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1 Introduction 

In the tropic and sub-tropic regions, termites play an important ecological role (e.g. 

Harris 1966) and function as important ecosystem engineers (e.g. Black & Okwakol 

1998, Jones et al. 1994). Due to their feeding habits as soil-, wood-, grass-, and litter-

feeders and mound building activity (e.g. Bignell & Eggleton 2000, Lee & Wood 1971, 

Wood 1978) termites change structure and physicochemical properties of the soil (e.g. 

Jouquet et al. 2002, Lobry De Bruyn & Conacher 1990, Wood 1988, Wood & Sands 

1978). Termites improve the availability of mineral N and P (e.g. Brown & Whitford 

2003, Jones 1990, Ndiaye et al. 2003, 2004), and water for the surrounding vegetation 

(e.g. Donovan et al. 2001, Konaté et al. 1999) specifically in savannah and semi-arid 

ecosystems (e.g. Jouquet et al. 2005a,c). Furthermore, termites increase removal and 

mineralisation of leaf litter and dead plant material (e.g. Bignell & Eggleton 2000, 

Collins 1981, Schuurman 2005, Yamada 2005) and change the microbial composition in 

the surroundings of their nests (e.g. Fall et al. 2004, Jouquet et al. 2005b, Roose-

Amsaleg et al. 2004). 

Besides their ecological importance, some termite species have a high economic 

importance as pests of timber and buildings (Harris 1969, Su & Scheffrahn 1990, 2000). 

Of the worldwide 2,300 termite species, 183 are considered to be pests damaging 

buildings (Edwards & Mills 1986). Subterranean termites account for 80% (147) of the 

economically important species, mainly within the genera Coptotermes, Odontotermes, 

Microcerotermes, Reticulitermes, and Heterotermes. Among drywood termites, the 

genera Cryptotermes, Incisitermes, and Kalotermes are important (Su & Scheffrahn 

2000). The worldwide costs due to damage caused by termites sum up to approximately 

22 billion US$ annually (Fuchs et al. 2004). Therefore, high effort was put into the 

development of control methods in the last decades. Current control options include 

chemical and physical barriers, wood treatments, and population control by baits 

(reviewed in Su & Scheffrahn 2000). Nowadays commercially used chemical treatments 

as control agents against subterranean termites include soil barriers with 

organophosphates, pyrethroids, organochlorines or wood impregnations with chromated 

copper arsenates (CCA), coal tar creosote, pentachlorphenol, disodium octaborate 

tetrahydrate (DOT). As these control agents are also quite toxic or noxious compounds 
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to humans, recent research efforts were put into the investigation of naturally occurring 

wood preservatives against termites.  

In general, insect herbivores like termites have to recognise suitable host plants. In order 

to understand in more depth the ecological and physiological processes involved in the 

recognition of suitable food sources it might be helpful using two approaches. On the 

one hand, it is important to investigate host plant characteristics and what kind of 

behavioural aspects of the herbivore (e.g. food choice, food consumption) are 

influenced by these characteristics under field and laboratory conditions. On the other 

hand, the neurophysiological mechanisms involved in the recognition of secondary 

compounds should be investigated to better understand proximate causes how e.g. plant-

derived compounds mediate feeding behaviour in herbivores. 

1.1 Host Plant Recognition and Feeding Behaviour 

Different characteristics of potential host plants (e.g. form, colour, chemical 

compounds) might influence feeding behaviour in herbivores (Dethier 1982). Among 

the hundreds of chemical compounds produced by potential host plants, some secondary 

compounds might be toxic or noxious to herbivores. Pfeffer (1897) and Stahl (1888) 

already described at the end of the 19th century the raison d'être of these compounds as 

defence mechanism of plants (deterrents, repellents) against herbivores. Furthermore, 

number and structure variations of deterrent compounds in the plant kingdom are much 

higher than for phagostimulants (Schoonhoven et al. 1992). Thus, feeding deterrent 

compounds are most likely more important in host plant recognition than 

phagostimulants (Bernays & Chapman 1977, Jermy 1961, 1966). Host plant recognition 

processes were intensively investigated in agricultural pests focusing mainly on 

lepidopterous and coleopterous species (e.g. Blaney & Simmonds 1988, 1990, 

Messchendorp 1998). A number of specialised insects require in their food the presence 

of host specific chemicals like glucosinolates as token stimuli which stimulate feeding 

e.g. of several oligophagous insects occurring on cruciferous plants (e.g. Nielsen et al. 

1979). But the same compounds can also inhibit feeding in other potential herbivores 

(e.g. Shields & Mitchell 1995). Furthermore, specialised insects may have a limited 

food range because they are deterred by a huge variety of allelochemicals occurring in 

non-host plants (Schoonhoven 1982).  
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Wood-feeding termite species are also restricted in their potential host plant range due 

to their exclusive feeding on wood (e.g. Wood 1978). As a counterstrategy many 

tropical tree species developed a resistance against wood-feeding termites during their 

evolution (e.g. Bavendamm 1955, Scheffrahn 1991). Several compounds functioning as 

feeding deterrents in termites have been isolated from these trees (e.g. neem tree 

Azadirachta indica: Delate & Grace 1995, Ishida et al. 1992, Paes et al. 2007, Serit et 

al. 1992; other tree species: Adams et al. 1988, Carter & De Camargo 1983, Grace et al. 

1989, Reye-Shilpa et al. 1995, Shibutani et al. 2004). Additionally, also from non-

woody plants antifeedant compounds against termites have been isolated (e.g. vetiver 

grass Vetiveria zizanioides: Maistrello et al. 2001a,b, 2003, Nix et al 2003, 2006, Zhu et 

al. 2001, 2003b, Indian patchouli Pogostemon cablin: Zhu et al. 2003a, dyer's woad 

Isatis tinctoria: Seifert & Unger 1994). Therefore, these plant-derived compounds 

might be a source of novel non-toxic wood preservatives and might offer new ways in 

termite control and management efforts. To assess the impact of these plant-derived 

compounds on feeding behaviour and tunnelling activity of subterranean termites, 

studies carried out so far used filter paper or wood choice and no-choice tests (e.g. 

Kawaguchi et al. 1989, Maistrello et al. 2003, Scheffrahn and Rust 1983, Serit et al. 

1992) or tunnelling assays (e.g. Acda 2009, Maistrello et al. 2001a,b, Zhu et al. 2001). 

So far research efforts were mainly focused on subterranean termites of the genera 

Coptotermes and Reticulitermes as these species are the main pests in the southern 

United States and in Central Asia and Japan (e.g. Su & Scheffrahn 1990, Takahasi & 

Yoshimura 2002).  

Subterranean termite species of another genus, Schedorhinotermes, have not been the 

subject of applied research though species of this genus cause remarkable damage to 

wooden constructions throughout Africa, Asia, and Australia (Snyder 1949). This might 

be due to their main geographical distribution in countries with generally very poor or 

poor developed economies. In the present study, the African subterranean termite 

Schedorhinotermes lamanianus Sjöstedt (Rhinotermitidae) was used as focus species. In 

its natural habitat this termite species does not utilise the tree species Margaritaria 

discoidea as food source although it is the second most abundant tree species (Mikus 

2000, Mikus et al. 1997). The feeding deterrence is mediated by securinega-alkaloids in 

the bark and heartwood of this tree species (Mikus et al. 1998; Fehler 2000). 

Furthermore, more detailed research on feeding behaviour in S. lamanianus carried out 

by Reinhard and Kaib (1995) revealed that sensory cells on the antennae seem to play 
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an important role in food search. The authors described a characteristic behaviour of 

workers during food search which they called "rubbing-antennae" (Figure 1). Workers 

intensively rub the distal part of their antennae on the substrate indicating that receptors 

on the antennae might be involved in the recognition of suitable food sources.  

 

Figure 1: Position of the antennae of a S. lamanianus worker during food search (after Reinhard 
& Kaib 1995). 

However, in contrast to lepidopterous or coleopterous species proximate causes 

specifically the physiological mechanisms involved in the recognition of secondary 

plant compounds to identify suitable food sources remain unclear in termites so far. 

1.2 Host Plant Recognition and Chemosensory Input System 

In general, the main physiological mechanism in host plant recognition based on 

secondary compounds is the direct detection of these compounds by herbivores via their 

sensory input system located on the antennae, mouth parts, or tarsae (e.g. Schoonhoven 

1987, Schoonhoven et al. 1992, Schoonhoven & van Loon 2002, Städler et al. 1995). 

Several oligophagous herbivores recognising their host plants by using token stimuli 

possess specialised taste receptor cells responding to these stimuli. For instance, the 

cabbage butterflies Pieris brassicae and P. rapae possess taste receptor cells responding 

to glucosinolates produced by their cruciferous host plants (Schoonhoven 1987, Städler 

et al. 1995). The cinnabar moth Tyria jacobaea and rattlebox moth Utetheisa ornatrix 

possess taste receptors responding to host plant derived pyrrolizidine alkaloids (Bernays 

et al. 2003, 2004). Other herbivorous insect use the occurrence of feeding deterrent 

compounds in non-host plants to recognise palatable plants. Schoonhoven et al. (1992) 

proposed five mechanisms how feeding deterrents might mediate host plant recognition 

and feeding behaviour via the sensory input system. (i) Feeding deterrent neurons are 

specialised taste receptor cells inhibiting feeding behaviour. Thus plants which produce 

compounds stimulating these taste receptor cells are usually avoided by herbivores. 
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Feeding deterrent neurons are known in a variety of lepidopterous species e.g. in the 

silkworm Bombyx mori (Ishikawa 1966), the cabbage butterfly Pieris brassicae (Ma 

1969, van Loon 1990) or the tobacco hornworm Manduca sexta (Glendinning et al. 

2002). Other studies described deterrent receptor cells in non-lepidopterous species as 

the Colorado potato beetle Leptinotarsa decemlineata (Messchendorp et al. 1998) and 

the blowfly Protophormia terranovae (Liscia & Solari 2000). (ii) In some species, 

deterrents stimulate one or more taste neurons, which also respond to phagostimulants. 

In the monarch Danaus plexippus deterrent compounds evoke responses from three or 

more neurons per sensillum (Dethier 1980). The African cotton leafworm Spodoptera 

littoralis has at least one taste neuron responding to both phagostimulants and deterrents 

(Simmonds et al. 1990a,b). Total neural input, in the form of an across-fibre pattern, 

determines the resulting behavioural output, in the case considered here, the inhibition 

of feeding (Schoonhoven et al. 1992). (iii) Feeding deterrence by inhibition of 

phagostimulant neurons has also been reported in a variety of herbivorous species (e.g. 

Blaney 1981, Dethier 1987, Haskell & Schoonhoven 1969). In Spodoptera littoralis, 

"sugar" neurons are inhibited by the terpenoid azadirachtin (Simmonds & Blaney 1984). 

Inhibition of "sugar" neurons by deterrents has also been reported in Leptinotarsa 

decemlineata (Messchendorp et al. 1998) and Protophormia terrannovae (Liscia & 

Solari 2000). (iv) Temporal characteristics of neural input evoked by phagostimulants 

may be distorted after contact with a given deterrent compound. This can result in the 

inhibition of feeding. In Leptinotarsa decemlineata, response patterns are temporally 

less consistent for non-host stimuli compared to patterns evoked by host plant stimuli. 

This may be then interpreted by the CNS as "nonsense" thus no feeding occurs 

(Mitchell et al. 1990). Some compounds distort the functioning of taste receptors in a 

way that the "acceptance profile" needed by the CNS for initiating feeding behaviour is 

not evoked even in the presence of a potential host plant (Schoonhoven 1987). (v) 

Finally, some deterrent compounds elicit high impulse frequencies or "bursts" which 

results in an insensitivity of taste receptors to their normal stimuli. In Manduca sexta the 

glucose receptor responds vigorously to aristolochic acid but soon becomes insensitive 

to glucose (Frazier 1986). The terpenoid toosendanin evokes similar results in the fall 

armyworm Spodoptera frugiperda (Luo et al. 1989). 

In termites, sensory input mechanisms involved in the recognition of plant-derived 

feeding deterrent compounds are rarely investigated so far. In general, only a few 

studies addressed the modalities of olfactory receptors (Abushama 1966, Floyd et al. 
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1976, Kaib et al. 1993, Ziesmann 1996, Ziesmann et al. 1992) and taste receptors 

(Mikus 2000, Mikus & Kaib 1997, 1998, Raina et al. 2003). Hardiess (2002) identified 

a potential feeding deterrent neuron in antennal taste sensilla of Schedorhinotermes 

lamanianus responding to securinega-alkaloids. Ohmura et al. (2006) showed in 

Zootermopsis nevadensis that the terpenoid azadirachtin reduces the neural response in 

taste sensilla on labial palps to phagostimulant extracts of akamatsu Pinus densiflora. 

However, a better understanding of the chemosensory input system may help to 

improve wood protection and termite control methods.  

On the antennae of the termite S. lamanianus one can distinguish three types of so-

called TP-sensilla (Wolfrum & Kaib 1988, Figure 2 A). Based on morphological criteria 

TP-sensilla represent hair-like sensory organs of insects baring taste receptor cells 

(Altner 1977). In this type of sensilla dendrites reach unbranched to the terminal pore 

which is the only access for molecules to penetrate (Figure 2 B). Furthermore, all three 

types bare a tubular body at the basis of the sensillum which belongs to a 

mechanoreceptor (Mikus 2000). 

 

Dendrites

Terminal pore

Taste neurons

Cuticle
Dendrites

Terminal pore

Taste neurons

Cuticle

 

Figure 2: (A) Scanning electron microscopy picture of an antennal segment of a S. lamanianus 
worker with the 3 types of TP-sensilla indicated. (B) Schematical longitudinal section of a TP-
sensillum (after Mikus 2000). 

Four "water neurons", one with an additional salt receptor site, and two "glycine 

neurons" have been identified (Mikus 2000, Mikus & Kaib 1997, 1998). As already 

mentioned above Hardiess (2002) described an additional taste neuron in the TP II 

sensillum responding to the securinega-alkaloids securinine, phyllantine, and 

phyllantidine isolated from the tree Margaritaria discoidea (Fehler 2000).  

Table 1 gives an overview about the morphological parameters and modalities for the 

different types of TP-sensilla in S. lamanianus. Therefore, S. lamanianus is an 

(A) (B) 
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appropriate model system to investigate the impact of secondary plant compounds on 

feeding behaviour and how this is mediated by the chemosensory input system. 

Table 1: Morphological parameters of the three types of TP-sensilla in S. lamanianus. The 
nomenclature of gustatory neurons and their stimulus modality is given (after Mikus 2000; 
supplemented by data of Hardiess 2002).  

Type 
No. per 

Segment 
Length 

[µm] Position Mechano-

receptors 
Gustatory 

Receptors Stimulus Modality 

I/1 H2O/NaCl 

I/2 H2O
 

I/3 Glycine 

I/4 ? 

TP I 6 76-83 distal 1 

I/5 ? 

II/1 Glycine 

II/2 H2O
 

II/3 
Securinega-
Alkaloids* 

TP II 7 45-49 median 1 

II/4 ? 

TP III 27 24-30 proximal 1 III/1 H2O
 

* The modality of neuron II/3 given with securinega-alkaloids includes: securinine, 
phyllanthine, phyllantidine (after Hardiess 2002) 

1.3 Aims of the Thesis 

The investigation of proximate causes for feeding deterrence by secondary plant 

compounds in S. lamanianus was carried out in three steps.  

1.) Feeding Behaviour: 

The effects of secondary plant compounds on feeding behaviour in S. lamanianus were 

investigated using different food sources (filter paper, wood) and behavioural test 

designs (no-choice, single/multiple choice) to reflect the diverse approaches published 

in the literature. The following questions should be answered: 

∗∗∗∗ Do alkaloids other than securinega-alkaloids known as feeding 

deterrents in other insect species influence food choice and 

quantitative food consumption in S. lamanianus? 

∗∗∗∗ Do non-alkaloids known as feeding deterrents in other insect species 

also influence food choice and quantitative food consumption in  

S. lamanianus? 
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2.) Neural Input System for Deterrent Compounds: 

The chemosensory input system for feeding deterrent plant compounds was investigated 

using the tip recording technique on TP II and TP I sensilla. The TP III sensilla were not 

investigated as this type bares only one single taste neuron responding exclusively to 

water. The following questions should be answered: 

∗∗∗∗ Do alkaloids stimulate a taste neuron in the TP II sensillum? 

∗∗∗∗ Do alkaloids stimulate the securinine-receptor (neuron II/3)? 

∗∗∗∗ Do alkaloids stimulate different taste neurons in sensilla other than  

TP II on the flagellum of the antenna? 

∗∗∗∗ Do non-alkaloids stimulate a taste neuron in the TP II sensillum? 

∗∗∗∗ Do non-alkaloids stimulate the securinine-receptor (neuron II/3)? 

∗∗∗∗ Do non-alkaloids stimulate different taste neurons in sensilla other 

than TP II on the flagellum of the antenna? 

3.) Relationship between Neural Input and Behavioural Output: 

∗∗∗∗ Is feeding inhibition related with the activity of neuron II/3? 

∗∗∗∗ Is feeding inhibition related with the activity of different taste neurons 

other than neuron II/3? 
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2 Definitions and Abbreviations 

Avoidance / preference describe the spatial orientation or distribution of gnawing 

termite workers under choice conditions. 

Excitation / excitation level refers to the number of recorded spikes from the taste 

neuron in the first 200 ms during a chemical stimulation. 

Feeding deterrent describes a secondary compound eliciting reduced quantitative food 

consumption on a non-toxic level under no-choice conditions. 

Feeding deterrent receptor refers to taste neurons in insects responding to feeding 

deterrent plant compounds. 

Gnawing describes a behaviour that workers show during food utilisation. In 

hypognathic head position a food particle is releases with the mandibles from the food 

source using jerky body movements. 

Receptor / receptor site are used when the receptor site in the cell membrane of the 

taste neuron is referred to. 

Repellent describes a secondary compound that (a) leads to an avoidance of certain 

feeding sites or (b) initiates termites to cover the food source with faeces. 

Spike describes the sum of changes in the electrical potential, which occur at the 

formation of a transmitted action potential. 

Compound / secondary compound describe plant-derived chemical substances of the 

secondary metabolism. 

Taste neuron / taste receptor cell are used when the neuron itself is referred to. 

TP-sensillum describes hair-like, gustatory-mechanosensitive organs of insects with a 

terminal pore at the tip. 



DEFINITIONS & ABBREVATIONS 

 

10 

Abbraviations of compound names: 

Ana...........anabasine 

Ajm ..........ajmalicine 

Are ...........arecoline 

Aza ...........azadirachtin 

Ber............berberine 

Bol............boldine 

Bru ...........brucine 

Caf............caffeine 

Chr ...........chrysin 

Col............colchicine 

Con...........coniine 

Eme ..........emetine 

Har ...........harmaline 

Hyo...........hyoscyamine 

Jug............juglone 

Lob...........lobeline 

Lup ...........lupanine 

Nic............nicotine 

Nom .........nomilin 

Noo...........nootkatone 

Nos ...........noscapine 

Pap ...........papaverine 

Pil .............pilocarpine 

Qui ...........quinine 

Sec............securinine 

Sin ............sinigrin 

Sol ............solasodine 

Spa ...........sparteine 

Str.............strychnine 

Try............tryptanthrin 

 

Other abbraviations used: 

SEM .........standard error of mean 

# ...............number of ... 
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3 Materials and Methods 

3.1 General 

3.1.1 The Focus Species Schedorhinotermes lamanianus (Sjöstedt) 

The subterranean termite Schedorhinotermes lamanianus is a common and widely 

distributed species of the tropical forests of Africa (Harris 1968, Brandl et al. 1996). 

The nests are commonly located subterranean but also occur in crutches or within tree 

trunks. S. lamanianus builds netlike galleries which connect on the one hand the nests 

with each other and on the other hand the nests and foraging sites. The foraging sites are 

commonly located on living trees where members of the worker caste feed on dead 

wood (Harris 1968, Renoux 1976). Gnawing workers show a typical gnawing behaviour 

and release small wood particles which are transported to the nest by other workers 

(Wassermann 1990). Only the worker caste is involved in food degradation and 

transport to the nest. They are protected and defended by minor soldiers (Kaib 1990). 

3.1.2 Laboratory Colonies 

Three colonies were collected in May 2001 in Gedi/Kenya and in October 1995 and 

December 2001 at the Shimba Hills National Reserve/Kenya respectively. Colonies 

were kept under constant climatic conditions (temperature: 26°C, humidity: 70-80%, 

dark-light cycle: 12/12 h) housed in covered stainless steel barrels (Ø 50 cm, height 50 

cm). Each barrel was connected to a foraging arena (25x25 cm) consisting of a Perspex 

frame and two glass plates as bottom and lid which was filled with dried birch wood, 

and a drinking reservoir for water supply via silicon tubes (Figure 3). Additionally, the 

termites were fed ad libitum with moistened filter paper sheets every day. 
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Figure 3: Laboratory colony with the indication of the nest, water source, and foraging sites. At 
the foraging sites normal food supply (wood) or feeding tests could be carried out. 
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3.2 Secondary Plant Compounds 

In behavioural and electrophysiological investigations the following 24 alkaloids and  

6 non-alkaloids were used in total (Figure 4 and 5). Some of these compounds were 

used in both behavioural and neurophysiological investigations or for technical reasons 

only in one of them (Table 2 and 3). 
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Figure 4: Chemical structures and names of alkaloids used in behavioural and/or 
neurophysiological investigation. 
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Figure 4 (continued) 
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Figure 5: Chemical structures and names of non-alkaloids used in behavioural and/or 
neurophysiological investigations. 
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Table 2: List of alkaloids used in behavioural (BI) and/or neurophysiological investigations (NI) 
with the according solvent used. Abbreviations of names are given in brackets. Ethanol/Water 
means a 10% ethanol solution with a concentration of 1mM compound as stock solution. 

Alkaloid BI Solvent BI NI Solvent NI 

Anabasine (Ana) − − + Water 

Ajmalicine (Ajm) − − + Ethanol/Water 

Arecoline (Are) − − + Ethanol/Water 

Berberine (Ber) + Methanol + Water 

Boldine (Bol) − − + Ethanol/Water 

Brucine (Bru) − − + Water 

Caffeine (Caf) + Water + Water 

Colchicine (Col) + Acetone + Water 

Coniine (Con) − − + Water 

Emetine (Eme) − − + Water 

Harmaline (Har) − − + Ethanol/Water 

Hyoscyamine (Hyo) − − + Ethanol/Water 

Lobeline (Lob) − − + Water 

Lupanine (Lup) − − + Water 

Nicotine (Nic) + Chloroform + Water 

Noscapine (Nos) − − + Ethanol/Water 

Papaverine (Pap) + Water + Water 

Pilocarpine (Pil) − − + Water 

Quinine (Qui) − − + Ethanol/Water 

Securinine (Sec) + Chloroform + Water 

Solasodine (Sol) − − + Ethanol/Water 

Sparteine (Spa) − − + Water 

Strychnine (Str) + Chloroform + Water 

Tryptanthrin (Try) + Acetone + Ethanol/Water 

 
 
 
 

Table 3: List of non-alkaloids used in behavioural (BI) and/or neurophysiological investigations 
(NI) with the according solvent used. Abbreviations of names are given in brackets. Ethanol/Water 
means a 10% ethanol solution with a concentration of 1 mM compound as stock solution. 

Non-Alkaloid BI Solvent BI NI Solvent NI 

Azadirachtin (Aza) + Acetone + Ethanol/Water 

Chrysin (Chr) + Acetone − − 

Juglone (Jug) + Chloroform + Water 

Nomilin (Nom) + Acetone − − 

Nootkatone (Noo) + Acetone + Ethanol/Water 

Sinigrin (Sin) + Water + Water 
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3.3 Behavioural Investigations 

3.3.1 Filter Paper Choice Test 

To determine whether secondary plant compounds influence food choice in the termite 

S. lamanianus, a filter paper choice test according to Reinhard and Kaib (1995) was 

used. 

3.3.1.1 Experimental Design 

Tests were carried out with workers in a foraging arena (10x10 cm) connected to the 

colony. Two filter paper semi-circles (Schleicher & Schuell (grade 0860), 2.5 cm 

diameter, 20 mg) were used for each test: one non-impregnated (= blank) and one 

impregnated semi-circle. The impregnated semi-circle was treated with 25 µl solution of 

a certain secondary plant compound (= test paper). After evaporation of the solvent, 

both semi-circles (blank, test paper) were placed in random order into the foraging 

arena and each was “glued” to the bottom with 10 µl water. They were additionally 

moistened with 25 µl water each. Four tests were carried out simultaneously in one 

foraging arena (Figure 6 A). In total 20 replicates were done (5 arenas á 4 tests).  

The foraging arena was connected to the colony. After the first worker entered the 

arena, frequencies and spatial distribution of gnawing events by workers were recorded 

for 45 min using video techniques and subsequently analysed. For each test, the spatial 

distribution of the first 21 gnawing events was determined (Figure 6 B), and the semi-

circle with the highest number of events was defined as “preferred”. When a preferred 

semi-circle coincided with a test paper this semi-circle was called a “preferred test 

paper”. In case it coincided with the blank paper it was called a “preferred blank paper”. 

All observations of termite behaviour were made under red light conditions. (Kaib & 

Ziesmann 1992, Reinhard & Kaib 1995) 
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(A) (B)(A) (B)

 

Figure 6: Experimental design of the filter paper choice test. (A) Test arena with 4 simultaneous 
tests. The double-headed arrow indicates the connection to the colony. (B) Example of one test 
with 21 gnawing events ( ) in total. Spatial distribution and frequency of gnawing events in the 
given example: 13 events on the upper semi-circle and 8 events on the lower one respectively. 
Therefore the upper semi-circle would be defined as "preferred" (after Reinhard & Kaib 1995). 

3.3.1.2 Data Analysis 

Statistical analysis was carried out according to Zar (1974). The observed distribution in 

the frequencies of preferred blank and test filter papers was analysed using the sign-test. 

The significance level was set to α = 0.05. A significant avoidance of treated semi-

circles was shown by the termites if ≤5 preferred test papers were observed. The lowest 

applied amount of a certain compound eliciting a significant avoidance reaction by the 

termites was defined as the "compound specific threshold" (CST). 

3.3.2 Filter Paper No-Choice Test 

To determine whether secondary plant compounds also influence quantitative food 

consumption, a filter paper no-choice test (modified after Serit et al. 1992) was used. 

Termites could exclusively feed either on treated or untreated filter paper. Furthermore, 

the impact of secondary plant compounds on termite mortality was determined.  

3.3.2.1 Experimental Design 

For each test, standard plastic petri dishes (9 cm diameter) were used. Filter paper discs 

(Schleicher & Schuell (grade 0860), 2.5 cm diameter, 40 mg) were oven-dried for 

24 h at 100°C and weighed (initial weight (IW)). The 3-fold CST (3CST) of each 
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secondary plant compound obtained from the filter paper choice test was applied to the 

filter paper discs (= test discs). Non-impregnated (= blank) discs were only treated with 

solvent. After evaporation of the solvent, one disc was placed in each petri dish. For 

each treatment 8 replicates were done. The starvation control consisted of a small ball of 

indigestible glass wool placed in the petri dish instead of filter paper. All filter paper 

discs and the glass wool balls were moistened with 50 µl water and 20 termite workers 

were placed into each petri dish. All prepared petri dishes were placed into a shaded 

Perspex box in a randomised order with moist filter paper at the bottom of the box for 

constant humidity conditions (Figure 7).  

All paper discs and glass wool balls were re-moistened with 50 µl water every day for 

the whole duration of the experiment (7 days). The petri dishes were randomly 

re-arranged every day. The filter paper at the bottom of the Perspex box was also 

re-moistened every day. Additionally, dead termite workers were collected and counted 

every day. After 7 days, the filter paper discs were again oven-dried for 24 h at 100°C 

and weighed (final weight (FW)). 

     

Figure 7: Experimental design of the filter paper no-choice test. (A) General setup with the shaded 
Perspex box. (B) Detailed view on the stacks of petri dishes inside the Perspex box. Each petri 
dish represents one test replicate. 

3.3.2.2 Data Analysis 

Food consumption (FC) was calculated as FC = [1−FW/(IW+3CST)]·100%. 

Comparison of means of non-impreganted (= blank) and test discs was done using a 

generalised linear model for Gamma-distributed data with log-link function with the 

fixed factor "treatment" (15 level) as predictor variable. Mortality was calculated as the 

number of dead termites after 7 days. Means of starvation and blank control 

respectively, and test discs were compared using a generalised linear model for Gamma-

(A) (B) 
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distributed data with log-link function with the fixed factor "treatment" (16 levels) as 

predictor variable. Post-hoc testing was done using the sequential step-down Bonferroni 

corrected Mann-Whitney U-test.  

3.3.3 Wooden Cube Choice-Test I – Single Choice 

A wooden cube choice test was used to determine whether it was possible to impregnate 

wooden cubes with secondary plant compounds preventing the utilization as food 

source  

3.3.3.1 Experimental Design 

3.3.3.1.1 Preparation of Compound Solutions 

Each compound was dissolved in the appropriate solvent. The test concentration was 

obtained from the CSTs of the filter paper choice test. The CST was the lowest amount 

(µg) of a certain compound in 25 µl solution applied to the filter paper eliciting an 

avoidance reaction by the termites (see 3.3.1). As concentration the 5-fold CST (5CST) 

was used. To calculate the concentration of the impregnating solution from the CSTs 

the following equation was used: Conc [mg/ml] = (5CST [µg/25µl]·40)/1000. The 

factor 40 was used to calculate the amount (µg) in 1000 µl solution and the factor 1000 

to convert the unit into mg/ml. 

3.3.3.1.2 Impregnation of Wooden Cubes 

Wooden cubes of 1x1x1 cm were oven-dried for 24 h at 100°C and weighed (IW). The 

test cubes were dipped into the compound solution for 5 min. To prevent solvent 

evaporation the solutions were kept on -22°C during this time. The non-impregnated  

(= blank) cubes were treated in the same procedure but only with solvent. Afterwards 

the cubes were oven-dried for 2h at 35°C to evaporate the solvent. For the impregnation 

with nootkatone the cubes were dried for 24 h at room temperature to evaporate the 

solvent. This was necessary as nootkatone has a very low melting point at 32-35°C.  

3.3.3.1.3 Test Procedure 

In total 16 cubes (8 blank, 8 test cubes) were randomly placed into one test arena 

(15x15 cm; Figure 8). For each compound, two test arenas were prepared and connected 
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to two different colonies. After 7 days the wooden cubes were oven-dried for 24 h at 

100°C. Wooden cubes were cleaned from faeces using a tooth brush and the cubes were 

weighed (FW). The inter-test interval between two following tests was also 7 days. 

Termites had access to the normal foraging arena but with 50% reduced wood supply to 

prevent starvation of the colony but to ensure a sufficient foraging traffic into the test 

arena. The colonies were also fed with moistened filter paper each day. Therefore, the 

impact of secondary plant compounds under "normal" food supply conditions could be 

observed. 

 

Figure 8: Experimental design of the wooden cube choice test I. 16 wooden cubes (8 controls + 8 
impregnated cubes) were randomly placed in the arena. The double-headed arrow indicates the 
connection to the colony. Different colours indicate the different impregnation treatments: ( ) non-
impregnated (= blank) and ( ) impregnated cubes. 

3.3.3.2 Data Analysis 

Food consumption (FC) was calculated as FC = (1−FW/IW)·100%. Comparison of 

means of blank and test cubes for each compound was done using linear mixed-effects 

models with the fixed factor "treatment" (2 levels) and "colony-ID" as random factor. 

Significant effects were obtained using likelihood-ratio tests. 

3.3.4 Wooden Cube Choice Test II – Multiple Choice 

To determine the impact of different concentrations of secondary plant compounds on 

quantitative food consumption in S. lamanianus a second wooden cube choice test with 

a changed design (see below) was done.  
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3.3.4.1 Experimental Design 

3.3.4.1.1 Preparation of Compound Solutions 

Each compound was dissolved in the appropriate solvent to 4 different concentrations. 

The concentrations were obtained from the CSTs of the filter paper choice test. The 

CST was the lowest amount (µg) of a certain compound in 25 µl solution applied to the 

filter paper eliciting an avoidance reaction by the termites (see 3.3.1). The following 4 

concentrations were used: 3-fold CST (3CST), 10-fold CST (10CST), 30-fold CST 

(30CST), and 100-fold CST (100CST; 80-fold CST (80CST) for chrysin and papaverine 

due to maximum saturation of the solution). 

To calculate the concentrations of the impregnating solutions from the CSTs the 

following equation was used: Conc [mg/ml] = (3/10/30/100CST [µg/25µl]·40)/1000. 

The factor 40 was used to calculate the amount (µg) in 1000 µl solution and the factor 

1000 to convert the unit into mg/ml. 

3.3.4.1.2 Impregnation of Wooden Cubes 

In total 1024 wooden cubes of 1x1x1 cm were oven-dried for 24 h at 100°C. The test 

cubes (in total 448) were dipped into the compound solution for 5 min. To prevent 

solvent evaporation the solutions were kept on -22°C during this time. The non-

impregnated (= blank) cubes (in total 576) were treated in the same procedure but only 

with solvent. Afterwards the cubes were oven-dried for 2h at 35°C to evaporate the 

solvent. For the impregnation with nootkatone the cubes were dried for 24 h at room 

temperature to evaporate the solvent (see 3.3.3) All 1024 cubes were stored at -22°C 

until they were used in the tests. 

3.3.4.1.3 Test Procedure 

The test arena had the same design as the normal foraging arena (see 3.1.2) and was 

connected to the colony instead of the foraging arena. The cubes used in one test were 

weighed (initial weight, IW). In total 64 cubes (36 blank, and 28 test cubes) were 

randomly placed into one test arena. Of the 28 test cubes 4 cubes were impregnated 

with one of the 7 compounds (Figure 9). In each test run the same 7 compounds were 

used but in different concentrations. For each of the 28 combinations (7 compounds á 4 

concentrations) 16 cubes were tested (in total 448). 4 cubes were used in 4 different 
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arenas. As far as possible, each compound with its 4 concentrations was tested in 

combination with each concentration of the other compounds. The 28 combinations 

were used in 16 different arranged test arenas. Two test arenas were simultaneously 

used in one test run. 

After the test arena was connected to the colony, termites had access to it for 9 days 

since it lasted about two days until a sufficient foraging traffic was established. This 

meant a test duration of 7 days. During this time termites were fed with moistened filter 

paper directly on the nest. From the 4th day on an additional piece of wood  

(10.45±1.15 g) was available. Thus, the colony was kept on a constant "starvation" 

level. On the one hand termites could satisfy their needs but on the other hand it was 

ensured that an appropriate foraging traffic occurred into the test arena and was not 

outcompeted by the normal food supply. 

After 9 days the wooden cubes were oven-dried for 24 h at 100°C. Cubes were cleaned 

from feaces using a tooth brush and the cubes were weighed (final weight, FW). 

 

Figure 9: Example of the experimental design of the test arena in the wooden cube choice test II. 
64 wooden cubes (36 non-impregnated (= blank) + 28 impregnated cubes) were randomly placed 
in the arena. The double-headed arrow indicates the connection to the colony. Different colours 
indicate the different impregnation treatments: ( ) blank, ( ) compound 1, ( ) compound 2,  
( ) compound 3, ( ) compound 4,( ) compound 5, ( ) compound 6, and ( ) compound 7. 
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3.3.4.2 Data Analysis 

3.3.4.2.1 Food Consumption 

3.3.4.2.1.1 Differences between Blank vs. Treatment 

Food consumption (FC) was calculated as FC = (1−FW/IW)·100% for each wooden 

cube. Comparison between means of blank and test cubes for each concentration was 

done using linear mixed-effects models with the factor "treatment" (2 levels) as 

predictor variable and "arena-ID" and "replicate-ID" as random factors. Significant 

effects were obtained using likelihood ratio tests. 

3.3.4.2.1.2 Differences between Concentrations 

To determine the impact of increasing concentrations on food consumption a more 

detailed analysis was done. For each test arena, the mean FC of the 36 blank (FCB) and 

4 test cubes (FCT) for each compound was calculated. From these data a feeding 

reduction index (FR) was calculated using the following equation: 

FR = [1−FCT/FCB]·100%. The obtained FR's were plotted against the log-transformed 

concentrations and analysed using a linear Pearson regression. 
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3.4 Neurophysiological Investigations 

All electrophysiological investigations were done using the tip-recording technique. 

This is the standard method for the registration of the activity of gustatory neurons in 

insects and was developed by Hodgson et al. (1955). 

3.4.1 Tip-Recording Technique 

3.4.1.1 General 

3.4.1.1.1 Preparation of Termite Workers 

Termite workers were taken from the colony and immobilized headfirst in a pointy 

plastic tube (Figure 10). To prevent termites from desiccation during the experiment the 

tube was closed with moistened filter paper. The antennae of the termite protruded from 

the tip of the plastic tube and were fixed with a double-sided duct tape. Hence, ventral 

sensilla of the first 7-8 antennal segments were available for neurophysiological 

investigations. To avoid desiccation of the antennae during the experiments a moist air 

stream (22°C, 70-85% relative humidity) was blown over the preparation. 

Moist filter paper
Double-sided

duct tape

Moist air stream

Moist filter paper
Double-sided

duct tape

Moist air stream

 

Figure 10: Preparation of a termite worker for the neurophysiological investigations (after 
Hardiess 2002). 

3.4.1.1.2 Preparation of Stimulus Solutions 

The usual solvent was water (bidest.) for all stimulus solutions. Some secondary 

compounds were first solved in 100% ethanol due to their lower solubility in water. But 

dilutions afterwards were done with water (bidest.) again with a resulting maximum 

ethanol content of 10% for the highest test concentration. All stimulus solutions were 
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prepared shortly before the first experiment and stored at -22°C for additional 

experiments. 

3.4.1.1.3 Stimulation and Recording of Neuronal Signals 

Spikes generated by neurons in the TP-sensilla were measured as the difference of the 

electrical potential between two glass electrodes (Figure 11). Glass electrodes were 

made from glass capillaries with filament (Fa. Hilgenberg, Malsfeld, Germany) using a 

pipette puller (Mod. 700C, David Kopf Instruments, Tujunga, USA). The resulting tip 

diameter was about 1 µm. The different electrode was made by cutting off the tip. The 

resulting diameter was about 20-30 µm. 

The indifferent electrode (tip diameter: 1 µm) was filled with Ringer solution (8.5g/l 

NaCl, 0.42 g/l KCl, 0.2 g/l NaHCO3, 0.24 g/l CaCl2; Schlieper 1965) as electrolyte, and 

was inserted into the hemolymph lumen between the first two distal antennal segments. 

The different electrode was used simultaneously for stimulation and signal recording 

and therefore filled with the stimulus solution. Since stimulation and recording started 

and ended simultaneously, spontaneous activity of the neurons or activity after end of 

the stimulation could not be measured. For stimulation and recording, the different 

electrode could be put on the tip of the TP-sensillum under visual control (combined 

stereo microscope M3C, Fa. Wild, 400-fold magnification) using a micromanipulator 

(Fa. Leitz, Wetzlar, Germany). Indifferent and different electrodes were connected to an 

Ag-AgCl wire via a 3M KCl-agar (3-5%) bridge. The different electrode was connected 

to an impedance converter with capacitance neutralisation and pre-amplifier (input 

resistance 2 GΩ). Its signals were further amplified by a variable DC-Amplifier with 

low pass filter (2kHz, RC-characteristics, 24dB/octave). With the indifferent electrode 

the transepithelial and junction potential was measured and compensated in order to 

minimize the contact artefact at stimulus onset. 

Chemical stimulation started with the recording of neural activity due to the 

combination of stimulation and recording. Shortly before stimulation/recording onset a 

small drop of the stimulus solution was squeezed out to renew the solution at the 

electrode tip. Together with the moist air stream over the preparation this procedure 

ensured that a defined concentration was used for stimulation. Single stimulations lasted 

for about 1 s. Inter-stimulus interval between repeated stimulation of the same sensillum 

was at least 10 min due to possible adaptations (Hardiess 2002). To prevent mechanical 
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stimulation of the sensillum it was paid attention that the sensillum was not bend during 

contact with the electrode. 

Indifferent electrode

Different 

electrode

with stimulus

solution

Dendrites

Indifferent electrode

Different 

electrode

with stimulus

solution

Dendrites

 

Figure 11: Scheme of a TP-sensillum with the position of the electrodes for the tip-recording 
technique. 

3.4.1.1.4 Data Storage and Analysis 

3.4.1.1.4.1 Data Storage 

For a permanent storage, all signals were digitalised using an A/D-converter (resolution: 

12 bit, sampling rate: 100 µs) and transferred to a computer (AT 80486 DX2-66). 

Digitalisation lasted 2 s and was started manually about 0.5 s before stimulation onset. 

Data recording was done using the programme SPIKE1 for GEM/3 (D. Piech, 

Datacentre, University of Regensburg, Germany). For data analysis and storage, data 

were saved on a harddisk.  

3.4.1.1.4.2 Spike Discrimination and Attribution 

Since one recording always records the activity of all neurons in one sensillum, the 

spikes had to be attributed to single neurons afterwards. In order to do this, the 

digitalised data were printed using the programme M1 (Dr. J. Gödde, Fa. Haag, 

Waldbrunn, Germany). The attribution of the recorded spikes to single neurons was 

done by visually comparing shape and temporal frequency of the spikes (Figure 12). It 

was further considered that the spike amplitude and shape of the same neuron could 
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change due to differences in the conductivity of the stimulus solution. Furthermore, a 

change of the spike amplitude and shape within one recording is also possible (Fujishiro 

et al. 1984, Hansen-Delkeskamp & Hansen 1995).  

100 ms100 ms100 ms

 

Figure 12: Attribution of spikes to the according neuron due to the temporal characteristics. Dots 
indicate spikes generated by neuron II/3 responding to a stimulation with 1 mM securinine. 
Asterisks and arrows indicate two additional spikes from another neuron. 

3.4.1.1.4.3 Quantification of Neural Response 

Since all neurons showed a more or less strong phasic response (Hardiess 2002, Mikus 

2000), the number of spikes in the first 200 ms after stimulus onset was counted as 

measure for the excitation level of the neurons. 

3.4.1.2 Experiments 

3.4.1.2.1 Concentration-Response Relationship 

Sensilla were repeatedly stimulated with increasing concentrations of each compound to 

determine the concentration-response relationship. The inter-stimulus interval was at 

least 10 min to minimise effects of adaptation of the neurons. Mean spikes frequencies 

in the first 200 ms after stimulus onset (+SEM) were plotted against concentrations on a 

logarithmic scale. The concentration evoking 50% of the maximum excitation (RC50) 

was calculated from fitted regression models. 
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3.4.1.2.2 Cross-Adaptation between a Secondary Compound and Securinine 

3.4.1.2.2.1 Experimental Design 

Previous studies (Hardiess 2002) revealed that the stimulation of neuron II/3 with high 

concentrations of securinine (≥10-3 M) leads to a long-lasting reduction of the excitation 

levels to subsequent stimuli. 

In order to determine whether a secondary compound that positively stimulates a neuron 

in the TP II sensillum, stimulates the same neuron as securinine (neuron II/3), sequential 

stimulations with a concentration of 10-3 M were done (see scheme below). The inter-

stimulus interval was 5 min. 

Sequence Stimulus 

 # 1  # 2  # 3 

(I) Sec - X - Sec 

(II) Sec -  - Sec 

(III) X - X - Sec 

(IV) X - Sec - X 

Sec = securinine, X = secondary compound 

3.4.1.2.2.2 Data Analysis 

Comparisons of mean spikes frequencies in the first 200 ms after stimulus onset for 

securinine stimuli were done using linear mixed-effects models with one-way ANOVA 

for independent samples and paired t-tests for dependent samples as post hoc tests. The 

same procedure was used for comparisons between the different secondary plant 

compound stimuli. 

For comparisons within each sequence, linear mixed-effects models with the fixed 

factor "stimulus" (3 levels) as predictor variable and "sensillum-ID" as random factor 

were used. Post-hoc testing was done using the same models with reduced data sets for 

pairwise comparisons ("stimulus": 2 levels). Significant effects were obtained using 

likelihood-ratio tests. 
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3.5 Statistics 

All statistical tests used are given in the according section "Data Analysis" of each 

chapter for each experiment. All statistical analysis was done using R version 2.10.1  

(R Development Core Team 2009). Mixed-effects models were fitted using the lme4-

package with the Laplace approximation of the likelihood function (Bates 2005, Bates 

& Maechler 2009). P-values were calculated by likelihood-ratio tests based on changes 

in deviance (using maximum likelihood estimates) when each term was dropped from 

the full (main effects) model (Faraway 2006). Residuals were checked for normality 

using the Shapiro-Wilk test and visually checking Q-Q-plots. Homogeneity of variances 

was ensured using the Levene test and visually checking predicted value-residual-plots. 

The sign-test for analysing the filter paper choice test was done using SPSSTM version 

13.0. All data are presented as mean+SEM unless otherwise given.  
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4 Results 

4.1 Food Choice and Food Consumption 

4.1.1 Threshold for Avoidance in a Single Choice Situation 

In the filter paper choice test, all tested alkaloids and non-alkaloids had a negative impact 

on food choice in S. lamanianus workers at a compound specific threshold (CST; Table 4). 

Above this threshold, workers significantly preferred non-impregnated over impregnated 

filter papers thus showing a clear avoidance of impregnated filter papers (for further detail 

see Appendix). 

The difference in the CST between the most effective alkaloid tryptanthrin and the less 

effective caffeine was a factor of 1,000 (Table 4). The difference in the CST between the 

most effective non-alkaloid juglone and the less effective sinigrin was a factor of about 

3,000. Furthermore, juglone had a CST of one magnitude lower than tryptanthrin  

(Table 4). 

Table 4: Compound specific threshold (CST) of different alkaloids (A) and non-alkaloids (NA) 
eliciting an avoidance reaction by S. lamanianus workers in the filter paper choice test. Securinine as 
reference compound is given in bold letters. The CST is given as amount per filter paper area, and 
amount per filter paper mass (20 mg) in [ppm] respectively.  

Class Compound CST [µg/2.5 cm2] CST [ppm] 

A Tryptanthrin 0.3 15 

A Nicotine 1 50 

A Strychnine 3 150 

A Securinine 10 500 

A Colchicine 30 1500 

A Papaverine 30 1500 

A Berberine 30 1500 

A Caffeine 300 15000 

NA Juglone 0.03 1.5 

NA Azadirachtin 0.3 15 

NA Chrysin 1 50 

NA Nootkatone 1 50 

NA Nomilin 60 3000 

NA Sinigrin 100 5000 

In contrast to all other tests, in the test with juglone termites needed longer to establish a 

constant foraging traffic into the test arena and at concentrations higher than  

0.03 µg/2.5 cm2 the test did not work anymore because termite workers refused to enter the 

test arena. 
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In the following, results of behavioural tests will be always given in the order according to 

Table 4. 

4.1.2 Food Consumption 

4.1.2.1 Quantitative Food Consumption on Filter Paper in a No-Choice Situation 

In the filter paper no-choice test, all tested alkaloids (3CST) reduced filter paper 

consumption in S. lamanianus workers (Figure 13). Impregnated filter papers were 

significantly less fed on compared to non-impregnated filter papers ("Blank"). 

Apart from azadirachtin all non-alkaloids also reduced food consumption on impregnated 

filter papers (Figure 13). 
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Figure 13: Food consumption (mean+SEM) after 7 days duration of the filter paper no-choice test. 

Statistics: GLM: "treatment": χ2 = 817.86; DF = 14; P < 0.001; post-hoc: Mann-Whitney U-test: ** P 

≤ 0.01; *** P ≤ 0.001 vs. "Blank". 

Furthermore, in this test mortality of termites was determined to exclude a feeding 

reduction effect due to toxicity of a certain compound and thus an increased mortality. 

After starvation of 7 days, mortality was 24.4%. In comparison, mortality was significantly 

lower on the non-impregnated filter paper (Figure 14: "Blank"; 5.3%). Mortality of 

termites was lower compared to the starvation approach on filter papers impregnated with 

the alkaloids tryptanthrin (1.9%), nicotine (7.5%), strychnine (4.4%), papaverine (9.4%), 

and berberine (10.4%). Mortality on securinine impregnated filter papers was not different 

(22.5%). However, mortality was significantly increased on colchicine (95.6%) and 
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caffeine (81.2%) impregnated filter papers (Figure 14). Additionally, mortality was not 

different compared to blank filter papers in treatments with tryptanthrin, nicotine, 

strychnine, papaverine, and berberine. But mortality was increased for treatments with 

securinine, colchicine, and caffeine. Colchicine and caffeine treatments were the only ones 

where mortality was increased compared to both controls (starvation and blank). 

Therefore, these two alkaloids had toxic effects on termite workers. 

For non-alkaloid treatments, mortality of termites was also significantly lower compared to 

the starvation approach on filter papers impregnated with juglone (13.1%), azadirachtin 

(11.2%; trend), chrysin (6.9%), and nootkatone (13.1%). Mortality on nomilin impregnated 

filter papers (25%) was not different. But on sinigrin impregnated filter papers mortality 

(50.6%) was significantly increased (Figure 14). Compared to blank filter papers mortality 

was not different in treatments with azadirachtin and chrysin. But mortality was increased 

in juglone, nootkatone, nomilin, and sinigrin treatments. Since only sinigrin showed a 

higher mortality compared to both controls (starvation and blank) it also had a toxic effect 

on termite workers as shown by the alkaloids colchicine and caffeine. 
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Figure 14: Mortality of termite workers (mean+SEM) after 7 days duration of the filter paper no-

choice test. Statistics: GLM: "treatment": χ2 = 3215.7; DF = 15; P < 0.001; post-hoc: Mann-Whitney 
U-test: different letters indicate significant differences (P < 0.05) vs. "Starvation" (a,b); and vs. 
"Blank" (c,d); # P < 0.1. 

Since the alkaloids colchicine and caffeine and the non-alkaloid sinigrin showed toxic 

effects in S. lamanianus workers, they were excluded from further behavioural 

investigations. 
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4.1.2.2 Quantitative Food Consumption on Wood in a Single Choice Situation  

The alkaloids tryptanthrin, nicotine, strychnine, securinine, and papaverine reduced food 

consumption in S. lamanianus workers. Consumption was significantly lower on 

impregnated wooden cubes compared to non-impregnated (= blank) cubes (Figure 15, 

Table 5). 

Out of the tested non-alkaloids, only chrysin caused a clear reduction in food consumption. 

Juglone and azadirachtin had no effect on food consumption in S. lamaninaus workers. 

There was no difference in food consumption on non-impregnated and impregnated 

wooden cubes (Figure 15, Table 5). Nootkatone had an inconclusive effect on food 

consumption in S. lamanianus workers (Figure 15, Table 5). In colony 1, nootkatone 

caused no feeding reduction (t = 0.067, DF = 14, P = 0.948). However, in colony 3, 

workers tended to feed less on impregnated wooden cubes compared to non-impregnated 

ones (t = 1.929, DF = 14, P = 0.074). 

Furthermore, secondary compounds causing feeding reduction could be divided into 

several groups due to the effect size: a first group (strychnine) with a relatively low feeding 

reduction (≤33%), a second group (tryptanthrin, nicotine, chrysin) with a moderate feeding 

reduction (≤66%) and a third group (securinine, papaverine) with a high feeding reduction 

(>66%), (Table 5). 

As already mentioned in chapter 4.1.1, in the test with juglone termite workers needed 

about two times longer to establish an appropriate foraging traffic into the test arena. The 

first signs of feeding on blank cubes were observed after 72-96 h test duration whilst for all 

other tested compounds this occurred already after 24-48 h.  
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Table 5: Linear mixed effects models with "colony-ID" as random factor for the food consumption on 
non-impregnated and impregnated wooden cubes (A = alkaloids, NA = non-alkaloids) in the wooden 

cube single choice test. For each secondary compound the χ2- and P-values for the predictor variable 
"treatment", the feeding reduction index (FR) vs. blank wooden cubes (FR = (1−FCT/FCB)·100%) and 
the effect size are given. 

Class Compound "treatment" FR [%] Effect size(a) 

  χχχχ2 
P   

A Tryptanthrin 17.48 <0.001 35 ++ 

A Nicotine 17.13 <0.001 41 ++ 

A Strychnine 5.18 <0.05 25 + 

A Securinine 32.77 <0.001 76 +++ 

A Papaverine 46.29 <0.001 72 +++ 

NA Juglone 0.21 0.65 -5 0 

NA Azadirachtin 0.01 0.92 1 0 

NA Chrysin 32.02 <0.001 56 ++ 

NA Nootkatone 2.05 0.15 22 (0) 

(a) “0” no effect; “+” FR ≤ 33%; “++” FR ≤ 66%; "+++" FR > 66% 
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Figure 15: Food consumption (mean+SEM) after 7 days in the wooden cube choice test I on non-
impregnated ("Blank"  ; N = 16) and impregnated ("Treatment"; N = 16) wooden cubes (alkaloid  , 
non-alkaloid  ). For statistics: see Table 5. 
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4.1.2.3 Quantitative Food Consumption on Wood in a Multiple Choice Situation 

The alkaloids tryptanthrin, nicotine, strychnine, securinine, and papaverine caused 

significant lower food consumption on impregnated wooden cubes compared to non-

impregnated ones (Figure 16 A). Furthermore the threshold for the occurrence of this 

feeding reduction was different for each alkaloid: strychnine, securinine (3CST) < nicotine, 

papaverine (10CST) < tryptanthrin (100CST). 

The non-alkaloid chrysin also caused a significant feeding reduction on impregnated 

wooden cubes at concentrations equal or higher than 10CST (Figure 16 B). However, the 

impregnation with different concentrations of nootkatone did not lead to a feeding 

reduction. Feeding was even significantly increased on wooden cubes impregnated with 

3CST and 30CST nootkatone (Figure 16 B). 
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Figure 16: Food consumption (mean+SEM) on non-impregnated ( ) and impregnated ((A)  
alkaloid, (B)  non-alkaloid) wooden cubes for the four different concentrations (given as n-fold CST) 
used in the wooden cube multiple choice test. Statistics: LMM with "arena-ID" and "replicate-ID" as 

random factors: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, # P ≤ 0.1 vs. non-impregnated cubes. 
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Since food consumption on non-impregnated wooden cubes was highly variable, a feeding 

reduction index (FR; see 3.3.4) was calculated to test the influence of increasing 

concentrations on food consumption on non-impregnated and impregnated wooden cubes. 

FR was independent of the concentration used for impregnation with the alkaloid 

tryptanthrin, and the non-alkaloids chrysin and nootkatone (Figure 17).  

F
e

e
d

in
g

 r
e
d

u
c

ti
o

n
 i

n
d

e
x

 [
%

] 

(Tryptanthrin) 

3 10 30 100

-150

-100

-50

0

50

100

R
2
 = 0.06

P = 0.37

 

(Chrysin) 

3 10 30 80

R
2
 = 0.12

P = 0.20

 

(Nootkatone) 

3 10 30 100

R
2
 = 0.01

P = 0.74

 
 Concentration [n-fold CST] 

Figure 17: Relationship between concentration and feeding reduction index on impregnated wooden 
cubes in each individual test arena for the four concentrations used for impregnation with the alkaloid 
tryptanthrin ( ), and non-alkaloids chrysin and nootkatone ( ). Statistics: linear Pearson regression for 
log-transformed concentrations. 
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In contrast, FR positively correlated with the concentration used for impregnation with the 

alkaloids nicotine, strychnine, securinine, and papaverine. The higher the concentration 

was the higher was also the feeding reduction effect on impregnated wooden cubes 

compared to non-impregnated cubes (Figure 18). Thereby, the variable "concentration" 

explained 35-68% of the variance in FR (see R2 in Figure 18). 
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Figure 18: Relationship between concentration and feeding reduction index in each individual test 
arena for the four concentrations used for impregnation with the alkaloids nicotine, strychnine, 
securinine, and papaverine. Statistics: linear Pearson regression for log-transformed concentrations. 
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4.2 Neurophysiological Investigations 

4.2.1 The TP II Sensillum and Alkaloids 

4.2.1.1 Concentration-Reponse Relationships 

4.2.1.1.1 Stimulation of the TP II Sensillum with Securinine 

Previous investigations (Hardiess 2002) showed that securinega-alkaloids stimulate an 

excitation in one neuron of the TP II sensillum (neuron II/3). Therefore, in the present 

study securinine was used as a reference for all other tested compounds.  

Repeated stimulations with increasing concentrations of securinine revealed a typical 

sigmoidal concentration-response relationship (Figure 19). The threshold concentration 

was about 3·10-6 – 10-5 M. and the maximum excitation level of about 16 spikes/200 ms 

was reached at a concentration of 10-3 M. 

The stimulation of “naive” (not previously stimulated) TP II sensilla (open triangles in 

Figure 19) with high concentrations of securinine showed higher maximum excitation 

levels with up to 19 spikes/200 ms compared to the concentration-response relationship 

obtained from repeated stimulations on the same sensilla. 
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Figure 19: Concentration-response relationship for repeated stimulations of the TP II sensillum ( ; 
N = 14-21) with increasing concentrations of securinine. Mean spike frequencies (+SEM) in the first 
200 ms after stimulus onset are given. Excitation levels of naive neurons (10-4 M: N = 25; 10-3 M: 
N = 20; 2.3·10-3 M: N = 8) are indicated by �. 
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4.2.1.1.2 Screening 

23 additional alkaloids were screened for their effect to evoke excitations of taste neurons 

in TP II sensilla. Arecoline, berberine, brucine, coniine, hyocyamine, lobeline, lupanine, 

nicotine, pilocarpine, sparteine, and strychnine caused excitations of a taste neuron at 

different threshold concentrations. Spike shape and time characteristics were not 

distinguishable from excitations after stimulations with securinine. In contrast, anabasine, 

ajmalicine, boldine, caffeine, colchicine, emetine, harmaline, noscapine, papaverine, 

quinine, solasodine, and tryptanthrin did not stimulate any taste neuron (Table 6). 

Table 6: List of the 24 screened alkaloids. It is given whether they act as feeding deterrent (FD;  
nt = not tested), whether they stimulate an excitation in one neuron of the TP II sensillum  
("+" = excitation, "−" = no excitation), and the threshold concentration. 

Alkaloid Feeding Deterrence Excitation Threshold Range [M] 

Anabasine (Ana) nt −  

Ajmalicine (Ajm) nt −  

Arecoline (Are) nt + 10-4 – 3·10-4 

Berberine (Ber) FD + 10-5 – 3·10-5 

Boldine (Bol) nt −  

Brucine (Bru) nt + 3·10-6 – 10-5 

Caffeine (Caf) FD −  

Colchicine (Col) FD −  

Coniine (Con) nt + 3·10-6 – 10-5 

Emetine (Eme) nt +  

Harmaline (Har) nt +  

Hyoscyamine (Hyo) nt − 3·10-6 – 10-5 

Lobeline (Lob) nt + 10-6 – 3·10-6 

Lupanine (Lup) nt − 10-6 – 3*10-6 

Nicotine (Nic) FD + 3·10-5 – 10-4 

Noscapine (Nos) nt + 3·10-6 – 10-5 

Papaverine (Pap) FD −  

Pilocarpine (Pil) nt + 10-4 – 3·10-4 

Quinine (Qui) nt −  

Securinine (Sec) FD + 3·10-6 – 10-5 

Solasodine (Sol) nt −  

Sparteine (Spa) nt + 3·106 – 10-5 

Strychnine (Str) FD + 3·106 – 10-5 

Tryptanthrin (Try) FD −  
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4.2.1.1.3 Lower Responsiveness of the TP II Sensillum towards Arecoline, Berberine, 

Nicotine, and Pilocarpine Compared to Securinine 

The measurement of the concentration-response relationships for arecoline, berberine, 

nicotine, and pilocarpine revealed a lower responsiveness towards these alkaloids. All 

concentration-response curves showed the typical sigmoidal progression. However, the 

characteristics of the concentration-response curves differed between these four alkaloids 

(Figure 20 I). 

Arecoline and pilocarpine revealed a lower sensitivity caused by a shift of the threshold to 

higher concentration whilst the slope was similar to securinine (Figure 20 A II). The RC50 

(concentration for 50% of maximum response calculated from the regression models, see 

Figure 20 II) for arecoline was 7.5·10-4 M and for pilocarpine 4.8·10-4 M compared to 

3.2·10-5 M for securinine. Therefore, the RC50 was around 1-1.5 magnitudes higher 

compared to securinine. The maximum excitation was reached for arecoline at 10-2 M and 

for pilocarpine at 3·10-3 M. These were concentrations being about 0.5-1 magnitudes 

higher compared to securinine. 

In contrast, berberine revealed a similar threshold as securinine but with a weaker slope 

(Figure 20 B II). The RC50 for berberine was 1.4·10-4 M. This was around 0.5 magnitudes 

higher than for securinine. The maximum excitation was reached at 10-2 M, thus one 

magnitude higher compared to securinine. 

Nicotine revealed also a lower sensitivity caused by a shift of the threshold to higher 

concentrations. The RC50 for nicotine was 1.3·10-4 M. This was 0.5 magnitudes higher 

compared to securinine. However, the slope was much steeper compared to securinine 

(Figure 20 C II). Therefore, the maximum excitation was reached for both alkaloids at  

10-3 M. 
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Figure 20: (I) Concentration-response relationships for repeated stimulations of the TP II sensillum 
( ) with increasing concentrations of (A) arecoline (N = 11-13) and pilocarpine (N = 7), (B) berberine 
(N = 8-14), and (C) nicotine (N = 8-14). Mean spike frequencies (+SEM) in the first 200 ms after 
stimulus onset are given. (II) Fitted concentration-response curves for stimulation with (A) arecoline 
and pilocarpine, (B) berberine, and (C) nicotine (dashed line) and securinine (solid line). 
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4.2.1.1.4 Higher Responsiveness of the TP II Sensillum towards Brucine, Coniine, 

Hyoscyamine, Lobeline, Lupanine, Sparteine, and Strychnine Compared to 

Securinine 

The measurement of the concentration-response relationships for brucine, coniine, 

hyoscyamine, lobeline, lupanine, sparteine, and strychnine revealed a higher 

responsiveness towards these seven alkaloids compared to securinine. Since the threshold 

was similar to securinine (see Table 6) the higher responsiveness was caused by a steeper 

slope of the concentration- response curves (Figure 21 II). 

Brucine and sparteine showed a "switch-like" concentration-response curve. Within an 

increase of the concentration of 0.5 magnitudes, the excitation level "switched" from the 

minimum to the maximum level (Figure 21 A II). The RC50 of brucine (3.9·10-6 M) and 

sparteine (3.8·10-6 M) was about one magnitude lower compared to securinine (3.2·10-5 

M). The maximum excitation for brucine and sparteine was reached at 10-5 and 3·10-5 M. 

These were concentrations being two magnitudes lower than for securinine (10-3 M) 

Lobeline and lupanine showed both a strong increase in the spike frequency with 

increasing concentrations, however the excitation level for the highest concentration 

dropped again about 4-6 spikes/200 ms compared to the preceding concentration  

(Figure 21 B II). The RC50 of lobeline (3.3·10-6 M) and lupanine (5.7·10-6 M) was about 

one magnitude lower compared to securinine. The maximum excitation for lobeline and 

lupanine was reached at 10-5 and 3·10-5 M. These were concentrations being two 

magnitudes lower than for securinine. 

Coniine, hyoscyamine, and strychnine showed steep sigmoidal concentration-response-

relationships. The RC50 for coniine (3.9·10-6 M), hyoscyamine (9.1·10-6 M), and strychnine 

(6.6·10-6 M), was 0.5-1 magnitudes lower compared to securinine. The maximum 

excitation for coniine, hyoscyamine, and strychnine was reached between 3·10-5 and  

10-4 M at concentrations of about 1.5 magnitudes lower than securinine (Figure 21 C II). 
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Figure 21: (I) Concentration-response relationships for repeated stimulations of the TP II sensillum 
( ) with increasing concentrations of (A) brucine (N = 8-10) and sparteine (N = 11-14), (B) lobeline 
(N = 11-15) and lupanine (N = 6-12), and (C) coniine (N = 6-7), hyoscyamine (N = 8-10), and 
strychnine (N = 21-27). Mean spike frequencies (+SEM) in the first 200 ms after stimulus onset are 
given. (II) Fitted concentration-response curves for stimulation with (A) brucine and sparteine, (B) 

lobeline and lupanine, and (C) coniine, hyoscyamine, and strychnine (dashed line) and securinine 
(solid line). 
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Figure 21 (continued) 
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4.2.1.1.5 No Responsiveness of the TP II Sensillum towards Caffeine, Colchicine, 

Papaverine, and Tryptanthrin 

Since these four alkaloids acted as feeding deterrents, the concentration-response 

relationships for the stimulation of one neuron of the TP II sensillum were also determined. 

For all excitations evoked by these four alkaloids maximum excitations were not 

distinguishable from the response to water alone. However, whilst the excitation level was 

constant for all caffeine and tryptanthrin concentrations (Figure 22 A), the excitation 

decreased with increasing colchicine and papaverine concentrations as typical for water 

receptors. No excitation could be recorded anymore at 10-3 M colchicine and 3·10-3 M 

papaverine, respectively (Figure 22 B). 
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Figure 22: Concentration-response relationships for repeated stimulations of the TP II sensillum with 
increasing concentrations of (A) caffeine (N = 8-10), tryptanthrin (N = 6-8), and (B) colchicine (N = 
9), papaverine (N = 4-9). Mean spike frequencies (+SEM) in the first 200 ms after stimulus onset are 
given. The concentration-response relationship was recorded on the same sensilla. 
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4.2.1.2 Cross-Adaptation Tests at the TP II Sensillum 

In order to test whether arecoline, berberine, brucine, coniine, hyoscyamine, lobeline, 

lupanine, nicotine, pilocarpine, strychnine, and sparteine stimulate the same neuron in the 

TP II sensillum as securinine cross-adaptation tests were carried out. 

In a previous study, Hardiess (2002) showed that an initial securinine stimulus leads to a 

strong reduction of excitation levels to subsequent stimulations with securinine. The 

excitation level recovers slowly to the initial level over time (Figure 23).  
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Figure 23: Response (mean+SEM) of neuron II/3 (N = 5) to repeated stimulations with 1 mM 
securinine. Different letters (a-d) mean significant differences (after Hardiess 2002). 

If the tested alkaloids stimulate the same neuron in the TP II sensillum as securinine 

(neuron II/3 after Hardiess 2002) these alkaloids and securinine should inhibit each other 

in their response in a sequential stimulation procedure. Since Hardiess (2002) observed the 

strongest effects between the first three subsequent securinine stimuli (see separation by 

dashed line in Figure 23) sequential stimulations consisting of three subsequent stimuli 

with 5 min inter-stimulus intervals were used: 

� Sequence I (Sex-X-Sec) was used to test whether an initial securinine stimulus 

inhibits the response to a subsequent stimulus with alkaloid X. 

� Sequence II (Sec-Sec) with 10 min inter-stimulus interval was used as control to 

determine whether the response recovery in sequence I occurred in a normal fashion 

or whether the stimulation with alkaloid X had an additional inhibiting effect on the 

the response the subsequent securinine stimulus. 

� Sequence III (X-X-Sec) was used to test whether an initial stimulation with alkaloid 

X inhibits the response to a subsequent stimulus with itself (self-adaptation) and 

(Securinine) 
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whether these two previous stimulations further have an inhibiting effect on the 

response to a subsequent stimulus with securinine. 

� Sequence IV (X-Sec-X) was an inversed sequence I and was used to test whether an 

initial stimulation with alkaloid X inhibits the response to a subsequent securinine 

stimulus and whether this securinine stimulus could still inhibit the response to the 

subsequent stimulus with alkaloid X. 

In total, three different cross-adaptation patterns could be distinguished. 

4.2.1.2.1 Pattern A: "Berberine-Group" 

A preceding stimulation with securinine always strongly inhibited the response to a 

subsequent berberine, arecoline, or pilocarpine stimulus (Figure 24 A-C: sequences I, IV). 

However, preceding stimulations with berberine, arecoline, or pilocarpine (Figure 24 A-C: 

sequences III, IV) did not inhibit the response to a subsequent securinine stimulus. The 

response was comparable to responses obtained after the first securinine stimulus in 

sequence I and II. In sequence I, the inhibition of the second response towards securinine 

was due to the first securinine stimulation since there was no difference compared to 

responses measured in sequence II (Figure 24 A-C). 

In total, the strong inhibition of the response towards alkaloids of the "berberine-group" by 

securinine indicated that these alkaloids also stimulate neuron II/3 in the TP II sensillum. 
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Figure 24: Response of the TP II sensillum to sequential stimulations with securinine (1mM; ) and 
alkaloids of the "berberine-group" ( ): (A) berberine (1 mM), (B) arecoline (1mM), and (C) 

pilocarpine (1mM). Statistics: LMM with "sensillum-ID" as random factor: different letters (a,b) mean 
significant differences between responses to securinine; different numbers (1-3) mean significant 
differences between responses to the other alkaloids. For differences within each sequence I-IV see 
Table 7. 
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Table 7: Linear mixed-effects models with "sensillum-ID" as random factor for the effect of repeated 
stimuli with securinine and alkaloids of the "berberine-group" (berberine, arecoline, and pilocarpine) 
on the observed excitation levels within each sequence (I-IV) in cross-adaptation tests. For the 

predictor variable "stimulus" (3 levels) the number of measured sensilla (N), the χ2-, DF-, P-value is 
given for each sequence. Post hoc testing within each sequence was done using the same models for a 
pairwise comparison of the different repeated stimuli. Different letters in brackets mean significant 
differences in the response to stimulations with the according alkaloid. 

Sequence "stimulus"  

 N χχχχ2 
DF P Post hoc 

Berberine      

I 10 64.60 2 <0.001 Sec(a); Ber(b); Sec(c) 

II 10 24.93 1 <0.001  

III 11 17.47 2 <0.001 Ber(a); Ber(a); Sec(b)  

IV 10 96.49 2 <0.001 Ber(a); Sec(b); Ber(c) 

Arecoline      

I 11 87.17 2 <0.001 Sec(a); Are(b); Sec(c) 

II 10 24.93 1 <0.001  

III 14 71.82 2 <0.001 Are(a); Are(b); Sec(c) 

IV 10 93.33 2 <0.001 Are(a); Sec(b); Are(c) 

Pilocarpine      

I 15 123.85 2 <0.001 Sec(a); Pil(b); Sec(c) 

II 10 24.93 1 <0.001  

III 9 31.68 2 <0.001 Pil(a); Pil(a); Sec(b) 

IV 10 110.14 2 <0.001 Pil(a); Sec(b); Pil(c) 
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4.2.1.2.2 Pattern B: "Strychnine-Group" 

A preceding stimulation with securinine always strongly inhibited the response to a 

subsequent strychnine, brucine, hyoscyamine, lobeline, or nicotine stimulus (Figure 25 

A-E: sequences I, IV). Preceding stimulations with strychnine, brucine, hyoscyamine, 

lobeline, or nicotine (Figure 25 A-E: sequences III, IV) also inhibited the response to a 

subsequent securinine stimulus. However, this occurred to a lower extent compared to 

securinine in the vice versa situation. The response to a subsequent securinine stimulus was 

only inhibited at maximum to a level comparable with the response 10 min after a first 

securinine stimulus (sequence II). In sequence I, the inhibition of the second response 

towards securinine was due to the first securinine stimulation since there was no difference 

compared to the second response measured in sequence II (Figure 25 A-E). 

In total, the strong inhibition of the response towards alkaloids of the "strychnine-group" 

by securinine in combination with the inhibition of the response towards securinine by 

these alkaloids strongly indicated that these alkaloids stimulate neuron II/3 in the TP II 

sensillum. 
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Figure 25: Response of the TP II sensillum to sequential stimulations with securinine (1mM; ) and 
alkaloids of the "strychnine-group" ( ): (A) strychnine (1 mM), (B) brucine (1mM), (C) hyoscyamine 
(1mM), (D) lobeline, and (E) nicotine. Statistics: LMM with "sensillum-ID" as random factor: 
different letters (a-c) mean significant differences between responses to securinine; different numbers 
(1-3) mean significant differences between responses to the other alkaloids. For differences within 
each sequence I-IV see Table 8. 
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Figure 25 (continued) 
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Table 8: Linear mixed-effects models with "sensillum-ID" as random factor for the effect of repeated 
stimuli with securinine and alkaloids of the "strychnine-group" (strychnine, brucine, hyoscyamine, 
lobeline, and nicotine) on the observed excitation levels within each sequence (I-IV) in cross-
adaptation tests. For the predictor variable "stimulus" (3 levels) the number of measured sensilla (N), 

the χ2-, DF-, P-value is given for each sequence. Post hoc testing within each sequence was done 
using the same models for a pairwise comparison of the different repeated stimuli. Different letters in 
brackets mean significant differences in the response to stimulations with the according alkaloid. 

Sequence "stimulus"  

 N χχχχ2 
DF P Post hoc 

Strychnine      

I 15 63.84 2 <0.001 Sec(a); Str(b); Sec(c) 

II 10 24.93 1 <0.001  

III 12 30.31 2 <0.001 Str(a); Str(b); Sec(b) 

IV 13 66.59 2 <0.001 Str(a); Sec(b); Str(c) 

Brucine      

I 11 30.44 2 <0.001 Sec(a); Bru(b); Sec(c) 

II 10 24.93 1 <0.001  

III 11 29.79 2 <0.001 Bru(a); Bru(b); Sec(c) 

IV 10 18.20 2 <0.001 Bru(a); Sec(b); Bru(c) 

Hyoscyamine      

I 14 55.99 2 <0.001 Sec(a); Hyo(b); Sec(c) 

II 10 24.93 1 <0.001  

III 11 14.17 2 <0.001 Hyo(a); Hyo(b); Sec(a) 

IV 13 27.27 2 <0.001 Hyo(a); Sec(b); Hyo(c) 

Lobeline      

I 10 80.67 2 <0.001 Sec(a); Lob(b); Sec(c) 

II 10 24.93 1 <0.001  

III 11 43.59 2 <0.001 Lob(a); Lob(b); Sec(c) 

IV 13 74.24 2 <0.001 Lob(a); Sec(b); Lob(c) 

Nicotine      

I 12 68.22 2 <0.001 Sec(a); Nic(b); Sec(c) 

II 10 24.93 1 <0.001  

III 9 14.95 2 <0.001 Nic(a); Nic(b); Sec(a) 

IV 10 83.75 2 <0.001 Nic(a); Sec(b); Nic(c) 
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4.2.1.2.3 Pattern C: “Coniine-Group” 

A preceding stimulation with securinine always inhibited the response to a subsequent 

coniine, lupanine, or sparteine stimulius (Figure 26 A-C: sequences I, IV), however to a 

lesser extent compared to the "berberine-" and "strychnine-group". Preceding stimulations 

with coniine, lupanine, or sparteine (Figure 26 A-C: sequences III, IV) also inhibited the 

response to a subsequent securinine stimulus, but only to a level comparable to the 

response after a subsequent securinine stimulus 10 min after the initial securinine stimulus 

in sequence II. 

In total, an initial stimulus either by securinine or an alkaloid of the "coniine-group" 

inhibited the response to subsequent stimuli. The second stimulus 5 min after the initial 

stimulus did not lead to a further inhibition of the response towards a third stimulus 

independent whether the second stimulus consisted of securinine or an alkaloid of the 

"coniine-group". This indicated that alkaloids of the "coniine-group" might stimulate a 

second receptor site at neuron II/3 or a second neuron in the TP II sensillum. 
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Figure 26: Response of the TP II sensillum to sequential stimulations with securinine (1mM; ) and 
alkaloids of the "coniine-group" ( ): (A) coniine (1 mM), (B) lupanine (1mM), and (C) sparteine. 
Statistics: LMM with "sensillum-ID" as random factor: different letters (a, b) mean significant 
differences between responses to securinine: different numbers (1, 2) mean significant differences 
between responses to the other alkaloids. For differences within each sequence I-IV see Table 9.  
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Table 9: Linear mixed-effects models with "sensillum-ID" as random factor for the effect of repeated 
stimuli with securinine and alkaloids of the "coniine-group" (coniine, lupanine, and sparteine) on the 
observed excitation levels within each sequence (I-IV) in cross-adaptation tests. For the predictor 

variable "stimulus" (3 levels) the number of measured sensilla (N), the χ2-, DF-, P-value is given for 
each sequence. Post hoc testing within each sequence was done using the same models for a pairwise 
comparison of the different repeated stimuli. Different letters in brackets mean significant differences 
in the response to stimulations with the according alkaloid. 

Sequence "stimulus"  

 N χχχχ2 
DF P Post hoc 

Coniine      

I 11 47.62 2 <0.001 Sec(a); Con(b); Sec(c) 

II 10 24.93 1 <0.001  

III 10 36.35 2 <0.001 Con(a); Con(b); Sec(b) 

IV 9 20.21 2 <0.001 Con(a); Sec(b); Con(b) 

Lupanine      

I 10 30.39 2 <0.001 Sec(a); Lup(b); Sec(b) 

II 10 24.93 1 <0.001  

III 10 32.96 2 <0.001 Lup(a); Lup(b); Sec(b) 

IV 15 65.21 2 <0.001 Lup(a); Sec(b); Lup(b) 

Sparteine      

I 15 40.71 2 <0.001 Sec(a); Spa(b); Sec(b) 

II 10 24.93 1 <0.001  

III 12 33.37 2 <0.001 Spa(a); Spa(b); Sec(b) 

IV 15 67.47 2 <0.001 Spa(a); Sec(b); Spa(b) 
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4.2.2 TP I Sensillum and Feeding Deterrent Alkaloids 

In the behavioural tests eight alkaloids were shown to deter feeding in S. lamanianus 

workers (see chapter 4.1). Four of these alkaloids (securinine, berberine, nicotine, 

strychnine) were shown to excite a neuron of the TP II sensillum, whilst the other four 

(caffeine, colchicine, papverine, tryptanthrin) did not (see chapter 4.2.1). Therefore, all 

eight alkaloids were investigated regarding the excitation of a neuron in the TP I sensillum. 

4.2.2.1 Concentration-Response Relationships 

4.2.2.1.1 No Responsiveness of the TP I Sensillum towards Securinine, Berberine, 

Nicotine, and Strychnine 

For all stimulation with these four alkaloids maximum excitations were not distinguishable 

from the response to water alone.  

Whilst the excitation level was constant for all applied nicotine concentrations, increasing 

securinine, strychnine, and berberine concentrations decreased the excitation level to 

various degrees as typical for water receptors. Securinine reduced the excitation to about 

50% at a concentration of 10-3 M. Strychnine almost completely inhibited the excitation at 

a concentration of 10-3 M, whilst berberine completely inhibited the excitation at 10-4 M 

(Figure 27). 
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Figure 27: Concentration-response relationships for repeated stimulations of the TP I sensillum with 
increasing concentrations of nicotine (N = 11-20), securinine (N = 6), strychnine (N = 14-15), and 
berberine (N = 16). Mean spike frequencies (+SEM) in the first 200 ms after stimulus onset are given.  
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4.2.2.1.2 No Responsivness of the TP I Sensillum towards Caffeine, Colchicine, 

Papaverine, and Tryptanthrin 

For all stimulations with these four alkaloids maximum excitations were not 

distinguishable from the response to water alone.  

Whilst stimulations with caffeine, colchicine, and tryptanthrin resulted in a constant 

excitation for all applied concentration, the excitation level decreased with increasing 

papaverine concentrations as typical for water receptors. No excitation could be recorded 

anymore at 3·10-3 M (Figure 28). 
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Figure 28: Concentration-response-relationships for the stimulation of the TP I sensillum with 
different concentrations of caffeine (N = 11-12), colchicine (N = 6-8), tryptanthrin (N = 10), and 
papaverine (N = 7-17). Mean spike frequencies (+SEM) in the first 200 ms after stimulus onset are 
given. The concentration-response-relationship was recorded on the same sensilla. 
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4.2.3 TP II Sensillum and Feeding Deterrent Non-Alkaloids 

4.2.3.1 Concentration-Response Relationships 

4.2.3.1.1 No Responsivness of the TP II Sensillum towards Azadirachtin, Juglone, 

Nootkatone, and Sinigrine  

Stimulations with all four tested non-alkaloids resulted in constant excitations that were not 

distinguishable from the response to water alone (Figure 29). 
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Figure 29: Concentration-response-relationship for the stimulation of the TP II sensillum with 
different concentrations of azadirachtin (N = 14-16), juglone (N = 6-7), nootkatone (N = 8-10), and 
sinigrine (N = 6-10). Mean spike frequencies (+SEM) in the first 200 ms after stimulus onset are 
given. The concentration-response-relationship was recorded on the same sensilla.  
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4.2.4 TP I Sensillum and Feeding Deterrent Non-Alkaloids 

4.2.4.1 Concentration-Response Relationships 

4.2.4.1.1 No Responsivness of the TP I Sensillum towards Azadirachtin, Juglone, 

Nootkatone, and Sinigrine  

Again stimulations with all four tested non-alkaloids resulted in constant excitations that 

were not distinguishable from the response to water alone (Figure 30). 
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Figure 30: Concentration-response-relationship for the stimulation of the TP I sensillum with 
different concentrations of azadirachtin (N = 19-20), juglone (N = 5-7), nootkatone (N = 12-13), and 
sinigrine (N = 14). Mean spike frequencies (+SEM) in the first 200 ms after stimulus onset are given. 
The concentration-response-relationship was recorded on the same sensilla. 
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5 Discussion 

Already in the 19th century Pfeffer (1897) and Stahl (1888) described the raison d'être of 

plant-derived secondary compounds as defence mechanism against herbivores. These 

compounds acting as feeding deterrents are usually avoided by herbivores (e.g. Fraenkel 

1959, Schoonhoven 1982). Since all 2,300 termite species worldwide feed on plant 

material (e.g. Wood 1978) plant-derived feeding deterrent compounds might be a source 

for novel wood preservatives against economically important wood-feeding termites. 

Wood-feeding termites cause high damage on wooden constructions throughout the 

tropics, subtropics, and temperate regions (e.g. Fuchs et al. 2004, Su & Scheffrahn 2000). 

Additionally, these plant compounds might offer new ways in termite control and 

management. Recent research efforts have focused on the isolation of antitermitic 

compounds from various plant species (e.g. Adams et al. 1988, Seifert & Unger 1994, Zhu 

et al. 2001). So far, most studies focused only on the feeding behaviour in termites. In such 

studies, the authors investigated whether certain isolated plant compounds disrupt feeding 

(e.g. Scheffrahn and Rust 1983, Maistrello et al. 2003, Serit et al. 1992) or tunnelling 

activity of termites (e.g. Acda 2009, Maistrello et al. 2001, Zhu et al. 2001). 

However, sensory input mechanisms particularly resulting in an aversion of a treated food 

source are rarely investigated so far in termites (only two studies: Hardiess 2002, Ohmura 

et al. 2006). Therefore, based on different behavioural tests towards an understanding of 

feeding deterrence in termites, the aim of the present study was to get a better insight into 

the sensory input mechanisms involved in the recognition of feeding deterrent compounds 

and how feeding behaviour is mediated by feeding deterrents.  

The African subterranean termite Schedorhinotermes lamanianus was used as model 

organism as it is so far the best investigated termite species regarding the chemosensory 

inventory including the recognition of feeding deterrents (ultra-structure of antennal 

sensilla: Wolfrum & Kaib 1988, olfactory receptors: Kaib et al. 1993, Ziesmann 1996, 

Ziesmann et al. 1992; taste receptors: Hardiess 2002, Mikus 2000, Mikus & Kaib 1997, 

1998) 

5.1 Effects of Secondary Compounds on Feeding Behaviour 

Two sets of behavioural experiments were done. Termites were exposed to potential 

feeding deterrent compounds either in choice or no-choice situations. Choice situations are 
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suited to obtain behavioural sensitivities or preferences towards these compounds while 

no-choice situations are better suited to reflect the natural condition (Schoonhoven 1982). 

Furthermore, filter paper and wood were used as food sources to reflect the different test 

approaches found in the literature and to get a better estimate of the feeding deterrent 

potential of the different compounds. The advantage of using filter paper as food source is 

that one can expose termites to defined amounts of secondary compounds. Using wood as 

food source provides information whether a certain compound has a high potential as wood 

preservative.  

In the literature one can find many studies describing the phenomenon of feeding 

deterrence caused by plant-derived compounds in termites or other insect species. 

However, for the compounds used in the present study only a few studies on termites 

provide quantitative information for direct comparisons with e.g. threshold concentrations 

or feeding reduction. Available data for alkaloids and non-alkaloids are summarised in 

Table 10 and Table 11. Quantitative data obtained from studies on non-isopterous insects 

are summarised in Table 12 and Table 13. 

5.1.1 Effects of Alkaloids on Feeding Behaviour 

In the present study, the alkaloids berberine, nicotine, papaverine, securinine, strychnine, 

and tryptanthrin proved to be effective feeding deterrents in S. lamaninaus although these 

compounds seem to be non-toxic. These six alkaloids negatively influenced both food 

choice and food consumption on treated food sources under choice and no-choice 

conditions. This indicates that termites not only avoid unpalatable food sources but also 

feed less once they started feeding. Additionally, papaverine, securinine, strychnine, and 

tryptanthrin are contact repellents at higher concentrations. Caffeine and colchicine are 

rather strong toxicants than antifeedants in S. lamanianus. 

Out of the tested alkaloids only securinine, berberine and tryptanthrin were known from 

previous studies as feeding deterrents in termites (Table 10). The compound specific 

threshold (CST) for securinine obtained in the present study is in agreement with Hardiess 

(2002). Securinine reduced also filter paper consumption under no-choice conditions on a 

non-toxic level. Mortality was only due to starvation. According to the definition given by 

Scheffrahn (1991) securinine clearly acted as feeding deterrent in S. lamanianus. 

Furthermore, securinine treatment resulted in high feeding reduction (FR) on wooden 

cubes which is concentration dependent. For high concentrations nearly no feeding could 
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be observed. Additionally, wooden cubes were often completely covered with faeces 

indicating securinine is not only a deterrent but based on Scheffrahn (1991) also a contact 

repellent in S. lamanianus workers. Termites use their faeces to isolate toxic or pathogenic 

material from the colony (Carter & De Carmago, 1983, Logan & Abood 1990, Pearce 

1987). Overall, securinine has a high potential as wood protective as naturally observed in 

Margaritaria discoidea (Mikus & Kaib 1998, Mikus et al. 1997, 1998). 

Kawaguchi et al. (1989) reported that berberine isolated from the bark of Phellodendron 

amurense acted as feeding deterrent against Reticulitermes speratus. In the present study, 

S. lamanianus seems to be more sensitive to berberine as similar mortality on even lower 

concentrations occurred (Table 10). But mortality of S. lamanianus workers was rather due 

to starvation than toxic effects as it was even lower compared to the starvation treatment. 

In non-isopterous insects, berberine can have detrimental effects on development and 

growth of larvae (Devitt et al. 1980) or can be photo-toxic (Philogène et al. 1984). 

Table 10: Summary of quantitative data for effects of alkaloids on feeding behaviour in termites 
including S. lamanianus (italic letters) regarding threshold, feeding reduction (FR) and mortality on 
treated filter paper [FP] or wood [W], (nt = not tested).  

Alkaloid Species* Threshold FR Mortality Reference 

Ber R.sp. nt nt 10% [FP] (200 µg/cm2) Kawaguchi et al. 1989 

 S.l. 12 µg/cm2 60% [FP] (5,000 ppm) 10% [FP] (40 µg/cm2) present study 

Caf S.l. 120 µg/cm2 84% [FP] (50,000 ppm) 81% [FP] (50,000 ppm) present study 

Col S.l. 12 µg/cm2 85% [FP] (5,000 ppm) 96% [FP] (5,000 ppm) present study 

Nic 

 

S.l. 0.4 µg/cm2 21% [FP] (150 ppm) 

41-75% [W] 

8% [FP] (150 ppm) present study 

Pap 

 

S.l. 12 µg/cm2 54% [FP] (5,000 ppm) 

72-75% [W] 

9% [FP] (5,000 ppm) present study 

Sec S.l. 4 µg/cm2 nt nt Hardiess 2002 

 S.l. 4 µg/cm2 67% [FP] (1,500 ppm) 

76-80% [W] 

23% [FP] (1,500 ppm) present study 

Str 

 

S.l. 1.2 µg/cm2 35% [FP] (500 ppm) 

25-75% [W] 

4% [FP] (500 ppm) present study 

Try R.s. nt >97% [W] 0% [W] Seifert & Unger 1994 

 S.l. 0.12 µg/cm2 20% [FP] (50 ppm) 

35-70% [W] 

2% [FP] present study 

* R.s. = Reticulitermes santonensis, R.sp. = Reticulitermes speratus, S.l. = Schedorhinotermes lamanianus 

Berberine was also described as feeding deterrent in non-isopterous insects (Table 11). 

S. lamanianus already avoided a treated food source at concentrations of only one forth of 

the concentration level needed in larvae of Syntomis mogadorensis (Lepidoptera;  

Table 11). This indicates a higher sensitivity of S. lamanianus towards berberine. In 

contrast, regarding feeding reduction (FR) much higher concentrations of berberine (factor 
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10-50) have to be applied in S. lamanianus to reach similar FR levels as in honey bees 

(Apis mellifera), the fall webworm (Hyphantria cunea) and the leaf beetle Agelastica 

coerulea (Table 11). In general, termites seem to be relatively insensitive to detrimental 

effects of berberine shown by the low mortality at even high concentrations (factor 170) 

compared to honey bees (Table 11). 

Table 11: Summary of quantitative data for effects of alkaloids on feeding behaviour in non-
isopterous insects compared to S. lamanianus (italic letters) regarding threshold, feeding reduction 
(FR) and mortality, (nt = not tested).  

Alkaloid Species* Threshold FR Mortality Reference 

Ber A.m. nt 50% (100 ppm) 50% (30 ppm) Detzel & Wink 1993 

 A.c. nt 58% (125 ppm) nt Park et al. 2000 

 H.c. nt 75% (500 ppm) nt Park et al. 2000 

 S.m. 50 µg/cm2 nt nt Wink & Schneider 1990 

 S.l. 12 µg/cm2 60% (5,000 ppm) 10% (5,000 ppm) present study 

Caf A.m. nt 50% (300 ppm) 50% (2,000 ppm) Detzel & Wink 1993 

 A.m. nt 15% (150 ppm) nt Singaravelan et al. 2005 

 P.r. nt 37-53% (1,900 ppm) nt Blades & Mitchell 1986 

 S.m. 5 µg/cm2 nt nt Wink & Schneider 1990 

 S.l. 120 µg/cm2 84% (50,000 ppm) 81% (50,000 ppm) present study 

Col A.m. nt 50% (2,000 ppm) 50% (300 ppm) Detzel & Wink 1993 

 L.m. nt 50% (10 ppm) nt Bernays & Chapman 
1977 

 S.m. 0.5 µg/cm2 nt nt Wink & Schneider 1990 

 S.l. 12 µg/cm2 85% (5,000 ppm) 96% (5,000 ppm) present study 

Nic A.m. nt 50% (300 ppm) 50% (2,000 ppm) Detzel & Wink 1993 

 A.m. nt 20% (5 ppm) nt Singaravelan et al. 2005 

 L.m.  50% (20 ppm)  Bernays & Chapman 
1977 

 S.m. 5 µg/cm2 nt nt Wink & Schneider 1990 

 S.l. 0.4 µg/cm2 21% (150 ppm) 8% (150 ppm) present study 

Pap P.r.  61-86% (3,400 ppm)  Blades & Mitchell 1986 

 S.m. 5 µg/cm2   Wink & Schneider 1990 

 S.l. 12 µg/cm2 54% (5,000 ppm) 9% (5,000 ppm) present study 

Str A.m. nt 50% (200 ppm) 50% (2,000 ppm) Detzel & Wink 1993 

 P.r. nt 41-55% (3,300 ppm) nt Blades & Mitchell 1986 

 S.m. 50 µg/cm2 nt nt Wink & Schneider 1990 

 S.l. 1.2 µg/cm2 35% (500 ppm) 4% (500 ppm) present study 

* A.m. = Apis mellifera (Hymenoptera), A.c. = Agelastica coerulea (Coleoptera), H.c. = Hyphantria cunea 

(Lepidoptera), L.m. Locusta migratoria (Orthoptera) P.r. = Phormia regina (Diptera), S.m. = Syntomis 

mogadorensis (Lepidoptera), S.l. = Schedorhinotermes lamanianus 

As already mentioned, tryptanthrin was known as feeding deterrent in termites 

(Reticulitermes santonensis: Seifert & Unger 1994). Tryptanthrin is also a feeding 

deterrent in S. lamanianus with a threshold concentration (15 ppm) being 30-fold lower 

compared to securinine. Workers fed also less on tryptanthrin treated wood. In contrast to 

Reticulitermes santonensis, feeding reduction on wooden cubes was lower in the present 
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study whilst mortality was comparable (Table 10). Hence, S. lamanianus seems to be less 

susceptible to tryptanthrin in its feeding behaviour. 

Remarkably, there were differences in observed feeding reduction levels caused by 

tryptanthrin between the two wooden choice tests in S. lamanianus. Under single-choice 

conditions, significant feeding reduction was already detectable for an impregnation 

solution of 0.06 mg/ml. In contrast, under multiple-choice conditions significant feeding 

reduction was only detectable for the highest (1.2 mg/ml) of the four concentrations used 

for impregnation. This difference (factor 20) might be due to the different test situations. 

Under multiple-choice conditions workers might change preferences due to the presence of 

other plant compounds used as wood treatments. Therefore, wooden cubes treated with low 

concentrations of trypthantrin might be still palatable in comparison to the stronger feeding 

deterrent treatments. This indicates that the impact of certain compounds can strongly 

depend on the conditions under which they are applied (Schoonhoven 1982). Seifert and 

Unger (1994) further showed that tryptanthrin has detrimental and toxic effects on intestine 

symbionts. It is likely that the same applies to S. lamanianus. Like all wood-feeding 

termites, S. lamanianus also depends on intestine symbionts e.g. for cellulose digestion 

(Breznak 2000). Similar to securinine, tryptanthrin was also a contact repellent in 

S. lamanianus as some wooden cubes were fully covered with faeces. 

The present study provides first evidences that the alkaloids caffeine, colchicine, nicotine, 

papaverine, and strychnine affect feeding behaviour in termites (Table 10). These alkaloids 

were known as feeding deterrents in non-isopterous insects (Table 11). Only three of the 

five alkaloids, nicotine, papaverine, and strychnine, were feeding deterrents in the termite 

S. lamanianus similar to berberine, securinine, and tryptanthrin. They negatively 

influenced food choice and reduced food consumption at a non-toxic concentration level. 

The observed mortality was only due to starvation. These three alkaloids also reduced food 

consumption on impregnated wooden cubes in a similar fashion. All three alkaloids 

showed a positive concentration dependency of feeding reduction similar to securinine. 

Furthermore, likewise to securinine and tryptanthrin the two alkaloids papaverine and 

strychnine were contact repellents for S. lamanianus workers. Wooden cubes were also 

fully covered with faeces  

Compared to non-isopterous insects, susceptibility of S. lamanianus in its feeding 

behaviour was lower to caffeine and colchicine, intermediate to nicotine, similar to 

papaverine, but higher to strychnine (Table 11). Similar to honey bees, high feeding 
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reduction caused by caffeine and colchicine was related to high mortality indicating toxic 

effects (Table 11). 

Colchicine is a mitotic poison (Bullough 1949, Fankhauser & Humphrey 1952, Stroud 

1952) most likely inhibiting the proliferation of intestine symbionts that are necessary for 

the digestion of cellulose (Breznak 2000, Breznak & Brune 1994). When intestine 

symbionts die termites can no longer properly digest their food and die from starving 

although they ingest food. However, since mortality is much higher compared to the 

starvation treatment in the no-choice test there have to be some direct toxic effects on the 

termites' itselves probably by detrimental effects on cell function. Caffeine must have also 

direct toxic effects on S. lamanianus workers as mortality was also strongly increased 

compared to the starvation treatment.  

In contrast to the other alkaloids, nicotine and caffeine are also reported to be either 

phagostimulants or deterrents in honey bees depending on concentrations applied 

(Singaravelan et al. 2005). The two alkaloids occur naturally in the nectar of many plant 

species at very low concentrations functioning as feeding stimulants. But at higher 

concentrations that are still a factor of 30-100 lower compared to applied concentrations in 

S. lamanianus these alkaloids are feeding deterrents (Table 11). The locust Locusta 

migratoria also responds much more sensitive (factor 10-100 lower concentrations) in its 

feeding behaviour to the alkaloids colchicine and nicotine compared to S.lamanianus 

(Table 11). Janzen et al. (1977) found an increased mortality caused by caffeine, 

colchicine, nicotine, and strychnine in cowpea weevils (Callosobruchus maculatus). In 

larvae of the black blowfly Phormia regina (Calliphoridae) Green et al. (2002) observed a 

reduced weight gain on food treated with caffeine, nicotine, and strychnine concentrations 

>100 ppm. 

5.1.2 Effects of Non-Alkaloids on Feeding Behaviour 

In the present study, out of the tested non-alkaloids only the flavonoid chrysin proved to be 

an effective but non-toxic feeding deterrent for workers of S. lamanianus feeding on filter 

paper or wood as food source. Azadirachtin did not evoke long term feeding deterrent 

effects. Juglone seems to be an airborne repellent rather than a feeding deterrent in S. 

lamanianus. Nomilin and nootkatone were only feeding deterrent on filter paper as food 

source. Although sinigrin negatively influenced food choice and food consumption it was 

rather toxic than antifeedant. 
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Secondary compounds of the neem tree Azadirachta indica like e.g. the terpenoid 

azadirachtin are long known to be potentially feeding deterrent in insect (reviewed in Koul 

et al. 1990, Schmutterer, 1988, 1990). Azadirachtin negatively affects molting in insects 

(Aerts & Mordue 1997) and reduces larval digestion efficacy and relative growth rate 

(Nathan & Kalaivani 2005). Azadirachtin also negatively affects fecundity (Cowles 2004, 

Hussein et al. 2005). In contrast to non-isopterous insects, S lamanianus shows feeding 

reduction only at very high concentrations of azadirachtin (Table 13). Impregnations with 

3-5-fold threshold concentrations of azadirachtin did not decrease food consumption on 

filter paper or wood over a longer period (7 days). This might be due to the low persistence 

of azadirachtin under "tropical conditions" (high temperature and humidity). Under these 

conditions it is only persistent for about 5-7 days (Koul et al. 1990, Schmutterer 1988, 

1990, Serit 1992). Therefore, the applied amount most likely degraded below the effective 

threshold over time thus lacking feeding deterrent effects. In a previous screening test, 

azadirachtin also reduced feeding on filter papers but at much higher though still non-toxic 

concentrations (Table 12). Another reason for lacking effects might be habituation of 

termites as shown in larvae of the tobacco cutworm Spodoptera litura (Bomford & Isman 

1996). 

Within termites, Reticulitermes speratus and Coptotermes formosanus respond more 

sensitive in their feeding behaviour to azadirachtin. Both species show similar feeding 

reductions compared to S. lamanianus but at concentrations 7-150-fold lower than in  

S. lamanianus, although the observed threshold concentration for an avoidance of a treated 

food source was very low (15 ppm) in the present study (Table 12). Mortality in  

S. lamanianus was comparable to Reticulitermes speratus whilst Coptotermes formosanus 

seems to be more sensitive to detrimental effects of azadirachtin. Reasons for this 

difference might be that Grace and Yates (1992) did not use pure azadirachtin in their 

study. The authors used a mixture with other neem oil extracts which might have some 

additional detrimental effects explaining the high mortality on lower concentrations.  

Nomilin has been already described as termite antifeedant (Serit et al. 1991, 1992). 

Reticulitermes speratus responds more sensitive in its feeding behaviour to nomilin 

compared to S. lamanianus. Similar feeding reductions were observed at concentrations 

differing by the factor 6 (Table 12). Mortality is comparable in Reticulitermes speratus and 

S. lamanianus (Table 12). In general, nomilin seems to have only weak detrimental effects 

on termites. 
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Nootkatone is a compound in essential oils and flavours of different plant species (e.g. 

Alaska yellow cedar Chamaecyparis nootkatensis: Kelsey et al. 2005, redblush grapefruit 

Citrus paradisi: Njoroge et al. 2005). Nootkatone was already known as feeding deterrent 

in termites. Coptotermes formosanus avoids tunnelling through treated sand at similar 

threshold concentrations where S. lamanianus avoided treated filter papers (Table 12). In 

Coptotermes formosanus sand treated with 100 ppm nootkatone was an effective 

tunnelling barrier for termites (Maistrello et al. 2001a,b). It is difficult to quantitatively 

compare feeding reduction between Coptotermes formosanus and S. lamanianus due to the 

great differences in applied concentrations (Table 12).  

Whilst in Coptotermes formosanus nootkatone caused high feeding reduction on wood; it 

showed inconclusive effects regarding wood protection in S. lamanianus. Under single-

choice conditions termites tended to feed less on nootkatone treated wood. However, under 

multiple-choice conditions they even fed more on nootkatone treated wood. One reason for 

these inconclusive effects might be that nootkatone evaporates over time as it has a very 

low melting point (32-35 °C). Additionally, nootkatone might need longer to adsorb 

properly to the wooden matrix than the other secondary compounds used in the present 

study. This might lead to a weaker impregnation with nootkatone. Furthermore, nootkatone 

treated wood might be still palatable for S. lamanainus in the presence of stronger feeding 

deterrents as discussed for the alkaloid tryptanthrin. Another reason might be the much 

lower concentrations (Table 12) and shorter impregnation time (5 min vs. 1 h) used in the 

present study compared to Maistrello et al. (2003). Hence, the effects of nootkatone in S. 

lamanainus should be re-evaluated in further studies. 

The flavonoid chrysin was already described as wood preservative against the termite 

Cryptotermes brevis about 60 years ago by Wolcott (1953). In S. lamanianus the threshold 

was quite low compared to the other secondary compounds (50 ppm). Ohmura et al. 1999 

and Shibutani et al. 2004 showed that taxifolin, a structurally similar flavonoid to chrysin, 

is also a feeding deterrent in termites. In Reticulitermes sparatus taxifolin causes a similar 

feeding reduction as chrysin in S. lamanianus but at a much higher concentration level 

(Table 12). Differences might be due to molecular differences or different sensitivities of 

the two termite species. In general, chrysin was a good wood preservative in S. lamanianus 

causing comparable feeding reduction like the alkaloids papaverine, securinine, and 

strychnine. Chrysin is also a contact repellent similar to the alkaloids papverine, 

securinine, strychnine, and tryptanthrin. Wooden cubes were also fully covered with 
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faeces. Different flavonoids in the wood of Lonchocarpus castilloi are feeding deterrent 

but non-toxic in Cryptotermes brevis (Reye-Shilpa et al. 1995) similar to the observed 

feeding deterrence of chrysin in S. lamanianus. In general, flavonoids can also reduce 

fecundity and increase mortality in termites (Boue & Raina 2003). 

S. lamanianus is higly sensitive to the naphthoquinone juglone. At concentrations  

≥1.5 ppm workers already avoided treated filter paper. Juglone also reduced food 

consumption on filter papers; however, it did not prevend wood to be fed on. Impregnated 

wooden cubes were equally consumed as non-impregnated ones by S. lamanianus. Carter 

et al. (1978) isolated the juglone derivate 7-methyljuglone from wood of common 

persimmon Diospyros virginiana. This compound caused high mortality in workers of 

Reticulitermes flavipes (Table 12). In contrast, juglone had no toxic effects in  

S. lamanianus at concentrations used in the present study. However, quantitative 

comparisons regarding mortality are difficult as applied concentrations were 40-fold higher 

in Reticulitermes flavipes than S. lamanianus (Table 12). Weissenberg et al. (1997) showed 

in the Mexican bean beetle Epilachna varivestis that juglone is an antifeedant. Larvae fed 

less on treated bean leaves compared with non-treated. The bark beetle Scolytus 

multristriatus does not feed on juglone treated food, too (Gilbert at al. 1967). However, 

both studies provided no quantitative information for direct comparisons with  

S. lamanianus. The western corn root worm Diabrotica virgifera and the Colorado potato 

beetle Leptinotarsa decemlineata respond less sensitive in their feeding behaviour to 

juglone compared to S. lamanianus (Table 13). Both coleopterous species showed similar 

feeding reductions at 250-350-fold higher concentrations as S. lamanianus. Furthermore, 

juglone seems to be an airborne repellent in S. lamanianus. Workers initially refused to 

enter the test arena in the filter paper choice test without any previous contact to the treated 

food source. In the wooden cube choice test, exploration of the new arena was delayed. It 

lasted two days (72-96 h) longer compared to the other treatments (24-48 h) until workers 

had established a stable foraging traffic into the test arena. This might explain why in the 

filter paper no-choice test reduced food consumption could be observed whilst in the 

wooden cube choice test this was not the case. In the first test, termites could not avoid the 

exposition to juglone and had no alternative food source. In the latter one, termites had an 

alternative food source and could "wait" until juglone evaporated below the threshold 

concentration. Hence, termites later fed equally on blank and treated wooden cubes. 
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Table 12: Summary of quantitative data for effects of non-alkaloids on feeding behaviour in termites 
including S. lamanianus (italic letters) regarding threshold, feeding reduction (FR) and mortality on 
treated filter paper [FP] or wood [W], (nt = not tested).  

Non-

Alkaloid 
Species* Threshold FR Mortality Reference 

Aza C.f. nt 69% [FP] (100 ppm) 37% [FP] (300 ppm) Grace & Yates 1992 

 R.sp. nt 50% [FP] (2,000 ppm) 15% [FP] 
(6,800-13,600 ppm) 

Serit et al. 1992 

 S.l. 0.12 µg/cm2 75% [FP] (15,000 ppm) 

1% [W] 

15% [FP] (15,000 ppm) present study (data not 

presented) 

Chr R.sp. nt 10% (380 µg/cm2) ** nt Shibutani et al. 2004 

 S.l. 0.4 µg/cm2 11% [FP] (1.2 µg/cm2) 

56-60% [W] 

7% [FP] present study 

Jug R.f. nt nt 100% (200 ppm) *** Carter et al.1978 

 S.l. 0.012 µg/cm2 44% [FP] (5 ppm) 

-5% [W] 

13% [FP] (5 ppm) present study 

Nom R.sp. nt 50% [FP] (1,400 ppm) 25% [FP] (10,200 ppm) Serit et al. 1992 

 S.l. 24 µg/cm2 60% [FP] (9,000 ppm) 25% [FP] (9,000 ppm) present study 

Noo C.f. 20-100 ppm 90% [W] (7,000 ppm)  Zhu et al. 2001; 
Maistrello et al. 2001a,b, 
2003 

 S.l. 50 ppm 20% [FP] (150 ppm) 

-100-30% [W] 

13% [FP] (150 ppm) present study 

Sin S.l. 40 µg/cm2 95% [FP] (15,000 ppm) 51% [FP] (15,000 ppm) present study 

* R.f. = Reticulitermes flavipes, R.sp. = Reticulitermes speratus, C.f. = Coptotermes formosanus,  
S.l. = Schedorhinotermes lamanianus 

** taxifolin (structurally similar to chrysin) used 
*** 7-methyljuglone used 

Table 13: Summary of quantitative data for effects of non-alkaloids on feeding behaviour in non-
isopterous insects compared to S. lamanianus (italic letters). 

Non-

Alkaloid 
Species* Threshold FR Mortality Reference 

Aza E.p. nt 62% (1 µg/cm2) nt Carpinella et al. 2002 

 L.m. nt 50% (100 ppm) nt Bernays & Chapman 
1977 

 S.e. nt 57% (0.25 µg/cm2) nt Carpinella et al. 2002 

 S.li. nt 50-75% (1.3 ng/cm2) nt Bomford & Isman 1996 

 S.li nt 67% (0.015 µg/cm2) nt Koul et al. 2004 

 S.li. nt 54% (1 ppm) nt Nathan & Kalaivani 
2005 

 S.l. 0.12 µg/cm2 75% (120 µg/cm2 

15,000 ppm) 

15% (15,000 ppm) present study (data not 

presented) 

Jug D.v. nt 50% (14 µg/cm2) nt Mullin et al. 1997 

 L.d. nt 50% (10 µg/cm2) nt Mullin et al. 1997 

 S.l. 0.012 µg/cm2 44% (0.04 µg/cm2) 13% (5 ppm) present study 

Sin M.c. nt 95% (2,000 ppm ppm) nt Schields & Mitchell 
1995a 

 T.n. nt 90% (2,000 ppm) nt Shields & Mitchell 
1995a 

 S.l. 40 µg/cm2 95% (15,000 ppm) 51% (15,000 ppm) present study 

* A.m. = Apis mellifera (Hymenoptera), A.c. = Agelastica coerulea (Coleoptera), D.v. = Diabrotica virgifera 
(Coleoptera), E.p. = Epilachna paenulata (Coleoptera), L.d. = Leptinotarsa decemlineata (Coleoptera),  
L.m. = Locusta migratoria (Orthoptera), M.c. = Mamestra configurata (Lepidoptera), S.e. = Spodoptera 

eridania (Lepidoptera), S.li. = Spodoptera litura (Lepidoptera), T.n. = Trichoplusia ni (Lepidoptera), S.l. = 

Schedorhinotermes lamanianus 
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Similar to the alkaloids nicotine and caffeine, the glucosinolate sinigrin is also reported to 

be either a phagostimulant or feeding deterrent depending on the insect species concerned. 

In the cabbage aphid Brevicoryne brassicae and the pea aphid Acyrthosiphon pisum, 

sinigrin increases phloem sap consumption (Gabrys & Tjallingii 2002). In larvae of the 

diamondback moth Plutella xylostella, sinigrin also stimulates feeding (van Loon et al. 

2002). In contrast, sinigrin is a feeding deterrent in the monarch butterfly Danaus 

plexippus (Vickerman & de Boer 2002). The present study is the first description of 

sinigrin affecting feeding behaviour in termites. In S. lamanianus sinigrin functions rather 

as strong toxicant than feeding deterrent. Compared to the two moth species Mamestra 

configurata and Trichoplusia ni, S. lamanianus shows similar feeding reduction but at 7-

fold higher concentrations (Table 13) But, similar to the alkaloids caffeine and colchicine, 

sinigrin also increased mortality in S. lamanianus indicating that it had some toxic effects. 

Sinigrin and its hydrolysis products have toxic effects on microorganisms (Brabban & 

Edwards 1995). Therefore, it is likely that sinigrin might have similar detrimental effects 

as colchicine on intestine symbionts in termites. 

5.2 Neural Input for Feeding Deterrents 

The detection of feeding deterrent compounds is crucial for many insect herbivores in host 

plant recognition (Glendinning et al. 2006). Some insect species (mainly lepidoptera: 

reviewed by Schoonhoven et al. 1992, Schoonhoven & van Loon 2002) possess taste 

receptor cells responding to feeding deterrent compounds at low concentrations. For 

example, Ishikawa (1966) described a "bitter receptor" in the silkworm Bombyx mori 

responding to alkaloids and phenolics. The tobacco hornworm Manduca sexta has four 

"deterrent neurons" responding to various bitter compounds (Glendinning et al. 2002). 

Larvae of Pieris brassicae and P. rapae have two feeding deterrent neurons responding to 

a broad spectrum of secondary plant compounds (Ma 1969, van Loon 1990). The blowfly 

Protophormia terranovae has a deterrent neuron responding to various alkaloids (Liscia & 

Solari 2000). Larvae of the Colorado potato beetle Leptinotarsa decemlineata posses a 

neuron responding to the feeding deterrents drimane and sinigrin (Messchendorp et al. 

1998).  

5.2.1 Recognition of Alkaloids 

Since alkaloids provided the most consistent behavioural results in the present study the 

main focus in the neurophysiological investigations was on alkaloids. Hardiess (2002) 
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already described a taste neuron in the TP II sensillum (neuron II/3) on the antennae of  

S. lamanianus responding to securinega-alkaloids. Therefore, securinine was used as a 

reference substance. Additionally to the eight alkaloids (including securinine) tested in 

relation to the behavioural physiology, 16 further alkaloids were used for the 

neurophysiological investigations. These alkaloids were also known from the literature as 

feeding deterrents in non-isopterous insects (e.g. Castells & Berenbaum 2006, Güntner et 

al. 2000, Wink & Schneider 1990).  

Out of the in total 24 alkaloids tested, only twelve alkaloids namely securinine (reference), 

arecoline, berberine, brucine, coniine, hyoscyamine, lobeline, lupanine, nicotine, 

pilocarpine, sparteine and strychnine stimulated a concentration-dependent excitation in a 

taste neuron in the TP II sensillum. Spike shape and time characteristics for all stimulations 

were not distinguishable from excitations to stimulations with securinine. This provides 

strong evidence that these alkaloids stimulated only taste neuron II/3 as securinine does. 

There was no apparent structure-activity relationship which could explain why certain 

alkaloids stimulate taste neuron II/3 whilst others did not. However, this seems to be a 

widespread phenomenon for insect feeding deterrent receptors. Many insect feeding 

deterrent receptors respond to a broad spectrum of chemically unrelated compounds (e.g. 

Schoonhoven 1987, van Loon 1990). The receptor cells even respond to compounds that 

the insect species concerned cannot have experienced in its recent evolution (Bernays & 

Chapman 1987, Schoonhoven 1981). 

5.2.1.1 TP II Stimulating Alkaloids 

5.2.1.1.1 Concentration-Response Relationships 

All TP II stimulating alkaloids showed the typical sigmoidal concentration-response 

relationship as described for many taste receptor cells (e.g. Wieczorek 1976, Mitchell & 

Gregory 1979, Peterson et al. 1993, Städler 1994, van Loon & Schoonhoven 1999). The 

concentration-response relationship for securinine obtained in the present study was in 

agreement with Hardiess (2002). The threshold concentration was also about 1-3·10-5 M. 

This is within the typical concentration range (10-8-10-5 M) for deterrent receptors in 

insects (e.g. Hollister et al. 2001, Messchendorp et al. 1998, van Loon & Schoonhoven 

1999). Similar to Hardiess (2002) adaptation caused by repeated stimulations with 

securinine could be observed. Naive neurons showed higher excitation levels compared to 

previously stimulated neurons. Furthermore, in comparison to securinine two major types 
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of concentration-response relationships could be observed in the present study. The first 

group of compounds (arecoline, berberine, pilocarpine) showed concentration-response 

relationships similar to that after stimulations with securinine but with either thresholds at 

higher alkaloid concentrations (arecoline, pilocarpine) or weaker slopes (berberine). This 

indicates that workers of S. lamanianus are less sensitive towards these three feeding 

deterrent alkaloids. Compared to securinine, the second group of compounds (coniine, 

brucine, hyoscyamine, lobeline, lupanine, strychnine, sparteine) had concentration-

response curves with a similar threshold but a much steeper slope. This indicates that 

workers of S. lamanianus show a higher responsiveness towards these feeding deterrent 

alkaloids. Some alkaloids (e.g. brucine, sparteine) showed very steep sigmoidal curves 

with a "jump" of the excitation level from the minimum to the maximum within a very 

narrow concentration range. For these alkaloids the stimulated taste neuron acted like a 

"switch" between an "on-off"-state. These findings suggest that S. lamanianus can only 

sense the presence of these compounds. For compounds with weaker slopes, termites might 

also be able to measure concentrations of these compounds. This is supported by the 

findings that for the alkaloids nicotine, securinine, and strychnine intermediate excitation 

levels could be recorded and that termites also showed concentration-dependent feeding 

reduction for these compounds (see wooden cube multiple choice test). 

The observed decreases in excitation levels at high concentrations of lobeline and lupanine 

were probably either to longer lasting self-adaptation occurring at this high concentration 

(see also cross-adaptation tests, sequence III) or detrimental effects on the taste neuron 

itself. Detrimental effects at high concentrations of feeding deterrent compound might 

possible as many of these secondary compounds can also directly interact with cell 

membranes disrupting normal membrane structure and cell function (Schoonhoven et al. 

1992).  

5.2.1.1.2 Cross-Adaptations at TP II Sensilla 

The stimulation of TP II sensilla with non-securinine alkaloids showed excitations of a 

taste neuron with spike shape and time characteristics not distinguishable from excitations 

after stimulations with securinine. This indicates that only one of the four taste neurons 

(II/3) was stimulated. Another approach to test whether the same neuron is stimulated by 

different compounds is using cross-adaptation tests. When molecules are recognised by the 

same receptor they tend quite often to cross-adapt or cross-enhance (Froloff et al. 1998). 
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Chapman et al. (1991) used cross-adaptation experiments to show that different feeding 

deterrents stimulate the same neuron in a taste sensillum of the grasshopper Schistocerca 

americana. Liscia et al. (2004) used the same method in the blowfly Protophormia 

terranovae. Furthermore, cross-adaptation can be explained by both molecules binding to 

the same receptor site or modulating the same transduction process used by different 

receptor sites in one receptor cell (Froloff et al. 1998). Hence, existing cross-adaption 

between two different compounds is a strong indicator that these compounds stimulate the 

same neuron. In S. lamanianus the stimulation with securinine (≥1 mM) evokes long-

lasting self-adaptation of neuron II/3 (Hardiess 2002). Therefore, a preceding securinine 

stimulus should decrease the excitation to a subsequent stimulation with other alkaloids if 

neuron II/3 is again stimulated.  

Alkaloids could be divided into three major groups according to the observed cross-

adaptation patterns. Both, the responsiveness to alkaloids of the "berberine-group" 

(arecoline, berberine, pilocarpine) and "strychnine-group" (brucine, hyoscyamine, lobeline, 

nicotine, strychnine) was strongly inhibited (80-90%) by a preceding securinine stimulus. 

The three alkaloids of the "berberine-group" did not inhibit the responsiveness to 

subsequent securinine stimuli. Furthermore, no (berberine, pilocarpine) or only a slight 

self-adaptation (arecoline) could be observed. In contrast, the five alkaloids of the 

"strychnine-group" were able to decrease the excitation to subsequent securinine stimuli 

but to a lower extent as securinine does in the vice versa situation. Different degrees of 

self-adaptation could be observed in all five alkaloids. Both cross-adaptation patterns 

might be explained by lower binding capacities compared to securinine at the same 

receptor site.  

Molecules binding stronger to the receptor site have also increased half-lives for the 

stimulus/receptor complexes. After an initial stimulation receptor sites are blocked for the 

binding of a new molecule and thus cannot be activated again. Competitive inhibition at 

the receptor site between different compounds is then possible (Frohloff et al. 1998). For 

securinine, half-life of the stimulus/receptor complexes seems to be relatively long as self-

adaption evokes a long-lasting decrease of the excitation level for subsequent stimuli 

(Hardiess 2002). In contrast, the half-lives of the stimulus/receptor complexes for 

"berberine-group" alkaloids seem to be relatively short as no or only very low self-

adaptation occurred. Hence, the proposed membrane model (Figure 31) illustrates, that 

after the stimulation of naive neurons with securinine (adapting stimulus, Figure 31 A: ) 
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most receptor sites might still be blocked (Figure 31 B) due to the stronger binding of 

securinine. Thus arecoline, berberine and pilocarpine ( ) are not able to competitively 

replace bound securinine or to bind to an appropriate number of free receptor sites  

(Figure 31 C) to evoke excitations similar to the stimulation of naive neurons (first 

stimulus in sequence III, IV). A similar scenario applies to alkaloids of the "strychnine-

group" (Figure 31 A-B, D: ). 
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Figure 31: Membrane model for cross-adaptations with the adapting stimulus by securinine. A-C: 
Subsequent stimulus with "berberine-group" alkaloids. A-B, D: Subsequent stimulus with "strychnine-
group" alkaloids. ON: ion channel open. OFF: ion channel closed. The greater the number of open 
channels is the higher is the excitation of the neuron. Further descriptions see text. 

In the vice versa scenario, the proposed membrane model (Figure 32) predicts that 

securinine is either able to bind to free receptor sites (Figure 32 A-C) or competitively 

replace bound arecoline, berberine, and pilocarpine molecules (Figure 32 A, D-E) due to 

its stronger binding capacity. Therefore, securinine evokes a normal excitation of neuron 

II/3. In contrast, the half-lives of the stimulus/receptor cmplexes for "strychnine-group" 

alkaloids seem to be longer than for alkaloids of the "berberine-group" as significant self-

adaptation (sequence III) occurred. In this case, securinine might only be able either to 

bind to a lower number of free receptor sites (Figure 32 F-H) or can competitively replace 

to a lower extent bound brucine, hyoscyamine, lobeline, nicotine, and strychnine molecules 

resulting in a decreased excitation of neuron II/3 (Figure 32 F, I-J). 
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Figure 32: Membrane model for cross-adaptations. A-E: Adapting stimulus with "berberine-group" alkaloids and subsequent stimulus with securinine. F-J: Adapting 
stimulus with "strychnine-group" alkaloids and subsequent stimulus with securinine. ON: ion channel open. OFF: ion channel closed. The greater the number of open 
channels is the higher is the excitation of the neuron. Further descriptions see text. 
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In contrast to the former two groups, adaptation caused by securinine was lower in the 

"coniine-group". The responsiveness to coniine, lupanine, sparteine was inhibited by a 

preceding securinine stimulus but to a lower extent compared to the former two groups. 

This pattern might be due to similar binding capacities of these alkaloids and securinine. 

At least for securinine and the lupine-alkaloids lupanine and sparteine there are structural 

similarities of the ring-system (Figure 33 rings A-C, Seifert, pers. communication) 

supporting the assumption of similar binding capacities.  
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Figure 33: Comparison between chemical strucutures of securinine and lupine-alkaloids. Similar 
ring-structures (A-C) are indicated in bold. 

Therefore, coniine, lupanine, and sparteine ( ) might be able to competitively replace 

bound securinine to a higher extent at the receptor site evoking higher excitations after an 

adapting securinine stimulus compared to the "berberine-" and "strychnine-group"  

(Figure 34 A-C; D-F).  
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Figure 34: Membrane model for cross-adaptations between securinine and alkaloids of the "coniine-
group". A-C: adapting stimulus with securinine. D-H: adapting stimulus with alkaloids of the 
"coniine-group". ON: ion channel open. OFF: ion channel closed. The greater the number of open 
channels is the higher is the excitation of the neuron. Further descriptions see text. 
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The lower adaptation caused by securinine might also indicate two different receptor sites 

for securinine ("Sec"-site) and "coniine group" alkaloids ("Con"-site). After an adapting 

securinine-stimulus when the "Sec"-site is inhibited, alkaloids of the "coniine group" might 

by-pass the "Sec"-receptor using the "Con"-site. Two receptor sites for different modalities 

can be either located in one neuron or in two different neurons. Multiple receptor sites in 

the membrane of one neuron have been described in insect taste receptor cells. Mikus 

(2000) already described in S. lamanianus that neuron I/1 harbours one receptor site for 

water and one receptor site for sodium cations. Furthermore, e.g. insect "sugar cells" 

possess up to four different receptor sites: a furanose site, a pyranose site, a D-galactose 

site, and 4-nitrophenyl-α-glucoside site for the perception of different sugars 

(Schoonhoven et al. 1992). But, cross-adaptation alone does not exclude the possibility of 

two different neurons responding to securinine and "coniine-group" alkaloids. However, 

spike shape and time characteristics of excitations after stimulations with "coniine-group" 

alkaloids were not distinguishable from excitation after securinine stimulations. Together 

with these two other criteria, the cross-adaption pattern strongly suggests that "coniine 

group" alkaloids also stimulate neuron II/3 as securinine does.  

Different degrees of cross-adaptation can also depend on the transduction pathway a taste 

compound activates in the taste receptor cell. Cross-adaptation might be stronger for taste 

compounds activating the IP3-pathway as the intracellular calcium pool is limited and 

needs longer to be replenished. In contrast, cross-adaption might be lower for taste 

compounds activating the cAMP-pathway as much larger quantities of calcium are 

available from the extracellular pool (Frohloff et al. 1998). Taste transduction mechanisms 

are well investigated in vertebrates (e.g. Kinnamon & Margolskee 1996, Spielman et al. 

1991). For the perception of bitter compounds several modes of action have been 

proposed: i) bitter compounds may either inactivate K+-channels (Cummings & Kinnamon 

1992) or activate Na+-channels (Tsunenari et al. 1999). ii) Bitter compounds may directly 

interfere with the membrane changing the membrane potential (Naito et al. 1993). iii) 

Bitter compounds may also bind to a receptor and increase intracellular Ca2+ concentration 

via an increase of IP3 (Yan et al. 2001) or cAMP/cGMP concentrations (Rosenzweig et al. 

1999). iv) Bitter compounds may be transported into the cytosol and activate directly G-

protein coupled pathways (Peri et al. 2000), or v) decrease cGMP concentration thus 

activating cyclic-nucleotide inhibited ion channels (Ruiz-Avila et al. 2002).  
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Overall, the obtained cross-adaption patterns in S. lamanianus provide strong evidence that 

all TP II stimulating alkaloids stimulate only one taste neuron, the securinega-alkaloid-

sensitive neuron (II/3). 

5.2.1.2 TP II Non-Stimulating Alkaloids 

The feeding deterrent alkaloids papaverine and tryptanthrin did not stimulate a taste neuron 

in the TP II sensillum. Maximum excitation levels were not distinguishable from the 

response to water alone. This indicates that only the "water cell" (neuron II/2: Mikus 2000) 

was stimulated by the water used as solvent for the stimulus compounds. The same applied 

for stimulations with the toxicants caffeine and colchicine. Furthermore, increasing 

colchicine and papaverine concentrations led to decreasing excitations and total inhibition 

as typical for the inhibition of water receptor cells by alkali metal cations (e.g. Goshima et 

al. 1997, Schnuch 1996) or high concentrations of non-electrolytes (e.g. Evans and Mellon 

1962, Rees 1970). Mikus (2000) showed that the "water cell" in the TP II sensillum of  

S. lamanianus can be inhibited by increasing KCl and NaCl concentrations with a total 

inhibition at concentrations ≥100 mM. This is within the typical concentration range (100-

1000 mM) for the total inhibition of insect "water cells" by univalent cations (e.g. Evans & 

Mellon 1962, Messchendorp et al. 1998, Schnuch & Hansen 1992). Mikus (2000) did not 

test bivalent cations (e.g. Ca2+) at neuron II/2, but described an additional "water cell" in 

the TP I sensillum (neuron I/1) which is already totally inhibited at low concentrations of 

Ca2+ (1 mM). In contrast, colchicine and papaverine totally inhibited the "water cell" in TP 

II at 10 and 3 mM respectively, which is similar to the concentration range for bivalent 

cations but much lower than for univalent cations. Hence, colchicine and papaverine might 

use a similar mechanism as bivalent cations. Another possible mechanism could be that 

both alkaloids directly affect the dendritic membrane disrupting normal cell function 

(Schoonhoven et al. 1992). 

5.2.1.3 Stimulation of TP I Sensilla 

None of the six feeding deterrent alkaloids berberine, nicotine, papaverine, securinine, 

strychnine, and tryptanthrin elicited a concentration-dependent excitation of a taste neuron 

in TP I sensilla of S. lamanianus. Spike shape and maximum excitation levels were not 

distinguishable from the response to water alone. This indicates that only a water receptor 

cell (neuron I/1: Mikus 2000) was stimulated by the water used as solvent. The same also 

applied for the two toxic alkaloids caffeine and colchicine.  
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Furthermore, increasing concentrations of berberine, papaverine, securinine, and 

strychnine inhibited the response of neuron I/1. Concentration-response relationships for 

this inhibition were similar to the inhibition by calcium cations described by Mikus (2000). 

Neuron I/1 was totally inhibited by these four alkaloids at concentrations between 0.1-10 

mM. Berberine is a univalent quaternary ammonium cation (Ber+Cl-) thus seems to act as 

an electrolyte whilst the other alkaloids may act as non-electrolytes. Since univalent 

cations and non-electrolytes usually inhibit insect "water cells" at much higher 

concentrations different mechanisms might be possible. Because of the total inhibition at a 

similar concentration range as calcium cations (1 mM), the four alkaloids might use a 

similar mechanism as bivalent cations. On the other hand, these compounds might directly 

affect the dendritic membrane disrupting normal cell function as already discussed for 

effects of colchcine and papaverine on neuron II/2. 

5.2.1.4 Relationship between Neural Input and Behavioural Output 

A possible correlation between neural input via neuron II/3 and behavioural output was 

analysed for the four feeding deterrent and neuron II/3 stimulating alkaloids berberine, 

nicotine, securinine, and strychnine. The concentrations (RC50) evoking half-maximum 

response of neuron II/3 were compared. The neural input seems to be well correlated with 

the behavioural output. The RC50-value of berberine was 4-fold higher compared to 

securinine. In the filter paper choice test S. lamaninaus also needed a 3-fold higher 

concentration of berberine compared to securinine to respond with an avoidance of the 

treated food source. In the case of strychnine, the RC50-value was 5-fold lower compared 

to securinine. In the filter paper choice test strychnine elicited an avoidance of the treated 

food source at a 3-fold lower concentration than securinine. These results strongly suggest 

that chemosensory differences are reflected in the behavioural differences as predicted by 

the brain functioning model in insects proposed by Blom 1978a,b; and Schoonhoven & 

Blom 1988. In S. lamanianus feeding behaviour seems to be directly influenced by the 

activity of neuron II/3. 

Kester et al. (2002) also showed in larvae of two Manduca species that chemosensory 

differences are reflected in feeding behaviour. Both, Manduca sexta and M. 

quinquemaculata are deterred in their feeding by nicotine. However, larvae of M. sexta 

showed a more vigorous response of their deterrent neuron to nicotine than M. 

quinquemaculata. This correlates well with the feeding behaviour. Larvae of M. sexta only 
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accepted feeding sites with low nicotine concentrations whilst M. quinquemaculata also 

accepted feeding sites with higher nicotine concentrations. 

In contrast, in S. lamanianus behavioural output for nicotine can not be explained by neural 

input. The RC50-value for nicotine was 4-fold higher than for securinine. Apparently, the 

neural input signal seems to be weaker for nicotine compared to securinine. In contrast,  

S. lamaninaus avoided treated food sources at nicotine concentrations 10-fold lower 

compared to securinine. Such a discrepancy between behavioural and chemosensory 

sensitivities was also observed by Messchendorp et al. (1998) in the Colorado potato beetle 

Leptinotarsa decemlineata. The authors tested the glucosinolate sinigrin and the terpenoid 

drimane. Sinigrin had a higher behavioural threshold than drimane although the 

chemosensory thresholds of the deterrent cell were vice versa. The authors explained this 

apparent discrepancy by the fact that drimane additionally inhibited the "sugar cell". This 

could lead to a stronger feeding deterrence signal in the CNS for drimane than sinigrin. A 

similar phenomenon was described in the blowfly Protophormia terranovae by Liscia and 

Solari (2000). The deterrent amiloride had a 10-fold higher behavioural threshold than 

quinine whilst the chemosensory thresholds were vice versa. Also in this case the authors 

explained this apparent discrepancy with the inhibition of the "sugar cell" by quinine 

resulting in a stronger feeding deterrence signal in the CNS. According to the brain 

functioning model in insects the information from receptor cells sensitive to feeding 

deterrents or phagostimulants are subtracted algebraically. Inhibition of phagostimulant 

neurons increases the role of the deterrence signal in the CNS (Blom 1978a, Schoohoven 

& Blom 1988). Water is considered as a phagostimulant in termites (Mikus 2000). The 

inhibition of water receptors might be a different mode of action increasing the deterrence 

signal in the CNS of termites.  

However, in S. lamanianus nicotine had no additional effect on water receptors. Therefore, 

the apparent discrepancy for nicotine in S. lamanianus might be explained by other 

scenarios. (i) S. lamanianus might possess a second sensory input system for feeding 

deterrent compounds on the mouth parts. Taste sensilla on the mouth parts e.g. labial palps 

also seem to play a key role as they are also in close contact to the substrate during food 

search (Reinhard & Kaib 1995, Figure 1 in chapter 1.1). More than one deterrent receptor 

in different taste sensilla was described in Manduca sexta (Glendinning et al. 2002) and 

Pieris brassicae and P. rapae (Ma 1969, van Loon 1990). (ii) Nicotine might also have 
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additional effects on phagostimulant taste receptors on the mouth parts increasing the 

deterrence signal in the CNS compared to securinine.  

Though papaverine clearly is a non-toxic feeding deterrent in S. lamanianus this alkaloid 

did not stimulate neuron II/3 or any other neuron in TP II or TP I sensilla. Hence, other 

neurons are likely to be involved in the perception of papaverine. Two scenarios might be 

relevant: One possible mechanism might be the inhibition of a phagostimulant neuron 

(Schoonhoven et al 1992). As mentioned above, water is a feeding stimulant in termites. 

Hence, the inhibition of the two "water cells" II/2 and I/1 may evoke feeding deterrence of 

papaverine. Higher salt concentrations also inhibit the activity of the water receptor cells 

and workers of S. lamanianus avoid higher salt concentrations in choice tests. (Mikus 

2000). 

On the other hand, further feeding deterrent neurons on the mouth parts could be involved 

in the feeding deterrence by papaverine as discussed for nicotine. This would also apply 

for the feeding deterrence of tryptanthrin. This alkaloid is clearly feeding deterrent and 

non-toxic in S. lamaninaus even at very low concentrations. But it did not stimulate neuron 

II/3 or inhibited the activity of water receptor cells. According to Schoonhoven et al. 

(1992) other possible mechanisms might be (i) the stimulation of broad spectrum taste 

neurons, (ii) the distortion of the sensory code or (iii) causing irregular impulse patterns 

("bursts") in other taste neurons. 

The lacking stimulation of any taste neuron by caffeine and colchicine may explain the 

high mortality both alkaloids caused in S.lamanianus. Most likely S. lamaninaus does not 

sense these two alkaloids at all. That might be the reason why termites were poisoned by 

both alkaloids in the filter paper no-choice test. The observed avoidance evoked by 

colchicine treated semi-circles in the filter paper choice test might be due to the inhibition 

of one water receptor cell (neuron II/2) by colchicine as this test was done with moist filter 

paper semi-circles. On blank filter papers a stimulation of neuron II/2 was possible 

increasing the likelihood that workers stayed there. Caffeine may have some unspecific 

effects at the high concentrations needed to elicit avoidance of a treated food source. 
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5.2.2 Recognition of Non-Alkaloids 

5.2.2.1 Relationship between Neural Input and Behavioural Output  

The non-alkaloids azadirachtin, juglone, nootkatone, and sinigrin did not stimulate neuron 

II/3 nor any other taste neuron in TP II or TP I sensilla in a concentration dependent 

manner. Evoked maximum excitation levels were not distinguishable from the response to 

water alone. This indicates that only the "water cells" II/2 and I/1 were stimulated. 

Furthermore, no inhibition of these "water cells" could be observed. Chrysin and nomilin 

could not be tested as these compounds were not soluble in appropriate amounts neither in 

water nor 10% ethanol. 

Chrysin, nomilin and partly azadirachtin and nootkatone were non-toxic feeding deterrent 

compounds in S. lamanianus. As discussed for the alkaloids nicotine, papaverine, and 

tryptanthrin, a second sensory input system for feeding deterrents (mouth parts) can also be 

proposed. Furthermore these compounds may act via the inhibition of phagostimulant taste 

neurons e.g. on the mouth parts. Ohmura et al. (2006) showed in the termite Zootermopsis 

nevadensis that azadirachtin inhibited the response to a phagostimulant in taste hairs of the 

labial palps. Other scenarios might also involve additional mechanisms, which have been 

already discussed for the alkaloids papaverine and tryptanthrin. 

The findings that juglone did not stimulate any taste neuron on the antennae but termites 

refused to enter the test arenas without any previous substrate contact indicates that juglone 

might be detected rather by olfactory than taste neurons. Abushama (1966) and Floyd et al. 

(1976) showed that repellent odours evoke excitations of antennal olfactory receptor cells 

in the termites Zootermopsis angusticollis and Reticulitermes lucifugus, respectively. 

Hence, juglone needs further investigation regarding olfactory receptors. 

Sinigrin stimulates deterrent neurons in the Colorado potato beetle Leptinotarsa 

decemlineata (Messchendorp et al. 1998) and in the two moth species Mamestra 

configurata and Trichoplusia ni (Schields & Mitchell 1995a,b). However, it did not 

stimulate any taste neuron in TP II or TP I sensilla of S. lamanianus. This might explain 

the increased mortality in the filter paper no-choice test. S. lamanianus may not sense 

sinigrin at all as already discussed for the alkaloids caffeine and colchicine. 
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5.2.3 Relevance of Neuron II/3 in the Termite S. lamanianus 

The activity of neuron II/3 negatively influences feeding behaviour in S. lamanianus 

leading to the avoidance of unpalatable food sources or reduced food consumption. 

Furthermore, as neuron II/3 only responded to various alkaloids it is rather a "specialist 

deterrent receptor" than a "general deterrent receptor" according to van Loon and 

Schoonhoven (1999). The authors demonstrated that larvae of Pieris brassicae possess two 

kinds of "deterrent receptors". Besides their "general deterrent receptor" responding to a 

broad spectrum of secondary compounds, larvae have also a "specialist deterrent receptor" 

responding exclusively to cardenolids. Furthermore, the broad sensitivity of deterrent 

receptors in insects seems to be part of a general sensitivity to particular classes of 

compounds to which these receptors respond. Hence, natural selection may increase or 

reduce sensitivity to classes of compounds, but not to individual chemicals (Schoonhoven 

et al. 1992). This might have led in S. lamaninaus to the development of an "alkaloid cell". 

Since neuron II/3 did not respond to all alkaloids it seems likely that the "alkaloid cell" 

might be adapted to certain groups of alkaloids abundant as secondary compounds in 

plants being frequent in the termites' environment. 

5.3 Conclusion 

In termites, feeding inhibition by secondary plant compounds is a very complex process. 

Including neurophysiological investigations into studies about feeding deterrence in 

termites might be a helpful approach for the improvement and development of wood 

preservatives and novel termite control and management systems. The results of the 

present study suggest systematic investigations of the modality and specificity of taste 

receptor cells in termites to get a better overview of the chemosensory inventory in this 

ecologically and economically important group of insect pests. Systematic 

neurophysiological investigations of the chemosensory inventory in termites would 

provide information how the neural input system triggers the behavioural output e.g. in 

terms of food choice and food consumption. Information on structure-activity relationships 

could increase the efficiency in the search for antitermitic secondary compounds in plants.  
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6 Summary 

In the present study, the influence of plant-derived secondary compounds on feeding 

behaviour in the subterranean termite Schedorhinotermes lamanianus was investigated. 

Furthermore, the chemosensory input system responsible for the perception of these 

compounds was investigated using electrophysiological methods.  

The obtained results provide evidence that in S. lamanianus a variety of structurally 

diverse secondary plant compounds (alkaloids and non-alkaloids) other than securinega-

alkaloids influence feeding behaviour. These compounds evoke an avoidance of food 

sources or lower food consumption under choice conditions even at lower concentrations 

obtained for securinega-alkaloids. Furthermore, these compounds also reduce feeding 

under no-choice conditions. Termites seem to ingest less food even when they started 

feeding and no alternative food source is available. Therefore these compounds act as 

repellents and feeding deterrents in S. lamanianus depending on the test conditions under 

which they are applied.  

Furthermore, the present study provides strong evidence that different proximate 

mechanisms explain feeding inhibition in S. lamanianus: 1) Twelve structurally very 

diverse alkaloids, including feeding deterrent alkaloids in S. lamanianus, stimulated the 

taste neuron II/3 in TP II sensilla on antennae of this termite species. Non-alkaloids did not 

stimulate neuron II/3. Therefore, this neuron II/3 is an "alkaloid cell" negatively 

influencing feeding behaviour in this termite. 2) Feeding inhibition seems also to be 

influenced by the inhibition of phagostimulant taste neurons ("water cells") on antennae.  

3) A second sensory input system for the perception feeding deterrent plant-derived 

secondary compounds seems to be evident as some tested compounds (alkaloids and non-

alkaloids) are clear antifeedants in S. lamanianus but do not influence feeding behaviour 

by the former two mechanisms. 

Hence, in termites feeding inhibition by secondary plant compounds is a very complex 

process which needs further investigation. Including neurophysiological investigations of 

the chemosensory input system seems to be a promising approach to better understand 

feeding inhibition in termites which may lead to improved wood protection and termite 

management. 
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7 Zusammenfassung 

In der vorliegenden Arbeit wurde der Einfluß pflanzlicher Sekundärstoffe auf das 

Fraßverhalten der Termite Schedorhinotermes lamanianus untersucht. Weiterhin wurde 

das sensorische Eingangsystem zur Wahrnehmung dieser Substanzen mittels 

elektrophysiologischer Methoden untersucht.  

Die Ergebnisse der vorliegenden Studie zeigen, daß eine Reihe strukturell sehr 

unterschiedliche Sekundärstoffe (Alkaloide und Nicht-Alkaloide) das Fraßverhalten von S. 

lamanianus beeinflussen. Unter Wahlbedingungen zwischen behandelten und 

unbehandelten Futterquellen meiden Termitenarbeiter behandelte Futterquellen oder 

zeigen reduzierte Nahrungsaufnahme. Termitenarbeiter zeigen auch eine reduzierte 

Nahrungsaufnahme, wenn sie ausschließlich auf einer behandelten Futterquelle fressen 

können. Daher fungieren diese pflanzlichen Sekundärstoffe als Schreckstoffe 

(Repellenzien) oder Fraßhemmer für S. lamanianus abhängig von den Testbedingungen, 

unter denen diese Substanzen appliziert werden. 

Die Untersuchungen zum sensorischen Eingang zeigen, daß bei S. lamanianus  

verschiedene proximate Ursachen die Fraßinhibition durch pflanzliche Sekundärstoffe 

erklären: 1) Zwölf der getesteten strukturell sehr unterschiedlichen Alkaloide erregen den 

Geschmacksrezeptor II/3 im TP II Sensillum auf den Antennen von S. lamanianus. Die 

getesteten Nicht-Alkaloide erregten diesen Rezeptor nicht. Daher stellt dieser 

Geschmacksrezeptor einen "Alkaloid-Rezeptor" dar, dessen Aktivität das Fraßverhalten 

von S. lamanianus negativ beeinflußt. 2) Die Ergebnisse deuten weiterhin darauf hin, daß 

die Hemmung des Fraßverhaltens von S. lamanianus auch durch Hemmung 

fraßstimulierender Rezeptoren erfolgt. Die Aktivität von Wasserrezeptoren auf den 

Antennen wirkt fraßfördernd bei Termiten. Fraßhemmende Alkaloide, welche den 

Geschmacksrezeptor II/3 nicht erregten, hemmten aber Wasserrezeptoren auf den 

Antennen von S. lamanianus. 3) Einige der fraßhemmenden Sekundärstoffe, sowohl 

Alkaloide als auch Nicht-Alkaloide, erregten weder den Geschmacksrezeptor II/3 noch 

hemmten sie Wasserrezeptoren. Daher wird postuliert, daß es mindestens ein zweites 

sensorisches Eingangssystem z.B. auf den Mundwerkzeugen zur Wahrnehmung dieser 

Substanzen geben muß. 

Die Beeinflussung des Fraßverhaltens durch pflanzliche Sekundärstoffe ist ein sehr 

komplexer Prozeß bei Termiten, der weitere intensive Forschung benötigt. 
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Neurophysiologische Untersuchungen des chemosensorischen Eingangssystems scheinen 

ein vielversprechender Ansatz zu sein, um ein besseres Verständnis der Fraßhemmung 

durch pflanzliche Sekundärstoffe bei Termiten zu erhalten. Dies könnte zur Verbesserung 

und Entwicklung geeigneter Holzschutzmittel und biologischer Kontroll- und 

Managementsysteme gegen Termiten beitragen. 
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9 Appendix 

Supplementary Data of the Filter Paper Choice Test  

 

 (Juglone) (Azadirachtin) 
T

re
a

tm
e

n
t 
  
  
  
 B

la
n

k

20

10

0

10

20

  

(Tryptanthrin) (Chrysin) 

T
re

a
tm

e
n
t 
  
  
  
 B

la
n

k

20

10

0

10

20

  

(Nootkatone) (Nicotine) 

#
 P

re
fe

rr
e

d
 f

il
te

r 
p

a
p

e
r 

s
e

m
i 

c
ir

c
le

s
 

T
re

a
tm

e
n

t 
  
  
  
 B

la
n

k

20

10

0

10

20

  
 

      Amount of applied compound / filter paper semi circle [µg] 

Figure A - I: Number (#) of preferred non-impregnated ("Blank" ) and impregnated ("Treatment") filter paper 
semi circles for different non-alkaloids ( ) and alkaloids ( ) in the filter paper choice test. Significant differences 

were obtained using the sign-test. The upper hairline indicates for P ≤ 0.05 the critical border for a significant 

preference of the impregnated semi circles (# "Blank" ≤ 5) and the lower one for a significant avoidance of the 

impregnated semi circles respectively (# "Treatment" ≤ 5). The compound specific threshold (CST) is indicated 
by �. 
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Figure A - I (continued) 
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