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Abstract 

The formation processes of semiconductor nanomaterials and their size-controlled wet-chemical 

synthesis remain poorly understood, despite their importance. To realise the full potential of 

nanomaterials and to guarantee their successful implementation for cutting edge industrial 

applications, better insight into nanomaterial growth and assembly is essential. In this thesis, 

different semiconductor nanomaterial systems were chosen to highlight size-related properties 

arising from nano-confinement effects and to demonstrate the formation process in real-time. A 

range of formation regimes are studied, starting with the nucleation and growth of nanoclusters and 

nanocrystals, to their successful stabilization via inorganic and organic materials in the reaction 

mixture. 

In a first study, in-situ methodologies in combination with ex-situ characterization techniques were 

used to study the formation of methylammonium-based perovskites. The successful adaption of the 

diffusion-controlled soft-template method to microfluidic devices allows the in-situ detection of 

highly crystalline superstructures through oriented attachment of nanocrystals. The structural 

evolution of the growth stages of the perovskite nanocrystals were confirmed by ex-situ electron 

microscopy. In a second study, a novel, room temperature synthetic route to diverse colloidal metal 

chalcogenide and metal halide nanocrystals was developed in organic solvents. The systematic 

variation of reaction parameter (e.g. reaction temperature, ligand system, precursor ratio and 

injection order) together with monitoring of the size-related optical properties enabled cluster 

growth to be followed, highlighting the quantum confined nature of the structures. The composition 

was analysed by X-ray diffraction and advanced electron microscopy techniques. In a final study, 

nanoclay-stabilized CdTe quantum dots were synthesized via hot-injection method in aqueous 

media. Large areas of well-separated quantum dot arrays along an inorganic material framework 

were studied through the detection of size-related absorption features and complementary 

characterization methods, such as atomic force microscopy, fluorescence microscopy and 

transmission electron microscopy.  

These novel syntheses of inorganic/organic hybrid nanomaterials, as well as the novel 

methodologies developed to study their growth process, adds to growing pool of fundamental 

knowledge in the field of nanotechnology. This knowledge has the potential to augment the 

function of a variety of optoelectronic devices in the future.  
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Chapter 1 

Introduction and Motivation 

Nanomaterials deal with small particles with at least one dimension in the size range from 1 nm to 

100 nm. Their structures range from atoms to bulk materials and their properties are determined by 

their size and morphology.[1] The extreme spatial confinement leads to the so-called Ꞌquantum 

confinement effectꞋ. The most illustrative examples are semiconducting nanomaterials and 

scientists have shown great interest and ingenuity in exploring their material properties over the 

last decades.[2][3][4] 

Beside the quantum confinement effect the large effective surface area is also responsible for 

essential and outstanding features of colloid nanomaterials which are beneficial and attractive for 

further technologies.[5][6][7]  

Inorganic nanocrystals show novel and unique size and shape dependent magnetic[8][9] 

electronic[9][10], catalytic[6] and optical[9][10] properties based on these aforementioned nano effects[1]. 

They have received considerable attention and show potential application in fields such as magnetic 

data storage[11], solar cells[12], catalysis[5]. Therefore, the research field of colloid chemistry is a 

rapid evolving area in view of the development of synthetic techniques to generate nanocrystals 

which are uniform in shape, size and stoichiometry. Recent synthetic advances demonstrate the 

production of high-quality nanocrystals with novel functionalities.[13][14][15] The focus lies in 

methods which are easy to upscale, highly versatile for varying compositions, and a good size, 

shape and surface control. Essential studies[2][16][17][18] over the last two decades investigated the 

size- and shape-tunability of nanoparticles and their structure-related properties to gain a better 

understanding and insight in the field of colloid chemistry.  

Current research is also focused on the development and successful implementation of 

nanomaterials for technological applications.[1] The combination of ease of fabrication and 

processing of nanomaterials while maintaining their outstanding properties requires intensive 

research efforts which are the subject of on-going studies.[19][20]  

The grand challenge lies in the fundamental understanding of the nucleation and growth process of 

nanocrystals, because the ability to control their size and shape is important for the development of 

synthetic routes to prepare high-quality semiconductor nanocrystals. Organometal halide 

perovskites show remarkable optoelectronic properties and hold a vast potential for new 

photovoltaic applications. Therefore, structure-related studies should open up opportunities for 
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fundamental research on the controlled synthesis and characterization of the hybrid perovskite 

family.  

Much attention has been paid to the regular quantum dot growth of III-V or II-VI semiconductors, 

whereas the experimentally observed formation of their magic-sized cluster (MSC) intermediates 

is still poorly understood. Their significance in fundamental studies, mainly due to their size-

dependent properties of molecule-like precursors with discrete numbers of atoms should be 

addressed for an enhanced understanding of the colloidal synthesis.[25][26] 

Recent studies using the combination of ex-situ and in-situ characterization techniques such as X-

ray scattering[21][22], transmission electron microscopy (TEM) and UV-Vis spectroscopy[23][24] have 

given a better insight into the growth process of nanocrystals in solution. Such methods should be 

useful to monitor the nucleation and growth process of nanomaterials showing confinement effects.
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Chapter 2  

Fundamentals 

2.1 Fundamental Concepts of Colloidal Nanocrystals 

The grand challenge in synthesizing nanocrystals of high quality (crystallinity, monodispersity etc.) 

is to understand the interplay of the reaction factors (e.g. precursor reactivity, precursor 

concentration and reaction temperature) and the growth process in detail. For many years, the 

formation process of colloidal systems was described by basic theoretical models which are 

explained in the following paragraphs. 

 

2.1.1 LaMer Theory 

The formation process of inorganic nanocrystals according to the model of LaMer and Dinegar[27] 

has been known since 1950 and can be divided in three parts which are illustrated in figure 1: 

I) The free monomer concentration in solution increases rapidly with proceeding reaction time. 

After reaching the supersaturation level CS, homogenous nucleation is possible but effectively 

infinite.  

II) After exceeding a critical nucleation concentration Cmin level the system has to surpass a high 

energy barrier for the self-nucleation. The burst nucleation reduces the free monomer concentration 

which drops below the critical level and no additional nucleation occurs.  

III) Nanocrystals grow under the control of monomer diffusion towards pre-existing nuclei in 

solution. The reaction on stable nuclei surfaces results in discrete particles under the consumption 

of monomers. For the preparation of monodisperse nanoparticles the separation of  nucleation and 

growth processes is essential and a high nucleation rate is followed by a slow growth process.[18] 
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Figure 1: Schematic representation of the LaMer model. The qualitative plotted curve describes the monomer 

concentration as a function of time.  

 

2.1.2 Classical Nucleation 

The basic idea of the separation of nucleation and growth[18] can be interpreted as the division into 

a homogenous and heterogeneous phase. The energy barrier for the generation of nuclei from 

solution (homogenous nucleation) compared to the growth process at the expense of monomers 

onto existing stable nucleating surfaces (heterogeneous nucleation) is much higher. The classical 

nucleation[28] theory is the expression for the thermodynamically driven formation process which 

is depicted in figure 2. 
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Figure 2: Free energy ∆G diagram of the surface ∆GS, bulk ∆GB, and total free energy ∆GT contributions as 

function of the particle radius r. The critical radius rc describes the energy barrier for the smallest stable 

particle during the nucleation according the classical nucleation theory. 

 

The homogenous nucleation is described by summing at the total free energy of a system ∆𝐺𝑇 of 

spherical particles with radius r. The principal aim of the model is to estimate the formation of a 

stable nucleus in which the total free energy of ∆𝐺𝑇 is in general expressed as the sum of the surface 

free energy ∆GS with surface energy 𝛾 and bulk free energy ∆GB, which is dependent upon 

temperature T, Boltzmann´s constant 𝑘𝐵, supersaturation of the solution S and molar volume v of 

the system.  

∆𝐺𝑇 =  4𝜋𝑟2𝛾 + 
4

3
 𝜋𝑟3∆𝐺𝐵                 (2.1) 

∆𝐺𝐵 =  −𝑘𝐵𝑇 ln (𝑆) 𝑣⁄       (2.2) 

Changing the experimental parameters like temperature T, supersaturation S and surface free 

energy ∆GS due to variation of stabilizing ligands has strong effects on the system.[18] The 

contribution from the bulk free energy term ∆GB is always negative and favours nuclei formation 

in a supersaturated system. The positive term of the surface free energy ∆GS describes the 

unfavourable formation of new surfaces. The total free energy ∆GT as a function of radius r 

represents a maximum free energy which a nucleus needs to become stable, without getting 

redissolved.  

     ∆𝐺𝐶 = 4 3⁄ 𝜋𝛾𝑟𝐶
2                               (2.3) 
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This energy barrier is called the critical free energy ∆GC which is required to obtain stable particles 

with the critical radius 𝑟𝐶.  

𝑟𝐶 =  
−2𝛾 

∆𝐺𝐵
                                     (2.4) 

The critical particle radius corresponds to the minimum size particles which persist in solution 

before growing further. 

 

2.1.3 Classical Growth 

According to the classical nucleation model[28], nuclei are formed which act as templates for further 

crystal growth. Each growing particle can be treated as a spherical and independent particle which 

is surrounded by a concentration gradient with spherical symmetry.[29] The growth process can be 

described according the classical growth theory[18][30] and consists of monomer diffusion to the 

surface and then reaction at the surface. Both the number of nuclei and free monomers control the 

growth process. 

The diffusion mechanism can be described according Fick’s first law[29], where the monomer 

transport J is proportional to the diffusion coefficient D and x is the distance to the centre of the 

particle. The monomer concentration gradient 
dC

dx
 is the driving force and is also proportional to the 

flux of the monomers to the particles J. 

𝐽 =  −4𝜋𝑥2𝐷
𝑑𝐶

𝑑𝑥
                        (2.5) 

For particles in solution, where δ is the distance from the particle surface to the bulk monomer 

concentration CB and CI the monomer concentration at the solid/liquid interface, Fick´s first law 

can be rewritten as 

𝐽 =  −
4𝜋𝐷𝑟(𝑟+𝛿)

𝛿
(𝐶𝐵 − 𝐶𝐼)                       (2.6) 

For nanosized particles, the particle radius r is smaller than the diffusion layer δ (r ≪ δ) and can 

be neglected. After the diffusion to the particle, the surface reaction can be written as 
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𝐽 =  −4𝜋𝑟2𝑘(𝐶𝐵 − 𝐶𝑅)                     (2.7) 

Where the rate of the surface reaction, k, is independent of the particle size, and CR is the 

concentration at the surface of the particle. For the classical growth model, either the monomer 

diffusion to the particle surface or the monomer reaction at the surface is the limiting factor. If the 

monomer-surface reaction is faster than the diffusion step, it can be ascribed as a diffusion 

controlled (D << kr, kr: rate of surface reaction) process. The opposite case describes a surface 

reaction rate controlled (D >> kr) process, where the diffusion rate is much higher than the reaction 

rate.  

 

2.1.4 Growth Mechanism of Nanoparticles  

Different existing models describe the growth mechanisms that produce nanocrystals and which 

dictate the final morphology of nanoparticles. Modern in-situ characterization techniques[31] allow 

the evaluation of the growth process based on new concepts of non-classical growth of inorganic 

nanoparticles.[32] 

Monomer attachment describes the initial growth process after the nucleation stage.[32] The 

mechanism includes two similar processes: coalescence[33] and orientated attachment[34][35] which 

differ in the orientation of the crystal lattice. The coalescence describes the non-preference for grain 

attachment among neighbouring grains which leads to randomly orientated lattices planes.[31] The 

orientated attachment, also known as the grain rotation-induced grain coalescence mechanism 

(GRIGC), is the perfect crystallographic alignment of the lattice planes and coalescence of 

neighbouring grains, eliminating a common grain boundary. The rotation of grains during the 

attachment is driven by low energy configurations.[36] 

In 1950 the widely used nucleation and growth model of LaMer was described the first time and it 

is also interpreted for the synthesis of nanocrystals. According to this model, the diffusion and the 

consumption of monomers result in particle growth. Oriented attachment is a new approach to 

explain the growth process of nanocrystals and does not match with the classical model by LaMer. 

The approach was increasingly described in the last twenty years and explains the self-assembly 

into single-crystalline nanostructures from individual particles.[34][35] There is no current model for 

quantifying this growth process and modelling the growth kinetics.  



Fundamentals 

8 
 

 

Ostwald ripening occurs in the later growth stages.[31] The thermodynamic driven mechanism 

describes the growth process of larger particles at the expense of smaller particles in solution.[37] 

The atoms from smaller particles undergo dissolution because of high solubility and surface energy, 

resulting in larger particles. Digestive ripening[38] can be explained as the inverse Ostwald ripening 

process. Colloidal particles are transformed in smaller particles at the expense of large ones by the 

reduction of the interfacial free energy.[39] 

The controlled synthesis of high quality semiconductor nanocrystals has been an important material 

chemistry research topic. The shape control of CdSe nanocrystals was described by Peng and co-

workers as interparticle growth process.[40] The interplay of chemical potential of the bulk solution 

and the surface energy of the particle facets is responsible for the diffusion-controlled growth 

process of the monomer along the nanocrystal surface. 

 

2.2 Semiconductor Clusters and Regular Quantum Dots  

Nanomaterials are attracting increasing attention due to their novel, tunable and fascinating 

electronic and optical properties. The following chapter addresses semiconducting materials and 

the impact of size reduction within the nanometer region. Two main effects related to reduced size 

of nanomaterials are investigated: the quantum confinement effect and a large volume-to-surface 

ratio which are explained in more detail. 

 

2.2.1 Regular Quantum Dots 

Regular quantum dots (QD) are semiconductor nanocrystals composed of periodic group III-V or 

II-VI semiconductor materials such as ZnS[41], PbS[42], CdS[43], CdSe[43][44][45], CdTe[43][46] They 

consist typically of 100–100,000 atoms per QD and have sizes between 2-50 nm depending on the 

material.[47] They have been studied because of their novel optoelectronic functionalities resulting 

from their unique size- and shape-dependent properties due to nanoscale size effects.[1][2][45] The 

size effects find their origin in the quantum confinement and surface effect which are defined 

below. 
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Figure 3: Comparison of electronic energy states and bandgap of different types of semiconductor materials. 

Starting with inorganic bulk semiconductors with separated energy bands (left), different sizes of inorganic 

nanocrystals (quantum dots, middle) and molecular semiconductors with discrete energy levels (right) 

explain the origin of the nanoscale size effects.  

 

Calculations according the Linear Combination of Atomic Orbitals (LCAO) theory[48] provide more 

information about the energy band structure in crystalline materials of different sizes.[47][49] In 

principle, the combination of atomic orbitals leads to the evolution of bonding and anti-bonding 

molecule orbitals (energy states).[47] The electrons from the individual atoms occupy the bonding 

molecular orbitals (highest occupied molecular orbital, HOMO). The first unoccupied antibonding 

orbital is termed the lowest unoccupied molecular orbital (LUMO). The HOMO and LUMO levels 

are separated by a forbidden energy bandgap Eg where no orbitals exist. For crystalline bulk 

materials the number of atom increases (~1023 atoms) and the electronic structure changes from a 

discrete energy level structure to continuous energy bands.[47] The total number of energy levels 

increases with the number of atoms in the molecule and becomes a continuous energy band. The 

conduction band is equivalent to the LUMO level and the valence band consists of bonding 

molecule orbitals (formerly HOMO). For semiconductor materials the energy bands are split into 
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two, separated by the bandgap making them different to the parent metal band structure. Nanosized 

QDs can be considered as large molecules and show the formation of a quantized electronic band 

structure. [48][49] With the absorption of photons, excitons can be generated which are the bound 

state of electrons and electron holes driven by electrostatic Coulomb forces.[47][49] The Coulomb 

forces in semiconductor nanocrystals is much higher compared to bulk material. Due to the size 

restriction in nanocrystals the spatial extension of the exciton wave function is confined.[45][47][48] 

The spatial restriction of the exciton wave function and also the density of electronic states and the 

bandgap separation Eg.  

The degree of the quantum confinement[16][48][49] depends on the nanocrystal shape and is useful for 

the classification of nanomaterials (Figure 4). Nanoparticles can be synthesized with confinement 

in all directions (0D). For anisotropic nanocrystals, like quantum rods, wires or tubes, the excitons 

are confined in only one direction (1D). Nanoplatelets or thin films have the confinement only in 

their thickness (2D). Due to the ongoing restriction in their dimensions, the density of energy states 

changes from bulk material (3D) to discrete quantized energy levels for 2-, 1- and 0-dimensional 

structures.  

 

Figure 4: Schematic illustration of the reduced dimensionality of semiconductor nanocrystals. Bulk 

semiconductor, quantum well (2D), quantum rod (1D) and quantum dot (0D).  

 

The impact of the quantum confinement effect on the quantum dot properties can be evaluated by 

the size restriction of the QD and the corresponding Bohr radius rB.[48] One can distinguish between 

the weak confinement regime and the strong confinement regime depending on the semiconductor 

nanostructure.[17][48] The confinement phenomena lead to massive changes in the optoelectronic 

properties of semiconductor nanocrystals and the QD becomes strongly size- and shape-

dependent.[1][16][17] By implication, the examination of the light absorbance together with empirical 

calculations[48][50][51][52] and the photoluminescence/quantum yield detection[17][41][53] give 
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information about electronic and optical material properties including the bandgap of 

semiconducting materials and their elemental composition.[2][17][48]  

The second finite size effect is the increased surface-to-volume ratio and important consequences 

of this are surface-related phenomena.[6][13][45][48][54] The relative proportion of surface atoms in 

small quantum dots increases with smaller particle sizes, while the total number of atoms gradually 

decreases. Due to the exceptionally large surface-to-volume ratio, the surface becomes the 

dominant player in many chemical and physical processes. Surface effects, and particularly surface 

defects for charge carriers,[48][55] lead to quenching of the radiative recombination of excitons in 

QDs and to a reduced emission and quantum yield. These so-called surface traps are caused by 

lattice defects and dangling orbitals. Passivating agents (i.e. ligand molecules) can be used to coat 

the surface of colloidal nanocrystals to prevent nonradiative recombination of excitons at these 

traps.[9][18][48][56] The surface modification is very important to lower the surface trap energy and to 

achieve photostable QDs. Additionally, the organic surfactants are able to control size and shape 

during preparation but also post preparative ligand exchange[13][18] affect the colloid stability and 

the electronic/optical properties.  

 

2.2.2 Magic-sized (Nano-)clusters  

Over the last few years numerous research groups[4][25][26][52][57][58][59][60] observed the synthesis of 

II-IV metal chalcogenide nanoparticles yielding some findings concerning the reaction kinetics. 

The synthesis of regular quantum dots based on a series of increasing size nanoclusters occurs 

according the ꞌliving-metal polymer conceptꞌ.[25] In the early stages of the reaction the creation and 

degradation of discrete nanoclusters could be observed by spectroscopic methods.[4][52][57][60][61][62] 

The detection of narrow absorbance peaks during the growth of these products indicate the 

existence of small nanocluster species.  

Magic-sized clusters (MSC) describe clusters of particularly high stability with a core diameter 

between 0.5 < d < 2 nm.[52][57][61] The MSCs consist of discrete numbers of atoms and show a high 

monodispersity in size and specific stoichiometry.[57][63] Each cluster size refers to a stable atomic 

configuration which can be explained by the absence of regular quantum dots and ripening 

processes.[4][58] A Gaussian fit can be used to characterize the absorbance signals with typical Full 

Width Half Maximum (FWHM) around 10-30 nm.[60][64] 
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Peng et al.[62] were able to synthesize CdSe at 250 °C and to monitor a sequential cluster formation 

in real-time during the reaction. The particle size 4 ms after the injection was calculated to be 

1.75 nm. Kudera et al.[53] observed different families of clusters during the synthesis of CdSe 

quantum dots by the consumption of more metal precursor. According to these studies, the result 

indicates that sharp absorption signals of highly stable nanocluster intermediates arise at lower 

temperatures, whereas at higher temperatures the life-span decreases significantly and the 

conversion into regular quantum dots could be monitored. The general mechanism describes that 

relatively mild reaction temperatures slow down the reaction rate and facilitate the study of magic-

sized clusters. The formation process depicted in figure 5 involves the appearance of ultra-small 

cluster peaks in the early growth stages, followed by the diminishing of the cluster peaks and the 

evolution of new nanocluster sizes (small MSC).[53] A high temperature is favourable for the 

transformation into regular quantum dots. 

 

Figure 5: Characteristic formation of magic-sized clusters (MSC) during the synthesis of regular quantum 

dots (QDs). Different families of MSC can be observed within a series of growth steps. One cluster family 

arises at the expense of smaller cluster sizes.[53] 

 

The stepwise red-shift of individual absorbance peaks from various MSCs underline the sequential 

series of magic-sized clusters. After recording the UV-vis spectra over many hours, the average 

size of a family remains constant and grew only in size with sufficient stabilization through organic 

ligands. Dance et al.[65] synthesized in 1984 the first chalcogenide molecular clusters and claimed 

that the presence of the ligands lead to stable molecular clusters. During the synthesis of MSCs the 

(co-)existence of cluster families can be detected which can be assigned to a heterogeneous growth 

process.[57] 

In contrast to this observation, the formation of conventional nanoclusters is termed a homogeneous 

growth process.[57] The formation of polydisperse ensembles and the gradual shift of the bandgap 
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absorbance peak with time during synthesis are characteristic for the formation of ultra-small 

nanocrystals.[60]  

The unique behaviour of MSC is an interplay of the synthetic parameters like the temperature[58][61], 

the prepared starting material, the monomer concentration[52][60][61] and nature of the ligands 

(ligand/QD surface chemistry)[58][60], the supersaturation caused by the monomer concentration, the 

solvent, the affinity of ligands and the ratio of monomers in the system.[57][64] The formation and 

also the synthesis of stable semiconductor nanoclusters is more challenging compared to metal 

nanoclusters but all these different approaches gain better access to investigations of early growth 

stages. The isolation of MSC, their sensitivity to chemical treatments and their insufficient 

characterization with common methods are the reason that nanoclusters and their resultant 

properties are only transiently observed.  

 

2.3 General Aspects of Wet-chemical Colloid Synthesis 

Various methods are used for the preparation of nanocrystals and classified in two wide-ranging 

categories termed as ꞌTop-downꞌ and ꞌBottom-upꞌ processes.[16][18] 

The ꞌTop-downꞌ approach, describes the generation of nanostructures from larger initial objects. 

Typical physical based methods are lithography through etching[66] or electron-beam 

lithography[67]. Another way to produce nanoparticles is the application of ball mills[68] where shear 

forces are necessary to break microparticles in nanoscaled particles. The advantage of these 

approaches is the production of large quantities of nanocrystals but it is challenging to fabricate 

uniform-sized nanocrystals with good size control. 

The ꞌBottom upꞌ strategy uses building blocks like atoms and molecules which form larger 

structures through wet-chemical processes.[18][30] In contrast to the ꞌTop-downꞌ approach, 

homogenous nanocrystals in only sub-gram quantities can be produced. Semiconductor 

nanocrystals have been synthesized by solution-phase synthesis including the most popular 

synthetic procedures involving the ꞌhot-injectionꞌ method[2][18][43] and the ꞌheat-upꞌ synthesis[30] of 

precursors.  
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2.3.1 Strategy to Synthesize Semiconductor Materials at High Temperature 

The most common wet-chemical colloid methods are based on the formation of nanocrystals inside 

confining structures. The basic concept of the ꞌheat-upꞌ synthesis is mixing the precursor at low 

temperature and doing the precursor reaction at higher temperatures. The first stage (according 

LaMer model, Chapter 2.1.1) is the precursor decomposition which occurs sufficiently quickly and 

results in supersaturation of the system. The supersaturation leads to burst nucleation (stage II) at 

controlled temperature followed by a seed-mediated growth process with the assistance of organic 

surfactants (stage III).[30][69] 

The alternative ꞌhot-injectionꞌ approach, consists of precursors which act as an initial monomer 

source in high boiling point organic solvents. For the solubilization and stabilization organic 

surfactants are present. For the synthesis in aqueous medium the precursor and stabilizing ligands 

show good solubility in water. The decomposition of the precursor at elevated temperatures and 

the injection of further components lead to a controlled nucleation event followed by the growth 

process to nanocrystals.[30][40][69] 

The ultrafast nanocrystal synthesis of CdE (E=S, Se, Te) in aqueous solution in presence of water 

soluble ligands could be prepared with NaHE and CdCl2 as precursor (Figure 6).[2] Zou et al. 

outlined the drastic impact of the monomer ratio, the stabilizing ligand, and the pH value of the 

reaction mixture. According to this method, quantum dots of high quality (i.e. crystallinity and 

optical properties) can be synthesized but the drawback is the high sensitivity of precursor and the 

production of toxic by-products. Chapter 4 in this thesis describes the important preparation of ꞌhot-

injectionꞌ-prepared nanocomposites by monitoring the in-situ growth process. 
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Figure 6: Mercaptopropionic acid (MPA) is used as capping ligand for the controlled synthesis CdTe quantum 

dots of various sizes covering the emission window from 500 nm to 800 nm.  

 

For the formation of colloidal nanocrystals, the reaction parameters, such as reaction temperature 

and time, precursor decomposition, monomer concentration and solubility and diffusion and 

solvent play a crucial role. The choice of capping ligands is also essential because they act as 

mediator to control of the crystalline phase, and the size and morphology of the nanomaterials.[56] 

For designing novel syntheses (see Chapter 6) appropriate reaction components should be carefully 

chosen by inspecting the decomposition and formation mechanism and the complex interplay of 

each reagent, which is still poorly understood.  

 

2.3.2 Strategy to Synthesize Semiconductor Materials at Room Temperature 

Beside the mentioned procedure, involving high-temperature thermolysis of precursors, the 

ꞌBottom upꞌ approach also includes the production of nanoparticles by ꞌChemical Precipitationꞌ at 

moderate temperature.[70][71] 

For instance, the preparation of high quality perovskite nanocrystals based on this concept[72][73] can 

overcome the problem of thermal, moisture and photo-instability. The precursor of 
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methylammonium based perovskites (methylammonium lead perovskite, MAPbBr3) were mixed 

in a suitable solvent which exhibit a good solvency for the solids. The subsequent addition of an 

anti-solvent induced crystallization because of the reduced solubility of the precursor ionic building 

blocks. Through the addition of anti-solvent, the supersaturation of the reaction system can be 

realized which leads to seed formation. Additionally, the growth process can be controlled through 

the addition of organic stabilizing ligands. In Chapter 5 more information is provided about the 

investigation of the nucleation and growth process of organic CH3NH3PbBr3 perovskites based on 

the ꞌanti-solvent induced precipitation conceptꞌ. 

An alternative procedure is based on a ꞌLewis acid-base reactionꞌ at room-temperature to synthesize 

II-VI semiconductor nanoclusters in absence of nanocrystals.[58] For this synthesis, a metal, highly 

reactive halide-amine complexes, and octylammonium selenocarbamate, react in n-octylamine, the 

latter acting as both ligand and solvent. The reaction of the precursor according to the HSAB 

concept[74] lead to the formation of n-octylamine-passivated nanoclusters in absence of larger 

nanocrystals. Characteristic absorption features clearly indicate the presence of alloy nanoclusters. 

A subsequent heating step results in the formation of larger nanocrystals. Chapter 6 uses a similar 

approach for the development of inorganic clusters and nanocrystals.  

 

2.4 Fundamentals of Microfluidics 

The introduction of microfluidic systems-based downscaling of conventional flask-based systems 

and laboratory-based analysis systems provides a new class of devices.[75][76] For our interest, this 

approach is used for chemical transport and nanoparticle formation within microfluidic channels.[77] 

The systems deals with small volumes of fluids, typically 10-9-10-18 litres, channels of tens to 

hundreds of micrometers and diffusion is the mass transport phenomenon which plays the major 

role.[78] The aim of microfluidic systems is to enhance the mixing efficiencies and increase 

throughput.[79] Micrometer-scale chips allow the integration of data analysis[21][24] for in-situ 

detection of experimental conditions, and their combination with high-precision syringe pumps for 

the liquid transport through the channels. Detection techniques include UV-Vis and fluorescence 

measurements[24], X-ray scattering experiments[21][80], and confocal laser scanning microscopy[77][80] 

with high temporal and spatial resolution sensitivity. The systems are highly attractive because of 

their low sample consumption through the confined fluid flow, low fabrication costs, short time for 
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analysis and upscaling to industrial scales.[78] The microfluidic approach for nanoparticle formation 

allows the separation and a precise study of nucleation and growth of crystals within the channel. 

The fluid behaviour and the fluid dynamics of Newtonian fluids in confined microfluidic systems 

differ from those in macroscopic systems. In a micrometer-scale channel, capillary forces dictate 

the flow of the fluid and the stream is largely influenced by the surface energy of the channel walls 

and the surface tension of fluid itself.[81][82] The fluid dynamics of Newtonian fluids is described by 

the Navier-Stokes equation, where 𝜌 is the fluid density, 𝑢 is the fluid velocity, 𝑓𝑒𝑥𝑡 is the external 

force acting on fluid, 𝑝 the pressure of the fluid, and 𝜇 is the kinematic viscosity of the fluid. 

𝜌 (
𝜕𝑢

𝜕𝑡
+ ((𝑢∇)𝑢)) =  𝑓𝑒𝑥𝑡 − ∇𝑝 + 𝜇∇2𝑢             (2.8) 

From the Navier-Stokes equation follows the Reynolds number, which is a dimensionless 

parameter used in studying fluids with the fluid velocity 𝑢, the dynamic viscosity and 𝐿, the length 

of the channel. 

𝑅𝑒 =
𝜌𝑢𝐿

𝜈
                              (2.9) 

These fundamental equations describe physical and chemical processes of well-defined flow 

conditions. For flows in long and straight channels, with radius/height of 1-100 µm and velocities 

not greater than the cm/s range, the Reynolds number for flow will be so low that all flow will be 

laminar.[83] Under these conditions, diffusion is the important mass transport phenomenon which 

plays the major role  in microfluidic devices. 

The liquid flow inside microchannels is laminar, meaning that multiple liquid streams can flow 

side-by-side without turbulent mixing, allowing good spatial control.[81] In laminar flow, the 

velocity of a particle is not a random function of time. The streamlines are all straight and parallel, 

and the magnitude of the velocity is constant. The ratio of inertial to viscous forces on fluids is 

characterized by the Reynolds number  

𝑅𝑒 =
𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠
                                     (2.10) 

Pressure driven flow occurs in microfluidic devices in which the fluid is pumped through the 

device. The fluid dynamics in this case are assumed to have no-slip boundary conditions, meaning 

the velocity vector of a flowing fluid is assumed to be zero at the wall. 
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Within the channel a parabolic-flow profile is observed at any cross sectional view with the highest 

velocity along central streamline.[82]  

 

The Stokes flow region with very low Reynolds numbers (Re <<1) poses a challenge for mixing. 

Mixing along the channel occurs via diffusion when there is a concentration gradient of one kind 

of molecule within a fluid. The Péclet number, a dimensionless quantity, describes the transport 

phenomena defined as the ratio between the system length and the diffusion length. 

𝑃𝑒 =
𝐿𝑢

𝐷
                                       (2.11) 

Where L is the characteristic length, 𝑢 is the average fluid velocity and D the diffusion coefficient. 

Furthermore, the Péclet number determines the required channel length for each component to 

diffuse across the channel width. For Pe >> 1, the diffusion length is much shorter than system size 

and concentration gradients form within system. For Pe << 1, the diffusion length is much longer 

than the system size which describes a linear concentration profile. 

Precise microfluidic design control[78] enables fabrication of reproducible microfluidic channels. 

Fluids streams come together in the microfluidic channel and diffusion of molecules occurs across 

the interface between fluids (anti-solvent precipitation). 

 

2.5 Fundamentals of X-ray Scattering Experiments 

Optoelectronic properties of nanoparticles depend on the chemistry of the material and on the 

dimensionality, which includes the size and shape of nanomaterials ranging from 0D spherical 

objects, 1D nanorods and 2D nanosheets to 3D superstructures.  In-situ small-angle (SAXS) and 

wide-angle X-ray scattering (WAXS) measurements are relatively non-destructive analytical 

methods and provide structural information about the nucleation and growth of nanomaterials.[21] 

This chapter gives an overview of X-ray scattering and a basic account of the analysis method. X-

rays are electromagnetic waves with wavelength from 0.1 nm to 10 nm and can be used for the 

study of objects with very small dimensions, including atoms, molecules and nanocrystals.[84][85] In 

a typical scattering experiment, a collimated X-ray beam collides with a sample, where three 

interactions can be described. One fraction of X-rays will be absorbed, another fraction will pass 

through and a fraction will be scattered on the scattering objects.[84] Scattering can be divided into 
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Compton scattering (inelastic scattering) and Thomson scattering (elastic scattering). Whereas 

Compton scattering does not carry structural information, Thomson scattering is interesting for 

fundamental structural studies. In this scattering event, the incoming photons hit the sample and 

scatter without energy transfer. The X-rays collide with the bound electrons of the scatting object 

and induce the oscillation of these electrons with the same frequency. This causes the emission of 

radiation with the same frequency of the incident wave. In case of an aperiodic scatterer, the emitted 

secondary waves are scattered in all directions.  

 

Figure 7: Schematic representation of two incident X-rays (blue) on three atomic layers of a crystal, e.g. 

atoms are separated by the distance d. The X-rays are reflected (red) from the adjacent planes with the path 

difference between two X-rays of 2𝑑 𝑠𝑖𝑛𝜃.  

 

For a periodic scatterer (figure 7), coherent waves of neighbouring atoms can interfere and scatter 

in precise directions. The scattered X-rays are detected and the information is summarized in an 

interference pattern caused by constructive (bright spots) and destructive interference.[86] Bragg 

formulated a fundamental equation for the interference of X-rays which is defined as  

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃                                        (2.12) 

The interplay of the scattering angle θ, the distance d of the periodic planes and the wavelength λ 

of the X-rays are described by Braggꞌs law. For constructive interference, the secondary X-rays are 

in phase and the phase difference 2d sinθ must be an integer number n of the wavelength λ. The 

conditions for Braggꞌs law are met. The destructive interference occurs when the equation is not 
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satisfied and this leads to dark spots in the interference pattern. The scattered X-rays are detected 

and lead to a 2D scattering pattern with structural information about the scatterer.  

In the Fourier space, the Braggꞌs law is rewritten as 

𝑞 =
2𝜋

𝑑
=

4𝜋 

𝜆
𝑠𝑖𝑛𝜃                                    (2.13) 

and shows the reciprocal relation between the size of the particle d and the scattering angle θ. In 

contrast to the scattering angle θ, the ꞌlength of the scattering vectorꞌ q  is independent of the applied 

wavelength and the resulting scattering profile shows gives structural information as function of 

the q-value. The dimension of q-values is one over length [1/nm] and therefore small objects scatter 

at large angles (q-values) and large objects scatterer at small angles (q-values).[84] 

As mentioned above, the interference of secondary waves emitted from a certain object produce 

2D scattering patterns in the plane of the detector. The amount of data can be reduced by producing 

a 1D scattering pattern which contains all the necessary information about the scatterer. This SAXS 

pattern consists of three regimes[87], the Guinier, Fourier and Porod regions. 

The Guinier regime is located at very low q-values, and gives information about larger objects in 

real space. Analysis of this regime allows the direct estimation of the radius of gyration Rg. The 

Guinier plot is the line fit to the natural logarithm of the intensity as a function of q2 (ln I(q) vs. q2). 

The structure of the particles can be determined, by calculating the volume and molecular weight 

of the scattering object.[84] 

The Fourier region gives significant information about the particle shape and the size distribution. 

The decay at large scattering angles is directly related to the particle shape. The Porod regime 

describes the interface and fractal dimensions of scattering objects. The inter-particle interference 

has no effect at large angles and the surface-to-volume ratio can be determined.  

The particle size, volume, and electron density can be described as a function of the form factor 

F(q).[87] The scattering of the intra-particle structure in an ideal monodisperse and diluted solution 

is collected and no position or orientational correlation between single particles contribute to the 

experimental scattering curves. The particles are well-separated and the total intensity of the 

scattering profile is then the sum of each particle intensity for monodisperse particles. The 

scattering is produced by the atoms of the particle and those of all identical particles is summed up 
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and the scattering pattern is the result of the form factor multiplied by the number of the detected 

particles. 

At higher concentrations, stronger interaction between particles cannot be neglected and a densely 

packed particle system leads to rearrangement of particles and a long-range order (Van-der-Waals 

interaction, Coulomb interaction, hard-sphere interaction).[84] The Structure factor S(q) becomes 

important and provides information about these interactions.[85] The corresponding scattering curve 

shows Bragg peaks for periodic components and the degree of order of the particles (peak intensity), 

and the spatial extent of the ordered domain (peak width), give more information. The 

multiplication of the Form factor F(q) and the Structure factor S(q) contribute to the SAXS pattern 

and together contain the information about the internal density of the particles and interactions. 

𝐼(𝑞) = 𝐹(𝑞)𝑆(𝑞)                              (2.14) 

The sample-to-detector distance, and the beam collimation will greatly influence the scattering 

profile. For the generation of high intensity X-rays (keV) a synchrotron radiation source is 

necessary where the X-rays are produced accelerated, collected and collimated into an intense X-

ray beam (beamline).[88] With a shorter sample-to-detector distance, diffraction patterns at larger 

scattering angles can be observed. The method is therefore called wide-angle X-ray scattering 

(WAXS) and the crystallinity (crystal structure) on the atomic scale can be detected. WAXS is 

based on the same theoretical background as SAXS and requires analysis of scattering patterns 

caused by Bragg peaks.  

 

2.6 Fluorescence and Confocal Microscopy  

Organic or inorganic specimens are able to absorb light of appropriate wavelength and emit light 

at a longer wavelength. The wavelength of excitation and emission is material-dependent with the 

energy shift to longer wavelength known as the Stokes shift.[89] The excitation and emission process 

(figure 8) can be described as follows: Molecules are, at ambient temperatures, in their ground 

electronic state S0 (lowest energy state). Through the absorption of photons, the energy of the 

electron increases and it goes in to a higher energetic level (S1 and S2). Collision with surrounding 

molecules (≤ 10-8 sec) and spontaneous emission lowers the energy of the molecules by emitting 

photons and the electron drops from the higher energy level back to a lower energy level. Either 

the subsequent emission can be nearly simultaneous with absorption, known as fluorescence or the 
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emission persists for a longer time after excitation, known as phosphorescence (due to intersystem 

crossing).[89][90] 

       

Figure 8: Jablonski diagram displaying schematically the details of the absorption and emission process of a   

molecule (left) and the basic setup of a fluorescence microscope with light source, excitation filter, dichroic 

mirror, objective, emission filter and detector or eyepiece (right).   

 

Based on this phenomenon, standard fluorescence microscopy and Confocal Laser Scanning 

Microscopy (CLSM) have become important techniques in material science (e.g. semiconducting 

quantum dots).[90][91][92] The basic principle of fluorescence microscopy is, to form images from 

objects which fluoresce (within a few nanoseconds).[89] Light is coming from the light source (e.g. 

mercury arc lamp) and travels through collector lenses and apertures to the excitation filter, where 

the desired wavelength can pass the filter and the undesired wavelengths are blocked. The 

excitation wavelength reaches the dichroic beam splitting mirror, which is oriented at a 45° angle 

to the incoming light. Light of shorter wavelength reflects at this interference filter while light of 

longer wavelength is transmitted. The excitation light passes through the objective and to the 

sample. The emitted fluorescent light is gathered by the objective and passes back through the 

dichroic mirror, because the emitted light consists of longer wavelengths. With the help of an 

emission filter undesired emission is suppressed and the fluorescent light of interest can reach the 

detector or eyepiece.[90][93]  

Typically, the emission intensity is 105 to 106 times lower than the excitation light.[90] Therefore, 

powerful lamps, a high specimen extinction coefficient and quantum yield and the fluorescence 
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lifetime are all important factors which contribute to the intensity of the fluorescence emission. For 

instance, a high intensity mercury lamp generates light in the near UV spectrum, which covers the 

excitation wavelength region for CdTe quantum dots.[90][94] Modern microscopes combine a lot of 

technical improvements like digital acquisition or electronic imaging to detect low light level and/or 

visually undetectable radiation.  

Confocal microscopy, also known as Confocal Laser Scanning Microscopy (CLSM) is a 

specialized form of standard fluorescence microscopy. The basic concept was developed in 1955 

by M. Minsky[95] at Harvard University with the key elements of the instrument, the pinhole 

apertures and the point-by-point illumination of the specimen (figure 9). 

 

Figure 9: Schematic setup of the confocal laser scanning microscope with the optical pathway and the 

principal components: the focused laser light, the pinholes, dichroic mirror and detector/photomultiplier 

(PMT).  

 

The principal ideas of the pinholes apertures are to eliminate out-of-focus light. The first pinhole 

aperture is placed in front of the light source. The coherent laser light passes through the aperture 

which is in a conjugate plane with the scanning point on the fluorescent specimen. The exciting 

light is directed by a dichroic mirror, focused by the objective, and excites the specimen. The 

emitted light returns through the objective, the dichroic mirror and the detector pinhole aperture. 

The detector pinhole aperture is situated in front of the detector and a small fraction of fluorescence 

emission passes through it. In that case, the pinhole aperture lies in the optically conjugate focal 
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plane of the returning light from the specimen, hence the term ꞋconfocalꞋ. This fraction of emitted 

light is focused as a confocal point at the pinhole. A significant amount of out-of-focus fluorescence 

emission is not detected and does not contribute to image. This emission is above and below the 

objective focal planes and not confocal with the pinhole. The directed light is measured by 

photomultiplier (PMT) tube detectors and upon scanning the sample creates two dimensional 

images of the specimen which are precise and have a better contrast and since background emission 

is reduced.[96]  

The point-by-point image construction can be realized by focusing each point of the specimen 

sequentially. The emitted light has a very low intensity, hence the image point is illuminated for a 

longer time and the light source works with high intensity. Serial scanning of specimen sections 

occurs by moving the specimen on the stage in the vertical and horizontal direction and keeping 

the optical setup stationary. The scanning unit is responsible for the excitation scans and collecting 

the returning photons from the specimen. For visualization the detector is connected to a computer 

which builds up the 3D image.[97] 

Over the last few years several parameters have been optimized and modern instruments consist of 

advanced computational techniques for data acquisition and processing. Laser systems with high 

stability and intensity and sensitive optoelectronic detectors, are able to reconstruct the high quality 

three dimensional structures.[96] Confocal microscopy is an essential technique in combination with 

microfluidic devices.[98] 

 

2.7 Cathodoluminescence in Scanning Electron Microscopy 

Electron microscopy based on the electron-specimen interaction of employs high energetic 

electrons with acceleration energies from 0.1–50 keV.[99] These interactions lead to a variety of 

important processes, such as inelastic and elastic scattering, and absorption and transmission of 

electrons through the specimen, making electron microscopy and luminescence detection possible 

and giving information about the surface topography, the chemical composition and the crystalline 

structure of the specimen. In case of Scanning Electron Microscopy (SEM), the electron beam 

(primary electrons) is focused on the specimen and penetrate the sample in a teardrop-shaped 

volume.[100]  The volume depends on the energy of the electron beam, the incidence angle and the 
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material of the specimen. The most important electron-specimen interaction processes are shown 

in figure 10. 

 

Figure 10: Schematic drawing of the teardrop-shaped interaction volume of the incident electron beam and 

the specimen. The origin of secondary electrons (SE), backscatter electrons (BE), Auger electrons (AE), X-

rays and cathodoluminescence (CL) can be found in these electron-specimen interaction. 

 

The contribution of secondary and backscattered electrons (SE, BE), X-rays, Auger electrons (AE) 

and photons are the basis for the final signals and the image information. The majority will be 

secondary electrons, which are generated by ejection from the specimen surface due to inelastic 

collision with the highly energetic electron beam. This leads to excited electrons with most probable 

energies of 2-50 eV escaping from near-surface layers (< 10 nm) of the specimen. The collected 

SE primarily give information about changes in topography.[99] Backscattered electrons are 

responsible for a broad energy spectrum between the energy of the incident electron beam and 

50 eV, caused by multiple inelastic scattering processes. The primary electrons are scattered 

through a larger angle and provide information about the specimen composition and the 

crystallography of the material. The production of BE depends on the atomic number of elements 

involved. Elements of higher atomic number appear brighter and give a brighter contrast in the 

resulting SEM image. The incident electron beam generates electron-hole pairs in luminescent 

materials and the subsequent recombination causes the emission of photons and the relaxation of 
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the system into an unexcited state. The wavelength of the emitting light depends on the bandgap of 

the material and gives therefore information about the composition. The emitted photons cover the 

ultraviolet (UV, < 400 nm), the visible (400 nm–700 nm) and infrared (IR, > 700 nm) spectrum 

and the process is termed Cathodoluminescence (CL). Furthermore, we can distinguish between 

the recombination of electron-hole pairs in an intrinsic semiconductor or in an extrinsic 

semiconductor.[101][102] Structural imperfections cause intrinsic luminescence whereas extrinsic 

luminescence has its origin in impurities in the structure. The latter ones are responsible for contrast 

from different phases, visualization of defects and trace elements. 

The working principal of conventional SEM techniques includes the generation of primary 

electrons by electron sources (e.g. Schottky field emission cathode) and the subsequent acceleration 

towards the anode under high potentials. In the following steps, the electron beam is focused by 

various lenses to a spot size in the nm to µm region and passes scanning coils in the electron 

column.[99] The directed electron beam reaches the final lens where the beam is deflected to raster 

scan the specimen surface. The specimen resides in a high vacuum chamber and should be 

electrically conductive to avoid building up a static charge. SEM can be used for the detection of 

bulkier specimens where the electron beam is scanned across the sample. The different types of 

emitted electrons and photons are detected inside the specimen chamber with the help of attached 

sensitive detectors. Digital images were recorded with very high resolutions.[99] The resolution 

shows a strong instrumentation dependency and is influenced by factors such as the diameter of the 

electron beam, the scattering of the specimen or the signal to noise ratio. 
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2.8 Thesis Outline 

The aim of this thesis is the evaluation of the in-situ monitored growth process of semiconducting 

clusters and nanocrystals. An outline of the methods and instrumentation used within this work is 

provided in Chapter 3 and the thesis is composed of three experimental parts presented in Chapter 

4 to 6. In principle, the presented research deals with colloidal semiconducting systems, starting 

from the precursor synthesis and subsequent investigation of nucleation and growth processes 

under real time conditions. Information about the formation process of different quantized systems 

is highlighted. 

Chapter 4 describes the important linkage and the preparation of nanocomposites by monitoring 

the in-situ growth process of quantum dots on a clay matrix while maintaining their unique optical 

properties. Spherical and well-separated CdTe quantum dots attached on nanoclay edges were 

obtained as proven by imaging microscopes, based on different measurement principles. 

 In Chapter 5 the investigation of the nucleation and growth process of organic-inorganic 

CH3NH3PbBr3 perovskite nanocrystals and their further self-assembly into two-dimensional 

oriented nanosheets and 3D superstructures is presented. The lead-based perovskite synthesis was 

adapted to diffusion controlled microfluidic and capillary approaches and for detailed analysis of 

the structure property relationship, X-ray scattering experiments and spectroscopic studies were 

used.  

This is followed in Chapter 6 by the development and examination of the room temperature ionic 

reaction of a metal-based precursor and ligand-stabilized halide and chalcogenide counter ions in 

an organic medium to form inorganic clusters and nanocrystals. To design a novel method that 

yields information about the formation process, the reaction components and their interplay needs 

to be investigated. The synthetic technique has been used to prepare a multitude of clusters with a 

focus on silver halide and metal sulfide systems.
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Chapter 3 

Experimental Methods and Instrumentation 

3.1 Introduction 

The purpose of this chapter is to provide an overview of the chemicals, syntheses, and the 

instrumentation employed during the course of this work at the University of Bayreuth and the 

University of Melbourne. Relevant experimental setups will be reported in each experimental 

chapter. 

 

3.2 Chemicals 

3.2.1 Materials for the CdTe/Nanoclay Nanocomposite Synthesis 

Tellurium powder (Te, -30 mesh, 99.997%), Sodium borohydrate (NaBH4, ≥ 96%), Cadmium 

acetate dihydrate (Cd(CH3COO)2 x 2H2O, 98%), 3-mercaptopropionic acid (HSCH2CH2CO2H, 

≥99%) and hydrogen peroxide solution (H2O2, 30% in H2O) were purchased from Sigma-Aldrich 

and used as delivered. The solvents isopropanol and acetone (AppliChem, tech.) for RCA cleaning 

(Radio Corporation of America) and ammonium hydroxide solution (NH4OH. 25% in H2O, Merck 

Millipore) were used as received. Exfoliated nanoclays 

[Na0.96]inter[Mg
5.14

Li0.94]
oct

[Si8]O20F4 (dispersed in an aqueous solution 1 wt%) with interlayer 

distance of 99 nm ± 12 nm according earlier experimental studies[1] and the typical cation exchange 

capacity (CEC) of 126 mequiv./100 g clay were synthesized by melt synthesis and fully 

characterized by Breu et al.[2] Solution pH was adjusted with sodium hydroxide solution (NaOH, 

c=1 mol/L, Sigma-Aldrich). 

 

3.2.2 Materials for CH3NH3PbBr3 Perovskite Synthesis  

Methylamine solution (33 wt% in absolute ethanol, Sigma Aldrich), octylamine (99%, Sigma 

Aldrich), hydrobromic acid (HBr, 48 wt%, Sigma Aldrich) and lead(II)bromide (PbBr2, 99.999%, 

Sigma Aldrich) were used for the precursor synthesis in N,N-dimethylformamide (DMF, ≥99.8%, 
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Fisher Scientific). Toluene (≥99.7%, Sigma Aldrich) acts as anti-solvent and tetrahydrofuran (THF, 

Sigma-Aldrich, 99.9%) was used to redisperse the perovskite samples.  

 

3.2.3 Materials for Metal Halide and Metal Chalcogenide Nanocluster Synthesis 

Tetraoctylammonium bromide (TOABr, 98%, Sigma-Aldrich) was used as both bromide source 

and phase transfer agent. Sodium sulfide nonahydrate (Na2S x 9 H2O, 99.99%, Sigma Aldrich) and 

pure sulfur (S, 99.998%, Sigma-Aldrich) were used as precursors for the chalcogenide clusters. 

Sodium iodide (NaI, 99.999%) and n-octylamine (≥ 99%) were used as received. Sodium oleate 

(>97.0%, TCI Europe) as precursor was reacted with silver nitrate (AgNO3, ≥99.9%, Sigma 

Aldrich), cadmium acetate dihydrate (Cd(CH3COO)2 x 2H2O, 98%), zinc chloride (ZnCl2, ≥98%, 

Sigma Aldrich) and lead(II) chloride (PbCl2, ≥98%, Sigma Aldrich).  The solvents cyclohexane 

(CH, ≥99.9%, Sigma Aldrich), chloroform (CHCl3, ≥99.9%, Sigma Aldrich), toluene (≥99.7%, 

Sigma Aldrich) and ethanol (EtOH, AppliChem, tech) were used as delivered.  

 

3.3 CdTe/Nanoclay Nanocomposite Synthesis 

The synthesis of CdTe/Nanoclay composites consists of two steps. These steps include the fixation 

of cadmium ions on the nanoclays[3][4] and the subsequent nanoparticle growth modified to our 

needs.[5]  

 

Cd2+ Adsorption onto Charged Nanoclays 

We used a melt-synthesized sodium hectorite with unit cell a composition of 

[Na0.5]inter [Mg
2.5

Li0.5] oct[Si4]tet O10F2 (abbreviated as Na0.5-hectorite) by Breu et al.[2], which 

shows a homogeneous intracrystalline reactivity. The preparation of highly diluted dispersions 

induced complete delamination of the Na0.5-hectorite tactoids. A few drops of the diluted dispersion 

(0.5 wt%) were spin coated and dried on a pre-cleaned glass wafer and analysed with Atomic Force 

Microscopy (AFM) experiments to prove this. Individual platelets with a typical height of 1 nm 

and a size between 0.5 and 10 μm were detected. The first step of our two-step approach is the 

selective attachment of Cd2+ ions on the nanoclay edges. The metal precursor salt Cd acetate 

dihydrate (0.02 g, 0.075 mmol, 1 eq) was mixed together with 0.2 g Na0.5-hectorite in 20 mL MilliQ 
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water (10 eq wNa0.5-Hectorite/wCd). The pH value of the dispersion was around 8. After an incubation 

time of 8 h and stirring at 200 rpm, the supernatant was carefully removed by decanting and the 

dispersion was diluted to the desired volume. 

 

NaHTe Precursor (NaBH4:Te 2.5:1 eq) 

To prepare the NaHTe precursor stock solution, 25.4 mg telluride powder (0.2 mmol), 18.4 mg 

NaBH4 (0.5 mmol) and 5 mL MilliQ water were stirred under inert gas atmosphere.[5] The reaction 

mixture turned slowly to a purple colour within 30 min of heating at 80 °C.  

 

CdTe Quantum Dots Synthesis on Nanoclay Matrix  

The pH value of Na0.5-hectorite solutions after the addition of mercaptopropionic acid (11.9 mg, 

9.95 µL, 0.1125 mmol, 1.5 eq) was around 6 and before the injection of the telluride precursor it 

was adjusted to 12 with the addition of NaOH (1 mol/L). The final step involves the injection of 

0.19 mL (0.0076 mmol) from the purple NaHTe precursor solution into 20 mL reaction mixture at 

100 °C. After defined reaction times of 5 min, 30 min, 60 min, 75 min and 120 min, aliquots were 

taken and the reaction was quenched by the addition of water. For purification the reaction mixture 

was centrifuged (3000 rpm, 5 min). The colorful Na0.5-hectorite composites showed a good settling 

and the desired concentration was reached by adjusting the volume with MilliQ water.  

 

3.4 Synthesis of Perovskite Nanocrystals 

The precursor methylammonium bromide (MAmBr) and octylammonium bromide (OAmBr) were 

synthesized according to a previously reported method with slight modifications.[6] Typically, 14.9 

mL methylamine (33 wt% in absolute EtOH, 0.1 mol) was placed in a 50 mL round-bottom flask. 

The flask was allowed to cool in an ice bath and 11.3 mL HBr (48 wt% in water, 0.1 mol) was 

added via a dropping funnel. Hydrobromic acid was slowly added to the corresponding amine with 

the temperature held below 10 °C. After constant stirring for 2 h at room temperature, the excess 

of unreacted precursor was removed by washing the product methylammonium bromide with 

diethyl ether (three times). The product was then stirred for 1 h at 60 °C and after precipitating with 
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diethyl ether the resulting white, crystalline solid was filtered, dried and stored in the vacuum oven 

at room temperature.  

Octylammonium bromide was synthesized by a similar procedure. Methanol (5 mL) was added to 

19.8 mL pure octylamine (99%, 0.1 mol). The diluted amine was placed in a 50 mL round-bottom 

flask and allowed to cool in an ice bath. A dropping funnel was filled with 11.3 mL HBr (0.1 mol) 

and placed on the top of the reaction vessel. After the slow addition (< 10 °C) of HBr the product 

was washed with diethyl ether three times, filtered and dried in the vacuum oven at room 

temperature.  

 

Synthesis Perovskite Nanocrystals 

The conventional large scale synthesis was based on a literature report[7] with modifications to suit 

our needs. The precursor MAmBr (26.4 mg 0.24 mmol), OAmBr (33.5 mg 0.16 mmol) and PbBr2 

(36.7 mg 0.10 mmol) were dissolved in 3.5 mL N,N-dimethylformamide (DMF) and heated to 70 

°C for complete dissolution (table 1). Subsequently, the clear solution was slowly added to 17 mL 

toluene. The dispersion was cooled after 2 min in an ice bath. The yellow dispersion produced was 

immediately centrifuged (4500 rpm, 10 min) and redispersed in toluene. 

 

Table 1: Perovskite large scale synthesis with different compositions of MABr, OABr and PbBr2. 

Sample 

Precursor 

P01 [mmol] P02 [mmol] P03  [mmol] P04 [mmol] 

MABr 0.1 0.3 0.1 0.24 

OABr 0.1 0.1 0.3 0.16 

PbBr2 0.3 0.1 0.1 0.10 
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Microfluidic Synthesis 

The precursor MAmBr (132.0 mg, 1.2 mmol), OAmBr (167.5 mg, 0.8 mmol) and PbBr2 

(183.5 mg, 0.5 mmol) were dissolved in 5 mL DMF at 70 °C. The 3D double focusing hybrid 

microfluidic chip employed consists of five inlets. The connected syringes were filled according 

table 2. The corresponding flow rate Q was adjusted between 125 µL/h and 3000 µL/h for the 

precursor solutions in DMF, and Toluene:DMF mixtures of 1:1 ratio and 2:1. The 

photoluminescence detection commenced after reaching steady state conditions.  

 

Table 2: Flow composition and the corresponding flow rates for the perovskite synthesis in the microfluidic 

chip.  

Channel Inlet 1 Inlet 2 Inlet 3 Inlet 4 Inlet 5 

Flow rate Q in 

[µL/h] 
3000 250 125 250 3000 

Solvent 

Composition 

Toluene 

Toluene/DMF 

2:1 

Precursor in 

Toluene/DMF 

1:1 

Toluene/DMF 

2:1 

Toluene 

 

Capillary Interdiffusion Synthesis  

The precursor MAmBr (132.0 mg, 1.2 mmol), OAmBr (167.5 mg, 0.80 mmol) and PbBr2 

(183.5 mg, 0.5 mmol) were dissolved in 1.5 mL DMF at 70 °C. A volume of 83.5 µL toluene was 

loaded in a 1 mm diameter quartz capillary with the syringe pump. A mixture of 1:1 DMF/Toluene 

acts as buffer layer (10 µL). The double layer was coated with 16.5 µL of this DMF solution. The 

UV-Vis detection commenced with the addition of the precursor solution. 

In-situ UV-Vis/SAXS Experiments 

The setup can vary the distance between the sample and SAXS detector. Each experiment was 

performed at 2 different detector-to-sample distances. The scattering range from 
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0.1 nm-1 ≤ q ≤ 3.0 nm-1 could be detected to capture scattering from the beginnings of the growth 

process (form factor, small q region) and the formation of hierarchical stacked structures of lamellar 

sheets (structure factor, large q region). The detector-sample distance was 1.6 m to detect the 

0.1 nm-1 ≤ q ≤ 1.0 nm-1 region.  

 

3.5 Synthesis of Semiconductor Nanoclusters 

The preparation of the metal(oleate) precursor was based on the conversion of sodium oleate with 

the corresponding metal salt. To a solution of 3.957 g sodium oleate (13.0 mmol) in 50 mL water 

was added a solution of metal salt in 10 mL water at 50 °C with vigorous stirring (table 3). After 

2 h stirring, the resulting white precipitate was filtered and washed with water. The metal(oleate) 

was dried and stored in the dark until use. 

 

Table 3: Amounts of substances in mmol and g for the preparation of metal oleate precursor. 

Oleate precursor Metal salt n in [mmol] m in [g] 

Ag(oleate) AgNO3 13.0 2.208 

Cd(oleate)2 Cd(CH3COO)2 x 2H2O 6.5 1.732 

Pb(oleate)2 PbCl2 6.5 1.807 

Zn(oleate)2 ZnCl2 6.5 0.886 

 

The phase transfer technique was used to yield tetraoctylammonium sulfide (TOA2S2) and 

tetraoctylammonium iodide (TOAI) as anion sources for the cluster synthesis. Typically, 50 mL 

aqueous solution of 102.4 mg NaI (0.68 mmol) was mixed with 50 mL of toluene containing a 

stoichiometric amount of 373.57 mg tetraoctylammonium bromide (TOABr). The two-phase 

mixture was continuously stirred for 24 h. The phase transfer can be monitored with a color change 

from colorless to yellow. The purity was determined with melting point determination.[8] As a 

result, the relative error was calculated to be 1.55 %, indicating a high phase transfer efficiency 

within one day. 
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The tetraoctylammonium sulfide precursor (TOA2S2) was prepared according to a modified version 

of the liquid-liquid phase transfer method of Li et al.[9] A mixture of 0.16 g sulfur (5.0 mmol) and 

1.907 g Na2S in 50 mL water were stirred at 50 °C for 1 h. After the complete dissolution, the 

generated sodium sulfide mixture (Step I, stock solution) was purged with nitrogen and stored in 

the dark at +4 °C. An excess of sulfur avoids the incomplete conversion of TOABr during the 

subsequent phase transfer (Step II). The phase transfer agent TOABr (273.41 mg, 0.5 mmol) was 

dissolved in 9 mL dry chloroform and 2.5 mL of the sulfide mixture Na2S2X (Step I) was added 

under Schlenk conditions. The polysulfide anions tend to move into the organic phase with the help 

of the phase transfer agent TOABr. The subsequent reaction between polyanions and the phase 

transfer agent TOABr leads to the replacement of bromide which can be monitored by 

UV-Vis spectroscopy. A control experiment monitoring the remaining water phase indicates a high 

transfer efficiency within 24 h. 

 

Synthesis of Silver Halide Nanoclusters 

In a first approach, 5.81 mg Ag(oleate) (0.0164 mmol) and a minimum volume of 30 µL 

n-octylamine was added to a volume of 17.5 mL cyclohexane. After complete solution 1.75 mL-

aliquots were taken and placed in a cuvette. TOAI (9.73 mg, 0.0164 mmol) and 8.97 mg TOABr 

(0.0164 mmol) were dissolved in 10 mL cyclohexane and 500 µL CHCl3 were added to guarantee 

the complete dissolution of the halide precursor. For the nanocluster formation, different aliquots 

of the halide solution were added to the silver solution. In a second approach, 1 mL of the prepared 

stock solution of TOAI and TOABr were placed in a cuvette and different aliquots of the silver 

stock solution added. The cluster growth was monitored via UV-Vis spectroscopy.  
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Table 4: Amount of substance in mmol, mg and mL for the preparation of metal halide nanoclusters.  

 TOABr TOAI Ag(oleate)  

Amount of Substance in [mg]  8.97 9.73 5.81 

Volume of Cyclohexane in 

[mL] 
10 10 17.5 

 n in [mmol] 0.0164 0.0164 0.0164 

Aliquots for Ratio 1:1 in [mL] 1 1 1.75 

 

Synthesis of Metal Chalcogenide Nanoclusters 

For the first approach, the metal(oleate) stock solutions were prepared by adding a certain amount 

of the metal precursor (0.0109 mmol, 7.36 mg Cd(oleate)2, 8.39 mg Pb(oleate)2, 6.85 mg 

Zn(oleate)2) to a volume of 20 mL cyclohexane (CH).  

For the first approach, 40 µl from the sulfur stock solution (Step II, table 5, 0.00109 mmol) was 

mixed with 1.5 mL cyclohexane and 7 µL n-octylamine was added to each solution. In a second 

step, different aliquots of metal solution were quickly injected to the sulfur solution and the cluster 

growth was monitored via UV-Vis spectroscopy. 

For the second approach, a volume of 2 mL metal precursor (0.00109 mmol) was placed in a 

cuvette and 7 µL n-octylamine was added to each solution. In a second step, 80 µL from the sulfur 

stock solution (Step II) was mixed with 3 mL cyclohexane in a cuvette. Different volumes from the 

sulfur solution (table 5) were quickly injected into the metal precursor solution in the cuvette and 

the cluster growth was monitored via UV-Vis spectroscopy. 
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Table 5: Amount of substance in mmol, mg and mL for the preparation of metal chalcogenide nanoclusters. 

Approach 1 

Sulfur Precursor in CH 

Approach 1 

Metal(oleate) in CH 

Approach 2 

Metal(oleate) in CH 

Approach 2 

Sulfur Precursor in CH 

[mL] [mmol] [mL] [mmol] [mL] [mmol] [mL] [mmol] 

1.5 0.00109 4 0.00218 2 0.00109 3 0.00218 

1.5 
0.00109 3 0.00164 2 0.00109 1.5 0.00109 

1.5 
0.00109 2 0.00109 2 0.00109 0.75 0.00054 

1.5 
0.00109 0.5 0.00054     

 

Cleaning of Glass and Silicon Wafer 

RCA cleaning[10] was used for removing contamination from silicon wafers. For the cleaning 

procedure, the general recipe consists of 5 parts water, 1 part ammonium hydroxide (25 %) and 

1 part 30 % hydrogen peroxide. Water (80 mL) was placed in a beaker and 16 mL of NH4OH 

and 16 mL of H2O2 added. The solution with the wafer was heated at 70 °C under stirring for 15 

min. After cleaning, the wafer was extensively rinsed with water and stored in water until use. The 

glass slides were cleaned in isopropanol and acetone in an ultrasonic bath. They were stored in 

isopropanol and treated with O2 plasma to achieve a hydrophilic surface. 

 

TEM Grid Preparation 

For TEM measurements, the final products were prepared by drop-casting of the 

solution/dispersion onto a carbon film-coated Cu grid (300 mesh, Plano GmbH). The excess liquid 

was removed by blotting using filter paper and the solvent was allowed to evaporate at room 

temperature prior to imaging. 
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AFM Sample Preparation 

AFM imaging requires that the objects of interest are rigidly adhered to a substrate with very low 

surface roughness. The well-dispersed colloidal samples (100 µL, 1 wt%) in water were spin coated 

onto hydrophilic AFM glass wafers (Thermo Scientific) and dried in air. The samples were kept in 

a dust-free environment. 

 

Fluorescence Microscopy Sample Preparation 

For fluorescence imaging, the well-dispersed colloidal samples (100 µL, 0.5 wt%) in water were 

placed on hydrophilic glass wafers by drop casting. The samples were dried in air and stored in 

dust-free environment. 

SEM Sample Preparation  

For standard sample preparation, 50 µL of the perovskite dispersions was placed on a pre-cleaned 

silicon wafer and dried under ambient conditions. The wafer was mounted on the holder with 

double-sided tape.  

 

XRD 

For standard sample preparation, the metal chalcogenide dispersions in cyclohexane were dried on 

pre-cleaned silicon wafers under ambient conditions. The metal halide dispersion in cyclohexane 

was freeze-dried and the powder was placed on a pre-cleaned silicon wafer.  

 

3.6 Instrumentation 

3.6.1 Small Angle X-ray Scattering  

SAXS measurements for the kinetic study of perovskites were performed at the Deutsches 

Elektron-Synchrotron (DESY) in Hamburg, Germany. All experiments were carried out at the P03, 

Micro- and Nanofocus X-ray Scattering (MiNaXS) beamline at the PETRA III storage ring. For 
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our setup, the sample was loaded in a quartz capillary and mounted in a holder in front of the SAXS 

vacuum tube which includes the SAXS detector. The setup for the SAXS detection is depictured in 

figure 11 where the sample-to-detector distance is variable.  

 

Figure 11: Schematic representation of an experimental setup. The collimated X-ray beam hits the vertical 

sample. The scattered X-rays are detected by the SAXS detector in a vacuum tube which leads to the 

characteristic 2D scattering pattern. The sample-to-detector distance is responsible for the detected q-values 

of the scattered X-rays. 

 

The sample-to-detector distance was set to be 1.66 m and 2.54 m, leading to a q-range from 

0.01 nm-1 ≤ q ≤ 3.0 nm-1. The measurements were performed with a beam size of 320 nm x 250 nm 

and radiation of wavelength 0.0954 nm. The photon energy was 13 keV and the scattering data was 

collected with a Pilatus 1M detector. Silver behenate with a d-spacing of 58.38 Å was used as 

standard for the calibration. A quartz capillary (Ø=1 mm, Hildenberg GmbH) with wall thickness 

of 10 µm was used as the analysis cell. The 2 dimensional scattering patterns were acquired at an 

interval of 0.5 sec for 20 min. The background correction for the one dimensional SAXS profiles 

was made using toluene.  

3.6.2 UV-Vis Absorbance Spectroscopy and Analysis 

UV-Vis absorbance spectra were recorded on Agilent 8453 UV-Vis spectrophotometer. The 

instrument is equipped with a deuterium and tungsten light source covering the wavelength range 

of 190 nm to 1100 nm. The collimated beam passes the samples in the quartz cuvette and is 

dispersed onto a photodiode array detector. The UV-Visible ChemStation software was used for 

spectral analysis. 

Time-dependent UV-Vis absorption spectra were recorded on a USB 2000+ XR1-ES detector 

(λ=200 nm to 1100 nm) equipped with a deuterium-halogen light source (DH-2000-BAL, Ocean 

Optics, Germany) and connected with fiber optic cables. A quartz capillary (Ø=1 mm, Hildenberg 
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GmbH) with wall thickness of 10 µm was used as the analysis cell. Ocean View Software was used 

for the real-time acquisition and analysis. The acquisition time was set to 0.5 min for perovskite 

and CdS nanocluster growth.  

 

3.6.3 Confocal Laser Scanning Microscopy 

The Confocal Laser Scanning Microscope (CLSM) Leica TCS SP8, equipped with an inverse DMI 

6000B Microscope (Leica) was used for fluorescence imaging of perovskites in the microfluidic 

chip EH09. The specimen was mounted on a precise x-, y-, z-stage. The emission (region of interest 

scan, ROI) along the microfluidic channel was recorded within the wavelength region 415 nm to 

780 nm and a laser excitation of λexc = 405 nm. The high-precision syringe pump (NEMESYS, 

Cetoni GmbH) guarantees laminar flows within the EH09 microfluidic chip. The inlets and outlets 

of the microfluidic device were connected via PE tubings (Scientific Commodities Inc.) and PE 

luer locks (Braun Melsungen AG) to gas-tight syringes (Hamilton Company).  

 

3.6.4 Transmission Electron Microscopy 

The colloidal samples were analyzed with three different Transmission Electron Microscopes 

(TEM). TEM images were obtained by a Zeiss CEM 902 electron microscope (Zeiss Microscopy 

GmbH). The TEM was equipped with a tungsten cathode and the acceleration voltage was 80 kV. 

For data imaging, the Gatan CCD Camera (Orius) with GMX 2.3 was used. Furthermore, the Zeiss 

LEO EM 922 Omega TEM with LaB6 cathode operating at 200 keV in combination with the Gatan 

CCD Camera (Ultrascan 1000) with GMS 1.9 was used. The high resolution Tecnai F20 instrument, 

running at 200 kV equipped with STEM and EDS detectors was used. 

3.6.5 Scanning Electron Microscope 

Scanning Electron Microscope (SEM) images were taken at the Zeiss Leo 1530 high resolution FE-

SEM with Schottky Field Emission Gun (FEG) as the electron source, with high efficiency SE 

inlens and SE detector (Everhardt Thornley) for secondary electron images and the MiniCL 

cathodoluminescence detector (Oxford Instruments) for cathodoluminescence images. The 

operating voltage was set to 5 keV and the working distance was 7.4 mm. 
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The high resolution Zeiss Ultra plus field emission was equipped with Schottky Field Emission 

electron source (FEG), SE inlens and SE detector (Everhardt Thornley) with acceleration voltage 

of 3.00 keV and a working distance from 3.5 nm to 3.8 mm.  

 

 

3.6.6 Atomic Force Microscopy 

Topographical and phase measurements were performed on the commercial Dimension 3100 

Atomic Force Microscope (AFM, Veeco Instruments Inc., USA) equipped with a NanoScope V 

SPM controller and a hybrid XYZ closed-loop scanner (Bruker). Scanning of surface features was 

acquired in tapping mode under ambient conditions using aluminium-coated cantilevers (OTESPA-

R3, Bruker). Image processing and data analysis were conducted with the Software Nanoscope 

Analysis v1.40 (Bruker). 

 

 

3.6.7 Fluorescence Microscopy 

The Olympus IX71 inverted microscope includes a light source (100 W mercury burner, U-

LH100HG, Olympus), the Olympus microscope objective LCACHN 40x/0.55 Ph2 and the IX2-

RFAC fluorescence filter cube with orange filter U-MWIGA3 (ET CY3, Olympus). The excitation 

light was passed through a band pass filter BP 530-550 nm, a dichroic mirror DM 570 nm and long 

pass emission filter BA 575-625 nm ensured only yellow-orange emission was detected. The 

Olympus U-CMAD3 model was used as microscope camera. 

 

 

3.6.8 Fluorescence Spectroscopy  

Fluorescence emission measurements were made on diluted solutions in quartz cuvettes 

(pathlength: 1 cm) on a Horiba Jobin Yvon Fluorolog-3 spectrometer. The PMT detector was 

corrected or wavelength dependent response and using the in-built correction function provided by 

Horiba Jobin Yvon. 

Furthermore, the spectrofluorometer FP-6500 (Jasco Deutschland GmbH) with 150 W Xenon lamp 

was used to detect the wavelength reaching from 200 nm to 900 nm. Spectroscopy Software 

Spectra Manager was used for evaluating the measurements.  
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3.6.9 X-ray Diffraction 

The X'Pert MPD Pro (PANalytical, Almeo, Netherland) X-ray diffractometer was used to obtain 

diffraction data. As an X-ray source a Cu-Kα anode was used. The reaction chamber for studies of 

solids and gas reactions up to 900 °C and 10 bar was the XRK-900 (Anton Paar GmbH, Graz, 

Austria) for in-situ X-ray diffraction measurements.  
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Chapter 4 

In-situ Growth of CdTe Quantum Dots on Hectorite Nanoclays in 

Aqueous Medium 

4.1 Introduction and Motivation 

Nanocomposites comprise a widespread and highly active research area merging different 

constructions and architectures of colloid particles with microscopic elements.[1][2][3][4][5] In order to 

tailor this new generation of nanodevices, we must focus on synthetic methods for constructing 

organized nanoparticle arrays on flat substrates while maintaining their unique optical properties. 

For the fabrication of such ꞌsmart materialsꞌ, various self-assembly techniques exist, based on the 

specific adsorption of nanoparticles on surfaces.[6][7][8] The production includes the clear separation 

of nanoparticles syntheses and their subsequent ordered immobilization on substrates. The 

organization on a solid matrix requires the surface modification of substrates and the adsorption of 

nanoparticles through covalent or electrostatic interactions. Assemblies of gold monolayers can be 

prepared on nonconductive glass substrates according this approach. The hydrophilic surface 

allows the polymerization of trialkylsilane on the substrate surface to achieve new functionality 

capable of binding nanoparticles.[6][9][10] In a following step, the silanized substrate was dipped in 

solution containing gold nanoparticles at different period times. An alternative method is the 

formation of monolayers by the Langmuir-Blodgett technique.[11] The transparency of the substrate 

allows characterization with spectroscopic methods. Similar approaches use the attachment of 

citrate-stabilized gold nanoparticles on solid supports through amine- and thiol-functionalized ITO 

glass surfaces.[12] Considerable attention was received by Wang and co-workers[13] for the in-situ 

growth of gold nanoparticles on positively charged substrate surfaces. The procedure requires the 

preparation of patterned polymer substrates to provide a limited area for the in-situ growth of 

nanoparticles and the polymer surfaces need to be modified with positive charges to capture the 

ionic precursor AuCl4
-. The fabrication of nanoparticles could be promoted with the addition of a 

growth solution and this leads to average sizes reaching from 180 nm to 300 nm. The in-situ growth 

of silver nanoparticles could be realized on dopamine pre-treated graphene oxide surfaces in the 

presence of stabilizing agents.[14] This work provides a strategy to synthesize monolayers of 80 nm 

silver nanoparticles. 

Further, efforts have already been made to avoid the substrate surface functionalization step using 

natural clay materials.[1][15] This class of materials are used as adsorbing agents due to their layered 
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structure of silica and alumina sheets and their surface chemistry.[16][17] A glance at the literature 

shows the combination of the outstanding features of nanoclays with the excellent properties of 

adjacent branches, such as the polymer chemistry.[4][18][19] Another widespread method is the 

combination of nanoclays with organophilic ions to become hydrophobic nanocomposites 

(organoclays).[5][20][21] The intercalation of ammonium ions into the inorganic matrix is quite 

common and leads to an expansion of the interlayer distance between the silica and alumina sheets 

such that they can finally act as a lipophilic modifier in their composites. Concomitantly, an 

increase in the surface area as well as a maximization of the adsorption capacity towards targeted 

pollutants could be achieved.[3] The latter application utilizes nanoclays as a support material to 

remove heavy metals ions in water (figure 12). Diverse techniques were used to remove toxic 

metals from industrial waste water and their adsorption on clay materials is one of the most effective 

methods. As a logical next step the idea emerged to use the well-defined and selective ion 

absorption ability of nanoclays and couple it with post-treatments in the form of nanoparticle 

growth.  

 

Figure 12: Schematic representation of the use of nanoclays as support material for the selective adsorption 

of targeted pollutants in aqueous systems (e.g. heavy metals ions). 

 

The in-situ intercalation of CdTe/nanoclay materials and the in-situ reduction of nanostructured Pt-

nanoclay materials is already described in the literature.[1][15] Both methods rely on the adsorption 

of an ionic metal precursor on natural clay materials on the basal facets in aqueous solutions. The 

subsequent one-pot in-situ method for the preparation of nanostructured hybrid materials lead to 

embedded CdTe quantum dots and randomly distributed Pt nanoparticles under moderate synthetic 

conditions.  
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Beside the nature-inspired in-situ growth process of nanoparticles, nanoclay-based composite 

materials are used in significant areas of current and emerging interest,[3][17] for applications in 

nanoscale filling, reinforcement,[22][23] or adsorbent material[5][24][25], due to their high surface area, 

their mechanical properties and their high cation exchange capacity (CEC).[20][26][27] 

The aim of this chapter is the in-situ synthesis of nanocomposites which include the combination 

of semiconductor QD and nanoclays. Furthermore, the surface-bound nanoparticles should be well-

organized on the natural material. The preparation method consists of two steps: the specific ion 

absorption on the surface edges, and the time-controlled nanoparticle growth via hot injection 

method.  

 

4.2 Colloidal Materials: Combination of Nanoclay Minerals and 

Quantum Dots 

4.2.1 Nanoclay Minerals  

Clay and clay composite materials are used as cheap and effective absorbent materials.[5] They have 

various advantages over other absorbent materials, such as the abundant availability, their swelling 

behaviour[28], their high surface area[26], their high pore volume and their cation exchange capacity 

(CEC).[27] For these reasons they have received much attention in diverse research fields. Clay 

materials have many similarities concerning their chemical and structural composition which are 

briefly summarized next.  

The majority of the layered family of oxhydroxides consist of stacked layers of silica and alumina 

sheets and can be divided according the electrical charge of their layer and also their layer 

structure.[17] One representative is the sodium hectorite type which belongs to the smectite group 

clays which are also known as 2:1 phyllosilicates (anionic clay material) and has the chemical 

formula [Na0.5]inter [Mg
2.5

Li0.5] octr[Si4]tetr O10F2.[28] The structure of these sodium  nanoclays is 

depicted in figure 13. The schematic structure of the 2:1 silicate includes two-dimensional and 1.0-

2.0 nm thick parallel stacked layers of two tetrahedral silica layer (T, SiO2) and one central 

octahedral alumina layer (O, AlO2(OH)4).[28] The three layers are connected via oxygen bonding 

where the anion belongs to the octahedral and also to the tetrahedral layers.  
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Figure 13: General schematic structure of the layered [Na0.5]inter[Mg
2.5

Li0.5]
octr

[Si4]tetrO10F2 hectorite. The 

sodium hectorite consists of parallel stacked tetrahedral-octahedral-tetrahedral aluminosilictate TOT 

lamellae (SiO2/AlO2(OH)4/SiO2) which is separated by exchangeable Na+ counterions. 

 

The lateral dimensions can vary within the nm to µm range.[26][28] In the case of naturally occurring 

hectorite nanoclays, mainly the Al3+ ion of the octahedral site is isomorphically substituted 

(Li1+/Mg2+) which results in a net negative charge on the surfaces of the tetrahedral layer.[29] The 

creation of negative charges is counterbalanced with alkali or earth alkali cations, typically Na+ 

counterions between each TOT layer. The extent of charge deficiency of smectites ranges from 

0.2 < x < 0.8 equivalents per Si4O10 unit.[30] Weak interlayer forces act between the sandwich-like 

TOT units which are responsible for the crystalline feature of the clay material. The hierarchical 

stacking of the TOT layer creates a lamellar structure with a ꞌVan der Waals gapꞌ which represents 

the hydrated cation interlayer.[28][30] 

Post processing methods like exfoliation leads to delamination of the TOT building block and to 

single silicate layers and a higher aspect ratio. Shearing forces overcome the interaction 

(100 kJ/mol)[28] between the layers and well-separated nanoplatelets are present in the aqueous 

solution. The layer separation through delamination caused by hydration of the interlamellar cation 

is also responsible for the high and homogeneous charge densities (osmotic delamination)[26][28][30], 

whereby the swelling behavior depends on the relative humidity (RH) in different surroundings. 
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Concerning the chemical properties, clay materials have a hydrophilic character because of the high 

ionic charge densities on the clay surface due to isomorphous substitution.[30] Furthermore, external 

charges from broken edges and therefore exposed OH-groups enhance the hydrophilic character. 

These two kinds of electrical charges contribute to the cation exchange capacity (CEC) of hectorite 

nanoclays.[30][31][32] The latter one shows an amphoteric charge which results from the pH-dependent 

proton adsorption-desorption process of the hydroxyl groups. Due to an increasing solution pH the 

functional groups on the clay edges are in an ionized state. The existing silanol (SiO-) and aluminol 

(AlO- ) groups are free from protonation (figure 14). 

 

Figure 14: Side projection of exterior hydroxyl ions of TOT minerals which can be deprotonated under basic 

conditions.  

 

Within the acidic/neutral pH region (pH=3-6) the permanently charged basal and interlayer surfaces 

are responsible for the cation exchange of heavy metal cations like Cd(II). With increasing pH 

value, the surface complexation on variably-charged edge surfaces plays the major role in the 

adsorption process.[25] Different studies of nanoclays provide evidence that the surfaces-edges show 

an amphoteric character in aqueous solution.[25][33] The large lamellar surfaces of nanoclays can be 

modified with the addition of hydroxyl ions favoring cation exchange reactions on the surface-

edges.[34] By adjusting the permanent and variable interactions of external surfaces of the TOT 

layer,[30] or exceeding the critical salt concentration,[16] the edge-basal plain interaction may lead to 

coagulation (cardhouse structure) and flocculation of the lamellae system. This restricts the 

application of nanoclay materials in acidic conditions. 
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4.2.2 Formation of Semiconductor/Nanoclay Composites  

Nanoclays as an adsorbent material are supposed to have three adsorption sites for cations. The 

first possible site is the high surface area external planar surface where the electrostatic adsorbed 

cations are exchangeable. Another possibility is adsorption on the clay edges which can be also 

followed by the penetration into the octahedral sheets.[33][35] 

The solution pH, the initial metal concentration, the ionic strength, the contact time and the 

temperature have an enormous influence on the adsorption behavior.[34][36] The pH value is the most 

critical factor and several research groups have proven that the pH dependent maximum of 

adsorption does not follow a simple model as outlined above. With the adjustment of the pH values 

to 6–9[25], the irreversibility of the exchange process at the surface edges increases. In the 

deprotonated form, the concentration of hydrogen ions on the active edge sites is reduced, leading 

to a decreased competition of H+ with present metal ions and an increase in the adsorption 

capacity.[37] 

Various research groups[37][38][39][40] showed that the absorption efficiency increases within the first 

minutes and reaches an equilibrium (effectiveness ≤ 90 %) and is less efficient in the later stages 

of the contact time. Jesionowski et al.[41] has shown that for an ion concentration of 25 mg/L  to 

100 mg/L, just 0.5 g to 3 g of the adsorbate was necessary to remove all ions from solution. These 

results also showed dependence of the adsorption efficiency on the protonation of surface 

functional groups. Considering these results, and the CEC the experimental conditions were 

carefully chosen.  

A lower ion concentration affects the very strong adsorption mechanism in a positive way.[35] In 

the beginning, a low heavy metal concentration leads to preferred edge coverage while a higher 

concentration of the Cd ions results in a further adsorption on the clay basal surface.[15][36][37] Full 

coverage of the nanoclays is also possible, however in this case the high energy edge sites are likely 

filled in the beginning. The predominant edge adsorption of Cd(II) on coated minerals indicates the 

great affinity for these kinds of heavy metals ions. Additionally, a high concentration of adsorbent 

material ensures 100% effective removal of the ions in solution whereas increasing metal 

concentration caused a significant decrease.[36] 

Beside the contributing factors of concentration, pH value and reaction time, the surface 

complexation depends on the ion source. In the last decades, the successful surface complexation 

of Ni(II), Zn(II), Cd(II), Fe(II) on 2:1 phyllosilicate has been reported.[17] In view of its outstanding 

optical properties the adsorption behaviour of cadmium is our focus. In aqueous solution, the Cd(II) 

ion is hydrolyzed and this results in the formation of various species. The pH range plays an 
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important role and within the solution pH of 5–7 the hydrolyzed species appears in the form of 

Cd(OH)+, Cd(OH)2, and Cd(OH)3
  -.[37] With increasing pH value the fraction of the negatively 

charged hydrolyzed product increases.[36] Among all ionic products the Cd2+ is the predominant 

species in the solution at the pH value of 6, the adsorption ion the negative charged edges is 

favored.[37] Simulations by Zhang et al.[33][42] showed (SPNESC/CE modeling) recently that 2:1-

type edge surface of clay materials show a very high binding affinity for divalent heavy metal 

cations. In diverse clay materials (e.g. Kaolinite, Montmorillonite) the immobilization 

predominantly takes place in form of different cation specific complexing mechanisms. In 2017, 

Zhang and co-workers discussed simulations showing that the preferred tetradentate complex of 

Ni(II) is on the octahedral vacancies of the inorganic oxide adsorbent material.[33] The cation is 

embedded into lattice because it fits like a lattice cation into the vacancy of on the (110) edge. The 

complex formation may require the involvement of two or more complexing groups on the 

nanoclay edges (SiO-, AlO-) and Ni(II) shows a minor favorable monodentate complex on the Si-

site and the bidentate complex on the Al-site. The common substitution of Mg for Al reduces the 

complexation ability. The complexing structure varies with the metal ion which can be underlined 

with free energy simulations and in contrast to Ni(II), Cd(II) shows a different complexing 

structure.[42] Cadmium is not able to occupy the lattice positon because of its much larger radius R 

(e.g. for aqua-cations, R(Cd-O)=2.29 Å).[43] Instead, Cd(II) forms highly stable tetradentate 

complexes at the octahedral vacancies and the values for complexing the Si- and Al-sites are lower 

compared to the octahedral vacant site. This complex predominant adsorption on the vacant sites 

of (010) interfaces of 2:1 phyllosilicates.[42] Cd(II) shows a complexing structure and is not 

embedded into the lattice position which allows the access of reactive counterions. The presence 

of stabilizing ligands should lead to a controlled quantum dot growth. All the above mentioned 

factors are able to influence the adsorption kinetics but the well-defined and favorable ion 

adsorption on nanoclay edges should allow the controlled deposition of ordered quantum dots on 

nanoclay edges.  

The in-situ synthesis of nanocomposites allows the generation of quantum dots with outstanding 

optical properties attached on solid supports. Well-organized, highly stable and luminescent 

nanocrystals are of great importance for the subsequent formation of optoelectronic devices. Each 

component of the new construct has outstanding functionalities which are combined in one ꞌsmart 

materialꞌ to make a multifunctional nanocomposite. The size-dependent photoluminescence of 

CdTe quantum dots can be controlled by the reaction time and nanoclay additives show effective 

mechanical and thermal properties. 
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4.2.3 Heat-up Synthesis CdTe 

According to previous literature[44][45] highly luminescent CdTe quantum dots at 100 °C were 

synthesized in aqueous solution. The experimental section[44] gives insight into the quantum dot 

synthesis and highlights the influence of different factors. This includes the variation of the pH 

value, Te2-:Cd2+:Mercaptopropionic acid (MPA) ratio and the precursor concentration. We 

prepared thiol stabilized nanocrystals with Te2-:Cd2+:MPA ratio of 0.1:1:1.5 at a pH value of 12 to 

confirm the results of the previous studies in section 4.4.1. 
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4.3 Experimental Section 

Simple mixing of pre-synthesized quantum dots with delaminated Na0.5-hectorite at pH=6 was 

considered before the in-situ hot-injection as major control. The results show entrapped QDs 

between stacked nanoplatelets or the coexistence of both colloidal ingredients due to missing 

attractive forces between organic ligands and neutral charged nanoclays (Appendix). The new 

approach via hot-injection synthesis was chosen to build up the organized quantum dot array along 

the inorganic support material. The Na0.5-hectorite was immersed in a cadmium rich aqueous 

solution. Therefore, exfoliated clay platelets were dispersed in an aqueous solution to 1 wt%. The 

interlayer distance was around 99 nm ± 12 nm according to earlier experimental studies[46] and the 

typical cation exchange capacity CEC of ~125 mequiv./100 g clay, synthesized and determined by 

Breu et al.[26] To this nanoclay dispersion, cadmium acetate was added which acts as ion source. 

The adhesive ability arising from the deprotonated hydroxyl groups under slightly basic conditions 

(pH=8) provides a good anchoring group for Cd2+ ions. The divalent cadmium ions show a strong 

complexing ability[25][36] and a preferred coverage can be found on the edges (figure 15). Moreover, 

the large surface-edge to volume ratio favors the deposition of metal ions along the favored 

anchoring group. The 10-fold weight excess of Na0.5-hectorite (resp. the cadmium precursor) 

exceeds the Cd-ion concentration of 37.5 mmol per 100 g of clay material. Therefore, the amount 

of Cd2+ lies (4.2 g Cd2+/100 g clay and 10 g Cd(acetate)x2H2O/100 g clay) far below the high values 

of the total sorption capacity[26][36][47] of the clay material, favoring the absorption on the exterior 

clay edges (Appendix). The pH value of pH=8 favors the formation of free Cd2+ instead of hydroxyl 

species and the interaction with the inorganic adsorbent.[37] In contrast, the extreme in-situ approach 

with the 7-fold excess amount of cadmium precursor (resp. Na0.5-hectorite, 14.8 g Cd2+/100 g clay 

and 35 g Cd(acetate)x2H2O/100 g clay) results in fully covered nanoclay platelets (Appendix) 

according to AFM measurements. With the lower cadmium content, replacement of existing Na+ 

ions in the inner layers should be avoided, unless the edges are saturated with counter ions. The 

incubation time was around 8 h, increasing the effectiveness and homogenous cation coverage 

along the edges of the support material.[25] A subsequent washing step was carried out with water 

to avoid desorption of the cadmium ions.[36] 
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Figure 15: Simplified model after the osmotic swelling of nanoclay material. After mixing with Cd2+ ions at 

room temperature and an incubation time of 8 h the ions are adsorbed on the nanoclay edges due to 

electrostatic forces. 

 

As discussed in previous literature, the ratio of Te2-:Cd2+ and the stabilizing ligand 

mercaptopropionic acid (MPA) plays an important role during the growth process and shows a 

strong influence on the growth time.[44][48] A 1.5-fold excess of MPA in relation to the Cd precursor 

was added. The addition step should be subsequent to the diffusion controlled adsorption process 

to avoid the competing mechanism of forming single quantum dots in presence of nanoclays.[35] 

The mono- and dithiol cation complexes (-S- Cd2+ -S-)[44] are formed under basic conditions. They 

exist in water in a molecular state, promote the growth rate, provide a good size distribution and 

maintain the confinement effect. As a consequence of the cadmium attachment, only a restricted 

spatial attack of thiol ligands is possible. With the assumption of single and well-separated attached 
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Cd2+ mono/dithiol monomer complexes, various clusters could be formed which acts as seeds for a 

heterogeneous nucleation process (figure 18). 

 

Figure 16: Illustration of the in-situ growth process of CdTe quantum dots onto the negatively charged edges 

of nanoclays. After the adsorption of Cd2+ cations the pH value was adjusted to 12 followed by the injection 

of the TeH- precursor with the exclusion of oxygen. 

 

After the generation of a large number of well-separated Cd2+seeds and the addition of stabilizing 

agents, the ionic growth reaction could be achieved at elevated temperatures in form of ionic 

primary clusters with TeH-ions.[44] The injection of the NaHTe precursor at 100 °C under Schlenk 

conditions lead to quantum dot growth according the ionic reaction of Te2--ions on Cd2+seeds. The 

consumption of the Te2--ions is controlled by the presence of deprotonated MPA and hydroxyl ions. 

The electrostatic repulsive and reactive Cd2+ ions on specific sites on the nanoclays prevent the 

quantum dots from post growth processes and agglomeration. To monitor the size-dependent 

properties, aliquots were taken at different reaction times (figure 16). For the purification the 

reaction mixture was centrifuged wherein the colourful sodium hectorite shows a good settlement. 

The supernatant was carefully removed and the nanocomposite samples redispersed.  
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4.4 Results and Discussion 

4.4.1 Detection of Optical Properties 

The previous literature[44][45] describes the formation of highly luminescent CdTe quantum dots at 

100 °C in water. The controlled growth process of CdTe quantum dots under oxygen free 

conditions shows unique size-dependent optical properties. The organic compound 

mercaptopropionic acid was used to stabilize the quantum dots during the growth process. The 

nanocrystals were prepared with Te2-:Cd2+:MPA ratio of 0.1:1:1.5 at a pH value of 12 to confirm 

the results of the previous studies. Figure 17 (left) shows the normalized UV-vis spectra with the 

absorption window from 450 nm to 610 nm and the shift of the peak maximum with proceeding 

reaction time (t=1-35 min) (right).  
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Figure 17: Normalized absorption spectra of CdTe nanocrystals synthesized using cadmium acetate and 

sodium telluride hydride as precursor salt. Due to variation of the reflux time (t =1–35 min) nanocrystals with 

various sizes can be obtained. 

 

To ensure the spherical morphology (figure 18) and a narrow size distribution, transmission 

electron microscope (TEM) and AFM (Appendix) were used. The CdTe quantum dots are well-

separated with a mean diameter of 4.0 nm and standard deviation of 0.9 nm, based on 100 particles 

(N=100). 
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Figure 18: TEM image of CdTe quantum dots after 35 min (drop casting) and the corresponding size 

distribution with 4.0 nm ± 0.9 nm in diameter. 

 

The controlled growth process of nanocomposites under oxygen free conditions can yield uniform 

quantum dots with unique size-dependent optical properties. Therefore, the clay absorbent material 

acts in concert with the organic ligand as an outstanding stabilizer to suppress the agglomeration, 

ripening process, and precipitation of the grown quantum dots. Both stabilizers, nanoclays and 

mercaptopropionic acid, prevent the tunable highly efficient radiation-dependent 

photoluminescence of CdTe quantum dots.  

After the successful adsorption of cadmium ions on hectorite edges, the QD/nanoclay dispersion 

was heated to 80 °C. Directly after the addition of the NaHTe precursor, the color of the reaction 

mixture changes instantly to yellow. At this stage, no luminescence could be observed. With raising 

the reaction to 100 °C for a longer period of time the reaction mixture changed color from yellow, 

to greenish, to orange, then to dark red. Aliquots were taken after different reaction times according 

table 4 and quenched with water. The samples were centrifuged to remove unreacted side products 

and transferred to a quartz cuvette to obtain the UV-Vis spectra shown in figure 19. 
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Figure 19: UV-vis spectra of the nanocomposite dispersion synthesized using cadmium acetate and sodium 

telluride hydride as precursor salt in the presence of Na0.5-hectorite. Due to variation of the reflux time 

(t=5-120 min) nanocrystals with various size can be obtained. 

 

The absorbance band gap shifts from the visible wavelength range (λ=433 nm) to the near infrared 

range (λ=729 nm). As discussed in Chapter 2, quantum dot size is directly related to the observed 

absorbance edge due to the spatial confinement and its influence on the electronic structure. The 

long absorption tail on the low energy side indicates the presence of nanoclay material. The 

corresponding photograph of taken aliquots is depicted in figure 20. 

 

Figure 20: Photograph of a series of CdTe-nanoclay composite materials taken after different reaction times 

demonstrating their size-related optical properties covering the visible and near-infrared region. 

 

The 10-fold weight percentage of Na0.5-hectorite (resp. Cd precursor) and the presence of 

stabilizing ligands significantly slow down the ionic reaction during the formation of quantum dots. 
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Compared to free solutions, these factors affect the effective ion diffusion within the reaction 

mixture.[49] Spatial restriction was also generated by the selective attachment of cadmium ions 

along the nanoclay edges, and the complexation through stabilizing ligands. The following shows 

the synthetic parameters of the hot-injection synthesis and summarizes optical information about 

the nanocomposites. 

 

Table 6: Synthetic conditions and optoelectronic information of nanoclay-based composites.  

Sample Reflux time [min] Temperature [°C] Abs. max [nm] 

QDN-05 5 100 433 

QDN-30 30 100 512 

QDN-60 60 100 594 

QDN-75 75 100 654 

QDN-120 120 100 729 

4.4.2 Fluorescence Microscopy 

Fluorescence microscopy is an effective technique to visualize and localize quantum dots after their 

preparation in the presence of nanoclays. The microscope is equipped with a mercury lamp as light 

source and an orange filter for emission detection between 575–625 nm. The optimized excitation 

wavelength filter for CdTe QD is around 500–550 nm. The fluorescence of the QD/nanoclay after 

QD synthesis for 1 h at 100 °C was detected under the microscope at (x40) magnification. The 

following figure 21 shows the nanocomposites prepared according to the previously described hot 

injection method. 
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Figure 21: Fluorescence image of CdTe/nanoclay nanocomposites (QDN-60), synthesized according to the 

hot injection route at 100 °C for 60 min in water (1 wt% in water), showing quantum dot-labeled edges.  

 

The studies indicate clearly the presence of QDs in the hybrid nanomaterial. The selective 

adsorption of cadmium ions at the edges and the subsequent injection of telluride-based precursor 

in the presence of thiol-containing ligands allow the growth of water-stable and strongly fluorescent 

QDs. Regarding the distribution, the QDs showed preferred attachment on the nanoclay edges 

instead of a random distribution on the drop-cast nanocomposite film. In contrast to earlier studies, 

the contours of the single lamellae are visible, whereas no emission signal is detected at the basal 

surfaces.  
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Figure 22: Fluorescence image of CdTe/nanoclay nanocomposites, synthesized a by the hot injection route 

at 100 °C for 60 min in water (1 wt% in water, QDN-60) showing quantum dots along the edges of stacked 

nanoclay lamellae. 

 

The top-down view in figure 22 (a)-(c) shows the edge of stacked lamellae sheets. Insufficiently 

delaminated clays assist the nanoclays to stay upright at the edges as consequence of the preparation 

method. Fluorescence microscopic images display the size-related emission of immobilized QDs, 

but for more information about the detailed localization of the semiconductor nanocrystals, the 

combination with high resolution transmission electron microscopy and topographical AFM 

measurements is required.  

4.4.3 Atomic Force Microscopy 

Atomic force microscopy (AFM) is a useful technique for analyzing the surface morphology of 

thicker structures. The advantage of AFM over fluorescence microscopy is, that horizontal 

dimensions (x- and y-dimensions) of the sample within the nm to µm region and the vertical 

dimensions (height and depth profile, z-direction) can be determined. When the AFM technique 

operates in a vibrating mode, the cantilever vertically scans the sample surface and inter-atomic 

forces between sample surface and tip cause changes in the amplitude of the tip vibration. For 

topographical mapping, changes in the vibrational amplitude are transformed into a height image 

which provides information about the surface roughness. Additionally, the tapping mode allows 

the simultaneous detection of the phase image which provide information about surface features. 

Phase imaging enables one to identify different materials and differentiate between regions of 
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distinct surface hardness.[50] For this AFM technique, the phase lag between the signal that drives 

the cantilever to oscillate and the cantilever oscillation output signal are monitored. The surface 

properties cause the phase lag while the topographic image is taken and a direct correlation between 

surface and topographic features exists during the detection of the three dimensions with high 

magnification.  

Different aliquots from the aqueous QD/nanoclay reaction mixture after the reaction times of 

60 min, 75 min and 120 min were taken and quenched with water. The highly diluted dispersions 

were spin-coated on pre-cleaned glass wafers. The tapping mode was chosen for AFM analysis and 

the recorded surface profiles are shown in figure 23. 

 

Figure 23: Topographical AFM images of a Na0.5-hectorite after the synthesis. (a) 2D image and b) 3D image 

nanoclays surrounded by CdTe quantum dots after 60 min reaction time (QDN-60). (c) and d) show sample 

QDN-75 with partially stacked nanoplatelets because of drying effects. (e) and (f) show 2D and 3D images 

of CdTe/nanoclay nanocomposite after 2 h (QDN-120). 

According to the 2D and 3D topographical images, the darker regions correspond to the nanoclays 

which exhibit a uniform contrast on the glass substrate, representing a smooth surface. The Na0.5-

hectorite was delaminated into single lamellae with lateral dimensions reaching from 0.5 to 10 µm. 
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Brighter areas label the support material which can be assigned as the QD around the nanoclay 

edges. The CdTe quantum dot show a selective attachment on the nanoplatelets. The large hectorite 

platelets as well as the QDs show some contrast in the 10-20 µm scanned regions. Zooming in on 

regions of interest which show CdTe surrounded nanoclays and a corresponding cross-section 

analysis can give more information about the dimensions (figure 22). The typical 2D line profiles 

show discrete steps between the nanoclay monolayers and substrate. The typical height of the 

lamellae is found to be around 1.2 nm. Under higher magnification remarkable differences between 

the nanoclay height and the QD around the edges could be detected. The height data gives 

information about the precise dimensions of the nanocrystals. Figure 24 (a) and (b) show the results 

after 60 min reaction time with QD height around 2.03 nm ± 0.4 nm. After 75 min reaction time 

(c) and (d) the lateral dimensions of measured CdTe reaches 2.85 nm ± 0.4 nm for 2 h synthesis 

5.8 nm ± 0.5 nm. 

               

Figure 24: Topographical AFM images (a) and the corresponding cross section (b) of QDN-60 gives QD 

height of 2.03 nm. (c) and (d) height profile of CdTe/nanoclay composites with quantum dot diameter of 

2.85 nm (QDN-75). (e) and (f) show sample QDN-120 with mean diameter of 5.8 nm. The height of the 

delaminated nanoclays is in the range 1.08 nm to 1.16 nm. 
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Beside topographical imaging, operating in the AFM tapping mode allows the detection of phase 

images and the distinction between different surface features. The AFM cantilever is also sensitive 

enough to detect phase shifts which can be attributed to the substrate materials. The phase lag is 

induced by several factors, such as material stiffness, adhesion, and dissipated energy, making the 

interpretation of the data more complicated.[51] For our needs, phase imaging is sufficient for the 

detection of heterogeneities and in consideration of the height profile a distinction of the 

multicomponent sample is possible. 

The different contrasts in the AFM phase images (figure 25) defines the composition of the hybrid 

material. The phase shift and therefore the material stiffness is highlighted with different colors. 

According to the mapping of components, the bright domains represent larger phase shifts which 

can be attributed to the ligand-covered CdTe quantum dots. The darker nanoclay regions 

correspond to the delaminated clay material. 

 

Figure 25: Phase AFM images (a) of nanocomposites QDN-60 and the corresponding cross section (b) after 

60 min synthesis gave QD with 32.18° phase difference. After 75 min reaction time (QDN-75) the phase 

profile of 37.9° difference (c) and (d) show delaminated nanoclay composites a phase lag of 34.6° could be 

detected for QDN-120 after 120 min (e) and (f). 
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Figure 25 shows the corresponding cross-sectional profile of the phase images with the same 

selected line as for the topographical image. The phase difference in the chemical-dependent phase 

image is about 36° for moderate tapping. The cross-section profile matches the results of the 

corresponding valleys of the topographical image. It can be surely concluded, that the QD are 

arrayed along the nanoclay edges. The phase image differs strong from that of the topography and 

show artifacts around the nanoclay platelet (phase lag around 40°). The cantilever loses contact 

with the objects in tapping mode due to stacked nanoplatelets differing in height and depth. The 

tapping mode allows the detection of chemical-dependent phase data which informs one about the 

roughness of the composite material, but the information obtained depends strongly on the 

cantilever shape. The limited lateral resolution is caused by the finite tip-end radius which leads to 

enlarged objects. The accurate shape and size detection of nanocrystals with sizes around 2 nm to 

6 nm is very difficult. It is also not possible to discern two neighboring nanocrystals. In our case, 

we used the vertical height data to get information from the nanocrystals on the solid substrate.  

4.4.4 Transmission Electron Microscopy 

AFM measurements and fluorescence microscopy are consistent and demonstrate selective QD 

growth along the edges. TEM offers an alternative method for detection of QD in the nm-region to 

verify the results from the previous methods and get detailed information about the QD 

arrangement. The particle size, morphology, size distribution and interparticle distance need to be 

explored. 

TEM measurements are challenging for nanocrystals on macroscopic substrates, because the 

detection of nanomaterials becomes impossible when the inorganic support material is not 

transparent to the electron beam. The consequences are a low contrast and the distinction between 

substrate and quantum dots is not possible. The identification and size estimation of smaller CdTe 

quantum dots is quite demanding. We know from previous results that QD are arranged along clay 

edges, hence a detailed analysis is more promising. 

For the TEM analysis a few droplets of the CdTe/nanoclay dispersion were deposited on carbon 

coated copper grids. After the solvent evaporation in air and at room temperature, the detection of 

nanocomposites only gave reliable results for aliquots taken after 75 min and 120 min reaction time 

(figure 26).  
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Figure 26: TEM images after the in-situ growth process (QDN-75: T=100 °C, 75 min) illustrate the size 

distribution of the well-separated nanocrystals as well as the nearly monodisperse morphology of the highly 

emissive CdTe quantum dots with an average size of 4.1 nm ± 0.9 nm (1 wt% in water, (a) scale bar 200 nm 

(b) scale bar 100 nm (c) scale bar 100 nm). 

 

The TEM images of sample QDN-75 reaction time lead to an organized attachment of QD. In 

contrast to AFM images, the QD appear well-separated. The colloid array consists of single 

nanocrystals along the nanoclay edges with interparticle spacings controlled by the inorganic 

support material and stabilizing ligands.[2] On one site, the arrangement along the edges is closely 

packed but not completely saturated, since the preferred adsorption on active octahedral sites of the 

nanoclays prevents closer contact and leads to the absence of agglomeration of the products. On 

the other side, the bound QD are exposed to solutions of thiol-bearing stabilizing ligands which 

control the nanocrystal size due to limited monomer diffusion to the QD surface and electrostatic 

repulsion between particles.  
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The mean particle diameter of QDN-75 was calculated to be 4.1 nm and the standard deviation to 

0.9 nm based on 100 particles (N=100). The relative standard deviation (RSD) is around 21.9 %. 

The values are significantly greater than the mean feature height measured with AFM indicating 

that the QD are not completely spherical. 

TEM analysis of QDN-120 (figure 27) also gave more clarity about the synthesized 

nanocomposites, displaying arranged QD with mean particle diameters of 6.9 nm and a standard 

deviation of 1.5 nm (N=100, RSD=21.7 %). The size values are significantly greater than the mean 

feature height measured with AFM. The samples show an overall increase of the QD size for longer 

reaction times. 

 

Figure 27: TEM images after the in-situ growth process (QDN-120: T=100 °C, 120 min) illustrate the size 

distribution of the well-separated nanocrystals as well as the nearly monodisperse morphology of the highly 

emissive CdTe quantum dots with an average size of 6.9 nm ± 1.5 nm (1 wt% in water, (a) scale bar 200 nm 

(b) scale bar 100 nm (c) scale bar 50 nm). 

 

The TEM characterization support the results obtained from AFM and fluorescence microscopy. 

TEM illustrates the good size distribution of the well-separated CdTe quantum dots, with uniform 
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morphology corresponding to the growth time. In contrast to the conventional synthesis, smaller 

CdTe quantum dots could be obtained with longer reaction times. The presence of the support 

material and a high ligand concentration makes monomer diffusion to the particle surface less easy. 

The stepwise synthesis, which starts with electrostatic adsorption of ions at defined positions at low 

ion concentration, and a certain pH value, on the substrate, leads to a controlled colloid deposition 

along the edges. This approach gives organized arrays and a lower coverage of well-spaced QD. 

Due to their defined attachment and accessibility, the optimal emissive potential can be achieved 

at low QD concentration. Towards further spectroscopic applications, the size-dependent properties 

of both materials can be exploited. The QD must be strongly bound because the samples are washed 

several times with water without dislodging them. This fact makes these materials attractive for 

further fabrication and processing. Table 7 highlights the characteristics of the nanoclay-based 

composites.  

 

Table 7: Characteristics of CdTe quantum dots attached on nanoclay edges at different reaction times. 

Sample 

 

Reflux time 

[min] 

Temperature 

[°C] 

Abs. max 

[nm] 

AFM height 

[nm] 

TEM dmean 

[nm] 

QDN-05 5 100 433 - - 

QDN-30 30 100 512 - - 

QDN-60 60 100 594 2.0 - 

QDN-75 75 100 654 2.9 4.1 ± 0.9 

QDN-120 120 100 729 5.8 6.9 ± 1.5 

 

 

There are some reports in the literature, which investigated the size-dependent optical properties of 

CdTe quantum dots.[52][53] The studies demonstrated, that the extinction coefficient of nanocrystals 

at the first excitonic absorption peak correlates strongly with the size of the nanocrystals. The term 

of the empirical fitting function is provided below where D is the nanocrystal diameter in nm and 

λ the wavelength of the first excitioni absorption peak.    
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𝐷 = (9.8127 ∙ 10−7)𝜆3 − (1.7147 ∙ 10−3)𝜆2 + (1.0064)λ − (194.84)  (4.1) 

 

In our case, the dilute solutions of QDN-75 and QDN-120 in water show absorbance edges around 

654 nm and 729 nm due to the spatial confinement in three dimensions. Furthermore, their mean 

particle diameter (determined by TEM) was calculated to be around 4.1 nm and 6.9 nm.  

A comparison of the data to equation 4.1 shows, that the obtained data are in close agreement with 

the corresponding quantum dots sizes determined by TEM. The quantum dot size of QDN-75 was 

calculated to be 4.4 nm and diameter of QDN-120 is around 7.7 nm. It clearly indicates that the 

band edge increases with size and the impact on the electronic structure through clay material or 

interparticle coupling between the nanocrystals can be neglected. 
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4.5 Conclusion 

In this chapter the in-situ growth process of colloidal CdTe quantum dots onto hectorite nanoclays 

was examined. It was found that with this hot-injection approach, the formation of nanocrystals 

takes part preferentially on the edges of the exfoliated nanoclays and results in well-organized 

colloidal structures. Direct imaging of the nanoparticle arrays with Fluorescence Microscopy, 

Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) enabled us to 

control the structural and optical features of the nanocomposite.  

The special chemical structure of nanoclays and their responsiveness to environmental conditions 

are perfectly compatible with the reaction conditions of the CdTe quantum dots synthesis 

previously reported. The synthetic approach can be divided in two stages. The nucleation process 

which includes the adsorption of the precursor cations onto the matrix system, followed by the 

second step which describes the nanoparticle growth in the presence of stabilizing agents at higher 

pH values. Nearly monodisperse, well-separated and highly stable quantum dots can be synthesized 

while maintaining their unique properties. The influence of the reaction time results in tuning of 

the optical properties including emission ranging from the visible and to the near infrared region. 

This versatile method could be suitable for other nanoparticles. Small, perfectly covered regions of 

quantum dots are synthesized under Schlenk conditions. The outstanding properties of quantum 

dots and nanoclays are combined by taking the advantage of low ion concentration and exploiting 

the maximum potential of optoelectronic nanocrystals. The selective attachment of the single 

CdTe/aluminosilicates layers opens the way for alignment of anisotropic nanocrystals (e.g. sensor 

functions). The high surface-area of nanoclays could make a positive contribution in view of 

catalytically active nanocomposites. The combination of more nanomaterials of different nature are 

interesting to build ternary systems. The specific adsorption of nanocrystals on inorganic support 

material, the ease of fabrication of the construct, as well as the resulting optical features, are 

showing a strong contribution to the research field of Ꞌsmart materialsꞋ which can be used to create 

a variety of optoelectronic devices. 
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Appendix 1 

           

Figure S1: Addional data of AFM (left) and TEM (right) analysis of [Na0.5]inter [Mg
2.5

Li0.5] octr[Si4]tetr O10F2 

hectorite to prove the delamination into single lamellae with lateral dimensions reaching from 0.5 to 10 µm 

and the typical height of the lamellae is found to be around 1.2 nm.  
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Figure S2: Addional data of AFM analysis of CdTe quantum dots synthesized via hot-injection method at 

100 °C in aqueous medium.  

 

Figure S3: AFM image to study the surface modification of [Na0.5]inter [Mg
2.5

Li0.5] oct[Si4]tet O10F2 nanoclays 

after the in-situ growth of CdTe nanocrystals. The 7-fold amount of cadmium precursor (resp. Na0.5-hectorite, 

14.8 g Cd2+/ 100 g clay and 35 g Cd(acetate) x 2H2O/100 g clay) results in fully covered nanoclay lamellae. 
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Chapter 5 

Study of Nucleation and Growth Kinetics of Perovskite 

Nanocrystals with In-situ UV-Vis/Scattering Experiments 

5.1 Introduction and Motivation 

In the last years the field of optoelectronic materials has paid much attention to the properties of 

semiconducting perovskite materials, with many promising results and applications 

resulting.[1][2][3][4][5] Galian and Perez-Prieto[6][7] reported in 2014 the colloidal synthesis of metal 

halide perovskite nanocrystals CH3NH3PbBr3 with organic ammonium ligands to stabilize the 

perovskite crystallites. According to this synthetic procedure, perovskite self-assembly is initiated 

by anti-solvents which induce the precipitation of the nanocrystals. Several nucleation crystals are 

formed due to supersaturation of the system which lead to further crystal growth. For the soft-

template method according Zhu et al.[8], specific precursor ratios as well as the solvent/anti-solvent 

ratio play the critical role in the formation of perovskite nanocrystals. The change in composition 

and reaction conditions results in various morphologies (i.e. spherical dots, nanocubes, 

nanoplatelets). Numerous research groups modified this ligand-assisted precipitation technique by 

varying the temperature, halide or solvent composition. These studies have given a better insight 

into the formation process and allowed better control over this material.[6][7][9][10][11] Bandgap 

tunability due to varying material composition allows in-situ detection with optical methods and 

the subsequent fabrication of colorful solar cells.[12][13][14][15] The dimensionality may also tune the 

electronic and optical properties which can be attributed to the quantum confinement 

effect.[16][17][18][19][20] 

The perovskite synthesis is a rapid process with immediate precipitation of semiconducting 

nanocrystals.[7][10][21] Due to the low formation energy and fast crystallization rate it is hard to 

monitor the formation process. The aim of this chapter is to investigate the structural development 

of organohalide lead perovskites CH3NH3PbBr3 with the main focus being to adapt this room 

temperature synthesis to a microfluidic chip and a capillary interdiffusion system for in-situ studies 

and to underpin these results with those of electron microscopy.  

Microfluidic technologies have the ability to access the kinetics of reactions in continuous-flow 

conditions. Obtaining quantitative information about the reaction and developing of diverse 

nanocrystal morphologies are both possible in this way.[21][22][23] The laminar flow and the chip 
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channel geometry permit controlled mixing conditions with microfluidic devices. The entire chip 

is optically transparent and planar so that emissive properties can be observed easily via confocal 

microscopy.[24] 

Compared to fast mixing in the microfluidic chip, the slow capillary interdiffusion experiment[24] 

results in a controlled perovskite formation. The combination of real-time spectroscopic and 

scattering experiments allows better insight into the structural evolution. The formation of ultrathin 

crystalline MAPbBr3 platelets, and their transformation into monocrystalline platelets and 3D 

stacked superstructures are investigated.[7][8][18][25] To our knowledge, both setups have not been 

combined to study the in-situ nucleation and growth processes of organohalide lead perovskites 

CH3NH3PbBr3 via soft-template methods. The growth mechanism of perovskites is elucidated by 

combining the experimental results with the principles of nucleation and growth models. 

 

5.2 Structural Evolution of Perovskite Nanocrystals 

5.2.1 AMX3 Organohalide Lead Perovskites 

The general chemical formula of pure perovskite AMX3 structures correspond to an ideal cubic-

symmetry.[7][26] The symbols A and M represent the position of the cations and X the anion. These 

AMX3 perovskite structures account for a large number of well characterized species,[26] which can 

be divided into the alkali-halide and halide perovskites (Figure 28).  

 

Figure 28: Classification of AMX3-type perovskites into the alkali-halide perovskites and halide perovskites 

with monovalent (A), divalent (M) cations and a monovalent halide anion (X). 
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As it relates to this work, the organohalide category is described in greater detail. The organohalide 

perovskites consist of monocovalent AI -(CH3NH3
+) and divalent MII-cations (Pb2+), as well as the 

bromide halide anion (X=Br-). The Pb2+-cation is ideally surrounded by an octahedron of the anions 

(PbBr6) and the organic compound methylammonium (MA+, CH3NH3
+) is twelve-fold coordinated 

by the bromide anions (CH3NH3Br12-cuboctahedra) (Figure 29). A reduced coordination number 

or substitutions of cations results in distortion of the ideal cubic-like crystal lattice (expressed by 

the tolerance factor t = 1; RA,RM,RX: ionic radii of A, M and X). This affects the electronic, 

magnetic and dielectric properties of perovskites.[27][28][29] A controlled combination of all three 

ionic components allows band gap tuning over almost the entire visible spectrum (direct energy 

gaps 1.4 eV–2.2 eV).[12][26]  

 

Figure 29: Schematic illustration of a cubic halide perovskites CH3NH3PbBr3 unit cell (left) and perovskite 

nanocube surrounded by organic stabilizing ligands (right).  

 

The high absorption coefficient, a high yield of free electrons and holes and a long 

lifetime/diffusion length of charge carrier due to the absence of recombination are some of the 

requirements to reach high performance levels in optoelectronic devices.[29][30][31] Monocrystalline 

MAPbBr3 perovskite platelets have a reduced dimensionality in one dimension (thickness, quantum 

confined) resulting in useful spectral features.[32] The higher lateral dimension enables guiding of 

electromagnetic waves within the material with reduced non-radiative decay. According to the 

well-established template-based method[8][18][25] of Schmidt et al.[7] colloidal nanoplatelets could be 

synthesized in the presence of long aliphatic ligands and fully characterized by optical and electron 

microscopy methods. The presence of octylammonium bromide keeps the quantum platelet thin by 

allowing further attachment of unit cells only on the (001)-facet. The increase in length occurs on 

the higher energy (011)- and (022)-planes of the crystal.[25] The long chain aliphatic amines also 
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act as surface-passivating ligands.[33][34][35] Therefore, non-radiative recombination on crystal 

defects and quenching on grain boundaries can be reduced and the emissive properties improved. 

A few publications investigate the formation of two-dimensional nanocrystals via an 

oriented-attachment growth process. Weller et al.[36] reported also the fusion of PbS nanocrystals 

into nanoplatelets driven by dense packing of organic ligands between the nanocrystals. Hu et al.[37] 

reported that oxide perovskite nanoplatelets were composed of nanowires. Sardar and co-

workers[25] assumed a solvent-induced self-assembly process of CH3NH3PbBr3 quantum platelets. 

We decided to investigate and to exploit this hypothesis, follow the nanocrystal structural evolution 

by qualitative in-situ and ex-situ techniques. 

 

5.2.2 Kinetic Studies of Nanoparticle Formation with Microfluidic Systems  

The introduction of microfluidic systems has allowed the downscaling of conventional flask-based 

systems. Conventional laboratory-based characterization methods need to be adapted to a new class 

of devices. We have used microfluidic channels in the past for chemical transport and nanoparticle 

formation.[21][22][23][38] Micrometer-scaled chips allow the integration of data analysis[39][40] for in-

situ detection of experimental conditions. The employ of high-precision syringe pumps for liquid 

transport[24][40] through the channels. Detection techniques include Confocal Laser Scanning 

Microscopy (CLSM). Therefore, the microfluidic approach is suitable for monitoring the rapid 

reaction kinetics of nanoparticle formation and allows a precise study of nucleation and growth of 

crystals within the chip. The microfluidic channel length can be correlated with the reaction time 

which provide access to very short reaction times. The diffusion controlled process can also be 

followed over long time scales by performing measurements at different regions along the channel. 

Evaluating the emission characteristic along the microfluidic device give a better insight in the 

nucleation and growth process.  

The structural evolution from perovskite nanocrystals is a very fast diffusion-controlled reaction 

occurring on time scales of a few milliseconds for large scale syntheses at room temperature. In a 

second approach, a capillary interdiffusion setup is used to slow down the reaction and to detect 

the formation process in a glass capillary (analysis cell). Compared to microfluidic dimensions, 

similar volumes were used for the vertically mounted capillary. The capillary interdiffusion 

perovskite formation is followed by UV-Vis measurements and X-ray scattering experiments with 

very high sensitivity. To adapt and monitor the synthesis, the perovskite formation should be 
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sufficient slowly which can be realized using a buffer layer that slows diffusion. The structural 

evolution of the reactant interdiffusion within the microfluidic chip, and the slow capillary 

interdiffusion in the capillary, provide detailed insight into kinetic pathways and intermediate states 

of the perovskite formation. 

 

5.3 Experimental Section 

Perovskite Sample Preparation 

The precursor octylammonium bromide and methylammonium were synthesized according to 

literature reports with slight modifications and stored in a vacuum oven until use.[41] 

For the CH3NH3PbBr3 perovskite synthesis, four different ratios of PbBr2:methylammonium 

bromide (MAmBr):octylammonium bromide (OAmBr) were tested with a fixed solvent/anti-

solvent ratio DMF:Toluene of 1:5  at room temperature (Chapter 3, Table 2) in a conventional large 

synthesis. The precursor salts were mixed in DMF and slowly injected into the anti-solvent toluene. 

The reaction mixture was cooled and centrifuged. The redispersed sample was then used for further 

analysis. 

The ligand-assisted synthesis[8] was optimized for our needs to adapt the recipe to the microfluidic 

channel and capillary interdiffusion model. For optimal experimental conditions the molar ratio of 

PbBr2:OAmBr:MAmBr 0.10:0.16:0.24 was held constant and the precursors were dissolved in 

Toluene/DMF 1:1. Additionally, a solvent mixture of Toluene/DMF 2:1 was prepared for the 

microfluidic experiment. The capillary interdiffusion experiment works with an additional buffer 

layer of 1:1 DMF/Toluene. The relevant details will be reported in each subchapter.  
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5.4 Results and Discussion 

5.4.1 Perovskite Large Scale Synthesis 

Research has shown that the variation of composition PbBr2:MAmBr:OAmBr and reaction 

conditions (injection speed, temperature and growth time) results in various morphologies, 

predominantly influenced and controlled by long alkyl-chain cations.[8][9][10][11][18] The ligand-

assisted synthesis[8] was modified to a suitable recipe wherein the perovskite formation could be 

detected in an adequate time window. The perovskite crystal formation as well as the buildup of 

ligand-stabilized surfaces/facets can be demonstrated. 

The synthesis of CH3NH3PbBr3 perovskites was carried out with a fixed solvent/anti-solvent ratio 

of DMF 1:5 Toluene at room temperature. The precursors were dissolved in DMF and the slowly 

injected into toluene. Systematical tests by adjusting the molar ratio between PbBr2, MAmBr and 

OAmBr to 0.1:0.1:0.3 (P03), 0.1:0.3:0.1 (P02) and 0.3:0.1:0.1 (P01) give an overview of the 

perovskite formation Instantaneous precipitation and a color change to yellow/orange was 

observed. The synthesis shows a gradual aggregation of the product arising from larger aggregates 

which precipitate out from the toluene solution. The dispersion was placed on carbon-coated copper 

grids. After solvent evaporation in air, the detection of products at advanced growth stages was 

observed. The sample P03 is shown in figure 30.  

 

Figure 30: TEM images ((a)–(c)) show the formation of nanocrystal islands prepared with ratio 

PbBr2:OAmBr:MAmBr 0.1:0.3:0.1 (P03) in toluene (5.3 nm ± 1.0 nm in diameter). 
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We obtained islands of well-separated spherical nanospheres with 3-fold excess of OAmBr. The 

nanocrystals show a size distribution of 5.3 nm ± 1.0 nm surrounded by weak contrasted regions 

due to organic ligands. Two-dimensional organometallic halide perovskite nanoplatelets could be 

obtained by TEM analyses of MAmBr rich samples (P02). The produced platelets present, showed 

a mixture of small- and large-sized particles with varying thickness (figure 31). Smaller spots 

decorate the nanoplatelets. These results coincide with that one reported by Zhu et al.[8]  

 

Figure 31: TEM images ((a)–(c)) show the formation of ultra-thin nanoplatelets of various size prepared with 

ratio PbBr2:OAmBr:MAmBr 0.1:0.1:0.3 (P02) in toluene. 

 

An increase in the lead bromide content leads (P01) to three-dimensional nanocube formation. The 

ligands cannot effectively restrain the growth process in three dimensions but OAmBr is still able 

to coordinate at the surface of the perovskite crystals and contain smaller nanocrystals (figure 32). 

 

Figure 32: TEM images ((a)–(c)) show the formation of three-dimensional nanocubes prepared with ratio 

PbBr2:OAmBr:MAmBr 0.3:0.1:0.1 (P01) in toluene. 
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It is clear that the ratio PbBr2:OAmBr:MAmBr influences the perovskite morphology and its 

associated structural development. The extreme ratios depicted above, are similar to the results 

reported elsewhere. The ligand ratio plays an important role in promoting the growth process and 

determining the final structure and optical properties. For a more detailed understanding of the 

shape-controlled synthesis, anisotropic nanocrystals were synthesized. Their structure-property 

relationship was studied directly after the preparation and one day after. The perovskites were 

synthesized with a fixed sample composition of PbBr2:OAmBr:MAmBr 0.1:0.16:0.24 (P04) 

allowing their ex-situ optical detection and their morphology in the earlier growth stages and after 

24 h (figure 33). 
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Figure 33: UV-Vis (left) and photoluminescence spectra (right) of CH3NH3PbBr3 perovskites with ratio 

PbBr2:OAmBr:MAmBr 0.1:0.16:0.24 (P04) in toluene (λecx=350 nm) over 2 days. 

 

Absorbance signals could be detected at 385 nm, 411 nm, 455 nm and 473 nm immediately after 

the injection (figure 33, left). After 24 h, the signals are slightly red-shifted towards 505 nm. 

Structures of lower dimensionality are mainly responsible for the broad absorbance in the lower 

wavelength region. The long scattering tail at higher wavelength indicates the presence of larger 

structures (e.g. superstructures). These observations are in agreement with the literature[8][25][42] 

where the blue-shift of smaller-dimension nanocrystals is explained by the quantum confinement 

effect in nanometer dimensions. The presence of 0-dimensional spherical nanocrystals of 

4.6 nm ± 1.7 nm is depicted in figure 34. 
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Figure 34: TEM images during the formation of smaller nanocrystals ((a)–(c)) in the early growth stages 

(4.6 nm ± 1.7 nm in diameter) prepared with the ratio PbBr2:OAmBr:MAmBr 0.1:0.16:0.24 (P04) in toluene. 

 

The perovskite formation at room temperature leads in the early growth stages to the instantaneous 

formation of small particles (colloidal solutions of 3–5 nm nanocrystals) and can be visualized by 

TEM. The nanocrystals are embedded in an amorphous material.[6][42] In contrast to MAmBr, the 

OAmBr ligands are not able to be incorporated into the perovskite crystals because of their long 

hydrocarbon tail. With further reaction time, the formation of nanosheets with varying lengths and 

widths of 100–600 nm (figure 35 (a–c)) could be visualized via TEM. 

 

Figure 35: TEM images during the formation of nanocrystals and nanosheets, and smaller nanocrystals 

prepared with the ratio PbBr2:OAmBr:MAmBr 0.1:0.16:0.24 (P04) in toluene after one day. 

 



Study of Nucleation and Growth Kinetics of Perovskite Nanocrystals with In-situ Experiments 

 

93 
 

Due to the low contrast in TEM imaging compared to the nanocrystals, the sheets are estimated to 

be much thinner. On the carbon layer the pseudorectangular-shaped quantum platelets are separated 

by an OAmBr ligand layer. This confirms that the long hydrocarbon chain of amine ligands is on 

the flat (001) plane of the cubic CH3NH3PbBr3.[25] At longer reaction times the formation of 

perovskites with a higher dimension framework are stabilized by a ligand-layer. The corresponding 

photoluminescence spectra (figure 33, right) of the perovskites show the beginnings of the 

perovskite formation with multipeak emission at 456 nm, 475 nm, 488 nm and 518 nm (λexc =

350 nm). The large blue shift is indicative for the quantum confinement effect of the unpurified 

sample consisting of various nanostructures.[19] The emission wavelength maximum after one day 

shifted towards 518 nm with the corresponding peak position in the absorption spectrum at 505 nm 

(Stokes shift = 13 nm). The symmetrical band edge emission at 518 nm has a full width at half-

maximum (FWHM) of 24.3 nm. The small Stokes shift of perovskites originates from the direct 

band gap recombination.[33]  

The absorption spectra, the PL peaks, and the corresponding TEM images all suggest, that 

perovskite growth starts with the formation of subunits in form of spherical nanocrystals. The effect 

of aging time leads to the formation of higher dimensional structures.[42] While this large scale 

approach allows ex-situ characterization, the structural development will be addressed in more 

detail later on with in-situ experiments.  

5.4.2 Ex-situ Electron Microscopy  

To explore the size and morphology at different growth stages, ex-situ imaging methods like 

Scanning and Transmission Electron Microscopies (SEM and TEM) were used. For this 

investigation the perovskite was prepared according to the large scale synthesis mentioned above. 

The ratios of PbBr2:OAmBr:MAmBr 0.1:0.16:0.24 (P04) and 0.1:0.1:0.3 (P01) were chosen. The 

corresponding product phase identification only gave reliable results for advanced growth stages. 

 

Transmission Electron Microscopy-Selected Area Electron Diffraction (TEM-SAED) 

As a result of the preliminary large scale synthesis, three different growth stages were characterized 

with the TEM-SAED method. The electron beam interacts with the crystalline perovskite specimen 
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and morphology-dependent reflections and diffraction of the electrons are used for phase 

identification. The diffraction pattern particularly provides information about the structural 

development.  

As aforementioned TEM images of spheroidal nanocrystals with a rectangular background were 

detected in the earlier growth stages (P04). They show diffraction patterns consisting of rings with 

discrete spots. The scattering patterns support the presence of multiple crystals. After comparison 

with standardized crystallographic diffraction patterns[43] scattering on the formed lattice planes can 

be reliably attributed to randomly distributed nanocrystals of lead Pb0 (face-centered cubic lattice, 

fcc, Fm3m) with sizes between 2 nm to 12 nm. Manna et al.[44] described the reduction of Pb2+ to 

Pb0 atoms of inorganic CsPbBr3 perovskites under electron beam exposure. The degradation under 

high energy electron beam (80 keV/200 keV) through excessively long observation was studied. 

The mechanism cannot be fully elucidated but the process can be described as follows: Directly 

after the electron beam exposure we can identify low-contrast nanoplatelets decorated by darker 

spots. A further irradiation of the anisotropic structures leads to a rearrangement of the rectangular 

sheets into more spherical particles with higher contrast. The degradation first occurred on the 

edges and rapidly propagated inwards caused by the decomposition of the organic material. In 

contrast to this investigation, Udayabhaskararao et al.[42] suggested that Pb0 nanocrystals are the 

base for seed-mediated nucleation with subsequent oriented attachment for CsPbBr3 perovskites.  
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Figure 36: TEM results of perovskite nanocrystals: a) TEM image of the formation of nanocrystals and 

nanosheets (scale bar: 50 nm), b) selected area for the diffraction pattern (scale bar: 100 nm), d) SAED 

pattern (scale bar: 2 1/nm) of the marked area in (b) and the size distribution of the Pb0 seeds (6.1 ± 2.1 nm 

in diameter). 

 

The determination of the real crystal structure is possible but the origin of these nanocrystals is still 

unclear. Nanocrystals with high surface-to-volume ratio (ultra-thin nanoplatelets) are prone to 

decompose whereas bulkier nanocrystals (at later growth stages) are more robust against the 

electron beam. The TEM images in figure 36 also depicted that nanoseeds are bound to the 

perovskite lattice.  
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Table 8: Summary of experimental and standard diffraction patterns of lead nanocrystals. 

 Ref.a Exp. 

Bragg 

reflections 
2θ [°] d-spacing [Å] 2θ [°]b d-spacing [Å] 

rel. Intensity 

[norm.] 

111 31.2867 2.8574 31.7 2.818 100 

200 36.2828 2.4746 36.6 2.450 52.87 

220 52.2506 1.7498 53.3 1.718 24.47 

311 62.1757 1.4922 62.8 1.478 19.87 

222 65.2722 1.4287    

400 77.0311 1.2373    

a JCPDS: 65-2873[43] 

b d-spacing calculated according Bragg equation[45] 

 

Interesting observations were made during the TEM measurements of single perovskite layers at 

later growth stages of P04 (figure 37). They show higher contrast compared to the previous samples 

and only a percentage of thinner nanoplatelets show quasi-spherical nanocrystals. 
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Figure 37: TEM results of perovskite nanoplatelets: (a), (b) TEM image of the selected area for the diffraction 

pattern (scale bar: 500 nm and 100 nm), (c) SAED pattern (scale bar: 2 1/nm) of the marked area in (a) and 

(b), (d) the magnified image shows the crystal lattice of the perovskite grains (scale bar: 10 nm). 

 

The nanoplatelets show diffraction patterns consisting of discrete spots. The periodic arrangement 

of atoms leads to scattering of the X-rays in one specific direction with high intensity and small 

width of single spots after radial averaging (figure 37, d). The SAED pattern for nanoplatelets is 

consistent with a lattice spacing of 5.9 Å which conforms to the value for the bulk material.[12] The 

spherical nanocrystals are still visible but become less pronounced, possibly due to diffusion and 

rearrangement steps within the perovskite lattice (figure 37, b). Only a small amount of side 

products could be detected.  
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Table 9: Data of experimental and standard diffraction pattern of perovskite nanoplatelets. 

 Ref.a Exp. 

Bragg 

reflections 
2θ [°] d-spacing [Å] 2θ [°]b d-spacing [Å] 

rel. Intensity 

[norm.] 

001 14.9 1.684 14.9 1.6776 100 

011 21.6 2.434 21.1 2.3747 33 

002 30.2 3.380 29.9 3.3514 80.5 

021 33.8 3.775 33.6 3.7503 28.4 

211 37.0 4.120 35.8 3.9851 6.6 

022 43.1 4.770 42.8 4.7382 12.1 

003 45.6 5.033 45.5 5.0327 8.3 

   48.2 5.3011 4.9 

   55.4 6.0392 3.7 

a XRD pattern for CH3NH3PbBr3 perovskite nanoplatelets according Sardar et al.[25]  

b d-spacing calculated according Bragg equation[45] 

 

From the TEM measurement in diffraction mode, diffraction peaks (2θ) at 14.9°, 21.1°, 29.9°, 

33.6°, 35.8°, 42.8° and 45.5° correspond to (001), (011), (002), (021), (211), (022) and (003) planes 

identifying the cubic CH3NH3PbBr3 perovskite.[25] The relative intensity of the (001), (011), (002), 

(021) and (022) planes are very high in comparison to the rest of the standard pattern. This 

observation strongly suggests that the platelet growth occurs through continuous attachment of 

monomers predominantly along these planes and the intense (001) diffraction peak reflects a high 

degree of crystallinity which indicates an expanded monocrystalline surface (figure 37, d) covered 

with the layer of amine ligands. The growth process along the (011)- and (022)-planes is inhibited 

through chemisorbed ligands which keeps the platelets thin.[8][18][46] Due to the anisotropic 

nanocrystal growth, the expanded crystallinity, and the presence of nanocrystal seeds before the 

extensive irradiation under TEM, we suggest that the 2D self-organization occurs by oriented 

attachment as the growth mechanism.[25][36] 
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Figure 38: TEM results of perovskite nanocubes: (a), (b) TEM image of the selected area for the diffraction 

pattern (scale bar: 200 nm and 10 nm), (c) the magnified image shows the expansion of the monocrystalline 

surface (scale bar: 10 nm), d) SAED pattern of the marked area (scale bar: 2 1/nm) in (a)(c). 

 

The nanocubes (figure 38, P01) show intense peaks at the (011) planes which match the cubic 

crystal structure of bulk perovskites. They show a continuous crystalline character (figure 38, b & 

c). The absence of further peaks makes it more difficult to explain details about the growth 

mechanism. The preferred growth directions along specific crystal planes are evidenced by one 

pronounced diffraction peak in the (011) direction and similar intensities for (002), (021) and (022) 

facets. The TEM picture (figure 38) shows higher stability under the electron beam and the 

enormous expansion of the monocrystalline perovskite crystals. The surface atoms are 

systematically aligned and satisfy the Bragg conditions. 
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Table 10: Data of experimental and standard diffraction patterns of perovskite cubic bulk-like nanocrystals. 

 Ref.a Exp. 

Bragg 

reflections 
2θ [°] d-spacing [Å] 2θ [°] d-spacing [Å] 

Rel. Intensity 

[norm.] 

001 14.48 1.684    

011 20.72 2.434 20.9 2.3598 100 

002 29.68 3.380 29.6 3.3141 55.72 

021 33.31 3.775 33.6 3.7503 56.66 

211 36.66 4.120    

022 42.65 4.770 42.5 4.7046 40.29 

003 45.40 5.033    

   55.5 6.0504 18.22 

a XRD pattern for CH3NH3PbBr3 perovskite nanocubes according Zhang et al.[47] 

b d-spacing calculated according Bragg equation[45] 

 

Morphological Properties via Scanning Electron Microscopy (SEM)  

The study of the 3D structure of CH3NH3PbBr3 perovskites under the Scanning Electron 

Microscope (SEM) in combination with Cathodoluminescence (CL) detection is helpful to 

investigate the structural evolution and morphology. CL is the emission of light due to the 

stimulation of material by an electron beam. SEM-CL images were taken of perovskite material 

emission under high-energy electron microscopy. The images show a high spatial resolution in the 

nanometer regime and the optoelectrical properties correlate with the perovskite morphology and 

composition. Perovskites of different composition were investigated using various detectors, 

included Inlens, SE (Secondary Electron) and CL detectors. 

The sample preparation involved drop-casting of freshly prepared perovskite samples on pre-

cleaned silicon wafers. The nanocrystals were examined by SEM and we found perovskite samples 

of different morphology depending on their composition. Two representatives are depicted, 

showing interesting features coming from the different ligand to lead precursor ratio.  
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The first extreme composition had an excess of lead source PbBr2 (P01: PbBr2:OAmBr:MAmBr 

0.3:0.1:0.1). The produced perovskites presented a mixture of large-sized cubic crystals (figure 39, 

(a)-(f)) with lateral dimensions reaching from the nanometer to the micrometer scale.  

 

Figure 39: SEM surface images of CH3NH3PbBr3 nanocrystals synthesized via large scale synthesis result in 

cube-like morphologies of various sizes in the nm to µm region (P01: PbBr2:OAmBr:MAmBr 0.3:0.1:0.1). 

The images were taken with different detector combinations ((a-d) SE2 detector and (e, f) CL together with 

Inlens detector). 

 

The combination of SE detectors (figure 39, d) shows clearly the nearly defectless and smooth 

surface facets of the bulkier perovskite crystals. With the assistance of organic ligands, the shape 

of CH3NH3PbBr3 could be evolved to sharp-edged cubes due to the Pm3̅m space group 

symmetry.[12] Smaller spherical nanocrystals are present which show a high stability concerning 

the electron beam. The SEM image taken using the Inlens detector together with the CL detector 

(figure 39, e & f) combines the detection of photons and the high resolution of the electron 

microscopy and show an increased resolution.  

A higher ligand concentration (P04: PbBr2:OAmBr:MAmBr 0.10:0.16:0.24) is responsible for a 

controlled anisotropic growth along the (001)-facet and consequently sheet-like structures[25] could 

be detected (figure 40, (a)-(f)). The images of nanosheets and superstructures were generated by 
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the SE2 detector in combination with the Inlens detector. Besides the confined platelet structures 

in one direction, stacked assemblies of CH3NH3PbBr3 nanocrystals also formed. The nanosheets 

show a tendency to form 2D sheets of square/rectangular shapes with lateral dimensions of a few 

nm to µm. The higher ratio of long surface-passivating amines OAmBr are responsible for the 

stacking of the sheets and therefore for tailoring the nanocrystal structure. The platelets show a 

highly flat and smooth surface which is a requirement for the exactly oriented stacked sheets. 

Sichert and co-workers[18] found different results with sheet dimensions of a few nanometers. 

 

Figure 40: SEM images of CH3NH3PbBr3 nanocrystals synthesized at room temperature according to the 

large scale synthesis (P04: PbBr2:OAmBr:MAmBr 0.10:0.16:0.24). Ultrathin nanoplatelets stacked together 

to form superstructures were detected with ((a-d) SE2 detectors, (e, f) Inlens detectors).  

 

Besides the topographical evidence of nanoplatelets aligned perpendicular to the substrate and 

stacked on top of each other, the presence of ultra-small spherical nanocrystals with a narrow size 

distribution of 6.5 nm ± 1.0 nm was also observed (figure 41, (e) & (f)). Ultrathin 2-dimensional 

nanomaterials are attracting increasing attention due to their outstanding and extraordinary 

electronic, optical and mechanical properties.[32]  
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Figure 41: SEM images of colloidal CH3NH3PbBr3 nanocrystals synthesized via large scale synthesis to adapt 

the reaction conditions on the capillary diffusion approach. The images ((a), (b), (e) SE2 detector and (c), 

(d), (f) Inlens detector) show ultrathin plate-like nanosheets and narrow distributed spherical nanocrystals 

(6.5 nm ± 1.0 nm in diameter). 

 

Based on these observations, with increasing the long-chain amine ligand concentration, small 

spherical nanocrystals with sizes around 6.5 nm ± 1.0 nm and ultrathin nanosheets could be 

detected by slow addition into the anti-solvent toluene.  

With ex-situ experiments like TEM and SEM the different morphologies could be visualized. Both 

compositions employed the presence of smaller nanospheres which strengthen our hypothesis that 

perovskites are build up by spherical subunits. In-situ experiments should provide more results 

regarding the crystal growth mechanism and the structural evolution.  
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5.4.3 Microfluidic Experiments 

A sequence of preparation steps was required to realise our microfluidic strategy. These include 

manufacturing the microfluidic chip, choosing a suitable channel design, and predicting the 

microfluidic flow by computational fluid dynamics simulation.[48] These steps were followed by 

the introduction of our large lab-scale synthesis into the analytical device with consideration of 

compatibility between reaction components and chip material as well as the effects of down-

scaling.  

 

Experimental Setup for Microfluidic Systems 

Confocal Laser Scanning Microscopy (CLSM) took place in combination with the microfluidic 

setup for flow-control and in-situ photoluminescence detection (PL). The growth process with one 

specific precursor ratio P04 was accessible. The setup was based on a special microfluidic chip 

design which was developed in-house.[49] The EH09 chip in figure 42 combines multiple functional 

elements for soft-template perovskite formation in continuous flow. The chip material consists of 

poly(dimethylsiloxane) and the inner chip was coated with poly(p-xylylene) (PPXn) to guarantee 

a better solvent resistance. The microchannel was designed with five inlets, a 3D flow focussing 

channel, two mixing crosses and is connected to a high precision syringe pump to guarantee a 

parallel flow of the reactants. For the extension of the main channel a glass capillary is inserted, 

which leads to a hybrid chip (Outlet). 

Figure 42: Photograph of the microfluidic chip mounted on the translational stage of the CLSM (right). 

Schematic PDMS-PPXn-based 3D double focusing hybrid chip connected to a 2-mm quartz capillary for 

photoluminescence detection during nanocrystal formation. Inlet 3 acts as the main channel and the inlets 1, 

2, 4, 5 as side channels for buffer and precursor solutions (left). 



Study of Nucleation and Growth Kinetics of Perovskite Nanocrystals with In-situ Experiments 

 

105 
 

Through diffusion controlled mixing, the anti-solvent/solvent mix exceeds the critical solvent ratio 

along microfluidic channel. The flow as well as the temporal evolution was proven with CLSM. 

Next, microfluidic chip was placed on the translational stage of the microscope (figure 42, left) and 

the highly-concentrated precursor solution and solvent mixtures (Chapter 3, table 2) were filled in 

five separate syringes. A precision syringe pump delivered the solution into five inlets of the 

microfluidic channel. The adjustment of the relative flow rates of precursor solutions and solvent 

mixtures allows the control of the stoichiometry of the solvent composition along the microfluidic 

channel and the solvent-induced precipitation of perovskite nanocrystals.  

Size-related optical properties give information about the dimensionality of the 

nanocrystals.[18][50][51] A schematic overview is given in figure 43 for the perovskite formation in a 

microfluidic channel. 

 

Figure 43: Simplified overview of the microfluidic device after the second mixing cross. Fluorescence 

detection with Confocal Laser Scanning Microscopy (CLSM) along the channel gives information about the 

solvent-induced precipitation of perovskites.  
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Observing Perovskite Formation via the Confocal Microscopy Technique 

The syringes were filled according table 2 in Chapter 3 and connected to the inlets of the 

microfluidic device (figure 44). The middle stream (A, Inlet 3) consists of the precursor salts 

dissolved in a solvent mixture of Toluene:DMF 1:1 and the velocity was adjusted to 125 µL/h. Two 

solvent streams (B, Inlet 2 and 4) with an increased toluene ratio 2:1 and flow rates of 250 µL/h 

surround the middle stream after the first mixing cross x1. The solvent stream acts as buffer layer 

and reduces the solubility due to increased anti-solvent content (~1.6 fold excess).  

After the second mixing cross x2, two sheathing streams C with toluene (flow rates 3000 µL/h, 

Inlet 1 and 5) were introduced to induce the perovskite formation along the channel.  

 

Figure 44: Brightfield images of the microfluidic channel. Image (a) was taken without solutions showing 

the first x1 and second channel cross x2 and the dimensions in µm. Image (b) shows the zoom-in of x1 and 

x2 with 3D focused streams A and B and the sheathing stream C.  

 

Figure 44 (b) shows the three dimensional focussed stream in the downstream region. The middle 

flow A is constrained to a small region after the 3D focusing with B and C to avoid wall contact 

with the reagents. The diffusion-controlled mixing depends on the flow velocity of stream A and 

C as well as the middle protective layer B. The concentric sheathing flow should lead to the 

precipitation of perovskite with the addition of the toluene stream C. The flow simulation for 

similar previous designs was investigated by numerical calculations[52][53] and experimental images. 

They show clearly the parallel flow of the reactants A and B to guarantee flow stability and a 
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suitable mixing time. The dimensions of inlet 3 are 100 µm in diameter and become wider along 

the y-direction (230 µm and 250 µm in height and width). The side channels have dimensions of 

50 µm and 150 µm. The distance between the channel crosses x1 and x2 is 350 µm. 

Upon reaching equilibrium, the translating specimen stage position of the microscope was changed 

to allow for scanning along the channel to the region of interest (figure 45). The collimated laser 

beam (λexc=405 nm) was focused into the microfluidic channel and the emission originating from 

the perovskites was collected. The investigation of the particle structural evolution is possible from 

the resulting scanned images.  

 

Figure 45: CLSM image of the EH09 chip during the perovskite formation along the microfluidic channel. 

Emission scans (λexc=405 nm) were taken along the channel (Δdx2=0.4–2.2 mm). 

 

From the emission scans along the channel the different growth stages of the perovskite 

nanocrystals were detected (indicated by the coloured boxes in figure 45). The channel distances 

(table 12) from the second mixing cross x2 and the corresponding confocal images clearly 

demonstrate the ongoing diffusion process within the channel length (y-direction) in toluene rich 

regions. The perovskite emission from the CLSM detection is highlighted in figure 45. The in-line 

emission spectra were measured with a distance of Δdx2=0.4-2.2 mm between them starting from 

the beginning of the channel cross (figure 46). The channel distance from the mixing cross is 

proportional to the reaction time and therefore the reaction in microfluidic channel is related in time 

and space. After the first contact of excess toluene and the precursor, each channel position in y-

direction and the corresponding diffusion time can be calculated. 
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Figure 46: Multipeak emission spectra along the microfluidic channel (λexc=405 nm). A series of PL peaks 

could be detected which implies various numbers of corner-sharing PbBr6 octahedra (attached unit cells) 

between 450 nm and 501 nm. The dominant emission peak shows a red-shift from 527 nm to 533 nm. 

 

For the approximation, the x-position at the beginning of the channel cross is the starting point of 

mixing between the precursor in DMF and the excess of toluene.[24] The time after mixing ∆𝑡 can 

be calculated from the channel position 𝑥, the channel width 𝑤 and height ℎ and the average 

volumetric flow rate 𝑄̅ according to equation 5.1.  

∆𝑡 =  
𝑤 ∙ℎ∙𝑥

𝑄̅
           (5.1) 

With distances larger than the channel geometry (𝑤, ℎ), we assume that the parabolic flow profile 

has already developed at position 𝑥. Therefore, we can take the average velocity 𝑄̅ downstream of 

the 3D focusing channel[52]  

𝑄̅ =  
𝑄1+𝑄2+𝑄3+𝑄4+𝑄5

(ℎ∙𝑤)
                          (5.2) 

including all flow streams 𝑄1 − 𝑄5 (resp. Inlet 1-5) of the microfluidic system to calculate the time 

after mixing ∆𝑡. The interdiffusion time 𝑡𝐷 across the central stream can be estimated according to 

equation 5.3 and 5.4 and gives us more information about the mixing point in our microfluidic 

setup.[24] 

𝑤𝑓 =  
𝑄3

𝑄1+𝑄2+𝑄3+𝑄4+𝑄5
∙ 𝑤𝑐                          (5.3) 
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𝑡𝐷 =  
𝑤𝑓

2

8𝐷
                                         (5.4) 

The width of the focused central stream 𝑤𝑓, the channel width 𝑤𝑐, and the volumetric flow rate of 

all flow streams needs to be taken into account. The calculated time 𝑡𝐷 for a solvent to diffuse from 

both sides into the central stream includes a typical solvent diffusion coefficient of D=10-9 
𝑚2

𝑠
 and 

could be calculated to be 2.8 ms. This is in good agreement with our first calculated values of 

Δdx2=0.4 mm and ∆𝑡=2.3 ms. It clearly shows that the diffusion controlled mixing of toluene and 

the precursor occurred directly after the mixing cross. The calculated values are summarized in 

table 12. 

At early reaction times (Δdx2=0.4 mm, ∆𝑡=2.3 ms), the absence of a dominant perovskite 

peak around ~525 nm is aconspicuously absent.[7] Instead, a broad signal between λ=450 nm and 

501 nm could be detected which is attributed to the PDMS absorbance signal.[54] The observation 

of a sharp emission peak at λ=527 nm later (Δdx2=0.7 mm, ∆𝑡=4.2 ms) shows the beginning of the 

bulk-like perovskite formation and this signal becomes more dominant when scanning further along 

the channel in y-direction (figure 46, left). Interestingly, the intensity of the emission peak series at 

lower wavelength regions λ=450 nm to 501 nm, decreases continuously (figure 46, inset right). 

This observation is indicative of the presence a multipeak emission series which originates from 

confined perovskite nanocrystals in lower concentrations. Our large-scale approach and the 

literature[16][17][18][51] confirm our hypothesis that quantized emission peaks of unpurified samples 

can be attributed to nanoplatelets of different thicknessees. The layered structures are ligand-

separated unit cells n (n=1–n=∞, table 10). Similar observations were made for CH3NH3PbBr3 and 

CsPbBr3 nanocrystals by identifying photoluminescence signals.  

The emission peaks red-shift over the reaction time and along the channel and the peak series in 

the higher energy region grows in intensity due to the larger nanostructures. Within the real-time 

emission scan (Δdx2=0.7 mm, ∆𝑡=4.2 ms),  the dominant bulk peak in the PL spectrum shows a 

red-shift from 527 nm to 533 nm and an increase in intensity. The corresponding FWHM of the 

533 nm emission peak was determined to be 24.4 nm after Δdx2=2.2 mm, ∆𝑡=13.2 ms. 

Inspection of figure 45 reveals clearly stronger perovskite signals with ongoing reaction time and 

this could also be monitored by emission detection (figure 46). The evolution of the emission 

spectra is more complicated due to overlapping of the emission arising from the population of ultra-

small perovskite nanocrystals and the chip material. However, the rapid evolution of the bulk 
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emission peak can be explained through the rapid consumption of smaller nanocrystals. A strong 

correlation between perovskite emission and nanocrystal dimensionality is evident. In conclusion, 

the synthetic route was successfully adapted to a microfluidic channel to detect a series of emission 

peak from 450 to 501 nm which can be identified and attributed to 2D nanoplatelets (table 11).  

 

Table 11: Comparison of the PL peaks during the formation process of large-scale synthesis and reported PL 

signals. 

na PL (Exp1)b [nm] PL (Ref1)[17] [nm] PL (Ref2)[47] [nm] 

1 - 405 403 

2 - 442 435 

3 456 456 - 

4 475 482 474 

5 488 492 489 

∞ 518 534 508 

a n=numbers of layers of nanoplatelets (attached unit cells) 

b Large Scale Approach 

 

According to Sichert et al.[18] the band-gap size relationship of the semiconducting perovskite 

nanostructures cannot be calculated by the effective mass approximation. However, the spectrum 

can still be correlated to the particle size based on the TEM images. In the thesis, we used the 

correlation from literature[17][19][47] and found a good agreement with previously reported 

photoluminescence signals. The emission features can be assigned to nanoplatelets with different 

unit cell layers. 

The perovskite formation is very fast and diffusion-limited. On time scales of a few milliseconds 

we can observe the structural evolution (table 11) by detecting the emission peak series and 

characteristic perovskite signal around ~527 nm. 
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Table 12: Calculated parameters for the emission detection after the time ∆𝑡 with respect to the channel 

position Δdx2 and the beginning of the interdiffusion process.  

Channel Position Δdx2 [µm] ∆𝑡 [ms] 

1 0.4 2.3 

2 0.7 4.2 

3 1.0 6.0 

4 1.3 7.8 

5 1.6 9.6 

6 1.8 10.8 

7 2.2 13.2 

 

5.4.4 Capillary Interdiffusion Experiment 

A similar principle was used in a vertical capillary approach where a density gradient enables the 

interdiffusion of perovskite precursor into the anti-solvent toluene. The capillary interdiffusion 

experiment includes in-situ UV-Vis and Small-Angle X-ray Scattering (SAXS) detection. UV-Vis 

is helpful to investigate the strongly quantum-confined exciton peak and the scattering method 

SAXS experiments are very useful to follow the formation of colloidal nanomaterials. In-situ 

monitoring of the crystal formation provides information on the nanometer scale. SAXS 

experiments give better insight into the superatomic scale and the subsequent self-organization into 

larger colloidal structures.  

With this approach, convective motion can be excluded and the diffusion controlled process can be 

followed over longer time scales. A capillary interdiffusion setup is used to slow down the reaction 

and to detect the formation process in a glass capillary which acts as an analysis cell.  

To adapt and monitor the synthesis, the perovskite diffusion should be sufficiently slow, which can 

be realized with a buffer layer. After a certain time ∆t the total ion concentration (perovskite 

precursor) in the anti-solvent is high enough and the perovskite formation will be induced. The 

ratio of PbBr2:OAmBr:MAmBr for this adaption is 0.10:0.16:0.24 (P04).  
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In a typical experiment, the different reaction components were filled in a vertically positioned 

quartz capillary (∅ =1 mm) with the help of a syringe pump to guarantee separated layers 

(figure 47). The two precursors lead(II)bromide and MAmBr, together with OAmBr as stabilizing 

agent, were dissolved in N,N-dimethylformamide (DMF) and placed at the top. The bottom layer 

consists of the anti-solvent toluene which induces the precipitation of the perovskites. The buffer 

layer (middle layer) consists of a DMF:Toluene solvent mixture in 1:1 ratio. The solvent mixture 

leads to reduced interfacial tension between the bottom and top layer which is exhibited by the 

curvature of the meniscus. Furthermore, the extended diffusion pathway through the buffer layer 

leads to a slower diffusion limited reaction of perovskites and the density gradient of the organic 

solvents enables an entropically driven process (DMF ρ298.15 K=0.9445 g/cm3, DMF : Toluene (1:1) 

ρ298.15 K=0.9063 g/cm3, Toluene ρ298.15 K=0.8622 g/cm.[55] The addition of the precursor salts effects 

the density by increasing the density of the solvent DMF.[56] After the precursor injection the 

perovskite formation could be monitored with scattering and spectroscopic methods. 

 

Figure 47: Schematic representation of the diffusion process in a quartz capillary. The reaction components 

consist of the precursor salt (PbBr2, MAmBr) and the organic ligand (OAmBr) dissolved in DMF, buffer 

layer (DMF: Toluene 1:1), toluene. 
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In-situ UV-Vis-Monitoring of CH3NH3PbBr3 Growth Process  

The quantum size effect and the size-dependent properties of perovskite nanocrystals are well-

known.[19] The structural evolution during slow interdiffusion in the capillary however can provide 

more insight into different possible kinetic pathways and intermediate states of perovskite 

formation. The in-situ growth experiment is evidenced by monitoring excitonic absorbance peaks 

and their red-shift as a consequence of their dimensionality. The ionic nature of the reaction shows 

a fast nucleation and growth within a reaction time of 16 min at room temperature. 

A precision syringe pump delivers the bottom layer, 83.5 µL toluene, in a quartz capillary followed 

by 10 µL buffer layer (DMF/Toluene 1:1). The existing double layer was coated with 16.5 µL 

precursor solution. Directly after the injection of the perovskite precursor the formation of 

semiconducting nanocrystals is evidenced by a color change from colorless to green/yellow 

(figure 48).  

                       

Figure 48: The perovskite nucleation and growth visualized by the instantaneous color change which can be 

monitored with in-situ UV-vis experiments (left: under normal light, right: under the UV-lamp λ=365 nm). 

 

The detection of the perovskite growth starts with the injection of the precursor solution. The first 

significant absorption peak arises at 437 nm corresponding to bilayer CH3NH3PbBr3 after t=7 sec 

(figure 49, (a)). Two additional broad signals 315 nm and around 389 nm occur which indicate a 

lower fraction of 0D[16] and monolayer nanoplatelets.[17][47] The intensity of the signal increases in 

direct proportion to the number of nanocrystals. The absorbance features at 389 nm and 437 nm 

confirm the confinement in one dimension compared to the bulk absorbance edge of 525 nm.[17][47] 
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The red-shift of a single excitonic absorbance feature at 437 nm towards 451 nm (figure 49, (b)) 

within the next t=19 seconds implies nanocrystal growth and these peaks are assigned to the 

thickness of 2 and 3 perovskite unit cells n (n=2 layer to n=3 layer).[17] Less pronounced shoulders 

around ~473  nm, 488 nm and 501 nm demonstrate the presence of thin sheets (n=4, n=5 layer) 

and the beginning of the transformation to 3D nanocrystals. With proceeding reaction time, the 

intensity of the 451 nm peak decreases due to formation of larger products of higher dimensionality 

and sedimentation of the large bulk-like particles (figure 50, (c) & (d)). The transition of 0D-

nanocrystals into nanosheets where only the absorption edge can be observed 501 nm (n=∞) is 

around t=60 sec. Within 16 min the edge shifts from 501 nm to 522 nm originating from bulk-like 

structures. 

 

Figure 49: UV-vis spectra: nucleation and growth of spheroidal CH3NH3PbBr3 nanocrystals through 

interdiffusion in the capillary process. Increase of the intensity (a) and a red-shift from 437 nm to 451 nm (b) 

within t = 26 sec implies the attachment of unit cells.  

 

This temporal evolution describes the complete transition from 0D-nanocrystals, likely thin 

1D-nanoplatelets, into 3D-bulk material within 16 min. The absorbance signals of all these 

fractions can be assigned to different numbers of attached perovskite unit cells. [17][47] Our product 

consists of colloidal perovskites nanoplatelets with prominent excitonic absorbance peaks at 

315 nm, 389 nm, 437 nm, 451 nm, 473 nm, 488 nm, 501 nm to 525 nm relating to 0D nanocrystals 

and 2D nanoplatelets of n = 1→2→3→4→5 and ∞ layers of nanoplatelets.  
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Figure 50: UV-vis spectra: transformation of spheroidal CH3NH3PbBr3 nanocrystals into nanosheets occurs 

with arising of the absorbance edge around 501 nm (c) due to attachment of corner-sharing PbBr6 octahedra 

after 60 sec and the absorbance edge at 522 nm (d) after 16 min.  

 

Kinetic studies of the absorption intensity of the unpurified product are illustrated in figure 51. The 

strong nanocrystal growth at the beginning (t =0 and 22 sec, Stage I) decreases at the expense of 

larger lattice extension (Stage II). Both stages are not clearly separated, but this study is proof-of-

concept that the presence of alkyl ammonium chains restricts the formation of bulk-like materials 

directly after the interdiffusion process and has significant impact on the nanocrystal shape during 

the growth process.  
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Figure 51: Kinetic studies of the perovskite nucleation and growth monitored with in-situ UV-vis 

experiments. 
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The formation of the spheroidal nanocrystals and their self-assembly into ultrathin sheets and 

superstructures (figure 52) was investigated. The process is driven by the minimization of high 

energy surfaces.[36] Highly reactive facets on that cubic subunits merge into flat sheets. This 

indicates that the perovskite formation in the sample P04, as well as the solvent/non-solvent ratio 

of (DMF:Toluene 1:5), is very robust towards the adapt the preparation with various methods. 

 

Figure 52: The time evolution of the ligand-assisted synthesis over the entire growth period. The stacks are 

formed from the 0-dimensional spheroidal nanocrystals via self-assembly processes over 2-dimensional 

precursor nanosheets into highly ordered stacks.  

 

Table 13: Comparison of the absorption peaks during the formation process in capillary, large-scale synthesis 

and reported absorption signals. 

na 
Abs (Exp1)b 

[nm] 

Abs (Exp)c 

[nm] 

Abs (Ref1)[16] 

[nm] 

Abs (Ref2)[47] 

[nm] 

1 385 389 396 395 

2 411 437 434 431 

3 455 451 450 448 

4 473 473 472 470 

5 - 488 490 485 

∞ 505 533 532 - 

an=numbers of layers of nanoplatelets (attached unit cells) 

b Large Scale Approach 

c Capillary Interdiffusion Experiment 
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CH3NH3PbBr3 Nanocrystal Growth Followed by In-situ SAXS Experiments 

This is the first example of using in-situ Small-Angle X-ray Scattering (SAXS) experiments to 

follow the growth of nanocrystals and their transition to anisotropic colloidal nanostructures in real 

time at room temperature. It provides valuable insights into the ligand-assisted nucleation, growth, 

and subsequent self-assembly into 2-dimensional nanosheets which possess extraordinary 

properties. In-situ UV-Vis results successfully described the gradual red-shift of the excitonic peak, 

therefore the same experimental conditions were used for in-situ SAXS detection.  

Perovskite formation in the capillary interdiffusion experiment was monitored over 20 min. In a 

typical SAXS experiment, the quartz capillary was placed in the sample holder and toluene and the 

buffer layer were loaded into the analysis cell. The detector was placed below the buffer layer and 

scanning started with the addition of the precursor/DMF solution (figure 53). The measurements 

were taken in 0.5 sec intervals. The sample-to-detector distances were chosen to be 1.66 m and 

2.54 m to detect the expected scattering vector range from 0.1 nm-1 ≤ q ≤ 3.5 nm-1 for the 

nanoparticle formation, the stacking behavior and the lateral dimensions of nanosheets. 

     

Figure 53: Photograph of the setup used to monitor the perovskite nucleation and growth process with in-situ 

SAXS experiments (left: under normal light, right: under the UV-lamp λ=365 nm). 

 

The precursor diffusion into the ‘poor’-solvent phase leads to the formation of spherical 

nanocrystals directly after the nucleation around t=9 sec. For further analysis, the background of 

pure toluene was subtracted and the scattering pattern was radially averaged. Figure 54 displays 

the sequence of 1D scattering curves measured over the q range from 0.1 nm-1 ≤ q ≤ 1.8 nm-1 at one 

fixed position over the 20 min that the structural development becomes more apparent.  
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Figure 54: SAXS measurement with 2.54 m sample-to-detector distance for sample P04. The scattering 

profile (left) shows the development of the structured peak at higher q-values within 100 sec and (right) the 

temporal structural evolution for the following minutes.  

 

The scattering curves (figure 54, left) show that directly after injection t=9 sec a flat scattering 

signal is observed which shows in the first ∆t=20 sec a drastic increase in intensity at lower q-

values (0.12 nm-1–1 nm-1), reaching a maximum at 0.12 nm-1 after 50 sec. The drop in the intensity 

between 0.1 nm-1≤ q ≤0.12 nm-1 is ascribed to interactions between the spherical nanocrystals. The 

intensity increases in the first 50 sec due to a high concentration of perovskite nanocrystals. The 

interaction of the particles leads to aggregation and the intensity at 0.12 nm-1 decreases again 

(figure 55).  

 

Figure 55: Six representative SAXS patterns showing significant features for understanding the structural 

evolution after 9 sec, 11.5 sec, 25 sec, 50 sec, 500 sec and 1200 sec.  
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For a more detailed analysis, scattering patterns at six different times, t=9, 11.5, 25, 50, 500 and 

1200 sec, were selected which show significant features in their scattering pattern (figure 56). The 

patterns can be fitted to simple models and show a close agreement between the experimental 

SAXS data (data points) and the corresponding fits (solid lines). 
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Figure 56: Six representative SAXS patterns showing close agreement between experimental SAXS data 

(data points) and the corresponding fits (solid lines) for (left) t=9 sec, 11.5 sec, 25 sec and (right) t=50 sec, 

500 sec and 1200 sec.  

 

By fitting lines to the natural log of the intensity, the slope of the scattering changes with ongoing 

reaction time could be extracted (figure 56). The transition from q-0.7 (0.2–1 nm-1, 9 sec), q-1.8 

(0.1-1.0 nm-1, 11.5 sec), q-3.2 (0.1–1.0 nm-1, 25 sec), q-3.7 (0.1–0.8 nm-1, 50 sec), q-3.7 (0.1-0.6 nm-1, 

500 sec) to q-3.6 (0.1–0.5 nm-1, 1200 sec) is observed and can be directly related to the shape of the 

objects.   

Simple modelling of the q-region shows the change of the exponents of the slopes from the value 

0 for spheres to -2 for thin nanosheets and -3/-4. A slope steeper than -3/-4 demonstrates that the 

particles have become too big to be redissolved. The first scattering curve after t=9 sec could be 

fitted to the form factor of polydisperse spheres with a mean radius R of 4.2 nm. In the next t=3 sec 

the transition from spheres towards ultra-thin nanosheets could be detected. The thickness 

d=3.04 nm and the lateral dimensions of 18.9 nm could be fitted at t=25 sec. By modelling the q-

dependency, the onset of the slope shifts from 1 nm-1 towards lower q-values. At t=11.5 sec the 

minima are around 1.61 nm-1 (3.90 nm) and move toward smaller q-values 1.37 (4.58 nm) for 
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t=25 sec. It becomes broader over the next ∆t=20 min, indicating the growth of the nanoplatelets 

(t=1200 sec with 0.86 nm-1 , 7.31 nm).  

The most prominent feature in these scattering patterns is the development of the peak around 

1.89 nm-1 after t=11.5 sec (figure 56). This peak can be described as a structure factor peak of an 

ordered superstructure caused by self-assembly of plate-like nanocrystals.[57] The peak can be 

assigned to stacks of nanoplatelets which shows a good coincidence with the SEM images (e.g. 

figure 41). The well-ordered superstructure caused by the ligand separated platelets self-organizing 

into nanosheets.  

The structure peak arising from stacking of nanosheets at 1.89 nm-1 is followed by intensity 

increases over the next 20 min after the nucleation. Zoom of the structure factor peak associated 

with stacks of nanosheets, and a shift of the peak maximum from 1.89 nm-1 to 1.83 nm-1, could be 

detected. A small shift to smaller q-values (d =
2Π

q
 ) means a shift from 3.39 nm to 3.42 nm in real 

space which can be explained by a larger inter-nanosheet separation after the early stages of sheet 

stacking. This is in good coincidence with ex-situ SAXS measurement in the literature.[25] The 

structure peak becomes more pronounced when the particle positions become increasingly ordered. 

 

Figure 57: SAXS patterns showing the development of the structure factor peak around 1.89 nm-1 after 

t=11.5 sec (left). The structural evolution of the structure factor peak can be detected after 1200 sec in the 

2D scattering pattern (right).   
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The intensity of the structure factor peak increases rapidly over the whole reaction due to stacking 

nanosheets and the particle intensity decreases (0.1 nm-1≤q≤0.12 nm-1). This means that the 

spherical nanocrystals eventually convert to flat perovskite sheets. The change of the q dependency 

is associated with the lateral growth and the conversion into highly ordered stacks (figure 58, left). 

The kinetic process can be followed over time scales from seconds to minutes. The intensity of the 

structure peak factor remains constant from t=400 sec to t=20 min and becomes narrower according 

the FWHM (0.17 nm-1 to 0.09 nm-1) (figure 58, right).  
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Figure 58: Intensity (left) of the structure factor peak and FHWM (right) versus reaction time. The intensity 

remains constant and the FWHM becomes narrower from t=400 sec to t=20 min. 

 

This indicates that the preferred number of the stacks remains nearly constant over the time period 

of this experiment. The domain size of the ordered particles increases and describes the long-range 

order in one direction. This describes also the strong anisotropic growth (figure 58, left). A further 

decay of the scattering intensity can be explained by the sedimentation of the perovskite 

nanocrystals. 
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The variation of the sample-to-detector distance to 1.66 m allows the detection of larger q-values 

up to q ≤ 1.8 nm-1 (figure 59). 

 

Figure 59: SAXS measurement with 1.66 m sample-to-detector distance of sample P04. Scattering profile 

(left) shows the development of the structure peak at higher q-values within 100 sec and (right) the temporal 

structure evolution for the following minutes.  

 

The scattering profiles shows the formation of perovskite and stacking of sheets in the same time 

window. Scattering results in the higher q-region can be excluded. The structure peak intensity 

increases over the 20 min and shows a similar peak at 1.82 nm-1 (3.45 nm). 

In-situ SAXS studies clearly reveal details of the stacked perovskite nanosheet formation 

mechanism. The complex formation includes at the beginning the formation of polydisperse 

spherical nanocrystals resulting later in flat sheets. The soft-template method is highly reproducible 

and the attachment of smaller nanocrystals onto highly ordered lamellar stacks has been observed.   
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5.5 Conclusion 

In this work we have investigated the formation of the perovskites CH3NH3PbBr3 via soft-template 

method at room temperature. The development of the perovskites in a dual solvent system was 

studied with ex-situ electron microscopic methods. The preparation of anisotropically shaped 

nanosheets and the subsequent ordered superstructures resulting from a specific precursor 

composition were elucidated. The solvent induced self-assembly process can be clearly described 

by SEM-CL and TEM-SAED techniques where the organic ligands stabilize specific facets to 

maintain the quantum confined structure of the highly crystalline perovskites. 

We established a more accurate representation of the selected perovskite nanocrystal growth with 

optical in-situ techniques. The conventional perovskite synthesis was adapted onto an automated 

microfluidic device including confocal laser scanning microscopy (CLSM) analysis. The rapid 

reaction kinetics for nanoparticle formation within a PDMS chip allows one to collect and evaluate 

the emission in early growth stages. The spectral monitoring of the diffusion controlled process 

evidenced the formation of larger nanocrystals and their emissive properties. 

Furthermore, we demonstrated the first time a capillary interdiffusion approach for perovskites 

nanocrystal synthesis in combination with UV-Vis and small angle X-ray scattering techniques. 

We used this setup to slow down the fast kinetics of the reaction. The temporal evolution from 

spherical perovskite nanocrystals, to nanosheets, to highly-ordered stacked layers shows the 

influence of the long-tail hydrocarbon stabilizing ligand octylammonium bromide. 

The methodologies developed above can be directly applied to the study of nanoparticle formation. 

The data collection of in-situ UV-Vis and emission spectroscopy, as well as SAXS and ex-situ 

analysis describe the growth of spherical seed nanocrystals through oriented attachment onto 

selective crystal facets. The highly crystalline order of quantum platelets resulting from well-

controlled and reproducible synthesis provides more insight into the optoelectronic properties of 

the materials and has great potential for future studies.
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Chapter 6 

Novel Scalable Synthesis of Semiconducting Magic-sized 

Clusters and Nanocrystals 

6.1 Introduction and Motivation 

Synthetic Intermediates: Semiconducting Clusters 

Colloidal semiconductor quantum dots have received considerable attention due to their size-

related absorption properties and their technological potential.[1][2][3] One current topic concerns 

their structural evolution, because significant interest has arisen in molecule-like clusters, which 

are intermediate products or byproducts in the regular quantum dot synthesis. So-called magic-size 

clusters (MSC) were encountered at the early stages of quite a few syntheses of II-VI and IV-VI 

semiconductor materials.[4][5][6][7][8] 

In contrast to bulk materials, the lowest-energy absorption peaks of nanoclusters show a strong 

blue-shift with decreasing nanocluster size.[9] In-situ UV-Vis investigations demonstrate their 

growth process.[7][10][11] Magic-sized cluster are mostly transiently observed during syntheses and 

therefore are relatively unexplored.  

Henglein et al. described the formation of small colorless CdS particles synthesized at -78 °C.[12] 

He postulated that the combination of organic solvent, lower temperature and strong CdS stabilizer 

is responsible for the fluorescent colloidal products. In general, the nanocluster formation starts 

with the decomposition of monomeric precursors which in a subsequent step act as nuclei for the 

synthesis of nanocrystals.[13][14]  

AgI quantized cluster could be successfully stabilized with amine-bearing water-soluble 

polymers.[15] Their kinetics and the light-sensitivity of quantitatively-reacted silver and iodide ions 

were investigated. Calzaferri and Leiggener[16] showed that zeolite cavities can act as host material 

for the synthesis of size-restricted Ag2S and PbS clusters.  

Cluster intermediates have special geometries and show elevated thermodynamic stability. 

Marynick and co-workers published computational results of low-energy geometric structures and 

UV-Vis absorbance spectra of (AgBr)1-9 clusters.[17] Furthermore, they highlighted the density 

functional theory (DFT) study of (PbS)1-9 and (CdS)1-6 clusters which significantly contribute to the 

fundamental understanding of the optical properties and structural stability.[18][19]   
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Zope et al. summarized the study of ZnS clusters by describing the structural and electronic 

properties of confined structures.[20] All research groups highlighted that the cluster properties 

should vary as a function of the cluster size in the extreme quantum confinement regime.  

 

Figure 60: Semiconducting material CdS, resulting in regular quantum dots. Ligand-stabilized Cd and sulfur 

precursors act as source materials in an organic solvent and the heterogeneous formation includes the 

nucleation and growth periods.  

 

These systems represent new types of materials which lie in the region of molecule-like structures 

(very small clusters) and size-limited solids (large clusters). In 1994 Vossmeyer et al.[21] 

synthesized CdS nanoclusters with diameters ranging from 0.5 nm to 2 nm and showing well-

structured UV-Vis spectra with bands below 476 nm. Similar studies with CdSe, including TEM 

analysis[22][23] and AFM height studies, indicated the cluster sizes were smaller than 2 nm.[24] Mass 

spectroscopy analyses underline the magic-size characteristic with the detection of a discrete 

number of atoms within cluster intermediates.[25][26][27][28] ESI-MS and also MALDI-TOF are 

applicable to the analysis of cluster materials but there is still an uncertainty whether the masses 

obtained are from the original clusters or fragmented products. 
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6.2 Semiconducting Clusters and Quantum Dots 

6.2.1 Living-Metal Polymer Concept 

The high and increasing demand for semiconductor quantum dots requires the detailed 

understanding of magic-sized clusters (MSC). Their relevance and their mechanistic role in the 

quantum dot growth process are the major factors of attraction for numerous research 

groups.[21][27][29][30] The MSC and QD formation process and the proposed size evolution mechanism 

requires detailed structural analyses which are based mainly on optical measurements.  

The growth process of semiconducting clusters resulting in quantum dots involves a multi-step 

nucleation process. The evolution is characterized by distinct stages of intermediates with 

extraordinary thermodynamic stability. Ultraviolet and visible spectroscopic techniques enable 

researcher to observe isosbestic points during the growth process which can be clearly assigned to 

intermediates. The discrete red-shift of excitonic peaks in absorbance spectra is consequence of the 

heterogeneous cluster growth.[7]  

According to the results of optical investigations, the cluster formation is comparable with the 

Ꞌliving polymer conceptꞋ.[23] This is a plausible and simplified model to describe the structural 

development shown in figure 61. After mixing the precursor components, the cluster growth 

proceeds through overcoming energy barriers and the formation of small clusters. The MSC 

represent minima in the potential energy landscape because of their increased thermodynamic 

stability over other cluster species. In the presence of unreacted precursor, a given cluster can 

evolve into larger MSCs through a series of jumps over the potential energy barriers, resulting in 

subsequent cluster families with outstanding stability. In view of the absorption spectra, the 

degradation of peaks and the creation of new absorbance peaks at higher wavelength can be 

monitored.[30][31] The depletion of cluster peaks and simultaneous accumulation of other cluster 

species with different stoichiometries are obtained. This could be observed at higher temperatures 

and ongoing monomer consumption, revealing the heterogeneous cluster growth from MSC to a 

variety of nanostructures. 
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Figure 61: Illustration of the two-step nucleation mechanism for the quantum dot growth starting with 

molecular precursor and magic-sized clusters as key intermediates.  

 

6.2.2 Surfactant-Controlled Synthesis of Semiconductor MSC and QD 

Synthesis of small uniform colloidal particles proceeds best from wet-chemical synthesis.[30][32][33] 

The literature suggests special steps need to be taken to fabricate such semiconducting nanoclusters. 

Mello Donega[34] provide a good overview where a few of important synthetic factors have been 

investigated. These include that the growth temperature has a substantial impact on the MSC 

growth kinetic and stability. Typically, overcoming the activation barriers allows the observation 

of MSC families and they are mostly observed below the usual synthetic temperature of QDs.[25][35] 

Mostafavi[36] used a radiolytic technique to demonstrate that final particle size of the cluster is 

influenced by the dose rate. This is comparable with the precursor consumption at progressively 

longer reaction times and it is used for an efficient route to tune the cluster size towards higher 

wavelength.[7][27][37] 

Xie et al. examined cluster formation experimentally and theoretically and especially the effect of 

supersaturation in the synthesis of InP nanoclusters and nanocrystals.[38] According to their results, 

the extremely high degree of supersaturation drives the formation of magic-sized cluster and 

influences the nucleation and growth of colloidal particles.[39] The proposed model for the 

formation of thermodynamically stable nuclei underline these results, the higher the 

supersaturation, the smaller the critical nucleus could be. The higher the temperature and the 

monomer solubility (resulting from monomer-ligand complexes), the smaller the supersaturation 
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and the MSC yield. Higher reaction temperatures promote a rapid growth of relatively large 

colloidal particles. 

The observation of MSC families can be promoted by the precursor reactivity and by so-called 

template synthesis. The latter can be realized by using porous materials and interstitial spaces.[16][40] 

Confined spaces can also be achieved through ligand-stabilized approaches to limit the cluster size 

during the growth process.[41][42][43] Rosenthal and co-workers[31] have given an overview of the 

nature of stabilizing surfactants for CdSe with different binding affinity and binding strength. 

Commonly used ligands, such as amines, phosphinic acids, and oleic acids favor the formation of 

magic-sized clusters due to their capability of forming coordination bonds with metal atoms at the 

nanocluster or nanocrystal surfaces.[2][34][44][45][46] They are essential to control the shape and size, 

but the full mechanism is not clearly understood. Owen and co-worker suggested that ligands may 

be able to reduce the activation barrier for cluster growth.[43] Similar results were obtained for ZnTe 

clusters, where ligands are able to modify the free energies of the NC surface resulting in the 

stabilization or destabilization of specific nanocrystal facets, thus influencing the formation kinetics 

of colloidal nanomaterials.[34] Landes et al.[47] highlighted that the addition of amines leads to 

destabilization of nanocrystals and the formation of thermodynamically stable structures. The role 

of amines in the synthesis of cluster and quantum dots ranges from ligands to bases but a detailed 

understanding is still limited. However, the presence of ligands is crucial for the MSC synthesis 

and modulates the growth process. Various research groups[27][30][48] showed that the growth of 

clusters proceeds through a series of jumps over energy barriers as mentioned in chapter 6.2.1. 

Weiss and co-workers described the conversion of MSC to QD as a competing step-growth and 

living chain-growth mechanism in the presence of stabilizing agents.[49] An excess of surfactants 

favours a fast growth of clusters resulting in smaller final QD sizes. The mechanism is termed a 

living chain-growth mechanism due to the consecutive monomer addition, whereas a stoichiometric 

amount of ligands controls the rapid consumption of monomeric precursors (step-growth 

mechanism). In situ scattering methods can monitor the evolution of primary precursors into 

crystalline ordered structures.[50] Inspired by a large body of work on the synthesis and handling of 

semiconducting nanoclusters and particles, this chapter demonstrates a novel preparation method 

of ligand stabilized clusters. The synthetic approach is applicable to a range of semiconductor 

systems consisting of metal sulfide and metal halides in organic solvents. The unique and element-

specific properties originating from their size and shapes are systematically studied by monitoring 

the absorption and emission spectra. Ex-situ characterization methods such TEM and X-ray 

diffraction techniques support the results. 
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6.3 Experimental Section 

6.3.1 Novel Scalable Synthesis  

Herein we present a chemical synthesis to prepare stable MSC at room temperature. For the 

multicomponent synthesis, ionic reaction components were introduced into organic solvents 

together with stabilizing ligands (organic precursor). For the batch synthesis, the organic precursors 

were synthesized and the solvent system optimized. The synthesis of metal chalcogenide 

semiconductor clusters based on Lewis acid-base reactions between metal oleate and sulfur-

stabilized precursor at room temperature which can be applied to metal halide systems. Figure 62 

shows a schematic illustration of the synthesis of metal chalcogenide and metal halide cluster. 

 

Figure 62: General approach for the synthesis of metal halide and metal chalcogenide magic-sized clusters 

at room temperature (RT) in organic solvents. A+ represents the metal ion, B- the halide or sulfur ion. Organic 

ligands act as stabilizing agents during the synthesis. 

 

6.3.2 Metal Precursor 

A large body of work has been carried out on the development and handling of metal-based 

nanoclusters and nanocrystals. Cadmium oleate, tin oleate, silver oleate and lead oleate were chosen 

as metal precursors. In general, metal oleates show poor solubility in organic solvents. To overcome 

this problem and guarantee the complete solubility of these metal oleates, either the temperature 

can be increased or a minimum amount of amines can be added to form complexes with the metal 

and increase the solubility (figure 63).[44][51] 
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Figure 63: Metal oleate reacts with primary amines to form metal oleate-amine complexes to achieve 

complete solubility of the metal precursor.  

 

The ionic precursor is responsible for the generation of metals ions which are stabilized by 

conventional ligands. From literature, oleic acid and different amines have been used in the 

synthesis of metal chalcogenide clusters.[31][43][52][53] The ligands show a high binding affinity 

towards metal ions and slow the reaction kinetics. To allow UV-Vis monitoring of the metal 

chalcogenide and metal halide cluster formation, cyclohexane was used as the organic solvent 

because of its low cut-off wavelength.[54] This allows the detection of the precursor degradation as 

well as the early growth stage of the semiconductor material. Moreover, the required 

supersaturation (poor solubility of the ligand-metal complex) could be achieved using cyclohexene. 

 

6.3.3 Anionic Precursor 

Halide Precursor 

The iodide precursor was synthesized via the exchange of halogen atoms according the Finkelstein 

reaction.[55] It is an equilibrium reaction and driven by the different solubility of halide salts where 

bromide is replaced by iodide. The reaction was expanded to our system where sodium iodide was 

dissolved in water and the precursor tetraoctylammonium bromide was dissolved in toluene. The 

reaction is driven by the conversion to tetraoctylammonium bromide in the organic phase. The 
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toluene phase shows a yellow colour after the successful replacement of bromide and the 

conversion efficiency/purity was determined by the melting point of the salt.  

 

 

Figure 64: General approach for the Finkelstein reaction for the conversion of tetraoctylammonium bromide 

to tetraoctylammonium iodide in presence of sodium iodide. 

 

Sulfur Precursor 

The sulfur precursor, tetraoctylammonium sulfide was prepared via liquid-liquid phase transfer 

according the literature Li et al.[56] In the first step, optimal conditions like the S:Na2S ratio and the 

operating temperature and time were chosen to prepare an aqueous sodium disulfide solution 

(Step I, stock solution). For the reaction, sulfur and sodium sulfide were mixed under vigorous 

stirring in water at 50 °C. The size of the polysulfide anion in water (S2
x, x=2, 3, 4, 5) can be 

influenced by controlling the sulfide/sodium sulfide ratio which was set to be S:Na2S 0.6, but an 

equilibrium between all synthesized polysulfide anion still exists after the conversion.  

 

In the subsequent step, tetraoctylammonium bromide TOABr was dissolved in chloroform under 

Schlenk conditions (absorption below 250 nm). The sulfide anions tend to go into the organic phase 

(Step II, figure 65) with the help of the phase transfer agent. Therefore, the subsequent reaction 

between polysulfide anions and the phase transfers agent TOABr leads to the replacement of 

bromide. The conversion can be clearly indicated by a color change of the chloroform phase from 

colorless into dark yellow/green.  
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Figure 65: Illustration of the liquid-liquid phase transfer of polysulfide anions into the organic phase with the 

help of the phase transfer agent tetraoctylammonium bromide (left). The photograph was taken directly after 

starting the phase transfer reaction (right). 

 

Pure Na2S shows an absorbance signal between 220 nm and 230 nm in water, whereas polysulfide 

anions show strong absorbance in the higher wavelength region with peak maxima around 298 nm 

and 369 nm (figure 66, left). The peak positions depend on the S/Na2S ratio and the individual 

polysulfide which shows a linear intensity increase with increasing concentration.[57] The transfer 

efficiency can be monitored by UV-vis-spectroscopy (figure 66, right). Due to the phase transfer, 

the peak intensity at λ=339 nm increases within 24 h and reaches equilibrium. This represents the 

higher binding affinity of the ammonium ions towards the sulfide anions.[58][59][60] The absence of 

the 618 nm peak in the final product is evidence of the absence of 'dissolved' sulfur.[61] The 

conversion can be detected with a control experiment detecting the remaining sulfur in the water 

phase.  

Both the binding capability and the concentration of these sulfur anions determine which anion will 

be phase-transferred and generate the corresponding products in the phase-transfer reaction. The 

steric hindrance of the large quaternary ammonium cation influences the binding capability. It 

favors the binding of bigger disulfide anion with two TOA+ cations, whereas binding of smaller 

monosulfide anions is relatively difficult.  
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Figure 66: Absorbance spectra directly after the conversion of S/Na2S in water. The main peaks are around 

225 nm, 298 nm, 369 nm representing the coexistence of polyanions (left). After the phase transfer 

(S:TOABr 1:1) into the chloroform phase, the absorbance signal around 339 nm increases within 24 h. The 

phase transfer agent TOABr shows absorbance λ < 250 nm. 

 

Taking into account the UV-Vis spectra, we assume that higher polysulfides are synthesized but it 

is not possible to distinguish between the individual polysulfides in this reaction.[62] For simplicity, 

all co-existing forms will be referred to as 'sulfide'. To avoid numerous side reactions, the sulfide 

precursor was stored under inert gas atmosphere in the dark. The high reactivity of the sulfur 

precursor in the presence of amines was studied (Appendix).[60] The degradation of the sulfur-

bearing precursor is ascribed as the reaction with amines forming alkylammonium polysulfide and 

acting in subsequent steps as sulfur precursor. Furthermore, the relative amount of the sulfur species 

depends on temperature, pH, ionic strength, amount of H2S gas leaving the solution, and diverse 

side reactions (including sulfide oxidation). These products are hard to characterize. According to 

former studies, it is known that under basic conditions the sulfide ion S2- is predominant whereas 

under acidic conditions hydrogen sulfide gas H2S will be released.[63] 

For the synthesis, the surfactant-controlled nanocluster growth of metal halides and metal 

chalcogenide is monitored at low temperatures in a supersaturated system with in-situ optical 

measurements and ex-situ TEM. This method effectively provides information about the 

development and regulation of MSCs. Further studies were performed to suppress the evolution of 

regular quantum dots. Alkylammonium stabilized anions as well as the Lewis bases and fatty acids 

bind strongly to the precursor to minimize the formation of larger nanocrystals. Additionally, the 
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amine ligand is able to passivate the nanocrystal by acting as an electron-donating ligand. Synthesis 

in an organic system is important to later use MSC as seeds for high temperature studies and in 

view of various microfluidic applications[50][64]. The growth process could be applied to a wide 

range of binary semiconductor MSCs and QD. Beside the material dependency, the intermediates 

sizes depend on the synthetic parameters. In the following chapter, we adapt our CdS model system 

to ZnS, PbS, Ag2S and the halide systems AgI and AgBr. The development of ideal conditions for 

stepwise growth in various semiconductor MSC materials is developed, excluding pathways of 

continuous growth, and to guarantee the formation of stable MSC. From here, a new regime can be 

entered where well-defined nanocrystals form MSCs to act as seed nuclei and reservoirs. 
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6.4 Results and Discussion 

6.4.1 Metal Chalcogenide 

CdS Cluster Growth 

Now we report our novel approach for preparing stable CdS magic-sized clusters at room 

temperature. The challenges are the regulation of the cluster development and suppression of the 

evolution of regular quantum dots. The MSC are synthesized in organic solvent and show element-

specific absorbance peaks. For the synthesis, the ligand terminated cation complex Cd(oleate)2 was 

mixed with the sulfur-bearing ammonium precursor TOA2S2 and the electronic structure was 

monitored by optical spectroscopy (figure 67). 

  

Figure 67: In-situ UV-Vis detection showing the temporal evolution of CdS clusters with stoichiometric ratio 

of S:Cd 1:1 in cyclohexane at room temperature. The sulfur precursor (black curve) decomposes directly 

after injecting amine and cadmium oleate and induces the CdS cluster growth (green curves).  

 

The cuvette, containing sulfur pre-mixed with amine in cyclohexane (figure 67, black curve), was 

placed in the spectrometer and Cd(oleate)2 was quickly injected. The addition of Cd2+ (figure 67, 

green curves) leads instantaneously to nucleation and the development of small clusters (S:Cd 1:1). 

The absorbance intensity immediately started increasing at shorter wavelengths (λ < 300 nm) 

suggesting the onset of the formation of Cd-S bonds. Starting with excess of sulfur, the 
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consumption of Cd(oleate)2 allows the observation of isosbestic points during the slow growth 

process. The peak around λ=279 nm evolves into absorbance peaks around 259 nm, 285 nm, 

311 nm, 348 nm and 380 nm (figure 68, left). The sulfur ion shows a characteristic absorbance 

signal at around 246 nm[65] and smaller molecular species absorbing around 259 nm.[36] The 

absorption peak at 311 nm is claimed to be a magic-size cluster and this is the major component in 

our systems. Absorption features at longer wavelength, at around ~350 nm, are assigned to the 

peaks of larger CdS.[66] 

The high reactivity of the sulfur precursor in presence of amines allows the detection of an induction 

period prior to the nucleation and growth of CdS cluster families, showing high stability under 

ambient conditions. Instead of overcoming strong C-S binding energy at higher temperatures[67], 

the preparation of sulfur precursor in proper organic solvents is directly used to study the in-situ 

CdS cluster growth with sub-nanometer radii at room temperature. The coexistence of small 

clusters (285 nm), and their transformation[36][53] into larger CdS magic-sized clusters with 

absorption peaks at around 311 nm, are evidenced by the temporal evolution starting with 

monomeric species and the subsequent formation of CdS clusters. 
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Figure 68: Absorption spectra of CdS nanoclusters demonstrating heterogeneous growth with discrete steps 

at 259 nm, 285 nm, 311 nm, 348 nm and 380 nm (left). The sulfur precursor (dashed line) decomposes after 

the injection of amine and cadmium oleate and induces the CdS cluster growth (right).  

 

Typical characteristics of magic-sized nanoclusters include the heterogeneous growth mechanism, 

and the discrete red-shift of clusters towards the thermodynamically stable 311 nm-species 

accompanied by a simultaneous decrease of the peak around 285 nm (figure 68, right). The intensity 
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of MSC absorption shows a strong increase over time and the narrow Gaussian curve shows a 

FWHM of 17 nm after 3 days. The colloidal solutions remain clear and colorless after subsequent 

coalescence into larger clusters and show little change according to the absorbance spectra after 

one month in the reaction mixture due to the slow growth rate in the system (quasi-stationary 

situation).  

The formation of QD requires strong complexers like amines (R-NH2)[43] or carboxylic 

end-groups[67] to prevent the evolution of the CdS bulk material with a direct band gap of ~2.42 eV 

and exciton Bohr radius of ~3 nm.[68] The addition of R-NH2 leads to the decomposition of the 

sulfur precursor TOA2S2 and triggers the nucleation and cluster growth. The absence of strongly 

complexing amines leads to rising absorption bands around 380 nm and scattering in the low energy 

region of the absorbance spectra. Metal fatty acids and ammonium compounds are necessary to 

solubilize the Cd2+ and S2- ions. Moreover, the additional ligands favor cluster formation and the 

long-term stability of smaller CdS clusters. 

In the subsequent chapter, synthetic parameters were systematically studied to investigate their role 

during the quantum dot synthesis. General trends during the synthesis of clusters with local 

thermodynamic minima were monitored via UV-Vis spectroscopy, highlighting the impact of 

precursor ratio, injection order, nature of surfactants, growth temperature, solvent properties and 

reaction concentration.  

 

Effect of Cd:S Ratio 

Characteristic absorbance features were detected during the heterogeneous cluster evolution by 

varying the stoichiometric ratio of Cd and S. The variation of precursor should give a better insight, 

showing different sets of magic-sized clusters formed by fatty acid and amine ligands. Various 

amounts of metal oleate, reaching from S:Cd 1:0.5 to 1:2, were quickly injected into sulfide-rich 

organic solvents at room temperature. The energetically favored clusters are seen in figure. 69. The 

labels on the graphs refer to the initial ratio and the growth periods.  
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Figure 69: Synthesis of CdS clusters differing in their amounts of Cd(oleate)2. The metal oleate was quickly 

injected into the sulfide-rich organic solvent at room temperature. Cd(oleate)2 increases the yield of the 

285 nm- and 311 nm-species, whereas a higher sulfur content favours larger CdS clusters. 

 

During the growth process, cadmium oleate acts as a modulator of the cluster size.[36][37] Starting 

with the ratio of S:Cd 1:2 leads to the absence of large 360 nm-absorbing clusters in a metal-rich 

environment. In the early growth stages, up to 1 h, the peak at 285 nm dominates the spectrum and 

decreases at the expense of the 311 nm-absorbing species within 3 days. Lowering the 

stoichiometric ratio of cadmium oleate triggers the formation of larger clusters around 360 nm. In 

general, after the injection of Cd(oleate)2, the total number of ions remains unchanged, but the 

average number of clusters increases over time (3 d). The nanoclusters at 311 nm seem to be 

especially stable and show an extraordinary life-span.  
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There are three possibilities that could cause these distinct sets of magic-sized clusters. The exact 

number of Cd and S ions, which form energetically favored clusters sizes.[36] Another possibility is 

that the energy of the band gap is dependent on the ligand system.[31][69] For our designed synthetic 

approach, cadmium and sulfur ions are coupled with stabilizing agents and we cannot clearly 

distinguish what causes these distinct sets of magic-sized clusters. Both fatty acids and amines bind 

strongly to the metal ions and their influence was further investigated by using additional amine 

and carboxylic ligands.  

 

Transmission Electron Microscopy 

For large nanoparticle sizes, Transmission Electron Microscopy (TEM) provides accurate 

information about the morphology and size. However, for smaller particles the limited resolution 

and the poor electron scattering contrast makes the determination more difficult. The CdS MSC are 

quite stable, as confirmed by monitoring the UV-Vis spectra. The TEM samples were prepared 

under ambient conditions via drop-casting of the CdS dispersion. CdS nanoclusters with the 

corresponding ratio of S:Cd 1:2 show the strong pronounced absorption peak around 311 nm. The 

corresponding TEM images show clearly that spherical particles are formed which are uniform in 

size 1.6 ± 0.3 nm.  

 

Figure 70: TEM images of 1.6 nm CdS nanoclusters synthesized in cyclohexane (ratio S:Cd 1:2). The 

standard deviation could be calculated to 0.3 nm. 
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The synthetic method thus allows one to obtain very small sized CdS clusters with a high 

monodispersity (figure 70). We found that the cluster size in the TEM images correlated very well 

with that reported in the literature[21][22][36][66][70] and additionally confirms that the absorbance peaks 

λ ≤ 320 nm arise from cluster radii smaller than 1 nm.  

To verify the size of small CdS nanoclusters, the following equation is used which shows size-

dependency of the optical absorption coefficient.[22]  

𝐷 = (−6.6521 ∙ 10−8)𝜆3 +  (1.9557 ∙ 10−4)𝜆2 − (9.2352 ∙ 10−2)λ + (13.29)     (6.1) 

The size calculation in the quantum confinement size regime is independent of the capping ligands, 

the temperature and the refractive index of the solvent and match the results of the TEM 

measurements very well. 

 

Table 14: Structural information for CdS clusters including the calculated diameter D of the given nanocrystal 

sample with respect to the wavelength λ of the first excitonic absorption peak in the UV-Vis spectrum. 

λ [nm] Da [nm] Db [nm] Dc [nm] 

285 1.3   

311 1.5 1.6 ± 0.3  

325 1.6  1.7 ± 0.4 

360 2.3  4.0 ± 0.7 

a Diameter D determined according the empirical fitting functions from Peng et al.[22] 

b Sizes determined from TEM images of sample S:Cd 1:2 

c Sizes determined from TEM images of sample Cd:S 1:0.5  

 

 

The experimental determination of the extinction coefficient of the first excitonic absorption peak 

λ of CdS semiconductor nanocrystals leads to diameter D which shows a good agreement with our 

TEM results (table 14). 
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The CdS nanoclusters with ratio Cd:S 1:0.5 show, in contrast to a strong and dominating 311 nm-

absorbing species, broad absorbance signals around 325 nm and 360 nm. According to the TEM 

measurements, these absorptions correspond to two detectable cluster size fractions with diameters 

of 1.7 ± 0.4 nm and 4.2 ± 0.7 nm respectively. 

 

Figure 71: TEM image of CdS clusters synthesized with ratio Cd:S 1:0.5 in cyclohexane. The corresponding 

diameter of 4.0 ± 0.7 nm and 1.7 ± 0.4 nm could be detected. 

 

By applying the empirical formula above, the absolute value for a given sized CdS cluster excitonic 

absorption peak at 325 nm and 360 nm were found to be 1.6 nm and 2.3 nm. In general, the optical 

absorption shows strong blue-shifts from the onset, indicating the strong quantum confinement 

effects. The observed nanostructures were slightly larger than the proposed cluster model according 

Peng.[22] The experimental errors of the measurement should mainly come from the determination 

by TEM. Direct imaging of colloidal CdS clusters in this size region are close to the TEM detection 

limit, hence errors are included. Additionally, the experimental spectra are a sum of various 

crystallite sizes[9], therefore a broadened absorption edge complicates the comparison with the 

empirical models.  

 

Effect of Injection Order 

The variation of precursor ratio and the injection order could give better insight into the CdS cluster 

formation. Various amounts of sulfur precursor, ratios from Cd:S 1:0.5 to 1:2, were quickly injected 
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into the metal-rich organic solvent at room temperature in the presence of amines. The structural 

evolution of energetically favored clusters is illustrated in selected absorption spectra (figure 72). 

The labels on the graphs refer to the initial ratio and the growth periods. 
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Figure 72: Synthesis of CdS clusters differing in the initial ratio of sulfide precursor. The sulfur precursor 

was quickly injected into the metal-rich organic solvent at room temperature. Cd(oleate)2 increases the yield 

of the 285 nm- and 311 nm-species, whereas a higher sulfur content favours larger CdS clusters. 

 

The concentration of the metal complexes, consisting of amine and oleic acid, was held constant. 

The results clearly demonstrate that the injection order has no influence on the magic-sized clusters. 

The set of magic-sized cluster reaches its equilibrium after 3 d and show quasi-stationary 

absorbance features. The excess of Cd(oleate)2 favors 285 nm and 311 nm clusters. After exceeding 

the stoichiometric ratio of 1:1, a higher sulfur content favors selectively higher cluster species. Both 
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the chemical bond between S2- and ammonium ions, as well as the amine-metal bonding is strong. 

The incorporation of foreign atoms into each system influences the evolution of the cluster growth 

and the cluster size can be adjusted by the relative concentration of the precursor.  

 

Effect of Amine 

Amines and oleic acid are well-known as coordinating agents for nanocrystal systems. In a first 

approach, the necessity and influence of n-octylamine R-NH2 was studied by varying their 

concentration. The reaction was monitored by UV-Vis spectroscopy. The absence of n-octylamine 

leads to a slow conversion of the sulfur precursor and an uncontrolled formation of large 

nanostructures absorbing around 370 nm after 3 days (figure 73). The significant cluster peaks at 

285 nm and 311 nm could not be detected.  
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Figure 73: Synthesis of CdS nanostructures with the initial ratio of S:Cd:R-NH2 1:2:0. The metal oleate was 

quickly injected into the sulfur-rich organic solvent at room temperature. The 285 nm- and 311 nm-MSCs 

were not formed without the coordinating agents R-NH2. 

 

Similar results were obtained for the CdS synthesis as the amine concentration slightly increases. 

From the spectra in figure 74, the presence of amines lead to the fast decomposition of the sulfur 

precursor (λ=279 nm) and weak signals around 285 nm and 311 nm can be detected during the slow 

CdS formation. The absorbance maximum shifts with the ratios S:Cd:R-NH2 1:2:14 and 1:2:28 

towards higher wavelength, with dominant peaks around 330 nm and 360 nm after 3 days. We 
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suggest that the influence of the concentration of amine on CdS nanoclusters is dramatic and the 

MSCs clusters cannot be formed in absence of strong coordinating agents.  
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Figure 74: Synthesis of CdS nanostructures with the initial ratio of sulfide and Cd(oleate)2 precursor of 1:2. 

The metal oleate was quickly injected into the sulfur-rich organic solvent at room temperature. Various amine 

amounts demonstrate the necessity of the coordinating agent R-NH2.  

 

After further increase of the amine concentration R-NH2 it is safe to conclude that the resulting 

nanoclusters around 285 nm and 311 nm were formed with an excess of amines. In contrast to 

S:Cd:R-NH2 1:2:14 and 1:2:28, sharp peaks at 285 nm and 311 nm become dominant during the 

formation process (S:Cd:R-NH2 1:2:56 and 1:2:111) and are stable up to a few months in the dark.  
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Amines are activating agents, leading to the decomposition of the sulfur precursor, and play a 

second role as strong coordinating ligands for metals. Initially, tiny molecular clusters are formed 

and grow into stable clusters which are trapped thermodynamically. Due to the reduction of the 

activation barrier[43], the CdS cluster undergoes a step-wise growth and the final spectrum is 

dominated by the 311 nm-species after 3 days. Magic-sized clusters cannot be formed in the pure 

reaction mixture, consisting of sulfur precursor and cadmium oleate. Both Ꞌionic monomersꞋ are not 

able to stabilize the clusters sufficiently. Apparently, the formation of MSC needs an appropriate 

amount of amines to promote the synthesis and to stabilize the cluster sizes. The strong metal-

amine complex prevents further growth into regular quantum dots. 

 

Effect of Oleic Acid 

In this study, we investigated the presence of further additives such as oleic acid. The structure of 

MSC was found to be dependent on the choice of ligand and high-quality carboxylate-capped 

nanostructures, as reported in the literature.[44][53][71] The reaction in the absence of amines but in 

the presence of pure oleic acid results in an uncontrolled growth of larger nanostructures. Therefore, 

a minimum amount of n-octylamine was necessary to stabilize the desired cluster sizes. By 

operating at room temperature, identical reaction conditions were chosen and the concentration of 

oleic acid R-COOH was varied. The cluster formation in cyclohexane is depicted in the following 

UV-Vis spectra (figure 75).  
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Figure 75: Synthesis of CdS nanostructures with the initial ratio of sulfide and Cd(oleate)2 precursor of 1:2. 

The metal oleate was quickly injected into the sulfur-rich organic solvent at room temperature. Various 

amounts of oleic acid demonstrate the influence of the coordinating agent R-COOH.  

 

In comparison to the effect of n-octylamine, the influence of oleic acid is not as obvious. Therefore, 

an overview of the various oleic acid ratios after 3 days is given in figure 76. With a low oleic acid 

amount (S:Cd:R-COOH 1:2:7), the 311 nm-absorbing species dominates the spectrum after 3 days. 

Similar results were obtained for S:Cd:R-COOH 1:2:14 and 1:2:28 ratios. As the concentration of 

oleic acid in cyclohexane increases (from S:Cd:R-COOH 1:2:14, to 1:2:28 to 1:2:56), the formation 

of smaller nanoclusters at 285 nm is more favored. The ratio S:Cd:R-COOH 1:2:56 differs from 

the other results, because the relative absorption intensity of the excitonic peak (285 nm to 311 nm) 

has changed. The dynamic equilibrium favors the 285 nm-peak absorbance signal. Additionally, 
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the formation of larger clusters is suppressed, which is also attributed to the large excess of fatty 

acids. 

 

Figure 76: Synthesis of CdS nanostructures with the initial ratio of sulfide and Cd(oleate)2 precursor of 1:2. 

The metal oleate was quickly injected into the sulfur-rich organic solvent at room temperature. In presence 

of oleic acid the equilibrium between 285 nm and 311 nm MSCs could be influenced towards the formation 

of the smaller species. 

 

Oleic acid together with amines lead to the protonation of n-octylamine and acid-base complexes 

(C17H33COO-:C8H17NH3
+).[71] The deprotonation of oleic acid leads to an enhanced electron-

donating ability and guarantees a preferential binding with cadmium ions and the generated 

alkylammonium ion stabilizes the sulfur ions.[60] The result of the study shows that the additional 

stabilizing agents are in competition with the CdS cluster formation and smaller clusters around 

285 nm are thermodynamically favored. 

The control over cluster peak position and thermodynamically favoured cluster size arises from 

amines. The surface chemistry plays a critical role in the stability of MSCs. Amines[43] and 

carboxylic acids are strongly coordinating capping agents and stabilize cadmium effectively. Steric 

and electronic effects are the explanation. Amines are electron rich and polarizable complementing 

the soft Lewis acidic cadmium ions. The long hydrocarbon tail provides steric repulsion and 

maintains the solubility in organic solvents.  
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Effect of Temperature 

The temperature dependence of CdS nanocluster formation was studied under a variety of 

conditions. Optical spectra were taken of a series of CdS magic-sized clusters synthesized with 

ratio S:Cd 1:2 and in the temperature ranges from T=10 °C to 40 °C. The range is restricted because 

of the solvent properties (boiling point) and the solubility of the precursor. Metal oleate and the 

sulfur precursor were dissolved in cyclohexane in the presence of n-octylamine and set to the 

desired temperature. The structural evolution was detected and selected absorption features are 

shown after t=30 min, 3 h, 24 h, and 72 h.  

   

  

Figure 77: Synthesis of CdS clusters with fix initial ratio of sulfide precursor and Cd(oleate)2 of 1:2 at three 

different temperatures (T=10 °C, 20 °C and 40 °C). The metal oleate was quickly injected into the sulfide-

rich organic solvent. Lower temperatures favour the yield of the 285 nm- and 311 nm-species, whereas a 

higher temperatures favour the growth of regular CdS QD ≥ 350 nm. 
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The structural evolution differs for all three temperatures. At lower temperature T=10 °C, the 

285 nm peak dominates over all the other peaks after 30 min. With proceeding reaction time, a red-

shift occurs due to the ongoing monomer conversion and the system shows stable 311 nm-cluster 

peaks after 3 days. The formation of regular quantum dots was largely suppressed. 

With increasing temperature, the 311 nm-clusters are more favored. At a temperature of T=40 °C, 

the 285 nm was not detectable during the CdS formation, but an increasing signal around 350 nm 

was monitored. The exceedingly fast conversion generates larger CdS clusters. With proceeding 

reaction time, the relative intensity of the fraction increases due to the ongoing monomer 

conversion. The higher the temperature, the more pronounced are the cluster peaks and absorption 

signals at higher wavelength. The temperature affects the set of magic-sized clusters. The 

temperature has an influence on the solubility of the precursor, the monomer diffusion towards the 

CdS particle surface, as well as the surface reaction and the intramolecular rearrangement of the 

system.[41] We suggest a two-step nucleation process with 285 nm and 311 nm species where the 

heterogeneous growth process with discrete absorbance peaks is more pronounced at lower 

temperatures. It is well-known that classical nucleation cannot account for the formation process 

which occurs via stable nanoclusters with distinct structures and at high supersaturation.[38][72] The 

conversion to larger detectable clusters occurs on time-scales which are practicable for further 

kinetic analysis. The temperature- and time-dependent change of the absorption peak 285 nm and 

311 nm provides more information about the cluster development (figure 78). 
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Figure 78: Kinetic data demonstrate the absorbance at 311 nm and 285 nm as a function of time during the 

CdS clusters synthesis with sulfide precursor and Cd(oleate)2 ratio of 1:2 at T=40 °C (left). Semi-logarithmic 

plots were used for the calculation of the rate constants k1=0.050 min-1, k2=0.00254 min-1, k3=0.226 min-1 

and k4=0.00212 min-1 (right). 
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We can distinguish between two regions. The first region shows the noticeable increase of the 

311 nm-species and the absorbance at 285 nm decreasing in the same time window. The 285 nm 

clusters act in such conditions as nuclei for the larger magic-sized clusters (heterogeneous growth). 

The second region is characterized by a slower increase in the absorbance of the 311 nm signal at 

the expense of the 285 nm-species.  

It should be pointed out, that each kinetic curve of the corresponding reaction contains two 

exponential components in a semi-logarithmic coordinate system which supports our assumption 

of a more complex reaction (figure 78, right). The two regions can be approximated by straight 

lines with slopes of k1=0.050 min-1, k2=0.00254 min-1, k3=0.226 min-1 and k4=0.00212 min-1. It is a 

difficult task to ascertain the mechanism of the reaction that proceeds (etc. two parallel reactions, 

sequential reactions, competitive reactions or a two-component heterogeneous model).[73]  

For the 285 nm-species, the asymptotes of these curves show that k1 >> k2 with proceeding reaction 

time (t >> 0). Therefore, the second exponential term 𝑒𝑥𝑝(−𝑘2𝑡) becomes negligible in comparison 

to 𝑒𝑥𝑝(−𝑘1𝑡)(t ≥ 0). For simplification and to display and compare the reaction rate, the 

development of the 285 nm peak is exponential fitted by the pseudo-first order reaction 

equation 6.2. The solid lines in figure 78 are fitted to 

[𝐴]𝑡 = 𝐴1𝑒𝑥𝑝(−𝑘1𝑡)     (6.2) 

where [𝐴]𝑡 is the absorbance detected at time t, 𝑘1is the first order rate constant and t the reaction 

time. Taking the logarithm leads to 

𝑙𝑛[𝐴]𝑡 =  𝑙𝑛[𝐴]1 − 𝑘1𝑡             (6.3) 

where the concentration of the 285 nm-species at time 0, described by the ordinate axis intercept 

𝑙𝑛[𝐴]1 with corresponding rate constant 𝑘1.  

The 311 nm-absorbing species follows the same behaviour with k3 >> k4. This fact is very important 

and indicates the transformation of the 285 nm cluster into highly stable MSC intermediates at 

t ≥ 0. It allows the assertion of a heterogeneous cluster growth mechanism for the reaction which 

includes a multi-step nucleation process for semiconductor CdS clusters. The fitted curves describe 

the main development of the cluster peaks at 285 nm obeying a first order kinetic model with rate 

constant k of 0.127 min-1 and the 311 nm rate constant k of 0.113 min-1. The fitted curves for all 

temperatures according to equation 6.2 are shown in figure 79 and describe model curves for the 
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cluster transformation. The temperature-dependent cluster growth, with the colours corresponding 

to those of the experimental data, show times up to only 150 min.  

  

Figure 79: Kinetic plots demonstrate the absorbance at 311 nm and 285 nm as a function of time during the 

CdS cluster synthesis at three different temperatures (T=10 °C, 20 °C and 40 °C).  

 

The main development of the cluster peaks at 285 nm shows an increase in the rate constant k from 

0.024 min-1, to 0.098 min-1 and to 0.127 min-1 with temperature. Similar results were obtained for 

the magic-size cluster peak at 311 nm. The rate constant k increases from 0.023 min-1, to 

0.031 min-1 and to 0.113 min-1 with increasing temperature. At three different temperatures, the 

311 nm-species grows at the expense of the 285 nm-species and the reaction is accelerated at higher 

temperatures and obeys Arrhenius kinetics.[38] However, the formation and the reaction rate of 

larger clusters is not considered. The crossing points of the 285 nm and the 311 nm fitted lines are 

observed at times longer than 33 min for T=40 °C, 47 min for T=20 °C, and > 28 h for T=10 °C. 
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The special stability of the MSCs can be studied by changing the concentration of the CdS reaction 

mixture. Yu et al.[39] has predicted that the degree of supersaturation can influence the formation 

and the final size of the metal-based clusters. To confirm this assumption, we investigated the 
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0.35 mM and 0.75 mM). The absorption spectra were monitored and selected absorption features 

are shown after t=30 min, 1 h, 3 h, and 3 d (figure 80). 

 

 

Figure 80: Synthesis of CdS clusters with fixed initial ratio of sulfide precursor and Cd(oleate)2 1:2 and four 

different precursor concentrations at room temperature. The metal oleate was quickly injected into the 

sulfide-rich organic solvent and the absorbance values are proportional to the precursor concentration during 

the synthesis (Inset). 

 

Spectroscopic monitoring suggest that the final MSC size does not correlate with the absolute 

monomer concentration. The variation of precursor concentration under such identical reaction 

conditions shows similar growth behavior and the peak positions remain constant while the 

intensity increases. The 285 nm-species dominates the synthesis within the first hour of cluster 

growth and shows a red-shift in the following hours, resulting in stable CdS MSC samples. The 
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absolute increase of the cluster population is proportional to the precursor concentration and shows 

a strong linear correlation. The relative concentration of MSC family’s increases as the precursor 

concentration is raised from 0.18 mM to 0.25 mM to 0.35 mM and to 0.75 mM.  

The concentration effect in the system was found to be negligible and the cluster size is sufficiently 

stabilized by the present ligands. In order to understand the formation of CdS, the time-dependent 

absorbance at 285 nm and 311 nm was studied (figure 81).  

  

Figure 81: Kinetic data from the growth of 285 nm and 311 nm CdS cluster of different concentrations. The 

time-dependent absorbance was detected at four different concentrations of 0.18 mM, 0.25 mM, 0.35 mM 

and 0.75 mM. 

 

The experimental results could be well fitted with the chemical kinetic equation 6.2. Rate constants 

can be obtained by assuming pseudo-first order reaction conditions and the reproducible studies 

represent similar values for the 285 nm-species reaching from 0.102 min-1 to 0.153 nm-1. The fitted 

lines for the absorption peak at 311 nm show rate constants k from 0.0593 min-1 to 0.0658 nm-1. 

Deviations can be explained due to the pseudo-first order approximation. Furthermore, the 

formation of higher CdS nanostructures could not be completely suppressed and has not been taken 

into account for the study. The kinetic analysis show that the rate constants are only affected by the 

temperature and not by the concentration.  

 

 

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

[A]
0
 = 0.273 + 0.198 exp(-0.102t)

[A]
0
 = 0.420 + 0.272 exp(-0.107t)

[A]
0
 = 0.576 + 0.382 exp(-0.107t)

[A]
0
 = 0.901 + 0.492 exp(-0.153t)

 0.75 mM 

 Fitted

 0.35 mM 

 Fitted

 0.25 mM 

 Fitted

 0.18 mM 

 Fitted

A
b

s
. 


2

8
5

 n
m

 [
a

.u
.]

Time [nm]

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 0.75 mM

 Fitted

 0.35 mM

 Fitted

 0.25 mM

 Fitted

 0.18 mM

 Fitted

A
b

s
. 


3

1
1

 n
m

 [
a

.u
.]

Time [nm]

[A]
0
 = 0.188 - 0.204 exp(-0.0658t)

[A]
0
 = 0.304 - 0.288 exp(-0.0603t)

[A]
0
 = 0.468 - 0.460 exp(-0.0593t)

[A]
0
 = 0.807 - 0.677 exp(-0.0622t)



Novel Scalable Synthesis of Semiconducting Magic-sized Clusters and Nanocrystals 

 

159 
 

Effect of Solvent Polarity 

With increasing solvent polarity, from octadecene (ODE), cyclohexane (CH), chloroform (CHCl3) 

to ethanol (EtOH), the absorption features show a red-shift of the band-edge absorption of stabilized 

CdS nanoclusters towards higher wavelength.[11][66] The growth kinetics were investigated 

systematically and show the generation, life-span and consumption of MSCs. Figure 82 shows the 

temporal evolution of UV-Vis absorption spectra for the synthesis in different solvents. 
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Figure 82: Synthesis of CdS clusters with fixed initial ratio of sulfide precursor and Cd(oleate)2 of 1:2 in 

solvents of different polarity. The metal oleate was quickly injected into the sulfide-rich organic solvent and 

the temporal evolution monitored by UV-Vis spectra. 
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The cluster development as function of the reaction time indicates that the solvent polarity and 

viscosity affects the set of CdS clusters. The high viscosity of the non-polar solvent ODE prevents 

the growth of larger CdS clusters and regular QD.[11] We can observe the transformation of the 

285 nm- and 311 nm-absorbing species into a single broad absorbance peak with maximum at 

298 nm (figure 83). The CdS clusters were formed in a quite broad temperature range up to 

T=200 °C in this specific reaction system. The excess of ligands helped to maintain colloidal 

stability of nanoclusters due to the strong stabilization in ODE during heating. We carried out some 

measurements and found that they show the identical peak position but the precursor conversion 

increases at higher temperature. 

 

Figure 83: Absorbance spectra of CdS nanoclusters formed in octadecene ODE. A considerable amount of 

stabilizing ligands helped to maintain the colloid stability of clusters at higher temperatures.   

 

As aforementioned, the maximum concentration of the 311 nm-species was found in the low 

polarity solvent CH (polarity index, PI: 0.2, 0.001 Pa·s).[74] From the absorbance spectra shown in 

figure 82, an aging time of 3 days results in the absence of the 285 nm-species and yielded a small 

fraction of 330 nm clusters. The life-span of the MSCs is longer than a few months indicating a 

slow growth process (quasi-stationary). 

As the polarity increases, the life-span of 311 nm MSC in the reaction solution is shortened, for 

instance in chloroform (PI: 4.1, 0.00057 Pa·s)[74]. The higher polarity solvent favours two cluster 

sizes with isosbestic points at around 311 nm and 330 nm. The relative intensity of the 330 nm 

nanoclusters formed in CHCl3 was found to be higher than those generated in cyclohexane.  
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Ethanol (PI: 5.2, 0.0012 Pa·s)[74] with highest solvent polarity in this experiment favours the 

formation of larger clusters at around 348 nm and 390 nm. The life-span of the 311 nm species is 

drastically shortened with increasing solvent polarity. The magic-sized clusters exist in EtOH over 

30 min, but the 285 nm-species could not be detected.  

The series of UV-Vis data shows that the peak at 311 nm occurs in all solvents, however the life-

span drastically decreases in high polarity solvents to yield larger particles. The results could be 

tentatively explained by the fact that the ligand solubility shows a strong dependency on the polarity 

of the solvent. The reactivity of the monomeric precursor is faster in highly polar solvents due to 

the increased ligand solubility in the system. It is also reasonable to assume that structural 

rearrangement results in the formation of larger clusters. The temporal evolution of the UV-vis 

measurements and the interpretation above verified these assumptions. 

 

Purification and Stability of MSC 

The nanoclusters were purified with an extraction method, based on the fact that the solubilities of 

the unreacted cadmium and sulfur precursor used in the synthesis and the resulting magic-sized 

clusters were significantly different in a two-phase system of methanol and cyclohexane. It was 

critical to remove any unreacted precursor in the CdS samples because we demonstrated above, 

that chemical treatments affect the CdS nanocluster system.  

       

Figure 84: CdS MSCs in cyclohexane show the characteristic yellow fluorescence under the UV lamp 

(λ=365 nm) (left) before and after the extraction with methanol in a two-phase system. 
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In a typical purification step, a solution of CdS magic-sized clusters was gently covered with 

methanol. Evidently in the photograph above, the two-phase system allows the phase-transfer of 

the cadmium and sulfur precursor. Both precursors are very soluble in the methanol phase and 

barely soluble in cyclohexane at room temperature, therefore they tend to go into the methanol 

phase. The MSC were insoluble in methanol and stayed in the cyclohexane phase. The efficiency 

and completion of the separation was monitored by UV-vis absorption (figure 84).  

 

Emission of CdS Nanoclusters 

The UV-Vis signals of CdS clusters can be detected in the size-quantization regime as illustrated 

and discussed above. The distinguishable absorption peaks at 285 nm and 311 nm were repeatedly 

observed in the organic reaction medium (figure 85). During the course of studies, the 

corresponding emission spectra of the room-temperature synthesized CdS nanoclusters and the 

yellow fluorescence under the UV lamp (λexc=365 nm) were obtained.  
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Figure 85: Time evolution of the absorbance spectra of CdS clusters for the sample containing the ratio Cd:S 

of 1:1 at T=20 °C. The sulfur precursor was quickly injected into the metal-rich organic solvent at room 

temperature. The yellow fluorescence is clearly visible under the UV lamp (λ=365 nm) after 1 day (right). 
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Observations relating size effects on the fluorescence efficiency are detected depicted below. 

350 400 450 500 550P
h

o
to

lu
m

in
e

s
c
e

n
c
e
 [

a
.u

.]








e
x
c
 =

 2
8
5

 n
m

Wavelength [nm]

350 400 450 500 550P
h

o
to

lu
m

in
e
s
c
e

n
c
e
 [

a
.u

.]





e
x
c
 =

 3
0

0
 n

m

Wavelength [nm]
  

Figure 86: Time evolution of the corresponding fluorescence spectra of CdS clusters (λexc=285 nm and 

300 nm) for the sample containing the ratio of Cd:S 1:1 at T=20 °C.  

 

The evolution of absorption and fluorescence spectra as a function of the reaction time (3 d) shows 

that the concentration of the 285 nm CdS clusters decreases as the 311 nm-species increases. Two 

emission bands can be detected, a strongly red-shifting emission with maximum from 453 nm to 

542 nm, and a side peak at 383 nm. Fluorescence emission and excitation spectra of the 

corresponding samples were taken after 3 days (figure 87). The excitation spectrum shows which 

wavelengths absorb to give rise to emission and the corresponding emission spectrum shows the 

photoluminescence arising from the sample. The fluorescence excitation spectrum shows weak but 

pronounced signals around 285 nm and 311 nm and strong signals arising from a CdS species at 

417 nm. The CdS clusters whose absorption band lies in the higher energetic region do not fluoresce 

efficiently in contrast to the clusters within the lower energy range. Therefore, we assume that the 

weak absorbance at wavelength 360 nm and higher are responsible for the strong emission signal 

centered around 541 nm.  
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Figure 87: Emission and excitation spectra of CdS clusters at room temperature. The excitation was 

performed at 285 nm for the sample containing the ratio Cd:S of 1:1. The sulfur precursor was quickly 

injected into the metal-rich organic solvent at room temperature.  
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Concomitantly, the continuously red-shifting absorption and emission could be observed after 

increasing the sulfide content resulting in the size increase of CdS clusters (figure 88).  
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Figure 88: Absorption (left) and emission spectra (right) of CdS nanoclusters shows a strong dependency on 

the initial ratios of Cd(oleate)2 and the sulfur precursor. The heterogeneous growth shows a set of magic-

sized clusters at 259 nm, 285 nm, 311 nm, 348 nm and 380 nm. 

 

The CdS clusters whose absorption band lies around λ=311 nm do not fluoresce efficiently in 

contrast to the clusters within the lower energy range. The results can be explained by the cluster 

size effect and the confined carriers which affects the energetic level of the electron. The high 

surface-to-volume ratio also lowers the quantum yield due to non-radiative recombination. The 

ligand coverage is very sensitive to the photoluminescence quantum yield. Using a high 

concentration of amines ligand gives an increased quantum yield which is supported by numerous 
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publications.[43] When increasing the aging time, the fluorescence intensity increases and the 

fluorescence maximum is shifted slightly to longer wavelength, arising from the confining potential 

caused by the surface coverage of amine ligands. 

 

Adaption to Microfluidic Systems 

The mechanism of particle nucleation and growth within the nanometer volumes is of great interest. 

Microfluidic setups are powerful tools for the fast and automated mixing of reaction fluids to 

investigate the temporal evolution in view of X-ray experiments (SAXS). Therefore, a 10-fold 

concentrated CdS reaction system, including stabilizing ligands and co-solvent, was adapted on a 

facile Teflon based y-mixture stopped-flow device. The microfluidic setup is shown in figure 89. 

 

Figure 89: Photograph of Teflon-based y-mixer connected to a 1-mm quartz capillary for spectroscopic 

detection during nanocluster synthesis. The precursor solutions are pumped through the Inlet A and Inlet B 

to the inlet junction. The structural evolution was monitored via an Ocean Optics spectrometer. 

 

This approach enables one to follow the temporal evolution of CdS nanoclusters by detecting their 

optical properties.[64] The precursor solutions were pumped with a high precision syringe pump 

through the Inlets (Inlet A and B) and the y-mixer into quartz capillary. The geometry of each inlet 

and the pressure for each sub-stream at the inlet junction is equal. For fast mixing, they were 

pumped with high flow rates (5 mL/h) into the quartz capillary and after reaching stationary flow 
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conditions, the pumps were stopped. With the y-mixer, we achieve rapid mixing of the laminar 

flow streams by maximizing the diffusion interface. The mixer provides very small diffusion 

distances and thus the diffusion time is really fast and could be achieved after the mixing cross 

where both flow streams join (interdiffusion zone).[75][76] The capillary acts as an analysis cell and 

we performed the study on CdS nanocluster formation with in-situ time-resolved UV-Vis 

spectroscopy (figure 90) The 311 nm CdS nanoclusters were formed within 3 h (figure 90, inset). 

We obtained very good agreement with previous optical and kinetic studies for the structural 

evolution at room temperature. 

 

Figure 90: In-situ UV-Vis detection within a microfluidic setup to investigate the temporal evolution of CdS 

clusters with stoichiometric ratio S:Cd of 1:2 in cyclohexane. The sulfur precursor (black curve) decomposes 

directly after injecting amine and cadmium oleate and induces the CdS cluster growth (green curves).  

 

A potential pathway to follow the nanocluster formation are in-situ techniques. Using spectroscopic 

methods, the optical peak positions and intensities change, implying nanocluster and regular QD 

growth. The CdS system under specified reaction conditions was studied systematically to examine 

the experimental behavior of all reaction parameters in detail. The main reaction system used in 

this work was initiated by mixing of Cd(oleate)2 and the pre-synthesized sulfur precursor. The 

ligand solubility shows a strong dependency on the temperature and polarity of the solvent. A high 

supersaturation could be achieved by using cyclohexane together with the co-solvent CHCl3. The 

distinct set of highly stable clusters find its origin in the interplay of the exact number of Cd and S 
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ions as well as the presence of amine and oleic acid ligands. The monomer-driven growth leads to 

the formation of energetically favored clusters through templating with organic ligands. The 

colloidal CdS MSC can be well-regulated due to strong coordinating functional groups to prevent 

further growth to regular quantum dots. The system is unaffected by the monomer concentration 

and the injection order. Therefore, it can be easily adapted to microfluidic-based setups for further 

studies. 

 

Adaption of the Chalcogenide Systems 

In addition to the CdS nanostructures, the synthesis and characterization of a variety of nano-sized 

metal chalcogenides was studied due to the fact that their properties are remarkably different from 

their bulk materials.  

 

ZnS 

Zinc sulfide is an important type of II-VI group semiconductor and the bulk material shows a band 

gap energy of 3.67 eV at room temperature.[77] The reproducible approach based on the  conversion 

of Zn(oleate)2 and the ammonium-stabilized sulfur precursor in cyclohexane. In this method, n-

octylamine R-NH2 was used as an activating agent and to control size of the nanocluster. The 

necessity and influence of n-octylamine was investigated in the previous studies of CdS clusters. 

The temporal evolution after the injection of zinc oleate to the sulfur precursor (S:Zn 1:0.5, 1:1, 

1:1.5 and 1:2) was monitored by UV-Vis spectroscopy (figure 91). The following chapter provides 

a summary of ZnS nanoclusters and their size-dependent optical properties taken during their 

synthesis at room temperature. 
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Figure 91: In-situ UV-Vis detection showing the temporal evolution of ZnS clusters with stoichiometric ratio 

S:Zn of 1:1 in cyclohexane at room temperature. The sulfur precursor (black curve) decomposes directly 

after injecting amine and zinc oleate and induces the ZnS cluster growth (blue curves).  

 

The sulfur precursor was dissolved in cyclohexane (figure 91, black curve) and Zn(oleate)2 was 

quickly injected. The addition of Zn2+ (figure 91, blue curves) leads instantaneously to nucleation 

and development of small ZnS clusters (S:Zn 1:1) at wavelength λ < 300 nm. Starting with excess 

of sulfur, the conversion of Zn(oleate)2 allows the observation of isosbestic points during the slow 

growth process. The peak around λ=279 nm evolves into absorbance peaks at λ=230 nm, 264 nm 

and 282 nm (figure 91). Similar to the formation of CdS clusters, the precursor ratio of S:Zn plays 

a critical role. ZnS clusters prepared with an excess of sulfur favor small cluster sizes (S:Zn 1:0.5 

and 1:1) ≤ 264 nm. The absorption shoulder is red-shifted with increasing zinc content, indicating 

the growth of larger ZnS clusters (S:Zn 1:1.5 and 1:2) ≥ 282 nm (figure 92).  
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Figure 92: Absorption spectra of ZnS nanoclusters with discrete absorbance signals at 230 nm, 264 nm and 

282 nm (left). The synthesis of ZnS clusters with different ratios of sulfide precursor and Zn(oleate)2 reaching 

from 1:0.5 to 1:2. The metastable ZnS products shown after one week (right) and the corresponding 

luminescence spectra with the emission maximum at λmax=380 nm (bottom).  

 

Instead of the characteristic sulfur signal[65], small ZnS intermediates show optical features similar 

to numerous research groups.[4][78][79][80][81] The metastable products convert within one week into 

smaller clusters (figure 92, right). This type of behavior may be attributed to changes in shape and 

size. In literature reports, the cluster growth in the molecular size regime shows oscillating red- and 

blue-shifts of the absorption bands.[82] Due to the quantum confinement effect, the prepared 

nanoclusters show one weak emission at λmax=380 nm (λexc=300 nm) which is assigned to defect-

related emission.[83][84] 

By changing the injection order, sulfur was quickly injected into the organic reaction mixture 

containing Zn(oleate)2 and n-octylamine (Zn:S 1:0.5 and 1:1). The UV-vis spectra of the reacting 

solution (stabilized Zn2+ and S2- ions) shows characteristic absorption shoulders around λ=230 nm, 
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264 nm, 282 nm and 325 nm, which are fairly blue-shifted from the bulk absorption edge of 345 nm 

(figure 93). 

300 400 500
0

1

2

3

4

5
t= 1 h

= 325 nm

 Zn:S 1:0.5

 Zn:S 1:1

A
b

s
o

rb
a

n
c
e

 [
a

.u
.]

Wavelength [nm]

= 230 nm

= 282 nm
= 264 nm

 

300 400 500
0

1

2

3

4

5
t= 6 d

= 325 nm

Wavelength [nm]

 Zn:S 1:0.5

 Zn:S 1:1

= 230 nm= 230 nm
= 282 nm

 

350 400 450 500 550

P
h

o
to

lu
m

in
e

s
c
e

n
c
e

 [
a

.u
.]

Wavelength [nm]

 Zn:S 1:0.5

 Zn:S 1:1

 

Figure 93: Absorption spectra of ZnS nanoclusters with discrete absorbance signals at 230 nm, 264 nm, 

282 nm and 325 nm (left). The synthesis of ZnS clusters with the Zn(oleate)2 and sulfide precursor ratio of 

1:0.5 and 1:1 show metastable ZnS products which convert to smaller cluster species after one week (right). 

The corresponding luminescence spectra shows emission maxima at λmax=380 nm and 450 nm (bottom).  

 

The absorption signals show an inverse trend, where excess metal favors larger ZnS clusters. The 

corresponding emission spectra show two emission signals at λmax=380 nm and λmax=450 nm (for 

Zn:S 1:0.5, λexc=300 nm) which match literature reports very well.[79][85][86][87] The presence of 

multiple emission peaks is assigned to defects in the ZnS lattice (Schottky or Frenkel point defects). 
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The size of the ultra-small clusters can be observed in TEM photographs. TEM samples were 

prepared via drop-casting for the sample S:Zn 1:0.5 with the characteristic absorbance signal at 

230 nm, and for Zn:S 1:0.5 with signals at 230 nm and 325 nm (figure 94).  

 

 

Figure 94: TEM images of ZnS nanoclusters synthesized in cyclohexane S:Zn 1:0.5 (a, b, e) and Zn:S 1:0.5 

(c, d, f). The well-separated nanoclusters show average sizes of 2.0 nm ± 0.6 nm for S:Zn 1:0.5 and two 

fractions with 1.7 nm ± 0.7 nm and 4.0 nm ± 0.6 nm for Zn:S 1:0.5. 
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The size for S:Zn 1:0.5 is in the range of 2.0 nm ± 0.6 nm, based on analysis of 100 particles. The 

inverse injection order (Zn:S 1:0.5) allows the synthesis of ZnS nanoclusters which includes two 

different cluster fractions. The mean diameters of the fractions were determined to be 1.7 nm and 

4.0 nm. The deviation from the average particle sizes is around 0.7 nm and 0.6 nm respectively. 

The limited resolution makes the determination more difficult. 

The spectroscopic data are consistent with the quantum confinement effect[79] and the maximum 

diameter of the clusters can be calculated using the Brus equation[9] 

∆𝐸 =  
𝜋ℏ2

2𝑟2 [
1

𝑚𝑒
∗ −

1

𝑚ℎ
∗ ] −

1.8 𝑒2

𝜀𝑟
     (6.4) 

where ∆𝐸 is the blue-shift of the band gap of the cluster material compared to the bulk material, 

𝑚𝑒
∗  is the effective mass of the electron 0.34 𝑚𝑒 and 𝑚ℎ

∗  the effective mass of the hole 0.23 𝑚𝑒 

with the free electron mass 𝑚𝑒. The dielectric constant 𝜀 is 8.3[88] and the diameter D=2r calculated 

from the average radius r. 

 

Table 15: The structural information regarding ZnS clusters, including the calculated diameter D of the given 

nanocrystal sample with respect to the band gap of the cluster material. 

λ [nm] Da [nm] 
Db [nm] Dc [nm] 

230 1.9 
2.0 ± 0.6 1.7 ± 0.7 

264 2.4 
  

282 2.8 
  

325 4.25 
 4.0 ± 0.6 

a Diameter D determined according the Brus equation[9][87]  

b Sizes determined from TEM images of sample S:Zn 1:0.5 

c Sizes determined from TEM images of sample Zn:S 1:0.5  
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The values of the average diameter obtained from Brus equation[9] are listed in table 15 and 

compared with the average sizes observed from TEM. The calculated mean cluster diameter 

matches very well with the electron microscopy results.  

The facile synthesis developed for CdS nanoclusters could be adapted to the ZnS system. The 

semiconducting clusters were obtained from the reaction of Zn(oleate)2 and the ammonium-

stabilized sulfur precursor in cyclohexane. The cluster size was controlled by the ratio of Zn2+ and 

S2- ions in presence of n-octylamine. The band gap values were calculated from optical 

measurements to determine the diameter of the ZnS clusters using the effective mass approximation 

given by the Brus equation.[9] The results are in good agreement with the TEM images. 

 

PbS 

Lead sulfide PbS crystals were also synthesized and studied optically in colloidal solutions. Bulk 

PbS has a metallic appearance and suspensions are blackish colored. The cubic rock salt structure 

of lead sulfide has a bulk band gap at 0.41 eV (3020 nm).[89] Developing a PbS cluster synthesis 

with narrow size distribution is one of the key objectives in this chapter. The quantum-sized 

materials were synthesized via the reaction of Pb(oleate)2 and the ammonium-stabilized sulfur 

precursor in cyclohexane at room temperature. The absorption edge exhibits a large blue shift 

(λ=200 nm to 350 nm) when the crystallite size shrinks to the nanometer regime. This can be 

explained by density functional theory (DFT) calculations.[18] The injection order of both precursors 

was varied in the presence of n-octylamine R-NH2. Presented in figure 95, the temporal evolution 

was monitored after the injection of lead oleate to the sulfur precursor (S:Pb 1:0.5, 1:1, 1:1.5 and 

1:2). An overview of PbS nanoclusters and their size-dependent optical properties after their 

synthesis is provided. 
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Figure 95: In-situ UV-Vis detection showing the temporal evolution of PbS clusters with stoichiometric ratio 

S:Pb of 1:1 in cyclohexane at room temperature. The sulfur precursor (black curve) decomposes directly after 

injecting amine and lead oleate and induces the PbS cluster growth (red curves).  

 

Pb(oleate)2 was quickly injected into the sulfur precursor in cyclohexane (figure 95, black curve) 

and the resulting UV-Vis spectra show absorbance signals < 500 nm (red curves) for S:Pb1:1. For 

the prepared PbS products with ratios of S:Pb 1:0.5, 1:1, 1:1.5 and 1:2, weak pronounced 

absorbance signals are found at 253 nm, 293 nm and 336 nm (figure 96, left) demonstrating the 

quantum confinement effect.[90][91] The absorption spectra show the monomolecular absorption 

peak around ~260 nm.[90] Changing the injection order lead to a long absorbance tail (< 560 nm or 

2.2 eV) and quite clearly defined absorption edges at 266 nm, 310 nm, 360 nm and 450 nm (figure 

96, right). The samples show long-term stability and absorbance features above 600 nm are not 

observed. In contrast to CdS and ZnS, lead sulfide spectra show the development of a characteristic 

long tail[16][78] which explains the color of the stable orange-brown dispersion (figure 95, right).  
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Figure 96: Absorption spectra of PbS nanoclusters showing weak but pronounced absorbance signals at 

253 nm, 293 nm and 336 nm (left) according to their synthesis with different ratios of sulfide precursor and 

Pb(oleate)2 (S:Pb1:0.5 to 1:2). Changing the injection order lead to pronounced absorbance signals at 266 nm, 

310 nm, 360 nm and 450 nm (right) after one day. 

 

Directly after mixing of the precursor strong absorbance signals were observed which clearly show 

the formation of small clusters. The slow growth process takes six hours to complete. The study of 

Marynick et al.[18] shows the same trend of lead sulfide clusters slowly growing into PbS 

nanostructures. Even very small clusters begin to exhibit the characteristics of bulk crystals with 

the dominant absorbance tail. The absorbance spectra show that a higher sulfur content results in 

the formation of larger clusters and the initially clear, colorless sample changes to orange.  

From the spectroscopic data, the long tail makes precise determination of the band gap difficult. 

The weak but pronounced size-dependent exciton peaks at the absorption threshold might reflect 

inhomogeneous broadening due to the size distribution. Lattice defects and a small fraction of larger 

particles are the reason for the absorption at higher wavelength.  

The absorption data were fitted according the Tauc function (equation 6.5) to analyze the optical 

band gap 𝐸𝑔 of semiconductors.[89] 

[ℏ𝜔𝜎(𝜔)]
1

𝑛 =  𝐴𝑛(ℏ𝜔 − 𝐸𝑔)    (6.5) 

Where 𝜔 is the frequency with 2𝜋/𝜆 and ℏ𝜔 the photon energy, 𝜎(𝜔) is the absorbance coefficient, 

and 𝐴𝑛 a frequency independent constant. Extrapolating the linear parts of [ℏ𝜔𝜎(𝜔)]2  against ℏ𝜔 

gives 𝐸𝑔 from the intersection with the ℏ𝜔-axis (figure 97). The weak absorption tail is ignored in 
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the data analysis and the band gap value of the first allowed excited state (> 2 eV) is attributed to 

cluster sizes of around 2-3 nm.[92][93]  
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Figure 97:  The observable band gaps determined by the experimental data. Extrapolating the linear parts of 

[ℏ𝜔𝜎(𝜔)]2  against the energy axis ℏ𝜔 gives 𝐸𝑔=3.80 eV, 4.05 eV and 4.10 eV for Pb:S 1:0.5, 1:1 and 1:2. 

 

The optical observations are in qualitative agreement with the TEM measurements (figure 98). The 

TEM images of the as-prepared PbS products show a diameter of 2.5 nm ± 0.9 nm for S:Pb 1:0.5 

and 2.4 nm ± 0.7 nm for Pb:S 1:2. The size distributions are determined by statistical analysis of 

100 particles. 
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Figure 98: TEM images of PbS nanostructures synthesized in cyclohexane S:Pb 1:0.5 (a, b, e) and Pb:S 2:1 

(c, d, f). The well-separated nanoclusters show average sizes of 2.5 nm ± 0.9 nm for S:Pb 1:0.5 and 

2.4 nm ± 0.7 nm for Pb:S 1:2. 

 

A unique property associated with PbS semiconductor colloids is their luminescence characteristics 

(figure 99). The emission peak of Pb(oleate)2 has a maximum at 409 nm and the cluster growth 

leads to strong detectable emissions around 568 nm (λexc=310 nm). The various ratios of S:Pb 1:1.5 
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to 1:2 and Pb:S 1:0.5 to 1:2 show similar emission features. A higher sulfur content favors the 

conversion of Pb(oleate)2 resulting in smaller clusters and the injection of the sulfur precursor to 

Pb(oleate)2 leads to the complete conversion of oleate. 
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Figure 99: The corresponding luminescence spectra show emission maxima around λmax=409 nm and 

568 nm. 

 

The luminescence maximum is consistent with observations for PbS in solid zeolite matrices.[16][94] 

Leiggener and Czaferris' samples show similar UV-Vis spectra but their samples also show a color 

change to yellow after exposure to H2S gas. The emission signal can be explained by the energy of 

the HOMO-LUMO transition of the calculated and experimental results for PbS monomers[95]. 

After rehydration the color becomes stronger and more orange[16] but there are probably some larger 

nanoclusters present. 

The synthesis approach using oleate-based and ammonium-stabilized precursors could be used for 

the formation of 2 to 3 nm sized colloidal PbS particles. The semiconducting clusters in 

cyclohexane are controlled by the organic ligand n-octylamine, and the total amount of Pb2+ and 

S2- ions. Methanol/Cyclohexane extraction was used as the purification step. The band gap values 

from optical measurements[89] were determined from Tauc-plots and support the TEM results of 

the PbS clusters. 
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Ag2S 

Nanocrystalline silver chalcogenides show unique optical properties and are low-toxicity quantum 

dots which are of great interest. Ag2S has three polymorphic modifications, the low-temperature 

monoclinic α-Ag2S (acanthite), as well as the high-temperature body-centered cubic (bcc) β-Ag2S 

(argentite) and face-centered cubic (fcc) γ-Ag2S phase.[96] The bulk band gap of silver sulfide is 

around ~1.1 nm and the Bohr radius around 2.2 nm.[97]  

Nano-sized Ag2S particles have been formed by the conversion of Ag(oleate) and the sulfur 

precursor described above. The room temperature synthesis in cyclohexane gives well-dispersed 

nanocrystals. The optically clear solution permits monitoring of the colloid formation by 

spectroscopic methods which should give a better insight (figure 100).  

     

Figure 100: In-situ UV-Vis detection showing the temporal evolution of Ag2S clusters with stoichiometric 

ratio S:Ag of 1:1 in cyclohexane at room temperature. The sulfur precursor (black curve) decomposes directly 

after injecting amine and silver oleate and induces the Ag2S cluster growth (grey curves).  

 

The first samples were prepared with high sulfur content and the fast injection of Ag+ ions to form 

silver oleate. The monitored absorbance features differ from the precursor signals which explains 

the interaction and complex formation of sulfide and the silver ions. Silver sulfide is formed 

immediately and all dispersions show a clear solution with colors ranging from colorless to 

yellow/brown (figure 100). We conclude that the color change is caused by the presence of 
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quantum-sized silver sulfide. The colloidal dispersions are stable for at least two months in the 

dark. Various initial ratios of sulfide and silver are investigated ranging from S:Ag 1:0.25 to 1:2. 

The second approach includes the addition of the sulfide precursor to the stabilized silver solution 

in presence of n-octylamine (Ag:S 1:0.5 and 1:1).  
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Figure 101: Absorption spectra of Ag2S nanocluster samples showing weak but pronounced absorbance 

signals at 246 nm, 261 nm, 299 nm and 355 nm (left) depending on their synthesis with different ratios of 

sulfide precursor and Ag(oleate) (S:Ag1:0.25 to 1:2). Changing the injection order leads to pronounced 

absorbance signals at 246 nm, 299 nm, and 353 nm (right) after one day. 

 

Ag2S nanostructures show the same behaviour as the slowly growing PbS nanostructures. A broad 

absorbance tail with onset at 500 nm and defined absorption edges at 246 nm, 261 nm, 299 nm and 

355 nm (figure 101, left) appears at low silver concentrations S:Ag 1:0.25 to 1:0.5. The absorbance 

spectra with the inverse injection order show the direct conversion of the sulfur precursor and 

absorbance signals at 246 nm, 299 nm and 353 nm (figure 101, right). Besides the signal at 

246 nm[65], the monitored absorbance features differ from the precursor signals which explains the 

interaction and complex formation of sulfide and the silver ions. The absorption threshold might 

reflect inhomogeneous broadening due to the size distribution. Furthermore, no absorption band in 

the 380 nm to 430 nm region due to the development of pure colloidal silver can be observed. 

However, the measurements have shown that increasing the silver content leads the development 

of the characteristic long pronounced absorption tail. 
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The TEM grids of the products were prepared without further purification. The detected 

nanostructures show uniform and well-separated particles with spherical morphology. The average 

sizes were determined to be 5.8 nm ± 0.8 nm for S:Ag 1:0.5 (figure 102, a, b, e) and 

3.0 nm ± 0.7 nm for S:Ag 1:2 (figure 102, c, d, f).  

 

Figure 102: TEM images of Ag2S nanostructure synthesized in cyclohexane with S:Ag 1:0.5 (a, b, e) and 

S:Ag 1:2 (c, d, f). The well-separated nanoclusters show average sizes of 5.8 nm ± 0.8 nm for S:Ag 1:0.5 and 

3.0 nm ± 0.7 nm for S:Ag 1:2. 
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Moreover, the images show a 2D hexagonal structure of the nano-sized particles with interparticle 

distance of ca. 2.5 nm. The highly crystalline internal structure (figure 102, insets) confirm the 

interplanar spacing of 0.255 nm which is in good correspondence with the (1̅̅̅21) plane of the 

monoclinic Ag2S.[98][99]  

The material silver sulfide shows composition- and size-dependent luminescence properties. A low 

silver sulfide content is characterized by a blue-green emission (distinct absorbance signals), while 

samples with higher silver sulfide content show orange-colored emission corresponding to the 

continuous absorption tail.[100] The photoluminescence spectra of our Ag2S colloidal solutions show 

the characteristic signals of remaining silver oleate at λmax=380 nm in all samples (figure 103). 
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Figure 103: The corresponding photoluminescence spectra show emission maxima around λmax=380 nm and 

401 nm. 

 

The absence of emission signals at 490 nm and 610 nm[16] suggests that metastable monomeric 

Ag2S and Ag4S2 species are not present. However, the red-shift of sample suggests Ag:S 1:0.5 

explains that higher stoichiometries of silver sulfide are obtained. Gusev and co-worker elucidated 

size-dependent Ag2S emission spectra[101] which clearly demonstrate that nanocrystals with sizes 

larger than ~2.3 nm in diameter show emission maxima at around 1000 nm. The luminescence in 

our samples could not be detected due instrumental limitations. Furthermore, silver rich clusters 

can be excluded due to the missing characteristic cluster features in UV-Vis and emission 

spectra.[29][102]  
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For more phase and structural information, XRD patterns were recorded to characterize CdS, ZnS, 

PbS and Ag2S products. All samples exhibit broad Bragg peaks (2Ɵ: 25-30° and 40-55°), indicating 

the presence of small nanocrystals. The results are not indicative of an ordered crystalline solid and 

allow only a vague suggestion of the final composition. Therefore, the XRD characterization was 

not followed with deeper investigation.  

Our aim was to develop a cluster synthesis that is applicable to various semiconductor systems. 

The Ag2S synthesis was effective and controllable and nano-sized particles could be successfully 

synthesized in cyclohexane. The formation of semiconducting colloidal Ag2S particles with sizes 

around 3 to 6 nm could be obtained with metal oleate and ammonium stabilized sulfur precursor 

by the reaction of Ag+ and S2- ions. Ideal conditions need to be fixed for ZnS, PbS and Ag2S to 

optimize the size-controlled synthesis of nanocluster and nanocrystals with a single approach.  

 

6.4.2 Silver Halides 

Studies of the formation of silver halides have been undertaken under various synthetic conditions.  

To access quantized growth, we prepared the silver precursor Ag(oleate) and used 

tetraoctylammonium bromide and tetraoctylammonium iodide as halide precursor in organic 

solvents. Compared to the previous metal chalcogenide MSC, the silver precursor bears one oleate 

and the halide precursor bears only one ammonium ligand. We used a similar synthetic approach 

to the synthesis of clusters at room temperature. The titration of monomer and the gradual red-shift 

of the products were studied by optical measurements. 

 

Silver Bromide 

When solutions of bromide and Ag ions in the stoichiometric ratio 1:1 are rapidly mixed, pale 

yellow dispersions of AgBr nanocrystals are formed which show distinct ripening processes over 

several hours followed by sedimentation of the particles. The characteristic optical band edge arises 

at 304 nm and shows a strong size- and shape-dependence on the nanocrystals. Chen et al.[103] was 

able to synthesize 30–100 Å sized AgBr clusters using a reverse micelle approach. They found that 

the energy gap increases by decreasing cluster size which is typical in the quantum confinement 
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regime. Shelly and co-workers[104] described the AgBr cluster signal at around 274 nm, the 

existence of which is underpinned by theoretical calculations by Marynick et al.[17] 

With the results for the metal chalcogenide systems in mind, our aim was to use similar synthetic 

conditions to access quantized growth for the halides. We synthesized the silver precursor 

Ag(oleate) and used the phases transfer agent tetraoctylammonium bromide. Briefly, the standard 

method includes complete dissolution of the bromide precursor in cyclohexane and in the presence 

of the co-solvent CHCl3. This is followed by the injection of n-octylamine and different volumes 

of silver(oleate) in cyclohexane (figure 104, Br:Ag 1:0 to 1:0.55).  

 

Figure 104: The UV-vis spectra of energetically favored AgBr clusters show their absorbance peaks around 

240 nm, 255 nm, 273 nm in cyclohexane and CHCl3 as co-solvent. 

 

Due to the high affinity of both ions, the controlled cluster formation occurs instantaneously after 

the injection. The rapid addition of Ag+ ions to an excess of stabilized bromide ions results in a 

colorless dispersion with signal at 240 nm, 255 nm and 273 nm. TOABr as precursor shows 

absorbance up to 235 nm. The sequential silver addition affects a gradual red-shift of the 

absorbance signal. Each peak position corresponds to a AgBr cluster size and we suggest that their 

cluster stability is given by the strong amine-silver complexation.  
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Figure 105: Absorption spectra of AgBr nanoclusters with absorbance signals at 240 nm, 255 nm, 273 nm. 

Nanoclusters were prepared with different ratios of bromide precursor and Ag(oleate) (Br:Ag1:0.10 to 1:55).  

 

The Ag+ ions originally surrounded by strong coordinating ligands and Br- ions are in the bulk 

medium. The reaction occurs directly after the injection of Ag(oleate) into the bulk medium. 

Furthermore, the solvent system shows a poor solubility for the precursor which favors the cluster 

formation. The overview in figure 105 shows the dominance of two cluster peaks at 240 nm and 

273 nm which are stable for one month in the dark.  

The reduction of Ag+ to Ag can be excluded by the absence of absorbance signals in the 400 nm 

region. When exceeding the Br:Ag ratio of 1:0.6, an uncontrolled formation of nanocrystals is 

unavoidable. The growth of regular AgBr nanocrystals becomes dominant due to consumption of 

small cluster particles. 

In contrast to the metal chalcogenide systems, the injection order has a strong influence on the 

colloid synthesis. The injection of n-octylamine and different volumes of bromide precursor to 

silver rich reaction mixture in cyclohexane results in the formation of regular AgBr nanocrystals. 

Figure 106 show the pronounced AgBr absorbance signals at 273 nm and 304 nm with the ratios 

Ag:Br 1:0.6 to 1:1.0. The intensity of the characteristic peaks increases by the sequential bromide 

addition. We suggest that the clusters contain excess silver ions and the particle growth occurs by 

the reaction with bromide ions. Ag+ ions in excess can adsorb at the surface of the AgBr clusters 

and the injected Br- is able to react with the positively charged clusters. The size of the cluster 

depends clearly on the concentration of Br- ions which were injected.  
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Figure 106: Absorbance spectra of AgBr clusters and regular quantum dots with ratios Ag:Br 1:6 to 1:1.0. 

Pronounced absorbance signals could be detected at 273 nm and 304 nm (left). The absorbance spectra (right) 

gives an overview of stable AgBr clusters synthesized by the two approaches.  

 

Considerable work has been done on silver bromide systems. According to computational studies, 

the bond length of the AgBr monomer is 2.39 Å and the neutral (AgBr)n clusters n=1-9 show a 

HOMO-LUMO band gap between 219 nm and 292 nm.[17] This matches very well our 

investigations with absorbance peaks detected from 240 nm to 304 nm (figure 106).[104][105][106] 

TEM images show particles with uniform sizes and a spherical morphology (figure 107). They 

correspond to the cluster peaks at 240 nm and 255 nm.  
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Figure 107: TEM images of AgBr nanostructures synthesized in cyclohexane Br:Ag 1:0.30 (a, b, e) and 

Br:Ag 1:0.55 (c, d, f). The well-separated nanoclusters show average sizes of 1.2 nm ± 0.4 nm for 

Br:Ag 1:0.30 and 1.6 nm ± 0.3 nm for Br:Ag 1:0.55. 

 

Measuring the cluster samples reveals that their average diameter is around 1.2 nm ± 0.4 nm and 

1.6 nm ± 0.3 nm. While the smaller cluster particles are stable, a significant portion of the regular 

quantum dots undergo morphological changes under electron beam exposure and produce silver 
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atoms (figure 108). The TEM images show AgBr quantum dots with an average diameter of 

21.0 nm ± 3.0 nm.  

 

Figure 108: TEM images of AgBr nanocrystals synthesized in cyclohexane Ag:Br 1:1.0 show average sizes 

of 21.0 nm ± 3.0 nm. 

 

The stepwise growth of larger products can be attributed to presence of more monomers, with their 

consumption resulting in the formation of larger clusters.  

Previous studies have shown that AgBr and AgI synthesized according to our novel synthetic route 

behave in the same way. In a subsequent step, systematic studies on silver halides are performed 

and the results summarized in a subsequent chapter. 

The temperature dependence of the cluster-growth process was investigated next. Ag(oleate) was 

injected into bromide solutions at three different temperatures (T=10 °C, T=20 °C and T=40 °C) 

with four different ratios Br:Ag 1:20 to 1:0.55 (figure 109). The temperature range is limited by the 

boiling point of the solvents and the precursor solubility. UV-Vis spectra were taken during the 

reactions at all temperatures. 
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Figure 109: UV-vis spectra showing the cluster formation at three different temperatures (T=10 °C, T=20 °C 

and T=40 °C) and four different ratios Br:Ag 1:20 to 1:0.55. At higher temperature, the absorption decreases 

due to peak broadening (FHWM at ratio Br:Ag 1:0.55: T=10 °C: 14 nm, T=20 °C: 15 nm, T=40 °C: 25 nm).  

 

According to our expectations, smaller clusters are favored at lower temperature. The characteristic 

absorbance signals shift towards higher energies at lower temperature and the absorbance bands 

become sharper and show an increase in intensity. At ratio Br:Ag 1:0.55,  the absorbance peak was 

studied at ~255 nm by determining the FWHM. The comparison shows a broadening of the 

absorbance signals with the corresponding FWHM of T=10 °C: 14 nm, T=20 °C: 15 nm, T=40 °C: 

25 nm. Whereas at T=10 °C the AgBr cluster species shows a sharp absorbance signal, at T=40°C, 

the peak shows the beginning of the 273 nm species. The temperature during the reaction plays an 

important role. 



Novel Scalable Synthesis of Semiconducting Magic-sized Clusters and Nanocrystals 

 

191 
 

The effect of amines on the AgBr cluster suggests that the surface chemistry plays a critical role. 

We synthesized AgBr clusters with a minimum amount of amines according the conventional 

recipe with Br:Ag:R-NH2 1:0.55:25 and the UV-Vis signal instantaneously arises at 255 nm 

(figure 110). Further samples were prepared with increasing amine content, reaching from 

Br:Ag:R-NH2 1:0.55:40 to 1:0.55:80. Comparing the UV-Vis absorption spectra from the samples 

show that strongly coordinating capping ligands clearly influence the stability of the clusters. Due 

to the high binding strength of amines towards the silver ions, the signals form the UV-Vis spectra 

become broader and less defined. The final spectra Br:Ag:R-NH2 1:0.55:80 are indicative of the 

presence of more cluster species at around 255 nm and 312 nm. We observed cluster growth in all 

three samples growing in the time period of one hour after reaching their equilibrium (figure 110).  
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Figure 110: UV-vis spectra showing the cluster formation at three amine ratios Br:Ag:R-NH2 1:0.55:25 to 

1:0.55:80. A higher amine content leads to the formation of red-shifted and broadened AgBr cluster species.  
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The addition of a minimum amount of amine lead to the dissolution of the precursor and the 

stabilization of AgBr clusters at 255 nm. With an excess of amine, we hypothesize, that the direct 

interaction of amines with unstable clusters lead to their dissolution and provide a molecular 

feedstock for the formation of larger cluster where the UV-Vis signals are broadened and red-

shifted.[30][49] 

 

Silver Iodide 

AgI has attracted much attention because of the possibilities for applications in solid electrolytes 

and future nano-devices. Depending on the atmospheric pressure[107] and the temperature, silver 

iodide has been reported to be trimorphic.[108] Below the temperature of 147 °C, two phases coexist, 

the cubic-sphalerite type (γ-AgI) and the hexagonal wurtzite-type, designated as β-AgI. After the 

phase transition, the α-AgI phase occurs with the very high ionic conductivity.[109] Research groups 

have found that the electric conductivity of AgI nanocrystals increases with decreasing nanoparticle 

size[110] and the phase-transition temperature can be tuned by the nanoparticle size.[111] In light of 

this assumption, many synthetic routes have been developed to prepare stable nanocrystals and to 

synthesize particles with several or several tens of nanometres. Henglein et al.[112] were able to 

stabilize the AgI nanocrystals with polymers such as PVA, PEG and poly(N-vinyl)pyrrolidine. 

During the first stages of the particle growth they were able to monitor size quantization effects 

with optical methods. Chen and co-workers[40] prepared AgI clusters in zeolites. The observation 

indicated that silver and silver halide clusters were present with a uniform size from 1.0 nm to 

2.0 nm. We synthesized the silver iodide according to our standard procedure by mixing Ag(oleate) 

and the halide precursor (figure 112, I:Ag 1:0 to 1:0.55). The iodide precursor was prepared via 

phase- transfer of tetraoctylammonium bromide in toluene and sodium iodide in water. The clear 

identification of the organic compound was possible by melting point determination. The standard 

method for the metal halide synthesis includes complete dissolution of the iodide precursor in 

cyclohexane in the presence of the co-solvent CHCl3. This is followed by the injection of 

n-octylamine and different volumes of silver(oleate) in cyclohexane.  
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Figure 111: The UV-vis spectra of energetically favored AgI clusters show their decomposition of the iodide 

precursor (265 nm and 293 nm) and absorbance peaks around 274 nm, 295 nm in cyclohexane and CHCl3 as 

co-solvent. 

 

The formation of silver iodide clusters follows a similar behavior to the silver bromide case. Due 

to the high affinity of both ions, the cluster formation occurs instantaneously after the injection. 

The rapid addition of Ag+ ions to an excess of stabilized iodide ions results in a colorless dispersion 

with absorption bands at 274 nm and 295 nm. The iodide precursor TOAI shows two absorbance 

peaks at 265 nm and 293 nm (figure 111 and 112). 
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Figure 112: The UV-vis spectra of energetically favored AgI clusters shows the decomposition of the iodide 

precursor (265 nm and 293 nm) and absorbance peaks around 274 nm, 295 nm in cyclohexane and CHCl3 as 

co-solvent. Nanoclusters were prepared with different ratios of iodide precursor and Ag(oleate) (I:Ag1:0 to 

1:55).  

 

The growth of the ionic, sparingly soluble salts is believed to start with the degradation of the 

precursors and the formation of molecules and minor complexes. The sequential silver addition 

lead to a gradual red-shift of the absorbance signals. The dominant cluster peaks are stable for 

month in the dark. Each peak position is attributed to a AgI cluster size and we suggest that the 

cluster stability is due to the strong amine-silver complexation. There were no absorbance signals 

in the 400 nm region initially, however after exceeding the critical ratio I:Ag ratio of 1:0.6 the 

uncontrolled growth of regular AgI nanocrystals around 422 nm becomes dominant. 

To understand the formation mechanism, the injection order of this synthetic approach was varied. 

The injection of n-octylamine and different volumes of iodide precursor to the silver-rich reaction 

mixture results in the formation of regular AgI nanocrystals. Figure 113 shows the pronounced AgI 

absorbance signals at 274 nm, 300 nm, 325 nm and 422 nm with the ratios Ag:I 1:0.10 to 1:0.50. 

The intensity of the characteristic peaks increases with sequential iodide addition. Similar to AgBr, 

we suggest that Ag+ ions in excess can adsorb at the surface of the AgI clusters and the injection of 

I- results in the formation of larger particles. The size of the cluster clearly depends on the 

concentration of I- ions.  
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Figure 113: Absorbance spectra of AgI clusters and regular quantum dots with ratios Ag:I 1:10 to 1:0.50. 

Pronounced absorbance signals could be detected at 274 nm, 300 nm, 325 nm and 422 nm (left). The 

absorbance spectra (right) gives an overview of stable AgI clusters synthesis by the two approaches.  

 

Figure 113 (right) confirms that the peak position for bulk AgI is around 422 nm[78][112] The 

excitonic peak around 326 nm was also monitored by Validžić et al.[113] who explained the blue-

shift from the bulk value to 326 nm as a consequence of the size quantization effect. The signals at 

around 4.2 eV (295 nm) and 4.6 eV (269 nm) correspond to small clusters which were synthesized 

in zeolite cages[114] and similar absorption features could be observed during the formation process 

of AgI prepared in aqueous solutions.[110] 

The formation of silver sulfide nanoclusters was confirmed by TEM results. In figure 114, the 

uniform and monodisperse spots represent the synthesized nanoclusters with strongly pronounced 

signals at 274 nm and 295 nm.  
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Figure 114: TEM images of AgI nanostructures synthesized in cyclohexane I:Ag 1:0.10 (a, b, e) and 

I:Ag 1:0.55 (c, d, f). The well-separated nanoclusters show average sizes of 1.1 nm ± 0.3 nm for I:Ag 1:0.10 

and 1.8 nm ± 0.5 nm for I:Ag 1:0.55. 

 

After statistical analysis of 100 particles, it was found that the mean diameter of the nanoclusters 

was 1.1 nm ± 0.3 nm for I:Ag 1:0.10 and 1.8 nm ± 0.5 nm for I:Ag 1:0.55. The characteristic 

422 nm bulk material peak was attributed to AgI particles with mean size of 38.0 nm and standard 
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deviation of 8.6 nm due to subsequent ripening processes (figure 115). The quantum confinement 

effect is not apparent for those particles sizes.[110]  

 

Figure 115: TEM images of AgBr nanocrystals synthesized in cyclohexane Ag:I 1:0.50 showing average 

sizes of 38.0 nm ± 8.6 nm. 

 

As aforementioned, previous studies have shown that AgBr and AgI behave in the same way 

depending on our novel synthetic route. Moreover, changing parameters such as the addition of 

amines and temperature show similar results. Moreover, our systems show that the polarity of the 

solvent can strongly influence the particle size. For that reasons we used the AgI nanocluster and n 

nanocrystals in combination with different solvents. The solvents CHCl3 and EtOH were quickly 

injected into the silver iodide dispersion and the results were detected by UV-Vis spectroscopy 

(figure 116). Whereas the addition of various volumes of cyclohexane results only in diluting, the 

increase of the polarity through CHCl3 and EtOH can influence the solubility of the precursor in 

the system.  
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Figure 116: Absorbance spectra of AgI clusters and regular quantum dots with ratios of I:Ag 1:0.55 and Ag:I 

1:0.50. The AgI dispersion can be influenced by the addition of solvents CHCl3 and EtOH with higher 

polarity resulting in red-shifts of the absorption signals. 

 

The increase of solvent polarity increases the availability of silver and halide ions and causes red-

shifts of absorption features arising from AgI nanoclusters and nanocrystals. The red-shifts are 

correlated with the particle size in the system. Whereas the addition of the same volume of CHCl3 

(resp. CH) typically shows a slight red-shift from 295 nm to 314 nm in the cluster systems, the 

addition of EtOH leads to an alcohol-mediated growth process.  

The AgI nanocrystals with the signal at 422 nm shows a higher stability concerning the injection 

of chloroform and ethanol. The peak positon did not change with the addition of CHCl3. However, 

EtOH increases the availability of free ions in the reaction medium and lead to an enhanced 
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desorption of stabilizing ligands from the particle surface. This favour the particle growth and 

destabilize the clusters. The strength of the solvent polarity and the supersaturation of the system 

play an important role in the growth process. 

The fluorescence properties of silver bromide and silver iodide are presented in normalized spectra 

(figure 117). Both systems show similar behaviour with weak emission signals around 360 nm and 

370 nm for the ratio halide to silver 1:0.55. The emission signals show slight shifts attributed to the 

influence of pure silver oleate as precursor. The emission spectra in figure 117 show, that the 

content and influence of the corresponding halide may be lower than that of silver.  
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Figure 117: Emission spectra of AgI clusters and regular quantum dots with ratios of Br:Ag 1:0.55 and I:Ag 

1:0.55. Silver rich clusters for AgI and AgBr at 360 and 370 are formed along with pure silver rich clusters. 

 

A closer look at the absorption spectra of AgBr and AgI shows that the cluster peaks arise at 

different positions in the spectra. AgBr shows nanoclusters around 240 nm, 255 nm, 273 nm and 

304 nm and AgI at 274 nm, 300 nm, 325 nm and 422 nm. Due to the deviation among both samples, 

and due to the weak effect monitored with fluorescence spectroscopy, we assume that silver-rich 

clusters of AgI and AgBr may be formed and we assume also that pure silver complexes are present. 

After fluorescence and TEM measurements, the silver halide dispersion got darker, further 

confirming the disappearance of silver halides and the enlargement of silver Ag0 domains.[40]  

Using the inverse synthetic approach allows the formation of AgI and AgBr nanocrystals.  For 

further structural analysis concerning the presence of silver and bromide, larger particles were used 

for STEM-EDS (Scanning Transmission Electron Microscopy Energy-Dispersive X-ray 



Novel Scalable Synthesis of Semiconducting Magic-sized Clusters and Nanocrystals 

 

200 
 

Spectroscopy) and XRD (X-ray Powder Diffraction) measurements. In addition to the size and 

structure analysis of AgI nanocrystals, XRD clearly identified the structural composition 

(figure 118). 

 

Figure 118: XRD spectrum of β- and γ-AgI nanocrystals at room temperature synthesized via our novel 

approach in organic solvent at room temperature. 

 

The freeze-dried silver iodide samples can be clearly ascribed as a mix of β- and γ-phases. The 

observed diffraction patterns (Appendix, table S1) are characteristic for the room-temperature AgI 

phases.[110][115] The relative composition of β- and γ-phases can be studied by comparing the relative 

intensities of the three peaks at 2θ=22.3°, 23.7° and 25.3°. The intensity of the centre line is weaker 

for the pure wurtzite structure γ-AgI than the two outside lines of the sample. Therefore, the relative 

percentage of γ-AgI can be calculated to be 49 % in the prepared powder sample.[110] Importantly, 

we found that the prepared sample undergoes at higher temperatures a phase transition into the 

α-AgI phase (Appendix, figure S1 and table S1).[116] The gradual transformation to α-AgI starts at 

145 °C and is complete at 155 °C (figure 119). During the phase transition, the nanocrystals were 

not sufficient stabilized, therefore a bulk-like end-product was obtained.  
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Figure 119: XRD spectrum of AgI nanocrystals synthesized via our novel approach in organic solvent at 

room temperature. The β- and γ-phases are stable at room temperature and undergo phase transition to the α-

AgI phase at higher temperatures.  
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STEM-EDS measurements were used for studying the composition of AgBr nanocrystals with a 

mean diameter around 10 nm (figure 120, (a)) The TEM grids were prepared via drop-casting in 

the dark and directly analysed. Line profiling and element mapping of the dispersion shows clearly 

the presence of both elements silver and bromide. Element mapping of the region of interest 

(figure 120, a & b) reveals a Ag:Br ratio of 27 % Ag (red) & 73 % Br (blue) which matches the 

calculated composition of  a Ag:Br 34.4 % to 65.6 % very well. According to the images, the 

bromide is incorporated in the AgBr nanocrystals.  

 

Figure 120: STEM-EDS analysis for studying the composition of AgBr nanocrystals (10 nm, STEM (a)). 

Elemental mapping (b) and line profiling (c) evidence the presence of bromide (blue) in AgBr nanocrystals.  

 

This clear indication was given by line profiling from the same region, giving signals at 1.5 keV 

and 3.0-3.5 keV which originates from 24.2 % silver and 75.8 % bromide composition. The signal 

around 8.0 keV and 8.9 keV arises from the copper grid.   
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6.5 Conclusion 

In this chapter, we reported the development of novel synthesis of nano-sized semiconductor 

particles. We provided insight into the surfactant-controlled nanocluster growth of metal halides 

and a wide range of metal chalcogenides in organic solvents. All fabrications were based on the 

same structure of the precursor and using metal oleates and tetraoctylammonium stabilized counter 

ions. The alkylammonium stabilized anions, the Lewis bases n-octylamine, and fatty acids, bind 

strongly to the particle surface to minimize the formation of larger nanocrystals. The development 

of ideal conditions for stepwise growth in various semiconductor cluster materials was achieved by 

balancing all synthetic parameters. The cluster formation was monitored in a supersaturated system 

with in-situ UV-Vis and fluorescence measurements as well as ex-situ TEM, STEM-EDS and 

XRD.  

Beside the material dependency, the intermediates show size-dependent properties, from the CdS 

model system to ZnS, PbS, Ag2S and the halide systems AgI and AgBr. The effective and adaptable 

synthesis provides information about the development and regulation of clusters and nanocrystals. 

The optical results clearly demonstrate quantum confinement behaviour, particularly by examining 

the spectral range into the ultraviolet. Especially for our model system, the heterogeneous growth 

process over two thermodynamically favored cluster sizes can be elucidated by kinetic 

investigations. Oleic acid and amines guarantees a preferential binding to the metal ions and are 

the key factors for the generation of thermodynamically favored cluster sizes. The surface 

chemistry and chemical-treatments play a critical role in the stability of clusters by influencing the 

stabilization of small clusters and the monomer consumption at the particle surface. 

A new regime can now be entered by developing well-defined nanocrystals from clusters at room 

temperature. Our findings expand the fundamental understanding of diluted semiconductors of an 

extremely small-size regime. The properties of the intermediates are of fundamental interest for 

future application. To gain better understanding, the high stability, the slow cluster growth, the ease 

of synthesis of various clusters and adaption to microfluidic devices in combination with time-

dependent scattering analysis (SAXS/WAXS) should be conducted in the future, allowing the 

precise identification of stoichiometry, geometry and electronic structure.
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Figure S1: Absorbance spectra showing the characteristic signals of the sulfur precursor after the reaction 

with oleic acid and amine as well as the CdS cluster.  

 

Table S1: 2Ɵ values of the phases are stable at room temperature RT and after the phase transition into the 

α-AgI phase which are in good coincidence with the literature. 

2Ɵ [°] of β- /γ-AgI RT 2Ɵ [°]of α-AgI 

22.3 24.7 

23.7 32.8 

25.3 35.3 

32.8 43.7 

39.2 50.8 

42.7 57.4 

45.6  

46.4  

47.3  

52.0  

59.4  

61.8  



References 

 

205 
 

References 

[1] J. Park, J. Joo, G. K. Soon, Y. Jang, and T. Hyeon, ‘Synthesis of monodisperse spherical 

nanocrystals’, Angewandte Chemie - International Edition, vol. 46, no. 25, pp. 4630–4660, 

2007. 

[2] C. de M. Donegá, ‘Synthesis and properties of colloidal heteronanocrystals’, Chem. Soc. 

Rev., vol. 40, no. 3, pp. 1512–1546, 2011. 

[3] H. Gordillo, I. Suarez, R. Abargues, P. Rodriguez-Canto, and J. P. Martinez-Pastor, ‘Color 

Tuning and White Light by Dispersing CdSe, CdTe, and CdS in PMMA Nanocomposite 

Waveguides’, IEEE Photonics Journal, vol. 5, no. 2, pp. 2201412–2201412, 2013. 

[4] Y. Wang, Y. Zhou, Y. Zhang, and W. E. Buhro, ‘Magic-size II-vi nanoclusters as synthons 

for flat colloidal nanocrystals’, Inorganic Chemistry, vol. 54, no. 3, pp. 1165–1177, 2015. 

[5] N. Herron, Y. Wang, and H. Eckert, ‘Synthesis and characterization of surface-capped, size-

quantized cadmium sulfide clusters. Chemical control of cluster size’, Journal of the 

American Chemical Society, vol. 112, no. 4, pp. 1322–1326, 1990. 

[6] J. Ouyang et al., ‘Multiple families of magic-sized CdSe nanocrystals with strong bandgap 

photoluminescence via noninjection one-pot syntheses’, Journal of Physical Chemistry C, 

vol. 112, no. 36, pp. 13805–13811, 2008. 

[7] S. Kudera et al., ‘Sequential growth of magic-size CdSe nanocrystals’, Advanced Materials, 

vol. 19, no. 4, pp. 548–552, 2007. 

[8] C. M. Evans, L. Guo, J. J. Peterson, S. Maccagnano, and T. D. Krauss, ‘Ultra-bright PbSe 

magic-sized clusters’, pp. 2–5, 2008. 

[9] L. Brus, ‘Electronic wave functions in semiconductor clusters: Experiment and theory’, 

Journal of Physical Chemistry, vol. 90, no. 12, pp. 2555–2560, 1986. 

[10] X. Peng, J. Wickham, and A. P. Alivisatos, ‘Kinetics of II-VI and III-V colloidal 

semiconductor nanocrystal growth: “Focusing” of size distributions [15]’, Journal of the 

American Chemical Society, vol. 120, no. 21, pp. 5343–5344, 1998. 

[11] D. Pan, X. Ji, L. An, and Y. Lu, ‘Observation of nucleation and growth of CdS nanocrystals 

in a two-phase system’, Chemistry of Materials, vol. 20, no. 11, pp. 3560–3566, 2008. 

[12]  a Fojtik, H. Weller, U. Koch, and  a. Henglein, ‘Photo‐Chemistry of Colloidal Metal 

Sulfides 8. Photo‐Physics of Extremely Small CdS Particles: Q‐State CdS and Magic 

Agglomeration Numbers’, Berichte der Bunsengesellschaft fur physikalische Chemie, vol. 

88, no. 10, pp. 969–977, 1984. 



References 

 

206 
 

[13] Y. Wang et al., ‘The magic-size nanocluster (CdSe)34as a low-temperature nucleant for 

cadmium selenide nanocrystals; Room-temperature growth of crystalline quantum 

platelets’, Chemistry of Materials, vol. 26, no. 7, pp. 2233–2243, 2014. 

[14] D. Pan, S. Jiang, L. An, and B. Jiang, ‘Controllable synthesis of highly luminescent and 

monodisperse CdS nanocrystals by a two-phase approach under mild conditions’, Advanced 

Materials, vol. 16, no. 12, pp. 982–985, 2004. 

[15] P. Mulvaney, ‘Nucleation and stabilization of quantized AgI clusters in aqueous solution’, 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 81, pp. 231–238, 

1993. 

[16] C. Leiggener and G. Calzaferri, ‘Synthesis and luminescence properties of Ag2S and PbS 

clusters in zeolite A’, Chemistry - A European Journal, vol. 11, no. 24, pp. 7191–7198, 

2005. 

[17] H. Zhang, Z. A. Schelly, and D. S. Marynick, ‘Theoretical Study of the Molecular and 

Electronic Structures of Neutral Silver Bromide Clusters ( AgBr )n, n=1-9’, Journal of 

Physical Chemistry A, vol. 104, pp. 6287–6294, 2000. 

[18] H. Zeng, Z. a Schelly, K. Ueno-Noto, and D. S. Marynick, ‘Density Functional Study of the 

Structures of Lead Sulfide Clusters (PbS) n ( n = 1−9)’, The Journal of Physical Chemistry 

A, vol. 109, no. 8, pp. 1616–1620, 2005. 

[19] H. Zeng, R. R. Vanga, D. S. Marynick, and Z. A. Schelly, ‘Cluster precursors of uncapped 

CdS quantum dots via electroporation of synthetic liposomes. experiments and theory’, 

Journal of Physical Chemistry B, vol. 112, no. 46, pp. 14422–14426, 2008. 

[20] S. Bhusal, J. A. R. Lopez, J. U. Reveles, T. Baruah, and R. R. Zope, ‘Electronic and 

Structural Study of ZnxSx[x = 12, 16, 24, 28, 36, 48, 96, and 108] Cage Structures’, Journal 

of Physical Chemistry A, vol. 121, no. 18, pp. 3486–3493, 2017. 

[21] T. Vossmeyer et al., ‘CdS nanoclusters: Synthesis, characterization, size dependent 

oscillator strength, temperature shift of the excitonic transition energy, and reversible 

absorbance shift’, Journal of Physical Chemistry, vol. 98, no. 31, pp. 7665–7673, 1994. 

[22] W. W. Yu, L. Qu, W. Guo, and X. Peng, ‘Experimental determination of the extinction 

coefficient of CdTe, CdSe, and CdS nanocrystals’, Chemistry of Materials, vol. 15, no. 14, 

pp. 2854–2860, 2003. 

[23] M. A. Watzky and R. G. Finke, ‘Nanocluster Size-Control and “Magic Number” 

Investigations. Experimental Tests of the “Living-Metal Polymer” Concept and of 

Mechanism-Based Size-Control Predictions Leading to the Syntheses of Iridium(0) 

Nanoclusters Centering about Four Sequential Magic ’, Chemistry of Materials, vol. 9, no. 



References 

 

207 
 

12, pp. 3083–3095, 1997. 

[24] Y. Park et al., ‘Aqueous Phase Synthesized CdSe Nanoparticles with Well-Defined 

Numbers of Constituent Atoms’, J. Phys. Chem. C, vol. 114, no. 44, pp. 18834–18840, 

2010. 

[25] J. Yang et al., ‘Chemical Synthesis, Doping, and Transformation of Magic-Sized 

Semiconductor Alloy Nanoclusters’, Journal of the American Chemical Society, vol. 139, 

no. 19, pp. 6761–6770, 2017. 

[26] J. J. Gaumet, G. A. Khitrov, and G. F. Strouse, ‘Mass Spectrometry Analysis of the 1.5 nm 

Sphalerite−CdS Core of [Cd 32 S 14 (SC 6 H 5 ) 36 ·DMF 4 ]’, Nano Letters, vol. 2, no. 4, pp. 

375–379, 2002. 

[27] T. Zhu et al., ‘Two-Step Nucleation of CdS Magic-Size Nanocluster MSC-311’, Chemistry 

of Materials, vol. 29, no. 13, pp. 5727–5735, 2017. 

[28] G. A. Khitrov and G. F. Strouse, ‘ZnS nanomaterial characterization by MALDI-TOF mass 

spectrometry’, Journal of the American Chemical Society, vol. 125, no. 34, pp. 10465–

10469, 2003. 

[29] A. Henglein, ‘Small-Particle Research: Physicochemical Properties of Extremely Small 

Colloidal Metal and Semiconductor Particles’, Chemical Reviews, vol. 89, no. 8, pp. 1861–

1873, 1989. 

[30] D. C. Gary, M. W. Terban, S. J. L. Billinge, and B. M. Cossairt, ‘Two-step nucleation and 

growth of InP quantum dots via magic-sized cluster intermediates’, Chemistry of Materials, 

vol. 27, no. 4, pp. 1432–1441, 2015. 

[31] S. M. Harrell, J. R. McBride, and S. J. Rosenthal, ‘Synthesis of ultrasmall and magic-sized 

CdSe nanocrystals’, Chemistry of Materials, vol. 25, no. 8, pp. 1199–1210, 2013. 

[32] J. van Embden, A. S. R. Chesman, and J. J. Jasieniak, ‘The Heat-Up Synthesis of Colloidal 

Nanocrystals’, Chemistry of Materials, vol. 27, no. 7, pp. 2246–2285, 2015. 

[33] C. B. Murray, D. J. Norris, and M. G. Bawendi, ‘Synthesis and Characterization of Nearly 

Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites’, Journal of the 

American Chemical Society, vol. 115, no. 19, pp. 8706–8715, 1993. 

[34] E. Groeneveld, S. Van Berkum, A. Meijerink, and C. De Mello Donegá, ‘Growth and 

stability of ZnTe magic-size nanocrystals’, Small, vol. 7, no. 9, pp. 1247–1256, 2011. 

[35] A. Kasuya et al., ‘Ultra-stable nanoparticles of CdSe revealed from mass spectrometry’, 

Nature Materials, vol. 3, no. 2, pp. 99–102, 2004. 

[36] M. Mostafavi, Y. P. Liu, P. Pernot, and J. Belloni, ‘Dose rate effect on size of CdS clusters 

induced by irradiation’, Radiation Physics and Chemistry, vol. 59, no. 1, pp. 49–59, 2000. 



References 

 

208 
 

[37] T. Huber and E. Freisinger, ‘Sulfide ions as modulators of metal–thiolate cluster size in a 

plant metallothionein’, Dalton Transactions, vol. 42, no. 24, p. 8878, 2013. 

[38] Z. L. Renguo Xie  and Xiaogang Peng, R. Xie, Z. Li, and X. Peng, ‘Nucleation Kinetics vs 

Chemical Kinetics in the Initial\nFormation of Semiconductor Nanocrystals’, Journal of the 

American Chemical Society, vol. 131, no. 42, pp. 15457–15466, 2009. 

[39] K. Yu, ‘CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: 

Monomer effects on nucleation and growth’, Advanced Materials, vol. 24, no. 8, pp. 1123–

1132, 2012. 

[40] W. Chen, Z. Wang, L. Lin, J. Lin, and M. Su, ‘Photostimulated luminescence of silver 

clusters in zeolite-Y’, Physics Letters, Section A: General, Atomic and Solid State Physics, 

vol. 232, no. 5, pp. 391–394, 1997. 

[41] M. R. Friedfeld, J. L. Stein, and B. M. Cossairt, ‘Main-Group-Semiconductor Cluster 

Molecules as Synthetic Intermediates to Nanostructures’, Inorganic Chemistry, vol. 56, no. 

15, pp. 8689–8697, 2017. 

[42] R. Celis, M. Carmen Hermosín, and J. Cornejo, ‘Heavy metal adsorption by functionalized 

clays’, Environmental Science and Technology, vol. 34, no. 21, pp. 4593–4599, 2000. 

[43] N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, ‘Ligand exchange and the 

stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile 

metal-carboxylate displacement and binding’, Journal of the American Chemical Society, 

vol. 135, no. 49, pp. 18536–18548, 2013. 

[44] X. Huang, V. K. Parashar, and M. A. M. Gijs, ‘Synergistic effect of carboxylic and amine 

ligands on the synthesis of CdSe nanocrystals’, RSC Advances, vol. 6, no. 91, pp. 88911–

88915, 2016. 

[45] C. De Mello Donegá, Nanoparticles: Workhorses of nanoscience, vol. 9783662448. 2014. 

[46] R. A. Sperling and W. J. Parak, ‘Surface modification, functionalization and bioconjugation 

of colloidal inorganic nanoparticles’, Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, vol. 368, no. 1915, pp. 1333–1383, 

2010. 

[47] C. Landes, M. Braun, C. Burda, and M. A. El-Sayed, ‘Observation of Large Changes in the 

Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a 

Strong Hole Acceptor’, Nano Letters, vol. 1, no. 11, pp. 667–670, 2001. 

[48] S. Kudera, ‘Formation of Colloidal Semiconductor Nanocrystals’, 2007. 

[49] C. M. Evans, A. M. Love, and E. A. Weiss, ‘Surfactant-controlled polymerization of 

semiconductor clusters to quantum dots through competing step-growth and living chain-



References 

 

209 
 

growth mechanisms’, Journal of the American Chemical Society, vol. 134, no. 41, pp. 

17298–17305, 2012. 

[50] M. Zobel et al., ‘The evolution of crystalline ordering for ligand-ornamented zinc oxide 

nanoparticles’, CrystEngComm, vol. 18, no. 12, pp. 2163–2172, 2016. 

[51] B. M. Cossairt and J. S. Owen, ‘CdSe clusters: At the interface of small molecules and 

quantum dots’, Chemistry of Materials, vol. 23, no. 12, pp. 3114–3119, 2011. 

[52] L. Qu, Z. A. Peng, and X. Peng, ‘Alternative Routes toward High Quality CdSe 

Nanocrystals’, Nano Letters, vol. 1, no. 6, pp. 333–337, 2001. 

[53] W. W. Yu and X. Peng, ‘Formation of high-quality CdS and other II-VI semiconductor 

nanocrystals in noncoordinating solvents: Tunable reactivity of monomers’, Angewandte 

Chemie - International Edition, vol. 41, no. 13, pp. 2368–2371, 2002. 

[54] ‘NPL National PhysicalLaboratory, Tables of Physical and Chemical Constants’. [Online]. 

Available: http://www.kayelaby.npl.co.uk/chemistry/3_8/3_8_7.html. 

[55] H. Finkelstein, ‘Preparation of Organic Iodides from the Corresponding Bromides and 

Chlorides.’, Berichte der Deutschen Chemischen Gesellschaft, vol. 43, no. 2, pp. 1528–

1532, 1910. 

[56] D. Li et al., ‘Efficient synthesis of functional long-chain alkyl disulfides under liquid-liquid 

phase-transfer catalysis: The analysis of chemical equilibrium and phase-transfer 

mechanism’, Catalysis Communications, vol. 89, pp. 9–13, 2017. 

[57] D. L. Pringle, ‘The nature of the polysulfide anion’, 1967. 

[58] X. Liu and J. K. Thomas, ‘Formation and Photophysical Properties of CdS in Zeolites with 

Cages and Channels’, Langmuir, vol. 5, no. 1, pp. 58–66, 1989. 

[59] L. B. McCusker and K. Seff, ‘Crystal structures of hydrated and partially dehydrated fully 

cadmium(II)-exchanged zeolite A’, Journal of Physical Chemistry, vol. 85, no. 2, pp. 166–

174, 1981. 

[60] J. W. Thomson, K. Nagashima, P. M. MacDonald, and G. A. Ozin, ‘From sulfur-amine 

solutions to metal sulfide nanocrystals: Peering into the oleylamine-sulfur black box’, 

Journal of the American Chemical Society, vol. 133, no. 13, pp. 5036–5041, 2011. 

[61] D. Inman and D. G. Lovering, Eds., Ionic Liquids. Boston, MA: Springer US, 1981. 

[62] M. M. Cortese-Krott et al., ‘Nitrosopersulfide (SSNO-) accounts for sustained NO 

bioactivity of S-nitrosothiols following reaction with sulfide’, Redox Biology, vol. 2, no. 1, 

pp. 234–244, 2014. 

[63] Rick Houghton, Emergency Characterization of unknown materials. . 

[64] X. Chen, J. Schröder, S. Hauschild, S. Rosenfeldt, M. Dulle, and S. Förster, ‘Simultaneous 



References 

 

210 
 

SAXS/WAXS/UV-Vis Study of the Nucleation and Growth of Nanoparticles: A Test of 

Classical Nucleation Theory’, Langmuir, vol. 31, no. 42, pp. 11678–11691, 2015. 

[65] G. W. Luther and D. T. Rickard, ‘Metal sulfide cluster complexes and their biogeochemical 

importance in the environment’, Journal of Nanoparticle Research, vol. 7, no. 6, pp. 389–

407, 2005. 

[66] Q. Yu and C. Y. Liu, ‘Study of magic-size-cluster mediated formation of cds nanocrystals: 

Properties of the magic-size clusters and mechanism implication’, Journal of Physical 

Chemistry C, vol. 113, no. 29, pp. 12766–12771, 2009. 

[67] A. Veamatahau et al., ‘Origin of surface trap states in CdS quantum dots: relationship 

between size dependent photoluminescence and sulfur vacancy trap states’, Phys. Chem. 

Chem. Phys., vol. 17, no. 4, pp. 2850–2858, 2015. 

[68] Y. Zou, D. Li, and D. Yang, ‘Noninjection synthesis of CdS and alloyed CdSxSe1-

xnanocrystals without nucleation initiators’, Nanoscale Research Letters, vol. 5, no. 6, pp. 

966–971, 2010. 

[69] D. F. Garcia-Gutierrez, L. P. Hernandez-Casillas, M. V. Cappellari, F. Fungo, E. Martínez-

Guerra, and D. I. García-Gutiérrez, ‘Influence of the Capping Ligand on the Band Gap and 

Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement 

Determination’, ACS Omega, vol. 3, no. 1, pp. 393–405, 2017. 

[70] R. Rossetti, J. L. Ellison, J. M. Gibson, and L. E. Brus, ‘Size effects in the excited electronic 

states of small colloidal CdS crystallites’, The Journal of Chemical Physics, vol. 80, no. 9, 

pp. 4464–4469, 1984. 

[71] W. Bu, Z. Chen, F. Chen, and J. Shi, ‘Oleic acid/oleylamine cooperative-controlled 

crystallization mechanism for monodisperse tetragonal bipyramid 

nala(moO4)2nanocrystals’, Journal of Physical Chemistry C, vol. 113, no. 28, pp. 12176–

12185, 2009. 

[72] N. Herron, J. C. Calabrese, W. E. Farneth, and Y. Wang, ‘Crystal Structure and Optical 

Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core’, 

Science, vol. 259, no. 5100, pp. 1426–1428, 1993. 

[73] S. A. Bobrovnik, ‘Determination the rate constants of some biexponential reactions’, 

Journal of Biochemical and Biophysical Methods, vol. 42, no. 1–2, pp. 49–63, 2000. 

[74] ‘https://www.precisionlabware.com/content/18-solvent-miscibility’. . 

[75] X. Chen, J. Schröder, S. Hauschild, S. Rosenfeldt, M. Dulle, and S. Förster, ‘Simultaneous 

SAXS/WAXS/UV-Vis Study of the Nucleation and Growth of Nanoparticles: A Test of 

Classical Nucleation Theory’, Langmuir, vol. 31, no. 42, pp. 11678–11691, 2015. 



References 

 

211 
 

[76] J. L. Osborn, B. Lutz, E. Fu, P. Kauffman, D. Y. Stevens, and P. Yager, ‘Microfluidics 

without pumps: reinventing the T-sensor and H-filter in paper networks’, Lab on a Chip, 

vol. 10, no. 20, p. 2659, 2010. 

[77] O. Khani, H. R. Rajabi, M. H. Yousefi, A. A. Khosravi, M. Jannesari, and M. Shamsipur, 

‘Synthesis and characterizations of ultra-small ZnS and Zn(1-x)FexS quantum dots in 

aqueous media and spectroscopic study of their interactions with bovine serum albumin’, 

Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 79, no. 2, 

pp. 361–369, 2011. 

[78] R. Rossetti, R. Hull, J. M. Gibson, and L. E. Brus, ‘Hybrid electronic properties between 

the molecular and solid state limits: Lead sulfide and silver halide crystallites’, The Journal 

of Chemical Physics, vol. 83, no. 3, pp. 1406–1410, 1985. 

[79] K. Sooklal, B. S. Cullum, S. M. Angel, and C. J. Murphy, ‘Photophysical Properties of ZnS 

Nanoclusters with Spatially Localized Mn 2+’, The Journal of Physical Chemistry, vol. 100, 

no. 11, pp. 4551–4555, 1996. 

[80] G. W. Luther, S. M. Theberge, and D. T. Rickard, ‘Evidence for aqueous clusters as 

intermediates during zinc sulfide formation’, Geochimica et Cosmochimica Acta, vol. 63, 

no. 19–20, pp. 3159–3169, 1999. 

[81] M. L. Steigerwald and L. E. Brus, ‘Semiconductor Crystallites: A Class of Large 

Molecules’, Accounts of Chemical Research, vol. 23, no. 6, pp. 183–188, 1990. 

[82] X. Wang, H. Xu, H. Liu, Z. A. Schelly, and S. Wu, ‘Preparation and oscillation of absorption 

bands of ZnS clusters’, Nanotechnology, vol. 18, no. 15, 2007. 

[83] S. K. Mehta, S. Kumar, S. Chaudhary, K. K. Bhasin, and M. Gradzielski, ‘Evolution of ZnS 

nanoparticles via facile CTAB aqueous micellar solution route: A study on controlling 

parameters’, Nanoscale Research Letters, vol. 4, no. 1, pp. 17–28, 2009. 

[84] H. Y. Jung et al., ‘Synthesis of quantum-sized cubic ZnS nanorods by the oriented 

attachment mechanism’, Journal of the American Chemical Society, vol. 127, no. 15, pp. 

5662–5670, 2005. 

[85] S. H. Choi, K. An, E. G. Kim, J. H. Yu, J. H. Kim, and T. Hyeon, ‘Simple and generalized 

synthesis of semiconducting metal sulfide nanocrystals’, Advanced Functional Materials, 

vol. 19, no. 10, pp. 1645–1649, 2009. 

[86] A. Tiwari, S. A. Khan, R. S. Kher, S. J. Dhoble, and A. L. S. Chandel, ‘Synthesis, 

characterization and optical properties of polymer-based ZnS nanocomposites’, 

Luminescence, vol. 31, no. 2, pp. 428–432, 2016. 

[87] Komal, P. Shikha, and T. S. Kang, ‘Facile and green one pot synthesis of zinc sulphide 



References 

 

212 
 

quantum dots employing zinc-based ionic liquids and their photocatalytic activity’, New 

Journal of Chemistry, vol. 41, no. 15, pp. 7407–7416, 2017. 

[88] Lev I. Berger, Semiconductor Materials. CRC Press, 1996. 

[89] S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium, and 

Silver Sulfides, vol. 256. Cham: Springer International Publishing, 2018. 

[90] M. Askari and M. S. Ghamsari, ‘A new colloidal technique for the synthesis of lead sulfide 

nanoparticles’, Scientia Iranica, vol. 10, no. 3. pp. 357–360, 2003. 

[91] S. Chen, L. A. Truax, and J. M. Sommers, ‘Alkanethiolate-protected PbS nanoclusters: 

Synthesis, spectroscopic and electrochemical studies’, Chemistry of Materials, vol. 12, no. 

12, pp. 3864–3870, 2000. 

[92] F. W. Wise, ‘Lead salt quantum dots: The limit of strong quantum confinement’, Accounts 

of Chemical Research, vol. 33, no. 11, pp. 773–780, 2000. 

[93] Y. Wang, A. Suna, W. Mahler, and R. Kasowski, ‘PbS in polymers. From molecules to bulk 

solids’, The Journal of Chemical Physics, vol. 87, no. 12, pp. 7315–7322, 1987. 

[94] K. Moller, T. Bein, N. Herron, W. Mahler, and Y. Wang, ‘Encapsulation of lead sulfide 

molecular clusters into solid matrixes. Structural analysis with X-ray absorption 

spectroscopy’, Inorganic Chemistry, vol. 28, no. 15, pp. 2914–2919, 1989. 

[95] C. Y. Yang and S. Rabii, ‘Relativistic electronic structure of PbS and PbSe molecules’, J. 

Chem. Phys., vol. 69, no. 1978, p. 2497, 1978. 

[96] H. Y. Yang, Y. W. Zhao, Z. Y. Zhang, H. M. Xiong, and S. N. Yu, ‘One-pot synthesis of 

water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-

infrared window’, Nanotechnology, vol. 24, no. 5, 2013. 

[97] T. G. Schaaff and A. J. Rodinone, ‘Preparation and Characterization of Silver Sulfide 

Nanocrystals Generated from Silver(I)-Thiolate Polymers’, The Journal of Physical 

Chemistry B, vol. 107, no. 38, pp. 10416–10422, 2003. 

[98] K. I. Ozoemena and S. Chen, Eds., Nanomaterials for Fuel Cell Catalysis. Cham: Springer 

International Publishing, 2016. 

[99] J. Yang and H. Liu, Metal-Based Composite Nanomaterials. Cham: Springer International 

Publishing, 2015. 

[100] G. Calzaferri, D. Brühwiler, S. Glaus, D. Schürch, A. Currao, and C.- Bern, ‘Quantum-

Sized Silver , Silver Chloride and Silver Sulfide Clusters’, Luminescence, pp. 59–62, 2000. 

[101] S. I. Sadovnikov and A. I. Gusev, ‘Recent progress in nanostructured silver sulfide: from 

synthesis and nonstoichiometry to properties’, J. Mater. Chem. A, vol. 5, no. 34, pp. 17676–

17704, 2017. 



References 

 

213 
 

[102] P. Mulvaney and A. Henglein, ‘Formation of unstabilized oligomeric silver clusters during 

the reduction of Ag+ ions in aqueous solution’, vol. 168, no. 3, pp. 391–394, 1990. 

[103] W. Chen, J. M. Rehm, C. Meyers, M. I. Freedhoff, A. Marchetti, and G. Mclendon, 

‘Luminescence properties of indirect bandgap semiconductors: Nanocrystals of silver 

bromide’, Molecular Crystals and Liquid Crystals Science and Technology. Section A. 

Molecular Crystals and Liquid Crystals, vol. 252, no. 1, pp. 79–86, 1994. 

[104] N. M. Correa, H. Zhang, and Z. A. Schelly, ‘Preparation of AgBr quantum dots via 

electroporation of vesicles’, Journal of the American Chemical Society, vol. 122, no. 27, pp. 

6432–6434, 2000. 

[105] M. Husein, E. Rodil, and J. H. Vera, ‘Formation of silver bromide precipitate of 

nanoparticles in a single microemulsion utilizing the surfactant counterion’, Journal of 

Colloid and Interface Science, vol. 273, no. 2, pp. 426–434, 2004. 

[106] H. Zhang and M. Mostafavi, ‘UV-Absorption Observation of the Silver Bromide Growth 

from a Single Molecule to the Crystal in Solution’, The Journal of Physical Chemistry B, 

vol. 101, no. 42, pp. 8443–8448, 1997. 

[107] T. Yamamoto et al., ‘The room-temperature superionic conductivity of silver iodide 

nanoparticles under pressure’, Journal of the American Chemical Society, vol. 139, no. 4, 

pp. 1392–1395, 2017. 

[108] G. Burley, ‘Polymorphism of silver iodide’, American Mineralogist, vol. 48, no. 11–2, p. 

1266, 1963. 

[109] L. . Strock, ‘The crystal structure of high temperature iodine silver alpha-AgI’, Z. Phys. 

Chem-Abt B, vol. 25, pp. 441–459, 1934. 

[110] S. Chen, T. Ida, and K. Kimura, ‘Thiol-Derivatized AgI Nanoparticles : Synthesis , 

Characterization , and Optical Properties’, vol. 5647, no. 98, pp. 6169–6176, 1998. 

[111] R. Makiura et al., ‘Size-controlled stabilization of the superionic phase to room temperature 

in polymer-coated AgI nanoparticles’, Nature Materials, vol. 8, no. 6, pp. 476–480, 2009. 

[112] A. Henglein, M. Gutierrez, H. Weller, A. Fojtik, and J. Jirkovsky, ‘Reactions and 

Fluorescence of AgI and AgI - Ag2S Colloids’, 1989. 

[113] I. Lj, I. A. Jankovi, M. Mitri, and J. M. Nedeljkovi, ‘Growth and quantum confinement in 

AgI nanowires’, vol. 61, pp. 3522–3525, 2007. 

[114] T. Kodaira, ‘Incorporation of AgI clusters into the cages of zeolites LTA and FAU observed 

by optical spectra and X-ray diffraction patterns’, no. February, pp. 499–503, 1999. 

[115] S. Shaker-Agjekandy and A. Habibi-Yangjeh, ‘Facile one-pot method for preparation of 

AgI/ZnO nanocomposites as visible-light-driven photocatalysts with enhanced activities’, 



References 

 

214 
 

Materials Science in Semiconductor Processing, vol. 34, pp. 74–81, 2015. 

[116] Y.-G. Guo, Y.-S. Hu, J.-S. Lee, and J. Maier, ‘High-performance rechargeable all-solid-

state silver battery based on superionic AgI nanoplates’, Electrochemistry Communications, 

vol. 8, no. 7, pp. 1179–1184, 2006. 



Summary 
 

215 
 

Summary 

Colloidal semiconductor nanomaterials are the subject of an extensive field of research with great 

interest in their wet-chemical synthesis and size-dependent properties. This research has led to 

much new and fundamental information about materials in the nano-size regime and has led to their 

use in industrial applications. However, the underlying formation processes of these nano-materials 

are still not completely understood. The synthesis of sufficiently stabilized nanocrystals, and their 

assembly into well-defined superstructures needs further investigation before the full potential of 

these materials can be exploited. In this dissertation, appropriate semiconductor nanomaterial 

systems were chosen to highlight size-related properties arising from quantum confinement effects 

and to demonstrate their formation process in real-time using in-situ and ex-situ characterization 

methods. 

The first work describes the formation of CdTe-nanoclay nanocomposites using hot-injection 

synthesis of quantum dots in the presence of inorganic clay materials. The composite material 

features well-separated quantum dot arrays along an inorganic clay material framework. The 

solution pH during synthesis, the initial metal ion concentration, the ionic strength, and contact 

time of cadmium ions were all tuned, with the results suggesting preferred edge coverage on the 

2:1 phyllosilicate materials. In general, the irreversible adsorption of cadmium ions arises from the 

high binding affinity of the divalent heavy metal cations and the high cation exchange capacity of 

nanoclay materials. The predominant and selective coverage along the edges finds its origin in the 

high sorption capacity on deprotonated hydroxyl groups under basic conditions. In the deprotonated 

form the active edge sites are able to remove efficiently cadmium ions from the reaction mixture at 

room temperature. The cadmium ions are not able to occupy lattice positions in nanoclays and 

therefore the subsequent injection of the telluride precursor induces well-separated and uniform 

CdTe quantum dot growth. The presence of organic ligands as well as the controlled deposition on 

nanoclay edges allows the stabilization of well-ordered quantum dot arrays. This first system was 

analysed by using UV-Vis spectroscopy and fluorescence microscopy to monitor size-related 

optical properties. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy 

(TEM) were used to highlight the quantum dot attachment along the clay edges. The specific 

adsorption of the nanocrystals on the inorganic support material, the ease of fabrication of the 

construct, as well as the resulting optical features, may be of interest in the field of Ꞌsmart materialsꞋ 

towards applications in optoelectronic devices.
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In a second work, a microfluidic setup was used for the first time to study the methylammonium-

based perovskite formation by in-situ Small-Angle X-ray Scattering (SAXS) and in-situ UV-Vis 

spectroscopy. The CH3NH3PbBr3 formation was performed in a quartz capillary where perovskite 

precursor salts diffuse into the anti-solvent toluene to induce the nanocrystal formation. The 

nanocrystals grew in the presence of stabilizing ligands via the 2D oriented attachment mechanism 

into highly crystalline nanosheets and 3D superstructures. This could be clearly highlighted by the 

red-shift in the absorption spectra reaching from zero-dimensional nanocrystals to the bulk 

materials. The SAXS scattering profile clearly demonstrates the beginning of the perovskite growth 

by the detection of spherical particles which grow into anisotropic nanoplatelets. The strongly 

pronounced structure peak factor is indicative of a highly-ordered 3D stacking structure. 

The crystallinity, composition analysis and morphologies at different growth stages were 

investigated by Scanning Electron Microscopy (SEM) and Selected Area Electron Diffraction 

(SAED) Transmission Electron Microscopy (TEM). 

The second approach for the CH3NH3PbBr3 undertaken herein was the successful adaption of the 

diffusion-controlled soft-template method to a polymer-based microfluidic chip in combination 

with Confocal Laser Scanning Microscopy (CLSM). The fast and controlled mixing within the 3D 

focusing channels of the microfluidic chip enables emission detection from the early stages of the 

self-assembly process. The clearly defined solvent streams allow the calculation and control of the 

mixing point and solvent composition along the mixing channels. Therefore, the study provides 

insight not only into the self-assembly process but also on the time-scales of the rapid perovskite 

formation.  

The large scale synthesis, the rapid synthesis in the microfluidic chip, and the slow interdiffusion 

experiment together elucidate the structural pathways starting form 0D nanocrystals, to 2D 

nanosheets, and finally resulting in 3D stacked assemblies of highly crystalline perovskite 

nanosheets.  

In a third work, a novel, room temperature synthetic route to colloidal metal chalcogenide and metal 

halide nanoclusters was developed in organic solvents. For the wet-chemical synthesis of CdS, 

ZnS, PbS, Ag2S, AgI and AgBr nanocrystals, the cationic reaction components were synthesized 

together with organic ligands for their introduction into organic solvents. The organic precursors 

show in general a similar structure with the halogen and sulfur anions stabilized by the large 

tetraoctylammonium cation to generate the corresponding organic precursor.
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For the synthesis, the precursors were dissolved in cyclohexane to generate a highly supersaturated 

system. The addition of n-octylamine, together with the introduced stabilizing ligands allow a 

strong complexation and subsequent formation of nanoclusters at room temperature.  

In-situ UV-Vis investigations were used to demonstrate the sequential growth of metal-based 

clusters of II-VI and IV-VI semiconductor materials by monitoring the excitonic transition energy 

of nanoclusters, which shows a strong blue-shift with decreasing nanocluster size. The systematic 

variation of the reaction parameters (e.g. reaction temperature, ligand system, precursor ratio and 

injection order) during monitoring highlighted the heterogeneous cluster growth and 

quantum-confined properties of the CdS model system. The clusters were characterized by 

Transmission Electron Microscopy (TEM) and showing sub-nanometer radii.  

The classical nucleation model cannot account for formation processes which occur via stable 

nanoclusters with distinct structures in highly supersaturated systems. However, the sequential 

cluster growth process is explained by distinct stages of intermediates which show extraordinary 

thermodynamic stability according to the spectroscopic measurements.  

Temporal analysis highlights the temperature-dependency in pseudo-first order reaction conditions. 

The compositions were analyzed by X-ray diffraction (XRD) and advanced electron microscopy 

techniques like Scanning Transmission Electron Microscopy in combination with Energy 

Dispersive X-ray Spectroscopy (STEM-EDS). On the basis of the results for CdS nanoclusters, we 

extended this general approach to a variety of metal-based clusters. Study of the nanocluster was 

also undertaken in microfluidic devices, opening new avenues for the detection of semiconductor 

nanomaterials. The developed microfluidic methodologies, the novel synthesis of highly stable 

nanoclusters, together with in-situ and ex-situ characterization techniques provides fundamental 

knowledge of nanoclusters formation important for fabrication of future nanodevices. 
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Zusammenfassung 

Kolloidale Halbleiter-Nanomaterialien weisen ein umfangreiches Forschungsbiet auf, welches 

sowohl die nasschemische Herstellung als auch ihre vielversprechenden größenabhängigen 

Eigenschaften umfasst. Zahlreiche Materialien wurden bereits umfangreich untersucht, um 

fundamentale Informationen über den Größenbereich zu erhalten und mögliche 

Anwendungspotentiale auszuschöpfen. Jedoch ist die analytische Beschreibung der 

zugrundeliegenden Nukleations- und Wachstumsmechanismen bis heute noch nicht vollständig 

nachvollziehbar und verstanden. Diese Dissertation beschäftigt sich mit Halbleiter-

Nanomaterialien und deren größenabhängigen optischen Eigenschaften, welche auf den Quantum 

Confinement Effekt zurückzuführen sind. Die Synthese von ausreichend stabilisierten 

Nanokristallen, die systematische Forschung an Quantum Dots, aber auch die strukturierte 

Anordnung der quantisierten Nanoteilchen soll demnach untersucht werden. Zur 

Strukturaufklärung wurde das Wachstumsverhalten in Echtzeit mittels in-situ und ex-situ 

Charakterisierungsmethoden dargestellt.  

Das erste untersuchte System beschreibt die Herstellung von CdTe-Schichtsilikat Nanokomposite 

gemäß einer 'hot-injection' Synthese. Quantum Dots konnten somit in Anwesenheit von 

Schichtsilikaten erfolgreich hergestellt werden. Das Kompositmaterial vereint die herausragenden 

Eigenschaften beider Komponenten und ermöglicht die systematische Anreihung von separierten 

Nanopartikeln entlang des anorganischen Matrixmaterials. Der pH-Wert während der Synthese, die 

vorhandene Konzentration an Metallionen, deren Ionenstärke und die Inkubationszeit von 

Cadmiumionen und Schichtsilikaten ermöglichen eine bevorzugte Anreihung von CdTe Quantum 

Dots an den Kanten der 2:1 Phyllosilikate. Eine irreversible Anbindung wird durch die hohe 

Bindungsaffinität der divalenten Schwermetallkationen und der hohen Kationenaustauschkapazität 

des Natrium-Hektorits ermöglicht. Die selektive Anordnung entlang der Kanten wird durch eine 

Deprotonierung der Hydroxyl-Gruppen erreicht. Diese erfolgt unter basischen Bedingungen, 

wodurch aktive Hektorit-Kanten generiert werden um Cadmiumionen effektiv an sich zu binden. 

Die Adsorption der Ionen erfolgt im wässrigen Medium bei Raumtemperatur. Die Cadmiumionen 

sind aufgrund ihrer Größe nicht in der Lage die Gitterplätze des Schichtsilikates zu besetzen, 

wodurch eine nachfolgende Injektion des Tellurid-Precursors das Wachstum von separierten und 

gleichförmigen CdTe Quantum Dots induziert. Organischen Liganden und die kontrollierte 

Anbindung an Schichtsilikat-Kanten ermöglichen die Stabilisierung wohldefinierter Quantum Dot-

Arrays. Die Charakterisierung der optischen Eigenschaften erfolgte mittel UV-Vis Spektroskopie 
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und Fluoreszenzmikroskopie. Raster-Kraft-Mikroskopie (Atomic Force Microscopy, AFM) und 

Transmissionselektronenmikroskopie (Transmission Electron Microscopy, TEM) bestätigten die 

selektive Anordnung der Quantum Dots entlang der Hektorit-Kanten. Die spezifische Adsorption 

der Nanopartikel am anorganischen Trägermaterial, die vergleichsweise einfache Herstellung der 

Nanokomposite sowie der Erhalt der optischen Eigenschaften von CdTe Nanopartikeln leisten 

einen großen Beitrag im Bereich der 'smart materials'. Diese Erkenntnis dient als Basis für 

optoelektronische Anwendungen.  

Beim zweiten System, wurden mikrofluidische Systeme für die Synthese von methylammonium-

basierenden Perovskiten herangezogen. Das erste Mal dienten in-situ Röntgenkleinwinkelstreuung 

(Small-Angle X-ray Scattering, SAXS) und in-situ UV-Vis Spektroskopie zur Strukturaufklärung. 

Die CH3NH3PbBr3 Synthese wurde hierzu in einer Quartzkapillare durchgeführt. Die Precurser-

Salze können durch den geeigneten Aufbau in das Anti-Lösungsmittel Toluol diffundieren, 

wodurch das Nanokristallwachstum induziert wird. Das Wachstum wird durch stabilisierende 

Liganden gesteuert, welche eine orientierte Anlagerung in 2 Dimensionen ermöglicht. Diese 

Selbstorganisation führt zu hochkristallinen Nanoplättchen und 3-dimensionalen Überstrukturen. 

Der klare Rot-shift der Absorptionssignale weist deutlich auf eine Transformation von 0D 

Nanopartikeln zu bulk-Materialien hin. Mittels SAXS Streubildern kann das Perovskitwachstum 

eindeutig dargestellt werden. Zu Beginn werden sphärische Nanopartikel detektiert, welche zu 

anisotropen Nanoplättchen heranwachsen. Der stark ausgeprägte Strukturfaktor-Peak in den 

Streukurven ist Beleg für die Ausbildung von hochgeordneten 3-dimensionalen Stapel-Strukturen. 

Die hohe Kristallinität der Perovskite, die chemische Zusammensetzung, sowie die Morphologien 

in unterschiedlichen Wachstumsstadien konnten mittels Raster- und 

Transmissionselektronenmikroskopie (Scanning Electron Microscopy, SEM und Selected Area 

Electron Diffraction, SAED, Transmission Electron Microscopy, TEM) belegt werden. Der 

Untersuchung des CH3NH3PbBr3 Perovskit Wachstums in einem polymerbasierende Mikrofluidik 

Chip geht eine erfolgreiche Adaption der diffusionskontrollierten Synthese voraus. Die weiteren 

Untersuchungen erfolgen in Kombination mit Konfokaler Laser Scanning Mikroskopie (Confocal 

Laser Scanning Microscopy, CLSM). Das rasche und kontrollierte Mischen im 3D fokussierten 

Chipkanal ermöglicht es, die Emission in den frühen Stadien der Selbstassemblierung zu 

detektieren. Die klar definierte Flussfokussierung lässt den Mischungspunkt und die 

Zusammensetzung entlang des Mikrofluidikkanals bestimmen und kontrollieren. Somit ermöglicht 

diese Studie einen Einblick in die zeitliche Abfolge der Perovskit-Synthese und den 

Selbstassemblierungsprozess. Die Synthese im großen Maßstab, die rasche Synthese im 
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Mikrofluidik Chip und das langsame Interdiffusions-Experiment in der Kapillare beschreiben die 

strukturelle Entwicklung beginnend bei 0D Nanokristallen, über 2D Nanoplättchen und die 

Ausbildung der 3D hochkristallinen Überstruktur. 

Eine neuartige Raumtemperatur-Synthese von kolloidalen Metallchalcogenid- und 

Metallhalogenid-Nanoclustern wurde in organischen Lösungsmitteln entwickelt. Für die 

nasschemischen Synthesen von CdS, ZnS, PbS, Ag2S, AgI und AgBr Nanokristallen wurden 

kationische Reaktionskomponenten zusammen mit organischen Liganden hergestellt. Somit gelang 

eine erfolgreiche Einführung in das organische Lösungsmittel. Der anionische Precursor weist eine 

ähnliche Struktur auf, bei der die Stabilisierung der Halogenid- und Schwefelanionen mittels 

quarternisierten Gegenionen erfolgt. Für die eigentliche Synthese werden die Precursor in 

Cyclohexan gelöst, um ein übersättigtes Reaktionsmedium zu generieren. Der Zusatz von n-

Octylamin und die Anwesenheit der organischen Liganden ermöglicht eine Bildung und starke 

Komplexierung von Nanoclustern. In-situ UV-Vis spektroskopische Untersuchungen 

demonstrieren den sequentiellen Wachstumsprozess der II-VI und IV-VI metallbasierenden 

Halbleitermaterialien. Die exzitonische Übergangsenergie der Nanocluster zeigt mit abnehmender 

Partikelgröße eine Verschiebung zu niedrigeren Wellenlängen. Durch die systematische Variation 

der Reaktionsparameter (Reaktionstemperatur, Ligandensystem, Precursorverhältnis und 

Reihenfolge der Precursor etc.) konnte die Strukturentwicklung aufgezeichnet werden. Das 

heterogene Clusterwachstum sowie Confinement-Effekte wurden mit Hilfe des CdS 

Modellsystems zugänglich gemacht. TEM Messungen wurden herangezogen um die Dimensionen 

der Nanocluster im Subnanometerbereich zu ermitteln.  

Im Gegensatz zur klassischen Nukleationstheorie kann der Bildungsprozess in übersättigten 

Systemen durch die Entstehung von stabilen Nanoclustern beschrieben werden. Das sequentielle 

Clusterwachstum ist durch ausgeprägte Intermediate gekennzeichnet, welche eine herausragende 

thermodynamische Stabilität aufweisen. Kinetische Untersuchungen an dem CdS System zeigen 

eindeutig einen temperaturabhängigen Wachstumsprozess (Reaktion pseudo-erster Ordnung). Die 

Analyse der chemischen Zusammensetzung erfolgte mittels Röntgendiffraktometrie (X-ray 

Diffraction, XRD) und fortgeschrittenen Elektronenmikroskopie-Techniken (Scanning 

Transmission Electron Microscopy in Kombination mit Energy Dispersive X-ray Spectroscopy 

(STEM-EDS). Basierend auf der Syntheseroute von CdS Nanoclustern konnte die generelle 

Synthesevorschrift auf weitere Halbleitermaterialien und Mikrofluidik-Setups übertragen werden. 

Diese Kombination birgt neue Chancen für die Zukunft, um den Nukleations- und 
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Wachstumsprozess weiter zu analysieren. Die Entwicklungen basierend auf mikrofluidischen 

Systemen, die neuartige Nanocluster-Synthese in Kombination mit in-situ und ex-situ 

Charakterisierungsmethoden sowie Erkenntnisse dieser Arbeit sollen als Basis für fortgeschrittene 

Analysemethoden und für die Entwicklung zukunftsträchtiger industrieller Anwendungen dienen.  
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