martian mantle

5.1 Starting material and experimental conditions

The study of mineral phases relevant for the Martian interior requires a starting
material containing the main chemical components in representative proportions.
In this study, components >3 wt% of the bulk composition were considered,
which are in this case silicon, magnesium, iron and aluminum. The starting
material for the sample synthesis in a simple Martian system is based on the
Martian mantle composition model after Dreibus and Winke (1985) and Winke
and Dreibus (1988). A mixture of SiOs + Mg(OH)y + FeO + Aly,O3 (hydrous
FMAS - FeMgAISi) was prepared in order to obtain the composition (oxide wt%)
after the Dreibus and Wénke model (Table [5.1)). The magnesium fraction was
added exclusively in the form of brucite in order to achieve a hydrous FMAS bulk
composition with 12.35 wt% H,O. Preparation of the starting material followed
the identical procedure as for the hydrous Fosy composition. The dried and
powdered components were ground together under ethanol in an agate mortar.
Fractions of the starting material were loaded into platinum capsules, which were
previously sealed one-sided by electrical welding and finally closed by cold welding
after loading the powder.

103



5. HYDROUS MARTIAN MANTLE COMPOSITION

Table 5.1: Bulk composition of the starting material - hydrous FMAS.

Martian mantle composition®*  hydrous FMAS

(Lodders & Fegley (1997)*) normalized
Si0, wt% 44.4 40.79
MgO wt% 30.2 27.65
FeO wt% 17.9 16.49
Al,O3  wt% 3.02 2.72
H>0O wt% — 12.35
CaO wt% 2.45 —
Na, O wt% 0.5 —
TiO, wt% 0.14 —
Cra03  wt% 0.76 —
MnO  wt% 0.46 —
P,0s wt% 0.16 —
by wt% 100 100

* normalised mantle and crust bulk composition

* Dreibus & Wiénke (1985), Winke & Dreibus (1988)

Mars’ thermal gradient displays the pressure-temperature path through the
stability fields of mineral phases that constitute the Martian interior. The
modeled thermal gradient of Mars (areotherm, Fig. depends on the physical
state and composition of the Martian core, which is still under debate. Bertka and
Fei (1997) chose an areotherm for their experiments assuming a liquid Martian
core (Figure . More recent publications point out that the current Martian
core is potentially divided into outer liquid and inner solid core (Stevenson 2001,
Yoder et al. 2003). However, the temperature of the bottom of the mantle at
the core-mantle boundary is about 1800 K (Martian thermal evolution model of
Williams and Nimmo 2004), which implies that the areotherm represented by line
a in Figure is an overestimation. Thus, the thermal gradient indicated by Fei
and Bertka (2005) seems to be more reasonable for the experiments performed in
this study (Figure . Experimental run conditions are focused on the mantle
region between 18 - 23 GPa with temperatures ranging from 1150 - 1600°C in
order to study the thermal stability of hydrous mantle silicates in the Martian
mantle transition zone. The pressure range of experiments conducted at 1500°C is
extended to upper and lower mantle conditions up to 6 and 24 GPa, respectively
(Table |5.2)), in order to study the entire mineralogical structure of the Martian

interior with the applied chemical composition.
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5.1 Starting material and experimental conditions

Table 5.2: Experimental run conditions - hydrous FMAS.

Heating Starting
Sample Pressure  Temperature duration Capsule composition
GG 4380 6 GPa 1500°C 3h platinum hy FMAS
GG 4381 10 GPa 1500°C 3h platinum hy FMAS
GG 4464 12 GPa 1500°C 2h platinum hy FMAS
GG 4383 15 GPa 1500°C 3h platinum hy FMAS
GG 4376 18 GPa 1250°C 4h platinum hy FMAS
GG 2960 18 GPa 1400°C 4 h platinum hy FMAS
GG 2990 18 GPa 1400°C 2h platinum hy FMAS
GG 2987 18 GPa 1550°C 3h platinum hy FMAS
GG 4345 20.5 GPa 1150°C 4h platinum hy FMAS
GG 2945 20.5 GPa 1300°C 4h platinum hy FMAS
GG 4348 20.5 GPa 1450°C 4 h platinum hy FMAS
GG 4417 20.5 GPa 1450°C 8h platinum hy FMAS
GG 4389 20.5 GPa 1600°C 4h platinum hy FMAS
GG 2947 23 GPa 1150°C 4h platinum hy FMAS
GG 4377 23 GPa 1350°C 4h platinum hy FMAS
GG 2957 23 GPa 1500°C 4 h platinum hy FMAS
GG 3034 24 GPa 1500°C 2h platinum hy FMAS
2500 Fe- Mehlng
Mantle Solid& — FBOS E
2000 / o2<
X 10.6wt%S
@ /
£e0 i
E
&
1000
o £
500 3 9
0 5 10 15 20 25 30 35 40

Pressure (GPa)

Figure 5.1: Model of the Martian thermal gradient - Core-mantle boundary
(CMB) after Fei and Bertka (2005), thermal gradients (areotherms) after Fei and
Bertka (2005)(FB05); black solid line - temperatures of liquidus loop intersections
for sulfur contents of the core (Stewart et al. 2007); red solid lines - core areotherms
of Bertka and Fei (1997)(BF97), Williams and Nimmo (2004)(WN04), Hauck and
Phillips (2002)(HP02); blue circles - experiments performed in this study (Dreibus
and Winke 1985, Wénke and Dreibus 1988, Martian mantle composition)
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5. HYDROUS MARTIAN MANTLE COMPOSITION

5.2 General description of experimental run
products and calculation fundamentals for

presented data

Quenched melt was observed in all run products conducted above 1400°C. The
size of quench crystals decreases from ~20um to <10um with increasing pressure,
i.e. the viscosity of the melt increases as a consequence of the increasing silica
content in the melt. The fine grained crystals in the quenched melt were analysed
with EPMA using defocused beam (20 pum); results are given in Table The
low totals are probably due to the porosity and roughness of the samples, which
is caused by the limited degree of polishing. The high porosity of the quench
material is an indicator for exsolution of fluid upon quenching and indicates that
fluid was dissolved in the melt during the experiment. Thus, the free fluid, which
was observed after quench, does not necessarily mean that a free fluid phase was
present during the experiment. The absorption of iron by the platinum capsule
was estimated on the basis of mass balance calculations, which yield up to 12%
loss of iron (~2 wt% Feoa). This is reasonable because iron diffusion is faster
through liquids (Merrill and Wyllie 1973) and the melt fraction is relatively high
in most of the experiments (see table . However, the experimental conditions
are in the dry subsolidus region of the mineral phases, so that the iron loss is
inhibited by crystalline mineral phases. Figure [5.2| shows backscattered electron
images of recovered samples with phase assemblages at various conditions. The
relative mineral phase abundance (modal%) was determined for the recovered

samples using ImageJ program and mass balance calculations (Table .

Table 5.3: EPMA data of quenched melt fraction (selected samples)

Sample (@] Al Mg Fe Si
Pressure/Temp. pts. [wt%] [wt %] [wt%] [wt %] [wt%| Total
GG 4383 16 29(3)  0.45(1) 18(2)  13.6(8) 12(1) 73(7)
15 GPa/1500°C

GG 2960 25 3L7(9) 0.34(5) 19.7(9) 8.8(5)  13.9(5)  T74(2)
18 GPa/1400°C

GG 2990 26 33(1)  044(2) 19.1(8) 12.1(6) 14.7(7)  79(3)
18 GPa/1400°C

GG 2987 20 28(3)  0.28(5) 16(2)  12(1)  12(2) 69(7)
18 GPa/1550°C

GG 4389 37 33(1)  0.54(3) 20.0(6) 12.1(4) 13.8(8)  79(2)
20.5 GPa/1600°C

GG 2957 25 314(4) 051(2) 20.5(4) 13.2(4) 12.0(4) 77.6(8)

23 GPa/1500°C
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5.2 General description of experimental run products

The iron partitioning coefficient K between ringwoodite and melt as well as

garnet and melt was determined on the basis of the equation:
mineral~xymelt
o XMg XFe
 ~yymeltxymineral ?
XMg XFe

where X@ineral i the molar Fe/(Mg+Fe) ratio.

Kp

(5.1)

d

Figure 5.2: Backscattered electron images of run products - (mineral order
from light grey to dark grey contrast);

(a) sample GG 4381 - 10 GPa, 1500°C - garnet, olivine, pyroxene

(b) sample GG 2987 - 18 GPa, 1550°C - ringwoodite, wadsleyite, garnet, stishovite
(c) sample GG 2957 - 23 GPa, 1500°C - ringwoodite, akimotoite, garnet, stishovite
(d) sample GG 4348 - 20 GPa, 1450°C - superhydrous B, phase D, stishovite.
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5.2 General description of experimental run products

The observed phase assemblages are in agreement with the Gibbs’ phase rule
(except sample GG 2960 and GG 4380), F' = C' — P + 2, with C' - minimum

number of components to create the present (mineral) phases, P - number

of (mineral) phases, F' - degree of freedom which is the number of intensive

properties (e.g. pressure and temperature) that are independent of other intensive

parameters.

The observed brucite phase is probably a result of experiment

quenching. However, the fluid phase, which formed brucite upon quenching, was

present during the experiment and is considered as one phase. The minimum

number of components, number of observed phases and the resulting degrees of

freedom are given in table [5.5

Table 5.5: Application of Gibbs’ phase rule to observed phase assemblages
Component | Present Number of Degrees of
system phases (P) Sample | components (C) | freedom (F)*

olivine MgO
A pyroxene SiO9
garnet GG 4381 | 5 FeO 3
melt Al O3
H20
phase D MgO
B superhydrous B Si09
brucite GG 2947 | 5 FeO 2
magnesiowiistite Al,O5
stishovite H>O
ringwoodite MgO
wadsleyite SiO9
C garnet GG 2987 | 5 FeO 2
pyroxene Al O3
melt H>O
phase D Mg(OH),
superhydrous B SiOs
D _ i GG 4348 | 4 2
stishovite FeO
melt Aly O3

*F = C — P + 2 Gibbs’ phase rule

observed run products are given in table|5:|
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5. HYDROUS MARTIAN MANTLE COMPOSITION

The number of components involves the components which are needed to produce
the present phases of the run products. For systems A-C five components MgO,
SiO,, FeO, Al,O3 and H,O are assigned to form the present phases, yielding F
= 2 and F = 3 for the experimental runs. In case of system D four components
are assigned to form the run products. During the experiments, temperature and
pressure (intensive parameter) were constant, thus the chemical equilibrium was
reached in most of the experiments with F'=0, except for system A where one
degree of freedom is remaining. This indicates that the chemical composition of
the mineral phases was not fixed, yet the EPMA data show chemical uniformity of
the mineral phases such as ringwoodite. However, chemical zoning was observed
for garnet and pyroxenes in most of the recovered samples. The samples GG
4380 and GG 2960 were not in chemical equilibrium, since four components that
build up 2 phases will yield 4 degrees of freedom, which implies that the chemical

reactions would proceed further.

Mass balance calculation - an example

The modal fraction of mineral phases and melt was determined for particular
samples (labeled with “asterisk” in Table on the basis of mass balance
calculations. The following reaction (sample GG 4389) is an example for
the mass balance calculation, which is also the basis for the derivation of a
Martian mineralogical model presented in section 5.5. Each element leads to
an equation that can be solved to determine the 9 unknown mole fractions of
mineral phases and melt, because the mole fractions of the bulk composition
(a,b,c,d and e) are known. Assuming an approximately closed system during
the experiments, the equations can be solved by transposing and interrelating
the particular equations. The chemical analyses of the quenched melt have large
uncertainties and therefore the melt composition was refined by adjusting the
mole fraction values determined by image analyses to nearly match the measured
melt composition. This mass balance calculation yields an absorption of iron by

the platinum capsule of up to 12% loss of iron (2 wt% Fegotar)-

aMgO+bFeO+cSiO2+dAl2034+eH20 = f(Mg1.72Fe0.21)1.935%0.99Ho.1704+
g(Mg2.70Fe0.37)3.07(Mgo.67Alo.785%0.55)2 513012+

h(Si0.99Alo.01)O2+xMgFeAlSiHO(melt)
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5.2 General description of experimental run products

Table 5.6: Mass balance calculation - sample GG 4389 (exemplary for presented
data)

mole fractiont Al,Os MgO FeO SiOs H>,O

mineral phase [mol%| [mol%| [mol%| [mol%| [mol%] Total
rw* 0.02f 0.08 57.17 6.98  32.73 3.04 100
gt* 0.24f 520 43.75 494 46.12 n.a. 100
st* 0.03f 0.32 0.25 0.22 99.21 n.a. 100
melt* 0.71f 0.37  30.64 8.07 18.34  42.58 100
mass balance calculation
rw (f) 0.06* 0.08 57.17 6.98  32.73 3.04 100
gt (g) 0.19* 5.20 43.75 494 46.12 0.00 100
st (h) 0.03* 0.32 0.25 0.22  99.21 0.00 100
melt* (x) 0.72* 0.21 2498 1192 21.83 41.05 100
total 1.16  29.74 9.95 2942 29.74 100
bulk comp. 1.0 1.16  29.74 9.95 2942 29.74 100
residual 0.00 0.00 0.00 0.00 0.00  0.00

! mole fraction = modal% of the mineral phase
* EPMA measurements
T ImageJ picture analysis

* refined by mass balance calculation

The element totals in Table[5.6|are calculated by multiplying the mole fraction
of each element with the modal fraction of the particular mineral phase (product),
which is equivalent with the mole fractions f,g,h etc. of the products in the
equation above. The element totals have to match the mole fraction of each
element in the bulk composition. The residual is the difference between element
total and mole fraction of the element in the bulk composition, which has to
reach a minimum to determine the mass fractions of the mineral phases. This

procedure was accomplished using the “solver” plug-in with excel program.
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5. HYDROUS MARTIAN MANTLE COMPOSITION

Mineral formulae derivation

The mineral formulae presented in the sections below were derived following the

procedure shown in Table and 5.8

Table 5.7: Mineral formulae calculation of wadsleyite (wd), superhydrous B

(SHyB) and phase D (exemplary for presented data)

GG 4464 GG 4348 GG 4348
wd phase D SHyB
(31) (31) (53)
SiOs [wt%]  41.0(2) 57(1) 25.5(3)
MgO [wt%]  45.3(2) 21(1) 53.2(3)
FeO [wt%]  9.0(1) 1.4(1) 1.9(1)
Fe, O3 [wt%]  4.3(2) 4.6(6) 11.1(9)
Al,Os [wt%]  0.5(2) 5(1) 1.8(3)
H,0 [wt%]  0.49 11(1)f 6.5(3)1
) [wt%|  100.6(3) 100 100
Cation basedon 4 O 6 O 18 O
Sitt 1.00 1.73 2.70
APt T-site  0.01 1.01 0.18 2.00 0.23 3.00
Fe3t — 0.09 0.07
Fe3t 0.08 0.01 0.82
Mg2* M-site  1.64 1.90 0.98 1.03 8.43 9.42
Fe?t 0.18 0.04 0.17
H 0.08 2.21 4.64
) 2.99 5.24 17.06
Mg/Si 1.64 0.57 3.12

T estimated water contents based on low microprobe totals
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5.2 General description of experimental run products

Table 5.8: Mineral formulae calculation of majoritic-garnet (maj-gt) and pyroxene

(exemplary for presented data)

GG 4464 GG 2987
pyroxene maj-gt
(37) (31)
SiOy  [wt%] 58.7(4) 51.6(7)
MgO  [wt%] 37.6(4) 32.1(6)
FeO [wt%] 2.6(1) 4.7(3)
FeoO3  [wt%] 1.8(1) 4.9(6)
AlbO3  [wt%] 0.22(2) 7.5(7)
¥ [wt%] 100.9(8) 100.8(4)
Cation based on 6 O 12 O
Sitt 1.98 3.00
APt T-site 0.01 2.00 — 3.00
Fe3* 0.01 — J
Sitt — 0.56
Fe3t 0.04 0.25
A3t M1/Y-site* — 1.00 0.61 2.00
Fe2+ - _
Mg2* ) 0.96 0.58
Fe3+ _ _
Mg?+ M2/X-site* 0.93 1.00 2.73 3.00
Fe?t 0.07 0.27
¥ 4.00 8.00
Mg/Si 0.95 0.93
En 94% Py  14%
Fs 6% Alm  16%
Maj 70%

* M1 and M2 site of pyroxene; X and Y site of garnet
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5. HYDROUS MARTIAN MANTLE COMPOSITION

5.3 Results on the particular mineral phases

5.3.1 Olivine, wadsleyite and ringwoodite - water storage
capacities of nominally anhydrous minerals in a

hydrous Martian model system

Water storage capacity of the Earth’s upper mantle and transition zone is
essentially determined by olivine and its high pressure polymorphs ringwoodite
and wadsleyite. Other nominally anhydrous minerals such as garnet and pyroxene
are also dominant mineral phases in the mantle region and contribute to the
storage capacity even if their storage capacity is comparably lower. This
subchapter deals primarily with the chemical and structural data obtained for
nominally anhydrous minerals and their water storage capacity in the mantle

region of the Martian interior.

Si+Al

30

Fe

" pyrope Mg,ALSi;O,,

50  enstatite MgSiO,

forsterite Mg,SiO,
30

olivine, wadsleyite, ringwoodite
® pyroxene
garnet, majorite-garnet
O  Mg-endmember

10

0
Fe o s 9 10 Mg

Figure 5.3: Ternary diagram showing the compositions of run products -
Mg-Fe substitution in olivine, wadsleyite and ringwoodite, compositional variations
of pyrope-almandine garnet and majorite-garnet; open cicles denote Mg-endmember

compositions of olivine, pyroxene and garnet.
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5. HYDROUS MARTIAN MANTLE COMPOSITION

I. Olivine

The upper mantle region up to a pressure of 10 GPa at 1500°C is dominated
by olivine coexisting with pyroxene and garnet. Relative phase abundances

(regarding crystalline mineral phases only) of olivine range from 45 to 100%

(Table [5.4)).

Forsterite reference

intensity (arb. units)

GG 4380
N AN

500 1000
Raman shift cm-1

Figure 5.4: Raman spectra of olivine - Mg1.86F60.14A10.00Si0.98H0.0504 (GG
4380, 6 GPa and 1500°C).

Olivine can be distinguished easily from its high pressure polymorphs
wadsleyite and ringwoodite by Raman spectroscopy (Figure which allows
to constrain the upper mantle - transition zone boundary. Olivine observed in
this study has Fogs_gy composition (Table [5.9] Figure [5.3)). Infrared analyses
reveal a water storage capacity of olivine of about 0.3 wt% H,O, yielding the

mineral formula (Mg 79Feq.22)2.01510.90H0.0404 (sample GG 4381).
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5.3 Results

II. Wadsleyite

Between 10 and 12 GPa olivine transforms to its denser high pressure
polymorph wadsleyite, marking the upper bound of the transition zone.
The olivine-wadsleyite transition occurs at about 2 GPa lower pressure than
predicted (Figure[L.6] Figure[d.21). Within the uncertainty of multi anvil pressure
calibrations, the transition pressure of the olivine-wadsleyite transformation is
lowered by ~2 GPa due to the addition of water and the ferric iron content of
wadsleyite as shown by Frost and Dolejs (2007). Coexisting phases like garnet
and pyroxene are also dominant in this pressure range in addition to wadsleyite.
With increasing pressure wadsleyite starts to transform to ringwoodite at 1550°C
forming a field of coexisting wadsleyite and ringwoodite with dominant garnet
and accessoric pyroxene and stishovite, respectively (Table . Mineral phases
were mostly identified and distinguished using Raman spectroscopy (Figure .
At 20.5 GPa and 1600°C wadsleyite transforms completely to ringwoodite.

T T I T T T T I T

ringwoodite

wadsleyite

intensity (arbitrary units)

500 1000

. -1
raman shift cm

Figure 5.5: Raman spectra of coexisting mineral phases - sample GG 2987

(18 GPa, 1550°C); red spectra denoting reference Raman spectra from database.
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Figure 5.6: Infrared spectra of wadsleyite - two main absorption peaks at
3360 cm~! and 3612 cm™!; sample GG 4464 (12 GPa, 1500°C), sample GG 2987

(18 GPa, 1550°C).

Transmission electron microscopy observations reveal a defect-free
orthorhombic structure for wadsleyite (Figure with interplanar distances
close to the MgySiO4-wadsleyite reference. Electron diffraction along the zone
axis [001] shows the common pattern of wadsleyite, which excludes also the
occurrence of wadsleyite II. The orthorhombic structure is consistent with
the findings of Smyth and Kawamoto (1997), suggesting that the monoclinic
structure of hydrous wadsleyite is unlikely for compositions with <92 mole%
MgeSiOy4.  Electron energy-loss spectroscopy (EELS) was carried out on
wadsleyite in order to determine the valence state of iron, which is important for
assessing the possible water incorporation mechanisms. EELS analyses resulted
in an Fe®*/SFe ratio of 25+£5% (Figure [5.8). Wadsleyite has about 14 mole%
Fe,Si0, yielding the mineral formula (Mg s3Fe?"20Fe® 0.07)1.00511.01Ho.1004
with 0.6 wt% H,O (Figure when coexisting with ringwoodite, garnet and
pyroxene at 18 GPa and 1550°C (Table [5.9).
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5.3 Results

. wadsleyite *
. zone [311]

Figure 5.7: High-resolution TEM image of wadsleyite - zone axis [311],
sample GG 2987 (18 GPa, 1550°C).

Fe | | Fe” ELNES spectra of Wadsleyite

Fe L

GG 4464
Fe*'/zFe = 0.30(5)

GG 2987
Fe*'/sFe = 0.25(5)

normalised intensity
(arb. units)
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Figure 5.8: Iron L, 3 electron energy-loss near-edge structure (ELNES)
spectra of Mg,Fe-wadsleyite - GG 4464 (12 GPa, 1200°C), GG 2987 (18 GPa,
1550°C).
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5. HYDROUS MARTIAN MANTLE COMPOSITION

II1. Ringwoodite

The highest pressure polymorph of olivine, ringwoodite, appears at 18 GPa and
1400°C as well as 1550°C and is stable up to 23 GPa, corresponding to 1800
km depth in the Martian interior. Dominant garnet and accessoric stishovite
accompanies ringwoodite through its entire stability field (Table . At 18
GPa and 1550°C ringwoodite coexists with wadsleyite, representing the gradual
change from upper to lower Martian transition zone. Tron content of ringwoodite
reaches a maximum with 20 mole% Fe,SiO,4 coexisting with wadsleyite, while the
lowest Fe-content of ringwoodite of about 9 mole% Fe,SiO, appears at 23 GPa
when ringwoodite coexists with akimotoite and garnet as well as minor stishovite
(Table 5.9 sample GG 2957). Water content of ringwoodite reaches up to 1.08
wt% H,O at 20.5 GPa and 1600°C (sample GG 4389, Figure [5.9). The main
absorption band of ringwoodite is very broad (FWHM ~700 cm™!) and centered
at 3140 cm™! (sample GG 2990) as well as 3250 cm™! (sample GG 2987). The
weaker absorption bands at 2900 cm™! and 3700 cm™! are assigned to different
OH-groups (Bolfan-Casanova et al. 2000), while the main absorption feature
represents the predominant OH-group probably connected to the octahedral site
(see chapter 4.4).

200
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Figure 5.9: Infrared spectra of ringwoodite - synthesised at different
pressure-temperature conditions GG 2990 (18 GPa, 1400°C), GG 2987 (18 GPa,
1550°C), GG 4389 (20.5 GPa, 1600°C) and GG 2957 (23 GPa, 1500°C); main
absorption peak at 3140 cm~! (sample GG 2990) as well as 3250 cm ™! (sample GG
2087).
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5.3 Results

The water content of ringwoodite is again higher than the water
storage capacity of wadsleyite at lower pressure (Table , Figure [5.9).
Transmission electron microscope observations reveal a defect-free ringwoodite
structure.  Analyses of diffraction patterns are consistent with the cubic
structure of ringwoodite without major deviations of lattice parameters
from the reference data. The amounts of ferric and ferrous iron,
respectively, were determined using electron energy loss spectroscopy, yielding
up to ~30+5% Fe’t /SFe (Figure with the resulting mineral formula
(Mg1.76Fe* g 12Fe¥ 0 05)1.95(Alo.01510.98)0.99H0.1604 (sample GG 2957).

Fe?' Fe®t ELNES spectra of ringwoodite

GG 2987
Fe*'/sFe = 0.14(5)

normalised intensity
(arb. units)

GG 2957
Fe*'/sFe = 0.23(5)

T [ S T S T T
700 705 710 715 720 725 730 735 740

energy loss AE [eV]

Figure 5.10: Iron L; 3 electron energy-loss near-edge structure (ELNES)
spectra of Mg, Fe-ringwoodite - samples GG 2987 (18 GPa, 1550°C) and GG
2057 (23 GPa, 1500°C).
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5. HYDROUS MARTIAN MANTLE COMPOSITION

5.3.2 Pyroxene, garnet and (Mg,Fe)SiO3

(ilmenite-structure) - coexisting mantle minerals
I. Pyroxene

The upper Martian mantle and the Martian transition zone consist also of
pyroxene and garnet in addition to olivine and its high pressure polymorphs
ringwoodite and wadsleyite. At 10 GPa and 1500°C olivine and pyroxene
(enstatite) represent the dominant mineral phases with minor amounts of garnet
(Table . Raman spectroscopy and microprobe analyses reveal the presence of
pyroxene (enstatite) and garnet with pyrope, almandine and majorite components
at 15 GPa and 1500°C (Table [5.10)). Pyroxene was still observed as an accessoric
phase at 18 GPa and 1550°C, which marks the highest pressure at which pyroxene
is stable. According to the phase diagram of the join MgSiO3-FeSiO3 (Ohtani et
al. 1991) pyroxene with ~5 mol% ferrosillite component is stable up to about
~17 GPa, which is consistent with data obtained in this study (sample GG
2987). Pyroxene synthesised in this study has up to 7 wt% Feya1, with ferric
iron contents of up to Fe3"/YFe = 0.43(5) determined by electron energy-loss
spectroscopy (Figure . The resulting mineral formulae are given in Table
(.10l Recovered pyroxene crystals contain several cracks and optical impurities,

which influence infrared analyses and yield poor data.

Fe?* , ELNES spectra of pyroxene
\ | Fe™

Fe L

GG 4464
Fe*'/sFe = 0.43(5)

normalised intensity
(arb. units)

||||l||5||El|lllll||||||||l||||l|||||||||
700 705 710 715 720 725 730 735 740

energy loss AE [eV]

Figure 5.11: Iron L;3 electron energy-loss near-edge structure (ELNES)
spectra of pyroxene - GG 4464 (12 GPa, 1200°C).
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5. HYDROUS MARTIAN MANTLE COMPOSITION

Table 5.11: Garnet-melt partitioning ratios of Fe and Al

Sample Pressure/Temp. G melt *D&! melt
GG 4381 10 GPa/1500°C )
GG 4464 12 GPa/1500°C — 20(2)
GG 4383 15 GPa/1500°C — 14(3)
GG 2990 18 GPa/1400°C  0.29(4) 15(2)
GG 2987 18 GPa/1550°C  0.22(6) 24(6)
GG 4389 20.5 GPa/1600°C  0.24(3) 24(2)
GG 2957 23 GPa/1500°C 0.19(2) 16(2)

t Kp defined as (Fe/Mg)garnet/(Fe/Mg)melt as in equ. li'
% D defined as Dj = (i)garnet/(i)mers with i = Al [mole%)]

I1. Majoritic-garnet

The decomposition of pyroxene, beginning at pressures >15 GPa, is followed by an
increasing majorite-garnet fraction in pyrope-almandine garnet with increasing
pressure. The almandine component of majoritic-garnet reaches a maximum
of 31% at 10 GPa and 1500°C and decreases with increasing pressure. The
increasing majorite component (Figure results in decreasing Al-contents of
majoritic-garnet (Table. Majoritic-garnet is stable up to 23 GPa and 1500°C
with a maximum majorite component (MgySi;O12) of 70%. This maximum is
reached at a pressure corresponding to the upper bound of the transition zone,
when clinopyroxene disappears and entirely enters into the garnet structure. The
obtained compositional data of garnet is in agreement with thermodynamical
calculations (Gasparik 2003), while small deviations may result from analytical
inaccuracy and the distinct bulk composition containing iron and water (Figure
. The element partitioning of iron and aluminium between garnet and
melt (Table is relevant for the interpretation of differentiation processes
during e.g. magma ocean solidification and the estimation of resulting changes
in chemical composition of the crystallising mineral phases and the residual melt

(see general conclusions).

124



5.3 Results

25 — T T T T T T T g T T
BT -
.-..Q_Jn.'—’/” T
-----------.----./..,’ / i
g % — 1500°C -
-~ o 7
20 /// ,// 7]
T e ey 1
L~ - B
X \__- o 0
O PFomemee o T
9 i ) /-Yg-h_“*-ﬁ‘,_"s\ i
5 151 1650°C S8~ "
n KN
[72] | ~_ N _
o =
~
o \\\ T
o N\ |
10 | o -
M R NP R SR R S MU S B
0 10 20 30 40 50 60 70 80 90 100
maijorite Garnet [mole%] garnet

Figure 5.12: Chemical composition of garnet (pyrope with up to 31%
almandine) as a function of pressure - indicating the increase of majorite
component in garnet with increasing pressure as well as the decreasing majorite
component due to the appearance of akimotoite at >20 GPa; black circles -
experiments at 1500°C, blue and red circle denote experiments at lower (1400°C)
and higher (1600°C) temperature, respectively; dashed lines - thermodynamic
calculations for the enstatite-pyrope join at 1500°C and 1650°C from Gasparik
(2003); abbreviation: Gt - garnet, Aki - akimotoite, MgPv - Mg-perovskite, Cen -

clinoenstatite.
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5. HYDROUS MARTIAN MANTLE COMPOSITION

Electron energy-loss near-edge structure (ELNES) spectra of garnet yield
Fe3t /SFe = 0.48(5)-0.77(5) (Figure [5.13). The highest amount of ferric iron (7.5
wt% FesO3) was observed at 12 GPa and 1500°C (sample GG 4464), while garnet
with increased majoritic-component shows constantly ~50% ferric iron.

resulting majorite-garnet formula (according to the mineral formulae calculation

presented in Table based on 12 oxygen) is:

(Mg2'73F62+0.27)3(Mg0'58F63+0_25A10.61Si0,56)28i3012 (sample GG 2987) Infrared

analyses, however, yield water contents below the detection limit of FTIR

spectroscopy.

normalised intensity
(arb. units)

Figure 5.13: Iron L; 3 electron energy-loss near-edge structure (ELNES)
spectra of garnet/majoritic-garnet - GG 4464 (12 GPa, 1200°C), GG 2987 (18

LI B B S B BB L L B B
Fe* A | Fe* ELNES spectra of garnet /
: majoritic garnet
GG 2787
Fe*'/sFe = 0.48(5)
GG 4464
Fe*'/sFe = 0.77(5)
R B B B B S B I
700 705 710 715 720 725 730 735

GPa, 1550°C).

energy loss AE [eV]
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5.3 Results

ITI. Akimotoite

At Martian core-mantle boundary conditions (23 GPa and 1500°C), ringwoodite
coexists with majorite garnet, stishovite and ilmenite-structured (Mg,Fe)SiOs,
so-called akimotoite (Figure [5.14). This ilmenite-type (Mg,Fe)SiO3 polymorph,
which forms by the partial transformation of garnet at high pressure and
incorporates ~1 wt% Al by Al-Si substitution and ~2 wt% FeO as well
as 0.6 wt% Fe,O3 by Mg-Fe substitution. The ferric iron content was
determined using electron energy-loss spectroscopy revealing Fe3™ /S Fe = 0.20(5).
The resulting mineral formula of akimotoite is as follows (according to the
mineral formulae calculation presented in Table based on 3 oxygen):
(Mgo.0sFe* 0.03Fe®T0.01)1.02(Alg.02Si0.08)103.  The akimotoite crystals were not
suited for infrared analyses in this study because of optical impurities and
cracks. Pure Mg-akimotoite, however, can accommodate up to 0.045 wt% H,O
(Bolfan-Casanova et al. 2000) which could be enhanced by Al-substitution for
octahedral silicon (Smyth 2006).

L B L e o e e e e o e e HLI B s o w e S e e e e B
V¥V akimotoite reference
(B. Reynard, and D. Rubie, A.Mineral., 81, 1092-1096 (1996)) N
this study
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200 300 400 500 600 700 800 900

raman shift cm”

Figure 5.14: Raman spectra of Akimotoite - sample GG 2957 (23 GPa,
1500°C).
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5. HYDROUS MARTIAN MANTLE COMPOSITION

5.3.3 Stability and characteristics of DHMS in the Martian
mantle between 18-23 GPa

Analytical results for potential dense hydrous phases in the Martian mantle will
be presented in the following subchapter. The potential occurrence of hydrous
phases in the Martian interior was investigated at transition zone pressures of 18
- 23 GPa and at temperatures between 1150°C up to 1450°C. According to the
study of hydrous phases in the MgFeSiO, system, the stability of ferroan dense
hydrous phases is extended to higher temperatures at higher pressures.

Phase D and superhydrous B are stable up to 1450°C at 20.5 GPa. At higher and
lower pressures the maximum stability temperature of phase D and superhydrous
B decreases, reaching 1250°C at 18 GPa and 1350°C at 23 GPa.

I. Phase D

The water content of phase D varies less than that described for pure Mg-phase
D while magnesium, silicon and aluminium contents show significant variations
(Table [5.12)). Silicon and magnesium contents vary within a difference of about
5 wt% for all samples, whereas the water content ranges from 11 - 14 wt%
HyO (estimated water content from low totals of microprobe analyses). The
aluminium contents range from 1.5 - 5 wt% Al,O3, while the iron contents show
the smallest variability throughout the samples synthesised at different conditions
(Figure [5.17). Electron energy-loss spectroscopy of phase D yield Fe?" /SFe =
0.74(5) (Figure [5.16), thus ferrous and ferric Fe-content of phase D (sample GG
4348) is 1.4 wt% FeO and 4.6 wt% FeoOg. It is likely that ferrous iron occupies
Mg-positions and ferric iron as well as aluminium fills the Si-site, while the
common water substitution mechanisms for phase D, Mg-substitution and Mg-Si
disorder, are maintained. Figure m shows the Mg/Si ratio versus analysis
totals of phase D. The substitution mechanisms are indicated by dashed lines.
The composition of phase D analysed in this study lies between the Si** = 4HT
(MgSis_Hs,4,06) and Si*t = 2H* + Mg?" (Mg ,Sis_,Hs,2,06) mechanisms,
which implies the combination of both mechanisms with preference to the latter.
This result is consistent with the results for the pure Mg-endmember phase D.
However, due to the accommodation of ferric iron and aluminium in the Si-site
the water content of phase D is reduced compared to the pure Mg-endmember

phase D, showing Mg-Si disorder and Si-vacancies charge balanced by hydrogen.

128



5.3 Results

70

75

80 85 90 95 100
0.80
\
\
N .
\ Mg1+VSll-xH2+2VO() i \|
075 | N o -
\\ \
\ \
0.70 | \ | .
\
\
- N g
g’ 0.65 ) \
65 |- . N i
O MgSll—VHZJr-ROé N \\
g b ! !
/
© 060 | S . ' i
\ ! !
\ ! //
. .
055 b N ' ! Mgl-xSIZH2+ZxO(>
. - N \ / -1
\ v
AN
/
0.50 Lo L1 L1 L1 NV 1 ,
70 75 80 85 90 95 100

Analyses total [wt%]

Figure 5.15: Water substitution mechanisms of phase D - according to the
Mg/Si ratios, dashed lines represent water substitution mechanisms.
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Figure 5.16: Iron L; 3 electron energy-loss near-edge structure (ELNES)
spectra of superhydrous B and Phase D - sample 4348 (20.5 GPa, 1450°C).
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5. HYDROUS MARTIAN MANTLE COMPOSITION

II. Superhydrous B

In contrast to phase D, which accommodates up to ~5 wt% Al,O3 in its
structure, superhydrous B incorporates <1.5 wt% Al,O3. Magnesium contents of
superhydrous B show significant variations of up to 12 wt% MgO and are inversely
proportional to the total iron (Table Figures [5.18). Superhydrous B
shows high amounts of ferric iron of about Fe3*/SFe = 0.84(5) determined by
electron energy-loss spectroscopy (Figure . Ferrous iron is incorporated by
Mg-Fe substitution and ferric iron substitutes into the Mg- and the Si-sites while
aluminium occupies the Si-site. The substitution of ferric iron into the Mg-site

inhibits the water substitution by following equation:

FeyO3 + 28510, = 2F ey, + 251, + 605 + O;°, (5.2)

whereas ferric iron and aluminum occupying the Si-site enhances the water
substitution according to equation [5.6;

AlOs + 2MgO = 2Aly, + 2M g%, + 503 + V3* (5.3)

Fey03 4 2MgO = 2F€; + 2M gy, + 506 + V5°. (5.4)

However, water contents are higher or lower compared to the ideal mineral formula
(Mg10Si3H4015) with changing amounts of ferric iron and aluminum in the Si-site

and ferric iron in the Mg-site, respectively (Table [5.12).

20—

18 | Chemical composition of
superhydrous B

- - -
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— T T
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Figure 5.18: Chemical composition of ferroan superhydrous B - based on
EPMA and EELS measurements; showing the inverse correlation of Mg- and total

Fe-content corresponding to the common Mg-Fe substitution mechanism.
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5.3 Results

5.3.4 Point defect chemistry of nominally anhydrous
mantle minerals - Water substitution mechanisms

and potential water contents of garnet and pyroxene

Element substitutions of ferric iron and aluminum may enhance the incorporation
of water in nominally anhydrous minerals by creation of point defects. On the
basis of chemical analyses and electron energy loss spectroscopy potential water
contents can be estimated and possible water substitution mechanisms can be
assigned. Infrared analyses of garnet as well as majoritic-garnet yield water
contents below the detection limit. However, potential water content of garnet
was estimated by oxygen defect calculations (Table based on the general
majoritic-garnet formula A3zBo(Si,Al)30; with A = Mg?*, Fe?T and B = AIPT,
Fe3t, Si*t. The calculations are based on the following equation as an example

for A-site atoms in the B-site of garnet (for notation see Kréger and Vink 1956 )}

2Fe0 + MgO = 2Fély + Mg’ + 30% + V5 (5.5)

with magnesium and/or ferrous iron in the B-site. The oxygen vacancy is

balanced by the hydration mechanism:

HyO + Vg + 0% = 2(0H)". (5.6)

This implies that an oxygen vacancy equals two hydroxyl-groups that can
be potentially incorporated. According to the calculated oxygen-vacancies of
up to 0.08 p.f.u., which corresponds at most to 0.67% of oxygen sites being
vacant, ~0.32 wt% HoO (~0.05 H/Si) can be accommodated potentially in

majoritic-garnet.

5Mg§”ug - Mg in Mg-site, V{5 - oxygen vacancy, Of* - O?~ on an interstitial site, Fe'g; - ferric

T

iron in Si-site, V"4 - Mg-vacancy, Fey,, - ferric iron in Mg-site; © - neutral site, " - positive

undercharge, * - negative undercharge
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5. HYDROUS MARTIAN MANTLE COMPOSITION

Table 5.13: Calculated oxygen defects in majoritic-garnet and associated water

contents

Asoral Al SiYy, Oxygen  Water content

Sample =X = x-3 =y defects [(OH)*|
a.p.f.u. wt%

GG 4381 2.85(8) -0.15(2) 0.07(4) -0.2(2) 0
GG 4464 2.96(3) -0.040(3) 0.23(1) -0.28(6) 0
GG 4383 3.29(8) 0.29(3) 0.41(5) -0.12(2) 0
GG 2960 3.6(1) 0.63(7) 0.64(3) -0.008(1) 0
GG 2990 3.56(7) 0.56(4) 0.59(3) -0.030(3) 0
GG 2987 3.6(1) 0.59(6) 0.56(4) 0.030(4) 0.11(2)
GG 4389 3.56(7) 0.56(4) 0.55(2) 0.010(1) 0.05(1)
GG 2957 3.59(9) 0.59(5) 0.51(4) 0.08(1) 0.32(5)

Aioial = x denotes A-site occupied by Mg and Fe?™
A’; denotes Mg and/or Fe?' in the B-site
Si%, =y = Xg; - 3 with Xg; being the fraction of Si in a.p.f.u.

Fe3* occupies exclusively B-site

(OH)*| = 2[Vg] (see eq. [5.6)
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The potential water content of pyroxene (ideal Mg-endmember MgsSisOg)
was estimated with an analogue calculation as for majoritic-garnet based on
the assumption that Fe3' substitutes in the Mg-site and the Si-site, Fe** is
incorporated merely in the Mg-site and AI** goes into the Si-site (Table [5.14]).
According to the following defect equation, these substitution mechanisms cause
either oxygen vacancies or interstitial oxygens, since octahedral site vacancies

are excluded by chemical analyses:

| Trivalent ion in Si-site|

AlyO3 + 2MgO = 2Al, + 2Mgs;, + 505 + V' (5.7)

FesOs +2MgO = 2Fel; + 2M g%y, + 508 + V3 (5.8)

Fe3t in Mg-site

FeyOy +28i0, = 2F ey, + 25i%; + 608 + O (5.9)

Table 5.14: Calculated oxygen defects in pyroxene and associated water content

Miotal Fe3 ™ Fely, Fesr, All, Oxygen  Water cont.

Sample =X =y =x-2 =u =z defects [(OH)*]
a.p.fu. wt%

GG 4381 2.03(1) 007(1) 0.030(5) 0.04(1) 0.010(1) -0.0004(1) 0(0)
GG 4464 2.01(1) 0.05(1) 0.010(2) 0.03(1) 0.010(1) -0.023(5) 0
GG 4383 2.03(4) 0.04(05) 0.03(2) 0.01(05) 0.010(1)  0.03(2) 0.3(1)
GG 2987 2.05(1) 0.04(1)  0.05(1) -0.01(1) 0.00(0)  0.06(1) 0.5(1)

Miotar = x denotes M-site occupied by Mg and Fegqiqa)
Feyr, u =y - (x-2)

7 = X 4; which corresponds to the fraction of Al in a.p.f.u.
water content calculation [(OH)*] = 2[VZ] (see eq. |%I)

The oxygen-defects of up to 0.06 p.f.u. correspond to about 1% of oxygen site
being vacant, which yields a potential water content of ~0.5 wt% HyO (~0.06
H/Si) of pyroxene.
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5. HYDROUS MARTIAN MANTLE COMPOSITION

Common water substitution mechanisms reported for Al-free nominally
anhydrous minerals such as Mg,SiO4-polymorphs including the presence of ferric

iron are as follows:

’ Mg-site vacancies ‘

HyO + Mgy, = Vi, +2H* + MgO (5.10)
| Si-site vacancies |
2H,0 + Sig; = Vg + 4H*® + SiO, (5.11)
’ Mg-Si disorder‘
Hy0 + S, + MgO = Mgt + 2H* + SiO,, (5.12)

while Mg-Si disorder is difficult to determine by EPMA. Thus, dominant water
substitution mechanism are accomplished by Mg-substitutions. The substitution
of ferric iron for magnesium creates an interstitial oxygen or an octahedral site

vacancy:

Fe3t in Mg-site

FeyOs3 + 2510y = 2Fej,, + 250, + 605 + O;° (5.13)
FeyOs3 4 2510y = 2F ey, + 25, + Vi, + 705, (5.14)

Mg-site vacancy gives in combination with equation the resulting equation
5.15, i.e. creation of octahedral-site vacancies without hydration:

03 + Vi, = MgO. (5.15)
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5.4 Discussion

5.4.1 Water substitution mechanisms and water contents
of iron-bearing nominally anhydrous minerals in the

Martian mantle

I. Olivine

Olivine, the major Martian upper mantle mineral, with Fog3_ g9 composition
incorporates 0.3 wt% H,O, which is considerably less than the maximum
solubility of water in MgsSiOy4 olivine of up to 0.89 wt% H,O reported by Smyth
et al. (2006). However, olivine determines the water storage capacity of the
upper Martian mantle and thus contributes to the bulk storage capacity of
the entire Martian mantle. According to the point defect chemistry based on

chemical analyses, water in olivine is accommodated by Si-site vacancies:

2H,0 + Si%; = VI + AH* + SiOs. (5.16)

I1. Wadsleyite

The water storage capacity of Fe-bearing wadsleyite of 0.6 wt% H,O is higher
than that of olivine which implies an enlarged water storage capacity of the
upper Martian transition zone. However, the water content of Mggg-wadsleyite
determined in this study is significantly reduced compared to the data of
Kohlstedt et al. (1996) and Hirschmann et al. (2005). Several publications
predict higher water contents in Mg, Fe-wadsleyite with increasing Fe-fraction
compared to Mg-wadsleyite as summarised in Hirschmann et al. (2005). On
the contrary, studies by Inoue et al. (1995) and Kohlstedt et al. (1996) report
water contents of up to 3.1 wt% HyO for Mggo-wadsleyite and up to 2.4 wt%
H,O for Mggo-wadsleyite. This implies an inverse correlation of iron and water
contents, i.e. iron substitution in wadsleyite might be one parameter which
diminishes the water content. Water substitution mechanisms for wadsleyite
are reported by Smyth (1987), who specified M(3)-site Mg-vacancies as well as
Si-vacancies to charge balance the protonation of a non-silicate oxygen O(1)
site by the following substitution mechanisms Mg?*" = 2 H* and Si** = 4 HT.
Kohlstedt et al. (1996) suggested also Fe3*-Si disorder and Me-site vacancies as
possible hydration mechanism. Downs (1989) proposed that also the O(2)-site

is a possible protonation site in wadsleyite. The O(1)-site is bonded to five
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5. HYDROUS MARTIAN MANTLE COMPOSITION

Mg-atoms and the O(2)-site is connected to two silicon and one magnesium
atom (Ross et al. 2003), whereas protonation is assumed to be possible for all
O atoms in wadsleyite. The lower amounts of octahedral site cations compared
to ideal stoichiometry represent cation vacancies, which confirms the Mg?t =
2 H'™ mechanism, while octahedral site vacancies can also be created when
ferric iron substitutes into the Mg-site by defect equation Uncertainties of
chemical analyses, however, are such that it is difficult to resolve small amounts
of cation vacancies such as silicon vacancies, which are charge balanced by
protonation. Thus, no evidence was found for the Si** = 4 H* mechanism
in wadsleyite. The infrared spectrum of wadsleyite (Figure shows two
main absorption peaks near 3360 cm ™! and 3612 cm™! which are assigned to
reflect the vibrational modes of two distinct protonation sites in wadsleyite
(Figure [5.6). Cynn and Hofmeister (1994) suggest that the absorption peak
near 3330 cm~! is attributable to protonation of the O(2) site, while the weaker

I corresponds to protonation of the O(1) site.

absorption peak near 3600 cm™
Chemical analyses yield to fully occupied Si-site within the analytical accuracy
which excludes water substitution mechanisms involving Si-site vacancies. Thus,
obtained spectra imply that hydration of wadsleyite occurs by protonation of the
O(2) site connected to the Si-site but likely substituting the adjacent Mg-atom
and also by protonation of the O(1) site bonded to the M(3) site corresponding
to defect equation The absorption peaks corresponding to O(1) and O(2)
site are shifted to higher wavenumber, i.e. the hydrogen bond is stiffer which
may be caused by increasing O-O bond distances of the octahedra edge due to
Fe-substitution. Cynn and Hofmeister (1994) argued that the absorption peak
may be correlated to the O(2) site since it does not shift significantly due to iron
substitution, i.e. the nearest cations are silicon atoms. Wadsleyite synthesised in
this study has ferric iron content in contrast to the sample analysed by Cynn and
Hofmeister (1994). Ferric iron might affect the OH-stretching frequencies due to
modified bond distances as well as distinct atomic environments and may shift
the absorption maximum of the O(1) and O(2) site to higher wavenumber. Thus,

water is preferentially accommodated in wadsleyite by the following mechanism:

Mg-site vacancies

Hy0 + Mgy, = Vi, +2H® + MgO. (5.17)
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II1. Ringwoodite

The water storage capacity of ferroan ringwoodite of about 1.1 wt% H,O
in a simple Martian bulk system is still significantly lower compared to
Mg-ringwoodite, but higher than the water content of ferroan wadsleyite.
Small amounts of octahedral and tetrahedral site vacancies, evident from
mineral formula calculations based on chemical analyses determined by EPMA
measurements, assign Mg?™ = 2 H* (defect equation and Si*t = 4 O*
(defect equation substitutions as protonation mechanisms in ringwoodite.
As described above, Fe3T-Mg substitutions also create octahedral site vacancies
without protonation, which rather diminishes the water content of ringwoodites.
Infrared spectra of ferroan ringwoodite indicate increasing O-O distances of the
protonated site by the shift of the absorption maximum to higher wavenumbers,
which was described previously for iron-rich ringwoodite. This shift is probably

related to the protonation of the octahedral site:

’ Mg-site vacancies ‘

Hy0 + Mgy, = Vi, +2H® + MgO. (5.18)
| Si-site vacancies]
2H,0 + Sig; = Vg + 4H*® + S0, (5.19)

McCammon et al. (2004) suggest that the water content of wadsleyite and
ringwoodite is enhanced by the corresponding ferric iron (Figure . The
data of majoritic-garnet obtained in this study follow the indicated trend for
majorite, especially because the water content is estimated to be below 0.2
wt% HyO. However, the data of wadsleyite and ringwoodite differ from previous
data, particularly it appears that the ferric iron and water content of wadsleyite

analysed in this study do not correlate.
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Figure 5.19: Ferric iron fraction versus water content (McCammon et
al. 2004) - olivine - crosses, wadsleyite - solid circles, ringwoodite - open squares,
majorite - open circles; stars indicate the runs carried out under extremely oxidizing
conditions (AuPd capsules); trend of Fe3* /SFe with OH concentration is indicated
by annotated lines for each mineral; this study: red solid circles - wadsleyite, red

solid squares - ringwoodite and red open circles (majoritic-garnet).

Ferroan ringwoodite shows even an inverse correlation of ferric iron and water
content, which is in contradiction to the data displayed in Figure [5.19, This
trend supports the Fe3*-Mg substitution, which forms Mg-vacancies without

protonation by the defect mechanism:

Fey03 4 2510y = 2F ey, + 25, + Vi, + 705, (5.20)

The presentation of these data in comparable units (wt%), concerning the water
and ferric iron content of ringwoodite and wadsleyite, indicates the inverse
correlation of ferric iron and water content (dashed line, Figure [5.20). The
water content of ringwoodites synthesised in the hydrous FMAS system, however,
show small variations in ferric iron content but similar hydrogen content (solid

rectangle).
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Figure 5.20: Ferric iron (wt%) versus water content (wt%) of ringwoodite
and wadsleyite - open symbols - McCammon et al. (2004) with comparable
synthesis conditions (Pt-capsules), solid symbols - this study; dashed line - linear
fit of ringwoodite data (MgFeSiO4 + 9.5 wt% H2O system), dotted line - linear fit of

ringwoodite data (McCammon et al. 2004), solid line - ringwoodite data (hydrous
FMAS system).

The ringwoodite data (McCammon et al. 2004) with 0.8-0.9 wt% H,O is in the
range of the data obtained in this study and may follow the trend indicated by the
dashed line. The ringwoodite with 2.2 wt% H,O has about the same ferric iron
content as the other two samples (McCammon et al. 2004), thus the distinctly
higher water content is not correlated with the ferric iron content. Despite the
indication that ferric iron diminishes the water substitution in ringwoodite, the
existing dataset is too inconsistent and insufficient to define general correlations
of ferric iron and water content. This also shows that water storage capacities of
wadsleyite and ringwoodite are more probably affected by multiple parameters
such as phase assemblages, oxidation state of iron, composition of coexisting
phases and melt composition. Further possible impact factors on the water
storage capacity of nominally anhydrous minerals are described by Hirschmann
et al. (2005).
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5. HYDROUS MARTIAN MANTLE COMPOSITION

IV. Garnet and pyroxene

The water contents of garnet and pyroxene are probably below the detection
limit of infrared analyses, because the IR-spectra show no water absorption
peaks. Calculation of oxygen vacancies based on chemical analyses indicate
theoretical water contents of garnet up to 0.32(5) wt% H,O and pyroxene up
to 0.5(1) wt% HyO. This water content should be detectable by IR-analyses. The
absence of detectable water contents is probably due to the water partitioning
between ringwoodite (rw) - garnet (gt) and wadsleyite (wd) - garnet of DR,
> 1 and D%ﬁj%t > 1 as well as wadsleyite and pyroxene (cen - clinoenstatite;
orthoenstatite in this study) of D, ~ 3.8 (Bolfan-Casanova et al. 2000).
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5.4.2 Dense hydrous Mg-Fe silicates in the Martian mantle

Phase D and superhydrous B could be relevant dense hydrous Mg-Fe silicates in
the lower transition zone of the Martian mantle at 18-20.5 GPa (Figure [5.21).
Both hydrous phases show thermal stability up to 1450°C at 20.5 GPa, which is
at elevated temperatures compared to the previously reported thermal stability
of phase D (at 1250°C and 25 GPa, Kawamoto 2004 and at 1300°C and 23 GPa,
Ohtani et al. 2000). At higher and lower pressures the stability temperature of
phase D and superhydrous B decreases reaching 1250°C at 18 GPa and 1350°C at
23 GPa, which is again comparable to the stability of superhydrous B obtained
by previous experiments (Kawamoto 2004, Ohtani et al. 2000), while phase
D is stable at higher temperature than reported for bulk compositions with

comparable water content.
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Figure 5.21: Model of the Martian thermal gradient - Core-mantle boundary
(CMB) after Fei and Bertka (2005), thermal gradients (areotherms) after Fei and
Bertka (2005)(FB05); black solid line - temperatures of liquidus loop intersections
for sulfur contents of the core (Stewart et al. 2007); red solid lines - core areotherms
of Bertka and Fei (1997)(BF97), Williams and Nimmo (2004)(WN04), Hauck and
Phillips (2002)(HP02); blue circles - experiments performed in this study (Dreibus
and Wénke [1985], Winke and Dreibus [1988] Martian mantle composition); red

cicle - experimental runs containing superhydrous B and phase D.
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5.5 Conclusions - Implications for the water

storage capacity of the Martian interior

The mineralogical structure (hydrous mantle) of planet Mars according to the
areotherm of Fei and Bertka (2005) is composed of an upper mantle dominated
by olivine, pyroxene and garnet extending up to 11.5 GPa (~900 km depth). The
upper transition zone consists of pyroxene, wadsleyite and garnet and is extended
by ~2 GPa (~11.5-19 GPa, about 900-1475 km depth) compared to the anhydrous
mantle (Bertka and Fei 1997). Pyroxene decomposes at the transition from the
upper to lower transition zone, which results in an increased majorite component
of garnet in the lower transition zone. Akimotoite forms nearby the core-mantle
boundary in the lower transition zone at around 23 GPa and 1500°C by partial
transformation of majoritic-garnet (Figure .
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Figure 5.22: Mineralogical model of a hydrous Martian interior - derived

on the basis of mass balance calculations (section 5.2).
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Figure 5.23: MgSiO;3; Ilmenite-perovskite transition boundary as a

function of pressure and temperature - Ito & Takahashi (1989).

The pressure-temperature conditions at the core-mantle boundary (1800 K
and 23 GPa; Williams and Nimmo 2004, Fei and Bertka 2005) are insufficient
to stabilise a perovskite phase according to data on the MgSiOj system (Ito
and Takahashi 1989, Figure [5.23). The experiment at 23 GPa and 1500°C
performed in this study also confirms that perovskite is absent in the mantle
at the Martian core-mantle boundary (CMB). The perovskite phase occurs at 24
GPa and 1500°C, which corresponds to pressure-temperature conditions beyond
the Martian CMB. This implies that a lower Martian mantle is absent in the
present mineralogical model of Mars. The water storage capacity of the Martian
interior is mainly determined by the amount of water stored in olivine (~0.3
wt% Hp0), wadsleyite (~0.6 wt% Hy0) and ringwoodite (~1.1 wt% H,0). This
implies that the water storage capacity of the Martian mantle increases from
upper mantle to lower transition zone. Table [5.15] shows the amount of water
that can be stored in the upper Martian mantle and Martian mantle transition
zone. Akimotoite may subordinately contribute to the water storage capacity of
the deep Martian mantle region. However, according to the water content and the
mass fraction of olivine as well as wadsleyite and ringwoodite, about 6.94x10%° kg

H,O can be potentially stored in a water-saturated model Martian mantle (Table
5.15)).
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Table 5.15: Estimated water content of a saturated Martian mantle.

upper mantle transition zone
upper lower
depth km 50%-900 900-1475 1475-1900
olivine wadsleyite ringwoodite
average mole fraction  45% 27.5% 37.5%
volume* km3 3.45x10%° 5.65x10° 5.51x10°
mass kg 1.11x10% 1.95x10%2 1.95x10%2
amount water ppm wt ~3000 ~6000 ~11000
kg 3.34x10%° 1.17x10%° 2.14x10%°

)Y kg 6.65x10%°

~50% of the Earth’s ocean water mass*

t based on mass balance calculation / hydrous Mars model (Figure [5.22

1 average crustal thickness (Zuber et al. 2000)
* modal fraction of particular mineral phase of upper mantle and
upper and lower transition zone volume, respectively

* Mass of the oceans (Earth) = 1.4x10%! kg (Yoder 1995)
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Chapter 6

(zeneral conclusions

I. The potential existence of hydrous mantle silicates in the

Martian interior

Geochemical analyses imply that Mars is a more volatile rich planet than Earth,
since solar formation models predict an increase of volatile components with
increasing distance from the Sun (Dreibus & Winke 1985). Several formation
models of planet Mars predict the preservation of water during the accretion as
well as the delivery of water by impactors after accretion. During the planetary
cooling and differentiation processes, accreted water may have been liberated from
the interior and contributed to the early atmosphere or lost to space. However, the
scenario of a magma ocean solidification in the early history of Mars postulated by
Elkins-Tanton (2008) indicates the possible enrichment of water in the Martian
mantle. As solidification of the magma ocean proceeded and mineral phases
crystallised, iron and volatiles partitioned preferentially into the residual melt.
The MgFeSiO; + HyO system (this study) may therefore be considered as a
model system for this iron-rich residual melt. This study has shown that dense
hydrous Mg-Fe silicates in the Fe-rich system are stable at higher temperatures
than in a magnesium-rich system relevant for the Earth (Figure . However, it
is assumed that the solidification took place in the early Noachian epoch within up
to 5 Ma after planet formation, which indicates temperatures above the stability
of dense hydrous magnesium silicates according to the thermal history models
of Spohn et al. (2001)(Figure [I.1)). Nevertheless, it is likely that nominally
anhydrous minerals such as ringwoodite and wadsleyite incorporated significant
amounts of water during magma ocean solidification.

According to the present Martian mantle areotherms (Sohl and Spohn 1997, Fei

and Bertka 2005), with optimised model parameters to satisfy the geochemical
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data based on SNC meteorites and the maximum value of the polar moment
of inertia, the temperatures at the Martian CMB would be above the thermal
stability of dense hydrous Mg-Fe silicates. However, thermal history models of
Mars (Spohn et al. 2001, Figure predict current mantle temperatures of 1650
K and 1500 K (lithosphere growth model and plate tectonic model, respectively),
which is in the stability range of dense hydrous Mg-Fe silicates. Matsukage et
al. (2005) showed that the density of hydrous silicate melts with 5 wt% HyO
increases with increasing iron content and that the decrease of the density of the
silicate melt due to water is diminished at high pressures. Therefore, the density
of iron-rich hydrous silicate melts could have been high enough for them to sink
to the Martian core-mantle boundary, while ringwoodite and garnet floated. Such
a scenario was also proposed for the Earth, with descending dense hydrous melts
that finally solidified, and which may form the D” layer (Elkins-Tanton 2008,
Boyet and Carlson 2005). The dense hydrous Mg-Fe silicate, phase D, formed as
liquidus phase in the experimental run at 23 GPa and 1350°C. Thus, if a dense
water rich reservoir was preserved during the magma ocean solidification of Mars,
the appearance of dense hydrous Mg-Fe silicates is possible in the deep mantle at

a depth of 1900 km close to the core mantle boundary.

bl .
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Figure 6.1: Backscattered electron image of sample GG 4377 - 23 GPa,
1350°C, phase D is the liquidus phase (D) in contact with the melt.
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Figure 6.2: Stability regions of dense hydrous magnesium silicates as
function of pressure and temperature - for KLB-1 + 13.6 wt% HyO bulk
composition (Kawamoto 2004), bold dashed line; MgFeSiO4 + 9.5 wt% HoO
bulk composition (this study), gray area; simple hydrous Martian mantle bulk
composition (FMAS + 12.35 wt% H»O, this study), light gray area; range of the
present Martian mantle areotherm based on two different models from Sohl and
Spohn (1997).
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I1. The water storage capacity of the Earth’s and

Martian mantles - A comparison

Multiple parameters account for the water storage capacity of nominally
anhydrous minerals as presented in chapter 4.4. Despite several influencing
factors, the water content of ringwoodite is determined by its iron content and
the temperature. The water content of ringwoodite decreases with increasing
iron fraction and with increasing temperature (Figure , yet an increase in the
iron content has a stronger effect on the water contents than the temperature.
This implies that the iron-rich nominally anhydrous minerals in the Martian
interior could store less water than those in the Earth’s interior, although the

assumed mantle temperature of the Earth is higher than that of Mars (Figure[6.3).
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Figure 6.3: Water contents of ringwoodite as a function of the iron
content - green symbols - 1100-1150°C isotherm, red symbols - 1300-1400°C
isotherm, 1450-1500°C isotherm; circles - this study, squares - Ohtani et al. (2000),
triangles - Smyth et al. (2003), crossed square - Kudoh et al. (2000), semi-filled
square - Wang et al. (2003), crossed circle - Kohlstedt et al. (1996); short
dashed line - regression line 1100-1150°C isotherm, dashed line - regression line
1300-1400°C, dotted line - regression line 1450-1500°C isotherm, dotted dashed
lines represent the Mg# of the Martian mantle (Dreibus & Wiénke 1985, Wianke &
Dreibus 1988) and the Earth’s mantle (Kargel & Lewis 1993).
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The effect of temperature on the water storage capacity of ringwoodite is
diminished and becomes less obvious with increasing iron content and lower water
contents, respectively (Figure . The schematic diagram of the water storage
capacity of nominally anhydrous minerals (Figure Hirschmann et al. 2005)
shows that the water contents of nominally anhydrous minerals are expected to
increase with temperature up to the water saturated solidus, reaching a maximum
and then decrease up to the dry melting temperature of the mineral phase.
However, if this water content maximum is small, then the water content would
appear to be approximately constant over a wide temperature range because
the decrease of the water content with increasing temperature (after reaching
water saturation) would be probably within the analytical error of IR analyses.
Despite the probable decrease of the water storage capacity with increasing
temperature, the water contents of ringwoodite would be approximately constant
(within analytical accuracy) in the Martian transition zone. Thus, ringwoodite
may store about 1 wt% H,O in the lower Martian transition zone at 23 GPa and
~1500°C, which may correspond to the water storage capacity of ringwoodite at

higher temperature (~1600°C at 23 GPa) in the Earth’s lower transition zone.
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6. GENERAL CONCLUSIONS

II1. Iron and aluminium partitioning between mantle
minerals and melt - Implications for the chemical
differentiation of an early hydrous Martian mantle

According to the iron partitioning coefficient Kp between ringwoodite and the
coexisting melt and garnet and coexisting melt, respectively, iron partitions
preferentially into the melt, which is enhanced with increasing pressure in case

of ringwoodite (Figure [6.4h). Additionally, the partitioning behavior of iron is
relatively independent of the melt compositions (Figure [6.4p).
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Figure 6.4: Iron partitioning coefficient Kp between ringwoodite and
coexisting melt as well as garnet and coexisting melt - as function of pressure
(a) and melt composition (Fe#) (b), Kp defined as (Fe/Mg)mineral/ (Fe/Mg)melt;

error bars denote 1o standard deviation.

This implies that ringwoodite, which initially crystallised together with garnet
from a cooling Martian magma ocean, was Mg-rich compared to the Martian bulk
composition and the Mg-content of ringwoodite would increase with increasing
depth of crystallisation. These Mg-rich mineral phases are possibly buoyant
relative to the melt at high pressure (Matsukage et al. 2005) and float by

forming mantle cumulates of ringwoodite, garnet and wadsleyite, which have the
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potential to store significant amounts of water. In the course of magma ocean
crystallisation, the fractionation of garnet and ringwoodite increased successively
the iron-content of the melt so that the subsequently-crystallised mineral phases
were iron-rich. These iron-rich minerals may have a higher density than the
melt and the surrounding cumulates and sink deeper to form the lower transition
zone. These cumulates at greater depth may store smaller amounts of water
due to the higher iron-content of the mineral phases and the higher temperature.
This implies that the Martian mantle may be heterogeneous in terms of Fe- and
H5O-contents of the constituent mineral phases, with Mg-rich cumulates at the
lower pressure (~15-18 GPa) and Fe-rich cumulates at higher pressure (~18-23
GPa) in the lower Martian transition zone. However, these heterogeneities may
have been averaged out by convective stirring of the mantle over the Martian
history.

The high Al partitioning values between garnet and melt (Table , Figure
are caused by the low Al contents in the melt fraction, whereas the data by
Trgnnes and Frost (2002) using a pyrolitic and KLB-1 bulk composition indicate
a high Al content of the melt and thus Ditl/melt values of about 2. Both data sets
show small variations with pressure, and the errors (this study) result from the
melt composition, which was measured with EPMA using a defocused electron
beam of 20 ym. The garnets analysed in this study have an almandine component
of up to 31%, which may retain the aluminum in the stucture of garnet and inhibit
the Al partitioning into the melt. This implies, that the fractionation of garnet
from a deep iron-rich magma ocean would decrease the Al content of the residual
melt and subsequently crystallising minerals would be poor in aluminium. This
may be a plausible explanation for the apparent low Al content assumed for
the Martian mantle from analyses of crust rocks (SNC meteorites, Wénke and
Dreibus 1988).
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Figure 6.5: Aluminium partitioning between garnet and melt as function
of pressure - D is defined as Da; = (Al)garnet/(Al)melt, solid circles - this study,

open circles - Trgnnes and Frost (2002); error bars denote 1o standard deviation.

IV. The effect of iron on the compressibility

of hydrous ringwoodite

This study showed that the bulk modulus of ringwoodite, which is one of the
parameters that determine the velocities of compressional waves in the lower
transition zone, is not a function of the iron-content of ringwoodite. The bulk
modulus of iron-rich ringwoodites is close to values reported for anhydrous
Mg-endmember ringwoodites (K~185 GPa). However, this conclusion is only
valid up to the value of 0.1 a.p.f.u. of cation vacancies that result from the
oxidation of iron and /or the accommodation of water. Above this concentration of
cation vacancies, the bulk modulus of ringwoodite decreases, i.e. with increasing

water and/or ferric iron content ringwoodite becomes more compressible.
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Figure 6.6: Density of a hydrous Martian melt and ringwoodite as
function of pressure at 2170 K - calculations of the density of ringwoodite
are based on equation of state and iron partitioning data (this study), dashed line -
polynomial fit of ringwoodite data; calculations of the density of the hydrous melt
are based on Ita and Stixrude (1992), Matsukage et al. (2005) and Xu et al. (2008).

The combination of the presented equation of state and the iron partitioning
data of ringwoodite yields a first order approximation for the density of
ringwoodite that crystallised from a hydrous Martian magma ocean. The
iron partitioning data between ringwoodite and melt, obtained on the simple
hydrous Martian mantle composition was applied to the actual Martian mantle
composition (Table[5.1)), which yield the iron content of ringwoodite according to
equation (Table . In order to determine the density of ringwoodite, the
volume of the Mg- and Fe-endmember ringwoodite was calculated at 18, 20.5 and
23 GPa at 2170 K using a P-V-T equation of state (Ita and Stixrude 1992, Xu et
al. 2008). The density of the ringwoodite crystals are the product of the density
fraction of the endmember components (Table [6.1). The density of a Martian
melt (with 5 wt% H,O) as a function of pressure at 2170 K was calculated from
estimated results of Matsukage et al. (2005). These results provide evidence that
ringwoodite, which crystallises >15 GPa from a hydrous Martian magma ocean,
will be Mg-rich and less dense in respect to the melt and will therefore float.
In addition, the high Mg-content would imply a high water storage capacity of

ringwoodite (see above), and consequently large amounts of water that can be
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6. GENERAL CONCLUSIONS

stored in the Martian mantle. Furthermore, this confirms that iron-rich hydrous
melt will be denser than the surrounding cumulates and sink to the Martian CMB.
Therefore, depending on the thermal evolution and on the mantle temperatures of
Mars, respectively, dense hydrous Mg-Fe silicates may crystallise under suitable
conditions (1450°C and 23 GPa) in the Martian mantle.

Table 6.1: Density and iron content calculation of ringwoodite (rw) at 2170 K.

Pressure |GPal 18 205 23
Kp 0.32 0.26 0.17
Fe/(Fe+Mg) 0.09 0.07 0.05
Mg /(Mg+Fe) 0.91 0.93 0.95

Mg-endmember 3.31 3.35 3.39
Fe-endmember  4.67 4.73 4.78
density [g/cm?®|  Mg-Fe rw 3.43 344 3.45

actual Martian mantle composition Xg‘ee“/Xi\l}fg“ = 0.26

density [g/cm?[*

Xmelt i the molar Fe/(Mg+Fe) ratio

Kp defined as (Fe/Mg)ringwoodite/ (Fe/Mg)melt as in equ.

* from volume data of thermal equation of state Ko = 185 GPa (Mg-rw),

Ko = 186 GPa (Fe-rw)
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