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Abstract

In this thesis we approach the physics of active Brownian particles (ABP) and particularly

the emergence of motility induced-phase separation (MIPS) by (i) an effective equilibrium de-

scription for small activities [1], (ii) a formally exact power functional theory [2, 3], and (iii) a

computer simulation study of the free interface between coexisting phases [4]. Active Brownian

particles are modeled as spherical particles that obey Brownian motion described by an over-

damped Langevin equation of motion. Activity is thereby induced by a self-propulsion force.

This force acts along the built-in orientation of each individual particle, and the time dependence

of the orientation is given by an additional Langevin equation that describes free rotational dif-

fusion. This intrinsic out-of-equilibrium system shows a wide variety of phenomena, where phase

separation in absence of explicit interparticle attraction between the particles is one of the most

spectacular open problems.

In the effective equilibrium approach the active system is mapped onto a system of passive

Brownian particles that interact via a modified effective interparticle interaction [1]. This is

achieved by integrating out the orientations. The resulting Langevin equation contains colored

noise. From this equation of motion an approximated Fokker-Planck equation is constructed. In

this Fokker-Planck equation an activity-dependent effective interaction force between the parti-

cles is identified. In the case of pairwise interaction, the effective interaction can be represented

as an activity-dependent effective pair interaction potential. For purely repulsive interaction

potentials, an attractive tail develops above an activity threshold. The strength of this attrac-

tion increases even further with increasing activity, eventually leading to bulk phase separation.

Furthermore, passively attractive interactions are considered, namely the Lennard-Jones poten-

tial. In this case, the attractive minimum of the potential weakens at first when activity is

increased and suppression of phase separation is observed. Increasing the activity further, the

attractive minimum deepens again and a reentrance of phase separation emerges. As the activ-

ity determines only the form of the effective interaction and the many-body dynamics resemble

the passive dynamics, common methods of liquid state theory can be applied to active systems.

We use them for instance to calculate spinodals and the pair correlation function for the active

system. An important part of the work is the validation via computer simulations, where the

orientations are not integrated out, i.e., the full many-body problem of ABP is considered. The

result is that in all situations presented we find a good match between theory and the simulation.

Despite the success of the effective equilibrium description in many situations, possible applica-

tions are rather limited to low activity cases due to the approximations made in the construction

of the Fokker-Planck equation. In order to overcome these limitations we develop a power func-

tional theory (PFT) for active particles [2, 3]. Therein, the orientations are considered as
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additional degrees of freedom and enter the many-body dynamics as such. Starting from the

many-body description, i.e., the Smoluchowski equation, power functional theory offers an exact

formalism to determine the correct physical time evolution of the one-body density, the transla-

tion, and rotational current distributions from a microscopically defined power functional. We

apply this framework to steady states, where the coupling between the translational and rota-

tional dynamics is realized by the self-propulsion force that determines the magnitude of the

activity, and we give a simple approximation for the dissipative parts of the power functional

that applies to bulk states. Furthermore, we show that in steady state the value of the power

functional is determined by the negative value of half of the external power and is thus trivially

related to the swimming of the particles. For soft repulsive spheres we perform Brownian dy-

namics computer simulations in bulk and develop sampling strategies for the power functional.

Comparing our theory with the numerics shows a good agreement.

Going beyond the bulk properties of ABP that undergo MIPS a detailed study of the interface

between the phases is required [4]. The reason is that the dissipation functional presented

for the bulk studies [2, 3] denotes only the friction (drag) induced by particle interactions in

bulk. For inhomogeneous situations further superadiabatic contributions have to be considered

and thus the dissipation functional has to be generalized in order to cover these contributions.

As the corresponding manuscript is in preparation [4], results from computer simulations are

presented in Sec. 4. In agreement with the literature we find that the interface is polarized and

hence the orientations of the particles are not evenly distributed there (as it would be in bulk).

By analyzing the results for the one-body distribution of the density and the current we give

an interpretation of the particles’ behavior at the interface. Further insights are provided by

the explicit analysis of the orientation dependence of the one-body distributions including an

angular Fourier decomposition which is used to describe the anisotropies that emerge at the

interface. Our findings serve as a reference point for an extended power functional theory that

can describe the physics of the active particles in bulk and at the interface.
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Kurzfassung

Diese Dissertation behandelt die statistische Physik aktiver Brownscher Teilchen, im speziellen

das Auftreten von Phasenseparation aufgrund der Aktivität der Teilchen. Dazu werden verschie-

dene Herangehensweisen verwendet: (i) eine Methode, die das aktive System auf ein effektives

Gleichgewichtssystem abbildet [1], (ii) eine formal exakte Powerfunktionaltheorie [2, 3] sowie

(iii) die explizite Betrachtung der Grenzfläche, die sich im Falle von Phasenseparation ausbildet,

mit Hilfe von Computersimulationen [4]. Die aktiven Schwimmer werden als sphärische Teil-

chen beschrieben, die Brownscher Bewegung unterliegen, und durch eine überdämpfte Langevin-

Bewegungsgleichung modeliert. Die Aktivität wird dabei durch eine Antriebskraft induziert, die

in Richtung der Orientierung eines jeden einzelnen Teilchens wirkt. Die Zeitentwicklung der

Orientierungen ist durch eine zusätzliche Langevingleichung gegeben und beschreibt freie Rota-

tionsdiffusion. Durch die Aktivität ist das System weg vom thermodynamischen Gleichgewicht

getrieben. Aktive Brownsche Teilchen zeigen eine Vielzahl von Phänomenen, von denen die

Phasenseparation in Abwesenheit von expliziter Attraktion zwischen den Teilchen im passiven

Zustand wohl das spektakulärste offene Problem ist.

Eine Beschreibung des aktiven System als effektives Gleichgewichtssystem wird durch Ausinte-

gration der Orientierung der Teilchen erreicht [1]. Als Ergebnis erhält man eine einzige Lange-

vingleichung, die einen Markov-Prozess beschreibt. Aus dieser wird eine approximierte Fokker-

Planck hergeleitet, in der sich eine effektive Wechselwirkung zwischen den Teilchen identifizieren

lässt. Diese hängt in Form und Stärke von der Aktivität ab. Handelt es sich eingangs um ei-

ne Paarwechselwirkung zwischen den Teilchen, so ist die resultierende effektive Wechselwirkung

ebenfalls eine Paarwechselwirkung. Zunächst werden Wechselwirkungen betrachtet, die im passi-

ven Fall rein repulsiv sind. Wird die Aktivität über einen bestimmten Schwellwert erhöht, bildet

sich im effektiven Potential ein attraktiver Anteil aus. Erhöht man die Aktivität weiter, wird

diese Anziehung größer. Dieses Ausbilden von Anziehung zwischen den Teilchen ist der Grund

für die Phasenseparation, die im aktiven System auftritt. Für das Lennard-Jones Potential, also

eine Wechselwirkung, die auch im passiven Fall Attraktion beinhaltet, zeigt sich, dass bei klei-

ner Aktivität die Anziehung zwischen den Teilchen abnimmt und die Phasenseparation damit

unterdrückt wird. Bei weiterer Erhöhung der Aktivität steigt die Anziehung wieder an und die

Phasenseparation setzt wieder ein. Dadurch, dass die Aktivität der Teilchen lediglich die Form

des Wechselwirkungspotentials bestimmt, können Methoden angewandt werden, die sonst nur

für Systeme im Gleichgewicht anzuwenden sind. So werden beispielsweise die Spinodalen für die

Phasenseparation und die Paarkorrelationsfunktion berechnet. Ein wichtiger Teil der Arbeit ist

auch der Vergleich der Ergebnisse der Theorie mit numerischen Simulationen, um die Ergebnisse

des Modells zu verifizieren. Dies ist möglich, da für die Simulationen die Orientierungen nicht
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ausintegriert werden und beide Langevingleichungen iterativ gelöst werden, sprich die gesamte

Vielteilchendynamik von ihr abgebildet wird. Dabei ist die Übereinstimmung in allen getesten

Fällen sehr gut.

Obwohl die effektive Gleichgewichtsbeschreibung in vielen Situationen sehr gute Ergebnisse lie-

fert, sind ihre möglichen Anwendungsfälle auf Systeme mit niedriger Aktivität beschränkt, da

zur Herleitung der Fokker-Planck Gleichung einige vereinfachende Annahmen getroffen werden

müssen. Um diese Einschränkungen zu überwinden, haben wir eine Powerfunktionaltheorie für

aktive Teilchen entwickelt [2, 3]. Dabei werden die Orientierungen der Teilchen als zusätzliche

Freiheitsgrade betrachtet, die als solche auch zur Vielteilchendynamik beitragen. Ausgehend von

dieser, beschrieben durch die entsprechende Smoluchowski-Gleichung, liefert die Powerfunktio-

naltheorie einen formal exakten Formalismus, um die korrekte physikalisch realisierte Dynamik

der Einteilchendichte- und Einteilchenströmeverteilungen zu erhalten. Wir wenden diese Power-

funktionaltheorie auf stationäre Zustände an, wobei die Kopplung von Translations- und Rota-

tionsdynamik durch eine externe Kraft, die die Aktivität bestimmt, beschrieben wird und geben

eine einfache Approximation für den dissipativen Anteil des Powerfunktional für Zustände im

Bulk an. In diesem Fall ist der Wert des Powerfunktionals durch die Hälfte des negativen Wertes

des externen Funktionals gegeben und ist damit trivial mit der Aktivität der Teilchen verknüpft.

Zum Vergleich werden Computersimulationen für weiche Teilchen mit repulsiven Wechselwirkun-

gen im Bulk durchgeführt. Dazu werden auch neue Samplingmethoden entwickelt. Es zeigt sich

eine gute Übereinstimmung von Simulationsdaten mit der Theorie, sogar in inhomogenen, also

phasenseparierten, Systemen.

Dennoch reicht eine Betrachtung des Bulks nicht aus, um die Phasenseparation abschließend

zu erklären. Dazu ist eine genaue Betrachtung der Grenzfläche zwischen den Phasen nötig, da

das Dissipationsfunktional lediglich die durch Wechselwirkung zwischen den Teilchen induzierte

Reibung modelliert [4]. Dabei zeigt sich, dass das Dissipationsfunktional zu einem superadia-

batischen Funktional verallgemeinert werden muss, um superadiabatische Effekte, die über die

Reibung hinausgehen, mit einzubeziehen. Im Rahmen dieser Studie werden Resultate von Com-

putersimulationen in Kapitel 4 vorgestellt. In Übereinstimmung zur Literatur zeigt sich eine

Polarisierung der Grenzfläche, d.h. die Orientierungen sind hier nicht gleichverteilt, wie es im

Bulk der Fall ist. Wir analysieren die Einteilchendichte und -ströme und geben darauf basierend

eine Interpretation des Verhaltens der Teilchen an der Grenzfläche. Besonders die explizite Be-

trachtung der Abhängigkeiten der Einteilchenverteilungen der Dichte sowie der Ströme von der

Orientierung bieten weitreichende Möglichkeiten zur Beschreibung der Grenzfläche. Dazu wird

die Einteilchendichte in ihrem Orientierungsfreiheitsgrad in Fourierkomponenten entwickelt, die

über die Anisotropie der Dichteverteilung an der Grenzfläche Aufschluß gibt. Die Ergebnisse

fügen sich gut in den Kontext aktueller Literatur ein und bieten einen Referenzpunkt für die

Entwicklung einer erweiterten Powerfunktionaltheorie, die sowohl Bulkeigenschaften als auch die

Grenzflächenphysik beinhaltet.
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1 Introduction

1.1 Active Brownian particles

Brownian particles are nano- to micron-sized particles that display Brownian motion, which is

the agitation of particles due to the thermal motion of their surrounding. The size of Brownian

particles is big enough such that the system can be described by classical physics. A perfect

example for Brownian particles are colloids. Colloidal particles are suspended in a solvent, which

is usually a liquid such as water. Colloidal suspensions are interesting from fundamental and

applied points of view, since they are present in our daily life. Milk [5], ice cream [6], human

blood [7] and paint [8] serve as examples. From a physical point of view, special interest lies

in the thermodynamic properties of colloids, such as phase transitions and mechanisms of self

assembly.

Active systems are composed of individual units that can transform energy from their surround-

ing into self-propelled movement. With the interest in living systems, such as bacteria, the

research effort in active matter has gradually increased over the last decade. Realizations of ac-

tive systems can be found in nature on almost every length- and time-scale. The individuals are

often living biological units. Examples are flocks of birds, schools of fish, and microorganisms.

Figure 1.1 illustrates how collective motion of individual units occurs on a wide range of length

scales in nature. The first row represents examples of animal colonies. Figure 1.1(a) shows a

flock of birds [9], while in Fig. 1.1(b) a collective of ducks is shown [10]. Examples from biological

microsystems are displayed in the second row. Figure 1.1(c) shows a snapshot from a system

of active vortexes of microtubes [11] and Fig. 1.1(d) shows a bacteria colony [12]. The arrows

indicate the direction of swimming of the particles and the color shows which group of individual

units moves collectively. All of these examples show at some point the crossover from individual

and undirected motion to collective and directed motion. Hence, studying the physics of active

matter allows insight to fundamental questions. For example, how do migrant birds form a flock

and how does the collective find their way? Or what drives bacterial swarming in biological

samples?

Beyond biological systems, a variety of artificial realizations of active matter have been created

in recent years. Among these are active colloidal particles. Colloidal Janus particles are spheres

where the two hemispheres are made of different materials, or one hemisphere is coated with

a certain material. For example silica particles that are coated with platinum on one side are

activated by light [13]. The self-propulsion force for such particles is perpendicular to the equator

where the two hemispheres meet. A snapshot of a cluster of light-activated particles is shown

in Fig. 1.2, where the red arrows indicate the swimming direction. Hence Janus particles allow
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(a) (b)

(d)(c)

Figure 1.1: Examples of collective motion in nature on macroscopic (top) and microscopic
length scales (bottom). (a) Various flocks of birds consiting of several hundreds to thousands
birds. Adapted from [9], copyright (2008) National Academy of Sciences. (b) A group of ducks
where the individuals tend to move in line with other individuals in front of them. Adap-
ated from [10], copyright (2010) National Academy of Sciences. (c) Self-organization of micro-
tubes with average size of 15 µm into vortices of diameter around 400 µm. Adapted from [11],
Reprinted with permission from Permissions Springer Customer Service Centre GmbH, copy-
right (2012) Nature. (d) Clusters of collectively moving Bacillus subtilis bacteria. The arrows
indicate the direction of motion of the individual bacteria and the colors show which bacteria
move collectively. Adapted from [12], copyright (2010) National Academy of Sciences.

to perform experiments in a controlled way with small effort, compared to biological samples.

Active colloids serve as an ideal model to study the phenomena in active matter regarding their

dependence on activity and other physical properties. This model system is often referred to as

active Brownian particles (ABP) and it is the basis of the present thesis.

In common theoretical ABP models the dynamics of each particle is described by two coupled

overdamped Langevin equations; one for the trajectory of the particles itself (translational mo-

tion), and one for the direction of the self-propulsion of the particles (rotational motion). The

orientation of the particles enters the translational Langevin equation via a self-propulsion force,

of which the magnitude is given by the free swimming speed of the particles multiplied by the

friction coefficient, where the orientation is described by a unit vector. Additional forces that

enter the Langevin equation are external forces, and interparticle forces. The interparticle forces

are commonly pair interaction forces that only depend on the distance between the particles.

The rotational equation of motion describes free rotational diffusion. Hence the interaction of
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(a) (b)

Figure 1.2: Active Brownian particle systems. (a) Experimental realization with Janus par-
ticles. The red arrows indicate the direction of swimming. At the rear end of each arrow the
platinum coating on the silica colloids is visible in gray. Adapted form [13], copyright (2013)
American Physical Society. (b) Illustration of active Brownian particles as disks with positions
ri and rj , and orientations ωi and ωj .

the particles is isotropic, as the particles are often modeled as spheres, or disks in two space

dimensions. However, isotropy breaks down in many situations, e.g. at interfaces [14] or when

sedimentation is considered [15]. Figure. 1.2(b) shows an illustration of an ABP model. The par-

ticles i and j are spheres with positions ri and rj , and orientations ωi and ωj . The length of the

dotted line indicates the distance between the centers of mass of the particles rij = |ri−rj | that

determines the force between the particles. The dashed line indicates the rotational diffusion of

the orientation.

The ABP model is a popular starting point for carrying out theoretical studies of active system.

As the model is rather simple, the same questions can be studied as for passive colloidal system,

e.g. phase behavior, clustering, and self-organization, etc. Particular interest lies in phase sepa-

ration that is caused by the motility of the particles. Motility induced phase separation (MIPS)

does not require an attractive force between the particles and occurs in systems with purely

repulsive interactions between the particles. The basic idea of MIPS is that particles swim into

each other and block their ways. This leads to a local clustering as it is shown in Fig. 1.2(a). At

sufficiently high activity and particle density, the growth of local clusters is observed, leading

eventually to a macroscopic phase separation in the system. For an overview of the literature

that deals with MIPS we refer to the introduction of Ref. [3] and to the review article [16].

What makes ABP fundamentally different from passive Brownian particles is the driving of the

particles due to activity. This drives ABPs far from equilibrium, and hence many techniques

established in equilibrium colloidal science are not appropriate for ABP, including proper def-

initions of thermodynamic variables, such as thermodynamic potentials and the derivatives of

them, and the use of Monte Carlo computer simulations.

1.2 One-body descriptions of classical fluids

As colloidal suspensions typically consist of large numbers of particles, a statistical description

is a natural choice for such systems. Many of the physical effects originate in the interparticle
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interactions between the colloids. Given the large number of degrees of freedom the many-body

problem is a challenge. It is convenient to describe the system with one-body theories, where

coarse-grained fields, such as the density distribution, are the central objects of the model.

Many-body computer simulations are often used to validate theoretical models. In this section,

the discussion is focused on one-body theories based on variational principles: density functional

theory, dynamical density functional theory, and power functional theory. The equations in these

theories can be derived from first principles, i.e. the microscopic many-body description of the

system, which set them apart from other coarse-grained theories, such as hydrodynamics. A

good overview of current research and important breakthroughs in density functional theory is

given by Evans et al. in Ref. [17]. The use of numerical simulations and especially Brownian

dynamics simulations for active matter is discussed in Sec. 2.1.

Density Functional Theory

Density functional theory (DFT) for classical fluids in thermodynamic equilibrium is based on

the theorem that the grand potential is a unique functional of the one-body density [18]. DFT

allows the study of equilibrium thermodynamics of fluids and is especially useful for spatially

inhomogeneous situations. In the following discussion classical fluids consisting of N interacting

particles with positions {r1...rN} ≡ rN and interaction potential U(rN ) in an external potential

V ext(r) are considered. The equilibrium one-body density distribution for such systems is [19]

ρ̄(r) = 〈ρ̂(r)〉eq , (1.1)

where

ρ̂(r) =
N∑

i=1

δ(r− ri) (1.2)

is the density operator, with δ(·) being the Dirac distribution, and ri the position of parti-

cle i = 1...N . The average in (1.1) is an equilibrium ensemble average according to 〈f〉eq =∫
drNfΦ(rN ), where f is a test function and Φ(rN ) is the normalized many-body equilibrium

probability distribution in configuration space. The variational principle for the grand potential

density functional Ω states that the functional is minimal at the equilibrium density profile.

That is,

δΩ[ρ̃]

δρ̃(r)

∣∣∣∣∣
ρ̃=ρ̄

= 0 (min). (1.3)

where ρ̃(r) is a trial density field. The functional derivative vanishes at the equilibrium density

profile and therefore ρ̄(r) minimizes the functional Ω[ρ]. Furthermore, the thermodynamic grand

potential, Ω0, is given by the minimal value of the grand potential density functional, Ω[ρ̄] = Ω0.
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As the Helmholtz free energy F [ρ] is a unique functional of the one-body density [18] and

Ω[ρ] = F [ρ] +

∫
dr ρ(r)V ext(r)− µ

∫
drρ(r), (1.4)

where µ is the chemical potential, the discussion is based on the free energy functional F [ρ] in

the following. Using (1.4) the minimization principle (1.3) becomes

δF [ρ̃]

δρ̃(r)

∣∣∣∣∣
ρ̃=ρ̄

= µ− V ext(r). (1.5)

The free energy can be split into an ideal part and an excess (over ideal) part, F [ρ] = Fid[ρ] +

Fexc[ρ], with the ideal part being exactly

Fid[ρ] = kBT

∫
dr ρ(r)

(
ln
(
λdρ(r)

)
− 1
)
, (1.6)

where kB is the Boltzmann constant, T is the absolute temperature, λ is the thermal de Broglie

wavelength, and d is the spatial dimensionality of the system.

The excess part accounts for the interactions between the particles given by the interparticle

interaction potential U(rN ). The interactions between the particles can be very complex as U

depends on the complete configuration of the particles. Hence, Fexc contains the full complexity

of the many-body problem and is not known exactly in most cases. One exception is the system

of one-dimensional hard rods, for which the free energy functional was obtained by Percus [20].

Commonly used approximations for other systems are for example the mean-field approximation

(see Ref. [21] and references therein) and Rosenfeld’s fundamental measure theory for hard

systems [22, 23]. The latter has also been successfully applied to two-dimensional systems of

hard disks [24, 25].

Equation (1.5) is the fundamental equation for DFT and forms a basis in the theory of non-

uniform liquids, as it allows the calculation of equilibrium densities and thermodynamics.

Dynamical Density Functional Theory

As systems at equilibrium make up only the minority of the physical systems in nature, a

treatment of out-of-equilibrium systems is needed. The fundamental equation for a system of

N interacting overdamped Brownian particles is the Smoluchowski equation [26]. The Smolu-

chowski equation is a partial differential equation for the time-dependent probability distribution

Φ(rN , t):

∂Φ(rN , t)

∂t
= −

N∑

i=1

∇i · v̂iΦ(rN , t), (1.7)
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where ∇i is the derivative with respect to ri, and v̂i is the velocity operator. The latter is in

general given by

γv̂i = −(∇iU(rN ))− (∇iV ext(ri, t)) + X(ri, t)− kBT∇i, (1.8)

where γ is the friction coefficient and X(ri, t) is a non-conservative external force. In the following

we derive a partial differential equation for the one-body density from (1.7). This involves an

exact sum rule derived from DFT. Therefore the approach presented here is referred to as an

extension to DFT to nonequilibrium called dynamical density functional theory (DDFT) [18,

27]. In the following, the interparticle interaction is considered to be a pairwise interparticle

interaction, i.e. U(rN ) = 1
2

∑
i 6=j φ(ri, rj), where

∑
i 6=j is the double sum over all i = 1..N ,

j = 1..N , excluding the term i = j. Following the approach of Archer and Evans [28], the next

step is integrating (1.7) over all particle coordinates but one. This yields an equation for the

one-body density

γ
∂ρ(r1, t)

∂t
=kBT∇2

1ρ(r1, t) +∇1 · ρ(r1, t)∇1V
ext(r1, t)

−∇1 · ρ(r1, t)X(r1, t) +∇1 ·
∫
dr2 ρ

(2)(r1, r2, t)∇1φ(r1, r2), (1.9)

where the one-body density is given by integrating the time-dependent probability function,

ρ(r1, t) = N

∫
dr2...drN Φ(rN , t). (1.10)

Similarly, the two-body density is

ρ(2)(r1, r2, t) = N(N − 1)

∫
dr3...drN Φ(rN , t). (1.11)

In equilibrium there exist an exact sum rule for the integral term in (1.9) [18],

∫
dr2

ρ(2)(r1, r2)

ρ(r1)
∇1φ(r1, r2) = ∇1

δFexc[ρ̃(r1)]

δρ̃(r1)

∣∣∣∣∣
ρ̃=ρ(r1)

, (1.12)

where ρ̃(r) is a trial density field. Inserting (1.12) in (1.9) yields

γ
∂ρ(r, t)

∂t
= ∇ · ρ(r, t)


kBT∇ ln ρ(r, t) +∇V ext(r, t)−X(r, t) +∇δFexc[ρ̃(r)]

δρ̃(r)

∣∣∣∣∣
ρ̃=ρ(r,t)


 ,

(1.13)

where the first term in the brackets accounts for the first term on the right hand side of (1.9), as

∇·ρ∇ ln ρ = ∇·ρ1
ρ∇ρ = ∇2ρ. Approximating the expression involving the two-body density by

an equilibrium sum rule, which is formally exact only in equilibrium, is known as the adiabatic

approximation. The underlying idea is that the one-body density evolves adiabatically through

a series of states that are approximated by equilibrium states and genuine nonequilibrium effects
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are absent.

Equation (1.13) is the fundamental equation of DDFT. Alternatively the DDFT equation (1.13)

can be given in the form of the continuity equation,

∂ρ(r, t)

∂t
= −∇ · JDDFT(r, t), (1.14)

where the one-body DDFT current is

JDDFT(r, t) = −γ−1ρ(r, t)


kBT∇ ln ρ(r, t) +∇V ext(r, t)−X(r, t) +∇δFexc[ρ̃(r)]

δρ̃(r)

∣∣∣∣∣
ρ̃=ρ(r,t)


 .

(1.15)

Although DDFT only gives approximate results, it has been used for a variety of nonequilibrium

systems, especially for systems close to equilibrium and relaxation processes. A typical problem

studied with DDFT is a system in equilibrium with the density profile ρ̄(r) that is driven out of

equilibrium at a certain time t0 by e.g. an external driving force. The time dependent one-body

density is then given by

ρ(r, t) = ρ̄(r)−
∫ t

t0

dt̃∇ · JDDFT(r, t̃). (1.16)

The adiabatic assumption in this context is that at each time t′ the system is treated as an

equilibrium system with the equilibrium density ρ̄′ = ρ(r, t′). This density is then used to

calculate the functional derivative of the excess free energy. With this the “new” density at time

t′′ = t′ + dt, ρ(r, t′′), is calculated by using (1.13). Next, it is used again as equilibrium density,

ρ̄′′ = ρ(r, t′′) which enters in the functional derivate. This iteration process eventually yields the

whole time evolution of the one-body density.

Power Functional Theory

A general approach for nonequlibrium Brownian system that goes beyond DDFT is power func-

tional theory (PFT) [29, 30]. PFT is the exact nonequlibrium generalization of equilibrium

DFT. First developed for overdamped classical systems [29], PFT can be used to describe clas-

sical Newtonian [31] and quantum many-body systems [32]. The central object in PFT is the

time-dependent power functional Rt[ρ,J], which is a unique functional of both the one-body

density distribution

ρ(r, t) =
〈
ρ̂(rN )

〉
, (1.17)

and the one-body current distribution

J(r, t) =

〈
N∑

i=1

δ(r− ri)v̂i(r
N , t)

〉
, (1.18)
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where ρ̂(rN ) is the density operator according to (1.2), and v̂i(r
N , t) is the velocity operator

according to (1.8). The average is an ensemble average in configuration space:

〈
f(rN , t)

〉
=

∫
drN f(rN , t)Φ(rN , t), (1.19)

where the operator f(rN , t) acts on Φ(rN , t), the time-dependent probability distribution deter-

mined by the Smoluchowski equation, (1.7) and (1.8). The physical time evolution of the system

is such that Rt is minimal at any time with respect to the variation in the one-body current.

Hence there exist a variational principle similar to DFT, but with respect to the current while

keeping the density fixed,

δRt[ρ,J]

δJ(r, t)

∣∣∣∣∣
ρ=ρ0,J=J0

= 0 (min), (1.20)

where the superscript in ρ0 and J0 labels quantities at the minimum of Rt. Equation (1.20) gives

the force balance equation on the one-body level; and thus the current J0. This is equivalent

to the eigenvalue of the velocity operator of a particle being the physically correct velocity,

v̂iΦ = viΦ. Consequently the current at the minimum yields J0 = 〈∑i δ(r− ri)vi〉, and the

velocity is

γvi = −(∇iU)− (∇iV ext) + X− kBT (∇i ln Φ), (1.21)

where the brackets in the last term indicate a gradient field and not a differential operation.

Hence the one-body variational principle can be easily translated on the many-body level. The

density follows then straightforwardly from integrating the continuity equation,

∂ρ0(r, t)

∂t
= −∇ · J0(r, t). (1.22)

An Euler-Lagrange equation for the density while keeping the current fixed can be formulated

as well,

δRt[ρ,J]

δρ(r, t)

∣∣∣∣∣
ρ=ρ0,J=J0

= α(r, t), (1.23)

where α is a Lagrange multiplyer imposed by the continuity equation (1.22). The power func-

tional itself can be split into an external part and four internal parts: an ideal and an excess part

for reversible processes, called adiabatic parts, and an ideal and an excess part for irreversible

processes, called superadiabatic contributions. The external part is

Xt[ρ,J] =

∫
dr (−∇V ext(r, t) + X(r, t)) · J(r, t), (1.24)

which is the power due to external forces. The reversible internal parts are the time derivative

(indicated by a dot) of the free energy Ḟ [ρ] = Ḟid[ρ] + Ḟexc[ρ]. With (1.6) and (1.22) it yields
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after integrating by parts

Ḟid[ρ] = kBT

∫
dr J · ∇ ln ρ(r, t), (1.25)

whereas the excess part is given by

Ḟexc[ρ] =

∫
dr J · ∇δFexc[ρ̃]

δρ̃(r)

∣∣∣∣∣
ρ̃=ρ(r,t)

, (1.26)

where we applied the adiabatic approximation for the functional derivative of Fexc. The irre-

versible parts of the internal power are split into an ideal and an excess part as well, where

P id
t [ρ,J] =

∫
dr
γJ2(r, t)

2ρ(r, t)
(1.27)

is the ideal part and the excess part, P exc
t [ρ,J] is unknown as an explicit expression in general.

As P exc
t [ρ,J] is determined by the interparticle interactions, it has to be approximated, similar

to Fexc[ρ] in equilibrium DFT. The power functional can then be brought in the form

Rt[ρ,J] = Ḟid[ρ] + Ḟexc[ρ] + P id
t [ρ,J] + P exc

t [ρ,J]−Xt[ρ,J]. (1.28)

Applying the variational principle (1.20) to (1.28) yields the force balance equation

γJ0(r, t)

ρ0(r, t)
= −kBT∇ ln ρ0(r, t)−∇δFexc[ρ]

δρ(r)

∣∣∣∣∣
ρ=ρ0

− δP exc
t [ρ,J]

δJ(r, t)

∣∣∣∣∣
ρ=ρ0,J=J0

−∇V ext(r, t) + X(r, t).

(1.29)

PFT goes beyond DDFT accounting for dissipative and irreversible processes. No adiabatic ap-

proximation is necessary to obtain the force balance equation (1.29), contrary to DDFT. How-

ever, by setting the excess dissipation to zero, P exc
t = 0, one obtains the DDFT current (1.15)

from (1.29). The price to pay for the full nonequilibrium dynamics is that new approximations

have to be found for the (excess dissipation) functional, P exc
t [ρ,J] [33]. Thereby the nonequilib-

rium effects described by P exc
t are generally beyond dissipation and cover for example structure

formation [34]. Recent work by Fortini et al. demonstrated that the forces generated by the func-

tional derivative of P exc
t with respect to the current might not be a small correction to DDFT,

and hence have to be taken into account in out-of-equilibrium situations [35]. In summary, PFT

is an important extension to DDFT and allows a more detailed study and understanding of

nonequilibrium systems. The theory connects the advantages of having a variational principle

with the possibility of describing the full dynamics on the one-body level. The fundamental

one-body fields ρ(r, t) and J(r, t) are thereby determined by the continuity equation and a force

balance equation, respectively.

PFT may be used in the same situations as DDFT, where for example a systems is driven out of

equilibrium. This is necessary because the variational principle only gives the physical current,
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which is used to calculate the dynamics of the density. Hence this only yields reasonable results

if the density imposed in the variational calculus is already the physically correct one. A possible

initial value for the density is the equilibrium value, as it can be obtained by DFT.
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2 Aim of this thesis and author’s contribution

to publications

This cumulative thesis aims to provide new insights into the physical behavior of active Brownian

particles (ABP) by formulating an effective equilibrium approach and a power functional theory

(PFT) for the problem. Both approaches reduce the complexity in the description of the system.

The effective equilibrium approach reduces the degrees of freedom significantly, as orientations

are integrated out. PFT is a one-body theory and hence allows an even more efficient description

of ABP, as the dynamics is given by only the one-body density and the one-body current.

There are four publications (two published [1, 2], one submitted [3], one in preparation [4])

that contribute to the thesis, each dealing either with the direct formulation of PFT for ac-

tive systems [2, 3], the formulation of an effective equilibrium description of active Brownian

particles [1] or applications of these approaches to phase separation [1, 2] and interfaces [4].

All results are tested against Brownian dynamics simulations, and all concepts are suitable for

systems of active Brownian particles.

An overview of the articles is also given in Sec. 6, where all contributing publications are included

in chronological order. Regarding the manuscript on the fluid-fluid interface in phase-separated

active particle systems that is in preparation [4]; we include an abstract in Sec. 6 and we give

results from computer simulation, relevant comparisons, and an outlook about the theory in

Sec. 4.

In all publications the author’s contribution is the performance of Brownian dynamics (BD) com-

puter simulations, which includes the extension of the BD simulation scheme to active systems,

and the improvement and development of sampling strategies, especially to sample currents,

velocities, and the power functional in steady state. The simulations play a very important role

as they give validation of the theoretical models. I have also contributed substantially to the

development of the theoretical methods and the preparation of the manuscripts.

2.1 Brownian dynamics simulations of active Brownian particles

Brownian dynamics simulations

In order to test theoretical predictions, computer simulations became a widely spread tool over

the last decades. Simulations are cheap and easy to realize compared to experiments. In con-

trast to the theoretical approaches discussed above, computer simulations are used to investigate

the many-body dynamics and stationary states of many-body problems. In colloidal science

Monte Carlo simulations are often used to understand the equilibrium properties of the sys-
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tem [36]. Alongside other techniques, such as molecular dynamics simulations, the dynamics of

out-of-equilibrium systems is frequently investigated with Brownian dynamics (BD) simulations.

Therein the collisions between the particles and the solvent molecules are not explicitly calcu-

lated. Instead, the Brownian motion of the particles is recovered by considering the over-damped

Langevin equation of motion

ṙi(t) = γ−1Fdet
i (rN ) + ξi(t), (2.1)

where Fdet
i is the total (deterministic) force that acts on particle i with coordinates ri. This force

can in general consist of interparticle interaction forces imposed by the complete configuration

of the N particles, and external forces that may be both conservative and non-conservative.

Furthermore the random displacements imposed by the solvent molecules are modeled by a

Gaussian random variable ξi(t) with zero mean, 〈ξi(t)〉 = 0, and time correlation
〈
ξi(t)ξj(t

′)
〉

=

2Dtrans1δijδ(t − t′), where Dtrans = kBT/γ is the (translational) diffusion coefficient, δij is the

Kronecker symbol, δ(·) is the Dirac distribution, and 1 is the identity matrix. For computer

simulations the equation of motion is discretized and integrated by a forward Euler algorithm,

r(t+ ∆t) = r(t) + γ−1Fdet
i ∆t+ δx∆t, (2.2)

where ∆t is the discrete time step. The noise is modeled by the random displacement δx, which

is sampled from a Gaussian distribution with zero mean and a standard deviation given by

σ =
√

2Dtrans/∆t, in order to fit the auto-correlator of ξi above [37].

Application to ABP

In general for ABP two Langevin equations have to be considered, one translational Langevin

equation, and one rotational Langevin equation.

Computer simulations in [1] are performed in three dimensions, where the orientation of particle

i, ωi, is a unit vector. The equations of motion are

ṙi(t) = sωi(t)− γ−1∇i
∑

i 6=j
φ(rij) + ξi(t), (2.3)

ω̇i(t) = ηi(t)× ωi(t), (2.4)

where s is the free swim speed of an individual particle, and the stochastic vectors ξi and ηi are

both Gaussian white noise with zero mean and auto-correlations given by

〈ξi(t)ξj(t′)〉 = 2Dtrans1δijδ(t− t′), (2.5)

〈ηi(t)ηj(t′)〉 = 2Drot1δijδ(t− t′), (2.6)

where Dtrans = kBT/γ and Drot = kBT/γ
ω are the translational and the rotational diffusion

coefficient, with the corresponding friction coefficients γ and γω, respectively.

Computer simulations contributing to [2–4], and Sec. 4 are carried out in two dimensions. There
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the orientation vector is defined as

ωi(t) = (cosϕi(t), sinϕi(t))
t , (2.7)

where the angle ϕi is measured against the x-axis. Hence the equations of motion for transla-

tional and rotational motion are

ṙi(t) = sωi(t)− γ−1∇i
∑

i 6=j
φ(rij) + ξi(t), (2.8)

ϕ̇i(t) = ηi(t), (2.9)

respectively. The stochastic vector ξi has the same properties as in three dimensions given by

the correlator (2.5). The stochastic variable ηi is a scalar describing Gaussian white noise with

zero mean and auto-correlation

〈ηi(t)ηj(t′)〉 = 2Drotδijδ(t− t′). (2.10)

The interparticle interaction in two and three dimensions is given by a pair interaction potential

φ(rij) that only depends on the distance between the interacting particles rij = |ri− rj |. In this

thesis we use a variety of interaction potentials. In [1] we used a soft core potential of the form

φSC(rij) = ε

(
σ

rij

)12

, (2.11)

where σ is the assigned diameter of the particles and serves as the fundamental unit of length,

and ε is the fundamental unit of energy in the system. Furthermore in [1] we used a Lennard-

Jones potential

φLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (2.12)

In the other publications, [2–4], and Sec. 4, we used the Weeks-Chandler-Anderson (WCA)

potential [38]. The WCA potential is a Lennard-Jones potential that is cut and shifted at the

minimum. Therefore force artifacts are prevented. The potential is given by

φWCA(rij) =





4ε

[(
σ
rij

)12
−
(
σ
rij

)6
]

+ ε, for rij < 21/6σ,

0, otherwise.

(2.13)

As a common measure for activity, the Peclet number,

Pe =
γsσ

kBT
, (2.14)

is used. The Peclet number describes the ratio between self-propulsion motion and thermal

motion. For Pe� 1 the dynamics is dominated by swimming, while for Pe� 1 thermal motion
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is dominant.

In practice we consider N active particles in a cubic box in three dimension with side lengths

L and total volume V = L3 [1], and in a rectangle box with side lengths Lx and Ly in two

dimensions [2, 3], and Sec. 4. In general periodic boundary conditions are used in all spatial

dimensions and the particles are initialized with random positions and orientations. For the

work on the bulk properties in two dimensions, i.e. [2, 3], we use a square box with Lx = Ly.

The simulations of interfacial properties are carried out in an elongated box where Lx > Ly.

Furthermore, we fix the center of mass of all particles to the center of the box. With this a

stable interface parallel to the short side of the box emerges and good sampling statistics are

achieved. After the random initialization we let the system reach a steady state for nequi steps

in all simulation runs. After that the relevant quantities are sampled for nsample steps. The

averaged results for a given quantity O are obtained by averaging over time and over particles

according to

O = 〈Oi(j)〉 =
1

N

N∑

i=1

1

nsample

nsample∑

j=1

Oi(j), (2.15)

where Oi(j) denotes the quantity for particle i at the discrete time j. With a sufficiently

large number of particles and sampling steps the average (2.15) approaches the ensemble aver-

age (1.19).

Further simulation details depend on the particular systems. All details are included in the

publications.

2.2 Power sampling

Power functional theory gives a many-body expression for the power functional evaluated at the

minimum, R0
t , i.e. at the physical time evolution [2, 3]:

R0
t = −γ

2

〈∑

i

vi(t)
2

〉
, (2.16)

where vi(t) is the velocity of particle i at time t, given as a configuration space function by (1.21),

and the average 〈·〉 is an ensemble average as given by (1.19). We aim to relate the Smoluchowski

many-body description given by (2.16) and to the Langevin many-body description, i.e., a

trajectory based approach to the many-body problem.

In this section the equivalence of both pictures is examined. This is particularly useful as

the trajectories can explicitly be calculated in Brownian dynamics (BD) computer simulations.

Following previous work on current sampling in BD [35, 39], the velocity of particle i in BD is

calculated via the central time derivative of the position vector,

vBD
i (t) =

ri(t+ ∆t)− ri(t−∆t)

2∆t
, (2.17)
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where ∆t is the discrete time step in the simulation.

Using this definition we can sample the quantity Λt, which is defined as

Λt = −γ
2

〈∑

i

vBD
i (t)2

〉
, (2.18)

where the average is calculated according to (2.15). In the following we explain the sampling of

Λt by considering
〈
vBD
i (t)2

〉
in detail, as is necessary in order to carry out the average (2.18)

efficiently.

We take into account that the discrete dynamics is integrated by the Euler algorithm, c.f. (2.2).

The velocity (2.17) can be expressed as

vBD
i (t) =

∆ri(t) + ∆ri(t−)

2∆t
, (2.19)

where t− is a shorthand notation, t− = t−∆t. The vector ∆ri(t) = ri(t+∆t)−ri(t) is the total

displacement of particle i between t and t + ∆t, and ∆ri(t−) = ri(t) − ri(t − ∆t) is the total

displacement of particle i between t −∆t and t. These displacements can be further split into

displacements due to the interparticle interaction force, ∆rint
i (t), the external force, ∆rext

i (t),

and the random displacement, ∆rran
i (t), i.e.,

∆ri(t) = ∆rint
i (t) + ∆rext

i (t) + ∆rran
i (t). (2.20)

For the active Brownian particles considered here, the individual contributions are defined by

∆rint
i (t) = γ−1Fint

i (t)∆t, (2.21)

∆rext
i (t) = sωi(t)∆t, (2.22)

∆rran
i (t) = ξi(t)∆t, (2.23)

where the internal force, Fint
i , is given by the negative gradient with respect to the position

of particle i of the interaction potential, Fint
i = −∇iU(rN ,ωN ). Inserting (2.19) in (2.18)

with (2.20), (2.21), (2.22) and (2.23), yields 36 different contributions to
〈
vBD
i (t)2

〉
in to-

tal. Table 2.1 gives all possible terms. Of all 36 combinations only three are non-trivial,

namely
〈
∆rint

i (t) ·∆rint
i (t)

〉
,
〈
∆rint

i (t) ·∆rext
i (t)

〉
, and

〈
∆rran

i (t−) ·∆rint
i (t)

〉
, which we refer to

as INT− INT, INT− EXT, and RAN− INT, respectively, in table 2.1. In the following we will first

discuss the trivial terms that are either zero or finite and constant. Second, the non-trivial cor-

relators are discussed in detail. Next, we give a proof of concept of the power sampling method

that is provided by a nonequilibrium sum rule, and discuss the relationship between R0
t and Λt.

Trivial correlators. All trivial correlators that vanish involve a random displacement combined

with either an internal or an external displacement. As the random displacement is a Gaussian

distributed random number, the average of this number multiplied by any arbitrary number (in

this case an internal or an external displacement) is zero. The only exception is the RAN− INT

(i.e.
〈
∆rran

i (t−) ·∆rint
i (t)

〉
) correlator, as it gives a finite value. This correlator is discussed in
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∆rint
i (t−) ∆rext

i (t−) ∆rran
i (t−) ∆rint

i (t) ∆rext
i (t) ∆rran

i (t)

∆rint
i (t−) INT− INT INT− EXT 0 INT− INT INT− EXT 0

∆rext
i (t−) INT− EXT (s∆t)2 0 INT− EXT (s∆t)2 0

∆rran
i (t−) 0 0 4Dtrans∆t RAN− INT 0 0

∆rint
i (t) INT− INT INT− EXT RAN− INT INT− INT INT− EXT 0

∆rext
i (t) INT− EXT (s∆t)2 0 INT− EXT (s∆t)2 0

∆rran
i (t) 0 0 0 0 0 4Dtrans∆t

Table 2.1: All combinations of displacement that contribute to
〈
vBD
i (t)2

〉
. The table indicates

that each cell is given by the product of the corresponding displacement given by the top row
and the first column, averaged over the ensemble. The trivial correlators are given by their ex-
act value, while the non-trivial correlators are labeled as INT− INT for

〈
∆rint

i (t) ·∆rint
i (t)

〉
,

INT− EXT for
〈
∆rint

i (t) ·∆rext
i (t)

〉
, and RAN− INT for

〈
∆rran

i (t−) ·∆rext
i (t)

〉
. For example

∆rint
i (t) combined with ∆rext

i (t) gives
〈
∆rint

i (t) ·∆rext
i (t)

〉
= INT− EXT.

detail together with the other non-trivial correlators below.

Combining two random displacements gives a constant because of the δ–correlated noise ξi(t),

given by (2.5). The trivial correlators that are constant are thus 〈∆rran
i (t) ·∆rran

i (t)〉 and

〈∆rran
i (t−) ·∆rran

i (t−)〉. As the δ−distribution of the auto-correlator of the random force, (2.5),

is discretized by a random displacement sampled from a Gaussian distribution with zero mean

and standard deviation
√

2Dtrans/∆t, c.f. (2.2), the auto-correlator has the value

〈∆rran
i (t) ·∆rran

i (t)〉 = 〈∆rran
i (t−) ·∆rran

i (t−)〉 = 4Dtrans
∆t ∆t2 in two dimensions. Dividing by

4∆t2 to obtain the contribution of the correlator to the squared velocity gives Dtrans/∆t. Hence

the discretization of δ(·) enters the squared velocity directly and creates a constant numerical

value of the order O(105), as ∆t is typically of order O(10−5).

The correlators of ∆rext
i with itself with arbitrary time arguments each are constant, too, and

give all the same value:〈
∆rext

i (t−) ·∆rext
i (t)

〉
≈
〈
∆rext

i (t) ·∆rext
i (t)

〉
=
〈
∆rext

i (t−) ·∆rext
i (t−)

〉
= (s∆t)2. The reason

is that the orientation ωi(t) is a unit vector,c.f. (2.22), and because the orientation changes

only slightly between two time-steps the correlator with mixed time arguments gives the same

values as the correlators with both the same time arguments within small uncertainties due to

numerical discretization effects.

Non-trivial correlators. As indicated in table 2.1, the INT− INT and INT− EXT correlators

are independent of the time arguments.

Hence,
〈
∆rint

i (t) ·∆rint
i (t)

〉
=
〈
∆rint

i (t−) ·∆rint
i (t−)

〉
≈
〈
∆rint

i (t) ·∆rint
i (t−)

〉
and〈

∆rext
i (t) ·∆rext

i (t)
〉

=
〈
∆rext

i (t−) ·∆rext
i (t−)

〉
≈
〈
∆rext

i (t) ·∆rext
i (t−)

〉
. In both cases the first

identity follows from the sampling method described above by (2.15), where all times are con-
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Figure 2.1: The three non-trivial correlators contributing to
〈
vBD
i (t)2

〉
sampled in BD simula-

tions as a function of density for different temperatures. (a) The correlator
〈
∆rint

i (t) ·∆rint
i (t)

〉

is labeled with INT− INT. (b) The correlator
〈
∆rint

i (t) ·∆rext
i (t)

〉
is labeled with INT− EXT.(a)

The correlator
〈
∆rran

i (t−) ·∆rint
i (t)

〉
is labeled with RAN− INT. The simulation parameters are

given in the text and in [3].

sidered. The correlators with mixed time arguments have in very good approximation the same

value as the correlators with the same time arguments, as both the positions and orientations

only change slightly during the small time step.

The non-trivial parts are shown in Fig. 2.1 as a function of bulk density for different tempera-

tures, as indicated by color and linestyle. The values of the system parameters are identical to

the ones given in Ref. [3]: N = 5000 particles are simulated in a two-dimensional square box with

side length L =
√
N/ρb, interacting via the Weeks-Chandler-Anderson potential, c.f. (2.13). The

fundamental units are σ, γ and ε. The activity parameters, i.e. the rotational diffusion coefficient

and the self-propulsion speed, are given by Drot/Dtrans = 3σ−2 and sσγ/ε = 24, respectively.

The value of
〈
∆rint

i (t) ·∆rint
i (t)

〉
, shown in Fig. 2.1(a), increases with bulk density, as the rate of

collisions between the particles increases, and the magnitude of the internal forces increases. The

displacements ∆rint
i (t) and ∆rext

i are anticorrelated, as the negative value of
〈
∆rint

i (t) ·∆rext
i (t)

〉

in Fig. 2.1(b) indicates. This means that the displacements caused by external forces are coun-

teracted by internal interactions. In the low density limit, ρb → 0, external displacements lead

only in very rare events to a collision and no interparticle interaction takes place. As the bulk

density increases the probability of collisions caused by external displacements increases as well.

Therefore the absolute value of the correlator
〈
∆rint

i (t) ·∆rext
i (t)

〉
increases.

It remains to specify the correlator
〈
∆rran

i (t−) ·∆rint
i (t)

〉
as the only non-zero correlator that

involves only a single random displacement. This correlator is shown in Fig. 2.1(c) and is

negative, i.e. the random displacement at time t− anticorrelates with the displacement due to

internal forces at time t. The reason is that a random displacement in a system with repulsive

interactions and a finite bulk density typically pushes a tagged particle into the surrounding

particles. Due to the repulsive interaction between the particles the tagged particle is repelled

in the next time step. Hence the displacement at time t is in the opposite direction than the

random displacement at the previous time t−.
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The squared velocity of one particle at time t is the sum of all correlators divided by (2∆t)2,

where we subtract 〈∆rran
i (t) ·∆rran

i (t)〉 and 〈∆rran
i (t−) ·∆rran

i (t−)〉. The reason is that the

correlators 〈∆rran
i (t) ·∆rran

i (t)〉 and 〈∆rran
i (t−) ·∆rran

i (t−)〉 have a value of the order O(∆t−1),

as discussed above. Thus we obtain

Λ̃t = Λt − C, (2.24)

where the constant

C = 2Dtrans/∆t (2.25)

contains the contributions to Λt that are given by 〈∆rran
i (t) ·∆rran

i (t)〉 and 〈∆rran
i (t−) ·∆rran

i (t−)〉.

Nonequilibrium sum rule. A proof of concept for power sampling is given by providing data

for demonstrating a nonequilibrium sum rule that is presented in [3]. There R0
t is split into

internal power, It, and external power Xt according to

R0
t = −It/2−Xt/2, (2.26)

where It and Xt are given by [3]

It =

∫
drNdωN

∑

i

[(
−∇i(U(rN ,ωN )− kBT (∇i ln Φ(rN ,ωN , t)

)
· v̂i

+
(
−∇ω

i (U(rN ,ωN )− kBT (∇ω
i ln Φ(rN ,ωN , t)

)
· v̂ω

i

]
· Φ(rN ,ωN , t). (2.27)

and

Xt =

∫
drNdωN

∑

i

[(
−(∇iV ext(ri,ωi, t)) + X(ri,ωi, t) + γsωi

)
· v̂i

+
(
−(∇ω

i V
ext(ri,ωi, t)) + Xω(ri,ωi, t)

)
· v̂ω

i

]
Φ(rN ,ωN , t). (2.28)

In the present situation, where V ext = X = Xω ≡ 0, the external power reduces to

Xt =

∫
drNdrN

∑

i

(γsωi · v̂i) Φ(rN ,ωN , t). (2.29)

The sum rule [3] implies that

It = 0, (2.30)

and hence

R0
t = −Xt/2, (2.31)

in steady state.
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In the Langevin picture we formulate an analogous identity:

Λ̃t = −It/2−Xt/2, (2.32)

where It and Xt are given by

It =

〈∑

i

vBD
i (t) ·

(
Fint
i (t) + γξi(t)

)
〉
− C, (2.33)

and

Xt =

〈∑

i

vBD
i (t) · (γsωi(t))

〉
, (2.34)

respectively, where C is given by (2.25) [2]. Note that taking into account that the dynamics is

evaluated at the minimum at the power functional and therefore v̂iΦ = viΦ and assuming that

vBD
i gives the correct velocity of particle i, the external power Xt, given by (2.29), is equivalent

to Xt. In simulations, Xt can be easily sampled with (2.19) and (2.22),

Xt =

〈∑

i

∆ri(t) + ∆ri(t−)

2∆t
· γ∆rext

i (t)

∆t

〉
. (2.35)

Splitting the displacements according to (2.16) and taking table 2.1 into account yields

Xt = γs2 +
γ

(∆t)2

∑

i

〈
∆rint

i (t) ·∆rext
i (t)

〉
. (2.36)

In [2] we showed numerically that It = 0 by a direct comparison between Λ̃t and −Xt/2 that is

shown in Fig. 1 therein, where the sampled R0
t therein corresponds to Λ̃t here. The agreement

is very good which means that on the basis of the simulation data we conclude that

Λ̃t = −Xt/2, and It = 0. (2.37)

The identity Λ̃t = −Xt/2 holds in general for nonequlibrium steady states and is proven below

after the general relation of R0
t and Λt is discussed in detail. With the equivalence of Xt and Xt

follows that Λ̃0 is equivalent to R0
t due to the exact sum rule. However, detailed studies suggest

that these important results only hold in the special case of ABP in out-of-equilibrium steady

states and are not true in general [40].

General relationship between R0
t and Λt. The general relationship between the Smolu-

chowski and the Langevin picture regarding power sampling is examined in the following. First,

we write
〈∑

i(v
BD
i )2

〉
in steady state as

〈∑

i

(vBD
i )2

〉
= γ−2

〈∑

i

Fdet
i (t−)2

〉
+ 2Dtransδ(0) +

1

2γ

〈∑

i

ξi(t−) · Fdet
i (t)

〉
, (2.38)
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where Fdet
i = Fint

i + Fext
i is the total deterministic force as a sum of the internal force Fint

i and

the external force Fext
i . Equation (2.38) follows from the definition of vBD

i as a central deriva-

tive (2.19) when the (general) equation of motion (2.1) is considered in two spatial dimensions.

By Taylor expanding Fdet
i (t) in the last term of (2.38) around the time t− in linear order of ∆t

it can be shown that

1

2

〈∑

i

ξ(t−) · Fint
i (t)

〉
= Dtrans

〈∑

i

∇i · Fint
i (t)

〉
, (2.39)

and hence (2.38) becomes

〈∑

i

vBD
i (t)2

〉
= γ−2

〈∑

i

Fdet
i (t−)2

〉
+ 2Dtransδ(0) +

Dtrans

γ

〈∑

i

∇i · Fdet
i (t)

〉
. (2.40)

Because of the fact that the random displacement ξi does not appear, (2.40) can be translated in

the Smoluchowski description of the dynamics and written as an average in configuration space,

〈∑

i

vBD
i (t)2

〉
= 2Dtransδ(0) +

∫
drN

∑

i

(
γ−2(Fdet

i )2 +
Dtrans

γ
∇i · Fdet

i

)
Φ(rN , t). (2.41)

Integrating by parts the last term in (2.41) and rearranging yields

〈∑

i

(vBD
i )2

〉
= 2Dtransδ(0) + γ−2

∫
drN

∑

i

Fdet
i ·

(
Fdet
i − kBT∇i ln Φ

)
Φ(rN , t)

= 2Dtransδ(0) + γ−2

∫
drN

∑

i

Fdet
i · Ftot

i Φ(rN , t), (2.42)

where Ftot
i = Fdet

i + Fdiff
i is the total force, i.e. the deterministic force Fdet

i plus the diffusive

force Fdiff
i = −kBT∇i ln Φ.

The result (2.42) is compared to
〈∑

i vi(t)
2
〉

in the Smoluchowski picture, given by

〈∑

i

vi(t)
2

〉
= γ−2

∫
drN

∑

i

(Ftot
i )2 Φ(rN , t)

= γ−2

∫
drN

(∑

i

Fdet
i · Ftot

i +
∑

i

Fdiff
i · Ftot

i

)
Φ(rN , t). (2.43)

Comparing (2.42) with (2.43) shows that the
〈∑

i vi(t)
2
〉

cannot be obtained from
〈∑

i(v
BD
i )2

〉

in general as the latter does not include the diffusive flux
∫
drN

∑
iF

diff
i ·Ftot

i Φ(rN , t). However,

parts of the diffusive flux can also be obtained from BD simulations as

∫
drN

∑

i

Fdiff
i · Ftot

i Φ(rN , t) =

∫
drN

∑

i

Fdiff
i ·

(
Fdet
i + Fdiff

i

)
Φ(rN , t)

=

∫
drN

∑

i

(
Fdiff
i · Fdet

i + Fdiff
i · Fdiff

i

)
Φ(rN , t). (2.44)
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Hence,

〈∑

i

vi(t)
2

〉
= γ−2

∫
drN

[∑

i

Fdet
i ·

(
Fdet
i + 2Fdiff

i

)
+
∑

i

Fdiff
i · Fdiff

i

]
Φ(rN , t). (2.45)

In (2.45) only the last average
〈∑

iF
diff
i · Fdiff

i

〉
cannot be directly sampled from BD simulations,

as comparing to (2.40) and (2.41) shows.

As a consequence, the full power functional R0
t cannot be sampled in general from Brownian

dynamics simulations, but its deterministic part can be obtained. Note that the first term

in (2.42) is given by the constant C in the definition (2.24). This situation is comparable to

equilibrium statistical mechanics, where quantities such as the free energy F or the entropy S

are not measurable directly as averages in simulations either, but have to be obtained, e.g., via

thermodynamic integration [36].

Derivation of the sum rule in the Langevin picture, It = 0. Writing It defined by (2.33)

in the same fashion as
〈∑

i(v
BD
i )2

〉
in (2.38) gives

It =
1

γ

〈∑

i

Fint
i (t−)2

〉
+

1

γ

〈∑

i

Fint
i (t−) · Fext

i (t−)

〉
+

1

2

〈∑

i

ξ(t−) · Fint
i (t)

〉
, (2.46)

where the constant C cancels out. Using the identity (2.39) in (2.46) yields

It =
1

γ

〈∑

i

(Fint
i )2

〉
+

1

γ

〈∑

i

Fint
i · Fext

i

〉
+Dtrans

〈∑

i

∇i · Fint
i

〉
. (2.47)

Analogous to (2.40), (2.47) can be transfered to the Smoluchowski picture and written as

It =
1

γ

∫
drN

∑

i

Fint
i ·

(
Fint
i + Fext

i − kBT∇i ln Φ
)

Φ(rN , t). (2.48)

The term in brackets in (2.48) is the velocity vi of particle i following from the definition of the

velocity operator (1.8). As the internal force is given by the negative gradient of the interaction

potential, Fint
i = −∇iU(rN ), (2.48) becomes

It =
1

γ

∫
drN

∑

i

(−∇iU) · viΦ(rN , t). (2.49)

Integration by parts yields

It =
1

γ

∫
drN

∑

i

U
(
∇i · viΦ(rN , t)

)
. (2.50)

Using the Smoluchowski equation (1.7), the term in brackets in (2.50) gives the time derivative

of the distribution function, ∂Φ(rN , t)/∂t, which vanishes in steady state. For this reason, It

vanishes in steady state.
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3 Overview of the publications

In this section we give an overview of the publications that contributed to this thesis. We

approach the problem of motility-induced phase separation (MIPS) of active Brownian particles

(ABP) in the first instance by describing the ABP model as an effective equilibrium system in

Sec. 3.1 and the corresponding publication [1]. Thereby the interparticle interaction potential

changes and repulsive interactions develop an attractive part. This is identified as the mechanism

for MIPS. However this approach is only valid in the limit of small activity.

To overcome this problem a power functional theory (PFT) for ABP is developed in Sec. 3.2

and in the publications [2] and [3]. The theory is formally exact and is not restricted to any

limit in the activity of the particles. Although many aspects of ABP systems can be described

by PFT and the agreement with computer simulations is very good, the problem of MIPS is not

finally solved.

This lack of explanation is the motivation to study the interface between coexisting phases in

detail. The interface appears to be not only necessary to fully describe MIPS, but to be crucial

to understand the physics of ABP because the active particles are orientated towards the liquid

side of the interface making the interface polarized. This is fundamentally different from the

bulk, where the orientations are evenly distributed and makes the study of the orientational

dependency of the one-body density and current essential. A manuscript on the interface is in

preparation [4]. Results obtained from computer simulations are shown in Sec. 4.

3.1 Effective interactions in active Brownian suspensions

In publication [1] we present one of the first studies in which the rotational equation of mo-

tion (2.4) is integrated out. By doing so the equations of motion reduce to one (translational)

Langevin equation in three dimensions,

ṙi(t) = γ−1Fint
i (rN ) + ξi(t) + χi(t), (3.1)

where Fint
i (rN ) is the interparticle interaction force. In (3.1) the self-propulsion force does not

appear directly, as it does in (2.3), because the orientations have been integrated out. The

activity is contained in the colored noise χi(t), and ξi(t) describes Gaussian white noise as given

by (2.5). The colored noise χi(t) has zero mean and the time correlation function

〈
χi(t)χj(t

′)
〉

=
s2

3
exp

(
−2Drot|t− t′|

)
1δij . (3.2)

In [1] we used an approach by Fox [41, 42] that is based on an expansion in powers of the
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correlation time, which is proportional to 1/Drot here. The technical details of the calculation

can be found in the Appendix of [1]. The result is a Fokker-Planck equation for the configural

probability distribution,

∂Φ(rN , t)

∂t
=

N∑

i=1

∇i ·Di(r
N )
(
∇i − βFeff

i (rN )
)

Φ(rN , t), (3.3)

where β ≡ 1/(kBT ). The diffusion coefficient therein is

Di(r
N ) = Dtrans +

s2

6Drot

(
1 +

τ∇i · βFint
i (rN )

1− τ∇i · βFint
i (rN )

)
(3.4)

where τ = Dtrans/(2Drotσ
2), and the effective force is

Feff
i (rN ) =

Dtrans

Di(rN )

(
Fint
i − kBT∇i

Dtrans

Di(rN )

)
. (3.5)

Assuming that the interparticle interaction is a pair interaction, i.e. Fint
i (rN ) = −1

2∇i
∑

i 6=j φ(rij),

gives an effective pair potential

φeff(r) = kBT

∫ ∞

r
dr′

(
β| − ∇φ(r′)|Dtrans

D(r′)
− ∂

∂r′
ln
D(r′)

Dtrans

)
, (3.6)

where r ≡ rij . The activity of the particles in (3.6) is controlled by the radial diffusivity

D(r) = Dtrans +
s2

6Drot

(
1− τ∇2βφ(r)

1 + τ∇2βφ(r)

)
, (3.7)

in which the activity parameters s, Drot, and τ enter directly. The effective force between two

particles follows straightforwardly as Feff(r) = −∇φeff(r). Therefore

Feff(r) =
Dtrans

D(r)

(
−∇φ(r)− kBT∇

D(r)

Dtrans

)
. (3.8)

We show in [1] in detail how these equations are derived. Increasing the activity leads to the

development of an attractive tail in the (effective) interaction potential (see Fig. 1 in [1]). As

particles (effectively) attract each other a phenomenon comparable to spinodal decomposition

is observed, where the systems separates into a dilute and a dense phase. We use the soft mean-

spherical approximation integral equation theory [43] to obtain the spinodals associated with

the phase separation for different values of activity. We conclude that MIPS can be explained

by an effective attractive interaction between the particles. Furthermore the pair correlation

function, g(r), is calculated within the theory. These results are tested against many-body

computer simulation, where the translational and rotational equation of motion, (2.3) and (2.4),

respectively, are integrated in time directly. Hence the computer simulations generate the “real”

dynamics, structure, and phase behavior of the active system. The simulation data and the

effective interaction approach agree very well showing the validity of the effective interaction
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approach.

Similar considerations have been done for particles that passively show an attraction, such as the

Lennard-Jones particles. An increase of the activity first decreases the magnitude of attraction

(see Fig. 2 in [1]). Increasing the activity further again increases the attraction on length scales

r ≈ σ. Furthermore the development of an repulsive bump is observed at r ≈ 1.4σ. Therefore a

reappearance of phase separation behavior can be observed. These results are in good agreement

with work by Redner et al. who studied the reentrant phase behavior with a kinetic model and

computer simulations [44].

Although the effective interaction approach gives very good quality results, its range of possible

application is limited. First, the approximation to get the Fokker-Planck equation only works

for active motion with a small persistence time, i.e. small reorientation time or high rotational

diffusion coefficient [45]. What is meant quantitatively by small persistence time in this context

is not well defined. Qualitatively, small persistence is associated with a high rotational diffusion

coefficient. Second, the assumption of the many-body interparticle interaction being a pair

interaction for finite bulk densities is only validated by the comparison of the pair correlation

function of the theory with BD simulations, as a priori this is only clear in the low density limit.

The method is often referred to as effective equilibrium, because the activity only determines the

form of the interaction between the particles. Therefore it is possible to approach the problem

with methods from equilibrium statistical physics, such as free energy functionals.

Apart from Fox’s approximation for colored noise, there exists a second prominent approxi-

mation, the unified colored noise approximation (UCNA) [46, 47]. Both approaches produce

comparable results.

The development of the effective equilibrium description opened an individual branch in the

studies of active particles that uses and develops systematically methods for the description of

ABP closely related to known approaches for passive Brownian particles. For example a den-

sity functional theory (DFT) and a dynamical density functional theory (DDFT) for ABP were

formulated by Brader and Wittmann using the effective equilirium approach [48]. They stud-

ied inhomogenous situations, such as wetting and capillary evaporation. Therein the effective

external potential, V eff
ext(z), depends on z, the distance to the wall. The effective free energy

functional is then

F eff [ρ] = Fid[ρ] + F eff
exc[ρ] +

∫
dr ρ(r)V eff

ext(z), (3.9)

where Fid[ρ] is the familiar ideal gas contribution (1.6). The effective excess free energy, F eff
exc[ρ]

consists of a hard-sphere reference system plus an attractive perturbation that is given by the

effective interaction potential in a mean-field fashion. Taking the adiabatic assumption for the

dynamics into account, (1.12), yields the effective DDFT equation

∂ρ(r, t)

∂t
= Dtrans∇ ·

(
ρ(r, t)∇δβF

eff [ρ]

δρ(r, t)

)
, (3.10)

that allows the study of (effective) dynamics, statics, and thermodynamics in ABP systems.
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For a detailed discussion about thermodynamic aspects, such as the pressure or the surface

tension in both, the Fox approach and the UCNA are given in Refs. [49, 50]. Therein both

approaches are compared in detail and thoroughly.

For the sake of completeness, there exist a number of approaches that construct a local effective

free energy functional based phenomenological considerations [51, 52].

3.2 Power functional theory for active Brownian particles

For active Brownian particles (ABP) not only the {r1...rN} ≡ rN positions of the N particles

have to be considered, but their orientations {ω1...ωN} ≡ ωN along which the particles are self-

propelled with speed s, as well. The Smoluchowski equation for the time-dependent probability

distribution Φ(rN ,ωN , t) of an ensemble of interacting ABP is

∂

∂t
Φ(rN ,ωN , t) +

∑

i

(∇i · v̂i +∇ω
i · v̂ω

i ) Φ(rN ,ωN , t) = 0, (3.11)

where ∇ω
i indicates the derivative on the unit sphere with respect to ωi; v̂i and v̂ω

i are the

translational and rotational velocity operators, respectively. They are given by

γv̂i =− (∇iU(rN ,ωN ))− (∇iV ext(ri,ωi, t)) + X(ri, t) + γsωi − kBT∇i, (3.12)

γωv̂ω
i =− (∇ω

i U(rN ,ωN ))− (∇ω
i V

ext(ri,ωi, t)) + Xω(ri, t)− kBT∇ω
i , (3.13)

where Xω is the external non-conservative torque. The many-body expression of the power

functional is minimal (indicated by the superscript 0) at the physical dynamics and has the

form

R0
t = −1

2

∫
drNdωN

∑

i

(
γv2

i + γω(vω
i )2
)

Φ(rN ,ωN , t), (3.14)

where vi is the eigenvalue of the velocity operator at a given time t according to v̂iΦ(rN ,ωN , t) =

viΦ(rN ,ωN , t) and vω
i is the rotational velocity given by v̂ω

i Φ(rN ,ωN , t) = vω
i Φ(rN ,ωN , t) At

the minimum this is equivalent to the velocity of the particle i.

The many-body theory is connected to the one-body level by a constrained Levy search [53, 54]

by which Rt → Rt[ρ,J,J
ω]. The power functional, Rt[ρ,J,J

ω], thus becomes a functional of

ρ(r,ω, t), J(r,ω, t), and Jω(r,ω, t). The one-body density distribution for ABP is then given

by

ρ(r,ω, t) =

〈
N∑

i=1

δ(r− ri(t))δ
ω(ω − ωi(t))

〉
, (3.15)

where δ(·) is the Dirac distribution, δω(·) is the Dirac distribution on the unit sphere, and

the brackets indicate an – in general nonequilibrium – average. Consequently the one-body
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translational and rotational current distributions are

J(r,ω, t) =

〈
N∑

i=1

δ(r− ri(t))δ
ω(ω − ωi(t))v̂i(t)

〉
, (3.16)

Jω(r,ω, t) =

〈
N∑

i=1

δ(r− ri(t))δ
ω(ω − ωi(t))v̂ω

i (t)

〉
, (3.17)

respectively. The physical time evolution is obtained when Rt is minimized with respect to the

currents, while the density is kept constant:

δRt[ρ,J,J
ω]

δJ(r,ω, t)
= 0, (3.18)

δRt[ρ,J,J
ω]

δJω(r,ω, t)
= 0. (3.19)

The evolution of the density follows then straight-forwardly form the continuity equation,

∂ρ(r,ω, t)

∂t
= −∇ · J(r,ω, t)−∇ω · Jω(r,ω, t). (3.20)

The splitting introduced by (1.28) still holds for ABP, but now the dissipation functionals and

the external functional are also functionals of the orientational current. Hence,

Rt[ρ,J,J
ω] = Ḟid[ρ] + Ḟexc[ρ] + P id

t [ρ,J,Jω] + P exc
t [ρ,J,Jω]−Xt[ρ,J,J

ω], (3.21)

where

Ḟid[ρ] =kBT

∫
drdω(J · ∇+ Jω · ∇ω) ln ρ, (3.22)

Ḟexc[ρ] =

∫
drdω(J · ∇+ Jω · ∇ω)

δF exc[ρ]

δρ
, (3.23)

P id
t [ρ,J,Jω] =

∫
drdω

γJ2 + γω (Jω)2

2ρ
, (3.24)

Xt[ρ,J,J
ω] =

∫
drdω[J · (−∇V ext + X + γsω) + Jω · (−∇ωV ext + Xω)]. (3.25)

Applying the variational principles (3.18) and (3.19) to (3.21) yields the following equations of

motion,

γJ(r,ω, t)

ρ(r,ω, t)
=γsω −∇V ext(r,ω, t) + X(r,ω, t)−∇ δF [ρ]

δρ(r,ω, t)
− δP exc

t [ρ,J,Jω]

δJ(r,ω, t)
, (3.26)

γJω(r,ω, t)

ρ(r,ω, t)
=−∇ωV ext(r,ω, t) + Xω(r,ω, t)−∇ω δF [ρ]

δρ(r,ω, t)
− δP exc

t [ρ,J,Jω]

δJω(r,ω, t)
. (3.27)

Evaluating the power functional at the physical time evolution yields

R0
t ≡ R0

t . (3.28)
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Starting from this general and exact expressions a discussion of the steady-state properties for

ABP is given in [2] and in more detail in [3]. Therein we consider systems where no external

fields or forces are present, i.e., V ext = 0 and X = Xω = 0. Additionally, Ḟ = 0 in steady state.

Furthermore, we propose an excess dissipation functional of the form,

P exc
t [ρ,J] =

γ

2

∫
drdωdr′dω′ρ(r,ω)ρ(r′,ω′)

(
J(r,ω)

ρ(r,ω)
− J(r′,ω′)

ρ(r′,ω′)

)2

M(r,ω, r′,ω′), (3.29)

where M(r,ω, r′,ω′) is a convolution kernel. The assumptions are such that (3.29) models a

homogeneous bulk steady state. From this a simple expression for the power functional at the

minimum, R0
t , can be obtained. With our power sampling method, c.f. Sec. 2, we compare the

results from theory with many-body computer simulations. The agreement, as shown in Fig. 1

and Fig. 2 in [2] is very good. As argued in [2], the simulations show a clear separation in

dilute and dense bulk phases. Remarkably, imposing the excess dissipation functional designed

for homogeneous situations, (3.29), the power functional matches the sampled data well, even

in the inhomogeneous state, where both phases coexist.

The value of the power functional at the physical dynamics may be split into internal and

external parts,

R0
t = −It/2−Xt/2. (3.30)

The internal part It and the external part Xt are given by (2.27) and (2.28), respectively, and

can be thus be sampled from Brownian dynamics simulations (c.f. Sec. 2.2). Numerical results

of the power sampling presented in [2] suggest that the sampled quantity matches with the

external power in the Langevin picture, Xt/2. In [3] we present the derivation of the sum rule

obtained from first principles on the many-body level. As the sum rule gives R0
t = −Xt/2, the

results in [2] show that the power sampling technique gives the power functional in steady state.

This suggests that power sampling indeed gives the power functional at the minimum, at least

in steady state. Additionally, it is shown that the excess dissipation functional (3.29) satisfies

the sum rule, acting as a further justification for P exc
t .

Furthermore, we have demonstrated how PFT can be used to describe phase coexistence of out-

of-equilibrium stationary states. Therein we assumed that the Lagrange multiplyer α in (1.23)

vanishes. This leads to a Maxwell construction which gives the densities of the coexisting phases

in principle. As further studied showed [14], this treatment is not suitable for ABP. However,

different approaches that use a Maxwell equal area construction cannot predict the coexisting

densities either [14, 55]. This leaves MIPS an unsolved problem.

By describing and fully modeling the interface between the two phases with PFT we hope to

solve the problem of MIPS as discussed in Sec. 4.
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4 Structure of the fluid-fluid interface in

phase-separated active Brownian suspensions

In this section we present results for the free interface between two bulk phases in a phase

separating system of active Brownian particles (ABP). Phase separation is fully driven by the

activity of the particles and called motility-induced phase separation (MIPS) and is of particular

interest as MIPS is stable in systems of purely repulsive particles. The nonequilibrium character

of ABP systems make the theoretical description and modeling of MIPS a challenging problem,

and a variety of approaches exist including effective equilibrium models, c.f. Sec. 3.1 and [1],

continuum theories [52], microscopic many-body theories [51, 56], mechanical theories [57], and

kinetic approaches [58]. Based on these ideas special interest lies on the thermodynamics of active

matter [55, 57, 59, 60] and thermodynamic variables such as temperature [61], pressure [62–67],

chemical potential [14, 68], and interfacial tension [69] (that remarkably is found to be negative),

in order to determine phase coexisting conditions for MIPS. This negative value violates physical

intuition and the authors of Ref. [14] point out that a correct treatment of the active interface is

crucial for describing MIPS. Often theoretical approaches are supported by computer simulations

as a direct and practical test.

Here, we use Brownian dynamics computer simulations in order to investigate the inhomogeneous

one-body density and current distribution at the fluid-fluid interface of phase separating ABP.

The simulations are performed in an elongated box in a center of mass reference system, i.e. the

center of mass of the system lies in the center of the box during the complete sampling time.

This guarantees a stationary interface and thus good sampling statistics. Our directly sampled

results are used to calculate a variety of characteristics of the interface, such as density and

polarization profiles. We compare these results with the current state of literature. Polarization

in systems of self-propelled Brownian particles for example is a widely-known phenomena. It can

be observed in systems where ABP are under the influence of external fields, such as a harmonic

potential [70] or gravity [15]. In the context of interfaces and pressure of ABP, polarization

effects play an important role [14, 59, 67]. But for bulk theories the polarization is an important

input for stability analysis, which are used to predict MIPS [51, 56, 71]. For the density profile as

a function of the coordinate along the long side of the box, tanh fit functions are commonly used

to describe the data [14, 69, 72]. Comparisons with these results of the literature validates our

simulation data as good reference data for an analytic model of the interface. We additionally

give a Fourier decomposition of the angular components of the one-body density and calculate

the first five Fourier coefficients. The decomposition can be used to determine the symmetry of

the density distribution and identify physical effects that emerge at the interface. An outlook on
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possible future work is given that will include a detailed theoretical model which goes beyond

the scope of this thesis.

4.1 Brownian dynamics simulations

We consider N active particles with positions rN = {r1...rN} that are self-propelled with speed

s along their orientations ωN = {ω1...ωN}, to be contained in a square simulation box with

an elongated geometry, i.e. the aspect ratio of the box is Lx/Ly = A, in two dimensions with

lengths Lx and Ly. The total “volume” of the box is V = LxLy and is adjusted to fit the overall

bulk density ρb according to V = N/ρb. In practice we choose Lx > Ly and hence A > 1. The

interface is expected to be parallel to the short side of the box, making the system translational

invariant in the y-direction. Therefore most spatial dependencies reduce to a dependency on

the x-coordinate. For a bulk steady state the one-body density distribution becomes a constant,

2πρ(r,ω, t) = ρb = N/V and the current reduces to J = Jbω [2],[3]. The dynamics of the system

in two dimensions is described by the over-damped Langevin equations (c.f. (2.3) and (2.4))

ṙi(t) = sωi(t) + γ−1Fint
i (rN ) + ξi(t), (4.1)

ϕ̇i(t) = ηi(t), (4.2)

where the orientation is given by ωi = (cosϕi, sinϕi) and ϕi is measured against the x−axis.

The stochastic vector ξi and the stochastic scalar variable ηi both describe Gaussian white noise

with zero mean and auto-correlations given by

〈ξi(t)ξj(t′)〉 = 2Dtrans1δijδ(t− t′), (4.3)

〈ηi(t)ηj(t′)〉 = 2Drotδijδ(t− t′). (4.4)

Here, Dtrans = kBT/γ and Drot = kBT/γ
ω are the translational and the rotational diffusion

coefficient with friction coefficients γ and γω, respectively, and 1 is the unit matrix. We consider

(conservative) interparticle interactions of a pairwise form, generated from the Weeks-Chandler-

Anderson potential (WCA) as given by (2.13),

φWCA(rij) =





4ε

[(
σ
rij

)12
−
(
σ
rij

)6
]

+ ε, for rij < 21/6σ,

0, otherwise.

(4.5)

by

Fint
i (rij) = −∇i

∑

j,j 6=i
φWCA(rij), (4.6)

where rij = |ri−rj | is the distance between particles i and j, ∇i is the derivative with respect to

ri, ε is the fundamental unit of energy, and σ is the associated particle diameter. As the WCA

potential is a Lennard-Jones potential that is cut and shifted at the minimum, it generates
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a soft-core repulsive interaction of finite range without any force artifacts at the cut-off. A

common measure for activity is given by the dimensionless Peclet number defined as [52]

Pe =
3s

Drotσ
. (4.7)

We carry out Brownian dynamics simulations for N = 2000 particles in two spatial dimensions

by solving the equations of motion (4.1) and (4.2) with a forward Euler algorithm, where periodic

boundary conditions are implemented in both space dimensions of the elongated box. The time

between two steps is ∆t = 10−5τ0, where τ0 = σ2γ/ε is the fundamental unit of time expressed

in the natural units of the system ε, σ, which are both set up by the potential (4.5), and the

friction coefficient γ.

The simulations are performed in the center of mass system, i.e. the system is prepared such that

the x-component of the center of mass remains in the center of the simulation box. This global

shift does not affect the forces on the particles as all distances between the particles remain the

same. The shift is important to establish a stationary interface. We initialize the system with

random positions and orientations of the particles and let it reach a steady state for nequi = 107

steps. Afterwards, data is sampled for nsamp = 108 steps. We fix Drot/Dtrans = 3σ−2 for all

simulations. With this choice of parameters the Peclet number given by (4.7) is Pe=γσs/(kBT ).

It is fixed to Pe=120 in order to ensure MIPS happening in the system (see e.g. the phase

diagrams in Refs. [44, 52] and [2]). We perform simulations for bulk densities ρbσ
2 = 0.4 to 1 in

steps of 0.1, for aspect ratios of A = 2.5, 5, and 10. The temperature and swim speed is varied

in a way that Pe=120. The values carried out are (kBT/ε, sτ0/σ) = (1, 120), (0.5,60), (0.25,30),

and (0.1,12).

4.2 Results

4.2.1 One-body density, current, and velocity

Density

Figure 4.1 shows the density as a function of position x and angle ϕ for a phase-separating

system with sτ0/σ=60, kBT/ε = 0.5, A = 5, and ρb = 0.7. The values ϕ = 0 and ϕ = π

correspond to swimming in the positive and negative x-direction, respectively. Each of the two

interfaces that separate the dilute and the dense phase are clearly visible by the white color. At

x/σ ≈ −20 – the “left” interface from gas to liquid – the density is maximal for ϕ = 0, where

the particles swim against the interface in positive x-direction. This means that the interface is

polarized; at the interface the orientation vectors of the particles, ω, point towards the dense

phase [14, 67]. The polarization will be discussed in detail in Sec. 4.2.3. Likewise the density

of particles which point towards the dilute phase is significantly smaller, as those particles just

swim away from the interface in a rather unhindered fashion.

In Fig. 4.2 we show the density profiles along the x-direction, i.e. the integral of the density field
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Figure 4.1: Density profile as a function of x and ϕ for sτ0/σ = 60, kBT/ε = 0.5, A = Lx/Ly =
5, and ρb = 0.7. Blue regions indicate areas with low density, while red regions indicate areas
with high density. The middle of the color scale is given by white color and therefore the interface
roughly coincide with white regions.

over all orientations

ρ̄(x) =

∫ 2π

0
dϕ ρ(x, ϕ). (4.8)

Figure 4.2(a) shows the dependency of the density profile on the temperature, while A = 5 and

ρbσ
2 = 0.7 is fixed. As Pe=120 is kept constant, different temperatures mean different swim

speeds, too. We find that the density in both the dilute and the dense phase increases with

temperature. Likewise the area of the dilute phase decreases with temperature such that the

normalization N =
∫
ρ̄(x)dx holds. The magnitude of the polarization effect increases with swim

speed as the particles push harder against the interface, hence an increase in s (and therefore in

T due to the constant Pe number) gives a larger compression of the dense phase. Therefore we

observe an increase of the bulk density of the dense phase at high temperatures.

In Fig. 4.2(b) we show ρ̄(x) for different values of bulk density ρb, as indicated by color and

pointstyle, while sτ0/σ = 60, kBT/ε = 0.5 and A = 5 are fixed. For ρbσ
2 = 0.5 the system does

not separate in two phases and ρ̄(x) = const = ρb. Increasing the bulk density leads to phase

separation. Clearly, the coexisting densities are independent of the bulk densities, but the area

fraction of the dense phase increases, because the total volume of the simulation box decreases

with ρb.

Panel (c) of Fig. 4.2 shows the dependence on the aspect ratio. Here kBT/ε = 0.5, sτ0/σ = 60,

and ρbσ
2 = 0.7 are fixed. For A = 2.5 and A = 5 the density profiles share the same overall shape

and the coexisting bulk densities in gas and liquid are the same. Increasing the aspect ratio

further to A = 10, i.e. making the simulation box narrower, this shape is not fully retained. We
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Figure 4.2: Density profiles ρ̄(x) along the x axis. (a) For different temperatures kBT/ε = 0.1,
0.25, 0.5, and 1. The corresponding swim speeds are sτ0/σ = 12, 30, 60, and 120. The
parameters A = 5 and ρbσ

2 = 0.7 are fixed. (b) For different bulk densities ρbσ
2 = 0.5,

0.7, and 0.9, while A = 5 and kBT/ε = 0.5 are fixed. (c) For different aspect ratios A = 2.5, 5,
and 10, while kBT/ε = 0.5 and ρbσ

2 = 0.7 are fixed.

assume that finite size effects due to the short length Ly are responsible for this. Nevertheless,

the density profile suggests that the bulk densities in the gas and the liquid phase are the same

for all aspect ratios considered.

Current

The one-body current distributions J and Jω are calculated as given by (3.16) and (3.17), re-

spectively, where the corresponding velocity operator is evaluated at the physical time evolution

and thus is given by the velocity of the particles. In two spatial dimensions the components of

the current J are Jx, Jy, and Jω reduces to a scalar denoted by Jϕ. These are shown in Fig. 4.3

(a), (b), and (c), respectively, where the rotational current Jϕ is magnified by a factor of 10 to

fit the scale. For the bulk currents in dilute and dense phases the dependence on position and

angle are as expected. For example, Jx is positive for −π/2 < ϕ < π/2 with a maximum at

ϕ = 0 as the particles swim in positive x-direction along their built-in orientation. Consequently

the minimum of Jx is at ϕ = π. At ϕ = −π/2 and π/2 the particles swim in the negative and

the positive y-direction respectively and Jx = 0 in bulk. At these angles the bulk value of

Jy is maximal (ϕ = π/2), or rather minimal (ϕ = −π/2), as these orientations are associated

with swimming in positive y-direction (“upwards”), or in negative y-direction (“downwards”),

respectively. In bulk the rotational current is zero, as no torques act on the particles and the

density is constant.

At the interface the behavior of Jx, Jy and Jϕ becomes more complex: In general the current

is high in the dilute phase and low in the dense phase. The value of Jx drops drastically at

the interface, as does the value of Jy. The reason is that swimming along the orientation of

the particles is hindered in the dense phase due to the high density and thus the collisions with

other particles. In addition, the regions where Jx changes sign deform. For the “left” interface

(x/σ ≈ −20) for example the, Jx is negative for ϕ = π/2. Hence the particles do not swim along

their orientation. Regarding Jy we observe an increase of the value of Jy compared to the bulk

value. Furthermore, at the interface a rotational current Jϕ is observed indicating a directed
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Figure 4.3: Components of the current, (a) – (c), and velocity, (d) – (f) as a function of x and
ϕ for sτ0/σ = 60, kBT/ε = 0.5, A = Lx/Ly = 5, and ρb = 0.7. Blue areas indicate regions with
negative components, red areas indicate regions where the components are positive. In the white
regions the value of the components is small with completly white indicating zero. For clarity
the rotational components in (d) and (f) are magnified by a factor of 10 and 25, respectively.
The cross (×) and the star (F) in (a) indicate corresponding points with respect to symmetry.

rotational movement at the interface.

At the interface we picture the trajectory of the particles as shown in Fig. 4.4 by the dashed

arrow. The tagged (red) particle approaches the interface that cannot be penetrated in (a). The

orientation of the particle changes over time by diffusion and becomes parallel to the interface

in (b) and the particle moves parallel to the interface (c) until the orientations changes again

in the direction away from the interface in (d). Based on similar ideas, the authors of Ref. [58]

formulated a kinetic theory for phase-separating system of ABP. This explains the increase

of Jy at the interface, as well as the occurrence of the rotational current Jϕ, both shown in

Fig. 4.3. The current in y-direction has its origin in the movement of the particles parallel to

the interface. Due to the interface this movement in y-direction is increased compared to the

“regular” movement in this direction in the dilute phase, resulting in an increase of Jy at the

interface, compared to the dilute phase. The sign of the current is positive for ϕ > 0. As

the angle is measured against the x-axis, ϕ > 0 is equivalent to swimming “upwards”, i.e. in

positive y-direction. For ϕ < 0 the same arguments explain Jy < 0. The orientational current

Jϕ is generated because the particles have to re-orientate at the interface in order to not be

absorbed by it. The value of Jϕ is one order of magnitude smaller than the other components,

suggesting that the reorientation is slower than other processes at the interface. However, this is

not surprising as the reorientation is completely driven by diffusion and is therefore determined

by stochastic processes only. Nevertheless a measurable current exists. Furthermore, the density

clearly shows a dependence on ϕ at the interface, c.f. Fig. 4.1. Taking into account the rotational
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a b c d

Figure 4.4: Sketch of the behavior of a particle at the interface. The particle in the dense phase
are colored in gray, in the dilute phase the particles are white and the tagged particle is red. The
arrows indicate the direction of the orientation of the particles, and the dashed line indicates
the total path of the tagged particle. (a) The tagged particle approaches the interface. (b)
The particle cannot penetrate the interface and the orentational diffusion orientates the particle
parallel to the interface. (c) The particles moves parallel to the interface. (d) The orientation
diffuses away from the interface and the tagged particle moves in the dilute phase.

equation of motion given in Sec. 3.2 by (3.27) with no external torques and particle-particle

interaction for the orientation in the given geometry it yields

γωJϕ = −kBT
∂ρ(x, ϕ)

∂ϕ
. (4.9)

Therefore the polarization of the interface itself causes the particles to re-orientate and perform

the motion sketched in Fig. 4.4.

An additional explanation for Jϕ is given by treating the ABP systems as a mixture of an infinite

number of species labeled by the orientation, i.e by ϕ. Due to its polarization the interface is a

region rich in particles of species ϕ ≈ 0. Therefore particles in the dilute phase reorientate at

the interface in order to compensate the excess of particles with ϕ ≈ 0. The effect is thus driven

by mixing entropy with respect to the orientations.

The interface from dilute to dense phase (x < 0) appears differently from the interface from the

dense to the dilute phase (x > 0) in Fig. 4.3 and suggests that the system is surprisingly not

symmetric, as one expects because the same physical effects should occur at both interfaces.

The reason is that not only the symmetry with respect to x→ −x, but also the symmetry with

respect to ω → −ω has to be considered. In two dimensions this corresponds to changing the

orientation angle ϕ → ϕ + π. Therefore the point corresponding to e.g. x/σ = −20, ϕ = 0 is

x/σ = 20, ϕ = π as indicated in Fig. 4.3(a) by the cross (×) and the star (F), respectively. As

the sign of Jx at these two points is opposite the component Jx can be called an odd quantity.

This is clear with the arguments from above, as at ϕ = π the orientation of the particles points

in negative x-direction which means Jx < 0. In contrast, the component Jϕ and the density

ρ(x, ϕ) (c.f. Fig. 4.1) for example are even quantities. This symmetry argument can be used for

all quantities and is an important part of our interfacial model that will be presented in a future

paper [4].
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Figure 4.5: (a) Density profile as in Fig. 4.2 (a) with the fit (4.13). (b) Forward current Jf for
different temperatures kBT/ε = 0.1, 0.25, 0.5, 1. The corresponding swim speeds are sτ0/σ = 12,
30, 60, and 120. The parameters A = 5 and ρbσ

2 = 0.7 are fixed. (c) Same as (b), but the
forward velocity is displayed. All quantities are centered around the Gibbs dividing surface and
are therefore displayed as a function of x̃ = x − xGDS. (d) Forward velocity as a function of
density. Colors corresponds to the legend in (a).

Velocity

The velocity field, as defined via

v(x, ϕ) =
J(x, ϕ)

ρ(x, ϕ)
(4.10)

is shown in Fig. 4.3 (d) – (f) componentwise. The dependence of v on x and ϕ is the same in

most areas as for J (c.f. Fig. 4.3 (a) – (c)). But some of the structures J shows at the interface

are not present in v. For instance the charistic feature of Jy, the increase at the interface,

is not present in vy. An angular velocity at the interface, vϕ, is observed at the interface, as

expected from the existence of Jϕ. But the magnification factor of vϕ to fit the scale of the other

components is much higher compared to the magnification factor of Jϕ.

4.2.2 Density, current, and velocity profiles with respect to the Gibbs dividing

surface

The results in the following are displayed as a function of the position with respect to the

Gibbs dividing surface (GDS) [73] of the interface at the crossover from dilute to dense phase.

A common way to set the GDS is to take the liquid and the gas absorption into account,
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respectively defined by

Γg(x0) =

∫ x0

−∞
dx (ρ̄(x)− ρg) , Γl(x0) =

∫ ∞

x0

dx (ρ̄(x)− ρl) , (4.11)

where x0 denotes the (arbitrary) location of the interface [19]. The densities ρg and ρl respec-

tively denote the bulk density in the dilute and the dense phase. The location of the dividing

surface, xGDS, is then given such that

Γg(xGDS) + Γl(xGDS) = 0. (4.12)

With this, the x-coordinate is shifted in the following according to x̃ = x− xGDS.

In Fig. 4.5(a) we show the same density profiles as in Fig. 4.2(a), but centered around the GDS.

Note that xGDS is different for every temperature and has to be calculated for each value of

temperature separately. Additionally a fit is shown of the form

ρ̄fit(x̃) = α+ β tanh

(
x̃

ν

)
, (4.13)

where ν determines the width of the interface. The fit parameters α and β can be related to the

coexisting densities according to

α =
ρl + ρg

2
, β =

ρl − ρg
2

. (4.14)

The fit function (4.13) is commonly used in the literature [14, 69, 72] and matches the data

remarkably well.

In Fig. 4.5(b) the orientation-averaged forward current

Jf (x) =

∫
dωω · J(r,ω)

=

∫ 2π

0
dϕ (cos(ϕ)Jx(x, ϕ) + sin(ϕ)Jy(x, ϕ)) (4.15)

is shown with respect to the GDS. In the figure the forward current is given for systems with fixed

ρbσ
2 = 0.7 and A = 5, while kBT is varied as indicated. As at low temperature, s decreases due

to the constant Pe, the bulk values for Jf decrease with temperature. However, the increase of

Jf at the interface is observed for all temperatures. We assume that this maximum is associated

with the increase of Jy at the interface as discussed above.

Interestingly the components of the average velocity in orientation direction, i.e. the forward

velocity vf (x) = Jf (x)/ρ̄(x), does not show the increase of value at the interface such as the

forward current, as shown by Fig. 4.5 (c). The maximum of Jf is compensated by the density

profile, as the crossover from the dilute to dense (bulk) value in Jf is much smoother than in

ρ̄. Due to the scaling of vf to the swim speed s and the centering around the GDS all curves

lie on top of each other, suggesting that the forward velocity is not solely determined by either

the temperature or the swim speed, but by Pe. We investigate a dramatic decrease in forward
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Figure 4.6: (a) Polarization force per unit area Fpol(x) = γsmx(x) for different temperatures
kBT/ε = 0.1, 0.25, 0.5, 1. The corresponding swim speeds are sτ0/σ = 12, 30, 60, and 120. The
parameters A = 5 and ρbσ

2 = 0.7 are fixed. (b) same as (a) but the Polarization mx(x)/ρ̄(x) is
shown. (c) same as (b) but for different bulk densities ρbσ

2 = 0.6, 0.7, 0.8, and 0.9, while A = 5
and kBT/ε = 0.5 are fixed. All quantities are centered around the GDS.

swimming at the interface as the high density in the dense phase reduces the motility of the

swimmers drastically.

Combining the results for ρ̄(x) and vf (x) lets us display the forward velocity as a function of

ρ̄(x) as shown in Fig. 4.5 (d). As described above the forward velocity decreases with increasing

density. The velocity of the ABP in direction of their orientation as a function of density, v(ρ)

(which is comparable to vf (ρ) here), is of particular interest for some approaches phenomeno-

logically explaining MIPS [51, 52]. The authors of Ref. [51] introduce the density-dependent

swim speed in order to approximate the two-body density and give a linear relation for v(ρ),

whereas Stenhammar et al. estimate v(ρ) by taking the free path of individual ABP between

collisions into account [52]. Despite their approximation also gives a linear dependency, a non-

linear behavior is observed for high Pe in computer simulations, c.f. supplementary material of

Ref. [52]. We find clearly a non-linear dependency of vf on ρ̄. It is comparable to our findings

in [2] and [3], but the sampling therein is fundamentally different from here because each data

point represents a whole simulation of a bulk system. Whether these results both origin in the

same physical mechanisms or not must be demonstrated in future studies, as well as if a linear

function v(ρ) is sufficient to describe MIPS.

4.2.3 Polarization profile

The polarization of the particles is measured by [14, 51, 56, 59, 67, 71]

m(r, t) =

∫
dωωρ(r,ω, t). (4.16)

In two dimensions and in the elongated geometry only the x–component is not vanishing. It

yields in steady state

mx(x) =

∫ 2π

0
dϕ cos(ϕ)ρ(x, ϕ). (4.17)
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Figure 4.7: Fourier components of the one-body density ρ(x, ϕ) for a system with ρbσ
2 = 0.7,

kBT/ε = 0.5, and A = 5, centered around the GDS. In (a) cos-components as given by (4.21).
In cos-compontents c1, c2 and c3 as in (a) but scaled. In (c) sin-compontens as given by (4.22).

As polarized particles swim collectively in one direction, there is a polarization force density

that is associated with polarization:

Fpol(x) = γsmx(x). (4.18)

Figure 4.6 (a) shows this polarization force density as obtained from computer simulations

centered around the Gibbs dividing surface for different temperatures and hence different swim

speeds s, while the bulk density ρbσ
2 = 0.7 and the aspect ratio A = 5 are fixed. As the swim

speed increases with temperature, it is clear that the polarization force at the interface increases

with temperature, too. The physical interpretation is that a larger swimming velocity pushes

the particles harder against the interface and thus the polarization effect is increased.

Figure 4.6 (b) shows the polarization mx. Clearly all curves lie on top of each other which again

indicates that the temperature is not important for the fundamental physical processes at the

interface, as long as Pe is kept constant. A direct comparison to the work of Paliwal et al.,

c.f. Fig. 5 (a) in Ref. [14], shows very good agreement. As Pe=50 there and the polarization

is displayed in the same way there as here, a comparison between our work and Ref. [14] is

reasonable and the good agreement shows the validity of our simulation results.

In Fig. 4.6 (c) we show the polarization for different bulk densities and kBT/ε = 0.5 and A = 5

fixed. Surprisingly, the maximum of the polarization for ρbσ
2 is decreased compared to the other

bulk density. We explain this by the fact that ρbσ
2 is close to the critical point and finite size

effect may play an important role there.

4.2.4 Angular Fourier decomposition of the density distribution

The orientation of the active particles is evenly distributed in the two bulk phases, but not

at the interface as shown by e.g. Fig. 4.1. Therefore integration over the orientation is useful

to understand the physics of the interface such as the emergence of polarization. In order to

generalize and study the interface more systematically we perform a Fourier decomposition of
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the angular dependence of the one-body density. The Fourier expansion is given by

ρ(x, ϕ) = c0(x) +
∞∑

k=1

(ck(x) cos(kϕ) + bk(x) sin(kϕ)) (4.19)

with the components

c0(x) =
1

2π

∫ 2π

0
ρ(x, ϕ)dϕ, (4.20)

ck(x) =
1

π

∫ 2π

0
ρ(x, ϕ) cos(kϕ)dϕ, (4.21)

bk(x) =
1

π

∫ 2π

0
ρ(x, ϕ) sin(kϕ)dϕ. (4.22)

The components c0 and c1 can thus be identified as 2πc0 = ρ̄ and πc1 = mx.

Figure 4.7 shows the first five Fourier components, c1 − c5 in (a), c1, c2, and c3 scaled in (b),

and b1 − b5 in (c), of the density obtained from a simulation with ρbσ
2 = 0.7, kBT/ε = 0.5,

and A = 5, centered around the GDS. Clearly c1 is proportional to the polarization mx, c.f.

Fig. 4.6 (b). The components c2 and c3 are different from zero, indicating higher order anisotropy

effects. The scaled representation of c2 and c3 shows that these are measurable. Especially c2

is antisymmetric with respect to the GDS, and c3 is minimal close to the interface. Whether

c3 shows some symmetry as well is not clear because of the noise in the dense phase. Higher

components seem to be negligible in ρ(x, ϕ) as they decay fast and c4 = c5 ≈ 0. However, a more

detailed study is necessary to validate that. Differently to the cos–coefficients, the sin–coefficients

vanish for all k, as presented by Fig. 4.7 (c). As these components are associated with the odd

part of ρ(x, ϕ) with respect to inversion of the orientation, we expected this result because the

density is clearly an even function with respect to the orientation. Hence a Fourier decomposition

for other quantities that depend on the orientation angle, e.g. the current of the velocity, are

reasonable to determine their symmetry and to extract information about the physics behind

them. This procedure may be also generalized to higher spatial dimensions or bulk systems by

decomposition in powers of the orientation instead of angular Fourier components. In such case

the forward current is given by the first moment of the current and the polarization m is given

by the first moment of the density, c.f. (4.15) and (4.16), respectively.

Despite c1, i.e. the polarization, no detailed study of the Fourier components exists to our best

knowledge, apart from a paper by Speck and Jack for an ideal system [67]. Therein the authors

use the second moment of the orientation to study the mechanical pressure on a wall. Therefore

the Fourier decomposition and the symmetry of the physical quantities leave room for proper

theoretical description and offer the opportunity for qualitative and quantitative validation of

such a model.
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5 Conclusion and outlook

In this thesis we investigated the physics and especially the phenomenon of motility-induced

phase separation (MIPS) of active Brownian particles by two different theoretical approaches

and computer simulations. We formulated an effective equilibrium approach in [1] that is briefly

summarized in Sec. 3.1. The approach allows the derivation of an effective activity-dependent

pair interaction potential between the Brownian particles by integrating out the orientation of

the particles. The activity only determines the form of the interaction potential which allows

the study of the active matter as a passive system with a modified, i.e., the effective interaction

potential. The mechanism that leads to MIPS is identified as explicit repulsive interactions

develop an attractive part in the effective potential. It has been demonstrated that the approach

can be extended to external fields [48] and is useful to calculate a whole range of thermodynamic

quantities for active systems [49, 50]. Because the effective equilibrium mapping allows the usage

of well-known methods from equilibrium statistical, even more applications are thinkable.

The effective equilibrium approach is limited to cases with low activity due to assumptions that

has to be taken in the derivation of the effective interaction. In order to overcome these limita-

tions, we developed a power functional theory (PFT) for active particles. In [2] we formulated

the basic idea of a variational principle for active systems, presented a well-justified approxi-

mation for the power functional, and introduced new sampling methods for Brownian dynamics

simulations. A more detailed derivation of the theory is given in [3]. Therein a nonequlibrium

sum rule is presented that allows the calculation of the power functional by only considering

external driving forces in steady state. An overview of both publications is given in Sec. 3.2.

With this work we demonstrated how power functional theory is used to describe a concrete

out-of-equilibrium system, how powerful the approach in application is, and how good the agree-

ment to numerical simulations is when a rather simple approximation for the P exc
t functional is

considered. PFT is therefore a natural choice to describe other open problems in nonequlibrium

statistical physics, such as the laning transition [34, 74].

In order to fully describe MIPS with PFT the simple form of P exc
t described in [2] and [3] is not

sufficient as the fluid-fluid interface has to be considered explicitly. The planned publication [4]

will give a detailed treatment of the interface. In Sec. 4 we presented a detailed simulation

study of the free interface that will be also included in [4]. We investigated the one-body

density distribution, the one-body current distribution, and the velocity as a function of spatial

coordinates and the orientation. In accordance with previous work we find that the interface

is polarized. The polarization is furthermore identified as the prime effect for additional and a

priori unknown effects at the interface, such as the maximum in the forward current and the

rotational current. The angular Fourier decomposition is useful to determine the symmetry of
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quantities with respect to inversion of the orientation. We also presented the higher Fourier

coefficients of the density. Thereby the polarization and the density profile emerges naturally

within the decomposition. Our numerical findings are compared to work by other authors and

show good agreement. We take this as a validation of our data.

In order to gain a full understanding of the interface and hence the phase separation of active

particles an analytical model would be very valuable. In a future publication we will present

a new approach for modeling the interface, based on previous results [2],[3] and new findings

such as the symmetry character of the one-body currents and the one-body density and their

anisotropy at the interface. Furthermore, we want to apply and extend the bulk functional P exc
t ,

given by (3.29), to the interface to obtain a power functional theory that covers the behavior

of the particles at the interface. The functional should not only give dissipative forces but

also nonequilibrium forces that are responsible for structural formation processes. It gives thus

all nonequlibrium (superadiabatic) forces that are important to describe the nonequilirbium

phenomena of MIPS. By doing so, a big step in establishing full picture of the physics of phase

separation in active Brownian systems is provided. The numerical results presented here are very

important not only as a validity check of the theory, but also as a feedback in the formulation

of new ideas. All this work goes beyond the scope of this thesis. But the full study will be

presented as a paper.
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[74] T. Glanz and H. Löwen, J. Phys.: Condens. Matter 24, 464114 (2012).

55

http://dx.doi.org/10.1103/PhysRevLett.111.145702
http://dx.doi.org/10.1103/PhysRevLett.111.145702
http://dx.doi.org/10.1103/PhysRevE.83.061133
http://dx.doi.org/10.1103/PhysRevE.97.020602
http://dx.doi.org/10.1103/PhysRevE.97.020602
http://dx.doi.org/10.1039/C5SM01792K
http://dx.doi.org/10.1103/PhysRevE.91.032117
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1038/nphys3377
http://dx.doi.org/10.1017/jfm.2015.621




6 Publications

This section contains chronologically all publications that contributed to this thesis. A fourth

paper concerning interfaces in systems of phase-separated active Brownian particles is in prepa-

ration [4] and an abstract is included here on page 88. First results obtained from computer

simulations are presented in Sec. 4.
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theory, free of fit parameters, for active spherical colloids, which shows explicitly how an effective many-body
interaction potential is generated by activity and how this can rationalize MIPS. For a passively repulsive system
the theory predicts phase separation and pair correlations in quantitative agreement with simulation. For an
attractive system the theory shows that phase separation becomes suppressed by moderate activity, consistent
with recent experiments and simulations, and suggests a mechanism for reentrant cluster formation at high activity.
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I. INTRODUCTION

Active colloidal particles in suspension are currently the
subject of considerable attention, due largely to their ability
to model self-organization phenomena in biological systems,
but also as a new branch of fundamental research in nonequi-
librium statistical mechanics: assemblies of active colloids are
intrinsically out-of-equilibrium systems. In contrast to their
passive counterparts, active colloids undergo both solvent-
induced Brownian motion and a self-propulsion which requires
a continual consumption of energy from the local environment.
Several idealized experimental model systems have been
developed, such as catalytic Janus particles [1–3], colloids
with artificial flagella [4], and light-activated particles [5].
The understanding of active systems has been further aided
by the development of simple theoretical models, which aim
to capture the essential physical mechanisms and which have
been used to study, e.g., bacteria, cells, or filaments in the
cytoskeleton [6–9].

Active particles are characterized by a persistent motion,
which can lead to “self-trapping” dynamics and a rich variety
of related collective phenomena [6–10]. Even the simplest
models of active spherical particles with purely repulsive inter-
actions can display the phenomenon of motility-induced phase
separation (MIPS) [10]. In many respects, MIPS resembles the
equilibrium phase separation familiar from passive systems
with an attractive component to the interaction potential (e.g.,
the Lennard-Jones potential) [11–15]. This apparent similarity
has motivated several recent attempts to map an assembly of
active particles onto a passive equilibrium system, interacting
via an effective attraction (usually taken to be a very short
range sticky-sphere potential [16,17]). Despite the intuitive
appeal of mapping to an equilibrium system, there exists no
systematic theoretical approach capable of predicting an effec-
tive equilibrium potential directly from the bare interactions.

Our current understanding of MIPS has largely been gained
through either simulation [12–15,18] or phenomenological
theory [10,11,13,19]. The phenomenological theory is based
on an equation for the coarse-grained density, featuring a
local speed and a local orientational relaxation time. Although
the precise relationship between these one-body fields and
the interparticle interaction potential remains to be clarified,
some progress in this direction has been made [20]. On a

more microscopic level, it has recently been shown that a
general system of active particles does not have an equation
of state [21], due to the influence of the confining boundaries;
however, one can be recovered for the special case of active
Brownian spheres [21,22].

Here we report a first-principles theory for systems of
active Brownian spheres, which demonstrates explicitly how
an effective many-body interaction potential is induced by
activity. An appealing feature of this approach is that intuition
gained from equilibrium can be used to understand the steady-
state properties of active systems. The required input quantities
are the passive (“bare”) interaction potential, the rotational
diffusion coefficient, and the particle propulsion speed. The
theory generates as output the static correlation functions
and phase behavior of the active system. For a repulsive
bare interaction, activity generates an attractive effective pair
potential, thus providing an intuitive explanation for the
MIPS observed in simulations [12,15,23]. For an attractive
bare potential, we find that increasing activity first reduces
the effective attraction, consistent with the experiments of
Schwarz-Linek et al. [16], before leading at higher activity to
the development of a repulsive potential barrier. We speculate
that this barrier may be related to the reentrant phase behavior
observed in simulation by Redner et al. [14].

The paper will be structured as follows: In Sec. II we specify
the microscopic dynamics and describe how to eliminate orien-
tational degrees of freedom. From the resulting coarse-grained,
non-Markovian Langevin equation we derive a Fokker-Planck
equation for the positional degrees of freedom, from which
we identify an effective pair potential. In Sec. III we employ
the effective pair potential in an equilibrium integral equation
theory and investigate the structure and phase behavior of both
repulsive and attractive bare potentials. In the former case
we predict MIPS, whereas in the latter case phase separation
is suppressed by activity. Finally, in Sec. IV we discuss our
findings and provide an outlook for future research.

II. THEORY

A. Microscopic dynamics

We consider a three-dimensional system of N active, in-
teracting, spherical Brownian particles with spatial coordinate
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r i and orientation specified by an embedded unit vector pi .
Each particle experiences a self-propulsion of speed v0 in its
direction of orientation. Omitting hydrodynamic interactions
the particle motion can be modeled by the overdamped
Langevin equations

ṙ i = v0 pi + γ −1 Fi + ξ i , (1)

ṗi = ηi × pi , (2)

where γ is the friction coefficient and the force on particle
i is generated from the total potential energy according
to Fi =−∇iUN . The stochastic vectors ξ i(t) and ηi(t) are
Gaussian distributed with zero mean and have time cor-
relations 〈ξ i(t)ξ j (t ′)〉 = 2Dt1δij δ(t − t ′) and 〈ηi(t)ηj (t ′)〉 =
2Dr1δij δ(t − t ′), where Dt and Dr are the translational and
rotational diffusion coefficients.

Equations (1) and (2) are convenient for simulation but are
perhaps not the most suitable starting point for developing a
first-principles microscopic theory. For a homogeneous sys-
tem, averaging over the angular degrees of freedom generates
a coarse-grained equation [12]

ṙ i(t) = γ −1 Fi(t) + ξ i(t) + χ i(t), (3)

where χ i(t) is a Markov process with zero mean and where
the time correlation function is given by

〈χ i(t) χ j (t ′)〉 = v2
0

3
e−2Dr |t−t ′|1δij . (4)

The average in Eq. (4) is over both noise and initial orientation.
The distribution of χ i(t) is Gaussian to a good approximation.
This point and further technical details of the coarse graining
are discussed in Appendix A. Equation (3) provides a mean-
field level of description, which deviates from the exact
equations (1) and (2) by neglecting the coupling of fluctuations
in orientation and positional degrees of freedom.

The Langevin equation (3) describes a non-Markovian
process, which approximates the stochastic time evolution of
the positional degrees of freedom. The persistent motion of
active particles is here encoded by the exponential decay of
the time correlation (4), with persistence time τp = (2Dr )−1.
For small τp the time correlation becomes 〈χ i(t)χ j (t ′)〉 =
2Da1δij δ(t − t ′), and the dynamics reduce to that of an
equilibrium system with diffusion coefficient Dt + Da , where
Da =v2

0/(6Dr ). This limit is realized when τp is shorter
than the mean free time between collisions, i.e., in a dilute
suspension. To treat finite densities requires an approach which
deals with persistent trajectories. With this aim, we adopt (3)
as the starting point for constructing a closed theory.

B. Fokker-Planck equation

A stochastic process driven by colored noise, such as that
described by Eq. (3), is always non-Markovian. Consequently
it is not possible to derive an exact Fokker-Planck equation
for the time evolution of the probability distribution [24].
Nevertheless, an approximate Fokker-Planck description ca-
pable of making accurate predictions can usually be found.
The approximate Fokker-Planck equation implicitly defines
a Markov process which best approximates the process of
physical interest (although precisely what constitutes the

“best” approximation remains a matter of debate). From the
extensive literature on this subject (see Refs. [24–26] and
references therein) has emerged a powerful method due to
Fox [27,28], in which a perturbative expansion in powers of
correlation time is partially resummed using functional cal-
culus. The resulting Fokker-Planck equation is most accurate
for short correlation times (“off white” noise [25]) and for
one-dimensional models makes predictions in good agreement
with simulation data [26].

We now consider applying the method of Fox [27,28]
to Eq. (3). This approach consists of first formulating the
configurational probability distribution as a path (functional)
integral and then making a time-local, Markovian approxi-
mation to this quantity. Technical details of the method are
given in Appendix B. Fox’s approach was originally developed
to treat one-dimensional problems [27,28]; however, the
generalization to three dimensions is quite straightforward.
This enables us to directly obtain the following Fokker-Planck
equation:

∂t�(rN,t) = −
N∑

i=1

∇i · J i(rN,t), (5)

where �(rN,t) is the configurational probability distribution.
Within the generalized Fox approximation the many-body
current is given by

J i(rN,t) = −Di(rN )
[∇i − β Feff

i (rN )
]
�(rN,t), (6)

where β ≡ (kBT )−1. The diffusion coefficient is given by

Di(rN ) = Dt + Da

[
1 + τ∇i ·β Fi(rN )

1 − τ∇i ·β Fi(rN )

]
, (7)

where we have defined a dimensionless persistence time,
τ =τpDt/d

2. The effective force is given by

Feff
i (rN ) = 1

Di(rN )
[Fi(rN ) − kBT ∇iDi(rN )], (8)

where Di(rN )=Di(rN )/Dt is a dimensionless diffusion coef-
ficient. Either in the absence of interactions or in limit of large
Dr the diffusivity (7) reduces to Dt +Da and the effective
force becomes Dt Fi(rN )/(Dt + Da). In this diffusion limit
the system behaves as an equilibrium system at effective
temperature Teff = T (1 + Da/Dt ).

For weakly persistent motion, τ →0, Eqs. (5) to (8) become
exact, and the theory provides the leading order correction to
the diffusion approximation. However, the Fox approximation
goes beyond this by including contributions to all orders in
τ . Indeed, detailed studies of one-dimensional systems have
demonstrated good results over a large range of τ values [26].
The only caveat is that the condition 1−τ ∇i ·β Fi >0 must
be satisfied [27,28]. The range of accessible τ values thus
depends upon the specific form of the bare interaction
potential.

Within our stochastic calculus approach, the effective
many-body force (8) emerges in a natural way from the
coarse-grained Langevin equation (3). The more standard
route (adopted in all attempts made so far [20,29]) to approach
this problem is to derive from the Markovian equations (1)
the exact Fokker-Planck equation for the joint distribution
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of positions and orientations, P (rN, pN,t). However, coarse
graining strategies based on integration of P over orientations
generate intractable integral terms. By starting from (3) we are
able to circumvent these difficulties. As we shall demonstrate
below, our effective force accounts for several important
collective phenomena in active systems.

C. Effective pair potential

In the low density limit we need only consider isolated
pairs of particles. In this limit (5) reduces to an equation of
motion for the radial distribution function, g(r,t)≡�(r,t)/ρ2

b ,
where ρb is the bulk density. This equation of motion, the pair
Smolochowski equation, is given by

∂tg(r,t)=−∇ · j(r,t), (9)

where r =|r12| is the particle separation and ∇=∇r12 . The
pair current is given by

j(r,t) = −2D(r)g(r,t)[ ∇ ln g(r,t) − β Feff(r) ], (10)

where the radial diffusivity

D(r) = Dt + Da

[
1 − τ∇2βu(r)

1 + τ∇2βu(r)

]
(11)

interpolates between the value Dt at small separations, where
u(r) is strongly repulsive, and Dt + Da at large separations.
The effective interparticle force is given by

Feff(r) = 1

D(r)
[F(r) − kBT ∇D(r)], (12)

where the bare force is related to the pair potential by
F(r)=−∇u(r). The symmetry of the two-body problem can
be exploited to calculate from (12) an effective interaction
potential

βueff(r) =
∫ ∞

r

dr ′
[
βF (r ′)
D(r ′)

− ∂

∂r ′ lnD(r ′)
]

, (13)

where F (r)=|F(r)|. We have thus identified an effective
interaction pair potential, which requires as input the bare
potential and the activity parameters τ and Da .

III. RESULTS

A. Motility-induced phase separation (MIPS)

To illustrate how activity can generate an effective attraction
in a passively repulsive system we consider the nonspecific
potential βu(r) = r−12. In Fig. 1(a) we show the evolution
of the effective potential (13) for fixed τ as a function
of the dimensionless velocity Pe=v0d/Dt . For Pe�10 the
effective potential develops an attractive tail. As Pe is increased
the potential well deepens, the minimum moves to smaller
separations and the radius of the soft repulsive core decreases.
These trends are consistent with the intuitive picture that
persistent motion drives soft particles into one another (the
soft core radius reduces) and that they remain dynamically
coupled (“trapped”) for longer than in the corresponding
passive system. Within our equilibrium picture the trapping
is accounted for by the effective attraction.

For systems at finite density the pair potential (13) is an
approximation because three- and higher-body interactions
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FIG. 1. (Color online) Activity induces effective attraction. Pas-
sive potential βu(r)=r−12. (a) Increasing Pe (in steps of 8) from 0
to 40 generates an effective interparticle attraction. Points indicate
the potential minima. (b) Radial distribution function, g(r), from
simulation (points) and theory (lines) for ρb =0.5 and Pe=0 to 20 (in
steps of 4). Curves are shifted vertically for clarity. (c) As in (b), but
focusing on larger separations for Pe = 4 (squares), 12 (circles), and
20 (diamonds). Inset: Position of the first peak in g(r) as a function of
Pe. (d) Spinodals for τ = 0.045 (dot-dashed) to 0.065 (long dashed)
in steps of 0.005.

will play a role [see Eq. (8)]. However, for simplicity we
henceforth employ the pair potential (13) for all calculations, as
we anticipate that this will provide the dominant contribution.
Although corrections to this assumption can be made, they
obscure the physical picture and come at the expense of a
more complicated theory. The validity of the pair potential
approximation is justified a posteriori by the comparison with
simulation for the finite density pair correlations.

In Fig. 1(b) we show the steady-state (isotropic) radial
distribution function for ρb =0.5 for various values of Pe.
We employ the effective pair potential (13) together with
liquid state integral equation theory and compare theoretical
predictions with direct Brownian dynamics simulation of
Eqs. (1) and (2). The integral equation theory we employ
is the soft mean-spherical approximation (SMSA) proposed
by Madden and Rice [30]. This approximate closure of the
Ornstein-Zernike equation is known to provide reliable results
for the pair structure of Lennard-Jones-type potentials. Given
the form of the effective pair potential shown in Fig. 1 the
SMSA would seem to be a reasonable choice of closure.
Details of the integral equation theory and the simulation
procedure are given in Appendices C and D, respectively.

We find that as Pe is increased the main peak of g(r)
grows in height and shifts to smaller separations [see inset
to Fig. 1(c)], reflecting the changes in the effective potential.
In the main panel of Fig. 1(c) we focus on the second and third
peaks. The quantitative accuracy of the theory in describing
the decay of g(r) is quite striking, in particular the phase shift
induced by increasing activity is very well described. Further
comparison for other parameter values (not shown) suggests
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FIG. 2. (Color online) From active suppression of phase separa-
tion to a cluster phase. Passive potential βu(r) = 4 ε(r−12 − r−6) with
ε = 1.4. (a) Effective potential (13) for τ = 0.025 and Pe = 0 (black)
4,8,12 (red broken lines) and 20,28,36 (blue). Inset: Zoom of the
repulsive peak for Pe = 20,28,36. (b) Spinodals for Pe = 0,4,8,12.
Increasing Pe increases εcrit, the critical value of ε. (c) εcrit as a
function of Pe (black full line) and the locus of points for which
the repulsive peak of βueff takes the value 0.1 (red dashed) and
0.05 (blue dot-dashed). Open (closed) circles indicate points where
BD simulation find a mixed (phase-separated) state (see Fig. 3).
Arrow indicates path taken in (a). (d) Theory (lines) and simulation
(symbols) data (shifted for clarity) for g(r) at ε = 0.5, ρb = 0.3 for
Pe = 0 (black), 12 (blue), and 20 (green). Dotted lines indicate peak
positions.

that (13) combined with the SMSA theory provides an accurate
account of the asymptotic decay of pair correlations.

In Fig. 1(d) we show the spinodal lines mapping the locus
of points for which the static structure factor, S(q) = [1 −
ρbc(q)]−1, diverges at vanishing wave vector. Simulations have
shown that MIPS is consistent with a spinodal instability [12].
As τ is decreased the critical point moves to higher values
of Pe and to slightly higher densities. When compared with
the spinodal of a standard Lennard-Jones system [e.g., the
black curve in Fig. 2(b)] the critical points in Fig. 1(d) lie at
rather higher values of ρb. This suggests that typical coexisting
liquid densities for MIPS will be larger than those found in
equilibrium phase separated systems, as has been observed in
simulation [12,14].

B. Suppression of phase separation

We next consider the influence of activity on a Lennard-
Jones system, βu(r) = 4ε(r−12− r−6). For a phase-separated
passive system, recent experiments and simulations have
demonstrated that increasing Pe first suppresses the phase
separation [16] and then leads at higher Pe to a reentrant
MIPS [14]. Schwarz-Linek et al. have argued that the suppres-
sion of phase separation at lower to intermediate Pe occurs
in their system because particle pairs bound by the attractive
(depletion) potential begin to actively escape the potential well,
and that this can be mimicked using an effective potential less
attractive and shorter ranged than the bare potential [16].

FIG. 3. (Color online) Simulated phase separation. (a) Snapshot
of a mixed system at t/τB = 40, Pe = 8, ε/(kBT ) = 1.5. (b) Snapshot
of a phase separating system at the same time and Pe = 8, ε = 2.5.
(c) The radial distribution function, g(r), for ε = 1.5 (black curve), 2
(blue curve), and 2.5 (green curve). (d) As in (c) but focusing on larger
distances. From the snapshots together with the long-range behavior
of the g(r) we can distinguish between a mixed and a phase-separated
system. The slow decay to the asymptotic value of unity, as shown in
(d), indicates phase separation.

To investigate these phenomena we set ε = 1.4, which
ensures a phase-separated passive state [31], and consider the
evolution of the effective potential as a function of Pe. In
Fig. 2(a) we show that as Pe is increased from zero to the value
18 both the depth and range of the effective potential reduce
significantly, consistent with the expectation of Schwarz-Linek
et al. [16]. Spinodals within this range of Pe values, identifying
where the static structure factor diverges at zero wave vector,
are shown in Fig. 2(b). As Pe is increased the critical point
moves to higher values of ε (cf. Figs. 1 and 3 in Ref. [16]). A
passively phase-separated system will thus revert to a single
phase upon increasing the activity. To examine this behavior
in more detail we show in Fig. 2(c) the trajectory of the
critical point in the (Pe,ε) plane. Above the line there exist
bulk densities for which phase separation occurs.

In order to test the predicted trajectory of the critical point
we have performed Brownian dynamics simulations at a bulk
density ρb = 0.4, which lies close to the critical density [31],
for various values of ε and the Pe values 5,8, and 10. Visual
inspection of the simulation snapshots reveals the existence
of voids in the particle configurations corresponding to a
phase-separated state [see Figs. 3(a) and 3(b) for snapshots].
This visual impression can be made more quantitative by
calculating the radial distribution function. Phase-separating
states generate a very characteristic slow decay of g(r)
[Figs. 3(c) and 3(d)], which provides a useful indicator. The
open circles in Fig. 2(c) represent mixed states, whereas
closed circles indicate phase separated state points. The phase
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boundary predicted by the theory is highly consistent with the
simulation data.

C. Cluster phase

Returning to Fig. 2(a), we find that for Pe>18 the effective
potential develops a repulsive barrier, which grows in height
(see inset) with increasing Pe, while the potential minimum
becomes deeper. It is well known that potentials with a
short-ranged attraction and long-ranged repulsion (SALR
potentials) exhibit unusual equilibrium phase behavior, includ-
ing clustering and microphase separation [32,33]. Although
the attractive component of the potential may favor phase
separation, the long-range repulsion destabilizes distinct liquid
and gas phases and causes them to break up into droplets or
clusters. This represents a nonspinodal type of phase transition,
characterized by a divergence in the structure factor at finite
wave vector. The appearance of a repulsive barrier in the
effective potential suggests that a similar mechanism may be at
work in passively attractive systems subject to high Pe activity.

In Fig. 2(c) we show the locus of points where the effective
potential peak height attains a given value (we choose 0.05
and 0.1 for illustration). When these “isorepulsion curves” are
viewed together with the critical point trajectory the resulting
phase diagram is very similar to that obtained by Redner et al.
in their simulation study of two-dimensional active Lennard-
Jones particles (cf. Fig. 1 in Ref. [14]). However, a detailed
study of the connection between the potential barrier and high
Pe clustering goes beyond the scope of the present work.

IV. DISCUSSION

In summary, we have shown that systems of active spherical
Brownian particles can be mapped onto an equilibrium system
interacting via an effective, activity-dependent many-body
potential. The only required inputs are the bare potential,
thermodynamic state point and the parameters specifying the
state of activity. Our theory captures the phenomenon of MIPS
in repulsive systems and provides first-principles predictions
for the activity dependence of the pair correlations, in very
good agreement with Brownian dynamics simulation. As far
as we are aware no other approach is capable of predicting from
the microscopic interactions the pair correlation functions of
an active system. Further insight into the steady state particle
distribution could in principle be obtained by investigating the
three-body correlations. These could be obtained by employ-
ing the effective potential in a higher-order liquid state integral
equation theory (see, e.g., Ref. [34] and references therein).

For passively attractive systems the theory rationalizes the
experimental finding [16] that increasing activity can suppress
passive phase separation. We find that as Pe is increased from
zero to intermediate values the minimum of the effective
potential becomes less deep, thus weakening the cohesion of
the liquid phase. To the best of our knowledge no alternative
theoretical explanation is currently available for phase-
transition suppression in active suspensions. It is an appealing
aspect of our theory that the suppression of passive phase
separation follows naturally from the same approach which
yields activity-induced attraction for repulsive potentials. For
high values of Pe the appearance of a repulsive barrier in the

effective potential suggests that the reentrant phase separation
observed in simulations [14] may be interpreted using concepts
of equilibrium clustering in SALR potential systems. This
will be a subject of future detailed investigations. It is known
that care must be exercised when analyzing SALR potentials,
as traditional liquid state theories can prove misleading [33].

A key step in our development is the Fox approxima-
tion [27], which yields an effective Markovian description
of the coarse-grained equation (3). Making a Markovian ap-
proximation automatically imposes an effective equilibrium;
however, we are aware that in certain situations this breaks
down [10,19]. Establishing more clearly the range of validity
of our approach, as well as its possible extensions, will be the
subject of ongoing study. However, it is already clear that going
beyond the Markovian approximation will be very challenging.
Indeed, such a step may not even be desirable. Any kind of
non-Markovian description would lead inevitably to a loss of
the effective equilibrium picture and the physical intuition
associated with it. It thus seems likely that practical im-
provements to the present approach will retain the Markovian
description while seeking to optimize, or improve upon, the
Fox approximation for certain classes of bare potential. Very
recently, Maggi et al. have employed an alternative approach
to treating stochastic processes driven by Ornstein-Uhlenbeck
noise [35]. A comparison of their approach with the Fox
method employed here would be very interesting.

With a view to further applications of our approach, we
note that there has recently been considerable interest in active
suspensions at very high densities [36–39]. In particular, it
has been found using computer simulations that activity has a
strong influence on the location of the hard-sphere glass tran-
sition, dynamic correlation functions, such as the intermediate
scattering function, and static pair correlations [37]. Within
our effective equilibrium framework, increasing the activity of
a passively repulsive system generates an effective attraction.
We can therefore anticipate that for volume fractions just above
the glass transition it will be possible to observe a reentrant
glass transition, namely, a melting of the glass followed by
revitrification, as a function of increasing Pe. Moreover, the
nontrivial evolution of the effective potential as a function of
Pe for attractive bare potentials [cf. Fig. 2(a)] suggests these
systems will present a rich variety of glassy states. Work along
these lines is in progress.

Finally, we mention that a natural generalization of the
present theory is to treat spatially inhomogeneous systems in
external fields. Recent microscopic studies of active particles
under confinement (e.g., in a harmonic trap [29]) have provided
considerable insight; however, none of the existing approaches
have considered effective interparticle interactions. Inhomo-
geneous generalization of the present theory enables the inter-
action between MIPS and external fields to be investigated on
the microscopic level. Our preliminary investigations reveal,
for example, activity-induced wetting at a planar substrate
and capillary-condensation under confinement. This will be
presented in a future publication.
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APPENDIX A: COARSE-GRAINED LANGEVIN EQUATION

Equation (2) describes the orientational diffusion of an
active particle. The corresponding conditional probability
distribution function ϒ( p,t | p0,t0), where t > t0, obeys a
Fokker-Planck equation which can be obtained using usual
techniques [40],

∂

∂t
ϒ( p,t | p0,t0) = Dr R2ϒ( p,t | p0,t0), (A1)

where R ≡ ( p × ∇ p) is the intrinsic angular momentum
differential operator. Equation (A1) describes nothing but a
diffusion process on the unit sphere. This problem is well
known when studying, e.g., dielectric relaxation in polar
liquids [41–44]. In spherical coordinates, (A1) becomes

1

Dr

∂

∂t
ϒ(�,t | �0,t0)

=
[

1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+ 1

sin2 ϑ

∂2

∂ϕ2

]
ϒ(�,t | �0,t0),

(A2)

where we have defined � ≡ (ϑ,ϕ).
Assuming that ϒ and its derivatives are continuous on the

sphere [45], we expand the probability distribution function ϒ

in spherical harmonics

ϒ(�,t | �0,t0) =
∞∑
l=0

l∑
m=−l

Alm(t | �0,t0)Ylm(�), (A3)

where Ylm are the spherical harmonics and Alm are coefficients
encoding the initial condition. We also recall that spherical
harmonics are eigenvectors of the operator R2 (in spherical
coordinates), namely, that

R2Ylm = −l(l + 1)Ylm. (A4)

Inserting (A3) in Eq. (A2) and using (A4) we obtain∑
l,m

∂

∂t
Alm(t | �0,t0)Ylm(�)

= −Dr

∑
l,m

l(l + 1)Alm(t | �0,t0)Ylm(�). (A5)

Multiplying both sides of (A5) by Y ∗
l′m′(�), integrating

over solid angle and using the orthogonality property,∫
d�Y ∗

l′m′(�)Ylm(�) = δm,m′δl,l′ , yields

∂

∂t
Alm(t | �0,t0) = −Drl(l + 1)Alm(t | �0,t0), (A6)

which has the solution

Alm(t | �0,t0) = e−Dr l(l+1)(t−t0)alm(�0), (A7)

where the alm are a new set of coefficients. The probability
distribution is thus given by

ϒ(�,t | �0,t0) =
∑
l,m

e−Dr l(l+1)(t−t0)alm(�0)Ylm(�). (A8)

The initial condition,

ϒ(�,t0 | �0,t0) = δ(� − �0), (A9)

together with the completeness relation of the spherical
harmonics,

δ(� − �0) =
∞∑
l=0

l∑
m=−l

Ylm(�)Y ∗
lm(�0), (A10)

allows the missing coefficients to be identified,

alm(�0) = Y ∗
lm(�0). (A11)

The conditional probability distribution is now fully deter-
mined as

ϒ(�,t | �0,t0) =
∞∑
l=0

l∑
m=−l

e−Dr l(l+1)(t−t0)Y ∗
lm(�0)Ylm(�).

(A12)
As t → ∞ only the terms with l = 0 survive. The steady-state
distribution function is thus given by

ϒeq(�) = lim
t→∞ ϒ(�,t | �0,t0) = (4π )−1. (A13)

The conditional and equilibrium distributions, (A12)
and (A13), respectively, can be used to coarse-grain the exact
Langevin equations (1) and (2). The approach taken is to
consider the orientation vector pi(t) attached to particle i as a
stochastic variable and to provide its full statistical characteri-
zation. In spherical coordinates the orientation vector is given
explicitly by

p(t) = (px(t),py(t),pz(t))T

= ( cos ϕ(t) sin ϑ(t), sin ϕ(t) sin ϑ(t), cos ϑ(t))T , (A14)

where ϕ and ϑ are the azimuthal and polar angles, respectively.
Using (A13) we have that

〈pz(t)〉 =
∫

d�ϒeq(�) cos ϑ = 0, (A15)

together with analogous results for the x and y components:

〈px(t)〉 = 0 = 〈py(t)〉. (A16)

Defining the new stochastic variable by χ i(t) ≡ v0 pi(t), its
first moment is thus given by

〈χ i(t)〉 = v0〈 pi(t)〉 = 0. (A17)

Calculation of the equilibrium correlation matrix re-
quires the conditional probability distribution function given
by (A12). For example, for the zz component, we obtain

〈pz(t)pz(t0)〉
=

∫
d�

∫
d�0 cos ϑ cos ϑ0ϒ(�,t | �0,t0)ϒeq(�0)

= 1

3

∫
d�

∫
d�0

∑
l,m

e−Dr l(l+1)(t−t0)

×Y ∗
10(�)Ylm(�)Y10(�0)Y ∗

lm(�0)

= 1

3
e−2Dr |t−t0|, (A18)
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where we have expressed the cosine functions in terms of
spherical harmonics, Y10 = √

3/(4π ) cos ϑ = Y ∗
10, and used

the orthogonality property. Calculations for the xx and yy

components are performed in the same spirit. We thus obtain

〈px(t)px(t0)〉 = 1
3e−2Dr |t−t0| = 〈py(t)py(t0)〉, (A19)

whereas off-diagonal components of the correlation matrix are
all zero. We can thus conclude that

〈χ i(t)χ j (t ′)〉 = v2
0〈 pi(t) pj (t ′)〉 = v2

0

3
e−2Dr |t−t ′|1δij . (A20)

It has been shown [46] that the probability distribution
function (A12) can be well approximated by an expression
which generalizes the planar Gaussian function to the sphere.
The new noise function χ i(t) is thus approximately Gaus-
sian distributed with zero mean and exponentially decaying
correlations. The coarse-grained Langevin equation (3) thus
describes a stochastic process with additive colored noise.

APPENDIX B: APPROXIMATE FOKKER-PLANCK
EQUATION

To derive from (3) an approximate Fokker-Planck equation
we apply the functional calculus methods of Fox [27]. We
address the one-dimensional case before generalizing to higher
dimension. Consider the stochastic differential equation

ẋ(t) = F (x) + g(x)χ (t), (B1)

where F (x) and g(x) may be nonlinear functions in x. If
g(x) = 1, the process is then called additive, otherwise it is
called multiplicative. The noise function χ (t) is by definition
Gaussian distributed with zero mean. Its second moment
determines whether it is a white or colored noise. As we are
interested here in the case of additive colored noise we set
g(x) = 1.

In the framework of functional calculus, the Gaussian
nature of χ (t) is expressed by the following probability
distribution functional:

P [χ ] = Ne− 1
2

∫
ds

∫
ds ′χ(s)χ(s ′)K(s−s ′), (B2)

where the function K is the inverse of the χ correlation
function and the normalization constant is expressed by a path
integral over χ :

N−1 =
∫

D[χ ]e− 1
2

∫
ds

∫
ds ′χ(s)χ(s ′)K(s−s ′). (B3)

The first and second moments of χ are given by

〈χ (t)〉 = 0, (B4)

〈χ (t)χ (s)〉 = C(t − s). (B5)

Recalling that the functional derivative may be defined
according to

δI [φ]

δφ(t ′)
= d

dλ
I [φ(t) + λδ(t − t ′)]

∣∣∣∣
λ=0

, (B6)

we now derive two useful identities. The first concerns
the functional derivative of the probability distribution

functional,

δP [χ ]

δχ (t)
= δN

δχ (t)
e− 1

2

∫
ds

∫
ds ′χ(s)χ(s ′)K(s−s ′)

+ N
δ

δχ (t)
e− 1

2

∫
ds

∫
ds ′χ(s)χ(s ′)K(s−s ′)

= −P [χ ]
∫

dsK(t − s)χ (s), (B7)

where, using (B6) and (B4), it can be easily shown that
δN/δχ (t) = 0. The second identity demonstrates the inverse
relation between the functions K and C. The second functional
derivative of P [χ ] yields

δ2P [χ ]

δχ (t ′)δχ (t)
= P [χ ]

{∫
ds ′

∫
dsK(t ′ − s ′)K(t − s)χ (s ′)χ (s)

− K(t − t ′)
}

, (B8)

where use of (B7) has been made. Using (B8) and (B5) together
with the normalization

∫
D[χ ]P [χ ] = 1, leads to

0 =
∫

D[χ ]
δ2P [χ ]

δχ (t ′)δχ (t)

=
∫

ds ′K(t ′ − s ′)
∫

dsK(t − s)C(s − s ′) − K(t − t ′),

(B9)

which implies that∫
dsK(t − s)C(s − s ′) = δ(t − s ′). (B10)

The solution to the stochastic process described by (B1),
namely, the probability distribution functional for x(t), is given
by the formal expression

P (y,t) =
∫

D[χ ]P [χ ]δ[y − x(t)]. (B11)

Taking the time derivative of (B11) yields

∂

∂t
P (y,t) = − ∂

∂y
[F (y)P (y,t)]

− ∂

∂y

∫
D[χ ]δ[y − x(t)]P [χ ] χ (t). (B12)

The product P [χ ] χ (t) appearing in the second term can be
rewritten in the following way:

P [χ ] χ (t) = P [χ ]
∫

dsδ(t − s)χ (s)

= −
∫

ds ′C(t − s ′)
δP [χ ]

δχ (s ′)
, (B13)

where we have used (B10) and (B7). Inserting (B13) back into
the second term of (B12) and integrating by parts gives us∫

D[χ ]δ[y − x(t)]P [χ ]χ (t)

= −
∫

ds ′C(t − s ′)
∫

D[χ ]

{
∂

∂y
δ[y − x(t)]

}
δx(t)

δχ (s ′)
P [χ ],

(B14)
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which serves as the exact starting point for Fox’s approxima-
tion scheme [27].

In order to progress further we need to calculate
δx(t)/δχ (s ′). Applying the functional derivative with respect
to χ (t ′) on (B1) yields a first-order differential equation,

d

dt

δx(t)

δχ (t ′)
= δẋ(t)

δχ (t ′)
= F ′(x)

δx(t)

δχ (t ′)
+ δ(t − t ′), (B15)

the solution of which is

δx(t)

δχ (s ′)
=

∫ t

0
ds e

∫ t

s
ds̃F ′[x(s̃)]δ(s − s ′)

= e
∫ t

s′ dsF ′[x(s)]�(t − s ′), (B16)

where � is the Heaviside step function, which we define here
as follows:

�(t − s ′) =
⎧⎨
⎩

1, t > s ′
1
2 , t = s ′
0, t < s ′.

Using (B16) in Eq. (B14) we can rewrite (B12) in an alternative
form,

∂

∂t
P (y,t) = − ∂

∂y
[F (y)P (y,t)] + ∂2

∂y2

{∫ t

0
ds ′C(t − s ′)

×
∫

D[χ ]P [χ ]e
∫ t

s′ dsF ′[x(s)]δ[y − x(t)]

}
,

(B17)

which already begins to resemble a Fokker-Planck-type
equation. However, because of the non-Markovian nature of∫ t

s ′ dsF ′[x(s)] appearing in the exponential of (B17), it is ap-
parent that a reduction of this term to an expression containing
P (y,t) is not possible. An approximation is required.

The colored noise of interest here is characterized by an
exponentially decaying correlation function (A17). In the
literature on non-Markovian processes the time-correlation
functions are generally notated as follows:

C(t − s) = D

τ
e− |t−s|

τ , (B18)

with a diffusion coefficient D and a correlation time τ . In order
to retain some coherence with the existing literature we will
here employ the standard notation of (B18) and only use the
relation of the parameters in Eq. (B18) to those of (A20) at the
end of the calculation.

Returning to (B17), we first perform a change of variable,
t ′ ≡ t − s ′, in the time integral,

∫ t

0
ds ′C(t − s ′)e

∫ t

s′ dsF ′[x(s)] =
∫ t

0
dt ′C(t ′)e

∫ t

t−t ′ dsF ′[x(s)],

(B19)
and then expand the time integral over F ′ in terms of t ′,

∫ t

t−t ′
dsF ′[x(s)] ≈ F ′[x(t)]t ′ − F ′′[x(t)]ẋ(t)

t ′2

2
. (B20)

Neglecting the t ′2 term in Eq. (B20) enables the integral in
Eq. (B19) to be evaluated:∫ t

0
ds ′C(t − s ′)e

∫ t

s′ dsF ′[x(s)]

≈
∫ t

0
dt ′C(t ′)eF ′[x(t)]t ′

= D

τ

∫ t

0
dt ′e−t ′{−F ′[x(t)]+ 1

τ
} ≈ D

1 − τF ′[x(t)]
, (B21)

where we used (B18), and the second approximation results
from assuming a sufficiently large t . We can finally put (B21)
back into (B17) to obtain an approximate Fokker-Planck
equation:

∂

∂t
P (y,t) = − ∂

∂y
[F (y)P (y,t)]

+ D
∂2

∂y2

[
1

1 − τF ′(y)
P (y,t)

]
. (B22)

This is Fox’s result for the approximate Fokker-Planck
equation corresponding to the non-Markovian process (B1).
Equation (B22) implicity defines a Markovian process, which
approximates the non-Markovian process of physical interest.
However, the question of whether this represents the best
approximation remains a subject of debate. We note that
equation (B22) has also been derived by Grigolini et al. [26]
using alternative methods which do not make any assumptions
of a short correlation time.

The one-dimensional Fokker-Planck equation (B22) can
be generalized without much difficulty to describe a three-
dimensional system of N particles. The dynamics of interest
is described by the stochastic equation (3). We now adapt
the standard notation used above to that employed in the
main text, namely, P (y,t) → �(rN,t), τ → τp = 1/(2Dr )
and D → v2

0/3, and recall that Da = v2
0/(6Dr ) and ζ−1 =

βDt for the friction coefficient in Eq. (3). Making the appro-
priate replacements enables us to write the three-dimensional
generalization of (B22),

∂

∂t
�(rN,t)

= −
N∑

i=1

∇i · Dt [β Fi(rN ) − ∇i]�(rN,t)

−
N∑

i=1

∇i ·
{

−Da∇i

[
1

1 − D0∇i ·β Fi (rN )
2Dr

�(rN,t)

]}
.

(B23)

A simple rearrangement of terms in Eq. (B23) leads directly
to Eqs. (5)–(8).

APPENDIX C: INTEGRAL EQUATION THEORY

To calculate the steady-state radial distribution function,
g(r), from the effective pair potential (13) we employ an equi-
librium liquid state integral equation developed by Madden and
Rice [30]. This soft mean-spherical approximation (SMSA)
exploits the Weeks-Chandler-Anderson splitting of the pair
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potential [47] into attractive and repulsive contributions,
u(r) = urep(r) + uatt(r), where the repulsive part is given by

urep(r) =
{
u(r) − u(rmin) r < rmin

0 r > rmin
, (C1)

and the attractive part is given by

uatt(r) =
{
u(r) r > rmin

u(rmin) r < rmin
, (C2)

where rmin is the position of the potential minimum. The total
correlation function, h(r) = g(r) − 1, is related to the shorter
range direct correlation function, c(r), by the Ornstein-Zernike
equation [48]:

h(r) = c(r) + ρb

∫
d r ′h(|r − r ′|)c(r ′). (C3)

The SMSA approximation is given by the closure relation:

c(r) = (1 − eβurep(r))g(r) − βuatt(r). (C4)

For the Lennard-Jones potential the closure relation (C4) has
been shown to provide results for g(r) which are superior to
both Percus-Yevick (PY) and Hypernetted Chain (HNC) theo-
ries [30]. Moreover, the SMSA theory predicts a true spinodal
line in the parameter space, namely, a locus of points for which
the static structure factor, S(k) = (1 − ρbc̃(k))−1, diverges at
vanishing wave vector. This behavior is a consequence of the
assumed asymptotic form of the direct correlation function,
c(r) ∼ −βuatt(r). Other standard integral equation theories,

such as PY and HNC, do not exhibit a complete spinodal line,
but rather a region within which the theory breaks down (“no
solutions region”) [49].

APPENDIX D: BROWNIAN DYNAMICS SIMULATIONS

To benchmark our theoretical predictions we perform
Brownian dynamics simulations of N particles, randomly
initialized without overlap. The system is confined to a periodic
cubic box, the size of which is determined by the number
density according to L3 = N/ρb, where L is the side length.
The Langevin equations of motion (1) and (2) are integrated
via a standard Brownian dynamics scheme [50] with a
constant time step of δt/τB = 10−5. Both the translational and
rotational noise are Gaussian random variables with a standard
deviation of σt = (2D0T )

1
2 and σr = (2DrT )

1
2 , respectively.

For the soft repulsive potential to be considered in this work,
βu(r) = r−12, we employ N = 2000 particles. The potential is
truncated and shifted at rcut/d = 2. To provide good statistics
for the static quantities the simulations are carried out for 106

time steps, sampling every 1000 steps, which is equivalent
to a total run time of ttot/τB = 10 and a sampling rate of
τB/tsample = 100. For the second system we will consider, the
Lennard-Jones system, βu(r) = 4ε(r−12 − r−6), we simulate
a larger system of 5000 particles. The integration time of the
equations of motion is the same as in the repulsive system, as
is the cutoff radius. In this case, the runtime is 107 and the
particle positions are sampled every 104 steps.
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We develop a general theory for describing phase coexistence between nonequilibrium steady states in
Brownian systems, based on power functional theory [M. Schmidt and J. M. Brader, J. Chem. Phys. 138,
214101 (2013)]. We apply the framework to the special case of fluid-fluid phase separation of active soft
sphere swimmers. The central object of the theory, the dissipated free power, is calculated via computer
simulations and compared to a simple analytical approximation. The theory describes well the simulation
data and predicts motility-induced phase separation due to avoidance of dissipative clusters.
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Phase transitions in soft matter occur both in equilibrium
and in nonequilibrium situations. Examples of the latter
type include the glass transition [1], various types of shear-
banding instabilities observed in colloidal suspensions [2,3],
shear-induced demixing in semidilute polymeric solutions
[4], and motility-induced phase separation in assemblies of
active particles [5,6]. In contrast to phase transitions in
equilibrium, which obey the statistical mechanics of
Boltzmann and Gibbs, very little is known about general
properties of transitions between out-of-equilibrium states.A
corresponding universal framework for describing nonequi-
librium soft matter is lacking at present.
Theoretical progress has recently been made for the case

of many-body systems governed by overdamped Brownian
dynamics, encompassing a broad spectrum of physical
systems [7]. It has been demonstrated that the dynamics of
such systems can be described by a unique time-dependent
power functional Rt½ρ; J�, where the arguments are the
space- and time-dependent one-body density distribution,
ρðr; tÞ, and the one-body current distribution, Jðr; tÞ, in the
case of a simple substance [8,9]. Both these fields are
microscopically sharp and act as trial variables in a
variational theory. The power functional theory is regarded
to be “important, [as it] provides (i) a rigorous framework
for formulating dynamical treatments within the [density
functional theory] formalism and (ii) a systematic means of
deriving new approximations” [10].
The physical time evolution is that which minimizes

Rt½ρ; J� at time t with respect to Jðr; tÞ, while keeping
ρðr; tÞ fixed. Hence,

δRt½ρ; J�
δJðr; tÞ ¼ 0 ð1Þ

at the minimum of the functional. Here the variation is
performed at fixed time t with respect to the position-
dependent current. The density distribution is then
obtained from integrating the continuity equation,
∂ρðr; tÞ=∂t ¼ −∇ · Jðr; tÞ, in time. The power functional

possesses units of energy per time and can be split
according to

Rt½ρ; J� ¼ Pt½ρ; J� þ _F½ρ� − Xt½ρ; J�; ð2Þ
where Pt½ρ; J� accounts for the irreversible energy loss
due to dissipation, _F½ρ� is the total time derivative of the
intrinsic (Helmholtz) free energy density functional [7,11],
and Xt½ρ; J� is the external power, given by

Xt½ρ; J� ¼
Z

dr½Jðr; tÞ · Fextðr; tÞ − ρðr; tÞ _Vextðr; tÞ�; ð3Þ

where _Vextðr; tÞ is the partial time derivative of the external
potential Vextðr; tÞ, and Fextðr; tÞ is the external one-body
force field, which in general consists of a sum of a
conservative contribution, −∇Vextðr; tÞ, and a further
nonconservative term. The power dissipation is conven-
iently split into ideal and excess (above ideal) contribu-
tions: Pt½ρ; J� ¼ Pid

t ½ρ; J� þ Pexc
t ½ρ; J�, where Pexc

t ½ρ; J� is
nontrivial and arises from the internal interactions between
the particles. The exact free power dissipation of the ideal
gas is local in time and space and given by

Pid
t ½ρ; J� ¼

γ

2

Z
dr

Jðr; tÞ2
ρðr; tÞ ; ð4Þ

where γ is the friction constant of the Brownian particles
against the (implicit) solvent. This framework is formally
exact and goes beyond dynamical density functional theory
[11–13]; the latter follows from neglecting the excess
dissipation, Pexc

t ½ρ; J� ¼ 0.
In this Letter, we apply the general framework of power

functional theory to treat phase coexistence of nonequili-
brium steady states. Such a state of N particles in a volume
V at temperature T is characterized by a value of the
total power functional taken at the (local) minimum,
R0
t ðN;V; TÞ≡ Rt½ρ0; J0�, where the superscript 0 indicates

a quantity at the minimum. We define the chemical power
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derivative ν and the (negative) volumetric power derivative
π via partial differentiation,

ν ¼ ∂R0
t

∂N
����
V;T

; π ¼ −
∂R0

t

∂V
����
N;T

; ð5Þ

where ν and π possess units of energy per time and pressure
per time, respectively. In the limit of large N and large V,
the specific free power per volume, rtðρbÞ ¼ R0

t =V, will
depend only on the (bulk) number density ρb ¼ N=V; this
implies the identity R0

t ¼ −πV þ νN, which neglects pos-
sible surface contributions. The simple relations ν ¼
∂rt=∂ρb and π ¼ −rt þ ρbν follow straightforwardly. We
shall demonstrate below that the free power density rtðρbÞ
is the relevant physical quantity for analyzing phase
behavior out of equilibrium.
We assume that two coexisting nonequilibrium steady

states, A and B, are characterized by particle number NA
and NB and by volume VA and VB, respectively. The
density in phase A (B) is ρA ¼ NA=VA ð ρB ¼ NB=VBÞ.
Hence, in a phase-separated state, the total power is a
weighted sum,

R0
t ¼ rtðρAÞVA þ rtðρBÞVB; ð6Þ

where the partial volumes of the two phases are VA=V¼
ðρB−ρbÞ=ðρB−ρAÞ and VB=V¼ðρb−ρAÞ=ðρB−ρAÞ, with
ρA ≤ ρb ≤ ρB.
The task of finding a global minimum of Rt½ρ; J� can now

be facilitated by a Maxwell common tangent construction
on rtðρbÞ, which implies the identities

r 0t ðρAÞ ¼ r 0t ðρBÞ ¼
rtðρBÞ − rtðρAÞ

ρB − ρA
; ð7Þ

where r 0t ðρbÞ ¼ ∂rtðρbÞ=∂ρb. As a consequence, both the
chemical and the volumetric derivatives have the same
value in the coexisting phases:

νA ¼ νB; πA ¼ πB; ð8Þ
and equality of temperature is trivial by construction.
In order to illustrate this framework, we apply it to treat

active Brownian particles, which form a class of systems
attracting much current interest [5,14–16]. We consider
spherical particles in d-dimensional space, with position
coordinates rN ≡ fr1…rNg and (unit vector) orientations
ωN ≡ fω1…ωNg; here the orientational motion of eachωi,
where i ¼ 1…N, is freely diffusive with orientational
diffusion constant Drot. The swimming is due to an
orientation-dependent external force field FextðωiÞ ¼
γsωi, which is nonconservative and does not depend
explicitly on r and t; here s is the speed for free swimming.
We follow Refs. [14,15] and use the Weeks-Chandler-
Andersen model, i.e., a Lennard-Jones pair potential, which
is cut and shifted at its minimum, such that the resulting
short-ranged pair force is continuous and purely repulsive.

For numerical convenience, our Brownian dynamics (BD)
simulations will be performed in d ¼ 2.
Power functional theory provides a microscopic

many-body expression for R0
t [8]. Omitting an irrelevant

rotational contribution, this is given (up to a constant
C) by

R0
t ¼ −

γ

2

�X
i

viðtÞ2
�
þ C; ð9Þ

where the sum is over all particles and the angles denote a
steady state average. To directly simulate the dissipated
free power, we use a discretized version of the instanta-
neous velocity [17]: viðtÞ¼½riðtþΔtÞ−riðt−ΔtÞ�=ð2ΔtÞ,
where Δt is the time step of the standard (Euler) computer
simulation algorithm, where riðt þ ΔtÞ ¼ riðtÞ þ
γ−1Δt½−∇iUðrNÞ þ ξiðtÞ þ Fext(ωiðtÞ)�, with ξiðtÞ being
a Gaussian-distributed delta-correlated noise term, with
finite-difference, equal-time strength hξiðtÞ · ξjðtÞi ¼
δijkBTd=ðγΔtÞ; C ¼ NkBTd=ð2ΔtÞ is an irrelevant con-
stant, and kB is the Boltzmann constant. The external
power is given by

Xt ¼
�X

i

viðtÞ · Fext(ωiðtÞ)
�
; ð10Þ

and we define the corresponding internal power, due to
interparticle interactions and Brownian forces, as

It ¼
�X

i

viðtÞ · ½−∇iUðrNÞ þ ξiðtÞ�
�
: ð11Þ

This allows us to split (9) into a sum of external and
internal contributions,

R0
t ¼ −It=2 − Xt=2: ð12Þ

By inserting (2) into (1) and observing the structure of
(4), it is straightforward to show that

It ¼ − _F − 2Pexc
t þ

Z
drdωJðr;ω; tÞ · δP

exc
t ½ρ; J�

δJðr;ω; tÞ
����
0

; ð13Þ

where the integrand is evaluated at the minimum and we
included the argument ω, treating the system effectively
as a mixture of different components [18].
To sample (9) efficiently in simulation, we decompose

the velocity as viðtÞ ¼ ½Δriðt − ΔtÞ þ ΔriðtÞ�=ð2ΔtÞ,
where ΔriðtÞ ¼ riðtþ ΔtÞ − riðtÞ, given via the Euler
algorithm as a sum of three contributions, i.e., intrinsic,
Δrinti ðtÞ ¼ −Δt∇iU(rNðtÞ); random, Δrrani ðtÞ ¼ ΔtξiðtÞ;
and external, Δrexti ðtÞ ¼ ΔtFext(ωiðtÞ). Multiplying out
(9) yields 36 contributions, of which we sample only
the three nontrivial types: hΔrinti ðtÞ⋅Δrinti ðtÞi and
hΔrinti ðtÞ⋅Δrexti ðtÞi (where also similar contributions arise
with one or both displaced time arguments), as well as
hΔrrani ðt − ΔtÞ⋅Δrinti ðtÞi. We use N ¼ 1000 and adjust V in

PRL 117, 208003 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

11 NOVEMBER 2016

208003-2

70



order to control the density in the square simulation box
with periodic boundaries. The time step is chosen as
Δt=τ0 ¼ 10−5, where the time scale is τ0 ¼ γσ2=ϵ, with
Lennard-Jones diameter σ and energy scale ϵ. We allow the
system to reach a steady state in 107 steps and collect data for
a further 108 steps. The rotational diffusion constant is set to
Drot ¼ 3kBT=ðγσ2Þ, and the external field strength is chosen
as s ¼ 24σ=τ0. The Peclet number [14,15] is Pe≡
3s=ðDrotσÞ ¼ γsσ=ðkBTÞ.
Figure 1(a) shows simulation results for R0

t and Xt, as
respectively given by (9) and (10), as a function of density.
Due to the simple form of the external force, the external
power (10) is trivially related to the (well-studied [14–16])
average forward swimming speed v via Xt ¼ γsvN, where
v ¼ hPiviðtÞ · ωiðtÞi=N. Remarkably, we find that R0

t
coincides with −Xt=2 within our numerical precision.
This implies that (i) the internal dissipation is negligible,
It ≈ 0 [cf. (12)] and (ii) that the value of the power
functional for active particles is a known quantity. We
have systematically studied the variation with temperature
(as is analogous to varying Pe [14,15]). While hardly any
effect for low densities is observed, a dip develops for
ρσ2 ≳ 0.5; cf. Fig. 1(a) [19].
We next seek to develop a simple theoretical model to

capture the key features of the simulation data; the

corresponding results shown in Fig. 1(b) will be
discussed below. We assume Pexc

t ½ρ; J� to possess a simple
Markovian, spatially nonlocal form:

Pexc
t ½ρ; J� ¼ γ

2

Z
d1

Z
d2ρð1Þρð2Þ

�
Jð1Þ
ρð1Þ −

Jð2Þ
ρð2Þ

�
2

Mð1; 2Þ;

ð14Þ

where 1≡ r, ω and 2≡ r0, ω0. Here Mð1; 2Þ is a (dimen-
sionless) correlation kernel that couples the particles at
points 1 and 2, similar to the mean-field form of the excess
free energy functional in equilibrium density functional
theory [7,11]. Note that the term in brackets in (14) is the
(squared) velocity difference between the two points. We
parameterize the current, which in general depends on
particle position r and orientation ω, as Jðr;ω; tÞ ¼ Jbω,
where Jb is a variational parameter that determines the
(homogeneous) bulk current in direction ω. This implies
v ¼ Jb=ρb. Inserting into (14) and observing the general
structure (2), we obtain

Rt

γV
¼ J2b

2ρb
þM0

2
J2b − sJb; ð15Þ

where the right-hand side consists of a sum of contributions
due to ideal dissipation (Pid), excess contribution to
dissipation (Pexc), and external power (Xt). The coefficient
M0 is density dependent and can be expressed as a
moment of the correlation kernel [9] Mð1; 2Þ, as M0 ¼R
drdωdω0ðω − ω0Þ2Mð1; 2Þ, where due to symmetries

Mð1; 2Þ depends only on the differences r − r0 and
ω − ω0, and M0 is hence independent of r0. Clearly, in
steady states _F½ρ� ¼ 0.
The minimization principle (1) implies ∂Rt=∂Jb ¼ 0 for

(15), which yields

Jb ¼ sρb=ð1þM0ρbÞ: ð16Þ

Using (16) in order to eliminate M0 from (15) gives the
value at the minimum

R0
t ¼ −γsJbV=2; ð17Þ

which implies that R0
t ¼ −Xt=2, where here the external

power is Xt ¼ γsJbV. A detailed derivation will be given
elsewhere. The internal contribution It ¼ 0, as _F ¼ 0 in
steady state, and the additional contributions in (13) vanish
for the present form (14) of Pexc½ρ; J�, which is quadratic
in Jðr;ω; tÞ.
We assume a simple analytical expression,

M0 ¼ ðρ0 − ρbÞ−1 þ c0ρmb =ρ
mþ1
0 ; ð18Þ
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FIG. 1. (a) Scaled average forward swimming speed v=s
(symbols) and scaled free power −2R0

t =ðNs2γÞ per particle
(lines), as obtained from BD computer simulations via Eqs. (9)
and (10), respectively, for temperatures kBT=ϵ ¼ 0.1–1 (as
indicated). (b) Theoretical results corresponding to (a), as given
by Eqs. (17) and (19), where m ¼ 5, ρ0σ2 ¼ 1.2, and for values
of c0 ¼ 0–25 as indicated.

PRL 117, 208003 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

11 NOVEMBER 2016

208003-3

71



where ρ0 is the jamming density at which the dynamics
arrests, c0 ≥ 0 is a temperature-dependent dimensionless
constant, and the exponent m > 0 is a measure for the
number of particles that cause the additional dissipation
due to local cluster formation [second term in (18)]. We
expect the exponentm to grow with d, as clusters consist of
an increasing number of particles upon increasing d.
Furthermore, we expect c0 to decrease to zero with
increasing temperature, as clusters are broken up by
thermal motion. We leave a microscopic derivation of
M0, e.g. starting from the correlation kernelMð1; 2Þ (which
is, in principle, accessible via simulations [20]) to future
work. Equation (18) can be interpreted as describing an
overall increase, and eventual divergence, of dissipation
with density plus a specific dissipation channel due to small
groups of the order of m particles that block each other.
Blocking is relevant only at intermediate densities, high
enough so that the mth density order contributes, but low
enough in order to be not overwhelmed by the singularity.
Inserting (18) into (16) yields

Jb
sρb

¼ 1 − x
1þ c0xmþ1ð1 − xÞ ; ð19Þ

where we have defined the scaled density x ¼ ρb=ρ0. In
case of high temperature, where c0 → 0, this reduces to the
simple and well-known (see, e.g., [14–16]) linear (velocity)
relationship v=s≡ Jb=ðsρbÞ ¼ 1 − x. In Fig. 1(b), we
show the theoretical results for the (scaled) external and
total free power per particle corresponding to the simulation
results in Fig. 1(a). Clearly, despite the simplicity of (18),
the theory reproduces the simulation data very well.
As outlined above, in order to assess phase behavior, the

relevant quantity is the free power per volume rt (rather than
per particle), which we show in Fig. 2, obtained from
simulations [Fig. 2(a)] and theory [Fig. 2(b)]. For low
temperatures kBT=ϵ ¼ 0.1, 0.24, the simulation data clearly
show a change in curvature, which we attribute to a first-
order phase transition in the finite system [21]. (In an infinite
system, we expect no negative curvature to occur and the
coexistence region to be characterized by a strictly linear
variation of rt with ρb.) For kBT=ϵ ¼ 0.3, a quasilinear part
can be observed, which we interpret as being very close to a
nonequilibrium critical point. The theoretical curve displays
the same type of behavior, which we attribute to the mean-
field character of the approximation (14).We can now apply
the general phase coexisting conditions (7) and (8) to the
active system. A representative double tangent is shown in
Fig. 2(b). The low-density (high-density) coexisting phase is
characterized by a high (low) value of Xt.
The phase diagram (cf. Fig. 3) displays two-phase

coexistence between a high-density and a low-density
active fluid. We find the simulation results [Fig. 3(a)]
for the binodal obtained from double tangent construction
[on the results shown above in Fig. 2(a)] as a function of

kBT=ϵ to be consistent with the behavior of the tail
(5 < r=σ < 10) of the radial pair distribution function
gðrÞ. A characteristic slow decay indicates the occurrence
of phase separation (see, e.g., [22]). The corresponding
theoretical phase diagram is shown in Fig. 3(b), where we
also display the spinodal, defined as the point(s) of
inflection of rtðρbÞ. The phase separation vanishes upon
increasing 1=c0 at an upper nonequilibrium critical
point. Although we have not attempted to model the
dependence of 1=c0 on T systematically, the agreement
between simulation and theoretical results is striking. Our
simulation results for the phase behavior underestimate the
boundaries given by Stenhammar et al. [14,15]; this is not
surprising given that these authors investigated signifi-
cantly larger systems. In simulations, we have found
only a slight decrease of the slope of vðρbÞ for increasing
s, and a corresponding increase in the jamming density,
but with little effect on the phase separation itself. This is
consistent with the fact that Pexc½ρ; J�, and hence c0,
is an intrinsic quantity. The conditions for spinodal
and binodal both differ from the density “where macro-
scopic MIPS [motility-induced phase separation] is initi-
ated by spinodal decomposition” [6], v0=v ¼ −1=ρb, where
v0¼dvðρbÞ=dρb; this can be rephrased as dðρbvÞ=dρb¼0,
implying, within It ¼ 0, that r0tðρbÞ ¼ 0. This condition is
quite different from the spinodal within power functional
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theory, r00t ðρbÞ ¼ 0, or equivalently v00=v0 ¼ −2=ρb.
Furthermore, for linear variation of v with ρb, i.e.,
c0 ¼ 0, we find phase separation to be absent, in contrast
to Ref. [6]; cf. Eqs. (35)–(37) and Fig. 5 therein.
We have developed a general approach, based on power

functional theory [8], to treat coexistence between non-
equilibrium steady states in Brownian systems. Our theory
is fundamentally different from other approaches to active
systems (e.g., [5,22,23]) which were developed specifically
for phase separation. We rather identify a generating
functional providing a unified, internally self-consistent
description of out-of-equilibrium states. The free power
density plays a role in nonequilibrium systems analogous to
that of the free energy density in equilibrium, although it is
an entirely distinct physical quantity.
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FIG. 3. (a) Phase diagram for active particles, obtained from
simulations, as a function of scaled density ρbσ

2 and scaled
temperature kBT=ϵ. Shown are the binodal (red solid line)
obtained from double tangent construction (red solid symbols),
horizontal tie lines (thin red lines), and estimate for the critical
point (red square). Also shown are single-phase (open symbols)
and phase-separated (stars) states based on the analysis of the
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functional theory and shown as a function 1=c0 instead of scaled
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In deriving the nonequilibrium phase coexistence conditions (8) via the double tangent construction (7), as exemplified in
Fig. 2(b) and leading to the results in Fig. 3, we assumed the concept of minimization of free power dissipation, Rt½ρ; J�.
However, while minimization of Rt½ρ; J� with respect to the current distribution Jðr;ω; tÞ generates a one-body force
balance equation of motion (1), we had implicitly assumed [1] that the functional is also minimal with respect to the density
distribution ρðr;ω; tÞ. This additional minimization is not present in power functional theory [8], which rather states that

δRt½ρ; J�
δρðr;ω; tÞ ¼ αðr;ω; tÞ; ð20Þ

where αðr;ω; tÞ is a Lagrange multiplier corresponding to the constraint between ρðr;ω; tÞ and Jðr;ω; tÞ that is imposed by
the continuity equation.
For our test case of motility-induced phase separation in active Browian particles, recent simulation data [2,3] very

clearly points to the fact that both π and ν possess different values in the coexisting phases. Hence the conclusion that (8)
offers a shortcut to phase coexistence, bypassing the need to solve the force balance equation (1) across the interface, is not
valid. This does not affect the validity of the excess dissipation functional (14), as demonstrated in Figs. 1 and 2, which
hence offers a practical way to theoretically address the interfacial problem.
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We generalize power functional theory [M. Schmidt and J. M. Brader, J. Chem. Phys. 138,
214101 (2013)] to Brownian many-body systems with orientational degrees of freedom. The frame-
work allows to study active particles in general inhomogeneous and time-dependent nonequilibrium.
Swimming is induced by an external force field. We prove for steady states that the free power
equals half the negative dissipated external work per time, and is hence trivially related to the
average forward swim speed of the particles. The variational theory expresses the free power as a
functional microscopic one-body density and current distribution. Both fields are time-, position-
and orientation-dependent, and the total current consists of translational and rotational parts. Min-
imization of the free power functional with respect to the current(s) yields the physical dynamics of
the system. We give a simple approximation for the superadiabatic (above free energy) contribution
which describes excess dissipation in homogeneous bulk fluids due drag. In steady states, we eval-
uate the free power using Brownian dynamics simulations for short-ranged soft repulsive spheres.
We describe the necessary sampling strategies and show that the theory provides good account of
the simulation data.

I. INTRODUCTION

The class of active systems covers a wide variety of
biological and physical systems. Activity refers to an
intrinsic motility of the individual units, such as cells,
bacteria or particular colloids. The growing interest in
active systems over the last decade is poignantly illus-
trated by the large number of review articles that address
the topic [1–18]. A variety of collective phenomena has
been addressed in e.g. systems of microorganisms [2, 19],
cells [20], and bacteria [6, 8, 21–30]. Further examples
include the collective motion of flocks [1, 31–33], school
of fish [34], and opinion formation in social science [35].

One of the most successful model to describe collective
behavior is the Viscek model [36], and its variations [37–
45]. The Viscek model has been used for example to
study lane formation [39, 43, 46], soft deformable par-
ticles [47], order-disorder transition [37], and swarming
turbulence [41]. A popular application is the description
of active nematics. For active rods the collective prop-
erties [48, 49] and swarming behavior [50] were studied.
In active nematics velocity correlations [51], orientational
order and fluctuations have been investigated [52–54].

There exists a variety of experiments and applications,
such as active glasses and gels [55–60] and the collec-
tive motion of vibrated polar disks and granular mate-
rials [61–64]. Experiments dealing with active colloidal
particles use e.g. Janus particles [65, 66] or other colloids
whose surface suitably is manipulated. Janus particles
are built by e.g. by coating on hemisphere of SiO2 beads
with a thin layer of graphite onto one hemisphere [65].
When illuminated with a widened laser, the light is ab-
sorbed by the graphite hemisphere. This locally heats up
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the solvent above the critical temperature, causing a local
demixing, which generates a phoretic force that propels
the Janus particle. In Ref. [67] a polymer sphere encap-
sulated most of an anti-ferromagnetic cube, which was
then only partially exposed to the solvent. Illuminated
with blue light, the colloids were able to self-propel and
form clusters. Unlike other propulsion mechanisms, e.g.,
driven by chemical gradients, such light-induced motion
does not need fuel [66, 68, 69].

A body of work has been based on hydrodynamic
frameworks [7], addressing the behaviour of flocks [70],
phase coexistence [71], pattern formation [72], confined
collective motion [73], and microorganisms [2]. Further-
more hydrodynamic approaches give the opportunity to
study e.g. self-propulsion mechanisms [74, 75], synchro-
nization of anisotropic particles [76–78], and dynamics
near a wall [79].

Active Brownian particles (ABP) form a simple mi-
croscopic model for active matter. This type of particles
undergo Brownian motion with a built-in orientation de-
gree of freedom, which itself diffuses freely, and gives the
direction of the self-propulsion. In particular spherical
particles serve as a minimal model for active colloids.
The ABP model is very popular for studying phase sepa-
ration of active particles, which is based on the particles’
motility. This motility-induced phase separation (MIPS)
occurs between non-equilibrium steady states in systems
with purely repulsive interparticle interactions. The sim-
plicity of the ABP model has lead to a thriving number
of publications based on computer simulations and the-
oretical approaches to describe MIPS [80–103]. Recent
theoretical developments include a mode coupling the-
ory for ABP [104–106], a field theory for phase separa-
tion [107], and how swimmer-swimmer correlations affect
the collective behavior of active suspensions [108].

Approaches for describing MIPS were based on contin-
uum theory [95, 96] and a hydrodynamic, coarse-graining
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theory [82, 94]. In both approaches the average propul-
sion speed as a function of bulk density, v(ρb), plays an
important role. Using continuum theory [95, 96] v(ρb)
is obtained by microscopic estimations of a random walk
hindered by collisions. The authors of Refs. [95, 96] ar-
gue that using v(ρb) it is possible to construct an effec-
tive free energy, which predicts the existence of phase
separation. Furthermore they present a formalism which
allows the detailed study of phase separation dynamics.
The approach introduced in Refs. [82] and [94] is based on
the microscopic many-body Smoluchowski equation. The
authors derive coarse-grained equations for one tagged
particle, in which again an effective (density-dependent)
swimming speed v(ρb) enters. From the effective hydro-
dynamics the authors identify an instability region of the
homogeneous system, causing a dynamic instability. The
fact that this indeed leads to phase separation can be
demonstrated by comparison to computer simulations.
Recent work showed [109] that v(ρb) can also been ob-
tained by Green-Kubo relations, which might in a next
step be used as an input for coarse-grained frameworks.
Summarizing, both theoretical approaches are able to
predict the onset and existence of MIPS (with reason-
able approximations), but a detailed description of stable
phase coexistence is still missing.

Closely related to MIPS is the clustering of self-
propelled particles and active clusters [28, 39, 65, 66,
81, 110–118]. The kinetics of the formation of the dense
phase can be modeled analogously to classical nucleation
theory [119]. Supported by simulations, it has been
shown that, within this modeling, some properties, such
as the location of the binodal and nucleation rates, can
be obtained. Another approach is the active phase-field
crystal model [120, 121].

Given the number of applications and phenomenologi-
cal observations, the attempt at unification via formulat-
ing thermodynamics and statistical mechanics for active
matter seems well justified [29, 84, 101, 122–132]. Under
special investigation is the possibility to find an equa-
tion of state and a closed form for the pressure in active
systems [89, 126, 133–139]. Especially in the context of
MIPS the surface tension of the gas-liquid interface in
systems with phase coexistence has been of significant
interest [140–142]. Recent results suggest that the inter-
facial tension is negative [140], which violates the physical
intuition earned from equilibrium statistical mechanics.

A fundamentally different approach is the effective
equilibrium description of ABPs. The basic idea be-
hind this framework is to eliminate the orientational de-
grees of freedom by integrating them out, resulting in a
Langevin equation for a non-Markovian dynamics for the
translational coordinates [143]. The underlying stochas-
tic process is an Ornstein-Uhlenbeck process. There are
two concepts which allow to represent this process us-
ing effective Markovian dynamics: The unified colored
noise approximation (UCNA) introduced by Hänggi and
Jung [144, 145], and the Fox approximation [146, 147].
Applying the former to ABPs allows to study a vari-

ety of problems, e.g. statistical properties such as the
velocity distribution of ABPs [148]. Furthermore the
UCNA is also used as a first step to formulate a sta-
tistical mechanics theory [124] and describe critical phe-
nomena [149]. The Fox approximation is used to study
the physics of ABPs [139, 143, 150, 151]. Within this
approach an approximated Fokker-Plank equation is de-
rived, whereby one can define an effective interaction
between the particles, due to activity [143]. The exis-
tence of such an effective interaction has been proposed
earlier, because of the similarities of MIPS and equilib-
rium phase transitions [152]. The application of Fox’s
approximation [143, 150] and the UCNA [153] gave an
explicit formulation. Interfacial properties, pressure and
tension have been studied as well in both approxima-
tions [139, 141, 154]. Very recent work by Wittmann et
al. [155, 156] shows nicely the equivalence of both ap-
proaches and gives insight into previous results. The au-
thors present new findings regarding interaction forces,
phase equilibria, structure, and mechanical properties.

In this work we present a theory for active Brown-
ian particles with orientational degrees of freedom. Our
approach is based on the recently developed power func-
tional theory (PFT) [157]. This framework allows the de-
scription of many-body systems that follow over-damped
Brownian dynamics. These are described by a unique
power functional Rt[ρ,J] of the one-body density distri-
bution ρ and the one-body current distribution J, which
both depend on position r and time t [157]. Minimizing
the power functional with respect to the current gives the
physical time evolution of the system. Therefore Rt can
be regarded as an analogue to the free energy functional
in equilibrium statistical physics. One central signifi-
cance of the power functional is that its derivative deter-
mines the forces acting in overdamped systems. Therein
lies the second analogy to equilibrium systems, where the
thermodynamic potentials appear also as abstract quan-
tities that are only detectable through their derivatives.
The theory is generally formulated in the Smoluchowski
picture, starting from the many-body probability distri-
bution Φ.

Dynamical density functional theory (DDFT) is a
widely used approach, e.g. for studying sheared sys-
tems [158, 159], spinodal decomposition [160], and sys-
tems with orientational degrees of freedom [161]. DDFT
can be viewed as an extension to density functional the-
ory (DFT) to nonequilibrium systems [162, 163]. How-
ever, in contrast to DDFT, PFT is formally exact in
the sense that no adiabatic assumption is involved in or-
der to describe the time evolution of the density pro-
file. Hence PFT goes beyond the DDFT description
and allows the study of additional forces in the sys-
tem that are not contained in the adiabatic construc-
tion. These forces are called superadiabatic forces and
are accessible via computer simulations [164–166]. Su-
peradiabatic forces, and hence PFT, may serve therefore
as a tool to describe nonequilibrium phenomena which
are not fully understood, such as the laning transition
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in colloidal systems [167, 168], where DDFT only fits
when adding phenomenological terms [169, 170]. More-
over PFT potentially gives opportunities to describe a
whole class of nonequilibrium system from first princi-
ples in a general and unified way. Furthermore PFT was
also formulated for quantum [171] and classical Hamil-
tonian [172] many-body systems. For overdamped Brow-
nian system, nonequilibrium Ornstein-Zernike equations
were formulated for two-body dynamic correlation func-
tions [173, 174]. Much recent progress has been made in
the development of PFT approximations for simple flu-
ids [175, 176] and for corresponding computer simulation
techniques [177, 178].

Recently PFT has been used for the description of
ABPs [179] by taking the orientational degree of free-
dom of the particles into account, which can be viewed
as a generalization of the PFT for mixtures [180]. Here
we give a complete account of the theory and present
further comparisons to computer simulation results. We
also derive several exact sum rules for nonequilibrium
steady states, Eqs. (43), (44) and (49) below.

The paper is organized as follows. In Sec. II we for-
mulate power functional theory for active particles. We
start from the microscopic (Smoluchowski) many-body
description of the active system and show the repre-
sentation of PFT on the one-body level in Sec. II A.
We then focus on steady states and derive an exact
non-equilibrium sum rule for the splitting into internal
and external contributions to the free powerin Sec. II B.
We give an approximation for the excess dissipation in
Sec. II C and formulate the Langevin dynamics of the
ABP model in Sec. III. Furthermore we give details
about the Brownian dynamics computer simulations and
the external power in the Langevin description is pre-
sented. In the Sec. IV we present our results obtained by
simulations and theory. We conclude in Sec. V.

II. POWER FUNCTIONAL THEORY

A. General framework

We consider N active particles with position coordi-
nates {r1, . . . rN} ≡ rN in d-dimensional space, and ori-
entations {ω1, . . .ωN} ≡ ωN , where particle i at position
ri swims with speed s in direction ωi, with |ωi| = 1. We
consider possibly anisotropic inter-particle interaction
potentials u(rN ,ωN ). The Smoluchowski equation for
the time-dependent probability distribution Φ(rN ,ωN , t)
of an ensemble of such systems is

∂

∂t
Φ(rN ,ωN , t) = −

∑

i

(∇i · v̂i +∇ω
i · v̂ω

i )Φ(rN ,ωN , t),

(1)

where ∇i is the derivative with respect to ri, and ∇ω
i

is the derivative with respect to ωi (acting on the unit
sphere); v̂i and v̂ω

i are the translational velocity and ro-

tational velocity operators, respectively. The former is
given by

γv̂i = −(∇iu)− (∇ivexti ) + Xi + γsωi − kBT∇i, (2)

where u(rN ,ωN ) is the interparticle interaction poten-
tial, vext(r,ω, t) is a position-, orientation, and time-
dependent external potential, X(r,ω, t) is an external
non-conservative force; we use vexti = vext(ri,ωi, t) and
Xi = X(ri,ωi, t) as short-hand notation; γ is the fric-
tion coefficient for translational motion, s = const is the
swimming speed of an isolated particle, kB is the Boltz-
mann constant and T is absolute temperature. The vec-
tor fields ∇iu and ∇ivexti act via multiplication in (1);
only the thermal diffusive term (last contribution in (2))
acts via differentiation.

The rotational velocity operator is given by

γωv̂ω
i = −(∇ω

i u)− (∇ω
i v

ext
i ) + Xω

i − kBT∇ω
i , (3)

where γω is the rotational friction coefficient, and Xω
i ≡

Xω(ri,ωi, t), where Xω(r,ω, t) is a non-conservative ex-
ternal torque field.

Following the procedure of Ref. [157], we intro-
duce variational fields ṽN ≡ {ṽ1, . . . ṽN} and ṽωN ≡
{ṽω

1 , . . . ṽ
ω
N} for the translational and rotational veloc-

ity, respectively. Each variational field is a configura-
tion space function, i.e. ṽi ≡ ṽi(r

N ,ωN , t) and ṽω
i ≡

ṽi(r
N ,ωN , t) for all i = 1, . . . N .

We define a generator that depends on the trial fields
via

Rt =

∫
drNdωN

∑

i

[
γ
( ṽ2

i

2
− ṽi · v̂i

)
(4)

+ γω
( (ṽω

i )2

2
− ṽω

i · v̂ω
i

)]
Φ(rN ,ωN , t).

Due to its quadratic structure, the generator is instan-
taneously (i.e. at fixed time t and fixed distribution Φ)
minimized by the true value of each of the trial fields,
and hence when evaluated at the minimum

δRt
δṽi

= 0, (5)

δRt
δṽω

i

= 0, (6)

which implies that

ṽiΦ = v̂iΦ, (7)

ṽω
i Φ = v̂ω

i Φ (8)

at the given time t. Hence the trial fields at the minimum
of the functional can “stand in” for the action of the cor-
responding operators. Clearly the minimum corresponds
to the physical dynamics, as the trial fields possess the
“correct” values that determine the actual time evolu-
tion. Here the translational contribution to the power
functional takes on the value

R0,trans
t = −γ

2

∫
drNdωN

∑

i

ṽ2
iΦ(rN ,ωN , t), (9)
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where the superscript 0 indicates the value at the mini-
mum. The total value of Rt at the minimum consists of
translational and rotational contributions:

R0
t = −1

2

∫
drNdωN

∑

i

(
γṽ2

i + γω(ṽω
i )2
)

Φ(rN ,ωN , t),

(10)

Furthermore, we can use Rt as a generator for the
one-body fields of interest, via functional differentiation
[157],

δRt
δX(r,ω, t)

= J(r,ω, t), (11)

δRt
δXω(r,ω, t)

= Jω(r,ω, t), (12)

where the translational and rotational one-body currents
are defined, respectively, via

J(r,ω, t) = (13)∫
drNdωN

∑

i

δ(r− ri)δ
ω(ω − ωi)v̂iΦ(rN ,ωN , t),

Jω(r,ω, t) = (14)∫
drNdωN

∑

i

δ(r− ri)δ
ω(ω − ωi)v̂ω

i Φ(rN ,ωN , t),

where δ(·) indicates the three-dimensional Dirac distri-
bution and δω(·) is the Dirac distribution on the unit
sphere.

The one-body currents are related to the temporal
change of the one-body density via the continuity equa-
tion

∂ρ(r,ω, t)

∂t
= −∇ · J(r,ω, t)−∇ω · Jω(r,ω, t), (15)

as can be shown from integrating (1) over the degrees of
freedom of N − 1 swimmers. Here the one-body density
distribution is defined via

ρ(r,ω, t) = (16)∫
drNdωN

∑

i

δ(r− ri)δ
ω(ω − ωi)Φ(rN ,ωN , t).

In order to connect the many-body theory with the
one-body level, we perform a constrained Levy search
[181, 182] as

Rt[ρ,J,J
ω] = min

ṽN ,ṽω,N→ρ,J,Jω
Rt, (17)

where the constraints are obtained by replacing the op-
erators on the right hand sides of Eqs. (13) and (14) by

their respective trial fields, i.e.

J(r,ω, t) = (18)∫
drNdωN

∑

i

δ(r− ri)δ
ω(ω − ωi)ṽiΦ(rN ,ωN , t),

Jω(r,ω, t) = (19)∫
drNdωN

∑

i

δ(r− ri)δ
ω(ω − ωi)ṽω

i Φ(rN ,ωN , t).

In equilibrium systems, the method of constrained search
provides an alternative to the more familiar Mermin-
Evans foundation of density functional theory [162, 183].
The advantages of the Levy method are that no Legendre
transform is required and that the intrinsic free energy
functional is given as an explicit (many-body) expression.

As a consequence of the constrained search (17), the
variational principle is now elevated to the one-body
level, such that both

δRt[ρ,J,J
ω]

δJ(r,ω, t)
= 0, (20)

δRt[ρ,J,J
ω]

δJω(r,ω, t)
= 0, (21)

hold at the minimum of the functional. Here the (partial)
functional derivatives are performed at fixed ρ(r,ω, t).
As we will show below, (20) and (21) constitute a force
balance and a torque balance equation, which together
with the continity equation (15) completely determine
the dynamics. One advantage of this setup is that the
different contributions to the total force and total torque
can be systematically formulated. In particular, one can
identify the genuine nonequilibrium contributions as be-
ing superadiabatic, i.e. above free energy contributions,
as we will show in the following.

The structure laid out so far implies that the internal
and external contributions to the total power functional
can be separated according to

Rt[ρ,J,J
ω] = Wt[ρ,J,J

ω]−Xt[ρ,J,J
ω] (22)

where Wt[ρ,J,J
ω] is an intrinsic contribution, solely de-

pendent on the interparticle interactions u(rN ,ωN ). The
external power is generated from the external forces and
torques (both of which act local in time and space) ac-
cording to

Xt[ρ,J,J
ω] =

∫
drdω [J · (−∇vext + X + γsω)

+ Jω · (−∇ωvext + Xω)]. (23)

We next split the internal contribution in (22) into ideal
and excess (over ideal) parts

Wt = W id
t +W exc

t , (24)
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where the intrinsic ideal (i.e. in a system with no internal
interactions) power functional is given by

W id
t [ρ,J,Jω] =

∫
drdω

[γJ2 + γω(Jω)2

2ρ
(25)

+ kBT
(
J · ∇+ Jω · ∇ω

)
ln ρ
]
.

Here the right hand side can be split into a sum

W id
t [ρ,J,Jω] = P id

t [ρ,J,Jω] + Ḟid[ρ], (26)

with contributions due to dissipation, P id
t , and adiabatic

(reversible) ideal free energy changes, Ḟid[ρ]. Here

Fid[ρ] = kBT

∫
drdωρ(r,ω)(ln(ρ(r,ω)Λd)− 1) (27)

is the intrinsic Helmholtz free energy functional of an
ideal gas of uniaxial rotators in d spatial dimensions; Λ
is the (irrelevant) thermal de Broglie wavelength, and
the overdot in (26) indicates a derivative with respect
to time. Explicitly, the dissipative and reversible ideal
intrinsic contributions are given by

P id
t [ρ,J,Jω] =

∫
drdω

γJ2 + γω (Jω)
2

2ρ
, (28)

Ḟid[ρ]/(kBT ) =

∫
drdω (J · ∇+ Jω · ∇ω) ln(ρΛd),

(29)

where (29) is obtained from (27) via the chain rule, re-
placing the partial time derivative of the density distri-
bution ρ̇ via the continuity equation (15), and integration
by parts in both position and orientation.

The functional derivatives of the ideal intrinsic contri-
bution (25) are then obtained as

δW id
t

δJ(r,ω, t)
=
γJ(r,ω, t)

ρ(r,ω, t)
+ kBT∇ ln ρ(r,ω, t), (30)

δW id
t

δJω(r,ω, t)
=
γωJω(r,ω, t)

ρ(r,ω, t)
+ kBT∇ω ln ρ(r,ω, t),

(31)

where the arguments of W id
t [ρ,J,Jω] have been omitted

for clarity. The variational principle (20) and (21) can be
then cast into the form of a force balance and a torque
balance equation, which are given, respectively, by

γJ(r,ω, t)

ρ(r,ω, t)
= γsω − kBT∇ ln ρ(r,ω, t)− δW exc

t

δJ(r,ω, t)

−∇vext(r,ω, t) + X(r,ω, t), (32)

γωJω(r,ω, t)

ρ(r,ω, t)
= −kBT∇ω ln ρ(r,ω, t)− δW exc

t

δJω(r,ω, t)

−∇ωvext(r,ω, t) + Xω(r,ω, t). (33)

In order to describe the contribution due to internal
interactions, we assume a splitting of the intrinsic ex-
cess functional into adiabatic and superadiabatic (above

“adiabatic”, i.e. equilibrium) contributions,

W exc
t [ρ,J,Jω] = Ḟ exc[ρ] + P exc

t [ρ,J,Jω], (34)

where the total time derivative of the intrinsic ex-
cess (over ideal gas) Helmholtz free energy functional
F exc[ρ], which is due to the intrinsic interaction potential
u(rN ,ωN ), is

Ḟexc[ρ] = (35)
∫
drdω

(
J(r,ω, t) · ∇+ Jω(r,ω, t) · ∇ω

) δFexc[ρ]

δρ(r,ω, t)
,

and P exc
t [ρ,J,Jω] is the superadiabatic contribution,

which also originates from the internal interactions,
and describes the difference to the equilibrium physics.
P exc
t [ρ,J,Jω] depends in general non-locally in time and

in space on its (functional) arguments. The functional
derivative in (35) is taken with respect to an equilib-
rium density distribution ρeq(r,ω) (which is indepen-
dent of time), as is appropriate for the equilibrium excess
free energy functional F [ρeq]. This functional derivative
is then evaluated at the time-dependent density, i.e. at
ρeq(r,ω) = ρ(r,ω, t). Note that this identity defines the
adiabatic state [164]. Similar to the derivation of (29),
one obtains (35) from applying the the chain rule, re-
placing ρ̇ via (15) and then “reversing” the action of the
nabla operators by partial integration, i.e. building the
adjoint operators.

Inserting the splitting (24), (25), (29), (28), and (34)
into (22) yields a decomposition which is identical to the
case of systems with only translational degrees of free-
dom [157]:

Rt = P id
t + P exc

t + Ḟid + Ḟexc −Xt. (36)

Evaluating the functional at the physical time evolution
yields

R0
t = R0

t ≡ Rt[ρ,J,Jω], (37)

where R0
t is defined via (10).

B. Steady state sum rules

The formulation in Sec. II A is general and applies to
arbitrary time-dependent situations. We will henceforth
consider steady states, i.e. where the one-body distribu-
tions carry no time dependence. This still includes cases
with flow, J,Jω 6= 0, as long as the currents are time-
independent and divergence-free, such that ρ̇ = 0 follows
from (15). We split the value of the free power (37) into
a contribution from internal forces, It, and an external
contribution, Xt, according to

R0
t = −It/2−Xt/2. (38)
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Here the external part of the free power is determined
by (23) at the physical dynamics. On the many-body
level, this is given by

Xt =

∫
drNdωN

∑

i

(f exti · v̂i + fω,exti · v̂ω
i )Φ(rN ,ωN , t),

(39)

where f exti = −(∇ivexti ) + Xi + γsω is the external force

and fω,exti = −(∇ω
i v

ext
i )+Xω

i is the external torque. The
internal part in (38) is given by

It =

∫
drNdωN

∑

i

{[
−∇iu(rN ,ωN )− kBT∇i ln Φ

]
·v̂i

+
[
−∇ω

i u(rN ,ωN )− kBT∇ω
i ln Φ

]
·v̂ω
i

}
Φ, (40)

where the arguments of Φ(rN ,ωN , t) have been left away
for clarity. Here the operators ∇i and ∇ω

i only act inside
of the brackets. Integration by parts and rearranging
gives

It =

∫
drNdωN

[
u(rN ,ωN ) + kBT ln Φ(rN ,ωN , t)

]

×
∑

i

(
∇i · v̂i +∇ω

i · v̂ω
i

)
Φ(rN ,ωN , t). (41)

Using the Smoluchowski equation (1) in order to replace
the sum allows to obtain

It = −
∫
drNdωN

[
u(rN ,ωN ) + kBT ln Φ(rN ,ωN , t)

]

× ∂

∂t
Φ(rN ,ωN , t). (42)

In steady state the partial time derivative of Φ vanishes
and hence we can conclude that

It = 0. (43)

Using the splitting (38) the free power in steady state is
thus trivially related to the external contribution,

R0
t = −Xt/2. (44)

We next seek to exploit the availability of the two split-
tings of Rt, given by (36) and (38), in steady state. We
start by rewriting (28) as

P id
t =

1

2

∫
drdω

(
J · γJ

ρ
+ Jω · γ

ωJω

ρ

)
. (45)

Inserting the force balance equations (32) and (33) and
rearranging yields

P id
t =

1

2

∫
drdω

[
J ·
(
γsω −∇vext + X− kBT∇ ln ρ

)

+ Jω ·
(
−∇ωvext + Xω − kBT∇ω ln ρ

)]

− 1

2

∫
drdω

(
J · δW

exc
t

δJ
+ Jω · δW

exc
t

δJω

)
. (46)

Integration by parts of the terms J · kBT∇ ln ρ and
Jω · kBT∇ω ln ρ and using the continuity equation (15),
gives the time derivative of the density. As ρ̇ = 0 in
steady state, the first integral in (46) reduces to the ex-
ternal power Xt, cf. (23). The second integral in (46)
is determined by the superadiabatic contribution P exc

t ,
as (34) reduces to W exc

t = P exc
t in steady state, because

then Ḟexc = 0. Thus the free power in steady state is
given by inserting (46) into (36), which yields upon ob-

serving that Ḟid = 0 the result

R0
t =P exc

t − Xt

2
− 1

2

∫
drdω

(
J · δP

exc
t

δJ
+ Jω · δP

exc
t

δJω

)
.

(47)

Comparing to (38) yields

It = −2P exc
t +

∫
drdω

(
J · δP

exc
t

δJ
+ Jω · δP

exc
t

δJω

)
.

(48)

Using (43) the value of the superadiabatic functional in
steady state is determined by the superadiabatic force,
δP exc

t /δJ(r,ω, t), and by the superadiabatic torque,
δP exc

t /δJω(r,ω, t), via

P exc
t =

1

2

∫
drdω

(
J · δP

exc
t

δJ
+ Jω · δP

exc
t

δJω

)
, (49)

where all quantities are evaluates at the physical dynam-
ics.

C. Excess dissipation functional

We next assume a model form for the excess dissipation
functional which is instantaneous in time (i.e. Markovian)
and given by

P exc
t =

γ

2

∫
d1d2 ρ(1)ρ(2)

(
J(1)

ρ(1)
− J(2)

ρ(2)

)2

M(1, 2),

(50)

where the roman numerals refer to one position and one
orientation, i.e. 1 ≡ r,ω and 2 ≡ r′,ω′, and M(1, 2) is
a convolution kernel, which depends on the differences
r− r′ and ω − ω′.

For a bulk steady state the number density becomes
a constant, ρ(r,ω, t) = ρb, and the current reduces
to J(r,ω, t) = Jbω, where Jb = const. Furthermore

Jω(r,ω, t) = 0 and Ḟ = 0, due to the steady state con-
dition. The power functional, (36), then reduces to

Rt = P id
t − γs

∫
d1J(1) · ω + P exc

t (51)

=
γ

2

∫
d1

J(1)2

ρ(1)
− γs

∫
d1J(1) · ω (52)

+
γ

2

∫
d1d2 ρ(1)ρ(2)

(
J(1)

ρ(1)
− J(2)

ρ(2)

)2

M(1, 2)
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which can be simplified to

Rt(Jb)

4πV
=
γJ2

b

2ρb
+
γM0

2
J2
b − γsJb, (53)

where

M0 =

∫
d2(ω − ω′)2M(1, 2) (54)

is a density-dependent parameter, which is independent
of Jb. In (53) Jb acts as a variational parameter. In order
to apply the fundamental variational principle (20), we
thus minimize (53) with respect to Jb,

∂Rt
∂Jb

= γ
Jb
ρb

+ γM0Jb − γs = 0. (55)

As a result we obtain the relationship Jb−sρb = −M0Jρb,
from which the bulk current can be obtained as

Jb =
sρb

1 +M0ρb
. (56)

Rearranging yields M0 = (sρb − Jb)/ρbJb. Inserting this
result in (53) leads to

R0
t

4πV
= −γs

2
Jb. (57)

where R0
t denotes (as before) the value of the power func-

tional at the minimum.
The ansatz for the currents, J = Jbω, Jω = 0, al-

lows the calculation of the external power Xt, and the
internal power It. The external power (23) reduces to
Xt = γs

∫
d1J(1) · ω, in the absence of further external

forces (besides swimming) and torques. As ω is a unit
vector one obtains

Xt

4πV
= γsJb. (58)

Hence from comparing (57) and (58) we explicitly verify
that R0

t = −Xt/2 holds, i.e. the present approximation
for the excess dissipation functional respects the sum rule
(44).

Evaluating the internal power (48) yields

It
4πV

= −γM0J
2
b + γM0J

2
b = 0, (59)

and therefore the exact sum rule (43), It = 0, is also
satisfied within the current approximation.

By inserting (56) in (57) we obtain

R0
t

4πV
= − γs2ρb

2(1 +M0ρb)
. (60)

It remains to specify the kernel, M(1, 2), in order to
arrive at a closed theory. We assume that the kernel
M(1, 2) and hence its moment M0, (54), increase with
density. We choose the simple functional form [179]

M0 =
1

ρ0 − ρb
+
c0ρ

m
b

ρm+1
0

, (61)

where m is a positive integer and ρ0, and c0 are constants.
For ρb → ρ0 jamming occurs (such that the bulk density
is restricted to the interval 0 ≤ ρb ≤ ρ0) and hence M0 →
∞. Insertion into Eq. (56) yields

Jb
sρb

=
1− x

1 + c0xm+1(1− x)
, (62)

where x = ρb/ρ0 is a scaled density.
Within the approximation (50) the free power per vol-

ume becomes

R0
t

4πV
=
γs2ρb

2

x− 1

1 + c0xm+1(1− x)
, (63)

which yields the free power per particle via division by
ρb = N/V as

R0
t

4πN
=
γs2

2

x− 1

1 + c0xm+1(1− x)
. (64)

We will show below that this simple functional form
can provide a reliable account of the Brownian dynamics
simulation data.

III. BROWNIAN DYNAMICS SIMULATIONS

The simulated system consists of N = 5000 spheri-
cal Brownian particles in two dimensions. The dynam-
ics of the particles are represented by the over-damped
Langevin equations

ṙi(t) = sωi(t) + γ−1f inti (rN ) + ξi(t), (65)

ϕ̇i(t) = ηi, (66)

where, as before, i = 1 . . . N labels the particles. The self
propulsion of each particle is along its unit orientation
vector ωi(t) = (sinϕi(t), cosϕi(t)) with the (free) swim
speed s. The angle ϕi(t) then describes the orientation
of particle i at time t. The stochastic vector ξi and the
stochastic scalar ηi are Gaussian distributed with zero
mean and auto-correlations

〈ξi(t)ξj(t′)〉 = 2Dtrans1δijδ(t− t′), (67)

〈ηi(t)ηj(t′)〉 = 2Drotδijδ(t− t′), (68)

where Dtrans = kBT/γ and Drot = kBT/γ
ω are the

translational and the rotational diffusion coefficient, re-
spectively, and 1 is the 2 × 2 unit matrix. The inter-
particle interaction force f inti (rN ) is generated from the
potential u(rN ) by f inti (rN ) = −∇iu(rN ). Here we re-
strict ourselves to spherically symmetric pair interactions
u(rN ) =

∑
i,j,i<j φ(rij), leading to forces of the form

f inti (rN ) = −∇i
∑

j,j 6=i
φ(rij), (69)

where rij = |ri(t)− rj(t)|. We use the Weeks-Chandler-
Anderson (WCA) [95, 184] pair potential, which is a

81



8

Lennard-Jones potential that is cut at its minimum and
shifted so it remains continuous:

φ(rij) = 4ε
[
(σ/rij)

12 − (σ/rij)
6
]

+ ε, for rij < 21/6σ.

(70)

Then (69) creates a purely repulsive interparticle inter-
action force and avoids artifacts at the cut-off.

A common measure for the activity of the particles is
the Peclet number, which is defined as (see e.g. [179])

Pe =
3s

Drotσ
. (71)

This dimensionless number relates the two quantities
that characterize the activity of the particles, namely s
and Drot.

The descretized dynamics proceed according to the Eu-
ler algorithm

ri(t+ ∆t) = ri(t) + ṙi(t)∆t, (72)

ωi(t+ ∆t) = ωi(t) + ω̇i(t)∆t, (73)

where ṙi(t) and ω̇i(t) are given by Eqs. (65) and (66),
respectively. Additionally the orientation vector ωi(t)
is normalized to unit length at each time step to avoid
effects on the propulsion speed.

We carry out Brownian dynamics (BD) simulations in
2D with a fixed time step of ∆t/τ0 = 10−5, with the nat-
ural time unit τ0 = σ2γ/ε. The fundamental units of the
system are σ, γ and ε, where σ represents the size of the
repulsive (LJ) core and ε its energy scale. All simulations
are performed at fixed ratio between the rotational dif-
fusion constant and the translation diffusion constant,
Drot/Dtrans = 3σ−2, and a fixed propulsion speed of
sτ0/σ = 24. The particles are placed in a square, periodic
box with side length L = (N/ρb)

1/2, where ρb = N/V ,
with V being the (two-dimensional) volume of the simu-
lation box. We investigate the properties of the system
as a function of the bulk density ρb, and of the temper-
ature T . We carried out simulations with bulk densities
in the range of ρbσ

2 = 0.1 to 1.2 in steps of 0.1. In ad-
dition we performed simulations with ρbσ

2 = 0.01 and
ρbσ

2 = 0.05. For each density we consider the tempera-
tures of kBT/ε = 0.1, 0.2, 0.3, 0.4, 0.6. We let the system
reach the steady state for nequi = 107 integration steps,
followed by nsample = 108 steps in which the sampled
data is collected.

With these choices of parameters the Peclet num-
ber (71) can be re-expressed as

Pe =
sγσ

kBT
. (74)

All results presented below are averages over time and
over particles and are calculated according to 〈Ai(j)〉 =
1
N

∑N
i=1

1
nsample

∑nsample

j=1 Ai(j), where Ai(j) stands for an

arbitrary (sampled) quantity for particle i at each dis-
crete time point j. Hence this corresponds to the config-
uration space average.
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FIG. 1: Scaled external power Xt as a function of density.
Temperatures are shown from kBT/ε = 0 to 1 as indicated by
colors and line styles.

An important example is the external power, given by

Xt =

〈∑

i

f exti (t) · vi(t)
〉
, (75)

where the external force is f exti = γsωi and the velocity
vi is the velocity of the particles.

IV. RESULTS

Figure 1 shows the external power Xt as a function
of density for different temperatures. For temperatures
kBT/ε > 0.4 the external power is linear in ρb, where the
value for ρb → 0 is purely determined by the external
forces, i.e. collision between the particles occur very un-
likely. When decreasing the temperature, kBT/ε ≤ 0.4,
the external power develops a dip, i.e., a deviation from
the linear shape. This region, where the external power
is smaller than expected from a linear dependence on the
bulk density, covers the range of 0.4 . ρbσ

2 . 1.2. Hence
for those set of parameters less external power needs to be
provided for the dynamics of the system. As Rt = −Xt/2
in steady state this dip will develop also in the free power.

Figure 2(a) shows simulation results for the scaled free
power per particle obtained from the external power. The
free power is the central object in PFT and occurs in
the theory as a consequence of general considerations for
nonequilibrium systems. It is thus quite surprising that
for the present case of active Brownian particles the free
power is directly related to the average propulsion speed
per particle v(ρb), which appears as an important quan-
tity in existing hydrodynamic theories [9, 94–96]. The
average self-propulsion speed is defined as the part of
velocity of a particle in the direction of its orientation,
averaged over the whole system [9, 82, 93, 95],

v =
1

N

〈∑

i

vi(t) · ωi(t)
〉
, (76)
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FIG. 2: (a) Scaled free power R0
t/(Ns

2γ) obtained from BD
simulations via sampling Xt as a function of density. Temper-
atures are shown from kBT/ε = 0 to 1 as indicated by colors
and line styles. (b) Theoretical results corresponding to (a),
as given by (64). The jamming density is fixed to ρ0σ

2 = 1.3,
m = 5 and values of c0 are 0 − 100 as indicated.

where vi(t) is velocity of the postion of the par-
ticles, which we implement as a central deriva-
tive of the postion of the particles, vi(t) =
(ri(t+ ∆t)− ri(t−∆t)) /(2∆t) [164, 179]. Therefore in-
terparticle interactions change the velocity of the parti-
cles depending of the value of the bulk density. Thus
v is density-dependent, v(ρb). In the low-density limit,
ρb → 0, interparticle forces play no role. Hence v(ρb →
0) = 〈∑i(sωi(t) + ξi(t)) · ωi(t)〉 /N = s.

Multiplying both sides of (76) by γs yields

γsv(ρb) =
1

N

〈∑

i

vi(t) · (γsωi(t))
〉
. (77)

The term between the angle brackets in (77) is Xt. Thus
v(ρb) is proportional to Xt as

Xt = Nγsv(ρb). (78)

We have studied systematically the dependence of the
external, and hence the free, power on temperature. Note
that according to (74) this is analogous to varying Pe [95].

Similar to the external power, the free power decrease lin-
early with increasing density for kBT/ε > 0.4, because
with increasing density the dissipation per particle de-
creases due to collisions. This leads to a linear decrease
in the free power until the dynamics arrest and jamming
occurs at ρ0 (see also Sec. II C).

For temperatures kBT/ε ≤ 0.4 the decrease of R0
t is

nonlinear. While hardly any effect for low densities is
observed, a significant dip develops for ρbσ

2 & 0.4. The
physical reason for this dip is an additional dissipation
process, which decreases the free power per particle even
more than the excluded volume of the surrounding par-
ticles. We interpret this as a local clustering of the parti-
cles, as clustered particles dissipate less power to the sol-
vent, compared to free particles. Whether the presence of
a dip is related to the onset of phase separation is an open
question [179]. A detailed discussion of motility induced
phase separation is beyond the scope of this work. How-
ever, a body of work on this topic exists [80–102, 179].
Comparing phase diagrams of different authors, see e.g.
Fig. 6 in Ref. [94], and Ref. [96], shows that the onset of
phase separation occurs in the same range as the dip in
R0
t develops.
In Sec. II we defined an excess dissipation functional

(50) and we showed that with a simple approximation
an analytic expression for R0

t can be obtained, cf. (64).
Numerical results for the scaled free power per particle,
obtained using this expression, are shown in Fig. 2(b)
as a function of ρb for different values of the parame-
ter c0. In order to fit the simulation results, we fixed
the exponent in (64) to m = 5, the jamming density to
ρ0σ

2 = 1.3, and increased c0 from zero to 100. This cor-
responds to decreasing the temperature in simulations,
as a comparison with Fig. 2(a) reveals. Investigating in
more detail the exact functional dependence of c0 on tem-
perature remains a task for future studies. This could
involve a microscopic derivation of the moment, M0, of
the correlation kernel, M(1, 2). Nevertheless, we expect
c0 to decrease to zero with increasing temperature, be-
cause thermal motion tends to break up clusters and
thus works against phase separation [179]. Comparing
Fig. 2(a) and Fig 2(b) it is evident that our approximate
form for the excess dissipation functional, (50), can repro-
duce the simulation results quite well, although the ap-
proximation for P exc

t describes single-phase fluids, while
the simulation results show MIPS. Hence PFT poten-
tially serves as a theoretical tool to describe MIPS. This
is an open problem for future work.

V. CONCLUSIONS

In this work we have investigated the steady state
properties of active Brownian particles by applying PFT
[157], suitably generalized to deal with orientational de-
grees of freedom. We have obtained the value of the
power functional, via sampling of the external power, di-
rectly from active Brownian dynamics simulations. A
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possibility to sample the free power directly is proposed
elsewhere [179]. We leave a detailed formulation of the
free power sampling for future work.

For the system under consideration the free power is
straightforwardly related to the average forward swim
speed of the particles. We have shown that the free
power, and hence the average forward swim speed, ex-
hibit a departure from linearity (‘dip’) when dissipative
clusters form in the system. However, the focus here is
on clarifying details of the power functional approach for
active particles and simulation method, rather than the
analysis of cluster formation [119–121] and nonequilib-
rium steady states [82, 93, 95]. Using the constrained
search method, we generate from the many-body start-
ing point of PFT a one-body variational theory, for which
the trial fields are the density, translational current and
rotational current, respectively. A simple approxima-
tion to the dissipation functional generates an analytic
variational theory. From the data shown in Fig. 2, one
can conclude that the behavior of the full many-body
system can be captured by the one-body theory. This
one-body theory enables an intuitive physical interpreta-
tion of the simulation data, although some model input,

most notable c0(T ), still remained to be elucidated on
the microscopic level. A possible way to achieve this is
via studying dynamical two-body (van Hove) correlation
functions, either via the nonequilibrium Ornstein-Zernike
route [173, 174], or via the dynamical test particle limit
[185, 187] for which PFT provides an in principle exact
implementation [186]. Note that even within the dynam-
ical density functional approximation, the dynamical test
particle limit constitutes a valuable computational tool
[188, 189]. Furthermore the occurrence of phase separa-
tion is not yet included in the approximation presented
here, and requires further work [190]. Obtaining micro-
scopically based approximations to the dissipation func-
tional and applying those to relevant situations, as e.g.
the influence of gravity [191], are useful future steps. Fur-
thermore we showed that the internal power vanishes in
steady state. The free power is thus purely determined
by the external power, i.e., the self-propulsion of the par-
ticles.
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[167] T. Glanz and H. Löwen, J. Phys.: Cond. Matt. 24,
464114 (2012).

[168] T. Geigenfeind, D. de las Heras, and M. Schmidt, to be
published (2018).

[169] J. Chakrabarti, J. Dzubiella, and H. Löwen, Europhys.
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Interfaces in phase-separated active Brownian particles

Philip Krinninger,1 Sophie Hermann,1 Daniel de las Heras,1 and Matthias Schmidt1

1Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

We investigate motility-induced phase separation that occurs in active Brownian particles, mod-
elled as repulsive spheres that are driven out of equilibrium by a swimming force of constant magni-
tude and freely diffusing orientation. We compare Brownian dynamics computer simulation data for
the structure of the free interface between the two bulk phases against the predictions of an analytical
interfacial model. The physical effects that occur both at the interface and in bulk are rationalized,
and results for the inhomogeneous density, current and polarization profile are presented.

The abstract of the future publication on interfaces in phase-separated active Brownian particles

is reproduced in the following. The simulation data that are part of this paper is described and

presented in Sec. 4.
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