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Summary 
 

 Faithful segregation of genetic material is an essential hallmark of cell division. In 

eukaryotic cells, the DNA is replicated during S phase into two identical copies, which 

reside intimately paired (cohesed) in the nucleus as dispersed and entangled interphase 

chromatin fibers. At the onset of mitosis, the chromatin fibers start to resolve and by 

the end of metaphase they are compacted and individualized into a pair of cylindrical 

structures called sister chromatids, which remain connected until anaphase onset by 

residual sister chromatid cohesion in their centromeric regions. The compaction 

process is known as chromosome condensation, which is a prerequisite for accurate 

segregation of sister chromatids in anaphase. Chromosome condensation and sister 

chromatid cohesion require multisubunit protein complexes, the condensin and the 

cohesin complexes, respectively. Both complexes are composed of two core SMC 

subunits and a set of non-SMC subunits, which are conserved among most eukaryotes. 

In the first part of my thesis, I have analyzed the localization and dynamic behavior 

of a functional, EGFP-fused variant of CapG, one of the non-SMC subunits of the 

condensin I complex in Drosophila melanogaster. In vivo fluorescence microscopy of 

early embryonic mitotic divisions revealed that CapG-EGFP is mainly nuclear during 

interphase and that it starts to enrich at centromeric proximal regions in late interphase. 

Thereafter, CapG-EGFP spreads onto the chromosome arms concomitantly with the 

initiation of chromosome condensation (ICC) and loading is complete already in 

prophase at the time of nuclear envelope breakdown. Furthermore, FRAP analyses 

revealed that a major proportion of CapG-EGFP is stably bound to chromatin during 

metaphase and only a minor fraction shows a dynamic association with chromatin. 

These results are similar, but not identical, to findings previously obtained for another 

non-SMC subunit, CapH/Barren, suggesting interactions of the individual non-SMC 

subunits with chromatin outside a bona fide condensin complex. 

Since a non-SMC cohesin subunit homologous to the typical meiotic Rec8 protein 

found in other eukaryotes appears to be missing in Drosophila, I have assessed in the 

second part of my thesis a possible cohesive role for the mitotic subunit Rad21 during 

female meiosis. Furthermore, a potential redundancy during oogenesis between Rad21 

and another candidate cohesin subunit, C(2)M, was analyzed.  Forced proteolysis of 
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Rad21 during oogenesis  resulted  in delocalization of  the canonical cohesin core 

subunit  Smc1  from  oocyte  chromatin.  Furthermore,  immunofluorescence  and 

fluorescence in situ hybridization analyses revealed a high proportion of premature 

homolog disjunction and premature sister chromatid separation  in  the developing 

mutant oocytes and also during the meiotic divisions. Moreover, it was established 

that Rad21 has a role  in  the maintenance of  the synaptonemal complex (SC), as 

shown by delocalization of  the  transversal SC component C(3)G. Taken together, 

these results suggest that Rad21 is indeed involved in sister chromatid cohesion during 

female meiosis in D. melanogaster.  Since  in  the  absence  of  Rad21  and  the 

concomitant  presence  of  C(2)M  meiotic  sister  chromatid  cohesion  is 

compromised, Rad21 appears to play the major role  in meiotic sister chromatid 

cohesion  in D. melanogaster  and  a  functional  redundancy  between  C(2)M  and 

Rad21 is unlikely. 
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Zusammenfassung 

Die akkurate Verteilung des genetischen Materials ist ein wesentliches Merkmal 

der Zellteilung. In eukaryontischen Zellen werden während der DNA Replikation zwei 

identische Kopien der DNA erzeugt, die zunächst in der Interphase eng gepaart als 

dekondensierte und miteinander verwickelte Chromatinfasern vorliegen. Zu Beginn 

der Mitose werden die Chromatinfasern entwirrt und kondensiert, bis sie am Ende der 

Metaphase als individualisierte zylindrische Strukturen vorliegen, die bei höheren 

Eukaryonten als so genannte Schwesterchromatiden lichtmikroskopisch sichtbar 

werden. Lediglich im Zentromerbereich werden sie noch durch 

Schwesterchromatiden-Kohäsion zusammen gehalten. Der Prozess der 

Chromosomenkondensation ist eine Voraussetzung für die korrekte Segregation der 

Schwesterchromatiden in der folgenden Anaphase. Chromosomenkondensation und 

Schwesterchromatiden-Kohäsion beruhen auf der Aktivität der Multiproteinkomplexe 

Kondensin und Kohäsin. Beide Komplexe bestehen aus je zwei Kern-SMC 

Untereinheiten und einer Gruppe von nicht-SMC Untereinheiten, die innerhalb der 

meisten Eukaryonten konserviert sind. 

Im ersten Teil meiner Arbeit habe ich die Lokalisation und das dynamische 

Verhalten einer biologisch funktionellen EGFP-markierten Variante von CapG 

untersucht, einer nicht-SMC Untereinheit des Kondensin I-Komplexes aus Drosophila 

melanogaster. Fluoreszenzmikroskopische Analysen von frühen mitotischen 

Teilungen in Drosophila- Embryonen zeigten, dass CapG-EGFP in der Interphase 

nukleär angereichert ist und in der späten Interphase anfängt, präferentiell an 

zentromere Bereiche zu lokalisieren. Mit dem Beginn der Chromosomenkondensation 

breitet sich CapG-EGFP entlang der Chromosomenarme aus, und die maximale 

Chromatinassoziation ist bereits in der Prophase zum Zeitpunkt der Auflösung der 

Kernhülle erreicht. Weiterhin ergaben FRAP-Analysen, dass während der Metaphase 

ein großer Anteil des CapG-EGFP stabil ans Chromatin gebunden ist, und nur ein 

kleiner Teil dynamisch mit dem Chromatin assoziiert ist. Diese Ergebnisse sind 

ähnlich, wenn auch nicht identisch, wie Resultate einer früheren Studie zur 

Lokalisation und Dynamik einer andern nicht-SMC Kondensin I Untereinheit 

(CapH/Barren). Dieser Sachverhalt legt Interaktionen der einzelnen nicht-SMC 
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Untereinheiten mit dem Chromatin außerhalb eines kanonischen Kondensin-

Komplexes nahe. 

In Drosophila ist bisher kein Homolog zu der meiotischen nicht-SMC Kohäsin-

Untereinheit Rec8 identifiziert worden, während in anderen Eukaryonten solche 

Homologe in den meisten Fällen beschrieben wurden. Deswegen habe ich im zweiten 

Teil meiner Arbeit eine mögliche Rolle der mitotischen nicht-SMC Kohäsin-

Untereinheit Rad21 in der Schwesterchromatiden-Kohäsion während der weiblichen 

Meiose untersucht. Zusätzlich wurde eine mögliche funktionelle Redundanz zwischen 

Rad21 und C(2)M abgeklärt, welches als weiteres Kandidatenprotein für eine 

meiotische Kohäsin-Untereinheit diskutiert wird. Erzwungene Proteolyse von Rad21 

während der Oogenese hat eine Delokalisation der kanonischen Kern-Kohäsin-

Untereinheit Smc1 vom Chromatin der Oozyte zur Folge. Weiterhin zeigten Immun-

fluoreszenzanalysen und Fluoreszenz in situ-Hybridisierungs-Experimente einen 

hohen Anteil von frühzeitiger Trennung der homologen Chromosomen und 

frühzeitiger Schwesterchromatidentrennung in der sich entwickelnden Oozyte sowie 

während der meiotischen Teilungen. Darüber hinaus deutet die Delokalisation von 

C(3)G, einer transversalen Komponente des synaptonemalen Komplexes, auf eine 

Rolle von Rad21 bei der Aufrechterhaltung des synaptonemalen Komplexes hin. 

Zusammengenommen legen die Ergebnisse nahe, dass Rad21 in der Tat bei der 

Schwesterchromatiden-Kohäsion während der Meiose in D. melanogaster Weibchen 

eine wesentliche Rolle spielt. Dagegen scheint Rad21 nicht redundant mit C(2)M zu 

sein, da die Abwesenheit von Rad21 auch in der Präsenz von C(2)M zu klaren 

Kohäsionsdefekten führt. 
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Chapter I Introduction 

1. The eukaryotic cell cycle 

Every cell, except terminally differentiated ones, undergoes cell division and gives 

rise to two genetically identical daughter cells. The cell cycle is a series of events in 

which a cell grows, duplicates its genetic material and this genetic material is then 

partitioned into two newly formed daughter cells. Precise regulation of the 

chromosome cycle is critical since mistakes may lead to aneuploidy which can result 

in cancer in multicellular organisms. The eukaryotic cell cycle can be divided into two 

major functional phases, S and M phase, and two preparatory gap phases G1 and G2. 

In S phase a cell replicates its genomic DNA into two identical copies; subsequently 

these fully replicated chromosomes are segregated to each of the two daughter nuclei 

during M phase. The G1 phase precedes S phase, whereas G2 phase precedes M phase. 

G1 and G2, provide the time required for growth of the cell and synthesis of all cellular 

components needed to support the following phase. The G1, S and G2 phases together 

are referred to as interphase. The M phase is itself composed of two tightly coupled 

events, mitosis and cytokinesis.  

Mitosis is the process by which all somatic cells of a multicellular organism 

multiply; it distributes duplicated chromosomes into daughter nuclei. Mitosis can be 

divided into five distinct sub-phases; prophase, prometaphase, metaphase, anaphase 

and telophase (Fig 1.1). In interphase, chromosomes are dispersed in the nucleus as 

morphologically indistinguishable chromatin fibers. During prophase these chromatin 

fibers begin to condense, and in late prophase each chromosome forms two identical 

coiled filaments (sister chromatids). Both sister chromatids are joined throughout their 

length and contain a constricted region, the centromere. The centrioles migrate to 

opposite poles and at the same time the assembly of the mitotic spindle is initiated by 

formation of asters of microtubules around centrosomes. Centrosomes are specialized 

organelles that constitute the microtubule organizing centers (MTOCs) in animal 

cells). In higher eukaryotes, nuclear envelope breakdown (NEBD) marks the end of 

prophase and entry into prometaphase. In this phase, the mitotic spindle is fully 

assembled and captures the chromosomes at the outer surface of the kinetochore (a 

protein complex that assembles on centromeric DNA). The chromosomes initially 
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attach to the spindle fibres from a single pole (mono-orientation) and then the sister 

chromatids become attached to microtubules emanating from opposite poles (bi-

orientation). When all the chromosomes are attached to the spindle, they start to move 

towards the center and align on the equatorial plane of the cell during metaphase.  

 

       

 

Figure 1.1 Schematic representation of different phases of the eukaryotic cell cycle. G1, S and G2 phase 
are referred to as interphase. During interphase chromatin is decondensed, in prophase chromosomes start to 
condense and centrosomes move towards the opposite poles. In prometaphase nuclear envelope breakdown 
and chromosomes are captured by microtubules.  All the chromosomes are aligned at the metaphase plate 
during metaphase takes place. At the onset of anaphase sister chromatids separate and migrate to the opposite 
poles. At the end of mitosis (telophase), the chromatin starts to decondense, the mitotic spindle disassembles 
and the nuclear membrane re-forms around each of the daughter nuclei. Subsequently the cell divides into 
two daughter cells by cytokinesis. Chromatin is shown in brown, microtubules in dark green and centrosomes 
in light green (Adapted from Alberts et al., 2002). 

 

Once all the chromosomes are aligned at the metaphase plate and all sister 

kinetochores are attached to the spindle from opposite poles, the two sister chromatids 

of all chromosomes start to separate simultaneously. Segregation of sister chromatids 

occurs in anaphase, when the spindle fibres from opposite poles pull the individual 

sister chromatids towards the spindle pole which they face. In telophase the sister 

chromatids reach the opposite poles and decondense, the mitotic spindle disassembles, 

and the nuclear envelope begins to form around each set of sister chromatids, resulting 

in two daughter nuclei (fig. 1.1). During the last stages of mitosis a cleavage furrow 

starts to appear on the cell surface. It is a contractile ring composed of actin filaments, 

myosin II, and many structural and regulatory proteins. The furrow rapidly deepens 

and completely divides the cell into two new daughter cells during cytokinesis (fig. 

1.1).     

In contrast to mitosis by which a somatic cell divides, meiosis is a specialized kind 

of process by which one diploid cell divides twice and forms four haploid daughter 
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cells. In multicellular organisms meiosis is restricted to the germ cells. The reduction 

in ploidy is achieved by a single round of DNA replication followed by two rounds of 

nuclear division (meiosis I and II). In meiosis I the homologue chromosomes form 

pairs and then segregate into two daughter cells, while in meiosis II the two sister 

chromatids separate from each other.  Each meiotic division can be divided in four 

phases; prophase, metaphase, anaphase and telophase.  

The first meiotic division (meiosis I) starts once pre meiotic DNA replication is 

complete. It begins with a long prophase, which can be sub-divided into five distinct 

stages; leptotene, zygotene, pachytene, diplotene, and diakinesis, on the basis of 

chromosome morphology. The chromosomes are visible as thin threads during the 

leptotene and side by side pairing of homologue chromosomes starts during zygotene. 

After pairing, the homologues are tightly linked at the sites of recombination by a 

process called synapsis. During synapsis a ribbon shaped protein scaffold, called the 

synaptonemal complex (SC) forms along the entire length of the paired chromosomes 

(Fawcett, 1956; Moses, 1956). The SC is composed of one central element, two 

lateral/axial elements and several transverse filaments (Schmekel et al., 1993). The 

main function of the SC is to keep the homologues in juxtaposition during 

chromosome pairing. It is also involved in homologous recombination and the proper 

segregation of chromosomes (Egel, 1995; Sym and Roeder, 1994; von Wettstein, 

1984). At pachytene the homologues are fully synapsed and they begin to condense. 

Several cross-overs form during this stage to facilitate the exchange of genetic material 

whereby double strand breaks (DSB) are introduced into the two juxtaposed 

chromatids of the homologous chromosomes and the chromatids are re-joined in a 

cross wise fashion with their paired partners. By the end of diplotene, recombination 

between homologues is completed. The SC starts to disassemble, leaving the 

chromosomes linked at the specific sites of crossing over called chiasmata. At 

diakinesis, chromosomes become fully condensed, the nuclear envelope disappears, 

the spindle forms and the chromosomes migrate to the center of the cell to form the 

metaphase plate. In metaphase I all chromosomes align at the metaphase plate. The 

homologues orient in opposite direction, while the two sister chromatids remain mono-

oriented. At anaphase I, chiasmata resolve and the homologues separate but the sister 

chromatids remain associated at their centromeres. 
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By the end of telophase I, the homologues reach opposite poles and start to 

decondense. Meiosis II starts after a brief interkinesis, during which the chromosomes 

elongate and decondense, and the nuclear membrane re-forms. Meiosis II resembles 

mitosis. In prophase II chromosomes condense again and migrate towards the center of 

the cell. At metaphase II, the sister chromatids bi-orient and align at the metaphase 

plate. At anaphase II, the two sister chromatids separate followed by telophase II and 

cytokinesis, which results in the formation of four haploid cells. In some organisms 

meiosis is specifically modified. For examle in mammals, the number of gametes 

obtained from meiosis differs between males and females. In males, four haploid 

spermatids of similar size are produced during meiotic divisions while in females, the 

meiotic cytoplasmic divisions are very asymmetric. As a consequence, only one 

functional oocyte is obtained from each female meiotic event. The other three haploid 

cells are pinched off from the oocyte as polar bodies. Moreover, in many animal 

species, oocytes arrest in either metaphase I or II as a common and unique feature. In 

Drosophila, mature oocytes arrest in metaphase-I until fertilization takes place. 

 

1.1 The chromosome cycle 

Eukaryotic cells inherit their genome in the form of chromosomes. The 

fundamental aspect of cell division is to accurately pass all the genetic information, 

stored in DNA, to the daughter cells. During the cell cycle, the chromosomes undergo 

a series of dynamic structural and functional changes, which permit faithful 

duplication of the genome and its stable inheritance. The chromosome cycle involves 

four major stages; DNA replication, sister chromatid cohesion, chromosome 

condensation and chromosome segregation. These events are coordinated with each 

other to achieve the highly regulated and faithful duplication and segregation of the 

genetic information. During G1, the cell is transcriptionally very active and 

synthesizes many structural proteins and enzymes required for DNA replication. 

Therefore, during this phase chromosomes are present as dispersed chromatin fibers. 

After G1, the cell enters S phase, in which DNA is replicated concomitantly with 

establishment of cohesion between the two newly synthesized sister chromatids. In M 

phase, chromosome condensation starts in prophase and finally the two sister 

chromatids are accurately segregated to the two daughter cells in anaphase.   
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1.1.1 DNA Replication 

During S phase, the entire genome of a cell is duplicated. Accurate replication of 

DNA is essential for maintaining viability and genetic integrity of the cell. DNA 

replication occurs in a semiconservative way in which each of the two DNA strands 

serves as a template for the formation of the two new strands and each of the two 

daughter cells inherits one new DNA strand and one old DNA strand organized in a 

double helix.  Replication starts at replication origins. In the unicellular eukaryote 

Saccharomyces cerevisiae, these replication origins are specific consensus sequences 

called autonomously replicating sequences (ARS) (Brewer and Fangman, 1987; 

Stinchcomb et al., 1979). In higher eukaryotes, there are no defined consensus 

sequences reported, although origins are often found to be located in promoter regions. 

(Cadoret et al., 2008; Sequeira-Mendes et al., 2009).  

For preparation of DNA replication, the so called prereplicative complex (pre-RC) 

is assembled at a replication origin during G1. The assembly of pre-RC starts when the 

origin bound, six -subunit protein complex ORC (Origin Recognition Complex) (Bell 

and Stillman, 1992) recruits Cdc6 (Cell division cycle 6) and Cdt1 (chromatin 

licensing and DNA replication factor 1) to the origin. Once the ORC-Cdc6-Cdt1 

complex has formed at the origin, it recruits the Mcm2–7 complex. The Mcm2–7 

complex is a heterohexamer of six related ‘minichromosome maintenance’ proteins 

(Bowers et al., 2004; Donovan et al., 1997; Nishitani et al., 2000; Randell et al., 2006; 

Tanaka et al., 1997). The Mcm2–7 complex unravels the DNA helix at the replication 

origin and then travels along with the replication machinery to unwind DNA at the 

replication fork (Ishimi, 1997; Labib et al., 2000). After unwinding, the separated 

DNA strands are then captured by replication protein A, a single strand binding 

protein, which prevents reannealing of the two strands. Each strand is then primed for 

replication by primase. Because two template DNA strands run in opposite directions, 

the elongation process is different for the 5'-3' and 3'-5' template. One strand (the 

leading strand) is synthesized continuously in the direction of progression of 

replication fork, and the other strand is synthesized discontinuously in short DNA 

fragments (Okazaki fragments), which are later joined by the DNA ligase.  The 

Mcm2–7 complex disassembles when one replication fork encounters another 

replication fork heading towards it, which results in termination of the replication. 



 19

For maintaining genomic stability DNA replication should occur only once per cell 

cycle, which is achieved by preventing the replicated DNA from becoming re-licensed. 

To prevent re-licensing, the loading of new Mcm2–7 complex is inhibited during late 

G1, S, G2 and early M phase by down regulating the activity of the ORC–Cdc6–Cdt1 

complex. During S phase, activated Cyclin-dependent-kinases (cdks) cause 

phosphorylation of Cdc6, Cdt1 and ORC, which targets them for ubiquitylation and 

subsequent proteolysis, thereby preventing assembly of the pre-RC (Drury et al., 1997; 

Nguyen et al., 2001; Weinreich et al., 2001; Li et al., 2004). In budding yeast, Cdk 

dependent phosphorylation leads to nuclear export of Mcm2-7 and Cdt1, which 

prevents these proteins to gain access to DNA (Labib et al., 1999; Tanaka and Diffley, 

2002).     

 

1.1.2 Sister chromatid cohesion 

During S phase the cell synthesizes two copies of each chromosome which are 

only later distributed into daughter cells during cell division. Synthesis of the two 

copies in S phase and their distribution in M phase is separated by a considerably long 

G2 phase, during which they should be prevented from drifting away from each other. 

For this purpose the replicated sister chromatids are maintained tightly paired, from the 

time of their synthesis in S phase until the onset of anaphase in mitosis or meiosis II. 

This interaction is called sister chromatid cohesion. It is essential for the mechanism 

that orients the two sister kinetochore of the two sister chromatids such that they 

segregate to opposite poles of the cell during anaphase. Two mechanisms are known to 

be involved in sister chromatid cohesion. The first, DNA catenation, is the intertwining 

of duplicated DNA molecules which occur during S phase when two adjacent 

replication forks encounter during replication (Murray and Szostak, 1985; Sundin and 

Varshavsky, 1980). However, it is highly unlikely that DNA catenation alone holds the 

two sister chromatids together as most of the DNA catenation is resolved by the 

enzyme Topoisomerase II by the time metaphase takes place, so it has only a small 

contribution to the sister chromatid cohesion after this point (DiNardo et al., 1984). It 

has also been shown in yeast that the cohesion between sister minichromosomes is 

maintained even in the absence of DNA catenation (Koshland and Hartwell, 1987). 

The second mechanism, by which sister chromatid cohesion is maintained, involves a 
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multisubunit protein complex called the cohesin complex. The cohesin complex can 

mediate cohesion even in the absence of catenation (Ivanov and Nasmyth, 2007). 

Numerous studies have also shown that the cohesin complex is the key player of sister-

chromatid cohesion and is essential for chromosome segregation (Guacci et al., 1997; 

Losada et al., 1998; Michaelis et al., 1997).  

 

1.1.2.1 The Cohesin complexes in mitosis and meiosis 

It is well establish that the DNA catenation is not sufficient for sister chromatid 

cohesion and that is solely mediated by the cohesin complex. Cohesin is a 

heterotetrameric complex, consisting of Smc1, Smc3, Scc1 (Rad21/Mcd1) and Scc3. 

These subunits were first identified in S. cerevisiae by several genetic screens for 

mutants that show precocious sister chromatid segregation. In a genetic study in S. 

cerevisiae, it was shown that the Smc1 protein is required for proper segregation of 

chromosomes (Strunnikov et al., 1993). In another genetic screen, mutants of a gene 

called mcd1 were identified. These mutants were defective in sister chromatid 

cohesion and chromosome condensation (Guacci et al., 1997). An independent screen 

revealed three chromosomal proteins Smc1p, Smc3p and Scc1p (identical to Mcd1) 

which were essential for sister chromatid cohesion: (Michaelis et al., 1997). Further 

physical and genetic interactions were shown between Smc1p and Mcd1 (Rad21/Scc1) 

(Guacci et al., 1997). Orthologs of all four subunits have been found in many 

eukaryotes and most of them have been shown to be involved in sister chromatid 

cohesion (Losada et al., 1998; Pasierbek et al., 2001; Sonoda et al., 2001).  

The structure and topology of these subunits have been best characterized in 

budding yeast (Haering et al., 2002; Haering et al., 2004). The two core Smc subunits, 

Smc1 and Smc3 belong to the “Structural Maintenance of Chromosomes” (SMC) 

family of proteins. Proteins of the SMC family are highly conserved in all organisms 

including both bacteria and archaea (Losada and Hirano, 2005; Soppa, 2001). The 

SMC proteins are large polypeptides (900 – 1,300 amino acids) with a unique domain 

structure. Each N and C terminal domains contains a nucleotide-binding motif, known 

as the Walker A and Walker B motifs respectively. The terminal domains are 

separated by two long coiled coil segments connected by a non helical sequence. The 

two 45 nm long coiled coil segments fold back onto themselves through antiparallel 
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coiled-coil interactions, forming a central “hinge” domain at one end and a globular 

“head” domain composed of N- and C-terminal domains at the other end (Melby et al., 

1998; Saitoh et al., 1994). In the globular head domain, the Walker A motif of the N-

terminal domain and Walker B motif of the C-terminal domain form a functional 

ATPase of the ABC (ATP binding cassette) family (Lowe et al., 2001). Two 

monomers of SMC proteins associate with each other at the hinge domain and form a 

V-shaped dimer (Anderson et al., 2002; Haering et al., 2002) (fig. 1.2). In prokaryotes, 

the SMC proteins form homodimers. In eukaryotes, different SMC proteins form 

heterodimers, as in case of cohesin, which contains a Smc1/Smc3 heterodimer 

(Haering et al., 2002), and condensin, which contains a Smc2/Smc4 heterodimer 

(Hirano et al., 1997) (see chapter 2.3.1). The third cohesin subunit Scc1 (Sister-

chromatid cohesion1)/Rad21/Mcd1 is a member of the α-kleisin family of proteins 

(Schleiffer et al., 2003). It bridges the ATPase heads of Smc1 and Smc3 (Fig. 1.2 A). 

The N terminus of Scc1 binds to the ATPase head domain of Smc3 and the C terminus 

binds to the ATPase head domain of Smc1, forming a large triangular ring of 35 nm 

diameter (Gruber et al., 2003). A fourth subunit of the cohesin complex, called Scc3 

(Sister-chromatid cohesion3) is further associated with Scc1 (fig. 1.2 A). Scc3 is a 

HEAT (Huntingtin, Elongation factor 3, the A subunit of protein phosphatase 2A, 

TOR lipid kinase) repeats containing protein (Neuwald and Hirano, 2000). These 

repeats are involved in protein-protein interactions. Higher eukaryotes contain two 

closely related mitotic Scc3 homologues, called stromalin antigens 1 and 2 (SA1 and 

SA2), which are expressed in a mutually exclusive manner (Carramolino et al., 1997; 

Losada et al., 2000; Sumara et al., 2000). Although the role of Scc3 is not clear, it 

could be involved in regulating the ring’s opening and/or its persistence.  

In somatic cells, the cohesin complex consists of the four canonical subunits 

mentioned above, but in germ cells, distinct meiosis-specific subunits have been 

characterized in various organisms. Studies in budding and fission yeast have shown 

that during meiosis, Scc1 is replaced by a meiosis-specific α-kleisin paralog called 

Rec8 (Klein et al., 1999; Watanabe and Nurse, 1999). Orthologs of Rec8 have been 

characterized in several organisms (Cai et al., 2003; Pasierbek et al., 2001; Xu et al., 

2005). 
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Meiotic isoforms of other cohesin subunits have also been characterized in various 

organisms. In mammals, paralogs of Smc1, Scc1/Rad21/Mcd1 and SA1/SA2 are called 

Smc1, Rec8 and STAG3, respectively (Parisi et al., 1999; Pezzi et al., 2000; 

Revenkova et al., 2001). In fission yeast meiotic cells, two orthologs of Scc3, Psc3 and 

Rec11 have been found, (Kitajima et al., 2003).  

 

    

B 

 

 

The Drosophila genome appears to lack a clear Rec8 homolog. A refined 

bioinformatics analysis revealed the synaptonemal complex (SC) protein C(2)M as a 

member of the α-kleisin family (Schleiffer et al., 2003). It associates with lateral 

Figure 1.2 Structure and the 
ATPase cycle of the cohesin 
complex.   A Schematic diagram of 
the cohesin complex. Smc1 and Smc 3 
form a V- shaped heterodimer. The α-
kleisin subunit Scc1 connects the two 
nucleotide-binding head domains of 
SMC subunits and tethers Scc3 to the 
complex. B The ATPase cycle of SMC 
proteins. ATP binding leads to 
engagement of head domains, whereas 
subsequent disengagement is 
presumably triggered by ATP 
hydrolysis. (Adapted from (Nasmyth 
and Haering, 2009)      

A 
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elements of the SC and promotes the normal organization of the transversal 

synaptonemal complex component C(3)G during female meiotic prophase (Manheim 

and McKim, 2003). Since C(2)M is expressed in the female germline and C(2)M 

mutants exhibit an elevated rate of non-disjunction events, C(2)M is an attractive 

candidate for the Rec8 homolog in Drosophila, despite its low level of conservation. 

Furthermore, C(2)M was shown to be associated with SMC3 (Heidmann et al., 2004). 

However, C(2)M protein does not localize to meiotic chromatin early enough and 

disappears from chromosomes long before the first meiotic division. Moreover, 

inactivation of C(2)M causes less severe defects during meiosis than Rec8 deletion in 

yeast and C. elegans. These observations suggest that C(2)M might not be the one and 

only functional Rec8 homologue involved in sister chromatid cohesion during  meiosis 

(Heidmann et al., 2004).  

This conclusion allows the formation of three hypotheses, one postulating that 

Rad21, which is the Drosophila homologue of Scc1/Mcd1, might be responsible for 

sister chromatid cohesion during meiosis or a partial redundancy exists between 

C(2)M and Rad21, which some other organisms exhibit at low levels during meiosis 

(Parra et al., 2004; Prieto et al., 2002; Xu et al., 2004). Alternatively, as a 3rd 

hypothesis, a completely different protein is involved. From now on, 

Scc1/Rad21/Mcd1 will be referred to as just Rad21.   

 

1.1.2.2 The molecular mechanism of sister chromatid cohesion  

After the discovery of the cohesin complex, the ring or embrace model was 

proposed for sister chromatid cohesion. According to this model, the interaction 

between DNA and cohesin is topological and the cohesin complex holds one or both 

sister chromatids inside the ring (Gruber et al., 2003; Haering et al., 2002; Ivanov and 

Nasmyth, 2007). Based on the ring model, three models have been proposed for sister 

chromatid cohesion: The one cohesin ring model, the handcuff model and the bracelet 

model. The one cohesin ring model is the most accepted model. It suggests that only 

one cohesin ring traps the two sister chromatids inside (fig. 1.3 A). The cohesin ring 

has a diameter of around 35 nm: this size is large enough for encircling two sister 

chromatids as 10-nm nucleosomal chromatin fibers.  
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Figure 1.3 Models for sister chromatid cohesion. The one cohesin ring model (A), in which a single 

ring of cohesin complex topologically entraps the sister chromatids inside. B The handcuff model, 

involving association of two tripartite Smc1/Smc3/Scc1 rings by a single Scc3 subunit and C The 

bracelet model which suggest that chromatin-bound cohesins form oligomeric filaments which entrap 

the sister chromatids. (Adapted from Nasmyth and Haering, 2009)  

 

The model also proposed that after ATP hydrolysis, the head domains of Smc1 and 

Smc3 disengage which might cause opening of the ring (fig. 1.2 B). This opening of 

the ring allows the two sister chromatids to enter the ring. The ring would re-close 

upon binding of a new ATP molecule, which leads to engagement of head domains 

(Gruber et al., 2003; Haering et al., 2002). However two recent reports, the first 

presenting biochemical studies using bacterial SMC proteins (Hirano and Hirano, 

 

scc1 

scc3 smc1 

smc3 
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2006) and a second of work in yeast (Gruber et al., 2006) showed that it is the hinge 

domain which mediates the entrapment of DNA. It has also been proposed that the 

energy created either by ATP hydrolysis or by binding to the head domains might be 

used to open the hinge, for review see (Nasmyth and Haering, 2009). 

According to the handcuff model, the holo-cohesin complex contains two single 

cohesin rings. Each Smc1-Smc3 heterodimer of the two rings embraces one of the two 

sister chromatids and the Scc3 protein connects the two SMC heterodimers by which 

individual cohesin complexes become paired (fig. 1.3 B). The embracement of sister 

chromatids takes place during DNA replication (Chang et al., 2005; Huang and 

Moazed, 2006; Milutinovich and Koshland, 2003; Zhang et al., 2008b).  

In the bracelet model, sister chromatid cohesion is mediated by several cohesin 

complexes arranged in a filament like structure (bracelet) (fig. 1.3 C). The head 

domains of two different Smc heterodimers interact via Scc1/Rad21/Mcd1, forming 

multimeric filaments which entrap the sister chromatids (Huang et al., 2005). Although 

several observations are consistent with this model, definitive experimental evidence 

supporting the bracelet model is lacking.  

 

1.1.2.3 Establishment of sister chromatid cohesion 

Several studies reveal that in vertebrates, the loading of cohesin starts at the end of 

telophase (Darwiche et al., 1999; Gerlich et al., 2006b; Losada et al., 1998), while in 

yeast, cohesin starts to load in late G1 phase (Guacci et al., 1997; Michaelis et al., 

1997). Chromatin immunoprecipitation (ChIP) experiments indicated that loading of 

cohesin starts at specific sites on chromosome arms called cohesin attachment regions 

(CARs) (Blat and Kleckner, 1999; Tanaka et al., 1999) and at pericentromeric regions 

(Megee and Koshland, 1999; Tanaka et al., 1999). Although loading of cohesin 

continues until anaphase, sister chromatid cohesin is established only in S phase, 

following DNA replication (Lengronne et al., 2006; Uhlmann and Nasmyth, 1998). 

Cohesin loading is a highly regulated process, which involves several factors. Studies 

in S. cerevisiae (Ciosk et al., 2000), Drosophila (Gause et al., 2008), Xenopus egg 

extracts (Gillespie and Hirano, 2004) and in mammalian cells (Watrin et al., 2006) 

suggest that the Scc2/Scc4 complex is an important protein complex for the loading of 
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cohesin complex on chromatin. However, how this complex promotes the loading of 

the cohesin complex is unclear. It might act by stimulating the ATPase activity of 

cohesin, which allows opening of the hinge domain. Loading of the cohesin complex 

also depends on the formation of the prereplicative complex. The Scc2/Scc4 complex 

is recruited by Cdc7/Drf1 kinase at the prereplicative complex (Takahashi et al., 2008; 

Takahashi et al., 2004). Once Scc2/Scc4 is recruited to the chromatin, it in turn recruits 

the cohesin complex (Takahashi et al., 2004). After the loading of cohesin onto 

chromatin, an acetyl transferase, Eco1 stabilizes the cohesin complex in most of the 

eukaryotes until its dissolution in anaphase (Horsfield et al., 2007; Ivanov et al., 2002; 

Toth et al., 1999). Eco1 is recruited to replication forks, probably through an 

interaction with the DNA polymerase processivity factor PCNA (Moldovan et al., 

2006). Eco1 acetylates two evolutionary conserved lysine residues within the head 

domain of the cohesin subunit Smc3 during DNA replication when the fork passes the 

cohesin binding sites (Rolef Ben-Shahar et al., 2008; Rowland et al., 2009; Unal et al., 

2008; Zhang et al., 2008a). Smc3 acetylation remains high throughout G2 and mid M 

phase, and starts to decrease at the end of anaphase (Rolef Ben-Shahar et al., 2008). 

These studies indicate that cohesin establishment depends on Smc3 acetylation during 

DNA replication. This suggests that newly produced cohesin subunits cannot be 

acetylated during G2 and M phases and thus cannot establish sister chromatid 

cohesion. This is the reason why sister chromatid cohesion is established only during S 

phase.  

 

1.1.2.4 Other functions of the cohesin complex 

Cohesin, beside its role in sister chromatid cohesion, is implicated in many other 

biological functions like double stranded break (DSB) repair in meiosis and mitosis, 

mono-orientation of the sister kinetochores in meiosis I and transcriptional regulation 

of many genes in several organisms. The role of the cohesin complex in DNA damage 

repair was first discovered in Schizosaccharomyces pombe. Rad21 mutants showed 

sensitivity to radiation and defects in DSB repair (Birkenbihl and Subramani, 1992). 

Several other studies showed that mutations in cohesin subunits cause a greater 

sensitivity to radiation and DNA damaging agents (Kim et al., 2002; Schar et al., 

2004). These findings suggested that cohesin is involved in the repair of DSBs in 
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mitosis (Sjogren and Nasmyth, 2001) and in meiosis (Ellermeier and Smith, 2005; 

Klein et al., 1999). Genetic experiments in budding yeast also showed that proteins, 

which are required for loading and establishment of cohesion, are also required for 

DNA damage repair (Sjogren and Nasmyth, 2001; Strom et al., 2004; Unal et al., 

2004). For example in Eco1/Ctf7 mutants, which are defective in DSB repair, the 

assembly of the cohesin complex is normal (Unal et al., 2007). This observation 

implies that requirement of cohesin in DNA repair depends on its ability to establish 

sister chromatid cohesion. Based on these observations it was proposed that the 

cohesion complex holds the two sister chromatids in close proximity, thus enabling the 

broken DNA ends to find and invade their sister sequences, thereby allowing 

homologous recombination (Sjogren and Nasmyth, 2001). Furthermore, the 

involvement of cohesin complex in the SC assembly has also been reported in many 

organisms (Bannister et al., 2004; Eijpe et al., 2000; Klein et al., 1999; Molnar et al., 

1995; Revenkova et al., 2004).  

Analysis of Rec8 mutants in S. pombe (Watanabe and Nurse, 1999), in maize (Yu 

and Dawe, 2000) and Arabidopsis (Chelysheva et al., 2005) revealed equational 

division in meiosis I instead of reductional division. These studies indicated a role of 

the cohesin complex in mono-orientation of the sister kinetochores in meiosis I. It has 

also been shown that the mitotic cohesin localizes mainly to regions close to the 

centromere but not at the core centromere, while in meiosis, the cohesin complex 

localizes to the core centromere as well (Pidoux and Allshire, 2004). Based on this 

observation, a model was proposed according to which cohesion present at the core 

centromere and at the pericentromeric regions play distinct roles in defining the 

orientation of kinetochores. Cohesion established at the core centromere joins the two 

sister kinetochores together, allowing them to orient towards the same pole (mono-

orientation) (Sakuno and Watanabe, 2009), while cohesin localization to the 

pericentromeric regions allows flexibility for biorientation of the kinetochores.  

Cohesion’s role in transcription regulation and development has also been studied 

in different organisms from yeast to human. The first indication of cohesin being 

involved in gene regulation came from genetic studies in budding yeast. In S. 

cerevisiae, Smc1 and Smc3 act as boundary elements and are essential to limit the 

spreading of the transcriptionally silent HMR mating type locus (Donze et al., 1999). 



 28

In zebrafish, the Smc3 and Scc1 subunits control the expression of the runx1 gene 

during early embryonic development (Horsfield et al., 2007). In Drosophila, 

inactivation of the cohesin complex in mushroom-body γ-neurons causes defects in 

axon pruning due to reduction in expression of EcR-B1 within γ-neurons (Pauli et al., 

2008). In human cells, the SA2 (Scc3) subunit acts as a transcriptional co-activator. It 

activates the multimeric NF-kappa B transcription factor by enhancing the expression 

of the transactivation domain of p65/RelA (Lara-Pezzi et al., 2004).  

 

1.1.3 Chromosome condensation 

For equal segregation of genetic material into two daughter cells, DNA present in 

interphase nuclei undergoes a highly dynamic process called chromosome 

condensation. It is an essential process in which dispersed and entangled interphase 

chromatin fibers are resolved and compacted into morphologically distinguishable 

compact structures, the mitotic chromosomes with individualized sister chromatids. 

Eukaryotic genomic  DNA is packaged into nucleosomes, which are composed of 

DNA and two molecules each of the four histones (H2A, H2B, H3, and H4) assembled 

into an octamer (Eickbush and Moudrianakis, 1978). Approximately 1.65 turns of 

DNA wrap around the exterior of the histone octamer to form the nucleosomal core 

particle. This packaging of DNA into nucleosomes creates a 10-nm chromatin fiber 

(Richmond et al., 1984). Further binding of a fifth histone (H1) to the nucleosome 

gives rise to a more condensed and higher-order structure, the 30-nm fiber (Oudet et 

al., 1975; Suau et al., 1979), but the relevance of the 30-nm fiber is still controversial 

(Robinson et al., 2006; van Holde and Zlatanova, 1995). Moreover histone H1 was 

found to be hyperphosphorylated during mitosis (Boggs et al., 2000; Fischer and 

Laemmli, 1980). After these two discoveries, it was thought that histone H1 has an 

important role in chromosome condensation. However, later it was shown that the 

chromosomes can condense even in the absence of H1 hyperphosphorylation (Guo et 

al., 1995). Furthermore, when histone H1 is depleted from Xenopus egg extract 

(Ohsumi et al., 1993), or when the H1 gene is disrupted in Tetrahymena (Shen et al., 

1995), mitotic condensation was unperturbed. These pieces of evidence argue against a 

role of H1 in chromosome reorganization and condensation, however, in a recent 

report, it was shown that the core histone amino termini appear to play a critical role in 
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chromosome condensation (de la Barre et al., 2000), which supports the role of histone 

H1 in chromosome condensation.  

As the cell progress further into mitosis, the 30 nm fiber again compacts another 

200- 500 fold to achieve the final 10,000-20,000 fold compaction of a metaphase 

chromosome. Two models have been suggested for higher organization of 

chromosomes; the coiled/radial loop model and the hierarchical folding model. 

According to coiled/radial loop model, radially organized 30-nm chromatin fibers 

anchor to an axial chromosome scaffold (Marsden and Laemmli, 1979; Paulson and 

Laemmli, 1977). This scaffold is formed by several nonhistone proteins, including 

topoisomerase II (Earnshaw and Heck, 1985; Gasser et al., 1986; Lewis and Laemmli, 

1982) and the protein Smc2 (Lewis and Laemmli, 1982; Saitoh et al., 1994), which is a 

core subunit of the condensin complexes. Moreover, it was shown that the anchoring 

of these loops to the chromosome scaffold occurs at specific AT rich DNA sequences, 

called scaffold associated region (SAR) DNA sequences (Mirkovitch et al., 1984; 

Razin, 1996). Later in-vivo studies revealed that the two scaffold proteins 

topoisomerase II and Smc2 did not localize to the axis of chromatin until late 

prophase, when chromosome compaction was nearly complete (Kireeva et al., 2004; 

Maeshima and Laemmli, 2003). Furthermore, experiments indicated that even after the 

depletion/knockdown  of topoisomerase II (Carpenter and Porter, 2004; Sakaguchi and 

Kikuchi, 2004) and Smc2 (Hudson et al., 2003) chromosomes apparently condense 

normally. These observations argue against the coiled/radial loop model, in which a 

core protein scaffold supports the chromosomal mechanical properties. 

The second model is the hierarchical folding model, in which the 10-nm and 30-

nm chromatin fibers are proposed to fold either regularly or irregularly into distinct 

100nm fibers folding motifs (Sedat and Manuelidis, 1978; Zatsepina et al., 1983) 

(Belmont et al., 1987). These motifs are then helically coiled to form the metaphase 

chromosomes. In contrast to the coiled/radial loop model, in the hierarchical model, 

chromosome condensation does not depend on formation of a core protein scaffold 

(Belmont and Bruce, 1994; Belmont et al., 1987; Sedat and Manuelidis, 1978; 

Zatsepina et al., 1983). 

Based on the discovery that chromosome compaction is a gradual process and 

many intermediate stages of condensed chromosomes can exist until chromosomes are 

completely condensed another model, the hierarchical folding axial glue model of 
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chromosome structure was proposed. According to this model, the hierarchical folding 

of chromatin drives the compaction in early mitosis, whereas in later mitosis the shape 

and compaction of the chromosomes are stabilized by condensins and other proteins 

(Kireeva et al., 2004).  

 

1.1.3.1 The condensin complexes  

The mitotic chromosomes are composed of approximately equal masses of DNA, 

histones and non histone proteins. An earlier study has shown that after the extraction 

of the histone fraction from the mitotic chromosomes, a non soluble protein fraction 

called chromosome scaffold proteins can still maintain the structure of mitotic 

chromosomes (Adolph et al., 1977). In the chromosome scaffold fraction, one of the 

most abundant proteins found was Smc2 (Lewis and Laemmli, 1982; Saitoh et al., 

1994). Moreover, immunofluorescence analysis showed that the Smc2 protein 

localizes to mitotic chromosomes (Kireeva et al., 2004; Maeshima and Laemmli, 

2003). These observations suggested that the Smc2 protein might provide a structural 

backbone within the chromosome. Further biochemical studies in Xenopus egg extract 

indicated that immunodepletion of XCAP-C and XCAP-E (Xenopus chromosome 

associated proteins C and E, later termed as Smc4 and Smc2, respectively) caused 

defects in chromosome condensation (Hirano and Mitchison, 1994). In agreement with 

this, genetic studies in yeast also suggested that the SMC proteins are essential for 

mitotic chromosome dynamics in vivo (Saka et al., 1994; Strunnikov et al., 1995). A 

subsequent biochemical study revealed that the two proteins XCAP-C and XCAP-E 

form a pentameric complex with three other XCAP subunits: XCAP-D2, XCAP-G and 

XCAP-H (Hirano et al., 1997).  As this complex was able to promote chromosome 

condensation in vitro, it was termed as “condensin complex”. The condensin complex 

is able to introduce positive supercoils into DNA in an ATP hydrolysis-dependent 

manner in the presence of topoisomerase I (Kimura and Hirano, 1997) and 

topoisomerase II (Kimura et al., 1999). Moreover, an in vitro electron spectroscopic 

imaging (ESI) study indicated that a single condensin complex is sufficient to 

introduce two or more supercoils into protein free DNA (Bazett-Jones et al., 2002) 

which further supported an instrumental role of condensin in chromosome 

condensation.    
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The canonical condensin complex, condensin I was isolated from Xenopus egg 

extracts (Hirano et al., 1997). Soon after the discovery of the condensin I complex, a 

second condensin complex, condensin II was identified in HeLa cells (Ono et al., 

2003). The condensin II complex shares the same SMC core subunits (Smc2/Smc4) 

with condensin I, but contains three different non-SMC subunits Cap-D3, Cap-G2 and 

Cap-H2 (Fig 1.4). The two core SMC proteins are ATPases (Hirano, 2006; Hirano and 

Mitchison, 1994; Strunnikov et al., 1995) and their activity is essential for condensin 

function (Hudson et al., 2008; Stray and Lindsley, 2003). Two of the non SMC 

subunits of each complex, Cap-D2/D3 and Cap-G/G2 contain HEAT repeats (Neuwald 

and Hirano, 2000) and the third non SMC subunit Cap-H/H2, belong to the kleisin 

family of proteins (Schleiffer et al., 2003). Depletion of subunits of both the 

complexes in Xenopus and HeLa cells causes distinct morphological defects, 

suggesting that these complexes may contribute differently to mitotic chromosome 

architecture (Ono et al., 2003).  

 

 
Figure 1.4 Architecture of the condensin complexes. Condensin 
complexes are composed of two core SMC subunits Smc2 and Smc4 
and a set of three non SMC subunits CapD2, CapG and CapH in 
condensin I and CapD3, CapG2 and CapH2 in condensin II. Adapted 
from (Hirano, 2005) 

 

In most higher eukaryotes both condensin complexes have been reported (Ono et 

al., 2003; Yeong et al., 2003), whereas yeast contains only condensin I. In Drosophila, 

condensin I has been reported, and homologues for Cap-D3 and Cap-H2 have also 
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been found but no homologue of Cap-G2 has been identified so far. A third condensin 

like complex known as dosage compensation complex (DCC) has been reported only 

in nematodes. It is involved in the reduction of transcription of X-linked genes during 

dosage compensation in hermaphrodites (Lieb et al., 1998). The DCC is composed of 

an Smc2 homologue, an Smc4 variant called DPY-27 and two closely related non 

SMC variants (Chuang et al., 1994; Hagstrom et al., 2002).   

Previous studies have revealed that the Smc2 and Smc4 subunits form a 

heterodimer, which adopts a closed- arm “lollipop” like conformation (Anderson et al., 

2002; Yoshimura et al., 2002). The non SMC subunits Cap-H and Cap-H2 link the 

ATPase head domains of both SMC subunits to each other and to both non SMC 

subunits (Onn et al., 2007). Although the architecture of condensin complex is now 

well studied, the topology of condensin interaction with chromosomes is still 

unknown. 

The initial characterization of condensin complexes in yeast (Freeman et al., 2000; 

Lavoie et al., 2000; Saka et al., 1994; Strunnikov et al., 1995), Xenopus (Hirano et al., 

1997) and vertebrate cells (Hirota et al., 2004) has shown that condensin complexes 

play a crucial role in mitotic chromosome organization. However, studies in several 

multicellular organisms and tissue culture cells revealed that chromosome compaction 

was almost normal in the absence of condensin subunits. Studies in Drosophila 

revealed that the condensin mutants and RNAi treated S2 cells achieve normal levels 

of chromosome compaction during mitosis, but they display strong defects in 

chromosome segregation during anaphase (Bhat et al., 1996; Coelho et al., 2003; Dej 

et al., 2004; Jager et al., 2005; Oliveira et al., 2005; Savvidou et al., 2005; Steffensen 

et al., 2001). Similarly in C.elegans, depletion of condensin subunits does not lead to 

any chromosome condensation defects during metaphase (Hagstrom et al., 2002). This 

suggests the existence of an alternate mechanism which ensures chromosome 

condensation prior to metaphase. 

 

1.1.3.2 Localization of the condensin complexes 

      Spatial and temporal distribution of the two condensin complexes during the cell 

cycle has been shown to vary among different eukaryotes. In S. cerevisiae, the single 
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condensin complex is constitutively nuclear throughout the cell cycle (Bhalla et al., 

2002; Freeman et al., 2000). However, in S. pombe, the condensin subunits are 

cytoplasmic during interphase, and transported into the nucleus during mitosis in a 

mitosis-specific phosphorylation dependent manner (Sutani et al., 1999). In 

Drosophila, different condensin I subunits behave differently. The core SMC subunit 

Smc4, was shown to be both nuclear and cytoplasmic during interphase (Steffensen et 

al., 2001), while the non SMC subunit Barren (Cap-H), is mainly cytoplasmic during 

interphase (Oliveira et al., 2007). Both subunits start to concentrate on chromatin 

during prophase, localize to the axial core of chromosomes during metaphase and 

anaphase and delocalize from chromatin in telophase (Oliveira et al., 2007; Steffensen 

et al., 2001). The non SMC subunit Cap-D2, is nuclear throughout interphase. It was 

found to be present on chromosome axes during mitosis and it remains associated with 

chromosomes as they decondense late in mitosis similar to Cap-H/ Barren and Smc4 

(Savvidou et al., 2005). Studies in vertebrate cells showed that condensin I can mainly 

be found in the cytoplasm, whereas condensin II is nuclear during interphase. 

Condensin I gains access to the chromosomes only after nuclear envelope break down 

(NEBD) in prometaphase, while condensin II associates with chromatin during early 

prophase (Hirota et al., 2004; Ono et al., 2004). Both condensin complexes were found 

to be present at centromeres and axially along chromosome arms during metaphase, 

and have distinct alternating patterns as well as some regions of overlap along the 

chromosome arms (Ono et al., 2003). Similar to vertebrate cells, in plants it was found 

that condensin I is mainly located in the cytoplasm, whereas condensin II was in the 

nucleus during interphase (Fujimoto et al., 2005). Based on these observations it was 

proposed that the two condensin complexes might contribute in a mechanistically 

distinct fashion to mitotic chromosome architecture.       

 

1.1.3.3 Regulation of the condensin complexes 

During the cell cycle, chromosomal targeting and the assembly of condensin 

complexes are regulated by different factors. Initial studies in Xenopus egg extracts 

revealed that the non SMC subunits of condensin I are hyper-phosphorylated by 

Cdc2/Cdk1 in a mitosis specific manner and this phosphorylation is required for the 

supercoiling of DNA, as well as for the condensation of mitotic chromosomes in vitro 



 34

(Hirano et al., 1997; Kimura et al., 1998). Further in vitro experiments have shown that 

treatment with kinase inhibitors compromises condensin loading in mitotic extracts, 

whereas phosphatase inhibitors enhance condensin loading in interphase extracts 

(Hirano et al., 1997). In S. pombe the acid residue T19 of Cut3 (Smc4 homologue) is 

phosphorylated by Cdc2 kinase and this phosphorylation is required for mitotic 

accumulation of condensin components in the nucleus (Sutani et al., 1999). The human 

condensin I complex, however, remains phosphorylated throughout the cell cycle 

(Takemoto et al., 2004). In HeLa cells, Smc4, and all three non SMC subunits showed 

similar levels of phosphorylation in mitotic and non-mitotic cells. Phospho-epitope 

mapping revealed that different phosphorylation sites are used in interphase and 

mitosis (Takemoto et al., 2006; Takemoto et al., 2004). In-vitro studies also showed 

that human condensin I is phosphorylated by Cdc2/Cdk1 in mitosis (Kimura et al., 

2001) and by CK2 in interphase (Takemoto et al., 2006). This phosphorylation by CK2 

suppresses DNA supercoiling activity, which indicates that condensin I is negatively 

regulated by CK2 (Takemoto et al., 2006). Earlier studies revealed that the regulatory 

subunit of phosphatase 2A (PP2A) interacts with the condensin II subunit hHCP-

6/hCap-D3 (Takemoto et al., 2009; Yeong et al., 2003) and targets the condensin II 

complex to chromosomes (Takemoto et al., 2009). When the cells progress further 

through anaphase, PP2A dephosphorylates hCap-D3, thereby regulating the condensin 

II complex (Takemoto et al., 2009). Taken together these observations suggest that the 

chromosomal targeting and loading of condensins could be regulated by 

kinases/phosphatases.  

In addition to Cdk1 and CK2, Aurora B kinase has also been shown to play an 

important role in recruitment of condensin complexes in some organisms. In 

Drosophila, depletion of aurora B leads to failure in targeting of Barren (Cap-H) to the 

chromatin (Giet and Glover, 2001). Similarly in C. elegans, depletion of aurora B 

kinase prevents the association of core subunits of condensin complexes Mix1 (Smc2) 

and Smc4 with chromatin (Hagstrom et al., 2002). In vertebrates, aurora B kinase 

regulates the association of condensin I, but not condensin II, with chromatin (Lipp et 

al., 2007). A study in Drosophila revealed that the histone kinase Nhk1 is required for 

the loading of condensin onto meiotic chromosomes in oocytes (Ivanovska et al., 

2005). Though so far, it is not known whether these kinases directly phosophorylate 
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one of the condensin subunits, or whether their action on a different substrate is a 

prerequisite for condensin targeting.    

 

1.1.3.4 Other biological functions of condensins 

An elegant series of genetic and biochemical studies showed that condensin is 

required for maintaining proper centromere structure and kinetochore-microtubule 

interactions. In S. cerevisiae (Yong-Gonzalez et al., 2007), C. elegans (Hagstrom et 

al., 2002) Xenopus egg extracts (Wignall et al., 2003) and HeLa cells (Ono et al., 

2004; Samoshkin et al., 2009) depletion of condensin caused severe defects in 

kinetochore-microtubule interactions, merotelic attachment of spindles and aberrant 

chromosome alignment and segregation. Moreover in several studies it was discovered 

that condensin subunits localize to centromeric chromatin and interact with 

centromeric proteins (Hagstrom et al., 2002; Jager et al., 2005; Nakaseko et al., 2001; 

Ono et al., 2004). Based on these observations, it was proposed that condensins might 

regulate the proper assembly of centromeric heterochromatin and help in the 

orientation of sister kinetochores. When this process is compromised, abnormal 

interactions between kinetochores and microtubules are observed.  

The condensin complexes also play crucial roles in organization of meiotic 

chromosomes. In S. cerevisiae, condensin subunits localize to the axial core of 

pachytene chromosomes and contribute to their compaction and individualization (Yu 

and Koshland, 2003). These results are consistent with finding from Arabidopsis 

(Siddiqui et al., 2003), C. elegans (Chan et al., 2004) and Drosophila (Resnick et al., 

2009).  Recent studies also revealed that condensin is required for the resolution of the 

synaptonemal complex in meiosis I and perhaps as well for the segregation of sister 

chromatids in meiosis II (Resnick et al., 2009; Yu and Koshland, 2003). 

Accumulating lines of evidence suggest that, apart from mitosis and meiosis, 

condensin complexes have important functions in gene regulation and chromosome 

stability. In S. cerevisiae, defects in condensin function interfere with silencing of 

certain genes. For example, yeast ysc-4 (Cap-D2) mutants fail to repress the expression 

of the mating type loci, HMLα (Bhalla et al., 2002). Another study in S. cerevisiae 

revealed that the SMC subunit Smc2p is involved in the locus-specific transcriptional 
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repression of the three silent domains rDNA, telomere-proximal regions, and mating-

type loci. Condensin bound at rDNA is required for nucleolar organization and for 

localization of the silencing protein Sir2p at the telomere and rDNA. Partial loss in 

condensin function perturbs this organization and enhances spreading of silent 

chromatin within the rDNA; this in turn attracts Sir2p from telomeres to rDNA and 

consequently alters the strength of silencing in both loci (Machin et al., 2004).  

Two independent studies in Drosophila revealed that the non SMC subunits of 

condensin I are involved in transcriptional repression. The first report indicated a role 

of Cap-G in transcriptional repression of the centromere-proximal heterochromatic 

region (Dej et al., 2004) and in a second study it was shown that Barren/Cap-H 

interacts with polycomb group protein (Lupo et al., 2001). Both proteins colocalize at 

polycomb response elements and cooperate to maintain the silenced state of homeotic 

genes (Lupo et al., 2001). Apart from gene regulation, the condensin I complex also 

plays an important role in DNA repair and the DNA damage checkpoint response in S. 

pombe (Aono et al., 2002) and in S. cerevisiae (Yu and Koshland, 2003). More 

recently, an interaction between human condensin I, DNA nick-sensor poly (ADP-

ribose) polymerase I and the base excision repair (BER) factor XRCC1 complex was 

reported. It was also shown that condensin I is recruited at DNA damage sites, and 

depletion of condensin I in vivo compromises single stranded break repair (Heale et al., 

2006).  

 

1.1.4 Chromosome segregation 

Proper segregation of chromosomes is essential for maintaining the integrity of the 

genome. Chromosome segregation is triggered by the dissolution of sister chromatid 

cohesion once the sister chromatids are individualized and condensed. After the 

dissolution of cohesion, they dissociate from each other and start to move to opposite 

poles of the cell.  

 

1.1.4.1 Dissolution of the cohesin complex   

In most of the eukaryotic cells, dissociation of cohesin complexes from 

chromosomes occurs in a two-step manner during mitosis. In the first step known as 
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the prophase pathway, the bulk of cohesin complex is removed from the 

chromosome arms during prophase (Losada et al., 1998; Sumara et al., 2000; 

Waizenegger et al., 2000). Several studies have shown that this process is facilitated 

by a mitotic kinase called polo-like kinase 1 (Plk1) (Hauf et al., 2005; Lenart et al., 

2007; Losada et al., 2002; Sumara et al., 2000). Plk1 phosphorylates the C-terminal 

domain of the Scc3 homolog SA1/SA2 (Hauf et al., 2005). This phosphorylation is 

believed to be responsible for cohesion removal from chromosomes. However, the 

exact mechanism is still unknown. The two proteins Wapl (wings apart-like) and Pds5 

have also been reported to play a direct role in unloading cohesin during prophase. 

Wapl is a cohesin-binding protein. It was reported in HeLa cells that Wapl facilitates 

cohesin's removal from chromosome arms during prophase (Gandhi et al., 2006). Wapl 

depleted cells arrest in prometaphase with chromosomes that display poorly resolved 

sister chromatids with a high level of cohesin still attached to chomatin (Gandhi et al., 

2006; Kueng et al., 2006). Initial studies in yeast showed that Pds5 is required for the 

maintenance of sister chromatid cohesion during G2 phase (Hartman et al., 2000; 

Panizza et al., 2000). Recent studies showed that Wapl interacts with Pds5 (Gandhi et 

al., 2006) and this interaction regulates the release of cohesin from chromosomes in 

Xenopus egg extract (Shintomi and Hirano, 2009). Mechanistically, it was proposed 

that the Wapl-Pds5 complex modulates conformational changes in cohesin to make it 

competent for dissociation from chromatin during prophase (Shintomi and Hirano, 

2009).  

Although a major proportion of the cohesin complex is removed from chromosome 

arms by the prophase pathway, a small population of cohesin remains protected at 

centromeres until all chromosomes are correctly bioriented in metaphase. This 

protection is mainly accomplished by members of the “shugoshin” family. Shugoshins 

are centromere specific proteins. The first member of the shugoshin family MEI-S332, 

was found in Drosophila (Kerrebrock et al., 1995; Tang et al., 1998) and subsequently 

identified in yeast (Katis et al., 2004) and vertebrates (Kitajima et al., 2005; 

McGuinness et al., 2005). Subsequent studies showed that shugoshin associates with 

protein phosphatase 2A (PP2A) and colocalizes with it at centromeres (Kitajima et al., 

2005; Tang et al., 2006). Based on these observations, it was proposed that shugoshin 
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recruits PP2A to the centromere, which keeps centromeric cohesin 

hypophosphorylated thereby preventing its dissociation in prophase during mitosis.  

 

 

 

 

Figure 1.5 Dissolution of cohesin during mitosis. During mitosis cohesin is removed in two-steps. 
In the first step, the majority of cohesin is removed from chromosome arms in prophase via a 
pathway called prophase pathway. In this pathway the cohesin subunit Scc3 is phosphorylated by 
Polo-like kinase 1/ aurora B which leads to opening of the cohesin ring. At this stage the centromeric 
cohesion is protected by a protein called shugoshin 1. At the onset of anaphase, separase gets 
activated and cleaves the Scc1 subunit of the cohesin complex thereby removing residual cohesin 
complexes from centromeres.        
 
    

The small fraction of cohesin which remains in the centromeric regions is released 

at the metaphase-to-anaphase transition (Sumara et al., 2000). Removal of centromeric 

cohesion is triggered by a protease called separase (Waizenegger et al., 2000), which 

specifically cleaves the α-kleisin subunit of the cohesin complex thereby separating the 

sister chromatids in anaphase (Buonomo et al., 2000; Ciosk et al., 1998; Hauf et al., 

2001; Uhlmann et al., 1999). Separase is kept inactivated until the metaphase-to-
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anaphase transition by an anaphase inhibitor called securin (Leismann et al., 2000; 

Yamamoto et al., 1996; Zou et al., 1999). Before the metaphase-to-anaphase transition 

securin forms a complex with separase and inhibits its activity (Ciosk et al., 1998; 

Leismann et al., 2000; Zou et al., 1999). 

Once all the chromosomes are correctly bioriented and the mitotic check point 

(which monitors whether all the chromosomes are aligned at the metaphase plate and 

are under bipolar tension) is turned off at the onset of metaphase, securin is degraded 

by ubiquitin-dependent proteolysis mediated by the anaphase promoting complex 

(APC) (Cohen-Fix et al., 1996; King et al., 1996). After securin degradation, Separase 

cleaves the Scc1 subunit of the cohesin complex and triggers sister chromatid 

separation. However, several studies indicate that securin mediated inhibition is not the 

only mechanism for separase inhibition. Securin depleted yeast (Alexandru et al., 

1999) and human cells (Jallepalli et al., 2001) undergo normal anaphase. Furthermore, 

securin knockout mice are viable (Mei et al., 2001). Subsequent studies suggested a 

second mechanism, which depends on inhibitory phosphorylation of separase by 

Cdk1-cyclin B1 and phosphorylation dependent binding of Cdk1-cyclin B1 to 

separase, which plays a crucial role in separase inhibition until anaphase (Gorr et al., 

2005; Stemmann et al., 2001).  

The removal of the cohesin complex during meiosis was reported to be separase 

dependent in most of the organisms studied (Buonomo et al., 2000; Gorr et al., 2006; 

Kudo et al., 2006; Salah and Nasmyth, 2000; Terret et al., 2003). During meiosis I, 

cohesin is removed from the chromosome arms at the metaphase I to anaphase I 

transition which allows terminalization of chiasmata and subsequent segregation of 

homologous chromosomes. The centromeric cohesin complex remains associated with 

paired sister chromatids until the onset of anaphase II (Moore and Orr-Weaver, 1998). 

Members of the shugoshin family protect the removal of this cohesin around 

centromeres during meiosis I by recruiting protein phosphatase 2A (PP2A) to 

centromeric regions (Katis et al., 2004; Kerrebrock et al., 1995; Kitajima et al., 2004; 

Kitajima et al., 2006; Riedel et al., 2006; Tang et al., 1998). This maintenance of 

cohesion between sister chromatids is required for a faithful reductional division 

during meiosis. Thereafter, this residual cohesin is cleaved by a second wave of 

separase activity during meiosis II.  



 40

1.1.4.2 Role of condensin I complex in sister chromatid segregation 

In many organisms, condensin loss results in chromosome segregation defects 

during anaphase (Bhat et al., 1996; Coelho et al., 2003; Dej et al., 2004; Gerlich et al., 

2006a; Jager et al., 2005; Oliveira et al., 2005; Ono et al., 2004; Savvidou et al., 2005; 

Steffensen et al., 2001). Later it was also shown that condensin I facilitates the 

removal of cohesin from chromosomes during mitosis (Hirota et al., 2004) and meiosis 

(Yu and Koshland, 2005). Furthermore, in yeast condensin regulates the dissolution of 

cohesin-independent chromosome linkages at repeated DNA in a Cdc14 dependent 

manner (D'Amours et al., 2004; Sullivan et al., 2004a). Recent studies have also 

revealed that the segregation defect occurring during anaphase is due to the premature 

loss of compact organization of chromosomes in early anaphase (Gerlich et al., 2006a; 

Vagnarelli et al., 2006). These pieces of evidence suggest that condensin complexes 

play a crucial role in chromosomes segregation. 
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Aims of the thesis 

To gain a comprehensive insight into the localization and dynamic behavior of the 

condensin I complex subunits, the first part of this thesis was aimed to analyze the 

dynamic behavior of CapG using a fully functional EGFP-tagged CapG protein. To 

this end, several genomic and UAS transgenic lines were characterized and the 

intracellular localization pattern of CapG-EGFP was studied during early embryonic 

mitotic divisions. After determining the biological functionality of CapG-EGFP, a 

complete profile of CapG-EGFP loading was determined and the loading initiation 

sites were investigated. Furthermore, the dynamic properties of chromatin- associated 

CapG-EGFP were analyzed using Fluorescence Recovery after Photobleaching 

(FRAP) experiments. The results were compared with studies performed previously 

using a functional EGFP-tagged variant of the condensin I -kleisin subunit 

CapH/Barren.  

The second part of the thesis was aimed to elucidate a possible cohesive role for 

the mitotic cohesin subunit Rad21 during meiosis in Drosophila females. As C(2)M is 

discussed as another candidate cohesin subunit in Drosophila, a potential redundancy 

between Rad21 and C(2)M was analyzed during oogenesis. For this purpose, Rad21ex8 

and C(2)MEP;Rad21ex8 mutant oocytes were generated by forced cleavage of a 

functional Rad21 variant containing engineered cleavage sites for the tobacco etch 

virus protease. To investigate the involvement of Rad21 in cohesion between sister 

chromatids during meiosis, homolog disjunction and premature sister chromatid 

segregation was scrutinized in Rad21ex8 and C(2)MEP;Rad21ex8 mutant oocytes during 

oogenesis and the meiotic divisions. Moreover, the question was addressed whether 

Rad21 plays a role in the maintenance of the synaptonemal complex during prophase I. 
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Chapter II Results 

2.1 Localization and dynamic analysis of the condensin I subunit CapG  

In order to analyze the localization of CapG and its association dynamics with 

chromatin, EGFP was fused to the C-terminus of Drosophila CapG and several UAS 

and genomic transgenic lines were created (S. Heidmann and K. Trunzer, 

unpublished). 

 

2.1.1    Characterization of CapG-EGFP transgenic lines  

The insertion positions of UASP1-CapG-EGFP transgenes were mapped to the 

second chromosome (lines II.1 and II.2) and third chromosome (III.1, III.2 and III.3). 

These three transgenes allow ectopic expression of CapG-EGFP using the binary 

GAL4/UAS system (Brand et al., 1993).             

 

                   III.1                          III.2                             III.3                            UAS Line          

            40      20     10    1      40     20     10    1       40     20      10      1              Embryos 

    

    
 

Figure 2.1 CapG-EGFP expression analysis. Individuals of different transgenic lines of 
UASP1-CapG-EGFP were crossed with prd-GAL4 flies, 6-7 hrs old embryos were collected and 
extracts were prepared. Different amounts of extract (corresponding to 40, 20, 10 and 1 embryo 
equivalents) were loaded and the blot was probed with an antibody against EGFP to detect CapG-
EGFP protein. Tubulin was used as loading control.  

 

To determine the expression levels, individuals of all three third chromosomal 

lines were crossed with flies of the paired-GAL4 driver line, which drives in early 

embryos the expression of Gal4-dependent transgenes unevenly in stripes in the 

second thoracic (T2), first, third, fifth and seventh abdominal segments (A1, A3, A5, 

A7) as well as throughout the gnathal segments (Brand et al., 1993). 6-7 hrs old 

embryos were collected, extracts were prepared and analyzed by western blotting 

CapG-EGFP 
 
 
α-Tubulin 
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using an antibody against EGFP (Fig. 2.1).  All the transgenic lines showed expression 

of CapG-EGFP.  

 

 

Figure 2.2 Intracellular localization of CapG.  Time-lapse microscopy was performed on embryos co-
expressing CapG-EGFP (green) and His2AvD-mRFP1 (red), progressing through mitotic cycle 13. 
(Scale bar 5μm). CapG was found to be nuclear enriched throughout the cell cycle.   

 

 

To determine the intracellular localization of CapG-EGFP during the cell cycle, 1-

2 hrs old embryos were collected from flies with the genotype His2AvD-mRFP1 

II.1/+; gCapG-EGFP1 III.1/ +, which express CapG-EGFP and the mRFP1 tagged 

Drosophila Histone 2A variant His2AvD to visualize chromatin. In the gCapG-EGFP 

transgenes, expression is directed by the genomic regulatory elements of the CapG 

locus. Mitosis 13 was analyzed using a confocal microscope. CapG-EGFP was found 

slightly enriched in the nucleus during interphase (Fig 2.2) unlike Drosophila 

Barren/CapH, a non SMC subunit of condensin I (Oliveira et al., 2007) and condensin 

I subunits in vertebrate cells (Hirota et al., 2004; Ono et al., 2004), which are mainly 
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cytoplasmic during interphase. During prophase, metaphase and anaphase, CapG-

EGFP is localized along the condensed chromosome arms while it dissociates from 

chromatin in late mitosis and starting in late telophase it was again found to be slightly 

nuclear enriched (Fig. 2.2).  

In order to check if the overexpression of CapG-EGFP leads to any phenotype, 

individuals of all UAS lines were crossed with flies from several eye specific GAL4 

drivers lines namely eyeless-GAL4, GMR-Gal4 and Sevenless-GAL4. eyeless-GAL4 

directs expression throughout the eye imaginal discs during the early development of 

eye (Hazelett et al., 1998). GMR-Gal4 causes high levels of transgene expression in 

the cells posterior to the morphogenetic furrow in eye imaginal discs (Freeman, 1996). 

Sevenless-GAL4 drives expression in the photoreceptors and cone cells of the late 

developing eye disc (Bailey, 1999; Basler and Hafen, 1989). No obvious deleterious 

effects of CapG-EGFP overexpression on eye morphology were observed in any 

progeny of these crosses (data not shown).   

 

2.1.2   CapG-EGFP is a biologically functional protein  

To determine whether the fusion protein CapG-EGFP is biologically functional, 

rescue experiments were performed using three different mutants of CapG (CapG1, 

CapG3and CapG6). CapG1 and CapG6 contain nonsense mutations, which introduce 

premature stop codons instead of the triplets encoding amino acids 343 and 77, 

respectively, while CapG3 has a missense mutation changing the arginine at position 

558 to a tryptophan (Jager et al., 2005). When homozygous, all mutations cause 

embryonic lethality and mutant embryos display massive anaphase bridges during 

mitosis 15. 

The transgenes UAS-CapG-EGFP III.1, III.2 and III.3 were expressed using a 

ubiquitously expressing driver, daughterless-Gal4 (Wodarz et al., 1995) in different 

heterozygous CapG mutant backgrounds, by crossing virgins of the genotype either 

CapG1/ CyO; da-GAL4/ TM3,Sb or CapG3/ CyO; da-GAL4/ TM3,Sb with males of the 

genotype either CapG1/CyO; UASP1-CapG-EGFP III.1 or III.2 or III.3/ TM3,Sb or 

CapG3/CyO; UASP1-CapG-EGFP III.1 or III.2 or III.3/ TM3,Sb orCapG6/CyO; 

UASP1-CapG-EGFP III.1 or III.2 or III.3/ TM3,Sb. For gCapG-EGFP, virgins of the 
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genotype of either CapG1 / CyO; gCapG-EGFP III.1/ TM3,Sb or CapG3 / CyO; 

gCapG-EGFP III.1/ TM3,Sb were crossed with males of the genotype of either CapG1/ 

CyO or CapG3/ CyO or CapG6/ CyO. The percentages of rescued flies were scored 

based on absence of the marker Curly (CyO). 

The genomic transgene gCapG-EGFP III.1 / TM3,Ser rescues embryonic lethality 

of CapG mutants efficiently as rescued adult flies were obtained in all three 

heteroallelic mutant conditions (table 2.1). Among the UAS lines, only UASP1-CapG-

EGFP III.2 rescues the embryonic lethality in the CapG3/CapG6 heteroallelic mutant 

condition, while UASP1-CapG-EGFP III.1 and UASP1-CapG-EGFP III.3 did not give 

rise to rescued adult flies. A possible reason for this could be that the amount of CapG-

EGFP protein due to expression of the UASP1-CapG-EGFP III.1 and UASP1-CapG-

EGFP III.3 transgenes is not sufficient to support development to the adult stage.  

 

Table 2.1: Rescue of CapG mutants by CapG-EGFP transgenes 

 

These results suggest that CapG-EGFP is a biologically functional protein and 

therefore its localization and dynamic behavior is very likely to reflect the dynamic 

properties of endogenous protein.  

 

 

 

Genotype of rescued flies Expected percentage of 

rescued flies among the 

progeny 

Proportion of 

rescued flies 

CapG1/CapG6;gCapG-EGFP III.1 20%  16.75% of expected 

CapG1/CapG3;gCapG-EGFP III.1 20% 18.25% of expected 

CapG3/CapG6;gCapG-EGFP III.1 20% 24.5% of expected 

CapG3/CapG6;UASP1-CapG-EGFPIII.2 /da-

GAL4 

14.2% 2.3% of expected 
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2.1.3   Chromatin association profile of CapG-EGFP during mitosis  

To determine the timing of CapG-EGFP association with chromatin during mitosis, 

I recombined gCapG-EGFP III.1 with His2AvD-mRFP1 III.1 (Schuh et al., 2007) and 

performed confocal microscopy on embryos co-expressing CapG-EGFP and 

His2AvD-mRFP1. Embryos progressing through mitosis 12 of early syncytial 

divisions were analyzed. It is advantageous to analyze mitosis during the syncytial 

nuclear divisions of the early Drosophila blastoderm embryo, because these divisions 

are extremely rapid (average time per division ≈10 mins) and occur meta-

synchronously on the surface of the embryo, which allows simultaneous data 

acquisition from multiple nuclei arranged in the same optical plane.  The diffuse and 

weak interphase nuclear signals of CapG-EGFP start to enrich in a dotlike pattern at 

the time of initiation of chromosome condensation (ICC) during early prophase, 

indicative of chromatin association. 

ICC starts approximately 6.30 mins before anaphase onset (t=0), as adapted from 

Oliveira et al., (2007), where ICC was defined as the time point when the first 

condensed dots of His2AvD-mRFP1 were observed.  

Further loading of CapG-EGFP occurred gradually and CapG-EGFP was 

maximally associated with chromosomes approximately 1.5 min before nuclear 

envelope break down (NEBD) (Fig. 2.3). NEBD in mitosis 12 occurs approximately 

2.2 min before anaphase onset as described in Oliveira et al., 2007. These findings are 

at odds with previous studies in vertebrates, where condensin I was shown to gain 

access to chromatin only after NEBD (Hirota et al., 2004; Oliveira et al., 2007; Ono et 

al., 2004). Once loading was fully achieved, CapG-EGFP levels on the chromatin 

remained high until late anaphase when CapG-EGFP dissociated rapidly and 

chromosomes decondensed in the ensuing telophase (Fig. 2.3). These results indicate 

that CapG-EGFP might have an additional function independently of other condensin I 

subunits during interphase.   

To analyze whether ectopically expressed CapG-EGFP behaves in a similar 

manner, flies with the genotype UASP1-CapG-EGFP III.2, mat α- tub GAL4-VP16 / 

His2AvD-mRFP1 III.1 were generated and their progeny was analyzed by confocal 

microscopy while progressing through embryonic mitosis 12. 
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Figure 2.3 Chromatin association profile of CapG-EGFP during mitosis. A) Graphic representation of 
loading of CapG-EGFP onto chromosomes over time by quantifying fluorescence intensities in live 
embryos co-expressing CapG-EGFP and His2AvD-mRFP1 during mitosis 12. Data series were aligned 
accordingly to anaphase onset timing (t 0=anaphase onset, 7 embryos, 15 nuclei) The times of Initiation of 
Chromosome Condensation (ICC) and Nuclear Envelope Breakdown (NEBD) are indicated by the 
continuous and dashed red lines, respectively. Error bars indicate standard deviation B) Representative 
images at different time points of the cycle (corresponding to the roman-numbered arrows in the graph in 
A). Cap-G is present in nuclei during interphase. Scale bar 5 μm 
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The loading behavior shown by this ectopically expressed CapG-EGFP (mat α- tub 

GAL4-VP16 > UASP1-CapG-EGFP1 III.2) was the same as CapG-EGFP expressed 

under the control of the genomic CapG regulatory region (gCapG-EGFP III.1; data 

not shown).  

In order to determine whether the rapid decrease of chromatin-associated CapG-

EGFP fluorescence signal intensities during late mitosis might be caused by a decrease 

in total CapG-EGFP protein levels, those levels were carefully analyzed at different 

phases of mitosis 14. For this purpose, recombinant flies with the genotype gCapG-

EGFP III.1, string7B, P[w+,Hs-string] / TM3, Ser were generated. string7B is a recessive 

embryonic lethal allele of string (Juergens et al., 1984), which is the Drosophila 

homologue of fission  yeast cdc25. cdc25/string encodes a phosphatase which controls 

the G2/M transition by removing an inhibitory phosphorylation of the mitotic kinase 

Cdc2/Cdk1, thereby activating it (Edgar and O'Farrell, 1989). Embryos homozygous 

for string7B arrest in G2 phase of mitosis 14.  These arrested cells can be driven 

simultaneously in mitosis 14 by providing an ectopic pulse of stg expression after 

induction of the hs-stg transgene with a brief heat shock.  

 

                          G2                   P                  M                   A                 T-In    

                      5        15         5       15        5       15          5      15        5        15             Embryos 

              

             

             
 

Figure 2.4 CapG-EGFP level during different phases of mitosis 14.  Embryos from 
flies of the genotype gCapG-EGFP III.1, string7B, P[w+,Hs-string] / TM3, Ser , were 
synchronized for mitosis 14 (see materials and methods). Embryos with all cells in G2 
phase (before mitosis 14), prophase (P), metaphase (M), anaphase (A), and telophase 
(mitosis 14)/ interphase of mitosis 15(T-In) were sorted. Different amounts of protein 
extracts from synchronized embryos were loaded and probed with antibodies against 
EGFP, Cyclin B and tubulin. Cyclin B was used as sorting control and Tubulin was used 
as loading control. CapG-EGFP1 levels do not change appreciably throughout the cell 
cycle. 
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Embryos from gCapG-EGFP III.1, string7B, P[w+,Hs-string] / TM3, Ser parents 

were collected, appropriately aged, treated with a heat shock, fixed, and stained for 

DNA. stg homozygous and mitotically synchronized embryos were identified 

microscopically and sorted for different phases of mitosis 14 (see materials and 

methods). Extracts from mitotically staged embryos were run on a SDS-PAGE, blotted 

and the blot was probed with an antibody against EGFP for determining the levels of 

CapG-EGFP (Fig 2.4).  

CapG-EGFP levels do not change significantly during mitosis arguing against 

degradation of a significant proportion of the protein pool. Thus, the striking 

disappearance of CapG-EGFP from chromatin at late stages of mitosis most likely 

does not reflect degradation, but rather a delocalization of this condensin subunit. 

 

2.1.4 CapG-EGFP loading initiates at centromeres 

The analysis of association of CapG-EGFP with chromatin revealed that CapG-

EGFP1 loading initiates at focused loci on the chromosomes. As a physical association 

of CapG with the centromeric histone H3 variant Cid has been described (Jager et al., 

2005), it was assessed whether mitotic CapG loading might initiate at the centromeric 

region. To this end, transgenic lines co-expressing CapG-EGFP and Cid-mRFP (Schuh 

et al., 2007) were generated. Cid is found exclusively at active centromeres throughout 

the cell cycle (Ahmad and Henikoff, 2002). Embryos progressing through the syncytial 

mitotic cycle 12 and post-blastodermal mitosis 14, were analyzed (Fig. 2.5).  

For both mitotic divisions it was found that initial sites of CapG-EGFP 

accumulation were either at or very close to the centromeres. CapG-EGFP starts to 

colocalize with Cid-mRFP during late interphase, while in prophase the CapG-EGFP 

signals appeared to spread along the chromosome arms (Fig. 2.5). This observation 

was further confirmed by quantifying intensities of CapG-EGFP at centromeric 

proximal and distal regions (Fig 2.6 A) in embryos progressing through mitosis 12. 

The quantification data revealed that CapG-EGFP starts to enrich at centromeric 

proximal regions during interphase approximately 2 min before ICC.  
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A 

 
 

 

B   

 
 

Figure 2.5 CapG-EGFP loading starts at centromeres.  Embryos co-expressing CapG-EGFP and Cid-
mRFP1 were analyzed to determine the initial sites of CapG-EGFP loading. Time-lapse microscopy was 
performed on embryos progressing through syncytial mitotic cycle 12 (A) and post-blastodermal mitosis 14 
(B), individual frames for the indicated times are shown. (t =0, anaphase onset). In order to reduce nuclear 
fluorescence, color contrast was adjusted in (A) for better visualization of initial loading sites. Yellow and 
blue arrows indicate two individual CapG-EGFP loading initiation sites in two different nuclei. In the 
merged images, CapG-EGFP is shown in green and Cid-mRFP is in red.  Scale bars 5 μm 
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Figure 2.6 Quantification of initial accumulation of CapG-EGFP at centromeric regions. 
Embryos co-expressing CapG-EGFP1 (Green) and Cid-mRFP1 (red) were analyzed for initiation of 
CapG-EGFP1 loading at centromeric regions. (A) Graphic representation of the ratio between the 
mean fluorescence intensity of centromeric proximal region (MFI cen-proximal) and the mean 
fluorescence intensity of centromeric distal regions (MFI cen-distal), plotted over time for CapG-
EGFP. Data series were aligned setting t0= Nuclear Envelope Break Down.  The times of Initiation of 
Chromosome Condensation (ICC) and Nuclear Envelope Breakdown (NEBD) are indicated by the 
continuous and dashed red lines, respectively. The ICC time point is adapted from Oliveira et al., 
(2007). Error bars represent standard deviation. n=62, for each cen-proximal and cen-distal. (B) 
Example of centromeric proximal region (red circle) and centromeric distal region (green circle) used 
for the quantification of CapG-EGFP1 intensities represented in (A) Scale bar 5μm.  
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At later stages of prophase (t = -3.00 min), it spreads onto the chromosome arms as 

a decrease in the ratio between the mean fluorescence intensity of centromeric 

proximal region (MFI cen-proximal) and the mean fluorescence intensity of 

centromeric distal region (MFI cen-distal) was observed. Shortly before NEBD the 

ratio reaches 1, which indicates that CapG-EGFP is equally distributed between the 

centromeres and chromosome arm regions (Fig 2.6 B). These quantitative data confirm 

that CapG-EGFP indeed starts to accumulate initially at the centromeric region and 

then spreads along the chromosome arms.  

 

2.1.5   CapG-EGFP shows stable association with chromatin 

To analyze the kinetics and stability of CapG binding to chromatin, Fluorescent 

Recovery After Photobleaching (FRAP) experiments were performed on embryos co-

expressing CapG-EGFP and His2AvD-mRFP1. FRAP analysis was done on embryos 

progressing through the syncytial mitotic cycle 12. There are several advantages of 

using syncytial embryos. First, all nuclei share the same cytoplasm and the proportion 

of bleached molecules is not a significant part of the total molecules which can rapidly 

diffuse away so photobleaching does only marginally affect the total fluorescence 

intensity of the embryo. Second, the syncytial mitotic divisions occur meta-

synchronously, which allows using one of the neighboring nuclei going in same phase 

as a control (non-bleached metaphase). For quantification, photobleaching of an entire 

metaphase plate was done and the recovery of chromosome localized fluorescence was 

measured over time and analyzed by plotting the Relative Fluorescence Intensities 

(RFI). RFI was calculated as the ratio between the mean fluorescence intensities of 

bleached metaphase and non-bleached metaphase plates (see materials and methods). 

To determine the mobile fraction, data points were fit to a single exponential curve.  

As a control, photobleaching of Barren-EGFP was performed. Barren-EGFP 

recovers significantly after photobleaching (Fig 2.7 C) and thus shows a highly 

dynamic association with chromatin as reported previously (Oliveira et al., 2007). 
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 Figure 2.7 CapG-EGFP shows stable association with the chromatin. FRAP analysis was 
performed in syncytial embryos expressing CapG-EGFP or Barren-EGFP and His2AvD-mRFP1. An 
ROI was selected to bleach an entire metaphase plate, and subsequently images were collected every 9 s. 
Individual frames for the indicated times after photobleaching of CapG-EGFP are shown in (A). The red 
and green circles represent bleached and non bleached (control) metaphase plates respectively Scale bar 
5 μm. RFI of CapG-EGFP and Barren-EGFP are plotted over time and shown in (B) and (C) 
respectively. RFI was calculated as the ratio between the mean fluorescence intensity of the bleached 
metaphase and the mean fluorescence intensity of a nonbleached metaphase used as a control (for 
CapG-EGFP n=10 and Barren-EGFP n=3). CapG-EGFP binds rather stably to chromatin, while Barren-
EGFP shows a significantly higher dynamic association with chromatin.  
 
 

The quantitative analysis revealed that CapG-EGFP does not recover significantly 

after photobleaching. A major proportion of CapG-EGFP is stably bound to chromatin 

during metaphase and only 17.5% of CapG is mobile and turns over with a half time of 

55.4 seconds (Fig 2.7 B).                 
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2.2 Analysis of a potential cohesive role for Rad21 and redundancy between 

Rad21 and C(2)M during female meiosis.  

In order to determine a potential cohesive role for Rad21 and C(2)M, a situation 

was generated in which Rad21 can be conditionally inactivated during oogenesis. 

Furthermore, to assess a potential redundancy between Rad21 and C(2)M, strains were 

constructed allowing Rad21 inactivation in a c(2)M mutant background. Females of 

these strains were analyzed for defects during oogenesis and meiotic divisions. 

 

2.2.1 Generation of Rad21ex8 and c(2)MEP;Rad21ex8 mutant oocytes.   

Pauli et al. (2008) have described a system to generate Rad21 mutant tissues by 

conditional proteolysis of a Rad21 variant containing Tobacco Etch Virus (TEV) 

protease sites. This Rad21 variant is expressed in an otherwise Rad21 mutant 

background. The mutation used in this context, Rad21ex8 , is an embryonic lethal allele, 

in which the first two exons are deleted. These exons encode the highly conserved N 

terminus of Rad21, which interacts with the ATPase head domain of Smc3 (Pauli et 

al., 2008). In the recombinant line Rad21ex8, Rad21-3TEV(271)-10myc (Pauli et al., 

2008) the Rad21 mutant phenotype is complemented by the expression of the  Rad21-

3TEV(271)-10myc transgene. This transgene directs expression of a C-terminally myc 

tagged Rad21 variant, which in addition contains three consecutive TEV protease 

cleavage sites (ENLYFQG) at position 271 (Pauli et al., 2008). TEV protease is highly 

specific, recognizing a linear epitope of the general form E-X-X-Y-X-Q-(G/S) and 

cleaves between Q and G or Q and S (Dougherty and Parks, 1989). TEV protease has 

no obvious targets in the Drosophila proteome and can be expressed in flies without 

detrimental effects (Harder et al., 2008; Pauli et al., 2008). To increase TEV activity, 

transgenic lines were established that allow expression of a TEV variant, which 

possesses a valine instead of a serine at position 219, which inhibits self cleavage of 

the protease and also results in about twofold higher activity levels (Kapust et al., 

2001). This TEV variant will be called TEVSV in the following. Furthermore, the 

TEVSV coding region was cloned in the backbone of the pUASP1 vector, which 

enables GAL4-dependent expression in the female germline (Jager et al., 2005; Rorth, 

1998). Finally, TEVSV is fused to a V5 epitope tag allowing its convenient detection 

using commercially available anti-V5 antibodies.  



 55

A 
 
♀               ♂ 

 

 

 

 

 

 

 
 

 
B    
 
♀                                                                  ♂  
                                     

 

 

 

                    

 

 

 

 

Figure 2.8 Crossing schemes for generating Rad21ex8 and c(2)MEP;Rad21ex8 mutant oocytes. A. For 
generating Rad21ex8 mutant oocytes, females of the genotype UASP1-TEVSV II.1/CyO; Rad21ex8, Rad21-
3TEV(271)-10myc were crossed with  males of the genotype α-tub mat-GAL4/CyO; Rad21ex8, Rad21-
3TEV(271)-10myc. From the progeny females of the genotype UASP1-TEV-V5 II.1/ α-tub mat-Gal4; 
Rad21ex8,Rad21-3TEV(271)-10myc females (black box) were collected for isolating Rad21ex8 mutant 
oocytes and females of the genotype UASP1-TEV-V5 II.1/ CyO; Rad21ex8; Rad21-3TEV(271)-10myc  or 
α-tub mat-Gal4/ CyO; Rad21ex8; Rad21-3TEV(271)-10myc (red box) for control. B. For generating 
Rad21ex8:c(2)MEP double mutant oocytes, females of the genotype UASP1-TEVSV II.1, C(2)MEP /CyO; 
Rad21ex8, Rad21-3TEV(271)-10myc were crossed with  males of the genotype α-tub mat-GAL4, C(2)MEP 
/CyO; Rad21ex8, Rad21-3TEV(271)-10myc. From the progeny females of the genotype UASP1-TEV-V5 
II.1, C(2)MEP / α-tub mat-Gal4, C(2)MEP ; Rad21ex8,Rad21-3TEV(271)-10myc (black box) females were 
collected for isolating Rad21ex8 ; c(2)M double mutant oocytes and females of the genotype UASP1-TEV-
V5 II.1, C(2)MEP/ CyO; Rad21ex8; Rad21-3TEV(271)-10myc  or α-tub mat-Gal4, C(2)MEP/ CyO; 
Rad21ex8; Rad21-3TEV(271)-10myc (red box) for control.   

 

X  UASP1-TEVsv-V5II.1  ;  Rad21ex8,Rad21 
           CyO                      -3TEV-myc            

α-tub mat-Gal4  ;  Rad21ex8,Rad21  
       CyO              -3TEV-myc                          

 UASP1-TEVsv-V5II.1, C(2)MEP;  Rad21ex8,Rad21 
                       CyO                         -3TEV-myc           

 α-tub mat-Gal4, C(2)MEP;  Rad21ex8,Rad21 
           CyO                          -3TEV-myc            

 UASP1-TEVsv-V5II.1, C(2)MEP  ; Rad21ex8,Rad21 
 α-tub mat-Gal4, C(2)MEP                -3TEV-myc 

UASP1-TEVsv-V5II.1 or α-tub mat-Gal4, C(2)MEP   ; Rad21ex8,Rad21                   
                          CyO                                                    -3TEV-myc            

UASP1-TEVSVII.1 or α-tub mat-Gal4; Rad21ex8,Rad21- 
                  CyO                                      3TEV-myc 

X 

 UASP1-TEVsv-V5II.1  ; Rad21ex8,Rad21 
   α-tub mat-Gal4              -3TEV-myc 
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To allow expression of TEVSV-V5 in oocytes in a Rad21ex8 mutant background, the 

lines UASP1-TEVSV II.1; Rad21ex8, Rad21-3TEV(271)-10myc and α-tub mat-GAL4; 

Rad21ex8, Rad21-3TEV(271)-10myc were established. In these lines, the transgene 

UASP1-TEVSV-V5 II.1 is a conditional source for TEVSV-V5 and α-tub mat-Gal4 was 

used to drive expression of the UAS-TEVSV-V5 transgene. The α-tub mat-GAL4 driver 

is a maternal driver, which starts the expression in stage 4 egg chambers during 

oogenesis (Micklem et al., 1997). To be able to assess Rad21-3TEV-10myc cleavage 

also in a c(2)M mutant background, the amorphic allele c(2)MEP2115 was in addition 

introduced. c(2)MEP2115 is a genetic null allele in which a P-element is inserted at the 

position encoding aa 185 in exon 3 (Manheim and McKim, 2003). For the sake of 

brevity, c(2)MEP2115 will be called c(2)MEP in the following. For generating 

c(2)MEP;Rad21ex8 double mutant oocytes, the two recombinant lines UASP1-TEV-V5 

II.1, c(2)MEP and α-tub mat-Gal4, c(2)MEP were first created. Then, the lines UASP1-

TEV-V5 II.1, c(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc and α-tub mat-Gal4, 

c(2)MEP;  Rad21ex8, Rad21-3TEV(271)-10myc lines were established. 

To generate Rad21 mutant oocytes, UASP1-TEV-V5 II.1/ CyO; Rad21ex8,Rad21-

3TEV(271)-10myc females were crossed with α-tub mat-Gal4/ CyO; Rad21ex8, Rad21-

3TEV(271)-10myc males (Fig 3.8 A). From the progeny, UASP1-TEV-V5 II.1/ α-tub 

mat-Gal4; Rad21ex8,Rad21-3TEV(271)-10myc females were collected and used to 

obtain the mutant oocytes (black box in Fig 2.8 A).  
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Figure 2.9 The localization of C(3)G in the pro-oocyte nucleus. A-D Germaria of individuals with 
the genotypes A w1, B c(2)MEP ,C UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-Gal4, c(2)MEP/ 
CyO;Rad21ex8, Rad21-3TEV(271)-10myc D UASP1-TEV-V5 II.1/ α-tub mat-Gal4; Rad21ex8,Rad21-
3TEV(271)-10myc, and E UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; Rad21ex8, Rad21-
3TEV(271)-10myc were stained with anti C(3)G (green) and propidium iodide to visualize DNA (red). 
Magnified views of boxed areas in A, B, C, D and E are shown in a-c , d-f, g-i, j-l and m-o, 
respectively. In the germarium of UASP1-TEV-V5 II.1/ α-tub mat-Gal4; Rad21ex8,Rad21-3TEV(271)-
10myc, C(3)G localizes to the chromosomes in pro-oocyte nucleus (D and j-l), while in the UASP1-
TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4,c(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc pro-oocytes, 
localization of C(3)G was abrogated due to the presence of  c(2)MEP (E and m-o). (Scale bars 5 μm) 
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The sibling females UASP1-TEV-V5 II.1/ CyO; Rad21ex8; Rad21-3TEV(271)-

10myc  or α-tub mat-Gal4/ CyO; Rad21ex8; Rad21-3TEV(271)-10myc were used as a 

control (red box in Fig 2.8 A). 

 

 

Figure 2.10 The expression of TEVsv-V5 in Stage 4 egg chambers. A-D Ovarioles with early egg 
chambers of individuals with the genotypes A w1, B UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-
Gal4, c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc C UASP1-TEV-V5 II.1/ α-tub mat-Gal4; 
Rad21ex8,Rad21-3TEV(271)-10myc, and D UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; 
Rad21ex8, Rad21-3TEV(271)-10myc were stained with anti V5 (blue) and propidium iodide to 
visualize DNA (red). Magnified view of insets in A, B, C and D are shown in a-c , d-f, g-i, and j-l, 
respectively. In the ovarioles from UASP1-TEV-V5 II.1/ α-tub mat-Gal4; Rad21ex8,Rad21-
3TEV(271)-10myc (C) and UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; Rad21ex8, 
Rad21-3TEV(271)-10myc (D) females, the expression of  TEV-V5 starts in stage 4 egg chambers.  
(Scale bars 10 μm) 
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To generate c(2)MEP;Rad21ex8 double mutant oocytes, UASP1-TEV-V5 II.1, 

c(2)MEP/ CyO; Rad21ex8, Rad21-3TEV(271)-10myc females were crossed with the α-

tub mat-Gal4, c(2)MEP/ CyO;  Rad21ex8, Rad21-3TEV(271)-10myc males (Fig 2.8 B). 

From the progeny, UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; Rad21ex8, 

Rad21-3TEV(271)-10myc females (black box in Fig 2.8 B) were collected for the 

isolation of c(2)MEP;Rad21ex8 double mutant oocytes. Siblings with the genotype 

UASP1-TEV-V5 II.1, c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc or α-tub mat-

Gal4, c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc (red box in Fig 2.8 B) were 

used as a control.  

To confirm the presence of the c(2)MEP allele in the respective selected 

individuals, the localization behavior of C(3)G in pro-oocytes in germaria was 

observed by immunofluorescence microscopy (Fig 2.9). C(3)G is a transversal 

synaptonemal complex component, which localizes in a ribbon shaped thread-like 

pattern along the lengths of chromosomes in the nucleus of the pro-oocyte as well as of 

the pro-nurse cell in wild type flies (Fig 2.9 A and a-c) (Page and Hawley, 2001). In 

c(2)MEP2115 homozygous mutants, the localization of C(3)G is abrogated; C(3)G fails to 

assemble into the long ribbon. Instead, it forms several short segments presumably 

incomplete synaptonemal complex structures, which are restricted to the pro-oocytes 

(Page and Hawley, 2001) (Fig 2.9 B and d-f). In the control (UASP1-TEV-V5 II.1, 

c(2)MEP or α-tub mat-Gal4, c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc) 

germaria (Fig 2.9 C and g-h) and as well as in the UASP1-TEV-V5 II.1/ α-tub mat-

Gal4; Rad21ex8,Rad21-3TEV(271)-10myc germaria (Fig 2.9 D and j-l), the localization 

of C(3)G in pro-oocyte nucleus was similar to that of wild type. C(3)G localizes to 

entire chromosomes in a ribbon shaped thread-like pattern. As expected, the 

localization pattern of C(3)G in the germaria of UASP1-TEV-V5 II.1, c(2)MEP/ α-tub 

mat-Gal4, c(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc females was similarly 

disrupted than that of c(2)MEP females (Fig 2.9 E and m-o).  

To determine the expression of TEVSV-V5, ovarioles were stained for DNA and 

TEV-V5 using an antibody against theV5 tag. In ovarioles of UASP1-TEV-V5 II.1/ α-

tub mat-Gal4; Rad21ex8,Rad21-3TEV(271)-10myc (Fig 2.10 C and i-l) and UASP1-

TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc 

(Fig 2.10 D and m-p), the expression of TEVSV-V5 was detected starting from stage 4 
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egg chambers. On the other hand, wild type germaria (Fig 2.10 A and a-c) and control 

germaria (UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-Gal4, c(2)MEP/ CyO;Rad21ex8, 

Rad21-3TEV(271)-10myc)  (Fig 2.10 B and d-f) did not stain positively with the anti 

V5 antibody, as expected. 

In UASP1-TEV-V5 II.1/ α-tub mat-Gal4; Rad21ex8, Rad21-3TEV(271)-10myc and 

UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; Rad21ex8, Rad21-3TEV(271)-

10myc females, the sole source of Rad21 is Rad21-3TEV-myc which is then cleaved 

by TEV-V5 protease during early oogenesis. As a result the oocytes produced by these 

females will be mutant for Rad21 (Rad21ex8) and double mutant for Rad21 and C(2)M 

(c(2)MEP;Rad21ex8), respectively.  

 

2.2.2    The Rad21-3TEV(271)-myc protein is efficiently cleaved in oocytes 

To determine whether Rad21-3TEV-myc was cleaved efficiently due to TEVSV-V5 

expression in developing egg chambers, stage 14 oocytes were isolated from UASP1-

TEV-V5 II.1/ α-tub mat-Gal4; Rad21ex8, Rad21-3TEV(271)-10myc and UASP1-TEV-V5 

II.1, c(2)MEP/ α-tub mat-Gal4, C(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc females. 

Protein extracts were prepared from these oocytes. Stage 14 oocytes from sibling 

females (UASP1-TEV-V5 II.1 or α-tub mat-Gal4/ CyO; Rad21ex8; Rad21-3TEV(271)-

10myc and UASP1-TEV-V5 II.1, c(2)MEP and α-tub mat-Gal4, c(2)MEP/ CyO;Rad21ex8, 

Rad21-3TEV(271)-10myc) were used as controls. Western blotting was performed 

using different amounts of extracts and the blot was probed with antibodies against 

myc, V5, and tubulin (Fig 2.11).  

The anti myc antibody was used to visualize the full length protein and C-terminal 

cleavage products, anti V5 to determine the TEV-V5 expression and tubulin was used 

as a loading control. The result showed that the full length protein disappeared and a 

C-terminal cleavage product of the expected size (90 kDa) became visible (Fig 2.11). 

Moreover, based on the dilution series of extracts from oocytes not expressing TEV 

protease it can be concluded that more than 95% of Rad21TEV-myc protein was 

cleaved in TEV-V5 expressing oocytes. 
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A                                     Rad21ex8, Rad21-3TEV(271)-10myc 

                  w1              + TEV                             - TEV                                                                

                  25                  20         10        10         5         2.5      1.25      0.625      oocytes   

                

         

 

 B 

                                  c(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc 

                 w1                 + TEV                           - TEV   

                  25                  20         10        10         5         2.5      1.25      0.625      oocytes   

                

 

Figure 2.11 Rad21-3TEV-myc is efficiently cleaved in oocytes. Western blot analysis of in-
vivo cleavage of Rad21-3TEV-myc. Different amounts of extracts from TEV expressing  
oocytes from the females with the genotype UASP1-TEV-V5 II.1/ α-tub mat-Gal4; Rad21ex8, 
Rad21-3TEV(271)-10myc (+TEV in A) or UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, 
c(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc (+TEV in B) were loaded. For comparison 
extracts from control oocytes (UASP1-TEV-V5 II.1 or α-tub mat-Gal4/ CyO; Rad21ex8; 
Rad21-3TEV(271)-10myc (-TEV in A) or UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-Gal4, 
c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc (-TEV in B) were loaded. Blots were 
probed with antibodies against myc (to detect the full length protein and the cleavage product) 
and V5 (for checking TEV-V5 expression), and tubulin as a loading control. In both blots a 
prominent cleavage product (asterisks) is visible.     
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2.2.3 Rad21 cleavage causes disassembly of the synaptonemal complex   

To assess the phenotypic consequences of Rad21 inactivation in the female 

germline, the integrity of the synaptonemal complex was scrutinized. To this end, 

C(3)G localization was observed in growing oocytes. Immunostaining using anti-

C(3)G and anti-V5 antibodies was performed, and analysis of localization of C(3)G 

was done by confocal microscopy (Fig. 2.12).  

The assembly of the SC starts in pro-oocytes at stage 2A while they are still in the 

germarium. The SC forms a ribbon-like structure (Page and Hawley, 2001). The 

disassembly of the SC occurs gradually, starting in stage 4 egg chambers. By the end 

of stage 9 while the oocyte is still in prophase I, the SC disassembles completely. The 

pattern of C(3)G localization during these stages is specific. In wild type females, 

when the SC is fully assembled C(3)G is localized solely on the chromosome axis of 

pro-oocytes (Fig 2.12 A and a-c). In the initial phases of SC disassembly, C(3)G starts 

to disperse from the chromosome axis and accumulate in the oocyte nucleus. At the 

time when the SC is completely disassembled, C(3)G is no longer detectable on the 

chromosomes and the protein is present throughout the oocyte nucleus (Page and 

Hawley, 2001). In c(2)MEP2115 mutants, the SC completely disassembles in stage 4 egg 

chambers and C(3)G is present in the oocyte nucleus (Page and Hawley, 2001) (Fig 

2.12 B and d-f).  

In control ovarioles heterozygous for c(2)MEP and not expressing TEV protease 

(genotype: UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-Gal4, c(2)MEP/ CyO;Rad21ex8, 

Rad21-3TEV(271)-10myc), the C(3)G localization pattern was similar to that of wild 

type oocytes. In pro-oocytes in the germarium (Fig 2.9 C and g-h) and stage 4 oocytes 

(Fig 3.12 C and g-i), C(3)G localizes in the typical thread-like pattern on 

chromosomes. In UASP1-TEV-V5 II.1/ α-tub mat-Gal4; Rad21ex8, Rad21-3TEV(271)-

10myc ovarioles, the SC localization in the germarium was similar to that of wild type 

(Fig 2.9 C and g-i). But surprisingly, the SC was completely disassembled after the 

cleavage of Rad21-3TEV-myc by TEV protease in stage 4 oocytes. C(3)G was no 

longer detectable on the chromosomes and was mainly distributed in the oocyte 

nucleus (Fig 2.12 D and j-l).   
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Figure 2.12 TEV induced cleavage of Rad21 causes disassembly of the synaptonemal complex. A-
E Stage 4 egg chambers of individuals with the genotype A w1, B c(2)MEP ,C UASP1-TEV-V5 II.1, 
c(2)MEP or α-tub mat-Gal4, c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc D UASP1-TEV-V5 II.1/ 
α-tub mat-Gal4; Rad21ex8,Rad21-3TEV(271)-10myc, and E UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-
Gal4, c(2)MEP; Rad21ex8, Rad21-3TEV(271)-10myc were stained with anti V5 (blue), anti C(3)G (green) 
and propidium iodide to visualize DNA (red). Magnified view of boxed area in A, B, C, D and E are 
shown in a-c , d-f, g-i, j-l and m-o, respectively. In the merged images on the right DNA is shown in 
red and C(3)G signal is depicted in green. The synaptonemal complex is disassembled in stage 4 
oocytes after TEV mediated cleavage of Rad21-3TEV-myc in UASP1-TEV-V5 II.1/ α-tub mat-Gal4; 
Rad21ex8,Rad21-3TEV(271)-10myc oocytes (D and j-l) (Scale bars 5 μm).     
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In UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; Rad21ex8, Rad21-

3TEV(271)-10myc ovarioles, the localization pattern of C(3)G was similar to that in 

c(2)MEP homozygous mutants. The pro-oocytes showed punctuate staining of C(3)G 

(Fig 2.9 E and m-o), which represents the incomplete synaptonemal complex 

formation and which was then completely resolved in stage 4 oocytes .(Fig. 2.12 E and 

m-o). Thus, these results strongly suggest a role of Rad21 for the maintenance of the 

SC.      

 

2.2.4  Chromosomal localization of Smc1 in oocyte nuclei is abolished after 

Rad21 cleavage 

If Rad21 cleavage in the female germline results in inactivation of a bona fide 

cohesion complex, one would expect dissociation of the other cohesion complex 

components from the chromatin, as has been shown for mitotic cohesion complexes in 

other systems. In order to examine the effects of Rad21 cleavage on the localization of 

the cohesin complex, I stained ovarioles with an anti-Smc1 antibody and analyzed 

stage 6 oocytes by confocal microscopy.  

The localization behaviour of Smc1 during Drosophila oogenesis is well 

characterised. In wild type oocytes, Smc1 localizes in a thread-like pattern along the 

entire length of the chromosomes from stage 1 until stage 6 (Khetani and Bickel, 

2007), similar to C(3)G. In c(2)MEP homozygous mutant oocytes, this thread-like 

staining is completely absent and Smc1 localises to DNA in patches which colocalize 

with the centromeres (Khetani and Bickel, 2007).  

Analysis of Smc1 localization, in oocytes in Rad21 mutant oocytes, in which 

Rad21-3TEV-myc has been cleaved, revealed that the chromosomal localization of 

Smc1 in Rad21ex8 stage 5 oocytes was abolished. Smc1 was no longer associated with 

chromosomes and was mainly dispersed in the oocyte nucleus (Fig. 2.13 D, j-l). Smc1 

localization in c(2)MEP;Rad21ex8 mutant oocytes was similar to that in Rad21ex8 oocytes 

(data not shown). In control oocytes (UASP1-TEV-V5 II.1 or α-tub mat-Gal4/ CyO; 

Rad21ex8, Rad21-3TEV(271)-10myc), Smc1 was localized to chromosomes as in w1 

and c(2)MEP homozygous mutants, which is consistent with a previous report  
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Figure 2.13 Chromatin localization of Smc1 is abolished after Rad21 cleavage. A-D Stage 5 
egg chambers of individuals with the genotype A w1, B UASP1-TEV-V5 II.1 or α-tub mat-Gal4/ 
CyO;Rad21ex8, Rad21-3TEV(271)-10myc, C c(2)MEP and D UASP1-TEV-V5 II.1/ α-tub mat-
Gal4; Rad21ex8,Rad21-3TEV(271)-10myc, were stained with anti Smc1 (green) and propidium 
iodide to visualize DNA (red). Magnified view of the boxed areas in A, B, C and D are shown 
in a-c , d-f, g-i, and j-l, respectively. In w1 (A and a-c) and UASP1-TEV-V5 II.1 or α-tub mat-
Gal4/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc oocytes (B and e-f) Smc1 localizes to DNA of 
oocytes, while in Rad21ex8 oocytes Smc1 localization to oocyte DNA is abolished. (Scale bars 5 
μm).     

 

(Khetani and Bickel, 2007). These results indicate that Rad21 is required for 

chromosomal localization of Smc1 to chromosomes in oocyte nuclei consistent with 

the notion that Rad21 assembles in cohesin complexes in the female germline of 

Drosophila. 
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2.2.5    Rad21 cleavage causes loss of cohesion between homologue chromosomes 

during prophase I 

In order to check if the cohesion between homologs was affected in Rad21ex8 and 

c(2)MEP;Rad21ex8 mutant oocytes, ovarioles were stained with antibodies against Cenp-

C, a constitutive component of the inner kinetochore (Heeger et al., 2005). Premature 

dissociation of homologous chromosomes and/or sister chromatids is expected to 

result in an increase of centromeric signals. Stage 6-10 oocytes progressing through 

meiotic prophase I were analyzed by confocal microscopy. In 95% of wild type 

oocytes (n=21), the numbers of anti Cenp-C foci were 2 to 4 (Fig 2.14 A and a-c). 

Similarly, in control oocytes not expressing TEV protease (genotype: UASP1-TEV-V5 

II.1, c(2)MEP or α-tub mat-Gal4, c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc) 

(n=15) the numbers of Cenp-C foci were 2 to 4 (Fig 2.14 C and g-i).  

   

The number of Cenp-C foci exhibited by 95% of c(2)MEP oocytes (n=19) were also 

4 or less than 4 (Fig 2.14 B and d-f). In contrast 86% of Rad21ex8 oocytes (Fig 2.14 D 

and j-l; n=21) and 90% of c(2)MEP;Rad21ex8 oocytes (Fig 2.14 E and m-o; n=10) 

exhibited more than 4 Cenp-C foci during prophase I indicating that in these oocytes 

homologs and/or sister chromatids separate prematurely.  

 

2.2.6    Rad21 cleavage causes homologue nondisjunction and premature sister 

chromatid segregation during meiosis I 

To examine the effects of Rad21 cleavage on meiotic chromosome segregation, 

mature oocytes were activated in vitro for 20 min and Fluorescent in situ hybridization 

(FISH) was performed using an X-chromosomal specific probe (359 bp). DNA was 

counterstained and oocytes were observed for abnormal meiotic figures. The observed 

phenotypes were placed in three different categories, namely homologue 

nondisjunction (Fig 2.15 G and I), premature sister chromatid separation (Fig 2.15 

B,D,F and H) and spread chromosomes (Fig 2.15 J).  
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Figure 2.14 Cohesion is lost in prophase I after Rad21 cleavage. A-E Stage 6 egg chambers of 
individuals with the genotype A w1, B c(2)MEP ,C UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-Gal4, 
c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc D UASP1-TEV-V5 II.1/ α-tub mat-Gal4; 
Rad21ex8,Rad21-3TEV(271)-10myc, and E UASP1-TEV-V5 II.1, c(2)MEP/ α-tub mat-Gal4, c(2)MEP; 
Rad21ex8 Rad21-3TEV(271)-10myc were stained with anti Cenp-C (green) and propidium iodide to 
visualize DNA (red). Maximum projections of z series stacks were performed to obtain Cenp-C signals 
from the complete nuclear volume. Magnified view of boxed area in A, B, C, D and E are shown in a-c 
, d-f, g-i, j-l and m-o, respectively. (Scale bars 5 μm). w1 , c(2)MEP and UASP1-TEV-V5 II.1, c(2)MEP or 
α-tub mat-Gal4, c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc oocytes exhibited 2-4 Cenp-C foci, 
whereas Rad21ex8 and c(2)MEP; Rad21ex8 oocytes exhibited more than 4 foci.      
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Three phenotypes were assigned in the homologue nondisjunction category (1) X-

chromosomes are not segregated equally in meiosis I, but the DNA masses appear 

equal (Fig 2.15 I). (2) Segregation of X-chromosomes is equal but the sizes of DNA 

masses are unequal after anaphase I (Fig 2.15 G), and (3) segregation of X-

Chromosomes and other chromosomes (DNA mass) is unequal. The second category 

of abnormal phenotypes “premature sister chromatid separation” is based on the 

appearance of more than 2 X-chromosome FISH spots before metaphase II. Oocytes 

with more than 4 DNA masses were put in the third category “Spread chromosome”.  

 

 

 

Genotype of oocytes 

 

Normal meiotic 

figures 

Abnormal meiotic figures 

Homologue 

nondisjunction 

Premature 

sister 

chromatid 

separation 

Spread 

chromosome 

w1  (n=21) 18 1 - 2 

c(2)MEP (n=57) 39 9 - 9 

Control (n=89) 60 7 - 22 

c(2)MEP ; Rad21ex8/ TM3,Ser 

(n=61) 

38 17 - 6 

Rad21ex8 (n=46) 19 12 8 7 

c(2)MEP ; Rad21ex8  (n=59) 10 25 13 11 

Table 2.2 Abnormal meiotic figures shown by Rad21ex8and c(2)MEP ; Rad21ex8 mutant oocytes. 
Abnormal figures shown by activated oocytes were categorized in three classes (1) homologue 
nondisjunction (2) premature sister chromatid separation and (3) spread chromosomes. Rad21ex8 and 
c(2)MEP ; Rad21ex8  show higher number of homologue nondisjunction and premature sister chromatid 
separation than w1, c(2)MEP and Control (control: UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-Gal4, 
c(2)MEP/CyO; Rad21ex8, Rad21-3TEV(271)-   10myc; n total number of oocytes observed). 

 

In wild type, 86% of the oocytes showed normal meiotic figures (Fig 2.15 A,C and 

E), 4.7% showed homologue nondisjunction with unequal DNA masses and 9.5% 

showed a chromosome spread phenotype (n=21). In the c(2)MEP mutant oocytes, 68% 

showed normal meiotic figures (n=57) and 21% had homologue nondisjunction and 

11% showed the chromosome spread phenotype.  
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Figure 2.15 Abnormal meiotic figures shown by mutants after in-vitro activation: Mature 
oocytes were activated in vitro, stained for DNA (red) and Fluorescent in situ hybridization 
(FISH) was performed on them using an X-chromosomal specific probe (359 bp; green). A, C 
and E represent normal meiotic figures. G (X-chromosome segregation is equal while sizes of 
DNA masses are unequal) and I (X-chromosomes segregate unequally) exhibit homologue 
nondisjunction. B, D, F and H  show premature sister chromatid separation and J represents 
spread chromosomes phenotype. 
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Among the control oocytes (UASP1-TEV-V5 II.1, c(2)MEP or α-tub mat-Gal4, 

c(2)MEP/ CyO;Rad21ex8, Rad21-3TEV(271)-10myc) 67% showed normal meiotic 

figures, 7.8% exhibited homologue nondisjunction and 24.7% oocytes displayed the 

chromosome spread phenotype (n=89). In Rad21ex8 mutant oocytes, the number of 

abnormal mitotic figures was increased to 59% and 41% showed normal meiotic 

figures (n=46). Out of these 59% abnormal oocytes, 26% displayed homologue 

nondisjunction, 17% showed premature sister chromatid separation and 16% were put 

in the ‘spread chromosome’ category. 

In order to check if there is a redundancy between Rad21 and C(2)M, meiotic 

divisions were observed in c(2)MEP;Rad21ex8 double mutant oocytes. As control 

oocytes were isolated from females, which were homozygous for c(2)MEP and 

heterozygous for Rad21ex8 (c(2)MEP;Rad21ex8/TM3,Ser). In the control 

c(2)MEP;Rad21ex8/TM3,Ser oocytes, 62.3% displayed normal meiotic figures, 27.8% 

showed nondisjunction and 9.9% had a ‘spread chromosomes’ phenotype. In the 

double mutant c(2)MEP;Rad21ex8, the number of abnormal meiotic figure was even 

higher ; only 17% of the oocytes exhibited normal meiotic figures while 42% showed 

nondisjunction, 22% showed premature sister chromatid separation and 19% showed 

the ‘spread chromosome’ phenotype (n=59).  

Clearly, Rad21ex8 mutant oocytes show a high proportion of homolog 

nondisjunction and the premature sister chromatid separation phenotype is only 

observed when Rad21 was cleaved. Together, these results clearly suggest that Rad21 

is indeed involved in sister chromatid cohesion during female meiosis in Drosophila.    
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2.3 Analysis of a cohesive role of C(2)M during female meiosis      

For analyzing the consequences of forced proteolysis of C(2)M during oogenesis 

and female meiosis in Drosophila, several transgenic lines expressing C-terminal HA-

tagged TEV protease cleavable C(2)M-variants under the control of the c(2)M 

regulatory region were created and analyzed for protein expression and biological 

functionality.    

 

2.3.1   Generation of TEV cleavable genomic C(2)M transgenic lines  

In order to create transgenic lines expressing TEV cleavable C(2)M-variants, the 

3xTEV protease cleavage site-encoding sequences were inserted at three different 

positions in the coding regions of the c(2)M gene: position I (after Asn191), position II 

(after Thr250) and position III (after Arg339). These positions lie within the motif 

D/EXXR, which has been reported as a separase cleavage site consensus motif 

(Sullivan et al., 2004b). These potential separase cleavage sites were also found to be 

conserved in several members of the Drosophilidae family. Moreover, these sites are 

localized in the linker region between the N and C-terminal α-kleisin domains of 

C(2)M, which are predicted to bind to the ATPase heads of Smc1 and Smc3 

(Heidmann et al., 2004). The insertion of TEV cleavage sequences at these sites is 

advantageous, as these are the potential separase cleavage sites and therefore are 

expected to be exposed to the solvent and thus to be easily accessible for the protease. 

Furthermore a new PhiC31-integrase mediated transgenesis systems was used to 

create the transgenic lines. In this system, site-specific bacteriophage PhiC31 integrase 

mediates an irreversible and sequence-directed integration between a bacterial 

attachment site (attB) present in the plasmid construct and a phage attachment site 

(attP) present in the genome of donor fly line (Bischof et al., 2007). This method is 

advantageous because the predetermined integration position saves the time and effort 

required to map transgene insertions. The second advantage are the purported identical 

expression levels when comparing different transgenes, as position effects are ruled 

out due to the same insertion position. Two second-chromosomal donor lines, ZH-attp-

58A and ZH-attp-51D (Bischof et al., 2007), were used to create transgenic lines and 

Several genomic c(2)M transgenic lines for each position of the TEV cleavage 
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sequence (191/250/339) and HA tagged C(2)M without TEV cleavage sites (gC(2)M-

HA) were established.  

 

2.3.2   Transgene expression and in-vitro cleavage of C(2)M-3TEV (191/250/339)-

HA 

After the establishment of transgenic lines, they were analyzed for protein 

expression by immunoblotting. Females were dissected and protein extracts were 

prepared from egg chambers up to stage 10, and the blot was probed with an anti HA 

antibody.  

 

 

               gc(2)M-       gc(2)M-             gc(2)M-              gc(2)M- 
                         HA         3TEV(191)-HA    3TEV(250)-HA      3TEV(339)-HA                        

 
                        II.1         II.1           II.2       II.1         II.2        II.1        II.2               Transgenic Line  

                

               

Figure 2.16 Analysis of expression of C(2)M-HA and TEV cleavable C(2)M-HA in 
ZH-attp-51D transgenic lines. Extracts were prepared from ovarioles up to stage 10 
egg chambers from 10 females of each transgenic line. The blot was probed with 
antibodies against the HA tag to detect expression of HA-tagged C(2)M and anti-alpha 
tubulin was used as a loading control.  All transgenic lines show C(2)M-HA protein 
expression. 

 

One transgene for C(2)M-HA (II.1) and two independent transgenes (II.1 and II.2) 

for each TEV cleavable C(2)M-HA construct inserted in the ZH-attp-51D line were 

analyzed for protein expression. All those lines showed expression of the respective 

protein (fig. 2.16), while none of the ZH-attp-58A lines showed protein expression 

(data not shown). Furthermore, despite the same insertion position in all transgenes in 

ZH-attp-51D, differences in levels of protein expression were observed. The 

expression of TEV cleavable C(2)M-HA was higher in gc(2)M-3TEV(191)-HA II.1, 

gc(2)M-3TEV(250)-HA II.2  and gc(2)M-3TEV(339)-HA II.2 than in gc(2)M-

3TEV(191)-HA II.2, gc(2)M-3TEV(250)-HA II.1  and gc(2)M-3TEV(339)-HA II.1. 

Moreover, the expression of C(2)M without engineered TEV sites (C(2)M-HA) 

α HA  
 
 
α-Tubulin 
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appeared to be higher than in all the TEV cleavable C(2)M-HA expressing lines (fig. 

2.16). 

To analyze if the TEV cleavage sites present in C(2)M-HA are accessible to TEV 

protease, an in-vitro cleavage assay was performed. Protein extracts were prepared 

from egg chambers up to stage 10 and incubated with recombinant His-TEV protease. 

The blot was probed with an antibody against HA. 

 

 

         gc(2)M-HA        gc(2)M-3TEV   gc(2)M-3TEV   ZH-attp-51D              
                     II.1             (191)- HA  II.1     (250)-HA II.1        Donor                  

 

                   -        +        -         +       -        +       -        +                His-TEV 

            

Figure 2.17 In-vitro cleavage of TEV cleavable C(2)M-HA protein. Extracts were 
prepared from ovarioles up to stage 10 egg chambers from 20 females and incubated at 
30ºC with (+) or without (-) recombinant His-TEV protease. Western blot analysis using 
an antibody against HA shows full length protein (arrow) and C-terminal TEV cleavage 
products (asterisk).  

 

Western blot analysis showed that both C(2)M-3TEV(191)-HA and C(2)M-

3TEV(250)-HA were cleaved. As expected, a 57 kDa C-terminal fragment for position 

191 aa and a 50 kDa fragment for position 250 aa were visible after cleavage with His-

TEV protease (Fig 2.17).     

 

2.3.3   Localization of C(2)M-HA  and C(2)M-3TEV(191/250/339)-HA 

To determine the subcellular localization of the C(2)M-3TEV(191/250/339)-HA 

variants, immunofluorescence microscopy was performed on ovarioles using co-

staining of C(3)G. Consistent with previous reports (Manheim and McKim, 2003) 

(Heidmann et al., 2004) C(2)M-HA, C(2)M-3TEV(191)-HA and C(2)M-3TEV(250)-

HA were found to localize to the pro-nurse cell and the pro-oocyte in a thread-like 

pattern along the lengths of chromosomes (Fig 2.18 i,l,o). However C(2)M-

*
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3TEV(191)-HA and C(2)M-3TEV(250)-HA were more diffusely localized in the 

nucleus. In contrast, the third variant C(2)M-3TEV(339)-HA did not localize to the 

pro-nurse cell and the pro-oocyte (fig. 2.18 r). The gC(2)M-myc III.3 transgenic line 

was used as positive control; C(2)M-myc had previously been shown to localize to the 

pro-nurse cell and the pro-oocyte (Fig 2.18 f) (Heidmann et al., 2004).  

 

2.3.4   The TEV cleavable C(2)M-HA variants are not biologically functional  

To determine whether the TEV cleavable C(2)M proteins are biologically 

functional, rescue experiments were performed using the c(2)MEP2115 mutant. As 

reported previously, the localization and organization of the transversal SC component 

C(3)G is abrogated in c(2)MEP2115 mutants (Manheim and McKim, 2003). To check 

biological functionality, C(2)M-HA and C(2)M-3TEV(191 or 250)-HA were 

expressed in a c(2)MEP2115 mutant background and the C(3)G localization pattern was 

observed.  

For this purpose, recombinant flies of the genotypes gc(2)M-HA II.1, c(2)MEP2115 

/CyO and gc(2)M-3TEV(191 or 250)-HA II.1/II.2, c(2)MEP2115/CyO  were created. 

These recombinants were then crossed with c(2)MEP2115 mutants to obtain gC(2)M-HA 

II.1, c(2)MEP2115 / c(2)MEP2115 and gC(2)M-3TEV(191 or 250)-HA II.1/II.2, c(2)MEP2115/ 

c(2)MEP2115 females. The transgene gC(2)M-myc III.1, which had previously been 

reported to rescue the c(2)MEP2115 mutant phenotype (Heidmann et al., 2004), was used 

as a positive control. Ovaries were dissected and stained for DNA and C(3)G. 

Confocal microscopy was performed to analyze C(3)G localization.  

As expected, the localization of C(3)G is abrogated in the c(2)MEP2115 mutant: 

C(3)G fails to assemble into the long ribbons like wild-type and instead several short 

segments of C(3)G staining were visible (Fig 2.19 A, a-c), which were restricted to the 

pro-oocytes as previously reported (Manheim and McKim, 2003). As shown 

previously, this phenotype of c(2)MEP2115 was completely rescued by the gc(2)M-myc 

III.3 transgene (Fig 2.19). Similarly, the localization of C(3)G in the germaria of the 

gc(2)M-HA II.1, c(2)MEP2115 / c(2)MEP2115  females was comparable to that of wild type 

(Fig 2.19 E, m-o ) suggesting that C(2)M-HA is a biologically functional protein.  
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Figure 2.18 C(2)M-HA, C(2)M-3TEV(I)-HA  and C(2)M-3TEV(II)-HA colocalize with C(3)G in 
a thread like pattern associated with nuclear DNA of pro-oocyte. A-F Germaria of individuals 
with genotype A w1, B gC(2)M-myc III.3, C gC(2)M-HA II.1, D gC(2)M-3TEV(191)-HA II.1, E 
gC(2)M-3TEV(250)-HA II.1  and F gC(2)M-3TEV(339)-HA II.1 were stained with anti-HA or anti-
myc in B, d-f (blue in the left panels) to detect transgenic C(2)M, anti-C(3)G (green in the left panels) 
to visualize the nuclei of the pro-oocytes , and DNA (red in the left panels). a-c , d-f, g-i, j-l, m-o and 
p-r are the enlargements of insets shown in A, B, C, D, E and F respectively, with the focus on pro-
oocyte nuclei. 
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Figure 2.19 Rescue of C(3)G localization in c(2)MEP2115 mutant by C(2)M transgenes. A-E Germaria 
of individuals with the genotypes A c(2)MEP2115, B c(2)MEP2115 , gc(2)M-myc III.3, C c(2)MEP2115 , gc(2)M-
3TEV(191)-HA II.1/ c(2)MEP2115, D c(2)MEP2115 , gc(2)M-3TEV(250)-HA II.2/ c(2)MEP2115 and E c(2)MEP2115 , 
gC(2)M-HA II.1/ c(2)MEP2115 were stained with anti-C(3)G (green) and DNA (red). A magnified view of 
insets in A, B, C, D and E are shown in a-c , d-f, g-i, j-l and m-o respectively. a, d, g, j, m  Stained for 
DNA. b e, h, k, n Stained for C(3)G. c, f, i, l, o are merged images of a-b, d-e, g-h, i-k and m-n 
respectively. Localization of C(3)G is rescued by gC(2)M-HA II.1 but not by gC(2)M-3TEV(191)-HA 
II.1 or gC(2)M-3TEV(250)-HA II.2.          
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In contrast, in the case of the TEV cleavable C(2)M-HA variants C(2)M-

3TEV(191)-HA  and C(2)M-3TEV(250)-HA, the localization pattern of C(3)G was 

similar to that of c(2)MEP2115 mutants (Fig 2.12), indicating that these proteins are not 

biologically functional.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78

Chapter III Discussion 

Faithful duplication and segregation of genetic information to daughter cells is a 

fundamental attribute of life. There are two essential prerequisites for accurate 

segregation of chromosomes: First, the compaction and individualization of 

chromosomes into a transportable form, which must be completed prior to metaphase. 

Second, the cohesion between the replicated sister chromatids, which is established 

during replication, should be maintained until the onset of anaphase and timely 

resolved at the metaphase-to-anaphase transition. 

Accumulating lines of evidence suggest that in higher eukaryotes, the 

establishment of a correct mitotic chromosome structure is regulated by two related 

heteropentameric protein complexes, condensin I and condensin II (Hirano et al., 

1997; Ono et al., 2003). However, it is still unknown how these complexes compact 

interphase chromatin into a well-organized mitotic chromosome. While the 

contributions of the two condensin complexes in early mitosis has been clearly 

demonstrated in vertebrates (Gerlich et al., 2006a; Hirota et al., 2004; Ono et al., 2004; 

Ono et al., 2003) and plants (Fujimoto et al., 2005), the situation is less clear in 

Drosophila. Among the condensin II-specific non-SMC subunits, homologues for 

CapH2 and CapD3 have been identified (Hartl et al., 2008; Savvidou et al., 2005). 

However, a homolog for CapG2 still awaits its identification leading to the supposition 

that CapG might be a common component of both condensin I and condensin II 

(Resnick et al., 2009). Consistent with this notion, the localization studies using CapG-

EGFP demonstrate nuclear enrichment in interphase, which has also been found for 

vertebrate condensin II subunits, while the vertebrate condensin I-specific subunits are 

mainly cytoplasmic (Hirota et al., 2004; Ono et al., 2004). However, several lines of 

evidence indicate that in Drosophila CapG is not part of a condensin II-like complex 

and a bona fide condensin II complex might not be involved in mitotic chromosome 

condensation at all. First, genetic and biochemical assays fail to support an interaction 

between CapG with CapH2 and/or CapD3 (S. Herzog, unpublished). Second, CapD3 

(Savvidou et al., 2005) and CapH2 (S. Herzog, unpublished) do not localize to mitotic 

chromatin. Third, CapH2 and CapD3 loss-of-function mutants are viable, but male 

sterile (Hartl et al., 2008; Savvidou et al., 2005).  Thus, specific roles for these two 

proteins during male meiosis have been suggested (Hartl et al., 2008; Savvidou et al., 
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2005). CapH2 mutants also show defects during dispersal of polytene chromosomes in 

nurse cells and an enhancement of transvection phenomena, which are based on 

influences in gene expression patterns across paired homologous chromosomes in 

somatic cells.  Thus, it has been proposed that condensin II in Drosophila might inhibit 

homology-dependent chromosomal interactions in diploid somatic cells (Hartl et al., 

2008). Taken together, the available data suggest that in Drosophila CapD3 and 

CapH2 have evolved to fulfill roles other than establishing/maintaining a mitotic 

chromosome structure. They probably do so without participation of CapG and may 

act either without a CapG2 homolog or a CapG2-related protein that has considerably 

evolved thus escaping detection using sophisticated bioinformatic queries.   

If CapG does not function within a condensin II complex, what is the significance 

of its nuclear localization in interphase, which is clearly distinct from the localization 

pattern of both CapH/Barren and CapD2 as well as Smc4 (Oliveira et al., 2007; 

Savvidou et al., 2005; Steffensen et al., 2001) CapG might be involved in gene 

regulation as has been suggested earlier by demonstrating a dominant suppression of 

position effect variegation (PEV) at the whitem4h locus by one copy of embryonic lethal 

CapG alleles (Dej et al., 2004). PEV is the effect on gene expression mediated by the 

chromatin structure associated with heterochromatic regions (Reuter and Spierer, 

1992). A subsequent study investigating a different CapG-allele also demonstrated an 

effect on PEV, albeit in the opposite direction (enhancement), a result which might be 

due to the nature of this allele (missense vs. nonsense)(Cobbe et al., 2006). However, 

how CapG might perform the enhancement/suppression of PEV is still unknown. 

Additional experiments are required to assess whether the nuclear localized CapG 

is associated with chromatin or whether it is distributed in the nucleoplasm. 

Furthermore, it needs to be established whether CapG fulfills any interphase function 

independent of the other condensin I subunits or whether it functions outside the 

condensin complex. Even though the localization studies of CapH/Barren, Smc4 and 

CapD2 demonstrate a preferential cytoplasmic localization of these proteins, they do 

not rule out that a fraction of these proteins is present in the nuclei and associated with 

CapG. 

The dynamic analyses have revealed further differences between the condensin 

subunits. The results obtained for CapG are best comparable with those published for 
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CapH/Barren, as in both cases the same technology for analyzing the behavior of 

biologically functional, EGFP-tagged variants was employed. CapH/Barren starts to 

associate with chromatin before nuclear envelope breakdown (NEBD) unlike 

vertebrates where condensin I gains access to the chromosomes only after NEBD 

(Oliveira et al., 2007). Based on this observation it was suggested that in Drosophila 

condensin I is the major complex required for the organization of mitotic 

chromosomes (Oliveira et al., 2007). CapG also starts to load well before NEBD but 

loading is complete at the time of NEBD while in the case of CapH/Barren loading is 

about 50% complete and reaches maximal levels about 1 min after NEBD. This 

difference suggests that CapG can associate with chromatin independent of 

CapH/Barren. Whether this difference in timing of chromatin association is of 

functional significance needs to be addressed in future experiments. Moreover, 

dynamic analysis of CapG-EGFP showed that the majority of CapG-EGFP (≈82.5%) 

was stably bound to chromatin during metaphase and only 17.5% was mobile while for 

CapH/Barren it was reported that the majority of chromatin bound protein (≈84%) 

exchanged dynamically with the cytoplasmic pool (Oliveira et al., 2007). Finally, 

localization analyses of CapG fragments have shown that the C-terminal third of CapG 

preferentially associates with chromatin in late anaphase, at a time point when 

chromatin is vigorously depleted of CapH/Barren (S. Herzog, personal 

communication). These observations also suggest that CapG can interact with 

chromatin independent of CapH/Barren, which implies that the textbook model of the 

condensin complex topology (see Fig. 1.4) which has been corroborated 

experimentally (Onn et al., 2007) may not apply throughout the cell cycle or at every 

occasion. These findings also suggest that the condensin complex does not associate 

with the chromatin as a pre-assembled complex as reported previously (Hirano et al., 

1997), rather it appears that the condensin I complex is assembled sequentially. CapG 

and CapD2 (Savvidou et al., 2005) associate with chromatin during late interphase and 

then in early mitosis CapH/Barren and presumably SMC subunits join, forming the 

holocomplex. However, to further confirm this hypothesis it would be necessary to 

compare data from different subunits using the same methodology. 

The simultaneous in-vivo analysis of CapG-EGFP and Cid-mRFP1 revealed that 

CapG loading initiates at the centromere/centromeric proximal regions. Afterwards 
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CapG spreads along the chromosomes arms. This finding is consistent with a previous 

report where a similar pattern of loading was reported for the condensin I subunit 

CapH/Barren (Oliveira et al., 2007). This observation, together with a previous report 

where it was shown that Drosophila CapG genetically and physically interacts with 

Cid (Jager et al., 2005), support the notion that condensin I might use the kinetochore 

as an entry point for chromatin association. Interestingly, the physical interaction 

between Cid and CapG could be demonstrated only for an N-terminal CapG-fragment 

(Jager et al., 2005) and none of the N-terminal truncated CapG fragments associates 

with chromatin in early to mid mitosis. This could mean that either the N-terminal 

truncated fragments do not bind mitotic chromatin because they can’t access the entry 

point, or, alternatively, the truncations destroy the interface of interaction with other 

condensin subunits. Further experiments are required to resolve this issue. 

In the second part of my thesis, a cohesive role for Rad21 and C(2)M during 

female meiotic divisions was analyzed. In most organisms, meiotic cohesion is 

mediated by a specialized cohesin complex, in which the α-kleisin subunit Rad21/Scc1 

has been replaced by the meiosis-specific α-kleisin Rec8 (Eijpe et al., 2003; Kitajima 

et al., 2003; Klein et al., 1999; Pasierbek et al., 2001). In budding yeast, the other three 

cohesin subunits correspond to the complement found in the mitotic complex, while in 

humans also meiotic variants of SCC3 (STAG3) and of SMC1 (SMC1ß) are 

incorporated into the complex. Surprisingly, in Drosophila no clear homologue of 

Rec8 has been identified yet. An α-kleisin family protein, C(2)M, has been reported to 

be expressed during meiosis (Manheim and McKim, 2003; Heidmann et al., 2004). 

C(2)M is a SC protein which was shown to interact with the Smc3 subunit of the 

cohesin complex (Heidmann et al., 2004). Due to its α-kleisin nature and interaction 

with Smc1 protein, it was speculated that C(2)M is a divergent homologue of Rec8 in 

Drosophila, and that it is involved in meiotic sister chromatid cohesion. However, 

C(2)M accumulates predominantly after the pre-meiotic S-phase and it disappears too 

early from oocyte chromatin to be involved in mediating cohesion during meiosis I. 

Furthermore, separase dependent cleavage products cannot be detected and a putative 

non-cleavable variant has no effect on the fidelity of meiotic chromosome segregation. 

Thus, these results suggested that C(2)M has either no role in meiotic sister chromatid 
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cohesion or that it functions redundantly with the mitotic α-kleisin Rad21, which is 

also expressed during meiosis (Heidmann et al., 2004). 

To assess the role of Rad21 during female meiosis in Drosophila, cohesion 

between homologues and sister chromatids was analyzed in Rad21ex8 and 

c(2)MEP;Rad21ex8 mutant oocytes. For generating Rad21ex8 mutant oocytes, TEV 

protease was expressed in growing oocytes of females which contain Rad21-3TEV-

myc as the sole source of Rad21. Similarly, for generating C(2)MEP;Rad21ex8 oocytes, 

TEV protease was expressed in oocytes of females homozygous for the c(2)M mutant 

allele c(2)MEP , and  Rad21-3TEV-myc as the sole source of Rad21. Western blot 

analysis for Rad21-3TEV-myc cleavage showed that the expression of TEV protease 

causes up to 95% cleavage of full length Rad21-3TEV-myc in stage 14 oocytes. 

  There are several studies which suggest that cohesin in general and Rec8 in 

particular are required for the formation of axial elements of the SC in various systems 

(Eijpe et al., 2000; Eijpe et al., 2003; Klein et al., 1999; Lee et al., 2003; Pelttari et al., 

2001; Pezzi et al., 2000; Revenkova et al., 2004). I checked whether the mitotic α-

kleisin Rad21 is required for SC assembly. The analysis of C(3)G localization in 

Rad21ex8 oocytes showed that after Rad21 cleavage, C(3)G delocalizes from the 

chromosomes and the SC disassembles. Thus, this result clearly indicates that Rad21 

has a role in the maintenance of SC. It is impossible from the presented experiments to 

deduce whether Rad21 is also required for the formation of the SC, because TEV 

expression initiates at a time point when the SC has been formed already. The SC 

phenotype shown by Rad21ex8 oocytes was similar to that of c(2)MEP mutant oocytes, 

and c(2)MEP;Rad21ex8 double mutant oocytes did not show a more severe phenotype. 

This indicates that both proteins work in the same pathway. To assess epistatic 

relationships, experiments should be performed in which the localization of Rad21-

myc is analyzed in c(2)MEP mutant ooyctes and of epitope tagged C(2)M in Rad21ex8 

oocytes. Furthermore, it should be analyzed how Rad21 contributes to SC 

formation/maintenance and whether it provides the basis for SC and recruits SC 

components by interacting with them like Rec8 does (Eijpe et al., 2003; Hartsuiker et 

al., 2001; Lee et al., 2003; van Heemst and Heyting, 2000).   

Smc1 localization analysis in oocytes revealed that Smc1 appeared to be lost from 

chromosomes after Rad21 cleavage. This result clearly indicates that Rad21 is required 
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for Smc1 localization to chromosomes during meiosis, just like the integrity of Rad21 

is required for chromosomal association of Smc1/Smc3 during mitotic divisions. In 

analogy to cohesion dissolution during mitotic divisions, this disappearance most 

likely is due to opening the tripartite ring formed by Smc1, Smc3 and Rad21/Scc1 

which entraps replicated sister chromatids (Gruber et al., 2003). The cohesin ring 

opens after Rad21 cleavage which then falls off from chromosomes and Smc1 can no 

longer localize to chromosomes. Loss of cohesion after forced Rad21 cleavage was 

further confirmed by observing Cenp-C foci during prophase I. The number of Cenp-C 

foci observed in Rad21ex8 and C(2)MEP;Rad21ex8 mutant oocytes were more than four. 

However, 16 foci expected for fully separated homologs and sister chromatids were 

never observed. Most likely, in the absence of pulling forces the majority of 

chromosomes and chromatids remain closely associated despite the destruction of 

cohesin. The number of Cenp-C foci in c(2)MEP mutant oocytes were 4 four or less 

than 4 four. Importantly, an increase in the number of Cenp-C foci in mutants was 

Rad21ex8 observed despite the presence of wild type C(2)M protein. This strongly 

suggests that C(2)M does not play a redundant role with Rad21 in meiotic cohesion. 

The in-vitro activation data revealed that almost 60% of Rad21ex8 mutant oocytes 

showed abnormal meiotic figures. During meiosis I, homolog nondisjunction was 

observed due to the loss of cohesion between them. Moreover, Rad21ex8 mutant 

oocytes also exhibited complete separation of sister chromatids in both meiotic 

divisions. In contrast, although 30% of c(2)MEP mutant oocytes also exhibited 

homolog non- disjunction, no premature sister chromatid separation was observed. In 

c(2)MEP;Rad21ex8 double mutant oocytes, 83% exhibited abnormal meiotic figures. 

Both phenotypes, homolog non- disjunction and premature sister chromatid separation, 

were observed during meiosis I and II. The increase in the number of abnormal meiotic 

figures in the c(2)MEP;Rad21ex8 double mutant oocytes most likely is due to the 

additive effect of Rad21 cleavage and presence of the c(2)MEP  homozygous mutant 

situation. 

Altogether these preliminary results suggest that Rad21 is the α-kleisin subunit 

incorporated in the cohesin complex during Drosophila female meiosis, and in that 

way involved in maintenance of the SC as well as in keeping sister chromatids in 

association until the onset of the meiotic divisions at the time of fertilization. Thus, 
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this work identifies the first example of a eukaryotic system in which the mitotic α-

kleisin functions also in meiosis.  

Recently, a novel protein called Sisters on the Loose (SOLO) has been identified to 

be required for sister chromatid cohesion in male meiosis in Drosophila (Yan et al., 

2010). SOLO colocalizes with Smc1 on meiotic chromatin, disappears at anaphase II 

and mutants show high rates of chromosome missegregation associated with an 

unusual high number of centromeric foci in developing sperm (Yan et al., 2010). Thus, 

SOLO displays characteristics of a meiotic cohesin, with the exception that the 

primary sequence of the protein does not show any homology to one of the known 

cohesin components. At present, the exact function of SOLO with respect to cohesin 

formation and establishment is unclear, however, it will be interesting to investigate a 

possible interaction between SOLO and Rad21, e.g. whether they coexist in the same 

complex in males and maybe also females. 
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Chapter IV Materials and methods 

All the solutions used in this section are listed in table 4.17, and antibodies and 

their dilutions are listed in table 4.18.1 through 4.18.3. 

 
4.1 Drosophila lines 
 

All the Drosophila lines used in this thesis work are listed below, where the nature 

of the w* allele is not certain.  

 
Table 4.1.1 List of mutant strains 

 
Genotype Chromosome Reference 

w1 X Lindsley and 
Zimm,1992 

w*; CapG1/ CyO, P[ry+, ftz lacZ] II Jager et al., 2005 
w*; CapG3/ CyO, P[ry+, ftz lac] II Jager et al., 2005 
w*; CapG6/ CyO, P[ry+, ftz lacZ] II Jager et al., 2005 
w*; CapG64/ CyO, P[ry+, ftz lacZ] II Cobbe et al., 2006 
w*; CapGEP(2)2346/ CyO, P[ry+, ftz lacZ] II Jager et al., 2005 
w*; string7B, P[w+,Hs-string] /TM3, Ser III Sauer et al., 1995 
w*; Rad21ex3/ TM3,Ser III Pauli et al., 2008 
w*; c(2)MEP2115   II Manheim and McKim, 

2003 
 
  
Table 4.1.2 List of GAL4 strains 
 

Genotype Chromosome Source Reference 
mat α- tub-GAL4- VP!6 II Bloomington Micklem et al., 1997 
mat α- tub-GAL4-VP16 III Bloomington Micklem et al., 1997 
w*; P[w+, ey-GAL4] II Bloomington Hazelett et al., 1998 
w*; P[w+, GMR-GAL4] II Bloomington Freeman, 1996 
w*; P[w+, -da-GAL4] G.32 III Bloomington Wodarz et al., 1995 
w*; P[w+, prd-GAL4] III Bloomington Brand and Perrimon, 

1993 
 
 
 Table 4.1.3 List of Balancer stocks 
 

Strain Chromosome Reference 
w*; Sco / CyO, P[ry+, ftz lacZ] II Lindsley and Zimm,1992 
w*; Sb / TM3, Ser III Lindsley and Zimm,1992 
w*; Sco / CyO, ftz-lacZ ; D/TM3, 
Sb, P[w+,Ubx-lacZ] 

II & III Lindsley and Zimm,1992 
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Table 4.1.4 List of transgenic strains  
 

Genotype Chromosome Reference 
w*; P[w+, UASP1-CapG-EGFP] 
III.1/TM3,Ser 

III S. Heidmann, K. Trunzer 
Unpublished 

w*; P[w+, UASP1-CapG-EGFP] 
III.2/TM3,Ser 

III S. Heidmann, (K. Trunzer) 
Unpublished 

w*; P[w+, UASP1-CapG-EGFP 
] III.3/TM3,Ser 

III S. Heidmann, K. Trunzer 
Unpublished 

w*; P[w+, UASP1-CapG-
mRFP1] III.1/TM3,Ser 

III S. Heidmann, K. Trunzer 
Unpublished 

w*; P[w+, UASP1-CapG-
mRFP1] III.2/TM3,Ser 

III S. Heidmann, K. Trunzer 
Unpublished 

w1; pBAC[3xP3-EGFP,gCapG-
EGFP III.1] /TM3,Ser 

III S. Heidmann, K. Trunzer 
Unpublished 

w*; pBAC[3xP3-EGFP gCapG-
mRFP1] III.1/TM3,Ser 

III S. Heidmann, K. Trunzer 
Unpublished 

w*; pBAC[3xP3-EGFP gCapG-
mRFP1] /TM3,Ser 

III S. Heidmann, K. Trunzer 
Unpublished 

w*; P[w+, His2AvD-mRFP1 
III.1] /TM3,Ser 

III Schuh et al., 2007 

Cid-mRFP-Cid II.1,II.2/ CyO, 
P[ry+, ftz lacZ] 

II Schuh et al., 2007 

w*; P[w+, UASP1-Barren- 
EGFP III.1]/ MKRS 

III Oliveira et al., 2007 

Rad21ex3, tubpr<Rad21 (3TEV-
271) myc10 (AP405) 

III Pauli et al., 2008 

Rad21ex8, tubpr<Rad21 (3TEV-
271) myc10  (AP360)                     

III Pauli et al., 2008 

 
 
 
Table 4.1.5 List of UAS and genomic transgenic strains created in this work 
 

Genotype Chromosome position 
w*; P[w+, UASP1-TEV] II.1 II - 
w*; P[w+, UASP1-TEVS219V] II.1 II - 
w*; pattB[w+, gC(2)M-HA] II.1  II 58A 
w*; pattB[w+, gC(2)M-3TEV(I)-HA]II.1 II 58A 
w*; pattB[w+, gC(2)M-3TEV(II)-HA]II.1 II 58A 
w*; pattB[w+, gC(2)M-HA] II.1 II 51D 
w*; pattB[w+, gC(2)M-3TEV(I)-HA]II.1 II 51D 
w*; pattB[w+, gC(2)M-3TEV(I)-HA]II.2 II 51D 
w*; pattB[w+, gC(2)M-3TEV(II)-HA]II.1 II 51D 
w*; pattB[w+, gC(2)M-3TEV(II)-HA]II.2 II 51D 
w*; pattB[w+, gC(2)M-3TEV(III)-HA]II.1 II 51D 
w*; pattB[w+, gC(2)M-3TEV(III)-HA]II.2 II 51D 



 87

Genotype Chromosome position 
w*; pBAC[3xP3-EGFP,gC(2)M-3TEV(I)-
HA] III.1 

III - 

w*; pBAC[3xP3-EGFP,gC(2)M-
3TEV(II)-HA] III.1 

III - 

 
 
Table 4.1.6 List of stocks generated in this work 
 

 All stocks carry an uncharacterized allele in the white gene (w*) . For clarity, the 
allele and the nature of the transposons (P-element, piggy Bac) have been omitted 
from the genotypes in the list. The exact genotype of the various transgenes insertions 
can be found in tables 4.1.1 to 4.1.5.  

 
 

 
Genotype Chromosomes 

CapG1/ CyO; da-GAL4/ TM3,Sb II & III 
CapG3/ CyO; da-GAL4/ TM3,Sb II & III 
CapG6/ CyO; da-GAL4/ TM3,Sb II & III 
CapG1/3/6/ CyO; UASP1-CapG-EGFP III.1/ TM3,Sb II & III 
CapG1/3/6/ CyO; UASP1-CapG-EGFP III.2/ TM3,Sb II & III 
CapG1/3/6/ CyO; UASP1-CapG-EGFP III.3/ TM3,Sb II & III 
CapG1/3/6/ CyO; UASP1-CapG-mRFP1 III.1/ TM3,Sb II & III 
CapG1/3/6/ CyO; UASP1-CapG-mRFP1 III.2/ TM3,Sb II & III 
CapG1/3/6/ CyO; gCapG-EGFP III.1/ TM3,Sb II & III 
CapG1/3/6/ CyO; gCapG- mRFP1 III.1/ TM3,Sb II & III 
CapG1/3/6/ CyO; gCapG- mRFP1 III.2/ TM3,Sb II & III 
UASP1-TEV II.1/CyO ; D/TM3,Sb II & III 
mat α- tub-GAL/CyO ; D/TM3,Sb II & III 
Sco/CyO ; Rad21ex3, tubpr<Rad21 (3TEV-271) 10myc /TM3,Sb II & III 
Sco/CyO ; Rad21ex8, tubpr<Rad21 (3TEV-271) 10myc /TM3,Sb II & III 
UASP1-TEV II.1/CyO ; Rad21ex8, tubpr<Rad21 (3TEV-271) 
10myc /TM3,Sb 

II & III 

mat α- tub-GAL4/CyO ; Rad21ex8, tubpr<Rad21 (3TEV-271) 
10myc /TM3,Sb 

II & III 

UASP1-TEV II.1, C(2)MEP/CyO ; Rad21ex8, tubpr<Rad21 (3TEV-
271)10 myc /TM3,Sb 

II & III 

mat α- tub-GAL4, C(2)MEP/CyO ; Rad21ex8, tubpr<Rad21 (3TEV-
271) 10myc /TM3,Sb 

II & III 

UASP1-TEVSV II.2, C(2)MEP  /CyO ; Rad21ex8, tubpr<Rad21 
(3TEV-271)10 myc /TM3,Sb 

II & III 

C(2)MEP/CyO ; Rad21ex8 /TM3,Sb II & III 
gCapG-EGFP III.1, His2AvD III.1/ TM3, Ser III 
UASP1-CapG-EGFP III.2, mat α- tub-GAL4-VP16 / TM3,Ser III 
gCapG-EGFP III.1, string7B, P[w+,Hs-string] / TM3, Ser III 
gC(2)M-HA II.1 (51D), C(2)MEP  / CyO II 
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Genotype Chromosomes 
gC(2)M-3TEV-HA II.1(51D) , C(2)MEP  / CyO II 
gC(2)M-3TEV-HA II.1 (51D) , C(2)MEP / CyO II 
UASP1-TEV II.1, C(2)MEP   II 
mat α- tub-GAL4, C(2)MEP   II 
UASP1-TEVS219V II.2, C(2)MEP   II 
  

 
 
 
4.2 Quantitative analysis of loading of CapG-EGFP onto the chromatin  
 

For analyzing loading of CapG-EGFP during early mitotic divisions, 60-90 min 

old embryos from gCapG-EGFP III.1 with His2AvD-mRFP1 III.1/ TM3, Ser females 

were collected, dechorionated in 50% Bleach for 3 min, mounted on a coverslip and 

covered with halocarbon oil (VoLTALEF 10S, Lehmann & Voss & co.). Two 

dimensional stacks of embryos going through mitosis 12 were acquired every 18s with 

a Zeiss LSM 510 confocal microscope equipped with 63x/ 1.40 oil immersion 

objective,  a  488 nm Ar laser line and a 543 nm He/Ne laser line were used to excite 

EGFP and mRFP1 respectively.  The intensities of the laser lines were adjusted to 

minimize photo damage while allowing recording significant, but not saturating 

fluorescent signals (typically 3% intensity for the 488 nm laser line and 7% for the 543 

nm laser line). All movies were aligned by setting the last metaphase plate as time 

point t= 0. In order to select for the chromosomal area, images from both channels 

were split, based on a 85% threshold in the His2AvD‐mRFP1 channel. The CapG‐

EGFP mean intensities within the chromosomal area were normalized (by setting 

the  last metaphase plate  intensity = 1) and corrected  for chromatin compaction 

changes (by dividing by the normalized mean intensity of HisH2Av‐mRFP1 at the 

same time point), using the formula:  Relative Fluorescent Intensity (R.F.I.) = [ICapG 

t / ICapG  t0 ] / [IHist / IHist0], where ICapG//Hist equals the mean fluorescence intensity of 

CapG‐EGFP  /  HisH2Av‐mRFP1  at  each  time  point.  Quantitative analysis was 

performed using Image J 1.3v (http://rsb.info.nic.gov/ij/).  All calculations were done 

using Microsoft Excel.  
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4.3 Quantitative analysis of dynamic association of fluorescently labeled 
condensin subunits with chromatin   

 
Embryos expressing either CapG-EGFP or Barren-EGFP (Oliveira et al., 2007) in 

combination with His2AvD-mRFP1 were collected for 1 hr and aged for 30 min, 

dechorionated, aligned on a glass cover slip and covered with halocarbon oil 

(VoLTALEF 10S, Lehmann & Voss & co.). Fluorescent Recovery After 

Photobleaching (FRAP) analysis was performed using the FRAP WIZARD of a Leica 

SP5 confocal microscope (Leica Microsystems, Germany) equipped with 63x/ 1.40 oil 

immersion objective. A metaphase plate was selected as region of interest (R.O.I.), 

after acquiring a pre- bleach image; the entire metaphase plate was photobleached by 2 

pulses of 20% 488 nm Ar laser and post-bleach images were recorded every 9s by 

using 10% of the 488 nm Ar laser and 7% of a 561 nm DPSS561 laser. R.F.I. was                             

calculated after background correction (BC), as the ratio between the mean 

fluorescence intensity of bleached metaphase (IB) and the mean fluorescence intensity 

of a non bleached metaphase plate (INB) of the same time point, using the formula : 

R.F.I. = (IB  - BC) / (INB  - BC). Data points were fit to a single exponential curve using 

the Origin version 8.0 software (Origin lab) by regression to: y = A* (1–e–b.x) + y0. 

Half times of recovery were determined based on the formula: t1/2 = ln(0.5)/-b. The 

mobile fraction (Fm) was calculated using the formula: Fm = (RFIt∞ - RFIt0)/(1-RFIt0), 

where RFIt∞ is the maximal recovery and RFIt0 is the RFI at time zero (last metaphase 

plate). Both were calculated based on the regression curve equation). 

 

 

4.4 Protein extraction and western blotting  
  
4.4.1 Protein preparation from embryos 

Embryos were collected for 3 hrs on apple juice agar plates, dechorionated in 50% 

bleach (Klorix) for 3 min, washed with NaCl-Tx (0.7% NaCl, 0.07% Triton-X 100) 

and homogenized using an eppendorf homogenizer in an appropriate volume of 3x 

laemmli buffer (see section 7.17) with protease inhibitors (2 mM Pefabloc, 0.35 mM 

Benzamidin, 10 μg/ml Aprotinin, 2 μg/ml Pepstatin and 10 mg/ml Leupeptin).  
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4.4.2 Protein preparation from embryos of different phases of mitosis 14 
 

Synchronization of cell cycle and extract preparation from embryos of different 

phases of mitosis 14 was done as described in Sauer et al. (1995) with some 

modifications. Embryos were collected from gCapG-EGFP III.1, string7B, P[w+,Hs-

string] / TM3, Ser flies on apple juice agar plates for 30 min and aged for 160 min. At 

this time point all cells of homozygous mutant embryos are arrested in the G2 phase of 

mitosis 14. To obtain embryos in different mitotic phases, the collection plates were 

floated for 20 min in a water bath set at 37ºC for 20 min to give a heat shock for 

inducing expression of Hs-String followed by recovery at 25ºC for different time 

periods (5’,8’,12’ and 15’). For preparing extracts from arrested G2 embryos, the 

collections were kept at 25ºC for 20 min without the heat shock. All embryos were 

dechorionated, washed with EB buffer, fixed in heptane/methanol for 5 min on a 

wheel, treated with Hoechst 33258 (1 μg/ ml in EB) for 5 min on a wheel to stain the 

DNA and stored at -20 ºC in EB buffer with 60% glycerol. Embryos were sorted 

according to their DNA morphology for different phases of mitosis 14 under an 

inverted Axiovert 25 microscope (Carl Zeiss, Germany), pooled and homogenized in 

KEB sample buffer.  

 

4.4.3 Protein preparation from stage 6 to stage 10 egg chambers /ovaries 

Stage 6 to stage 10 egg chambers or ovaries were dissected in 1xPBS and 

homogenized in an appropriate volume of 3 x laemmli buffer with protease inhibitors.   

 

4.4.4 Sample preparation and western blotting 

After homogenization samples were heated at 95ºC for 5 min and centrifuged at 

maximum speed for 5 min in an eppendorf table-top centrifuge to sediment cellular 

debris. Samples of the supernatants were run on SDS Polyacrylamide gels at 100 volts 

in a BIO RAD MINI PROTEIN NTM system followed by blotting onto a nitrocellulose 

membrane (AmershamTM HybondTM ECL) for 1 hr at 100 volts in a wet transfer 

system (BIO RAD MINI PROTEIN NTM ). The membrane was blocked with blocking 

buffer for 1 hr at room temperature and then probed with primary antibody diluted in 
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0.02% NaN3 containing blocking buffer overnight at 4ºC. After washing, the 

membrane was incubated with secondary antibody diluted in blocking buffer for 2 hrs 

at room temperature and further developed either by AmershamTM ECL plus or 

AmershamTM ECL advance kits from Amersham- GE Healthcare. Chemiluminescence 

signals were impressed on X-ray films (Amersham HyperfilmTM ECL, Amersham- GE 

Healthcare) followed by development in a semi automatic machine (X-ray processor 

SRX-100, Konica) or directly recorded and digitized by an LAS 4000 (FUJIFILM 

Corporation, Europe). Images were processed by using Adobe Photoshop (Adobe 

Systems Inc., San Jose, CA, USA) and quantification of chemiluminescence signal 

was done by image analysis software MultiGauge (FUJIFILM Corporation, Europe). 

 

4.5 In vitro cleavage assay using purified TEV protease 

Ovaries were isolated in PBS, transferred to TEV protease reaction buffer, 

homogenized and incubated with 2 μl of TEV protease (5000 U/ μl, Prof. Olaf 

Stemmman) at 30ºC for 1 hr. Reactions were stopped by adding 3x Laemmli buffer. 

Samples were prepared and analyzed by western blotting as descried above.  

 

4.6 Mass isolation of S14 oocytes  

Isolation of stage 14 (S14) oocytes was done by the mass isolation procedure of 

Theurkauf and Hawley, (1992). 1 day old females were fed on yeast for 4-5 days. 

Females were anesthetized and ground in 25 ml of Isolation buffer (prewarmed to 

room temperature (RT) by pulsing 5-6 times in a blender. The homogenate was filtered 

through a mesh, the debris was collected and again blended for 3 rounds in another 25 

ml of Isolation buffer. Homogenates were pooled and filtered through a small mesh. 

Oocytes were allowed to settle by gravity and supernatants were removed with a 

vacuum pump. Fresh isolation buffer was added.   

 

4.7 In vitro activation of S14 oocytes 

In Drosophila, Mature oocytes (stage 14) arrest at metaphase I (Mahowald et al., 

1983). Usually, these arrested oocytes are activated when they pass through the 
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oviduct. Ovulation triggers the resumption of meiosis and the two meiotic divisions are 

completed by the time the egg is fertilized and laid (Page and Orr-Weaver, 1997). 

However, meiosis can also be resumed by in vitro activation (Mahowald et al., 1983; 

Page and Orr-Weaver, 1997). For in vitro activation two Ca+ containing buffers are 

used in sequence; Activation buffer (AB) and Zalokar’s buffer (ZAB). AB is a 

hypotonic solution in which oocytes get activated and ZAB is an isotonic buffer which 

allows recovery of oocytes (Mahowald et al., 1983; Page and Orr-Weaver, 1997). The 

osmotic and hydrostatic pressure applied by AB triggers the in vitro activation of 

oocytes. For activation of S14 oocytes protocol was adapted from (Page and Orr-

Weaver, 1997). All the buffers were pre-warmed to room temperature. Mass isolated 

oocytes were incubated in activation buffer (prewarmed to RT) for 5 min with constant 

shaking. Activation buffer was replaced by Zalokar’s buffer (prewarmed to RT) and 

oocytes were incubated for different time lengths with constant shaking at RT. For 5 

min activation, oocytes were washed and fixed immediately after incubation in 

activation buffer. For 10 min and 20 min activation, oocytes were incubated in 

Zalokar’s buffer for 5 min and 15 min, respectively. After activation, oocytes were 

washed with PBS, dechorionized, and fixed in two ways. Oocytes which were 

activated for 20 min were dechorionated in 50% bleach (klorix) for 3 min and fixed by 

shaking in a heptane /methanol in 1:1 mixture, while oocytes activated for 5 min and 

10 min were transferred to the frosted surface of a glass slide, most of the PBS was 

removed and another glass slide with a frosted surface was placed on top. The oocytes 

were gently rolled between the frosted areas of the two glass slides to remove chorion 

and the vitelline membrane. Activated oocytes were stained for DNA with Hoechst 

33258 (1 μg/ml in PBS) and mounted in mounting medium.  

 

4.8 Cytological analysis and immunofluorescence 

4.8.1 Immunostaining of embryos 

Embryos were collected on apple juice agar plates, dechorionated in 50% bleach 

(klorix) for 3 min and washed with NaCl-Tx. Fixation was done in a heptane / 

methanol (1:1) mixture for 5 min at RT on a wheel. After fixation, embryos were 

rinsed thrice with methanol and rinsed thrice with PBTx. Embryos were blocked in 

PBTx-10% Normal Goat Serum (NGS)/ Fetal Bovine Serum (FBS) for 1 hr. After 
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blocking, embryos were incubated in primary antibody (diluted in PBTx/ 10% NGS/ 

0.02% NaN3) for 4 hrs at room temp or overnight at 4ºC. Embryos were rinsed twice 

with PBTx, washed twice with PBTx for 30 min each and incubated with secondary 

antibody (diluted in PBTx/ 10% NGS) for 2 hrs at room temp followed by rinsing 

twice and washing twice with PBTx, 30 min each. Embryos were incubated with 

Hoechst 33258 (1 μg/ml in PBS) for 5 min on a rotor, rinsed once with PBS, washed 

once for 5 min with PBS and mounted in mounting medium.   

 

4.8.2 Immunostaining of ovarioles 

Ovaries were dissected in 1xPBS, fixed in oocyte/ovariole fixation buffer for 10 

min at room temp on a wheel followed by rinsing thrice and washing twice for 5 min 

with PBS-Tw. Ovaries were blocked with PBS-Tw-10% NGS/FBS and incubated with 

the primary antibodies (diluted in PBS-Tw-10% NGS/FBS) supplemented with 

RNaseA (final conc 10 mg/ml) for 2 hr at room temperature or overnight at 4ºC.  

These ovaries were rinsed once, washed thrice for 5 min with PBS-Tw and incubated 

with the secondary antibodies for 2 hrs at room temp followed by washing twice with 

PBS-Tw, 20 min each. Ovaries were incubated in Propidium iodide (1 μg/ml in PBS-

Tw, Molecular Probes, P-3566) for 20 min at room temp, rinsed once, washed once in 

PBS-Tw for 10 min and mounted in Antifade prolong gold mounting medium 

(Molecular Probes).  

 

4.8.3 Immunostaining of S14 oocytes 

Immunostaining of S14 oocytes was performed as described in Theurkauf el al., 

(1992). Mass isolated oocytes were fixed in oocyte fixation buffer for 10 min at room 

temp on a wheel, rinsed thrice with PBS and extracted with PBS- 1% Tx for 2 hrs at 

room temp. After rinsing twice with PBS-0.5% Tx, extracted oocytes were transferred 

to the frosted surface of a glass slide, most of the PBS was removed and another glass 

slide with a frosted surface was placed on top. The oocytes were gently rolled between 

the frosted areas of the two glass slides to remove chorion and the vitelline membrane. 

Rolled oocytes were rinsed with PBS-0.5% Tx, extracted with PBS- 1% Tx for 2 hrs at 

room temp, and rinsed again twice with PBS-0.5% Tx. After blocking in PBTx-10% 
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NGS/FBS for 1 hr the oocytes were incubated in primary antibody (diluted in PBTx-

10% NGS-0.02% NaN3) for 4 hrs at room temp or overnight at 4ºC. Oocytes were 

rinsed twice with PBTx, washed twice with PBTx for 30 min each and incubated with 

secondary antibody (diluted in PBTx-10% NGS) for 2 hrs at room temp followed by 

rinsing twice and washing twice with PBTx, 30 min each. Oocytes were incubated 

with Hoechst 33258 (1 μg/ml in PBS) for 5 min on a wheel, rinsed once with PBS, 

washed once for 5 min with PBS and mounted in mounting medium. 

  

4.9 Fluorescent in situ hybridization on S14 oocytes 

Fluorescent in situ hybridization (FISH) analysis was done on S14 oocytes as 

described in Dernburg et al., (1996) with some modifications. Chromosomal specific 

probes were prepared/obtained; as X chromosomal probe, the 359-bp repeat was 

amplified from genomic DNA by PCR, using SH230 and SH231 primers. For 

preparing an II chromosomal probe and an III chromosomal probe the BAC clones 

RP98-13M11 and RP98-48K07 from Berkeley Drosophila Genome Project were used, 

respectively. For detecting the IV chromosome, single-stranded oligonucleotides 

consisting of AATAT repeats of 20 b length were obtained from Metabion 

international AG, Germany.  BACs-DNA and the amplified 359- bp repeats were 

digested overnight at 37ºC with a mixture of the restriction enzymes AluI, HaeIII, 

Tru1I, MspI, RsaI and Sau3AI. Digested DNA was precipitated by adding 1/10 

volume of 3 M NaOAc (pH 5.2), 2.5 volumes cold Ethanol and 20 μg glycogen. 

Precipitated DNA was resuspended in 35 μl of water, denatured in a PCR thermocycler 

at 100ºC for 1 min and chilled on ice immediately. Tailing of all the probes was done 

by using Terminal deoxynucleotidyl Transferase (Roche 03333574001) at 37ºC for 2 

hrs in a reaction mixture containing 200 mM Na Cacodylate (pH 7.2), 100 μM DTT, 1 

mM CoCl2, 50 μM Aminoallyl dUTP (ARESTM DNA AlexaTM Fluor 555 labeling kit, 

Molecular probes, Inc, USA), 5 μM unlabeled dTTP. Reactions were stopped by 

adding 5 mM EDTA. Tailed probes were precipitated, resuspended in water and 

labeled with Alexa Fluor 555 or 647 (ARESTM DNA AlexaTM Fluor 555/647 labeling 

kit, Molecular probes, Inc, USA) in labeling buffer for 2 hrs in the dark followed by 

quenching of the reactions with 150 μM hydroxylamine. Labeled probes were purified 
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using the Qiagen PCR purification kit (Qiagen, Germany), precipitated, resuspended in 

elution buffer and stored at -20ºC.  

For FISH, oocytes were fixed in oocyte fixation buffer, rinsed thrice in 2X SSCT, 

sequentially washed with 2X SCCT-20% formamide, 2X SCCT-40% formamide, 2X 

SCCT-50% formamide for 10 min each followed by incubation in fresh 2X SCCT-

50% formamide for 1-2 hrs at 37ºC. Oocytes were transferred to a thin walled PCR 

tube containing 36 μl of hybridization buffer, 25-400 ng probe (diluted in 4 μl water) 

was added and mixed. Probe and chromosomal DNA were denatured at 91ºC in a PCR 

thermocycler for 2 min, and the hybridization reaction was carried out overnight at 

37ºC for the X, II and III chromosomal probes and at 30ºC for IV chromosomal probe.  

The next day 500 μl of prewarmed (37ºC or 30ºC) 2X SCCT-50% formamide was 

added to the sample mix and oocytes were allowed to settle. Oocytes were washed 

thrice with prewarmed (37ºC or 30ºC) 2X SCCT-50% formamide, once with 2X 

SCCT-40% formamide and 2X SCCT-20% formamide for 10 min/wash. Then, the 

oocytes were washed thrice with 2X SCCT for 10 min each, rinsed thrice with PBST 

and stained with Hoechst 33258 (1 μg/ml in PBS)  for 5 min at room temp on a wheel, 

rinsed once with PBS, washed once with PBS for 5 min and mounted in mounting 

medium.  

 

4.10 Genomic DNA preparation from single flies 

A single fly was squashed in 50 μl of freshly prepared squashing buffer. The 

extract was incubated at 37ºC for 30 min, heated at 95ºC for 5 min and centrifuged at 

max speed for 5 min. 5 μl of the supernatant was used as genomic DNA template in 25 

μl PCR reaction.  

 

4.11 Cloning  

Standard molecular biology techniques were followed according to Sambrook et al 

(1989). PCR reactions were performed using Pfu DNA polymerase (Fermentas), or 

self made Taq DNA polymerase in a 25 μl reaction mixture containing 50 ng of 

plasmid DNA template or 5 μl of single fly prep genomic DNA, 1x PCR buffer, 1.5 

mM MgCl2 (for Taq DNA polymerase), deoxyribonucleotide mix (2.5 mM of each 
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dNTP) and 0.4 μM of each primer, in a RoboCycler Gradient 96 Hot Top Combo 

(Stratagene). Amplified PCR products were purified by using the Qiagen PCR 

purification kit (Qiagen, Germany) and analyzed on a 1% agarose gel in 1x TBE 

buffer). Isolation of plasmid DNA from E. coli grown in LB medium with appropriate 

antibiotics was done by using the QIAGEN Plasmid Mini Kit or the QIAGEN Plasmid 

Midi Kit (Qiagen, Germany). Digestion of plasmid DNA or PCR products was 

performed with appropriate restriction enzymes following manufacturer’s instructions. 

For sub-cloning DNA fragments were cut out from plasmids, run on a 0.7% agarose 

gel and extracted from the gel using the QIAquick gel extraction kit (Qiagen, 

Germany). Linearized vector DNA was dephosphorylated by adding 1U of shrimp 

alkaline phosphatase and the mixture was incubated at 37ºC for 30 min followed by 

heat inactivation of the enzyme at 65ºC for 15 min. Ligation reactions were performed 

using 4 U T4 DNA Ligase (Promega) in 10 μl reaction mixtures containing 1x ligation 

buffer and a 3:1 ratio of insert to vector, for 2 hrs at room temp. Ligation mixtures 

were purified and 1 μl of ligation mix was transformed into electro-competent DH10B 

cells. Several colonies were checked by colony PCR or restriction digestion for the 

presence and orientation of the insert. Positive clones were sent for sequencing to 

Sequencing Laboratories, Goettingen, Germany.  Sequence alignment and analysis 

was done using Gene Runner (Hastings Software) and web based program Multalin: 

(http://multalin.toulouse.inra.fr/multalin/multalin.html , (Corpet, 1988) 

 

4.12 Construction of HA tagged TEV protease cleavable c(2)M transgenes 

Transgenic lines expressing HA tagged TEV protease cleavable C(2)M were 

generated by germline transformation of pattB-gC(2)M-3TEV (I/II/III)-HA  into ZH-

attp-58A and ZH-attp-51D embryos (Bischof el al., 2007) and pBac- gC(2)M-3TEV 

(I/II/III)-HA  into w1 embryos. The construct pCaSpeR-gC(2)M-myc (Heidmann et al., 

2004) was used as a source for the c(2)M genomic region. The c(2)M gene contains an 

internal BamH1 site at 1.7 kb downstream of start of 5’ UTR. This site was used in 

combination with XhoI and XbaI enzymes to obtain the complete C(2)M genomic 

region in two fragments and the resulting fragments XhoI-C(2)M-BamHI and BamHI-

C(2)M-XbaI were gel extracted. The Fragment XhoI-C(2)M-BamHI was subcloned 

into pLitmus28 (New England Biolabs) in which the SpeI site of the polylinker has 
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been was destroyed by digesting with SpeI followed by filling in and relegation. The 

second fragment BamHI-C(2)M-XbaI was subcloned into pBSSK+ (Stratagene). 

Positive clones were checked by restriction analysis. For inserting the 6xHA tag in the 

construct pBSSK+ - BamHI-C(2)M-XbaI, an AgeI site was introduced before the stop 

codon by inverse PCR using the C(2)M7/C(2)M8 primer pair. Confirmation of the 

presence of the AgeI site in pBSSK+ - BamHI-C(2)M-(AgeI)-XbaI and the integrity of 

the PCR amplified coding sequence was done by restriction digestion with AgeI (New 

England Biolabs) and DNA sequencing. 

For creating pattB-gC(2)M-3TEV-HA, the XhoI-C(2)M-BamHI fragment was first 

cloned into pBSSK+ - BamHI-C(2)M-(AgeI)-XbaI to get pBSSK+ - gC(2)M-(AgeI). 

Then the 6xHA tag was cloned into the unique AgeI site, From the resulting construct 

pBSSK+ - gC(2)M-HA , gC(2)M-HA was inserted into the pattB vector (Bischof et al., 

2007) as a 4.2 kb NotI-gC(2)M-HA-Asp718 fragment.   

For creating pattB-gC(2)M-3TEV (I/II)-HA, in the construct pLitmus28- XhoI-

C(2)M-BamHI, a SpeI site was introduced individually at two different positions Asn 

191 (I) and Thr 250 (II) by inverse PCR by using the C(2)M1/ C(2)M2 and C(2)M4 

/C(2)M9 primer pairs respectively. The resultant constructs pLitmus28- XhoI-C(2)M-

SpeI (I)-BamHI and pLitmus28- XhoI-C(2)M-SpeI (II)-BamHI were confirmed for the 

presence of the SpeI site by restriction digestion with SpeI and DNA sequencing. The 

coding region for the 3xTEV protease cleavage sequence 

[3x(GAGAATTTGTATTTTCAGGGT)] was obtained from the pBS-Rad21-

[SpeI(3TEV)AvrII] construct (Pauli et al., 2008) (see chapter 7.16) as a 

Spe1(3TEV)AvrII fragment, gel eluted using DEAE membrane and cloned into the 

SpeI site in pLitmus28- XhoI-C(2)M-SpeI (I or II)-BamHI. Positive clones for 

pLitmus28- XhoI-C(2)M-3TEV (I/II)-BamHI were checked for orientation of the 

3TEV sequence by several restriction digestions and DNA sequencing. In pLitmus28- 

XhoI-C(2)M-3TEV (I or II)-BamHI, the fragment BamHI-C(2)M-(AgeI)-XbaI was 

cloned to get pLitmus28-g C(2)M-(AgeI), followed by HA tag cloning in the AgeI site. 

To create final the constructs pattB-gC(2)M-3TEV (I/II)-HA , the gC(2)M-3TEV 

(I/II)-HA fragment from pLitmus28-g C(2)M-3TEV(I or II )-HA was cloned as a 

NotI/Asp718 fragment into pattB. For creating pattB-gC(2)M-3TEV(III)-HA, a SpeI 

site was introduced in pBSSK+ - BamHI-C(2)M-(AgeI)-XbaI vector at position Arg 
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339 (III) in C(2)M using the C(2)M /C(2)M8 primer pair to get pBSSK+ - BamHI-

C(2)M-SpeI(III)-(AgeI)-XbaI, the 3TEV sequence was cloned into this SpeI site, 

positive clones for pBSSK+ -BamHI-C(2)M-3TEV (III)-(AgeI)-XbaI were checked for 

orientation, and subsequently the XhoI-C(2)M-BamHI (obtained from pCasper-

gC(2)M-myc) was cloned into pBSSK+ -BamHI-C(2)M-3TEV (III)-(AgeI)-XbaI to get 

pBSSK+ -gC(2)M-3TEV (III)-(AgeI). The coding sequence for 6xHA tag was cloned 

into AgeI site and for making the final construct, the fragment gC(2)M-3TEV(III)-HA 

was cloned into pattB vector between the NotI and Asp718 sites.  

pBac-gC(2)M-3TEV (I/II/III)-HA construct were made in two steps. The fragment 

gC(2)M-3TEV(I/II/III)-HA obtained from pattB-gC(2)M-3TEV (I/II/III)-HA were 

first cloned between NotI/Asp718 into pSLfa1180fa and then cleaved out as FseI- 

gC(2)M-3TEV(I/II/III)-HA-AscI fragments and cloned into the pBac-3X3p vector 

(Ernst Wimmer). 

 

4.13 Construction of UASP1-TEV-V5 strains 

For generating the UASP1-TEV-V5 lines,  the pUAST-NLS-V5-TEV construct 

(Pauli et al., 2008) was digested with EcoRI /XbaI, the NLS-V5-TEV-NLS fragment 

was gel extracted and cloned into pUASP1(Jager et al., 2005). The pUASP1-NLS-V5-

TEV-NLS construct was co-injected with the helper plasmid turbo Δ 2-3 for mediating 

germ line transformation into w1 embryos. Several independent transgenic lines were 

established, insertions were mapped on 2nd or 3rd chromosomes and the exact genomic 

location was determined by inverse PCR.  

 

4.14 Inverse PCR 

To determine the exact location of P-Elements in the genome, inverse PCR was 

performed according to the protocol published by the Berkeley Drosophila Genome 

project with some modifications (http://www.fruitfly.org/about/methods/  

inverse.pcr.html). For isolating genomic DNA, approximately 30 flies were 

anesthetized, homogenized in 400 μl of buffer A and incubated at 65ºC for 30 min. 900 

μl of LiCl/ KAc (1 part of 5 M KAc: 2.5 part of 6 M LiCl) was added to the 

homogenate, the mixture was incubated on ice for 10 min and centrifuged for 15 min 
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at room temp. The supernatant was transferred to a fresh eppendorf tube, 540 μl of 

isopropanol was added, mixed and centrifuged for 15 min at room temp. The 

supernatant was discarded and the pellet was washed with 70% Ethanol, dried in air 

and resuspended in 120 μl of TE buffer. The isolated genomic DNA (10 μl) was 

digested for 2.5 hrs at 37ºC with MspI or Sau3AI in a 25 μl reaction mixture 

containing an appropriate buffer and 100 μg/ml RNase A and heat inactivated for 20 

min at 65ºC. 5 μl of digested genomic DNA was ligated in 200 μl volume overnight at 

4ºC. 20 μl of LiCl/ KAc and 500 μl of ethanol were added to the ligation product, 

mixed and precipitated at -20ºC for 10 min. The DNA was precipitated by 

centrifugation for 15min at 4ºC and the pellet was washed with 70% ethanol and 

resuspended in 75 μl of TE. PCR reactions were carried out using Taq DNA 

polymerase and two different primer sets Pwht1/ Plac1 and Pry4/Pry1 for MpsI and 

Sau3AI digested genomic DNA. Amplified products were analyzed on a 1% agarose 

gel, purified and sent for sequencing. Primers SP1 and Spep1 were used to sequence 

Pwht1/ Plac1 and Pry4/Pry1 amplified products, respectively.        

 

4.15 DNA isolation from agarose gel with DEAE membrane 

DNA was separated on a 1% agarose gel, and a small incision, closely ahead of the 

desired band, was made in the gel. A piece of DEAE membrane was soaked in water, 

and then inserted into the incision within the gel, and the gel was run for additional 10 

min at 100 volts. The membrane was removed, checked under UV light for the 

presence of DNA and washed with water. The membrane was then transferred to a 

fresh eppendorf tube and submerged in 50 μl of DEAE elution buffer, incubated at 

65ºC for 45 min, centrifuged for 1 min at room temp and the supernatant was 

transferred to a new eppendorf tube. 50 μl of butanol (saturated with 1 M NaCl) was 

added to the supernatant, mixed and centrifuged for 5 min at room temp. The lower 

phase was transferred to a fresh eppendorf tube, 5 μl of DNA loading dye was added 

and the sample incubated at 65ºC for 10 min with the lid open. DNA was desalted by 

spin dialysis. 
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4.16 Microscopy and image processing 

Fluorescence images were acquired by a Leica SP2 confocal microscope (Leica 

Microsystems, Germany), a Leica SP5 confocal microscope (Leica Microsystems, 

Germany), or a Zeiss Axioplan 2 widefield microscope equipped with an AxioCam 

MRm and software AxioVision 3.1 (Carl Zeiss, Germany).  All images were processed 

by using Adobe Photoshop (Adobe Systems Inc., San Jose, CA, USA).  

 

4.17 Solutions  
 

All chemicals and reagents were purchased from AppliChem (Darmstadt), Biomol 

(Hamburg), Biorad (München), Fermentas (St.Leon-Rot), Fisher Scientific (Schwerte), 

GE Healthcare (Munich), Invitrogen (via Fisher Scientific, Schwerte), Merck 

(Darmstadt), Millipore (Schwalbach), New England Biolabs (NEB, Frankfurt ), 

Promega (Mannheim), Roche Diagnostics (Mannheim), Roth (Karlsruhe), Serva 

(Heidelberg) and Sigma-Aldrich (Steinheim). 

 
3x Laemmli buffer 
6% w/v SDS 
0.3 M β-Mercaptoethanol 
30% glycerol 
0.3% (w/v) Bromophenol blue 
0.15 M Tris.Cl (pH 6.8) 
 
Running buffer for protein electrophoresis 
2.5 mM Tris (pH 8.3) 
19.1 mM Glycine 
0.1% (w/v) SDS 
 
Transfer buffer  
200 mM Glycine 
25mM Tris 
20% (v/v) Methanol 
 
1xPBS 
137 mM NaCl 
2.7  mM KCl 
10 mM KH2PO4 
 
PBS-Tx 
PBS, 0.1%  
Triton-X 100 
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PBS-Tw 
PBS 
0.2% Tween 20 
 
 
Blocking buffer 
PBS 
0.1%Tween 
5% milk powder (Sucofin, Zeven)  
 
EB buffer 
10 mM Tris.Cl  (pH 8.0) 
80 mM Na-β-glycerophosphate 
20 mM EGTA 
15 mM MgCl2 
2 mM Na3VO4 
1mM Na2S2O5 
1 mM Bezamidin 
0.2 mM PMSF 
 
KEB sample buffer 
10 mM Glycerol 
2.7 mM β-mercaptoethanol 
3% SDS 
185 mM Tris.Cl, pH 8.8 
0.01% Bromophenol blue 
50 mM NaF 
20 mM EGTA, pH 8.0 
2 mM Na3VO4 

1mM Na2S2O5 
 
Isolation buffer (pH 7.2) 
55 mM NaOAc  
40 mM KOAc 
110 mM Sucrose 
1.2 mM MgCl2 
1 mM CalCl2 
100 mM Hepes 
 
Activation buffer (pH 6.8) 
3.3 mM NaH2PO4 
16.6 mM KH2PO4 
10 mM NaCl 
5% PEG 8000 
2 mM CaCl2 
50 mM KCl 
 
 



 102

Zalokar’s buffer (pH 6.8) 
9 mM MgCl2 
10 mM MgSO4 
2.9 mM NaH2PO4 

0.22 mM NaOAc  
5 mM Glucose 
27 mM Glutamic acid 
33 mM Glycin 
2 mM Malic acid  
7 mM CaCl2 
 
Mounting medium  
70% Glycerol 
50 mM Tris.Cl (pH 9.5) 
10 mg/ml Propylgallat 
0.5 mg/ml p-Phenylendiamin 
1xPBS 
 
10x TBE buffer (1lit) 
216 g Tris 
110 g Borat 
10 μM EDTA, pH 8.0 
 
TE 
10 mM Tris.Cl, pH 8.0 
1 mM EDTA , pH 8.0 
 
 
DNA loading dye 
50% Glycerol 
0.1 M EDTA 
0.02% Xylencyanol 
0.02% Bromophenol blue 
0.02% (w/v) SDS 
 
TEV protease reaction buffer  
50 mM Tris.Cl pH 7.5  
1 mM EDTA 
5 mM DTT 
0.1% Triton-X 100 
50% glycerol 
 
Hybridization buffer  
1 g Dextran sulfate 
1.5 ml 20X SCCT 
5 ml formamide water up to 9 ml 
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Oocyte/ Ovariole fixation buffer  
100 mM Na cacodylate, pH 7.2 
100 mM Sucrose 
40 mM Potassium acetate 
10 mM Sodium acetate 
10 mM EGTA 
8% EM grade formaldehyde 
 
2X SSCT  
3.0 M NaCl 
0.3 M Sodium citrate 
0.1 Tween 20 
Squashing buffer  
10 mM Tris.Cl, pH 8.2 
1 mM EDTA 
25 mM Nacl 
200 μg/ml Proteinase K 
 
LB medium (pH 7.2) 
1% (w/v) Bacto trypton 
0.5% (w/v) Yeast extract, 
1% NaCl 
 
Buffer A (for genomic DNA isolation) 
100 mM Tris‐Cl (pH 7.5) 
100 mM EDTA 
100 mM NaCl 
0.5% (w/v), SDS) 
 
DEAE elution buffer  
20mM Tris.Cl pH 7.6 
1.5 M NaCl 
1 mM EDTA 
 
 

4.18  Antibodies 
 

Primary and secondary antibodies used in this study are listed in tables below.  
 
 
 
Table 4.18.1 List of primary antibodies 
 

Antibody Dilution for 
Immunofluorescence 

Dilution for  
Western Blot 

Reference 

Anti EGFP IS28 1:3000 1:4000 Duerr (2004) 
Anti mRFP1 1:3000 1:4000 Herzog (2006) 
Anti C(3)G 1:3000 - Gift from M. Lily 
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Antibody Dilution for 
Immunofluorescence 

Dilution for  
Western Blot 

Reference 

Anti myc 
(9E10 hybridoma 
supernatant) 

1: 10 1:30 Evan et al., 1985 

Anti α-tub 1: 8000 1: 18000 Sigma-Aldrich 
Anti V5 1:500 1: 5000 Invitrogen 
Anti HA 
(12CA5 hybridoma 
supernatant) 

1: 100 1:100 Niman et al., 1983 

Sperm tail 1:20 -  Karr, 1991 
Anti Cenp-C 1:3000 - Heeger et al., 2005 
Anti Smc1 1:500 - Gift from C. Sunkel 
 
 
Table 4.18.2 List of secondary antibodies for immunofluorescene  
 

Antibodies Dilution  Source 
Alexa 488 anti mouse 1: 600 Molecular probes 
Alexa 488 anti Rabbit 1: 600 Molecular probes 
Alexa 488 anti guinea pig 1: 600 Molecular probes 
Cy3 anti mouse 1: 600 Jackson Immunochemicals 
Cy3 anti Rabbit 1: 600 Jackson Immunochemicals 
Cy3 anti guinea pig 1: 600 Jackson Immunochemicals 
Cy5 anti mouse 1: 600 Jackson Immunochemicals 
Cy5 anti Rabbit 1: 600 Jackson Immunochemicals 
Cy5 anti guinea pig 1: 600 Jackson Immunochemicals 
 
 
Table 4.18.3 List of secondary antibodies for western blotting 
 

Antibodies Dilution  Source 
POD goat anti mouse 1:3000 Jackson Immunochemicals 
POD goat anti rabbit 1:3000 Jackson Immunochemicals 
 
 
 
4.19 Primers 
 

All the primers used for cloning and DNA sequencing are listed below. 
 
Primer Sequence Details 
C(2)M1 TCTATCACTAGTCCCCGG

AGTTGCACTCAGTC  
Forward primer for introducing a SpeI site 
into C(2)M at Asn 191 (I) 

C(2)M2 CAGGAGACTAGTAATAGA
CTTTTTGCGAAAAATG 

Reverse primer for introducing a SpeI site 
into C(2)M at Asn 191 (I) 

C(2)M4 TGAGTTACTAGTGCCATC
TTTGGGGTAAAGC 

Reverse primer for introducing a SpeI site 
into C(2)M at Thr 250 (II) 
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Primer Sequence Details 
C(2)M5 GAATAGACTAGTGAGCAG

CTGGTGAAGCAT 
Forward primer for introducing a SpeI site 
into C(2)M at Arg 339 (III) 

C(2)M6 CTGCTGACTAGTGTATTC
AATTCGTTTGTCTACT 

Reverse primer for introducing a SpeI site 
into C(2)M at Arg 339 (III) 

C(2)M7 GGTGAGACCGGTTGAATA
TTTTTAGATAATTTTTTTC
AAG 

Forward primer for introducing an AgeI site 
into C(2)M before stop codon 

C(2)M8 CGTTCAACCGGTCTCACT
CAGCATAAGATTG 

Reverse primer for introducing an AgeI site 
into C(2)M before stop codon 

C(2)M9 TCTATCACTAGTACTCAC
GTAAGAATTCTCAATTC 

Forward primer for introducing a SpeI site 
into C(2)M at Thr 250 (II) 

AF20 ATGAAGCTACTGTCTTCT
ATCG 

Forward primer, anneals at the start codon 
of Gal4, was used in combination with 
AF21 for amplifying mat α- tub Gal4 

AF21 GCCAATCTATCTGTGACG
GC 

Reverse primer, anneals 300 bp downstream 
of the start codon of Gal4, was used in 
combination with AF20 for amplifying mat 
α- tub Gal4  

CL18 CGCAGGTACCACCTTATG
TTATTTCATCATG 

P-Element specific forward primer for 
identification of P-Elements, was used to 
identify the EP(2)2115 insertion in 
transgenic lines in combination with Mei20, 
produces a 110 bp product when EP is 
present. 

Mei01 TCAACTTCAGCCACGTGA
TGATGTA 

Forward primer for DNA sequencing to 
check insertion of AgeI site at the end of 
C(2)M coding region.  

Mei03 TCTGTATGAAATCGATAT
AATTGATTAATGAATTGG 

Forward primer for sequencing of the 5'end 
of C(2)M 

Mei11 TTTCTTTACGGCAACATT
GGT 

Forward primer for sequencing of the 5'end 
of C(2)M, binds 300 bp upstream of the 
start codon of C(2)M.  

Mei20 GACTGAGTGCAACTCTCG
GTTGTCGAATAGACTTTT
TGCGAAAA 

Reverse Primer, was used for identification 
of EP (2) 2115 insertion in transgenic lines 
in combination with CL18 produces a 110 
bp product when EP is present 

Mei28 CAGGAATCGGATCTATTG
GATG 

Forward  primer  for sequencing  to check 
presence of SpeI site at position I and II. 

FF05 GGATTGCCATGGGTAAGC
CTATCCCTAACC 

Amplifies TEV-Protease sequence without 
NLS (771 bp) in combination with FF06 

FF06 CTTAGAGAATTCACCCTT
GCGAGTACAC 
 

Amplifies TEV-Protease sequence without 
NLS (771 bp) in combination with FF05 

Pwht1 GTAACGCTAATCACTCCG
AACAGGTCACA 

Sense amplification primer for the 5' end of 
P-elements in combination with Plac1. 

Plac1 CACCCAAGGCTCTGCTCC
CACAAT 

Antisense amplification primer for thw 5' 
end of P-elements in combination with 
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Pwht1. 
Pry1 CCTTAGCATGTCCGTGGG

GTTTGAAT 
Antisense amplification primer for the 3' 
end of P-elements in combination with 
Pry4. 
 

Pry4 CAATCATATCGCTGTCTC
ACTCA 

Sense amplification primer for the 3' end of 
P-elements in combination with Pry1. 
 

Sp1 ACACAACCTTTCCTCTCA
ACAA 

Antisense sequencing primer for the 5' end 
of P-elements in combination with Plac1 
and Pwht1. 
 

Spep1 GACACTCAGAATACTATT
C 

Sense sequencing primer for the 3' end of P-
elements in combination with Pry1 and Pry4

 

Chapter V  Abbreviations  

 

a.a.    amino acid(s) 

AB   activation buffer 

ABC   ATP binding cassette 

APC   anaphase promoting complex 

ARS   autonomously replicating sequence 

ATP    adenosine 5'-triphosphate 

BACs   bacterial artificial chromosomes 

bp    base pairs 

BSA    bovine serum albumin 

Cdc   cell division cycle 

Cdk   cyclin-dependent kinase 

C-terminal   carboxy-terminal 

C-terminus   carboxy-terminus 

C(2)M   crossover suppressor on 2 of Manheim 

C(3)G   crossover suppressor on 3 of Gowen 

DCC   dosage compensation complex 

DMSO   dimethylsulfoxide 

DNA    deoxyribonucleic acid 

dNTP    deoxynucleotide 5'-triphosphate 

dUTP   deoxyuridine 5‘-triphosphate  

DTT    dithiothreitol 
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EB   elusion buffer 

E. coli    Escherichia coli 

EDTA    ethylendiamine tetraacetic acid 

EGFP   enhanced green fluorescent protein 

EGTA    ethylen glycol tetraacetic acid 

FBS   fetal bovine serum 

Fig.    Figure 

FISH   Fluorescent in situ hybridization 

FRAP   Fluorescent Recovery After Photobleaching 

Fm   mobile fraction 

g    gram or gravitational constant (9.81 m/s2) 

HA    hemagglutinin 

HEAT   helical repeat protein domain (Huntingtin, elongation factor 3,
   PP2A-A, Tor1) 

HEPES   4-(2-hydroxyethyl)-1piperazineethansulfonic acid 

ICC   initiation of chromosome condensation 

k    kilo 

kb    kilo base pairs 

kDa    kilo dalton 

LB    Luria-Bertani 

m   milli 

μ    micro 

M    molar 

MCS    multiple cloning site 

M.F.I.   mean fluorescent intensity 

mRFP   monomeric red fluorescent protein   

MTOC                        microtubules organizing centers 

min    minute(s) 

mRNA   messenger RNA 

NEBD   nuclear envelope breakdown 

NGS   normal goat serum 

N-terminal   amino-terminal 

N-terminus   amino-terminus 

ORC   origin recognition complex 
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PAGE    polyacrylamide gel electrophoresis 

PBS    phosphate buffered saline 

PCR    polymerase chain reaction 

PEG   polyethylene glycol 

Plk1   Polo-like kinase 1 

PP2A   protein phosphatase 2A 

RFI   Relative Fluorescent Intensity 

RNase   ribonuclease 

ROI   region of interest 

rpm    revolutions per minute 

RT    room temperature 

S14   stage 14 

SAR   scaffold associated region 

Scc   sister-chromatid cohesion 

SDS    sodium dodecylsulfate 

s   seconds 

SMC   structural maintenance of chromosomes 

TEMED   N,N,N',N'-tetramethylethylenediamine 

Tev    tobacco etch virus 

Tris    tris(hydroxymethyl)aminomethane 

U    unit 

UAS   upstream activating sequence 

v/v    volume per volume 

Wapl   wings apart-like 

w/v    weight per volume 

XCAP   Xenopus chromosome associated proteins 

ZAB   Zalokar’s buffer 
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