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ABSTRACT: The performance of semiconducting polymers strongly depends
on their intra- and intermolecular electronic interactions. Therefore, the
morphology and particularly crystallinity and crystal structure play a crucial
role in enabling a sufficient overlap between the orbitals of neighboring
polymers. A new solution-based in situ polymerization for the fabrication of
native polythiophene thin films is presented, which exploits the film formation
process to influence the polymer crystal structure in the resulting thin films. The
synthesis of the insoluble polythiophene is based on an oxidative reaction in
which the oxidizing agent, iron(III) p-toluenesulfonate (FeTos), initially oxidizes
the monomers to enable the polymer chain growth and secondly the final
polymers, thereby chemically doping the polythiophene. To exploit the fact that
the doped polythiophene has a different crystal packing structure compared to
the undoped polythiophene, we investigate the structural effect of this inherent
doping process by varying the amounts of FeTos in the reaction mixture, creating
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polythiophene thin films with different degrees of doping. The structural investigation performed by means of grazing incidence
wide-angle X-ray scattering (GIWAXS) suggests that the strongly doped polymer chains aggregate in a 7-stacked manner in the
film formation process. Moreover, this z-stacking can be maintained after the removal of the dopant molecules. GIWAXS
measurements, molecular dynamics simulations, and spectroscopic analysis suggest the presence of polythiophene in a novel and
stable crystal structure with an enhanced intermolecular interaction.

B INTRODUCTION

Semiconducting polymers are the subject of intense research
because of their highly attractive applications in organic
electronic devices.' ™ The charge carrier transport in the
conjugated polymers takes place either along the conjugated
backbone of a single polymer chain (intramolecular) or through
the overlapping orbitals of neighboring molecules (intermo-
lecular). While the intramolecular transport requires an
elongated and planarized backbone for an outstretched
conjugated system, the intermolecular transport depends on
the overlap of the orbitals and therefore on the geometry of the
backbone aggregation, ie, the crystal structure. Hence, the
electronic properties of semiconducting polymers are strongly
dictated by their morphology and crystallinity.”* Thin films of
semiconducting polymers, however, are often amorphous or
semicrystalline, creating a need for methods to enhance their
crystallinity. Changing the molecular structure of the polymers
is the most common approach to induce crystallinity. The
addition of, for example, electronically insulating alkyl side
chains to the backbone strongly increases the tendency of
semiconducting polymers to crystallize, leading to a significant
improvement of their electronic properties. Moreover, the side
chains enhance the polymer solubility, enabling an easier
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processing from solution. One of the most investigated
semiconducting polymers that was designed accordingly is
the polythiophene (PT) derivative poly-3-hexylthiophene
(P3HT).

In this letter, we present how crystallization and
intermolecular interaction of polythiophene (PT) can be
steered by the choice of processing route instead. We introduce
a solution-based in situ polymerization which employs iron(III)
p-toluenesulfonate hexahydrate (FeTos) as an oxidizing agent
and a chemical dopant in the same fabrication step. The
included doping process additionally has a strong effect on
polymer aggregation, inducing a new and stable PT crystal
structure that leads to an enhanced chromophore interaction
within the semiconducting thin films. Since the dopant is rinsed
out after the synthesis, no electronically inactive material
remains incorporated in the insoluble thin films.
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B RESULTS AND DISCUSSION

We choose to perform the oxidative polymerization reaction
with FeTos, as it is well-established in the in situ synthesis of
high-performing poly-3,4-ethylenedioxythiophene (PEDOT)
thin films.® In our study, bithiophene (BT) serves as a
monomer molecule for the polymerization of polythiophene.
We perform the in situ polymerization from a metastable
reaction mixture of both BT and FeTos. While within the dilute
solution the reaction is prevented by the close redox potentials
of the two reactants, the polymerization only starts during the
processing, when the concentration of the reactants is
significantly increased by the drying of the solvent.”® The
reaction mechanism can be divided into two subsequent steps.”
Initially, iron(IIl) ions oxidize the monomer molecules to
radical cations which subsequently polymerize. Depending on
the employed amount of oxidizing agent, the already
synthesized polymer chains are further oxidized by excess
iron(1II) ions in a second step. Effectively, this further oxidation
is a chemical doping of the chains, introducing free charge
carriers into the conjugated molecules.” The positive charges on
the chain are stabilized by the anions of FeTos, the tosylates,
which are electrostatically attached to it. Simulations show that
the tosylates align perpendicular to the polythiophene back-
bones.'” We are interested in fabricating an insoluble
semiconducting material with improved performance, exploit-
ing the doping procedure during the processing. We therefore
spin coat the metastable mixture and subsequently rinse out all
residual monomers and oxidant molecules. It is known that the
choice of washing solvent has a strong effect on the electronic
properties of the obtained PT."" While rinsing in acetonitrile
leaves the polymer chains in their doped and therefore in
conducting state, ethanol additionally de-dopes the PT and
removes the previously electrostatically attached tosylate
counter ions, leaving PT in its semiconducting, unsubstituted
state. Hence, we are able to obtain doped and undoped PT in
the final thin films, depending on the last rinsing step, but using
the same reaction mixtures. For an improved intermolecular
interaction, the thin films of semiconducting PT are thermally
annealed at 200 °C for 10 min right after the washing
procedure.

To investigate the effect of the doping process occurring
during the film formation step on the nanostructure of the final
PT films, we vary the molar fraction of FeTos

MEeTos

XFeTos -

(1)

with ng.r.s and ngp as the amounts of FeTos and BT in the
reaction mixture, respectively. We employ fractions ranging
from 0.25 to 0.75. Afterwards, we investigate the properties of
both processing routes with conducting (acetonitrile-rinsed)
and semiconducting (ethanol-rinsed and annealed) PT films
separately. First, we analyze the electronic and structural
properties of the conducting PT films by means of four-point
probe measurements, UV/vis spectroscopy, and grazing
incidence wide-angle X-ray scattering (GIWAXS). Thereafter,
we show the effect of the process on the structure (GIWAXS)
and the electronic interaction (UV/vis absorbance and
emission spectroscopy) of the semiconducting PT chains.

We performed four-point probe measurements on the
conducting PT films to show that the final doping level is
controlled by the amount of FeTos in the reaction mixture.
Figure la displays the in-plane electrical conductivities which

NpeTos T MBT
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Figure 1. Properties of in situ polymerized conducting polythiophene
thin films. (a) In-plane conductivities of films synthesized from the
reaction mixtures with varied molar fractions of FeTos obtained by
four-point probe measurements. (b) Schematic depiction of the
proposed lamellar structure of doped PT and tosylate ions, and the
given crystal lattice distance corresponds to lamellar backbone spacing,
orientation of tosylate according to simulations found in the
literature.'” (c) The two-dimensional (2D) GIWAXS pattern of
films synthesized with FeTos molar fractions of 0.33 (FeTos
deficiency) and 0.75 (FeTos excess), Bragg diffraction of lamellar
ordering is encircled in white.

we employ as a measure for the doping levels of the films. All
conductivities are in the range of 0.1—0.8 S cm™ and thereby
several orders of magnitude above the conductivity of
semiconducting, undoped PT (1075-107* S cm™').">"’
Hence, rinsing in acetonitrile definitely leaves the PT thin
films in their doped, conducting state. The achieved
conductivities are of the same dimension as for the doped
PT thin films synthesized in situ with other oxidizing agents.”
Furthermore, the conductivity shows a drastic increase with
increasing molar fraction Xt in the reaction mixture.
While it is around 0.1 S cm™ for low Xg.r,, (0.25 and 0.33),
it rises up to 0.8 S cm™' beyond a fraction of 0.S. Thus, we
divide the investigated films into two different regimes. The
films prepared from the reaction mixtures with Xg,r., below 0.5
are from now on referred to as synthesized under iron
deficiency, as they show a strongly decreased doping level in
comparison to those synthesized under iron excess (Xgeros
larger than 0.5). This is additionally supported by the UV/vis
absorbance spectra of the conducting thin films (see Figure S1),
which show a strong rise in the absorbance band of the doped
thiophene chromophores with respect to the 7—z* absorbance
band of the undoped molecules with increasing Xg.roq
supporting that the increased conductivity is indeed caused
by a higher fraction of oxidized thiophenes and not, for
example, by a change in film quality or polymer chain length.
We investigate the structural effect of the doping level on the
thin film morphology by performing GIWAXS measurements.
Figure 1c shows the obtained 2D images of the conducting
films obtained from the reaction mixtures with Xg 1., of 0.33
and 0.75, respectively. Both scattering patterns exhibit two
broad signals centered at ¢ = 1.4 and 1.8 A™' (real space
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distances d = 4.5 and 3.5 A). These peaks are in agreement with
what has been observed for doped, conducting PT synthesized
via an oxidative polymerization e.g, as nanoparticles or in
bulk."*™'® At a high doping level (Xg.1o; = 0.75), however, an
additional Bragg signal arises at ¢ = 0.77 A™' (d = 82 A),
implying the development of an additional new crystal plane.
Yamamoto et al. first found that the bulk PT changes its
packing motif beyond a critical level of doping with iodine."®
According to their findings, a high dopant concentration results
in a structural rearrangement of the molecules. The
polythiophene backbones arrange in a 7-stacked fashion, with
the planar molecules parallel to each other. A lamellar structure
evolves, in which the dopant molecules are located in between
these PT s-stacks. Later, this effect has been explained by the
tendency of oligothiophene cations to form 7-stacked
dimers.'”'® These dimers develop a chemical bond between
the two parallel-arranged backbones, resulting in an additional
stabilization of the positive charges. If a large number of
positively charged oligothiophenes is present in a system, they
even form z-stacked crystal structures.'”'® Chaalane et al.
performed density functional theory calculations of tosylate-
doped oligothiophenes to predict the orientation of the tosylate
anions with respect to the polymer backbones. They found the
sidewise arrangement to be most stable, with an intermolecular
distance of 3.56 A between the sulfur atoms of polythiophene
and tosylate, respectively.'” Therefore, we propose the
formation of a similar crystal structure for the PT thin films
synthesized under iron excess in our study. The highly doped
PT chains arrange in a lamellar structure, giving rise to the new
Bragg peak arising in the GIWAXS pattern for Xg.r,, = 0.75. It
is therefore assigned to a lamellar distance of 8.2 A between the
polythiophene layers, with tosylate anions sandwiched in
between as depicted in Figure 1b.

In the following, we discuss the structure and properties of
the semiconducting PT films obtained from the same synthesis
by subsequent rinsing with ethanol. Usually, semiconducting
native PT is known to exhibit only a short-range order, with the
backbones aggregating in a herringbone (HB) fashion as
displayed in Figure 2d. The HB packing motif, induced by the
electrostatic repulsion of the z-orbitals, leads to a poor overlap
of the m-orbitals. Therefore, the intermolecular electronic
interaction in unsubstituted PT is weak when compared to its
substituted, 7z-stacked derivatives such as P3HT.

Figure 2a shows the 2D GIWAXS images we measured for
semiconducting PT films synthesized under iron deficiency
(Xperos = 0.33, left image) and strong iron excess (Xgeros = 0.75,
right image), respectively. Both patterns show three sharp rings
at scattering vectors g = 1.40, 1.63, and 1.98 A~ While these
rings are isotropic for Xg.r,, = 0.33, meaning the crystallites
have no favored orientation with respect to the sample surface,
they show a strong anisotropy in the case of X, = 0.75.
Here, the peak intensity is increased in a vertical direction. On
the basis of the positions of the rings, we assign them to the
main Bragg peaks of polythiophene HB crystals.''*** Since
these peaks are assigned to lattice distances perpendicular to
the backbone axis, the anisotropy in the excess film is
interpreted as HB crystallites with polymer backbones oriented
preferably parallel to the substrate plane.'**"

For further analysis of the crystal structures, we radially
integrate the intensities of the GIWAXS pattern in vertical
(Figure 2b) and horizontal directions (Figure 2c). The vertical
cuts of both samples show the three distinct peaks, which
match the HB crystal structure. Additionally, a small peak arises
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Figure 2. Properties of in situ polymerized semiconducting
polythiophene thin films. (a) Two-dimensional GIWAXS scattering
pattern of films obtained with FeTos molar fractions of 0.33 (FeTos
deficiency) and 0.75 (FeTos excess). (b) Radially integrated scattering
intensity in the vertical and (c) horizontal directions. The marked
peaks correspond to the z-stacked crystal structure. (d) Schematic
depiction of the two crystal structures of the semiconducting PT:
herringbone (green box) and 7z-stacking (beige box).

at g = 1.08 A™' (d = 5.8 A) when iron excess is employed in the
synthesis. In the horizontal cuts there is an even larger
difference between the two samples. In the horizontal direction,
the PT synthesized with X o = 0.75 exhibits a new peak at
approximately g = 1.76 A™' (d = 3.6 A). From these two new
peaks, we conclude that an additional crystal structure is
present in the PT thin films for iron excess. On the one hand,
the three most prominent peaks of both samples fit to the
natural herringbone structure that is known for unsubstituted
polythiophene. For PT synthesized under iron deficiency, this
seems to be the only crystal structure present within the final
semiconducting film. The second sample, prepared under iron
excess, on the other hand, shows two additional peaks, one in
each of the respective cuts, which is present after washing out
the tosylate ions and annealing the film. From the examination
of the conducting films, we know that the samples with iron
excess contain m-stacked PT structures forming a lamellar
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structure with the tosylate ions. Since the processing prior to
the washing is identical, we analogously propose a 7-stacked
structure for the semiconducting PT. The detected new lattice
distance of 3.6 A is close to the calculated intermolecular
distance for tosylate-doped oligothiophenes (3.7 A)'® and also
in the same range as the m-stacking distances of both P3HT
(3.8 A)** and PEDOT (3.4 A).”’ The small peak arising in the
vertical direction is consequently interpreted as the side-by-side
distance between the backbones. Hence, the difference between
the lamellar spacing in the conducting PT processed with iron
excess (82 A) and the backbone distance in the semi-
conducting PT processed with iron excess (5.8 A) must arise
from the removal of the tosylate ion in the ethanol-washing
process and a resulting shrinkage of the intermolecular distance.
The proposed crystal structure is schematically displayed in
Figure 2d.

To our knowledge, this is the first reported z-stacked crystal
structure of undoped, semiconducting, unsubstituted poly-
thiophene. The GIWAXS data clearly show that in the
presented processing route the doping of the polymer
backbones during the film formation has a strong effect on
the resulting PT thin film structure. Beyond a critical level of
doping, the polymer chains rearrange into a lamellar structure
of alternating cationic PT s-stacks and layers of tosylate
counter ions in between. However, contrary to the findings of
Yamamoto et al. for bulk PT, the induced z-stacking stays
intact after the tosylate is removed by rinsing with ethanol. The
m-stacked crystal structure is maintained even after thermal
annealing at 200 °C, indicating a certain stability. Using
molecular dynamics (MD) simulations, we can confirm the
teasibility of the discussed structures of PT without the
presence of tosylate. We simulate a crystal of 100 PT 10-mers.
The calculations show that if the PT chains are constrained to
the crystal plane separations observed in the experiment (5.8
and 3.6 A), but are nevertheless free in rotation around the
backbone, all the PT chains tilt in the same direction and form
m-stacks. When removing the constraints, the vertical PT stacks
slide in position and tilt in an alternating fashion, resulting in a
typical herringbone structure with the calculated separations
(unit cell parameters a = 7.10 A and b = 5.71 A) agreeing well
with the experimental values here and in the literature (a = 7.81
A and b = 5.56 A)."”?° This indicates that the herringbone
structure exhibits a strong global minimum, while a z-stacked
structure is possible if the movement of the polymer chains is
prevented due to the polymer chains being embedded in the
densely packed films (see Figure S2).

Finally, we perform absorbance and emission spectroscopy
measurements on the semiconducting thin films to investigate
the effect of the altered crystal structure on the intermolecular
interaction of the PT chains. Figure 3 shows the spectra of the
semiconducting PT films. The UV/vis absorbance of all
investigated thin films expands from the ultraviolet region to
beyond 600 nm. As the plot shows, the maximum of the
absorbance shifts from 465 to 500 nm for PT synthesized under
iron excess. Moreover, the intensity decreases in the low
wavelength region, while the intensity of the shoulders
increases at higher wavelengths. We assume that the absorption
properties of PT are very similar to those of the well-
investigated P3HT, since their backbones are composed of the
same thiophene chromophores. Therefore, we can interpret the
spectra as a superposition of the amorphous contributions of
the disordered PT chains in the higher energy section and the
vibronic transitions of the aggregated thiophene chromophores
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Figure 3. Normalized absorbance and emission spectra of semi-
conducting PT films polymerized in situ with varied molar fractions of
FeTos (see legend). Each absorbance spectrum is normalized to its
respective maximum, emission spectra are normalized to the intensity
of the 0—1 transition. Arrows indicate a decrease in amorphous
contributions and an increase of vibronic transitions in the absorbance
spectra and a decrease of the 0—1 transition in the emission spectra.
Excitation wavelength for all emission measurements is 500 nm.

of elongated, ordered polymer chains at higher wavelengths.”*
Hence, the fraction of ordered PT backbones in the films
increased when synthesized under iron excess.

Moreover, the relative increase of the vibronic shoulders
compared to the amorphous contribution induces the shift of
the absorbance maximum, although the positions of the single
absorbance bands seem to remain unchanged. Thus, the
chemical constitution of the semiconducting polymers is not
altered by the different synthetic parameters.

The emission spectra give further insight into the character of
the chromophore interaction. All spectra exhibit the most
intense emission band at around 620 nm and a second strong
emission at 670 nm. With increasing fraction of FeTos, the
relative intensity of the first band decreases. Moreover, the
spectra are slightly redshifted at higher fractions. The energy of
the different emissions as well as the ratio between the single
emission bands is comparable to those of aggregated but not
fully crystallized P3HT, with the thiophene chromophores
surrounded by the 7z-system of the other backbones.”* This is
plausible, as PT is the backbone of P3HT and therefore features
very similar electronic properties. The decreasing ratio of the
0—0 to 0—1 emission is a clear indication of an increased order
within the films. The redshift on the other hand suggests an
increased interaction between the chromophores of neighbor-
ing polymer chains. Therefore, the synthesis under iron excess
appears to have two effects: firstly, the overall order within the
thin film increased, while secondly, the new 7z-stacked crystal
structure results in an increased intermolecular interaction
between the backbones compared to the purely HB packed
PT 2526

Combining the results of the four-point probe measure-
ments, the GIWAXS data and spectroscopic analysis, we draw a
model of how the doping process influences the crystal
structure of the in situ polymerized PT. Figure 4 schematically
depicts the processes of the BT polymerization and the
following doping as well as the resulting crystal structures of the
differently doped chains. In the first part of the film forming
process, the monomers are oxidized by the iron ions and
subsequently polymerize. Although the oligothiophenes
become insoluble beyond a certain chain length, they still
possess enough mobility to undergo additional oxidation by
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Figure 4. Schematic representation of the in situ polymerization and
crystal structures present in PT films synthesized with FeTos. The
two-step process of BT polymerization and subsequent doping with
excess FeTos, which results in semiconducting PT chains aggregating
in the herringbone motif, while highly doped PT arranges into 7-
stacked lamellae. Finally, dedoping of the lamellae results in a stable 7-
stacked, semiconducting PT crystal structure.

excess iron. Therefore, it is possible to control the resulting
doping level by variation of the molar fraction of FeTos in the
reaction mixture. Beyond a critical doping level, the doped
polythiophene chains form cationic z-stacks. In the final doped
films obtained after acetonitrile rinsing, these are arranged in a
layered structure with layers of the tosylate counter ions in
between. Opposite to that, the undoped chains aggregate in
their natural HB motif. After dedoping and removal of the
tosylate ions from the highly doped chains, the PT chains
originally in the lamellar configuration retain their 7-stacking
motif, despite it usually not being their equilibrium crystal
structure.

In summary, we presented a solution-based in situ polymer-
ization process for unsubstituted semiconducting polymers that
offers the possibility to exploit the involved doping process for
influencing the type of crystal structure and aggregation of the
polymer chains. We show that upon variation of the amount of
oxidizing agent in the reaction mixture, the level of doping of
the resulting films can be tuned. Aside from an increase in
conductivity of the resulting conducting PT films, we are also
able to show that an increased doping level has a sustainable
impact on the structure. The GIWAXS measurements confirm
the formation of a 7-stacked lamellar structure beyond a critical
level of doping. This z-stacking of the PT backbones is
preserved in the crystallites even after dedoping and removal of
the tosylate counter ions. This results in a new crystal structure
of unsubstituted semiconducting polythiophene and, as shown
by the spectroscopic analysis, in an increased intermolecular
interaction. Here, native polythiophene (PT) serves as a model
polymer for this process, which should be transferable to other
conjugated polymers of similar chemical architecture.

B METHODS

Thin Film Preparation. The in situ polymerization was
performed by spin coating the metastable reaction mixture of
2,2'-bithiophene (Alfa Aesar) and iron(III) p-toluenesulfonate

6392

hexahydrate (Aldrich) in 1-propanol (synthesis grade, Roth).
The precleaned glass substrates were coated with thin layers of
polypropylene (Aldrich) by spin coating from 1-chlorobenzene
(synthesis grade, Roth) to increase the adhesion of the
polythiophene films during the posttreatment steps. All
chemicals involved were used without further purification.
The metastable reaction mixture was spin coated with 2000
rpm for 60 s at a substrate temperature of 90 °C. Afterwards,
the films were rinsed in either acetonitrile (doped poly-
thiophene films) or ethanol (undoped polythiophene) for 30
min. Finally, the undoped PT films were annealed at 200 °C for
10 min in ambient atmosphere. For each experiment, the sum
of the molar concentrations of PT and FeTos in the reaction
mixture was kept constant upon variation of the ratio between
them. Nevertheless, the overall concentration was set to match
the resulting thickness required for each experimental method.

Four-Point Probe Measurements. The voltage was
detected for a current sweep between 1.0 and —1.0 pA, the
sheet resistance was obtained by linear regression. The film
thickness necessary for the conductivity calculation was
determined by profilometry. The concentration of the reaction
mixtures was 0.2 mol L™,

Grazing Incidence Wide-Angle X-ray Scattering. The
GIWAXS measurements were performed at the beamline 7.3.3
at the Advanced Light Source with an X-ray wavelength of 4 =
0.124 nm (energy of 10 keV).”” The scattered intensity was
detected with a Pilatus 2D detector at a sample-to-detector
distance of 299 mm. The incident angle between the beam and
the sample was 0.16°. The solid angle corrected 2D pattern as
well as the radially integrated intensities were obtained with the
GIXSGUI 1.6 software of Argonne Natlonal Laboratory, taking
into account the necessary corrections.”® The concentration of
the reaction mixtures was set to 0.7 mol L™".

UV/vis Spectroscopy. The absorbance was obtained by
performing transmission and reflection measurements with an
integrating sphere. The luminescence spectra were obtained by
spin coating onto polypropylene coated silicon substrates and
measured in reflection. All emission spectra were measured
with an excitation wavelength of 500 nm. The concentration for
both experiments was 0.2 mol L™".

MD Simulations. Molecular dynamics simulations were
performed with Gromacs using the Gromos 53a6 force
field*”*° For the simulations, united-atom force field top-
ologies were used, and the visual analysis of the molecular
structure and trajectories was carried out with VMD.”" The
structure file for the model of a PT 10-mer was generated with
JME,’” based on which a force field file was created using the
Automated Force Field Topology Builder and Repository.™
We enhanced the model by calculating partial charge
distribution and the potential energy surface (PES) of the
dihedrals between individual thiophene rings ourselves with
Gaussian 09, rev. E.01.>* We used the B3LYP/6-31g(d,p) level
for theory in all quantum chemical calculations. Tight
convergence criteria were requested in geometry optimization.
We utilized the symmetry of the molecule, so that the PES for
the first dihedral was also used for the last and so on. We
adjusted the model used for MD simulations to replicate the
PES calculated by the quantum chemical calculations by
rotating the molecule around the angle in question with
enforced rotation. The potential energy of this process was
determined with the Gromacs tool gmx energy. We
implemented the new dihedrals with Ryckaert—Bellemans
potentials.”® Simulations were performed locally and on the
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Jureca Supercomputer.”® Further information on the model
system is given in the Supporting Information.
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