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Abstract. We consider a single spike of ferrofluid, arising in a small cylindrical
container, when a vertically oriented magnetic field is applied. The height of
the spike as well as the surface topography is measured experimentally by
two different technologies and calculated numerically using the finite element
method. As a consequence of the finite size of the container, the numerics
uncovers an imperfect bifurcation to a single spike solution, which is forward.
This is in contrast to the standard transcritical bifurcation to hexagons, common
for rotational symmetric systems with broken up-down symmetry. The numerical
findings are corroborated in the experiments. The small hysteresis observed is
explained in terms of a hysteretic wetting of the side wall.
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1. Introduction

Rotational symmetric systems with broken up-down symmetry become first unstable due to a
transcritical bifurcation to hexagons, which is hysteretic (Cross and Hohenberg 1993). Examples
are non-Boussinesq Rayleigh–Bènard convection (Busse 1962) and chemical reactions of the
Turing type (Turing 1952). The same is true when a layer of magnetic fluid is exposed to
a normal magnetic field. Above a certain critical induction Bc, a hexagonal pattern of liquid
spikes appears on the surface of the fluid. This striking phenomenon was first reported by
Cowley and Rosensweig (1967) and described in terms of a linear stability analysis. This
observation 40 years ago triggered numerous efforts to describe also the nonlinear aspects
of the phenomenon theoretically. Gailitis (1977), later Friedrichs and Engel (2001) and
Friedrichs (2002) and most recently Bohlius et al (2006) used the principle of free energy
minimization to predict the pattern ordering, wavelength and final amplitude of the peaks on an
infinitely extended surface. The numerical computations by Boudouvis (1987) and Boudouvis
et al (1987) predict quantitatively the hysteresis in spike height in unbounded ferrofluid pools.
Matthies and Tobiska (2005) calculate also the dynamics of an infinite periodic lattice of
peaks.

The experiments, however, are performed with limited amounts of fluid. A finite layer depth
in the vertical dimension has been incorporated into the theory by Friedrichs and Engel (2001).
According to Lange et al (2000), the infinitely deep limit is well approximated if the depth
exceeds at least the wavelength of the pattern. However, in the horizontal dimension the finite
container size has not been considered. Therefore, experimental realizations approximated this
limit of an infinitely extended layer by several different approaches. Abou et al (2001) used
a very large aspect ratio, whereas Gollwitzer et al (2007) employed an inclined container
edge. Richter and Barashenkov (2005) used a magnetic ramp to minimize the influence of the
border for the Rosensweig instability, whereas Embs et al (2007) independently applied it to the
Faraday instability in ferrofluid.

The question arises, what happens if the container size is intentionally reduced until
only a single spike is left. In this case, all symmetries are kept, nonetheless the character
of the bifurcation may change. Indeed, in experiments before the seminal work of Bacri and
Salin (1984), it was difficult to uncover a hysteresis due to the small container size.
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Table 1. Material properties of the ferrofluid APG 512A (Lot F083094CX) from
Ferrotec Co.

Quantity Value Error

Surface tensiona σ 30.57 ± 0.1 mN m−1

Density ρ 1236 ± 1 kg m−3

Contact angle with the container wall θc 10 ± 0.3◦

Viscosity η 120 ± 5 mPa s
Saturation magnetization MS 28.7 ± 0.1 k A m−1

Initial susceptibility χ0 1.2023 ± 0.005

aThe absolute error of the measurement is unknown. The error given here is taken from the
analysis by Harkins and Jordan (1930).

Although there have been numerous experiments in small containers merely because they
are simple and cheap, a systematic study of the influence of the constrained geometry on
the bifurcation is missing. One reason is that model descriptions which deal with the finite
container size are rare. So far, we know only the work by Friedrichs and Engel (2000) where
the free surface is modeled by a four-parameter function to fit the measurements by Mahr and
Rehberg (1998). In this case, a highly susceptible fluid still showed a hysteretic transition.

In the present paper, we demonstrate, that a transcritical bifurcation to hexagons, as found
by e.g. Gollwitzer et al (2007), becomes an imperfect supercritical bifurcation to a single spike,
if the container size is reduced sufficiently. This is the outcome of a numerical model which is
able to calculate the stable and unstable solutions for given container size and fluid parameters.
It also takes into account the side-wall effects, namely the wetting and the fringing field. We
compare the numerical results with our measurements of the surface topography. For the first
time, we apply two different techniques which are capable of recording the amplitude (Megalios
et al 2005) and also the full topography of the fluid surface (Richter and Bläsing 2001), to the
same experiment.

In the following two sections, we give an overview of the experimental methods.
Subsequently, we describe the numerical computations. Finally, we compare all three results.

2. Measurements of the material properties

We used the ferrofluid APG 512A (Lot F083094CX) from Ferrotec for all experiments. It
is based on an ester with a very low vapor pressure, suitable for vacuum pumps. It has an
excellent long-term stability. Over 1 year, the critical induction has not changed by more than
3%. In contrast to less stable magnetic liquids, the formation of agglomerates in the tips of the
Rosensweig spikes was not observed. After applying magnetic fields for an hour, the field was
switched off. Neither the visual inspection nor the x-ray images unveiled any agglomerates at
the site of the spikes.

The Rosensweig instability is a counterplay between gravitational and surface terms on the
one hand and magnetic forces on the other hand (Cowley and Rosensweig 1967). Therefore, a
set of basic material properties of the fluid is necessary for a comparison with the theory, namely
the surface tension σ , the density ρ and the magnetization curve M(H). These quantities are
summarized in table 1.
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Figure 1. The magnetization curve of the ferrofluid. The circles denote the
experimental values, the solid line is a fit with the model by Ivanov and
Kuznetsova (2001). The dashed line is a fit with the Langevin function, that is
valid only up to H / 10 k A m−1.

The surface tension was measured using a commercial ring tensiometer (LAUDA TE1).
This device wets a ring made from platinum wire, pulls it off the fluid surface and determines the
maximum force acting on the ring, from which the surface tension can be computed following
du Noüy (1919). According to an analysis by Harkins and Jordan (1930), the error for this
method is smaller than 0.25%, given that the density of the fluid and the geometry of the ring
are known with sufficient accuracy.

The density ρ was measured using a commercial vibrating-tube densimeter (DMA 4100
by Anton Paar). This device enables us to determine the density with an error of 0.01%.

The contact angle θc was determined with the contact angle system OCA 20 (Dataphysics)
by optical means. Three measurements were performed at the inner side wall of the container,
which was tilted by 90◦. The difference between advancing and receding angle could not be
measured in this way.

The magnetization curve M(H) of the ferrofluid has the biggest influence on the surface
pattern. It was meticulously measured using a fluxmetric magnetometer consisting of a
Helmholtz pair of sensing coils with 6800 windings and a commercial integrator (Lakeshore
Fluxmeter 480). The sample was held in a spherical cavity with a diameter of 12.4 mm.
This spherical shape ensures a homogeneous magnetic field inside the sample and an exact
homogeneous demagnetization factor of 1/3, which makes it possible to get accurate results
over the whole range of H . Figure 1 shows the magnetization curve of our ferrofluid. The
solid and the dashed line provide two analytic approximations to M(H). The dashed line is a
fit with the Langevin approximation for monodisperse colloidal suspensions and provides the
constitutive equation (Rosensweig 1985)∣∣M∣∣= p

[
coth(τ |H |) −

1

τ |H |

]
. (1)

Only the data points within a range of H ∈ [0 . . . 10 kA m−1] have been taken into account for
the estimation of the adjustable parameters p = 14.6 kA m−1 and τ = 0.24 m kA−1. A satisfying
fit of the whole curve with this equation is not possible, because real ferrofluids consist of
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magnetic particles with a broad size distribution (Popplewell and Sakhnini 1995). We therefore
make use of a model for dense polydisperse magnetic fluids put forward by Ivanov and
Kuznetsova (2001). The solid line in figure 1 displays the best fit with that model. The saturation
magnetization given in table 1 is extrapolated from there. This extrapolation indicates together
with the manufacturer information MS ≈ 26 kA m−1

± 10%, that this model is very well fitted
to our dense ferrofluid (cf Ivanov et al 2007).

3. Measurements of the surface pattern

We fill a cylindrical container, machined from aluminum, with the ferrofluid and expose it to
a magnetic induction ranging from B = 7.6 to 37.7 mT. The depth of the container amounts
to 20 mm and the diameter is 29.7 mm. This diameter is chosen by trial such that only one
single spike emerges in the center of the vessel for all magnetic inductions we apply. From
the weight of the filled container and the density, we calculate the amount of ferrofluid filled
into the container to V0 = 6.387 ml, which is equivalent to a filling height of D = 9.22 mm.
Two complementary experimental methods were used to determine the height of the emerging
spike in the center of the vessel: the x-ray method by Richter and Bläsing (2001) and the laser
method by Megalios et al (2005), which are described in the following.

3.1. X-ray method

The x-ray apparatus comprises a stable x-ray point source, that emits radiation vertically
from above through the fluid layer. The container is placed midway between a water cooled
Helmholtz pair of coils, which generate a dc magnetic field of up to 40 mT. Directly below the
container an x-ray camera with 512 × 512 pixels is located, which measures the transmitted
intensity at every pixel in one plane underneath the fluid (Richter and Bläsing 2001). This setup
is depicted in figure 2. The transmitted intensity of the x-rays is directly related to the height of
the fluid above every corresponding pixel. To calibrate this relation, we use a wedge of known
size, fill it with ferrofluid and place it in the empty container. In this calibration image, we
therefore know the height of the fluid. Figure 3 shows the calibration data from the wedge.
These are then fitted with an overlay of three exponential functions

I (h) = I0

3∑
i=1

αi exp(−βi h) (2)

as a practical approximation, denoted by the solid line in figure 3. Further details can be found
in Gollwitzer et al (2007).

After applying the inverse of (2) to an arbitrary image from the detector, we finally
end up with a complete three-dimensional surface topography of the filled container.
A reconstruction for one specific field is displayed in figure 4. A survey of the
surface topography for different fields is provided by the related movie, available from
stacks.iop.org/NJP/11/053016/mmedia.

3.2. Laser method

The laser method developed by Megalios et al (2005) enables precise, relative measurements of
the extrema of the surface topography. Figure 5 depicts the principle of operation. The container
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Figure 2. Sketch of the experimental setup (not to scale) for the x-ray method
by Richter and Bläsing (2001).

Figure 3. The transmitted intensity as a function of the fluid depth. The solid line
is a fit with equation (2).

with the ferrofluid is situated in a long solenoid, which generates a vertical magnetic field.
The solenoid is 33 cm long with an internal diameter of 13 cm and an external diameter of
14 cm. It has 1124 windings and produces up to 21 mT at its center, with a variation of less than
1% at the experimental region.

A laser beam is directed at the fluid surface through a semitransparent mirror, which splits
the beam into two parts. One part is deflected sideways onto a test point and serves as an
indicator as to whether the laser operates correctly (the dashed path in figure 5). The other
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Figure 4. Three-dimensional reconstruction of the surface of the single
spike at an induction of B = 22.69 mT. A related movie is available from
stacks.iop.org/NJP/11/053016/mmedia.

Figure 5. The experimental setup of the laser method by Megalios et al (2005).
The solid lines denote the path of the light reflected on the surface. The path
sketched by the dashed lines is used to verify that the laser operates properly.
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Figure 6. A small axisymmetric ferrofluid pool in the magnetic field.

beam is focused on the fluid surface and the reflected light is deflected by the semitransparent
mirror onto a photodiode detector (the solid path in figure 5).

The position of the focal spot can be adjusted by means of a micrometer screw. The
maximum of the reflected intensity is reached when the direction of the beam coincides with
the normal vector of the surface at the focus spot and the distance of the lens from the surface is
equal to the focal length. In normal operation, the beam is oriented vertically—thus the intensity
of the signal reaches its maximum when the focus spot hits an extreme point of the surface,
namely the top of a spike or the minimum in the center of the meniscus. By tracing the maximum
intensity of the reflected beam and recording the position of the laser optics, we get the position
of the spike with micrometer resolution relative to some reference point. Also, the absolute
height of the spike above the bottom of the container can be determined by setting the reference
point at the top of the container edge.

4. Governing equations and computational analysis

A scheme of a small cylindrical ferrofluid pool in a vertical magnetic field is shown in figure 6.
The surrounding air and the embedded ferrofluid are denoted by (a) and (b), respectively. The
applied field can be produced either by a pair of Helmholtz coils or a solenoid of suitable
dimensions. It is uniform, i.e. of constant strength and vertical orientation, in a region far away
from the pool. The field uniformity, however, is disturbed in the neighborhood of the pool, due
to the demagnetizing field of the pool itself. Therefore, the applied magnetic field could be taken
to be uniform only away from the pool. In the following, the magnetic field distribution and the
free surface deformation are taken as axially symmetric about the r = 0 axis (cf figure 6).

New Journal of Physics 11 (2009) 053016 (http://www.njp.org/)
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The field distribution in regions (a) and (b) is governed by the equations of magnetostatics.
The Gauss law for the magnetization reads

∇ · B = 0, (3)

where B is the magnetic induction. Since the magnetic field H is irrotational it can be derived
from a magnetostatic potential H ≡ ∇u both inside and outside the ferrofluid and, provided that
the materials are isotropic, it is parallel to B and so is the magnetization

B = µH = µ0(H + M). (4)

The magnetic permeability µ is constant in non-magnetic media, namely µa = µ0 = 4π ×

10−7 H m−1; inside the ferrofluid, it depends on the field. Two different constitutive equations
are used to account for the field dependence on the magnetization. The first one comes from
Langevin’s theory for monodisperse colloidal suspensions (equation (1)). The second one comes
from a polydisperse model by Ivanov and Kuznetsova (2001) that is based on the assumption of
a gamma distribution of particle diameters.

Writing equation (3) in terms of the magnetostatic potential, u, and taking into account
equation (4) yields

∇
2ua = 0, ∇ · (µ∇ub) = 0 (5a, b)

inside the non-magnetic phase (a) and inside the magnetic phase (b), respectively.
Equlibrium is governed by force balance along the ferrofluid free surface which is stated

by the magnetically augmented Young–Laplace equation of capillarity

−g1ρζ +
1

2
µ0

Hbs∫
0

M(H ′) dH ′ + 2ℵσ = K , at z = ζ(r), 06 r 6 R0, (6)

where g is the gravitational acceleration, ρ is the density, σ is the surface tension and ζ is the
vertical displacement of the free surface parametrized by the radial coordinate r , i.e. ζ = ζ(r).
The upper limit Hbs of the integral in the magnetization term is the field strength in the ferrofluid,
evaluated at the free surface, i.e. at z = ζ(r).

The reference pressure K is constant at the free surface. The unit normal to the free surface
n and the local mean curvature of the free surface 2ℵ are

n =
−ζr er + ez√

1 + ζ 2
r

, 2ℵ =
1

r

d

dr

(
rζr√
1 + ζ 2

r

)
, (7a, b)

where er and ez are mutually orthogonal unit vectors along the r - and z-axis, respectively, and
ζr ≡ dζ/dr .

The reference pressure K in equation (6) is determined by the constraint that the ferrofluid
volume is of fixed amount

2π

R0∫
0

ζr dr = C = const, (8)

i.e. we assume an incompressible liquid. The coordinate system, i.e. the location of the z = 0
line, is chosen such that C = 0.
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The set of the governing equations (4), (6) and (8) needs to be solved for the magnetostatic
potential ua(r, z) and ub(r, z), the free surface shape ζ(r) and the reference pressure K , taking
into account the following boundary conditions (see also figure 6):

∂ua

∂r
=

∂ub

∂r
= 0, ζr = 0, at r = 0, (9a, b)

ua = ub, µn · ∇ub = µ0n · ∇ua, at z = ζ(r) and 06 r 6 R0, (10a, b)

ua = ub, µ
∂ub

∂r
= µ0

∂ua

∂r
, at r = R0 and − D 6 z 6 ζ(R0), (10c, d)

ua = ub, µ
∂ub

∂z
= µ0

∂ua

∂z
, at z = −D, 06 r 6 R0, (10e, f )

ua = 0, at z = −zb, (11)

∂ua

∂z
=

B0

µ0
at z = zt ,

∂ua

∂r
= 0 at r = R, (12a, b)

ζr = cot θc at r = R0. (13)

The subscripts r and z denote differentiation with respect to r and z, respectively. Equations (9)
are the conditions that the shape of the free surface and the magnetostatic potential are axially
symmetric. Equations (10) are statements of the continuity of the potential and of the normal
component of the magnetic induction across interfaces between two media with different
magnetic permeabilities. In particular, it is by the equations (10c,d) that the fringing field is
accounted for; this is due to the distortion of the magnetic field across the container walls, in
the vicinity of the three-phase contact line, that is the liquid–air–solid junction. A datum for the
potential is fixed by (11). Equations (12) are the conditions that the magnetic field be uniform
far away from the pool. A contact angle θc is prescribed by equation (13) and reflects the wetting
properties of the magnetic liquid in contact with the solid wall of the container.

The governing equations give rise to a nonlinear, free boundary problem, owing to the
presence of the free surface, the location of which enters the equations nonlinearly and is
unknown a priori. An additional nonlinearity comes from the constitutive equation for the
magnetization of the fluid. Such a problem is only amenable to computer-aided solution
methods. The choice is the combination of Galerkin’s method of weighted residuals and
finite element basis functions (Kistler and Scriven 1983). Here, we will only outline the app-
lication of the method. Details can be found in previous works by Boudouvis et al (1988) and
Papathanasiou and Boudouvis (1998). The domain is tessellated into nine-node quadrilateral
elements between vertical spines and transverse curves whose intersections with each spine are
located at distances that are proportional to the displacement of the interface along that spine.
The tessellation creates a mesh of nodes and at each node a finite element basis function is
assigned that is unity at that node and zero at all other nodes. As the basis functions, we choose
quadratic polynomials of the independent variables r and z. A sample of the computational
mesh is shown in figure 7. The dependent variables ua(r, z), ub(r, z) and ζ(r) are approximated
in terms of a truncated set of the finite element basis functions. The governing equations are
reduced with Galerkin’s method to a set of nonlinear algebraic equations for the values of the
unknowns ua, ub and ζ at the nodes and for the value of K .

At fixed values of the physical parameters, the nonlinear algebraic equation set is solved
by Newton iteration. The parameter of interest here is the applied magnetic induction B0,
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Figure 7. Sample of the discretized domain.

which appears in the boundary conditions (cf equation (12a)). Solution families, i.e. solutions at
sequences of different values of B0 are systematically traced with first-order continuation. The
computational results reported are obtained with a mesh of 24 000 nodes. The sensitivity of the
spike height to further mesh refinement is practically negligible; namely, less than 0.2% when
doubling the mesh density. Three to five Newton steps are needed for the convergence at each
value of the continuation parameter.

5. Comparison of experimental and numerical results

We record the surface profile for 200 different magnetic inductions B0 ∈ [7.6–37.7 mT] with
the x-ray method described above. Inevitably, the magnetic induction in the neighborhood of
the container is distorted and strengthened in comparison with the induction for empty coils.
The given values B0 denote the spatially averaged magnetic induction below the container at a
vertical distance of 23.8 mm from the bottom of the fluid layer. This corresponds to the boundary
of the computational domain in the calculations. The height and position of the extreme point
of the surface topography in the center has been determined by fitting a paraboloid to a small
circular region of the surface with a diameter of 1.5 mm. Figure 8 shows the resulting central
height ĥ(B0). The red solid line marks the data for increasing induction. The magnetic fluid first
rises at the edge of the container, thus the level of fluid in the center of the vessel drops. The
central height then corresponds to the minimum level in the center. At a magnetic induction of
around 16 mT, a single spike emerges in the center that continues to rise for increasing induction.
The central height then corresponds to the height of this spike. A small hysteresis is found when
decreasing the field again. See the blue line in figure 8.
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Figure 8. Height of the single spike or the minimum in the center, respectively.
The numbers given are the total absolute height of the fluid above the bottom
of the container. For clarity, the individual 200 data points for one sweep are
connected by a solid line. The red (blue) line denotes the values from the x-ray
measurement for increasing (decreasing) field, respectively. The open squares
show the results of the laser measurements. The open circles denote the laser
data shifted on top of the x-ray data. The dashed line represents the filling level
of the fluid according to the weight, neglecting the effects of the meniscus.

Using the laser method, we performed measurements of the spike height for 29 different
magnetic inductions from 0 to 25.65 mT, which are also plotted in figure 8. By focusing the
laser beam on top of the container edge, a reference point was taken to get absolute values for
the central height ĥ above the bottom of the container, denoted by the open squares. They differ
from the x-ray measurement by a shift of 0.7 mm. However, if the reference point is adjusted
by this shift, we find a nice coincidence of the data points from both methods, as shown by the
open circles in figure 8.

The inaccuracy of the reference point of the laser method can easily be explained from
the fact that the laser beam cannot be focused precisely onto the top edge of the container. The
vessel is machined from aluminum with quite a rough surface and diffuses the incident laser
beam, which leads to the observed shift. This has been experimentally verified by comparing
the height measurements of the bare aluminum and a ferrofluid surface at the same level. The
difference in the reading is large enough to explain the shift between the laser data and the x-ray
data. On the other hand, the accuracy of the reference point of the x-ray measurement depends
on the positioning of the calibration wedge. The resolution of this position is limited by the
lateral resolution of the detector, which leads to an estimate of the absolute error of 0.2 mm.
Due to the roughness of the aluminum vessel, the x-ray data seem to be more precise than
the laser data concerning the absolute height in the present experiment. Relatively, both yield
practically the same result.

Further deviations may stem from the different ambient temperature at which the data were
taken. Whereas in Bayreuth, the lab temperature was stabilized at 21 ± 1 ◦C, the temperature
in Athens was 30 ◦C. This leads to a reduced magnetization and may be the origin of a reduced
spike height for higher fields (cf figure 8).
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Figure 9. The central height ĥ from the computations (lines) and from the
x-ray experiment (triangles). Blue upward (red downward) triangles denote the
values for increasing (decreasing) induction, respectively. The dashed green line
is based on Langevin’s law for the magnetization, while the black solid line
employs the Ivanov and Kuznetsova (2001) model. (a) Full range; (b) zoom.

After successfully comparing the results of the two measurement techniques, we now
present the numerical predictions. The results of the computational analysis are depicted
in figure 9 together with the x-ray data. The value corresponding to the central height ĥ
of the measurements is the height at the axis of symmetry h|r=0 = ζ |r=0 + D, where D denotes
the filling level. Two computational equilibrium paths are shown for two different models for
the magnetization M(H). The green dashed line displays the numerical result using Langevin’s
equation (1), while the black line makes use of the model by Ivanov and Kuznetsova (2001).
For magnetic inductions up to 17 mT, there is only a small difference between both results.
This is explained by the similarity of both magnetization laws up to an internal field of
H ≈ 10 kA m−1, as shown in figure 1. For higher fields, however, Langevin’s law is no longer
a valid approximation. This leads to a rather big deviation between both theoretical curves.
Regardless of the underlying magnetization curve, the numerical solutions show a continuous
behavior of ĥ in the full range of B0. In particular, no turning points are traced on the curve. This
is mentioned, since a pair of turning points, if they existed, would imply a hysteresis in surface
deformation observed when increasing and then decreasing B0. Thus, from the theoretical
calculations we do not expect any hysteresis. We stress this fact, because in the case of an
infinitely extended container, a hysteresis is both expected theoretically (cf e.g. Friedrichs and
Engel 2001) and found in the experiment and numerical calculations (cf e.g. Gollwitzer et al
2007). Moreover, we tested the influence of the contact angle. A computation for θc = 20◦ does
not deviate more than 60 µm from the above calculation over the full range of B. Thus, the spike
height only weakly depends on the contact angle.

Next, we compare the measurements with the numerical results. In the full range,
the experimental data agree with the more advanced computations taking into account the
magnetization law by Ivanov and Kuznetsova (2001). The difference is within only 1% of
the absolute height, except near the threshold, where it amounts to 6%. This is natural for a
sigmoidal function, where close to the steep increase the error can become arbitrarily large,
when there are uncertainties in the control parameter. The difference between the thresholds
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in theory and experiment amounts to at most 3% as can be seen from figure 9 (b). It shows an
enlarged view of ĥ in the immediate vicinity of the threshold. Opposite to the numerical results,
we observe in the experiment a small hysteresis between the data for increasing B0, as marked by
upwards triangles, and the one for decreasing B0, denoted by downward triangles. The hysteresis
is in the range of 1B0 = 0.2 mT. The origin for this hysteresis is a priori not clear.

Note that Gollwitzer et al (2007) measure a hysteresis of 1B∞
= 0.17 mT for the same

ferrofluid as in our case in a container with a diameter of ≈ 10 × λc. Remarkably, this value
is in the same range as the one observed above. If the hysteresis in our experiment were of
the same nature, it should be much smaller due to the imperfection caused by the container
edge (Cross and Hohenberg 1993). Therefore we suspect another mechanism. One candidate
is a hysteretical wetting of the cylindrical wall. The difference between the advancing and
the receding contact angle can be as large as 10◦ for a surface that has not been specially
prepared (de Gennes 1985, Dussan 1979). Moving the contact line always costs energy. This
may explain the small hysteresis of the spike height for increasing and decreasing induction. In
our experiment, this effect is important, because the interfacial area between the fluid and the
vertical wall is comparable to the free surface of the fluid.

The availability of the complete surface topography from the x-ray method allows us not
only to compare the central height, but also the shape of the spike or meniscus, respectively.
Examples for the free surface shapes at selected values of the magnetic induction are shown
in figure 10. The experimental data have been averaged angularly around the center of the
observed spike, which is not exactly in the center of the container in the experiment. This off-
center distance is rather small (0.05 mm), however it must be taken into account, otherwise the
averaging would disturb the shape of the spike.

Similarly to the comparison of the height alone, there are only slight differences between
the computations and the experimentally observed shape. Most notably, we discern a drop at
the edge of the container. The reason for this difference is two-fold: firstly, the angular average
does not work well near the container border, because the center of the spike is off-axis, as
explained before. Secondly, the x-ray method has problems in accurately detecting the height
near the border, where the container wall shadows the x-rays. Further, for magnetic inductions
near the threshold (cf figures 10 (b) and (c)), the height of the tip differs by ≈ 1 mm. The reason
is probably a slight shift of the critical induction (cf figure 9), where the height is very sensitive
to small changes of the induction B.

The hysteresis, already observed from the central height alone, manifests itself by a
difference of the surface profiles for increasing and decreasing induction. Far away from the
threshold, both profiles match nearly perfectly (figures 10 (a) and (d)), while there is a clear
difference near the threshold (figures 10 (b) and (c)). The tip of the spike is considerably smaller
for an increasing magnetic induction, while the level of the fluid near the container edge is
higher. This corroborates a hysteretical wetting being responsible for the hysteresis.

Apart from these differences, the deviation between the computed and measured profiles is
around 1%.

6. Discussion and conclusion

For a rotational symmetric system with broken up-down symmetry we have reduced the
container size until only a single entity remains. In the case of the Rosensweig instability this
is a single spike of ferrofluid. Whereas for our fluid, the extended system exhibits a transcritical
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Figure 10. The ferrofluid free surface shapes at various magnetic field strengths.
The solid lines show the numerically computed profiles, while the red (blue)
dashed line gives radial interpolation of the experimental data for increasing
(decreasing) magnetic induction. The vertical dashed line shows the side wall
of the container. (a) B = 7.39 mT, (b) B = 16.17 mT, (c) zoom of (b) and
(d) B = 29.70 mT.

bifurcation to hexagons, here an imperfect bifurcation sets in, and the axisymmetric free surface
deformation evolves supercritically and monotonically. This is at least the outcome of the
monolithic finite element approach, which takes into account the side-wall effects, namely the
wetting and the fringing field, as well as the polydispersity of the fluid. We find a convincing
agreement between theory and two independent measurement techniques, the errors being
within 3% without any adjustable parameter. Nonetheless, the observed hysteresis is due to
the wetting.

Our findings immediately raise the issue of what is ‘in between’, regarding the structure of
the solution space—that is surface deformation versus applied field and other key parameters—
as the size of the pool grows laterally. This will be tackled in a forthcoming publication by
Spyropoulos et al (2009).

A transition from a transcritical backward to an imperfect forward bifurcation under
spatial constraints has also been reported by Peter et al (2005). Their spatial stripe forcing
simultaneously breaks the rotational and translational symmetry. In our case it is sufficient to
break the translational symmetry.
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To conclude, we have quantitatively compared numerics and experiments of the
Rosensweig instability in a system of finite size. This is a specific example of how external
constraints may change a perfect transcritical bifurcation into an imperfect supercritical one.
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