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Within the frame of linear stability theory an analytical method is presented for the
normal �eld instability in magnetic 
uids. It allows to calculate the maximal growth
rate and the corresponding wave number for arbitrary values of the layer thickness and
viscosity. Applying this method to magnetic 
uids of �nite depth, the results are quanti-
tatively compared to the wave number of the transient pattern observed experimentally
after a jumplike increase of the �eld. The wave number grows linearly with increasing
induction where the theoretical and the experimental data agree well.

Introduction. The most striking phenomenon of pattern formation in mag-
netic 
uids is the Rosensweig or normal �eld instability [1]{[4]. Above a threshold
Bc of the induction, the initially 
at surface exhibits a stationary hexagonal pat-
tern of peaks. Typically, patterns are characterized by a wave vector q whose
absolute value gives the wave number q = jqj. There are few but contradictory ex-
perimental observations. In experiments where the �eld is increased continuously,
there are reports about constant [1, 5] as well as about varying wave numbers [6].
Notably, all these observations are of entirely qualitative character.

All qualitative observations refer to the �nal arrangement of peaks. The �nal
stable pattern, resulting from nonlinear interactions, does not generally correspond
to the most unstable linear pattern. Such a pattern should grow with the maxi-
mal growth rate and should display the corresponding wave number. Since both
quantities are calculated by the linear theory, the most unstable linear pattern has
to be detected and measured experimentally for a meaningful comparison between
theory and experiment.

1. Theory. A horizontally unbounded layer of an incompressible, noncon-
ducting, and viscous magnetic 
uid of thickness h and constant density � is con-
sidered. The 
uid is bounded from below by the bottom of a container made of
a magnetically impermeable material and has a free surface with air above. The
electrically insulating 
uid justi�es the stationary form of the Maxwell equations,
which reduce to the Laplace equation for the magnetic potentials in each of the
three di�erent regions. It is assumed that the magnetization of the magnetic 
uid
depends linearly on the applied magnetic �eld, M = (�r � 1)H, where �r is the
relative permeability of the 
uid.

In a linear stability analysis, all small disturbances from the basic state are
analysed into normal modes, i.e., they are proportional to exp[�i(! t � q r)]. If
Im(!) > 0, initially small undulations will grow exponentially and the originally
horizontal surface is unstable. Therefore it has been established to denote ! as
growth rate, which is in fact true only for its imaginary part in the chosen normal
mode ansatz. Following the standard procedure, the linear stability analysis leads
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to the dispersion relation [7]{[9] (all formulas in the references are equivalent to
each other)
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where �0 is the permeability of free space, � the kinematic viscosity, ~q =
p
q2 � i!=�,

and
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: (2)

The condition of marginal stability, ! = 0, de�nes the threshold where ! changes
its sign and therefore the normal �eld or Rosensweig instability appears. With
! = 0, Eq. (1) reduces to
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In the limit of an in�nitely thick layer (h ! 1), the critical induction and the
critical wave number are [1]
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These critical values apply to both viscous and inviscid magnetic 
uids due to the
static character of the instability.

1.1. In�nite layer. The starting point of the analysis is the determination of
the parameters for which the dispersion relation (1) for an in�nitely thick layer
[10]
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has solutions of purely imaginary growth rates. Dimensionless quantities are in-
troduced for all lengths, the induction, the time, and the viscosity
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B
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; (6)
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where tc is the so-called capillary time. The real part of Eq. (5) reduces for �! = i�!2
to

f
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where the � sign corresponds to �!2 ? 0. The parameters �� and �B determine the
solution of this implicit equation for the variables �q and j�!j. For supercritical in-
ductions, the solutions of Eq. (8) have a maximum in the growth rate �!m = i �!2;m
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Fig. 1. Maximal wave number �qm as a function of the supercritical induction �B for

di�erent viscosities. �qm is a monotonously increasing function of �B with the exception

�qm = 1 [10] in the case of in�nitely large viscosities (lower dot-dashed line). In the

limit of an inviscid 
uid (upper dot-dashed line) the dependence of �qm on �B is given by

�qm = (1=3)(2 �B2 +
p
4 �B4 � 3 ) [7].

at �qm. The wave number with the maximal growth rate is de�ned by @�!2=@�q =
@j�!j=@�q = 0. Since j�!j is given implicitly by f

�
(�q; j�!j; ��; �B) = 0, the maximal

growth rate results from @�qf+ = 0. This condition gives a second implicit function
whose speci�c form is given in [11]. The cross section of the solutions of f+ = 0
and @�qf+ = 0 gives j�!mj and �qm, which is shown for di�erent viscosities in Fig. 1.
For all �nite viscosities, the wave number �qm is not constant, i.e., for �nite viscosi-
ties �qm depends on the external control parameter �B. With increasing viscosity �qm
varies less with increasing induction. For small viscosities �qm depends linearly on
�B if �B is not too large. The analysis reveals that only in the case of in�nitely large
viscosities a constant wave vector of maximal growth �qm = 1 can be expected. The
experimental observation in [1, 5] cannot be explained by the result of an asymp-
totic analysis [10] in which the case of an in�nitely viscous 
uid was considered.
Experimental 
uids [6, 12] show a viscosity of �� = 0:037 (� ' 6:4� 10�6m2 s�1),
i.e., realistic magnetic 
uids tend rather to the limit �� ! 0.

1.2. Finite layer. Since the experiments are performed with a vessel of �nite
depth, the analysis presented in the preceding section has to be applied to magnetic

uids of �nite thickness. The implicit equation
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Fig. 2. Scaled maximal wave number q̂m (a) and scaled maximal growth rate !̂2;m (b)

as a function of the scaled supercritical induction B̂. The data are calculated for h = 100

mm (Æ), 50 mm (�), 10 mm (+), 4 mm (�), 2 mm (�). For h � 4 mm, the data are

�tted by q̂m = 3:32B̂ � 0:10
p
B̂ for q̂m [solid line (a)] and by !̂2;m = 1:16

p
B̂ + 2:95B̂

for !̂2;m [solid line (b)]. Small deviations from the generic behaviour can be seen for

h = 2 mm (inset). Material parameters of EMG 901: �r = 4:0, � = 1:53 � 103 kg�m�3,

� = 6:54 � 10�6 m2
�s�1, and � = 2:27 � 10�2 kg�s�2.

for the variables q and ! contains now the additional parameter h. The in
uence
of the layer thickness h on the solution were studied in detail in [11]. This study
displayed that the wave number of maximal growth qm is less sensitive to changes
in the layer thickness than the maximal growth rate !2;m.

To analyse the behaviour of !2;m and qm on B and h, again the cross section
of the solutions of f+ = 0 and @qf+ = 0 has to be determined. Through the
implicit character of the functions, a general analytical expression cannot be given
for the dependence of qm and !2;m on �, B and h. Alternatively, a two-parameter
�t is tested, which describes the generic behaviour of qm and !2;m on B and h over
a wide range of layer thicknesses. An excellent agreement is achieved for h � 4mm
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by

q̂m = 3:32B̂ � 0:10
p
B̂ for 0:005 � B̂ � 0:4 ; (10)

!̂2;m = 1:16
p
B̂ + 2:95B̂ for 0:005 � B̂ � 0:4 (11)

(see Fig. 2), where B̂ = (B � Bc;h)=Bc;h and q̂m = (qm � qc;h)=qc;h denote the
scaled distances from the critical values. The dimensionless growth rate is given
by !̂2;m = !2;mtc. For small B̂, the behaviour of q̂m is only weakly nonlinear
whereas the behaviour of !̂2;m is determined by the square-root term. A careful
inspection of the data reveals that for h = 2 mm (�lled circles), small deviations
from the proposed �ts appear: q̂m grows linearly over the entire B̂ region [see inset
in Fig. 2 (a)]. Thus h = 2 mm indicates the lower limit of the validity of (4, 5)
with respect to the layer thickness.

2. Experiment and Comparison with Theory. Let us start with a
sketch of the experimental setup. A more detailed description can be found in
[11]. We place a cylindrical Te
onr vessel with a diameter of d=12 cm and a
depth of 2 mm, completely �lled with magnetic 
uid (EMG 909), in the center
of a pair of Helmholtz coils. A CCD-camera is positioned above the vessel in the
center of a ring of LEDs. By this construction only an inclined surface of proper
angle will re
ect light into the camera. In the theoretical analysis the supercriti-
cal magnetic �eld is assumed to be instantly present, thus in the experiment the
magnetic �eld has to be increased jump-like from a subcritical value B0 to the de-
sired value B. For all measurements B0 was �xed to 133 �10�4T. The induction is
recorded by a Siemens Hall-probe (KSY 13) with short relaxation time, positioned
immediately under the vessel.

Fig. 3. Plot of the wave number q versus the magnetic induction B. The open

squares give the experimental values extracted from the circular deformations, examples

of which are given in the insets a), c). The solid line displays the theoretical results for

the material parameters of EMG 909: � = 1:53 � 103 kg �m�3; � = 6:54 10�6 m2
� s�1, and

� = 2:27 � 10�2 kg � s�2, using �r ' 1:85 as a �t{parameter. The open circles denote the

wave number of the �nal hexagonal patterns (see inset b), c) e.g.) calculated via a �t of

the central hexagonal structure.
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Fig. 3 a) shows circular surface deformations taken 180 ms after a jump like
increase of the induction. After this transient concentric arrangement a hexagonal
pattern of Rosensweig peaks evolves (see Fig. 3 b)). The evolution of the pattern
can be understood as a transition from a one dimensional unstable solution [13]
to a stable hexagonal one (see Fig. 2 in [3]).

Next we focus on the experimental results displayed in Fig. 3, where the wave
number q is plotted versus the magnetic induction B. Each open square denotes
the wave number extracted from a picture taken during a jump{like increase of the
magnetic �eld to B > Bc. The estimated maximal errors for q of �4:2% and for
B of �0:9% are not plotted for the purpose of clarity. Using �r as a �t{parameter
gives the solid line with �r ' 1:85. The �tted value for �r di�ers by 2:8% from
the value given by Ferro
uidics, a deviation which is well within the tolerance of
production speci�ed by Ferro
uidics. Obviously there is a rather good agreement
between the experimental results and the theoretical graph. In contrast to this
linear dependence we �nd a constant behaviour for the wave number of the �nal
hexagonal pattern, which is marked by the open circles. This measured constant
value con�rms the qualitative observations for the �nal pattern in [1, 5]. The
experimental data in Fig. 3 show convincingly the di�erence between the linear
and nonlinear stages of the pattern forming process.

To conclude, we have presented an analytical method which allows to cal-
culate the wave number of maximal growth for any combination of experimental
parameters. It has been applied to a liquid layer of 2mm thickness. We have
demonstrated that the transient pattern is the most suitable one to be compared
to the linear theory. The linear increase in the appearing wave number, both
in experiment and in theory, is our main outcome. The induction independent
behaviour of the �nal wave number is in agreement with previous observations.
However, it is correlated with a nonlinear state which should not be compared
with a linear theory.
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