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Abstract: We study conditions for stability and near optimal behavior of the closed loop
generated by Model Predictive Control for tracking Gaussian probability density functions
associated with linear stochastic processes. More precisely, we analyze whether the corresponding
optimal control problems are strictly dissipative. This is the key property required to infer
statements about stability and performance of the closed loop system when tracking so-called
unreachable setpoints, in which case a nonnegative cost is induced at the desired state. For
verifying strict dissipativity, the choice of the so-called storage function is crucial. We focus on
linear ones due to their close connection to the Lagrange function. The Ornstein–Uhlenbeck
process serves as a prototype for our analysis, in which we show the limits of linear storage
functions and present nonlinear alternatives, thus providing structural insight into dissipativity
in case of bilinear system dynamics.
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1. INTRODUCTION

Model predictive control (MPC) has developed into a stan-
dard method for controlling linear and nonlinear systems
if either constraints and/or optimal behavior of the closed
loop are important. In this paper we consider MPC ap-
plied to the Fokker-Planck equation, a PDE that describes
the evolution of probability density functions (PDFs) of
stochastic control systems. Motivated by promising nu-
merical results by Annunziato and Borz̀ı (2013), a first
comprehensive mathematical analysis of this approach was
given in Fleig and Grüne (2018). However, these results
were limited to so-called stabilizing MPC in which the
cost function penalizes the distance of the state to a
desired equilibrium and of the control to the corresponding
equilibrium control value.

In this paper we consider a more general setting, in which
the effort of the control rather than its distance to the –
in general difficult to compute – equilibrium control value
is penalized. As a result, the closed loop system should
converge to an equilibrium that gives the best tradeoff
between minimizing the tracking error and the control
effort. This is a particular instance of an economic MPC
scheme. For this class of MPC problems, the results in
Angeli et al. (2012); Grüne and Stieler (2014); Grüne
(2016) show that strict dissipativity of the underlying
optimal control problem is the key property for stability
and near optimal performance of the closed loop, both for
MPC schemes with and without terminal conditions.
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For this reason, in this paper we investigate strict dissi-
pativity of the Fokker-Planck optimal control problem. As
in Fleig and Grüne (2018), in order to make the analysis
feasible, we restrict ourselves to the Ornstein-Uhlenbeck
process as prototype dynamics of the underlying stochas-
tic control system and to Gaussian PDFs. This way the
dynamics of the Fokker-Planck PDE can be represented
by a bilinear finite dimensional control system. However,
in order to keep the PDE aspect of the problem and make
the setting extendable to more complicated dynamics, we
keep the L2-norm in the cost function, as it is common in
PDE-constrained optimization. In order to further reduce
the technicalities in our presentation, the discrete time
model needed for the MPC analysis is chosen as a forward
Euler approximation. For this setting, motivated by Diehl
et al. (2011); Damm et al. (2014), we first explore the op-
portunities and limitations of obtaining strict dissipativity
with a linear storage function, before proposing a nonlinear
storage function, which also works for parameter values in
which the linear storage function approach fails.

2. PROBLEM SETTING

We consider controlled linear stochastic processes

dXt = AXtdt+Bu(t)dt+DdWt, t ∈ (0, TE), (1)

with an (almost surely) initial condition X0 and where
A ∈ Rd×d, B ∈ Rd×l, D ∈ Rd×m are given matrices,
Wt ∈ Rm is an m-dimensional Wiener process, and the
control u(t) is defined by

u(t) := −K(t)Xt + c(t) (2)



with functions K : R≥0 → Rl×d and c : R≥0 → Rl. Since
the control u(t) exhibits this special structure, whenever
beneficial, we identify with u the pair (K, c). Plugging (2)
into (1) leads to

dXt = (A−BK(t))Xtdt+Bc(t)dt+DdWt, t ∈ (0, TE),
(3)

with an initial condition X0 ∈ Rd that is assumed to
be normally distributed, i.e., X0 ∼ N (µ̊, Σ̊) with mean

µ̊ ∈ Rd and covariance matrix Σ̊ ∈ Rd×d, which is sym-
metric and positive definite.

The evolution of the probability density function (PDF) ρ
associated with the stochastic differential equation (SDE)
(1) or (3) can be described by the Fokker–Planck equation:

∂tρ−
d∑

i,j=1

∂2
ij (αijρ) +

d∑
i=1

∂i (bi(x, t;u)ρ) = 0 in Q, (4)

ρ(·, 0) = ρ0 in Ω, (5)

where Q := Ω× (0, TE), Ω := Rd, and

αij :=
∑

k
DikDjk/2,

b(Xt, t;u) := (A−BK(t))Xt +Bc(t).

For more details on the connection between the Fokker–
Planck equation and SDEs we refer to Risken (1989);
Primak et al. (2004); Protter (2005).

The aim of the control is to steer the PDF ρ to a desired
Gaussian PDF

ρ̄(x) := |2πΣ̄|−1/2 exp
(
−(x− µ̄)T Σ̄−1(x− µ̄)/2

)
,

starting from an initial (Gaussian) PDF ρ0. In continuous
time, this can be formulated as the following optimal
control problem (OCP):

Jc∞(ρ0, u) :=

∫ ∞
0

`(ρ(x, t), u(t)) dt→ min
(u,ρ)

!

subject to (4)-(5),

(6)

for a cost function `, which typically includes the L2-
distance from the desired PDF. We use Model Predictive
Control (MPC), which is introduced in the next section,
to approximate the solution of (6).

In the above setting, Xt ∈ Rd is normally distributed for
all t ≥ 0 and the corresponding PDF ρ reads

ρ(x, t) =

|2πΣ(t)|−1/2 exp
(
−(x− µ(t))TΣ(t)−1(x− µ(t))/2

)
,

where for matrices A ∈ Rd×d, throughout the paper, we
write |A| := det(A). Hence, for modeling the evolution of
the PDF associated with (3), we can use the following ODE
system instead of the Fokker–Planck equation (4)-(5). It
describes the evolution of the mean µ and the covariance
matrix Σ, respectively:

µ̇(t) = (A−BK(t))µ(t) +Bc(t),

Σ̇(t) = (A−BK(t))Σ(t) + Σ(t)(A−BK(t))T +DDT ,

µ(0) = µ̊, Σ(0) = Σ̊.
(7)

The particular example we will use for the analysis in this
paper is the Ornstein–Uhlenbeck process.

Example 1. The controlled Ornstein–Uhlenbeck process is
defined by

dXt = − (θ +K(t))Xtdt+ c(t)dt+ ςdWt

with initial condition X0, parameters θ, ς > 0 as well as
control constraints K(t) > −θ, i.e.,

0 < θ +K(t) =: Kθ(t).

The resulting ODE system is given by

µ̇(t) = −Kθ(t)µ(t) + c(t), µ(0) = µ̊

Σ̇(t) = −2Kθ(t)Σ(t) + ς2, Σ(0) = Σ̊.
(8)

3. MODEL PREDICTIVE CONTROL

In this section, we introduce the concept of (nonlinear)
MPC. Since in MPC the control input is obtained by
iteratively solving OCPs at discrete points in time tk,
k ∈ N0, see below, it is convenient to consider the dynamics
in discrete time. Thus, suppose we have a process whose
state z(k) is measured at discrete times tk, k ∈ N0.
Furthermore, suppose we can control it on the time interval
[tk, tk+1) via a control signal u(k). Then we can consider
nonlinear discrete time control systems

z(k + 1) = f(z(k), u(k)), z(0) = z0, (9)

with state z(k) ∈ X ⊂ Z and control u(k) ∈ U ⊂ U , where
Z and U are metric spaces. State and control constraint
sets are given by X and U, respectively. For brevity and
whenever clear from the context, we abbreviate

z+ = f(z, u).

The continuous time models from Section 2 can be con-
sidered in the discrete time setting by sampling with a
(constant) sampling time T > 0, i.e., tk = t0 + kT , or by
replacing it by a numerical discretization. Given an initial
state z0 and a control sequence (u(k))k∈N0

, the solution
trajectory is denoted by zu(·; z0). Note that the control
u(k) need not be constant on [tk, tk+1).

Instead of solving infinite horizon OCPs such as (6) – a
computationally hard task in general – the idea behind
MPC is to iteratively solve OCPs on a shorter time
horizon,

JN (z0, u) :=
∑N−1

k=0
`(zu(k; z0), u(k))→ min

u∈UN
!

s.t. zu(k + 1; z0) = f(zu(k; z0), u(k)), zu(0; z0) = z0,
(OCPN)

and use the resulting (open loop) optimal control values
to construct a feedback law F : X→ U for the closed loop
system

zF (k + 1) = f(zF (k),F(zF (k))). (10)

By truncating the infinite horizon, two important ques-
tions regarding the closed loop system (10) arise: one,
whether asymptotic stability is preserved and two, how
the closed loop system performs compared to the infinite
horizon optimal solutions.

The answers to these two questions and how to obtain
them heavily depends on the stage cost `. As a key
distinguishing feature, given some equilibrium (ze, ue) of
(9), i.e., f(ze, ue) = ze, the stage cost ` is either positive
definite with respect to (ze, ue) or not. In the former case,
we speak of stabilizing MPC. A typical example would be

`(z(k), u(k)) =
1

2
‖z(k)− ze‖2 +

γ

2
‖u(k)− ue‖2

for some norm ‖·‖ and some γ > 0. However, computing
ue for a desired ze may be cumbersome and from a
performance point of view it may be more desirable to



penalize the control effort, anyway. This leads to the cost
function

`(z(k), u(k)) =
1

2
‖z(k)− ze‖2 +

γ

2
‖u(k)‖2 (11)

for some norms ‖·‖. This so-called unreachable setpoint
problem is a particular type of en economic MPC problem.

The conceptual difference between stabilizing and eco-
nomic MPC is that we do not stabilize a prescribed equi-
librium (ze, ue) by specifying a stage cost that is positive
definite with respect to that equilibrium. Instead, we set
a more general stage cost like (11) and let the interplay
of these stage cost and dynamics determine optimal (long-
term) behavior. Particularly, for (11) the optimal equi-

librium forms a tradeoff between minimizing ‖z(k)− ze‖2

and ‖u(k)‖2. Thus, equilibria stay equally important, but
the definition of the decisive optimal equilibrium changes.

Definition 2. An equilibrium (ze, ue) ∈ X × U is called
optimal :⇔ ∀(z, u) ∈ X × U with f(z, u) = z : `(ze, ue) ≤
`(z, u).

There are many results ensuring the existence of optimal
equilibria, e.g., (Grüne and Pannek, 2017, Lemma 8.4).

The next question is under which circumstances – if at all
– an optimal equilibrium is asymptotically stable for the
MPC closed loop. In the last few years, cf. Angeli et al.
(2012); Grüne and Stieler (2014), it has become clear that
one particular property, which involves the dynamics f and
the stage cost `, can be used to infer results concerning
stability and performance of the MPC closed loop: strict
dissipativity. Before introducing it formally, we recall that
a continuous, strictly increasing and unbounded function
α : R≥0 → R≥0 with α(0) = 0 is a K∞ function. Moreover,
|z1|z2 := dZ(z1, z2) denotes the distance from z1 to z2.

Definition 3. (a) The optimal control problem (OCPN)
with stage cost ` is called strictly dissipative at an
equilibrium (ze, ue) ∈ X× U if there exist a function
λ : X→ R that is bounded from below and a function
% ∈ K∞ such that for all (z, u) ∈ X× U :

`(z, u)−`(ze, ue)+λ(z)−λ(f(z, u)) ≥ %(|z|ze). (12)

(b) If % ≡ 0 then the OCP in (a) is called dissipative.
(c) The function λ in (a) is called storage function.
(d) The left-hand-side of (12), i.e.,

˜̀(z, u) := `(z, u)− `(ze, ue) +λ(z)−λ(f(z, u)), (13)

is called modified cost or rotated cost.

Note that λ(ze) = 0 can be assumed without loss of
generality whenever needed, as (12) is invariant to adding
constants to λ.

If an OCP is strictly dissipative with a bounded stor-
age function λ, then one can infer the so-called turnpike
property, cf. (Grüne and Pannek, 2017, Proposition 8.15),
which states that the optimal trajectories stay close to
an optimal equilibrium “most of the time”. This is a
classical property in optimal control that originated in
mathematical economy, cf. Dorfman et al. (1987) and that
recently attracted significant attention in the PDE control
community, cf., e.g., Trélat et al. (2018). The turnpike
property is an important building block in analyzing eco-
nomic MPC schemes and is – under suitable controlla-
bility assumptions – equivalent to strict dissipativity, cf.

Grüne and Müller (2016). Yet, strict dissipativity allows
for stronger properties in the analysis of MPC schemes,
see Grüne (2016), and is more easily checked analytically.
Assuming strict dissipativity, one can prove asymptotic
stability or practical asymptotic stability of the closed loop
and various performance estimates, for details see Angeli
et al. (2012) and Chapter 8 of Grüne and Pannek (2017).

4. SIMPLIFYING THE PROBLEM SETTING

Having introduced NMPC, we can return to the optimal
control problem that consists of steering a (Gaussian)
PDF ρ associated to a stochastic process to a desired
(Gaussian) PDF ρ̄ while penalizing the control effort. The
straightforward translation of the cost (11) to the PDF
setting is

`(ρ, u) =
1

2
‖ρ− ρ̄‖2 +

γ

2
‖u‖2 ,

where now we need to specify the norms ‖·‖. Since we
can identify u with the pair (K, c), one possible choice
of norm for the control is to use the Frobenius norm for
K and the Euclidian norm for c. With the Fokker–Planck
equation and thus PDE-constrained optimization in mind,
penalizing the state in the L2 norm is a standard choice.
In total, this leads to

`L2(ρ, u) :=
1

2
‖ρ− ρ̄‖2L2(Rd) +

γ

2
‖K‖2F +

γ

2
‖c‖22 .

However, we avoid the Fokker–Planck PDE and use the
ODE system (7) instead by expressing ‖ρ− ρ̄‖2L2(Rd) /2 in

terms of µ and Σ, which leads to

`µL2(µ,Σ,K, c) := 2−d−1π−
d
2

[
|Σ|− 1

2 + |Σ̄|− 1
2

−2
∣∣(Σ + Σ̄)/2

∣∣− 1
2 exp

(
−1

2
(µ− µ̄)

T
(Σ + Σ̄)−1 (µ− µ̄)

)]
+
γ

2
‖K‖2F +

γ

2
‖c‖22 .

Having fixed the stage cost `, the next question is about
the dynamics at hand. As mentioned in Section 2, the
prototype for the analysis will be the ODE system (8),
which is associated to the Ornstein–Uhlenbeck process.
Analogous to Definition 3, strict dissipativity can be
defined for continuous time systems such as (8), which is a
bilinear system. However, we want to keep the connection
to the discrete setting from Section 3. To this end, we note
that (8) can be solved analytically for piecewise constant
controls. However, this results in a nonlinear system. In
order to simplify the presentation in this paper, we decided
to preserve the bilinear structure, which is possible by
approximating (8) using the forward Euler scheme:

µ+ = µ(k) + T (−Kθ(k)µ(k) + c(k)) , µ(0) = µ̊, (14a)

Σ+ = Σ(k) + T
(
−2Kθ(k)Σ(k) + ς2

)
, Σ(0) = Σ̊. (14b)

Remark 4. Note that Σ > 0 automatically holds for (8)
and (7). However, when switching to the Euler approxi-
mation (14), we have to impose Σ(k) > 0 as a constraint
for all k ∈ N0. Together with Kθ(k) > 0, cf. Example 1,
this yields

0 < Kθ(k) < (Σ(k) + Tς2)/(2TΣ(k)). (15)

The optimal control problem then consists of minimizing



JµN ((µ̊, Σ̊), (K, c)) :=

N−1∑
k=0

`µL2((µ(k),Σ(k)), (K(k), c(k)))

subject to (14), (15).
(16)

From here, the goal is to find a suitable storage function λ
such that the inequality (12) in Definition 3 holds. In
general, finding such a function (if it exists) is like looking
for a needle in a haystack. However, there is one particular
candidate that stands out: the linear storage function

λl(z) := λ̄T z,

where λ̄ is given by the Lagrange multiplier associated to
the problem of finding the optimal equilibrium (ze, ue):

min
(z,u)

`(z, u) s.t. z = f(z, u). (17)

The reason behind this is the close connection between
the resulting modified cost ˜̀ and the Lagrange function
L(z, u, λ) associated to (17):

˜̀(z, u) = `(z, u)− `(ze, ue) + λl(z)− λl(f(z, u))

= `(z, u)− `(ze, ue) + λ̄T (z − f(z, u))

= L(z, u, λ̄)− `(ze, ue).
(18)

This particular form of strict dissipativity, also known
as strict duality in optimization theory, was used in an
MPC context in Diehl et al. (2011) and it is known that
λl(z) is a storage function for OCPs with linear discrete
time dynamics, a convex constraint set and strictly convex
stage cost `; for a proof see, e.g., Damm et al. (2014).
However, from (18) it is obvious that convexity of ` does

not necessarily carry over to ˜̀ for nonlinear f(z, u). In
the following, we investigate to what extent the ansatz
of a linear storage function can be extended to bilinear
systems. To this end, in the rest of this section, we establish
auxiliary results that help simplify the problem. In a first
step, we characterize equilibria.

Lemma 5. Let K̄θ := θ + K̄. The set of equilibria is
identical for (8) and (14) and is given by

E :=
{

(µ̄, Σ̄, K̄, c̄) | µ̄ = c̄/K̄θ, Σ̄ = ς2/(2K̄θ)
}
. (19)

The proof is obvious; we merely note that the additional
constraint (15) holds for Σ̄ = ς2/(2K̄θ).

Without loss of generality, we assume that (µ̄, Σ̄) = (0, 1).
Otherwise one can introduce a new random variable Yt :=
Σ̄−1/2(Xt − µ̄) and get a new ODE system similar to (8).
With this assumption, due to (19), we have c̄ = 0, which
allows further simplification of the dynamics.

Lemma 6. Assume that (µ̄, Σ̄) = (0, 1). Then the OCP
(16) is strictly dissipative at an equilibrium (0, Σ̄, K̄, 0) if
and only if the OCP

JN (Σ̊,K) :=
∑N−1

k=0
`L2(Σ(k),K(k))→ min!

subject to (14b), (15)
(20)

is strictly dissipative at the equilibrium (Σ̄, K̄), where

`L2(Σ,K) :=
1

4
√
π

[
Σ−

1
2 + 1− 2

√
2(Σ + 1)−

1
2

]
+
γ

2
K2.

Proof. First, if (Σ̄, K̄) is an equilibrium of (14b), then
(0, Σ̄, K̄, 0) is an equilibrium of (14) and vice versa. Sec-
ond, `L2(Σ,K) = `µL2(0,Σ,K, 0).

Assuming strict dissipativity of (20), then

ρ(|Σ|Σ̄) ≤ `L2(Σ,K)− `L2(Σ̄, K̄) + λ(Σ)− λ(Σ+)

≤ `µL2(µ,Σ,K, c)− `L2(Σ̄, K̄) + λ(Σ)− λ(Σ+)

= `µL2(µ,Σ,K, c)− `µL2(0, Σ̄, K̄, 0) + λ̃(µ,Σ)

− λ̃(µ+,Σ+),

where λ̃ is defined by λ̃(z1, z2) := λ(z2). Thus, (16) is

strictly dissipative at (0, Σ̄, K̄, 0) with storage function λ̃.

Conversely, assuming that (16) is strictly dissipative
at an equilibrium (0, Σ̄, K̄, 0), then ρ(|(µ,Σ)|(0,Σ̄)) ≤
`µL2(µ,Σ,K, c)−`µL2(0, Σ̄, K̄, 0)+λ(µ,Σ)−λ(µ+,Σ+) holds
for all admissible (µ,Σ,K, c) and some storage function λ.
In particular, it holds for (µ, c) = (0, 0). Therefore, since
`µL2(0,Σ,K, 0) = `L2(Σ,K),

`L2(Σ,K)− `L2(Σ̄, K̄) + λ(0,Σ)− λ(f(0,Σ,K, 0))

= `L2(Σ,K)− `L2(Σ̄, K̄) + λ(0,Σ)− λ(0,Σ+)

≥ ρ(|(0,Σ)|(0,Σ̄)) = ρ(|Σ|Σ̄),

where f(µ,Σ,K, c) is defined by the equations for µ+ and
Σ+ in (14). 2

Thus, in the following, we only need to examine whether
(20) is strictly dissipative. We conclude this section with
some auxiliary statements about optimal equilibria.

Lemma 7. Let (Σe,Ke) be an optimal equilibrium. Then
Ke ∈ [0, ς2/2− θ] ∧ Σe ∈ [1, ς2/(2θ)], if ς2/2− θ > 0,

Ke ∈ [ς2/2− θ, 0] ∧ Σe ∈ [ς2/(2θ), 1], if ς2/2− θ < 0,

Ke = 0 and Σe = 1, if ς2/2− θ = 0.

Proof. From (19) we know that Σe = ς2/ (2(θ +Ke)),
which is monotonically decreasing in Ke. Moreover,

Σe = 1 ⇔ Ke = ς2/2− θ, (21)

which proves the assertion in the case ς2/2 − θ = 0. We
note that this corresponds to the stabilizing MPC case. 1

For the remaining two cases, we first note that the cost
`L2(Σ,K) is minimal with respect to Σ at Σ = 1 and
increases the further away Σ is from the target value 1:

∂Σ`L2(Σ,K) =
−Σ−

3
2 + 2

√
2(Σ + 1)−

3
2

8
√
π


> 0, if Σ > 1,

= 0, if Σ = 1,

< 0, if Σ < 1.

Let us now assume that ς2/2 − θ > 0. Then Ke ≥ 0
since any K1 < 0 is more expensive than K2 = 0 due

to K2
1 > K2

2 and Σ1 = ς2

2(θ+K1) > Σ2 = ς2

2θ > 1, i.e., Σ1

induces a higher cost than Σ2. Moreover, Ke ≤ ς2/2− θ,
since some K3 > ς2/2 − θ is always more costly than
K4 := ς2/2 − θ due to K2

3 > K2
4 and the corresponding

state Σ3 = ς2/ (2(θ +K3)) 6= 1 induces additional cost
while Σ4 = 1 does not.

The case ς2/2− θ < 0 is analogous. 2

5. VERIFYING STRICT DISSIPATIVITY

In this section, we consider the OCP (20) to which we have
reduced the original problem (16). For the linear storage

1 Therefore, in the following, this case will be of no interest.



function λl(z), the corresponding modified cost ˜̀
L2(Σ,K),

cf. (13), reads

˜̀
L2(Σ,K) =

1

4
√
π

[
Σ−

1
2 + 1− 2

√
2(Σ + 1)−

1
2

]
+
γ

2
K2

− `L2(Σe,Ke) + λ̄
(
−T (−2(θ +K)Σ + ς2)

)
.

Throughout this section, the pair (Σe,Ke) denotes an opti-
mal equilibrium, i.e., a solution of (17) with z = Σ, u = K,
`(z, u) = `L2(Σ,K), and f(Σ,K) = Σ + T

(
−2KθΣ + ς2

)
.

The Lagrange function associated to this problem reads

LL2(Σ,K, λ) :=
1

4
√
π

[
Σ−

1
2 + 1− 2

√
2(Σ + 1)−

1
2

]
+
γ

2
K2

+ λ
(
−T (−2(θ +K)Σ + ς2)

)
.

In this manner, one obtains the Lagrange multiplier λ̄ ∈ R,
which is unique since

∇ (Σ− f(Σ,K)) = 2T

(
Kθ

Σ

)
6= 0

because of Kθ = θ+K > 0 and Σ > 0. Note that, in order
to keep the connection between the Lagrange function L
and the modified cost ˜̀, cf. (18), we have not included
these control and state constraints in LL2(Σ,K, λ). For
optimal equilibria, these constraints are always automat-
ically satisfied, see Lemma 7. A necessary condition for
strict dissipativity at an equilibrium (Σe,Ke) is that this
equilibrium is the unique global minimum of the modified
cost ˜̀(Σ,K). Thus, we will be looking at stationary points

of ˜̀. We keep in mind that in this case, we will have to
check for admissibility.

The gradient and the Hessian of ˜̀
L2(Σ,K) are given by

∇˜̀
L2(Σ,K) =

((
−Σ−3/2 + 2

√
2(Σ + 1)−3/2

)
/(8
√
π)

γK

)

+ 2λ̄T

(
θ +K

Σ

)
(22)

and

∇2 ˜̀
L2(Σ,K) =

 3

16
√
π

(
1

Σ5/2
− 2

√
2

(Σ + 1)5/2

)
2λ̄T

2λ̄T γ

 ,

respectively. Throughout this section, we write

Z := 2λ̄T.

Already at first glance, it is obvious that for any
fixed Z, ˜̀

L2 is not convex for sufficiently large Σ.
Moreover, this occurs independently of Z and γ: from
∇2 ˜̀

L2(Σ,K) it can easily be seen that convexity is lost
for Σ > 22/5/

(
2− 22/5

)
≈ 1.94. In particular, if Σe >

22/5/
(
2− 22/5

)
, strict dissipativity does not hold since the

optimal equilibrium (Σe,Ke) is not a (local) minimum of
˜̀
L2 . 2 This case is included in the following proposition.

Proposition 8. If ς2/2− θ > 0, then (20) is not dissipative
with a linear storage function.

Proof. As Σ → ∞, ˜̀
L2(Σ,K) → sgn(Z(K + θ)) · ∞.

Hence, if sgn(Z(K + θ)) < 0, the values of ` become
arbitrarily small and thus (Σe,Ke) cannot be a global
minimum, contradicting dissipativity. Since θ + K > 0,

2 Thus, a descent direction exists in (Σe,Ke), i.e., ˜̀
L2 can attain

negative values since ˜̀(Σe,Ke) = 0 always holds.

only the sign of Z is of importance. Thus, in the rest of
the proof, we show that Z < 0. From

∂KLL2(Σ,K, λ̄) = ∂K ˜̀
L2(Σ,K) = γK + ZΣ

we deduce that

∂KLL2(Σ,K, λ̄) = 0 ⇔
{

Σ = −γK/Z, Z 6= 0

K = 0, Z = 0
.

Due to ∂KLL2(Σe,Ke, λ̄) = 0, we can exclude Z = 0:
If Z = 0, then Ke = 0 and thus Σe = 1 because of
∂ΣLL2(Σe,Ke, λ̄) = 0, cf. (22). 3 But this contradicts
(21) since ς2/2 − θ > 0, i.e., ς2/ (2θ) > 1. Thus, we
have Σe = −γKe/Z and Ke 6= 0, which, together with
Lemma 7, results in Ke > 0. Then due to γ > 0 and
Σe > 0 we arrive at Z < 0, concluding the proof. 2

For ς2/2− θ < 0, the above problem does not occur since
Z > 0.However, as the following example shows, one needs
to consider the other parts of the boundary, i.e., Σ ↘ 0
and/or K ↘ −θ, as well.

Example 9. Consider (20) with the parameters

ς = 9/20, θ = 13/20, γ = 3/5, and T = 1/10.

The optimal equilibrium and corresponding Lagrangian
multiplier are calculated numerically, yielding Σe ≈
0.42117895, Ke ≈ −0.40960337 and Z ≈ 0.5835097. The
Hessian ∇2 ˜̀

L2 evaluated at (Σe,Ke),

∇2 ˜̀
L2(Σe,Ke) ≈

(
0.7946167 Z

Z γ

)
,

is positive definite since |∇2 ˜̀
L2(Σe,Ke)| ≈ 0.136 > 0.

However, when looking at the boundary, we find that
˜̀
L2(1,−θ) ≈ −0.00640024 < 0. Thus, due to continuity

of ˜̀
L2 , strict dissipativity with a linear storage function

does not hold.

For linear dynamics, strict dissipativity can be determined
via positive definiteness of the Hessian ∇2 ˜̀, since it is
constant, cf. Damm et al. (2014). The above example
demonstrates that, for bilinear dynamics such as (14b),

the fact that the Hessian ∇2 ˜̀ is state-dependent renders
the positive definiteness of the Hessian at (Σe,Ke) un-
suitable to conclude strict dissipativity. This criterion can
only be used to conclude local convexity near (Σe,Ke),
which implies strict dissipativity if state and control are
constrained to a neighborhood of (Σe,Ke).

However, convexity of ˜̀
L2 is only sufficient but not neces-

sary for (Σe,Ke) being a global minimum. Hence, it may
still be possible to verify that (Σe,Ke) is the global min-

imum of ˜̀
L2 , which we do next. We have already empha-

sized that for this purpose we need to examine the values of
˜̀
L2 at the boundary. In addition, stationary points of ˜̀

L2

need to be examined. To this end, the following proposition
helps.

Proposition 10. The modified cost ˜̀
L2(Σ,K) has at most

two admissible stationary points.

Proof. From ∇˜̀
L2(Σ,K) = 0 we infer that K = −ZΣ/γ

and therefore,

0 =
1

8
√
π

(
− 1

Σ3/2
+

2
√

2

(Σ + 1)3/2

)
+Z

(
θ − ZΣ

γ

)
=: h(Σ).

3 We recall that ∂ΣLL2 (Σ,K, λ̄) = ∂Σ
˜̀
L2 (Σ,K).



If h(Σ) has a unique admissible stationary point, then only
up to two admissible solutions for h(Σ) = 0 can exist, i.e.,
the assertion follows. To this end, we look at the first two
derivatives of h:

h′(Σ) = 3/
(
16
√
π
) (

Σ−5/2 − 2
√

2(Σ + 1)−5/2
)
− Z2/γ,

h′′(Σ) = 15/
(
32
√
π
) (
−Σ−7/2 + 2

√
2(Σ + 1)−7/2

)
.

It is easily seen that

h′′(Σ)


< 0, Σ < Σ∗∗

= 0, Σ = Σ∗∗

> 0, Σ > Σ∗∗
and h′(Σ)


> −Z2/γ, Σ < Σ∗

= −Z2/γ, Σ = Σ∗

< −Z2/γ, Σ > Σ∗
,

where Σ∗∗ := 24/7

2−24/7 ≈ 2.89 and Σ∗ := 22/5

2−22/5 ≈ 1.94. In

particular, h′(Σ) < 0 for Σ > Σ∗. Therefore, stationary
points of h(Σ) can only exist for Σ ∈ (0,Σ∗). Since
h′′(Σ) < 0 for Σ ≤ Σ∗ < Σ∗∗, at most one stationary
point of h(Σ) can exist (and it is a local maximum). Due
to h′(Σ) → ∞ for Σ ↘ 0, h′(Σ) < 0 for Σ > Σ∗, and
the intermediate value theorem, a stationary point does
exist. Thus, there always exists a unique stationary point
of h(Σ), concluding the proof. 2

Based on this structural insight, we can now identify
situations in which a linear storage function works, as in
the following example.

Example 11. Consider (20) with the parameters

ς = 1/3, θ = 7/2, γ = 1/4, and T = 1/10.

Then numerical computations yield Σe ≈ 0.0199205, Ke ≈
−0.7111341, and Z ≈ 8.9246597. The second stationary
point of ˜̀

L2 is found at approximately

(0.0904564,−3.2291691) =: (Σs,Ks),

with ˜̀
L2(Σs,Ks) ≈ 0.4456688 > 0. Next, we look at the

boundary: Since Z > 0, ˜̀
L2(Σ,K) → ∞ for Σ → ∞, as

well as for K → ∞. Moreover, ˜̀
L2(Σ,K) → ∞ as Σ ↘ 0

for any fixed admissible K. At the remaining boundary
K = −θ we have

˜̀
L2(Σ,−θ) =

(
Σ−

1
2 + 1− 2

√
2(Σ + 1)−

1
2

)
/(4
√
π)

+ γθ2/2− `L2(Σe,Ke)− Zς2/2,
which is minimal at Σ = 1 with

˜̀
L2(1,−θ) = γθ2/2− `L2(Σe,Ke)− Zς2/2.

For the parameters in this example, this results to
˜̀
L2(1,−θ) ≈ 0.2268570 > 0. Thus, we can find a function
% ∈ K∞ such that the dissipativity inequality (12) holds.

Examples 9 and 11 reveal that a case-by-case analysis is
needed in order to decide whether strict dissipativity can
be established using a linear storage function. However,
numerical simulations such as that in Figure 1 indicate
that the turnpike property holds also for the parameters
from Example 9, in which the linear storage function fails.
Due to the close connection of the turnpike property to
dissipativity, cf. Section 3, this strongly suggests that the
OCP is indeed strictly dissipative, but with a nonlinear
storage function.

Thus, in the remainder of the paper, we propose the
nonlinear storage function

λs(z) := α(z + 1)−1/2,

Fig. 1. Open loop optimal trajectories for various horizons
N between 1 and 60 and MPC closed loop trajectories
for two initial conditions, indicating turnpike behavior
in Example 9; Σ (left) and K (right)

where α ∈ R is chosen such that the optimal equilibrium
(Σe,Ke) is a stationary point of the new modified cost

˜̀s
L2(Σ,K) := `L2(Σ,K)− `L2(Σe,Ke) + λs(Σ)− λs(Σ+).

Note that λs(Σ+) is well-defined since Σ+ > 0, cf. (15). In
case of Example 9, we get α ≈ 4.1463588. The level sets in
Figure 2 (right) illustrate that the lowest value is attained
at the optimal equilibrium (Σe,Ke), suggesting that strict
dissipativity holds with the new storage function λs. In
contrast, the white area in Figure 2 (left) shows that with

a linear storage function, ˜̀
L2 attains negative values.

Fig. 2. Modified costs ˜̀
L2(Σ,K) (left) and ˜̀s

L2(Σ,K)
(right), with (Σe,Ke) denoted by ∗ for Example 9

Our final example shows that λs also works for parameter
values for which Proposition 8 rules out the existence of a
linear storage function.

Example 12. Consider (20) with the parameters

ς = 10, θ = 2, γ = 1/4, and T = 1/10.

The optimal equilibrium (Σe,Ke) is given by Σe ≈
24.4333301 and Ke ≈ 0.04638499; with Z ≈ −0.00237304.
Figure 3 and the level sets therein indicate that strict
dissipativity holds with λs, however not with λl.

6. CONCLUSION

We have investigated strict dissipativity for a particular
optimal control problem for the Fokker-Planck equation.
We have shown that linear storage functions may work but
also analyzed the limitations of this ansatz. As a remedy,
we have identified a class of nonlinear storage functions
that works in situations in which the linear approach fails.



Fig. 3. Modified costs ˜̀
L2(Σ,K) (left) and ˜̀s

L2(Σ,K)
(right), with (Σe,Ke) denoted by ∗ for Example 12

This class of functions provides a promising basis for our
ongoing dissipativity analysis for larger parameter sets.

REFERENCES

Angeli, D., Amrit, R., and Rawlings, J.B. (2012). On
average performance and stability of economic model
predictive control. IEEE Trans. Autom. Control, 57(7),
1615–1626.

Annunziato, M. and Borz̀ı, A. (2013). A Fokker-Planck
control framework for multidimensional stochastic pro-
cesses. J. Comput. Appl. Math., 237(1), 487–507.
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Grüne, L. and Pannek, J. (2017). Nonlinear Model Predic-
tive Control. Theory and Algorithms. Springer, London,
2nd edition.
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