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Abstract: Particulate matter sensors are of interest for application in the exhaust of any combustion
processes, especially for automotive aftertreatment systems. Conductometric soot sensors have been
serialized recently. They comprise planar interdigital electrodes (IDE) on an insulating substrate.
Between the IDEs, a voltage is applied. Soot deposition is accelerated by the resulting electric
field due to electrophoresis. With increasing soot deposition, the conductance between the IDE
increases. The timely derivative of the conductance can serve as a sensor signal, being a function of
the deposition rate. An increasing voltage between the IDE would be useful for detecting low particle
exhausts. In the present study, the influence of the applied voltage and the sensor temperature on
the soot deposition is investigated. It turned out that the maximum voltage is limited, since the soot
film is heated by the resulting current. An internally caused thermophoresis that reduces the rate
of soot deposition on the substrate follows. It reduces both the linearity of the response and the
sensitivity. These findings may be helpful for the further development of conductometric soot sensors
for automotive exhausts, probably also to determine real driving emissions of particulate matter.

Keywords: particulate matter sensors; exhaust gas aftertreatment; particulate filter; soot deposition;
electrophoresis; thermophoresis; dynamometer

1. Introduction

Fine dust and particulate matter (PM) emissions from combustion processes, especially from
diesel combustion, may cause serious health problems. The exhaust gas aftertreatment of diesel engines
becomes increasingly complicated due to tightening emission standards [1–3]. The determination of
vehicle emissions during defined driving cycles on chassis dynamometers is going to be replaced by
real-driving emissions measurements [4]. Therefore, prospective needs will concern reliable on-board
measurement systems—also for PM [5,6].

Particle abatement with diesel particulate filters (DPF) is indispensable in future [5,6].
Additionally, in the field of gasoline fueled passenger cars, the PM issue may become even more
serious, since nano-sized soot emissions have to be avoided [7]. In the past, particle mass was the key
target, but recently, a particulate number limit has also been introduced. Therefore, gasoline particulate
filters (GPF) have also been serialized [8,9]. In addition to that, on-board-diagnostics (OBD) has to
ensure permanently the correct functionality of all exhaust gas aftertreatment systems, which is here
the filtering efficiency of particulate filters [10–14].

For PM aftertreatment, as the current state-of-the-art, ceramic wall-flow filters are applied in
the exhaust pipe. Soot from the raw exhaust is trapped over a certain time span, but the filter has
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to be regenerated during operation to avoid clogging. Therefore, soot load prediction models based
on differential pressure sensors signals and engine characteristic maps are in serial use to estimate
the filter loading state [12]. The more exactly the filter loading is known, the more efficiently the
system can be operated. Filter regeneration at higher exhaust gas temperatures to burn off the
trapped soot causes higher fuel consumption and should be carried out only when necessary [15,16].
A promising novel approach uses microwave sensors to determine directly the filter loading degree in
operation [12,17–19].

For OBD-purposes, soot sensors are useful tools. Several principles are in the research or
development state [20–26]. Conductometric (sometimes also called “resistive”) soot sensors are
very often discussed, in industry [20,27–29] and academia [30–33]. A typical sensor is sketched in
Figure 1. This device is explained in detail, since it is also used for the experiments described below.
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Figure 1. Sketch of the sensor setup: The sensors front side comprises interdigital electrodes (IDE)
where soot deposits yield electrical conductive pathways over the spacing. On the reverse side,
a four-wire thick-film heater allows temperature-controlled sensor regeneration as well as temperature
measurement and temperature adjustment during soot deposition.

On the upper side of an insulating, high temperature stable alumina substrate, interdigital
electrodes (IDE) are screen-printed with Pt paste (LPA88-11S, Heraeus, Hanau, Germany), dried and
fired. The electrode area is about 5 mm × 5 mm and comprises lines and spaces, both of 100 µm width.
On the reverse side of the substrate, a platinum thick-film structure is integrated. It is designed in a way
that the temperature distribution on the sensor side is homogenous, if one uses the platinum thick-film
structure as a heater [34]. Since it is designed in a special four-wire technique, the tip resistance can be
measured and the temperature can be deduced from the tip resistance. The (almost linear) correlation
function between heater resistance and sensor temperature is calibrated for each sensor in the lab
before using the device. The heater structure provides two different functionalities. Firstly, it can be
used for heating, i.e., for generating a homogenous temperature distribution in the IDE area either to
regenerate the sensor surface by oxidation of soot at high temperatures (600 ◦C) or to heat the sensor
tip to a desired temperature. Secondly, it enables measuring the sensor temperatures during soot
deposition, which is, in fact—if only a very small heater current is applied—also a measurement of the
actual exhaust gas temperature. All feed lines as well as the heater structure are covered by a glass
ceramic passivation (QM 42, DuPont, CCI Eurolam, Dreieich, Germany) to avoid interconnections by
soot particles. More details on the sensor setup can be found in previous publications [35,36].

Several modifications, especially for serial applications, have been reported in
literature [20,26–29,31,32]. Not depending on the manufacturer or research lab, most of the
conductometric soot sensors are operated similarly. By applying a voltage UIDE to the IDEs,
an electrical current I can be measured as soon as the deposited soot particles form a first electrical
conductive percolation path between these electrodes. After this blind time, with proceeding soot
deposition, the current increases. In other words, the sensor is an integrating device following the
dosimeter principle with an instantaneous electrical readout, as described in [37]. During a subsequent
regeneration, the sensor is heated to several hundred ◦C to burn off the soot. When cooled down to
ambient temperature, i.e., to exhaust temperature, a new measurement cycle can start, again beginning
with a blind time. In addition to a conductometric readout, capacitive measurements have also been
investigated [23,24]. A typical operation mode of a conductometric soot sensor is described in Figure 2.
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Figure 2. Typical shape of the sensor’s raw signal during one sensing cycle with increasing current I
after a certain “blind” time before the percolation threshold is reached and a regeneration peak after
increasing the sensor’s temperature for soot burn off. The regeneration peak is due to the increased
soot conductivity when heating up. The slope of the linear increasing current during soot deposition,
which is proportional to the conductance, often acts as the sensor signal.

In our former work, we already showed the possibility for soot mass flow detection with these
dosimeter-like conductometric sensors. A direct relation between the soot mass flow in the raw exhaust
of a diesel engine and the timely derivative of the current (dI/dt) between the IDE when a constant
voltage is applied was found [35,36].

In several contributions, the influence of the applied voltage was already found to be a significant
parameter for soot deposition. Higher electrical fields interact with the charged soot particles.
Another option is that electrical charges might be induced by the electrical field. Anyway, the soot
is accelerated to the sensor’s surface by the Coulomb forces and thus soot collection is enhanced
electrophoretically [38–43]. However, in order to reliably determine particulate mass or particle
number, a deeper understanding of the deposition mechanisms on the sensor surface is needed.

Soot is a highly complex matter. Characteristics like morphology, carbon content, adhered volatile
organic components content or water, or its electrical charge will also influence the interaction with
a measuring device [7,44–49]. For a further knowledge-based development of conductometric soot
sensors, the influences of the applied voltage and of the sensor temperature on the soot deposition
needs to be investigated. In order to keep flexibility with changing geometries, electrode designs,
sensor orientations, housings, or to even be able to manufacture planar capacitive devices [24], we used
our own sensor structure as shown in Figure 1. It is fully manufactured in thick-film technology,
which is very close to typical production type sensors [27,28]. It is expected that our findings can be
transferred to commercial sensors as well.

2. Sensor Design and Experimental Setup

It is the intention of the present study to contribute to a better understanding of factors that
influence soot deposition on such sensors. Therefore, simple conductometric sensor devices were
built as shown in Figure 1 and operated as explained above. In addition to that, in some experiments,
the platinum film structure is used to adjust a defined temperature on the sensor tip, i.e., on the IDE,
during soot deposition. Here, the sensor temperature is set to a few degrees higher than the exhaust gas
temperature to study thermophoresis effects. The results are reported in the second part of this study.

After wiring and housing, the sensors were mounted into the exhaust pipe. Here, the sensors
either face the gas flow with its IDE area or are oriented in a way that the sensor is mounted exactly
perpendicular to the exhaust flow with the electrode area being behind the substrate in the shadow
zone. No protection caps were used for these experiments. The sensor current and other parameters
like heater resistance, applied voltage between the IDE (UIDE), or heater voltage and heater current
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during active heating were recorded with a digital multimeter (2700 series, Keithley, Tektronix,
Munich, Germany).

Experiments in the dynamometer test bench, i.e., in real exhausts, were conducted in the exhaust
pipe of a 2.1 L diesel engine (Figure 3). To change the amount of soot during operation, the boost
pressure pboost was varied between 1.25 bar and 1.15 bar. All other engine parameters were kept
constant (1000 rpm, 25% accelerator pedal position, injection pressure pinj = 550 bar). Most of the
tests were conducted several times at different days to get an idea of the repeatability of the soot
generation and to distinguish scattering (coming from soot concentration variations) from signal
changes (resulting from the influencing parameters to be investigated). Particle concentration data
were obtained by a commercial soot nanoparticle measurement device (Pegasor) simultaneously
during all experiments.
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Figure 3. Setup for real exhaust measurements with a 2.1 L diesel engine.

To investigate the effect of soot deposition, the sensors were operated under constant exhaust
conditions during the soot-collecting phase. A certain dc voltage was applied between the electrodes
(UIDE) and the resulting current I was recorded. After that, soot regeneration was initiated by heating
up the device. Regeneration leads to the well-known peak-shape in the current signal as shown in
Figure 2 (and also for instance in [12,27,36]) followed by a zero current phase, when all soot is burned
off. A new soot measurement cycle is then started. Within each engine operation point, at least three
cycles were recorded unless otherwise stated in the respective section.

As a first step, dynamometer test at different engine operation points by varying the boost
pressure to achieve different soot concentrations were conducted. One series included three sensor
loading cycles, at three different soot concentrations, respectively. For each single measurement cycle,
the sensor signal dI/dt was calculated as a slope value in mA/s (only the linear part of the I(t)-curve
was taken to calculate the slope, as indicated in Figure 2). So, one measurement series provided nine
data points, three for each soot concentration. These series were repeated several times at different
days, with the dc voltage applied between the sensor electrodes being varied from 20 to 60 V.

3. Results and Discussion for Real Exhaust Measurements

3.1. Influence of the Applied Voltage/Electrophoresis

In Figure 4, three typical and representative single sensor loading cycles under almost equal soot
concentrations (17 mg/m3) are shown. The voltage between the IDEs UIDE was varied. The data
are shifted to a joint starting time t = 0, which is the end of the previous regeneration procedure.
The raw data I(t) already show the described effect: a higher voltage leads to a higher slope of the
current. At first glance, one would attribute this to the higher voltage that drives a higher current in
agreement with Ohm’s law. However, the (calculated) conductance curves (G = I/UIDE) still show
the same behavior: the higher the voltage, the higher the slope of the conductance dG/dt. In other
words, the soot deposition rate is in fact influenced by the applied voltage and one may assume that
the amount of deposited soot on the sensor surface increases with the applied voltage. The data shown
here are taken with a sensor oriented with electrodes facing the gas flow, but the findings are very
similar for the opposite mounting.
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Figure 4. Raw data I(t) ((a) and calculated conductance data G (b) for three measurement cycles
(soot collection with different voltages and subsequent regeneration) under similar conditions
(soot concentration = 17 mg/m3). The curves are shifted to a common starting time that is the
end of the prior regeneration phase.

The percolation time (or blind time) also varies with the applied voltage and supports the previous
findings. It can be determined directly from the current and/or the conductance curves. For lower
applied voltages, the blind time until a first current appears increases. It takes nearly 100 s for 20 V
and just 40 s for 60 V until the first current flows. Hence, higher voltages support the formation of
conducting paths between the electrodes.

The effect of electrical field-supported soot deposition is well known. Soot particles from
exhausts are electrically charged and are be attracted to the electrodes by a potential difference
in such setups [38–43]. Detailed information on the charging of soot particles and electrophoresis are
given in [50].

Figure 5 shows the sensor calibration curves, which include the timely derivatives of the
conductance dG/dt of a measurement cycle for each point plotted over the soot concentration measured
by the Pegasor sensing device (values given in mg/m3). Monotonous correlations between dG/dt
and soot concentrations are found for both types of sensor orientation. Furthermore, the provided
conductance data are normalized to a common temperature of 300 ◦C. Higher voltages result in a
higher sensor signal. All these findings agree with the literature [35].
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The normalization was carried out by a linear calibration curve of the temperature dependency of
the conductance. For that purpose, a sensor was operated in the exhaust and soot was deposited for
150 s at U = 60 V. This produced a typical soot layer on the electrodes. The sensor was then taken out
of the exhaust. Using the internal heater, temperatures between 150 ◦C and 375 ◦C were adjusted and
the conductances were measured for 20, 40, and 60 V, respectively. In all experiments, a temperature
dependency of dG/dT of ca. 0.3 µS/◦C was found.

To obtain higher sensor signals and a reduced percolation time, electrophoresis has to be increased
by a higher voltage. This causes an interesting phenomenon that is described in the following section.

3.2. Influence of Thermophoresis

In Figure 6a (upper graph), raw data of the conductance for three measurement cycles with
subsequent regeneration for applied voltages between the interdigital electrodes of 60, 40, 20 V
are shown. The engine operation point and, therefore, both the exhaust temperature and the soot
concentration (30 mg/m3) were kept constant during the experiment. According to thermocouple data,
the exhaust temperature varied only in a range of ±5 K. The increasing part of the conductance is of
special interest here (area highlighted by a dashed ellipse). As already known from Figure 3, the slope
of the conductance curve increases with increasing voltages and first percolation paths occur faster.
Astonishingly, for 60 V, the slope decreases, at least in the second half of the soot deposition period,
whereas for 40 V and for 20 V the slope remains constant.
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Figure 6. Conductance over time during soot deposition for three cycles with different voltages
UIDE between the sensing electrodes (a) and corresponding sensor temperature determined by the
reverse side platinum meander element (b). The engine operation point was kept constant during the
experiment (soot concentration = 30 mg/m3).

The respective temperature of the sensor element, which was measured by the internal heater
structure during the whole experiment, is plotted in Figure 6b. In general, this temperature represents
the exhaust temperature. Considering the temperature at 50 s, i.e., after sufficient cooling from
regeneration temperature, one finds that the operation conditions are relatively constant and the
exhaust temperature varies only in the range of 5 ◦C. The eye-catching result in this diagram is the
increase of the sensor temperature during soot deposition for 60 V of about 19 ◦C. When 40 V
are applied for soot deposition, the sensor temperature increases a little less but still by 9 ◦C.
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No temperature increase can be seen for UIDE = 20 V. This suggests that a temperature increase
of the sensor is responsible for the decreasing slope of the conductance in Figure 6a.

Since a temperature increase of the exhaust gas can be ruled out, an internal heating effect must
be responsible for the observed behavior. If one calculates the power PIDE (P = UIDE·I = UIDE

2·G)
that generates Joule’s heat between the sensing electrodes and plots it vs the observed temperature
increase, one obtains Figure 7 (for UIDE = 60 V). In other words, during soot deposition, the power P,
which generates heat directly in the deposited soot, increases. At the beginning, the conductance G
is zero since no current flows. Since there is no additional power P, there is no temperature increase.
The higher the soot loading between the IDE, the higher is the conductance and the more heat is
generated. At the end after 250 s, a temperature increase of 19 K occurs. According to Figure 7,
applying 60 V between the electrodes leads then to a heat generation of 0.6 W. If we compare that
with our experiences concerning the heater structure, materials data and simulations on similar sensor
setups [51], an increase of 19 K seems plausible. As a conclusion, the temperature increase with higher
applied voltages has a direct and an indirect origin. Due to the higher voltage, the soot deposition
rate is higher due to the electrophoretic effect. This causes thicker soot layers that lead to a higher
conductance of the soot films. In addition, the generated heat increases quadratically with the voltage.
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Figure 7. Internal self-heating of the device: Correlation of the increase of the sensor temperature
(determined from the resistance of the platinum structure) and the calculated electrical power on the
sensing electrodes during soot deposition when 60 V were applied, calculated from the data in Figure 6.

Therefore, we conclude that the internally generated heat reduces the rate of particulate
matter deposition on the sensor surface due to thermophoresis [26,52,53], in other words, internally
generated thermophoresis counteracts electrophoresis. This would explain the decreasing slope in the
conductance curve as it has been found out in Figure 5a for 60 V.

Another experiment was conducted to investigate this “internally caused” thermophoresis effect
further. Again, a sensor was constantly operated in the indirect mode with the heater structure
facing the gas flow, now with 40 V applied between the electrodes. The engine was operated
under constant speed and load. We conducted several soot deposition cycles, one after the other.
After each regeneration procedure, the heater was not completely switched off, but set to a certain
temperature. As a result, the sensor temperature (Tsensor) during the soot deposition phase could be
deliberately increased by small values, dT, compared to the exhaust temperature (Texhaust). The sensor
temperature was calculated from the four-wire resistance of the internal platinum structure. In the
first cycle, no additional heating was applied (dT = Tsensor − Texhaust = 0 K). In the following cycles,
the temperature was increased stepwise to dT = 6, 11, 17, 24, and 33 K. The results are shown in
Figure 8.
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Figure 8. Conductance G for several soot deposition cycles at UIDE = 40 V during constant engine
operation. After regeneration, an additional small power was applied to the sensor to establish a
slightly higher temperature of the sensor tip compared to the exhaust temperature. This temperature
difference dT = Tsensor − Texhaust that was kept constant during each soot deposition phase.

It turned out that the higher the sensor temperature is, the longer it takes until the first percolation
sets in and the lower the slope of the conductance curve is during soot deposition.

In Figure 9a, the slopes of the conductance dG/dt, as they were derived from Figure 8, are plotted
over the temperature difference dT. Since dG/dt is a measure for the amount of soot that gets
deposited on the sensor per time interval, the monotonously decreasing curve supports the assumption
that “internally caused” thermophoresis is an effect that has to be considered when deducing soot
concentrations from the slope of the conductance dG/dt.

In addition to that, this assumption was verified by another analysis. During regeneration,
the current and correspondingly the conductance shows a “peak” behavior. The step change in
sensor temperature up to 600 ◦C leads to an almost sudden conductance increase due to the enhanced
soot conductivity, followed by an abrupt decline when the soot gets oxidized and percolation is
interrupted. The conductance reaches zero as soon as the soot is burned off. This behavior is well
known and often described in literature [12,27,36]. The area below the peak of the conductance curve
during regeneration may be correlated to the amount of soot that has been deposited right before the
regeneration starts as both effects, the increasing conductance as well as the declining curve, depend on
the thickness of the soot layer or its mass, respectively. In case of less deposited soot, the increasing
part of the peak during heating up is smaller (less influence of temperature dependent conductivity
increase). Furthermore, the declining part of the peak starts faster (less amount will be burned off
earlier). Therefore, the peak area is small. Analogously, a higher amount of soot causes a higher
current increase, the total oxidation takes longer and as a result, the peak area is larger. So, it should
be possible to estimate the final soot loading (i.e., the amount of deposited soot mass) on the sensor
surface before regeneration by evaluation of the peak area. We now plot these integral values of
the conductance curve during regeneration vs. the temperature difference during soot deposition.
Since not only the parameters Tsensor or the applied voltage UIDE determine the amount of soot on the
sensor surface, but also the individual time intervals for soot deposition for each single measurement,
we have to normalize the integral value results to a similar time span of soot deposition to compare
different measurement/regeneration cycles. This is done by the linear relation of conductance over
time for each measurement cycle. All values refer now to a soot loading interval of 220 s. Figure 9b
shows the correlation of the normalized integral values vs. dT. Here also, the exponential decrease
occurs with very similar parameters as found before (exp(−0.3x)). Therefore, the evaluation of the
peak area during regeneration can be used as an additional indicator of the amount of deposited
soot right before regeneration. This method helps to understand thermophoresis effects when using
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synthetic soot (e.g., from CAST devices). Here, the conductivity of the soot does not linearly increase
with temperature. Therefore, the conductance data are not sufficient to describe the amount of
deposited soot [54].
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Figure 9. Slope of the conductance dG/dt (evaluated from the data in Figure 8) vs. temperature
difference between sensor and exhaust gas dT (a). The normalized integral values of the conductance
curve during regeneration show similar behavior (b). The inset shows the calculation for the integral
value exemplarily.

In conclusion, thermophoresis strongly affects the rate of soot deposition on the sensor
device. Whereas a higher voltage applied between the electrodes enhances soot deposition due
to electrophoresis, a higher sensor temperature (which might be also caused by the applied high
voltages between the electrodes) favors thermophoresis.

This effect might also be practically used. It should be possible to “adjust” the measurement
ranges of soot sensors. Very fine electrode structures, for example, which allow detection of ultra-low
soot concentrations (easy and fast path building) might be operated at higher temperatures in case of
atmospheres with high amounts of soot.

4. Conclusions and Outlook

The present contribution considered the effect of different voltages that generate different electrical
fields to support the attraction of soot particles to enhance the deposition on the surface of planar
conductometric soot sensors. In contrast to other studies, we carefully investigated the effect of
internal heating of the soot due to higher applied voltages. The internally caused thermophoresis is an
effect that hinders the application of higher voltages between the electrodes in conductometric soot
sensors. Both mechanisms occur in real exhausts as well as in synthetic conditions; the results coincide
in general. However, using synthetic soot causes some challenges which should be discussed in a
separate paper.

Advantageously, these parameters might be used to influence directly and knowledge-based the
soot deposition or interaction with a sensor device. This could help to adjust even the sensitivity of
soot sensors and its use in different atmospheres with varying soot concentrations.
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As a future goal, we intend to develop soot sensors that are sensitive to certain soot fractions.
Therefore, ongoing work will focus on lab measurements with defined particle fractions. Variations will
be necessary also concerning the IDE geometry or its layout, the mounting position, or even the
sensor principle. The possibilities of influencing soot adsorption by the device’s operation strategy
(voltage and temperature) might be adaptable to “select” defined soot fractions, e.g., to discriminate
between different soot fractions. Here, the exhaust gas temperature and the exhaust velocity should be
taken into account. Recently published investigations on modeling particle deposition mechanisms [55]
indicate an influence of these parameters on the question of whether electrophoresis or thermophoresis
plays the major role.
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