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Abstract

In this thesis we treat mainly two topics: the classification of isotrivially fibred sur-

faces with pg = q = 2, and the construction of new Beauville surfaces. These are the

subjects of the two articles [P], [GP].

An isotrivially fibred surface is a smooth projective surface endowed with a fibra-

tion onto a curve such that all the smooth fibres are isomorphic to each other. The

first goal of this thesis is to classify the isotrivially fibred surfaces with pg = q = 2

completing and extending a result by Zucconi [Z]. As an important byproduct, we

provide new examples of minimal surfaces of general type with pg = q = 2 and

K2 = 4, 5 and a first example with K2 = 6.

We say that a surface S is isogenous to a product of curves if S = (C × F )/G,

for C and F smooth curves and G a finite group acting freely on C × F . Beauville

surfaces are a special case of surfaces isogenous to a product. In this thesis we include

part of a joint work with Shelly Garion, in which we construct new Beauville surfaces

with group G either PSL(2, pe), or An, or Sn, proving a conjecture of Bauer, Catanese

and Grunewald [BCG05, BCG06]. The proofs rely on probabilistic group theoretical

results of Liebeck and Shalev, and on classical results of Macbeath.

Finally in the last part of the thesis we give a description of the locus, in the moduli

space of surfaces of general type, corresponding to the surfaces isogenous to a product

with pg = q = 2 described in the first chapter. Indeed, by the results proven in [Cat00],

this locus is a union of connected components, whose number can be computed using

a theorem of Bauer and Catanese ([BC, Theorem 1.3]). In the same way we are able

viii



to provide an asymptotic result about the number of connected components of the

moduli space corresponding to certain families of Beauville surfaces.
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Zusammenfassung

In dieser Dissertation betrachten wir vor allem zwei Themen: die Klassifikation von

isotrivialen Faserungen mit pg = q = 2, und das Studium von Beauville Flächen.

Eine isotriviale Faserung ist eine glatte projektive Fläche, zusammen mit einem

Morphismus zu einer glatten Kurve, so dass alle glatten Fasern isomorph zueinander

sind. Das erste Ziel dieser Dissertation ist die Klassifikation aller isotrivialen Flächen

mit pg = q = 2, die in Theorem 0.0.1 erreicht wird. Mit diesem Ergebnis ergänzen und

erweitern wir eine Arbeit von Zucconi [Z], und geben neue Beispiele von minimalen

Flächen von allgemeinem Typ mit pg = q = 2 und K2 = 4, 5 und das erste Beispiel

einer minimalen Fläche von allgemeinem Typ mit pg = q = 2 und K2 = 6.

Flächen isogen zu einem Produkt von Kurven sind Flächen der Form (C ×F )/G,

wobei C und F zwei glatte Kurven vom Geschlecht grösser gleich 2 sind, und G eine

endliche Gruppe ist, die auf (C × F ) frei wirkt. Spezielle Flächen isogen zu einem

Produkt von Kurven sind Beauville Flächen, welche von Catanese in [Cat00] eigeführt

wurden. Diese sind starr, das heisst sie besitzen keine nicht-trivialen Deformation.

In dieser Dissertation gliedern wir einen Teil eines gemeinsamen Arbeit mit Shelly

Garion ein, in welcher wir neue Beauville Flächen mit Gruppe G = PSL(2, q), oder

G = An, oder G = Sn konstruieren. Somit beweisen wir eine Vermutung von Bauer,

Catanese und Grunewald [BCG06].

Im letzten Teil der Dissertation bestimmen wir die Zusammenhangskomponen-

ten des Modulraums der Fläche von allgemeinem Typ, die den gefundenen Flächen

entsprechen.
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Der Inhalt dieser Dissertation ist in drei Kapitel gegliedert. In Kapitel 1 geben

wir zunächst eine Einleitung über isotriviale Faserung und Flächen isogen zu einem

Produkt von Kurven. In Paragraph 1.2 übersetzen wir das geometrische Problem der

Klassifikation von Flächen isogen zu einem Produkt von Kurven zu einem algebrais-

chen Problem der kombinatorischen Gruppentheorie. Danach in Paragraph 1.3 und

1.4 klassifizieren wir erstens alle Flächen isogen zu einem Produkt von Kurven mit

pg = q = 2, und zuletzt die isotrivialen Faserung mit pg = q = 2.

In Kapitel 2, nach einer kurzen Einleitung über Beauville Flächen, betrachten

wir Beauville Flächen mit der alternierenden Gruppe, oder mit der symmetrischen

Gruppe. Wichtig für die Konstruktion dieser Flächen ist ein Theorem von Liebeck

und Shalev, das in Paragraph 2.1 präsentiert wird. In Paragraph 2.2 betrachten

wir Beauville Flächen mit Gruppe PSL(2, q), und präsentieren dazu die Theorie von

Macbeath über Untergruppen von PSL(2, q).

Gegenstand des Kapitels 3 ist der Modulraum. In Paragraph 3.1 erinnern wir uns

an die Definitionen von Abbildungsklassengruppe und Zopfgruppen. In Paragraph

3.2 erklären wir die notwendige Theorie über den Modulraum von Flächen isogen zu

einem Produkt von Kurven und studieren den Modulraum, der den Flächen, die in

Kapitel 1 gegeben wurden, entspricht. In Paragraph 3.3 berechnen wir die Funda-

mentalgruppen der isotrivialen Flächen mit pg = q = 2. In Paragraph 3.4 studieren

wir die Modulräume, die einigen Familien von Beauville Flächen entsprechen. Als

letztes studieren wir in Paragraph 3.5 Beauville Flächen mit abelscher Gruppe, und

erweitern einige Ergebnisse auf Flächen isogen zu einem Produkt von Kurven und

mit Irregularität q = 0.
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Introduction

In this thesis we shall treat mainly two topics: the classification of isotrivially fibred

surfaces with pg = q = 2, and the construction of new Beauville surfaces.

The classification of smooth connected minimal complex projective surfaces of

general type with small invariants is far from being achieved, and up to now it seems

out of reach. This is a reason why one first tries to understand and classify surfaces

with particularly small invariants, for example with χ(OS) = 1. If 1 = χ(OS) =

1− q + pg, it follows that pg = q. If we also assume that the surface is irregular (i.e.,

q > 0) then the Bogomolov-Miyaoka-Yau and Debarre inequalities (see [BCP]) give

us 2 ≤ K2
S ≤ 9 and K2

S ≥ 2pg, which imply 1 ≤ pg ≤ 4. If pg = q = 4 we have a

product of curves of genus 2, as shown by Beauville, while the case pg = q = 3 was

understood through the work of several authors [CCML], [HP], [Pi]. It seems that the

classification becomes more complicated as the value of pg decreases. In this thesis

we address the case pg = q = 2.

We say that a surface S is isogenous to a product of curves if S = (C × F )/G,

for C and F smooth curves and G a finite group acting freely on C × F . Surfaces

isogenous to a product were introduced by Catanese in [Cat00]. They are of general

type if and only if both g(C) and g(F ) are greater than or equal to 2 and in this

case S admits a unique minimal realization where they are as small as possible. From

now on, we tacitly assume that such a realization is chosen, so that the genera of the

curves and the group G are invariants of S. We have two cases: the mixed one, where

there exists some element in G exchanging the two factors (in this situation C and F

must be isomorphic) and the unmixed one, where G acts faithfully on both C and F

1
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and diagonally on their product. A special case of surfaces isogenous to a product of

unmixed type is the case of generalized hyperelliptic surfaces where G acts freely on

C and F/G ∼= P1.

A generalization of the unmixed case is the following: consider a finite group G

acting faithfully on two smooth projective curves C and F of genus ≥ 2, and diag-

onally, but not necessarily freely, on their product, and take the minimal resolution

S ′ → X := (C × F )/G of the singularities of X. In this case the holomorphic map:

f ′1 : S ′ −→ C ′ := C/G

is called a standard isotrivial fibration if it is a relatively minimal fibration. More

generally an isotrivial fibration is a fibration f : S → B from a smooth surface onto

a smooth curve such that all the smooth fibres are isomorphic to each other. A

monodromy argument shows that, in case the general fibre F is irrational, there is a

birational realization of S as a quotient of a product of two curves S
bir∼ (C×F )/G→

C/G ∼= B.

Among isotrivial fibrations one can find many examples of surfaces with χ(OS) =

1. Since [Cat00] appeared several authors started intensively studying standard

isotrivial fibrations and surfaces isogenous to a product. Eventually they classified

all those which are isogenous to a product of curves and have pg = q = 0 [BCG08]

and have pg = q = 1 [P09], [CP]. Moreover standard isotrivial fibrations which have

pg = q = 1 and such that S ′ is also a minimal model were classified in [MP].

In this thesis we complete the classification of isotrivially fibred surfaces with

pg = q = 2, which was partially given in [Z]. Moreover we give a precise description

of the corresponding locus in the moduli space of surfaces of general type. Indeed,

by the results of [Cat00], this locus is a union of connected components in the case

of surfaces isogenous to a product of curves, and of irreducible subvarieties in the

case of only isotrivially fibred surfaces. We calculate the number of these compo-

nents (subvarieties) and their dimensions. The following Theorem summarizes our

classification.
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Theorem 0.0.1. Let S be a minimal surface of general type with pg = q = 2 such
that is either a surface isogenous to a higher product of curves of mixed type or it
admits an isotrivial fibration. Let α : S → Alb(S) be the Albanese map. Then we
have the following possibilities:

1. If dim(α(S)) = 1, then S ∼= (C × F )/G and it is of generalized hyperelliptic
type. The classification of these surfaces is given by the cases labelled with GH
in Table 1, where we specify the possibilities for the genera of the two curves C
and F , and for the group G.

2. If dim(α(S)) = 2, then there are three cases:

• S is isogenous to product of curves of unmixed type (C × F )/G, and the
classification of these surfaces is given by the cases labelled with UnMix in
Table 1;

• S is isogenous to a product of curves of mixed type (C × C)/G, there is
only one case and it is labelled with Mix in Table 1;

• S → X := (C × F )/G is a minimal desingularization of X, and these
surfaces are classified in Table 2.

Type K2
S g(F ) g(C) G IdSmallGroup m dim n

GH 8 2 3 Z/2Z G(2,1) (26) 6 1
GH 8 2 4 Z/3Z G(3,1) (34) 4 1
GH 8 2 5 Z/2Z× Z/2Z G(4,2) (25) 5 2
GH 8 2 5 Z/4Z G(4,1) (22, 42) 4 1
GH 8 2 6 Z/5Z G(5,1) (53) 3 1
GH 8 2 7 Z/6Z G(6,2) (22, 32) 4 1
GH 8 2 7 Z/6Z G(6,2) (3, 62) 3 1
GH 8 2 9 Z/8Z G(8,1) (2, 82) 3 1
GH 8 2 11 Z/10Z G(10,2) (2, 5, 10) 3 1
GH 8 2 13 Z/2Z× Z/6Z G(12,5) (2, 62) 3 2
GH 8 2 7 S3 G(6,1) (22, 32) 4 1
GH 8 2 9 Q8 G(8,4) (43) 3 1
GH 8 2 9 D4 G(8,3) (23, 4) 4 2
GH 8 2 13 D6 G(12,4) (23, 3) 3 2
GH 8 2 13 D4,3,−1 G(12,1) (3, 42) 3 1
GH 8 2 17 D2,8,3 G(16,8) (2, 4, 8) 3 1
GH 8 2 25 Z/2Z n ((Z/2Z)2 × Z/3Z) G(24,8) (2, 4, 6) 3 2
GH 8 2 25 SL(2,F3) G(24,3) (32, 4) 3 1
GH 8 2 49 GL(2,F3) G(48,29) (2, 3, 8) 3 1
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Type K2
S g(F ) g(C) G IdSmallGroup m dim n

UnMix 8 3 3 Z/2Z× Z/2Z G(4,2) (22), (22) 4 1
UnMix 8 3 4 S3 G(6,1) (3), (22) 3 1
UnMix 8 3 5 D4 G(8,3) (2), (22) 3 1
Mix 8 3 3 Z/4Z G(4,1) - 3 1

Table 1.

In Table 1 and 2 IdSmallGroup denotes the label of the group G in the GAP4
database of small groups, m is the branching data. In Table 1 each item provides a
union of connected components of the moduli space of surfaces of general type, their
dimension is listed in the column dim and n is the number of connected components.

K2
S g(C) g(F ) G IdSmallGroup m Type Num. Sing. dim n

4 2 2 Z/2Z G(2,1) (22) (22) 1
2(1, 1) 4 4 1

4 3 3 D4 G(8,3) (2) (2) 1
2(1, 1) 4 2 1

4 3 3 Q8 G(8,4) (2) (2) 1
2(1, 1) 4 2 1

5 3 3 S3 G(6,1) (3) (3) 1
3(1, 1) + 1

3(1, 2) 2 2 1
6 4 4 A4 G(12,3) (2) (2) 1

2(1, 1) 2 2 1

Table 2.

In Table 2 each item provides a union of irreducible subvarieties of the moduli
space of surfaces of general type, their dimension is listed in the column dim and n is
the number of subvarieties. Moreover the columns of Table 2 labelled with Type and
Num. Sing. indicate the types and the number of singularities of X.

We point out that in Table 2 there are new examples of minimal surfaces of general

type with pg = q = 2 and K2
S = 4, 5, and a first example with K2

S = 6. It would be

interesting to find, if there are any, examples of surfaces with pg = q = 2 and K2
S = 7

or 9.

We recall that surfaces of general type with pg = q = 2 and K2
S = 4 were studied

by Ciliberto and Mendes Lopes. Indeed they proved that the surfaces with pg =

q = 2 and non-birational bicanonical map are double covers of a principally polarized

abelian surfaces branched on a divisor D ∈ |2Θ|, and they have K2
S = 4 ([CML]).

While Chen and Hacon ([CH]) constructed a first example of a surface with K2
S = 5.

Moreover using the techniques developed in [BCGP] we calculate the fundamental

group of each item in Table 2 proving the following Theorem.
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Theorem 0.0.2. The fundamental group of the surfaces given by the first four items
in Table 2 is Z4. The fundamental group P of the last surface fits into the exact
sequence:

1 −→ Z2 × Z2 −→ P −→ D4 gD4 −→ 1,

where D4 gD4 is the central product of D4 times D4, which is an extraspecial group
of order 32.

Here D4gD4 = (D4×D4)/(Z/2Z), where Z/2Z is the diagonal in Z(D4)×Z(D4).

The second topic of this thesis is the study of Beauville surfaces, which I carried out

jointly with Shelly Garion. A Beauville surface S is a particular kind of surface

isogenous to a higher product of curves. We consider only the unmixed cases in

this thesis, i.e., an unmixed Beauville surface S = (C1 × C2)/G is a quotient of a

product of two smooth curves C1, C2 of genera at least two, modulo a free action of

a finite group G, which acts faithfully on each curve, moreover the quotients Ci/G

are isomorphic to P1 and both coverings Ci → Ci/G ∼= P1 are branched over three

points. A Beauville surface is in particular a minimal surface of general type.

Beauville surfaces were introduced by Catanese in [Cat00], inspired by a con-

struction of Beauville (see [B78]). Beauville was interested in finding new examples

of surfaces with pg = q = 0 and of general type, which provide an interesting class of

surfaces (see e.g., [BCG08]). As a matter of fact a Beauville surface has q = 0, but pg

can attain any non negative value. Since [Cat00] appeared, many authors have been

studying Beauville surfaces, see [BC, BCG05, BCG06, BCG08, FG, FGJ, FJ].

Nevertheless, many questions are still open in the study of such surfaces. For

example, it is interesting to know which finite groups G can occur for some Beauville

surface. Moreover, these surfaces are rigid, i.e., they have no non-trivial deformations,

hence they represent isolated points in the moduli space of surfaces of general type.

A natural question is whether we are able to estimate the number of these points as

a function of χ.

In this thesis we shall give partial answers to these questions using a group theoret-

ical approach. Indeed we prove the conjecture [BCG06, Conjecture 7.18] formulated

by Bauer, Catanese and Grunewald regarding the alternating groups An as groups
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of Beauville surfaces, and we make a step towards the proof of [BCG06, Conjecture

7.17], which states that all finite simple non-abelian groups except A5 occur for some

Beauville surface.

The thesis is divided into three chapters, which are subdivided in several sections.

I shall give now a brief explanation of the content of each chapter and section.

In the first chapter we treat the problem of the classification of isotrivially fibred

surfaces with pg = q = 2. In the first section of the chapter we recall some basic

facts about fibred surfaces. We give the definitions of isotrivially fibred surface and of

surface isogenous to a higher product of curves, moreover we study some properties

of these surfaces.

The classification of isotrivially fibred surfaces involves techniques coming from

both geometry and combinatorial group theory and they were developed in [BC,

BCG08, P08, CP]. In the second section of this chapter we give a reformulation of

the Riemann Existence Theorem, which enables us to translate the geometric problem

of classification into an algebraic one.

In the third section we recall the notion of generalized hyperelliptic surfaces. Fol-

lowing [Cat00] and [Z], we shall see that all the surfaces with pg = q = 2 and not

of Albanese general type are generalized hyperelliptic. Using this fact and the ma-

terial of section two we classify all such surfaces. We notice that such classification

was partially given in [Z] using different techniques. We proceed then to classify the

surfaces isogenous to a product of curves of unmixed type and of Albanese general

type and finally we study the mixed case.

In the fourth section we consider the case when the action of a finite group G

on a product of two curves C × F is not free, hence the resulting quotient X will

be singular. We are interested in its minimal desingularization S. To study S we

introduce some notations and recall some basic facts about the types of singularities

of such quotients. First we give the definition of standard isotrivial fibration. Then we

recall the definition of cyclic quotient singularities and how to resolve them. Third we

give formulas for calculating the numerical invariants of the minimal desingularization
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S. Finally we proceed with the classification of standard isotrivial fibrations with

pg = q = 2. In this section, as already mentioned, we provide new examples of

surfaces with pg = q = 2.

In the second chapter we deal with Beauville surfaces. We shall first recall the

definition of a Beauville surface, then we shall consider only Beauville surfaces of

unmixed type and we give a group theoretical characterization of them. Indeed an

unmixed Beauville surface S is completely determined by a quadruple (x1, y1;x2, y2)

of elements of a finite group G called an unmixed Beauville structure of G with the

following properties:

(i). 〈xi, yi〉 = G for i = 1, 2,

(ii). let xiyi =: z−1
i and Ti := (xi, yi, zi), then

Σ(T1) ∩ Σ(T2) = {1},

where Σ(Ti) :=
⋃
h∈G

⋃∞
j=1{hxjih−1, hyjih

−1, hzji h
−1} for i = 1, 2.

Moreover, τi := (ord(xi), ord(yi), ord(zi)) is called the type of Ti and it satisfies the

condition of being hyperbolic, i.e.:

1

ord(xi)
+

1

ord(yi)
+

1

ord(zi)
< 1,

see e.g., [BCG05, BCG06].

Therefore, the question of which finite groups G admit an unmixed Beauville

structure was raised, and it is deeply related to the question of which finite groups

are quotients of certain triangle groups (see Definition 1.2.1), which was widely in-

vestigated (see [Co90] for a survey). Indeed, conditions (i) and the definition of zi

above clearly imply that two certain triangle groups surject onto the finite group G.

However, the question about Beauville structures is somewhat more delicate, due to

condition (ii).

In the first section of the chapter we recall a Theorem of Liebeck and Shalev,

which establishes that every triangle group — and more generally every Fuchsian
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group — surjects to all but finitely many alternating groups. The proof is based

on probabilistic group theory. This Theorem was first proven by Everitt [Ev] using

other methods, and inspired Bauer, Catanese and Grunewald in [BCG05, BCG06],

to formulate the conjecture that almost all alternating groups An admit an unmixed

Beauville structure of given types. We prove the conjecture in the following Theorem.

Theorem 0.0.3. Let (r1, s1, t1), (r2, s2, t2) be two hyperbolic types. Then almost
all alternating groups An admit an unmixed Beauville structure (x1, y1;x2, y2) where
(x1, y1, (x1y1)

−1) has type (r1, s1, t1) and (x2, y2, (x2y2)
−1) has type (r2, s2, t2).

Then we prove a similar theorem for the symmetric group Sn.

In the second section we recall some properties of the group PSL(2, q) and we

prove the following Theorem

Theorem 0.0.4. Let p be a prime number, e a positive integer, and assume that
q = pe is not 2, 3, 4 and 5. Then the group PSL(2, q) admits an unmixed Beauville
structure.

By a celebrated Theorem of Gieseker (see [Gie]), once the two invariants of a mini-

mal surface S of general type, K2
S and χ(S), are fixed, then there exists a quasiprojec-

tive moduli space MK2
S ,χ(S) of minimal smooth complex surfaces of general type with

those invariants, and this space consists of a finite number of connected components.

The union M over all admissible pairs of invariants (K2, χ) of these spaces is called

the moduli space of surfaces of general type.

In [Cat00], Catanese studied the moduli space of surfaces isogenous to a higher

product of curves (see [Cat00, Theorem 4.14]). As a result, one obtains that the

moduli space of surfaces isogenous to a higher product with fixed invariants: a finite

group G and types (τ1, τ2) (where the types are defined in greater generality in 1.2.3),

consists of a finite number of irreducible connected components of M.

In the third chapter we shall deal with the problem of studying the number of

connected components in the moduli space. In the first section we recall the re-

quired group theoretical backgrounds on mapping class groups and we provide the

descriptions of Hurwitz moves induced by some specific mapping class groups.
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In the second part we recall a Theorem of Bauer and Catanese ([BC, Theorem

1.3]) which tells us how to calculate the number of the connected components. Then

we calculate the number of connected components of the moduli space relative to

the surfaces isogenous to a product of curves described in chapter 1. As we shall

see, the task of calculating the number of connected components cannot be achieved

easily without using a computer, which is why with Sönke Rollenske we developed

a computer program in GAP4. In this section we provide a short description of the

program and how to use it, while in Appendix C one can find the script. Since

the program is written in great generality we hope it can be used for other tasks.

Moreover in the end of the section we prove that each item in Table 2 provides one

irreducible subvariety of the moduli space of surfaces of general type.

In the third section we calculate the fundamental groups of our isotrivially fibred

surfaces. We will recall in this section two structure Theorems: one for the funda-

mental group of surfaces isogenous to a higher product of curves and one for the

fundamental group of isotrivially fibred surfaces following [BCGP].

In the fourth section we count the connected components of the moduli space

related to certain families of Beauville surfaces. Indeed introducing Beauville surfaces

Catanese wanted to produce many connected components of the moduli space of

surfaces of general type. We remark that since Beauville surfaces are rigid, their

moduli space consists only of finitely many isolated points. The group theoretical

methods developed in the previous sections will lead us to the following Theorems,

in which we use the following standard notation:

• h(n) = O(g(n)), if h(n) ≤ cg(n) for some positive constant c, as n→∞.

• h(n) = Ω(g(n)), if h(n) ≥ cg(n) for some positive constant c, as n→∞.

• h(n) = Θ(g(n)), if c1g(n) ≤ h(n) ≤ c2g(n) for some positive constants c1, c2, as

n→∞.

Theorem 0.0.5. Let τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) be two hyperbolic types and
let h(An, τ1, τ2) be the number of Beauville surfaces with group An and with types
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(τ1, τ2). Then:
h(An, τ1, τ2) = Ω(n6),

and moreover:
h(An, τ1, τ2) = Ω((log(χn))

6−ε),

where 0 < ε ∈ R.

Theorem 0.0.6. Let τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) be two hyperbolic types.
Assume that at least two of (r1, s1, t1) are even and at least two of (r2, s2, t2) are
even, and let h(Sn, τ1, τ2) be the number of Beauville surfaces with group Sn and with
types (τ1, τ2). Then:

h(Sn, τ1, τ2) = Ω(n6),

and moreover:
h(Sn, τ1, τ2) = Ω((log(χn))

6−ε),

where 0 < ε ∈ R.

The proofs of both theorems are based on results of Liebeck and Shalev [LS04]. In

both cases χn grows like n!. We also provide similar Theorems for surfaces isogenous

to a higher product of curves which are not necessarily Beauville.

Theorem 0.0.7. Let τ1 and τ2 be two hyperbolic types, let p be an odd prime, and con-
sider the group PSL(2, p). Let h(PSL(2, p), τ1, τ2) be the number of Beauville surfaces
with group PSL(2, p) and with types (τ1, τ2). Then:

h(PSL(2, p), τ1, τ2) = O(p3),

and moreover:
h(PSL(2, p), τ1, τ2) = O(χp).

In the last section of the thesis we will treat a similar problem in case of abelian

groups providing the following Theorem.

Theorem 0.0.8. Let n ∈ N such that (n, 6) = 1, let Gn = (Z/nZ)2, and let
τn = (n, n, n). Let h((Z/nZ)2, τn, τn) be the number of Beauville surfaces with group
(Z/nZ)2 and with types (τn, τn). Then:

h((Z/nZ)2, τn, τn) = Θ(n4),

and moreover:
h((Z/nZ)2, τn, τn) = Θ(χ2

n).
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Remark 0.0.9. After completing the manuscript of the article [GP], it was brought
to our attention that Fuertes and Jones [FJ], have independently and simultaneously
constructed unmixed Beauville structures for the groups PSL(2, q), thus proving some
of our results appearing in Theorem 0.0.4. However, their constructions are of different
nature.

In the appendices A and B one can find tables with the known examples of isotriv-

ially fibred surfaces with χ = 1 and respectively pg = q = 0 and pg = q = 1.



Chapter 1

Isotrivially Fibred Surfaces with
pg = q = 2

We shall denote by S a smooth irreducible complex projective surface. We shall

also use the standard notation in surface theory, hence we denote by Ωp
S the sheaf of

holomorphic p−forms on S, pg := h0(S,Ω2
S) the geometric genus of S, q := h0(S,Ω1

S)

the irregularity of S, χ(S) = 1+pg−q the holomorphic Euler-Poincaré characteristic,

e(S) the topological Euler number, andK2
S the self-intersection of the canonical divisor

(see e.g., [Bad, BHPV, B78]). Moreover, if C is a smooth compact complex curve,

then g(C) will denote its genus.

We shall also use a standard notation in group theory, hence we denote by Z/nZ
the cyclic group of order n, by An the alternating group on n letters, by Sn the

symmetric group on n letters, by Dn the dihedral group of order 2n, by Q8 the group

of quaternions, by Dp,q,r the group with following presentation 〈x, y | xp = yq =

1, xyx−1 = yr〉 and (r, q) = 1, by GL(2, q) the group of invertible 2× 2 matrices over

the finite field with q elements, which we denote by Fq, and by SL(2, q) the subgroup of

GL(2, q) comprising the matrices with determinant 1. Then PGL(2, q) and PSL(2, q)

are the quotients of GL(2, q) and SL(2, q) by their respective centers. With Z(G) we

shall denote the center of a group G; moreover let H ≤ G be a subgroup: then the

normalizer of H in G will be denoted by NG(H), while CG(x) denotes the centralizer

of x ∈ G. In addition we shall write x ∼G y if x, y ∈ G are conjugate in G and

12
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Gab = G/[G,G].

1.1 Generalities on Fibred Surfaces

This section is dedicated to some basic definitions and properties of fibred surfaces.

Definition 1.1.1. A fibration of the surface S over a smooth curve B is a proper sur-
jective morphism f : S → B with connected fibres. A surface S admitting a fibration
over a curve B is said to be a fibred surface.

Let f : S → B be a fibration, denote by Fy := f−1(y) the fibre over y ∈ B. If Fy

is singular, then y is a called a critical value of f . By the Theorem of Bertini and

Sard the critical values of f form in B a finite set of points, so almost all the fibres

are smooth. Moreover all smooth fibres are diffeomorphic, hence they all have the

same genus (e.g., [BHPV] p. 110).

In the case of fibrations of surfaces we have a relative notion of minimality.

Definition 1.1.2. A fibration f : S → B is said to be relatively minimal if no fibre
of f contains a −1-curve.

If f : S → B is an arbitrary fibration with general fibre of genus g, then there exists

a relatively minimal fibration f ′ : S ′ → B and a sequence of blow-downs σ : S → S ′,

such that f = f ′ ◦ σ. In the case g ≥ 1, it follows from Zariski’s Lemma that the

minimal model of f is unique, see e.g., [BHPV, Lemma 8.2] and [BHPV, Proposition

8.4] for a proof of these facts.

Definition 1.1.3. A fibration f : S → B is said to be isotrivial if all the smooth
fibres are isomorphic to each other.

Notice that some authors refer to isotrivial fibrations as constant moduli fibrations,

an explanation of the relation between the two names is given for example in [Cat00,

Remark 2.4]. We shall concentrate on the study of isotrivially fibred surfaces, which

is linked with the study of groups acting on products of curves, indeed we have the

following Remark.



14

Remark 1.1.4. [S, Sec. 2.0.1] Let f : S → B be an isotrivial fibration, let us denote
by C1 the general fibre of f , moreover assume that g(C1) ≥ 1. In this situation there
exist a smooth curve C2 and a finite group G acting faithfully on C1 and C2, such
that S is birational to (C1 × C2)/G, B ∼= C2/G and the diagram

S
σ //______

²²

(C1 × C2)/G

²²
B

∼ // C2/G

commutes, here G acts diagonally on the product C1×C2 (i.e., g(x, y) = (gx, gy) for
g ∈ G).

Notice also that in general the birational map σ is not a morphism, see e.g., [Cat00,
Remark 2.4].

An isotrivial fibration is called a holomorphic fibre bundle if G acts freely on C2.

A natural question, which arises from looking at the definition of a fibred surface,

is whether and how the numerical invariants of the base and of the fibres are related

with the numerical invariants of the surface. Some relations are given by the following

classical results.

Theorem 1.1.5 (Zeuthen-Segre). Let f : S → B be a fibred surface with general fibre
of genus g and g(B) =: b, then we have the following equality for the topological Euler
number:

e(S) = 4(g − 1)(b− 1) +
∑
y∈B

µy, (1.1)

where µy ≥ 0, and µy = 0 if and only if Fy is smooth, or Fy is a multiple of a smooth
elliptic curve.

Theorem 1.1.6 (Arakelov). Let f : S → B be a relatively minimal fibration with
general fibre of genus g and g(B) =: b, then we have the following inequality:

K2
S ≥ 8(g − 1)(b− 1). (1.2)

If g ≥ 2 then equality holds only if f is isotrivial.

The two Theorems above were combined by Beauville ([B82]) in the following

Theorem.
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Theorem 1.1.7 (Beauville). Let f : S → B be a relatively minimal fibration with
general fibre of genus g ≥ 2 and g(B) =: b, then

χ(S) ≥ (g − 1)(b− 1), (1.3)

with equality if and only if f is a holomorphic fibre bundle.

Among isotrivially fibred surfaces we can distinguish some special classes according

to their particular properties. First we shall deal with quasi bundles (according to

Serrano [S]), also known as surfaces isogenous to a product of curves of unmixed type

(according to Catanese [Cat00]), which are isotrivially fibred surfaces such that the

singular fibres are only multiples of smooth curves.

Definition/Proposition 1.1.8. A surface S is said to be isogenous to a higher
product of curves if and only if, equivalently, either:

(i). S admits a finite unramified covering which is isomorphic to a product of curves
of genera at least two;

(ii). S is a quotient (C1×C2)/G, where C1 and C2 are curves of genus at least two,
and G is a finite group acting freely on C1 × C2.

Proof. This is proven in [Cat00, Proposition 3.11].

Surfaces isogenous to a higher product of curves were extensively studied in

[Cat00]. The adjective higher emphasizes that the curves have genus at least two.

We observe that the cases where one genus is 0 or 1 naturally occur in the Enriques

classification of surfaces, for example for hyperelliptic surfaces. We recall some fun-

damental properties of surfaces isogenous to a product.

Lemma 1.1.9. [Cat00, Lemma 3.8] Let f : C1 × C2 → B1 × B2 be a surjective
holomorphic map between products of curves. Assume that both B1, B2 have genus ≥
2. Then, after possibly exchanging B1 with B2, there are holomorphic maps fi : Ci →
Bi such that f(x, y) = (f1(x), f2(y)).

Corollary 1.1.10. [Cat00, Corollary 3.9] Assume that both C1 and C2 are curves of
genus ≥ 2. Then the inclusion Aut(C1 × C2) ⊇ Aut(C1) × Aut(C2) is an equality if
C1 is not isomorphic to C2, whereas Aut(C × C) is a semidirect product of Aut(C)2

with Z/2Z given by the involution that exchanges the two coordinates.
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Using the same notation as in Definition 1.1.8 let S be a surface isogenous to a

higher product of curves, and let G◦ := G ∩ (Aut(C1) × Aut(C2)). Then G◦ acts on

the two factors C1, C2 and diagonally on the product C1 × C2. If G◦ acts faithfully

on both curves, we say that S = (C1 × C2)/G is a minimal realization of S.

Proposition 1.1.11. [Cat00, Proposition 3.13] If S is a surface isogenous to a higher
product of curves, then there is a unique minimal realization of S.

Thank to the above Proposition we shall assume from now on that our surfaces

are always given through their minimal realizations.

There are two cases: the mixed case where the action of G exchanges the two

factors, in this case C1 and C2 are isomorphic, G◦ 6= G and there is an exact sequence

of groups:

1 −→ G◦ −→ G −→ Z/2Z −→ 1.

And the unmixed case, where G = G◦ and therefore it acts diagonally.

In the unmixed case the two projections C1×C2 → C1, C1×C2 → C2 induce two

fibrations S → C1/G and S → C2/G, whose smooth fibres are isomorphic to C2 and

C1 respectively.

A surface isogenous to a higher product of curves S is in particular a surface of

general type (because the genera of the two curves are bigger or equal to 2), and it

is always minimal (because K is ample on the product of the two curves, and on S

which is a smooth étale quotient of it). The numerical invariants of S are explicitly

given in terms of the genera of the curves and the order of the group by the following

Proposition.

Proposition 1.1.12. Let S = (C1×C2)/G be a surface isogenous to a higher product
of curves and denote by d the order of G, then:

e(S) =
4(g(C1)− 1)(g(C2)− 1)

d
, (1.4)

K2
S =

8(g(C1)− 1)(g(C2)− 1)

d
, (1.5)

χ(S) =
(g(C1)− 1)(g(C2)− 1)

d
. (1.6)
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Proof. We have an unramified covering p : Ŝ := C1 × C2 → S of degree d. By Segre-
Zeuthen’s Theorem we have:

e(Ŝ) = 4(g(C1)− 1)(g(C2)− 1),

By [B78, Lemma VI.3] we have e(Ŝ) = d · e(S), which implies equation (1.4).
Moreover we have (see e.g., [B78, Proposition III.22]):

H1(Ŝ,ObS) = H0(Ŝ,Ω1
bS) = H0(C1,Ω

1
C1

)⊕H0(C2,Ω
1
C2

),

hence
q(Ŝ) = g(C1) + g(C2), (1.7)

and
H0(Ŝ,Ω2

bS) = H0(C1,Ω
1
C1

)⊗H0(C2,Ω
1
C2

),

hance
pg(Ŝ) = g(C1)g(C2). (1.8)

Then (1.7) and (1.8) imply:

χ(Ŝ) = 1− q(Ŝ) + pg(Ŝ) = χ(C1)χ(C2) = (g(C1)− 1)(g(C2)− 1).

By [B78, Lemma VI.3] we have χ(Ŝ) = d · χ(S), hence equation (1.6) holds. Now by
Noether’s formula 12χ(S) = K2

S + e(S) we obtain equation (1.5).

Indeed we have a much stronger statement. Let us denote by Πgi
the fundamental

group of a smooth curve of genus gi, then we have:

Theorem 1.1.13. [Cat00, Theorem 3.4] A surface S is isogenous to a higher product
of curves if and only if

1. π1(S) admits a finite index subgroup Γ isomorphic to Πg1×Πg2 where g1, g2 > 1,

2. and if d denotes the index of Γ, then equation (1.4) holds.

In the case where S is minimal condition 2. can be replaced by the validating of
equation (1.5) or of equation (1.6).

We have the following results concerning the irregularity of isotrivial fibrations.

Theorem 1.1.14. Let X be a complex compact connected manifold, let G ⊂ Aut(X)
be a finite group. Let S be a resolution of the normal space Y := X/G, then:

H0(S,Ω1
S)
∼= H0(X,Ω1

X)G.
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For a proof we refer for example to [F], in case X projective and Y smooth the

above Theorem is [B78, Lemma VI. 11].

Corollary 1.1.15. [S, Proposition 2.2] Let S be a smooth surface birationally iso-
morphic to (C1 × C2)/G then:

q(S) = g(C1/G) + g(C2/G). (1.9)

Proof. If p1 and p2 denote the two projections of C1 × C2 onto its factors, we have
Ω1
C1×C2

= p∗1(Ω
1
C1

)⊕ p∗2(Ω
1
C2

) (see e.g., [B78, Proposition III.22]), hence

q(S) = dimH0(C1 × C2,Ω
1
C1×C2

)G = dimH0(C1,Ω
1
C1

)G + dimH0(C2,Ω
1
C2

)G =

= g(C1/G) + g(C2/G),

where the first and last equalities are given by Theorem 1.1.14.

1.2 Group Theoretical Preliminaries

The study of surfaces isogenous to a product of curves is strictly linked with the

study of branched Galois coverings of Riemann surfaces. Indeed in the unmixed case

the diagonal action of G on the product C1 × C2 induces two branched coverings

Ci → Ci/G for i = 1, 2, while in the mixed case the action of G◦ induces such

branched coverings.

In this section we collect some standard facts on coverings of Riemann surfaces.

Let us denote by H the upper half plane {z ∈ C | Im(z) > 0}. It is well

known that H is the universal cover of any Riemann surface with genus g ≥ 2, and

Aut(H) ∼= PSL(2,R). A Fuchsian group is a discrete subgroup of PSL(2,R). If Γ is

a Fuchsian group and if the quotient space H/Γ of Γ−orbits is compact, then Γ is

isomorphic to an orbifold surface group, which is defined as follows.

Definition 1.2.1. Let g′,m1, . . . ,mr be positive integers with mi ≥ 2 for all i. An
orbifold surface group of type (g′ | m1, . . . ,mr) is a group presented as follows:

Γ(g′ | m1, . . . ,mr) := 〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γr|

γm1
1 = · · · = γmr

r =

g′∏

k=1

[αk, βk]γ1 · . . . · γr = 1〉.
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If g′ = 0 then Γ is called a polygonal group, if g′ = 0 and r = 3 then Γ is called a
triangle group.

On the other hand there are Fuchsian groups Γ′ with compact orbit space H/Γ′
isomorphic to an orbifold surface group Γ(g′ | m1, . . . ,mr) if and only if:

µ(Γ) := 2g′ − 2 +
r∑
i=1

(1− 1

mi

) > 0.

We shall call µ(Γ) the measure of Γ, see e.g., [Br, Theorem 3.12].

Via the Uniformization Theorem, the Riemann Existence Theorem can be rein-

terpreted in the following way. A finite group G acts as a group of automorphisms of

some Riemann surface C of genus at least 2 if and only if there exist two Fuchsian

groups Γ and Π, an epimorphism θ : Γ → G with kernel Π and the group Π is tor-

sion free and isomorphic to the fundamental group π1(C) of C, see for example [JS,

Corollary 5.9.5].

On the other hand one can consider the following definitions (see also [Br, Lemma

3.6]).

Definition 1.2.2. Let Γ be an orbifold surface group and G be a finite group. An
epimorphism θ : Γ = Γ(g′ | m1, ...,mr) → G is called admissible if θ(γi) has or-
der mi for all i. If an admissible epimorphism exists, then G is said to be (g′ |
m1, ...,mr)−generated.

If G is (g′ | m1, ...,mr)−generated, set:

ci := θ(γi) 1 ≤ i ≤ r; (1.10)

ai := θ(αi) 1 ≤ i ≤ g′; (1.11)

bi := θ(βi) 1 ≤ i ≤ g′. (1.12)

The elements a1, b1, . . . , ag′ , bg′ , c1, . . . , cr generate G and moreover one has:

g′∏
i=1

[ai, bi]c1 · . . . · cr = 1
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and

ord(ci) = mi.

This suggests the following definition.

Definition 1.2.3. Let G be a finite group and let

0 ≤ g′, 2 ≤ m1 ≤ · · · ≤ mr

be integers. A system of generators for G of type τ := (g′ | m1, ...,mr) is a (2g′ +
r)−tuple of elements of G:

V = (a1, b1, . . . , ag′ , bg′ , c1, . . . , cr)

such that the following are satisfied:

(i). 〈a1, b1, . . . , ag′ , bg′ , c1, . . . , cr〉 = G.

(ii). Denoting by ord(c) the order of c either

A ord(ci) = mi for all 1 ≤ i ≤ r, and we say that V has ordered type τ , or

B there is a permutation σ ∈ Sr such that:

ord(c1) = mσ(1), . . . , ord(cr) = mσ(r),

and we say that V has unordered type τ .

(iii).
∏g′

i=1[ai, bi]c1 · . . . · cr = 1.

If such a V exists then G is (g′ | m1, . . . ,mr)−generated.
We refer to m := m1, . . . ,mr as the branching data and to g′ as the genus of τ .
Moreover if g′ = 0 a system of generators is said to be spherical. In this case it

is customary to use synonymously type or branching data.
We shall denote:

B(G, τ) := {systems for G of type τ}.

We remark that unordered types are needed only when we tackle the problem of

the moduli space, and so until the last chapter we shall suppose that the types are

all ordered. We shall also use the notation, for example, (g′ | 24, 32) to indicate the

tuple (g′ | 2, 2, 2, 2, 3, 3).

We have also the following reformulation of the Riemann Existence Theorem (see

e.g., [Mir] chapter III, section 3 and 4, or [BCGP]).
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Proposition 1.2.4. A finite group G acts as a group of automorphisms of some com-
pact Riemann surface C of genus g ≥ 2 if and only if there exist integers g′ ≥ 0 and
mr ≥ mr−1 ≥ · · · ≥ 2 such that G is (g′ | m1, . . . ,mr)−generated for some system of
generators (a1, b1, . . . , ag′ , bg′ , c1, . . . , cr), and the following Riemann-Hurwitz relation
holds:

2g − 2 = |G|(2g′ − 2 +
r∑
i=1

(1− 1

mi

)
)
. (1.13)

If this is the case, then g′ is the genus of the quotient Riemann surface C ′ = C/G

and the G−cover C → C ′ is branched in r points p1, . . . , pr with branching number

m1, . . . ,mr, respectively. Moreover if r = 0 the cover is said to be unramified or

étale. In particular the cyclic subgroups 〈ci〉 and their conjugates are the non-trivial

stabilizers of the action of G on C.

Definition 1.2.5. Two systems of generators V1 := (a1,1, b1,1, . . . , a1,g′1 , b1,g′1 , c1,1, . . . , c1,r1)
and V2 := (a2,1, b2,1, . . . , a2,g′2 , b2,g′2 , c2,1, . . . , c2,r2) of G are said to have disjoint stabi-
lizers or simply to be disjoint, if:

Σ(V1) ∩ Σ(V2) = {1}, (1.14)

where

Σ(Vi) :=
⋃

h∈G

∞⋃
j=0

ri⋃

k=1

h · cji,k · h−1.

From the above discussion we obtain that the datum of a surface isogenous to a

higher product of curves of unmixed type S = (C1 × C2)/G is determined, once we

look at the monodromy of each covering Ci → Ci/G =: C ′i, by the datum of a finite

group G together with two disjoint systems of generators V1 and V2 whose branching

data satisfy (1.13) with g′ := g(C ′i), and g = g(Ci) respectively.

Remark 1.2.6. The condition of being disjoint ensures that the action of G on the
product of the two curves C1 × C2 is free.

Indeed the cyclic groups 〈c1,1〉 , . . . , 〈c1,r〉 and their conjugates provide the non-
trivial stabilizers for the action of G on C1, whereas 〈c2,1〉 , . . . , 〈c2,s〉 and their conju-
gates provide the non-trivial stabilizers for the action of G on C2. The singularities
of (C1 × C2)/G arise from the points of C1 × C2 with non-trivial stabilizer, since the
action of G on C ×F is diagonal, it follows that the set S of all non-trivial stabilizer
for the action of G on C1 × C2 is given by Σ(V1) ∩ Σ(V2). It is clear that if we want
(C1×C2)/G to be smooth we have to require that the pair is disjoint (see also section
1.4). Recall that we suppose that our surfaces are given by their minimal realizations.
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This description suggests the following definition.

Definition 1.2.7. Let τi := (g′i | m1,i, . . . ,mri,i) for i = 1, 2 be two types. An unmixed
ramification structure of type (τ1, τ2) (size (r1, r2) and genus (g′1, g

′
2)) for a finite group

G, is a pair (V1,V2) of disjoint systems of generators of G, whose types are τi, and
they satisfy:

Z 3
|G|(2g′i − 2 +

∑ri
l=1(1− 1

mi,l
))

2
+ 1 ≥ 2, (1.15)

for i = 1, 2.

Theorem 1.2.8. [BCG05, Proposition 3.2] Let G be a finite, non-trivial group and
(V1,V2) a pair of disjoint systems of generators of G of size (3, 3) and genus (0, 0),
then

Z 3
|G|(−2 +

∑3
l=1(1− 1

mi,l
))

2
+ 1 ≥ 2, for i = 1, 2. (1.16)

Analogous results hold in the mixed case and they will be discussed later, where

we shall define a mixed ramification structure for a finite group G.

1.3 Surfaces Isogenous to a Product of Curves with

pg = q = 2

In this section we shall tackle and partially solve the problem of classifying all the

surfaces isogenous to a higher product of curves with pg = q = 2 (the problem will

be completely solved with the discussion on the moduli space in chapter 3).

Let us first recall the known results about the classification of surfaces isogenous

to a product of curves with χ(S) = 1.

Remark 1.3.1. The problem of the classification of surfaces isogenous to a higher
product of curves with χ(S) = 1 (this implies pg = q ) is, with this work, completely
solved.

The following inequalities for surfaces of general type hold (see e.g., [BCP]):

Bogomolov-Miyaoka-Yau: K2
S ≤ 9χ(S).

Debarre: Assume q(S) ≥ 1, then K2
S ≥ 2pg(S).

Since χ(S) = 1 the two inequalities imply that 0 ≤ pg ≤ 4.
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We have the following Theorem for the case pg = q = 0.

Theorem 1.3.2. [BCG08, Theorem 0.1] If S is a smooth projective surface isogenous
to a product of curves with pg(S) = q(S) = 0 and with minimal realization S ∼=
(C × F )/G then either G is trivial and S ∼= P1 × P1 or G is one of the groups in
Table 1 of Appendix A and the genera of the curves C, F and the respective branching
data m are as listed in the Table. The number of components n in M8,1 and their
dimension is given in the last two columns.

For the case pg = q = 1 we have the following result.

Theorem 1.3.3. [CP, Theorem 0] Let S = (C × F )/G be a surface with pg = q = 1
isogenous to a higher product of curves. Then S is minimal of general type and the
possibilities for g(C), g(F ) and G are precisely those in Table 1 of Appendix B.

The case pg = q = 2 will be addressed in this thesis, see also [Z].

The case pg = q = 3 we have the following full classification Theorem due to

several authors: [CCML], [HP], and [Pi].

Theorem 1.3.4. Let S be a minimal surface of general type with pg = q = 3, then
there are only two possibilities:

1. K2
S = 8, and S = (C × F )/G where C is a curve of genus 2, F is a curve of

genus 3 and G ∼= Z/2Z. Here G acts on the product C × F freely, on C as an
elliptic involution, and on F as a fixed point free involution.

2. K2
S = 6, and S is the symmetric square of a genus 3 curve.

The last case is pg = q = 4, and we have the following full classification Theorem.

Theorem 1.3.5. [B82] If S is a minimal surface of general type with pg = q = 4,
then S is a product of two curves of genus 2.

The classification of surfaces isogenous to a higher product of curves with pg =

q = 2 is divided into three cases. First we study the unmixed case which is divided in

two subcases depending on the dimension of the image of the Albanese map. If the

image is a curve then we recover only generalized hyperelliptic surfaces. If the map

is surjective we will recover the unmixed case of Albanese general type. Second we

study the mixed case.

We use the standard notation in algebraic surface theory denoting by Alb(S) ∼=
H0(S,Ω1)

∨/H1(S,Z) the Albanese variety of S. Recall the following definitions.
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Definition 1.3.6. A surface S is said to be of Albanese general type if dim(α(S)) =
2, where α : S → Alb(S) is the Albanese map.

Notice that if q(S) = 2 then dim(Alb(S)) = 2, thus the Albanese map is surjective

if and only if S is of Albanese of general type.

From now on let S be a surface of general type with pg = q = 2 and not of

Albanese general type. According to [Cat00] we give the following definition.

Definition 1.3.7. A surface isogenous to a product of curves of unmixed type S :=
(C × F )/G is said to be of generalized hyperelliptic type if:

1. the Galois covering πC : C → C/G is unramified,

2. the quotient curve F/G is isomorphic to P1.

The following Theorem gives a characterization of surfaces of generalized hyper-

elliptic type.

Theorem 1.3.8. [Cat00, Theorem 3.18.] Let S be a surface such that:

(i). K2
S = 8χ(OS) > 0

(ii). S has irregularity q ≥ 2 and the Albanese map is a pencil.

Then, letting g be the genus of the Albanese fibres, we have: (g − 1) ≤ χ(OS)
q−1

.

A surface S is of generalized hyperelliptic type if and only if (i) and (ii) hold and

g = 1 + χ(OS)
q−1

.

In particular, every S satisfying (i) and (ii) with pg = 2q − 2 is of generalized hyper-
elliptic type, where G (from the definition) is a group of automorphisms of the curve
F of genus 2 with F/G ∼= P1.

Corollary 1.3.9. [Z, Proposition 4.2] Let S be a surface of general type with pg =
q = 2 and not of Albanese general type. Then S is of generalized hyperelliptic type.

Remark 1.3.10. We collect all the properties of a surface S of general type with
pg = q = 2 not of Albanese general type. Let α : S → Alb(S) be the Albanese map
and B := α(S). Then:

1. S is isogenous to an unmixed product (C × F )/G.

2. K2
S = 8.

3. g(F ) = 2 and F/G ∼= P1.
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4. C → C/G is unramified and C/G ∼= B has genus 2.

5. |G| = (g(C)− 1)(g(F )− 1) = (g(C)− 1).

To classify all the groups and the genera of smooth curves of surfaces isogenous

to a higher product of curves with pg = q = 2 and not of Albanese general type one

can proceed as follows: first one classifies all possible finite groups G which induce a

G−covering F → P1 with g(F ) = 2, second one has to check whether such groups G

induce an unramified G−covering C → B ∼= C/G, where the genus of B is 2 and the

genus of C is determined by the Riemann-Hurwitz formula.

We notice that the action of G on the product C × F is always free, since the

action on C is free.

Theorem 1.3.11. Let S be a surface of general type with pg = q = 2 and not of
Albanese general type. Then S = (C × F )/G is of generalized hyperelliptic type and
assuming w.l.o.g. g(F ) = 2 the only possibilities for the genus of C, the group G
and the branching data m for F → F/G ∼= P1 are given by the entries in Table 1 of
Theorem 0.0.1 labelled with GH.

Proof. We are in the hypothesis of Corollary 1.3.9, so we may assume S := (C×F )/G,
where F , C and G have the property indicated in Remark 1.3.10.

The classification of the automorphism groups of a Riemann surface F of genus
2 was given by Bolza in [Bol], moreover the classification of all the groups G acting
effectively as a group of automorphisms of F such that the quotient F/G is isomorphic
to P1 is given in [Z] or [Bro]. We give a full proof of the classification of the latter
groups, since we are interested in obtaining a complete information including also the
branching data.

By the Riemann-Hurwitz formula (1.13) applied to F we obtain:

2g(F )− 2 = |G|(− 2 +
r∑
i=1

(1− 1

mi

)
)
, (1.17)

remembering that g(F ) = 2 we get:

2 = |G|(− 2 +
r∑
i=1

(1− 1

mi

)
)

(1.18)

which yields:

|G|(r
2
− 2) ≤ 2 ≤ |G|(r − 2),
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and since |G| ≥ 2 we have 3 ≤ r ≤ 6.
We examine all the cases proceeding as follows: for each r, using the fact that 2 ≤
m1 ≤ · · · ≤ mr, and by (1.18), we can bound the order of G from above by a rational
function of m1 and from below by m1, since m1 divides |G|, and we analyze case by
case. As soon as m1 gives a void condition, we repeat the same analysis using m2, and
so on for all mi’s. In the first case we shall perform a full calculation as an example.

Case r = 6.
In this case by (1.18) we have :

2 = |G|(− 2 +
6∑
1

(1− 1

mi

)
) ≥ |G|(− 2 + 6(1− 1

m1

)
)
,

which yields

m1 ≤ |G| ≤ m1

2m1 − 3
,

then m1 = 2 and |G| = 2. Therefore by equation (1.6) g(C) = 3, and since mi divides
|G| for all i = 1, . . . , 6, we have mi = 2 for all i = 1, . . . , 6. Then G = Z/2Z, since it
is (0 | 26)−generated. We recover the first case in Table 1, i.e., g(F ) = 2 g(C) = 3
and m = (26).
Notice that to fully recover this first case we still have to prove that Z/2Z induces
an unramified covering g : C → B ∼= C/(Z/2Z), where the genus of B is 2, but
this is obvious. From now on in order to avoid many repetitions we investigate the
branching data and the order of the groups and it will be clear which case in Table 1
is recovered. Moreover we shall prove at the end that all the groups, we have found,
induce an unramified cover C → C/G with quotient a curve of genus 2.

Case r = 5.
Proceeding as in the previous case, we have:

2 ≤ |G| ≤ 4.

If |G| = 2 then mi = 2 for all i = 1, . . . , 5 which yields a contradiction to (1.18).
If |G| = 3 then mi = 3 for all i = 1, . . . , 5 and again we have a contradiction.
If |G| = 4 then mi = 2 for all i = 1, . . . , 5. Since the elements of order 2 generate
the group we have G = (Z/2Z)2. Indeed we have c1, . . . c5,∈ (Z/2Z)2 \ {(0, 0)} such
that

∑5
i=1 ci = 0, for example take c1, c2 and c3 all different from each other, and

c1 = c4 = c5.
Case r = 4.

In this case we have:

m1 ≤ |G| ≤ 2m1

2m1 − 4
,

then m1 ≤ 3.
If m1 = 3, then |G| = 3 and mi = 3 for all i = 1, . . . 4. Clearly G = Z/3Z which is
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(0 | 34)−generated, consider for example c1 = 1, c2 = 1, c3 = 2, c4 = 2.
Now suppose m1 = 2, this gives no upper bound for the order of G, therefore looking
at the possible values of m2, we have:

l.c.m.(2,m2) ≤ |G| ≤ 4m2

3m2 − 6
.

We can exclude the cases with m2 ≥ 3, so m2 = 2.
If we proceed further and look at the values of m3 once m1 = m2 = 2, we have:

l.c.m.(2,m3) ≤ |G| ≤ 2m3

m3 − 2
,

so that m3 ≤ 4.
If m3 = 4, then |G| = 4, m4 = 4 and G = Z/4Z, which is (0 | 22, 42)−generated, take
for example c1 = 2, c2 = 2, c3 = 1, c4 = 3.
If m3 = 3, then |G| = 6 and we have m4 = 3. We have two possibilities either G =
Z/6Z orG = S3, and both cases occur, since both groups are (0 | 2, 2, 3, 3)−generated.
For the first case consider for example c1 = 3, c2 = 3, c3 = 2, and c4 = 4, while for
the latter one c1 = (1, 2), c2 = (2, 3), c3 = (1, 3, 2), c4 = (1, 3, 2).
Let us consider the case m3 = 2, then we have to look at the possible values of m4,
since:

l.c.m.(2,m4) ≤ |G| = 4m4

m4 − 2

then only possibilities are the following:
If m4 = 6, then |G| = 6 and this case is impossible. Indeed G cannot be S3, since
S3 has no element of order 6. In addition let c1, . . . , c4 be the generators of order
m1, . . . ,m4, then we must have c1 + c2 + c3 + c4 = 0, then it cannot be Z/6Z since
the only element of order two is 3 and 3 plus an element of order six is never 0.
If m4 = 4 then |G| = 8 then G = D4, for example with the following generators:
c1 = y, c2 = yx, c3 = x2, c4 = x, where y is a reflection and x a rotation. The
group G cannot be Z/2Z × Z/4Z or Q8, since the conditions c1 + c2 + c3 + c4 = 0,
respectively c1 · c2 · c3 · c4 = 1 are not satisfied. G cannot be Z/8Z, because it is not
(2, 4) generated. G cannot be (Z/2Z)3 since it does not have any element of order 4.
If m4 = 3 then |G| = 12, G cannot be Z/12Z or Z/2Z×Z/6Z because of the condition
c1 + ... + c4 = 0, G cannot be D3,4,−1 := 〈x, y | x4 = y3 = 1, xyx−1 = y−1〉 because
D3,4,−1 has only one element of order 2. The two remaining cases are D6 or A4. If G
has four 3−Sylow subgroups then G = A4, impossible since the elements of order 2
are in the Klein subgroup while c4 is not. In the other case Z/3Z ⊂ G is normal, and
there is an element of order 6. We recover the case G = D6 with system of generator
for example: c1 = y, c2 = yx, c3 = x3, c4 = x2.
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Case r = 3.
This case is much more involved than the previous ones. We have

m1 ≤ |G| ≤ 2m1

m1 − 3
,

then after a short calculation one sees that m1 ≤ 5.
If m1 = 5 then |G| = 5 and m2 = m3 = 5. The only possibility is G = Z/5Z

which is (0 | 53)−generated, for example consider c1 = 1, c2 = 2 and c2 = 2.
If m1 = 4 one has that |G| = 8 and m2 = m3 = 4, and the only group of order 8

which is (0 | 4, 4, 4)−generated is G = Q8, consider for example c1 = i, c2 = j and
c3 = −k. Notice that the other groups of order 8 containing an element of order 4 are
Z/8Z, Z/2Z×Z/4Z, and D4. The elements of order 4 in Z/8Z and in D4 form proper
subgroups, so these cases are excluded. In Z/2Z × Z/4Z there are four elements of
order 4, the sum of any two of them is an element of order at most 2, so condition
c1 + c2 + c3 = 0 cannot be satisfied.

If m1 = 3 we have to look at all possible values of m2, since:

l.c.m.(3,m2) ≤ |G| ≤ 3m2

m2 − 3

then only possibilities are the following:
If m2 = 6, then |G| = 6 and m3 = 6. The only possibility is G = Z/6Z, consider for
example as generators c1 = 4, c2 = 1 and c3 = 1. Notice that S3 has no elements of
order 6.
If m2 = 4, then |G| = 12 and m3 = 4. In this case the only group of order 12 which
can be generated by elements c1, c2, c3 of order 3, 4, 4 and such that these elements
satisfy

c1 · c2 · c3 = 1 (or additively c1 + c2 + c3 = 0), (1.19)

is D4,3,−1, choose for example c1 = y, c2 = xy and c3 = x3, where the notation is the
one given above. Notice that all the other groups either do not have an element of
order 4 or it is Z/12Z, which fails condition (1.19).
In the case m2 = 3 we have to look at the possible values of m3, since:

l.c.m.(3,m3) ≤ |G| = 6m3

m3 − 3
,

then the only possibilities are the following:
If m3 = 9, then |G| = 9 and G could be only Z/9Z, but condition (1.19) is not
satisfied by elements of order 3, 3, 9, which excludes this case.
If m3 = 6, then |G| = 12. Also this case has to be excluded because: A4 does not
have an element of order 6, while for D6 and (Z/2Z)2 × Z/3Z the elements of order
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3 and 6 cannot generate, in the end for the last two groups (1.19) fails.
If m3 = 5 then |G| = 15 and we have only Z/15Z, but its generating elements of
order 3 and 5 do not satisfy (1.19).
If m3 = 4 then |G| = 24. Here the number of groups involved or their orders can be
considerably large. In order to avoid many repetitions if these numbers are excessively
large, where indicated, we use a computer program in GAP4 (see Appendix C for the
script of the program, and section 3.2 for an explanation of the program), to check the
corresponding cases. Indeed the computer shows that among the 15 groups of order
24 the only one which can be (0 | 3, 3, 4)−generated is SmallGroup(24,3), which
corresponds to G = SL(2,F3), and a system of generators can be found in section 3.2.
This exhausts all the cases with m1 = 3.

If m1 = 2 we look at all possible values of m2 since:

l.c.m.(2,m2) ≤ |G| ≤ 4m2

m2 − 4
,

then only possibilities are the following:
If m2 = 8, then |G| = 8 and m3 = 8 which yields G = Z/8Z, choose for example as
system of generators c1 = 4, c2 = 5, c3 = 7.
If m2 = 6, then |G| = 12 and m3 = 6 which yields the case: G = Z/2Z × Z/6Z,
choose for example as system of generators c1 = (1, 3), c2 = (1, 2), c3 = (0, 1). Notice
that it cannot be Z/12Z because of (1.19), G cannot be A4 because it does not have
any element of order 6. Moreover G cannot be D6, since to generate it one needs a
reflection y but the condition c2c3 = y can never hold since the only elements with
order 6 are x and x5, with x rotation. Finally D4,3,−1 is impossible because the two
elements of order 6 and the element of order 2 do not satisfy (1.19).
If m2 = 5 then |G| ≤ 20, looking at the branching data the only two possible cases
are |G| = 20, 10.
If |G| = 20, then m3 = 5. Among the 5 groups of order 20 a computer computation
shows that none of them are (0 | 2, 5, 5)− generated.
If |G| = 10 then m3 = 10, which gives G = Z/10Z for example if c1 = 5, c2 = 4,
c3 = 1. G cannot be D5 since it has no element of order 10.
If m2 ≤ 4 one has to look at all possible values of m3.
Let m2 = 4, since:

l.c.m.(4,m3) ≤ |G| = 8m3

m3 − 4

then the only possibilities are the following:
If m3 = 12, then |G| = 12 and G could be only Z/12Z, but condition (1.19) cannot
be satisfied by elements of order 2, 4, 12, therefore this case is excluded.
If m3 = 8, then |G| = 16, among the 14 groups of order 16 a GAP4 computation
shows that only SmallGroup(16,8) (i.e., G = D2,8,3) can be (0 | 2, 4, 8)−generated.
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A system of generators for this case can be found in section 3.2.
If m3 = 6, then |G| = 24 and the only possibility for G is SmallGroup(24,8), which
is G = Z/2Zn ((Z/2Z)2×Z/3Z). This case was also accomplished using GAP4, and
a system of generators can be found in section 3.2.
One sees that case m3 = 5 is impossible, here again it is needed a computational fact:
none of the 14 groups of order 40 can be (0 | 2, 4, 5) generated.
We now consider the case m2 = 3. We look at all possible values of m3, since:

l.c.m.(6,m3) ≤ |G| = 12m3

m3 − 6

then only possibilities are the following.
If m3 = 18, then |G| = 18 and G = Z/18Z, but condition (1.19) cannot be satisfied
by elements of order 2, 3, 18.
If m3 = 12, then |G| = 24, a computer calculation shows that among the 15 groups
of order 24 none of them are (0 | 2, 3, 12)−generated.
We can also exclude the case m3 = 10 because none of the groups of order 30 is
(0 | 2, 3, 10)−generated.
One can exclude the casem3 = 9, because among the 14 groups of order 36 a computer
computation shows that none of them are (0 | 2, 3, 9)−generated.
Case m3 = 7 is also excluded, though there are 15 groups of order 84, a computer
computation shows that none of them can be (0 | 2, 3, 7)−generated.
The remaining case is m3 = 8 which gives |G| = 48. A computer computation shows
that among the 52 groups of order 48 only SmallGroup(48,29) (i.e., G = GL(2,F3))
satisfies all the necessary conditions, and a system of generators can be found in
section 3.2. This recovers the last case of Table 1.

Now we have to see whether for each possible group G there is a surjective homo-
morphism:

Γ(2 | −) ∼= Πg(C) = 〈a1, b1, a2, b2 | [a1, b1][a2, b2] = 1〉 ³ G.

Indeed this is true in all the cases, more precisely one notices that all the possible
groups G can be two generated, call the generators x and y. Then we have the
following epimorphism from Γ(2 | −) to G:

a1 7→ x, b1 7→ 1, a2 7→ y, b2 7→ 1.

We have analyzed the case when the image of the Albanese map is a curve. Now

we want to see whether there are surfaces isogenous to a higher product of unmixed

type with pg = q = 2 and of Albanese general type.
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By Proposition 1.1.15 if S ∼= (C × F )/G, q(S) = g(C/G) + g(F/G). If q(S) = 2,

there are two cases: either (w.l.o.g) g(C/G) = 2 and g(F/G) = 0, or g(C/G) = 1 and

g(F/G) = 1. The following Proposition assures us that the first case is completely

solved.

Proposition 1.3.12. [Z, Proposition 4.3] Let C and F be two smooth curves and let
G be a non-trivial finite group with two injections: G ↪→ Aut(C), G ↪→ Aut(F ). Sup-
pose g(F ) = 2, F/G = P1 and π : C → C/G is an étale morphism where g(C/G) = 2.
Then the quotient S = (C×F )/G by the diagonal action is a minimal surface of gen-
eral type with pg(S) = q(S) = 2 and non-surjective Albanese morphism.

For the second case we have to search for surfaces isogenous to an unmixed product

S = (C × F )/G such that C/G and F/G are both elliptic curves. We need the

following two results to simplify our search.

Lemma 1.3.13. [Z, Lemma 2.3, Corollary 2.4] Let S be surface of Albanese general
type with pg = q = 2. Let φ : S → B be a fibration of curves of genus g. If the genus
of B is b > 0, then b = 1 and 2 ≤ g ≤ 5.

And this fact about systems of generators.

Lemma 1.3.14. If G is an abelian group and G is (g′ | m1, ...,mr)-generated, then
r 6= 1.

Proof. Suppose G abelian and r = 1. Then the relation Πg′
i=1[ai, bi]c1 = 1 yields

θ(c1) = 0 for any epimorphism θ : Γ → G, so θ cannot be admissible.

In case the Albanese map is not surjective we have that S is of generalized hyper-

elliptic type, hence one of the two covers is étale, and we have always a free action of

G on the product C × F . In case the Albanese map is surjective we do not have an

étale cover, so we also have to check whether the action of G on the product of the

two curves is free or not.

Theorem 1.3.15. Let S be a surface with pg = q = 2 of Albanese general type and
isogenous to a higher product of curves of unmixed type. Then S is minimal of general
type and the only possibilities for the genera of the two curves C, F , the group G and
the branching data m respectively for F → F/G and C → C/G are given by the
entries in Table 1 labelled with UnMix.
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Proof. By Lemma 1.3.13 we have, that 2 ≤ g(F ) ≤ 5 and, w.l.o.g., g(F ) ≤ g(C). We
analyze case by case:

g(F) = 2.
From

2g(F )− 2 = |G|
r∑
i=1

(1− 1

mi

) (1.20)

and
∑r

i=1(1− 1
mi

) ≥ 1
2

we have:

2 ≤ |G| ≤ 4,

which yields:
|G| = 4 if and only if r = 1 and m1 = 2;
|G| = 3 if and only if r = 1 and m1 = 3;
|G| = 2 if and only if m1 = m2 = 2.
The first two cases contradict Lemma 1.3.14, the third one is also impossible. First
notice that, from equation (1.6), g(C) = 3, and for F and C we have respectively the
following branching data: (2, 2) and (2, 2, 2, 2). It follows that we do not have any
free action of Z/2Z on C × F .

g(F) = 3.
From equation (1.20) we have:

2 ≤ |G| ≤ 8,

moreover 2 divides |G| by equation (1.6). Then we have to analyze the cases: |G| =
8, 6, 4, 2.
If |G| = 8 then g(C) = 5, and by Riemann-Hurwitz the branching data for F and
C are respectively (2) and (2, 2). By Lemma 1.3.14 G is not abelian and since it
is (1 | 22)−generated it must be D4. Indeed G cannot be Q8, because Q8 is not
(1 | 22)−generated, since the only element of order 2 is −1. One sees that D4 acts on
C × F freely, hence this case occurs. Indeed one can choose the following systems of
generators:

a1 = x b1 = y c1 = x2;

a1 = x b1 = y c1 = x2y c2 = y,

where x is a rotation and y is a reflection. Then {x2} is one conjugacy class and
{y, x2y} is another, hence the two systems of generators are disjoint.
If |G| = 6 then g(C) = 4. The Riemann-Hurwitz formula yields (3) as branching
data for F and (2, 2) for C, which yield G = S3. One sees that any pair of systems
of generators is disjoint since the conjugacy classes of elements of order 2 and 3 are
disjoint, thus S3 acts on C × F freely, and this case occurs.
If |G| = 4 then g(C) = 3. In this case the branching data with respect to F and C
are (2, 2) and (2, 2). If G = Z/4Z the action cannot be free, since there is only one
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element of order two. For Z/2Z× Z/2Z there is a free action. We first notice, since
G is abelian, 2c1 = 2c2 = c1 + c2 = 0 and 2c′1 = 2c′2 = c′1 + c′2 = 0, then we can choose
x = c1 = c2 and x′ = c′1 = c′2. If we choose, for example, c = (1, 1) and c′ = (1, 0) we
see that this case occurs.
We observe that the case |G| = 2 leads to a contradiction to g(F ) ≤ g(C).

g(F) = 4.
From equation (1.20) we have:

3 ≤ |G| ≤ 12,

moreover 3 must divide |G| by equation (1.6). Furthermore since we assumed g(F ) ≤
g(C) the only remaining cases are |G| = 12, 9.
If |G| = 12 then g(C) = 5. The branching data of F and C are respectively (2)
and (3). There is no non-abelian group of order 12 which is simultaneously (1 | 2)
and (1 | 3)−generated. To see this one notices that the derived subgroups of D6 and
D3,4,−1 are both isomorphic to Z/3Z, hence in both cases there are no commutators
of order 2, therefore the two groups cannot be (1 | 2)−generated. Moreover A4 is not
(1 | 3)−generated because its derived subgroup is Z/2Z × Z/2Z, hence there are no
commutators of order 3.
If |G| = 9 then g(C) = 4. We see that the branching data for F is (3), since all the
groups of order 9 are abelian, this case does not occur.

g(F) = 5.
From equation (1.20) we have:

4 ≤ |G| ≤ 16,

moreover 4 must divide |G|, and since g(F ) ≤ g(C) the only case remaining is |G| =
16.
If |G| = 16 then g(C) = 5, and the branching data for F and C are (2) and (2).
Looking at the table in [CP] one sees that among the 14 groups of order 16 only
Z/4Zn (Z/2Z)2, D4,4,−1 and D2,8,5 are (1 | 2)−generated. Moreover with a computer
computation using the program of Appendix C one sees that in these cases the action
of the groups on the product C × F cannot be free. Therefore this case does not
occur.

Now we study the mixed case.

Proposition 1.3.16. [Cat00, Proposition 3.16] Assume that G◦ is a finite group
satisfying the following properties:

(i). G◦ acts faithfully on a smooth curve C of genus g(C) ≥ 2,

(ii). There is a non split extension:

1 −→ G◦ −→ G −→ Z/2Z −→ 1. (1.21)
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Let us fix a lift η′ ∈ G of the generator of Z/2Z. Conjugation by η′ defines an
element [ϕ] of order ≤ 2 in Out(G◦).

Let us choose a representative ϕ ∈ Aut(G◦) and let η ∈ G◦ be such that ϕ2 is equal
to conjugation by η. Denote by ΣC the set of elements in G◦ fixing some point on C
and assume that both the following conditions are satisfied:

m1 ΣC ∩ ϕ(ΣC) = {1G0}
m2 for all γ ∈ G◦ we have ϕ(γ)ηγ /∈ ΣC.

Then there exists a free, mixed action of G on C × C, hence S = (C × C)/G is a
surface of general type isogenous to a product of mixed type. More precisely, we have

γ(x, y) = (γx, ϕ(γ)y) for γ ∈ G0

η′(x, y) = (y, ηx).

Conversely, every surface of general type isogenous to a product of curves of mixed
type arises in this way.

Notice that G◦ is the subgroup of transformations not exchanging the two factors

of C×C. Thanks to the above Theorem and the discussion of section 1.2 applied to the

covering C → C/G◦ we can give an analogous definition of the unmixed ramification

structure.

Definition 1.3.17. Let G be a finite group. A mixed ramification structure for G of
type τ := (g′ | m1, . . . ,mr) is a pair (H,V) where H is a subgroup of index 2 in G and
V = (a1, b1, . . . , ag′ , bg′ , c1, . . . , cr) is a tuple of elements of G such that the following
conditions hold:

1. V is a system of generators of H of type τ ,

2. for every h ∈ G\H the tuples (c1, . . . , cr) and (hc1h
−1, . . . , hcrh

−1) are disjoint,

3. for every h ∈ G \H we have h2 /∈ Σ(V),

4.

Z 3 |H|(2g
′ − 2 +

∑r
l=1(1− 1

mi
))

2
+ 1 ≥ 2.

Proposition 1.3.18. Let (C × C)/G be a surface with pg = q = 2 isogenous to a
higher product of curves of mixed type. Then B = C/G◦ is a curve of genus g(B) = 2.
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Proof. From Proposition 3.15 [Cat00] we have:

H0(Ω1
S) = (H0(Ω1

C)⊕H0(Ω1
C))G = (H0(Ω1

C)G
◦ ⊕H0(Ω1

C)G
◦
)G/G

◦
=

= (H0(Ω1
B)⊕H0(Ω1

B))G/G
◦
.

Since S is of mixed type, the quotient G/G◦ = Z/2Z exchanges the last summands,
hence h0(Ω1

S) = h0(Ω1
B) = 2.

Theorem 1.3.19. Let S be a surface with pg = q = 2 and isogenous to a higher
product of mixed type. Then S is minimal of general type and the only possibility
for the genus of the curve C and the group G is given by the entry Mix of Table 1,
moreover G◦ acts freely on C.

Proof. From the fact that |G| = (g(C)− 1)2 and that G◦ is a subgroup of index 2 in
G we have:

| G◦ |= (g(C)− 1)2

2
, (1.22)

hence g(C) must be odd.
Since (C×C)/G◦ is isogenous to a product of curves of unmixed type and by Propo-
sition 1.3.18 we have g(C/G◦) = 2, the Riemann-Hurwitz formula yields:

2g(C)− 2 = |G◦|(2 +
r∑
i=1

(1− 1

mi

)
)
,

hence:

4 = (g(C)− 1)
(
2 +

r∑
i=1

(1− 1

mi

)
) ⇒ g(C) ≤ 3 ⇒ g(C) = 3 and

r∑
i=1

(1− 1

mi

) = 0.

Then |G0| = 2 means G0 = Z/2Z, |G| = 4 and since (1.21) is non-split G = Z/4Z.

1.4 Isotrivial Fibrations

Up to now we have considered only cases where a finite group G acts freely on a

product of two curves C × F , hence the quotient (C × F )/G is smooth. Now we

consider cases where G does not act freely on C × F , the quotient (C × F )/G is

singular, and we study its desingularization.
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Definition 1.4.1. Assume that X = (C×F )/G, where G is a finite group of automor-
phisms of each factor C and F , and acts diagonally on C×F . Consider the minimal
resolution S of the singularities of X. The holomorphic map fC : S → C ′ := C/G is
called a standard isotrivial fibration if it is a relatively minimal fibration.

With abuse of notation we shall also denote by S → X := (C × F )/G a standard

isotrivial fibration, and we shall refer to S as a standard isotrivial fibration.

In this section we classify all isotrivial fibrations with pg = q = 2.

Remark 1.4.2. Let S be a minimal surface of general type with pg(S) = q(S) = 2
and S → B be an isotrivial fibration with general fibre F and g(B) = 1, then
by Remark 1.1.4 S is birational to (C × F )/G, B ∼= C/G and by (1.9) we have
g(C/G) = g(F/G) = 1. Consider the minimal desingularization σ : S ′ → (C ×F )/G,
then the holomorphic map fC : S ′ → C/G is a standard isotrivial fibration. Indeed
suppose that there is a −1-curve E in a fibre of fC , then σ(E) is a −1-curve in
(C × F )/G, but (C × F )/G → C/G × F/G is a finite map and C/G × F/G is a
product of two elliptic curve, and this gives a contradiction. Thus S is birational to
S ′ and we shall deal from now on only with standard isotrivial fibrations.

Let us first recall the known results about the classification of isotrivially fibred

surfaces with χ = 1. From Remark 1.3.1 and the results given in section 1.3 the only

open cases are pg = q = 0, pg = q = 1 and pg = q = 2 which will be closed with this

work.

For the case pg = q = 0 we have the following result.

Theorem 1.4.3. [BCGP, Theorem 0.18] All standard isotrivial fibrations S → X :=
(C × F )/G, where G is a finite group with a diagonal action on a product C × F of
smooth projective curves C,F of respective genera g(C), g(F ) ≥ 2 such that:

i) X has only rational double points as singularities,

ii) pg(S) = q(S) = 0

are obtained by a pair of admissible epimorphisms from polygonal groups with branch-
ing data m to a finite group G as listed in Table 2 of Appendix A, for an appropriate
choice of respective branch sets in P1.

Remark 1.4.4. We are aware of the fact that Ingrid Bauer and Roberto Pignatelli are
currently working on the classification of standard isotrivial fibration with pg = q = 0
without the hypothesis that X has only rational double points.
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For the case pg = q = 1 we have the following result.

Theorem 1.4.5 (Main Theorem [P09], and Theorem 0 [MP]). Let S → X := (C ×
F )/G be a standard isotrivial fibration of general type with pg = q = 1, which is
not isogenous to a higher product of curves, and assume further that S is a minimal
model. Then the possibilities for K2

S, g(C), g(F ), and G are precisely those listed in
Table 2 of Appendix B.

Remark 1.4.6. Notice that if S → X := (C×F )/G is a standard isotrivial fibration
with pg = q = 1, and X has only rational double points, then S is minimal (see
[P09]).

Let S → X := (C×F )/G be a standard isotrivial fibration of general type, which

is not isogenous to a higher product of curves. To study the types of singularities

of X, one looks first at the fixed points of the action of G on each curve and at the

stabilizers H ⊂ G of each point on each curve. For this part we shall mainly follow

the exposition of [MP].

Let C be a compact Riemann surface of genus g ≥ 2 and let G ≤ Aut(C). For

any c ∈ G set H := 〈c〉 and define the set of fixed points by c as:

FixC(c) = FixC(H) := {x ∈ C | cx = x}.

Let us look more closely to the action of an automorphism in a neighborhood of a

fixed point. Let D be the unit disk and c ∈ Aut(C) of order m > 1 such that cx = x

for a point x ∈ C. Then there is a unique primitive complex m-th root of unity ξ

such that any lift of c to D that fixes a point in D is conjugate to the transformation

z → ξ · z in Aut(D). We write ξx(c) = ξ and we call ξ−1 the rotation constant of c in

x. Then for each integer q ≤ m− 1 such that (m, q) = 1 we define:

FixC,q(c) := {x ∈ FixC(c) | ξx(c) = ξq},

that is the set of fixed points of c with rotation constant ξ−q. We have:

FixC(c) =
⊎

q≤m−1

(q,m)=1

FixC,q(c). (1.23)
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Lemma 1.4.7. [Br, Lemma 10.4, Lemma 11.5] Assume that we are in the situation
of the Riemann Existence Theorem 1.2.4, thus let V = (a1, b1, . . . , ag′ , bg′ , c1, . . . , cr)
a systems of generators of a finite group G of type (g′ | m1, . . . ,mr). Let c ∈ G \ {1}
be of order m, H = 〈c〉 and (q,m) = 1. Then:

|FixC(c)| = |NG(H)|
∑

1≤i≤r
m|mi

H∼G〈cmi/m
i 〉

1

mi

, (1.24)

and

|FixC,q(c)| = |CG(c)|
∑

1≤i≤r
m|mi

c∼Gc
qmi/m
i

1

mi

.

We need the following two Corollaries.

Corollary 1.4.8. Assume c ∼G c
q. Then |FixC,1(c)| = |FixC,q(c)|.

Corollary 1.4.9. Let c ∈ G with ord(c) = 2 and c ∈ Z(G), then:

|FixC(c)| = |G|
∑

{i|c∈〈ci〉}

1

mi

.

Let S → X := (C × F )/G be a standard isotrivial fibration of general type, as

explained in [S] paragraph (2.02) the stabilizer H ⊂ G of a point x ∈ F is a cyclic

group (and this is always the case, see e.g., [FK] Chap. III. 7.7), so, since the tangent

representation is faithful on both factor, the only singularities that can occur on X

are cyclic quotient singularities. More precisely, if H is the stabilizer of x ∈ F , then

we have two cases. If H acts freely on C then X is smooth along the scheme-theoretic

fibre of fF : X → F/G over x ∈ F/G, and this fibre consists of the curve C/H counted

with multiplicity |H|. Thus the smooth fibres of fF are all isomorphic to C. On the

other hand if a non-trivial element of H fixes a point y ∈ C, then X has a cyclic

quotient singularity in the point (y, x) ∈ (C × F )/G.

Let us briefly recall the definition of a cyclic quotient singularity.
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Definition 1.4.10. Let n and q be natural numbers with 0 < q < n and (n, q) = 1,
and let ξn be a primitive n−th root of unity. Let the action of the cyclic group
Z/nZ = 〈ξn〉 on C2 be defined by ξn · (x, y) = (ξnx, ξ

q
ny). Then we say that the

analytic space C2/(Z/nZ) has a cyclic quotient singularity of type 1
n
(1, q).

We are interested in minimal desingularizations σ : S → X of cyclic quotient

singularities. The exceptional divisor E on the minimal resolution of such a singularity

is given by a Hirzebruch-Jung string (see e.g., [R], or [BHPV]).

Definition 1.4.11. A Hirzebruch-Jung string is a union E := ∪kiEi of smooth ratio-
nal curves Ei such that:

• E2
i = −bi ≤ −2 for all i,

• EiEj = 1 if | i− j |= 1,

• EiEj = 0 if | i− j |≥ 2,

where the bi’s are given by the continued fraction associated to 1
n
(1, q). Indeed by the

formula:
n

q
= b1 − 1

b2 − 1
...− 1

bk

.

By abuse of notation we shall refer to [b1, . . . , bk] as the continued fraction associ-

ated to 1
n
(1, q).

These observations lead to the following Theorem.

Theorem 1.4.12. [S, Theorem 2.1]Let σ : S → X := (C × F )/G be a standard
isotrivial fibration and let us consider the natural projection fF : S → F/G. Take any
point over y ∈ F/G and let Λ denote the fibre of fF over y. Then:

1. The reduced structure of Λ is the union of an irreducible curve Y , called the cen-
tral component of Λ, and either none or at least two mutually disjoint Hirzebruch-
Jung strings, each meeting Y at one point. These strings are in one-to-one
correspondence with the branch points of C → C/H, where H is the stabilizer
of y.

2. The intersection of a string with Y is transversal, and it takes place at only one
of the end components of the string.

3. Y is isomorphic to C/H, and has multiplicity |H| in Λ.
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Evidently, a similar statement holds if we consider the natural projection fC : S →
C/G.

We shall now determine the numerical invariants of isotrivial fibrations as we have

done for surfaces isogenous to a product of curves we shall follow the exposition of

[BCGP]. In general the invariants will also depend on the singularities.

Let us consider a finite group G acting diagonally on C × F . Then the quotient

surface X := (C × F )/G has a finite number of cyclic quotient singularities if the

action is not free. Let us denote by KX the canonical Weil divisor on the normal

surface X corresponding to i∗(Ω2
X◦), where i : X◦ ↪→ X is the inclusion of the smooth

locus of X. We are interested in the self-intersection of the canonical divisor KX

which is K2
X = 1

|G|K
2
C×F , thus

K2
X =

8(g(C)− 1)(g(F )− 1)

|G| ∈ Q,

which is in general only a rational number. Let σ : S → X be a resolution of singu-

larities of X, in a neighborhood of a singularity x ∈ X we have:

KS = σ∗KX +
k∑
i=1

aiEi,

where E := ∪kiEi is the Hirzebruch-Jung string resolving x, and the rational numbers

ai are determined by the conditions:

(KS + Ej)Ej = −2, (KS −
k∑
i=1

aiEi)Ej = 0, ∀j = 1, . . . , k, (1.25)

where the first condition is simply the adjunction formula plus the fact that the curves

Ei are rational, while the second one comes from the definition of KX .

We have the following Proposition see e.g., [BCGP] or [Ba].

Proposition 1.4.13. Let σ : S → X := (C ×F )/G be a standard isotrivial fibration.
Then:

K2
S =

8(g(C)− 1)(g(F )− 1)

|G| +
∑

x∈Sing(X)

hx, (1.26)
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where hx depends on the type of singularity at x. If x is a cyclic quotient singularity
of type 1

n
(1, q) then:

hx := 2− 2 + q + q′

n
−

k∑
i=1

(bi − 2),

where q′ ∈ {1, . . . , n−1} and such that qq′ ≡ 1 mod n, and [b1, . . . , bk] is the continued
fraction associated to 1

n
(1, q).

Next we give a similar formula for the topological Euler number.

Proposition 1.4.14. [BCGP, Proposition 2.6] Let σ : S → X = (C × F )/G be a
standard isotrivial fibration. then:

e(S) =
4(g(C)− 1)(g(F )− 1)

|G| +
∑

x∈Sing(X)

ex, (1.27)

where if x is a cyclic quotient singularity of type 1
n
(1, q) with a resolution tree of length

k then:

ex := k + 1− 1

n
.

Moreover ex ≥ 3
2
.

Remark 1.4.15. If x ∈ X is a rational double point, i.e., x is a singularity of type
1
n
(1, n− 1), we have:

hx = 2− 2 + n− 1 + n− 1

n
−

n−1∑
i=1

(2− 2) = 0,

ex =
(n− 1)(n+ 1)

n
.

In the case x is a singularity of type 1
3
(1, 1) then the continued fraction is given by

[3] hence we have:

hx = 2− 2 + 1 + 1

3
− (3− 2) = −1

3
.

ex = −1

3
+ 1 + 1 =

5

3
.

In the case x is a singularity of type 1
4
(1, 1) then the continued fraction is given by

[4] hence we have:

hx = 2− 2 + 1 + 1

4
− (4− 2) = −1.
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ex = −1

4
+ 1 + 1 =

7

4
.

In the case x is a singularity of type 1
5
(1, 2) then the continued fraction is given by

[3, 2] hence we have:

hx = 2− 2 + 2 + 3

5
− (3− 2) = −2

5
.

ex = −1

5
+ 2 + 1 =

14

5
.

Remark 1.4.16. Let us consider now a standard isotrivial fibration S with χ(OS) =
1, then by the Noether’s formula:

e(S) = 12χ(OS)−K2
S = 12−K2

S.

Observe that together (1.26) and (1.27) yield:

K2
S = 2e(S)−

∑

x∈Sing(X)

(2ex − hx),

Combining the above two formulas we get:

K2
S = 8− 1

3

∑

x∈Sing(X)

(2ex − hx). (1.28)

Set Bx := 2ex − hx. Let us suppose now that S is irregular, hence by Debarre’s
inequality we have K2

S ≥ 2 (if pg = q = 2 we even have K2
S ≥ 4). Since S is smooth∑

x∈Sing(X)Bx ≡ 0 mod 3, and combining these two facts gives the following upper
bound: ∑

x∈Sing(X)

Bx ≤ 18.

By the Bogomolov-Miyaoka-Yau inequality K2
S ≤ 9, this gives the lower bound

∑

x∈Sing(X)

Bx ≥ −3.

Now if
∑

x∈Sing(X)Bx = 0 then X is isomorphic to S, hence it is smooth and K2
S = 8

and S is isogenous to a higher product of curves. If
∑

x∈Sing(X)Bx = −3 then S is a

ball quotient by the Miyaoka-Yau Theorem, which is absurd. Hence
∑

x∈Sing(X)Bx ≥
0 and

K2
S ≤ 8. (1.29)
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We find a basket of possible singularities for X depending on K2
S.

Proposition 1.4.17. Let σ : S → X = (C × F )/G be a standard isotrivial fibration
with χ(S) = 1 and pg = q = 2. Then the possible singularities of X are given in the
following list.

• K2
S = 6:

(i). 2× 1
2
(1, 1).

• K2
S = 5:

(i). 1
3
(1, 1) + 1

3
(1, 2),

(ii). 2× 1
4
(1, 1),

(iii). 3× 1
2
(1, 1).

• K2
S = 4:

(i). 1
4
(1, 1) + 1

4
(1, 3),

(ii). 2× 1
5
(1, 2),

(iii). 1
2
(1, 1) + 2× 1

4
(1, 1),

(iv). 4× 1
2
(1, 1).

We observe that this list is just a part of a more complete list given in [MP,

Proposition 4.1], where the authors give all possible singularities for irregular standard

isotrivial fibrations with χ(S) = 1 and K2
S ≥ 2.

Remark 1.4.18. Recall from Remark 1.2.6 that the singularities of X arise from the
points in C × F with non-trivial stabilizer; since the action of G on C × F is the
diagonal one, it follows that S ′ = (Σ(V1) ∩ Σ(V2)) \ {1} is the set of all non-trivial
stabilizers for the action of G on C × F . Suppose that every element of S ′ has order
2, then we have that the singularities of X are nodes, whose number is given by:

] Nodes(X) =
2

|G|
∑

c∈S′
|FixC(c)||FixF (c)|, (1.30)

see e.g., [P08] §5.

Lemma 1.4.19. Let S be as in Theorem 1.4.20 suppose |Sing(X)| = 2 or 3 and
g(F ) = 2, then the cover C → C/G has only one branch point.
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Proof. Let us suppose that C → C/G has r ≥ 1 branch points. Let i ∈ {1, . . . , r}
and {mi}ri=1 be the branching data. Since |Sing(X)| = 2 or 3 the corresponding
Hirzebruch-Jung strings must belong to the same fibre of S → C/G, because by
Theorem 1.4.12 each fibre must contain either none or at least two strings. It follows
that, for all i except one there is a subgroup H ≤ G isomorphic to Z/miZ, which
acts freely on F . Now since g(F ) = 2 and by the Riemann-Hurwitz formula for the
covering F → F/H we have:

1 = g(F )− 1 = mi(g(F/H)− 1),

hence all the mi’s except at most one divide 1, therefore there is only one mi, and so
only one branch point.

Theorem 1.4.20. Let S → X := (C × F )/G be a standard isotrivial fibration of
general type with pg = q = 2, which is not isogenous to a product. Then S is a
minimal surface and the possibilities for K2

S, g(C), g(F ), the groups G, the branching
data m, the types and the numbers of singularities of X are given in Table 2.

Proof. Step 1 S is minimal.
First recall from Theorem 1.3.9 and (1.9) that S is of Albanese general type and C/G
and F/G are elliptic curves. If E is a (−1)-curve on S then the image of E in X is
rational curve. But X → C/G × F/G is a finite map and C/G × F/G is a product
of two elliptic curve, and this gives a contradiction, hence S is minimal.

Step 2 4 ≤ K2
S ≤ 6.

Since S is minimal and irregular, by Debarre’s inequality we have K2
S ≥ 2pg = 4,

and by (1.29) we have K2
S ≤ 8. We see from equation (1.28) that if K2

S = 8 then X
is nonsingular, and this case cannot occur. If K2

S = 7, then by (1.28) we must have∑
x∈Sing(X)Bx = 3, which means that X can have only one singularity of type 1

2
(1, 1),

but this contradicts Serrano’s Theorem 1.4.12. Hence 4 ≤ K2
S ≤ 6.

Step 3 consists of checking, once K2
S is fixed, if there are a standard isotrivial

fibrations S → X = (C × F )/G with pg = q = 2 such that X has the prescribed
singularities given in Proposition 1.4.17.

Case K2
S = 6.

In this case we have only a pair of singularities of type 1
2
(1, 1), hence K2

S =
8(g(C)−1)(g(F )−1)

|G| , and by Riemann-Hurwitz formula (g(C/G) = 1) we have:

g(C)− 1 =
|G|
2

r∑
i=1

(1− 1

mi

). (1.31)

Combining the two formulas we have:

3

2
= (g(F )− 1)

r∑
i=1

(1− 1

mi

).
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Suppose r = 1. Then 3
2
≤ g(F ) − 1 ≤ 3, hence 3 ≤ g(F ) ≤ 4. By symmetry we can

suppose w.l.o.g. g(C) ≤ g(F ), moreover we shall always assume this from now on.
If g(F ) = 4 and g(C) = 4, then both coverings have one branching point of order
2, and |G| = 12. As we have already seen A4 is the only group of order 12 that
is (1 | 2)−generated. Choose, for example, as system of generators for G for both
coverings:

a1,1 = a2,1 = (123), b1,1 = b2,1 = (124), c1,1 = c2,1 = (12)(34).

We have S ′ = {(12)(34), (13)(24), (14)(23)}. For all c ∈ S ′ by equation (1.24) we
have:

|FixC(c)| = 2, |FixF (c)| = 2,

so by equation (1.30) X has 2·2·3
6

= 2 nodes. Hence there exists S and this gives the
last case in the Table 2.
If g(F ) = 4 and g(C) = 3, then |G| = 8 and the branching data for F and C are
respectively (4) and (2). However the commutators of D4 and Q8 have order 2, hence
neither group is (1 | 4)−generated, and this case is excluded.
If g(F ) = 3, then g(C) = 3 and |G| = 8·2·2

6
= 16

3
which is absurd, and this case is

impossible.
Suppose r ≥ 2. Then g(F )− 1 ≤ 3

2
hence g(F ) = 2 and this is a contradiction to

Lemma 1.4.19.
Case K2

S = 5.
We have several cases according to Proposition 1.4.17.
Case (i). In this case we have two singularities, one of type 1

3
(1, 1) and one of type

1
3
(1, 2). By Remark 1.4.15 we have

∑
hx = −1

3
, hence we haveK2

S = 8(g(C)−1)(g(F )−1)
|G| −

1
3
, combining this formula with (1.31) we have:

4

3
= (g(F )− 1)

r∑
i=1

(1− 1

mi

).

Suppose r = 1, then 2 < g(F ) ≤ 3.
If g(F ) = 3 and g(C) = 3, then |G| = 6, and the branching data for both covers are
(3). As we have seen S3 is a non-abelian group which is (1 | 3)−generated. Choose,
for example, the following system of generators for G for both coverings:

a1,1 = a2,1 = (12), b1,1 = b2,1 = (13), c1,1 = c2,1 = (123).

We have S ′ = {(123), (132)} and for all c ∈ S ′

|FixC,1(c)| = |FixC,2(c)| = 1,
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|FixF,1(c)| = |FixF,2(c)| = 1.

So C × F contains exactly four points with non-trivial stabilizer and for each of
them the G-orbit has cardinality |G|/|〈(123)〉| = 2. Hence X contains precisely two
singular points and looking at the rotation constants we see that it has the required
singularities. Hence S exists.
If r ≥ 2 then we have only the possibility g(F ) = 2 which is again a contradiction to
Lemma 1.4.19.

Case(ii). In this case we have two singularities of type 1
4
(1, 1). By Remark 1.4.15

hx = −1, which yields K2
S = 8(g(C)−1)(g(F )−1)

|G| − 2, and combining this formula with

(1.31) we have:

7

4
= (g(F )− 1)

r∑
i=1

(1− 1

mi

).

Suppose r = 1, then 3 ≤ g(F ) ≤ 4.
If g(F ) = 4 and g(C) = 4, then |G| = 8·3·3

7
, impossible.

If g(F ) = 4 then g(C) = 3 and |G| = 8·3·2
7

, impossible.
If g(F ) = 3 and g(C) = 3, then |G| = 8·2·2

7
, impossible.

Suppose r ≥ 2 then the only possibility is g(F ) = 2 which is again a contradiction to
Lemma 1.4.19.

Case(iii). In this case we have three singularities of type 1
2
(1, 1). By Remark

1.4.15 we have
∑
hx = 0, which yields K2

S = 8(g(C)−1)(g(F )−1)
|G| , and combining this

formula with (1.31) we obtain:

5

4
= (g(F )− 1)

r∑
i=1

(1− 1

mi

).

Suppose r = 1, then 2 < g(F ) ≤ 3.
If g(F ) = 3 and g(C) = 3, then |G| = 8·2·2

5
, impossible.

Suppose r ≥ 2 then the only possibility is g(F ) = 2 which is again a contradiction to
Lemma 1.4.19.

Case K2
S = 4.

We have several cases according to Proposition 1.4.17.
Case (i). In this case we have two singularities one of type 1

4
(1, 1) and one of type

1
4
(1, 3). By Remark 1.4.15 we have

∑
hx = −1, hence we have K2

S = 8(g(C)−1)(g(F )−1)
|G| −

1. Combining this formula with (1.31) we obtain:

5

4
= (g(F )− 1)

r∑
i=1

(1− 1

mi

).

Suppose r = 1, then 2 < g(F ) ≤ 3.
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If g(F ) = 3 and g(C) = 3, then |G| = 8·2·2
5

, impossible.
If r ≥ 2 then we have only the possibility g(F ) = 2 which is again a contradiction to
Lemma 1.4.19.

Case(ii). In this case we have two singularities of type 1
5
(1, 2). By Remark 1.4.15

we have
∑
hx = −4

5
, which yields K2

S = 8(g(C)−1)(g(F )−1)
|G| − 4

5
, combining this formula

with (1.31) we have:

6

5
= (g(F )− 1)

r∑
i=1

(1− 1

mi

).

Suppose r = 1, then 2 < g(F ) ≤ 3.
If g(F ) = 3 and g(C) = 3, then |G| = 8·2·2·5

24
, impossible.

Suppose r ≥ 2, then the only possibility is g(F ) = 2 which is again a contradiction
to Lemma 1.4.19.

Case(iii). In this case we have three singularities one of type 1
2
(1, 1) and two of

type 1
4
(1, 1). By Remark 1.4.15 we have

∑
hx = −2, which yieldsK2

S = 8(g(C)−1)(g(F )−1)
|G| −

2, combining this formula with (1.31) we have:

6

4
= (g(F )− 1)

r∑
i=1

(1− 1

mi

).

Suppose r = 1, then 3 ≤ g(F ) ≤ 4.
If g(F ) = 4 and g(C) = 4, then |G| = 12, and the branching data are (2) for both
covers, but this contradicts the fact that we have singularities of type 1

4
(1, 1), hence

this case is impossible.
If g(F ) = 4 and g(C) = 3, then |G| = 8 and the branching data for F and C are
respectively (4), (2). We have already seen that there is no non-abelian group of order
8 which is (1 | 4)−generated, hence the case is excluded.
If g(F ) = 3, then g(C) = 3 and |G| = 8·2·2

6
, impossible.

Suppose r ≥ 2 then the only possibility is g(F ) = 2 which is again a contradiction to
Lemma 1.4.19.

Case(iv). In this case we have four singularities of type 1
2
(1, 1). By Remark 1.4.15

we have
∑
hx = 0, which yields K2

S = 8(g(C)−1)(g(F )−1)
|G| , and combining this formula

with (1.31) we have:

1 = (g(F )− 1)
r∑
i=1

(1− 1

mi

).

Suppose r = 1, then 2 < g(F ) ≤ 3.
If g(F ) = 3 and g(C) = 3, then |G| = 8, and the branching data are (2) for both
covers. The groups D4 and Q8 are (1 | 2)−generated, choose, for example, as system
of generators for Q8 for both coverings:

a1,1 = a2,1 = i, b1,1 = b2,1 = j, c1,1 = c2,1 = −1,
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and for D4 for both coverings:

a1,1 = a2,1 = x, b1,1 = b2,1 = y, c1,1 = c2,1 = x2.

We have in both cases S ′ = Z(G) \ {1}, and by Corollary 1.4.9 for c ∈ S ′

|FixC(c)| = |FixF (c)| = 4.

Then by equation (1.30) X has exactly 2·4·4
8

= 4 nodes in both cases. Hence S exists.
Suppose r ≥ 2 then the only possibility is g(F ) = 2 and r = 2. In this case there
are more than three singularities so Lemma 1.4.19 does not apply, hence g(C) = 2,
|G| = 2 and both covers have branching data (2, 2). Let x be the generator of G, we
have S ′ = {x}, and Corollary 1.4.9 implies

|FixC(x)| = |FixF (x)| = 2.

Then by equation (1.30) X has exactly 2·2·2
2

= 4 nodes. This yields the first case in
the table.

We notice that the first case in Table 2 was already given in [Z].



Chapter 2

Beauville Surfaces

A special case of surfaces isogenous to a higher product of curves is given by Beauville

surfaces, which where defined in [Cat00].

Definition 2.0.21. A Beauville surface is a surface isogenous to a higher product of
curves S = (C1 × C2)/G, which is rigid, i.e., it has no non-trivial deformation.

Remark 2.0.22. Every Beauville surface of mixed type has an unramified double
covering which is a Beauville surface of unmixed type. In the following we shall
consider only the unmixed case.

The rigidity property of the Beauville surfaces of unmixed type is equivalent to
the fact that Ci/G ∼= P1 and that the projection Ci → Ci/G ∼= P1 is branched in
three points. Moreover, by Equation (1.9) one has q(S) = 0.

Since Beauville surfaces are a particular case of surfaces isogenous to a higher
product we have from Theorem 1.1.13:

K2
S = 8χ(S), or equivalently, e(S) = 4χ(S). (2.1)

From the discussion of section 1.2 one has the following definition.

Definition 2.0.23. An unmixed Beauville structure for a finite group G is a quadru-
ple (x1, y1;x2, y2) of elements of G, which determines two triples Ti := (xi, yi, zi)
(i = 1, 2) of elements of G such that :

i. xiyizi = 1,

ii. 〈xi, yi〉 = G,

iii. Σ(T1) ∩ Σ(T2) = {1}, where

Σ(Ti) :=
⋃
g∈G

∞⋃
j=1

{gxjig−1, gyji g
−1, gzji g

−1}.

49
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Moreover, recall that τi := (ord(xi), ord(yi), ord(zi)) is called the type of Ti, and

that the type satisfies the condition of being hyperbolic:

1

ord(xi)
+

1

ord(yi)
+

1

ord(zi)
< 1.

Note that in this chapter we denote a system of generators by T , which stands for

triple, instead of using V .

Remark 2.0.24. Note that a group G and an unmixed ramification structure of type
(τ1, τ2) (or equivalently a Beauville structure) for G determine the main invariants of
the surface S. Indeed, as a consequence of (1.6) and (1.13) we obtain:

4χ(S) = 4(1 + pg) = |G|(2g′1 − 2 +

r1∑

l=1

(1− 1

m1,l

)
)(

2g′2 − 2 +

r2∑

l=1

(1− 1

m2,l

)
)
, (2.2)

and so, in the Beauville case,

4χ(S) = 4(1 + pg) = |G|(1− µ1)(1− µ2),

where

µi :=
1

m1,i

+
1

m2,i

+
1

m3,i

, (i = 1, 2). (2.3)

A natural question that arises from the above discussion is which finite groups

G admit an unmixed Beauville structure. The following Theorem summarizes the

previously known results.

Theorem 2.0.25. The following groups admit an unmixed Beauville structure:

1. The alternating groups An admit unmixed Beauville structures if and only if
n ≥ 6;

2. The symmetric groups Sn admit unmixed Beauville structures if and only if
n ≥ 5;

3. The groups SL(2, p) and PSL(2, p) for every prime p 6= 2, 3, 5;

4. The Suzuki groups Sz(2p), where p is an odd prime;

5. A finite abelian group G admits an unmixed Beauville structure if and only if
G = (Z/nZ)2 with (n, 6) = 1;
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6. For every prime p, there exists a p−group which admits an unmixed Beauville
structure.

Proof. Part (1) was proven in [BCG05], [BCG06] for n large enough, and it was later
generalized in [FG]. Part (2) was proven for n ≥ 7 in [BCG06], and it was later
improved in [FG]. Parts (3), (4) and (5) appeared in [BCG05] (for part (5) see also
[Cat00]). Part (6) is a consequence of (5) for p ≥ 5, and the proof for p = 2, 3
appeared in [FGJ].

We shall now discuss the new results we obtained in joint work with Shelly Garion.

2.1 Beauville Structures for An and Sn

In this section we prove Theorem 0.0.3, and other Theorems regarding alternating

and symmetric groups. The proofs are based on results of Liebeck and Shalev [LS04].

Conder [Co80] (following Higman) proved that sufficiently large alternating groups

are in fact Hurwitz groups, namely they are quotients of the Hurwitz triangle group

∆(2, 3, 7), using the method of coset diagrams. In fact, Higman had already con-

jectured in the late 1960s that every hyperbolic triangle group, and, more generally,

every Fuchsian group, surjects to all but finitely many alternating groups.

This conjecture was proved by Everitt [Ev] using the method of coset diagrams,

and later Liebeck and Shalev [LS04] gave an alternative proof based on probabilis-

tic group theory. In fact, they proved a more explicit and general result, which is

presented below.

Note that the results of Liebeck and Shalev are applicable to any Fuchsian group

Γ. However, we shall use them only for the case of orbifold surface groups Γ = Γ(g′ |
m1, . . . ,mr) with positive measure µ(Γ) > 0, we use the same notation as in 1.2.1.

Definition 2.1.1. Let Ci = gSn
i (1 ≤ i ≤ r) be conjugacy classes in Sn, and let mi

be the order of gi. Write C = (C1, . . . , Cr). Define:

HomC(Γ, Sn) = {φ ∈ Hom(Γ, Sn) : φ(γi) ∈ Ci for 1 ≤ i ≤ r}.
Definition 2.1.2. Conjugacy classes in Sn of cycle-shape (mk), where n = mk,
namely, containing k cycles of length m each, are called homogeneous. A conjugacy
class having cycle-shape (mk, 1f ), namely, containing k cycles of length m each and
f fixed points, is called almost homogeneous.
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Let Ci = gSn
i then define: sgn(Ci) = sgn(gi).

Theorem 2.1.3. [LS04, Theorem 1.9]. Let Γ be a Fuchsian group, and let Ci
(1 ≤ i ≤ r) be conjugacy classes in Sn with cycle-shapes (mki

i , 1
fi), where fi < f

for some positive constant f and
∏r

i=1 sgn(Ci) = 1. Set C = (C1, . . . , Cr). Then the
probability that a random homomorphism in HomC(Γ, Sn) has image containing An
tends to 1 as n→∞.

Notice that r and the mi’s in the Theorem are fixed, while the Ci’s depend on

n, since are conjugacy classes in different groups. Following [LS04] p. 559 we have

that applying this Theorem when Γ is the triangle group ∆(m1,m2,m3) demonstrates

that three elements, with product 1, from almost homogeneous classes C1, C2, C3 of

orders m1, m2, m3, randomly generate An or Sn, provided 1/m1 + 1/m2 + 1/m3 < 1.

In particular, when (m1,m2,m3) = (2, 3, 7), this gives random (2, 3, 7) generation of

An.

Using Theorem 2.1.3, Liebeck and Shalev deduced the following Corollary regard-

ing Sn.

Corollary 2.1.4. [LS04, Theorem 1.10]. Let Γ be a Fuchsian group. If Γ = Γ(0|m1, . . . ,mr)
is a polygonal group, assume further that at least two of m1, . . . ,mr are even. Then
Γ surjects to all but finitely many symmetric groups Sn.

The following Theorem regarding alternating groups was conjectured by Bauer,

Catanese and Grunewald in [BCG05, BCG06], we thank here Ingrid Bauer again for

suggesting us to look at the works of Liebeck and Shalev.

Theorem 2.1.5. Let (r1, s1, t1), (r2, s2, t2) be two hyperbolic types. Then almost
all alternating groups An admit an unmixed Beauville structure (x1, y1;x2, y2) where
(x1, y1, z1) has type (r1, s1, t1) and (x2, y2, z2) has type (r2, s2, t2).

Proof. Assume that (r1, s1, t1) and (r2, s2, t2) are two hyperbolic types and that n is
large enough. By the following Algorithm 2.1.6, we choose six almost homogeneous
conjugacy classes in Sn, Cr1 , Cs1 , Ct1 , Cr2 , Cs2 , Ct2 , of orders r1, s1, t1, r2, s2, t2 re-
spectively, such that they contain only even permutations, and they all have different
numbers of fixed points.

By Theorem 2.1.3, the probability that three random elements (x1, y1, z1) (equiva-
lently (x2, y2, z2)) whose product is 1, taken from the almost homogeneous conjugacy
classes (Cr1 , Cs1 , Ct1) (equivalently (Cr2 , Cs2 , Ct2)) will generate An, tends to 1 as
n→∞.
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This implies that if n is large enough, one can find six elements x1, y1, z1, x2, y2, z2

in An of orders r1, s1, t1, r2, s2, t2 respectively satisfying the following properties.

• x1 ∈ Cr1 , y1 ∈ Cs1 , z1 ∈ Ct1 , x2 ∈ Cr2 , y2 ∈ Cs2 , z2 ∈ Ct2 .
• x1y1z1 = x2y2z2 = 1 and 〈x1, y1〉 = 〈x2, y2〉 = An.

• For any choice of integers lx1 , ly1 , lz1 ,lx2 , ly2 , lz2 , if the six elements x
lx1
1 , y

ly1
1 ,

z
lz1
1 , x

lx2
2 , y

ly2
2 , z

lz2
2 are not trivial, then they all belong to different conjugacy

classes in Sn, since they have all different numbers of fixed points, and hence
Σ(x1, y1, z1)

⋂
Σ(x2, y2, z2) = {1An}.

Therefore, if n is large enough, the quadruple (x1, y1;x2, y2) admits an unmixed
Beauville structure for An, where (x1, y1, z1) has type (r1, s1, t1) and (x2, y2, z2) has
type (r2, s2, t2).

Algorithm 2.1.6. Choosing six almost homogeneous conjugacy classes Cr1, Cs1, Ct1,
Cr2, Cs2, Ct2 in Sn, of orders r1, s1, t1, r2, s2, t2 respectively, such that they contain only
even permutations, and they all have different numbers of fixed points fi, moreover
the fi’s are all smaller than a positive constant f .

Step 1: Sorting r1, s1, t1, r2, s2, t2.
Letm6 ≤ · · · ≤ m1 be the sorted sequence whose elements are exactly r1, s1, t1, r2, s2, t2.

Since n can be as large as we want, we may assume that n > 100m1.
Step 2: Choosing even integers k′i (1 ≤ i ≤ 6).
For 1 ≤ i ≤ 6, let

k′i =

{
bn/mic if it is even,

bn/mic − 1 otherwise.

Observe that for 1 ≤ i ≤ 6,

k′imi ≤ n ≤ (k′i + 2)mi.

Step 3: Choosing even integers ki (1 ≤ i ≤ 6) s.t. for every 1 ≤ i 6= j ≤ 6,
kimi 6= kjmj.

It may happen that for some i 6= j, k′imi = k′jmj. Therefore, for every i we will
choose from the set {k′i − 2j : 0 ≤ j ≤ 5} a proper integer ki = k′i − 2j (for some j),
s.t. for every 1 ≤ i 6= j ≤ 6, kimi 6= kjmj. Note that by our assumption, the integers
ki (1 ≤ i ≤ 6) are positive.

Step 4: Defining the conjugacy classes Ci (1 ≤ i ≤ 6).
Assume that n is large enough and let Ci (1 ≤ i ≤ 6) be conjugacy classes in Sn

with cycle shapes
(mki

i , 1
fi), where fi = n− kimi.

Observe that the conjugacy classes Ci (1 ≤ i ≤ 6) satisfy the following properties:
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i. For every 1 ≤ i ≤ 6, sgn(Ci) = 1, since Ci contains an even number of cycles
(the ki’s are even).

ii. For every 1 ≤ i ≤ 6, fi = n − kimi ≤ (k′i + 2)mi − (k′i − 10)mi = 12mi ≤
12m1 =: f , and hence it is bounded independently of n.

iii. For every 1 ≤ i 6= j ≤ 6, fi 6= fj, since kimi 6= kjmj.

iv. Let ci ∈ Ci be some element, then any non-trivial power clii has exactly fi fixed
points.

v. By (iii) and (iv), for any 1 ≤ i 6= j ≤ 6 and any two integers li, lj, if the powers

clii and c
lj
j are not trivial, then they belong to different conjugacy classes in Sn.

Step 5: Defining the conjugacy classes Cr1 , Cs1 , Ct1 , Cr2 , Cs2 , Ct2 .
Let kr1 , ks1 , kt1 , kr2 , ks2 , kt2 (respectively fr1 , fs1 , ft1 , fr2 , fs2 , ft2) be the elements of

the set {k1, . . . , k6} (respectively {f1, . . . , f6}), ordered by the same correspondence
between {r1, s1, t1, r2, s2, t2} and {m1, . . . ,m6}.

Now, Cr1 , Cs1 , Ct1 , Cr2 , Cs2 , Ct2 are the six conjugacy classes in Sn with cycle-

shapes (r
kr1
1 , 1fr1 ), (s

ks1
1 , 1fs1 ), (t

kt1
1 , 1ft1 ), (r

kr2
2 , 1fr2 ), (s

ks2
2 , 1fs2 ), (t

kt2
2 , 1ft2 ) respec-

tively.

In a similar way, we prove the following Theorem regarding the symmetric groups.

Theorem 2.1.7. Let (r1, s1, t1), (r2, s2, t2) be two hyperbolic types, and assume that
at least two numbers in the sequence of (r1, s1, t1) are even and at least two numbers
in the sequence of (r2, s2, t2) are even. Then almost all symmetric groups Sn admit
an unmixed Beauville structure (x1, y1;x2, y2) where (x1, y1) has type (r1, s1, t1) and
(x2, y2) has type (r2, s2, t2).

Proof. Assume that (r1, s1, t1) and (r2, s2, t2) are two hyperbolic types, such that at
least two numbers in the sequence of (r1, s1, t1) are even and at least two numbers in
the sequence of (r2, s2, t2) are even, and that n is large enough. By slightly modifying
Algorithm 2.1.6, we may choose six almost homogeneous conjugacy classes Cr1 , Cs1 ,
Ct1 , Cr2 , Cs2 , Ct2 in Sn, of orders r1, s1, t1, r2, s2, t2 respectively, such that at least
two classes of Cr1 , Cs1 , Ct1 and at least two classes of Cr2 , Cs2 , Ct2 contain only odd
permutations, and all these classes have different numbers of fixed points.

By Theorem 2.1.3 and Corollary 2.1.4, the probability that three random elements
(x1, y1, z1) (equivalently (x2, y2, z2)) whose product is 1, taken from the almost ho-
mogeneous conjugacy classes (Cr1 , Cs1 , Ct1) (equivalently (Cr2 , Cs2 , Ct2)) will generate
Sn, tends to 1 as n→∞.

Therefore, if n is large enough, there exists a quadruple (x1, y1; x2, y2) admitting
an unmixed Beauville structure for Sn, where (x1, y1, z1) has type (r1, s1, t1) and
(x2, y2, z2) has type (r2, s2, t2).
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Moreover, since Theorem 2.1.3 and Corollary 2.1.4 apply to any polygonal group,

one can modify Algorithm 2.1.6 and deduce the following Corollaries.

Corollary 2.1.8. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m1,1, . . . ,m1,r2) be two se-
quences of natural numbers such that mk,i ≥ 2 and

∑rk
i=1(1−1/mk,i) > 2 for k = 1, 2.

Then almost all alternating groups An admit an unmixed ramification structure of
type (τ1, τ2).

Corollary 2.1.9. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m1,1, . . . ,m1,r2) be two se-
quences of natural numbers such that mk,i ≥ 2, at least two of (mk,1, . . . ,mk,rk) are
even and

∑rk
i=1(1− 1/mk,i) > 2, for k = 1, 2. Then, almost all symmetric groups Sn

admit an unmixed ramification structure of type (τ1, τ2).

2.2 Beauville Structure for PSL(2, pe)

In this section we prove Theorem 0.0.4. The proof is based on well-known properties

of PSL(2, pe) (see for example [Di, Go, Su]) and on results of Macbeath [Ma].

Let q = pe, where p is a prime number and e ≥ 1. Recall that GL(2, q) is the group

of invertible 2× 2 matrices over the finite field with q elements, which we denote by

Fq, and SL(2, q) is the subgroup of GL(2, q) comprising the matrices with determinant

1. Then PGL(2, q) and PSL(2, q) are the quotients of GL(2, q) and SL(2, q) by their

respective centers.

When q is even, then one can identify PSL(2, q) with SL(2, q) and also with

PGL(2, q), and so its order is q(q− 1)(q+ 1). When q is odd, the orders of PGL(2, q)

and PSL(2, q) are q(q − 1)(q + 1) and 1
2
q(q − 1)(q + 1) respectively, and therefore we

can identify PSL(2, q) with a normal subgroup of index 2 in PGL(2, q). Also recall

that PSL(2, q) is simple for q 6= 2, 3, see for example [Go] or [Su].

One can classify the elements of PSL(2, q) according to the possible Jordan forms

of their pre-images in SL(2, q). The following table lists the three types of elements,

according to whether the characteristic polynomial P (λ) := λ2−αλ+1 of the matrix

A ∈ SL(2, q) (where α is the trace of A) has 0, 1 or 2 distinct roots in Fq.
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element roots canonical form in order conjugacy classes

type of P (λ) SL(2,Fq) in PSL(2, q)

two conjugacy classes

unipotent 1 root

(
±1 1

0 ±1

)
p in PSL(2, q), which

α = ±2 unite in PGL(2, q)

split 2 roots

(
a 0

0 a−1

)
divides 1

d
(q − 1) for each α:

where a ∈ F∗q d = 1 for q even one conjugacy class

and a+ a−1 = α d = 2 for q odd in PSL(2, q)

non-split no roots

(
a 0

0 aq

)
divides 1

d
(q + 1) for each α:

where a ∈ F∗q2 \ F∗q d = 1 for q even one conjugacy class

aq+1 = 1 d = 2 for q odd in PSL(2, q)

and a+ aq = α

The subgroups of PSL(2, q) are well-known (see [Di, Su]), and fall into the following

three classes.

Class I: The small triangle subgroups.

These are the finite triangle groups ∆ = ∆(l,m, n), which can occur if and only

if 1/l + 1/m+ 1/n > 1.

This inequality holds only for the following triples:

• (2, 2, n) : ∆ is dihedral subgroup of order 2n.

• (2, 3, 3) : ∆ = A4.

• (2, 3, 4) : ∆ = S4.

• (2, 3, 5) : ∆ = A5.

Moreover, if at least two of l,m and n equal 2 or if 2 ≤ l,m, n ≤ 5, then a subgroup

of PSL(2, q) which is generated by three elements t, u and v = (tu)−1, of orders l,m
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and n respectively, may be a small triangle group (for a detailed list of such triples

see [Ma, §8]).

Class II: Structural subgroups.

Let B be a subgroup of PSL(2, q) defined by the images of the matrices

{(
a b

0 a−1

)
: a ∈ F∗q, b ∈ Fq

}
,

and let C be a subgroup of PSL(2,Fq) defined by the images of the matrices

{(
t 0

0 tq

)
: t ∈ Fq2 \ Fq, tq+1 = 1

}
.

Any subgroup of PSL(2, q) which can be conjugated (in PSL(2,Fq)) to a subgroup

of either B or C is called a structural subgroup of PSL(2, q).

Class III: Subfield subgroups.

If Fpr is a subfield of Fq, then PSL(2, pr) is a subgroup of PSL(2, q). If the quadratic

extension Fp2r is also a subfield of Fq, then PGL(2, pr) is a subgroup of PSL(2, q).

These groups, as well as any other subgroup of PSL(2, q) which is isomorphic to

any one of them, will be referred to as subfield subgroups of PSL(2, q), see e.g., [Su,

Theorem 6.25, Theorem 6.26, §3].

We note that all subgroups isomorphic to PSL(2, pr) (or to PGL(2, pr)) are con-

jugate in PGL(2, q) and belong to at most two PSL(2, q)−conjugacy classes, see e.g.,

[Su] p. 416.

Let (α, β, γ) ∈ F3
q, and denote

E(α, β, γ) := {A,B,C ∈ SL(2, q) : ABC = I, trA = α, trB = β, trC = γ}.

Since all elements in PSL(2, q) whose pre-images in SL(2, q) have the same trace

are conjugate in PGL(2, q), all of them have the same order in PSL(2, q). Therefore,

we may denote by Ord(α) the order in PSL(2, q) of the image of a matrix A ∈ SL(2, q)

whose trace equals α, and denote, for an integer l,

Tracesl = {α ∈ Fq : Ord(α) = l}.
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Note that if q is odd then α ∈ Tracesl if and only if −α ∈ Tracesl.

Now, one can easily compute the size of Tracesl for any integer l.

Lemma 2.2.1. Let p be an odd prime and let q = pe. Then in PSL(2, q),

(i). Tracesp = {±2} and so |Tracesp| = 2.

(ii). Traces2 = {0} and so |Traces2| = 1.

(iii). If 3 | q±1
2

then Traces3 = {±1} for p ≥ 5, and Traces3 = {±1} = {±2} for
p = 3.

(iv). If r ≥ 3 and r | q±1
2

then |Tracesr| = φ(r), where φ is the Euler function.

(v). For other values of r, |Tracesr| = 0.

Proof. Part (i). A matrix with order p is conjugate to an unipotent matrix, hence its
trace is ±2.

Part (ii). We are searching for a matrix in A ∈ SL(2, q) not in the center
Z(SL(2, q)), such that A2 is in Z(SL(2, q)). Now A is conjugate to a split or to
a non-split matrix since q is odd. Moreover notice that there is only one matrix of
order 2 in SL(2, q), which is −I ∈ Z(SL(2, q)). If A is a split matrix (case non-split is
analogous), then A is conjugate to the diagonal matrix diag(ω, ω−1) where ω is such
that ω2 = −1 which is equivalent to ω + ω−1 = 0 = Tr(A).

Part (iii). Let p ≥ 5, we need a matrix A ∈ SL(2, q) \ Z(SL(2, q)) such that
A3 ∈ Z(SL(2, q)). Now A must be either split or non-split. Let us consider the case
split, the case non-split is analogous. Then A is conjugate to diag(ω, ω−1) with ω such
that ω3 = ±1 and ω 6= ±1. If ω3 = 1 then ω is a third root of unity and it satisfies
the polynomial X2 +X+1, hence ω+ω−1 = −1. If ω3 = −1 then ω is a sixth root of
unity in Fq, and so it satisfies the polynomial X2−X+1 hence ω+ω5 = ω+ω−1 = 1.
If p = 3 then a matrix with order 3 can be conjugated also to an unipotent matrix.

Part(iv). Let λ be a primitive root of unity of order 2r (in Fp or in Fp2), then there
are exactly 2φ(r) diagonal split (or non-split) matrices whose images in PSL(2, p)
have order r, parameterized by {±λi : 1 ≤ i ≤ 2r, (i, 2r) = 1}, if r is odd, or by
{±λi : 1 ≤ i ≤ r, (i, 2r) = 1}, if r is even.

Hence, there are exactly φ(r) different traces of split (or non-split) elements of

order r, which will be denoted by {±α1, . . . ,±αψ}, where ψ = φ(r)
2

.

Lemma 2.2.2. Let q = 2e, then in PSL(2, q) = SL(2, q),

(i). Traces2 = {0} and so |Traces2| = 1.

(ii). If r ≥ 3 and r | (q ± 1) then |Tracesr| = φ(r)
2

, where φ is the Euler function.
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(iii). For other values of r, |Tracesr| = 0.

The proof is similar to the one of Lemma 2.2.1.

The importance of considering the sets of traces and the set E(α, β, γ) is due to

the following Theorems of Macbeath [Ma].

Theorem 2.2.3. [Ma, Theorem 1]. E(α, β, γ) is not empty for any (α, β, γ) ∈ F3
q.

Definition 2.2.4. Let (α, β, γ) ∈ F3
q. We say that (α, β, γ) is singular if

α2 + β2 + γ2 − αβγ = 4.

Let l = Ord(α), m = Ord(β) and n = Ord(γ). We say that (α, β, γ) is small if
at least two of l,m, n equal 2 or if 2 ≤ l,m, n ≤ 5.

Theorem 2.2.5. [Ma, Theorem 2]. (α, β, γ) ∈ F3
q is singular if and only if for

(A,B,C) ∈ E(α, β, γ), the group generated by the images of A and B is a structural
subgroup of PSL(2, q).

Theorem 2.2.6. [Ma, Theorem 3]. If q is odd and (α, β, γ) ∈ F3
q is non-singular, then

the image E(α, β, γ) contains two PSL(2, q)−conjugacy classes, and one PGL(2, q)−conjugacy
class.

If q is even and (α, β, γ) ∈ F3
q is non-singular, then E(α, β, γ) contains one

PSL(2, q)−conjugacy class.

Recall that (A1, B1, C1) and (A2, B2, C2) are PSL(2, q)−conjugate if there exists

some G ∈ PSL(2, q) such that

GA1G
−1 = A2 and GB1G

−1 = B2.

Note that this will immediately imply that GC1G
−1 = GB−1

1 A−1
1 G−1 = B−1

2 A−1
2 =

C2.

Theorem 2.2.7. [Ma, Theorem 4]. If (α, β, γ) ∈ F3
q is neither singular nor small,

then for any (A,B,C) ∈ E(α, β, γ), the group generated by the images of A and B is
a subfield subgroup of PSL(2, q).

Macbeath [Ma] used these generation theorems of PSL(2, q) to prove that PSL(2, q)

can be generated by two elements one of which is an involution. Moreover, he classi-

fied all the values of q for which PSL(2, q) is a Hurwitz group, namely a quotient of

the Hurwitz triangle group ∆(2, 3, 7).



60

Theorem 2.2.8. Let p be a prime number, and assume that q = pe is at least 7.
Then the group PSL(2, q) admits an unmixed Beauville structure.

Proof. It is known by [BCG05, Proposition 3.6] (and can be easily verified by com-
puter calculations) that PSL(2, 2) ∼= S3, PSL(2, 3) ∼= A4 and PSL(2, 4) ∼= PSL(2, 5) ∼=
A5 do not admit an unmixed Beauville structure.

Case q = pe odd.
Let q ≥ 13 be an odd prime power, then we will construct an unmixed Beauville

structure for PSL(2, q), (A1, B1;A2, B2), of type (τ1, τ2), where

τ1 =

(
q − 1

2
,
q − 1

2
,
q − 1

2

)
and τ2 =

(
q + 1

2
,
q + 1

2
,
q + 1

2

)
.

Let r = q−1
2

(respectively r = q+1
2

), and note that r > 5. Let α be a trace of some
diagonal split (respectively non-split) element A ∈ SL(2, q) whose image in PSL(2, q)
has exact order r, and note that α 6= 0,±1,±2, since A is neither of orders 2 or 3 nor
unipotent (see Lemma 2.2.1).

Observe that (α, α, α) is a non-singular triple. Indeed, the equality 3α2 − α3 = 4
is equivalent to (α− 2)2(α + 1) = 0, but the latter is not possible.

By Theorem 2.2.3, E(α, α, α) 6= ∅, and since (α, α, α) is not singular nor small, for
(A,B,C) ∈ E(α, α, α), one has A 6= ±B, and moreover, the image of the subgroup
〈A,B〉 is a subfield subgroup of PSL(2, q), by Theorem 2.2.7. However, since the
order of A is exactly q−1

2
(respectively q+1

2
) then the image of the subgroup 〈A,B〉 is

exactly PSL(2, q).
Observe that q−1

2
and q+1

2
are relatively prime. Hence, if A1, A2 ∈ PSL(2, q) have

orders q−1
2

and q+1
2

respectively, then every two non-trivial powers Ai1 and Aj2 have
different orders, thus

{g1A
i
1g
−1
1 }g1,i ∩ {g2A

j
2g
−1
2 }g2,j = {1},

implying that Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}, as needed.
For smaller values of q, a computer calculation (using MAGMA) shows that

PSL(2, 7) admits an unmixed Beauville structure of type ((4, 4, 4), (7, 7, 7)), PSL(2, 9)
admits an unmixed Beauville structure of type ((4, 4, 4), (5, 5, 5)), and PSL(2, 11) ad-
mits an unmixed Beauville structure of type ((5, 5, 5), (6, 6, 6)).

Case q = 2e even.
Let q ≥ 8 be an even prime power, then we will construct an unmixed Beauville

structure for PSL(2, q), (A1, B1;A2, B2), of type (τ1, τ2), where

τ1 = (q − 1, q − 1, q − 1) and τ2 = (q + 1, q + 1, q + 1).

Let r = q − 1 (respectively r = q + 1), and note that r > 5. Let α be a trace
of some diagonal split (respectively non-split) element A ∈ PSL(2, q) = SL(2, q) of
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exact order r, and note that α 6= 0, 1, since A is neither unipotent nor of order 3 (see
Lemma 2.2.2).

Observe that (α, α, α) is a non-singular triple. Indeed, the equality α2 +α2 +α2−
α3 = 4 is equivalent (in characteristic 2) to α2 + α3 = α2(α + 1) = 0, but the latter
is not possible.

By Theorem 2.2.3, E(α, α, α) 6= ∅, and since (α, α, α) is not singular nor small,
for (A,B,C) ∈ E(α, α, α), one has A 6= B, and moreover, the subgroup 〈A,B〉 is a
subfield subgroup of PSL(2, q), by Theorem 2.2.7. However, since the order of A is
exactly q − 1 (respectively q + 1), then 〈A,B〉 = PSL(2, q).

Observe that q − 1 and q + 1 are relatively prime (since both of them are odd).
Hence, if A1, A2 ∈ PSL(2, q) have orders q − 1 and q + 1 respectively, then every two
non-trivial powers Ai1 and Aj2 have different orders, thus

{g1A
i
1g
−1
1 }g1,i ∩ {g2A

j
2g
−1
2 }g2,j = {1},

implying that Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}, as needed.

Remark 2.2.9. Note that in the case of PSL(2, q), unlike the case of alternating
and symmetric groups, the possible types of the Beauville structures depend on q.
Indeed, one cannot fix a prime number p and a certain hyperbolic type, say (2, 3, 7),
and hope that the triangle group ∆(2, 3, 7) will surject onto infinitely many groups
in the series {PSL(2, pe)}e≥1. This result is due to Macbeath (see [Ma, Theorem
8]), who proved that PSL(2, q), where q = pe, is a Hurwitz group if either e = 1 and
p ≡ 0,±1 (mod 7), or e = 3 and p ≡ ±2,±3 (mod 7).

Recently, Marion [Mar09] showed that this phenomenon occurs in general for any
prime hyperbolic type. Namely, he showed that if (p1, p2, p3) is a hyperbolic triple
of primes and p is a prime number, then there exists a unique integer e such that
PSL(2, pe) is a quotient of the triangle group ∆(p1, p2, p3).

Interestingly, this situation is different for other families of groups of Lie type
of low Lie rank (if (p1, p2, p3) are not too small), as was shown in recent results of
Marion [Mar3.09].

We remark also that Beauville structures for some groups of Lie type of low Lie
rank are constructed in [GP].



Chapter 3

Moduli Spaces

By a famous Theorem of Gieseker (see [Gie]), once the two invariants of a minimal

surface S of general type, K2
S and χ(S), are fixed, then there exists a quasiprojective

moduli space MK2
S ,χ(S) of minimal smooth complex surfaces of general type with

those invariants, and this space consists of a finite number of connected components.

The union M over all admissible pairs of invariants (K2, χ) of these spaces is called

the moduli space of surfaces of general type.

In [Cat00], Catanese started studying the moduli space of surfaces isogenous to

a higher product of curves (see Theorem 4.14). As a result, he obtained that the

moduli space of surfaces isogenous to a higher product of curves with fixed invariants

— a finite group G and a type (τ1, τ2) in the unmixed case (while only G and one

type τ in the mixed case) — consists of a finite number of irreducible connected

components of M. More precisely let S be a surface isogenous to a higher product

of curves of unmixed type with group G and a pair of disjoint systems of generators

of type (τ1, τ2). By (2.2) we have χ(S) = χ(G, (τ1, τ2)), and consequentially, by (2.1),

K2
S = K2(G, (τ1, τ2)) = 8χ(S).

Let us fix a group G and a type (τ1, τ2) of an unmixed ramification structure, and

denote byM(G,(τ1,τ2)) the moduli space of isomorphism classes of surfaces isogenous to

a higher product of curves of unmixed type admitting these data, then obviously it is

a subset of the moduli space MK2(G,(τ1,τ2)),χ(G,(τ1,τ2)). By [Cat00] the space M(G,(τ1,τ2))

consists of a finite number of irreducible connected components. An analogous result

62
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holds in the mixed case if we denote by M(G,τ) the moduli space of surfaces isogenous

to a product of mixed type admitting the data (G, τ).

A first goal of this chapter is to investigate the number of connected components

and the dimension of the subschemes of M8,1 corresponding to the families of surfaces

of general type given in Theorems 1.3.11, 1.3.15, 1.3.19. Moreover in [Cat00] the

author also studied the moduli space of isotrivial fibrations, showing that this does

not give a whole component of the moduli space but only a union of irreducible

subvarieties. The second goal of this chapter is to compute the number and the

dimension of the irreducible subvarieties of MK2
S ,1

corresponding to the families given

in Theorem 1.4.20. Third we remark that, since Beauville surfaces are rigid, their

moduli space consists only of finitely many isolated points in the moduli space. Using

group theory we are able to count the number of points inM corresponding to certain

families of Beauville surfaces.

3.1 Braid and Mapping Class Groups

The surfaces we are studying are quotients of products of curves and to study their

moduli space one has to look first at the moduli space of Riemann surfaces.

Let Mg′,r denote the moduli space of Riemann surfaces of genus g′ with r ordered

marked points. The permutation group Sr acts naturally on this space, by permuting

the marked points on the Riemann surfaces. The moduli space Mg′,[r] = Mg′,r/Sr

classifies the Riemann surfaces of genus g′ with r unordered marked points. By

Teichmüller theory these spaces are quotients of contractible spaces Tg′,r of complex

dimension 3g′ − 3 + r, if g′ = 0 and r ≥ 3, or g′ = 1 and r ≥ 1 or g′ ≥ 2, called

the Teichmüller spaces, by the action of discrete groups called the full mapping class

groups Mapg′,[r].

In [BC, Theorem 1.3] a method is given to calculate the number of connected

components of the moduli spaces M(G,(τ1,τ2)) of surfaces isogenous to a higher product

of unmixed type using Teichmüller theory, while in [BCG08, Proposition 5.5] the

mixed case is treated.
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Notice, from Section 1.2, that the dimension of the space M(G,(τ1,τ2)), if the type

τi has genus g′i and size ri for i = 1, 2, is precisely dimM(G,(τ1,τ2)) = 3g′1 − 3 + r1 +

3g′2 − 3 + r2, while in the mixed case, if the genus of the type τ is g′ and r is its

size, then dimM(G,τ) = 3g′ − 3 + r. This is enough to determine the numbers in the

column dim of Table 1.

In this section we first recall the definition of a full mapping class group. Then we

give a presentation of it for P1 − {p1, . . . , pr}, for a curve of genus 2 without marked

points, and for an elliptic curve with one marked point. After that we calculate the

Hurwitz moves induced by those groups. We mainly follow the definitions and the

notations of [Cat03a].

Definition 3.1.1. Let M be a differentiable manifold, then the mapping class group
(or Dehn group) of M is the group:

Map(M) := π0(Diff+(M)) = Diff+(M)/Diff0(M),

where Diff+(M) is the group of orientation preserving diffeomorphisms of M and
Diff0(M) is the subgroup of diffeomorphisms of M isotopic to the identity.
If M is a compact complex curve of genus g′ we will use the following notations:

1. We denote the mapping class group of M without marked points by Mapg′.

2. If we consider r points p1, . . . , pr on M we define:

Mapg′,[r] = π0(Diff+(M − {p1, . . . , pr})),

and this is known as the full mapping class group.

There is an advantageous way to present the mapping class group of a curve using

half twists and Dehn twists.

Definition 3.1.2. The half-twist σj is a diffeomorphism of C − {1, . . . , r} isotopic
to the homeomorphism given by:

• A rotation of 180 degrees on the disk with center j + 1
2

and radius 1
2
;

• on a circle with the same center and radius 2+t
4

the map σj is the identity if
t ≥ 1 and a rotation of 180(1− t) degrees, if t ≤ 1.
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Theorem 3.1.3. The mapping class group Map0,[r] is generated by the half twists
σ1, . . . , σr with the following relations:

σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi, if | i− j |≥ 2,

σr−1σr−2 . . . σ
2
1 . . . σr−2σr−1 = 1.

For a proof of the above Theorem see for example [Bir, Theorem 1.11].

We want to give a similar presentation for a group Mapg′ with g′ ≥ 1, so we have

to introduce the Dehn twists, which play a similar role as the half-twists on P1.

Definition 3.1.4. Let C be an oriented Riemann surface. Then a positive Dehn
twist tα with respect to a simple closed curve α on C is an isotopy class of a diffeo-
morphism h of C which is equal to the identity outside a neighborhood of α orientedly
homeomorphic to an annulus in the plane, while inside the annulus h rotates the in-
ner boundary of the annulus by 360◦ clockwise and damps the rotation down to the
identity at the outer boundary.

We have then the following classical results of Dehn [D].

Theorem 3.1.5. The mapping class group Mapg′ is generated by Dehn twists.

We give a presentation of the group Mapg′ analogous to the case of genus 0.

Theorem 3.1.6. The group Map2 is generated by the Dehn twists with respect to the
five curves in the figure:

Figure 1.

The corresponding relations are the following:
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1. γiγj = γjγi if |i− j| ≥ 2, 1 ≤ i, j ≤ 5,

2. γiγi+1γi = γi+1γiγi+1, 1 ≤ i ≤ 4,

3. (γ1γ2γ3γ4γ5)
6 = 1,

4. (γ1γ2γ3γ4γ
2
5γ4γ3γ2γ1)

2 = 1,

5. [γ1γ2γ3γ4γ
2
5γ4γ3γ2γ1, γi] = 1, 1 ≤ i ≤ 5.

A proof of the above Theorem can be found in [Bir, Theorem 4.8].

The last case we are interested in is the case of a torus Σ1 with one marked point.

We have the following Proposition.

Proposition 3.1.7. The group Map1,1 is generated by the positively-oriented Dehn
twists tα, tβ about the two simple closed curves α, β shown in Figure 2.

Figure 2.

The corresponding relations are the following:

tαtβtα = tβtαtβ; (tαtβ)
3 = 1.

Cf. [Sch].

Let Γ = Γ(g′ | m1, ...,mr) be an orbifold surface group with a presentation as in

Definition 1.2.1.

Definition 3.1.8. An automorphism η ∈ Aut(Γ) is said to be orientation preserving
if the action induced on < α1, β1, · · · , αg′ , βg′ >ab has determinant +1 and for all
i ∈ {1, . . . , r}, there exists j such that η(γi) is conjugate to γj, which implies ord(γi) =
ord(γj).

The subgroup of orientation preserving automorphisms of Γ is denoted by Aut+(Γ)
and the quotient Out+(Γ) := Aut+(Γ)/Inn(Γ) is called the mapping class group of Γ.
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Theorem 3.1.9. Let Γ = Γ(g′ | m1, . . . ,mr) be an orbifold surface group with positive
measure. Then there is an isomorphism of groups:

Out+(Γ) ∼= Mapg′,[r].

This is a classical result cf. e.g., [Sch, Theorem 2.2.1] and [Macl, §4] .

Moreover let G be a finite group (g′ | m1, . . . ,mr)−generated. There is a section

s : Out+(Γ) → Aut+(Γ), which induces an action of the Mapg′,[r] on the generators of

Γ. Such action does not depend on s up to simultaneous conjugation, meaning that

the action is defined up to inner automorphisms. This action induces an action on

the generating systems of G via composition with admissible epimorphisms.

Definition 3.1.10. Let G be a finite group (g′ | m1, . . . ,mr)−generated. If two
systems of generators V1 and V2 are in the same Mapg′,[r]-orbit, we say that they are
related by a Hurwitz move (or are Hurwitz equivalent).

In the sequel to this chapter we shall deal with groups G with few types of gen-

eration namely (0, | m), (1, | 1) and (2, | −), then we shall describe explicitly the

Hurwitz moves in these cases.

Proposition 3.1.11. [P08, Proposition 1.10] Up to inner automorphisms, the action
of Map1,1 on Γ(1 | m1) is given by

tα :





α1 → α1

β1 → β1α1

γ1 → γ1

tβ :





α1 → α1β
−1
1

β1 → β1

γ1 → γ1.

Corollary 3.1.12. Let G be a finite group and let V = (a1, b1, c1) be a system of
generators for G of type τ = (1 | m1). Then the Hurwitz moves on the set of systems
of generators of G of type τ are generated by:

1 :





a1 → a1

b1 → b1a1

c1 → c1

2 :





a1 → a1b
−1
1

b1 → b1
c1 → c1.

Proof. This follows directly from Proposition 3.1.11.

Proposition 3.1.13. Up to inner automorphism, the action of Map2 on Γ(2 | −) is
given by:

tγ2 :





α1 → α1

β1 → β1α1

α2 → α2

β2 → β2

tγ1 :





α1 → α1β
−1
1

β1 → β1

α2 → α2

β2 → β2
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tγ5 :





α1 → α1

β1 → β1

α2 → α2β
−1
2

β2 → β2

tγ4 :





α1 → α1

β1 → β1

α2 → α2

β2 → β2α2

tγ3 :





α1 → α1x
−1

β1 → xβ1x
−1

α2 → xα2

β2 → β2.

where α1, α2, β1 and β2 are the generators of Γ(2 | −) and x = β−1
2 α1β1α

−1
1 =

α2β
−1
2 α−1

2 β1.

Proof. One notices that a Riemann surface of genus 2 is a connected sum of two tori.
Then one can use the results given in Proposition 3.1.11 to calculate the Dehn twists
about the curves γ1, γ2, γ4, γ5 of Figure 1, considering the action on the two different
tori. This gives the actions tγ1 , tγ2 , tγ4 and tγ5 .
Then the only Dehn twist left to calculate is the one with respect to the curve γ3 as
in Figure 3.

Figure 3.

Choose the generators of the fundamental group as in Figure 4:

Figure 4.



69

One sees that the only curves which have to be twisted are α1, β1 and α2 because the
other is disjoint from γ3 . In Figure 5 one sees the Dehn twist of α1 with respect to
γ3. Following the curve one constructs the image of α1 under the map tγ3 .

Figure 5.

In Figure 6 we give the Dehn twist of β1 with respect to γ3.

Figure 6.

In the last Figure we give the Dehn twist of α2 with respect to γ3 which completes
the proof.

Figure 7.
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Corollary 3.1.14. Let G be a finite group and let V = (a1, b1, a2, b2) be a system of
generators for G of type τ = (2 | −). Then the Hurwitz moves on the set of systems
of generators of G of type τ are generated by:

1 :





a1 → a1

b1 → b1a1

a2 → a2

b2 → b2

2 :





a1 → a1b
−1
1

b1 → b1
a2 → a2

b2 → b2

3 :





a1 → a1

b1 → b1
a2 → a2b

−1
2

b2 → b2

4 :





a1 → a1

b1 → b1
a2 → a2

b2 → b2a2

5 :





a1 → a1x
−1

b1 → xb1x
−1

a2 → xa2

b2 → b2.

where x = b−1
2 a1b1a

−1
1 = a2b

−1
2 a−1

2 b1.

Proof. This follows directly from Proposition 3.1.13.

We give the Hurwitz moves on a spherical system of generators of a finite group

G with respect to the orbifold surface group: Γ(0 | m1, . . . ,mr).

Proposition 3.1.15. Up to inner automorphism, the action of Map0,[r] on Γ(0 | mr)
is given by:

σi :





γi → γi+1

γi+1 → γ−1
i+1γiγi+1

γj → γj if j 6= i, i+ 1.

Cf. [Cat03a] section 5.

Remark 3.1.16. Now we have to consider Definition 1.2.3 with (ii) B, hence un-
ordered types.

According to the Remark above we have the following Corollary.
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Corollary 3.1.17. Let G be a finite group and let V = (c1, . . . , cr) be a spherical
system of generators for G of unordered type τ = (m1, . . . ,mr). Then the Hurwitz
moves on the set of spherical systems of generators of G of type τ are generated by:

σi : (c1, . . . , cr) 7−→ (c′1, . . . , c
′
r),

where
c′i = ci+1,

c′i+1 = c−1
i+1cici+1,

c′j = cj if j 6= i, i+ 1.

With abuse of notation we shall also refer to the previous action as the action of

the braid group Br on G, and we shall call it the braid group action (see also section

3.4).

Let (V1,V2) be a pair of disjoint systems of generators of type (τ1, τ2) for a finite

group G, we call the pair (V1,V2) unordered if V1 and V2 have unordered types τ1 and

τ2 respectively.

We shall denote by U(G; τ1, τ2) the set of all unordered pairs (V1,V2) of disjoint

systems of generators of type (τ1, τ2).

3.2 Moduli Space of Surfaces Isogenous to a Prod-

uct of Curves

Let us recall the weak rigidity Theorem for surfaces isogenous to a higher product of

curves.

Theorem 3.2.1. [Cat03b, Theorem 3.3] Let S = (C1×C2)/G be a surface isogenous
to a higher product of curves. Then every surface with the same

• topological Euler number and

• fundamental group

is diffeomorphic to S. The corresponding moduli space Mtop
S = Mdiff

S of surfaces (ori-
entedly) homeomorphic (resp. diffeomorphic) to S is either irreducible and connected
or consists of two irreducible connected components exchanged by complex conjuga-
tion.
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Thanks to the weak rigidity Theorem we have that in Table 1 each item provides a

finite union of connected components of the moduli space of surfaces of general type.

A group theoretical method to count the number of these components is given in

[BC, Theorem 1.3] in case of surfaces isogenous to a product of curves of unmixed

type with q = 0. The following Theorem is a natural generalization.

Theorem 3.2.2. Let S be a surface isogenous to a product of unmixed type. Then
to S we attach its finite group G (up to isomorphism) and the equivalence class of an
unordered pair of disjoint systems of generators (V1,V2) of type (τ1, τ2) of G, under
the equivalence relation generated by:

1. Hurwitz moves and Inn(G) on V1,

2. Hurwitz moves and Inn(G) on V2,

3. simultaneous conjugation of V1 and V2 by an element φ ∈ Aut(G), i.e., we let
(V1,V2) be equivalent to (φ(V1), φ(V2)).

Then two surfaces S and S ′ are deformation equivalent if and only if the corresponding
pairs of systems of generators are in the same equivalence class.

Once we fix a finite group G and a pair of types (τ1, τ2) (of size (r1,r2) and

genus (g′1, g
′
2)) of an unmixed ramification structure for G, counting the number

of connected components of M(G,(τ1,τ2)) is then equivalent to the group theoretical

problem of counting the number of classes of pairs of systems of generators of G of

type (τ1, τ2) under the equivalence relation defined in Theorem 3.2.2. This leads also

to the following definition.

Definition 3.2.3. Denote by h(G; τ1, τ2) the number of Hurwitz components, namely
the number of orbits of U(G; τ1, τ2) under the action of the group prescribed in Theo-
rem 3.2.2.

We are interested now in the surfaces given in Table 1. Since the task of counting

orbits may be too hard to be achieved by hand, with S. Rollenske we developed a

program in GAP4:

NrOfComponents_062009.gap
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which calculates them. The script of the program can be found in Appendix C.

We shall briefly explain how the program works. As input the program takes a

finite group G and two types. Notice that it does not matter if the types come from

disjoint systems of generators. Indeed the program will test this property, answering

if there is a surface isogenous to a product of curves with those data or not. First the

program calls a subprogram:

GeneratingVectors.gap ,

whose script can also be found in Appendix C. This last subprogram generates

all possible generators of the given type for the given finite group G. It also gives

the generators of the Hurwitz moves for the cases Map0,r, Map1, Map1,1, Map1,2,

and Map2. This subprogram was used for example in the proof of Theorem 1.3.10 to

check specific generation of finite groups G.

After calling GeneratingVectors.gap the program calculates all the orbits of the

vectors. To explain further we need some notation, and we shall follow the Appendix

of [P]: let Vi be the set of systems of generators of type τi for G and let X ⊂ V1×V2

be the set of all compatible pairs of systems of generators.

Let H be the subgroup of the group of permutations of V1×V2 generated by the

action of the mapping class groups on both factors and the diagonal action of the

automorphism group of G. We denote by Hi the restriction of the action of H to the

component Vi.

The following Lemma allows us to greatly simplify the calculations.

Lemma 3.2.4. Let Mi be the mapping class group acting on Vi and let (V1,V2) and
(W1,W2) be two pairs of systems of generators. Then

1. If V1 and W1 lie in the same M1-orbit and V2 and W2 lie in the same M2-orbit
then (V1,V2) and (W1,W2) lie in the same H-orbit.

2. If V1 and W1 do not lie in the same H1-orbit then (V1,V2) and (W1,W2) lie in
different H-orbits.

Thus our algorithm takes roughly the following form:
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• Calculate a set R1 of representatives of the H1-orbits on V1, the systems of

generators of type τ1, and a set R2 of representatives of M2-orbits on V2.

• After testing the pairs in R1 × R2 for compatibility we obtain a set of pairs

R ⊂ X. Each orbit in X contains at least 1 element in R by 3.2.4 (i).

• We already have some lower bound on the number of components: if (V1,V2), (W1,W2) ∈
R then, by 3.2.4 (ii), they lie in different orbits if V1 6= W1 or if V2 and W2 lie

in different H2-orbits.

• It remains to calculate the full orbit only in the following case: there are

(V1,V2), (W1,W2) ∈ R such that V1 = W1 and V2 and W2 lie in different

M2-orbits but in the same H2-orbit.

The last step was only necessary in very few of the considered cases, so we mostly

could deduce the number of components without calculating a single H-orbit in X.

As output the program returns ”almost” (see Remark 3.2.5 ) the number of Hur-

witz components and representatives for the systems of generators.

Now we can exhibit the pairs (V1,V2) of systems of generators which give the

surfaces isogenous to a higher product of curves of unmixed type with pg = q = 2

given in Table 1. The number of these pairs for each item gives the number in the last

column of Table 1. Since GAP4 uses a particular presentation for each finite group

G, we include the presentation used here.

• g(F ) = 2, g(C) = 3, G = Z/2Z,

SmallGroup(2,1) := 〈x | x2 = 1〉.
Set:

c1 = x, c2 = x, c3 = x, c4 = x, c5 = x, c6 = x,

a1 = 1, b1 = 1, a2 = 1, b2 = x.

• g(F ) = 2, g(C) = 4, G = Z/3Z,

SmallGroup(3,1) := 〈x | x3 = 1〉.
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Set:

c1 = x, c2 = x, c3 = x2, c4 = x2,

a1 = 1, b1 = 1, a2 = 1, b2 = x.

• g(F ) = 2, g(C) = 5, G = Z/2Z× Z/2Z,

SmallGroup(4,2) := 〈x, y | x2 = y2 = [x, y] = 1〉.
Set:

c1 = y, c2 = y, c3 = y, c4 = x, c5 = xy,

a1 = 1, b1 = 1, a2 = x, b2 = y,

and

c1 = y, c2 = y, c3 = y, c4 = x, c5 = xy,

a1 = 1, b1 = x, a2 = 1, b2 = y.

• g(F ) = 2, g(C) = 5, G = Z/4Z,

SmallGroup(4,1) := 〈x, y | [x, y] = y2 = 1, x2 = y〉.
Set:

c1 = y, c2 = y, c3 = x, c4 = xy,

a1 = 1, b1 = 1, a2 = 1, b2 = x.

• g(F ) = 2, g(C) = 6, G = Z/5Z,

SmallGroup(5,1) := 〈x | x5 = 1〉.
Set:

c1 = x, c2 = x, c3 = x3,

a1 = 1, b1 = 1, a2 = 1, b2 = x.

• g(F ) = 2, g(C) = 7, G = Z/6Z,

SmallGroup(6,2) := 〈x | x6 = 1〉.
Set:

c1 = x3, c2 = x3, c3 = x2, c4 = x4,

a1 = 1, b1 = 1, a2 = 1, b2 = x.
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• g(F ) = 2, g(C) = 7, G = Z/6Z,

SmallGroup(6,2) := 〈x | x6 = 1〉.
Set:

c1 = x4, c2 = x, c3 = x,

a1 = 1, b1 = 1, a2 = 1, b2 = x.

• g(F ) = 2, g(C) = 9, G = Z/8Z,

SmallGroup(8,1) := 〈x | x8 = 1〉.
Set:

c1 = x4, c2 = x, c3 = x3,

a1 = 1, b1 = 1, a2 = 1, b2 = x.

• g(F ) = 2, g(C) = 11, G = Z/10Z,

SmallGroup(10,2) := 〈x | x10 = 1〉.
Set:

c1 = x5, c2 = x4, c3 = x,

a1 = 1, b1 = 1, a2 = 1, b2 = x.

• g(F ) = 2, g(C) = 13, G = Z/2Z× Z/6Z,

SmallGroup(12,5) := 〈x, y, z | x2 = y2 = z3 = [x, y] = [x, z] = [y, z] = 1〉.
Set:

c1 = y, c2 = xz, c3 = xyz2,

a1 = 1, b1 = 1, a2 = x, b2 = yz,

and

c1 = y, c2 = xz, c3 = xyz2,

a1 = 1, b1 = x, a2 = 1, b2 = yz.
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• g(F ) = 2, g(C) = 7, G = S3,

SmallGroup(6,1) := 〈x, y | x2 = y3 = 1, xyx−1 = y−1〉.
Set:

c1 = x, c2 = x, c3 = y, c4 = y2,

a1 = 1, b1 = x, a2 = 1, b2 = y.

• g(F ) = 2, g(C) = 9, G = Q8,

SmallGroup(8,4) := 〈x, y | x4 = y4 = 1, x2 = y2〉.
Set:

c1 = y, c2 = x, c3 = xy,

a1 = 1, b1 = x, a2 = 1, b2 = y.

• g(F ) = 2, g(C) = 9, G = D4,

SmallGroup(8,3) := 〈x, y, z | x2 = y2 = z2 = [x, z] = [y, z] = 1, [x, y] = z〉.
Set:

c1 = z, c2 = y, c3 = x, c4 = xyz,

a1 = 1, b1 = x, a2 = 1, b2 = y,

and

c1 = z, c2 = y, c3 = x, c4 = xyz,

a1 = 1, b1 = x, a2 = y, b2 = z.

• g(F ) = 2, g(C) = 13, G = D6,

SmallGroup(12,4) := 〈x, y, z | x2 = y2 = z3 = [x, y] = [z, y] = 1, [x, z] = z〉.
Set:

c1 = y, c2 = x, c3 = xyz, c4 = z2,

a1 = 1, b1 = x, a2 = 1, b2 = yz,

and

c1 = y, c2 = x, c3 = xyz, c4 = z2,

a1 = 1, b1 = x, a2 = y, b2 = xz.
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• g(F ) = 2, g(C) = 13, G = D4,3,−1,

SmallGroup(12,1) := 〈x, y | x4 = y3 = 1, xyx−1 = y−1〉.
Set:

c1 = y, c2 = (xy)−1, c3 = x,

a1 = 1, b1 = x, a2 = 1, b2 = y.

• g(F ) = 2, g(C) = 17, G = D2,8,3,

SmallGroup(16,8) := 〈x, y | x2 = y8 = 1, xyx−1 = y3〉.
Set:

c1 = x, c2 = (yx)−1, c3 = y,

a1 = 1, b1 = x, a2 = 1, b2 = y.

• g(F ) = 2, g(C) = 25, G = Z/2Z n ((Z/2Z)2 × Z/3Z),

SmallGroup(24,8) := 〈x, y, z, w | x2 = y2 = z2 = w4 = [x, z] = [y, z] =

[y, w] = [z, w] = 1, [x, y] = z, [x,w] = w〉.
Set:

c1 = x, c2 = xyw, c3 = yw2,

a1 = 1, b1 = x, a2 = 1, b2 = yw.

and

c1 = x, c2 = xyw, c3 = yw2,

a1 = 1, b1 = x, a2 = y, b2 = zw.

• g(F ) = 2, g(C) = 25, G = SL(2,F3),

SmallGroup(24,3) := 〈x, y, z, w | x3 = w2 = [x,w] = [y, w] = [z, w] = 1, y2 =

z2 = w, [y, z] = w, [x, z] = yw, [x, y] = yzw〉.
Set:

c1 = x, c2 = x2zw, c3 = z,

a1 = 1, b1 = x, a2 = 1, b2 = y.
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• g(F ) = 2, g(C) = 49, G = GL(2,F3),

SmallGroup(48,29) := 〈x, y, z, w, t | x2 = y3 = t2 = [x, t] = [y, t] = [z, t] =

[w, t] = 1, [x, y] = y, z2 = w2 = [z, w] = t, [y, w] = zt, [y, z] = [x,w] =

zw, [x, z] = zwt〉.
Set:

c1 = x, c2 = yz, c3 = xyzwt,

a1 = 1, b1 = x, a2 = 1, b2 = yz.

• g(F ) = 3, g(C) = 3, G = Z/2Z× Z/2Z,

SmallGroup(4,2) := 〈x, y | x2 = y2 = [x, y] = 1〉.
Set:

a1 = 1, b1 = x, c1 = y, c2 = y,

a1 = 1, b1 = y, c1 = x, c2 = x.

• g(F ) = 3, g(C) = 4, G = S3,

SmallGroup(6,1) := 〈x, y | x2 = y3 = 1, xyx−1 = y−1〉.
Set:

a1 = x, b1 = xy, c1 = y,

a1 = 1, b1 = y, c1 = x, c2 = x.

• g(F ) = 3, g(C) = 5, G = D4,

SmallGroup(8,3) := 〈x, y, z | x2 = y2 = z2 = [x, z] = [y, z] = 1, [x, y] = z〉.
Set:

a1 = x, b1 = y, c1 = z,

a1 = 1, b1 = x, c1 = y, c2 = y.

Remark 3.2.5. Notice that in the program is not implemented the action generated
by the mapping class group and the group of inner automorphisms of the group G,
but only the action of the mapping class group, hence we do not act with full group
prescribed by Theorem 3.2.2.

However this does not effect the result above. Indeed in the cases where there
is only one orbit this is not a problem. It is not a problem neither if there are two
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orbits and the group G is abelian, because in this case the inner automorphisms act
trivially.

But there are three cases where the group G is not abelian and we have two
orbits. In all three cases the two pairs of generating systems are of the form (V1,V2)
and (V1,W2). Then we used the program to calculate the orbits, only on the right
side of the pairs, under the action of the group generated by the mapping class group
and the group of automorphisms of G. Notice that this group contains the group
generated by the mapping class group and the group of inner automorphisms. As
result we have two orbits, hence we have two orbits also for the action of the group
prescribed in Theorem 3.2.2.

For the mixed case we notice that there is only one connected component of di-

mension 3 of the moduli space corresponding to the item labelled by Mix in Table

1. This comes directly from the proof of Theorem 1.3.19 and from [BCG08, Propo-

sition 5.5] adapted to this case. Indeed let us denote by M(G,τ) the moduli space

of isomorphism classes of surfaces isogenous to a product of curves of mixed type

admitting the data (G, τ). Then the number of connected components is equal to the

number of classes of systems of generators of type τ of G◦ modulo the action given

by Mapg′,[r] × Aut(G) where the first group acts via Hurwitz moves, g′ is the genus

of τ , and r is its size. In our case set Z/4Z = 〈x | x4 = 1〉, and since G◦ = Z/2Z,

then the only system of generators of type (2 | −) is given by:

a1 = x2, b1 = 1, a2 = 1, b2 = 1.

We shall now treat the case of isotrivial fibrations not isogenous to a product. We

first recall the main result of [Cat00].

Definition 3.2.6. Let f : S → B be an isotrivial fibration. The good locus U of S is
the complement of the inverse image under the rational map ε : S → X = (C1×C2)/G
of the singular locus of X.

Theorem 3.2.7 ([Cat00] Theorem 5.4). Let U = S \ D (D is a normal crossing
divisor) be a quasi projective surface, assume that U is proper homotopically equivalent
to the good locus X◦ of an isotrivial fibration. Then S is an isotrivial fibration with
the same invariants as the relative minimal fibration associated to the projection X →
C1/G.

Moreover, all such surfaces S form an irreducible subvariety of the moduli space.



81

The following Proposition concludes the proof of Theorem 0.0.1.

Proposition 3.2.8. Each item in Table 2 provides exactly one irreducible subvariety
of the moduli space of surfaces of general type.

Proof. Recall from Theorem 1.4.20 that each item in Table 2 gives rise to a surface S
of general type which is the minimal desingularization of X = (C × F )/G and both
C/G and F/G are elliptic curves.
To see that each item in Table 2 gives rise to only one topological type, we proceed
analyzing case by case. We have to prove that each pair of generating systems is
unique up to Hurwitz moves and simultaneous conjugation. Hence for the first case
there is nothing to prove.
For the other cases the groups G are all (1 | m1)−generated, and denote by a1,b1 and
c1 the elements of a system of generators (ord(c1) = m1). Recall that the Hurwitz
moves in this case are generated by (see Corollary 3.1.12):

1 :





a1 → a1

b1 → b1a1

c1 → c1

2 :





a1 → a1b
−1
1

b1 → b1
c1 → c1.

Notice that in all the cases the groups G have the property that [G,G]−{id} consists
of a unique conjugacy class. Hence we can fix c1 ∈ [G,G].
In case G = D4, let us fix a rotation x and a reflection y. From what we said c1 = x2.
Moreover we see that a1 and b1 cannot both be rotations, and up to Hurwitz moves we
can assume that are both reflections. The two reflections must also be in two different
conjugacy classes in order to generate G. Applying then simultaneous conjugation
we see that the system of generators is unique.
In case G = Q8, c1 = −1 and since the elements must generate G, up to simultaneous
conjugation the pair (a1, b1) is one of the following: (i, j), (j, i), (i, k), (k, i), (k, j),
(j, k). By Hurwitz moves all the pairs are equivalent to (a1, b1) = (i, j), hence the
system of generators is unique.
In case G = S3, c1 = (123), and since the elements of the system must generate G, a1

and b1 cannot be both 3−cycles. Moreover up to Hurwitz moves we can assume that
both a1 and b1 are transpositions. Since all the transpositions in S3 are conjugate,
we see that the system of generators is unique.
In the last case G = A4, c1 = (12)(34). To generate G we need a 3−cycle, hence a1

and b1 cannot both be 2− 2-cycles. Up to Hurwitz moves we can suppose that both
are 3−cycles, which might be in different conjugacy classes. However, again applying
Hurwitz moves we can suppose that they are in the same conjugacy class, hence the
system of generators is unique.
In the end by Theorem 3.2.7 we have that isotrivial fibred surfaces with fixed topo-
logical type form a union of irreducible subvarieties of the moduli space of surfaces of
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general type. Here for each case we have only one irreducible variety, whose dimen-
sion is 2 for all the cases except the first where the dimension of the variety is 4. The
calculation of the dimension is done in the same way as for surfaces isogenous to a
product.

3.3 Fundamental Groups of Isotrivially Fibred Sur-

faces

To study the component of the moduli space relative to a surface S it is sometimes

useful to know the fundamental group of the surface in question. In this section we

will calculate the fundamental group of our isotrivially fibred surfaces. In case of

surfaces isogenous to a higher product of curves we have the following theorem.

Proposition 3.3.1. [Cat00] Let S := (C1 × C2)/G be isogenous to a product of
curves. Then the fundamental group of S fits in an exact sequence:

1 −→ Πg1 × Πg2 −→ π1(S) −→ G −→ 1,

where Πgi
:= π1(Ci).

In [BCGP] there is a similar description of the fundamental group of isotrivially

fibred surfaces, which enables us to describe the fundamental group of the surfaces of

Table 2. Following [BCGP] we have:

Theorem 3.3.2. [BCGP, Theorem 0.10] Let C1, . . . , Cn be compact complex curves
of respective genera gi ≥ 2 and let G be a finite group acting faithfully on each Ci as
a group of biholomorphic transformations.

Let X = (C1 × . . . × Cn)/G, and denote by S a minimal desingularization of X.
Then the fundamental group π1(X) ∼= π1(S) has a normal subgroup N of finite index
which is isomorphic to the product of surface groups, i.e., there are natural numbers
h1, . . . , hn ≥ 0 such that N ∼= Πh1 × . . .× Πhn.

We have then the following theorem.

Theorem 3.3.3. The fundamental group of the surfaces given by the first four items
of Table 2 is Z4. While the fundamental group P of the last surface fits into the exact
sequence:

1 −→ Z2 × Z2 −→ P −→ D4 gD4 −→ 1,

where D4 gD4 is the central product of D4 times D4, which is an extraspecial group
of order 32.
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Proof. To compute a presentation of the fundamental group we use the program
implemented in MAGMA given in [BCGP], with few modifications for orbifold groups
Γ(g|m1, . . . ,mk) with g = 1. The program gives us a presentation for all the groups.
In the first four cases of Table 2, one has Z4. In the last case we have a presentation
given by:
Finitely presented group P on 4 generators Relations

[P1, P2] = Id(P )

[P3, P2] = Id(P )

[P4, P3] = Id(P )

P−1
2 ∗ P−1

1 ∗ P−1
4 ∗ P2 ∗ P1 ∗ P4 = Id(P )

P1 ∗ P−1
3 ∗ P4 ∗ P−1

1 ∗ P−1
4 ∗ P3 = Id(P )

P−2
1 ∗ P4 ∗ P 2

1 ∗ P−1
4 = Id(P )

P−1
3 ∗ P1 ∗ P3 ∗ P4 ∗ P−1

1 ∗ P−1
4 = Id(P )

P−1
2 ∗ P 2

4 ∗ P2 ∗ P−2
4 = Id(P )

From this presentation one notices that the square of the generators all lie in the center
of P . The core C of the subgroup 〈P1, P2, P

2
3 , P

2
4 〉 is isomorphic to Z4 and the group

P/C is identified by MAGMA as the small group of order 32 and MAGMA library-
number 49, which is the central product of D4 times D4, known as the extraspecial
group D4 gD4. After inspection one sees that 32 is the minimal index.

We recall here the definition of extraspecial group and central product (cf. [Go]

or [Su]).

Definition 3.3.4. A p−group G is called extraspecial if the derived subgroup [G,G]
of G and the center Z(G) of G coincide and have order p.

Definition 3.3.5. A group G is said to be a central product of two subgroups H and
K if H and K commute elementwise and G = KH.

A central product may be considered to be a direct product with an amalgamated

central subgroup, see e.g., [Su] pp. 137–138.
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3.4 Counting Points in the Moduli Space

In this section we shall make some remarks on the number of connected components

of the moduli space corresponding to Beauville surfaces.

Let S be a smooth minimal surface of general type with q(S) = 0, and denote

by Mtop(S) the subvariety of MK2
S ,χ(S), corresponding to surfaces (orientedly) home-

omorphic to S. We shall denote by M0
K2

S ,χ(S)
the subspace of the moduli space

corresponding to surfaces with q = 0.

Let y := K2
S and x := χ(OS), it is known that the number of connected compo-

nents δ(y, x) ofM0
y,x is bounded from above by a function in y, indeed δ(y, x) ≤ cy77y2 ,

where c is a positive constant (see e.g., [Cat92]). Hence we have that the number of

components has an exponential upper bound in K2.

There are also some results regarding the lower bound. In [Man], for example, a

sequence Xn of simply connected surfaces of general type was constructed, such that

a lower bound for the number of the connected components of M(Xn) was given.

Theorem 3.4.1. [Man, Theorem A]. Denote by yn := K2
Xn

and by xn := χ(OXn),
then there exists a sequence Xn of simply connected surfaces of general type such that
xn → ∞ as n → ∞ and if δ(Xn) denotes the number of connected components of
Mtop(Xn) then:

δ(Xn) ≥ y
1
5
logyn

n .

We investigate the number of connected components h(Gn; τ1, τ2) of M(Gn,(τ1,τ2))

for certain families of finite groups {Gn}.
If we restrict to the study of the moduli space of surfaces isogenous to a higher

product of curves with q = 0, we can only expect a polynomial growth in χ (and so

in K2) of the number of connected components.

We consider up here till the end of the chapter only surfaces with q = 0, thus

all the systems of generators will be of genus (0, 0), we shall denote them by T to

remember it.

Proposition 3.4.2. Fix r1 and r2 in N. Let {Gn}∞n=1 be a family of finite groups,
which admit an unmixed ramification structure of size (r1, r2). Let τn,1 = (mn,1,1, . . . ,mn,1,r1)
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and τn,2 = (mn,2,1, . . . ,mn,2,r2) be sequences of types of unmixed ramification struc-
tures for Gn, and {Xn}∞n=1 be the family of surfaces isogenous to higher product with
q = 0 admitting the given data, then as |Gn| n→∞−→ ∞ :

i. χ(Xn) = Θ(|Gn|).
ii. h(Gn; τn,1, τn,2) = O(χ(Xn)

r1+r2−2).

Proof. i. Note that, for i = 1, 2,

1

42
≤ −2 +

ri∑
j=1

(
1− 1

mn,i,j

) ≤ ri − 2.

Indeed, for ri = 3, the minimal value for (1 − µi) is 1/42. For ri = 4, the
minimal value for

(−2 +
∑ri

j=1

(
1 − 1

mn,i,j

))
is 1/6, and when ri ≥ 5, this value

is at least 1/2.

Now, by Equation (2.2),

4χ(Xn) = |Gn| ·
(
−2 +

r1∑
j=1

(
1− 1

mn,1,j

)
)
·
(
−2 +

r2∑
j=1

(
1− 1

mn,2,j

)
)
,

hence |Gn|
4 · 422

≤ χ(Xn) ≤ (r1 − 2)(r2 − 2)|Gn|
4

.

ii. For i = 1, 2, any spherical ri−system of generators Tn,i contains at most ri − 1
independent elements of Gn. Thus, the size of the set of all unordered pairs of
type (τn,1, τn,2) is bounded from above, by

|U(Gn; τn,1, τn,2)| ≤ |Gn|r1+r2−2,

and so, the number of connected components is bounded from above by

h(Gn; τn,1, τn,2) ≤ |Gn|r1+r2−2.

Now, the result follows from (i).

By taking r1 = r3 = 3 we get the following Corollary.

Corollary 3.4.3. Let {Gn}∞n=1 be a family of finite groups, which admit an unmixed
Beauville structure. Let τn,1 = (mn,1,1,mn,1,2,mn,1,3) and τn,2 = (mn,2,1,mn,2,2,mn,2,3)
be sequences of types of unmixed Beauville structures for Gn, and let {Xn}∞n=1 be the
family of Beauville surfaces admitting the given data, then as |Gn| n→∞−→ ∞ :
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i. χ(Xn) = Θ(|Gn|).
ii. h(Gn; τn,1, τn,2) = O(χ(Xn)

4).

With the calculation done in this thesis we can give a more accurate description

of the asymptotic growth of h in case of Beauville surfaces and surfaces isogenous to

a higher product of curves with q = 0, for certain families of finite groups.

Let us consider Beauville surfaces Xp with group PSL(2, p), where p is prime, as

in Theorem 0.0.4, then by Proposition 3.4.2, as p→∞:

χ(Xp) = Θ(p3),

while, by Theorem 3.4.15, if τ1 and τ2 are two hyperbolic types, we have

h(PSL(2, p), τ1, τ2) = O(p3).

We deduce the following Proposition, which improves the naive bound given in Corol-

lary 3.4.3, for the case of PSL(2, p). We deduce that

h(PSL(2, p), τ1, τ2) = O(χ(Xp)),

completing the proof of Theorem 0.0.7.

On the other hand, when considering the groups An and Sn one obtains the

following lower bound. Let Xn be the family of Beauville surfaces with group either

An or Sn, as in Theorems 0.0.3 and 2.1.7, then by Proposition 3.4.2, as n→∞:

χ(Xn) = Θ(n!),

while, by Theorem 3.4.10 and by (3.1), if τ1 and τ2 are two hyperbolic types which

satisfy the assumptions of the Theorems 0.0.3 and 2.1.7, we have

h(An, τ1, τ2) = Ω(n6) = Ω
(
(n log n)6−ε) and h(Sn, τ1, τ2) = Ω(n6) = Ω

(
(n log n)6−ε),

where 0 < ε ∈ R. We deduce that

h(An, τ1, τ2) = Ω
(
(log(χ(Xn))

6−ε) and h(Sn, τ1, τ2) = Ω
(
(log(χ(Xn))

6−ε),
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completing the proof of Theorems 0.0.5 and 0.0.6.

A similar result applies for surfaces isogenous to a higher product not necessarily

Beauville with q = 0. Namely, if {Xn} is a family of surfaces with group either An

or Sn, and τ1 and τ2 are two types which satisfy the assumptions of Corollaries 2.1.8

or 2.1.9, then by Corollaries 3.4.11 and 3.4.12,

h(An, τ1, τ2) = Ω(nr1+r2) and h(Sn, τ1, τ2) = Ω(nr1+r2).

Therefore,

h(An, τ1, τ2) = Ω
(
log(χ(Xn))

r1+r2−ε) and h(Sn, τ1, τ2) = Ω
(
log(χ(Xn))

r1+r2−ε),

where 0 < ε ∈ R.

Consider now the family of Beauville surfaces Xn, where (n, 6) = 1, admitting

type τn = (n, n, n) and group Gn := (Z/nZ)2, then by Proposition 3.4.2, we have as

n→∞:

χ(Xn) = Θ(n2),

while by Theorem 3.5.8,

h(Gn; τn, τn) = Θ(n4).

We deduce that

h(Gn; τn, τn) = Θ(χ2(Xn)),

completing the proof of Theorem 0.0.8. A similar result applies for surfaces isogenous

to a higher product not necessarily Beauville with q = 0. Consider the family of

surfacesXp, where p is prime, admitting type τp = (p, . . . , p) (p appears (r+1)−times)

and group Gp := (Z/pZ)r, then by Proposition 3.4.2, we have as p→∞:

χ(Xp) = Θ(pr),

while by Proposition 3.5.9,

h(Gp; τp, τp) = Θ(pr
2

).

We deduce the following.
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Theorem 3.4.4. Let {Xp} be the family of surfaces admitting type τp = (p, . . . , p) (p
appears (r + 1)−times) and group Gp := (Z/pZ)r, where p is prime. Then

h(Gp; τp, τp) = Θ(χr(Xp)).

Therefore, there exist families of surfaces, such that the degree of the polynomial

growth of h(Gp; τp, τp), in χ, can be arbitrarily large.

We shall now treat more carefully the action of the braid group on r−strands on

the systems of generators of a finite group G (0 | m1, . . .mr)−generated. Recall that

the braid group Br on r strands can be presented as

Br = 〈σ1, . . . , σr−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| ≥ 2〉.

Here the action of Br on the set of spherical r−systems of generators for G of

unordered type τ = (m1, . . . ,mr), is given by:

σi : (x1, . . . , xi, . . . , xr) → (x1, . . . , xi−1, xixi+1x
−1
i , xi, xi+2 . . . , xr),

for i = 1, . . . , r − 1.

In addition recall that there is also a natural action of Aut(G) given by

φ(x1, . . . , xr) = (φ(x1), . . . , φ(xr)), φ ∈ Aut(G).

Since the two actions of Br and Aut(G) commute, one gets a double action of

Br × Aut(G) on the set of spherical r−systems of generators for G of an unordered

type τ = (m1, . . . ,mr).

Let x ∈ G and denote by C = xAut(G) the Aut(G)−equivalence class of x. Since

all the elements in C have the same order, we may define ord(C) := ord(x).

Let C = (C1, . . . , Cr) be a set of Aut(G)-equivalence classes. We say that C has

type τ = (m1, . . . ,mr) if ord(Ci) = mi (for i = 1, . . . , r), and for every 1 ≤ i ≤ r there

exists xi ∈ Ci such that x1 · . . . · xr = 1 and 〈x1, . . . , xr〉 = G. C has an unordered

type τ if the orders of C1, . . . , Cr are m1, . . . ,mr up to a permutation.

Observe that the action of Br preserves the conjugacy classes, and hence the

Aut(G)−equivalence classes, of the elements in a spherical r−systems of generators
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of G. Thus, in fact, Br acts on C = (C1, . . . , Cr), where C has an unordered type τ .

The following Lemma easily follows.

Lemma 3.4.5. Let τ1 and τ2 be two types, then

h(G; τ1, τ2) ≥ #{Ci,Dj : Ci = (Ci,1, . . . , Ci,r1) and Dj = (Dj,1, . . . , Dj,r2),

where Ci and Dj are of unordered types τ1 and τ2 respectively, and

{Ci,k}i,k and {Dj,l}j,l all belong to different Aut(G)− classes}.

In the special case of B3, the braid group on 3 strands, one can deduce a more

accurate bound. Let T = (x, y, (xy)−1) be a spherical 3−system of generators for G,

and let C(T ) be the Aut(G)−equivalence class of T , namely

C(T ) := {(φ(x), φ(y), φ(xy)−1) : φ ∈ Aut(G)}.

Define the unordered Aut(G)−equivalence class of T by:

Cun(T ) := C(x, y, (xy)−1) ∪ C(y, x, (yx)−1) ∪ C(x, (yx)−1, y)

∪ C(y, (xy)−1, x) ∪ C((xy)−1, x, y) ∪ C((yx)−1, y, x).

Lemma 3.4.6. Let T = (x, y, (xy)−1) be a spherical 3−system of generators for G,
then the action of B3 preserves Cun(T ).

Proof. Let (x, y, (xy)−1) be a spherical 3−system for G, then the action of B3 =
〈σ1, σ2〉 is given by:

σ1 : (x, y, y−1x−1) → (xyx−1, x, y−1x−1) = x(y, x, x−1y−1)x−1 ∈ C(y, x, (yx)−1),

and

σ2 : (x, y, y−1x−1) → (x, yy−1x−1y−1, y) = (x, x−1y−1, y) ∈ C(x, (yx)−1, y).

Denote by d = d(G; τ) the number of orbits in the set of spherical 3−systems of

generators for G of unordered type τ , under the action of B3×Aut(G). This number

can be effectively computed using the following Corollary, which follows immediately

from Lemma 3.4.6.
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Corollary 3.4.7.
d(G; τ) = #{Cun(T ) : T ∈ B(G, τ)}.

Now, one can use d(G; τ) in order to bound the number of Hurwitz components.

Corollary 3.4.8. Let τ1 and τ2 be two types, then

max{d(G; τ1), d(G; τ2)} ≤ h(G; τ1, τ2) ≤ d(G; τ1) · d(G; τ2) · |Aut(G)|.

Proof. The left inequality is obvious. For the right inequality, let Oi (for i = 1, 2) be
an orbit in the set of spherical 3−systems of generators for G of unordered type τi
under the action of B3×Aut(G), and note that there are d(G; τi) such orbits. Then,
by the following Lemma 3.4.9, the product of O1 and O2 decomposes into at most
|Aut(G)| orbits, under the diagonal action of Aut(G).

The following is a well-known group theoretic Lemma. For the convenience of the

reader we present here a short proof.

Lemma 3.4.9. Let G be a finite group, and let H and K be two subgroups of G.
Consider the diagonal action of G on the set G/H ×G/K. Then

G/H ×G/K ∼=
⋃

HgK∈H\G/K
G/(H ∩ gKg−1),

hence, G/H ×G/K decomposes into at most |G| orbits.

Proof. Let x ∈ G/H × G/K =: D, then x = (g1H, g2K). The stabilizer of x is
given by those g ∈ G such that gg1H = g1H and gg2K = g2K, hence Stab(x) =
g1Hg

−1
1 ∩ g2Hg

−1
2 .

The orbit of x is given by G/Stab(x), choosing (H, g3K) as a representative for x
in the orbit, we have that Gx = G/(H ∩ g3Kg

−1
3 ) as a G−set. Hence, if D = ∪i∈IDi

is a decomposition of D into G−orbits, then for each Di there is a gi ∈ G such that
Di

∼= G/(H ∩ giKg−1
i ) as a G−set. The index set I is determined by the sets of

double cosets H \ G/K. Indeed the map φ : H \ G/K → {Orbits in D} given by
HgK 7→ G(H, gK) is well defined and bijective.

Theorem 3.4.10. Let τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) be two hyperbolic types
and let h(An, τ1, τ2) be the number of Beauville surfaces with group An and with types
(τ1, τ2). Then:

h(An, τ1, τ2) = Ω(n6).
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Proof. Let τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) be two hyperbolic types, let k ∈ N
be an arbitrary integer, and assume that n is large enough. By slightly modifying
Algorithm 2.1.6, we may actually choose 6k almost homogeneous conjugacy classes
in Sn

{Cr1,i, Cs1,i, Ct1,i, Cr2,i, Cs2,i, Ct2,i}ki=1,

which contain even permutations, such that every six classes have orders r1, s1, t1,
r2, s2, t2 respectively, and all the 6k conjugacy classes have different numbers of fixed
points.

Hence, if n is large enough, there are 6k different Sn-conjugacy classes in An, and
moreover, for each 1 ≤ i1, i2, i3, j1, j2, j3 ≤ k, (Cr1,i1 , Cs1,i2 , Ct1,i3) has type τ1 and
(Cr2,j1 , Cs2,j2 , Ct2,j3) has type τ2, by Theorem 0.0.3.

From Lemma 3.4.5, since Sn = Aut(An) (for n > 6), we deduce that if n is large
enough, then h(An; τ1, τ2) ≥ k6. Now, k can be arbitrarily large, therefore,

h(An; τ1, τ2)
n→∞−→ ∞.

Moreover, as the number of different almost homogeneous conjugacy classes in Sn
of some certain order grows linearly in n, the proof actually shows that h = Ω(n6).

Similarly, we can show that if τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) are two hyper-

bolic types, such that at least two of (r1, s1, t1) are even and at least two of (r2, s2, t2)

are even, then

h(Sn; τ1, τ2)
n→∞−→ ∞, (3.1)

and moreover, h = Ω(n6), thus proving Theorem 0.0.6.

In addition, using similar techniques, we can deduce the following Corollaries.

Corollary 3.4.11. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m1,1, . . . ,m1,r2) be two sets
of natural numbers such that mk,i ≥ 2 and

∑rk
i=1(1− 1/mk,i) > 2 for k = 1, 2. Then,

h(Sn; τ1, τ2) grows at least polynomially (of degree r1 + r2) in n.

Corollary 3.4.12. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m1,1, . . . ,m1,r2) be two sets
of natural numbers such that mk,i ≥ 2, at least two of (mk,1, . . . ,mk,rk) are even and∑rk

i=1(1−1/mk,i) > 2, for k = 1, 2. Then, h(Sn; τ1, τ2) grows at least polynomially (of
degree r1 + r2) in n.

In order to estimate the number of Hurwitz components for PSL(2, p), we would

first like to estimate the number d(PSL(2, q); τ) for certain types τ , see Corollar-

ies 3.4.7 and 3.4.8.
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Recall that when p is an odd prime, the automorphisms of PSL(2, p) are exactly

conjugations by elements of PGL(2, p), thus by Corollary 3.4.7, Theorem 2.2.6 and

Theorem 2.2.7, we obtain the following.

Lemma 3.4.13. Let 2 ≤ l ≤ m ≤ n and assume that m > 2 and n > 5. Then

d(PSL(2, p); (l,m, n)) = #
{
(±α,±β,±γ) :

α ∈ Tracesl, β ∈ Tracesm, γ ∈ Tracesn, α
2 + β2 + γ2 − αβγ 6= 4

}
.

Corollary 3.4.14. Let p ≥ 5 be an odd prime, then in PSL(2, p),

i. d(PSL(2, p); (2, 3, p)) = 1.

ii. If r ≥ 7 and r | p±1
2

then d(PSL(2, p); (2, 3, r)) = φ(r)
2

.

iii. d(PSL(2, p); (p, p, p)) = 1.

iv. If r ≥ 7 and r | p±1
2

then

d(PSL(2, p); (r, r, r)) =
ψ(ψ + 1)(ψ + 2)

6
,

where ψ = φ(r)
2

.

v. If 2 < l < m < n such that n > 5 and l,m, n all divide p±1
2

, then

d(PSL(2, p); (l,m, n)) =
φ(l)φ(m)φ(n)

8
.

vi. If 2 ≤ l ≤ m ≤ n such that m > 2 and n > 5 then

d(PSL(2, p); (l,m, n)) ≤ φ(l)φ(m)φ(n)

8
.

Proof. The proof is based on Lemma 2.2.1 and Lemma 3.4.13.

i. The orders (2, 3, p) correspond to the traces (0,±1,±2).

ii. The orders (2, 3, r) correspond to the traces (0,±1,±γ), with Ord(γ) = r. We
need to verify that this triple is non-singular. Indeed, 02 + 12 + γ2 − 0 = 4 is
equivalent to γ2 = 3, and γ2 = 3 if and only if Ord(γ) = 6, a contradiction.

Here is an explanation of the last statement. Let µ be a primitive root of unity
of order 12 (in Fp or in Fp2), and observe that there are exactly four such roots:
±µ and ±µ−1. Hence the trace of a split (or non-split) element of order 6 (in
PSL(2, p)) equals ±γ = ±(µ+ µ−1). Now, γ2 = µ2 + µ−2 + 2 = −ρ− ρ2 + 2 =
1 + 2 = 3, as ρ is a third root of unity.
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iii. The orders (p, p, p) correspond to the traces (−2,−2, 2) (see [Ma, Theorem 7]).

iv. The orders (r, r, r) corresponds to the traces (±αi,±αj,±αk) for 1 ≤ i ≤ j ≤
k ≤ ψ. If α2

i + α2
j + α2

k − αiαjαk = 4, then α2
i + α2

j + α2
k + αiαjαk 6= 4, hence, if

necessary, we may replace (αi, αj, αk) by (−αi,−αj,−αk), to get a non-singular
triple. Therefore,

d(PSL(2, p); (r, r, r)) =

(
ψ

3

)
+ 2

(
ψ

2

)
+ ψ =

ψ(ψ + 1)(ψ + 2)

6
.

v. The orders (l,m, n) corresponds to the traces (α, β, γ) where Ord(α) = l,
Ord(β) = m, Ord(γ) = n, and α, β, γ 6= 0. Now, we may replace (α, β, γ)
by (−α,−β,−γ), to get a non-singular triple, if necessary.

vi. This follows from the previous calculations.

Theorem 3.4.15. Let τ1 and τ2 be two hyperbolic types, let p be an odd prime,
and consider the group PSL(2, p). Let h(PSL(2, p), τ1, τ2) be the number of Beauville
surfaces with group PSL(2, p) and with types (τ1, τ2). Then:

h(PSL(2, p), τ1, τ2) = O(p3).

Proof. Let p be an odd prime, and let τ1 = (l1,m1, n1) and τ2 = (l2,m2, n2) be
two hyperbolic types. By Corollary 3.4.14, for i = 1, 2, d(PSL(2, p); (li,mi, ni)) is
maximal when li,mi and ni are three different integers dividing p±1

2
, and hence is at

most φ(li)φ(mi)φ(ni)
8

.
Recall that the automorphism group of PSL(2, p) is isomorphic to PGL(2, p).

Define the following constant

c :=
φ(l1)φ(m1)φ(n1)φ(l2)φ(m2)φ(n2)

64
,

then, by Corollary 3.4.8,

h(G; τ1, τ2) ≤ d(G; τ1) · d(G; τ2) · |Aut(G)| ≤ c · p(p− 1)(p+ 1) = O(p3).
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3.5 Ramification Structures and Hurwitz Compo-

nents for Abelian Groups

In this section we generalize previous results regarding abelian groups , which ap-

peared in [BCG05], and prove Theorem 0.0.8.

The following Theorem generalizes [BCG05, Theorem 3.4] in case G abelian and

S is isogenous to a higher product of curves with q = 0 (not necessarily Beauville).

From now on we use the additive notation for abelian groups.

Theorem 3.5.1. Let G be an abelian group, given as

G ∼= Z/n1Z× · · · × Z/ntZ,
where n1 | · · · | nt. For a prime p, denote by li(p) the largest power of p which divides
ni (for 1 ≤ i ≤ t).

Let r1, r2 ≥ 3, then G admits an unmixed ramification structure of size (r1, r2)
and genus (0, 0) if and only if the following conditions hold:

• r1, r2 ≥ t+ 1;

• nt = nt−1;

• If lt−1(3) > lt−2(3) then r1, r2 ≥ 4;

• lt−1(2) = lt−2(2);

• If lt−2(2) > lt−3(2) then r1, r2 ≥ 5 and r1, r2 are not both odd.

Proof. Let (x1, . . . , xr1 ; y1, . . . , yr2) be an unmixed ramification structure of size (r1, r2).
Set

Σ1 := Σ(x1, . . . , xr1) := {i1x1, . . . , ir1xr1 : i1, . . . ir1 ∈ Z},
and

Σ2 := Σ(y1, . . . , yr2) := {j1y1, . . . , jr2yr2 : j1, . . . jr2 ∈ Z},
and recall that Σ1 ∩ Σ2 = {0}.

Consider the primary decomposition of G,

G =
⊕

p∈{Primes}
Gp,

and observe that since G is generated by min{r1, r2}−1 elements, so is any Gp (which
is a characteristic subgroup of G).
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Therefore, Gp can be written as

Gp
∼= Z/pk1Z× · · · × Z/pkt−1Z× Z/pktZ,

where k1 ≤ · · · ≤ kt−1 ≤ kt and 1 ≤ t ≤ min{r1, r2} − 1.
Denote Hp := pkt−1Gp, and observe that Hp is an elementary abelian group of

rank at most t.
Step 1. Let x1 = (x1,p) ∈

⊕
p∈{Primes}Gp and let

Σ1,p := Σ(x1,p, . . . , xr1,p) := {l1x1,p, . . . , lr1xr1,p : l1, . . . lr1 ∈ Z},

be the set of multiples of (x1,p, . . . , xr1,p), then by the Chinese Remainder Theorem,
x1,p is a multiple of x1, and hence Σ1 ⊇ Σ1,p.

Step 2. Gp is not cyclic.
Otherwise, if Gp

∼= Z/pkZ, then Hp = pk−1Gp
∼= Z/pZ. Since Σ1,p contains a

generator of Gp, it also contains a non-trivial element of Hp and so Σ1,p ⊇ Hp. Thus
Σ1 ⊇ Hp, and similarly Σ2 ⊇ Hp, a contradiction to Σ1 ∩ Σ2 = {0}.

Step 3. kt = kt−1, namely Gp
∼= Z/pk1Z × · · · × Z/pkt−1Z × Z/pkt−1Z, where

k1 ≤ · · · ≤ kt−1 and 2 ≤ t ≤ min{r1, r2} − 1.
Otherwise, if kt 6= kt−1, then Hp = pkt−1Gp

∼= Z/pZ. As in Step 2, Σ1,p contains a
generator of Gp, and so it also contains a non-trivial element of Hp. Thus Σ1,p ⊇ Hp,
and similarly Σ2,p ⊇ Hp, a contradiction to Σ1 ∩ Σ2 = {0}.

Step 4. p = 2 or 3.
The extra conditions for p = 2 and 3 are due to dimensional reasons.

• Let p = 2 and assume that kt−1 > kt−2. In this case, H2
∼= (Z/2Z)2 contains

only three non-trivial vectors. However, |H2 ∩ Σ1,2| ≥ 3 and |H2 ∩ Σ2,2| ≥ 3, a
contradiction to Σ1 ∩ Σ2 = {0}.

• Let p = 2 and assume that kt−1 = kt−2 > kt−3. In this case, H2
∼= (Z/2Z)3

contains only seven non-trivial vectors.

If r1 = 4 then Σ1,2 contains four different vectors which generate H2, whose sum
is zero, say {e1, e2, e3, e1 + e2 + e3}. Now, the other three non-trivial vectors in
H2 are necessarily {e1 + e2, e1 + e3, e2 + e3}, which are linearly dependent, and
so cannot generate H2

∼= (Z/2Z)3.

When r1 is odd, Σ1,2 contains four different vectors from H2. Indeed, a sum
x1 + · · · + xr1 of some vectors v, u, w over Z/2Z (i.e., xi ∈ {v, u, w}), where r1
is odd, cannot be equal to 0, unless v, u and w are linearly dependent, and so
cannot generate H2

∼= (Z/2Z)3. Thus, if r1 is odd, then |H2 ∩ Σ1,2| ≥ 5, and
similarly, if r2 is odd, then |H2 ∩ Σ2,2| ≥ 5, a contradiction to Σ1 ∩ Σ2 = {0}.
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• Let p = 3 and assume that kt−1 > kt−2. In this case, H3
∼= (Z/3Z)2 contains

only eight non-trivial vectors. If r1 = 3 then Σ1,3 contains three different vectors,
which generate H3, whose sum is zero, say {e1, e2, 2e1 + 2e2}, as well as their
multiples {2e1, 2e2, e1 + e2}. Now, the other two vectors in H2 are necessarily
{e1 +2e2, 2e1 + e2}, which are linearly dependent, and so cannot generate H3

∼=
(Z/3Z)2.

Step 5. Now, let p ≥ 5 and assume that Gp = Z/pk1Z×· · ·×Z/pkt−1Z×Z/pkt−1Z,
where k1 ≤ · · · ≤ kt−1 and 2 ≤ t ≤ min{r1, r2}−1. We will choose appropriate vectors
for Σ1,p and Σ2,p.

Assume that (a, b, c, d) satisfy the condition in Equation (3.2) below, and let

x1,p = (1, 0, . . . , 0, 1, 0) y1,p = (1, 0, . . . , 0, a, b)

x2,p = (0, 1, 0, . . . , 0, 0, 1) y2,p = (0, 1, 0, . . . , 0, c, d)

x3,p = (0, 0, 1, 0, . . . , 0,−1, 0) y3,p = (0, 0, 1, 0, . . . , 0,−a,−b)
x4,p = (0, 0, 0, 1, 0 . . . , 0, 0,−1) y4,p = (0, 0, 0, 1, 0, . . . , 0,−c,−d)

...
...

xt−2,p = (0, . . . , 0, 1, ∗, ∗) yt−2,p = (0, . . . , 0, 1, ∗, ∗)
xt−1,p = (0, . . . , 0, 0, ∗, ∗) yt−1,p = (0, . . . , 0, 0, ∗, ∗)
xt,p = (0, . . . , 0, 0, ∗, ∗) yt,p = (0, . . . , 0, 0, ∗, ∗)

...
...

xr1,p = (−1, . . . ,−1,−1,−1) yr2,p = (−1, . . . ,−1,−a− c,−b− d)

where the elements marked with (∗, ∗) in xt−2,p (and after) are chosen from
{(0,±1), (±1, 0),±(1, 1)} such that (x1,p, x2,p, . . . , xt,p) are independent and the sum
x1,p + · · ·+ xr1,p = 0. Similarly, the elements marked with (∗, ∗) in yt−2,p (and after)
are chosen from {±(a, b),±(c, d),±(a + c, b + d)}, such that (y1,p, y2,p, . . . , yt,p) are
independent and y1,p + · · ·+ yr1,p = 0.

Since 〈x1,p, . . . , xr1,p〉 = Gp = 〈y1,p, . . . , yr2,p〉, we deduce that (x1,p, . . . , xr1,p) form
a spherical r1−system of generators for Gp and that (y1,p, . . . , yr2,p) form a spherical
r2−system of generators for Gp. Moreover, for every 1 ≤ i ≤ r1, 1 ≤ j ≤ r2,
and k, l ∈ Z, if the vectors kxi,p and lyj,p are not trivial, then they are linearity
independent. Hence, Σ1,p ∩ Σ2,p = {0}, as needed.

When p = 2 or 3 it suffices to construct unmixed ramification structures for
the elementary abelian groups in characteristic 2 and 3. These yield an unmixed
ramification structure for any choice of H2 (resp. H3), which induces an appropriate
structure for any G2 (resp. G3), by completing the systems of generators of H2 (resp.
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H3) to systems of generators of G2 (resp. G3), essentially in the same way of p ≥ 5.
These constructions are described in the following Lemmas 3.5.2 and 3.5.3.

Now, recall that by using the primary decomposition of G, it was enough to check
the conditions on each primary componentGp, thusG admits an unmixed ramification
structure of size (r1, r2) as needed.

Lemma 3.5.2. Let G = (Z/2Z)t.
If t ≥ 4 then G always admits an unmixed ramification structure of size (r1, r2),

for any r1, r2 ≥ t+ 1.
If t = 3 then G admits an unmixed ramification structure of size (r1, r2), if and

only if r1, r2 ≥ 5 and r1, r2 are not both odd.

Proof. It is enough to show the existence of structures satisfying the above conditions,
as in Step 4 of Theorem 3.5.1 we proved that they are necessary.

Let t ≥ 4. It is enough to construct such a structure for the cases

r1 = t+ 1 = r2, r1 = t+ 2 = r2 and r1 = t+ 1, r2 = t+ 2.

Indeed, if for some value of r, {v1, . . . , vr} is a set of r vectors, that generate G =
(Z/2Z)t and whose sum is zero, then so is also the set of r+2 vectors {v1, . . . , vr, vr, vr}.
In this way, one can construct any set of size r + 2k (for any k ∈ N).

Now, we can construct the following unmixed ramification structure, where r1 =
t+ 1 = r2:

x1 = (1, 0, . . . , 0) y1 = (1, 1, 0, . . . , 0)

x2 = (0, 1, 0, . . . , 0) y2 = (0, 1, 1, 0, . . . , 0)

...
...

xt−1 = (0, . . . , 1, 0) yt−1 = (0, . . . , 0, 1, 1)

xt = (0, . . . , 0, 1) yt = (1, 1, 1, 0 . . . , 0)

xt+1 = (1, 1, . . . , 1, 1) yt+1 = (0, 1, 1, 0 . . . , 0, 1)

We can construct the following unmixed ramification structure, where r1 = t+2 =
r2:

x1 = (1, 0, . . . , 0) y1 = (1, 1, 0, . . . , 0)

x2 = (0, 1, 0, . . . , 0) y2 = (0, 1, 1, 0, . . . , 0)

...
...

xt−1 = (0, . . . , 0, 1, 0) yt−1 = (0, . . . , 0, 1, 1)

xt = (0, . . . , 0, 0, 1) yt = (1, 1, 1, 0 . . . , 0)

xt+1 = (0, . . . , 0, 1, 0) yt+1 = (1, 1, 1, 0 . . . , 0)

xt+2 = (1, . . . , 1, 0, 1) yt+2 = (1, 0, . . . , 0, 1)
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By taking the t + 1 vectors {x1, . . . , xt+1} from the first structure, and the t + 2
vectors {y1, . . . , yt+2} from the second structure, one obtains an unmixed ramification
structure with r1 = t+ 1 and r2 = t+ 2.

Where t = 3, we can construct the following structure with r1 = r2 = 6:

Σ1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)},
Σ2 = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (0, 0, 1), (0, 1, 1), (1, 0, 1)},

and so, we can construct any structure for which r1, r2 ≥ 6 are even.
We can also construct the following structure with r1 = 5 and r2 = 6:

Σ1 = {(1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1), (1, 0, 1)},
Σ2 = {(0, 0, 1), (0, 1, 1), (1, 1, 1), (0, 0, 1), (0, 1, 1), (1, 1, 1)},

and so, we can construct any structure for which r1 ≥ 5 is odd and r2 ≥ 6 is even,
and vice versa.

Lemma 3.5.3. Let G = (Z/3Z)t.
If t ≥ 3 then G always admits an unmixed ramification structure of size (r1, r2),

for any r1, r2 ≥ t+ 1.
If t = 2 then G admits an unmixed ramification structure of size (r1, r2), if and

only if r1, r2 ≥ 4.

Proof. It is enough to show the existence of structures satisfying the above conditions,
as in Step 4 of Theorem 3.5.1 we proved that they are necessary.

Note that it is enough to construct such a structure for the minimal possible
values of r1 and r2. Indeed, if for some value of r, {v1, . . . , vr} is a set of r vectors,
that generate G = (Z/3Z)t and whose sum is zero, then one can also construct the
following sets, which have the same properties:

• {v1, . . . , vr−1, vr, vr, vr, vr} of size r + 3 (and so any set of size r + 3k).

• {v1, . . . , vr−1, 2vr, 2vr} of size r + 1 (and so any set of size r + 3k + 1).

• {v1, . . . , vr−1, vr, vr, 2vr} of size r + 2 (and so any set of size r + 3k + 2).

Now, if t ≥ 3, we can construct the following unmixed ramification structure,
where r1 = r2 = t+ 1:

x1 = (1, 0, . . . , 0) y1 = (1, 2, 0, . . . , 0)

x2 = (0, 1, 0, . . . , 0) y2 = (0, 1, 2, 0, . . . , 0)

...
...

xt−1 = (0, . . . , 1, 0) yt−1 = (0, . . . , 0, 1, 2)

xt = (0, . . . , 0, 1) yt = (1, . . . , 1, 1, 2)

xt+1 = (2, 2, . . . , 2, 2) yt+1 = (1, 2, . . . , 2, 2)



99

And when t = 2, we can construct the following structure, with r1, r2 = 4:

Σ1 = {(1, 0), (0, 1), (2, 0), (0, 2)},
Σ2 = {(1, 2), (1, 1), (2, 1), (2, 2)}.

Lemma 3.5.4. Let p ≥ 5 be a prime number and U := (Z/pZ)∗, the number N of
quadruples (a, b, c, d) ∈ U such that:

a− b, a+ c, c− d, b+ d, a+ c− b− d, ad− bc ∈ U (3.2)

is N = (p− 1)(p− 2)(p− 3)(p− 4).

Proof. The number N equals p−1 times the number of solutions that we get for a = 1.
Now, b 6= 0, 1, so there are p − 2 possibilities for b. The conditions c 6= 0,−1 and
d 6= 0,−b imply (p− 2)2 possibilities for the pair (c, d). From this number we need to
subtract the number of solutions for c = d, d = 1−b+c and d = bc, which are p−2, p−2
and p−4 respectively. We deduce that there are (p−2)2− [(p−2)+(p−2)+(p−4)] =
(p−3)(p−4) possibilities for the pair (c, d). Hence N = (p−1)(p−2)(p−3)(p−4).

We remark that this Lemma corrects the calculation given in [BCG05, Theorem

3.4].

Observe that for G = (Z/nZ)2 there is only one type of a spherical 3−system of

generators, which is τ = (n, n, n). Also note that Aut(G) ∼= GL(2, n).

The following Lemmas give a more precise estimation of the number of Hurwitz

components in case G = (Z/nZ)2, which generalizes Remark 3.5 in [BCG05].

Lemma 3.5.5. Let p ≥ 5 be a prime. The number h = h(G; τ, τ), where τ = (p, p, p),
of Hurwitz components for G = (Z/pZ)2 satisfies

Np/36 ≤ h ≤ Np/6,

where Np = (p− 1)(p− 2)(p− 3)(p− 4).

Proof. Let (x1, x2; y1, y2) be an unmixed Beauville structure for G. Since x1, x2 are
generators of G, they are a basis, and without loss of generality x1, x2 are the standard
basis x1 = (1, 0), x2 = (0, 1). Now, let y1 = (a, b), y2 = (c, d), then the condition
Σ1∩Σ2 = {0} means that any pair of the six vectors yield a basis of G, implying that
a, b, c, d must satisfy the conditions given in Equation (3.2).
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Moreover, the Np pairs
(
(1, 0), (0, 1); (a, b), (c, d)

)
, where a, b, c, d satisfy (3.2), are

exactly the representatives for the Aut(G)−orbits in the set U(G; τ, τ).
Now, one should consider the action of B3×B3 on U(G; τ, τ), which is equivalent

to the action of S3×S3, since G is abelian. The action of S3 on the second component
is obvious (there are 6 permutations), and the action of S3 on the first component
can be translated to an equivalent Aut(G)−action, given by multiplication in one of
the six matrices:

(
1 0
0 1

)
,

(
0 1
1 0

)
,

( −1 0
−1 1

)
,

(
1 −1
0 −1

)
,

( −1 1
−1 0

)
,

(
0 −1
1 −1

)
,

yielding an equivalent representative.
Therefore, the action of S3 on the second component yields orbits of length 6, and

the action of S3 on the first component connects them together, and gives orbits of
sizes from 6 to 36, which implies the desired result.

Corollary 3.5.6. Let p ≥ 5 be a prime. The number h = h(G; τ, τ), where τ =
(pk, pk, pk), of Hurwitz components for G = (Z/pkZ)2 satisfies

Npk/36 ≤ h ≤ Npk/6,

where Npk = p4k−4(p− 1)(p− 2)(p− 3)(p− 4).

Proof. In this case, the number Npk of Aut(G)−orbits in the set U(G; τ, τ) is exactly
p4k−4 times Np, and the proof is the same as in the previous Lemma 3.5.5.

Corollary 3.5.7. Let n be an integer s.t. (n, 6) = 1. The number h = h(G; τ, τ),
where τ = (n, n, n), of Hurwitz components for G = (Z/nZ)2, where n = pk11 · . . . · pkt

t ,
satisfies

Nn/36 ≤ h ≤ Nn/6,

where Nn =
∏t

i=1 p
4ki−4
i (pi − 1)(pi − 2)(pi − 3)(pi − 4).

Proof. By the Chinese Remainder Theorem, the number Nn of Aut(G)−orbits in the
set U(G; τ, τ) can be computed using Corollary 3.5.6, and the proof is now the same
as in Lemma 3.5.5.

Since Nn = Θ(n4), this completes the proof of Theorem 0.0.8, that we recall.

Theorem 3.5.8. Let n ∈ N s.t. (n, 6) = 1, let Gn = (Z/nZ)2, and let τn = (n, n, n).
Let h((Z/nZ)2, τn, τn) be the number of Beauville surfaces with group (Z/nZ)2 and
with types (τn, τn). Then:

h((Z/nZ)2, τn, τn) = Θ(n4).
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We shall now deal with Hurwitz Components in Case G Abelian and S not nec-

essarily Beauville but isogenous to a higher product of curves with q(S) = 0.

Fix an integer r, let p > 5 be a prime number, and let G = (Z/pZ)r, then by

Theorem 3.5.1, G admits an unmixed ramification structure of type (τ1, τ2) where

τ1 = τ2 = τ = (p, . . . , p) (p appears (r + 1)−times) and r1 = r2 = r + 1.

Proposition 3.5.9. Fix an integer r, then the number h = h(G; τ, τ) of Hurwitz
components for G = (Z/pZ)r and τ = (p, . . . , p) (p appears (r + 1)−times) satisfies,
as p→∞,

h = Θ(pr
2

).

Proof. Let (x1, . . . , xr1 ; y1, . . . , yr2) be an unmixed ramification structure for G. Since
x1, . . . , xr1 generate G, they are a basis, and without loss of generality they are of
the form given in Step 5 of Theorem 3.5.1. However, for y1, . . . , yr2 one can take any
appropriate set of r2 = r + 1 vectors in (Z/pZ)r, which admit an unmixed ramifica-
tion structure, and so each proper choice of (y1, . . . , yr2) corresponds to exactly one
Aut(G)−orbit in the set U(G; τ, τ).

Therefore, one can choose any invertible (r − 2)× (r − 2) matrix for



y1,1 . . . y1,r−2
...

yr−2,1 . . . yr−2,r−2


 ,

choose any vector of length r−2 for (yr−1,1, . . . , yr−1,r−2), and similarly for (yr,1, . . . , yr,r−2).
Moreover, for 1 ≤ i ≤ r − 2, one can choose for (yi,r−1, yi,r) any vector from the set
S := {(a, b) ∈ F2

p : a 6= 0, b 6= 0, a 6= b}. Observe that |S| = (p− 1)(p− 2).
Now, one has to make sure that yr−1 is not a linear combination of y1, . . . , yr−2, by

choosing (yr−1,r−1, yr−1,r) appropriately from S, and so there are at least (p− 1)(p−
2)−1 = p2−3p+1 possibilities for this pair. Moreover, one should choose (yr,r−1, yr,r)
appropriately from S, such that yr is not some linear combination of y1, . . . , yr−1, and
that (yr+1,r−1, yr+1,r) ∈ S, and so the number of possibilities to the pair (yr,r−1, yr,r)
is at least (p− 3)(p− 5) = p2 − 8p+ 15.

The condition that the pairs (yi,r−1, yi,r) ∈ S for 1 ≤ i ≤ r + 1 is needed to
guarantee that for any k, l ∈ Z and 1 ≤ i, j ≤ r+ 1, if the vectors kxi and lyj are not
trivial, then they are linearity independent, and so Σ1 ∩ Σ2 = {0}, as needed.

Hence, the number of Aut(G)−orbits in the set U(G; τ, τ) is bounded from below
by

|GL((r − 2), p)|p2(r−2)
(
(p− 1)(p− 2)

)r−2
(p2 − 3p+ 1)(p2 − 8p+ 15)

= Θ
(
p(r−2)2+2(r−2)+2(r−2)+2+2

)
= Θ

(
pr

2)
.
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It is clear that the number of orbits is bounded from above by

|GL(r, p)| = Θ(pr
2

).

Now, the action of Br1 × Br2 on the Aut(G)−orbits of U(G; τ, τ), is equivalent
to the action of Sr1 × Sr2 , since G is abelian, and so yields orbits of sizes between
(r+ 1)! and ((r+ 1)!)2. This has no effect on the above asymptotic, however, since r
is fixed.



Appendix A

Tables: Isotrivially Fibred Surfaces
with pg = q = 0

Surfaces Isogenous to a Higher Product of Curves pg = q = 0 ( K2
S = 8 )

Type g(C) g(F ) G IdSmallGroup m dim n

UnMix 20 3 A5 G(60,5) (2, 52), (34) 1 1

UnMix 5 12 A5 G(60,5) (53), (24) 1 1

UnMix 15 4 A5 G(60,5) (32, 5), (24) 1 1

UnMix 24 2 S4 × Z/2Z G(48,48) (2, 4, 6), (26) 3 1

UnMix 4 8 G(32) G(32,27) (22, 42), (23, 4) 2 1

UnMix (B) 6 6 (Z/5Z)2 G(25,2) (53), (53) 0 2

UnMix 12 2 S4 G(24,12) (3, 42), (26) 3 1

UnMix 4 4 G(16) G(16,3) (22, 42), (22, 42) 2 1

UnMix 8 2 D4 × Z/2Z G(16,11) (23, 4), (26) 4 1

UnMix 4 4 (Z/2Z)4 G(16,14) (25), (25) 4 1

UnMix 3 3 (Z/3Z)2 G(9,2) (34), (34) 2 1

UnMix 4 2 (Z/2Z)3 G(8,5) (25), (26) 5 1

Mix (B) 16 16 G(256, 1) G(256,1) (43) 0 3

Mix (B) 16 16 G(256, 2) G(256,2) (43) 0 1

Table 1
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Where (B) denotes a Beauville surface, and a presentation for the groups G(16),

G(32), G(256.1), and G(256.2) are:

G(16) =

〈
g1, g2, g3, g4

g2
1g
−1
4 , g2

4, g−1
2 g−1 1g2g1g

−1
3 , g−1

3 g−1
1 g3g1, g−1

4 g−1
3 g4g3,

g−1
4 g−1

1 g4g1, g2
2, g

−1
3 g−1

2 g3g2, g−1
4 g−1

2 g4g2, g2
3

〉
,

G(32) =

〈
g1, . . . , g5

g2
1, g

2
5, g−1

2 g−1
1 g2g1g

−1
4 , g−1

3 g−1
1 g3g1g

−1
5 , g−1

4 g−1
1 g4g1,

g−1
5 g−1

1 g5g1, g2
2, g

−1
3 g−1

2 g3g2, g−1
4 g−1

2 g4g2, g−1
5 g−1

4 g5g4,

g−1
5 g−1

2 g5g2, g2
3, g

2
4, g−1

4 g−1
3 g4g3, g−1

5 g−1
3 g5g3

〉
,

G(256, 1) =

〈
g1, . . . , g8

g2
1g
−1
2 , g2

8, g
−1
2 g−1

1 g2g1, g
−1
3 g−1

1 g3g1, g
−1
4 g−1

1 g4g1, g
−1
5 g−1

1 g5g1,

g−1
6 g−1

1 g6g1, g
−1
7 g−1

1 g7g1, g
−1
8 g−1

1 g8g1, g
2
2g
−1
3 , g−1

8 g−1
6 g8g6,

g−1
3 g−1

2 g3g2, g
−1
4 g−1

2 g4g2, g
−1
5 g−1

2 g5g2, g
−1
6 g−1

2 g6g2, g
−1
7 g−1

2 g7g2,

g−1
8 g−1

2 g8g2, g
2
3g
−1
4 , g−1

4 g−1
3 g4g3, g

−1
5 g−1

3 g5g3, g
−1
6 g−1

3 g6g3,

g−1
8 g−1

3 g8g3, g
2
4g
−1
5 , g−1

5 g−1
4 g5g4, g

−1
6 g−1

4 g6g4, g
−1
8 g−1

7 g8g7,

g−1
7 g−1

4 g7g4, g
−1
8 g−1

4 g8g4, g
2
5g
−1
6 , g−1

6 g−1
5 g6g5, g

−1
7 g−1

5 g7g5,

g−1
8 g−1

5 g8g5, g
2
6g
−1
7 , g2

7g
−1
8 , g−1

7 g−1
6 g7g6, g

−1
7 g−1

3 g7g3

〉
,

G(256, 2) =

〈
g1, . . . , g8

g2
1g
−1
4 , g−1

2 g−1
1 g2g1g

−1
3 , g−1

3 g−1
1 g3g1, g

−1
4 g−1

1 g4g1, g
−1
5 g−1

1 g5g1g
−1
6 ,

g−1
6 g−1

1 g6g1, g
−1
7 g−1

1 g7g1, g
−1
8 g−1

1 g8g1, g
2
2g
−1
5 , g−1

3 g−1
2 g3g2,

g−1
4 g−1

2 g4g2g
−1
6 , g−1

5 g−1
2 g5g2, g

−1
6 g−1

2 g6g2, g
−1
7 g−1

2 g7g2,

g−1
8 g−1

2 g8g2, g
2
3g
−1
6 , g−1

4 g−1
3 g4g3, g

−1
5 g−1

3 g5g3, g
−1
6 g−1

3 g6g3,

g−1
7 g−1

3 g7g3, g
−1
8 g−1

3 g8g3, g
2
4g
−1
7 , g−1

5 g−1
4 g5g4, g

−1
6 g−1

4 g6g4,

g−1
7 g−1

4 g7g4, g
−1
8 g−1

4 g8g4, g
2
5g
−1
8 , g−1

6 g−1
5 g6g5, g

−1
7 g−1

5 g7g5,

g−1
8 g−1

5 g8g5, g
2
6, g

−1
7 g−1

6 g7g6, g
−1
8 g−1

6 g8g6, g
2
7, g

−1
8 g−1

7 g8g7, g
2
8

〉
.

Isotrivially Fibred Surfaces with pg = q = 0

Here S → X := (C × F )/G is a standard isotrivial fibration with pg(S) =

q(S) = 0, such that X has only rational double points as singularities (which are

(8−K2
S)−nodes), and S is a minimal model.
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K2
S g(C) g(F ) G m π1(S) n

6 19 16 A6 (2, 52), (32, 4) A4 × Z/5Z 2

6 11 19 S5 × Z/2Z (2, 4, 6), (2, 4, 101) S3 ×D4,5,−1 1

6 19 8 PSL(2,7) (2, 72), (32, 4), A4 × Z/7Z 2

6 4 16 A5 (2, 52), (2, 33) Z2 o Z/15Z 1

6 3 19 S4 × Z/2Z (2, 4, 6), (24, 4) Π2 ↪→ π1 ³ Z/2Z× Z/4Z 1

6 3 7 D4 × Z/2Z (23, 4), (24, 4) Z2 × Π2 ↪→ π1 ³ (Z/2Z)2 1

4 4 21 S5 (2, 4, 5), (3, 62) Z2 o Z/3Z 1

4 4 11 A5 (2, 52, (22, 32) Z/15Z 1

4 3 13 S4 × Z/2Z (2, 4, 6), (22, 42) Z2 o Z/4Z 1

4 3 13 S4 × Z/2Z (2, 4, 6), (25) Z2 o Z/2Z 1

4 5 5 (Z/2Z)4 o Z/2Z (23, 4), (23, 4) G(32, 2) 1

4 3 7 S4 (3, 42), (25) Z2 o Z/4Z 1

4 4 4 S3 × Z/3Z (3, 62), (22, 32) Z2 o Z/3Z 1

4 4 4 (Z/3Z)2 o Z/2Z (22, 32), (22, 32) (Z/3Z)3 1

4 3 5 D4 × Z/2Z (23, 4), (25) Z2 ↪→ π1 ³ D4 1

4 3 3 Z/4Z× Z/2Z (22, 42), (22, 42) Z4 ↪→ π1 ³ (Z/2Z)2 1

4 3 3 (Z/2Z)3 (25), (25) Z4 ↪→ π1 ³ (Z/2Z)2 1

2 3 22 PSL(2, 7) (2, 3, 7), (43) (Z/2Z)2 2

2 4 11 S5 (2, 4, 5), (2, 62) Z/3Z 1

2 4 6 A5 (2, 52),(23, 3) Z/5Z 1

2 3 7 S4 × Z/2Z (2, 4, 6) (23, 4) (Z/2Z)2 1

2 4 4 S3 × S3 (2, 62), (23, 3) Z/3Z 1

2 3 3 (Z/4Z)2 (43), (43) (Z/2Z)3 1

2 3 3 D4 × Z/2Z (23, 4), (23, 4) Z/2Z× Z/4Z 1

Table 2



Appendix B

Tables: Isotrivially Fibred Surfaces
with pg = q = 1

Surfaces Isogenous to a Higher Product of Curves pg = q = 1 ( K2
S = 8 )

Type g(C) g(F ) G IdSmallGroup m dim n

UnMix 3 3 (Z/2Z)2 G(4,2) (22), (26) 5 1

UnMix 5 3 (Z/2Z)3 G(8,5) (22), (25) 4 1

UnMix 5 3 Z/2Z× Z/4Z G(8,2) (22), (22, 42) 3 2

UnMix 9 3 Z/2Z× Z/8Z G(16,5) (22), (2, 82) 2 1

UnMix 5 3 D4 G(8,3) (22), (22, 42) 3 1

UnMix 7 3 D6 G(12,4) (22), (23, 6) 3 1

UnMix 9 3 Z/2Z×D4 G(16,11) (22), (23, 4) 3 1

UnMix 13 3 D2,12,5 G(24,5) (22), (2, 4, 12) 2 1

UnMix 13 3 Z/2Z× A4 G(24,13) (22), (2, 62) 2 1

UnMix 13 3 S4 G(24,12) (22), (3, 42) 2 1

UnMix 17 3 Z/2Z n (Z/2Z× Z/8Z) G(32,9) (22), (2, 4, 8) 2 1

UnMix 25 3 Z/2Z× S4 G(48,48) (22), (2, 4, 6) 2 1

UnMix 3 4 S3 G(6,1) (3),(26) 4 1

UnMix 5 4 D6 G(12,4) (3), (25) 3 1

UnMix 7 4 Z/3Z× S3 G(18,3) (3), (22, 32) 2 2
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Type g(C) g(F ) G IdSmallGroup m dim n

UnMix 7 4 Z/3Z× S3 G(18,3) (3), (3, 62) 2 1

UnMix 9 4 S4 G(24,12) (3), (23, 4) 2 1

UnMix 13 4 S3 × S3 G(36,10 ) (3), (2, 62) 1 1

UnMix 13 4 Z/6Z× S3 G(36,12) (3), (2, 62) 1 1

UnMix 13 4 Z/4Z n (Z/3Z)2 G(36,9) (3), (2, 42) 1 2

UnMix 21 4 A5 G(60,5) (3),(2, 52) 1 1

UnMix 25 4 Z/3Z× S4 G(72,42) (3), (2, 3, 12) 1 1

UnMix 41 4 S5 G(120,34) (3), (2, 4, 5) 1 1

UnMix 3 5 D4 G(8,3) (2), (26) 4 1

UnMix 4 5 A4 G(12,3) (2), (34) 2 2

UnMix 5 5 Z/4Z n (Z/2Z)2 G(16,3) (2), (22, 42) 2 3

UnMix 7 5 Z/2Z× A4 G(24,13) (2), (22, 32) 2 2

UnMix 7 5 Z/2Z× A4 G(24,13) (2), (3, 62) 1 1

UnMix 9 5 Z/8Z n (Z/2Z)2 G(32,5) (2), (2, 82) 1 1

UnMix 9 5 Z/2Z nD2,8,5 G(32,7) (2), (2, 82) 1 1

UnMix 9 5 Z/4Z n (Z/4Z× Z/2Z) G(32,2) (2), (43) 1 1

UnMix 9 5 Z/4Z n (Z/2Z)3 G(32,6) (2), (43) 1 1

UnMix 13 5 (Z/2Z)2 × A4 G(48,49) (2), (2, 62) 1 1

UnMix 17 5 Z/4Z n (Z/2Z)4 G(64,32) (2), (2, 4, 8) 1 1

UnMix 21 5 Z/5Z n (Z/2Z)4 G(80,49) (2), (2, 52) 1 2

Mix 5 5 D2,8,3 G(16,8) (22) 2 1

Mix 5 5 D2,8,5 G(16,6) (22) 2 2

Mix 5 5 Z/4Z n (Z/2Z)2 G(16,3) (22) 2 1

Table 1

Standard Isotrivial Fibrations with pg = q = 1

Here S → X := (C × F )/G is a standard isotrivial fibration with pg = q = 1 and

such that S is a minimal model.
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K2
S g(F ) g(C) G IdSmallGroup Sing(X)

6 3 10 SL2(F3) G(24, 3) 2× 1
2
(1, 1)

6 3 13 Z/2Z n (Z/2Z× Z/8Z) G(32, 9) 2× 1
2
(1, 1)

6 3 13 Z/2Z nD2,8,5 G(32, 11) 2× 1
2
(1, 1)

6 3 19 G(48, 33) G(48, 33) 2× 1
2
(1, 1)

6 3 19 Z/3Z n (Z/4Z)2 G(48, 3) 2× 1
2
(1, 1)

6 3 64 PSL2(F7) G(168, 42) 2× 1
2
(1, 1)

6 4 3 D4 G(8, 3) 2× 1
2
(1, 1)

6 4 4 A4 G(12, 3) 2× 1
2
(1, 1)

6 4 7 D2,12,7 G(24, 10) 2× 1
2
(1, 1)

6 4 10 Z/3Z× A4 G(36, 11) 2× 1
2
(1, 1)

6 4 19 D4 n (Z/3Z)2 G(72, 40) 2× 1
2
(1, 1)

6 4 31 S5 G(120, 34) 2× 1
2
(1, 1)

5 3 3 S3 G(6, 1) 1
3
(1, 1) + 1

3
(1, 2)

5 3 5 D4,3,−1 G(12, 1) 1
3
(1, 1) + 1

3
(1, 2)

5 3 5 D6 G(12, 4) 1
3
(1, 1) + 1

3
(1, 2)

5 3 9 D2,12,5 G(24, 5) 1
3
(1, 1) + 1

3
(1, 2)

5 3 9 S4 G(24, 12) 1
3
(1, 1) + 1

3
(1, 2)

5 3 17 Z/2Z× S4 G(48, 48) 1
3
(1, 1) + 1

3
(1, 2)

5 3 33 S3 n (Z/4Z)2 G(96, 64) 1
3
(1, 1) + 1

3
(1, 2)

5 3 57 PSL2(F7) G(168, 42) 1
3
(1, 1) + 1

3
(1, 2)

4 2 3 Z/2Z× Z/2Z G(4, 2) 4× 1
2
(1, 1)

4 2 4 Z/6Z G(6, 2) 4× 1
2
(1, 1)

4 2 4 S3 G(6, 1) 4× 1
2
(1, 1)

4 2 5 D4 G(8, 3) 4× 1
2
(1, 1)

4 2 7 Z/2Z× Z/6Z G(12, 5) 4× 1
2
(1, 1)

4 2 7 D6 G(12, 4) 4× 1
2
(1, 1)
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K2
S g(F ) g(C) G IdSmallGroup Sing(X)

4 2 9 D2,8,3 G(16, 8) 4× 1
2
(1, 1)

4 2 13 Z/2Z n ((Z/2Z)2 × Z/3Z) G(24, 8) 4× 1
2
(1, 1)

4 2 25 GL2(F3) G(48, 29) 4× 1
2
(1, 1)

4 3 3 D4 G(8, 3) 4× 1
2
(1, 1)

4 3 4 A4 G(12, 3) 4× 1
2
(1, 1)

4 3 5 D2,8,5 G(16, 6) 4× 1
2
(1, 1)

4 3 5 D4,4,−1 G(16, 4) 4× 1
2
(1, 1)

4 3 7 Z/2Z× A4 G(24, 13) 4× 1
2
(1, 1)

3 2 11 Z/2Z n ((Z/2Z)2 × Z/3Z) G(24, 8) 2× 1
2 (1, 1) + 1

3 (1, 1) + 1
3 (1, 2)

3 2 21 GL2(F3) G(48, 29) 2× 1
2 (1, 1) + 1

3 (1, 1) + 1
3 (1, 2)

2 2 7 D2,8,3 G(16, 8) 2× 1
2 (1, 1) + 1

4 (1, 1) + 1
4 (1, 3)

2 2 10 SL2(F3) G(24, 3) 2× 1
2 (1, 1) + 1

4 (1, 1) + 1
4 (1, 3)

2 2 3 S3 G(6, 1) 2× 1
3
(1, 1) + 2× 1

3
(1, 2)

2 2 5 D4,3,−1 G(12, 1) 2× 1
3
(1, 1) + 2× 1

3
(1, 2)

2 2 5 D6 G(12, 4) 2× 1
3
(1, 1) + 2× 1

3
(1, 2)

2 2 3 Q8 G(8, 4) 6× 1
2
(1, 1)

2 2 3 D4 G(8, 3) 6× 1
2
(1, 1)

Table 2



Appendix C

GAP4 Program

GeneratingVectors.gap

################################################################

# Generating vectors: #

#------------------- #

# Look for generating vectors in finite groups

# yielding ramified covers of Riemann surfaces # with prescribed

# ramification # (Existence and complete list)

#################################################################

GeneratingMapOperations:=function(type)

# returns a vector of pairs [operator, second argument]

# generating the Map/InnAut-action

local braidaction,

mapg1p1,

mapg1p2,

mapg2p0,

operators,j;

# Define generating operators

# Braid group

braidaction:=function(vect,j)

local tup;

if j>Length(type.rami)-1 then return vect; fi;

tup:=ShallowCopy(vect.rami);

tup[j]:= vect.rami[j+1];

tup[j+1]:= Inverse(vect.rami[j+1])*vect.rami[j]*vect.rami[j+1];

return rec(pi1:=vect.pi1, rami:=tup);

end;

# Map Elliptic Gamma(1|2)

mapg1p2:=function(vect,j)

local pi1, rami;

if j>4 then return vect; fi;

pi1:=ShallowCopy(vect.pi1);

rami:=ShallowCopy(vect.rami);

if j=1 then

pi1[2]:= vect.pi1[2]*vect.pi1[1];

fi;
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if j=2 then

pi1[1]:= vect.pi1[1]*Inverse(vect.pi1[2]);

fi;

if j=3 then

pi1[1]:= Inverse(vect.pi1[2])*vect.rami[1]*vect.pi1[1];

rami[2]:=vect.pi1[1]*Inverse(vect.pi1[2])*Inverse(vect.pi1[1])*vect.rami[2]*

vect.pi1[1]*vect.pi1[2]*Inverse(vect.pi1[1]);

fi;

if j=4 then

pi1[1]:= Inverse(vect.pi1[1]);

pi1[2]:= Inverse(vect.pi1[2]);

rami[1]:=Inverse(vect.pi1[2])*Inverse(vect.pi1[1])*vect.rami[2]*

vect.pi1[1]*vect.pi1[2];

rami[2]:=Inverse(vect.pi1[1])*Inverse(vect.pi1[2])*vect.rami[1]*

vect.pi1[2]*vect.pi1[1];

fi;

return rec(pi1:=pi1 , rami:=rami);

end;

# Map Elliptic Gamma(1|1)

mapg1p1:=function(vect,j)

local tup;

if j>2 then return vect; fi;

tup:=ShallowCopy(vect.pi1);

if j=1 then

tup[2]:= vect.pi1[2]* vect.pi1[1];

fi;

if j=2 then

tup[1]:= vect.pi1[1]*Inverse(vect.pi1[2]);

fi;

return rec(pi1:=tup , rami:=vect.rami);

end;

##############################################3

# Map Hyperelliptic Gamma(2|0)

mapg2p0:=function(vect,j)

local tup;

if j>5 then return vect; fi;

tup:=ShallowCopy(vect.pi1);

if j=1 then

tup[1]:= vect.pi1[1]*Inverse(vect.pi1[2]);

fi;

if j=2 then

tup[2]:= vect.pi1[2]*vect.pi1[1];

fi;

if j=3 then

tup[4]:= vect.pi1[4]*vect.pi1[3];

fi;

if j=4 then

tup[3]:= vect.pi1[3]*Inverse(vect.pi1[4]);

fi;

if j=5 then

tup[1]:=vect.pi1[1]*Inverse(vect.pi1[2])
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*vect.pi1[3]*vect.pi1[4]*Inverse(vect.pi1[3]);

tup[2]:=Inverse(vect.pi1[4])

*vect.pi1[1]*vect.pi1[2]*Inverse(vect.pi1[1])

*vect.pi1[2]*Inverse(vect.pi1[2])*vect.pi1[3]

*vect.pi1[4]*Inverse(vect.pi1[3]);

tup[3]:=Inverse(vect.pi1[4])*vect.pi1[1]

*vect.pi1[2]*Inverse(vect.pi1[1])*vect.pi1[3];

tup[4]:= vect.pi1[4];

fi;

return rec(pi1:=tup , rami:=vect.rami);

end;

###############################################################

# Other calculated actions of the braid group on generating

# vectors could be added here.

################################################################

# Generate list of operators

operators:=[];

#Operators in ...

#... genus 0

if type.genus=0 then

# Generate vector of operators:

for j in [1..(Length(type.rami)-1)] do

Append(operators, [[braidaction,j]]);

od;

return operators;

fi;

# ... genus 1

if type.genus=1 then

if Length(type.rami)=1 then

for j in [1..2] do

Append(operators, [[mapg1p1,j]]);

od;

return operators;

fi;

if Length(type.rami)=2 then

for j in [1..4] do

Append(operators, [[mapg1p2,j]]);

od;

return operators;

fi;

fi;

# ... genus 2

if type.genus=2 then

if Length(type.rami)=0 then

for j in [1..5] do

Append(operators, [[mapg2p0,j]]);

od;

return operators;

fi;

fi;

# Other cases still to be implemented if necessary.

Print("No action of the mapping class group known for ", type, ".\n");

return fail;

end;
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##################################################

# Type functions:

# calculate the

# genus of the covering using the Hurwitz formula

##################################################

CoveringCurveGenus:=function(G,type)

return Size(G)*(2*(type.genus -1)+

Sum(List(type.rami, nu-> 1-1/nu)))/2+1;

end;

NrOfModuli:=function(type)

# Moduli of surf-dim aut + Nr of points

if type.genus=0 then

return Length(type.rami)-3;

fi;

if type.genus=1 then

return 1+Length(type.rami)-1;

fi;

if type.genus >1 then

return 3*type.genus-3 +Length(type.rami);

fi;

return fail;

end;

#### find them...

AllGeneratingVectors:=function(G, type)

# Calculate all generating vectors of a group G of fixed type

# e.g., type=rec(genus:=0, rami:=[2,3,7]);

# NOTE: We do not permute type.rami!

#

# Output: A list of records with entries

# .pi1 for generators corresponding to the genus

# and .rami for generators corresponding the covering group

local genvects,

vector,

pi1,rami,

list,j,

admissible;

admissible:=function(vector)

local list,j,commutator;

commutator:=function(a,b)

return Product([a,b,Inverse(a),Inverse(b)]);

end;

list:=[];
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Append(list, vector.rami);

for j in [1..(type.genus)] do

Append(list, [commutator(vector.pi1[2*j-1],vector.pi1[2*j])]);

od;

if Product(list)=Identity(G) then

if Subgroup(G, Union(vector.pi1, vector.rami))=G then

return true;

fi;

fi;

return false;

end;

list:=[];

for j in type.rami do

Append(list, [Filtered(G, g-> Order(g)=j)]);

od;

genvects:=[];

for rami in Cartesian(list) do

for pi1 in Tuples(G,(2*type.genus)) do

vector:=rec(pi1:=pi1, rami:=rami);

if admissible(vector) then

Append(genvects,[vector]);

fi;

od;

od;

return genvects;

end;

CompleteGeneratingVectors:=function(G,type)

# Calculate all generating vectors of a group G of fixed type

# e.g., type=rec(genus:=0, rami:=[2,3,7]);

# NOTE: We do permute type.rami!

#

# Output: A list of records with entries

# .pi1 for generators corresponding to the genus

# and .rami for generators corresponding the covering group

local genvects,

vector,

pi1,rami,

permut,

list,j,

admissible;

admissible:=function(vector)

local list,j,commutator;

commutator:=function(a,b)
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return Product([a,b,Inverse(a),Inverse(b)]);

end;

list:=[];

Append(list, vector.rami);

for j in [1..(type.genus)] do

Append(list, [commutator(vector.pi1[2*j-1],vector.pi1[2*j])]);

od;

if Product(list)=Identity(G) then

if Subgroup(G, Union(vector.pi1, vector.rami))=G then

return true;

fi;

fi;

return false;

end;

genvects:=[];

for permut in Arrangements(type.rami, Length(type.rami)) do

list:=[];

for j in permut do

Append(list, [Filtered(G, g-> Order(g)=j)]);

od;

for rami in Cartesian(list) do

for pi1 in Tuples(G,(2*type.genus)) do

vector:=rec(pi1:=pi1, rami:=rami);

if admissible(vector) then

Append(genvects,[vector]);

fi;

od;

od;

od;

return genvects;

end;

# Existence function:

ExistsGeneratingVector:=function(G, type)

# Test the existence of a generating vectors of a group G of fixed type

# e.g., type=rec(genus:=0, rami:=[2,3,7]);

# NOTE: We do not permute type.rami!

#

# Output: true or false

local genvects,

vector,

pi1,rami,

list,j,

admissible;

admissible:=function(vector)

local list,j,commutator;
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commutator:=function(a,b)

return Product([a,b,Inverse(a),Inverse(b)]);

end;

list:=[];

for j in [1..(type.genus)] do

Append(list, [commutator(vector.pi1[2*j-1],vector.pi1[2*j])]);

od;

Append(list, vector.rami);

if Product(list)=Identity(G) then

if Subgroup(G, Union(vector.pi1, vector.rami))=G then

return true;

fi;

fi;

return false;

end;

list:=[];

for j in type.rami do

Append(list, [Filtered(G, g-> Order(g)=j)]);

od;

genvects:=[];

for rami in Cartesian(list) do

for pi1 in Tuples(G,(2*type.genus)) do

vector:=rec(pi1:=pi1, rami:=rami);

if admissible(vector) then

return true;

fi;

od;

od;

return false;

end;

admissible:=function(G,type,vector)

local list,j,commutator;

commutator:=function(a,b)

return Product([a,b,Inverse(a),Inverse(b)]);

end;

list:=[];

Append(list, vector.rami);

for j in [1..(type.genus)] do

Append(list, [commutator(vector.pi1[2*j-1],vector.pi1[2*j])]);

od;

if Product(list)=Identity(G) then

if Subgroup(G, Union(vector.pi1, vector.rami))=G then

return true;

fi;

fi;
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return false;

end;

##############################################################

##############################################################

##############################################################

NrOfComponents_062009.gap

##############################################################

##############################################################

##############################################################

################## Version June 2009 ######################

##############################################################

# Calculate the number of connected components of the moduli space

# of surfaces isogenous to a product of curves CxF/G

########################################

# Functions for generating vectors

#######################################

Read("GeneratingVectors.gap");

###############################################

# Surface data

##############################################

Surfacedata:=function(G,type1, type2)

local chiCxF,chiS, pgS, qS,

gC,gF,

albdimS;

gC:=CoveringCurveGenus(G, type1);

gF:=CoveringCurveGenus(G, type2);

chiCxF:=1-gF-gC+gC*gF;

chiS:=chiCxF/Size(G);

qS:=type1.genus + type2.genus;

pgS:=chiS-1+qS;

if type1.genus*type2.genus=0 then

if type1.genus+type2.genus=0 then

albdimS:=0;

else

albdimS:=1;

fi;

else

albdimS:=2;

fi;

Print("\n\n----------------------------------------------------------------------- \n");

Print("S is a surface isogenous to a product CxF/G \n");

Print("----------------------------------------------------------------------- \n");

Print("G=SmallGroup(", IdSmallGroup(G),"), ");

Print("Order(G): ", Order(G), "\n");

Print("Ramification Vectors: < ",type1.genus," | ",type1.rami," >, < ",type2.genus," | ",type2.rami," >\n");

Print("g(C)= ", gC,"\n", "g(F)= ", gF,"\n");
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Print("p_g(S)= ", pgS,"\n");

Print("q(S)= ", qS,"\n");

Print("Albanese dimension= ", albdimS, "\n");

Print("Dimension Moduli Space= ", (NrOfModuli(type1)+NrOfModuli(type2)) ,"\n");

Print("---------------------------------------------------------------------\n");

end;

GenerateStartingSets:=function(G, type1, type2)

# Output: record et = everything

# contains et.A shorter list et.B longer list

# contains A.type,A.vects (all!!)

local et, vects1, vects2;

et:=rec();

vects1:=CompleteGeneratingVectors(G,type1);

vects2:=CompleteGeneratingVectors(G,type2);

# Can change here if we want to do the bigger set first.

if Length(vects1)<Length(vects2) then

#if Length(vects1)>Length(vects2) then

et.A:=rec(vects:=vects1, type:=type1);

et.B:=rec(vects:=vects2, type:=type2);

else

et.A:=rec(vects:=vects2, type:=type2);

et.B:=rec(vects:=vects1, type:=type1);

fi;

return et;

end;

AddGeneratingMapOperations:=function(type)

local mapops;

mapops:=GeneratingMapOperations(type);

if mapops<>fail then

type.mapops:=mapops;

return true;

else

return fail;

fi;

end;

AddMapOrbit:=function(G,side, set)

# Adds the orbit numbers for map.class group to the vectors in the map orbits of set);

# side:=rec(vects, type); set contained in side.vects

#Assume that set is closed under the action!

local orbadd, orblist,orblistold,simconj,

i,j,x,y,z,f,

printtest;

if not IsSubset(side.vects, set) then return fail; fi;
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simconj:=function( g, vect);

return rec(pi1:=List(vect.pi1, h-> Inverse(g)*h*g),

rami:=List(vect.rami, h-> Inverse(g)*h*g));

end;

if not IsBound(side.type.mapops) then

AddGeneratingMapOperations(side.type);

fi;

#Number of orbits stored globally:

if not IsBound(side.nrorb) then

side.nrorb:=rec();

fi;

for j in [1.. (Length(side.type.mapops)+1)] do

if not IsBound(side.nrorb.(j)) then

side.nrorb.(j):=0;

fi;

od;

if not IsBound(side.nrorb.map) then

#Print("Setting map");

side.nrorb.map:=0;

fi;

for x in set do

if not IsBound(x.orb) then

x.orb:=rec();

fi;

for j in [1.. Length(side.type.mapops)] do

if not IsBound(x.orb.(j)) then

f:=side.type.mapops[j];

side.nrorb.(j):=side.nrorb.(j)+1;

z:=x;

repeat

z:=f[1](z, f[2]);

y:=First(set, c-> (z.rami=c.rami and z.pi1=c.pi1));

if y = fail then

y:=First(side.vects, c-> (z.rami=c.rami and z.pi1=c.pi1));

Append(set, [y]);

fi;

if not IsBound(y.orb) then

y.orb:=rec();

fi;

y.orb.(j):=side.nrorb.(j);

until (x.rami=y.rami and x.pi1=y.pi1);

fi;
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od;

j:=Length(side.type.mapops)+1;

if not IsBound(x.orb.(j)) then

side.nrorb.(j):=side.nrorb.(j)+1;

for f in Difference(G, Difference(Centre(G), [One(G)])) do

z:=simconj(f,x);

y:=First(set, c-> (z.rami=c.rami and z.pi1=c.pi1));

if y = fail then

y:=First(side.vects, c-> (z.rami=c.rami and z.pi1=c.pi1));

if y = fail then

Print("alarm!!!! something is wrong with the action!");

return fail;

fi;

Append(set, [y]);

fi;

if not IsBound(y.orb) then

y.orb:=rec();

fi;

y.orb.(j):=side.nrorb.(j);

od;

fi;

od;

# Make orblist a list instead of a rec

orbadd:=function(orblist, vect)

local i;

for i in [1..(Length(side.type.mapops)+1)] do

AddSet(orblist[i], vect.orb.(i));

od;

end;

for x in set do

if not IsBound(x.orb.map) then

side.nrorb.map:=side.nrorb.map+1;

#Starting new map orbit

x.orb.map:=side.nrorb.map;

orblist:=[];

for i in [1..(Length(side.type.mapops)+1)] do

orblist[i]:=[x.orb.(i)];

od;

repeat

#remember the orbits already contained in this map orbit

orblistold:=List(orblist, tup-> ShallowCopy(tup));

for y in set do

# already identified map orbit?

if not IsBound(y.orb.map) then

for j in [1..(Length(side.type.mapops)+1)] do

# already have sub-orbit in map-orbit

if y.orb.(j) in orblist[j] then

orbadd(orblist, y);

y.orb.map:=x.orb.map;

break;

fi;
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od;

fi;

od;

until orblist=orblistold; # No new orbits added.

fi;

od;

return true;

end;

AddFullOrbit:=function(G, side, set)

local i,j,

x,y,z,f,

AddAutOrbit,

orbadd,ttt,

oldset, maplist,

orblist, orblistold;

if not IsSubset(side.vects, set) then return fail; fi;

######## Add aut-orbit

AddAutOrbit:=function(set)

local x,y,

z,f,

autaction;

autaction:=function(f, vect)

local elem;

elem:=rec(pi1:=List(vect.pi1, c-> Image(f,c)),

rami:=List(vect.rami, c-> Image(f,c)));

return elem;

end;

if not IsBound( side.nrorb.aut) then side.nrorb.aut:=0; fi;

for x in set do

if not IsBound(x.orb) then x.orb:=rec();fi;

if not IsBound(x.orb.aut) then

side.nrorb.aut:=side.nrorb.aut+1;

for f in AutomorphismGroup(G) do

z:=autaction(f,x);

y:=First(set, c-> (z.rami=c.rami and z.pi1=c.pi1));

if y = fail then

y:=First(side.vects, c-> (z.rami=c.rami and z.pi1=c.pi1));

Append(set, [y]);

fi;

if not IsBound(y.orb) then

y.orb:=rec();

fi;

y.orb.aut:=side.nrorb.aut;

od;

fi;
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if not IsBound(x.orb.map)then

fi;

od;

end;

# Add missing map-orbits

repeat

oldset:=ShallowCopy(set);

AddMapOrbit(G, side, set);

AddAutOrbit(set);

AddMapOrbit(G, side, set);

maplist:=AsSet(List(set, v-> v.orb.map));

ttt:=function(v)

if not IsBound(v.orb) then

return false;

else

if ((v.orb.map in maplist) and (not v in set)) then

return true;

fi;

fi;

return false;

end;

Append(set, Filtered(side.vects, v-> ttt(v)));

until oldset=set;

# AddFullOrbit

orbadd:=function(orblist, vect)

local i;

AddSet(orblist.map, vect.orb.map);

AddSet(orblist.aut, vect.orb.aut);

end;

if not IsBound(side.nrorb.full) then

side.nrorb.full:=0;

fi;

for x in set do

if not IsBound(x.orb.full) then

side.nrorb.full:=side.nrorb.full+1;

x.orb.full:=side.nrorb.full;

orblist:=rec(map:=[], aut:=[]);

orbadd(orblist, x);
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repeat #Same algorithm as in AddMapOrbit

orblistold:=rec(map:=ShallowCopy(orblist.map),

aut:=ShallowCopy(orblist.aut));

for y in set do

if not IsBound(y.orb.full) then

if y.orb.map in orblist.map or y.orb.aut in orblist.aut then

orbadd(orblist, y);

y.orb.full:=x.orb.full;

fi;

fi;

od;

until orblist=orblistold;

fi;

od;

return true;

end;

########### Main function ###########

NrOfComponents:=function(G, type1, type2)

local sigma,sigmaset,

i,g,x,

et, vect,

testlist,

pair, reppairs,

AddSigma,

###

ImprovePair,

SeparatePair,

badlist,alreadygoodpairs,

nrpairautorbs,

nrpairfullorbs,

FinalTouch;

########### Subroutines ###########

#### improve pairs ###

ImprovePair:=function(pair)

# Use the automorphisms of G which stabilize the maporbit of the

# A-side to identify elements in the B-side

local autaction,

newpairs,

autstabA,newlistB,

stabautmaplist,

f,x,y,z;

if Length(pair.listB)=1 then

return [pair];

fi;

autaction:=function(side, f, vect)

local elem;

elem:=rec(pi1:=List(vect.pi1, c-> Image(f,c)),
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rami:=List(vect.rami, c-> Image(f,c)));

return First(side.vects, c-> (elem.rami=c.rami and elem.pi1=c.pi1));

end;

autstabA:=[];

for f in AutomorphismGroup(G) do

if autaction(et.A, f,pair.A).orb.map=pair.A.orb.map then

AddSet(autstabA, f);

fi;

od;

for y in pair.listB do

y.stabautmaplist:=[];

for f in autstabA do

z:=autaction(et.B, f, y);

AddSet(y.stabautmaplist, z.orb.map);

od;

od;

for y in pair.listB do

repeat

stabautmaplist:=ShallowCopy(y.stabautmaplist);

UniteSet(y.stabautmaplist,

Union(

List(

Filtered(pair.listB,

v->

Intersection(y.stabautmaplist,

v.stabautmaplist)<>[]),

z-> z.stabautmaplist)));

until stabautmaplist=y.stabautmaplist;

od;

#Print(pair.listB);

newlistB:=[];

for stabautmaplist in AsSet(List(pair.listB, v-> v.stabautmaplist)) do

AddSet(newlistB, First(pair.listB, v-> v.stabautmaplist=stabautmaplist));

od;

for y in pair.listB do

Unbind(y.stabautmaplist);

od;

pair.listB:=newlistB;

return true;

end;

### Separate pairs ###

SeparatePair:=function(pair)

# pairs where the B-sides lie in different Full orbits cannot be equivalent

# and are separated in this step.

local newpairs,ttt,

list,i,temppair;
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#Test if there is something to separate

if Length(pair.listB)=1 then return [pair]; fi;

for i in [1..(Length(pair.listB)-1)] do

AddFullOrbit(G, et.B, [pair.listB[i]]);

od;

newpairs:=[];

for i in [1.. et.B.nrorb.full] do

ttt:=function(v,i)

if not IsBound(v.orb.full) then

return false;

else

return v.orb.full=i;

fi;

end;

list:=Filtered(pair.listB, v-> ttt(v,i));

if not list=[] then

temppair:=ShallowCopy(pair);

temppair.listB:=list;

AddSet(newpairs, temppair);

fi;

od;

if not IsBound(pair.listB[Length(pair.listB)].orb.full) then

temppair:=ShallowCopy(pair);

temppair.listB:=[pair.listB[Length(pair.listB)]];

AddSet(newpairs, temppair);

fi;

return newpairs;

end;

### FinalTouch ###

#Need to implement the full orbit quotient for the pairs in badlist!

#Will be slow.

nrpairautorbs:=0;

nrpairfullorbs:=0;

FinalTouch:=function(badlist)

local allpairs,

newpairs,ttt,y,

pairset,oldpairset,

SamePair,

AddAutOrbit, PairMapAdd;

allpairs:=Cartesian(et.A.vects, et.B.vects);

# This contains also incompatible pairs. If we run into memory problems one might make this
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# smaller

# by using only the compatible pairs of vectors.

# Could also be faster, since we search through allpairs quite often.

# Going to save orbits in a third component.

Perform(allpairs, function(pair) pair[3]:=rec(); end);

SamePair:=function(a,b)

if (a[1].pi1=b[1].pi1 and a[1].rami=b[1].rami and

a[2].pi1=b[2].pi1 and a[2].rami=b[2].rami) then

return true;

else

return false;

fi;

end;

AddFullOrbit:=function(pairset)

# should add the full orbit to pairset, in particular mark the elements in ’allpairs’

# with an orbit number.

local PairMapAdd,AllPairsMap2Add,

AddAutOrbit, ttt,

x,y,

orbadd, orblist, orblistold,

maplist,

oldpairset;

PairMapAdd:=function(pair)

#prepare the pairs by adding their mapping class orbit on both sides

local x;

if (not IsBound(pair[1].orb)) or (not IsBound(pair[1].orb.map)) then

AddMapOrbit(G, et.A, [pair[1]]);

fi;

if (not IsBound(pair[2].orb)) or (not IsBound(pair[2].orb.map)) then

AddMapOrbit(G, et.B, [pair[2]]);

fi;

end;

AllPairsMap2Add:=function()

# Add 2map orbit numbers to all pairs

local pair;

for pair in allpairs do

if (not IsBound(pair[3].2map)) then

if (IsBound(pair[1].orb) and IsBound(pair[2].orb)) then

if (IsBound(pair[1].orb.map) and IsBound(pair[2].orb.map)) then

if not IsBound(pair[3]) then

pair[3]:=rec(2map:=[pair[1].orb.map, pair[2].orb.map]);

else

pair[3].2map:=[pair[1].orb.map, pair[2].orb.map];

fi;

fi;

fi;
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fi;

od;

end;

AddAutOrbit:=function(pairset)

local x,y,

z,f,

autpairaction;

autpairaction:=function(f,pair)

#diagonal action of f on the pair

local autaction;

autaction:=function(f, vect)

# action of the automorphism f on a gen vector

return rec(pi1:=List(vect.pi1, c-> Image(f,c)),

rami:=List(vect.rami, c-> Image(f,c)));

end;

return [autaction(f,pair[1]), autaction(f, pair[2])];

end;

for x in pairset do

if not IsBound(x[3].aut) then

nrpairautorbs:=nrpairautorbs+1;

for f in AutomorphismGroup(G) do # f=id gives back x.

z:=autpairaction(f,x);

y:=First(pairset, c-> SamePair(z,c));

if y = fail then

y:=First(allpairs, c-> SamePair(z,c));

AddSet(pairset, y);

fi;

if not IsBound(y[3]) then

y[3]:=rec();

fi;

y[3].aut:=nrpairautorbs;

od;

fi;

od;

return true;

end;

# prepare by adding all necessarily orbit numbers

repeat

oldpairset:=ShallowCopy(pairset);

AddAutOrbit(pairset);

for x in pairset do

PairMapAdd(x);
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od;

AllPairsMap2Add();

maplist:=AsSet(List(pairset, v-> v[3].2map));

ttt:=function(v)

if (IsBound(v[3].2map) and (v[3].2map in maplist)) then

return true;

fi;

return false;

end;

UniteSet(pairset, Filtered(allpairs, v-> ttt(v)));

until oldpairset=pairset;

# AddFullOrbit

orbadd:=function(orblist, p)

local i;

AddSet(orblist.2map, p[3].2map);

AddSet(orblist.aut, p[3].aut);

end;

for x in pairset do

if not IsBound(x[3].full) then

nrpairfullorbs:=nrpairfullorbs+1;

x[3].full:=nrpairfullorbs;

orblist:=rec(2map:=[], aut:=[]);

orbadd(orblist, x);

repeat #Same algorithm as in AddMapOrbit

orblistold:=rec(2map:=ShallowCopy(orblist.2map),

aut:=ShallowCopy(orblist.aut));

for y in pairset do

if not IsBound(y[3].full) then

if y[3].2map in orblist.2map or y[3].aut in orblist.aut then

orbadd(orblist, y);

y[3].full:=x[3].full;

fi;

fi;

od;

until orblist=orblistold;

fi;

od;

return true;

end;

### Main routine of FinalTouch: ###
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newpairs:=[]; #will contain the representative for the orbits

for pair in badlist do

repeat

### Start a new orbit by adding a representant

Print("Starting new orbit... \n");

x:=ShallowCopy(pair);

x.listB:=[x.listB[1]];

AddSet(newpairs, x);

### Add the orbit-number for all equivalent elements:

y:=First(allpairs, c-> SamePair(c,[x.A, x.listB[1]]));

pairset:=[y];

AddFullOrbit(pairset);

### Remove the elements of listB that lie in the same orbit.

ttt:=function(pair, Belem)

# test if for [pair.A, Belem] the orbit has been computed.

local z;

z:=First(allpairs, c-> SamePair(c,[pair.A, Belem]));

if IsBound(z[3].full) then

if y[3].full=z[3].full then

return false;

fi;

fi;

return true;

end;

pair.listB:=Filtered(pair.listB, c-> ttt(pair, c));

until pair.listB=[];

od;

return newpairs; #Contains representatives for the orbits.

end;

######### Main routine #########

Surfacedata(G, type1, type2);

Print("Calculating number of connected components of the moduli space\n");

et:=GenerateStartingSets(G, type1, type2);

Print("Total number of generating pairs = ", Length(et.A.vects), " x ",

Length(et.B.vects), " = ", Length(et.A.vects)*Length(et.B.vects),"\n");

Print("Calculating full orbit on side A.\n");

AddFullOrbit(G, et.A, et.A.vects);

reppairs:=[];

for i in [1..et.A.nrorb.full] do

AddSet(reppairs, rec(A:=First(et.A.vects, v-> v.orb.full=i)));

od;
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# Calculate all sigmasets (Could be faster for large G)

# Saved in sigma, indexed by the position of g in G.

Print("Adding sigmasets.\n");

sigmaset:=function(g)

local set, H;

H:=ConjugacyClassSubgroups(G, Subgroup(G, [g]));

set:=Union(List(AsList(H), subgroup -> AsList(subgroup)));

return AsSet(set);

end;

sigma:=rec();

for g in G do sigma.(Position(AsList(G),g)):=sigmaset(g); od;

AddSigma:=function(vect)

if vect.rami=[] then

vect.sigma:=[Identity(G)];

else

vect.sigma:=

AsSet(Union(List(vect.rami,c-> sigma.(Position(AsList(G),c)))));

fi;

end;

# Add sigmasets to et.B.vects to test for intersection restriction.

# These are constant on maporbits...

# Probably it is faster to do all sigmasets than to do map-orbits

# If on the B-side there is no ramification then no

# compatibility must be checked.

if et.B.type.rami=[] then

AddMapOrbit(G, et.B, et.B.vects);

testlist:=[];

for i in [1..et.B.nrorb.map] do

x:=First(et.B.vects, v->v.orb.map=i);

if not x=fail then # should not be needed?

Append(testlist, [x]);

fi;

od;

for pair in reppairs do

pair.listB:=testlist;

od;

else # general case with ramification on both sides.

for vect in et.B.vects do

AddSigma(vect);

od;

Print("Adding necessary Map-Orbits on B side and generate pairs: ");

for pair in reppairs do

AddSigma(pair.A);

pair.listB:=[];
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testlist:=Filtered(et.B.vects, v-> Intersection(v.sigma, pair.A.sigma)=[One(G)]);

AddMapOrbit(G, et.B, testlist);

for i in [1..et.B.nrorb.map] do

x:=First(testlist, v->v.orb.map=i);

if not x=fail then

Append(pair.listB, [x]);

fi;

od;

od;

fi;

reppairs:=Filtered(reppairs, p-> p.listB<>[]);

Print(Sum(List(reppairs, pair->Length(pair.listB)))," pair(s).\n");

#############################################################

#############################################################

Print("Improve and Separate pairs if necessary.\n");

for pair in reppairs do

ImprovePair(pair);

if not Length(pair.listB)=1 then

RemoveSet(reppairs, pair);

UniteSet(reppairs, SeparatePair(pair));

fi;

od;

#############################################################

#############################################################

badlist:=Filtered(reppairs, pair->Length(pair.listB)<>1);

if badlist = [] then

Print("----------------------------------------------------------\n");

Print("Number of components of the moduli space: ", Length(reppairs)," \n");

Print("----------------------------------------------------------\n");

Print(reppairs, "\n");

Print("----------------------------------------------------------\n");

return reppairs;

else

Print("----------------------------------------------------------\n");

Print("Could not yet separate!!\n",

"At least ", Length(reppairs), " and at most ",

Sum(List(reppairs, pair-> Length(pair.listB))), " components.\n");

Print("----------------------------------------------------------\n");

Print("Attempt to compute the full orbits -- this may take some time and bust your RAM...\n\n");

fi;

#### Doing last step ...

alreadygoodpairs:=Difference(reppairs, badlist);

reppairs:=Union(alreadygoodpairs, FinalTouch(badlist));

Print("----------------------------------------------------------\n");

Print("Computation of some full orbits successful!\n");

Print("Number of components of the moduli space: ", Length(reppairs)," \n");

Print("----------------------------------------------------------\n");

Print(reppairs, "\n");
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Print("----------------------------------------------------------\n");

return reppairs;

end;
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manian original by Vladimir Maşek and revised by the author. Springer-Verlag

(2001).

[Ba] R.N. Barlow, Zero-cycles on Mumford’s surface. Math. Proc. Camb. Phil. Soc.

126. Cambridge (1999), 505–510.

[BHPV] W.P. Barth, K. Hulek, C.A.M. Peters, A. Van de Ven, Compact complex sur-

faces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.

A Series of Modern Surveys in Mathematics [Results in Mathematics and Related

Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 4. Springer-Verlag,

Berlin, 2004.

[BC] I. Bauer, F. Catanese, Some new surfaces with pg = q = 0. Proceeding of the

Fano Conference. Torino (2002), 123–142.

[BCG05] I. Bauer, F. Catanese, F. Grunewald, Beauville surfaces without real struc-

tures. In: Geometric methods in algebra and number theory, Progr. Math., vol
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[F] E. Freitag, Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen.

I,J. Reine Angew. Math. Vol. 247 (1971), 97–117.
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