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Abstract

In this thesis, different computational methods have been used to study the catalytic

mechanisms of three glycyl radical enzymes.

The mechanism of the B12-independent glycerol dehydratase has been elucidated

by combining continuum electrostatic and density functional theory calculations. A

mechanism for the dehydration of glycerol is proposed that does not involve a complex

intramolecular 1→2 shift of the middle hydroxyl group, as previously suggested. Instead,

the enzyme uses a pair of residues in the active site, glutamate and histidine, to facilate

direct release of a water molecule from glycerol. The mechanism of 4-hydroxyphenylacetate

decarboxylase has been explored based on continuum electrostatic and hybrid quantum

chemical/molecular mechanical calculations. The calculations suggest that the substrate is

activated to a radical form by two simultaneous transfers, one of an electron to the thiyl

radical and second of a proton to the active site glutamate. This activation mode has not

been reported for any known radical enzyme. The mechanism of pyruvate formate-lyase

has been investigated based for the first time on the complete enzyme model. The key

new finding is that quenching of the formyl radical is performed by one of the active site

cysteines and not by coenzyme A, as previously suggested.

Zusammenfassung

In der vorliegenden Arbeit werden unterschiedliche Berechnungsmethoden angewendet,

um die katalytischen Mechanismen von drei Glycyl-Radikalenzyme zu untersuchen. Der

Mechanismus der B12-unabhängigen Glyceroldehydratase wurde mit Hilfe von Kontinuums-

elektrostatik- und Quantenchemierechnungen untersucht. Der vorgeschlagene Dehyd-

ratisierungsmechanismus benötigt nicht die komplexe 1→2 Migration der mittleren Hydro-

xyl-Gruppe des Glycerins. Die Dehydratisierung des Glycerins involvierte einige Reste

im aktiven Zentrum des Enzyms, im speziellen ein Glutamat und ein Histidin. Der

Mechanismus der 4-Hydroxyphenylacetat-Decarboxylase wurde mit Hilfe von Kontinuum-

selektrostatik und Quantenchemischen/Molekülmechanischen Rechnungen untersucht. Die

Berechnungen zeigen, dass das Substrat zu einer radikalen Form durch zwei gleichzeitige

Transfers aktiviert wird. Zum einen wird ein Elektron zum Thiylradikal transferiert und

zum anderen ein Proton zu einem Glutamat im aktiven Zentrum. Dieser Aktivierungs-
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mechanismus wurde bisher in keinem anderen Radikalenzym beobachtet. Der Mechanismus

der Pyruvat-Formiat-Lyase wurde zum ersten Mal mit einem kompletten Enzymsmodell

untersucht. Die wichtigste neue Erkenntnis ist, dass die Deaktivierung des Formyl-

Intermediats nicht durch Koenzym A durchgeführt wird, sondern durch ein Cystein im

aktiven Zentrum.
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1 Introduction

Radical enzymes have been recognized as extremely robust catalysts in many biological

systems.1–4 These enzymes use the high reactivity of radicals to initiate reactions of

practically nonreactive compounds. The ability of radical enzymes to catalyze chemically

demanding reactions is particularly interesting for industry due to their potential use in

organic synthesis.5,6 Over the years, considerable efforts have been made to understand

at the molecular level the intriguing chemistry of radical enzymes.7,8 However, many

aspects of the radical-based catalysis still remain unknown because the reactions catalyzed

by radical enzymes involve unstable, short-lived intermediates that are difficult to study

experimentally. On the other hand, the methods of computational chemistry for studying

enzymatic reactions have in the past decade evolved to a degree that they can compete

with experiments offering reasonable accuracy and reliability.9–12 These methods provide

insights into the intrinsic chemistry of the catalyzed reaction that are beyond the scope of

most experimental techniques, for example the determination of transition states on the

reaction path.

It is in this context that I employ electrostatic,13–15 quantum chemical,16–18 and

combined quantum chemical/molecular mechanical calculations19–22 to study the catalytic

mechanisms of three glycyl radical enzymes,23,24 namely the B12-independent glycerol

dehydratase (iGDH), 4-hydroxyphenylacetate decarboxylase (4Hpad) and pyruvate formate-

lyase (PFL). The mechanisms of the former two enzymes have not been studied before

experimentally nor computationally. My calculations show that both iGDH and 4Hpad

adopt catalytic mechanisms that are without precedence among the radical enzymes

discovered to date. Although the mechanism of PFL is thought to be well understood,

the performed calculations are able to explain some of the still confusing aspects of the

catalyzed reaction.

The B12-independent glycerol dehydratase is a novel glycyl radical enzyme catalyzing

the conversion of glycerol into 3-hydroxylpropionaldehyde.25,26 The previously suggested

reaction mechanism assumed that the dehydration of glycerol is accomplished by an

intramolecular 1→2 shift of the middle hydroxyl group, as seen in the catalysis by B12-

dependent enzymes. The shift was postulated to involve a cyclic transition state and result

in a 1,2-diol intermediate that spontaneously releases a water molecule.26–28 However, the

electrostatic and density functional theory calculations suggest that the mechanistically
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complicated migration of the middle hydroxyl group can be avoided29 (Manuscript A). One

of the histidine residues in the active site of iGDH donates a proton to the leaving hydroxyl

group, which leads to the immediate formation of a water molecule. The release of water

is coupled to a proton transfer from one of the terminal hydroxyl groups of glycerol to

glutamate in the active site, which generates a C=O double bond of the future product.

Despite many structural similarities between the active sites of iGDH and its B12-dependent

counterpart,30,31 GDH, these enzymes seem to adopt totally different catalytic mechanisms

for the dehydration of glycerol.32–34 The key histidine residue, whose protonation state

seems to determine the reaction route taken by the enzyme, is doubly-protonated in iGDH

and singly-protonated in GDH. The unexpected catalytic mechanism of iGDH derived

from the calculations is one of the highlights of the present thesis.

4-hydroxyphenylacetate decarboxylase catalyzes the production of p-cresol from its

substrate.35,36 The electrostatic and hybrid quantum chemical/molecular mechanical

calculations performed on the full-enzyme model of 4Hpad reveal a catalytic mechanism

that involves an unusual activation mode of the substrate, which has not been described

for any of the known radical enzymes (Manuscripts B and C). Usually, the substrate

in radical enzymes is activated to a radical form by abstraction of a hydrogen atom by

transient radical species in the active site, such as the thiyl radical. The calculations

indicate, however, that the activation of 4-hydroxyphenylacetate is accomplished by two

simultaneous transfers from the substrate, first of an electron to the radical cysteine and

second of the phenolic proton to the active site glutamate. The substrate is therefore

activated by the netto abstraction of a hydrogen atom. The exceptional separation

of proton and electron during the substrate activation by 4Hpad as suggested by the

calculations is another highlight of this thesis.

Pyruvate formate-lyase was the first glycyl radical enzyme to be discovered and its

mechanism of action has been extensively studied since then.37,38 The calculations done

for the first time on the complete enzyme model attempt to answer the questions regarding

some of the unrevealed mechanistic aspects of the PFL-catalyzed reaction (Manuscript

D). One of the new findings is that the reaction proceeds through a stable protein-bound

tetrahedral intermediate formed by pyruvate and the radical cysteine in the active site.

Moreover, the calculations indicate that another active site cysteine is responsible for

quenching of the formyl radical. It is therefore quite likely that the release of formate
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precedes the binding of coenzyme A to the active site.

In summary, the present thesis discusses computational studies on the catalytic mech-

anisms of three glycyl radical enzymes. The B12-independent glycerol dehydratase and

4-hydroxyphenylacetate decarboxylase have been shown to perform catalysis via unusual

and previously unreported reaction mechanisms. The mechanism of pyruvate formate-lyase

has been updated with new information from the calculations on the full-enzyme model.

The performed calculations provide novel insights into the molecular basis of radical

enzymatic catalysis and prepare the ground for future experiments.



Computer simulations of enzyme catalysis 11

2 Computer simulations of enzyme catalysis

Enzymes are at the heart of most, if not all, life processes. Therefore, understanding

how they work is one of the most important goals of modern biochemistry.39 Enzymes

are complex molecular systems of a size frequently exceeding thousands of atoms and

their mechanism of action is often obscure and difficult to predict. Many experimental

techniques have been established for studying reactions catalyzed by enzymes. These

techniques include, for example, protein crystallography, NMR spectroscopy, site-directed

mutagenesis and isotopic labeling.40,41

In the last years, computer-assisted molecular modeling has become an important

complement to experimental studies on enzyme catalysis.9–12,39,42–49 Thanks to the growing

computing power and the development of new theoretical methods and software, molecular

modeling can now greatly contribute to our understanding of how enzymes work. The

methods of computational chemistry have matured to the point when they can offer

accuracy comparable to that of experiments. For example, the development of density

functional theory50 enables studying molecular systems of >100 atoms, such as enzyme

active sites. These systems are of a size that is usually prohibitive for standard ab inito

methods of quantum chemistry. Some aspects of enzymatic reactions are difficult to tackle

experimentally, for example the characterization of transition states and intermediates

on the reaction path. This applies especially to radical enzymes, since they catalyze

reactions involving transient, short-lived radical species. However, these species can be

computationally studied in the same way as the stable, long-lived ones. Calculations can

provide detailed insights into the catalytic mechanism, pinpoint catalytically important

interactions inside the enzyme active site and help explain the origins of catalytic activity.

The goal of computational modeling of an enzyme-catalyzed reaction is to understand

how the enzymatic machinery works at the molecular level. This involves identification of

all intermediates and transition states along the catalytic cycle and calculation of their

relative energies. The energy barrier for a particular reaction step can be calculated taking

the energy difference between the reactants and the transition state. Studying a catalytic

mechanism also means identifying which groups in the protein or cofactors are involved

in the reaction. Once they are known, the overall catalytic effect of an enzyme can be

decomposed into different contributions.
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Figure 1: Free energy profile for a hypothetical one-step reaction in solution and catalyzed by
an enzyme.

2.1 The principles of enzymatic catalysis

The concept of enzymatic catalysis is depicted on Fig. 1. During the reaction, the

substrate (S) is converted into the product (P), passing the transition state (TS‡). Without

the enzyme catalyst (black dashed line), the energy barrier for substrate conversion

is ∆G‡. Alternatively, the substrate first binds to the enzyme active site (red line),

forming an enzyme-substrate complex (E· · · S). The energy barrier is now reduced by

∆∆G‡ = ∆G‡ −∆G‡cat. The value of ∆∆G‡ corresponds to the catalytic efficiency of the

enzyme. Upon conversion, an enzyme-product complex is generated (E· · ·P). The product

can dissociate from the active site. The enzyme works by lowering the energy barrier

(∆G‡) but does not change the reaction energy (∆G0).

There are many factors that contribute to the catalytic efficiency of enzymes. The

initial ”lock and key” model proposed by Fisher assumed that binding of a substrate

to the enzyme activates the substrate to its reactive conformation.51 This hypothesis

was later replaced by the induced fit model (”ground state destabilization”). With the

introduction of transition state theory, it became obvious that enzymes provide a pre-

organized environment that can stabilize transition states.52,53 Electrostatic effects due to

the polar enzymatic surrounding are the major contributing factor to the stabilization of

the transition state in many enzymatic reactions.54,55 It is now accepted that enzymes can

also work by entropic guidance, near attack conformations, desolvation effects, low-barrier
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hydrogen bond, effects of protein dynamics, covalent catalysis or tunneling.56–60 Radical

enzymes work by stabilizing radical species that are by themselves catalytically active

(“negative catalysis”61). To perform the catalysis, many enzymes combine different types

of catalytic effects.

The rate constant of a chemical reaction, defined within the framework of transition

state theory (TST), takes the form:

k(T ) =
kBT

h
exp

(−∆G‡

RT

)
(1)

where k is the rate constant, T is the temperature, ∆G‡ is the free energy of activation

and kB, h and R are the Bolzmann, Planck and universal gas constants, respectively.

The rate constant defines in principle how quickly reactants change into products. Eq. 1

links the rate constant, which can be determined experimentally, with the free energy of

reaction obtained computationally. Given the Gibbs free energy of activation, expressed

by ∆G‡ = ∆H‡ − T∆S‡, the rate constant becomes:

k(T ) =
kBT

h
exp

(−∆S‡

R

)
exp

(−∆H‡

RT

)
(2)

As seen in Eq. 1, the rate constant depends exponentially on the free energy of activation.

For the enzyme models discussed in this thesis, the methods of density functional theory

were used throughout, in particular B3LYP. The B3LYP method provides the accuracy of

±3 kcal/mol in predictions of reaction energetics, which leads to error in the rate of two

orders of magnitude. On the other hand, this level of accuracy is fully sufficient for the

determination of reaction mechanisms and catalytic effects. For the enzymatic reactions

studied in this thesis, the calculated reaction energetics correspond only to the enthalpy

part of Eq. 2. Entropic effects were not included in the models.

2.2 Computational methods

Theoretical modeling of chemical reactions requires the use of quantum chemical methods

for proper description of bond-breaking and bond-forming processes. Classical methods,

based on the force fields such as Amber or CHARMM,62,63 can be used for studying the

protein structure and dynamics but they are not applicable to chemical reactions.
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Density functional theory

Density functional theory (DFT) of electronic structure has extended the application of

quantum chemistry from small molecules to interesting and challenging molecular systems

of biological relevance, in particular enzymes. Considering the trade-off between accuracy

and computational cost, DFT is currently the best approach for studying enzymatic

reactions. In ab inito quantum chemical methods, for example Hartree-Fock or MP2, an

electronic wavefunction is used as the basic variable that depends on 4N coordinates (3N

spatial and N spin) for an N -electron system. This function is used to calculate properties

of the system, such as geometry, energy and frequencies. In DFT, however, the electron

density function ρ(~r) is used that depends on only three spatial coordinates. Employing

electron density rather than wavefunction can considerably accelerate calculations due to

its much less coordinate dependence. The use of the electron density function is justified,

since there exist a unique relationship between ρ(~r) and the properties of the system,

as demonstrated by Hohenberg and Kohn.64 Electron density determines everything

about the system in its ground state. For modeling of reactions that involve excited state

chemistry, more sophisticated DFT methods are required, for example TD-DFT.65

DFT is based on the two Hohenberg-Kohn theorems, which state that 1) the ground

state electron density of a system uniquely determines the external potential and 2) the

density-dependent functional obeys the variational principle. The total energy of a system

can be expressed as a functional of the electron density:

Etot[ρ] = T [ρ] + Vee[ρ] + Vne[ρ] (3)

where ρ is electron density, T is the kinetic energy of the electrons, Vee is the electron-

electron repulsion and Vne is the nuclei-electron attraction. The first two terms are

independent of the nuclear positions and represent the density functional. However, in the

Hohenberg-Kohn formalism, the exact form of the density functional remains unknown.

This problem has been to some extent overcome by introducing the Kohn-Sham orbitals.

The most widely used functionals are the hybrid functionals, which incorporate parts of

the Hartree-Fock exchange, for example Becke’s three parameter functional66–68 (B3LYP).

These functionals depend on parameters (a, b and c) that are fitted to reproduce molecular

properties of interest. B3LYP can be expressed as follows:
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EB3LYP
XC = (1− a)ESlater

x + aEHF
x + bEB88

x + (1− c)EVWN
c + cELYP

c (4)

where ESlater
x is the Dirac-Slater exchange, EHF

x is the Hartree-Fock exchange, EB88
x is

the gradient correction to exchange, EVWN
c and ELYP

c are the correlation functionals of

Vosko, Wilkand, Nusair and Lee, Yang, Parr, respectively.

The B3LYP functional performs well for the prediction of molecular geometries and

energies of organic molecules and complexes, including the ones that carry a radical.7 These

two properties are crucial for the study of reaction mechanisms. The known deficiencies of

approximate functionals include self-interaction error, near-degeneracy error and problems

with description of dispersion interactions. Because of this, some interactions like for

example π-stacking between DNA bases cannot be treated with DFT.69 On the other

hand, hybrid functionals, such as B3LYP, exhibit better performance due to some error

cancellation.

Electrostatic calculations

Many protein residues, ligands and cofactors bind and release protons depending on the

current pH and interactions with neighboring sites. Examples of such residues include

aspartates, glutamates, histidines and others whose side-chains contain titratable sites.

The knowledge of the protonation behavior of these residues and ligands is key for the

modeling of enzymatic catalysis.13–15,54,70 Charged groups can be either directly involved

in the enzymatic reaction or influence the chemistry at the reacting region by longer-range

electrostatic interactions. The available experimental methods for studying the titration

of proteins, such as calorimetry, are unable to assign the protonation states to individual

titratable sites. Nuclear magnetic resonance spectroscopy can in principle detect the

positions of hydrogen atoms but it is limited to rather small proteins. However, the

protonation probabilities of individual sites in the protein can be calculated based on the

Poisson-Boltzmann electrostatic model (PBE) combined with a Monte Carlo sampling.14

The computational studies presented in this thesis highlight the crucial role of electrostatic

calculations in the elucidation of enzymatic mechanisms.15

There are several methods for the calculation of protein electrostatic potentials and

interaction energies.13,71 The most frequently used is the Poisson-Boltzmann method based

on the Poisson equation relating the spatial variation of the protein electrostatic potential
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to the charge density and dielectric constant. The system of interest is described starting

from the available crystal structure. A set of partial atomic charges, usually taken from the

force field, is used to calculate the charge distribution ρprotein(~r). Mobile ions outside the

protein are assumed to adopt a Boltzmann distribution. Different dielectric constants are

assigned to the protein (usually ε=4) and the outer medium (ε=80 for aqueous solution)

to account for the lower polarizability of protein environment. The electrostatic potential

φ(~r) can be calculated from the linearised Poisson-Boltzmann equation:

~∇
[
ε(~r)~∇φ(~r)

]
=

1

ε0

[
ρprotein(~r) +

I∑
i

(
ciz

2
i e

2

RT
φ(~r)

)]
(5)

where ci is the concentration of ions of type i, zi is the formal charge of an ion, e is

the elementary charge, R is the universal gas constant and T is the temperature. The

summation is performed for I different types of ions.72,73 Because of its complexity, the

Poisson-Boltzmann equation is usually solved by using numerical methods that map the

protein model onto a cubic lattice, for example the finite difference method.

For a protein with N titratable sites, there can be 2N different protonation states. On

top of the previously calculated electrostatic potential, the energy G(n) of state n in the

function of pH can be evaluated as:

G(n)(pH) =
N∑
i

(x
(n)
i − x(0)i )(pH− pK intr

i )

+
1

2

N∑
i

N∑
j

(x
(n)
i − x(0)i )(x

(n)
j − x(0)j )Wi,j (6)

where x
(n)
i and x

(0)
i are the state vectors representing the present and the reference

macroscopic protonation state, respectively, collecting the microscopic protonation states

of individual sites, pK intr
i is the intrinsic pK of site i and Wi,j is the interaction energy

between two sites. For most proteins, the calculation of all protonation states is not

possible because 2N can be a very large number. Instead, the protonation state energies

can be sampled by using the Metropolis Monte Carlo method.70,74
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2.3 Three approaches to the modeling of enzymatic catalysis

Theoretical modeling of an enzyme-catalyzed reaction mechanism can in general be

accomplished at one of the three levels of approximation, i.e. increasing complexity.

Small-molecule approach

The first option is to focus on a small-molecule model of isolated reactants in the gas-phase,

neglecting the remaining parts of the enzyme.42 Obviously, a gas-phase model cannot

account for the actual enzymatic mechanism, because it does not include the catalytic

effects that arise from the protein environment. These effects can be steric, electrostatic

and of different nature. However, calculations on small models allow to investigate the

intrinsic chemistry of the catalyzed reaction with accurate methods and at relatively

low computational cost. These calculations can serve as a reference for the studies on

larger and more realistic models. Because of the limited computing power in the past,

calculations on gas-phase models were the first available method for studying enzymatic

systems. Some of the radical enzymes have been investigated computationally by using

the small-molecule approach, for example pyruvate formate-lyase75,76 or the enzymes from

the B12-dependent family.8

Cluster model approach

To better reproduce the behavior of the actual enzymatic system, the model can be

extended by inclusion of additional, nonreactive parts of the active site. In the cluster

model approach,16–18,77,78 a model is constructed based on the crystal structure of the

enzyme by selecting a discreet number of atoms from the residues that make up the active

site. If only a structure of the substrate-free form of the enzyme is available, molecular

docking can be used to position the substrate in the active site.79 In addition to the

intrinsic chemistry of the catalyzed reaction, a cluster model also tries to capture the

effect of surrounding residues on the reacting region. Since a truncated enzyme model is

used, two procedures are employed to account for the missing outer parts of the enzyme.

To compensate for the lack of steric effects, selected atoms are kept constrained at their

crystallographic positions during the geometry optimizations. The selection of fixed atoms

often requires a large number of calculations with different sets of constraints until a
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model is found that can keep the integrity of the initial active site during the geometry

optimizations in vacuum. Errors that arise due to the coordinate-locking procedure, for

example an increased strain of the model, can be avoided by shifting the constrained atoms

further away from the reacting center. To simulate the electrostatic polarization effects

exerted by the protein surrounding on the cluster, dielectric cavity techniques can be used,

for example the polarizable-like continuum model80,81 (PCM). The missing outer parts of

the enzyme are mimicked by a homogeneous medium with a dielectric constant usually

set to ε=4. For large cluster models, the solvation effects usually saturate, i.e. with an

increasing size of the model the choice of the dielectric constant becomes less critical.82

The cluster model approach has been demonstrated very successful in studies on

different enzymes. Cluster models are easiest to setup for systems like metalloenzymes

where the chemistry at the active site is dominated by strong electrostatic interactions

due to the presence of the central metal ion. In such cases, further located parts of the

enzyme are quite unimportant for the catalyzed reaction and the use of a small cluster

model is usually sufficient for proper description of the enzymatic system.

Full-enzyme (QC/MM) approach

Although the performance of the cluster model approach is sufficient for the identification

of key features of the catalytic mechanism, it may sometimes be necessary to include

additional parts of the enzyme into the model. However, the use of a full-enzyme model

requires that the system is partitioned into two parts, the reacting one described quantum

chemically and the non-reacting one that can be handled at a simpler molecular mechanical

level. That is because the size of a complete enzyme model, which usually exceeds thousands

of atoms, would be prohibitive for pure quantum chemical treatment. Given the present

computer speed and the available theoretical methods, a model of ∼300 atoms is the

maximum that can be studied in a reasonable time using density functional theory. For

more sophisticated ab inito quantum chemical methods, the maximum available size of

the model is usually far less than 100 atoms. On the other hand, force fields such as

Amber or CHARMM have been well-parametrized for studying proteins.62,63 These force

fields are known to reproduce ground-state geometries of proteins more accurately than

semi-empirical methods of quantum chemistry.83

In the hybrid quantum chemical/molecular mechanical approach,19–22,84 a model of
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the enzyme is constructed, usually on top of the available crystal structure, by dividing

the system (S) into two parts. The inner part (I) consists of the reacting region and is

treated at a quantum chemical level. The outer part (O), which encompasses the rest of

the enzyme, is treated at a molecular mechanics level. The QC/MM concept was first

introduced in 1976 by Warshel and Levitt85 but the method has only become popular in

the last years. Fig. 2 shows the principle of the QC/MM method.

Due to the strong interactions between the inner (QC) and the outer (MM) regions,

the total energy of the system cannot be written as a simple sum of the energies of

the subsystems. To account for these interactions, coupling terms are introduced. Two

different energy partitioning schemes have been developed within the QC/MM framework,

namely the subtractive86 (ONIOM) and additive scheme. For the calculations described in

this thesis, the additive scheme was always used. The additive scheme takes the following

form:

Eadd
QC/MM(S) = EMM(O) + EQC(I + L) + EQC−MM(I,O) (7)

where Eadd
QC/MM (S) is the total energy of the system, EMM (O) is the energy of the outer

region treated at the MM-level, EQC(I + L) is the energy of the inner region including

link-atoms treated at the QC-level and EQC−MM(I, O) is the coupling term collecting

the interactions between the two regions. For a given reaction step, the difference in

electronic energy (∆Eadd
QC/MM(S)) between the intermediate and the transition state gives

the potential energy barrier.

The QC/MM method can in principle accommodate any combination of QC- and

MM-potentials. From a technical point of view, the applied QC-method must be able to

account for the external point charges that represent the outer region. The wavefunction

at the reacting region is solved in the presence of point charges. Usually, semi-empirical

or DFT methods are used as QC-potentials. The energy of the outer region is calculated

from the potential energy function of a force field, for example Amber or CHARMM.62,63

The energy of these force fields is calculated from the general equation:

EMM(O) = Ebond + Eangle + Edihedral + Etorsion + Eelec + EvdW (8)

The consecutive energy terms correspond to the extension of bonds, bending of angles,
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Figure 2: Conceptual drawing showing the principle of the QC/MM approach.

rotation of dihedral angles, electrostatic interactions and Van der Waals interactions,

respectively.

The key problem of the QC/MM method is the proper treatment of the boundary

between the inner and outer regions.21 If the boundary cuts through covalent bonds, the

valencies of these bonds must be saturated. This is usually done by introducing link-atoms

similar to hydrogen atoms that cap the QC-region at the boundary. Other approaches

include boundary atoms or frozen localized orbitals.87

The exploration of the potential energy surface (PES) of an enzyme model is the

central issue in the modeling of enzymatic reactions. Stable structures on the reaction

path, i.e. reactants and intermediates, are represented by minima on the PES, whereas

transition states are represented by saddle points. Finding the transition state geometry

is probably the most challenging aspect in studies on enzymatic reaction paths. A variety

of geometry optimization methods have been developed for this purpose.88,89 To be able

to properly characterize the transition state, it is required to calculate a matrix of second-

order derivatives of energy (Hessian). However, for large QC/MM models, obtaining

and manipulating this matrix becomes computationally too expensive and approximate

techniques for localizing transition states have to be used. One approach is the so-called

linear transit, where a relaxed PES scan is performed in steps along the assumed major

component of the reaction coordinate, for example a distance between two atoms. More

sophisticated methods involve generation of a chain of frames interpolated between two

energy minima that are bound with a special merit function and optimized together to

converge on the minimum energy path, for example the nudged elastic band method90,91

(NEB). The NEB method has been used in the present work to study the reaction paths

in 4Hpad and PFL.
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3 The chemistry of radical enzymes from anaerobic

bacteria

Radicals are highly reactive atoms, molecules or ions that have an open electron shell,

i.e. a single valence electron. This single electron seeks to pair with another electron,

which can be derived from the second radical or a σ- or π-bond. To date, many enzymes

have been identified that employ a radical-mediated catalytic mechanism.1–4,24,27,92,93 The

protein environment protects reactive radical species from quenching agents, dimerizations

and other side reactions and allows the radicals to persist.92 On the other hand, reactions

involving small ligands such as molecular oxygen are difficult to avoid, since these ligands

can easily penetrate the protein matrix. For example, glycyl radical enzymes lose their

activity due to the cleavage of the protein backbone at the glycyl radical site after

exposure to molecular oxygen. Therefore, radical enzymes are usually found in anaerobic

microorganisms where the risk of oxygen-induced side reactions is minimal. Whenever

possible, nature has evolved enzymes to catalyze biochemical transformations via simple

acid-base mechanisms. Since radical chemistry is more demanding in terms of generation,

storage and controlled decomposition of open-shell species, radical enzymes are used only

when there is no alternative.4

Radicals can be introduced into proteins either by homolysis of weak σ-bonds or

by electron transfer. There are two radical generators in proteins, namely the vitamin

B12 (adenosylcobalamin) and S-adenosylmethionine (SAM). Alternatively, the radical

can sometimes be introduced into the protein by one-electron transfer to coenzyme A or

thymidine, leading to the formation of a ketyl radical anion. In such cases, the energy

for generating the radical is usually provided by ATP or light. For some enzymes the

mechanism by which they obtain the radical is still uncertain, for example acyl-CoA

dehydrogenase and 4-hydroxybutyryl-CoA.

The concept of enzymatic radical catalysis is depicted on Fig. 3. Although the

conversion of a substrate is thermodynamically feasible, the reaction cannot proceed due

to the high energy barrier (A). The situation changes after a catalytic radical (R•), for

example the thiyl radical, has been introduced into the active site (B). The substrate is

now activated to a reactive radical form by abstraction of a hydrogen atom by the catalytic

radical. The energy barrier for the conversion of the substrate-derived radical intermediate
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Figure 3: A simplified potential energy diagram showing the principles of enzymatic radical
catalysis.94 (A) Reaction without a catalytic radical. (B) Reaction with a catalytic radical.
SH, substrate; PH, product; S‡, transition state; R•, catalytic radical; ∆G‡, energy barrier for
substrate conversion.

(S•) is significantly lower than that for the substrate. The conversion S•→P• gives a

product-related radical intermediate. In the last step, P• abstracts a hydrogen atom from

the enzyme, which gives the final product (P) and regenerates the initial catalytic radical.

In summary, a radical-mediated reaction mechanism usually involves three reaction steps,

namely the activation of a substrate by radical species in the active site, conversion of a

substrate-derived radical intermediate and deactivation of a product-related intermediate

into the final product.

In the following sections, three different classes of radical enzymes from anaerobic

bacteria are briefly outlined. Although the present thesis deals specifically with modeling

of catalysis by glycyl radical enzymes, there are structural and functional connections

between the members of all three classes. For example, SAM-dependent enzymes are

essential activators of glycyl radical enzymes. The knowledge of these connections is key

for understanding the chemistry of glycyl radical enzymes.
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3.1 Vitamin B12-dependent enzymes

Vitamin B12 (adenosylcobalamin) is a complex organometallic compound that assists

many enzymatic reactions. The octahedral structure of vitamin B12 shows a Co3+ ion

embedded in a corrin ring and two axial ligands interacting with the central ion (Fig. 4).

The binding of the cobalt ion is provided by four in-plane nitrogen atoms of corrin. The

first ligand is a 5’-deoxyadenosyl residue bound to the cobalt ion via a weak σ-bond. This

unusual metal-carbon bond has a dissociation energy of only ∼31 kcal/mol in solution

and ∼15 kcal/mol in protein environment. The nature of the Co−C bond in vitamin

B12 has been extensively studied8,95,96 but remains poorly understood. One of the key

questions still to be addressed is why the bond dissociation energy (BDE) of this bond is

significantly different between solution and protein environment. The second ligand can

be either 5,6-dimethylbenzimidazole (”base on”), which connects with the corrin ring D,

or the imidazole ring of histidine (”base off, his on”).

All reactions catalyzed by B12-dependent enzymes start from the homolytic cleavage

of the weak Co−C bond of the coenzyme. The cleavage gives Co+2 and 5’-deoxyadenosyl

radical (Ado-CH•2), which abstracts a hydrogen atom from the substrate, generating a

substrate-derived radical intermediate. This intermediate rearranges into a product-related

radical intermediate and abstracts a hydrogen atom back from 5’-deoxyadenosine, which

leads to the final product. The rearrangement usually involves an intramolecular 1→2

shift of the functional group, for example the middle hydroxyl group of glycerol as in

the reaction catalyzed by the B12-dependent glycerol dehydratase.32,33 Finally, Ado-CH•2

and the Co+2 ion can recombine to complete the catalytic cycle. The reactions catalyzed

by the B12-dependent enzymes have been extensively studied, both experimentally and

computationally.8

There are two groups of B12-dependent enzymes. One group comprises of ”base on”

irreversible eliminases, for example ethanolamine ammonia-lyase, class II ribonucleotide

reductase and glycerol dehydratase. Class II RNR is somewhat exceptional, since it uses

a cysteine residue in the active site to relay the radical between 5’-deoxyadenosine and

the substrate. In all other enzymes from this family, the 5’-deoxyadenosyl radical directly

attacks the substrate. Another interesting feature of class II RNR is that the nucleotide

reduction by this enzyme does not seem to be accompanied by a 1→2 rearrangement

reaction that is typical for other B12-dependent enzymes.
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Figure 4: Vitamin B12 analog as seen in the crystal structure of diol dehydratase (PDB code
1EEX30). The cobalt ion is depicted in pink color.

The second group is represented by ”base off, his on” reversible mutases catalyzing

rearrangements of the carbon skeleton and migrations of the amino group. Examples

of mutases include methylmalonyl CoA mutase and glutamate mutase. Interestingly,

all known eliminases have counterparts in the B12-independent enzyme family. These

counterparts are either SAM-dependent or glycyl radical enzymes, as in the case of glycerol

dehydratase. On the other hand, counterparts of mutases have not been reported and may

not exist at all.

A unique feature of the enzymes from the B12-dependent family is that the radical

disappears by reformation of the Co−C bond in the coenzyme. Other enzymes can only

carry a permanent radical. However, some of the B12-dependent enzymes become inactive

after a few thousands of turnovers. For example, diol dehydratase can survive only about

104 turnovers. The advantage of these enzymes is that they are much less sensitive to

molecular oxygen, unlike glycyl radical and [4Fe−4S] cluster/SAM-containing enzymes.

3.2 S-adenosylmethionine radical enzymes

The S-adenosylmethionine cofactor (SAM) undergoes transient cleavage to methionine

and 5’-deoxyadenosyl radical, which can further propagate the radical by abstracting
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Figure 5: Activation of SAM by addition of an extra electron, leading to methionine and
5’-deoxyadenosyl radical.

hydrogen atoms from substrate molecules or precursor proteins of glycyl radical enzymes.

Cleavage of the rather strong sulfur–adenosyl bond in SAM (BDE ∼60 kcal/mol) is only

possible if assisted by a low-potential one-electron donor, such as ferredoxin or flavodoxin.

These donors contain iron-sulfur clusters ([4Fe−4S]) that reduce SAM by supplying an

extra electron to the cofactor, as depicted on Fig. 5. After the cleavage of the S−C bond,

the resulting 5’-deoxyadenosyl radical can be irreversibly released or recycled after each

turnover to regenerate the cofactor.

More than 3000 potential SAM-dependent enzymes have been detected in genomes of

anaerobic and aerobic bacteria, fungi, plants and animals. However, only a few of these

enzymes have been studied in detail. These include the reversible lysine-2,3-aminomutase

(the first discovered SAM-dependent enzyme) and spore photoproduct-lyase97–99 (a DNA

repair enzyme) as well as irreversible biotin synthase, oxygen-independent coproporphyri-

nogen III oxidase and Mo-cofactor biosynthesis protein A (MoaA). The latter three enzymes

together with MoaC are involved in the synthesis of molybdopterin, which is a crucial

cofactor for many metalloenzymes. An important group of irreversible SAM-dependent

enzymes are the activases of glycyl radical enzymes.

3.3 Glycyl radical enzymes

As of this writing, six glycyl radical enzymes (GRE) of known function have been identi-

fied,24,100–102 namely pyruvate formate-lyase (PFL), anaerobic ribonucleotide reductase

(ARNR), benzylsuccinate synthase (BSS), B12-independent glycerol dehydratase (iGDH),

4-hydroxyphenylacetate decarboxylase (4Hpad) and choline trimethylamine-lyase (CTL).

These enzymes are able to perform chemically difficult transformations, such as cleavage

of C−C bonds (PFL, 4Hpad), cleavage of C−O bonds (iGDH, ARNR), addition to double

bonds (BSS) or cleavage of C−N bonds (CTL). Fig. 6 shows reactions catalyzed by these
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enzymes.

GREs carry a stable radical localized on the protein backbone in the vicinity of the

active site. Electron paramagnetic resonance experiments established that the radical

in activated GREs resides on a glycine residue.103,104 In a cell, GREs are synthesised as

catalytically inactive precursors and require post-translational activation to the reactive

radical form by dedicated enzymes from the S-adenosylmethionine family. These SAM-

dependent activating enzymes are specific to every GRE enzyme. The activation of a GRE

is performed by the 5’-deoxyadenosyl radical produced by the SAM-dependent enzyme.

This radical abstracts hydrogen from a conserved glycine residue inside the catalytic unit

of the glycyl radical enzyme, generating a stable glycyl radical.

It has been established that the exceptional stability of the glycyl radical results

primarily from the so-called captodative effect.7,105,106 In this effect, the unpaired electron

of glycine is delocalized between the adjacent groups of the protein backbone, namely the

amino group (electron donor) and the carbonyl group (electron acceptor). The captodative

effect derives from the summation of the resonance electron withdrawal by the carbonyl

group and the electron donation by the amino group. The glycyl radical is most stable

for the planar conformation of protein backbone.105,106 For steric reasons, the planar

conformation is easier to adopt for protein residues with small side-chains and ideally

without a side-chain. Therefore, the lack of a side-chain in glycine is another factor that is

believed to contribute to the increased stability of the glycyl radical. Interestingly, in the

available crystal structures of GREs, the key glycine is visible in a distorted, non-planar

conformation. Calculations performed on different models based on the crystal structure

of pyruvate formate-lyase indicate that the stability of this non-planar glycyl radical is

noticeably lower than that of the active site thiyl radical.107 It has been postulated that

GRE can tune the stability of the glycyl radical through conformational control at the

spin-carrying site.106

Molecular oxygen has been shown to irreversibly inactivate all GREs by attacking the

glycyl radical site, which eventually leads to the cleavage of the protein backbone. The

high sensitivity of GREs to molecular oxygen limits the distribution of these enzymes to

bacteria living in strictly anaerobic environments. Oxygen-induced inactivation of GREs

has been studied by means of DFT calculations.108 In the first step, addition of an oxygen

molecule to the glycyl radical gives a peroxyl radical (ROO•). The peroxyl radical abstracts



The chemistry of radical enzymes from anaerobic bacteria 27

Figure 6: Reactions catalyzed by glycyl radical enzymes of known function: pyruvate formate-
lyase (PFL), anaerobic ribonucleotide reductase (ARNR), benzylsuccinate synthase (BSS),
4-hydroxyphenylacetate decarboxylase (4Hpad), B12-independent glycerol dehydratase (iGDH)
and choline TMA-lyase (CTL).
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a hydrogen atom from the neighboring cysteine, generating a thiyl radical. Transfer of the

hydroxyl group between the glycine and the thiyl radical gives a glycyl-alkoxyl radical

(Gly-O•), which later attacks back the cysteine. The resulting sulfinyl radical (RSO•) can

be observed in EPR experiments. Fragmentation of the protein backbone is done through

the cleavage of the hydroxyglycine moiety or the glycyl-alkoxyl radical.

Glycine in GRE serves only as radical storage. After binding of the substrate to the

enzyme active site, the radical shifts from the glycine to the cysteine residue, generating a

thiyl radical, which in the next reaction step attacks the substrate. The corresponding

cysteine is always located in between the radical storage on glycine and the ligand in the

active site. All studied GREs possess one such cysteine with the exception of PFL that

uses two cysteines in the catalysis. The substrate is usually activated to a radical form

by abstraction of a hydrogen atom by the thiyl radical. However, pyruvate formate-lyase

and the recently studied 4-hydroxyphenylacetate decarboxylase are exceptional GREs

that use different mechanisms for activating their substrates. Namely, in PFL the thiyl

radical attacks pyruvate bound in the active site to generate a protein-bound tetrahedral

intermediate, which in an entry point to further transformations. In 4Hpad, electron and

proton are abstracted from the substrate separately by the thiyl radical and the active

site glutamate, respectively. Both activation modes are discussed in detail in Manuscripts

B and C.

Although only a few GRE have been characterized, genome-sequencing experiments

predict that many more of these enzymes are present in different anaerobic bacteria. Some

of these novel enzymes have been detected but the catalyzed reactions remain unknown.

For example, the misannotated PFL2 enzyme shows the active site similar to that of

iGDH.109,110 It is likely that this enzyme is involved in the dehydration of polyols. In the

following, the glycyl radical enzymes of known function are briefly reviewed.

Benzylsuccinate synthase

BSS111,112 is involved in the anaerobic metabolism of toluene in denitrifying bacteria, such

as Thauera aromatica. The enzyme catalyzes the addition of the methyl carbon of toluene

to fumarate, which gives benzylsuccinate. BSS is a complex enzyme composed of three

units, each in two copies (α2β2γ2). Unit α contains a sequence motif that is characteristic

for the glycyl radical site. The crystal structure of BSS has not been solved so far. On the
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basis of biochemical and spectroscopic data, a catalytic mechanism has been proposed for

BSS that was later examined by means of DFT calculations on small-molecule models.113

In the first reaction step, which is common for all GREs, the radical is transferred from

the glycyl radical storage to the cysteine in the active site, generating a thiyl radical. Next,

the thiyl radical abstracts a hydrogen atom from the methyl group of toluene, which gives

a benzyl radical. This radical stereospecifically attacks the double bond of the second

substrate, fumarate, which leads to the formation of the 2-benzylsuccinate-3-yl radical.

Finally, the hydrogen atom is re-added from the cysteine, generating (R)-benzylsuccinate

as the final product. The elucidation of the crystal structure of BSS will provide additional

structural information and help verify the proposed catalytic mechanism.

4-Hydroxyphenylacetate decarboxylase

4Hpad catalyzes the production of p-cresol from its substrate35,36 . Decarboxylations are

key reactions in many biological systems.114 The phenolic product of 4Hpad is a virulence

factor that is used by clostridia against competitive organisms in the human intestine.

Although the 4Hpad activity has long been known in several bacteria,115 for example C.

difficile and C. scatologenes, the crystal structure of the enzyme was solved only recently116

(see Manuscript B). The crystal structure shows a (βγ)4 tetramer of heterodimers. Each

heterodimer is composed of a larger catalytic β-subunit and a smaller [4Fe−4S] cluster-

containing γ-subunit. Among GRE, only 4Hpad and BSS have been reported to contain

additional subunits. The exact role of these smaller subunits is unknown but they have

been shown to be important for enzyme activation.117 The larger subunit harbors a

characteristic glycyl radical site. The initially proposed mechanism of catalysis by 4Hpad

assumed that the catalytic cycle starts from the abstraction of the phenolic hydrogen

atom of 4-hydroxyphenylacetate by the thiyl radical. However, in the crystal structure

it can be seen that the substrate binds to the enzyme with its carboxyl group close to

the thiyl radical, while the hydroxyl group is hydrogen-bound to the glutamate at the

opposite end of the active site. A new Kolbe-type118 catalytic mechanism has been put

forward that is now supported by QC/MM calculations119 (see Manuscript C). In this

mechanism, 4-hydroxyphenylacetate is activated to a radical form by two simultaneous

transfers, first of an electron from the substrate to the Cys503 thiyl radical and second

of a proton from the substrate’s hydroxyl group to Glu637. The decarboxylation is done
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by cleavage of the C−C bond in the substrate’s acetate moiety, generating free carbon

dioxide and a product-related radical intermediate. The release of CO2 is coupled to the

proton back-transfer from Glu637 to the ligand. Finally, Glu505 protonates Cys503, which

in turn quenches the radical intermediate by hydrogen atom transfer, yielding p-cresol as

the final product. The calculated mechanism is in line with experiments suggesting that

both Cys503 and Glu637 are crucial for the catalysis by 4Hpad.

B12-independent glycerol dehydratase

iGDH from clostridia, for example C. glycolicum and C. butyricum, catalyzes the fer-

mentative conversion of glycerol into 3-hydroxypropionaldehyde.25 This reaction enables

anaerobic bacteria to grow on glycerol as the main nutrient.120 Moreover, microbial con-

version of glycerol has recently become interesting for biofuel industry.5,6, 121 The crystal

structure of the iGDH enzyme shows two monomers in an asymmetric unit.26 Glycerol

binding in the active site of iGDH is provided by an extensive network of hydrogen bonds.

The other enzyme known for converting glycerol is the B12-dependent glycerol dehydratase.

Interestingly, the specific activity of iGDH is considerably grater than that of its B12-

dependent counterpart, GDH, which is probably related to the inactivation of the former

after a limited number of turnovers.26,31 The catalytic mechanism of GDH is believed

to involve a 1→2 transfer of the middle hydroxyl group of glycerol to yield an unstable

geminal diol. The same mechanism was initially put forward for the B12-independent

enzyme. However, recent electrostatic and DFT calculations29 (see Manuscript A) reveal

that the mechanism of catalysis by iGDH most likely does not involve the complicated

1→2 migration step, as previously suggested. Instead, iGDH employs an interesting proton

donating/accepting system that consists of His164 and Glu435. This system facilitates

direct release of a water molecule from the substrate, without intermediacy of geminal

diol species. In the light of these calculations, the catalytic mechanisms of iGDH is rather

similar to the one of another glycyl radical enzyme, namely class III RNR, which also

performs the cleavage of a C−O bond at some point of its catalytic cycle.

Ribonucleotide reductase

RNR catalyzes the reduction of ribonucleotide triphosphates to deoxyribonucleotides.23,122,123

This reaction provides building blocks for the synthesis of DNA. The RNR activity is
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therefore present in all living organisms. The chemically complicated replacement of

the ribose 2’-hydroxyl group by a hydrogen atom is made possible through the use of a

radical-mediated mechanism. Three classes of RNR have been identified based on their

primary structure, reactivity with molecular oxygen and the way the enzyme obtains

the radical. Class I uses the tyrosyl radical and is present in aerobic bacteria and eu-

karyotes. The tyrosyl radical is generated by self-processing that involves a non-heme

[Fe3+−O−Fe3+] metal site and molecular oxygen. Class II from Thermatoga maritima

is a vitamin B12-dependent enzyme that functions independently of oxygen. Class III

(ARNR) was first observed in E. coli growing under strictly anaerobic conditions. The

use of formate as the reducing substrate links ribonucleotide reduction by ARNR to the

anaerobic metabolism of pyruvate, which is controlled by another glycyl radical enzyme,

PFL. ARNR is a two-enzyme complex of a quaternary (α2β2) structure. The larger unit α

performs the catalysis. The smaller unit β is equivalent to a SAM-dependent activating

enzyme, since it harbors a redox-active [4Fe−4S] center, S-adenosylmethionine and reduced

flavodoxin that generate a stable glycyl radical in the larger unit. The catalytic mechanism

of ARNR has been a subject of extensive computational studies.7,124,125 In the first step

of the generally accepted reaction mechanism, a thiyl radical abstracts hydrogen at the

3’-position of the ribonucleotide ring. The hydroxyl group at the 2’-position splits off

from ribonucleotide. Next, formate donates a proton to the leaving 2’-hydroxyl group

to yield a water molecule and subsequently accepts another proton from the 3’-hydroxyl

group, generating a 3’-carbonyl group. The active site cysteine completes the reaction by

hydrogen atom transfer to the 2’-position of ribonucleotide. An alternative mechanism

has been proposed for ARNR that includes two formates participating in the reaction.125

Given the recent calculations on iGDH, the catalytic role of formate in ARNR seems to

be reminiscent to that of His164/Glu435 in iGDH.

Pyruvate formate-lyase

PFL catalyzes the reaction of pyruvate and coenzyme A (CoA) to generate formate and

acetyl-CoA, which is a key component of the anaerobic carbon metabolism in many

prokaryotes. PFL was the first enzyme for which a radical was detected during the cataly-

sis.37,103 This radical was later assigned to the Gly734 residue.104 The crystal structure of

PFL from E. coli shows a dimer of two identical units.38,126 The PFL-catalyzed reaction
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has been examined by means of experimental and theoretical methods.75,76,107,127,128 An

interesting feature of PFL is that the enzyme employs two active site cysteines that can

relay the radical. Other GRE enzymes use only one cysteine. The currently accepted

catalytic mechanism starts from the radical transfer between the glycyl radical storage

and one of the cysteines. The radical is further propagated to the second cysteine, which

attacks the carbonyl moiety of pyruvate, forming a protein-bound radical intermediate

(see Manuscript D). The subsequent cleavage of the C−C bond in the intermediate yields

a free formyl radical. To complete the reaction, the first cysteine donates a hydrogen

atom to the formyl radical, generating formate. Since there is no structural information

available on binding of CoA to the active site of PFL, less is known about the second

stage of the reaction. Most likely, once formate has left the active site, a molecule of CoA

binds in the vicinity of the acylated cysteine. Transacylation between these two results in

acetyl-CoA and regenerates the thiyl radical. Unlike for ARNR, iGDH and 4Hpad, the

catalytic machinery of PFL is rather simple, since it does not involve residues in the active

site other than the two radical cysteines.

Choline trimethylamine-lyase

CTL from the anaerobic bacterium Desulfovibrio desulfuricans is a novel glycyl radical

enzyme catalyzing the production of trimethylamine (TMA).101,102 Choline is an important

compound for functioning of cell membranes, methyl transfer reactions and neurotrans-

mission. On the other hand, TMA can be used by the bacterium as a source of carbon.

The CTL-catalyzed reaction involves cleavage of the C−N bond in choline. This type of

reaction has not been described for any of the known GREs. Initially, the conversion of

choline was postulated to be catalyzed by a hypothetical B12-dependent enzyme, since

the breakdown of a cognate compound, ethanolamine, is catalyzed by the B12-dependent

ethanolamine ammonia-lyase. However, the EPR experiments as well as the analysis of

the bacterial genome clearly indicate the involvement of a glycyl radical enzyme in this

reaction.101
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4 Synopsis of published and submitted manuscripts

Glycyl radical enzymes have evolved to perform a variety of chemically difficult trans-

formations. The focus of this work was on the computational investigation of enzymes

catalyzing the cleavage of C−O and C−C bonds. Because of the evident structural and

functional similarities between the enzymes from the glycyl radical family, one of the

important issues of the present work was to study whether the catalytic mechanisms of

these enzymes share some common features. For example, the crystal structures of the

B12-independent glycerol dehydratase and 4-hydroxyphenylacetate decarboxylase show

the presence of aspartic and glutamic acid residues in the active site. These residues have

been computationally shown to be crucial for the catalysis by both enzymes, acting as

proton donors and acceptors.

Manuscript A covers a computational study (electrostatic and cluster model DFT

calculations) on the catalytic mechanism of the B12-independent glycerol dehydratase.

Manuscript B discusses a crystallographic study, with some support from electrostatic

calculations, on the structure of 4-hydroxyphenylacetate decarboxylase. Manuscript C

extends this discussion by presenting a combined electrostatic and QC/MM study on the

full-enzyme model. In manuscript D, QC/MM calculations are discussed that provide

updates to the previously studied mechanism of pyruvate formate-lyase.

4.1 Cleavage of the C−O bond in glycerol

The growing biofuel industry is interested in methods for biochemical degradation of glyc-

erol. This has motivated a study (Manuscript A) on the mechanism of the B12-independent

glycerol dehydratase (iGDH), a novel glycyl radical enzyme catalyzing the dehydration of

glycerol. The other enzyme capable of converting glycerol is the B12-dependent glycerol

dehydratase (GDH). Both enzymes employ radical-mediated mechanisms. For radical

storage and activation of the substrate, however, GDH uses the adenosylcobalamin cofactor

and iGDH uses a glycyl/thiyl radical diad. Although GDH and iGDH belong to different

enzyme families, their active sites are somewhat similar. For example, Glu435, Asp447 and

His164 in iGDH are equivalent to Glu170, Asp335 and His143 in GDH. The key structural

difference between the two active sites is that the additional histidine in iGDH, His281, is

replaced by a potassium ion in GDH.
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Enzymes from the B12-dependent family are believed to adopt a common catalytic

mechanism that involves an intramolecular 1→2 shift of the functional group of the

substrate, for example the middle hydroxyl group of glycerol as in the reaction catalyzed

by GDH. It has been established that two effects facilitate the GDH-catalyzed reaction by

lowering the energy barrier for the critical 1→2 shift. These effects are the so-called 1)

partial protonation of the migrating hydroxyl group by acidic species in the active site, such

as histidine, and 2) partial deprotonation of one the terminal groups of glycerol by basic

species, such as aspartate or glutamate. However, the migrating/spectator hydroxyl groups

never get fully protonated/deprotonated during the 1→2 shift because the deprotonation

of neutral histidine would be energetically too unfavorable. The hydroxyl group migration

proceeds through a cyclic transition state and gives an unstable 1,2-diol intermediate,

which readily collapses into the corresponding aldehyde and water.

To explore the catalytic mechanism of iGDH, the protonation states of titratable

residues in the protein were in the first step studied by electrostatic and Monte Carlo

calculations on the crystal structure of the substrate-bound form of the enzyme. The

calculations indicate that in the lowest energy state at pH=7, both Glu435 and Asp447

are deprotonated and His164 is doubly protonated. The positive charge on His164 is

counterbalanced by the negative charges on Glu435 and Asp447. A network of hydrogen

bonds inside the active site provides contacts between these residues, the ligand and

the rest of the enzyme. The DFT calculations performed on the cluster model of the

enzyme show that the dehydration of glycerol by iGDH does not require a complicated

intramolecular shift of the middle hydroxyl group, as previously suggested by analogy to

the B12-dependent enzyme. Instead, the iGDH-catalyzed reaction seems to involve three

elementary steps: 1) activation of glycerol to a radical form by Cys433, 2) dehydration of

the substrate-derived radical intermediate, 3) deactivation of the product-related radical

intermediate by Cys433. During the second step, a water molecule is released directly from

glycerol by full protonation of the leaving hydroxyl group by His164. The dehydration

is coupled to a proton transfer from the C1 hydroxyl group of glycerol to Glu435, which

generates a C=O double bond of the future aldehyde product. The energetics of all three

reaction steps were calculated to be very feasible, i.e. the energy barriers were found to

be very low. The barrier for the direct release of water does not exceed 6 kcal/mol. The

calculations also suggest the possibility of an alternative reaction mechanism, in which
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first His164 and Asp447 exchange a proton and second Asp447 donates the proton to the

leaving hydroxyl group of glycerol.

On the basis of the performed calculations, isotope labeling experiments are proposed

that could support the theoretical mechanism. The most interesting finding is that the

B12-dependent and -independent enzymes adopt fundamentally different mechanisms for

the dehydration of glycerol, which is mostly due to a different protonation state of a

single histidine in the active site. Moreover, the calculations are able to pinpoint the

origins of catalytic efficiency of iGDH. These are: 1) the Cys433 radical that activates the

substrate to a reactive radical form, 2) the proton donating/accepting system of His164

(Asp447) and Glu435 that facilitates the release of water from the activated substrate, 3)

the hydrogen bond network made up by Asn156, Ser232 and His281 that stabilizes the

transition state for the dehydration.

4.2 Cleavage of the C−C bond in 4-hydroxyphenylacetate

Decarboxylation processes are of high significance in biological systems. 4-hydroxyphenyl-

acetate decarboxylase (4Hpad) is a glycyl radical enzyme involved in the fermentative

metabolism of tyrosine in clostridia. The enzyme catalyzes the production of p-cresol

from its substrate. The previously postulated decarboxylation mechanism assumed that

the reaction starts from the hydrogen atom transfer between the hydroxyl group of the

substrate and the radical cysteine Cys503. However, the recently solved crystal structure

of the substrate-bound form of 4Hpad shows an unexpected binding mode of 4-hydroxy-

phenylacetate in the active site (Manuscript B). Namely, the substrate binds to the

enzyme with its carboxyl group close to the radical cysteine Cys503, while the substrate’s

hydroxyl group is hydrogen-bound to Glu637 at the opposite end of the active site. This

finding suggests that the enzyme performs the decarboxylation of 4-hydroxyphenylacetate

via a Kolbe-type mechanism. On the other hand, the analysis of the crystal structure

alone is insufficient for the determination of the exact enzymatic mechanism. Therefore,

electrostatic and quantum chemical/molecular mechanical calculations were used to study

the 4Hpad-catalyzed reaction in detail (Manuscript C).

The electrostic calculations indicate that the carboxyl group of the bound substrate is

deprotonated and the substrate’s hydroxyl group is protonated. The negative charge on the

carboxyl group is stabilized by a network of hydrogen bonds from the protonated Glu505,
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the protein backbone and Ser344. Based on the QC/MM calculations, the activation of

the substrate was found to follow a nonstandard reaction scheme, in which the radical

cysteine Cys503 abstracts an electron from the substrate and the active site glutamate

Glu637 abstracts a proton from the substrate’s hydroxyl group. The activation is hence

accomplished by the netto abstraction of a hydrogen atom from the substrate and requires

that two active site residues are simultaneously involved in this processes. In the next

step, the activated substrate readily decarboxylates. The remaining steps of the reaction

involve rotation of the Cys503 side-chain, a proton transfer from Glu505 to Cys503 and a

hydrogen atom transfer from Cys503 to the product-related intermediate. All reaction

steps were found to be energetically very feasible. The highest energy barrier of about

7 kcal/mol was calculated for the decarboxylation step.

4.3 Cleavage of the C−C bond in pyruvate

Pyruvate formate-lyase catalyzes the conversion of pyruvate and coenzyme A (CoA) into

formate and acetyl-CoA, which is a key reaction in the carbon metabolism of various

anaerobic bacteria. The reaction catalyzed by PFL has been computationally studied before

but only using small-molecule or cluster models of the active site. To better understand the

role of protein environment in the catalyzed reaction, not accounted for by the previously

used computational methods, I have performed quantum chemical/molecular mechanical

calculations on the full-enzyme model (Manuscript D). In general, the present QC/MM

calculations support the mechanism derived from the earlier computational studies but

introduce some novelties.

The crucial step in the catalysis by PFL is a thiyl attack of the active site cysteine

Cys418 on the carbonyl moiety of pyruvate. This step leads to the formation of a protein-

bound intermediate. However, the exact nature of this intermediate remained elusive. The

study on small-molecule models using deprotonated pyruvate suggests that the thiyl attack

of Cys418 on pyruvate’s carbonyl moiety and release of the formyl radical are coupled.

The studies involving pyruvate in a protonated form or stabilized by two active site

arginines, Arg176 and Arg435, show the occurrence of an unstable oxy-radical tetrahedral

intermediate of pyruvate bound to Cys418. On the other hand, the present QC/MM

calculations indicate that first the energy barrier for the formation of the tetrahedral

intermediate is as low as 5 kcal/mol (twice lower than for the earlier models) and second
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the intermediate is a relatively stable species on the potential energy surface.

The other new observation is that the collapse of the tetrahedral intermediate induces

a conformational change of the Cys419 side-chain in the active site. With the extension

of the C−C bond of pyruvate, the Cys419 side-chain rotates towards the leaving formyl

radical. After the collapse of the tetrahedral intermediate, Cys419 is perfectly positioned

for the hydrogen atom abstraction by the formyl radical. Thus, Cys419 rather than CoA

is responsible for quenching of the formyl radical. Moreover, this may suggest that the

release of formate precedes binding of the CoA molecule to the active site.

4.4 List of published and submitted manuscripts

A. Mikolaj Feliks, G. Matthias Ullmann “Glycerol Dehydratation by the B12-

independent Enzyme May Not Involve the Migration of a Hydroxyl

Group – A Computational Study” J. Phys. Chem. B 116, 7076–7087 (2012)

The project was initiated by myself. All electrostatic and quantum chemical (DFT)

calculations for modeling of the enzymatic reaction path described in the paper were

designed and performed by myself. The results from the calculations were analyzed

and interpreted by myself with support from Matthias Ullmann. The manuscript

was written by myself and corrected to the final version by Matthias Ullmann.

B. Berta M. Martins, Martin Blaser, Mikolaj Feliks, G. Matthias Ullmann, Wolfgang

Buckel, Thorsten Selmer “Structural Basis for a Kolbe-Type Decarboxy-

lation Catalyzed by a Glycyl Radical Enzyme” J. Am. Chem. Soc. 133,

14666–14674 (2011)

The experimental part of the paper involving the elucidation of the protein crystal

structure was done by Berta Martins and Martin Blaser. The electrostatic calcula-

tions and the analysis of protonation states of titratable residues were performed

on top of the crystal structure by myself with support from Matthias Ullmann.

These calculations were used to formulate the putative catalytic mechanism for the

enzyme. The manuscript was written by Berta Martins. All authors were involved

in discussions and also contributed to the final version of the manuscript.
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C. Mikolaj Feliks, Berta M. Martins, G. Matthias Ullmann “Catalytic Mechanism of

the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from

Continuum Electrostatic and QC/MM Calculations” J. Am. Chem. Soc.

135, 14574–14585 (2013)

All electrostatic and quantum chemical/molecular mechanical (DFT) calculations

discussed in the paper were performed by myself. The calculations were designed by

myself and Matthias Ullmann. The software for studying the enzymatic mechanism

was written by myself using the Python programming language and the framework

of the pDynamo library by Martin Field. The results from the calculations (reaction

paths, catalytic effects) were analyzed by myself together with Matthias Ullmann.

The manuscript was written by myself. Matthias Ullmann and Berta Martins

contributed to discussions and helped prepare the final version of the manuscript.

D. Mikolaj Feliks, G. Matthias Ullmann “New Insights into the Catalytic Mech-

anism of Pyruvate Formate-Lyase from QC/MM Calculations”

(Manuscript to be submitted)

The project was initiated by myself. All QC(DFT)/MM calculations described

in the paper were carried out by myself. The calculations were peformed with

custom Python scripts written using the pDynamo software library. The results were

analyzed by myself together with Matthias Ullmann. The manuscript was written

by myself and modified by Matthias Ullmann.
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Abstract

Continuum electrostatic and density functional calculations have been combined to

explore the catalytic mechanism of the B12-independent glycerol dehydratase. In sharp

contrast to the previously suggested mechanism, the calculations indicate that the release

of water from glycerol is accomplished without the intermediacy of a geminal diol species.

Instead, the enzyme employs two active site residues, histidine and glutamate, as a proton

donating/accepting system. The glutamate accepts a proton from the terminal hydroxyl

group of glycerol, whereas the histidine donates a proton to the leaving middle hydroxyl

group of glycerol, forming a water molecule. The calculations also show a key role of the

active site residues in stabilization of the transition state of the water release step.
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Abstract

In the present study, we report on the high-resolution crystal structure of 4-hydroxy-

phenylacetate decarboxylase, a novel glycyl radical enzyme proposed to catalyze the last

step of tyrosine fermentation in clostridia. The structure shows an unexpected binding

mode of 4-hydroxyphenylacetate to the enzyme active site. In this mode, the carboxyl

group of the substrate is in close contact to the thiyl radical and the phenolic group is

hydrogen-bound to the glutamate on the opposite end of the active site. A Kolbe-type

decarboxylation mechanism is suggested for the formation of the p-cresol product. This

mechanism is supported by our continuum electrostatic calculations.
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Abstract

The catalytic mechanism of 4-hydroxyphenylacetate decarboxylase has been studied

based on continuum electrostatic and QC/MM calculations. The calculations suggest an

unconventional activating mode of 4-hydroxyphenylacetate. The substrate is activated to a

radical form by two simultaneous transfers, first of an electron and second of a proton. The

electron is transferred from the substrate to the thiyl radical and the proton is abstracted

from the phenolic group of the substrate by the active site glutamate. The activation

generates a radical anion intermediate. The release of CO2 from the intermediate is coupled

to a proton back-transfer from the glutamate to the phenolic group. The mechanism based

on the calculations corroborates previous experiments showing that the hydroxyl group in

the p-position of the substrate is crucial for the catalysis.
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Abstract

We have revisited, by performing quantum chemical/molecular mechanical calculations

on the full-enzyme model, the first part of the enzymatic reaction catalyzed by the glycyl

radical enzyme puruvate formate-lyase. Based on our model, we propose several modi-

fications to the previously studied mechanism, which now agrees well with experimental

data. First, we present an energy profile which can better explain the reversibilty of the

PFL-catalyzed reaction. Second, the calculations suggest that the thiyl attack on pyru-

vate results in the formation of the protein-bound tetrahedral radical intermediate. The

occurance of this intermediate on the reaction path was often questioned in the previous

studies on PFL. In our study, the barrier for the formation step was calculated to be as

low as 5 kcal/mol. Moreover, the intermediate appears to be quite stable thanks to the

stabilizing interactions from the enzyme. Third, the barrier for the release of the formyl

radical was found to be 9 kcal/mol. Fourth, from the calculated reaction path, we provide

evidence that not CoA but rather Cys419 is responsible for the quenching of the formyl

radical. That is, the function of Cys419 is not limited to the hydrogen atom relay between

Gly734 and Cys418, as thought before.

Keywords: glycyl radical enzyme, enzymatic reaction mechanism, quantum chemical

calculation, continuum electrostatics, proton transfer
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Introduction

Radical enzymes are interesting because of their ability to catalyze transformations

of generally unreactive compounds.1–4 There exist many enzymes that employ a radical-

based reaction mechanism but only a few glycyl radical enzymes (GRE) have been iden-

tified to date.5–8 The first glycyl radical enzyme to be discovered was pyruvate formate-

lyase9 (PFL), which catalyzes the reversible conversion of pyruvate and CoA into formate

and acetyl-CoA. This essential reaction is part of the anaerobic glucose metabolism in var-

ious bacteria. Like the other enzymes from the glycyl radical family, PFL is activated to a

reactive radical form by a dedicated S -adenosylmethionine-dependent activating enzyme.

During the activation, the radical is introduced into PFL by the homolytic cleavage of the

C–H bond at Gly734. Upon binding of pyruvate, the radical moves from Gly734 to Cys419

in the active site, where it can initiate substrate reactions. This activation mechanism is

thought to be a common step in the catalysis by all members of the GRE family. However,

the consecutive reaction steps may be very different depending on the particular enzyme

as, for example, shown in the recent mechanistic studies on the B12-independent glycerol

dehydratase10–12 (iGDH) and 4-hydroxyphenylacetate decarboxylase13 (4-Hpad) as well

as the earlier studies on benzylsuccinate synthase14 (BSS) and anaerobic ribonucleotide

reductase15 (ARNR).

Since the discovery of PFL in 1985, the enzyme has been extensively studied, both

experimentally and computationally.15–18 Although the catalytic mechanism of PFL is

now believed to be well understood, questions remain concerning some of the mechanistic

details of the catalyzed reaction. For example, it is not clear which of CoA or Cys419 is

responsible for quenching of the formyl radical, i.e. whether the binding of CoA to the

active site preceeds the release of formate. Revisiting the mechanism of PFL in the light

of the recent studies on iGDH and 4-Hpad may in general provide better understanding

of chemistry involved in the catalysis by glycyl radical enzymes.

The currently discussed catalytic mechanism of PFL, which was originally proposed
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by Knappe and co-workers,19 involves four reaction steps. After the substrate binding,

the radical is transferred from Cys419 to Cys418. The presence of two cysteine residues

in the active site of PFL that actively participate in the catalysis is unique compared

to the other members of the GRE family. In the next step, the thiyl radical on Cys418

attacks the carbonyl carbon atom of pyruvate, which leads to the formation of a S–C bond.

The so-generated enzyme-bound radical intermediate is unstable and collapses into the

acylated Cys418 and a formyl radical. The formyl radical abstracts a hydrogen atom

from Cys419, which gives formate and regenerates the radical on Cys419. Alternatively,

the formyl radical may abstract a hydrogen atom from CoA that binds in the active site

during the second stage of the reaction. The reaction is completed by the transfer of the

acetate moiety from Cys418 to CoA.

The PFL-catalyzed reaction has been computationally studied three times before. In

their work on PFL, Himo and co-workers calculated the mechanism for a simple gas-phase

model of the active site.16 The X-ray structure of the enzyme was not available at the

time of their study. They used a model of protonated pyruvate. The rationale for using

neutral pyruvate was that charge separation in the protein environment is usually very

small. Following similar methodology, Lucas and co-workers recalculated the mechanism

of PFL using a deprotonated model of pyruvate.17 They found that the reaction steps

involving the attack of the Cys418 thiyl radical on pyruvate and the release of the formyl

radical anion are concerted.

Clearly, studying isolated reactants in vacuum is the simplest approach to the modeling

of enzymatic catalysis. Although this method can provide some insights into the intrinsic

chemistry of the reaction, it cannot account for the precise catalytic mechanism, because

the protein environment is not included in the model. The lack of protein surrounding

allows reactants to move freely during the reaction, which is not possible inside the enzyme

active site. In their second study on PFL,18 Himo and co-workers employed the so-

called cluster model approach20–22 to better represent the actual conditions of protein
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interior. The cluster models consisted of up to 75 atoms and were based on the crystal

structure of PFL by Becker and co-workers.23 To compensate for the missing parts of

the enzyme, selected atoms were kept fixed at their X-ray positions during the geometry

optimizations. However, the cluster models used by Himo still suffered from too much

flexibility. Because of this, the exothermic energies of some of the reaction steps were

found to be overestimated, i.e. they were not in line with experimental data. Although

the cluster model approach works reasonably well for the identification of key features

of the mechanism, it cannot provide full insight into long-range interactions between the

active site and the rest of the enzyme. Do these interactions influence the chemistry at the

active site? If so, to what extent can they modify the mechanism derived from the cluster

model calculations? To address these questions and to overcome the limitations of the

previously used methods, one has to go beyond small molecule models of the enzymatic

system. Therefore, we have employed hybrid quantum chemical/molecular mechanical

(QC/MM) calculations24–26 to study the mechanism of PFL for the first time in a full-

protein model. The QC/MM (ONIOM) method was previously used by Condic-Jurkic

and co-workers to study some aspects of the PFL-catalyzed reaction but they still used

only small gas-phase models of the active site.27,28

The key problem in modeling of enzymatic reactions is the treatment of titratable

residues.29 These residues can adopt different protonation states depending on the pH,

interactions with local environment etc. The presence of charged groups close to the active

site, even if they do not participate directly in the catalysis, may have a considerable

influence on the reaction mechanism.30 Therefore, prior to the QC/MM exploration of

the reaction path, we performed Poisson-Boltzmann electrostatic calculations combined

with a Monte Carlo titration to study the protonation behavior of titratable residues in

PFL.

We explored the catalytic mechanism of PFL by systematic build-up of the reaction

path from potential energy surface scans and geometry optimizations. Reaction profiles
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connecting the optimized minima of intermediates were studied by the nudged elastic

band method (NEB).31,32 Transition states were taken as points of the highest energy on

the NEB-calculated reaction profiles. Based on our calculations, we are able to present a

mechanism that is in general consistent with the previously studied ones but introduces

several corrections and novel observations.

Methods

Preparation of the full-enzyme model. The crystal structure of the pyruvate-

bound form of PFL by Becker and co-workers23 (PDB code 1H16) was used to build the

complete enzyme model. At the resolution of 1.53 Å, this is the most accurate structure of

PFL availabe to date. In addition to puruvate, the crystal structure shows a molecule of

CoA bound at the protein surface. The binding mode of CoA allows to study only the first

stage of the PFL-catalyzed reaction (see Fig. 1). The initial model of the reactant state

was prepared in CHARMM.33,34 D-treitol, tetraethylene glycol, sodium and magnesium

ions as well as CoA were removed from the model. The CHARMM27 force field35 was

used to describe the protein and the waters. The MM-parameters for pyruvate were taken

from the force field based on analogy to similar structures.

Setup of the continuum electrostatic model. The protonation states of all

titratable residues were set to their standard values at pH 7. CHARMM program was used

to add missing hydrogens atoms and to optimize their positions. Crystallographic water

molecules were removed from the model. A Poisson-Boltzmann continuum electrostatic

model combined with a Monte Carlo titration was used to calculate the protonation

probabilities of titratable residues in the protein. The electrostatic calculations were

carried out in MEAD36 with the following parameters. Dielectric constants of εp = 4

and εs = 80 were assigned to the interior of the protein and to the solvent, respectively.

The ionic strength of solvent was set to I = 100 mM and the temperature was set to

T = 300 K. An ion exclusion layer of 2.0 Å and a solvent probe radius of 1.4 Å were
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used to define the volume of the protein. The electrostatic potential was calculated using

four grids of 1213 nodes with focussing steps at resolutions from 2.0 Å to 0.25 Å. The

protonation probabilities of titratable residues were calculated as a function of pH using

the program GMCT.37 The pH was varied from 0 to 14 in steps of 0.2 pH-units. For every

pH-step, the MC calculation consisted of 100 equilibration scans and 3000 production

scans at T = 300 K.

Setup of the QC/MM model. Starting from the crystal structure, missing hydro-

gen atoms were added to the protein according to the previous electrostatic calculations.

Their positions were subsequently geometry optimized in CHARMM. Since the available

X-ray structure is of the inactive enzyme, the radical was introduced into the model by

deleting the Hγ hydrogen atom of Cys419. The MM-charge of the removed hydrogen was

added to that of the remaining Sγ atom. Crystallographic water molecules were preserved

in the QC/MM model. The full-enzyme model consisted of 15712 atoms (759 residues,

1267 water molecules, one pyruvate ligand).

The QC/MM calculations were carried out within the framework of the pDynamo

software library.38 ORCA program39 was employed to handle the quantum chemical part

of calculations. In-house Python scripts were used to setup and control the calculations

and to analyze the results. The B3LYP40–43 density functional theory method was used as

a QC-potential and the CHARMM27 force field was used as a MM-potential. The B3LYP

method has been demonstrated reliable for studying radical enzymes.15 Geometry opti-

mizations were performed with a medium-sized 6-31G(d) basis set. A conjugate gradients

energy minimization algorithm was employed for all geometry optimizations with the

convergance criterion of the root mean square gradient of energy <0.01 kcal/mol Å. Fi-

nal energies and atomic properties (Mulliken spin densities) were obtained by performing

single-point energy evaluations with the 6-311++G(2d,2p) basis set on top of the geome-

tries optimized with the smaller basis set. Unless explicitly stated, the energies discussed

in the paper correspond to the calculations with the larger basis set. All QC/MM calcula-
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tions, including the geometry optimizations, were performed with electronic embedding.

The calculations were carried out for a QC/MM model with 60 QC-atoms (64 with

link-atoms included). The other atoms were treated at the MM-level. The QC-region is

made up by the pyruvate ligand, the side-chains of Cys418, Cys419, Arg176 and Arg435,

the protein backbone link between the cysteines and two water molecules Wat2859 and

Wat3252 (see Fig. 2). Thus, the total charge of the QC-region is +1 and the multiplicity

is 2.

No extra water molecules were added to the system except the ones present in the

crystal structure. The outer parts of the QC/MM model were kept restrained during the

geometry optimizations. All QC-atoms were allowed to move freely as well as the MM-

atoms within the radius of 8 Å from every QC-atom. At the distance of 8–16 Å from every

QC-atom, harmonic positional restraints with an increasing force constant were applied to

the MM-atoms. Outside the radius of 16 Å, all atoms were restrained with the maximum

force constant of 12 kcal/mol.

Exploration of the reaction path. The reaction path was gradually constructed

starting from the optimized geometry of the crystal structure (the substrate state). Poten-

tial energy surface (PES) scans followed by geometry optimizations were performed to find

the geometries of intermediates and transition states. The QC/MM model was in the first

step preoptimized using only the force field. All subsequent geometry optimizations were

performed using the QC/MM-potential. A PES scan was done by extending or shortening,

usually in steps of ±0.1 Å, a selected distance between two atoms that best approximates

the actual reaction coordinate for the particular reaction step. For example, the attack

of the Cys418 radical on pyruvate was simulated by shortening the Sγ,Cys418· · ·C2pyr dis-

tance. At each point of the scan, a restrained geometry optimization was performed.

The geometries of energy minima resulting from the scans were reoptimized and used as

starting points for consecutive scans. This procedure was repeated until the product state

was found. Since the reaction coordinate chosen for a PES only approximates the actual
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one, the reaction paths connecting the minima were recalculated using a variant of the

nudged elastic band method (NEB),31,32 as implemented in the pDynamo library. In this

method a chain of so-called frames is generated between two geometries of the previously

calculated minima. The frames kept separated by a special merit function and optimized

simultaneously to the minimum energy path (MEP). Usually a set of thirteen frames was

used to represent the MEP. The same convergance criterion was used for the NEB calcu-

lations as for the geometry optimizations. The highest energy points on the NEB-derived

reaction paths were taken as transition state geometries. In the last step, the reaction

profiles were refined by performing single-point energy evaluations with the larger basis

set on top of the NEB-calculated geometries. The key benefit of using the NEB method

for searching transition states is that it only uses the first derivatives of energy, unlike the

other methods that also require the second derivatives. For a large enzymatic system the

calculation of second derivatives would be computationally too expensive.

Results and Discussions

The crystal structure of the substrate-bound form of PFL shows pyruvate in close

contact with one of the two active site cysteines, namely Cys418. This cysteine is perfectly

positioned for the attack of the thiyl radical on the carbonyl carbon atom of pyruvate (C2;

see Fig. 2 for atom names). The distance from the Sγ atom of Cys418 to the C2 atom of

pyruvate is only 2.6 Å. The second cysteine, Cys419, is located further from the substrate

and it was suggested to act as a hydrogen atom relay between Gly734 and Cys418. We

started the exploration of the reaction path from the point when the radical is localized on

Cys419. Although the primary radical storage in PFL is Gly734, our QC/MM calculations

on the present crystal structure indicate that the radical is far more stable on Cys419 than

on Gly734. This issue will be discussed in the last section of the paper.

Pyruvate in the active site of PFL is hydrogen-bound to two arginine residues, Arg176

and Arg435. The electrostatic calculations predict a typical protonation behavior for the
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arginines, i.e. they are both positively charged. The arginines form hydrogen bonds to the

carboxylic group of pyruvate, thus stabilizing the negative charge of the substrate. The

shortest of these bonds is 1.7 Å (crystal structure with CHARMM-optimized hydrogens).

The active sites of enzymes similar to PFL, namely iGDH and 4-Hpad, show negatively

charged aspartic or glutamic acid residues in a direct vicinity of the substrate that have

recently been shown to be crucial for the catalysis by these enzymes, since they act as

proton acceptors/donors.12,13 Interestingly, there are no such residues in the reacting

region of PFL. The closest to the active site is Asp661, which is involved in the stabilizing

interactions with Arg176.

Substrate state. Depending on the orientation of the Cys418 side-chain, we found

two possible substrate states for the radical localized on Cys419 (see Fig. 3). In the first

substrate state (Sub), the Hγ hydrogen atom of Cys418 points towards the carboxylic

group of pyruvate. The optimized geometry of Sub shows the atoms Hγ,Cys418 and O1Pyr

at the distance of 2.2,Å from each other. The Hγ hydrogen is rotated by 180◦ in the

second substrate state (Sub’), where it points towards the indole ring of Trp333. Both

substrate states are geometrically very similar and differ mainly in the position of the Hγ

atom. The second substrate state was calculated to be 6.9 kcal/mol more stable than the

first one. However, the barrier for the radical transfer Cys419→Cys418 is significantly

lower when the transfer starts from Sub (7.6 kcal/mol) than from Sub’ (13.3 kcal/mol).

The two substrate states are separated by a barrier of 2.9 kcal/mol, which corresponds

to the rotational transition state Sub→Sub’ between the states. The radical in Sub/Sub’

is located primarily on the Sγ atom of Cys419. The Mulliken atomic spin density was

calculated to be 0.82 for this atom (see Fig. 3). Thiyl radicals are known to be highly

localized.44 Some traces of the radical are also visible on the Sγ atom of Cys418 (0.08).

Radical transfer Cys419→Cys418. During the first of the studied reaction steps,

the Hγ hydrogen of Cys418 is transferred from Cys418 to Cys419 (see Fig. 3). The

transfer of hydrogen will move the radical from Cys419 to Cys418. Interestingly, PFL is

10
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the only glycyl radical known to date, in which two active site cysteines participate in

the catalysis; the other enzymes from this family possess only one cysteine. To model

the abstraction of hydrogen by Cys419, a PES scan was performed by shortening the

Hγ,Cys418 · · ·Sγ,Cys419 distance in steps of 0.1 Å. The reaction path was in the next step

recalculated with the NEB method. Two scans and NEB calculations were performed

starting from the geometries of Sub and Sub’. Regardless of the used starting point, the

distance for the hydrogen atom to overcome to bind at Cys419 is nearly the same (3.2 Å

and 3.4 Å for Sub and Sub’, respectively). The transition state TS1/TS1’ estimated by

the NEB method shows the Hγ,Cys418 atom at the distance of around 1.9 kcal/mol from

the Sγ,Cys419 atom. The spin density in the transition state is shared by two sulfur atoms,

namely Sγ,Cys418 (0.75) and Sγ,Cys419 (0.20). For TS1, the calculated activation energy is

7.6 kcal/mol (see Fig. 5 for the energy profile). However, the transfer of hydrogen starting

from Sub’ requires 13.3 kcal/mol, which is the highest barrier calculated in the forward

direction of the catalyzed reaction. Once TS1/TS1’ is passed, the energy decreases by

about 10 kcal/mol and the system arrives at the first intermediate (In1). Both transition

states are energetically equivalent compared to the energy of In1. The transition states

also do not display noticeable differences in geometry.

Attack of the Cys418 thiyl radical on pyruvate. The optimized geometry of

In1 shows the radical localized on the sulfur atom of Cys418. The distance between the

Sγ atom of Cys418 and the C2 atom of pyruvate is slightly shorter in In1 (2.9 Å) than in

Sub or Sub’ (3.2 and 3.0 Å, respectively). To simulate the attack of Cys418 on pyruvate,

a PES scan was performed by further shortening the Sγ,Cys418 · · ·C2Pyr distance by -

0.1 Å in each step. The reaction path was subsequently refined using the NEB method.

The barrier for the addition of the thiyl radical to pyruvate was calculated to be as

low as 5.0 kcal/mol. The obtained barrier is considerably lower than the one calculated

before, which was 12.3 kcal/mol and 11.8 kcal/mol for the gas-phase model of neutral16 and

anionic pyruvate,17 respectively, and 12.9 kcal/mol for the more recent cluster model.18

11
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Interestingly, the energetics of this reaction step were found to be quite insensitive on the

used level of theory, i.e. nearly the same barriers were obtained using the smaller and

the larger basis set (see Fig. 6 for details). As a result of thiyl addition to pyruvate, a

complex protein-bound tetrahedral radical intermediate is formed (In2). In the previous

computational studies on PFL, the occurance of this intermediate on the reaction path

was often questioned, because its energy was calculated to be similar to that of TS2, that

is, the intermediate was localized in a very shallow energy minimum on the PES. However,

for the present QC/MM model, In2 is around 2.7 kcal/mol lower in energy than TS2. The

stability of In2 with respect to In1 has also improved; the tetrahedral intermediate is now

only 2.3 kcal/mol less stable than the starting intermediate In1. In the study by Lucas

on the isolated gas-phase model with anionic pyruvate,17 the S–C bond formation and

the C–C bond cleavage were found to be coupled in one reaction step. In our full-enzyme

model we observe that the C1Pyr—C2Pyr bond has been only extended from 1.6 Å (In1)

to 1.8 Å (In2). In the tetrahedral intermediate, the SCys418—C2Pyr bond length is 1.9 Å.

From the analysis of the Mulliken spin density it is visible that the radical is now shared

between the sulfur atom of Cys418 (0.25), the carbonyl oxygen of pyruvate (0.32) and the

carboxylic group of pyruvate (0.41; see Fig. 4 for the values on particular atoms). Given

the relatively short length of the C1Pyr—C2Pyr bond in In2 and the calculated delocalized

spin distribution, it is clear that the full C–C bond cleavage in pyruvate has not taken

place yet. Another interesting aspect of the formation of the tetrahedral intermediate is

that the C2Pyr—O2Pyr bond length does not change significantly. This bond is 1.2 Å long

in In1 and 1.3 Å long after the tetrahedral intermediate has been formed, i.e. it remains

as a C=O double bond.

The usual entry point to the catalysis by radical enzymes is the abstraction of a

hydrogen atom from the substrate. To perform the abstraction, glycyl radical enzymes

employ a transient radical cysteine in the active site. Following the activation to a radical

form, the substrate enters a series of complex transformations that are not feasible under

12
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normal conditions. In the case of PFL, however, Cys418 attacks the carbonyl group

of pyruvate, forming a radical intermediate covalently bound to the protein. Another

example of a glycyl radical enzyme that performs unusual activation of its substrate is

the recently studied 4-hydroxyphenylacetate decarboxylase.13

Collapse of the tetrahedral radical intermediate. After the addition of the

Cys418 thiyl radical to pyruvate, the reaction can proceed to the next stage, which is the

cleavage of the C–C bond in pyruvate that gives the formyl radical and acylated Cys418.

To model the collapse of the tetrahedral intermediate, a PES was first performed along

the C1Pyr—C2Pyr bond; the distance between the two atoms was gradually extended

by 0.1 kcal/mol. The scan was followed by the NEB calculation. Mechanistically, this

reaction step was found to involve several simultaneous events. First, the distance between

the atoms C1Pyr and C2Pyr extends from 1.8 Å (In2) to 2.9 Å (In3). Second, the SCys418—

C2Pyr bond is shortened from 1.9 Å to 1.8 Å. Third, the side-chain of Cys419 that pointed

towards Cys418 rotates in the direction of the newly formed formyl radical. From the

NEB-calculated reaction path it can be seen that the Hγ atom of Cys419 follows the

moving carboxylic moiety of pyruvate. The distance between the atoms Hγ,Cys418 and

C1Pyr is shortened from 3.8 Å (In2) to 3.0 Å (In3). That is, after the splitting of pyruvate,

the formyl radical is perfectly positioned for the hydrogen abstraction from Cys419 (see

In3 on Fig. 4). This observation suggests that not CoA but rather Cys419 is responsible

for quenching of the formyl radical. In the small-molecule studies on the mechanism of

PFL, such movement of the Cys419 side-chain was not visible.

Unlike for the In1→In2 addition step, the energetics of the C–C bond cleavage were

found to be considerably dependent on the applied level of theory. Namely, the barrier

calculated for the smaller basis set (5.7 kcal/mol) is twice as high as the one obtained using

the larger basis set (2.6 kcal/mol; see Fig. 6 for detailed energy profiles). The resulting

cleaved intermediate (In3) is virtually isoenergetic with the preceeding transition state

(TS3), i.e. In3 lies in a very shallow energy minimum on the PES. Namely, the energy
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difference between TS3 and In3 does not exceed 0.5 kcal/mol. Taking the small energy

difference between TS3 and In3, the similarity between the two geometries is consistent

with the Hammond’s postulate.45

With the extension of the C1Pyr—C2Pyr bond, the radical shifts from the enzyme-

bound part towards the leaving carboxylic moiety of pyruvate. Since the transition state

TS3 is geometrically and energetically very close to the intermediate In3, the spin distri-

butions of the two are nearly the same. The radical in TS3/In3 is localized entirely on

the newly created formyl moiety and is shared between the atoms C1Pyr (0.70), O12Pyr

(0.14) and O11Pyr (0.16; see In2→In3 on Fig. 4). The acetyl-Cys418 moiety is free of the

radical.

Quenching of the formyl radical. In the last reaction step of the first part of the

PFL-catalyzed reaction, the formyl radical has only to abstract a hydrogen atom from

the enzyme. The nearest accessible hydrogen atom is Hγ,Cys419, as mentioned before.

The abstraction of hydrogen from Cys419 was in the first step modeled with a PES

scan by shortening the C2Pyr · · ·Hγ,Cys419 distance by 0.1 Å in each step and subsequently

refined by using the NEB method. For the last reaction step, the calculated barrier is

10.0 kcal/mol (or 8.8 kcal/mol if only the smaller basis set is used). The relatively high

barrier obtained for our QC/MM model in comparison to the previous isolated models can

be related to the rather long distance of 3.0 Å that the hydrogen atom has to overcome to

transfer between Cys419 and the formyl radical. Moreover, pyruvate inside the active site

of PFL is involved in a network of hydrogen bonds with Arg176 and Arg435. These bonds

have to be streched during the radical transfer formyl→Cys418, as visible from the NEB-

calculated reaction path. Stretching of the hydrogen bond network requires some energy

and increases the activation energy for the last reaction step. After the abstraction of

hydrogen is complete, the radical is localized back on Cys419. The Mulliken spin density

was calculated to be 0.97 for the Sγ,Cys419 atom. Geometrically, the difference between

In3 and Pro is only the new position of the hydrogen atom from Cys419. The first part

14
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of the PFL catalytic reaction ends with acylated Cys418, free formate and the Cys419

thiyl radical. On the basis of our observations for the QC/MM model, we propose that

the reaction continues with the release of formate from the active site, binding of CoA

and abstraction of hydrogen from CoA by the Cys419 thiyl radical.

Conclusions

In the present work, we have investigated the first part of the PFL catalytic cycle by

performing QC/MM calculations on the full-enzyme model. The use of a complete enzyme

eliminates some of the problems of small-molecule models, since the protein environment

is taken into account during the calculations. For example, the orientation of reactants

throughout the catalytic cycle is more realistic because of the spatial restraints imposed

by the enzyme.

There are two highlights of this work. First, our calculations indicate that the tetra-

hedral radical intermediate that results from the thiyl attack of Cys418 on pyruvate is

a relatively stable species. The barrier required for the formation of this intermediate

was calculated to be as low as 5 kcal/mol, which translates into a twice lower barrier in

comparison to the previously studied small-molecule models. Second, we propose that

quenching of the formyl radical is performed by Cys419 and a molecule of CoA binds

to the active site only after the release of formate. The calculated reaction path shows

that the cleavage of the C–C bond in pyruvate is coupled to the movement of the Cys419

side-chain towards the leaving formyl radical. After the cleavage, Cys419 is perfectly

positioned for the formyl→Cys419 radical transfer.
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Figure 1: The PFL-catalyzed reaction cycle. The first part of the cycle studied in this
paper is depicted in black and red color. The second part not included in this study
is shown in grey color. The first part involves four elementary steps. In the first step,
a hydrogen atom is transferred from Cys418 to Cys419. In the second step, Cys418
attacks the carbonyl carbon atom of pyruvate, which leads to the formation of a radical
tetrahedral intermediate. Next, the intermediate collapses into the formyl radical and
acylated Cys418. In the last step, the formyl radical abstracts a hydrogen atom from
Cys419, which gives formate and regenerates the radical at Cys419.

19



Manuscript D 71

Figure 2: QC-part of the QC/MM model used in the calculations (optimized geometry of
In1). The rest of the protein was omitted for clarity. The QC-part encompasses pyruvate,
Cys418 and Cys419, the protein backbone link between the cysteines, the side-chains of
Arg176 and Arg435 and two water molecules Wat2859 and Wat3252 (64 QC-atoms atoms
in total including link-atoms). Dashed lines depict hydrogen bonds. Atoms discussed in
the text are labeled. The label L indicates atoms replaced by hydrogen-type link-atoms
during the QC/MM calculations.
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Figure 3: QC/MM-optimized geometries of intermediates and transition states for the
radical transfer Cys419→Cys418. Since there are two possible substrate states, the ener-
gies (in kcal/mol) are given with respect to the first intermediate (In1; radical localized
on Cys418). The transition states were taken from the NEB-derived reaction profiles as
the highest energy points. Numbers at the arrows indicate changes of the energy on the
reaction path. Relevant inter- and intramolecular distances (in Å) are depicted in italics.
The Mulliken atomic spin densities (for clarity, only the ones of the absolute value ≥0.1)
are depicted in bold. The 3D spin denisity is shown in magenta color at the isovalue of
0.01 a.u. The model was visualized in VMD.46
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Figure 4: QC/MM-optimized geometries of intermediates and transition states for the
formation of the S–C bond between pyruvate and Cys418 (In1→In2), cleavage of the C–C
bond of pyruvate (In2→In3) and formation of formate and regeneration of the radical on
Cys419 (In3→Pro). See description under Fig. 3 for details.
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Figure 5: Reaction paths for individual reaction steps calculated using the NEB method.
For all paths, 13 NEB frames were used. Blue and red lines represent energy profiles
calculated with the smaller 6-31G(d) and the larger 6-311++G(2d,2p) basis set, respec-
tively. Green dashed lines represent changes (in Å) of important distances on the reaction
path. ξ is the normalized reaction coordinate (ξ = 0 for substrate state; ξ = 1 for product
state).
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Figure 6: Energy profiles of the PFL-catalyzed reaction for the QC/MM model used
in this study. Solid lines are the profiles calculated for the geometries optimized with
the smaller 6-31G(d) basis set. Dashed lines are the profiles calculated by performing
single-point energy evaluations with the larger 6-311++G(2d,2p) basis set on top of the
geometries optimized with the smaller basis set. The profiles are relative to the energy
of the first intermediate (In1). Sub/Sub’ and In1 are the radical localized on Cys419 and
Cys418, respectively. In2 is the tetrahedral pyruvate-enzyme radical intermediate. In3 is
the intermediate that have collapsed into the formyl radical and Cys418-acylated enzyme.
Pro is formate, Cys418-acylated enzyme and the radical localized back on Cys419.
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Python scripts for running QC/MM calculations

The QC/MM calculations for modeling of the reaction mechanisms of 4Hpad and PFL

have been carried out by custom Python scripts written within the framework of the

pDynamo library (1.7.2) by Martin Field.129 pDynamo is an open source program for

the simulation of molecular systems using quantum chemical, molecular mechanical and

hybrid quantum chemical/molecular mechanical methods. In this section, the functionality

of the most important scripts is briefly outlined.

The script setup.py is used to build a QC/MM model based on the topology (PSF)

and coordinate (CRD) files generated by CHARMM. Necessary functions and objects

are loaded from pDynamo modules in lines 1-5. The parameter files as well as the PSF

and CRD files are loaded in lines 9-11. In the next step, the system object called mol

is constructed (lines 13-15). The following lines contain a tuple defining the QC-region

of the QC model by specifying the chain ID, residue name, residue number and a list of

atoms that are to be included into the QC-region. Link atoms are not specified since they

are generated automatically by pDynamo. The tuple is translated into a list called qc

containing the indices of QC-atoms (lines 27-36). Based on this list, positional restraints

are calculated that are applied to MM-atoms outside the distance of 8 Å from every

QC-atom. The restrains increase linearly to the distance of 16 Å, outside of which the

maximum value is applied, in this case 50 kJ/mol. The calculation of restraints is done

in lines 38-54. In lines 56-61, two dictionaries are generated containing the indices of

restrained and fully moveable atoms. These dictionaries are stored on disk as PKL files

for further use by the other scripts. For visualization purposes, XYZ files are generated as

well as plain text files containing the atomic indices. In lines 76-77, a PDB file is written

containing the geometry of the model. The column with beta factors is substituted by the

calculated restraints (lines 79-88). The restraints are scaled to the range of < 0; 1 >. The

so-modified PDB file can be used for visual inspection of the restrained atoms. Finally,

the system object is stored on disk as a compressed PKL file (lines 90-91).

setup.py

1 from pBabel import CHARMMParameterFiles_ToParameters ,

CHARMMPSFFile_ToSystem , CHARMMCRDFile_ToCoordinates3 ,

PDBFile_FromSystem , XYZFile_FromSystem

2 from pCore import Selection , Pickle , GzipPickle , logFile
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3 from pMoleculeScripts import PruneByAtom

4 from tempfile import mktemp

5 from os import uname

7 logFile.Header ("Starting job on %s..." % uname ()[1])

9 ptab = ("../ toppar/par_all27_prot_na.inp", )

10 psf = "../ charmm/monomer.psf"

11 crd = "../ charmm/monomer.crd"

13 mol = CHARMMPSFFile_ToSystem (psf , isXPLOR = True ,

14 parameters = CHARMMParameterFiles_ToParameters (ptab))

15 mol.coordinates3 = CHARMMCRDFile_ToCoordinates3 (crd)

17 actsite = (

18 ("PRTA", "GLY", "502", "C", "O"),

19 ("PRTA", "CYS", "503", "N", "H", "CA", "HA", "CB", "HB1", "HB2", "SG",

"HG1", "C", "O"),

20 ("PRTA", "LEU", "504", "N", "H", "CA", "HA", "C", "O"),

21 ("LIGA", "4HP", "001", "C7", "H71", "H72", "C8", "O1", "O2", "C1",

"C6", "H6", "C5", "H5", "C4", "O4", "HO4", "C2", "H2", "C3", "H3",

"HO2"),

22 ("PRTA", "SER", "344", "CB", "HB1", "HB2", "OG", "HG1"),

23 ("PRTA", "HIS", "536", "CB", "HB1", "HB2", "CD2", "HD2", "CG", "NE2",

"HE2", "ND1", "HD1", "CE1", "HE1"),

24 ("PRTA", "GLU", "637", "CG", "HG1", "HG2", "CD", "OE1", "OE2"),

25 ("PRTA", "GLU", "505", "CG", "HG1", "HG2", "CD", "OE1", "OE2", "HE2"), )

27 qc = []

28 for res in actsite:

29 seg , rname , rnum = res [:3]

30 atoms = res [3:]

31 for a in atoms:

32 pat = "%s:%s.%s:%s" % (seg , rname , rnum , a)

33 try:

34 qc.append (mol.sequence.AtomIndex (pat))

35 except:

36 logFile.Text ("WARNING: atom %s not found\n" % pat)

38 Cmax = 50.

39 da , db = 8., 16.

40 Restr = []

41 for i in range (0, mol.sequence.NumberOfAtoms ()):

42 c = 0.

43 if not i in qc:

44 d = 10000.

45 for j in qc:

46 cd = mol.coordinates3.Distance (i, j)

47 if cd < d:

48 d = cd

49 if d > da:

50 if d < db:
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51 c = Cmax / (db - da) * (d - da)

52 else:

53 c = Cmax

54 Restr.append (c)

56 co, fl = {}, {}

57 for i, r in enumerate (Restr):

58 if r > 0.:

59 co[i] = r

60 else:

61 fl[i] = r

63 for (tup , pkl , lst , xyz , label) in (

64 (co, "co.pkl", "co", "co.xyz", "Restrained atoms"),

65 (fl, "fl.pkl", "fl", "fl.xyz", "Flexible atoms"),

66 (qc, "qc.pkl", "qc", "qc.xyz", "QC -region"),

67 ):

68 Pickle (pkl , tup)

69 o = open (lst , "w")

70 o.write (" ".join (map (str , tup)))

71 o.close ()

73 sel = PruneByAtom (mol , Selection (tup))

74 XYZFile_FromSystem (xyz , sel , label = label)

76 tf = mktemp ()

77 PDBFile_FromSystem (tf , mol)

79 fo = open ("see_restr.pdb", "w")

80 i = 0

81 for p in open (tf).readlines ():

82 if p[:6] in ("ATOM ", "HETATM"):

83 c = Restr[i] / Cmax

84 i += 1

85 fo.write ("%s%4.2f%s" % (p[:56], c, p[60:]))

86 else:

87 fo.write (p)

88 fo.close ()

90 GzipPickle ("mol.pklz", mol)

91 logFile.Footer ()

The script qcmmopt.py is used for geometry optimizations using the QC/MM poten-

tial. The preamble of the script contains imports of pDynamo and Python functions and

objects. In line 12, a geometry convergence criterion is defined, which is the root mean

square of energy lower than 0.04 kJ/mol. Next, the model is loaded from the compressed

PKL file and a summary table is printed out (lines 17-18). In lines 20-21, the initial geome-

try of the model is read from the file after.xyz. For the reactant state, the initial geometry
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comes from the preoptimization using only the MM-potential. The preoptimization script

is similar to the qcmmopt.py script but does not contain the setup of the QC-potential

and uses the NBModelABFS model instead of the NBModelORCA model for handling of

the non-bonding interactions. For other intermediates on the reaction path, the initial

geometry is taken as the final geometry generated by the previous QC/MM-optimization.

In lines 25-31, a container with restraints is created and attached to the system object.

Lines 33-43 initialize the scratch space for the QC-calculation. The actual setup of the

QC-potential is done in lines 45-55. An ORCA object is created and attached to the system

object. Next, a trajectory object is initialized for storing the intermediate geometries

as PKL files. The geometry optimization is done in lines 61-65 by calling the conjugate

gradients function in a loop. In the case of a convergence failure, the optimization is

automatically restarted. Finally, the QC/MM-optimized geometry is written to disk as an

XYZ file (line 67).

qcmmopt.py

1 from pBabel import XYZFile_FromSystem ,

XYZFile_ToCoordinates3 , SystemGeometryTrajectory

2 from pCore import Unpickle , GzipUnpickle , logFile , Selection

3 from pMolecule import SoftConstraintContainer ,

SoftConstraintEnergyModelHarmonic , SoftConstraintTether ,

NBModelORCA , QCModelORCA , ElectronicState

4 from pMoleculeScripts import ConjugateGradientMinimize_SystemGeometry

6 from sys import argv

7 from os import makedirs , uname , getpid

8 from os.path import basename

9 from time import strftime

10 from getpass import getuser

12 TolCrit = 0.04

13 SrcDir = ".."

15 logFile.Header ("Job started on %s..." % uname ()[1])

17 mol = GzipUnpickle ("%s/mol.pklz" % SrcDir)

18 mol.Summary ()

20 qc = Unpickle ("%s/qc.pkl" % SrcDir)

21 mol.coordinates3 = XYZFile_ToCoordinates3 ("%s/after.xyz" % SrcDir)

23 ref = XYZFile_ToCoordinates3 ("%s/before.xyz" % SrcDir)

25 co = Unpickle ("%s/co.pkl" % SrcDir)

26 SCC = SoftConstraintContainer ()
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27 for a in co.keys ():

28 c = co[a]

29 cm = SoftConstraintEnergyModelHarmonic (0., c)

30 SCC["%s" % a] = SoftConstraintTether (a, ref.GetRow (a), cm)

31 mol.DefineSoftConstraints (SCC)

33 op = "/home /41/ bt260941/local/orca_2_9_0_linux_x86 -64/ orca"

34 sp = "/tmp"

35 PID = getpid ()

36 time = strftime ("%y%m%d%H%M%S")

37 f = argv [0]

38 fl = basename (f[:f.rfind (".")])

39 user = getuser ()

40 sp = "%s/% s_pdynamo /%s-%s-%s" % (sp , user , fl , time , PID)

42 makedirs (sp)

43 logFile.Text ("Scratch directory: %s\n" % sp)

45 mol.electronicState = ElectronicState (charge = -1, multiplicity = 2)

47 qcm = QCModelORCA (

48 "B3LYP :6-31G*", "PAL8", "SCFCONV10",

49 command = op,

50 scratch = sp,

51 job = "job",

52 deleteJobFiles = False )

53 mol.DefineQCModel (qcm , qcSelection = Selection (qc))

55 mol.DefineNBModel (NBModelORCA ())

57 tdir = "%s/qcmmopt_traj" % sp

58 traj = SystemGeometryTrajectory (tdir , mol , mode = "w")

59 Conv , a = False , 1

61 while not Conv:

62 logFile.Text ("Optimizing the system (attempt %d)...\n" % a)

63 r = ConjugateGradientMinimize_SystemGeometry (mol , logFrequency = 1,

maximumIterations = 9999, rmsGradientTolerance = TolCrit ,

trajectories = [(traj , 1)])

64 Conv = r["Converged"]

65 a += 1

67 XYZFile_FromSystem ("after_qcmm.xyz", mol , label = "QC/MM -optimized

geometry")

68 logFile.Footer ()

The script scan.py performs a relaxed potential energy surface scan along the distance

between two specified atoms. The first part of the script involves the QC/MM model

setup and is the same as in the qcmmopt.py script. However, Vector3 and SoftCon-

straintDistance have to be additionally imported from the modules pCore and pMolecule,
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respectively. Lines 1-2 define a helper function converting atomic patterns into indices.

Lines 4-8 contain the definitions of two atoms along which the scan is performed, step in Å

and the final distance between the atoms at which the scan is terminated. Line 10 starts

the main loop. First, the current distance between the atoms is calculated. This distance

is used as an additional restraint that is added to the restraint container (lines 12-14). A

restrained geometry optimization is performed for every step along the scan (lines 19-24).

The resulting intermediate geometry is written out as an XYZ file (line 27). In lines 29-30,

a check is performed whether the scan has been completed. If not, a vector is calculated

between the two atoms (lines 32-37). Based on the vector, the positions of the atoms are

updated. The atoms are moved further or closer depending on the variable step.

scan.py

1 def I (m, t):

2 return m.sequence.AtomIndex ("%s:%s.%s:%s" % t)

4 a = I (mol , ("PRTA", "GLY", "734", "HA1"))

5 b = I (mol , ("PRTA", "CYS", "419", "SG"))

6 step = -0.10

7 D_fin = 1.35

8 i = 0

10 while 1:

11 D = mol.coordinates3.Distance (a, b)

12 cm = SoftConstraintEnergyModelHarmonic (D, 10000.0)

13 SCC["distance"] = SoftConstraintDistance (a, b, cm)

14 mol.DefineSoftConstraints (SCC)

16 logFile.Text ("*** Optimizing step %d ***\n" % i)

17 XYZFile_FromSystem ("scan %03d.xyz" % i, mol)

19 while 1:

20 r = ConjugateGradientMinimize_SystemGeometry (mol , logFrequency =

1, maximumIterations = 9999, rmsGradientTolerance = TolCrit)

21 if r["Converged"]:

22 break

23 else:

24 logFile.Text ("*** Restarting the optimization ... ***\n")

26 logFile.Text ("*** Done with step %d ***\n" % i)

27 XYZFile_FromSystem ("scan %03 d_optimized.xyz" % i, mol)

29 N = abs (( D_fin - D) / step)

30 if N < 1: break

32 A = mol.coordinates3.GetRow (a)
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33 B = mol.coordinates3.GetRow (b)

34 V = Vector3 ()

35 B.CopyTo (V)

36 V.AddScaledVector3 (-1., A)

37 V.Normalize ()

39 f = step * .5

40 mol.coordinates3.AddScaledVector3 (a, -f, V)

41 mol.coordinates3.AddScaledVector3 (b, f, V)

42 i += 1

The nudged elastic band method90,91 provides a better approximation of the reaction

path than a potential energy surface (PES) scan but requires that the geometries of both

the initial and the final states are known. The geometry of the latter can be generated

by performing a PES scan. The script neb.py provides access to the NEB method in

pDynamo. The first part of the script is the same as in the qcmmopt.py or scan.py

scripts. Two functions, GrowingStringInitialPath and NudgedElasticBandSplineOpti-

mize SystemGeometry, have to be imported from the module pMoleculeScripts. Line 1

defines a directory where the NEB-calculated trajectory will be stored. The following

lines specify the number of frames and the previously optimized geometries of two energy

minima. In line 5, an initial chain of frames is generated by linearly interpolating between

the two geometries. Next, the trajectory object is initialized (line 7). Finally, a function

is called that performs the calculation of the minimum energy path by using the NEB

method.

neb.py

1 traj_path = "neb_traj"

2 N = 11

3 reac = XYZFile_ToCoordinates3 ("sub_after_qcmm.xyz")

4 prod = XYZFile_ToCoordinates3 ("in1_after_qcmm.xyz")

5 GrowingStringInitialPath (mol , N, reac , prod , traj_path , log = logFile)

7 traj = SystemGeometryTrajectory (traj_path , mol , mode = "a+")

9 NudgedElasticBandSplineOptimize_SystemGeometry(mol , traj , log =

logFile , maximumIterations = 5000, rmsGradientTolerance = TolCrit)

The script cube.py can be used for the generation of volumetric data containing spin

density. The initialization of the QC/MM model follows the same procedure as in the

previous scripts. After the scratch space has been set up, a check is performed (lines 3-5)
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whether there exists a file containing the parameters of the cube. If so, the parameters

in the form of Python commands are loaded. Otherwise, the geometrical center of the

QC-region is calculated (lines 7-13). In lines 15-23, a distance is calculated from the center

to the furthermost atom. This distance is used to determine the dimensions of the cube

(lines 25-31). The calculated cube is 25% larger than the one bonding the QC-region.

Lines 33-35 define the resolution (in Å) and evaluate the number of nodes in each direction.

In the following lines, an XYZ file is generated for visualization purposes containing the

cube vertices. The dimensions are converted into Bohrs (lines 52-58) and a DEF file is

written (lines 60-63). Finally, the parameters are passed to the ORCA object (lines 65-70).

A single point energy calculation (line 75) generates a cube file in the scratch directory.

cube.py

1 cubef = "cube.def"

3 if exists (cubef):

4 f = open (cubef).readlines ()

5 for c in f: exec (c)

7 else:

8 C = Vector3 ()

9 for q in qc:

10 Q = mol.coordinates3.GetRow (q)

11 C.AddScaledVector3 (1., Q)

12 C.Scale (1. / len (qc))

13 cx , cy , cz = C

15 R = 0.

16 V = Vector3 ()

17 for q in qc:

18 Q = mol.coordinates3.GetRow (q)

19 C.CopyTo (V)

20 V.AddScaledVector3 (-1., Q)

21 r = sqrt (V.Dot (V))

22 if r > R:

23 R = r

25 Scale = 1.25

26 minx = -R * Scale + cx

27 maxx = R * Scale + cx

28 miny = -R * Scale + cy

29 maxy = R * Scale + cy

30 minz = -R * Scale + cz

31 maxz = R * Scale + cz

33 Res = 0.10
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34 t = (maxx - minx) / Res

35 np = floor (t)

37 O = open ("cube.xyz", "w")

38 O.write ("9\nCube in Angstroems\n")

39 for a in (

40 (cx, cy, cz),

41 (minx , miny , minz),

42 (minx , miny , maxz),

43 (minx , maxy , minz),

44 (minx , maxy , maxz),

45 (maxx , miny , minz),

46 (maxx , miny , maxz),

47 (maxx , maxy , minz),

48 (maxx , maxy , maxz)):

49 O.write ("Xx %6.2f %6.2f %6.2f\n" % a)

50 O.close ()

52 toBohr = 1. / 0.5291772

53 minx = minx * toBohr

54 maxx = maxx * toBohr

55 miny = miny * toBohr

56 maxy = maxy * toBohr

57 minz = minz * toBohr

58 maxz = maxz * toBohr

60 f = open ("cube.def", "w")

61 f.write ("# Cube parameters in a.u.\n")

62 f.write ("minx = %6.2f\nmaxx = %6.2f\nminy = %6.2f\nmaxy =

%6.2f\nminz = %6.2f\nmaxz = %6.2f\nnp = %6d\n" % (minx , maxx ,

miny , maxy , minz , maxz , np))

63 f.close ()

65 qcm = QCModelORCA ("B3LYP :6 -311++G (2d,2p)", "PAL4", "SCFCONV10",

"\n%%plots\n dim1 %d\n dim2 %d\n dim3 %d\n min1 %f\n max1 %f\n min2

%f\n max2 %f\n min3 %f\n max3 %f\n Format Gaussian_Cube\n SpinDens

(\" spin_dens.cube \");\n end" % (np , np , np , minx , maxx , miny , maxy ,

minz , maxz),

66 command = op,

67 scratch = sp,

68 job = "job",

69 deleteJobFiles = False

70 )

71 mol.DefineQCModel (qcm , qcSelection = Selection (qc))

72 mol.DefineNBModel (NBModelORCA ())

74 mol.Energy ()

76 logFile.Footer ()
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