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Over two decades ago it was predicted that nonlinear interactions between thermally driven fluctuations
in dissipative nonlinear nonequilibrium systems lead to deviations from mean-field theory. Here we report
experimental observations of such deviations as a supercritical primary bifurcation is approached. We
measured the mean-square director-angle fluctuations �u2� below the bifurcation to electroconvection of
two different nematic liquid crystals. For emf � V 2�V 2

c,mf 2 1 & 20.1 (V is the applied voltage) we
find �u2� ~ jemfj

2g with g given by linear theory (LT). Closer to the bifurcation there are deviations
from LT with a smaller g and with V 2

c . V 2
c,mf.

PACS numbers: 05.70.Jk, 05.40.–a, 45.70.Qj, 64.60.Fr
Convection in fluids is a classical system for the study
of pattern formation under nonequilibrium conditions be-
cause of its similarity to numerous pattern-forming phe-
nomena in nature [1]. Rayleigh-Bénard convection (RBC)
is the most prominent example. Here a horizontal fluid
layer, confined at the bottom and top, is heated from be-
low. If the temperature difference exceeds a threshold, the
system undergoes a sharp but continuous (supercritical) bi-
furcation from a uniform state to a state where patterns,
e.g., stripes, squares, or spirals, occur [2]. However, al-
ready below this bifurcation there exist fluctuations dT of
the temperature field which become “large” near the bifur-
cation point and which are induced by thermal noise. The
fluctuation amplitudes have zero mean but a finite mean
square �dT2�. For RBC quantitative predictions of �dT2�
were made three decades ago [3–6] on the basis of linear
theory (LT) which neglects interactions between the fluc-
tuations. Since �dT2� is extremely small, quantitative ex-
perimental verifications could be obtained only much more
recently [7,8].

Closer to the bifurcation, LT should break down because
of nonlinear interactions between the fluctuations. In anal-
ogy to critical phenomena in equilibrium systems, one then
expects a modified “critical” (rather than “mean-field”) be-
havior of the system. For RBC it was predicted by Swift
and Hohenberg [6] that the fluctuation interactions should
lead to a first-order transition, i.e., to a subcritical bifurca-
tion. Experimentally this interesting phenomenon has been
out of reach so far because under most circumstances it is
expected to become noticeable only within a few parts per
million of the bifurcation point [6,9].

A more favorable system to study the influence of ther-
mal noise in pattern-forming systems is electroconvection
(EC) in a nematic liquid crystal (NLC) [10]. Here an al-
ternating voltage of amplitude V is applied to a cell filled
with NLC. The role of the temperature difference is now
taken by V , and EC occurs for V . Vc. For NLCs the ef-
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fects of thermal noise are larger than for RBC because of
the small elastic constants of the NLC [11]. This already
large susceptibility is enhanced even further in EC by the
very small thickness of the cell. Indeed, already a decade
ago it was possible to visualize the fluctuating convective
patches and to measure their amplitudes below onset [12].
Good agreement with LT was found. We do not know of
a detailed nonlinear theory for this system. Its critical be-
havior need not be the same as that of RBC because the
anisotropy of the NLC suggests that it may belong to a dif-
ferent universality class. Although one expects the criti-
cal region to be wider than for RBC, its study had been
beyond experimental resolution heretofore.

We report results for thermally induced fluctuations of
the director angle u of the NLCs I52 and “Merck Phase
V” (MPV) both far below and very close to the primary
supercritical bifurcation. For I52 we measured the mean
square �u2�, averaged over time as well as over all fluc-
tuating modes of the system as described in [13,14]. In
the case of MPV, however, we measured the time averaged
mean-square amplitudes �A2� of the fluctuations of only
the x component of the critical mode of the system, as de-
scribed in [15]. In agreement with earlier work [12–14],
our data well below Vc are consistent with �u2� ~ e

2g
mf

(�A2� ~ e
2g0

mf ) with g � 1�2 (g0 � 1) as predicted by
LT for the multimode (single-mode) measurements (here
emf � V 2�V 2

c,mf 2 1). The data extrapolate to a mean-
field threshold at Vc,mf. However, closer to the bifurcation
we find �u2� ~ e2g with e � V 2�V 2

c 2 1, a smaller g �
0.22 (g0 � 0.5) for the multimode (single-mode) measure-
ments, and a shifted threshold Vc . Vc,mf. So far as we
can tell the bifurcation remains supercritical unlike the pre-
diction for RBC. We suggest that an explanation of this
deviation from LT may be found in the nonlinear interac-
tions of the fluctuations. Unfortunately there is as yet no
detailed theory for the critical behavior of this system with
which our results could be compared.
© 2000 The American Physical Society
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In the experiments reported here we used samples with
planar alignment. The I52 �4-ethyl-2-fluoro-49-[2-(trans-
4-pentylcyclohexyl)ethyl]-biphenyl� was doped with 4.3%
by weight of molecular iodine (I2) and studied in the ap-
paratus and by the cell-assembly techniques of Ref. [14].
The bifurcation to EC is supercritical over a range of the
electrical conductivity s [16]. Above the bifurcation the
pattern consists of chaotic traveling zig and zag modes.
The cell had a thickness d � 28 6 1 mm. We changed
s by varying the temperature (see Table I) and measured
s at a frequency of 50 Hz and V � 2.0 V. For the experi-
ment we used a frequency of 25 Hz. At each voltage we
waited 110 s, and then took 128 images 10 s apart. The
combination of cell thickness, I2 concentration, and drive
frequency assured that the “worm” state [17] did not occur
for s . 4 3 1029 V21 m21. For MPV we used a fre-
quency of 30 Hz and d � 23.1 6 0.2 mm [18].

Figure 1 shows two examples of single snapshots for
I52 at different e and for s � 7.8 3 1029 V21 m21. Far
below onset [Fig. 1(a)] we see patches of patterns with a
small correlation length. The patterns are very weak, al-
though dividing by a background image, Fourier filtering,
and using the full available grey scale uncovers the ex-
pected zig and zag modes. Much closer to onset [Fig. 1(c)]
a pattern containing extended patches of zig and zag rolls
is found.

For the multimode analysis with I52 we closely
followed the method of Ref. [14] to extract �u2�. We
calculated Ii�x, e	 � Ĩi�x, e	�Ĩ0�x, e	 2 1 for each image
Ĩi�x, e	, i � 1, . . . , 128. Here x � �x, y	 are the coordi-
nates in real space and Ĩ0�x, e	 is a background image
obtained by averaging 128 images at the same e. For
each Ii�x, e	 we derived the structure factor (the square
of the modulus of the Fourier transform) Si�k, e	 and
averaged 128 Si�k, e	 to get S�k, e	, where k � �kx , ky	
is the wave vector. Figures 1(b) and 1(d) are examples. In
agreement with Refs. [13,14,18] we see two pairs of peaks
corresponding to two sets of rolls oriented obliquely to
the director which get sharper and larger as we approach
the onset of convection. The two modes are called zig and
zag modes and correspond to those of the extended chaos
above onset [16]. We computed the total power under the
peaks of S�k	 as described in [14], and then converted it
to �u2� [19] [see also Eq. (5) in [14] ].

Figure 2(a) shows �u2�1�2 as a function of V 2 for I52 and
s � 7.8 3 1029 V21 m21. It is small for low voltages

TABLE I. Parameters and results for I52 at different tempera-
tures q .

q 109s V 2
c V 2

c,mf u0 1�S1

�±C	 �V21 m21	 �V2	 �V2	 mrad (rad22)

38 5.16 160.85 155.3 1.83 1.77
42 6.36 137.98 135.4 1.81 3.87
46 7.76 124.50 122.7 1.79 7.63
50 9.51 114.77 114.0 1.84 9.17
but then increases sharply above onset. As expected [16],
the primary bifurcation is supercritical in this intermediate
region of s, and the points above onset follow a square-
root law. The square-root fit above onset [dotted line in
2(a)] extrapolates to �u2�1�2 � 0 at V 2

c .
In Fig. 2(b) we plotted �u2�22 versus V 2. The data

are the same as those in Fig. 2(a). For V 2 # 113.6 V2

they can be fitted by a straight line. This is in agreement
with LT, which gives �u2� � u

2
0e

21�2
mf . The straight-line fit

shown in the linear region of Fig. 2(b) yielded V 2
c,mf �

122.685 V2 and u0 � 1.8 mrad. The value of u0 is in
fairly good agreement with the approximate theoretical es-
timate u0 � 2.8 mrad [see Ref. [12] and Eq. (6) in [14]].
Hence, the measured mean-square director-angle fluctua-
tions are consistent with thermal noise. The mean-field
threshold V 2

c,mf is well below the actual bifurcation point
at V 2

c . A similar, albeit somewhat smaller, shift was found
for MPV [see Fig. 3(b)].

Figure 2(b) reveals that the points close to but below on-
set deviate from the prediction of LT. Similar deviations
were observed over a range of s (see Table I), as well as
for MPV. To illustrate the behavior close to the bifurcation,
we plotted log��u2�	 versus log�jej	 in Fig. 3(a) for I52 and
s � 7.8 3 1029 V21 m21. For e , 0 (open circles) the
data points far away from Vc (far right of the figure) follow
the behavior predicted by LT (short-dashed curve). Note
that in a plot where the horizontal axis is log�jemfj	 this
should give a straight line with a slope of 21�2 for the
multimode analysis used here. The line is curved and di-
verges at the e value corresponding to V 2

c,mf. Closer to

FIG. 1. Background-divided and Fourier-filtered snapshots of
size 502 3 502 mm2 (a),(c), and the central part 222.4�d #
kx , ky # 22.4�d of the time averaged structure factors S�k	
(b),(d) for I52. (a),(b) e � 20.104. (c),(d) e � 20.001. The
director is horizontal.
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FIG. 2. (a) The root mean square of the director-angle fluc-
tuations �u2�1�2 and (b) the inverse square of the mean square
of the director-angle fluctuations �u2�22 for I52 and s � 7.8 3
1029 V21 m21 as a function of the square of the driving voltage.
The dotted lines are a fit of a straight line to �u2� �V 2	 in the
range 124.53 V2 # V 2 # 125.15 V2. They extrapolate to V 2

c �
�124.50 6 0.02	 V2. The dashed curves are a fit of a straight
line to the data in (b) in the region 85 V2 # V 2 # 114 V2 where
LT applies. In (b) the intercept of the dashed straight line with
the horizontal axis gives V 2

c,mf � �122.7 6 0.7	 V2.

onset the data points deviate from the linear prediction.
We find a crossover to a regime which can be described
by a new power law: �u2� ~ e2g with g � 0.22. In or-
der to characterize this crossover, we calculated the local
exponent geff�e	 from fits to data spanning half a decade
of e. Figure 3(c) shows that geff matches the expected
g � 0.5 in the linear region at large jej. As we approach
the onset of convection, the exponent approaches a plateau
of 0.22. Thus we plotted a line in Fig. 3(a) with the slope
of 20.22 (straight solid line) and found good agreement
with the data over a wide range.

Data for MPV are shown for comparison in Fig. 3(b).
As mentioned above, they are based on a single-mode
analysis. Far below the bifurcation they yield the expected
LT exponent g0 � 1 [note that the resolutions of the ver-
tical scales of Figs. 3(a) and 3(b) differ by a factor of 2 so
that the corresponding slopes look equal]. With decreasing
jej there is a crossover to a smaller exponent close to g0 �
0.5, which is consistent with the crossover from g � 0.5
to g � 0.22 found from the multimode analysis for I52.

For I52, measurements similar to those discussed above
were made at four different conductivities (see Table I).
Figure 4 shows the results in the vicinity of onset. The
data for e . 0 can be fit by �u2� � S1�s	e as expected
for a supercritical bifurcation. The slope S1 increases as
s decreases. In Fig. 5 we show 1�S1 (open circles) as a
function of s. The data suggest that 1�S1 vanishes at st �
3756
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FIG. 3. (a) Mean square �u2� for I52, averaged over all modes
and over 128 images, of the director angle as a function of log�jej	
(open circles: e , 0, solid squares: e . 0). Short-dashed
curve: fit to data in the linear region from Fig. 2(b). Straight
solid line: fit for e , 0 in the range 23.31 # log�jej	 # 22.13.
It yields g � 0.22 6 0.01. The uncertainty of V 2

c leads to an
additional uncertainty for g of about 60.02. Dotted line: fit to
data above onset from Fig. 2(a). Vertical dashed line: location
of Vc,mf along the e axis. (b) Mean square �A2� of single-mode
fluctuation amplitudes (arbitrary scale) for MPV as a function
of log�jej	. The lines and symbols have meanings equivalent to
those in (a). (c) Effective local exponent geff of �u2� in (a) for
e , 0. It was obtained from fits within a sliding window cover-
ing half a decade of e. Dashed horizontal line: g � 0.5. Solid
horizontal line: g � 0.22 as suggested by our data at small jej.

4.0 3 1029 V21 m21. This is consistent with a tricritical
bifurcation at st , with a transition from a supercritical to
a subcritical bifurcation as s decreases below st . The
results for 1�S1 are consistent with recent weakly nonlinear
calculations [20].

FIG. 4. Mean square �u2� of the director angle u close to on-
set as a function of e for different s. Straight dotted lines
are fits above onset. Open circles, solid circles, open squares,
and solid squares correspond to s � 5.2 3 1029, 6.4 3 1029,
7.8 3 1029, and 9.5 3 1029 V21 m21, respectively.
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FIG. 5. The inverses of the initial slope S1 (open circles) of
�u2� above onset, and of the onset shift De (solid squares: this
work, open square: from Ref. [14]) as a function of s. The
solid line is a fit to 1�S1. Its intercept with 1�S1 � 0 suggests
a tricritical point at st � 4.0 3 1029 V21 m21. A straight-line
fit to 1�De also passes through zero near st .

In Fig. 5 we also show 1�De where De �
�Vc 2 Vc,mf	�Vc. Here the solid squares are from the
present work, and the open square is from [14,21]. The
dashed straight line is a least-squares fit to the data. Within
our resolution it passes through zero at st , suggesting that
the critical region broadens strongly near st [22].

In this paper we showed that the fluctuations below on-
set of electroconvection reveal a crossover as the bifurca-
tion is approached from the behavior predicted by linear
theory to a different region characterized by a smaller ex-
ponent and a shifted threshold. In analogy to equilibrium
phase transitions, we suggest that this phenomenon may
be attributable to nonlinear interactions between the fluc-
tuations. Equivalent behavior was found in the two NLCs
I52 and MPV, even though we used very different methods
of analysis for the two cases.
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