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Abstract: The photochemical reaction of OH radicals with the 17 hydrocarbons n-butane, n-pentane,
n-hexane, n-heptane, n-octane, n-nonane, cyclooctane, 2,2-dimethylbutane, 2,2-dimethylpentane,
2,2-dimethylhexane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, toluene, ethylbenzene,
p-xylene, and o-xylene was investigated at 288 and 248 K in a temperature controlled smog
chamber. The rate constants were determined from relative rate calculations with toluene and
n-pentane as reference compounds, respectively. The results from this work at 288 K show good
agreement with previous literature data for the straight-chain hydrocarbons, as well as for cyclooctane,
2,2-dimethylbutane, 2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, and toluene, indicating
a convenient method to study the reaction of OH radicals with many hydrocarbons simultaneously.
The data at 248 K (k in units of 10−12 cm3 s−1) for 2,2-dimethylpentane (2.97± 0.08), 2,2-dimethylhexane
(4.30± 0.12), 2,2,4-trimethylpentane (3.20 ± 0.11), and ethylbenzene (7.51± 0.53) extend the available
data range of experiments. Results from this work are useful to evaluate the atmospheric lifetime of
the hydrocarbons and are essential for modeling the photochemical reactions of hydrocarbons in the
real troposphere.
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1. Introduction

Great quantities of volatile organic compounds (VOCs) are emitted into the atmosphere from
both anthropogenic and natural sources. Their atmospheric concentrations are influenced by chemical
reactions in the atmosphere, where the main removal pathway for alkanes and alkylated aromatics
occurs through chemical oxidation by OH radicals [1,2]. In the past few decades, many studies have
been focused on the atmospheric reaction of OH radicals with alkanes and aromatics [3–13] since these
kinetic data are important to estimate the lifetime of the VOCs in the atmosphere.

Smog chamber studies have started in the 1950s after the London smog episode [14]. At the
beginning, they were designed mainly to study the gas-phase reactions with ozone and the chemistry of
NOx in the troposphere and the formation of aerosol from the gaseous pollutants [15–17]. Later research
concentrated on the reactions of VOCs with OH radicals and their role in ozone formation and
photochemical smog [18–20]. Despite intensive research on gas-phase kinetics during the last decades,
comparatively little is known about the reactivity of OH radicals with VOCs below room temperature,
especially for larger molecules [4,21–23]. Based on the standard atmospheric values specified by
the International Civil Aviation Organization (ICAO), the sea level temperature is 288 K [24] and
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drops by approximately 6.5 K per kilometer of altitude up to the tropopause [14]. However, very few
hydrocarbons have been investigated at temperatures below 290 K, which are representative of the
troposphere. The understanding of kinetics at low temperature is of great importance to understand
the real atmospheric degradation of organic compounds.

There has been theoretical research about the reaction of OH with hydrocarbons [6,25,26], giving
guidance to understand the kinetics at low temperatures. Subsequent to an extensive review on the
reactions of alkanes and cycloalkanes with OH by Atkinson [27], there are only a few studies below
room temperature. DeMore and Bayes [4] measured the relative rate constant of n-butane, n-pentane,
and other cyclic hydrocarbon at temperatures down to 233 K. Harris and Kerr [21] developed a flow
reactor system to study the relative rate constant of OH radicals with n-pentane, 2,2-dimethylbutane,
and several other hydrocarbons, over a temperature range of 243–328 K. Talukdar et al. [22] measured
the rate constant of n-butane and n-pentane over the temperature range of 212–380 K by using
the pulsed photolysislaser induced fluorescence (PP-LIF) technique. Li et al. [28] studied n-octane,
n-nonane, and n-decane relative to 1,4-dioxane at temperatures down to 240 K and Crawford et al. [29]
studied the reactions of OH radicals with n-hexane and n-heptane at 240–340 K. Wilson et al. [30]
studied the reactions of several alkanes and cycloalkanes with hydroxyl radicals in a photochemical
glass reactor with GC/MS detection at temperatures down to 241 K. Cyclooctane and other alkanes
were studied by Sprengnether et al. [31] at temperatures down to 237 K in a high-pressure flow reactor
with LIF detection, and by Singh et al. [32] in a discharge flow reactor at temperatures down to
240 K. Tully et al. [23] studied the absolute rate constant of OH radicals with benzene and toluene at
temperature down to 213 K, and Witte et al. [33] obtained similar results for benzene at 239–352 K.
Semadeni et al. also studied the OH reactivity of benzene by using toluene as a reference compound at
274–363 K. Mehta et al. [34] measured the rate constant of OH with o- and p-xylene at 240–340 K, by
using the relative rate/discharge flow/mass spectrometry (RR/DF/MS) technique. Alarcón et al. [35]
used the flash photolysis resonance fluorescence technique (FPRF) to study the reaction of OH radicals
with methylated benzenes including p-xylene, delivering an Arrhenius expression of the absolute rate
constants between 300 and 350 K. A table with information on the various research conducted at low
temperatures is available in Supporting Information (SI, Table S1).

In this work, we have investigated the gas phase reaction of OH with several alkanes and aromatic
compounds at 288 K (sea level temperature) and 248 K (in the free troposphere this temperature
corresponds to a height of approximately 5–8 km, depending on latitude and season [36]). Using
n-pentane [27] and toluene [37] as reference compounds, the rate constants for the reactions of OH
radicals with the 17 compounds have been obtained at 248 and 288 K. These two compounds are
chosen as reference compounds, because their temperature-dependent parameters are well investigated
between 220 to 350 K. Those data deliver chemical kinetic information about the temperature range
below room temperature, and therefore are supplementary to the existing Arrhenius expression.

2. Experiments

2.1. Description of the Simulation Chamber

The simulation chamber is located at the Atmospheric Chemistry Research Laboratory of the
University of Bayreuth in a temperature controllable room, where the temperature could be set from
298 K to 248 K with the aid of an inside cooling system in the room and monitored by a thermistor
Epcos NTC 50 K, calibrated against a platinum resistance thermometer (Keithley 195A with probe 8693)
from −40 ◦C to +30 ◦C. The chamber consists of four cylinder sections made of glass (Duran, Schott,
inner diameter 1 m, total height 4 m), yielding a volume of 3.2 m3. Sixteen fluorescent lamps (Osram
Eversun, 80 W each, kept at 300 K by an air thermostat) were employed as light sources, irradiating the
chamber from the bottom through Teflon film (FEP 200A). The emission spectrum of the lamps has a
Gaussian shape with a maximum at 350 nm, it starts at 300 nm and extends beyond 450 nm, containing
the emission lines of mercury. The inherent heating effects on the bottom caused by the lamps led to a
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vertical temperature gradient, enhancing the mixing efficiency. Sensors in the middle and upper part
of the chamber measured the temperature and a ventilator was installed in the middle of the chamber
to accelerate further mixing. The temperature regulation leads to variations of ±1 K in the refrigerated
laboratory. A schematic diagram of the simulation chamber is shown below (Figure 1).
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Figure 1. Schematic of the low temperature smog chamber facility. The hydrocarbons were injected
into the smog chamber via syringes from two stock mixtures (see text), the gas-phase compounds
were sampled through a stainless steel capillary and analyzed by GC-FID with sample enrichment (see
below). Purified air was supplied via the aid of a bypass.

2.2. Instrumentation and Chemical Materials

The concentration of the hydrocarbons (starting with approx. 20 ppb each) was monitored by
a gas chromatograph (GC) with a flame ionization detector (FID). It uses an automated cryogenic
sample enrichment system with liquid nitrogen [10], that has been modified by substituting the 6-port
valve by two magnetic valves (for detailed information see Figure S1 in Supporting Information, SI).
A gas sample of 30 mL was taken every 30 min. The GC (Sichromat II, Siemens, Munich, Germany)
is equipped with a capillary column (Al2O3-PLOT, Chrompack/Agilent) with 50 m length and an
inner diameter of 0.32 mm, using N2 as carrier gas at a column temperature of 190 ◦C and a FID
temperature of 270 ◦C. In order to inject the 17 hydrocarbons n-butane, n-pentane, n-hexane, n-heptane,
n-octane, n-nonane, cyclooctane, 2,2-dimethylbutane, 2,2-dimethylpentane, 2,2-dimethylhexane,
2,2,4-trimethylpentane, 2,2,3,3-tetramethylbutane, benzene, toluene, ethylbenzene, p-xylene, o-xylene,
and n-perfluorohexane (inert standard) simultaneously into the chamber, two glass containers were
employed as a storage device for preparing stock mixtures, which minimized the operating deviation
during the injection process (see SI Section S1). Methyl nitrite was self-synthesized [38] and used as
a photochemical precursor of the OH radicals. Two gas containers (1.3 L of each) were connected in
series to approximate a constant concentration of OH (see Figure S2 in SI).
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2.3. Calculation of the Reaction Rate Constant of OH with Hydrocarbons

In this study, the relative rate method was used to calculate the rate constant of the OH radical
with the hydrocarbons. Assuming that the decrease of hydrocarbons in the chamber is caused by the
reaction with OH radicals and by the dilution from the gas sampling process, one gets the following
simple reaction scheme:

HC + OH
kHC

OH→products (1)

HC
kdil→loss (2)

to be described by the differential equation

d[HC]

[HC]
= −kHC

OH[OH]·dt− kdil·dt (3)

where [HC] and [OH] represent the concentration of hydrocarbon and OH radicals at time t,
respectively, kHC

OH, is reaction rate constant of target hydrocarbon with OH and kdil includes other
changes that cause the decrease of the hydrocarbons (e.g., dilution, wall adsorption). By using
n-perfluorohexane (PFH) as an internal standard, we corrected the hydrocarbon data for the dilution
of the chamber contents by the gas consumption of the gas analyzers for ozone and NOx, eliminating
the second term from Equation (3). Integration then leads to the simple equation

ln

[
HC′

]
0[

HC′
]

t
= kHC

OH

∫
[OH]dt (4)

where [HC’]t and [HC’]0 are the dilution-corrected concentrations of the target hydrocarbon at time t
and time zero, respectively, according to [HC’] = [HC] [PFH]0/[PFH].

The presence of several hydrocarbons in the same experiment opens the opportunity to select one
of those as a reference compound (REF), in order to eliminate the time integral of OH and to obtain
relative rate constants, kHC

OH/kREF
OH , from the equation:

ln

[
HC′

]
t[

HC′
]

0
=

kHC
OH

kREF
OH

ln

[
REF′

]
t[

REF′
]

0
(5)

where [REF’]t and [REF’]0 are the (by PFH, see above) dilution-corrected concentrations of the reference
compound (n-pentane and toluene in this study) at time t and time zero, respectively. From the plots
of ln([HC’]t/[HC’]0) versus ln([REF’]t/[REF’]0), straight lines are expected with zero intercept, and the
slopes represent the relative rate constants. Based on the known reaction rate constant of the reference
compound, kREF

OH , the OH reaction rate constant of the target hydrocarbon kHC
OH can be calculated.

3. Results

In relative rate constant measurements, the FID peak area represents the concentration of each
sampling point. Figure 2 shows the hydrocarbon concentrations (corrected for dilution) from one
single experiment at 288 K. Following Equation (5), one can get a straight line from a plot of
ln([HC’]0/[HC’]t) of the hydrocarbons versus ln([REF’]0/[REF’]t) for the reference compound in
most cases. Three experiments were carried out at 288 K, and two experiments were performed at
248 K. The rate constants were calculated from the experimental data from all runs at each temperature
(Figure 3 for straight-chain hydrocarbons, with toluene as reference compound). Table 1 summarizes
results obtained for the reaction from OH with the hydrocarbons at 288 K and the results at 248 K
are summarized in the supporting material (Table S2), using n-pentane and toluene as reference
compounds, respectively.
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Figure 2. Decrease of hydrocarbon concentrations (normalized by n-perfluorohexane) during a smog
chamber run by reaction with OH at 288 K (corresponding information at 248 K is displayed in the SI).
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Figure 3. Plot of ln(c0/ct) of straight-chain alkanes and cyclooctane versus toluene (reference substance).
(a) Data points of three experimental runs at 288 K; (b) Data points of two experimental runs at 248 K.
The curvature of the data and the non-zero intercept for n-nonane at 248 K indicate experimental
limitations of adsorption in the sampling capillary of the gas chromatograph. The symbols5, # and �
distinguish data points from different experimental runs, plots of branched-chain alkanes and aromatic
hydrocarbons are displayed in the SI.

At a temperature of 248 K, the initial decrease by exposure to OH appeared to be delayed for
compounds with lower vapor pressures, such as n-nonane (Figure 3b) and p-xylene and o-xylene (SI,
Figure S5b). This is possibly due to adsorption in the sampling capillary of the gas chromatograph
(stainless steel, 1/16 inch, 5 m long) that was not heated during the experiments.
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Table 1. Rate constants for the reaction of OH radicals with hydrocarbons at 288 K.

Compound
Rate Constant, (kOH ± 2σ)/10−12 cm3 s−1

Toluene as Reference a Pentane as Reference b Average

n-Butane 2.28 ± 0.02 2.05 ± 0.03 2.16 ± 0.04
n-Pentane 3.84 ± 0.04 3.62 b 3.73 ± 0.04
n-Hexane 5.41 ± 0.03 5.25 ± 0.05 5.33 ± 0.06
n-Heptane 7.10 ± 0.04 6.79 ± 0.06 6.94 ± 0.07
n-Octane 9.07 ± 0.08 8.62 ± 0.13 8.84 ± 0.15
n-Nonane 12.0 ± 0.4 11.5 ± 0.5 11.8 ± 0.6

Cyclooctane 16.1 ± 0.4 15.8 ± 0.5 15.9 ± 0.6
2,2-Dimethylbutane 2.11 ± 0.02 2.04 ± 0.02 2.07 ± 0.03

2,2-Dimethylpentane 3.21 ± 0.03 3.14 ± 0.04 3.18 ± 0.05
2,2-Dimethylhexane 4.74 ± 0.03 4.57 ± 0.04 4.66 ± 0.05

2,2,4-Trimethylpentane 3.48 ± 0.03 3.35 ± 0.03 3.41 ± 0.04
2,2,3,3-Tetramethylbutane 1.01 ± 0.02 0.98 ± 0.01 1.00 ± 0.02

Benzene 1.11 ± 0.02 1.04 ± 0.01 1.08± 0.02
Toluene 5.86 a 5.52 ± 0.06 5.69 ± 0.06

Ethylbenzene 6.95 ± 0.08 6.72 ± 0.15 6.83 ± 0.17
p-Xylene 16.0 ± 0.9 15.4 ± 1.1 15.7 ± 1.4
o-Xylene 15.6 ± 0.7 15.2 ± 0.9 15.4 ± 1.1

a k (toluene) = 1.8 × 10−12 e340/T cm3 molecule−1 s−1 (210–350 K) and 5.86 × 10−12 cm3 molecule−1 s−1 at 288 K
[37]; b k (n-pentane) = 2.52 × 10−17 T2e158/T cm3 molecule−1 s−1 (220–760 K) and 3.62 × 10−12 T2e361/T at 288 K [27].

4. Discussion

The rate constants for the reactions of the hydrocarbons with OH radicals derived from this study
are plotted together with literature data in Arrhenius diagrams for the n-alkanes and cyclooctane
(Figure 4), branched-chain alkanes (Figure 5), and aromatic hydrocarbons (Figure 6).

In order to compare to previous evaluations, the regression lines from the Arrhenius expressions
for each hydrocarbon are displayed in the figures. Detailed explanations and illustrations for the
alkanes and cycloalkanes can be found in the review article by Atkinson [27]. Our results demonstrate
that the rate constants obtained in the present study generally agree well with the literature data,
which prove that the experimental method is reliable. Moreover, the experimental results complement
existing gas-phase kinetic data for hydrocarbons in the following points:

(1) For n-alkanes, results from this work follow the existing Arrhenius expressions quite well
(Figure 4). The rate constants decrease as the temperature decreases, showing a positive correlation
of temperature with the reactivity. For n-hexane, Atkinson [27] has recommended two Arrhenius
expressions: 1© k (n-hexane) = 2.29 × 10−11 e−(442 ± 52)/T cm3 molecule−1 s −1, 2© k (n-hexane) = 2.54
× 10−14 T e−(112 ± 28)/T cm3 molecule−1 s−1. The rate constants obtained from this work at 288 K and
248 K confirm that a third type of Arrhenius expression (k = AT2e−B/T) does also fit to the existing data
( 3© k = 1.82 × 10−17T2 e361/T cm3 molecule−1 s−1 [27]). More experimental data are needed (especially
at high temperatures) to determine a more appropriate temperature dependence relationship from
the existing Arrhenius expressions. Data reported by Crawford et al. [29] for n-hexane are away from
expression 3© and in case of n-heptane, their data are also lower than the recommended Arrhenius
expression, indicating a systematic deviation. When using only n-hexane as reference compound,
our result at 248K for n-heptane agrees to the results of Crawford et al. and Wilson et al. (see SI,
Figure S6). In addition, we compared the different results when using n-butane, n-pentane, and
n-hexane as reference compounds respectively. The calculated rate constant decrease with increasing
CH2 chains: 7.00 ± 0.19, 6.32 ± 0.14 and 5.47 ± 0.01 (in unit × 10−12 cm3 molecule−1 s−1, result with
n-hexane is plotted in SI), respectively (rate constant of reference compounds refers to Atkinson [27]).
Since Crawford et al. (n-octane and n-nonane) and Wilson et al. (di- and tri-methylpentanes and
n-octane) used higher hydrocarbon molecules as reference compounds, their results of rate constants
for n-heptane were expected to be lower than ours. Based on the discussions of this work, there are
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several possible Arrhenius expressions for n-hexane, therefore, we choose n-pentane as our reference
compound, for which a more comprehensive understanding of temperature-dependence is available.
This explains why our data are higher than the existing results. However, more experimental research,
especially with absolute measurements is needed to clarify the real reaction rate constant of OH
radicals with n-heptane at low temperature. Our results for n-octane and n-nonane are consistent
with previous results by Li et al. [28]. This study provides more open questions than a comprehensive
understanding of gas-phase reactions of OH with n-alkanes below 290 K until precise determinations
of absolute rate constants for the higher alkanes become available. The result for cyclooctane confirms
the data from Sprengnether et al. [31], however, data at higher temperatures are desirable to validate
the Arrhenius expression over a wider temperature range.

Our results for n-octane and n-nonane are consistent with previous results by Li et al. [28].
This study will help to provide a more comprehensive understanding of gas-phase reactions of OH
with n-alkanes below 290 K. The result for cyclooctane confirms the data from Sprengnether et al. [31],
however, data at higher temperatures are desirable to validate the Arrhenius expression over a wider
temperature range.
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Figure 4. Arrhenius plots of the rate data for the reaction of OH radicals with straight-chain alkanes
and cyclooctane in comparison with previous studies [25,39–49].

(2) Figure 5 shows the Arrhenius plot for the reaction of branched-chain alkanes with
OH radicals. For the first time, we report the rate constant below 290 K for the reactions
of OH radicals with 2,2,4-trimethylpentane, 2,2-dimethylpentane, 2,2,3,3-tetramethylbutane and
2,2-dimethylhexane. The reaction rate constant data for 2,2-dimethylbutane, 2,2,4-trimethylpentane
and 2,2,3,3-tetramethylbutane are consistent with previous results and follow the existing Arrhenius
expressions (or non-linear fit) as well. For 2,2-dimethylbutane, we give an estimated Arrhenius fit to
k = ATe−B/T by applying the value of activation energy (B = 445 K) estimated by Kwok and Atkinson [50]
and obtain an expression of k = 3.33 × 10−14 T e−445/T cm3 molecule−1 s−1. For 2,2-dimethylpentane
and 2,2-dimethylhexane, calculated values (based on a structure-activity relationship (SAR) [51])
at room temperature are given for these two compounds to evaluate the temperature dependence.
The results of 2,2-dimethylpentane fit well to the non-linear fit provided by Badra and Farooq [52].
A SAR estimation is given for 2,2-dimethylhexane, and our data fall very close to the estimation
line. Nevertheless, in order to give a more accurate evaluation of the temperature dependence of
2,2-dimethylhexane, more experimental data are needed to establish the temperature dependence and
hereafter to develop the Arrhenius expression for this compound.

(3) Regarding the activated aromatic hydrocarbons, our rate data points at 288 K and 248 K
coincide well with the existing data points, showing that the rate constant for these reactions had a
negative dependence on temperature at T ≤ 298 K, which indicates a coherent pathway of electrophilic
addition of the OH radical to the aromatic ring [23]. Combining our results with the available literature
data (Figure 5), we here give Arrhenius expressions for o-xylene, p-xylene and ethylbenzene: 6.24 ×
10−12 e(203 ± 126)/T cm3 molecule−1 s−1, 1.03 × 10−11 e(62 ± 116)/T cm3 molecule−1 s−1 and 6.90 × 10−12

e(8 ± 135)/T cm3 molecule−1 s−1, respectively (SI, Table S3). All previously reported data points for
ethylbenzene existed around room temperature, which caused great uncertainties in determining the
activation energy. Further investigations at other temperatures lower than 298 K are required to give a
more precise evaluation of the Arrhenius expression for ethylbenzene.
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Figure 5. Arrhenius plots of the rate data for the reaction of OH radicals with branched-chain
alkanes [47,53–58].
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Figure 6. Arrhenius plots of the rate data for the reaction of OH radicals with aromatic hydrocarbons [33,34,59–67].

5. Conclusions

In summary, this study has reported the rate constant of gaseous OH radicals with 17 hydrocarbons
at 288 K and 248 K. The results have proven the capability of our simulation chamber for atmospheric
chemistry study. Data obtained from this work are consistent with previous studies, supplementing the
existing database. Our data on n-hexane agree well with the recommended Arrhenius expression
(k = 1.82 × 10−17 T 2e361/T cm3 molecule−1 s−1 [4]) over the temperature range from 290 to 970 K.
Using the activation energy recommended by Kwok and Atkinson [50] for 2,2-dimethylbutane from
an SAR calculation (B = 445 K), we obtain the Arrhenius expression k = 3.33 × 10−14 T e−445/T

cm3 molecule−1 s−1. This study reports experimental results for the rate constant of the gas phase
reaction of 2,2-dimethylhexane with OH, extending the homologous series of the 2,2-dimethylalkanes.
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Data obtained from this study will help to give a more comprehensive understanding to evaluate the
atmospheric behavior of this compound.

For aromatic hydrocarbons, we reported the first determination of a rate constant for the
reaction of OH radicals with ethylbenzene below the atmospheric sea level temperature (T ≤ 288 K).
Our data points agree with the existing results from previous research. Results from this work will
help to evaluate the atmospheric degradations of n-alkanes, branched-chain alkanes, and aromatic
hydrocarbons with better precision, especially in the lower and middle troposphere.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/8/320/s1,
Figure S1: Schematic flowchart of the sample enrichment system connected with gas chromatographic analysis
of the gas phase in the smog chamber, Figure S2: Dosage of methyl nitrite into the smog chamber, using a
twin of gas containers. This method warrants a fairly constant production of OH, Figure S3: Decrease of the
hydrocarbon concentrations (normalized by n-perfluorohexane) by the reaction with OH during a smog chamber
run at 248 K, Figure S4: Plots of ln (c0/ct) of hydrocarbons versus toluene (reference substance) from data points
of three experimental runs at 288 K, respectively (5, # and � distinguish data points from different experimental
runs), Figure S5: Plots of ln (c0/ct) of hydrocarbons versus toluene (reference substance) from data points of two
experimental runs at 248 K, respectively (5 and # distinguish data points from different experimental runs),
Figure S6: Arrhenius plots of the rate constant for the reaction of OH radicals with n-heptane, Table S1: Studies
below room temperature for the reaction of OH radicals with hydrocarbons, Table S2: Rate constants for the
reaction of OH radicals with hydrocarbons at 248 K, Table S3: Arrhenius parameters A and B corresponding to the
equation kOH = Ae(−B/T).
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