
https://doi.org/10.1088/1367-2630/aad457
mailto:walter.zimmermann@uni-bayreuth.de
https://doi.org/10.1088/1367-2630/aad457
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aad457&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aad457&domain=pdf&date_stamp=2018-07-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


In this work, we show that nonlinear traveling waves inevitably change into reflection-induced standing
waves in sufficiently short, confined systems. Since this generic phenomenon relies on basic universal principles
of pattern formation, we explore it atfirst within a minimal model for nonlinear traveling waves. The resulting
system-spanning properties can then be transferred to related phenomena in nature: in the Min system, e.g.,
traveling waves form by coordinated attachment and detachment of Min proteins from the membrane. This
protein system originates from E. coli bacteria where it plays an important role in the cell division process
[31–33]: inside the rod-shaped E. coli bacteria, oscillating proteins shuttle between the two cell poles. Thereby,
they ensure the positioning of the cell division site at the cell center. In in vitro experiments on the other hand,
the same biochemical reaction leads to traveling waves on large extended membranes [21, 22]. A deeper
understanding of generic properties of nonlinear waves in confinement will help to reconcile these seemingly
contradictory observations.

2. Transition to reflection-induced standing waves in short systems

Wefirst analyze the transition from nonlinear traveling waves in extended systems to reflection-induced
standing waves in strongly confined systems using a generic model. ‘Strong confinement’ refers to short system
lengths in the order of the preferred wavelength of the traveling wave. The model we use is the complex Swift–
Hohenberg (CSH) model [4, 34–36],

u x t a u b q u f u c u u, i 1 i i 1 i , 1t x x0
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for the complex scalar field u(x, t) in one spatial dimension. In extended systems and for ε>0, this model shows
traveling waves with a preferred wavelengthλ0=2π/q0 over a wide range of parameters. We measure the
system length L in units ofλ0 since it represents an intrinsic length scale of the problem.

Simulations of equation (1) with no-flux boundary conditions (see appendix A for details) for three different
system lengths lead to the results shown infigure 1: depending on the system length, we get three significantly
different wave solutions.

In moderately short systems (L=3λ0, top), wefind a traveling wave pattern in the center (bulk) of the
system. This resembles the traveling wave patterns that occur for the CSH model in large, quasi-unconfined
systems. Two traveling wave directions, described by uR(x−ωt) (traveling to the right) and uL(x+ωt)
(traveling to the left), are equally likely in extended pattern forming systems. In contrast to, e.g., light or sound
waves, however, traveling waves in pattern forming systems are nonlinear. While light or sound waves are thus
superimposable, two counter-propagating nonlinear waves compete with each other: one of the traveling wave
directions is spontaneously selected, while the other is suppressed [3, 29]. But their confinement infinite systems
introduces an additional effect: traveling waves are reflected at the boundaries of afinite system. The boundary
conditions apply to the wholefield u(x, t) in equation (1), i.e. the incoming and reflected waves together.

Figure 1. Strong confinement leads to significantly different wave solutions depending on the system length. (Top) Modulated
traveling wave (TW) for L=3λ0, (Middle) two-node standing wave (SW) for L=λ0, (Bottom) one-node standing wave for
L=λ0/2. Simulations of equation (1) with no-flux boundaries, represented in space-time plots. Shown is the real part of the complex
field u(x, t) for the parameters ε=0.5, a=−0.8, ξ0=1, b=0, q0=1,f=0.5, γ=1, c=0.5.
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Therefore, the sum uR+uL, has to match them at the system borders. This boundary coupling forces the
incoming and reflected waves into coexistence in afinite neighborhood of the boundary. The resulting
superposition of both wave directions leads to standing wave patterns. Further away in the bulk the nonlinear
competition between both wave directions dominates and the reflected wave is damped by the predominant
incoming traveling wave. The largest system infigure 1 (top) shows the interplay between both bulk and
boundary effects. Reflection effects dominate very close to the top and bottom boundaries of the system. There,
the incoming and reflected wave form a local standing wave. The extent of this standing wave depends on the
distance ε from threshold and increases by decreasing ε. In the bulk region, however, wave competition prevails
—the pattern resembles a traveling wave. By decreasing the system length L, the boundaries move closer
together, i.e. the fraction of the system with significant superposition of incoming and reflected waves increases.
Therefore, the boundary-induced reflection becomes more and more important. For sufficiently short systems
—shorter than a critical length Lc—the reflection effect predominates the nonlinear competition in the whole
system. As a result, standing waves become inevitable. Note that these standing waves are reflection-induced. In
principle, standing wave solutions can be inherently stable. However, this is not the case here: in the CSH model,
standing waves in extended systems are always unstable. Thus, the standing waves wefind here are a direct
consequence of the confinement. While this novel, reflection-induced transition from traveling to standing
waves is generic, the critical length Lc depends on the chosen parameters and is specific to each system. The
middle and bottom panel infigure 1 show simulations for L=λ0 and L=λ0/2, respectively. Both system
lengths are below Lc leading to standing wave patterns. In the standing wave regime, the system length influences
the number of standing wave nodes. For L=λ0 (figure 1, middle) and similar lengths, wefind a two-node
standing wave. If only about half of the preferred wavelength fits into the system (e.g. L=λ0/2,figure 1
bottom), the standing wave has a single node in the system center.

3. Length adaptability and bistability of nonlinear standing waves

The discovered reflection-induced standing waves in strongly confined systems are further characterized by
exploring their linear stability. For stationary stripe patterns it is well known that they are stable for different
wavenumbers in afinite band width. The basis of this multistability is the so-called Eckhaus stability band
[37, 38]. Both fluid experiments [39, 40] and numerical analysis of different systems [27, 41] confirmed
multistability for stationary patterns (e.g. stripes) in extended systems. The Eckhaus stability band also exists for
traveling waves in unconfined systems [4, 17, 42, 43]. Do the standing waves we find in strongly confined systems
also show multistable behavior? Does the confinement influence the stability band compared to spatially
extended systems?

An analytical approximation of a standing wave solution of equation (1) is given by
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Due to the no-flux boundaries, the wavenumber q is connected to the system length L via q=nπ/L, where
n=1, 2, 3 ... is the number of nodes. This standing wave solution in equation (2) theoretically exists for F2>0,
i.e. for q q0

2
0
2 2 2e x> -( ) . In nature, e.g. in (bio)chemical reactions, the control parameter value, corresponding

to ε in our model, is oftenfixed above the threshold of pattern formation. Then, standing waves only fulfill the
aforementioned existence condition within afinite range of system lengths. Therefore standing waves with n
nodes only exist in a certain length regime (existence band), located around L=nλ0/2. In addition, existence
ranges of standing waves with different numbers of nodes may overlap. Thus, for certain system lengths,
multiple standing wave solutions (with different numbers of nodes) exist simultaneously. However, parameter
ranges where patterns theoretically exist are not equivalent to the parameter ranges where they are stable. In fact,
patterns are usually not stable throughout their whole existence range [3, 17, 27, 39–42]. By also analyzing the
stability of standing waves, we thus identify the range in which to expect these solutions, especially in
experiments (see SM is available online at stacks.iop.org/NJP/20/072001/mmedia for more details on the
linear stability analysis).

Figure 2(a) shows the stability regions of standing wave solutions as a function of both system length L and
the control parameter ε. For a given system length, standing waves with n nodes only exist for sufficiently large

q n L0
2

0
2 2 2e x p> -( ( ) ) . Below this threshold (black line infigure 2(a)) , the homogeneous solution u=0 is

stable and no pattern occurs. The stability range of standing waves with n nodes is located around L=nλ0/2 at
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moderate values of ε. For L=nλ0/2, the wavelength of the standing wave corresponds to the preferred
wavelengthλ0 of the CSH model. For these ‘optimal’ system lengths, standing waves are stable over a large range
of control parameter values. Nevertheless, we can deviate from these optimal lengths while still maintaining
stable standing waves. This creates regions of stability in the ε-L-plane. These stability regions constitute the
Eckhaus stability band for different number of nodes. We can now compare the width of the Eckhaus band to the
width of the existence band for the standing waves. In extended systems, the waves are only stable in a subrange
of their existence band. In contrast, in our confined systems close to the onset of pattern formation, the Eckhaus
band spans the whole existence range (see figure 1 in SI). Additionally, adjacent stability regions may be large
enough to overlap. In these cases, standing waves with both n and n+1 nodes are stable. These overlapping
stability regions therefore constitute areas of multistability. For large values of ε (above the dashed line in
figure 2(a)), standing waves eventually lose stability. Simulations then show a transition to traveling wave
patterns such as infigure 1 (top). The details of the stability regions also depend on the other parameters of the
CSH model. Parameter f, e.g., which is connected to the group velocity of the waves, qualitatively changes the
exact shape of the stability regions (figure 2(b)). As a result, the overlap between adjacent stability regions
increases with increasing f. Other system parameters such as b or c only marginally change the stability of
standing waves (figures S2 and S3) in confined systems. Importantly, however, the generic principle of a
transition from traveling to standing waves in short systems remains qualitatively independent from system
details.

Note that due to the shape of the stability regions, different scenarios are possible upon observing systems
with increasing length: if we choose ε such that stability regions overlap, we expect direct transitions between
standing waves with an increasing number of nodes (as seen infigure 1). Inside the overlap, there is bistability of
standing waves with different numbers of nodes. Therefore, both types of standing waves are possible and the
resulting pattern depends on initial conditions (see figure 3(a)). Notably, this provides the possibility for
hysteresis. The transition from one to two nodes in a growing system, e.g., takes place at a different system length
than the reverse transition in a shrinking system. For other values of ε, the different standing wave solutions are
intersected by either the homogeneous solution (for small ε) or by traveling wave patterns (for larger ε,
figures 3(b), (A)–(C)). In all cases, standing waves eventually lose stability for sufficiently large systems (after
crossing the dashed line infigure 2(a)). For afixed system length L, standing waves also loose their stability for
sufficiently large ε (figures 3(b), (D)–(E)). These transitions to modulated traveling waves—both as a function of
L and ε—take place in the form of supercritical (continuous) bifurcations (figure 3(c), see SM for details on how
this was calculated).

4. Reflection-induced standing waves in models for a chemical reaction and the Min
protein system

Minimal models such as the CSH model we study here for traveling waves are powerful tools to study system-
spanning properties of self-organized patterns. System-specific models describing traveling waves are usually
more complex than the CSH model. They are, e.g., often composed of several coupled nonlinear equations and/
or include higher order nonlinearities (see e.g. [3, 21, 22, 44–49]). Moreover, traveling waves can occur far from
the onset of pattern formation. Possible intricacies in these cases include secondary instabilities or anharmonic

Figure 2. Stability and length adaptability of standing waves. (a) Stability regions of standing waves as a function of system length L and
control parameter ε. Shaded regions indicate stable standing waves with n=1, 2, 3, 4 nodes. Homogeneous solution is stable below
solid black line and traveling wave patterns in the bulk above dashed lines. Parameters in equation (1): a=0, ξ0=1, b=0, q0=1,
f=0.5, γ=1, c=0.5. (b) Influence of the group velocity parameter f on the stability of standing waves solution in the CSH system.
Parameters: f=0.0 (I), 0.2 (II), 0.5 (III), 0.7 (IV), other parameters as in (a).
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wave profiles. Such effects can potentially overshadow the generic behavior of traveling waves under constraints
discussed so far. Apart from these exceptions, however, even more complex scenarios often qualitatively follow
generic principles extracted from minimal models. Thus, our results obtained from the generic CSH model help
us to understand wave patterns in more complex systems.

We support this view by investigating the behavior of nonlinear traveling waves under confinement in two
specific systems far from equilibrium. Thefirst model describes the aforementioned Min protein oscillations in
E. coli bacteria [21]. The second example is an extended Brusselator—a chemical reaction–diffusion model that
forms traveling waves [49] (see appendices B and C for details on both models). Asfigures 4(a) and (b) show, the
qualitative behavior of nonlinear waves in both of these models is very similar to the generic CSH model: in
sufficiently strong confinement, traveling wave patterns inevitably change into reflection-induced standing
waves. Depending on the system length, we alsofind standing wave patterns with different numbers of nodes.
Note that both sets of simulations take place far beyond threshold. In this highly nonlinear regime the spatial
dependence of the waves cannot be described by a single harmonic as in equation (2). Instead, they include
higher harmonics—as seen in the Fourier spectra infigures 4(c) and (d).

Both models have a similar growth dispersion relation for perturbations of the homogeneous basic state as
the CSH model—with a maximum at afinite wavenumber, while other modes are damped. Furthermore, the
extended Brusselator shows a continuous bifurcation from the homogeneous state to traveling wave patterns—
again, similar to the CSH model. On the basis of these common properties, the similar behavior of nonlinear
waves in strong confinement were to be expected. Traveling waves in the Min model infigure 4(b) are even
further from threshold and thus in the strongly nonlinear regime. Nevertheless, we find the same scenarios for
the Min reaction as for the CSH model and the Brusselator. This further supports the generic nature of our
predictions on reflection-induced standing waves.

Figure 3. Scenarios for transitions between standing and traveling wave patterns. (a) Bistability of standing waves with 1 and 2 nodes
due to overlapping stability regions. Depending on initial conditions, both a standing wave with one node (left) or two nodes (right) is
possible for L=0.79λ0 and ε=0.55. (b) Different scenarios are possible upon changing system parameters. Forfixed ε=0.8, we
get 3 different solutions upon increasing the system length L: from a standing wave with one node (A, L=0.5λ0) to modulated
traveling waves (B, L=0.8λ0) to 2-node standing wave (C, L=λ0). For a fixed system length L=1.5λ0, there is a transition from a
3-node standing wave (D, ε=0.4) to a modulated traveling wave (E, ε=0.8). (c) Transitions from standing waves to modulated
traveling waves are supercritical bifurcations as both a function of the system length L (left) and the control parameter ε: the amplitude
of traveling waves increases continuously above the critical length Lc or the critical control parameter εc, respectively (see SM for more
details). Additional system parameters for all simulations in this panel: f=0.2, rest as given infigure 1.

5

New J. Phys. 20 (2018) 072001



regulation of cell division. This view is supported by experimental observations in the Min system: depending on
bacteria length, the Min proteins also form standing waves with multiple nodes [31, 47, 53] or even traveling
waves [47]. More importantly though, not only do living bacteria slightly differ in length, they also actively grow.
To maintain accurate cell division at the cell center, the pole-to-pole oscillations must be robust over a range of
cell sizes. The generic length adaptability of reflection-induced standing waves enables pole-to-pole oscillations
in the Min system to adapt to the growing cell. In fact, E. coli maintain robust pole-to-pole oscillations even as
they almost double in length prior to cell division. Continued cell growth tofilamentous bacteria also allows for
transitions between standing waves with different numbers of nodes or to traveling waves [33, 47, 53]. Even
multistability of different wave patterns has recently been found in living E. coli [51].

Due to their generic nature, we expect ourfindings to be independent of system details. Our simulations of a
Min protein model and an extended Brusselator substantiate this claim. While we analyzed one-dimensional
systems in this work, we believe the basic principles also apply to two or three spatial dimensions: in sufficiently
small multidimensional systems the boundary reflection of traveling waves along the long axis will likely
overrule the bulk competition between counter-propagating traveling waves. Thus, system borders force them
into reflection-induced standing waves—with slight system-specific modifications. Fluid experiments [17, 30]
or oscillating chemical reactions guided by recent models as in [48, 49] are further suitable candidates to verify
our results. Pattern formation theory applied to stationary 2d patterns recently provided important insights into
pattern orientation with respect to spatial inhomogeneities or confinement [28, 54]. A combination of these
approaches with our analysis of nonlinear traveling waves in confined systems is very promising. It may reveal
further generic properties of nonlinear traveling waves and, e.g., provide additional guidance for experiments in
2d Min systems [50, 52]. This is particularly interesting for designing bottom-up approaches in synthetic biology
to reconstitute cells [52]. In this context, our robust rules about nonlinear (protein) waves may present another
puzzle piece to understand how nature controls crucial steps of life.
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Appendix A. Simulation methods

We solve the CSH model as well as the models for the Min oscillations and the chemical reactions below
numerically by using a pseudo-spectral method with a semi-implicit time step (implicit Euler for the linear part
of the equation, explicit Euler for the nonlinearities) (66). We calculate all spatial derivatives by transformation
to a suitable function space depending on the boundary conditions. We use Fourier representations of the fields
for periodic boundaries (i.e. in case of the CSH model u ux x L0 == =∣ ∣ ), a cosine transform for no-flux
boundaries ( u 0x x L0,¶ ==∣ ) and a sine transform for vanishing fields at the boundary (u 0x L0, ==∣ ), where L is
the system length.

Appendix B. Oscillating chemical reaction

As a model for a pattern forming chemical reaction, we use an extended Brusselator model as proposed by Yang
et al [49]. The Brusselator is a well-known prototype for reaction–diffusion systems. Typically, this system is a
two-component activator-inhibitor model with a bifurcation to Turing patterns or homogenous Hopf
oscillations. The model by Yang et al extends the Brusselator by a third component. The dynamics of the three
concentration fields u, v and w are given by:

u D u a b u u v cu dw a1 , 2.1t u x
2 2¶ = ¶ + - + + - +( ) ( )

v D v bu u v b, 2.1t v x
2 2¶ = ¶ + - ( )

w D w cu dw c. 2.1t w x
2¶ = ¶ + - ( )

We choose a=0.8, c=2, d=1, Du=0.01, Dv=0 and Dw=1. We consider b the control parameter of the
system. The homogeneous solution (uh=a, vh=b/a, wh=ac/d) becomes unstable towards traveling waves at
the critical value bc=3.076. The intrinsic wavelength of the traveling wave pattern above threshold isλc≈9.5.
We perform our simulations close to pattern onset, for b=bc(1+ε) where ε=0.005. The onset of the Turing
instability (i.e. of stationary periodic patterns) tends to infinity for D 0v  . By choosing Dv=0, we thereby
eliminate any competition between traveling waves and Turing structures.

7

New J. Phys. 20 (2018) 072001



Appendix C. Min oscillation model

As a representative model for the Min oscillations shown infigure 4, we consider the model given by
equations (3.1a)–(3.1d) as proposed by Loose et al [22] (see also equations [1]–[4] in their supplementary
information). This model describes the dynamics of both MinD and MinE in the cytosol (cD and cE,
respectively), the MinD concentration on the membrane cd and the concentration of MinD/MinE complexes on
the membrane cde:

c D c c c c a, 3.1t D D x D de de D D dD d
2 w w w¶ = ¶ + - +( ) ( )

c D c c c c c b, 3.1t E E x E de de E d E eE de
2 2w w w¶ = ¶ + - +( ) ( )

c D c c c c c c c, 3.1t d d x d D D dD d E d E eE de
2 2w w w w¶ = ¶ + + - +( ) ( ) ( )

c D c c c c c d. 3.1t de de x de E d E eE de de de
2 2w w w¶ = ¶ + + -( ) ( )

For the simulation shown in figure 4 we choose the parameters as suggested in [22]: DD = DE = 60 μm2 s–1,
Dd = 1.2 μm2 s–1, Dde = 0.4 μm2 s–1,ωde = 0.029 s−1, 2.9 10 sD

4 1w = - -· , 4.8 10 m sdD
8 2 1w m= - -· ,

1.9 10 m sE
9 2 1w m= - -· , 2.1 10 m seE

20 6 1w m= - -· . We choose a total MinD concentration of
c c c c 3.6 10 mD D d de,tot

6 2m= + + = -· , and a total MinE concentration of
c c c c 5.8 10 mE E e de,tot

6 2m= + + = -· . In large, quasi-unconfined systems this leads to traveling waves with a
typical wavelengthλmin ≈ 71 μm.
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