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Middle and Upper Pleistocene fluvial terraces
in an abandoned valley in Upper Franconia

(Germany):
Chronology and driving forces

Thomas R. Kolb

Abstract

Generally controlled by the development of the Rhenish drainage system, the
fluvial history of northern Bavaria is characterized by a high complexity, which is
reflected in the irregular spatial alignmentof river courses. Inparticular, this applies
to the headwaters of theMain River, which is, with a total length of about 530 km,
the longest right-bank tributary of the Rhine River system.

This dissertation deals with the mid- and late-Pleistocene development of the
drainage network in the vicinity of the city of Bayreuth. Dominated by the two
headwater streams of the Main River, the Red Main River and the White Main
River, and by the river Warme Steinach, the area has been the subject of scientific
research for more than 100 years. So far, these investigations have focused mainly
on the applicationofwell-establishedmethods from the field of sedimentology and
lithology, which finally allowed deriving a complex landscape evolution model.

Up to now, however, investigations have been lacking that could provide reli-
able information on the timing and dynamics of these complex river deflections.
The overall objective of this PhD-thesis is therefore to establish a reliable chrono-
logical framework for the mid- and late-Pleistocene evolutionary stages of the local
drainage system, which is based on modern numerical dating methods.

Our study is located in the unusually wide Trebgast Valley, which is situated in
the north of the city of Bayreuth and has been identified as a former valley of the
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Red Main River. This valley and its well-preserved fluvial and slope deposits of-
fered ideal conditions for palaeoenvironmental research. Besides additional litho-
logical analyses of fluvial gravel and the evaluation of a high-resolution digital ter-
rain model, the methodological focus was on the application of innovative meth-
ods of luminescence dating.

The results of this PhD-thesis partially contradict the age estimates of earlier
studies and indicate a much more complex landscape evolution than previously
assumed. Specifically, our findings suggest an additional evolutionary stage that
spans the period from ~ 30 ka to ~ 20 ka. For the older fluvial terraces identified
within the research area, new techniques of luminescence dating had to be applied,
which allow a significant extension of the dating range. Our findings, however,
prove serious methodological issues, which make the evaluation and classification
of the determined ages considerably more difficult.

Finally, the luminescence ages derived for samples, which originated from the
Upper Pleistocene fluvial terrace of the Steinach River, suggest a diachronic char-
acter of river incision processes. If this finding can be confirmed for other river
systems and do not turn out as a mere local feature associated with the specific re-
gional environmental setting, it will have a significant impact on the interpretation
of age estimations for fluvial sediments in general.

Zusammenfassung

Generell gesteuert durch die Entwicklung des rhenanischen Abflusssystems, ist
die Flussgeschichte Nordbayerns insgesamt durch eine hohe Komplexität gekenn-
zeichnet, welche sich in der unregelmäßigen räumlichenAnordnung der Flussläufe
widerspiegelt. Namentlich gilt dies für das Quellgebiet des Mains, der mit einer
Gesamtlänge von etwa 530 km der längste rechtsseitige Zufluss des Rheinsystems
ist.

Die vorliegende Doktorarbeit befasst sich mit der mittel- und spätspleistozänen
Flussgeschichte des Entwässerungsnetzes in der unmittelbaren Umgebung von
Bayreuth. Dominiert von den beiden Quellflüssen des Mains, dem Roten Main
und dem Weißen Main, sowie dem Fluss Warme Steinach ist das Gebiet bereits
seit mehr als 100 Jahren Gegenstand wissenschaftlicher Untersuchungen. Diese
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Untersuchungen konzentrierten sich bislang hauptsächlich auf die Anwendung
etablierter Methoden der Sedimentologie und Lithologie, welche schließlich die
Erstellung eines komplexen Landschaftsentwicklungsmodells ermöglichten.

Bislang fehlten indesUntersuchungen, die verlässlichAuskunft über die zeitliche
Einordnung und die Dynamik dieser komplexen Flusslaufverlagerungen geben
konnten. Die übergeordnete Zielsetzung der vorliegenden Arbeit ist daher die Er-
stellung einer verlässlichen chronologischen Gliederung für die mittel- und spät-
pleistozänen Entwicklungsphasen des lokalen Abflusssystems, die auf modernen
numerischen Datierungsmethoden beruht.

Das ungewöhnlich breite Trebgasttal im Norden Bayreuths, das als ehemaliges
Tal des Roten Mains identifiziert werden konnte, bot mit seinen gut erhaltenen
fluvialen Ablagerungen und Hangschuttsedimenten ideale Rahmenbedingungen.
Neben der lithologischen Analyse fluvialer Schotter und der Auswertung eines
hochaufgelösten digitalen Geländemodells lag der methodische Schwerpunkt auf
der Anwendung innovativer Verfahren der Lumineszenzdatierung.

Die Ergebnisse der vorliegenden Arbeit stehen teilweise im Widerspruch zu
Alterseinschätzungen frühererUntersuchungenundweisen auf eine deutlich kom-
plexere Landschaftsentwicklung als bislang angenommen hin. Konkret legen un-
sere Befunde eine zusätzliche Entwicklungsphase nahe, welche den Zeitraum von
etwa 30 ka bis 20 ka umfasst. Für die älteren Terrassen des Untersuchungsgebietes
musstenneueTechnikenderLumineszenzdatierung eingesetztwerden,welche eine
deutlicheAusweitungderDatierungsreichweite ermöglichen. UnsereBefundebele-
gen indes methodische Schwierigkeiten, welche die Auswertung und Einordnung
der ermittelten Alter erheblich erschweren.

Die Lumineszenzalter für Proben der jüngsten pleistozänen Steinach-Terrasse
deuten schließlich auf einen diachronen Charakter von Flusseinschneidungspro-
zessen hin. Sollte sich dieser Befund auch für andere Flusssysteme bestätigen lassen
und sich nicht nur als lokale Besonderheit erweisen, hätte er erheblicheAuswirkun-
gen auf die Interpretation von Alterseinschätzungen für fluviale Sedimente.
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Preface

This dissertation is part of a regional research project entitledKultur- und Land-
schaftsgeschichte Oberfrankens – Das Trebgasttal und seine Entwicklung (Cultural
and landscape development in Upper Franconia – The Trebgast Valley and its evo-
lution). The project was generously funded by the Oberfrankenstiftung (Upper
Franconia Foundation) ever since the year 2011. The general aim of the project was
to gain new information on the late Pleistocene and early Holocene landscape evo-
lution in the region of Upper Franconia, Northern Bavaria (Germany). Thereby,
natural geomorphic processes triggered by changing climatic conditions as well as
the special role and increasing importance of human settlers, who have had a last-
ing impact on Holocene landscapes ever since the first Neolithic settlements, were
investigated.

In this context, information on palaeoenvironmental changes and on early hu-
man activities were derived from various sedimentary archives located in the Treb-
gast Valley and the adjacent Red Main Valley close to the city of Bayreuth. The
reconstruction of palaeoenvironmental conditions based on sedimentary archives,
however, requires the availability of precise and reliable regional chronologies. As
those high-resolution chronologies have so far not been established in the study
area, amajor part of the project dealt with establishing a local chronostratigraphical
framework as basis for further palaeoenvironmental and archaeological research.

By applying innovative dating techniques from the wide field of luminescence
dating approaches, the present dissertation contributes to constraining time frames
for different evolutionary stages identified in the research area. In particular, it is fo-
cusing on determining age information for the accumulation of a set of five distinct
Pleistocene fluvial terraces. While aspects of human impact on landscape evolution
are not part of this thesis, it significantly contributes to improve the knowledge
about the regional landscape evolution in Upper Franconia during the mid- and
late-Pleistocene period and additionally provides new insights into the timing of
terrace formation and fluvial dynamics that go far beyond amerely local or regional
focus.
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Part I

Conceptual design
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1
Introduction

Fluvial systems are regularly regarded as an essential part of the general geomor-
phological system and can be found in nearly all environmental settings all over
the world (e.g., Vandenberghe, 2002; Charlton, 2008). Revealing an amaz-
ing diversity of forms (e.g., Charlton, 2008), rivers must always be interpreted
as product of their specific landscapes (e.g., Fryirs&Brierley, 2013). Extremely
sensitive to external and internal forcing, they reflect the particular characteristics
of climatological and geological conditions as well as the site specific vegetation
cover or the local and regional topographical and hydrographical settings, which
as a whole are controlling the specific geomorphic processes occurring in a catch-
ment area (e.g., Charlton, 2008).

Thereby, fluvial systems are always characterized by inherent complexities (e.g.,
Fryirs & Brierley, 2013), not only including process-response relationships on
the valley floors, but also hillslope and other processes that exert a primary control
on fluvial activity by means of sediment supply and water retention. Moreover,
fluvial systems also reflect temporal changes of environmental conditions to which
they adjust in very specific ways. These adjustments are regularly preserved in depo-
sitional series (e.g., Vandenberghe, 2002) whose varying sedimentary character-
istics can be attributed to palaeoclimatic variations and corresponding changes in
fluvial discharge and sediment load. The sedimentary records of rivers, which are
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often referred to as valuable climatological and palaeoenvironmental archives, are
crucial sources of information for the reconstruction of fluvial landscape evolution.

Besides research projects dealing with drainage network response to tectonic up-
lift and providing new insights on the relation between fluvial systems and tec-
tonic activity (e.g., Demoulin et al., 2017), many studies focused on analysing
the increasing anthropogenic impact on landscape evolution and fluvial dynamics
(e.g., Mishra et al., 2007; Antoine et al., 2010; Wolf et al., 2014). As
sedimentary bodies of fluvial systems regularly contain a considerable amount of
archaeological artefacts, they are important sources of geoarchaeological research,
providing essential information on human occupation, agricultural activities and
even on changes in ancient human societies (Cordier et al., 2015).

In summary, fluvial archives provide a palaeoenvironmental record, comprising
the historical period, theHolocene aswell as the Pleistocene (e.g., Cordieretal.,
2015) and, at least in some fluvial systems, even a large part of the Cenozoic (e.g.,
Schoorl&Veldkamp, 2003; Maddy et al., 2007). Apart from their essential
importance for palaeoenvironmental research, many studies highlight the particu-
lar relevance of studying fluvial archives in order to understand present-day fluvial
systems and to assess the potential impacts on these systems triggered by the future
global change (e.g., Gregory et al., 2006; Herget et al., 2007).

What applies to fluvial sediments in general, is even more true for river terraces.
River terraces arewidespread geomorphic features, known fromvarious landscapes
and climates all over the world. They allow the investigation of fluvial systems
on different temporal (e.g., Gibbard & Lewin, 2009; Westaway et al., 2009;
Hobo et al., 2010;Wallinga et al., 2010) and spatial scales (e.g., Bridgland
et al., 2007; Bridgland & Westaway, 2008a). However, although intensely
investigated, many aspects of river terrace formation, such as the specific boundary
conditions, the exact mechanisms and its dynamics, are still not completely under-
stood, revealing the great need for further systematic fluvial research. This is specif-
ically true for the complex river drainage system inNorthern Bavaria, Germany, for
which our research project intended to derive new information on river dynamics
and on the timing of terrace formation.
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1.1 Research area and research history

The research area is a small abandoned valley in the headwaters of the Main River
and is located in a region namedUpper Franconia (Oberfranken), which is situated
in the north-east of Bavaria, Germany (see Figure 1.1). The valley was named after
the small Trebgast Creek, which is a tributary to the White Main River (see Fig-
ure 1.2). With a total length of only ~18 km, the Trebgast Creek reveals an average
discharge of ~0.421 m3/s (Bayerisches Landesamt für Umwelt, 2017c).

According to the Köppen-Geiger climate classification the climate of the re-
search area can be classified as Cfb-climate (marine west coast climate/oceanic cli-
mate). The average annual precipitation is ~745 mm and average temperatures are
about 8.7°C1.

The fluvial system in the vicinity of the city of Bayreuth is dominated by two
headwater streams of the Main River. The White Main River originates in the
nearby crystalline basement area of the Fichtel Mountains (’Fichtelgebirge’) east
of our study area. It has a total length of ~52 km and shows an average discharge
of ~4.07 m3/s (Bayerisches Landesamt für Umwelt, 2017b). The Red Main
River’s source is located 10 km to the south of the city of Bayreuth in an area char-
acterized by mesozoic sedimentary rocks. At first, the southernmost part of the
Red Main Valley is showing an overall south-north alignment. Near the city of
Bayreuth, however, the Red Main River is sharply bending to the west, flowing
through the Bayreuth Basin and changing its course to a general north-western
direction (see Figures 1.2 and 1.3). With a total length of ~72 km and an catch-
ment area size of ~520 km2, the Red Main River reveals an average discharge of
~3.14m3/smeasured at the gauging station inBayreuth (BayerischesLandesamt
für Umwelt, 2017a).

Also originating in the Fichtel Mountains, a third river, important for the local
drainage system, is the riverWarme Steinachwhichhereafter is normallymentioned
as Steinach River. Although the distance between source andmouth is only ~25 km,
the Steinach River overcomes a pronounced difference in elevation of ~450 m and
is, therefore, characterizedby a steep slope. Despite the rather lowaverage discharge
of ~1.21m3/s (BayerischesLandesamtfürUmwelt, 2017d), the SteinachRiver

1Ten-year-average values calculated for the period 1998-2007; http://www.bayceer.uni-
bayreuth.de/mm/de/klima/5407/BotGar/Klima_BotG.php [accessed online 2017-11-30].
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Introduction

reveals a high transport capacity. For further details on the geology of the surround-
ings and on the geomorphological setting of the Trebgast Valley, the reader is re-
ferred to the explanations given in Study 1 on page 85.

The evolution of the river drainage system in Northern Bavaria since the on-
set of the Neogene can be characterized as a process of great complexity, which
was generally controlled by the development of the Rhine system. Whereas the
present Main River is a tributary of the Rhine River, the primal Main River was
initially established on a south-dipping peneplain, reaching from the Franconian
Forrest in the north to the Molasse Basin in the northern Alpine Foreland (e.g.,
Schirmer, 1984, 2010, 2014). In order to clearly discriminate between early stages
of the progressively extended present-day course of theMainRiver and this overall
south-directed stream, Schirmer (1984) introduced the name ’Moenodanuvius’
to characterize the latter, a term which may be translated as ’Main-Danube-River’
(e.g., Zöller et al., 2012a,b).

Due to the subsidence of the Upper Rhine Graben, the Rhine River was able to
enlarge its catchment area by stepwise headwater erosion and river deflections (e.g.,
Eberle et al., 2010; Schirmer, 2010, 2012). Thereby, more and more originally
south directed rivers and creeks were deflected to the more erosive Rhine system.
As a result, the watershed between the Rhine and the Danube river systems was
gradually shifted further to the southeast, leaving behind an irregular drainage sys-
tem characterized by various triangular and rectangular changes in the courses of
the involved rivers. A striking example for this development can be seen in the
shape of the present-day course of the Main River. More and more headwater
streams of the south-directed Moenodanuvius were deflected, finally resulting in
the Moenodanuvius to vanish till the end of the Pliocene (e.g., Schirmer, 2012,
2014). Meanwhile the overall establishment of the River Main as the longest right
bank tributary of the Rhine drainage system was more or less completed by the
onset of the Pleistocene (e.g., Zöller et al., 2012a,b).

After that, there were still further second order river deflections occurring in the
headwaters of the Main River during the Quaternary. The latest of these Upper
to Middle Pleistocene river deflections took place in the so called Trebgast Valley,
an oversized valley in the north of the city of Bayreuth, Bavaria, Germany (e.g.,
Zöller et al., 2012a,b). Within this dry valley, five well-preserved Pleistocene
terraces can be distinguished. These river terraces are interpreted as the result of a

8



1.1 Research area and research history

very complex landscape evolution, characterized by an at least twofold river deflec-
tion involving two important headwater streams of theMain River (e.g., Kleber
& Stingl, 2000; Zöller et al., 2007).

The evolution of the Trebgast Valley has been discussed among geoscientists for
over a century. A first scientific publicationbyReck (1912)was the reason for a long
lasting and controversial debate on the landscape evolution in theheadwaters of the
MainRiver in general and on theRedMainRiver’s significance to the development
of the Trebgast Valley in particular.

Mainly based onmorphological and lithological evidence aswell as on the spatial
alignment of the valleys (see Figure 1.3), Reck (1912) and others (e.g., Seefeldner,
1914; Stadelmann, 1924; Körber, 1962) concluded that the Trebgast Valley was
originally drained by the Red Main River. This opinion was first contradicted by
Henkel (1917) and Henkel (1920), whose point of view was picked up by Em-
mert&Weinelt (1962) as well as by Emmert (1977). They doubted the litholog-
ical evidence provided by Reck (1912) and others and, on the contrary, interpreted
the Trebgast Valley as a former valley of the primary Steinach River. According to
their opinion, only the primary Steinach River drained the Trebgast Valley to the
north, before it was deflected to its present-day course as tributary of theRedMain
River.

It was not until recent time that new studies (e.g., Kleber et al., 1988; Kle-
ber & Stingl, 2000; Zöller et al., 2007) were able to prove the participation
of both rivers in the evolution of the Trebgast Valley and to derive the complex
landscape evolution model (e.g., Kleber & Stingl, 2000), which was the start-
ing point of this PhD-thesis. With a palynological study, conducted by Ertl (1987)
during the 1980s, and a study focusing on sedimentological and palaeopedological
issues of loess-loam bearing cover sediments by Veit (1991), there have been ap-
proaches from which first evidence could be derived to determine a chronological
framework for the different stages of the valley’s evolution. However, these palyno-
logical and morphostratigraphical evidence could just be used to approximate the
timing of the river deflections (e.g., Zöller et al., 2007) and strongly depend on
specific assumptions and individual interpretations. So far, there has always been
a considerable lack of numerical datings for the research area.
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1.2 Central aims of this PhD-thesis

With respect to the long lasting research history of more than 100 years, it is of cru-
cial importance to highlight the central aims of this study. As already mentioned
above, fluvial sedimentary records and especially river terraces provide valuable cli-
matological and palaeoenvironmental archives. The importance of fluvial terraces
in geomorphology, archaeology and modern river engineering is well documented
by a huge and still growing number of studies spanning a wide range of climatic
and regional settings (e.g., Buch, 1988; Houben, 2003; Knox, 2006; Schirmer,
1983; Schirmer et al., 2005; Vandenberghe, 2015).

However, the information gained from fluvial terraces and their significance for
paleoenvironmental research strongly depend on an accurate dating of the terrace
formation (e.g., Fiebig & Preusser, 2003). Numerical ages are of fundamen-
tal importance for interpreting sedimentological, morphological or stratigraphical
findings. They are essential for assessing the influence of various driving forces (e.g.,
Cordieretal., 2015) and for providing insights into river adjustments over differ-
ing timeframes (e.g., Fryirs&Brierley, 2013). Without a reliable chronological
framework, reconstructing past fluvial environments would not be possible.

Although our study area has long been the subject of geoscientific research, all
age estimations proposed for the different evolutionary stages are only based on in-
direct conclusions, derived from sedimentological or stratigraphic findings. With
regard to numerical dating, the entire region of Upper Franconia and specifically
the area in the vicinity of the city of Bayreuth is characterized by considerable gaps.

Taking into account the previous considerations, the central aim of the present
PhD-thesis is to establish a reliable chronology for the individual evolutionary stages
proposed for the local drainage system by previous studies (e.g., Kleber et al.,
1988; Kleber & Stingl, 2000). Based on the numerical approach of lumines-
cence dating, this chronological framework is intended to provide the basis for fu-
ture investigations, deriving conclusions on boundary conditions, driving forces
and dynamics of fluvial processes in the research area.

With respect to this central aim, the present PhD-thesis addresses two major re-
search questions:

1. Is it possible to confirm findings of previous studies, which derived age es-
timations on the distinct evolutionary stages from sedimentological and
stratigraphical evidence, when numerical dating procedures are applied?

10



1.2 Central aims of this PhD-thesis

Red Main

Ba
yr

eu
th

Ba
yr

eu
th

Trebgast

Wh
ite

 M
ain

Wh
ite

 M
ain

Trebgast

Red Main

Bi
nd

lac
h

Bi
nd

lac
h

St
ein

ac
h

Re
d 

Ma
in

Ma
in

R
iv

er

C
ity

 &
 V

ill
ag

e
La

yo
ut

: K
ol

b 
(2

01
7)

S
ou

rc
e:

 B
ay

er
is

ch
es

 L
an

de
sa

m
t

fü
r U

m
w

el
t, 

w
w

w
.lf

u-
ba

ye
rn

.d
e

El
ev

at
io

n 
(a

.s
.l.

)

29
0 

m

60
0 

m

F
ig
u
re

1
.3
:3
D
-m

o
d
el
o
ft
h
e
re
se
ar
ch

ar
ea

ill
u
st
ra
ti
n
g
th
e
sp
at
ia
la
lig
n
m
en
t
o
ft
h
e
va
lle
ys
n
ea
r
th
e
ci
ty
o
fB

ay
re
u
th
.C

o
m
in
g
fr
o
m
th
e
so
u
th
,t
h
e
R
ed

M
ai
n

R
iv
er
is
n
o
tc
o
n
ti
n
u
in
g
it
s
n
o
rt
h
d
ir
ec
te
d
co
u
rs
e
an
y
m
o
re
,b
u
ti
s
su
d
d
en
ly
b
en
d
in
g
to
th
e
w
es
tw

h
en

it
re
ac
h
es
th
e
ci
ty
o
fB
ay
re
u
th
.D

u
e
to
th
is
ve
ry
sp
ec
ifi
c

sp
at
ia
la
lig
n
m
en
t
o
fv
al
le
ys
an
d
ad
d
it
io
n
al
ly
su
p
p
o
rt
ed

by
lit
h
o
lo
gi
ca
le
vi
d
en
ce
,R
ec
k
(1
9
1
2
)w

as
th
e
fi
rs
t
to
co
n
cl
u
d
e
th
at
th
e
Tr
eb
ga
st
V
al
le
y
re
p
re
se
n
ts

a
fo
rm

er
R
ed

M
ai
n
V
al
le
y
in
te
rc
o
n
n
ec
ti
n
g
th
e
R
ed

M
ai
n
/S
te
in
ac
h
sy
st
em

in
th
e
so
u
th
an
d
th
e
W
h
it
e
M
ai
n
sy
st
em

in
th
e
n
o
rt
h
.

11



Introduction

2. Can innovative techniques of luminescence dating (post-IR IRSL proce-
dures) successfully be used to derive age information on fluvial sediments
which are assumed to reveal ages that have so far been beyond the dating
range of standard luminescence approaches?

1.3 Thesis outline

After this short introduction, a methodological chapter (Chapter 2) is introducing
the basic principles of luminescence dating as well as its physical background. The
workflow of sample preparation is described and measurement procedures, which
were applied in this PhD-thesis, are illustrated. Thereby, this chapter is focusing
on those topics and issues relevant for the studies in Part II of this thesis.

The chapters of Part II comprise three manuscripts that form the centrepiece of
the PhD-thesis. These chapters represent individual studies dealing with specific
aspects of our research project. All of them reveal their own introduction, method-
ological explanations and discussion. In order to integrate the results derived from
the studies, the central scientific outcome is summarized at the end of this thesis.

With respect to the already published manuscripts (Chapter 3 and Chapter 4), I
would like to point out that there are minor modifications compared to the pub-
lished versions. Thesemodifications donot affect the scientific contents of the stud-
ies, but are restricted to layout issues, such as size, resolution and exact position of
figures and tables. Furthermore, references were not considered in the individual
chapters, but summarized at the end of this PhD-thesis.
Chapter 3 represents the starting point of our research project. Besides summa-

rizing the results of previous studies, this chapter gives a rather comprehensive in-
troduction into the geological and geomorphological setting of the research area.
The study deals with the youngest Pleistocene fluvial terrace which was found to
be accumulated by the primary Steinach River (T2-terrace)2. Indirect age estima-
tions for the terrace formation are derived from luminescence dating of hillslope
sediments. Apparent contradictions to older studies are discussed and a possible
solution is derived from lithological investigations.

2Since theT1-terrace was identified as local form accumulated by theTrebgast Creek, it does not
reveal any information relevant for determining a chronological framework for the river deflection
in our research area. Therefore, the T1-terrace is not considered in this PhD-thesis at all.
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1.3 Thesis outline

Chapter 4 is further investigating the timingof theT2-terrace accumulation. Un-
like in the first study (Chapter 3), optically stimulated luminescence dating is ap-
plied to sample material directly originating from the T2-terrace gravels. Thereby,
various sites located throughout the river’s longitudinal course are analysed. The
findings presented in this chapter point to a fluvial historywhich is characterized by
amuch higher complexity than so far expected. Based on our results, an additional
evolutionary stage is proposed which refines the so far established landscape evo-
lution model. Furthermore, our data provide evidence for a diachronic response
of fluvial systems to climatically or tectonically triggered changes of environmental
conditions.

For the study described in Chapter 5, we focus our attention on the older fluvial
terraces (T3-, T4- and T5-terrace levels), which were assumed to be of pre-Eemian
(MIS 5e) age. In order to derive a chronological framework for these older evo-
lutionary stages, innovative techniques of luminescence dating are applied. The
results summarized in the manuscript are ambivalent. On the one hand, they par-
tially confirm results of previous studies and allow to derive a (preliminary) chro-
nology for the Middle Pleistocene terraces in the research area. But on the other
hand, they also reveal significant methodological problems associated with the ap-
plied post-IR IRSL procedure.

The final part of this PhD-thesis (Part III) summarizes the essential results,
which could be derived from the individual studies, in a Synthesis (Chapter 6 on
page 179) and gives a short Outlook (Chapter 7 on page 187) on still unanswered
questions and possible future research activities.

Finally, tables and figures in theAppendix provide additional information rele-
vant for this PhD-thesis as well as a list of publications and presentations (orals and
posters) related to our research project.
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1.4 List of manuscripts and own contribution

According to the examination regulations for achieving the academic degree of a
Doctor ofNatural Sciences (Dr. rer. nat.) of the Faculty of Biology, Chemistry and
Geosciences at the University of Bayreuth, the author of a PhD-thesis is required
to provide information on his own contribution to the manuscripts which are the
centrepiece of the thesis. The following tables quantify the approximate contribu-
tions of all co-authors to the manuscripts compiled in Part II of this PhD-thesis.
The author of this PhD-thesis was corresponding author for all these studies.

Manuscript 1 – Chapter 3
Quaternary river terraces and hillslope sediments as archives for

paleoenvironmental reconstruction: new insights from the headwaters of the
Main River, Germany

Thomas Kolb, Markus Fuchs, Olivier Moine & Ludwig Zöller
Zeitschrift für Geomorphologie, Vol. 61 (2017), Suppl. 1, 53-76

Individual contributions to themanuscript

TK MF OM LZ

Field work 70% 10% – 20%

Sampling 70% 10% – 20%

Sample preparation 100% – – –

OSLmeasurement 100% – – –

Manuscript preparation 95% – 5% –

Comments to improve themanuscript – 50% 20% 30%

Review handling 100% – – –
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1.4 List of manuscripts and own contribution

Manuscript 2 – Chapter 4
Deciphering fluvial landscape evolution by luminescence dating of river terrace

formation: a case study from Northern Bavaria, Germany

Thomas Kolb, Markus Fuchs & Ludwig Zöller
Zeitschrift für Geomorphologie, Vol. 60 (2016), Suppl. 1, 29-48

Individual contributions to themanuscript

TK MF LZ

Field work 70% 10% 20%

Sampling 70% 10% 20%

Sample preparation 100% – –

OSLmeasurement 100% – –

Manuscript preparation 100% – –

Comments to improve themanuscript – 70% 30%

Review handling 90% 10% –

Manuscript 3 – Chapter 5
Luminescence dating of pre-Eemian (MIS 5e) fluvial terraces in Northern Bavaria

(Germany) – benefits and limitations of applying a pIRIR225-approach

Thomas Kolb & Markus Fuchs
Geomorphology – under review

Individual contributions to themanuscript

TK MF

Field work 100% –

Sampling 100% –

Sample preparation 100% –

OSLmeasurement 100% –

Manuscript preparation 100% –

Comments to improve themanuscript – 100%

Review handling 100% –
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2
Methods and material

For the present PhD-thesis, a wide range of different methods was applied. This
is particularly true for Study One (see chapter 3 on pp. 79–108), in which petro-
graphic analyses, malacological investigations and classical geomorphological ap-
proaches were used side by side with luminescence dating methods. Although the
other studies were more focused on luminescence methodology, the results from
stratigraphic investigations as well as findings ofmodern computer basedGIS anal-
yses of high-resolution Digital Terrain Models (DTM) provided important input
for the interpretation of the calculated luminescence ages.

However, themain purpose of this thesis was clearly to establish a regional chro-
nology for the research area inNorthern Bavaria that is mainly derived from the re-
sults of various luminescence dating approaches. From a methodological point of
view the focus is, thus, on luminescence dating techniques and their specific issues.
The explanations given in the following chapter, therefore, will concentrate on lu-
minescence dating methods. Thereby, the general aim is to give a short overview
of the fundamental principles of luminescence dating with a special focus on those
techniques applied in this PhD-thesis. In fact, the followingmethodological expla-
nations are not intended to give an exhaustive description of luminescence meth-
ods, they only address to introduce those basic information on the physical back-
groundof the luminescencephenomenon that are indispensable forunderstanding
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the methods applied in the studies of Chapter 3 to 5.

For very elucidating and extensive summaries of the theoretical background of
the luminescence phenomenon, the interested reader is referred to the still ground-
breaking works of Aitken (1985) and Aitken (1998) as well as to the more recent
and comprehensive overviews given by e.g. Bøtter-Jensen et al. (2003), Chen
& Pagonis (2011) and Yukihara & McKeever (2011) with additional informa-
tion on various applications of luminescence techniques in earth sciences, archae-
ology or personal and medical dosimetry.

2.1 Fundamentals of luminescence dating

2.1.1 Basic principle

Over the last decades, luminescence dating has become a widespread method in
earth sciences and archaeology, extensively applied to date different kinds of sedi-
ments and other materials. Together with ESR-dating it belongs to the so called
dosimetric dating methods, which are based on the time-dependent accumulation
of radiation damages in the crystal lattices of certain minerals, such as quartz and
feldspars (e.g., Wagner, 1998; Walker, 2005).

Thereby, luminescence dating makes use of the fact that these minerals act like
rechargeable batteries (e.g., Duller, 2008a) that are able to store energy which
is induced by ionising radiation, originating either from the decay of natural radio-
isotopes omnipresent innatural sediments or from the cosmic radiation (e.g., Wag-
ner, 1998). As this storage of energy is based on electrons trapped within defects
of crystal lattices, ESR and luminescence dating are also referred to as techniques
of Trapped Charge Dating (e.g., Grün, 2001).

In nature, sedimentary mineral grains are constantly exposed to a low level of
ionising radiation. This radiation is primarily caused by the decay of naturally oc-
curring radionuclides as part of the decay chains of uranium (238U & 235U), tho-
rium (232Th) and potassium (40K). A minor contribution arises from the β-decay
of 87Rb (e.g., Aitken, 1985). An additional source of natural radiation is the cos-
mic radiation mainly consisting of high energetic protons and alpha-particles (e.g.,
Prescott & Hutton, 1994).
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timations.
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When the sample material is shielded from sunlight, the natural ionising radia-
tion causes redistribution of electrons in the crystal lattice from lowbut stable ener-
getic levels to excited metastable levels. Thereby, the number of electrons trapped
in these metastable energetic states increases over time, as long as the dosimeter is
exposed to the natural ionising radiation. When the sample material is exposed to
sunlight, the trapped electrons are able to absorb additional energy and are released
from their traps. Commonly termed ’bleaching’ (e.g., Duller, 2008a; Thiel,
2011), this de-trapping is accompanied by the release of energy in form of photons,
resulting in a light emission referred to as luminescence. Thereby, the latent lumi-
nescence signal, i.e. the stored energy, is either completely reset or at least reduced
to a negligible level. In nature, sunlight exposure of sediments may most probably
occur during relocation processes. Erosion, transport and deposition of sediments
will erase the latent luminescence signal and, thus, set the ’luminescence clock’ to
zero (e.g., Duller, 2008a). When the relocated material is deposited and cov-
ered by other sediments shielding the material of interest from daylight, the latent
luminescence signal starts to grow again. The fundamental cycle of energy accumu-
lation during burial, signal resetting due to transport and renewed accumulation
of energy after deposition is illustrated in Figure 2.1.

The intensity of the luminescence signal depends on the amount of stored en-
ergy, which itself is ameasure of time duringwhich the sample had been affected by
the continuing influence of ionising radiation without being exposed to sunlight.
With the intensity of the luminescence signal being a function of storage time, it
can be used to estimate the time elapsed since the last deposition.

Thereby, two parameters have to be quantified in order to be able to calculate
sedimentation ages for luminescence samples. The first of these parameters is called
’palaeodose’. It is defined as the total amount of energy accumulated per mass unit
of samplematerial during burial. Its unit ofmeasurement isGray (Gy), with 1Gy=
1 J kg-1 (Aitken, 1998). The second parameter is a measure of the location specific
strength of natural ionising radiation and is either termed ’natural dose rate’ (e.g.,
Aitken, 1985; Wagner, 1998) or ’environmental dose rate’ (e.g., Liritzis et al.,
2013a; Durcan et al., 2015). It is defined as ’[...] the rate at which energy is ab-
sorbed by a grain from the flux of radiation to which it is exposed’ (Aitken, 1998)
and often shortened to the term ’dose per time unit’ (Wagner, 1998). In palaeoen-
vironmental research, it is commonly expressed either as Gray per thousand years
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(Gy ka-1) or given as annual dose (mGy a-1). More detailed information on dose and
dose rate determination are given subsequently in sections 2.2 and 2.3.

When both parameters are known, the depositional age of a sample can be cal-
culated by applying the following (simplified) formula:

Age [ka] = Palaeodose [Gy]
Environmental dose rate [Gy/ka] (2.1)

2.1.2 Physical background of the luminescence
phenomenon

The mechanism of energy storage in crystal lattices is commonly explained by the
energy band model. Meanwhile, a large selection of models have been proposed
which only slightly differ in details concerning the involved traps and centres (one
trap/one centre models vs. multiple trap/multiple centre models) and the various
paths of charge transitions (electron/trapped hole recombination vs.
electron/mobile hole recombination) (e.g., McKeever, 1985; Bailey, 2001). For
details the reader is referred to Bøtter-Jensen et al. (2003) and Yukihara &
McKeever (2011). The following remarks will concentrate on illustrating the ba-
sic concepts of energy storage and release in crystal lattices and will thereby refer
to a strongly simplified model depicted in Figure 2.3 which is characterizing the en-
ergy band structures commonly assumed for quartz minerals. As feldsparminerals
show a greater variety of chemical compositions including various differences in
crystal structures and bonding angles, the situation for feldspars is more complex
(e.g., Poolton et al., 1994, 1995, 2002b,a; Jain & Ankjærgaard, 2011; Kars
et al., 2013). However, although characterized by a larger complexity, indicated
for example by the important role of band tail states, the storage and release of en-
ergy in feldspar minerals in principle follows the same mechanisms described for
quartz in the following paragraphs.

Unless the energies of free electrons, those of electrons in crystal lattices do not
show a continuous distribution, but are characterized by discrete energy levels.
These sharply defined energetic states can be attributed to the interference with
the electrical field originating from the regular arrangement of ions building up
the crystal (e.g., Kittel, 2005). The electronic energy levels in crystal solids can be
calculated by solving the Schrödinger equation applying the Bloch function for a
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periodic potential which yields bands of allowed energies, separated by zones of for-
bidden energies, for which no solution of the Schrödinger equation can be found
(e.g., Kittel, 2005). Electrons progressively fill the available energy levels, start-
ing with the lowest energy level and continuing with levels of increasing energies
(e.g., Yukihara & McKeever, 2011). The band representing the highest ener-
getic state occupied by electrons is called valence band, the first empty level above
the valence band is termed conduction band (e.g., Yukihara&McKeever, 2011;
Wagner, 1998).

In crystalline solids, the edges of valence band and conduction band are clearly
defined and both levels are separated by amore or less pronounced forbidden zone
(’energy gap’ – see Figure 2.2). The width of this band gap can be characterized by
the energy Eg that would be necessary to overcome the gap and excite an electron
from the valence band to the conduction band (e.g., Chen & Pagonis, 2011).
The majority of natural occurring crystalline solids are either insulators or semi-
conductors, for which the energy gapEg is commonly regarded to be > ~2.5 eV (for
insulators) (e.g., Yukihara & McKeever, 2011) or in the range of ~1-2.5 eV (for
semi-conductors) (Kittel, 2005). With particular respect to quartz minerals, the
energy gap between valence and conduction band has been reported to be ~8.5 eV
(e.g., Kreutzer, 2014; Schmidt, 2013, with further references therein).

All natural occurring crystalline structures are characterized by a more or less
huge number of imperfections, disturbing the otherwise regular configuration of
atoms in the well-ordered periodicity of the crystal lattice. Energy storage in crystal
lattices is based on the presence of such defects. Thereby, a great variety of im-
perfections is reported in quartz minerals, including either intrinsic defects due to
structural irregularities, such as Si or O vacancies, or extrinsic defects which are re-
lated to impurity atoms (e.g., substitution of Si4+ by Al3+) (e.g., Bøtter-Jensen
et al., 2003). Althoughmany studies point to the complexity of defect structures
(e.g., Preusser et al., 2009; Bøtter-Jensen et al., 2003; Schmidt, 2013),
commonly three main types of defects are distinguished (e.g., Mahesh et al.,
1989; Wagner, 1998; Yukihara & McKeever, 2011):

• Interstitials (Frenkel defects) – These point defects are characterized by in-
terstitial atoms inbetween lattice points. They can either be causedby extra
atoms integrated in the lattice structure or by atoms replaced from nearby
lattice positions.
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• Vacancies (Schottky defects) – Vacancies are non-occupied lattice positions
which can be attributed tomissing atoms. They either occur during the ini-
tial mineral formation or are caused by subsequent displacement of atoms
from their inherent lattice positions. Interstitials and vacanciesmay appear
as defect pairs and are then sometimes referred to as ’Schottky-Frenkel type
defects’ (e.g., Wagner, 1998, please note that the terminology is not always
coherent).

• Substitutions due to impurities–A third type of point defect is attributed to
the replacement of lattice atoms by foreign atoms of a similar ionic radius.
A very common example is the substitution of Si4+ byAl3+ or by other ions
showing similar size (e.g., Ga3+, Fe3+ orGe4+). These substitutions are often
accompanied by complex secondary changes in the crystal lattice necessary
for charge compensation (e.g., Schmidt, 2013).

Irregularities in crystal structures are commonly characterized by either positive
or negative charge deficits. Therefore, they can act as traps on free charges, diffusing
through the crystal lattice (e.g., Wagner, 1998). With respect to the energy band
model, the presence of crystal defects causes local changes in the otherwise periodi-
cal system of the lattice structure and thereby introduces additional discrete energy
levels within the forbidden zone (e.g., Chen&Pagonis, 2011). From an energetic
point of view, these localized energy levels are situated either close to the conduc-
tion band or slightly above the valence band. While the latter act as so-called ’hole
traps’ inducing a local electric field that is able to capture positive charges (’holes’),
the defect levels close to the conduction band attract electrons and are, thus, named
’electron traps’ (e.g., Yukihara & McKeever, 2011). Without the presence of
ionising radiation, non of these traps would be occupied as electrons are tightly
bound to their respective parent atoms, revealing energy levels corresponding to
the valence band. This basic configuration is illustrated in Figure 2.3a.

In nature, crystals are continuously exposed to a more or less strong flux of ion-
ising radiation (for details see section 2.3 on page 61). When this radiation inter-
acts with the atoms of the penetrated crystal lattice, energy is transferred to these
atoms resulting in an excitation of electrons to higher energetic states. In detail,
the mechanism of energy transfer is very complex, including a variety of quantum-
mechanical processes such as photoelectric effects, Compton scattering or electron-
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positron-pair production (e.g., Yukihara & McKeever, 2011; Wagner, 1998).
Regardless of the exact energy transfer mechanism, which depends on the type of
radiation providing the initial energy, ionising radiation deposits energy in mate-
rial by transferring the initial energy to secondary electrons termed δ-rays which
disperse the energy throughout themineral (e.g., Yukihara&McKeever, 2011).
In summary, this triggers a cascade of excitation and ionisation processes which re-
sult in a large number of activated electrons detached from their atomic kernels
and excited to the high energetic conduction band. The excited and delocalized
electrons (negative charges) leave behind an excess of positive charges in the valence
band which are referred to as ’holes’ (e.g., Wagner, 1998). Both, the excited elec-
trons and the remaining holes, can migrate through the crystal lattice until they
are trapped at either lattice defects with negative charge deficits (electron traps) or
at defects with positive charge deficits (hole traps). This process of excitation and
trapping of charges is depicted in Figure 2.3b.

Once trapped in such localized, metastable energetic states, electrons and holes
may remain in their respective traps over geological timescales. Figure 2.3c illus-
trates this storage configuration. With time, an increasing number of electrons
will be subjected to those excitation processes and captured at electron traps within
the crystal lattice. This corresponds to an increasing amount of energy stored in
the crystal lattice, associated with a growing latent luminescence signal. Since the
number of crystal defects is limited, there will be an upper limit for the number
of trapped electrons and holes. Thus, the latent luminescence signal will sooner
or later reach a saturation level (e.g., Wagner, 1998; Preusser et al., 2008).
As soon as this level is reached, further exposure to ionising radiation will not in-
crease the luminescence signal any more. This will result in serious age underesti-
mations. In this PhD-thesis, signs of luminescence signal saturationwere identified
for the quartz samples investigated in Study 3, for which the determined ages were
regarded to be unreliable and only interpreted as minimum age estimates.

With respect todating applications and agedeterminations, another crucial point
is the stability of energy storage. This strongly depends on the potential energy of
Coulombic attraction exerted on the captured electrons by the specific traps. As
there are different types of crystal defects, there are also different types of traps
characterized by differing stabilities, which can be described by the specific thermal
lifetimes τ of the traps. τ is defined as the average residence time an electron is ex-
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pected to spend in a trap (e.g., Aitken, 1985) and is strongly determined by the
amount of energy required to overcome the Coulombic attraction of the trap (e.g.,
Schmidt, 2013). The thermal lifetime can be calculated according to the following
formula (e.g., Aitken, 1985):

τ = s-1 · e E
kT . (2.2)

Thereby, s is a frequency factor, which depends on the trap type and is usually in the
range of 109 to 1016 s-1 (e.g., Aitken, 1985). T represents the absolute temperature
given inKelvin [K] and k is the Boltzmann’s constant. E (in eV) is the activation en-
ergy required to release a captured electron from the trap to the conduction band
and is regularly termed ’trap depth’ (e.g., Aitken, 1985, 1998). In order to ensure
that the leakage of electrons over time is negligible, the lifetime of electrons in the
traps has to be considerably higher than the age span to be dated (e.g., Aitken,
1998). Aitken (1985) points out that τ would have to be at least 10 times the age
of a sample if the upper limit of tolerated signal loss was set to 5%. As the lifetime
primarily depends in the trap depth E below the conduction band, shallow traps
situated close to the conduction band should be avoided for dating purposes. In
fact, Aitken (1998) proposed to restrict luminescence dating techniques, which
are normally dealing with burial periods of several tens of years to several hundreds
of thousand of years, to traps characterized by a trap depth of at least 1.6 eV. At
natural storage temperatures, this corresponds to a lifetime of ~several millions of
years and guarantees that the measured luminescence signal arises from traps suffi-
ciently deep to ensure negligible leakage of electrons and, thus, reliable dating.

The source of luminescence emission in semiconductors and insulators is the
release of trapped electrons from their metastable states, followed by recombina-
tion of electron-hole pairs at defects in the crystal lattice (e.g., Yukihara & Mc-
Keever, 2011). Thereby, the trapped electrons have to be stimulated with an ade-
quate amountof energywhichhas tobe sufficient toovercome the specificCoulom-
bic attraction of the trap. This energy is either provided by heating (thermolumi-
nescence – TL) or by optical stimulation with light of particular wavelenghts (op-
tically stimulated luminescence – OSL). By this stimulation, the trapped electrons
are evicted from their traps to the excited delocalized state of the conduction band
where they can again migrate as free charges through the crystal lattice. Once the
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electrons have been lifted to the conduction band, there are various charge transi-
tion trajectories showing characteristic probabilities. First, the released electrons
might be recaptured either by the same trap or by a different type of trap, which
will not result in a detectable luminescence emission (e.g., Aitken, 1998)1. Further-
more, the freed electrons can undergo a direct electron-hole recombination across
the band gap from the conduction band to a migrating hole in the valence band.
This electronic transition is in principle possible even in insulators, however asso-
ciated with an extremely low probability (e.g., Yukihara & McKeever, 2011).
Neither the recapture process nor the direct recombination from the conduction
to the valence band is shown in Figure 2.3d, which only illustrates the main mech-
anism and basic principle of charge recombination and luminescence production.

Thismainmechanism canbe described as a recombination of electron-hole pairs
at crystal defects which are occupied by trapped holes and situatedwithin the band
gap. Thereby, hole traps which are located in the intermediate region of the band
gap show a higher probability to act as recombination centres than those hole traps
close to the valence band (e.g., Yukihara & McKeever, 2011). When such
electron-hole recombinations take place, at first electrons are captured at excited
states of the recombination defects before the recombined electron-hole pairs re-
turn to the ground state (e.g., Yukihara&McKeever, 2011; Schmidt, 2013). If
this relaxation process from a high energetic state to the low energetic ground state
occurs as radiative transition, the excess energy is carried off by emitting photons of
specific energies. This flux of photons sums up to a detectable light emission that
is the source of the luminescence phenomenon.

The details of this recombination process are again characterized by a great com-
plexity. Apart from the fact, that there are various different possible transition
pathways not mentioned in the text above, among others including thermally as-
sisted eviction mechanisms and athermal quantum-mechanical tunnelling
(e.g., Bøtter-Jensen et al., 2003; Yukihara & McKeever, 2011), the recom-
bination process is additionally complicated by the existence of different types of
recombination centres, normally referred to as ’luminescence centres’ (’L-centres’),

1In fact, there is some kind of light emission occurring during those recapturing processes as
well as during the initial trapping process after the electrons were lifted to the conduction band
(e.g., Preusser et al., 2008). This emission of light is characterized by low energy photons cor-
responding to light emission in the infrared wavelength band. While this IR-light emission is the
signal investigated by the radiofluorescencemethod, it is not detected in conventional luminescence
dating approaches.
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’killer centres’ (’K-centres’) and thermallyunstable ’reservoir centres’ (R-centres) (e.g.,
Aitken, 1985; Zimmerman, 1971). Only recombinations at luminescence centres
will result in the emission of light, while recombinations at K-centres will occur
as non-radiative transitions. The role of reservoir centres is even more complex as
they are supposed to compete for holes with L-centres during irradiation. Thus,
R-centres are a relevant factor for explaining sensitivity changes observed in the
dosimeters during themeasurement procedure. As a result, the relative abundance
of L-, K- andR-centres and changes in their proportions have an important impact
on the amount of luminescence detected during OSL measurements.

At this point, it has to be emphasized that all processes described in the previ-
ous paragraphs are stochastic phenomena associated with characteristic probabili-
ties. Describing luminescence emissionbymeansofmathematical formulas is, thus,
challenging and often only possible under the assumption of specific simplifica-
tions such as the ’one trap/one centre model’ (e.g., Bøtter-Jensen et al., 2003).
Assuming first-order kinetics (i.e., no re-trapping) and a constant stimulation in-
tensity, this strongly simplifiedmodel describes the intensity I of the luminescence
signal with stimulation time t by a single exponential function according to the fol-
lowing formula (e.g., Bøtter-Jensen et al., 2003):

IOSL(t) = I0 · e
−t
τd , (2.3)

where I0 is to the initial luminescence intensity at t = 0 and τd represents the
CW-OSL decay constant. For details on the derivation of mathematical formulas
describing the luminescencephenomenon, the interested reader is referred either to
the comprehensive explanations of Bøtter-Jensenetal. (2003) andYukihara
& McKeever (2011) or to the brief summary given by Schmidt (2013).
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2.1.3 Dosimeters and measurement procedures

Although the number of synthetic and natural materials showing luminous effects
is quite large (e.g., Bøtter-Jensenetal., 2003; Yukihara&McKeever, 2011),
dating studies in palaeoenvironmental and archaeological contexts are typically
based onmeasuring either quartz or feldspar separates. Compared to other natural
minerals such as zircon (e.g., Smith et al., 1991; van Es et al., 2000), calcite
(e.g., Gaft et al., 2008), halite (e.g., Bailey et al., 2000) or gypsum (e.g., Ma-
han & Kay, 2012), which are in principle also suitable for dating purposes (e.g.,
Strebler, 2013), quartz and feldspars are abundant in nearly all environmental
settings and dominate the luminescence signals of most sedimentary and archae-
ological materials. With their luminescence properties well-documented, both of
them show specific advantages and suffer from distinct shortcomings.

Ever sinceMurray&Wintle (2000) proposed the single aliquot regenerative
dose (SAR) protocol (see Chapter 2.2.2), quartz has been the mineral of choice in
the major part of luminescence studies. One reason for preferring quartz separates
might be its abundance in nature. Showing a higher resistance to chemical weather-
ing, quartz minerals are still preserved when feldspar minerals, which are generally
prone to chemical weathering, might be scarce or even completely missing. Fur-
thermore, feldspar minerals cover a wide range of chemical compositions, whereas
quartz is a rather simple structuredmineral. Thus, the luminescence emission spec-
tra from feldspar separates are regarded to be much more complex than those of
quartz samples (e.g., Duller, 2008a) which might crucially have impeded the de-
velopment of a coherent theoretical model describing the luminescence properties
of feldspar minerals.

The striking advantage of quartz separates over feldspars, however, is the excel-
lent bleachability of its luminescence signal. By conducting sunlight bleaching ex-
periments for a set of various luminescence signals, Godfrey-Smithetal. (1988)
were not only able to prove that the bleaching characteristics of optical signals by far
surpass those of TL signals, but also showed that OSL signals derived from quartz
separates are reset more rapidly than those of feldspar minerals (see Figure 2.4a).
Figure 2.4b, which was derived from the original diagrams of Godfrey-Smith
et al. (1988), illustrates that the luminescence emission of quartz is reduced to a
level of only ~1% of the initial signal intensity after the mineral was exposed to day-
light for a very short time of only ~10 s (see also Godfrey-Smith et al., 1988).
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Duller (2008a) points out that a sunlight exposure time of ~100 s is sufficient
to reduce quartz signals to a negligible percentage of < 0.1% of its initial level. On
the other hand, optical signals from feldspars are characterized by a much slower
response to sunlight and, thus, need prolonged bleaching times to reach a level suf-
ficient to be termed as complete resetting (see Figure 2.4b).

The aspect of bleachability is of special importance when dating sediments for
which either only a short time of daylight exposure or a strongly reduced intensity
of sunlight can be assumed during transport and sedimentation. This is particu-
larly true for fluvial sediments such as those investigated in this PhD-thesis. Previ-
ous studies (e.g., Berger&Luternauer, 1987; Berger, 1990) have shown that
solar resetting of waterlain sediments may significantly be limited by attenuation
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due to either the water column or the suspended load. Other studies (summarized
by e.g., Wallinga, 2002; Rittenour, 2008) point to the complexity of fluvial
transport processes and identified other important controls on the bleaching of
fluvial sediments, such as the transport distance, themode of transport, the impact
of high-discharge events and the direct admixture of non-bleached material due to
river bed erosion.

However, quartz is also characterized by a series of more or less important lim-
itations. First of all, some quartz samples show relatively low luminescence sen-
sitivities. Revealing rather poor luminescence properties, this phenomenon has
especially been reported for quartz extracts of sediments originating from geologi-
cally young orogens and is often attributed to a limited number of relocation cycles
(e.g., Preusser et al., 2006; Klasen et al., 2006; Steffen et al., 2009). For
these environments, thermal transfer of charge from light-insensitive traps to light-
sensitive traps has beendescribed as seriousproblem thatmight result in substantial
equivalent dose overestimations (e.g., Rhodes & Bailey, 1997; Rhodes, 2000).
With only ~5% of the grains contributing to the luminescence emission of a typical
quartz sample (e.g., Duller, 2008b), the intensities of many quartz signals may
also not be sufficient for dating young (i.e., Holocene) sediments in which only
a low dose was accumulated since their deposition. Finally, due to crystal inter-
growth of quartz minerals with various feldspar remnants it is sometimes impos-
sible to separate pure quartz material (e.g., Preusser et al., 2008). Although
some procedures have been suggested to deal with such feldspar inclusions (e.g.,
Wallinga et al., 2002), these approaches are still associated with a substantial
number of unanswered problems.

The major disadvantage of using quartz samples for luminescence dating, how-
ever, is their low dose saturation. Normally this is regarded to lie in the range of
150-200 Gy (e.g., Roberts, 2008; Thiel et al., 2011b; Thiel, 2011), with some
higher values reported for exceptional environmental settings (e.g., Buylaert
et al., 2011). Depending on the location specific dose rate, the upper dating limit
of quartz OSL measurements is, therefore, reached at ~50-150 ka (e.g., Buylaert
et al., 2011; Li et al., 2014). With respect to sediments older than the last glacial-
interglacial-cycle, this means that quartz samples are often in or at least close to
saturation. Therefore, the results derived from such samples are less reliable and
can only be interpreted as minimum estimates of the true deposition age.
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Especially for dating old sediments, the use of feldspar minerals is therefore of-
ten advantageous and sometimes even indispensable. Due to much higher satura-
tion doses of ~1500-2000 Gy (e.g., Huntley& Lamothe, 2001; Li et al., 2014;
Thiel, 2011), IRSL-dating of feldspar separates and polymineral samples, in prin-
ciple, provides the potential for significantly extending the range of luminescence
dating far beyond the last glacial-interglacial-cycle. However, a major drawback
of feldspar based luminescence dating is a well-documented (e.g., Aitken, 1985,
1998) phenomenon termed ’anomalous fading’ (e.g., Wintle, 1973). This phenom-
enon describes a loss of luminescence signal in feldsparminerals due to the eviction
of electrons from thermally stable traps at ambient temperatures (e.g., Wintle,
1973; Aitken, 1985; Spooner, 1992, 1994a). Many aspects of this signal loss are
still not fully understood. In particular, there has been a substantial and still ongo-
ing debate about the question whether it is a universal phenomenon shared by all
kinds of feldspar minerals (e.g., Duller, 2008a). Many studies provide clear evi-
dence that the anomalous fading problem is of complex nature, indicated by strong
inter-sample variations of fading rates as well as by the finding that signals of differ-
ent wavelengths fade at different rates (e.g., Duller, 2008a). Although the exact
mechanismof anomalous fading is still not completely understood, the signal loss is
commonly attributed either to quantum-mechanical tunnelling of electrons from
electron traps to nearby recombination centres without any stimulation or to ’hop-
ping’ of electrons from trap to trap, triggered and assisted by weak thermal stimu-
lation (e.g., Visocekas, 1985; Visocekas et al., 1994; Guérin & Visocekas,
2015). Strongly depending on the specific configuration of the individual crystal
structure (i.e., the electron-centre-distance and the density of crystal defects), these
mechanisms, which are illustrated in Figure 2.5, can result in a significant loss of
stored electrons.

If not corrected for, anomalous fading will, by all means, result in severe age
underestimations. Therefore, different approaches have been suggested to cope
with the problem and to be able to use feldspars as reliable dosimeters. From a gen-
eral point of view, these approaches can be divided into two major groups. The
first group consists of numerous correctionmodels which apply specificmathemat-
ical algorithms to correct the measured values which were identified to be affected
by fading. The most important of these models are the linear correction model
introduced by Huntley & Lamothe (2001), the dose rate correction (DRC)
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method of Lamothe et al. (2003) and the approach proposed by Kars et al.
(2008) which is based on quantum-mechanical considerations. All of these three
approacheswere applied in this PhD-thesis (seeChapter 5) and are briefly described
in section 2.2.3.

The second group comprises various attempts to identify and make use of lu-
minescence signals from feldspar separates that do not suffer from anomalous fad-
ing. Therefore, either luminescence signals from different emission wavelengths
are investigated or specific measurement protocols are proposed. One of these
approaches is the infrared radiofluorescence procedure (IR-RF), which was orig-
inally introduced during the late 1990s (e.g., Trautmann et al., 1998, 2000;
Krbetschek et al., 2000). Thereby, the radiofluorescence of K-feldspar sep-
arates emitted in the infrared wavelength spectrum at ~1.43 eV (865 nm) is mea-
sured during continuous β-irradiation (e.g., Erfurt & Krbetschek, 2003b;
Erfurt, 2003). Based on a theoretical model, a single-aliquot regenerative dose
procedure (IR-SAR) was proposed by Erfurt & Krbetschek (2003a), which
has only been used in a small number of applied dating studies (e.g., Degering
& Krbetschek, 2007; Wagner et al., 2010; Novothny et al., 2010; Lauer
et al., 2011; Kreutzer et al., 2014). Although there are still major issues asso-
ciated with radiofluorescence measurements (e.g., Buylaert et al., 2012a), new
methodolocigal findings (e.g., Frouin et al., 2015; Huot et al., 2015) provide
better insights into the mechanism of the radiofluorescence emission and resulted
in some kind of methodological revival. Meanwhile, Frouin et al. (2017) pro-
posed an improved radiofluorescence SARprotocol termedRF70 whichmight pro-
vide the potential to significantly increase the range of luminescence dating meth-
ods while avoiding problems arising from anomalous fading.

Other approaches to deal with the specific issues of anomalous fading involve
various isochrone dating procedures (e.g., Zhao&Li, 2002; Li etal., 2007, 2008)
as well as methods based on pulsed stimulation techniques (e.g., Tsukamoto
et al., 2006). Especially Tsukamoto et al. (2006) were able to show that lumi-
nescence signals of K-feldspars and Na-feldspars can be disaggregated into distinct
components when applying short-time stimulations using a fast photon counter
and a pulsed IR LED stimulation unit. Based on the calculated recombination
lifetimes (<1 µs, 3-4 µs and ~20 µs), they discriminated three distinct groups of
signal components. Thereby, they found that the long lifetime (~20 µs) compo-
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Figure 2.5: Schematic diagram showing three possible routes of electron-centre recombi-

nations in feldspar minerals. (1) Electrons can be excited to the conduction band and re-
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of anomalous fading. (2) Direct quantum-mechanical tunnelling from the ground state of

the electron trap to a nearby recombination centre. Not requiring any kind of stimulation,
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nent was significantly more stable than the shorter lifetime components. Equiva-
lent doses derived only from the long lifetime component of the pulsed IRSL signal
were consistent with Des calculated for quartz separates of the respective samples.
Therefore, Tsukamoto et al. (2006) concluded that the long lifetime compo-
nent from feldspars might not suffer from anomalous fading at all. If this was true,
pulsed stimulationwould provide the potential to restrict equivalent dose determi-
nation to those signal components not affected by anomalous fading.

However, the most widely used approach to circumvent the fading phenome-
non includes various so-called post-IR IRSL procedures, which are fundamentally
based on the findings of Jain&Singhvi (2001) who investigated feldspar contam-
inations in quartz separates in order to improve accuracy and precision of equiva-
lent dose determination, derived from blue-green light stimulated luminescence
of quartz minerals. By analysing the effects of IR stimulation at different tempera-
tures, Jain&Singhvi (2001)were able to conclude that there are at least two types
of trap populations participating in the luminescence signals of feldspars. While
the type A trap population can be stimulated by infrared light at low temperatures
(125°C), the type B population is not affected by this low temperature treatment.
However, IR stimulation of this type B population is successful at elevated tem-
peratures of 220°C. Thus, as a by-product of their studies Jain & Singhvi (2001)
could show that there is a residual IRSL signal in feldspars that is not affected by a
low temperature (50°Cor 125°C) IRSL readout, but canbe accessedby a subsequent
post-IR IRSL stimulation at elevated temperatures. A comprehensive summary of
the complex structures characteristic for feldspar minerals and the resulting transi-
tion pathways for electrons is given by Jain & Ankjærgaard (2011).

Thomsen et al. (2008) systematically investigated this post-IR IRSL signal
and found that IR-stimulated signals of feldspar minerals measured at elevated
temperatures after a preceding IRSL readout at 50°C are less affected by signal
loss due to anomalous fading. Based on these results, they proposed a two-step
post-IR IRSL procedure, for which the basic idea can be described as follows: Dur-
ing a first IR stimulation at low temperature, electrons stored in unstable traps
are released and recombine with nearby recombination centres. Thomsen et al.
(2008) termed this step ’IR wash’. As this low temperature stimulation is associ-
ated with the supply of low energy, this first step only affects traps that are close
to recombination centres. In the donor-acceptor model of Poolton et al. (1994,
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1995, 2002b,a), these traps give raise to IRSL signals that are attributed to direct
donor-acceptor pair recombinations due to quantum-mechanical tunnelling from
the excited state of the IRSL trap to nearby holes (see transition route (2) in Figure
2.6b). As alreadymentioned above, ground state tunnelling between spatially close
donor-acceptor pairs (transition route (1) in Figure 2.6b) are also regarded to be the
main reason for anomalous fading (e.g., Jain&Ankjærgaard, 2011; Buylaert
et al., 2012b, also see explanations on page 33). As a result of the ’IR wash’ step at
50°C, the major part of those electron-hole pairs that can be assumed to be prone
to anomalous fading is empty and cannot contribute to subsequently measured
IRSL signals anymore (e.g., Buylaert et al., 2012b). The first IR stimulation at
50°C is followed by a second IR stimulation at elevated temperatures (commonly
> 200°C) (e.g., Li et al., 2014), which supplies a larger amount of thermal energy
assisting the IR stimulation which allows the trapped electrons to reach the band-
tail states right below the conduction band (see transition route (3) in Figure 2.6b).
During this second stimulation the post-IR IRSL signal is recorded, which is dom-
inated by electron-hole-recombinations at distant recombination centres after the
electrons were transported through the band-tail states (e.g., Thomsen et al.,
2008). As quantum-mechanical tunnelling strongly depends on the distance be-
tween traps and recombination centres (Aitken, 1985; Guérin & Visocekas,
2015), anomalous fading can be expected to be of little importance for this long dis-
tance recombinations. Therefore, the post-IR IRSL signal should be more stable
than the IR50 signal and much less affected by anomalous fading (e.g., Buylaert
et al., 2012b; Thiel, 2011).

Meanwhile, a great variety of different post-IR IRSL procedures have been pro-
posed and tested in numerous applied dating studies on feldspar separates from
many different environmental settings. Based on the same fundamental principles,
these approaches include various versions of two-step post-IR IRSL methods us-
ing different combinations of IR stimulation temperatures. With the pIRIR225-
protocol (e.g., Buylaert et al., 2009; Alappat et al., 2010; Sohbati et al.,
2012) and the pIRIR290-protocol (e.g., Thiel et al., 2011a,b; Buylaert et al.,
2012b), the most commonly applied protocols make use of a combination of a low
temperature readout at 50°C for the first IR stimulation step and a high stimu-
lation temperature of > 200°C for the subsequent pIRIR-step. However, some
studies showed that such high temperature post-IR IRSL approachesmay be prob-
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lematic for younger samples originating from specific environmental settings (e.g.,
Kars et al., 2014). Therefore, alternative approaches were suggested using post-
IR IRSL stimulation at moderate temperatures of either 150°C or 180°C (Madsen
et al., 2011; Reimann et al., 2011; Reimann & Tsukamoto, 2012; Reimann
et al., 2012; van Gorp et al., 2013).

As an alternative to these two-step post-IR IRSL approaches, Li & Li (2011) in-
troduced a multi-step post-IR IRSL procedure which they named multi-elevated-
temperature post-IR IRSL (MET-pIRIR) protocol. In this protocol, the fading
component of the IRSL signal is progressively eliminated by applying multiple IR
stimulationswith increasing stimulation temperatures from 50°C to 250°C (e.g., Li
& Li, 2011; Li et al., 2014). One advantage of this MET-pIRIR approach is the
possibility of illustrating the effect of anomalous fading in De-temperature plots
(De-T-plots), in which the determined equivalent doses are plotted against the spe-
cific post-IR stimulation temperatures. In such a plot, the depictedDe will increase
with increasing stimulation temperature until aDe-plateau is reached at higher tem-
peratures. This plateau can be used as an internal diagnostic tool indicating theDe-
region not affected by anomalous fading any more (e.g., Li & Li, 2011; Li et al.,
2014). The MET-pIRIR approach has so far only been tested by a rather limited
number of applied studies (e.g., Fu et al., 2012; Fu & Li, 2013; Li & Li, 2012;
Thomsen et al., 2012).

In summary, there is a large variety of different approaches applied either to
quartz samples or feldspar separates. With respect to dosimeters andmeasurement
procedures, many considerations have to be made in order to ensure that both of
them fit to the specific requirements of the environmental context for which the
dating is done. In this PhD-thesis, I primarily workedwith either fluvial sediments
or hillslope material, for which the resetting of luminescence signals is commonly
regarded to be a major problem (e.g., Fuchs & Lang, 2009; Preusser et al.,
2008, 2011; Rittenour, 2008; Wallinga, 2002). In this respect, quartz miner-
als, in principle, seem to be advantageous over feldspar dominated samples, as they
clearly show better bleaching properties. Thus, quartz was the preferred dosimeter
in this PhD-thesis, as long as its application was considered to be possible. Quartz
basedOSL dating, therefore, was applied to all younger samples, originating either
directly from gravel beds of the youngest Pleistocene Steinach terrace (T2-level) or
from hillslope sediments superimposing the T2-terrace gravels.
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With respect to the older evolutionary stages (i.e., > MIS 5e) and their associ-
ated terrace levels, dating attempts using quartz separates for two locations of the
T3-terrace level provided evidence that these samples had already reached the satu-
ration level (see Study 3 in Chapter 5). The calculated quartz based OSL-ages are,
therefore, assessed to be unreliable and can only be interpreted as minimum age
estimates (see page 159). As the quartz fraction proved not to be appropriate for
dating these older sediments, I had to shift my attention to feldspars, even though
the feldspar luminescence signals maymost probably suffer from both, anomalous
fading, which causes age underestimation, and partial bleaching, resulting in signif-
icant age overestimation. In order to reduce at least the effects of anomalous fading,
a post-IR IRSL protocol and fading correctionmethods were applied. Detailed in-
formation on the specific parameters used for the post-IR IRSLmeasurements and
the fading correction procedures applied to all older samples originating from the
T3-, T4- and T5-terrace levels are summarized in section 2.2.3.

40



2.1 Measurement protocols

2.2 Determination of equivalent doses – measurement
protocols

A crucial point in luminescence dating is the determination of energy stored in the
crystal lattice of the investigated dosimeters since the sample material was last ex-
posed to sunlight. This energy is commonly termed ’palaeodose’ or ’natural dose’
and is either described as the dose that the sample received during antiquity
(Aitken, 1985) or more formally defined as the total amount of energy accumu-
lated permass unit of samplematerial during burial (Aitken, 1998). A fundamen-
tal issue, thereby, is the fact that there is no way to determine the palaeodose by
means of direct measuring.

With respect to the explanations on the physical background of the lumines-
cence phenomenon given in section 2.1.2 on page 21, it should be obvious that
the intensity of measured luminescence signals strongly depends on the individ-
ual properties characteristic for the particular mineral grains under investigation.
As these properties are determined by the individual configurations of the crystal
structures of the involved minerals, different mineral grains will exhibit different
luminescence signals even if they have been exposed to the very same amount of
ionising radiation. Thus, there is no clearly defined and universally valid relation-
ship between luminescence signal intensity and stored energy that could generally
be applied to derive palaeodoses from the measured OSL signals.

In order to determine the palaeodose of a sample, a reference system has to be
established that is able to evaluate the luminescence sensitivity of each subsample
individually. Thereby, subsamples (aliquots) are artificially irradiated with differ-
ent known laboratory doses. Bymeasuring the intensity of luminescence signals in-
duced by these known doses, an empirical function can be derived which describes
the relationship betweenmeasured luminescence and administered dose. This em-
pirical relationship is commonly called ’dose response curve’ or ’growth curve’ (e.g.,
Aitken, 1998; Schmidt, 2013). By comparing the natural luminescence signal in-
duced during burial in nature to those signals induced by the artificial irradiation,
a laboratory dose can be identified that is able to produce a signal intensity equal
to that of the natural luminescence signal (e.g., Lomax, 2009). This laboratory
dose is termed equivalent dose (De) and can be used as measure of the palaeodose,
although it has to be emphasized that equivalent dose (laboratory conditions) and
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palaeodose (natural conditions) are not identical.
With additive dose and regenerative dose procedures, in principle there are two

major approaches for equivalent dose determination. Based on these basic configu-
rations, a wide variety of different measurement protocols have been proposed for
luminescence dating over the last decades, typically adapted to the special require-
ments of specific dating contexts. For this PhD-thesis three differentOSLmeasure-
ment procedures were applied. The structure of each procedure is described in the
following sections and depicted in detail in Figure 2.8 and 2.10.

2.2.1 The multiple aliquot additive dose protocol
(MAAD-protocol)

After originally being used in thermoluminescence dating formany years,multiple-
aliquot approacheswere also adopted toOSLdating andwere dominating themajor
part of luminescence studies up to the mid and late 1990s (e.g., Duller, 2008b;
Preusser et al., 2008). For the present PhD-thesis the multiple aliquot addi-
tive dose (MAAD) protocol was applied to polymineral and quartz separates of
one fine grain sample (sample BT 737 – see Study 1 on page 79 and Study 2 on page
109). In this procedure, the equivalent dose determination is based on the construc-
tion of dose response curves derived from the measurements of several aliquots of
the same sample. Thereby, the sample is divided into different groups of aliquots.
While one of these groups is used for determining the natural luminescence sig-
nal, the other groups are given additional, group-specific radiation doses before lu-
minescence measurements are performed. After measuring the luminescence sig-
nals of all groups of aliquots, a growth curve can be fitted, including data points
for both, natural dose aliquots and natural+additive dose aliquots (see Figure 2.7).
The equivalent dose is determined by extrapolating this growth curve to the in-
tercept with the dose-axis (e.g., Wintle, 1997; Wagner, 1998; Bøtter-Jensen
et al., 2003).

The fact that dose response curve construction is based on multiple aliquots of
the same sample can either be interpreted as a considerable advantage or as a major
drawback of multiple aliquot procedures. As every single aliquot is only measured
once, the MAAD-protocol is able to avoid changes in the luminescence sensitivity
of the sample investigated. Such changes, which are assumed to be caused by re-
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peated thermal treatment and irradiation of the same aliquot, have been reported
as serious limitation of single aliquot protocols applying regenerative doses (e.g.,
Wintle, 1997).

However, the MAAD-protocol is also faced with a set of considerable method-
ological problems. One of them is the fact that multiple aliquot dating requires
a large number of aliquots and is, thus, only possible for samples that are provid-
ing a sufficient amount of suitable material (e.g., Duller, 1995). Another disad-
vantage may arise from the extrapolation of the dose response curve. As there are
no measured datapoints for the low dose region (i.e., doses lower than the natural
dose), the exact shape of the growth curve is not known, which can cause severe
uncertainties in determining the precise position of the intercept with the x-axis.
In thermoluminescence dating, dose response curves have been reported to show
a supralinear signal increase for the low dose region that have to be taken into ac-
count when equivalent doses are determined (e.g., Aitken, 1985; Schmidt, 2013).
Although such low-dose supralinearities are commonly assessed to be of less impor-
tance for optically stimulated dating (e.g., Aitken, 1998), they cannot completely
be excluded. Together with the uncertainties arising from non-linear curve fitting,
which is regularly required for older samples, the low reliability of extrapolation
procedures may significantly hamper the determination of accurate estimates for
equivalent doses (e.g., Preusser et al., 2008).

Themost important limitation ofMAAD-procedures, however, arises from the
mechanism of luminescence production itself, which has already been described in
section 2.1.2 on page 21. Different aliquots should normally contain a variety of
grains showing a great diversity of mineral structures. As a consequence, different
aliquots will exhibit different luminescence sensitivities even if originating from a
homogeneously irradiated bulk sample (e.g., Duller et al., 2000). In MAAD
approaches, dose response curve construction is based on datapoints derived from
averaging the single measurements made for the individual aliquots of each group
(e.g., Lomax, 2009). Thereby, the scatter of data will introduce serious uncer-
tainties tomathematical growth curve fitting and to equivalent dose determination
(e.g., Preusser et al., 2008).

This major limitation of MAAD-protocols requires normalisation procedures
that provide the possibility to correct for such inter-aliquot variations in lumines-
cence sensitivity. In fact, several normalisation procedures have been proposed for
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TL and OSL dating, amongst others including ’weight normalisation’, ’short shine
normalisation’ and ’equal total dose normalisation’2 (e.g., Aitken, 1985; Wintle,
1997). The weight normalisation is achieved be weighing each measured disc and
calculating a correction factor that is applied to normalise the luminescence signal
derived from the respective disc to standardized amount of mass (e.g., Wintle,
1997). For fine grain samples, such a time consuming procedure is usually con-
sidered not to be necessary, since a sufficient uniformity of sample deposition on
each disc is assumed to be guaranteed by the procedure which is applied to pro-
duce the discs (e.g., Aitken, 1985; Wintle, 1997). For short shine normalisation,
each disc is exposed to a short light stimulation (normally ≤ 0.1 s), during which
the luminescence emission is recorded. Since this initial part of the natural signal is
measured prior to any laboratory treatment, it can be used as normalisation factor
(e.g., Wintle, 1997). The equal total dose normalisation is based on the measure-
ment of OSL response to a fixed test dose, which is applied to the aliquots after the
OSL readout for equivalent dose determination. This approach includes a series
of bleaching, preheat and artificial irradiation steps applied to each aliquot before
the test dose irradiation in order to ensure identical pretreatment histories for each
aliquot (Wintle, 1997; Schmidt, 2013).

In order to account for inter-aliquot scatter, a weight normalisation was applied
to the polymineral and quartz separates of the fine grain fraction of sample BT 737,
which were measured by applying the MAAD-procedure. Thereby, the amount
of grains dispensed on each disc was quantified by weighing the material using a
high precision balance. For preparing 100 discs, 206.2 mg of sample material were
suspended in 25 ml of de-ionised water. 200 µl of this suspension were pipetted
onto each disc, resulting in a constant amount of ~2mg samplematerial uniformly
dispersed on each disc. The samples were divided into 5 different groups of sub-
samples, each consisting of 5 aliquots. Four of these groupswereβ-irradiated using
increasing additive doses, whilst the fifth group was used for measuring the natu-
ral luminescence signal. After irradiation and prior to OSL readout, aliquots of
polymineral material were stored in a drying chamber at 70°C for 7 days, whereas
aliquots containing quartz were stored at room temperature. Indicated by low
mathematical fitting errors, the best results for dose response curve construction

2Please note that in TL dating this approach is usually termed ’equal pre-dose normalisation’
(e.g., Wintle, 1997).
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were found by using single saturating exponential functions. Since low-dose supra-
linearity has been reported to be unusual in OSL dating (e.g., Aitken, 1998), we
decided not to apply any kind of supralinearity correction.

2.2.2 The single aliquot regenerative dose protocol
(SAR-protocol)

With the single aliquot regenerative dose (SAR) protocol introduced to lumines-
cence dating byMurray&Wintle (2000) and refined byMurray&Wintle
(2003), there is a well established standard procedure commonly used in quartz
OSL dating. The basic idea of this approach is to derive the equivalent dose of
a sample by determining individual equivalent doses for a large number of single
aliquots of the sample. Since all measurements for De determination are carried
out on a single aliquot, the SARprotocol is able to circumvent the above described
problems arising from varying luminescence properties of grains from different
aliquots which are used in MAAD procedures (e.g., Preusser et al., 2008).

However, the SAR protocol in principle follows regenerative dose techniques.
Once the natural luminescence signal is measured, these techniques make use of
repeated OSL measurements applied to the very same aliquot after administering
different laboratory doses (regenerative doses) in order to construct dose response
curves. As already mentioned above, such repeated irradiation and readout cycles
may induce changes in luminescence sensitivities (e.g., Duller, 1991; Stokes,
1994; Chen & Pagonis, 2011). If not corrected for, these sensitivity changes will
cause severe changes in the OSL response to the given doses, which will result in
erroneous dose response curves.

Themajor breakthrough achieved by the SARprocedure proposed inMurray
& Wintle (2000) is to monitor any sensitivity change that may occur during the
measurement procedure by determining the OSL response to a constant test dose
which is administered to the aliquot after eachmeasurement of natural and regener-
ative signals (e.g., Preusser etal., 2008). Thus, eachmeasurement cycle consists
of two sub-cycles – a cycle to determine the natural or regenerative dose response
and a subsequent cycle to detect the test dose response. Thereby, the test dose
response Tx is used as measure for sensitivity changes induced by the preceding
measurement of the natural or regenerative signal Lx. These changes in lumines-
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cence sensitivity are corrected by normalising the Lx-signals to their correspond-
ing Tx-signals which is done by dividing each Lx-value by the subsequent Tx-value.
These sensitivity corrected luminescence signals (Lx/Tx) are used for growth curve
construction (e.g., Preusser et al., 2008). The equivalent dose is determined
by interpolating the sensitivity corrected natural luminescence signal (Ln/Tn) onto
this dose response curve (e.g., Duller, 2008a)

Structural details of the used SAR protocol are illustrated in Figure 2.8 and the
measurement routine applied in this PhD-thesis is described in the following para-
graphs. In a first measurement cycle, the natural luminescence signal is determined
by applying anoptical stimulation at an elevatedmeasurement temperature of 125°C
(step 2), following a preheat treatment (step 1). Preheating the sample is of essen-
tial importance in order to guarantee that all unstable trap populations are empty
and cannot contribute to the luminescence signals used for equivalent dose deter-
mination (e.g., Duller, 2008a). For each luminescence sample investigated in
this study, the most adequate preheat temperature was individually derived either
from preheat plateau tests (PPT) or from combined dose recovery and preheat tests
(DRT),whichwill be described indetail onpage 53. With respect topreheat plateau
tests, the equivalent dose of different groups of aliquots is determined for a set of
different preheat temperatures (e.g., Lomax, 2009). The determined equivalent
doses are plotted against the respective preheat temperatures in order to identify a
preheat plateau. As pointed out by Murray & Wintle (2000), such consistent
De-values over a range of temperatures indicate a sufficiently successful isolation of
stable signal components. Thus, any temperature from this plateau can be used as
suitable preheat temperature for equivalent dose determination.

After measuring the natural signal, the sample is beta-irradiated using a small
test dose (typically≤ ~10%of the expected equivalent dose). This test dose remains
constant throughout the whole measurement procedure. Again a preheat step is
applied, followed by an optical stimulation to determine the test dose response.
Unlike the preheat procedure prior to Lx-signal measurements, the preheat tem-
perature prior to Tx-measurements is not held for 10 seconds, but carried out as
short heating, commonly called ’cutheat’ (e.g., Cordier, 2010). This term implies
that the sample is immediately cooled after the preheat temperature was reached
(e.g., Murray & Wintle, 2000). With respect to this cutheat-step, a variety of
approaches were suggested considering different combinations of preheat/cutheat-
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Figure 2.8: The single aliquot regenerative (SAR) dose protocol applied in this PhD-thesis.

In principle following the basic protocol introduced byMurray &Wintle (2000), we applied

several slight adjustments. First of all, we added an IR depletion test proposed by Duller

(2003) at the end of the measurement sequence – please note that the IR-stimulation was

performed at 125°C. Preheat temperatures were chosen according to the results of a com-

bined dose recovery and preheat test. Cutheat temperatures used for the test dose cycles

were always identical with the preheat temperatures.
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temperatures, among others (e.g., Bailey, 2000) including a constant cutheat of
160°C independent of the preheat temperature (e.g., Murray & Wintle, 2000)
and a cutheat temperature which is always 20°C lower than the preheat tempera-
ture (e.g., Murray&Wintle, 2003;Wintle&Murray, 2006). For this PhD-
thesis, we decided to apply a cutheat temperature that was equal to the preheat
temperature.

The second part of the SARprotocol comprises a set of several regenerative dose
steps. Thereby, the aliquot is repeatedly irradiated with increasing doses supplied
by an 90Y/90Srβ-source. For each regenerative dose, the induced luminescence sig-
nal is measured, followed by a test dose cycle to monitor sensitivity changes. In
order to optimize growth curve fitting and to guarantee a precise interpolation of
natural signals, regenerative doses should be chosen to bracket the expected equiva-
lent dose. For the SARprotocol applied in this PhD-thesis a total of 6 regenerative
dose points was used, including four regenerative doses corresponding to ~40%,
~70%, ~130% and ~160% of the expected equivalent dose, an additional zero dose
step and a repeated 40%-step (recycling step) at the end of the regenerative cycles.
This recycling step can be used as internal quality test.

The final part of the SARprotocol comprises an IRSL-test that intends to check
the purity of the measured quartz separates. Although sample preparation aims at
providing pure quartz extracts, there may still be some feldspar contaminations ei-
ther due to remnants of feldspar minerals that could not completely be removed
by the density separation and etching procedures or due to feldspar inclusions.
Thus, an additional test is required to ensure that only those aliquots containing
pure quartz grains are considered for equivalent dose determination. For this pur-
pose, the respective aliquot is once more artificially irradiated administering the
same dose as used for the last regenerative step (recycling step). After preheating,
the sample is initially stimulated with infrared light before an optical stimulation
using blue LEDs is applied, followed by a normal test dose cycle. Since the in-
frared stimulation will not or only slightly affect quartz grains on the disc (e.g.,
Spooner, 1994b; Duller, 2003), luminescence signals detected during this mea-
surement step can merely arise from feldspar grains. These are more or less com-
pletely bleached by this procedure3 and can, thus, not contribute to the subsequent

3Duller (2003) reported that the majority of feldspar grains in his experiment had less than
10% of their initial signal remaining after the initial IR stimulation.
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Figure 2.9: Upper part: SAR dose response curve for an aliquot of sample BT 1165. The

black circles and triangles represent the sensitivity corrected luminescence signals for the

administered regenerative doses (Lx/Tx). The red circles illustrate the sensitivity corrected

natural signal (Ln/Tn). A single saturating exponential function was used for growth curve

fitting (blue line). The equivalent dose is determined by projecting the Ln/Tn onto this curve.

Lower part: TL measurement curves (left side) and IRSL shinedown curve (right side) for

the same aliquot of sampleBT1165. The shape of the TL curves reveal an pronounced peak

at ~110°C reported to be typical for quartz samples. The IRSL shinedown curve doesn’t

show any detectable signal, indicating an aliquot not contaminated with any relevant feld-

spar remnants.
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blue light stimulation any more. Therefore, the OSL signal recorded during the
second stimulation step will exclusively arise from the quartz grains on the disc.

As a result, feldspar contaminations can be detected by two distinct criteria. The
first possibility is to examine the shape of the IRSL shine-down curve recorded dur-
ing the IRSL stimulation. If there is no relevant feldspar contamination, this curve
will reveal either no detectable IRSL signal at all or only a small signal slightly ex-
ceeding the measurement background. The second criterion is based on the com-
parison of two blue-OSL signals derived for the same administered dose. Thereby,
the ratio of the OSL signal measured after a preceding infrared stimulation and
theOSL signal without such a stimulation is calculated. This ratio, whichwas orig-
inally introduced for distinguishing feldspar and quartz grains in single grain dat-
ing, was proposed by Duller (2003) and is commonly termed ’OSL IR depletion
ratio’ or in a shortened version ’IR depletion ratio’.

For this PhD-thesis, the luminescence signal detected for the repeated regenera-
tive step (recycling step) was compared with the blue-OSL readout following the
IR-stimulation in the last part of the measurement sequence. In order to account
for sensitivity changes, the IR depletion ratio was calculated based on the sensitiv-
ity corrected luminescence signals according to the formula (e.g., Duller, 2003;
Kim et al., 2009)

IR depletion ratio =
LIR−depletion/TIR−depletion

Lrecycling/Trecycling
. (2.4)

If there is no feldspar contamination, the OSL signal measured after IR stimula-
tionwill not significantly deviate from the signalmeasuredwithout IR stimulation.
The IR depletion ratio will, thus, be close to unity (e.g., Henshilwood et al.,
2002). However, if there is a relevant contamination with feldspar minerals, these
minerals will, in fact, contribute to the recycling signal, but not to the post-IR blue
signal. For such a case, the preceding IR exposure causes a considerable reduction
of the intensity of the subsequentOSL signal (e.g., Duller, 2003;Mauz&Lang,
2004) which will result in an IR depletion ratio significantly differing from unity.
By defining a threshold for the IR depletion ratio, it is possible to exclude those
aliquots showing luminescence signals characterized by an unwanted feldspar con-
tribution that is assessed not to be acceptable any more.

With respect to this threshold, there is no commonly accepted value. Frequently,
values of 10%, 15% or 20% are suggested (e.g., Anechitei-Deacu et al., 2013;

51



Methods and material

Gaaretal., 2013;Rémillardetal., 2015;Trauersteinetal., 2017). For this
thesis, we followed these suggestions and used the IR depletion ratio as additional
rejection criterion, applying threshold values of 10% to 20% (for details the reader
is referred to the studies in Part II of this PhD-thesis).

As suggested byMurray&Wintle (2000), the performance of the SAR pro-
cedure is evaluated by external and internal quality tests. The internal tests com-
prise two important criteria: recuperation rate and recycling ratio. The first cri-
terion is based on the zero dose measurement. In theory, this zero regenerative
dose should reveal a sensitivity corrected luminescence signal (L0/T0) close to zero.
In reality, however, there are several mechanisms during previous irradiation, pre-
heating and optical stimulation that are able to trigger a transfer of charges from
optically insensitive traps to optically sensitive traps (e.g., Jain et al., 2003;Mur-
ray & Wintle, 2003; Wintle & Murray, 2006). Thus, even if administering
a zero dose, a sample will most probably exhibit a small, but still detectable lumi-
nescence signal. This signal is commonly termed recuperation (e.g., Aitken &
Smith, 1988). Whilst recuperation values slightly above zero do not necessarily
correspond to methodological issues, those significantly exceeding zero may, how-
ever, indicate unwanted signal components that were induced by previous mea-
surement steps. High values of recuperation are regularly regarded to as evidence
for potentially unreliable measurement procedures (e.g., Preusser et al., 2008)
which requiremodifications of the originally proposed protocol (e.g., Murray&
Wintle, 2003).

The degree of recuperation, termed recuperation rate, is commonly expressed as
percentage of the natural sensitivity corrected signal (e.g., Wintle & Murray,
2006) and calculated according to the following formula (e.g., Kim et al., 2009):

Recuperation rate =
L0/T0

Ln/Tn
. (2.5)

Murray&Wintle (2000) suggested ameanwhile commonly accepted thresh-
old value of 5% for this recuperation rate which was also applied to all measure-
ments performed for this PhD-thesis. For the great majority of our investigated
samples, recuperation proved not to be problematic.

A second internal performance test is called ’recycling ratio test’ (e.g., Wintle
& Murray, 2006) and verifies whether the sensitivity correction applied during
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the SAR protocol was successful (e.g., Preusser et al., 2008). Thereby, the lu-
minescence response to a particular dose, which was administered at the beginning
of the SAR procedure, is compared with the response to the same dose repeated
at the end of the measurement sequence. Since sensitivity changes are typically re-
ported to be progressive, the first and the last regenerative dose step will represent
the widest spread in sensitivity change (e.g., Wintle & Murray, 2006). There-
fore, the repeated dose is usually chosen to be identical to the first regenerative dose
(e.g., Wintle&Murray, 2006; Lomax, 2009). The repeated luminescence step
is regularly called ’recycling step’. In order to assess the performance of the SAR
procedure the ’recycling ratio’ (e.g., Murray & Wintle, 2000) is calculated ac-
cording to the formula

Recycling ratio =
Lrecycling/Trecycling

L1/T1
. (2.6)

If the SAR correction for sensitivity changes was successful, the sensitivity cor-
rected luminescence signals of both measurement steps should reveal equal values
and the recycling ratio should be close to unity (e.g., Wintle & Murray, 2006;
Preusser et al., 2008). In order to account for statistical uncertainties, Mur-
ray & Wintle (2000) proposed to discard all aliquots for which the recycling
ratio exhibits a deviation of more than 10% from unity, corresponding to a range
of acceptability from 0.90 to 1.10 (e.g., Wintle & Murray, 2006). This com-
monly used threshold values were also applied to the samples in this PhD-thesis
(for details the user is referred to the studies in Part II).

An important external test to check the robustness of the measurement proto-
col is the so called ’dose recovery test’ (DRT) (e.g., Wallinga et al., 2000; Mur-
ray & Wintle, 2003; Wintle & Murray, 2006). This test aims at evaluating
whether the applied SAR procedure is able to reproduce a known laboratory dose
with sufficient accuracy (e.g., Preusser et al., 2008). Thereby, the DRT pri-
marily checks whether the first test dose measurement (T0) is able to provide an
appropriate correction for the change in luminescence sensitivity induced by the
measurement of the natural signal (e.g., Wintle & Murray, 2006).

After zeroing the natural signal by optical bleaching, aliquots are artificially irra-
diated with a known laboratory dose. This dose is treated as unknown and deter-
mined by applying a SAR protocol using the measurement parameters supposed
to be adequate for a correct equivalent dose determination. By calculating the
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measured-to-given dose ratio, frequently termed ’dose recovery rate’, the perfor-
mance of the applied measurement procedure can be assessed (e.g., Murray &
Wintle, 2003). Thereby, the dose recovery rate is calculated as

DRR =
Measured dose
Given dose . (2.7)

If sensitivity correction for the firstmeasurement step is adequate, thismeasured-
to-given dose ratio will be close to unity, indicating the suitability of the applied
measurement procedure to recover the given dose with sufficient validity. Addi-
tionally, the dose recovery test provides information on the maximum precision
that can be expected for the respective sample (e.g., Wintle & Murray, 2006;
Preusser et al., 2008).

In this PhD-thesis, dose recovery tests were either carried out as ’normal’ DRTs
(feldspar samples) or as combined dose recovery and preheat tests (quartz samples).
For the latter, the artificially bleached and irradiated aliquots were divided into sev-
eral groups, each consisting of three aliquots. Dose recovery tests were carried out
for each group, applying different preheat temperatures in the range of 180°C –
260°C in steps of 20°C. For each preheat temperature the measured-to-given dose
ratio was calculated based on the mean De values. These group specific dose recov-
ery rates were used to identify the preheat temperature for which the given labora-
tory dose could be reproduced at its best.

2.2.3 The post-IR IRSL protocol at 225°C
(pIRIR225-procedure) and fading correction

As alreadymentioned in section 2.1.3 on page 40, quartz separates proved not to be
appropriate for dating the older terrace sequences, identified in the research area.
Therefore, feldspars had to be used as dosimeters, providing the opportunity to
constrain a chronological framework even for the older evolutionary stages.

Inorder to avoid theproblems associatedwith anomalous fading in feldsparmin-
erals or at least to minimize its effects, we decided to apply a post-IR IRSL proce-
dure. Over the last years, the pIRIR290-protocol, whichwas originally suggested by
Thiel et al. (2011a), has become a very popular approach. Many studies reported
fading rates of ~1%⁄decade or less when applying this protocol (e.g., Buylaert et al.,
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2012b; Colarossi et al., 2015; Li et al., 2014) and interpreted these low fading
rates as mere laboratory artefacts (e.g., Thiel et al., 2011a; Buylaert et al.,
2012b). Thus, the post-IR IRSL signal at 290°C is often regarded as a ’non-fading
signal’ for which no fading correction is required at all (e.g., Thiel et al., 2011a;
Buylaert et al., 2012b).

However, the pIRIR290-protocol is also reported to be affected by a hard to
bleach signal component. Thus, post-IR IRSL measurements at 290°C are typ-
ically characterized by a slow signal depletion and by relatively high unbleachable
residual doses (e.g., Kars et al., 2014; Colarossi et al., 2015). For our samples,
this was confirmed by preliminary test measurements not presented in this thesis.
With particular respect to fluvial environments, which are revealing complex trans-
port mechanisms, the bleachability of the luminescence signal is typically regarded
asmajor problem (e.g., Wallinga, 2002; Rittenour, 2008; Kars et al., 2014).

In their study, Kars et al. (2014) dealt with the problem of signal resetting
for different post-IR IRSL procedures under natural conditions, comparing sub-
aerial and sub-aqueous bleaching. For sub-aqueous conditions, they were able to
show that pIRIR290-signals are significantly harder to bleach than under full sun-
light exposure (similar results were reported for pIRIR290- and pIRIR225-signals by
Lowick et al., 2012). Kars et al. (2014) also concluded that the difference be-
tween filtered (i.e., sub-aqueous) and the full spectrum bleaching will significantly
increase with higher stimulation temperatures, which they attributed to large dis-
tance transport of chargeswithin the crystal lattice during recombination processes
at elevated temperatures.

As a result, the findings of Kars et al. (2014) and of other studies (e.g., Lo-
wick et al., 2012; Colarossi et al., 2015) may be summarized in the following
sense: Although higher stimulation temperatures significantly reduce the degree
of anomalous fading, they are always accompanied by more difficult to bleach sig-
nals. Therefore, it is necessary to find a suitable balance between signal stability (i.e.,
absence of anomalous fading) and signal resetting during transport (e.g., Kars
et al., 2014).

Since the complete resetting of luminescence signals is of crucial importance for
reliable age estimations, we decided to apply a post-IR IRSL procedure at a stim-
ulation temperature of 225°C. This procedure is reported to show a rather rapid
signal bleaching (e.g., Colarossi et al., 2015) and is, however, still characterized

55



Methods and material

Step ResultTreatment

1

7

6

5

4

3

2

ß-irradiation with 
test dose Dt

ß-irradiation with 
regenerative dose Rx

Infrared stimuation 
(at 50°C for 300 s)

Preheat
(250°C for 60 s)

Ln - IR50
test

dose cycle
regenerative
 dose cycle

natural
 dose cycle

13

12

11

10

9

8

14

6x

test
dose cycle

15

R
eg

en
er

at
iv

e 
si

gn
al

s
N

at
ur

al
 s

ig
na

l Infrared stimuation 
(at 225°C for 300 s)

Preheat
(250°C for 60 s)
Infrared stimuation 
(at 50°C for 300 s)
Infrared stimuation 
(at 225°C for 300 s)

ß-irradiation with 
test dose Dt

Infrared stimuation 
(at 50°C for 300 s)

Preheat
(250°C for 60 s)

Infrared stimuation 
(at 225°C for 300 s)

Preheat
(250°C for 60 s)
Infrared stimuation 
(at 50°C for 300 s)
Infrared stimuation 
(at 225°C for 300 s)

Ln - IR225

Tn - IR50

Tn - IR225

Lx - IR50

Lx - IR225

Tx - IR50

Tx - IR225

Figure 2.10: The post-IR IRSL 225°C protocol applied in this PhD-thesis. In principle fol-
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measurement sequence. IR50- and pIRIR225-signals were recorded for a prolonged readout

timeof 300 s. Since recuperation provednot to beproblematic, wedecidednot to apply any

hot-bleach step.
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by significantly reducing the degree of anomalous fading (e.g., Buylaert et al.,
2009, 2012b).

The underlying mechanism of post-IR IRSL measurements has already been
described in section 2.1.3 on page 36. Therefore, only the used measurement pa-
rameters are reported in the following paragraphs. The structure of the applied
measurement sequence is additionally illustrated in Figure 2.10.

With minor adjustments, we followed the protocol proposed by
Buylaert et al. (2009), which is in principle a single aliquot regenerative dose
procedure including several regenerative and test dose cycles (see the explanations
on page 46). After applying a preheat temperature of 250°C for 60 s, a first IRSL
readout was performed at a stimulation temperature of 50°C, followed by a sec-
ond infrared stimulation at 225°C. For this PhD-thesis, IR50-signals as well as IR225-
signals were recorded for a total of 300 s, whereas Buylaert et al. (2009) applied
a readout time of 100 s for both measurement steps.

Furthermore, Buylaert et al. (2009) suggested a ’clean out’ step, i.e. a high
temperature IR-stimulation for 40 s at 290°C, at the end of each test dose cycle in
order to reduce recuperation. This additional step is commonly termed ’hot bleach’
or ’hot wash’ step. Since recuperation proved to be negligible for all investigated
samples in our study, we did not apply such a high temperature clean out. For
further details, the reader is referred to the explanations in Study 3 on page 147.

Although post-IR IRSL procedures are often assumed not to be affected by
anomalous fading, measurements performed to determine the degree of fading
could not confirm this assumption for our samples. Laboratory fading rates
(’g-values’) of ~3%⁄decade to ~4%⁄decade (see Table 5.5 on page 172) revealed a significant
loss of luminescence signal for all feldspar samples analysed in this PhD-thesis.

If not corrected for, anomalous fading will, by all means, result in severe age un-
derestimations. Different approaches have been suggested to cope with the prob-
lem and to be able to use feldspars as reliable dosimeters. These approaches com-
prise numerous correctionmodels based on the exact assessment of sample specific
fading rates. In order to explore the extent of signal loss attributed to the fading
phenomenon, laboratory fading experiments are performed. Thereby, repeated
Lx/Tx measurements are carried out, applying various storage times between irradi-
ation always administering the same β-dose and luminescence readout. The mea-
sured Lx/Tx-values are plotted against the time elapsed since the respective irradia-
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tion, which is depicted on a log scaled x-axis. Applying a linear fitting function, a
regression line can be constructed, for which the slope is derived. This slope quan-
tifies the degree of anomalous fading and corresponds to the percentage of signal
loss per decade of time, commonly referred to as ’g-value’ (e.g., Aitken, 1985). For
details of fading test procedures, the reader is referred to the very informative expla-
nations given by Auclair et al. (2003).

The determined ’g-values’ do not only characterize the amount of fading for the
specific sample, but are also used to calculate fading-corrected luminescence ages de-
rived from applying different mathematical algorithms. These correction models,
however, are still controversially discussed (e.g., Wallingaetal., 2007; Lowick
et al., 2012; Preusser et al., 2014), since all of them are affected by the major
drawback that they are based on specific assumptions that cannot be verified (e.g.,
Thiel et al., 2011a; Thiel, 2011).

With the approach proposed by Huntley & Lamothe (2001), the dose rate
correction (DRC) method of Lamothe et al. (2003) and the model introduced
by Kars et al. (2008), a total of three correction procedures were applied to
the samples in this PhD-thesis. However, the latter two methods failed in our
study due to so far unknown reasons. In fact, it was not possible to apply an ade-
quatemathematical function which allowed to fit the corrected values to a suitable
growth curve. First preliminary results of systematic test measurements indicate
two possible sources of error.

One of them is the precision of fading measurements, which are required to
determine the laboratory fading rates (g-values) and to derive the recombination
centre densities (ρ′). While the latter is used in the algorithms of Kars et al.
(2008), the first parameter is essential for the DRC method of Lamothe et al.
(2003). Systematic investigations showed that both approaches are very sensitive
to slight modifications of these parameters. Thus, the precision of fading experi-
ments, which is strongly affected by the specific measurement settings, might be
the limiting factor.

A second possible source of errormay be attributed to the specific measurement
parameters used for the post-IR IRSLprotocol. As alreadymentioned, the post-IR
IRSL measurement sequence in principle is a regenerative dose procedure similar
to the SAR-protocol applied to quartz samples. Therefore, we used the same re-
generative dose points commonly applied for SAR-procedures at the luminescence
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laboratories of the University of Bayreuth. Thus, regenerative dose points corre-
sponding to ~40%, ~70%, ~130% and ~160% of the expected equivalent doses were
used to construct the original dose response curves. The correction methods pre-
sented in Lamothe et al. (2003) and Kars et al. (2008), however, were always
applied to dose response curves which were constructed from regenerative points
reaching up to the high dose region near the saturation level of the samples. The se-
rious problems, we were confronted with when applying the correction methods,
may arise from the fact that our growth curves do not include this high dose region,
which may cause an inappropriate mathematical data fitting.

To test both hypothesis, time consuming systematicmeasurements are required,
including high-dose experiments and long lasting g-value measurements, which
could not be considered for this PhD-thesis. Since the procedures of Lamothe
et al. (2003) and Kars et al. (2008) could not be applied to derive fading cor-
rected ages, they are not discussed here in detail. For further information, the in-
terested reader is referred either to the original publications of Lamothe et al.
(2003) and Kars et al. (2008) or to the short summary provided by Li et al.
(2017a).

As a result, only the linear correctionmethod ofHuntley&Lamothe (2001)
could successfully be applied. This method is in principle based on the following
equation, whichwas introduced as equation [4] inHuntley&Lamothe (2001):

I = Ic
[
1 − g

100
· log10

(
t
tc

)]
. (2.8)

Thereby, I represents the luminescence intensity measured after a storage time of t,
while Ic is the luminescence intensity at an arbitrary time tc after artificial irradiation.
The functionality of this correction method can easier be understood, when the
formula is rewritten to the form of equation [1] proposed by Lamothe et al.
(2003):

Tf

T =
If
I0

= 1 − κ ·
[
ln
(
T
tc

)
− 1

]
, (2.9)

where T is the true age and Tf the apparent age affected by fading. If represents
the fading affected luminescence intensity derived from the actual measurements
of natural luminescence signals and I0 equals the luminescence intensity expected
if fading was not present. The sample specific constant κ is the fractional decay of
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luminescence (e.g., Huntley & Lamothe, 2001; Lamothe et al., 2003) and
can be derived from the determined g-values (e.g., Morthekai et al., 2011) by

κ =
g

100 · ln (10)
. (2.10)

Assuming a linear relation between luminescence intensity and age, the true, i.e.
fading corrected, sedimentation age is derivedby iteration. As thebasic assumption
of this correction method is the linear relation of age and intensity, expressed as

Tf

T =
If
I0
, (2.11)

this method can actually only be applied to the linear part of the dose response
curve and is, therefore, restricted to rather young samples (e.g., Lamothe et al.,
2003; Huntley & Lamothe, 2001). However, some studies (Buylaert et al.,
2008, 2011) were able to show that the procedure ofHuntley&Lamothe (2001)
could also successfully be applied to samples of Eemian (MIS 5e) age. Thus, they
suggested that itmight be able to apply the linear correctionmodel to luminescence
intensities even in the non-linear part of the dose response curve.

In such a case, the procedure of Huntley & Lamothe (2001) will, however,
most probably only provide an insufficient fading correction. Even if the degree
of age underestimation is significantly reduced, the corrected ages might still be
affected by serious age underestimations. Since all feldspar samples investigated
for this PhD-thesis revealed equivalent doses beyond the linear part of the dose
response curve, this might be amajor problem associated with the fading corrected
ages presented in Study 3 (see Chapter 5).
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2.3 Dosimetry

The second value needed for the calculation of luminescence ages is the environ-
mental dose rate (Ḋ) which is defined as the rate at which energy is absorbed by a
grain from the flux of ionising radiation to which it is exposed (Aitken, 1998) and
commonly expressed as the sum of its various components (e.g., Liritzis et al.,
2013a):

Ḋ = a · Ḋα + Ḋβ + Ḋγ + Ḋcosmic (2.12)

Thereby,α,β,γ and cosmic indicate the contributions of individual radiation com-
ponents and a represents the alpha efficiency factor. Themajor part of the environ-
mental dose rate originates from the radioactive decay of natural occurring radioiso-
topes either fromthe surrounding sediments (external dose rate) or fromwithin the
minerals to be dated (internal dose rate). Themain sources of natural radioactivity
are 40K, 238U, 235U, 232Th and to a minor part 87Rb (e.g., Aitken, 1985). These
nuclides emit α- and β-particles as well as γ radiation each of which characterized
by different energies and penetration ranges (e.g., Wagner, 1998). While 87Rb
is a pure β-emitter, β-particles and γ-rays are emitted when nuclei of 40K decay
either into stable 40Ca or 40Ar. The ionising radiation from natural uranium and
thorium is provided by radioactive decay chains in which the parent nuclides decay
through a series of unstable daughter nuclides until final non-radioactive products
(various stable lead isotopes) are reached. Thereby, the various members of these
decay chains emit a variety of α, β and γ radiations (e.g., Aitken, 1985). Details
of the radioactive series of uranium and thorium as well as on the decay of 40K and
87Rb are given in the Appendix on page 229.

Alpha particles consist of two protons and two neutrons (see Figure 2.11a) and
can, thus, be regarded as accelerated He2+ nuclei (e.g., Preusser et al., 2008).
Due to their large size and mass, α-particles interact heavily with atoms and mol-
ecules of the penetrated sediments. Thus, they lose their energy rapidly and are
characterized by a limited penetration depth typically in the range of ~20 µm to
25 µm in material of an average density of 2.5 g/cm3 (e.g., Grün, 1989; Aitken,
1998). As a result, the ionising effects originating from alpha particles are highly
localized to the nearby surroundings of the emitting nuclei. Due to their huge
mass, α-particles, furthermore, do not get scattered, but travel in straight lines
(tracks) through the affectedmineral grains. On their way, they produce secondary

61



Methods and material

electrons by ionisation processes which are concentrated in narrow cylinders with
diameters of ~0.1µmsurrounding the tracks of theα-particles (e.g., Aitken, 1998).
Along their tracks,α-particles are, therefore, characterized by a high ionisation den-
sity, i.e. electron traps close to the central core of the α-track are saturated rapidly
and a large proportion of energy provided by α-particles gets wasted and cannot
contribute to the accumulation of luminescence signals. As a consequence, heavily
ionising alpha particles are less effective in inducing luminescence than the lightly
ionisingβ-particles andγ-rays, which get scattered in the penetratedmineral grains
and therefore, tend to produce a continuously distributed ionisationwithin the in-
ternal structures of the affected grains.

The poor luminescence effectiveness ofα-particles is normally considered by ap-
plying an alpha efficiency factor that reflects the lower ionisation efficiency. Thereby,
different approaches have been proposed (k-value system, a-value system, b-value
system; see Aitken, 1985, 1998; Schmidt, 2013). For this PhD-thesis, the a-value
system was applied when the contribution of α-particles had to be considered for
dose rate determination. This had to be done for fine grain separates which are
completely penetrated by all radiation components and for coarse grain feldspar
separates that have not been etched (see explanations on page 71). However, the
determination of a-values is a time-consuming procedure. As a-values are regu-
larly reported to show only modest inter-sample varieties, the a-values used for in
this PhD-thesis were not individually measured for each sample, but derived from
literature. For coarse grain feldspar samples (see Study 3) a-values of 0.07 ± 0.02
(e.g., Preusser et al., 2014, 2016) were used for considering the alpha attenua-
tion in the non-etched samples. For fine grain samples (see Study 1 and Study 2)
a-values of 0.07 ± 0.02 (polymineral separates) and 0.04 ± 0.02 (quartz separates)
were adopted from Kreutzer (2014).

For sand sized quartz dosimeters, the problem of reduced alpha efficiency is of
minor importance as long as an etching procedure is applied. For coarse grain lu-
minescence dating, sand sized grains with diameters of 90-200 µm are commonly
used (see the explanations on page 69). These grains are rather large compared
to the penetration range of ~20 µm characteristic for α-particles. Thus, the exter-
nal alpha radiation can only affect the outer rim of these sand sized grains (e.g.,
Aitken, 1985). As quartz minerals are commonly regarded to be free of internal
alpha emitters, the inner core of these grains can only be reached by beta, gamma
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and cosmic radiation (e.g., Aitken, 1998). The external alpha contribution can be
neglected if the outer alpha affected rim of the mineral grains is removed. This can
be achieved by etching the quartz separates with concentrated hydrofluoric acid
(HF) (e.g., Aitken, 1998).

All coarse grain quartz separates which were measured for this PhD-thesis were
subjected to an etching procedure applying 40% hydrofluoric acid for at least
45-50minutes. For some samples, this procedure was repeated several times as they
still showed signs of a significant feldspar contamination. As a result, the contri-
bution of alpha radiation was negligible for all coarse grain quartz separates in this
study and was not taken into account when dose rates were determined for these
separates.

(a)Alpha decay – an atomic

nucleus emits an alpha

particle consisting of two

protons and two neutrons.

Showing an atomic weight

of 4, α-particles carry two

units of positive charge.

(b) Beta decay – due to

nuclear disintegration

a neutron is converted

into a proton. Thereby,

a negatively charged

electron (black circle) and

an antineutrino (white

circle) are released.

(c) Gamma ray emission –

excited atomic nuclei can

relax to stable states by

emitting high energetic

electromagnetic waves

which carry off the excess

energy as gamma ray

photon.

Figure 2.11: Diagrams of three main mechanisms of natural occurring radioactive decay.

Protons are illustrated in red, neutrons in blue. Downloaded under public domain license

fromWikimedia Commons (2016, 2017a,b).

Beta particles are high velocity electrons originating from nuclear disintegration
in the nuclei of specific radioisotopes. Thereby, a neutron is converted into a posi-
tively charged proton, emitting a negatively charged electron of high energy, accom-
panied by an antineutrino (see Figure 2.11b). Showing a great variety of energies,
β-particles are much lighter than α-particles and show penetration depths of up
to ~2 mm in silicates (e.g., Grün, 1989). Just like γ-rays, β-particles can fully pen-
etrate minerals of all grain size fractions commonly used for luminescence dating.
Along their paths,β-particles experience a progressive loss of energy due to interac-
tions with atoms of the crystal lattice (e.g., Wagner, 1998). This process is termed
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beta attenuation and has to be considered when the beta contribution is calculated.
Its amount strongly depends on the grain size as well as on the etching procedure,
which accentuates this effect (e.g., Aitken, 1998). In order to account for the beta
attenuation, grain size dependent beta attenuation factors are considered in the for-
mulas applied for dose rate determination. Meanwhile, several datasets providing
grain size specific attenuation factors were proposed including those of Mejdahl
(1979), Brennan (2003) and Guérin et al. (2012).

For this PhD-thesis the updated beta attenuation factors provided by Brennan
(2003) were applied along with the etch depth attenuation factors proposed in
the same article. All calculations were done applying the ’Dose Rate and Age
Calculator’ (DRAC, version 1.2) introduced by Durcan et al. (2015). The used
datasets can be found on the homepage of DRAC4 and are summarized in the tables
of the Appendix on page 223-227.

Gamma radiation can either bedescribed ashigh energetic electromagneticwaves
characterized by extremely short wavelenghts of less than 10-11 mor as constant flux
of discrete photons of high energies in the rangeof 104 to 107 eV (e.g., Demtröder,
2017; Lomax, 2009). Gamma ray emission is a common byproduct of various nu-
clear processes, such as alpha or beta decay, neutron capture or nuclear fission (e.g.,
Demtröder, 2017). The emission of gamma rays does not alter the number of
protons and neutrons in the nucleus. Gamma ray emission results in the relaxation
of excited atomic nuclei from high (unstable) to low (stable) energetic states by car-
rying off the excess energy in form of gamma ray photons (see Figure 2.11c). Being
electromagneticwaves,γ-rays donot have anymass and showonly little interaction
with atoms or molecules in the penetrated sediments. Thus, they are characterized
by a low ionisation density as well as by a large average range of ~30 cm reported
for silicates with a density of ~2.5 g/cm3 (e.g., Grün, 1989; Aitken, 1998). Unlike
β-particles, γ-rays experience only a negligible attenuation when penetrating sand
sized grains. Therefore, no correction factor is needed for determining the gamma
radiation contribution (e.g., Lomax, 2009).

A crucial point in dose rate determination, which is regularly regarded to be
a serious limitation of the accuracy of luminescence dating (e.g., Aitken, 1985;
Preusser et al., 2008), is the appropriate consideration of interstitial water con-

4https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-
research-laboratory/dose-rate-calculator/?show=datatables.
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tents. Water in the pores of soils absorbs a considerable part of the radiation emitted
by the naturally occurring radionuclides of the uranium and thorium decay chains
as well as by 40K. Thus, only reduced portions of the emitted radiation are able
to reach the mineral grains where they can be absorbed and contribute to the ac-
cumulation of luminescence signals. As the determination of dose rate is based
on measurements performed on dried sample material (see explanations on page
72), the water content has to be incorporated into the dose rate calculation (e.g.,
Duller, 2008a).

Thereby, the effects corresponding to the present daymoisture content of a sam-
ple could easily be assessed and compensated by determining the degree of wetness
measured as found (e.g., Aitken, 1998). However, the present day water content
may not be representative for the burial period which might have been persisting
over thousands of years and potentially comprising various climate and environ-
mental conditions. Thus, an accurate and representative determination of envi-
ronmental dose rates requires reliable estimations of average water contents over
the whole burial period, considering significant variations due to climatic changes
as well as due to natural or human interference with the drainage of the sampling
location (e.g., Aitken, 1985).

As the knowledge of past climate and environmental conditions is rather lim-
ited, there is an undeniable lack of information concerning frequency and extent
of water content variations in the past, which makes the water content a difficult
parameter to be estimated (e.g., Duller, 2008a). Therefore, the water content is
regularly regarded as the greatest source of systematic uncertainty in luminescence
dating (e.g., Preusser et al., 2008).

For this PhD-thesis, the present day water contents were individually measured
for each sample (see page 72) and used as guidelines for the estimation of true water
contents which were used in dose rate determination. Apart from the present day
water content and the saturation capacity derived from the porosity of thematerial,
location specific information such as sedimentological properties, hydrological con-
ditions and differences in the geographical settings of the locationswere considered
in order to gain well-founded estimates of the average water contents regarded to
be representative for the respective burial period. With respect to the considerable
uncertainties related to this approach, large absolute errors were assumed for the
water contents in this study.
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The explanations given in the paragraphs above focused on illustrating the so-
called external dose rate, i.e. those components of the total environmental dose rate
originating from the surrounding sediments of a sample. With respect to dating ap-
plications, the internal component, i.e. the contribution of radiation emitted from
within amineral grain, may also have a significant impact on the total dose rate and
has to be considered under specific conditions. For quartz, the internal dose rate
is usually assumed to be negligible (e.g., Aitken, 1998; Preusser et al., 2008),
although some grains may exhibit a slight alpha activity (e.g., Aitken, 1998). Feld-
spar minerals on the other hand, commonly show significant amounts of potas-
sium and at least small percentages of rubidium. As both elements exhibit radioac-
tive isotopes (40K and 87Rb), there is a considerable internal contribution to the
total dose rate. This is particularly true for potassium feldspars, for which internal
contents in the range of 10-14% and 0.02-0.05% have been reported for potassium
and rubidium, respectively (e.g., Aitken, 1998). Due to the attenuation of exter-
nal radiation components, the proportion of internal radiation increaseswith grain
size. For coarse grain feldsparminerals showing diameters of >100µm, the internal
beta contribution is undeniably significant (e.g., Aitken, 1998).

In this PhD-thesis, the internal dose rate had to be considered for all coarse grain
feldspar samples that were used for post-IR IRSL dating in Study 3 (see page 133).
Thereby, an internal potassium content of 12.5 ± 0.5% was not measured, but de-
rived from literature (e.g., Huntley & Baril, 1997).

An additional source of natural radiation is the cosmic radiationmainly consist-
ing of high energetic protons and alpha-particles (e.g., Prescott & Hutton,
1994). These primary components interact with molecules in the Earth’s atmo-
sphere and produce a cascade of lighter particles characterized by a wide variety
of particle sizes, masses and energies. These secondary cosmic rays are divided into
two subcategories termedhard component and soft component (e.g., Aitken, 1998).
While themajor part of the soft component is already absorbed by the Earth’s atmo-
sphere or at least by the top half-meter of sediment (e.g., Aitken, 1998), the hard
component, dominantly consisting of muons, is able to penetrate to much greater
depths below ground level and may, thereby, significantly contribute to the total
environmental dose rate (e.g., Prescott & Hutton, 1994; Aitken, 1998).

The amountof cosmic rays reaching the surface is determinedby two factors: the
shielding provided by the Earth’s magnetic field and the absorption of radiation in
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the atmosphere. While the latter is dominated by the thickness of atmosphere and
therefore by the elevation above sea level, the shielding from the Earth’s magnetic
field significantly varies with the geographical position. For assessing the cosmic
component of the environmental dose rate, latitude, longitude and elevation a.s.l.
have to be considered for each sampling location (e.g., Liritzis et al., 2013a).

However, the most important local factor is the thickness of sediment covering
the sampledmaterial and attenuating the cosmic radiation (Barbouti&Rastin,
1983; Prescott & Hutton, 1988). The effect of this sediment overburden can
accurately be calculated if the burial depth is known. Thereby, it is regularly as-
sumed that the sampledmaterial has rapidly been buried following deposition and
that the thickness of the overburden has remained fairly constant (e.g., Duller,
2008a). This assumption is justified in many cases, may, however, result in serious
dosimetric problems if there have been significant changes in overburden thickness
over time.

Apart from exceptional environmental settings where uranium, thorium and
potassium concentrations are remarkably low, the cosmic contribution to the total
environmental dose rate is only of little significance (e.g., Duller, 2008a, typically
~5% or less of the total dose rate).

For this PhD-thesis, cosmic dose rateswere calculated according toPrescott&
Hutton (1994) using the 'calc_CosmicDoseRate'-function provided by the
R package 'Luminescence' (e.g., Kreutzer et al., 2012b, 2016). Thereby, the
'half.depth'-option provided by the function to account for varying overbur-
den thickness was not used for calculation.

All required calculations for dose rate determination were done by using the
’Dose Rate and Age Calculator’ (DRAC, version 1.2) introduced by Durcan
et al. (2015). Thereby, I used the user interface from R to DRAC provided by
the R-function ’use_DRAC’ implemented in the R package 'Luminescence' (e.g.,
Kreutzer et al., 2012b, 2016). Input data were provided by using the
’template_DRAC’-function of this package. As already mentioned, various con-
version and attenuation factors were applied, which are summarized in the tables
of the Appendix (see Table A.1 to B.4 on page 221 to 227). In detail, the following
factors were used:

1. Radionuclide conversion factors: Guérin et al. (2011)

2. Grain size attenuation factor for alpha particles: Brennan et al. (1991)

67



Methods and material

3. Grain size attenuation factor for beta particles: Brennan (2003)

4. Etch depth attenuation factors: Brennan (2003)

5. Water content attenuation factors: Aitken & Xie (1990)
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2.4 Applied workflow for luminescence dating in the
present PhD-thesis

2.4.1 Sample collection and preparation

2.4.1.1 Luminescence material

All luminescence samples for this PhD-thesis were either collected under daylight
conditions working with light-tight cylinders from stainless steel or at nighttime,
storing the samplematerial in opaqueplastic bags. For both approaches theprofiles
had previously been cleaned, photo-documented and described by means of strati-
graphical and sedimentological categories. At nighttime sampling, OSL samples
were collected after removing the outer rim of sediments that had been affected by
sunlight. During this sampling procedure, headlamps were used which provided
subdued red light (λ=640± 20nm). For the daylight samples, thematerial at both
ends of the steel cylinders, which was exposed to daylight during the sampling pro-
cedure, was removed in laboratory before proceeding with the sample preparation
(e.g., Preusser et al., 2008).

Following standard procedures (e.g., Fuchs et al., 2010; Preusser et al.,
2008), sample preparation was carried out at the luminescence laboratories of the
University of Bayreuth. All laboratory preparation stepswere doneunder subdued
red light conditions (λ = 640 ± 20 nm). In a first step all samples were wet sieved
using standardized sieves with mesh sizes of 250 µm, 200 µm, 90 µm, 63 µm and
finally 38 µm, in order to obtain specific grain size fractions. For samples show-
ing huge amounts of coarse sand, also sieves with a mesh size of 1 mm were used.
There are three grain size fractions typically used for luminescence dating. These
fractions are called coarse grain fraction, middle grain fraction and fine grain frac-
tion. As there is still no commonly applied definition of these terms, they are used
with slightly different meanings, depending on the laboratory. At the Bayreuth
luminescence laboratories coarse grain samples comprise fine sand material show-
ing grain sizes of 90 - 200 µm. Themiddle grain fraction is used for grain sizes of
38 - 63 µm while the term fine grain fraction is restricted to the grain size region of
4 - 11 µm. Apart from two fine grain samples (quartz and polymineral separates of
sample BT 737 – see Study 1 in Chapter 3), only coarse grain samples (90 - 200µm)
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were dated for this PhD-thesis. However, for all investigated samples all grain size
fractions were prepared.

After sieving, all sampleswere treatedwith 10%hydrochloric acid (HCl) and 10%
hydrogen peroxide (H2O2) to remove carbonates and organic matter (e.g., Fuchs
et al., 2010; Preusser et al., 2008). For fine grain samples, the pH-value was
permanently monitored during this procedure to avoid coagulation of clay sized
particles in the low pH-region of < 3. In order to check whether all carbonates
and organicmaterial were completely dissolved concentrated (30%)HCl andH2O2

were added for a short time before the samples were repeatedly washed with de-
ionised water.

After finishing the chemical treatment, the further preparation procedures differ
for fine grain and coarse grain samples:

• Polymineral fine grain samples (4-11 µm) were separated by settling mate-
rial of the <38 µm fraction in Atterberg cylinders applying specific settling
times according to Stokes’s law in order to remove grains > 11µmand grains
< 4µm. This settling procedure was repeated as often as required to ensure
the completeness of grain size separation (e.g., Mauz et al., 2002). For
isolating fine grain separates of pure quartz, subsets of these polymineral
fine grain samples were etched using pretreated fluorosilicic acid (H2SiF6)
(e.g., Syers etal., 1968). In principle referring to the procedure described
by Berger et al. (1980), the pretreatment followed the suggestions of
Fuchs et al. (2005) who pointed out that optimal pretreatment results
could be achieved by adding commercial quartz (100-500 µm) to the un-
treated acid at a ratio of 1:10 for a total of three days. After filtering out the
commercial quartz, the pretreatedH2SiF6 was used to etch each sample for
a total time of six days intercepted by a washing step after three days (e.g.,
Fuchs et al., 2005). After etching, the quartz separates were washed in
10% HCl and de-ionised water before they were again settled in Atterberg
cylinders.

• The remaining coarse grain material (90-200 µm) was subjected to den-
sity separation using sodium polytungstate solutions of various densities
(2.70 g cm-3 and 2.62 g cm-3 to separate quartz from heavy minerals and
feldspars and subsequently 2.58 g cm-3 and 2.53 g cm-3 to obtain the
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potassium-rich feldspar fraction). For the potassium-rich feldspar fraction
this heavy liquid density separation was repeated at least three times in
order to increase the purity of the separates. The quartz separates were
etched in 40% hydrofluoric acid (HF) for 45-50 minutes to remove the
alpha-irradiated outer rim and to dissolve remaining feldspar contamina-
tion. All samples were rinsed with 10% HCl for 30 minutes and finally
washed in de-ionised water before they were re-sieved using analytic sieves
with a mesh size of 90 µm. As the effects of etching feldspar separates are
still controversially discussed and with respect to recently published find-
ings (e.g., Porat et al., 2015) which point to serious problems associated
with HF etching of feldspar minerals, we decided not to apply any kind of
etching procedure to the coarse grain feldspar separates measured for this
PhD-thesis. Therefore, specific considerations had to be made in order to
incorporate the contribution of alpha irradiation to the total environmen-
tal dose rate for these unetched samples (see explanations in section 2.3 on
page 61).

At this stage, the purity of quartz extractswas checkedby a postIR-bluemeasure-
ment which allowed the calculation of IRSL/OSL-ratios (e.g., Kreutzer, 2014).
Thereby, a minimum of five aliquots per sample consisting of unbleached quartz
grains were measured, applying a two-step measurement protocol. After preheat-
ing to 220°C, these aliquots were first stimulated at 125°C using infrared LEDs, fol-
lowed by a second stimulation at 125°C with blue LEDs. For both measurement
steps, the emitted luminescence was recorded for 40 s using a Hoya U-340 filter
which restricted the detection window to the UV band. OSL and IRSL signals
were derived from the first 0.4 s of both shine down curves. Based on these sig-
nals, an IRSL/OSL-ratio was calculated which was used as rejection criterion. The
etching procedure was regarded to be successful when the IRSL contribution was
negligible compared to the OSL emission, which was assumed when the majority
of aliquots revealed IRSL/OSL-ratios of less than 1% (for a similar approach see
Kreutzer, 2014).

Additionally, the purity of each measured aliquot was permanently monitored
during dating measurements by (1) determining the ’IR depletion ratio’
(e.g., Duller, 2003, also see explanations in section 2.2.2 on page 49) and (2) by vi-
sual inspection of theTL curve shape, i.e. the 110°CTLpeak (e.g., Mauz&Lang,

71



Methods and material

2004). This included test measurements, dose recovery tests, preheat plateau tests
and final measurements for equivalent dose determination.

Formeasurements, coarse grain samples were mounted on aluminium cups and
fixed with silicon oil, using various circular templates (’masks’) to define the quan-
tity of grains per aliquot (e.g., Preusser et al., 2008). Thereby, the overall
aim was to minimize the number of grains contributing to the luminescence sig-
nal by using so-called ’small aliquots’. Although this term is not universally de-
fined, it is frequently used to characterize aliquots with a diameter of up to 3 mm
(e.g., Duller, 2008b). This procedure was suggested and successfully tested as
approach to detect incomplete resetting of luminescence signals (e.g., Fuchs &
Wagner, 2003; Duller, 2008b). For quartz samples either 2 mm or 3 mmmasks,
for feldspar separates only 1 mm masks were used. This restricted the number of
grains to ~30-90 (1 mm masks), ~70-150 (2 mm masks) and ~100-300 grains (3 mm
masks) (e.g., Duller, 2008b, the accuracy of this assumptionwas tested for a total
of 15 of our samples by counting the number of grains per aliquot for five randomly
picked aliquots of each sample). Fine grain samples were settled onto aluminium
discs by carefully pipetting the material suspended in de-ionised water. Thereby,
approximately 2 mg of sample material were settled on each disc.

2.4.1.2 Dosimetric material and water content

Sample material for dosimetric analyses was taken by bulk sampling of material
from the surroundings (< ~30 cm) of the individual sampling positions. This ma-
terial was also used for determining the present-day water content. After weighing
the wet sample, the sample material was stored in a drying chamber at 105°C for
at least five days and weighted again to determine the dry mass. The present-day
water content was calculated by subtracting the dry mass from the wet mass and
was expressed as percentage of dry mass according to the following formula:

water content = wetmass− drymass
drymass · 100% (2.13)

After homogenization, the dried material was powdered by a ball mill (Retsch®
MM 400), applying a frequency of 30 Hz for a total of 5 minutes. This procedure
significantly contributes to avoiding α-overcounting, which was reported as seri-
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ous problem for samples showing a considerable percentage of material with grain
sizes larger than 20 µm (e.g., Zöller & Pernicka, 1989). A small amount of
the powdered material was placed on top of a scintillation screen of zinc sulphide
and gently compacted. It is important to use sufficientmaterial to ensure complete
coverage of the scintillation screen. After sealing the sample with a cover plate of
acrylic glass, it was stored for at least 4 weeks to account for possible radon escape
due to the grinding of sample material (e.g., Aitken, 1985) before it was used for
thick source alpha counting (TSAC) (see the explanations on page 73).

Subsamples of powdered material were separated and used for determining the
potassium contents of the samples. Further preparation steps were performed at
the laboratories of the Bayreuth Center of Ecology and Environmental Research
(BayCEER), including a hydrofluoric acid digestion, in order to prepare the sample
material for ICP-OES measurements.

2.4.2 Measurement facilities

2.4.2.1 Luminescence measurements

All luminescence measurements were carried out at the luminescence laboratory
of the University of Bayreuth using automated Risø-Reader TL/OSL-DA-15/20
systems. All readers were equipped with an built-in 90Y/90Srβ-source for artificial
irradiation and aThorn-EMI9235UVsensitive photomultiplier. For luminescence
stimulation either blue LEDs (λ = 470 ± 30 nm – applied to quartz separates) or
infrared LEDs (λ = 875 ± 80 nm – applied to feldspar and polymineral separates)
were used. The luminescence signal for quartz samples was detected in the ultra-
violette wavelength region, using a 7.5 mm U-340 Hoya filter. For feldspar and
polymineral samples, the detection window was restricted to the blue-violet wave-
length band by combining the photomultiplier with a 3 mm Chroma Technology
D410/30x interference filter.

2.4.2.2 Dosimetric measurements

For dose rate determination, a great variety of analytic approaches have been pro-
posed. Among the regularly appliedmethods are alpha and beta counting, (in-situ)
gamma spectrometry, neutron activation analysis (NAA), atomic absorption spec-
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measurement setup for thick source alpha count-

ing (TSAC). The scintillator screen consists of a

monograin layer of zinc sulfide and is carried by

a sample carrier of acrylic glass. The scintilla-

tor screen is fixed by a retaining ring of stainless

steel which restricts the circular area covered by

the samplematerial to a standardized diameter of

42 mm. The powdered sample material is placed

in direct contact with the ZnS screen and sealed

by a cover plate of acrylic glass (not shown in

this sketch). Redrawn and modified after Aitken

(1985).

(b) Tools used for preparing sam-

ples for thick source alpha counting.

A container of acrylic glass which

serves as sample carrier can be seen

on the right hand side of the photo.

Figure 2.12: Thick source alpha counting (TSAC) – tools andmeasurement device.

trophotometry (AAS), flame photometry, inductively coupled plasma mass spec-
trometry (ICP-MS) or ICP-OES (e.g., Duller, 2008a; Thiel, 2011).

Inprinciple, threedifferentbasic procedures canbediscriminated (e.g., Preusser
et al., 2008):

1. The environmental dose rate can directly be measured in the sediment us-
ing dosimeters such as BeO or Al2O3:C.

2. Alpha, beta and gamma dose rates can be determined by radiation count-
ing devices.

3. The concentration of radionuclides which have been identified as sources
of the environmental dose rate can be determined and be used as base for
dose rate calculation applying well-established conversion factors.
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2.4 Applied workflow

For this PhD-thesis, the radionuclide concentrations of uranium and thorium
were detected by thick source alpha counting (TSAC), using a Littlemore LowLevel
Alpha Counter 7286 equipped with four photomultiplier tubes (PMT). A simpli-
fied schematic sketch of the basic measurement setup for this device and additional
information are given in Figure 2.12a. Thick source alpha counting is based on
scintillator techniques, which use the fact that ionising radiation produces light
when interactingwith specificmaterials which are termed scintillators (e.g., Mauz
etal., 2002). Thereby, the powdered dosimetricmaterial is placed on top of a scin-
tillation screen consisting of a plastic plate impregnated with a monograin layer of
zinc sulphide commonly dotted with either Al3+- or Cu+-ions (e.g., Aitken, 1985).
The scintillator screen is standardized to a diameter of 42 mm and carried by a con-
tainer of acrylic glass which is positioned on top of a photomultiplier.

Each alpha particle striking the scintillation screen produces a scintillation, i.e.
a flash of light emitted by the scintillator material. Due to the photoelectric ef-
fect, each scintillation of light causes photoelectrons to be emitted from the photo-
cathode of the photomultiplier. This small number of primary electrons is directed
and accelerated towards the anode of the photomultiplier tube. Thereby, they have
to pass the electron multiplier unit of the PMT consisting of a considerable num-
ber of positively charged electrodes, which are termed dynodes. Due to interaction
with these dynodes, a cascade of electrons is produced characterized by an expo-
nentially increasing number of electrons. When reaching the anode of the photo-
multiplier, this cascade of electrons sums up to a distinct electrical pulse that can
be amplified and detected. By applying specific threshold values, it is possible to
discriminate pulses of different voltages. Thus, electrical pulses corresponding to
either beta particles or gamma rays can be rejected and the counting statistics can
be restricted to alpha particles.

Based on the so-called ’Pairs Technique’ (e.g., Aitken, 1985), it is even possible
to quantify the specific contributions coming from the uranium and from the tho-
rium decay chains, respectively. This approach makes use of the fact that ~3% of
the counts originating from the thoriumdecay chain occur in pairs due to the alpha
emitter 216Po which has a half-life of only 0.145 s (e.g., Aitken, 1985). Therefore,
the ’pairs rate’, i.e. the number of paired pulses detected within a time-slot of less
than 0.21 s, is a measure of the thorium activity. However, as radioactive decay is a
stochastic process, such short time alpha pairs may also be caused by random coin-
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cidence of two independent alpha decays occurring in the uranium series. Further-
more, there are also fast pairs in the uraniumdecay chain due to the 0.002 s half-life
of 215Po (e.g., Aitken, 1985). Thus, these contributions have to be subtracted to
get the ’true pairs rate’ (Aitken, 1985) or ’slow pairs’ which are used to assess the
contribution made to the total alpha count rate by the thorium series. For details,
the reader is referred to the elucidating explanations of Aitken (1985), providing
additional information on technical specifications, specific adjustments of the de-
vice settings and, especially, on the mathematical derivations of exact formulas for
alpha count rate calculation and slow pairs determination.

As a result, thick source alpha counting yields the total alpha count rate as well
as the specific count rates associated with the uranium and thorium decay chains.
Based on specific conversion factors, these count rates can be used to calculate the
uranium and thorium concentrations (given as ppm) of the the investigated dosi-
metric sample.

As 40K is a beta emitter, the potassium concentration cannot be determined by
thick source alpha counting. Instead, inductively coupled plasma optical emission
spectrometry (ICP-OES) was used for this purpose. The ICP-OES measurements
for this PhD-thesis were performed at the laboratories of the Bayreuth Center of
Ecology and Environmental Research (BayCEER) using a Varian Vista-Pro™ sys-
tem. The determined potassium contents are given as per cent by weight and are
summarized along with the uranium and thorium concentrations in the tables of
the individual studies (Table 3.2, Table 4.2 and Table 5.3).

The determined concentrations were converted to individual contributions of
alpha, beta and gammadose rates applying conversion factors providedbyGuérin
et al. (2011). These conversion factors are depicted in Table A.1 which can be
found in the Appendix on page 221.
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Quaternary river terraces and hillslope
sediments as archives for

palaeoenvironmental reconstruction: new
insights from the headwaters of the Main

River, Germany

Thomas Kolb, Markus Fuchs, Olivier Moine & Ludwig Zöller

Zeitschrift für Geomorphologie, Vol. 61 (2017), Suppl. 1, 53-76
with 9 figures and 3 tables

Summary

This paper deals with the analysis of hillslope sediments and fluvial
terraces and how they are used as palaeoenvironmental archives for
obtaining new information on the landscape evolution in a small
dry valley in the headwaters of theMainRiver in northern Bavaria,
Germany. Both, traditional geomorphologic approaches, such as
field observations and qualitative petrographic analyses of fluvial
gravels, and modern numerical dating techniques, are applied.
Qualitative petrographic analyses were used as a tool to identify
the origin of fluvial terrace gravels and to draw conclusions on the
genesis of the particular terrace aggradation. In order to establish
a local chronological framework for the fluvial history during the
Late Quaternary, luminescence dating techniques along with 14C-
dating methods are used to reassess age estimations for the Wür-
mian T2-terrace made by previous studies.
Informationon thepalaeoenvironmental conditionsof the research
area are drawn from themalacological analysis of a unique commu-
nity of fossil terrestrialmolluskswith a surprising variety of species,
so far not reported for the region of northern Bavaria. The pre-
sented results indicate that fluvial systems have always to be con-
sidered as individuals, responding in a very specific way to changes
in environmental conditions and reflecting the unique settings of
the investigated catchment.

Keywords: river terrace, OSL dating, Quaternary, river deflection,
Northern Bavaria, mollusk assemblage, petrographic analysis, flu-
vial gravels
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3.1 Introduction

River terraces are widespread geomorphic features. Their formation is mainly con-
trolled by changing tectonic and climate conditions and therefore they can be used
as archives for palaeotectonic and palaeoenvironmental reconstruction. River ter-
races are often interpreted as the expression of changing climates and especially as a
result of numerous transitions between cold andwarm conditions within theQua-
ternary and their corresponding changes in vegetation, sediment supply and trans-
port capacity (e.g., Antoine et al., 2007; Bridgland & Westaway, 2008a;
Busschers et al., 2008; Vandenberghe, 2008, 2015). However, the timing of
incision and accumulation phases of fluvial systems and therefore the formation of
river terraces in relation to climate is still not fully understood (e.g., Mol et al.,
2000; Schulte et al., 2008; Vandenberghe, 2015; Viveen et al., 2013).

Before the 1990s, many studies on river terraces were primarily based on mor-
phological analyses, such as extent and relative heights of terrace levels, and on their
sedimentological characteristics, i.e. petrographic composition and weathering de-
gree of the terrace gravels. Furthermore, classical field-based methods, such as field
topographic measurements, grain size measurements and geomorphological map-
ping, togetherwith quantitative approaches, like hydraulic geometry and formulae
for bedload transport, were frequently applied in studies dealing with fluvial geo-
morphology (Piégay et al., 2015).

The informative value of fluvial archives and their significance for palaeoenvi-
ronmental research, however, strongly depend on a precise dating of the terrace
formation. In the past, the lack of age determinations using numerical datingmeth-
ods had often to be regarded as a serious limitation for palaeoenvironmental inter-
pretations of fluvial archives in general and specifically of those investigated in the
research area of the study in hand.

In southern Germany, the evolution of river drainage systems is on the whole
greatly affected by the individual developments of two important river systems,
those of Danube and Rhine rivers (e.g., Eberle et al., 2010). This is particularly
true for the complex river drainage system of Northern Bavaria close to the Euro-
pean watershed. Due to the subsidence of the Upper Rhine Graben, the River
Rhine was able to enlarge its catchment area by stepwise headwater erosion and
river deflections, leaving behind an irregular drainage system characterized by var-
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ious triangular and rectangular changes in the courses of the involved rivers (e.g.,
Eberle et al., 2010; Schirmer, 2010, 2012). After the overall establishment of
the Main River as the longest right bank tributary of the Rhine drainage system
by the end of the Pliocene, there were still further river deflections occurring in
the headwaters of the Main River during the Quaternary. The latest of these Up-
per to Middle Pleistocene river deflections took place in an oversized valley named
Trebgast Valley in the north of the city of Bayreuth, Bavaria, Germany (Figure 3.1).
Within this valley, five Pleistocene terrace levels were distinguished and interpreted
as the result of a very complex landscape evolution in which two local rivers, the
Red Main River and the Steinach River, were involved (e.g., Kleber & Stingl,
2000; Zöller et al., 2012a).

In order to understand the processes responsible for the recent drainage system,
a precise local chronostratigraphy based on numerical dating methods should be
established. Only this can provide a reliable database and chronological framework
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for the reconstruction of palaeoenvironmental conditions associated with the for-
mation of the different terraces in the research area.

Over the last two decades, luminescence dating, especially the optically stim-
ulated luminescence (OSL) method, has become a commonly applied standard
method for yielding sedimentation ages of fluvial deposits (e.g., Fuchs & Lang,
2001; Laueretal., 2010, 2014). Despite several seriousmethodological challenges
(e.g., incomplete resetting of the luminescence signal during fluvial transport or
problems in dosimetry due to the heterogeneous composition of the fluvial sedi-
ments), the advantages of luminescence dating techniques are obvious: they enable
the dating of (fluvial) sediments far beyond the last glacial-interglacial cycle and, by
using quartz and feldspar minerals as dosimeters, suffer from almost no limitation
of dateable material (e.g., Rittenour, 2008).

This paper gives an overviewof the fluvial history and landscape evolution of the
Trebgast Valley. We present new findings based on intensive fieldwork as well as on
numerical dating approaches. As the timing of the final deflection of the Steinach
River is of special interest for the reconstruction of the Late Pleistocene and Early
Holocene landscape evolution, the study in hand was focused on attempts to date
the aggradation of the youngest terrace level (T2 level) accumulated by the primary
SteinachRiver, a tributary of theMainRiver. The presentedOSL and radiocarbon
dating results rise questions about the timing of the latest river deflection stated by
previous studies (e.g., Kleber&Stingl, 2000; Zöller etal., 2007, 2012a) and,
in general, highlight new questions regarding both, process and timing of gravel
aggradation in fluvial systems in the northeastern part of Bavaria.
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3.2 Study area

3.2.1 General information and river drainage system

The research area, a small, oversized dry valley in the headwaters of theMainRiver,
is situated in the north-east of Bavaria, Germany (Figure 3.1). Nowadays, the valley
is drained by a small creek called Trebgast. The Trebgast Valley is a former inter-
connection between the Red Main/Steinach drainage system in the south and the
White Main River in the north (e.g., Kleber & Stingl, 2000; Zöller et al.,
2007, 2012a).

With the White Main River and the Red Main River, there are two headwater
streams of theMainRiver dominating the drainage systemof the study area. While
the first originates in the Variscian basement area of the Fichtel Mountains, the lat-
ter has its origin in a Middle Jurassic sandstone area south of the city of Bayreuth.
Both rivers join near the town of Kulmbach, forming the Main River, which is,
with a total length of about 527 km, the longest right bank tributary of the River
Rhine. A third river, important for the present-day drainage system as well as for
the Quaternary development of the study area, is the river Warme Steinach (here-
after mentioned as Steinach River). It is a tributary to the Red Main River, with
their confluence within the city of Bayreuth.

The evolution of the Trebgast Valley has been discussed among geoscientists
since the beginning of the 20th century (e.g., Reck, 1912; Henkel, 1917). Mainly
based on morphological and lithological evidence, this long lasting controversy fo-
cused on the question whether the Trebgast Valley was originally drained by the
Red Main River (e.g., Reck, 1912; Seefeldner, 1914; Stadelmann, 1924; Kör-
ber, 1962) or whether it had to be interpreted as a former valley of the primary
Steinach River (e.g., Henkel, 1917, 1920; Emmert & Weinelt, 1962). Other
studies (e.g., Ertl, 1987; Veit, 1991) dealt with specific topics within the research
area. But it was not until recently that new studies (e.g., Kleber& Stingl, 2000;
Zöller et al., 2007, 2012a) were able to prove the participation of both rivers in
the evolution of the Trebgast Valley and to derive the landscape evolution model
described below (see section 3.2.3).
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3.2.2 Geological and geomorphological setting

The research area is part of a transition zone between twomajor tectonic units (see
Figure 3.2). The lithology of the valley is characterized by Triassic sandstone, clay-
stone, marl and limestone formations. To the east, the surroundings of the valley
are dominated by the crystalline basement of the Bohemian Massif, primarily ex-
posing plutonites and metamorphic rocks. In the west, the study area is bordered
by theNorthernFranconianAlb consisting of Jurassic sedimentary rocks. The geol-
ogy of the transition zone is dominated by the so called ’Franconian Lineament’, a
NW to SE striking tectonic fault system, separating the Variscian BohemianMassif
from the adjacent SouthGermanBlock and its Permo-Mesozoic sedimentary cover
(e.g., Duyster et al., 1995). The study area itself belongs to the intermittent Up-
per Franconian Block-Faulted Zone, which exposes Triassic to Jurassic sedimentary
rocks displacedbynumerous anatomizing faults runningmoreor less parallel to the
Franconian Lineament.

TheTrebgastValley itself can be subdivided into four sections and is displayed in
detail in Figure 3.3: (1) The uppermost reaches are characterized by a wide and flat
valley bottom. This overall 4 km long section clearly shows a south-north orienta-
tion and is separated from theRedMainRiver valley by a steep slope of 10-15m and
a very flat watershed. No river or creek has been able to develop within this part
of the valley so far. To the east, the valley slightly raises with three clearly distin-
guished steps from 355 m a.s.l. to 400 m a.s.l., indicating a staircase of at least three
river terraces. To the west, the valley is bordered by slightly, but sometimes steeply
ascending slopes developed in sandstone formations of Upper Triassic origin.

(2) Downstream the village of Bindlach, the valley overall bends to the north-
west and generally follows the direction of the Middle Triassic limestone cuesta.
After a short distance of narrowing, the valley floor widens again, revealing an over-
sized valley. This part of the study area is drained by the Trebgast Creek, which en-
ters the abandoned valley floor at the village of Bindlach. The width of the valley is
in contrast to the dimension of the creek. Within this approximately 8 km long sec-
tion several river terrace staircases can be found on both sides of the valley. Overall
five different Pleistocene terrace levels have been distinguished so far (Figure 3.3 &
Figure 3.4).
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(3) Before bending to the north and entering the very narrow lowermost part of
the valley, the valley floor broadens evenmore to a wide and flat basin, the so called
’Lindau Basin’ (Figure 3.6). Within this morphological depression several terraces
are visible. The levels of these terraces correspond to those in the main part of the
Trebgast Valley. Situated in the transition zone between the Lindau Basin and the
present-day Trebgast Valley, a small fen, slightly surmounted by a humble hill, can
be found. Previous studies (e.g., Zöller et al., 2007) interpreted this fen as
a key site for the reconstruction of the Late Pleistocene and Holocene landscape
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development of the Trebgast Valley and its surroundings.
(4) In the lowermost part of the research area the Trebgast Creek bends to a

north-eastern direction, intersecting a ridge consisting of geomorphologically resis-
tant Lower Triassic sandstone, before discharging into the White Main River near
the village of Trebgast. Here, the valley can be described as a very narrow, even
gorge-like valley, deeply incised into the sandstone formations and showing steeply
ascending hill slopes. Within this section, no terrace staircases could be detected so
far. Only the youngest river terrace of the T1 level was identified.
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Figure 3.4: Schematic cross-section of the Trebgast Valley showing the five Pleistocene flu-

vial terraces of the research area.
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3.2.3 Fluvial history

Based on intensive petrographic and geomorphologic analyses, Kleber&Stingl
(2000) composed a detailed map of the different terrace levels (Figure 3.3 &
Figure 3.4) and derived a very complex landscape evolution model. The evolution
of the fluvial system within the study area is shown in Figure 3.5. Thereafter, the
SteinachRiver and theRedMainRiver at first jointly flowed through the Trebgast
Valley, depositing the river terraces of the two oldest levels (T5 and T4 levels). Pre-
sumably during an accumulation phase of the third last glacial period, a first river
deflection took place, separating the Steinach River and the Red Main River.

After that, there followed a long lasting period during which the Steinach River
solely drained the Trebgast Valley, whilst the Red Main River already used its
present-day course. Derived from sedimentologic and morphostratigraphic evi-
dence (Veit, 1991), Kleber & Stingl (2000) concluded that this evolutionary
stage persisted for approximately 300,000 years, beginning at the end of the third
last glacial period and ending with the final deflection of the Steinach River some
time after the Last Glacial Maximum (LGM). This long lasting intermediate stage
comprised the penultimate glacial period, which Kleber & Stingl (2000) as-
signed the forming of the T3-terrace to, and the Würmian glacial period, during
which the T2-terrace gravels were deposited.

As a result of the SteinachRiver’s deflection, theTrebgastValley fell dry, with the
Trebgast Creek using the abandoned valley downstream of the village of Bindlach.
During this last stage, the youngest fluvial terrace (T1 level) was able to develop,
restricted to the lowermost part of the valley.
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3.3 Methods and materials

In order to shed light on the fluvial history and the landscape evolution of theTreb-
gast Valley, intensive fieldworkwas combinedwith laboratory analyses. The results
from qualitative petrographic analyses of previous studies (e.g., Kleber et al.,
1988; Zöller et al., 2012a) were compiled and expanded by new petrographic
studies of fluvial gravel deposits. To gain additional information on the palaeo-
environmental conditions, the composition of the malacofauna, extracted from
periglacial slope deposits, was analyzed. The study in hand makes a first step to
establish a chronological framework for the different phases of fluvial evolution by
determining indirect age information for the aggradation of the upper Würmian
terrace (T2) based on dating hillslope sediments by applying luminescence dating
techniques along with radiocarbon AMS dating.

3.3.1 Qualitative petrographic analyses

Qualitative petrographic analyses of terrace gravels are used as an important tool to
characterize different terrace levels und draw conclusions on their catchment areas.

While the SteinachRiver originates east of the research areawithin the crystalline
basement of the FichtelMountains, theRedMainRiver’s headwaters can be found
further to the south, within an area covered by Mesozoic sedimentary rocks (see
Figure 3.2). Therefore, the composition of the terrace gravel deposited by these
rivers should be significantly different and can thus be used to draw conclusions
on the participation of these two rivers in the terrace accumulation.

Besides the ubiquitous quartz gravels, specific lithologies are indicative of the dif-
ferent headwater areas. Phyllite, metamorphic and granite gravels are characteris-
tic for the Steinach River. Although theMiddle Jurassic sandstones are commonly
prone toweathering, some iron agglutinated and, thus, weathering resistant gravels
can be found in certain layers of these sandstone formations (Doggerβ formation).
These so called limonite crusts can, thereby, be transported over long distances and
used as gravels indicative of the catchment area of the Red Main River.

For the presented study, the results of extensive petrographic analyses, made dur-
ing the 1980s and previously summarized by Kleber et al. (1988), were compiled
with results gained during various fieldtrips regularly performed with students of
the University of Bayreuth over the last two decades (e.g., Zöller et al., 2007)
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and analyses from new sites investigated for the study in hand, over all resulting in
a very reliable database concerning the composition of the terrace gravel. The new
sampling sites for the presented study were located in the middle and lowermost
part of the valley (see Figure 3.6). At least one petrographic analysis per investi-
gated terrace was performed on material directly originating from the respective
gravel beds.

On every site a number of at least 300 gravels was sampled and subdivided into
seven petrographic classes (phyllite, metamorphic, limonite sandstone, granite,
quartz, quartzite, other sandstones; see Table 3.1 and Figure 3.7). As proposed by
Müller (1964), the analyses were restricted to gravels showing a diameter from
2 cm up to 20 cm, separated by dry sieving. Gravels with a diameter bigger than
20 cm were registered but not used for counting. For every petrographic class of
gravels, abundance was counted and relative frequency was calculated.

3.3.2 Malacological analyses

With terrestrial mollusks being strongly sensitive to variations in temperature and
moisture, fossilmollusk communities haveproved tobe extremelyuseful forpalaeo-
environmental and palaeoclimatic research (e.g., Rousseau, 1987). In order to
gain additional information on the palaeoenvironmental conditions for the depo-
sition of the loess-bearing slope detritus at a location in themiddle part of the valley
(49° 59’ 49’’ N, 11° 36’ 15’’ E, 362 m a.s.l., hereafter named the Crottendorf site), a
malacological analysis was performed on a mollusk assemblage detected in the old-
est lens of loess-likematerial. A sample of about 30 kg of sedimentwas taken, sieved
and washed to extract the mollusk shells. Thereafter, the shells were counted, iden-
tified and classified following the classifications established by Ložek (1964) and
Puisségur (1976). As analyses of mollusk samples are normally carried out based
on a standardized sample volumeof about 10 liters, the absolute frequencies yielded
in the presented study have to be divided by three in order to be comparable with
the results of other studies.

For the three dominant species, the juvenile/adult ratios (J/A) were either cal-
culated according to Moine (2008) for Pupilla muscorum or visually estimated
for Succinella oblonga and Trochulus hispidus owing to a more difficult distinction
of juveniles and broken adults (absence of a particular ornamentation of the lip
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marking the adult age) for the first and to the hazardous aperture recovery for the
later. Variations of this ratio reflect changes in the reproduction rate and in the
juvenile survival. With both strongly depending on the temperature during the re-
production season (Moine, 2003), the J/A ratio allows qualitative conclusions on
the seasonal development of temperatures in the study area.

3.3.3 Sediment dating

3.3.3.1 Luminescence dating

OSL and IRSL dating techniques were used for the presented study. OSL dating
was applied to the coarse grain quartz fraction (90-200 µm), using a single aliquot
regenerative-dose (SAR) protocol (e.g., Murray & Wintle, 2000). In order
to avoid an age overestimation due to incomplete resetting of the luminescence
signal during the last process of transportation and deposition, small aliquots of
about 100-300 grains were used, enabling to detect incompletely depleted samples
(e.g., Fuchs & Wagner, 2003). Furthermore, the age model of Fuchs & Lang
(2001) was applied. The IRSL approach was carried out on fine grain material
(4 - 11 µm), using both, the SAR protocol for a fine grain quartz sample and the
multiple aliquot additive-dose (MAAD) protocol (e.g., Mauz et al., 2002) for a
polymineral sample.

Following standard procedures for sample preparation (e.g., Fuchs et al.,
2010), all luminescencemeasurementswere carriedout at theUniversity ofBayreuth
on an automatedRisø-ReaderTL/OSL-DA-15, equippedwith a 90Y/90Srβ-source
for artificial irradiation andblueLEDs (470± 30nm) forOSL stimulation aswell as
infrared light-LEDs (875 ± 80 nm) for IRSL stimulation. The luminescence signal
was detected using a Thorn-EMI 9235 photomultiplier, combined with a 7.5 mm
U-340 Hoya filter for the OSL measurements and a 3 mm Chroma Technology
D410/30x interference filter for the IRSLmeasurements, respectively. All lumines-
cence ages (OSL and IRSL) are given as thousand years (ka) with their 1σ-errors.

93



Study One

11°40'E

11°40'E

11°38'E

11°38'E

11°36'E

11°36'E

11°34'E

11°34'E

11°32'E

11°32'E

11°30'E

11°30'E

11°28'E

11°28'E

50°04'N
50°04'N

50°02'N
50°02'N

50°00'N
50°00'N

49°58'N
49°58'N

49°56'N
49°56'N

BayreuthBayreuth

N

Red Main

Red Main

0 20 km

River
City
OSL and C14
OSL and C14
Gravel anlyses
OSL and C14

PA_2a
PA_2b
PA_3b

BT 580
BT 581
BT 582
BT 583
BT 584
BT 585

BT 737
GifA-11111 

PA_4
PA_5a
PA_5b

Alt Leg
High : 660.352

Low : 282.797

Layout: Kolb & Reinhardt (2016)
Source: Bayerisches Landesamt 
für Umwelt, www.lfu.bayern.de

Elevation a.s.l.
660 m

280 m

Sampling locations

PA_3a

Trebgast

Trebgast
W

hite M
ain

W
hite M

ain

SteinachSteinach

00 11 22 33
kmkm

Crottendorf
site

Crottendorf
site

Lindau
Basin

Lindau
Basin

Figure 3.6: Detailed map of the research area. The sampling sites for the qualitative petro-

graphic analyses are highlighted by green triangles. The outcrops which both, the OSL and

the 14C-samples, alongwith thematerial for themalacological analyseswere taken fromare

marked by yellow hexagons.

3.3.3.2 14C-dating

The 14C-analysis of mollusk material was handled by the LSCE, Gif-sur-Yvette,
France, on unidentified whorl fragments of shells from Pupilla genus. Indeed, Pi-
gati et al. (2004) showed that the North American taxa Pupilla blandi has a
modern 14C-activity similar to that of the vegetation. However, for a reliable eval-
uation of the calculated radiocarbon age in this study, it is essential to emphasize
that Pigati et al. (2010) showed that species of Pupilla genusmay sometimes in-
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clude dead carbon leading to age overestimations reaching up to 1 ka. The yielded
conventional age, given as years before present (a BP), was calibrated using the cali-
bration software Calib 6.1 based on the calibration curve IntCal09 (Reimer etal.,
2009). This calibrated age is given as calendar years before present (cal BP) consid-
ering a 2 sigma error. With themollusk samples taken from slope deposits originat-
ing from theUpper Triassic limestone cuesta, furthermore a significant hard-water
effect has to be reconsidered for these samples. This hard-water effect may cause
an age overestimation of several hundred years (Wagner, 1998). Therefore, the
yielded radiocarbon age can merely be interpreted as a maximum sedimentation
age.

3.3.3.3 Sampling strategy (see Figure 3.6 & Figure 3.9b)

All dated luminescence samples (OSL and IRSL) were taken at the Crottendorf
site and originate from layers or lenses of loess-like material, embedded into het-
erogeneous periglacial slope sediments. Here, these slope sediments were exposed
over a total length of several hundred meters, superimposing the T2 terrace grav-
els with a minimal thickness of about 6 meters. Most of the identified layers and
lenses were found to be strongly affected by cryoturbation (see Figure 3.9a). The
radiocarbon sample was taken from the oldest discovered lens consisting of gleyed
loess-like material that contained numerous mollusk shells suitable for 14C-dating.

95



Study One

3.4 Results

3.4.1 Petrographical analyses

Qualitative petrographical analyses were performed on gravels from a total of 6
sites that have not been investigated in previous studies. The results of these anal-
yses are shown in Table 3.1 and in the diagrams of Figure 3.7.

Thereafter, all terrace levels are characterizedby adominant abundance of quartz
and quartzite gravels. Combined, these two categories show relative frequencies be-
tween 56% (PA_5a) in minimum and 69% (PA_3b) in maximum. Furthermore, all
investigated terraces showhigh amounts of phyllites (up to 38.8%) and considerable
percentages of other metamorphic rocks (6.7% in maximum). On the contrary,
Middle Jurassic limonite crusts were just found in gravels originating from sites
of the T5 level (12% for location PA_5a and 22% for location PA_5b, respectively).
Concerning the fact that all sandstones that could not clearly be identified to be
of Middle Jurassic origin were assigned to the category “Other Sandstones”, the
proportion of limonite crusts for these sites may, by all means, be even higher than
displayed in the diagrams. Limonite crusts are either completely missing or show
negligible proportions in the investigated gravels originating from the T2 and T3
sites.

The results of thequalitative petrographic analyses partially confirm the findings
of previous studies (e.g., Kleber et al., 1988; Kleber& Stingl, 2000; Zöller
et al., 2007). However, our findings also show discrepancies to the results of pre-
vious studies. We tried to take samples from a site that has so far been interpreted
as a part of the T4 level (location PA_4, 50.020°N, 11.577°E, 358 m a.s.l.). At this
site, gravels, which showed the typical spectrum of the T4 level, were found to be
densely distributed on a flat, slightly inclined surface. After trenching, however,
we were not able to find any gravel bed and, thus, could not determine the compo-
sition of the T4-gravel for this location.

3.4.2 Thecompositionofthemolluskassemblageatthe
Crottendorf site

Based on our observations, the mollusk fauna from the Crottendorf site is the first
terrestrial loess fauna detected inUpper Franconia. With a total of nine species it is
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Figure 3.7: Results of the qualitative petrographic analyses for six sites representing three

different terrace levels. With the gravels of the T2- and T3-terrace sites showing similar

compositions, they can clearly be distinguished from the gravel compositions of the T5-

terrace sites. Only the latter show a considerable proportion of limonite sandstones.
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richer than those from the Danube valley loess (Brunnacker & Brunnacker,
1956) and characterized by a great variety rarely encountered outside of the Rhine
Valley in Upper Weichselian loess deposits (Moine, 2008). A total abundance of
5534 individuals was counted for an investigated mass of about 30 kg of material.
Even divided by three, this total abundance would by far outrange that of pure
loess samples, in which abundance rarely reaches 200-300 individuals. The total
abundance at the Crottendorf site equals that reported for mollusk samples origi-
nating from cryoturbated tundra gleys (Moine et al., 2008, 2011). With the tex-
ture being quite sandy and no evidence for earthworm granules being found, the
molluskbearing sediments at theCrottendorf site couldhavebeen affectedby flood
deposit dynamics, resulting in a concentration of mollusk shells in the sample lo-
cation. However, the complete lack of aquatic species and the good state of shell
preservation point to a short and smooth transportation process rather than to a
displacement over long distances (Zöller et al., 2012b).

Figure 3.8 shows the absolute and relative frequencies of the counted mollusk
shells, population indices and the affiliation of individuals and species to different
ecological groups. Thereafter, the mollusk assemblage is dominated by Succinella
oblonga (65%) followedbyTrochulus hispidus (15%) andPupilla alpicola (14%). These
species require humid conditions and are, therefore, indicative of moist to wet en-
vironments mainly covered by short vegetation (Kerney et al., 1983; Falkner
et al., 2001). Slugs, which are generally abundant in loess deposits, are almost
completelymissing at theCrottendorf site, whichmay aswell be attributed to quite
moist conditions. Besides, the low frequency of Pupilla muscorum (5%), and the
few individuals ofColumella columella,Vallonia pulchella andVertigo pygmaea sug-
gest a more diversified vegetation cover and a slightly drier soil surface in the close
surroundings of the sampled gully (Zöller et al., 2012b). Moreover, presently
living at high elevation Columella columella and Pupilla alpicola are indicative of
low temperatures.

The affiliation of individuals to their particular ecological group shows a distinct
preference for hygrophilous and palustral species. On the contrary, the species’ dis-
tribution clearly indicates the sporadic presence of some species typical of dry and
open environments.

For Pupilla alpicola a juvenile/adult ratio of 5.36 was calculated. For Succinella
oblonga and Trochulus hispidus respective values of about 6 and more than 6 were
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Figure 3.8: Compilation of the malacological results for the mollusk assemblage extracted

from a lens of gleyed loess-like material embedded into hillslope sediments at the Crotten-

dorf site (adopted from Zöller et al., 2012b).

estimated. These ratios point to convenient reproduction conditions, already been
described in Nussloch (Rhine valley, Germany) and attributed to local increases in
temperature during interstadial phases of the Upper Weichselian (Moine, 2008).

3.4.3 Dating results

3.4.3.1 Morphostratigraphical findings

Several drill cores, extracted from the slope detritus at the Crottendorf site, clearly
showed that the periglacial cover sediments overlie the gravels of the T2 level with
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a minimal thickness of about 6 meters. Therefore, the slope cover sediments were
deposited after the aggradation of the T2-gravels and are, thus, younger than the
latter. As there was no evidence for a significant, post-sedimentary erosion of the
hillslope detritus by fluvial activity, we assume that the accumulation of the cover
sediments took place after the final deflection of the primary Steinach River.

As mentioned above, most of the layers and lenses of loess-like material embed-
ded into the slope detritus were strongly affected by cryoturbation (see Figure 3.9a).
Hence, these lenses as well as the slope detritus on the whole should have been de-
posited not later than during the Younger Dryas (12,900 – 11,600 cal BP).

(a) Photo of a small lens of loess-like material em-

bedded into the slope detritus at the Crottendorf

site. Like others, this lens was affected by cryotur-

bation.

0.5 m

1.0 m

1.5 m

BT 580
19.4 ± 1.2 ka

BT 581
20.3 ± 1.2 ka

BT 582
22.0 ± 1.4 ka

BT 583
24.2 ± 1.5 ka

BT 584
27.8 ± 1.8 ka

(b) The sampling situation for OSL-

samples BT 580 to BT 584. This lo-

cationwas part of a several hundred

meters long outcrop in periglacial

slope sediments showing several dis-

tinct lenses and layers of homoge-

neous loess-like material. OSL-ages

for coarse grain quartz samples are

presented.

Figure 3.9: The sampling location at the Crottendorf site.
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3.4.3.2 Numerical dating results

In order to ensure the above mentioned hypothesis derived from morphostrati-
graphical fieldwork, OSL, IRSL and 14C-dating were applied on loess-like material
sampled from the above described lenses. The analytic data for dose rate determina-
tion are listed in Table 3.2. The calculated luminescence and 14C-ages are compiled
inTable 3.3 and theOSL ages for the coarse grain quartz fraction of samples BT 580
to BT 584 are illustrated in Figure 3.9b.

Table 3.2: Radionuclide concentrations, cosmic dose rates and total dose rates calculated

for the coarse grain quartz fraction.

Sample Uranium
[ppm]a

Thorium
[ppm]a

Potassium
[%]b

Ḋcosmic
[Gy/ka]c

Ḋtotal
[Gy/ka]d

BT 580 4.63 ± 0.33 15.78 ± 1.09 2.55 ± 0.10 0.21 ± 0.01 4.26 ± 0.24
BT 581 4.51 ± 0.31 15.25 ± 1.04 2.43 ± 0.10 0.20 ± 0.01 4.11 ± 0.23
BT 582 4.07 ± 0.28 15.94 ± 0.93 2.37 ± 0.10 0.19 ± 0.01 3.98 ± 0.22
BT 583 4.69 ± 0.37 12.24 ± 1.21 2.49 ± 0.10 0.19 ± 0.01 3.99 ± 0.23
BT 584 4.51 ± 0.37 12.83 ± 1.24 2.31 ± 0.10 0.19 ± 0.01 3.83 ± 0.23
BT 585 3.37 ± 0.55 17.00 ± 1.86 2.35 ± 0.10 0.21 ± 0.01 3.90 ± 0.26
BT 737 4.26 ± 0.21 11.64 ± 0.71 2.53 ± 0.10 0.09 ± 0.01 3.78 ± 0.21

a Determined by thick source α-counting.
b Determined by ICP-OES.
c Cosmic dose rates were calculated according to Prescott & Hutton (1994).
d For dose rate calculation, a common water content of 15% was used for all samples. This value

was derived using the average value of the possible water content range, based on the porosity
of the samples and considering an error, which included the possible water content range (e.g.,
Fuchs et al., 2010, 2012; Prinz & Strauß, 2011; Scheffer et al., 2011).

AMS 14C-dating yielded a conventional age of 26,810 ± 240 a BP, i.e. a
2σ-calibrated age of 30,974 - 31,500 cal BP. Within errors, all calculated OSL ages
are in stratigraphic order, reaching from 19.4 ± 1.2 ka for the youngest investigated
layer to 30.3 ± 1.8 ka for the oldest lens of loess-likematerial. Due to a lack of organic
remnants, we were not able to gain 14C-ages as independent age control, except for
themollusk bearing oldest lens. For this lens also an IRSL age was calculated. OSL
and IRSL ages are identical within errors and both are in agreement with the cal-
ibrated 14C age, when considering the fact that this calibrated 14C age may most
probably suffer from a distinct hard water effect and, therefore, overestimate the
true sedimentation age by some hundred up to a few thousand years.
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3.5 Discussion

3.5.1 Petrographical analyses

With all investigated terrace levels showing high amounts of phyllites and other
metamorphic rocks, clear evidence could be found that the Steinach River was in-
volved in the formation of all terrace levels. In the presented study, limonite crusts
are restricted to the T5 level sites (PA_5a and PA_5b). The scarce occurrence of
limonite crusts in the spectrum of location PA_3a can be explained by dislocation
processes from higher terrace levels. Therefore, the Red Main River has only been
engaged in the accumulation of the oldest so far detected terrace level.

Concerning the investigated T4-level site (PA_4) where no gravel bed could be
found, the detected surficial gravels have most probably to be interpreted as the
result of a local displacement from a higher terrace level. With no gravel bed being
detected at site PA_4, we cannot confirm the existence of a T4 level terrace at this
location. Furthermore, no other suitable location was found in the lowermost and
middle section of the valley to be clearly identified as part of the T4 level. Thus,
from our findings we are so far not able to confirm the existence of a T4 level in
the middle and lower part of the research area at all. Up to now, we are not sure
how these findings have to be interpreted. Maybe the discriminationofT4- andT5-
terrace levels proclaimed by previous studies was not correct for theTrebgast Valley.
If this was true all locations previously mapped either as part of the T4-terrace or
of the T5-terrace would represent the very same terrace level. This interpretation,
however, is strongly contradicted by findings gained in the Red Main valley. Here,
both terrace levels (T4 and T5) were identified and could clearly be discriminated.
Thus, this problem needs further investigation.

3.5.2 T2-terrace accumulation and timing of the final
deflection of the Steinach River

Our findings at the Crottendorf site concerning the age of the aggradation of the
youngest SteinachRiver terrace (T2 terrace) apparently conflictwith results yielded
by previous studies (Kleber & Stingl, 2000; Zöller et al., 2007).

Zöller et al. (2007) assumed the Lindau Moor to be a key site for the recon-
struction of the Trebgast Valley’s development since the deflection of the primary
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SteinachRiver. They tried to draw geomorphologic conclusions out of palynologi-
cal studies, conducted by Ertl (1987). She was able to extract a 158 cm thick pollen
profile, in which 14 different pollen segments were identified and correlated to the
well established pollen zones Ib/c to Xa after Firbas (Firbas, 1949, 1952). Thus,
the pollen profile of the Lindau Moor spans the period between the Bölling inter-
stadial (ca. 15,600 to 13,900 cal BP) and the Subatlanticum (later than ca. 2,800 cal
BP).

Based on this pollen profile, Zöller etal. (2007) argued that the clay and peat
layers, building up the fen, could only accumulate under predominant slack water
conditions. Relying on the assumption that the Lindau Basin had been eroded by
ameander of the primary SteinachRiver, as suggested by the terrace levels observed
in the basin, such slackwater conditions should not have prevailed in that area until
the primary SteinachRiver had abandoned theTrebgastValley. With respect to the
oldest dated clay layers, Zöller et al. (2007) concluded that this final deflection
should at least have occurred before the onset of the Bölling interstadial.

Furthermore relying on the traditional explanation of fluvial terraces to be land-
scape features typically accumulatedduring coldphases of glacial periods (e.g., Kle-
ber& Stingl, 2000), a time frame for the final deflection of the primary Steinach
River was deduced, spanning from the LGM to the Bölling interstadial (Zöller
et al., 2007).

Both, the luminescence and radiocarbon dating results in the presented study as
well as the morphostratigraphical findings at the Crottendorf site, are in conflict
with this previous age estimation. With the slope sediments being post-deflective,
overlying the gravels of the T2 level and being older than the Younger Dryas, the
time frame for the deposition of the cover sediments would just range from the
LGM to the Younger Dryas, if the age estimation of Zöller et al. (2007) was
correct. With this time frame merely comprising a period of not more than 2 to
8 thousand years in maximum, the thickness of the post-deflective slope detritus
can hardly be explained to have accumulated in such a short time, unless by a land-
slide. For a landslide, however, no evidence has been found so far (Zöller et al.,
2012b).

Furthermore, the OSL dating results, supported by the AMS 14C dating, clearly
show sedimentation ages of approximately 19.4 ± 1.2 ka for the youngest up to
30.7 ± 1.1 ka for the oldest lens of loess-like material, respectively. As the oldest
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gleyed loess lens within the periglacial cover sediments is underlain by 6 meter of
slope sediments on top of the underlying gravels, the gravels of the T2 level were
deposited quite a long time before the onset of the loess derivate’s deposition.

Therefore, the obtained OSL and 14C-data indicate a significantly older age for
the aggradation of the T2 gravel and point to intense fluvial geomorphodynamics
during theLower andMiddlePleniglacial rather thanduring theUpperPleniglacial.

The discrepancy between the results of previous studies and those presented in
this paper needs to be further discussed. In order to cope with the problem, the
two above mentioned assumptions of a), the Lindau Moor being a key site for the
reconstruction of the landscape evolution in the study area, and b), river terrace
formation being a process characteristic for cold stages of glacial periods should be
revisited.

The main argument for the opinion that the Lindau Basin was eroded by the
SteinachRiver has to be seen in the fact that terrace levels within the basin correlate
to terrace levels in the main part of the valley (e.g., Kleber& Stingl, 2000) and,
thus, were interpreted to have been accumulated by the primary Steinach River.

However, first preliminary visual investigations of the surficial basin gravels dur-
ing field trips clearly showed the composition of the basin gravels to be completely
different from that of gravel sites in themain part of the valley. With the basin grav-
els overall showing a dominant abundance of quartz gravels, they completely lack
metamorphic and phyllite gravels and, thus, don’t show any gravels indicative for
the catchment area of the Steinach River. A great portion of ventifacts have been
discovered among the basin gravels, typical for and quite frequent in some layers of
the Lower Triassic sandstone formations (the so called ’Kulmbach conglomerate’),
outcropping on the lower slopes of the basin (e.g., Zöller et al., 2012b).

Even though not yet being able to disprove the above described assumption, we
now strongly doubt that the primary Steinach River has ever flown through the
Lindau Basin. On the contrary, the basin may most likely have been eroded by
a small tributary river, originating within the basin itself and depositing gravels
comprisingof locally reworkedmaterial from the very easily to erodeLowerTriassic
sandstone formations. In that case, the development of the Lindau Moor would
completely be decoupled from the final deflection of the Steinach River and, thus,
would no longer contradict a significantly higher age for this deflection.

Still, our findings do not match the traditional concepts of river terrace forma-
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tion, attributing the forming of gravel beds to be typical of cold stageswithin glacial
periods, and especially they do not agree with regional studies (e.g., Kleber &
Stingl, 2000; Zöller et al., 2007) which characterized the T2-terrace as geo-
morphic feature accumulated during the last glacialmaximum. However, previous
studies (e.g., Vandenberghe, 2002, 2003, 2008, 2015) have already shown that no
simple correlation between climate change and fluvial processes can be assumed.
Therefore, we interpret the results of the study in hand to be yet another evidence
for the complexity of fluvial system response to palaeoenvironmental changes and
for its strong dependency on local conditions, such as size and shape of the catch-
ment area or the specific regional settings of geology, morphology and vegetation.

3.6 Conclusion

Hillslope deposits and fluvial gravel aggradations were used as archives for yielding
new information on the fluvial evolution of a small dry valley in the headwaters
of the Main River in northern Bavaria, Germany. Besides qualitative petrographic
analyses and investigations of a fossil terrestrial mollusk assemblage, luminescence
dating techniques and AMS 14C dating were applied to date the sediments.

Qualitative petrographic analyses were used as a tool to identify the origin of
fluvial terrace gravels and to draw conclusions on the genesis of the particular ter-
race aggradation. Based on these analyses, the findings of previous studies could
partially be confirmed and additional evidence for a very complex landscape evolu-
tion, characterized by a minimum twofold river deflection, could be found. How-
ever, our results also prove the necessity of further petrographic analyses and a great
need for amore detailedmap of the terrace levels, based on a high resolution digital
terrain model (DTM) of the study area.

The results from the malacological analysis showed a unique community of fos-
sil terrestrialmolluskswith a surprising variety of species, so far not reported for the
region of northern Bavaria. The analyzedmollusk fauna provides valuable palaeoe-
cological information and indicate a very complex landscape setting characterized
by generally cold and dry conditions in the near surroundings as well as by distinct
more humid conditions for the actual sampling site.

The calculated luminescence and 14C ages are clearly in conflict with age esti-
mates for the accumulation of theWürmianT2-terrace proposed by previous stud-

107



Study One

ies. The presented results for the dated hillslope detritus point to an older age of
the underlying fluvial gravels (T2 terrace) and, thus, suggest a much earlier deflec-
tion of the primary Steinach River. They, thereby, indicate very intense fluvial
geomorphodynamics during the Lower and Middle Pleniglacial rather than dur-
ing theUpper Pleniglacial. However, this study has, so far, just been able to present
indirect evidence for this conclusion. Hence, further investigations are needed. Di-
rect dating of sand lenses embedded into the gravel beds of the T2 level are carried
out at the moment and will directly yield sedimentation ages for the gravel aggra-
dation. Not till then, we will be able to give a final answer to the question of the
timing of the T2 terrace formation. But even now, the results of the study in hand
indicate that traditional concepts of fluvial terrace aggradation should carefully be
reconsidered. They generally raise questions concerning climatic conditions dur-
ing the Lower andMiddle Pleniglacial and their specific impacts on the timing and
the processes of fluvial terrace formation. They also point to the fact that fluvial
systems have always to be analyzed as individuals, responding in a very specific way
to externally and/or internally driven changes in environmental conditions and re-
flecting the unique local and regional settings of the particular catchments.

Acknowledgements
Our research has generously been funded by the ’Oberfrankenstiftung’ since 2011.
The engineering company ’Piewak&Partner’ (Bayreuth) is acknowledged for yield-
ing stratigraphic plots and photos of boreholes near the village of Crottendorf. We
also thank the Bavarian Department for Environment (Bayerisches Landesamt für
Umwelt) for providing the high resolution digital terrain model and other maps
and data. Heiko Lang (Bayreuth/Hamburg) kindly designed the layout of the
basemaps used for Figure 3.5 and parts of the petrographic analyses used for this
study have been performed by Julian Brindel (Bayreuth). Finally, we would like to
thank the two anonymous reviewers for their constructive comments that signifi-
cantly improved the quality of the manuscript.

108



4
Study Two:

Deciphering fluvial landscape
evolution by luminescence dating of
river terrace formation: a case study
from Northern Bavaria, Germany

Thomas Kolb, Markus Fuchs & Ludwig Zöller

Zeitschrift für Geomorphologie, Vol. 60 (2016), Suppl. 1, 29-48
published online September 2015
published in print March 2016

109



Study Two

Deciphering fluvial landscape evolution by
luminescence dating of river terrace

formation: a case study from Northern
Bavaria, Germany

Thomas Kolb, Markus Fuchs & Ludwig Zöller

Zeitschrift für Geomorphologie, Vol. 60 (2016), Suppl. 1, 29-48
with 5 figures and 3 tables

Summary

Fluvial terraces arewidespread geomorphic features, which formed
dominantly during the Quaternary. Besides tectonics, the forma-
tion of Quaternary fluvial terraces is related to palaeoclimatic
changes and corresponding changes in fluvial discharge and sedi-
ment load. However, within the Pleistocene, the exact timing and
the palaeoenvironmental conditions for terrace formation are still
under debate and traditional concepts are questioned.
To shed light on the Pleistocene environmental conditions for ter-
race formation, we investigate their timing by establishing a local
terrace chronostratigraphy based on numerical dating. The study
is located in a small valley in northern Bavaria, Germany. Here,
within a former interconnection between two headwater streams
of the Main River, five Pleistocene terraces are distinguished. The
terraces are interpreted as the result of a complex landscape evolu-
tion, which is characterized by an at least twofold river deflection.
Fluvial and periglacial slope sediments are still widely preserved
and can be used as sediment archives.
The study is focused on dating the Upper Pleistocene terrace (T2
level). Following traditional explanations, this terrace level has so
far been interpreted as a Würmian (Weichselian) formation, devel-
opedduring the last glacialmaximum(LGM).Optically stimulated
luminescence (OSL) ages obtained for fluvial deposits andhillslope
sediments, however, indicate a significantly older age for the gravel
accumulation. The correctness of the OSL ages is supported by
radiocarbon AMS dating.
These results point to significant Würmian (Weichselian) fluvial
morphodynamics during early stages of the last glacial cycle (ca. 90–
80 ka) as well as during the Lower andMiddle Pleniglacial (ca. 64 –
30 ka). Furthermore, the results indicate that the response of flu-
vial systems to environmental changes is complex and strongly de-
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pends on local conditions, such as morphology and lithology, the
regional hydrological setting in general or the alignment of river
courses and the possibility of river deflection in particular.
Keywords: fluvial geomorphology, river terrace, river deflection,
OSL, luminescence dating, Quaternary, Northern Bavaria, Ger-
many

4.1 Introduction

The great importance of river terraces as fundamental archives for Quaternary re-
searchhaswell been recognized ever sincePenck&Brückner (1909) usedAlpine
river terraces to derive their theory of fourPleistocene glaciations. Since then,many
studies have proved fluvial deposits to be important terrestrial archives, provid-
ing basic information for both, palaeoenvironmental and fluvial dynamic research.
Their importance for Quaternary research is due to the fact that river terraces are
widespread geomorphic features, known from various landscapes and climates all
over the world, enabling their investigation on different temporal (e.g., Gibbard
&Lewin, 2009;Westawayetal., 2009;Hoboetal., 2010;Wallingaetal.,
2010) and spatial scales (e.g., Bridgland et al., 2007; Bridgland & West-
away, 2008a). Many studies have so far been focused on Pleistocene terrace forma-
tions and thus primarily dealt with the fluvial response to changing climatic or tec-
tonic conditions (e.g., Antoineetal., 2007;Bridgland&Westaway, 2008b;
Busschers et al., 2008; Vandenberghe, 2008). Other studies used Holocene
fluvial sediments to draw conclusions on the increasing anthropogenic impact on
landscape evolution and fluvial dynamics caused by the interaction between chang-
ing climate conditions and human reactions (e.g., Faust et al., 2004).

Along with colluvial and alluvial sediments (e.g., Fuchs et al., 2004, 2011;
Verstraeten et al., 2009), river terraces have successfully been used as archives
for geoarchaeological studies, providing information on human occupation and
land-use changes (e.g., Mishra et al., 2007; Antoine et al., 2010).

Despite being intensely studied, fluvial systems in general and river terrace for-
mation in particular are still not fully understood. For both types of fluvial ter-
races, strath and fill terraces (e.g., Leopold et al., 1964), a wide variety of mod-
els has been derived to explain the mechanisms of terrace formation (e.g., Mol
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et al., 2000; Gibbard & Lewin, 2002; Lewin & Gibbard, 2010; Murton
& Belshaw, 2011). However, the timing of incision and accumulation phases
within fluvial systems and their driving forces are still under debate (e.g., Vanden-
berghe, 2008; Bridgland & Westaway, 2008a; Murton & Belshaw, 2011).
Therefore, the information gained from fluvial archives and their significance for
palaeoenvironmental research strongly depends on a precise understanding of the
fluvial architecture (e.g., Houben, 2007;Nichols&Fisher, 2007) and accurate
dating of the terrace formation (e.g., Fiebig & Preusser, 2003).

Radiocarbon dating has often been applied to fluvial sediments, but is of limited
use when organic material is completely missing or re-worked from older deposits
(e.g., Rittenour, 2008). Furthermore, its dating range is normally restricted to
the last 40-50 ka. Over the last decade, significantly technical and methodologi-
cal improvements could be achieved in the field of luminescence dating of quartz
and feldspar minerals, providing a dating range that at least spans the last glacial-
interglacial cycle. Newpromising developments even allowMiddle Pleistocene sed-
iments to be dated (e.g., Buylaert et al., 2009; Kreutzer et al., 2012a). Op-
tically stimulated luminescence (OSL) techniques have successfully been applied
to a wide variety of fluvial deposits (e.g., Rittenour, 2008).

However, using OSL methods for dating fluvial sediments is still challenging
due to incomplete resetting of the luminescence signal. When being transported
in a turbulent flow, some grains are exposed to sunlight for a sufficiently long time,
resulting in a complete resetting of the luminescence signal. For other grains the
sunlight exposure may not be of sufficient duration, leaving behind a residual sig-
nal when the grains are deposited. Using such incompletely bleached samples for
dating purposes is problematic because the measured aliquots comprise of a mix-
ture of well-bleached and poorly-bleached grains. In some exceptional cases even
all grains of a sample might be insufficiently bleached. The presence of grains that
experienced different levels of signal resetting cause a wide scatter of the equivalent
dose (De) distribution and, thereby, will lead to a significant age overestimation if
no correction is applied.

However, with the importance of incomplete bleaching depending on the por-
tionof the residual signal as part of the total luminescence signal, incompletebleach-
ing is primarily problematic for younger samples and its significance decreases with
increasing sample ages. Moreover, there are various techniques dealing with those
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insufficiently bleached samples. Besides single-grain techniques (e.g., Duller,
2008b) and small aliquots containing a limited number of grains (e.g., Fuchs
& Wagner, 2003; Rodnight et al., 2006; Cordier et al., 2012), approaches
have been proposed isolating the multiple components of the OSL signal in order
to use only themost light-sensitive components for dating (e.g., Jain etal., 2005).
Furthermore, a wide variety of statistical approaches have successfully been applied
to determine the accurate burial dose (e.g., Olley et al., 1998; Lepper et al.,
2000; Galbraith et al., 1999). Thus, luminescence dating is a promising tool
providing important contributions to shed light on still openquestions concerning
the complexity of fluvial systems.

In this study, we investigate a river drainage system in Northern Bavaria, Ger-
many, to gain information on its Quaternary evolution in interaction with its
palaeoenvironments. Generally controlled by the evolution of two major river sys-
tems, those ofDanube and theRhineRiver, it is characterized by an irregular align-
ment of river courses, showing various triangular and rectangular changes. This
irregular pattern is the result of the enlargement of the Rhine River catchment
by stepwise headwater erosion and river deflections (e.g., Eberle et al., 2010;
Schirmer, 2010, 2012). The latest of these river deflections took place in a small
dry valley called Trebgast Valley, which is located in the headwaters of the Main
River, the longest right bank tributary of theRhine drainage system. Although this
valley has been object of intensive scientific research since the beginning of the 20th
century (e.g., Reck, 1912; Seefeldner, 1914;Henkel, 1917; Körber, 1962; Ertl,
1987; Veit, 1991; Kleber & Stingl, 2000; Zöller et al., 2007, 2012a,b), there
is still a lack of reliable age information. Based on lithological and morphostrati-
graphic evidence, only age estimates were derived, correlating the five Pleistocene
river terraces identified within the valley with different glacial stages (e.g., Kleber
& Stingl, 2000; Zöller et al., 2007). However, no chronological framework
based on numerical dating has been established so far. Thus, a first step to under-
stand the processes responsible for the present-day drainage system is to establish a
precise local chronostratigraphy.

This paper gives an overview of the fluvial history and the Pleistocene evolution
of the Trebgast Valley, focusing onOSL dating of fluvial deposits originating from
the Upper Pleistocene terrace (T2).
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4.2 Study area

With regard to the size of the present day creek, the Trebgast Valley is an oversized
valley located in the upper catchment of the Main River in northern Bavaria, Ger-
many (Figure 4.1). Thedrainage systemof the study area is dominatedby theWhite
Main River and the Red Main River, with both rivers being headwater streams of
theMain River, a tributary to the Rhine River. The Trebgast Valley has been iden-
tified as a former interconnection between the White and Red Main Rivers (e.g.,
Kleber&Stingl, 2000). The riverWarme Steinach, a tributary to theRedMain
River and hereafter just mentioned as Steinach River, is a third river important for
the present-day drainage system as well as for the Pleistocene evolution of the re-
search area (Figure 4.1).

The Trebgast Valley is located in a transition zone between twomajor geological
units which are separated by the so called ’Franconian Lineament’, a major NW to
SE striking tectonic fault system. To the east of the fault system, plutonites and
metamorphic rocks dominate the lithology, exposed in the crystalline basement
area of the Bohemian Massif. To the west of the fault system, the study area is
dominated by Mesozoic sedimentary rocks of the Northern Franconian Alb. The
lithology of the investigated valley itself is mainly characterized by Triassic sand-
stone, marl and limestone formations.

Table 4.1: Estimated chronology of the Pleistocene terraces of the research area derived

from palaeosol sequences embedded in periglacial slope sediments superimposing the ter-

race gravels. Modified after Veit (1991).

Terrace level Number of embedded soils Estimated time frame

T4-terrace 2 fossil soils & holocene luvisol Third last glacial period

T3-terrace 1 fossil soil & holocene luvisol Penultimate glacial period

T2/T1-terrace holocene luvisol/alluvial soil Würmian (Weichselian) glacial

Floodplain alluvial soil Holocene

Based on petrographic and geomorphologic analyses (e.g., Kleber & Stingl,
2000), five Pleistocene river terraces are identified within the Trebgast Valley (Fig-
ure 4.2 & Figure 4.3). The terrace formation is explained by a complex landscape
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evolution. Thereafter, at least three evolutionary stages have to be distinguished.
In a first stage, both, the rivers Red Main and Steinach, drained the valley. During
this period the upper terraces T5 and T4 were formed. After the Red Main River
had been deflected to its present-day course, the Steinach River solely used the val-
ley, forming the T3 and T2 terraces. Finally, the Steinach River abandoned the
valley as well, leaving behind an oversized valley that was drained by the Trebgast
Creek, a small creek originating in the hillslopes of the nearbyMiddle Triassic lime-
stone cuesta. During this last stage, the youngest Pleistocene fluvial terrace (T1)
was deposited, restricted to the lowermost part of the valley.

So far, the chronology of the different evolutionary stages was only based on
petrographic and morphostratigraphic findings. Thereby, mainly periglacial slope
sediments were used for deriving age information for the terrace formation, de-
termining the numbers of embedded palaeosols as indication of interglacial stages
(e.g., Kleber& Stingl, 2000; Veit, 1991). An overview of these previously pub-
lished age estimations is given in Table 4.1.

4.3 Sampling design

In order to establish a chronological framework for the youngest Pleistocene fluvial
terrace of the primary SteinachRiver (T2), in total 13 samples for luminescence dat-
ing were taken from four different locations throughout the Trebgast Valley. The
sampling sites were located in the upper, middle and lower section of the valley,
respectively (Table 4.3 & Figure 4.3). Except for sample BT 737, all samples were
directly taken from fluvial deposits of theT2 terrace. Due to a lack of suitable expo-
sures of the gravel beds in themiddle section of the valley, sample BT 737was taken
froma loess-bearing periglacial cover bed, superimposing theT2 terrace gravelwith
a minimal thickness of ca. 6 meters.

Samples BT 995 and BT 996 originate from sand lenses embedded in the T2 ter-
race gravels in the lowermost part of the valley. Overlaying deeplyweatheredLower
Triassic sandstones, the thickness of the gravel bed is only ca. 50 cm. The gravels are
covered by a several dm thick layer of sandy loam, showing signs of anthropogenic
activity (i.e. bricks and other artifacts).

The samples from the upper reaches (BT 1128 to BT 1134; Figure 4.3) were taken
from different palaeochannels within a complex of terrace gravel. These channels
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were filled with sand-sized fluvial material. Overlaying Upper Triassic sandstone,
the gravel complex showed an average thickness of ca. 2m andwas covered by amix-
ture of fine and coarse grained material. These surficial deposits were identified as
dumped fill, most probably originating from the construction of the nearbymotor-
way during the 1950s. The gravel complex itself and the embedded palaeochannels,
however, did not show any sign of human disturbance.

Samples BT 1165, BT 1166 and BT 1167 originate from a construction site in the
uppermost part of the valley. Here, close to the present-daywatershed between the
Trebgast Valley and the Red Main Valley, the investigated gravels are part of a vast
alluvial fan, accumulated by the primary Steinach River and reaching far to the
west. The gravel deposits overlay sandstone formations of Upper Triassic origin
and show an average thickness of ca. 1.5 m.

4.4 Methods

4.4.1 OSL sample preparation and measurement
procedure

ForOSLmeasurements the coarse grain quartz fraction (90-200µm)was used. Fol-
lowing standard procedures, the sample preparationwas done in subdued red light
(640 ± 20 nm). After wet sieving of the sediment, the samples were treated with
HCl and H2O2 to remove carbonates and organic remnants. Density separation
using sodium polytungstate was applied to separate the quartz from heavy miner-
als (density > 2.75 g/cm3) and feldspars (density < 2.62 g/cm3). In order to remove the
alpha irradiated outer layer of the quartz grains and to eliminate any remaining feld-
spar contamination, the samples were etched in 40%HF for 45minutes and finally
washed in 10% HCl for 30 minutes. The quartz grains were mounted and fixed on
aluminum cups by silicon oil, using a 2 mm mask for samples BT 737, BT 995 and
BT 996 and a 3 mm mask for all other samples, which approximates a number of
100 – 150 grains per aliquot for the 2 mm mask and about 200 – 300 grains for the
3 mm mask. For each sample more than 40 aliquots were measured (Table 4.3).

All luminescence measurements were carried out at the University of Bayreuth
using an automated Risø-Reader TL/OSL-DA-15, equipped with a 90Y/90Sr β-
source for artificial irradiation. ForOSL stimulationblueLEDs (470±30nm)were
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used. The luminescence signal was detected by aThorn-EMI 9235 photomultiplier
combined with a 7.5 mm U-340 Hoya filter (290-370 nm).

For equivalent dose (De) determination the single-aliquot regenerative dose pro-
tocol (SAR) proposed by Murray & Wintle (2000) was applied. After measur-
ing the natural luminescence signal, six regeneration cycles were used to define the
samples’ dose-response. After preheating, the shine-down curves for the natural
and regenerated signals as well as for the test dose signals were recorded for 40s at
an elevated temperature of 125°C. For every sample an individual preheat temper-
ature was identified by a combined dose recovery and preheat test. Thereby, the
aliquots were first artificially bleached for 3 h using a solar lamp (OsramDuluxstar
24W) andβ-irradiatedwith known doses close to the expected equivalent dose for
the respective sample. After that, the De was determined using the SAR protocol
with five different preheat temperatures of 180-260°C (in steps of 20°C). For each
preheat step the mean De of three aliquots was determined and the measured-to-
given dose ratio was calculated. Based on this ratio, for each sample an individual
preheat temperature was chosen for which the given laboratory dose could be re-
produced at its best. Dependent on the different locations, the individual preheat
temperatures ranged from 200°C to 240°C.

For dose rate (Ḋ) determination, theU- andTh-concentrationswere detected by
thick source α-counting, theK-contents of the samplesweremeasuredby ICP-OES.
Cosmic dose-rates were calculated according to Prescott & Hutton (1994). A
common water content of 15% was used for all samples. This value was derived
using the average value of the possible water content range, based on the porosity
of the samples and considering an error, which included the possible water con-
tent range (e.g., Fuchs et al., 2010, 2012; Prinz & Strauß, 2011; Scheffer
et al., 2011). In order to check the correctness of the chosen value, the in situ wa-
ter contents of the samples were measured, showing conformity within errors to
the chosen water content of 15%. As BT 1128 to BT 1134 clearly showed signs of
a significant hydromorphic impact, for those samples a deviant water content of
20% was used.
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4.4.2 Luminescence properties and rejection criteria

To ensure their suitability for luminescence dating, all samples had to pass a dose
recovery test, in which a given dose in the range of the expected equivalent dose
(De) could be reproduced within 10% error limits. All samples proved to pass this
requirement. Additionally, all aliquots which were not able to pass the rejection
criteria for OSL dating were excluded. Thus, only aliquots with a recycling ratio
of 0.9-1.1, a recuperation of ≤ 5% of the natural sensitivity corrected signal intensity
(Murray & Wintle, 2000) and an IR depletion ratio (Duller, 2003) of 0.9-1.1
were accepted for De calculation.

4.4.3 Insufficiently bleached samples and
age calculation models

As fluvial deposits are especially prone to incomplete resetting of the luminescence
signal, all measurements were carried out on small multiple grain aliquots con-
taining ca. 100 to 300 grains per aliquot (e.g., Fuchs & Wagner, 2003). Thus,
aliquots containing insufficiently bleached grains, that would cause an overestima-
tion of the sedimentation age, can be detected and discarded using a sample specific
coefficient of variation ν (ν = (s/x) · 100%; s: standard deviation; x: mean of De;
Clarke (1996); Clarke et al. (1999); Fuchs&Wagner (2003)). For each sam-
ple an individual threshold of ν∗ was empirically determined by a ‘bleaching and
scattering test’. Therefore, ten aliquots of each sample were artificially bleached
for three hours using an Osram Duluxstar 24 W solar lamp. These well-bleached
subsamples were β-irradiated using doses in the range of the expected equivalent
dose. For De determination a normal SAR protocol was applied using the same
parameters already used for the OSL measurements yielding the age information.
Based on the particular De distribution, the coefficient of variation was calculated
for each of these well-bleached samples. This coefficient was defined as threshold
ν∗, which represents the sample specific scatter in De distribution that should be
expected if the respective sample was well-bleached during deposition. All samples
exceeding their particular threshold ν∗ are assumed to suffer from incomplete re-
setting of the luminescence signal.

In order to avoid an age overestimation, it is compulsory to apply an age calcu-
lation model that considers the problem of insufficiently bleached samples. In the
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field of luminescence dating a wide variety of such statistical methods have been es-
tablished (e.g., Olley et al., 1998; Galbraith et al., 1999; Galbraith, 2005;
Lepper et al., 2000; Fuchs & Lang, 2001). In many studies on fluvial sedi-
ments, both, the minimum age model (Galbraith et al., 1999) and the finite
mixture model ((Galbraith & Green, 1990), were successfully used (e.g., Ol-
ley et al., 2004; Rodnight et al., 2006). However, both statistical methods
can only be applied properly when sufficient material is available and a sufficient
number of aliquots can bemeasured. With the age calculation procedure proposed
by Fuchs&Lang (2001), there is an approachwhich can still be appliedwhen the
sample quantity is limited. Thereby, the De values are sorted in ascending order,
stepwise calculating a runningmean value. The ’true’ De is assumed to be themean
value when the standard deviation first exceeds a critical threshold determined by
laboratory tests on well bleached samples. Here, a site-specific critical value of 10%
was identified to be typical for samples originating from the study area. This value
was derived from the sample specific thresholds determined for the coefficient of
variation ν∗ as described before. In this study, the minimum age model, the finite
mixture model and the procedure of Fuchs & Lang (2001) were applied.

4.5 Results – sample characteristics and
age calculation

Though all investigated samples passed the dose recovery test and thus were gener-
ally suitable for luminescence dating, they proved to be problematicwhen applying
the quality criteria forOSL dating. Especially, many aliquots were not able tomeet
the threshold defined for the IR depletion ratio, indicating a significant contamina-
tion of the measured quartz samples, most probably caused by crystal intergrowth
of quartz and feldsparminerals which could not be removed byHF etching. There-
fore, a great number of subsamples had to be measured in order to be able to get a
sufficient amount of De values for OSL age calculation (Table 4.3).

Those aliquots passing the rejection criteria are characterized by bright and fast
decaying OSL signals, typical of quartz samples. Using single exponential func-
tions for data fitting, growth curves could be established with high precision. A
typical OSL shine-down curve along with a typical growth curve for sample BT
1165 is shown in Figure 4.4a and Figure 4.4b.
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Characteristic of fluvial deposits (e.g., Stokes et al., 2001; Wallinga, 2002;
Jain et al., 2004), all samples show a wide De distribution with relative stan-
dard deviations > 10% (Table 4.3), ranging from minimum values of 12% (sample
BT 1167) tomaximumvalues of 43% (samples BT 1128 and BT 1133). The individual
threshold values ν∗ for well bleached aliquots, which have empirically been deter-
mined for each sample, were found to be identical within errors and indicated a
scatter of up to 9% for well-bleached samples. Therefore, we decided to give up
the sample-specific threshold. In accordance with previous studies (e.g., Clarke,
1996; Clarke et al., 1999; Fuchs & Wagner, 2003; Fuchs et al., 2010), we
used a site-specific threshold of 10% to discriminate between well-bleached and in-
sufficiently bleached samples. With relative standard deviations of 12% up to 43%,
the coefficient of variation ν exceeds this site-specific threshold for all samples, in-
dicating that all investigated samples suffer from incomplete bleaching and request
the application of an adequate age calculation model. For BT 1165, the equivalent
dose distribution is displayed in Figure 4.4c.

To avoid an overestimation in the calculation of sedimentation ages, the mini-
mumagemodel (MAM)ofGalbraithetal. (1999) considering the annotations
made by Cunningham et al. (2011) along with the finite mixture model (FMM)
(Galbraith & Green, 1990) were applied. However, due to the restricted num-
ber of remaining aliquots, formany samples both age calculationmodels could not
be applied properly and, in these cases, were not able to yield reasonable results.
Only the procedure of Fuchs & Lang (2001) could successfully be applied to all
investigated samples. Whenever ages could be calculated using the MAM and/or
the FMM, these ages were used to check the reliability of the luminescence ages
derived from the model of Fuchs& Lang (2001). This cross-check showed good
agreement (identical within error margins) for MAM/FMM ages and ages calcu-
lated with Fuchs&Lang (2001). As the procedure proposed by Fuchs&Lang
(2001) is the model of choice, hereafter only the ages derived from applying this
approach are presented (Table 4.3).

For samples BT 995 and BT 996OSL ages of 88.96 ± 5.92 ka and 84.03 ± 5.61 ka,
respectively, could be derived. Samples BT 1128 to BT 1134, taken from different
palaeochannels in the upper reaches of the valley, show significantly younger ages.
They reach from 33.70 ± 2.29 ka in minimum for sample BT 1131 to a maximum
age of 64.11 ± 4.25 ka for sample BT 1133. With OSL ages of 24.58 ± 1.66 ka for
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BT 1165, 30.29 ± 2.33 ka for BT 1166 and 20.14 ± 1.26 ka for BT 1167, the youngest
sedimentation ages could be derived for samples near the present-day watershed
between the Trebgast Valley and the Red Main Valley.

Table 4.2: Radionuclide concentrations, cosmic dose rates and total dose rates.

Sample Uranium
[ppm]a

Thorium
[ppm]a

Potassium
[%]b

Ḋcosmic
[Gy/ka]c

Ḋtotal
[Gy/ka]d

BT 737 4.26 ± 0.21 11.64 ± 0.71 2.53 ± 0.10 0.09 ± 0.01 3.78 ± 0.21
BT 995 2.34 ± 0.21 5.40 ± 0.69 1.92 ± 0.10 0.17 ± 0.01 2.60 ± 0.15
BT 996 1.79 ± 0.19 4.63 ± 0.63 1.92 ± 0.10 0.17 ± 0.01 2.44 ± 0.15
BT 1128 1.66 ± 0.22 5.47 ± 0.74 1.82 ± 0.10 0.14 ± 0.01 2.24 ± 0.14
BT 1129 2.12 ± 0.24 6.01 ± 0.79 2.65 ± 0.10 0.14 ± 0.01 3.03 ± 0.17
BT 1130 3.46 ± 0.28 15.27 ± 0.93 4.22 ± 0.10 0.14 ± 0.01 5.08 ± 0.26
BT 1131 2.00 ± 0.21 7.61 ± 0.71 4.11 ± 0.10 0.14 ± 0.01 4.27 ± 0.22
BT 1132 1.07 ± 0.17 4.71 ± 0.56 3.85 ± 0.10 0.14 ± 0.01 3.72 ± 0.19
BT 1133 1.70 ± 0.19 5.23 ± 0.61 1.60 ± 0.10 0.14 ± 0.01 2.05 ± 0.12
BT 1134 2.49 ± 0.25 8.68 ± 0.81 2.35 ± 0.10 0.14 ± 0.01 3.01 ± 0.17
BT 1165 1.54 ± 0.12 3.19 ± 0.39 1.69 ± 0.10 0.14 ± 0.01 2.08 ± 0.13
BT 1166 1.36 ± 0.17 4.70 ± 0.57 1.55 ± 0.10 0.15 ± 0.01 2.02 ± 0.13
BT 1167 4.33 ± 0.39 16.57 ± 1.31 2.21 ± 0.10 0.15 ± 0.01 3.89 ± 0.23

a Determined by thick source α-counting.
b Determined by ICP-OES.
c Cosmic dose rates were calculated according to Prescott & Hutton (1994).
d For dose rate calculation, a water content of 15% (for BT 1128 to BT 1134: 20%) was used.

For sample BT 737 an OSL age of 30.26 ± 1.76 ka was calculated, confirmed by
a calibrated radiocarbon age of 30,974-31,500 cal. BP, which could be derived from
fragments ofmollusk shells fromPupilla genus (sampleGifA 11 111; Zöller etal.,
2012a). The mollusk shells originated from a lens of loess-like material embedded
into the hillslope detritus which sample BT 737 was taken from. The radiocarbon
agemaymost probably suffer from a distinct hardwater effect and therefore overes-
timate the sedimentation age by several hundred years. But evenwithout assuming
a significant age overestimation, the calculated luminescence age is in agreement
with the calibrated 14C age when considering the error margins. The analytic data
for dose rate determination and for OSL age calculation are listed in Table 4.2 and
4.3.
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4.6 Discussion

4.6.1 The timing of the T2 terrace formation

In traditional concepts of fluvial terrace formation, river terraces are explained as
landscape features typically accumulated during cold phases of glacial periods (e.g.,
Bryant, 1983; Büdel, 1977; Gibbard, 1985). Following these traditional con-
cepts, previous studies deduced a time frame for the final deflection of the primary
Steinach River, spanning from the last glacial maximum (LGM) to the Bölling in-
terstadial (e.g., Kleber & Stingl, 2000; Zöller et al., 2007). Based on mor-
phostratigraphic evidence, the formation of the T2 terrace has so far been inter-
preted as of upper Würmian (Weichselian) age, with the T2 gravels accumulated
by the primary Steinach River during the period of the LGM (e.g., Kleber &
Stingl, 2000; Zöller et al., 2007).

However, all samples from the T2 terrace, except for the near present-day water-
shed samples BT 1165, BT 1166 and BT 1167, show significantly older luminescence
ages. Considering the way of fluvial transport and being aware of the problem of
incomplete bleaching, these ages have to be interpreted with caution. However,
using small aliquots provides a well established tool for identifying incomplete re-
setting of luminescence signals (e.g., Wallinga, 2002; Fuchs&Wagner, 2003).
Thereby, aliquots for which the lowest equivalent doses were obtained are inter-
preted to contain a dominant amount of well-bleached grains and thus yield the
best approximation of the ’true’ De value. In order to avoid age overestimates and
to obtain reliable OSL ages, the approach proposed by Fuchs&Lang (2001) was
applied in this study, ensuring that only those aliquots representing the lowest pop-
ulation of theDe distributionwere used for equivalent dose determination and age
calculation. Nevertheless, we clearly want to emphasize that even these ages might
still be affected by undetected residuals and, thus, suffer from incomplete bleach-
ing causing a possible age overestimation. In particular, this might apply for those
samples (e.g., BT 996, BT 1130 and BT 1131) for which only few aliquots were able
to pass the strict rejection criteria in this study. However, with increasing ages the
effect of such undetected residuals tends to become less important and, therefore,
can be assumed to be of little significance for the interpretation of the fluvial ter-
races in the research area.

The samples from the lowermost part of the valley (BT 995, BT 996) indicate
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a period of terrace formation during an early stage of the Würmian (Weichselian)
glacial, whereas the samples taken from various palaeochannels located in the up-
per reaches point to high fluvial activity during the Middle Pleniglacial. Thereby,
sample BT 1131 has been identified to be the youngest bed load sediment of the pri-
mary Steinach River from within the valley, showing an OSL age of 33.70 ± 2.29
ka.

The luminescence ages obtained for the 9 samples taken from gravel aggrada-
tions (BT 995, BT 996 and BT 1128 to BT 1134) are supported by the OSL age ob-
tained for sample BT 737. This sample was collected from a lens of gleyed loess-like
material embedded in a periglacial slope detritus. These cover sediments superim-
pose the T2 terrace with a minimum thickness of ca. 6 meters. Therefore, the
obtainedOSL ages indicate a significantly older age for the subjacent T2 gravel bed
and also point to intense fluvial geomorphodynamics during the Middle or even
Lower Pleniglacial.

Our results are in agreement with findings made by other regional studies in
Central and Southern Germany. Applying a pIRIR290 approach, Lauer et al.
(2014) obtained luminescence ages for feldspar samples which indicated that the
Zauschwitz loess sequence in Western Saxony was accumulated during the late
Weichselian Pleniglacial. This rather late onset of the loess accumulation is inter-
preted as a result of an enhanced fluvial activity of the nearby Weisse Elster river
prior to ca. 30 ka. For the Upper Rhine Graben Lauer et al. (2010) were able to
derive at least three periods of Weichselian fluvial aggradation, with two of them
correlating with the Early and the Middle Pleniglacial. Stages of high fluvial ac-
tivity for the Danube system could be derived by Fiebig & Preusser (2003) for
the so called ’High Terrace’ (’Hochterrasse’). Using infrared stimulated lumines-
cence dating, they determined sedimentation ages of ca. 75 – 84 ka for the ’Rainer
Hochterrasse’ nearMünster and of 63 – 75 ka for the ’High Terrace’ of the so called
’Schutter-Donau’ in the region of Ingolstadt. Similar age estimations are, for ex-
ample, reported by Krömer (2010) for the Danube valley and by Gesslein &
Schellmann (2011) for the Lech valley.

In contrast to Kleber & Stingl (2000) and Zöller et al. (2007), no sam-
pling location has so far been found within the Trebgast Valley that provided T2
terrace material, yielding ages which were in accordance with the age estimates of
previous studies. With luminescence ages of ca. 20 to 30 ka, only BT 1165, BT 1166
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and BT 1167, collected from a vast alluvial fan near the present-day watershed, ap-
pear to indicate a significant fluvial activity during the Upper Pleniglacial.

Therefore, the fluvial history of the study area at the end of the Würmian
(Weichselian) period may be interpreted in an alternative way. The absence of flu-
vial deposits of the primary SteinachRiver within theTrebgast Valley showing ages
younger than 30 ka indicates that there was no significant fluvial morphodynam-
ics within the valley at that time. Thus, the primary Steinach River abandoned
the valley much earlier than so far assumed. However, it seems very likely that the
Steinach River was not immediately deflected to its present day course. In fact, the
vast alluvial fan in the southernmost part of the Trebgast Valley suggests that the
primary Steinach River was able to reach far to the west.

Having abandoned themain part of the Trebgast Valley and already being a trib-
utary to theRedMainRiver, the SteinachRiver still used the southernmost part of
the valley, flowing in the Red Main River at a so far unknown location further to
the west. The calculated OSL ages for the samples taken from the alluvial fan (BT
1165 to BT 1167) give clear evidence that this evolutionary stage took place during
the Upper Pleniglacial. Therefore, the final shift of the primary Steinach River to
its present-day course should have taken place later than 20 ka.

4.6.2 Diachronic character of river incision?

An inter-location comparisonof the calculated luminescence ages yields the surpris-
ing result that the OSL ages of T2 material from the lowermost part of the valley
are significantly older than those from the middle section and the upper reaches.
This is surprising because the sampling locations have clearly been identified to
represent the same terrace level (T2). With the samples from the lowermost part
of the valley being older than those from themiddle section and the upper reaches,
the results presented in this paper show evidence for different luminescence ages of
samples originating from the same morphological unit, depending on their partic-
ular position within the longitudinal river course.

The reason for this finding is not clear so far. On the one hand, these ages could
be seen as ages of deposition, indicating a diachronic accumulation of fluvial sedi-
ments within the valley. On the other hand, our findings might also be interpreted
as the result of a diachronic river incision, for which the mechanism could be de-
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scribed following the concept of backward erosion: at the beginning of a climati-
cally and/or tectonically driven erosion impulse this impulse should be strongest
near the base level of erosion. Therefore, it seems likely to assume the initial rate of
incision by which a river is able to cut through its previously accumulated deposits
to be higher in the lowermost part of a valley than in the middle section or even in
the upper reaches. As a result, the river terrace formation (i.e. the abandonment
of the former floodplain by lowering the river bed) in the lowermost part of a val-
ley should occur faster than in its upper reaches. When the former floodplain is
abandoned and the transformation to a fluvial terrace is finished, the river is not
able to relocate the sediments of the abandoned floodplain any more. From the
perspective of luminescence dating, this moment is the starting point of lumines-
cence signal growth. As the erosion impulse needs some time to slowly propagate
upstream the valley, the luminescence clock at different locations starts at different
times, depending on the particular moment when the river has incised sufficiently
to abandon its former floodplain.

Similar findings were reported by Rixhon et al. (2011) for 10Be/26Al dating
of the Main Terrace level in the Ardennian valleys. They concluded that the river
incision occurred diachronically along the drainage network and therefore could
not have been climatically forced.

However, the questionwhether a similar interpretation is possible for the results
gained in the Trebgast Valley, assuming a climatically and/or tectonically induced
erosion impulse to propagate along the stream longitudinal profile, cannot be an-
swered at this moment. Furthermore, we are aware of the fact, that we are not able
to decide if our findings just reflect regional or local features strongly affected by
the specific hydrological setting of the research area or if a more generalizing inter-
pretation is possible.

Anyway, our findings show the complex character of river systems’ response to
external forcing and suggest a strong dependency on local and regional conditions.
They are in accordance with previous studies that proved a distinct interrelation
between the varying geomorphological settings and the particular response of river
systems to major changes in climatic conditions (e.g., Mol et al., 2000; Van-
denberghe, 2002, 2003). Furthermore, with the determinedOSL ages indicating
a Lower andMiddle Peniglacial period of high fluvial morphodynamics for our re-
search area, our results are in accordance with findings showing that high fluvial
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activity is often correlated with glacial-interglacial transition periods or occurred
during stages of fast transitions between colder and warmer phases within glacial
periods (e.g., Vandenberghe, 1995; Bridgland & Westaway, 2008a). Thus,
our results confirm that the interaction between fluvial activity and changing cli-
mate conditions is not to be characterized as a simple one-to-one correlation, but
has to be interpreted as a complex process-response-system, controlled by various
external and internal factors (e.g., Vandenberghe, 2003).

4.7 Conclusion

Fluvial deposits and periglacial slope sediments were used as sedimentary archives
for the reconstruction of the fluvial history and palaeoenvironmental evolution in
a small dry valley in northern Bavaria, Germany. Focusing on the youngest Pleis-
tocene terrace level and based on luminescence dating of coarse grain quartz sam-
ples and AMS 14C dating of mollusk shells, a chronological framework for the flu-
vial history of the study area during theWürmian (Weichselian) periodwas derived.

Our results are in conflictwith age estimates proposedbyprevious studies, which
were based on traditional concepts of fluvial terrace aggradation (e.g., Kleber &
Stingl, 2000; Zöller et al., 2007). Based on a local chronological framework
for the T2 terrace formation, amodified regional landscape evolutionmodel is pro-
posed.

The presented luminescence ages point to intense fluvial geomorphodynamics
during early stages of theWürmian (Weichselian) glacial aswell as during theLower
andMiddle Pleniglacial. Evidence for a significant fluvial activity during theUpper
Pleniglacial could only be detected for the uppermost part of the study area close
to the present-day watershed. Therefore, the obtained OSL ages confirm findings
from previous studies showing high fluvial activity to be correlated with stages of
fast transition between colder and warmer periods (e.g., Vandenberghe, 1995,
2008). Furthermore, they indicate a complex character of fluvial systems and con-
tradict traditional concepts of river terrace formation based on the simplified one-
to-one correlation between fluvial morphodynamics and climate change.

The results presented in this paper suggest a diachronic character of river inci-
sion and, hence, point to the complexity of fluvial systems’ response to climatically
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and/or tectonically forced changes in local and regional palaeoenvironmental con-
ditions.
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Summary

Quartz optically stimulated luminescence (OSL) andpost-IR IRSL
dating of potassium-rich feldspar separates were applied to fluvial
sediments which had been supposed to be of pre-Eemian (MIS 5e)
age. Our aim was to establish a reliable chronology for a sequence
of fluvial terraces in a region of Northern Bavaria (Germany) char-
acterized by a complex Pleistocene fluvial history.

The investigated quartz samples proved to be in dose saturation
and the calculatedOSLages could only be interpreted asminimum
age estimations. The performance of the used pIRIR225-approach
was tested by a set of bleaching experiments aswell as by dose recov-
ery tests (DRT) and themeasurement of sample specific laboratory
fading rates. All investigated samples showed excellent dose recov-
ery rates and low residual doses. The phenomenon of ‘anomalous
fading’, however, remained a major problem for age calculation in
this study, indicated by rather large g-values determined for our
samples despite applying a pIRIR225-protocol. At least for the sam-
ples investigated in this study, we cannot confirm the promising
results of previous studies suggesting that IRSL-signals measured
at elevated temperatures following an IR-readout at 50°C provide
the potential to reduce ‘anomalous fading’ to a negligible level that
can be considered as laboratory artifact.

Thus, various fading correction methods had to be used. Thereby,
only themodel proposed byHuntley&Lamothe (2001) could
successfully be applied, while the approaches of Lamothe et al.
(2003) and Kars et al. (2008) failed due to so far unknown rea-
sons. Overall, the corrected pIRIR225-ages were in good agreement
with age constraints derived from stratigraphical and sedimento-
logical findings. For some feldspar samples, however, the deter-
mined ages were far beyond a realistic age range for a meaningful
interpretation when considering the (morpho-)stratigraphical set-
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ting. Although the reasons for these significant age overestima-
tions are not clear so far, they might either indicate methodolog-
ical limitations of the post-IR IRSL approach or point to serious
problems attributed to the luminescence properties of the used K-
feldspar separates or to the specific regional environmental settings
during sample deposition. Despite these problematic findings, the
numerical results derived from the post-IR IRSL measurements
can be used to establish a preliminary chronological framework for
the various evolutionary stages identified in the research area.
Keywords: luminescence, pIRIR, fluvial terrace, fading, pre-Eemian

5.1 Introduction

Fluvial terraces and other fluvial sediments have long been identified to be impor-
tant archives for palaeoenvironmental research. Thereby, a wide variety of tra-
ditional and modern methods is applied in order to derive information on past,
present and future fluvialmorphodynamics. Besides sedimentological, petrograph-
ical, stratigraphical and (micro-)morphological analyses, dating of fluvial sediments
is of crucial importance for the interpretation of environmental records. The tim-
ing of accumulation and erosion phases may reveal information on changes in
palaeoclimatic (e.g., Lauer et al., 2014) or tectonic conditions (e.g., Rixhon
etal., 2011; Sohbati etal., 2012) aswell as on changes in human occupation and
anthropogenic impact on landscape evolution (e.g., Fuchsetal., 2011; Preusser
et al., 2016). The importance of fluvial terraces in geomorphology, archaeology
andmodern river engineering is well documented by a huge and still growing num-
ber of studies spanning a wide range of climatic and regional settings including
small,mediumand large scaled river catchments (e.g., Buch, 1988;Houben, 2003;
Knox, 2006; Schirmer, 1983; Schirmer et al., 2005). A major part of these
studies, however, seem to have been focusing on either late Pleistocene (i.e. Wür-
mian) orHolocene deposits. There are various reasons for this tendency, including
the fact that landforms developed during the last glacial-interglacial cycle are most
likely those environmental features best preserved and, thus, dominating the mor-
phology of modern landscapes. But this tendency is also supported by the dating
techniques that have so far been available for Quaternary sediments. In the past,
radiocarbon dating was the most common method applied to fluvial sediments.
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However, its application is strongly hampered by several serious limitations such
as the fact that organic material is often completely missing or at least reworked
in fluvial environments (e.g., Gillespie et al., 1992; Howard et al., 2009).
Furthermore, the dating range of 14C-methods is typically restricted to the last 40 -
50 ka (e.g., Reimer, 2012) and additional uncertainties are introduced by the need
of calibration.

Over the last decades, optically stimulated luminescence (OSL) dating has be-
come a widespread tool in palaeoenvironmental research. Despite several method-
ological challenges (e.g., Wallinga, 2002; Rittenour, 2008), luminescence dat-
ing has successfully been applied to awide range of fluvial sediments in general (e.g.,
Lauer etal., 2010; Colarossi et al., 2015) and to fluvial terracematerial in par-
ticular (e.g., Fiebig & Preusser, 2003; Litchfield & Rieser, 2005; Erkens
et al., 2009; Rades et al., 2016; Wenske et al., 2012).

Ever sinceMurray&Wintle (2000) proposed the single aliquot regenerative
(SAR)dose protocol, quartz hasmore andmorebeen themineral of choice inmany
of those studies. This preference for quartz dosimeters can be explained by the fact
that the fast component of quartz OSL signals is regarded to be rapidly reset even
by a short-time sunlight exposure. This easy-to-bleach character of quartz is of spe-
cial relevance when dating fluvial deposits because solar resetting of waterlain sedi-
ments may significantly be limited by attenuation due to either the water column
or the suspended load (e.g., Berger & Luternauer, 1987; Berger, 1990).

This advantage of quartz dosimeters, however, is accompanied by severe limi-
tations. Some studies reported on poor luminescence properties of quartz extracts
originating from sediments associated with geologically young orogens
(e.g., Preusser et al., 2006; Steffen et al., 2009), others were simply con-
frontedwith quartz signals showing low luminescence sensitivities aswell as consid-
erable medium and slow components (e.g., Lukas et al., 2007). With respect to
sediments older than the last glacial-interglacial-cycle, a crucial limitation of quartz
minerals is their relatively low saturation dose that is normally regarded to be in
a range of approximately 150-200 Gy (e.g., Roberts, 2008), in some exceptional
sedimentological settings up to 400Gy (e.g., Lu etal., 2007; Kemp etal., 2003).
Strongly depending on the specific dose rate, this low saturation level considerably
restricts the upper dating range of quartz OSL measurements to approximately
50-150 ka (e.g., Timar-Gabor & Wintle, 2013; Chapot et al., 2012).
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Infrared stimulated luminescence (IRSL) dating of polymineral samples (fine
grain fraction) or of potassium-rich feldspar separates (coarse grain fraction) may
offer a suitable approach particularly for older sediments exceeding the upper age
range of quartz OSL dating. IRSL signals from feldspars are regularly reported to
be very bright and show saturation doses that are an order of magnitude higher
than those determined for quartz (e.g., Huntley & Lamothe, 2001; Li et al.,
2014). Thus, IRSL-based dating of feldspars, in principle, has the potential for
significantly extending the upper age range of luminescence dating. However, feld-
spar luminescencemeasurements have long been known to suffer from a phenome-
non called ‘anomalous fading’ (e.g., Wintle, 1973;Aitken, 1985; Spooner, 1994a).
This phenomenon can be described as an athermal loss of luminescence signal over
time and is – although not yet fully understood – attributed to quantum-
mechanical tunnelling of electrons (e.g., Visocekas, 1985; Visocekas et al.,
1994; Guérin & Visocekas, 2015).

As this loss of signal will result in serious age underestimations, the major prob-
lem of ‘anomalous fading’ has long prevented feldspar based IRSL measurements
from becoming a routine dating approach for Quaternary sediments. In order
to correct for fading effects, numerous correction methods have been proposed
(e.g., Huntley&Lamothe, 2001; Lamothe et al., 2003; Kars et al., 2008).
These approaches, however, are still controversially discussed as they are based on
very specific assumptions and, furthermore, require a precise determination of lab-
oratory fading rates. Particular with respect to the still unanswered question
whether fading rates determined under experimental conditions can be used as ade-
quate assessments of fading rates over geological periods, there are general concerns
about the applicability of correction procedures (e.g., Wallinga et al., 2007;
Lowick et al., 2012; Preusser et al., 2014).

Thomsen et al. (2008) were able to prove that laboratory fading-rates could
significantly be reduced by applying a two-step post-IR IRSL approach. They
suggested using the IRSL-signal measured at elevated temperatures after a low-
temperature IRSL-readout to either completely avoid or at least strongly reduce
the effects of anomalous fading. Since then, a great variety of different post-IR
IRSL protocols have been proposed (e.g., Buylaert et al., 2009; Thiel et al.,
2011a; Reimann&Tsukamoto, 2012; Li & Li, 2011) and successfully been tested
inmany studies indicating that pIRIR-proceduresmight yield a stable IRSL-signal
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not or only little affected by fading (e.g., Buylaert et al., 2012b; Li & Li, 2012;
Li et al., 2014; Thiel et al., 2011b). These promising results offer the potential
that precise and reliable age estimations based on luminescence dating might even
be possible for sediments far beyond the last glacial-interglacial-cycle.

The river drainage system in Northern Bavaria, Germany, is characterized by a
complex fluvial history (e.g., Eberle et al., 2010; Schirmer, 2010, 2012). With
the Main River being one of the most important tributaries to the Rhine system,
the irregular, nearly chaotic pattern of its river course reflects the successive en-
largement of the Rhine River catchment (e.g., Eberle et al., 2010; Schirmer,
2010, 2012). Many studies about the evolution of the Main River and its headwa-
ter streams as well as on adjacent rivers have been published so far, typically focus-
ing either on geological, sedimentological, stratigraphical or historical topics (e.g.,
Bartz, 1937; Brunnacker, 1973; Körber, 1962; Becker & Schirmer, 1977;
Tillmanns, 1980; Peterek et al., 2009; Schirmer, 1983, 2007, 2010, 2014).
Apart from a rather limited number of 14C-datings, most of these studies derive
chronological conclusions only from sedimentological findings and stratigraphical
correlations. With respect to chronological issues there is still a considerable lack of
studies providingnumerical dating results. This particularly applies to the drainage
system in the vicinity of the city of Bayreuth in northern Bavaria, Germany. Here,
close to the European drainage divide and near the origins of the Red Main River
and theWhiteMainRiver, twomajor headwater streams of theMainRiver, a small
valley can be found which reveals a series of fluvial and periglacial hillslope sedi-
ments that provide the potential to act as regional palaeoenvironmental archives
for reconstructing the Pleistocene and Holocene landscape evolution.

The valley is situated right in themiddle of theUpper Franconian Block-Faulted
Zone, a geological transition zone separating the Variscian BohemianMassif in the
east from the adjacent South German Block with its Permo-Mesozoic sedimentary
cover in the west (e.g., Duyster et al., 1995). Nowadays drained by the small
Trebgast Creek, the Trebgast Valley was originally part of the Red Main/Steinach
drainage system indicated by five different Pleistocene fluvial terraces within the
valley (e.g., Kleber& Stingl, 2000; Zöller et al., 2007). Although the valley
and its history have been discussed among geoscientists for more than a century
(e.g., Reck, 1912; Seefeldner, 1914; Henkel, 1917, 1920; Stadelmann, 1924),
the knowledge about the timing of the different evolutionary stages is still limited.
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While several older studies (e.g., Kleber et al., 1988; Veit, 1991; Kleber &
Stingl, 2000; Zöller et al., 2007) could only derive age information from the
interpretation of sedimentological and stratigraphical findings, recently published
studieswere able to applymodern luminescence datingmethods to terrace deposits
and hillslope sediments from the valley (e.g., Kolb et al., 2016, 2017). Using
quartz based OSL dating, these studies focused on the youngest Pleistocene fluvial
terrace in the Trebgast Valley and constrained a timeframe for its accumulation,
pointing to a complex terrace formation during the early Würmian (Weichselian)
glacial aswell as during the Lower andMiddle Pleniglacial (e.g., Kolb etal., 2016,
2017).

The purpose of this study is to apply luminescence dating techniques to fluvial
terrace deposits in the headwater area of theMain River drainage system that have
been supposed to be of pre-Eemian (MIS 5e) age. We aim at testing the applicabil-
ity of post-IR IRSL approaches to old samples originating from sediment aggrada-
tions being identified as the result of a complex fluvial history. Furthermore, we
intend to establish a chronological framework for the oldest Pleistocene terrace lev-
els identified in our research area, for which only weak age estimations have so far
been derived from stratigraphical findings.

5.2 Study area and sampling locations

The Trebgast creek is a small tributary of the White Main River, which is one of
the most important headwater streams of the Main River. The catchment is lo-
cated in the north-eastern part of Bavaria, Germany, near the city of Bayreuth ap-
proximately 70 km north-east of Nuremberg (Figure 5.1). Showing a total of five
Pleistocene fluvial terraces, the valley has been identified to represent a former inter-
connectionbetween theRedMainValley and theWhiteMainValley (e.g., Kleber
et al., 1988; Kleber & Stingl, 2000). With both rivers being major headwater
streams of the Main River, they still dominate the present-day drainage system of
the study area. Based on lithological analyses, the two oldest terrace levels of the
Trebgast Valley (T5- and T4- terrace) were identified to have been accumulated by
theRedMainRiver and the SteinachRiver, the latter representing a local river orig-
inating in the nearby crystalline basement area of the Fichtel Mountains (’Fichtel-
gebirge’) east of our study area. With the Red Main River not participating in the

140



5.2 Study area and sampling locations

sedimentation of the T3- and T2-terrace any more, these terrace levels were classi-
fied as pure Steinach River terraces, indicated by a significant change in the litho-
logical gravel composition. The youngest Pleistocene terrace (T1-level), which was
accumulated by the Trebgast Creek after the Steinach River abandoned the valley,
is restricted to the lowermost section of the valley and consists of local material as
well as reworked T2-terrace gravels (see Figure 5.1).

Based on lithological, pedological andmorphostratigraphical evidence, Kleber
& Stingl (2000) were able to derive a complex landscape evolutionmodel includ-
ing three distinct evolutionary stages. This model is discussed in detail by Kolb
et al. (2016) who were able to modify and refine the model by adding a fourth
evolutionary stage and by determining anOSL-based chronological framework for
the T2-accumulation period, which was surprisingly characterized by a diachronic
river incision.

Showing awide and flat valley bottom, theTrebgastValley is borderedby slightly
inclined, only sometimes steep slopes developed in sandstone and limestone forma-
tions of Triassic origin. The lithology of the nearby surroundings is characterized
by the dichotomy of plutonites and metamorphic rocks exposed in the crystalline
basement of theBohemianMassif to the east andMesozoic sedimentary rocks dom-
inating the Northern Franconian Alp to the west. For a detailed description of
both, the valleymorphology aswell as the geological settingof the region, the reader
is referred to Kolb et al. (2017), with additional background information on the
long lasting and controversial research history.

For luminescence dating, a total of 8 samples were collected at four different
locations (Figure 5.1 & 5.2). Thereby, two sites assigned to the T3-terrace level and
one location for theT4- and theT5-terrace level, respectively, were sampled. Details
on the sampling locations are summarized inTable 5.1 andFigure 5.2. The sampling
situation at various outcrops is furthermore illustrated by the photos of Figure 5.3.

The first T3-terrace site was an outcrop under forest in a former sand pit situ-
ated in the middle section of the valley. With a thin (only ~10 cm) layer of brown
forest soil covering a layer of coarse-grained sand intercalated with fluvial gravels,
the gravel bed itself showed a total thickness of 60-70 cm. Both samples (BT 1102
and BT 1103) were taken with considerable distance to the upper and lower bound-
ary of the gravel bed in order to avoid contamination with either older or younger
material.
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The T3-terrace samples BT 1107 and BT 1108 originate from a construction site
in the southern part of the Trebgast Valley close to the present day drainage divide.
Here, the gravel bed showed a thickness of more than 5 m. The base of the terrace
gravel was identified in a depth of approximately 5.7 m below the present-day sur-
face. Both samples were taken from sand lenses embedded into the coarsely clastic
gravels. While BT 1107was situated near the base of the excavation pit, BT 1108was
close to the upper boundary of the gravel bed.

Nearby this location, samples BT 1335 and BT 1336 could be collected at a tem-
porary outcrop of T4-terrace gravels. Although the base of the terrace was not yet
reached, several meters (~4 m) of strongly compacted fluvial gravels were exposed,
covered by periglacial hillslope sediments showing an average thickness of 1.5-2 m.
The gravels were intercalated with several sand lenses which the luminescence sam-
ples were taken from.

For samples BT 1125 and BT 1126 we dug a several meters long and about 1.5-2 m
deep trench on farmland situated on top of a Lower Triassic sandstone complex.
The terrace sediments revealed a thickness of 1.3-1.5 m and were covered by a thin
(~30-40 cm) soil layer, which was affected by bioturbation and intense human cul-
tivation. The gravel bed itself was just weakly compacted and contained a large
amount of coarse-grained sand. In order to minimize the risk of a contamination
with younger material we decided not to take samples close to the upper bound-
ary of the terrace. With a sampling depth of 110 cm, BT 1126 was situated slightly
above the base of the gravel bed; BT 1125 was sampled in a depth of 70 cm below
the surface and originates from the center of the terrace sediments.
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5.3 Methodology

5.3.1 Sample preparation and instrumental facilities

All samples were collected either under daylight conditions using light-tight cylin-
ders from stainless steel or at night-time, storing the sampledmaterial in light-tight
black bags. Sample preparation was done under subdued red-light conditions
(640 ± 20 nm) at the luminescence laboratory of the University of Bayreuth fol-
lowing standard procedures (e.g., Fuchs et al., 2010). After wet sieving to vari-
ous grain size fractions, the coarse grain fraction (90-200µm)was treatedwith 10%
HCl and 10%H2O2 to remove carbonates and organicmatter. In order to gain pure
quartz and feldspar separates, the remaining material was subjected to density sep-
aration using sodium polytungstate solutions of various densities (2.70 g cm-3 and
2.62 g cm-3 to separate quartz from heavy minerals and feldspars and subsequently
2.58 g cm-3 and 2.53 g cm-3 to obtain the potassium-rich feldspar fraction). For the
potassium-rich feldspar fraction the heavy liquid density separation was repeated
at least three times in order to increase the purity of the separates. The quartz sep-
arates were etched in 40% HF for 50 min to remove the alpha-irradiated outer rim
and finally washed in 10% HCl for 30 min. The purity of the resulting quartz sam-
ples was checked by IR stimulation, determining the IR depletion ratio (Duller,
2003) and by visual inspection of the TL curve shape, i.e. the 110°C TL peak (e.g.,
Mauz & Lang, 2004). With respect to the problems concerning the application
of normal etching procedures for feldspar samples using 10% HF which have been
reported by previous studies (e.g., Porat et al., 2015), we decided not to etch the
feldspar extracts at all.

For measurement, grains were mounted on aluminium cups and fixed with sil-
icon spray, using a 1 mm mask for the feldspar and a 2 mm mask for the quartz
samples. This procedure restricted the number of grains to approximate 20-50 and
50-100 grains per cup, respectively. All luminescence measurements were carried
out on automated Risø-Reader TL/OSL-DA-20 systems, equipped with built-in
90Y/90Srβ-source for artificial irradiation, providing dose rates of 0.119 ± 0.010 Gy
s-1 and 0.033 ± 0.002 Gy s-1, respectively. While the OSL stimulation for quartz
samples was done by blue LEDs (470 ± 30 nm), infrared light LEDs (875 ± 80
nm) were used to stimulate the feldspar samples. The luminescence signals were
detected by aThorn-EMI 9235 photomultiplier equippedwith filter combinations,
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centering the detection windows to the dominant emission wavelength of quartz
and K-feldspars, respectively. Therefore, the photomultiplier was combined with
a 7.5 mm U-340 Hoya filter for the quartz samples (ultra-violet detection window:
290 - 370 nm) and with a 3 mm Chroma Technology D410/30x interference filter,
restricting the detection window to the blue-violet wavelength band characteristic
for K-feldspar samples.

5.3.2 Measurement protocols and setup for equivalent
dose determination

OSL measurements for the quartz samples followed the single aliquot regenera-
tive dose (SAR) protocol proposed by Murray & Wintle (2000), applying the
samepreheat temperatures to regenerative dose and test dosemeasurements. Shine-
down curves were recorded at a temperature of 125°C for a total of 40 s. The signal
used for growth curve constructionwas obtained from the first 0.6 s of the recorded
OSL signal after a background was subtracted that had been derived from the last
7.5 seconds.

For the IRSLmeasurements of the K-feldspar samples amodified post-IR IRSL
225°Cprotocolwas applied. Inprinciple following theprocedure proposedbyBuy-
laertetal. (2009), we recordedboth, the IR50 signal and the pIRIR225 signal, for
a prolonged time of 300 s after preheating the samples with a temperature of 250°C
for 60 s. The measurement conditions were the same for regenerative dose and
test dose steps. The signal used for equivalent dose determination was based upon
the integration of the initial 5 s of the recorded pIRIR225 signal after subtracting a
background that had been averaged over the last 20 s of the respective shine-down
curve. Details of themeasurement protocols used for this study are summarized in
Table 5.2.

Due to high equivalent doses and limited measurement time, pIRIR225-
measurements had to be restricted to 10 aliquots per feldspar sample (Table 5.5).
Thus, no statistical age model (e.g., Galbraith et al., 1999; Galbraith, 2005)
could be applied to the equivalent dose data derived from the post-IR IRSL ap-
proach. For the quartz separates, OSL measurements were performed on a mini-
mum of 24 up to a maximum of 48 aliquots (Table 5.4). Although applying age
models would have been possible, the equivalent dose distributions did not give
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Table 5.2: OSL andpost-IR IRSLmeasurement protocols (followingMurray&Wintle (2000)

and in principle Buylaert et al. (2009)). The pIRIR225-protocol proposed by Buylaert et al.

(2009) was slightly adjusted by using a prolonged readout time of 300 s for IR50- as well

as for IR225-signals. A hot-bleach step was neither applied for the SAR nor for the pIRIR225-

protocol.

OSL-SAR pIRIR225

Step Treatment Result Step Treatment Result

1 Dose 1 Dose
2 Preheat (hold for 10 s)a 2 Preheat (250°C for 60 s)
3 OSL at 125°C for 40 s Lx 3 IRSL at 50°C for 300 s Lx-IR50
4 Test Dose 4 IRSL at 225°C for 300 s Lx-IR225
5 Cutheat (no holding)b 5 Test Dose
6 OSL at 125°C for 40 s Tx 6 Preheat (250°C for 60 s)

7 IRSL at 50°C for 300 s Tx-IR50
8 IRSL at 225°C for 300 s Tx-IR225

a Preheat temperatures were individually determined for each sample based on a combined pre-
heat and dose recovery test using different preheat temperatures in the range of 180–260°C.

b Cutheat temperature equaled preheat temperature.

any evidence indicating a significant proportion of insufficiently bleached aliquots
that would have required the consideration of such a statistical approach. There-
fore, statistical age models were neither applied to the feldspar nor to the quartz
samples.

All luminescence data were analyzed using an R-script based on the R-package
‘Luminescence’, version 0.7.4 (e.g., Kreutzer et al., 2012b, 2016), ap-
plying single exponential functions to the construction of the dose response curves.
Thereby, all aliquots that were not able to pass the commonly applied rejection cri-
teria for luminescence dating were excluded. Thus, only aliquots with a recycling
ratio of 0.9-1.1, a recuperation of ≤ 5% of the natural sensitivity corrected signal in-
tensity (e.g., Murray & Wintle, 2000) and a signal not lower than 3 times the
backgroundwere accepted for equivalent dose calculation. Additionally, following
the suggestion ofWintle&Murray (2006), all aliquots revealing natural signals
higher than the so called ‘2D0-value’ were assessed to be unreliable and, thus, not
considered for equivalent dose calculation. However, this criterion was only rel-
evant for quartz samples and did not result in eliminating any aliquot measured
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with the pIRIR225 approach.
As test measurements for two quartz separates suggested that there might still

be a significant feldspar contribution to the luminescence signals of these samples
that even could not be removed by repeated HF-etching, we decided to use the IR
depletion ratio proposed byDuller (2003) as an additional rejection criterion for
the investigated quartz samples. Thus, the IR depletion ratio was calculated for
each aliquot and used for discarding those aliquots still contaminated by feldspar
remnants which we assumed to be indicated by the calculated IR depletion ratio
deviating more than 20% from unity.

5.3.3 Fadingmeasurements, doserecoveryandbleaching
experiments

As already mentioned above, the post-IR IRSL protocol for feldspar and polymin-
eral samples originally was developed to overcome the problem of anomalous fad-
ing and to avoid the difficulties associated with the application of fading correction
methods. However, several recent studies (e.g., Li et al., 2017a,b; Roskosch
et al., 2015; Alappat et al., 2010) clearly indicated that post-IR IRSL measure-
ments may most probably still be affected by fading even if its extent was reported
to be strongly reduced. That is particularly true for the post-IR IRSL 225°C ap-
proach used in this study. Therefore, fading tests based on repeated Lx/Tx mea-
surements applying various storage times between irradiation and pIRIR225 read-
out were carried out to all feldspar samples in order to estimate the degree of fad-
ing. Measurement parameters were the same as for the equivalent dose measure-
ments. Following the recommendation of Auclair et al. (2003), preheats were
performed prior to storage. Thereby, three aliquots per sample that have not been
used for De determination were bleached and irradiated with a dose close to the ex-
pected equivalent dose for the respective sample. To quantify the degree of anoma-
lous fading, the g-value was calculated, corresponding to the percentage of signal
loss per decade of time (e.g., Aitken, 1985). Thereby, the g-value was deduced
from a regression line fitted through the Lx/Tx-values determined after different
delay times which had been plotted against the respective times elapsed since irra-
diation depicted on a log scaled x-axis. All calculations were done using the R func-
tion 'analyse_FadingMeasurement' vers. 0.1.5, provided by the R pack-
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age 'Luminescence' (e.g., Kreutzer et al., 2012b, 2016). As the status of this
functionwas classified as ’BETA’ at the time the fadingmeasurements for this study
were analysed, all results were cross-checked by individual calculation of g-values
for all samples using an R-script independently developed for this purpose and
based on Eq. [4] of Huntley & Lamothe (2001). Results which had been de-
rived from the ‘analyse_FadingMeasurement’-function were confirmed.

A crucial point for the reliability of luminescence ages is the ability of the dosime-
ter to reproduce a given dose prior to heat treatment within a sufficient accuracy.
To test the suitability of the quartz and feldspar separates used in this study, a set of
dose recovery tests (DRT) was carried out to determine the dose recovery rate and
– for the quartz samples – to estimate the optimal preheat temperatures. While the
quartz samples were artificially bleached for 3 h using a solar lamp (OsramDuluxs-
tar 24 W), the feldspar samples were exposed to natural daylight for 3 days to erase
the luminescence signal. After checking the signal depletion, both, feldspar and
quartz aliquots, were β-irradiated with known doses close to the equivalent doses
expected for the respective sample. Thereafter, the equivalent dosewas determined
using the same measurement protocols and parameters applied to the dating mea-
surements. Whereas, the feldspar DRT was restricted to the preheat temperature
of 250°C requested by the pIRIR225-protocol, the DRT for the quartz samples was
performed as combined preheat and dose recovery test applying five different pre-
heat temperatures in the range of 180°C – 260°C in steps of 20°C. For each preheat
temperature the mean De of three aliquots was determined and the measured-to-
givendose ratiowas calculated. Basedon this ratio, an optimal preheat temperature
was chosen for which the given laboratory dose could be reproduced at its best.

Whereas the post-IR IRSL approach seems to be able to overcome or at least
reduce the problem of anomalous fading, many studies reported a significant in-
crease in residual signals for combinations of higher preheat and stimulation tem-
peratures (e.g., Buylaert et al., 2011, 2012b; Stevens et al., 2011; Lowick
et al., 2012). Although the reasons for this observed increase are still under de-
bate (e.g., Li et al., 2014; Preusser et al., 2014), these residuals might cause a
significant age overestimation if no correction was applied. In order to assess the
magnitude of residual doses observed for the various samples used in this study, a
series of bleaching experiments applying different types of bleaching mechanisms
and times was conducted using natural samples. To test the efficiency of artificial
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bleaching conditions normally used for quartz samples at the luminescence labora-
tory of theUniversity of Bayreuth, we selected three feldspar samples and bleached
them by using an OsramDuluxstar 24W solar lamp for three hours. Additionally,
a natural sunlight bleaching was applied to all investigated feldspar samples in this
study. The samples were stored outside the laboratory within a box covered by a
thin plate of acrylic glass to protect the samples from contamination andunwanted
atmospheric exposure (e.g., loss of grains bywind). The discswere divided into two
different batches, which were exposed to sunlight for a total of three and ten days,
respectively. These bleaching experiments were performed by end of March 2017
during a period of stable and sunny weather conditions. After bleaching the sam-
ples, the remaining doses were determined using the same measurement setup as
described for the dating measurements.

5.3.4 Dosimetry

For dose rate (Ḋ) determination, the U- and Th-concentrations were detected by
thick source α-counting, the external K-contents of the samples were measured
by ICP-OES. With respect to the K-feldspar separates an internal potassium con-
tent of 12.5 ± 0.5% (e.g., Huntley & Baril, 1997) was included and an assumed
a-value of 0.07 ± 0.02 (e.g., Preusser et al., 2014, 2016) was used for consid-
ering the alpha attenuation for the non-etched samples. Calculations for deter-
mining the environmental dose rate were done applying DRAC v1.2 (Durcan
et al., 2015) in combination with the conversion factors given by Guérin et al.
(2011). Allowing for large uncertainties, interstitial water contents in a range of 8%
to 10%were assumed to be representative for the burial period, individually derived
for each sample from measurements of the present day water contents. Cosmic
dose rates were calculated according to Prescott & Hutton (1994) using the
'calc_CosmicDoseRate'-functionprovidedby theRpackage'Luminescence'
(e.g., Kreutzer et al., 2012b, 2016).
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5.4 Results and discussion

5.4.1 OSL and IRSL properties

Allmeasured quartz samples showbright and fast decaying shine-down curves (Fig-
ure 5.4 – upper diagrams). The recuperation values are low for all samples and are
depicted in Figure 5.5. Only 6 aliquots out of 191 had to be rejected due to exceeding
the recuperation threshold of 5%. Formost aliquots (> 94%) the recycling ratios are
within the quality range of 0.9 to 1.1, indicating a good performance of the applied
SAR protocol (Figure 5.5).

Figure 5.6 shows the results of the combined preheat and dose recovery tests
performed for the quartz samples. Although at least one preheat temperature per
sample could be determined for which the given dose could be recovered within
acceptable accuracy, the dose recovery tests reveal problematic luminescence char-
acteristics for the investigated quartz separates. Large inter-aliquot scatters could
be observed for all samples and nearly for all preheat temperatures. Furthermore,
a considerable number of aliquots is associated with large individual errors. These
aliquots typically show dose response curves for which the given doses were close
to saturation level and, therefore, could not be estimated precisely.

For the post-IR IRSL 225°C measurements very bright, but slowly decreasing
shine-down curves could be derived showing patterns characteristic for feldspar
samples (Figure 5.4 – lower diagrams). Both, the recycling ratios and recuperation
values, were within the accepted limits suggesting an excellent performance of the
post-IR IRSL 225°C protocol for all investigated aliquots (Figure 5.4 & 5.7). The
given-to-measured-dose ratios for all feldspar samples derived from dose recovery
tests are presented in Figure 5.7a. Although the given dose is always slightly (< 5%)
underestimated, the dose recovery can be characterized as very good. While the in-
dividual dose recovery rates for the various aliquots liewithin a range of 0.95 to0.99,
the average dose recovery rate was calculated as 0.97 ± 0.002 and is therefore very
close to unity. The individual errors and the inter-aliquot scatters are rather low
and for sample BT 1107 even almost negligible. All together, these results demon-
strate the suitability of the used feldspar separates for luminescence dating as well
as the overall good performance of the applied measurement protocol.
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Figure 5.5: Recuperation (Figure 5.5a – note the logarithmic scale used for the y-axis) and

recycling ratios (Figure 5.5b) for the investigated quartz samples. Recuperation was gener-

ally low and recycling ratios were close to unity for most aliquots.
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of the used feldspar dosimeters and indicate an overall good performance of the post-IR

IRSL protocol.
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5.4.2 Dose response curves and equivalent dose distri-
butions

Figure 5.8 is showing abanico plots (Dietze et al., 2016) of equivalent dose distri-
butions and representative dose response curves for a selection of two quartz (up-
per part) and two feldspar samples (lower part). The equivalent dose distributions
gained for the quartz samples are generally characterized by wide kernel density es-
timate (KDE) plots accompanied by large relative standard deviations of 15% for
sample BT 1107 up to maximum values of more than 24% for samples BT 1103 and
BT 1108. The individual standard errors associated with the single aliquots show
comparatively high values and large variations, represented by the relative positions
of the data points plotted on the left side in the abanico plots. With the major-
ity of data points showing relative standard errors in the range of 8-10%, there is
a considerable number of aliquots plotting beyond 15% or even close to 20% (for
BT 1108 – not shown in the figure). These large individual standard errors corre-
spond to a low precision in equivalent dose estimation for the respective aliquots
and again point to the rather problematic luminescence properties of the analyzed
quartz separates.

The calculated mean equivalent doses for sample BT 1103 and BT 1107 are well
beyond 200Gy, for sample BT 1102 and BT 1108 even beyond 300Gy. These equiv-
alent doses are in a dose range that is regularly regarded to be close to the satura-
tion level of typical quartz samples (e.g., Li et al., 2014; Buylaert et al., 2008;
Thiel et al., 2011b). Hence, all quartz samples investigated in this study might
most probably suffer from distinct saturation effects.

This finding is supported by the shape of many dose response curves. Applying
a single saturating exponential function to data fitting often proved to be difficult
andwas frequently associatedwith large fitting errors. For quite a substantial num-
ber of aliquots the natural sensitivity corrected signal (Ln/Tn) was either in satura-
tionor plotting in theuppermost part of the dose response curve close to saturation
level. While for the former aliquots no equivalent doses could be determined at all,
the latter yielded equivalent doses associated with large individual errors and often
exceeding the 2D0-criterion described above. Therefore, quite a large number of
aliquots had to be dismissed, i.e. for sample BT 1103 only 25 out of 47 and for sam-
ple BT 1108 only 8 out of 33 measured aliquots could be considered for equivalent
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dose determination (for details the reader is referred toTable 5.4). In summary, the
ages calculated for the quartz samples in this study should be taken with care and
can most likely only be interpreted as minimum ages!

The lower part of Figure 5.8 shows typical dose response curves and De distri-
butions gained for the feldspar separates analyzed in this study. In contrast to the
quartz samples, dose response curve construction using a single saturating func-
tion was possible for feldspar samples without any serious problems, indicated by
low average fitting errors and always yielding equivalent doses in the exponential
but still growing part of the dose response curves, far below the saturation level.
The individual standard errorswere low for all aliquots and the 2D0-criterion never
proved to be problematic at all. Thus, nearly all measured aliquots could be used
for equivalent dose calculation.

The overall good suitability of the investigated feldspar separates for lumines-
cence dating is supported by the equivalent dose distribution depicted in the aban-
ico plots (Figure 5.8). Apart from samples BT 1125 and BT 1126 containing some
outliers, all feldspar separates are characterized by rather narrow distributions with
relative standard deviations typically in the range of 4-6%. Maximum relative stan-
dard deviations of 13.5% and 9.5% could be determined for samples BT 1125 and BT
1126, respectively. Unfortunately, the KDE plots often show bi- and even multi-
modal patterns. If showing only one peak, they are at least slightly, but not system-
atically skewed. For some samples the distribution is shifted to higher equivalent
doses, which is expected as typical feature of partially bleached samples, but for
other samples the distribution is skewed to lowerDes. These findingsmake the age
calculation, and in particular the subsequent interpretation, considerablymore dif-
ficult.
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5.4.3 Post-IR IRSL residual doses

A fundamental assumption of luminescence dating is that luminescence signals
measured in the laboratory should also be completely bleachable under natural
sunlight conditions. Otherwise the equivalent dose derived from luminescence
measurements would contain an additional inherited signal and, thus, would not
represent a reliable estimate of the true palaeodose accumulated in the dosimeter
during the burial period under investigation. Incomplete resetting of the lumines-
cence signal during transport might then result in serious age overestimations (e.g.,
Fuchs et al., 2007).
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Figure 5.9: Residual doses determined for feldspar samples after a prolonged sunlight

bleaching of 3 days, 10 days and after an artificial bleaching of 3 hours. The blue lines in-

dicate themean residual doses determined for the respective bleaching procedure.

While the harder-to-bleach nature of conventional IRSL-signals derived from
feldspar separates have long been known (e.g., Godfrey-Smith et al., 1988;
Fuchsetal., 2005) and identified as serious limitationof feldspar dating attempts
compared to the fast bleaching OSL signals of quartz samples, a series of studies
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was able to prove that post-IR IRSL signals measured at significantly higher stimu-
lation temperatures also consists of components that aremore resistant to sunlight
bleaching and, thereby, evenmore difficult to bleach under natural conditions (e.g.,
Li & Li, 2011; Buylaert et al., 2012b). Moreover, based on the investigation of
modern analogues, some studies suggest that there might be a residual dose that
is not even erased after a prolonged exposure to sunlight (e.g., Buylaert et al.,
2012b; Li et al., 2014). This residual dose is attributed either to a non-bleachable
component of the post-IR IRSL signal or to thermal transfer of electrons due to
the high preheat temperatures applied in post-IR IRSLprotocols (e.g., Buylaert
et al., 2012b; Li et al., 2014; Preusser et al., 2014). The magnitude reported
for the residual dose by previous studies reach from only a fewGy (e.g., Thomsen
et al., 2008; Gaar et al., 2013; Trauerstein et al., 2014) up to significantly
higher doses that might seriously affect age calculation even for older samples (e.g.,
Lowick et al., 2012; Stevens et al., 2011). On the whole, the residual doses
reported so far appear to be characterized by large inter-sample variations andmay
also reflect regional differences (e.g., Li et al., 2014; Preusser et al., 2014).

In order to check the bleachability of the pIRIR225-signals, we performed a se-
ries of bleaching experiments. The results of these experiments are summarized in
Figure 5.9. The samples had been divided into three batches. The lowermost part
of Figure 5.9 shows the results for a selection of three samples which had been artifi-
cially bleached for 3 h using anOsramDuluxstar 24W solar lamp. With all samples
showing large inter-aliquot scatters, the residual doses determined for individual
aliquots range from 68.2 ± 0.3 Gy (sample BT 1108) up to 88.4 ± 0.2 Gy (sample
BT 1125). Themean residual dose was calculated as 76.1 ± 2.0 Gy, corresponding to
almost 10% up to 18% of the respective equivalent doses. This high average value as
well as the considerable dispersion of aliquot specific residual doses clearly indicates
that a 3 h artificial bleaching procedure is not sufficient to reset the pIRIR225-signal
to a level low enough to be negligible for age calculation – at least for the samples
analyzed in this study.

However, as already pointed out by previous studies (e.g., Preusser et al.,
2014; Sohbati et al., 2012), artificial bleaching under laboratory conditions may
not represent an adequate simulation of bleaching conditions in nature. Apart
from the fact that natural sunlight differs rather significantly from the spectrum
provided by artificial laboratory illumination, experimental settings do not take
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into account the specific patterns of geomorphic processes, which are typically char-
acterized by repeated reworking of material for a prolonged time. Especially for
long-distance transport, such as fluvial transport processes, the resetting of lumi-
nescence signals is caused by the sum of repeated relocation and deposition cycles
rather than by a single bleaching event. Thus, the decisive factor is less the dura-
tion of a single exposure to sunlight than the total time from the beginning of the
transport process to the final deposition of material. As a result, resetting of the
hard-to-bleach post-IR IRSL component can be assumed to be more effective in
nature than under laboratory conditions.

The upper two diagrams of Figure 5.9 show residual doses determined after a
prolonged sunlight bleaching of 3 days and 10 days, respectively. Although these
experimental conditions still do not consider repeated relocation cycles, they repre-
sent a significantly better model of natural bleaching conditions. For both experi-
mental settings and for all investigated samples, the residual doses are significantly
lower than those of the artificial-bleaching experiment. An average residual dose
of 9.7 ± 0.3 Gy could be determined for the 3-days-bleaching experiment and an
even lower mean value of 6.6 ± 0.4 Gy for the sunlight exposure time of 10 days.
Apart from a few exceptions (for 3 days: BT 1103, BT 1335 and BT 1336; for 10 days:
BT 1107), the internal variances of residual doses are extremely low for the individ-
ual samples. The same applies to the sample-to-sample variation when compar-
ing the mean residual doses determined for the individual samples. In contrast to
some previous studies reporting that samples with higher De values tend to show
higher residual doses (e.g., Buylaert et al., 2012b; Schatz et al., 2012; So-
hbati et al., 2012), our data do not give any evidence indicating a correlation
between De and residual dose.

For a bleaching time of 10 days, the calculated average residual doses correspond
to percentages of only 0.7% to 1.5% of the respective equivalent doses (1.0% – 2.2%
for a bleaching time of 3 days). These low portions indicate that the residual doses
determined for the samples investigated in this study are negligible compared to
the measured equivalent doses and, thus, are of little relevance to the age calcula-
tion. As the sources of residual doses are only poorly understood and as there is
still an ongoing debate on which correction method might be the most appropri-
ate (e.g., Buylaert etal., 2012b; Li et al., 2013, 2014), we decided not to correct
for residual doses at all.
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5.4.4 Fading rates and fading correction

The effect of anomalous fading of IRSL signals (e.g., Wintle, 1973) has long
been identified to be a major issue of luminescence dating using feldspar miner-
als. If not corrected for, anomalous fading may result in a considerable underesti-
mation of equivalent doses causing incorrect age determinations (e.g., Spooner,
1994a). During past years, various post-IR IRSL approaches have been proposed
and tested in order to overcome these problems (e.g., Thomsenetal., 2008; Buy-
laert et al., 2009; Thiel et al., 2011a; Li & Li, 2011). Ever since, many studies
have successfully been applying these approaches showing their potentials to re-
duce the degree of fading, indicated by significantly lower g-values (e.g., Rades
et al. (2016) – g-values of 0.1 ± 0.2 to 1.2 ± 0.2 %⁄decade; Colarossi et al. (2015)
– all g-values less than 1.5 %⁄decade; Trauerstein et al. (2014) – average g-values of
1.1 ± 0.9 to 2.5 ± 0.6 %⁄decade; Buylaert et al. (2012b) – average g-value of 1.44 ±
0.03 %⁄decade for postIRIR−290-protocol; Sohbati et al. (2012) – average g-value
of 0.94 ± 0.07 %⁄decade). Based on the finding that similar g-values could also be de-
termined for quartz samples (e.g., Buylaert et al., 2012b) such low fading rates
of approximately 1-1.5 %⁄decade are often regarded as laboratory artifacts (e.g., Thiel
et al., 2011a; Buylaert et al., 2012b; Roberts, 2012). As a consequence, lu-
minescence signals derived from post-IR IRSL protocols are interpreted as not af-
fected by anomalous fading and consequently the need for applying a fading correc-
tion procedure is questioned (e.g., Colarossi etal., 2015; Trauerstein etal.,
2014; Thiel et al., 2011b).

The degrees of fading determined for the feldspar separates analyzed for the
study in hand, however, show much higher values for all investigated samples. In
order to assess the benefit of applying a post-IR IRSL protocol, post-IR IRSL fad-
ing rates are typically compared with those derived from conventional IRSL pro-
cedures at 50°C. Due to restricted measurement time we were not able to perform
independent IR50-measurements. Thus, g-values for the IR50-signal were derived
from the IRSL steps at 50°Cperformed as part of the pIRIR225-measurements prior
to the pIRIR225-readout (e.g., Buylaert et al., 2012b; Lowick et al., 2012;
Preusser et al., 2014). As these IR50/225-signals are affected by the specific ther-
mal treatment applied during the pIRIR225-measurement, we have to consider that
the calculated values may not represent the true g-values that would have been de-
rived from stand-alone IR50-procedures. However, they may at least serve as suit-
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able approximation and give a sufficient evaluation of the post-IR IRSL perfor-
mance.

The determined laboratory fading rates for both, the IR50/225-signals and the
pIRIR225-signals, are summarized in Table 5.5. As the calculated g-value slightly
depends on the time between irradiation and IRSL-readout (e.g., Huntley &
Lamothe, 2001; Auclair et al., 2003), all g-values in this study were normal-
ized to a delay time of tc = 2 days to allow inter-sample comparisons.

Laboratory fading rates of the IR50-signals range from 5.75 ± 0.07 %⁄decade for sam-
pleBT 1102 to amaximumof9.46±0.09 %⁄decade for sampleBT 1108. For thepIRIR225-
protocol all calculated g-values are significantly lower, showing aminimum of 2.67
± 0.17 %⁄decade for sample BT 1335 andmaximum values of 4.02 ± 0.12 %⁄decade for sample
BT 1108 and 4.05 ± 0.26 %⁄decade for sample BT 1103. Whereas the inter-aliquot scatter
is quite low for all investigated samples (indicated by lowuncertainties for themean
g-values calculated by averaging the individual g-values of 3 aliquots of the same
sample), the mean g-values of different samples are characterized by a large variety
not showing any kind of systematic pattern (i.e., high as well as low g-values can be
found for both, old and young samples). The fading rates of samples originating
from the same outcrop showwide relative differences of up to almost 40% (BT 1102
compared to BT 1103 with both originating from the same T3-location). Overall,
these results clearly indicate severe problems inmaking reliable g-value assessments
and thus support the conclusion that measurement protocols are required which
avoid the need for a fading correction procedure.

Comparing the g-values of the IR50/225- and the pIRIR225-signals, the pIRIR225-
approach at least seems to be able to reduce the impact of anomalous fading for the
investigated samples, indicated by the fact that pIRIR225 g-values are generally half
of those calculated for the IR50/225-signals. The laboratory pIRIR225 fading rates de-
termined for this study are, nonetheless, still far away from those g-values regarded
as measurement artifacts in other studies. Therefore, the determined equivalent
doses may most likely still suffer from a distinct loss of luminescence signal and
carry the risk of serious age underestimations. Despite the general concerns about
the suitability of fading correction procedures (e.g., Wallinga et al., 2007; Lo-
wick et al., 2012; Preusser et al., 2014), we, therefore, decided to calculate
fading corrected ages following the approach proposed byHuntley&Lamothe
(2001), the dose rate correction (DRC)method of Lamothe et al. (2003) as well
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as the procedure introduced by Kars et al. (2008). While the linear correction
method of Huntley & Lamothe (2001) yielded comprehensible results for all
samples investigated in our study (apart from BT 1102 and BT 1103), the latter two
approaches either couldnot successfully be applied toourdatasets at all or provided
fading corrected ages that were far beyond the range of ameaningful interpretation
of ages when considering the geomorphic and stratigraphic setting. The reasons
for this failure in applying the Kars et al. (2008) and Lamothe et al. (2003)
models are not clear so far and require further investigation. Thus, only the fading
corrected ages following Huntley & Lamothe (2001) are presented in Table 5.5
along with the uncorrected pIRIR225-ages.
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5.4.5 Luminescence ages

Calculated ages with additional information are summarized in Table 5.5 (feldspar
samples) and Table 5.4 (quartz samples). With no specific age model being applied
(see section 5.3.2), all luminescence ages are derived from mean equivalent doses
divided by the dose rate determined for the specific sample. The dose rate data is
compiled in Table 5.3.

5.4.5.1 T3-terrace-level: deviatingOSL-andpIRIR225-ages

TheT3-terrace level is the youngest fluvial terrace investigated in this study. A total
of four luminescence samples were taken at two different sites. While samples BT
1102 and BT 1103 were collected from a natural outcrop in the middle section of
the valley, samples BT 1107 and BT 1108 came from a construction site close to the
present day drainage divide.

Previous regional studies (e.g., Zöller et al., 2012a,b) dealt with Pleistocene
cover sediments overlaying the T3-terrace gravels. Findings from these studies and
further unpublished data (pers. comm. Ludwig Zöller (2015) about high dose ex-
periments on quartz separates from the study area) suggested the quite exceptional
possibility that quartz minerals might be a suitable dosimeter even for fluvial de-
posits expected to be of pre-Eemian age. Therefore, we decided to apply both,
quartz based OSL-dating as well as post-IR IRSL measurements of feldspar sep-
arates.

The quartz ages are summarized in Table 5.4. Within errors, all quartz samples
reveal identical ages in a range of approximately 92 ka up to 118 ka, indicating a
terrace formation at the transition between the Eemian (MIS 5e) interglacial period
and the early Würmian (Weichselian). When comparing the ages for the different
sampling locations, no significant discrepancies can be identified. As sample BT
1107 was taken at the base of the terrace gravel accumulation and BT 1108 at its
top (see sampling depths in Table 5.1), the observed offset of approximately 26 ka
between the mean ages of both samples is in good agreement with their specific
sampling positions.

These relatively young ages, however, would be contradictory to well
documented and repeatedly confirmed (e.g., Kleber & Stingl, 2000; Zöller
et al., 2012a,b) findings based on morphostratigraphic investigations pointing to
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theT3-terrace being ofRissian (i.e. MIS 6) origin (e.g., Kleber etal., 1988; Veit,
1991). Furthermore, they are in conflict with results of recently published studies
(e.g., Kolbetal., 2016, 2017)whichwere able to constrain a timeframe for the for-
mation of the youngest Würmian terrace (T2 level). Both studies identified stages
of pronounced fluvial morphodynamics during the early Würmian phase as well
as during the Lower andMiddle Pleniglacial and concluded that the accumulation
of the T2 terrace in the lowermost part of the valley started at approximately 90 ka.
As T2- and T3-terrace levels are developed as clearly distinct geomorphic features
divided from each other by a pronounced difference in elevation ofmore than 10m,
it is hardly conceivable that the beginning of T2-terrace accumulation and the end
of T3-terrace forming should have taken place more or less at the same time.

Thus, we strongly doubt that the quartz OSL results give a reliable age estima-
tion of the T3-terrace formation. On the contrary, the above described findings,
indicating rather problematic luminescence properties of the quartz separates, sug-
gest that the investigated quartz samples may most likely suffer from distinct satu-
ration effects and that the presented OSL ages have to be interpreted as minimum
ages.

Table 5.4: Results for OSLmeasurements applied on coarse grained quartz separates. Sam-

ple codes, number of aliquots, total dose rates, equivalent doses andOSL ages. The ratio of

aliquots that could be used for equivalent dose determination to the total number of mea-

suredaliquots indicates the ratherproblematic luminescencepropertiesof the investigated

quartz samples.

Sample n/Na PHTb Ḋtotal Equivalent dose Luminescence
[Gy/ka]d De [Gy] age [ka]c

T3-terrace samples
BT 1102 20/48 200°C 2.94 ± 0.19 307.34 ± 25.98 104.4 ± 11.2
BT 1103 24/47 220°C 2.44 ± 0.17 229.45 ± 20.98 94.1 ± 10.8
BT 1107 18/24 200°C 2.34 ± 0.15 276.13 ± 21.25 118.0 ± 11.9
BT 1108 8/33 220°C 3.41 ± 0.23 314.35 ± 41.40 92.1 ± 13.7

a n = number of aliquots passing the rejection criteria and used for equivalent dose determina-
tion; N = total number of measured aliquots.

b PHT=Preheat temperature. Using themeasured-to-given dose ratio, individual preheat tem-
peratures were derived for each sample from a combined preheat and dose recovery test.

c OSL ages were calculated using mean De values without applying any specific age model.
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This interpretation is supported by the uncorrected as well as by the corrected
pIRIR225-ages depicted in Table 5.5. Both show significantly older ages compared
to the quartz based measurements. For samples BT 1107 and BT 1108 the uncor-
rected pIRIR225-ages are slightly higher than those derived from the respective
quartz separates. With 106.6 ± 10.6 ka, BT 1108 also underestimates the expected
pre-Eemian age by several ten thousand years, whereas the age derived for sample
BT 1107 (142.3 ± 14.9 ka) suggests a terrace accumulation during MIS 6. Indicated
by relatively large g-values, these uncorrected ages, however, may most likely suffer
from anomalous fading. With 193.8 ± 21.7 ka (BT 1107) and 160.2 ± 16.4 ka (BT
1108), the corrected ages are in agreement with the morphostratigraphic findings
and point to a T3-terrace accumulation during either MIS 6 or the late MIS 7.

When discussing about the accuracy of this estimation, one has to consider that
the applied fading correction model of Huntley & Lamothe (2001) was origi-
nally developed for the low dose region. As such, the method is actually limited
to relatively young samples with natural signals in the linear part of the dose re-
sponse curve. Huntley & Lamothe (2001) themselves strongly advise against
applying their model to samples older than approximately 20 - 50 ka. On the other
hand, Buylaert et al. (2011) successfully used this correction method on sam-
ples of Eemian (MIS 5e) age and suggested that it might be able to apply the model
to equivalent doses even in the non-linear part of the dose response curve up to
200Gy. This conclusion is supported by findings for another Eemian site inNorth-
ern Russia (Buylaert et al., 2008) for which ages based on themodel of Hunt-
ley & Lamothe (2001) are in excellent agreement with ages calculated with the
DRC approach proposed by Lamothe et al. (2003).

For our samples, problems may arise from the fact that the equivalent doses are
higher than 400 Gy and, thus, far beyond the upper limit of 200 Gy mentioned
as probably unproblematic in the above cited studies. Therefore, the error intro-
duced by applying the model of Huntley & Lamothe (2001) might most likely
be larger for our samples than for those investigated by Buylaert et al. (2011),
what on the other hand might partially be compensated by the fact that applying
the pIRIR225-protcol was able to reduce the g-values needed for the correction in
our study (similar idea already mentioned by Sohbati et al. (2012); with refer-
ences therein). However, this is just an assumption and cannot be verified at this
moment. Therefore, we state that the fading correction applied in this studymight
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be insufficient and, as a result, our corrected ages may still underestimate the true
ages. Referring to the encouraging results presented by Buylaert et al. (2008)
and Buylaert et al. (2011) and additionally supported by the conformity with
themorphostratigraphic findings in our study area, we strongly believe that the cor-
rected ages for samples BT 1107 andBT 1108 canbe assessed as reliable estimates that
allow constraining a chronological framework for the T3-terrace accumulation.

Although challenging, the samples from the upper reaches of the valley at least
yield ages in accordance with findings of previous studies and fit to the landforms
identified in the study area. This does not apply to the pIRIR225-results gained
from the T3-terrace samples of the middle part of the valley. The corrected age of
428 ± 50 ka determined for sample BT 1103 is far beyond a realistic age range for a
meaningful interpretation. The same is true for sample BT 1102, at least when con-
sidering the stratigraphical and geological settings. The age of 267 ± 27 ka would
point to a terrace formation during MIS 8 and would, thus, agree with age esti-
mations expected for the T4-terrace level. If the age of approximately 267 ka for
sample BT 1102 was assumed to be correct, the only possible conclusion would be
that the classification as T3-terrace location was wrong. Such a misinterpretation
might be attributed to the rather small difference in elevation between the T3- and
the T4-terrace level of not more than a few meters. If this rather unlikely explana-
tion proved true, the sampling locationwould need to be re-classified as T4-terrace
site. However, this conclusion is clearly disproved by the lithological composition
of the respective terrace gravels. Kleber & Stingl (2000) showed that T5- and
T4-terrrace gravel can be identified by iron agglutinated gravels indicative of the
headwaters of the Red Main River. These so called limonite sandstone gravels are
completely missing in samples collected for analyzing the petrographic composi-
tion of the controversial location (e.g., Kolb et al. (2017) and supported by field
evidence). Thus, the location of samples BT 1102 and BT 1103 is clearly identified
as T3-terrace site.

Another striking argument against the reliability of the determined ages for both
samples is the large age difference when comparing the samples. With approxi-
mately 83 ka, this difference is already obvious for the uncorrected ages and even
more pronounced for the corrected ages (161 ka). Considering the fact that BT 1102
and BT 1103 were collected more or less at the same position within the profile (see
depths in Table 5.1 and Figure 5.2), this distinct offset cannot be explained only by
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different accumulation times.
For the T3-terrace site in the middle section of the valley we, thus, have to sum-

marize that our pIRIR225-results are not reliable and that we are not able to draw
any meaningful conclusions concerning the age of this landscape feature. The rea-
sons for this failure are not clear so far and require further investigations. However,
as the quartz samples do not show a similar overestimation, there might be a seri-
ous problem either with the applied pIRIR225-protocol or with the used feldspar
dosimeter.

5.4.5.2 T4- and T5-terrace – distinct terrace levels or
simultaneous accumulation?

Determining the ages for the two oldest Pleistocene terrace levels is both, method-
ologically challenging andof special importance for the reconstructionof thepalaeo-
environmental evolution in the study area. There are no independent age con-
trols for these terrace levels and the morphostratigraphic findings are rather poor.
Based on the number of palaeosols embedded into periglacial slope sediments su-
perimposing terrace gravels, Veit (1991) was able to derive a rough chronological
estimation for the different terrace levels (e.g., Kolb et al., 2016). Interpreting
two fossil soils as indicators of two distinct interglacial stages, he concluded that
the T4-terrace must have been accumulated during the ’third-last glacial period’.
Following a similar approach, Kleber & Stingl (2000) were able to derive their
landscape evolution model (e.g., Kolb et al., 2016, 2017). Based on analyzing a
complex sequence of cover sediments that had already been described by previous
studies (Kleber et al., 1988), they suppose the T5-terrace to be of even older age
and assigned it to the ’forth-last glacial period’. However, neither Veit (1991) nor
Kleber & Stingl (2000) make a clear statement about its possible age. Thus,
we only can assume that ’third-last glacial period’, which is employed for the T4-
accumulation stage, should correspond toMIS 8, while the term “forth-last glacial
period” might be equivalent to MIS 10.

The corrected pIRIR225-ages of 250.2 ± 24.2 ka (BT 1336) and 344.4 ± 36.9 ka
(BT 1335) determined for the T4-terrace samples are in a range roughly correspond-
ing to MIS 8 and MIS 10, respectively. With both showing rather large standard
errors, a precise assignment of the terrace accumulation to either one or the other
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marine isotope stage is hardly possible. The mean value for BT 1336 corresponds
rather clearly to the glacial maximumofMIS 8 and evenwhen including the errors,
sample BT 1336 hasmost likely to be allocatedwithin this stage. In contrast, sample
BT 1335 could either be assigned to the transition period betweenMIS 9 andMIS 8,
to MIS 9 or even to MIS 10, depending on whether the real age is considered to be
near the mean value, the lower or the upper error margin. The mean values of
both samples differ quite significantly by more than 90 ka. As BT 1335 was taken
near the base level and BT 1336 from the middle part of the profile, they represent
different phases of terrace accumulation. When looking at the exact sampling po-
sitions which only differ by approximately 70 cm, this can only partially explain
the observed difference of 90 ka. Similar to the situation described above for the
T3-terrace, there might again be a problem with either the feldspar dosimeter or
the pIRIR225-protocol.

Due to the limited precision of the determined ages, it is extremely difficult to
give a final estimation distinctly constraining the T4-terrace formation to a specific
marine isotope stage. At least sample BT 1336 points to a terrace accumulation dur-
ing MIS 8 and is not clearly contradicted by the result obtained for BT 1335. Thus,
we conclude that the T4-terrace level is most likely to be associated with MIS 8 or
to a transition period between MIS 9 and MIS 8. In this respect, the numerical
dating results from this study confirm themorphostratigraphic age estimations for
the T4-terrace level made by previous studies.

With values of 262.9 ± 29.0 ka (BT 1125) and 292.8 ± 33.1 ka (BT 1126) the ages
determined for the T5-terrace samples are identical within errors. The difference
in the mean values may be explained by the fact that BT 1126 originates from the
base of the outcrop, while BT 1125 was located slightly higher in the profile. Nev-
ertheless, both samples show rather large errors. Due to these errors, we are once
again faced with major difficulties in establishing a precise time frame for the T5-
terrace accumulation. If the above made assumption was true that the term ’forth-
last glacial period’ is synonymous toMIS 10, ages of approximately 340 ka to 380 ka
would be expected. The corrected pIRIR225-ages of BT 1125 and BT 1126 do clearly
not match to this expected age range. On the contrary, within errors they perfectly
agree with the corrected ages determined for the T4-terrace samples and indicate
that the T5-terrace formation should have taken place rather during MIS 8 than
MIS 10.
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The finding that ages derived from theT5-outcrop cannotbedistinguished from
those calculated for the T4-samples, suggests different plausible interpretations.
First, it seems possible that the so far well established discrimination of the T4-
and T5-terrace levels was simply wrong. In that case, different T4- and T5-sites
would indeed represent the very same fluvial terrace which was most likely accu-
mulated duringMIS 8. This conclusion is supported by the fact that recent studies
were not able to identify terrace sequences including both terrace levels at the same
time (e.g., Kolb et al., 2017). Despite intensive field work, only sequences in-
cluding T2-, T3- and T5-accumulations could be found in the lowermost section
of the Trebgast valley, while no location could clearly be classified as T4-terrace
site. In the upper reaches, the situation seems to be entirely different: with the
T5-terrace completely missing, there are several locations only exposing well pre-
served sequences of T2- up to T4-terrace gravels. Computer based analyses of data
gained from a high-resolution digital terrain model (DTM) proved that locations
within the Trebgast valley marked as T5- and T4-sites are often only distinguished
fromeach other by slight differences in elevation, typically not exceedingmore than
a few meters. With respect to the considerable difficulties in following a specific
terrace-level over long distances, a misinterpretation of terrace levels at least seems
possible. This conclusion, however, is in contrast to findings from the headwaters
of the nearby Red Main valley where T4- and T5-terrace levels can both be iden-
tified, separated by a pronounced difference in elevation of more than 10 m (e.g.,
Kleber et al. (1988); Kleber & Stingl (2000); confirmed by results from an
unpublished BSc-thesis by Friedl (2014)).

Alternatively, T4- and T5-terrace levels can still be classified as separate terraces
of nearly the same age. In principal assigned to the same glacial period (MIS 8), they
may represent different accumulation stages during this glacial period that were in-
terjected by a relatively short period of fluvial incision. This interpretation would
be in accordance with the stratigraphic findings from the adjacent RedMain valley
and would also match to the numerical dating results presented in this study. The
large standard errors and the corresponding low precision of the determined sedi-
mentation ages, however, make it impossible to distinguish the individual phases.

Furthermore, the apparent synchronicity in T4- and T5-accumulation might
also be attributed to undetected sedimentological problems. The T4-terrace sam-
ples were taken from a very compact body of coarse-grained fluvial gravels showing
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an average thickness of several meters and covered with approximately 1.5 meters
of periglacial hillslope sediments. The T5-terrace site, on the other hand, was char-
acterized by rather loosely deposited gravel sediments located directly underneath
the present-day surface. The upper boundary of the fluvial gravels was just covered
by a 30-40 cm thick sandy soil. While a significant contamination with younger
material due to bioturbation or soil forming processes can be excluded for the T4-
terrace site, such a contamination appears to be possible for the T5-terrace grav-
els. The calculated age would then seriously underestimate the true sedimentation
age of the T5-terrace. When using so called small aliquots, such a contamination
might be identified by strongly skewed equivalent dose distributions, which have
not been determined for the T5-samples under debate. However, Trauerstein
et al. (2014) were able to demonstrate that there is an averaging effect when using
small aliquots of potassium-rich feldspars. This averaging effect masks the effects
of partial bleaching and, thus, makes the identification of a contamination with
younger material considerably more difficult if not even impossible. As we can nei-
ther deny nor confirm a considerable contamination of the T5-samples, we cannot
exclude the possibility of a significant age underestimation. If we assumed such a
contamination, the analyzed T5-terrace would be much older than calculated and
might even be assigned to MIS 10. However, this is only one possible scenario and
so far not supported by any additional evidence. To test this hypothesis, more suit-
able T5-exposures need to be investigated.

Finally, the unexpected result that T4- andT5-terrace seem to be of the same age
might also be explainedbyunknownmethodological problems. Althoughpost-IR
IRSL approaches have successfully been applied by numerous studies, it has to be
pointed out that significant problems remain unanswered. Far away from being a
standard tool for sediment dating, the pIRIR-protocol is still not fully understood
and its basic principles are still under debate (e.g., Li etal., 2014). The same is true
for the phenomenon of anomalous fading in general and for the various correction
methods. Li et al. (2014) summarize that the majority of studies that were suc-
cessfully applying pIRIR-approaches dealt with relatively young samples between
20 and 100 ka. For older samples associated with higher equivalent doses, post-IR
IRSL measurements seem to be less successful. In our study, problems may arise
from the fact that all investigated T4- and T5- samples showed equivalent doses of
more than 700 Gy and even up to nearly 1000 Gy. While these high equivalent
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doses might be the reason for so far unknown problems arising from applying the
pIRIR225-protocol, they will in any case affect the performance of the applied fad-
ing correction method and may most probably introduce large and hard to assess
errors.

Regarding the oldest Pleistocene terrace levels, our results indicate a simultane-
ous accumulation of T4- and T5-terrace during MIS 8. This result partially con-
firms and partially contradicts morphostratigraphic findings from older studies.
However, due to possible methodological problems and with respect to the large
uncertainties determined for our ages, the results presented in this study need to be
taken with caution. Therefore, this study represents a further step towards the es-
tablishment of a chronological framework for the landscape evolution in our study
area, but a final age constraint for the older terraces is so far not possible.

5.5 Conclusion

This study applied quartz based OSL dating and pIRIR225-measurements
performed for potassium-rich feldspar separates to a total of 8 samples, originating
from various fluvial terraces expected to be of pre-Eemian (MIS 5e) age. All quartz
samples were in or close to saturation and thus yielded no reliable age estimations.

By applying the pIRIR225-protocol we were able to considerably reduce the lab-
oratory fading rates determined for the investigated feldspar samples. However,
anomalous fading expressed in terms of g-values still remained significant. Thus,
fading correctionmethods had to be applied. Due to so far unknown reasons only
the model proposed byHuntley& Lamothe (2001) could successfully be used,
whereas theDRC correction after Lamothe etal. (2003) as well as the correction
approach of Kars et al. (2008) failed.

The corrected pIRIR225-ages partially agree with morphostratigraphic findings
of previous studies. They indicate two distinct periods of terrace formation, iden-
tifying the T3-terrace level as landscape feature accumulated during MIS 6 and
roughly assigning the two oldest fluvial terraces (T4 and T5) to either MIS 8 or
to a transition period from MIS 9 to MIS 8. With respect to the T5-terrace level,
we were not able to confirm conclusions of previous studies classifying the terrace
gravels as fluvial deposits of even older age corresponding toMIS 10. However, the
relatively large uncertainties associated with the calculated ages in this study make
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the interpretation of results considerablymore difficult. Thus, alternative interpre-
tations might be possible. A precise chronological framework, finally constraining
the different stages identified for the complex landscape evolution in our study area,
requires further investigations including new sampling sites in the Trebgast valley
itself as well as within the adjacent Red Main valley.

From a methodological point of view, promising findings of other studies that
elevated temperature post-IR IRSL protocols can reduce anomalous fading to a
negligible level for which no fading correction is needed any more, cannot be con-
firmed for the samples analyzed in this study. On the contrary, inconsistencies in
the determined ages indicate that the pIRIR225-approach used in our study might
be limited by either seriousmethodological problems or problematic luminescence
properties of the used feldspar dosimeters. Our results, therefore, point to the
necessity of new measurement procedures circumventing the problems associated
with anomalous fading and its various correction methods. New technical devel-
opments and recent methodological findings with regard to infrared radiofluores-
cence (IR-RF) of K-feldspar (e.g., Frouin et al., 2017) point to the encouraging
possibility that such an approach might be available in the near future.
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6
Synthesis

The studies of Part II summarize the results of scientific investigations performed
in an area that has been the subject of geoscientific research for over a century. De-
spite this long lasting research history, the knowledge about the timing of distinct
evolutionary stages and about the dynamics of the regional fluvial system was still
insufficient and limited. With respect to chronological problems, the whole re-
gion of Upper Franconia and, in particular, the area in the vicinity of the city of
Bayreuth are characterized by a remarkable lack of studies applying numerical dat-
ing techniques.

Referring to previous studies, our research project aimed at filling this gap and at
providing information on the age of fluvial landscape features and on the dynam-
ics of the fluvial evolution in a region dominated by the two headwater streams
of the Main drainage system. Over all, the project intended to shed light on the
Pleistocene landscape evolution as well as on the increasing human impact on the
Holocene development. As an essential part of the research project, the major
goal of the presented PhD-thesis was to apply well established and innovative tech-
niques of luminescence dating to challenging environmental archives in order to
derive a regional chronological framework for the distinct evolutionary stages of
terrace accumulation described for the local drainage system by previous studies
(e.g., Kleber & Stingl, 2000; Zöller et al., 2007). Thereby, the individual
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studies focus on specific problems, which are reflecting the history and the particu-
lar workflow of our research project.

Study 1 (page 79 – 108) represents the starting point of the project. It is focussing
on the youngest Pleistocene fluvial terrace accumulated by the primary Steinach
River during the Wuermian (Weichselian) period (T2 terrace level). At this point
of the project, only a few locations were available from which we could get ade-
quate sample material directly originating from the terrace gravels. Thus, we tried
to derive indirect age information on the accumulation of the T2-terrace gravels by
dating hillslope sediments superimposing the T2-gravels. With luminescence ages
of ~20 ka to ~30 ka for the hillslope sediments, our results pointed to a T2-terrace
accumulation period which was much older than expected. As a consequence, our
dating results were apparently contradicting the findings of previous studies (e.g.,
Kleber et al., 1988; Kleber & Stingl, 2000; Zöller et al., 2007), which
were attributing the T2-terrace formation to the last glacial maximum (LGM) at
~20 ka.

The correctness of our luminescence ages, however, was confirmed by indepen-
dent age controls based on radiocarbon dating of whorl fragments of shells from
Pupilla genus. These shells were sampled from a mollusk assemblage detected in a
loess-bearing slope detritus in the middle section of the Trebgast Valley. The mala-
cological analysis of this unique community of fossil terrestrial mollusks, which
showed a surprising variety of species, so far not reported for the region of northern
Bavaria, revealed additional informationon thepalaeoenvironmental conditions in
the research area.

In this early stage of our project we were strongly concentrating on finding and
characterising new exposures, providing suitable material for luminescence dating.
Thereby, we were able to investigate the composition of gravels for the various ter-
race levels by applying qualitative petrographic analyses. These analyses confirmed
findings of previous studies (e.g., Kleber et al., 1988; Kleber& Stingl, 2000)
and furthermore refined our knowledge about the characteristic petrographic com-
positions of the various gravel beds, which can be used to distinguish different evo-
lutionary stages.

This is particularly true for the distinct differences between the composition
of gravels found in the main valley to those gravels analysed in the Lindau Basin.
We were able to show that the basin gravels revealed completely different grain

180



size distributions and were characterized by a complete lack of metamorphic grav-
els, which would have been indicative of the Steinach River’s catchment area (e.g.,
Brindel, 2012; Urban, 2013). These new findings allowed us to overcome the ap-
parent discrepancies between our dating results and age estimations made by pre-
vious studies (e.g., Zöller et al., 2007). Although the Lindau Basin was cor-
rectly identified as key site for the reconstruction of the late Pleistocence and early
Holocene evolutionof the valley (e.g., Zölleretal., 2007), it has obviously been
misinterpreted for several decades (e.g., Steinlein, 1938; Gräbner, 1963, 1985;
Kleber & Stingl, 2000). We were able to show that the assumption of the Lin-
dau Basin having been eroded by a meander of the primary Steinach River, which
is suggested by the terrace levels observed in the basin (e.g., Kleber & Stingl,
2000), is wrong or at least implausible1.

If this assumption is wrong and the basin has been eroded by a small tributary
river originating within the basin itself, the development of the Lindau Basin is
completely decoupled from the final deflection of the Steinach River. Based on
this finding, it was possible to overcome the apparent contradiction between our
dating results and previous age assessments. As a consequence, we were able to
draw the essential conclusion that a significantly higher age for the final deflection
of the primary Steinach River could be possible.

In some respect, this conclusion represents the starting point for further inves-
tigations summarized in Study 2 (see page 109 - 132). Like Study 1, this study also
focused on the youngest Pleistocene Steinach terrace identifiedwithin theTrebgast
Valley. Luminescence dating was, however, applied on samples directly originating
from either natural exposures or temporal outcrops of the T2-terrace gravels. The
sampling sites were thereby allocated in all sections of the valley. Therefore, we
were able to derive age information for a set of various locations throughout the
river’s longitudinal course.

From a regional point of view, the essential outcome of our investigations is sum-
marized by the finding that we were not able to identify any T2-terrace material
within the main Trebgast Valley that was younger than ~30 ka. Only samples close
to the present day watershed in the southernmost part of the valley revealed ages
of ~20 ka in minimum. Therefore, we concluded that the primary Steinach River

1I would like to point out that even Steinlein (1938) alreadymentioned that hewas not able to
detect any gravels within the Lindau Basin that could beyond doubt be attributed to the Steinach
River.

181



Synthesis

N

Additional stage (~30 ka to ~20 ka)

Red Main River

Red Main River
Steinach River
Steinach River

BayreuthBayreuth

BindlachBindlach

Red M
ain River

Red M
ain River

Layout: Kolb (2017); Basemap: Lang (2015)
Datasource: Bayerisches Landesamt für Digitalisierung,
Breitband und Vermessung (2005 & 2009)

0 1 2 km0 1 2 km

Figure 6.1: Additional evolutionary stage for the local drainage system proposed by Kolb

et al. (2016). This intermediate stadium comprised the period from ~30 ka to ~20 ka. Al-

though the primary Steinach River had already abandoned the main part of the Trebgast

Valley, it was not yet deflected to its present day course, but used the southernmost part of

the Trebgast Valley close to the present-day watershed. This additional stage is suggested

byavast alluvial fandepositedby theSteinachRiver. Only for thesefluvial sediments,which

are reaching far to the west, luminescence ages of ~20 ka could be determined.
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had abandoned the Trebgast Valley at some time shortly after 30 ka and thus much
earlier than assumed by previous studies (e.g., Kleber& Stingl, 2000; Zöller
et al., 2007).

Furthermore, the distinctly younger ages for the samples originating from the
watershed locations suggested that the primary Steinach River was not immedi-
ately deflected to its present day course after it had left the Trebgast Valley, but that
there has been an intermediate evolutionary stage. As a result of our findings, we
modified the regional landscape model originally proposed by Kleber & Stingl
(2000) by introducing an additional evolutionary stage for the period of ~30 ka to
~20 ka. During this relatively short period of time, the primary Steinach River had
already abandoned the main part of the Trebgast Valley, but still used the south-
ernmost part close to the present day watershed, flowing into the Red Main River
with its mouth at an unknown location further to the west. This configuration of
the fluvial alignment prevailed until the final deflection of the Steinach River to its
present-day course, which did not take place earlier than ~20-18 ka.

Beyond results of a mere regional interest, Study 2 also revealed findings that
bear the potential to be of general significance for fluvial geomorphology and for
age estimations of sediments in fluvial systems. Since we took samples from vari-
ous locations throughout the river longitudinal course, we were able to derive ages
for a set of samples that have been found to origin from the very same morpho-
logical unit. Surprisingly, luminescence ages of T2-terrace material from the low-
ermost part of the valley are significantly older than those from the middle section,
which in turn are older than those from the upper reaches. Our results suggest a di-
achronic alignment of sedimentation ages for fluvial deposits, startingwith old ages
close themouth of a river and getting progressively younger for locations approach-
ing the upper reaches. In Study 2, these results were attributed to the mechanism
of either backward erosion or backward accumulation. If these findings proved
true and were not only the result of very specific local conditions, they would indi-
cate the particular importance of careful interpretations of ages derived for fluvial
deposits. Then, they might generally be interpreted as evidence for a diachronic
rather than a synchronic response of river systems to external or internal forcing,
triggering erosion or accumulation processes.

Finally, Study 3 (page 133 – 176) deals with the older terrace levels (T3-, T4- and
T5-terrace levels) identified in the study area. As these terrace levels were supposed

183



Synthesis

to be of pre-Eemian age, innovative techniques of luminescence dating had to be
applied. Thereby, we were able to derive a reliable, but still preliminary chrono-
logical framework for these older evolutionary stages. However, our analyses also
revealed potentially serious methodological problems and indicate that further in-
vestigations are required.

From a regional point of view, the age estimations of previous studies (e.g., Kle-
ber et al., 1988; Veit, 1991; Kleber&Stingl, 2000), whichwere based onmor-
phostratigraphic and lithological evidence, could partially be confirmed. For the
older terraces, our dating results clearly indicate two distinct periods of terrace for-
mation. While the T3-terrace could be classified as landscape feature accumulated
duringMIS 6, a clear attribution of the T4- andT5-terrace to particularmarine iso-
tope stages proved to be challenging. Due to the limited precisions of our post-IR
IRSL ages2, they could only be roughly assigned to either MIS 8 or to a transition
period from MIS 9 to MIS 8.

Furthermore, it was not beyond doubt possible to confirm that the T4- and
the T5-terrace represent two distinct terrace levels, which was assumed by previ-
ous studies (e.g., Kleber& Stingl, 2000; Zöller et al., 2007). Although our
results, at first glance, indicate a simultaneous accumulation of T4- and T5-terrace
during a period comprisingMIS 8 andMIS 9, alternative interpretations might be
possible and were discussed in Study 3 (see page 173). In general, this PhD-thesis
provides an important refinement of knowledge about the timing and the dynam-
ics of the drainage system in the vicinity of the city of Bayreuth, which is summa-
rized inFigure 6.2. Withparticular respect to the older evolutionary stages however,
the local chronological framework established for the Trebgast Valley must still be
considered as preliminary.

From a more general point of view, the study is an excellent example for the im-
portance of applying multi-methodological research approaches, especially when
working in challenging environmental settings. Only the interplay of modern dat-
ing techniques and well-established sedimentological and lithological methods en-

2At this point, I would like to emphasize that the relative standard deviations of the calculated
pIRIR-ages were in the range of ~10% to ~11%. In general, such variances are not unusual for lumi-
nescence dating and with regard to fluvial sediments they might even be interpreted as evidence for
a rather good or at least normal precision. However, these relative standard deviations correspond
with absolute errors which make it impossible to clearly assign the samples to a distinct marine iso-
tope stage.
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hanced by analyses of high-resolution digital terrain models (DTM) made a mean-
ingful interpretation of results possible.

Since the accumulation of the older terrace levels was expected to reveal ages far
beyond the upper dating range of standard quartz based OSL methods, we had to
shift our attention to modern post-IR IRSL techniques, which are, in principle,
providing the opportunity of considerably extending the dating range of lumines-
cence procedures. These innovativemeasurement protocols, however, are still asso-
ciatedwith a substantial number of unanswered theoretical and practical problems.
From amethodological point of view, our results revealed some of these problems,
which were discussed in Study 3.

With particular respect to the problemof anomalous fading, we have to concede
that the post-IR IRSL approach at 225°C, which was used in this study, was only
partially successful in reducing the degree of fading for our samples. However, lab-
oratory fading rates were still far away from those values typically regarded as negli-
gible. Therefore, fading correction algorithms had to be applied, which introduced
additional uncertainties to our age estimations. Although post-IR IRSL protocols
are regularly regarded as not to be affected by anomalous fading at all, this overall
promising assumption might not be true for all environmental settings.

In that case, g-value determination will remain important in order to assess the
degree of fading and to apply correction procedures, even when using post-IR
IRSL approaches. As a result, our findings emphasize the great need for new mea-
surement procedures which are able to circumvent the problems associated with
anomalous fading and its various correction methods completely.

With respect to the major research questions formulated in Chapter 1 on page
10, our results can be summarized as follows:

1. Findings of previous studies could only partially be confirmed. Our results
point to a much more complex character of the local fluvial history, which
was not considered in previous studies.

2. In principle, it seems possible to successfully apply innovative techniques
of post-IR IRSL procedures to the older terrace sediments of the research
area. However, this PhD-thesis also revealed serious methodological prob-
lems that make the interpretation of ages significantly more difficult.
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7
Outlook

As alreadymentioned in the preface and in the introduction (Chapter 1), this PhD-
thesiswas part of a research projectwhich aimed at deriving information on the late
Pleistocene and earlyHolocene landscape evolution in the region ofUpper Franco-
nia, Northern Bavaria (Germany). Apart from natural geomorphic processes, also
the important role of mankind for landscape evolution dynamics was subject of
our scientific investigations. Given the wide range of topics associated with such a
research project, this PhD-thesis had to be restricted to a selection of suitable sub-
topics and is, therefore, focussing on defining a local chronology for the Middle
and Upper Pleistocene fluvial evolution, documented by the various terrace levels
identified within the Trebgast Valley.

Thus,many data collected in the past years could not be considered for this PhD-
thesis. As a consequence, there are several aspects not mentioned in the context of
the presented manuscripts at all, like the dating of Holocene floodplain sediments
and of colluvial deposits from which we were able to derive new insights into the
cultural history and the timing and dynamics of human settlements in our research
area. The discussion of other aspects mentioned in the manuscripts may, on the
other side, raise new questions, which can act as starting points for further research
activities.
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One of these aspects is the fact, already emphasized in Study 3, that the chro-
nology for the oldest terrace levels (T4- and T5-level) can still only be referred to
as preliminary. The interpretation of our results, which are pointing to more or
less equal ages of T4- and T5-terrace remnants, is considerably complicated by the
relatively large uncertainties associated with our luminescence ages. These uncer-
tainties may be caused by site specific problems, such as incomplete resetting of lu-
minescence signals due to partial bleaching, the incorporation of older unbleached
material from the weak upcoming sandstone rocks – both mechanisms may cause
significant age overestimations that could have affected theT4-terrace location – or
the contamination of terrace material by younger surficial sediments, which could
have happened for the less consolidated terrace material found at the T5-terrace
site. An approach to overcome these difficulties may include the strategy to inves-
tigate suitable gravel accumulations of fluvial terraces in the upper reaches of the
adjacent RedMainValley that have clearly been identified to correspond to the T4-
and T5-terrace levels found in the Trebgast Valley.

As already suggested in the conclusion section (5.5) of Chapter 5, the apparent
synchronicity ofT4- andT5-terrace accumulationmay, however, also be attributed
to so far unknown methodological issues of either the applied post-IR IRSL mea-
surement sequence or of the subsequent fading correctionprocedures. Preliminary
findings drawn from fading experiments provided evidence that the performance
of fading correction algorithms reacts extremely sensitive to slight changes in the
parameters used for the calculations. The determination of these parameters, e.g.
laboratory fading rates (g-values) or recombination centre densities (ρ′), strongly
dependson the specific settings applied to the fadingmeasurementprocedures (e.g.,
Wallinga et al., 2007; Morthekai et al., 2008; Kars et al., 2012).

Although some advices on how to perform fading measurements have already
been proposed (e.g., Auclair et al., 2003), so far there is no commonly applied
measurement procedure which includes a standardized sample pre-treatment. In
order to assess the influence of different measurement settings and to test if there
is an optimum combination of settings, systematic experiments considering a set
of varying measurement parameters, such as bleaching time and mechanism, stor-
age time, preheat treatment, administered dose and device specific dose rates, are
required.
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This time-consuming experiments once again emphasize the great need for al-
ternative measurement procedures which are able to avoid the problems associ-
atedwithpost-IR IRSLprotocols. Therefore, IR-radiofluorescencemeasurements
should be applied to current and future samples either originating from the Treb-
gast Valley or from the adjacent Red Main Valley. First preliminary test measure-
ments on material originating from T3-terrace samples, which were performed in
cooperation with Dr. Madhav Murari at the Justus-Liebig-University of Gießen,
yielded promising first results.

Overall, the findings and conclusions summarized in this PhD-thesis reveal a
rather local character, since theywereonlyderived fromsediments originating from
a small valley inUpper Franconia. Therefore, at this stage it cannotbe excluded that
they only reflect the local conditions of the sampling locations within a very spe-
cific environmental setting. In order to expand the perspective and to test whether
our findings may also allow amore generalizing interpretation, additional regional
scaled studies are required.

Particularly, this applies to the diachronic character of river incision proposed
in the study of Kolb et al. (2016) (see Chapter 4 on page 129). If this conclu-
sion could be confirmed for other fluvial systems, this might be of great general
relevance for geomorphological research in fluvial landscapes and of particular im-
portance for the interpretation of age estimations of fluvial sediments derived from
luminescence dating.

After all, similar findings, indicating the possibility of diachronically propagat-
ing incision impulses, have so far been reported for 10Be/26Al dating of fluvial ter-
races in the Ardennian valleys by Rixhon et al. (2011). However, additional lo-
cal and regional studies are indispensable to establish a reliable dataset that allows
a more generalizing interpretation of our findings. With a large and still growing
number of geomorphological studies, the Main River drainage system as a whole
represents a well documented and intensely studied fluvial system, which would
certainly be a good starting point for establishing such a dataset.
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A
Radionuclide conversion factors

The following table presents three commonly applied systemsof conversion factors
to calculate dose rate components based on radionuclide concentrations. In this
table the conversion factors introduced by Adamiec & Aitken (1998), Guérin
et al. (2011) and Liritzis et al. (2013b) are depicted as summarized on the Dose
Rate and Age Calculator (DRAC) homepage1. For this PhD-thesis only the
conversion factors of Guérin et al. (2011) were used, which are depicted in the
third column of the table.

1https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-
research-laboratory/dose-rate-calculator/?show=datatables&datatableid=1.
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Radionuclide conversion factors

Table A.1: Radionuclide conversion factors – alpha, beta and gamma dose rate compo-

nents [Gy ka-1] produced per unit of the parent radionuclide. As summarized on the DRAC-
homepagea, the respective values are given for 1 ppm uranium, 1 ppm thorium, 1 ppm ru-

bidium and 1% potassium.

Dose
component

Adamiec &
Aitken (1998)

Guérin et al.
(2011)

Liritzis et al.
(2013b)

Uα 2.78 ± 0.011 2.795 ± 0.011 2.793 ± 0.011
Thα 0.732 ± 0.003 0.738 ± 0.003 0.738 ± 0.003
Uβ 0.146 ± 0.0004 0.146 ± 0.0004 0.146 ± 0.0004
Thβ 0.027 ± 0.001 0.028 ± 0.001 0.028 ± 0.001
Kβ 0.782 ± 0.007 0.798 ± 0.007 0.801 ± 0.007
Rbβ 0.00038 ± 8.216E-6 0.00037 ± 8.0E-6 0.00037 ± 8.0E-6
Uγ 0.113 ± 0.0002 0.112 ± 0.0002 0.112 ± 0.0002
Thγ 0.048 ± 0.0002 0.048 ± 0.0002 0.048 ± 0.0002
Kγ 0.243 ± 0.005 0.249 ± 0.005 0.25 ± 0.005

a https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-
research-laboratory/dose-rate-calculator/?show=datatables&
datatableid=1;
accessed 2017-11-20.
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B
Attenuation factors

B.1 Grain size attenuation factors

The following tables contain shortened versions of the attenuation factor datasets
for alpha and beta particles provided on the homepage of the Dose Rate and
Age Calculator (DRAC)1. These datasets were calculated based on the data pub-
lished by Brennanetal. (1991) and Brennan (2003). Thereby, Durcanetal.
(2015) used smoothed spline functions for data fitting to generate datasets for grain
size ranges of 1-1000 µm. The tables are restricted to those grain sizes relevant for
this PhD-thesis and contain twodifferent correction factors. The attenuation factor
1-Φ(D) is used to correct external doses, while the absorption factor Φ(D) is applied
to internal doses (Durcan et al., 2015). Thereby, DRAC considers attenuation
factors from the minimum and maximum grain sizes provided by the user. Based
on these values, mean attenuation and absorption factors are calculated which are
then applied to the dose rate determination (e.g., Durcan et al., 2015).

1https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-
research-laboratory/dose-rate-calculator/?show=datatables&datatableid=2;
https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-

research-laboratory/dose-rate-calculator/?show=datatables&datatableid=3.
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Attenuation factors

Table B.1: Grain size attenuation factors for alpha particles according

toBrennan et al. (1991). The table is a shortened version of the dataset

on the DRAC-homepageb, restricted to those grain sizes relevant for
this PhD-thesis.Φ(D) = absorption factor; 1-Φ(D) = attenuation factor.

Grain
size
(μm)

Uranium Thorium Combined

Φ(D) 1-Φ(D) Φ(D) 1-Φ(D) Φ(D) 1-Φ(D)

... ... ... ... ... ... ...
4 0.083 0.917 0.072 0.928 0.077 0.923
5 0.105 0.895 0.089 0.911 0.097 0.903
6 0.126 0.874 0.106 0.894 0.116 0.884
7 0.148 0.852 0.124 0.876 0.136 0.864
8 0.169 0.831 0.141 0.859 0.155 0.845
9 0.191 0.809 0.159 0.841 0.174 0.826
10 0.212 0.788 0.176 0.824 0.194 0.806
11 0.234 0.766 0.193 0.807 0.213 0.787
... ... ... ... ... ... ...
90 0.840 0.160 0.800 0.200 0.819 0.180
91 0.841 0.159 0.802 0.198 0.821 0.179
92 0.842 0.158 0.804 0.196 0.823 0.177
93 0.844 0.156 0.806 0.194 0.824 0.176
94 0.845 0.155 0.808 0.192 0.826 0.174
95 0.846 0.154 0.810 0.190 0.827 0.172
... ... ... ... ... ... ...
195 0.918 0.082 0.911 0.089 0.914 0.086
196 0.918 0.082 0.911 0.089 0.914 0.085
197 0.919 0.081 0.912 0.088 0.915 0.085
198 0.919 0.081 0.912 0.088 0.915 0.084
199 0.920 0.080 0.913 0.087 0.916 0.084
200 0.920 0.080 0.913 0.087 0.916 0.084
... ... ... ... ... ... ...

b https://www.aber.ac.uk/en/dges/research/quaternary/
luminescence-research-laboratory/dose-rate-
calculator/?show=datatables&datatableid=2;
accessed 2017-11-20.

224

https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-research-laboratory/dose-rate-calculator/?show=datatables&datatableid=2
https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-research-laboratory/dose-rate-calculator/?show=datatables&datatableid=2
https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-research-laboratory/dose-rate-calculator/?show=datatables&datatableid=2


B.1 Grain size attenuation factors

Table B.2: Grain size attenuation factors for beta particles according to Brennan (2003).

The table is a shortened version of the dataset on theDRAC-homepagec, restricted to those
grainsizes relevant for thisPhD-thesis.Φ(D)=absorption factor; 1-Φ(D)=attenuation factor.

Grain
size
(μm)

Uranium Thorium Potassium Combined

Φ(D) 1-Φ(D) Φ(D) 1-Φ(D) Φ(D) 1-Φ(D) Φ(D) 1-Φ(D)

... ... ... ... ... ... ... ... ...
4 0.009 0.991 0.011 0.989 0.001 0.999 0.006 0.994
5 0.011 0.989 0.014 0.986 0.002 0.998 0.007 0.993
6 0.013 0.987 0.017 0.983 0.002 0.998 0.009 0.991
7 0.015 0.985 0.019 0.981 0.003 0.997 0.010 0.99
8 0.017 0.983 0.022 0.978 0.003 0.997 0.012 0.988
9 0.019 0.981 0.024 0.976 0.003 0.997 0.013 0.987
10 0.021 0.979 0.026 0.974 0.004 0.996 0.014 0.986
11 0.022 0.978 0.029 0.971 0.004 0.996 0.015 0.985
... ... ... ... ... ... ... ... ...
90 0.09 0.910 0.125 0.875 0.034 0.966 0.072 0.928
91 0.091 0.909 0.126 0.874 0.034 0.966 0.073 0.927
92 0.092 0.908 0.127 0.873 0.034 0.966 0.073 0.927
93 0.092 0.908 0.128 0.872 0.035 0.965 0.074 0.926
94 0.093 0.907 0.129 0.871 0.035 0.965 0.074 0.926
95 0.093 0.907 0.129 0.871 0.035 0.965 0.075 0.925
... ... ... ... ... ... ... ... ...
195 0.148 0.852 0.199 0.801 0.074 0.926 0.125 0.875
196 0.148 0.852 0.199 0.801 0.074 0.926 0.126 0.874
197 0.149 0.851 0.200 0.800 0.075 0.925 0.126 0.874
198 0.149 0.851 0.201 0.799 0.075 0.925 0.127 0.873
199 0.150 0.850 0.201 0.799 0.075 0.925 0.127 0.873
200 0.150 0.850 0.202 0.798 0.076 0.924 0.128 0.872
... ... ... ... ... ... ... ... ...

c https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-
research-laboratory/dose-rate-calculator/?show=datatables&
datatableid=3;
accessed 2017-11-20.
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Attenuation factors

B.2 EtchdepthattenuationfactorsaccordingtoBren-
nan (2003)

The following table shows etch attenuation factors that take into account the change
in beta induced dose rates caused by chemical etching. Based on the dataset orig-
inally reported by Brennan (2003), the provided values have been recalculated
by applying a smoothing spline function (Durcan et al., 2015) and are used in
DRAC to further attenuate the Ḋβ.

Table B.3: Etch depth attenuation factors for beta particles according to Brennan (2003).

The table is a shortened versionof thedataset on theDRAC-homepaged, restricted to those
etchdepths relevant for this PhD-thesis. Pleasenote that theetch attenuation factors have

beenrecalculatedbyDurcanetal. (2015) andaregivenas ’secondary etchattenuation factors’.

Fordetails seemain textof theoriginalpublicationofDurcanetal. (2015).Φ(D)=absorption

factor; 1-Φ(D) = attenuation factor.

Etch
depth
(μm)

Uranium Thorium Potassium Combined

Φ(D) 1-Φ(D) Φ(D) 1-Φ(D) Φ(D) 1-Φ(D) Φ(D) 1-Φ(D)

... ... ... ... ... ... ... ... ...
10 1.081 0.991 1.083 0.987 1.081 0.997 1.081 0.993
11 1.087 0.990 1.089 0.986 1.088 0.997 1.088 0.992
12 1.093 0.990 1.095 0.985 1.094 0.997 1.094 0.992
13 1.098 0.989 1.101 0.984 1.101 0.996 1.100 0.991
14 1.103 0.989 1.107 0.983 1.107 0.996 1.106 0.991
15 1.108 0.988 1.112 0.983 1.113 0.996 1.111 0.990
16 1.113 0.988 1.117 0.982 1.119 0.996 1.117 0.990
17 1.118 0.987 1.122 0.981 1.125 0.995 1.122 0.990
18 1.122 0.987 1.127 0.980 1.131 0.995 1.127 0.989
19 1.127 0.986 1.131 0.980 1.137 0.995 1.132 0.989
20 1.131 0.986 1.136 0.979 1.142 0.995 1.137 0.988
... ... ... ... ... ... ... ... ...

d https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-
research-laboratory/dose-rate-calculator/?show=datatables&
datatableid=4;
accessed 2017-11-20.
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B.3 Water attenuation factors

B.3 Water content attenuation factors according to
Aitken & Xie (1990)

The following table contains attenuation factors for considering the effect of soil
moisture to dose rates as given on the homepage of DRAC2. This valueswere derived
from the publication of Aitken & Xie (1990).

Table B.4:Water content attenuation factors.

Dose component Attenuation factor

Alpha 1.49
Beta 1.25
Gamma 1.14

2https://www.aber.ac.uk/en/dges/research/quaternary/luminescence-
research-laboratory/dose-rate-calculator/?show=datatables&datatableid=5.
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C
Radioactive decay chains

The following diagrams show various radioactive decay processes which are the
main source ofnaturally occurring ionizing radiation either originating fromwithin
themineral grains (internal dose rate) or from the surrounding sediments (external
dose rate).

Rb37
87

Sr38
87

Ar18
40

Ca20
40

K19
40

β

γ

β

Figure C.1: Radioactive decay schemes of potassium-40 and rubidium-87. While 87Rb is a

pure β-emitter, 40K shows two distinct types of radioactive decay. Approximately 89.5%

decay to 40Ca by emitting a beta-particle associated by an antineutrino. ~10.5% decay to
40Ar due to an initial electron capture, followed by gamma ray emission (e.g., Aitken, 1985).

As the electron capture itself is not associated with a release of energy which could con-

tribute to the accumulation of luminescence signals, only the gamma emission is depicted

in the figure.
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Radioactive decay chains
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Figure C.2: Decay scheme for the 238U radioactive series. Vertical arrows indicate alpha

decays, diagonal arrows represent beta decays.
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Figure C.3: Decay scheme for the 235U radioactive series. Vertical arrows indicate alpha

decays, diagonal arrows represent beta decays.
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Radioactive decay chains
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Figure C.4: Decay scheme for the 232Th radioactive series. Vertical arrows indicate alpha

decays, diagonal arrows represent beta decays.

232



D
List of publications and presentations

Only publications and presentations related to the present thesis are listed below.

D.1 Scientific articles

1. Kolb, T. & Fuchs, M. (2018): Luminescence dating of pre-Eemian (MIS
5e) fluvial terraces in Northern Bavaria (Germany) – benefits and limita-
tions of applying a pIRIR225-approach. Geomorphology, submitted.

2. Kolb, T., Fuchs,M.,Moine, O.&Zöller, L. (2017): Quaternary river
terraces and hillslope sediments as archives for paleoenvironmental recon-
struction: new insights from the headwaters of the Main River, Germany.
Zeitschrift für Geomorphologie, Supplementary Issues, 61 (1), pp. 53 – 76.

3. Kolb, T., Fuchs,M.&Zöller, L. (2016): Deciphering fluvial landscape
evolution by luminescence dating of river terrace formation: a case study
fromNorthern Bavaria, Germany. Zeitschrift für Geomorphologie, Supple-
mentary Issues, 60 (1), pp. 29–48.

4. Zöller, L., Hambach, U., Kleber, A., Kolb, T. &Moine, O. (2012a):
Quaternary valley and slope development in the headwaters of the River
Main, Upper Franconia – puzzling ancient stream courses and sedimen-
tary archives. In: D. Sauer (Editor), From the northern ice shield to the
Alpine glaciations: a quaternary field trip through Germany, DEUQUA
Excursions. Geozon Science Media, Greifswald, pp. 47 – 65.

233



List of publications and presentations

5. Zöller, L., Hambach, U., Kolb, T., Moine, O. & Kühn, P. (2012b):
Landscape development in the Trebgast Valley north of Bayreuth and its
surroundings (Upper Franconia): ongoing research. In: L. Zöller &
A. Peterek (Editors), From Paleozoic to Quaternary: a field trip from
the Franconian Alb to Bohemia, DEUQUA Excursions. Geozon Science
Media, Greifswald, pp. 6 – 24.

D.2 Conference talks

1. Kolb, T., Fuchs,M.&Zöller, L. (2009): Eine günstige Versuchsanord-
nung der Natur zur Lumineszenzdatierung hoch- und spätglazialer Hang-
sedimente im Taltorso des Tregbasttales bei Bayreuth. Conference talk at
the annual German Luminescence and ESR Meeting 2009 in Hannover.

2. Kolb, T., Fuchs,M.&Zöller, L. (2012b): Neue Erkenntnisse zur pleis-
tozänen und frühholozänen Entwicklung des Trebgasttales bei Bayreuth.
Conference talk at the AK Geomorphologie Annual Conference 2012 in
Freising.

3. Kolb, T., Fuchs, M. & Zöller, L. (2013): Die Datierung von Flusster-
rassen–NeueBefunde zur zeitlichenEntwicklungvonFlusslaufverlagerun-
gen: Das Fallbeispiel Trebgasttal bei Bayreuth. Conference talk at the AK
Geomorphologie Annual Conference 2013 in Eichstätt.

4. Kolb, T., Fuchs, M. & Zöller, L. (2014a): Die Datierung (prä-)würm-
zeitlicher Flussterrassen – Neue Befunde zur zeitlichen Entwicklung von
Flusslaufverlagerungen: Das Fallbeispiel Trebgasttal bei Bayreuth. Con-
ference talk at the AK Geomorphologie Annual Conference 2014 in Kiel.

5. Kolb, T., Fuchs, M. & Zöller, L. (2014b): The timing of river terrace
formation – A case study from the headwaters of the RiverMain. Confer-
ence talk at the annual German Luminescence and ESR Meeting 2014 in
Giessen.

6. Kolb, T., Moldenhauer, K.M., Jäger, P., Schmidt, C. & Zöller, L.
(2016b): Auensedimente und kolluviale Ablagerungen als Umweltarchive:
Versuch einerLandschaftsrekonstruktion fürdasmittelalterlicheOberfran-
ken. Conference talk at theAKGeomorphologieAnnual Conference 2016
in Jena.

234



D.3 Invited talks

D.3 Invited talks

1. Kolb, T., Fuchs, M. & Zöller, L. (2012a): Main oder nicht Main: Das
Trebgasttal und seine Entwicklung – Projektvorstellung und erste Ergeb-
nisse. Invited public talk at the Geographical Colloquium of the Univer-
sity of Bayreuth.

2. Kolb, T., Fuchs, M. & Zöller, L. (2015a): Main oder nicht Main –
Neue Erkenntnisse zur zeitlichen Stellung von Flusslaufverlagerungen im
Nordosten Bayerns. Invited talk at the Geographical Colloquium of the
Technische Universität Dresden.

3. Kolb, T., Fuchs, M. & Zöller, L. (2015b): Paläoumweltforschung in
Oberfranken – Neue Ergebnisse zur Landschaftsgeschichte des Trebgast-
tales. Invited public talk at the Colloquium Historicum Wirsbergense.

4. Kolb, T., Fuchs, M. & Zöller, L. (2016a): Vor Prof. Stingls Haustüre:
Neueste Ergebnisse zur Landschaftsgeschichte des Trebgasttales. Invited
public talk at the Scientific Colloquium on the occasion of Prof. Dr. H.
Stingl’s 80th birthday celebration.

D.4 Conference posters

1. Kolb, T., Fuchs, M. & Zöller, L. (2012a): Landschafts- und Kultur-
geschichteOberfrankens –Das Trebgasttal und seine Entwicklung. Poster
presentation at theAKGeoarchäologieAnnualConference 2012 inLeipzig.

2. Kolb, T., Fuchs,M.&Zöller, L. (2012b): Neue Erkenntnisse zur pleis-
tozänen und frühholozänen Entwicklung des Trebgasttales bei Bayreuth.
Poster presentation at the DEUQUA meeting 2012 in Bayreuth.

3. Kolb, T., Fuchs, M. & Zöller, L. (2013a): New evidence for the com-
plexity of river terrace formation inNorthern Bavaria. Poster presentation
at the annual German Luminescence and ESR Meeting 2013 in Freiberg.

4. Kolb, T., Fuchs, M. & Zöller, L. (2013b): New evidence for the com-
plexity of river terrace formation inNorthern Bavaria. Poster presentation
at the EGU General Assembly 2013 in Vienna.

5. Kolb, T., Fuchs, M. & Zöller, L. (2014a): The timing of river terrace
formation – a case study from the headwaters of the River Main, North-
ern Bavaria, Germany. Poster presentation at the 14th edition of the Lumi-
nescence and Electron Spin Resonance Dating conference (LED) 2014 in
Montreal.

235



List of publications and presentations

6. Kolb, T., Fuchs, M. & Zöller, L. (2014b): The timing of river terrace
formation – possibilities and challenges of luminescence dating methods:
a case study from Northern Bavaria, Germany. Poster presentation at the
EGU General Assembly 2014 in Vienna.

7. Kolb, T., Fuchs, M. & Zöller, L. (2015): Luminescence dating of river
terrace formation –methodological challenges and complexity of result in-
terpretation: a case study from the headwaters if theRiverMain, Germany.
Poster presentation at the EGU General Assembly 2015 in Vienna.

236



E
Declarations – (Eidesstattliche)

Versicherungen und Erklärungen
gemäß der Promotionsordnung der
Fakultät für Biologie, Chemie und
Geowissenschaften der Universität

Bayreuth in der Fassung vom
15. September 2017

237



Declarations

The followingdeclarations are requiredby the examination regulations for achiev-
ing the academic degree ofDoctor ofNatural Sciences (Dr. rer. nat.) of the Faculty
of Biology, Chemistry and Geosciences at the University of Bayreuth. By signing
these declarations the author confirms that

• he has written this PhD-thesis himself, only using literature sources and
other auxiliaries that have clearly been marked in the thesis,

• he has not previously tried to achieve an academic degree by submitting the
present thesis,

• he has not taken advantage of commercial promotion consultants or simi-
lar service providers nor will ever do so in future.

Furthermore, the author consents to

• the electronic version of this PhD-thesis being subject to a separate review,

• investigationsof internal university facilities of scientific self-control if there
were any evidence of scientifically inappropriate behaviour.

As the official language of the examination regulations is German, these declara-
tions are written in German.

238



(Eidesstattliche) Versicherungen und
Erklärungen

§ 8 Satz 2 Nr. 3 PromO Fakultät
Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbständig
verfasst und keine anderen als die vonmir angegebenen Quellen und
Hilfsmittel benutzt habe (vgl. Art. 64 Abs. 1 Satz 6 BayHSchG).

§ 8 Satz 2 Nr. 3 PromO Fakultät
Hiermit erkläre ich, dass ich die Dissertation nicht bereits zur Er-
langung eines akademischen Grades eingereicht habe und dass ich
nicht bereits diese oder eine gleichartige Doktorprüfung endgültig
nicht bestanden habe.

§ 8 Satz 2 Nr. 4 PromO Fakultät
Hiermit erkläre ich, dass ich Hilfe von gewerblichen Promotions-
beratern bzw. -vermittlern oder ähnlichen Dienstleistern weder
bisher in Anspruch genommen habe noch künftig in Anspruch
nehmen werde.

§ 8 Satz 2 Nr. 7 PromO Fakultät
Hiermit erkläre ich mein Einverständnis, dass die elektronische Fas-
sung der Dissertation unter Wahrung meiner Urheberrechte und
des Datenschutzes einer gesonderten Überprüfung unterzogen
werden kann.

§ 8 Satz 2 Nr. 8 PromO Fakultät
Hiermit erkläre ich mein Einverständnis, dass bei Verdacht
wissenschaftlichen Fehlverhaltens Ermittlungen durch universitäts-
interne Organe der wissenschaftlichen Selbstkontrolle stattfinden
können.

Bayreuth, Dezember 2017

Thomas Kolb

239


	Abstract
	Dedication
	Contents
	I Conceptual design
	Introduction
	Research area and research history
	Central aims of this PhD-thesis
	Thesis outline
	List of manuscripts and own contribution

	Methods and material
	Fundamentals of luminescence dating
	Basic principle
	Physical background of the luminescence phenomenon
	Dosimeters and measurement procedures

	Determination of equivalent doses – measurement protocols
	The multiple aliquot additive dose protocol (MAAD-protocol)
	The single aliquot regenerative dose protocol (SAR-protocol)
	The post-IR IRSL protocol at 225°C (pIRIR225-procedure) and fading correction

	Dosimetry
	Applied workflow for luminescence dating in the present PhD-thesis
	Sample collection and preparation
	Measurement facilities



	II Publications
	Study One: Quaternary river terraces and hillslope sediments as archives for palaeoenvironmental reconstruction: new insights from the headwaters of the Main River, Germany
	Introduction
	Study area
	General information and river drainage system
	Geological and geomorphological setting
	Fluvial history

	Methods and materials
	Qualitative petrographic analyses
	Malacological analyses
	Sediment dating

	Results
	Petrographical analyses
	The composition of the mollusk assemblage at the Crottendorf site
	Dating results

	Discussion
	Petrographical analyses
	T2-terrace accumulation and timing of the final deflection of the Steinach River

	Conclusion

	Study Two: Deciphering fluvial landscape evolution by luminescence dating of river terrace formation: a case study from Northern Bavaria, Germany
	Introduction
	Study area
	Sampling design
	Methods
	OSL sample preparation and measurement procedure
	Luminescence properties and rejection criteria
	Insufficiently bleached samples and age calculation models

	Results – sample characteristics and age calculation
	Discussion
	The timing of the T2 terrace formation
	Diachronic character of river incision?

	Conclusion

	Study Three: Luminescence dating of pre-Eemian (MIS 5e) fluvial terraces in Northern Bavaria (Germany) – benefits and limitations of applying a pIRIR225-approach
	Introduction
	Study area and sampling locations
	Methodology
	Sample preparation and instrumental facilities
	Measurement protocols and setup for equivalent dose determination
	Fading measurements, dose recovery and bleaching experiments
	Dosimetry

	Results and discussion
	OSL and IRSL properties
	Dose response curves and equivalent dose distributions
	Post-IR IRSL residual doses
	Fading rates and fading correction
	Luminescence ages

	Conclusion


	III Synthesis and outlook
	Synthesis
	Outlook
	References

	IV Appendix
	Appendix Radionuclide conversion factors
	Appendix Attenuation factors
	Grain size attenuation factors
	Etch depth attenuation factors
	Water attenuation factors

	Appendix Radioactive decay chains
	Appendix List of publications and presentations
	Scientific articles
	Conference talks
	Invited talks
	Conference posters

	Appendix Declarations


