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“Overall, our understanding of the nitrogen cycle and the development of effective 

policies to reduce inadvertent losses of anthropogenic nitrogen to the environment is 

analogous to our understanding of the carbon cycle the late 1960s. 

Humans are adding nitrogen to the earth´s surface; we do not know where it all goes, 

but we do know that increasing concentrations of nitrogen in unexpected places will 

cause significant environmental damage (…).” 

 

William H. Schlesinger (2009) 
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Summary 

 

Nitrogen is one of the most important compounds on earth. All organisms need nitrogen to 

live and grow. Even the majority (78.08%) of the atmosphere (and so the air we breathe) is 

dinitrogen. Over the last century, human activities have dramatically increased emissions and 

removal of nitrogen to the global atmosphere by as much as three to five fold. Nitrous oxide is 

the fourth largest single contributor to positive radiative forcing, and serves as the only long-

lived atmospheric tracer of human perturbations of the global nitrogen cycle. Nitrogen oxides 

belong to the so called indirect greenhouse gases. These indirect greenhouse gases control the 

abundances of direct greenhouse gases through atmospheric chemistry and contribute on this 

way to the greenhouse effect. For a better understanding of these feedback mechanisms it is 

necessary to know the source strength of nitric oxide and nitrous oxide. Thus, the knowledge 

about exchange processes of nitrogen is of interest and importance for scientist and policy 

makers, likewise. 

This thesis contributes the understanding of processes in the nitrogen cycle. The thesis is 

addressed on nitric and nitrous oxide emissions. Nitric oxide emissions were measured on soil 

samples using an automated laboratory system. Nitrous oxide emissions were measured 

directly on the field site using a closed chamber technique.  

The laboratory measurements were compared with field measurements of NO (modified 

Bowen ratio method) at a grass land site. The field NO fluxes were always around 

1.8 ng m
-2

 s
-1

 while the laboratory derived NO fluxes were between 2.1 and 5,2 ng m
-2

 s
-1

. The 

agreement between the two data sets is considered to be quite good. The laboratory derived 

NO fluxes exceeded the field NO fluxes by a factor of 1.5 to 2.5.  

Most studies of nitric oxide (NO) emission potentials up to now have investigated mineral soil 

layers only. In this thesis soil organic matter was sampled for laboratory measurements under 

different understory types (moss, grass, spruce, blueberries) in a humid mountainous Norway 

spruce forest plantation in the Fichtelgebirge (Germany). In this thesis the response of net 

potential NO fluxes on physical and chemical soil conditions (water content and temperature, 

bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate) was 

determined. Net potential NO fluxes (in terms of mass of N) from soil samples taken under 
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the different understories ranged from 1.7 - 9.8 ng m
-2

 s
-1

 (soil sampled under grass and moss 

cover), 55.4 - 59.3 ng m
-2

 s
-1

 (soil sampled under spruce cover), and 43.7 - 114.6 ng m
-2

 s
-1

 

(soil sampled under blueberry cover) at optimum water content and a soil temperature of 

10°C. Effects of soil physical and chemical characteristics on the net potential NO flux were 

statistically significant (0.01 probability level) only for NH4
+
. Therefore, as an alternative 

explanation for the differences in soil biogenic NO emission we consider more biological 

factors like understory vegetation type, amount of roots, and degree of mycorrhization; they 

provide a potential explanation of the observed differences of net potential NO fluxes.  

Also, soil nitrous oxide (N2O) emissions in an unmanaged, old growth beech forest in the 

Hainich National Park, Germany, were measured at 15 plots over a one-year period 

(November 2005 to November 2006). The annual field N2O flux rate was 

0.46±0.32 kg ha
-1

 yr
-1

. The N2O emissions showed a background emission pattern with two 

event based N2O peaks. A correlation analysis showed that the distance between plots (up to 

380 m) was secondary for their flux correlations. Annual N2O fluxes obtained from a standard 

model (Forest-DNDC) parameterized with soil parameters as well as daily temperature and 

precipitation substantially overestimated the actual field N2O fluxes and also did not describe 

their actual temporal and spatial variabilities. Temporal variability was described well by the 

model only at plots with higher soil organic carbon and the modelled N2O fluxes increased 

during freezing periods only were soil organic carbon was larger than 0.06 kg
-1

 C kg. The 

results indicate that the natural background of nitrous oxide emissions may be lower than 

previously thought and also lower than assumed in standard modelling. This suggests a higher 

anthropogenic contribution to N2O emissions.  
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Zusammenfassung 

 

Stickstoff ist eines der wichtigsten Elemente auf der Erde. Alle Organismen benötigen 

Stickstoff zum Leben und Wachsen. Der Großteil (78,08%) der Erdatmosphäre - und daher 

auch die Luft, die wir atmen - besteht aus molekularem Stickstoff (N2). Im letzten Jahrhundert 

haben menschliche Aktivitäten die Stickstofffreisetzung und den Stickstoffabbau in der 

Atmosphäre drei- bis vierfach erhöht. Distickstoffoxid (N2O, Lachgas) liefert den viertgrößten 

Beitrag zur Änderung der globalen Strahlungsbilanz und ist außerdem der einzige langlebige 

atmosphärische Tracer, der den Einfluss des Menschen auf den globalen Stickstoffkreislauf 

widerspiegelt. Stickstoffmonoxid (NO) gehört zu den sogenannten indirekten Treibhausgasen. 

Indirekte Treibhausgase beeinflussen den Gehalt von direkten Treibhausgasen durch ihren 

Anteil an chemischen Reaktionen in der Atmosphäre und tragen auf diesen Weg ihren Teil 

zum Treibhauseffekt bei. Um diese Prozesse besser zu verstehen ist es wichtig die 

Quellenstärke von Stickstoffmonoxid und Distickstoffoxid zu kennen. Ebenso ist das Wissen 

und Verständnis um die Austauschprozesse von Stickstoff sowohl für Wissenschaftler als 

auch für politische Entscheidungsträger von Bedeutung.  

Diese Doktorarbeit möchte einen Beitrag zum besseren Verständnis des Stickstoffkreislaufes 

leisten. Die Arbeit befasst sich mit den natürlichen Emissionen von NO und N2O. NO-

Emissionen wurden mit einem automatischen Laborsystem an Bodenproben gemessen. 

Emissionen von N2O wurden hingegen direkt auf der Untersuchungsfläche im Freiland 

bestimmt. Hierfür wurden statische Kammern verwendet.  

Die NO-Labormessungen wurden mit den NO-Feldmessungen (Modifizierte Bowen-

Verhältnis Methode) verglichen. Die Feldmessungen wurden dabei über Grasland 

durchgeführt. Die in situ bestimmten NO-Flüsse schwankten die gesamte Messperiode 

hindurch um 1,8 ng m
-2

 s
-1

. Die im Labor gemessenen NO-Flüsse bewegten sich dagegen 

zwischen 2,1 und 5,2 ng m
-2

 s
-1

. Beide Datensätze zeigten eine gute Übereinstimmung. Die im 

Labor bestimmten NO-Flüsse waren lediglich 1,5 bis 2,5 mal höher als die NO-Flüsse, die in 

situ bestimmt wurden.  
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Die meisten Studien, die sich bis heute mit NO-Emissionen befasst haben, betrachteten die 

mineralischen Bodenhorizonte. Für diese Arbeit wurden hingegen auch organische Horizonte 

beprobt. Die Proben wurden unter verschiedenen Unterwuchstypen (Moos, Gras, Fichten, 

Blaubeeren) eines humiden Fichtenwaldes im Fichtelgebirge (Deutschland) genommen und 

anschließend im Labor untersucht. Die Untersuchungen umfassten das Verhalten der 

potentiellen Netto-NO-Flüsse unter Berücksichtigung bodenphysikalischer und -chemischer 

Parameter (Wassergehalt, Bodentemperatur, Lagerungsdichte, Partikeldichte, pH-Wert, C/N-

Verhältnis, organischer Kohlenstoff, Ammonium, Nitrat). Die potentiellen Netto-NO-Flüsse 

(in Einheiten von N) der Bodenproben unterschieden sich je nach Unterwuchstypen bei 

optimalem Wassergehalt und einer Bodentemperatur von 10°C. Für Bodenproben der von 

Moos und Gras bewachsenen Flächen lagen die potentiellen Netto-NO-Flüsse zwischen 1,7 – 

9,8 ng m
-2

 s
-1

. Dahingehen wurden für Bodenproben von Flächen, die mit Fichten bewachsen 

waren, Werte zwischen 55,4 – 59,3 ng m
-2

 s
-1

 gemessen. Für Flächen, die mit Blaubeeren 

bewachsen waren, variierten die NO-Flüsse der Bodenproben zwischen 43,7 – 

114,6 ng m
-2

 s
-1

. Ein Zusammenhang zwischen den physikalischen und chemischen 

Bodenparametern und dem potentiellen Netto-NO-Fluss konnte nur für NH4
+
 (0.01 

Signifikanzlevel) gefunden werden. Daher wurde nach alternativen Erklärungen für diese 

Unterschiede in den biogenen NO-Flüssen gesucht. Gründe für die Unterschiede in den 

potentiellen Netto-NO-Flüssen könnte die Vegetation, die Menge der Wurzel oder der Anteil 

an Mycorrhiza sein.  

Die N2O-Emissionen eines altbestehenden Buchenwaldes des Nationalparks Hainich 

(Deutschland) wurden gemessen um die Quellenstärke eines über lange Zeit nicht 

bewirtschaften Waldes zu bestimmen. Die Messungen wurden an 15 Messpunkten über die 

Dauer von einem Jahr (November 2005 bis November 2006) durchgeführt. Der Jahreswert 

des N2O-Flusses betrug für diesen Zeitraum 0.46±0.32 kg ha
-1

 a
-1

. Die N2O-Emissionen 

zeigten “Background-Emissionen“ mit zwei eventbasierten Peaks. Durch eine 

Korrelationsanalyse konnte gezeigt werden, dass die Distanz zwischen den Messpunkten (bis 

zu 380 m) für die Korrelation der Flüsse zweitrangig ist. Zusätzlich wurde ein Jahreswert für 

den N2O-Fluss mit einem Standardmodell (Forest-DNDC) berechnet. Zur Parametrisierung 

des Modells dienten Bodenparameter sowie die Tagestemperatur und der tägliche 

Niederschlag. Der mit dem Modell berechnete N2O-Fluss überschätzt den tatsächlich auf der 
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Untersuchungsfläche gemessenen Fluss. Außerdem wird die zeitliche und räumliche 

Variabilität nicht korrekt wiedergegeben. Der zeitliche Verlauf wurde von dem Modell nur 

bei Messpunkten mit einem hohen organischen Kohlenstoffgehalt korrekt dargestellt. Ebenso 

stieg der modellierte N2O-Fluss während Frostperioden nur an Messpunkten mit einem 

organischen Kohlenstoffgehalt über 0.06 kg
-1

 C kg an. Die Ergebnisse zeigten, dass der 

natürliche Hintergrund von N2O-Emissionen niedriger sein kann als angenommen und auch 

niedriger als der mit einem Standardmodell berechnete Jahreswert. Diese deutet einen 

höheren anthropogenen Beitrag zu den N2O-Emissionen an als angenommen.   
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Synthesis 

1 Introduction 

1.1 Nitrogen Cycle  

The nitrogen cycle represents one of the most important nutrient cycles found in terrestrial 

ecosystems. All organisms need nitrogen (N) to live and grow. Even the majority (78.08%) of 

the atmosphere (and so the air we breathe) is dinitrogen (N2), but most of the nitrogen in the 

atmosphere is unavailable for organisms. This is because N2 is relatively inert. In order to use 

nitrogen, organisms must first convert N2 to a more “available” form such as ammonium 

(NH4
+
) and nitrate (NO3

-
). Because of the inert nature of N2, biologically available nitrogen is 

often in short supply in natural ecosystems, limiting plant growth and biomass accumulation.  

 

Figure 1: Nitrogen cycle (modified after Brady and Weil (2007)) 

Nitrogen exists in inorganic and organic forms and there are many different oxidation states. 

Fig. 1 displays the movement of nitrogen between the atmosphere, biosphere, and geosphere 

in different forms. The nitrogen cycle consists of various reservoirs and five main processes 

which are responsible for the exchange among them. Those main processes are nitrogen 

fixation, nitrogen uptake, nitrogen mineralization, nitrification and denitrification. In the 

nitrogen transformation microorganisms play an important role. The nitrogen cycle is affected 
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by environmental factors like temperature, moisture, resource availability, or anthropogenic 

influence.    

1.1.1 Nitric oxide and nitrous oxide 

Nitric oxide (NO) and nitrous oxide (N2O) play an important role in the chemistry of the 

troposphere and stratosphere (Crutzen, 1979). N2O is one of the natural components of the 

Earth’s atmosphere and is a long-living greenhouse gas. The atmospheric concentration of 

N2O has increased from about 270 ppb during the pre-industrial era to 319 ppb in 2005 

resulting in a total source strength of about 17.7 Tg-N yr
-1

(Denman et al., 2007). N2O is (after 

conversion to NO) also responsible for destruction of the stratospheric ozone (O3). The soil is 

the dominant source of atmospheric N2O contributing about 57% of the total annual global 

emission (Denman et al., 2007). N2O in soils is mainly produced and consumed by two 

microbial processes, nitrification and denitrification. Natural soils contribute 6.0 Tg-N yr
-1

 

and agricultural soils 4.2 Tg-N yr
-1

(Denman et al., 2007). Nevertheless, soils can also act as a 

sink for atmospheric N2O (Chapuis-Lardy et al., 2007).  

Atmospheric NO is a reactive trace gas which has a short atmospheric lifetime of hours or 

days, and is also known as an indirect greenhouse gas. Due to the fast chemical 

interconversion with nitrogen dioxide (NO2), which typically occurs within seconds to 

minutes, both species are commonly referred to as the single quantity NOx (NOx = NO + 

NO2). Through atmospheric chemistry NOx affects the abundance of direct greenhouse gases 

(Prather and Ehhalt, 2001). NO is removed from the atmosphere mostly through oxidation 

processes that involve reactions with hydroxyl radicals (OH·) and ozone. Hence, NO has a 

significant influence on the oxidation capacity of the troposphere, especially due to its 

catalytic behaviour in the photochemical formation of O3 (Crutzen, 1979).  

NOx catalyses tropospheric O3 formation through a sequence of reactions. When mixtures of 

NO and O3 are exposed to ultraviolet light, an equilibrium is established in which NO reacts 

with O3 to form NO2 and oxygen (O2) and vice versa.  

NO + O3 NO2 + O2                                                                                                           (1.1) 

NO2 + hv NO + O·                                                                                                            (1.2) 

O· + O2 O3                                                                                                                         (1.3) 



                                                                                                                        Synthesis 

 

3 

 

Table 1: Overview of global sources (Tg-N yr
-1

) of NOx and N2O.Values are from the Third Assessment Report 

(according to Denman et al., 2007).  

Sources NOx N2O
a
 

Anthropogenic sources   

Fossil fuel combustion and 

industrial processes 

33 1.3/0.7 

Aircraft 0.7 - 

Agriculture 2.3 6.3/2.9 

Biomass and biofuel burning 7.1 0.5 

Total, anthropogenic 43.1 8.1/4.1 

Natural sources   

Soils under natural vegetation 3.3 6.0/6.6 

Oceans - 3.0/3.6 

Lightning 5 - 

Atmospheric chemistry <0.5 0.6 

Total, natural 8.8 9.6/10.8 

Total, all sources 51.9 17.7/14.9 

a
a single value indicates agreement between the sources and methodologies of the different studies. 

The absorption of ultraviolet radiation protects the biosphere from harmful radiation. In the 

process electronically excited O(
1
D) atoms are generated: 

O3 + hv  O(
1
D) + O2           (≤ 310nm)                                                                               (1.4) 

These excited O(
1
D) atoms can react with water vapour (H2O) to form very reactive OH· 

radicals (Crutzen, 1979): 

O(
1
D) + H2O  2 OH·                                                                                                          (1.5) 
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Fossil fuel combustion and biomass burning are the main sources of NOx (see Tab. 1.1). 

However, in the less industrial European countries, soils have been estimated to contribute 

between 24 and 62% of the total annual emission (Skiba et al., 1997).  

1.2 Nitrogen in soils 

Nitrogen occurs only to a very small part in the parent rock material. Therefore, organisms 

need other sources of N. Nitrogen is present in soil in organic and inorganic forms. Organic 

compounds are e.g. amino acids, or large complex molecules that are quite resistant to 

microbial decay. The most resistant of these soil organic materials are typically referred to as 

humus. Inorganic forms of N are nitrate (NO3
-
), nitrite (NO2

-
), ammonium (NH4

+
), and 

ammonia (NH3). NO3
-
 and NH4

+
 are taken up by plants, whereas NO2

-
 and NH3 are toxic to 

plants.  

N2 is the most abundant form of N in the biosphere but is unusable for most organisms, 

including plants. Biological N2 fixation by microorganisms is necessary, whereby N2 is 

transformed to organic N. This is the dominant process by which N first enters soil biological 

pools (Robertson and Groffman, 2007) (see Fig. 1). High energy natural events such as 

lightning can also lead to N fixation. The organic N will be microbiologically transformed to 

inorganic forms of N. This process is termed mineralization. Common organic N substances 

are: soil humus, plant leafs and roots and manure based fertilizer. Generally, a complex and 

large molecule containing N is broken down into a simpler and smaller molecule and then 

into NH4
+
 that can be taken up again by plants or other organisms (Robertson and Groffman, 

2007). Sometimes this process is referred to in two steps with the first step termed 

aminization and the second step ammonification. A lot of different types of microorganisms 

can perform these reactions, some can do both steps while others can only perform one 

reaction (Scheffer and Schachtschabel, 2002). If plant detritus is rich in N, mineralization, or 

N release, proceeds. If plant detritus is low in N, microorganisms take up mineral N out of the 

soil solution (process of immobilization, which is the uptake or assimilation of inorganic 

forms of N by microbes and other soil heterotrophs).  
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Figure 2: Diagram of the hole-in-the-pipe conceptual model (revised from Davidson 1991). Soil emissions of 

NO and N2O are regulated at two levels: First, the rate of nitrogen cycling through ecosystems, which is 

symbolized by the amount of nitrogen flowing through the pipes, affects total emissions of NO and N2O; second, 

soil water content and other factors affect the ratio of N2O: NO emissions, symbolized by the relative sizes of the 

holes through which nitric oxide and nitrous oxide "leak." 

Mineralization results in an increase, while immobilization results in a decrease, in plant-

available forms of N in soil. Usually, NH4
+
 is seen as the immediate product of mineralization 

(Robertson and Groffman, 2007). However, mineralization and immobilization occur at the 

same time within relatively small volumes of soil. While one group of microorganisms might 

consume a detritus rich in N (mineralization), another group might consume detritus low in N 

(immobilization). Mineralization and immobilization can be carried out by a wide range of 

organisms (aerobes, anaerobes, fungi, bacteria). Both processes are strongly influenced by 

climate, soil properties and soil management.  

The mineralization is followed by the process of nitrification and then the process of 

denitrification (see Fig. 2). It is generally accepted that these two biological processes are the 

principal sources of NO and N2O emissions (Williams et al., 1992). NO and N2O are 

intermediates in the nitrification and denitrification pathway. Generally most NO is produced 

by nitrifiers and most N2O is produced by denitrifiers. However, it is not possible to 

generalise this because each soil has a different behaviour. It is also possible that soils act as a 

sink for both gases (Conrad, 2002, 1996). 

1.2.1 Nitrification 

Nitrification is an important part of the nitrogen cycle in soils.It is a mainly aerobic process in 

which ammonium is oxidised to NO2
-
 and to NO3

-
 (Eq. 1.6). NO3

-
 is the final product of the 
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nitrification process. Most nitrifying bacteria are autotrophic and linked to O2, but when O2 is 

limited the nitrifying bacteria can use NO2
-
 as an electron acceptor and reduce it to NO and 

N2O (Bollmann and Conrad, 1998). Therefore, NO and N2O can be released during 

nitrification. Nitrification is a two-step process in which two different groups of 

microorganisms are involved. The first step is carried out by Nitroso-bacteria (ammonia 

oxidizers) and the second step by Nitro-bacteria (nitrite oxidizers).  

NH4
+
 NO2

-
 NO3

-
     (1.6) 

The Nitroso-bacteria oxidise NH4
+
 via hydroxylamine (NH2OH) to NO2

-
. Intermediary 

compounds formed during the oxidation of NH2OH to NO2
-
 can result in the formation of NO 

(see Fig. 3) (Robertson and Groffman, 2007). Nitroso-bacteria seem also able to produce NO 

via NO2
-
 reduction, which results in the production of N2O. NO2

-
 reduction occurs when 

Nitroso-bacteria use NO2
-
as an electron acceptor when O2 is limiting (denitrifying nitrifiers). 

In most soils NO2
-
 produced by Nitroso-bacteria does not accumulate as Nitro-bacteria 

quickly oxidize NO2
-
 to NO3

-
. 

Nitrification is also observed by heterotrophic bacteria and fungi, while two pathways for 

heterotrophic ammonia oxidation exist. The first pathway is similar to the pathway of Nitroso-

bacteria, as the nitrifying bacteria have similar ammonia- and hydroxylamine-oxidizing 

enzymes. The second heterotrophic pathway seems to be limited to fungi.   

However, autotrophic nitrification appears to be the dominant process of NO production in 

most soils (Conrad, 1996). The magnitude of nitrification is influenced by many factors, 

which have a direct or indirect influence on the nitrification process. For example, the 

optimum temperature for nitrification in soils is between 25 and 35°C. However, also at 

temperatures around 0°C nitrification occurs.  

1.2.2 Denitrification 

Denitrification is the reduction of NO3
-
 to the N gases NO, N2O, and N2 (Eq. 1.7). Denitrifiers 

are aerobic microorganisms which can switch to anaerobic denitrification in the absence of 

O2. Denitrification generally occurs under anaerobic conditions and requires nitrate and 

microbially available organic carbon (organic matter). The temperatures in which 

denitrification occurs range from 5 to 75°C (Scheffer and Schachtschabel, 2002). 

NO3
-
 NO2

-
 NO  N2O  N2       (1.7) 
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Denitrifiers use NO3
-
 rather than O2 as a terminal electron acceptor during respiration. As O2 

is the more efficient electron acceptor, most denitrifiers only carry out denitrification when O2 

is unavailable. Such a situation occurs in most soils after rainfall, as the soil pores become 

water-saturated and the diffusion of O2 through the soil declines. Hence, high soil water 

contents or limited aeration are important for denitrification. Typically, denitrification starts 

to occur at a water filled pore space (WFPS) of 60% (see Fig. 3), where little NO is released 

from soil to the atmosphere (Conrad, 1996). Hence, denitrification is the major source of 

atmospheric N2O. Both gases, NO and N2O, are produced as intermediates during the 

denitrification process. Thus, the denitrification process is commonly associated with the loss 

of soil nitrogen to the atmosphere. 

Not only denitrifying microorganisms reduce NO3
-
, there are also several other biological 

processes that reduce NO3
-
 and consequently produce NO and N2O (Robertson and Groffman, 

2007). 

1.2.3 Chemodenitrification 

Chemodenitrification occurs when NO2
-
 in soil reacts to form N2, NO or N2O. Generally, 

chemodenitrification occurs in acidic soils (pH<5). There are several aerobic pathways for 

chemodenitrification.  However, in most ecosystems chemodenitrification is only a minor 

pathway for N loss (Meixner & Yang, 2006). 

1.3 Factors controlling biogenic NO and N2O emission from soil 

The individual factors that regulate N2O and NO production and consumption are e.g. 

temperature, moisture, soil bulk density, soil texture, soil pH, soil nutrients, plants, ambient 

concentration of NO and N2O. The same environmental factors affect both NO and N2O 

(Davidson et al., 2000). Both nitrification and denitrification have their own set of optimum 

conditions. As a result, one process may be the primary N2O producer in one set of field 

conditions, but as soil conditions change, another process may predominate. The complexity 

of the interacting factors important to the different processes obviously makes a simple 

description of N2O and NO production difficult (Mosier et al., 1983). The following sections 

will give an overview of the main controlling factors, soil temperature and soil moisture, and 

a short outline of other controlling factors.  
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Figure 3: Proposed relative contributions of nitrification and denitrification to emissions of NO and N2O as a 

function of water filled pore space (taken from Meixner & Yang, 2006). Shapes of the curves, the curve heights, 

WFPS optima, and the inflection points were largely educated guesses based on the limited field and laboratory 

data available 

1.3.1 Soil temperature 

Soil temperature is one of the main factors controlling the exchange of NO and N2O between 

soil and atmosphere. Many studies have shown that NO and N2O emission increases with 

increasing temperature (e.g. Otter et al., 1999; Johansson, 1984; Meixner and Yang, 2006; 

Smith et al., 1998; Smith et al., 2003). This is due to the fact that both NO and N2O 

production are microbial processes. These microbial processes are influenced by temperature 

according to the Arrhenius equation (Winkler et al., 1996). Generally, enzymatic processes 

increase exponentially with temperature as long as other factors, like soil moisture or soil 

nutrients, are not limiting (Ludwig et al., 2001). The outcome of this could be a diurnal or 

seasonal variation of NO and N2O release (e.g. Baumgärtner and Conrad, 1992; Smith et al., 

1998; Brumme and Borken, 2009; Flessa et al., 2002; Ludwig et al., 2001; Christensen, 

1983). The temperature response is usually expressed in terms of the Q10 value. The Q10 value 

gives the increase of the exchange rate by a temperature increase of 10°C. Microbial 

processes usually show a Q10 value of 2 (Smith et al., 2003). However, Q10 values up to 10 are 

no rarity for N2O production in soils (Smith et al., 2003).  
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1.3.2 Soil moisture 

In numerous studies, soil moisture was found to be one of the most important controlling 

factors (e.g. Feig et al., 2008; Meixner and Yang, 2006; Bollmann and Conrad, 1998; 

Pilegaard et al., 1999; Davidson et al., 2000). Soil moisture affects the diffusion of oxygen 

(O2) in soil as well as the substrate supply of microorganisms. When the soil moisture is very 

low the diffusion of O2 to the microorganisms is high, but the supply with substrate is low and 

vice versa (Skopp et al., 1990; Davidson et al., 2000). Hence, NO emissions are highest at 

intermediate soil moisture. This intermediate soil moisture range varies from soil to soil. In 

the literature, optimum soil moistures for NO emissions range between 10% and 70% (Yang 

and Meixner, 1997; Pilegaard et al., 1999; Bargsten et al., 2010). N2O emissions are also 

highest at intermediate soil moistures. When water content is greater than field capacity, N2O 

gets reduced to N2 (Bremner and Blackmer, 1979). However, the production of NO is 

generally faster than the corresponding production of N2O. This is reflected in the ratios in 

which the two gases are emitted from soils (Smith et al., 2003). Generally, more NO is 

released at lower soil water contents than N2O and vice versa. This is due to the fact that NO 

is mainly released by nitrification and N2O is mainly released by denitrification (Bollmann 

and Conrad, 1998) (see Fig. 3).  

1.3.3 Other controlling factors 

Temperature und soil moisture are the main important parameters controlling the exchange of 

NO and N2O. However, there are also a lot other factors influencing the exchange of both 

gases.  

Soil bulk density (BD) is an important factor controlling the NO and N2O exchange because 

the compaction of the soil influences the diffusion of O2 to the microorganisms and 

additionally the release of NO and N2O is hindered. Generally, NO and N2O exchange 

decreases with increasing BD. 

The effect of soil texture on NO and N2O emission results from the physical variations of air 

and water properties. Water infiltration rate and gas diffusion rate are affected by soil texture 

and hence affect NO and N2O emissions. Coarse textured soil has a relatively smaller total 

pore space, compared to a fine textured soil. At an identical soil moisture (mass of water per 

mass of soil), a coarse textured soil would be relatively wet compared to a fine textured soil.  
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It is difficult to give a value for the optimum soil pH for NO and N2O emissions. The 

optimum soil pH for NO and N2O emissions via nitrification and denitrification varies with 

species and age of the organisms and NO3 concentration. However, most nitrifiers have a pH 

optimum between pH 5.5 and pH 8.0 and most denitrifiers between pH 6.0 and pH 8.0 

(Pathak, 1999; Scheffer and Schachtschabel, 2002). Although the processes are favoured at 

slightly alkaline soil pH levels, they also take place in acidic soils. Chemodenitrification 

occurs mostly in acid soils (soil pH < 5.5).  

The availability of soil nutrients, especially NH4
+
 and NO3

-
, affects the emissions of NO and 

N2O because these compounds serve as a substrate for nitrifying and denitrifying 

microorganisms. Skiba et al. (1994) and Ludwig and Meixner(1994) showed that differences 

in the NO3
-
 content in soil accounted for much of the variance in the observed NO emissions.  

Plants influence the emission of NO and N2O by affecting nitrate and carbon content of the 

soil as well as partial pressure of O2. Plants can directly affect the availability of NO3
-
 through 

uptake and assimilation making it unavailable to denitrifiers. However, mineralization of 

roots and other plant material to NH4
+
 and nitrification of NH4

+
 to NO3

-
 can potentially 

provide more NO3
-
 for denitrification and conversely immobilization can reduce NO3

-
 in the 

soil.  

The ambient (atmospheric) concentration of NO and N2O determines whether a given soil 

acts as a sink or source for NO and N2O. That is due to the fact that NO and N2O production 

and consumption occur simultaneously in the soil. Therefore, fluxes of NO and N2O are bi-

directional. The concentration at which the production and consumption of NO and N2O is 

equal is termed compensation point mixing ratio. However, in most studies a compensation 

point mixing ratio above the average ambient air concentration was observed – that means the 

soil acts as a source.  

1.4 Modelling NO and N2O emissions  

Estimates of the contribution of temperate forest ecosystems to atmospheric NO and N2O 

derived by field measurements have a high degree of uncertainty. These uncertainties are 

mainly due to: 

 the limited number of field measurements, 
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 the limited temporal resolution of data sets, 

 the limited information on the impact of anthropogenic influence, 

 and the limited knowledge about the effects of different forests types.  

Field measurements alone are not enough to significantly reduce these uncertainties 

associated with global estimates of NO and N2O source strengths of temporal forests. The 

most promising strategy to overcome these problems is the development of models.  

Nowadays, models are used in numerous studies to estimate emissions of NO or N2O from 

soils. A lot of research groups have tried to model NO and N2O emissions from soils, from 

relatively small scales up to global scales (Beirle et al., 2004b; Butterbach-Bahl et al., 2001; 

Steinkamp et al., 2009; Saggar et al., 2004; Beirle et al., 2004a; Martin et al., 2003; Martin 

and Asner, 2005). Generally, there are different kinds of models, which can be roughly 

categorized into “Black box models”, “White box models” and hybrid types of both (“Grey 

box models”). 

1.4.1 Black box models 

Black box models are used where the response of a system is not broken down into its 

underlying mechanisms. It is represented by an empirical description or set of transfer 

parameters that relate the output of the model to a set of inputs. In a pure black box model the 

internal workings of a device are not described, and the model simply solves a numerical 

problem without reference to any underlying processes. Exemples for Black box models are: 

 Empirical models were used for the first approaches to model NO and N2O emissions 

(Williams et al., 1992). The model relates the NO emissions to soil temperature and a 

biome fitting parameter (emission factor) which is supposed to be representative of an 

ecosystem. Empirical models operate by assigning various ecosystems an emission 

factor. These emission factors are often modified according to parameters like soil 

moisture or soil temperature. Even though process-based models (biogeochemical 

models) have been developed, empirical models are widely used to estimate NO and 

N2O emissions due to the rudimentary knowledge of NO and N2O producing 

processes.  
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 Statistical models use relationships between measured NO or N2O fluxes and physical 

and chemical parameters of soils to estimate the emission of NO and N2O from soils. 

A statistical model is designed to fit to an existing data set. Then it can be used to 

predict the NO and N2O emission from measured or modelled environmental 

parameters. Statistical models were used e.g. by Yan et al. (2005) or Delon et al. 

(2007). 

1.4.2 White box models 

White box models are the most detailed types of models. To a white box model a full set of 

priori information is ready. When having a scientific theoretic foundation of a system, it is 

possible to provide the model with a priori-knowledge usually given in the form of ordinary 

differential equations describing how different aspects of the system changes over time. 

Therefore, white box models are close to the full description of a real system. Examples for 

white box models which are used in this thesis are: 

 A local model to determine NO fluxes based on soil measurements was developed by 

Galbally and Johansson (1989). The model assumes that the net exchange of NO can 

be determined in terms of NO production, NO consumption, and NO diffusion through 

the soil. For this, NO production and NO consumption are determined with soil 

samples in the laboratory. The Galbally and Johansson model was validated by 

various studies (Remde et al., 1993; van Dijk et al., 2002; Otter et al., 1999; Mayer et 

al., 2010; Meixner et al., 1997; Ludwig et al., 2001). 

The laboratory measurements of NO production and NO consumption under varying 

temperature and ambient NO concentration are used to determine the fluxes of NO 

from soils (Galbally and Johansson, 1989). Hence, the measurements are conducted 

over a wide range of soil moistures (0-100% WFPS) and varying soil temperatures. 

Then, the NO flux can be estimated for that particular type of soil as a function of the 

soil moisture and temperature. Using land use distributions and measurements or 

estimates of the soil temperature and moisture, the NO fluxes can be up-scaled to a 

larger region (Kirkman et al., 2001; Yu et al., 2008; van Dijk et al., 2002; Feig et al., 

2009).  
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 Biogeochemical models simulate the movement of nutrients through ecosystems by 

looking at the important processes, such as the rate of decomposition, the rate of 

nitrification and denitrification etc. There are a lot of different process-based models, 

such as CENTURY  (Parton et al., 1996), DNDC (Li et al., 1992), PnET-N-DNDC (Li 

et al., 2000), ExpertN(Baldioli et al., 1994) , NASA CASA (Potter et al., 1996).  

We briefly refer to the model of Li et al. (2000) as an example of biogeochemical 

models. The challenges of modelling NO and N2O emissions byPnET-N-DNDC 

attribute to three reasons (Li et al., 2000) (see Fig. 4): 

o NO and N2O are multisource gases, as there are at least three sources: 

nitrification, denitrification and chemodenitrification. These three processes 

are so different in their dynamics and kinetics that, when they are mixed 

together, the pattern of NO and N2O fluxes is very complex.  

o The reactions are driven by a number of forces including soil environmental 

parameters (e.g. temperature, moisture…) and ecological drivers (e.g. climate, 

soil properties...). Any change in the combination of the forces will alter the 

magnitude and/or pattern of NO and N2O fluxes.  

o NO and N2O are intermediates of nitrification and denitrification. This means 

that the fluxes of NO and N2O are determined by the kinetics of production, 

consumption, and diffusion of the gases in the sequential biochemical 

reactions.  

The PnET-N-DNDC is a fusion of new developments with three existing models (the 

Photosynthesis-Evapotranspiration (PnET) model, the Denitrification-Decomposition 

(DNDC) model, and the nitrification model). Table 2 will give an overview of the prediction 

of the three models. 

Field and laboratory studies have shown a complex picture of soil NO and N2O emissions 

from various sources which are directly influenced by a number of soil environmental factors 

(temperature, moisture, pH, and substrate availability). These soil environmental factors are 

controlled by several ecological drivers, such as climate, soil physical properties, vegetation, 

and anthropogenic activities. Two components were constructed in the PnET-N-DNDC model 

to reflect the links between the ecological drivers, the soil environmental factors, and NO and 

N2O fluxes (Li et al., 2000). 
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Table 2: Overview of the three models integrated in the PnET-N-DNDC model.  

Model PnET DNDC nitrification model 

Prediction forest 

photosynthesis, 

respiration,organic 

carbonproduction 

and allocation,           

litter production 

soil 

decomposition, 

denitrification 

nitrifiergrowth/deathrates,nitrification 

rate,nitrification-inducedNOand 

N2O production 

 

The first component contains three interacting submodels to quantify impacts of ecological 

drivers on the soil environmental factors (see Fig. 4). The soil climate submodel simulates soil 

temperature, soil moisture, and redox potential profiles based on daily climate data, soil 

physical parameters, soil water status, thermal impacts of plants, and soil respiration. The 

forest growth submodel simulates forest growth driven by solar radiation, temperature, water 

stress, and N stress, and passes the litter production, water and N demands, and root 

respiration to the soil climate submodel or the decomposition submodel. The decomposition 

submodel tracks concentrations of substrates, like dissolved organic carbon, NH4
+
 and NO3

-
, 

based on climate, soil properties, and management measures (Li et al., 2000).  

The second component consists of two submodels (see Fig. 4).This component predicts 

impacts of the soil environmental factors on nitrification and denitrification. The nitrification 

submodel predicts NO and N2O production by tracking growth and death of nitrifiers under 

aerobic conditions. The denitrification submodel simulates growth and death of denitrifiers, 

substrate consumption, and gasdiffusion under anaerobic conditions. Fluxes of NO and N2O 

are a result of competition among the kinetics of production, consumption, and diffusion of 

the two gases in the soil. The five interacting submodels link the ecological drivers to the NO 

and N2O emissions. The soil, climate and decomposition algorithms were adopted from the 

DNDC model and the forest growth submodelwas adopted from the PnET model (Li et al., 

2000).  
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Figure 4: Schematic overview of the PnET-N-DNDC model: components, submodels, ecological drivers and 

environmental conditions. Figure is taken from Kiese et al. (2005). 

1.5 Objectives of this thesis 

The aim of this thesis focuses on small scale NO and N2O fluxes measured in the laboratory 

and in the field as well as on the comparison with modelled N2O fluxes. The thesis is 

structured in four main parts.  

1. The validation of the laboratory measurements of NO through a comparison between 

laboratory measurements and the modified Bowen ratio technique at a grass land site 

in Brandenburg, Germany.  

2. Laboratory measurements of NO emissions from organic layers from the 

Weidenbrunnen site, Germany, with respect to the spatial variability of NO fluxes. 

The main focus is to investigate the influence of different understory types in a 

Norway spruce forest on net potential NO fluxes as well as the relationship with 

physical and chemical soil parameters.  
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3. Closed chamber measurements of N2O over a period of one year at the Hainich 

research site, Germany. The measurements were performed with a high spatial 

distribution to investigate the influence of the distances between the different plots. 

Also, the influence of physical and chemical soil parameters on N2O fluxes was 

studied.   

4. The comparison between modelled and field N2O fluxes measured at the Hainich 

research site. For modelling N2O fluxes the process-based model Forest-DNDC was 

used.  

2 Experiments 

The results presented in this thesis are based on datasets obtained during three projects in 

which the author participated. Measurements were performed at the field site as well as in the 

laboratory. 

2.1 EGER / Fichtelgebirge 

Field and laboratory measurements were conducted within the framework of the project 

EGER (ExchanGE processes in mountainous Regions (www.bayceer.uni-

bayreuth.de/vp_eger/)) at the research site "Weidenbrunnen" (50°08’N, 11°52’E, 774 m a.s.l.) 

located in the Fichtelgebirge Mountains, NE Bavaria, Germany. The site is mainly covered by 

55 year old Norway spruce (Piceaabies) with significant variability in the understory. There 

are four different main understory types: moss, grass (Deschampsiaflexuosa and 

Calamagrostisvillosa), blueberries (Vacciniummyrtillus), and young spruce which cover 45, 

19, 7 and 13%, respectively, of the total surface area of the Weidenbrunnen site (Behrendt, 

2009).The mean annual air temperature of the Weidenbrunnen site is 5.3°C, mean annual soil 

temperature is 6.3°C, and mean annual precipitation is approximately 1160 mm (1971 - 2000; 

Foken, 2003; Falge et al., 2003). The soil type was classified as cambicpodzol over granite 

(Subke et al., 2003), and the texture is sandy loam to loam, with relatively high clay content 

in the Bh horizon. The mineral soil is characterised by low pH values (<4). The soil litter and 

the organic horizon had a thickness between 5 and 9 cm (Behrendt, 2009).  The organic layer 
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is classified as a moder consisting of Oi, Oe, and Oa horizons. More details concerning the 

site can be found in Gerstberger et al. (2004).  

Measurements were performed from August to October 2007 and soil samples for laboratory 

analyses were taken in September 2008.  

2.2 LIBRETTO / Brandenburg 

The LIBRETTO (LIndenBergREacTive Trace gas prOfiles) campaign took place in late 

summer 2006, from 01 August 2006 until 31 August 2006 at the Falkenberg Boundary Layer 

Field Site of the Meteorological Observatory Lindenberg (Richard-Aßmann Observatory) 

(Beyrich and Adam, 2007). The field site is located at 52° 10' 01" N, 14° 07' 27" E, 73 m 

a.s.l.. The main vegetation species are perennial ryegrass (Loliumperenne), red fescue 

(Festucarubra), dandelion (Leontodonautumnalis, Taraxacumofficinale), bromegrass 

(Bromushordeaceus), and clover (Trifoliumpratense, Trifoliumrepens). The meadow is 

mowed regularly in order to keep the mean vegetation height below 20 cm (Beyrich and 

Adam, 2007). The measuring site comprises one 99 m and one 10 m high profile mast (air 

temperature (T), relative humidity (rH), wind speed (u) and wind direction), two identical 

setups for the measurement of the net radiation flux, two stations for the measurement of 

turbulent fluxes of momentum, sensible and latent heat (further on referred to as the EC 

stations), and a sub-site to monitor physical soil quantities (soil temperatures, soil heat flux 

and soil moisture). A SODAR-RASS system completes the permanent setup of the 

Falkenberg site.  

2.3 Carbon storage in an unused beech forest in the Hainich national park -  

Differentiation of the soil carbon source and sink considering land use history / 

Thuringia  

Field measurements were conducted within the framework of the project“Carbon storage in 

an unused beech forest in the Hainich national park - Differentiation of the soil carbon source 

and sink considering land use history“ at a research site located in the Hainich National Park 

(51°04’46’’N, 10°27’08’’E, 440 m a.s.l.), Thuringia, Germany. The Hainich National Park 

was established in 1997 to protect one of the largest beech forests in Central Europe. Due to a 

unique history as a military base for more than 60 years prior to 1997, a large part of the 
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forest has been taken out of management and developed basically undisturbed. In the 

centuries before, the forest at the Hainich research site was used by the local village 

population as a coppice with standard systems and therefore has not been exposed to clearcut. 

As a consequence, the trees cover a wide range of age classes with a maximum up to 250 

years. The forest is dominated by beech (Fagussylvatica, 65%). The above-ground stem 

carbon pool is about 130 t C ha
−1

 (Mund, personal communication). Maximum tree height 

varies between 30 and 35 m with a maximum leaf area index (LAI) of 5.0 m
2
 m

−2
. The long-

term mean annual air temperature is 7.5 - 8°C and the mean annual precipitation is 750 – 

800 mm. 

Measurements were performed from November 2005 to November 2006. 

2.4 Laboratory setup 

Net NO release rates from soil samples taken at the Lindenberg and Weidenbrunnen site were 

determined using an automated laboratory system. A detailed description of our experimental 

setup is given in van Dijk and Meixner(2001); here we give only a short description of the 

most recent state of the setup. 

Pressurized air is passed through a pure air generator (PAG 003, ECOPHYSICS, Switzerland) 

to provide dry and NO-free air. This NO-free air supplied five Plexiglas cuvettes (four 

incubation cuvettes and one empty reference cuvette). The volume of each cuvette was 

9.7*10
-4

m
3
 (0.97 l)) and each was flushed with a continuous flow of 4.2*10

-5
 m

3
 s

-1
 

(2.5 l min
-1

) of dry NO-free air, as controlled by five mass flow controllers (MFC, Mass-

Flo®, 5000 sccm range, MKS instruments, USA), one for each cuvette. The headspace 

volume of each cuvette is well mixed by a teflonized micro-fan (Micronel®, USA). The outlet 

of each cuvette was connected to a switching valve. Every two minutes one cuvette was 

switched to be the “active” cuvette (i.e., connected to the analyzers, while the remaining four 

cuvettes were still purged), so that all five cuvettes were measured within 10 minutes. The 

valves provided necessary sample air to a chemiluminescence detector, NO-analyser (Model 

42i Trace Level, Thermo Electron Corporation, USA; detection limit: 250 ppt (3σ)) and a 

CO2-/H2O-analyzer (Li-cor 840, Licor, USA). Instead of ambient air we operated the NO-

analyser with pure oxygen (O2) to obtain a better accuracy and precision of the NO mixing 

ratio measurements, particularly at low mixing ratios.  
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The NO-analyser was calibrated using a gas phase titration unit (GPT, 146 C Dynamic Gas 

Calibrator, Thermo Electron Corporation, USA). For operating the GPT we used NO-free air 

from the PAG 003 and an NO gas standard (5.02 ppm NO, Air Liquide, Germany). The 

determination of the soil NO compensation mixing ratio (Conrad, 1994) requires the flushing 

of incubated soil samples with enhanced NO mixing ratios (resulting in reduced or even 

negative net NO release rates, i.e. NO uptake by the soil). Hence, NO standard gas (200 ppm 

NO, Air Liquide, Germany) was diluted into the air flow from the PAG 003 via a mass flow 

controller (Flow EL, Bronkhorst, Germany).  

All connections and tubes consisted of polytetrafluorethylene (PTFE). A homebuilt control 

unit (V25) was controlling the entire laboratory system and was also used, in combination 

with a computer, for data acquisition.    

To determine the temperature response of the net NO release we performed a total of four 

experiments, each on another sub-sample of the original understory soil sample. The sub-

samples were identically pre-treated. Incubations were at 10°C and 20°C, corresponding 

flushing was either with dry, NO-free air, or with air containing a high NO concentration (soil 

samples from the Lindenberg site were measured with air containing 50 ppb NO and soil 

samples from the Weidenbrunnen site were measured with air containing 133 ppb NO). Since 

every experiment begins with a wetted soil sample and the flushing air is completely dry, the 

gravimetric water content (θ) of the samples declines during each experiment as evaporating 

water leaves the cuvette with the flushing air flow. Gravimetric soil moisture content was 

measured by tracking the loss of water vapour throughout the measurement period and 

relating this temporal integral to the gravimetric soil moisture content observed at the start 

and end of the measurement period. This procedure provides us the response of the net NO 

release rates over the entire range of gravimetric soil moisture. 

For measuring the Lindenberg soil samples the laboratory system was run with Nafiondriers. 

The purpose of the reverse Nafion driers is to keep the humidity of the chambers headspace 

air high, and hence to slow the dehydration of the soil, allowing the microbes in the soil time 

to equilibrate to changes in the soil moisture content (Feig et al. 2008). The Weidenbrunnen 

samples consist on organic material so the samples natural dry slowly.  

 

 

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=polytetrafluorethylene
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3 Results 

3.1 Comparison between laboratory and field measurements of NO 

To build a basis for further measurements and data evaluation, the first part of this thesis is a 

comparison between laboratory NO fluxes and field NO fluxes. The micrometeorological 

Distributed Modified Bowen Ratio (DMBR) method was compared with laboratory 

parameterizations based on the analysis of soil samples. The NO fluxes derived in the 

laboratory depend on soil temperature and soil moisture measured during the LIBRETTO 

campaign.  

 

Figure 5: Median diel courses of NO flux from field measurements (green) and from up-scaled (laboratory 

derived) net potential NO fluxes (grey); up-scaling was achieved with field data of soil moisture and soil surface 

temperature. Straight lines represent the medians of NO fluxes, while color shaded areas represent their 

corresponding inter-quartile ranges; blue bars at the bottom indicate the number of data points available for cal-

culation of medians and inter-quartile ranges. Figure is taken from Mayer et al. (accepted).  

The obtained time series of laboratory derived NO fluxes was then converted into a median 

diel cycle, according to the median diel cycle of NO fluxes derived by the DMBR method. 
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The resulting range of the NO flux is shown together next to the field data in Figure 5. The 

field NO fluxes were always around 1.8 ng m
-2

 s
-1

 while the laboratory derived NO fluxes 

were between 2.1 and 5.2 ng m
-2

 s
-1

. The large scatter in the DMBR results originates from 

the limitation of data validity to Damköhler numbers less than 0.25. The laboratory NO fluxes 

exceeded the field NO fluxes by a factor of 1.5 to 2.5. While a considerable, diel amplitude 

was observed for the laboratory NO flux, the field NO flux remained almost constant around 

1.8 ng m
-2

 s
-1

. Acknowledging the very different nature of both methods to derive NO fluxes, 

the agreement between the two data sets is considered to be quite good. 

The laboratory NO flux is only valid directly at the surface of the soil (cf. Galbally and 

Johansson, 1989), while the field NO flux is attributed to 0.55 m above ground. Because 

turbulence is very weak close to the ground, the residence time of NO in the layer between 

soil surface (0 m above ground) and 0.55 m above ground might be long (compared to the 

characteristic time of the reaction of NO with O3 (see section 1.1.1). Therefore, a considerable 

vertical divergence of the NO flux can occur, which would reduce the NO flux with in-

creasing distance from the soil surface to 0.55 m above ground. Considering this, a factor of 

two between laboratory data and field data is a good match. 

3.2 NO fluxes in the Fichtelgebirge 

Laboratory incubation and flushing experiments were performed using a customized chamber 

technique to determine the response of net potential NO fluxes to physical and chemical soil 

conditions (e.g. temperature, moisture, bulk density, soil pH). Soil samples for laboratory 

measurements were taken under different understory types (moss, grass, spruce and 

blueberry) from the organic layer of the mountainous Norway spruce plantation in the 

Fichtelgebirge. Net NO release rates showed highest values at soil samples taken under spruce 

and blueberry cover and lowest values at soil samples taken under moss cover (Fig. 6). 

Furthermore, soil samples taken under moss cover showed negative values by fumigating 

with mNO,ref=133 ppb that is probably due to the low compensation point mixing ratios of this 

understory type. The NO compensation point mixing ratios (mNO,comp) at 1.0±0.1 gravimetric 

soil moisture, which is at the end of gravimetric soil moisture observed at the sample site 

(Behrendt, 2009), varied over a wide range. A low mNO,comp (38 ppb) was observed for soil 

samples taken under moss cover. For soil samples taken under grass cover a mNO,comp of 
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94 ppb was determined. Soil samples taken under spruce and blueberry cover showed highest 

mNO,comp with 518 and 389 ppb.  

 

Figure 6. Net NO release rates fitted through experimental results at (a) Tsoil=10°C and mNO,ref=0 ppb, (b) 

Tsoil=10°C and mNO,ref=133 ppb, (c) Tsoil=20°C and mNO,ref=0 ppb NO and (d) Tsoil=20°C and mNO,ref=133 ppb (all 

expressed in terms of mass of nitrogen). The transparent bands are the prediction bands of each line (95% 

confidence level). Figure taken from Bargsten et al. (2010). 

The net potential NO fluxes derived from measured net NO release rates from the different 

soil samples were also lowest for soil samples taken under moss and grass cover (see Fig. 7). 

It is remarkable that the net potential NO fluxes from soil samples taken under spruce and 

blueberry cover were approximately 10-fold higher than net potential NO fluxes from soil 

samples taken under moss and grass cover (note different scales of y-axes in Fig. 7).  

Optimum net potential NO fluxes measured at two different soil temperatures (10°C and 

20°C) allowed to estimate Q10 values for each soil sample of the Weidenbrunnen site. For one 

of the soil samples taken under spruce cover the lowest Q10 value (0.92) was derived while 

one soil sample taken under blueberry cover showed the highest Q10 value of 3.04. These 

values are in the range of Q10 values observed in other studies (Feig et al., 2008; van Dijk et 

al., 2002; Kirkman et al., 2002). 
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Figure 7: Net potential NO flux (all expressed in terms of mass of nitrogen) at 10°C and 20°C from soil samples 

taken under moss, spruce and blueberry covered patches (note different scales of the y-axes). Figure taken from 

Bargsten et al. (2010). 

Through a Pearson-product-moment-analysis a significant negative correlation (probability 

level of 0.1) between soil NH4
+
 and NO production rate at Tsoil=10°C, NO production rate at 

Tsoil=20°C, and NO consumption coefficient at Tsoil=20°C was found. It was not possible to 

explain the differences in net potential NO fluxes through the physical and chemical soil 

parameters. However, we found a strong relationship between understory types and the 

amount of net potential NO fluxes. It may originate from the complex biological interactions 

between plants and their soil environment. Explanations for the differences in net potential 

NO fluxes could be: 

 that roots can generate NO (Stöhr and Ullrich, 2002; Stöhr and Stremlau, 2006), 

 that litter type and the influence of root exudates influenced functions of the soil 

microbial communities under the respective understory plants, 

 that mycorrhiza influence the magnitude of net potential NO fluxes. 



Synthesis 

 

24 

 

3.3 N2O fluxes in the Hainich 

We performed closed chamber measurements of N2O over a period of one year (November 

2005 to November 2006) in an unmanaged old growth beech forest (Hainich, Thuringia, 

Germany). To do justice to the spatial variability we measured N2O fluxes at 15 plots 

distributed over the Hainich research site. During the measuring period we performed 510 gas 

flux measurements at 34 dates. These N2O fluxes ranged between -101.7 and 

121.6 µg N2O m
-2

 h
-1

 (Fig. 8).  

 

Figure 8: N2O fluxes at the Hainich research site measured at 15 plots; black dots are the certain (r
2
 of the linear 

regression of the concentration measurements at 0, 10 and 20 minutes after closure of the chamber not below 

0.7) field N2O fluxes and the grey dots display the uncertain N2O fluxes. All N2O fluxes are expressed in terms 

of mass of nitrogen. 

The averaged field N2O fluxes exhibited small amplitudes between -5.0 and 

38.8 µg N2O m
-2

 h
-1

,
 
but most average field N2O fluxes did not significantly differ from zero 

(t-test, p = 0.05) (see Fig. 9). Through interpolating between the 34 days of measuring an 

annual N2O flux was calculated. This annual N2O flux was 0.46±0.32 kg N2O ha
-1

 yr
-1

 for the 

Hainich research site. The highest field N2O fluxes occurred between January and February 

2006. During this time there was a frost period with soil temperature always below -0.5°C. 

This period contributes up to 40% to the annual field N2O emission. However, the longest 
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part of the year a background emission pattern was observed (mean N2O flux during these 

periods: 3.4 µg N2O m
-2

 h
-1

).  

Also, other studies performed on beech forest sites found mostly background emission 

patterns with annual N2O emissions at or below 0.5 kg N2O ha
-1

 yr
-1

 (Guckland, 2009; 

Brumme and Borken, 2009; Borken and Beese, 2006). Hence, a background flux around 

0.5 kg N2O ha
-1

 yr
-1

 for the given background emission type and the given background 

emission factor seems to be more adequate.  

 

Figure 9: Field and modelled N2O fluxes for the Hainich research site from November 2005 to November 2006. 

The black dots are the mean field N2O flux rates (n=15), the grey squares are the mean modelled N2O flux rates 

(n=15) and the grey line shows the mean daily modelled N2O flux rates. The error bars on each individual data 

point are the standard deviation (n=15). All N2O fluxes are expressed in terms of mass of nitrogen.  

The spatial variability of the 15 plots at the Hainich research site was always high during the 

measuring period. There is a slightly positive correlation between the correlation of N2O 

fluxes at two plots and the distances between these plots. However, these correlations are not 

significant.  

A relationship between N2O fluxes and physical and chemical soil parameters could not be 

observed. Only at six days (out of 34) of measuring period significant correlations between 

bulk density and N2O fluxes could be found.  
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3.4 Modelling N2O fluxes 

The N2O fluxes simulated with the Forest-DNDC model for the 15 plots showed fluxes 

between 0.0 and 255.7 µg N2O m
-2 

h
-1

. The model does not account for N2O uptake. Mean 

modelled N2O fluxes (derived from the mean of the modelled N2O fluxes for each plot at the 

date of N2O flux measurements, n=34) ranged between 2.5 and 81.7 µg N2O m
-2

 h
-1

. These 

modelled values are typically larger than the plot averaged N2O fluxes of the field 

measurements (see Fig. 9). The mean daily modelled N2O fluxes (1.4-133.1 µg N2O m
-2

 h
-1

) 

were up to three times larger than the field N2O fluxes.  

Mean modelled N2O fluxes showed lowest values from November 2005 to March 2006 and 

from August to November 2006. Highest values occurred at the end of April 2006. 

Furthermore, the daily modelled N2O fluxes showed a weak seasonal pattern.  

The annual modelled N2O emission at measurement intervals and the annual modelled N2O 

emission in daily resolution for the Hainich research site for the one year measuring period 

(November 2005 to November 2006) were 1.77±1.82 and 1.56±0.006 kg N2O ha
-1

. This is 3-

fold higher than the annual N2O flux derived from measured values.  

The agreement of the temporal variability of modelled and field N2O fluxes is not good. That 

was also displayed by the model efficiency, which showed negative values for all 15 N2O 

fluxes derived with the Forest-DNDC model. In general, the Forest-DNDC model 

overestimates the N2O fluxes of the Hainich research site.  

4 Conclusion 

In this thesis results from NO and N2O measurements at three different research sites are 

presented. The measurements were performed on soil samples in an automated laboratory 

system and in situ by a closed static chamber technique. The main findings of this thesis can 

be concluded as follows: 

(1) It was shown by this work that the comparison between laboratory measurements of soil 

samples taken from the field site and field measurements using the MBR method brings 

good results. The NO fluxes measured with these different techniques are in good 

agreements. Also former studies showed good agreements between the laboratory 

measurements of NO and field measurements (e.g. Kirkman et al., 2002; van Dijk et al., 
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2002). However, in these former studies chamber measurements in the field were used 

instead of the MBR method. The gain of the laboratory method is that it is a relatively 

low-priced and easily handled method to determine NO fluxes of a specific site. Also 

samples of different sites can be investigated parallel. That is half the battle to chamber 

or MBR measurements. 

(2) The NO fluxes observed through the DMBR method showed no diurnal course in 

contrast to the laboratory measurements and were generally low. One reason for the 

lower NO fluxes observed by the DMBR method can be the chemical reactions between 

NO and O3 during daytime (see eq. 1.1), affecting not only the layer between the two 

measuring levels but also the layer from top of the soil to the lowest measuring level. 

The laboratory NO flux corresponds to the surface of the soil, while the field NO flux is 

attributed to 0.55 m above ground.  Because turbulence is very weak close to the 

ground, the residence time of NO in the layer between soil surface (0 m above ground) 

and 0.55 m above ground might be long (compared to the characteristic time scale of 

the reaction of NO with O3). Therefore, a considerable vertical divergence of the NO 

flux can occur, which would reduce the NO flux with increasing distance from the soil 

surface to 0.55 m above ground. However, the NO2 generated in equation 1.1 can 

through ultraviolet light convert back to NO and an oxygen radical (see eq. 1.2), which 

build together with an oxygen molecule O3 (see eq. 1.3). For future experiments it 

would be useful to attribute the field NO flux to a height as low as possible above 

ground to minimize the time for chemical reactions during the vertical transport of the 

trace gases.  

(3) Laboratory NO flux measurements of soil samples taken at the Weidenbrunnen site 

have shown the relevance of investigating the organic layer. This was the first European 

laboratory study on NO fluxes from the organic layer. Only Japanese scientist (Nishina 

et al., 2009) made a similar study one year before. The organic layer is in direct contact 

with the atmosphere and the majority of microorganisms live in the first centimeter of 

soil. Further studies on organic layers are necessary to understand the full influence on 

NO fluxes. For a better understanding it will be advisable to measure more soil and 

microbial parameters. The litter type and root exudates can influence the NO flux. Here, 

exact investigations on these points are important to make not only an educated guess. 

Also to measure more replicates is advisable. More replicates for example alleviated 
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better error estimation. Here we measured only two replicates as it is a very time 

consuming process.  

(4) Net potential NO fluxes at the Weidenbrunnen site have shown a clear relationship with 

the different understory types at the site (moss, grass, young spruce and blueberries). 

Soil samples taken under moss and grass cover have shown small net potential NO 

fluxes while soil samples taken under spruce and blueberry cover have shown up to 

10-fold higher net potential NO fluxes. Therefore, in further studies on biogenic NO 

emissions from forest floors more attention has to be paid to small scale heterogeneity 

of the understory vegetation.  

(5) While the understory type seems to be an important parameter controlling NO exchange 

processes, corresponding soil nutrients played generally a less important role. It is 

remarkable that high NO emissions were observed for soils under woody understory 

types; this may be related to soil chemical processes in the vicinity of mycorrhized 

roots, but further studies are certainly necessary for confirmation. As forest thinning 

changes the availability of light and therefore the establishment of different understory 

types, management practices are likely to have important consequences on the net soil 

NO emission from a forested site. 

(6) Results from the Hainich research site reveal particularly low N2O emissions compared 

to the lowest values observed in managed beech forests. The results clearly underline 

that natural background emissions from this ecozone are lower than 1 kg N ha
-1

 yr
-1

. 

Furthermore, the results indicate that site properties (soil pH, soil organic carbon, clay 

content, bulk density) substantially affect the magnitude of N2O emissions. It is 

necessary in this respect to gain N2O fluxes from more natural sites. Also, N2O 

measurements with a higher time resolution would be favorable for a better 

understanding of the processes. 

(7) The absence of spatial correlations indicates that within one beech site with nearly 

identical understory, the distance between each chamber is not as important. This is 

valuable for designing measurement plots as larger distances between individual 

chambers are not required. However, these findings need to be further verified by 

additional studies. A good way can be a study with a homogenized soil. In this way 

differences in the results based on soil properties can be excluded. 
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(8) This thesis also indicates that an uncalibrated Forest-DNDC model is not fully 

appropriate for simulating annual fluxes of N2O for zero fertilizer treatments. To 

simulate the temporal variability in N2O fluxes, a validation at other research sites 

seems to be necessary especially for sites with low soil organic carbon values. 

Therefore, it remains a challenge for future research to satisfactorily reproduce the 

spatial variability of natural N2O fluxes. However, in this thesis the Forest-DNDC was 

used uncalibrated.  

(9) NO and N2O are intermediates in the nitrification and denitrification process. Both 

gases contribute to the greenhouse gas effect. It would have been good to measure NO 

and N2O together at on site. Thereby statements of the interaction of both gases would 

have been possible.  
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Abstract 

Nitric oxide (NO) plays an important role in the photochemistry of the troposphere. NO from 

soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are 

primarily caused by biological activity (nitrification and denitrification), that occurs in the 

uppermost centimeter of the soil, a soil region often characterized by high contents of organic 

material. Most studies of NO emission potentials to date have investigated mineral soil layers. 

In our study we sampled soil organic matter under different understories (moss, grass, spruce 

and blueberries) in a humid mountainous Norway spruce forest plantation in the 

Fichtelgebirge (Germany). We performed laboratory incubation and flushing experiments 

using a customized chamber technique to determine the response of net potential NO flux to 

physical and chemical soil conditions (water content and temperature, bulk density, particle 

density, pH, C/N ratio, organic C, soil ammonium, soil nitrate). Net potential NO fluxes (in 

terms of mass of N) from soil samples taken under different understories ranged from 1.7-

9.8 ng m
-2

 s
-1

 (soil sampled under grass and moss cover), 55.4-59.3 ng m
-2

 s
-1

 (soil sampled 

under spruce cover), and 43.7-114.6 ng m
-2

 s
-1

 (soil sampled under blueberry cover) at 

optimum water content and a soil temperature of 10°C. The water content for optimum net 

potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered 

soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 

and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on 

net potential NO flux were statistically significant (0.01 probability level) only for NH4
+
. 

Therefore, as an alternative explanation for the differences in soil biogenic NO emission we 

consider more biological factors like understory vegetation type, amount of roots, and degree 

of mycorrhization; they have the potential to explain the observed differences of net potential 

NO fluxes.  

 

1 Introduction 

Nitric oxide (NO) is a reactive gas which plays a central role in the photochemistry of the 

troposphere (Crutzen, 1979). The photochemistry of NO and nitrogen dioxide (NO2) is 

important for the generation/destruction of tropospheric ozone and, hence, regulates the 

oxidizing capacity of the troposphere. The oxidation products of NO (gaseous NO2, nitrous 



  Appendix B 

 

41 

 

and nitric acid, particulate nitrite and nitrate) also contribute to the generation of acid rain 

(Crutzen, 1979) affecting human health and plant productivity.  

With respect to NO biosphere-atmosphere exchange, soils are of great interest due to the fact 

that NO biogenic emissions from soil contribute up to 40% to the global budget of 

atmospheric NO (Davidson and Kingerlee, 1997; Meixner, 1994; Denman et al., 2007; 

Rudolph and Conrad, 1996). Kesik et al. (2005) predicted that by 2039 soil NO emissions will 

increase by 9%. Soils have the potential for acting as a sink for atmospheric NO (Conrad, 

1994). Only a few studies provide an indication of soils acting as a sink (Dunfield and 

Knowles, 1998; Skiba et al., 1994; Slemr and Seiler, 1991). The NO flux between soil and 

atmosphere is a result of microbial consumption and production of NO in the top soil layer. 

NO production and consumption occur simultaneously during nitrification and denitrification 

(Remde et al., 1989; Rudolph and Conrad, 1996; Skiba et al., 1997; Firestone and Davidson, 

1989). In both soil microbial processes NO can be an intermediate, it can be released and also 

absorbed (Galbally, 1989).  

In most cases the organic layer is the only soil layer in direct contact with the atmosphere. 

There are soils having an organic layer with a thickness of 10 cm or more; these thick organic 

layers are mostly a kind of moder or raw humus (Scheffer and Schachtschabel, 2002). Mineral 

soils under these organic layers are never in contact with the atmosphere. Hence, as shown by 

Gasche and Papen (1999), who examined soils under a spruce canopy, the most important 

layer for NO exchange is the uppermost organic layer. In their experiment with intact soil 

cores from a spruce forest site they found that the organic layer contributed over 86% to the 

NO emission from soil. It is also known that nitrification occurs predominantly in the first few 

centimeters of soils (Papke and Papen, 1998; Rudolph and Conrad, 1996; Laville et al., 2009; 

Venterea et al., 2005; Remde et al., 1993; Jambert et al., 1994). Venterea et al. (2005) found 

actually the highest NO production in the first centimeter. Organic soils support high 

nitrification and denitrification rates and may be important hot spots of NO emission (Guthrie 

and Duxbury, 1978). Denitrification, in contrast, normally occurs in deeper soil layers or in 

the water table. In this respect, the role of organic matter is potentially important (Jambert et 

al., 1994).  
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In forests the type of understory influences NO exchange between the soil and the trunk space 

(Jambert et al., 1994; Pilegaard et al., 1999). Most studies to date have focused on the 

influence of the overstory vegetation and/or soil nutrients (Fowler et al., 2009; Venterea et al., 

2004; Pilegaard et al., 2006). As reported by Oberdorfer (1994), Norway spruce forests fall 

into a series of plant sociological associations, which are characterized by the main understory 

species present (e.g. Calamagrostio villosae - Piceetum). Within one individual forest stand 

the understory might be composed of patches characterized by different species (e.g. 

Calamagrostis villosa, Vaccinium myrtillus, Deschampsia flexuosa). There are only a few 

studies how plants influence the NO exchange between soil and atmosphere (Stöhr and 

Stremlau, 2006; Stöhr and Ullrich, 2002), and there is a considerable lack of knowledge in 

this area.  

To investigate the effect of soil physical and chemical parameters and understory types on NO 

emission from thick organic layers of forest soils we carried out laboratory incubation and 

flushing experiments on soils sampled below various understory covers in a Norway spruce 

forest in south-eastern Germany.  

 

2 Material and methods  

2.1 Sample Site 

The field site is located at Weidenbrunnen (50°09’ N, 11°34’ E, 774 m above sea level) which 

is situated in the Fichtelgebirge Mountains, NE Bavaria, Germany. The site is mainly covered 

by 55-year-old Norway spruce (Picea abies) with significant variability in the understory. 

There are four different main understory types: moss, grass (Deschampsia flexuosa and 

Calamagrostis villosa), blueberries (Vaccinium myrtillus), and young spruce which cover 45, 

19, 7 and 13%, respectively, of the total surface area of the Weidenbrunnen site (Behrendt, 

2009). Mean annual air temperature of the Weidenbrunnen site is 5.3°C, mean annual soil 

temperature is 6.3°C, and mean annual precipitation is approximately 1160 mm (1971 - 2000; 

Foken, 2003; Falge et al., 2003). The soil type was classified as cambic podzol over granite 

(Subke et al., 2003), and the texture is sandy loam to loam, with relatively high clay content 

in the Bh horizon. The mineral soil is characterised by low pH values (<4). The soil litter and 



  Appendix B 

 

43 

 

the organic horizon had a thickness between 5 and 9 cm (Behrendt, 2009).  The organic layer 

is classified as a moder consisting of Oi, Oe, and Oa horizons. More details concerning the 

site can be found in Gerstberger et al. (2004).  

2.2 Soil sampling and preparation 

In September 2008, soil samples for the laboratory study on NO release were taken from the 

O horizon at patches below the main understory types: moss, grass, young spruce, and 

blueberries. An individual understory patch has been defined, such that one square meter of 

understory area has to be covered mainly (>50%) with the respective understory vegetation. 

Two samples were taken for each understory type, resulting in a total of eight soil samples 

(soil samples taken under moss: M1, M2, soil samples taken under grass: G1, G2, soil 

samples taken under spruce: S1, S2, soil samples taken under blueberries: B1, B2). The soil 

samples were air dried and then stored at 4°C until analysis. All measurements were 

performed within 2 months after sampling.  

For our laboratory studies of NO release rates, samples were sieved through a 16 mm mesh to 

homogenise the soil and, all green biomass was removed. This can be contrasted with 

previous studies of mineral soils and sands where samples were sieved through 2 mm mesh 

(van Dijk and Meixner, 2001; van Dijk et al., 2002; Feig et al., 2008; Yu et al., 2008; Gelfand 

et al., 2009). A 16 mm mesh was chosen, based on tests sieving Weidenbrunnen organic 

matter through 2, 4, 8, and 16 mm mesh sizes. These experiments showed, that sieving 

through a 2 mm mesh destroyed the structure of soil organic matter causing higher NO release 

rates than observed when sieving through 4, 8 and 16 mm meshes whose corresponding NO 

release rates were not significantly different from each other (see Fig. 1).  
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Figure 1. The effect of sieving organic soil samples through sieves of different mesh sizes on 

the observed net NO release rates (Tsoil=10°C). Error bars show the standard deviation of the 

net NO release rate (expressed in terms of mass of nitrogen) averaged over bins of 0.1 

gravimetric soil moisture. 

 

For measurements of net NO release rates approx. 0.1 kg soil was placed into a Plexiglas 

cuvette, wetted with deionised water to a gravimetric water content >3 (using a spray can) and 

pre-incubated for 3 hours in a thermo-regulated cabinet to adapt to the soil temperature used 

during the corresponding NO release experiments. Former experiments showed that net NO 

release rates increase fairly proportionally with soil mass in the chambers up to 100 g, after 

which the slope declines. This indicates that from this soil mass onwards gas diffusion 

through the soil could be limiting. These results are similar to those of Remde et al. (1989) 

where the NO flux rate was shown to be proportional to the soil mass in the chamber up to 

150 g. Above 150 g the relationship between NO flux and soil mass was no longer linear.  
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2.3 Soil physical and chemical characterization 

In addition to samples for use in flux measurements, we took organic layer samples from each 

understory patch for the determination of soil pH, C/N ratio, organic C (Corg), soil nitrate 

(NO3
-
), soil ammonium (NH4

+
), bulk density (BD) and particle density (PD). 

For the determination of soil pH the organic matter was homogenized and afterwards 

measured in a soil-to-water suspension (1:2.5) using a glass electrode (SenTix®, WTW, 

Germany). The C/N ratio was measured with an elementary analyzer (Flash EA 1112, 

Thermoquest, Germany). Corg was determined by the mean difference of 5 g (air dried) of the 

soil sample and 5 g dried at 430°C in a muffle furnace (until constant weight was achieved). 

The ammonium and nitrate concentrations in extracts of the soil samples were measured by 

spectrometry (FIA-lab, MLE, Germany). For determination of the soil bulk density, 

undisturbed soil samples were taken using a spade and afterwards dimensioned. Then the 

samples were dried at 60°C for 24 h. From each patch we took three soil cores and individual 

quantities were averaged over these. Particle density of the soil sample was determined by a 

heliumpycnometer (AccuPyc II 1340, Micromeritics, USA) after sieving soil samples through 

a 2 mm mesh.  

2.4 Laboratory setup 

Net NO release rates from soil samples were determined using an automated laboratory 

system. A detailed description of our experimental setup is given in van Dijk and Meixner 

(2001); here we give only a short description of the most recent state of the setup (see Fig. 2). 

Pressurized air is passed through a pure air generator (PAG 003, ECOPHYSICS, Switzerland) 

to provide dry and NO-free air. This NO-free air supplied five Plexiglas cuvettes (four 

incubation cuvettes and one empty reference cuvette). The volume of each cuvette was 

9.7*10
-4 

m
3
 (0.97 l)) and each was flushed with a continuous flow of 4.2*10

-5
 m

3
 s

-1
 

(2.5 l min
-1

) of dry NO-free air, as controlled by five mass flow controllers (MFC, Mass-

Flo®, 5000 sccm range, MKS instruments, USA), one for each cuvette. The headspace 

volume of each cuvette is well mixed by a teflonized micro-fan (Micronel®, USA). The outlet 

of each cuvette was connected to a switching valve. Every two minutes one cuvette was 

switched to be the “active” cuvette (i.e., connected to the analyzers, while the remaining four 
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cuvettes were still purged), so that all five cuvettes were measured within 10 minutes. The 

valves provided necessary sample air to a chemiluminescence detector, NO-analyser (Model 

42i Trace Level, Thermo Electron Corporation, USA; detection limit: 250 ppt (3σ)) and a 

CO2-/H2O-analyzer (Li-cor 840, Licor, USA). Instead of ambient air we operated the NO-

analyser with pure oxygen (O2) to obtain a better accuracy and precision of the NO mixing 

ratio measurements, particularly at low mixing ratios.  

The NO-analyser was calibrated using a gas phase titration unit (GPT, 146 C Dynamic Gas 

Calibrator, Thermo Electron Corporation, USA). For operating the GPT we used NO-free air 

from the PAG 003 and an NO gas standard (5.02 ppm NO, Air Liquide, Germany). The 

determination of the soil NO compensation mixing ratio (Conrad, 1994) requires the flushing 

of incubated soil samples with enhanced NO mixing ratios (resulting in reduced or even 

negative net NO release rates, i.e. NO uptake by the soil). Hence, NO standard gas (200 ppm 

NO, Air Liquide, Germany) was diluted into the air flow from the PAG 003 via a mass flow 

controller (Flow EL, Bronkhorst, Germany).  

All connections and tubes consisted of polytetrafluorethylene (PTFE). A homebuilt control 

unit (V25) was controlling the entire laboratory system and, in combination with a computer, 

was also used for data acquisition (see Fig. 2).    

To determine the temperature response of the net NO release we performed a total of four 

experiments, each on another sub-sample of the original understory soil sample. The sub-

samples were identically pre-treated. Incubations were at 10°C and 20°C, corresponding 

flushing was either with dry, NO-free air, or with air containing 133 ppb of NO. Since every 

experiment begins with a wetted soil sample and the flushing air is completely dry, the 

gravimetric water content (θ) of the samples declines during each experiment as evaporating 

water leaves the cuvette with the flushing air flow. Gravimetric soil moisture content was 

measured by tracking the loss of water vapour throughout the measurement period and 

relating this temporal integral to the gravimetric soil moisture content observed at the start 

and end of the measurement period. Soil samples are completely dry within 4 to 7 days. This 

procedure provides us the response of the net NO release rates over the entire range of 

gravimetric soil moisture (>4 to 0). Gravimetric soil moisture ranging from 0 to 4 corresponds 

to a water filled pore space (WFPS) from 0 to 0.7.   

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=polytetrafluorethylene
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Figure 2. Experimental setup for laboratory investigation of net NO release rates on soil 

samples (details, see section 2.4). 

 

The NO release rate is a product of NO consumption and NO production, because both 

processes occur simultaneously in the topsoil (Rudolph and Conrad, 1996; Conrad, 1994). 

Consequently, the observed NO release rate, J (see Eq. 1), is always a net release rate. If NO 

consumption overrides the NO production in the soil sample, then J becomes negative. 

However, this only occurs if the the NO mixing ratio in the reference cuvette, mNO,ref, exceeds 

the NO mixing ratio in the headspace of a sample cuvette (which is equal to the corresponding 

outlet NO mixing ratio, mNO,out, due to well-mixed conditions within each sample cuvette). 

2.5 Calculation and fitting the net NO release rate  

For a given constant incubation temperature (10°C, 20°C) we derived from our laboratory 

data the net NO release rate J=J(θ) (in ng NO (in terms of mass of nitrogen) per mass of (dry) 

soil (kg) and time (s)) as a function of the gravimetric soil moisture (θ) of the soil samples. 
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J(θ) was calculated from the NO mixing ratio difference between the reference cuvette 

(mNO,ref, in ppb) and the soil incubation cuvettes (mNO,out, in ppb): 

     
 

     
(               )  

  

  
                                                                          (1) 

where Q is the flow through the cuvette (m
3
 s

-1
), Msoil is the dry mass of the soil sample (kg), 

MN/Vm * 10
-3

 is the conversion factor (ppb to ng m
-3

), where MN is the molecular weight of 

nitrogen (14.0076 kg kmol
-1

) and Vm is the molar volume (m
3
 kmol

-1
) at actual temperature 

and standard pressure (1013.25 hPa). 

Individual data of measured net NO release rates were fitted with a 3 parameter function (Eq. 

2) modified from that given by Meixner and Yang (2006) in order to yield two of the three 

parameters as measured quantities (θopt, Jopt): 

           
 

    
         (  

 

    
)                                                                              (2) 

where θopt is the gravimetric water content where the optimum net NO release rate (Jopt 

:=J(θopt)) is observed, and b characterizes the width of the fitting curve. The gnuplot® 

software (www.gnuplot.info, see copyright information) was used for fitting.  

It has been frequently shown, that there is a linear relationship between the net NO release 

rate (J) and the headspace NO mixing ratio (mNO,out) (Remde et al., 1989; van Dijk and 

Meixner, 2001; van Dijk et al., 2002; Ludwig et al., 2001): 

                  
  

  
                                                                               (3) 

Eq. (3) implies that the NO production rate P (ng kg
-1

 s
-1

) is independent of the cuvette’s 

headspace NO mixing ratio (mNO,out), whereas the first-order NO consumption rate, K 

(ng kg
-1

 s
-1

), is dependent on it. The NO consumption coefficient k (m
3
 kg

-1
 s

-1
) is determined 

from the slope of Eq. (3). To obtain this slope, we used two incubation data sets: namely at 

mNO,ref =0 ppb and mNO,ref =133 ppb, 

     
    

     
 

 (            )               

                        
 

  

  
                                                           (4) 

where mNO,out,low is the actual NO mixing ratio (ppb) in the headspace of the cuvette under 

flushing with NO free air and mNO,out,high is the actual NO mixing ratio in the cuvette under 
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flushing with 133 ppb NO. Having determined k, the NO production rate P was calculated 

from Eq. (3) and corresponding NO net release rates J from Eq. (1). 

Finally, Eq. (3) is extended to describe the net NO release rate, for each soil sample, as a 

function of the main influencing variables, headspace NO mixing ratio (mNO,out), gravimetric 

water content (θ) and soil temperature (Tsoil). For the temperature dependence we used the Q10 

values (see section 2.8), as a “temperature amplification factor” (Feig et al., 2008): 

 (               )                                
  

  
                                     (5) 

2.6 NO compensation point mixing ratio  

The existence of a NO compensation point mixing ratio (mNO,comp) has been clearly 

demonstrated (Remde et al., 1989; van Dijk and Meixner, 2001; Conrad, 1994; Gelfand et al., 

2009; Feig et al., 2008; Otter et al., 1999; Johansson and Granat, 1984). Considering Eq. (5) 

mNO,comp is the mixing ratio (mNO,out) at which the rate of NO production P equals the rate of 

NO consumption K, so that the net NO release rate between soil and the headspace is zero 

(J=0). Hence, from Eq. (6) mNO,comp is calculated in terms of gravimetric soil water content 

and soil temperature. 

                  
          

          
 

  

  
                                                                                (6) 

2.7 Net potential NO flux  

To relate the net NO release rate, which is expressed in ng NO per mass of soil and time, to 

the net potential NO flux, which is expressed in ng NO per soil area and time, we used the 

following equation, originally presented by Galbally and Johansson (1989), which has been 

used in modified forms already by Otter et al. (1999), van Dijk and Meixner (2001), Feig et 

al. (2008), Gelfand (2009), Yu et al. (2008). 

             √                      
          

          
         

  

  
                   (7) 

FNO is the desired net potential NO flux (ng m
-2

 s
-1

), BD is the bulk density of soil (kg m
-3

), 

Dp is the effective diffusion coefficient of NO in soil (in m
2
 s

-1
) according to Millington and 

Quirk (1960) (see section 2.9). 
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2.8 Calculation of the Q10 value 

The temperature dependence of the net potential NO flux was determined by using net NO 

release rates obtained for two soil temperatures, namely those at 10°C and 20°C. The 

temperature dependence usually shows an exponential increase and can be expressed by the 

ratio of two net potential NO fluxes, at soil temperatures 10°C apart. The Q10 values used for 

this study were calculated from the net potential NO fluxes at optimum gravimetric soil 

moisture (θopt):  

          
                    

                    
                                                                                               (8) 

2.9 Effective diffusion of NO in soil air 

The effective gas diffusion coefficient of NO in soil air is an important parameter for deriving 

the net potential NO flux from NO production and NO consumption rates (Bollmann and 

Conrad, 1998). Since we do not have measurements of the effective soil diffusion coefficient 

(Dp) at the Weidenbrunnen site, we estimated the diffusion coefficient through available 

functional relationships. The choice of the proper diffusivity coefficient function is not trivial, 

particularly  for organic soils (Kapiluto et al., 2007). Therefore, we tested different functions 

namely those of Moldrup et al. (2000), Millington (1959) and Millington and Quirk (1960) 

which are given in Tab. 1. In these functions the following measured variables were used: 

 soil total porosity (Φ), calculated from the soil bulk density (BD) and the particle 

density (PD) of the soil sample; both parameters measured directly on the soil 

samples: 

    
  

  
                                                                                                                                               (9) 

 soil air filled porosity (Є) calculated from the soil bulk density, the density of water 

(WD), and the the soil total porosity (Φ): 

      
  

  
 

 

 
                                                                                                                   (10) 

We calculated net potential NO fluxes (see section 2.7) using the three different effective NO 

diffusion coefficients. One example for a soil sample from a grass covered patch is shown in 

Fig. 3. Net potential fluxes exhibit different maxima with a shifting value for the optimum 
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water content for NO production due to the different exponents for Є. According to Moldrup 

(personal communication, 2009), the Millington and Quirk approach describes the effective 

gas diffusion coefficient best for soil organic matter; therefore the potential NO fluxes of this 

paper have been calculated using the formulation by Millington and Quirk (1960). 

 

Figure 3. Net potential NO flux at 10°C from a grass covered patch (all expressed in terms of 

mass of nitrogen). The net potential NO fluxes were calculated according to Eq. (8) applying 

effective soil diffusion coefficients by Moldrup et al. (2000), Millington (1959) and 

Millington and Quirk (1960) (see Tab. 1).  
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Table 1. Mathematical formulations for the calculation of the effective diffusion coefficient in 

soil. Є is the soil air-filled porosity in m
3
 (soil air) m

-3
 (soil), Φ is the soil total porosity in m

3 

(pores)
 
m

-3 
(soil) and D0 is the gas diffusion coefficient in free air (1.99*10

-5
 m

2
 s

-1
). 

 

Moldrup (2000) Millington (1959) Millington & Quirk (1961) 

   
    

 
 

           
   

     

  
    

 

2.10 Error estimation of NO release measurements 

The errors in the net NO release rate were determined using the individual errors of all 

quantities on the right hand site of Eq. (1). We specified these errors as followed: 

 The error in the soil weight (Msoil) measurements was set to the accuracy of the 

balance (PG-S Delta Range®, Mettler-Toledo, Switzerland) provided by the 

manufacturer: 0.001 kg (for a mass <1.0 kg). 

 The error of the mass flow rate through the cuvette (Q) was found as 1.68*10
-8

 m
3
 s

-1
 

(i.e. the standard deviation of all individual mean flux rates of a corresponding 

experiment with n=798).  

 The error of the mixing ratio in the headspace of a soil cuvette (mNO,out) was 

determined by using every NO mixing ratio measurement: for mNO,ref=0 ppb the error 

was <0.1 ppb, for mNO,ref =133 ppb the error was <0.6 ppb.  

 The error of the reference cuvette (mNO,ref) was determined in the same way, resulting 

in an error of <0.1 ppb (mNO,ref =0 ppb), and <0.4 ppb (mNO,ref =133 ppb). 

Application of Gaussian error propagation to Eq. (1) resulted in an error in the optimum net 

NO release rate (Jopt) of less than 8%.   
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The detection limit for the net NO release rate obtained by our laboratory system was 

determined by Feig et al. (2008) and Gelfand et al. (2009) using inert glass beads and 

autoclaved soils. The “blank” net NO release rate from the inert glass beads was 

0.02 ng kg
-1

 s
-1

 with a random deviation of 0.02 ng kg
-1

 s
-1

 and for autoclaved soils it was 

0.05 ng kg
-1

 s
-1

 with a random deviation of 0.02 ng kg
-1

 s
-1

. Feig et al. (2008) defined the 

detection limit of the net NO release rate as 0.08 ng kg
-1

 s
-1

 (i.e. mean net NO release rate of 

glass beads plus three times its standard deviation). The detection limit of the autoclaved soils 

was calculated the same way and resulted in a detection limit of 0.11 ng kg
-1

 s
-1

. Therefore, 

the more conservative estimate from the autoclaved soils was used as the detection limit of 

net NO release rates determined by our laboratory system.  

In Fig. 4a and b, we present the net NO release rate calculated from the difference in the data 

points of NO mixing ratio (see Eq. 1) and the corresponding fit (see Eq. 2) for a soil samples 

under moss. Fig. 4 also shows the individual errors of J (by Gaussian error propagation; grey 

whiskers) and the detection limit of J (grey shadow band).  

For the fit of the data according to Eq. (2), prediction bands (PB) were calculated at a 

confidence level of 95% using the procedure given by Olive (2007) (Eq. 2.6 in the work by 

Olive). The prediction bands show for a prescribed probability, the values of one or more 

hypothetical observations that could be drawn from the same population from which the given 

data was sampled.  
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Figure 4. (a) measured net NO release rates (red dots) at mNO,ref=0 ppb and fitted net NO 

release rates (red dashed line), for a soil samples covered with moss. (b) measured net NO 

release rates (red dots) at mNO,ref=133 ppb and fitted net NO release rates (red dashed line), for 

a moss covered soil. The grey shaded band indicates the detection of the net NO release rate 

obtained through our laboratory system. Error bars (grey whiskers) on each individual data 

point have been calculated by the Gaussian error propagation (see section 2.10). NO release 

rates in both panels have been obtained for Tsoil=20°C. 

 

3 Results  

3.1 Net NO release rates 

Figures 5a-d present net NO release rates obtained from soil samples taken under moss, grass, 

spruce and blueberry cover at two temperatures (upper panels: 10°C, and lower panels: 20°C) 

and two NO mixing ratios (left panels: mNO,ref=0 ppb and right panels: mNO,ref=133 ppb). The 

curves are the result of corresponding fitting (Eq. 2) to measured data as described in section 

2.5. At incubation with NO free air higher net NO release rates occurred from soil samples 
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taken under spruce (S1, S2) and blueberry (B1, B2) cover than under moss (M1, M2) and 

grass (G1, G2) cover. Maximum NO release rates at Tsoil=10°C and 20°C were 12.4 and 

23.6 ng kg
-1

 s
-1

 for S1, 13.2 and 32.0 ng kg
-1 

s
-1 

for S2, 11.4 and 25.5 ng kg
-1

 s
-1

 for B1, and 

14.6 and 33.6 ng kg
-1

 s
-1 

for B2. Similarly, when incubated with 133 ppb NO, soil samples 

taken under spruce (S1: 9.3 and 14.4 ng kg
-1

 s
-1

, S2: 10.4 and 30.8 ng kg
-1 

s
-1

) and blueberry 

(B1: 6.8 and 23.6 ng kg
-1

 s
-1

, B2: 13.6 and 30.2 ng kg
-1

 s
-1

) cover showed the highest net NO 

release rates. In contrast, soil samples taken under moss and grass cover showed small net NO 

release rates when flushed with NO free air (Fig. 5a, c). When flushed with air containing 

133 ppb NO, negative net NO release rates occurred for the soil samples S1, S2 and G2. In 

these cases the flushing NO mixing ratio of 133 ppb was obviously higher than the NO 

compensation mixing ratio (mNO,comp) of the corresponding soil samples (see section 2.7), and 

the NO consumption rate (K) has exceeded the NO production rate (P) in these soil samples.  

Net NO release rates reached their maxima between 0.64 (G1) and 2.41 (B2) gravimetric 

water content. The soil moisture, where the optimum net NO release rate is observed, is called 

the optimum soil moisture (θopt in Eq. 3). Generally, highest values of θopt were observed for 

S1, S2, B1 and B2.  

At gravimetric soil moisture of 4 the net NO release rates do not become zero. That is due to 

the fact that the samples were not waterlogged at gravimetric soil moisture of 4. Therefore, 

nitrifiers and denitrifiers might be still supplied with oxygen.  

However, the curves differ for optimum soil moistures and higher than these. The net NO 

release rates from S1 and S2 were not significantly different from each other using either 

flushing at Tsoil=10°C, but significantly differ at Tsoil=20°C. No significant differences could 

be observed between the two samples taken under moss cover, or the two samples taken under 

grass cover. Net NO release rate of soil samples taken under blueberry cover were similar 

only in a range between 0 and 1.4 gravimetric water content and only in the treatment with 

NO free air and at Tsoil=10°C.  
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Figure 5. Net NO release rates fitted through experimental results by Eq. (2) (see section 2.4) 

at (a) Tsoil=10°C and mNO,ref =0 ppb, (b) Tsoil=10°C and mNO,ref =133 ppb, (c) Tsoil=20°C and 

mNO,ref =0 ppb NO and (d) Tsoil=20°C and mNO,ref =133 ppb (all expressed in terms of mass of 

nitrogen). The transparent bands are the prediction bands of each line (95% confidence level).  

3.2 NO production rates, NO consumption coefficients, and NO compensation 

point mixing ratios 

Exemplary results of NO production rate and NO consumption coefficient as a function of 

gravimetric soil water content for Tsoil=10°C are shown in Fig. 6a and 6b (for soil samples 

taken under moss and grass cover). The NO production rate P (also expressed in ng kg
-1

 s
-1

) is 

nearly as high as the net NO release rate at mNO,ref=0 ppb. The NO production rate 

exponentially increased with soil moisture to a maximum value followed by a moderate 

decrease at higher soil moistures. This optimum shape of the NO production rate has been 

explained by substrate limitation under very dry conditions, and O2-diffusion limitation under 

very wet conditions (Davidson et al., 1993; Meixner, 1994; Rudolph and Conrad, 1996; 



  Appendix B 

 

57 

 

Meixner and Yang, 2006; Skopp et al., 1990). The lowest optimum NO production rates were 

found at Tsoil=10°C for M1 and M2 with 0.7 and 0.3 ng kg
-1

 s
-1

. G1 and G2 revealed optima of 

1.2 and 1.7 ng kg
-1

 s
-1

. S1 and S2 yield optimum NO production rates of 12.0 and 

12.8 ng kg
-1

 s
-1

, and B1 and B2 of 10.9 and 14.5 ng kg
-1

 s
-1 

(see Tab. 2). The NO production 

rate at 20°C showed generally higher values at optimum soil moisture. The optimum NO 

production rate for M1 and M2 at Tsoil=20°C were 1.1 and 0.7 ng kg
-1

 s
-1

, for G1 and G2 3.0 

and 2.0 ng kg
-1

 s
-1

, 21.4 and 31.6 ng kg
-1

 s
-1

 for S1 and S2, and for B1 and B2 24.8 and 

31.2 ng kg
-1

 s
-1

 (see Tab. 2). 

 

Figure 6. (a) NO production at Tsoil=10°C and (b) NO consumption coefficient at Tsoil=10°C 

from soil samples taken under moss and grass cover (all expressed in terms of mass of 

nitrogen). The red lines show the production and consumption coefficient of soil samples 

taken under moss covered patches and the blue lines of soil samples taken under grass 

covered patches.  
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The NO consumption coefficient (k, see Eq. 4) is expressed in m
3
 kg

-1
 s

-1
. For our samples, 

we measured maximum NO consumption coefficients for M1 and M2 of 3*10
-5

 m
3
 kg

-1
 s

-1
, 

for G1 and G2 2*10
-5

 m
3
 kg

-1
 s

-1
 for both, 4*10

-5
 m

3
 kg

-1
 s

-1
 for S1 and S2 and 6*10

-5
 and 

3*10
-5

 m
3
 kg

-1
 s

-1
 for B1 and B2 (all values for Tsoil=10°C, see Tab. 3 for NO consumption at 

Tsoil=20°C). 

Fig. 7 presents mean NO compensation point mixing ratios (mNO,comp) for all eight soil 

samples at gravimetric soil moisture of 1±0.1 which is at the upper end of gravimetric soil 

moistures observed at the sample site (Behrendt, 2009). The mNO,comp varies over a wide 

range. Soil samples taken under moss and grass cover showed small mNO,comp (38 ppb and  94 

ppb) compared to soil samples taken under spruce and blueberry cover which exhibited 

considerable higher mNO,comp (518 ppb and 389 ppb).  

 

Figure 7. Median NO compensation point mixing ratios, mNO,comp (Eq. 7, section 2.7), for all 

soil probes taken under the different understory types of the Weidenbrunnen site at 1±0.1 

gravimetric soil moisture and Tsoil=10°C. The bars indicate the range between the 25% and 

75% percentile of the data (n=10, for each understory type data set).  
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3.3 Net potential NO fluxes 

Net potential NO fluxes derived from measured net NO release rates from soil samples taken 

under different understory covers are given in Fig. 8. It is remarkable, that the net potential 

NO fluxes from soil samples taken under spruce and blueberry cover were approximately 10-

fold higher than net potential NO fluxes from soil samples taken under moss and grass cover 

(note different scales of y-axes in Fig. 8). The optimum NO fluxes at Tsoil=10°C ranged 

between 1.7 ng m
-2

 s
-1

 (M2) and 114.6 ng m
-2

 s
-1

 (B2). The position of the optimum 

gravimetric water content varied between the different curves. The optimum gravimetric 

water content for Tsoil=10°C was 0.8 for M1 and M2, 1.1 for G1 and G2, 1.3 for S1 and S2 

and 1.3 for B1 and 1.5 for B2 gravimetric soil moisture (also see Tab. 2). For flushing at 

Tsoil=20°C, optimum net potential NO fluxes were, except for S1, always higher at the higher 

incubation temperature. They ranged between 3.9 ng m
-2

 s
-1 

(M2) and 295 ng m
-2

 s
-1

 (B2) (see 

Tab. 2). Optimum gravimetric water content for Tsoil=20°C were 0.8 and 0.9 for M1 and M2, 

0.5 and 0.8 for G1 and G2, 1.2 and 1.5 for S1 and S2, and 1.3 for B1 and B2.  
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Figure 8. Net potential NO flux (all expressed in terms of mass of nitrogen) at 10°C and 20°C 

from soil samples taken under moss, spruce and blueberry covered patches (note different 

scales of the y-axes).  

3.4 Temperature dependence (Q10 values) 

Optimum net potential NO fluxes measured at two different soil temperatures (10°C and 

20°C) allowed us to estimate Q10 values for each soil sample of the Weidenbrunnen site and 

data are given in Tab. 2. For S1 we derived the lowest Q10 value (0.92). B1 showed the 

highest Q10 value of 3.04. 
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Table 2. Net potential NO flux (in terms of mass of nitrogen) calculated with the diffusion coefficient according to Millington and Quirk 

(1960); NO production rates (Popt) and the NO consumption coefficients (kopt) are calculated for 10°C and 20°C and the Q10 values. All values 

are at optimum gravimetric soil moisture (θopt). 

soil samples understory 

vegetation 

optimum 

gravimetric 

water content 

(10°C) 

[1] 

optimum net 

potential NO 

flux (10°C) 

(ng m-2 s-1) 

optimum 

gravimetric 

water content 

(20°C) 

[1] 

optimun net 

potential NO 

flux (20°C) 

(ng m-2 s-1) 

Popt 

(10°C) 

(ng kg-1 s-1) 

kopt 

(10°C) 

(m3 kg-1 s-1) 

Popt 

(20°C) 

(ng kg-1 s-1) 

kopt 

(20°C) 

(m3 kg-1 s-1) 

Q10 

 

[1] 

M1 moss 0.8 4.0 0.8 5.0 0.7 3.3*10-5 1.1 5.1*10-5 1.25 

M2 moss 0.8 1.7 0.9 3.9 0.3 2.6*10-5 0.7 3.7*10-5 2.29 

G1 grass 1.1 8.8 0.5 24.9 1.2 2.1*10-5 3.0 3.4*10-5 2.83 

G2 grass 1.1 9.8 0.9 10.3 1.7 2.4*10-5 2.0 3.7*10-5 1.05 

S1 spruce 1.3 55.4 1.2 51.1 12.0 4*10-5 21.4 1.4*10-5 0.92 

S2 spruce 1.3 59.3 1.5 145.0 12.8 3.7*10-5 31.6 4.3*10-5 2.45 

B1 blueberry 1.3 43.7 1.3 133.0 10.9 6.1*10-5 24.8 4.2*10-5 3.04 

B2 blueberry 1.5 114.6 1.3 295.0 14.5 2.8*10-5 31.2 2.6*10-5 2.6 
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Table 3. Chemical and physical soil parameters from organic soil layers under different understories from Weidenbrunnen research site. NH4
+
 

and NO3
-
 are expressed in terms of mass of N. 

soil 

samples 

understory 

vegetation 

bulk density 

 

(103 kg m-3) 

particle density 

 

(103 kg m-3) 

pH 

(measured in H2O) 

[1] 

C/N 

 

[1] 

Corg 

 

[%] 

NH4
+ 

 

mg kg-1 ( dry soil) 

NO3
- 

 

mg kg-1 ( dry soil) 

M1 moss 0.15 1.5 4.6 16.4 43.3 194 2 

M2 moss 0.12 1.7 5 16.6 26.9 148 7 

G1 grass 0.15 1.7 4.1 14.7 29.5 207 1 

G2 grass 0.13 1.5 3.6 15.4 40.0 204 2 

S1 spruce 0.14 1.6 3.5 16.9 43.5 56 2 

S2 spruce 0.14 1.6 3.5 18.4 30.2 86 11 

B1 blueberry 0.18 1.6 4.7 15.3 36.5 139 1 

B2 blueberry 0.15 1.5 3.7 15.6 39.0 148 2 
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3.5 Chemical and physical soil parameters 

The results of analysis of different soil parameters including bulk density (BD), particle 

density (PD), soil pH, C/N ratio, organic carbon (corg), soil ammonia (NH4
+
) and soil nitrate 

(NO3
-
) are summarized in Tab. 3. Soil bulk density ranged between 0.12 and 0.18*10

3
 kg m

-3
, 

while PD ranged between 1.5 and 1.7*10
3
 kg m

-3
. Soil pH was lowest (3.5) in soil samples 

taken under spruce cover (S1, S2) and highest (5.0) for soil samples taken under moss cover 

(M1, M2). C/N ratios for all soil samples taken from the organic layers are relatively low, but 

on average (16.2) close to the range reported in literature for other Norway spruce sites in the 

Fichtelgebirge (see Schmitt et al., 2008; Michel et al., 2006). C/N ratios varied only in a small 

range, namely between 14.7 and 18.4. For Corg the values ranged between 26.9% (M2) and 

43.5% (S1). A higher variability has been found for soil NH4
+
. Lowest soil NH4

+
 values were 

found for S1 (56 mg kg
-1

) and S2 (86 mg kg
-1

) and the highest soil NH4
+
 values were found 

for G1 (207 mg kg
-1

) and G2 (204 mg kg
-1

) (expressed in mass of N). Soil NO3
-
 ranged 

between 1 and 11 mg kg
-1 

(expressed in mass of N). 

Pearson’s product-moment-analyses were performed to test (a) net potential NO fluxes (at 

Tsoil=10°C, Tsoil=20°C), (b) NO production rates (at Tsoil=10°C, Tsoil=20°C) and (c) NO 

consumption coefficients (at Tsoil=10°C, Tsoil=20°C) for possible relationship with the 

physical and chemical soil parameters (soil pH, Corg, C/N ratio, soil NH4
+
, soil NO3

-
 and PD). 

The results obtained from Pearson’s product-moment-analyses are presented in Tab. 4. 

Significant negative correlations (probability level of 0.1) were found only between soil NH4
+
 

and NO production rate at Tsoil=10°C, NO production rate at Tsoil=20°C, and NO consumption 

coefficient at Tsoil=20°C. The following correlations were not significant at a probability level 

of 0.1. Soil pH correlated negatively with all independent variables except for the 

consumption coefficient at Tsoil=10°C. Positive correlations with the individual variables were 

found for soil Corg and also for C/N. Soil NO3
-
 vs. independent variables showed positive 

correlations except for the NO consumption coefficient. Particle density correlated negatively 

with independent variables, except for the NO consumption coefficient.  
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Table 4. Results of Pearson product moment correlation analysis of net NO release rates, net 

potential NO flux, NO production rate (P) and NO consumption coefficient (k) versus 

physical and chemical soil parameters  

 NO flux 

10°C 

P 

10°C 

k 

10°C 

NO flux 

20°C 

P 

20°C 

k 

20°C 

pH -0.537 -0.523 0.206 -0.356 -0.468 -0.311 

Corg 0.226 0.213 0.227 0.066 0.095 0.495 

C/N 0.157 0.332 0.137 0.043 0.364 0.325 

NH4
+
 -0.519 -0.739

a
 -0.467 -0.315 -0.698

a
 -0.662

a
 

NO3
-
 0.061 0.172 -0.033 0.091 0.274 -0.083 

PD -0.367 -0.181 0.023 -0.387 -0.149 0.171 

a
Significant at the 0.10 probability level 

 

4 Discussion 

4.1 Comparison with other studies  

During the last two decades, there has been a series of studies on biogenic NO emissions from 

soil in forest ecosystems (Papke and Papen, 1998; Pilegaard et al., 2006; Kesik et al., 2005; 

Johansson, 1984; Pilegaard et al., 1999; Butterbach-Bahl et al., 2002; Lehmann, 2002; 

Butterbach-Bahl et al., 2001). However, there are only a few studies examining spatial 

differences of NO fluxes within a forest (Gasche and Papen, 1999; Lehmann, 2002; Pilegaard 

et al., 1999; Nishina et al., 2009). Furthermore, the influence of soil organic matter on soil 

biogenic NO emissions has not been studied in detail and is consequently not well known.  In 

most studies the effect of the dominant overstory or of the whole soil core (mineral and 
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organic layer) was addressed by measurements using the dynamic chamber technique (Gasche 

and Papen, 1999; Butterbach-Bahl et al., 1997; Johansson, 1984).  

During the last two decades, a series of field and laboratory studies clearly demonstrated, that 

NO fluxes, measured in the field by dynamic chamber techniques, were in good agreement 

with those NO fluxes, which have been derived from laboratory incubations on soils sampled 

from the top soil layer of dynamic chambers’ enclosures (Meixner et al., 1997; van Dijk et al., 

2002; Remde et al., 1993; Ludwig et al., 2001; Meixner and Yang, 2006; Otter et al., 1999). 

However, for more detailed investigations, laboratory studies are necessary, but only a few 

groups seem to have the facilities available to carry out laboratory measurements of soil NO 

exchange (e.g. Bollmann et al., 1999; Ormeci et al., 1999; Schindlbacher et al., 2004; Feig et 

al., 2008; van Dijk and Meixner, 2001). Since laboratory studies are outnumbered, most of the 

following discussion is based on results from field measurements in spruce forests.  

Pilegaard et al. (1999), applying a dynamic field chamber technique in a spruce forest site at 

Ulborg (Denmark), found low NO fluxes from moss covered soil. However, NO fluxes 

increased with closeness to standing tree trunks. For their forest soils which had a thick 

organic layer (4 cm), NO fluxes ranged between <0.3 and 66 ng m
-2

 s
-1

. Similar results were 

presented by Gasche and Papen (2002) for the Höglwald forest (Germany). Their 

measurements, also employing a dynamic chamber technique, addressed the spatial 

distribution of NO fluxes along a tree-to-tree gradient. For 1997, annual mean NO fluxes of 

29.2±0.9 ng m
-2 

s
-1

 were found for those chambers which were located closest to the stems, 

18.4±0.5 ng m
-2

 s
-1

 for chambers approx. 4 m, and 12.3±0.4 ng m
-2

 s
-1 

for the chamber approx. 

6 m apart from the stems. With closeness to trunks (living trees) the NO emissions increased 

significantly (between 1.6- and 2.6-fold). While for the Höglwald beech forest site, Gasche 

and Papen (2002) could explain an identical spatial effect with marked differences in soil 

physical and chemical soil parameters, there was no detailed explanation for the Höglwald 

spruce forest site. One reason could be that the nutrient supply from stem flow is negligible at 

this spruce forest site (Gasche and Papen, 2002). Butterbach-Bahl et al. (1997) reported mean 

monthly NO fluxes between 5.6 and 36.1 ng m
-2

 s
-1

 for the same Höglwald spruce forest site 

(July 1994 to June 1995). The site exhibits acidic soil pH values (2.7 to 3.6) in the organic 

layer. Again for the Höglwald spruce site, Gasche and Papen (1999) showed, that most of the 
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NO emissions came from the organic layer and only a small contribution from the mineral 

soil. For the entire Höglwald site, they reported annual NO emission rates of 

25.5±0.5 ng m
-2

 s
-1

 during 1994-1996. Very low NO fluxes (0.3±0.1 ng m
-2

 s
-1

)  were reported 

by Horváth et al. (2006) for a spruce forest site in NE Hungary (October 2002 to September 

2003). Similar low NO fluxes were reported by Kitzler et al. (2006) for the spruce-fir-beech 

forest site of Achental (Austria) during the period of  May 2002 to July 2004. Using a 

dynamic chamber technique, they found mean NO fluxes of only 0.2±0.02 ng m
-2

 s
-1 

for the 

first year and mean NO fluxes of 0.14±0.01 ng m
-2

 s
-1

 for the second year. However, the pH 

values at this site are very high (6.42).  

Laboratory studies on undisturbed soil samples from the Weidenbrunnen site (approx. 300 m 

west of our site) resulted in NO fluxes between 2.6 and 12.9 ng m
-2

 s
-1

 (Muhr et al., 2008). 

This site is also a spruce site mainly covered with grass. Another laboratory study on mineral 

soil samples (taken just from the A horizon) were carried out at the Nagoya University Forest 

(Japan) site covered with Japanese cedar. The NO emissions ranged from 0.3 ng m
-2

 s
-1  

at 

high soil water contents (<92% WFPS) to 72.2 ng m
-2

 s
-1

 at low soil water contents (>29% 

WFPS)
 
(Nishina et al., 2009).  

Our optimum net potential NO fluxes for soil samples taken under grass cover (8.8-

9.8 ng m
-2

 s
-1

, Tsoil=10°C, see Tab. 2) agree well with the (laboratory) results of Muhr et al. 

(2008). Also the results of Nishina et al. (2009) are in the range of our optimum net potential 

NO fluxes. However, their soil samples were taken from the mineral soil. Our results for soil 

samples taken under grass cover also overlap with the data given by Butterbach-Bahl et al. 

(1997) and Gasche and Papen (2002). Annual NO emission rates measured by Gasche and 

Papen (1999) range between our optimum net potential NO fluxes for soil samples taken 

under grass and spruce cover (and also for the B1 sample). Contrastingly, the NO fluxes 

found by Kitzler et al. (2006) and Horváth et al. (2006) are much lower than any of our 

optimum net potential NO fluxes. However, the Achental site is a mixed forest, and the soil 

exhibits a relatively high pH value (6.42). Relatively high values of the soil water content 

(average: 53% WFPS) characterized the soils of the Hungarian site (see Horváth et al., 2006). 

In contrast, the optimum soil water contents found in our study ranged between 18 and 27% 

WFPS (see equivalent gravimetric water contents in Tab. 2). Optimum net potential NO 

fluxes of our moss covered soils (if watered to 53% WFPS) would fall in the range of field 
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fluxes observed by Horváth et al. (2006). In any case, our optimum net potential NO fluxes 

from soils under spruce and blueberries show higher values than any fluxes of the other 

studies mentioned above.  

Net potential NO fluxes derived from laboratory experiments using the algorithm of Galbally 

and Johansson (1989) are particularly sensitive to changes in NO production rates and NO 

consumption coefficients and less sensitive to changes in diffusivity and soil bulk density 

(Rudolph and Conrad, 1996). In this respect, when comparing NO soil flux estimates (derived 

from laboratory incubation measurements), with data from literature, one should keep in 

mind, that the most up-to-date diffusion coefficient equations are basically applicable only to 

mineral soils. As gas diffusion in the organic layer can be substantially different, and 

uncertainties in determining diffusion coefficients in organic layers are still a matter of 

discussion (Moldrup, personal communication), we employed different mathematical 

formulations (see Tab. 1), and found that the choice of the diffusion coefficient equation had 

an effect on the calculated NO flux (see Fig. 3). Depending on the diffusion coefficient, the 

NO fluxes had different magnitudes (factor of maximum 1.26 over the entire soil moisture 

range) and exhibited a shift in the position of the optimum flux (see Fig. 3). However, even 

using the correct effective diffusion coefficient, attention should be paid to its determination 

as the equation includes both the bulk and particle density. Both densities vary significantly 

between organic and mineral soil layers (e.g. Weidenbrunnen site: organic soil layers: BD: 

0.14±0.02, PD: 1.6±0.07, n=8, mineral soil layers: BD: 0.88±0.18, PD: 2.47±0.06, n=8). If the 

effective diffusion coefficient has to be calculated, it is necessary to measure these quantities 

directly. Nevertheless, to reveal the uncertainties in diffusion through organic soil layers, 

further research, especially through field measurements of the diffusion coefficient, are most 

desirable.  

Comparisons of NO production rates are not affected by the choice of diffusion coefficients. 

Therefore, only a few NO production rates are reported in the literature. Venterea and Rolston 

(2000) found mean NO production rates in a range of 9.4 to 18.7 ng kg
-1

 s
-1

 for agricultural 

soils from the Sacramento Valley of California. These values are comparable with our results 

of NO production rates (0.3-14.5 ng kg
-1

 s
-1

). Remde et al. (1989) reported NO production 
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rates twice as high as ours for a sandy clay loam under aerobic conditions 

(27.4±1.8 ng kg
-1

 s
-1

), yet much higher under anaerobic conditions (738±21.6 ng kg
-1

 s
-1

).  

NO production rates reported in the literature are as rare as NO consumption coefficients. 

Values of the NO consumption coefficient (k) found in this study were in the range of 2*10
-5

 

to 6*10
-5

 m
3
 s

-1
 kg

-1
. Soils from the Bolivian Amazon region showed k values under oxic 

conditions of 8*10
-5

 m
3
 s

-1
 kg

-1
 (Koschorreck and Conrad, 1997). Feig et al. (2008) reported 

NO consumption coefficients between 5*10
-5

 and  26*10
-5

 m
3
 s

-1
 kg

-1
. However, these values 

were determined for desert soil with nearly no organic material inside at 25°C in the 

laboratory, 15°C more than for our studies. As biological processes usually increase by a 

factor of two with an increase in temperature of 10°C (Kirschbaum, 1995; Davidson et al., 

2006; Zheng et al., 2003), the higher values reported by Feig et al. (2008) are to be expected. 

Only a few studies reported compensation point mixing ratios. Slemr and Seiler (1991) 

determined NO compensation point mixing ratio for agricultural soils between 0.3 and 

5.5 ppb. Gasche and Papen (1999) found NO compensation point mixing ratios of 

69.9±9.6 ppb for a spruce forest soil in the Höglwald, Germany. Only for G1 and G2 we 

found NO compensation points in the low range of these studies. Soil samples taken under 

spruce and blueberry cover showed a much higher mNO,comp. However, there are also studies 

which found higher NO compensation mixing ratios, e.g. ranging between 9 and 875 ppb for 

agriculture, meadow and forest soils (Gödde and Conrad, 2000). In view of the ambient NO 

mixing ratios observed at the Weidenbrunnen site, NO compensation point mixing ratios 

found in our study demonstrate, that the soils there mainly act as a biogenic source for NO. 

Only when the ambient NO mixing ratio matches or falls below the NO compensation point 

mixing ratio will the soils become a sink for biogenic NO. Moravek (2008) observed ambient 

NO mixing ratios between 1 and 2 ppb at 5 cm above the forest floor (moss covered) and 

Plake (2009) found NO mixing ratios up to 4.2 ppb at 0.5 cm above the forest floor (moss 

covered), both at the Weidenbrunnen site. These mixing ratios are too low to change the NO 

flux from upward to downward directions.  

Many studies have presented an exponential increase of soil NO emissions with increasing 

temperature. Generally, Q10 values are in the range of 2-3, a range valid for most biochemical 

processes (Koponen et al., 2006; Kirkman et al., 2002; van Dijk et al., 2002; Feig et al., 2008; 
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Meixner and Yang, 2006; Smith et al., 2003). We obtained Q10 values for net potential NO 

fluxes between 0.92 and 3.04 (see Tab. 3). However, a Q10 value less than 1 (e.g. S1: 0.92) 

indicates a decrease of soil NO emission with increasing temperature.  

4.2 Influence of soil chemical parameters on net potential NO flux 

The processes which result in NO exchange are mainly influenced by soil temperature and 

soil moisture (Davidson and Kingerlee, 1997; Johansson and Granat, 1984; Skiba et al., 1997; 

Ludwig et al., 2001; Feig et al., 2008; Meixner, 1994; Meixner and Yang, 2006). 

Nevertheless, soil chemical and physical parameters may also affect the NO exchange 

(Nägele and Conrad, 1990a; Smith et al., 2003; Ludwig et al., 2001; Pilegaard et al., 2006; 

Kitzler et al., 2006; Laville et al., 2009; Gödde and Conrad, 2000).  

For our soil samples from the Weidenbrunnen site we found no significant (probability level 

of 0.05) relationships between optimum net potential NO fluxes, NO production rates, or NO 

consumption coefficients with any physical or chemical soil parameters. However, on the 0.1 

significance level we found negative correlations between soil NH4
+
 and (a) NO production 

rate (at Tsoil=10°C), (b) NO production rate (at Tsoil=20°C), and (c) NO consumption 

coefficient (at Tsoil=20°C) (see Tab. 4). Also the NO consumption coefficient at Tsoil=10°C 

and the net potential NO fluxes showed a negative, but not significant correlation with soil 

NH4
+
. These negative correlations with soil NH4

+
 point to nitrification as the main converting 

process, because soil NH4
+
 must be available before nitrification may start. Denitrification is 

the conversion of NO3
-
 to N2O or N2, and NO3

-
 is necessary for the activation of 

denitrification. However, denitrification seems to play a smaller role for soils from the 

Weidenbrunnen site because we found no significant correlation between soil NO3
-
 and other 

variables (see Tab. 4). Furthermore, nitrification may be lower from soil samples taken under 

moss and grass than from soil samples taken under spruce and blueberry cover. Therefore, the 

amount of soil NH4
+
 is higher at soil samples taken under moss and grass than at soil samples 

taken under spruce and blueberry cover. Gödde and Conrad (2000) also found, that 

nitrification is the dominant process of NO production in the soil. In contrast to our study, 

Baumgärtner and Conrad (1992) found no significant correlation between the NO production 

rate and soil NH4
+
, but did find a significant correlation between the NO consumption 
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coefficient and soil NH4
+
. However, they investigated mineral soil only.  NO production and 

NO consumption processes are differently regulated (Dunfield and Knowles, 1998), so that 

both processes can respond independantly to changes in external factors. Gasche and Papen 

(1999) found a correlation between NO fluxes and soil NH4
+
 for the Höglwald spruce forest 

site as well as a correlation between NO fluxes and soil NO3
-
. Typically, 1-4% (sometimes 

more) of soil NH4
+
 is released from soil as NO (Dunfield and Knowles, 1998). 

The other parameters showed no significant correlations (<0.1). As the research site, a typical 

even-aged monoculture, is relatively small (1.4 ha), soil parameters vary only over a small 

range (see also Behrendt, 2009). This makes it difficult or impossible to establish significant 

correlations between the other soil chemical or physical parameters and net potential NO 

fluxes.  

Nevertheless, net potential NO fluxes showed a weak relationship with soil pH values. During 

laboratory incubation measurements, there might have been microsites in the soil samples 

with a soil pH different from the measured mean pH, indicating that nitrification occurred in 

microsites having pH higher than the surrounding soil (Paavolainen and Smolander, 1998). 

That could also be a reason for the relatively high NO emission despite of the low pH values. 

A pH value between 7 and 8 is ideal for nitrification. However, Paavolainen and Smolander 

(1998) reported coniferous soils that exhibited acid-tolerant nitrification. In this respect, a 

series of studies reported relationships between NO exchange processes and soil pH (Gödde 

and Conrad, 2000; Venterea et al., 2004; Nägele and Conrad, 1990b). There is also an 

enhanced chemical NO production from nitrite at low soil pH (Cleemput and Baert, 1984), 

which can happen even if nitrite does not accumulate to detectable amounts. In contrast, other 

studies found no strong relationships between NO exchange and soil pH (Dunfield and 

Knowles, 1998).  

4.3 Influence of the understory type on net potential NO flux 

A number of studies have detected effects of vegetation on NO emissions (Meixner et al., 

1997; Feig et al., 2008; Davidson, 1991; Martin and Asner, 2005; Pilegaard et al., 1999). Our 

study suggests a strong relationship between understory type and the amount of net potential 

NO flux. As this relationship can hardly be explained by the measured physical and chemical 
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soil parameters alone, it may originate from the complex biological interactions between 

plants and their soil environment. Because plant species differ in quantity and quality of 

resources that they return to soil,
 
individual plant species may have important effects on 

components
 
of the soil biota and the processes that they regulate (Wardle et al., 2004). Carbon 

derived from plant litter mainly influences the decomposer communities. In addition, 

providing carbon to the rhizosphere creates a hot spot for microbial activity in the soil. For 

example the size and the density of the nitrifier and denitrifier communities are strongly 

influenced by plant roots (Philippot et al., 2009). 

In our experiments, soils were sieved through a 16 mm sieve and kept at 4°C for up to 2 

months. Sieving may have removed the majority of roots but it cannot be excluded that fine 

roots passed the meshes resulting in a soil sample containing litter, roots, rhizosphere and root 

free soil. Stöhr and Ullrich (2002), and Stöhr and Stremlau (2006) demonstrated that roots can 

generate NO. The contribution of living roots to the observed net potential NO fluxes in our 

experiments should be rather low because most fine roots were removed by sieving. However, 

biochemical reactions of intact fine roots of spruce when stored in soil at 4°C are unchanged 

for up to 4 weeks and then slowly decline (Pritsch, unpublished results). Thus it cannot be 

excluded that a minor part of the observed NO emissions came directly from those fine roots 

that were not removed by sieving.  

A more likely explanation for the different net potential NO fluxes is that litter type and the 

influence of root exudates influenced functions of the soil microbial communities under the 

respective understory plants. Rhizosphere effects i.e. the influence of roots on NO emission 

rates was found by Slemr and Seiler (1991). Vos et al. (1994) measured 2 to 12-fold higher 

NO emissions from plots covered with green manure than from fallow plots, probably caused 

by increased microbial activity in the rhizosphere of the green manure plots compared to the 

bare soil. Unfortunately, no field studies exist examining the influence of plant roots on NO 

emissions. A few studies have shown a strong influence of roots on nitrous oxide emissions 

(Mosier et al., 1990) and it is generally accepted that denitrification is highest in the 

rhizosphere and decreases with distance from plant roots (Smith and Tiedje, 1979).  

According to our study, net potential NO fluxes as well as NO production rates, NO 

consumption coefficients, and net NO release rates displayed the highest values for soil 



Appendix B 

 

72 

 

samples taken under spruce and blueberry covered soils and the lowest values for soil samples 

taken under moss and grass covered soils. Our results on small net potential NO fluxes from 

soils taken under moss cover are in accordance with findings of Pilegaard et al. (1999). They 

suspected that mosses retain nutrients from throughfall but also hypothesized that moss cover 

simply reflects other factors such as canopy density and water availability. Similarly small net 

potential NO fluxes were found for soil samples collected under grass cover in our study. 

Deschampsia flexuosa has a high potential to take up nitrogen in various forms and in 

competition to microbes (Harrison et al., 2008). This may explain a possibly reduced potential 

of its microbial communities in nitrogen cycling. The role of its arbuscular mycorrhizal (AM) 

associates has not been studied at the field site but colonisation by AM seems to be low on 

acidic soils (Göransson et al., 2008). Inferior competition of microbial communities under 

moss and grass cover therefore could explain low NO emissions.  

Soils taken under blueberry and spruce cover, in contrast, produced high net potential NO 

fluxes. Both plant species are associated with asco- and basidiomycetes forming ericoid 

mycorrhizae (blueberry), respectively ectomycorrhizae (spruce). NO accumulation can occur 

in mycorrhizal symbioses (Stöhr and Stremlau, 2006). Wallenda et al. (2000) also 

demonstrated that intact mycorrhizal roots of Norway spruce took up substantial amounts of 

NH4
+
. This NH4

+
 may act as precursor of nitrification. During nitrification NO can be released 

as an intermediate. However, due to the fact that only very few roots may have been present 

and in an active state NO released from mycorrhizae may be of minor relevance. The 10 fold 

higher NO fluxes from the soils beneath spruce and blueberry are difficult to explain from our 

data. One factor may be that both plants produce litter types rich in lignin and phenolics 

(Adamczyk et al., 2008). Tannins formed in degradation of these litter types can form 

complexes with proteins. Protein phenol complexes can be degraded by ericoid mycorrhizal 

fungi and saprotrophic fungi but not by ectomycorrhizal fungi (Wu et al., 2003). It has been 

suggested that relatively more dissolved organic nitrogen (DON) compared to inorganic 

nitrogen is released upon degradation of these phenol rich litters (cf. from (Hofland-Zijlstra 

and Berendse, 2010). Since DON as a possible substrate for nitrification and N-mineralisation 

has not been measured in our study it can only be speculated if nitrogen sources other than 

NH4
+
 could explain the high NO net release or which part of the soil microflora may have 

contributed to the results. It could be speculated that fungi as decomposers may have played a 
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role in this process. In a beech forest, measurements of nitrous oxide (N2O) emission from 

forest floor samples indicated that net N2O production was the result of predominantly fungal 

N2O production and predominantly bacterial N2O consumption (Blagodatskaya et al., 2010).  

Altogether our results indicate a challenging field for unravelling the underlying processes of 

different understory plants on NO net release from forest soils. 

 

5 Conclusion  

In this study, we investigated the net potential NO fluxes from soil samples of the organic 

layers of a spruce forest soil covered with four different understory types (moss, grass, spruce 

and blueberry).  

Observed net NO release rates of soil samples taken under moss and grass cover indicated a 

high potential for NO consumption, resulting in very low net potential NO fluxes from soil 

samples taken under these understory types. In strong contrast, soil samples taken under 

spruce and blueberry cover showed 10 fold higher net potential NO fluxes, than those taken 

under moss and grass cover.  

Therefore, it is an important lesson of this study, that more attention must be paid to small 

scale heterogeneity of understory vegetation, when quantification of the biogenic NO 

emission from a (spruce) forest floor is attempted.  

Analysis of the compensation point mixing ratios indicated that measured ambient mixing 

ratios of NO at 0.5 cm above the forest floor of the field site were – even for the soil samples 

taken under moss and grass cover – too low to change the soil NO flux from upward to 

downward directions. 

Further research investigating effective soil diffusion coefficients is very desirable. The net 

potential NO flux calculated with the diffusion coefficient according to Millington (1959) is 

1.26 fold higher than the net potential NO flux calculated with diffusion coefficients 

according to Millington and Quirk (1960). Also the position of the optimum NO flux shifts 

depending on the choice of the diffusion coefficient.  
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While the understory type seems to be an important variable controlling NO exchange 

processes, corresponding soil nutrients played generally a less important role. The only 

exception was for NH4
+
, the precursor of NO3

-
 in the nitrification process. This implies that 

nitrification was the limiting factor of NO production for the investigated soils, whereas 

denitrification played an obviously smaller role. It is remarkable that high NO emissions were 

observed for soils under woody understory types; this may be related to soil chemical 

processes in the vicinity of mycorrhized roots, but further studies are certainly necessary for 

confirmation. As the establishment of different understory types is related to the availability 

of light at the forest floor as a result of forest thinning, management practises are likely to 

have important consequences on the net soil NO emission from a forested site.  

Coniferous forest soils in temperate humid climates are characterized by thick organic layers 

of moder or raw humus forms. Organic layers of our soils had a much higher potential (over 

2.5 fold) for NO emission than the corresponding mineral soil layers. Hence quantification of 

net potential NO fluxes of the O horizons of temperate forest soils is an important step for (a) 

comparison of laboratory and field measurements, (b) up-scaling from laboratory to field 

scale fluxes (by areal information on understory distribution), and (c) extrapolation from field 

site results to larger scales (e.g. regional). 
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Abstract 

Modified Bowen ratio technique was used in a horizontally distributed form to determine 

turbulent fluxes of CO2, H2O, O3, NO and NO2 over a semi-natural grassland site in North-

Eastern Germany. The applicability of the distributed variation of the modified Bowen ratio 

technique was proven prior to the calculation of trace gas fluxes. Turbulent NO fluxes were 

compared to fluxes up-scaled from laboratory measurements of biogenic NO emission from 

soil samples, which have been taken at the field site. The NO fluxes up-scaled from 

laboratory measurements were slightly larger than the fluxes observed in the field. However, 

both NO fluxes agreed within a factor of two. Under suitable night time conditions, we 

performed a detailed comparison of turbulent fluxes of CO2 and O3 with fluxes derived by the 

boundary layer budget technique. While there was agreement between these fluxes in a 

general sense, specific deviations were observed. They could be attributed to different 

footprint sizes of both methods and to in-situ chemistry within the nocturnal boundary layer.  

 

Keywords 

Flux; Trace gas; Exchange; Timescale; Turbulence 

 

1 Introduction 

Temporal and spatial variations of trace gas fluxes from and to the surface are crucial for 

understanding exchange processes between the atmosphere and terrestrial surfaces. A lot of 

effort in this respect has been done for the species carbon dioxide (CO2), mostly using eddy 

covariance (EC) techniques (see e.g. Baldocchi et al., 1988; Suni et al., 2003; Baldocchi et al., 

2001; Aubinet et al., 2000). Turbulent fluxes of reactive trace gases, e.g. ozone (O3), nitrogen 

oxide (NO) and nitrogen dioxide (NO2), are currently measured more on campaign than on a 

continuous basis (see e.g. Rummel et al., 2002; Wesely et al., 1982; Keronen et al., 2003). If 

fast enough sensors for EC measurements for these trace gases are available at all, they often 

need permanent maintenance, making them less suitable for permanent measuring networks.  
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An alternative technique to measure turbulent fluxes of trace gases is the so-called Modified 

Bowen Ratio (MBR) method as proposed by Businger (1986) and Müller et al. (1993). 

Originally, fluxes of trace gases have been derived from sensible heat flux (H) and vertical 

differences of air temperature (ΔT) and mixing ratio (Δc), where H has been typically 

determined by the Bowen Ratio method (Bowen, 1926; Lewis, 1995). With the development 

of sonic anemometers, a direct measurement of H became feasible, reducing the instrumental 

effort because radiation and soil heat flux measurements were no longer needed (Liu and 

Foken, 2001). 

The traditional setup of a MBR station includes EC measurements of H and the determination 

of ΔT and Δc at the same location. Furthermore, ΔT and Δc have to be measured at the same 

heights. However, if several trace gases have to be measured and analyzer or inlet 

constructions are somewhat bulky, measurement errors due to flow distortion could be sub-

stantial. But this error source can be tackled (if a sufficiently large, homogeneous site is 

available) by using distributed locations for the individual measurements of Δc, ΔT and H. 

Moreover, for intercomparison studies, this reduces potential deviations between different 

measuring systems to the trace gas part of the measurements, as all flux calculations will 

relate on the same data set of H and ΔT. This approach will be presented in this paper and will 

be referred to as the Distributed Modified Bowen Ratio (DMBR) method.  

The methods for measuring the fluxes of reactive trace gases are in principle the same as for 

non-reactive trace gases. The concept, whether the reactivity of a trace gas has to be taken 

into account was firstly described by Damköhler (1940). Therefore, the ratio of the 

characteristic time scale for chemical reactions to the time scale of turbulence is referred to as 

the Damköhler number (DA). As long as DA is much smaller than one, the reactivity can be 

neglected. Otherwise, chemical alteration during the transport must be considered. A 

determination of individual fluxes of reactive trace gases independent from the risk of 

chemical alteration would be a great advantage. In the case of NO, soil emission fluxes, de-

rived from laboratory measurements on soil samples, would be a suitable approach. However, 

laboratory measurements do provide only a sound parameterization of soil NO fluxes under 

varying soil moisture and soil temperature conditions; hence, NO fluxes up-scaled from labo-

ratory measurements will never have the state of actual field measurements, which are made 
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under variable ambient conditions. The comparison of laboratory derived fluxes with actual 

field fluxes will always address this principal difference between laboratory and field me-

thods. 

A similar statement holds, if flux measuring methods differ in the characteristic transport time 

relevant to the measurements which are being used to compute the fluxes. In case, the trace 

gas flux is derived from the vertical mixing ratio difference, the characteristic transport time 

increases, if the vertical spacing between two levels is increased. This, in turn, increases the 

potential influence of chemical reactions to change the mixing ratios of reactive trace gases 

(during turbulent transport). This has to be taken into account, when comparing fluxes 

obtained by methods with large to those with only small spatial extent. 

If vertical profile data of a quantity, whose flux has to be determined, are available up to the 

equilibrium height (i.e. were temporal changes of mixing ratios are not observable anymore), 

the so-called boundary layer budget method can be used (Pattey et al., 2002). This method in-

tegrates vertical profiles of the desired quantity and assigns its temporal change to a vertical 

flux into the corresponding volume (Denmead et al., 1996; Levy et al., 1999). If horizontal 

advection can be excluded, and the top end of the profile is capped by a "lid", the temporal 

change should equal to the vertical flux at the bottom end of the profile, i.e. the flux determin-

ed by DMBR or EC methods. The "lid" can either be a strong inversion, or the presence of 

strong wind shear due to a low-level jet (Mathieu et al., 2005). As a case study, we compare 

fluxes of sensible heat, CO2 and O3 obtained from the DMBR method to the respective fluxes 

obtained from the boundary layer budget method. This comparison should show (a) the simi-

larity of both methods for conservative quantities and (b) the increasing influence of chemical 

reactions (on O3 flux) for the method with the larger spatial extension (the boundary layer 

budget method). 
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2 Material and Methods 

2.1 Site and Setup 

The LIBRETTO (LIndenBerg REacTive Trace gas prOfiles) campaign took place in late 

summer 2006, from 01 August 2006 until 31 August 2006 at the Falkenberg Boundary Layer 

Field Site of the Meteorological Observatory Lindenberg (Richard-Aßmann Observatory) 

(Beyrich and Adam, 2007). The field site is located at 52° 10' 01" N, 14° 07' 27" E, 73 m a.s.l. 

The main vegetation species are perennial ryegrass (Lolium perenne), red fescue (Festuca 

rubra), dandelion (Leontodon autumnalis, Taraxacum officinale), bromegrass (Bromus 

hordeaceus), and clover (Trifolium pratense, Trifolium repens). The meadow is mowed 

regularly in order to keep the mean vegetation height below 20 cm (Beyrich and Adam, 

2007). However, during the LIBRETTO campaign, the vegetation height was between 5 cm 

and 8 cm. The measuring site comprises one 99 m and one 10 m high profile mast (air 

temperature (T), relative humidity (rH), wind speed (u) and wind direction), two identical 

setups for the measurement of the net radiation flux, two stations for the measurement of 

turbulent fluxes of momentum, sensible and latent heat (further on referred to as the EC 

stations), and a sub-site to monitor physical soil quantities (soil temperatures, soil heat flux 

and soil moisture). A SODAR-RASS system completes the permanent setup of the 

Falkenberg site. Details about the instrumentation relevant for this work are summarized in 

Table 1, the spatial situation is shown in Figure 1. All heights given in this study are heights 

above ground level, unless otherwise stated. 
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Figure 1: Spatial arrangement of the different stations at the Falkenberg Boundary Layer Field 

Site. Additional instrumentation ("Profile station") during the LIBRETTO campaign is 

indicated by orange color. 

The 99 m profile mast is equipped with an elevator, usually used for service and maintenance. 

On this elevator, additional sensors for T and rH as well as for ozone (O3), carbon dioxide 

(CO2) and water vapour (H2O) have been installed (see Table 1). However, we limit our 

evaluation from this system to T, CO2 and O3, because the H2O channel of the deployed 

instrument has unfortunately not worked properly. The elevator was automatically run up and 

down once every 10 minutes, interrupted only for data retrieving and service. At bottom and 

top position, the elevator had approx. 6.5 minutes idle time for equilibration intercomparison 

with stationary sensors and analyzers, thus one profile needed approx. 3.5 minutes to be mea-

sured. A detailed description of the algorithms which have been applied to correct the dyna-

mical error of the elevator based measurements are given by Mayer et al. (2009).  

For the LIBRETTO campaign, an additional set of profile instruments was installed com-

prising the measurement of the trace gases CO2, H2O, O3, NO and NO2 at three levels and air 
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temperature at 4 levels (0.25, 0.5, 1.0, 2.0 m). The trace gas inlets were located at 0.15 m, 

1.0 m and 2.0 m. A fourth sampling tube collected air from the base position of the elevator 

(at 2.0 m) for continuous adjustment of the ground based mixing ratio measurements and 

those measured on the elevator. Air samples were pumped from the corresponding intake 

devices (i.e. downward directed funnels and particle filters) via heated Teflon tubes to a 

switching valve manifold (see Figure 2), located next to the trace gas analyzers, housed in an 

air conditioned container, approx. 50 m NE from the "PROFILE station" (see Figure 1). After 

completion of set-up and test of the instrumentation, the measuring period of the LIBRETTO 

campaign consisted of 20 days, from 11 to 30 August, 2006.  

 

Figure 2: Scheme of the gas flow of the switched trace gas profile. A customized control 

system (PC based) was used for (a) switching valves 1 – 4, (b) data acquisition, and (c) 

controlling the NO / NO2 analyzer (to be in phase with valve switching). While only one 

sample line per time was connected with the sampling Teflon pump, the three other sampling 

lines were flushed with a bypass pump to avoid stagnant air and increased lag times. 
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Table 1. Setup of the field site during the LIBRETTO campaign. Only instruments being 

relevant for this work are listed. 

Parameter Symbol Unit 

Temporal 

resolution 

(min) 

Sampling height 

(m) a.g.l. 
Instrument (Model) 

Permanent setup 

Sensible Heat 

Flux 
H Wm

-2
 10 2.4 METEK USA1 

Air temperature, 

EC station 

West/East 

T °C 10 0.55/0.5, 2.8/2.4 Pt-100 

Friction velocity u* ms
-1

 10 2.4 METEK USA1 

Global radiation Rg Wm
-2

 10 2.4 Kipp&Zonen CM22 

Air temperature, 

10m profile 
T °C 10 0.5, 4 Pt-100 

Wind speed U ms
-1 

10 0.5, 4 Climatronics F460 

Rain R mm 10 1 Ott, Pluvio 

Additional LIBRETTO setup 

Ground based 

Air temperature T °C 10 
0.25, 0.5, 1.0, 

2.0 

Aspirated 

Thermocouple 

Carbon dioxide CO2 ppm 10 0.15, 2.0 LiCor LI 7000 

Water vapour H2O ‰ 10 0.15, 2.0 LiCor LI 7000 

Nitrogen 

monoxide 
NO ppb 10 0.15, 2.0 EcoPhysics CLD 780 
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Nitrogen dioxide NO2 ppb 10 0.15, 2.0 EcoPhysics CLD 780 

Ozone O3 ppb 10 0.15, 2.0 Thermo Electron 49C 

      

      

Additional LIBRETTO setup 

Elevator 

Air temperature T °C 10 2 - 99 Thermocouple 

Carbon dioxide CO2 ppm 10 2 - 99 LiCor LI 840 

Water vapour H2O ‰ 10 2 - 99 LiCor LI 840 

Air pressure P hPa 10 2 - 99 Vaisala PTB 101B 

Ozone O3 ppb 10 2 - 99 GFAS OS-G-2 

      

 

2.2 Quality Control and gap filling 

2.2.1 Reference data 

Routinely measured data from the permanent setup of the Lindenberg site are called "re-

ference data" in the following, in order to contrast the experimental data from those in-

struments which have been added to the site during LIBRETTO (see Table 1). 

Reference data (from EC and radiation flux stations, data of soil physical quantities) were 

flagged with quality indicators according to Beyrich and Adam (2007). Because the EC 

stations were located at the western and eastern side of the south-leg of the field site (see 

Figure 1), at least one EC dataset (being representative for the field site) was available under 

every "fetch" (upwind) conditions. A so-called "limited fetch condition" occurred for the 

western EC station at wind directions from 180°-360° and for the eastern EC station from 
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30°-150°. These data are flagged correspondingly. Only data without any critical flag passed 

to further analyses. 

Friction velocity (u*) and sensible heat flux (H) are key parameters in most of our evaluations. 

Therefore, special attention was paid to gap-filling procedures for these parameters. If EC 

data were not available (critical flag), u* and H were computed according to Arya (2001) from 

ΔT and Δu, measured at z = 0.5 m and z = 4.0 m at the 10 m profile mast. We made use of the 

following equations: 

(a) geometrical mean height zm of the layer (z1; z2): 

21 zzzm  . (1) 

(b) Richardson number Ri (a measure of dynamic stability of the layer (z1; z2)) as function of 

ΔT and Δu: 
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
  , (2) 

where g stands for the acceleration due to gravity, T1 is the absolute temperature at level 

z, and Θ denotes the potential temperature. The following relation exists between Ri and 

the Monin-Obukhov stability parameter ζ : 

Ri     if  Ri < 0 (unstable) 

 Ri

Ri




51
   if  0 ≤ Ri < 0.2 (neutral to stable) 

(3) 

(c) u* and H: 
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pair cuTH  **
, (6) 

where cp is the heat capacity of air at constant pressure and ρair denotes the density of air. 

κ is the von Kármán constant (0.4). For the universal functions υm and υH we make use of 

those given by Businger et al (1971) with the modifications by Högström (1988). 

Before and after each gap, the deviation of the profile-derived values of u* and H were 

adjusted against the EC values. If a trend was present, it was distributed linearly over the gap. 

A total of seven 30 minute data points out of 1056 data points for H and u* were filled with 

this method for the entire experiment. 

2.2.2 Profile station data 

Two primary data sets were obtained from the profile station: (a) air temperature data and (b) 

trace gas data. Data recorded during servicing the profile station, farming activities (within 

the fetch), or rainfall periods were replaced by a wildcard. Subsequently, calibration factors 

obtained from calibration activities prior, during and after the experiment were applied. Iden-

tification of spikes was performed by a de-spiking scheme based on that of Vickers and Mahrt 

(1997). If more than 3 consecutive spikes were detected, they were treated as valid data – all 

other spikes were replaced by wild cards. Next, a gap filling procedure based on non-linear 

interpolation (Akima, 1970) was applied, but limited to a maximum gap size of 30 minutes. 

As a last step, all data were averaged to an interval of 30 minutes for further evaluation. 

2.3 Distributed Modified Bowen Ratio (DMBR) 

The MBR as well as the DMBR method requires (a) simultaneous measurements of ΔT and 

Δc at identical levels and (b) that the measured H is representative for the same source area 

(i.e. that area which is influencing the flux measurements). Due to technical reasons, the 

lower level (z1) for trace gas measurements was 0.15 m, while it was 0.25 m for the 

temperature measurements. The upper level (z2) was 2.0 m in both cases. Therefore, a ΔTc 

corresponding to a height interval from 0.15 m to 2.0 m had to be computed from the 
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measured ΔTm between 0.25 m and 2.0 m by means of the Monin-Obukhov similarity theory. 

For that, the state of atmospheric stability can be expressed by the Obukhov length L: 

airpc

H

T

g

u
L







3

*

. 
(7) 

The calculation of L was performed using H and u* from the EC measurements. Within the 

surface layer, fluxes are assumed to be constant with height, thus L is also independent of z. 

Then, ΔTc can be computed from ΔTm by: 
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The index m refers to the measured values and index c refers to computed values. ΨH denotes 

the integrated universal stability function for H (Businger et al., 1971) with the modifications 

according to Högström (1988). For unstable stratification, this integration in general form was 

firstly done by Paulson (1970). Due to the low vegetation height (see Section 2.1), the 

displacement height was neglected. 

The calculation of ΔTc (at "PROFILE station") requires the sensible heat flux (H), which was 

measured at both EC stations (see Section 2.2.1), which were located about 150 m SSW and 

165 m SSE of the "PROFILE station" (see Figure 1). This spatial separation of measurements 

of H and ΔT (and Δc) is characteristic of the DMBR method, and it is obvious, that the suc-

cessful application of the DMBR demands horizontal homogeneity of the measurement site. 

A first-order check of this condition could be provided. Simultaneously to the EC 

measurements of H, measurements of air temperature were performed at z = 0.55 m and 

z = 2.8 m (west EC station) and at z = 0.5 m and z = 2.4 m (east EC station). By applying Eq. 

8 to this measured temperature difference, it was recalculated to match the measurement 

levels of T at the “PROFILE station” (0.5 m and 2.0 m). By the comparison of ΔT measured 
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at the “PROFILE station” and ΔT computed at the EC station, a good agreement would 

indicated the fulfillment of horizontal homogeneity with respect to sensible heat at the site.  

Finally, under the assumption of identical eddy diffusivities for the scalars sensible heat and 

trace gases, fluxes (FTraceGas) of the trace gases CO2, H2O, O3, NO and NO2 were computed 

from observed H,  Δc and ΔTc according to Foken (2008): 

H
T

c
F

c

TraceGas 



 . (9) 

Obtained flux values were discarded for quality reasons, if u* < 0.07 m s
-1

 (Liu and Foken, 

2001), ΔTc < 0.2 K or the stability parameter ζ was outside ± 1, indicating either very strong 

stability or free convection.  

2.4 Laboratory measurements 

Net NO release rates were determined using an automated dynamic chamber laboratory 

system. A detailed description of our experimental setup is given in van Dijk and Meixner 

(2001) . We present here only a brief description of the set-up.  

Pressurized NO-free air supplied five Plexiglas cuvettes (four incubation cuvettes (each con-

taining 100 g of soil samples) and one empty reference cuvette) with a continuous flow of 

4.17 m
3
 s

-1
 (2.5 l min

-1
) per cuvette. All connections and tubes consisted of inert material 

(PTFE). The outlet of each cuvette was connected to a switching valve. Every two minutes 

one cuvette was connected to a chemiluminescence NO-analyzer (Model 42i Trace Level, 

Thermo Electron Corporation, United States, detection limit at 3σ: 250 ppt) and a CO2/H2O-

analyzer (LI-840, Licor, United States), while the remaining four cuvettes were still purged, 

so that all five cuvettes were measured within 10 minutes. The NO-analyzer was calibrated 

using a gas phase titration unit (GPT, 146 C Dynamic Gas Calibrator, Thermo Electron 

Corporation, United States) supplied with NO from a NO standard cylinder (5.02 ppm NO, 

Air Liquide, Germany). 

The loss of water (measured in terms of water vapour) was related to the gravimetric soil 

moisture content at the start and the end of the laboratory analyses. The gravimetric soil 

moisture content was converted into units of water filled pore space (WFPS) using the field 
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bulk density (1.245 g cm
-3

) and the particle density of the average soil material (2.65 g cm
-3

). 

This is particularly useful, as the WFPS is not only a term characterizing the soil water 

available to microorganisms, but represents also the soil air-water ratio, which controls the 

gaseous diffusion into or out of the soil (Ormeci et al., 1999).  

Mixed soil samples were taken in May 2008 on the Lindenberg site. 25 samples, randomly 

taken from an area of approx 1000 m
2
 within the fetch, yielded a total of approx. 3 kg of soil, 

from which subsamples for 3 repetitive analyses were separated. They were air-dried, sieved 

(< 2 mm) and stored at 4 °C. All samples were measured within 4 weeks after sampling. The 

NO measurements were conducted at three different temperatures (10, 20 and 30 °C), two 

different NO mixing ratios (0 and 50 ppb NO) and over a full range of soil moisture 

(0 - 100 % WFPS). Twelve hours before starting the laboratory measurement the soil samples 

were preincubated: the soil samples were moisturized with deionised water to about 100 % 

WFPS and stored in a temperature controlled cabinet at the temperature of subsequent labora-

tory measurements.  

The net NO release rate (J) was calculated from the mixing ratio difference between the 

reference cuvette (NOref) and the incubation cuvettes (NOout): 

     
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NONO

M

Q
J  (10) 

where Q is the flow through the cuvette (m
3
 s

-1
), Msoil is the sample weight (kg), MN is the 

molecular weight of nitrogen (14.0076 kg kmol
-1

) and Vm is the molar volume (m
3
 kmol

-1
) at 

actual temperature and standard pressure (1013.25 hPa). The results from all 3 repetitive 

measurements performed at one temperature were combined to calculate the corresponding 

NO release rate. 

From the obtained NO release rates, a soil temperature and soil moisture dependent net 

potential NO flux (in units of ng m
-2 

s
-1

) was derived, applying the Galbally & Johansson 

algorithm (1989), which has been modified to account for the dependence of the net potential 

NO flux on soil temperature and soil moisture (Feig et al., 2008; Yu et al., 2008; Bargsten et 

al., 2010). For comparison of laboratory derived NO fluxes with those measured by the 

DMBR method (see Section 3.5.1), net potential NO fluxes have been up-scaled by actual 
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field data of soil temperature and soil moisture, which were measured during the LIBRETTO 

campaign.  

2.5 Boundary layer budget method 

The boundary layer budget method is based on calculating the budget of any quantity within 

the boundary layer (Denmead et al., 1996; Eugster and Siegrist, 2000). A surface flux of trace 

gases into (emission) or out of (deposition) the boundary layer changes the amount of the 

considered trace gas within the boundary layer. Vertical integration of the mixing ratio yields 

the total mixing ratio being present at a certain time. The upper boundary of integration must 

be at least the height where no temporal change of mixing ratio due to surface fluxes occurs. 

The change of mixing ration between two subsequent integrations thus should equal the 

surface flux during this period. This approach however is only valid in the absence of 

advection. The upper integration limit is usually set to the top of the nocturnal boundary layer 

(NBL) at nighttime or to the top of the convective boundary layer (CBL) during day.  

2.6 Characteristic time scales 

The characteristic time scales denote the time needed for certain processes to occur. In case of 

the turbulent time scale τturb, it is a measure of the intensity of turbulent transport. For near 

neutral conditions, τturb can be expressed as  

 

*

0

uA

zz
turb







  , (11) 

with the roughness length z0 and the height above ground z (Vilà-Guerau de Arellano and 

Duynkerke, 1992). A stands for the ratio of the vertical velocity variance and the friction 

velocity squared. However, this formulation is not suitable to describe diel cycles, because 

this formulation is only valid for near neutral conditions (Wyngaard, 1982). Furthermore, 

under neutral conditions, A is constant. As an alternative, τturb can be computed from the  

turbulent diffusion coefficient (K) and the height (h) of the layer being considered (Rohrer et 

al., 1998): 
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K

h
turb

2

  . (12) 

Because of the linear dependence of K on height, the turbulent diffusion coefficient for 

momentum (Km) can be expressed as 

zuKm  *  , (13) 

and the mean Km across the considered layer as 

2
*

h
uKm    . (14) 

For a layer from the ground up to h, τturb thus reads as 
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  . (15) 

If the layer under consideration does not extend down to the ground and has the thickness Δz , 

the above equations must be modified. The mean Km for the layer thus reads as 
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and τturb can then be expressed as 
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To account for the influence of atmospheric stability on τturb, Eq. (13) can be modified by 

introducing the universal function υm: 
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and τturb is then expressed as  
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So far, τturb yields the turbulent time scale for the transfer of momentum through a layer Δz 

with its upper boundary being h. Because of the non-similar intensity of the transfer of 

momentum and the transfer of heat or matter, the formulation of τturb for the latter quantities 

must include the turbulent Prandtl number Prt or turbulent Schmidt number Sct, respectively. 

They are defined as the ratio of the turbulent diffusion coefficient for momentum to that of 

heat (KH) or the respective trace gas (KC): 

H
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t
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Pr  , (20) 
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Sc   , (21) 

For heat and matter, the characteristic turbulent time scale thus reads as 
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According to Foken (2008), Prt and Sct are both assumed to be 0.8. 

For the chemical time scales τchem, we consider only the triad of NO-NO2-O3 including the 

(photo-)chemical reactions 

223
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ONONOO
k

    k1 = 
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exp101.40 12-  (R1) 

where k1 is taken from Atkinson et al (Atkinson et al., 2004), and 

322 ONOONO
h




   hν < 420 nm. (R2) 

Confined to the NO-NO2-O3 triad, the individual time scale of NO2 (τNO2) depends only on 

the actual NO2 photolysis radiation flux, giving jNO2. According to Trebs et al. (2009), there 

is a second order polynomial relationship between global radiation (Rg, in Wm
-2

 ) and jNO2 

(in s
-1

): 
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2

212 gg RBRBjNO   (24) 

where B1 = 1.47·10
-5

 W
-1

 m
2
 s

-1
 and B2 =  4.94·10

-9
 W

-2
 m

4
 s

-1
. 

When only the triad NO-NO2-O3 is considered, the photolysis frequency of NO2 controls the 

destruction of NO2 and thus reformation of NO and O3. Under night time conditions, NO2 is 

assumed to have a constant time scale of about 2 days (for calculation purposes only, namely 

to avoid an infinite time scale due to absence of any shortwave radiation). The individual time 

scale of O3 and NO depends on the reaction rate k1 for (R1) and the NO number density (NNO 

in molecules cm
-3

) in case of τO3, and on the O3 number density (NO3) in the case of τNO: 
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The overall chemical time scale of the NO-NO2-O3 triad, τchem, is given by Lenschow (1982). 

It provides a measure about the intensity of the chemical conversions for comparison with the 

turbulent time scale (τturb): 
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23232
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Given τturb and τchem,  the Damköhler number (DA) is defined as: 

chem

turbDA



   . (29) 

DA << 1 indicates, that turbulent transport is much faster than (photo-)chemical reactions, 

which would allow reactive species to be treated as quasi passive. DA ≤ 1 indicates, that 

(photo-)chemical reactions during turbulent transport have to be taken into account to 

correctly derive turbulent fluxes of reactive species. An overview about typical magnitudes 

for τturb and τchem is given by Foken et al. (1995). 
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3 Results and Discussion 

The results chapter is divided into five parts. They cover (a) the aspect of horizontal 

homogeneity, (b) characteristic time scales, (c) an overview about the atmospheric conditions 

for turbulent exchange, (d) median diel cycles of trace gas mixing ratios, and (e) median diel 

cycles of trace gas fluxes achieved by the DMBR method. The last part additionally 

comprises the comparison between (1) NO fluxes obtained by field measurements (DMBR) 

and those up-scaled from laboratory derived net potential NO fluxes and (2) between night 

time fluxes (H, CO2, O3) obtained by the DMBR method and by the nocturnal boundary layer 

budget method. 

3.1 Horizontal homogeneity 

Temperature differences at the EC stations (0.55 m / 2.8 m and 0.5 m / 2.4 m, respectively) 

were recalculated to match the measuring heights of the profile station (0.5 m and 2.0 m) by 

utilizing the MO theory (see Eq. (8)). Figure 3 shows the comparison between the computed 

ΔT at the EC station and the actually measured ΔT at the profile station, which resulted in a 

very significant correlation (R
2 

= 0.94, n = 1007). This indicates the fulfillment of the precon-

dition of horizontal homogeneity at the Lindenberg experimental site. 

 

Figure 3: Comparison of measured temperature differences at the profile station with the 

computed temperature differences at the EC station. The dashed lines give the 1:1 ratio, the 

solid grey lines indicate the linear regression. 
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3.2 Characteristic time scales  

As soon as the (turbulent) transport of reactive trace gases is investigated, their characteristic 

chemical time scales (τchem) must be considered and compared to the characteristic turbulent 

time scale (τturb). If τturb is considerably smaller than τchem (DA <<1), i.e. transport is much 

faster than chemical reactions during the transport, the trace gases could be treated like non-

reactive trace gases. In case of τchem is close to τturb (DA ≤ 1), chemical reactions during the 

transport have to be taken into account to correctly derive turbulent fluxes of the reactive 

gases. For the entire LIBRETTO campaign, τturb and τchem for the NO-NO2-O3 triad is shown 

in Figure 4a. During daytime, τturb was always smaller than τchem, demonstrating that turbulent 

transport was always faster than chemical interconversion between NO, NO2 and O3. Lowest 

values of τturb and τchem were observed around noon and in the early afternoon. These low 

values coincided with highest turbulence intensity and fastest chemistry (highest photolysis 

rate of NO2). During night time, where NO2 photolysis is excluded, the life time of NO2 is in-

finite with respect to the NO-NO2-O3 triad. Thus τchem is fully controlled by reaction R1. 

However, the shapes of diel variations of τturb and τturb were similar, with τturb being typically 

1020 % of τchem. This is demonstrated by median diel cycle of the ratio of τchem to τturb, the 

Damköhler Number DA (Figure 4b). Maximum values of DA were found to occur during the 

stabilization of the atmospheric boundary layer in the late afternoon and during the first part 

of the night, while minimum values of DA where observed in the hours before sunrise.  
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Figure 4: Median diel cycles for the period of 11 August 2006 – 30 August 2006: (a)  charac-

teristic time scales of turbulent transport (τturb) and (photo-)chemical reactions (τchem.) for the 

layer 0.152.0 m a.g.l., (b) dimensionless Damköhler number (DA) for the NO-NO2-O3 triad. 

The black solid lines indicate the medians, the boxes cover the inter-quartile range. Blue 

circles denote extreme values, red crosses denote outliers. 
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The time of lowest DA values, which mean lowest influence of (photo-)chemical reactions on 

the trace gas mixing ratios and fluxes, coincided with the time of minimum O3 mixing ratios 

(c.f. Figure 6e). Low O3 mixing ratios lead to low NO destruction (see reaction R1). Because 

nighttime photolysis of NO2 does not exist, reaction R2 did not occur during night. Therefore, 

even with low turbulence (high values of τturb), the impact of chemical reactions on the the 

nighttime observations was minimal. During daytime, when photolysis of NO2 occurs and 

higher O3 mixing ratios are present, the influence of (photo-)chemical reactions was slightly 

higher than before sunrise, but remained moderate (due to fast turbulent transport). The 

observed range of DA (0.10.2) indicates, that influences due to (photo-)chemical reactions 

were weak enough to treat the reactive trace gases as quasi passive in our further evaluations. 

3.3 Thermodynamic conditions of exchange 

Because trace gases interact with the ground surface, their mixing ratios within the surface 

layer are strongly dependent on exchange conditions and thus on atmospheric stability. Figure 

5a shows the median diel course of u*, Figure 5b shows that of the stability parameter ζ, 

determined at z = 2.4 m (i.e. the height of the EC measurements). During night (18:00 h – 

06:00 h), low values of u* around 0.1 m s
-1

 indicated prevalence of only low turbulence, 

allowing a possible accumulation of soil emitted trace gases (e.g. NO, CO2) or a depletion of 

those trace gases having a net sink at the ground surface (NO2, O3). This is also supported by 

ζ, showing positive values during night (i.e. stable stratification). Around 06:00 h, stability 

changed to unstable conditions. Coincidentally, u* increased and reached values around 

0.3 m s
-1

 at noon. Strongest unstable conditions, however, were already observed around 

09:00 h. When the atmosphere became stable again around 18:00 h, u* decreased rapidly to 

low nocturnal values. 
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Figure 5: Median (straight lines) diel courses of (a) friction velocity u* and (b) atmospheric 

stability ζ, 1130 August, 2006. Shaded areas represent respective inter-quartile ranges. Blue 

bars at the bottom of each graph indicate the number of data points available for calculation of 

medians and inter-quartile ranges. 

3.4 Trace gases - mixing ratios  

The median diel courses of all measured scalars (CO2, H2O, O3, NO, NO2, T) from 11 August 

2006 to 30 August 2006 are shown in Figure 6 (left panels) together with their vertical mixing 

ratio differences (Δ) between 0.15 m and 2.0 m (right panels). The temporal resolution was 30 

minutes. Highest values of CO2 mixing ratio ( 420 ppm, Figure 6a) were reached in the 

second part of the night. At this time, ΔCO2 (Figure 6b) was about  40 ppm, indicating 

strong accumulation processes close to the ground surface, where microbial processes in soil 

and plants constitute the source of CO2. After sunrise, CO2 gradually decreased until mini-

mum mixing ratios of 365 ppm are reached around 12:00 h. ΔCO2 changed its sign to positive 

values at 07:00 h, indicating a net CO2 sink at the ground (photosynthesis). However, the 

magnitude of ΔCO2 remained very small during the day, being lower than + 1 ppm. In the af-

ternoon, CO2 mixing ratios started to increase again, and also ΔCO2 became negative again 

(after 17:00) and larger. The water vapour (Figure 6c, 6d) mixing ratio exhibited a period of 

slight increase from 14 ppth to 15 ppth between 06:00 h and 09:00 h followed by a slight 

decrease until 12:30 h. During the afternoon, H2O remained around 14 ppth until it changed 

around 18:00 h to about 15 ppth. During the night, the H2O mixing ratio gradually decreased 
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to about 14 ppth at the end of the night. The H2O mixing ratio difference, ΔH2O, showed a 

much clearer diel cycle. At 06:00 h, it became negative, indicating evapotranspiration. 

Between 08:00 h and 15:00 h, ΔH2O remained around  1.5 ppth. Afterwards, it slowly in-

creased and became positive to the end of the night. The median diel course of O3 (Figure 6e, 

6f) showed minimum mixing ratios of about 12 ppb in the hours before sunrise. After sunrise, 

O3 mixing ratios increased to about 40 ppb at 12:00 h. With sunset around 18:00 h, O3 mixing 

ratios started to decrease monotonically. Around 01:30 h the low night time values were 

reached again. ΔO3 showed little variation over the day, remaining all the time at about 

+ 3 ppb. Only in the hours between 18:00 h and 01:30 h slightly higher ΔO3 values were 

observed. The higher ΔO3 values coincided with the period of decreasing O3 mixing ratios. 

While the intensity of the turbulent transport decreased in the evening, the intensity of the O3 

sink at the ground must have remained high during the early evening hours, leading to an 

increase of ΔO3. Because turbulent transport is stronger during day than during night, the 

relatively constant ΔO3 points to a variable intensity of the O3 sink at the surface. This is cer-

tainly caused by daytime stomatal (and non-stomatal) uptake of O3. During nighttime (under 

low turbulence conditions) an additional sink, caused by the reaction of surface-near O3 with 

NO (emitted from soil), should not be ruled out. The diel course of NO mixing ratio (Figure 

6g) exhibited a peak between 06:3008:30 h, reaching values of about 1.8 ppb. During the 

night hours, mixing ratios were typically below 0.5 ppb. However, no noticeable simultaneous 

peak was observed in ΔNO (Figure 6h). The reason for the NO peak was horizontal 

advection, which affected both measuring heights with the same magnitude. We will address 

the advection topic in more detail below. The diel course of ΔNO was highly variable during 

night (large inter-quartile range), while during day ΔNO was small, much less variable, but 

always negative (  0.1 ppb). Microbial processes in the (top) soil are universal biogenic 

sources of NO, and at low background NO mixing ratios (a few to a few tens of ppb) nitric 

oxide is generally released from the soil (Conrad, 1996). This is in accordance with negative 

ΔNO during the entire LIBRETTO experiment. NO2 mixing ratios (Figure 6i) exhibited a diel 

course similar to that of CO2: highest values (4 ppb) during the second part of the night, a 

decrease to 1.8 ppb between 06:00 h and 12:00 h, quasi constant until 18:00 h and increasing 

again afterwards. The diel course of ΔNO2, however, was different from that of ΔCO2. With a 
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short (and very small) exception around 19:30, the median ΔNO2 was always positive 

throughout the day. However, during the afternoon and early evening hours, the observed 

inter-quartile range indicates small negative ΔNO2 values. During the evening, median ΔNO2 

remained close to zero and eventually increased around midnight. Diel courses of air 

temperature T and ΔT (Figure 6k, 6l) followed the expected shape. T started to increase 

directly after sunrise and reached its highest values in the afternoon. Directly after sunset, T 

dropped rapidly, followed by a more gradual decrease during the rest of the night, cause by 

radiative energy loss. Positive ΔT at night indicated thermally stable conditions, while 

negative ΔT during the day confirmed thermally unstable conditions, enhancing turbulent 

transport. 
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Figure 6: Median (straight lines) diel courses of CO2 (olive), H2O (blue), O3 (red), NO 

(green), NO2 (cyan) and T (orange), 1130 August, 2006. Color shaded areas represent 

respective inter-quartile ranges. Left panels show the diel courses of the quantities measured 

at z = 2 m, right panels the difference between the measurements at z = 2 m and z = 0.15 m, 

respectively. 
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3.4.1 Advection 

The median diel course of NO mixing ratios showed a peak between 06:3008:30 h (see 

Section 3.4; Figure 6g). Because both measurement heights were affected by the same 

magnitude, advection of high NO mixing ratios, originating from traffic emissions, was 

suspected. Consequently, all days of the LIBRETTO campaign were analyzed for the 

occurrence of this NO peak. Out of 20 days, the peak was clearly identified on 7 days. On 6 

days, definitely no peak was observed. Measurements during the remaining days were either 

influenced by local farming activities (hence, excluded from the analyses), or instationarities 

from the preceding night which obscured a clear identification. All peaks occurred between 

07:00 h and 09:00 h. 

Strong evidence for NO-advection from traffic emissions has been found: (a) no early-mor-

ning NO peak has been observed on the three Sundays covered by the LIBRETTO campaign, 

(b) at days with NO peak, corresponding air flow was from a different sector than that, from 

which the air flow arrived the site at days without the NO peak (see blue and red arrows in 

Figure 7), and (c) trucks operated by the beverage marked, located in Görsdorf (see Figure 7), 

left the market typically around 08:00 h, providing a strong local and temporally limited NO 

source. Moreover, the pale red sector (Figure 7), indicating airflows at days with early-

morning NO peaks, contains a rural road which is relatively close to the Lindenberg 

experimental site (1.5 km and less). In contrast, the pale blue sector (indicating airflows at 

days lacking the NO peak) provides a much longer distance of the Lindenberg site to the next 

traffic related sources of NO.  
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Figure 7: Aerial view of the surroundings of the Lindenberg field site. The sector highlighted 

in (pale) red comprises the directions of airflow (red arrows) for those days when the early-

morning NO peak (see Figure 6g) was observed, while during days, lacking the NO peak, cor-

responding airflows (blue arrows) originated from the sector highlighted in (pale) blue. 

3.5 Trace gases – fluxes 

The trace gas fluxes, derived by the DMBR method, are shown in Figure 8. There, the 

convention is used, that downward (i.e. towards the surface) directed fluxes get a negative 

sign, upward fluxes are taken as positive. A clear diel cycle was visible in all trace gas fluxes 

except for NO. During the first part of the night, the observed CO2-flux (Figure 8a) is charac-

terized by peak respiration fluxes up to  5 μmol m
-2 

s
-1

 (due to soil and plant respiration), 
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while during the second part of the night, the CO2-flux is gradually decreasing. Shortly after 

sunrise, CO2-flux is changing sign, indicating the onset of photosynthesis. Maximum 

downward fluxes were reached at 12:00 h ( 6 μmol m
-2 

s
-1

). The median H2O-flux 

(Figure 8b) was always positive, although very small towards the end of the night. Short 

periods of negative H2O fluxes, i.e. dew fall, were possible then. With sunrise, the H2O flux 

increased rapidly, reaching about + 1.8 mmol m
-2 

s
-1

 around noon. This strong upward flux of 

H2O was the result of plant transpiration and evaporation from soil surfaces. With sinking 

sun, the H2O-flux decreased and eventually reached its low night time values of less than 

+ 0.1 mmol m
-2 

s
-1

 at 20:00 h. The flux of O3 was found to be always directed towards the 

surface (Figure 8c). This was expected, as no surface source of O3 is known, while there is 

stomatal up-take of O3 and dry deposition onto surfaces (soil, plants) during daytime. As 

already mentioned, an additional O3 sink at the surface (during conditions of low turbulence) 

is the reaction with NO, biogenically emitted from the soil. The median diel O3-flux exhibited 

highest values in the early afternoon, peaking around  5.5 nmol m
-2 

s
-1

. Elevated O3-fluxes 

started with sunrise around 06:00 h and ended with sunset around 18:00 h. During the first 

part of the night, the O3-flux remained around  2 nmol m
-2

 s
-1

 and decreased after midnight 

to about  0.8 nmol m
-2

 s
-1

. In contrast to O3, NO has a considerably strong source in the soil, 

hence positive (up-ward directed) NO-fluxes have been observed throughout the LIBRETTO 

campaign (Figure 8d). The NO-flux did not show a diel cycle, its median values ranged 

around + 0.1 nmol m
-2

 s
-1

. The median NO2-flux remained negative during the entire day 

(Figure 8e), indicating net deposition of NO2. A maximum deposition flux of 

about  0.2 nmol m
-2 

s
-1

 was observed in the morning hours, just after sunrise. Later, it leveled 

off and eventually reached zero around sunset. For the sake of completeness, the sensible heat 

flux H is also shown (Figure 8f). It exhibited very small and negative values during night 

(<  5 W m
-2

). With sunrise, H increased rapidly, reaching median values of + 70 Wm
-2

 

around noon. In the afternoon, H decreased again and dropped below zero around 18:00 h, 

indicating the onset of surface cooling. 



Appendix C 

 

112 

 

Figure 8: Median (straight lines) diel courses of CO2-flux (olive), H2O-flux (blue), O3-flux 

(red), NO-flux (green), NO2-flux (cyan), and sensible heat flux (orange), 11 30 August, 

2006. Color shaded areas represent respective inter-quartile ranges. Blue bars at the bottom of 

each graph indicate the number of data points available for calculation of medians and inter-

quartile ranges. 
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3.5.1 Comparison of NO-fluxes: field vs. laboratory 

Soil temperature and soil water content dependent net potential NO fluxes have been derived 

from laboratory incubation and fumigation experiments (see Section 2.4) for all soil samples 

taken the Lindenberg field site. Soil moisture and soil surface temperature data obtained from 

field measurements during the LIBRETTO campaign were used to generate a “laboratory 

derived NO-flux” from corresponding net potential NO fluxes. The obtained time series of 

“laboratory derived NO-fluxes” was then converted into a median diel cycle, analogously to 

the median diel cycle of NO-fluxes derived by the DMBR method. Resulting diel courses are 

shown in Figure 9.  

 

Figure 9: Median diel courses of NO-flux from field measurements (green) and from up-

scaled (laboratory derived) net potential NO-fluxes (grey); up-scaling was achieved with field 

data of soil moisture and soil surface temperature. Straight lines represent the medians of NO-

fluxes, while color shaded areas represent their corresponding inter-quartile ranges; blue bars 

at the bottom indicate the number of data points available for calculation of medians and 

inter-quartile ranges. 



Appendix C 

 

114 

 

The laboratory derived NO-fluxes exceeded the field NO-fluxes by a factor of 1.5 to 2.5. 

While a considerable diel amplitude was observed for the laboratory derived NO-flux, the 

field NO-flux remained almost constant around + 0.1 nmol m
-2

 s
-1

. Acknowledging the very 

different nature of both methods to derive NO-fluxes, the agreement between the two data 

sets is considered to be quite good. Nevertheless, we like to point to one aspect which might 

have caused the observed deviation between the two methods. The laboratory derived NO-

flux is sensu stricto  valid only at the immediate surface of the soil (z = 0 m; c.f. (Galbally and 

Johansson, 1989), while the field NO-flux is attributed to zm = 0.55 m above ground    

(     )
   , z1=0.15 m, z2=2.0 m, see Eq. (1)). Because turbulence becomes very weak close 

to the ground, the residence time of NO in the layer between soil surface (z = 0 m) and 

zm = 0.55 m might become long (compared to the characteristic time of the NOO3 reaction 

(R1)). Therefore, a considerable vertical divergence of the NO-flux can occur, which would 

reduce the NO-flux with increasing distance from the soil surface to zm = 0.55 m. In this 

context, it should be mentioned, that the assumption to treat NO as a quasi passive tracer (see 

Section 3.2) is justified (by Damköhler number arguments) only for the considered layer 

between the two measurement heights (z1=0.15 m, z2=2.0 m).  

3.5.2 Comparison of methods: DMBR vs. NBLB (nocturnal boundary layer budget) 

The coexistence of surface layer flux measurements of CO2, O3 (DMBR method), as well as 

H (EC method), and highly resolved vertical profiles of CO2, O3 and T up to 100 m provided 

the option to compare the surface layer fluxes with fluxes derived by the NBLB method.  

One night during the LIBRETTO campaign provided sufficient atmospheric stability and 

stationarity for this comparison. Time-height cross sections of potential temperature (θ), CO2 

and O3 are shown in Figure 10. After the transition of the sensible heat flux to negative values 

(left vertical dashed line, Figure 10), which indicates radiative cooling, the entire air column 

started to cool down from about 23 °C to approx. 16 °C within 3 hours, while the strongest 

cooling was at the beginning of this period. Later during the night, the air was cooled by the 

surface, which in turn was cooled by outgoing long-wave radiation. Shortly before 06:00 h in 

the morning, the sensible heat flux changed to positive values, which indicates the start of sur-

face heating. This became immediately visible in the profiles of θ, showing unstable thermal 
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stratification near the ground. The situation for CO2 was somewhat different. After the atmo-

sphere became stable, CO2 enrichment started from close to the ground (Figure 10b). The CO2 

mixing ratio close to the ground increased with time, while the layer with increased CO2 

mixing ratios (in comparison to the afternoon values), was deepening to an extent, which 

eventually exceeded the range covered by the mast data. Highest mixing ratios occurred on 

the second half of the night, exceeding 410 ppm (at z = 2 m). When sensible heat flux was 

changing back to positive values shortly before 06:00 h in the morning, CO2 mixing ratio 

began to drop back to lower values simultaneously in the entire observable column. This was 

the result of the zero crossing of the CO2 flux (from upward to downward directions, see 

Figure 8a) and the simultaneous growing of the mixing layer. The time-height cross section of 

O3 (Figure 10c) shows small positive vertical gradients of O3 mixing ratio during day with 

only small temporal changes of the mixing ratios. After 19:30 h, O3 mixing ratios decreased 

fast at all heights, while the vertical gradients increased. This was primarily the effect of 

reduced turbulence, with only slow vertical transport velocities. It led to a loss of O3 in the 

entire observable column, however, being strongest close to the ground. Low O3 mixing ratios 

prevailed in the observable column until approx. two hours after sunrise. During these two 

hours, only O3 depleted air from the former NBL was entrained into the newly developing 

boundary layer. At 08:00 h, O3 mixing ratios started to increase, an indication that now air 

from the residual layer (not affected by nocturnal O3 depletion) was entrained. 
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Figure 10: Time-height cross section of (a) potential temperature, (b) CO2 mixing ratio and 

(c) O3 mixing ratio for 20 August 2006 16:00 h to 21 August 2006 09:00 h. The dashed 

vertical lines denote the zero crossing of the sensible heat flux, measured at z = 2.4 m, being 

negative during night. 

 



  Appendix C 

 

117 

 

A direct comparison of the surface layer fluxes (DMBR and EC method) with the fluxes 

derived with the NBLB method revealed further nocturnal dynamics (see Figure 11). The time 

series of the fluxes (Figures 11 a, c, d) exhibited a close correlation between the DMBR and 

the NBLB method. The magnitude of the fluxes as well as the time of their zero crossing 

agreed well. Only H showed major differences before 20:00 h. Nevertheless, fluxes derived 

with the NBLB method had a larger temporal variability. A different way of comparing the 

temporal evolution of the fluxes is a plot of the cumulative flux of heat or matter into or out of 

the NBL. For the cumulative heat flux (Figure 11b), two nocturnal episodes can be discerned: 

an initial stabilization phase, and a subsequent cooling phase for the remainder of the night. 

During the first part until 20:30 h, H measured by the EC method yielded only  12.8 J m
-2 

h
-1

 

while H from the NBLB yielded  104.6 J m
-2 

h
-1

. Such a discrepancy was already suggested 

by Figure 10a, where an initial rapid cooling throughout the entire observable air column was 

visible. It could be explained by the adjustment of the air temperature to the altered radiation 

regime after sunset. Consequently, because this temperature decrease occurred “in situ”, the H 

from EC measurements did not reflect the magnitude of heat change. In the second part of the 

night, from 20:30 h until sunrise, both methods yielded similar values of H ( 6.1 J m
-2 

h
-1

 by 

EC and  7.7 J m
-2 

h
-1

 by NBLB methods, respectively). The separation of nocturnal dynamics 

into a first part before 20:30 h and a second part after 20:30 h (until sunrise) was also observ-

able in the trace gas flux data. The cumulative flux of CO2 was similar from both methods in 

the second part (DMBR: + 13.5 mmol m
-2 

h
-1

, NBLB: + 11.9 mmol m
-2 

h
-1

). It indicated that 

the temporal change of CO2 mixing ratios within the NBL was only controlled by the surface 

respiration. All CO2 accumulating in the NBL had thus to pass the DMBR measuring level. In 

the first part of the night, however, a slight deviation between the two methods was observed. 

The NBLB method yielded slightly higher CO2 fluxes (+ 25.1 mmol m
-2 

h
-1

) than the DMBR 

method (+ 12.9 mmol m
-2 

h
-1

). A very different situation was found for the O3-flux. In the 

second part of the night, the cumulative O3-fluxes showed revealed great differences between 

the NBLB ( 8.3 μmol m
-2 

h
-1

) and the DMBR derived O3-fluxes ( 2.5 μmol m
-2 

h
-1

). Here, 

the striking difference of O3 compared to CO2 and sensible heat has to be considered, namely 

that the fact, that O3 is simply a reactive trace gas. Because vertical exchange was suppressed 

during night, even relatively slow chemical reactions (R1) led to a depletion of O3. This does 
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not only occur at the surface, but happened also in the entire observable column, i.e. within 

the NBL. Photolytic reformation of O3 from NO2 (R2) does not occur during night. Further-

more, additional O3 might have been destroyed by reaction with NO2, forming the NO3 

radical (Seinfeld and Pandis, 1998). However, the DMBR method captured only the O3-flux 

directed towards the surface. In contrast, the NBLB was affected additionally by in-situ 

destruction of O3 within the NBL, leading to a temporal change and thus an apparent flux. 

While the NBLB did obviously not provide correct flux data in case of reactive trace gases, a 

comparison between the two methods can give an estimate about the magnitude of in-situ 

chemical O3 loss within the NBL. 

Finally it has to be mentioned in this context, that the fluxes derived by the NBLB did not 

only represent the immediate field site, as the surface layer fluxes (by DMBR) do. Due to the 

large fetch, different types of land use upwind of the mast might have affected the profiles 

and thus the actual temporal change of a variety of scalars (Beyrich et al., 2002).  
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Figure 11: Comparison of fluxes of sensible heat (H), CO2 (FCO2) and O3 (FO3) measured 

with the DMBR or EC method (dark colors) and derived by the NBLB (light colors). Panels 

(a), (c) and (e) show the 30 minute values of the respective fluxes, while panels (b), (d) and (f) 

show the cumulative flux since onset of surface cooling (indicated by the left dashed line) The 

right dashed line marks the onset of surface heating after sunrise. 
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4 Conclusions  

We have demonstrated, as long as the terrain is homogeneous with respect to roughness and 

soil/vegetation properties, that the MBR method can be used in its distributed version 

(DMBR), where sensible heat flux and corresponding temperature gradient are measured a 

few tens of meters apart from trace gas gradient measurements. This provides the option of 

using one EC station for several, distributed trace gas flux measurements at one site.  

If the DMBR method is applicable, it provides a quick and reliable way to compute vertical 

fluxes of trace gases in the surface layer, as it was demonstrated for the passive trace gases 

CO2 and H2O, as well as for the reactive trace gases O3, NO and NO2. However, it has to be 

noted, that such fluxes might not be necessarily equal to the fluxes at the immediate soil 

surface, nor equal to the fluxes as they are derived from the integration of (reactive) trace gas 

profiles up to their equilibrium level. Under stable conditions, with strong surface inversions, 

trace gases are trapped already close to the ground, leading there to very high mixing ratios. 

The observed surface layer fluxes represent (a) the mean flux for the layer limited by the 

measurement heights to establish the mixing ratio differences, and (b) only the outflow from 

(or inflow into) this pool of trapped trace gas. But still, they represent the lower flux boundary 

condition for (reactive) trace gas profiles above.  

The comparison of the fluxes derived with the DMBR method and from integration of the 

respective trace gas profiles up to 100 m (NBL budget) revealed very clearly the different 

spatial domains of both approaches. While the DMBR method provided the local vertical 

turbulent flux in the surface layer (precisely: between the two levels of the mixing ratio 

measurements), the profile integration covered a large footprint, i.e. a large horizontal area 

from which the fluxes originated. The principal differences between the fluxes of the 

conservative quantities CO2 and sensible heat points out, that transport dynamics of 

temperature and trace gases may differ significantly. Furthermore, with increasing height 

increasing lateral fetch heterogeneity of the surface is included into the profiles. This leads to 

variations, not representative for the surface directly underlying the profile. 
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Abstract 

Nitrous oxide (N2O) is a high-impact greenhouse gas, but its long-term natural background 

emission level is not well understood. Here we measured soil N2O emissions in an 

unmanaged, old growth beech forest in the Hainich National Park, Germany, at 15 plots over 

a one-year period. The average annual field N2O flux rate was 0.46±0.32 kg ha
-1

 yr
-1 

(in terms 

of mass of N). The N2O emissions show a background emission pattern with two event based 

N2O peaks. A correlation analysis shows that the distance between plots (up to 380 m) is 

secondary for their flux correlations. Annual N2O fluxes obtained from a standard model 

(Forest-DNDC) given soil parameters as well as daily temperature and precipitation 

substantially overestimate the actual field N2O fluxes and also do not describe their actual 

temporal and spatial variabilities. Temporal variability was described well by the model only 

at plots with higher soil organic carbon and the modelled N2O fluxes increased during 

freezing only were soil organic carbon was larger than 0.06 kg C/kg. The results indicate that 

the natural background of nitrous oxide emissions may be lower than previously thought and 

also lower than assumed in standard modeling. This suggests a higher anthropogenic 

contribution to N2O emissions. Moreover, standard flux models need to be revised to study 

natural emissions, in particular with respect to mechanisms underlying N2O emissions.
 

1 Introduction 

The atmospheric abundance of the greenhouse gas nitrous oxide (N2O) has been rising since 

industrialization and intensification of agriculture and anthropogenic emissions need to be 

reduced again to counteract global warming (Denman et al., 2007). Consequently, 

anthropogenic emissions need to be separated from natural background emissions for 

inventories and for the scientific understanding. This is not a trivial task and to date a 

background emission of 1.0 kg ha
-1

 yr
-1

 (in terms of mass of N) is commonly used as a 

standard (Bouwman, 1996). This estimate derives from measurements of unfertilized 

ecosystems. However, most so-called unfertilized sites are not sites that were never fertilized. 

Furthermore, the time since the last fertilization varies considerably and frequently these sites 

were solely not fertilized during the measurement years but the years just before 

measurements started. Mostly, N-fertilization is used as it is considered as one of the main 

drivers for N2O emissions (Skiba and Smith, 2000). This is problematic as anthropogenic 
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influence is not restricted to N-fertilization (Ruser et al., 1998; Teepe et al., 2004; Flessa et 

al., 2002b) and plowing (Mosier et al., 1996), but it is a very pragmatic and reasonable 

approach. As it is still unclear after which period of withholding fertilization emission rates 

have returned back to their natural background level, it is possible that these “recently 

unfertilized” systems still exhibit elevated N2O caused by fertilization before the withholding 

period. This and other natural and anthropogenic influences, such as atmospheric N-

depositions and soil compaction, may lead to biased estimates of the natural background 

emission rates. 

Actual natural background fluxes are those of the undisturbed ecosystem that are unmanaged 

and exhibit vegetation close to the potential natural one. However, such ecosystems have 

become very rare across the globe (Groombridge and Jenkins, 2000). For the greater part of 

Central Europe, the potential natural vegetation is beech (Fagus sylvatica) forest (Ellenberg, 

1996). Hence natural background emission rates representative for Central Europe should be 

recorded in pristine beech forests preferably at contrasting sites, e.g. at different soils and 

under different climate. However, there are hardly any unmanaged beech forests and there are 

certainly no pristine beech forests left in Central Europe. Nevertheless, in unmanaged old 

forest ecosystems anthropogenic influences may be assumed to be low because the N-status 

should not elevated besides the unavoidable atmospheric deposition.  

Ecosystems in the core zone of the Hainich National Park (NP) is are among the closest to 

natural available in all of Central Europe and thus provide the opportunity to determine the 

closest estimate to the potential natural background emission in Central Europe.  

Furthermore, if N2O release can be inferred from an “uncalibrated” biogeochemical model, 

the model can be used to determine a proxy for close to natural N2O fluxes for similar 

ecoregions in Central Europe. By using Forest-DNDC (http://www.dndc.sr.unh.edu/, January 

2010) with the default parameter settings, this assessment would also be applicable to such 

regions. The outcome of measurement and modelling approach of a long-term unmanaged 

beech forest will add to the understanding of N2O fluxes from natural ecosystems.  

A well known phenomenon associated with gas flux measurement from soils is the high 

spatial and temporal variability (Folorunso and Rolston, 1984). An issue that needs to be 

considered in this respect is the question of spatial correlation (Jordan et al., 2009). What is 
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the optimal distance between flux measurement chambers to avoid strong correlation (e.g. 

pseudo-replication)?  

The objectives of this study were: (a) to determine the N2O flux rate of an unmanaged beech 

forest site in the Hainich National Park for one year measured at 15 plots and to determine 

their spatial correlations; (b) to determine the standard soil parameters at the 15 plots in order 

to (c) make 15 uncalibrated runs with the model Forest-DNDC (Li et al., 2000; Butterbach-

Bahl et al., 2001) and (d) to compare the 15 modelled N2O flux rates with the 15 measured 

flux rates. (e) Thereby the relevance of spatial variability and the performance of Forest-

DNDC for the assessment of N2O fluxes in unmanaged temperate forests will be elucidated. 

2 Materials and Methods 

2.1 Study site 

Our research site is located within the Hainich National Park (51°04’46’’N, 10°27’08’’E, 440 

m a.s.l.) in Thuringia, Germany. The Hainich National Park was established in 1997 to protect 

one of the largest beech forests in Central Europe. Due to a unique history as a military base 

for more than 60 years prior to 1997, a large part of the forest has been taken out of 

management and developed with little disturbance. In the centuries before, the forest at the 

Hainich research site was used by the local village population as a coppice with standard 

systems and therefore has not been exposed to clearcut (Gleixner et al., 2009). As a 

consequence, the trees cover a wide range of age classes with a maximum up to 250 years. 

The forest is dominated by beech (Fagus sylvatica, 65%). The above-ground stem carbon pool 

is about 130 t C ha
−1

 (Gleixner et al., 2009). Maximum tree height varies between 30 and 35 

m with a maximum leaf area index (LAI) of 5.0 m
2
 m

−2
. The long-term mean annual air 

temperature is 7.5-8°C and the mean annual precipitation is 750-800 mm.  

2.2 Field measurements and N2O flux analysis 

N2O flux measurements were carried out using a closed chamber technique. 15 cylindrical 

polyvinyl chloride (PVC) frames (30 cm in diameter and 15 cm tall) were installed at the 

research site. The frames were set up in the topsoil two weeks before starting the gas 
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sampling. The location of each frame was selected stratified randomly. The largest distance 

between the frames was 380 m.  

N2O fluxes was measured 34-times (resulting in 34x15=510 N2O flux measurements) within 

the period from November 2005 to November 2006 by placing a PVC lid (30 cm in diameter 

and 30 cm tall) at each frame and taking five gas samples from the chamber headspace using 

gas tight syringes (60 ml) after 0, 10 and 20 minutes of closure. N2O concentration were 

analyzed in the laboratory using an automated gas chromatograph (GC) system (GC-14B, 

Shimadzu, Germany) equipped with flame ionization and an electron capture detector. A 

detail description of the GC system is given by Loftfield et al. (1997). For calibration three 

certified standards were used (303 ppb, 1000 ppb, 1998 ppb). N2O fluxes were calculated 

using the linear regression of gas concentration versus time for each chamber. N2O fluxes 

were rejected if the regression coefficient (r
2
) fell below 0.7, because this indicates for e.g. 

that the chamber was not properly sealed, or that air samples were somehow contaminated. 

Mean N2O fluxes were calculated using the N2O fluxes with r
2
 > 0.7. All N2O fluxes were 

given in terms of mass of N. 

2.3 Forest-DNDC 

Forest-DNDC simulates C and N dynamics in soil as well as trace gas emissions (like N2O, 

CH4, N2, NO and NH3) from wetland and upland forested ecosystems. Biological processes 

are driven by climate, soil biogeochemistry, vegetation, and anthropogenic activity. The 

general structure of the model was adopted from PnET-N-DNDC, which simulates C and N 

dynamics of upland soils (Stange, 2001; Li et al., 2000). The model can be run in the upland 

mode, which is the same as PnET-N-DNDC, or in the wetland mode. The model has been 

successfully tested and applied for both, the upland and wetland mode (Stange, 2001; Stange 

et al., 2000). The PnET-N-DNDC model was constructed by integrating a series of new 

developments with three existing models, namely, the Photosynthesis-Evapotranspiration 

(PnET) model, the Denitrification-Decomposition (DNDC) model, and the nitrification model 

(Li et al., 2000). A more detailed description of the Forest-DNDC model is given in Stange et 

al. (2000) and Li et al. (2000) (see also Fig. 1). 

In our study, we ran the Forest-DNDC model (http://www.dndc.sr.unh.edu/, download: 

January 2010) for all 15 plots in the upland mode to simulate the N2O fluxes for the Hainich 

research site. Meteorological input data, required as model drivers, were minimum and 
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maximum daily air temperature as well as the sum of daily precipitation. Model input 

parameter were forest type, forest age, above ground biomass and soil parameters (mineral 

soil, organic layer, soil pH, soil organic carbon, bulk density, clay content) (see Tab. 1). 

Otherwise we use the default parameter settings. 

Table 1: Overview of the model input parameter 

 Model input parameter 

forest type beech 

forest age 120 years 

above ground biomass 130 t C ha
−1

 

mineral soil clay loam 

organic layer mull 

soil pH individual for each plot (see Tab. 3) 

soil organic carbon individual for each plot (see Tab. 3) 

bulk density individual for each plot (see Tab. 3) 

clay content individual for each plot (see Tab. 3) 

 

The modelled N2O fluxes will be present on two ways: 

 in daily resolution for the whole measuring period (model (daily)) and 

 modelled N2O fluxes for the 34 measuring days (model).  
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Figure 1: The PnET-N-DNDC model consists of five submodels for predicting soil climate, 

forest growth, decomposition, nitrification, and denitrification. The first three submodels from 

a component to calculate soil climate/substrate profiles driven by the ecological drivers, and 

the last two submodels from another component to predict nitrification, denitrification, and 

chemodenitrification reates based on soil environmental conditions (Li et al., 2000). 
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2.4 Climate and soil parameter 

Meteorological data were observed at a station located outside the forest installed by the Max 

Planck Institute for Biogeochemistry. 

Additionally, we determined soil temperature and soil moisture at each plot at the time of gas 

sampling. Soil temperature was measured in 12 cm depth using a mobile temperature sensor 

(Testo 110, Testo, Germany). Soil moisture was determined gravimetrically from a sample of 

the top 10 cm of soil by relating the mass difference between the fresh soil sample and the 

afterwards oven dried soil sample (105°C for 24 h) to the mass of the dry soil sample. To 

compare the gravimetric soil water content with the soil moisture displayed by the Forest-

DNDC model (see next subsection) we calculated the water filled pore space (WFPS) 

according to Parton et al. (2001) by 

       (
  

  
)  (

  

     
)                                                                                                 (1) 

where θ is the gravimetric soil water content, BD (in g cm
-3

) is the bulk density, WD 

(in g cm
-3

) is the density of water, and PD is the particle density of the average soil material 

(quartz: 2.65 g cm
-3

). 

Bulk density, soil organic carbon (SOC, in kg C (kg soil)
-1

) and soil pH were determined in 

the middle of the measurement period. To determine soil bulk density undisturbed soil 

samples were taken using stainless steel soil cores of known volume (100 cm
3
). Then the 

samples were oven dried at 105°C for 24 h and determining the mass afterwards by weighing. 

SOC was determined by relating the mass difference of two soil sub-samples (5 g) − one air dried 

and the other dried at 430°C in a muffle furnace (until constant weight was achieved) – to the 

mass of the air dried sub-sample. For the determination of soil pH the soil was homogenized 

and afterwards measured in a soil-to-water suspension (1:2.5) using a glass electrode. 

2.5 Calculation of the quality of simulation  

We used the coefficient of determination (R
2
), the model-efficiency (R

2
eff), and the Root-

Mean-Square Prediction Error (RMSE) to calculate the quality of the model  

   
(∑          )              

 

∑           
               

 
                                                                                 (2) 
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where Xmod are the modelled N2O fluxes and Xmeas are the measured N2O fluxes.  

The coefficient of determination (R
2
) is the most frequently used measure for the evaluation 

of the model quality. R
2
 indicates the amount of the variance explained by the model. Thus 

the dispersion of the measuring data gives to be explained by the dispersion of the model data 

can at to which portion. The values can lie between 0 and 1, whereby values closed to 1 a 

good adjustment of the observation by the regression equation.  

The R2eff computes the measure for the relative deviation of the simulated values of the 

measured values under consideration of the dispersion of the measured values. The measure 

takes fast large negative values in the case of deviations of the model values to the measured 

values.  

The RMSE (root mean square error) compares the model agreement with the average values 

of the measuring data.  

2.6 Statistical analysis 

A mean N2O flux was calculated from the 15 plots for each day of N2O flux measurement. 

These mean N2O fluxes were tested by the t-test for significant departures from zero 

(confidence level 0.05).  

Further, we tested whether correlations between N2O fluxes at different plots depend on 

spatial distance between the plots. We first extracted the spatial coordinates of all 15 plots and 

computed their mutual distances dist (i,j) for all distinct pairs {i, j}, where i,j are chosen from 

{1, 2, ...15}, yielding 15 × 14/2 = 105 distances. For each of the 105 possible pairs of plots we 

also computed the cross-correlation coefficient Cflux (i,j) of their flux time series (34 time 

points each). The resulting correlation between the distances and flux correlations was tested 
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for significance using bootstrap permutation. We repeatedly associated the flux values to 

randomly chosen plots, again computed the cross-correlation coefficient Crand (i,j), and 

generated a histogram of 20000 such randomly occurring correlations obtained from random 

association of actual fluxes to actual plot locations. 

An analogous bootstrap analysis (based on 20000 random permutations) was performed for 

accessing the significance of correlations between soil parameters (soil pH, soil organic 

carbon content, clay content and bulk density) and N2O fluxes. 

3 Results 

3.1 Field N2O fluxes 

Fig. 2 presents an overview of air temperature, precipitation and field N2O fluxes from 15 

plots distributed over the Hainich research site for the years 2005 and 2006. The grey dots 

display the uncertain N2O fluxes (n=299) and the black dots the certain N2O fluxes (n=211). 

However, the chance that the uncertain N2O fluxes apply is higher than that the uncertain N2O 

fluxes are zero. Also Fig. 3 shows that the mean N2O fluxes calculated with the 211 certain 

N2O fluxes (red dots) are in the range of the standard deviation of the N2O fluxes calculated 

with all (n=510) N2O fluxes (black dots). Except for the certain N2O flux occurred at 

6.September 2006. This N2O flux exceeds clearly the N2O flux calculated with all values. 

However, the certain N2O flux consists only of one value because all other values measured at 

this date are uncertain. For this reason the N2O flux occurred at 6.September 2006 is no mean 

N2O flux and would not be considered in the further data evaluation. Therefore, we decided to 

calculate further results with all N2O fluxes (n=510). 

A seasonal pattern of field N2O fluxes was lacking. The mean N2O field fluxes are shown in 

Fig. 4. Average field N2O fluxes (November 2005 to November 2006) exhibited small 

amplitudes between -5.03 and 38.76 µg m
-2

 h
-1

,
 
but most average field N2O fluxes do not 

significantly differ from zero (t-test, p = 0.05) (see Fig. 3 and 4). 38% of all (n=510) observed 

N2O fluxes show negative values. The highest field N2O fluxes occurred between January and 

February 2006. During this time there was a frost period with soil temperature always 

below -0.5°C. This period contributes up to 40% to the observed field N2O emission. A 

second period with mean field N2O fluxes significantly different from zero started at the end 
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of June 2006 (June 21, 2006 and June 28, 2006) and contributes up to 15% to the observed 

field N2O emission. During this period the air temperature strongly increased (see Fig. 2). The 

annual field N2O emission (derived from our field measurements) at the Hainich research site 

for the one year period (November 2005 to November 2006) was 0.46±0.32 kg ha
-1

. 

 

 

Figure 2: (a) Daily mean air temperature for 2005 and 2006 recorded 2 m above the ground 

and (b) daily precipitation for 2005 and 2006, (c) N2O fluxes at the Hainich research site 

measured at 15 plots; black dots are the certain field N2O fluxes and the grey dots display the 

uncertain N2O fluxes. All N2O fluxes are expressed in terms of mass of nitrogen. 
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Figure 3: Mean field (all) and mean field (certain) N2O fluxes for the Hainich research site 

form November 2005 to November 2006. The black dots are the mean field N2O flux rates 

calculated with all values (n=15), the red dots are the mean field N2O flux rates calculated 

with the certain values (see Fig.2). The error bars on each individual data point (only at the 

black dots) are the standard deviation. All N2O fluxes are expressed in terms of mass of 

nitrogen.  

 

Figure 4: Field and modelled N2O fluxes for the Hainich research site form November 2005 

to November 2006. The black dots are the mean field N2O flux rates (n=15), the grey squares 

are the mean modelled N2O flux rates (n=15) and the grey line shows the mean daily 

modelled N2O flux rates. The error bars on each individual data point are the standard 

deviation. All N2O fluxes are expressed in terms of mass of nitrogen.  
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3.2 Soil climate 

Fig. 5 presents the daily soil temperature and soil moisture simulated by Forest-DNDC and 

the mean field soil temperature and soil moisture measured at the time of gas sampling from 

plot 1. All other plots showed a similar pattern (not shown here). The modelled soil 

temperature matched well with the field soil temperature except for soil temperature near 

freezing (R
2
=0.91, R

2
eff=0.82, RMS=2.48). The modelled soil water content shows good 

agreement in the period from October 2005 to June 2006, but in the period from July to 

October 2006 the Forest-DNDC model overestimates the soil water content (Fig. 5). 

However, the model efficiency shows with 0.99 a very good agreement. The modelled soil 

water content showed no values below 0.57 WFPS. In contrast, the field soil water content 

ranged between 0.28 and 0.71 WFPS. 

 

Figure 5: (a) Daily soil temperature (measured in 12 cm depth) from plot1 simulated by 

Forest-DNDC. Solid circles represent the soil temperature (integral between 0 and 12 cm) 

measured at the time of gas flux sampling at plot 1. (b) Daily soil WFPS (0-12 cm depth) 

from plot 1 simulated by Forest-DNDC. Solid circles represent the WFPS calculated with the 

gravimetric soil water content measured at the time of gas flux sampling at plot 1 (soil was 

taken from the first 10 cm). 
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3.3 Modelled N2O fluxes 

Mean modelled N2O fluxes (derived from the mean of the modelled N2O fluxes for each plot 

at the date of N2O flux measurements) (2.54-81.72 µg m
-2

 h
-1

, n=15) showed values typically 

larger than the plot averaged N2O fluxes of the field measurements (-5.03-38.76 µg m
-2

 h
-1

, 

n=15). The mean daily modelled N2O fluxes (1.4-133.09 µg m
-2

 h
-1

) were up to three times 

larger than the field N2O fluxes. Mean modelled N2O fluxes showed lowest values from 

November 2005 to March 2006 and from September to November 2006. Highest values 

occurred at the end of April 2006 (see Fig. 3).  

Table 2: Overview of N2O fluxes, range of mean N2O fluxes and annual N2O emission for 

field measurements, modelled N2O fluxes of the 34 measuring days and modelled N2O fluxes 

in daily resolution for the whole measuring period.  

 

 range of mean N2O fluxes, 

µg m
-2

 h
-1

  

annual N2O emission, 

kg
-1

 ha
-1 

field fluxes -5.03-38.76  0.46±0.32 

modelled fluxes (of the 34 

measuring days) 

2.54-81.72 1.77±1.82 

modelled fluxes (daily 

resolution for the 

measuring period) 

1.4-133.09 1.56±0.006 

 

Furthermore, the daily modelled N2O fluxes showed a weak seasonal pattern. The model does 

not account for N2O uptake. The annual modelled N2O emission at measurement intervals and 

the annual modelled N2O emission in daily resolution for the Hainich research site for the one 

year measuring period (November 2005 to November 2006) were 1.77±1.82 and 

1.56±0.006 kg ha
-1

.  
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3.4 Quality of simulation 

Table 3: Overview of the quality of simulation. Shown are the coefficient of determination 

(R
2
), the root mean square (RMSE), the standard deviation (SD), the model efficiency (R2

eff) 

and the sample size (n).   

Plot R
2
 RMSE 

(µg m
-2

 h
-1

) 

SD 

(µg m
-2

 h
-1

) 

R
2
eff 

1 0.001 40.5 22.2 -2.42 

2 0.012 46.7 23.6 -3.04 

3 0.074 33.8 30.8 -0.23 

4 0.073 100.9 19.7 -25.97 

5 0.016 32.5 20.6 -1.56 

6 0.002 36.4 19.0 -2.78 

7 0.001 39.7 24.1 -1.80 

8 0.000 34.2 29.4 -0.40 

9 0.021 29.9 24.5 -0.54 

10 0.020 29.8 16.4 -2.41 

11 0.040 22.06 17.8 -0.60 

12 0.078 37.4 18.9 -3.05 

13 0.000 23.2 20.8 -0.31 

14 0.057 25.4 22.9 -0.35 

15 0.122 37.0 27.1 -1.10 

The results of the measures for the quality of simulation (see section 2.5) reflect the not good 

match between the measured and modelled N2O fluxes. However, without the frost period and 

the period in summer modelled and field N2O fluxes agree mostly within a factor of 2.  

3.5 Spatial distribution of N2O fluxes 

The 510 individual measurements from the 15 plots resulted in field N2O fluxes from -101.7 

to 121.6 µg m
-2

 h
-1

. During the frost period and the period end of June nearly all plots 
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exhibited positive field N2O fluxes (Fig. 2). The spatial variability showed high values in this 

period (range: -15.55 to 88.9 µg m
-2

 h
-1

, mean: 26.04 µg m
-2

 h
-1

). In the second period (end of 

June) with N2O fluxes that were significantly different from zero, the spatial variability was 

also high (range: -17.21 to 121.6 µg m
-2

 h
-1

, mean: 29.34 µg m
-2

 h
-1

). During the periods with 

a background emission pattern (Brumme et al., 1999), both negative and positive N2O fluxes 

occurred at similar ratio (range: -101.73 to 105.08 µg m
-2

 h
-1

, mean: 3.36 µg m
-2

 h
-1

). The 

modelled N2O fluxes of the 15 individual plots showed no negative values. They ranged 

between 0.0 and 255.7 µg m
-2 

h
-1 

(see Fig. 6). The 15 individual plots exhibited the highest 

difference in modelled N2O fluxes from each other (high standard deviation) on May, 23 2006 

(Fig. 6). Plot 4, and, to a lesser degree, plot 9 and plot 10, with high N2O fluxes, drive this 

high standard deviation.  

 

Figure 6: Individual modelled N2O fluxes for all 15 plots of the Hainich research site. Plot 9 

and 10 and plot 4 show different courses in comparison with the other plots.  

3.6 Spatial correlation of N2O fluxes  

We find a weakly positive correlation between the correlation of N2O fluxes at two plots and 

the distances between these plots (corr. Coefficient 0.085). This suggests that flux correlations 

between plots tend to be larger the more distant the plots (Fig.7). However, flux correlations 

are broadly distributed in the range between -0.3 and +0.77 and the best linear fit (least square 

regression) shows only a low average increase of flux correlations with distance at 0.17/km. 

Together with the small correlation coefficient, this suggests that the correlation between the 
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N2O fluxes at any two plots may be almost independent of the distance between them. Indeed, 

a randomized (bootstrap) sampling of the given data (see Methods) yields some insight into 

whether this slightly positive correlation might be significant. We therefore created 20000 

random permutation samples by randomly associating plots with flux time series, obtaining 

the distribution shown in Fig. 8b. We observe that 25.7% of the correlations between N2O 

flux-correlations and randomized plot locations are larger than the observed value of 0.084 

and 74.3% are lower. This strongly indicates that there is no relevant correlation between the 

actual inter-plot distances and the actual inter-plot N2O flux correlations at spatial distances 

below 400 m. 

 

Figure 7: Inter-plot flux correlations do not significantly correlate with inter-plot distances. 

(a) Inter-plot correlations of nitrous oxide fluxes displayed versus inter-plot distances. The 

weakly positive trend is indicated by the least-squares linear fit (line, rate of change in 

correlation is 0.17/km).  

3.7 Physical and chemical soil parameters 

Physical and chemical soil parameters (soil pH, soil organic carbon (SOC), clay content, bulk 

density (BD)) at the 15 plots are summarized in Tab. 3. Although forest structure and land use 

history in the research area are homogeneous (Jordan et al., 2009), soil parameters are quite 

heterogeneous. Bulk density ranged from 0.79 g cm
-3

 (plot 2) to 0.92 g cm
-3 

(plot 4). Soil pH 

showed the lowest value at plot 2 (4.8) and the highest soil pH at plot 4 (6.7). The clay 

content and the soil organic carbon showed even larger variation. The clay content varied 

from 30.8% to 51% and the SOC ranged from 0.032 to 0.087 kg
-1

 C kg soil. Apart from 
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significant correlations between bulk density and N2O fluxes at six (out of 34) days of 

measuring (Fig. 7d), no significant correlations between N2O fluxes and soil physical or 

chemical soil parameters were observed (Fig. 8).  

 

Figure 8: Correlations between fluxes and soil parameters. No significant correlations 

between soil parameters (a) pH value, (b) soil organic carbon content (SOC) and (c) clay 

content and fluxes. (d) Significant correlations between bulk densities and flux rates were 

observed only at six times of measurement. Significance tested by permutation test (20000 

random site-permuted data samples, see methods). Red shaded area indicates mean plus and 

minus 45% whereas red, blue and green lines indicate 5%, 2%, and 1% chance levels for 

positive and negative correlations, respectively.  

 

 

 

 

 



  Appendix D 

 

 145 

Table 3: Plot-specific soil parameters (soil pH, soil organic carbon (SOC), clay content and 

bulk density (BD)) of all 15 plots of the Hainich research site.  

plot pH 

[1] 

SOC 

kg
-1

 C kg soil 

clay 

% 

BD 

g
-1

 cm
3 

1 4.92 0.033 36.2 0.90 

2 4.79 0.032 30.8 0.86 

3 5.34 0.05 45.3 0.92 

4 6.71 0.087 50.5 0.88 

5 5.82 0.04 42.0 0.84 

6 5.42 0.036 39.3 0.86 

7 5.27 0.041 36.4 0.87 

8 6.22 0.047 41.2 0.86 

9 6.0 0.064 51.0 0.89 

10 6.56 0.062 48.6 0.79 

11 5.74 0.052 44.2 0.79 

12 5.28 0.054 35.0 0.81 

13 6.37 0.05 44.5 0.86 

14 6.14 0.041 38.7 0.87 

15 6.24 0.046 40.2 0.91 

 

4 Discussion  

4.1 Comparison with other studies 

All previous studies focusing on N2O fluxes from soils in beech forest ecosystems were 

performed in managed forest ecosystems (Brumme et al., 1999; Papen and Butterbach-Bahl, 

1999; Butterbach-Bahl et al., 2002; Gasche and Papen, 2002; Brumme and Borken, 2009; 

Borken and Beese, 2006; Zechmeister-Boltenstern et al., 2002), whereas we measured and 
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studied N2O fluxes in a beech forest that is long-term unmanaged. Still our results are 

consistent with the results of Brumme et al. (1999) and Brumme and Borken (2009) for 

forests dominated by the background emission type. They found that soils in beech forests 

with a mull organic horizon usually show background emissions sometimes interrupted by 

event emissions like frost and thaw. Our annual N2O emission (0.46±0.32 kg ha
-1

) was within 

the lower range of values reported for temperate beech forest soils (see Tab. 4).  

Contrasting to the other studies, the core zone of the Hainich National Park is a close to 

natural deciduous forest which is unique in Central Europe. This could be a reason why most 

N2O fluxes did not significantly differ from zero and the overall mean flux is particularly low. 

It may also well be that N is immobilized as a part of rising soil organic matter stocks 

(Gleixner et al., 2009). In any case, our results clearly support the hypotheses that most 

natural ecosystems do not emit significant amounts of N2O and natural background emissions 

are rather low. Guckland (2009) found even lower emissions of N2O ranging from -31.4 to 

167.8 µg m
-2

 h
-1 

at a site covered to 59% with beech also located in the Hainich NP for 2005 

to 2007. These measurements were performed on loess soils (Luvisol) with less clay content 

than in soils studied here resulting in an annual N2O emission of 0.19±0.16 kg ha
-1

. The N2O 

fluxes measured by Guckland (2009) during freezing and thawing amounted to 94% of the 

emissions of the first year. Our values of 38% are closer to the values observed by Papen and 

Butterbach-Bahl (1999) who estimated a contribution up to 39% to the total annual N2O 

emission caused by freezing and thawing at a 96 year-old beech plantation in the Höglwald 

(Germany) (see also Tab. 4). Therefore, the magnitude of N2O emissions at the Hainich site 

took place during frost. Similar results were also observed by Butterbach-Bahl et al. (2002), 

Papen and Butterbach-Bahl (1999), Brumme et al. (1999) and Teepe et al. (2004) which also 

found that the magnitude of N2O emission take place during frost. A peak of N2O emission 

during thawing could not be observed. However, this might be due to the weekly to biweekly 

resolution of N2O flux measurements. Generally, fluxes may be underestimated by low 

temporal resolution of measurements during short periods of extremely high N2O fluxes like 

frost-thaw events (Flessa et al., 2002a). However, we observed no seasonal pattern of N2O 

fluxes which would be detectable with our time measurement resolution and is in accordance 

with the results from Brumme et al. (1999) and Brumme and Borken (2009) who also 

reported no occurrence of seasonal pattern by forests with N2O emissions <1 kg ha
-1

 yr
-1

. 
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Borken and Beese (2006) reported annual N2O emission of 0.54±0.14 kg ha
-1

 and 

1.55±1.8 kg ha
-1

 for the years 1999-2000 and 2000-2001 for a pure beech site at Solling 

(Germany).  

Table 4: Compilation of published annual N2O fluxes from soils of temperate beech forest 

ecosystems (N2O fluxes are in terms of mass of nitrogen) 

Site 
N2O emission, 

kg ha
-1

 yr
-1 

Observation 

period 

Reference 

Hainich
a
, Germany 0.46±0.32 2005-2006 this study  

Hainich
b
, Germany 0.19±0.16 2005-2007 Guckland (2009) 

Göttinger Wald, 

Germany 

0.17±0.03 1993-1995 Brumme and Borken (2009) 

Zierenberg, Germany 0.41±0.12 1991-1992 Brumme and Borken (2009) 

Solling, Germany 1.93±0.63 1990-2000 Brumme and Borken (2009) 

Solling, Germany 0.54±0.14 2000-2001 Borken and Beese (2006) 

Schottenwald, Austria 4.03±1.37 1996-1998 Zechmeister-Boltenstern et al. 

(2002) 

Höglwald, Germany 5.1 1995-1996 Papen and Butterbach-Bahl 

(1999) 

Höglwald, Germany 3.8±1.3 1995-1997 Butterbach-Bahl et al. (2002) 

a
 main soil substrate: clay                 

b
 main soil substrate: loss 

Significantly higher annual N2O emissions usually observed for sites showing a clear seasonal 

pattern with low N2O fluxes during the winter months and high N2O fluxes during the 

summer. Seasonal N2O flux pattern were observed by Zechmeister-Boltenstern et al. (2002) 

for a 140 year-old beech site located at Schottenwald (Austria); they reported annual 

emissions of 3.6±1.0 kg ha
-1

 (1996), 4.2±1.3 kg ha
-1

 (1997) and 4.3±1.8 kg ha
-1

 (1998). 

Kitzler et al. (2006) found N2O fluxes ranging between -6.3 and 75.4 µg m
-2

 h
-1

 for a 142 

year-old beech site at Schottenwald (Austria) (observed year: 2002). Seasonal variations of 
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N2O fluxes at this site followed mainly the annual changes in soil temperature, soil moisture 

and the availability of nitrogen in the soil.  

4.2 Measured vs. modelled N2O fluxes 

Our results show that field and modelled soil temperature fit well except for the period with 

soil temperature near the freezing point. The soil cooled down slower and warmed up faster 

than the model simulation. Similar results were found by Szyska et al. (2008). In contrast, 

field soil moisture differed significantly from modelled soil moisture, which does not fall 

below 0.57 WFPS. The reason for this is the model settings, particularly the wilting point, for 

the default soil type “clay loam”. However, both parameters significantly affect the N2O 

fluxes (Pathak, 1999; Saggar et al., 2004; Smith et al., 2003) and Forest-DNDC was designed 

with a strong soil moisture control on N2O fluxes (Frolking et al., 1998; Saggar et al., 2004; 

Giltrap et al., 2009; Stange et al., 2000). Only a few studies report about the match between 

measured and simulated (by Forest-DNDC) soil water contents. Kröbel et al. (2010) found an 

overestimation of the soil water content by DNDC (version DNDC89). At a Scottish site on a 

glacial till with very low hydraulic conductivity in the subsoil which makes drainage very 

slow, Frolking et al. (1998) reported DNDC to underestimate soil moisture. Beheydt et al. 

(2007) also mentioned an underestimation of WFPS for different investigated sites in their 

study using the DNDC version 8.3P. Saggar et al. (2004) reported a poor match between 

measured and simulated WFPS for a silt loam soil in New Zealand using NZ-DNDC. The 

simulation had low WFPS when the topsoil was almost saturated with water and higher 

WFPS when the topsoil was dry. Stange et al. (2000) observed a underestimation of WFPS 

during winter and spring and an overestimation of WFPS by PnET-N-DNDC in summer and, 

especially, in early autumn for a beech site in the Höglwald, Germany. This discrepancy 

between measured and simulated values of WFPS at the beech site is mainly due to an 

underestimation of evapotranspiration by the beech stand. However, all processes related to 

C- and N-cycling in forest ecosystems are strongly dependent on water availability of soil. 

Therefore, a successful simulation of soil hydrology in forest ecosystems is necessary in order 

to exactly model C- and N-cycling in forest soil (Saggar et al., 2004; Stange et al., 2000).  

The annual N2O emission of the Forest-DNDC simulation overestimated the annual emission 

derived from our field measurements. Also Abdalla et al. (2009) found that DNDC poorly 
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described those fluxes from zero fertilizer treatments. Forest-DNDC also fails to correctly 

simulate the actual fluctuations of measured N2O fluxes except for the plot with the highest 

SOC content. Plot 4 reflected a part of the fluctuations. Forest-DNDC failed to show the N2O 

fluxes during frost except for plot4, plot9, and plot10. These plots showed higher N2O fluxes 

during frost. The model seems to be very sensitive to the input variable, soil organic carbon 

(SOC), because all three plots exhibit SOC contents >0.06 kg
-1

 C kg soil. At the plots with 

less than 0.06 kg
-1

 C kg soil SOC, no increasing N2O fluxes during frost took place. The 

model shows thaw induced elevated N2O fluxes, at the end of April. This event contributes to 

a great part to the annual N2O emission. However, we did not observe a thawing peak in the 

field. Frolking et al. (1998) also reported disagreements between modelled N2O fluxes and 

field N2O fluxes especially during freezing and thawing. However, the second N2O peak in 

summer 2006 did not appear in the simulated data. The simulated N2O fluxes decreased in 

this period. Saggar et al. (2004) remarked that the DNDC model had limited success in 

predicting the size and timing of very high fluxes. It seems to be impossible to simulate the 

correct temporal variability of N2O fluxes. However, these results show that this model is not 

yet able to display the lack of knowledge in this area and not all controls of N2O fluxes seems 

to be well understood.  

A further point is that modelled N2O fluxes exhibited no negative fluxes. 38% of the field 

N2O fluxes were negative and also other studies observed negative N2O fluxes (Kitzler et al., 

2006; Chapuis-Lardy et al., 2007; Guckland, 2009). However, the field N2O fluxes are usually 

small and the standard errors of these fluxes are high. Also a simulation of N2O uptake by 

forest soils with the DNDC version presented by Li et al. (2000) was not possible (Stange, 

2001). However, the PnET-N-DNDC version presented by Stange (2001) simulated N2O 

uptake. Theoretically Forest-DNDC can simulate N2O uptake, but the parameter settings for 

denitrification in uncalibrated versions of Forest-DNDC do not permit N2O uptake. To allow 

N2O uptake a new parameterization must be included (personal communication, Butterbach-

Bahl, 2010).  

4.3 Spatial variability of N2O fluxes 

Folorunso and Rolston (1984) reported that spatial variability in N2O fluxes is naturally large 

in most soils. That was confirmed by our data. Our field N2O fluxes observed at the 15 

individual plots show their highest spatial variability when high N2O fluxes occur. However, 
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also in periods with low mean N2O fluxes the variability was pronounced. The modelled N2O 

fluxes simulated with individual soil parameter from the 15 plots also exhibited a high spatial 

variability. This is due to the differences in the parameter settings for SOC. N2O fluxes at 

plots with low (0.032-0.054 kg
-1

 C kg soil) SOC content fluctuated less than plots with high 

(0.062-0.087 kg
-1

 C kg soil) SOC concentrations. The field N2O fluxes did not display this 

effect. Nevertheless, also the modelled N2O fluxes showed their highest variability when high 

N2O fluxes occurs.  

4.4 Spatial correlation of N2O fluxes 

One may assume that N2O fluxes from nearby plots are more strongly correlated than N2O 

fluxes from more distant plots, but we are not aware of any studies on this issue. Studies 

about spatial variability usually focus on differences of N2O fluxes caused by differences in 

soil properties (Ambus and Christensen, 1995; Röver et al., 1999). For our 15 different plots 

at the Hainich research site we found no consistent significant dependence of the N2O fluxes 

on soil parameters.   

We observed no significant spatial correlation of N2O fluxes at the Hainich research site. 

Although we found a weak tendency towards a positive correlation, this does not explain the 

spatial variability in N2O fluxes by changes in soil properties. However, Mummey et al. 

(1997) explained the variation of N2O fluxes by availability of soil nutrients and Ambus and 

Christensen (1994) reported a strong correlation by plots less than 1 m apart, supposedly due 

to soil aeration patterns influenced by the dispersion of anaerobic microsites.  

5 Conclusions 

In this study we investigated field and modelled N2O fluxes for the first time from an 

unmanaged old growth beech forest in Central Europe (Hainich National Park, Germany).  

Our results reveal particularly low N2O emissions comparable to the lowest observed in 

managed beech forests. They clearly underline that natural background emissions from this 

ecozone are lower than 1 kg N ha
-1

 yr
-1

. Furthermore, the results indicate that site properties 

other than forest management control substantially affect the magnitude of N2O emissions.  
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The absence of spatial correlations indicates that within one site the distance between each 

chamber is secondary. This is valuable for designing measurement plots because larger 

distances between individual chambers are not required. The latter of course, needs to be 

further verified by additional studies. Our study also indicates that an uncalibrated Forest-

DNDC model is not fully appropriate for simulating annual fluxes of N2O for zero fertilizer 

treatments, if it is the aim to obtain results for more than one particular site. Therefore, 

regionalization with such a biogeochemical mechanistic model that has inevitably to be 

“uncalibrated” appears inappropriate. To simulate the temporal variability in N2O fluxes, a 

validation at other research sites seems to be necessary especially for sites with low soil 

organic carbon values. Therefore, it remains a challenge for future research to satisfactorily 

reproduce the spatial variability of natural N2O fluxes. 

Some other, managed forest ecosystems with absent seasonally or event-induced N2O 

emissoins also display annual N2O emission at or below 0.5 kg ha
-1

 yr
-1

. Hence a background 

flux around 0.5 kg ha
-1

 yr
-1

 for the given background emission type and the given background 

emission factor seems to be more adequate.  
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