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Abstract The efficient market hypothesis is highly discussed—supported

and criticized—in economic literature. In its weakest form, it states that

there are no price trends. When weakening the non-trending assumption only

a little to arbitrary short, small, and fully unknown trends, I mathematically

prove, for a specific class of control-based trading strategies, positive expected

gains. Adjustments for risk and comparisons with buy-and-hold strategies do

not satisfactorily solve the problem. In addition, in an exemplary backtesting

study, when transaction costs and bid-ask-spreads are taken into account, I

still observe, on average, positive gains. These strategies are model-free, i.e.,

a trader neither has to estimate market parameters as the trend’s sign nor

has to think about predictable patterns, etc. In this work, I bring together

the economists’ view on efficient markets and the engineers’ view on feedback

trading.
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1 Introduction

While in the 1970s, the market efficiency hypothesis, i.e., the hypothesis that (specific)

traders cannot expect excess returns, was highly accepted (Fama, 1965, 1970). Later on,

it was highly criticized—yet also defended (Malkiel, 1989, 2005). Much of the criticism

concerned so-called predictable patterns: for example, the January effect, i.e., high

positive returns in the first two weeks of January. Defenders of the market efficiency

hypothesis have several arguments against this, e.g., that patterns will self-destroy once

published, or that small possible gains will vanish when trading costs have to be paid.

Additionally, the so-called joint hypotheses problem states that market efficiency

and the used market model have to be tested, nearly always, simultaneously. That

means when the test fails, no one knows whether the market is inefficient or whether the

model used is insufficient. A second point of criticism of the criticism is the distinction

between statistical inefficiency and economical inefficiency. The first means that one

can construct a test for showing that there are, for example, predictable patterns. The

second means that a trader has to be able to exploit this. And the last point used to

defend the market efficiency hypothesis is that, even when one can construct a strategy

with too high returns, e.g., by taking into account some external variables, it may be

that these variables are better ratios for measuring risk. When introducing risk-adjusted

returns, excess returns are no contradiction when they go hand in hand with excess risk.

In the next section, I will give a very short review of market efficiency, its criticism,

and its defenses, i.e., the criticism of the criticism. Much of the discussion on market

efficiency, technical trading, and beating the market follows the idea that a trader (i)

has to find a predictable pattern, (ii) has to construct a trading strategy to exploit this

pattern, and, (iii) has to test this new strategy against randomly selected broad index

buy-and-hold strategies (Malkiel, 1973). However, a new strand of research—mainly in

engineering sciences and mathematics—goes another way. In the view of the respective

authors, task (i) can be skipped, allowing trading strategies to be constructed directly.

These strategies usually are model-free and use neither predictions of patterns nor esti-

mations of parameters. In short, and using the terminology of the control community:

they are constructed to be robust against the price. Instead of task (iii), which relies on

real market data, (performance) properties are proven mathematically. This way, the

overfitting problem (cf. Bailey et al., 2014) is avoided.

While in the control literature, results on control-based trading strategies attract

high attention, in the economical literature they are widely unknown. An aim of the

work at hand is to review known results on a particular control-based strategy, the
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so-called Simultaneously Long Short (SLS) Strategy, to extend the results in different

directions, and, finally, to bring them into the context of market efficiency, which is not

adequately discussed in the control literature.

The paper is organized as follows: In Section 2, I discuss the literature on efficient

markets as well as on feedback trading, and I explain SLS trading and the used market

requirements. In Section 3, new results concerning SLS trading in a general market model

with time-varying trends and volatilities are obtained, and risk as well as buy-and-hold

strategies are considered. To account for trading costs and bid-ask-spreads—which are

not considered in the analytical part of the work at hand—Section 4 is provided, in

which I perform backtests on historic market data using bid-and-ask prices. After that,

in Section 5, the standard SLS rule is generalized to the so-called discounted SLS rule,

in which old data has less influence on the strategy. Finally, in Section 6, I discuss the

results—especially in view of the efficient market hypothesis—and conclude the paper.

Since an aim of this work is to bring together economic ideas like market efficiency and

control theoretic ideas like feedback trading, the one or the other might be uncommon

to the reader. I will explain both views, that of the engineers and that of the economists,

to both communities and discuss the differences that occur. After discussing the efficient

market hypothesis, reviewing the feedback trading literature, and proving new properties

of SLS strategies, all parts will be discussed together. At the end, since some of the

performance properties (proven in the work at hand) do not fit with efficient markets, I

discuss this puzzle.

2 Literature Review

In this section, I briefly discuss market efficiency, its criticism, and its defense. After

that, I introduce the SLS rule, as it is known from the control literature, and state the

most important results of this literature.

2.1 Review of Market Efficiency

In this section, I give a very brief overview of market efficiency. Because there is a very

broad literature on this topic, and there are also a lot of very good and famous overviews,

I refer the interested reader to these overviews (e.g., Fama, 1991; Malkiel, 2003). At

the end of this work, in addition to the definition and discussion of market efficiency,

I discuss some topics where definitions are not clear—focused on the discussion of the

SLS strategy.
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In its strong version, market efficiency states that all information is reflected in the

price. That means no sophisticated trader—even no insider who has private information—

performs on average better than a simple buy-and-hold trader. Insiders have access to

all private and all public information. Public information means fundamentals and past

returns. The strong version means that when there is no change in the fundamental

value, all price movements are fully random with no trend. Mathematically speaking,

the price process is a random walk around its fundamental value. A little bit weaker and

maybe closer to markets is the assumption that only almost all information is incorpo-

rated in the price. But the costs for getting the missing information and for trading the

asset are higher than the possible gain of exploiting this information (Fama, 1991).

The semi-strong version of the market efficiency hypothesis states that all public

information is reflected in the price. That means insider trading may be profitable,

which is widely accepted. For example, the findings on the effects of Value Line rank

changes are a sign that insider trading may be profitable (Stickel, 1985) as summarized

by Fama (1991). However, all public information is immediately incorporated in the asset

price. The word immediately has to be understood in an averaged sense, i.e., markets

may overreact or underreact to new information, and markets may reflect information

too early or too late, but on average all these effects balance out (Fama, 1995). In

other words, fundamental value analysis, i.e., trying to calculate the fundamental or

intrinsic value (the real value), is on average not profitable at all because an asset’s

actual price is at any point in time the best estimate for the fundamental value (based

on public information). Fundamentalists can make a profit when they find relevant

information faster and better rate the effects to the fundamental values under analysis.

Thus all fundamentalists do their best to be as fast and as accurate as possible—thereby

adjusting prices instantaneously to the intrinsic values. Since no one knows who is the

fastest and the best, on average fundamentalists cannot expect excess gains. Note that

fundamentalists have access only to public information, i.e., to fundamentals and past

returns.

Last, the weak version of market efficiency states that insider trading as well as

fundamental analysis may be profitable, but technical analysis is not. Technical traders,

who are also called technical analysts or chartists, have access only to past returns.

However, the weak version states that no one can use past returns to predict future

ones. Also, in this version, chartists, on average, cannot make money, markets have no

memory, and patterns do not exist. Or, even a little bit weaker, when there exists a

dependence of past and future returns, these anomalies are too small to be exploitable.

To sum up, in all versions of the market efficiency hypothesis, it is not possible,
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on average, for chartists to make money. Because there is a lot of literature on the

profitability of technical trading, and there are numerous fund managers who rely on such

strategies (Covel, 2004; Avramov et al., 2018), the task is always considered empirical.

This means that chartist fund managers are challenged to provide statistics showing that

their strategies outperform randomly selected buy-and-hold portfolios.

Hereafter, I summarize a selection of common criticism of the market efficiency hy-

pothesis and state some arguments by the defenders of the hypothesis against these

criticisms. One strand of criticism of the market efficiency hypothesis—actually, of its

weak version—relies on predictable patterns. With statistical or data science methods,

patterns were found, i.e., an on the average recurring behavior of stock market prices:

the Monday effect (lower returns on Mondays, Cross (1973); French (1980)); the month

effect (higher returns the last day of the month, Ariel (1987)); the holiday effect (higher

returns on the day before a holiday, Ariel (1990)); and the most famous, the January

effect (higher returns in January and even higher returns in the first five days of January,

Keim (1983); Roll (1983)).

However—following Malkiel (2003)—predictable patterns will self-destroy once pub-

lished. If the January effect existed, traders would buy on the last days of December and

sell at the very beginning of January. That means the pattern would move a few days.

Observing this, traders would buy and sell again a few days earlier. And so on. In the

end, the January effect would be destroyed. A second attack on this strand of criticism

is that the effects of (predictable) patterns are too small to exploit (Lakonishok and

Smidt, 1988), especially when trading costs are considered. This last argument can be

generalized: Just because there is a statistical inefficiency (i.e., predictability in returns

shown by the use of data science methods) does not mean that a trader can profit from

it—when the effect and the power of the statistic is small relative to additional costs.

That means economical inefficiency must be shown by trading performance statistics.

Another strand of criticism of market efficiency is that stock returns may be pre-

dictable using some external variables, for example: dividend yields (D/P, Rozeff (1984);

Shiller (1984)), earning per price ratios (E/P, Campbell and Shiller (1988)), or the firm’s

size (Banz, 1981). This is an attack on the semi-strong version of the efficient market

hypothesis. But, as summarized by Fama (1991), these dependencies are either too small

to exploit (especially when trading costs are taken into account) or—like in the case of

the size effect—they have another reason: Taking into account some external variables

with predictive power may just mean that these variables are better ratios for measuring

risk. As mentioned above, the definition of market efficiency is not clear at all. Despite

the statistical inefficiency vs. economical inefficiency problem, one can find statements
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in the literature, like traders cannot expect excess returns and traders can only expect

excess returns when they accept excess risk. Often, the term risk-adjusted gains is used.

Here, the next problem arises: How does one measure risk? Sometimes the Capital Asset

Pricing Model’s (CAPM’s) β—or the standard deviation is used. I will come back to

this problem in Section 6.

Another problem is that all empirical findings concerning market efficiency might be

the result of data-dredging (also known as p-hacking), i.e., the results might be found

by data-mining techniques—searching for significant p-values without causality or hy-

pothesis. That means when one has enough data and is doing many, many tests, the

probability of finding an anomaly is high, which does not prove inefficiency. The problem

of p-hacking concerns the efficient market hypothesis in all its versions. Some studies

indicate that there are (with constant fundamentals) long-term trends (possibly sinuso-

dial) (Granger and Morgenstern, 1962; Saad et al., 1998) that do not face the problem

of p-hacking. However, these studies have to deal with the issue that the trends may be

not exploitable.

Additionally, there is the joint hypotheses problem, which states that market efficiency

can (almost) always be tested only when simultaneously using a market model. A

consequence is that when a test fails, no one can say whether the market efficiency

hypothesis is wrong, or whether the used market model is insufficient. Since the joint

hypotheses problem is a very strong argument, one that also concerns all versions of the

efficient market hypothesis, the task for this work is to use no market model or at least

a model as general as possible.

Exceptions to the joint hypotheses problem are the so-called event studies (Fama

et al., 1969). Event studies analyze how fast and to what extent stock prices adjust

to announcements, i.e., to new public information. So, event studies lie in the field of

the semi-strong form of the market efficiency hypothesis. It is shown that prices may

overreact or underreact to new information, and that reactions may be too early or too

late. However, the defenders argue that, on average, all these anomalies vanish.

And last, there is the momentum effect : assets that performed well over the last few

months will do so over the next few months, and similar for bad assets (Jegadeesh and

Titman, 1993, 2001; Fama and French, 1996, 2008). Criticizing the weak form of market

efficiency—based on empirical and statistical methods—this effect is explainable only by

behavioral economics. Moskowitz (2010) explains why it is reasonable that assets with

high momentum also have high risk. Another point against the momentum effect is that

it eventually vanishes and thus is hard to exploit.

As shown above, there is a broad variety of criticism and defense of the efficient mar-
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ket hypothesis. Most past criticism was empirical and, thus, had the p-hacking problem.

Theoretical critics often use a specific market model that leads to the joint hypotheses

problem. To overcome the joint hypotheses problem, the data-dredging problem, and

the overfitting problem (Bailey et al., 2014)—i.e., the problem that technical strategies

might use too much past information to have any power for predicting the future—in

the analytic part of the work at hand I present some criticism of the efficient market

hypothesis, some that is purely theoretical, i.e., mathematical, and I use neither past

data nor any market model, except some very basic market requirements. Only in the

exemplary backtesting in Section 4 do I use historic market data.

2.2 Simultaneously Long Short (SLS) Trading

There is a strand of research in the control literature that seemingly does not care

about market efficiency. There, by use of feedback techniques sourced in engineering

sciences and analyzed in applied mathematics, trading strategies that are robust against

noisy prices pt are created. This control theoretic way of thinking is different from

classical finance: Neither fundamentals ft are calculated nor price patterns are searched

for estimating future returns E
[
pt+h−pt

pt

]
because the strategies do not use estimations

of future returns.

Traders relying on control-based trading strategies are called feedback traders. They

calculate their investment, i.e., their net asset position, which is an input variable to the

system, i.e., to the financial market or actually to the trader’s portfolio, at every point

in time, as a function of an output variable of the system, usually the gain. Next, I

define the Simultaneous Long Short (SLS) strategy as used in the control literature and

present the most important results concerning this strategy.

As mentioned above, a feedback trader ` computes at time t the investment I`(t) as

a function of the trader’s own gain g`(t) and—some would call it naive—of nothing else:

I`(t) = F
(
g`(t)

)
Since the results from the literature to be presented next are obtained in different

market models, some in discrete time (indicated by subscript t), some in continuous

time (indicated by t in brackets), I will give the definition of the strategy for a stochastic

model in continuous time, which can easily be rewritten to other settings. The trader’s
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gain is calculated by use of the investment and the return on investment:

g`(t) :=

∫ t

0
I`(τ) · dp(τ)

p(τ)
:=

∫ t

0

(
I`

p

)
(τ−)dp(τ)

The integral is an Itō-Integral. The price process has to be a càdlàg semimartin-

gale, which by construction makes the trading strategy
(
I`

p

)
(τ−) a locally bounded,

predictable process. The big question that has to be answered is how to choose function

F . One possibility for F is the so-called linear long feedback trading rule:

IL(t) = IL0 +KLgL(t),

where IL0 > 0 is the initial investment in the linear long rule and KL > 0 is the so-

called feedback parameter. It is easy to see that the linear long feedback trader is a long

trader in continuous time when the price process is continuous, too. This means that

this trader type makes money when prices rise and loses money when prices fall. When

K > 1, this strategy is a trend-following rule, i.e., the trader buys when prices rise and

vice versa. Since the required trading rule will be robust against variations in price, i.e.,

trend-following is a non-desired property, the linear long rule has to be modified. For

this, the linear short feedback rule is defined first:

IS(t) = −IS0 −KSgS(t)

When time and price are continuous, this trader is a short investor who loses money

when prices rise and earns money when prices fall (IS0 ,K
S > 0). When K > 1, this rule

is an anti-trend-following strategy.

The simultaneously long short (SLS) rule is now simply defined as the superposition

of the linear long and the linear short rule with the same parameters, i.e., IL0 = IS0 :=

I∗0 > 0 and KL = KS := K > 0:

ISLS(t) = IL(t) + IS(t)

Note that the long side’s gain gL and the short side’s gain gS have to be calculated

separately, i.e., the trader actually performs two feedback rules simultaneously. A flow

diagram for the SLS rule is given in Fig. 1.

***Fig. 1 about here.***
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2.3 Market Requirements

As can be seen, the short side’s strategy requires for sure a possibility for

• short selling, i.e., a negative investment.

Besides this market requirement, a few more assumptions are needed in the analytic

parts of the work at hand:

• costless trading, i.e., no additional costs related to buying or selling assets,

• adequate resources, i.e., no financial constraints that could prohibit any desired

transaction,

• perfect liquidity, i.e., no bid-ask-spread and no waiting time, and

• the so-called price-taker property, i.e., no impact of the investment decisions on

the price process.

In a discussion of the results of this paper, these assumptions are debated. But for now,

I briefly justify these market requirements: short-selling and perfect liquidity should not

be strong assumptions for large companies’ stocks under trade. Costless trading, in the

past a strong argument of the defenders of the efficient market hypothesis to show that

chartist strategies cannot work in practice (cf. Fama, 1991), might be less controversial

in times of flat-rate stock trading offers or when only trading over the counter. The

adequate resources assumption is justified when the trader is big and rich enough, e.g.,

a mutual fund, and is not trading too much of the single asset under trade. The latter

assumption also justifies the price-taker property.

The key assumption is high liquidity, because when trading a highly liquid stock in

small amounts, it can be done over the counter. In this case, the price path is always

the middle of the bid-and-ask price, which allows me to assume no bid-ask-spread. In

the case of trading over the counter, the trader is really a price-taker and the trading

costs are negligible.

In sum, for a big, rich trader who trades small amounts wirh an asset with a big

underlying firm, the assumptions above can be accepted. Rich does not mean that the

trader has an infinite amount of money all the time, like in the St. Petersburg paradox

or when referring to doubling strategies. There are papers analyzing the leverage of the

SLS rule, i.e., how many times the account value a trader needs to invest. Primbs and

Barmish (2013, 2017) show that this leverage can be bounded. Additionally, it is easy to

see that in a discrete time model with a given time horizon (T <∞) and bounded stock
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returns—like in a binomial tree model (e.g., Cox-Ross-Rubinstein; CRR)—the maximal

investment is bounded, too.

Furthermore, I assume

• a risk-free bond with

• one interest rate for debit and credit, and

• that the interest rate equals zero.

The existence of a zero-rate risk-free bond is easily achievable: When there is any bond,

I can use this bond as numéraire. That means all stock returns are somehow relative to

this bond. The assumption that the interest rate is the same for debit and credit is a

harder assumption than the existence of a risk-free bond. Also, however, this assumption

is actually not too hard for big traders. That means that the returns of all risk-neutral

assets are zero. But I need another assumption, the existence of a

• non-risk-neutral asset.

The results obtained in this work (and in the related literature) only hold when the

asset’s trend is non-zero. Since the zero-trend case is always an exception in the results

of this work, it is important that there be an asset with a trend unequal to zero. This

assumption is justifiable because I can assume that a stock market as a whole is risk-

neutral (on average), but not so each single stock. Additionally, it is reasonable in

the sense of efficient markets that a volatile and, thus, more risky asset expects higher

returns, i.e., they are positive relative to the numéraire. I do not need a stock with

a higher expected return (compared to the bond/numéraire), only one with expected

returns unequal to zero compared to the numéraire.

Note that the market requirements stated in this section concern the analytic parts

of the work at hand. In Section 4, I provide a backtesting study on historic market data,

including bid-ask-spread (i.e., imperfect liquidity), transaction costs, and interest rates.

Thus, the results in Section 4 are empirical, not theoretical.

After having discussed the market requirements, in the next section I present the

related work in the field of SLS trading. The authors of the respective papers assume

more or less the same market requirements as I did above.

2.4 Literature Review on SLS Trading

The following literature review will give an idea about why the SLS strategy is an

interesting one. Barmish (2011) shows that for continuously differentiable prices p ∈ C1
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it holds

gSLSC1 (t) =
I∗0
K

((
p(t)

p(0)

)K
+

(
p(t)

p(0)

)−K
− 2

)
from which follows that gSLSC1 (t) > 0 for all price processes with p(t) ∈ (−1,∞) \ {p(0)}.
In other words, this is an arbitrage strategy. Note that this means that the gain at time

t is independent of the process and only depends on the value of p(t) at time t. Since C1

prices are a rather hard assumption, Barmish and Primbs (2011, 2016) show that when

the underlying price process is governed by a geometric Brownian motion (GBM) (this

is the price model used in the Black-Scholes model)

pGBM (t) = p0 · exp
((

µ− σ2

2

)
t+ σW (t)

)
(with trend µ > −1, volatility σ > 0, and a Wiener process (i.e., Brownian motion)

W (t)), the SLS strategy is not an arbitrage strategy anymore. However, for the expected

gain it holds:

E
[
gSLSGBM (t)

]
=
I∗0
K

(exp(Kµt) + exp(−Kµt)− 2)

Especially it follows E
[
gSLSGBM (t)

]
> 0 whenever µ 6= 0 holds. This is called the robust

positive expectation property. Similar results are provided by Dokuchaev and Savkin

(1998a,b, 2002, 2004); Dokuchaev (2012).

Primbs and Barmish (2013, 2017) show that the robust positive expectation prop-

erty also holds when the trend µ(t) as well as the volatility σ(t) of the GBM are time

dependent. In fact, for a time-varying GBM (tvGBM) with trend µ(t) and volatility

σ(t) and the SLS trading rule, it holds:

E
[
gSLStvGBM (t)

]
=
I∗0
K

(
exp

(
K

∫ t

0
µ(s)ds

)
+ exp

(
−K

∫ t

0
µ(s)ds

)
− 2

)
.

For clear, whenever
∫ t
0 µ(s)ds 6= 0 it holds E

[
gSLStvGBM (t)

]
> 0, too.

Iwarere and Barmish (2014) analyze the SLS strategy when prices are governed by

tree models, and Barmish and Primbs (2012) use a market model motivated by the

CAPM. Barmish (2008) and Malekpour et al. (2013) analyze strategies related to the

SLS rule.
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Baumann (2016) generalizes the results for SLS trading to prices governed by Mer-

ton’s jump diffusion model (MJDM), which is given through:

pMJDM (t) = p0 · exp
((

µ− λκ− σ2

2

)
t+ σW (t)

) N∏
i=1

Yi

Hereby, the GBM is extended by i.i.d. jumps (Yi − 1) > −1 with jump intensity λ > 0,

expected jump height E [Yi − 1] = κ > 0, and a number N ∼ Poi(λt) of jumps up to

time t. Jumps are interesting in this context since they are known—in the fields of

option pricing and hedging—for making markets incomplete (Merton, 1976). However,

Baumann (2016) shows that the expected gain of the SLS strategy is:

E
[
gSLSMJDM (t)

]
=
I∗0
K

(exp(Kµt) + exp(−Kµt)− 2),

which is exactly the same as for the GBM. Baumann and Grüne (2016) further gener-

alize this result to a set of price processes defined by stochastic differential equations

called essentially linearly representable prices. Barmish and Primbs (2011) give a closed

formula for the variance of the SLS trading rule when prices are governed by a GBM,

and Baumann (2016) does this for MJDM prices as well.

Here, I want to mention again that the so-called linear long (short) trader is not

necessarily long (short) when there are discontinuities—for example, when the price

model allows for jumps, like MJDM, or when the model is in discrete time, as in the two

papers discussed next.

Malekpour and Barmish (2016) note an interesting and especially practical prob-

lem of the SLS rule. Since the SLS strategy is calculated by use of the overall gain,

price behaviors that happened a long time ago have the same impact on the investment

decision of the trader as if they happened a few days ago. Imagine a price develop-

ment where in the phase after the trader entered the market, the price rose a lot, then

stayed nearly constant for a long time, and then decreased slowly. The trader’s long

(short) side would have made (lost) a lot of money in the first period, then stayed ap-

proximately constant. The slow decrease in later time does not level out the increase

from a long time before. As a consequence of the feedback loop, the investment of

the trader is still very high—and long—which seems to be questionable since prices

stayed constant for so long, then decreased. Malekpour and Barmish (2016) introduce

a new strategy called Initially Long-Short (ILS) with delay as the superposition of a

linear long rule with delay ILdt = I∗0 + K
(
gLdt − gLdt−m

)
and a linear short rule with de-
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lay ISdt = −I∗0 − K
(
gSdt − gSdt−m

)
. The strategy is defined and analyzed in a discrete

time setting with a time grid {0, 1, 2, . . .} with fixed time steps, e.g., days. The word

initially denotes the fact that only at the initial time can one be sure that the long

(short) side is truly long (short). Among other market requirements, similar to that

presumed in the work at hand, the main assumption by Malekpour and Barmish (2016)

is −1 < E
[
pt−pt−1

pt−1

]
= µ 6= 0, i.e., that the expected return on investment is non-zero

and constant, which is needed to show that the robust positive expectation property still

holds.

In the ILS strategy, only the period gains of the last m days are taken into account.

On the one hand, while the idea of not taking into account a too-old price (and so gain) is

an advantage of the ILS rule of Malekpour and Barmish (2016) compared to the standard

SLS rule. On the other, the hard-delay definition seems to be a little bit problematic.

Imagine a price history where m−1 days ago an important event happened at the market,

for example a sudden crash, which made the short side much more important. Today,

this event will be taken into account; tomorrow, this will not be the case. This means

that the strategy will change substantially only because an important event happened

exactly m− 1 days ago, where the number m was an idiosyncratic choice of the trader.

A point to think about that is not discussed in detail by Malekpour and Barmish (2016)

is that the trader is assumed to be a price-taker. However, the trader decides to trade,

e.g., daily, and the expected return on investment on a daily basis is assumed to equal

µ. That means the trader indirectly influences the expected return on investment by

choosing a trading frequency, which at first glance seems to contradict the price-taker

property. However, this is not a problem, as shown in the next paper reviewed below. I

will come back to the idea of not taking into account too-old information in Section 5.

Also Baumann and Grüne (2017) use a discrete time setting at first, but with ad-

justable time steps h > 0: {0, h, 2h, . . .}. Here, it is assumed that:

E
[
pt − pt−h
h · pt−h

]
= µh 6= 0,

which is the expected return on investment (eroi). For the standard SLS strategy, the

expected gain is

E
[
gSLSeroi;t

]
=
I∗0
K

[
(1 +Kµhh)

t
h + (1−Kµhh)

t
h − 2

]
,

positive whenever µh 6= 0 and t > h. Even in this setting, the conjectural contradiction

to the price-taker property is given: On the one hand, the trader chooses the trading
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frequency h; on the other hand, the expected return on investment µh has to be inde-

pendent of the trader. To solve this, a (maybe more realistic) setting with an underlying

continuous time price process but discrete time trades is introduced. Engineers call this

a sampled-data system. The continuous time price process has to satisfy

E [p(t2)|Ft1 ] = p(t1) · exp (µ (t2 − t1))

for all t2 > t1 ≥ 0. This µ is now independent of the trader’s decision on trading time

and with

µh :=
exp(µh)− 1

h

the above theory is applicable. Finally, it shows that when calculating the limits for

h → 0, the results are fully in line with the known results for the GBM and MJDM.

In sum, without assuming any fixed market model but only some core properties, like

the expected return on investment and independent multiplicative growth of the price

process, it shows that the SLS rule satisfies the robust positive expectation property,

i.e., a positive expected gain.

2.5 Illustrative Example

Before going to the analytic part of this work, I present a small illustrative example of

how SLS trading works in a non-recombinable binomial tree with time-varying param-

eters on the time grid {0, 1, 2}. Note that for the analytical findings in Section 3, no

values of the parameters have to be known (or estimated), though for calculating this

example, parameters were chosen. The parameters are: The initial price is p0 = 10; the

probability for a rising price p1 = p0 + 20% = 12 in period one is 0.5; and for a falling

price p1 = p0−10% = 9 is also 0.5. In the second period, the price rises with probability

0.8 by 10% and drops with probability 0.2 by 10% (i.e., −10% increase). That means in

period two, the price is p2 = 12+10% = 13.2; p2 = 12−10% = 10.8; p2 = 9+10% = 9.9;

or p2 = 9− 10% = 8.1. This leads to a trend of µ1 = 5% in period one and of µ2 = 6%

in period two. Together with the trading parameters I∗0 = 100 and K = 2, this leads

to the investments and gains depicted in Fig. 2. The variable B denotes the bond, i.e.,

the bank account. A positive B tells how much money the trader puts in the bank and

a negative B how much money the trader has to borrow from the bank. The expected

gain is E [g2] = 0.4 · 8 + 0.1 · (−8) + 0.4 · (−4) + 0.1 · 4 = 1.2 > 0.

***Fig. 2 about here.***

In the next section, I show that the expected gain was also positive when both µ1 and
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µ2 were negative. The example above gives an idea how come SLS trading works. When

prices go up (down) several times in a row, the trader profits from compound effects

of the long (short) side, ones that exceed the losses on the other side (in expectation).

Another point learned by this example is that the trader does not need an infinite amount

of money: here it is bounded by 112. The system of SLS trading is not explainable with

the St. Petersburg paradox because here the positive expected gain is achieved in round

two and not only for t → ∞. And even were I to add transaction costs of, e.g., 0.5 per

trade, the expected gain would still be 0.2 > 0, which shows that the classical transaction

costs argument of the defenders of the efficient market hypothesis is not that strong in

terms of SLS trading. I will come back to the problem of transaction costs and of

bid-ask-spreads in Section 4.

3 Analysis of the Simultaneously Long Short Strategy with

Time-varying Trends

The main feature of control-based trading strategies is that, although market parameters

like the expected return on investment are used when analyzing the strategies, the trader

neither needs to know nor to estimate them. Properties of the strategies hold for almost

all settings of the parameter values. The following analysis generalizes the work of

Baumann and Grüne (2017) but takes into account the ideas of Primbs and Barmish

(2013, 2017) who consider time-varying trends and volatilities.

After having discussed market efficiency and control-based trading strategies, es-

pecially SLS trading, I present the analysis of the SLS rule in a general time-varying

setting. This analysis is based on refinements of the underlying time grids: Starting with

discrete time-price processes and thus discrete time-trading, I end with continuous prices

and continuous trading. The price process allows for time-varying parameters, and in

Section 3.2 the analysis takes risk-adjusted returns into account. The mathematically

proven results build the already mentioned puzzle of market efficiency, which remains

the aim of this work.

3.1 The Robust Positive Expectation Property

The basic novelty of this work, different from the work of Baumann and Grüne (2017),

is that I allow for a time-varying trend:

E
[
pt − pt−h
h · pt−h

]
=: µh;t−h
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(For the reason of non-negative prices,
pt−pt−h
h·pt−h ≥ −1 and µh;t−h > −1 has to hold for

all t and h.) This procedure is also a generalization of the work done by Primbs and

Barmish (2013, 2017), which extends the results for standard GBMs to time-varying

GBMs. Analogous to Baumann and Grüne (2017), I also assume positive, stochastic

prices (pt)t∈T > 0 (T = {0, h, 2h, . . . , T}, T = Nh, t = nh), p0 ∈ R+, and independent

multiplicative growth, i.e., for all k ∈ N and all t0 < t1 < . . . < tk ∈ T it holds that

pt0 ,
pt1
pt0

, . . . ,
ptk
ptk−1

are stochastically independent. In other words, the returns of investment must be in-

dependent. This is the weak form of the market efficiency hypothesis. Note that this

stochastic independence also holds when applying any measurable function on the growth

rates. Again, there seems to be a contradiction in the price-taker property: While on

one side, h is chosen by the trader, on the other side, the trend µh;t depends on h. But,

as shown by Baumann and Grüne (2017), this problem can easily be solved—either by

use of so-called sampled-data systems or by calculating the limits for h→ 0.

Here I will show that the robust positive expectation property does not, in general,

hold anymore (an example is given later in this section). However, at least in two special

cases, the robust positive expectation property is still valid. First, I note that for the

expected price it holds

E [pt] = E

[
p0 ·

n∏
i=1

pih
p(i−1)h

]
= p0 ·

n∏
i=1

(µh;ihh+ 1)

and

E [pt2 |Ft1 ] = pt1 ·
n2∏

i=n1+1

(µh;ihh+ 1).

I start the analysis of the SLS strategy with its long side. By the definition of ILt

and gLt =
∑n

i=1 I
L
(i−1)h ·

pih−p(i−1)h

p(i−1)h
it follows:

ILt − ILt−h
h · ILt−h

= K · pt − pt−h
h · pt−h

and so

E

[
ILt − ILt−h
h · ILt−h

]
= Kµh;t−h.
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It holds

E
[
ILt
]

= I∗0 ·
n∏
i=1

(Kµh;ihh+ 1) .

Again by the definition of ILt it follows:

E
[
gLt
]

=
I∗0
K

(
n∏
i=1

(Kµh;ihh+ 1)− 1

)

By substituting I∗0 7→ −I∗0 and K 7→ −K, the formula for E
[
gSt
]

is derived.

Next, I investigate whether E
[
gSLSt

]
= E

[
gLt + gSt

]
is positive or not. Unfortunately,

E
[
gLt + gSt

]
> 0 is not true for all t and all (µh;t)t. This can be seen by rewriting

E
[
gSLSt

]
=
I∗0
K

(
n∏
i=1

(Kµh;ihh+ 1) +
n∏
i=1

(−Kµh;ihh+ 1)− 2

)

=
2I∗0
K

∑
α⊂{1,...,n}
|α| even
|α|6=0

∏
j∈α

Kµh;jhh.

When assuming a time-varying trend in discrete time, it is easy to find an example

where this sum is negative. When setting n = 2, i.e., T = {0, h, 2h}, with µh;h > 0 and

µh;2h < 0, which is a time-varying trend, it holds that E
[
gSLS2h

]
= 2KI∗0h

2µh;hµh;2h < 0.

However, there are (at least) two special cases where E
[
gSLSt

]
> 0 holds. (i) One,

when n > 1 and µh;t ≥ 0 for all t, and µh;t > 0 for at least two points in time t or

when µh;t ≤ 0 for all t and µh;t < 0 for at least two points in time t (since |α| is even).

That means, whenever (µh;nh)n∈{1,...,N} is non-negative (non-positive), E
[
gSLSt

]
is non-

negative. When additionally there exists ν ⊂ {1, . . . , N} with |ν| ≥ 2 so that (µh;jh)j∈ν
is positive (negative), it holds that E

[
gSLSt

]
is positive. The settings of Baumann and

Grüne (2017) and Malekpour and Barmish (2016), i.e., µ or µh const. and non-zero, are

a special case of case (i).

(ii) Two, when letting h→ 0 (i.e., n→∞), one can use the continuously compounded

interest rate formula, which is a Vito-Volterra-style product integral, to see

E
[
gSLSt

]
=
I∗0
K

(
exp

(∫ t

0
Kµ(s)ds

)
+ exp

(∫ t

0
−Kµ(s)ds

)
− 2

)
,

which is positive whenever µ̄ :=
∫ t
0 µ(s)ds 6= 0. That means, in the continuous time

case, I proved that the robust positive expectation property still holds. Compare Figs. 3
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and 4 for graphs of the expected SLS trading gain as functions of µ̄ for varying K, and

Figs. 5 and 6 for contour plots of the expected SLS trading gains as a function of K > 0

and µ̄. Note that exp(x) + exp(−x)− 2 ≥ 0 ∀x and equals zero, if and only if x = 0.

The setting of Primbs and Barmish (2013, 2017) is a special case of case (ii), and all

the results using GBMs or MJDM are special cases of the cases (i) (just on another time

scale) and (ii). In case (ii), µ(t) has to be a Riemann integrable function.

***Figs. 3, 4, 5, and 6 about here.***

During every time interval with positive expected returns or negative expected re-

turns, a trader using the SLS rule can expect positive gains. Only when the expected

return µ switches from positive to negative or vice versa can the trader expect a loss.

When increasing the trading frequency to continuous trading—which is nearly a realis-

tic assumption in times of high-frequency trading—and µ(t) is Riemann integrable, the

measure of points in time when µ is switching its sign goes to zero (given any measure

that is absolutely continuous with the Lebesgue measure on the parameter space).

Mostly, in market efficiency literature, it is assumed that the price process is a random

walk around its fundamental value. When allowing the fundamental value to be non-

constant, and assuming it to be not too wild, i.e., µ(t) has to be Riemann integrable,

i.e., µ̄ =
∫ t
0 µ(s)ds 6= 0 exists, the SLS trader can—when trading fast enough—expect a

positive gain for all t. This should not be true in an efficient market.

3.2 Risk-Adjusted Expected Return

For sure, there are some points to think about concerning this result. The assumption

that there are short time trends in expected returns (that can be caused by changes in

fundamentals) is reasonable. The argument that the trader in practice has to achieve a

positive gain on average when there are trading costs, in times of over-the-counter and

flat-rate trading offers, it is not really a solution to the puzzle, and trading costs in a

highly liquid market can be assumed to be bounded. (In Section 4, when performing a

backtesting study on past price data, and when bid-ask-spreads and trading costs are

taken into account, it turns out that, nevertheless, on average, positive gains can be

observed.) The same is true for the continuous trading assumption when considering

high frequency trading. However, there is one argument against the discounted SLS rule

that puzzles me: the risk adjustment.

Classically, the risk argument is given by the defenders of the market efficiency

hypothesis when someone finds an external variable that allows for estimating higher

expected returns of an asset. Then it is said that this external variable is just a better
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proxy for measuring risk, so one concludes that the asset under investigation is more

risky, which allows the asset to be more profitable (on average) without being a coun-

terexample to market efficiency. In the setting of this paper, this is not applicable since

there is only one asset under analysis, and there are no external variables. Even the

discussion of the momentum effect (Moskowitz, 2010), i.e., higher momentum is related

to higher risk, is not applicable to my setting because I do not need assumptions on the

stock under trade. Here, only different trading strategies are considered. The only way

to apply the risk adjustment argument to the SLS rule is to use volatility (standard devi-

ation, which actually is not a risk measure in the sense of mathematical finance), which

I will do next. At the end of the paper, the risk of the SLS rule and other definitions of

it (cf. skewness) are discussed again. But for now, I use the most common choice.

For calculating the standard deviation of the SLS strategy, an assumption on the

volatility of the underlying price process is needed. Analogous to the definition of the

trend, it is set:

E

[
1

h

(
pt − pt−h
pt−h

)2
]

=: σ2h;t−h > 0

Note that also here there is a market parameter, namely σ2h;t seemingly set by the trader

via h. However, the same argument as for µh;t holds (cf. Baumann and Grüne, 2017).

With this assumption it follows that:

E
[
p2t
]

= p20 ·
n∏
i=1

((
σ2h;ih + 2µh;ih

)
h+ 1

)
and

E
[
p2t2
∣∣Ft1] = p2t1 ·

n2∏
i=n1+1

((
σ2h;ih + 2µh;ih

)
h+ 1

)
.

Again, I start the analysis of the SLS strategy with its long side. Using the definition of

ILt and gLt leads to

1

h

(
ILt − ILt−h
ILt−h

)2

=
K2

h

(
pt − pt−h
pt−h

)2

and so

E

1

h

(
ILt − ILt−h
ILt−h

)2
 = K2σ2h;t−h.

It holds

E
[(
ILt
)2]

= I∗20 ·
n∏
i=1

((
K2σ2h;ih + 2Kµh;ih

)
h+ 1

)
.
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Again by the definition of ILt it follows:

E
[(
gLt
)2]

=
I∗20
K2

(
n∏
i=1

((
K2σ2h;ih + 2Kµh;ih

)
h+ 1

)
− 2

n∏
i=1

(Kµh;ihh+ 1) + 1

)

Once more, by substituting I∗0 7→ −I∗0 and K 7→ −K, the formula for E
[
(gSt )2

]
follows.

For calculating the standard deviation of the SLS strategy’s gain, the mixed expectation

of the long and the short side E
[
gLt g

S
t

]
is needed, too.

It holds:
1

h

(
ILt − ILt−h
ILt−h

)(
ISt − ISt−h
ISt−h

)
= −K

2

h

(
pt − pt−h
pt−h

)2

and

E

[
1

h

(
ILt − ILt−h
ILt−h

)(
ISt − ISt−h
ISt−h

)]
= −K2σ2h;t−h

With that it follows:

E
[
ILt I

S
t

]
= −I∗20 ·

n∏
i=1

(
−K2σ2h;ihh+ 1

)
.

Now, by the definitions of ILt and ISt , it follows:

E
[
gLt g

S
t

]
=
I∗20
K2

(
n∏
i=1

(
−K2σ2h;ihh+ 1

)
−

n∏
i=1

(Kµh;ihh+ 1)−
n∏
i=1

(−Kµh;ihh+ 1) + 1

)

Now, all components needed for the calculation of E
[(
gSLS(t)

)2]
= E

[(
gL(t)

)2]
+

2E
[
gL(t)gS(t)

]
+E

[(
gS(t)

)2]
and V ar

(
gSLS(t)

)
= E

[(
gSLS(t)

)2]− (E [gSLS(t)
])2

are

known. To keep the computation simple, I calculate the limit for continuous time trading

h → 0 and define σ2(t) :=
∫ t
0 σ

2(s)ds (of course, σ2(t) has to be Riemann integrable as

well). By use of the Vito-Volterra-style product integral, it follows:

E
[(
gSLS(t)

)2]
= E

[(
gL(t)

)2
+
(
gS(t)

)2
+ 2gL(t)gS(t)

]
=
I∗20
K2

(
exp

(
K2σ2(t) + 2Kµ̄(t)

)
− 2exp(Kµ̄(t)) + 1

+ exp
(
K2σ2(t)− 2Kµ̄(t)

)
− 2exp(−Kµ̄(t)) + 1

+ 2
(
exp

(
−K2σ2(t)

)
− exp(Kµ̄(t))− exp(−Kµ̄(t)) + 1

))
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Combining the results for E
[
gSLS(t)

]
=

I∗0
K (exp(Kµ̄(t)) + exp(−Kµ̄(t))− 2)

and E
[
(gSLS(t))2

]
leads to the formula for the SLS rule variance:

V ar
(
gSLS(t)

)
=
I∗20
K2

((
exp

(
K2σ2(t)

)
− 1
)

(exp(2Kµ̄(t)) + exp(−2Kµ̄(t)))

+ 2
(
exp

(
−K2σ2(t)

)
− 1
))

This expression fits exactly the results obtained by Baumann (2016) for MJDM (and

the GBM).

For any strategy `, let

rar(`; t) :=
E
[
g`(t)

]√
V ar (g`(t))

be the risk-adjusted return of this strategy at time t. It is clear that rar(SLS; t) >

0 ∀t > 0, µ̄(t) 6= 0, cf. Figs. 7, 8, 9, and 10 for graphs of the risk-adjusted return of the

SLS rule as functions of µ̄ for varying K and σ2 as well as Figs. 11 and 12 for contour

plots of the risk-adjusted returns of the SLS strategy.

***Figs. 7, 8, 9, 10, 11, and 12 about here.***

3.3 Comparison to Buy-and-Hold

Malkiel (1973) suggests the comparison of a trading strategy to a randomly selected

buy-and-hold (bnh) portfolio for showing whether or not the strategy has excess returns.

When assuming that the market has on average the same trend as the bond—(i.e., a

risk-neutral market), which I assumed without loss of generality to be zero—all randomly

selected bnh portfolios have an expected gain of zero, too. This means that the SLS rule

is strictly better than any randomly selected bnh portfolio.

It is possible to compare the expected SLS gain stock-by-stock with the corresponding

expected bnh gain (which I do next). However, this is not a solution to the puzzle, as I

show in the remainder of this section.

Even when comparing stock-by-stock the expected gain of the SLS rule with a bnh

strategy, which is exactly the trader L with K = 1 and I∗0 > 0, it turns out that when

K > 1 for all t with µ̄(t) ∈ (−1, 0) ∪ (Beg (K, µ̄) ,∞), the SLS rule is the dominant

one, and when K ≤ 1, it still holds that for all t with µ̄(t) ∈ (−1, 0), the SLS rule is

dominant over the bnh rule (see Figs. 13, 14, 15, and 16 for graphs of the expected SLS

gain, the expected bnh gain, and the contour plots of the expected difference of these

strategies). It is easy to see that for the expected gain of a buy-and-hold strategy with
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initial investment I∗0 , it holds

E
[
gbnh(t)

]
= I∗0 (exp(µ̄(t))− 1).

The value Beg (K, µ̄) depends on K and µ̄ and it holds: Beg (K, µ̄)→ 0 for K →∞.

Note that µ̄(t) 6∈ [0, Beg (K, µ̄)] does not mean that the SLS is only dominant for special

price paths, which would not be a result deserving attention. Since µ̄(t) =
∫ t
0 µ(s)ds with

µ(t)dt = E
[
dp(t)
p(t)

]
is the expected trend of the price path that depends on changes in the

fundamentals, and all results so far concern expectations, the price paths are allowed to

be random walks around the fundamental value when µ̄(t) satisfies the condition.

***Figs. 13, 14, 15, and 16 about here.***

It is clear that a buy-and-hold strategy has a positive expected gain when µ̄ > 0 and

a negative one when µ̄ < 0. For some parameter settings, the bnh rule is dominant to the

SLS rule. However, the expected SLS trading gain is positive for almost all parameters—

the expected bnh gain is not. That means a bnh trader must know or estimate the

average trend. An SLS trader has a positive expected trend with no estimation.

3.4 Buy-and-Hold and Risk

For the expected gain of a buy-and-hold strategy with initial investment I∗0 , it holds

E
[
gbnh(t)

]
= I∗0 (exp(µ̄(t))− 1)

and for the respective variance

V ar
(
gbnh(t)

)
= I∗20 exp(2µ̄(t))

(
exp

(
σ2(t)

)
− 1
)
,

for example, by using the results for gL(t) and setting K = 1.

Next, I compare the risk-adjusted returns of the SLS rule and the buy-and-hold

strategy. For all t with µ̄(t) ∈ (−1, 0), the SLS rule is the dominant one, too. When

K ≥ 1, the bnh rule is dominant when µ̄(t) > 0. When K < 1 and µ̄(t) > 0, for some

pairs (K, µ̄(t)), the SLS rule is dominant, and for some the bnh rule, see Figs. 17, 18,

19, and 20 for graphs of the risk-adjusted returns of the SLS rule and the bnh rule (for

varying σ2 and varying K), and see Figs. 21 and 22 for contour plots of the difference

between the risk-adjusted returns of the SLS rule and the bnh stratgy.

***Figs. 17, 18, 19, 20, 21, and 22 about here.***

Now, the question is whether the risk-adjustment and (at the same time) the com-
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parison to the bnh rule is the solution to the robust positive expectation property of the

SLS rule in an efficient market. However, it is not. When a market as a whole (i.e., on

average) is risk-neutral but not in terms of every single stock, a trader investing in a

randomly selected portfolio (and this is what Malkiel (1973) suggested) can expect zero

gain; therefore the risk-adjusted return too is zero. When the trader uses the SLS rule

stock-by-stock, and there is only one single stock that is not risk-neutral (and it does not

matter whether the stock’s expected return is too high or too low), the expected trading

gain as well as the risk-adjusted return is positive. Indeed, it is reasonable that there

are more and less volatile stocks that should have higher or lower trends, respectively.

3.5 The Choice of K

For a practical application, there remains the question of how to choose K. When

µ̄ < 0, it does not matter whether K > 1 or K < 1 (in a qualitative manner) because

expected gains and risk-adjusted returns are positive, and even when compared to the

bnh rule, for both expected gains and risk-adjusted returns, the SLS rule is dominant.

When µ̄ > 0, it also does not matter how to choose K when relying on expected gain

or risk-adjusted return. However, when compared to the bnh rule, it might be better to

choose K > 1 when expected gain is the target function, and to choose K < 1 when it

is the risk-adjusted return. Please note again that the comparison to the bnh strategy

is questionable because the bnh rule is only better in specific cases for a single asset: A

randomly selected portfolio should have a gain (and a risk-adjusted return) of exactly

the bond’s rate, i.e., of zero. A bnh trader faces the risk of a negative trend—an SLS

trader does not.

4 Backtesting with Trading Fees and Bid-Ask-Spreads

In Section 3, I proved mathematically that the SLS strategy has positive expected returns

under specific assumptions. I also discussed some of these assumptions and investigated

risk adjustments and comparisons to buy-and-hold rules. That means I already presented

the theoretical puzzle of market efficiency and SLS trading. This section has two targets:

First, I present backtest studies of the SLS rule on real historic market data. Second, in

the simulations I allow for bid-ask-spreads, trading costs, and different interest rates for

debit and credit.

24



4.1 Backtesting Trading Dynamics

Before simulating SLS trading for different parameters on 60 DAX charts, I have to

modify the strategy in a few ways to make it applicable to real world data. Bid-and-ask

prices have to be used, the number of stocks held should be an integer, trading fees lower

trading gains, and a bank account with interest rates is added. That means, in detail,

I define stock-by-stock on the discrete time grid T = {0, 1, . . . , T} (with T = 255 for

2016, and T = 252 for 2017) with pa being the ask price and pb being the bid price:

• the price pt = pat+pbt
2

• the bid-ask-spread spreadt = pat − pbt

Now, the SLS controller uses internally the known rules (with round-operators) but

transmits to the broker only the total number of stocks to be held. That means, when,

for example, the long side sends a buying signal and the short side a selling signal, only

the difference is transmitted to the broker. When there is a buy or sell signal transmitted

to the broker, the side causing the signal has to pay the trading costs. For example: One

side gives a buy signal of 5 stocks and the other side a sell signal of 3 stocks; 2 stocks

are bought and the side giving the signal 5 has to pay the fees. When both sides give

signals in the same direction, each side has to pay for its own transaction.

I calculate the target investments

ILt = I∗0 +KgLt

and

ISt = −I∗0 −KgSt

which leads to a virtual number of stocks of

#stockLt = round(ILt /pt , 0)

and

#stockSt = round(ISt /pt , 0)

and virtual buy and sell signals of

buyLt = #stockLt −#stockLt−1

and

buySt = #stockSt −#stockSt−1.
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This leads to a number of stocks:

#stockt = #stockLt + #stockSt

The buy or sell signal transmitted to the broker is:

buyt = buyLt + buySt = #stockt −#stockt−1

With fee being the relative broker fee and m being the minimal broker fee per

transaction, this leads to transaction fees of:

• When buyt > 0 and abs(buyLt ) > abs(buySt ) and buyLt · buySt < 0:

costsLt = buyt · spreadt/2 +max(buyt · pat · fee , m)

• When buyt > 0 and abs(buyLt ) < abs(buySt ) and buyLt · buySt < 0:

costsSt = buyt · spreadt/2 +max(buyt · pat · fee , m)

• When buyt < 0 and abs(buyLt ) < abs(buySt ) and buyLt · buySt < 0:

costsSt = −buyt · spreadt/2 +max(−buyt · pbt · fee , m)

• When buyt < 0 and abs(buyLt ) > abs(buySt ) and buyLt · buySt < 0:

costsLt = −buyt · spreadt/2 +max(−buyt · pbt · fee , m)

• When buyt > 0 and buyLt · buySt ≥ 0:

costsLt = buyLt · spreadt/2 +max(buyt · pat · fee , m) · buyLt /buyt

and

costsSt = buySt · spreadt/2 +max(buyt · pat · fee , m) · buySt /buyt

• When buyt < 0 and buyLt · buySt ≥ 0:

costsLt = −buyLt · spreadt/2 +max(−buyt · pbt · fee , m) · buyLt /buyt
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and

costsSt = −buySt · spreadt/2 +max(−buyt · pbt · fee , m) · buySt /buyt

These costs are used for lowering the gains. However, before calculating the gain, I

have to calculate the bank account B with the interest rate r1 for credit (i.e., for money

put in the bank) and the interest rate −r2 for debit (i.e., for money borrowed from the

bank). The bank account as well as the gain/loss function start with zero. The dynamics

are as follows:

• When Bt−1 ≥ 0 and buyt ≥ 0:

Bt = Bt−1 · (1 + r1)− buyt · pat

• When Bt−1 < 0 and buyt ≥ 0:

Bt = Bt−1 · (1− r2)− buyt · pat

• When Bt−1 ≥ 0 and buyt < 0:

Bt = Bt−1 · (1 + r1)− buyt · pbt

• When Bt−1 < 0 and buyt < 0:

Bt = Bt−1 · (1− r2)− buyt · pbt

This leads to the virtual trading gains of

gLt = gLt−1 + #stockLt · (pt − pt−1)− costsLt

of the long side and

gSt = gSt−1 + #stockSt · (pt − pt−1)− costsSt

of the short side, as well as a total gain (including interest rates) of

gt =gt−1 + #stockt · (pt − pt−1)− costsLt − costsSt
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+ 1{Bt−1>0}Bt−1 · r1− 1{Bt−1<0}Bt−1 · r2.

All in all, this leads stock-by-stock to a trading gain of gT (minus the annual brokerage

fee divided by the number of assets traded, e.g., 30 in case of the DAX).

4.2 Data, Results, and Criticism

The data set I use for backtesting contains 60 one-year charts with daily prices, namely

the 30 stock charts indexed in the German stock index DAX for the years 2016 and

2017 (each with bid-and-ask prices) as provided by THOMSON REUTERS DATAS-

TREAM. From the same source, I use the index data DAX 30 PERFORMANCE-

PRICE-INDEX and the bond rate BUBA-YIELD-LISTD-FEDRL-SEC 3-5Y MIDDLE

RATE. I chose the years 2016 and 2017 because in these years no firms were incorpo-

rated into or removed from the index. The trading fees were taken from www.boerse-

frankfurt.de/inhalt/handeln-handelskosten, which leads to variable brokerage fees of

fee = 5.04 BP,

but a minimal fee per trade of

m = 2, 52EUR.

The harmonic mean of the bond rate is r = −0.5201459%. To make the results robust

against different bond rates, I use

r1 = −1 % and r2 = 15 %,

i.e., in all cases, the bond rates chosen are bad for the trader. Even when the influence

is only marginal, I choose an annual fee of 25EUR. In Table 1, the 30 assets listed in

the DAX are given. These assets are used for backtesting because the requirements for

SLS trading state that the traded stocks should be highly liquid (and the underlying

firm should be big enough)—which is fulfilled for the stocks listed in the German stock

index.

***Table 1 about here.***

In Table 2, I present the backtesting simulation results of the SLS rule on the 60

DAX charts (with bid-ask-spread) for 2016 and 2017. The trading gains for all stocks

at the end of the respective years are given, as well as the maximum amount of money

the trader has to borrow from the bank in these years for trading the respective asset

(in brackets). At the end, the average trading gain when SLS trading stock-by-stock
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is calculated, and the maximum amount of money the trader has to borrow from the

bank (in brackets) is given (which is not simply the sum of the maximal amounts for all

stocks, but potentially less). All these values are simulated for K = 2 and I∗0 = 5, 000. A

histogram of the achieved trading gains is given in Fig. 28, and a graph for all 60 assets

with the trading gains and the maximal amount of money borrowed from the bank can

be found in Fig. 29.

The trading gains are between -397.80 EUR for Deutsche Telekom in 2017 (with

maximal 2,050.96 EUR to be lent) and +10,500.83 for Deutsche Lufthansa in 2017 (with

maximal 15,663.91 EUR to be lent). In total, a trader following this strategy in the

years under analysis does not have to borrow more than 102,604.40 EUR from the bank.

Thus, as mentioned in Section 2.3, the trader does not need an infinite amount of money.

To realize an excess return, the SLS rule needs a price path with clear trends (and it

does not matter whether this is an upwards or a downwards trend). In case of an asset

with positive and negative trends—as shown in Section 3—the SLS trader can expect

a loss. Hence, the D:DTE stock seems to have a trend with a switching sign in 2017,

while the D:LHA stock seems to have a clear trend in 2017. Having a look at Fig. 30

indicates that the Lufthansa chart goes clearly in one direction (up) and the Telekom

chart is wobbling around its start price.

***Table 2 about here.***

***Figs. 28, 29, and 30 about here.***

In Fig. 31, a contour plot is depicted for the average trading gains of SLS trading for

varying trader parameters for the DAX data. For small values of K as well as for small

values of I∗0 , the trader, on average, has a loss. When the parameters are chosen large

enough, the average gain is positive. This can be explained by the minimal transaction

fee: in case of small investment amounts, the trader must pay the minimal fee for each

trade, which is much higher than the relative fee. For large investments, the trader has

to pay the relative fee (which is relatively smaller). In Table 3, the averaged trading

gains over all stocks and years and the maximum amount of money to be borrowed are

given for varying parameters: K = 0.5, 1, 1.5, 2, and I∗0 = 500, 1, 000, 1, 500, and

2, 000. These parameters are chosen because the border between positive and negative

gain lies in these ranges.

***Fig. 31 about here.***

***Table 3 about here.***

To sum up, these results are a hint that the robust positive expectation property

also holds for real world data with transaction costs. In the Histogram, Fig. 28, for

the trading gains of the SLS rule for all 60 charts, the gains are highly skewed (which
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I already mentioned and which is fully in line with the corresponding literature). That

means, in order to realize the expected positive gain, a trader must perform SLS trading

on many assets fulfilling the requirements.

However, there is also criticism of these results. When buying or selling a large

amounts of stocks, even a backtest simulation with bid-and-ask prices is not realistic

since the price can change during one trade. Thus, I∗0 and K should not be too large.

Another point to consider is that the DAX rose from the beginning of 2016 to the end of

2017 by a factor of 1.256. When having a look at the maximum needed money and the

gains, it might have been more profitable to invest in index mutual funds or index ETFs

for the DAX (as a buy-and-hold trader). However, this only works when the DAX goes

up, while SLS trading (in theory) also works when charts or the whole index goes down.

5 Extension: The Discounted Simultaneously Long Short

Strategy

As mentioned in Section 2.4, Malekpour and Barmish (2016) state that investment

decisions should not rely (too much) on past market behavior. A controller with delay as

presented by Malekpour and Barmish (2016) has the favorable feature that too old (older

than m− 1 days) events have no influence on strategy, but it has a questionable feature,

too: An event that is m − 1 days old is taken fully into account today but vanishes

from the calculations after m days. As an alternative controller type, I introduce the

discounted SLS controller with discounting factor δ ∈ (0, 1] (SLSδ). In this section, the

standard SLS rule is generalized by discounting factor δ, and the price process allows for

time-varying parameters. Again, the analysis is based on a refinement of time grinds.

The main, and indeed the only, difference between a discounted rule `δ and a standard

rule ` is that, instead of the gain g`t , a discounted gain

f `δt =
n∑
i=1

I`δ(i−1)h ·
pih − p(i−1)h
p(i−1)h

· δ−(i−1)h

in a discrete time grid {0, h, 2h, . . .} with h > 0 and t = nh is used. That means, the

discounted SLS rule is

ISLSδt = ILδt + ISδt

with

ILδt = I∗0 +KfLδt
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and

ISδt = −I∗0 −Kf
Sδ
t .

A flow diagram for the discounted SLS rule is given in Fig. 23. Note that for δ = 1,

this strategy is exactly the standard SLS strategy. The discounting factor δ specifies to

which extent past information is used for calculating the current investment (cf. other

economic discounting factors like, e.g., the game theoretic discounting factor in repeated

games). The higher δ is, the more influence past information has; for δ = 1, all available

information is equally weighted, for δ close to zero, only the last available information is

important. The discounted SLS strategy has, similar to the SLS strategy with delay, the

advantage that (when δ < 1) old information is not as important as new information.

However, in contrast to the delay strategy, the old information loses its weight gradually,

not instantaneously.

***Fig. 23 about here.***

All market assumptions are exactly the same as in Sections 2 and 3. In the following,

I show that the robust positive expectation property holds also for the discounted SLS

rule at least in two special cases, both very similar to the cases of Section 3. The analysis

of the discounted SLS strategy is done analogously to the analysis of the standard rule,

i.e., by the definitions of ILδt and fLδt it follows

ILδt − I
Lδ
t−h

h · ILδt−h
= Kδ−(t−h) · pt − pt−h

h · pt−h
,

E

[
ILδt − I

Lδ
t−h

h · ILδt−h

]
= Kδ−(t−h)µh;t−h,

and

E
[
ILδt

]
= I∗0 ·

n∏
i=1

(
Kδ−(i−1)hµh;ihh+ 1

)
.

Using ILδt it turns out:

E
[
fLδt

]
=
I∗0
K

(
n∏
i=1

(
Kδ−(i−1)hµh;ihh+ 1

)
− 1

)

By substituting I∗0 7→ −I∗0 and K 7→ −K the formula for E
[
fSδt

]
follows.

Next, I investigate whether E
[
fLδt + fSδt

]
is positive. The reader may ask why I am

interested in the expected sum of the discounted gain of the short and the long side of
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the discounted SLS strategy. I can rewrite the undiscounted gain in the following way:

g`δt =
(
f `δt − f

`δ
t−h

)
δt−h +

(
f `δt−h − f

`δ
t−2h

)
δt−2h + . . .+

(
f `δh + 0

)
1

=f `δt δ
t−h + f `δt−hδ

t−2h
(

1− δh
)

+ . . .+ f `δh

(
1− δh

)

Since it holds

E
[
gSLSδt

]
= E

[
gLδt + gSδt

]
and the expectation operator is linear, I conclude: When E

[
fLδt + fSδt

]
> 0 for all t,

then E
[
gSLSδt

]
> 0, too. And, what is really of interest is this inequality, i.e., the robust

positive expectation property. Note: In the case δ = 1, it holds that E
[
f `1t

]
= E

[
g`1t

]
.

Similar to the analysis of the standard rule, it holds that E
[
fLδt + fSδt

]
> 0 is

not true for all t, all δ ∈ (0, 1], and all (µh;t)t. This is clear since I already presented a

counterexample with δ = 1. This means that this is not a problem of discounting the SLS

strategy, it is a problem of the time-varying trend when the time axis is non-continuous,

even in the standard SLS case, i.e., when δ = 1.

It holds:

E
[
fLδt + fSδt

]
=
I∗0
K

(
n∏
i=1

(
Kδ−(i−1)hµh;ihh+ 1

)
+

n∏
i=1

(
−Kδ−(i−1)hµh;ihh+ 1

)
− 2

)

=
2I∗0
K

∑
α⊂{1,...,n}
|α| even
|α|6=0

∏
j∈α

Kδ−(j−1)hµh;jhh

The following cases where E
[
fLδt + fSδt

]
> 0 holds are exactly the same as for the

standard SLS rule despite use of discounted gains instead of using undiscounted ones.

(i) First, when n > 1 and µh;t ≥ 0 for all t and µh;t > 0 for at least two points in time t,

or when µh;t ≤ 0 for all t and µh;t < 0 for at least two points in time t. (ii) Second, when

letting h → 0 (i.e., n → ∞), one can again use the Vito-Volterra-style product integral

to get

E
[
fLδt + fSδt

]
=
I∗0
K

(
exp

(∫ t

0
Kδ−sµ(s)ds

)
+ exp

(∫ t

0
−Kδ−sµ(s)ds

)
− 2

)
,

which is positive whenever µ̄δ :=
∫ t
0 δ
−sµ(s)ds 6= 0. See Figs. 24 and 25 for graphs of
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the expected discounted SLSδ gain as functions of µ̄δ (for varying K). And see Figs. 26

and 27 for contour plots of the expected discounted SLSδ trading gains as functions of

K > 0 and µ̄δ.

***Figs. 24, 25, 26, and 27 about here.***

6 Discussion & Conclusion

In the past, most puzzles for market efficiency came from empirical data and statistical

methods. The puzzle presented in Section 3 is a purely theoretical, mathematical one.

Additionally, in Section 4 some empirical evidence is given. I proved the following:

• In discrete time, the expected gain of the SLS strategy is positive when (µ̄h;t)t ≥
0 ∀t and (µ̄h;t)t > 0 for at least two time points, or when (µ̄h;t)t ≤ 0 ∀t and

(µ̄h;t)t < 0 for at least two points in time .

• In continuous time, the expected gain of the SLS strategy is positive when µ̄(t) 6= 0.

• The expected gain of the standard SLS rule surpasses the expected gain of a

simple buy-and-hold strategy for all t > 0 with µ̄δ(t) 6∈ [0, Beg(K, µ̄)] if K > 1,

with Beg(K) → 0 for K → ∞, and all µ̄δ(t) 6∈ R+
0 when K ≤ 1 (in continuous

time).

• The risk-adjusted return of the standard SLS rule is positive for all K > 0, −1 <

µ̄ 6= 0, and σ2 > 0.

• The risk-adjusted return of the standard SLS rule exceeds the risk-adjusted return

of a simple buy-and-hold strategy for all −1 < µ̄ < 0 and when K ≤ 1 for some

0 < µ̄.

• When K and I∗0 are chosen large enough, a trader could have realized excess

returns in the years 2016 and 2017 by SLS trading the DAX assets, although

bid-ask-spreads, trading fees, and interest rates were taken into account.

• In discrete time, the expected gain of the discounted SLSδ strategy for all discount-

ing factors δ ∈ (0, 1] is positive when (µ̄h;t)t ≥ 0 ∀t and (µ̄h;t)t > 0 for at least two

points in time, or when (µ̄h;t)t ≤ 0 ∀t and (µ̄h;t)t < 0 for at least two points in

time.

• In continuous time, the expected gain of the discounted SLSδ strategy for all dis-

counting factors δ ∈ (0, 1] is positive when µ̄δ(t) 6= 0.

33



The findings of Section 3 mean that an SLS trader can expect positive gain (even in

discrete time) on all arbitrary small intervals where the trend is not changing its sign.

Only for points in time when the trend changes its sign will the SLS trader face negative

expected gains. Note that the price path itself can often change its slope arbitrarily.

When the trend path is to some extent smooth, and trading frequency is increased,

the points in time where the trend changes its sign do carry less (or, when going to

continuous time, even no) weight.

Clearly, there are some assumptions to discuss, e.g., continuous time trading. How-

ever, since the results of this work do not rely on any price path but only on the trend

process, and there are high frequency trading possibilities, only a very hard non-trending

assumption could invalidate these results. For example, one must assume that for every

point in time with a positive (negative) price trend, for every arbitrary small interval

after that point in time, there must be another point in time where the price trend

is negative (positive). This would also imply that there are absolutely no identifiable

trends in fundamental values. Adequate resources, perfect liquidity, the possibility of

short selling, and approximately also the price-taker property can be seen as justified on

modern stock exchanges when both the trader and the traded asset are big enough and

I∗0 and K are chosen small enough (cf. Section 2.3).

When a person asks me to solve the puzzle, the only—more or less—satisfying answer

I can give is that the risk measure is inappropriate (maybe skewness is better). But there

are two problems: First, this idea only works when market efficiency is defined via risk-

adjusted returns only (not when it is defined via expected gain). And second, I would

run into a problem very similar to the joint hypotheses problem: I conjecture that for

nearly every trading strategy, one can find two risk measures: one indicating that risk-

adjusted returns are high, and one indicating that risk-adjusted returns are low. And

the other way around, I also conjecture that for nearly all risk measures one can find

two trading strategy: one that beats the market, and one that is beaten by it. No one

can say whether or not the risk measure or the market efficiency hypothesis is wrong.

Thus, I rely on a standard definition of risk-adjustment.

To sum up, there are three possibilities of how to solve the problem whether or not

the SLS rule is beating the market (for a big, rich trader that trades small amounts of

highly liquid stocks of big underlying firms). First, were I to assume that all assets are

risk-neutral—and not only the market as a whole—the results would not hold. However,

that would mean that at every point in time, the trend of every single stock is exactly the

trend of the bond, no matter how volatile the stock. (Note: it is reasonable to assume

that a high-volatile stock is riskier, and hence should have a higher trend.) Second, and
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a little bit weaker than the first argument, when the trends (the trends and not only

the price paths) of the stocks jump in every (infinitesimally small) interval from positive

to negative or vice versa, again the results will not hold. Third, and finally, we cannot

adequately measure risk. This leads to a risk including joint hypotheses problem, because

there is not one risk measure that everyone relies on. No one can say whether or not

the used risk measure or the efficient market hypothesis is wrong. The last point is the

most satisfying answer I can give.

Why do not all traders use the SLS rule if it really works well? Before discussing

this, I mention that if all traders would use this rule, the market requirements would

not be fulfilled anymore, and liquidity especially would be an issue. When all traders

in a market follow the same rule (or even a very similar rule), trading volume would

decrease (to zero) since all agents want to buy (sell) at the same time, but no one is

selling (buying). I guess that again, risk is the answer: When most traders fear the high

risk related to SLS trading, and only a very small fraction of traders use this rule, the

non-SLS traders will be exploited by the SLS traders, since all market requirements are

fulfilled.

At the very end of this work, I mention that the robust positive expectation property

is not an arbitrage possibility. The gain is not sure, it is only in expectation. And it

needs potentially a very high number of experiments, i.e., of trading processes, to realize,

on average, a positive expected gain.
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1 ADIDAS D:ADS
2 ALLIANZ D:ALV
3 BASF D:BAS
4 BAYER D:BAYN
5 BEIERSDORF D:BEI
6 BMW D:BMW
7 COMMERZBANK D:CBK
8 CONTINENTAL D:CON
9 COVESTRO D:1COV

10 DAIMLER D:DAI
11 DEUTSCHE BANK D:DBK
12 DEUTSCHE BOERSE D:DB1
13 DEUTSCHE LUFTHANSA D:LHA
14 DEUTSCHE POST D:DPW
15 DEUTSCHE TELEKOM D:DTE
16 E ON N D:EOAN
17 FRESENIUS D:FRE
18 FRESENIUS MED.CARE D:FME
19 HEIDELBERGCEMENT D:HEI
20 HENKEL D:HEN
21 INFINEON TECHNOLOGIES D:IFX
22 LINDE D:LIN
23 MERCK KGAA D:MRK
24 MUENCHENER RUCK D:MUV2
25 RWE D:RWE
26 SAP D:SAP
27 SIEMENS D:SIE
28 THYSSENKRUPP D:TKA
29 VOLKSWAGEN D:VOW
30 VONOVIA D:VNA

Table 1: List of the 30 assets indexed in the DAX.
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Figure 1: Flow diagram for the standard SLS controller with input (or disturbance)
variable return on investment dp

p , i.e., price, and output variable gain gSLS . The SLS
traders’ parameters are K > 0 and I∗0 > 0.
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p0 = 10
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IS0 = −100
g0 = 0
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Figure 2: Small SLS trading example in a binomial tree model with three periods and
trends: µ1 = 5% and µ2 = 6% and trading parameters: I∗0 = 100 and K = 2.
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Figure 3: Expected gain of different SLS strategies with I∗0 = 10 and K =
16, 8, 4, 2, 1, 12 ,

1
4 . The average trend is µ̄ ∈ (−1, 2].
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Figure 4: Expected gain of different SLS strategies with I∗0 = 10 and K =
16, 8, 4, 2, 1, 12 ,

1
4 . The average trend is µ̄ ∈ [−0.1, 0.2].
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Figure 5: Contour plot of the expected gain of the SLS strategy for K ∈ (0, 10] and
µ ∈ [−0.1, 0.2]. The expected gain is positive for all (K,µ) with µ̄ 6= 0.
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Figure 6: Contour plot of the expected gain of the SLS strategy for K ∈ (0, 10] and
µ ∈ (−1, 5]. The expected gain is positive for all (K,µ) with µ̄ 6= 0.
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Figure 7: Risk-adjusted return of different SLS strategies with I∗0 = 10 and K =
1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom). All returns are adjusted with the respective

standard deviation. The average trend is µ̄ ∈ (−1, 5], and the average volatility is
σ2 = 1%.
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Figure 8: Risk-adjusted return of different SLS strategies with I∗0 = 10 and K =
1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom). All returns are adjusted with the respective

standard deviation. The average trend is µ̄ ∈ (−1, 5], and the average volatility is
σ2 = 2%.
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Figure 9: Risk-adjusted return of different SLS strategies with I∗0 = 10 and K =
1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom). All returns are adjusted with the respective

standard deviation. The average trend is µ̄ ∈ (−1, 5], and the average volatility is
σ2 = 5%.

-1 0 1 2 3 4 5

0
2

4
6

8
10

risk-adjusted return
sigma^2_bar=

0.1

mu_bar
K = 0.0625, 0.125, 0.25, 0.5, 1, 2, 4 (top to bottom)

ra
r: 

S
LS

 (s
ol

id
)

Figure 10: Risk-adjusted return of different SLS strategies with I∗0 = 10 and K =
1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom). All returns are adjusted with the respective

standard deviation. The average trend is µ̄ ∈ (−1, 5], and the average volatility is
σ2 = 10%.
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Figure 11: Contour plot of the risk-adjusted return of the SLS strategy for K ∈ (0, 10]
and µ ∈ [−0.1, 0.2]. For risk adjustment, I use the standard deviation. The risk-adjusted
return is positive for all (K,µ) with µ̄ 6= 0. The average volatility is σ2 = 1%.
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Figure 12: Contour plot of the risk-adjusted return of the SLS strategy for K ∈ (0, 10]
and µ ∈ (−1, 5]. For risk adjustment, I use the standard deviation. The risk-adjusted
return is positive for all (K,µ) with µ̄ 6= 0. The average volatility is σ2 = 1%.
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Figure 13: Expected gain of different SLS strategies (solid lines) with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 12 ,

1
4 (from top to bottom) compared to the expected gain of a simple

buy-and-hold strategy (dashed line) with initial investment 10. The average trend is
µ̄ ∈ (−1, 2].
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Figure 14: Expected gain of different SLS strategies (solid lines) with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 12 ,

1
4 (from top to bottom) compared to the expected gain of a simple

buy-and-hold strategy (dashed line) with initial investment 10. The average trend is
µ̄ ∈ [−0.1, 0.2].
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Figure 15: Contour plot of the expected difference of the gain of the SLS strategy and
the bnh rule for K ∈ (0, 10] and µ ∈ [−0.1, 0.2]. The expected difference is positive for
all (K,µ) in the left as well as in the upper-right area.
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Figure 16: Contour plot of the expected difference of the gain of the SLS strategy and
the bnh rule for K ∈ (0, 10] and µ ∈ (−1, 5]. The expected difference is positive for all
(K,µ) in the left as well as in the upper-right area.
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Figure 17: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10 and
K = 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return of a

simple buy-and-hold strategy (dashed line) with initial investment 10. All returns are
adjusted with the respective standard deviation. The average trend is µ̄ ∈ (−1, 5], and
the average volatility is σ2 = 1%.
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Figure 18: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10 and
K = 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return of a

simple buy-and-hold strategy (dashed line) with initial investment 10. All returns are
adjusted with the respective standard deviation. The average trend is µ̄ ∈ (−1, 5], and
the average volatility is σ2 = 2%.
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Figure 19: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10 and
K = 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return of a

simple buy-and-hold strategy (dashed line) with initial investment 10. All returns are
adjusted with the respective standard deviation. The average trend is µ̄ ∈ (−1, 5], and
the average volatility is σ2 = 5%.
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Figure 20: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10 and
K = 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return of a

simple buy-and-hold strategy (dashed line) with initial investment 10. All returns are
adjusted with the respective standard deviation. The average trend is µ̄ ∈ (−1, 5], and
the average volatility is σ2 = 10%.
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Figure 21: Contour plot of the difference of the risk-adjusted returns of the SLS rule
and of a bnh rule. The average volatility is 1%. The SLS rule is dominant on the left
side.
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Figure 22: Contour plot of the difference of the risk-adjusted returns of the SLS rule
and of a bnh rule. The average volatility is 1%. The SLS rule is dominant in the left
and in the lower-right area.
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Figure 23: Flow diagram for the discounted SLS controller with input (or disturbance)
variable return on investment dp

p , i.e., price, and output variable gain gSLSδ . The SLSδ
traders’ parameters are K > 0, I∗0 > 0, and δ ∈ (0, 1].
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Figure 24: Expected discounted gain of different SLSδ strategies with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 12 ,

1
4 (from top to bottom). The average trend is µ̄δ ∈ (−1, 2].
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Figure 25: Expected discounted gain of different SLSδ strategies with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 12 ,

1
4 (from top to bottom). The average trend is µ̄δ ∈ [−0.1, 0.2].
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Figure 26: Contour plot of the expected discounted gain of the SLSδ strategy for K ∈
(0, 10] and µδ ∈ [−0.1, 0.2]. The expected discounted gain is positive for all (K,µδ) with
µ̄δ 6= 0.
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Figure 27: Contour plot of the expected discounted gain of the SLSδ strategy for K ∈
(0, 10] and µδ ∈ (−1, 5]. The expected discounted gain is positive for all (K,µδ) with
µ̄δ 6= 0.
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D:ADS 2016 3940.43 ( 9813.83 ) D:ADS 2017 563.09 ( 5080.57 )
D:ALV 2016 414.34 ( 1660.64 ) D:ALV 2017 598.92 ( 4460.97 )
D:BAS 2016 963.51 ( 4878.37 ) D:BAS 2017 -157.50 ( 2262.67 )
D:BAYN 2016 252.17 ( 565.00 ) D:BAYN 2017 79.30 ( 3891.56 )
D:BEI 2016 -122.56 ( 1673.79 ) D:BEI 2017 343.11 ( 3932.05 )
D:BMW 2016 590.88 ( 1638.89 ) D:BMW 2017 -300.53 ( 947.82 )
D:CBK 2016 2210.57 ( 1013.92 ) D:CBK 2017 3352.48 ( 8394.89 )
D:CON 2016 550.15 ( 0 ) D:CON 2017 572.92 ( 3924.56 )
D:1COV 2016 6050.83 ( 11534.37 ) D:1COV 2017 1066.46 ( 5490.10 )
D:DAI 2016 431.54 ( 1149.03 ) D:DAI 2017 -287.80 ( 1299.09 )
D:DBK 2016 4196.28 ( 2116.84 ) D:DBK 2017 242.12 ( 2924.18 )
D:DB1 2016 116.38 ( 1807.27 ) D:DB1 2017 725.72 ( 4570.14 )
D:LHA 2016 658.69 ( 1549.41 ) D:LHA 2017 10500.83 ( 15663.91 )
D:DPW 2016 739.30 ( 4242.67 ) D:DPW 2017 553.95 ( 4763.87 )
D:DTE 2016 -136.57 ( 1549.40 ) D:DTE 2017 -397.80 ( 2050.96 )
D:EOAN 2016 340.38 ( 3508.24 ) D:EOAN 2017 1133.36 ( 7412.42 )
D:FRE 2016 537.18 ( 3554.21 ) D:FRE 2017 -122.22 ( 1619.20 )
D:FME 2016 185.85 ( 2949.88 ) D:FME 2017 -77.69 ( 2122.15 )
D:HEI 2016 941.14 ( 4548.62 ) D:HEI 2017 -120.13 ( 1774.43 )
D:HEN 2016 414.71 ( 4176.18 ) D:HEN 2017 -205.56 ( 2574.39 )
D:IFX 2016 1102.81 ( 4922.52 ) D:IFX 2017 1374.82 ( 7021.69 )
D:LIN 2016 769.61 ( 4565.62 ) D:LIN 2017 240.24 ( 3914.84 )
D:MRK 2016 471.36 ( 3429.72 ) D:MRK 2017 -176.01 ( 2531.87 )
D:MUV2 2016 138.26 ( 1445.63 ) D:MUV2 2017 -57.93 ( 2213.70 )
D:RWE 2016 1209.46 ( 6680.48 ) D:RWE 2017 2155.15 ( 10414.44 )
D:SAP 2016 392.64 ( 3467.82 ) D:SAP 2017 102.72 ( 3462.82 )
D:SIE 2016 1333.50 ( 5448.70 ) D:SIE 2017 -52.84 ( 2576.32 )
D:TKA 2016 1855.07 ( 5794.69 ) D:TKA 2017 46.88 ( 3438.85 )
D:VOW 2016 699.46 ( 2688.02 ) D:VOW 2017 443.65 ( 4191.21 )
D:VNA 2016 374.80 ( 5371.77 ) D:VNA 2017 744.46 ( 5036.91 )

mean (max) 2016 1054.07 ( 88811.02 ) mean (max) 2017 762.80 ( 102604.4 )
mean (max) 2016/17 908.44 ( 102604.4 )

Table 2: Trading gains of SLS trading for the 30 DAX stocks 2016 and 2017 as well as
the maximum amount of money needed (in brackets). Parameters: K = 2, I∗0 = 5, 000.

I∗0 \ K 0.5 1 1.5 2

500 -82.20 ( 3452.21 ) -45.00 ( 7440.97 ) -45.11 ( 7837.87 ) -46.90 ( 8900.72 )
1000 -111.38 ( 6985.3 ) -50.60 ( 14279.65 ) -29.47 ( 16712.75 ) -11.20 ( 19113.39 )
1500 -118.71 ( 9262.28 ) -33.86 ( 19550.74 ) 20.94 ( 25313.97 ) 72.20 ( 30370.5 )
2000 -118.67 ( 11807.72 ) -0.46 ( 24784.13 ) 88.91 ( 32883.39 ) 167.47 ( 40641.22 )

Table 3: Average trading gains for SLS trading with varying parameters for the DAX
charts of 2016 and 2017.
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Figure 28: Histogram of the trading gains for the 30 DAX assets when SLS trading with
K = 2 and I∗0 = 5, 000 in 2016 and 2017.
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Figure 29: Trading gains for the 30 DAX assets when SLS trading with K = 2 and
I∗0 = 5, 000 in 2016 and 2017 (circle) and maximum amount of money needed (triangle).
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Figure 30: Charts of the bid-and-ask prices of the Deutsche Lufthansa stock and of the
Deutsche Telekom stock in 2017.
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Figure 31: Contour plot of the average trading gains for the 30 DAX assets when SLS
trading with K ∈ (0, 4] and I∗0 ∈ (0 , 10, 000] for 2016 and 2017. The gain is positive on
average from the middle to the upper-right area.
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