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Summary 
On a global scale, the soil is a principal repository of terrestrial carbon (C) in the form of 

soil organic matter (SOM) which is central to soil fertility and ecological functions. The 

presence of plants changes the SOM dynamics by interacting with soil microorganisms. 

Biological interactions in rhizosphere – the soil volume in the close vicinity of roots - are 

pivotal in governing key ecosystem processes such as primary productivity, 

decomposition of SOM, and nutrient mobilization/immobilization. The input of plant-

derived organics via rhizodeposition fuels microorganisms by providing an easily 

utilizable source of energy and C. Simultaneously, there is strong competition between 

plants and microorganisms for nutrient acquisition in the rhizosphere affecting dynamics 

of SOM decomposition. These plant-mediated changes in SOM decomposition are 

widespread in all terrestrial ecosystems, but remains poorly understood. 

In general, the focus of this research is to understand soil biogeochemical processes 

and their mechanisms in the rhizosphere of agricultural crops. More specifically, the 

thesis aims to understand SOM decomposition and nutrient cycling in the rhizosphere 

under field conditions. In this context, rhizosphere priming effects (RPE) – root-induced 

changes in rates of SOM decomposition through labile C input - and its dependence on 

soil mineral nutrient status were explored in an arable field with maize. To measure RPE 

we applied isotopic 13C natural abundance using C3-C4 vegetation change. The 

presence of maize roots increased SOM decomposition compared to the unplanted soils 

and the application of mineral N decreased the magnitude of priming suggesting nutrient 

availability modify the SOM decomposition via altering root and microbial activity (Kumar 

et al. 2016).  

https://link.springer.com/article/10.1007/s11104-016-2958-2
https://link.springer.com/article/10.1007/s11104-016-2958-2
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Further, the effect of roots on soil aggregate stability and associated enzyme activity 

(EA) were elucidated in field-grown maize to understand how plants control the microbial 

activities in distinct aggregate size classes (Kumar et al. 2017). Moreover, a field study 

was established to understand the effects of maize phenology and soil depth on EA 

(Kumar et al. 2018). It was shown that EA, and hence rates of SOM decomposition are a 

function of root activity in addition to microbial biomass. From these studies, we 

concluded that root activity and microbial activation via root-derived organics are among 

the major factors governing SOM decomposition and nutrient cycling in the rhizosphere 

(Kumar et al. 2016 and 2017). Therefore, it becomes crucial to elucidate the effects of 

root activity and hence, various root traits, on SOM decomposition and nutrient turnover 

in agroecosystems. The plasticity in root traits in relation to soil nutrient and water 

limitation, herbivory, and interaction with soil fauna helps plant nutrient acquisition and 

maximize their growth and development. In response to nutrient shortage, plants 

manipulate their strategies to maximize the uptake; however, the explicit relationship 

between specific root trait and nutrient uptake is not fully understood. Therefore, our 

study focused on the root traits plasticity (morphological and biological trait) for plant 

phosphorus (P) acquisition in P limited soils and how the availability of P affects the 

response of such traits. We had an opportunity to understand the plants‘ P uptake 

strategies through plasticity of root traits at three distinct plant growth stages (tillering, 

stem extension, maize heading) of maize. This study highlighted alternative mechanisms 

of maize for nutrient acquisition in absence of morphological trait (here root hairs). Shifts 

in root traits (increased root diameter and higher root mycorrhizal colonization by 

arbuscular mycorrhizal fungi) for P acquisition are important for maintaining plant growth 

http://www.sciencedirect.com/science/article/pii/S0016706116306838
https://link.springer.com/article/10.1007/s11104-016-2958-2
http://www.sciencedirect.com/science/article/pii/S0016706116306838
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in absence or poorly developed root hairs and under nutrient limitation (Kumar et al. in 

preparation). 

Collectively, the above-mentioned investigations on plant-soil interactions underpin the 

idea that microbial mediated SOM decomposition and nutrient cycling in the rhizosphere 

is fueled by root-derived organics. Changes in EA activity as a function of plant 

developmental stage highlight plants‘ regulatory mechanisms on microbial processes. 

Moreover, the importance of root traits in plant nutrient acquisition should be further 

understood. Shifts in root traits under environmental changes are important for plant 

nutrient uptake as well as in driving key ecosystem processes such as C and nutrient 

cycling. These mechanisms are central to the functioning of agroecosystems and 

highlight the needs of further research in rhizosphere ecology. 

  



IV 
 

Zusammenfassung 

Im globalen Maßstab ist der Boden eine wesentliche Quelle von Kohlenstoff (C) in Form 

von organischer Bodensubstanz (OBS), die zentral für die Bodenfruchtbarkeit und für 

ökologische Funktionen ist. Pflanzen verändern die Dynamik des Abbaus der 

organischen Bodensubstanz durch Interaktionen mit Bodenmikroorganismen. 

Biologische Interaktionen in der Rhizosphäre – dem Bodenvolumen in enger Umgebung 

zu den Wurzeln – sind zentral für die Regulation von wichtigen Ökosystemprozessen 

wie der Primärproduktion, dem Abbau von OBS und der Nährstoffmobilisierung/-

immobilisierung. Der Eintrag von pflanzlichen organischen Stoffen über Rhizodeposition 

aktiviert Mikroorganismen, indem eine leicht verwertbare Energie- und Kohlenstoffquelle 

bereitgestellt wird. Gleichzeitig existiert eine starke Konkurrenz zwischen Pflanzen und 

Mikroorganismen um die Nährstoffe in der Rhizosphäre, welche sich auf die Dynamik 

des Abbaus der OBS auswirkt. Diese durch Pflanzen vermittelten Änderungen im OBS-

Abbau sind in allen terrestrischen Ökosystemen weit verbreitet, bislang aber 

unzureichend verstanden.  

Im Fokus dieser Arbeit steht das Verständnis von biogeochemischen Prozessen im 

Boden und ihrer Mechanismen in der Rhizosphäre von landwirtschaftlichen 

Kulturpflanzen. Spezieller bezweckt diese Arbeit den Abbau von OBS sowie 

Nährstoffumsätze in der Rhizosphäre unter Freilandbedingungen zu verstehen.  In 

diesem Zusammenhang wurden Rhizosphären-Priming-Effekte (RPE) - wurzelinduzierte 

Veränderungen in der Abbaurate der OBS durch Eintrag labilen Kohlenstoffes – und 

deren Abhängigkeit vom mineralischen Nährstoffgehalt des Bodens in einem 

landwirtschaftlichen Maisfeld untersucht. Um die RPE zu messen verwendeten wir 
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natürliche Isotopenhäufigkeiten von 13C in Verbindung mit einem C3-C4 

Vegetationswechsel. Das Vorhandensein von Maiswurzen führte zu einem erhöhten 

Abbau der OBS, der Zusatz von mineralischem N verminderte jedoch das Ausmaß des 

Primings. Dies lässt darauf schließen, dass die Nährstoffverfügbarkeit den Abbau von 

OBS über veränderte Aktivität der Wurzeln und der Mikroorganismen modifiziert (Kumar 

et al. 2016). 

Zusätzlich wurde die Auswirkung von Wurzeln auf die Stabilität von Bodenaggregaten 

und auf die Aktivität assoziierter Enzyme (EA) an Proben aus dem Freiland untersucht, 

um zu verstehen, wie Pflanzen mikrobielle Aktivitäten in unterschiedlichen 

Aggregatgrößenklassen kontrollieren (Kumar et al. 2017). Weiterhin wurde eine 

Freilandstudie durchgeführt, um den Einfluss der Phänologie des Maises und der 

Bodentiefe auf die EA zu verstehen (Kumar et al. 2018). Wir konnten gezeigen, dass 

EA, und somit die Abbaurate der OBS, nicht nur von der mikrobiellen Biomasse, 

sondern auch stark von der Wurzelaktivität abhängen. 

 Aus diesen Studien lässt sich schließen, dass die Wurzelaktivität und die mikrobielle 

Aktivierung durch wurzelbürtige organische Stoffe zu den Hauptfaktoren gehören, die 

den Abbau der OBS und die Nährstoffkreisläufe in der Rhizosphäre regulieren (Kumar et 

al. 2016 and 2017). Dadurch ergibt sich die Notwendigkeit die Einflüsse der 

Wurzelaktivität, und damit vielfältige Wurzeleigenschaften (traits), auf den Abbau der 

OBS und den Nährstoffumsatz in Agrarökosystemen weiter aufzuklären. Die Plastizität 

der Wurzeleigenschaften in Relation zu Nährstoff- und Wasserlimitierung in Böden, zu 

Herbivorie und zu Interaktionen mit der Bodenfauna begünstigt den Nährstofferwerb der 

Pflanze und maximiert ihr Wachstum und ihre Entwicklung. Als Antwort auf 

https://link.springer.com/article/10.1007/s11104-016-2958-2
https://link.springer.com/article/10.1007/s11104-016-2958-2
http://www.sciencedirect.com/science/article/pii/S0016706116306838
https://link.springer.com/article/10.1007/s11104-016-2958-2
https://link.springer.com/article/10.1007/s11104-016-2958-2
http://www.sciencedirect.com/science/article/pii/S0016706116306838
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Nährstoffknappheit kann die Pflanze ihre Wurzeleigenschaften ändern um die 

Nährstoffaufnahme zu maximieren. jedoch ist der explizite Zusammenhang zwischen 

spezifischen Wurzeleigenschaften und der Nährstoffaufnahme noch wenig erforscht. 

Daher fokussierte sich unsere Studie auf die Plastizität morphologischer und 

biologischer Wurzeleigenschaften (root traits) für die Phosphat- (P) Aufnahme der 

Pflanze aus Böden mit unterschiedlicher P-Verfügbarkeit. Wir hatten die Möglichkeit die 

pflanzlichen P-Aufnahmestrategien im Bezug auf die Plastizität der Wurzeleigenschaften 

zu drei verschiedenen Wachstumsstadien (Blattentwicklung, Längenwachstum, 

Rispenschieben) von Mais zu untersuchen. Diese Studie konnte alternative 

Mechanismen des Maises zum Nährstofferwerb in Abwesenheit von morphologischen 

Eigenschaften (hier Wurzelhaare) zeigen. Veränderungen der Wurzeleigenschaften 

(zunehmender Wurzeldurchmesser und höhere Kolonisation der Wurzel mit 

arbuskulären Mykorrhizapilzen) für den P-Erwerb stellen sich als wichtig für den Erhalt 

des Pflanzenwachstums in Abwesenheit oder bei schlecht entwickelten Wurzelhaaren 

sowie unter Nährstofflimitierung dar (Kumar et al. in preparation). 

Zusammenfassend untermauern die oben genannten Untersuchungen zu Pflanzen-

Boden-Interaktionen die Annahme, dass der mikrobielle Abbau der OBS und die 

Nährstoffkreisläufe in der Rhizosphäre durch wurzelbürtigen organischen Kohlenstoff 

verstärkt werden. Änderungen der Enzymaktivität in Abhängigkeit vom pflanzlichen 

Entwicklungsstadium verdeutlichten regulatorische Mechanismen der Pflanze auf 

mikrobielle Prozesse. Weiterhin wurde die Bedeutung der Wurzeleigenschaften für den 

pflanzlichen Nährstofferwerb genauer analysiert. Anpassungen der Wurzeleigenschaften 

(root traits) unter Umweltveränderungen sind bedeutsam für die pflanzliche 

Nährstoffaufnahme aber auch treibende Kraft für wichtige Ökosystemprozesse wie C- 
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und Nährstoffkreisläufe. Diese Mechanismen sind zentral für die Funktionalität von 

Agrarökosystemen und untermauern die Notwendigkeit für weitere Forschung in der 

Rhizosphärenökologie. 
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1 General introduction 

1.1 Global climate change and sustainable agriculture 

Thanks to the green revolution which began in 1960s to help us keep the pace in food 

production with global population growth (Stevenson, 2013). This increase in food 

production was compromised with high environmental costs (Tilman et al. 2001) such as 

over cultivation and soil erosion (Kumar 2011), greenhouse gas emissions (Matson et al. 

1997; Smith et al. 2013), intense use of pesticides and fertilizers polluting surface and 

groundwater (Arias-Estevez et al. 2008), and a gradual depletion of soil nutrient stocks 

(McLauchlan 2006) and carbon (C) (Lal 2004; McLauchlan 2006). At present, the global 

agriculture is facing strong threats to above mentioned consequences of increasing yield 

to meet the food demand of the ever increasing global population (Godfray et al. 2010). 

According to United Nations 2013 report, by 2100 the global population is projected to 

increase by 50% as compared to now, and therefore, the global grain demand is 

estimated to double (Godfray et al. 2010), suggesting novel and sustainable agricultural 

practices with reduced environmental costs.  

Sustainable agriculture undertakes the reduced applications of mineral fertilizers and 

pesticides and the efficient utilization of ecosystem services (i.e. land and resources) to 

enhance yields as well as decreasing the greenhouse gases (GHGs) emissions and 

increasing the C content and therefore, C sequestration in agricultural soils (Calabi-

Floody et al. 2017; Lal 2009). Sustainable agricultural strategies include integrated pest 

management (Gurr et al. 2003), conservation farming via reduced tillage or no-tillage to 

reduce C and nutrient losses and reduced GHGs emissions along with building-up of soil 

organic matter (SOM) (Balesdent et al. 2000; Paustian et al. 2000; Six et al. 2002). 
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Intercropping, cover cropping, utilization of key nutrients nitrogen (N), phosphorus (P), 

and potassium (K) using farmyard manures, returning of organic matter to arable fields 

are among organic farming practices, which are highly efficient and sustainable practice 

of crop production and help in enhancement of soil structure (via aggregation), diversity 

and functions of soil biota (Fageria et al. 2005; Nyakatawa et al. 2001; Peixoto et al. 

2006; Waddington et al. 2017; Wang et al. 2006; Yildirim and Guvenc, 2005). It 

becomes very important in agricultural soils to understand the plant-soil-microbial 

interactions in order to increase the sustainability than in conventional agriculture where 

such interactions are marginalized by inputs of agrochemicals such as fertilizers and 

pesticides (Johansson et al. 2004). 

1.2 Plant-soil interactions in the rhizosphere 

The term ‗rhizosphere‘ was coined by Lorenz Hiltner in 1904. Rhizosphere is defined as 

the soil volume affected by living roots activity (Uren 2007). Ever since this term has 

been recognized by scientists, numerous studies have been focused on ecology in the 

rhizosphere (generally called as rhizosphere ecology) relative to the bulk soil (Barea et 

al. 2005; Philippot et al. 2013). The importance of understanding rhizosphere ecology 

within the global C and nutrients cycle is tremendous despite the fact that rhizosphere is 

comprised of less than 1% of total soil volume (Finzi et al. 2015; Pausch and Kuzyakov, 

2011). As we know that more C is stored in soil than that present in global vegetation 

and as CO2 in the atmosphere together (Schimel 1995), it is essential to understand 

rhizosphere processes where the process rates are orders of magnitudes higher than 

bulk soil (Kuzyakov and Blagodatskaya 2015). To approximate the ‗rhizosphere‘ 

contribution to the total fluxes of nutrients and C in the whole soil volume, it is pivotal to 
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understand the nutrients and C fluxes as a function of root activity, architecture and 

function (Finzi et al. 2015).  

Plant roots release diversity of C compounds in the rhizosphere and based on plants‘ life 

span, such rootderived inputs can be broadly categories in two main sources especially 

in agricultural systems where above ground biomass is harvested most of the times: 1) 

remains of roots after above ground plant harvest, and 2) exudates and other root-

derived organics (collectively called as rhizodeposits) by living roots during plant growth 

(Kuzyakov and Domanski 2000). The process of living root mediated inputs of organics 

in the rhizosphere is called as rhizodeposition. In a recent study, Pausch and Kuzyakov 

(2017) showed that annual crops translocate lower photoassimilated products 

belowground than pasture plants (mainly perennials) reflecting optimization of crop 

plants during domestication for above ground products with a consequent reduction in 

belowground C allocation. The quality and quantity of rhizodeposits also vary with 

various biotic and abiotic factors as summarized by Jones et al. (2004). For instance, 

root exudates are mainly comprised of low molecular weight organic compounds such 

as amino acids, simple sugars, organic acids whereas the high molecular weight organic 

compounds are comprised of mucilage, sloughed off cells and dying roots (Jones et al. 

2004). Root-derived organics provide the soil microorganisms with localized form of 

energy resulting in unique biological niche that is characterized by high diversity, 

abundance and activity of microorganisms relative to bulk soil (Bais et al. 2006; 

Chaparro et al. 2014; Kuzyakov and Blagodatskaya, 2015; Lange et al. 2015; 

Loeppmann et al. 2015; Pausch and Kuzyakov 2011). Rhizodeposits mediated 

interactions between free living soil microorganism and roots (Dijkstra et al. 2013), 

interactions between roots and symbiotic organisms such as mycorrhizal fungi and 
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rhizobia bacteria or pathogenic microorganisms are among few to mention interactions 

which are initiated by root-derived signaling molecules (Berendsen et al. 2012; Harman 

et al. 2004). Such interactions are of numerous importance in sustainable agriculture 

and recently have been considered for their role in plant health and nutrient acquisition.  

Various studies have shown that root exudates are mediators of plant nutrient 

acquisition in nutrient poor soils (Dakora and Phillips 2002; Ohwaki and Hirata, 1992) 

most likely by enhancing microbial activities. Plant mediated increase in the metabolism 

and activity of soil microorganisms via rhizodeposits (microbial activation hypothesis, 

Cheng and Kuzyakov, 2005; Kuzyakov et al. 2007) may accelerate decomposition of 

SOM and consequently the release of SOM bound nutrients for plant and microbial 

uptake (Cheng et al. 2003; Dijkstra et al. 2013). The process of change in decomposition 

of SOM via input of labile compounds is known as ‗priming effect‘ (Kuzyakov et al. 2000) 

and such changes in SOM decomposition via root-derived organics is termed as 

‗rhizosphere priming effect‘ (Cheng et al. 2003; Kuzyakov 2002; Zhu and Cheng, 2011). 

However, it is still not fully understood how plants mediate SOM decomposition via 

altering the abundance and activity of microorganisms in soil. Studies in the literature 

indicate that SOM decomposition is not a linear function of total microbial biomass and 

microbial community structures, rather point toward specific activity of certain microbial 

group relative to others (Bird et al. 2011; Dijkstra et al. 2013). It is important in 

sustainable agriculture to understand the mechanisms of building up and decomposition 

of SOM and consequently nutrient mobilization/immobilization determining soil health 

and plant productivity. Furthermore, to increase the productivity under global climate 

change and associated impacts on agriculture, it is important to understand the nutrient 

acquisition strategies and the associated root traits in crop plants. Root traits such as 
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rooting length, specific root length, root hair length and density, root respiration, 

symbiotic association with fungi and bacteria, nutrient uptake kinetics, root diameter are 

among important traits for maximizing nutrient uptake and reduced metabolic costs 

under certain environmental stress. For instance, plasticity in root traits in low fertility 

soils (represent most of agricultural area across the globe) may help plants to cope with 

nutrient limitation by improved nutrient acquisition. Therefore, a better understanding of 

root traits and their incorporation in breeding programs will certainly help to improve the 

yield and under future climate change scenario. 

1.3 Plant mediated decomposition of soil organic matter 

As mentioned in section 1.2, there is a substantial allocation of photoassimilated C to 

belowground pools, estimation of the exact amount of rhizodeposits is very difficult and 

vary widely with plant species, plant growth stage, soil properties, nutrient availability. 

About 17% of the net assimilated C is released via rhizodeposition (Nguyen, 2003). 

Rhizodeposits act as easily utilizable energy substrates for microorganisms harboring 

the rhizosphere which as a result breakdown the SOM via mining for nutrients. 

Microorganisms release a variety of enzymes in their environment depending on their 

nutrient requirements and coincidently breakdown the SOM. ‗Rhizosphere priming 

effects (RPEs)‘ are generally expressed as the difference of CO2 produced by 

decomposition of native SOM from planted and unplanted soils (Figure I.1:1). Depending 

on the CO2 produced from native SOM from planted and unplanted soils, RPEs may 

either be positive (higher CO2 produced from SOM in planted than unplanted soils) or 

negative (lower CO2 produced from native SOM in planted than unplanted soils) 

(Kuzyakov 2002). RPEs are widespread in most of terrestrial ecosystems ranging from 

50% reduction to 380% increase in the rates of SOM decomposition in planted than 
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unplanted soils under the same environmental conditions (summarized by Cheng et al. 

2014); however, the mechanisms behind this huge variation in RPEs are still poorly 

understood (Dijkstra et al. 2013). Various hypotheses explaining the relationship 

between RPEs and soil nutrient availability have been proposed that the soil nutrient 

status is an important factor for RPEs (Figure I.1:2). Under low nutrient availability, 

microorganisms may utilize the rhizodeposits as an energy source for the production 

and release of enzymes to their surroundings that can release the nutrients locked in 

SOM (microbial nutrient mining hypothesis, Craine et al. 2007, Fontaine et al. 2011), 

resulting in positive RPEs. It is important to note here that microbial mining for nutrients 

via SOM decomposition should be accompanied by the production of CO2 via oxidation 

of SOM. This is generally the case for microbial N mining; however, microbial P mining 

is not necessarily via oxidation of SOM. Organic P is mostly released via hydrolysis 

without CO2 production rather than oxidation (McGill and Cole, 1981). Under reduced 

nutrient availability, if plants compete with microorganisms for nutrient uptake, this may 

result in suppression in microbial growth and activities and therefore reduced or negative 

RPEs. Moreover, if soil is rich in availability of nutrients, negative RPEs may occur. 

Under such conditions, plants and microorganisms utilize the available nutrients and do 

not rely on SOM decomposition to meet their nutrient demand, resulting in negative 

RPEs. It is noteworthy that RPEs do not necessarily results in reduction of total SOM 

due to enhanced rates of decomposition because the overall root-derived inputs may 

compensate for the enhanced decomposition of labile SOM pools (Cheng, 2009).  Most 

of the studies dealing with RPEs are performed under controlled environmental 

conditions either in climate chambers or greenhouses and their field magnitude and 

mechanisms are poorly known, which is certainly required to understand the field 
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relevance of RPEs and to be included in global C models under global climate changes 

and future predictions. 

 

             

Figure I.1:1: (a) Schematization of rhizosphere priming effects (RPEs). Positive RPEs (double-
headed red arrow, accelerated SOM decomposition) and negative RPEs (double-headed blue 
arrow, retardation of SOM decomposition) (Adapted from Kuzyakov, 2002). (b) Conceptual 
relationship between RPEs and soil nutrient availability. Microbial nutrient mining: activated 
microorganisms through rhizodeposits mine for nutrients locked in SOM thereby causingov 
positive RPEs; Competition: plants and microorganisms compete for nutrients and when plants 
over compete with microorganisms, negative RPEs occur due to hampering of microbial growth 
by reduced nutrient availability; Preferential substrate utilization: in presence of alternative easily 
available resources, microbes switch from decomposing SOM, which result in negative RPEs. 
Under low nutrient availability, both positive and negative RPEs may occur (Adapted from 
Dijkstra et al. 2013). 

 

1.4 Spatiotemporal changes in microbial activity in the rhizosphere 

Soil microorganisms are key players in ecological functioning and a holistic 

understanding of microbial mediated processes is therefore very important for 

sustainable agricultural practices. Decomposition and transformation of SOM, nutrients 

mobilization/immobilization, and aggregate formation/stabilization are among the most 

important processes predominantly governed by microorganisms (Nsabimana et al. 

2004; Six et al. 2004; Caldwell 2005). Microorganisms secret a myriad of extracellular 

enzymes in their surroundings to meet their energy and nutritional demands (Schimel 

(a) (b) 
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and Weintraub, 2003; Sinsabaugh et al. 2009) The activities of extracellular enzymes 

are sensitive to changes in their surrounding environment; therefore, they can be used 

as indicators of microbial mediated processes in the rhizosphere (Romani et al. 2006; 

Salazar et al. 2011; Wang et al. 2015). Generally, extracellular enzyme activity (EEA) is 

dependent on various biotic and abiotic factors such as pH (Sinsabaugh 2010), nutrients 

(Keuskamp et al. 2015; Olander and Vitousek 2000), disturbance (Boerner et al. 2000), 

succession (Tscherko et al. 2003), microbial community structure and function 

(Dorodnikov et al. 2009; Tischer et al. 2015), plant species (Caravaca et al. 2005; 

Razavi et al. 2016), and management practices (Shahbaz et al. 2017). The cycling of 

major nutrient elements is widely associated with EEA in soil (Burns et al. 2013). The 

EEA is important in maintaining soil health, as enzymes catalyze the bottleneck steps in 

SOM decomposition and consequent release of nutrients for plant and microbial uptake 

(Aon et al. 2001). Depending on the complexity of SOM, various hydrolases and oxido-

reductases are produced by microorganisms. For example, β-1,4-glucosidase (BG), 

cellobiohydrolases (CBH), and β-xylosidase (XYL) are a set of hydrolases produced by 

microorganisms to acquire C via polysaccharides decomposition. Another widely 

prevalent enzyme is L-leucine aminopeptidase (LAP), which is associated with the 

breakdown of amide-linked polypeptides, the primary form of organic N in soils (Finzi et 

al. 2015; Knicker 2004). β-1,4-N-acetylglucosaminidase (NAG), which predominantly 

targets chitin and peptidoglycan breakdown, releases both C and N for microbial 

acquisition. Organic compounds containing ester-linked P are cleaved by 

phosphomonoesterase (PHO), which releases inorganic P (Finzi et al. 2015; 

Sinsabaugh and Shah 2011). In rhizosphere, enzyme production is triggered by root 

exudation, resulting in higher rates of SOM decomposition and consequently release of 
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nutrients (Kuzyakov and Domanski 2000). The regulation of enzyme activity in 

rhizosphere is mainly determined by soil nutrient status and plant-microbial competition 

for the available nutrient elements. In general, when nutrients are not readily available 

for plant and microbial acquisition, microorganisms as well as plants secrets enzyme to 

acquire the nutrients locked in SOM via decomposition. But this is not always true. When 

the nutrient limitation is so severe that microorganisms are unable to carry forward their 

metabolism and synthesize new enzymes, the EEA decreases. In such cases, 

availability of the nutrient elements to a threshold level is required for enzyme production 

and release. Therefore, the regulation of enzyme activity in the rhizosphere is not yet 

fully understood. Further, when mineral nutrients such as N and P are available in the 

rhizosphere for easy uptake by plant and microorganisms, there are no requirements for 

plants and microorganisms to synthesize and secret those enzymes which are involved 

in N and P acquisition. Presence of mineral nutrients generally results in downregulation 

of EEA in rhizosphere. EEA is not only dependent on availability of nutrient elements, 

but also affected by soil depth. As mentioned by Loeppmann et al. 2016, most of studies 

with enzyme activity in the rhizosphere are confined to topsoil, despite the fact that roots 

provide the energy subsidy via rhizodeposits throughout the rooting depth. The spatial 

distribution of roots is heterogeneous in soil and varies with the growth stage of the plant 

(Chimento and Amaducci 2015), which may impact plant-mediated microbial activity and 

therefore, EEA at various soil depths. It has previously been demonstrated that there are 

distinct microbial community compositions and microbial activities along with soil depth 

(Fierer et al. 2003) and these changes are generally explained by substrate input 

varying in quality and quantity (Loeppmann et al. 2016). It has been observed that when 

depth increases, microbial activity decreases, as substrate inputs and gas exchange are 
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reduced with depth (Stone et al. 2014). Although roots and microbial activity are often 

linked (Kuzyakov and Blagodatskaya 2015), most of the field studies are conducted only 

once during a vegetation season (either at the beginning or before harvesting). 

However, root-mediated effects on microbial activity are taking place throughout the 

growing season (Bell et al. 2015). It is still unknown from direct field observations how 

microbial activity is influenced by roots at various plant growth stages, which are 

characterized by distinct morphological and physiological properties. 

Table 1: Examples of soil enzyme activities to assess the functional diversity between 

and within nutrient cycling. (Adapted from Blagodatskaya and Kuzyakov, 2008; Caldwell, 

2005) 

Enzyme Nomenclature Producer Important role 

β-1,4-glucosidase EC 3.2.1.21 Fungi, bacteria, and 
termites 

Exocellulases that remove 
glucan units from the ends 
of the cellulose chains 
 

Cellobiohydrolase EC 3.2.1.91 Fungi, bacteria, and 
protozoans 

Hydrolysis of 1,4-β-D-
glucosidic linkages in 
cellulose, releasing 
cellobiose from the non-
reducing ends of the 
chains 
 

Xylanase EC 3.2.1.8 Herbivorous 
microorganisms and 
fungi 

Degrade the linear 
polysaccharide β-1,4-xylan 
into xylose, thus breaking 
down hemicellulose, which 
in a major component of 
the cell wall of plants 
 

N-acetyl-β-1,4-
glucosaminidase 

EC 3.2.1.30 Bacteria, fungi, 
plants, 
invertebrates, 
humans 

Hydrolyses the residues 
from terminal non-reducing 
ends of chito-
oligosacchrides 
 

Acid phosphatase EC 3.1.3.2 Plants, animals, 
fungi, and bacteria 

Free attached phosphate 
groups from other 
molecules during digestion 
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L-leucine 
aminopeptidase 

EC 3.4.11.1 Occurs naturally in 
all organisms 

Hydrolysis of the peptide 
bonds, casein hydrolyzing 
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1.5 Objectives 

As mentioned in the introduction, there are clear research gaps about the mechanisms 

and relevance of microbial-mediated SOM decomposition and nutrient cycling in the 

rhizosphere under field conditions. Field relevance of such processes will help us in 

building sustainable practices which are seen as a gateway towards higher food 

production with reduced negative impact on the environment. Therefore, this thesis 

focuses on the following objectives: 

1) To estimate rhizosphere priming effects of SOM decomposition under field 

conditions and its dependence on soil nutrient status (Study 1). Specific 

hypotheses are that 

(i) Presence of plants increases SOM decomposition via microbial activation 

through rhizodeposits. 

(ii) Mineral N application reduces RPE because plants alter their root activities and 

microorganisms are less dependent on nutrient gains from SOM decomposition. 

2) To investigate the effects of maize roots on the distribution of soil aggregate 

sizes and associated extracellular enzyme activities (EEA) (Study 2). Specific 

hypotheses are that  

(i) EEA is higher in aggregates of planted soil than that of bare fallow, as 

microorganisms are fueled with C and energy-rich labile substrates by 

rhizodeposition. 

(ii) EEA is higher in free microaggregates than macroaggregates as the former 

should be preferentially exposed to root exudates, water and oxygen flow. 
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3) To investigate the effects of maize phenology and N fertilization on the 

distribution of extracellular enzyme activities (EEA) along with soil depth in the 

field (Study 3). Specific hypotheses are that 

(i) Actively growing roots during earlier growth stage have higher effects on 

microbial biomass and EEA via root activities. 

(ii) EEA in rhizosphere varies with soil depth and decrease with increasing soil 

depth due to reduced substrate inputs and gaseous exchange. 

(iii) Activity of enzymes involved in N acquisition decrease with N fertilization due 

to preferential substrate utilization. 

 

4) To investigate the root trait plasticity to maintain plant productivity under 

phosphorus limitation in soils (Study 4). Specific hypotheses are that 

(i) In P limited soils, plants compensate for the lack of root hairs by shifting the 

root trait to higher root mycorrhizal colonization (functionally analogous to 

hairs) for P acquisition 

(ii) Root mycorrhizal colonization decreases with P fertilization due to strong trade-

off for C costs 
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2 Material and methods 

2.1 Description of the agricultural site for field studies 

 

                      

Figure I.2:1 Arial view of experimental location in Reinshof, Goettingen. 

The field experiments (Study 1, 2, and 3) were established on an agricultural research 

field belonging to the Georg-August-University Göttingen, Germany (Figure I.2:1). The 

soil is characterized as a haplic Luvisol suitable for a broad range of agricultural uses 

with the following properties: total C content of 1.41 ± 0.04%, total N content of 0.16 ± 

0.02%, pH value of 7.2 ± 0.01, and bulk density of 1.2 ± 0.2 g cm-3. The experimental 

site is under conventional agricultural uses. Conventional tillage practices up to 30 cm of 

soil depth are performed twice in a year. Maize seeds (Zea mays L. cv. Colisee) were 

sown in the field. The experimental field was divided into 28 plots (5 x 5 m2) with a 2 m 

wide buffer strip around each plot to exclude neighbor effects as shown in figure I.2:2. N 

fertilizer was applied as urea at the soil surface at a rate of 160 kg N ha-1 (Weiterer, 

Landhandel GmbH) 47 days after planting (DAP). Any visible weed growing in the plots 

was manually removed at regular time intervals throughout the experimental period. 
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Figure. I.2:2: Experimental plots in Reinshof, Götttingen. C: Bare fallow; CN: Bare fallow with N 
fertilization; P: Maize with low plant density; PN: Maize with low plant density and with N 
fertilization; DP: Maize with normal plant density; DPN: Maize with normal plant density and N 
fertilization; HP: Maize with high plant density; HPN: Maize with high plant density and N 
fertilization. Low-, Normal-, and High density of maize comprised of 6, 10, and 16 plants m-2. 

 

2.2 Isotope approaches 

We applied a C3-to-C4 vegetation change in the field to estimate RPE. This approach is 

based on the discrimination of heavier (13C) and lighter (12C) C isotopes during CO2 

assimilation by C3 and C4 plants (Balesdent and Mariotti 1996; Kuzyakov and Domanski 

2000). Hence, by planting maize, a C4 plant, on a soil which developed solely under C3 

vegetation, we introduced a distinct isotopic signal. This enabled partitioning total soil 

CO2 efflux for root- and SOM-derived CO2 and thus to estimate the RPE of field-grown 

maize. This approach was used in field estimation of RPE in Study 1. 

 

2.3 Soil and plant sampling and analyses 

For field incubation in Study 1, CO2 was trapped in 1M NaOH solution using closed 

circulation trapping system and total C concentration was measured by SHIMADZU, 
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TOC-5050 and a subsample was precipitated as SrCO3 with 1M SrCl2 for δ13C analysis 

using an isotopic ratio mass spectrometer coupled to an elemental analyzer 2000 

(Thermo Fischer Scientific, Cambridge UK). Study 4 was performed in the climate 

chamber under controlled environmental conditions: 16/8-h day/night rhythm with mid-

day and night temperatures of 25° C and 15° C respectively, and light intensity at 

approximately 600 µmol m-2 s-1 with two-maize (Zea mays L.) genotypes, wild type (WT) 

and roothairless3 (rth3) mutant. Seeds were grown in PVC pots and all the pots were 

fertilized with inorganic nitrogen (KNO3, at the rate of 120 kg N h-1) to avoid soil N 

limitation. Treatments with P-fertilization received inorganic P-fertilizer (KH2PO4, at the 

rate of 60 kg P h-1). 

Soil microbial biomass C (MBC) and N (MBN) were analyzed on fresh samples using the 

chloroform fumigation-extraction method with modifications (Vance et al. 1987). Soil 

samples were extracted with 0.05 M K2SO4 with or without 24 h fumigation using 

chloroform. Extracts were measured for organic C and N contents with a multi N/C 

analyzer (multi N/C analyzer 2100S, Analytik Jena). MBC and MBN were calculated by 

dividing the difference between extracted C and N from fumigated and non-fumigated 

soil samples with a KEC and KEN factor of 0.45 and 0.54, respectively (Joergensen and 

Mueller, 1996; Wu et al. 1990). The C and N contents from non-fumigated soil samples 

were considered as dissolved organic C (DOC) and dissolved N (DN), respectively. 

Activities of all the measured enzymes were determined using fluorogenic labeled 

artificial substrates (Marx et al. 2001). Fresh soil suspension (1g soil + 50 ml distilled 

H2O) was prepared and 50 µl of this suspension was dispensed into a black 96-well 

microplate. Fifty ml of either MES or TRIZMA buffer was added to each well for MUB or 

AMC based substrates, respectively. A 100 µl of substrate solutions for respective 
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enzyme activity was added and fluorometric measurements (excitation 360 nm; 

emission 450 nm) were taken. Fluorescence values were converted to amount of MUB 

or AMC using specific standard scales based on soil suspension. Enzyme activities were 

expressed as nanomoles MUB or AMC cleaved per gram dry weighted soil per hour 

(nmol g-1 dry soil h-1). 

Aggregates of three size classes were isolated by the method described by Dorodnikov 

et al. (2009) with modifications using vibratory sieve shaker. From each aggregate size 

class, soil was weighed to determine the mass distribution and mean weight diameters 

(MWD) of aggregates (John et al. 2005) as below: 

MWD= ∑(Weight % of sample remaining on sieve × Mean inter-sieve size)÷100 

where mean inter-sieve size is the average of the two sieve sizes through which the 

aggregates have passed and on which the aggregates have remained after sieving. 

Soil and plant sampling were conducted at defined time period for Study 1, 2, 3, and 4 

as mentioned in detail in the respective section of the manuscripts. 
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3 Results and discussion 

3.1 Estimation of rhizosphere priming effects in the field (Study 1) 

The rhizosphere priming effect has been widely observed in numerous studies under 

controlled conditions, but field studies are still rare (Cheng et al. 2014). Here, we provide 

measurements of RPE of SOM decomposition in a maize field based on SOM-derived 

CO2. In agreement with other studies (Dijkstra et al. 2013; Finzi et al. 2015; Mwafulirwa 

et al. 2016; Pausch et al. 2013), plants accelerated the decomposition of SOM (Figure 

I.3:1). Higher MBC and MBN in the rhizosphere support the microbial activation by root 

exudation. This microbial activation is accompanied by increased extracellular enzyme 

activities, which further confirm that extracellular enzyme production is an important 

mechanism of SOM decomposition in the rhizosphere (Fontaine et al. 2003; Kuzyakov, 

2010).  

 

Figure I.3:1: Rhizosphere priming effect (RPE) (±SEM) as % of CO2 efflux from bare fallows for 
unfertilized (Planted) and N-fertilized (Planted+N) maize plants. The inset shows specific RPE 
(mg C day-1 g-1 root) (±SEM). Letters indicate the significant differences for RPE (P < 0.01) and 
for specific RPE (P < 0.05) between unfertilized and N-fertilized maize planted soils. 
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The N status of soils largely controls the magnitude of rhizosphere priming. N fertilization 

substantially reduced rhizosphere priming by lowering SOM decomposition. Lower root-

derived CO2 and enzyme activities in the rhizosphere with N fertilization confirmed that 

the availability of mineral N weakens the competition between roots and 

microorganisms. Microorganisms start utilizing exudates and the available mineral N 

(preferential substrate utilization) (Kuzyakov 2002; Sparling et al. 1982). However, 

increased root-derived CO2 and enzyme activities without N fertilization intensify the root 

and microbial competition for N and the dependence of microorganisms on N mining. 

These findings suggested that root activity is intimately connected with microbially 

mediated SOM decomposition (Figure I.3:2). 

 

Figure I.3:2: Conceptual figure showing rhizosphere priming on SOM decomposition 
accompanied by microbial activation and N mining. Arrow thickness indicates process intensity. 
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3.2 Effects of maize roots on the distribution of soil aggregate classes and 

associated microbial biomass and extracellular enzyme activities (Study 2) 

The influence of roots on aggregate stabilization is well known (Erktan et al. 2015; Six et 

al. 2004), but very few studies have focused on aggregate disintegration by living roots 

(Materechera et al. 1994). In our field study, a gradual increase in the portion of 

microaggregates and a decrease in large macroaggregates with increasing plant density 

may be due to disintegration of large macroaggregates by growing roots (Figure I.3:3). 

Mechanistically, the aggregate redistribution may occur through the penetration of living 

roots into macroaggregates along planes of weakness and through the pores within 

macroaggregates, thereby decreasing their stability (Materechera et al. 1994).  

 

Figure I.3:3: The relative distribution of large and small macroaggregates (left y-axis; 
mean±SEM) (n=4) and microaggregates (right y-axis; mean±SEM) (n=4) in bare fallow soil and 
soils with Low, Normal and High maize plant densities. Letters indicate significant differences 
(Post-hoc LSD test, P < 0.05) between bare fallow and three plant densities within the same 
aggregate size class. 

In the present study, microbial biomass C decreased with decreasing aggregate size. 

Literature is replete with studies showing increased fungal abundance with increasing 
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aggregate size (Poll et al., 2003; Zhang et al., 2015). The preferential colonization by 

fungal communities may occur in macroaggregates (Harris et al., 2003) by expanding 

their biomass through extensive hyphal growth in large pores (De Gryze et al., 2005; 

Dorodnikov et al., 2009b). In turn, microaggregates are inhabited predominately by 

bacterial communities (Ranjard and Richaume, 2001; Six et al., 2006). Higher microbial 

biomass C to N ratio in macroaggregates than microaggregates (although significant 

only in low plant density) in the present study indicates fungal dominance in 

macroaggregates as compared to microaggregates. The present study showed that the 

potential and specific activities of β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, L-

leucine aminopeptidase and acid phosphatase enzymes were higher in rooted than bare 

fallow soil which is most likely due to microbial activation via rhizodeposits (Kuzyakov 

and Blagodatskaya, 2015). Enzyme activities increased with decreasing aggregate size 

as large macroaggregates < small macroaggregates < free microaggregates. Overall 

higher potential and specific enzyme activities in free microaggregates may result from 

the location of the latter within soil where root exudations as well as water, nutrient and 

oxygen flows are higher than in the interior of macroaggregates (Burns et al., 2013; 

Phillips et al., 2011). In summary, considering microbial activation (Cheng and 

Kuzyakov, 2005) by growing roots, the present study provides evidence that the 

influence of roots on microorganism‘s activities persists in different soil aggregates and 

such influences are more pronounced in free microaggregates (Figure I.3:4). 
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Figure I.3:4: Conceptual figure showing the potential effects of growing roots on extracellular 
enzyme activities (EEA) and microbial biomass in distinct aggregate size classes in rooted soil. 
Root induced microbial activities in distinct aggregate size classes are shown by higher EEA and 
the relations between aggregate size and microbial biomass are illustrated. 

 

3.3 Effects of maize phenology and N fertilization on the distribution of 

extracellular enzyme activities (EEA) along with soil depth in the field (Study 

3) 

The present study highlighted regulation of plant phenological stage, soil depth and N 

fertilization on microbial activity (i.e. EEA). Enhanced activity of all measured enzymes in 

rooted soil (up to 58% increase in BG activity) as compared to bare fallow at both 

phenological stages provides evidence of plant-mediated activation of microorganisms 

(microbial activation hypothesis; Cheng and Kuzyakov 2005). Maize plants grow faster 

during earlier development stages and allocate a higher amount of photo-assimilated 

products belowground to roots (Pausch et al. 2013, Pausch and Kuzyakov 2017). 
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Increased belowground allocation for root development is generally positively related to 

root exudation (Pausch and Kuzyakov 2017). This increased release of labile substrates 

by roots (via exudation) at early growth stage facilitates microbial growth, resulting in 

higher EEA in rooted soil than in bare fallow (Nannipieri et al. 2012; Kuzyakov and 

Blagodatskaya 2015). In contrast, at maturation stage, when plants have a fully 

developed root system, the allocation of resources shifts from belowground to 

aboveground plant tissues (cob formation). As a result, the stimulating effect of roots on 

EA was reduced at maize maturity (Figure I.3:6). The change in EA of BG, CBH, XYL, 

NAG, PHO, and LAP in rooted soil depending on plant phenological stage demonstrated 

that, in the rhizosphere, microorganisms are fueled by root exudation, and their activity 

is intimately linked to both the quantity and quality of labile substrate inputs via roots 

(FigureI.3:5). 

 

Figure I.3:5: The principal component analysis (PCA) analysis showed distinct enzyme activities 
at maize silking (unfilled symbols) and maturity (filled symbols) stage. Different colors and 
shapes indicate each soil depth as follows: 0-5 cm (red circle), 5-15 cm (blue upside triangle), 
15-25 cm (green diamond), and 25-35 cm (pink square). 
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Besides the effect of maize phenology, EA was also altered by soil depth. Regarding soil 

depth, the highest enzyme activities were centered in the zone of maximum root density 

(5-25 cm), further supporting plant mediated increases in microbial growth and activity. 

Reduced Leucine-aminopeptidase and β-1,4-N-acetylglucosaminidase activities with N-

fertilization demonstrates reduced resource allocation to N-cycling enzyme synthesis in 

the presence of alternative N sources (Figure I.3:6). 

 

Figure I.3:6: Contribution of three factors: soil depth (0-5 cm, 5-15 cm, 15-25 cm, and 25-35 cm), 
maize roots (presence or absence of plants), N fertilization (presence or absence of N 
fertilization), and their interactions on potential activity of phosphomonoesterase (PHO), BG (ß-
1,4-glucosidase), CBH (ß-cellobiohydrolase), XYL (ß-xylosidase), NAG (N-acetyl-1,4-
glucosaminidase), and LAP (Leucine-aminopeptidase). 

To summarize, 1) soil depth had the strongest effect on EA (up to 51% of total variation), 

2) the root effect was stronger at the silking versus maturity stage; and 3) N fertilization 

affected only the enzymes related to N cycle (Figure I.3:7). We conclude that soil depth 

and plant phenology stage govern EA, and these effects are strongest between 5 and 

25 cm soil depth containing silking plants. 
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Figure I.3:7: Effects of soil depth, maize roots, and N-fertilization on distribution of activity of P-, 
C-, and N-acquiring enzymes in maize rhizosphere. Thickness of arrows indicates the strength 
of the effect on enzyme activities. 

 

3.4 Root trait plasticity to maintain plant productivity under phosphorus 

limitation (Study 4) 

The present study demonstrated that both, root morphological (root hairs) and biological 

traits (root colonization by AM fungi) are crucial for plant P uptake in P limited soils 

(Figure I.3:8). Root hairs promoted P uptake most likely by increasing the root surface 

area for absorption. Presence of root hairs increased the P uptake and decreased the 

dependency of plants on root mycorrhizal colonization by AM fungi, thereby reducing the 

C costs for P acquisition. However, the smaller surface area for absorption in absence of 

root hairs can be counterbalanced by increased root mycorrhizal colonization by AM 

fungi (Figure I.3:9). This alternative root trait for P uptake by exploring the soil volumes 

beyond the root depletion zone is important for maintaining plant growth in the absence 

of root hairs and under nutrient limitation. Plant adaptive strategy in response to higher 

colonization by increasing the root diameter of fine roots is an efficient policy resulting in 

lower costs and higher benefits. The present study enhances the understanding of plant 
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P uptake and interaction-response mechanisms with AM fungi at three major plant 

growth stages (tillering, stem elongation, and maize heading). 

 

Figure I.3:8: Plant P uptake (mg P day-1±SEM) of unfertilized (without pattern) and P-fertilized 
(patterned bars) maize plants with (wild type: WT, green bars) and without root hairs (rth3, 
orange bars) at three growth stages at tillering (30 DAP), stem elongation (44 DAP), and maize 
heading  (64 DAP) (ANOVA, P < 0.05). Lower-case letters indicate significant differences of P 
fertilization on plant P uptake separately for WT and rth3 maize at each plant growth stage (t-
test, P < 0.05). * indicates significant difference between WT and rth3 maize (t-test, P < 0.05) 
(DAP = Days after planting, n = 4). 

 

Figure I.3:9: Conceptualized diagram showing plasticity in root traits: increased average fine root 
diameter and higher root mycorrhizal colonization with AM fungi in rth3 mutant than wild type 
maize as a mechanism for phosphorus (P) acquisition in P limited soil. 
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4 Conclusion and outlook 

The present thesis leads to the following conclusions: 

(1) Rhizosphere priming effects of SOM decomposition are measureable under field 

conditions and are driven by microbial activation via root-derived organics. The 

magnitude of RPEs is dependent on soil nutrient status and root activity. 

(2) Increased extracellular enzyme activities in all aggregate size classes in 

rhizosphere as compared to bare fallow are root mediated. Localization 

dependent conclusions on EEA in various sized aggregates are crucial due to 

preferential exposure to substrate inputs.   

(3) Maize phenology determines the plant-mediated effects on EEA. Moreover, the 

depth dependent effects on EEA are most likely due to substrate availability and 

gaseous exchange at deeper soil depths.   

(4) Plasticity in root traits for P acquisition is important for maintaining plant growth in 

absence or poorly developed root hairs and under nutrient limitation. 

These conclusions are of particular relevance for future investigations because of 

following reasons: 

(1) Field estimations of RPEs demonstrate the field relevance of plant mediated SOM 

decomposition. Despite higher root biomass with N fertilization demonstrates that 

RPEs are not a function of root biomass rather of root and microbial activity. Such 

mechanisms may vary with plant species and growth stage depending on 

nutritional demands for plants and microorganisms and therefore, there is need to 

measure RPEs at distinct plant growth stages as well as for other species. 
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(2) Higher microbial activity as reflected by higher EEA in rooted soil than bare fallow 

and in free microaggregates than macroaggregates demonstrates that the 

hotspots of microbial activity are not homogenously distributed in soil. We 

fractionated the free microaggregates and the microaggregates residing on the 

surface of macroaggregates. Future studies should also focus of the aggregate 

fractionation procedures as these will strongly chance the interpretation of the 

results. 

(3) Plant mediated increase in EEA are dependent on plant growth and thereby root 

activity. The strength of such changes in EEA depending on plant phenology 

should be considered for future studies. 

(4) Plant mediated changes in rates of SOM decomposition and nutrient cycling via 

altering microbial activities are central in the context of organic farming and 

sustainable agricultural practices. It is important to understand the mechanisms of 

building up and decomposition of SOM with minimal external inputs determining 

soil health and plant productivity.  
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Abstract 

Root-mediated changes in soil organic matter (SOM) decomposition, termed 

rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but 

their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen 

(N) shortages may intensify SOM decomposition in the rhizosphere because of increase 

of fine roots and rhizodeposition. 

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation 

change. N-fertilized and unfertilized soil cores, with and without maize, were incubated 

in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-

derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and 

N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine 

aminopeptidase) were analyzed.  

Roots enhanced SOM mineralization by 35% and 126% with and without N, 

respectively. This was accompanied by higher specific root-derived CO2 in unfertilized 

soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial 

activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but 

it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize 

through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased 

with N-fertilization in planted and unplanted soils.  

This study showed the field relevance of RPE and confirmed that, despite higher root 

biomass, N availability reduces RPE by lowering root and microbial activity. 

 

Key words: C3/C4 vegetation change, soil CO2, SOM decomposition, enzyme activities, 

microbial biomass, N-fertilization. 
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1.1. Introduction 

Agricultural soils are central with regard to global climate change because they may act 

either as potential C sinks (Smith et al. 2013) or as net sources of greenhouse gases 

(Lal 2011; Smith 2012). This makes it important to evaluate and balance the C inputs via 

living roots (rhizodeposits) and dead plants (litter) versus outputs via SOM 

decomposition. Altered dynamics of SOM decomposition in the rhizosphere play a 

significant role in the global C cycle (Coleman et al. 1992). This calls for a better 

understanding of the SOM dynamics in the rhizosphere in the field. In a meta-analysis, 

Finzi et al. (2015) showed that microbially mediated SOM decomposition is enhanced in 

the rhizosphere of various vegetation types and concluded that rhizospheric processes 

in SOM decomposition and subsequent nutrient release are quantitatively important at 

the ecosystem level. Thus, along with the importance of soil moisture and temperature 

for SOM decomposition, increasing recognition is being given to biotic processes in the 

rhizosphere regulating SOM decomposition (Zhu and Cheng 2012). Besides various 

processes occurring in the rhizosphere, rhizodeposition is the most important link 

between plant growth and microbially mediated processes in soils (Pausch et al. 2013a). 

The availability of easily utilizable C substrates is a key limiting factors for microbial 

activity in soil, and C availability is a main factor controlling SOM turnover (Fontaine et 

al. 2007; Paterson and Sim 2013). Thus, labile C input, e.g. root exudates, may alter the 

microbial decomposition of SOM, a process termed ˈrhizosphere priming effectsˈ 

(Kuzyakov 2002). 

Living roots may either inhibit or stimulate the decomposition of SOM  (Dijkstra et al. 

2006; Fu et al. 2002; Reid and Goss 1982) via synergistic or antagonistic interactions, or 

both. The RPE of maize on the decomposition of SOM ranged from –30 % to more than 



 
Maize rhizosphere priming: field estimates using 13C natural abundance 

42 

300% considering the effects of soil types, time period, N and CO2 regimes in various 

studies (summarized by Cheng et al. 2014). Although RPE has been investigated in 

many studies, the underlying mechanisms are currently widely debated, but there is 

evidence that RPE mainly depends on decomposable C (Dormaar 1990; Meier et al. 

2015) and the mineral N content in soil (Craine et al. 2007).  

Rhizodeposition is an ecologically important part of rhizosphere processes because it 

serves as the primary energy source for microorganisms. This may enhance the 

metabolic activity of microorganisms and consequently affects the dynamics of SOM 

decomposition and, thus, rhizosphere priming (Microbial activation hypothesis, Cheng 

and Kuzyakov 2005; De Nobili et al. 2001; Kuzyakov et al. 2007; Pausch et al. 2013b). A 

trace amount of root exudates (µg g-1) may enhance the microbially mediated 

decomposition of SOM (De Nobili et al 2001). Furthermore, altered root exudation may 

change the structure and function of microbial communities in the rhizosphere. This 

subsequently affects the SOM decomposition. Moreover, microbial N mining (Craine et 

al. 2007) may enhance SOM decomposition when nutrients are limited. Microorganisms 

as well as plants may thus benefit from nutrients released by extra decomposition of 

SOM (via RPE).  

Here, we investigate the mechanisms of RPE and address the ecological importance of 

RPE. We applied a C3-to-C4 vegetation change in the field to estimate RPE. This 

approach is based on the discrimination of heavier (13C) and lighter (12C) C isotopes 

during CO2 assimilation by C3 and C4 plants, which  are characterized by distinct 

photosynthesis types (Balesdent and Mariotti 1996; Kuzyakov and Domanski 2000). 

Hence, by planting maize, a C4 plant, on a soil which developed solely under C3 

vegetation, we introduced a distinct isotopic signal. This enabled partitioning total soil 
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CO2 efflux for root- and SOM-derived CO2 and thus to estimate the RPE of field-grown 

maize. Moreover, the extracellular activity of three enzymes (BG, NAG and LAP) was 

determined to link rhizosphere priming to microbial activities.  

We hypothesized that (i) planting increases SOM decomposition via microbial activation 

through root exudates, and that (ii) mineral N application reduces RPE because plants 

alter their root activities and microbes are less dependent on nutrient gains from SOM 

decomposition. 

 

1.2. Materials and Methods 

1.2.1. Experimental setup 

The experiment was established on an agriculture field at the experimental research 

station Reinshof of the Georg-August University, Göttingen, and was solely under C3 

crops. Therefore, the organic C in the soil originated from C3 vegetation. In this 

experiment, a vegetation change from C3 to C4 (maize) crops was used to introduce a 

distinct 13C signal into the soil and to partition the total soil CO2 efflux into root-derived 

and SOM-derived CO2. 

Four plots (5 x 5 m2) were established: bare fallow (Unplanted), bare fallow with N-

fertilization (Unplanted+N), maize-planted (Planted) and maize-planted with N-

fertilization (Planted+N). In both planted plots, maize was grown with a plant density of 6 

plants m-2. For N-fertilization, urea (Weiterer, Landhandel GmbH) was applied at the soil 

surface at a rate of 160 kg N ha-1.  

Before the incubation started, maize (Zea mays L.) was sown in the field for 10 days. 

For incubation, mesh pots (height 35 cm, diameter 18 cm) were constructed from 

stainless metal mesh covered with nylon gauze to avoid soil losses from the pot. The 
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nylon gauze allowed water and other solute transport across the mesh. Four undisturbed 

soil cores were collected from each plot (Unplanted, Unplanted+N, Planted, and 

Planted+N) with a soil corer (height 35 cm, diameter 18 cm) and transferred to the pots. 

In both planted plots, each soil core contained one 10cm-high maize plant. The pots 

were then placed back in the holes made with the corer and incubated in the field. 

1.2.2. CO2 trapping  

The pots were incubated in the field for 50 days. We have chosen the time point of 50 

days after planting in order to sample during the period of maximum growth and root 

exudation. Afterwards, the pots were removed from the field and brought to laboratory 

and placed in a growth chamber for 30 h with conditions adapted to those in the field. 

Total soil respiration was measured using a closed-circulation CO2 trapping system 

(Figure II.1:1). Briefly, each pot was placed in a PVC column (KG tubes; height 40 cm, 

diameter 20 cm). Air inlet tubing at the upper end and outlet tubing at the lower end of 

the PVC column were connected to a membrane pump. An aliquot of 1 M NaOH solution 

was inserted between the air outlet tubing and membrane pump (Figure 1). The planted 

pots were sealed with plastic foil, and at the base of plant stem with a non-toxic gel 

(Wasserfuhr, GmbH), to avoid any leakage. Prior to CO2 trapping, CO2 inside each pot 

was removed by circulating the isolated air through 1 M NaOH for 2 h. Afterwards, the 

CO2 produced in each pot was trapped in 400 ml of 1 M NaOH solution for a period of 

24 h by periodic air circulation for 1 h at 6 h intervals. Blanks were included (empty but 

closed PVC columns) and treated in the same way to correct inorganic C for handling 

errors. One subsample from each NaOH solution was analyzed for total inorganic C 

(SHIMADZU,TOC-5050) and another subsample was precipitated as SrCO3 with 1 M 

SrCl2 for δ13C analysis using an isotopic ratio mass spectrometer (Delta V Advantage, 
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Conflo III) coupled to an elemental analyzer 2000 (Thermo Fischer Scientific, Cambridge 

UK).  

Total soil CO2 efflux (Ctotal) was separated into SOM-derived CO2 (CSOM) and root-

derived CO2 (rhizosphere respiration) (Croot) using a two-source mixing model (Pausch 

et al. 2013b). 

CSOM = CTOTAL (δ
13CTOTAL – δ13CROOT) / (δ13CSOM – δ13CROOT)                (1) 

CROOT = CTOTAL - CSOM                                                                                                                  (2) 

where, δTOTAL, δSOM and δROOT are the δ13C values in ‰ for total CO2 efflux, SOM- and 

root-derived CO2. CTOTAL, CSOM and CROOT are the CO2 concentrations (mg C day-1 kg-1 

soil).  

RPE was calculated as the difference of CSOM between planted and unplanted soils 

(Pausch et al. 2013b) as shown below: 

RPE = CSOM(Planted) – CSOM(Unplanted)                                                             (3) 

RPE = CSOM (Planted+N) – CSOM(Unplanted+N)                                                               (4) 

Note, the 13C isotopic fractionation between root C and root-derived CO2 was not 

considered in the present study, which may have affected the calculated RPE. As 

reviewed by Werth and Kuzyakov (2010), the fractionation for C4 plants is on average -

1.3‰ with variations up to ±2‰. Since the fractionation is unknown for our plant-soil 

system, we decided not to include the literature value, as this would not add greater 

certainty to the results.  

 

1.2.3. Harvest 

Directly after CO2 trapping, the total weight of each pot was determined and the pots 

were destructively harvested. Shoots were cut at the base and dried at 60 °C for 3 days. 
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The soil cores were pulled out of the pot and the ―main‖ root system was carefully 

removed. A representative homogenized soil sample (400-500 g) was taken from each 

pot to determine soil moisture, microbial biomass C and N, and extracellular enzyme 

activities. Soil moisture was about 12.5 to 14% and did not differ significantly between 

the planted and unplanted soils.  

For root analyses, a soil subsample (300 g fresh soil) was taken and fine roots were 

picked from the soil for 15 minutes. Afterwards, the ―main‖ roots and the fine roots (from 

root picking) were scanned by an EPSON (PERFECTION™ V700 PHOTO) scanner and 

the root length density was determined using WinRhizo (2008) software. All roots with 

diameters < 2 mm were considered as fine roots. The root length density of roots picked 

from 300 g soil was up-scaled to the whole pot weight. After scanning, all roots (―main‖ 

and picked roots) were dried at 60 °C for 3 days. Roots were analyzed for δ13C values 

using the isotopic ratio mass spectrometer and elemental analyzer 2000 noted above. 

All the isotopic analyses were performed at the Center for Stable Isotope Research 

Analysis (KOSI) at the University of Göttingen, Germany. 

1.2.4. Soil microbial biomass 

Soil microbial biomass C (MBC) and N (MBN) were analyzed on fresh samples using the 

chloroform fumigation-extraction method (Vance et al. 1987). Briefly, a non-fumigated 

soil sample (8 g fresh soil) was extracted with 40 ml of 0.05 M K2SO4 by continuously 

shaking (Laboratory shaker, GFL 3016) (150 rpm) for 1 h. After shaking, the soil 

suspension was filtered through Ahlstrom-Munktell filters (Grade: 3hw, diameter 110 

mm). The organic C and N contents of filtered solution were measured with a multi N/C 

analyzer (multi N/C analyzer 2100S, Analytik Jena). The same extraction procedure was 
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followed for fumigated soil. Fumigation was carried out in a desiccator with 80 ml of 

ethanol-free chloroform at room temperature for 24 h.  

MBC and MBN were calculated by dividing the difference between extracted C and N 

from fumigated and non-fumigated soil samples with a KEC and KEN factor of 0.45 and 

0.54, respectively (Joergensen and Mueller. 1996). The C and N contents from non-

fumigated soil samples were considered as dissolved organic C (DOC) and dissolved N 

(DN), respectively. 

1.2.5. Enzyme assays 

Extracellular enzymes activities were measured using the method described by Marx et 

al. (2001). Fluorogenic methylumbelliferone (MU)-based artificial substrates were used 

to estimate the activities of β-1,4-glucosidase (EC 2.2.1.21) (BG), which catalyzes the 

terminal reaction in hydrolyzing structural carbohydrates (i.e. cellulose) and the activities 

of β-1,4-N-acetylglucosaminidase (EC 3.2.1.14) (NAG), which catalyzes the terminal 

reaction in chitin and other N-acetylglucosamine-containing polymer hydrolysis. 

Fluorogenic 7-amino-4-methycoumarin (AMC)-based artificial substrate was used to 

estimate the activity of L-leucine aminopeptidase (EC 3.4.11.1) (LAP), which hydrolyses 

the terminal reaction in peptide breakdown, releasing leucine and other amino acids 

(Sinsabaugh and Shah 2012). 

Briefly, soil suspension was made by dissolving 1 g fresh soil sample in 50 ml 

autoclaved water using a low-energy sonication (50 Js-1) for 120 s (Koch et al. 2007; 

Stemmer et al. 1998). An aliquot of 50 µl was dispensed in a 96-well black microplate 

(Puregrade, Germany) while stirring the soil suspension to ensure uniformity. 

Afterwards, 50 µl of MES buffer (pH 6.5) was added to the well. Finally, 100 µl serial 

concentrations of substrate solutions (20, 40, 60, 80, 100, 200, 400 µmol substrate g 
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soil-1) were added to the wells. The microplate was rippled and measured 

fluorometrically (excitation 360 nm; emission 450 nm) at 0, 30, 60, 120 m after substrate 

addition with an automated fluorometric plate-reader (Victor3 1420-050 Multi-label 

Counter, PerkinElmer, USA). 

To estimate enzyme activity (V), we used the Michaelis-Menten equation for enzyme 

kinetics (Marx et al. 2001, 2005; Razavi et al. 2015): 

V = (Vmax x [S]) / (Km + [S])                                                         (5) 

where, Vmax is the maximal rate of enzyme activity; Km (Michaelis constant) is the 

substrate concentration at which Vmax is half; and [S] is the substrate concentration. 

Statistics 

The experiment was carried out with 4 field replicates for each measured parameter. 

The values for RPE, microbial biomass C and microbial biomass N, plant biomass, and 

enzymes activity were expressed as means ± standard errors (mean ± SEM). Prior to 

analysis of variance (ANOVA), the data were tested for normality (Shapiro-Wilk test, P > 

0.05) and homogeneity of variance (Levene-test, P > 0.05). We used factorial ANOVA to 

test the effects of plantation and N-fertilization on MBC and MBN, SOM-derived CO2, 

and Vmax of extracellular enzymes. The ANOVAs were followed by post-hoc tests for 

multiple comparisons using least significant differences (Tukey-test). We used Student‘s 

t-test to test the differences in plant biomass (root- and shoot biomass), RPE, root-

derived CO2, specific RPE, and RPE as percent of control in Planted and Planted+N 

soils. In general, a significance level of P < 0.05 was used for ANOVA and t-test if not 

mentioned specifically. Statistical analyses were performed with STATISTICA for 

Windows (version 7.0; StatSoft Inc., OK, USA). 
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1.3. Results 

1.3.1. Plant biomass  

Total plant biomass (shoot and root biomass) per pot was higher in the N-fertilized 

plants (Planted+N) (36.3 ± 8.1 g pot-1) than in unfertilized plants (Planted) (20.7 ± 2.2 g 

pot-1) (Figure II.1:2). The shoot to root ratio was lower in N-fertilized plants (Planted+N) 

(7.5±0.9) than unfertilized plants (Planted) (10.2±1.3), although the difference was not 

statistically significant (P < 0.05).  

1.3.2. Total soil CO2 efflux and source-partitioning  

Plants increased the total soil CO2 efflux in both N-fertilized and unfertilized soils (Figure 

II.1:3). However, the CO2 efflux was lower in N-fertilized treatments (both in 

Unplanted+N and Planted+N) compared with unfertilized treatments (Unplanted and 

Planted). Total CO2 efflux ranged from 27.7±5.9 to 116.0±26.2 mg C day-1 kg-1 soil, 

being lowest in bare fallow with N-fertilization (Unplanted+N) and highest in unfertilized 

soils planted with maize (Planted).  

A linear two-source isotopic mixing model was used to calculate the contribution of 

SOM-derived and root-derived CO2 to total CO2 efflux in unfertilized and N-fertilized soils 

planted with maize. SOM-derived CO2 was higher (87.4±16.1 mg C day-1 kg-1 soil) (P < 

0.05) in unfertilized soils with maize (Planted), whereas N-fertilization resulted in less 

SOM-derived CO2 emission (37.2±2.6 mg C day-1 kg-1 soil) (Planted+N) (Figure II.1:3). 

Furthermore, specific root-derived CO2 was calculated by dividing root-derived CO2 to 

total root biomass. Specific root-derived CO2 was higher (P < 0.05) in unfertilized plants 

(Planted) (131.6±22.5 mg C day-1 g-1 root) than in N-fertilized plants with (Planted+N) 

(38.4 ±5.8 mg C day-1 g-1 root) (Figure II.1:3; inset).  
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1.3.3. Rhizosphere priming effect 

Positive RPE was found in both planted soils (Planted and Planted+N), resulting from 

enhanced decomposition of SOM. Nonetheless, the RPE was lower (P < 0.1) in N-

fertilized soils with maize (Planted+N) (9.6±2.6 mg C day-1 kg-1 soil) compared to 

unfertilized soils with maize (Planted) (48.8±16.1mg C day-1 kg-1 soil). SOM-

decomposition in unfertilized and N-fertilized soils with maize increased by 126.2±41.7% 

and 34.5±9.2%, respectively, compared to the unplanted soils (Figure II.1:4). Specific 

RPE was calculated by dividing RPE by total root biomass. Specific RPE was higher (P 

< 0.05) in unfertilized soils (Planted) than N-fertilized soil (Planted+N) (Figure II.1:4; 

inset).  

1.3.4. Microbial biomass and extracellular enzyme activity 

Plants had stimulating effects on MBC and MBN. The lowest MBC was in bare fallow 

(Unplanted), whereas N-fertilization increased MBC (20%) especially in planted soils 

(Planted+N) versus bare fallow. There was a trend of increasing MBC with N-fertilization 

and under plants with and without N-fertilization in the sequence: Unplanted < 

Unplanted+N < Planted < Planted+N (Figure II.1:5). Planting also increased MBN (P < 

0.05) (Planted and Planted+N) compared to bare fallows (Unplanted and Unplanted+N). 

N-fertilization, however, had only a minor effect on MBN. The ca. 30% increase in MBN 

in planted soils reflected microbial activation. 

The activities of three enzymes were stimulated by planting (Planted and Planted+N), 

resulting in increased reaction rates. Planting increased the potential activity of BG (84% 

and 97% for N-fertilized and unfertilized soils with maize), NAG (80% and 65% for N-

fertilized and unfertilized soils with maize), and LAP (27% and 53% for N-fertilized and 

unfertilized soils with maize) in comparison with N-fertilized and unfertilized bare fallow 
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(Figure II.1:6). N-fertilization lowered the potential activity of BG and LAP by lowering 

Vmax in planted soils, but it increased the activity in bare fallow (not statistically 

significant). When compared to BG and LAP, NAG showed a different pattern. Vmax of 

NAG followed a pattern in ascending order: bare fallow < bare fallow with N-fertilization 

< unfertilized maize-planted soil < N-fertilized maize-planted soil (Figure II.1:6). 

 

1.4. Discussion 

1.4.1. Effects of living roots on SOM decomposition  

The rhizosphere priming effect has been widely observed in numerous studies under 

controlled conditions, but field studies are still rare (Cheng et al. 2014). Here, we provide 

measurements of RPE of SOM decomposition in a maize field based on SOM-derived 

CO2. In agreement with other studies (Dijkstra et al. 2013; Finzi et al. 2015; Mwafulirwa 

et al. 2016; Pausch et al. 2013b), the plants accelerated the decomposition of SOM. 

Positive priming has often been explained by the microbial-activation hypothesis (Chen 

et al. 2014; Kuzyakov and Cheng, 2005). The secretion of labile C compounds by roots 

enhances microbial growth and activity, leading to higher extracellular enzyme activities 

and, hence, accelerated SOM decomposition (Figure II.1:7) (Fontaine et al. 2003; 

Kuzyakov 2010; Loeppmann et al. 2016; Neumann and Römheld 2007). 

SOM-derived CO2 was about 35% higher for N-fertilized and 126% higher for unfertilized 

planted soils compared to the bare fallows. Accompanied by positive rhizosphere 

priming, MBC and MBN were increased through planting (Figure II.1:4). Furthermore, in 

the rhizosphere; the higher microbial activity in response to root exudation (root-released 

easily available substrates) was characterized by increased Vmax for BG, NAG and LAP 

in comparison with bare fallows. The rhizosphere priming effect increased with activities 
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of BG, LAP and NAG. In a similar study, BG activity and SOM decomposition were 

positively correlated (Zhu et al. 2014).  

ΒG is involved in the degradation of structural carbohydrates (i.e. cellulose). It catalyzes 

terminal hydrolysis in cellulose degradation by producing two moles of glucose per mole 

of cellobiose, and glucose is an important energy source for microorganisms (Turner et 

al. 2002). Furthermore, BG synthesis is triggered by the presence of cellobiose, glucose 

and other metabolites of cellulose degradation (Stewart and Leatherwood 1976). In the 

rhizosphere, root exudation triggers enhanced synthesis of BG, which is accompanied 

by RPE in the decomposition of SOM.  

When labile C sources with high C/N ratios are available for microorganisms, they start 

producing N-degrading enzymes to obtain N from SOM (Fontaine et al. 2011). Proteins 

and chitins are the most abundant organic N sources (Moorhead et al. 2012). For 

proteins, LAP is involved in the terminal hydrolysis of polypeptides, releasing amino 

acids. For chitins, NAG hydrolyses N-acetylglucosamine (monosaccharide derivative of 

glucose) from chito-oligosaccharides (i.e. chitobiose) (Sinsabaugh 1994). LAP and NAG 

are the most commonly detected N-degrading enzymes for SOM decomposition 

(Moorhead et al. 2012). Taking into account the microbial activation hypothesis (Cheng 

and Kuzyakov 2005), the present study provides evidence that, also under field 

conditions, living roots activate microorganisms for SOM decomposition.  

1.4.2. Effect of N-fertilization on SOM decomposition  

Planting induced positive priming effects in the rhizosphere (Figure II.1:4). When N was 

added, however, the extra SOM decomposition (positive RPE) was much lower in N-

fertilized soils (35% of bare fallow with N-fertilization) than in unfertilized soils (126% of 

bare fallow), despite a higher shoot and root biomass of N-fertilized maize plants. 
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Increased N supply may increase net assimilation, and plants produce higher biomass 

(Hodge et al. 1996; Warembourg and Estelrich 2001; Zhu et al. 2015). Although the root 

biomass of N-fertilized maize was about twice as high, the rhizosphere respiration (root-

derived CO2) was lower, indicating lower root activity (Figure II.1:7). It is well known that 

plants invest more C resources for root exudation under nutrient limitations (Hodge et al. 

1996; Kraffczyk et al. 1984; Ratnayake et al. 1978). Root exudation also stimulates 

microbial activity and nutrient availability (Smith 1976; Yin et al. 2013). Both theoretical 

(Cheng et al. 2014; Wutzler and Reichstein 2013) and experimental studies (Drake et al. 

2013; Phillips et al. 2011) have shown that enhanced root exudation may accelerate 

RPE for SOM decomposition, thus increasing the flux of nutrients to forms available for 

plants. Reduced root exudation in N-fertilized maize plants, indicated by lower root-

derived CO2 (consisting of CO2 from root respiration and CO2 released by decomposition 

of exudates), showed that these plants do not rely solely on nutrients from SOM 

decomposition. RPE can increase with increasing root activity (Zhu et al. 2014). 

Rhizosphere respiration was positively correlated with RPE (P < 0.01). In addition, the 

specific root length density (fine root length density (< 2 mm) per gram root) was higher 

(P < 0.059) for unfertilized maize plants (data not presented). This altered root 

architecture of unfertilized maize may help to make the limiting resources accessible by 

maximizing root surface area and enabling roots to have greater contact with soil 

surfaces (Paterson and Sim 1999).  

These findings suggested that root activity is intimately connected with microbially 

mediated SOM decomposition. Furthermore, root exudates are characterized by high C 

to N ratios (Cheng and Kuzyakov 2005). Such high ratios results in higher C availability 

and a severe N limitation for microorganisms (Kuzyakov and Blagodatskaya 2015; 
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Kuikman et al. 1990; Liljeroth et al. 1990; Merckx et al. 1987). Moreover, there is a 

strong competition for mineral N between roots and microorganisms (Kuzyakov and Xu 

2013). With addition of N-fertilizer, microorganisms are less dependent on extra N 

released via priming because the competition between plant roots and microorganisms 

for mineral N becomes weaker (Van Veen et al. 1989): microorganisms start utilizing 

exudates and the available mineral N (preferential substrate utilization) (Kuzyakov 2002; 

Sparling et al. 1982). The present study detected no differences for the effect of N-

fertilization on microbial biomass C and N. Nonetheless, N-fertilization altered 

extracellular enzyme activity differently. Inorganic fertilizers may either maintain or 

reduce the activities of many extracellular enzymes in planted soils, but increase their 

activities in unplanted soils (Ai et al. 2012). In the present research, the activities of BG 

and LAP were generally lowered in maize-planted soils with N-fertilization, whereas their 

activities increased in bare fallow with N-fertilization. Moreover, the NAG activity 

increased in both bare fallow and maize-planted soils with N-fertilization. This could be 

an indirect evidence for shifts in microbial communities in favor of fungi. Various studies 

showed this shift in microbial taxonomic groups in favor of fungi with N-fertilization 

(Bardgett et al. 1999; Paul and Clarke. 1996 in Keeler et al. 2009; Weand et al. 2010). In 

summary, N-fertilization lowered the root release of available C, which subsequently 

lowered microbial activity by decreasing extracellular enzyme production. The net result 

is less SOM decomposition in the rhizosphere. 

 

1.5. Conclusions 

RPE were measurable in the field. Higher MBC and MBN in the rhizosphere support the 

microbial activation by root exudation. This microbial activation is accompanied by 
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increased extracellular enzyme activities, which further confirm that extracellular enzyme 

production is an important mechanism of SOM decomposition in the rhizosphere. The N 

status of soils largely controls the magnitude of rhizosphere priming. N fertilization 

substantially reduced rhizosphere priming by lowering SOM decomposition. Lower root-

derived CO2 and enzyme activities in the rhizosphere with N-fertilization confirmed that 

the availability of mineral N weakens the competition between roots and 

microorganisms. However, increased root-derived CO2 and enzyme activities without N 

fertilization intensify the root and microbial competition for N and the dependence of 

microorganisms on N mining.   
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1.8. Figures 

 

 

Figure II.1:1: Experimental setup of the CO2 trapping system. 1 - membrane pump, 2 - PVC tube 
(diameter 5 mm), 3 - air stone, 4 - NaOH, 5 - pot, 6 - PVC column, 7 - maize plant. Arrows show 
the direction of air flow in the closed-circulation system. 
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Figure II.1:2: Plant biomass (root and shoot biomass) (g pot-1) (±SEM) for unfertilized and N-
fertilized maize plants. Lower-case letters indicate significant differences for root biomass, 
upper-case letters indicate significant differences for shoot biomass between N-fertilized and 
unfertilized maize (P < 0.05). 
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Figure II.1:3: Total CO2 efflux (mg C day-1 kg-1 soil) (±SEM) from bare fallow (Unplanted), bare 
fallow with N-fertilization (Unplanted+N), unfertilized maize-planted (Planted) and N-fertilized 
maize-planted (Planted+N) soils. Total CO2 efflux was partitioned by source (SOM-derived and 
root-derived CO2). Lower-case letters indicate significant differences between bare faloow, bare 
fallow with N-fertilization, unfertilized and fertilized maize planted soils (ANOVA, P < 0.05). 
Upper-case letters in root-derived CO2 and specific root-derived CO2 (inset) indicate significant 
differences according to t-test (P < 0.05). 
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Figure II.1:4: Rhizosphere priming effect (RPE) (±SEM) as % of CO2 efflux from bare fallows for 
unfertilized (Planted) and N-fertilized (Planted+N) maize plants. The inset shows specific RPE 
(mg C day-1 g-1 root) (±SEM). Letters indicate the significant differences for RPE (P < 0.01) and 
for specific RPE (P < 0.05) between unfertilized and N-fertilized maize planted soils. 
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Figure II.1:5: Microbial biomass C (left y-axis; mg C kg-1 soil) and N (right y-axis; mg N kg-1 soil) 
(±SEM) in bare fallow (Unplanted), bare fallow with N-fertilization (Unplanted+N), unfertilized 
maize-planted (Planted) and N-fertilized maize-planted (Planted+N) soils. Lower-case letters 
indicate significant differences for MBC, upper-case letters indicate significant differences for 
MBN between bare fallow, bare fallow with N-fertilization, unfertilized and N-fertilized maize 
planted soils (ANOVA P < 0.05). 
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Figure II.1:6: Potential activity (Vmax; nmol g soil-1 h-1) (±SEM) of three extracellular enzymes 
(BG: β-1, 4-glucosidase; NAG: β-1, 4-N-acetylglucosaminidase; LAP: L-leucine aminopeptidase) 
in bare fallow (Unplanted), bare fallow with N-fertilization (Unplanted+N), unfertilized maize-
planted (Planted) and N-fertilized maize-planted (Planted+N) soils. Letters indicate significant 
differences between bare fallow, bare fallow with N-fertilization, unfertilized and N-fertilized 
maize-planted soils (ANOVA, P < 0.05). 
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Figure II.1:7: Conceptual figure showing rhizosphere priming on SOM decomposition 
accompanied by microbial activation and N mining. Arrow thickness indicates process intensity. 
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Abstract 

Soil aggregation and microbial activities within the aggregates are important factors 

regulating soil carbon (C) turnover. A reliable and sensitive proxy for microbial activity is 

activity of extracellular enzymes (EEA). In the present study, effects of soil aggregates 

on EEA were investigated under three maize plant densities (Low, Normal, and High). 

Bulk soil was fractionated into three aggregate size classes (>2000 µm large 

macroaggregates; 2000-250 µm small macroaggregates; <250 µm microaggregates) by 

optimal-moisture sieving. Microbial biomass and EEA (β-1,4-glucosidase (BG), β-1,4-N-

acetylglucosaminidase (NAG), L-leucine aminopeptidase (LAP) and acid phosphatase 

(acP)) catalyzing soil organic matter (SOM) decomposition were measured in rooted soil 

of maize and soil from bare fallow. Microbial biomass C (Cmic) decreased with 

decreasing aggregate size classes. Potential and specific EEA (per unit of Cmic) 

increased from macro- to microaggregates. In comparison with bare fallow soil, specific 

EEA of microaggregates in rooted soil was higher by up to 73%, 31%, 26%, and 92% for 

BG, NAG, acP and LAP, respectively. Moreover, high plant density decreased 

macroaggregates by 9% compared to bare fallow. Enhanced EEA in three aggregate 

size classes demonstrated activation of microorganisms by roots. Strong EEA in 

microaggregates can be explained by microaggregates‘ localization within the soil. 

Originally adhering to surfaces of macroaggregates, microaggregates were preferentially 

exposed to C substrates and nutrients, thereby promoting microbial activity.  

Keywords: rooted soil, root exudation, free microaggregates, plant density, specific 

enzyme activity, mean weight diameter. 
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2.1. Introduction 

Intensive agriculture often leads to decreases in soil carbon (C) stocks and reduces the 

quality of soil organic matter (SOM) (Paz-Ferreiro and Fu, 2016). The alterations to soil 

C stocks could have further impacts on the global C cycle (Nie et al., 2014). Soil 

microorganisms are one of the important biotic drivers regulating the soil C cycle. In 

terrestrial ecosystems, microbially mediated SOM decomposition constitutes a major 

part of soil C losses along with abiotic factors (Kaiser et al., 2010). Therefore, even 

minor changes in microbial decomposition of SOM due to intense agricultural practices 

may substantially impact the global climate via carbon dioxide (CO2) efflux to the 

atmosphere. 

Extracellular enzyme activities (EEA) are good indicators of microbially mediated SOM 

decomposition and are highly sensitive to environmental changes (Burns et al., 2013; 

Mganga et al., 2015; Sinsabaugh et al., 2005). Depending on their functions, enzymes 

are divided into several groups, of which oxidoreductases and hydrolases are especially 

relevant for SOM decomposition (Tischer et al., 2015). Among these enzymes, β-1,4-

glucosidase (BG) cellulose de-polymerization, releasing two moles of glucose per mole 

of cellobiose (disaccharide of cellulose) (Turner et al., 2002). Degradation of various 

organic N compounds in soil, including proteins and chitin, are catalyzed by the 

hydrolyzing activities of L-leucine aminopeptidase (LAP) and β-1,4-N-

acetylglucosaminidase (NAG), respectively (Sanaullah et al., 2011), releasing N for 

microbial and plant uptake. Extracellular activity of acid phosphatase (acP) in soil is 

associated with P mineralization through hydrolysis of organic phosphate compounds 

(Goldstein et al., 1988; Nuruzzaman et al., 2006).  
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Activities of extracellular enzymes are triggered by the presence of plants and are 

usually higher than in bulk soil. Release of labile substrates (i.e. root exudation) by living 

roots into soil enhances EEA (microbial activation hypothesis; Cheng and Kuzyakov, 

2005, Kumar et al., 2016, Zhu et al., 2014). Availability of labile C from root exudation 

increases the microbial demand for other nutrients such as nitrogen (N) and phosphorus 

(P). The microbial activation enhances SOM decomposition via mining for N and P 

(Kuzyakov and Xu, 2013).  

Soil aggregation is another factor affecting SOM decomposition as well as nutrient 

cycling because microbial communities and their activities differ between aggregate size 

classes (Caravaca et al., 2005; Duchicela et al., 2012; Gupta and Germida, 2015). Soil 

aggregation physically protects SOM by making it inaccessible for microbial 

mineralization. Aggregation strongly regulates aeration, nutrient retention, and erosion 

(Blankinship et al., 2016) and controls the sequestration of plant-derived organic matter 

by occlusion into macro- and microaggregates (Lagomarsino et al., 2012; Tian et al., 

2015). Based on observations, it has been identified that C content increase with 

increasing aggregate size classes from micro- to macroaggregates. Moreover, 

microaggregates constitute relatively old and recalcitrant C than macroaggregates (Six 

et al., 2004). Therefore, the quality of C contained within microaggregates or 

macroaggregates regulates the microbial community structure and associated activity 

(Bach and Hofmockel, 2014: Hattori 1988).  

Soil macro- (>250 μm) and microaggregates (<250 μm) are responsible for the 

heterogeneous distribution of microorganisms (Blaud et al., 2012) and therefore may 

affect the associated EEA. The impact of aggregate size class on EEA is inconsistent: 
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increase, decrease or no change have been obtained. One of the possible reasons may 

be the methods of aggregate size fractionation (Allison and Jastrow, 2006; Dorodnikov 

et al., 2009a; Fang et al., 2016; Shahbaz et al., 2016). For instance, application of 

conventional wet- and dry sieving may substantially modify easily soluble and 

desiccation-sensitive enzyme molecules, and cause their redistribution from one 

aggregate size class to another (Dorodnikov et al., 2009a). In contrast, the proposed 

‗optimal moisture sieving‘ method was developed to minimize biases from the above-

mentioned factors on EEA. The method is based on a moisture content that limits 

mechanical stress, to induce maximum brittle failure along natural planes of weakness in 

the bulk soil (Dorodnikov et al., 2009a; Kristiansen et al., 2006). This technique involves 

neither complete drying nor water saturation, which are respectively necessary for dry 

and moist sieving. Due to the optimal moisture level, macroaggregates do not disrupt 

completely and the microaggregates located on surfaces of macroaggregates or along 

natural planes of weakness are preferentially separated. This fraction comprises the free 

microaggregate size class, distinct from the microaggregates located inside 

macroaggregates (Bossuyt et al., 2005; Six et al., 2004).  

In the present study, the response of EEA catalyzing the decomposition of C (BG and 

NAG), N (NAG and LAP), and P (acP) compounds was determined in three aggregate 

size classes. For this, a modified ‗optimal moisture sieving‘ technique was used to 

separate bulk soil into large macroaggregates (>2000 µm), small macroaggregates 

(2000-250 µm), and free microaggregates (<250 µm). Our previous findings have shown 

increased enzymes activities in the rhizosphere soil as compared to bare fallow, driven 

by labile C inputs from roots (Kumar et al., 2016). Increase in root density will also 

change the distribution of the three aggregate size classes. Therefore, the following 
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research question was addressed: could the optimally fractionated aggregates explain 

the effects of rhizosphere on microbial biomass distribution and measured EEA? We 

hypothesized that (i) EEA is higher in aggregates of planted soil than that of bare fallow, 

as microorganisms are fueled with C and energy-rich labile substrates by 

rhizodeposition; (ii) EEA is higher in free microaggregates than macroaggregates as the 

former should be preferentially exposed to root exudates, water and oxygen flows.  

 

2.2. Materials and methods 

2.2.1. Experimental setup 

The experiment was established on a haplic Luvisol in an agricultural field (51°29‘37.2‖N 

and 9°55‘36.9‖E), which belongs to the research station ―Reinshof‖ of the Georg-August-

University Göttingen, Germany. Soil properties are as follow: total C (1.41 ± 0.04%), 

total N (0.16 ± 0.002%), pH (7.2 ± 0.01), soil bulk density (1.2 ± 0.2 g cm-3).The 

experimental field was divided into 16 plots, each with an area of 5 x 5 m. To avoid any 

neighboring effects, the plots were separated by 2 m-wide buffer strips, which were kept 

vegetation-free throughout the experiment. A gradient of three plant densities (low, 

normal and high) was established in the field with completely randomized design. For 

this, maize was sown in plots with a plant density of 16 plants m-2. When the plants were 

approximately 10 cm high, the plots were thinned according to the plant density gradient. 

Plots were thinned to 6 plants m-2 for low plant density; 10 plants m-2 for normal plant 

density; and 16 plants m-2 were left as high plant density. Four plots were kept 

vegetation-free throughout the experiment as control. 

2.2.2. Soil and plant sampling 
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Soils were collected when the plants entered into the reproductive state (72 days after 

planting (DAP)) from a depth of 5-15 cm assuming maximum root growth and root 

exudation during plant vegetative stage (Kumar et al. 2016). This soil depth 

corresponded to the highest root biomass (data not presented). For soil sampling, the 

upper 0-5 cm soil layer was carefully removed and soil from 5-15 cm was collected 

between maize rows with a border spade. After delivery to the laboratory, soils were 

immediately sieved through an 8-mm sieve. A 5 g sub-sample was dried at 60 °C for 3 

days to determine soil moisture content. The remaining soil was used for aggregate size 

fractionation. To determine shoot biomass, two plants from each plot were cut at the 

base, dried at 60 °C for 3 days, and weighed. Based on plot size and plant density of the 

respective treatment, shoot biomass was scaled up to g dry weight m-2. For the total root 

biomass, which could not be directly quantified, the root-to-shoot ratio was used to scale 

measured shoot biomass to root biomass in units per area (i.e. g dry weight m-2). The 

root-to-shoot ratio under normal plant density was 0.11 (97 DAP) and did not differ 

significantly between low, normal, and high plant densities at the end of the field 

experiment (130 DAP). The ratio was within the range of the data reported by Amos and 

Walter (2006), showing that the main changes of root-to-shoot ratio in maize occur 

within the first 60 days after planting.  

2.2.3. Aggregate size fractionation 

Aggregates of three size classes were isolated by the method described by Dorodnikov 

et al. (2009a) with modifications. In order to minimize disturbance to microbial activities, 

soils were cold dried at 4 °C to approximately 10% gravimetric water content (Bach and 

Hofmockel, 2015). For this, soil samples were placed in a container and spread into a 

thin layer. All stones and visible roots were hand-picked. Once the desired condition was 
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achieved, approximately 700 g soil was transferred to a nest of sieves (2 mm and 0.25 

mm). The nest was bolted onto a vibratory sieve shaker AS200 (Retsch, Germany) and 

shaken for 3 min, 2 times. Aggregates remaining on the 2 mm sieve were classified as 

large macroaggregates (>2000 µm), aggregates passing through the 2 mm sieve but 

remaining on the 0.25 mm sieve were classified as small macroaggregates (2000-250 

µm), and the remaining soil materials which passed through the 0.25 mm sieve were 

classified as microaggregates (<250 µm) (Figure II.2:1). From each aggregate size 

class, soil was weighed to determine the mass distribution and mean weight diameters 

(MWD) of aggregates. Mean weight diameter was calculated after John et al. (2005): 

      (                                                            )      

where mean inter-sieve size is the average of the two sieve sizes through which the 

aggregates have passed and on which the aggregates have remained after sieving. 

Thereafter, post-sieving moisture content, total C and N, microbial biomass C and N, 

and maximal potential extracellular enzyme activities of C-, N-, and P-degrading 

enzymes were measured. For moisture content, a soil subsample was dried at 60 °C for 

3 days. Total C and N contents were estimated with an Elementar Vario EL analyzer 

(Elementar Analysensysteme GmbH, Germany).  

2.2.4. Soil microbial biomass  

The chloroform fumigation-extraction method was used to determine soil microbial 

biomass C (Cmic) and N (Nmic) (Vance et al., 1987) with slight modifications. Before 

microbial biomass determination, aggregates were moisten to field moisture level of 12-

15% and incubated for 24 h to assure field conditions. Briefly, an 8 g soil sample (non-

fumigated) was extracted with 32 ml of 0.05 M K2SO4 for 1 h by continuously shaking 
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(150 rpm) on a reciprocating shaker (Laboratory shaker, GFL 3016). Afterwards, the soil 

suspension was filtered (grade: 3 hw, diameter 110 mm, Sartorius) and stored at 4 °C 

until further analyses. The same extraction procedure was used for fumigated soil. 

Fumigation was done with 80 ml of ethanol-free chloroform in a desiccator at room 

temperature for 24 h. The organic C and total N content of the filtered solution was 

measured with a multi N/C analyzer (multi N/C analyzer 2100S, Analytik, Jena).  

Differences between extracted C and N from fumigated and non-fumigated soil were 

used to calculate microbial biomass C and microbial biomass N. We used KEC and KEN 

factors of 0.45 and 0.54 for microbial C and N, respectively (Joergensen and Mueller, 

1996; Wu et al., 1990).  

2.2.5. Enzyme assays 

Extracellular enzyme activities were measured with fluorogenically labeled artificial 

substrates according to Marx et al. (2001). Fluorogenic 4-methylumbelliferone (MUB)-

based substrates were used to determine the activities of β-1,4-glucosidase, β-1,4-N-

acetylglucosaminidase and acid phosphatase. Fluorogenic 7-amino-4-methylcoumarin 

(AMC)-based substrate was used to determine the activity of L-leucine aminopeptidase. 

EEA was determined separately in distinct aggregate size class. For this, distinct 

aggregates (1 g) were used to make soil suspension by dissolving it in 50 ml distilled 

and autoclaved water. To release the enzymes trapped on soil clay particles, low-energy 

sonication (50 Js-1) was applied for 2 min (Loeppmann et al., 2016; Razavi et al., 2015). 

50 µl of soil suspension was dispensed into a black 96-well microplate (PureGradeTM, 

GMBH+Co KG, Wertheim, Germany) while stirring the suspension on a magnetic stirrer 

to maintain uniformity. Thereafter, for MUB-based substrates, 50 µl of MES 
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(C6H13NO4SNa0.5) buffer (pH6.5) and for AMC-based substrate, 50 µl of TRIZMA 

(C4H11NO3.HCl, C4H11NO3) buffer (pH7.2) was added to each well (Hoang et al., 2016). 

Finally, 100 µl of substrate solutions of 4-methylumbelliferyl-β-D-glucoside, 4-

methylumbelliferyl-N-acetyl-β-D-glucosaminide, L-leucine-7-amido-4-methylcoumarine 

hydrochloride and 4-methylumbelliferyl phosphate were added to the wells. A substrate 

concentration of 400 µmol g-1 soil was used for the substrate-unlimited maximal potential 

reaction, as determined in a preliminary experiment using Michaelis-Menten kinetics (by 

using increasing substrate concentrations to reach Vmax). Just after substrate addition, 

the microplate was gently shaken to mix the well contents and measurements were 

taken fluorometrically (excitation 360 nm; emission 450 nm) at 0, 30, 60, and 120 min 

after substrate addition with an automated fluorometric plate reader (Victor3 1420-050 

Multi-label Counter, PerkinElmer, USA). Fluorescence was converted to amount of AMC 

or MUB, according to standards. Enzyme activities were expressed as MUB or AMC 

released in nanomol per gram aggregate dry weight and hour (nmol g-1 aggregate h-1). 

Statistics 

The experiment was conducted with 4 field replicates. The values presented in figures 

are means of 4 field replicates ± standard errors (mean ± SEM). The data set was 

checked for normality (Shapiro-Wilk test, P > 0.05) and homogeneity of variance 

(Levene test, P > 0.05) prior to analysis of variance (ANOVA). For β-1,4-glucosidase 

and β-1,4-N-acetylglucosaminidase, the data did not meet the requirement for normality. 

Therefore, data were square-root transformed and retested for normal distribution with 

the Shapiro-Wilk test. Afterwards, two-factor ANOVA was performed to test the effects of 

aggregate size class and plant density on Cmic and Nmic, and potential and specific EEA. 
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One-factor ANOVA was used to test the effect of plant density on MWD, relative 

distribution of aggregates within each aggregate size class, and root biomass. Post-hoc 

tests for multiple comparisons using least significant differences (Tukey-test, P < 0.05) 

were performed on each measured parameter after ANOVA. STATISTICA for Windows 

(version 7.0, StatSoft Inc., OK, USA) was used to perform ANOVA analyses. Figures 

were drawn with OriginPro 8.5G (OriginLab Corporation., Northampton, MA 01060, 

USA). The level of significance was defined at P<0.05 for all statistical analyses, if not 

mentioned specifically. 

 

2.3. Results 

2.3.1. Aggregate size class distribution and mean weight diameter 

Large and small macroaggregates dominated in the bare and planted soil, whereas 

microaggregates accounted for only a small part (Figure II.2:2). The relative distribution 

(in %) of aggregate size classes were: large macroaggregates (48 - 54%) > small 

macroaggregates (40 - 45%) > microaggregates (6 - 8%). The C and N content was 

1.17 to 1.22% C and 0.13% N, respectively and did not differ significantly across the 

aggregate size classes. 

Plant density had a minor effect on the relative distribution of aggregate size classes. 

The percentage of large macroaggregates in high plant density was significantly lower 

(P < 0.05) than bare fallow and low- and normal plant density. The percentage of 

microaggregates showed an increasing trend with increasing plant density. The MWD 

did not vary between bare fallow and various plant densities, except that high plant 

density had a minor decrease when compared to normal maize density (Fig. II.2:3).  
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2.3.2. Plant and microbial biomass 

Aboveground biomass was 362 g m-2 under low plant density and increased by 88% and 

149% under normal and high plant density, respectively. However, the increase was not 

significantly different (P > 0.05) between normal and high plant density (Supplementary 

Table II.2:1). As total root biomass could not be accurately determined in the field, root 

biomass per area was calculated based on the measured root-to-shoot ratio. Root 

biomass increased from 41.2±6.0 g m-2 for low plant density to 80.2±6.1 g m-2 for high 

plant density. 

Microbial biomass C decreased with decreasing aggregate size and ranged from 

106.4±18.5 to 138.7±12.8 mg C kg-1 aggregate (large macroaggregates), 79.5±5.4 to 

121.1±3.9 mg C kg-1 aggregate (small macroaggregates), and 77.8±14.8 to 95.4±8.7 mg 

C kg-1 aggregate (microaggregates) (Figure II.2:4). Planting had minor effects on Cmic 

relative to bare fallow. Comparing between the aggregate size classes, large 

macroaggregates comprised higher Cmic. Microbial biomass N had a tendency to 

decrease with decreasing aggregate size classes. The content of Nmic was on average 

27.3±2.6 mg N kg-1 aggregate in large macroaggregates, 22.8±0.8 mg N kg-1 aggregate 

in small macroaggregates, and 20.9±1.1 mg N kg-1 aggregate in microaggregates under 

low plant density (Supplementary Table II.2:1).  

2.3.3. Extracellular enzyme activities 

In contrast to microbial biomass, the potential activities of C, N, and P degrading 

enzymes (BG, LAP, NAG, and acP) tended to increase with decreasing aggregate size 

in planted soil (Figure II.3:5). Under bare fallow, the potential activities of BG and LAP 

were lower in microaggregates than macroaggregates, whereas the potential activity of 
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NAG remained constant and that of acP was higher in microaggregates than in 

macroaggregates. Additionally, under bare fallow and low, normal and high plant 

densities, specific activities of BG, LAP, NAG, and acP remained similar, with a slight 

increase under high plant density (Figure II.2:6). Effects of planting on specific enzyme 

activities were strongest in microaggregates (Figure II.2:6). In microaggregates, the 

specific activity of BG was 0.47 nmol h-1 mg-1 Cmic in bare fallow and increased by 21-

73% in the presence of roots. The specific activity of NAG was 0.57 nmol h-1 mg-1 Cmic in 

bare fallow and increased by 5-31%; specific activity of acP was 6.1±0.3 nmol h-1 mg-1 

Cmic in bare fallow and varied by -2% and 26%; and the specific activity of LAP was 0.35 

nmol h-1 mg-1 Cmic in bare fallow and increased by about 35-92% in presence of roots 

under various plant densities. The specific enzyme activities were similar in each of the 

three aggregate size classes of the bare fallow. 

 

2.4. Discussion 

2.4.1. Aggregate fractionation 

According to the aggregate hierarchy concept (Elliot and Coleman, 1988), 

microaggregates are located inside macroaggregates and comprise older C pools (Six et 

al., 2004). As shown by Dexter (1988), the maximum soil friability (tendency toward 

segregation of unconfined soil into smaller fragments under certain mechanical stress) 

occurs at about 38% of water content (field capacity). Soil colloids shrink and cracks 

appear, defining the boundaries of aggregates. These cracks remain as points of 

weakness for physical breakdown. Therefore, at this soil water content, aggregate 

fractionation results in breakdown of macroaggregates along the planes of weakness, 
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releasing the microaggregates located on surfaces of macroaggregates and along their 

planes of weakness. Thus, the procedure adopted by Dorodnikov et al. (2009a) for 

aggregate size fractionation, termed as ‗optimal moisture sieving‘, accounted for free 

microaggregates as described in the aggregate hierarchy concept (Bossuyt et al., 2004; 

Oades, 1984; Simpson et al., 2004; Six et al., 2004). According to the method used in 

this study, the proportion of micro- to macroaggregates size classes strongly depends 

on the soil moisture level. Generally, the lower the moisture, the lower would be slicking 

and therefore, the proportion of macroaggregates is higher (Chenu et al. 2000). 

However, we aimed to keep the moisture under which EEA would be close to field 

conditions and the proportion of micro- to macroaggregates in the tested soil 

corresponded to field moisture conditions. In the present study, the soil moisture content 

was around 7 to 10% of total weight after sieving. We assume the breakdown of 

macroaggregates along the planes of weakness was minimal as shown by Dexter 

(1988). Therefore, we assume that with the aggregate fractionation technique we 

applied, mainly the free microaggregates and the microaggregates adhering on the 

surface of macroaggregates were isolated (Figure II.2:1). The small portion of isolated 

microaggregates in the present study (6-8% of total soil) further supports this concept. 

2.4.2. Root effects on aggregate size distribution 

The influence of roots on aggregate stabilization is well known (Erktan et al., 2015; Six 

et al., 2004), but very few studies have focused on aggregate disintegration by living 

roots (Materechera et al., 1994). In our field study, a gradual increase in the proportion 

of microaggregates and a decrease in large macroaggregates with increasing plant 

density may be due to disintegration of large macroaggregates by growing roots (Figure 

II.2:2). Also, the mean weight diameter, which is an indicator of aggregate stability 
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(Tripathi et al., 2014) tended to decrease with increasing plant density. This also 

confirmed the redistribution of aggregate size classes in the presence of growing roots. 

Mechanistically, the aggregate redistribution may occur through the penetration of living 

roots into macroaggregates along planes of weakness and through the pores within 

macroaggregates, thereby decreasing their stability (Materechera et al., 1994). Hence, 

root morphology (root thickness, root length density, root branching, etc.) is one of the 

main drivers affecting aggregate redistribution (Carter et al., 1994). 

2.4.3. Microbial biomass C in micro- and macroaggregates 

Microbial biomass C decreased with decreasing aggregate size. The hierarchical 

aggregate concept (Elliot and Coleman, 1988) integrates the aggregate categories with 

the pore structure, which defines microsites of habitability for microorganisms (Gupta 

and Germida, 2015). Literature is replete with studies showing increased fungal 

abundance with increasing aggregate size (Poll et al., 2003; Zhang et al., 2015). The 

preferential colonization by fungal communities may occur in macroaggregates (Harris et 

al., 2003) by expanding their biomass through extensive hyphal growth in large pores 

(De Gryze et al., 2005; Dorodnikov et al., 2009b). In turn, microaggregates are inhabited 

predominately by bacterial communities (Ranjard and Richaume, 2001; Six et al., 2006). 

Higher Cmic / Nmic ratio in macroaggregates than microaggregates (although significant 

only in low plant density) in the present study indicates fungal dominance in 

macroaggregates as compared to microaggregates (Supplementary Table II.2:2) 

(Dorodnikov et al., 2009b). The lower microbial biomass in the microaggregates in 

comparison with large and small macroaggregates could reflect the distribution of fungal 

and bacterial communities (Gupta and Germida, 2015) as a result of different habitats.  
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In the short term, labile C inputs from roots did not change overall microbial growth. 

Such inputs predominantly activate fast-growing microbial communities (Blagodatskaya 

and Kuzyakov, 2008). The same amounts of microbial biomass in bare fallow and in 

planted soils (Figure II.2:4) are in line with other studies (Duineveld et al., 1998; 

Fontaine et al., 2007), highlighting the regulatory effect of living plants on activities rather 

than on the abundance of microorganisms in agricultural soil. 

2.4.4. Effects of roots and aggregate sizes on extracellular enzyme activities 

Extracellular enzyme production by microorganisms, which regulates microbially 

mediated SOM decomposition, may occur under nutrient limitations. In addition, root 

exudation may trigger extracellular enzyme production (Kumar et al., 2016; Kuzyakov 

and Blagodatskaya, 2015) via microbial activation. In the presence of root-released 

organics, which are characterized by higher C/N ratios, the microbial demand for other 

nutrients (especially N and P) increases (Fontaine et al., 2011). Further, plants 

exacerbate the nutrient limitations due to competition with microorganisms (Kuzyakov 

and Xu, 2013). In order to fulfill these extra nutritional demands, microorganisms 

produce N- and P-degrading enzymes to mine for them from SOM. Along with the P 

demand, acP activity reflects the overall microbial activity (as it participates in 

phosphorylation processes within cells and by lysis appears extracellular), which differ 

between macro- and microaggregates and was the highest among all enzymes tested. 

The results from the present study corroborate the reported increase in extracellular 

activities of C-, N- and P-degrading enzymes with decreasing aggregate size class (Nie 

et al., 2014). Similarly, to the potential EEA, the specific EEA for C-, N-, and P-degrading 

enzymes also increased in the order: large macroaggregates<small 

macroaggregates<microaggregates (Figure II.2:6). Overall higher total and specific EEA 
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in free microaggregates can result from the location of the latter within soil where plant 

root exudations as well as water, nutrient and oxygen flows are higher than in the interior 

of macroaggregates (Burns et al., 2013; Phillips et al., 2011). Similarly, an absence of 

labile substrate inputs in bare fallow soil resulted in lower enzyme activities. In summary, 

considering microbial activation (Cheng and Kuzyakov, 2005) by growing roots, the 

present study provides evidence that the influence of roots on microorganism‘s activities 

persists in different soil aggregates and such influences are more pronounced in free 

microaggregates (Figure II.2:7). 

 

2.5. Conclusions 

Pronounced effects of aggregate size on Cmic, Nmic as well as on EEA were 

demonstrated. Higher EEA in rooted soil than in bare fallow soil for three aggregate size 

classes highlights plant-mediated microbial activation. The presence of roots stimulated 

microbial activity (potential and specific EEA), which governs the catalytic reactions of 

SOM decomposition. Markedly higher specific EEA in free microaggregates than in 

large- and small macroaggregates may result from the better supply of root exudates, 

water, nutrients and oxygen to microorganisms. Minimal or no effect of aggregate size 

on specific EEA under bare fallow indicated microbial inefficiency in enzyme synthesis in 

the absence of root-released organics.  
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2.8. Figures 

 

Figure II.2:1: Schematic diagram showing soil preparation and aggregate size fractionation. 
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Figure II.2:2: The relative distribution of large and small macroaggregates (left y-axis; 
mean±SEM) (n=4) and microaggregates (right y-axis; mean±SEM) (n=4) in bare fallow soil and 
soils with Low, Normal and High maize plant densities. Letters indicate significant differences 
(Post-hoc test, P < 0.05) between bare fallow and three plant densities within the same 
aggregate size class. 
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Figure II.2:3: Mean weight diameter (±SEM) (n=4) in bare fallow soil and soils with Low, Normal 
and High maize plant densities. Letters indicate significant differences (Post-hoc LSD test, 
P<0.05) in MWD between bare fallow soil and soils with low, normal and high maize plant 
densities. 
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Figure II.2:4: Microbial biomass (mg C kg-1 aggregate; mean ± SEM) (n=4) in bare fallow soil 
and soils with Low, Normal and High maize plant densities. Letters indicate significant 
differences (Post-hoc LSD test, P<0.05) in microbial biomass C between aggregate size classes 
in bare fallow soil and soils with Low, Normal, and High maize plant densities. 
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Figure II.2:5: Potential activity of:  β-1,4-glucosidase; L-leucine aminopeptidase; acid 
phosphatase; and β-1,4-N-acetylglucosaminidase (nmol h-1 g-1 soil) (±SEM) (n=4) in distinct 
aggregate size classes in bare fallow soil and soils with Low, Normal and High maize plant 
densities. Upper-case letters indicate significant differences (Posy-hoc LSD test, P < 0.05) in 
potential activity within the same aggregate size class. Lower-case letters indicate significant 
differences (Post-hoc LSD test, P < 0.05) in potential activity between distinct aggregate size 
classes. 
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Figure II.2:6: Specific activity (ratio of potential activity and microbial biomass C) of:  β-1,4-
glucosidase; L-leucine aminopeptidase; acid phosphatase; and β-1,4-N-acetylglucosaminidase 
(nmol h-1 g-1 soil) (±SEM) (n=4) in bare fallow soil and soils with Low, Normal and High maize 
plant densities in distinct aggregate size classes. Upper-case letters indicate significant 
differences (Post-hoc LSD test, P < 0.05) in specific activity within the same aggregate size 
class. Lower-case letters indicate significant differences (Post-hoc LSD test, P < 0.05) in specific 
activity between distinct aggregate size classes. 
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Figure II.2:7: Conceptual figure showing the potential effects of growing roots on extracellular 
enzyme activities and microbial biomass in distinct aggregate size classes in rooted soil 
separated by optimal moisture sieving method. Root induced microbial activities in distinct 
aggregate size classes are shown by higher EEA and the relations between aggregate size and 
microbial biomass are illustrated. 
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Abstract 

Microbial processes mediated by soil enzymes are crucial in soil organic matter 

decomposition, resulting in release of nutrients that become available for plant and 

microbial uptake. Therefore, it is crucial to know the sensitivity of enzyme activities (EA) 

along soil depths at distinct plant vegetation stages, and how the availability of mineral 

nitrogen (N) alters EA. We studied effects of N fertilization (0 and 160 kg N ha-1), soil 

depth (0 to 35 cm), and plant-phenological stage (silking and maturity) on microbial 

biomass C (Cmic) and potential activities of C-, N- and P-acquiring enzymes in the field 

under Zea mays L. 

Nitrogen fertilization increased shoot biomass by more than 80% compared to 

unfertilized plants. Maize roots triggered increases in Cmic and EA for all measured 

enzymes compared to bare fallow. Stimulating effect of plant roots on EA was enzyme 

specific and stronger at silking than maturity stage of maize. The down-regulating effect 

of N fertilization on EA involved in acquiring N was most pronounced on the activity of L-

leucine aminopeptidase and β-1,4-N-acetylglucosaminidase. Soil depth was the primary 

determinant of EA, explaining up to 51% of the variation. Depth-dependent EA changes 

were stronger in rooted soil. 

A pronounced biotic control on EA was demonstrated by higher EA in rooted soil than in 

bare fallow. This confirmed root-mediated microbial activation. Stronger effect of silking 

vs. maturity stage on EA indicated that actively growing roots fuel microorganisms via 

root-derived organics. Thus, soil depth and plant roots were major factors controlling 

microbial activity in arable soil. 

Key words: root exudation, vegetation stage, microbial activation, nutrient cycling  



 
Maize phenology alters the distribution of enzyme activities in soil: field estimates 

100 

3.1. Introduction 

Food security will be a vital issue in meeting the demand of an increasing global 

population. Thus, there is renewed interest in understanding the biochemical processes 

in agricultural soils, and how altering these processes may be used to increase 

agricultural productivity (Johnston et al. 2009). Such sustainable agricultural practices 

offer tremendous opportunities for maintaining or increasing soil health (i.e. fertility) 

(Doran and Zeiss 2000). Sustainable agriculture refers to maintenance or enhancement 

of soil health with minimum disturbance and has laid the foundation for understanding 

soil ecological functioning (Weiner 2017). Soil microorganisms are central to ecological 

functioning (Bender et al. 2016). A better understanding of microbial functioning will help 

to elucidate the biogeochemical processes contributing to nutrient transformations in 

soils (Nannipieri et al. 1978, 2003). Decomposition and transformation of soil organic 

matter (SOM), nutrient mobilization/immobilization, and aggregate formation/stabilization 

are among the most important processes predominantly governed by microorganisms 

(Nsabimana et al. 2004; Six et al. 2004; Caldwell 2005). The cycling of major nutrient 

elements is widely associated with enzyme activity (EA) in soil (Burns et al. 2013). EA is 

important in maintaining soil health, as enzymes catalyze the bottleneck steps in SOM 

decomposition and consequent release of nutrients for plant and microbial uptake (Aon 

et al. 2001). Generally, EA is dependent on various biotic and abiotic factors such as pH 

(Sinsabaugh 2010), nutrients (Keuskamp et al. 2015; Olander and Vitousek 2000), 

disturbance (Boerner et al. 2000), succession (Tscherko et al. 2003), microbial 

community structure and function (Dorodnikov et al. 2009; Tischer et al. 2015), plant 

species (Caravaca et al. 2005; Razavi et al. 2016), and management practices (Renella 

et al. 2007; Shahbaz et al. 2017). 
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Depending on the complexity of SOM, various hydrolases and oxido-reductases are 

produced by microorganisms. For example, β-1,4-glucosidase (BG), cellobiohydrolases 

(CBH), and β-xylosidase (XYL) are a set of hydrolases produced by microorganisms to 

acquire C via polysaccharide decomposition. Another widely prevalent enzyme is L-

leucine aminopeptidase (LAP), which is associated with the breakdown of amide-linked 

polypeptides, the primary form of organic N in soils (Finzi et al. 2015; Knicker 2004). β-

1,4-N-acetylglucosaminidase (NAG), which predominantly targets chitin and 

peptidoglycan breakdown, releases both C and N for microbial acquisition. Organic 

compounds containing ester-linked P are cleaved by phosphomonoesterase (PHO), 

which releases inorganic P (Finzi et al. 2015; Sinsabaugh and Shah 2011). In rooted 

soils, enzyme production is triggered by root exudation, resulting in higher rates of SOM 

decomposition and in a consequent release of nutrients (Kuzyakov and Domanski 

2000).  

Root exudates provide easily accessible substrates for microorganisms and are an 

ecologically important contributor to rhizosphere processes. According to the microbial 

activation hypothesis (Cheng and Kuzyakov 2005; Kuzyakov et al. 2007), root exudation 

triggers the up-regulation of metabolic activities in microbial cells. Enhanced metabolic 

demands lead to the production and release of enzymes. Therefore, EA are sensitive 

indicators of microbial activity (Nannipieri et al. 2002).  

Mineral fertilizers, representing another form of easily accessible nutrients, also affect 

SOM decomposition by altering microbial activities. In the presence of easily accessible 

nutrients, microorganisms down-regulate resource allocation for enzyme synthesis and 

release, as they are not solely dependent on nutrient gains via SOM decomposition. 
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However, attempts to determine the impact of N fertilization on microbial activities have 

been inconclusive, with studies reporting increases, decreases and even no effect on EA 

with fertilization (Shen et al. 2010; Ai et al. 2012; Kumar et al. 2016). It is assumed that 

in nutrient limited soils, microbial growth and activity are constrained due to low 

availability of C and nutrients and, as a result, the input of resources (via root exudation 

and N fertilization) will enhance microbial growth and activity (Renella et al. 2006). 

Increased growth will consequently increase enzyme production to mineralize more 

SOM to meet microbial nutrient demands. Under nutrient limitations, N addition may 

stimulate the production of enzymes, as N is essential for enzyme synthesis (Olander 

and Vitousek 2000). In contrast, when N is not a limiting factor, microorganisms do not 

allocate their resources to the production of enzymes associated with N acquisition. 

Therefore, there is a negative feedback between supply and demand for production of 

enzymes. The addition of one nutrient may alter the EA of not only the enzymes involved 

in that particular nutrient cycle, but may also alter the activities of other enzymes 

involved in the cycling of other nutrients. For example, xylanase activity (involved in 

decomposition of hemi-cellulose) decreased in the presence of mineral N (Chen et al. 

2014). Microbial activity relies not only on the availability of nutrients, but is also affected 

by soil depth. It has been observed that when depth increases, microbial activity 

decreases, as substrate inputs and gas exchange are reduced with depth (Loeppmann 

et al. 2016; Stone et al. 2014). The spatial distribution of roots is heterogeneous in soil 

and varies with the grown stage of the plant (Chimento and Amaducci 2015), which may 

impact plant-mediated microbial activities at various soil depths. It has previously been 

demonstrated that there are distinct microbial community composition and their activities 

along with soil depth (Fierer et al. 2003; Jakson et al. 2009) and these changes are 
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generally explained by substrate input varying in quality and quantity (Loeppmann et al. 

2016). 

Although roots and microbial activity are often linked (Kumar et al. 2017, Kuzyakov and 

Blagodatskaya 2015), most of the field studies are conducted only once during a 

vegetation season (either at the beginning or before harvesting). However, root-

mediated effects on microbial activity are taking place throughout the growing season 

(Bell et al. 2015). It is still unknown from direct field observations how microbial activity is 

influenced by roots at various plant growth stages, which are characterized by distinct 

morphological and physiological properties. Thus, the following research question was 

addressed: How sensitive is EA to the presence of plants and N fertilization (availability 

of mineral N) across a range of soil depths at distinct maize phenological stages? To 

answer this question, potential activities of six enzymes catalyzing the decomposition of 

organic C compounds (BG, CBH, XYL, NAG), organic N compounds (LAP and NAG), 

and organic P compounds (PHO) were determined with or without plants at four soil 

depths (0-5 cm, 5-15 cm, 15-25 cm, and 25-35 cm), at two maize phenological stages 

(silking and maturity), and with and without N fertilization. 

 

3.2. Materials and methods 

3.2.1. Experimental setup 

The experiment was established on an agricultural research field belonging to the 

Georg-August-University Göttingen, Germany. The soil is characterized as a haplic 

Luvisol suitable for a broad range of agricultural uses with the following properties: total 

C content of 1.41 ± 0.04%, total N content of 0.16 ± 0.02%, pH value of 7.2 ± 0.01, and 
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bulk density of 1.2 ± 0.2 g cm-3. The experimental site is under conventional agricultural 

uses. Conventional tillage practices up to 30 cm of soil depth are performed twice in a 

year. Maize seeds (Zea mays L. cv. Colisee) coated with methiocarb (4(methylthio)3,5‐

xylyl‐N‐methyl carba‐mate), a pesticide, and thiram (tetramethylthiuram sulphide), a 

fungicide were sown in the field. The experimental field was divided into 16 plots (5 x 5 

m2) with a 2 m wide buffer strip around each plot to exclude neighbor effects as follows: 

Bare fallow, bare fallow with N fertilization (Bare fallow+N), maize-planted (Planted), and 

maize-planted with N fertilization (Planted+N) in a completely randomized design. N 

fertilizer was applied as urea at the soil surface at a rate of 160 kg N ha-1 (Weiterer, 

Landhandel GmbH) 47 days after planting (DAP). Any visible weed growing in the plots 

was manually removed at regular time intervals throughout the experimental period. 

3.2.2. Soil and plant sampling 

Soil and plants were sampled twice during the experimental period at 72 DAP and 130 

DAP, which corresponds to the silking and maturity stages of maize plants. Soils were 

collected from four soil depths at 0-5 cm, 5-15 cm, 15-25 cm and 25-35 cm with a corer 

(inner diameter 7 cm) between the maize rows in the middle of the diagonal between 

two plants and transported to the laboratory in cooling boxes. Soil moisture content was 

estimated as the difference between field moist and oven-dried soil (at 105°C for 48 h). 

Afterwards, soils were passed through a 2 mm sieve and used for further analyses. For 

shoot biomass determination, two plants were cut at the base from each plot at 

randomly selected positions, oven dried at 60°C for 5 days, and weighed. As total root 

biomass could not be accurately determined in the field, root biomass per unit of area 

(i.e. g dry weight m-2) was calculated based on the measured shoot to root ratio of maize 

from the same field (Kumar et al. 2016). The root to shoot ratio was 0.11 and 0.14 for 
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unfertilized and N fertilized maize at maize silking stage. These ratios were used to 

calculate the root biomass at maize silking stage (0.04±0.01 kg m-2 for unfertilized maize 

and 0.09±0.01 kg m-2 for N fertilized maize). At maize maturity, root to shoot ratio (0.16) 

and root biomass (0.22±0.04 kg m-2) was determined using the equation derived from 

Amos and Walters (2006) for unfertilized maize. At maturity, we assume similar effect of 

N fertilization on root biomass as at maize silking (higher biomass under N fertilization) 

because very marginal change in root to shoot ratio occurs when the plants are in 

maturity phase (Amos and Walters, 2006). 

3.2.3. Soil microbial biomass 

Microbial biomass C was determined by the chloroform fumigation-extraction method 

(Vance et al. 1987) with slight modifications. Briefly, 10 g of fresh soil (non-fumigated) 

was extracted with 40 ml of 0.05 M K2SO4 for 60 min by continuously shaking on a 

reciprocating shaker (Laboratory shaker, GFL 3016). Thereafter, the soil suspension 

was filtered and stored at 4°C until further analyses. The same extraction procedure was 

used for fumigated samples, where soil was fumigated with 80 ml of ethanol-free 

chloroform in a desiccator at room temperature for 24 h. The organic C content of the 

filtered solution was measured with a multi N/C analyzer (multi N/C analyzer 2100S, 

Analytik, Jena). 

Microbial biomass C (Cmic) was calculated as follows: 

Cmic = Extracted C(fumigated soil) – Extracted C(non-fumigated soil) 

A KEC factor of 0.45 was used for the determination of microbial biomass C (Joergensen 

and Mueller 1996).  



 
Maize phenology alters the distribution of enzyme activities in soil: field estimates 

106 

3.2.4. Enzyme assays 

Activities of β-1,4-glucosidase (BG), cellobiohydrolase (CBH), β-1,4-N-

acetylglucosaminidase (NAG), β-xylosidase (XYL) and phosphomonoesterase (PHO) 

were determined using fluorogenic 4-Methylumbelliferone (MUB)-based substrates 

(Marx et al. 2001). Activity of L-leucine aminopeptidase (LAP) was determined using a 

fluorogenic 7-Amino-4-Methycoumarin (AMC)-based substrate. To begin, 1 g of fresh 

soil was suspended in 50 ml autoclaved sterile water, followed by 2 min of low energy 

sonication (50 Js-1) to make a soil suspension. A 50 µl aliquot of this suspension was 

dispensed into a black 96-well microplate (PureGradeTM, GMBH+Co KG, Wertheim, 

Germany). Thereafter, 50 ml of either MES (C6H13NO4SNa0.5) buffer (pH 6.5) or TRIZMA 

(C4H11NO3.HCl, C4H11NO3) buffer (pH 7.2) was added to each well for MUB or AMC 

based substrates, respectively. Finally, 100 µl of substrate solutions of 4-

Methylumbelliferyl-β-D-glucoside, 4-Methylumbelliferyl-N-acetyl-β-D-cellobioside, 4-

Methylumbelliferyl-N-acetyl-β-D-glucosaminide, 4-Methylumbelliferyl-β-D-

xylopyranoside, L-Leucine-7-amido-4-methylcoumarine hydrochloride and 4-

Methylumbelliferyl-phosphate were added to the wells for activities of BG, CBH, NAG, 

XYL, LAP and PHO activities, respectively. Immediately after substrate addition, 

microplates were gently shaken and fluorometric measurements (excitation 360 nm; 

emission 450 nm) were taken at 0, 30, 60 and 120 min after substrate addition with a 

fluorometric plate-reader ((Victor3 1420-050 Multi-label Counter, PerkinElmer, USA). 

Fluorescence values were converted to amount of MUB or AMC using specific standard 

scales based on soil suspension. Enzyme activities were expressed as nanomoles MUB 

or AMC cleaved per gram dry weighted soil per hour (nmol g-1 dry soil h-1). 

Statistics 
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The presented values in graphs and tables are averages of four field replicates ± 

standard errors (mean ± SEM), except for shoot biomass (8 replicates). Data were 

tested for normality and homogeneity of variance using the Shapiro-Wilk test and 

Levene test (P>0.05), respectively, prior to analysis of variance (ANOVA). Factorial 

ANOVAs were used to test the effects of roots, N fertilization and soil depths separately 

at maize silking and maturity stages for all the measured parameters. ANOVAs were 

followed by post-hoc tests for multiple comparisons using least significant differences 

(Tukey test). We used Student‘s t-test for the differences between N fertilized and 

unfertilized maize shoot biomass at silking and maturity stage. Significance was set at 

P<0.05 for both ANOVAs and t-tests. Principal component analysis (PCA) was used to 

assess the patterns of EA for both phenological stages (silking and maturity) of maize. 

We performed PCA on a reduced version of EA data, in which the average values of 

four replicates for each soil depth, presence or absence of maize plants, and with and 

without N fertilization were used. Statistical analyses were performed with STATISTICA 

for windows (version 13.2; StatSoft Inc., OK, USA). 

 

3.3. Results 

3.3.1. Plant biomass and soil moisture 

N-fertilization increased shoot biomass by 80% and 91% at silking and maturity stages, 

respectively, compared with unfertilized plants (Supplementary figure II.3:1). The shoot 

biomass was approximately 3 times higher for both unfertilized and N fertilized plants at 

maturity vs. silking stage. Overall, the presence of plants resulted in lower soil moisture 

contents. Soil moisture was lower in rooted soil (with and without N fertilization) at each 
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depth and at both sampling times. Compared to bare fallow, the moisture content was 

reduced by 11%, 21%, 15%, and 18% at 0-5 cm, 5-15 cm, 15-25 cm, and 25-35 cm 

depth, respectively, in rooted soil at silking stage (Supplementary Table II.3:1). 

Moreover, moisture content was always lower at 0-5 cm than at other soil depths. 

3.3.2. Distribution of extracellular enzyme activities 

The potential EA of BG, CBH, XYL, NAG, LAP, and PHO showed significantly different 

distribution patterns with varying depth in bare fallow and rooted soil with or without N 

fertilization at both phenological stages (silking and maturity) (Figure II.3:4). In general, 

the potential EA was always higher at middle depths (5-15 cm and 15-25 cm) than in 

shallow or deep soil. Moreover, the EA involved solely in catalyzing the mineralization of 

organic C compounds (i.e. BG, CBH, and XYL) responded in a similar fashion with depth 

and N fertilization as those involved in catalyzing the mineralization of organic N 

compounds (i.e. LAP) (Supplementary Table II.3:1). For example, the presence of plants 

increased (P < 0.05) the potential activity of BG (C-acquiring enzyme) at both 

phenological stages, and the stimulating effects of roots were more pronounced at 5-15 

cm and 15-25 cm soil depths (Figure II.3:1). Maize roots increased the EA of BG by 57% 

and 58% at silking stage, but only by 32% and 30% at maturity at 5-15 cm and 15-25 cm 

depths, respectively. Furthermore, N fertilization did not (P > 0.05) change the EA of BG 

either in bare fallow or in rooted soil at both phenological stages (Figure II.3:1). Similarly, 

the EA of LAP (N-acquiring enzyme) was affected by both maize roots and N 

fertilization. In rooted soil, the EA of LAP increased by 25% and 11% at silking stage, 

and by 19% and 7% at maize maturity at 5-15 cm and 15-25 cm depths, respectively 

(Figure II.3:2). The decrease in LAP with N fertilization was more prominent in rooted 

soils than in bare fallow. The activity of NAG (involved in both C- and N-acquiring) 
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showed a pattern similar to LAP, whereas PHO activity was more similar to C-acquiring 

enzymes (Figure II.3:3 and Supplementary Table II.3:1). 

3.3.3. Predictors of extracellular enzyme activities  

Distribution of EA was affected by soil depth (determining nutrient availability and 

microbial activity), maize phenological stage (determining quality and quantity of 

resource availability) and application of N fertilization (alleviation of competition between 

plants and microbes for mineral N), and these effects were enzyme specific. Depth had 

the strongest effect on EA distribution for all measured enzymes at both sampling times. 

For example, at silking and maturity stages, soil depth alone explained from 24% (LAP) 

to 46% (PHO) and from 16% (XYL) to 51% (BG) of total variation in EA, respectively 

(Figure II.3:3). Followed by depth, the second main predictor of EA distribution was the 

presence of maize roots. Maize roots increased the EA of all measured enzymes at 

silking stage (Figure II.3:3). At maturity however, the stimulating effect of roots on EA 

was significant only for BG activity (Supplementary Table II.3:2). The strongest effects of 

roots were recorded for EA of BG, explaining 23% and 9% of the total variation at maize 

silking and maturity stages, respectively. CBH was the least sensitive to the presence of 

plant roots. 

N fertilization reduced the EA of enzymes involved in mineralization of N-containing 

organic compounds (LAP and NAG) and did not change the EEA of BG, CBH (solely C-

acquiring enzymes) and PHO (solely P-acquiring enzymes), except XYL activity (Figure 

II.3:3, Supplementary Table II.3:2). At silking stage, N fertilization explained a significant 

portion of EA variation for LAP (10%) and NAG (7%). The effects of N fertilization 

remained significant even at maturity, although the proportion of variation explained was 
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reduced by half compared to the silking stage (5% for LAP and 4% for NAG). N 

fertilization reduced (P < 0.05) the EA of XYL only at maize silking stage 

(Supplementary Table II.3:2). The projection of EA on PCA confirmed that BG, CBH, 

NAG, and XYL (C-acquiring enzymes) and PHO (P-acquiring enzyme) were more 

closely related to each other than to LAP (solely N-acquiring enzyme) (Figure II.3:4). 

 

3.4. Discussion 

The present study highlighted regulation of plant phenological stage, soil depth and N 

fertilization on microbial activity (i.e. EA). Shoot biomass was higher in N fertilized plots 

at both phenological stages due to an increase in net N uptake, resulting in higher leaf 

biomass and photosynthetic intensity (LeBauer and Treseder 2008). The reduced 

moisture in rooted soil as compared to bare fallow is due to transpiration by plants 

(Prieto et al. 2012; Steudle 2000). Higher evaporation at the surface layer leads to more 

drastic drying, which explains the lower moisture content in the top (0-5 cm) layer as 

compared to lower soil depths (Mganga et al. 2015).  

Enhanced activity of all measured enzymes in rooted soil (upto 58% increase in BG 

activity) as compared to bare fallow at both phenological stages provides evidence of 

plant-mediated activation of microorganisms (microbial activation hypothesis; Cheng and 

Kuzyakov 2005). Maize plants grow faster during earlier development stages and 

allocate a higher amount of photo-assimilated products belowground to roots (Pausch et 

al. 2013, Pausch and Kuzyakov 2017). Increased belowground allocation for root 

development is generally positively related to root exudation (Pausch and Kuzyakov 

2018). This increased release of labile substrates by roots (via exudation) at early 
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growth stage facilitates microbial growth, resulting in higher EA in rooted soil than in 

bare fallow (Nannipieri et al. 2012; Kuzyakov and Blagodatskaya 2015). In contrast, at 

maturation stage, when plants have a fully developed root system, the allocation of 

resources shifts from belowground to aboveground plant tissues (cob formation). As a 

result, the stimulating effect of roots on EA was reduced at maize maturity (Figure II.3:1 

and 3:2). Moreover, there is a shift in the quality and quantity of root exudation with plant 

growth stage (Badri et al. 2009; Pausch and Kuzyakov 2017). The change in EA of BG, 

CBH, XYL, NAG, PHO, and LAP in rooted soil depending on plant phenological stage 

demonstrated that, in the rhizosphere, microorganisms are fueled by root exudation, and 

their activity (i.e. EA) is intimately linked to both the quantity and quality of labile 

substrate inputs via roots. Among all the measured EA, only the BG activity was higher 

in rooted soils at maize maturity, indicating higher microbial demand for easily available 

substrates as an energy source.  

Besides the effect of maize growth stages, EA was also altered by soil depth. The EA of 

the top layer (0-5 cm) was more driven by moisture than by maize roots. Minimum 

moisture at 0-5 cm depth across the soil profile corresponded to minimum EA for all 

measured enzymes at both sampling times. Reduced moisture via higher evaporation at 

the top soil layer may have limited microbial growth and activity (Schimel et al. 1999). 

Middle depths (5-15 cm and 15-25 cm) were characterized by higher moisture and root 

density in comparison to the top layer (0-5 cm), which resulted in root-mediated 

increases in potential EA. Furthermore, while the moisture content at 25-35 cm depth 

was similar to the 5-15 cm and 15-25 cm layers, the limited labile C inputs via root 

exudation as well as reduced gaseous exchange may have hampered microbial growth 

and consequently EA (Salome et al. 2010). A significant positive correlation between 
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Cmic and enzyme activities (Supplementary Figure II.3:2) provided evidence of the 

microbial contribution to EA, which is in accordance with other studies (Perucci 1992; 

Garcia-Gil et al. 2000). The minimal effects of N fertilization on the activities of P- and C-

acquiring enzymes (except for XYL at silking stage) and a decrease in activities of N-

acquiring enzymes confirmed that microorganisms were not limited in N (Figure II.3:3). 

When an alternative N source (mineral N) is available, the microorganisms down-

regulate production of enzymes responsible for N acquisition through SOM 

decomposition and shift to utilization of the available N source (preferential substrate 

utilization) (Kuzyakov et al. 2000). Neutral or negative effects of N addition on enzyme 

activities and SOM decomposition were demonstrated by Keeler et al. (2009). 

 

3.5. Conclusions 

Root-derived organics increased activities of all measured enzymes, indicative of root-

mediated microbial activation. In comparison to bare fallow, EA was higher in rooted soil 

despite possessing lower moisture contents, demonstrating intimate plant-microbial 

interactions via root-derived organics. Maize phenology mediated changes in EA 

emphasized regulatory mechanisms of microbial activity. Higher impact of maize silking 

vs. maturity stage on EA demonstrated that actively growing roots contributed to higher 

EA most likely by root exudation. Regarding soil depth, the highest enzyme activities 

were centered in the zone of maximum root density (5-25 cm), further supporting plant 

mediated increases in microbial growth and activity. Reduced Leucine-aminopeptidase 

and β-1,4-N-acetylglucosaminidase activities with N-fertilization demonstrates reduced 

resource allocation to N-cycling enzyme synthesis in the presence of alternative N 
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sources. To summarize, 1) soil depth had the strongest effect on EA (up to 51% of total 

variation), 2) the root effect was stronger at the silking versus maturity stage; and 3) N 

fertilization affected only the enzymes related to N cycle. We conclude that soil depth 

and plant phenology stage govern EA, and these effects are strongest between 5 and 

25 cm soil depth containing silking plants. 
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3.8. Figures 

 

Figure II.3:1: Potential activity of β-1,4-glucosidase (nmol MUB cleaved g-1 soil h-1; mean ± SE) 
in bare fallow, bare fallow with N-fertilization (Bare fallow+N), unfertilized maize-planted 
(Planted), and N-fertilized maize-planted (Planted+N) soil at four depths at maize silking and 
maturity stage. Lower-case letters indicate significant differences (Post-hoc LSD test, P < 0.05) 
within each depth whereas the upper-case letters indicate significant differences between the 
depths (Post-hoc LSD test, P < 0.05, blue dashed lines) (n=4). 
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Figure II.3:2: Potential activity of Leucine-aminopeptidase (nmol AMC cleaved g-1 soil h-1; mean 
± SE) in bare fallow, bare fallow with N-fertilization (Bare fallow+N), unfertilized maize-planted 
(Planted), and N-fertilized maize-planted (Planted+N) soil at four depths at maize silking and 
maturity stage. Lower-case letters indicate significant differences (Post-hoc LSD test, P < 0.05) 
within each depth whereas the upper-case letters indicate significant differences (Post-hoc LSD 
test, P < 0.05, blue dashed lines) (n=4). 
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Figure II.3:3: Contribution of three factors: soil depth (0-5 cm, 5-15 cm, 15-25 cm, and 25-35 
cm), maize roots (presence or absence of plants), N fertilization (presence or absence of N 
fertilization), and their interactions on potential activity of phosphomonoester (PHO), BG (β-1,4-
glucosidase), CBH (β-cellobiohydrolase), XYL (β-xylosidase), NAG (N-acetly-1,4-
glucosaminidase), and LAP (Leucine-aminopeptidase). 
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Figure II.3:4: Principal component analysis (PCA) showing (a) the distribution of potential activity 
of BG (β-1,4-glucosidase), CBH (β-cellobiohydrolase), XYL (β-xylosidase), NAG (N-acetly-1,4-
glucosaminidase), and LAP (Leucine-aminopeptidase), and PHO (phosphomonoesterase). The 
PCA analysis showed (b) distinct enzyme activities at maize silking (unfilled symbols) and 
maturity (filled symbols) stage. Different colors and shapes indicate each soil depth as follows: 
0-5 cm (red circle), 5-15 cm (blue upside triangle), 15-25 cm (green diamond), and 25-35 cm 
(pink square). 

 

(b) 

(a) 
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Figure II.3:5: Effects of soil depth, maize roots, and N-fertilization on distribution of activity of P-, 
C-, and N-acquiring enzymes in maize rhizosphere. Thickness of arrows indicates the strength 
of the effect on enzyme activities. 
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Abstract 

To combat soil nutrient limitation which is further strengthened by intense competition 

between plant and microorganisms, plants have developed complex adaptive responses 

in various root traits. Root hairs and root colonization by arbuscular mycorrhizal fungi 

(AMF) are two key traits for plant phosphorus (P) acquisition in P limited soil. The main 

objective of present the study was to understand plants‘ P acquisition strategies with 

shifting root traits using two genotypes of maize characterized by presence (wild type) or 

absence (roothairless3 mutant) of root hairs. We hypothesized that 1) in P limited soils, 

plants compensate for the lack of root hairs by shifting to root mycorrhizal colonization 

(functionally analogous to hairs) for P acquisition; 2) root mycorrhizal colonization 

decreases with P fertilization due to strong trade-off for C costs. The present study 

demonstrated that root hairs and AM fungi are crucial for plant P acquisition. Root hairs 

promoted P uptake most likely by increasing root surface area for absorption. Root hairs 

decreased the dependency of plants on root mycorrhizal colonization, thereby reducing 

C costs for P acquisition. However, smaller surface area for absorption in absence of 

root hairs can be counterbalanced by increased root mycorrhizal colonization. Plasticity 

in root traits (increased root diameter and higher root mycorrhizal colonization by AMF) 

for P acquisition is important for maintaining plant growth in absence or poorly 

developed root hairs and under nutrient limitation. 

Key words: nutrient acquisition, roothairless3 mutant, root morphological trait, root 

diameter, root mycorrhizal colonization, root hairs 
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4.1. Introduction 

There has been remarkable advance in linking plant traits to ecosystem processes from 

landscape to global scale (Adler et al. 2014). Trait based understanding of ecosystem 

functioning is mostly derived from plants‘ aboveground traits such as total and specific 

leaf area, maximum plant height, photosynthetic capacity, life span, respiration, 

regeneration capacity, nutrient status and life span of leaves, wood density, and 

phenology. However, the belowground traits (root traits) are equally important in driving 

major ecosystem processes such as carbon (C) and nutrients cycling (Bardgett et al. 

2014). Altered response of root traits for instance root respiration, rhizodeposition, 

nutrient uptake kinetics, root diameter, rooting depth, root length density, and root 

interactions with mycorrhizas and rhizobia to environmental variables are among main 

drivers of SOM decomposition. In agroecosystems, plasticity in aforementioned traits in 

relation to soil nutrient and water limitation, herbivory, and interaction with soil fauna 

helps plant nutrient acquisition and maximize their growth and development (Faucon et 

al. 2017). For instance, under P-limitation, primary root growth is suppressed and the 

root architecture changes to shallower root system bearing more lateral roots and 

increased root hair density, which enables the roots to explore more soil volumes (Peret 

et al. 2011).  

Root hairs (single cell extension of epidermal cells) are a key morphological root trait for 

P acquisition in barley (Gahoonia et al. 2001). Presence of root hairs may contribute by 

up to 80 % to plant P uptake by increasing the root surface area and hence, the contact 

space between the root and soil for absorption (Jungk 2001). Moreover, root hairs 

increase the total surface area for exudation as well as their rapid turnover contributes to 

increased total rhizodeposition (Lambers et al. 2006). Rhizodeposition, an energy 
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subsidy to microorganisms is supplemented by roots arbitrate the interactions between 

plants and soil microorganisms such as symbiotic associations with fungi. Most of the 

crop plant roots are symbiotically colonized with arbuscular mycorrhiza (AM). Plants 

provide photo-assimilated products to the fungal symbiont and in turn receive nutrients 

especially N and P via fungal channels from soil volumes beyond the depletion zone of 

roots. The extraradical mycelium of AM may also enter the very fine soil pores thereby 

increasing the nutrient and water uptake (Khalvati et al. 2005). One fundamental 

knowledge gap in understanding rhizosphere ecology of agroecosystems is that most of 

the previous studies are done at only one plant growth stage and the dynamics of plant-

microbial relationship with plant growth stage are still poorly understood. At early plant 

growth stages, there is an establishment of interactions between roots and 

microorganisms. At later growth stages, such interactions become more important in 

rhizosphere as there are plant growth associated changes in root and soil properties 

(Philippot et al. 2013; Wen et al. 2017) and variation in quality and quantity of 

rhizodeposits (Chapparo et al. 2013) as well as intense competition between plants and 

soil microorganisms for limited nutrients (Kuzyakov and Xu, 2013). For example, root 

exudates are comprised of organic compounds constituting higher C to N ratios ranging 

from 50-100 (Drake et al. 2013) and their input into soil varies with plant phenology 

stages (Chapparo et al. 2013). This temporal change in root exudation quality and 

quantity further changes the stoichiometry of available resources in the rhizosphere. 

Root-derived C inputs coupled with plant nutrient uptake at earlier growth stages could 

exert rapid shift in nutrient availability (strong N and P limitation) in rhizosphere soil 

(Dijkstra et al. 2013; Phillips et al. 2011). In response to nutrient shortage, plants 

manipulate their strategies to maximize the uptake; however, an explicit relationship is 
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missing between specific root trait and nutrient uptake (Chen et al. 2016). Moreover, 

such strategies are species specific and the cause of variations in the same are still 

poorly understood. Therefore, the present study focuses on the root traits plasticity 

(morphological and biological trait) for plant P acquisition in P limited soils and how the 

availability of P (via P fertilization) affects the response of such traits. We hypothesized 

that 1) in P limited soils, plants compensate for the lack of root hairs by shifting the root 

trait to higher root mycorrhizal colonization (functionally analogous to hairs) for P 

acquisition; 2) root mycorrhizal colonization decreases with P fertilization due to strong 

trade-off for C costs. The present study provides the fundamental opportunity to 

understand the plants‘ P uptake strategies through plasticity of root traits at three distinct 

plant growth stages (tillering, stem extension, maize heading). 

 

4.2. Materials and Methods 

4.2.1. Experimental setup  

Surface soil (0-20 cm) was collected from an agricultural site at Dikopshof Wesseling 

station of University of Bonn, Germany. The site belongs to a long-term trial without any 

input of mineral fertilizers. Soil properties are as follow: total C (7.8±0.02 g C kg-1 soil), 

total N (0.74±0.01 g N kg-1 soil), C to N ratio (10.5±0.02), calcium-acetate-lactate 

extractable P (23.2±0.7 mg P kg-1 soil), and soil pH 6.48. Field moist soil was passed 

through a 2-mm sieve and 1.5 kg dry weight equivalent was filled in Polyvinyl chloride 

(PVC) pots (KG tubes, height 20 cm, diameter 10 cm). In total, 4 treatments were 

established (with 4 replicates each): maize with root hairs (with hairs), maize with root 

hairs with P fertilization (with hairs+P), maize without root hairs (rth3; without hairs), and 
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maize without root hairs with P fertilization (without hairs+P). In order to understand the 

effects of plant phenological stage on rhizosphere processes, samples were taken at 

three distinct growth stages (tillering, stem elongation, and maize heading). All soil-filled 

pots were pre-incubated in a growth chamber for 3 days before sowing. Seeds of a 

maize (Zea mays L.) wild type (WT) and a roothairless3 (rth3) mutant were surface 

sterilized with 10% H2O2 for 3 min, washed 5 times with distilled water and germinated 

on moist filter paper in petri plates in dark for 5 days. After germination, seedlings were 

transferred to PVC pots and grown under controlled environmental conditions in a 

climate-chamber with 16/8-h day/night rhythm with mid-day and night temperatures of 

25° C and 15° C respectively, and light intensity at approximately 600 µmol m-2 s-1. After 

establishment of seedling (usually 2-3 days), all the pots were fertilized with inorganic 

nitrogen (KNO3, at the rate of 120 kg N h-1) to avoid soil N limitation. Treatments with P-

fertilization received inorganic P-fertilizer (KH2PO4, at the rate of 60 kg P h-1). The soil 

water content was checked every day and maintained at 70% water holding capacity 

(WHC) with distilled water throughout the experimental period. Sixteen pots were 

destructively harvested after 30 days after planting (DAP), 45 DAP, and 64 DAP 

constituting tillering, stem extension, and maize heading, respectively. 

4.2.2. Pot harvesting 

At each harvesting time, maize shoots were cut at the base. The ‗main‘ root system was 

carefully removed after pulling out soil from the pot. Roots were picked with tweezers 

from each pot for a definite time period (15 min). A subsample of roots was collected for 

measurements of mycorrhizal colonization (see description below). All roots were 

scanned with an EPSON (PERFECTIONTM V700 PHOTO) scanner and root length 

density, fine roots, and average root diameter of fine roots were determined using 
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WinRHIZO (Regents Instruments Inc., Quebec, Canada). Afterwards, roots and shoots 

were freeze-dried and ball-milled to powder for total elemental analyses. Total P content 

in plant tissues and soil were measured using inductively coupled plasma-atomic 

emission spectrometer (iCAP 6300 Duo VIEW ICP Spectrometer, Thermo Fischer 

Scientific GmbH, Dreieich, Germany). 

4.2.3. Root mycorrhiza colonization by AM fungi 

Root mycorrhizal colonization by AM fungi was measured after staining the roots with 

blue ink in lacto-phenol (Phillips and Hayman, 1970). Briefly, fine roots (< 2 mm) were 

collected manually with tweezers for 2 min. Fine roots were cut into 1 cm segments and 

washed with distilled water. Root segments were cleared in 2.5% KOH at 90° C for 1 h. 

Thereafter, root segments were washed in distilled water to remove access KOH and 

treated with 3% H2O2 for 30 min at room temperature. Afterwards, the root segments 

were washed again with distilled water and stained with ink (lacto-phenol) for 2 min. 

Root mycorrhizal colonization was observed at 10 x 40 magnification under light 

microscope (Axionplan, Zeiss, Germany) and the percentage of mycorrhizal colonization 

was counted using the grid-line intersection method (Giovannetti and Mosse 1980). 

Statistics  

The experiment was conducted with 4 replicates for each treatment at each harvesting 

time. The values presented in figures and tables are means ± standard errors of means 

(± SEM). The data was checked for normality (Shapiro-Wilk test, P>0.05) and 

homogeneity of variance (Levene test, P>0.05) at individual plant growth stage prior to 

analysis of variance (ANOVA). One-way ANOVA was performed to test the effect of 

plant growth stage on root and shoot biomass, root mycorrhizal colonization, average 

fine root diameter, and plant P uptake followed by post-hoc HSD test for multiple 
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comparisons. We used student‘s t-test to test the effects of P fertilization within the same 

genotype and effect of genotype at each growth stage. In general, a significance level of 

P<0.05 was used for ANOVA and t-test if not mentioned specifically. All the statistical 

analyses were performed using STATISTICA for Windows (version 13.2; StatSoft Inc., 

OK, USA). 

 

4.3. Results 

4.3.1. Plant biomass  

Total plant biomass (root and shoot biomass) increased from the tillering to maize 

heading stage for both (wild type and rth3 mutant) genotypes (Figure II.4:1). The main 

difference in production of plant biomass was due to P fertilization, where P fertilization 

increased the total plant biomass by 38% of mutants (rth3) and by 43% of wild type (WT) 

at maize heading. The rth3 mutant (completely lacking root hairs) had the similar 

biomass production (shoot and root) as the WT maize (possessing root hairs) (Figure 

II.4:1). 

4.3.2. Root morphology and mycorrhiza colonization 

The average fine root diameter (AFRD; in mm) increased with P fertilization for the WT 

during tillering and stem elongation stages (Figure II.4:2). This increase was up to 21% 

at tillering and 10% at stem elongation stage (Figure II.4:2). There was a trend for an 

increase in AFRD for the rth3 maize with P fertilization up to 8%, 3%, and 10% at 

tillering, stem elongation and maize heading, respectively, although this increase was 

not significant. Comparing the two genotypes, rth3 increased their AFRD in comparison 

to the WT. The AFRD of unfertilized rth3 maize was by 16%, 15% and 20% as 
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compared to WT at tillering, stem elongation, and maize heading, respectively. 

Moreover, the AFRD of rth3 increased gradually along with plant growth stages 

(0.39±0.01 at tillering, 0.45±0.02 at stem elongation, and 0.47±0.02 at maize heading); 

however, it remained similar for WT (Figure II.4:2). Root mycorrhizal colonization 

decreased with P fertilization in both WT and rth3 maize (Figure 3). With P fertilization, 

root mycorrhizal colonization decreased by 19%, 24%, and 16% in WT and by 17%, 

27%, and 19% in rth3 at tillering, stem elongation, and heading stage, respectively. 

Moreover, the root mycorrhizal colonization increased in both WT and rth3 with plant 

growth stage, however, the increase with growth stage was more pronounced in rth3 

and without P fertilization. The mycorrhizal colonization increased by 14%, 15%, and 

21% at tillering, stem elongation, and heading, respectively in unfertilized rth3 than WT 

maize roots (Figure II.4:3). Root mycorrhiza colonization by AM fungi and AFRD 

correlated significantly (r2 = 0.30, P = 0.005) in rth3 whereas there was no correlation in 

WT (r2 = 0.002, P = 0.80) (Figure II.4:4). 

4.3.3. Plant P uptake  

P fertilization increased the plant P uptake (mg P day-1) from tillering to stem elongation 

to maize heading. At maize tillering, P fertilization significantly increased the P uptake by 

305% and 242% in WT and rth3 maize, however, both genotypes (WT and rth3) has 

similar uptake rates (Figure II.4:5). Later from stem elongation to maize heading, both, P 

fertilization and genotype effects (WT and rth3) were evident. In P fertilized WT maize, P 

uptake was more than twice as higher in comparison to unfertilized WT (0.16±0.03 mg P 

day-1 and 0.37±0.03 mg P day-1 for unfertilized and P fertilized WT, respectively) during 

maize stem elongation. This increase in P uptake with fertilization was evident also at 

maize heading (0.32±0.02 mg P day-1 and 0.57± 0.02 mg P day-1 in unfertilized and P 
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fertilized WT, respectively). Similarly, rth3 maize had higher P uptake under P 

fertilization and this increase was up to 4 times and 2 times higher than unfertilized rth3 

maize at stem elongation (0.08±0.01 mg P day-1 and 0.25±0.02 mg P day-1 for 

unfertilized and P fertilized rth3, respectively) and at heading (0.25 mg P day-1 and 

0.48±0.01 mg P day-1 for unfertilized and P fertilized rth3, respectively), respectively.  

Comparing the genotype effect during maize stem elongation and maize heading, WT 

maize performed better than rth3 in terms of P uptake. Without P fertilization, the WT 

showed a 91% and 28% higher P uptake than the rth3 during stem elongation and 

maize heading, respectively (Figure II.4:5). With P fertilization, P uptake increased by 

46% and 19% in WT than rth3 maize during stem elongation and maize heading. A 

significant correlation between root mycorrhiza colonization by AM fungi and plant P 

uptake especially in unfertilized WT and rth3 maize highlights importance of root 

mycorrhizal colonization with AM fungi for plant P acquisition (Figure II.4:6). 

 

4.4. Discussion 

The present study provides further evidence on the importance of root hairs for P uptake 

and we have discovered that the lack in a functional root trait (here root hairs) causes 

shifts to other traits (here mycorrhiza) with complementary functions. These traits may 

however be more C cost intensive and their development may hence be down regulated 

if the respective function is not required. For instance, functional traits for P uptake are 

down regulated in soils with high P availability as shown in this study. In nutrient limited 

soils, increase in total plant biomass (root and shoot biomass) after P fertilization is a 

well-observed response of plants. Such a response has been reported by various 

studies on grasses (Haines et al. 2015; Sundqvist et al. 2014), agricultural crops 
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(Bakhshandeh et al. 2017; Chen et al. 2004; Gahoonia et al. 1999), and trees (Lavigne 

and Krasowski, 2007). The availability of extra P via fertilization increases the net P 

uptake resulting in higher photosynthetic activity and consequently higher biomass 

production.  

P fertilization increased the total plant biomass; however, it resulted in reduced root 

colonization by arbuscular mycorrhizal (AM) fungi as compared to unfertilized plants. 

This highlights the importance of mycorrhizal symbiosis for plant P acquisition. 

Moreover, at higher nutrient availability when plants are not limited by nutrients, the 

higher C costs by plants for P acquisition exceeding the mycorrhizal benefits may also 

downregulate the root colonization by AM fungi (Carbonnel and Gutjahr, 2014). The 

inhibitory mechanisms of P fertilization on spore germination, growth and development 

of mycorrhizal hyphae, and root mycorrhiza colonization have been observed in previous 

studies in pure cultures (Hepper, 1983) as well as in soils (Jakobsen et al. 2005; 

Treseder and Allen 2002). Moreover, there are reports showing a decrease in AM fungi 

abundance with increasing nutrient availability across chronosequences (Dickie et al. 

2013), natural gradients of mean annual rainfall (Bohrer et al. 2001), successional and 

environmental gradients (Zangaro et al. 2014). A gradual increase in root colonization by 

AM fungi along with plant growth stages highlights that when P become limited (due to 

plant and microbial uptake), the symbiotic association of plant roots with AM fungi 

becomes increasingly important for plant P acquisition. The present study also 

highlighted that rth3 maize (completely lacking root hairs) had higher root mycorrhizal 

colonization than WT maize (possessing root hairs) indicating that in absence of root 

hairs (a key morphological trait for nutrient and water uptake), mycorrhiza counteracts 

for plant P acquisition. Such an increase in root mycorrhizal colonization in absence of 
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root hairs demonstrates the relative importance of fungal partner which is in accordance 

with Jakobsen et al. 2005 who showed higher root mycorrhiza colonization of brb (root 

hairless mutant) than its wild type (possessing root hairs) in Hordeum vulgare cv Pallas.  

Mycorrhizal symbiosis may cause various adaptive strategies such as changes in root-

to-shoot ratio (Veresoglou et al. 2012), root architecture and longevity (Hooker and 

Atkinson, 1996), root length (Camenzind et al. 2016), and root diameter (Comas et al. 

2014). Such allometric changes are plant specific and depend on experimental duration 

as well as on plant and their fungal partner identities (Veresoglou et al. 2012). Many of 

these evidences are derived from plant phylogeny by determining changes in root 

morphological and architectural traits using phylogenetically independent contrasts 

(Comas et al. 2014), therefore an in-depth understanding require empirical evidences. 

For the first time, the present study demonstrates empirically that in the absence of root 

hairs (rth3 maize), plants increase their average diameter of fine roots (< 1mm) to 

facilitate  colonization by AM fungi (Figure 3). This increase in average fine root diameter 

(AFRD) of rth3 maize with growth stage and a significant correlation (P = 0.005) 

between AFRD and root mycorrhizal colonization by AM fungi in rth3 maize highlights 

the requirement of more root volume for increased mycorrhiza colonization. This could 

be beneficial for rth3 maize for a couple of reasons such as 1) increased AFRD will have 

more space to be colonized by AM fungi (Reinhardt and Miller, 1990); 2) increased 

AFRD will comparatively increase the root longevity and therefore slower turnover 

(Comas et al. 2012; Eissenstat, 1992), which is beneficial for plant to maintain and carry 

forward the active exchange of nutrients and C between AM fungi and plants; 3) 

increased AFRD in rth3 maize will comparatively increase the root surface area for a 

given unit of root length as compared to WT maize (Haling et al. 2013); and 4) increase 
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in AFRD in rth3 maize will reduce the metabolic costs such as root respiration  (Lynch 

and Ho, 2005). 

A significant correlation between plant P uptake and root colonization by AM fungi 

particularly in unfertilized maize (in both, rth3 and WT) highlighted the importance of AM 

fungi for plant P acquisition in P limited soils. Moreover, it was demonstrated that for the 

given unit of P uptake, rth3 maize possessed higher root colonization by AM fungi 

emphasizing the compensation for absence of root hairs, which has previously been 

shown by Jakobsen et al. 2005 and Li et al. 2014. The total P uptake along with maize 

phenological stages showed that at tillering stage, when the nutrients are still abundant, 

there was no difference in P uptake between rth3 and WT maize.  

In a similar study with two genotypes of Hordeum vulgare L. characterized by presence 

(WT) and absence (brb) of root hairs, Pausch et al. 2016 suggested preferential 

utilization of root-derived organics by microorganisms at tillering stage and reduced 

competition for nutrients between plants and microorganisms. Once the plants advance 

in their growth stages, the nutrients level in soil decreases due to plant and microbial 

uptake resulting in strong competition between them (Mwafulirwa et al. 2016; 

Veresoglou et al. 2012). In the present study, at stem elongation and maize heading, P 

uptake increased in WT as compared to rth3 maize. This increased P uptake in WT 

maize is most likely due to extension of the rhizosphere through root hairs. Literature is 

replete with studies demonstrating empirically (Haling et al. 2013; Holz et al. 2017) as 

well as theoretically (Itoh and Barber, 1983; Nye 1966) a rhizosphere extension with root 

hairs by increasing the total surface area. In summary, the present study highlighted that 

in the absence of a single morphological trait (root hairs), plants intensify their 
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interactions with AM fungi to maximize P uptake. We also showed that the lack of root 

hairs is not fully compensated for by higher mycorrhization likely due to higher C costs 

for maintaining the symbiosis with AM fungi. 

 

4.5. Conclusions 

The present study demonstrated that both, root morphological (root hairs) and biological 

traits (root colonization by AM fungi) are crucial for plant P uptake in P limited soils. Root 

hairs promoted P uptake most likely by increasing the root surface area for absorption. 

Presence of root hairs increased the P uptake and decreased the dependency of plants 

on root mycorrhizal colonization by AM fungi, thereby reducing the C costs for P 

acquisition. However, the smaller surface area for absorption in absence of root hairs 

can be counterbalanced by increased root colonization by AM fungi. This alternative root 

trait for P uptake, by exploring the soil volumes beyond the root depletion zone, is 

important for maintaining plant growth in the absence or reduced growth of root hairs 

and under nutrient limitation. Plant adaptive strategy in response to higher colonization 

by increasing the root diameter of fine roots is an efficient policy resulting in lower costs 

and higher benefits. The present study enhance the understanding of plant P uptake 

and interaction-response mechanisms with AM fungi at three major plant growth stages 

(tillering, stem elongation, and maize heading). 
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mycorrhizal fungi in an Atlantic ecosystem in southern Brazil. Journal of Tropical 
Ecology 30, 237–248. doi:10.1017/S0266467414000078 
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4.8. Figures 

 

 

Figure II.4:1: Plant biomass: (upper) shoot biomass (g pot-1±SEM) and (lower) root biomass (g 
pot-1±SEM) of unfertilized (without pattern) and P-fertilized (patterned bars) maize plants with 
(wild type: WT, green bars) and without root hairs (rth3 mutant, orange bars). Upper-case letters 
indicate significant differences of plant growth stages at tillering (30 DAP), stem elongation (44 
DAP) and heading (64 DAP) (ANOVA, P<0.05). Lower-case letters indicate significant 
differences of P fertilization on maize shoot and root biomass separately for WT and rth3 maize 
at each plant growth stage (t-test, P<0.05). (DAP = Days after planting, n = 4). 
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Figure II.4:2: Average fine root diameter (mm±SEM) of unfertilized (without pattern) and P-
fertilized (patterned bars) maize plants with (wild type: WT, green bars) and without root hairs 
(rth3 mutant, orange bars) at three plant growth stages at tillering (30 DAP), stem elongation (44 
DAP), and heading (64 DAP). Lower-case letters indicate significant differences of P fertilization 
on average fine root diameter separately for WT and rth3 maize at each plant growth stage (t-
test, P<0.05). * indicates significant differences between WT and rth3 maize (t-test, P<0.05). 
(DAP = Days after planting, n = 4). 
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Figure II.4:3: Percentage of roots with mycorrhizal colonization by AM fungi (%±SEM) of 
unfertilized (without pattern) and P-fertilized (patterned bars) maize plants with root hairs (WT, 
green bars) and without root hairs (rth3, orange bars). Upper-case letters indicate significant 
differences of plant growth stages at tillering (30 DAP), stem elongation (44 DAP) and heading 
(64 DAP) (ANOVA, P<0.05). Lower-case letters indicate significant differences of P fertilization 
on root mycorrhiza colonization by AM fungi separately for WT and rth3 maize at each plant 
growth stage (t-test, P<0.05). * indicates significant differences between WT and rth3 maize (t-
test, P<0.05). (DAP = Days after planting, n = 4). 
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Figure II.4:4: Correlation between average fine root diameter (mm) and percentage of roots with 
mycorrhizal colonization by AM fungi of maize with root hairs (WT, green circles) and without 
root hairs (rth3, orange circles). 
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Figure II.4:5: Plant P uptake (mg P day-1±SEM) of unfertilized (without pattern) and P-fertilized 
(patterned bars) maize plants with (wild type: WT, green bars) and without root hairs (rth3, 
orange bars) at three growth stages at tillering (30 DAP), stem elongation (44 DAP) and heading 
(64 DAP). Upper-case letters indicate significant differences of plant growth stages at tillering 
(30 DAP), stem elongation (44 DAP) and heading (64 DAP) (ANOVA, P<0.05). Lower-case 
letters indicate significant differences of P fertilization on plant P uptake separately for WT and 
rth3 maize at each plant growth stage (t-test, P<0.05). * indicates significant differences between 
WT and rth3 maize (t-test, P<0.05). (DAP = Days after planting, n = 4). 
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Figure II.4:6: Correlation between maize P uptake (mg P day-1) and percent root mycorrhiza 
colonization by AM fungi of maize with root hairs (WT, green circles) and without root hairs (rth3, 
orange circles) with P fertilization (filled circles). 
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Additional studies 

 

Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, 

Blagodatskaya E. (2017) Microbial decomposition of soil organic matter is 

mediated by quality and quantity of crop residues: mechanisms and thresholds. 

Biology and Fertility of Soil. DOI: 10.1007/s00374-016-1174-9 

 

Shahbaz M, Kumar A, Kuzyakov Y, Borjesson G, Blagodatskaya E. (2018) Priming 

effects induced by glucose and decaying plant residues on SOM decomposition: A 

three-source 13C/14C partitioning study. Soil Biology and Biochemistry. 121:138-
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Sun Y, Kumar A, Kuzyakov Y, Pausch J. In-preparation. Effects of glucose and N 

addition on priming effects in forest soils: estimations using 13C and 15N isotopic 

approach. 
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Supplementary material 

II.2: Effects of maize roots on aggregate stability and enzyme activities in soil 

Supplementary Table II.2:1: Total plant biomass (g m
-2

) and microbial biomass N (mg N kg
-1

 aggregate) in 

bare fallow soil and soils with Low, Normal and High maize plant densities in distinct aggregate size 

classes. Upper-case letters indicate significant differences (Post-hoc LSD test, P<0.05) in plant biomass 

and in microbial biomass N between bare fallow and Low, Normal and High maize plant densities. Lower-

case letters indicate significant differences (Post-hoc LSD test, P<0.05) in microbial biomass N between 

distinct aggregate size classes.  

  

Plant biomass 

(g m
-2

)   

Microbial biomass N 

(mg N kg
-1

 aggregate) 

  Shoot Root   >2000 µm 2000-250 µm <250 µm 

Bare fallow - -  23.4±2.4Aab 25.5±2.7Ab 17.9±1.3Aa 

Low density 361.7±52.5A 41.2±6.0A  27.3±2.6Ab 22.8±0.9Aab 20.9±1.1ABa 

Normal density 568.1±46.0B 64.7±5.2B  24.8±3.5Aa 25.1±1.8Aa 23.9±2.2Ba 

High density 704.7±53.8B 80.2±6.1B   25.2±4.2Aa 22.0±2.7Aa 22.6±2.0ABa 

 

Supplementary Table II.2:2: Ratio of microbial biomass C (mg C kg
-1

 aggregate) to microbial biomass N 

(mg N kg
-1

 aggregate) (Cmic/Nmic ) in bare fallow soil and soils with Low, Normal and High maize plant 

densities in distinct aggregate size classes. Upper-case letters indicate significant differences (Post-hoc 

LSD test, P<0.05) in Cmic/Nmic between bare fallow and Low, Normal and High maize plant densities. 

Lower-case letters indicate significant differences (Post-hoc LSD test, P<0.05) in Cmic/Nmic between 

distinct aggregate size classes. 

    Cmic / Nmic 

 

  >2000 µm 2000-250 µm <250 µm 

Bare fallow 4.56±0.62Aa 4.32±0.46ABa 5.10±0.66Aa 

Low density 5.11±0.32Aa 4.73±0.11Aba 3.82±0.31ABb 

Normal density 5.12±0.48Aa 4.89±0.38Aa 4.16±0.59ABa 

High density 4.57±1.17Aa 3.59±0.44Ba 3.42±0.49Ba 
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II.3. Maize phenology alters the distribution of enzyme activities in soil: field 

estimates 

 

Supplementary Figure II.3:1: Maize shoot biomass (kg m-2) at silking (72 days) and maturity (130 days) 

stages. 
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Supplementary Figure II.3:2: Correlation between microbial biomass C (mg C kg-1 soil) and potential 

activities (nmol g-1 soil h-1) of (a) C-acquiring enzymes; (b) P-acquiring enzyme; and (c) N-acquiring 

enzymes at silking (72 days) and maturity (130 days) stages of maize.   
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Supplementary Table II.3:2: Factorial ANOVA showing effect of soil depth, planting, and N fertilization on 

soil moisture (%), microbial biomass C (Cmic; mg C kg-1 soil), BG (β-1,4-glucosidase; nmol MUB cleaved g-

1 soil h-1) CBH (Cellobiohydrolase; nmol MUB cleaved g-1 soil h-1), NAG (β-1,4-glucosaminidase; nmol MUB 

cleaved g-1 soil h-1), XYL (β-xylosidase; nmol MUB cleaved g-1 soil h-1), LAP (Leucine-aminopeptidase; nmol 

AMC cleaved g-1 soil h-1) and PHO (phosphomonoesterase; nmol MUB cleaved g-1 soil h-1) at four soil 

depth intervals (0-5 cm, 5-15 cm, 15-25 cm, and 25-35 cm) at two sampling times (silking and maturity 

stages) under bare fallow and planted soil in presence or absence of N-fertilization. Provided are the P-

values and bold numbers indicate significant effect (P<0.05). 

Variables 
Soil 

moisture Cmic BG CBH XYL NAG LAP PHO 

72 DAP                 

Treatment 0.000 0.135 0.000 0.001 0.000 0.001 0.000 0.001 
Depth 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Fertlization 0.465 0.478 0.211 0.291 0.028 0.004 0.001 0.937 
Depth*Fertilization 0.286 0.737 0.286 0.036 0.243 0.067 0.702 0.965 
Depth*Treatment 0.384 0.856 0.051 0.236 0.015 0.143 0.013 0.192 
Fertilization*Treatment 0.708 0.618 0.874 0.845 0.185 0.430 0.059 0.469 
Fertilization*Depth*Treatment 0.718 0.835 0.649 0.002 0.968 0.620 0.129 0.982 

130 DAP                 

Treatment 0.800 0.000 0.000 0.418 0.182 0.098 0.052 0.247 
Depth 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000 
Fertlization 0.863 0.153 0.991 0.800 0.183 0.047 0.013 0.768 
Depth*Fertilization 0.621 0.018 0.137 0.571 0.939 0.164 0.359 0.970 
Depth*Treatment 0.000 0.027 0.020 0.151 0.770 0.312 0.226 0.257 
Fertilization*Treatment 0.333 0.883 0.200 0.057 0.661 0.701 0.086 0.230 
Fertilization*Depth*Treatment 0.238 0.418 0.088 0.661 0.468 0.319 0.913 0.743 
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