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Zusammenfassung 

Anisotrope Kolloide sind von enormer Bedeutung sowohl in der Grundlagenforschung, als auch 

in der Industrie für viele Anwendungen. Diese kolloidalen Partikel beeinflussen entscheidend die 

Eigenschaften und das Verhalten verschiedener flüssiger und fester Materialien und Substanzen. 

Die Mikrofluidik ist eine moderne Technologie, die es ermöglicht viele unterschiedliche 

Experimente u.a. an solchen anisotropen Kolloiden unter sehr kontrollierten und definierten 

Bedingungen durchzuführen. Die mikrofluidischen Bauelemente, die in der vorliegenden Arbeit 

verwendet werden, verdeutlichen die ganze Spannweite dieser Methode: Von der Bestimmung 

der Partikelorientierung diverser anisotroper Kolloide im extrem schnellem Fluss, über ein 

komplexes Mikrochipdesign zur Partikeltrennung, bis hin zu einem chemikalienbeständigen 

Mikrochip aus Polytetrafluorethylen (PTFE) zur Untersuchung der in situ Beladung von 

wurmartigen Kolloiden mit Nanopartikeln.  

All diese Beispiele zeigen das Leistungsvermögen und die Vielseitigkeit einer solchen 

mikrofluidischen Versuchsumgebung. Für ein detailliertes Verständnis der jeweiligen Versuche 

sind aber auch entsprechend spezifische und leistungsfähige Messtechniken nötig.  

In Kapitel 4.1 wurde die Orientierung anisotroper Kolloide in schnellen Flüssigkeitsstrahlen und 

-tröpfchen untersucht. Hierfür wurden Synchrotron-Röntgen-Streuexperimenten durchgeführt, da 

diese eine Fokussierung des Röntgenstrahls im µm-Bereich erlauben. Diese Mikrostrahl-

Kleinwinkel-Röntgenstreuung (µSAXS) ermöglicht die mikrometergenaue Untersuchung aller 

Abschnitte entlang eines Mikoflüssigkeitstrahls, beginnend innerhalb der Glas-Mikrodüse, über 

den Freistrahl und schließlich bis in die Mikrotröpfchen. In allen Teilbereichen zeigen die 

Experimente unerwartete Änderungen in der Strömungsorientierung anisotroper Partikel, welche 

allgemein für zylindrische und scheibenförmige Partikel über einen weiten Bereich von 

Achsenverhältnissen gezeigt werden konnte. Durch zusätzliche fluiddynamische Simulationen 

konnte die beobachtete Partikelflussrichtung auf die sich ändernden Flussgeschwindigkeitsfelder 

innerhalb der Mikrostrahlen und -tröpfchen zurückgeführt werden. Diese Erkenntnisse 

verbessern das Verständnis der Teilchenorientierung in freien Strahlen sowie Tröpfchen und 

bieten sogar die Grundlage für eine Kontrolle der Teilchenausrichtung in Herstellungs- und 

Beschichtungsprozessen, sowie diverser Drucktechniken, die auf Flüssigkeitsstrahlen beruhen. 

Über die präzise Bestimmung der Partikelorientierung hinaus können Mikrochips auch zur 

Partikelauftrennung eingesetzt werden. In diesem Zusammenhang wurde in Kapitel 4.2 dieser 

Arbeit ein neuer Strömungspaltungseffekt entdeckt, der durch Fluoreszenz-, Polarisations- und 

konfokaler Laser Raster Mikroskopie (CLSM) mit einem ultraschnellen Resonanzscanner für 
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3D-Bildgebung dynamischer Strömungssysteme detailliert analysiert wurde. Damit konnte eine 

ungewöhnliche Strömungspaltung von anisotropen wurmartigen, aber auch von kugelförmigen 

Kolloiden in vier Teilströme innerhalb sinusförmiger Mikrokanäle beobachtet werden. Die 

Spaltung trat dabei erst auf, sobald die Ströme mit viskoelastischer nicht-Newtonscher 

Polymerlösung fokussiert wurden. Dieser Effekt konnte schließlich dazu genutzt werden, um 

anisotrope wurmartige Mizellen von isotropen Kolloiden, als auch sphärische Partikel 

unterschiedlicher Größe voneinander zu trennen. Durch Variation der experimentellen 

Bedingungen: 2D- oder 3D- Fokussierung, gerade oder sinusförmige Kanäle, Sinusperiode und 

Amplitude, Molekulargewicht, sowie nicht-Newtonsche oder Newtonsche Flüssigkeiten, 

konnten die essentiellen Voraussetzungen für die Strömungsspaltung bestimmt werden. Diese 

Aufspaltung ergab sich schließlich aus der Kombination von Zonen mit hoher Dehnungs- und 

Scherrate bei Anwesenheit eines elastischen transienten Polymernetzwerkes, was auch mit 

anderen Experimenten auf diesem Forschungsgebiet übereinstimmt. 

In Kapitel 4.3 wird das Potential von Mikrofluidiksystemen bezüglich der Kontrolle chemischer 

Reaktionen aufgezeigt. Der Vorteil mikrofluidischer Kanäle liegt in der kontinuierlichen Durch-

führung der Synthese unter laminaren Strömungsbedingungen, welche zu wohldefinierten und 

reproduzierbaren Misch-, Transport- und Reaktionsprozesse führen. Eine Herausforderung bei 

dieser Synthese ist die chemische Beständigkeit des Chipmaterials. In dieser Arbeit wurde daher 

ein Mikrofluidikchip entwickelt, der aus einem PTFE-basierten Doppelfokuskreuz und einer 

Mikroglaskapillare als Auslasskanal besteht. Auf diese Weise konnte eine kontinuierliche in situ 

Beladung von segmentierten Wurmmizellen mit Metallnanopartikeln durchgeführt werden. Die 

Verwendung von mikrofluidischen Kanälen erlaubt die Untersuchung sehr kleiner Flüssigkeits-

mengen und ermöglicht eine schnelle Variation der Reaktionsparameter zur Optimierung des 

selektiven Beladungsprozesses. Daher konnten die Beladungskapazität und die Nanopartikel-

größe in Abhängigkeit der Flussraten individuell eingestellt und gesteuert werden, was eine hohe 

Variabilität und bedeutende Verbesserungen zur Realisierung eines maßgeschneiderten Lade-

prozesses im Vergleich zu anderen selektiven Beladungsmethoden mit sich bringt. 

Zusammenfassend zeigt diese Arbeit das große Leistungsvermögen und die Vielseitigkeit von 

mikrofluidischen Systemen mit Blick auf ein breites Materialspektrum (Polymere, anorganische 

Materialien, Komposite) und zusätzlich einen Vergleich zweier unterschiedlicher Strömungs-

bedingungen zwischen einem freien Flüssigkeitsstrahl und einer geschlossenen Mikrokanal-

umgebung. Die einzelnen Untersuchungen anisotroper Kolloidpartikel liefern in Kombination 

mit modernen, leistungsfähigen Analysegeräten neue Einblicke in die Orientierungs-, 

Beladungs-, Herstellungs- und Trennprozesse unterschiedlichster Forschungsgebiete.  
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Summary 

Anisotropic colloids are of extraordinary interest in a wide variety of fundamental research 

fields, but also basis for many sophisticated applications in industry. These specific particles 

influence significantly the properties and behavior of various liquid and solid materials and 

substances. The modern technology microfluidics makes it possible to perform highly diverse 

experiments e.g. on anisotropic colloids in a very controlled and defined manner. Thus, the 

microfluidic devices employed in this thesis vary from a setup for the distributional orientation 

analysis of different anisotropic colloids in ultrafast flow, over a complex microchip design for 

the separation of anisotropic and isotropic particles, to a highly chemical resistant polytetra-

fluoroethylene (PTFE) microchip for the investigation of the in situ loading of wormlike colloids 

with nanoparticles. 

Such diverse experiments show the potential of a microfluidic environment, but also demand 

specific and powerful measurement techniques. Consequently, all experiments have been carried 

out in combination with tailor-made analytical methods. 

The detailed orientation analysis within fast liquid microjets and droplets, studied in chapter 4.1, 

was performed by using the high quality of brilliant X-ray scattering instruments at synchrotron 

sources. These instruments have the possibility to focus intense X-ray beams down to a few 

microns in diameter. Hence, microbeam small angle X-ray scattering (µSAXS) enables a 

micrometer precise investigation along a microjet. Those parts span the micro sized nozzle made 

of a glass capillary, the freejet area and finally the microdroplet region. In all parts, the study 

reveals unexpected changes in the flow-alignment of anisotropic particles which was generally 

shown for cylindrical and discoidal particles over a wide range of axial ratios. By additional fluid 

dynamic simulations, the observed particle flow-alignment could be related to the changing flow 

velocity fields within the micro-jets and -droplets. These findings enhance our understanding of 

particle orientation in free jets as well as droplets and even provide the basis for a control of 

particle alignment in liquid jet-based fabrication, coating and printing techniques. 

Beyond the precise determination of particle orientation via microfluidics, microchips can also 

be applied for particle separation. In this context, a new stream splitting effect was discovered 

and analyzed via fluorescence-, polarization- and confocal laser scanning microscopy (CLSM) 

that exhibits modern ultrafast resonance scanners for the detailed 3D imaging of dynamic flow 

systems, as shown in chapter 4.2. This unique stream splitting of anisotropic wormlike but also 

of spherical colloids into four substreams was recovered within sinusoidal microchannels. The 

splitting just occurred when the streams were focused with a viscoelastic non-Newtonian 
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polymer solution. This effect could finally be used to separate anisotropic wormlike micelles 

from isotropic colloids but also spherical particles of different sizes. By variation of the 

experimental conditions: 2D- vs. 3D-focusing, straight vs. sinusoidal channels, sine period and 

amplitude, molecular weight and Newtonian vs. non-Newtonian fluids, it was possible to reveal 

the essential preconditions for the stream splitting effect. This splitting is caused by a 

combination of high extensional and shear rate zones with the presence of an elastic transient 

polymer network, which is consistent with other experiments in this field of research. 

The potential of microfluidic devices to run highly controlled chemical reactions is the focus of 

chapter 4.3. Microfluidic channels offer the advantage to perform continuous syntheses under 

laminar flow conditions which give rise to well-defined and reproducible mixing, transport, and 

reaction processes. A challenge, however, is the chemical resistance of the microchip material. In 

this work, a microdevice was developed by combining a PTFE-based double-focused cross and a 

micro glass capillary as outlet channel. In this way, it was possible to perform continuous in situ 

loading of patchy wormlike micelles with metal nanoparticles. The use of microfluidic channels 

therefore allows the investigation of very low amounts of liquids and enables a rapid screening 

of reaction parameters to optimise the selective loading process. Hence, the loading capacity and 

the nanoparticles´ size could be individually adjusted and easily controlled by varying the flow 

rates. Said control in turn provides significant flexibility and improvement in realizing a 

tailor-made loading process compared to other selective loading strategies. 

In summary, this thesis demonstrates the great potential and versatility of microfluidic platforms 

with respect to a broad material spectrum (polymers, inorganic materials, composites) on the one 

hand and gives a comparison of two different flow conditions between a free liquid microjet and 

a closed microchannel environment on the other hand. The individual studies of anisotropic 

colloidal particles in combination with powerful analytical instrumentation reveals novel insights 

into the orientation, loading, synthesis and separation processes in highly diverse research fields. 
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1 Introduction 

1.1 Motivation 

Material science is a remarkable field of research which has fascinated mankind since the dawn 

of time. However, as portrayed in “Faust”, the magnum opus of the world-famous naturalist and 

writer Johann Wolfgang von Goethe, the human desire for the universal understanding of what 

our entire world consists of remains unfulfilled. I too, as a child, remember being impressed and 

inspired by nature I wanted to know how materials are fundamentally structured and built-up. 

Today, as a scientist and after years of learning in a bid to understand, I am able to apply myself 

at least a little to explore new materials and to do my part to improve and understand our 

surrounding world.  

Based on nature’s fundamental growth and hierarchical structuring principles, as nucleation, 

growth, and self-assembly, advanced material sciences as well as condensed matter physics are 

governed by nanometer to micrometer length scale to finally create complex high-performance 

materials made of several molecules.1,2 The study of the underlying building principles and the 

resulting highly-ordered composite structures demands for an interdisciplinary technology that is 

capable of controlling the experimental chemical and physical conditions while at the same time 

enabling modern in situ analysis techniques.3-5 

Microfluidics is a revolutionary methodology that brought up precise control of substances 

within laminar flow conditions on microliter scale and nowadays even down to nanoliter scale.6-8 

Thus, microfluidics provides different parameters for adjusting ideal conditions to create tailor-

made super-structured assemblies, respectively colloids and moreover to obtain perfect oriented 

anisotropic particles within for example multi-compound systems.9-11 

The advantage of modern microscopy, e.g. confocal laser scanning microscopy (CLSM) enable 

ultrafast, precise and detailed micrometer scanning via sophisticated resonant scanners 

possible.12,13 The state-of-the-art achievements in synchrotron technology, like the free electron 

lasers are capable of time-resolved in situ experiments using a highly brilliant source for 

submicron small angle X-ray scattering (µSAXS).14-16  

In this thesis, combinations of different home-built microfluidic setups and current analysis 

technics are used for several investigations of flowing wormlike micelles and further anisotropic 

colloids (Figure 1) within microchannels and -jets. Anisotropic colloids like the wormlike 

micelles assemble from polymeric block copolymers and are of highest interest as carrier 
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structures for drug delivery or as integral part of high-performance composite materials in which 

the orientation plays a key role.17-19 We developed various microfluidic methodologies. The first 

one was devised to analyze the reorientation of different anisotropic particles within liquid 

microjets and microdroplets. The second setup was evolved to investigate a colloid separation 

process within sinus-shaped microchannels and the third one to simultaneously synthesize and 

load nanoparticles continuously on wormlike micelles by running a specific, highly-controllable 

in situ microfluidic process within a double focus chip made of polytetrafluoroethylene (PTFE). 

 

Figure 1 | Sketch of anisotropic colloid systems. (a) Wormlike micelles synthesized out of a flexible 

block copolymer. (b) Nanorods that could be made of various stiff metals like gold. (c) Nanoplatelets like 

inorganic layered silicates. 

The following chapter 1.2 will give an overview about the microfluidic essentials and 

preliminary work as well as the combinable analysis technologies which have already been done 

in these fields of research. 
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1.2 Microfluidics 

Employing a microfluidic setup, it is possible to carry out experiments in very different 

conditions. You can run chemical reactions for synthesis, assembly or loading processes within a 

closed microfluidic channel at moderate flow rates.10 Moreover, there are jet devices available 

using ultra-high flow velocities which often result in an open free jet environment after passing a 

nozzle outlet. These aforementioned examples (see Figure 2) are two of several possibilities that 

aim to show the versatility of microfluidics. Both conditions, the closed channel system as well 

as the open liquid jet system, are used in this work. 

 

Figure 2 | Images of two basic microfluidic methodologies. (a) Closed microchannel chip design. 

(b) Nozzle-chip for free liquid microjet systems. 

Microfluidics is based on the treatment and control of very small volumes of liquids or gases via 

specific devices.20 As these volumes are on a microliter scale or less, the physical laws 

concerning the flow behavior are completely different from those on macro scale. Consequently, 

the flow in a microfluidic setup is laminar and not turbulent which basically leads to very well 

controllable conditions regarding the treatment of chemicals. But what are the specific 

parameters influencing laminar flow in microfluidic devices? One of the basic parameters is the 

channel dimension that finally restricts scaling down to micrometer and leads to micro scale 

properties. Aside from the channel dimension, the flow rate and the viscosity of the liquid, or the 

gas, respectively, play a key role. Generally, the flow is laminar for lower flow rates as well as 

for higher viscosities and the mixing of compounds can be achieved by simple diffusion. A 

measure for the amount of turbulence is given by the dimensionless Reynolds-Number (Re) 

which is fully explained in chapter 2.2.2. Based on simple parameters, microfluidics can provide 

well-defined model environments which makes it adaptable to many fields of science such as 

chemistry, biology, pharmacy, medicine and any other analytical or technological field. 
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The ability to carry out quantitative and qualitative analysis with high resolution and sensitivity 

while using very small amounts of substances led to the rise of microfluidics during the last 

decade of the 20th century.21,22 After the growing interest on low cost and fast analytical 

processes as well as the emergence of lithographical and rapid prototyping processes during that 

time, microfluidics became quite attractive for industry and science.23,24 One of the first and 

certainly the most famous pioneer on scientific microfluidics is George M. Whitesides who 

introduced poly(dimethylsiloxane) (PDMS) as a polymeric fabrication material on which a huge 

majority of the following research was carried out.25,26 The next decades, much scientific work 

was done on microfluidic setups especially for drug delivery and drug targeting systems. Here, 

the synthesis, assembly and loading processes as well as effective separation methods are the 

main focus of this research field.  

Many studies on synthesis in microfluidic devices have been carried out using biomaterials, 

nanoparticles or enzymes.27-29 Currently, especially nanoparticles are of highest interest because 

they can be synthesized via microfluidics with a huge variety of functionalized groups in order to 

create for example lipid nanoparticles (LNPs) that have a higher circulation time in the blood 

stream, low cytotoxicity, good biocompatibility and transfection efficiency.30,31 However, 

nanoparticles can also be used to load different types of super-structured and self-assembled 

systems by employing a microfluidic chip in order to increase their pharmaceutical efficiency as 

drug-targeting systems.32,33 Such self-emulsifying delivery systems, liposomes, polymeric 

nanoparticles, microemulsions and micellar solutions can be compounded within complex and 

individually designed microfluidic chip labs. Those labs on a chip are predestinated for mixing 

different substances and particle systems under highly controlled laminar flow conditions.9,34 In 

this context, hydrodynamic flow focusing is indispensable to achieve a good quality for the 

reaction process of these colloidal systems. Such processes encompass nucleation, growth by 

aggregation, stabilization, or self-assembly.35 Consequently, colloids of various shape and 

elasticity, e.g. microdroplets and vesicles, core-shell structures, or Janus particles are available at 

high monodispersity. 

Another important topic is flow- as well as shear-induced orientation and the associated 

separation. Thus, a given polydisperse colloidal system can be sorted by size for instance.11,36 

This separation in turn increases the quality of drug delivery and the manufacturing process of 

high-performance materials like composite materials in which the different particle systems need 

to have maximized alignment within a matrix. In most cases, batch synthesized particles have 

rather high polydispersities which calls for effective post-processing. This processing may 

include particle separation with respect to their size, shape or elasticity. The goal is to finally 
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receive one homogeneous species for effective drug targeting and mechanical material 

enhancement.37-39 Microfluidic colloid separation is diverse and ranges from active sorting 

processes via chemical, electrical or magnetic impact to gentle passive systems using various 

physical forces without the need of modifications of the particle itself.40-42 For that, many 

different microchannel geometries have already been tested with several colloids to figure out 

the best method for their separation.43-45 Nevertheless, there is still room for improvement to 

achieve maximum efficacy for all kinds of particles. A basic prerequisite to particle separation is 

to understand why colloids are going to flow on certain trajectories.46 Here, very often the size-, 

shape- and elasticity-induced orientation behavior of each particle plays an important role.47 

Knowledge about colloidal distribution and orientation helps to improve particle separation as 

well as sorting and also offers a powerful tool to adjust particle order in process engineering for 

many soft matter and material applications. 

To attain all these specific requirements, this work presents two major microfluidic setups that 

are mainly used to perform tailor-made experiments. The first and common system is a closed 

microchannel chip device which gives maximum control of liquid or gaseous flows. Today, there 

is a huge variety of channel designs including 2D- but also highly complex 3D-channel 

structures which leads to a great flexibility for all kinds of experiments. However, channel walls 

are found to be critical as they may cause agglomeration of particles which ultimately leads to 

clogging of the device. Moreover, chemicals leeching from the chip material might interfere with 

highly sensitive analytical methods. For example, commonly used PDMS is not X-ray 

transparent thus making an experimental investigation via SAXS impossible. A solution to these 

problems is a modern free liquid jet system – the second setup. Free jets lack channel walls over 

a wide range except for the inlet part consisting of a nozzle.48,49 Consequently, virtually every 

analytical method can be used without any disturbance.50 However, the flow conditions are 

slightly different when comparing closed streams and free jets: a higher flow rate is necessary to 

achieve a free jet and the missing walls change the originally no-slip conditions to free-slip 

conditions which again enable new possibilities.  

As mentioned above, a fully established methodology requires powerful analytical methods. 

Ideally, an elaborated microfluidic platform should be used on which you can integrate different 

techniques of analysis such as optical, scattering or spectroscopic methods potentially used 

simultaneously and in situ.51 State-of-the-art devices are designed to be mobile microfluidic 

platforms that can be integrated temporarily in intense synchrotron sources like DESY, ESRF, 

MAX or Diamond to achieve effective time management, as illustrated in following Figure 3. 
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Figure 3 | Portable complex microfluidic platforms for simultaneous in situ analysis techniques at intern 

and extern research institutions like synchrotrons. (a) Pressure-based pump setup for a closed 

microchannel chip system. (b) Micro gear pump recycling built-up for free liquid microjets. 

 

 

 

  



1 Introduction 

 

13 
 

1.3 References 

1. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Progress in Materials 

Science 52, 1263-1334, (2007). 

2. Antonietti, M. & Förster, S. Vesicles and Liposomes: A Self‐Assembly Principle Beyond 

Lipids. Advanced Materials 15, 1323-1333, (2003). 

3. Lopez, C. G., Saldanha, O., Huber, K. & Köster, S. Lateral association and elongation of 

vimentin intermediate filament proteins: A time-resolved light-scattering study. 

Proceedings of the National Academy of Sciences 113, 11152-11157, (2016). 

4. Saldanha, O., Brennich, M. E., Burghammer, M., Herrmann, H. & Köster, S. The 

filament forming reactions of vimentin tetramers studied in a serial-inlet microflow 

device by small angle x-ray scattering. Biomicrofluidics 10, 024108, (2016). 

5. Trebbin, M. Microfluidics at high-intensity X-ray sources: from microflow chips to 

microfluidic liquid jet systems, University of Bayreuth, (2013). 

6. Brennich, M. E. & Köster, S. Tracking reactions in microflow. Microfluidics and 

Nanofluidics 16, 39-45, (2014). 

7. Schoch, R. B., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Reviews of 

Modern Physics 80, 839-883, (2008). 

8. Squires, T. M. & Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. Reviews 

of Modern Physics 77, 977-1026, (2005). 

9. Thiele, J., Steinhauser, D., Pfohl, T. & Förster, S. Preparation of Monodisperse Block 

Copolymer Vesicles via Flow Focusing in Microfluidics. Langmuir 26, 6860-6863, 

(2010). 

10. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368-373, 

(2006). 

11. Trebbin, M. et al. Anisotropic particles align perpendicular to the flow direction in 

narrow microchannels. Proceedings of the National Academy of Sciences 110, 6706-

6711, (2013). 

12. Xi, P., Liu, Y. & Ren, Q. Scanning and image reconstruction techniques in confocal 

laser scanning microscopy. (Intech, Peking University and Shanghai Jiao Tong 

University China, 2011). 

13. Kimura, T., Shintate, M. & Miyamoto, N. In situ observation of the evaporation-induced 

self-assembling process of PS-b-PEO diblock copolymers for the fabrication of titania 

films by confocal laser scanning microscopy. Chemical Communications 51, 1230-1233, 

(2015). 

14. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73-

77, (2011). 

15. Als-Nielsen, J. & McMorrow, D. Elements of Modern X-ray Physics. (Wiley, Chichester, 

2011). 

16. Daubersies, L., Leng, J. & Salmon, J.-B. Steady and out-of-equilibrium phase diagram of 

a complex fluid at the nanolitre scale: combining microevaporation, confocal Raman 

imaging and small angle X-ray scattering. Lab on a Chip 13, 910-919, (2013). 



1 Introduction 
 

14 

 

17. Younghoon, K., Paul, D., David, A. C. & Dennis, E. D. Polymeric worm micelles as 

nano-carriers for drug delivery. Nanotechnology 16, S484, (2005). 

18. Suarez, S. A., Gibson, R. F., Sun, C. T. & Chaturvedi, S. K. The influence of fiber length 

and fiber orientation on damping and stiffness of polymer composite materials. 

Experimental Mechanics 26, 175-184, (1986). 

19. Förster, S., Konrad, M. & Lindner, P. Shear Thinning and Orientational Ordering of 

Wormlike Micelles. Physical Review Letters 94, 017803, (2005). 

20. Franke, T. & Wixforth, A. Das Labor auf dem Chip: Mikrofluidik. Physik in unserer Zeit 

38, 88-94, (2007). 

21. Gravesen, P., Branebjerg, J. & Jensen, O. S. Microfluidics-a review. Journal of 

Micromechanics and Microengineering 3, 168, (1993). 

22. Brody, J. Y., P.; Goldstein, R.; Austin, R. Biotechnology at Low Reynolds Numbers. 

Biophysical Journal 71, 3430-3441, (1996). 

23. Ramsey, J. M., Jacobson, S. C. & Knapp, M. R. Microfabricated chemical measurement 

systems. Nature Medicine 1, 1093, (1995). 

24. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). 

Electrophoresis 21, 27-40, (2000). 

25. Whitesides, G. M. & Xia, Y. Soft lithography. Annu. Rev. Mater. Sci. 28, 153-184, 

(1998). 

26. Whitesides, G. M. & Xia, Y. Soft Lithography. Angewandte Chemie International 

Edition 37, 550-575, (1998). 

27. Hung, L.-H. & Lee, A. Microfluidic devices for the synthesis of nanoparticles and 

biomaterials. (2006). 

28. Luckarift, H. R., Ku, B. S., Dordick, J. S. & Spain, J. C. Silica‐immobilized enzymes for 

multi‐step synthesis in microfluidic devices. Biotechnology and Bioengineering 98, 701-

705, (2007). 

29. Jahn, A. et al. Preparation of nanoparticles by continuous-flow microfluidics. Journal of 

Nanoparticle Research 10, 925-934, (2008). 

30. Maeki, M. et al. A strategy for synthesis of lipid nanoparticles using microfluidic devices 

with a mixer structure. RSC Advances 5, 46181-46185, (2015). 

31. Kim, Y. et al. Single Step Reconstitution of Multifunctional High-Density Lipoprotein-

Derived Nanomaterials Using Microfluidics. ACS Nano 7, 9975-9983, (2013). 

32. Valencia, P. M. et al. Microfluidic Platform for Combinatorial Synthesis and 

Optimization of Targeted Nanoparticles for Cancer Therapy. ACS Nano 7, 10671-10680, 

(2013). 

33. Hood, R. R., Vreeland, W. N. & DeVoe, D. L. Microfluidic remote loading for rapid 

single-step liposomal drug preparation. Lab on a Chip 14, 3359-3367, (2014). 

34. Karnik, R. et al. Microfluidic Platform for Controlled Synthesis of Polymeric 

Nanoparticles. Nano Letters 8, 2906-2912, (2008). 

35. Zhang, Y., Chan, H. F. & Leong, K. W. Advanced materials and processing for drug 

delivery: The past and the future. Advanced Drug Delivery Reviews 65, 104-120, (2013). 

36. Mukherjee, S. & Sarkar, K. Lateral migration of a viscoelastic drop in a Newtonian fluid 

in a shear flow near a wall. Physics of Fluids 26, 103102, (2014). 



1 Introduction 

 

15 
 

37. Nam, J., Lim, H., Kim, D., Jung, H. & Shin, S. Continuous separation of microparticles 

in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab on a 

Chip 12, 1347-1354, (2012). 

38. Kagalwala, T. E. Continuous Size-Based Separation of Microparticles in Straight 

Channels, University of Cincinnati, (2011). 

39. Yang, S. et al. Deformability-selective particle entrainment and separation in a 

rectangular microchannel using medium viscoelasticity. Soft Matter 8, 5011-5019, 

(2012). 

40. Fukui, Y., Iiguni, Y., Kitagawa, S. & Ohtani, H. Continuous-flow Size-based Separation 

of Microparticles by Microchip Electromagnetophoresis. Analytical Sciences 31, 197-

203, (2015). 

41. Ahn, S. W., Lee, S. S., Lee, S. J. & Kim, J. M. Microfluidic particle separator utilizing 

sheathless elasto-inertial focusing. Chemical Engineering Science 126, 237-243, (2015). 

42. D’Avino, G., Hulsen, M. A. & Maffettone, P. L. Separation of particles in non-

Newtonian fluids flowing in T-shaped microchannels. Advanced Modeling and 

Simulation in Engineering Sciences 2, 9, (2015). 

43. Gossett, D. R. et al. Label-free cell separation and sorting in microfluidic systems. Anal. 

Bioanal. Chem. 397, 3249-3267, (2010). 

44. Bhagat, A. A. S., Kuntaegowdanahalli, S. S. & Papautsky, I. Continuous particle 

separation in spiral microchannels using dean flows and differential migration. Lab on a 

Chip 8, 1906-1914, (2008). 

45. Gossett, D. R. & Carlo, D. D. Particle Focusing Mechanisms in Curving Confined Flows. 

Analytical Chemistry 81, 8459-8465, (2009). 

46. Di Carlo, D. Inertial microfluidics. Lab on a Chip 9, 3038-3046, (2009). 

47. Hur, S. C., Henderson-MacLennan, N. K., McCabe, E. R. B. & Di Carlo, D. 

Deformability-based cell classification and enrichment using inertial microfluidics. Lab 

on a Chip 11, 912-920, (2011). 

48. Trebbin, M. et al. Microfluidic liquid jet system with compatibility for atmospheric and 

high-vacuum conditions. Lab on a Chip 14, 1733-1745, (2014). 

49. Acero, A. J., Ferrera, C., Montanero, J. M. & Gañán-Calvo, A. M. Focusing liquid 

microjets with nozzles. Journal of Micromechanics and Microengineering 22, 065011, 

(2012). 

50. Nelson, G. et al. Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser 

sample delivery. Optics Express 24, 11515-11530, (2016). 

51. Chen, X. et al. Simultaneous SAXS/WAXS/UV-Vis Study of the Nucleation and Growth 

of Nanoparticles: A Test of Classical Nucleation Theory. Langmuir 31, 11678-11691, 

(2015). 
 

 

 

 



1 Introduction 
 

16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

17 

 

2 Fundamentals 

2.1 Microfluidic Devices 

2.1.1 Design, Fabrication, and Application 

The fabrication of microfluidic devices starts ordinarily with the design of the microchip and its 

microchannel structures. Nowadays, computer-aided design (CAD) software allows to draw and 

finally manufacture precise channel structures with errors less than a few nanometers. In this 

thesis, all fabricated microchannel structures have been designed via AutoCAD software 

(Autodesk Inc.). Also, 3D printed sample holders made of polylactide (PLA) or acrylnitril-

butadien-styrol-copolymer (ABS) have been drawn using the 3D functions of AutoCAD. The 

devices were home-fabricated by the additive manufacturing technology of an Ultimaker 2 

(Ultimaker B.V.) that is working via fused deposition modeling (FDM), visible in Figure 4. 

 

Figure 4 | 3D AutoCAD design for a 3D printed sample holder that consists of two separate pieces and is 

made of PLA by the FDM method of an Ultimaker 2. The sample holder is created to employ liquid 

microjets within a micro gear pump recycling setup which is mobile and able to be installed at 

synchrotron measurement stations. 

Beyond the FDM method, other 3D printing technologies, like stereolithography (SLA) or 

selective laser sintering (SLS), have already been developed during the 1980s for various 

materials like plastics, resins, ceramics or metals.1,2 Today, all these 3D printing technologies are 

based on CAD-data and represent versatile systems for rapid prototyping processes. During the 

last decade, 3D fabrication advanced extremely fast and to astonishing precision down to the 

micrometer scale. Nowadays, a complete microfluidic chip can be produced in one step.3,4 Still, 

depending on the 3D printing process and the required mechanical and chemical properties of the 
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chip material, the resolution can only be a few hundred micrometers for the channel size. As 

processes like photo- and soft lithography can achieve even nano-sized master devices as casting 

forms, they are still often preferred.5-7 

In this thesis, the microfluidic master devices are fabricated within a cleanroom via a contact 

mask aligner MJB4 (SÜSS MicroTec SE, see Figure 5). The aligner is working with UV light 

(λ = 365 nm) and high-resolution film photomasks, respectively chromium-glass masks to 

achieve a resolution of 1 µm produced by JD Photo Data. After getting the photomasks, the 

actual photolithography starts by spin-coating a silicon wafer with a photoresist. For the 

applications in this thesis, a 3 inch silicon wafer (Silicon Materials Inc.) was sufficient and spin-

coated (Cee 200X, Brewer Science Inc.) with a thin layer of the commercially available negative 

photoresist SU-8 from MicroChem Corporation.8 The layer thickness of this epoxy-based resist 

is adjustable to 0.5-150 µm by varying the viscosity depending on the amount of solvent 

γ-butyrolactone for a certain spin-speed in a range of 1000-4000 rpm. The structures on the 

photomask were transferred to this layer of SU-8 by exposing through the transparent parts of the 

mask and hereby cross-linking the photoresist in the exposed areas. Upon exposure, 

cross-linking proceeds in a first step, the formation of a strong acid during the exposure, and is 

followed by a second step, the acid-catalyzed and thermally driven epoxy cross-linking during 

post exposure bake (PEB).9 The finally obtained master contains the inverted positive structure 

of the desired microchannel network and can be reused and replicated over many cycles, 

allowing rapid prototyping at low cost. By employing only one layer of photoresist the common 

and so-called 2D microchannel chip designs are available. However, if a more complex channel 

network with 3D fluid focusing was required, the previous steps of spin-coating and exposure 

were repeated to build up additional layers whereby a precise alignment of different photomasks 

to the substrate was necessary, as illustrated in Figure 5. In the following development step, the 

uncured photoresist was removed with 1-methoxy-2-propanyl acetate (mr-Dev 600, micro resist 

technology GmbH). 

After the photolithographical process within a cleanroom, also the soft lithography is carried out 

in a dust-free environment,10 within a laminar flow box (ScanLaf, Mars Safety Class 2) from 

LaboGeneTM. Here, the master is casted with polydimethylsiloxane (PDMS) to form the actual 

microchip with its channel structures by replica molding. For the replication of the micro-

structured master, a 10:1 mixture (monomer : curing agent) of PDMS (Sylgard 184 kit, Dow 

Corning Corp.) was poured onto the master and degassed as well as baked for 1.5 h at 75 °C. 

During heating, the terminal vinyl groups (SiCH=CH2) of the dimethyl- siloxane oligomer basic 
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Figure 5 | Equipment for photolithography. (a) Mask aligner MJB4 (SÜSS MicroTec SE) within the 

cleanroom of the physical chemistry chair of the University of Bayreuth in order to fabricate Si-master 

devices as casting forms. (b) Layout of the high-resolution photomasks for multilayer master devices. 

component and the hydrosilane groups (SiH) of the hydrogen-methylsiloxane cross-linker 

component, which also contains a platinum-catalyst, are reacting via hydrosilylation to create the 

cross-linked polymer network PDMS. After demolding, the PDMS replica was cut with a razor 

blade along predefined grooves into individual parts. Inlet ports for the later polyethylene (PE) 

tube connection were punched into the PDMS with an Integra® Miltex® biopsy punch (1 mm, 

Integra LifeSciences Corp.). The pattern surface of the resulting PDMS chip parts can easily be 

characterized via scanning electron microscopy (SEM) in order to determine the exact channel 

height and to identify defects that could disrupt the laminar microflow later on. Then, the 

hydrophobic surface of the PDMS chip halves were activated by air plasma treatment 

(MiniFlecto®, plasma technology GmbH) that led to the generation of hydrophilic silanol groups. 

These silanol groups can be used to initiate a condensation reaction resulting in a covalent 
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bonding between the both PDMS chip halves.11 Apart from a thin unstructured piece of PDMS 

acting as bottom part for a 2D microchip, also a glass slide could be used to seal the structured 

PDMS half. If a 3D microfluidic chip with a 3-dimensional fluid focusing channel design has 

been fabricated, two structured PDMS microchip parts are needed to create the channel network. 

A small drop of ultrapure water (Milli-Q, Merck KGaA) was added to generate a thin film of 

water which enabled the alignment of the two individual parts prior to the final bonding. After 

bringing both parts in close contact, integrated orientation structures allowed to snap in and to 

align the microstructures automatically. If necessary, fine adjustments were carried out under a 

microscope. Removing the water in an oven at 35 °C for 12 h resulted in a permanent covalent 

bonding of the microfluidic chip. The fabricated PDMS microfluidic devices used in this thesis 

are based on quasi-two- and three-dimensional focusing channel networks which are illustrated 

in Figure 6 and developed for the investigation of particle separation phenomena. 

 

Figure 6 | Comparison 2D and 3D microfluidic devices. (a) Lateral 2D focusing flow cross with three 

inlet and one outlet channels. (b) Surrounding 3D focusing cross also with three inlets and one outlet 

however the two side channels as well as the outlet channel are more than twice as high as the main inlet 

channel. 

Microfluidic chips made of elastomer PDMS have many advantages like an easy fabricating 

process,12-14 good temperature stability between -50 and 200 °C as well as an excellent 

transparency to visible light between 240 and 1100 nm for all optical methods of analysis.15 Its 

low toxicity and high gas permeability is well-suited for cell culturing and growth studies.16 

Additionally, the elasticity of PDMS can be controlled by the ratio of the oligomer and 

crosslinker. PDMS is electrically insulating and allows the integration of electrodes in order to 

manipulate the fluid flow by electric fields.17,18 However, this soft material has also significant 

drawbacks e.g. its chemical resistance only against aqueous solutions and a small number of 

polar organic solvents like ethanol, isopropanol or acetone.15 Due to the fact that PDMS is 

hydrocarbon-based, organic solvents with solubility in hydrocarbons are able to swell and 

deform PDMS resulting ultimately in a collapse of the microfluidic channel.19 By fabricating 
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microchannels with extreme aspect ratios (channel height h divided by channel width d, and 

h/l ≤ 0.2 or h/l ≥8), strong deformation of the channel structures will occur.20 Moreover, 

unspecific adsorption of biomolecules can lead to bio-fouling of the hydrophobic PDMS 

surface.15 Consequently, other materials like thermoplastic, UV-curable perfluoropolyether and 

fluorinated terpolymers (DyneonTM THV),21-23 polyimides24 and poly(methyl methacrylates),25 

but also thermoset polyester (TPE),26 polyurethane methacrylate (PUMA) and Norland optical 

adhesive (NOA) have been tested by research groups for building up microfluidic devices, even 

though these materials demand for more complex manufacturing methods, such as high precision 

injection and compression molding, hot embossing or laser ablation.27  

Like PDMS, however, many of these materials suffer from their low X-ray transparency. Yet, for 

an in situ analysis of growth kinetics and orientation of colloids within microchips small angle 

X-ray scattering (SAXS) is a highly desired tool.28-31 For such X-ray applications, just 

acrylate-based NOA and the specific liquid fluoroelastomer SIFEL (produced by Shin-Etsu 

Chemicals Co.) are suitable.32 SIFEL contains more small fluorine atoms instead of silicon 

atoms, to increase X-ray transparency. In this context, also developing hybrid materials, like 

combinations of SIFEL or polyimide foils (Kapton®) and PDMS are of growing interest.33,34 

Another possibility is to employ a free liquid microjet device by using a micro nozzle system 

that could be fabricated out of a micro glass capillary or an individually designed microfluidic 

nozzle chip.35,36 The advantage of free liquid microjets is that the analyzed volume is not 

surrounded by any chip material, which results in no background scattering for SAXS analysis.37 

Additionally, a fast microjet shortens the time X-rays are in contact with sensible samples. For 

instance, analyzing cells, free jets reduce the possibility of damage as well as enable a better and 

faster decoding of the proteins.38,39 

 

2.1.2 Fluid Dynamics in Microchannels and Jets 

The confinement of fluids in micro-scale dimensions enables access to fluid flow phenomena 

which are not noticeable in a macroscopic environment. As a consequence, viscous dissipation as 

well as pressure effects dominate over inertia and result in a laminar flow without any 

turbulences.40,41 Moreover, as explained in chapter 2.1.1, microfluidic devices have become 

more and more complex, which increases the need for fluid flow simulations to further improve 

chip design.42 Computational fluid dynamics (CFD) is the standard tool for modeling fluid flow 

by solving numerically partial differential equations (PDEs) that describe the transport of 

momentum, mass and energy in moving fluids.43 The most common method today is the finite 
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element method (FEM) that has evolved as a powerful simulation tool due to recent advances in 

computer power. Nowadays, FEM enables highly accurate modeling of fluid behavior within the 

flow geometry by handling complex mesh structures.44 Such FEM analyses have been made for 

certain applications employed in this thesis using COMSOL Multiphysics (v4.3).45 

Navier-Stokes equation  The exact motion of fluids is mathematically descripted and governed 

by the Navier-Stokes equation, which describes the velocity field in a Newtonian fluid by 

deriving the Newton’s second law of motion �⃗� = 𝑚�⃗� to a finite element of a fluid.41,46 Basically, 

the Navier-Stokes equation is a set of two second order PDEs and can be written as:47 

𝜌 [
𝜕𝑣

𝜕𝑡
+ (𝑣 ∙ ∇)𝑣] = 𝜂∇²𝑣 − ∇𝑝 + 𝐹        (1) 

Here, the fluid density is denoted as 𝜌, the dynamic viscosity as 𝜂 and v expresses the velocity 

vector of the fluid flow. The Nabla-Operator is termed with 𝛻  and F represents additional 

long-range forces per unit volume directed on the fluid, like centrifugal forces or gravity. The 

rest of the equation on the right-hand side expresses the stress forces per unit volume due to a 

pressure gradient ∇𝑝 and the viscosity 𝜂∇²𝑣.42 The inertial terms on the left side express the 

acceleration in terms of the velocity field. 

Since, in microfluidic flow, inertial forces and other body forces are negligible, therefore, the 

Navier-Stokes equation can be linearized omitting its time dependency (because fluid flow in 

microfluidic devices is symmetric in time).46 Consequently, under low Reynolds number 

conditions, the motion of the fluid is reversed and the initial state of the fluid can be recovered, if 

forces and pressure acting on a fluid are also reversed.48 This behavior is characteristic in case of 

laminar flow and not possible in turbulent flow.49 Additionally, by assuming an incompressible 

liquid as a continuum material and neglecting its molecular nature, the following continuity 

equation is obtained:42 

∇ ∙ 𝑣 = 0         (2) 

In this context, slowly flowing fluids with almost constant density (as is the case for water), can 

be categorized as incompressible materials. Therefore, the mass of an inflowing and outflowing 

finite volume of liquid must be the same over a certain time.42 

Reynolds number  The conception “fluid” is defined in fluid mechanics as a substance that sets 

no resistance to a discretionary slow shearing and therefore exhibits endless viscosity.50 The 

definition combines the behavior of liquids as well as gases which are quite similar in this 

consideration. If the characteristic length of the fluid flow decreases to the size of the fluid 
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transport system (like in micro-sized channels), a fundamental change in hydro-dynamics occurs, 

i.e. viscous forces start to dominate over inertial forces. This phenomenon causes the typical 

laminar flow pattern in microfluidics and expresses a stationary flow with constant flow speed. 

To measure a laminar flow, the Reynolds number (Re) was established and relates inertial forces 

𝜌(𝑣 ∙ ∇)𝑣 and viscous forces 𝜂∇²𝑣:41,51,52  

𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

|𝜌(𝑣∙∇)𝑣|

|𝜂∇²𝑣|
=

𝑣𝜌𝑑

𝜂
        (3) 

Here, v is the flow velocity, d a characteristic length of the system represented by the 

microchannel diameter, 𝜌  is the density and 𝜂  the viscosity of the fluid.53 For microfluidic 

applications Re tends to be very small, which signifies a higher importance of viscous forces that 

again describe the resistance of fluids under shear stress due to small microchannel geometries, 

low flow rates and/or high viscosities.48 In consequence, the inertial term can be neglected 

because the flow velocity varies on the scale of the channel diameter d and therefore the 

Reynolds number decreases to Re ≪ 1.41,54 This leads to phenomena like turbulence-free flow, 

fast evaporation and the increased importance of surface tension.46  

In this work, most of the microfluidic devices were operated with water or solvents that have 

approximately the same density and viscosity, typical flow velocities of v = 0.1 - 5000 mm/s, and 

channel dimensions between 50 and 1000 µm. These microfluidic conditions lead to Reynolds 

numbers in a range of Re ≈ 0.01 – 100, where the fluid flow is always laminar and mixing of 

liquids is limited to diffusion processes.41,55 Turbulences occur in low Reynolds number flow 

starting at a value of Re = 2040 ± 10.56  

Fick’s laws of diffusion  The diffusion effect is defined as a movement of particles along a 

concentration gradient, from an area of high concentration to an area of low concentration.57,58 

Fick’s first law of diffusion covers the proportionality of the concentration gradient and a 

so-called diffusive flux J that measures the number of molecules moving through an area per 

time interval. In order to describe the diffusion at a certain point in the microfluidic channel, 

Fick’s second law is used to give the relation between the concentration gradient ∇𝑐 and the 

alteration rate of concentration by diffusion, whereby D denotes the diffusion constant:46,59 

𝜕𝑐

𝜕𝑡
= −∇ ∙ 𝐽 = ∇ ∙ (−𝐷∇𝑐)        (4) 

Diffusion is a non-linear process and the average time tdiffusion necessary for two substances to 

diffuse into each other is governed by the Einstein-Smoluchowski equation:60,61 
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𝑡𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =
𝑑2

𝐷
        (5) 

with the characteristic length d for the diffusive process. The mixing time based on advection 

depends on flow velocity v and is given by following equation:42 

𝑡𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑑

𝑣
         (6) 

Comparing both convection times, the required time for a species to diffuse scales quadratically 

with the distance of diffusion d that is represented by the channel diameter in this work. Thus, 

species exchange by diffusion is not effective on the centimeter scale but enable effective mixing 

in small microchannels at low Reynolds numbers within very short times.46,62 In combination 

with stationary fluid motion, this enables a time-resolved in situ monitoring of diffusion-based 

convection with a temporal resolution down to microsecond in micro-sized channels. Thereby, a 

precise determination of the reaction kinetics and concentration of the molecules or fluorescent 

dyes in microfluidic devices can be obtained by hydrodynamic fluid focusing,42 as illustrated in 

Figure 6 of chapter 2.1.1. The monitoring can be carried out with microscopic or scattering 

methods,63 as shown in this thesis using confocal laser scanning microscopy (CLSM) and small 

angle X-ray scattering (SAXS). 

Péclet number  A central parameter for the description of transport phenomena is the 

dimensionless Péclet number (Pe). Pe represents the ratio between advective transport (i.e. fluid 

flow) and diffusive transport (i.e. diffusion):41 

𝑃𝑒 =
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
=

𝑣𝑑

𝐷
= 𝑅𝑒 ∙ 𝑆𝑐       (7) 

with D the diffusion coefficient, v as flow velocity and d as channel diameter. The Péclet number 

is also the product of Re and the Schmidt (Sc) number and defined as ratio between the viscous 

diffusion rate as well as molecular (mass) diffusion rate. Sc is given by the ratio of the kinematic 

viscosity v and the mass diffusivity Dm.41 At high Pe numbers, advection is the dominant 

convection process contributing to the transport of the substance and happens in microfluidic 

devices just downstream. Therefore, diffusion is the only mixing process across the channel and 

the mass flux perpendicular to the flow is completely diffusive. For an aqueous solution flowing 

at an average velocity of v = 0.01 m/s in a microfluidic channel with a characteristic length 

L = 100 µm, the Pe number is about 1000.49 

Convection in microfluidic devices can be achieved by different techniques, as common T- or Y-

shaped channel designs. However, more complex convoluted or curved mixing geometries are 
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also available today.64 In this work, diffusion-based mixing techniques employing with a 

cross-shaped channel design are in focus. Here, the convection can be accelerated by e.g. sinus 

shaped microchannels, as it is shown in the work of chapter 4.2. Using a cross-shaped geometry 

for the channel entrance, one liquid is guided through the center channel (MC) and 

hydrodynamically focused by another liquid from the side channels (SC1). This setup is shown 

in Figure 6 in chapter 2.1.1. The cross-shape geometry allows to focus flow and to manipulate 

the thickness of the middle liquid layer. Thus, very fast diffusive mixing for kinetic experiments, 

can be carried out as exemplified by the work in chapter 4.3. The use of a double-cross 

polytetrafluoroethylene (PTFE) chip prevents wall agglomeration of reaction products (e.g. 

growing nanoparticles), by water flowing from the two additional side channels (SC2), as shown 

in Figure 7. The layer thickness of each stream can be adjusted by varying the flow rates:49 

𝑑𝑀𝐶

𝑑𝑆𝐶1+𝑑𝑆𝐶2
=

𝜂𝑀𝐶

𝜂𝑆𝐶1+𝜂𝑆𝐶2
∙

𝑄𝑀𝐶

𝑄𝑆𝐶1+𝑄𝑆𝐶2
            (8) 

where d is the thickness of the relevant layer, 𝜂 is the viscosity and Q the volume flow. The 

equation shows that the layer thickness of two, four or more merging streams are proportional to 

their viscosity and their volumetric flow rate, if the fluids are Newtonian and the viscosity does 

not change during the experiment. Moreover, the microchannel geometry has to be rectangular 

and the height is the same in all inlet and outlet channels. As indicated by equation 5, mixing 

time is inversely proportional to the square of the diffusion path length. Therefore, decreasing 

the stream width d, the mixing time can be reduced significantly.49 

 

Figure 7 | Double focus microchannel design with two flow crosses. Two sets of two side channels each 

(SC1, SC2) allow a hydrodynamic focusing of the fluid stream from the center channel (MC). 

No-slip condition  The phenomenon of particle wall agglomeration is based on the fact that on 

the micro scale surface properties become more and more important as the surface to volume 

ratio increases.65 Consequently, the influence of the channel walls on the liquids becomes much 

more pronounced and defines the flow profile within the microchannel which also results in a 

small Reynolds number Re.49 This hydrodynamic interaction between solids and liquids can be 

described using the Navier boundary conditions. Those conditions assume that the flow velocity 

vx tangential to the surface is proportional to the shear stress at the surface:66-68 
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𝑣𝑥 = 𝜆
𝑑𝑣𝑥

𝑑𝑦
      (9) 

Here, 𝜆 is the slip, or Navier length, which can be illustrated as distance between the surface and 

an imaginary point inside the solid wall, where the velocity profile extrapolates to zero (shown in 

Figure 8).42 If 𝜆 = 0, no slip is present, which is widely accepted as suitable boundary condition 

to describe the interaction of a fluid and a solid wall in microfluidics.66 It should be noted that 

the no-slip boundary condition remains an assumption, which is rather based on experimental 

findings than physical principles. The depth of fluid slip depends on many parameters, such as 

the roughness and wettability properties of the surface as well as dissolved gas in the fluid 

stream.69 Micro particle image velocimetry (µPIV) and surface force apparatus (SFA) 

experiments have demonstrated that the velocity close to the wall is not exactly zero. More 

likely, a velocity component remains, as soon as hydrophilic species are in contact with strongly 

hydrophobic or nanostructured materials.66,68,70,71 For systems of ethanol or aqueous samples that 

flow in PDMS-based microfluidic channels with untreated surfaces, however, the no-slip 

condition is a good approximation.66 

 

Figure 8 | Sketch of the slip length λ for different boundary conditions, adapted from the literature.42,66,69 

As a consequence, the flow velocity vx is highest in the center and much smaller with vx ≈ 0 at 

the surface of the microchannel. Hence, a parabolic flow profile is established across the 

channel’s cross section with a lower speed of particles next to the wall and therefore a higher 

probability to stick and agglomerate. The volumetric flow rate Q and the maximum flow velocity 

vmax in circular channels can be calculated using the Poiseuille equation:72 

𝑄 =
𝜋𝑑4∆𝑝

128𝜂𝐿
   𝑣𝑚𝑎𝑥 =

𝑑2Δ𝑝

16𝜂𝐿
     (10) 

where d is the diameter of the pipe and η the fluid viscosity. The pressure drop is denoted as Δp 

along the channel length L, which follows the fluidic resistance of the microchannel R = Q/Δp.65 

In case of Poiseuille flow, the mean flow velocity is ½ of the maximum velocity.46 
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When employing a free liquid jet microfluidic device, the parabolic flow profile is turning into a 

plug flow profile after passing the nozzle outlet. This form represents a simplified flow profile 

because boundary layers become negligible due to the lack of channel walls. In a free jet, the 

solid channel walls are replaced by an interface with air. That interface has lower friction with 

the fluid and can be accelerated in flow direction. Thus, the flow velocity is generally 

homogeneous across the jet cross-section which results in a so-called plug flow. The effect of 

plug flow is especially pronounced in the case of shear thinning fluids or fluids with high 

viscosity.49 A comparison of the parabolic and plug flow profile is illustrated in Figure 9. 

 

Figure 9 | Illustration of velocity flow profiles for parabolic (left) and plug (right) flow. 

Dean number  As soon as a straight microchannel is modified to include curvatures, those will 

cause the initially existing Poiseuille flow to change its main direction of motion. Due to an 

arising adverse pressure gradient generated by the curvature, a decrease in velocity will occur 

close to the convex wall.73 A contrary effect will appear towards the outside of the pipe and 

gives finally rise to a secondary motion superimposed on the primary flow. That motion will 

sweep the fluid towards the outside of the bend and simultaneously the fluid near the channel 

wall will return towards the inside of the bend. This secondary motion within a laminar flow is 

expected to appear as a pair of counter-rotating cells, which are called Dean vortices.74 The 

probability for such Dean-vortices to arise, depend on the curvature of a channel and is given by 

the dimensionless Dean number (Dn or De):75  

𝐷𝑛 =
√(𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠)(𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠)

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

√
1

2
(𝜌𝑑2𝑅𝑐

𝑣2

𝑑
)(𝜌𝑑2𝑅𝑐

𝑣2

𝑅𝑐
)

𝜇
𝑣

𝑑
𝑑𝑅𝑐

=
𝜌𝐷𝑣

𝜇
√

𝑑

2𝑅𝑐
= 𝑅𝑒√

𝑑

2𝑅𝑐
 (11) 

where d is the channel diameter, ρ the density, and μ the dynamic viscosity of the fluid. The axial 

velocity scale is denoted as v and the radius of curvature of the channel path is Rc. Equation 11, 

also shows that the Dean number is the product of Reynolds number (Re) and the square root of 

the curvature ratio. Hence, the creation of Dean vortices is stronger as the viscosity of the used 

fluid is lower.76 

The Dean number plays an important role in particle separation phenomena in sinusoidal 

microchannels as will be shown in chapter 4.2. A convergent-divergent cross section of the 
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microchannel causes mixing due to Dean vortices as well as expansion vortices in the divergent 

section based on the amplitude and wavelength of the sinusoidal shape.77 This behavior results in 

the off-motion of particles from their straight trajectories and therefore allows separation of 

particles within fluids. These kinds of micro vortices within laminar flow conditions at low Dean 

and Reynolds numbers are illustrated in Figure 10. 

 

Figure 10 | Sketch of stream trajectories due to Dean micro vortices on horizontal mid-plane of a 

sinusoidal microchannel. 

Further parameters  In polymeric dispersions, i.e. non-Newtonian, shear thinning fluids, the 

Weissenberg (Wi) and Deborah (De) number are important to compare the polymeric relaxation 

time τP within a fluid to another specific time range. Wi is connected to the shear rate time γ-1:49 

𝑊𝑖 = 𝜏𝑃𝛾         (12) 

A small value for Wi expresses that the polymer relaxes before flow deforms it significantly. 

When Wi becomes 1, the polymer does not have enough time to relax and gets deformed due to 

shear stresses.41 The Deborah number, however, compares τP with other relevant flow time scales 

τFlow: 

𝐷𝑒 = 𝜏𝑃/𝜏𝐹𝑙𝑜𝑤           (13) 

which is very useful for the characterization of a fluid’s response to a stimulus of a given 

duration.41 The time scale of such a stimulus could be given by changes of the flow geometries at 

a given flow rate, like the fluid’s flow through a sinusoidal microchannel, or its passing of a 

micro nozzle outlet.78 

In order to determine the influence of elastic vs inertial effects, the Elasticity number (El) can be 

used. It is defined as the ratio of Deborah and Reynolds number:41 

𝐸𝑙 =
𝐷𝑒

𝑅𝑒
=

𝜏𝑃𝜂

𝜌ℎ2
      (14) 

with h as shortest distance setting the shear rate. This dimensionless number depends therefore 

only on material properties and the geometry, but not on flow velocity.41 
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Non-Newtonian fluids  In contrast to simple linear systems, where the input is proportional to 

the output, most of the systems existing in nature have complicated non-linear behavior. Such 

natural systems very often are of highest interest research because precious resources like 

material costs, man-power and especially time can be saved.78  

This thesis is based on the investigation of the flow of non-Newtonian fluids within microfluidic 

devices that can be considered a non-linear problem. Anisotropic colloids as wormlike micelles, 

entangled polymer networks and inorganic nanosheets have been used. All of which change their 

viscosity under the influence of shear or elongation. The viscosity of non-Newtonian fluids can 

increase and cause in shear thickening (“dilatant”) or decrease to cause shear thinning 

(“pseudoplastic”).79 Both characteristics are displayed in the diagrams of Figure 11 and 

compared to the shear independent behavior of Newtonian fluids. Newtonian fluids show a linear 

connection between shear stress τ and shear rate �̇�, whereas non-Newtonian behavior can be 

described by the law of Ostwald and de Waele using k as consistency and n as flow index.80 

 

Figure 11 | Comparison between a Newtonian (left) and a non-Newtonian (right) fluid with respect to 

their dynamic viscosity η vs shear rate �̇�. 

The systems investigated in this thesis all show non-Newtonian behavior. The fluids decrease of 

viscosity η is based on parallel shear-oriented nanosheets, macromolecules or wormlike micelles 

that had been entangled and not yet pre-aligned without shearing. This complex non-Newtonian 

behavior can be described following the Cole-Cole-, or Cross-equation:81-83 

𝜂 = 𝜂∞ +
𝜂0−𝜂∞

1+(𝜏𝑐�̇�)𝑛     (15) 

where η0 is the viscosity at zero shearing and η∞ the high-shear viscosity. The internal relaxation 

time τc and the power law exponent n characterize the shear thinning between η0 and η∞.29 By 

coupling this equation with the Navier-Stokes equations (eq. 1 and 2) of an incompressible fluid, 

the fluid flow of non-Newtonian fluids can be calculated via FEM-based CFD-simulations.78 
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Rayleigh jets and droplet generation  The investigation of liquid microjets (due to their 

aforementioned advantages with respect to scattering techniques) requires a thorough 

understanding of their basics. Considering the starting conditions – a micro nozzle – the volume 

flow rate Q divided by the cross-sectional area A of the nozzle outlet gives the initial flow speed 

v. Additionally, the law of continuity for incompressible fluids, also known as Venturi effect, 

states that the fluid density ρ is the same at each position in the channel.84 Due to the connection 

m = ρ·V of mass m and volume V, the mass as well as volume flow have to be constant. Thus, 

reducing the nozzle diameter, the flow speed of the fluid will be increased at a given volume 

flow. 

For analytical reasons, it is important to generate a stable microjet without any movement over 

the entire distance of interest until droplet breakup. Hence, the hydrodynamic stability of the 

liquid jet has to be locally and temporally investigated with respect to its initial moment of 

droplet generation.85 The first work on this field was done by Plateau in 1873 and Rayleigh in 

1887 who investigated an incompressible non-viscous fluid cylinder that showed an oscillating 

surface.86,87 Rayleigh discovered an optimal wavelength λopt that yields maximum jet instability 

where the jet length is minimal. This basic time-dependent and so-called Plateau-Rayleigh 

instability is valid when only inertial and surface tension effects are present and is defined as:87 

𝜆𝑜𝑝𝑡 = 9.016 ∙
𝑑𝑖

2
     (16) 

with di as initial diameter of the unperturbed fluid. Unstable Rayleigh modes are only possible 

when the product of the wave number of perturbation k and the initial radius ri is less than unity 

(k·ri < 1). Hence, a non-viscous water jet will break up into drops if its wavelength is greater than 

about 3.18 times its diameter.88 The driving force of the Rayleigh instability is that liquid jets 

tend to minimize their surface area and break up into smaller fractions with the same volume due 

to the virtue of their surface tensions.89 The result of this perturbance might be a steady stream of 

droplets. These tiny perturbations are always present, no matter how smooth the stream is, and 

can be subdivided into sinusoidal components,90 as visible in Figure 12. At the trough of the 

sinus wave, the radius of the stream is smaller, and the Laplace pressure is increased.91 The 

Young-Laplace equation gives the pressure difference Δp as a function of the surface tension γ:92 

∆𝑝 =
2𝛾 cos 𝜃

𝑟
      (17) 

with the contact angle θ between the fluid and the surface. Therefore, the surface tension is 

inversely proportional to the microchannel, or micro nozzle dimension. This effect alone predicts 
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that the higher pressure in the trough squeezes liquid into the lower-pressure region in the peak, 

and so causes the wave’s amplitude to grow over time.90 

 

Figure 12 | Series of highspeed camera images from a liquid microjet with a flow rate of v = 385 mL/h 

and a diameter of about 100 µm that show the sinusoidal jet movement until droplet breakup taken by a 

Phantom v1612 (Vision Research). 

Next to the temporal stability analysis, however, the local stability analysis is also very important 

since the amplitude of the sinusoidal movement of the jet is increasing in direction of the 

stream.93 Furthermore, fluid density and viscosity play a key role in detailed fluid dynamics.94 

For instance, the Weber (We) number gives the ratio between the inertia of the fluid compared to 

its surface tension, which is expressed by:41,47 

𝑊𝑒 =
𝜌𝑣2𝑙

𝜎
      (18) 

where ρ is the fluid density, v the velocity, l the jet diameter and σ the surface tension. In a free 

liquid microjet system must, the viscosity of the liquid jet μA as well as the viscosity of the 

external fluid μB must be included.95 In this thesis, the liquid microjet is generated in air where it 

undergoes jet breakup. In this case, the perturbation growth rate ω is only a function of the initial 

jet radius ri, the surface tension σ as well as the viscosity of the jet μA, and the perturbation 

wavelength k:95 

𝜔 =
𝜎(𝑘2𝑟𝑖−1)

2𝑟𝑖𝜇𝐴

1

𝑘2𝑟𝑖
2+1−𝑘2𝑟𝑖

2𝐼0
2(𝑘𝑟𝑖)/𝐼1

2(𝑘𝑟𝑖)
    (19) 

where I is the modified Bessel function of the first kind. As visible in the equation 19, the 

viscosity only determines how fast a given perturbation will grow or decay. Including the 

viscosity of the liquid jet and its surrounding fluid, it is possible to explain the process of 

atomization due to jetting.96 This kind of droplet breakup creates a spray with extremely small 

drops and is called Taylor mode.97 

The aim of this thesis, however, was to generate stable liquid microjets. Based on the equations 

16 – 19, their stability regimes (steady jetting) can be finally mapped out using Weber- and 

Reynolds number diagrams to avoid early droplet formation.98,99 Thus, a stable microjet is 

observed when the fluid outruns the instabilities convectively.100 
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2.2 Self-Assembly of Amphiphiles 

Nature’s fundamental principle of self-assembly drives components of a system to form ordered 

structures or patterns out of a pre-existing chaotic arrangement.49 This autonomous organization 

represents a basic process not just in our immediate environment but also on a galaxy scale.101 

Saturn’s rings,102 for instance, or the human body that again are built-up by even smaller 

macromolecules.103-106 Both of these examples employ the principle of bottom-up assembly on 

very different length scales to form ordered superstructures with an energetic minimum.106,107 

Concerning the process of droplet breakup of a liquid jet in chapter 2.1.2, the reduction of 

surface tension is the driving force for reaching a more favorable energy level.89 A similar 

principle based on a fast adaptable and effective energy balance can be observed on macro scale 

for penguins: their body size is decreasing approaching the equator where the climate is 

warmer.108 Due to their greater surface to volume ratio, they can easily use the heat of the sun to 

keep up their body temperature, but at the same time also cool down much more effective.109 In 

very cold regions, like Antarctica, however, they need to keep their energy in form of heat, 

which is working better with a bigger body because the volume increases cubic, whereas the 

surface rises just quadratic.110  

This thesis focuses on self-assembled anisotropic colloids, as wormlike micelles shown in the 

cryo-transmission electron microscopy (cryo-TEM) images of later Figure 13. The process of 

static self-assembly is thermodynamically reversible and needs little to no activation energy from 

an external source. Self-assembly is the result and can be controlled by the design of the 

components, which makes an attractive method for the formation of nanomaterials, drug delivery 

systems or other superstructures with new properties.101  

 

Figure 13 | Cryo-transmission electron microscopy (cryo-TEM) images of wormlike micelles that have 

self-assembled out of the diblock copolymer polyisoprene-block-polyethylene oxide (PI-b-PEO). 
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In chemistry, well-known types of substances that carry out autonomous organization are 

amphiphilic molecules, which consist of both a lipophilic as well as hydrophilic part. Here, the 

most famous examples are molecular surfactants used in soap to form soap bubbles out of 

micelles via self-assembly as soon as the critical micelle concentration (CMC) is reached.49 The 

self-assembly process aims to minimize the surface area between the solvent and an insoluble 

block, as well as the immiscible blocks.111 Self-assembly phenomena create new systems with 

higher order, therefore, a theoretical description using an order parameter ξ was found to be 

useful.49 This parameter defines the degree of order of a system, where a completely chaotic 

system would have the order parameter of ξ = 0 and a perfectly ordered one would reach a value 

of ξ = 1.107 A prerequisite for the formation of organized domains are specific forces between 

molecules. A balance of short-range attractive as well as long-range repulsive forces is required 

to form specific structure patterns. Such short-range forces can be covalent or ionic bonds, while 

coulomb repulsion, hydrophobic interactions or chemical incompatibility of polymers appear as 

long-range forces.107 

Micelles created out of copolymers, like the used wormlike micelles in Figure 13, are also a 

well-known product of self-assembly. Such copolymers that can be synthesized adjustable and 

tailor-made via living polymerization exhibit micellar superstructures. Thus, this field of 

chemistry is predestined for constructing a great variety of components as building blocks for 

assembly processes.112 Hence, block copolymers, consisting of two or more immiscible or 

functionalized blocks of chemically different polymeric moieties covalently bound together, 

extend the possibilities to create new materials for medical, catalytical, or photoelectric and 

ceramic applications.107,113 Most common are diblock copolymers with an insoluble block that 

forms the micellar core and a soluble block wrapped around it. Copolymers with a soluble block 

larger than the insoluble one always self-assemble to spherical micelles.114 Apparently, not all 

copolymers self-assemble to spherical shapes. There are certain requirements with respect to 

composition and structure of self-assembling copolymers.115 The size and shape of the micelle 

depends on length and ratio of the polymer blocks.49 And based on the size and shape of the 

building block, it is possible to manipulate the interface to create an interfacial curvature. This 

relation is described by the micelle’s mean curvature H and its Gaussian curvature K, both of 

which are specified by the two radii of curvature R1 and R2, based on the following 

equations:116,117 

𝐻 =
1

2
(

1

𝑅1
+

1

𝑅2
)  𝐾 =

1

𝑅1𝑅2
   (20) 
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The resulting interfacial curvature in turn is related to the dimensionless packing parameter P 

that dictates the molecular shape of copolymer molecules in solution. Thus, P determines the 

morphology of the corresponding self-assembled copolymer aggregate upon phase separation of 

the hydrophobic and hydrophilic block.118 P is defined as the size of the hydrophobic block 

relative to the hydrophilic block and connected to the interface curvature as follows:116 

𝑃 =
𝑣

𝑎∙𝑙
= 1 − 𝐻 ∙ 𝑙 +

𝐾∙𝑙2

3
= 1 −

𝑙

2
(

1

𝑅1
+

1

𝑅2
) +

𝑙²

3𝑅1∙𝑅2
       (21) 

where v is the volume of the hydrophobic block, a the hydrophilic-hydrophobic interfacial area, 

and l the hydrophobic block length normal to the interface, as shown in Figure 14. For instance, 

employing symmetric copolymers with a lager core compared to the corona, leads to the 

generation of cylindrical micelles.119 This is the case for the wormlike micelles studied in this 

thesis which have a packing parameter of P = 0.5 and therefore assume a cylindrical shape. The 

respective diblock copolymer polyisoprene110-block-polyethylene oxide198 (PI110-PEO198) was 

synthesized via living anionic polymerization, where K = 0, and H = 1/2r turns into 1/2l and 

yield to P = 0.5 which represents a cylindrical shape.42 

 

Figure 14 | Chemical formula of the used diblock copolymer PI110-PEO198 and illustration of the packing 

parameter P with the related geometric parameters known from equations (20) and (21) as well as the 

various structures attainable by self-assembly of the block copolymers. PI110-PEO198 forms wormlike 

micelles represented by a cylindrical shape for P. 

Increasing values of P turn the morphology of the assembly from spherical over cylindrical and 

vesicular to planar bilayer aggregates. This transition is illustrated in Figure 14 and supported by 

the theoretical values in following Table 1: 



2 Fundamentals 
 

36 

 

Table 1 | Packing parameter P of different aggregated structures as well as their corresponding mean 

curvature H and Gaussian curvature K.118  

Shape 𝑷 =
𝒗

𝒂 ∙ 𝒍
 R1 R2 H K 

Sphere P < 
1

3
 R R 1/R 1/R² 

Cylinder 1

3
 ≤ P < 

1

2
 R ∞ 1/2R 0 

Vesicle 1

2
  ≤ P < 1 R ∞ 1/2R 0 

Bilayer P = 1 ∞ ∞ 0 0 

 

In comparison to low molecular weight amphiphiles, micelles formed by polymeric amphiphiles 

are kinetically and thermodynamically much more stable. Therefore, they provide a variety of 

applications, such as colloid stabilization or emulsion polymerization.120 

In diluted solutions, mainly individual particles like micelles or vesicles are formed. In contrast, 

in higher concentration cubic phases of spherical micelles develop and can arrange into even 

higher ordered body-centered cubic (BCC) or face-centered cubic (FCC) phases.121 Moreover, 

there are known hexagonal packed (HEX) patterns and lamellar (LAM) phases from the used 

wormlike or cylindrical micelles in bulk with domains sizes over several micrometers.107 An 

overview of some of the modulated or porous phases that can be generated in bulk is shown in 

Figure 15. 

 

Figure 15 | Illustration of different structures attainable by self-assembly of block copolymers in dilute 

solutions (top) as well as favored orders with higher concentration in bulk (bottom). 
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2.3 Microscopic and Scattering Methods 

2.3.1 3D Confocal Laser Scanning Microscopy 

3D confocal laser scanning microscopy (3D CSLM) is a powerful optical imaging technique 

mainly applied in biological science, genetics and microbiology.122 Furthermore, it is 

increasingly used to analyze dynamic systems, like general flow profiles or particle flow in 

microfluidics as shown in this work. In 1957, the principle of confocal imaging presented by 

Marvin Minsky was shown to overcome the resolution limitations of traditional wide-field 

fluorescence microscopes.123 The first confocal laser scanning microscope was built by William 

Bradshaw Amos and John Graham White in Cambridge in the mid-1980s. There, some 

manufacturers have started to fabricate CLSMs commercially from the 1990s on.124 After the 

advent of ultra-fast resonant scanners, it is possible, for instance, to detect the growth of 

nanoparticles flowing along a microchannel as a function of their excitation wavelength with a 

multichannel lambda mode.  

Generally, a CLSM is a specialized fluorescence microscope and therefore, requires the use of 

fluorescence dyes or autofluorescent specimen to detect the target. As visible in Figure 16, the 

phenomenon of fluorescence is based on short-time and spontaneous emission of light due to the 

transition from an excited electronic state (S1) back to the lower energetic ground state (S0). 

Light emitted from this transition shifts to lower energy and a longer wavelength compared to 

the absorbed light, which is known as stokes-shift.125 The excited electronic state arises from the 

excitation of valence electrons of chromophores by the absorption of a light photon as it is 

possible with fluorescence dyes.126 A certain amount of the excitation energy will decay in a 

non-radiative oscillating relaxation process before fluorescence can appear.57 Fluorescent 

transitions are spin-allowed and occur only between states with the equal spins according to the 

transition rule ΔS = 0.127 Therefore, only coherent light with a certain wavelength (e.g. lasers), 

can provide photons with the relevant energy E = h·v to achieve an excitation of valence 

electrons to a higher state.128 The Franck-Condon principle states that these transitions can only 

occur vertically.57 The mechanism of fluorescence can be illustrated by a Jablonski diagram:129 

 

Figure 16 | Jablonski diagram for absorption, non-radiative decay and fluorescence, adapted from57. 
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In a CLSM, a spatial pinhole blocks out-of-focus light in image formation and leads to an 

increasing optical resolution and contrast.130 3D objects can be reconstructed via optical 

sectioning, i.e. capturing multiple 2D images at different depths in a sample.131 In this work, a 

Zeiss LSM 710 and a Leica TCS SP8, which is visible in Figure 17, have been used to 

reconstruct 3D-images of the flow profiles along various-designed microchannels. 

 

Figure 17 | Leica TCS SP8 CLSM used in this thesis (left), a schematic built-up of the scanner box as 

well as microscopic tripod adapted from the Leica user manual132 and recorded images of various flowing 

colloids in microchannels (right). 

In a conventional fluorescence microscope, the entire sample is illuminated and all parts in the 

optical path are excited simultaneously. The resulting fluorescence is detected by a camera 

including a large unfocused background contribution.133 The advantage of a CLSM, is that only a 

very small beam of light can be focused by a pinhole (point illumination) in all three dimensions 

at a given time.130 A modern CLSM is equipped with several lasers of different excitation 

wavelengths, which can be used to excite various dyes independently from each other and detect 

their signals by two or three different photomultiplier tubes (PMTs). The Leica TCS SP8 used in 

this thesis is an incident light microscope that works with an objective for illumination and 

detection at the same time. It is equipped with a diode laser of 405 nm, an argon-ion laser of 488 

and 514 nm, and a helium-neon laser of 552 as well as 638 nm.132 The coherent laser light is 

coupled into the scanner box via fiber optic cables and directed onto a dichroitic mirror. This 

mirror acts as a beam splitter as it reflects the excitation wavelength and can be penetrated by the 

fluorescence light. The optical path is detailed in Figure 17. The reflected excitation light is 

guided by various optical components and focused on the sample. Fluorescent light emitted from 

the sample is guided back and can pass the dichroitic beam splitter due to its longer wavelength 

and be detected. The point in the middle of the focus plane and the illuminated point in the 

sample are “confocal” to each other, which means that they are in focus simultaneously.123 
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As only light generated by fluorescence very close to the focal plane can be detected, the optical 

resolution of the image is much better than that of a conventional wide-field microscope.133 The 

lateral and axial resolution of a modern CLSM is determined by the “full width half maximum” 

(FWHM) of the light intensity and is represented by:134 

𝐹𝑊𝐻𝑀𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =
0.51𝜆

𝑁𝐴
   𝐹𝑊𝐻𝑀𝑎𝑥𝑖𝑎𝑙 =

0.88𝜆

𝑛−√𝑛2−𝑁𝐴2
    (22) 

where NA is the numeric aperture of the objective which is defined as n∙sin α with the opening 

angle α. The wavelength of the irradiated light is λ and n is the refraction index of the immersion 

medium. The wavelength should be estimated as an average wavelength of the excitation and 

emission wavelength:134 

�̅� ≈ √𝜆𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝜆𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛.    (23) 

The resolution can be further improved by reducing the diameter of the focus plane, which can 

vary depending on the fluorescence intensity of the dye and the required resolution. Depending 

on the amount of fluorescent light blocked at the pinhole, the resolution can be enhanced at the 

cost of decreased signal intensity, which in turn requires longer exposure times.131 Another factor 

limiting the resolution of confocal microscopy is the signal-to-noise ratio as only a small number 

of photons is typically available in fluorescent systems. Increasing the number of photons could 

be achieved by an increased laser intensity, which on the other hand, bears the risk to bleach or 

damage the sample.130 Therefore, laser intensity is regulated by an acousto-optic tunable filter 

(AOTF) and detected by very sensitive detectors. Usually PMTs or ultra-sensitive hybrid 

detectors are used to convert light intensity into an electrical signal that can be processed by a 

computer.132 

CLSM is a scanning microscopy technique. Thus, at a given time only one spot in the sample is 

illuminated and the signal detected. To reconstruct a 2D image, the sample is subdivided in a 

raster and the laser is scanned on the horizontal plane using several oscillating scanning mirrors. 

This scanning method has a short reaction latency and the scan speed can be varied. Naturally, a 

slower scan speed provides a better signal-to-noise ratio and hence, better contrast and higher 

resolution.130 The default scan frequency of the Leica TCS SP8 is 1400 Hz but can be increased 

by an ultra-fast resonant scanner to 12,000 Hz.132 Such an increased speed is necessary to 

investigate fast dynamic systems like the flow of colloids in a microchannel. 

For one focus plane the pixel dwell time and the horizontal spacing of the pixels defines the 

temporal and spatial resolution.134 The highest resolution possible for the Leica CLSM is 
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512 x 512 pixels. To create a 3D image, successive focal planes (generated by horizontal 

scanning) are stacked vertically (along the z-axis). An algorithm to generate such an image is 

implemented in the software “Leica Application Suite X” (LAS X) from Leica Microsystems.132 

The sample holder is positioned on a motorized table which enables a scan of the whole distance 

of a microchannel spanning several centimeters.  

 

2.3.2 Small Angle X-Ray Scattering 

Small angle X-ray scattering (SAXS) is one of the most powerful techniques to characterize 

colloids regarding their internal structure, averaged size, shape and orientation. This chapter will 

give an overview over the theoretical background of SAXS, the instrumentation and the analysis 

relevant for this thesis.  

Sample materials for SAXS can be solid, liquid or a combination of both and they can even have 

gaseous domains. Insightful investigations have been conducted on polymers and colloids, 

biological materials, metals, minerals, nanocomposites, food and pharmaceuticals.135 The 

resolution allows particle or structure characterization in a size range from 1 to 100 nm in a setup 

with the typical angle of 0.1 to 10°.136 The investigated length scale can furthermore be extended 

to both bigger and smaller structures. Bigger structures require smaller angles (using ultra 

small-angle X-ray scattering (USAXS)) and smaller structures require larger angles (using 

wide-angle X-ray scattering (WAXS) or X-ray diffraction (XRD)).137 The sample concentration 

can range between 0.1 wt.% and 99.9 wt.%, where structures made from materials with high 

atomic numbers exhibit higher contrast and vice versa.135 

Absorption and scattering are the first processes in any technique that uses radiation, like also 

in the already described microscopy of previous chapter 2.3.1. Thus, the interaction between 

matter and electromagnetic radiation is a universal basis for the investigation of materials. In that 

context, absorption is the basis for microscopy and scattering the basis for SAXS analysis.135 The 

results, however, are different as the contrast in SAXS arises due to the various electron densities 

of the particles compared to the surrounding matrix.136 In contrast, an optical micrograph is the 

reconstruction of the specimen from the scattering pattern with the help of lenses (which are not 

available for X-ray radiation used in SAXS).137 Hence, the scattering pattern must be recorded 

and mathematically reconstructed in an indirect and not an optical way.135 In the recording 

process, the phases of the detected waves are lost. Therefore, direct 3D holographic 

representation of the sample is not possible (in contrast to lens-based optical systems).137 
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Nevertheless, the resolution criteria in SAXS are the same as those in microscopy: large distance 

between sample and lens, and smaller aperture or scattering angle allow for larger objects to be 

observed.136 On the other hand, the closer the lens to the specimen and the larger the aperture or 

the scattering angle, the smaller are the details that can be resolved.135 The fundamental setup of 

a scattering experiment is illustrated in Figure 18: 

 

Figure 18 | Scheme of the basic elements of a scattering experiment. The X-ray source (X) emits light 

that passes through a collimator (C) and the sample with its sample holder (S). The scattering pattern is 

recorded by a detector (D) depending on the scattering angle θ while the primary beam is blocked out 

using a beamstop (B), image adapted from78. 

The elementary components of all SAXS instruments are a source (X) that emits close to 

monochromatic X-rays, a collimator (C) to narrow the X-ray beam, a sample holder (S), a 

beamstop (B) that prevents the intense primary beam from over exposure and destroying the 

detector (D) which measures the radiation scattered by the sample depending on the angle θ.78  

The source (X) most commonly is a sealed X-ray tube with an optional rotating anode as well as 

a microfocus beam. Alternatively, synchrotron sources can be used which are aimed to have a 

higher photon flux or various wavelengths.135 An X-ray tube contains a filament (wire) and an 

anode (target) placed in an evacuated housing. In a first step, electrical current heats up the 

filament so that electrons are emitted into the tubes, as shown in Figure 19:135 

 

Figure 19 | Fundamental scheme of a sealed tube (left) and the emitted wavelength spectrum of a copper 

anode operated at 40 kV (right), adapted from135. 
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High voltage between 30 – 60 kV is applied within the tube to accelerate the electrons towards 

the anode.136 As soon as the electrons hit the anode they are decelerated and emit X-rays with 

characteristic wavelengths specific to the anode material (“Bremsstrahlung”).138 This radiation 

covers a broad spectrum of wavelengths with energies not exceeding the applied high voltage.136 

For example, a copper tube operated at 2 kW with a current set to 50 mA and a high voltage of 

40 kV, limits the electrons’ maximum energy to 40 keV.135 The intensity of the X-ray tube is 

controlled by the number density of electrons (current) that impact the anode.138 X-rays are 

electro-magnetic waves (similar to visible light) with much shorter wavelengths below 

300 nm.137 The waves propagate as an electric field associated with a perpendicular magnetic 

field136 Moreover, X-rays can also be modeled according to their particle character as so-called 

photons. Therefore, every interaction between light and matter can be represented by two 

models, the oscillator model (wave) and the impulse-transfer model (photon).137  

The shelling of the anode material with electrons causes senescent effects like grooves or holes 

and ultimately causes the break-down of the X-ray tube. Therefore, an enhancement of the 

lifetime of the X-ray sources is highly desired.135 A more sustainable option is e.g. a rotating 

wheel that evenly distributes the bombardment of the anode over its whole area and to reduce the 

wear per area. Additionally, the rotating anode also increases the electron current and thus the 

intensity output up to a 10 times higher photon flux as compared to a sealed tube.135 An optional 

microfocus beam allows to focus the electrons in one spot of the anode. Thus, the emission of 

X-rays can be restricted to a very small area (20 to 50 µm in diameter) and therefore the beam 

profile can be narrowed.139 Micro sources are usually powered by only 30 to 50 watts which 

makes ordinary water circulators or even air cooling sufficient.135 

The best and brilliant X-ray sources, however, are synchrotrons that generate a continuous 

wavelength spectrum as a by-product when forcing charged particles to move along various 

trajectories at high speed, see Figure 20.140 This radiation has an enormous photon flux because 

the charged particles move in pulsed bunches.135 Thus, the intensity at synchrotrons is not stable 

over time which explains the need to refresh new electrons by injecting them occasionally.140 

 

Figure 20 | Sketch of a synchrotron radiation accelerator with h∙v as photon source and e- as electrons. 
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One of the biggest challenges in SAXS is to separate the primary beam from the scattered 

radiation at small angles less than 0.1°.135 The divergence of the incoming beam has to be kept 

smaller than the small-angle requirement in order to distinguish the relatively weak intensity of 

the scattering pattern from the much more intense primary beam.138 For that purpose, a 

collimation system (C) out of slits (line collimation) or pinholes (point collimation) narrows the 

beam by forcing it to pass an orifice of about 300 x 300 µm (see Figure 18).135 While a small 

collimator reduces the intensity of the incident beam significantly, a bigger pinhole causes more 

instrumental broadening, which is called slit smearing.139 Furthermore, X-rays that are emitted 

by a synchrotron source are polychromatic, which leads to various angles for the scattered 

photons and additionally causes wavelength smearing.140 Multilayer optics can be used to 

monochromatize the beam according to Bragg’s law n∙λ = 2d∙sin (θ/2). Using a n integer 

multilayer with a d-spacing of about 4 nm, a wavelength λ can be selected by tilting the 

multilayer mirror by an angle θ with respect to the direction of the incoming beam.135 

The sample holder for the sample (S) has to be tailored for each experiment. In this thesis, a 

3D-printer was used to design and fabricate a sample holder meeting the specific requirements, 

as shown in Figure 4 of chapter 2.1.1. As many samples cannot tolerate the vacuum, for 

instance, it is necessary to keep background scattering as low as possible. Moreover, many 

investigations focus on a systems response to a stimulus, e.g. to a change of the environment 

such as temperature, pressure, flow and shear rate, strain, humidity, projection angle others.135 

Especially the freejet experiment in this thesis had special requirements concerning the 

integration in a synchrotron setup. 

The beam stop (B) prevents the primary beam from hitting the detector. Although many 

detectors are capable of high intensities, a beam stop is essential to suppress strong background 

scattering particularly when analyzing samples with weak scattering.135 There are two types of 

beam stops: one consists of dense materials like lead or tungsten and fully blocks of the primary 

beam. The other uses transparent materials which mitigate the beam to an intensity not harmful 

to the detector.138 Commonly, transparent beam stop materials are used in synchrotrons to adjust 

and monitor the intensity of the direct beam simultaneously with the sample scattering.140 

The detector (D). Various types of detectors are in use, e.g. wire detectors, charged-coupled 

device (CCD) detectors, imaging plates or complementary metal-oxide-semiconductor (CMOS) 

detectors. There are 5 general specifications that must be considered when selecting a suitable 

detector:135  

- The resolution in pixels 
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- The linear dynamic range to precisely convert photon flux to intensity with a high 

stability of the read-out intensity 

- The sensitivity for effective photon counting (quantum efficiency, QE) 

- The dark-count rate detected when the X-ray beam is switched off 

- The frame rate as number of scattering patterns recorded per second 

Since 2006, detectors operating in 1D single photon counting mode have drastically changed 

basic research at synchrotron facilities.140 Recently, 2D digital hybrid photon-counting (HPC) 

pixel detectors (i.e. Pilatus 1M) are becoming a revolutionary technology for almost all X-ray 

scattering instruments in the energy range from 2 to 30 keV.141 The main reason for this success 

is the accurate determination of scattering patterns at the level of individual photons over an 

extremely high dynamic range that are based on semiconductor sensors and coupled to 

application-specific integrated circuits (ASICs) using modern CMOS processes.141 

If X-rays hit a sample, a fraction will pass through and a fraction will be absorbed as well as 

transformed into other forms of energy (like fluorescence radiation or heat) and a fraction will be 

scattered to various directions.135 To interpret scattering results, a basic model picture of the 

process is quite helpful: X-rays interact with a sample, then they cause the sample’s electrons to 

resonate and emit secondary waves of the same frequency.78 Such a process is called elastic 

because incident and scattered photons have the same energy.137 The scattered X-rays are 

coherent but have a phase difference due to the different spatial positions of the scattering 

centers thus resulting in interference patterns.78 The fundamental principle of the wave‘s 

interference can be described by the Bragg equation:139,142 

2𝑑 sin(𝜃) = 𝑛 ∙ 𝜆     (24) 

where an intensity maximum can be found if the wave’s path difference is a n integer of the 

wavelength 𝜆 the prerequisite for constructive interference.78 The path difference is determined 

by the scattering planes d and the scattering angle 2θ, as illustrated in the following Figure 21. 

Summarizing all scattered waves with respect to their amplitude and phase,78 one obtains a 2D 

pattern of the sample which is an angle-dependent intensity distribution that is characteristic for 

the given sample structure. The scattering curve is given as the measured intensity vs the 

scattering vector’s absolute length �⃑�. Here, �⃑� is based on the difference of an incident 𝑘1
⃑⃑⃑⃑⃑ and a 

reflected 𝑘2
⃑⃑⃑⃑⃑ wave vector.138 
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Figure 21 | Illustration of the Bragg relation with the lattice distance d, the half scattering angle θ and the 

path difference of the wave given by Δ = 𝑠�̅� + 𝑡𝑢̅̅̅. The intensity of interfering waves depends on the 

distance of the scattering atoms and on the angle of the incident waves A, B and scattered waves C, D. 

Hence, waves in phase (constructive, C) lead to high intensity whereas waves out of phase (destructive, 

D) canceled out, adapted from143. 

For elastic X-ray scattering with similar wavelengths for the wave vectors according to |𝑘1
⃑⃑⃑⃑⃑| =

|𝑘1
⃑⃑⃑⃑⃑| =

2𝜋

𝜆
, the scattering vector q is given by:139 

𝑞 = |�⃑�| =
4𝜋

𝜆
sin

𝜃

2
     (25) 

Here, instead of the scattering angle θ, also the azimuth angle ϕ can be used. Adversely, each 

distance is measured relative to the wavelength λ of the applied radiation, wherefore it is better to 

present the scattering pattern as function of the here described wavelength independent 

q-value.138 �⃑� is an reciprocal length (units 1/nm) and consequently, a scattering pattern is called a 

“structure in reciprocal space”.135 The absolute value of q can be expressed as s in 

correspondence to the Bragg equation, depending on q and θ. The inverse of s gives the distance 

between lattice planes in a crystal:78,135 

𝑠 =
𝑞

2𝜋
=

2

𝜆
sin

𝜃

2
     (26) 

The intensity or efficiency by which X-rays are scattered depends on the number of electrons 

per illuminated material volume. Each electron contributes the same amount of scattered 

radiation.135 This value is expressed by the so-called scattering cross-section (“Thomson factor”) 

as σ = 7.93977∙10-26 cm², which is the energy produced by an incident beam of unit energy per 

unit area.144 The X-rays are detected by methods using an absorption process in the first step. 

The second step comprises acceleration, multiplication as well as amplification processes that 

lead to electric pulses. These electric pulses are counted and finally given as scattering intensity 
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or count rates via I0 = I0∙σ.141 Thus, the accumulated energy is proportional to the number of 

photons that hit the detector. However, whatever the type of the detector, the amplitude cannot 

be measured and the scattering intensity is only accessible by the squared amplitude of all 

summed up waves via Is = |𝐸𝑠
⃑⃑⃑⃑⃑|², finally resulting in the interference scattering pattern.138 The 

more electrons are placed in a sample volume, the more waves are scattered and if the specimen 

is just one particle of volume V1 with an electron density of ρ1, then V1∙ρ1 wave amplitudes are 

scattered. The received detector’s read-out intensity I1 is the square of all of them and finally 

amounts to:135 

𝐼1(𝑞) = 𝐼0 ∙ 𝜌1
2 ∙ 𝑉1

2 ∙ 𝑃(𝑞)     (27) 

The form factor P(q) and the way the obtained pattern oscillates is characteristic of the shape of 

the particles. The scattering curve of the pattern is described as a function that is given by:78 

𝐼(𝑞) = 𝐼0 ∙ 𝑃(𝑞)     (28) 

where the form factor P(q) is determined as 𝑃(𝑞) = |𝐸𝑠
⃑⃑⃑⃑⃑(𝑞)|².135 In this context, the curve slope 

of the form factor at small angles is primarily determined by the overall size, whereas the final 

slope at large angles bears the information of the surface and the oscillating part in the middle 

section gives the shape as well as internal density distribution.136 An approximate subdivision 

into globular, cylindrical and lamellar shape can be done by investigating the power law of the 

form factor at small angles on a double logarithmic plot with a slope of 0, -1 or -2, as shown in 

succeeding Figure 22a. 

The oscillating part of the form factor can be analyzed by a Fourier-transformation into “real 

space” due to the calculation of p(r) from an experimental P(q) via the general equation:145 

𝑃(𝑞) = 4𝜋 ∫ (𝑝)𝑟
sin(𝑞𝑟)

𝑞𝑟
𝑑𝑟

∞

0
     (29) 

The resulting curve p(r) is called “pair-distance distribution function” (PDDF) and represents a 

histogram of distances that can be found inside the particle, as it is shown in Figure 22b, further 

details of the PDDF calculations can be found in the original literature.145 Here, one of the 

simpler equations of the PDDF is based on the form factor of spherical particles with radius r 

and a homogeneous shape, which have a constant scattering length distribution.146 Moreover, 

rigid cylinders as an example of simple anisotropic particles can be specified by succeeding 

formula that uses r as cylinder radius and L for its length:147,148 
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𝑃(𝑞) =
𝐿𝜋

𝑞
∙ (4𝜌2𝑟2 (

sin(𝑞𝑟)

𝑞𝑟
) ²)    (30) 

The flexible wormlike micelles that have been investigated in this work, the equation has to be 

modified by the wormlike chain model of Kratky and Porod, which is introduced by the 

subsequent form factor:149 

𝑃(𝑞) = ∫ (𝐿 − 𝑟) ∙ 𝑒−𝑞2𝐶2 sin 𝐵𝑞

𝐵𝑞
𝑑𝑟

𝐿

0
    (31) 

with B and C as parameters that are available in original literature.149 In this equation, another 

important role regarding the wormlike micelles plays the Kuhn length lk and the persistence 

length lp that are explained, like form factors of other colloid shapes, in further literature.146,147 

 

Figure 22 | Form factor. (a) Graph outlining the information domains of a particle form factor and (b) the 

key features of the pair-distance distribution function (PDDF), which are indicative for the particle 

shape. Both images are adapted from135. 

If the sample is dilute, the experimental scattering pattern is the form factor Pi(q) multiplied by 

the number of particles i that are in the X-ray beam.135 However, if the particles have different 

sizes, all N summed up form factors present an averaged scattering pattern of the entire 

polydisperse sample with non well-defined minimums.138 The same smearing appears with a 

polymorphous sample of various shapes or a two-phase system where the summation also gives 

an averaged form factor that can be received by an averaged scattering intensity:135 

∆𝐼(𝑞) = 𝐼0 ∙ ∑ (∆𝜌)𝑖
2 ∙ 𝑉𝑖

2 ∙ 𝑃𝑖(𝑞)𝑁
𝑖=1     (32) 
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The structure factor S(q) is aide from the form factor the other parameter to characterize 

substances. The structure factor, however, can only be determined, if the sample concentration is 

high enough to get densely packed particle systems. Here, the distances relative to each other 

(interparticular relations) come into the same order of magnitude as the distances inside the 

particle (intra-particular relations) and therefore the interference pattern will also contain 

elements from the neighboring particles.150,151 Consequently, this further interference pattern 

appears as an additional factor S(q) in the scattering intensity equation by multiplication with the 

form factor P(q): 

𝐼(𝑞) = 𝐼0 ∙ 𝑃(𝑞) ∙ 𝑆(𝑞)    (33) 

whereby the structure factor S(q) is specified as78,150 

𝑆(𝑞) = 1 + ∫ [𝑔(𝑟) − 1]
sin(𝑞𝑟)

𝑞𝑟
4𝜋²𝑑𝑟

∞

0
   (34) 

The structure factor S(q) is also called lattice factor because it contains the information for the 

positions of the particles with respect to each other.135 This expression is also valid for isotropic 

systems that form cubic lattices such as spheres.78 For rising concentrations and more ordered 

systems, this factor creates peaks with exponential decay due to repulsive interaction potentials, 

which are indicated by an intensity drop at small angles respectively low q-values along with the 

raising of a first peak.135 The peak intensity increases with higher concentrations and higher 

order of the system. The peak is then called Bragg peak whose position for the maximum qPeak 

indicates the distance dBragg between the aligned particles by Bragg’s law dBragg = 2π/qBragg.
142 

Strongly diluted or disordered systems will again be described solely by the form factor P(q) 

because the structure factor S(q) becomes 1.78 

As soon as the scattering systems start to form long-range structures that are similar to lattices in 

crystals (like in liquid crystalline or lyotropic substances), Bragg peaks can appear in the 

scattering pattern.78 Hence, principles of classical crystallography can be applied for this 

system’s description while the above-mentioned scattering principles are still valid.142 In that the 

particles can be regarded as an ordered series of interfering scattering centers using a unit cell 

with defined periodic edge length a, b and c as well as corresponding angles α, β and γ, the 

particles’ scattering can then be applied to extend periodic structures.124 The planes of the crystal 

lattice, which is defined by this unit cell, can be uniquely identified by the Miller indices h, k and 

l.142 The indices denote the planes orthogonal to a direction in the basis of the reciprocal lattice 

vectors while their greatest common divisor should be 1.78 In this regard, for example, the unit 
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cell coordinate system of a cubic lattice is orthogonal with a = b = c and presents a special case 

where lattice plane distance dhkl and peak positions shkl are given by:142 

𝑑ℎ𝑘𝑙 =
𝑎

√ℎ²+𝑘²+𝑙²
   𝑠ℎ𝑘𝑙 =

√ℎ²+𝑘²+𝑙²

𝑎
  (35) 

Wormlike micelles for instance which pack hexagonally, would be represented by a hexagonal 

lattice with a = b and γ = 120°, where only the planes parallel to the c-axis (= hk0) are of 

interest.78 However, the wormlike micelles solutions used in this thesis have a quite low 

concentration between c = 1 and 10 wt.%., which is why the peaks in the curve of the 1D 

analysis are not completely sharp and show smearing due to the ability of position moving of the 

slightly packed wormlike micelles. 

The detailed model-based analysis of experimental scattering data from ordered systems requires 

further parameters. The entire structure factor for ordered systems is given as:152 

𝑆(𝑞) = 1 + (
(2𝜋)𝑑−1

𝑐𝑑𝑉𝑑𝑛0
∑ (𝑚ℎ𝑘𝑙|𝐹ℎ𝑘𝑙|

2 𝐿ℎ𝑘𝑙(𝑞)

𝑞ℎ𝑘𝑙
𝑑−1 ) − 1ℎ𝑘𝑙 ) 𝐸(𝑞)   (36) 

with the number of structure elements n0 (spheres, cylinders or lamellae) per unit cell, the 

dimensionality d (3 for spheres, 2 for cylinders and 1 for lamellae) as well as the 

dimension-dependent volume Vd. The parameter cd has a value of 1 for lamellae, 2π for cylinders 

and 4π for spheres. The factor mhkl considers the multiplicity of peaks that stem from lattice 

plane multitudes with identical peak positions while the factor Fhkl contains any extinction 

rules.78 The profile Lhkl(q) determines the peak shapes as well as locations and E(q) is a 

correlation function, both are described in literature.153 

The complex data analysis for the 1D scattering curves and the modelling of 2D scattering 

patterns are made in this thesis with the software “scatter”, written by Förster et al.154 A 

screenshot of this software while doing parameter adjustments for the modelling of 2D scattering 

patterns is shown in the following Figure 23. 
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Figure 23 | Software layout of “scatter” that is used in this thesis to simulate the measured 2D scattering 

patterns (left screen) by adjusting various parameters in order get the model (right screen). 

Such 2D models can be calculated for many other particle shapes, sizes and orientations.147 In 

this thesis, it was done for wormlike micelles, nanoplatelets as well as nanorods in a liquid 

microjet and examples for their measured and simulated 2D scattering patterns are shown in 

Figure 24. As visible, all these flowing liquids have no intensive spots and rather smeared rings 

are observable around the center of the scattering pattern which again has to do with their low 

concentrations below 10 wt.% and therefore their lower degree of an order system. 

 

Figure 24 | Measured (left part) and modeled (right part) 2D scattering patterns of wormlike micelles, 

nanoplatelets and nanorods in dependence of their q-value and azimuthal orientation angle. 

The orientation of anisotropic particles along a certain direction, however, was not yet 

considered in the above discussion. However, within a stream or a microjet, such anisotropic 
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particles have a high tendency to orientate in flow direction due to applied shear or strain.29 The 

azimuthal profiles of randomly oriented samples or just spherical particles have a constant 

intensity along a circular path centered at the primary beam position.135 Consequently, this 

behavior is represented as ring-like, isotropic scattering patterns on 2D detectors of just radially 

averaged scattering curves.78 As soon as some preferred orientation is introduced into the 

sample, the intensity profile starts to oscillate or peaks at certain azimuth angles.135 It is therefore 

clear that both components of the scattering vector qx and qy need to be considered in the analysis 

and the amplitudes of the oscillation are useful to quantify the degree of orientation.78 Of course, 

the angle of the preferred orientation is also of interest.138 

Good examples for anisotropic scattering patterns are SAXS studies of shear-oriented wormlike 

micelles flowing out of a micro capillary, as carried out in this thesis and shown in the first 2D 

scattering pattern of previous Figure 24. Within the capillary, the wormlike micelles are oriented 

towards the flow direction according to the flow-induced shear and extensional forces. These 

physical parameters are controlled by the experimental parameters such as flow speed, particle 

concentration and diameter as well as the geometry of the micro nozzle.29,35 By using high 

precision syringe micro pumps, the setup enables highly reproducible flow conditions. Hence a 

very good correlation between structural- and orientation information from SAXS studies in 

combination with fluid dynamic studies from other methods such as high-speed video analysis, 

particle image velocimetry or polarization microscopy is received.78 

Instead of splitting the scattering vector into its components qx and qy, it is more beneficial to use 

the polar coordinate system. Here, the scattering vector is described by its absolute value and the 

angle β between cylinder axis and the scattering vector.147 This results in the following equation 

for scattering intensity of oriented cylindrical micelles:155 

𝐼〈𝑞𝑥, 𝑞𝑦〉 = 𝑁 ∫ 𝑆(𝑞, 𝛽)𝑃(𝑞, 𝛽)ℎ(𝛽)𝑑𝛽   (37) 

with the number of micelles N, the structure factor S, the form factor P and the fraction of 

micelles h(β) with the angle β. The form factor is further defined as:147,152 

𝑃(𝑞, 𝛽) = ∫ 〈𝐹𝑅
2(𝑞, 𝑅, 𝛽)〉

𝜋

2
0

〈𝐹𝐿
2(𝑞, 𝐿, 𝛽)〉ℎ(𝜙) sin 𝜙𝑑𝜙  (38) 

The distribution function h(ϕ) describes the cylindrical micelle orientation with the angle ϕ 

between the cylinder axis with the base vector and the direction of the shear field. The 

expression FR and FL are yielded from the factorization of the scattering amplitude into cross 

section- as well as length-contribution and the pointed brackets indicate the averaging across the 
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corresponding size distributions of cylinders and radii.152 As described above, it is possible to 

express FR for typical block copolymers by using hypergeometric functions that are described in 

further detail in the original literature.78,152 These block copolymers like those in this work have 

a core-shell structure and a density-profile. The orientation of anisotropic particles can then be 

described by a range of distribution functions h(ϕ) such as Gauß, Boltzmann, Maier-Saupe, 

Onsager or Heaviside.147 Among these functions, the Maier-Saupe and Onsager distributions can 

be pointed out because they are the most important for the description of particle orientations in 

cylindrical and wormlike micelles solutions but also in lyotropic and liquid-crystalline systems.78 

For example, the Onsager (first) and Maier-Saupe (second) distribution functions h(ϕ) are given 

by following equations:147 

ℎ(𝜙) = 𝑒
− sin 𝜙

�̅�   ℎ(𝜙) = 𝑒
(

cos 𝜙

�̅�
)²

− 1   (39) 

The resulting mean deviation angle between cylinders and the director can take on values 

between 0° and 90° (see Figure 25) and is defined as:78,147 

〈𝜙〉 = 𝑐ℎ ∫ 𝜙ℎ(𝜙) sin 𝜙𝑑𝜙
𝜋/2

0
    (40) 

The final orientaton parameter S can then take on values between 0 and 1 and for dilute 

solutions, like in this thesis, it is defined for a known distribution function as follows:147,155 

𝑆 = 〈
3𝑐𝑜𝑠2𝜙−1

2
〉     (41) 

To conclude, as shown in this whole chapter 2.3.2, small-angle X-ray scattering is a powerful 

and variable analytical method for a huge variety of particles. Nevertheless, in addition to SAXS, 

it is indispensable to use microscopic methods as well, because their results are complementary 

and therefore help to finally get a complete picture of an unknown sample. 

 

Figure 25 | Theoretical background of the mean deviation angle ϕ and its determination between the 

cylinders and the z-director of the flow direction based again on a 2D scattering pattern of 

shear-orientated wormlike micelles in a liquid microjet.  
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3 Thesis Overview 

After the motivation for this work (chapter 1) and the introduction of the fundamentals 

(chapter 2), on which this thesis is built, the later chapter 4 will present the experimental 

findings and their interpretation. Said part is comprised of three publications in total given in 

chapter 4.1 to 4.3. These publications contribute to the methodical advancement of microfluidic 

devices for the treatment and investigation of anisotropic particles in microchannels and -jets. 

The present chapter 3 gives short summaries of the aforementioned publications (chapters 4.1 

through 4.3) and elucidates their role in the superordinate theme of this thesis. 

 

3.1 Synopsis 

The primary aim of this thesis was the design of sophisticated microfluidic devices for the 

detailed handling and analysis of anisotropic particles flowing in microchannels and microjets. 

Microfluidic is prevalent in more and more research fields like modern medicine, biology or 

chemistry. The small volume on micrometer scale in thin channels with laminar flow comprises 

several advantages such as low costs in combination with defined and controlled conditions for a 

wide variety of complex experiments on a reduced scale with various functional elements. 

This work benefits from the advancements of scattering and microscopic methods which led to 

the development of powerful sub-micrometer free-electron lasers of synchrotrons as well as 

ultrafast confocal laser scanning microscopes. A sophisticated microfluidic device based on 

state-of-the-art lithographic methods provides a significant tool for the detailed analysis of 

colloids on sub-micrometer scale. In this context, we handle wormlike micelles within 

microfluidic channels and jets to investigate their dynamic reorientation, carry out their 

separation or load them by an in situ microfluidic process with different kinds of nanoparticles. 

The first publication, that is presented in chapter 4.1, deals with the development of a 

methodology to determine for the first time the local reorientation of anisotropic colloids such as 

wormlike micelles, silicate nanoplatelets and gold nanorods within liquid micro-jets. Microfocus 

X-ray scattering (µSAXS) of a synchrotron source was used to detect the different orientation 

within the micro-jet and micro-droplet areas. This led to a good comparison and comprehension 

of the influences of differently shaped, sized and stiff anisotropic colloids on the gradually loss 

of orientation and especially on the unexpected biaxial realignment of the particles during 

droplet formation. All results are supported by additional simulations. 
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In the second publication of chapter 4.2, a useful colloidal stream-splitting effect was found in 

sinusoidal microchannels for anisotropic and spherical particle separation of polydisperse 

samples. Here, a 2D flow focusing with polyethylene glycol (PEG) as shear thinning fluid was 

carried out at the flow cross of the channel entrance. Wavy stream lines caused by the modulated 

channel side walls induce, near to the ceiling and floor, channel boundaries cross-streamline 

migration of colloidal particles away from the primary colloidal stream. 3D confocal laser 

scanning microscopy proved a controllable particle migration that can be influenced by flow 

rates, microchannel geometries, colloid shapes, deformability as well as molar mass and 

composition of the carrier fluid. Hence, this developed microfluidic setup can be used not just for 

the passive separation of particles with various shapes such as wormlike micelles from core-shell 

particles but also for the sorting of spherical colloids with different sizes. 

The third publication of chapter 4.3 presents various methodologies to load selectively patchy 

wormlike micelles with functional nanoparticles. Via a sophisticated tailor-made microfluidic 

setup, it was possible to carry out a selective in situ loading of functional wormlike crystalline-

core micelles (wCCMs) with nanoparticles in a continuous and well-controllable way. The PTFE 

microfluidic chip was fixed to a glass capillary and exhibits a double flow-cross with one main 

and four side channels to run controlled fluid focusing with any kinds of aggressive solvents and 

to avoid particle agglomeration. The laminar flow allows a very precise regulation of all 

reactants by varying the flow rate. The wormlike micelles have been run by the main channel, 

the gold acid via the first two and the L-selectride via the second two side channels for a direct 

nanoparticle synthesis and in situ loading of the micelles at the same time. Compared to a batch 

synthesis, we could significantly increase the loading capacity. Moreover, by varying the flow 

rates for the various reactants, it was possible to adjust the nanoparticle size. 

Publication of Chapter 4.1 

Parallel and Perpendicular Alignment of Anisotropic Particles in Free Liquid Microjets and 

Emerging Microdroplets  

In chapter 4.1, the generation of stable liquid micro-jets of anisotropic colloid suspensions have 

been conducted and analyzed by microfocus synchrotron X-ray scattering (µSAXS). The setup 

consisted of a micro glass capillary and a micro-gear pump for recycling the liquids back to the 

capillary via tubes. Vertically aligned capillaries with an inner radius of 300 µm have been used 

to run liquid micro-jets with a flow rate of Q = 750 mL/h as well as the radius of the capillary. 

The resulting jet velocity is determined at v ≈ 1 m/s and exhibited a stability of about 15 mm in 
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length until the microdroplet breakup started due to the Rayleigh instability. By scanning with a 

20 x 20 µm X-ray beam across a raster of 7 – 20 horizontal as well as 5 vertical positions from 

the capillary downstream the nozzle, free jet and microdroplets, the local orientational 

distribution of the dispersed particles could be determined for all the named positions. In 

Figure 1a and 1b, the relevant SAXS scanning positions are illustrated for the various areas. 

 

Figure 1 | (a) Dimensions of the free liquid microjet in a 3D-printed sample holder out of a micro glass 

capillary. (b) High-speed camera images of the generated microjet with the different µSAXS scan 

positions across as well as along the capillary/ freejet (b-I) and droplet breakup (b-II). Furthermore, 

Lattice-Boltzmann simulations for platelet reorientation during jet ejection at the outlet of the capillary 

(b-III) and potential-flow boundary-integral simulations for the droplet breakup position (b-IV). 

The appearing flow profiles and velocities have been analyzed by high-speed cinematography 

(HSC) in combination with microparticle image velocimetry (µPIV) as well as simulated via 

Lattice-Boltzmann simulations. By applying the above described setup, three different particle 

systems have been investigated: first layered silicates as an example for 2D nanoplatelets, second 

wormlike micelles as 1D flexible, long cylinders and finally stiff, short gold nanorods with small 

axial ratios. For all three particle systems it was discovered a sudden and significant loss of 

orientation directly after passing the outlet of the microcapillary and a surprising reorientation 

within the microdroplets that will be generated after freejet breakup due to Rayleigh instability. 

This behavior is shown in the later microjet scheme and 2D SAXS patterns of Figure 2. Here, 

the highest orientation parameter could be determined next to the wall within the capillary where 

shear flow dominates, and all types of anisotropic particles remain orientated in flow direction. 

In this context, the determination of the orientation parameter was carried out by the software 

“scatter”. For the better understanding of the observed decreasing orientation parameter 

immediately after passing the outlet, Lattice-Boltzmann simulations have been conducted, as 

demonstrated in Figure 1b-III. Thus, the slightly decreasing inclination angle and the instant 

loss of particle orientation visible in the 2D SAXS patterns (see Figure 2) can be fully 
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understood by inspecting the stream lines of the simulated flow velocity field. Here, the 

conditions at the liquid surface changes from no-slip boundary conditions of a Poiseuille flow at 

the glass wall of the capillary to free-slip boundary conditions of a homogenous plug flow at the 

liquid/air-interface of the free jet. The resulting local velocity differences cause a transition zone 

due to an acceleration of fluid volume elements in the outer jet region and a deceleration in the 

center of the micro-jet. For the satisfaction of mass conservation, the fluid needs to flow radially 

from the inner to the outer region and therefore carries along the anisotropic particles. The 

shorter the relaxation time of anisotropic particles is, the faster the loss of orientation can be. The 

reestablishment of a purely axial flow after the transition zone then partly reorients the platelets 

parallel to the streamlines thereby leading to near zero inclination angles. 

 

Figure 2 | Overview of the µSAXS scan positions for the various microjet areas with its corresponding 

2D SAXS patterns for the ejected watery dispersions of nanoplatelets, wormlike micelles and nanorods. 

In addition to it, a simulated model of the measured 2D SAXS patterns and the orientation parameter, 

which both were calculated by the software “scatter”, are represented at the right half of each image. 

However, along the freejet the orientation reduction carries on but starts at the center of the 

freejet due to a decelerating of flow velocity of the homogeneous plug flow profile with 

vanishing shear rates. These decreasing shear rates cause lower shear-induced flow alignment by 

central rotational diffusion. As visible in Figure 2, the differences such as the persistence of a 

high orientational order in the freejet for the wormlike micelles, for instance, are related to the 

stronger positional and orientational correlations of a higher concentration as well as more elastic 
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particles with higher relaxation times. Consequently, the short and stiff nanorods with the lowest 

concentration showed the fastest loss of orientation along the free liquid microjet. 

This general orientation behavior for various anisotropic particles still applies to the second 

finding, the reorientation within microdroplets which finally appear from microjets. This effect is 

verified by a cross-shaped high intensity region in the 2D SAXS patterns that is displayed in 

Figure 2. Almost equal fractions of the platelets are oriented parallel to the flow direction, with 

the platelet normal in the equatorial plane, and perpendicular to the flow direction with the 

platelet normal parallel to the flow direction. To understand the evaluation of this biaxial 

orientation, simulations of the flow profile in the liquid jet during droplet breakup have been 

executed. Since this requires to explicitly consider the dynamics of the free micro-jet surface, 

including the thinning of the neck and the final droplet pinch-off, boundary-integral simulations 

have been used. These simulations are shown in the last two diagrams of previous Figure 1b-IV. 

As visible, the simulations of the droplet breakup, which have been performed using the same 

conditions with a micro-jet radius of 300 µm and a flow rate of Q = 750 mL/h, are in good 

agreement with the experimentally determined break-up. After passing the thin neck and entering 

the droplet, the fluid enters an expansion zone with high extension rates (see right image of 

Figure 1b-IV) and significant radial outward flow. Within the high extensional rate zone, the 

platelets are oriented perpendicular to the flow direction and after formation of the final droplet 

shape the extensional rates become zero and the platelets remain in their biaxial orientation. The 

experiments for the nanoplatelets, wormlike micelles and gold nanorods thus showed that the 

observed reorientation effects, particularly the unusual biaxial distribution in the micro-droplets 

after droplet break-up, are generally occurring for anisotropic particles. 

Publication of Chapter 4.2 

Splitting and Separation of Colloidal Streams in Sinusoidal Microchannels  

In chapter 4.2, a cross-stream migration of anisotropic as well as spherical soft and hard colloid 

suspensions is explored in sinusoidal microchannels by using fluorescence-, polarization- and 

confocal laser scanning microscopy (CLSM). The streams of the colloidal solutions were 

hydrodynamically focused into the center of microchannels at low Reynolds numbers using 

non-Newtonian fluids like polyethylene glycol (PEG). Following this, a surprising phenomenon 

of a symmetrical splitting of the central stream into four side streams moving towards the outer 

wall of the microfluidic channel has been discovered. This observed stream splitting and 

separation can be controlled via flow rates, microchannel geometries, colloid shape and 
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deformability as well as the rheological properties of the focused liquid. The aim of this study 

was to investigate the flow of anisotropic colloids, in this case wormlike micelles, in sinusoidal 

microchannels. A diagram of the channel design is displayed in the following Figure 1a. 

 

Figure 1 | (a) Diagram of the sinusoidal microchannel with its parameter dimensions. (b) 3D CLSM front 

view images of a Nile red dyed 1 wt% wormlike micelles solution that is 2D-focused by a non-Newtonian 

1 wt% PEG-solution. Just with non-Newtonian PEG, the stream-splitting effect happens next to the 

channel floor and ceiling where the colloids are near to the walls. The front view images of wave 2, 5 and 

7 show the subsequent rising of the stream-splitting with each sine wave. (c) 3D CLSM front view images 

at the channel inlet and outlet of the flow profiles of the same sample but using various molar mass of the 

non-Newtonian 1 wt% PEG-solution (M = 6,000 g/mol, 300,000 g/mol and 900,000 g/mol) as focusing 

fluid at a constant flow velocity of v = 200 µL/h for all three inlets. 

An aqueous solution of wormlike micelles (c = 1 wt%) was focused by two side streams of 

non-Newtonian PEG (M = 900,000 g/mol, c = 1 wt%) into an outlet channel that had periodic 

sinusoidal variations of the channel width. The wormlike micelles were formed by self-assembly 

of poly(isoprene-b-ethylene oxide) block copolymers (PI-PEO) that spontaneously occurs when 

dissolving the block copolymer in water. The channel width was w = 250 m for both the central 

and the two side channels, was identical to the average width of the sinusoidal outlet channel. A 
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typical flow rate in the central and side channels was Q = 200 µL/h which leads to a flow rate of 

Q = 600 µL/h in the outlet channel. The most interesting question was how the central stream of 

wormlike micelles would respond to periodic extension and contraction. Therefore, wormlike 

micelles have been labelled with the fluorescent dye Nile Red to follow the focused stream in the 

sinusoidal outlet channel using fluorescence microscopy. As visible in the 3D confocal laser 

scanning microscopy (3D CLSM) images in the previously shown Figure 1b, the stream of the 

wormlike micelles splits into four side streams. The CLSM image on the left shows the central 

stream in the first sine period, where it is already slightly extended at the bottom and the floor of 

the channel. The two CLSM images on the right show the central stream in the 17th sine period, 

where it has split symmetrically into four substreams which are located close to the left and the 

right wall at the channel floor and channel ceiling. Three additional images in Figure 1b show 

the increasing separation of the four streams in the 2nd, 5th, and 7th sine period. The part of the 

central stream located in the middle between the floor and the ceiling of the outlet channel, does 

not split.  

As shown in Figure 1c, the influence of PEGs of smaller molecular weights that show less 

pronounced shear thinning, eventually becoming near Newtonian at very low molecular weights, 

has been investigated. The corresponding experiment with PEG of different molecular weights 

were performed again under standard conditions with a 1 wt% solution of wormlike micelles, a 

channel height h = 100 µm, an average channel width of w = 250 µm, a sine period of L= 

800 µm, an amplitude of A = 150 µm, and a volumetric flow rate of Q = 600 µl/h in the outlet 

channel. In previous Figure 1c, CLSM-images of the central stream shapes in the first and the 

17th sine period are compared for PEG-solutions with PEG molecular weights of 6, 300, and 

900 kg/mol. Whereas the 6 kg/mol low molecular weight PEG-solution showed (like also tested 

Newtonian water) no indications of stream splitting in the 17th sine period, the 300 kg/mol PEG-

solution lead to a small, but clearly observable splitting. The 900 kg/mol PEG-solution lead to a 

very pronounced splitting of the central stream, as already described. This indicates that the 

molecular weight of the polymer, which is used in the focusing fluid, must be sufficiently large 

to induce stream-splitting. Additionally, the effect of the flow rates has been analyzed because 

for shear-thinning non-Newtonian fluids the solution viscosity depends on the shear rate. In a 

range of a flow rate of 10 – 520 µL/h, that corresponds to a mean velocity of 0.1 – 6 mm/s, there 

is no observable stream splitting at the lowest flow rate of 10 µL/h, but a small significant 

splitting at 80 µL/h and a further increasing splitting up to a flow rate of 520 µL/h. 

Moreover, to clarify other necessary conditions for the achievement of the stream splitting effect, 

the channel geometry with respect to the influence of the channel floor and ceiling was 
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investigated. Here, a 3D-focusing design was employed in such a way that the central stream was 

focused into the center of the outlet channel with considerable distance from the channel floor, 

ceiling and both side walls. The 3D-focusing channel design is schematically shown in 

Figure 2a. The CLSM images on the right clearly prove that under these conditions no splitting 

of the central stream is observed. This suggests that the proximity of the channel floor and 

ceiling is necessary for the splitting and separation of the central stream. Furthermore, a 

comparison of the sinusoidal channel to a straight one of the same total length of L = 1.5 cm, the 

same height of h = 100 m, and the same average width w = 250 m was carried out. The 

sinusoidal channel had a period of P = 800 m and an amplitude of A = 150 m. The results are 

presented in subsequent Figure 2b-I/II, which shows the CLSM side view and top view images. 

When using the 1 wt% PEG(900k)-solution for flow-focusing, in the straight channel the central 

stream width was 75 m. This width remained constant over the entire length of the channel 

(1.5 cm). When using the sine channel, the central stream with an original width of 75 m splits 

into four substreams with a separation that increases by about 25 m for each sine wave until the 

limit of h= 250 m due to the channel walls is reached. The increasing splitting and separation of 

the main stream at selected downstream positions is illustrated in Figure 2b-I. However, also the 

sine period and amplitude influence the separation of the substreams. Decreasing each the sine-

period from P = 800 to 400 m and increasing the amplitude from A = 150 to 300 m lead to a 

considerably larger separation, e.g. from 200 to 350 m at the 12th sine period for instance. 

Hence, strong extensional forces in y-direction, as in the sine expansion sections, lead to large 

stresses in this direction. In addition to fluid elasticity, shear-thinning generates a lift force 

towards the channel wall such that a migration in this direction is expected in regions of high 

extensional forces and shear rates. On a local scale this relates to flow-induced polymer 

stretching and alignment that is locally different across the particle or polymer network. 

As cross-stream migration is an effective mechanism for particle separation, the possibility to 

separate colloids of different size in the splitting streams was also investigated. Therefore, a 

binary mixture of spherical silica-PNIPAM core-shell particles has been used: ones fluorescently 

labeled fluorescein with a diameter of d = 600 nm and the other ones rhodamine B labeled with a 

diameter of d = 1000 nm. In the CLSM images of Figure 2c-I, the 1000 nm rhodamine-labeled 

colloids are well separated from the central stream and visible in the four red-coloured 

substreams in the top- and front views of the last sine-period. The 600 nm fluorescein-labeled 

colloids remain in the central stream even at the end of the channel. The 600 nm ones could also 

be separated from wormlike micelles, see following Figure 2c-II. 
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Figure 2 | (a) 3D CLSM images of a 3D sinusoidal microchannel for 3D-focusing where no emerging 

stream-splitting appears independent from using Newtonian (I) or non-Newtonian (II) focusing fluids. 

(b) 3D CLSM images of the subsequent stream-splitting effect by using 2D-focusing for a Nile red dyed 

1 wt% wormlike micelles solution in combination with non-Newtonian (I) and without Newtonian (II) 

focusing fluids. (b-I) Top view images of the stream-splitting in a sinus-shaped and a linear channel as 

well as a comparative diagram regarding their sub-stream spreading distances. (c-I) Sine channel with 

three outlets for particle separation and 3D CLSM images at channel cross and end. The device is used for 

non-Newtonian 1 wt% PEG(900 k)-focusing of a binary mixture of spherical SiO2-PNIPAM core-shell 

particles with a diameter of d = 1000 nm and 600 nm. At the channel end, the two particle sizes are 

separated into a green center stream with fluorescein (FITC) labeled 600 nm particles and into four red 

sub-streams at the channel edges with rhodamine B (Rhod B) labeled 1000 nm particles. (c-II) Tripartite 

CLSM image at the channel end of the separation of a mixture of spherical core-shell particles 

d = 600 nm (FITC) and anisotropic wormlike micelles d = 20 nm (Rhod B) with polydisperse lengths 

focused by the same PEG-solution. Here, two detected emission wavelengths are shown, FITC (top) and 

Rhod B (mid) but also the overlay from both (bottom). 
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Publication of Chapter 4.3 

Strategies for the Selective Loading of Patchy Worm-Like Micelles with Functional 

Nanoparticles  

In chapter 4.3, a microfluidic setup for the facilitated selective loading of anisotropic wormlike 

crystalline-core micelles (wCCMs) with nanoparticles (NPs) was employed in a continuous way 

by a well-controllable parameter screening. The advantage in microchannels is the presence of a 

laminar flow without turbulences and therefore a diffusion-controlled reaction process for the 

chemicals. Thus, an individually designed microfluidic device based on a home-made polytetra-

fluoroethylene (PTFE) chip with a double-focusing cross was fabricated. This microchip was 

made up of four side channels and finally connected to a glass capillary via the outlet channel, as 

illustrated in the CAD-design of Figure 1a. The double-focusing design is used to add the 

reactants for the nanoparticle synthesis separately to avoid an uncontrolled reaction beforehand 

and to get the formed NPs in contact with the micelles simultaneously just by in situ reduction, 

as schematically shown in Figure 1b. In a continuous flow, the amidated polystyrene-block-

polyethylene-block-poly(methyl methacrylate) triblock terpolymers (SEMs) wCCM dispersion 

was pumped through the main channel at a flow rate of 2000 µL/h. At the same time, 

HAuCl4·3H2O (also 2000 µL/h) was added through the first two side channels and L-Selectride 

(1000 µL/h) was fed via the second two side channels. The resulting dispersion showed a purple 

color, which is characteristic for the formation of Au nanoparticles. 

 

Figure 1 | (a) Detailed CAD design of the inner channel geometry of the employed microfluidic PTFE 

double focus chip that is connected to a glass capillary with an inner diameter of D = 980 µm. 

(b) Illustration of the fluid focusing of the different chemicals and the nanoparticle growth within the 

tailor-made microfluidic device. 

The transmission electron microscopy (TEM) micrograph reveals that the PDMA patches of the 

wCCMs are homogeneously and densely loaded with Au NPs, which show an average diameter 

of D = 4.3 ± 1.4 nm as visible in Figure 2a later on. Thus, the NP loading strategy by in situ 
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reduction could be successfully transferred to a continuous process that allows a more simplified 

parameter variation. The diameter of the observed Au NPs is comparable to the diameter of Au 

NPs synthesized by in situ batch reduction (D = 4.7 ± 1.2 nm). The narrowly localized surface 

plasmon resonance (LSPR) at approximately λmax = 532 nm and the weak absorbance at 

wavelengths of 700 nm and higher in the UV-Vis spectra of Figure 2a support the good 

stabilization and distribution of Au NPs by wCCMs. Compared to the Au NP hybrid wCCMs 

obtained by the in situ batch synthesis, the LSPR absorption of the Au NPs is significantly 

stronger indicating a higher loading density. This becomes more pronounced by comparing the 

specific PS absorbances at λ = 250 nm and at the LSPR in both samples. As the PS content in the 

wCCMs is constant and the Au NP size is comparable in the samples, the LSPR/PS absorbance 

ratio can be taken as a measure for the incorporated amount of Au NPs. 

 

Figure 2 | TEM micrographs (top) and UV-Vis spectra (bottom) of SEDMA loaded wCCMs in a 

continuous microfluidic process at different flow rates: (a) wCCMs v = 2000 µL/h, HAuCl4·3H2O 

v = 2000 µL/h and L-Selectride v = 1000 µL/h, (b) wCCMs v = 2000 µL/h, HAuCl4·3H2O v = 1000 µL/h 

and L-Selectride v = 1000 µL/h. 

The potential of this continuous loading method regarding the already mentioned advantage of a 

very simple parameter screening was analysed by varying the flow rates. By decreasing the flow 

rate of the HAuCl4·3H2O solution to 1000 µL/h, while keeping the other flow rates constant, the 

loading density of Au NPs within the SEDMA wCCMs is reduced. This finding is confirmed by 

TEM and UV-Vis spectroscopy, see Figure 2b. Thus, the lower concentration of Au salt in the 

total flow volume reduces the amount of growing Au NPs within the channel that results in a 



3 Thesis Overview 
 

72 

 

lower loading density for the micelles. In addition, the decreased molar ratio of HAuCl4·3H2O to 

reducing agent (L-Selectride) led to vastly smaller Au NPs with a diameter of D = 3.4 ± 1.6 nm, 

see Figure 2b compared to Figure 2a. These results confirm the adjustable parameters and 

conditions for varying the Au NP diameter and the wCCM loading density, simply by changing 

the flow rates. 
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3.2 Individual Contributions to Joint Publications 

The results of this thesis presented in the scientific publications of chapter 4, were prepared in 

collaboration with fellow coworkers and scientists. My part is mostly centered on the application 

of microfluidics for the detailed investigation of anisotropic particles flowing in microchannels 

and -jets as well as the interpretation of the data. The contributions of each researcher involved 

to these publications are specified in greater detail below and the corresponding authors are 

indicated with an asterisk (*). 

Chapter 4.1 

This work is published in Langmuir, 2018, 34 (16), 4843-4851, with the title: 

„Parallel and Perpendicular Alignment of Anisotropic Particles in Free Liquid Microjets and 

Emerging Microdroplets“ 

by Mathias Schlenk, Eddie Hofmann, Susanne Seibt, Sabine Rosenfeldt, Lukas Schrack, Markus 

Drechsler, Andre Rothkirch, Wiebke Ohm, Josef Breu, Stephan Gekle, and Stephan Förster*. 

I performed all experiments and analyzed the data. Stephan Förster supervised the project and 

with him I wrote the manuscript and had scientific discussions. Eddie Hofmann helped with the 

3D-printed sample holder and microparticle image velocimetry. Susanne Seibt synthesized and 

characterized the gold nanorods. Sabine Rosenfeld helped with the characterization of the 

layered silicates. Lukas Schrack and Stephan Gekle carried out the Lattice-Boltzmann and 

Potential-flow boundary-integral simulations. Josef Breu provided the layered silicates. Markus 

Drechsler carried out the colloid characterization via cryo-transmission electron microscopy. At 

the synchrotron beamline Wiebke Ohm and Andre Rothkirch provided technical support. 

Chapter 4.2 

This work is published in Lab on a Chip, 2018, 18 (20), 3163-3171, with the title: 

„Splitting and Separation of Colloidal Streams in Sinusoidal Microchannels” 

by Mathias Schlenk, Markus Drechsler, Matthias Karg, Walter Zimmermann, Martin Trebbin*, 

and Stephan Förster*. 

I performed all experiments and analyzed the data. Stephan Förster was involved in the scientific 

discussions and corrected the manuscript. Martin Trebbin gave the idea for this project and 

supervised most of the parts. Matthias Karg provided the core-shell particles. Markus Drechsler 

run the colloid characterization via cryo-TEM. Walter Zimmermann supported with scientific 

discussions and corrections concerning the experiments and the manuscript.  
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Chapter 4.3 

This work is published in Nanoscale, 2018, 10 (38), 18257-18268, with the title: 

„Strategies for the Selective Loading of Patchy Worm-Like Micelles with Functional 

Nanoparticles“ 

by Judith Schöbel, Christian Hils, Anne Weckwerth, Mathias Schlenk, Carina Bojer, Marc C. A. 

Stuart, Josef Breu, Stephan Förster, Andreas Greiner, Matthias Karg, and Holger Schmalz*. 

I designed and fabricated the microfluidic device that I have built from a microfluidic PTFE chip 

with a double focusing mixing cross and a specifically modified glass capillary for the main 

outlet microchannel. Furthermore, I performed the microfluidic experiments for the continuous 

loading method and wrote a part of the manuscript. Judith Schöbel performed the main part of 

the experiments, including the functionalization of the triblock terpolymers, the self-assembly 

and the synthesis of hybrid materials. She was also involved in the microfluidic experiments, the 

co-precipitation method and wrote the manuscript together with Holger Schmalz who co-

designed the experiment, supervised the project and corrected the manuscript. Christian Hils 

synthesized the second polymer and carried out the TEM measurements. Anne Weckwerth 

co-designed and conducted the main part of the experiments for the co-precipitation method. 

Carina Bojer synthesized the metal oxide nanoparticles and Josef Breu supervised this synthesis. 

Marc Stuart measured the TEM-EDX and corrected the TEM-EDX part of the paper. Stephan 

Förster supervised the microfluidic experiments. Andreas Greiner co-supervised the project. 

Matthias Karg supervised the co-precipitation experiments and corrected the manuscript. 
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4 Publications 

The following chapter 4 presents the three scientific publications on which this thesis is based. 

 

4.1 Parallel and Perpendicular Alignment of Anisotropic Particles in 

Free Liquid Microjets and Emerging Microdroplets 

 

Reproduced with permission from M. Schlenk, E. Hofmann, S. Seibt, S. Rosenfeldt, L. Schrack, 

M. Drechsler, A. Rothkirch, W. Ohm, J. Breu, S. Gekle, S. Förster published in  

Langmuir, 2018, 34, (16), 4843-4851. © 2018 American Chemical Society. 

 

Abstract 

 
Liquid microjets play a key role in fiber spinning, inkjet printing and coating processes. In all 

these applications, the liquid jets carry dispersed particles whose spatial and orientational 

distributions within the jet critically influence the properties of the fabricated structures. Despite 

its importance, there is currently no knowledge about the orientational distribution of particles 

within microjets and droplets. Here we demonstrate a microfluidic device that allows to 

determine the local particle distribution and orientation by X-ray scattering. Using this 

methodology, we discovered unexpected changes in the particle orientation upon exiting the 

nozzle to form a free jet, and upon jet break-up into droplets, causing an unusual biaxial particle 
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orientation. We show how flow and aspect ratio determine the flow orientation of anisotropic 

particles. Furthermore, we demonstrate that the observed phenomena are a general characteristic 

of anisotropic particles. Our findings greatly enhance our understanding of particle orientation in 

free jets and droplets and provide a rationale for controlling particle alignment in liquid jet-based 

fabrication methodologies.  

Introduction 

 
Advanced materials fabrication technologies such as fiber spinning,1,2 inkjet-printing,3 liquid-

based coatings and microparticle fabrication,4-7 as well as vacuum liquid sample delivery for free 

electron lasers8 all involve the intermediate generation of liquid microjets. These liquid jets 

contain dispersed particles and microstructures such as polymers, fibers, pigments, microcrystals 

or proteins whose spatial and orientational distribution within the jets critically determine the 

properties of the resulting fibers, coatings, or surface patterns. It is thus essential to determine 

and control the particle distribution and orientation within liquid microjets. However, there is 

hardly any knowledge about the orientational distribution of particles within free liquid jets 

because this requires to develop challenging in-situ microstructure analysis methodology that so 

far has not been available. 

Early pioneering experiments used synchrotron X-ray scattering to investigate fiber 

crystallization during fiber spinning.9,10 Although averaging over the whole fiber cross-section, it 

enabled to follow details of the crystallization process starting from the melt exiting the nozzle 

down-stream to the final solidified fiber. With microfocus X-ray beams at third-generation 

synchrotrons it has become possible to monitor silk fiber production11 and even spray coating 

processes on micrometer length scales.4,12 However, a detailed study of particle orientations 

within a free microjet including its break-up into single droplets has so far not been possible. 

Here we demonstrate that microfocus X-ray scattering combined with a microfluidic setup that 

continuously generates stable liquid microjets enables determining the spatial and orientational 

distribution of anisotropic particles within the jets all the way from inside the nozzle to the free 

micro-jet and eventually to the emerging droplets. We investigate wormlike micelles and 

nanoplatelets as examples of one- and two-dimensional anisotropic particles with large axial 

ratios, as well as gold nanorods as anisotropic particles with small axial ratios to provide general 

insights into the flow-induced orientation of anisotropic particles within free microjets and 

microdroplets. For all anisotropic particles we found characteristic changes in their uni-axial 

order when exiting the nozzle and within the microjets and, surprisingly, a biaxial orientational 

order in the droplets emerging from the liquid jet. Furthermore, we show how flow and aspect 
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ratio determine the flow-orientation of anisotropic particles. The obtained results provide a first 

fundamental understanding of particle alignment in free liquid micro-jets and micro-droplets and 

have important implications for liquid jet-based fiber, particle and coatings fabrication 

techniques.  

Experimental 

 
Synthesis of layered silicates nanoplatelets 

Na0.5-fluorohectorite with a nominal composition of [Na0.5]inter[Mg2.5Li0.5]oct[Si4]tetO10F2 

(Na0.5-Hec) was synthesized by melt synthesis in a gastight molybdenum crucible according to a 

procedure described in detail by Breu et al..25 The material was annealed for 6 weeks at 1045°C 

to improve intracrystalline reactivity, charge homogeneity and phase purity as described 

elsewhere.26 Afterwards Na0.5 hectorite in its one water layer hydrated form was generated by 

storing at 43% relative humidity in a desiccator for at least 3 days. 

Synthesis of block copolymer wormlike micelles 

Polyisoprene110-b-ethylene oxide198 (PI110-b-PEO198) with a weight-averaged molecular weight 

of Mw = 16,000 g/mol is synthesized by sequential living anionic polymerization, yielding an 

amphiphilic block copolymer with narrow polydispersity (Mw/Mn = 1.02). The detailed synthesis 

and characterization of PI110-b-PEO198 is described elsewhere.27 The dry polymer is dissolved in 

Millipore-quality water with a resistivity of 17.9 MΩ/cm to a concentration of 20% w/w. By 

using an UltraTurrax T8 (IKA Werke GmbH) the solution was homogenized.  

Synthesis of gold nanorods single crystals 

Monodisperse gold nanorods were synthesized following a seeded growth method. For 

producing cetyltrimethylammonium bromide-capped (CTAB-capped) Au seeds and an equal 

amount of chloroauric acid (HAuCl4, 0.5 x 10 3 m) and aqueous CTAB solution (0.2 x 103 m) 

were mixed and stirred for 10 min at room temperature. Next, a freshly prepared sodium 

borohydride solution (NaBH4, 600 µL, 0.01 x 10-3 m) was added quickly under vigorous stirring. 

After 2 min, the stirring was stopped and the seeds were aged 1 h at room temperature. To finally 

produce the single crystal gold nanorods (AuNRs), an aqueous CTAB-solution (10 mL, 0.1 x 10 

3 m) was mixed with HAuCl4-solution (50 µL, 0.25 x 103 m) and silver nitrate (AgNO3, 0.1 x 

10-3 m) solution until all components are homogeneously dissolved. To reduce the gold acid, 

hydroquinone was added and the growth solution gently mixed until complete decoloration. 

Finally, the aged CTAB-capped Au seeds (400 µL) was added and mixed thoroughly. The Au 

nanorods were grown for 24 h at room temperature. The solution was purified by centrifugation 
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(10 min, 14000 rcf) before washing with water two times and redispersed in water (2 mL) to 

obtain a solution at a concentration of 4.0 mM Au, which for the nanorods corresponds to 

~ 1012 nanorods/ml. 

Sample preparation 

The sodium hectorite solution with a concentration of 3% w/w was prepared in a closed vessel 

by addition of deionized water with Millipore-quality to solid Na0.5-hectorite for osmotic 

swelling, and afterwards stored at ambient temperature. The 20% w/w stock solution of 

wormlike micelles was dissolved down to 10% w/w and filtered through a polytetrafluoro-

ethylene filter with pore size of 5 µm before the microfluidic experiments could be carried out. 

Cryo-transmission electron microscopy (cryo-TEM) and transmission electron microscopy 

(TEM) images of the used concentrations of each sample are shown in electronic supplementary 

information (ESI Fig. S3). 

Free liquid microjet 

The free liquid microjet was generated using a micro glass capillary with an inner diameter of 

D = 600 µm (wall thickness 50 µm) fixed in a home-built 3D-printed sample holder. By using a 

micro gear pump (mzr-7205G) a microfluidic recycling setup was constructed to continuously 

deliver liquid at high flow rates to generate the microjet. The whole setup is displayed in detail in 

electronic supplementary information (ESI Fig. S1). 

Small-angle X-ray scattering 

The microfocus small-angle X-ray scattering (SAXS) experiments were performed at the 

synchrotron beamline P03 at PETRAIII/DESY.28 After collecting necessary background data of 

the pure solvent jet at different positions along the microjet (electronic supplementary 

information, ESI Fig. S8), the actual experiments with different type of anisotropic particles 

were carried out. Measurements across and along the glass capillary as well as the free jet and 

the droplet area are performed with a microfocused X-ray beam at wavelength of λ = 0.1381 nm. 

The beam size was 20 x 20 µm² for fluorohectorite nanoplatelets as well as wormlike micelles 

and 105 x 63 µm² for the gold nanorods. The X ray scattering patterns were recorded with step 

sizes of 25 µm, respectively 100 µm behind the microjet using a Pilatus 300K, respectively 1M 

(Dectris Ltd.) whereby both detectors have a pixel size of 172 x 172 µm². The sample-detector 

distance was 5.1 m for the sodium hectorite nanoplatelets with an integration time of 10 s. The 

wormlike micelles were measured with the same detector distance but with an integration time of 
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20 s. The detector distance for the gold nanorods was shorter with 2.4 m and the integration time 

was 60 s. 

Microparticle image velocimetry 

Micro particle image velocimetry (µPIV) was performed with a high-speed camera, a highly 

intense, focused light source and the open-source software package JPIV for flow profile 

analysis.29 In combination with a long-distance microscope and a 10x magnification objective 

the setup allows exposure down to 1.5 µs and frame rates up to 210,000 s-1 for the microfluidic 

experiments. These experiments allowed to determine the flow velocity profile within the glass 

capillary and free jet as well as the droplet area to observe changes between these different 

microjet regions. For more details, we refer to the electronic supplementary information. 

Lattice-Boltzmann simulations for platelet reorientation during jet ejection 

We conducted three-dimensional lattice-Boltzmann simulations using the open source software 

package ESPResSo.30-33 The grid size was 24 x 24 x 210 with a capillary/jet radius of 10 grid 

cells. Here, we were interested in modeling the re-orientation of platelets right after the exit of 

the capillary where the jet shape is to a very good approximation cylindrical with the same radius 

as the capillary. We therefore considered in our simulations a long undeformable cylinder whose 

left half models the capillary (no-slip boundary conditions are applied at the cylinder wall) while 

the right half models the free jet by imposing free-slip boundary conditions, see Fig. 2a. Thermal 

fluctuations were included into the Lattice-Boltzmann fluid. 

Platelets were modeled by a grid of five vertices, each of which was frictionally coupled to the 

fluid.34 The shape of the platelets was fixed by stiff springs to enforce (almost) constant vertex 

distances and angles to maintain a flat shape. In order to avoid artifacts from periodic boundary 

conditions, platelets were fed into the channel on the left and removed on the right end. Here, the 

platelet configuration at the inlet was not purely random. Instead, before the actual microjet 

simulation was run, we first conducted a simulation in a fully no-slip channel at the same flow 

rate and platelet concentration, but with periodic boundary conditions. Platelets taken from this 

„feeding simulation“ firstly received the orientation parameter S They were then properly 

aligned and obeyed the correct radial distribution when they were fed into the microjet 

simulation. This platelet orientation was then quantified by the orientation parameter  

S = 〈(3cos²φ-1)/2〉      (1) 

where φ is the angle between the normal vector of the platelet surface and the flow direction. In 

this definition, S = 1 signals complete alignment in flow direction, S=0 corresponds to random 
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isotropic orientation, and S = -0.5 to complete alignment perpendicular to the flow direction. The 

calculated orientation parameters S of the ensuing microjet simulations are shown in the 

electronic supplementary information (ESI Fig. S9-S11) for all three particle systems. 

Potential-flow boundary-integral simulations 

In order to predict the shape evolution and flow field within the microjet, we required a method 

which is able to track the time-dependent free surface shape of the jet. We thus conducted 

boundary-integral simulations (Fig. 2) based on potential flow assuming a purely inviscid fluid. 

Details are given in literature.34-38 The goal of these simulations was to obtain an understanding 

of the flow field in the jet at droplet breakup which is why the presence of the anisotropic 

particles was excluded. 

Results and discussion 

 
In order to continuously produce stable liquid micro-jets that can be investigated by microfocus 

synchrotron X-ray scattering we developed a setup consisting of a glass capillary to generate the 

micro-jets and a micro-gear pump to recycle the liquid back to the glass capillary. We used 

vertically aligned capillaries with 300 µm inner radius and 300 µm orifice radius to generate 

liquid jets at a flow rate of Q = 750 mL/h, resulting in a jet velocity of v ~ 1 m/s. The micro-jet is 

stable over a length of 15 mm, until it breaks up into micro-droplets due to Rayleigh instability. 

The local orientational distribution of the dispersed particles within the micro-jet and the micro-

droplets is determined by scanning with a 20 x 20 µm X-ray beam across a raster of 7-20 

horizontal and 5 vertical positions from the capillary downstream the nozzle, free jet and the 

droplets. 

Nanoplatelets 

We first investigated solutions of hectorite nanoplatelets as models of two-dimensional 

anisotropic particles at a concentration of 3 wt%, which is sufficiently high to have a good 

signal-to-noise ratio, but still having low enough viscosity to continuously pump the solutions 

through the microfluidic device. The hectorite platelets are fully exfoliated, have a thickness of 

1.0 nm and a lateral dimension of 20 µm, and thus have very large axial ratios of 2.104.13-15 

Details of the synthesis, structure, and sample preparation are provided in the electronic 

supplementary information. For the large axial ratio hectorite nanoplatelets, we expected 

pronounced orientation effects upon formation of the micro-jets and micro-droplets. 

To determine changes in the platelet orientation upon transition from the capillary into the free 

micro-jet, and upon the subsequent transition from the free micro-jet into the micro-droplets, we 
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performed horizontal scans at five downstream vertical positions (Fig. 1a): far within the 

capillary (I), 100 µm upstream and downstream the orifice (II, III), in the fully developed 

micro-jet (IV), and in the micro-droplet region (V).  

 

Figure 1. Scheme of the microjet and the emerging microdroplets with dispersed nanoplatelets together 

with the 2D-SAXS patterns measured within the jet and the droplets. (a) Scheme of the capillary, the 

liquid micro-jet and the micro-droplet region with the scan lines I–V where the 2D-SAXS-patterns were 

measured. (b) Set of scattering patterns measured for the hectorite nanoplatelets at the specified scan 

positions. We observe a strong anisotropy resulting from the flow-alignment of the nanoplatelets, with an 

unexpected biaxial orientation of the nanoplatelets in the microdroplet region (c) Comparison of 

experimental and calculated scattering patterns to determine the orientational order parameter of the 

nanoplatelets. The q-range is -0.5 – 0.5 nm-1. 

 

Fig. 1b displays the small-angle X-ray scattering (SAXS) patterns for the hectorite nanoplatelets 

measured at different scan positions from the capillary into the free micro-jet and further 

downstream into the micro-droplet region. Reference scans outside the liquid and at the 
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air/liquid-interface are provided in the electronic supplementary in-formation (ESI Fig. S9-S11). 

All scattering patterns in Fig. 1b show a strong anisotropy indicating pronounced shear-

alignment of the nanoplatelets.  

We first inspect the upper row of the scattering patterns shown in Fig. 1b, which was measured 

in the liquid stream within the glass capillary (position I). The first scattering pattern (I.1) was 

measured close to the left capillary inner wall. The scattering pattern is characterized by a sharp 

equatorial ∞-shaped high intensity region, indicated in red. The next two scattering patterns (I.2, 

I.3) were measured towards the center of the capillary. They also show a ∞-shaped high-intensity 

region, which is, however, inclined by an angle of +6° with respect to the horizontal axis. In the 

center of the capillary (I.4) the ∞-shaped high intensity region has a perfect horizontal alignment 

with 0° inclination angle. The scattering patterns measured at subsequent scan positions at the 

right-hand side of the capillary are found to be mirror images of the left-hand side scattering 

patterns. This is the case for all subsequent downstream scans. In the following discussion, we 

thus focus only on the scattering patterns measured on the left-hand side of the capillary, micro-

jet, and micro-droplets. 

The observed characteristic ∞-shaped high intensity regions result from the formfactor of the 

nanoplatelets which are strongly aligned in flow-direction, co-planar to the capillary wall. To 

quantitatively determine the orientational distribution of the nanoplatelets we calculated 

scattering patterns using different types of orientational distribution functions. We modelled the 

hectorite nanoplatelets as disks with an average thickness of 1.0 nm and an average radius of 

10 µm to analytically calculate their formfactor. We obtained best agreement between calculated 

and measured scattering patterns when using a Gaussian orientational distribution function, for 

which the orientational order parameter was calculated. Details of the calculations are given in 

the electronic supplementary information and further in litera-ture.16,17 In Fig. 1c, the lowest row 

of scattering patterns shows measured (left-half) and calculated (right-half) scattering patterns 

for selected characteristic scan-positions together with the orientational order parameter which is 

defined in Equation (16) of electronic supplementary information and gave the best agreement. 

We observe very good agreement between measured and calculated scattering patterns. Here, the 

orientation parameters are determined in the capillary and all have values of S = -0.46 - -0.48, 

with slightly less negative values towards the center of the capillary. In this context, a value of 

S = -0.5 would declare a complete alignment in flow direction, whereas S = 0 corresponds to a 

random isotropic orientation. Thus, the result indicates an alignment of the nanoplatelets in flow-

direction, with their basal plane nor-mal vector being perpendicular to the flow direction. 
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The slight inclination of the scattering patterns observed towards the center of the capillary 

(positions I.2, I.3) indicates a small tilt of the flowing nanoplatelets towards the center of the 

capillary. The value of the inclination angle is a result of the competing effects of flow-

orientation preferring the nanoplatelets to orient parallel to the streamlines, corresponding to a 0° 

inclination angle, and rotational diffusion allowing the particles to explore a larger angular range, 

resulting in larger inclination angles. For the hectorite nanoplatelets we observe rather small 

inclination angles indicating that shear orientation dominates over rotational diffusion. This 

implies that the ratio of shear rates to the rotational diffusion coefficients is much larger than 

unity, i.e. �̇� / D_rot ≫ 1. The value of this ratio can be estimated from the experimental flow rate 

and the capillary diameter, from which the wall shear rate �̇� = 4Q / (πR3) can be estimated to be 

�̇� ~ 104 s-1, and from the platelet radius RD, from which a rotational diffusion coefficient18 D_rot 

= 3kT/(32π𝑅𝐷
3 ) ~ 10-4 s-1 can be estimated. Thus, the condition �̇� / D_rot ~ 107 ≫ 1 is well 

fulfilled. The effects due to rotational diffusion, possibly enhanced by inter-platelet collisions, 

are slightly more pronounced towards the center of the capillary, where the shear rates are 

smaller, leading to slightly larger inclination angles and slightly reduced orientational order. 

As shown by the scattering patterns in the second row in Fig. 1b (II.1 – II.5), which were 

measured in the capillary 100 µm upstream the orifice, the observed local orientational 

distribution of the nanoplatelets is stable and stationary across the capillary, even until just before 

the capillary exit. 

The third row of scattering patterns (III.1 – III.5) was measured in the free micro jet just 100 µm 

downstream after exiting the capillary orifice. As the micro-jet has a slightly smaller diameter 

than the orifice, the X ray beam at the first scan position (III.1) just touches the surface of the 

liquid jet. This results in a thin horizontal streak with a slight inclination due to the surface 

orientation of the narrowing jet, together with a weak ∞-shaped scattering pat-tern from the 

oriented nanoplatelets. The sharp vertical streak is caused by the micro-X-ray beam which 

slightly touches the end of the capillary. At all scan positions across the free micro-jet we 

observe scattering patterns with nearly zero inclination angle indicating nearly vertical 

orientation of the nanoplatelets in flow direction. A slight broadening of the ∞-shaped high-

intensity region in the center of the micro jet indicates a minor loss of orientational order. 

A slightly decreasing inclination angle and a minor loss of orientational order are the two 

characteristic features that we observe when the liquid stream exits the orifice and forms a free 

liquid micro jet. They accompany a fundamental change of the flow velocity field when the 

boundary condition at the liquid surface changes from no-slip condition at the glass wall of the 

capillary to free slip condition at the liquid/air-interface of the free jet. To obtain insights into 
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how this transition relates to the observed changes in the nanoplatelet orientation, we performed 

lattice-Boltzmann simulations. In the simulations the transition from the capillary into the free 

micro-jet is modeled by a Newtonian liquid stream flowing through a cylindrical channel, where 

halfway down the channel the boundary conditions change from no-slip to free-slip (Fig. 2a). 

The liquid contains dispersed platelets whose orientational distribution can be followed and 

analyzed along the channel. Details of the simulations are described in the Methods Section. 

 

 

Figure 2. Simulation of the platelet orientation upon micro-jet formation and break-up into microdroplets. 

(a) Snapshot of a Lattice-Boltzmann simulation to determine changes of the platelet reorientation from 

the nozzle exit into the free jet. (b) Simulated development of the orientational order parameter from the 

capillary through the nozzle into the free jet with a slight loss of orientational order at the exit, marked by 

the dashed blue line. (c) Simulated velocity profile where the colors indicate the axial velocity and black 

lines represent stream lines. (d) Shape of the micro-jet just before droplet breakup imaged with a high-

speed camera and (e) simulated with the potential-flow boundary-integral code. The velocity field in the 

frame of reference moving with the jet features an outward radial flow right after the narrow constriction 

before entering the droplet. This extensional flow with a high extension rate (f) causes reorientation of the 

platelets upon entering the droplet and leads to the biaxial orientation observed in the X-ray scattering 

patterns (Fig. 1b, row V). 

 

Fig. 2b shows the evolution of the orientational order parameter downstream the channel. Within 

the capillary the platelets are well oriented in flow direction with a calculated orientational order 
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parameter S = 0.48 in good agreement with the experiments. We observe in the simulations that 

directly after the exit, when changing from no slip to free slip conditions, the order parameter 

slightly drops to a value of S = 0.41 until the nanoplatelets realign to reach a value of S = 0.43. 

The degree of order in the simulations is higher compared to the experimentally determined 

values, which is due to the internal flexibility of the hectorite nanoplatelets. Yet, the simulations 

reveal that the underlying reason for the characteristic change of the orientational distribution is 

the change of the velocity field, which varies from a parabolic profile characteristic for Poiseuille 

flow in the capillary to a homogeneous plug flow profile in the free microjet.19 This change in 

the flow velocity profile, illustrated in Fig. 2c, involves an acceleration of fluid volume elements 

in the outer jet region and a deceleration in the center of the micro-jet. To satisfy mass 

conservation fluid needs to flow radially from the inner to the outer region of the microjet in a 

transition zone immediately after the capillary exit which carries along platelets and leads to the 

observed loss of orientational order. The reestablishment of a purely axial flow after the 

transition zone then partly reorients the platelets parallel to the streamlines thereby leading to 

near zero inclination angles. The observed characteristic changes of the nanoplatelet orientation 

in the zone directly after the capillary exit can thus be well rationalized in terms of the changing 

surface boundary conditions and changing velocity profiles. 

The fourth horizontal scan (IV) transects the free fully developed micro-jet at x = 5.1 mm 

downstream the capillary exit. At the first scan position inside the free jet (IV.2) we observe a 

narrow ∞-shaped high intensity region indicating still high orientational order with only a slight 

inclination of +5° indicating the onset of rotational diffusion and inter-platelet collision due to 

the reduced surface shear rates. Both, the loss of orientational order and the increase of the 

inclination angle, become more significant towards the center of the free jet. The shape of the 

high intensity region changes from a ∞-shape to a broad “butterfly”-shape in the center (IV.4), 

corresponding to a reduction of the orientation order parameter from S = 0.46 to S = 0.14. Due to 

symmetry the inclination angle in the center is zero. Off-center inclination angles, e.g. at position 

(IV.3), have values of 15°, i.e. significantly higher compared to the liquid stream in the capillary. 

The loss of orientational order and the increase of the inclination angle indicate that shear rates 

within the liquid jet, particularly in the center, have strongly decreased. Ideally, for the free 

micro-jet a homogeneous plug-flow profile with vanishing shear rates would be expected such 

that orientational order is significantly reduced by rotational diffusion. 

To verify the development of a plug-flow profile we carried out microparticle image velocimetry 

(µPIV) in the free micro-jet as shown in detail in the electronic supplementary information. It is 

experimentally impossible to determine the flow velocity profile at the outer edge of the free jet 
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because the jet acts as a cylindrical lens that refracts light such that the outer edge is completely 

dark. Yet it is possible to determine the flow profile within the micro-jet, where within 

experimental error we indeed observe a plug-flow profile, leading to a consistent description of 

the flow velocity profile and the experimentally observed changes in the nanoplatelet orientation. 

The last row of scattering patterns (V) was measured at position x = 15.1 mm, which is in the 

region where the free micro jet has broken-up into a train of micro-droplets due to Rayleigh 

instability.20,21 The micro-droplets have larger diameters than the free jet such that already at 

position V.1 we probe the orientational distribution of nanoplatelets within the droplet. Fig. 2d 

shows a snapshot taken with a high-speed camera at 50.000 frames s-1 to illustrate the 

development of the micro-droplet from the micro-jet. The droplet breakup occurs in a narrow 

region at 11 < x < 13 mm, such that at position V we already probe the microdroplet region. 

At all V scan positions the scattering patterns have an un-usual appearance characterized by a 

cross-shaped high intensity region. It originates from two mutually perpendicular ∞-shaped high 

intensity regions, one along the horizontal axis, the other along the vertical axis. This indicates 

an unexpected biaxial orientational distribution of the nanoplatelets, which our scanning 

experiments reveal for the first time. From the scattering intensities integrated over the meridian 

and the equation we deduce that approximately 20% of the platelets are oriented parallel to the 

flow direction, with the platelet normal in the equatorial plane, and 80% perpendicular to the 

flow direction with the platelet normal parallel to the flow direction. In the center of the droplet 

the fraction of unexpected perpendicularly oriented nanoplate-lets is significantly larger 

compared to the parallel oriented nanoplatelets. Compared to the upstream position in the free 

micro jet, the high-intensity regions are sharper, promoting increased orientational order along 

each of the two platelet orientation axes. 

To understand the evolution of the biaxial orientation we simulated the flow profile in the liquid 

jet during droplet breakup. Since this requires to explicitly consider the dynamics of the free 

micro-jet surface, including the thinning of the neck and the final droplet pinch-off, we employed 

boundary-integral simulations as described in the Methods Section. As shown in Fig. 2d/e the 

simulations of the droplet break-up are in good agreement with the experimentally determined 

break-up. The experiments and simulations were performed for the same conditions, i.e. a micro-

jet radius of 300 µm and a flow rate of Q = 750 mL/h. While these simulations do not include 

platelet dynamics they nevertheless allow us to get a detailed insight into the local flow fields as 

shown in Fig. 2e. After passing the thin neck and entering into the droplet, the fluid enters an 

expansion zone with high extension rates (Fig. 2f) and significant radial outward flow. Within 

the high extensional rate zone, the platelets are oriented perpendicular to the flow direction. After 
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formation of the final droplet shape the extensional rates become zero and the platelets remain in 

their biaxial orientation. This is analogous to the recently observed perpendicular orientation of 

wormlike micelles in the extensional section of tapered microchannels which was similarly 

caused by high extensional rates perpendicular to the flow direction.22 

Thus, our scanning synchrotron X-ray experiments on free liquid micro-jets provide first insights 

into the orientation of dispersed platelet-shaped particles upon transition from a capillary into a 

free jet, and upon the subsequent transition into micro-droplets. The changing velocity fields 

cause characteristic reorientation effects leading to significant and unexpected changes in the 

platelet orientation, such as the biaxial orientation observed in the micro-droplets.  

Wormlike micelles 

It is interesting whether the orientational changes observed for nanoplatelets, which are examples 

of two-dimensional anisotropic objects, are a general characteristic for all anisotropic particles. 

We therefore also investigated the flow orientation of wormlike micelles, which are examples of 

one-dimensional anisotropic objects. We used wormlike micelles formed by the self-assembly of 

poly(isoprene-b-ethylene oxide) (PI-b-PEO) block copolymers in water. The micelles have a 

diameter of 20 nm and contour lengths of several micrometers as shown by the cryo-TEM 

images in the electronic supplementary information (ESI Fig. S3b). We used a concentration of 

c = 10% w/w in water where the scattering intensity is sufficiently high to quantitatively 

determine the orientational distribution from the measured scattering patterns. The capillary, 

flow rates and scanning positions were the same as for the hectorite nanoplatelets.  

The first row of scattering patterns (Fig. 3, I) was measured across the capillary. The scattering 

patterns are characterized by two pronounced first order and weak second order Bragg peaks 

located on the equator. This indicates that the wormlike micelles are oriented in flow-direction 

with strong positional and orientational correlations. From the position of the Bragg-peaks one 

can calculate an average distance between adjacent micelles of d = 42 nm.  

The first scattering pattern (Fig. 3, I.1) results from worm-like micelles that are located directly 

next to the capillary wall. We observe two sickle-shaped high-intensity regions with an 

inclination angle of 12° with respect to the equator. At subsequent scan positions towards the 

center of the capillary (I.2-I.4), the Bragg-peaks have lower intensity, a more circular shape, a 

smaller inclination angle, and are located on a weak Debye-Scherrer ring. This indicates that at 

all scan positions in the capillary the wormlike micelles are oriented in flow direction, with a 

significant inclination only next to the capillary wall. The weak Debye-Scherrer ring indicates 

the presence of a small fraction of isotropically oriented wormlike micelles. At the capillary wall, 

the characteristic sickle-shaped Bragg-peaks, the higher scattering intensity and the absence of a 
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Debye-Scherrer ring are indications of a dense, nematic phase forming a lubrication layer at the 

capillary wall as a result of shear-banding.23 The small inclination angles in the center of the 

liquid stream indicate that rotational diffusion is very slow due to the retarded cooperative 

motion of the wormlike micelles.24 

The scattering patterns shown in the second row (II) are measured directly (100 µm) upstream 

the capillary exit and are very similar to the upstream position, indicating stable stationary flow 

conditions in the capillary. With the exception of the occurrence of the nematic phase close to the 

capillary wall, the observed orientational distribution for the wormlike micelles in the capillary is 

very similar to the one observed for the nanoplatelets.  

 

Figure 3. Set of 2D-SAXS-patterns measured within the microjet and the emerging microdroplets 

containing dispersed wormlike micelles. Also, for the wormlike micelles we observe pronounced flow-

alignment with equatorial Bragg-peaks indicating strong intermicellar correlations. The biaxial orientation 

of the micelles in the microdroplet region can be observed as slight intensity modulations on the Debye-

Scherrer rings (V). The q-range is -0.5 – 0.5 nm-1.  
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The third row of scattering patterns (III) was measured just 100 µm downstream the capillary 

exit in the zone of the developing free micro-jet. At the first scan position (III.1) the X-ray beam 

just touches the micro-jet resulting in a thin streak, yet the Bragg-peaks from the oriented 

cylindrical micelles are already apparent. At the subsequent scan positions (III.2–III.5) we 

observe Bragg peaks with increased azimuthal widths indicating some loss of orientational or-

der, particularly towards the center of the free microjet. The inclination angles are very small, 

indicating a near vertical alignment of the cylindrical micelles in flow direction. The two effects, 

(1) the loss of orientational order towards the center of the micro-jet, and (2) the near-zero 

inclination angles are the same as observed for the nanoplatelets. This indicates that the 

transition from no- slip to free-slip boundary conditions and the related change of the flow-

profile towards plug flow are characteristic for both the nanoplatelets and the wormlike micelles. 

The subsequent scans shown in the fourth row (IV) were measured in the fully developed micro-

jet 5.1 mm after exiting the capillary. Compared to the previous scan (III) taken directly after 

exiting the capillary, we observe only a very minor reduction of the orientational order and still 

near perfect orientation in the flow direction. We conclude that effects of rotational diffusion are 

negligibly small for the wormlike micelles such that even at strongly reduced shear rates in the 

center of the free micro-jet the alignment in flow direction well persists. Compared to the 

nanoplate-lets, which were measured in more dilute solutions and where effects of rotational 

diffusion are more noticeable, the wormlike micelles were measured at higher concentrations 

where positional and orientational correlations, as apparent from the Bragg peaks, reduce local 

rotational mobility. 

The last row shows the scattering patterns measured in the droplet region (V). The signature of 

the particle orientation in the scattering patterns is more difficult to recognize due to streaks 

originating from X-ray reflections from the droplet surface. Yet, from the scan position in the 

droplet center (V.4) we observe scattering patterns with higher intensity regions on the equator 

and on the meridian, located on top of a pronounced Debye-Scherrer ring. This indicates a 

significant loss of orientational order, but with a signature of a biaxial distribution that was also 

observed for the nanoplatelets. 

We thus observe the same characteristic changes of the orientational distribution during 

transitions from the capillary to the free micro-jet and subsequently from the micro-jet to the 

micro-droplets for both the nanoplatelets and the wormlike micelles. Observed differences such 

as the formation of the nematic lubrication layer and the persistence of a high orientational order 

in the free micro-jet are related to the stronger positional and orientational correlations of the 

higher concentrated wormlike micelles. 
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Gold nanorods 

It is finally interesting, whether the observed reorientation behavior generally applies not only to 

anisotropic particles with large axial ratios, such as hectorite nanoplatelets and wormlike 

micelles, but also to anisotropic particles with much smaller axial ratios. For the latter case we 

expected rotational diffusion to significantly reduce shear-orientation effects but hoped that some 

of the observed characteristic re-orientation effects might still be observable.  

Thus, we also investigated the shear-orientation of gold nanorods. We synthesized monodisperse 

gold nanorods with an average diameter of D = 26 nm and an average length of L = 71 nm, 

resulting in an axial ratio of only ~3. The synthesis and the corresponding TEM images are pro-

vided in the electronic supplementary information (ESI Fig. S3c). The set of scattering patterns 

were measured at the same positions as for the nanoplatelets and the worm-like micelles and are 

shown in Fig. 4. 

For the gold nanorods the measured scattering patterns at all scan positions are characterized by 

concentric rings resulting from cross-sectional form factor oscillations. High-intensity regions 

along the azimuth of the rings would indicate a preferred orientation. Row (I) shows the 

scattering patterns measured within the capillary. The first scattering pattern (I.1) was obtained 

directly next to the inner capillary wall. We indeed observe two increased scattering intensity 

regions on the formfactor rings, located on a line with an inclination angle of 25°. This indicates 

an alignment of the nanorods in flow direction with a quite large mean inclination angle of 25°. 

At all other scan positions, we observe isotropic scattering patterns indicating a completely 

isotropic orientational distribution resulting from the fast-rotational diffusion of the gold 

nanorods. The rotational diffusion coefficient for the nanorods can be estimated to be18 D_rot = 

3kT(ln(2L/d)-γ)/πηL3 ~ 105 s-1. It is thus larger than the shear rates, except at the capillary wall 

where the shear rate is at least of comparable magnitude, leading to the observed shear alignment 

with a quite large inclination angle. 

When inspecting the set of scattering patterns measured at position (II), close to the capillary 

exit, the slightly preferred orientation in flow-direction with a large inclination angle can be 

better recognized, not only at position II.1, but also at position II.2. As expected, the degree of 

orientational order of the short nanorods is generally much lower compared to the extended 

nanoplatelets and wormlike micelles, and nearly isotropic in the center of the capillary. 

For the gold nanorods the measured scattering patterns at all scan positions are characterized by 

concentric rings resulting from cross-sectional form factor oscillations. High-intensity regions 

along the azimuth of the rings would indicate a preferred orientation. Row (I) shows the 

scattering patterns measured within the capillary. The first scattering pattern (I.1) was obtained 
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directly next to the inner capillary wall. We indeed observe two increased scattering intensity 

regions on the formfactor rings, located on a line with an inclination angle of 25°. This indicates 

an alignment of the nanorods in flow direction with a quite large mean inclination angle of 25°. 

At all other scan positions, we observe isotropic scattering patterns indicating a completely 

isotropic orientational distribution resulting from the fast-rotational diffusion of the gold 

nanorods. The rotational diffusion coefficient for the nanorods can be estimated to be18 D_rot = 

3kT(ln(2L/d)-γ)/πηL3 ~ 105 s-1. It is thus larger than the shear rates, except at the capillary wall 

where the shear rate is at least of comparable magnitude, leading to the observed shear alignment 

with a quite large inclination angle. 

 

Figure 4. Set of 2D-SAXS-patterns measured within the microjet and the emerging microdroplets 

containing narrow disperse gold nanorods. The scattering patterns feature concentric rings due to the 

cross-sectional formfactor. Due to the small axial ratio the nanorods are flow-aligned only close to the 

capillary walls, but even for the short nanorods the biaxial alignment in the micro-droplet region is clearly 

visible indicating strong extensional forces during droplet-breakup. The q-range is -1 – 1 nm-1.  



4 Publications 
 

92 

 

When inspecting the set of scattering patterns measured at position (II), close to the capillary 

exit, the slightly preferred orientation in flow-direction with a large inclination angle can be 

better recognized, not only at position II.1, but also at position II.2. As expected, the degree of 

orientational order of the short nanorods is generally much lower compared to the extended 

nanoplatelets and wormlike micelles, and nearly isotropic in the center of the capillary. 

The first scan across the free microjet (III.1-III.5) just 100 µm downstream the capillary exit 

shows only slight changes of the orientational order. At the jet edge (III.1) the flow-orientation is 

still well observable, whereas at the center the orientational distribution is nearly isotropic. 

Further downstream in the fully developed microjet (IV) the orientational order is completely 

lost across the micro-jet as indicated by the fully isotropic concentric formfactor oscillations and 

scattering patterns. 

The last row (V) shows the scattering patterns measured after the droplet breakup region. The 

off-center scattering patterns clearly show the biaxial distribution with high-intensity regions on 

the equator and meridian of the concentric formfactor oscillations. It is only in the center of the 

micro-jet that the scattering pattern is still isotropic. This shows that the extensional rates during 

droplet pinch-off are very large, leading to a reorientation even of the short nanorods. 

Our experiments for the nanoplatelets, wormlike micelles and gold nanorods thus show that the 

observed reorientation effects, particularly the unusual biaxial distribution in the micro-droplets 

after droplet break-up, are generally occurring for anisotropic particles. The understanding of the 

flow-alignment of anisotropic particles is crucial for the controlled fabrication of fiber materials 

as demonstrated by recent in-situ SAXS experiments on the flow-alignment of biological 

nanofibers.39,40 Our experiments, which demonstrate the importance of perpendicular extensional 

forces in affecting particle orientation, underline the necessity to generate extensional forces in 

flow direction to achieve desired parallel fiber orientation needed for high performance fibers.39 

Thus, experiments at higher particle concentrations to generate fibers is an important next step 

for further experiments. 

Conclusion 

 
We have demonstrated a microfluidic setup that enabled us to investigate the flow-orientation of 

anisotropic particles in free liquid jets for the first time, using scanning micro-focus X-ray 

scattering. Our study reveals remarkable and unexpected changes in particle flow-alignment 

upon exiting the nozzle to form a free jet, within the free jet, and upon jet break-up into droplets, 

where we observed an unusual biaxial particle orientation. We show how flow and aspect ratio 

determine the flow-orientation of anisotropic particles. We have furthermore demonstrated that 
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the observed flow-alignment phenomena are a general characteristic of anisotropic particles, 

comprising one- and two-dimensional particle geometries. Finally, using fluid dynamics 

simulations we could directly relate the observed particle flow-alignment to the changing flow 

velocity fields within the micro-jets and micro-droplets.  

The developed microfluidic setup is broadly applicable for the investigation of micro-jets and 

micro-droplets with dissolved particles, taking advantage of the ever smaller, even sub-µm X-ray 

beam diameters that become available at dedicated synchrotron beamlines. Our findings greatly 

enhance our understanding of particle orientation in free jets and droplets and provide the basis 

for a control of particle alignment in liquid jet-based fabrication, coating and printing techniques. 
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Supporting Information 

 
Microfluidic Device  

All micro-jet experiments were performed using a newly developed microfluidic setup that allows to 

cycle small liquid volumes at high flow rates to continuously generate stable micro-jets. The microfluidic 

setup consists of a micro annular gear pump (mzr-7205G, HNP Mikrosysteme GmbH) with an electrical 

control terminal box (S-G05) to precisely adjust flow rates as visible in Figure S1a. The pump is 

connected with silicone tubes to a specially fabricated 3D-printed sample holder which was designed in 

AutoCAD 2013 (Autodesk) and printed in polylactide using an Ultimaker 2 (Ultimaker B.V.). The 3D-

printed sample holder was fabricated to hold a micro glass capillary (Hilgenberg GmbH) with an inner 

diameter of 600 µm (wall thickness 50 µm) and is constructed for long-time small angle X-ray scattering 

(SAXS) measurements at synchrotrons as it is shown in Figure S1b-d. 

 

Fig. S1 Overview about the whole microjet setup. (a) 3D-printed sample holder (blue) and micro annular 

gear pump with control module. (b) Setup generating the microjet with a gear pump (7205G) at the 

synchrotron DESY, Petra III, beamline P03. (c) Video snapshot of the microjet indicating the nozzle exit 

as well as the droplet breakup area further downstream. Due to the extreme high flow rates and the high 

shutter speed of a normal camera, no drop formation is visible. (d) The droplet breakup is just visualized 

by a high-speed camera that can run very short exposure times between each picture, whereby the SAXS 

positions for scans at the nozzle exit are shown at the top image (I) and at the droplet breakup area 1.5 cm 

further downstream at the bottom image (II). 

Determination of the droplet breakup position  

Figure S2 shows the position for the droplet breakup at ~ 13 mm downstream the glass capillary with 

diameter of ID = 600 µm and a flow rate of Q = 750 mL/h that is used during the SAXS experiments. 
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Shown in the top row (Figure S2a) is a series of 20 subsequent 0.7 ms-snapshots of droplet breakups. 

Here we observe just a slight variation of the position for the droplet breakup between 0.5 – 1 mm at short 

time scales. The bottom row (Figure S2b) illustrates the droplet breakup over longer time scales of 1 

second intervals. We observed just a small deviation from the droplet position of around 0.5 – 1 mm. All 

measurement positions were double checked by video microscopy to be sure about being either in the 

continuous jet or in the droplet regime (15.2 mm). 

 

Fig. S2 Determination of the droplet breakup position. (a) Image series of the droplet breakup position for 

a capillary with diameter of ID = 600 µm and a flow rate of Q = 750 mL/h for short time intervals of 

Δt = 0.7 ms and (b) longer time intervals of Δt = 1.0 s. 

 

 

 

 

Characterization of anisotropic particles  

The liquid micro-jet setup has been run with three different types of anisotropic particles. Cryo-TEM and 

TEM-images are shown in Figure S3. The first sample, 1% w/w sodium hectorite nanoplatelets dispersion 

in water, is visible in Figure S3a. The 10% w/w of wormlike micelles solution and the dispersed gold 

nanorods are illustrated in Figure S3b, c. 
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Fig. S3 Characterization of anisotropic particles via transmission electron microscopy. (a) Cryo-

transmission electron microscopy (Cryo-TEM) image of Na0.5-hectorite nanoplatelets with a 

concentration of c = 1% w/w in water. The sample was milled by ultrasonic treatment to shorten the 

originally aspect ratio of 20.000. (b) Cryo-TEM image of PI110-PEO198 wormlike micelles solution with a 

concentration of c = 0.1% w/w in water. (c) Transmission electron microscopy (TEM) image of single 

crystal gold nanorods (Au-Nanorods). 

 

Microparticle Image Velocimetry  

To determine the velocity profile experimentally, we used microparticle image velocimetry (µPIV). The 

setup consists of a Phantom v1612 high-speed camera (Vision Research), and a highly intense, focused 

light source Halolux LED-30 (Streppel Glasfaser-Optik oHG). In combination with a Model K1 

CentriMaxTM long distance microscope (Infinity Photo-Optical Company) and a 10x /0.30 P UPlanFL N 

magnification objective (Olympus Corporation) the setup allows exposure down to 1.5 µs and frame rates 

up to 210,000 s-1 for the performed experiments. Due to the narrow depth of focus of this kind of setup a 

precise vertical position control within the microjet is possible. The sample-holder was adjusted in the 

way that the focus distance was always set to the inner center part of the microjet and just frames of that 

position are taken by the high-speed camera. In total, always 30 frames are taken from exactly the same 

position at the center for averaging. For data collection via high-speed camera measurements the Phantom 

PCC v2.8.761.0 software was used. The obtained high-speed image sequence is autocorrelated and 

analyzed using the open-source software package JPIV. Measurements were made in pure water that 

contained 0.1% w/v of 4.89 µm diameter monodisperse polystyrene tracer particles (Micro Particles 

GmbH). The results as well as analysis of the water microjet flow profiles based on a 300 µm diameter 

glass capillary and the generally used flow rate of 750 ml/h is shown in Figure S4. 

Concerning the µPIV experiments, analysis problems appear due to light reflexions on the curved outer 

free jet but especially at the curved glass capillary. As a consequence, dark areas at the edge of the glass 

capillary are emerging and no valid evaluation within these black regions is possible by the software since 

the particles are not visible anymore for tracing. However, flow profile analysis for the freejet area is 

possible up to a certain point. The black area is just present at the outermost edge of the freejet and thus 
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we can determine most of the flow profile. In Figure S4a, the freejet position 5 mm after outlet is 

analyzed via JPIV whereby the red marked jet edges of the dark regions are not considered. The results in 

Figure S4b are showing a velocity profile which is like plug flow with an average velocity of around 

vaverage = 2.0 m/s, whereby the zero velocity directly at the edge of the freejet is not available. 

Additionally, we have simulated the flow profile out of a capillary with a diameter of D = 30 µm and a 

flow rate of Q = 10 µL/h at the freejet area which is visible in Figure S4c. Here, a whole plug flow profile 

is recognized and matches quite good to the analyzed part of the experimentally found flow profile for the 

freejet area. Moreover, the flow profile within a capillary has also been simulated for the same parameters 

and the expected parabolic flow profile was determined, as seen in Figure S4d. However, a detailed 

analysis of an experimental flow profile is not possible due to intense light reflexions at the glass 

capillary. Nevertheless, a changing from a parabolic flow profile within the capillary to a plug flow 

profile within the freejet is identifiable by simulations and supported by experimental data. Consequently, 

this drastic change of the flow profile benefits the loss of orientation within and along the free jet. 

 

Fig. S4 Microparticle image velocimetry. (a) µPIV measured flow profile of water including 

monodisperse polystyrene tracer particles which are jetting out of a glass capillary with an inner diameter 

of 300 µm and flow rate of Q = 750 mL/h. The measurement position is on the freejet 5 mm after outlet. 

(b) Graph of analyzed plug flow profile with velocity Vx [m/s] versus position x on freejet in [µm]. (c) 

Simulated plug flow profile of the freejet out of a capillary with diameter of 30 µm and flow rate of 

10 µL/h. (d) Simulated parabolic flow profile within the capillary and same flow rate. 
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In the further µJPIV experiments, we present the flow profile generated by a smaller 200 µm diameter 

glass capillary to show the influence of the microjet diameter and velocity on the flow profile. In 

Figure S5, the flow profile for the experimental flow rate of v = 750 mL/h is shown for different positions 

on the microjet. As discussed before, the vector arrows in the dark areas of the capillary and freejet of 

Figure S5 are not allowed to incorporate to the consideration. Though the black areas are present at the 

edge of the capillary and freejet, we at least can observe a parabolic flow profile within the glass capillary 

(Figure S5a) and the gradual growing plug flow profile for the freejet at 5 mm after outlet (Figure S5b). 

As visible, the maximum velocity at the center part within the capillary amounts to vmax = 3.91 m/s and 

shows a parabolic flow profile in comparison to the rather plug flow profile for the freejet area at 5 mm 

after outlet, where the velocity decreased down to v = 3.16 m/s. Compared to the bigger capillary in 

Figure S4, the maximum velocity within the smaller capillary is much higher. 

 

Fig. S5 µPIV measured flow profiles of water using monodisperse polystyrene tracer particles and a flow 

rate of v = 750 mL/h. a) Within a glass capillary of a diameter of ID = 200 µm and b) 5 mm after the 

outlet within the free jet. 

 

SAXS-pattern calculation  

In the following we outline the calculation of the scattering patterns of oriented anisotropic particles, such 

as cylinders and disks, which are dispersed in a solvent. For such two-phase systems consisting of 

particles (phase “1”) with scattering length 1b  and volume fraction 1  in a solvent (phase “2”) of 

scattering length 2b  and a volume fraction 12 1  −= , separated by sharp interfaces, the scattered 

intensity per unit volume is given by 

      ( ) ( ) ),(1),(),,(1),,(),,(
,

22

21 gqGZFbbI
or

orRL
N −+−= gqRLqRLqRLq   (1) 
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where q is the scattering vector, VNN /= is the number density of the particles, )(qF  the 

scattering amplitude or Fourier transform of the particle form, L  is equal to the length of the 

cylinder or the thickness of the sheet, R  is equal to the cross-sectional radius of the cylinder or 

the lateral radius of the disk, )(qZ  is the lattice factor describing the spatial distribution of the 

particles, )(qG  is the Debye-Waller factor, and        

 

orRL

or
RL

F

F

,

2

2

,

),,(

),,(
),,(

RLq

RLq
RLq =      (2) 

The effect of the ratio )(q  on the scattering intensity is similar to the effect of the Debye-

Waller factor )(qG , resulting in a decay of the Bragg peak-intensities with increasing scattering 

vector q . Equation (1) considers the effect of the particles - via their first and second moment of 

the particle size distribution - and of the lattice - via the first and second moment of the 

distribution of lattice points - on the scattered intensity )(qI .  

 

The scattering amplitude ),,( RLqCF  for cylindrical particles of cross-sectional radius R  and 

length L  can be factorized into   

),(),(),,( || RqLqRLq ⊥= CCC FFF     (3) 

where ),(|| LqCF  is the longitudinal contribution parallel to the cylinder axis, and ),( Rq⊥CF  is 

the contribution from the cross-section of the cylinder. ||lL L=  is a vector with length L  and a 

direction given by the unit vector parallel to the cylinder axis ||l . ⊥= IR R is a vector with length 

R  and a direction given by the unit vector perpendicular to the cylinder axis ⊥I . The directions 

are shown in Figure S6. The longitudinal and cross-sectional contributions for cylinders are 

given by  

2/

)2/sin(
),(||

qL

qL
Lq =CF      (4) 

qR

qR
Rq

)(J2
),( 1=⊥CF       (5) 

where )(J1 z  is the Bessel function of the first kind.  

The structure of disks can be described by their lateral radius DR  and the thickness D  as shown 

in Figure S6.  
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Fig. S6 Different shapes used for SAXS-pattern calculation. Definition of directions for 

cylinders and disks to calculate the longitudinal and cross-sectional formfactors.  

Since disks could equivalently be considered to be short cylinders, where the cross-sectional 

radius R is larger than the length L, the scattering amplitudes can be derived by substituting 

DL →  and DRR →  in Equation (3-5) to obtain 

),(),(),,( || DqRqRDq ⊥= DDDDD FFF       (6) 

where ),(|| DDF Rq  is now the contribution in the lateral direction and ),( Dq⊥DF  is the 

contribution from the cross-section of the disk. The normal and cross-sectional contributions for 

disks are given by  

                         
D

D
DDF

qR

qR
Rq

)(J2
),( 1

|| =      (7) 

2/

)2/sin(
),(1

qD

qD
Dq =⊥F      (8) 

For the calculation of the averages over the size distribution of lengths L  and radii R  the 

scattering amplitudes can be factorized and integrated with respect to each of the variables 

RLX ,= . In many cases, the Schulz-Zimm distribution is a useful size distribution function. 

Then the measured z-averages of the functions ),( Xqf  are given by  




=
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with m  the weighting factor for the variable X , the average X , and the relative standard 

deviation 
2/1)1( −+= zX . The distribution is normalized such that 



=
0

1)( dXXhX m
. The 

weighting factor relates to the measured intensity being the z-average, such that for spheres 
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6=m , for cylinders 2=m for the length, and 4=m for the cross-sectional radius, and for disks 

2=m  for the thickness and 4=m for the lateral disk radius.  

 

The orientational distribution of the particles can be obtained by averaging the scattering 

amplitudes 
RL

F
,

),,( RLq , 
RL

F
,

2 ),,( RLq , 
2

,
),,(

DRDDDF RDq  and 
DRD

DF
,

2

1 ),,( RDq over a 

distribution of angles   between the cylinder axis or lateral direction of the disk, ||l , and the 

scattering vector q. The relevant scalar products are cos|| qLL == qlqL , 

sinqRR == ⊥qIqR , cosqDD == ⊥qlqD , and sin|| DDD qRR == qlqR . The 

orientational averages are then calculated as 
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Details of this calculation are outlined in ref.[16] of the main publication.  

 

For the calculations we need to specify the orientational distribution of the cylinders and disks, 

)(h , which is defined by the angle  between a director given by the unit vector n  and the 

direction ||l .  For the distribution )(h  simple approximations can be made which involve 

Gaussian, Onsager, Boltzmann, or Maier-Saupe distribution functions. These functions are given 

by  













−−
=

Gaussian,])/exp[-(

SaupeMaier,1])/exp[(cos

Boltzmann,]/exp[-
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h    (15) 

with  0 . A value of 0 corresponds to a uniform orientation of all cylinders in the 

direction of the director n, whereas a value of →  corresponds to an isotropic distribution. If 

the distribution function is known, the orientational order parameter S defined as 
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2

1cos3 2 −
=


S      (16) 

For all scattering patterns a Gaussian-type orientation distribution (Figure S7) gave the best agreement 

between experiment and simulation. The structural parameters used for the simulations are summarized in 

Table S1-3.  

 

Fig. S7 Gaussian orientational distribution functions. Used for the wormlike micelles and the gold 

nanorods (red) and the nanoplatelets (blue). 

 

Additionally, 2D-scattering patterns of a pure water microjet with the same diameter and flow rate are 

shown for the solvent background measurements in Figure S8 to approve that there were no artefacts in 

the 2D-scattering patterns of the anisotropic particle jets before. 

 

Fig. S8 2D-scattering patterns of a pure water microjet. (I) On the glass capillary 4 mm before outlet, (IV) 

freejet 5 mm after outlet and (V) droplet region 15 mm after outlet. 
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Table S1 Parameters for quantitative calculations in Figure 1c and Figure S9b. 

3% w/w Hectorite nanoplatelets I.1 I.4 IV.4 V.4 

Disk radius, R; nm 300 285 160 260 

Relative std. deviation, σR 0.1 0.1 0.1 0.1 

Layer thickness, d; nm 1.0 1.0 1.0 1.0 

Relative std. deviation, σd 0.07 0.07 0.07 0.07 

Mean deviation, dbeta 10 14 65 10 

Orientational parameter, f -0.48 -0.46 -0.14 -0.48 

Orientation parameter, S 0.92 0.89 0.20 0.92 

 

 

Table S2 Parameters for quantitative calculations in Figure S10b. 

10% w/w Wormlike micelles I.1 I.4 IV.4 V.4 

Cylinder length, L; nm 30 20 20 15 

Relative std. deviation, σL 0.1 0.1 0.1 0.1 

Cylinder radius, R; nm 9 11.5 11.5 12 

Relative std. deviation, σR 0.07 0.07 0.07 0.07 

Unit cell dimension, a; nm 42 42 42 42 

Radial domain size, Da; nm 120 55 55 55 

Azimuthal coherence length, Dψ; nm 5 48 45 48 

Displacement, σa, nm 10 6 8 6 

Mean deviation, dbeta 2 11 55 12 

Orienation parameter, S 0.98 0.94 0.31 0.93 

 

 

Table S3 Parameters for quantitative calculations in Figure S11b. 

Gold nanorods I.1 I.4 IV.4 V.4 

Cylinder length, L; nm 71.4 71.4 71.4 71.4 

Relative SD, σL 0.1 0.1 0.1 0.1 

Cylinder radius, R; nm 13 13 13 13 

Relative SD, σR 0.07 0.07 0.07 0.07 

Mean deviation, dbeta 65 95 99 35 

Orienation parameter, S 0.23 0.11 0 0.58 
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Sets of scattering patterns 

 

 

Fig. S9 Sets of measured scattering patterns of the hectorite nanoplatelets. a) At specified scan positions 

and (b) calculations of scattering patterns as well as their orientation parameter S at four characteristic 

microjet positions. 
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Fig. S10 Sets of measured scattering patterns of the wormlike micelles. a) At specified scan positions and 

(b) calculations of scattering patterns as well as their orientation parameter S at four characteristic 

microjet positions. 
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Fig. S11 Sets of measured scattering patterns of the nanorods. a) At specified scan positions and 

(b) calculations of scattering patterns as well as their orientation parameter S at four characteristic 

microjet positions. 
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4.2 Splitting and Separation of Colloidal Streams in Sinusoidal 

Microchannels 

 

Reproduced with permission from M. Schlenk, M. Drechsler, M. Karg, W. Zimmermann, 

M. Trebbin, S. Förster published in Lab on a Chip, 2018, 18 (20), 3163-3171. 

© 2018 The Royal Society of Chemistry. 

 

Abstract 

 
The control of the distribution of colloidal particles in microfluidic flows plays an important role 

in biomedical and industrial applications. A particular challenge is to induce cross-streamline 

migration in laminar flows, enabling the separation of colloidal particles according to their size, 

shape or elasticity. Here we show that viscoelastic fluids can mediate cross-streamline migration 

of deformable spherical and cylindrical colloidal particles in sinusoidal microchannels at low 

Reynolds numbers. For colloidal streams focused into the center of the channel entrance this 

leads to a symmetric stream-splitting and separation into four substreams. The degree of stream 

splitting and separation can be controlled via the flow rates, viscoelasticity of the focusing fluid, 

and the spatial microchannel modulation with an upper limit when reaching the microchannel 

walls. We demonstrate that this effect can be used to separate flexible particles of different size 

and shape. This methodology of cross-stream migration has thus great potential for the passive 

separation of colloids and cells in microfluidic channels.  
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Introduction 

 
The fundamental understanding and control of particle distribution and separation in micro flows 

plays an important role in many biomedical, environmental and industrial applications.1,2 

Microfluidic particle sorting can be achieved via a variety of methods that cause cross-streamline 

migration. One class are noninvasive methods, which rely on intrinsic hydrodynamic properties 

of micro flows and particle properties.3 Widely employed examples for particle focusing are 

based on fluid inertia,4-9 on viscoelastic effects10 or deformability-selective particle sorting.11-14  

It was demonstrated for the first time by Segre et al. that rigid particles can migrate to stable off-

center positions in pipe flows.4 Migration was driven by fluid inertia in the intermediate 

Reynolds number range (~1 < Re < ~100) and has been extensively used for particle sorting in 

Newtonian and visoelastic fluids.5-9 In contrast, deformable particles like vesicles, capsules or 

cells show cross-streamline migration already in the limit of Stokes flows at very small values of 

the Reynold number. They migrate away from channel walls due to the lift force, as shown at 

first for Newtonian liquids.15-17 When separated from the wall deformable particles can migrate 

further towards the center in Poiseuille flows, driven by the local shear gradient across the 

particles.12-14 Both effects depend on the particle size and their deformability. In shear thinning 

fluids the center migration of soft particles may be reversed by shear thinning effects18 or elastic 

lift forces.19-22 In viscoelastic fluids several types of cross-stream line migration phenomena have 

been observed for rigid and soft particles.3,10,18,23 For example, particle focusing and alignment 

was achieved over a range of small to medium flow rates to separate solid and deformable 

particles and cells.24 A spatially varying flow-channel cross-section may lead to center-line 

focusing of rigid particles in Newtonian fluids25 and Non-Newtonian fluids26,27 or to unusual and 

unexpected reorientations of anisotropic flexible particles in shear thinning fluids.28 

So far viscoelastic cross-stream migration of anisotropic or extended chain-like structures has 

received little attention, although the separation of synthetic or biological macromolecules or 

anisotropic nanoparticles is an important research field. Thus, we investigated the flow behavior 

of anisotropic, semiflexible wormlike micelles under conditions that promote cross-stream 

migration. To control and amplify migration we used sinusoidally modulated microchannels and 

investigated the flow behavior using fluorescence-, polarization-, and confocal laser scanning-

microscopy (CLSM). Streams of the micellar solutions were hydrodynamically focused into the 

center of the modulated microchannels at low Reynolds numbers using Newtonian and non-

Newtonian fluids. We surprisingly discovered that the central stream symmetrically splits into 

four substreams that separate and further move towards the outer wall of the microfluidic 

channel with every passage through a channel modulation. We show that stream splitting and 
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separation can be controlled via flow rates, microchannel geometries, and colloid shape as well 

as the rheological properties of the focusing fluid. We outline the underlying physical principles 

for the observed separation effect and furthermore demonstrate that this phenomenon can be 

generally used to separate colloidal and cellular particles according to their size.  

Experimental 

 
4.1 Fabrication of microfluidic devices 

The microfluidic chip is initially fabricated by preparing a master device based on a Si wafer via 

optical lithography.31 The microchannel structures are designed in AutoCAD 2013 (Autodesk) 

and printed on a mask foil with an UV-absorbent ink (JD Photo Data). A black and white 

drawing of the sinusoidal microchannel design is shown in Fig. 1A. Two different masters are 

finally used to produce the polydimethylsiloxane (PDMS) replicas for a 2D- respectively 3D-

focusing chip design via soft lithography which is described in detail in the ESI.32-34 Afterwards, 

inlet ports are punched into the PDMS microchannels and interfaced with polyethylene (PE) 

tubes to be able to pump fluids into the devices by using high-precision syringe pumps (Nemysis 

system; Cetoni GmbH). For all carried out microfluidic experiments, the ratio of the flow rates 

between main channel and the two side channels was always constant with 1:1. 

4.2 Preparation of block copolymer wormlike micelle solution 

Polyisoprene110-b-ethylene oxide198 (PI110-PEO198) with a weight-averaged molar mass of 

Mw = 16,000 g/mol is synthesized by sequential living anionic polymerization, yielding an 

amphiphilic block copolymer with narrow polydispersity Mw/Mn = 1.02 (Mw and Mn are the 

weight- and number averaged molar mass). The detailed synthesis and characterization of PI110-

PEO198 is described in literature.35 The polymer powder is dissolved in Millipore-quality water to 

a concentration of 20 wt% and by using an UltraTurrax T8 (IKA Werke GmbH) the solution was 

finally homogenized. Due to storing three weeks at room temperature the copolymer is able to 

swell enough in water and self-assemble wormlike micelles. The 20 wt% PI-PEO wormlike 

micelles stock solution is diluted with MilliQ water down to 1 wt%, 5 wt% respectively 10 wt% 

and filtered through a polytetrafluorethylene filter with 5 µm pore size. A cryo-transmission 

electron microscopy (cryo-TEM) image of the wormlike micelles is shown in the ESI (see 

Fig. S2). 

4.3 Preparation of core-shell particle dispersion 

Core-shell particles with fluorescently labeled silica cores of approximately 100 nm in diameter 

and cross-linked poly-N-isopropylacrylamide (PNIPAM) shells were synthesized by seeded 
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precipitation polymerization as previously reported.36 The silica cores were either labeled with 

fluorescein or rhodamine B using the respective isothiocyanates of the dyes. These cores were 

then encapsulated in single-step36 or sequential multi-step seeded polymerization37 yielding 

core-shell particles with overall hydrodynamic diameter of approximately 600 and 1000 nm 

(swollen state conditions). The final core-shell particles were cleaned by repeated centrifugation 

and redispersion in water (at least three cycles). Fluorescence microscopy images of two selected 

samples that were studied in this work (fluorescein-labeled core, overall diameter of 600 nm as 

well as rhodamine B-labeled core, overall diameter of 1000 nm) are visible in the ESI (Fig. S2). 

Furthermore. a scanning electron microscopy (SEM) image of the mixture of the SiO2-PNIPAM 

core-shell particles in a non-Newtonian 1 wt% polyethylene glycol (PEG) aqueous solution is 

also shown in the ESI. 

4.4 3D-Confocal laser scanning microscopy 

The confocal laser scanning microscopy analysis (CLSM) was carried out via Z-scan series of a 

Zeiss LSM 710 respectively a Leica TCS SP8 that was taken in the x-y-z mode and has been 

used to reconstruct 3D-images of the flow profiles along the whole microchannel. For the flow 

experiments, the laser was adjusted to the excitation wavelength of the used fluorescent dyes for 

the colloids. Thus, the argon laser was used with a wavelength of λ = 514 nm for Nile red 

respectively λ = 458 nm for fluorescein and the helium-neon laser with a wavelength of 

λ = 543 nm for rhodamine B. The colloid sample of the dyed wormlike micelles respectively of 

the core-shell particles was just injected via the middle channel, whereby the focusing fluid 

(water, glycerine or PEG) was always injected through the two side channels.  

4.5 Fluorescence and polarization microscopy 

Fluorescence and polarization microscopy was performed with an Axiovert S100 microscope in 

combination with an Axiocam HRc (Zeiss GmbH) to take pictures and movies. A mercury vapor 

lamp with specific filters was used to excite the right wavelength of all used fluorescent dyed 

colloids. The use of a polarization microscope with a quarter wave plate made it also possible to 

investigate the flow orientation of the colloids within the microchannels (see ESI, Fig. S4). 

Results and discussion 

 
2.1 Splitting of colloidal streams by 2D-focusing with non-Newtonian fluids 

For our study of the flow behavior of anisotropic colloids, in our case wormlike micelles, we 

used sinusoidal microchannels with a channel design that is shown schematically in Fig. 1A. An 

aqueous solution of wormlike micelles at a concentration of 1 wt% was focused by two aqueous 
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side streams into an outlet channel that had periodic sinusoidal variations of the channel width. 

The wormlike micelles were formed by the self-assembly of poly(isoprene-b-ethylene oxide) 

block copolymers (PI-PEO), which spontaneously occurs when dissolving the block copolymer 

in water. The channel height (h = 100 m) was the same for all channels. The channel width was 

w = 250 m for the central and both side channels and was identical to the average width of the 

sinusoidal outlet channel. A typical flow rate in the central and side channels were Q = 200 µL/h 

leading to a total flow rate of Q = 600 µL/h in the outlet channel. We were interested in how the 

central stream of wormlike micelles  respond to spatially periodic flow modulation leading to 

extension and contraction. For this we labelled the wormlike micelles with a fluorescent dye 

(Nile Red) to follow the focused stream in the sinusoidal outlet channel using fluorescence 

microscopy.   

 

Fig. 1 (A) Scheme of the sinusoidal microchannel design with all parameter dimensions used for 2D-

focusing. (B) 3D-CLSM front view images of Nile red labelled 1 wt% solutions of wormlike micelle 

which are hydrodynamically focused with water as a Newtonian fluid (I) and with a 1 wt% PEO-solution 

as a non-Newtonian fluid (II). The stream-splitting effect occurs near the microchannel floor and ceiling. 

The front view images of sine section 2, 5 and 7 illustrate the subsequent increase of the stream-splitting 

with each sine section. 

When using water as a focusing fluid we observed the expected periodic variation of the stream 

width, which expanded and contracted in proportion to the width of the outlet channel 
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(Fig. 1B I). However, when using a non-Newtonian liquid for flow-focusing, we surprisingly 

discovered that the stream of wormlike micelles split into four substreams. This is shown in 

Fig. 1B II, where the confocal microscopy image on the left shows the central stream in the first 

sine section, where it is already slightly extended at the bottom and the floor of the channel. We 

always observe slight asymmetries between the floor and the ceiling layers in the microfluidic 

channel due to light scattering from the chip material, which increases from the cover slide and 

objective towards the center direction of the microfluidic chip device. The two confocal images 

on the right show the central stream in the 17th sine section, where it has split symmetrically into 

four substreams which are located close to the left and the right wall at the channel floor and 

channel ceiling. For flow-focusing we used a 1 wt% solution of a high molecular weight 

polyethylene glycol (PEG, 900,000 g/mol). Three additional images in Fig. 1B II show the 

increasing separation of the four streams in the 2nd, 5th, and 7th sine section. The part of the 

central stream that is located in the middle between the floor and the ceiling of the outlet channel 

does not split.  

2.2 Influence of channel geometry 

To clarify the conditions that lead to the splitting of the central stream, we compared a sinusoidal 

channel to a straight channel of the same total length of L = 1.5 cm, the same height of h = 

100 m, and the same average width w = 250 m. The sinusoidal channel had a period of P = 

800 m and an amplitude of A = 150 m. The results are presented in Fig. 2A I-a, which shows 

the CLSM side view and top view images. When using the 1 wt% PEG(900k)-solution for flow-

focusing, for the straight channel the central stream width was 75 m and did not change from 

the beginning to the end of the channel after 1.5 cm. When using the sine channel, the central 

stream with an original width of 75 m splits into four substreams with a separation that 

increases by ca. 25 m for each sine wave until the limit of h= 250 m at the channel walls is 

finally reached. The increasing splitting and separation of the main stream at selected 

downstream positions is plotted in Fig. 2A 1-a.  

Fig. 2A I-b shows the effect of the sine period and amplitude on the separation of the 

substreams. Decreasing each  sine-period from P = 800 to 400 m and increasing the amplitude 

from A = 150 to 300 m lead to a considerably larger separation, e.g. from 200 to 350 m at the 

12th sine section. This demonstrates that the sine-form of the outlet channel is essential for the 

stream-splitting phenomenon and that by variation of the sine period and amplitude an efficient 

separation of the substreams can be accomplished over short outlet channel distances.  
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Fig. 2 (A) 3D-CLSM images of the arising stream-splitting effect by using 2D-focusing for a Nile red 

dyed 1 wt% wormlike micelles solution just in combination with non-Newtonian (I) and not with 

Newtonian (II) focusing fluids. (I-a) Top view images of the stream-splitting in a sinus-shaped and a 

linear channel geometry as well as a comparative diagram concerning their sub-stream spreading 

distances. (I-b) Top view images of stream-splitting in sine-channels comparing half of the periodic 

wavelength P as well as double of the amplitude A and again a comparative diagram regarding their 

sub-stream spreading distances. (B) 3D-CLSM images of no emerging stream-splitting by applying a 

channel design with a 3D-focusing independent from using Newtonian (I) or non-Newtonian (II) focusing 

fluids. 

Next, we considered the influence of the channel floor and ceiling on the splitting of the central 

stream. To investigate this, we chose a 3D-focusing design such that the central stream was 

focused into the center of the outlet channel with considerable distance from the channel floor, 
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ceiling and both side walls. The 3D-focusing channel design is schematically shown in Fig. 2B. 

The confocal microscopy images on the right in Fig. 2B clearly show that under these conditions 

we do not observe any splitting of the central stream. This suggests that the proximity of the 

channel floor and ceiling is necessary for the splitting and separation of the central stream.   

2.3 Effect of molar mass, flow rate and other important parameters 

High molecular weight polyethylene oxide (PEO)-solutions are non-Newtonian fluids that show 

pronounced shear-thinning. We therefore investigated PEOs of smaller molecular weights that 

show less pronounced shear thinning, eventually becoming near Newtonian at very low 

molecular weights. The measured flow-curves for each of the investigated polyethylene glycols 

are shown in the ESI† (Fig. S6A). The corresponding experiment with PEOs of different 

molecular weights were performed under standard conditions with a 1 wt% solution of wormlike 

micelles, a channel height h = 100 µm, an average channel width of w = 250 µm, a sine period of 

L = 800 µm, an amplitude of A = 150 µm, and a volumetric flow rate of Q = 600 µl/h in the 

outlet channel. In Fig. 3A CLSM-images of the central stream cross-sectional shapes in the first 

and the 17th sine section are compared for PEO-solutions with molecular weights of 6, 300, and 

900 kg/mol. Whereas the 6 kg/mol low molecular weight PEO-solution showed no indications of 

stream splitting in the 17th sine section, the 300 kg/mol PEO-solution lead to a small, but clearly 

observable splitting. The 900 kg/mol PEO-solution lead to a very pronounced splitting of the 

central stream, as already described in Figs. 1 and 2. This indicates that the molecular weight of 

the polymer that is used in the focusing fluid must be sufficiently large to induce stream-

splitting. 

To investigate whether the observed stream splitting would be due to just a higher viscosity of 

the focusing stream compared to water, we also investigated glycerin as a Newtonian fluid which 

has a viscosity that is 1000 times larger compared to water. As visible in the ESI† (Fig. S6B), we 

did not observe any stream splitting with glycerin.  

As for shear-thinning non-Newtonian fluids the solution viscosity depends on the shear rate, we 

investigated the splitting of the central stream for different flow velocities over a range of 

Q = 10 – 520 l/h, corresponding to mean flow velocities of v = 0.1 – 6 mm/s. Front view CLSM 

images and top view fluorescence microscopy images of the streams at the last sine section of 

the channel are shown in Fig. 3B. There is no observable stream splitting at the lowest flow rate 

of 10 l/h. At 80 l/h we observe small but significant splitting, which increases with increasing 

flow rate of up to 520 l/h. Thus, also the flow velocity must be larger than a critical value to 

induce splitting of the central stream. 
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Fig. 3 (A) 3D-CLSM front view images at channel inlet and outlet of the flow profiles of the fluorescent 

dyed 1 wt% wormlike micelles in water within the standard sinusoidal channel (w = 250 µm, P = 800 µm, 

A = 150 µm, L = 100 µm) by using different molar mass of the non-Newtonian 1 wt% PEG-solution 

(M = 6,000 g/mol, 300,000 g/mol and 900,000 g/mol) as 2D-focusing fluid at a constant flow velocity of 

v = 200 µL/h for all three inlets. (B) 3D-CLSM front view (I) as well as fluorescent top view (II) images 

of again the same wormlike micelles solution 2D-focused by the non-Newtonian 1 wt% PEG(900k) 

solution and this time varying flow rates between v = 10 and 520 µL/h. 

These experiments provide first indications on the conditions of the central stream splitting of 

wormlike micelles. The observation that splitting is observed at PEO molecular weights above 

~300 kg/mol for concentrations of ~ 1 wt% indicates that the effect is related to the overlap 

concentration c* of the polymer chains in solution. The PEO overlap concentration can be 

estimated using the known relation between the hydrodynamic radius and the molecular weight, 

𝑅ℎ = 𝑘𝑀𝛼, where 𝑘 = 0.0145 nm and α= 0.571,29 an exponent which is typical for a polymer 

under good solution conditions. With a hydrodynamic volume of 𝑉ℎ =
4𝜋

3
𝑅ℎ

3, we can calculate 

the overlap concentration as 𝑐∗ =
𝑀

𝑁𝐴𝑉ℎ
, where NA is Avogadro’s number. With molecular 

weights of M = 6, 300, and 900 kg/mol we calculate c*=26, 1.6 and 0.74 wt%, such that the 

lowest molecular weight polyethylene glycol at a concentration of 1 wt% is clearly much below 
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the overlap concentration, whereas the 300 kg/mol PEG is already close to the overlap 

concentration. The highest molecular weight 900 kg/mol PEG at a concentration of 1 wt% is 

clearly above the overlap concentration and thus in the semi-dilute concentration regime where 

adjacent polymer chains overlap and form a transient network of entangled polymer chains.  

The 3D-focusing experiment clearly showed that wall-effects play a major role. The most 

dominant wall effect is a high wall shear rate, particularly for shear-thinning solutions. Because 

the channel height (h = 100 µm) is smaller than the mean channel width (w = 250 µm), the floor 

and ceiling wall shear rates are expected to have the most pronounced influence. With an 

average shear rate of  �̇� =
2𝑣

ℎ
 we obtain values of �̇� =2.2, 18, and 133 s-1 for volumetric flow 

rates of 10, 80, and 600 l/h. Thus already the average shear rates are of the same order of 

magnitude or higher compared to the inverse terminal relaxation time of a 1 wt% PEO solution 

( = 50 ms,30), corresponding to Weissenberg numbers of Wi = λ�̇� > 1 , such that in the 

investigated shear rate regime visco-elastic responses are expected to be very pronounced close 

to the floor and ceiling of the microchannel wall.   

A key to the understanding of the stream-splitting is according to our results in Fig. 1 and Fig. 2 

the interplay between the non-Newtonian focusing fluid and the spatial modulation of the 

channel cross-section: There is no stream splitting of the suspension of deformable particles for a 

Newtonian focusing fluid in modulated channels and no stream splitting with viscoelastic fluids 

in unmodulated, straight channels, but in combination of both.  

Possible fluid inertia effects occur for larger values of the Reynolds number Re =
𝜌𝑣𝐷ℎ

𝜂
 , with  

is the fluid density,  the shear viscosity, v the average velocity and 𝐷ℎ =
2𝑤ℎ

(𝑤+ℎ)
 the hydraulic 

diameter with w is the channel width and h is the channel height. This gives for our typical flow 

conditions, i. e.  = 1.0 g/cm3,  = 0.001 Pa.s, h = 100 µm, w = 250 µm, Q = 80…600 µl/h  in 

the wide parts of the channel a Reynolds number in the range Re=0.2…1.6 and in the narrow 

part Re=0.5…3.75. Accordingly, inertia effects are expected to be not dominating in agreement 

with our observations. 

In the case of a Newtonian focusing fluid in Fig. 1 the slight particle depletion near the top and 

the bottom channel wall is in agreement with the expected lift forces in shear flows near 

walls15-17 as well as with the particle-size dependent bulk migration of deformable particles11-14. 

The slight enhancement of the particle density for a shear thinning focusing fluid near the upper 

and bottom wall for a straight channel in Fig. 2 Ia is also consistent with the observed scenarios 

reported from previous experiments.28 



4 Publications 

 

119 
 

The shear thinning focusing fluid leads to a flattening for the velocity profile near the center of 

the flow channel. Complementary, the magnitude of the shear gradient and its spatial variation is 

enhanced in layers closer to the walls. Accordingly, wavy side-wall boundaries cause wavy 

streamlines mainly in the two shear thinning regions (STR) close to the upper and lower channel 

boundary, where the stream splitting is observed. These wavy streamlines are visualized by the 

wavy particle concentration in Fig. 2 Ib. The amplitude of the sinusoidal flow lines increases 

from zero at the channel center up to the modulated boundaries. In addition, the flow velocity 

along the flow lines in the STR’s decreases with increasing distance from their centers, while the 

shear rate increases with distance from the centers of the STR’s.  

A linear shear flow is composed of a rational and an elongational flow, where the elongational 

component is oblique to the local stream direction. Accordingly, the mean shape of deformable 

particles in shear flow is elliptical and the major axis of this ellipse encloses an angle ψ with the 

local flow direction12-14. The dynamics of such deformed particles causes the lift force of soft 

particles away from flow-channel boundaries12-14.  Flow fields in channels show nonlinear shear 

profiles, i. e. the shear rate changes across the finite size of the particles. Therefore, deformable 

particles migrate across the local streamlines to ranges of smaller shear rates, i. e. in Poiseuille 

flows to the channel center15-17. In shear thinning fluids this migration may reverse, and 

deformable particles migrate under certain condition also away from the center of straight 

channels37, but this effect is not dominating according to the results in Fig. 2. For small 

molecules like low molecular weight dyes cross-stream migration would not be expected. 

Next, we focus on particle migration in the STR’s. The particle’s inclination angle ψ has the 

same sign in both halves of a STR at the top and the bottom of the flow channel. The wavy 

streamlines in each half of the STR’s cause an inhomogeneous, spatially modulated elongational 

flow. This leads to a spatial variation of the particle inclination angles ψ (without sign change). 

Accordingly, simultaneously the angle ψ and the shapes of flexible particles are different in each 

of both halves of a modulation wavelength. Therefore, the effects of a variation of the 

extensional flow acting across differently shaped particles and the overall drag forces cause 

different forces on the particles in each half of a modulation period. This difference leads to a net 

drag force per modulation-period and is mainly caused by geometrical factors. For particles in 

wavy streamlines of Newtonian fluids, this net force points always to the wavy channel 

boundaries and therefore away from the channel center.  

This net force induced by the stream line modulations increases with modulation amplitudes and 

therefore with the distance from the channel center. Beyond a certain modulation amplitude this 

induced outward directed net migration outperforms the inward directed migration caused by the 
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shear gradient variation across a particle, i. e. the direction of net-migration changes its sign 

beyond a certain distance from the channel center: The sign change never reaches the range near 

channel center with straight streamlines. As a result, there is in modulated channels always a 

central particle stream left and therefore stream splitting. 

This qualitative model is well in agreement with our experimental observations. The splitting 

effect is only observed in the high shear regions at the ceiling and floor of the microfluidic 

channels, where high shear rates lead to particle deformation and alignment. It is further only 

observed for sinusoidal channels, which are necessary to generate high extensional flow rates. 

These are highest at the beginning and at the end of each sine section. The extensional flow has 

different directions in the widening and in the narrowing section of each sine period, i.e. in the 

widening section in the first half of the sine period it is perpendicular to the flow direction, and 

in the narrowing section in the second half of the sine period it is parallel to the flow direction. 

This has been recently demonstrated in ref.28. As the extensional force varies over the size of the 

particle, and because it has different directions with respect to the local orientation of the 

particles in the first and the second half of a sine period, it leads to a net migration over a certain 

distance towards the outer channel boundaries over each sine section.  Higher flow rates, larger 

sine amplitudes and smaller sine periods lead to increased extensional forces and thus larger 

migration distances, which is well in agreement with our experiments.  

2.4 Separation of different colloids 

From our explanation it follows that the immersion of colloidal particles in a transient polymer 

network is a necessary condition for stream splitting and separation. The combination of 

wormlike PI-PEO micelles in a PEO homopolymer network was chosen because of the mutual 

thermodynamic miscibility of the PEO polymer components. The miscibility can be affected by 

an increased viscosity, which prevents interdiffusion within the residence time in the 

microfluidic channels, and by thermodynamic effects such as depletion-induced demixing, which 

can particularly occur for mixtures of high molecular weight linear polymers and larger colloids. 

We therefore increased the concentration of the wormlike micelles from 1 over 5 to 10 wt% and 

investigated the streams under the standard flow conditions as outlined in Fig. 1. The streams 

were visualized by polarized light microscopy images at the entrance into the sinusoidal channel 

and at the last sine section. Whereas for the 1 wt% solution we observe a strong stream splitting 

and separation, for the 5 wt% solution the separation is less pronounced, and finally for the 

10 wt% solution we observe no stream splitting at all, as visible in the ESI† (Fig. S5). This is 

related to the much larger viscosity of the concentrated wormlike micellar solution, but also 

indicates the expected depletion effect.  
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Fig. 4 (A) Sinusoidal microchip with three outlets for particle separation and 3D-CLSM images at 

channel cross and end. The device is used for non-Newtonian 1 wt% PEG(900 k)-focusing of a bimodal 

distributed mixture of spherical SiO2-PNIPAM core-shell particles with a diameter of d = 1000 nm and 

600 nm. At the channel end, the two particle sizes are separated into a green center stream with 

fluorescein (FITC) labeled 600 nm particles and into four red sub-streams at the channel edges with 

rhodamine B (Rhod B) labeled 1000 nm particles. SEM images of the collected particle sizes are shown, 

whereby the bigger 1000 nm particles have been collected by the two side channels and the smaller 

600 nm particles by the main channel. (B) Tripartite CLSM image at the channel end of the separation of 

a mixture of spherical core-shell particles d = 600 nm (FITC) and anisotropic wormlike micelles 

d = 20 nm (Rhod B) with polydisperse lengths focused by the same PEG-solution. Here, two detected 

emission wavelengths are shown, just FITC (left) and just Rhod B (mid) but also the overlay from both 

(right). In  (A) we observe the separation of the bimodal distributed mixture of core-shell particles, and in 

(B) the separation of the wormlike micelles from the core/shell particles, corresponding to purities of >80 

% and >70%, respectively, as outlined in the Supporting Information (Fig. S7). 
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As cross-stream migration is an effective mechanism for particle separation, we investigated the 

possibility to separate colloids of different size in the splitting streams. We used a binary mixture 

of spherical silica-PNIPAM core-shell particles with a diameter of 600 nm, which were 

fluorescently labeled with fluorescein, and a diameter of 1000 nm which were labeled with 

rhodamine B. We used standard flow conditions (w = 400 µm, h = 100 µm, L = 1 cm, Q = 3 x 

200 µL/h, 1 wt% PEG900k) with a sinusoidal channel (P = 800 µm, A = 150 µm) that exits into 

three outlet channels as shown in Fig. 4. The location of the fluorescently labeled colloids could 

be followed by CLSM. Figs. 4A and S7A (Supporting Information) demonstrate that purities of 

> 80% are achieved after the 12th sine section for each of the 600 and 1000 nm core/shell 

particles, and > 70% for each of the wormlike micelles and 600 nm core/shell particles. The 

purities can be further increased by using channels with a larger number of sine sections.  

Conclusion 

 
We observed the splitting of streams of wormlike and spherical colloids into four substreams 

within sinusoidal microchannels. Splitting occurred when the streams were focused with a 

viscoelastic polymer solution. This effect could be used to separate spherical colloids of different 

size and spherical from wormlike colloids. By variation of the experimental conditions such as 

2D- vs. 3D-focusing, straight vs. sinusoidal channels, sine period and amplitude, PEO molecular 

weight, Newtonian vs. non-Newtonian fluids we were able to reveal the essential conditions for 

the stream splitting effect which are caused by a combination of high extensional and shear rates 

in the shear-thinning zones of the modulated microchannels. This phenomenon can be generally 

used to separate colloidal and cellular particles according to their size.  
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Supporting Information 

 
Detailed photo- and soft lithographical microchip fabrication 

The whole preparation process of polydimethylsiloxane (PDMS) microfluidic devices is shown in 

Fig. S1. The first step contains the photolithography which is performed in a clean room by spin-coating 

(Cee 200X, Brewer Science Inc.) a negative photoresist (SU-8 50, Microchem Corp.) onto a 3” silicon 

wafer, as visible in Fig. S1A. If a so-called 2D-chip design for 2D-focusing is prepared, just one layer of 

photo resist SU8-50 is spin-coated to build up a channel structure of 100 µm height. For producing a 3D-

focusing chip design, two layers about 50 µm and 100 µm as well as two chip parts with channel 

structures are necessary to finally receive a higher channel height for the two side channels of 250 µm in 

comparison to the middle channel with 50 µm. The microchannel structures are imparted to the 

photoresist using a mask aligner (MJB4, SÜSS MicroTec SE). The uncured photoresist is removed in the 

subsequent development process which yields a one-layered respectively two-layered master. All detailed 

geometric design parameters of the sinusoidal and linear microchannels are shown in the main 

publication. The second part of the fabrication process, the soft lithography1 , continues under dust-free 

conditions by replicating the micro structured master using polydimethylsiloxane (PDMS, Sylgard 184 

kit, Dow Corning Corp.) and curing it for t = 1.5 h at T = 75 °C, as visible in Fig. S1B. The PDMS replica 

is removed from the master and inlet ports are punched into the polymer using home-made punch needles 

with an outer diameter of d = 1 mm. The PDMS is cut into smaller pieces for better handling whereby the 

channel design allows preparing several microchannels simultaneously. The final microfluidic device is 

created by bonding the PDMS replica for a 2D-chip onto a glass slide and the two structured PDMS chip 

halves to each other for a 3D-device. This is achieved by activating the PDMS and glass surface using air 

plasma (MiniFlecto-PC-MFC, Gala Instrumente GmbH), respectively the two PDMS chip halves by 

adding a little drop of pure water (0.2 µm-filtered Millipore) for initially aligning and finally drying at 

T = 30 °C for about t = 1 h. The use of a microscope helps during the alignment step and in addition to it 

the integrated orientation structures of the multi-layer design will snap in and align the microstructures 

automatically with high precision. 
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Fig. S1 Fabrication of microfluidic devices made of PDMS. (A) Master device fabrication based on SU-8 

50 photoresist using photolithography with UV-exposure whereby the photolithographic master for 3D-

chips involves one repeating step to build up a multilayered microstructure. After development, the 

uncured photoresist is removed. (B) The resulting 2D- respectively 3D-microchannel template is 

replicated by using soft lithography1. Therefore, the PDMS is poured onto the master device and cured for 

t = 1.5 h at T = 75 °C. Afterwards, the PDMS replica is peeled off the master device, cut into the chip 

parts and inlet ports for fluids are added. After plasma treatment of the two PDMS halves respectively the 

glass surface for a 2D-chip, the device is sealed using air plasma treatment. 
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Characterization of colloids 

The microfluidic devices for detailed jet-splitting analysis have been run by focused wormlike micelles 

which are prepared out of polyisoprene-b-polyethylene oxide (PI-PEO) and are polydisperse concerning 

their length. A solution with a concentration of c = 0.1 wt% wormlike micelles is shown by a cryo-

transmission electron microscopy (cryo-TEM) image in Fig. S2A. The 2D-microfluidic chips with 

sinusoidal microchannels have been used to carry out separation experiments on a mixture of two 

different sizes of silica-poly-N-isopropyl-acrylamide (SiO2-PNIPAM) core-shell particles. The mixture 

consisted of SiO2-PNIPAM core-shell particles with a diameter of d = 600 nm (polydispersity index, 

PDI = 0.03) labeled with rhodamine B respectively 1000 nm (PDI = 0.25) labeled with fluorescein. A 

sample of the bigger core-shell particles with a diameter of 1000 nm is visible by fluorescent microscopy 

in Fig. S2B and the sample of the smaller particles with a diameter of 600 nm are shown in the 

fluorescent microscopic (FlucMic) image of Fig. S2C. The separation experiments have been run by 

using a 2D-microfluidic chip with sinusoidal microchannels as well as lateral focusing by the side 

channels via a non-Newtonian solution of polyethylene glycol (PEG) in water. A sample of 1 wt% PEG 

with a molar mass of M = 900,000 g/mol which includes the bimodal size distributed mixture of 600 nm 

and 1000 nm core-shell particles are displayed by the scanning electron microscopy (SEM) image of 

Fig. S2D. Here, the prepared sample was dried out at a certain percentage before SEM images could be 

taken which led to a recrystallization of the polyethylene glycol polymer chains. Thus, bundles of PEG 

chains could be observed via SEM which verified the expected PEG polymer network. 

 

Fig. S2 (A) Cryo-TEM image of a PI110-PEO198 wormlike micelles solution with a concentration of 

c = 0.1 wt% in water. (B) FlucMic image of rhodamine B-labeled SiO2-PNIPAM core-shell particles with 

a total diameter of 1000 nm and a concentration of c = 0.17 vol% in water. (C) FlucMic image of 

fluorescein-labeled SiO2-PNIPAM core-shell particles with a total diameter of 600 nm and a 

concentration of c = 0.13 vol% in water. (D) SEM image of a sample of 1 wt% PEG with a molar mass of 

M = 900,000 g/mol including the bimodal size distributed mixture of 600 nm and 1000 nm core-shell 

particles. 
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Detailed flow profile analysis 

In all three parts of Fig. S3 are shown 3-dimensional confocal laser scanning microscopy (3D-CLSM) 

images for flow profile analysis of focused wormlike micelles (1 wt%) flowing in a sinusoidal 

microchannel with a width of w = 250 µm, a height of h = 100 µm and a distance of L = 15 mm as well as 

a periodic wavelength of P = 800 µm and an amplitude of A = 150 µm. In Fig. S3A, a mixture of 1 wt% 

wormlike micelles dyed with Nile red and 1 wt% PEG with a molar mass of 900,000 g/mol in water was 

pumped in one inlet through a sinusoidal microfluidic channel of a 2D-chip with varying flow rates. The 

images for flow rates of v = 30 µL/h, 200 µL/h and 2000 µL/h concerning each of the three inlets show no 

appearing jet-splitting effect if no colloid focusing by a cross section with side channels is used. Thus, a 

2D-device with lateral 2D-focusing of the 1 wt% wormlike micelle solution via non-Newtonian 1 wt% 

PEG (M = 900,000 g/mol) from the two side channels is shown in Fig. S3B for a flow rate of v = 80 µL/h 

for all three inlets. Here, the jet-splitting effect has developed in one main stream and two horizontally 

divided sub-streams by using the contact of the shear thinning wormlike micelle solution to the top and 

bottom of the microchannel at the beginning cross section where the highest shear rates appear. As 

visible, the jet-splitting increases with each sine wave due to the existing expansion zones with higher 

extension rates after each narrowing section which leads to a shear thinning and sideward pulling of the 

PEG polymer network entangled wormlike micelles. In Fig. S3C, there is displayed a 3D-chip with a 

fully-surrounded 3D-focusing for the wormlike micelle solution with the same flow rate of v = 80 µL/h 

which leads to no jet-splitting effect anymore due to the missing wall contact of the wormlike micelles. 
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Fig. S3 3D-CLSM flow profile images of Nile red dyed wormlike micelles (1 wt%) within the standard 

sinusoidal microchannel (w = 250, P = 800, A = 150, h = 100, L = 15.000 µm). (A) 2D-chip with a 

mixture of 1 wt% wormlike micelles and 1 wt% PEG(900k) that is pumped with three various flow rates 

(v = 30 µL/h, 200 µL/h, 2000 µL/h) and without any focusing through one inlet channel whereby no 

jet-splitting effect appears. (B) 2D-chip with 2D-focusing of a wormlike micelles solution by two side 

channels via 1 wt% PEG(900k) that leads to rising jet-splitting within the sine channel. (C) 3D-chip with 

3D-focusing of a wormlike micelle solution by two higher side channels does again not create a 

jet-splitting effect within the whole sinusoidal channel. 
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In following Fig. S4, there is shown a detailed analysis of the appeared jet-splitting effect of a 

2D-laterally focused 1 wt% wormlike micelle solution with a flow rate of v = 200 µL/h for each of the 

three inlets of the sine channel (w = 250, P = 800, A = 150, h = 100, L = 15.000 µm) based on 3D-CLSM 

as well as polarization microscopy (PolMic) images. Fig. S4A illustrates the 3D-CLSM images with a 

front view of the flow profiles within the beginning cross section and after the third, seventh and ninth 

sinus wave along the sinusoidal microchannel. After the channel entrance, the jet-splitting starts directly 

at the cross section by existing extension rates and afterwards it increases within the first and all 

following sine waves due to further rising extension rates within each sine wave. It is clearly visible that 

the created sub-streams are pulled from the center towards the channel side walls just near to the channel 

top and bottom. Moreover, we can also observe that the two sub-streams are horizontally divided and 

forming four sub-streams which move subsequently after each sine wave more near to the channel edges.  

 

Fig. S4 (A) 3D-CLSM front view images of flow profiles from 1 wt% PEG (M = 900,000 g/mol) 

2D-laterally focused Nile red dyed wormlike micelles (5 wt%) within the beginning cross section as well 

as after the third, seventh and ninth sinus wave along the sinusoidal microchannel. The flow rate amounts 

to v = 200 µL/h for all three inlets. (B) PolMic top view images to the upper 3D-CLSM images: Orange 

areas indicate orientation of wormlike micelles in flow direction y, and blue areas would indicate 

orientation in x axis which means perpendicular to the flow direction. 

For each of the 3D-CLSM front view images also the matching polarized optical microscopy images from 

the top view are taken and displayed in Fig. S4B. PolMic makes it possible to analyze the flow orientation 

of the wormlike micelles within the microchannel. Here, the used quarter wave plate allows us to 

distinguish between an orange interference color for the vertically oriented micelles in flow direction and 
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a blue color for the horizontally orientated micelles perpendicular to the flow. Consequently, all wormlike 

micelles within the main mid-stream are orientated in flow direction. The micelles within the two 

sub-streams are also quite orange and thus mainly aligned in flow direction but are able to turn out more 

within the sub-streams due to a lower flow velocity which is based on the parabolic flow profile 

conditions in a microfluidic channel. 

Moreover, flow profiles for different wormlike micelle concentrations are shown in ensuing polarization 

microscopy (PolMic) top view images of Fig. S5. The flow rates for each of the three channel inlets were 

again constant with v = 200 µL/h. The lowest focused wormlike micelle concentration of c = 1 wt% 

showed the broadest jet-splitting already at lower flow rates with less than v = 100 µL/h. With increasing 

concentration, up to c = 5 wt% the jet-splitting is visible just with higher flow rates more than 

v = 150 µL/h and the sub-streams can broaden up to the maximum which is limited by the channel side 

walls by using a flow rate of v = 1000 µL/h, shown in Fig. S5A.  

 

Fig. S5 Polarization microscopy (PolMic) top view images of flow profiles with a constant flow rate of 

v = 200 µL/h and three different wormlike micelles concentrations (1 wt%, 5 wt%, 10 wt%) again 

focused with 1 wt% PEG: (A) PolMic flow profiles of the 5 wt% wormlike micelles solution with varying 

flow rates between v = 20 µL/h and 1000 µL/h. (B) PolMic flow profiles of the 10 wt% wormlike 

micelles solution with varying flow rates between v = 20 µL/h and 500 µL/h. 
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However, the jet-splitting does not occur anymore with the highest wormlike micelles concentration of 

c = 10 wt%, also for flow rates up to v = 500 µL/h as visible in Fig. S5B. The reason for the lower 

jet-splitting effect with higher wormlike micelles concentration is connected to the higher entanglement 

and thus viscosity. These properties make it more difficult for the PEG chains to pull the wormlike 

micelles out of center position via the existing extensional rates within sinusoidal microchannels. 

Additionally, by using polarization microscopy it was also possible to analyze the flow orientation of the 

concentrated wormlike micelles within the channel. Here, the used quarter wave plate displays an orange 

interference color for the vertically oriented micelles in flow direction and a blue color for the 

horizontally orientated micelles perpendicular to the flow. Thus, all wormlike micelles are orientated in 

flow direction within the sub-streams and also the main mid-stream. Just for the 5 wt% micelles solution 

in Fig. 5SA a slight blue coloring of micelles orientated perpendicular to the flow direction is visible at 

the edge of the channel cross due to the lateral flow focusing. 

Rheological Data 

The rheological behaviour of the used focusing fluids was experimentally determined by a rheometer 

(Bohlin Germini HRNano Rotometic drive 2, Malvin Instruments GmbH). The rheometer was used in 

combination with a Peltier-plate (MV-4, JULABO USA Inc.) for temperature control and varying sizes of 

a coaxial cylinder-plate, cone-plate or plate-plate measurement system depending on the viscosity of the 

analyzed fluid. All measurements have been carried out with the rheometer software (Bohlin v2.0) by 

using a shear rate setting at a temperature of T = 25 °C. Fluids with a very low viscosity like water or the 

used 1 wt% PEG solution with a low molar mass of M = 6,000 g/mol was measured with the coaxial 

cylinder geometry C25 which has a diameter of d = 25 mm. For all other samples with much higher 

viscosity, like pure glycerin or 1 wt% PEG with a molar mass of M = 300,000 g/mol respectively 

900,000 g/mol was measured with the cone-plate system CP4 /40 that has a diameter of d = 40 mm. All 

measured liquids which have been used as focusing fluids for the wormlike micelles respectively for the 

core-shell particles are visible in the rheological diagram of Fig. S5. Here, the Newtonian fluids, like the 

measured glycerin with a dynamic viscosity of η = 956 mPa∙s or water with η = 0.9 mPa∙s at T = 25 °C 

according to literature2, show naturally constant viscosities with the tested shear rates from γ = 1E-4 s-1 up 

to 1.000 s-1. These shear rates also include the shear rates which appear within a microfluidic channel. By 

evaluating the non-Newtonian solutions of 1 wt% PEG with different molar mass, a strong reduction of 

the viscosity is verified whereby the smallest viscosity for all three of them is always reached with a 

minimum shear rate of at least about γ = 1 s-1. All of these PEG’s have an initial viscosity of about 

η ≈ 100,000 mPa∙s and with a shear rate higher than γ = 1 s-1 the viscosity for the PEG with a molar mass 

of M = 900,000 g/mol is decreased to a constant value of η = 26 mPa∙s, respectively to η = 12 mPa∙s for 

the PEG with M = 300,000 g/mol and to η = 4 mPa∙s for the PEG with M = 6,000 g/mol. This evidenced 

shear thinning behavior here is the foundation for the explanation of the discovered jet-splitting effect and 

is based on the entangled polymer network of the non-Newtonian PEG focusing fluid which disconnects 

itself by the higher shear rates near to the channel walls.3 
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Fig. S6 (A) (A) Rheological diagram about the viscosity curves of Newtonian glycerin, water and 

non-Newtonian 1 wt% PEG with different molar mass (M = 6,000 g/mol, 300,000 g/mol and 

900,000 g/mol) in dependence from the shear rates. (B) 3D-CLSM front view images of the flow profiles 

of fluorescent dyed 1 wt% wormlike micelles in water within the standard sinusoidal channel (w = 250, 

P = 800, A = 150, h = 100, L = 15 mm) by using high-viscous Newtonian glycerin. The scatter of the data 

for glycerin at low shear rates and at shear rates >200 s-1 is due to limitations of the force sensor of the 

rheometer. 

 

Separation and Purity 

To calculate we purity of the sine channel-separated particles we chose the CLSM-images in Fig. 4 to 

quantitatively determine the fluorescence intensities for each of the particles across the channel as 

indicated in the regions of interest shown in Fig. S7. The background-subtracted fluorescence intensities 

shown in the lower panel of Fig. S7A show three peaks, two from the 1000 nm SiO2-PNIPAM core/shell 

particles (rhodamine-B-labelled, red) in the outer streams, and one from the 600 nm SiO2-PNIPAM 

core/shell particles (fluorescein-labelled, green) in the central stream. The purities were calculated 
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according to ref. 4 as 𝑃1000 =
A(red)

A(red)+A(green)
100% for the 1000 nm core/shell particles, where A(red) 

and A(green) are the integrated intensities over the peaks in the outer streams, indicated by the red scale 

bars, and as 𝑃600 =
A(green)

A(red)+A(green)
100% for the 600 nm core/shell particles, where A(red) and A(green) 

are the integrated intensities over the peak in the central stream, indicated by the green scale bar. We 

observe that after the 12th sine section there is a small fraction of 600 nm particles in the outer streams of 

the 1000 nm particles, and of 1000 nm particles in the central stream of the 600 nm particles. From the 

integrated peak areas, we calculate purities of P1000 = 84 % for the 1000 nm particles in the left stream, 

and of 81% in the right stream. For the purity of the 600 nm particles in the central stream we obtain a 

value of 83%.  

 

 

Fig. S7 (A) Section across the channel, indicated by the black rectangle (upper panel), with the 

corresponding fluorescence intensity profiles (lower panel), from which the purities for each of the 

separated 1000 nm SiO2-PNIPAM core/shell particles (rhodamine-B-labelled, red) and 600 nm SiO2-

PNIPAM core/shell particles (fluorescein-labelled, green) was calculated. (B) Section across the channel, 

indicated by the white rectangle (upper panel), with the corresponding fluorescence intensity profiles 

(lower panel), from which the purities for each of the separated wormlike micelles (Nile red-labelled, red) 

and 600 nm SiO2-PNIPAM core/shell particles (fluorescein-labelled, green) was determined. The scale 

bars indicate the integrated peak areas. The confocal images are reproduced from Fig. 4.  
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The background-subtracted fluorescence intensities shown in the lower panel of Fig. S7B similarly show 

three peaks, two from the wormlike micelles (Nile red-labelled, red) in the outer streams, and one from 

the 600 nm SiO2-PNIPAM core/shell particles (fluorescein-labelled, green) in the central stream. The 

purities were similarly calculated as 𝑃600 =
A(red)

A(red)+A(green)
100%  for the wormlike micelles, where 

A(red) and A(green) are the integrated intensities over the peaks in the outer streams, indicated by the red 

scale bars, and as 𝑃600 =
A(green)

A(red)+A(green)
100% for the 600 nm core/shell particles, where A(red) and 

A(green) are the integrated intensities over the peak in the central stream, indicated by the green scale bar. 

We observe that there is a small fraction of 600 nm particles in the outer streams of the wormlike 

micelles, and of wormlike micelles in the central stream of the 600 nm particles. From the integrated peak 

areas, we calculate purities of P1000 = 74 % for the wormlike micelles in the left stream, and of 78% in 

the right stream. For the purity of the 600 nm particles in the central stream we obtain a value of 72%.  
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4.3 Strategies for the Selective Loading of Patchy Worm-Like 

Micelles with Functional Nanoparticles 

 

Reproduced with permission from J. Schöbel, C. Hils, A. Weckwerth, M. Schlenk, C. Bojer, 

M.C.A. Stuart, J. Breu, S. Förster, A. Greiner, M. Karg, H. Schmalz published in  

Nanoscale, 2018, 10 (38), 18257-18268. © 2018 The Royal Society of Chemistry. 

 

Abstract 

 
Block copolymer self-assembly in solution paves the way for the construction of well-defined 

compartmentalized nanostructures. These are excellent templates for the incorporation and 

stabilisation of nanoparticles (NPs), giving rise to highly relevant applications in the field of 

catalysis or sensing. However, the regio-selective incorporation of NPs in specific compartments 

is still an issue, especially concerning the loading with different NP types. Using crystallisation-

driven self-assembly (CDSA), functional worm-like crystalline-core micelles (wCCMs) with a 

tailor-made, nanometre-sized patchy corona were prepared as versatile templates for the 

incorporation and stabilisation of metal and metal oxide NPs. Different strategies, like ligand 

exchange or co-precipitation of polymer stabilised NPs with one surface patch, were developed 

that allow the incorporation of NPs in specific regions of the patchy wCCM corona. Independent 

of the NP type and the incorporation method, the NPs showed no tendency for agglomeration 

and were fixed within the corona patches of the wCCMs. The binary loading of patchy micelles 

with metal and metal oxide NPs was realised by combining different loading strategies, yielding 

hybrids with homogeneously dispersed NPs guided by the patchy structure of the template. 
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Introduction 

 
A major challenge of today’s materials science is the developing miniaturisation, demanding 

precisely tuneable micro- and nanostructures. The self-assembly of amorphous block copolymers 

(BCPs) in solution proved to be an excellent tool to meet these demands, as a myriad of tailor-

made micellar morphologies is accessible.1 Spherical, cylindrical and helical micelles as well as 

vesicles are easily obtained by the use of selective solvents.2–6 More complex preparation steps 

involving crosslinking or guided hierarchical self-assembly protocols enable the formation of 

Janus, patchy and multicompartment micelles (MCMs).7–14 Among the MCMs, common 

examples include clover-, hamburger-, raspberry- and football-like micelles, as well as one-

dimensional supracolloidal polymer chains.15–18 Moreover, MCMs serve as building blocks for 

the formation of hierarchical superstructures, opening the way for applications in optoelectronic 

devices, in drug delivery or as templates for selective nanoparticle (NP) incorporation.9,19–22 

Although these state-of-the-art methods give access to manifold micelle morphologies, the 

preparation of well-defined cylindrical or worm-like micelles remains a challenge, as in general 

the length of the micelles cannot be precisely controlled, leading to broad length distributions. 

To overcome these limitations in length control, crystallisation-driven self-assembly (CDSA) 

gained increasing attention since it is a powerful and very flexible method.15,23 Similar to living 

polymerisation, CDSA can be conducted in a living manner, i.e., the ends of the cylindrical 

micelles remain active for the addition of unimers (molecularly dissolved BCPs bearing a 

crystallisable block). This was first reported by Manners and Winnik et al. who self-assembled 

poly(ferrocenyldimethylsilane) (PFS) containing BCPs.24,25 Using a seeded- growth protocol, 

living CDSA enables a precise length control and opens the way for different micellar 

architectures like block comicelles (in analogy to BCPs), branched micelles, gradient block 

comicelles and hierarchical self-assemblies.26–36 In addition to PFS containing BCPs, a variety of 

other semi-crystalline polymers were reported to undergo CDSA, e.g. polyethylene (PE),37,38 

poly(L-lactide),39,40 poly(3-hexylthiophene)41,42 and poly(ε-caprolactone).43,44 Recently, we have 

shown that worm-like crystalline-core micelles (wCCMs) with a patch-like microphase-

separated corona can be prepared by CDSA of polystyrene-block-polyethylene-block-

poly(methyl methacrylate) (SEM) triblock terpolymers.45,46 Here, the micellar corona is made of 

alternating nanometre-sized polystyrene (PS) and poly- (methyl methacrylate) (PMMA) patches 

and the semi-crystalline PE block forms the core. The concept of living CDSA was successfully 

transferred to the self-assembly of SEM triblock terpolymers employing spherical crystalline-

core micelles (sCCMs) as seeds, giving access to patchy micelles with controlled length and 

length distribution as well as more complex architectures like patchy block comicelles.47 
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Compartmentalised micelles are ideal templates for hybrid materials with inorganic NPs, as the 

structural complexity allows for a regio-selective incorporation of the NPs.20,48 This opens the 

way for applications in the biomedical sector (drug delivery, imaging), in the optoelectronic 

sector (nanodevices, photovoltaics) or in sensing and catalysis.49–58 Different hybrid materials 

derived from amorphous MCMs as well as crystalline- core micelles have been 

reported.52,53,55,57,59–65 However, these publications are mainly focused on the incorporation of 

only one type of NP, as the binary loading of compartmentalised micelles still remains a 

challenge and is hardly reported.66,67 The unique patchy structure of the SEM wCCM corona 

provides an excellent platform for the construction of tailor-made binary loaded hybrid materials, 

but this demands the efficient functionalisation of at least one of the corona forming blocks. 

Recently, we have reported the postpolymerisation amidation of the PMMA block of SEM 

triblock terpolymers using a 30-fold excess of different N,N-dialkylethylenediamines (alkyl = 

methyl, ethyl, iso-propyl).68 This method showed some disadvantages regarding the harsh 

reaction conditions (≥60 h at 130 °C), the formed side products and the required large excess of 

amine. In particular, the formation of a large fraction of imide units (ca. 50 mol% with respect to 

the consumed PMMA units) resulted in low functionalisation degrees and limited solubility in 

organic solvents, especially for more polar N,N-dialkylethylenediamines (alkyl = methyl, ethyl). 

The limited solubility affected the CDSA and led to ill-defined, short wCCMs for degrees of 

functionalisation above 20% for the dimethyl derivative. Thus, only for nonpolar, sterically 

hindered alkyl substituents (iso-propyl groups) well-defined patchy wCCMs with a reasonable 

degree of functionalisation (f = 55%) could be obtained. As a result, the first loading experiments 

with NPs revealed only a partial and inhomogeneous loading, most probably due to the 

insufficient functionalisation of the amidated patches. 

Here, we report the use of functionalised patchy wCCMs as versatile templates for the regio-

selective incorporation of NPs. This is realised by amidation of the PMMA block of SEM 

triblock terpolymers with activated N,N-dimethylethylenediamine (DMEDA), resulting in a 

nearly quantitative amidation. CDSA of the amidated SEM triblock terpolymers produces the 

desired patchy wCCMs, featuring highly functionalised corona patches for NP stabilisation. 

Different strategies for the regioselective loading of the amidated as well as non-functional PS 

patches with metal and metal oxide NPs are employed to yield the defined hybrid micelles. 

Finally, we present the successful binary loading of the patchy wCCMs with two different types 

of NPs (gold/zinc oxide and gold/silver). 
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Experimental 

 
Materials 

All chemicals were purchased from Sigma-Aldrich unless otherwise noted. Tetrahydrofuran 

(THF) was dried over calcium hydride and potassium prior to use and DMEDA (Acros 

Organics) over calcium hydride. Ethanol (99.5%), n-heptane, acetic acid (99.9%), L-Selectride 

(1 M in THF), n-butyllithium (n-BuLi, 2.5 M in hexane), PMMA (Mw = 35 kg mol−1, Acros 

Organics), tetrachloroauric acid trihydrate (HAuCl4·3H2O, Alfa Aesar), silver trifluoroacetate 

(AgTFA), zinc acetate dihydrate, copper acetate, sodium hydroxide and lithium hydroxide 

monohydrate were used as received. 

SEM triblock terpolymer 

The SEM triblock terpolymers were synthesised by a combination of living anionic 

polymerisation and catalytic hydrogenation, as published elsewhere.68 The composition of the 

employed SEM triblock terpolymers is S40E21M39
108 and S48E27M25

141. In this notation, the 

subscripts describe the mass fraction of the corresponding block in wt% and the superscript 

denotes the overall molecular weight in kg mol−1. 

Amidation of SEM 

The PMMA block of the SEM triblock terpolymers was amidated under an inert argon 

atmosphere. First, DMEDA (2 equivalents with respect to MMA units of SEM) was dissolved in 

20 mL dry THF and cooled to −78 °C by using an acetone/ dry ice bath. To this solution, n-BuLi 

(equimolar amount with respect to DMEDA) was added dropwise under stirring followed by 

heating to room temperature. In another flask, 1 g SEM (3.9 mmol MMA units for S40E21M39
108 

and 2.5 mmol for S48E27M25
141, 1 equivalent) was dissolved in 80 mL anhydrous THF at 65 °C 

for 30 min. Subsequently, the solution was cooled to 40 °C and the activated amine solution was 

added. The reaction was allowed to proceed for 24 h at 40 °C under stirring. Then, 1 mL of 

deionised water was added to deactivate excess amine and the obtained amidated SEM triblock 

terpolymers (SEDMA) were isolated by precipitation from pentane. For purification, the product 

was dissolved in THF at 65 °C (c = 10 g L−1) and centrifuged at 40 °C and 5000 rpm for 15 min 

in order to remove residual lithium hydroxide. The supernatant was precipitated from pentane 

and dried in a vacuum oven (yield: 1 g (83%)). 
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Formation of patchy wCCMs 

The functional, patchy wCCMs were prepared by CDSA of the amidated SEDMA triblock 

terpolymers in THF. To this end, the triblock terpolymers were dissolved in THF (c = 10 g L−1) 

at 65 °C for 30 min and subsequently cooled to Tc = 20 °C (s-SEDMA) or Tc = 25 °C 

(as-SEDMA) in a thermostated shaker unit (HLC-MKR 13, Ditabis). The self-assembly process 

was allowed to proceed for 24 h at a shaking rate of 200 rpm. 

Synthesis of zinc oxide (ZnO) and copper oxide (CuO) NPs 

The synthesis of ZnO and CuO NPs was conducted according to previously published 

protocols.69,70 For the preparation of ZnO NPs, 0.04 mol zinc acetate (1 equivalent) was added to 

400 mL boiling ethanol in order to dissolve the salt. After cooling the solution to room 

temperature, a lithium hydroxide monohydrate solution in ethanol (400 mL, c = 140 mM, 

1.4 equivalents) was added and the reaction mixture was immediately cooled to 0 °C. The ZnO 

NPs were precipitated from n-heptane and redispersed in ethanol to yield a final concentration of 

c = 3.8 g L−1. The average diameter obtained from transmission electron microscopy (TEM) was 

D = 2.7 ± 0.4 nm. The CuO NPs were synthesised by dissolving 5 mmol copper acetate (1 

equivalent), 20 mmol sodium hydroxide (4 equivalents) and 10 mmol acetic acid (2 equivalents) 

in 500 mL ethanol. The reaction mixture was heated to 78 °C for 1 h to yield the CuO NPs. The 

CuO NP dispersion was precipitated from n-heptane and redispersed in ethanol to yield a final 

concentration of c = 1 g L−1. The average diameter of the CuO NPs was determined to be D = 3.8 

± 0.6 nm by TEM. The full characterisation of the NPs can be found in the ESI (Fig. S1†). 

In situ synthesis of gold (Au) and silver (Ag) NPs in patchy wCCMs 

To 2 mL of a wCCM dispersion (c = 1 g L−1, THF) 40 μL of the corresponding acid 

(HAuCl4·3H2O) or metal salt (AgTFA) dissolved in THF (c = 0.1 M) were added. Immediately, 

20 μL of L-Selectride (c = 1 M, THF) were added and the successful formation of the respective 

metal NPs was indicated by a characteristic colour change. For as-SEDMA the employed 

amounts of AgTFA and L-Selectride were reduced by half. 

Continuous in situ loading of SEDMA wCCMs with Au NPs 

The continuous, in situ loading of s-SEDMA wCCMs was accomplished by a PTFE based 

microfluidic chip with one main channel and four separate side channels for controlled fluid 

double focusing. The microfluidic channels of the inner mixing part had a diameter of D = 

500 μm. The outer chip holes were bigger with a diameter of D = 1000 μm in order to connect 

the five inlets via polyethylene (PE) tubes to the syringe pumps. The outlet was fixed to a glass 
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capillary, which was used to run and investigate the laminar flow-controlled synthesis at a 

distance of 5 cm via optical microscopy. In a typical experiment, the main channel was fed with 

an s-SEDMA wCCM dispersion (c = 1 g L−1, THF) at a flow rate of 2000 μL h−1. The first two 

side channels were run with a HAuCl4·3H2O solution (c = 2 mM, THF) at a flow rate of 

2000 μL h−1 and the second two side channels with an L-Selectride solution (c = 20 mM, THF) at 

a flow rate of 1000 μL h−1. 

Synthesis of PS-stabilised Au NPs (PS@Au) 

PS@Au NPs were prepared via ligand exchange starting from citrate-stabilised Au NPs (D = 7.9 

± 0.7 nm), synthesised via a seeded growth method reported by Piella et al.71 A detailed 

characterisation of the citrate-stabilised Au NPs can be found in the ESI (Fig. S2†). A 

trithiocarbonate terminated PS (PS-TTC, Mn = 10 400 g mol−1, Đ = 1.05, determined by gel 

permeation chromatography (GPC), ESI Fig. S3A†) was synthesised via reversible addition–

fragmentation chain transfer (RAFT) polymerisation according to a previously published 

protocol.72 UV-Vis spectroscopy confirmed the presence of the characteristic TTC absorption at 

λ = 315 nm (ESI Fig. S3B†). 120 mL of the aqueous dispersion of citrate-stabilised Au NPs were 

overlaid with 40 mL of the PS-TTC solution in toluene (c = 10 mM). After 2 h of vigorous 

stirring, the phase-transfer of the Au NPs was completed, i.e., the aqueous phase was clear and 

colourless, whereas the toluene phase showed a deep red colour, indicating a successful ligand 

exchange. The toluene phase was separated and centrifuged at 12 000–14 000 rpm for 12 h to 

isolate the PS@Au NPs. The PS@Au NPs were purified from the remaining free PS-TTC ligand 

by eight washing and centrifugation cycles with 2 mL toluene, respectively. The absence of the 

free PS-TTC ligand was confirmed by GPC (ESI Fig. S4A†). The hydrodynamic radius of the 

PS@Au NPs was determined with dynamic light scattering to Rh = 14.9 ± 0.7 nm (ESI 

Fig. S4B†). The concentration after final dispersion in toluene was determined by UV-Vis 

spectroscopy to c = 5.3 × 1017 NP L−1 (see the ESI† for further details). 

Loading of SEDMA wCCMs with PS@Au NPs by co-precipitation 

10 µL of s-SEDMA wCCMs (c = 10 g L−1, THF), 37 µL PS@Au NPs (c = 5.3 × 1017 NP L−1, 

toluene) and 53 µL THF were mixed in a vial. To this solution, 40 µL of acetone were added in 4 

steps under stirring with an equilibration time of 30 min, respectively. Subsequently, 860 µL of 

acetone were added to achieve an overall acetone fraction of 90 vol%. The solution was stirred 

for at least 2 h before analysis. In a second experiment, 50 µL of PS@Au NPs and 40 µL THF 

were employed. All other reaction conditions were kept constant. 
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Binary loading of SEDMA wCCMs 

In a vial, 70 µL THF, 10 µL s-SEDMA wCCMs (c = 10 g L−1, THF) and 7.5 µL ZnO NPs (c = 

3.8 g L−1, ethanol) were mixed and stirred for 1 h, followed by the addition of 27 µL PS@Au 

NPs (c = 5.3 × 1017 NP L−1, toluene). To this solution, 40 µL of acetone were added in 4 steps 

with an equilibration time of 30 min, respectively. Subsequently, 845 µL of acetone were added 

to obtain an overall acetone fraction of 90 vol% and the solution was stirred for 2 h before 

analysis. 

For the binary loading with Ag and PS@Au NPs, 100 µL of preformed s-SEDMA/Ag hybrid 

micelles in THF (c = 1 g L−1), prepared by in situ reduction of AgTFA, were used. The loading 

with PS@Au NPs was done according to the procedure described for ZnO/PS@Au NP hybrid 

micelles. 

Instruments 

For the microfluidic experiments, syringe pumps (Nemysis Systems, Cetoni GmbH) were used 

and connected via PE tubes (Scientific Commodities, Inc.) to a home-made PTFE chip. A glass 

capillary (Hilgenberg GmbH) with an inner diameter of D = 980 µm was connected to the end of 

the PTFE chip to elongate the reaction pathway. The Au NP formation was followed with an 

optical microscope IX71 (Olympus Co.) equipped with a D7000 digital camera (Nikon GmbH). 

1H-NMR spectroscopy was conducted on a Bruker Ultrashield 300 system using deuterated 

chloroform as the solvent at 300 MHz. 

FT-IR spectroscopy was performed on a Digilab Excalibur Series FTS system with a Miracle 

ATR unit of Pike Technologies. The spectra were recorded with a resolution of 4 cm−1 and 16 

scans were averaged per sample. 

For GPC in THF, SDV gel columns (300 × 8 mm, 5 µm particle size, PSS Mainz) with pore 

sizes of 105, 104, 103 and 102 Å were used, together with a refractive index detector (RI 101, 

Techlab Shodex) and a UV detector operating at λ = 254 nm (Knauer). The applied flow rate was 

1 mL min−1 at 40 °C. Narrowly distributed PS standards and toluene as the internal reference 

were used for calibration. 

GPC in hexafluoroisopropanol with potassium trifluoroacetate (8 g L−1) was conducted on PFG 

gel columns (300 × 8 mm, 7 µm particle size, PSS Mainz) with 100 and 300 Å pore sizes using a 

flow rate of 0.5 mL min−1 at 23 °C. The signals were detected by using a Gynkotec SE-61 

refractive index detector. For calibration, narrowly distributed PMMA standards and toluene as 

the internal reference were used. 
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For GPC in N,N-dimethylformamide with lithium bromide (5 g L−1), GRAM columns (300 × 

8 mm, 10 µm particle size, PSS Mainz) with 100 and 3000 Å pore sizes were used. The sample 

was analysed at a flow rate of 0.5 mL min−1 at 23 °C using a DAD VL + G1315C diode array 

UV detector (Agilent Technologies) operated at λ = 270 nm and 525 nm. Narrowly distributed 

PS standards and toluene as the internal reference were employed for calibration. 

The thermal properties of the SEDMA wCCM dispersions were analysed by using a SETARAM 

micro-DSC III system. The samples (c = 10 g L−1 in THF) were measured in closed batch cells at 

a scanning rate of 0.5 K min−1 and THF was used as the reference. 

For UV-Vis measurements a JASCO V630 spectrophotometer and fused quartz cuvettes 

(Hellma, d = 0.2 cm) were used. The samples were analysed in THF (c = 0.1 g L−1) and acetone 

at room temperature, using the corresponding pure solvent for background subtraction, 

respectively. For the binary loaded sample pure acetone was used as the reference. 

Elastic bright-field TEM was conducted on a Zeiss 922 Omega EFTEM (Zeiss NTS GmbH, 

Oberkochen, Germany) electron microscope operating at an acceleration voltage of 200 kV. A 

bottom mounted CCD camera system (Ultrascan 1000, Gatan) recorded the zero-loss filtered 

images, which were processed by the imaging software Gatan Digital Micrograph 3.9 for GMS 

1.4. For high-angle annular dark field scanning transmission electron microscopy (HAADF-

STEM), a Tecnai T20 system (FEI, Eindhoven, The Netherlands) was used operating at 200 keV. 

Energy dispersive X-ray (EDX) spectra were recorded with an Xmax 80 (Oxford Instruments) 

detector. The samples were diluted to 0.1 g L−1 and drop-coated onto carbon-coated copper grids. 

The solvent was blotted with filter paper and the samples were dried in a vacuum oven at 0.2 

mbar and room temperature before staining with ruthenium tetroxide (RuO4). The software 

ImageJ was used to determine particle sizes, wCCM lengths and patch sizes. At least 100 

measurements were done to obtain representative average values. 

Results and discussion 

 
Functional wCCMs with amino group containing patches 

The formation of hybrid materials of patchy wCCMs and NPs demands an efficient 

functionalisation of one of the corona blocks of the employed SEM triblock terpolymers. To this 

end, we chose an amidation of the PMMA block with N,N-dimethylethylenediamine (DMEDA), 

utilizing a prior activation of the amine with n-butyllithium (Scheme 1A).73 Due to the 

activation, the amount of DMEDA could be decreased to a 2-fold excess with respect to the 

amount of methyl ester units in the PMMA block (in comparison with the 30-fold excess used in 

our previous report68) and nearly quantitative conversion was obtained after 24 h under mild 
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conditions (40 °C). The functionalisation proceeds without degradation of the polymer backbone, 

as shown by gel permeation chromatography (GPC) of an amidated PMMA homopolymer, 

which was functionalised under identical conditions as the SEM triblock terpolymers (ESI 

Fig. S5†). 

 

Scheme 1 Amidation of the SEM triblock terpolymers with prior activation of the amine by n-BuLi (A). 

Strategies for the regio-selective and binary loading of patchy wCCMs with metal and metal oxide NPs 

(B). 

The amidated SEM triblock terpolymers were characterised by 1H-NMR and FT-IR 

spectroscopy, as discussed exemplarily for the amidation of S40E21M39
108 (the subscripts describe 

the mass fraction of the corresponding block in wt% and the superscript denotes the overall 

molecular weight in kg mol−1). The signals in the 1H-NMR spectrum can be clearly assigned to 

the typical proton signals of the amide (Fig. 1A). There is only a weak signal of not consumed 

PMMA ester units at 3.6 ppm. From the integral of this signal, calibrated by the aromatic 

polystyrene protons (5, 5 H), a degree of amidation of 95% results. Consequently, the 

composition and overall molecular weight of the functionalised triblock terpolymer changes to 

S33E17DMA50
131. A signal for imide formation, which would be expected at 3.7–4 ppm,68 is 

hardly observable. This indicates that the amidation proceeds without significant side reactions. 

The successful amidation is further confirmed by FT-IR spectroscopy (ESI Fig. S6†), showing 

the characteristic amide I and amide II vibrations at 1660 cm−1 and 1526 cm−1, respectively, and 
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only a very weak C=O vibration of the remaining PMMA units. The negligible fraction of imide 

units in S33E17DMA50
131 is supported by its solubility in tetrahydrofuran (THF) and chloroform 

(CHCl3), as in the case of large fraction of imide units the triblock terpolymer would be insoluble 

in both solvents.68 

 

Fig. 1 1H-NMR spectrum measured in CDCl3 (A), µDSC heating and cooling traces (c = 10 g L-1, 

THF (B)) of s-SEDMA as well as TEM micrographs of SEDMA (C) and as-SEDMA (D) wCCMs, 

selectively stained with RuO4. 

The successful amidation is further confirmed by FT-IR spectroscopy (ESI Fig. S6), showing the 

characteristic amide I and amide II vibrations at 1660 cm -1 and 1526 cm-1, respectively, and only 

a very weak C=O vibration of the remaining PMMA units. The negligible fraction of imide units 

in the SEDMA triblock terpolymer is supported by its solubility in tetrahydrofuran (THF) and 

chloroform (CHCl3), as in case of a high fraction of imide units the triblock terpolymer would be 

insoluble in both solvents.69 

The solubility of the SEDMA triblock terpolymers in THF, which is used for CDSA, is crucial 

for the formation of welldefined patchy wCCMs. Recently, we have shown that the 

crystallisation temperature (Tc) of the PE middle block in solution is a very sensitive parameter 

to probe the solubility of the amidated triblock terpolymers.68 With decreasing solubility an 

increase in the Tc of the PE block is observed with respect to that of the corresponding 

S40E21M39
108 precursor (Tc = 21 °C). For Tc values above 30 °C only ill-defined and strongly 

aggregated wCCMs are formed. This is attributed to aggregation caused by the limited solubility 
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of the amidated PMMA block, which results in a higher PE segment density and, thus, a better 

nucleation of PE crystallisation. Micro-differential scanning calorimetry (µDSC) shows a Tc at 

20 °C for the synthesised S33E17DMA50
131 triblock terpolymer (c = 10 g L−1 in THF, Fig. 1B), 

i.e., almost identical to the SEM precursor underlining its good solubility in THF. Consequently, 

CDSA of S33E17DMA50
131 in THF at 20 °C resulted in the formation of well-defined wCCMs 

with an average length of L = 540 ± 310 nm (Fig. 1C), as revealed by transmission electron 

microscopy (TEM). The sample was stained with RuO4, which is known for selective staining of 

the PS domains. Therefore, the PS patches in the corona appear dark and the amidated PMMA 

(PDMA) patches appear bright, both being arranged in an almost alternating manner. The corona 

patches exhibit a similar width of 18 ± 5 nm for PS and 17 ± 5 nm for PDMA, respectively.  

Selective loading of patchy wCCMs with NPs 

The unique alternating structure of the functional patchy corona of SEDMA wCCMs offers the 

possibility to incorporate two different types of NPs. The patchy morphology guarantees an 

efficient separation and at the same time a dense packing of single NPs. We developed three 

different strategies for the selective loading of the patches with metal and metal oxide NPs 

(Scheme 1B). Path A is based on selective interactions between the PDMA corona patch and the 

metal oxide NP, which are known to undergo ligand exchange if amino groups are offered.74 

Path B deals with the in situ synthesis of metal NPs within the PDMA patch of the SEDMA 

wCCMs, which provides tertiary amino groups as anchor groups for the efficient stabilisation of 

different metal NPs like gold (Au) or silver (Ag).75 Path C is based on polymer–polymer and 

polymer– solvent interactions. The addition of a selective solvent for one of the corona patches 

leads to the collapse of the other corona patch. Thus, NPs that are stabilised with the same 

polymer as the collapsing corona patch are incorporated into the collapsing patch upon selective 

solvent addition. Combination of path A and C finally leads to binary loaded wCCMs. 

Following path A, we investigated the ligand exchange for zinc oxide (ZnO) and copper oxide 

(CuO) NPs. Both types of NPs were synthesised in ethanol with acetate ligands for stabilisation 

and have average diameters of D = 2.7 ± 0.4 nm for ZnO and D = 3.8 ± 0.6 nm for CuO 

(determined by TEM, ESI Fig. S1†). The obtained NPs are phase pure according to the powder 

X-ray diffraction patterns (ESI Fig. S1A†) and exhibit a narrow particle size distribution (ESI 

Fig. S1B†). The concentration of the NP dispersions was adjusted to 1–4 g L-1, which ensures 

that the total amount of added NP dispersion is less than 10 vol% with respect to the employed 

THF dispersion of SEDMA wCCMs. For higher volume fractions of ethanol the wCCMs are 

insoluble and agglomerate before the ligand exchange is completed. The NP incorporation was 

finished after 1 d and the s-SEDMA wCCMs were highly loaded with both types of NPs as 
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revealed by TEM (ZnO: Fig. 2A and C; CuO: Fig. 2E), pointing to a successful ligand exchange, 

i.e., acetate ligands vs. amino groups in the PDMA patch. The absence of free NPs in the TEM 

micrographs points to a complete incorporation of the ZnO and CuO NPs in the micellar corona. 

 

Fig. 2 TEM micrographs and corresponding UV-Vis spectra for the hybrid materials of SEDMA wCCMs 

with ZnO (A, B, D) and CuO NPs (C, E). 

The theoretical ZnO and CuO contents in the hybrid micelles, assuming a complete 

incorporation of the NPs in the micellar corona, are 12 wt% and 7 wt%, respectively. Both the 

ZnO and CuO NPs are homogeneously distributed within the PDMA patches of the s-SEDMA 

wCCMs without agglomeration and the “empty” PS patches are still clearly discernible. Here, it 

has to be noted that in contrast to the neat s-SEDMA wCCMs the hybrid micelles were analysed 

without prior staining with RuO4, as the incorporated NPs provide an intrinsic staining of the 

patches. The UV-Vis spectra of the neat wCCMs show a continuous increase in absorbance with 

decreasing wavelength, which is attributed to scattering from the wCCMs (Fig. 2B and F). This 

is supported by the blue colour of the neat wCCM dispersion (Tyndall effect). The low 
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wavelength part of the spectrum is dominated by a relatively weak absorption maximum at λmax = 

250 nm, deriving from the absorption of the PS units of the wCCMs. The UV-Vis spectra of the 

pure ZnO (Fig. 2B) and CuO (Fig. 2F) NPs show absorption maxima at approximately 300 nm, 

which overlap with the scattering contribution of the wCCMs. Consequently, the UV-Vis 

spectrum of the CuO NP hybrid micelles is similar to the spectrum of the neat s-SEDMA 

wCCMs (Fig. 2F). In contrast, the ZnO NPs show a pronounced shoulder at λ = 333 nm, which 

is also observable in the UV-Vis spectra of the ZnO NP loaded wCCMs (Fig. 2B), confirming 

the successful incorporation of the NPs in the patchy corona. 

To study the effect of patch size on the NP incorporation, we transferred the ligand exchange 

with ZnO NPs to the as-SEDMA wCCMs, keeping the amount of ZnO NPs constant. TEM 

clearly shows a decreased loading capacity for the smaller PDMA patches, supported by the 

observation of free ZnO NPs around the wCCMs (Fig. 2D, corresponding UV-Vis spectra in ESI 

Fig. S8A†). To further strengthen the effect of patch size, we added acetone as a selective 

solvent for the PDMA patch. This leads to a collapse of the PS patches and a swelling of the 

PDMA patches (ESI Fig. S9†). Due to the swelling, more ZnO NPs were incorporated into the 

corona and the PS patches are hardly observable. 

In path B we utilised the functionalised corona patches as nanoreactors for the simultaneous 

stabilisation and in situ syntheses of different metal NPs via reduction of the corresponding acids 

and metal salts, i.e., tetrachloroauric acid trihydrate (HAuCl4·3H2O) and silver trifluoroacetate 

(AgTFA), with L-Selectride (lithium tri-sec-butylborohydride). We chose L-Selectride since it is 

a mild reduction agent that does not reduce ester or amide groups.76 After the addition of 

L-Selectride, the typical colour change of all solutions indicated a successful NP formation, 

which is further proven by the TEM micrographs shown in Fig. 3. The Au and Ag NPs show a 

spherical shape and are selectively incorporated into the patchy corona of the s-SEDMA 

(Fig. 3A and B) and as-SEDMA wCCMs (Fig. 3E and F). The diameters of the formed NPs are 

DAu = 4.7 ± 1.2 nm and DAg = 2.9 ± 0.8 nm for the s-SEDMA and DAu = 4.0 ± 1.3 nm and DAg = 

2.2 ± 0.6 nm for the as-SEDMA hybrid micelles, respectively, as determined by TEM image 

analysis. The rather high size dispersity of the NPs might be attributed to the in situ reduction 

process, which does not allow a precise size control as nucleation and growth of the NPs happen 

almost simultaneously. 

The PDMA patches in the SEDMA/Au hybrid micelles are highly loaded with Au NPs without 

showing any significant agglomeration. This can be ascribed to the nearly quantitative amidation 

of the PMMA block, resulting in a high density of amino anchor groups in the PDMA patches. 

We exemplarily analysed the loading capacity of the s-SEDMA wCCMs with Au NPs by 
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inductively-coupled plasma optical emission spectroscopy (ICP-OES) and thermogravimetric 

analysis (TGA), which resulted in 652 µg and 787 µg Au, respectively. This equals to 25–

28 wt% Au in the final hybrid micelles. Taking into account that the accuracy of ICP-OES 

fluctuates between 10–20%, the incorporation of Au by in situ synthesis can be regarded as 

nearly quantitative.77 The high loading again provides an intrinsic staining of the PDMA patches, 

as already observed for the hybrid micelles prepared by ligand exchange. However, due to the 

similar width of both patch types the PS patches appear comparably small for the s-SEDMA 

based hybrid micelles, which makes it more difficult to discern the patchy structure of the 

corona. Nevertheless, for the as-SEDMA hybrid micelles the patches are clearly distinguishable, 

which can be attributed to the significantly smaller size of the PDMA patches (14 ± 4 nm) with 

respect to that of the PS patches (20 ± 6 nm) in the as-SEDMA wCCM corona. This underlines 

the excellent selectivity of the NP incorporation. 

 

Fig. 3 TEM micrographs and corresponding UV-Vis spectra for the hybrid materials of SEDMA wCCMs 

with Au (A, D), Ag (B, E) and Pt (C, F) NPs. 



4 Publications 

 

151 
 

Fig. 3C and S8B (ESI†) compare the UV-Vis spectra of the SEDMA wCCMs prior to and after 

the in situ synthesis of Au NPs. All absorbance spectra show the same spectral characteristics 

except for a peak at approximately λmax = 523 nm that appears only for the Au NP loaded 

wCCMs. This peak can be assigned to absorption due to the localised surface plasmon resonance 

(LSPR) of the Au NPs, which is characteristic for small, spherical Au NPs.78 The low absorbance 

at wavelengths of λ ≥ 700 nm manifests the good stabilisation and distribution of the Au NPs by 

the wCCMs and the absence of Au NP aggregates. 

Similar to the Au NPs, the Ag NPs are well distributed within the s-SEDMA and the as-SEDMA 

wCCMs without agglomeration (Fig. 3B and F). ICP-OES reveals a loading capacity of 103 µg 

Ag in the s-SEDMA wCCMs, which equals to 5 wt% in the final hybrid micelles (applied 

amount of Ag: 431 µg). The corona of both Ag hybrid micelles, i.e., based on s- and as-SEDMA, 

again shows a patchy structure due to intrinsic staining of the PDMA patches by the incorporated 

Ag NPs. To highlight the selectivity of NP incorporation in the SEDMA wCCMs, we employed 

the in situ reduction method on the pure S48E27M25
141 wCCMs (ESI Fig. S10†). The lack of 

functional groups in these wCCMs causes a statistical distribution of the Ag NPs over the whole 

TEM grid and almost no Ag NPs are located within the patchy corona. Furthermore, 

agglomeration of the Ag NPs is observed, which proves that functional groups for NP 

stabilisation are inevitable. 

The UV-Vis spectra of the Ag NP loaded s-SEDMA (Fig. 3D) and as-SEDMA (ESI Fig. S8C†) 

wCCMs show a strong peak in absorbance at λmax = 415–426 nm, superimposed to the wCCM 

absorbance. This peak is related to the LSPR of small, spherical Ag NPs.79 Compared to the 

spectra of the Au NP loaded wCCMs, the Ag NP containing systems show a much stronger 

LSPR contribution, which is attributed to the higher absorption cross-section of Ag as compared 

to Au NPs of similar size. The narrow width of the LSPR resonance and the absence of 

significant absorbance at higher wavelengths again underline the good stabilisation and 

distribution of the Ag NPs by the wCCMs. 

In order to study whether mixing effects have an influence on the in situ synthesis of NPs, we 

transferred the batch reduction to a continuous loading process, employing a microfluidic chip 

with a double-focusing cross and four side channels that allows for a controlled and fast mixing 

of the reactants (ESI Fig. S11A, B†). The advantage of microchannels is the presence of a 

laminar flow without turbulences and therefore a diffusion-controlled reaction process for the 

reactants.80,81 In a continuous flow, the s-SEDMA wCCM dispersion was pumped through the 

main channel and at the same time, HAuCl4·3H2O and L-Selectride were fed via the side 

channels (ESI Fig. S11C†). The flow rates were adjusted in a way that allows a direct 
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comparison with the batch in situ process as the employed molar ratio of reactants is identical. 

The flow rate also determines the residence time t = sπR2/Q, where s is the length of the capillary 

(s = 50 mm), R the crosssectional radius of the capillary (R = 490 μm), and Q the total 

volumetric flow rate. Here, the total volumetric flow rate is Q = 8000 µL h−1, which corresponds 

to a residence time of t = 17.0 s. The TEM micrograph reveals that the PDMA patches of the 

wCCMs are homogeneously and densely loaded with Au NPs, showing an average diameter of D 

= 4.3 ± 1.4 nm (ESI Fig. S11D†). This is comparable to the size of the Au NPs synthesised by 

the batch in situ reduction (D = 4.7 ± 1.2 nm, Fig. 3A). This indicates that the residence time is 

sufficiently large to allow for complete reduction of the gold precursor and that the slower 

mixing in the batch process does not seem to have a major influence on the NP size and 

homogeneity of the loading. Besides, employing the continuous loading approach the flow rates 

can be easily varied, which allows a facile tuning of the loading density of the micelles with Au 

NPs without the need to prepare new reactant solutions (ESI Fig. S11E†). 

Binary loading of patchy SEDMA wCCMs 

For binary loading of the patchy SEDMA wCCMs with two different types of NPs also the non-

functional PS patches need to be loaded. Therefore, we developed a co-precipitation method that 

offers the possibility to incorporate preformed, PS-stabilised NPs with precisely tailored 

dimensions within the PS patches of the SEDMA wCCMs without the need for a preceding 

functionalisation of the patch (Scheme 1B, path C). This method is based on polymer–polymer 

and polymer– solvent interactions. We chose PS-stabilised Au NPs (PS@Au NPs), which were 

synthesised by a facile ligand exchange method starting from an aqueous dispersion of citrate-

stabilised Au NPs with an average diameter of D = 7.9 ± 0.7 nm (determined by TEM, ESI Fig. 

S2†) and trithiocarbonate-terminated PS (PS-TTC) in toluene, prepared by RAFT polymerisation 

(ESI Fig. S3†). After the biphasic ligand exchange, the PS@Au NPs were found to be well 

dispersed in the organic phase. The TEM micrograph shown in Fig. 4A reveals that the PS@Au 

NPs are homogeneously distributed on the TEM grid without agglomeration and show a 

spherical shape. The PS shell is only visible as a pale-grey shell in the TEM micrograph due to 

the high electron density of the Au NPs. 

The PS@Au NPs show a characteristic LSPR at λmax = 527 nm in toluene (Fig. 4B), which is 

red-shifted by 12 nm with respect to the LSPR of the citrate-stabilised Au NPs in water (λmax = 

515 nm). This red-shift is caused by the change in refractive index from the aqueous phase (n = 

1.33) to the toluene phase (n = 1.50). DMF-GPC using a UV-Vis diode array detector with two 

different wavelengths, characteristic for PS (λ = 270 nm) and the Au NPs (λ = 525 nm), shows 

that the PS-TTC is efficiently bound on the Au NP surface and there is only a small amount of 
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residual free PS ligand (ESI Fig. S4A†). The hydrodynamic radius of the PS@Au NPs was 

determined by dynamic light scattering to Rh = 14.7 ± 0.1 nm, confirming the PS shell around the 

Au NPs. First, we investigated the aggregation behaviour of neat PS@Au NPs in THF upon 

addition of acetone in order to identify suitable conditions for the incorporation of PS@Au NPs 

in the SEDMA wCCMs via coprecipitation. Acetone will be used as the selective solvent for the 

PDMA patch in the co-precipitation process and, thus, is expected to induce the collapse of the 

PS ligands. Due to the high sensitivity of the LSPR to particle stability, UV-Vis spectroscopy 

could be used to follow the solvent induced aggregation (ESI Fig. S12†). Analysis of the spectra 

reveals that a volume fraction of 33 vol% acetone is sufficient to induce the collapse of the PS 

shell around the Au NPs, indicated by a broadening of the LSPR, and upon further addition of 

acetone no significant changes in the UV-Vis absorption maximum were observed. 

 

Fig. 4 TEM micrograph (A) and UV-Vis spectrum of the PS@Au NPs in toluene (c = 8.8·1015 NP L-1, 

black trace in (B)). The red spectrum in (B) corresponds to the citrate-stabilised Au NPs in water (c = 

1.2·1016 NP L-1) measured prior to the ligand exchange with PS-TTC. 

For co-precipitation, the PS@Au NP dispersion in toluene was mixed with the s-SEDMA 

wCCMs in THF, a good solvent for both the PS and PDMA patches. The details on the used 

amounts can be found in the Experimental section. The addition of acetone was done in two 

steps. First, 40 µL acetone (28 vol% with respect to the overall volume) were added in 10 µL 

portions, employing an equilibration time of 30 min after each addition. Until this point, the 

PS@Au NPs do not aggregate. However, the solvent quality for PS is slowly decreasing and the 

PS@Au NPs start to interact with the PS patches of the s-SEDMA wCCMs. In the second 

addition step, the volume fraction of acetone was increased to 90 vol% to ensure a complete co-

precipitation of the PS@Au NPs within the PS corona patches. The TEM micrograph of the 

loaded wCCMs reveals the successful incorporation of the Au NPs within the corona of the s-

SEDMA wCCMs and shows a clearly visible patch-like arrangement of the Au NPs (Fig. 5A). 

The PS shell around the Au NPs prevents agglomeration of the NPs even if they are in close 

proximity to each other. The UV-Vis spectrum clearly shows the LSPR of the Au NPs with a 

maximum absorbance at λmax = 530 nm (Fig. 5C), which is close to the position of the LSPR of 
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the neat PS@Au NPs (λmax = 527 nm, Fig. 4B). Furthermore, the resonance width did not change 

significantly and the absorbance quickly drops to values close to zero, which supports the 

absence of aggregates.  

 

Fig. 5 Hybrid micelles of s-SEDMA with PS@Au NPs prepared by coprecipitation (A) and binary loaded 

s-SEDMA wCCMs with PS@Au and ZnO NPs (B). The corresponding UV-Vis spectra are displayed in 

(C) and the traces were shifted vertically for clarity. Bright-field and HAADF-STEM image (D) and EDX 

analysis (E) of the binary loaded s-SEDMA wCCMs. 

Combining path A and C, binary loading of the patchy wCCMs with ZnO and PS@Au NPs is 

possible (Scheme 1B). First, the ligand exchange route was employed to incorporate acetate-

stabilised ZnO NPs in the PDMA patches of the s-SEDMA wCCMs. Subsequently, the PS@Au 

NPs were loaded into the PS patches by co-precipitation. The overall amount of acetone was 

adjusted to 90 vol%, as this leads to complete incorporation of the PS@Au NPs. The employed 

loading sequence is crucial for a successful binary loading of the wCCMs, since the acetate-
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stabilised ZnO NPs show aggregation in acetone. By exchanging the acetate ligands to PDMA 

before acetone addition, we prevent the aggregation as shown exemplarily for ZnO loaded s-

SEDMA wCCMs (ESI Fig. S13†). Consequently, the binary loaded hybrid micelles show no 

agglomeration of both NP types, but a homogeneous distribution over the whole SEDMA 

wCCMs, contouring the brightappearing semi-crystalline polyethylene core (Fig. 5B). We 

intentionally decreased the amount of incorporated PS@Au NPs in comparison with the sample 

shown in Fig. 5A to obtain a higher contrast for the ZnO NPs in the TEM micrograph (small 

dark grey spots within the corona). ICP-OES analysis results in a loading capacity of 56 µg Au 

and 20 µg ZnO, which corresponds to 43 wt% of inorganic material in the binary loaded 

wCCMs. These values are similar to the applied amounts of NPs, i.e., 74 µg Au and 28 µg ZnO, 

respectively. 

The UV-Vis spectrum (Fig. 5C) shows the typical LSPR of Au NPs at λmax = 538 nm as well as a 

signal for the ZnO NPs at λmax = 333 nm, as already observed for the single loaded hybrid 

micelles (Fig. 2B). The binary loading is further confirmed by high-angle annular dark field 

scanning transmission electron microscopy (HAADF-STEM, Fig. 5D) and energy dispersive X-

ray (EDX) analysis (Fig. 5E). The ZnO NPs in the corona of the binary loaded wCCMs are 

hardly observable by conventional bright-field TEM (Fig. 5B and D). In HAADF-STEM the 

contrast is obtained by elastic scattering, only. Thus, the atomic number Z of the elements 

directly affects the contrast of the image. Therefore, the Au NPs appear brighter than the ZnO 

NPs. Both types of NPs are clearly visible in the HAADF-STEM micrograph (Fig. 5D, marked 

with arrows) and confirmed by EDX analysis (Fig. 5E) of the same region. As already observed 

in the bright-field TEM micrograph, the HAADF-STEM image confirms the homogeneous 

distribution of the Au NPs along the corona of the micelle. The slightly darker appearing ZnO 

NPs are found in between the Au NPs supporting the patch-like morphology of the corona. The 

PE core of the SEDMA wCCMs appears as a dark core in between the NP loaded corona, 

indicating the presence of the polymer template. 

The binary loading is not limited to a combination of path A and C. To show the versatility of 

this method, we combined path B and C to obtain binary loaded wCCMs. To this end, Ag NP 

loaded hybrid micelles, synthesised by the in situ method (same sample like Fig. 3B), were used 

for subsequent co-precipitation of PS@Au NPs. Due to the significantly different sizes of the 

NPs (DAg = 2.9 ± 0.8 nm, DAu = 7.9 ± 0.7 nm), a differentiation of the two NP types in the TEM 

image is possible (ESI Fig. S14†). Both NP types are well distributed within the wCCM corona 

and show no agglomeration, underlining the versatility of patchy wCCMs as templates for the 

preparation of binary loaded hybrid materials. 



4 Publications 
 

156 

 

Conclusion 

 
In this work, we demonstrated that worm-like micelles with a patch-like microphase-separated 

corona are highly versatile templates for the regio-selective incorporation of inorganic NPs. 

Introducing specific anchor groups in one of the corona patches allows to direct the 

incorporation of metal and metal oxide NPs exclusively in the functionalised patches, either by 

in situ synthesis of the NPs within the patches or by ligand exchange with preformed NPs. In 

addition, NPs that are stabilised by the same polymer as one of the corona patches can be 

selectively incorporated by co-precipitation employing selective solvents. The combination of 

different loading strategies even allows the formation of binary loaded hybrid micelles with two 

types of NPs placed in different compartments of the patchy wCCM corona. The patchy corona 

of the worm-like micelles provides an excellent stabilisation of the incorporated NPs. This in 

turn results in a high and easily accessible catalytically active NP surface area, which is highly 

favourable for heterogeneous catalysis.58 The binary loaded hybrid micelles are considered as 

promising materials for catalytic applications, since the homogeneous distribution of different 

NPs in the micellar corona ensures a high interface between the NPs. This could enhance 

synergistic effects on catalysis, as for example reported for the combination of ZnO and Au NPs 

in the photocatalytic degradation of dyes and antibiotics.82,83 

Conflicts of interest 

 
There are no conflicts of interests to declare. 

Acknowledgements 

 
We thank the German Research Foundation for financial support within the framework of the 

Collaborative Research Center SFB 840 (project A2). We appreciate support of the Keylab for 

Optical and Electron Microscopy of the Bavarian Polymer Institute (BPI). The authors thank B. 

Uch and R. Schneider for GPC and M. Drechsler for help with TEM. J.S. acknowledges the 

support of the Graduate School of the University of Bayreuth. 

References 

 
1. J.-F. Lutz, J.-M. Lehn, E. W. Meijer and K. Matyjaszewski, Nat. Rev. Mater., 2016, 1, 

16024–16037. 

2. J. Rodríguez-Hernández, F. Chécot, Y. Gnanou and S. Lecommandoux, Prog. Polym. 

Sci., 2005, 30, 691–724. 

3. J.-F. Gohy, Adv. Polym. Sci., 2005, 190, 65–136. 



4 Publications 

 

157 
 

4. Y. Mai and A. Eisenberg, Chem. Soc. Rev., 2012, 41, 5969–5985. 

5. J. Dupont, G. Liu, K. I. Niihara, R. Kimoto and H. Jinnai, Angew. Chem. Int. Ed., 2009, 

48, 6144–6147. 

6. S. Zhong, H. Cui, Z. Chen, K. L. Wooley and D. J. Pochan, Soft Matter, 2008, 4, 90–93.  

7. I. S. Jo, S. Lee, J. Zhu, T. S. Shim and G. R. Yi, Curr. Opin. Colloid Interface Sci., 2017, 

30, 97–105. 

8. A. O. Moughton, M. A. Hillmyer and T. P. Lodge, Macromolecules, 2012, 45, 2–19.  

9. J. Du and R. K. O’Reilly, Chem. Soc. Rev., 2011, 40, 2402–2416. 

10. A. Walther and A. H. E. Müller, Chem. Rev., 2013, 113, 5194–5261. 

11. D. J. Pochan, J. Zhu, K. Zhang, K. L. Wooley, C. Miesch and T. Emrick, Soft Matter, 

2011, 7, 2500–2506. 

12. D. J. Pochan, Science, 2004, 306, 94–97. 

13. H. Cui, Z. Chen, S. Zhong, K. L. Wooley and D. J. Pochan, Science, 2007, 317, 647–650.  

14. A. H. Gröschel and A. H. E. Müller, Nanoscale, 2015, 7, 11841–11876. 

15. U. Tritschler, S. Pearce, J. Gwyther, G. R. Whittell and I. Manners, Macromolecules, 

2017, 50, 3439–3463. 

16. Z. Li, M. A. Hillmyer and T. P. Lodge, Langmuir, 2006, 22, 9409–9417. 

17. A. H. Gröschel, A. Walther, T. I. Löbling, F. H. Schacher, H. Schmalz and A. H. E. 

Müller, Nature, 2013, 503, 247–251. 

18. T. I. Löbling, O. Borisov, J. S. Haataja, O. Ikkala, A. H. Gröschel and A. H. E. Müller, 

Nat. Commun., 2016, 7, 12097–12106. 

19. J. Hu, G. Liu and G. Nijkang, J. Am. Chem. Soc., 2008, 130, 3236–3237. 

20. F. H. Schacher, P. A. Rupar and I. Manners, Angew. Chem. Int. Ed., 2012, 51, 7898–

7921. 

21. R. K. O’Reilly, C. J. Hawker and K. L. Wooley, Chem. Soc. Rev., 2006, 35, 1068–1083.  

22. T. H. Epps, III and R. K. O’Reilly, Chem. Sci., 2016, 7, 1674–1689. 

23. J. Schmelz, F. H. Schacher and H. Schmalz, Soft Matter, 2013, 9, 2101–2107. 

24. X. Wang, G. Guerin, H. Wang, Y. Wang, I. Manners and M. A. Winnik, Science, 2007, 

317, 644–647. 

25. J. B. Gilroy, T. Gädt, G. R. Whittell, L. Chabanne, J. M. Mitchels, R. M. Richardson, M. 

A. Winnik and I. Manners, Nat. Chem., 2010, 2, 566–570. 

26. T. Gädt, N. S. Ieong, G. Cambridge, M. A. Winnik and I. Manners, Nat. Mater., 2009, 8, 

144–150. 
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Supporting Information 

 
1. Characterisation of ZnO and CuO NPs 

The ZnO and CuO NPs were analysed by powder X-Ray diffraction to confirm the phase purity (Fig. 

S1A). For both types of NPs, the measured peaks can be clearly assigned to ZnO (PDF: 00-036-1451) and 

CuO (PDF: 45-0937), respectively. For CuO NPs only the two most intense peaks can be found as 

reported by Kida et. al.1 The peaks of both NP types show a high full width at half maximum (FWHM), 

confirming the formation of NPs. Dynamic light scattering (DLS) reveals narrow particle size 

distributions (Fig. S1B) with average hydrodynamic diameters of 3.2 ± 0.1 nm for ZnO and 5.8 ± 1.4 nm 

for CuO NPs, respectively. From TEM image analysis (Fig. S1C, D) average diameters of 2.7 ± 0.4 nm 

for ZnO NPs and 3.8 ± 0.6 nm for CuO NPs were obtained. As expected, the sizes from DLS are slightly 

higher compared to that determined by TEM, as DLS probes the hydrodynamic diameters.  

 

Fig. S1. PXRD pattern (A), particle size distribution obtained from DLS measurements (B) and TEM 

micrographs of the ZnO and CuO NPs (C, D). 

2. Characterisation of citrate-stabilised Au NPs 

Au NPs were synthesised according to a seeded-growth protocol by Piella et al.2 In a first batch, citrate-

stabilised seed particles (D = 4 ± 0.6 nm) were produced. In two consecutive steps, these seed particles 

were grown to D = 7.9 ± 0.7 nm, as revealed by TEM (Fig. S2A, B). These spherical Au NPs showed a 

characteristic LSPR at max = 515 nm (Fig. S2C). 
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Fig. S2. TEM micrograph (A), size distribution (B) and UV-Vis spectrum (c = 1.2·1016 NP L-1 in water, 

(C)) of citrate-stabilised AuNPs. 

3. Characterisation of trithiocarbonate-terminated PS 

Trithiocarbonate-terminated PS (PS-TTC) was synthesised by reversible addition-fragmentation chain 

transfer (RAFT) polymerisation according to a protocol of Moad et al.3 To this end, styrene and 2-cyano-

2-propyl dodecyl trithiocarbonate (8.55 mM L-1) were mixed in a ratio of 169:1. The reaction mixture was 

degassed for 20 min with nitrogen and subsequently heated to 110 °C for 46 h in an oil bath. The 

polymerisation was terminated by quenching to 0 °C with an ice bath. The product was dissolved in THF 

and precipitated from cold methanol. 

The molecular weight of the trithiocarbonate-terminated PS was determined by THF GPC to 

Mn = 10.4 kg mol-1 with a dispersity of Ð = 1.05 (Fig. S3A). The monomodal distribution and the low 

dispersity prove the controlled polymerisation of styrene. The UV-Vis spectrum shows the typical 

absorbance of the PS-TTC. The PS shows an absorbance maximum at about  = 250 nm, whereas the 

TTC end group shows a maximum at  = 315 nm (Fig. S3B). 

 

Fig. S3. THF-GPC trace (A) and UV-Vis spectrum of PS-TTC (c = 0.1 mg mL-1 in chloroform, (B)). 
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4. Characterisation of PS-stabilised Au NPs 

DMF GPC using a UV-Vis diode-array-detector was performed to show whether the PS ligands are 

completely bound to the Au NP surface or if free PS ligands are still present (Fig. S4A). Two different 

wavelengths were selected for detection, being characteristic for the PS ligand ( = 270 nm) as well as the 

Au NPs ( = 525 nm). The peak elution volume of the Au NPs is at VE = 19 min (detection at  = 525 

nm). The corresponding GPC trace for  = 270 nm, i.e. specific to PS, shows a bimodal distribution. The 

main peak at VE = 19 min corresponds to the PS ligands bound to the Au NPs´ surface and the minor peak 

at VE = 23 min to some residual free PS ligands. Dynamic light scattering (DLS) results in an average 

hydrodynamic radius of Rh = 14.7 ± 0.1 nm, proving the PS shell around the Au NPs (Fig. S4B). The 

small standard deviation indicates the absence of agglomerates in solution. 

 

Fig. S4. DMF-GPC traces (A) and particle size distribution obtained by DLS in toluene (B) of PS@Au 

NPs. 

5. Determination of Au NP concentration 

The concentration of the PS@Au NPs in the final toluene dispersion was determined using a method 

reported by Hendel et al.4 To this end, the absorbance of the PS@Au NP dispersion at 400 nm before 

normalisation of the spectrum and the corresponding dilution factor f were used to calculate the 

concentration of elemental Au (equation 1). 

[𝐴𝑢] =
𝐴400 ∙ 𝑓 ∙ 1.25 ∙ 10−4 𝑚𝑜𝑙 𝐿−1

0.3
                                           (1) 

The absorbance measured for the PS@Au NP in toluene was A400 = 0.5584 with a dilution factor of 

f = 60. To calculate the concentration of Au NPs in the dispersion, the radius of the Au NPs from TEM 

measurements (RTEM = 4 nm), the molar mass of Au (MAu = 196.97 g mol-1) and the density of Au 

(ρAu = 19.3·106 g m-3) is needed. Equation 2 is used to calculate the final Au NP concentration. 

[𝐴𝑢 𝑁𝑃] =
[𝐴𝑢] ∙ 𝑀𝐴𝑢

4

3
∙ 𝑅𝑇𝐸𝑀

3 ∙ 𝜋 ∙ 𝜌𝐴𝑢

                                                  (2) 

This yields in an Au NP concentration of [Au NP] = 5.3·1017 NP L-1. 
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6. Characterisation of the amidated PMMA homopolymer 

 

Fig. S5. HFIP GPC traces of PMMA (red) and amidated PMMA (black). 

7. Characterisation of the s-SEDMA triblock terpolymer 

 

Fig. S6. FT-IR spectrum of SEDMA. 

8. Characterisation of as-SEDMA 

 

Fig. S7 1H-NMR spectrum measured in CDCl3 (A) and µDSC heating and cooling traces (c = 10 g L-1 in 

THF, (B)) of as-SEDMA.  
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9. Optical properties of the as-SEDMA hybrid micelles 

 

Fig. S8 UV-Vis spectra of as-SEDMA hybrid micelles with ZnO (A), Au (B) and Ag (C) NPs.  

 

10. ZnO/as-SEDMA hybrid wCCMs in acetone 

 

Fig. S9 TEM micrograph of as-SEDMA/ZnO NP hybrid wCCMs (dispersion in THF/acetone = 

10/90 (v/v)).  
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11. In situ synthesis of Ag NPs in the presence of non-functionalized S48E27M25
141 wCCMs 

 

Fig. S10 Blend of Ag NPs and S48E27M25
141 wCCMs. The absence of functional groups for the 

incorporation of Ag NPs in the wCCM corona leads to a statistical distribution of free Ag NPs and several 

agglomerates over the whole copper grid. The scale bar in the inset corresponds to 50 nm.  

12. Continuous loading by microfluidics 

 

Fig. S11 For optimum mixing of the educts, we fabricated an individually designed microfluidic device 

based on a home-made PTFE chip (A) with a double-focusing cross that is made of four side channels 

and finally connected to a glass capillary (inner diameter D = 980 µm) via the central main channel, as 

visible in the detailed CAD-design (B). Illustration of the fluid focusing within the tailor-made 

microfluidic device (C). TEM micrograph (D) of the s-SEDMA/Au hybrid micelles prepared at following 

flow rates: s-SEDMA wCCMs: 2000 µL h-1, HAuCl4 · 3H2O: 2000 µL h-1 and L-Selectride: 1000 µL h-1 

(𝑄 = 8000 µL/h, 𝑡 = 17.0 s). 
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13. Aggregation behaviour of PS@Au NPs 

 

Fig. S12 UV-Vis spectra of PS@Au NPs in different solvent mixtures of THF and acetone.  

14. ZnO/s-SEDMA hybrid wCCMs in acetone 

 

Fig. S13 TEM micrograph of the s-SEDMA/ZnO NP hybrid wCCMs (dispersion in THF/acetone 

10/90 (v/v)).  

15. Binary loading of s-SEDMA wCCMs with Ag and PS@AuNPs 

 

Fig. S14 TEM micrograph of binary loaded s-SEDMA wCCMs with Ag and PS@Au NPs.  
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