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Transition from Symmetric to Asymmetric Scaling Function before Drop Pinch-Off
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The drop pinch-off at a nozzle is studied experimentally for a glycerin-water mixture in surrounding
air. The neck diameter of the fluid shrinks with constant velocity. After a distinct transition point, the
shrink velocity switches to a smaller value. Before that transition point, the shape of the neck can well
be described by a symmetric scaling function, as obtained from Stokes-flow theory of drop formation.
This function gives way to an asymmetric scaling function in the final stage before pinch-off.
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The phenomenon of drop formation had been investi-
gated by Mariotte as early as 1718 [1]. Since then, the
first stage of the instability has attracted most of the in-
terest, because it is accessible by classical linear stability
analysis [2]. In the past couple of years, however, attention
has switched to the flow regime in the immediate vicinity
of the pinch-off of the tiny liquid thread connecting two
neighboring drops. This is mainly due to the practical im-
plications an understanding of this final stage of drop for-
mation can have to a lot of technical applications such as
spraying and ink-jet printing. A recent review has been
given by Eggers [3].

The first theoretical analysis of the physics in the
pinch-off region was conducted by Lee [4]. Starting from
the Navier-Stokes equation, he gave a one-dimensional
description of the drop shape and the velocity field for
inviscid liquids. Eggers [5] considered the same for
the case of a viscous fluid with the additional ansatz of
self-similarity. As a result, he obtained universal scaling
functions ®(¢) and W(¢) describing the drop profile and
the velocity field inside the neck for a Navier-Stokes flow
just before the pinch-off. According to Eggers [5] the
drop profile, i.e., the radius % of the thread as a function
of position z and time ¢, is given by

h(z,1) = L|'|®(€). o))

Here t' = (to — t)t, ! is the scaled time distance to the
pinch-off taking place at t = t and [, = v*0o ! and
t, = v’2?c % are an intrinsic length and time where v,
@, and o denote the kinematic viscosity, the density, and
the surface tension of the fluid, respectively. The similar-
ity variable is written by ¢ = (z — zo)l, '|t'| . Taking
into account the full Navier-Stokes equations, Eggers ob-
tained scaling functions which are asymmetric with respect
to the pinch-point zp, and a scaling exponent of 8 = 0.5
[5]. A comparison of that theory with experimental data
was presented by Kowalewski [6]. In the last stage be-
fore pinch-off, the similarity solution ® becomes unstable
against the formation of satellite drops [7,3]. Brenner et al.
[8] have found numerically an infinite series of competing
higher order solutions. These solutions have not yet been
observed.
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A different set of scaling functions was derived by Pa-
pageorgiou for the case of a viscosity dominated flow [9].
For initially small Reynolds numbers and far away from
the pinch point, the inertial terms can be neglected and the
flow is governed by the Stokes equation. Here, the scaling
functions are symmetric with respect to zo and the argu-
ment & = £(z — z0)l, '|¢'| P is determined only up to an
arbitrary normalization length & [9,3]. Because the expo-
nent (3 is close to 0.175, the axial scale z contracts at a
much slower rate than it does for the case of Eggers’ so-
lution. However, with decreasing time distance ¢’ to the
pinch point and increasing axial velocity, the assumption
of negligible inertia is no longer satisfied. Thus the sym-
metric solution must finally give way to the asymmetric
one. When and how this takes place is unresolved in ex-
periment and theory [3].

In the present paper, we demonstrate this transition ex-
perimentally. The profiles of drops of a glycerin-water
mixture falling in air are analyzed quantitatively utilizing
the symmetric and asymmetric scaling functions. For the
temporal evolution of the neck radius we obtain the two
predicted scaling regimes, separated by a distinct transi-
tion point.

The experimental setup is shown in Fig. 1. A syringe
pump serves for a constant flow rate of 0.5 mlmin~!. The
syringe is connected via a Verdoprene flexible tube to a
Hirschmann pipette tip at whose lower part the drop for-
mation occurs. The outer diameter of the nozzle wetted by
the fluid amounts to 1 mm at the orifice. Background il-
lumination is provided with a cold light source diffused
by a frosted glass. A high-speed-CCD camera (Kodak
Ektapro High-Spec Motion Analyzer) detects the falling
drops with 239 X 192 pixels of 32 X 32 um at record
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FIG. 1. A schematic diagram of the experimental setup.
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rates between 1000 and 6000 frames/s. An objective with
a focal distance of 105 mm and an aperture of 37.5 mm
diameter maps the drop onto the CCD with a magnifica-
tion of 2.5. The frames are stored in the camera controller
and analyzed by digital image processing. The fluid in-
terface is detected as the maximum of the gradient of the
image intensity, with an interpolation technique to opti-
mize the spatial resolution. The fluid is technical glycerin
with a water content of 16 wt%. The material parame-
ters amount to 1 = 99 mPas, o = 64.6 mNm~!, and
o0 = 1.25 gem™3, whereas the first two were measured
with a rotational viscometer and a bubble pressure ten-
siometer. The values of the intrinsic length and time are
[, = 0.12 mm and ¢, = 0.19 ms.

Figure 2 shows a sequence of four pictures focusing at
the immediate vicinity of the pinch point. The growing
drop at the end of the pipette tip becomes unstable against
gravity and begins to detach from the origin of the nozzle.
The droplet appears fuzzy due to its downward movement.
The coordinate system has been chosen according to the
first picture in Fig. 2. In this frame of reference the point of
pinch-off is situated at z = 0 and the orifice of the nozzle
is positioned at about z = 2 mm.

In Fig. 3 we present the profiles of a drop as extracted
from the original images obtained at a record rate of
6000 frames/s, with only every second line shown. The
time proceeds from the outermost curve at the right-hand
side to the one at the left-hand side. Drop formation
is initiated by the thinning and elongation of the thread
connecting the drop with the remaining fluid at the nozzle.
The downward movement of the position z;, of the neck
is accompanied by a transformation of the profile from a
symmetric to an asymmetric one in a vicinity of zZpyin.

The temporal evolution of the neck radius is expected
[5,9,3] to be described by a linear function

hmin = M(a)s(T(VQ)_l(fo - t)~ (2)

U(y)s denotes the predicted dimensionless shrink velocities.
From Eq. (1) it can be seen that its value corresponds to the
minimum of the scaling function ®, namely, u; = 0.071
for the symmetric scaling function @ [9] and u,s = 0.030
for the asymmetric one @, [3,5], respectively.

To compare with those predictions, we determine the
neck radius hy,, by fitting the experimental data with a

FIG. 2. The neck of a falling drop of a glycerin-water mixture
before pinch-off. The time between consecutive images and the
exposure time is 1 ms.
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parabola in the immediate vicinity (*7 pixels correspond-
ing to 175 um) of their absolute minimum. The result of
20 measurements is presented in Fig. 4(a). The data show
two different shrink velocities in two time intervals. Each
interval can be fitted by a linear function. According to
Eq. (2), the neck radius decreases first with the shrink ve-
locity v = 45.3 mm/s in good agreement with the pre-
dicted value vy = 46.3 mm/s for a viscosity dominated
flow. From the measured shrink velocity of the profile
and the speed of the neck, we estimate a Reynolds num-
ber Re based on the maximal flow velocity in the vertical
direction. The temporal evolution of that number is pre-
sented in Fig. 4(b). Because of the increase of Re, the
theoretical assumption of negligible inertia appropriate for
the early stages of the flow evolution is at a certain point
no longer justified. Attt = —2 ms and Re = 0.3 a tran-
sition takes place between the two flow regimes. The neck
radius shrinks now with v, = 18.8 mm/s until the border
of our resolution is reached. Again the experimental value
v, and the theoretical one v, = 19.8 mm/s are in good
agreement.

We measure the asymmetry of the profiles with respect
to the neck at zmin by

a = < fh(zmin +2) = h(zmin — 2')d7’ >2
fh(zmin + Z/) + h(Zmin - Z/) — 2Nmin dz’ '

a is zero for symmetric profiles and positive for asym-
metric ones; it thus serves as an order parameter for the

1.6 a

1.2 a
E
g

< 08 a
=
2P
)
<

04 a

0 - -

0 60 120 180

thread radius h (um)
FIG. 3. The height z and the thread radius & as extracted from

the original images. The outermost curve at the right-hand
side (left-hand side) has been taken 3.83 ms (0.5 ms) before
the pinch-off. The dotted lines are a guide for the eye.
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FIG. 4. The neck radius as extracted from parabolic fits to 20
experimental runs is marked by the open squares (a). The dotted
line and the dashed line represent the theoretical prediction and
a linear fit for the viscous-dominated flow regime [9]. The
theoretical prediction and the linear fit for the Navier-Stokes
flow [5] are marked by the dash-dotted line and the solid line,
respectively. The error bars indicate the limited resolution due
to the finite pixel size of the camera. Re in (b) represents the
flow velocity in vertical direction. The asymmetry of the profiles
is quantified in (c). The error bars in (b) and (c) indicate the
standard deviation of the 20 measurements.

transition described here. The time dependence of «
shown in Fig. 4(c) again indicates that this transition takes
place around ¢t = —2 ms.

Once the different flow regimes have been discrimi-
nated, we check whether Eq. (1) is able to characterize
the full profiles in the corresponding regimes by fitting to
hz,t) = hmin/Pmin®[(z — Zmin)a1], where ® represents
@, or O, and Py,i, the minimum of this scaling function.
We use the time dependent position z,, of the neck radius
as determined by the previous fit as a transformation to the
frame comoving with the neck, thus taking into account the
fluid motion caused by gravitation, which is not considered
in the theory. Because of this force, the asymmetry has a
well-defined direction in our experiment. The parameter
humin 18 determined by the previous fit as well. The remain-
ing free parameter a; describes the stretching of the profile
in time.

A priori it is not clear in which region in real space
the scaling functions are valid. We restrict the area to
a vicinity of the minimum where the slope is smaller
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than 0.5, because the slender jet approximation is not ex-
pected to apply for large slopes. If the standard devia-
tion is larger than an arbitrarily chosen value of 0.7 um,
those data points with the largest distance from the mini-
mum are disregarded. The weighting factor for the fit
decreases with increasing distance from the neck accord-
ing to 1/y/[(h/hmin) — 1P + [(z/zmin) — 1P + 1. This
two-stage algorithm (namely, to use a weighted fit after
the minimum of the profile was determined independently)
reflects the difficulty of fitting a function which is cor-
rect only locally, and turned out to be the most robust
procedure.

The result of the fit procedure is presented in Fig. 5
for three representative profiles. The fit by the symmetric
(asymmetric) scaling function is denoted by dashed (solid)
lines. In contrast to Fig. 3 the plot is limited to the vicin-
ity of the neck, where the fitting criteria apply. At the
beginning of the observed time interval, at t = —3.83 ms
[Fig. 5(a)], a good agreement between the experimental
data and ® can be found. At r = —2.17 ms [Fig. 5(b)],
the quality of the matching is about the same for the two
theoretical predictions @5 and ®,;. Immediately before
the pinch-off at + = —0.5 ms [Fig. 5(c)], the measured
profile is better described by ®,s, the prediction for a
Navier-Stokes flow. Thus during the pinch-off the drop
profile changes from a symmetric to an asymmetric one,

thread radius h (Wwm)

0.45 0.3 0.15 0
height z (mm)

FIG. 5. The thread radius h(z,f) at t = —3.83 ms (a),
—2.17 ms (b), and —0.5 ms (c) before the pinch-off. The fitted
O, (d,) is indicated by the dashed (solid) line.
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FIG. 6. The intrinsic length (a) and time (b) as extracted from
the fit parameters of Eq. (1). The calculated values according to
@O (P,) are shown as open (solid) symbols, respectively. The
horizontal lines mark the measured values, and the vertical ones
the transition point 7.

which indicates the transition from the viscous-dominated
to the inertia-dominated flow.

To check the theoretical predictions for the temporal
evolution of the profiles, we investigate the develop-
ment of the fit parameters in time. More precisely,
from the fit to ®, we extract [fit =1/ (apal) and
tlf/it = (tg — t)/(a0a1)2 with ay = hmin/q)min- The corre-
sponding values are shown in Fig. 6 as solid symbols. In
the Stokes-flow regime, i.e., before the vertical line which
marks the transition point ¢7, the values are considerably
smaller than the ones determined independently from
the measured fluid parameters (horizontal lines). They
increase and have a flat maximum in the regime of the
Navier-Stokes flow, where ®,s applies. Lt and fit are
expected to be constant within the framework of the
theory. The deviation from the measured value /}'°* and
1'% before the transition point is explained by the fact
that @, is not the appropriate scaling function in this
regime. After this transition an agreement within 20%
can be observed. The results from a fit to the symmetric
function are also indicated in Fig. 6. In contrast to @,
the width of ®; can be derived only up to an arbitrary
normalization length &, which is determined by the initial
condition of the experiment [9,3]. We thus determine
& = aj(t)I™®[(ty — t)/t™%]# by taking the mean value
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within the first 0.8 ms of the time interval shown in
Fig. 6. With that value of £, the intrinsic length and
time can be extracted by l,f,it = ao(aoalé_l)l/(ﬁ_l), and
it = (1 — 1) (aga; €NV B=D with the scaling expo-
nent 8 = 0.175. The results are shown as open symbols
in Fig. 6. During the longer part of the Stokes-flow regime
Ifit is constant; it increases at the transition point t1. After
tT the values scatter. In fact, some of the values do not
even fall in the range of the plot. This is explained by the
fact that a description by @ is not appropriate in the final
state before the pinch-off.

In conclusion, we have experimentally confirmed that
sufficiently far from the pinch-off the shrinking neck of a
glycerin-water mixture is well described by a Stokes-flow
description [9]. This refers both to the shape and the
shrink velocity of the neck radius. Immediately before
the pinch-off, a different shrink velocity and geometrical
shape as obtained for the case of a Navier-Stokes flow [5]
could also be corroborated. The transition from one flow
form to the other takes place at 7 = 10¢, and Re = 0.3.

Further measurements will have to unveil the viscosity
dependence of tr. Moreover, it seems important to replace
the surrounding air used in our experiment by other flu-
ids [10], because Lister and Stone [11] suggest a further
transition from Navier-Stokes flow to a two fluid Stokes
flow in this case. That transition has not yet been resolved
experimentally.
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