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Abstract

Deutsche Kurzzusammenfassung

Blut ist eine der wichtigsten Flüssigkeiten in unserem Leben. Doch trotz dessen Bedeutung sind
wir noch immer weit von einem umfassenden Verständnis von dessen Eigenschaften entfernt.
Dies kann auf das komplexe Verhalten dieses Fluids zurückgeführt werden. Die vorliegende Arbeit
behandelt zwei spezifische Aspekte von Blutströmungen aus physikalischer Sicht mit Hilfe von
dreidimensionalen numerischen Simulationen. Zum einen wird gezeigt, dass eine einzelne, in
einem Mikrokanal fließende rote Blutzelle zwei unterschiedliche und stabile Formen annehmen
kann, die „Croissant“ und „Slipper“ genannt werden. Insbesondere tritt eine Koexistenz beider
Formen bei gleichen Parametern auf. Diese Bistabilität findet sich ebenso in entsprechenden
Experimenten wieder, die von unseren wissenschaftlichen Partnern durchgeführt werden. Der
detaillierte Vergleich der Ergebnisse zeigt eine quantitative Übereinstimmung. Zum anderen
untersuchen wir mit Lipiden beschichtete Mikrobläschen in Zusammenhang mit gezielter Medika-
mentenzufuhr mittels Ultraschall. Wir zeigen, dass die speziellen Eigenschaften der Beschichtung
der Bläschen, deren Schwingungen aufgrund des Ultraschalls und deren komplexe Interaktion
mit den roten Blutzellen zu einem effizienten Protokoll für Medikamentenzufuhr führen. Dies
lässt sich auf den sogenannten „Margination-Effekt“ zurückführen, welcher erst aufgrund der
Wechselwirkung mit den roten Blutzellen auftritt. Falls die Zellen vernachlässigt werden, sind
realistische Vorhersagen für solche Mikrobläschen in Blutströmungen nicht mehr möglich.

Bevor jedoch obige Forschungsprojekte durchgeführt werden können, müssen zunächst die
zugrundeliegenden Methodiken untersucht und verbessert werden. Genauer gesagt besteht
physikalische Forschung mittels numerischen Simulationen aus mehreren Ebenen, konkret den
physikalischen Modellen, mathematischen Betrachtungen, Algorithmen, der numerischen Im-
plementierung, der Validierung und zuletzt deren eigentlichen Anwendung. Die vorliegende
Arbeit trägt zu all diesen Ebenen bei. Auf der ersten Ebene vergleichen wir sogenannte „lineare
Biegemodelle“ mit dem weitverbreiteten Canham-Helfrich Modell. Beide stellen Modelle für
die Biegesteifigkeit von deformierbaren Objekten wie rote Blutzellen dar. Von mathematischer
Seite her wird daraufhin die normale Randintegralmethode in periodischen Systemen um vo-
lumenveränderliche Objekte erweitert, um die Untersuchung mit oszillierenden Mikrobläschen
zu ermöglichen. In dem für uns wichtigen Fall eines periodischen Systems wird die Existenz
und Eindeutigkeit der Lösung mathematisch bewiesen. Der Beweis enthält als Untermenge den
üblichen Fall ohne volumenveränderliche Objekte (für den bisher kein Beweis in periodischen
Systemen existierte). Auf algorithmischer Ebene vergleichen und bewerten wir bekannte Al-
gorithmen für die Implementierung des Canham-Helfrich Modells. Es stellt sich heraus, dass
keiner eine ordentliche Konvergenz aufweist und der Fehler einiger mit der Auflösung sogar
anwächst. Nichtsdestotrotz sind sinnvolle Resultate in viskosen Strömungen möglich, auch wenn
Ergebnisse aus der Literatur eine bemerkenswerte Streuung aufweisen. Der Methodenteil wird
schließlich mit einem kurzen Abschnitt über die numerische Implementierung mittels MPI und
der Validierung abgeschlossen. Im letzten Teil der Arbeit betrachten wir die Anwendung der
Methode im Zuge obiger Studien.
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Abstract

English abstract

Blood is one of the most important fluids in our life. Despite its significance and because of its
complex behavior, we are still far away from a comprehensive understanding of its properties.
The present thesis elucidates two specific aspects of blood flow from a physical point of view using
three-dimensional numerical simulations. First, we show that a single red blood cell flowing in a
microchannel can assume two different major stable shapes, called “croissant” and “slipper”. Most
importantly, both shapes can coexist, i.e. they are stable at the same parameters. This bistability
is also observed in corresponding experimental investigations contributed by our collaborators. A
detailed comparison uncovers quantitative agreement between both results. Second, we study
lipid-coated microbubbles in the context of targeted drug delivery with ultrasound. We find that
the special properties of the lipid coating, oscillations caused by the ultrasound and the complex
interactions with the red blood cells lead to an effective drug delivery protocol. This is due to
the effect of margination which hinges upon the presence of the red blood cells. If the cells are
neglected, it becomes impossible to make realistic predictions for such bubbles in blood flow.

Before we are able to perform these two studies, however, we first need to advance the under-
lying methodology. More precisely, physical research via numerical simulations combines several
layers: Physical models, mathematical examinations, algorithms, numerical implementation,
validation of the tools and only then their application. The present work makes contributions to
each of these layers. Regarding the first layer, we rigorously compare so-called “linear bending
models” with the more common Canham-Helfrich model. Both are models for the bending
rigidity of deformable objects such as red blood cells. On the mathematical side, we extend
the standard periodic boundary integral method to include volume-changing objects in order to
enable the study of oscillating microbubbles. For our important case of periodic domains, we
provide a mathematical proof that it has exactly one solution. The proof contains as a subset the
common boundary integral method without volume-changing objects (for which, so far, no proof
in periodic domains existed). Algorithmically, a detailed evaluation of the available algorithms
for the Canham-Helfrich model is performed. We uncover that no algorithm provides proper
convergence and that some even show an increase of error with higher resolutions. Despite this,
sensible results in viscous flows are possible, although existing references still show a remarkable
scattering of results. We finish the methodological part with a short section on the numerical
implementation with MPI and the validation. In the last part we consider the application of the
method, resulting in the above studies.
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1 Introduction

1.1 Motivation: Why and how to study blood flow

Blood is a core element for the functioning of mammalian bodies. It is responsible not only for
delivering oxygen from the lungs to the remotest cells and carbon dioxide back to them, but also
for transporting antibodies and phagocytes which are crucial for the immune system. Hence it is
of no surprise that huge efforts were and are invested in the research of this fluid. One reason
why blood is still an active research topic after all these decades is its complex nature, stemming
from the interaction between the fluids and its particulate deformable constituents. New features
and phenomena are thus still being uncovered regularly. The most prominent of its constituents
are the red blood cells, also called erythrocytes, contributing approximately 40 % to the total
blood volume.

As such, an intricate knowledge on the micro-scale behavior of red blood cells (RBCs) and other
particles in flows is imperative for advancements in many scientific fields. On a more basic level,
it is required to understand how specific biological processes and organs work. As an example, it
has been suggested that the spleen removes old and pathological RBCs from the vascular system
due to decreased deformability of the cells, since they can no longer pass through very small
slits [1]. Closely tied to this are medical diagnosis and treatments. A good comprehension of
how various diseases affect the properties of the cells helps to guide the development of new
drugs and therapies. Similarly, research on the flow behavior of the drugs themselves or on
drug agents can guide the design of e.g. new administration protocols and the material selection
(compare chapter 6.2). Furthermore, a good understanding is required for developing new blood
analysis methods, especially in the promising and rapidly growing field of lab-on-a-chip devices
[2, 3]. These small chips of sizes in the milli- to centimeter regime are cheap to manufacture
and contain microfluidic channels. They exploit various properties of the immersed objects to
achieve for example sorting into healthy and pathological components [4, 5]. Moreover, from
a more academic point of view, the description of blood is an interesting problem due to the
complex fluid-structure coupling, leading to a multitude of phenomena such as margination
(stiff particles move to the outside of a blood stream) or the Fåhræus-Lindqvist effect (apparent
viscosity decreases in smaller tubes) [6, 7]. Insights gained from this research together with the
developed methodologies can also be used to analyze other subjects. An example here is the
industrially relevant topic of microcapsule and bubble suspensions (e.g. in the context of food
products [8]).

Three different fundamental paths exist to approach the topic of micro-scale blood flow: Via
experiments, analytical theories or numerical simulations. While experiments are able to examine
very large systems (e.g. a large part of a vascular system) and theories can provide deeper insights
for special limiting cases (e.g. close-to-spherical vesicles), simulations have easy access to many
observables (e.g. precise particle positions) and are able to consider nonlinear behavior (e.g.
large deformations) in completely controlled environments. In the end, a combination of all three
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1 Introduction

methodologies is required to arrive at a deep understanding of the topic. But as time is finite, the
present work concentrates on one methodology, namely numerical simulations. Experimental
insights are contributed by the existing literature and our collaborators.

1.2 Scope & aim

Physical scope Blood flow is a highly complex and extremely large field. Thus, it is beyond the
scope of a single or even multiple theses to research and describe blood flow in its entirety. Rather,
one needs to make a selection. In the present case, we consider two major physical problems. The
first one is the shapes assumed by isolated red blood cells flowing in microchannels. Hence, it is a
problem of a more fundamental level, contributing to our comprehension of blood in a bottom-up
approach. The second considered problem has a specific application as background, namely
the targeted drug delivery by means of ultrasound contrast agents (coated microbubbles). It
considers the question how the peculiarities of oscillating bubbles and red blood cell interactions
can be exploited to attain an efficient drug delivery protocol.

Methodical scope A plethora of numerical techniques exist that are capable of simulating blood
flow on the scale of individual cells. We provide a short overview in chapter 5.1. For the present
work, we are using the boundary integral method (BIM) in 3D. Three properties are especially
important for our research projects mentioned above, making this specific approach preferable to
other methods: It is very efficient for a small number of particles, it can naturally handle objects
with inner viscosities that are different to the ambient fluid viscosity and it allows for an extension
to volume-changing objects. Further discussion of its advantages and disadvantages can be found
in chapter 5.1. The fully three-dimensional treatment is important as non-axisymmetric behavior
can emerge even in axisymmetric systems [9 – 11].

However, using simulations for physical research implies proper choices, methods and under-
standing of several underlying layers: The results depend on the chosen models, their correct
translation into formulas, the selection of appropriate algorithms, an efficient implementation
and the validation of the implementation. See figure 1.1 for a graphical illustration. It turned out
that reaching our ultimate goal (studying blood flow via simulations) required contributions to
each of these layers as outlined below. After all, a part of research in physics is also to know and
build the necessary tools. In experiments this would be the experimental techniques, while here
it means the models, mathematics, algorithms and numerics.

Aim The aim of this thesis is, therefore, to walk the path from the lowest to the highest layer
appearing in blood flow simulations. Along the path we point out the standard elements and
present in more details the encountered problems as well as our contributions to their solution.

1.3 Contributions and outline

We start by summarizing the state-of-the-art physical models employed in the description of
blood flow in chapter 2, because the choices made here affect all higher levels. The models
that are analyzed in-depth in this thesis are the Stokes equation (modeling the hydrodynamics)
and the Helfrich model (for the bending resistance of red blood cells). Our contribution to the
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1.3 Contributions and outline

Physical phenomena (real world)

Physical models (ch. 2, [Pub2])

Mathematical considerations (ch. 3, [Pub3])

Algorithms (ch. 4 and 5, [Pub1] and [Pub2])

Numerical implementation (ch. 5.3)

Validation (ch. 5.3, [Pub1] and [Pub5])

Simulations
→ Fundamental questions (ch. 6.1, [Pub4] and [Pub5])
→ Application-oriented questions (ch. 6.2, [Pub3])

Explanation and/or new phenomena

Fig. 1.1: The various layers when doing research via numerical simulations. The present thesis makes contributions to
each one, located in the chapters listed within the diagram and further detailed in the dedicated publications.

model layer is a rigorous comparison between the common Canham-Helfrich bending model and
so-called linear bending models [Pub2].1

We then proceed in chapter 3 with presenting the mathematics of the hydrodynamic formula-
tion, which is based on the Stokes equation. We extend the standard boundary integral equation
to include volume-changing objects [Pub3]. The development of the extension was necessary
in order to include oscillating and deformable microbubbles in blood flow. Existing simulation
methods are not capable of handling red blood cells together with such bubbles.

On the algorithmic part, we shed for the first time light on the performance of various
algorithms for the bending forces in chapter 4.3 ([Pub1] and [Pub2]1). Bending forces are
required here for the proper simulation of red blood cells, but are also very important for related
fields of research (capsules, vesicles, etc.) and even unrelated ones (computer graphics etc.). An
intermediate component (the mean curvature) is also necessary for the microbubbles.

Going one layer up to the actual implementation, the author wrote the base of the code for
the boundary integral method already during his master thesis [12]. Creating a new code was
necessary as no suitable and publicly available BIM code existed. During his doctorate, he imple-
mented necessary extensions (such as for the bubbles) and several performance optimizations.
He also implemented an MPI parallelization in the course of a KONWIHR research project, as
outlined in chapter 5.2.

Continuing, the validation layer happened to some degree also during the author’s master thesis.
Nevertheless, our discussion on the bending algorithms in chapter 4.3.3 provides additional
evidence for the correctness of the code [Pub1]. Most importantly, the research on the behavior
of single RBCs and the comparison with new experiments by our collaborators (chapter 6.1) puts
all layers to the test – successfully [Pub5].

1Despite being a review to large extents, publication [Pub2] contains two novel contributions: First, the rigorous
comparison between the linear bending models and the Canham-Helfrich model and second, the computation of
the bending errors when using a spherical harmonics expansion.
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1 Introduction

Finally, we contribute to the highest layer and thus to the knowledge on blood flow by means of
two studies. The first one is the just mentioned research, where we consider individual red blood
cells flowing through a microchannel. Hence, it is important for the fundamental understanding
of blood but also for certain applications. Our comparison between numerical and experimental
measurements constitute the first of its kind with such details. We recover the two well-known
common shapes assumed by the cells, croissants and slippers. Our most important finding is
bistability and its systematic analysis, i.e. the coexistence of these shapes at the same set of
parameters. It is presented in chapter 6.1 [Pub5]. The second study in chapter 6.2 [Pub3]
considers lipid-coated microbubbles in blood flow. As such, it is more about a specific application
rather than fundamental insights. We show that application of an ultrasound (causing the bubbles
to oscillate) together with the special properties of the lipid coating and the interaction with
the red blood cells causes the bubbles to migrate to the vessel wall (margination). Thus we can
conclude that such bubbles constitute an efficient agent in targeted drug delivery protocols. The
results also highlight that e.g. in-vitro experiments must take red blood cells into account in order
to arrive at conclusions that can be translated to the in-vivo case.

Since the present thesis is in the format of a cumulative dissertation, the following chapters
will serve as a guide along the path from the lowest to the highest layer, while providing context
and summaries of our individual contributions. The full details can be found in the attached
publications (part II).
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2 Biology and models of blood flow

In order to capture the physical behavior of blood flow, the two most important components that
need to be modeled are the red blood cells and the fluid inside and outside of the cells. The
following sections will shortly outline the biology and the corresponding models.

2.1 Structure and modeling of red blood cells

Overview Red blood cells (erythrocytes) are created in the bone marrow and lack a nucleus, i.e.
consist of only a membrane and an internal fluid (cytoplasm) [13]. The cytoplasm contains a
high concentration of hemoglobin, a protein capable of binding oxygen molecules. It is therefore
imperative for the cells in order to fulfill their main purpose, the delivery of oxygen from the
lungs to the rest of the body. This inner fluid is Newtonian [14] and has a dynamic viscosity
of µRBC = 5 – 15 mPa s for healthy human red blood cells at 37 ◦C [13]. The precise value
depends to a large extent on the hemoglobin concentration, with older cells exhibiting higher
concentrations and, therefore, also higher viscosities [13].

The only structural part of the cell, its membrane, is formed by a lipid bilayer and an underlying
cytoskeleton, both tethered together by several types of transmembrane proteins [13]. More
precisely, the cytoskeleton consists of a complex and possibly dynamic [15] network of spectrin
proteins which forms a triangular mesh when expanded [16]. This network is responsible for
providing the membrane with its shear elasticity. The lipid bilayer, on the other hand, is composed
of two layers of phospholipids and cholesterol. It endows the cell with some bending rigidity [17].
Furthermore, the area of the composite membrane stays nearly constant under deformations (at
≈ 140µm2 [18, 19]), i.e. it has a very high surface area dilatation modulus. This is to a large
extent due to the lipid bilayer, while the cytoskeleton’s dilatation resistance is notably smaller
[17, 20]. Longer-lasting changes of the area above ≈ 4 % lead to cell rupturing [13, 21], while
short lasting (≈ 50µs) changes of up to approximately 40 % can be coped with [22].

Modeling the in-plane elasticity Since the membrane has a thickness of typically less than
100 nm [16] while the RBC in equilibrium has a typical diameter of 8µm [23], erythrocytes in
flow simulations are usually modeled as inert objects having a homogeneous thin shell with
zero thickness. Skalak et al. [24] introduced one of the most often used models for RBCs,
the so-called Skalak model, which we will also employ in this thesis. It consists of a strain-
hardening [25] component to model the shear elasticity with the corresponding shear modulus2

κS ≈ 5× 10−6 N/m [27, 28], and an area dilatation component with a modulus κA. As explained
above, κA should be high enough to get an almost constant surface area, with appropriate values
of around κA = 103κS to 105κS [21, 24]. Such high moduli can impede a large performance
penalty in numerical simulations, and hence smaller values are often chosen. Additional surface

2Note that different conventions exist for the definition of κS. Here we use the one by Krüger [26].
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2 Biology and models of blood flow

forces or constraints can be introduced to limit the surface deviations to large degrees [26, 29].
Naturally, the Skalak model is not the only possible choice [30, 31], with spring-network models
having become another popular alternative [32 – 34].

Modeling the bending rigidity The bending rigidity of the RBC membrane is usually taken into
account via the famous Helfrich (or Canham-Helfrich) model [35 – 37], which is prescribed in
the form of a surface energy. A typical bending modulus is κB ≈ 3× 10−19 N m [28, 38]. The
Helfrich model can be amended by an “area-difference elasticity” (ADE) term [21, 39], but it
was apparently not used so far for RBCs in flow except in reference [40]. Bending forces are
important to correctly capture equilibrium shapes when the shear stresses are nearly zero [21, 41]
or to describe the wrinkles [42, 43] and shapes [11] that can appear during larger deformations.
They can also improve the stability of numerical simulations [25]. Although the Helfrich model
is used in a large part of the literature, a proper algorithm is still not established and different
results are obtained in practice depending on the algorithm as we show in [Pub1].

Several publications [21, 42, 44 – 52] do not employ the Helfrich model but rather a so-called
“linear bending model”. Different flavors exist. All of them have in common that the constitutive
equation is not an energy, but rather the bending moments Mαβ are prescribed directly. The
reference state aside, this is either Mαβ ∼ Haαβ or Mαβ ∼ bαβ where aαβ is the metric tensor,
bαβ the curvature tensor and H the mean curvature. Their relationship to the Helfrich model was
so far not completely clear. Only Pozrikidis [46, p. 279] [48, ch. 2.8.2] made some rather cryptic
statements, suggesting that some of them should be equivalent in the 2D case.

In publication [Pub2] we show mathematically that Mαβ ∼ Haαβ and Mαβ ∼ bαβ lead to the
same traction jump (force per unit area) in 3D, but that this traction jump matches with the
Helfrich result only to leading order, i.e. small deformations. Moreover, the higher orders lead to
an additional qualitative difference in the tangential component of the traction jump: It is zero
for the Helfrich model but non-zero for the linear bending models. Figure 2.1 exemplifies the
traction jump as obtained from the Helfrich and the linear bending models for the biconcave
discocyte shape, showing deviations of up to 35 %. Linear bending models are only equivalent if
they prescribe in-plane tensions correctly, something which is usually not the case.
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Fig. 2.1: (a) The traction jump 4f as obtained from the full Helfrich model in comparison with the linear bending
models that neglect in-plane tensions for the discocyte shape (compare figure 2.2). Units measured in κB and the
large radius of the discocyte. (b) Relative deviation between the data from (a). Θ := arccos

(
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√
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3
)

is
the polar angle as measured from the center of the discocyte. Reprinted from publication [Pub2] with permission
from IOP Publishing.
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2.1 Structure and modeling of red blood cells

Stress-free shape An open question in modeling the cell elasticity is that of the stress-free (or
reference) shape. Due to the twofold nature of the RBC membrane, the question applies to both
the lipid bilayer as well as the cytoskeleton. For the first, the reference shape is typically encoded
in the Helfrich model via the so-called spontaneous (or reference) curvature c0 (or H0). The
asymmetric distribution of the phospholipids between the two layers [13], which are themselves
homogeneous on the µm-scale, indicates a non-zero value for c0 that is spatially constant.
Unfortunately, experimental values are non-existent so far. The most common choice is therefore
c0 = 0.

For the second constituent of the membrane, the cytoskeleton, a spatially inhomogeneous
reference shape is required to explain results by Fischer [53]. He showed that the membrane is
endowed with a “shape memory”: Membrane elements before a deformation and after equili-
brating the deformed cell again are found at the same location. Two suggestions are currently
discussed in the literature as possible candidates for the stress-free shape [41]: Either the disco-
cyte equilibrium shape or an oblate spheroid that is nearly (but not completely) a sphere. So far
the debate has not been settled, but more and more recent studies claim that the oblate shape
is the correct one [54 – 61], although converse arguments also exist [62]. Analyses are made
more complicated by the observation that both stress-free shapes result in distinct dynamics
only for certain parameter ranges. If the ratio λ of the inner and outer viscosities is in the
physiological range (λ ≈ 5), the differences can be negligible [57]. In our studies in chapter 6 we
use the discocyte reference state. We make a more in-depth comment on this issue in the outlook
(chapter 7.2.1).

Further details The volume of the RBC is set by osmotic balance. Hence, it stays constant as
long as the environment does not change [21, 63]. Simulations of cells in flow therefore assume
a constant volume of around ≈ 100µm3 [18, 19, 64]. Still, although the underlying equations
already describe an impenetrable membrane, an artificial volume drift can occur in practice as a
numerical artifact. It can be countered by introducing an additional ad-hoc volume force [26],
exploiting the no-flux condition [29] or by a simple volume rescaling procedure [29].

In the absence of external forces, a healthy RBC equilibrates to a biconcave shape called
discocyte with a diameter of approximately 8µm and a thickness of 2.6µm [23] as depicted
in figure 2.2. A convenient mathematical formula to describe this geometry is given by Evans
and Fung [23]. This shape is determined by the available excess area compared to a sphere
with the same volume and the membrane forces [21]. In non-physiological environments [21,
54] or in case of diseases [65 – 67], other shapes such as stomatocytes or echinocytes are also
possible. Application of external stresses (for example by placing the cells into a flow) leads to
large reversible deformations as discussed in publication [Pub5] (chapter 6.1).

Fig. 2.2: The biconcave discocyte is the typical equilib-
rium shape of a healthy red blood cell. Half of it was
made transparent for illustration purposes.

Red blood cells show additional features that were not mentioned so far and are not taken into
account in the present work. The first one is membrane viscosity [7, 28, 38, 68 – 71], which is
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2 Biology and models of blood flow

often neglected in simulations [28] if the chosen method does not incorporate it as an intrinsic
feature (such as in dissipative particle methods [33]). At least in some cases, the effect of
membrane viscosity can also be modeled by a higher viscosity for the inner fluid [40, 60, 72].
Second, it was recently shown that the small fluctuations of the membrane cannot be explained
only by the finite temperature of the environment, but rather that some part of it comes from
active processes in the membrane [73]. The existence of fluctuations, active or passive, plays an
important role in the determination of the elastic moduli [38]. For cells in flow they can, however,
usually be neglected [28] except at very low flow rates where diffusion effects become important
[11, 74] and near transition boundaries [75, 76]. As for the membrane viscosity, they are mostly
(but not always [77, 78]) taken into account only if the method provides them naturally, although
an actual comparison with and without fluctuations is missing so far. The third one is the ≈ 6 nm
[79], i.e. very thin brush-like glycocalyx covering the membrane surface. Due to its thinness, it
was not yet taken into account and is not expected to influence the dynamics of fast flowing cells,
although it might play a role in the formation of rouleaux [80, 81].

We finally remark that the above given values are only typical values for human healthy red
blood cells in physiological conditions. The values obtained from different experiments can
scatter a lot (compare the overviews given in [19, 21, 26, 28]) and can also depend on the
environment [21]. Pathological [3, 67, 82, 83], aged [13] and cells from other mammals [62, 84,
85] often have different properties.

2.2 Modeling blood flow on the micro-scale

The largest blood vessels in the human vascular system are the aorta, vena cava, arteries and
veins with typical diameters in the 100 – 101 mm range, the smallest the capillaries and venules
that can become as small as 5µm in diameter [3, 86, 87]. Depending on the target of the
investigations, different methods are therefore appropriate. For vessels larger than 100µm [88],
continuum descriptions [89 – 91] of blood (that do not take into account the individual cells) can
be appropriate. Including realistic, i.e. deformable RBCs at this level requires millions of cells and
is therefore only possible with extreme efforts [34, 92 – 94]. On the other hand, an appropriate
description of blood flow in microvessels must resolve the behavior of the individual cells. As
system sizes are smaller, such systems are accessible with numerical simulations. Moreover, the
Reynolds number in microvessels is often sufficiently small so that inertia effects can be neglected
[6, 95]. In this thesis we concentrate on the description of systems in the 10µm regime. This
especially enables us to exploit the low Reynolds number to allow for a treatment of the problem
with the boundary integral method (see chapter 3).

The volume percentage of red blood cells (hematocrit) is 45 % (male) and 40 % (female) in
the largest vessels [87, 96]. In the microvascular system the hematocrit is notably reduced to
below 20 % [97, 98]. Thus, simulations of blood flow in microvessels should not use the often
cited value of 45 %. Other particulate constituents (white blood cells, platelets, von Willebrand
factor, etc.) account for less than 1 % of the total blood volume [6, 18, 87]. They are therefore
usually (but not always [99]) either neglected in biofluidic studies or – if not – they constitute
the main target of the conducted research (e.g. regarding their margination behavior such as in
references [100 – 105], [106 – 110] and [111], respectively). Appropriate modeling of the flow
in capillary networks should take white blood cells into account as they can cause blockage of
branches [112, 113].

The inner surface of the blood vessels is formed by endothelial cells and the glycocalyx (a
brush-like covering) [114]. The effect of the glycocalyx on the dynamics of red blood cells
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2.3 Capsules and vesicles

was barely considered so far [115 – 118] as the usual assumption is that its effects on the flow
dynamics of RBCs can be described as an effective reduction of the vessel size [7, 119] (note,
however, that this is not true for other constituents such as white blood cells [3, 6]). Instead,
the vessel walls are typically modeled as stiff (no-slip condition) [120]. We also adapt this
assumption in the present work.

The cells are flowing in blood plasma which consists of ≈ 90 % water, with the remaining
volume containing several dissolved proteins and other substances [6, 87]. Of these constituents
the protein fibrinogen has recently attracted increased attention in the biofluidics community,
since it plays a primary role in RBC aggregation and clot formation [81, 86, 121 – 123]. For the
purpose of describing blood flow under normal conditions (as is the case in the present work),
blood plasma can be viewed as a Newtonian fluid with a dynamic viscosity of µPlasma ≈ 1.2 mPa s
[7, 82, 124].

Of course, the goal of theoretical investigations is not necessarily to understand blood flow in
vascular systems. Rather, other very important fields are in-vitro experiments and lab-on-a-chip
devices [2, 3]. The latter are becoming more and more important as they promise effective and
cheap analysis methods that currently require big and expensive machinery. In these cases, the
red blood cells are facing completely different environments, e.g. with less or more obstacles
(such as in deterministic lateral displacement devices [125 – 127]), different channel boundaries,
higher velocities or other ambient viscosities. Simulation methods can usually handle these
without major algorithmic changes by simply changing the input parameters appropriately.

2.3 Capsules and vesicles

The study of red blood cells and blood flow is closely related to the research of two other types
of microparticles, namely capsules and vesicles [52]. One reason is that both share structural
similarities with RBCs as they also consist of a thin membrane encapsulating some fluid. However,
the composition of the membranes is quite different. On the one hand, capsules are made
of polymers [52], leading to a constant volume but an extensible surface. Their dynamics is
mostly governed by shear and area dilatation elasticity, although a small finite bending rigidity is
also present that becomes important when the surface buckles [43]. Shear and area dilatation
elasticity are often described with the Hookean or neo-Hookean constitutive models [25, 52].
Depending on the material, additional properties such as plasticity can be important [128].

Vesicles, on the other hand, consist of only a lipid bilayer [52]. They therefore exhibit bending
rigidity (usually described by the Helfrich model), a very strong resistance against area dilatation
and some surface viscosity, but no shear elasticity [129]. Their volume is conserved during
reversible deformations.

From a mechanical point of view, red blood cells with their two-component structure can,
therefore, be regarded as a combination of capsules and vesicles. Numerical codes that can
simulate red blood cells thus also often support capsules and vesicles with no or only minor
changes, although some numerical stability issues can arise for vesicles due to the missing shear
elasticity. As an example, we consider a capsule in a linear shear flow in publication [Pub1]
(section 4.3.3.2) with the same code that is used to describe RBCs.

Another reason for their frequent occurrence in blood flow related research is that especially
vesicles are often used as model systems for red blood cells. Indeed, both share several qualitative
similarities in their dynamic behavior [74, 130]. Moreover, in two-dimensional descriptions,
shear elasticity is intrinsically absent and thus one is naturally restricted to vesicles.
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3 Describing volume-changing objects via
an extended boundary integral equation

The goal of this chapter is the mathematical description of the flow and the suspended objects. We
introduce our core equation, a boundary integral equation, and especially its extension to support
volume-changing objects such as oscillating microbubbles. The numerical discretization of the
equation results in the boundary integral method, which we implement in code as described in
chapter 5.

3.1 Introduction

We exploit the small Reynolds number in the microcirculation and base our studies on the Stokes
equation, i.e. the Navier-Stokes equation at negligible Reynolds number [131]. Due to its linearity,
the Stokes equation allows for a reformulation as boundary integral (BI) equations containing
integrals over the surface of the suspended objects. Depending on the exact problem, different
types of BI equations are obtained [131 – 133]. In this thesis we concentrate on a type that does
not employ an auxiliary field and is appropriate for the description of deformable capsule-like
objects such as capsules, vesicles, red blood cells or drops [134]. It will be extended below to
also include deformable volume-changing objects such as bubbles.

The BI equations for the description of capsule-like objects in infinite and periodic domains has
been extensively used in the past as the basis for numerical simulations, starting with Youngren
and Acrivos [135] in 1975. However, a mathematical proof regarding existence and uniqueness
of the solution is available only for the infinite [131, 132, 136, 137] but not for the periodic
domain. Furthermore, volume-changing objects were barely considered so far [138 – 141], and
especially lacked a formal proof. Such volume-changing objects are required e.g. for the study
of oscillating microbubbles in chapter 6.2. We therefore first need to generalize the BI equation
appropriately and prove its validity and consistency mathematically. This is done in the first
part of publication [Pub3], with the basic ideas outlined below. It is important to note that the
generalization and its proof also hold when no volume-changing objects are present, as employed
in chapter 6.1 for the study of shapes assumed by RBCs flowing through microchannels. Such a
proof was missing so far in periodic domains. Moreover, the proof holds not only for periodic but
also for truly infinite domains by replacing the periodic Green’s functions with the appropriate
free-space versions.

3.2 General system description

The very general system that we want to describe is illustrated in figure 3.1. As we employ
periodic boundary conditions here, we define a unit cell Γ ⊂ R3 which, together with its content,
is infinitely replicated in space. The Stokesian fluid outside of the immersed objects is denoted by
Ω ⊂ Γ with a dynamic viscosity µ. An arbitrary number NC of deformable capsule-like entities
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3 Describing volume-changing objects via an extended boundary integral equation

Ck can be suspended in Ω, each filled with a Stokesian fluid of viscosity µλCk
, where λCk

is the
viscosity ratio and k an index enumerating the particles. The volume flux QCk

out of or into the
capsules is zero (QCk

= 0), i.e. their volume is conserved. The actual particle type (RBC, vesicle,
etc.) is defined by the constitutive models for the traction jump 4f (e.g. Helfrich model, Skalak
law, etc.). Moreover, NW open objectsWk are possible. They can be either rigid or deformable.
Finally, NB volume-changing and deformable objects Bk with volumes VBk

are included that
can model for example oscillating microbubbles. In contrast to capsules, we assume that their
inside contains some compressible fluid with a very low viscosity that expands and contracts
homogeneously, i.e.

∇ · u(x) = ck , x ∈ Bk . (3.1)

The prescribed constant ck can be related to the flux QBk
out of or into the object Bk by

ck = QBk
/VBk

and is allowed to depend on time. However, the sum of all fluxes must be zero at
all times to ensure conservation of the ambient fluid in Ω. QBk

together with a constitutive law
for the traction jump (e.g. the Young-Laplace equation) determines the actual physical particle
represented by Bk.

To simplify the notation, we denote an arbitrary object by Ok, the total sets of objects by O and
the total number of objects by NO. Surfaces are represented by the symbol “∂”, such as in ∂Ok.

Fig. 3.1: General two-dimensional sketch of the consid-
ered system. The unit cell Γ contains the fluid Ω with
viscosity µ and several suspended objects. These include
capsule-like entities (C1, C2), volume-changing objects
such as microbubbles (B1, B2) and walls (W1). Fur-
thermore, it is possible to impose an additional flow as
indicated by the arrows on the left side. Reprinted from
publication [Pub3] with permission from Cambridge Uni-
versity Press.

n

∂Γ

Ω, µ

W1

B1

B2

C1 µλC1 n

C2, µλC2

3.3 The extended Fredholm boundary integral equation

The starting point of our development are two sets of equations. The first one is the ordinary
Stokes equation:

−∇P (x) + µ∇2u(x) = 0 , x ∈ Ω . (3.2)

Here, P is the pressure and u the flow velocity. An identical equation holds for the inside
of capsules except that the viscosity can be different. The Stokes equation is supplemented
by the continuity equation. For the ambient fluid and the capsules, it is simply given by the
incompressibility condition

∇ · u(x) = 0 , x ∈ Ω ∪ C . (3.3)

The compressible fluid inside of volume-changing objects is assumed to have very low viscosity
and thus the only model equation for this fluid is given by equation (3.1).

Using the reciprocal theorem for Stokes flow [131], one can then derive the boundary integral
equation. This requires to integrate the reciprocal theorem over the volume Ω which, in periodic
domains, is bounded by the surface ∂Γ of the unit cell Γ. The key step is then to use the
divergence theorem to convert the volume integral into integrals over the surfaces of all objects
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3.3 The extended Fredholm boundary integral equation

and over ∂Γ. The integral over ∂Γ can be simplified using equations (3.1) and (3.3) and, most
importantly, gives a non-zero contribution. More precisely, the so-called double-layer integral
(K∂Γu)j(x0) :=

∫
∂Γ ui(x)Tijl(x,x0)nl(x) dS(x) over ∂Γ yields

(K∂Γu)j(x0) = 8π 〈uj〉Γ + 8π
VΓ

NB∑
k=1

QBk
χ

(Bk)
j , x0 ∈ Ω , j = 1, 2, 3 . (3.4)

Here, 〈u〉Γ is the imposed average flow through the unit cell Γ with volume VΓ, n is the outer
normal vector, Tijl the periodic Green’s function, χ(Bk) is the geometric centroid of Bk and
summation over repeated indices is implied. The last term containing the fluxes QBk

is the
new one, being absent in the existing literature. Collecting all other integrals then leads to the
boundary integral equation.

This equation allows one to compute a quantity (e.g. the velocity) everywhere within the fluid
domain Ω as long as all quantities on the surfaces of the objects are known. Yet, one quantity
on the surfaces is usually unknown. The standard procedure is now to move the evaluation
point from the ambient domain onto the surfaces [131], thereby yielding a Fredholm boundary
integral (FBI) equation. By solving the FBI equation, the unknown surface quantities are obtained
(e.g. the velocities or the tractions). The fluid volume does not appear explicitly in this process,
although the flow can still be computed in the whole domain as an optional post-processing step.

However, the solution of the Fredholm boundary integral equation is not unique. The physical
interpretation is that the volume of the bubbles is not determined by the equation. This makes it
necessary to add two additional terms to the equation in spirit of the so-called Wielandt deflation
[133]. The final FBI equation forming the basis of our “volume-changing object boundary integral
method” is then given by

uj(x0) = 2
1 + λ̄Ok

[
〈uj〉Γ −

1
8πµ

NO∑
q=1

(N∂Oq4f)j(x0)

+ 1
8π

NO∑
q=1

(1− λ̄Oq )(K∂Oqu)j(x0) + 1
VΓ

NB∑
q=1

QBqχ
(Bq)
j

]

− 1− λ̄Ok

1 + λ̄Ok

z
(k)
j (x0)

[∮
∂Ok

ul(x)nl(x) dS(x)−QOk

]
,

(3.5)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 .

As an example, given the imposed average flow 〈u〉Γ through the unit cell Γ, the fluxes QBk
and

the traction jumps 4f on all objects, this integral equation uniquely determines the velocity u
on the surface of all objects. The novel terms are the ones containing the fluxes QBq and QOk

while the others are well known [42, 134]. Regarding the remaining symbols in equation (3.5),
λ̄Ok

is simply the viscosity ratio λCk
in case of capsule-like objects, 1 in case of walls and 0

in case of volume-changing objects. Furthermore, we have z(k) := n/SOk
with the surface

area SOk
of object Ok. The single-layer integral over some surface ∂Oq is abbreviated as

(NS4f)j(x0) :=
∫
∂Oq
4fi(x)Gij(x,x0) dS(x). For practical purposes, Green’s functions Gij and

Tijl need to be used that are adapted to the system, such as for an infinite [131] or periodic
domain [42, 142]. The numerical procedure to solve equation (3.5) is outlined in chapter 5.
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3 Describing volume-changing objects via an extended boundary integral equation

3.4 Sketch of the proof

That equation (3.5) has exactly one solution (existence and uniqueness) is non-trivial. Indeed,
even if no volume-changing objects are present a proof is missing for the important case of
periodic domains. Our approach as outlined below is based on the Fredholm theory [143]. A
requirement is therefore that equation (3.5) is a Fredholm equation of the second kind. This
implies that the traction jumps 4f need to be prescribed while the velocities u are unknown, as
is indeed the case in our applications (chapter 6).

To apply the theory, we first need to introduce the homogeneous equation corresponding to
equation (3.5),

hj(x0) = 1
4π

1
1 + λ̄Ok

NO∑
q=1

(1− λ̄Oq )
∮
∂Oq

hi(x)Tijl(x,x0)nl(x) dS(x)

− 1− λ̄Ok

1 + λ̄Ok

z
(k)
j (x0)

∮
∂Ok

ul(x)nl(x) dS(x) ,
(3.6)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 ,

as well as its adjoint,

aj(x0) = 1− λ̄Ok

4π

NO∑
q=1

1
1 + λ̄Oq

nl(x0)
∮
∂Oq

ai(x)Tjil(x0,x) dS(x)

− 1− λ̄Ok

1 + λ̄Ok

nj(x0)
∮
∂Ok

z
(k)
l (x)al(x) dS(x) ,

(3.7)

x0 ∈ ∂Ok , k = 1, . . . , NO , j = 1, 2, 3 ,

where h and a denote the respective solution fields. With this, the Fredholm alternative can be
written as follows [143]:

Theorem 1 (Fredholm alternative)

1. The homogeneous and adjoint equations (3.6) and (3.7) have the same finite number of
eigensolutions and complex conjugate eigenvalues.

2. If the homogeneous equation (3.6) has only the trivial solution h ≡ 0, then the full equa-
tion (3.5) has exactly one solution (existence and uniqueness).

3. If the homogeneous equation (3.6) has a nontrivial solution, then the full equation (3.5) has
solutions if and only if all eigensolutions a of the adjoint equation (3.7) satisfy

NO∑
k=1

∮
∂Ok

Rj(x)aj(x) dS(x) = 0 , k = 1, . . . , NO . (3.8)

Here, R contains all fully known terms (i.e. terms that are missing in the homogeneous
equation).

The goal of the proof is thus to show that the adjoint equation has only the trivial solution,
which automatically implies (due to the Fredholm alternative) that the homogeneous equation
has also only the trivial solution and, ultimately, that there is exactly one solution to the full
equation (3.5) (also due to the Fredholm alternative). The most difficult part is to show that the
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3.4 Sketch of the proof

adjoint has indeed only the trivial solution. We do this with a reductio ad absurdum argument.
Hence, we assume that there exists a non-trivial solution (a(x) 6≡ 0) and show that this leads to
a contradiction. More precisely, we show that every solution of the adjoint equation is of the form

a(x) ∼ n(x) . (3.9)

The key to show this is to define an auxiliary field similar to Odqvist [136, §4] as

Aj(x0) :=
NO∑
q=1

1
1 + λ̄Oq

∮
∂Oq

ai(x)Gij(x,x0) dS(x) , x0 ∈ R3 , j = 1, 2, 3 , (3.10)

which turns out to be equivalent to a simple constant (A = const) and which in turn implies
a(x) ∼ n(x). Finally, although every solution of the adjoint equation must be of the form (3.9),
this form is actually no solution to the adjoint equation (3.7) except for a(x) ≡ 0. Hence, we
arrive at the conclusion that the adjoint equation has only the trivial solution. This thereby
completes the proof. The full details can be found in publication [Pub3].
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4 Algorithms for the surface forces

Having shortly presented the models and basic hydrodynamic equations in the previous chapters,
one needs to translate them into formulas and algorithms that can be implemented in code. After
a short outline of the employed surface discretization and the computation of the in-plane elastic
forces, we concentrate on an in-depth evaluation of algorithms for the Helfrich bending forces.
The topics presented here are independent of the hydrodynamic solver which require the forces
only as input. See chapter 5 for the algorithmic treatment of the boundary integral equation.

4.1 Surface discretization

In this work, the surfaces of suspended objects are represented by a set of points called nodes.
This is common to many methodologies that assume infinitely thin surfaces (contrary to e.g.
level-set [144 – 147] or phase-field [148, 149] methods). However, there exists a multitude of
possibilities to interpolate the surface and quantities between the nodes which are all actively used
in the biofluidic context, such as flat triangles (linear interpolation, e.g. [29, 131, 150 – 154]),
curved triangles (quadratic interpolation) [46, 50, 131, 155, 156] or subdivision surface methods
(quartic interpolation) [157 – 165], each with their own advantages and disadvantages. We
present a short overview in publication [Pub2]. For simplicity, efficiency and flexibility we employ
flat triangles in our studies. The other methods, for example, do not allow for straightforward
local refinement as we use in [Pub3]. See figure 4.1 for an example of a mesh.

Fig. 4.1: Discretization of the discocyte shape with 5120
flat triangles. Reprinted from publication [Pub1] with
permission from Elsevier.

4.2 In-plane elasticity

In case of capsule-like objects we prescribe certain models in order to determine the traction jump
4f (force per unit area) on their surface from the instantaneous deformation. 4f is required
as input for the Fredholm boundary integral equation (3.5). In order to model the in-plane
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elasticity of red blood cells and capsules, we typically employ the Skalak and neo-Hookean models,
respectively, as outlined in chapter 2. They are specified in the form of a surface energy ES. After
discretization, ES depends explicitly on the nodes x(i). Hence, using the principal of virtual work,
the force can then be computed via [73, 166 – 168]

F(x(i)) = − ∂ES
∂x(i) , i = 1, . . . , N , (4.1)

where i enumerates all N nodes. It is often straightforward to compute the derivative analytically
(compare [26]), making numerical differentiation obsolete. Note that F has the dimension of a
force (i.e. is measured in Newton), not of a force per unit area. Computation of the traction jump
is then done via

4f(x(i)) = −F(x(i))/Ai , (4.2)

where Ai is the area “occupied” by the node. The most accurate choice for Ai is the “mixed area”
introduced by Meyer et al. [169].

4.3 Helfrich bending forces

RBCs include some bending rigidity in addition to the in-plane elasticity, while vesicles are almost
exclusively dominated by the bending forces. These forces are usually modeled according to
the Canham-Helfrich model. Despite being the most common law used for this purpose, there
is a striking vagueness in the literature about its numerical implementation, more specifically
regarding the possible algorithms and their performance. This is all the more significant as most
fluid-structure codes require the input of the bending component in the form of forces or forces
per unit area similar to BIM, i.e. it is not a problem just tied to our method. Hence, we consider in
details old and new algorithms for the bending forces in publications [Pub1] and [Pub2]. These
will be outlined in the present section. Microbubbles use the Young-Laplace equation and thus
require the mean curvature, which is also a component of the Canham-Helfrich model and is
therefore automatically covered, too.

4.3.1 The model and the forces

The Canham-Helfrich model [35, 36] is given in terms of a total energy stored in a surface S as

EB =
∫
S

2κB(H −H0)2 dS +
∫
S
κKK dS . (4.3)

Here, κB is the bending modulus, H the mean curvature, H0 the reference (or spontaneous)
curvature, K the Gaussian curvature and κK the Gaussian modulus. One possible way to express
H is given by [170]

H(x) = 1
2

3∑
i=1

(∆Sxi)ni(x) , x ∈ S , (4.4)

where ∆S is the Laplace-Beltrami operator [171] and n the outer normalized normal vector. We
employ the convention that H is positive for a sphere. The second integral in equation (4.3) is a
simple constant as long as one considers a closed surface with constant topology [171], implying
that it is irrelevant for the purpose of force computations and will be ignored in the following.

From equation (4.3) one can derive analytically the traction jump 4f (force per unit area
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4.3 Helfrich bending forces

exerted by the fluid on the membrane) as

4f(x) = −2κB[∆S(H −H0) + 2(H −H0)(H2 −K +H0H)]n , (4.5)

constituting the Euler-Lagrange equation. There are two ways to derive it: Either via a variational
derivative (e.g. [44, 171 – 173]) or by using the Kirchhoff-Love thin shell theory [174 – 177]. The
latter calculation can also be found in details in publication [Pub2] where it was necessary for
the comparison with the linear bending models (also compare section 2.1).

The major problem in designing algorithms for the implementation of equation (4.5) stems
from the observation that a fourth order derivative is required: Two derivatives for the mean
curvature H and another two derivatives for the Laplace-Beltrami operator ∆SH. A multitude
of possible algorithms exist and are being used in the literature, but a systematic comparison
was lacking so far. Hence, a well-informed implementation therefore required to perform exactly
such a comparison, which was published in [Pub1] and [Pub2] and shall be shortly summarized
next with the focus on flat triangles. For simplicity, we set H0 = 0.

4.3.2 Algorithms for the bending forces

4.3.2.1 Force formulation

The numerical computation of the force is possible via three different paths. The first one is the
application of the principle of virtual work as for the in-plane elasticity in section 4.2, except that
ES is now replaced with EB. Because the nodal derivative in equation (4.1) yields a force rather
than a force per unit area, we termed this method the “force formulation” in publication [Pub1].
Algorithms using this approach differ in the way they discretize the bending energy EB.

One possibility is to exploit the Gauss-Bonnet theorem, leading to EB ∼
∑
〈i,j〉(1 − cos θij),

where the sum goes over each edge 〈i, j〉 once and θij is the angle between the normal vectors
of the two adjacent triangles. This is a very popular [11, 26, 32, 33, 56, 73, 103, 109, 110,
119, 127, 168, 178 – 192] approach and we named it Method A in [Pub1].3 Another method
(Method B) uses a particular discretization (“cotangent scheme”) of the Laplace-Beltrami operator
to compute H as described in reference [179] that is suitable for flat triangles.

In both cases the formula for F can be derived analytically, making a numerical differentiation
in equation (4.1) unnecessary. The formulas for Method A are given in detail in reference [26],
while the ones for Method B are derived in publication [Pub1].

4.3.2.2 Strong formulation

The “strong formulation” uses the Euler-Lagrange equation (4.5) and discretizes all occurring
quantities directly. In [Pub1] we called it the “variational formulation” which, in hindsight, can be
misleading as this term is usually used synonymous with the “weak formulation” also introduced
below.

The first method considered by us here, Method C, employs an almost identical discretization
of the Laplace-Beltrami operator ∆S [169] as Method B. Using this discretization, Method C
computes first the mean curvature H at each node via equation (4.4) and in a second step the
remaining quantities appearing in equation (4.5). This algorithm (or close variants of it) are
often used in the biofluidic literature (e.g. [150, 151, 153, 193 – 198]). Yet another algorithm,

3The names of the methods were introduced by us to have a simple way of distinguishing the various algorithms.
They are otherwise not common in the literature.
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4 Algorithms for the surface forces

Method D, is similar to Method C but uses a new discretization of ∆S that stems from the kernel
of the heat equation [199]. So far it was not used in the biofluidic context. Method E uses
least square fitting of parabolas onto the surface and appearing quantities in order to evaluate
equation (4.5) [29].

Method SH is set apart from all other methods described here as it uses a spherical harmonics
(SH) expansion rather than triangular elements to represent the surface and compute quantities
on it. It is only used in the comparison with the analytical results for the traction jump but not
for the capsule in a linear shear flow (which are the two test cases below). Method SH was
implemented as an extension to the comparisons in [Pub1] and was considered only in [Pub2].

4.3.2.3 Weak formulation

The third big class is the weak formulation. In this approach, equation (4.5) is multiplied with
an arbitrary trial function δx. The result is then integrated and the Laplace-Beltrami operator is
moved from H to δx via two integrations by parts. Hence, the maximal total derivative appearing
is of second order. The integral equation can then be discretized, leading to a linear system that
can be solved numerically for the traction jump.

Method S in publication [Pub1] uses this approach together with Loop’s subdivision scheme
[200 – 202]. Our code does so far not yet include this algorithm. Rather, the results were
contributed by our collaborators Paul G. Chen and Marc Leonetti [159, 165, 203].

4.3.3 Evaluation of the bending algorithms

Publications [Pub1] and [Pub2] present two different ways of evaluating the quality of the
various methods: By comparing the various components (such as mean curvature or traction
jump) to analytical results for a particular shape, and by considering the dynamics of a capsule
in a linear shear flow. The first sheds light on their performance in a general context, while the
second elucidates the differences in viscous flow applications where “a few” higher errors are
found to be of minor influence.

4.3.3.1 Comparison with analytical results

Preliminaries All quantities appearing in equation (4.5) can be computed analytically for a
fixed shape. We choose the typical discocyte shape as depicted in figure 4.1 (page 19) because
it exhibits high curvatures on the rim and a change of the sign in the curvature near its center.
Mathematically, the shape is given by

z = ±R2

√
1− ρ2

(
C0 + C1ρ

2 + C2ρ
4
)
, (4.6)

where ρ := 1
R

√
x2 + y2, C0 = 0.2072, C1 = 2.0026 and C2 = −1.1228 [23, 158]. The large radius

R is set to 1 here. We derive the analytical formulas by using Mathematica. Furthermore, we
translate eq. (4.6) into a mesh by starting with an icosahedron or octahedron and refining it by
placing new nodes on the center of the triangles’ edges. Afterwards, the mesh is transformed to
the discocyte by applying the mapping from equation (4.6).

The most important quantity for our simulations is the traction jump4f . Hence, we will shortly
present the corresponding results here. More details, also regarding the individual quantities
in equation (4.5) can be found in [Pub1] and [Pub2]. Furthermore, as our hydrodynamic code
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Fig. 4.2: Maximum and average relative errors of the bending traction jump 4f for the discocyte shape. Reprinted
from publication [Pub1] with permission from Elsevier.

cannot employ the spherical harmonics approach (Method SH), we omit it here and refer the
reader to the full publications.

Results for the traction jump The traction jump errors as produced by Methods A – E are
depicted in figure 4.2. The left figure depicts the relative error ε in terms of the maximum taken
over all nodes, while the right displays the average over all nodes. We show the behavior as a
function of the resolution, expressed both in terms of the number of triangles (top axis) and
inverse of the mean edge length h (bottom axis).

Regarding the maximal errors, all algorithms show diverging behavior except Method D which
nevertheless fails to converge appropriately. For the average error, the picture looks not that
devastating: Method A still clearly diverges, but Methods B, C and E do not diverge (although
they retain a systematic error) and Method D appears to converge as O(h). Results for Method S
are shown for a slightly different mesh in publication [Pub1]. It exhibits similar qualitative
behavior as Method C, but at somewhat lower errors.

Obviously, these results with standard algorithms do not look very promising. Unfortunately,
developing new algorithms for triangular meshes with higher accuracy at small to mediocre
resolutions is an extremely difficult or even impossible task [204]: A few nodes are not sufficient
to accurately represent the surface here, implying that more nodes (i.e. a larger support) need
to be used. This, however, in turn is undesired as the Laplace-Beltrami operator should be
only influenced by the nearest neighborhood. But for lower resolutions the nodes lie far apart
from each other and hence parts of the geometry make contributions that represent completely
different parts of the object.

4.3.3.2 A capsule in a linear shear flow

Preliminaries It has previously been reported that errors in the force computations at “some”
nodes do not necessarily preclude accurate results for objects suspended in viscous flows [29].
Indeed, most of the algorithms introduced above are actively used by many research groups and
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4 Algorithms for the surface forces

Fig. 4.3: Sketch of the ellipsoidal shape assumed by a cap-
sule placed in a linear shear flow. a is the largest and c the
smallest half axis, while θ is the inclination angle. The rota-
tion of the membrane around the object’s centroid while the
shape remains static is called “tank-treading”. Reprinted from
publication [Pub1] with permission from Elsevier.

ac

xθ

tank treading

the many papers dealing with biofluidic questions show that they can indeed lead to correct
physical results. Therefore, we will now consider their performance for a capsule in a linear shear
flow. Due to its relative simplicity and long history, this system has often been employed for the
validation of numerical methods by means of comparison with older publications.

The basic setup consists of an initially spherical capsule (also compare chapter 2.3) of radius R
that is put into a linear shear flow with shear rate γ̇ of infinite extent. The membrane not only
includes resistance against bending but also some shear elasticity modeled by the neo-Hookean
law with the shear modulus denoted by κS [25, 52]. The viscosity µ of the inner and outer
fluids is identical. We solve the system by means of the boundary integral method (section 5),
i.e. we assume small Reynolds numbers. Two dimensionless parameters define the behavior
of the system [205]: The dimensionless shear rate (or capillary number) G := µγ̇R

κS
, and the

dimensionless bending modulus κ̂B := κB
R2κS

. After switching on the shear flow, the capsule
deforms and becomes approximately ellipsoidal. Its deviation to a sphere can be described via
the Taylor deformation parameter D := a−c

a+c , where a and c are the large and small half axes of
the ellipsoid as depicted in figure 4.3.

Results We first note that without any bending forces (κ̂B = 0) the results produced with our
BIM code agree very well with data from a multitude of references (e.g. [25, 46, 50, 51, 157,
160, 187, 195, 205]), i.e. our hydrodynamic code works as expected. The behavior of the capsule
with added bending forces (κB 6= 0) is shown in figure 4.4. We see that the results of all bending
algorithms nearly coincide with the exception of Method A. Hence, the extreme errors found for
Method A in the analytical comparison really translate into different hydrodynamic behavior.

Fig. 4.4: Taylor deformation parameter as obtained
via the various bending algorithms for G = 0.2 and
κ̂B = 0.15. The inset shows a magnification of the
steady state. Reprinted from publication [Pub1] with
permission from Elsevier.
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When comparing with results from the literature, however, a different picture emerges (see
figure 4.5). Only a single reference [187] agrees with our deformation graphs (figure 4.5b) while
all others show notable deviations (figure 4.5a). One possible source for some of the deviations
might be the usage of slightly different constitutive equations. Pozrikidis [46] uses the Hookean
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4.3 Helfrich bending forces

rather than the neo-Hookean model for the in-plane tension. Both lead to the same results only
in the small deformation limit (which might not be valid here). Furthermore, Pozrikidis [46],
Le et al. [50] and Zhu et al. [51] do not employ the Helfrich model but rather a linear bending
model. As explained in section 2.1, both agree to leading order only, i.e. behave somewhat (but
not entirely) different for larger deformations. Huang et al. [160] uses a model introduced
by Zarda et al. [206] for which Pozrikidis [46] remarks that it is a generalization of a linear
bending model. Nevertheless, one can clearly see that even if the physical models are perfectly
the same, the various codes still produce different results (Method B – E/S vs. Le 2010; Le 2009
vs. Zhu 2015). A possible reason might be the different discretization schemes. This highlights
the problematic nature of accurately computing the bending forces.
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Fig. 4.5: Taylor deformation parameter computed via BIM in comparison to data from the literature. The result by our
code is represented by Method A and C (the latter matches with B, D and E, compare figure 4.4). Reprinted from
publication [Pub1] with permission from Elsevier.

4.3.3.3 Conclusion

In the end, the most practical and flexible algorithms for flat triangles appear to be Methods E
and C. The first exhibits smaller errors while the latter was found to be more stable in dynamic
simulations (which is the reason why we use it in our research projects in chapter 6). Compared to
Method C, Method B gives slight worse results. Method D appears to be the most robust algorithm
(i.e. it is only little affected by the homogeneity of the mesh) and has the best convergence
properties, but unfortunately it reaches error levels comparable to the other methods only at very
high and thus unpractical resolutions. Method A should not be used to represent the Helfrich
model. Still, it might be sensible for stabilization purposes [207]. If the rest of the code (such as
the computation of the boundary integrals) employ subdivision surface techniques, Method S
can be used without much additional overhead. Hence, different algorithms work better in some
contexts while others are preferable in other situations.
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5 The boundary integral method:
Algorithmic and numerical treatment of
the boundary integral equation

5.1 Putting the boundary integral method into perspective

Other methods Boundary integral methods (BIM) are one of the oldest and most popular
methods to study the dynamics of suspended objects in viscous flows [28, 42, 131, 134], starting
with an article by Youngren and Acrivos [135] in 1975. But of course, it is not the only one.
In recent years, the Lattice-Boltzmann [208 – 210] in conjunction with the immersed boundary
method [26, 34, 77, 78, 167, 211 – 213] has also become an often used method owing to the
comparably simple implementation, incorporation of inertia and the capability of straightforward
large-scale parallelization. Alternative mesoscale approaches such as multiparticle collision
dynamics [214 – 219] (also called stochastic rotation dynamics) and (smoothed [11, 61, 220 –
222]) dissipative particle dynamics [33, 94, 182, 185, 223 – 226] are also often and actively used
in the biofluidic community. Other methods include the finite volume method [61, 99, 227 – 229],
the immersed finite element method [230, 231], the moving particle semi-implicit method [232]
and volume of fluid [233]. Also see recent reviews [28, 65, 234, 235].

Advantages of BIM Compared to other algorithms, the boundary integral method has various
advantages and disadvantages. One of the most important general advantages is the fact that
only the surfaces of the objects occur in the method. This means that the resolution of the
surfaces is not tied to anything (such as a fluid grid), allowing for almost arbitrary geometries and
straightforward global and local refinement, even during the course of a running simulation as
used in publication [Pub3]. Indeed, also different discretization methodologies such as spherical
harmonics are easily possible [42]. In the time domain, BIM exhibits similar freedoms, i.e.
adaptive time integration schemes can be used straightforwardly.

Furthermore, an (intrinsic4) interpolation from the mesh to some grid is absent. As a conse-
quence, the narrow space between close objects does not need to be resolved explicitly [28].
Moreover, truly infinite domains (along one, two or all three dimensions [142, 236 – 239] together
with walls in the first two cases [240 – 248]) are possible. Infinite domains can be regarded as
an extreme case where the fluid to particle volume ratio is zero. If it is only small (e.g. in low
concentration suspensions), BIM can still have a significant performance and memory advantage
over other methods (as the fluid domain is not explicitly resolved).

The boundary integral method also supports different viscosities at the inside and outside
of objects without the need to keep track of internal points, which is different to e.g. Lattice-
Boltzmann [212, 249]. No intrinsic non-physical parameters occur by default, and the parameters
often correspond directly to the ones measured in experiments. Hence, some sort of fitting or

4The smooth particle mesh Ewald method (section 5.2) introduces a grid in the whole domain and a corresponding
interpolation. However, this is a mere numerical trick to speed up the computation of long-range interactions
rather than an intrinsic property of the method.
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other conversion is not required in contrast to e.g. dissipative particle dynamics with spring-
network models [33]. Finally, volume-changing objects (chapter 3) and truly solid objects
(“completed double-layer boundary integral method” [132, 133, 168, 196, 197, 250]) can be
supported by including additional terms.

Disadvantages of BIM On the downside, an absolutely fundamental restriction of BIM is its
limitation to small Reynolds numbers as it is based on the Stokes equation, meaning that any fluid
inertia is necessarily absent. Furthermore, thermal fluctuations are not an intrinsic ingredient
and a method to incorporate them has been only recently presented [251].

Moreover, inclusion of channel boundaries can be a bit tricky: First, direct inclusion of the walls
as mesh in periodic domains leads to some flow outside of the actual channel (as the channel is
embedded in the unit cell) and consequently to a (slightly) varying mean flow within the channel.
In our applications in chapter 6, however, we found that this is no issue. Second, for the direct
method either the velocity or the traction jump can be prescribed on the wall surface. Stipulating
the velocity leads to a proper no-slip condition but an ill-conditioned Fredholm equation of the
first kind, while prescribing the traction jump implies a somewhat deformable wall but good
natured numerical characteristics. We usually use the latter possibility. The alternative would
be to include the walls directly in the Green’s functions via explicit but complicated expressions
[240 – 248] or the “General Geometry Ewald like method” [195, 252 – 259].

In general, implementing boundary integral methods can be quite complicated which is at
least in part due to the singular behavior of the Green’s functions, making special singularity
removal procedures necessary [28, 29, 134, 260, 261]. This also applies to near-singular cases
such as objects coming close to each other (which puts the above stated advantage of not having
to resolve the fluid between objects somewhat into perspective).

Another undesirable property is the global aspect of the equations: Everything interacts with
everything instantaneously. To prevent a quadratic scaling with the system size, advanced
approaches such as the smooth particle mesh Ewald (SPME) [262] or the fast multipole method
[92, 263 – 266] must be used. The latter can also fix the troublesome parallelization property of
SPME (compare section 5.3).

5.2 Algorithms

Chapter 3 presented our boundary integral equation which forms the foundation of our simulation
method. However, it is not directly amenable to an implementation. Rather we first need to
apply appropriate algorithms, e.g. to discretize the integrals. These algorithms are known in the
literature, and hence we only summarize here our choices concisely.

The first step is the discretization of the surfaces of the objects. We use flat triangles as we
did for the computation of the surface forces (chapter 4.1). Using the same discrete elements
for both the force calculation and the integrals suggests itself, but is not compulsory. The
Fredholm boundary integral (FBI) equation requires the tractions or traction jumps as input,
which we compute from the current geometry as explained in chapters 4.2 and 4.3. Afterwards,
the integrals appearing in the FBI equation (3.5) are discretized using a standard Gaussian
quadrature [267]. As is the nature of flat triangles, quantities within the elements are obtained
by linear interpolation of the nodal values [131]. Special care is required at singular points, i.e.
where the Green’s functions diverge. For the single-layer integral, we switch to polar coordinates
to lift the singularity [268], while an analytic identity is used to subtract out the singularity in
the double-layer integral [134]. The latter is also used to mitigate nearly singular behavior for
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the double-layer which is necessary if objects come close to each other [269]. Moreover, a direct
computation of the periodic Green’s functions is impractically slow. Hence we use the Ewald
decomposition as presented by Hasimoto [270] together with the smooth particle mesh Ewald
method [262] to increase the performance considerably.

After discretizing the FBI equation, it turns into a dense and asymmetric linear system that we
solve with GMRES [271] for the unknown quantity. As a consequence, the surface velocity u is
known on all surfaces and we can move the individual nodes x in time according to the kinematic
condition dx(t)

dt = u(x(t), t). This ODE is solved by a standard explicit ODE solver, for example
Bogacki-Shampine [272] or Cash-Karp [273]. Artificial volume drifts due to the finite resolution
of the discretization are countered by exploiting the no-flux condition as well as by rescaling the
volume, similar to reference [29]. Moreover, additional stabilization schemes can be employed to
keep the mesh of bubbles and vesicles from becoming inhomogeneous [29, 151, 269, 274], and
the resolution can be increased locally via Rivara’s longest-edge bisection algorithm [275].

5.3 Implementation, optimization, parallelization and validation

The basic code of the boundary integral method in infinite and periodic domains using most of
the above algorithms and with OpenMP parallelization was written in C++ by the present author
during his Master thesis. For the intricate details we therefore refer the reader to reference [12].
New developments made during his doctoral studies (such as the volume-changing objects in
periodic domains or additional time integration algorithms) could be implemented in the existing
code straightforwardly.

During his doctoral project, the author spent two months at the Leibniz-Rechenzentrum in
Garching (Germany) in the framework of a KONWIHR project [276, 277]. The goal was to
optimize the node-level performance (especially the OpenMP parallelization) and to parallelize
the SPME code with MPI, allowing it to employ more than a single computing node. The
implementation was successfully completed and is operational, but unfortunately the efficiency is
hampered by the scaling behavior of the fast Fourier transform to several nodes (as implemented
in fftw and Intel MKL). For example, a setup similar to the ones from publication [Pub3] but
with approximately 10 times more RBCs showed a speed-up of 122 compared to a single core
when using 512 cores (see figure 5.1a). Hence, the efficiency is only around 1/4. Note that
going to significantly larger system sizes can improve the scaling behavior. Other software based
on Fast Fourier transforms (FFTs) such as GROMACS also depicts similar behavior, as shown in
figure 5.1b [278]. This is an intrinsic limitation of the FFT part of the algorithm. Efficient large-
scale parallelization of long-range interactions could be achieved in the future by implementing
the fast multipole method [92, 263 – 266], which however is a rather delicate task (which might
be mitigated by suitable libraries [279, 280]). Furthermore, compared to SPME it comes with
a higher constant in the complexity estimate [281] meaning that it will be faster only for very
large systems.

After completing the KONWIHR project, the code was further optimized for node-level per-
formance by several means. Most importantly, SIMD vectorization was implemented via the Vc
library [282] in the core routines of the code. This resulted in performance gains of up to a factor
of 2 on CPUs supporting the AVX extensions.

All in all, the size of the code base grew by a factor of approximately 1.6 during the author’s
doctorate when compared to the version at the end of his Master thesis. The total number of
lines accumulates to almost 100 000 now.5

5Counting comments, blank lines and lines with code.
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Fig. 5.1: Scaling of our hybrid MPI-OpenMP boundary integral method code. The scaling is shown in terms of the
number of physical cores, which are distributed over several computing nodes. Each node has two Intel SandyBridge
Xeon E5-2680 CPUs, i.e. in total 16 physical and 32 virtual cores (“thin nodes” in the SuperMUC supercomputer at
the Leibniz-Rechenzentrum in Garching). We use 32 OpenMP threads and 1 MPI process per node. Dashed lines are
guides to the eyes.

The bulk of the main code validation was performed during the author’s master thesis [12].
New improvements (such as MPI or SIMDs) were carefully checked against a working version.
Publication [Pub1] (section 4.3.3) and the supplementary information in publication [Pub3]
show additional evidence regarding the correctness of the code. Publications [196] and [197]
also employ parts of the code for the purpose of studying nanoparticle diffusion near deformable
membranes, and found very good agreement with analytical computations. Furthermore, in
publication [Pub5] (section 6.1) we compare our results successfully with experiments, indicating
that not only the numerical implementation but also the physical modeling is suitable for the
description of red blood cells in microchannel flows.
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After having selected appropriate models and algorithms, and having implemented them numer-
ically, we can now turn towards applying the code. As already mentioned in the introduction
(chapter 1.2), the field of blood flow is an extremely wide one with many unsolved questions
remaining. Therefore, one must necessarily concentrate on a few specific problems.

In this thesis we are considering two different issues. The first is a more fundamental one,
namely the shapes assumed by a single RBC in microchannel flows (section 6.1). The second is
the behavior of oscillating ultrasound contrast agents (coated microbubbles) in blood flow, with
special emphasis on targeted drug delivery (section 6.2).

6.1 Bistability of red blood cells in microchannels

6.1.1 Motivation

The analysis and prediction of shapes assumed by red blood cells flowing in micro-sized channels
is a long-standing issue [283 – 285] with far-reaching consequences. For example, it is necessary
for a better understanding of blood as a suspension [61, 119, 186, 286 – 288] and it is required
to design more efficient and cheap analysis methods, e.g. in the form of lab-on-a-chip devices
[2, 3, 5]. Despite its long history, we are still far away from a full comprehension owing to the
complex interplay between the cell membranes and the fluid.

Qualitatively, experimental studies mostly observed two different shapes [285, 289 – 294]:
croissants6 and slippers. Example images can be seen in figure 6.1. Yet, more detailed systematic
experimental reports on the behavior of single RBCs are basically non-existent.

Numerically, this topic was often approached for simpler model systems such as vesicles in
2D [130, 296 – 302]. On the other hand, detailed investigations with realistic red blood cell
models are rather scarce. Notable exceptions are three studies by the group of G. Gompper [11,
215, 217]: Two of these studies found discocytes below and parachutes above a certain velocity,
depending on the elastic parameters [215] and the confinement [217]. Very detailed phase
diagrams as functions of velocity and confinement were presented in the third paper [11].

Yet, all these works on Poiseuille-like flows neglect or only shortly mention an important aspect
of the problem, namely the influence of the initial condition. The only exception with a more
detailed study regarding its influence considered a vesicle in an unbounded Poiseuille flow where
a pronounced dependence on the initial position was found for higher viscosity ratios [295].
Moreover, most of the experimental and numerical studies (including references [11, 215, 217])
used viscosity ratios below or equal to one. This can insofar be criticized as recent works on 2D
[298, 300] and 3D [295] vesicles found that the dynamics can change significantly when using
e.g. the physiologically more relevant value of λ = 5 [14].

6Croissants are similar to parachutes. The difference is that the latter are perfectly rotationally symmetric while the
first exhibit only two symmetry planes [295].
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(a) 3D measurements

(b) Simulation results

slipper perspective slipper side croissant perspective croissant side

Fig. 6.1: (a) Top row: Confocal microscope recordings of red blood cells flowing in a 25µm× 10µm channel with
velocities of 0.33 mm/s (slipper) and 0.37 mm/s (croissant). (b) Bottom row: Corresponding BIM simulations in the
same geometry. Reprinted from publication [Pub4] with permission from AIP Publishing.

To enable more detailed future studies, publication [Pub4] presents a new confocal mi-
croscope technique developed in the group of Prof. C. Wagner which allows to record fully
three-dimensional images of flowing RBCs. Croissants and slippers are observed. The author of
the present thesis performed complementary BIM simulations and found slippers and metastable
croissants that are very similar to the experimental recordings (see figure 6.1).

Publication [Pub5] comprises the first detailed and systematic study that combines both
experiments and simulations of single RBCs in microchannel flows. The experiments were
conducted by members of the group of Prof. C. Wagner. In contrast to the existing literature,
we use λ = 5 and pay special attention to the initial condition in both methodologies, which
enables us to make quantitative comparisons between the experimental and numerical results.
We observe bistability: Croissants and slippers are found to be stable at the same set of parameters
over a wide range of velocities. The results of [Pub5] are shortly summarized in the following.

6.1.2 Setup

The experiments in publication [Pub5] consider the behavior of individual healthy human red
blood cells in a rectangular microchannel. The channel has a width of approximately 12µm and
a height of around 10µm. The viscosity of the fluid inside the cells is roughly five times higher
than the viscosity of the ambient fluid. Experimental analysis of single cells is realized by using
hematocrit values of less than 1 % in the input reservoir and consideration of images showing only
a single cell. Furthermore, as the 3D confocal microscopy from publication [Pub4] is limited to
velocities below 1 mm/s, 2D images with standard bright-field microscopy are recorded. Shapes
and positions of the cells are then extracted from these images. Cells at two locations in the
channel are examined: at the channel entrance and 10 mm downstream. The first location
provides important information about the entry position, while the second shows the converged
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shapes.
Our simulations mirror the experiments as close as possible. Hence we also use a rectangular

12µm × 10µm channel (with slightly rounded corners to prevent numerical issues, compare
figure 6.2) and a viscosity ratio of λ = 5. The fluid-structure problem is solved with the periodic
boundary integral method (chapters 3 and 5). We employ the discocyte from equation (4.6) as
the reference shape for the in-plane elasticity (Skalak model) and the spontaneous curvature is
set to zero. The implementation of the RBC was already explained in chapters 2.1 and 4. We use
Method C as bending algorithm as we found it to be the most stable one in the present setup.

In contrast to the experiments, we have full control over the initial condition. We therefore not
only vary the initial position along a line that is close to the channel’s diagonal (radial offset rinit),
but also employ three different initial shapes. These include the typical discocyte, a croissant and
a slipper. Also see figure 6.2 for an example setup.

The velocity is varied in the experiments and simulations in a range of approximately 0.1 mm/s
to 10 mm/s. This completely covers the range of physiological velocities in vessels with diameters
of the order of around 10µm [6, 86, 303].

Fig. 6.2: Typical simulation setup used to
study the behavior of a single red blood cell
in a rectangular microchannel. The image
shows an example when using a discocyte
as the starting shape (other shapes are also
used). Moreover, the cell is offset along the
black arrow by an offset rinit. The arrow at
the top illustrates the position of the cam-
era in the experiments. Reproduced from
publication [Pub5] with permission from the
Royal Society of Chemistry.

6.1.3 Summary of our key results

Experiments We first consider the experimental observations 10 mm away from the channel
entrance. Figure 6.3a shows the observed fraction of cell shapes as a function of the cell velocity.
Cells that were not clearly classifiable as neither croissant nor slipper were termed as “others”.
The diagram clearly shows that croissants dominate the picture at lower velocities, that croissants
and slippers coexist at intermediate velocities (bistability) and that only slippers exist at higher
velocities. Hence, it seems to be obvious that the velocity is the major parameter determining
the shape. Yet, figure 6.3b shows that the offset distribution at the channel entrance widens with
higher velocities, i.e. more cells are entering off-centered. This means that either the higher
velocity or the larger offset at the entrance might be responsible for the observed fraction of
shapes depicted in figure 6.3a. Unfortunately, the experimental data does not allow for a definite
conclusion and numerical simulations are required.

Simulations By starting with the discocyte shape in the simulations and varying the initial
radial position rinit as well as the velocity, we obtain the phase diagram shown in figure 6.4a. It
depicts the shapes found in the steady state. As in the experiments, croissants and slippers are
observed, with the result depending on the velocity. Most importantly, we also see a pronounced
dependence on the initial position. Starting further off-centered tends to produce slippers while a
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Fig. 6.3: Experimental results: (a) Observed cell shapes 10 mm away from the channel entrance as a function of
cell velocity. The horizontal error bars show the standard deviation of the measured cell velocities. (b) Probability
density function of the center-of-mass position of the cells at the channel entrance. The numbers on the left side depict
the applied pressure drops in millibar, while the numbers on the right indicate the average cell velocity in mm/s.
The curves are offset in the vertical direction to facilitate the illustration. Reproduced from publication [Pub5] with
permission from the Royal Society of Chemistry.

starting position near the center yields croissants. As both are stable, we find bistability. There is
one exception, namely only croissants are stable at velocities from around 2 to 3 mm/s.

Considering the observed shapes in more details (figure 6.4a), we can distinguish two different
types of croissants and two different types of slippers. On the one hand, most of the croissants do
not exhibit any relative movement and have two symmetry planes in the steady state (“non-TT
croissants”). Yet, at higher velocities somewhat asymmetric shapes with pronounced tank-
treading (TT) are found that are nevertheless very similar to croissants (see inset in figure 6.4b).
On the other hand, the majority of slippers show tank-treading (“TT slippers”). At lower
velocities, however, the tank-treading is suppressed and the object rotates similar to a rigid body
(“tumbling”), with the shape still being reminiscent of a slipper (“non-TT slippers”). See the
supplementary information of publication [Pub5] for some videos.

The dependence on the initial position also suggests a possible dependence on the initial shape.
We therefore show in figure 6.4b the corresponding phase diagram when starting with a slipper.7

Compared to the first diagram, the “area” of croissants is reduced, i.e. slippers are found at
smaller values of the initial radial offset. Apart from this, no qualitative differences are found.
Especially the croissant-only region from 2 to 3 mm/s still exists.

Comparison Comparing the experimental (figure 6.3a) and numerical (figure 6.4) diagrams
qualitatively, one can see that both are very similar: Croissants dominate at lower and slippers at
higher velocities, with both coexisting at intermediate values. Making a quantitative comparison,
however, is not immediately possible. Rather, we first need to use the results from the simulations

7In publication [Pub5] we also start with a croissant and rotated discocytes. The corresponding results are omitted
here for brevity.
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Fig. 6.4: Numerical results: Red blood cell shapes in the steady state as a function of velocity u and initial radial offset
rinit. The top axis shows the results in terms of the capillary number CaB := µuR2

RBC/κB, where µ = 1.2 mPa s is the
ambient fluid viscosity and RRBC = 4µm the large radius of the equilibrium discocyte shape. Each mark indicates
one simulation, and the lines and shaded areas are guides to the eyes. Above the dashed line, the cell would overlap
with the channel walls. The cell was started as a discocyte in figure (a) and as a slipper in figure (b). The inset in the
right figure illustrates a tank-treading croissant. Reproduced from publication [Pub5] with permission from the Royal
Society of Chemistry.

and make a prediction regarding the expected number of cell shapes. The idea to do this is
the following. The simulations (figure 6.4) yield a critical value rtrans for the initial radial
position below which croissants and above which slippers occur. Extracting the fraction of cells
from figure 6.3b that enter the channel in the experiments with an offset8 below this particular
value rtrans gives a certain value φ. Hence, the simulations predict that a fraction φ of the cells
should become croissants. φ can therefore be directly compared with the experimental findings
from figure 6.3a.

The result of this procedure can be seen in figure 6.5 where we show the prediction for
both numerical phase diagrams (i.e. started with discocyte and slipper) in comparison with the
experimental observations. Obviously, the prediction using the discocyte as starting shape shows
somewhat more notable deviations. On the other hand, starting with the slipper gives very good
agreement. This suggests that the cells are entering the channel in the experiments with rather
asymmetric shapes because a slipper is less symmetric than a discocyte. Indeed, most of the cells
observed at the channel entrance cannot be clearly classified (i.e. they are “others”).

Conclusion Due to the very good agreement, we can conclude that the physical models used in
the simulations (chapter 2) can properly describe the dynamics of RBCs in microchannel flows.
It also means that the chosen algorithms and their implementation is appropriate (chapters 4
and 5). Moreover, our experimental and numerical results clearly show that the initial condition
has a decisive influence on the shapes assumed by red blood cells. This constitutes a fundamental
finding. It also suggests that croissants and slippers occurring in-vivo are not just transients but
rather intrinsically stable shapes. For more analyses and information we point the reader to
publication [Pub5].

8Actually, we additionally take into account that the initial radial offset in the simulations is approximately along the
diagonal while we only have the projection of the offset in the experiments.
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6.2 Ultrasound-triggered margination of microbubbles

6.2.1 Motivation

Coated microbubbles, so-called ultrasound contrast agents, are nowadays used in medical
ultrasound imaging regularly [304 – 308]. In the past years, a lot of research has been invested
into making them usable as drug delivery agents [309 – 313], with first clinical studies having
been conducted recently [313, 314]. The basic idea is to co-administer the bubbles together
with the drug or, alternatively, to enrich the bubbles directly with the medical substance [313].
One then applies an ultrasound at the pathological region which causes the bubbles to oscillate,
leading to an enhancement of the drug uptake due to their interactions with the vessel walls
[312, 315]. Optimally, the bubbles should remain in the vessel center while flowing through the
vascular system in order to prevent or delay their premature destruction as well as biochemical
interactions with the endothelial cells. At the target site, however, they should be located near
the vessel wall for direct interactions with the pathological cells [312, 313, 316].

We consider the issue of how to combine these two desired yet apparently contradictory
properties in publication [Pub3]. Since no numerical method was available that could readily
describe oscillating deformable microbubbles together with realistic deformable red blood cells,
we first needed to extend the boundary integral method. This is done in the first part of
publication [Pub3], as summarized in chapter 3. In the second part of publication [Pub3], which
will be outlined below, we show that phospholipid-coated microbubbles [308, 309] stay in the
vessel center if no ultrasound is applied. Application of an ultrasound leads to volume and thus
to stiffness oscillations, where the latter is due to the special properties of the lipid coating. We
show that this causes the bubbles to marginate, i.e. move to the vessel walls. Moreover, since
margination only occurs in the presence of red blood cells (e.g. [7, 189, 191, 317]), this also
highlights that in-vitro experiments have to take the cells into account in order to produce results
that can be translated to the in-vivo case, contrary to the current practice where the bubbles are
very often considered in isolation.
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6.2.2 Setup

Reff

Effective surface tension ɣ

0
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ɣstiff

Rsoft RstiffRmin Rmax

of lipid-coated microbubbles

(a)

(b)

Flow

Fig. 6.6: System setup. (a) Example snapshot from the simulation for studying ultrasound-triggered margination of
microbubbles. (b) Illustration of Marmottant et al.’s model for lipid coated microbubbles [318, 319]: Effective surface
tension γ as a function of the effective bubble radius Reff . The two insets show the sketches of a bubble in the buckled
and in the ruptured state. Reprinted from publication [Pub3] with permission from Cambridge University Press.

The typical setup can be seen in figure 6.6a: Two bubbles are placed together with several
red blood cells in a cylindrical microchannel of diameter 22µm. We employ periodic boundary
conditions. The hematocrit (volume density of the RBCs) is set to the typical physiological value
of 16 % found in capillaries [97, 98]. We prescribe the average flow 〈u〉Γ in equation (3.5) such
that the maximal flow velocity is umax ≈ 4.7 mm/s in agreement with physiological velocities [6].

The bubbles are modeled according to Marmottant et al. [318]. Their model was shown to be
suitable for lipid-coated microbubbles [308, 312, 319 – 322]. It is based on the observation that
upon application of an ultrasound the bubbles oscillate between a compressed state (in which
they are buckled [322] and very deformable [318, 323]) and an expanded state (in which their
shell is ruptured and they are very stiff [318, 324]). This is captured by an effective surface
tension γ as illustrated in figure 6.6b. Due to the smallness of the intermediate regime [319]
between these two states, we approximate the overall behavior as a step-function, i.e.

γ(Reff) =
{
γsoft if Reff 6 Rsoft,

γstiff if Reff > Rsoft .
(6.1)

Reff := 3
√

3V/(4π) is the effective radius and V the instantaneous bubble volume. The deformable
state is characterized by an effective surface tension γsoft ≈ 0 [319], while the stiff state exhibits
the high surface tension γstiff = 7× 10−2 N/m of an air-water interface. To ensure numerical
stability, we mostly use γsoft = 0.5κS and γstiff = 10κS, where κS = 5× 10−6 N/m is the shear
modulus of the red blood cells (compare section 2.1). The Young-Laplace equation 4f = 2γHn
is used to compute the traction jump 4f [134, 325, 326]. Note that it requires the mean
curvature H, which is computed via Method C from chapter 4.

The equilibrium radius is chosen to be 2µm, which is a typical value for microbubbles [312,
319, 324]. This radius is set to be in the buckled state, meaning that by default the bubbles are
deformable. Indeed, such an experimental preparation is possible e.g. by exposing them to a
slight overpressure [320, 323, 324].

The effect of an acoustic source is modeled by prescribing a volume oscillation of

Vi(t) = V
(0)
i +Ai/(2πf)[1− cos(2πft)] (6.2)

or equivalently a flux of Qi(t) = Ai sin(2πft) for the i’th bubble. The boundary integral method
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requires the latter quantity as apparent from equation (3.5). V (0)
i is the initial volume, f the

frequency and Ai the flux amplitude. We set A1 = −A2, i.e. the two bubbles are oscillating
out-of-phase. This is required to conserve the ambient fluid volume (compare chapter 3). Since
the interaction between the bubbles is screened due the RBCs and because margination depends
on the stiffness oscillations rather than the phase, this restriction should not undermine the
validity of our results. Also note that equation (6.2) fixes only the volume and that the bubbles
can still deform.

Continuing, the stiff to soft duration ratio δ = T+/T− is the most important parameter. It
describes the time T+ spent in the stiff state (Reff > Rsoft) compared to the time T− spent in the
soft state (Reff 6 Rsoft). Furthermore, to prevent accumulation of the bubbles in small spots on
the vessel wall [316, 327, 328], primary and secondary radiation forces [329, 330] should be
minimized. Hence, we do not use frequencies in the lower megahertz range that are typical in
current medical applications [312, 313], but smaller frequencies of f 6 10 kHz. The margination
effect presented below then leads to a homogeneous covering of the bubbles on the boundaries.

As the Stokes equation is the basis of our method, the Reynolds number should be small. On
the one hand, for the translational motion we have ReT = 2RRBC umaxρ /µ ≈ 0.03� 1 with the
dynamic viscosity µ = 1.2× 10−3 kg/(s m) and the density ρ ≈ 103 kg/m3 of blood plasma [18].
On the other hand, the radial oscillations are characterized by ReR = (2R0)2ρf/µ < 0.07� 1 for
f 6 10 kHz. As both values are much smaller than one, the Stokes equation is appropriate for
the description of the dynamics.

The red blood cells were modeled as described in chapters 2.1 and 4. We employed Method C as
bending algorithm as it showed the best stability. Also note that the above-mentioned parameters
constitute the standard set that was used in the simulations. Several additional parameter
variations are presented in publication [Pub3] and its supplementary information.

6.2.3 Summary of our key results: Ultrasound-triggered margination
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Fig. 6.7: Ultrasound triggered margination. (a) Radial position of two microbubbles and several red blood cells. The
oscillations are off at the beginning and switched on after four seconds. δ = 1. (b) Effect of different values for δ (i.e.
different stiff to soft duration ratios). The error bars show the average minimal and maximal centroid positions. The
rightmost value (δ →∞) shows the result for bubbles that are always stiff. Reprinted from publication [Pub3] with
permission from Cambridge University Press.

Our new discovery is concisely depicted in figure 6.7a for δ = 1. In the first four seconds the
volume oscillations are switched of. The bubbles are therefore in the soft state and flow with the
red blood cells in the center of the channel in accordance with experimental observations [331].
After four seconds the oscillations are switched on, causing the bubbles to alternate periodically
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between the soft and the stiff state, leading to their rapid and isotropic margination within less
than one second. We termed this effect “ultrasound-triggered margination” (UTM).

UTM is a non-trivial discovery: It is well known that soft objects remain in the channel center
while stiff ones migrate to the outside in blood flow [7, 189, 191, 317]. However, the bubbles
continuously oscillate between a soft and a stiff state, making the result unclear a priori. The
physical reason for their margination is that the deformation due to the flow and the interaction
with the RBCs in the soft state happens on a much slower timescale (τdeform ≈ 2 ms) than the
relaxation into the nearly spherical shape at high surface tension in the stiff state (τstiff ≈ 0.1 ms).
This means that the latter dominates the overall picture.

The large disparity of these two estimated timescales also indicates that it is a robust effect, i.e.
also occurs for smaller values of δ when the bubbles spend more time in the soft state (which
counteracts margination). Indeed, as figure 6.7b shows, we still observe margination for values
as low as δ ≈ 0.2. It is also important to note that margination is an effect which comes from the
interaction with the red blood cells. If they are removed, the bubbles will remain in the channel
center, regardless of the value of δ.

Furthermore, figure 6.8 highlights that the migration is isotropic and leads to a homogeneous
coverage of the vessel wall. This is a clear advantage over alternative approaches using e.g.
radiation forces [329, 330] as already mentioned above. Moreover, once at the vessel wall, the
bubbles will usually stay there, except for a few short-lived migrations to the inside.

Fig. 6.8: Polar plot of bubble trajectories from sev-
eral simulations with δ = 0.74 and δ = 1 after one
second or after definite margination as seen from
the outlet. The gray dashed line represents the
vessel radius. Reprinted from publication [Pub3]
with permission from Cambridge University Press.

These findings allow us to conclude that lipid-coated microbubbles allow for an efficient drug
delivery protocol: They tend to remain in the channel center during their transport through
the vascular system but migrate isotropically to the outside after applying an ultrasound. This
margination is due to the interaction with the red blood cells. Removing the cells means that the
effect disappears. Further results and analyses can be found in publication [Pub3].
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7.1 Conclusion

In the present thesis we decided to study blood flow via simulations on two levels: First, on the
level of a single cell (chapter 6.1) and second on the suspension level. In the latter case, we
concentrated on the dynamics of lipid-coated microbubbles in blood flow subjected to ultrasound
(chapter 6.2).

Yet, a requirement for numerical simulations is to have the necessary mathematics, algorithms
and tools to do so. It turned out that a direct application of standard methods was not sufficient.
A basic necessity is the description of the flow. While the standard boundary integral method (or
many other methods in this regard) would be suitable for the simulation of single or multiple
cells in channels, none so far could handle oscillating deformable microbubbles as required for
our second research project. Thus, the latter made the development of our volume-changing
object boundary integral method in chapter 3 necessary. Furthermore, an important component
of red blood cells is their bending resistance. Implementing these seemed to be an easy task at
first by simply taking a standard algorithm, but it became clear that something like a standard
algorithm does not really exist. Rather, a multitude of models and methods are used in the
literature without any available evaluation. A well-founded choice thus required an in-depth
comparison first, implying chapters 2.1 (linear bending models) and 4.3 (bending algorithms) as
necessary prerequisites to both of our research projects. Additional optimizations of the code
as explained in chapter 5.3 reduced the often significant simulation times to manageable levels
(usually in the 1 to 2 weeks regime). Only afterwards were we able to successfully complete
them.

Our study on single-cell behavior (ch. 6.1) contributes to the fundamental understanding of
blood flow by showing that the cells can have not only one intrinsically preferred shape in a
given environment, but rather several shapes can coexist. The actually assumed shape depends
on the history of the cell. Thus, this points out that the croissants and slippers observed in the
microvascular system might not just be due to transient dynamics. Our results also put research
on this topic into perspective where the initial condition is not considered.

The second study on oscillating microbubbles (ch. 6.2) contributes to the comprehension of
blood flow in a specific application. Namely, researchers have been working on exploiting coated
microbubbles for targeted drug delivery for several years. This is closely tied to the question of
the behavior of these bubbles in ultrasound fields. Existing studies focused so far on an accurate
description of isolated oscillating microbubbles, and on the behavior of such bubbles in flows,
but in many cases without red blood cells. Our study presents the first simulation of coated
microbubbles in a realistic blood flow. We showed that a lipid-coating can lead to a very effective
drug delivery protocol. Moreover, our results indicate that future research on this topic (be it
experimental or numerical) must incorporate red blood cells in order to arrive at conclusions
meaningful for real-life applications.
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Thus, all in all, we contributed and analyzed methodologies to study blood flow via numerical
simulations, and we contributed the importance of shape-coexistence and the behavior of
suspended lipid-coated microbubbles to the understanding of blood flow.

7.2 Outlook

7.2.1 Investigation of the stress-free shape of red blood cells

With a working and validated tool in hand, it can now be applied to answer a multitude of open
questions. As already outlined in chapter 2.1, the form of the stress-free (or reference) shape of
red blood cells still lacks a definite answer [41, 54 – 62]. For the in-plane elasticity, the historically
more often used one is the equilibrium discocyte shape. It suggests itself as it means that the
RBC’s membrane is actually stress-free in the equilibrium state. A different possibility is some
oblate spheroid that is nearly a sphere. Depending on the elastic moduli and also the reference
state for the bending forces, the equilibrium shape can still be a discocyte (but with a membrane
that is no longer stress-free). In our studies in chapter 6, we have used the discocyte as stress-free
shape. It would thus be highly interesting to see if changes occur when an oblate is used instead.
This is especially true for the research on single RBCs from publication [Pub5] (chapter 6.1), as
quantitative comparisons with experiments are possible.

After completing the work on [Pub5], the present author started to investigate this issue.
Preliminary results shall be outlined in the following. Apart from the stress-free shape, the
numerical setup is identical to the one from publication [Pub5]. The reference shape for the
in-plane elasticity (Skalak law) is now however chosen to be an oblate spheroid with a reduced
volume of τ = 0.995, where τ := 6

√
πV/A3/2 (V is the spheroid’s volume that is larger than that

of an RBC, while A ≈ 140µm2 is its surface area that is identical to the RBC’s value). For the
reference mean curvature, as appearing in equation (4.5), we use9 H0 = 0.705µm−1. These
values approximately match with the ones employed in references [58, 61]. We will call this
particular stress-free shape configuration “OBL” in the following. The one from publication [Pub5]
(discocyte for the in-plane elasticity and H0 = 0) will be denoted by “DISC”.

The choice of the starting configuration and initial position rinit is unaffected by the choice of
the stress-free shape. For simplicity, we concentrate here on the discocyte as the initial shape for
both DISC and OBL. Figure 7.1a shows again the phase diagram for DISC from publication [Pub5].
In contrast, figure 7.1b depicts our preliminary results for OBL. Clearly, at cell velocities above
2 mm/s, no qualitative or even quantitative differences occur. However, at lower velocities DISC
produces a significant amount of slippers while OBL only shows croissants. This is a striking
difference. Very similar results are obtained for a slipper and a croissant starting shape.

Considering that no significant differences between DISC and OBL are observed for higher
velocities, the agreement between the experimental measurements in publication [Pub5] and both
phase diagrams remains unaffected in this velocity regime. At lower velocities, a more careful
examination is required. The experimental results in figure 6.3a show mostly non-classifiable
cells (“Others”) for velocities below 1 mm/s. Thus, no real statement can be made here using
such 2D image microscopy (and we have not done so in [Pub5]). Rather, we need the full 3D
shape information in order to classify the cells reliably.

The 3D confocal microscope technique presented in publication [Pub4] is suited perfectly
for this task. Following the present author’s suggestion, Sina Kalweit and Dr. Stephan Quint
(members of the group of Prof. Dr. C. Wagner) began to analyze the low velocity regime using

9The spontaneous curvature c0 is sometimes defined as twice the value of H0, i.e. c0 = 2H0 = 1.41µm−1.
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Fig. 7.1: (a) Numerical phase diagram for the DISC stress-free shape and the discocyte starting shape. The image is
identical to figure 6.4a and is repeated here to allow a convenient comparison. Reproduced from publication [Pub5]
with permission from the Royal Society of Chemistry. (b) Preliminary numerical results for the OBL stress-free shape
and the discocyte starting shape. (c) Preliminary experimental results as obtained by 3D confocal imaging. Data
provided by Sina Kalweit and Dr. Stephan Quint (members of the group of Prof. Dr. C. Wagner in Saarbrücken).

this method. The remaining parts of the experimental setup is identical to publication [Pub5].
Their new preliminary results can be seen in figure 7.1c. Clearly, the majority of the cells at low
velocities have a croissant-like shape. Putting everything together we can therefore conclude that
the stress-free shape of RBCs is most likely an oblate spheroid rather than a discocyte.

However, this statement should be taken with some care as the results are preliminary (and
hence the present section is in the outlook chapter). Besides mapping out the phase diagram
more carefully and for different starting configurations, one needs to take into account various
possible stress-free shapes more systematically. This includes both the reference state for the
in-plane elasticity (discocyte vs. oblate vs. prolate) and the spontaneous curvature c0 (zero vs.
positive vs. negative, also in light of reference [195]) as well as the precise values of τ and c0.
Completely unrealistic values might be filtered out early by considering the equilibrium shape,
which should be a discocyte close to equation (4.6). Furthermore, the question if a spatially
inhomogeneous shear modulus can explain the results should be addressed. A detailed analysis
of the actual shapes in the steady state would also be appropriate (e.g. regarding tank-treading
or oscillatory behavior).

As a final note, it is also interesting that the stress-free shape appears to have significant influ-
ence only at low velocities (in this case below 2 mm/s), in agreement with [58, 62]. Therefore,
we do not expect any differences in our microbubble study from publication [Pub3] where twice
the velocity was used. Another reason is that the margination hinges upon the relative softness
of the RBCs compared to the bubbles, and this is little affected by the stress-free shape.

7.2.2 Further open questions

Besides a continuation of the work on single cells with respect to the stress-free shape, further
studies might shed some light on the influence of the viscosity ratio λ. 2D simulations with
vesicles [300] indicate that significant changes are to be expected. Non-physiological values
are also highly relevant for in-vitro experiments and medical analyses. Another possibility to
continue would be to study the hydrodynamic clustering of cells (similar to the experiments
in reference [122]), with special emphasis on different initial conditions. This could also pave
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the way for a better understanding of dense suspensions. For example, a connection between
the velocity-dependent bistability of single cells and suspension properties such as the effective
viscosity might be uncovered.

Of course, a software package is never finished and new functionality can be implemented
to study new systems. An ingredient missing so far in the modeling of RBCs is the membrane
viscosity, which might be relevant in certain cases. A similar statement holds for thermal fluctua-
tions (a possible methodology is presented in reference [251]). Furthermore, a more efficient
parallelization would grant access to much larger systems such as microvascular networks. As
explained in section 5.3, the current implementation is hampered by the Fast Fourier Transforms.
Thus, improving the current situation is no straightforward task. As already mentioned, one
possibility would be to use the fast multipole method that was demonstrated before to solve at
least the scaling problem [92, 263 – 266]. Finally, more refined surface discretizations using e.g.
spherical harmonics or subdivision surface methods could not only improve the accuracy of the
bending computations but also of the solving of the boundary integral equation. This is necessary
to study extremely confined systems such as the squeezing of cells through small slits [42].
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Relevant chapter in this thesis: 6.1.
Breakdown of the individual contributions:

• A. Guckenberger (during his doctorate) helped to develop the concept of the
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a b s t r a c t

One of the most challenging aspects in the accurate simulation of three-dimensional soft objects
such as vesicles or biological cells is the computation of membrane bending forces. The origin of this
difficulty stems from the need to numerically evaluate a fourth order derivative on the discretized
surface geometry. Here we investigate six different algorithms to compute membrane bending forces,
including regularly used methods as well as novel ones. All are based on the same physical model (due
to Canham and Helfrich) and start from a surface discretization with flat triangles. At the same time, they
differ substantially in their numerical approach. We start by comparing the numerically obtained mean
curvature, the Laplace–Beltrami operator of the mean curvature and finally the surface force density to
analytical results for the discocyte resting shape of a red blood cell. We find that none of the considered
algorithms converges to zero error at all nodes and that for some algorithms the error even diverges.
There is furthermore a pronounced influence of the mesh structure: Discretizations with more irregular
triangles and node connectivity present serious difficulties for most investigated methods.

To assess the behavior of the algorithms in a realistic physical application, we investigate the
deformation of an initially spherical capsule in a linear shear flow at small Reynolds numbers. To
exclude any influence of the flow solver, two conceptually very different solvers are employed: the
Lattice–Boltzmann and the Boundary Integral Method. Despite the largely different quality of the bending
algorithms when applied to the static red blood cell, we find that in the actual flow situation most
algorithms give consistent results for both hydrodynamic solvers. Even so, a short review of earlier works
reveals a wide scattering of reported results for, e.g., the Taylor deformation parameter.

Besides the presented application to biofluidic systems, the investigated algorithms are also of high
relevance to the computer graphics and numerical mathematics communities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The computer simulation of soft deformable objects such as
cells, synthetic capsules or vesicles in three-dimensional (3D)
hydrodynamic flows is a rapidly increasing field in computational
physics. The smallest investigated systems consider the dynamic
motion of a single object in shear or channel flow [1–15], in a
gravitational field [16–19], through narrow constrictions [20–22],
or the diffusion of small particles near elastic membranes [23]. On
a larger scale, a number of studies focus on the effective viscosity
of dense suspensions [24–29] which is closely connected to the

∗ Corresponding author.
E-mail address: achim.guckenberger@uni-bayreuth.de (A. Guckenberger).

formation of cell-free layers near the channel walls in case of blood
flow [30–33]. The investigation of suspensions containing two or
more types of particles is another important field in which usually
one focuses on the cross-streamline migration of the particles [30,
32,34–41]. Froma computational perspective, an adequatemethod
for the above problems requires two ingredients: Solution of a
hydrodynamic problem for the flow forwhich a variety ofmethods
such as Boundary Integral [42–44], Lattice–Boltzmann [28,45–48]
or particle methods [49–52] are available, and solution of a solid
mechanics problem for the objects’ interfaces.

The investigated objects are filled with fluid, separated from
the outside by a membrane which is typically modeled as
an infinitely thin elastic sheet. Forces originating from the
linearized deformation of such a sheet can be split into in-plane
elasticity (shear and area dilatation) and out-of-plane (bending)

http://dx.doi.org/10.1016/j.cpc.2016.04.018
0010-4655/© 2016 Elsevier B.V. All rights reserved.
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components. For the former a number of elastic laws such as
neo-Hookean (e.g. [3,53]) or Skalak [54] have been proposed,
depending on the physical properties of the studied object, and
recently different numerical modeling approaches have been
compared [55]. Bending contributions are very often described via
a simple law proposed by Canham and Helfrich [56,57], stating
that the local bending energy density is proportional to the square
of the local mean curvature. Depending on the type of object,
different contributions may dominate the total force. Vesicles, for
example, lack shear elasticity and are thus entirely dominated
by bending forces [5–7,11,58]. For elastic capsules, on the other
hand, the elasticity governs most of the behavior, with bending
causing mostly secondary effects [3,28,53,58]. However, in certain
situations it can become the dominating factor. For instance, it
defines the wavelength of local wrinkles appearing for capsules
especially at low shear rates due to local compressive forces [3,
53,59–63]. Neglecting the bending rigidity in this case reduces not
only the numerical stability but also the physical reliance greatly,
making realistic simulations practically impossible [3,28,53,61,
64]. For red blood cells, both elasticity and bending are relevant,
where the latter determines the equilibrium shape [65]. Hence, the
accuracy of the employed bending algorithm is of major concern.

To compute the mechanics of the membrane, it is typically
discretized via a set of marker points whose positions are advected
with the hydrodynamic flow. The most flexible, most easy-to-
implement and therefore also one of the most widely used
methods to interpolate between the nodes is a discretization via
flat triangles [18,43,58,63,66–69]. Recently, subdivision surface
methods [4,70–74] are becoming increasingly popular, too. Other
methods include curved triangles [2,75,76], B-Splines [3], or global
approaches such as spherical harmonics [10,20,77]. The latter
are most efficient for not too large deformations. Bending forces
are computed as the derivative of the out-of-plane stress which,
by the principle of virtual work, is the variational derivative of
the bending energy [78,79]. Since the mean curvature already
contains the second derivative, in total the fourth derivative of the
surface geometry is required. This poses a severe algorithmic and
numerical challenge because the surface discretizations are often
not C4 smooth.

Here we study a set of six algorithms to compute the bending
forces for the most common case of a membrane discretized via
flat triangles. A major difference between the algorithms is their
approach on the Laplace–Beltrami operator, a key component
of the bending forces. Note that its discretization is subject to
active research [80–87]. For this work, we employ methods that
are devised by or based on principles of Kantor and Nelson [88,
hereafter called Method A], Gompper and Kroll [89, Method B],
Meyer et al. [90, Method C], Belkin et al. [84, Method D], Farutin
et al. [68, Method E] and Loop and Cirak et al. [73,74, Method S].
The latter, albeit being a subdivisionmethod, also departs from flat
triangles. To the best of our knowledge, no publication has so far
used Belkin et al.’s discretization (Method D) for the computation
of bending forces. In a recent work, Tsubota [69] compared three
different algorithms akin to Methods A and C. He considered a
shear flow setup and the equilibrium shape of a red blood cell
(RBC), finding that Method A shows notable deviations to C. No
comparisonwith an analytically solvable reference shape or earlier
simulation work was attempted.

As a start we calculate the discretization error for the
analytically known surface of an RBC. We find a strong difference
in the quality and robustness of the algorithms: Most are very
sensitive to the surface discretization and none converge at all
nodes as the resolution is increased. The results are summarized
in Tables 2 and 3. To assess the performance of the bending
algorithms in a typical flow setup, we then investigate the
deformation of an initially spherical capsule in a viscous shear

flow. The capsule is endowedwith both shear and bending rigidity.
To exclude any artifacts possibly arising from the flow solver, we
use the Boundary Integral (BIM) as well as the Lattice–Boltzmann
method (LBM). In general we find a very good agreement
between both approaches. The deviations between the six bending
algorithms are much less pronounced in this setup than in the
analytical part. A comparison with the literature, however, reveals
a wide scattering of reported values for the Taylor deformation
parameter.

We finally note that our study may also be relevant in other
areas where the numerical evaluation of the Laplace–Beltrami
operator, which is a main focus of this work, plays an important
role. In geometry processing, for example, it is often used for the
visualization of high-curvature regimes, highlighting of surface
details, or surface smoothing and reconstruction [81,84,90,91].

2. Computation of bending forces

2.1. The physical model of the bending energy

All bending algorithms used in the present work and in the
majority of the literature depart from the seminalworks of Canham
[56] and Helfrich [57]. They considered a three-dimensional soft
object with an infinitely thin interface endowed with bending
resistance. They then proposed the following constitutive law for
the bending energy:

EB = 2κB


S
[H(x)]2 dS(x). (1)

Henceforth, S is the instantaneous smooth surface of the object and
κB is the bending modulus. The local mean curvature is given by
H =

1
2 (c1 + c2), where c1 and c2 are the local principal curvatures.

H is taken to be positive for a sphere. In principle an additional
term dependent on the Gaussian curvature appears in the bending
energy. Fortunately, this term is constant if the topology of the
object does not change [57,89]. Thus it is negligible for the purpose
of force computations. A spontaneous (or reference) curvature can
be included in Eq. (1) [65], but for simplicity we take theminimum
energy reference state as a flat sheet.

For later convenience, we introduce an alternative expression
for H [81]:

H(x) =
1
2

3
i=1

(∆Sxi) ni(x), x ∈ S. (2)

n(x) is the outer normal vector of the membrane surface S at
position x and∆S = ∇

S
·∇

S denotes the Laplace–Beltrami operator
with ∇

S being the surface gradient. Subscripts indicate vector
components.

2.2. Principles for the computation of bending forces

The general goal is to compute the forces from the bending
energy (1) while using an approximation for the surface S. As
outlined in the introduction, we approximate S via flat triangles,
i.e. each surface element consists of three nodes (vertices) and
three straight edges. The force is then required at each node x(i)

with i = 1, . . . ,N . We denote by N the number of nodes and by NT
the number of triangles.

To be more precise, the hydrodynamic simulations performed
in Section 4 require either the force Fh(x(i)) (LBM) or the traction
jump △f h(x(i)) := (σ+ − σ−) · n (BIM). σ+ and σ− are the stress
tensors at the outside and inside of S, respectively, and n again the
outer normal vector. The force equilibrium conditions read [53,58]

Fh
= −F and (3)

△f h = −f . (4)
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Table 1
Overview of the six methods A–E and S employed in this work.

Method A B C D E S

Basic ingredient from Kantor [88] Gompper [89] Meyer [90] Belkin [84] Farutin [68] Cirak [74]

Result Force Force Force density Force density Force density Force density

Derivative Nodal Nodal Variational Variational Variational FEM

Basic idea Normal vector
discretization

∆S via co-tangent
scheme

∆S via co-tangent
scheme

∆S via heat
equation

Parabolic
fitting

Subdivision surface

Depending on the employed bending algorithm, either the force F
or the surface force density f is obtained. Conversion between both
is thus necessary and will be described in Section 2.6.

Computation of F or f means to perform a variational derivative
of Eq. (1) with respect to small deformations of the surface. The six
algorithms considered in this work (named A–E and S) effectively
calculate this derivative and are summarized in Table 1. From
a conceptual standpoint, there is a major difference between
the methods. The first two algorithms (Methods A and B) first
discretize the surface and then perform the variational derivative
by means of a direct differentiation with respect to the nodes’
positions (termed ‘‘force formulation’’ below). This yields the force
F . The three methods C–E perform the discretization after the
variational derivative (termed ‘‘variational formulation’’ by us) and
thus provide the force density f . The last method S is similar to the
force formulation as it introduces the discretization beforehand.
However, it uses the weak formulation, solving a linear system
of discretized integral equations by means of the finite element
method (FEM). This leads again to the force density f .

2.3. Force formulation

The first two Methods A and B first discretize the integral and
the mean curvature from Eq. (1). The energy EB then depends on
the node coordinates x(i) explicitly. By the principle of virtualwork,
they subsequently derive the force according to

F(x(i)) = −
∂EB
∂x(i)

, i = 1, . . . ,N. (5)

This derivative can often be performed analytically.

2.3.1. Method A
MethodA startswith the expression


S(H

2
−2K) dS =


S(∂

αn)·
(∂αn) dS [89]. The integral with the Gaussian curvature K remains
constant due to theGauss–Bonnet theorem if the topology does not
change and hence plays no role for the force calculation. The mean
curvature part can be identified with Eq. (1). A direct discretization
of the integral together with the approximation of equilateral
triangles [89] then leads to the often employed expression (e.g. [9,
22,27,28,32,33,36,37,40,41,52,69,88,89,92–95])

EB ≈ 2κB


⟨i,j⟩

(1 − cos θij), (6)

where the sum runs once over all edges ⟨i, j⟩. θij is the angle
between the normal vectors of the two triangles that contain edge
⟨i, j⟩.

One critical issuewith this formula is the value ofκB. It is usually
not identical to the physical κB appearing in Eq. (1). In case of a
sphere approximated by equilateral triangles it is simply κB =
√
3 κB. But in general the value depends on the shape of the object

[89]. Nevertheless, one usually finds this value also being used for
non-spherical shapes. Here we setκB =

√
3 κB, too. We remark

that one could use Eq. (6) as themodel equation directly, i.e. to take
it not as an approximation of the Helfrich law in the first place. In
this case our analysis must be viewed as addressing the question

‘‘how near or far away’’ it is from the Helfrich model rather than
‘‘how well of an approximation’’ it is.

A further simplification encountered from time to time is the
usage of the small angle approximation cos θij ≈ 1 −

1
2θ

2
ij [28,29,

39,52]. Its advantage is that it does not require the computation of
a sine. We also tested this alternative and found a slight increase
of the errors presented below. But because the error increase
remained below 5% and because the hydrodynamic simulations
turned out to be insensitive to it, we restrict ourselves to the more
common equation (6).

The analytic formulas for the derivative in Eq. (5) are presented
in great detail in [28, ch. C.2] for the small angle approximation.
Apart from the occurrence of an additional sine (stemming from
the above cosine), they can be also used unchanged for Eq. (6) and
will therefore not be repeated here.1 After knowing the force F
at each node, the force density can be computed as outlined in
Section 2.6 below. This method is identical to ‘‘model KN’’ from
Tsubota [69].

2.3.2. Method B
Gompper and Kroll [89] approximated the Laplace–Beltrami

operator in the expression for the mean curvature from Eq. (2) by
a variant of the so-called cotangent scheme, namely

∆Sx
(i)
l ≈


j(i)

(cotϑ (ij)
1 + cotϑ (ij)

2 )(x(i)
l − x(j)

l )

2A(i)
Voronoi

,

i = 1, . . . ,N, l = 1, 2, 3, (7)

where the sum runs over the first ring of neighbor nodes of x(i). The
integral from Eq. (1) is then discretized as

EB ≈
κB

2

N
i=1


2H(x(i))

2
A(i)
Voronoi, (8)

with N denoting the total number of nodes. ϑ (ij)
1 and ϑ

(ij)
2 are the

angles opposite to the edge ⟨i, j⟩ in the triangles which contain
nodes x(j−1) and x(j+1), respectively. See Fig. 1 for a sketch. A(i)

Voronoi
is the Voronoi area of node x(i), defined by

A(i)
Voronoi :=

1
8


j(i)

(cotϑ (ij)
1 + cotϑ (ij)

2 )
x(i)

− x(j)
2,

i = 1, . . . ,N. (9)

The area is geometrically contoured by connecting the circumcen-
ter points of the triangles. It must be noted that this Voronoi area

1 For the sake of completeness we note that for a non-zero reference state the
formula θij = arccos(ni · nj) as given in [28, ch. C.2] is only valid for convex parts
of the surface. Otherwise, the value needs to be multiplied with −1 to correctly
capture the reference shape. Here, ni (nj) is the normal vector of the i’th (j’th)
triangle. Furthermore, care must be taken if


1 − (ni · nj)2 ≈ 0, because then

divisions through zero would occur. In this case the correct resulting force is simply
zero for zero reference states. For non-zero reference states one needs to compute
the correct value by an analytic limiting procedure.
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Fig. 1. Ring-1 neighbors of some node x(i) . We marked one of the neighbors
arbitrarily as x(j) . The shaded region depicts the Voronoi area A(i)

Voronoi .

does not lead to an exact covering of the surface if non-obtuse tri-
angles occur [90], as outlined in the description ofMethod C below.
Nevertheless, similar to Gompper and Kroll we use it for all trian-
gles, no matter if obtuse or not.

The publication by Gompper and Kroll only provides the
discretizations outlined above. To arrive at the force at node x(i),
we compute the gradient in Eq. (5) with the energy from Eq. (8)
analytically, as explained in the Appendix A. Finally, the approach
from Section 2.6 is used to obtain the force density.

The solver presented in Refs. [49,50] and subsequent publica-
tions [96–100] is based on Eq. (8). ‘‘Model J’’ from Tsubota [69] is
somewhat similar in spirit, but more simplistic.

2.4. Variational formulations

The three Methods C–E depart from an analytical and exact
expression for the surface force density. It follows from the first
variation of the bending energy δEB = −


S f · δx dS as [8,78,79]

f (x) = 2κB

2H(H2

− K) + ∆SH

n, x ∈ S. (10)

Here, K = c1c2 is the Gaussian curvaturewith c1 and c2 being again
the principal curvatures. n is the outer normal vector at x whose
numerical computation also depends on the employed method.
Similar expressions are obtained when a spontaneous or reference
curvature is included [79]. The methods presented hereafter differ
by how they compute the different quantities appearing in Eq. (10).

2.4.1. Method C
Meyer et al. [90] derive the following discretization for the

Laplace–Beltrami operator on triangulated meshes from a contour
integral around node x(i) (also see Refs. [58,81]):

∆Sw(x(i)) ≈


j(i)

(cotϑ (ij)
1 + cotϑ (ij)

2 )(w(x(i)) − w(x(j)))

2A(i)
mixed

,

i = 1, . . . ,N. (11)

w is an arbitrary two-times continuously differentiable function
on S. The notation is otherwise identical to Section 2.3.2. Obviously,
it is another variant of the cotangent scheme. Comparing this
equation with Eq. (7), we immediately see that they are almost
the same with the sole difference being that the ‘‘mixed area’’
A(i)
mixed rather than the Voronoi area A(i)

Voronoi is used. For rings with
non-obtuse triangles, one simply has A(i)

Voronoi = A(i)
mixed. However,

using the Voronoi area for obtuse triangles leads to an incomplete
tiling of the surface area, i.e. the sum of all Voronoi areas is not
necessarily the same as the total surface area. For this reason,
Meyer et al. introduced the mixed area: Rather than forming the

area by all circumcenter points of all triangles, it uses the point in
the middle of edges that are opposite of obtuse angles. Its precise
definition and algorithm can be found in [90].

The mixed area aside, the second major difference compared
to Method B is that Eq. (10) is being evaluated directly. Hence,
after the mean curvature has been computed via Eqs. (11) and
(2), the Laplace–Beltrami operator of the mean curvature, ∆SH , is
calculated by applying formula (11) again on H [58].

For the Gaussian curvature K , Meyer et al. give the following
simple expression [90]:

K(x(i)) =
1

A(i)
mixed


2π −


t

θ
(i)
t


, i = 1, . . . ,N. (12)

This is a discretization of the Gauss–Bonnet theorem. The sum runs
over all triangles t sharing node x(i), and θ

(i)
t is the angle in triangle

t at node x(i).
The last ingredient is the normal vector n(x(i)). Several

approaches exist to derive its value from the well-defined normal
vectors of the triangles. Jin et al. [101] compared several often
used methods. They concluded that summing the normal vectors
of the triangles containing node x(i) and weighting them with the
angle θ

(i)
t gives the best results in many cases (‘‘mean weighted by

angle’’ approach, MWA). An often used alternative is to normalize
the result of ∆Sx. However, we found that the MWA algorithm
provides superior results and thus we will adopt it in this work.

We finally remark that e.g. Refs. [8,12,16,18,23,35,58,66,67,
80,81,102] and [44,103–105] use the same or similar algorithms
(where the latter refer to it as contour integral based method and
only employ it for H). Method C is ‘‘model H’’ from Tsubota [69].

2.4.2. Method D
Method D differs from Method C by the discretization of the

Laplace–Beltrami operator. It is based on a kernel of the diffusion
or heat equation, and reads [84]

∆Sw(x(i)) ≈
1

4πa2i

NT
t=1

At

3


p∈V (t)

exp


−
1
4ai

p − x(i)
2

×

w(x(i)) − w(p)


, i = 1, . . . ,N. (13)

NT denotes the number of triangles, V (t) is the set of vertices of
triangle t , and At its area. Furthermore, ai is some free parameter
that represents the neighborhood of node x(i). Because it has the
dimension of a squared length, we use ai = A(i)

mixed in the following.
Other choices lead to very similar results.

Obviously, a single evaluation of the operator has a complexity
of O(NT) ≈ O(N), where N is the number of nodes. Since we
need to compute the bending forces at all vertices, Method D has
an overall complexity of O(N2) which can become prohibitively
slow for larger meshes. On the other hand, the large supports leads
to an insensitivity regarding noise [84], a fact which we also find
reflected in our results below.

In practice we have slightly modified the above algorithm:
Imagine a plane that goes through the centroid [106] of the object
and with its normal vector pointing from the centroid to node x(i).
Then we only take into account points that lie above this plane.
Otherwise, nodes that lie close in 3D space but are located far apart
when measured along the surface (geodesic distance) would lead
to large errors. This is the usual case for the dimples of red blood
cells studied below.

Apart from the discretization of ∆S, the remaining parts of
the algorithm are identical to Method C. Especially note that
the Gaussian curvature is still computed with Meyer et al.’s
discretization given by Eq. (12) (because Ref. [84] does not provide
an alternative), and the normal vector algorithm remainsMWA. To
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the best of our knowledge, no publication so far used Belkin et al.’s
discretization in the context of bending models.

It is also worth noticing that Li et al. [87] developed a similar
formulation in a recent paper. Rather than using the Euclidean
distance

p − x(i)
 in the exponential function, they employ the

geodesic distance between these points. Furthermore they do not
take into account all triangles but only those within a certain
cutoff (measured, again, via the geodesic distance). For most cases
with mediocre resolution they report slightly better results for the
mean curvature than for Belkin et al.’s discretization, becoming
(mostly) better with increasing resolutions. Because of the only
small advantage at practical resolutions and because it is non-
trivial and often expensive to compute the geodesic distance
between points on general triangular meshes [107], we have not
yet attempted its implementation.

2.4.3. Method E
Instead of using a direct finite-differences like approach, Farutin

et al. [68] employ a least square fitting procedure. The algorithm
consists of three steps: In the first step, a local coordinate system
at each node is created. Two axes are arbitrarily chosen to be
parallel to the approximated tangential plane, while the third axis
is parallel to the approximated normal vector. We estimate the
normal vector again via the MWA algorithm. Next, one paraboloid
is fitted to each of the three components of all the ring-1 nodes
around each vertex. This involves the solution of three 5 × 5
linear systems per node. The fitting coefficients can be identified
with local derivatives. They therefore provide a direct method
to compute the mean and Gaussian curvature, the metric tensor
and a refined approximation for the normal vector via standard
differential geometry [68]. The final step fits a paraboloid to the
mean curvature, yielding the coefficients required to evaluate
∆SH . Putting everything together, the force density can then be
computed via formula (10).

We remark that this algorithm requires each node to have
at least five neighbors. Otherwise, the paraboloid would not be
uniquely defined. For nodes with less than five neighbors, we
extend the mean square fitting to include the ring-2. This leads
to a well-defined problem for general meshes. Furthermore, in
principlemore rings can always be included as shortly discussed in
Section 3.5. An efficient algorithm for higher ring orders is breadth-
first search.

Besides [68], publications that use the same basic idea to obtain
the mean curvature include e.g. Refs. [67,81,104,108], although
they fit a single paraboloid onto the surface itself (rather than to
the components of the coordinates).

2.5. Method S

Method S is somewhat set apart from the previous five
algorithms. Departing from the usual mesh with flat triangles, the
subdivision scheme of Loop [73,74] is applied to refine and average
the surface. Themethod converges to a smooth limit surfacewhich
is C2 almost everywhere, corresponding to quartic box-splines.
An exception are vertices that do not have six neighbors. There
it is reduced to C1. With this method, the displacement field of
an element depends on the (usually 12) neighboring triangles.
In addition to being a versatile geometrical representation useful
in computer aided design, the Loop subdivision is particularly
well adapted to physical problems involving first and second-
order derivatives such as infinitely thin shells described by a
Kirchoff–Love energy functional. Indeed, the nodal forces at the
membrane are determined by using the virtual work principle
in its weak formulation, taking into account the membrane and
bending strains [74]. This leads to a linear system of discretized
integral equations that is treated with the finite element method.

It means notably that neither Gaussian and mean curvatures nor
the Laplace–Beltrami operator of the mean curvature need to be
calculated explicitly. Still, theGaussian and themean curvature can
be obtained from byproducts of the result, and we show them in
Section 3. We use GMRES [109] with a residuum of 10−9 to solve
the linear system. The complexity in general is therefore O(N2).
This method has already been applied to capsules without bending
resistance in a planar elongation flow [13] and droplets with
dilational and shear surface viscosities [70] with a full validation
section in each case. See Ref. [70] for further details.

Refs. [4,13,70–72] also use similar subdivision surfaces in the
biofluid context.

2.6. Conversion from forces to surface force densities

As already mentioned above, the quantity that is required to
couple the membrane bending mechanics to the hydrodynamic
flow depends on the employed flow solver. For our chosen LBM
implementation one needs the force F at each surface node x(i),
while for BIM the surface force density f is required. By designating
a certain area surrounding each node as the ‘‘node area’’ one
can interconvert between both quantities by simply multiplying
(dividing) the force density (force) by the respective node area [32,
69,72]. This interconversion is necessary for a comparison of all six
algorithms with a single flow solver, as Methods A and B yield the
force F while C, D, E and S yield the force density f .

We use Meyer et al.’s mixed area Amixed already introduced in
Section 2.4.1 because of its perfect surface tiling property. Hence,
the conversion is performed by the formula

f (x(i)) ≈
1

A(i)
mixed

F(x(i)), i = 1, . . . ,N. (14)

3. Benchmarking against analytical results for a static redblood
cell

3.1. Red blood cell shape and methodology

RBC shape and discretizations. To quantitatively assess the quality
and differences between the six bending approaches presented in
the previous section, we consider the typical RBC shape as shown
in Fig. 2.

We choose this shape for two reasons: Firstly, it is simple
enough to allow derivations of analytical expressions for all
relevant quantities, including the force density itself, by means
of differential geometry and standard computer algebra software.
Secondly, it is a realistic shape which has regions where the
mean curvature has different signs (i.e. turning points) and is thus
complex enough to serve as a reasonable test subject. An oblate
spheroid, for example, would be simpler to handle, but is a lot
farther away from real-world situations in case of blood flow.

The considered shape can be described by the formula

z = ±
R
2


1 − ρ2


C0 + C1ρ

2
+ C2ρ

4 (15)

with ρ :=
1
R


x2 + y2 and the constants C0 = 0.2072, C1 = 2.0026

and C2 = −1.1228 [110,111]. R is the length of the large half-axis
of the RBC, and is often taken to be R ≈ 4 µm. In this section we
use R = 1, effectively non-dimensionalizing all lengths by the RBC
radius.

The discretization as shown in Fig. 2(a) is derived by suc-
cessively refining a regular icosahedron via division of each tri-
angle into four new elements according to Loop’s subdivision
scheme [73,74]. The z-coordinates of the nodes are afterwards
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(a) Homogeneous mesh with 5120 triangles, obtained by refining an
icosahedron using Loop’s subdivision algorithm.

(b) Inhomogeneous mesh with 3914 triangles, obtained via Rivara’s
longest-edge bisection algorithm.

Fig. 2. Illustrations of the typical red blood cell shape discretized with the two different MT1 methods as described in the main text. Meshes of type MT2 look very similar
(see Fig. B.18), except that the triangles around nodes with five neighbors are somewhat larger.

modified via application of formula (15). This leads to the very ho-
mogeneous meshes with 320, 1280, 5120, 20,480 and 81,920 tri-
angles considered below. All of the nodes have six neighbors, with
the exception of exactly twelve vertices retaining only five neigh-
bors for any N . The meshes with 512 and 2048 triangles are based
on a regular octahedron, leading to four or six neighbors. We call
discretizations based on Loop’s refinement ‘‘MT1’’.

We also assess the behavior on three other mesh types for
Methods A–E. The first is the inhomogeneous one shown in
Fig. 2(b). This mesh with 3914 triangles is obtained by starting
from an icosahedron refined to 320 triangles via Loop’s scheme
(MT1). We then apply Rivara’s longest-edge bisection algorithm
[112] three times and transform the result via Eq. (15) to the
RBC. Each node has four to ten neighbors. The second additional
mesh is very similar to the homogeneous geometries described
above, except that new nodes introduced during the refinement
are simply placed at the middle of edges rather than according
to Loop’s algorithm. This is an often used scheme, and results in
a slightly different structure. We will refer to it as ‘‘MT2’’ and
outline observed differences in the main text where appropriate.
The actual data can be found in Appendix B. As a third mesh
we consider the application of Rivara’s algorithm to an MT2
object with 320 elements, resulting in 3848 triangles. See the
supplementary information (SI) for a collection of mesh properties
such as typical edge lengths (Appendix C).
Evaluation and error measures. All numerical results were obtained
using double precision arithmetic. They are plotted as functions of
the polar angle θi, computed via

θi = arccos

 zi
x2i + y2i + z2i

 , (16)

where xi, yi and zi are the Cartesian coordinates of node x(i), i =

1, . . . ,N . The RBC described by Eq. (15) is axisymmetric and hence
the results at each position will be plotted as a function of the
polar angle only. This corresponds to a projection of the azimuthal
direction into a single plane. We do not just compute the data
at some cross section because the mesh is non-axisymmetric and
hence results do vary with the azimuthal angle.

The relative errors of the normal vector, themean curvature and
the force density are computed as normalized Euclidean norms:

εn(θi) := |na(x(i)) − nn(x(i))|,

εH(θi) :=
|Ha(x(i)) − Hn(x(i))|

max |Ha|
,

εf (θi) :=
|f a(x(i)) − f n(x(i))|

max |f a|
,

(17)

where the superscripts a and n denote the analytical and the
numerical value, respectively. Errors for the Gaussian curvature,
εK , and the Laplace–Beltrami operator of H , ε∆SH , are handled the
same way as εH . Note that εn is the error relative to the length of
the normal vector |na

| = 1. Furthermore, we compute the errors
relative to themaximal analytic values because transitions through
zero exist. Using the local analytic results as the reference would
lead to greatly exaggerated error values: The numeric algorithms
never produce zero values at precisely the same positions as the
analytics. Approximately, one has for R = 1 and κB = 1:
max |Ha

| ≈ 2.20098,max |K a
| ≈ 3.60620,max |∆SHa

| ≈ 109.095
and max |f a| ≈ 189.457.

Continuing, the tables and graphics presented in thiswork show
two different measures for the total error. The maximum error
of all the nodes is calculated as maxi ε•(θi) and represents the
local worst case result. On the other hand, the average error is
computed as

N
i=1 ε•(θi)/N with N being the number of nodes

on the RBC. It measures the overall performance of the algorithm
for viscous flows. More precisely speaking, the average can be
interpreted as a discretization of a continuous error measure,
for example

N
i=1 εf (θi)/N ∼


S |f − f a| dS, because 1/N ∼

h2
∼ dS where h is the mean edge length. Similar integrals

determine the flow in the Stokes regime, compare Section 4.3.1.
The average measure is therefore the more meaningful quantity in
this particular application. Indeed, previous studies reported that
a few problematic nodes do not affect the overall hydrodynamic
results significantly [68]. We confirm this in Section 4.

Below we show the numerical results as a function of
θ . Corresponding images of the errors can be found in the
supplementary material (see Appendix C). Furthermore, we
display the two error measures (maximum and average) as a
function of the inverse of the mean edge length h or, equivalently,
as a function of triangle count NT.

We start by considering the normal vector, the mean curvature
and the Laplace–Beltrami operator of the mean curvature. These
are required for the evaluation of Eq. (10) in the variational formu-
lation. The Gaussian curvature is considered in the supplementary
information (see Appendix C). As a last step we combine the re-
sults to get the force density f , where we also include the two al-
gorithms based on the force formulation. Tables 2 and 3 at the end
of this section summarize all results.

3.2. Normal vector

As outlined in Section 2.4, we use the MWA algorithm to
compute the normal vector for Methods C and D. In case of
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Method E, the MWA normal vector is taken as the input and
the fit procedure yields a new result. Farutin et al. [68] stated a
convergence rate for E of O(h2).

Fig. 3 shows the maximum and average of the relative error εn
of the normal vector for the MT1 based meshes.

Obviously, E as well as MWA converge roughly with O(h2) in
both error measures at the beginning. For E this is in line with the
report of Farutin et al. At larger resolutions MWA appears to decay
as O(h) for the maximum error. We remark that the computation
of n by normalization of ∆Sx for Methods C and D often leads to
errors that are an order of magnitude larger.

The subdivision based Method S is a bit different. Its maximal
error tends to behave first as O(h2) and then as O(h), similar
to MWA, although the absolute values are roughly one order of
magnitude smaller. The major error source are nodes that are
members of the ring-1 neighborhood of vertices that have only five
neighbors, i.e. where the surface is only C1 smooth. On the other
hand, the majority of the surface is C2 which leads to the observed
O(h3) convergence of the average error.

Considering the inhomogeneous mesh with 3914 triangles,
bothMWA andMethod E are found to be sensitive to irregularities,
albeit E is a bit less affected. Furthermore, both show similar
behavior on the second mesh type MT2, except that MWA decays
as O(h) starting with 5120 elements (see Fig. B.19 in Appendix B).

3.3. Mean curvature

The mean curvature H is one of the central ingredients for the
computation of the bending energy (cf. Eq. (1)) and, subsequently,
the bending forces. However, it is explicitly required only for
Methods C, D and E. Method S yields it as a byproduct. The
mean curvature from these four approaches is shown in Fig. 4
in comparison to the analytical result. Correspondingly, Fig. 5
presents the maximal and average errors.

Method C seems to retain a systematic maximal error because
the results at a fewnodes slightly above θ = 3π/8 do not converge
to the correct result (identical to the highlighted nodes in Fig. 9(c)).
These nodes have six neighbors, just like most of the other
vertices and thus are not very ‘‘special’’ at first sight. For further
analysis we turn to Xu [80] who gives a sufficient condition for
convergence: Firstly, the node must have six neighbors. Secondly,
there must exist a local parametric representation q ∈ R2 of
the surface such that qj = qj−1 + qj+1 − qi where i indicates
some node and j enumerates its six neighbors. If we choose at
each node a coordinate system with two axes in the tangential
plane and the last axis along the (analytic) normal vector, we
find that this condition is most severely violated at precisely the
non-converging points. This suggests why we find a systematic
error. Note, however, that this is merely a sufficient rather than a
necessary condition for convergence. As such, convergence can and
is observed at other nodes although they also violate this condition
or do not even have six neighbors. The same is observed for the
MT2 meshes (Fig. B.20 in Appendix B).

Both Method D’s and E’s approaches lead to convergent results
regarding the maximum error. The rate is roughly O(h) for
Method E which is consistent with Ref. [68]. Hence we find that
algorithmE is superior to C as also noticed by Zinchenko et al. [104]
for two variants of the methods. For D the rate seems to be
≈O(h2), albeit it has error levels that are typically half to one
order of magnitude larger than E for the present case. Notice that
D’s operator can actually be proven to converge point-wise for
arbitrary meshes and hence also in the here employed Euclidean
norm [84], a fact which is reflected in our results. Method S has
problems with the C1 regions as error levels quickly stagnate. The
absolute values are still comparably small.

With respect to the average errors, algorithms C–E display the
same behavior: they converge as O(h2). Method D is still the one
with the largest errors. E and C are alike, with E having a slight
edge. The subdivision scheme S appears to converge faster at first.
At higher resolutions, the rate reduces to O(h2).

Finally, we consider the inhomogeneous mesh with 3914
triangles. Algorithm E shows a serious increase of the error while
it is tremendous for Method C. The largest errors for C come from
nodes with only four neighbors, although some of them show
smaller deviations (also note that the meshes with NT = 512
and NT = 2048 have vertices with four adjacent nodes). On the
other hand, Method D is largely unaffected by the irregularities.
This indicates that it is more robust than the other algorithms, an
observation which can be attributed to the larger support [84].

We remark that the MT2 meshes lead to the same conclusions,
except that the error magnitudes can be significantly larger
(cf. Appendix B). The Gaussian curvature is analyzed in the
supplementary material, revealing similar results (see Appendix
C).

3.4. Laplace–Beltrami operator of the mean curvature

The remaining quantity that needs to be computed for Eq. (10)
is the Laplace–Beltrami operator of the mean curvature, ∆SH . As
described in Section 2.4, it is calculated by applying the Laplace
discretization idea again to H for C, D and E. Method S does not
easily allow the computation of ∆SH . Considering the results from
the previous Section 3.3, we do not expect Method C to converge.
Our findings are shown in Figs. 6 and 7.

Obviously, the expectation is met: Method C fails to converge
entirely. The maximum of the error even diverges quickly as
O(1/h2) because of the troublesome points already identified for
the mean curvature. Algorithm E at first appears to become more
precise with higher resolutions in the maximum error measure,
but then appears to diverge with a rate of ≈O(1/h) for NT >
5120. Indeed, Farutin et al. report the same trend. In the context
of Stokes flow, however, they found that it can still provide very
good results [68] (also see the average error and Section 4). Even
the deviations for the rather lenient Method D fail to decay with
resolutions beyond 20,480 triangles.

Regarding the average error measure, Method C retains a
systematic deviation.Methods D and E both convergewith roughly
O(h2) in the presented case. Unfortunately, for meshes of type
MT2 we observe an entirely different behavior (see Fig. B.21 in
Appendix B): The rate for D is reduced to O(h), and E fails to
converge (although it does not diverge). Hence, D is again much
more robust with respect to different triangulations than E.

This is also reflected in the results for the inhomogeneous
mesh with 3914 triangles (see Fig. 7). Method E and especially C
depict severe difficulties for both the maximal and average errors,
yielding values that are mostly one to two orders of magnitude
larger than for 1280 triangles. In contrast to the previous sections,
Method D also shows some problems for the maximal error,
although it can keep the average error on an adequate level.

3.5. Force density

Finally, we combine all the quantities via Eq. (10) and get the
force density f for Methods C, D and E. Additionally, Methods A,
B and S are applied as described in Sections 2.3, 2.5 and 2.6. We
plot the results in Figs. 8–10. The bending modulus has been set to
κB = 1 in all cases.
Variational formulation. Since the value of∆SH dominates Eq. (10),
it is of no surprise that the errors εf for C, D and E are very similar
to ε∆SH . Notably, Method D appears to converge withO(h) only for
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Fig. 3. The maximum and average of the relative error εn of the normal vector as a function of resolution NT or, equivalently, as a function of the inverse of the mean edge
length h for the RBC shape MT1. MWA is the ‘‘mean weighted by angle’’ algorithm from [101]. Black lines without symbols depict typical scaling behaviors. Results for the
inhomogeneous mesh with 3914 triangles are highlighted by the small vertical line at the top. The numerical values and a breakdown per node as a function of the polar
angle θ can be found in the supplementary material. The results for the MT2 mesh types are in Fig. B.19.

(a) Method C. (b) Method D.

(c) Method E. (d) Method S.

Fig. 4. The mean curvature H of a MT1 RBC obtained from the four different algorithms (symbols) and compared to the analytical result (dashed line) as a function of the
polar angle θ . The errors at each node can be found in the supplementary information (see Appendix C).

the MT2 average error measure but not for the maximal, retaining
a systematic deviation there. The maximal errors for E and C
divergewithO(1/h) andO(1/h2), respectively. The averaged error
remains roughly constant for C, but decays as O(h2) for E. As noted
above, this last rate does not carry over to the MT2 meshes in
Appendix B (Fig. B.23)where E behaves similar to C. To this end, the
error pattern on the surface differs notably betweenMT1 (Fig. 9(e))
and MT2 (Fig. 22(e)).

Force formulation. Regarding the force formulation, Method B is
alike to C regarding the general behavior. However, the latter has
a notable edge over the first. C is also less (but still a lot) affected
by more irregular triangulations. The same holds for MT2 meshes,

too. There are only two possible sources for these deviations, since
both use virtually the same discretization of the Laplace–Beltrami
operator as outlined in Section 2.4.1. The first reason could be the
imperfect surface tiling used for Method B (Voronoi rather than
mixed area). Secondly, the differing approach for the variational
derivative (before and after discretization). A quick check where
we replaced A(i)

mixed with A(i)
Voronoi in Method C (Eq. (11)) leads to

almost identical values as B (except for the inhomogeneous mesh
where the errors are even more extreme). Therefore we conclude
that at least for meshes with mediocre homogeneity the choice of
either force or variational formulation has only a minor influence,
in agreement with [69]. On the other hand, a proper surface tiling
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Fig. 5. Themaximum and average of the relative error εH of themean curvature (MT1). For the numeric values, see the supplementary information (Appendix C). The results
for MT2 are in Fig. B.20.

(a) Method C. (b) Method D. (c) Method E.

Fig. 6. The result of evaluating the Laplace–Beltrami operator on the mean curvature, ∆SH . MT1 meshes. Figures with the corresponding errors can be found in the
supplementary information (see Appendix C).

Fig. 7. The maximum and average of the relative error of the Laplace–Beltrami operator applied to H . MT1 meshes. The results for MT2 are in Fig. B.21. The numeric values
are in the supplementary information (see Appendix C).

turns out to be important. Nevertheless, we remark again that both
methods still exhibit very high sensitivity to the mesh regularity,
and both do not converge.

Method A always shows extreme errors: Not only are the
absolute values orders of magnitude larger than for the other

methods and its maximal error diverges as O(1/h2), but even the
average error increases with the resolution at a rate of O(1/h) for
MT2 meshes (see Fig. B.23 in Appendix B). The major problems
originate from nodes with a different number of neighbors than
six (see Fig. 9(a)).
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(a) Method A. (b) Method B. (c) Method C.

(d) Method D. (e) Method E. (f) Method S.

Fig. 8. The magnitude of the force density f computed via the six different bending algorithms and compared to the analytical result. MT1 meshes and κ̂B = 1. The errors
are displayed in Fig. 9.

(a) Method A: Nodes without six neighbors are
troublesome (also on other meshes).

(b) Method B: Compared to C other nodes cause
problems. In this particular case, the nodes with
five neighbors.

(c) Method C: The problematic nodes here are
not related to five neighbor regions and are
analyzed in Section 3.3.

(d) Method D: The circular patterns indicate an
independence of the errors of the mesh topology.

(e) Method E: A circular pattern similar to
Method D appears. Inclusion of more
neighbor-rings leads to more pronounced
circular patterns (not shown).

(f) Method S: Problems at nodes with only five
neighbors occur, i.e. where the surface is only C1

smooth.

Fig. 9. 3D illustration of the errors εf of the force density from Fig. 8 for 5120 triangles. MT1 meshes. The results for MT2 are in Fig. B.22. Note the scales of the color bars
(for interpretation of the scales, the reader is referred to the web version of this article). A projection of the azimuthal direction onto a single plane can be found in the
supplementary information (see Appendix C).

Method S. The subdivision surface algorithm, Method S, exhibits
a O(1/h2) divergence of the maximal error, just like A, B and
C. The average error also saturates, although with a significantly
smaller value than the others. As noted before and as clearly
visible in Fig. 9(f), the five neighbor regions contain the biggest
troublemakers, most likely because the surface is only C1 smooth
there.
Method E with a larger support. We also tested a slight modification
of Method E that takes into account not just the first ring of
neighbors for the fitting procedure, but also the second and third
rings. The values are included in the tables in the supplementary
material (see Appendix C). In general we found three differences:
First of all, for smaller resolutions (NT 6 5120) the errors are
larger for higher ring orders. Second, the start of theO(1/h) section

in the maximal error measure is postponed to higher resolutions,
but it still exists. Third, they can handle the inhomogeneous mesh
far better but still not as good as approach D. Therefore, we
conclude that taking into account more neighbors benefits the
overall robustness of the fittingmethod (as reported in [82]), albeit
leading to larger errors at mediocre (and thus often practical)
resolutions. This is in line with Method D, which is an extreme
case, having all nodes as support. Indeed, the 3D error pattern of E
(Fig. 9(e)) becomes more similar to that of algorithm D (Fig. 9(d)).
But note that the underlying discretization idea of the latter is
completely different.
Final notes. One also has to emphasize the absolute value of the
errors: Nomethod yields relative maximal errors below 10% for all
considered resolution, and they are often in the >200% regime for
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Fig. 10. Themaximumand average of the relative error of the force density. MT1meshes. The results forMT2 are in Fig. B.23. For the numerical values see the supplementary
information (Appendix C).

irregularmeshes. This illustrates the basic difficulty of computing a
fourth order derivative on triangulated meshes. We remark that it
is theoretically impossible to construct a discrete Laplace–Beltrami
operator that satisfies all expected properties simultaneously [83].

A concise summary of all the results can be found in Tables 2
and 3 using the MT2 meshes for Methods A–E (MT1 is the same
or better) and MT1 for Method S. Due to the revealed mesh
dependencies, the exact quality of the algorithms highly depends
on the individual case. Still we are positive that the tables can serve
as a general guideline.

4. An elastic capsule in shear flow

4.1. Basic setup

We now analyze the performance of the bending algorithms
in the context of Stokes flow. Despite the sometimes very large
deviations compared to the analytics as presented in the previous
section, one can expect a better performance in such an application
[68,69]. As already noted above, viscous flows lead to an averaging
of the errors.

We consider an initially spherical capsule of radius R placed
in a linear shear flow with shear rate γ̇ as illustrated in Fig. 11.
The Reynolds number is much smaller than one. This is an often
studied system and performance test case in the recent literature
[1–4,8,10,55,62,69,71,75,102,113,114], also motivated by several
experiments that displayed varying results [14,59,115].

Table 2
Summary of the convergence results for the RBC. The symbol indicates convergence
to zero errors, convergence with a systematic error and divergence as the
resolution is increased. K is the Gaussian curvature, H the mean curvature and f the
force density. Note that only in D the average errors of the force density seem to
converge to zero, while no algorithm shows convergence of the maximum error.

Table 3
Summary of problematic behavior for the inho-
mogeneous mesh. means no troubles, labels
problems only in the maximal but not in the av-
erage error measure and indicates a significant
increase of the deviations in both error measures.

Fig. 11. 2D illustration of the linear shear system. The actual simulation is three-
dimensional. The spherical capsule deforms to an ellipsoid-like shape. a is the
largest and c the smallest half-axis, while θ is the inclination angle. The membrane
rotates around the object’s centroid (the so-called ‘‘tank-treading’’ motion).

The infinitely thin capsule surface is endowed not just with
a bending rigidity, but additionally with a shear elasticity as
described in the next Section 4.2. Its inside is filled with a
Newtonian fluid having the same viscosity as the ambient flow. It
is well known that for not too large shear rates the shape of such
an object becomes approximately an ellipsoid. This state is usually
described by the Taylor deformation parameter D :=

a−c
a+c with

the largest and smallest semi axes a and c , respectively, and the
inclination angle θ between the x-axis and a. We extract D and θ at
each time step from an ellipsoid with the same inertia tensor [48,
116].
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The system parameters can be cast into two dimensionless
values [113]: the dimensionless shear rate (or elastic capillary
number) G :=

µγ̇ R
κS

and the dimensionless ratio between shear
and bending resistance κ̂B :=

κB
R2κS

. κS is the shear modulus
for the in-plane tensions (compare the next section). Note that
different conventions exist in the literature. Furthermore, the
reference state for these in-plane tensions is taken to be the initial
sphere, whereas the bending reference state is a flat sheet (also
see Section 2). Numerically, the sphere is constructed using Loop’s
subdivision as presented in Section 3.1 (MT1), just without the
final transformation to the RBC shape. We consider 320, 1280 and
5120 triangles as well as the inhomogeneous 3914 triangle mesh.
The results with MT2 meshes are practically identical and will
therefore not be discussed any further.

4.2. In-plane forces

Apart from the bending forces, we additionally take into
account elastic in-plane tensions to allow for comparisonswith the
existing literature. We choose the widely used neo-Hookean law
(e.g. [3,53]) whose in-plane energy density due to stretching can
be written as

ϵS =
κS

6


I1 +

1
I2 + 1

− 1


. (18)

Other forms exist in the literature. I1 and I2 are the strain invariants.
They are related to the principal in-plane stretch ratios λ1 and λ2
via

I1 = λ2
1 + λ2

2 − 2 and (19a)

I2 = λ2
1λ

2
2 − 1. (19b)

The total energy is given by the surface integration

ES =


S0

ϵS dS0, (20)

where the surface S0 denotes the surface in the reference (i.e. initial)
state.

Assuming that the deformation varies linearly over the
triangles, the force is then obtained via the finite element method
by performing the derivative of Eq. (20) with respect to the node
positions x(i)

F(x(i)) = −
∂ES
∂x(i)

(21)

analytically, just like it was done for the bending forces in
Section 2.3. Section 2.6 is used to arrive at the force density. The
details are elaborated in Refs. [1,28] and will not be repeated
here. We remark that this method gives very good results when
compared with the literature, as shown below in Section 4.4.

4.3. Flow solvers

We now describe the two employed flow solvers: The
Boundary Integral method (BIM) and the Immersed–Boundary
Lattice–Boltzmann method (LBM). As the main focus of this
article is on the computation of bending forces, we will keep the
description fairly brief.

4.3.1. Boundary Integral method
The Boundary Integral method was first applied in the context

of Stokes flow by Youngren and Acrivos in 1975 [42]. Its basic
assumption is that the Reynolds number is much smaller than

unity. Themethod then exploits the fact that the Stokes equation is
linear, and can therefore be rewritten as an integral equation [43,
44]:

uj(x) = u∞

j (x) −
1

8πµ


S

3
i=1

△f hi (y)Gij(y, x) dS(y),

x ∈ S, j = 1, 2, 3. (22)

x is a point on the surface S of the capsule that is suspended
in the infinite fluid domain, u is the surface velocity and µ the
dynamic viscosity of the inner and outer fluids. u∞(x) = γ̇ x3êx
is the imposed shear flow with the shear rate γ̇ and the shear
plane perpendicular to the z-direction. êx denotes the unit vector
along the x-axis. Finally, Gij(y, x) := δij/r + rirj/r3 is the free-
space Green’s function, whereas r := y − x and r := |r|. Thus,
given the traction jump △f h via formula (4), this integral equation
allows us to compute the velocity at each node of the capsule’s
surface. Afterwards, they aremovedwith the flow according to the
kinematic (no-slip) condition [44]

dx
dt

= u(x), x ∈ S, (23)

where t denotes the time.
Methods A–E. The first five Methods A–E directly use the
discretization of the surface S with flat triangles. Integrals
are performed by a Gaussian quadrature with 7 points per
triangle [117]. Necessary quantities at these points are obtained
via linear interpolation from the nodes [43]. The polar integration
rule is used for singular triangles [118]. The ordinary differential
equation (23) is solved using the Cash-Karp method [119] which
is an explicit embedded Runge–Kutta scheme of order four and
five, i.e. an adaptive step size algorithm. Its relative tolerance is
fixed to 10−7 while the absolute tolerance is 10−6R. Decreasing
both by a factor of 10 did not change the results significantly. Note
that the mesh remains very homogeneous throughout the whole
simulation thanks to the elastic forces acting between the nodes;
no additional mesh control scheme was necessary.

Solving Eq. (22) can lead to a volume drift (amere discretization
artifact). To counter it, we first rotate the 3N-dimensional solution
vector onto the hyperplane defined by the discretized version of
the no-flux condition


S u · n dS = 0, similar to the approach

employed in Ref. [68]. This reduces the drift but cannot eliminate
it completely. Hence, after each time step we additionally rescale
the object as described in [68]. This leads to a perfect conservation
of volume.
Method S. Method S uses a completely different code basis
and is entirely based on Loop’s subdivision surface algorithm
(cf. Section 2.5). I.e. Eq. (22) is computed using the smooth limit
surface. Triangles, where the Green’s function has a singularity,
are treated as in Ref. [68]. The time evolution (23) is solved using
the trapezoidal rule, a fully implicit scheme. The time step size
is fixed to γ̇△t = 10−4. No remeshing was performed during
the simulations. Furthermore, the volume drift remained below
0.005% (320 triangles) and 0.0002% (>1280 triangles) during all
simulations. See Ref. [70] for more details.

4.3.2. Lattice–Boltzmann
The Lattice–Boltzmann method is a mesoscopic method for

solving fluid problems which is based on a discretization of space
and velocities. Over the last couple of years it has become a
well-established method. We omit the details here. They can be
found for example in Refs. [45–47]. We use the D3Q19 scheme as
provided by the ESPResSo package [120,121].

For the capsule we implemented the Immersed Boundary
Method (IBM) into ESPResSo [120], following mostly the works of
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Krüger [28,48]. Besides the elastic and bending forces, we add an
additional force to minimize deviations from the initial volume as
in [28], controlled by the modulus κV. The source code is publicly
available in the current development branch of ESPResSo.

To solve the dynamics, the explicit Euler scheme with the time
step set to γ̇△t = 2.5 × 10−5 and the LBM grid size to 13.5/R ≡

1 are used. Contrary to BIM, periodic boundary conditions are
(necessarily) employed. The simulation box size is set to 9.5R ×

9.5R in the lateral direction and 19.0R in height (changing it does
not alter the results significantly). The shear flow is realized by
placing two plane parallel walls moving in opposite directions
at the top and bottom of the simulation box, implemented with
the bounce-back boundary condition. Before inserting the sphere
in the center of the box, we wait until the shear flow is fully
developed. The Reynolds number Re = Rv/ν, with v the velocity of
the walls and ν the kinematic viscosity, is always smaller than 0.3.
The lattice Mach number is always smaller than 0.01. Finally, the
modulus of the volume conservation force is fixed to κV = 100κS
(in simulation units), leading to amaximal volume drift of less than
0.1% in the presented simulations.

4.4. Verification of the codes

Extensive testswere carried out to ensure the correctness of our
three simulation codes. An example for κ̂B = 0 (i.e. without any
bending) can be found in Fig. 12 that compares the BIM code of
Methods A–E with several references found in the literature. Some
of them use vastly different simulation methodologies. Notice that
the simulations remain stable despite the occurrence of buckling
thanks to the small effective bending rigidity inherent to finite
element methods [3,55,76]. A comparison with the LBM code can
be found in Fig. 12(a). For κ̂B ≠ 0 consider Fig. 17. Method S can be
seen to produce identical results in Fig. 14.

All in all, the images show very good agreement, both between
BIM and LBM as well as with the literature. The results were
checked to be well converged, as also shown in the next section.
We remark that the data in Section 3 was produced using the code
basis of the two BIM implementations.

4.5. Analysis of the different bending algorithms

4.5.1. Convergence with resolution
We now compare the performance of the different bending

algorithms for the capsule with both shear and bending resistance.
As a starting point we investigate the convergence of each method
with respect to the number of triangles used to discretize the
surface. Choosing G = 0.2 and κ̂B = 0.15, the results in Fig. 13
are obtained.

Method A appears to be rather insensitive to the resolution
which is somewhat surprising considering the increase of its error
with the number of triangles (Fig. 10). However, it has serious
troubles with the inhomogeneous mesh, just like in the analytic
comparison, leading to an oscillatory graph. In 3D this is notable
as a surface with slight ‘‘bumps’’. On the other hand, Method C and
especially S are the fastest converging algorithms, giving similar
results as the other approaches but already at 320 triangles. This
observation fits well with the average error in Fig. 10(b) which
roughly remained constant. Furthermore, this also indicates that
indeed the average rather than the maximum error is the more
meaningful measure for the present setup. After all, the maximum
error diverged as seen in Fig. 10(a), but this behavior is not reflected
here. However, C obtained very high errors for the inhomogeneous
triangulation even in the average measure, although in shear flow
no effect is observed (Fig. 13(c)). Method B is slightly inferior
regarding convergence compared to C, but otherwise identical.

E reaches its limit at NT = 1280. The slowest convergence is
exhibited by Method D.

We finally note that very similar observations are made for
G = 0.05 and κ̂B = 0.0375 and for the inclination angles as
depicted in the supplementary information (see Appendix C). The
same holds for meshes of type MT2.

4.5.2. Direct comparison of the methods
A direct comparison of the six algorithms for a resolution of

5120 triangles using BIM is shown in Fig. 14. For the small shear
rate and bending modulus in Fig. 14(a) only minor differences
are observed. This shows that for small deformations the actual
method plays only a secondary role, at least for sufficiently
homogeneous meshes. However, larger deviations are seen if the
parameters are increased to G = 0.2 and κ̂B = 0.15 as shown in
Fig. 14(b).Most notably,MethodA deviates strongly from the other
five methods. This might be understandable from the large errors
thatwere observed in Section 3 for this algorithm. Tsubota [69] also
noticedmajor differences betweenMethods A and C. Furthermore,
B–E and S coincide almost perfectly, with deviations in the <1%
regime. For these we observed average errors that differ by
approximately one order of magnitude (Fig. 10(b)), so this is
somewhat surprising. We conclude that all methods except A are
roughly equally well suited for this setup.

To assess a possible influence of the flow solver, we also
simulate the systemwith Lattice–Boltzmann, restricting ourselves
here to Methods A and B which directly yield the nodal forces F as
required by our LBM implementation. The results in Fig. 15 show
very good agreementwith the BIMdata, proofing that the observed
differences are inherent to the bending algorithms themselves and
largely independent of the flow solver.

4.5.3. Performance considerations
An important criterion in the selection of the most suitable

bending algorithm for a given problem will be its execution
speed. The approaches examined in the present work exhibit
significantly different performance characteristics. Most notably
the computational complexity of Method D and S are O(N2) while
the remaining algorithms are O(N). Indeed, all methods except D
and S require (mostly) only the first ring of neighbors. We refrain
here from comparing absolute execution times as varying degrees
of optimization levels (caching of quantities, parallelization, SIMD
vectorization, etc.) and the hardware may strongly influence these
times. But in most cases one expects to find that one evaluation of
Method D or S is the slowest (due to the inferior scaling), followed
byMethodE (because the fitting procedure involves solving several
small linear systems), and the remaining algorithms being the
fastest.

Instead, we employ an implementation-independent indicator,
namely the required time step △t to remain in the stable region.
In general, stiffer systems require smaller time steps if explicit
integrators are used. Since we use an explicit adaptive time
stepping algorithm for the BIM implementation of Methods A–E,
the automatically chosen values for△t can serve as an indicator for
the stiffness and the overall performance of dynamic simulations.
Table 4 shows the corresponding data for two different shear rates
and bending moduli.

We first note that an increase of triangle count by a factor of
four leads to a decrease of the step size by roughly one order of
magnitude for all algorithms—except for Method D. This algorithm
also exhibits the largest of all time steps. This can be attributed to
its already mentioned robustness which in turn originates from its
large support (cf. Sections 2.4.2 and 3.5). The smallest time step is
required byMethodA, being roughly a factor of 3 smaller than for B,
C and E (which all have approximately the same△t). Moreover, the
inhomogeneous mesh takes its toll for Methods A, C and especially
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(a) Time evolution of the Taylor deformation parameter D for
various dimensionless shear rates G. Results by Huang et al.,
2012 [71], Le, 2010 [4] and Zhu 2015 [10] are not included for
clarity but match well with our BIM.

(b) Stationary value of the deformation parameter as a function of
the shear rate. The stationary value is computed by averaging the
deformation parameter for γ̇ t ∈ [5; 10].

Fig. 12. Time evolution and stationary values of the Taylor deformation parameter D for a spherical capsule without bending resistance (κ̂B = 0) and 5120 triangles in
shear flow. We checked that the inhomogeneous mesh with 3914 triangles leads to similar results for G = 0.05 and G = 0.2. Comparison with the values of Le and Wong,
2011 [113] (projection method & IBM, subdivision surface), Le et al., 2009 [75] (projection method & IBM, curved triangles), Pozrikidis, 2001 [2] (BIM, curved triangles),
Tsubota, 2014 [69] (BIM, flat triangles), Barthès-Biesel et al., 2010 [3] (BIM, B-Splines) and Sinha and Graham, 2015 [8] (BIM, flat triangles).

(a) Method A. (b) Method B. (c) Method C.

(d) Method D. (e) Method E. (f) Method S.

Fig. 13. Taylor deformation parameter as a function of time after turning on the shear flow for BIM. G = 0.2 and κ̂B = 0.15. We find that for almost all algorithms 320
triangles are too coarse to obtain converged results, whereas the curves for 1280 and 5120 triangles are almost indistinguishable. Method A shows significant changes for the
inhomogeneous mesh with 3914 triangles. Graphs of the inclination angle and results for a different shear rate can be found in the supplementary material (see Appendix
C).

B, leading to step sizes even below or equal to the one for 5120
triangles. Out of the three, C performs the best but cannot compete
with E or even D.

The general effect of decreasing step sizes with resolution
is explained by Boedec et al. [58]: More triangles imply that
oscillatory modes with shorter wavelengths are resolved, but
shorter wavelengths in turn mean faster typical time scales for the
bending forces. Hence, the more triangles, the smaller the shortest
occurring time scales and thus the smaller the necessary △t .

Furthermore, considering the data without any bending (κ̂B =

0), one notices the tremendous effect the inclusion of bending
effects has on the step size and thus on the overall performance.
For mediocre resolutions, △t is often two orders of magnitude

larger than with bending. This relates to the general stiffness of
the appearing fourth derivative. A usual remedy is to work with
an implicit or semi-implicit time stepping scheme, as we did in
Method S. See for example Refs. [58,77].

4.5.4. Comparison with the literature
Before we can compare our simulations with the literature,

we comment on the constitutive bending law. Namely, some
references use the linear relation [2,10,20,75]

m = κBB (24)
for the bending moment m, where B is the Cartesian curvature
tensor. Pozrikidis [2] showed that this model is equivalent to
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(a) G = 0.05, κ̂B = 0.0375. (b) G = 0.2, κ̂B = 0.15.

Fig. 14. Direct comparison of all bending algorithms for BIM and 5120 triangles. Insets: Magnification of γ̇ t ∈ [5; 10].

(a) G = 0.05, κ̂B = 0.0375. (b) G = 0.2, κ̂B = 0.15.

Fig. 15. Comparison of the LBM results with BIM for two different shear rates and bending moduli. In both cases 5120 triangles were used.

Table 4
Average dimensionless time step size γ̇△t for the different bending algorithms and resolutions as chosen by the Cash-Karp algorithm for BIM. The relative tolerance of the
time stepping scheme is 10−7 and the absolute tolerance is 10−6R. We also included the data without any bending (κ̂B = 0 column). The corresponding deformations can
be seen in Figs. 12(a), 13 and the supplementary information (see Appendix C). The average is performed over △t in the range γ̇ t ∈ [5; 10].
Triangles κ̂B = 0 A B C D E

320 0.081 0.016 0.060 0.057 0.085 0.057
1280 0.064 0.0015 0.0057 0.0056 0.063 0.0060
5120 0.029 0.00014 0.00053 0.00052 0.0085 0.00056

3914 (inh.) 0.023 0.00014 0.00014 0.00040 0.013 0.0017

(a) Average γ̇△t for G = 0.05, κ̂B = 0.0375.

Triangles κ̂B = 0 A B C D E
320 0.20 0.013 0.052 0.050 0.15 0.048
1280 0.16 0.0012 0.0050 0.0049 0.078 0.0051
5120 0.13 0.00011 0.00046 0.00046 0.0076 0.00048

3914 (inh.) 0.11 0.00012 0.000023 0.00035 0.011 0.0013

(b) Average γ̇△t for G = 0.2, κ̂B = 0.15.

the Helfrich law from Eq. (1) (also see [53]). Similar, he remarks
that for zero reference curvatures the model introduced by Zarda
et al. [122] is the same, too.

Keeping this inmind,we compare the results from the literature
in Figs. 16 and 17. The data obtained using Method C (BIM with
flat triangles) andMethod S (BIMwith subdivision surfaces) is also
included. Both are representative for the remaining algorithms as
well as the LBM flow solver as has been shown in Fig. 14, with the
sole exception of Method A.

Observing Fig. 16, we note that the values scatter a lot (.20%).
The source is not easily identified. The algorithm for the shear

elasticity and the flow solver should have no influence, as we
observe good agreement between our BIM and LBM (Fig. 15) and
with the literature for κ̂B = 0 (Fig. 12) for all references. We also
rule out errors in our implementation of the bending forMethods A
and C: Tsubota [69] employs virtually the same algorithms and
discretizations as we do, and his results agree with ours extremely
well (Fig. 17). Also Method S, which uses a completely different
code basis and, additionally, subdivision surfaces, matches almost
perfectly with the remaining methods except A. Furthermore,
we carefully checked that (apart from the explicitly mentioned
differences) all references use the same physical laws.
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Fig. 16. Comparison of the deformation parameter for G = 0.05 and κ̂B =

0.0375 from the recent literature with Method C (BIM, 5120 flat triangles) and
Method S (BIM, subdivision surface with 5120 elements). All references use the
same physical parameters, except for Pozrikidis [2]who used aHookean elastic law.
All use the Helfrich or the equivalent linear bending model from Eq. (24), except
Huang et al. [71] who employs the also equivalent bending model introduced by
Zarda et al. [122] (see main text). However, the employed flow and discretization
algorithms vary greatly. We note that our LBM simulations give the same results as
Method C (Fig. 15) and that both BIM and LBM agree well without bending with the
literature as shown in Section 4.4.

Fig. 17. Comparison of the deformation parameter for κ̂B = 2/15 (once for
G = 0.05 and once for G = 0.2) for Methods A and C with Tsubota, 2014 [69].
5120 triangles. Method A is virtually identical to model KN from [69], Method C is
essentially alike to model H. Note that Tsubota uses BIM, 4604 flat triangles and the
same physical conditions.

Considering the agreement for κ̂B = 0, this once again
emphasizes the huge difficulty inherent in the computation of the
bending forces.

5. Conclusion

To summarize, we presented six different algorithms to
compute the bending forces on 3D meshes discretized with flat
triangles. They are all based on the famous Canham–Helfrich
constitutive law for the bending energy, but differ in their
numerical implementation, using well-known ingredients and
new developments. The methods, denoted by A–E and S, can be
sorted into three different categories, depending on the variational
derivative being performed before (‘‘force formulation’’) or after
(‘‘variational formulation’’) the surface discretization. Method S
is somewhat set apart from the others because it uses the finite
element method to obtain the force density. Their characteristics
were collected in Table 1 (Section 2.2). In short: Method A contains
a sum over all angles between the triangles’ normal vectors,
whereas Method B uses a variant of the cotangent scheme. The
same holds for Method C, except that it employs the variational
formulation and a slightly different measure for the area per node.
Moreover, Method D is based on a kernel of the heat equation,
Method E fitsmultiple parabolas onto the surface components, and
Method S uses a subdivision scheme.

We then analyzed the behavior of the algorithms quantitatively
by comparing their various components such as the mean
curvature H or the Laplace–Beltrami operator of H (essentially a
fourth order derivative) and finally the bending force itself with
analytic results obtained for the typical red blood cell shape.
A concise overview of the results was given in Tables 2 and
3 (Section 4.1). Regarding the maximum error, only Method D
provides an acceptable approximation, being also the most robust
on inhomogeneous meshes. No method converged at all nodes. If
the errors are averaged over the entire mesh, Methods B–E and

S give acceptable errors, but only D actually shows convergence.
In general we found that the more vertices an algorithm takes
into account to compute the values at a single node, the
better the overall robustness. Hence, all Methods except D
depict high sensitivity to the regularity of the mesh. No major
quality differences regarding the underlying principle of force
and variational formulations (before and after discretization) were
observed.

As a physical application we considered an elastic capsule in a
viscous shear flow. All approaches gave similar results with the
exception of Method A which showed significant deviations. Still
this illustrates that the behavior of some single individual points
is of only minor concern for the purpose of hydrodynamics in the
small Reynolds number regime. Furthermore, a small review of
the existing literature employing different surface discretizations
revealed large deviations for the hydrodynamic results, illustrating
again the tremendous difficulty inherent with computing a fourth
order derivative even on higher order surface approximations.

The results for the individual methods can be summarized as
follows:

• Method A showed the largest errors of all the methods for
the force density, quickly diverging in both the maximal and
sometimes even the average error measure. The hydrodynam-
ics were noticeably different compared to the other algorithms,
especially for the inhomogeneous mesh. Hence it is very sensi-
tive to irregularities. Furthermore, it often required the smallest
step size in order to remain in the stable region. Even the theo-
retical relationship to Helfrich’s law is somewhat ‘‘blurred’’ be-
cause of the shape-dependent relationship between the numer-
ical parameterκB from Eq. (6) and the physical bending mod-
ulus κB. On the other hand, it is the most easily implemented
method.

• Method B turned out to be similar to Method C for homoge-
neous meshes, but is somewhat worse for inhomogeneous tri-
angulations regarding errors and required step size.
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• Method C depicted diverging behavior for the maximal error
measure of the force density f , while the deviations stayed
roughly constant in the average measure. However, the
algorithm displayed troubles with the inhomogeneous mesh.
The hydrodynamical results were very similar to Methods B–E
and S, and the required step size was comparable to B and E.

• Method Dwas by far the most robust, showing convergence for
f on the regular meshes (albeit with a systematic deviation in
the maximal error measure) and working reasonably well on
the inhomogeneous one. It also leads to the largest step sizes.
Unfortunately, one evaluation is very expensive since it scales
as O(N2) where N are the number of nodes.

• Method E is similar to C as themaximal errors for f diverged and
the average remained roughly constant. However, it handled
the irregular mesh better than Methods A–C but still worse
than D. The required step size was comparable to Methods B
and C.

• Method S in general showed behavior alike to Method C.
However, it provided errors that were significantly smaller. The
complexity is O(N2).

When taking the results for the systems investigated here as
general guidelines, we make the following recommendations if
one wishes to implement the Helfrich law for bending forces on
triangulated meshes:

• MethodD is in principle the best algorithmdue to its robustness
and often acceptable convergence properties. It should be
chosen if performance is no issue and the resolution is
sufficiently high. Therefore it is currently the best choice for
computer graphics applications. Unfortunately, it is most likely
too slow for dynamic simulations, which also often need to
work with relatively coarse meshes where it performed below
average.

• Method S is a good choice for homogeneous meshes due to the
comparably small errors, although it does not provide proper
convergence. It should especially be chosen over E if other
parts of the numerical algorithm (such as surface integrals)
can benefit from the subdivision surface representation. The
O(N2) scaling has a small prefactor, which means that it is
no bottleneck for practical resolutions. The major error source
were nodes without six neighbors, indicating that it is not well
suited for more irregular meshes.

• Method E is the second best choice if onewishes to staywith flat
triangles in all parts of the numeric implementation. The reason
is that it is also relatively robust, but has worse convergence
properties than D (similar to S). Compared to e.g. algorithm C,
the errors for f were always smaller. Furthermore, it has a
much better computational complexity thanMethod D, making
it suitable for larger simulations.

• Method C is inferior to Method E and S regarding absolute
errors, and hence E or S are usually preferable. The exception
might be if performance issues arise: C can be implemented
more efficiently since it does not involve solving linear systems.
We remark that it provides very good results for the shear flow
setup, even for more irregular triangulations.

• Method B has similar stiffness and implementation character-
istics as Method C, but performs worse especially for the inho-
mogeneous mesh. Depending on the application, the only ad-
vantage compared to C might be that it directly yields a force
rather than a force density.

• Method A can be used if the goal is not to approximate the
Helfrich model but to just include ‘‘some’’ bending resistance,
i.e. in case Method A is taken as the model itself. Another
useful application would be to prevent the mesh from buckling
e.g. in shear flow simulations (i.e. for the purpose of numerical
stability [29]). In this case we suggest to use the small angle

approximation from Section 2.3.1 for efficiency reasons. Note
that the bending modulus must be chosen sufficiently small
in order to keep the required step size large and the physical
impact as small as possible. In any other case, one of the other
algorithms should be preferred.

As a future research direction, a promising approach would be
to mix the algorithms. For example, Method E often showed the
smallest errors for the mean curvature H , while Method D is the
most robust. Hence it might be worthwhile to use approach E for
H and D for the Laplace–Beltrami operator of H .
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Appendix A. Derivation of the force for Method B

In this section we provide the derivation of the force F(x(l)) at
some node x(l), l = 1, . . . ,N via Method B from Section 2.3.2. N is
the number of surface nodes. We start by writing Eq. (8) as

EB ≈
κB

2

N
i=1

E(i)
B , (A.1)

where

E(i)
B := 2


j(i)


x(i)

− x(j)

Tij

2


j(i)

l2ijTij
, i = 1, . . . ,N, (A.2)

the sums with j(i) are sums over all neighbors j of node i, and

Tij := cotϑ (ij)
1 + cotϑ (ij)

2 , lij := |x(i)
− x(j)

|. (A.3)

The angles ϑ
(ij)
1 and ϑ

(ij)
2 were already defined in Section 2.3.2.

See Fig. 1 for a sketch. We now require an analytic expression for
the force F(x(l)) from Eq. (5) at each node x(l), with the energy
from Eq. (A.1). For this, we compute the k’th component of the
gradient ofE(i)

B with respect to the vertex x(l):

∂E(i)
B

∂x(l)
k

= 4


j(i)


x(i)

− x(j)

Tij

j(i)
l2ijTij

·


j(i)


x(i)

− x(j) ∂Tij
∂x(l)

k

+ Tijêk

δil − δjl



− 2


j(i)


x(i)

− x(j)

Tij

2


j(i)

l2ijTij

2


j(i)


Tij

∂(l2ij)

∂x(l)
k

+ l2ij
∂Tij
∂x(l)

k


. (A.4)
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(a) Homogeneous mesh MT2 with 5120 triangles, obtained by refining
an icosahedron by placing new nodes in the middle of edges and
moving them out onto the sphere.

(b) Inhomogeneous mesh with 3848 triangles derived from MT2,
obtained via Rivara’s longest-edge bisection algorithm.

Fig. B.18. Illustrations of the typical RBC shape discretized with the MT2 approach. See Fig. 2 for the MT1 meshes.

Fig. B.19. Themaximum and average of the relative error εn of the normal vector for theMT2mesh. The versionwith theMT1mesh can be found in Fig. 3, and the numerical
values in the SI (see Appendix C).

Here, êk is the k’th canonical unit vector and δil the Kronecker
symbol. Continuing, we find

∂(l2ij)

∂x(l)
= 2(x(i)

− x(j))(δil − δjl). (A.5)

Next, we need to express Tij and therefore the angles ϑ
(ij)
1,2 through

the nodes’ positions. Thus, we define

χi,j,j−1 := cosϑ
(ij)
1 =

(x(i)
− x(j−1)) · (x(j)

− x(j−1))

li,j−1lj,j−1
and (A.6a)

χi,j,j+1 := cosϑ
(ij)
2 =

(x(i)
− x(j+1)) · (x(j)

− x(j+1))

li,j+1lj,j+1
, (A.6b)

where j − 1 specifies the ‘‘previous’’ and j + 1 the ‘‘next’’ node
relative to node j of the ring-1 neighbors of vertex i, as seen in Fig. 1.
Circular enumeration is implied. We can now exploit ϑ

(ij)
1,2 ∈ ]0, π[

and write

Tij =
χi,j,j−1

1 − χ2
i,j,j−1

+
χi,j,j+1

1 − χ2
i,j,j+1

. (A.7)

This leads to
∂Tij
∂x(l)

=
1

1 − χ2
i,j,j−1

3/2 ∂χi,j,j−1

∂x(l)

+
1

1 − χ2
i,j,j+1

3/2 ∂χi,j,j+1

∂x(l)
, (A.8)

whereas for m = j − 1 orm = j + 1 we find

∂χi,j,m

∂x(l)
=

1
limljm


(δil − δml) (x(j)

− x(m))

+

δjl − δml


(x(i)

− x(m)) −
ljm
lim

χijm (δil − δml) (x(i)
− x(m))

−
lim
ljm

χijm

δjl − δml


(x(j)

− x(m))

. (A.9)

Substituting Eq. (A.9) into (A.8), and then (A.8) and (A.5) into
(A.4) gives the contribution of node x(i) (and its neighbors) to the
force acting on node x(l). The total force F(x(l)) then follows from
summing over all these contributions and multiplying the result
with −

κB
2 . Obtaining the force density f from F was explained in

Section 2.6.

Pub 1



A. Guckenberger et al. / Computer Physics Communications 207 (2016) 1–23 19

Fig. B.20. Themaximum and average of the relative error εH of themean curvature for theMT2mesh. The versionwith theMT1mesh can be found in Fig. 5, and the numeric
values in the SI (see Appendix C).

Fig. B.21. The maximum and average of the relative error of the Laplace–Beltrami operator applied to H for the MT2 mesh. The version with the MT1 mesh can be found in
Fig. 7, and the numeric values in the SI (see Appendix C).

Appendix B. MT2 mesh

Section 3 from the main text presented the maximal and
average errors for the various Methods for the typical RBC shape
using MT1 meshes. Here we provide the same figures as in
Section 3 for Methods A–E with the MT2 mesh. We highlight the
major differences below.

As a start, Fig. B.18 shows 3D images of the homogeneous
and inhomogeneous MT2 discretizations. Compared to the MT1
versions from Fig. 2, the triangles around nodes with only five
neighbors are somewhat larger. Note that the inhomogeneous
mesh (Fig. 18(b)) has 3848 rather than 3914 triangles because the
edge lengths are different. Hence, the splitting order of the edges
in Rivara’s algorithm is different, and therefore also the finalmesh.

The errors for the normal vector are depicted in Fig. B.19.
We remark that the MT2 mesh reduces the convergence rate of
the maximal error for the MWA algorithm to O(h) at smaller
resolutions than the MT1 mesh.

The results for the mean curvature in Fig. B.20 do not differ
largely in the convergence rates compared to MT1, but in the

absolute value of the maximal errors. Notably, Method C is almost
up to one order of magnitude larger.

For the Laplace of the mean curvature, ∆SH , see Fig. B.21. Here,
the maximal error for the otherwise very robust Method D starts
to increase with resolutions beyond 20,480 triangles (contrary
to the MT1 version, where it stays constant). The rate for
the average error is reduced from O(h2) to O(h). Method E
shows qualitatively different behavior for the average error, too:
Rather than decreasing with ≈O(h2), it remains constant beyond
5120 triangles, i.e. does not converge properly. Furthermore, the
absolute values for Method C are often more than a factor of two
larger.

We finally consider the force density in Fig. B.23. Of course,
the same observation as for ∆SH hold for Methods C–E. Method B
behaves the same as Method C. Moreover, Method A shows
divergence with a rate of roughly O(h) for the average error,
whereas in the MT1 version it stays approximately constant.
Regarding the 3D patterns in Fig. B.22, the most notable change
occurs for Method E. Rather than regular circles, more random
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(a) Method A: As for MT1, nodes without six
neighbors cause troubles.

(b) Method B: Compared to C additional
problematic nodes appear.

(c) Method C: The condition by Xu
(cf. Section 3.3) is violated most severely at the
highlighted nodes.

(d) Method D: Very similar pattern as for MT1,
illustrating its robustness.

(e) Method E: A notably different pattern when
compared to MT1. But: Inclusion of more
neighbor-rings leads again to rings (not shown).

Fig. B.22. 3D illustration of the errors εf of the force density for 5120 triangles with the MT2 meshes. Note the scales of the color bars (for interpretation of the scales, the
reader is referred to the web version of this article). The MT1 meshes were displayed in Fig. 9.

Fig. B.23. The maximum and average of the relative error of the force density for the MT2 mesh. The version with the MT1 mesh can be found in Fig. 10, and the numerical
values in the SI (see Appendix C).

patterns emerge. Inclusion of more rings, however, recovers
circular patterns similar to Method D.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2016.04.018.
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S1 Supplementary information for the comparison with analytical
results

In this section we present additional information, supplementing the results from section 3 and Appendix B from
the main text where we compared the analytical results for an RBC with the numerics. Namely, we provide plots
of the errors as a function of the polar angle θ and numeric tables of the maximal and average errors. The tables
include the various homogeneous meshes MT1 and MT2 as well as the inhomogeneous ones with 3914 and 3848
triangles. See tables S1 and S2 for their properties, and section 3.1 for the underlying difference between MT1
and MT2. Additionally, they list the values for a regular mesh with 5120 triangles whose nodes were shifted
randomly by white noise with amplitude 0.01%× R, where R is the RBC radius. The observed behavior is very
similar to the inhomogeneous mesh. The columns labeled E2 and E3 contain the results for Method E if the ring-2
and ring-3 of neighbors, respectively, are taken into account. Finally, we also discuss the Gaussian curvature.

S1.1 Normal vector
The main part can be found in section 3.2 in the main text. Figure S1 depicts the relative error for the MWA, E
and S algorithms, and tables S3 (MT1) and S4 (MT2) the maximum and average errors, respectively.
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†Aix-Marseille Université, CNRS, Centrale Marseille, M2P2, UMR7340, Marseille, France
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Number of Edge lengths/R Edge angles [◦] Neighbors Constructed
from

Triangles NT Nodes N Edges Min. Mean h Max. Min. Max. Min. Max.

320 162 480 0.163 0.256 0.313 37.3 100 5 6 Icosahedron
512 258 768 0.0660 0.202 0.269 28.8 91.3 4 6 Octahedron
1280 642 1920 0.0744 0.129 0.157 36.8 99.0 5 6 Icosahedron
2048 1026 3072 0.0246 0.101 0.135 28.6 92.4 4 6 Octahedron
5120 2562 7680 0.0336 0.0645 0.0788 36.6 98.3 5 6 Icosahedron
20480 10242 30720 0.0152 0.0323 0.0394 36.5 98.0 5 6 Icosahedron
81920 40962 122880 0.00687 0.0161 0.0197 36.5 97.8 5 6 Icosahedron

3914 (inh.) 1959 5871 0.0407 0.0800 0.159 17.3 139 4 10 320 + Ref.

5120 (±0.01 %) 2562 7680 0.0335 0.0645 0.0789 36.4 98.4 5 6 5120 + noise

Table S1: Statistics of the various employed MT1 meshes for the red blood cell shape from section 3.1 of the main text: Number of triangles,
vertices (nodes) and edges; minimum, average and maximum edge lengths (in units of the large radius R); minimum and maximum angles
between the edges within each triangle; minimum and maximum number of ring-1 neighbors; construction basis. In this work we use the
mean edge length h as the characteristic edge length. The homogeneous meshes are constructed by refining an icosahedron or octahedron
using Loop’s subdivision scheme. The inhomogeneous mesh with 3914 triangles is constructed from the mesh with 320 triangles and successive
longest bisection refinement. For the MT2 meshes, see table S2.

Number of Edge lengths/R Edge angles [◦] Neighbors Constructed
from

Triangles NT Nodes N Edges Min. Mean h Max. Min. Max. Min. Max.

320 162 480 0.176 0.256 0.325 37.4 101 5 6 Icosahedron
512 258 768 0.108 0.206 0.302 29.2 102 4 6 Octahedron
1280 642 1920 0.0882 0.129 0.165 36.9 103 5 6 Icosahedron
2048 1026 3072 0.0536 0.104 0.152 28.7 104 4 6 Octahedron
5120 2562 7680 0.0441 0.0648 0.0826 36.7 103 5 6 Icosahedron
20480 10242 30720 0.0220 0.0324 0.0413 36.6 104 5 6 Icosahedron
81920 40962 122880 0.0110 0.0162 0.0207 36.5 104 5 6 Icosahedron

3848 (inh.) 1926 5772 0.0439 0.0800 0.165 18.3 134 4 10 320 + Ref.

5120 (±0.01 %) 2562 7680 0.0440 0.0648 0.0828 36.6 104 5 6 5120 + noise

Table S2: Statistics of the various employed meshes for the red blood cell shape similar to table S1, but now for the MT2 mesh type.
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Figure S1: The relative error εn of the normal vector as defined in equation (17) (in the main text) of a RBC, obtained via the three different
algorithms. MT1 meshes.
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Triangles MWA E E2 E3 S

320 0.11 0.13 0.34 0.51 0.0097
512 0.081 0.10 0.28 0.45
1280 0.030 0.038 0.12 0.22 0.0015
2048 0.021 0.027 0.085 0.16
5120 0.0076 0.010 0.033 0.065 0.00056
20480 0.0023 0.0026 0.0084 0.017 0.00024
81920 0.00094 0.00065 0.0021 0.0043

3914 (inh.) 0.050 0.042 0.095 0.16

5120 (±0.01 %) 0.0091 0.012 0.033 0.065

(a) Maximum of all nodes.

Triangles MWA E E2 E3 S

320 0.038 0.047 0.13 0.24 0.0028
512 0.026 0.030 0.088 0.16
1280 0.010 0.013 0.040 0.075 0.00030
2048 0.0073 0.0081 0.025 0.049
5120 0.0026 0.0033 0.011 0.021 0.000039
20480 0.00067 0.00083 0.0027 0.0055 0.0000047
81920 0.00017 0.00021 0.00068 0.0014

3914 (inh.) 0.014 0.0080 0.018 0.037

5120 (±0.01%) 0.0028 0.0035 0.011 0.021

(b) Average over all nodes.

Table S3: The maximum and average of the normal vector error εn . MT1 meshes; the MT2 data is in table S4. The row with 3914 triangles is
for the inhomogeneous mesh, and the one labeled “5120 (±0.01 %)” is for a mesh with 5120 triangles whose nodes were shifted randomly by
white noise. Columns E2 and E3 depict Method E with the second and third ring of neighbors taken into account, respectively. A graphical
representation of part of the data was given in figure 3 in the main text. The breakdown as a function of θ can be found in figure S1.

Triangles MWA E E2 E3

320 0.11 0.12 0.34 0.50
512 0.11 0.097 0.29 0.46
1280 0.032 0.040 0.11 0.22
2048 0.038 0.032 0.091 0.17
5120 0.0089 0.011 0.035 0.068
20480 0.0044 0.0029 0.0092 0.018
81920 0.0022 0.00072 0.0023 0.0047

3848 (inh.) 0.070 0.036 0.097 0.17

5120 (±0.01%) 0.011 0.012 0.036 0.068

(a) Maximum of all nodes.

Triangles MWA E E2 E3

320 0.042 0.047 0.13 0.24
512 0.032 0.030 0.092 0.16
1280 0.012 0.013 0.040 0.075
2048 0.0091 0.0082 0.026 0.051
5120 0.0032 0.0034 0.011 0.021
20480 0.00086 0.00085 0.0027 0.0055
81920 0.00023 0.00021 0.00069 0.0014

3848 (inh.) 0.011 0.0080 0.018 0.038

5120 (±0.01%) 0.0033 0.0035 0.011 0.021

(b) Average over all nodes.

Table S4: The maximum and average of the normal vector error εn . MT2 meshes. See table S3 for the MT1 version. A graphical representation
was given in figure B.19 in the main text.
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S1.2 Mean curvature
The analysis can be found in section 3.3 in the main text. In figure S2 we show the relative errors for the Methods C,
D, E and S as a function of the polar angle θ . Tables S5 (MT1) and S6 (MT2) collect the maximal and average
errors.
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Figure S2: Relative errors εH for the mean curvature as defined in equation (17) in the main text. MT1 meshes. Figure 4 shows the actually
obtained values for H. Note that Method C retains high errors especially at a few nodes around θ = 3π/8, as analyzed in section 3.3.

S1.3 Gaussian curvature
Here we consider the Gaussian curvature similar to our investigations on the mean curvature from section 3.3 in
the main text. As noted in the methods section 2.4.2, algorithms C and D both use the same approach while E and
S differ. A and B do not provide it. Figure S3 compares the numerical with the analytical results, figure S4 depicts
the corresponding errors and figures S5 (MT1) and S6 (MT2) as well as tables S7 (MT1) and S8 (MT2) summarize
them. All in all, the behavior is similar to the mean curvature. Notably, Method C fails to converge in the maximal
error measure. The reason are again the points already identified in section 3.3 in the main text. Algorithm E, on
the other hand, converges as O (h) at higher resolutions, while Method S does not converge. Using the average
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Figure S3: The Gaussian curvature of a RBC obtained from the three different algorithms and compared to the analytical result. MT1 meshes.
Note that Method D uses the same approach as C.
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Triangles C D E E2 E3 S

320 0.10 0.92 0.10 0.27 0.51 0.081
512 0.089 0.97 0.079 0.19 0.36
1280 0.041 0.80 0.030 0.078 0.15 0.0046
2048 0.034 0.54 0.018 0.055 0.11
5120 0.017 0.20 0.013 0.027 0.042 0.0042
20480 0.018 0.013 0.0048 0.0095 0.015 0.0043
81920 0.019 0.0032 0.0019 0.0036 0.0054

3914 (inh.) 0.75 0.48 0.091 0.18 0.20

5120 (±0.01%) 0.088 0.20 0.085 0.040 0.047

(a) Maximum of all nodes.

Triangles C D E E2 E3 S

320 0.056 0.20 0.047 0.17 0.29 0.017
512 0.032 0.25 0.029 0.10 0.21
1280 0.015 0.15 0.012 0.041 0.086 0.00092
2048 0.0096 0.096 0.0073 0.025 0.053
5120 0.0041 0.032 0.0029 0.010 0.021 0.00016
20480 0.0011 0.0067 0.00074 0.0025 0.0052 0.000039
81920 0.00029 0.0017 0.00018 0.00063 0.0013

3914 (inh.) 0.16 0.045 0.018 0.031 0.057

5120 (±0.01%) 0.015 0.032 0.014 0.011 0.021

(b) Average over all nodes.

Table S5: The maximum and average of the mean curvature error. MT1 meshes. The corresponding image is figure 5 from the main text, and
the breakdown is picture S2; the MT2 data is in table S6.

Triangles C D E E2 E3

320 0.12 0.90 0.12 0.27 0.51
512 0.100 1.00 0.12 0.21 0.37
1280 0.091 0.98 0.039 0.078 0.15
2048 0.058 0.70 0.045 0.089 0.12
5120 0.085 0.30 0.015 0.025 0.044
20480 0.083 0.018 0.0069 0.0092 0.015
81920 0.083 0.0077 0.0035 0.0046 0.0068

3848 (inh.) 0.58 0.64 0.077 0.13 0.21

5120 (±0.01 %) 0.096 0.31 0.064 0.040 0.052

(a) Maximum of all nodes.

Triangles C D E E2 E3

320 0.056 0.19 0.047 0.16 0.29
512 0.034 0.26 0.037 0.10 0.20
1280 0.016 0.15 0.012 0.040 0.083
2048 0.010 0.094 0.010 0.030 0.055
5120 0.0045 0.033 0.0033 0.010 0.021
20480 0.0012 0.0067 0.00091 0.0028 0.0056
81920 0.00035 0.0017 0.00024 0.00078 0.0015

3848 (inh.) 0.14 0.047 0.016 0.027 0.052

5120 (±0.01 %) 0.015 0.033 0.014 0.011 0.021

(b) Average over all nodes.

Table S6: The maximum and average of the mean curvature error. MT2 meshes. The corresponding image is figure B.20 from the main text.
See table S5 for the MT1 version.
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Figure S4: Relative error for the Gaussian curvatures in figure S3 (MT1 meshes).
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Figure S5: The maximum and average of the relative error εK of the Gaussian curvature. MT1 meshes. For the MT2 version see figure S6, for
the numeric values see table S7.
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Triangles C E E2 E3 S

320 0.19 0.14 0.46 0.75 0.039
512 0.10 0.17 0.22 0.44
1280 0.051 0.035 0.12 0.26 0.012
2048 0.057 0.027 0.070 0.14
5120 0.024 0.010 0.034 0.069 0.0094
20480 0.023 0.0027 0.0093 0.019 0.010
81920 0.023 0.0013 0.0024 0.0050

3914 (inh.) 0.86 0.34 0.19 0.22

5120 (±0.01 %) 0.13 0.12 0.053 0.076

(a) Maximum of all nodes

Triangles C E E2 E3 S

320 0.054 0.051 0.16 0.33 0.020
512 0.035 0.035 0.11 0.22
1280 0.015 0.014 0.047 0.094 0.0016
2048 0.010 0.0082 0.029 0.059
5120 0.0041 0.0037 0.012 0.025 0.00033
20480 0.0011 0.00091 0.0031 0.0064 0.000083
81920 0.00030 0.00023 0.00077 0.0016

3914 (inh.) 0.19 0.030 0.039 0.068

5120 (±0.01%) 0.023 0.023 0.014 0.025

(b) Average over all nodes

Table S7: The maximum and average of the Gaussian curvature error for the MT1 meshes, as shown in figure S5. The MT2 data is in table S8.
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Figure S6: The maximum and average of the relative error εK of the Gaussian curvature for the MT2 mesh types. For the MT1 version see
figure S5, for the numeric values see table S8.
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Triangles C E E2 E3

320 0.21 0.16 0.46 0.74
512 0.24 0.26 0.26 0.46
1280 0.073 0.043 0.14 0.27
2048 0.27 0.073 0.12 0.14
5120 0.069 0.021 0.044 0.076
20480 0.068 0.012 0.023 0.032
81920 0.068 0.0061 0.013 0.018

3848 (inh.) 0.74 0.19 0.24 0.24

5120 (±0.01%) 0.11 0.098 0.061 0.080

(a) Maximum of all nodes

Triangles C E E2 E3

320 0.044 0.047 0.16 0.33
512 0.041 0.041 0.11 0.21
1280 0.014 0.015 0.045 0.090
2048 0.012 0.012 0.031 0.058
5120 0.0043 0.0044 0.013 0.025
20480 0.0012 0.0012 0.0038 0.0074
81920 0.00033 0.00032 0.0011 0.0021

3848 (inh.) 0.16 0.024 0.035 0.070

5120 (±0.01%) 0.023 0.023 0.015 0.025

(b) Average over all nodes

Table S8: The maximum and average of the Gaussian curvature error for the MT2 meshes, as shown in figure S6. The MT1 data is in table S7.

measure, all three show a decay of the error as O (h2). Note that C and E still exhibit the same problems on the
inhomogeneous mesh. On MT2 meshes, no qualitative differences are observed for C and E, but the maximal
errors are up to half an order of magnitude larger.

Because Method D uses the Gaussian curvature K from Method C, one might expect that its error of the total
bending force f is being hampered by the systematic error retained for C. However, the total error is dominated
by the Laplace-Beltrami operator ∆SH rather than K. This can be seen by comparing the corresponding errors
depicted in figures 7 and 10 from the main text.

S1.4 Laplace-Beltrami operator of the mean curvature
Most of the analysis is located in section 3.4 in the main text. Figure S7 depicts the relative errors as a function of
θ , while tables S9 (MT1) and S10 (MT2) list the maximal and average errors.
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Figure S7: The numerical error ε∆SH upon evaluating the Laplace-Beltrami operator on the mean curvature. MT1 meshes. The graphs for
∆SH can be found in figure 6 in the main text.

S1.5 Force density
The major part of the analysis can be found in section 3.5 in the main text. In figure S8 we show the errors as a
function of θ . Tables S11 (MT1) and S12 (MT2) display the numerical values for the maximal and average errors.
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Triangles C D E E2 E3

320 0.62 0.90 0.52 0.88 1.0
512 0.59 0.97 0.49 0.84 0.99
1280 0.32 0.88 0.24 0.56 0.77
2048 2.0 1.9 0.19 0.47 0.68
5120 0.78 0.52 0.23 0.25 0.38
20480 3.4 0.20 0.36 0.29 0.23
81920 16 0.21 0.72 0.56 0.34

3914 (inh.) 50 1.0 2.0 0.92 0.95

5120 (±0.01 %) 5.1 0.55 4.7 0.40 0.39

(a) Maximum of all nodes.

Triangles C D E E2 E3

320 0.23 0.32 0.20 0.35 0.35
512 0.22 0.39 0.19 0.36 0.41
1280 0.098 0.31 0.073 0.19 0.28
2048 0.096 0.30 0.051 0.14 0.24
5120 0.052 0.19 0.022 0.066 0.12
20480 0.042 0.061 0.0064 0.019 0.037
81920 0.043 0.017 0.0022 0.0054 0.010

3914 (inh.) 7.6 0.22 0.25 0.17 0.21

5120 (±0.01 %) 0.51 0.19 0.51 0.077 0.12

(b) Average over all nodes.

Table S9: The maximum and average of the relative error ε∆SH of the Laplace-Beltrami operator of the mean curvature. MT1 meshes; the MT2
data is in table S10. A graphical representation is figure 7 from the main text, and the breakdown is image S7.

Triangles C D E E2 E3

320 0.55 0.78 0.45 0.76 0.88
512 0.66 0.98 0.55 0.84 1.00
1280 0.43 0.89 0.27 0.57 0.78
2048 0.68 0.82 0.47 0.54 0.71
5120 1.8 0.62 0.16 0.24 0.39
20480 7.2 0.22 0.37 0.16 0.17
81920 29 0.37 0.76 0.35 0.22

3848 (inh.) 39 1.7 1.8 0.76 0.75

5120 (±0.01 %) 3.4 0.63 3.4 0.32 0.40

(a) Maximum of all nodes.

Triangles C D E E2 E3

320 0.24 0.31 0.20 0.34 0.35
512 0.23 0.40 0.20 0.38 0.42
1280 0.095 0.31 0.071 0.19 0.29
2048 0.11 0.29 0.093 0.16 0.24
5120 0.073 0.19 0.042 0.065 0.12
20480 0.087 0.062 0.042 0.034 0.042
81920 0.11 0.042 0.046 0.033 0.031

3848 (inh.) 7.0 0.23 0.20 0.15 0.21

5120 (±0.01 %) 0.49 0.19 0.49 0.076 0.12

(b) Average over all nodes.

Table S10: The maximum and average of the relative error ε∆SH of the Laplace-Beltrami operator of the mean curvature. MT2 meshes. See
table S9 for the MT1 version. A graphical representation is figure B.21 from the main text.
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Figure S8: The numerical error ε f upon evaluating the force density. MT1 meshes. Corresponding graphs for | f | are located in figure 8 in the
main text.
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Triangles A B C D E E2 E3 S

320 2.2 0.65 0.67 1.00 0.60 0.93 1.0 0.30
512 25 0.66 0.64 1.1 0.55 0.92 1.0
1280 8.7 0.46 0.36 0.95 0.27 0.62 0.85 0.096
2048 181 2.9 2.3 2.2 0.21 0.53 0.76
5120 39 2.8 0.90 0.57 0.25 0.27 0.43 0.43
20480 186 14 3.9 0.23 0.41 0.33 0.26 2.4
81920 897 70 18 0.25 0.83 0.65 0.39

3914 (inh.) 220 464 57 1.2 2.2 1.00 1.0

5120 (±0.01%) 55 6.7 5.8 0.61 5.4 0.45 0.44

(a) Maximum of all nodes.

Triangles A B C D E E2 E3 S

320 0.46 0.23 0.26 0.34 0.22 0.36 0.35 0.16
512 0.94 0.26 0.25 0.41 0.21 0.40 0.43
1280 0.50 0.12 0.11 0.33 0.082 0.21 0.31 0.028
2048 1.6 0.14 0.11 0.33 0.057 0.16 0.26
5120 0.63 0.065 0.059 0.21 0.025 0.075 0.14 0.026
20480 0.73 0.054 0.048 0.068 0.0073 0.022 0.042 0.029
81920 0.84 0.059 0.049 0.020 0.0025 0.0062 0.012

3914 (inh.) 52 16 8.7 0.24 0.28 0.19 0.24

5120 (±0.01 %) 1.9 0.58 0.58 0.21 0.59 0.088 0.14

(b) Average over all nodes.

Table S11: The maximum and average of the relative error ε f of the force density. MT1 meshes. See figure 10 in the main text for the
corresponding picture and figure S8 for the breakdown. The MT2 data is in table S12.

Triangles A B C D E E2 E3

320 2.5 0.63 0.61 0.87 0.52 0.80 0.87
512 13 1.1 0.71 1.1 0.62 0.91 1.0
1280 9.1 0.51 0.46 0.96 0.30 0.64 0.86
2048 59 2.7 0.79 0.88 0.53 0.61 0.78
5120 35 2.3 2.1 0.68 0.18 0.27 0.44
20480 137 9.3 8.3 0.24 0.42 0.18 0.19
81920 542 38 33 0.43 0.88 0.41 0.25

3848 (inh.) 175 389 45 2.0 2.0 0.85 0.82

5120 (±0.01%) 40 3.9 3.9 0.70 3.9 0.36 0.45

(a) Maximum of all nodes.

Triangles A B C D E E2 E3

320 0.52 0.24 0.26 0.34 0.21 0.35 0.34
512 0.94 0.29 0.26 0.42 0.23 0.41 0.44
1280 0.68 0.13 0.11 0.34 0.080 0.21 0.32
2048 1.6 0.14 0.13 0.32 0.11 0.18 0.27
5120 1.1 0.12 0.083 0.21 0.048 0.073 0.13
20480 2.0 0.15 0.10 0.069 0.048 0.039 0.048
81920 3.7 0.19 0.13 0.049 0.052 0.037 0.036

3848 (inh.) 47 15 8.0 0.25 0.23 0.17 0.24

5120 (±0.01%) 2.0 0.58 0.56 0.21 0.56 0.086 0.13

(b) Average over all nodes.

Table S12: The maximum and average of the relative error ε f of the force density. MT2 meshes. See figure B.23 in the main text for the
corresponding picture. See table S11 for the MT1 version.
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S2 Additional shear flow data: Deformation and inclination angle
figures

Here we supplement the information provided in section 4.5.1 from the main text for the elastic capsule in a
viscous shear flow. Figure S9 depicts the deformation parameter for G = 0.05 and κ̂B = 0.0375 for all algorithms
and various resolutions using MT1 meshes. Additionally, figure S10 shows the corresponding inclination angle θ
as a function of time. Finally, image S11 displays θ for the larger shear rate G = 0.2 and bending modulus
κ̂B = 0.15. All in all, the qualitative behavior is identical to the one analyzed in the main text for the deformation
parameter at G = 0.2 and κ̂B = 0.15 (section 4.5.1), except that the inclination angle appears to be a bit more
sensitive to the resolution and the mesh regularity.
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Figure S9: Taylor deformation parameter as a function of time after turning on the shear flow for BIM. Similar to figure 13 from the main text,
except for G = 0.05 and κ̂B = 0.0375. The behavior of the inclination angle for the same set of parameters is displayed in figure S10.
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Figure S10: Inclination angle as a function of time for BIM. G = 0.05 and κ̂B = 0.0375. The deformation parameter is shown in figure S9.
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Figure S11: Inclination angle for BIM for G = 0.2 and κ̂B = 0.15. The deformation parameter can be found in figure 13 in the main text.
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1. Introduction

When immersed into an external flow, even such simple soft 
objects as vesicles or red blood cells (RBCs) deform into an 
amazing variety of dynamically moving shapes including 
slippers, parachutes or tumbling discocytes [1–5]. These arise 
from the complex interplay between the external and internal 
flow and the mechanical stiffness of the membrane. In the case 

of red blood cells the membrane consists of four components 
[6, 7]: shear resistance due to the network of cross-linked 
spectrin proteins (cytoskeleton) and bending rigidity as well 
as area inextensibility and surface viscosity due to the lipid 
bilayer. Omitting the lipid bilayer leads to objects which have 
no or very little bending resistance and which are commonly 
denoted as capsules [5]. Removal of the spectrin network 
eliminates shear resistance leading to what is called a vesicle 
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Abstract
Cell membranes are vital to shield a cell’s interior from the environment. At the same 
time they determine to a large extent the cell’s mechanical resistance to external forces. In 
recent years there has been considerable interest in the accurate computational modeling 
of such membranes, driven mainly by the amazing variety of shapes that red blood cells 
and model systems such as vesicles can assume in external flows. Given that the typical 
height of a membrane is only a few nanometers while the surface of the cell extends over 
many micrometers, physical modeling approaches mostly consider the interface as a two-
dimensional elastic continuum.

Here we review recent modeling efforts focusing on one of the computationally most 
intricate components, namely the membrane’s bending resistance. We start with a short 
background on the most widely used bending model due to Helfrich. While the Helfrich 
bending energy by itself is an extremely simple model equation, the computation of the 
resulting forces is far from trivial. At the heart of these difficulties lies the fact that the forces 
involve second order derivatives of the local surface curvature which by itself is the second 
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routes to obtain bending forces from the Helfrich energy, namely the variational approach and 
the thin-shell theory. While both routes lead to mathematically identical expressions, so-called 
linear bending models are shown to reproduce only the leading order term while higher orders 
differ. The main part of the review contains a description of various computational strategies 
which we classify into three categories: the force, the strong and the weak formulation. We 
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[4]. For theoretical or computational modeling, membranes 
are typically considered as two-dimensional elastic sheets and 
their physical complexity is lumped into effective moduli for 
shear resistance, bending rigidity, area dilatation and some-
times surface viscosity [2, 8].

The study of soft object dynamics in flows is a serious 
challenge. Being deprived of a minimum energy principle 
in this non-equilibrium situation, the analytical prediction 
of cell and vesicle dynamics represents a formidable task. 
Experimentally, a full appreciation of the dynamics would 
require three-dimensional recordings combined with time-
resolved tracking of the membrane while usually one is 
restricted to two-dimensional microscopic imaging. Although 
considerable progress has been achieved to overcome these 
theoretical [2, 9] and experimental [10–14] difficulties, in 
many situations one currently depends on numerical simu-
lations to gain further insight into the physical phenomena 
and mechanisms governing the objects’ behavior in external 
flows. An accordingly large interest exists in the development 
and validation of accurate and efficient numerical techniques 
[1, 8, 15–20].

In this review, we focus on one specific aspect of these 
numerical simulations, namely the bending forces originating 
from the lipid bilayer. Bending forces are important for the 
accurate modeling of vesicles, red blood cells and sometimes 
even capsules [1, 4, 5]. The typical starting point for their 
computation is an energy functional that provides the bending 
energy density for a given membrane geometry. In its most 
simple and, at the same time, most commonly used form the 
local bending energy density is proportional to the square of 
the local surface curvature. Variants of this form have been 
postulated by Canham [21], Helfrich [22] and Evans [23] in 
the early 1970s, but can also be derived from classical elastic-
ity or by taking the continuum limit of models that explicitly 
consider the interaction between individual lipid molecules. In 
the mathematics community the bending functional is known 
under the term ‘Willmore surface/energy’ [24–26].

Our goal is to summarize the origins of this energy, to out-
line different derivations of the ensuing bending forces and 
finally to give an account of available numerical algorithms 
together with an overview of recent applications. A detailed 
assessment of the quality of a variety of methods can be 
found in two recent papers [27, 28]. We do not cover other 
aspects such as shear elasticity or flow solvers. For these we 
refer the reader to recent reviews [8, 15, 17, 19] and books 
[16, 29]. Other related reviews [2, 4, 5, 18, 30] also include 
exper imental observations. Collective behavior of many soft 
objects with a focus on blood flow is reviewed in [20, 31–33].

The organization of the paper is as follows. In section 2.1 
we introduce the physical motivation of the Helfrich bend-
ing energy and outline how to derive the bending forces via a 
variational derivative as well as thin shell theory. The latter is 
given in detail in appendix A, which allows us to draw a con-
nection to so-called ‘linear bending models’. In sections 2.2 
and 2.3 we briefly touch upon the still open question of the 
spontaneous curvature and introduce some experimental tech-
niques to measure the bending modulus. Section 3.1 discusses 
various possibilities to represent the membrane shape in a 

discretized fashion for use in computer algorithms. Based on 
these, section 3.2 focuses on a classification of different com-
putational methods according to their conceptual similarities 
and differences. In section 3.3 we briefly summarize results 
of a recent comparison regarding the quality of different algo-
rithms [27] and extend the comparison to the important case 
of spherical harmonics, with details provided in appendix B. 
Finally, in section 4 we describe some recent applications of 
the computational algorithms.

2. Physical model of membrane bending

2.1. The Helfrich model

2.1.1. Bending energy. Vesicle walls and red blood cell mem-
branes contain a lipid bilayer which leads to the membrane’s 
resistance against bending as well as its rather strict area inex-
tensibility [4, 6, 7]. The bilayer consists of two neighboring 
sheets of elongated lipid molecules whose axes are oriented 
perpendicular to the membrane surface. Their hydrophilic 
heads point outwards towards the aqueous surrounding while 
the hydrophobic tails are buried in the membrane interior. Dif-
ferent forms of the bending energy have been proposed in the 
past, with the common denominator that they all depend on 
the square of the mean curvature [21–24]. One of the most 
popular models for the energy per unit deformed area Bε  dates 
back to Helfrich [22], who introduced it as

κ κ= − + ∈x xH H K S2 , .B B 0
2

K( ) ( )ε (1)

This constitutive law has later been called the spontaneous 
curvature model [34], also compare section 2.2. All appearing 
quantities might in principle depend on x. The total bending 
energy stored in the infinitesimally thin interface S is then

∫ ∫κ κ= − +E H H S K S2 d d .
S S

B B 0
2

K( ) (2)

Here, κB is the usually constant bending modulus (having 
unit of energy) and xH( ) is the local mean curvature which 
is defined by

κ κ= + ∈x xH S
1

2
, ,1 2( ) ( ) (3)

i.e. the average of the principal curvatures κ1 and κ2 [35, 36]. 
Note that the sign of H can be defined such that it is either 
positive or negative for a sphere. We adopt the convention that 
H shall be positive for a sphere. An alternative but equivalent 
expression is given by [37]

∑= ∆ ∈
=

x x xH x n S
1

2
, ,

i
i i

1

3

S( ) ( ) ( ) 
(4)

where n is the outer normalized normal vector and ∆S is the 
so-called Laplace–Beltrami operator [36, equation (33)]. This 
form reveals more clearly that the bending energy already 
involves a second order derivative of the surface. This can be 
contrasted with the surface tension of a liquid–liquid interface 
whose energy involves only the area itself.

The Gaussian curvature is κ κ=xK 1 2( )  and its associated 
Gaussian (or saddle splay) modulus is κK. Both moduli κB and 
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κK are often similar in magnitude [36]. However, the Gauss–
Bonnet theorem [36, equation (70)] states that the integral of 
K over a closed (but not an open [36, 38–42]) surface is a 
topological invariant, i.e. it is a constant as long as the topol-
ogy for a closed object does not change. Hence, it can often 
be discarded from the very beginning. H0 is the spontaneous 
curvature which will be discussed further in section 2.2 below. 
We point the reader to [36] for an excellent overview of the 
required math and the Helfrich Hamiltonian in general.

Equation (1) can be obtained via three different routes. In 
the original work [22] the form of the energy functional (1) has 
been phenomenologically proposed. It can also be justified by 
the observation that the energy density for fluid membranes can 
only depend on the local area stretch and the mean and Gaussian 
curvatures. Taylor expansion to second order then leads to an 
expression of the form (1) [36, 43, 44]. In light of this it is some-
what surprising that it remains valid even when 1/H is of the 
same order of magnitude as the bilayer thickness [45].

Secondly, equation (1) can also be derived from a contin-
uum mechanics perspective1. Here, one starts by considering 
the membrane as a three-dimensional isotropic and linear (i.e. 
Hookean) elastic material. In the limit of thin and inextensi-
ble shells, a careful derivation of the elastic stresses and the 
resulting elastic energy for a given deformation then leads 
to an expression equivalent to the first and most important 
term in equation (1) (compare [44, equation (24)] [46, equa-
tion  (1.132)] [35, equation  (4.52)] [48, equation  (7)]). The 
bending modulus κB can then be calculated explicitly as a func-
tion of the membrane thickness h and the elastic parameters 
(e.g. Young’s modulus E) of the material [5, 36, 44, 48]. Given 
the complex molecular structure of RBCs [6], the assumption 
of isotropic and homogeneous elastic properties of the lipid 
bilayer may however be called into question for cells and an 
empirical approach to the value of κB might be a better choice.

In the third method, the form of equation  (1) is derived 
from microscopic models that consider individual lipid mol-
ecules. Assuming an interaction potential between the mol-
ecules and taking the limit of an infinite amount of molecules, 
one arrives at equation (1) [49, 50]. Molecular scale models 
can be combined with the continuum mechanics approach 
given in the previous paragraph by assuming spatial variabil-
ity of the elastic parameters [51] which to lowest order again 
leads to equation (1).

2.1.2. Bending forces. The term ‘bending force’ in the pres-
ent context needs to be understood in the following way: con-
sider a deformed membrane S whose shape is known. The 
deformation results in forces f xB ( ) driving the interface back 
to equilibrium. At the same time, flows on the outside and 
inside of the membrane result in tractions (forces per unit 
area), whose difference across the surface provides a trac-
tion jump f xB ( )� . Assuming negligible membrane inertia, 
the internal membrane bending forces must be in local equi-
librium with the external fluid traction jump at each point in 
time, implying [5, 35, 52]

= − ∈f x f x x S, .B B( ) ( )� (5)

The goal now is to compute the bending forces fB or equiva-
lently the traction jump fB�  from the current deformation 
if the energy stored in the surface is given by equation  (2). 
Analytically, this goal is commonly achieved by one of two 
possibilities.

Variational formulation. In the first approach one performs 
a variational derivative of equation (2) while applying some 
external force such that the membrane is in equilibrium. 
Consider arbitrary infinitesimal and virtual displacements 
δx (but which adhere to possible constraints) of the vec-
tor x that maps the deformed surface. The virtual work per-
formed by the forces when some membrane point is displaced 
is thus given by δ⋅f xB� , and for the whole membrane by 

∫δ δ= ⋅f x x xW S: d
Sext B ( ) ( )� . Hence, the membrane is in equi-

librium for [53–57]

∫
δ δ δ

δ δ

= −

= − ⋅ =f x x x

E W

E S

:

d ! 0.
S

B ext

B B ( ) ( )�

E
 

(6)

Explicitly evaluating δEB from equation  (2) for variations 
in the normal direction and evoking the arbitrariness of δx 
eventually leads to the Euler–Lagrange equation [24, 36, 41, 
57–66]

[ ( )

( )( )]

� κ= − ∆ −

+ − − +

f

n

H H

H H H K H H

2

2 .

B B S 0

0
2

0
 

(7)

H0, H, K and n may depend on the position ∈x S. κB and κK, 
on the other hand, are assumed to be constant. If they were not, 
an additional tangential term would arise [67]. Note that for 
constant moduli without additional constraints and for closed 
objects tangential variations only represent a reparameteriza-
tion of the surface and provide no further information [61], i.e. 
the traction jump consists of only the above normal component.

Equation (7) and variations thereof can be used to deter-
mine the equilibrium shapes of vesicles for =f 0B�  [17, 21, 
34, 58, 68–70]. In the context of hydrodynamic simulations, 
the reverse problem is considered and the traction jump fB�  is 
determined from the instantaneous deformation. fB�  is exerted 
by the fluid on the membrane and is the central quantity which 
couples the solid and the fluid mechanics part of the prob-
lem [35, 71, 72]. Explicit expressions for the stress tensor also 
exist (equation (A.43) in the appendix), representing a first 
integral of equation (7) [2, 36, 57, 61, 65, 70, 73].

Note that the Euler–Lagrange equation  (7) also remains 
valid if the surface is not closed: the first normal variation 
of the second term in equation  (2) that contains the (con-
stant) saddle splay modulus κK still drops out [36, 38, 41]. 
Yet, contrary to the case of closed objects without constraints, 
demanding that the first tangential variation of E vanishes 
now provides additional information, namely boundary con-
ditions for the shape at the borders that actually do depend 
on κK [38–40, 74]. I.e. although equation (7) remains valid in 
the interior of the surface, additional conditions arise at the 
borders that determine the possible shapes in agreement with 
recent experiments on vesicles [42].

1 Note that in engineering solid mechanics the term ‘membrane theory’  
actually refers to thin shells without bending resistance [46, 47].
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Shell formulation. The second approach to derive equa-
tion (7) uses thin shell theory [35, 70, 75–78]. Tension tensor 
and bending moments can be obtained by computing appro-
priate derivatives of the energy density with respect to the 
metric and curvature tensors, respectively. Balancing these by 
the externally imposed traction jump fB�  invokes first a local 
torque and subsequently a local force balance. Yet, in the end 
equation (7) is obtained [76, equation (6.19)]. We explicitly 
perform this calculation and show the equivalence of the two 
approaches in appendix A.

Linear bending models. Sometimes one directly starts with a 
constitutive linear model [70, 79–82] for the bending moments 
αβM  on S, such as

κ α β= − − =αβ αβM H H a2 , , 1, 2,B 0( ) (8)

where αβa  is the metric tensor (the coefficients of the first fun-
damental form) and Greek indices denote curvilinear comp-
onents. This ansatz leads to equation  (7) only if additional 
contributions to the tension tensor are appropriately accounted 
for. However, deviant forms of equation  (8) (often involving 
the curvature tensor [54, 80, 81, 83–86]) and/or neglecting the 
tension tensor contributions are commonly used and usually 
yield only the leading order term (∆ HS ) from equation  (7) 
when considering small deviations from a plane as shown in 
appendix A.5. Higher orders may differ [48, 58, 79]. Since 
the relations between these various approaches are not clearly 
established in the present literature, we derive and compare the 
traction jumps for these models in some detail in appendix A.5.

Constraints. Many derivations of equation (7) enforce addi-
tional constraints, such as constant volume (for closed par-
ticles) or conserved surface area which mimic the balance 
of osmotic pressure and the large area dilatation modulus, 
respectively, of vesicles [4, 34] and red blood cells [1, 6, 87]. 
These lead to additional terms containing Lagrange multipli-
ers that are added to E and also modify the Euler–Lagrange 
equation. For the volume conservation, E is complemented by 

p V� , where V is the particle’s volume and the Lagrange mul-
tiplier p�  represents a pressure difference [39, 41, 59–61, 64]. 
Equation (7) receives an additional np� .

Furthermore, two possibilities exist to enforce a constant 
surface area: either a local or a total area constraint. The total 

surface area constraint is implemented by adding ∫σ Sd
S

 to E, 

with the Lagrange multiplier σ being a constant effective ten-
sion [36, 38, 39, 59, 60, 64, 88]. This leads to the supplement 
σ nH2  in equation (7).

The local surface area constraint, on the other hand, is 
enforced by adding ∫σ x Sd˜( )  to E, where the Lagrange multi-
plier σ x˜( ) is a non-constant effective tension [2, 13, 52, 55, 58, 
61, 88–98, 99]. A tangential first variation of the total energy 
E then leads to an equation involving σ̃, whereas the normal 
first variation gives the Euler–Lagrange equation. Combining 
both effectively means to amend equation (7) with the term 
σ σ∇−nH2 S˜ ˜, where ∇S denotes the surface gradient [52] 

equation (60)]. We explicitly derive this term in appendix A.6. 
Now, if one solves the Euler–Lagrange equation for the shape, 

σ̃ is fixed by the tangential equation. Since we prescribe the 
surface and solve for fB� , σ̃ is determined from the incom-
pressibility of the lipid bilayer fluid flow, ∇ ⋅ =u 0S  [52]. 
This is equivalent to stipulating that the area of a small sur-
face patch should remain constant [100] chapter 1.7.2]. We 
also note that σ̃ must be necessarily constant for closed objects 
without external forces, meaning that both the local and global 
models often predict the same equilibrium behavior [41, 55].

Directly solving for the Lagrange multipliers is possible 
[52, 77, 88, 92, 101–103]. For simplicity, constraints are also 
often implemented approximately using penalty methods. 
For example, one may introduce appropriate ad-hoc potential 
energies to penalize deviations from the desired values [55, 
72, 93, 104–107]. In the case of area inextensibility it is also 
possible to use suitable in-plane elasticity models (such as the 
Skalak constitutive law [108]) to replace [94, 109] or supple-
ment [72, 110] other area constraints.

Membrane inertia. Equation (5) implies that the fluid and the 
membrane are always in local equilibrium. This means that 
the inertia of the membrane itself is neglected (otherwise an 
additional acceleration term would appear [78, 111, 112]). 
This is common even for those methods where the fluid inertia 
is included such as Lattice–Boltzmann [72, 113]. Thus, the 
motion of the membrane is determined by the no-slip condi-
tion, i.e. the local membrane velocity is taken equal to the 
local fluid velocity.

An alternative approach is to endow the membrane itself 
with a mass and to obtain its motion by integration of Newton’s 
third law (force formulation, see section 3.2.2) which is com-
mon practice in particle methods such as multiparticle col-
lision dynamics (MPCD) [114–116] or (smoothed) dissipative 
particle dynamics [18, 117–126].

Finite thickness and other models. Some simulations incor-
porate a membrane with a finite thickness. This effectively 
means to drop some simplifying assumptions that ultimately 
lead to the Helfrich model [127–133]. Explicitly taking into 
account the two leaflets for bilayer membranes has also been 
done [134]. Finally, ad-hoc models are sometimes used that 
have no (or at least no obvious) connection to the Helfrich law 
[135–137].

2.2. Area-difference model and spontaneous curvature

In many situations, especially for closed objects such as cells 
[6] or vesicles [34], the two sheets composing the lipid bilayer 
are not identical. For example, the inner layer may possess 
less or different lipids than the outer one. The minimum 
energy state is then no longer a flat sheet, but a curved shape 
with a prescribed difference A0�  between the areas occupied 
by the two sheets. Such a situation can be modeled by includ-
ing an additional contribution to the energy in equation (2), 
leading to the area-difference elasticity (ADE) model [34, 70, 
138–140]:

∫ κ= + −E S A Ad .
S

B B 0
2( )� ��ε (9)
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κ� is the area difference elastic modulus and A�  is the instan-
taneous area difference expressible by the distance h between 

the neutral surfaces of the lipid monolayers as ∫=A h H S2 d
S

�  

[36, equation (77)]. For κ ∞→�  the area difference becomes 

a hard constraint and the so-called bilayer coupling model is 
obtained [34, 138, 141]. The contributions of H, H0, A�  and 

A0�  to the traction jump differ from each other in general, i.e. 
cannot be merged. Nevertheless, when solving for the station-
ary shapes, the total set of solutions is the same when using 
either H0 or κ� or both [138, 142]. Yet, the full ADE model has 
apparently not been used to study soft objects in flows where 
the instantaneous shape is given as input, with the exception of 
[143]. This might therefore be a promising task for the future, 
but for the remainder of this paper we will restrict ourselves to 
H0, i.e. to the Helfrich model (1).

A slightly more complicated situation arises when mole-
cules other than lipids, e.g. transmembrane proteins, are present 
in the bilayer. These usually extend across both monolayers and 
may occupy a different area at one end than at the other, result-
ing again in an area difference. However, in contrast to a simple 
difference in the number of lipids, membrane proteins can often 
form clusters and/or are chemically attached to other parts of 
the cell membrane such as the spectrin network [6], leading to a 
spatially inhomogeneous spontaneous curvature xH0( ).

While it is possible to obtain experimental values for H0 for 
vesicles [56, 144], there currently exist no direct measurements 
of the spontaneous curvature (or area difference) of red blood 
cells, although the asymmetric distribution of the phospho-
lipid types between the two leaflets of the bilayer [6] suggests 
a non-zero spontaneous curvature. Indeed, not even the stress-
free shape for the in-plane shear elasticity could be determined 
unambiguously so far [145–147]. All in all, this lack of knowl-
edge represents a certain hindrance to accurate red blood cell 
simulations. Different ways to overcome it have been suggested 
[66, 82, 139], although a consensus has yet to be reached.

The area-difference and bilayer-coupling models have 
been extensively used to compute vesicle equilibrium shapes 
(see section 4.1). For cells or vesicles in external flows, the 
spontaneous curvature model following equation (1) is more 
popular and most (but not all) numerical algorithms for bend-
ing forces described in the following section  can relatively 
easily incorporate an arbitrary xH0( ). Due to the exper imental 
uncertainty, however, many red blood cell simulations are 
conducted with H0  =  0. Yet, some researchers [82, 109, 148] 
choose a constant ≠H 00  while others [72, 84, 85, 149] set 

=x xH H0 R( ) ( ) where xHR( ) is the curvature of the resting 
shape, i.e. the shape that the object assumes in the absence of 
any external forces or flows. For red blood cells xHR( ) corre-
sponds to the discocyte shape (see figure 2). A recent careful 
analysis [66] suggested the spontaneous curvature of an oblate 
spheroid as a viable alternative for red blood cells.

2.3. Experimental determination of bending moduli

The bending modulus κB is a simulation parameter which 
needs to be determined by experiments. Various experimental 
setups exist for this task (see e.g. the reviews [144, 150–152] 

for vesicles and [7, 153] for red blood cells). Each exper imental 
setup can be modeled either analytically or numerically with 
κB as a free parameter whose value is then adjusted until agree-
ment between the model and the experimental data is obtained.

In the first and most classical approach for cells, the mem-
brane is sucked into a micropipette while the shape is recorded 
with a microscope as a function of the pressure difference 
[154–157]. The deformed shape sensitively depends on the 
elastic parameters of the cell and can be used to determine 
the bending modulus κB. Besides that, the shapes obtained by 
micropipette aspiration simulations can be directly compared 
to experiments which serves as a validation for the entire RBC 
model including, but not limited to, the bending algorithm 
[158, 159].

Secondly, the bending modulus can be computed from the 
wavelength of wrinkles at low flow strength as has been done 
for elastic capsules [131, 160], but has also been proposed for 
lipid membranes [161, 162].

Finally, the fluctuations of the cell membrane in thermal 
equilibrium (e.g. [163–168]) can be used to measure the bend-
ing modulus or to validate simulation models [105], although 
some complications may arise due to active processes in the 
cell membrane [169].

In principle, the above techniques can also be used to 
retrieve the bending modulus from molecular dynamics simu-
lations. This has indeed been done for vesicles (see e.g. [45, 
152, 170–173]), but apparently no one has attempted it so far 
for realistic RBCs.

The popular approach to measure elasticity constants by 
the stretching of cells via tweezers [174, 175] or atomic force 
microscopes [176] is unfortunately rather insensitive to the 
bending rigidity and can consequently not be used to obtain 
accurate information about that particular component [66, 
 figure  6] [105]. Nevertheless, these experiments have often 
been used to validate other parts of computational models [66, 
105, 107, 135, 177–182].

In the end, measured values for κB of healthy human red 
blood cells scatter rather widely in the range of 0.2– × −9 10 J19  
[8, 153, 155]. Most simulations are being conducted with val-
ues between 2 and × −4 10 19 J.

3. Numerical approaches

3.1. Surface discretizations

As already noted in the previous sections, cells, capsules 
and vesicles are typically modeled with infinitely thin sur-
faces. The finite (albeit very small) thickness is effectively 
taken into account via constitutive laws, for example the 
Helfrich model from equation  (1). Such 2D manifolds 
embedded into the 3D space are usually implemented 
numerically by representing the surface with a distribution 
of points (nodes). Integration and differentiation operations 
are then calculated via some interpolation or approximation 
of the surface between these nodes. These discretizations 
form the basis for the computation of bending forces and 
we therefore describe some commonly used approaches in 
the following:
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Flat triangles. The simplest method uses linear interpolation 
between 3 nodes together with an unstructured mesh, leading 
to a representation with flat triangles. It is one of the most 
often used approaches owing to its simplicity and versatility 
([52, 71, 93, 94, 98, 107, 183] among many others). For exam-
ple, a local increase of resolution (refinement) is easily pos-
sible and was used in the biofluidic context e.g. in [15, 110, 
184–186] (see [187] for a recent overview of refinement meth-
odologies). However, since it leads to a 0C  surface, computa-
tion of higher derivatives such as curvatures even within the 
elements requires the inclusion of several neighbors. More-
over, the results are often sensitive to the mesh regularity [27].

Spring network models [17, 18, 105, 135, 136, 158, 177, 
188, 189] can also be classified into this category (although 
one could imagine spring networks containing quadrilater-
als and other elements in principle, in practice they appear to 
be only used with triangles)2. The major difference between 
these models and the continuum models emerges in the com-
putation of in-plane elasticities [191], where their merit lies in 
the simplicity of implementation. Expressions for the bending 
resistance, on the other hand, usually assume the same form 
as in the continuum descriptions and follow the same method-
ologies as in the ‘force formulation’ (see section 3.2.2 below).

Higher order elements. Quadratic interpolation between 6 
nodes leads to curved triangles [54, 71, 83, 192, 193]. They 
have the advantage that second order properties (such as the 
curvatures) within an element can be computed by direct dif-
ferentiation. Nevertheless, even first order derivatives at the 
nodes or element borders remain ambiguous, requiring some 
averaging of the surrounding values [192]. It is also possible 
to increase the interpolation order by including more nodes 
within each element, leading to spectral element methods with 
exponential convergence properties as the order increases 
[194–197], although global surface smoothness is still not 
automatically ensured [195].

Subdivision methods. Subdivision surface methods are 
becoming increasingly popular. They constitute a general-
ization of spline based approaches. Starting from a coarse 
unstructured control mesh of quadrilaterals or flat triangles, 
one successively introduces new nodes and elements accord-
ing to certain predefined rules. A key observation is that any 
point on the limit surface obtained by an infinite number of 
refinements can be directly evaluated via some closed analyti-
cal formula. This enables easy and efficient computations of 
derivatives. Different variations of this idea exist. One needs 
to distinguish between interpolating (the original nodes are 

members of the limit surface) and approximating schemes 
(the original nodes are not necessarily located on the limit 
surface). The first ones have the advantage that the limit sur-
face is more directly connected to the control mesh. However, 
the latter have the big advantage of being 1C  smooth every-
where (even 2C  at regular nodes3), whereas in the first case 
the curvatures are not always bounded [198]. This makes 
approximating approaches the dominant choice for dynamic 
simulations of soft objects. Two popular schemes are the Cat-
mull–Clark (quadrilateral based) [199, 200] and especially the 
Loop (based on flat triangles) [55, 91, 96, 102, 198, 201–205] 
subdivision methods. We remark again that both reduce to 1C  
smoothness near irregular nodes. Hence, good mesh regularity 
is a requirement for accurate derivatives [27].

Spectral methods. Another class are spectral methods where 
functions are expanded using some basis functions whose sup-
port extends over the whole domain (this is not to be confused 
with spectral element methods [194, 195], where the support 
of the individual high-order polynomials extend only over 
the elements). In the present biofluidic context, the surface 
itself and functions defined on it are usually expanded using 
spherical harmonics [84, 85, 92, 101, 103, 206–209]. They 
work best for nearly spherical shapes and can result in spectral 
accuracy (i.e. the error decays exponentially fast). Instead of 
spherical harmonics a simple Fourier series expansion is also 
possible, albeit rarely used [210].

Other methodologies. An (almost) completely two times 
continuously differentiable surface may be constructed by 
using cubic B-Splines together with a structured mesh [211–
213]. Unfortunately, for closed objects two singular poles 
occur where the derivatives are not well defined, requiring 
e.g. extrapolation of quantities [214] or the usage of a second 
(rotated [212] or unstructured [191]) mesh. Finally, NURBS 
[77] and fully three-dimensional phase field models have also 
been employed [215, 216].

3.2. Computation of bending forces

The surface discretizations described above can be combined 
with different methods to compute the actual bending forces, 
which we describe in this section. For the sake of complete-
ness, we shortly mention in section 3.2.1 the computation of 
bending forces in the computationally much simpler case of 
two-dimensional and axisymmetric geometries. In full 3D, 
the wealth of available methods can be sorted into three cat-
egories: the force formulation (section 3.2.2) starts from 
the energy equation  (2) and yields a force at each node. The 
strong formulation (section 3.2.3) and the weak formulation  
(section 3.2.4) on the other hand depart from the Euler–Lagrange 
equation (7) and yield a surface force density. Approaches based 
on the thin-shell formalism (including the linear bending mod-
els) are often implemented by means of the strong for mulation. 
All methods have their advantages and disadvantages and there 

2 Spring network models start from the basic assumption that the cytoskel-
eton of red blood cells can be appropriately modeled by not discretizing any 
continuum descriptions, but rather by mimicking the spectrin proteins di-
rectly with a, possibly coarser, triangulated mesh [158]. This idea originates 
from the observation that the expanded cytoskeleton forms a lattice-like 
network [190]. The actual membrane properties are implemented via appro-
priate potentials acting between the nodes, stemming from coarse-grained 
molecular or from reasonable ad-hoc models [158]. Connections of the 
associated potential strengths (spring constants) with continuum properties 
(elastic moduli) are then usually established by considering special cases of 
the mesh, such as regular hexagonal networks [189, 191].

3 Regular nodes are defined by having 4 (quadrilaterals) or 6 (triangles) 
neighbor nodes.

J. Phys.: Condens. Matter 29 (2017) 203001

Pub 2



Topical Review

7

is currently no consensus on which one is the best for a specific 
application.

3.2.1. Two-dimensional and axisymmetric models. In two 
dimensions, the Helfrich bending energy (with zero reference 

curvature) is simply ∫=E H sdB
1

2
2 , where s denotes a coordinate 

along the contour and the integration goes over the full perimeter 
of the particle. A variational derivative leads to [89, 90, 217]

⎛
⎝
⎜

⎞
⎠
⎟κ=

∂
∂
+f n

H

s
H

1

2B B

2

2
3� (10)

in analogy to equation  (7). Different equivalent expressions 
are possible if the particle is locally inextensible [217]. The 
interface can be discretized by using for example straight lines 
[89, 90, 119, 218], level-set [219–223], phase field [88, 224, 
225], spline [226] or Fourier methods [217, 227–229].

Axisymmetric algorithms start from the full 3D equa-
tions and reduce them by one dimension via the assumption 
of rotational symmetry. Differentiation and integration on 
the surfaces thus reduce to 1D problems. Approximations of 
the interfaces employ e.g. straight lines [230, 231], Fourier 
expansions [95, 232, 233], B-Splines [134], level-set [223] or 
phase field models [234–236].

3.2.2. Direct application of the principle of virtual work (force 
formulation). In full 3D, the first possibility to numerically 
compute the forces from the bending energy EB is to directly 
discretize the integral as well as the mean curvature appearing 
in equation (2). Thereafter, EB depends explicitly on the node 
positions xi with = …i N1, , , i.e. = xE E i

B B({ }), where xi{ } 
means the collection of all N nodes. Contrary to the approaches 
presented in the following sections, this effectively makes the 
force formulation a discrete model. By the principle of virtual 
work, the force (in Newton) acted upon the membrane node xi 
by the fluid is given by the gradient [109, 169, 237, 238]

=
∂
∂

= …F x
x
x

E
i N, 1, , .i

i

i
B( ) ({ })

 (11)

Roughly speaking, this is a discretized version of the varia-
tional derivative leading to equation (7) [81, p 93]. For many 
surface discretizations, the gradient can be computed analyti-
cally using the explicit expression for the discretized bending 
energy [27, 72]. Guckenberger et al [27] named this method 
‘force formulation’ because it yields a force (rather than a 
force density) at each node.

Some flow solvers, e.g. boundary integral methods, require 
the force per unit area (traction jump) instead of the force. In 
this case, one divides by the area Ai associated with or ‘occu-
pied’ by the node:

≈ = …f x F x A i N, 1, , .i i
iB ( ) ( )/� (12)

Using flat triangles, typical choices for Ai are 1/3 of the 
total area of the triangles surrounding xi [86, 93, 98, 109] or 
Meyer’s mixed area [27, 239]. The results presented in [27] 
suggest that the latter gives superior results since it leads to a 
perfect tiling of the surface (i.e. ∑ == A Ai

N
i1 , where A is the 

total surface area).

We remark that although computationally convenient, the 
force formulation as a discrete model is observed to be more 
sensitive to the mesh regularity (i.e. to element area and con-
nectivity variances) than the continuum approaches presented 
in sections 3.2.3 and 3.2.4 [81, p 93] [27, chapter 3.5]. For 
sufficiently regular meshes, however, similar results can be 
achieved [27, chapter 3.5]. Also note that ‘pure’ spring net-
work models necessarily use the force formulation idea as 
they start with a discrete model in the first place.

Out of the various available surface discretizations 
described in section  3.1, the force formulation has thus far 
been used only with flat triangles and subdivision surface 
schemes.

Flat triangles. Depending on the surface approximation, dis-
cretizing the integral and the mean curvature H in equation (2) 
within the force formulation can be done in different ways. 
Here we describe the two most often used possibilities for flat 
triangles (termed Method A and B in [27]).

Method A starts from an often used expression [28, 72, 
105, 109, 117, 121–126, 147, 158, 169, 189, 240–250, 251] 
similar to an angle-potential:

∑κ θ θ= − −E 2 1 cos .
i j

ij ijB B
,

0˜ [ ( )]
⟨ ⟩

 (13)

Here, the sum runs over all edges i j,⟨ ⟩ once, θij is the angle 
between the normal vectors of the adjacent triangles with 

edge i j,⟨ ⟩, θij
0 indicates the reference (or spontaneous) angle 

and κB˜  is an effective bending modulus. This formula can be 
connected to the Helfrich model from equation (2) for special 
cases, such as a sphere approximated by equilateral triangles 
and zero reference curvature. In this case the effective and 
physical bending moduli are related by [241]

κ κ= 3 .B B˜ (14)

Despite being rigorously valid only for this special mesh 
topology and geometry, the relation (14) is often also used in 
the general case.

Method B is based on a finite difference cotangent scheme 
for the Laplace–Beltrami operator (and thus also of the mean 
curvature H according to equation  (4)). Note that different 
variants of this scheme can be found in the literature, obtaina-
ble e.g. by evaluating a contour integral [52, 98, 239]. Method 
B uses the discretization described in [241]:

ϑ ϑ
∆ ≈

∑ + −

= …

x
x x

w
w w

A
i N

cot cot

2
,

1, , .

i j i
ij ij i j

iS
1 2

V

( )
( )( ( ) ( ))( )

 

(15)

w is some arbitrary function on the surface S, the sum goes 
over the next neighbors of node xi, Ai

V denotes its Voronoi area 
[239], and ϑij

1  and ϑij
2 are the angles opposite to the edge i j,⟨ ⟩ in 

the triangles which contain nodes −x j 1 and +x j 1. See figure 1 for 
a sketch. This scheme is used in [98] as well as [106, 252] and  
subsequent publications [114, 115, 188, 253, 254].

Besides methods A and B, many other possibilities exist such 
as including triangle areas as weights in equation (13) [243] or 
using some other discretizations of the mean curvature [28, 237],  
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also including the ones presented in the next section 3.2.3. The 
underlying problem of finding appropriate discretizations for the 
curvatures and the Laplace–Beltrami operator on triangulated 
meshes has attracted a lot of researchers from the mathemat-
ics and computer science communities since it is also of high 
relevance for other fields such as comp uter graphics or surface 
reconstruction. See for example the recent [37, 239, 255–269].  
Yet, one has to acknowledge that no perfect discretization of the 
Laplace–Beltrami operator can exist [260].

Subdivision schemes. The ‘force formulation’ is also com-
patible with other surface representations. For example, [91, 
96, 102] employed Loop’s subdivision surface method and 
obtained the mean curvature within elements by means of 
direct differentiation. Nodal values were computed by subse-
quent averaging.

3.2.3. Computation by means of the Euler–Lagrange equation 
(strong formulation). Another possibility is to evaluate the 
Euler–Lagrange equation (7) or the equations from thin shell 
theory (see appendix A) directly. This requires as the most 
intricate ingredient an approximation for the Laplace–Beltrami 
operator of the mean curvature, ∆ HS , i.e. a fourth order deriva-
tive. We note that Guckenberger et  al [27] termed this idea 
‘variational formulation’ because it uses the expression (7) 
which is obtained by variational calculus. Since, however, this 
term is also often used in connection with the finite element 
method (see section 3.2.4), we will denote it here as the ‘strong 
formulation’. As in the previous section, the implementation 
details of the strong formulation depend on the underlying sur-
face discretization.

Flat triangles. One basic idea is to apply the same procedure 
that was used to compute the mean curvature H via equa-
tion (4) again to ∆ HS . For example, if H was computed with a 
cotangent scheme at all nodes, then ∆ HS  can be approximated 
by applying the cotangent scheme to H itself. This is Method 
C in [27]. To be more precise, the authors employed equa-
tion (15) except that the Voronoi area in the denominator was 

replaced with Meyer’s mixed area [239] leading to a perfect 
tiling of the surface and thus to superior results when com-
pared with Method B [27]. This approach (sometimes with 
slight changes) has often been used by other researchers (e.g. 
[37, 52, 66, 86, 93, 183, 255, 270–272]).

A second possibility for flat triangles is based on a ker-
nel of the heat equation (Method D in [27]), and essentially 
consists of computing the sum of the distances between the 
evaluation point and all other vertices of the mesh weighted 
with an exponential decay [261]. Due to the global support, 
the convergence properties were found to be the best of all the 
considered methods, but at the price of a large performance 
impact [27]. This is most likely the reason why it has not been 
used in the biofluidic context before. We remark that a cut-
off can be applied to increase performance, and that employ-
ing the geodesic distance (the distance along the surface) 
improves results further [269].

A third possibility uses parabolic fitting of the surface 
components and of the mean curvature around the evalua-
tion point [107] (Method E in [27]). The robustness of this 
algorithm can be easily tuned by including more neighbors. 
Other fitting polynomials are also possible [273], with fourth 
or higher order polynomials allowing for a direct computa-
tion of ∆ HS  in one go. Otherwise, several successive fits 
are necessary. Method E was used (sometimes in modified 
form) e.g. in [37, 99, 107, 186, 272, 274–277]. References 
[94, 104, 146, 148, 278–285] use a combination of para-
bolic fitting for H and a direct discretization of the Laplace–
Beltrami operator of H in the spirit of Method C. Moreover, 
as already mentioned in the force formulation section, 
countless other ways to discretize the Laplace–Beltrami 
operator on triangulated meshes exist (see section 3.2.2 and 
the provided therein).

So far we have only discussed approaches to compute the 
mean curvature H and its Laplace–Beltrami operator ∆ HS . 
Yet, equation (7) also sports the Gaussian curvature K as well 
as the normal vector n. Fortunately, since ∆ HS  is often the 
dominating term (see appendix A.4.4) and they only contain 
second and first order derivatives, respectively, their approx-
imations usually introduce only negligible errors [27]. If the 
parabolic fitting idea is used, both can be computed naturally 
from the fitted surface [107]. In case of the other two schemes 
(methods C and D), it is convenient and quite accurate [27] to 
compute K by means of a discretized version of the Gauss–
Bonnet theorem [239], and n via the ‘mean weighted by 
angle’ algorithm [286].

Higher order elements. Curved triangles allow the direct 
computation of the curvatures and normal vectors within the 
elements since all quantities are assumed to vary quadrati-
cally inside of them. Nevertheless, discontinuities arise at the 
nodes. As a solution, the resulting quantities are averaged. 
Afterwards, assuming that they vary quadratically, too, the 
final traction jump is computed for example by performing 
one derivative explicitly and the other by means of a contour 
integral [54, 83]. Spectral element methods have apparently 
not been used to compute equation (7).

Figure 1. The first ring of neighbors around some node xi. The 
shaded region marks the Voronoi area Ai

V. Modified from [27] with 
permission from Elsevier.
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Subdivision surfaces. To the best of our knowledge, subdivi-
sion surface methods were not yet used to evaluate the local equi-
librium condition (7) directly. This probably stems from the fact 
that they are mostly used together with the finite element method 
(section 3.2.4) in the general field of thin-shell analysis [198].

Spectral methods. Here, the surface components [84, 101, 103, 
207, 208] or sometimes only the radius [91, 92] are expanded 
into a spherical harmonics series. Evaluation of equation (7) or 
of the thin shell theory equations  from appendix A is then in 
principle straightforward since the derivatives act on the basis 
functions and are well-defined everywhere [287]. We provide 
more details in appendix B. However, because the mean curva-
ture H decays only slowly in the spectral space, a comparably 
high number of modes must be used. This in turn often results in 
prohibitively slow performance in the evaluation of the hydro-
dynamics. The typical remedy is a procedure called de-aliasing: 
generally speaking, one can use a relatively low resolution for 
the hydrodynamics, but upsample the grid (via spherical har-
monics interpolation) for the purpose of computing the bending 
forces [84, 101, 103, 207]. A possible alternative might be to 
bypass the transformation of H and directly compute ∆ HS  from 
the surface components, as remarked in the appendix.

Other spectral methods besides spherical harmonics were 
apparently not used so far for the purpose of 3D bending 
computations.

Other discretizations. It is also possible to employ a level 
set [288] or combined level set method and essentially non-
oscillatory (ENO) reconstruction [182] to directly evaluate 
equation  (7). Using three-dimensional phase-field models is 
another possibility [215].

3.2.4. Finite element method (weak formulation). In the 
third possibility to compute the bending forces, equation (7) 
is multiplied with an arbitrary trial function (typically 
denoted δx) and integrated over the membrane surface. Then 
the fourth order derivative of x is reduced to a second order 
derivative by means of two successive integrations by parts. 
These effectively move the derivatives to the trial functions 
δx. Thus we find an integral equation  constituting the so-
called weak formulation of equation (7) which can be solved 
by a finite element method (FEM) for fB�  [55, 149, 193, 198, 
204, 289]. The basic idea here is to discretize the surface 
with some elements and expand the surface x as well as the 
trial functions δx in terms of a finite number of shape func-
tions having local support on the elements. After substitut-
ing them into the integral equation, evoking the arbitrariness 
of δx and also discretizing the integral via some numerical 
quadrature, one ends up with a sparse linear system of equa-
tions that determines fB�  [55, 131]4. Alternatively, the value 
of fB�  at some node can be approximated via the mean value 
theorem, dodging the explicit solution of the linear system 
[133, equation (62)] [149].

Proper convergence requires that if the integrand contains 
an r’th derivative, then the elements must approximate the 
surface such that it is rC  within the elements and −r 1C  at the 
element borders [289, chapter 3.6]. Hence, since the bending 
energy contains a second order derivative, the elements them-
selves should be 2C , and 1C  at their borders. This is similar 
to the force formulation (section 3.2.2) which also requires 
only a second order derivative, but is in stark contrast to the 
strong formulation (section 3.2.3) which requires that the sur-
face is at least 3C  (otherwise the fourth order derivative would 
not be well defined). Despite having similar requirements as 
the force formulation, so far it remains unclear whether the 
force or the weak formulation performs better with respect to 
accuracy if the same surface elements are employed. Overall, 
the major advantage of FEM seems to lie in its stability [193, 
290], although rigorous comparisons with the other two alter-
natives are apparently missing.

Considering the differentiability requirements, subdivision 
surface methods are often used for this approach [55, 149, 198, 
200], as for Method S in [27]. Splines [213, 291], NURBS [77] 
or mixed phase field models are also possible [216].

The 1C  requirement can be bypassed by introducing the 
mean curvature H as an additional independent variable [26, 
292]. Hence, the overall system to be solved for fB�  and H 
consists not only of the weak form of the Euler–Lagrange 
equation, but also of an additional equation  (also in weak 
form) for the mean curvature. This system contains only first 
order derivatives and is thus amenable to discretizations with 
flat triangles, resulting in a stable scheme [26, equations (4.3) 
and (4.4)] [290, equations (3.4f) or (4.15f)] [143, 292–294]. 
An alternative is to use curved triangles (which also form a 0C  
surface, as mentioned above) [295, 296].

As a side note, [206] employs the weak formulation similar 
to FEM, but together with spherical harmonics (which have 
global support and thus the method cannot be really classi-
fied as FEM). By choosing a particular trial function δx, they 
obtain an equation with the expansion coefficients for the trac-
tion jump on the one side, and an expression involving the 
known derivatives of δx on the other side. The traction jump 
in the spatial domain is then obtained by a simple backward 
transformation.

3.3. Comparison of a selection of methods

An easy way to analyze the performance of bending  
algorithms is to consider shapes for which analytical form-
ulas for the traction jumps can be derived. Guckenberger et al 
[27] studied methods originating from flat triangles (methods 
A–E and S mentioned above) for the typical equilibrium shape 
of a red blood cell, see figure  2. Methods A and B use the 
force formulation, C–E the strong formulation, and Method 
S the finite element method. They computed the maximal and 
average errors of the numerically obtained traction jump with 
respect to the analytical result in all cases. The spontaneous 
curvature was set to zero.

Their results for a certain type of mesh (called MT1 in 
[27]) is shown in figure 3 for the mean curvature H, and in  
figure  4 for the traction jump fB� . Regarding the maximal 

4 In typical engineering applications the finite element method is applied the 
other way round, i.e. one usually solves for the expansion coefficients of the 
surface x while the traction is prescribed [193].
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error, none of the algorithms converge properly. Moreover, 
Method D, which appears to converge at least with a system-
atic error, also begins to diverge beyond a certain resolution 
when the mesh topology is slightly changed (mesh MT2 in 
[27], not repeated here).

For the average error, which is more relevant in Stokes flow 
applications, Method D appears to show proper convergence. 
Taking the MT2 mesh into account, all other algorithms 
roughly converge with a systematic error, except Method A 
which clearly diverges.

The authors of [27] concluded that in principle the best 
scheme is Method D, although it is too slow for practical uses 
because it requires sufficiently high resolutions and scales as 

N2( )O  where N is the number of nodes. Hence, Method S or 
Method E are usually better choices. But note that the quality 
of the subdivision surface method S highly depends on the 
mesh regularity. See [27] for more details and an in-depth dis-
cussion together with some guidelines.

Here we additionally include results obtained using the 
strong formulation with a spherical harmonics expansion of 
order p as described in appendix B. Figure 2 shows a typi-
cal error distribution for fB�  on the surface for p  =  16. The 
errors for the mean curvature H drop to machine precision 
beyond an order p 5⩾ , see figure 3. In this case the RBC 
surface is exactly representable by a spherical harmonics 
series of order 5. The mean curvature itself, on the other 
hand, cannot be expressed by just a few terms of the expan-
sion owing to its highly nonlinear dependency on the surface 
geometry. As we compute the Laplace–Beltrami operator of 
H by expanding H again into spherical harmonics, the error 
decay of the traction jump in figure 4 occurs roughly expo-
nentially (as is typical for spectral methods). If we com-
puted the fourth order derivatives directly as remarked in 
the appendix, we would expect a jump to machine precision 
as for H. Hence we conclude that for spherical harmonics 
a somewhat more practical test would consider some non-
exactly representable surface and assess its performance 
there. However, the main problem is to obtain precise refer-
ence results for such an object and we therefore leave this 
task for future work.

4. Applications

We will now summarize some important applications and 
provide an overview of the contexts in which the individual 
methods are being used.

4.1. Membranes in the absence of an externally imposed flow

The computation of equilibrium shapes of vesicles and red 
blood cells is a problem with a long history [17, 21, 34, 58, 
68–70]. The goal is to find the minimum of the surface’s energy 
under appropriate constraints. In case of vesicles this usually 
means to minimize the bending energy from equation (2) or the 
extended version from equation (9) (which includes the area-
difference) under the constraints of constant surface area and 
volume. For red blood cells additional terms are needed to take 
the finite shear elasticities into account, although early works 
have neglected them.

To this end, it would in principle be possible to use the 
Euler–Lagrange equation  (equation (7) with =f 0B�  and 
appropriate amendments for the constraints) and solve it for 
the unknown shape directly. However, since it constitutes a 
4th order nonlinear PDE, this is a formidable numerical task 
and was only attempted under the assumption of axisymme-
try [58, 68–70, 142, 231, 297, 298]. Alternatively, the bend-
ing forces can be used to solve a damped equation of motion 
where the mass and the damping coefficients only influence 
the speed of convergence but do not modify the final equilib-
rium shapes. For example, Tsubota et al [28, 147] used this 
approach together with flat triangles. A third and the most 
popular possibility is to perform a direct minimization of the 
energy via methods such as Monte Carlo [70, 139] or quad-
ratic programming [141, 299]. This has been done for axisym-
metric [223, 234] but also fully three-dimensional shapes. 
Employed discretizations include for example flat triangles 
(e.g. [70, 139, 243, 296, 299], and publications using Brakke’s 
surface evolver [300] such as [301, 302]). Moreover, 
spherical harmonics [141, 303], subdivision surface methods 
[55] or B-Splines [213] have been used, sometimes in the 
framework of the finite element method [55, 213, 216].

In the related context of membrane thermal fluctuations, 
adequate simulations also require the inclusion of bending 
resistance. For example, [140, 304, 305] used spherical har-
monics and [169] used a spring network model. Bending must 
also be included when considering the diffusion of nanopar-
ticles near realistic red blood cells which was done in [86, 
306–309] via flat triangles and Method C from section 3.2.3.

In table 1 we list an overview of all works simulating iso-
lated soft objects with or without an external flow together 
with the employed bending algorithms.

4.2. A single object in flow

The behavior of even a single soft object such as a vesicle, cap-
sule or red blood cell in simple flows can be amazingly complex 
[1–5, 97], even bearing the possibility for deterministic chaos 
[310, 311]. For vesicles the dynamics is mostly determined 

Figure 2. The typical shape of a red blood cell, as described by 
equations (B.14a–B.14c). Intersections of the grid lines indicate 
the nodes used for the spherical harmonics expansion of order 16, 
and the color depicts the nodal errors of evaluating the traction 
jump (the maximum and average is shown in figure 4). Most other 
expansion orders show similar error patterns.
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Figure 3. (a) Maximal and (b) average errors of the mean curvature H for the discocyte shape from figure 2. Methods C–E and S use 
flat triangles with a mean edge length of h (inverse on the lower x-axis). The lines are meant as guides to the eye to assess the typical 
convergence behavior. The vertical line at the top indicates results for an inhomogeneous triangulated mesh. Data for methods A–E and S 
from [27] (MT1 mesh). The result for the spherical harmonics method SH is shown as a function of the truncation order p (upper x-axis, 
no correlation with the lower axis exists). Note that the error drops to machine precision (≈10−14 for double precision arithmetic) for ⩾p 5. 
Errors for the Gaussian curvature K are very similar.

Figure 4. (a) Maximal and (b) average errors of the traction jump �fB for the discocyte shape from figure 2. Setup and symbols similar to 
figure 3. Data for methods A–E and S from [27] (MT1 mesh). Errors for ∆ HS  look very similar.

Table 1. Overview of recent numerical works for a single object with or without external flow that compute the bending forces using full 
3D methodologies. We only list publications that use the Helfrich bending law or a linear bending model (see section 2.1.2). Methods A–E 
have been shortly described in section 3.2 and in detail in [27]. Note that the discretizations only refer to the computation of the bending 
forces (other components of the solvers might use different approaches). 

Discretization Force formulation Strong formulation (Euler–Lagrange) Weak formulation (FEM)

Flat triangles A  [18, 27, 28, 105, 123, 147, 169,  
180, 189, 243, 244, 247–249]

B [27, 98, 106, 115, 188, 252, 253]

C  [27, 52, 66, 86, 93, 183, 270, 271, 279,  
306–309, 320, 321] 

D  [27] 
E  [27, 99, 107, 275–277] 
C  +  E [94, 104, 146, 148, 278–282]

[143, 293]

Higher order elements 
(curved triangles)

[54, 83] [296]

Subdivision methods [91, 102] [27, 55, 149, 200, 204, 
205]

Spectral methods (spherical 
harmonics)

[84, 85, 91, 92, 207, 209, 322, 323] [206]*

Other methods [182, 215]

*Reference [206] uses the weak formulation but not the FEM, as explained in section 3.2.4.
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by bending forces in connection with area inextensibility and 
volume conservation. Red blood cells are mostly dominated by 
shear elasticity, although the maximal deformation can be nota-
bly reduced by the bending resistance [54] and it prevents the 
formation of sharp cusps [312]. For very thin-shelled capsules, 
bending forces are often assumed to be negligible [5]. They 
only manifest in zones of negative stress where they define the 
wavelength of the emerging wrinkles [5, 72, 211, 212, 313, 
314]. Recent works in this category are also collected in table 1.

Two prototypical flows are commonly used: linear shear 
flows and Poiseuille flows. The former is somewhat simpler 
as the incoming flow far away from the object possesses a 
spatially constant shear rate while the latter is somewhat 
more relevant for applications in micro- or biofluidics. 
Occasionally, also time-dependent flows have been investi-
gated [280, 315–319].

4.2.1. Linear shear flows

Spherical capsules.  The influence of bending resistance 
has been systematically studied almost only for an initially 
spherical elastic capsule endowed with additional bend-
ing rigidity in linear shear flows. The capsule at low shear 
rates deforms into an approximate ellipsoid and performs a 
tank-treading motion, i.e. the membrane rotates around the 
stationary shape. This is illustrated in figure  5(a). The sys-
tem parameters can be cast into three dimensionless values: 
the dimensionless shear rate (or elastic capillary number) 

µγ κ=G R S/ , the dimensionless ratio between shear and 
bending resistance κ κ κ= RB B

2
Sˆ /( ) and the viscosity ratio 

λ µ µ= C/ . Here, κS is the shear modulus for the in-plane ten-
sions (usually modeled by the neo-Hookean law [5, 27]), R 
the initial radius, μ the dynamic viscosity of the ambient fluid, 
µC the dynamic viscosity of the internal fluid, and γ the shear 
rate. Note that different conventions for the moduli exist in 

the literature. The reference state for the in-plane tensions is 
taken to be the initial sphere and the bending reference state is 
usually a flat sheet (H0  =  0).

The shape is typically described by the Taylor defor-

mation parameter = −
+

D a c

a c
 with the largest and smallest 

semi axes a and c, respectively, and the inclination angle θ 
between the x-axis and a. D and θ can be extracted from an 
ellipsoid with the same inertia tensor [192, 238]. Without 
bending forces, ample data is available because this setup is 
very often used for the verification of hydrodynamic simu-
lation codes. There is very good agreement across a wide 
range of surface discretizations and flow solvers as shown 
in figure 5(b).

Once bending forces are included, however, one observes 
a surprisingly large spread of the values reported in the litera-
ture as shown in figure 5(c). Since all simulations are intended 
to model the same physical situation, this spread is somewhat 
unexpected. Given the excellent agreement without bending 
forces in  figure 5(b), a decisive influence of the flow solver is 
unlikely. The fact that some of the references use a linear bend-
ing model is also most likely not the reason as the curves in 
question do not match among themselves and because the ∆ HS  
term (which is common to all) should dominate the behavior 
(compare appendix A.5). Moreover, not even results using the 
same surface discretization methodologies agree with each 
other. This spread thus clearly exemplifies the difficulty of 
accurately computing the bending forces. In the future, it would 
be interesting to conduct similar studies including a non-zero 
spontaneous curvature.

Non-spherical objects. Vesicles typically obey strict area 
and volume conservation and thus, for any deformation to be 
possible, the initial shape must not be a sphere. This adds an 
additional dimensionless parameter called the reduced vol-
ume ν π= V S6 13 2/ ⩽/  [325], where ν = 1 corresponds to 

Figure 5. Results from 3D simulations of an initially spherical capsule under the influence of a linear shear flow. (a) 2D sketch. a is the 
largest and c the smallest half axis. ‘Tank treading’ refers to the rotation of the membrane around the object’s centroid while the shape 
remains constant. (b) Time evolution of the Taylor deformation parameter D for various dimensionless shear rates G without bending 
resistance as a function of the dimensionless time γt. Viscosity ratio λ = 1. Results by Huang et al [205], Le [149] and Zhu and Brandt [85] 
are not included for clarity but match well with BIM. (c) Comparison of the recent literature for G  =  0.05 and κ̂ = 0.0375B , i.e. with some 
bending resistance included. Viscosity ratio λ = 1. Method C was introduced in section 3.2.3, Method S in section 3.2.4. All references 
use the same physical models and parameters, except for Pozrikidis [54] who used a Hookean elastic law. All use the Helfrich or a linear 
bending model (see section 2.1.2), except Huang et al [205] who employ the bending model introduced by Zarda et al [324]. However, the 
employed flow and discretization algorithms vary greatly. (a)–(c) Modified from [27] with permission from Elsevier.
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a sphere. Owing to the excess area, additional phenomena 
such as vacillating-breathing, tumbling or kayaking motions 
arise (see [9, 92, 93, 102, 143, 253, 271, 325] and the reviews  
[4, 97]). Similar features are shown by capsules [206, 326, 
327]. The dynamics of red blood cells (ν≈ 0.6 [1, 271]) can 
be even richer, adding states like breathing or tilted tank-
treading [3, 10, 32, 66, 146, 181, 248, 278, 281, 328–331]. 
Finally, spatial variations of the bending modulus can lead to 
self-propelled [67] or migrating [332] particles.

4.2.2. Poiseuille flows. Studies of vesicles in bounded or 
unbounded Poiseuille flows are scarcer than for linear shear 
flows. Known shapes for vesicles include bullets, parachutes, 
croissants and static slippers [275, 333–335]. Red blood cells 
add states known from linear shear flows (e.g. tumbling), but 
also novel ones such as snaking or ‘dynamic’ slippers [18, 97, 
153, 188, 248, 336]. Moreover, the transition from the disco-
cyte to the parachute shape was shown to depend on the bend-
ing modulus for vesicles as well as cells [188, 248].

4.3. Several particles under flow

In many real-world situations, soft objects are not isolated 
but occur in suspensions. Numerical studies on very diluted 
[13, 18, 114, 115, 337–339] and medium to dense [72, 109, 
110, 117, 121–123, 125, 126, 250, 251, 283–285, 340–350] 
RBC suspensions are relatively abundant. Also see [8, 18, 
20, 32, 33, 351] for recent reviews. On the other hand, 3D 
simulations of interacting vesicles or capsules are quite 
rare. For example, two or more capsules have been simu-
lated without [214, 352–357] and sometimes with [129, 
358, 359] some bending rigidity in 3D. Numerical studies 
of interacting vesicles were mostly limited to 2D so far (e.g. 
[13, 217, 337, 360–365]), with the notable exception of [96]. 
Also note that [101, 103, 208, 293] touched the subject but 
focused on the development of the numerical method rather 
than on physical results.

In table  2 we give an overview of recent works in con-
junction with the employed bending algorithm. Interestingly, 
most simulations are based on flat triangles and very often 
use Method A from equation  (13). The most likely reason 
for this is the algorithm’s simplicity and efficiency in terms 
of the number of arithmetic operations, although [27] found 
that it requires comparably small time steps. Its lack of high 
fidelity seems to be of only minor concern for red blood cell 
suspension simulations given the relative smallness of and 

uncertainty in experimentally determined bending moduli 
(and spontaneous curvature), the variation of RBC proper-
ties with age [153, 163, 370–372], and the routinely neglected 
influence of the vessel wall’s glycocalyx [373, 374]. Hence, 
effects that are also observed in vivo must have a certain 
robustness and low-accuracy bending methods may be accept-
able for these applications, although systematic studies have 
not been conducted so far.

5. Summary and future perspectives

Bending forces are an integral component of many simulation 
codes for the study of natural or artificial soft particle sus-
pensions. While the complexity of solving the Navier-Stokes 
equations  for the hydrodynamic flow has long been recog-
nized, the computational difficulties of computing bending 
forces have not always been fully appreciated.

In this review, we attempted to give an overview of the var-
ious approaches for bending forces developed during the last 
decades. We focused on membranes whose bending energy 
can be described by the famous Helfrich model. The described 
methods can be classified into three broad categories which 
are termed the force, the strong (or Euler–Lagrange) and the 
weak formulation. In addition, bending algorithms can be 
combined with different ways to discretize the surface itself. 
Flat triangles, spherical harmonics and subdivision schemes 
are the most widely used methods. Almost all of the described 
bending algorithms are currently being used in modern simu-
lations of soft objects in flows. Yet, the simple case of a cap-
sule in a linear shear flow clearly shows that the numerically 
predicted dynamics are in fairly good agreement with each 
other only if bending effects are neglected. As soon as bend-
ing forces are included, the various implementations start to 
scatter rather widely.

For future research, both numerical and physical issues 
come to mind. Numerically, an important task would be a sys-
tematic study on how the different bending algorithms behave 
when combined with different surface discretizations. While 
such a comparison has been attempted for flat triangles and 
spherical harmonics in section 3.3, it does not yet provide a 
clear and systematic distinction between the force, strong and 
weak formulations. It would certainly be worthwhile to study 
the advantages and disadvantages of the three methodologies 
more systematically, which would require to use the same sur-
face discretization in all three cases. The ultimate goal would 
be to establish a definite reference algorithm that is proven to 

Table 2. Overview of recent numerical works using full 3D methodologies similar to table 1, but for the interaction of several particles 
(⩾2) in external flows.

Discretization Force formulation Strong formulation (Euler–Lagrange) Weak formulation (FEM)

Flat triangles A  [18, 72, 109, 117, 118, 121–126, 245, 246,  
250, 251, 340, 342, 344–350, 359, 366, 367] 

B [114, 115, 254]

C [110] 
E (only H ) [186, 274] 
C  +  E [283–285]

[293]

Subdivision  
methods

[96] [358]

Spectral methods 
(spherical harmonics)

[84, 101, 103, 207, 208, 341, 343,  
368, 369]
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provide correct and especially robust results and at the same 
time has practical performance for dynamic simulations with 
many particles. Furthermore, it is at present also unclear if and 
how the quality of the various algorithms would change once 
a spontaneous curvature is included.

On the more physical side it would be interesting to sys-
tematically assess the influence of the bending rigidity and/
or spontaneous curvature for the practically relevant case 
of a soft object in Poiseuille flow similar to what has been 
done in shear flow. Moreover, the effect of the bending 
resistance on the behavior of dense suspensions (speed of 
margination, formation and thickness of the cell-free layer, 
etc) appears to not have been systematically considered  
so far.

The final issue concerns the spontaneous curvature H0. 
Although a noticeable influence of H0 on the behavior of a 
single cell in flow has been found in a recent simulation study 
[66], a consensus on whether a spontaneous curvature should 
be included e.g. for red blood cells, and, if so, what its value 
should be, seems currently not in sight. Presumably, only 
novel sophisticated experiments can help to fully settle this 
question.
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Appendix A. Derivation of the Euler–Lagrange 
equation via thin shell theory

While abundant literature on the derivation of the Euler–
Lagrange equation  (7) via the variational principle is avail-
able [24, 36, 41, 57–61, 63–66, 75], completely worked out 
derivations by means of the Kirchhoff–Love thin shell theory 
are much harder to find. This theory is based upon the assump-
tions that deformations do not change the thickness and that 
normals to the mid-surface remain normal after deformation 
[78, 111]. Here we provide such a full derivation, with two 
major purposes in mind: first, to demonstrate clearly and in a 
consistent framework the equivalence of the variational and 
the thin shell approach. Second, to obtain the precise relation-
ship between the often used linear bending models mentioned 
in section 2.1.2 and the Helfrich model. We show that these 
linear bending models lead to a traction jump whose leading 
order term is equivalent to the leading order term from the 
full Helfrich equation (7). Higher order terms usually differ. 
To this end, it will not suffice to use equations that only hold 
for small deformations as employed e.g. by Pozrikidis [35, p 
272] [54, p 277]. Steigmann [76] and Naghdi [78] provide an 
appropriate formalism for finite deformations which we are 
going to adopt in the present work. Also see Sauer and Duong 
for a concise overview [112].

A.1. Differential geometry

We will use the formalism of differential geometry to describe 
the surface. A very good introduction can be found in the 
recent review by Deserno [36], and we will only summarize 
the required notations and results below.

As a start, we introduce two curvilinear coordinates θ1 and 
θ2 and the chart θ θx ,1 2( ) that describes the deformed surface5. 
The (in general non-unit) tangent vectors are given by [36, 
equation (4)]

θ
= ≡

∂
∂

α α αa x
x

: ,, (A.1)

where Greek indices assume the values 1 and 2, and the 
comma denotes the partial derivative with respect to θα act-
ing on each Cartesian component. We further introduce the 
normalized normal vector

=
×

| × |
n

a a
a a

: ,1 2

1 2
 (A.2)

the symmetric metric tensor (coefficients of the first funda-
mental form) [36, equation (8)]

= ⋅αβ α βa aa : , (A.3)

its determinant [36, equation (13)]

= = −αβa a a a a a: det 11 22 12 21 (A.4)

and the symmetric curvature tensor (coefficients of the second 
fundamental form) [36, equation (15)]

= − ⋅ = ⋅αβ α β α βa n a nb : ., , (A.5)

Note that here we use the convention of Deserno regarding 
the sign, meaning that the mean curvature of a sphere will be 
positive. Steigmann [76] uses the opposite sign.

The mean curvature is given by [76, equation  (3.8)] [78, 
equation (A.2.28)]

= = =β
α

α
α αβ

αβH b b a b:
1

2
trace

1

2

1

2
,( ) (A.6)

and the Gaussian curvature by [76, equation  (3.8)] [78, 
equation (A.2.29)]

ε ε= = − =β
α αβ λµ

αλ βµK b b b b b b b: det
1

2
.1

1
2
2

2
1

1
2 ˆ ˆ (A.7)

Here, ε =αβ αβ a: eˆ / , with the antisymmetric tensor αβe  
defined by = =e e 011 22 , e12  =  1 and e21  =  −1. Summation 
over repeated indices is implied.

We will need a few more results from differential geometry. 
To this end, we first introduce the tensor [76, equation (6.7)]

= −αβ αβ αβb Ha b: 2 .˜ (A.8)

With this, we summarize the following relations:

=α α
β
βn ab , (Weingarten) [36, equation (37a)]; (A.9a)

= −α β αβa nb , (Gauss) [36, equation (37b)]; (A.9b)

=γ
αβa 0,  [36, equation (27)]; (A.9c)

5 In general, several charts will be required [36].
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=α
αβ

b 0,  [76, equation (6.6)];
˜ (A.9d)

=αβ
αβa b H2 ,  [36, equation (17)] (A.9e)

˜ =µ
α µβ αβb b Ka ,  [76, equation (6.14)] (A.9f)

φ φ=α α,  [36, below equation (26)]; , (A.9g)

φ φ= ∆β α
αβa ,  [36, equation (32)]; ; S (A.9h)

where φ is some scalar valued function and ∆S the Laplace–
Beltrami operator. The semicolon denotes the covariant deriv-
ative defined with respect to αβa  [36, equation  (24a)]. Note 
that covariant derivatives do not commute in general [36, 
equation (34)], and that equation (A.9g) does not hold if φ is 
a tensor density with non-zero weight such as a [36, footnote 
9]. Another relation that will be needed is

δ= = =αγ
γβ βλ γ

λ αγ
βλ
λα

β
αb b a b b Ka a K ,˜ ˜ (A.10)

where the usual rising operation [36, equation  (10)] was 
used for the first equal sign, then equation (A.9f ), and finally 
the Kronecker-delta δγ

α [36, equation  (9)]. Also remember 
that the metric and curvature tensors are symmetric. This 
leads to

δ= =αβ
αβ α

αb b K K2 .˜ (A.11)

Combination with equation (A.8) gives [58, equation (2.34)]

δ= −αγ
γβ β

α
β
αb b Hb K2 (A.12)

and

= −αβ
αβb b H K4 2 .2 (A.13)

Moreover, using equations  (A.8), (A.9c), (A.9d) and (A.9g) 
we can also derive

=α
αβ

α
αβb H a2 .; , (A.14)

A.2. Thin shell theory

Performing a force balance for a small patch of the surface 
[35, 111], one can derive the local equilibrium balance from 
equation (5) as [76, equation (2.1)] [78, equation (9.13)]

+ =α
αT f 0.; B� (A.15)

fB�  is the traction jump due to the flows (as in equation (5)) 
and αT  are two stress vectors6. If inertia plays a role, an addi-
tional term would need to be taken into account [78, 111, 
112]. For simplicity we will restrict ourselves to the interior 
of the surfaces, i.e. we will not consider the boundaries of 
open objects.

To continue, we separate αT  into tangential and normal 
components:

= +α α αT N nS , (A.16)

with [76, equation (2.4)]

=α βα
βN aN: , (A.17)

where αβN  is an in-plane tension tensor and αS  represents the 
transverse shear tension [35]. Note that αβN  is in general not 
symmetric [112]. Furthermore, we introduce a tension tensor 
σαβ via [76, equation (2.5)]

σ= +αβ αβ
µ
α µβN b M , (A.18)

where αβM  are bending moments [35]. Finally, we have from 
a local torque balance7 [76, equation (2.9)] [35, chapter 4.2]

= −α
β
αβS M .; (A.19)

σαβ (or equivalently αβN ) and αβM  are determined from 
appropriate constitutive laws. One possibility is to specify 
them directly [54, 58, 79–81, 83–85]. Alternatively, they may 
be derived from a postulated energy density function. To this 
end, we introduce the energy per unit undeformed area  ε. 
Assuming a homogeneous mass density, σαβ and αβM  are then 
determined by

⎛

⎝
⎜

⎞

⎠
⎟σ

ε ε
=

∂
∂

+
∂
∂

αβ

αβ βαJ a a

1
, (A.20a)

⎛

⎝
⎜

⎞

⎠
⎟ε ε

=
∂
∂

+
∂
∂

αβ

αβ βα
M

J b b

1

2
 (A.20b)

(compare [77, equation  (25)] [76, equation  (2.6), [111,  
equation (4.9)] and [78, equation (15.15)] with the help of foot-

note 7). Note that for example +ε ε∂
∂

∂
∂αβ βα

2
a a

( )/  is sometimes sim-

ply written as ε∂
∂ αβa

 [78, p 537] [375, equation (3.16)]. The local 
area dilation is given by [76, equation (2.7)] [77]

=J a A: ./ (A.21)

Here, A is the determinant of the metric tensor of the reference 
surface.

To be more precise, the energy density ε only determines 
the symmetric parts of σαβ and αβM  because the right-hand 
side in equations (A.20) only contains symmetric expressions. 
The skew (or antisymmetric) parts are undetermined at first 
[78, p 537 and p 551]. However, the skew part of the bending 
moments αβM  plays no role in this case and can be set to zero 
[78, equation (15.17)] without loss of generality [111, p 285], 
making αβM  symmetric. Moreover, a local torque balance can 
be used to derive (compare [112] [78, equation (10.21)] [111, 

7 Note that for most of the quantities different conventions exist; here we 
follow reference [76]. Most importantly, αβN  from equation (A.17) might 
be defined transposed as =α αβ

βN aN  [78, equation (9.40)], and αβM  might 
be obtained from a derivative with respect to − αβb  in equation (A.20b) [78, 
equations (5.61) and (15.15)] [111, equation (4.9)]. If only the − αβb  deriva-

tive convention is used, equation (A.18) becomes σ= −αβ αβ
µ
α µβN b M  [111, 

equation (4.9)] and equation (A.19) becomes =α β
αβS M;  [111, equation (5.3)] 

[84, equation (22a)] [58, equation (A.7)] [35, equation (4.14)]. If addition-
ally the transposed convention is employed, we have σ= −αβ αβ

µ
β µαN b M  

[78, equation (10.26)]. Naturally, these two conventions also change equa-
tion (A.22). We also remark that the sign convention for the curvature tensor 
(A.5) is independent of this.6 Deserno [36] calls − αT  the surface stress tensor and denotes it by ‘ f a’.
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equation (6.1)] [35, equation (4.14)] [84, equation (22b)] [58, 
equation (A.8)] while keeping footnote 7 in mind)

− =αβ
αβ

µ
α µβe N b M 0.( ) (A.22)

The antisymmetric tensor αβe  has been introduced above. This 
equation fixes the skew part of αβN  [78, equation (15.18)] by 
implying that the skew part of σαβ should be zero, i.e. that 
σαβ must be symmetric [112, equation (71)]. Thus, in short, 
one can take equations (A.20) to define σαβ and αβM  com-
pletely, and equation (A.22) will be satisfied automatically 
[111]8.

Before we continue, we derive explicit expressions for the 
tangential ( βf ) and normal (f  3) components of the traction jump

= +β
βf a nf f .B

3� (A.23)

To this end, rewrite

= +

= + + +
α
α βα

β α
α

α

α
βα
β

βα
β α α

α α
α

T a n

a a n n

N S

N N S S .

; ; ;

; ; ; ;

( ) ( )

Using equations (A.9a) and (A.9b), we find

= + + −α
α α

α
β

α
βα

β α
α βα

βαT a nS b N S N b .; ; ;( ) ( ) (A.24)

Hence, equation (A.15) can be written as

= − −β α
α
β

α
βαf S b N ,; (A.25a)

= − +α
α αβ

αβf S N b .3
; (A.25b)

These equations  match with [76, equation  (6.17)] (mind 
the H sign convention), [78, equation  (15.20)] [58, equa-
tions (A9) and (A10)] (mind footnote 7) as well as with [84, 
equation  (23)] [86, equations  (A18) and (A19)] [35, equa-
tion (4.13)] (mind footnote 7 and the H sign).

Given an energy density ε, equations  (A.15)–(A.20) 
fully determine the traction jump fB� . Hence, the goal 
will be to apply this formalism to the Helfrich model from 
equation  (1). To this end, note again that ε is the energy 
per unit undeformed area [77], i.e. the total energy of some 

surface patch is given by ∫ ε Sd 0 where the integration 

goes over the undeformed surface (compare [111, equa-
tion (2.19)] and [43, 77]). The Helfrich energy density Bε  
as in the main text, however, is usually specified per unit 

deformed area, i.e. the total energy is ∫ SdBε . Considering 

that θ θ=S Ad d d0
1 2 and θ θ=S ad d d1 2 [36, equa-

tion (84)], and furthermore demanding that ε =S Sd ! d0 Bε , 

we find with equation (A.21) [77]

ε = J .Bε (A.26)

Thus, for the Helfrich model from equation  (1) [76, 
equation (7.17)]:

ε κ κ= − +J H H K2 .B 0
2

K[ ( ) ] (A.27)

A.3. Derivation of the traction jump for a general energy 
functional

A.3.1. Intermediary results. To start the derivation of general 
formulas, we use that the bending contribution to ε for fluid 
membranes can only depend on J, H and K [43]:

ε ε= J H K, , .( ) (A.28)

The Helfrich model is contained as a special case. Using the 
chain rule, we find for equations (A.20) [76, equation (6.13)]

σ ε ε ε

ε

= − − + +

+

αβ αβ

αβ
J

J K H a

b J

1
2 2

,

J K H

H

, , ,

,

( )

˜ /
 

(A.29a)

⎜ ⎟
⎛
⎝

⎞
⎠ε ε= − +αβ αβ αβM

J
a b

1 1

2
,H K, , ˜ 

(A.29b)

where αβb̃  was defined in equation (A.8). Furthermore, using 
equations  (A.9c) and (A.9d), we obtain for the transverse 
shear tension in equation (A.19) [76, equation (6.18)]

ε ε= +α
β
αβ

β
αβS J a J b

1

2
.H K, ; , ;( / ) ( / ) ˜ (A.30)

The next step is to compute αβN  from equation (A.18). In 
order to facilitate the connection with the linear bending mod-
els later on, we separate the contributions by introducing two 
artificial parameters ζ and ξ:

ζσ ξ= +αβ αβ
µ
α µβN b M . (A.31)

Setting ζ ξ= = 1 recovers the full equations. Next, compute

ε
ε

= +µ
α µβ αβ αβb M

J
b

J
Ka

1

2
,H

K
,

,
 (A.32)

where equation  (A.9f) and the usual rising operations [36, 
equation  (10)] have been used. Using the definition of αβb̃ , 
equation (A.31) assumes the form

ζε ζ ξ ε

ζ ξ ε

= − − + −

− −

αβ αβ

αβ

N
J

J K a

J
b

1
2

1

2
2 .

J K

H

, ,

,

[ ( ) ]

( )
 

(A.33)

A.3.2. Tangential component. The tangential components of 
the traction jump are given via equation (A.25a). Using equa-
tions (A.9c), (A.9f) and (A.14), we find

ζ ξ ε

ζε ζ ξ ε

ε

ζ ξ ε

= − −

+ − + −

−

+ −

β
α
αβ

α

α

α
αβ

f J b

K J

J K

H J a

1

2
2 1

2

2 ,

H

J K

K

H

, ;

, , ;

, ;

, ,

( )( / )

[( ( ) / )
( / )
( ) / ]

 

(A.34)

or for the true values ξ ζ= = 1

ε ε ε

ε

= − + −

+

β
α α

α
αβ

f K J J K

H J a .

J K K

H

, , ; , ;

, ,

[ ( / ) ( / )

/ ]
 

(A.35)

8 Note, that if some constitutive laws for αβN  and αβM  are provided directly 
rather than via some energy density (as is done for some of the linear bend-
ing models of appendix A.5), equation (A.22) constitutes a restriction for the 
possible laws [376, chapter 4].
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A.3.3. Normal component. To evaluate equation  (A.25b), 
first calculate

ε ε= ∆ +α
α

α β
αβS J J b

1

2
,H K; S , , ; ;( / ) ( / ) ˜ (A.36)

where we used equations  (A.9c), (A.9d), (A.9g) and (A.9h) 
and the symmetry of αβb̃  to exchange the covariant deriva-
tives. Using equations (A.9e), (A.8) and (A.13), we obtain the 
general result for arbitrary ζ, ξ and ε J H K, ,( )

ε ε

ζ ε ζ ξ ε

ζ ξ
ε

= − ∆ −

− − + −

−
−

−

α β
αβf J J b

H

J
J K

J
H K

1

2
2

2

2
2 ,

H K

J K

H

3
S , , ; ;

, ,

2
,

( / ) ( / ) ˜

[ ( ) ]

( )

 

(A.37)

or for the true values ξ ζ= = 1

ε ε

ε ε

ε

= − ∆ −

− − +

− −

α β
αβf J J b

H

J
J K

J
H K

1

2
2

1
2 .

H K

J K

H

3
S , , ; ;

, ,

2
,

( / ) ( / ) ˜

[ ]

( )

 

(A.38)

This is the final general formula for the normal component of 
the traction jump.

A.4. Derivation of the traction jump for the Helfrich model

We will now specialize the above relations for the Helfrich 
model from equation (A.27) for constant κB and κK. For con-
venient comparison with the literature, we will also provide 
intermediary results.

A.4.1. Intermediary results. First of all, from equations (A.29) 
we find the symmetric tension tensor σαβ and the bending 
moments as [77, equation (28)]

σ κ κ
κ

= − −
− −

αβ αβ

αβ

H H K a

H H b

2

4 ,
B 0

2
K

B 0

[ ( ) ]
( )

 (A.39a)

κ κ= − − −αβ αβ αβM H H a b2 .B 0 K( ) ˜ (A.39b)

Hence, the transverse shear tension (A.30) is given by

κ= −α
β
αβS H H a2 ,B 0 ;( ) (A.40)

and the full in-plane tension tensor (A.33) is

κ ζ ζ ξ κ
κ ζ ξ

= − − −

− − −

αβ αβ

αβ

N H H K a

H H b

2

2 2 .
B 0

2
K

B 0

[ ( ) ( ) ]
( )( )

 
(A.41)

Also note that for ξ ζ= = 1 (the correct values), one directly 
finds [77, equation (28)]

κ κ= − − −αβ αβ αβN H H a H H b2 2 ,B 0
2

B 0( ) ( ) (A.42)

i.e. the result is independent of the saddle-splay modulus κK.
We shortly stop at this point and actually compute the 

stress vectors αT  from equation (A.16). A short computation 
shows for ζ ξ= = 1:

κ

κ

κ

= −

− −

+ −

α αβ
β

αβ
β

β
αβ

T a

a

n

H H a

H H b

H H a

2

2

2 .

B 0
2

B 0

B 0 ,

( )
( )
( )

 
(A.43)

This expression for the stress vectors matches with the sur-
face stress tensor from [36, equation (96)] for a constant H0 
and [61, equation (51)] [62, equation (14)] for H0  =  0 up to a 
definition-implied global sign. It also agrees with [70, equa-
tion (2.64)] and [57, equation (128)]. As explained in [36], αT  
represent a first integral of the Euler–Lagrange equation.

A.4.2. Tangential component. Substituting equation  (A.27) 
into equation  (A.34) gives the following tangential comp-
onents of the traction jump:

κ ζ ξ

κ κ ζ ξ

= − − −

+ − + −

β
α
αβ

α α
αβ

f H H b

H H H K a

2 2 1

4 .

B 0 ,

B 0 , K ,

( )( )
[ ( ) ] ( )

 

(A.44)
For ζ ξ= = 1 this obviously reduces to

=βf 0. (A.45)

Thus, for the actual Helfrich model the tangential tractions 
vanish in the interior of the surface if no additional constraints 
are used.

A.4.3. Normal component. It is straightforward to evaluate 
equation (A.37) with ε from equation (A.27). The result is

κ
ζ ξ ζ

κ ζ ξ

= − ∆ −
+ − − − − −
− −

f H H

H H H K H H H
HK

2

2 2 2
2 ,

3
B S 0

0
2

0

K

{ ( )
( )[( )( ) ( )]}

( )

 

(A.46)
or for ξ ζ= = 1

κ= − ∆ −
+ − − +

f H H

H H H K H H

2

2 .

3
B S 0

0
2

0

[ ( )
( )( )]

 (A.47)

Taking equation (A.23) into account, the results (A.45) and 
(A.47) match exactly with the one from equation (7) obtained 
via a variational derivative. Thus, the variational and the shell 
theory approaches are compatible with each other and lead 
to the same results. Also note that the κK term drops out, as 
required by the Gauss–Bonnet theorem. We further remark 
that the Laplace–Beltrami term in equation (A.46) is always 
there, regardless of the values of κK, ξ and ζ.

A.4.4. Order of the individual terms. In view of the linear 
bending models presented in the next section, it is of some 
interest to know the importance of the individual terms occur-
ring in equation (A.47). To this end, consider a general sur-
face in the Monge gauge [36]: at least locally, the surface 
can be described by the vector � = ∈x x y x y h x y, : , , , 3( ) ( ( )) R  
with the height function h. We assume that the devia-
tions from a plane are of order ψ> 0, i.e. ψ∼h x, ( )O  and 

ψ∼h y, ( )O . Next, a deformation ∈u 3R  leads to the deformed 
surface �= +x x ux y x y x y, : , ,( ) ( ) ( ). The deformation shall be 
of order χ> 0, i.e. χ∼u x, ( )O  and χ∼u y, ( )O . Furthermore, 
we set the reference shape (but not the undeformed state �x) to 
be a flat plane (H0  =  0).
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With this we can compute the various geometric quantities 
for the deformed surface x to leading orders, similar to [86]. 
In the end, we obtain

ψ χ ψχ∆ ∼ + + +H h.o.,S ( ) ( ) ( )O O O (A.48a)

χψ− ∼ +H H K h.o.,2 2( ) ( )O (A.48b)

and for the full normal component

ψ χ ψχ∼ + + +nf h.o.,3 ( ) ( ) ( )O O O (A.48c)

where ‘h.o.’ stands for ‘higher orders’. Hence, at least 
for small deviations from a plane ( �ψ χ, 1) we have 

�|∆ | | − |H H H KS
2( ) , which is consistent with [86, 

equation (A20)].
This also seems to hold for larger deviations from a 

plane. For example, for the typical RBC shape from equa-
tions (B.14a−B.14c) and figure 2, ∆ HS  is found to be up to 
almost one order of magnitude larger than the others, i.e. [27]

| ∆ | ≈Hmax 2 218,S (A.49a)

| − | ≈H H Kmax 4 28.8,2( ) (A.49b)

| | ≈nfmax 1893 (A.49c)

(units chosen such, that the large RBC radius is 1 and κ = 1B ).

A.5. Linear bending models

Some authors use a so-called ‘linear bending model’ instead 
of the Helfrich model as already described in section 2.1.2 
of the main text. The purpose of this section is to shed some 
light on the relationship between these two types. In linear 
bending models, the bending moments and in-plane ten-
sions are not derived from an energy functional as in equa-
tions  (A.20a) and (A.20b). Instead, their form is given by 
postulated constitutive laws. A common assumption of 
such models is that the saddle splay modulus κK plays no 
role (which is always true for closed objects with constant 
topology).

In the following we will consider four such models (a–d) 
which are similar, but not identical.

A.5.1. Model a. The first constitutive law we consider is 
the ‘linear isotropic model’ presented e.g. by Pozrikidis [80, 
equation (10)] [81, equation (2.5.11)]

κ= − −αβ αβM H H a2 .B 0( ) (A.50)

It is further assumed [54, p 277] that only the antisymmetric 
components of the in-plane tension tensor αβN  are affected by 
the bending rigidity, namely via equation (A.22). Due to the 
particular form of αβM , this contribution however amounts to 
zero, i.e. we have in total

=αβN 0. (A.51)

Note that additional material properties (such as resistance 
against shearing) might still lead to a non-zero total αβN . The 
two equations (A.50) and (A.51) are captured by κ = 0K  and 

ζ η= = 0 in our general framework presented above (see 
equations (A.31) and (A.39b)). The resulting traction jump is 
therefore obtained via equations (A.46) and (A.44) as

κ= − −β
α
αβf H H b2 ,B 0 ,( ) (A.52a)

κ= − ∆ −f H H2 .3
B S 0( ) (A.52b)

Considering expressions (A.48), the normal comp-
onent matches to leading orders with the result (A.47) for 
the Helfrich model. Interestingly, an additional tangential 
comp onent arises. For the series expansion similar to equa-
tions (A.48) we find ψχ∼ +β

βaf h.o.( )O , and so the normal 
component dominates at least for �ψ χ, 1. This is affirmed 
for the typical RBC shape, where | | ≈β

βafmax 62.7 which 
is less than one third of the value for the normal component 
(A.52b) (see equation (A.49a)). Moreover, figure A1 depicts 
the complete traction jumps and the relative deviation to the 
Helfrich model for the RBC shape. In the rather flat dimple 
regions, the deviations are small (�5%) which is in agreement 
with the series expansion; they only become larger in the high 
curvature regime. Thus, all in all, the complete traction jump 
fB�  of model a matches with the Helfrich model to leading 

order ψ χ+( ) ( )O O .

A.5.2. Model b. Another model that has sometimes been 
used [80, equation  (8)] [81, equation  (2.5.9)] [83, equa-
tion (25)] [54, equation (4.6)] [5, equation (23)] is given by

κ= − −αβ αβ αβM b H a2 .B 0( ) (A.53)
αβN  is once again determined via equation (A.22) (assumption 

of no symmetric components), and once again the skew part 
and hence the full αβN  can be shown to be zero, too. Using 
equations (A.19), (A.9c) and (A.14), we find

κ= −α
β
αβS H H a2 ,B 0 ,( ) (A.54)

which matches exactly with expression (A.40) for the Helfrich 
model. Considering that =αβN 0, the traction jump is thus 
given by equations (A.46) and (A.44) with ζ η= = 0:

κ= − −β
α
αβf H H b2 ,B 0 ,( ) (A.55a)

κ= − ∆ −f H H2 .3
B S 0( ) (A.55b)

Thus, at least from the viewpoint of the traction jump, models 
a and b can be considered to be equivalent.

A.5.3. Model c. Yet another constitutive equation is the one 
employed by Zhao et al and others [84, equation  (21)] [85, 
p 382] [86, equation  (A12)]. Although it is also called ‘lin-
ear isotropic model’ in [84], its form is slightly different from 
Pozrikidis’s version (equation (A.50)). It is given by

κ= − −β
α

β
α

β
αM b B .B( ) (A.56)

Equation (A.22) determines the skew components of αβN  
and the symmetric components of αβN  are assumed to be 
independent of the bending rigidity. = − ⋅αβ αβX NB ,  is 
the curvature tensor of the reference surface θ θX ,1 2( ) (see 
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equation  (A.5) and [77, equation  (11)]) and N the corre-
sponding normal vector. Furthermore, we have =β

α αγ
γβB A B  

with the metric tensor αβA  of the reference state [77]. The 
in-plane tension tensor is according to equation (A.22) and 
[78, equation (15.18)]

κ= −αβ
γ
µ
λµ

αλ γβ αγ λβN B b a a a a
1

2
,B ( ) (A.57)

because its symmetric components are assumed to be zero (if 
no additional elasticities exist). This expression is non-zero 
for general reference states X although some authors assume 
otherwise [84, 85]. As an example, taking a unit sphere [36, 
equation  (2b)] for the deformed geometry θ θx ,1 2( ) leads to 

( ) ( / )κ θ= − −αβ ⎜ ⎟
⎛
⎝

⎞
⎠N B B sin 0 1

1 0
1

2 B 1
2

2
1 2 1  in spherical coordi-

nates, where θ π∈ 0;1 [ ] is the polar angle. Continuing, the 

components of the traction jump follow from equations (A.25) 
as

κ κ

κ

= − +

+ −

β
α
αβ

γ λ
α γλ

α
β

γ
µ
λµ α

αλ γβ αγ λβ

f H b B a b

B b a a a a

2

1

2
,

B , B ;

B ;( ) ( )
 

(A.58a)

κ κ= − ∆ + γ β α
α γβf H B a2 .3

B S B ; ; (A.58b)

The second line for βf  is absent if we assume =αβN 0. 
Interestingly, f3 is always independent of αβN  for the expres-
sion from equation  (A.57). In any case, the result matches 
with the previous two models for a flat reference state, but 
differs for general β

αB . A precise and concise relationship is 
unfortunately not easily established. We further remark that 
application of equations (A.58) to small axisymmetric defor-
mations of a spherical membrane recovers the expressions 
from [309, equation (A19)] to leading order.

A.5.4. Model d. Jenkins [58] focuses on the derivation of the 
Euler–Lagrange equation  for the Helfrich model for H0  =  0 

via the variational approach. Later on, he postulates some 
constitutive equations  to make the connection between the 
variational and the thin shell formulation, namely [58, equa-
tions (A.11) and (A.12)]

κ= −αβ αβM Ha2 ,B (A.59a)

κ= −αβ αβN Hb2 B (A.59b)

(plus some inextensibility contribution). Most notably there is 
a non-zero bending contribution to αβN , contrary to the previ-
ous models. He shows that these equations lead to the same 
Euler–Lagrange equation.

Unfortunately, he made a mistake during his variational 
derivative. Namely, he forgot to vary the surface element or 
equivalently δ a  in [58, equation  (2.18)]9. This results in 
2H2 instead of the correct H2 in the Euler–Lagrange equa-
tion (A.47). Another consequence is that it leads him to pro-
pose an incorrect constitutive law for αβN . Taking this into 
account, he would have probably specified the constitutive 
equations as

κ= −αβ αβM Ha2 ,B (A.60a)

κ κ= −αβ αβ αβN H a Hb2 2 .B
2

B (A.60b)

Comparing with equations  (A.39b) and (A.42), these equa-
tions reproduce the traction jump of the Helfrich model (for 
H0  =  0) exactly.

A.5.5. Summary. To summarize, the traction jump derived 
from the linear bending models a and b agree with each other, 
and with model c at least for zero reference curvatures. Fur-
thermore, all three agree to leading order (i.e. for small devia-
tions from a plane) in the traction jump with the Helfrich 

9 Jenkins additionally integrates over the deformed rather than the unde-
formed surface for the γ term in [58, equation (2.18)], leading to an incorrect 
equation for the surface inextensibility. Otherwise, he would have obtained 
the correct equation (A.65). Nevertheless, this does not affect the bending 
traction jump itself.

Figure A1. Comparison between the traction jumps of the Helfrich model and the linear bending models for the typical red blood cell shape 
from figure 2. The spontaneous curvature is set to zero (H0  =  0), in which case linear bending models a, b and c are equivalent. Analytic 

computations via equations (B.14a−B.14c), and the polar angle is defined as ( / )Θ = + +x x x x: arccos 3 1
2

2
2

3
2  with the Cartesian coordinates 

x1, x2 and x3. Note that the shape is axisymmetric, and thus the results are independent of the azimuthal angle. (a) The magnitude of the full 
traction jump �| |fB  (units chosen such, that κ = 1B  and the large RBC radius is 1). (b) Relative deviation /� � �| − | | |f f fmaxB

H
B
L

B
H , where 

the upper indices H and L denote the Helfrich and linear bending models, respectively, and �| | ≈fmax 189B
H . Only minor deviations are 

observed in the rather flat dimple regions ( /� πΘ 5 16), in agreement with the series expansion from the main text.
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law for a flat reference state, where the leading order term is 
given by  ∼∆ HS . Perfect agreement with the Helfrich model, 
however, requires to take into account the non-zero bending 
contrib utions to the symmetric part of the in-plane tension ten-
sor αβN  (model d). These are often neglected, inducing addi-
tional tangential components.

A.6. Inextensibility constraint

Similar to the variational derivative formalism, it is also pos-
sible to include the local area incompressibility constraint 
in the thin-shell derivation. This can be done by adding the 

term ∫ σ Sd
S

˜  to the total energy (see section 2.1.2). This is 

equivalent to adding σJ˜  to equation  (A.27), i.e. [76, equa-

tion (2.8)] [112]

ε ε σ+ J ,→ ˜ (A.61)

Here, σ σ θ θ= ,1 2˜ ˜( ) is the local Lagrange multiplier. Taking 
into account that σ̃ does not depend on the surface (i.e. neither 
on J, H or K) but only on the curvilinear coordinates, equa-
tion (A.38) then provides the normal contribution

σ+f f H23 3→ ˜ (A.62)

for ζ = 1. On the other hand, the tangential equation (A.35) 
gives

σ−β β
α
αβf f a ,,→ ˜ (A.63)

i.e. a non-zero additional term. Using the definition of the sur-
face gradient [52, equation (60)] given by

σ σ σ∇ = =α
α

α
αβ
βa aa ,S , ,˜ ˜ ˜ (A.64)

as well as equation (A.23), the total traction jump thus receives 
the additional term

σ σ∇+ −f f nH2B B S→ ˜ ˜� � (A.65)

due to the inextensibility. Its significance has already been 
explained in section 2.1.2.

Appendix B. Using spherical harmonics to 
 compute the bending forces

We detail here the direct computation of the traction jump 
from equation  (7) (strong formulation) using spherical har-
monics. The methodology closely follows [101, 103].

A square-integrable function ϑ ϕf ,( ) with ϑ π∈ 0;[ ] and 
ϕ π∈ 0; 2[ [ can be expanded into a spherical harmonics series:

∑ ∑ϑ ϕ ϑ ϕ=
=

∞

=−

f f Y, , .
l m l

l

l

m
l
m

0

( ) ˆ ( ) (B.1)

The coefficients ∈f l

mˆ C are given by an integration over the 
unit sphere,

∫ ∫ ϑ ϕ ϑ ϕ ϑ ϕ ϑ=
π π

f f Y, , sin d d .l

m
l
m

0 0

2ˆ ( ) ¯ ( ) (B.2)

Yl
m¯  is the complex conjugate of the spherical harmonic Yl

m 
defined by

�ϑ ϕ
π

ϑ=
+ −

+
ϕY

l l m

l m
P, :

2 1

4

!

!
e ,l

m
l
m mi( ) ( )

( )
( ) (B.3)

with i being the imaginary unit, � ϑ ϑ=P P: cosl
m

l
m( ) ( ) and the 

associated Legendre polynomials

=
−

− −
+

+
P x

l
x

x
x:

1

2 !
1

d

d
1 .l

m
m

l
m

l m

l m
l2 2 2( ) ( ) ( ) [( ) ]/ (B.4)

Note that the Condon–Shortley phase (−1)m is included here. 
We compute the spherical harmonic Yl

m via the C++ boost 
library.

Let p be the truncation order for the spherical harmon-
ics expansion. The latitude direction is covered by p  +  1 
points ϑ = zarccosi i, = …i p0, , , where zi are the Gauss–
Legendre nodes with corresponding weights νi (computable 
e.g. via the gauleg routine from [377]). Integrations are 
done using the Gauss–Legendre quadrature. Furthermore, 
we distribute 2p  +  2 points equidistantly in the longitudinal 
direction, i.e. ϕ π= +j p 1j /( ), = … +j p0, , 2 1. Integration 
in this direction is performed by means of the trapezoidal 
rule with weights µ π= +p 1j /( ), = … +j p0, , 2 1 (i.e. 
every point has the same weight). Hence, equation (B.2) is 
approximated by

∑ ∑ νµ ϑ ϕ ϑ ϕ≈
= =

+

f f Y, , .l

m

i

p

j

p

i j i j l
m

i j
0 0

2 1
ˆ ( ) ¯ ( ) (B.5)

These algorithms and integration points are chosen because 
equation  (B.5) is then superalgebraically  =  exponen-
tially  =  spectrally convergent with the order p for smooth 
functions [101]. Note that due to the truncation, we have 
= …l p0, ,  and = − …m l l, , . This also implies

∑ ∑ϑ ϕ ϑ ϕ≈
= =−

f f Y, , .i j
l

p

m l

l

l

m
l
m

i j
0

( ) ˆ ( ) (B.6)

We remark that the forward and backward transformations 
can be done using the fast Fourier transform (FFT) for the 
longitude and the fast Legendre transform (FLT) for the lati-
tude direction. In practice FLTs are rarely used. For simplic-
ity we also abstain from using FFTs, as they would make 
the computation of higher order derivatives much more 
complex.

Derivatives of ϑ ϕf ,( ) can now be rolled off onto the spher-
ical harmonics Yl

m. The most problematic ones are derivatives 
with respect to ϑ, where one of several recurrence relations 
for the Legendre polynomials should be used. One possible 
choice that comes without issues at the poles ϑ π= 0,  is pre-
sented in [287]. Taking into account the Condon–Shortley 
phase and using the chain rule, we find

ϑ
ϑ ϕ ϑ ϕ

ϑ ϕ

∂
∂

= − + − +

+ − + +

ϕ

ϕ

−

+ −

Y l m l m Y

l m l m Y

,
1

2
1 , e

1

2
1 , e ,

l
m

l
m

l
m

1 i

1 i

( ) ( )( ) ( )

( )( ) ( )
 (B.7a)
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ϑ
ϑ ϕ

ϑ ϕ

ϑ ϕ

ϑ ϕ

∂
∂

= + + − − + − +

− − + + + − + +

+ − − − + + + +

ϕ

ϕ

−

− +

Y

l m l m l m l m Y

l m l m l m l m Y

l m l m l m l m Y

,

1

4
1 1 2 e ,

1

4
1 1 ,

1

4
1 1 2 e , .

l
m

l
m

l
m

l
m

2

2

2i 2

2i 2

( )

( )( )( )( ) ( )

[( )( ) ( )( )] ( )

( )( )( )( ) ( )

 
(B.7b)

In equation (B.7a), the full −Yl
m 1 term is missing for m  =  −l 

and the full +Yl
m 1 term is missing for m  =  l (so the result is 

simply zero for m  =  l  =  0). Similar for equation (B.7b), the 
term containing −Yl

m 2 is absent for − +m l 1⩽  and the full 
+Yl

m 2 term must be omitted for −m l 1⩾ . Fortunately, ϕ deriv-
atives are simpler: the k’th derivative is obviously given by

ϕ
ϑ ϕ ϑ ϕ

∂
∂

= ∈Y m Y k, i , , .
k

k l
m k

l
m( ) ( ) ( ) N (B.8)

We use these formulas to compute derivatives of f by substi-
tuting them into equation (B.6), e.g.

⎡
⎣⎢

⎤
⎦⎥∑ ∑ϑ

ϑ ϕ
ϑ

ϑ ϕ
∂
∂

≈
∂
∂ ϑ ϑ

ϕ ϕ= =−
=
=

f f Y, , .i j
l

p

m l

l

l

m
l
m

0 i

j

( ) ˆ ( ) 
(B.9)

We note that second order derivatives should not be 
computed by two successive first order derivatives involv-
ing one back and forward transformation, because not 
every first order derivative results in a smooth function on 
the surface. As an example take the z-component of the 
unit sphere, ϑ ϕ ϑ=z , cos( ) . Its first order derivative is 
ϑ ϕ ϑ∂ = −ϑz , sin( ) , which is not smooth at ϑ π= 0,  when 

considered on the sphere (compare e.g. ϕ = 0 and ϕ π= ). 
Thus, its series expansion converges only very slowly. Direct 
computation of the second order derivative via equa-
tion  (B.7b) circumvents this particular problem. The same 
holds for derivatives with respect to ϕ and mixed derivatives.

With this setup in place, calculating the traction jump 
from equation (7) is more or less straightforward. We employ 
the definitions and results of differential geometry from  
section A.1 with θ ϑ=1  and θ ϕ=2 . However, for notational 
convenience we will use the alternative names

= = = =E a F a a G a: , : , : ,11 12 21 22 
(B.10a)

= = = =L b M b b N b: , : , : .11 12 21 22 
(B.10b)

With = −W EG F:2 2, the mean curvature is then given by 
[101]

=
− +

H
EN FM GL

W

2

2 2 (B.11)

and the Gaussian curvature by

=
−

K
LN M

W
.

2

2
 (B.12)

The Laplace–Beltrami operator of some function f is [101]

ϕ

ϑ

∆ =
∂
∂

∂ − ∂

+
∂
∂

∂ − ∂

ϕ ϑ

ϑ ϕ

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

f
W

E f F f

W

W

G f F f

W

1

1
,

S

 

(B.13)

which in the present context is of course only really applied 
to H.

In practice, we start by computing the grid ϑ ϕ,i j( ) for a 
given order p with = …i p0, ,  and = … +j p0, , 2 1 as 
explained above. The surface nodes ϑ ϕx ,i j( ) for the RBC 
shape are then obtained by setting [27]

ϑ ϕ ϑ ϕ=x R, sin cos ,i j i j1( ) (B.14a)

ϑ ϕ ϑ ϕ=x R, sin sin ,i j i j2( ) (B.14b)

ϑ ϕ ρ ρ ρ=± − + +x
R

C C C,
2

1 ,i j3
2

0 1
2

2
4( ) ( )

 (B.14c)

where R is the given length of the large half-axis, 
ρ = +x y R:2 2 2 2( )/ , C0  =  0.2072, C1  =  2.0026 and C2  =   
−1.1228 [203, 378]. The plus sign is used for ϑ π 2⩽ / , the 
minus sign otherwise.

Next, each individual Cartesian component of x is trans-
formed via equation (B.5) to provide the representation in the 
spectral domain. First and second order derivatives (in the spa-
tial domain) are then obtained by means of equations (B.7a), 
(B.7b) and (B.8) in conjunction with backward transforms as 
in equation (B.9). This allows us to calculate H and K at each 
grid point ϑ ϕ,i j( ).

For ∆ HS , equation  (B.13) as well as W are first 
expanded by hand via the chain rule. Derivatives of E, F, 
G are obtained directly from the spectral coefficients of x 
as before. To get the derivatives of H, we first transform H 
into spectral space (equation (B.5)) and then apply again 
the derivative formulas (B.7). Afterwards, the traction jump 
from equation (7) is obtained by combining all temporary 
results.

We emphasize again that the transform (B.5) is only 
applied to the components of x and once for H, but not to 
any other intermediate quantity such as αβa  or αβb . In prin-
ciple, it would be possible to bypass the transform of H by 
expanding ∆ HS  via the chain rule until only derivatives of 
x (up to fourth order) remain, which can then be evaluated 
directly using formulas similar to equation (B.7a) [287]. We 
speculate that it would boost algorithmic precision because 
the only case where aliasing can then occur is in the trans-
form of x. This should make de-aliasing procedures as used 
in [84, 101, 103, 207] obsolete. Considering the results pre-
sented in section 3.3, we would then expect a similar drop to 
machine precision for the traction jump in figure 4 as seen for 
the mean curvature in figure 3. However, deriving the neces-
sary form ulas is quite cumbersome and therefore has not been 
attempted so far.
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On a related note, the de-aliasing rules mentioned in [84, 
101, 103, 207] are only required in the first place if other 
formulas need to be evaluated that are content with smaller 
orders of p. In this case, the smaller order can be upsampled 
by means of interpolation (i.e. evaluating equation (B.6) also 
at intermediary points) for the sake of computing the bending 
forces with a higher resolution.
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A variety of numerical methods exist for the study of deformable particles in dense
suspensions. None of the standard tools, however, currently include volume-changing
objects such as oscillating microbubbles in three-dimensional periodic domains. In
the first part of this work, we develop a novel method to include such entities based
on the boundary integral method. We show that the well-known boundary integral
equation must be amended with two additional terms containing the volume flux
through the bubble surface. We rigorously prove the existence and uniqueness of
the solution. Our proof contains as a subset the simpler boundary integral equation
without volume-changing objects (such as red blood cell or capsule suspensions)
which is widely used but for which a formal proof in periodic domains has not been
published to date. In the second part, we apply our method to study microbubbles
for targeted drug delivery. The ideal drug delivery agent should stay away from
the biochemically active vessel walls during circulation. However, upon reaching its
target it should attain a near-wall position for efficient drug uptake. Though seemingly
contradictory, we show that lipid-coated microbubbles in conjunction with a localized
ultrasound pulse possess precisely these two properties. This ultrasound-triggered
margination is due to hydrodynamic interactions between the red blood cells and the
oscillating lipid-coated microbubbles which alternate between a soft and a stiff state.
We find that the effect is very robust, existing even if the duration in the stiff state
is more than three times lower than the opposing time in the soft state.

Key words: blood flow, boundary integral methods, capsule/cell dynamics

1. Introduction

Margination refers to the effect that stiff objects such as platelets, leucocyte
or stiff synthetic microparticles preferentially travel along the walls in suspension
flows, e.g. in the vascular system (Freund 2007; Freund & Shapiro 2012; Namdee
et al. 2013; Fedosov & Gompper 2014; Kumar, Henríquez Rivera & Graham 2014;
D’Apolito et al. 2015; Fitzgibbon et al. 2015; Müller, Fedosov & Gompper 2015;

† Email address for correspondence: achim.guckenberger@uni-bayreuth.de
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Vahidkhah & Bagchi 2015; Gekle 2016; Mehrabadi, Ku & Aidun 2016; Müller,
Fedosov & Gompper 2016; Bächer, Schrack & Gekle 2017). This is a result of softer
particles such as red blood cells (RBCs), drops or capsules migrating towards the
centre away from the boundaries (Aarts et al. 1988; Fedosov et al. 2011; Farutin
& Misbah 2013; Mukherjee & Sarkar 2014; Singh, Li & Sarkar 2014; Katanov,
Gompper & Fedosov 2015; Qi & Shaqfeh 2017). A similar effect occurs not only
in Poiseuille but also in bounded shear flow due to the image stresslet generated
by the presence of the wall (Smart & Leighton 1991; Mukherjee & Sarkar 2013;
Singh et al. 2014). Migration behaviour has implications for targeted drug delivery
as efficient drug uptake is only possible if the drug delivery agents are positioned
close to the walls of the blood vessels near the target organ (Rychak et al. 2007;
Kooiman et al. 2014; Lammertink et al. 2015). Accordingly, it advocates the use of
stiff particles as drug delivery agents. Yet, during the transport phase towards the
target the agents should remain buried in the vessel interior to avoid high shear stress
and premature biochemical interaction with the endothelial wall. This would speak in
favour of using soft particles. Being able to combine both seemingly contradicting
properties might lead to a very effective drug administration protocol.

One of the most promising approaches for targeted drug delivery is the use of
coated microbubbles (ultrasound contrast agents, see e.g. Klibanov 2002; Lindner
2004; Unnikrishnan & Klibanov 2012; Faez et al. 2013) to actively and selectively
enhance drug uptake (Ferrara, Pollard & Borden 2007; Couture et al. 2014; Kooiman
et al. 2014; Owen et al. 2014; Unger et al. 2014; Lammertink et al. 2015; Kotopoulis
et al. 2016). In the simplest scenario, microbubbles are injected together with the
actual drug suspension and an ultrasound pulse is applied at the target organ which
makes the bubbles oscillate periodically. This strongly enhances drug uptake due to
the forces that the oscillating microbubbles exert on nearby endothelial cells (Kooiman
et al. 2014). More recently, there have also been numerous attempts to use the bubbles
themselves as drug carriers by biochemically attaching active drug substances e.g. on
the bubble surface which are released due to an ultrasound pulse at the target organ
(Couture et al. 2014; Kooiman et al. 2014; Unger et al. 2014).

Microbubbles coated with a phospholipid layer (Ferrara et al. 2007; Faez et al.
2013) are usually rather soft deformable objects in the absence of ultrasound
(Marmottant et al. 2005; Overvelde et al. 2010). They would therefore be expected
to be buried inside the blood stream akin to RBCs, as also concluded from in vivo
experiments (Lindner et al. 2002). This allows for their safe transport, but makes
them at first sight unsuitable candidates for drug delivery. Yet, during ultrasound
exposure bubble expansion beyond a critical radius Rsoft in the low-pressure phase
causes stiffening of the bubble shell (Marmottant et al. 2005; Rychak et al. 2006;
Overvelde et al. 2010) which might induce margination. On the other hand, shrinking
in the high-pressure phase leads to buckling (softening) of the phospholipid shell (Sijl
et al. 2011). Since the bubbles thus rapidly oscillate between a soft and a stiff state,
it is a priori unclear if and to what extent such objects would show margination.

We study this question by means of three-dimensional (3-D) numerical simulations.
Many methodologies are available for computing flows with hard or deformable
particles, provided that the volume of each particle remains unchanged. These methods
are able to accurately reproduce the margination of stiff particles which originates
from their hydrodynamic interaction with the surrounding RBCs. Here however,
we require a method that can handle deformable volume-changing microbubbles
together with RBCs in a periodic channel. Such a method is currently not available.
The first part of our paper therefore deals with the development of our volume-
changing object boundary integral method (VCO-BIM) in periodic domains. Compared
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to existing boundary integral formulations we find that additional terms occur which
account for the volume fluxes across the bubble surfaces. We prove mathematically
that the resulting Fredholm integral equation has exactly one solution. The proof and
the method hold for an arbitrary amount of volume-changing objects and capsule-like
entities (RBCs, vesicles, drops, etc.) with arbitrary viscosity ratios. We give the proof
in some detail and generality since a number of recent publications (e.g. Loewenberg
& Hinch 1996; Zinchenko & Davis 2000; Lindbo & Tornberg 2010; Zhao et al. 2010)
derive and use boundary integral equations in periodic domains (without bubbles), but
a proof of uniqueness and existence of their solution has not been established to date.
We also note that very occasionally boundary integral methods have been used with
expanding bubbles (Power 1992, 1996; Power & de Power 1992; Nie et al. 2002),
but these attempts have been restricted to infinite domains, making them unsuitable
for blood flow simulations.

In the second part we use our VCO-BIM to find that microbubbles indeed show
what we call ultrasound-triggered margination (UTM): Ultrasound exposure causes
rapid and reliable margination of otherwise soft microbubbles. UTM is caused by the
special properties of the lipid bubble shell and their interaction with the red blood
cells. The effect is robust and rapidly drives microbubbles towards the endothelial
wall even if the ‘stiff time’ (i.e. the time during which the bubble size is larger
than the critical radius Rsoft) is more than three times smaller than the opposing ‘soft
time’. Phospholipid-coated microbubbles are thus shown to simultaneously possess
two highly desirable, but seemingly contradicting properties: safe passage in the low
shear zones of the vessel interior and near-endothelial position at the target organ,
the latter being easily controllable by ultrasound exposure.

2. The volume-changing object boundary integral method

Obtaining numerical solutions of the Stokes equation via boundary integral methods
has a long history starting with the publication by Youngren & Acrivos (1975). Well
established is the direct method that is suitable for the simulation of incompressible
deformable particles with viscosity ratios λ 6= 0,∞ in an infinite domain (Pozrikidis
2001). Rigorous proofs of existence and uniqueness of the solution exist (e.g. Odqvist
1930; Ladyzhenskaya 1969; Pozrikidis 1992; Kohr & Pop 2004). They are enabled by
the fact that the equation is a Fredholm integral equation of the second kind, allowing
for the application of the Fredholm theory (e.g. Kress 2014). If deformable bubbles
(λ= 0) with volume changes are included, only the method in an infinite domain but
no complete proof exists (Nie et al. 2002).

Indirect boundary integral methods solve a (typically second kind) equation for an
auxiliary field, from which the physical velocity can be computed afterwards. Such
a formulation has been used to model expanding bubbles in an infinite domain with
established existence and uniqueness results for the solution (Power 1992; Power &
de Power 1992; Power 1996). Another indirect variant is the completed double-layer
boundary integral method (CDLBIEM) tailored for simulating rigid objects (λ=∞),
with proofs in infinite domains being well established (e.g. Power & Miranda 1987;
Karrila & Kim 1989; Kim & Karrila 1991; Kohr & Pop 2004).

Without bubbles, equations in periodic domains for direct (e.g. Hasimoto 1959; Zick
& Homsy 1982; Loewenberg & Hinch 1996; Zinchenko & Davis 2000; Zhao et al.
2010; Freund & Orescanin 2011; Freund 2013; Freund & Vermot 2014) and indirect
methods (e.g. Fan, Phan-Thien & Zheng 1998; Lindbo & Tornberg 2010; Zhao &
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Shaqfeh 2011; Freund & Shapiro 2012; Zhao, Shaqfeh & Narsimhan 2012; Wang
et al. 2013; af Klinteberg & Tornberg 2014, 2016; Fitzgibbon et al. 2015; Spann
et al. 2016) are well known. The general geometry Ewald-like method (GGEM)
also uses an indirect formulation to make the equations amenable to an accelerated
computation. This was mostly used for problems where two of the three spatial
directions are periodic (Hernández-Ortiz, de Pablo & Graham 2007; Pranay et al.
2010; Kumar & Graham 2011, 2012; Kumar et al. 2014; Zhu, Rabault & Brandt
2015; Sinha & Graham 2015, 2016; Zhao et al. 2017). Yet, statements regarding
existence and uniqueness of the solution are lacking so far. This may be of some
concern since some well-known proofs for the infinite domain (e.g. Pozrikidis 1992,
chap. 4.5) require an auxiliary field that would violate the conservation of the
ambient fluid if applied to periodic domains, even if all individual objects are volume
conserving.

The purpose of the present section is thus twofold. First, we show that the presence
of volume-changing objects in periodic domains leads to new non-trivial terms in the
equation for the direct boundary integral method. Second, we rigorously prove the
existence and uniqueness of the solution of this periodic boundary integral equation
employed in the present work and in other publications as listed above.

For this, we start by deriving the Fredholm boundary integral (FBI) equation for
3-D periodic domains with deformable capsule-like (λ 6= 0, ∞) volume-conserving
particles and deformable volume-changing objects such as bubbles. The final result
for NO objects Ok in a periodic domain with unit cell Γ of volume VΓ is

uj(x0) =
2

1+λOk

[
〈uj〉Γ −

1
8πµ

NO∑
q=1

(N∂OqF)j(x0)

+
1

8π

NO∑
q=1

(1−λOq)(K∂Oqu)j(x0)+
1

VΓ

NB∑
q=1

QBqχ
(Bq)

j

]

−
1−λOk

1+λOk

z(k)j (x0)

[∮
∂Ok

ul(x)nl(x) dS(x)−QOk

]
,

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3. (2.1)

This equation forms the basis of our VCO-BIM. Here, k is the index of the object on
whose surface the evaluation point x0 is located. Moreover, u on the left-hand side is
the velocity on the surface ∂Ok of the kth object, 〈uj〉Γ the prescribed average flow
through Γ and µ the dynamic viscosity. λOk is an effective viscosity ratio for the
kth object defined in (2.13) below. Furthermore, F is the outer traction in the case
of bubbles and otherwise the jump of the traction across the interfaces. N∂OqF and
K∂Oqu are the usual single- and double-layer integrals, respectively, evaluated with the
Green’s functions for a 3-D periodic domain (given by (2.11) and (2.12)). The second
term on the second line is the first novel contribution from the NB volume-changing
bubbles and contains the centroid χ (Bk) as well as the volume flux QBk into or out
of the bubble. The latter is a possibly time-dependent, prescribed quantity chosen
such that the sum of all fluxes is zero. Finally, the last line is essentially a part of
the so-called Wielandt deflation (Kim & Karrila 1991) where zk is a known function.
Again, for bubbles a new term due to the flux QOk appears. As we will show, the last
line is imperative for bubbles (λOk = 0) as it ensures uniqueness, contrary to objects
with λOk 6= 0 where it is merely an optional accelerator for the numerical procedure.
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FIGURE 1. (Colour online) (a) Example of a triclinic unit cell Γ (thick lines), together
with 11 replicas (thin grey lines). In this example, the two basis vectors a(1) and a(2) lie
in the x–y-plane, but a(2) is not parallel to the y-axis. (b) Two-dimensional sketch of the
general three-dimensional problem. Γ ⊂R3 contains the whole unit cell (everything within
the dashed border ∂Γ ). Ω ⊂Γ is the ambient fluid with dynamic viscosity µ (light blue).
As an example, two capsule-like entities (C1, C2), two volume-changing bubbles (B1, B2)
and a wall W1 are shown. The normal vectors always point into Ω . The arrows on the
left represent an imposed flow.

After introducing the system components in § 2.1, we use § 2.2 to derive the
general boundary integral equation including volume-changing bubbles in periodic
domains. Section 2.3 then turns the boundary integral equation into the numerically
solvable Fredholm boundary integral equation (2.1) and, most importantly, rigorously
proves existence and uniqueness of the solution. This proof includes the periodic BIM
equation without bubbles which is solved numerically by a number of existing codes
(e.g. Loewenberg & Hinch 1996; Zinchenko & Davis 2000; Lindbo & Tornberg 2010;
Zhao et al. 2010). Finally, § 2.4 gives some details about how we model oscillating
bubbles and § 2.5 outlines the numerical implementation of our method. Symbols are
defined and explained on their first use, but are also listed in appendix A as a quick
reference.

2.1. System description
2.1.1. Periodicity and the unit cell

We mostly consider flows in 3-D periodic systems. To this end, we introduce
a triclinic unit cell Γ ⊂ R3 that is spanned by the basis {a(1), a(2), a(3)} as shown
in figure 1(a). The three basis vectors a(i) ∈ R3, i = 1, 2, 3, define a right-handed
coordinate system. In the most general case they are not required to be of unit length
or orthogonal and might depend on time, although the latter will not be explicitly
considered here. Nevertheless, even static but skewed bases can be useful in practice,
for example to model so-called deterministic lateral displacement devices (Huang
et al. 2004; Krüger, Holmes & Coveney 2014; Zhang et al. 2015). The surface ∂Γ
of the unit cell is not included in the open set Γ . We will denote the volume by VΓ .

To cast the concept of periodicity into mathematical terms, we introduce by

X(α)
:= α1a(1) + α2a(2) + α3a(3) (2.2)

some grid vector with some grid index α ∈ Z3. The unit cell Γ is assumed to be
replicated infinitely throughout space by displacing it with all possible grid vectors.
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We will show in appendix B that actually any of these boxes with any origin can
be chosen as Γ . Furthermore, a general function f : R3

→ R is said to periodic if it
satisfies

f (x+X(α))= f (x) ∀x ∈R3 and ∀α ∈Z3. (2.3)

The reciprocal (Fourier) unit cell is spanned by the reciprocal basis vectors b( j)
∈R3,

j = 1, 2, 3, defined by a(i) · b( j)
= 2πδij. Some general Fourier grid vector is then

denoted by
k(κ) := κ1b(1) + κ2b(2) + κ3b(3), (2.4)

with κ ∈Z3.

2.1.2. System components
The general system considered in this section is depicted in figure 1(b). We

introduce the ambient fluid Ω ⊂Γ which represents the open set of the space within
the unit cell Γ but outside of any immersed object. The fluid is assumed to have
a constant dynamic viscosity µ and is governed by the usual Stokes equation and
incompressibility condition. Furthermore, we have NO objects Ok ⊂ Γ , k= 1, . . . ,NO
in the unit cell as further detailed below. For now we assume that all of them are
completely located within Γ and relax this requirement later on (which is required for
dynamic simulations of dense suspensions, see appendix B). No object shall overlap
with or contain any other object. The 2-D surfaces of the objects embedded in 3-D
space will be denoted by the symbol ‘∂’, e.g. ∂Ok. We also assign a velocity u(x)
to each point x ∈ Γ̄ , where the bar represents the closure of the set.

Regarding the immersed objects, we consider three different types. First, deformable
particles that can be used to mimic ‘capsule-like’ entities (such as vesicles, drops or
red blood cells). The ith capsule will be denoted by the open set Ck ⊂ Γ with k =
1, . . . , NC , where NC are the number of capsules. Their inside is filled with some
Stokesian fluid that has a dynamic viscosity of µλCk , where λCk > 0 is the viscosity
ratio between the inner and outer fluids. Their volume is conserved and as such the
net flux QCk into or out of the capsules is zero. Deformations are governed by the
jump of the traction 1f across their surfaces ∂Ck. This traction jump is calculated
from an appropriate constitutive law that determines the actual object properties. The
velocity across the interfaces is assumed to be continuous.

Second, NW non-closed objects Wk, k= 1, . . . ,NW , may exist that can be used to
model deformable (fixed traction jump) or rigid (prescribed velocity) walls. Note that
we set Wk = ∂Wk, i.e. these objects do not have some ‘inside’. The velocity across
the walls is assumed to be continuous.

Third, we introduce our novel ingredient, NB bubble-like objects Bk, k= 1, . . . ,NB
whose volumes are allowed to change. Contrary to capsules their inside is filled with
some compressible fluid such as air that has a much lower viscosity than the ambient
fluid. Therefore, the detailed flow field inside the bubbles will not be considered and,
instead of the Stokes equations, the essential model assumption for this inner fluid is
simply

∇ · u(x)= ck, x ∈Bk, k= 1, . . . ,NB. (2.5)

Here, ck are some prescribed constants, meaning that the particles expand or contract
homogeneously over their whole interior and that any inhomogeneities such as eddies
are considered to vanish instantaneously. But note that ck may depend on the time
allowing for oscillating bubbles. As shown below (2.31), ck is related to the net flux
QBk into or out of the bubble by ck=QBk/VBk , where VBk is the kth bubble’s volume.
Moreover, the surface deformation of the bubbles is governed by the prescribed
traction at the outside of the surfaces, as further elaborated in § 2.4.
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For convenience, some arbitrary object of any type will be denoted by Ok. We
further define NO := NC + NB + NW as well as O := C ∪ B ∪W where C/B/W mean
the unions of all capsules/bubbles/walls. All in all, we have Γ =Ω ∪ Ō. Furthermore,
unit normal vectors are denoted by the symbol n. We choose the convention that the
normal vector of every capsule and bubble points into Ω . The normal vector of walls
may point in any of the two possible directions. The normal vector on ∂Γ shall point
into Ω .

2.2. Deriving the boundary integral equation with volume-changing objects
2.2.1. The general boundary integral equation

In order to introduce the required notation and equations for later on, we start from
the standard Stokes and continuity equations for flows at low Reynolds numbers which
corresponds to the typical situation encountered in the microcirculation (Misbah 2012;
Freund 2014):

−∇P(x)+µ∇2u(x)= 0, (2.6a)
∇ · u(x)= 0, (2.6b)

for x ∈ Ω . Here, P is the pressure, ∇2 the usual 3-D Laplace operator and u the
fluid velocity. The inside of capsules is governed by analogous expressions, but with
a different viscosity in general. Body forces such as gravity will be neglected, but can
be easily incorporated via an effective pressure (Pozrikidis 1992, equation (1.2.9)).

Next, we introduce the traction f acting on the surface ∂Ok of some object Ok via

fi(x) := σij(x)nj(x), x ∈ ∂Ok, i= 1, 2, 3, (2.7)

where the fluid stress tensor is defined by

σij :=−Pδij +µ

(
∂ui

∂xj
+
∂uj

∂xi

)
, x ∈Ω, i, j= 1, 2, 3. (2.8)

Summation over repeated Cartesian components is implied throughout this work. One
needs to take the limit of the stress tensor onto the surface for the evaluation of (2.7).
This limit can be taken from both sides, leading to the traction on the outside ( f+,
limit from Ω onto the surface) and the inside ( f−, defined with the outer normal
vector) of a closed object’s surface. The difference is the traction jump

1f (x) := f+(x)− f−(x), x ∈ ∂Ok, (2.9)

which is the major quantity coupling the flow with the surface mechanics. For a wall,
1f is the difference of the tractions on its two sides.

Equations (2.6) can be efficiently and accurately solved via the boundary integral
method (Pozrikidis 1992, 2001; Freund 2014). Assuming that all objects are located
within the unit cell Γ (for objects crossing the unit cell boundary, see appendix B),
one can derive the boundary integral (BI) equation (compare Pozrikidis 1992,
chap. 2.3, pp. 37 and 143)

uj(x0) = −
1

8πµ

NO∑
q=1

(N∂OqF)j(x0)+
1

8π

NO∑
q=1

(1−λOq)(K∂Oqu)j(x0)

−
1

8πµ
(N∂Γ f )j(x0)+

1
8π
(K∂Γ u)j(x0), x0 ∈Ω, j= 1, 2, 3. (2.10)
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Note that the evaluation point x0 is in the ambient fluid and not within any object or
on any surface. The single-layer integral (or single-layer potential) over some surface S
is defined as

(NS f )j(x0) :=

∫
S

fi(x)Gij(x, x0) dS(x), j= 1, 2, 3, (2.11)

and the double-layer integral is

(KSu)j(x0) :=

∫
S

ui(x)Tijl(x, x0)nl(x) dS(x), j= 1, 2, 3. (2.12)

These integrals exist for x0 ∈R3, notably in the improper sense if x0 ∈ S or if x0 is on
some periodic image of S (Kress 2014, chap. 6). The improper double-layer integral
is in this case sometimes also denoted as a principal value integral (Pozrikidis 1992,
p. 27).

F is a ‘unified traction’ which represents either the traction f+ on the outside in
case of the bubbles, or the traction jump 1f in the case of the capsules and the
walls. For notational convenience we have abbreviated f := f+ in the last line of (2.10).
Moreover, an ‘effective’ viscosity ratio is defined as

λOq :=


λCq if Oq is a capsule Cq,

1 if Oq is a wall Wq,

0 if Oq is a bubble Bq,

for q= 1, . . . ,NO. (2.13)

Thus, if λOq = 1, the corresponding terms in the second sum are always absent
(regardless of the value of K∂Oqu).

The wall contributions in (2.10) can be derived by considering as a starting point
an object with a finite thickness. Taking the limit as the thickness tends to zero,
integrals that previously went over the distinct opposing sides of the wall now go
over essentially the same surface, except that the integrands are still evaluated on
their respective sides. The normal vectors on these two sides are perfectly antiparallel.
Additionally using the continuity of the velocity, one finds that the double-layer
integral drops out (represented by λW = 1). Furthermore, for the single-layer integral
we have

∫
∂W+∪∂W− f+i Gij dS =

∫
∂W+( f+i − f−i )Gij dS ≡

∫
∂W 1fiGij dS where ∂W±

denotes the two sides of the zero-thickness wall, and (2.9) was used to introduce the
traction jump (Pozrikidis 1992, p. 37). The integration

∫
∂W goes over only one side

of the wall. Walls spanning through the whole domain Γ can be introduced by a
similar limiting procedure.

Note that the BI equation (2.10) is actually valid for any Green’s functions, no
matter if periodic or not. However, in order to be able to compute anything in practice,
they should follow the general symmetries of the system. As we want to implement
a periodic domain, we will next introduce the appropriate expressions.

2.2.2. Appropriate Green’s functions for a 3-D periodic domain
Green’s functions Gij and pj for the velocity and pressure, respectively, are obtained

by solving the singularly forced Stokes equation. It is possible to derive specialized
Green’s functions such as for singly (Pozrikidis 1996) or doubly (Pozrikidis 1996;
Greengard & Kropinski 2004; Cortez & Hoffmann 2014) periodic domains or with
incorporated stationary walls (Blake 1971; Liron & Mochon 1976; Staben, Zinchenko
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960 A. Guckenberger and S. Gekle

& Davis 2003; Janssen & Anderson 2008). However, we want to be able to apply our
method for general channel geometries, and therefore employ the standard Green’s
functions for a 3-D periodic domain. According to Hasimoto (1959) and Pozrikidis
(1996), they are given by

Gij(x, x0)= 〈Gij〉Γ +
8π

VΓ

∑
κ 6=0

1
|k(κ)|2

(
δij −

k(κ)i k(κ)j

|k(κ)|2

)
e−ik(κ)·(x−x0), (2.14)

pj(x, x0)=
8π

VΓ
xj +

8π

VΓ
i
∑
κ 6=0

k(κ)j

|k(κ)|2
e−ik(κ)·(x−x0), (2.15)

with x ∈R3
\ {x0}, i, j= 1, 2, 3

for the velocity (Gij) and the pressure (pj), respectively. x0 ∈ Γ̄ is arbitrary but fixed.
The sums go over all possible Fourier grid vectors k(κ) as defined in (2.4) with κ ∈
Z3
\ {0}, and i is the imaginary unit. Gij satisfies the incompressibility condition,

∂Gij(x, x0)

∂xi
= 0, x ∈R3, i, j= 1, 2, 3. (2.16)

Furthermore, 〈Gij〉Γ := (1/VΓ )
∫
Γ

Gij(x, x0) dx3 is independent of x0 and constitutes
a free parameter representing an imposed average net flow for the Green’s function
system. We choose the coordinate system such that it is zero (Zinchenko & Davis
2000):

〈Gij〉Γ = 0, i, j= 1, 2, 3. (2.17)

Note that the full system can nevertheless have an imposed flow which will be
introduced in § 2.2.4 via double-layer integrals over the unit cell boundary.

Combining both of the above equations (via Pozrikidis 1992, equation (2.1.8)), the
stresslet is found to be

Tijl(x, x0)=−
8π

VΓ
xjδil + T̆ijl(x, x0), x ∈R3

\ {x0}, i, j, l= 1, 2, 3. (2.18)

Tijl contains a linear (non-periodic) part, whereas the periodic part is

T̆ijl(x, x0) :=−
8π

VΓ
i
∑
κ 6=0

(
k(κ)j δil + k(κ)l δij + k(κ)i δlj

|k(κ)|2
− 2

k(κ)i k(κ)j k(κ)l

|k(κ)|4

)
e−ik(κ)·(x−x0). (2.19)

The periodicity holds for both arguments, as well as for the Stokeslet:

Gij(x, x0)=Gij(x+X(α), x0 +X(α′)), (2.20a)

T̆ijl(x, x0)= T̆ijl(x+X(α), x0 +X(α′)) ∀α, α′ ∈Z3, i, j, l= 1, 2, 3. (2.20b)

This also implies that x0 can actually be located within almost the whole space
R3
\ {x}.

Equations (2.14) and (2.18) are the Green’s functions used below. The above
given forms, however, are not computable in practice due to their slow convergence.
Dramatic speedups are achieved by using the Ewald decomposition (Hasimoto 1959).
The final formulas are given by Zhao et al. (2010).
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We will additionally need two general relations. Hence, let O be some object with
a closed surface ∂O, and let {O(α)

} be the set of O that is offset with all possible
periodic grid vectors X(α) from (2.2). Then, for some proper Green’s functions:

∮
∂O

Tijl(x0, x)nj(x) dS(x) = δil


8π if x0 ∈ {O(α)

},

4π if x0 ∈ {∂O(α)
}

0 otherwise,
for x0 ∈R3,

(Pozrikidis 1992, equation (3.2.7)), (2.21)∮
∂O

ni(x)Gij(x, x0) dS(x) =
∮
∂O

Gji(x, x0)ni(x) dS(x)= 0, x0 ∈R3,

(Pozrikidis 1992, equations (2.1.4) and (3.1.3)). (2.22)

2.2.3. Boundary conditions for a 3-D periodic domain
As we wish to simulate a 3-D periodic domain with the BI equation (2.10), we

stipulate as a boundary condition that the velocity u shall be periodic, i.e.

u(x+X(α))= u(x) ∀x ∈R3 and ∀α ∈Z3. (2.23)

Note that in principle u may contain a linear component, as long as the arrangement
of the objects and their images retain a triclinic periodicity. This could be used
to simulate an overall linear shear flow (Phan-Thien, Tran-Cong & Graham 1991;
Pozrikidis 1993, 1999; Li, Zhou & Pozrikidis 1995; Loewenberg & Hinch 1996).
However, this also usually implies that the basis vectors a(i) of the unit cell have
to be time-dependent, leading to additional problems for longer simulation times
(Blawzdziewicz 2007, p. 221).

As for the pressure Green’s function from (2.15), it is possible to have a non-zero
pressure gradient over the unit cell that drives a certain average flow 〈u〉Γ . Hence, we
can decompose the pressure as P(x)= 〈∇P〉Γ · x+ P̆(x) for x ∈ R3 where P̆ denotes
the periodic part, and

〈•〉Γ :=
1

VΓ

∫
Γ

• dx3 (2.24)

is the average over the whole unit cell. Using (2.8) and (2.7), we find for the traction
(also compare Zick & Homsy 1982, equation (2.23))

fi(x)=−〈∇P〉Γ · xni(x)+ f̆i(x), i= 1, 2, 3, (2.25)

where f̆ denotes the periodic part.
We finally remark that the BI equation (2.10) can be used with any Green’s

function to simulate a periodic domain, provided that the periodicity condition (2.23)
is enforced. Using the periodic Green’s functions from (2.14) and (2.18) is merely
a convenient choice since the integrals over ∂Γ then yield simple expressions, as
shown next.

2.2.4. Computing the integrals over the unit cell’s surface for a periodic domain

Single-layer integral. With the help of the decomposition (2.25), the periodicity of the
involved quantities (due to (2.20a) and (2.23)) and the divergence theorem together
with (2.17) an (2.16), one can show (Zick & Homsy 1982)

(N∂Γ f )j(x0)= 0, x0 ∈Ω, j= 1, 2, 3. (2.26)
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962 A. Guckenberger and S. Gekle

Double-layer integral. It is tempting to assume that the double-layer integral K∂Γ u
over the unit cell surface ∂Γ is also zero. This, however, will turn out to be wrong
if a net flow is imposed and/or if volume-changing objects are included. The latter
will lead to an additional novel contribution to the equations. Following Zick &
Homsy (1982), the first step for the evaluation is to use the decomposition (2.18).
The integral term containing T̆ijl vanishes due to periodicity (compare (2.23) and
(2.20b), and note that normal vectors on opposing sides of ∂Γ are antiparallel). The
other term is treated by adding and subtracting integrals over the objects, resulting in

(K∂Γ u)j(x0)=−
8π

VΓ

[∮
∂Ω

xjui(x)ni(x) dS(x)−
∮
∂C∪∂B

xjui(x)ni(x) dS(x)
]
. (2.27)

Integrals over walls give zero contributions since the velocity u is continuous across
their surface, but the normal vectors on opposite sides have different signs. Using the
continuity of the normal velocity across the interfaces and applying the divergence
theorem while watching out for the normal vector convention (always into the ambient
fluid Ω), one obtains

(K∂Γ u)j(x0) = −
8π

VΓ

[
−

∫
Ω

uj(x) dx3
−

∫
C∪B

uj(x) dx3

−

∫
Ω∪C

xj∇ · u(x) dx3
−

∫
B

xj∇ · u(x) dx3

]
. (2.28)

The integrals in the first line can be combined to
∫
Γ

u dx3
=VΓ 〈u〉Γ , with the average

defined in (2.24) (walls are nullsets). Moreover, the divergence of the velocity vanishes
in Ω and the capsules C because of (2.6b) (Stokesian fluids). Furthermore, the last
term is absent in existing formulations without volume-changing objects, but here it
is non-zero in general and therefore requires special attention.

A more usable form of this last term may be obtained by using the model from
(2.5). For a particular bubble Bk, k= 1, . . . ,NB, we immediately find∫

Bk

xj∇ · u(x) dx3
= ckVBkχ

(Bk)
j , j= 1, 2, 3, (2.29)

where we have defined the geometric centroid

χ (Bk) :=
1

VBk

∫
Bk

x dx3. (2.30)

VBk is the bubble volume. We obtain a connection between ck to the more intuitive
flux QBk out of or into a bubble by computing

QBk :=

∮
∂Bk

uini dS=
∫
Bk

∇ · u dx3
= ckVBk . (2.31)

Putting it all together, the double-layer integral over ∂Γ hence becomes

(K∂Γ u)j(x0)= 8π〈uj〉Γ +
8π

VΓ

NB∑
k=1

QBkχ
(Bk)
j , x0 ∈Ω, j= 1, 2, 3. (2.32)

Similar to 〈Gij〉Γ for the Green’s function from (2.14), the average velocity 〈uj〉Γ is a
free parameter that can be used to drive a flow through the system (Zhao et al. 2010).
Since the flux QBk is also a prescribed input parameter, and the centroid of an object
can be easily computed (see e.g. Zhang & Chen 2001), we have therefore obtained
an expression of the BI equation that is actually usable in practice.
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2.2.5. The full boundary integral equation and some remarks
The BI equation (2.10) thus becomes

uj(x0) = 〈uj〉Γ −
1

8πµ

NO∑
q=1

(N∂OqF)j(x0)+
1

8π

NO∑
q=1

(1−λOq)(K∂Oqu)j(x0)

+
1

VΓ

NB∑
k=1

QBkχ
(Bk)
j , x0 ∈Ω, j= 1, 2, 3, (2.33)

with the novel bubble term in the last line. The single- as well as the double-layer
integrals must be evaluated with the appropriate Green’s functions from (2.14) and
(2.18), respectively.

We first remark that (2.33) reduces to the case of the infinite system for VΓ →∞
(i.e. 1/VΓ = 0), as the flux terms vanish and the Green’s functions converge to the
well-known expressions for an infinite system, i.e. (Pozrikidis 1992)

Gij(x, x0)=
δij

|x̂|
+

x̂ix̂j

|x̂|3
, x, x0 ∈R3

\ {x= x0}, i, j= 1, 2, 3 (2.34a)

for the Stokeslet, and

Tijl(x, x0)=−6
x̂ix̂jx̂l

|x̂|5
, x, x0 ∈R3

\ {x= x0}, i, j, l= 1, 2, 3 (2.34b)

for the stresslet, where x̂ := x− x0.
Second, the imposed average flow 〈uj〉Γ can be interpreted as the flow that

would prevail in the absence of any objects, and is the most convenient quantity
to prescribe a certain flow. A relationship to the corresponding pressure gradient is
easily established (Zhao et al. 2010, equation (8)).

Third, the prescribed fluxes for the bubbles cannot be chosen arbitrarily. To see this,
consider on the one hand ∮

∂Γ

uini dS= 0, (2.35)

where we used once again the periodicity of the velocity u and the opposite signs of
the normal vector n on opposing sides of the unit cell surface ∂Γ . On the other hand,∮

∂Γ

uini dS=
∮
∂Ω

uini dS−
∮
∂C∪∂B

uini dS=−
NB∑
k=1

QBk , (2.36)

where the divergence theorem and the incompressibility of the velocity in Ω and C
together with the definition of the flux have been employed. Combining these two
equations, we find

NB∑
k=1

QBk = 0. (2.37)

Hence, the fluxes must be chosen such that the total flux is zero, i.e. that the outer
fluid volume is conserved. This implies that at least two bubbles are required that
oscillate out of phase for the periodic system. Furthermore, if the ambient fluid
domain Ω is not simply connected (imagine a tube separating the unit cell Γ into an
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964 A. Guckenberger and S. Gekle

inner and an outer domain), the fluxes must be chosen such that the volume within
the respective domains is conserved.

Fourth, the initial assumption that all objects are completely located within the unit
cell can be relaxed. Surface integrals can be evaluated continuously over the objects’
surfaces even if these surfaces cross the boundary of the unit cell, as is common in
simulations of dense suspensions. This property is usually silently assumed in the
literature, although it is a priori unclear if it holds due to the linear part in the
stresslet (2.18) and the non-periodic centroid term in (2.33). With volume-changing
objects it actually follows from the non-trivial interplay between the integrals over
the unit cell’s surface ∂Γ and the centroid term. We prove this result explicitly in
appendix B.

2.3. Fredholm integral equation
The BI equation (2.33) can be used to compute the flow velocity everywhere within
the ambient fluid Ω if the tractions/traction-jumps, the velocities and the fluxes
are known. However, we usually prescribe either the tractions/traction-jumps or
the velocities, while the other quantity is unknown. The basic idea to obtain a
determining equation is to use (2.33) and move the evaluation point x0 onto the
surface of the objects. We thereby obtain a so-called Fredholm integral equation
which can be solved for the unknown variables. Section 2.3.1 summarizes the result
of this standard procedure. The subsequent sections are devoted to ensuring and
proving the uniqueness of the solution. This cannot be taken for granted if bubbles
are included. But even without bubbles it has so far not yet been rigorously proved
in periodic systems.

2.3.1. Basic equation
We now assume that all objects have surfaces of Lyapunov type (i.e. they are

‘smooth’: see Kress (2014), p. 96, for more details). If corners or edges within the
surfaces existed, the results would change: see e.g. Pozrikidis (1992, p. 37) and Kress
(2014, chap. 2.5). For smooth objects the single-layer potential is continuous (Kohr
& Pop 2004, chap. 3.4.4) if x0 is moved across the surface and the double-layer
potential makes a jump (Pozrikidis 1992, equation (2.3.12)). Following these two
references, we obtain the Fredholm boundary integral (FBI) equation as

uj(x0) =
2

1+λOk

[
〈uj〉Γ −

1
8πµ

NO∑
q=1

(N∂OqF)j(x0)

+
1

8π

NO∑
q=1

(1−λOq)(K∂Oqu)j(x0)+
1

VΓ

NB∑
q=1

QBqχ
(Bq)

j

]
,

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3. (2.38)

Note that the evaluation point x0 is located directly on the surfaces of the objects. The
single- as well as the double-layer integrals exist as improper integrals (Kress 2014,
chap. 6). Equation (2.38) corresponds to the first two lines in (2.1). The missing two
terms will be introduced in § 2.3.3 to ensure uniqueness of the solution.

The above FBI equation can in principle be used to find the unknown quantity – if
the solution were unique in all cases. In our application presented in § 3, we prescribe
the traction/traction-jump F on all objects (also on walls for efficiency reasons). This
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leads to a so-called Fredholm equation of the second kind that is amenable to the
Fredholm theory. As will be analysed and fixed below, equation (2.38) has multiple
solutions if bubbles are included. Without bubbles, the solution is unique, as will also
be shown below.

On the other hand, prescribing the velocities on all objects leads to a Fredholm
equation of the first kind which has various unfavourable properties: the solution
is in general not unique, the condition number grows with resolution (compare
Karrila & Kim 1989, p. 127, and Marin, Gustavsson & Tornberg 2012) and no
general mathematical theory exists. These are the reasons why alternative approaches
for such problem statements have been invented, e.g. the completed double-layer
boundary integral method (Karrila & Kim 1989; Kohr & Pop 2004; Zhao et al.
2012).

Finally, prescribing the velocities on some objects and the tractions on others yields
a mixed type equation. Similar to the first type, no general theory exists and at least
parts of the system have ‘difficult’ properties.

2.3.2. Fredholm theory and the non-uniqueness of solution
Henceforth, we consider the case when (2.38) is a Fredholm integral equation of

the second kind, i.e. when all velocities are unknown. In order to apply the Fredholm
theory, we need to introduce the homogeneous version of (2.38),

hj(x0) =
1

4π

1
1+λOk

NO∑
q=1

(1−λOq)

∮
∂Oq

hi(x)Tijl(x, x0)nl(x) dS(x),

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3, (2.39)

where h denotes an eigensolution to the eigenvalue 1. Note again that the double-layer
integral is meant to be absent for λOq = 1 objects, especially walls. The corresponding
adjoint equation (Pozrikidis 1992, p. 106, and Kress 2014) is given by

aj(x0)=
1−λOk

4π
Mj[a](x0), x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3, (2.40)

with the eigensolution a and the abbreviation

Mj[a](x0) :=

NO∑
q=1

1
1+λOq

nl(x0)

∮
∂Oq

ai(x)Tjil(x0, x) dS(x). (2.41)

The integral kernels and their adjoints are weakly singular (see Kress 2014, p. 31
and theorem 4.12, Pozrikidis 1992, pp. 36 and 113, as well as Karrila & Kim 1989,
p. 137). This means that all occurring integral operators are compact (Kress 2014,
theorem 2.30), and that the eigensolutions of the homogeneous and adjoint equations
are continuous (see Kress 2014, p. 58).

For walls (i.e. open objects) we adopt the convention that closed surface integrals
∮

go over both sides. Due to the continuity of the eigensolutions, however, they provide
no contribution. Alternatively, as in the derivation of the BI equation, one can also
revert back to walls with finite thickness and take the limit afterwards. The formulas
in the following have to be interpreted in the same way. Notice that in the adjoint
equation integrals over objects appear which actually have λOq = 1.

The compactness of the integral operators also implies that the Fredholm theory can
be used to make precise statements about uniqueness and existence of solutions (see
Pozrikidis 1992, p. 114, and Kress 2014, p. 55f.). For the present purpose the major
theorem can be written as follows.
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THEOREM 1 (Fredholm alternative).

(i) The homogeneous and adjoint equations (2.39) and (2.40) have the same finite
number of eigensolutions.

(ii) If the homogeneous equation (2.39) has only the trivial solution h≡ 0, then the
full equation (2.38) has exactly one solution (existence and uniqueness).

(iii) If the homogeneous equation (2.39) has a non-trivial solution, then the full
equation (2.38) has solutions if and only if all eigensolutions a of the adjoint
equation (2.40) satisfy

NO∑
k=1

∮
∂Ok

Rj(x)aj(x) dS(x)= 0, k= 1, . . . ,NO. (2.42)

Here, R contains all fully known terms (i.e. terms that are missing in the
homogeneous equation).

To arrive at uniqueness and existence statements therefore requires us to know all
solutions of the adjoint equation. In the case of (2.47), the solutions are

a(m)(x0)=

{
n(x0) if x0 ∈ ∂Bm,

0 otherwise,
m= 1, . . . ,NB, x0 ∈ ∂O. (2.43)

That these are indeed solutions can be easily shown with the help of (2.21).
To show that they are the only solutions requires a somewhat longer procedure,
similar to § 2.3.4 (we skip it as it is not of any major interest here). Thus,
the homogeneous equation (2.39) also has NB solutions. Furthermore, we have
Rj(x0) = 2/(1+λOk)[〈uj〉Γ − (1/(8πµ))

∑NO
q=1(N∂OqF)j(x0) + (1/VΓ )

∑NB
q=1 QBqχ

(Bq)

j ],
and all solutions a(m) satisfy condition (2.42) due to equation (2.22). Hence, by virtue
of the Fredholm alternative, the FBI equation (2.38) has more than one solution if
bubbles are included.

2.3.3. Ensuring uniqueness: the full equation
Equation (2.38) does not have a unique solution because the flux of the bubbles

is not determined by the equation. To remove this ambiguity, we introduce additional
terms into equation (2.38) in such a way that the solution of the new equation is
unique and simultaneously also a solution of the old equation (2.38). In analogy to
Nie et al. (2002), the modified equation is then given by (2.1), which is repeated here
for convenience:

uj(x0) =
2

1+λOk

[
〈uj〉Γ −

1
8πµ

NO∑
q=1

(N∂OqF)j(x0)

+
1

8π

NO∑
q=1

(1−λOq)(K∂Oqu)j(x0)+
1

VΓ

NB∑
q=1

QBqχ
(Bq)

j

]

−
1−λOk

1+λOk

z(k)j (x0)

[∮
∂Ok

ul(x)nl(x) dS(x)−QOk

]
,

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3. (2.44)
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This is the central equation that is solved in our VCO-BIM. It is a direct method
as the solution u is the physical velocity rather than an auxiliary field. The fact that
(2.44) has exactly one solution will be proved below and constitutes a central result
of the present work; z(k) can be chosen arbitrarily, as long as the restriction∮

∂Ok

z(k)j (x)nj(x) dS(x)= 1, k= 1, . . . ,NO (2.45)

is satisfied. A convenient choice is

z(k)(x)= n(x)/SOk , x ∈ ∂Ok, k= 1, . . . ,NO, (2.46)

where SOk is the surface area of the kth object. Furthermore, QOk is the prescribed flux
of object Ok, which must be zero for all entities except the bubbles.

The integral term in the last line of (2.44) can be interpreted as part of the so-
called Wielandt deflation procedure (Kim & Karrila 1991) for objects with viscosity
ratios λOk > 0. This method is sometimes used to accelerate the convergence rate of
iterative solution algorithms (Zinchenko, Rother & Davis 1997; Zinchenko & Davis
2000), but is otherwise optional for λOk > 0. Choosing not to use it amounts to setting
z(k) = 0 (in which case condition (2.45) must be disregarded). For bubbles (λOk = 0)
that oscillate (QOk 6= 0), however, an additional new term including the surface flux
QOk needs to be taken into account. Note that the last line is an essential ingredient
to ensure uniqueness of the solution for bubbles (with and without volume changes),
contrary to the usual situation found in the literature. We also remark that the FBI
equation remains valid in an infinite system (Γ →R3) similar to the BI equation from
§ 2.2.5.

The solution of the patched equation (2.44) is still a solution of the old
equation (2.38). This can be shown by multiplying (2.44) with the normal vector nj,
summing over j and integrating over some object’s surface ∂Ok. Using relations (2.21),
(2.22) and (2.45) gives

∮
∂Ok

uini dS = QOk , meaning that the flux out of or into the
object matches with the prescribed value QOk , as expected. Moreover, substituting it
back into (2.44) recovers the original equation (2.38).

Despite the patch, equation (2.44) is still a Fredholm integral equation of the second
kind for the velocities on all objects if F is given. In order to apply the Fredholm
theory, we need to introduce again the adjoint of the homogeneous equation, namely

aj(x0) =
1−λOk

4π
Mj[a](x0)−

1−λOk

1+λOk

nj(x0)

∮
∂Ok

z(k)l (x)al(x) dS(x),

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3, (2.47)

with the abbreviation Mj from (2.41); a denotes again the eigensolutions to the
eigenvalue 1.

The goal now is to prove that (2.47) has only the obvious solution a = 0.
Theorem 1 then implies that the actual FBI equation (2.44) has exactly one solution.
Unfortunately, the procedure used by Pozrikidis (1992, p. 116f.) cannot be adapted
for the proof in the periodic system because the artificial flow that he introduces is
a source field. This works in infinite domains where the fluid can escape to infinity,
but violates the conservation of the outer fluid volume in periodic domains (even if
all objects were volume conserving). We keep the proof rather general, as none has
been published before for the periodic system to the best of our knowledge.
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968 A. Guckenberger and S. Gekle

2.3.4. Proof of existence and uniqueness of the solution
As a start, we assume that there is at least one non-trivial solution a of the adjoint

equation (2.47). We then define an artificial velocity field similar to Odqvist (1930,
§4) by

Aj(x0) :=

NO∑
q=1

1
1+λOq

∮
∂Oq

ai(x)Gij(x, x0) dS(x), x0 ∈R3, j= 1, 2, 3. (2.48)

This field has a few special properties. First of all, A is defined within the whole
space R3 because it inherits the domain from the periodic Stokeslet and because such
a single-layer integral exists in the improper sense if x0 is located on any surface.
Moreover, because the eigensolutions a of the adjoint equation are continuous as
explained above, A is continuous as x0 crosses any object surface ∂O (Kohr & Pop
2004, chap. 3.4.4). The field is also periodic due to (2.20a), and we have

∇ ·A(x0)= 0, x0 ∈R3 (2.49)

due to equation (2.16) and
〈A〉Γ = 0 (2.50)

because of (2.17).
Furthermore, if we define the associated pressure as

PA(x0) :=µ

NO∑
q=1

1
1+λOq

∮
∂Oq

ai(x)pi(x0, x) dS(x), (2.51)

with the Green’s function p for the pressure from (2.15), one can show with the help
of the singular Stokes equation (Pozrikidis 1996, equation (2.2)) as well as (2.14) and
(2.15) that the Stokes equation with A is satisfied everywhere but on the surfaces,
i.e.

−∇PA(x)+µ∇2A(x)= 0, x ∈R3
\ ∂{O(α)

}. (2.52)

{O(α)
} denotes the objects and all of their periodic images. The Stokes equation can

alternatively be written as

∂σA
ij (x)
∂xi

= 0, x ∈R3
\ ∂{O(α)

}, j= 1, 2, 3, (2.53)

where the stress tensor is given by σA
ij := −PAδij + µ(∂Ai/∂xj + ∂Aj/∂xi). Continuing,

the traction (cf. (2.7)) associated with A at the outside ( f A,+) and inside surface ( f A,−,
normal vector to the outside) of some object Ok can be expressed as (compare Kohr
& Pop 2004, equation (3.4.61), and Odqvist 1930, equation (2.15))

f A,+
j (x0) = −

4πµ

1+λOk

aj(x0)+µMj[a](x0), (2.54a)

f A,−
j (x0) = +

4πµ

1+λOk

aj(x0)+µMj[a](x0), (2.54b)

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3,
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where Mj was defined in (2.41). Solving equations (2.54) for a and M leads to

aj(x0) = −
1+λOk

8πµ
[ f A,+

j (x0)− f A,−
j (x0)], (2.55a)

Mj[a](x0) =
1

2µ
[ f A,+

j (x0)+ f A,−
j (x0)], (2.55b)

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3.

The last required property of the artificial field A is the energy conservation.
Following Pozrikidis (1992, chap. 1.5) and using (2.49) and (2.52), we can derive

NO∑
k=1

∮
∂Ok

f A,+
j (x)Aj(x) dS(x)+

∮
∂Γ

f A,+
j (x)Aj(x) dS(x)=−2µ

∫
Ω

3∑
i,j=1

[EA
ij (x)]

2 dx3. (2.56)

The strain rate tensor is defined as

EA
ij (x) :=

1
2

(
∂Ai(x)
∂xj

+
∂Aj(x)
∂xi

)
, x ∈R3

\ ∂{O(α)
}, i, j= 1, 2, 3. (2.57)

The integral over the unit cell’s surface ∂Γ is simply zero. This follows similar to the
derivation of the double-layer integral in § 2.2.4 because A is periodic, f A,+ contains
at most a linear component (due to the definition of the traction, equation (2.7),
the pressure, equation (2.51) and the linear term in the pressure Green’s function,
equation (2.15)), A is incompressible according to (2.49) and because the average
flow is zero as given by (2.50). Furthermore, a similar equation can be derived for
the inside of the objects since A is defined everywhere. In the end, we obtain

NO∑
k=1

∮
∂Ok

f A,+
j (x)Aj(x) dS(x)=−2µ

∫
Ω

3∑
i,j=1

[EA
ij (x)]

2 dx3 6 0, (2.58a)

and ∮
∂Ok

f A,−
j (x)Aj(x) dS(x) = 2µ

∫
Ok

3∑
i,j=1

[EA
ij (x)]

2 dx3 > 0, k= 1, . . . ,NO. (2.58b)

The inequalities follow because the viscosity µ is >0 and the integrals contain kernels
that are obviously greater or equal to zero.

With all required properties of the artificial field A established, we now proceed to
show that the adjoint equation (2.47) does not have any non-trivial solution a. We
will do this by a reductio ad absurdum argument. Hence, assume that there is at least
one non-trivial solution denoted by a. Following Odqvist (1930, § 4), we begin by
substituting (2.55) into the adjoint (2.47), leading to

f A,+
j (x0) = λOk

[
f A,−
j (x0)+

8πµ

1+λOk

nj(x0)

∮
∂Ok

z(k)l (x)al(x) dS(x)
]
,

x0 ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3. (2.59)
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We now multiply with Aj, sum over j and integrate over the surface of all objects.
The contribution from the second term is simply zero because we can use (2.48) and
write ∮

∂Ok

Aj(x0)nj(x0) dS(x0)

=

NO∑
q=1

1
1+λOq

∮
∂Oq

ai(x)
[∮

∂Ok

Gij(x, x0)nj(x0) dS(x0)

]
︸ ︷︷ ︸

= 0 because of equation (2.22)

dS(x)= 0. (2.60)

Thus we find

0 >
NO∑
k=1

∮
∂Ok

f A,+
j (x)Aj(x) dS(x)=

NO∑
k=1

λOk

∮
∂Ok

f A,−
j (x)Aj(x) dS(x)> 0. (2.61)

The inequality signs follow from the energy conservation (2.58) and (2.13). Both
inequality signs together imply

NO∑
k=1

∮
∂Ok

f A,+
j (x)Aj(x) dS(x)= 0, (2.62)

and due to (2.58a) we thus have EA
ij (x) = 0 for all x ∈Ω and i, j = 1, 2, 3. This in

turn means that A can only represent rigid-body motion within Ω (Pozrikidis 1992,
chap. 1.5), i.e.

A(x)=UΩ
+ωΩ × x, x ∈Ω. (2.63)

UΩ and ωΩ are constants that do not depend on x. The symbol ‘×’ denotes the cross-
product. Furthermore, using the periodicity of A, we immediately find ωΩ = 0.

Next, we recall that A is continuous across the objects’ surfaces, i.e. A|∂O=A|Ω =
UΩ , to derive

NO∑
k=1

∮
∂Ok

f A,−
j (x)Aj(x) dS(x)=UΩ

i

NO∑
k=1

∫
Ok

∂σA
ji (x)
∂xj

dx3
= 0. (2.64)

Here we used the definition of the traction from (2.7), the divergence theorem,
the symmetry of the stress tensor and finally the Stokes equation (2.53). Summing
expression (2.58b) over all objects, using (2.64) and that the integral arguments on the
right-hand side of (2.58b) are positive, we find EA

ij (x)= 0 for all x∈Ok, k= 1, . . . ,NO
and i, j= 1, 2, 3. Hence, A must also represent rigid-body motion within every object:

A(x)=U(k)
+ω(k) × x, x ∈Ok, k= 1, . . . ,NO. (2.65)

The 2NO constants U(k) and ω(k) could in principle be different for each k. But because
of the continuity of A across ∂Ok we have U(k)

=UΩ and ω(k)=0 for all k=1, . . . ,NO.
All in all, we derived the explicit expression

A(x)=UΩ
= const., x ∈R3 (2.66)

for the artificial field A.
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Next, we exploit the Stokes equation (2.52) which immediately leads to ∇PA(x)= 0
for x∈R3

\ ∂{O(α)
}. The pressure associated with A is thus a simple constant in every

connected set, which we will write as

PA(x)=

{
−CΩ if x ∈Ω,
−Ck if x ∈Ok, k= 1, . . . ,NO,

with x ∈ Γ \ ∂O. (2.67)

Only the values within the unit cell will be needed (the pressures within the periodic
images might be different at first). The stress tensor is thus

σA
ij (x)=

{
CΩδij if x ∈Ω,
Ckδij if x ∈Ok, k= 1, . . . ,NO,

with x ∈ Γ \ ∂O. (2.68)

Taking the limit onto the surfaces from the outside and inside and multiplying them
with the outer normal vector gives the tractions f A,+ and f A,−. By substituting them
into (2.55a) we obtain

aj(x)= C̃knj(x), x ∈ ∂Ok, k= 1, . . . ,NO, j= 1, 2, 3, (2.69)

with the constants C̃k := −((1+λOk)/(8πµ))(CΩ −Ck) for k= 1, . . . ,NO. This result
is somewhat remarkable: every solution to the adjoint equation (2.47) must be of the
form given by (2.69). It also means that the global linear dependence of the pressure
that appears in (2.51) via the Green’s function drops out, which is consistent with
expression (2.67).

Now, the initial assumption was that there is a non-trivial solution to the adjoint
equation. Since all solutions are of the above form (2.69), there must exist one k′ ∈
{1, . . . ,NO} with C̃k′ 6= 0. We thus substitute it into (2.47) for x0 ∈ ∂Ok′ , and with the
help of (2.21) arrive at

1=
1−λOk′

1+λOk′

(
1−

∮
∂Ok′

z(k
′)

l (x)nl(x) dS(x)
)
. (2.70)

The Wielandt deflation term can be active (z(k′) 6= 0) or inactive (z(k′) = 0) for a
particular object. If it is active, condition (2.45) and λOk′

> 0 immediately lead to
the contradiction 1 = 0. On the other hand, if the term is inactive, equation (2.70)
can only be satisfied for λOk′

= 0. But this means that by definition Ok′ is a bubble,
where we demanded that the Wielandt term is always active. Thus we also get
a contradiction. This means that our initial assumption (that there is a non-trivial
solution to the adjoint equation) must have been wrong, i.e. (2.47) only has the
solution a≡ 0.

To complete the proof, we use the Fredholm alternative from Theorem 1. The
homogeneous equation therefore also has only the trivial solution, and consequently
the full FBI equation (2.38) has exactly one solution (existence and uniqueness). This
holds as long as the Wielandt term exists for objects Ok with λOk = 0. Note that for
λOk > 0 the Wielandt term does not matter concerning uniqueness of the solution, but
may be used to accelerate the numerical convergence as remarked before. We also
mention that the above procedure carries over to other systems and Green’s functions
such as for an infinite domain without any essential changes.
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972 A. Guckenberger and S. Gekle

2.4. Bubble model details
2.4.1. The traction and the constitutive law

As stated in § 2.2 we prescribe a certain outer traction f+ on the surface of the
bubbles. This is necessary because the introduction of the traction jump 1f (as is
done for capsules) in the BI equation would require the application of the Stokes
equation at the inside (compare § 2.2.1 and Pozrikidis 1992, pp. 37 and 143) which is
not possible because the inside is a compressible fluid with very low viscosity. Due to
this very low viscosity, however, we can neglect the shear stress acting on the inside
surface of the bubbles and only the inner pressure PBk will be of relevance. Hence,
the outer traction is expressible as (Youngren & Acrivos 1976; Power 1992)

f+(x)≈1f (x)− PBk n(x), x ∈ ∂Bk, k= 1, . . . ,NB. (2.71)

Note that the minus before the pressure comes from the fact that f+ represents the
force exerted by the fluid on the membrane, and not vice versa. The traction jump 1f
must be determined by some constitutive law for the interface, such as the ordinary
Young–Laplace equation

1f (x)= 2γBk H(x)n(x), x ∈ ∂Bk, k= 1, . . . ,NB. (2.72)

H is the mean curvature, taken to be positive for a sphere. This equation is valid
for a spatially constant surface tension γBk , i.e. for interfaces between two immiscible
substances. Additional surfactants can lead to a position dependence and non-zero
tangential components (Pozrikidis 2001).

2.4.2. Imposing bubble volume changes
We can now prescribe a certain traction jump and an (in general time-dependent)

internal pressure to model an oscillating bubble. The traction can then be computed
via (2.71) and substituted into the FBI equation (2.1). This should work fine in
principle. However, after the substitution we observe that the PBk n term simply
drops out due to (2.22), leaving us unable to enforce a certain pressure and thus
any volume changes. This deficiency of the FBI equation is because of the fact that
the single-layer potential is incapable of producing any flow with sinks or sources
(Pozrikidis 1992, chap. 4.1). This in turn originates from the incompressibility (2.16)
of the flow produced by the Stokeslet.

Rather than prescribing a certain internal pressure we therefore prescribe a certain
flux QBk . This is easily implemented as the flux appears explicitly in the patched FBI
equation (2.1). For the purpose of solving (2.1) we then set f+ =1f .

2.5. Numerical implementation
Our volume-changing object boundary integral method (VCO-BIM) solves the FBI
equation (2.1) numerically. For this, we discretize the surfaces of all objects with
flat triangles. Dynamic refinement and coarsening via Rivara’s longest-edge bisection
algorithm (Rivara 1984) is employed (see the supplementary information available
at https://doi.org/10.1017/jfm.2017.836 for some examples). Object centroids and
volumes are calculated as explained by Zhang & Chen (2001). Integrals are computed
with a standard Gaussian quadrature (Cowper 1973), where quantities at points within
the triangles are obtained from their nodal values via linear interpolation (Pozrikidis
1992). Surface integrals where the Green’s functions are singular are treated in polar
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coordinates in the case of the single-layer integrals (Pozrikidis 1995), and by adapting
the usual surface subtraction scheme for the double-layer integrals (Pozrikidis 2001,
equation (8.8)). In both cases the Green’s functions of the infinite domain from (2.34)
are used to eliminate the singularities (Loewenberg & Hinch 1996; Zinchenko &
Davis 2000) since they are faster to calculate than their periodic counterparts and
coincide with them for x ≈ x0. Nearly singular behaviour (occurring when objects
come near to each other) is additionally removed for the double-layer potentials
(Loewenberg & Hinch 1996). After discretization, equation (2.1) becomes a linear
system that we solve with GMRES (Saad & Schultz 1986), bypassing the need to
explicitly construct the system’s matrix. We remark that BiCGSTAB (van der Vorst
1992) was found to be slower in most cases.

The computation of the discretized integral equation with the periodic Green’s
functions from (2.14) and (2.18) is accelerated by two different means. First of all,
the Ewald decomposition by Hasimoto (1959) is used to split the expressions into
fast converging real and Fourier space parts, also see Lindbo & Tornberg (2010). The
final expressions are given by Zhao et al. (2010, chap. 5.1). Second, we employ the
smooth particle mesh Ewald method (SPME) to further accelerate the computation of
the Fourier parts via fast Fourier transforms (Saintillan, Darve & Shaqfeh 2005).

The time evolution of the objects is obtained by solving the kinematic condition

dx
dt
= u(x), x ∈ ∂O (2.73)

for each mesh node by some standard explicit ordinary differential equation (ODE)
integrator, such as Runge–Kutta or the adaptive Bogacki–Shampine (Bogacki &
Shampine 1989) and Cash–Karp methods (Cash & Karp 1990). Unfortunately, the
average volume of the objects would slowly shrink with time due to unavoidable
discretization errors. To counter this, we employ two different strategies. First, we
use the discretized version of the no-flux condition

∮
u · n dS = 0 for objects with

zero flux. This equation effectively represents a hyperplane. We then rotate the
solution vector onto this hyperplane. This procedure is similar to Farutin, Biben
& Misbah (2014, equation (43)). Second, to eliminate the volume drift completely,
we additionally employ the rescaling method as explained by Farutin et al. (2014,
equation (63)).

Bending forces for capsule-like objects follow the Canham–Helfrich model (Canham
1970; Helfrich 1973). Various numerical implementations are explained in the article
by Guckenberger et al. (2016) and reviewed by Guckenberger & Gekle (2017).
Shear and area dilatation elasticity of cells and capsules is implemented as detailed
by Krüger (2012) and Guckenberger et al. (2016). Large distortions of the mesh
are prevented automatically in this case as the forces depend explicitly on the
triangle deformations. Bubble surfaces, on the other hand, do not feature in-plane
tensions. This results in their mesh becoming inhomogeneous very quickly, leading to
numerical instabilities. To prevent this, we observe that the nodes need to follow the
fluid velocity only in the normal vector direction since any tangential displacement
leaves the bubble shape unchanged. Thus, an artificial tangential displacement of

δx(a)i,α+1 = ζ

3∑
j=1

(δij − ni,αnj,α)

∑
b

(x(b)j,α − x(a)j,α)w
ab
α∑

b

wab
α

, i= 1, 2, 3 (2.74)

can be applied after every time step without modifying the physical behaviour.
We apply this formula in an iterative process, indicated by the Greek subscript α.
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Flow

Effective surface tension
of lip-coated microbubbles

(a) (b)

FIGURE 2. (Colour online) Simulation set-up. (a) Snapshot of the large simulation
containing 30 red blood cells and two microbubbles. Periodic boundary conditions are
used, i.e. the left and right non-translucent cylinders are periodic images of the centre one
which has a length of 48 µm in this case. (b) Sketch of Marmottant et al.’s model for
lipid-coated microbubbles (Marmottant et al. 2005; Overvelde et al. 2010). The effective
surface tension γ is a function of the effective radius which varies between Rmin and Rmax
during an ultrasound period. The bubble is in the soft buckled state for Reff 6Rsoft and in
the stiff ruptured state for Reff > Rstiff , as indicated by the two inset sketches.

The superscripts a and b denote different nodes, the Latin subscript indicates a certain
Cartesian component and the sums go over the first ring of neighbours b of node a.
The parameter ζ = 0.3 controls the stiffness of the scheme. The iteration stops once
the maximal displacement falls below a predefined threshold. Finally, the weights are
chosen as wab

α = Aab
α /|x(b)α − x(a)α |, where the sum of the areas Aab

α of the two triangles
containing nodes a and b tends to homogenize the triangle areas, and the denominator
tries to keep possibly applied refinement local to where it had been applied. A similar
approach has been used by Farutin et al. (2014, equation (59)).

We tested our code extensively by comparing the integrals with analytically
known values (compare Farutin et al. 2014, § 8.3), as well as by studying usual
benchmark systems such as the deformation of a capsule in an infinite shear flow
(Guckenberger et al. 2016). The code was also successfully applied to the diffusion
of particles near elastic membranes (Daddi-Moussa-Ider, Guckenberger & Gekle
2016a,b; Daddi-Moussa-Ider & Gekle 2016, 2017; Daddi-Moussa-Ider, Lisicki &
Gekle 2017a,b) and was used to compare with experimental obtained shapes of red
blood cells in microchannel flows (Quint et al. 2017). Further verifications can be
found in the supplementary information. We parallelized our code with OpenMP and
MPI, and we use explicit SIMD vectorization via the Vc library (Kretz & Lindenstruth
2012) in some core parts.

3. Ultrasound-triggered margination of microbubbles

We now use our VCO-BIM as introduced in the previous section to investigate the
behaviour of ultrasound contrast agents (lipid-coated microbubbles) in microcapillary
blood flow. Our numerical simulations consist of two ultrasound contrast agents and
several red blood cells within a cylindrical blood vessel as depicted in figure 2(a). The
lipid coating of the microbubbles leads to a radius-dependent effective surface tension
which will be modelled as detailed in § 3.1. Red blood cells and the remaining
ingredients are described in § 3.2. Our central result, namely the occurrence of
ultrasound-triggered margination (UTM) is given in § 3.3.
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3.1. Lipid-coated microbubbles
3.1.1. Surface forces

The coating of microbubbles leads to deviations from the simple coupling between
bubble volume and external pressure expected from the expansion/compression of
an ideal gas (Marmottant et al. 2005; de Jong et al. 2007; Frinking et al. 2010;
Overvelde et al. 2010; Doinikov & Bouakaz 2011; Sijl et al. 2011). There are
various models available for varying types of surface coatings that produce such
nonlinear responses (e.g. Sarkar et al. 2005; Faez et al. 2013). One that incorporates
the special properties of phospholipid-coated bubbles (i.e. the size-dependent state
of the coating) was presented by Marmottant et al. (2005), providing a suitable
description for their behaviour (Frinking et al. 2010; Overvelde et al. 2010; Doinikov
& Bouakaz 2011; Sijl et al. 2011; Faez et al. 2013; Kooiman et al. 2014). The
major ingredient is the introduction of an effective surface tension that depends
nonlinearly on the bubble’s size. Such a size dependence is the most important aspect
of the model for the purpose of margination. Hence, a more elaborate surface model
including surface viscosity (e.g. Paul et al. 2010) is not required here. The relation
which we employ can be divided into three major regions (Marmottant et al. 2005;
Overvelde et al. 2010) as illustrated in figure 2(b).

(i) In the high compression regime, the area available per lipid molecule is smaller
than its extent, leading to pronounced buckling as observed by ultrahigh-speed
imaging (Sijl et al. 2011). This is modelled by an effective surface tension of
γsoft ≈ 0 below an effective radius Rsoft (Overvelde et al. 2010). The bubble is
highly deformable in this state (Marmottant et al. 2005; Rychak et al. 2006).

(ii) With increasing radius, a very narrow elastic regime occurs, extending up to a
maximal radius Rstiff .

(iii) Above Rstiff the shell ruptures, leaving floating rafts of lipids on the surface
(Borden et al. 2005; Marmottant et al. 2005). This leads to the very high
surface tension γstiff of a direct air–water interface.

Due to the smallness of the second regime (Overvelde et al. 2010), we set in the
following Rsoft=Rstiff such that the effective surface tension in our case can be written
as

γ (Reff )=

{
γsoft if Reff 6 Rsoft,

γstiff if Reff > Rsoft,
(3.1)

where Reff :=
3
√

3V/(4π) is the instantaneous effective radius and V the bubble volume.
The traction jump then follows from the Young–Laplace equation (2.72).

The equilibrium radius R0, i.e. the radius assumed when no ultrasound is present,
can be located at different positions relative to the transition radius Rsoft depending
on the process of bubble preparation. Most importantly, it was shown that they can
be created in the buckled state (R0 6 Rsoft) (Borden et al. 2005; Rychak et al. 2006;
Frinking et al. 2010) as desired for safe transport by default within the blood vessels
(Lindner et al. 2002).

3.1.2. Modelling the effect of an acoustic source
Because we are interested in the margination behaviour, the exact form of the

oscillations is expected to be irrelevant. We therefore prescribe the flux of the ith
bubble as Qi(t)=Ai sin(2πft) to model the effect of an external acoustic source. Here,
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976 A. Guckenberger and S. Gekle

t is the time, Ai the flux amplitude and f the frequency. This results in a volume
oscillation of

Vi(t)= V (0)
i + Ai/(2πf )[1− cos(2πft)] (3.2)

for the ith bubble, with V (0)
i being the initial volume at t = 0. To conserve the total

outer fluid volume as required by (2.37), both bubbles are set to oscillate out of
phase, i.e. A1 =−A2. Although not being entirely realistic, it is mandated on a very
fundamental level by the periodic boundary conditions and the incompressibility of
the ambient fluid. We do not expect that this small restriction affects the validity of
the presented conclusions since (i) bubble–bubble interactions are strongly shielded by
the RBCs and (ii) margination hinges upon the stiffness variations of the individual
bubbles and is therefore independent of the phase of the oscillations.

Continuing, we emphasize that we impose only the instantaneous bubble volume
and not a spherical shape. Hence, the bubbles are still deformable, a property which
is crucial for the hydrodynamic interaction with the RBCs.

The most important quantity in the present context is the ratio of the stiff to soft
duration which we denominate as δ = T+/T−. Here, T+ is the time spent in the stiff
state (i.e. Reff >Rsoft) and T− the time in the soft state (Reff 6Rsoft). Since margination
would trivially be expected for δ � 1, we concentrate on 0 6 δ 6 1 in the present
study, in agreement with experiments (Marmottant et al. 2005; de Jong et al. 2007;
Overvelde et al. 2010; Sijl et al. 2011). We remark that δ does not depend on the
frequency f .

3.1.3. Bubble parameters
In our simulations we set the surface tensions in the soft and stiff state to

γsoft = 0.5κS and γstiff = 10κS, respectively. κS is the shear modulus of the red blood
cells (see below). These choices suitably describe the stiffness of the bubbles relative
to RBCs regarding margination while at the same time ensuring numerical stability.
Realistic values of γstiff = 7 × 10−2 N m−1 and γsoft ≈ 0 (Overvelde et al. 2010; Sijl
et al. 2011) would lead to a numerically very stiff problem and consequently require
extremely small time steps. The supplementary information (henceforth SI) shows that
γsoft = 0.1κS and γstiff = 25κS do not change the results significantly. Furthermore, we
fix Rmin = 1.7 µm and R0 = Rsoft = 2 µm which are typical values for microbubbles
(Borden et al. 2005; Overvelde et al. 2010; Kooiman et al. 2014) (using R0 = 1 µm
leaves the results qualitatively unchanged: see the SI). Taking δ as the major control
parameter, Rmax and the amplitudes Ai are uniquely determined via the prescribed
volume oscillation law (3.2). Assuming an ideal gas within the bubbles and an
atmospheric pressure of 100 kPa, a value of δ = 1 then corresponds to an acoustic
pressure amplitude of approximately PA ≈ 45 kPa, in agreement with experimentally
used values (Overvelde et al. 2010).

In most current applications, ultrasound pressure amplitudes and frequencies
are in the kilo-pascal and mega-hertz range, respectively (Kooiman et al. 2014;
Lammertink et al. 2015). Such values lead to strong primary and secondary radiation
forces (Rychak, Klibanov & Hossack 2005; Johnson et al. 2016) making the
bubbles agglomerate in a small spot on the vessel wall opposite to the ultrasound
transducer (Dayton et al. 1999; Rychak et al. 2007; Kilroy et al. 2014). This strong
localization is highly undesirable for drug delivery applications where a uniform
bubble distribution over the entire vessel wall is required. In contrast, we will show
below that ultrasound-triggered margination is able to reliably achieve an isotropic
distribution if the ultrasound parameters are chosen such that radiation forces become
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subdominant. For PA≈ 45 kPa we therefore keep the acoustic frequency at f = 1 kHz
in the following. The magnitude of the primary radiation force is then typically of
the order of |Frad| ≈ 10−15 N, meaning that it plays only a secondary role as shown
explicitly in the SI. We consequently neglect it in what follows. In order to exploit
UTM also at higher frequencies, one can reduce PA as exemplified in the SI where
we consider f 6 10 kHz for PA ≈ 6 kPa.

3.2. Blood flow in capillaries
3.2.1. Blood flow constituents

We model the blood flow by explicitly resolving the red blood cells and treating
the surrounding blood plasma as a Newtonian fluid (Chien et al. 1966). For our
simulations we use mostly 15 RBCs that are distributed randomly within the blood
vessel if not noted otherwise. Each RBC has an initial large radius of RRBC = 4 µm
(Evans & Fung 1972; Freund 2014). Continuing, the RBC shear elasticity is modelled
via Skalak’s constitutive energy (Skalak et al. 1973) with a shear modulus of
κS= 5× 10−6 N m−1 (Yoon et al. 2008; Freund 2014) and the typical discocyte shape
as the reference geometry. This model also includes an area dilatation modulus that
is set to κA= 10κS. Furthermore, we additionally introduce an extra surface dilatation
energy Ea = (κa/2)(S− S0)

2/S0 (Krüger 2012) with the corresponding area dilatation
modulus κa = 10κS, the instantaneous surface area S and the reference surface area
S0. This leads to area deviations of typically .4 %. Moreover, bending forces are
modelled according to the Canham–Helfrich law (Canham 1970; Helfrich 1973;
Guckenberger & Gekle 2017) with a bending modulus of κB = 2× 10−19 N m (Park
et al. 2010; Freund 2014) and the spontaneous curvature set to zero. For numerical
efficiency we employ the usual approximation that inner and outer viscosities are
equal (Krüger 2012; Zhao et al. 2012; Freund 2014; Kumar et al. 2014), i.e. the
viscosity ratio is λRBC = 1. As a result, any double-layer integrals over the RBC
surfaces vanish, and Wielandt deflation terms cannot appear for RBCs (compare
§ 2.3.3). Nevertheless, both are still present for the bubbles.

The periodic vessel has a length of usually 24 µm and a radius of RVessel= 11 µm.
Together with the 15 RBCs this results in a haematocrit of approximately 16 %, a
typical value encountered in capillaries (Klitzman & Duling 1979; House & Lipowsky
1987). The larger simulation from figure 2(a) as well as higher haematocrit values
lead to the same results which are presented below and in the SI. Furthermore, one
possibility for the boundary condition of the vessel wall would be to set its velocity to
zero. This, however, leads to a mixed-type Fredholm integral equation. As explained in
§ 2.3.1, no general mathematical theory exists and this type can be rather performance
intensive although it might work in practice. We therefore follow Freund (2007) and
fix the wall’s nodes xi via springs to their original position x(0)i , leading to a traction
jump of 1f = κW(xi − x(0)i ), where κW = 6.25 × 106 N m−3 is the spring constant.
Increasing κW by a factor of 5 does not change results qualitatively as shown in the SI.
Thus we end up with a Fredholm integral equation of the second kind having exactly
one solution as proved in § 2.3.4.

3.2.2. Hydrodynamics
We use our VCO-BIM for 3-D periodic domains as presented in § 2 to solve the

Stokes equation. The core of this method is (2.1) which we solve for an imposed
average flow chosen such that the maximal flow velocity in the middle of the vessel
is roughly umax ≈ 4.7 mm s−1, if not noted otherwise. This value matches with
physiological flow velocities in capillaries and arterioles (Popel & Johnson 2005).
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The Stokes equation is a good approximation if the Reynolds numbers are
much smaller than unity. For the translational motion we find for our system
ReT = 2RRBCumaxρ/µ ≈ 0.03� 1, where µ = 1.2 × 10−3 kg (s m)−1 is the dynamic
viscosity of blood plasma (Skalak, Ozkaya & Skalak 1989) and ρ ≈ 103 kg m−3 its
density. A different Reynolds number can be defined based on the radial oscillations
as ReR= (2R0)

2ρf /µ. For f 610 kHz (as used in the SI) this results in ReR<0.07�1.
We thus conclude that the Stokes equation can faithfully capture the considered RBC
and bubble interactions.

3.2.3. Numerical procedure
The general methodology of our numerical implementation was already explained

in § 2.5. Here we only mention the remaining aspects that are specific to the present
application. The triangle count for the blood vessel is 630 for the 24 µm long
channel. Rivara’s longest-edge bisection algorithm (Rivara 1984) is used to refine
high curvature and close contact regions for the dynamic objects. Hence, the number
of triangles varies over time with typical averages of approximately 1500 for the
bubbles and 780 for the RBCs. See the SI for some illustrations. Artificial overlapping
between the objects within the channel is further suppressed by the introduction of
a short-range repulsive potential ERep(rij) = [b/(rij − lm)]exp[lc/(rij − lc)] (Noguchi &
Gompper 2005; McWhirter, Noguchi & Gompper 2009) with rij denoting the distance
between two nodes (vertices), lm being the minimal possible distance and lc the
distance where the potential smoothly drops to zero. We choose lm = 0.01RRBC and
lc = 0.125RRBC, the latter being of the order of the typical edge length of the initial
bubble meshes.

The traction jump on the RBCs for the elasticity and dilatation contributions
is computed by differentiating the energies with respect to the mesh vertices, as
explained by Krüger (2012) and Guckenberger et al. (2016, § 4.2). The repulsive
potential is handled in the same way. Bending forces (for the RBCs) and the mean
curvature (required for the bubbles, cf. (2.72)) are obtained via Method C as given by
Guckenberger et al. (2016). Despite being less precise than some alternative methods
described in that work, it proved to be more stable than the others.

SPME errors for the computation of the Green’s functions are kept below .0.01 %.
Increasing the precision by one order of magnitude did not change the results (see
the SI). The Gaussian quadrature rules for the integrals use 7 Gauss points per
triangle for the bubbles and the blood vessel and 4 points for the RBCs. We solve
the integral equation via GMRES with a residuum of max. 10−4. Furthermore, the
time evolution from (2.73) is obtained by the adaptive Bogacki–Shampine method
(Bogacki & Shampine 1989) with the relative tolerance fixed to 10−5 and the absolute
tolerance set to 10−4RRBC (Press et al. 2007). We use the volume rescaling approach
for bubbles and RBCs and additionally the hyperplane method for RBCs to handle
any artificial volume drift as explained in § 2.5. No special mesh control scheme was
necessary for the vessel and the RBCs due to the nature of the prescribed forces, but
for bubbles we use (2.74) where the iteration stops once the maximal displacement
falls below 10−4RRBC. Typical simulations times are in the 1–2 weeks regime on a
recent 20 core Intel system.

3.3. Results and discussion
3.3.1. Microbubbles with constant surface tensions

In order to illustrate the general effect of margination, we first consider the case
when the microbubbles are prepared once in the soft state and once in the stiff state.
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FIGURE 3. (Colour online) Margination behaviour of purely soft and purely stiff non-
oscillating (a) and oscillating (b) microbubbles. γ = const. in all cases. We depict the
radial positions of the centroids of two bubbles with constant effective surface tensions
in blood flow as a function of time. The surface tensions are set to γ = γsoft = 0.5κS
(red/orange) and γ = γstiff = 10κS (black/grey). For (b), bubbles oscillate with a frequency
of f = 1 kHz, leading to a variation of Reff between 1.7 µm and 2.075 µm. Curves for
different γ constitute independent simulations. The red blood cells, shown as light grey
lines, illustrate the cell-free layer between 7 µm and the wall. The vessel radius is 11 µm,
the haematocrit is fixed to 16 % and the maximal flow velocity is umax≈ 4.7 mm s−1. The
soft bubbles (γ = γsoft) remain in the centre, whereas the stiff bubbles (γ = γstiff ) show
margination.

Figure 3(a) shows two simulations without any volume oscillations. The case γ = γsoft
corresponds to coated bubbles that are always in the soft state. Thus, they have
a deformability comparable to the RBCs and remain in the centre of the blood
stream together with the erythrocytes. On the other hand, setting γ = γstiff models
pure bubbles that are much stiffer than the RBCs. Hence, they quickly marginate
isotropically to the vessel wall. Similar observations are made in figure 3(b) for
bubbles oscillating with a frequency of f = 1 kHz while keeping the effective surface
tension constant. These results demonstrate that the volume oscillations by themselves
do not strongly affect particle migration for the presently chosen parameters.

3.3.2. Lipid-coated microbubbles with radius-dependent surface tension
To demonstrate ultrasound-triggered margination, we consider two lipid-coated

bubbles whose shells are modelled with an effective surface tension as described by
(3.1) and that are prepared in the soft state (δ = 1, Reff = Rsoft). Figure 4(a) depicts
the bubbles’ radial trajectories from a simulation where initially no ultrasound is
applied. The bubbles are preferably located in the RBC rich core, in agreement
with figure 3(a) and experimental observations (Lindner et al. 2002). This allows for
secure travel through the vascular system. Once the volume oscillations are activated
after around 4.0 s to model an ultrasound source, the bubbles oscillate periodically
in stiffness due to the lipid coating that is modelled according to (3.1). This is in
contrast to figure 3 where the surface tension remains constant. Most importantly,
we observe fast migration towards the vessel wall within less than one second (see
the SI for a movie). This time frame corresponds to a travelled distance of less than
4 mm, highlighting the rapidity of the effect. The cause of the fast margination is
the lipid shell: as discussed in the previous section, the coating leads to a stiffening
during the high-pressure state of the ultrasound signal and a corresponding softening
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FIGURE 4. (Colour online) Ultrasound-triggered margination. (a) Radial positions of the
centroids of two microbubbles coated with lipids, modelled according to Marmottant
et al.’s law (Marmottant et al. 2005; Overvelde et al. 2010). Since the ultrasound is off
at the beginning, the bubbles are soft and thus remain in the vessel interior (effective
radius Reff = 2 µm). When the oscillations are switched on at ≈4 s, ultrasound-triggered
margination leads to rapid migration to the vessel wall. Here, δ = 1, i.e. the bubbles
are stiff for the first half of the ultrasound period and soft during the second with their
effective surface tension varying in the range γ ∈ [0.5; 10]κS. The effective radii alternate
between 1.7 µm and 2.23 µm in each period. See the SI for a movie. (b) Average radial
positions of the oscillating bubbles and the RBCs for several different values of δ. The
rightmost point corresponds to the limit δ→∞ (i.e. always stiff) from figure 3(b). Error
bars are determined as explained in the main text and the SI.

during the low-pressure state (Marmottant et al. 2005; Overvelde et al. 2010). As
figure 4(a) clearly demonstrates, the overall behaviour is dominated by the stiff stage,
as will be further analysed below.

We continue to demonstrate the robustness of ultrasound-triggered margination by
considering microbubbles that are very soft in equilibrium. The bubbles then spend a
much longer portion of the ultrasound period in the soft than in the stiff state (δ < 1).
Figure 4(b) depicts the results. The error bars are determined by considering first the
minimal and maximal centroid position of all RBCs/bubbles as a function of time for
t> 1 s or after definite margination, second a subsequent temporal average and third a
weighted average over simulations with different starting configurations. This is similar
to the procedure by Müller, Fedosov & Gompper (2014) and is explained in more
details in the SI. Figure 4(b) shows that the bubbles are still preferably located at
the outside of the RBC rich core for δ < 1, even for ratios as low as δ ≈ 0.2. The
margination is completely suppressed only at small values such as δ≈ 0.1 where the
soft time is around 10 times longer than the stiff time. The results from the SI for
PA = 6 kPa show a transition at δ ≈ 0.3 indicating that the precise location of the
transition depends on the details of the system set-up but nevertheless happens for
δ� 1. Thus we can conclude that reliable margination is observed if the soft time is
at most three times larger than the time in the stiff state (δ & 0.3).

The effect that small values of δ are sufficient to trigger ultrasound-triggered
margination can be understood qualitatively. During the soft state, shearing by the
flow and collisions with red blood cells cause deformations of the bubbles. Both
are comparably slow processes. During the subsequent stiff stage, however, a high
surface tension forces the deformed object back to a spherical shape much more
quickly. More quantitatively, the typical relaxation time towards the spherical rest
shape in the stiff state can be estimated as τstiff = 2Rstiffµ/γstiff ≈ 0.1 ms. On the
other hand, the time required by the flow to deform the bubble away from the
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FIGURE 5. (Colour online) Average asphericities of oscillating lipid-coated microbubbles.
(a) The left figure shows the result for a single microbubble in an infinite shear flow
with shear rate s = 544 s−1 as a function of δ. At δ ≈ 0.05 the deformation increases
sharply while for δ > 0.1 almost no deformation is seen. The limiting value δ→∞ is
shown as a red solid line at the bottom. The surface tension varies in γ ∈ [0.5; 10]κS
and the oscillation frequency is f = 1 kHz. Error bars indicate the minimal and maximal
asphericities during one ultrasound period. The two inset snapshots show the bubbles with
their maximal deformation for δ= 0.032 (left inset) and δ= 1 (right inset). (b) Asphericity
of the bubbles from figure 4(a) averaged over consecutive time intervals of 0.5 s.

spherical shape in the soft state can be estimated by assuming a simple Poiseuille
profile with the centre flow velocity umax = 4.7 mm s−1. This leads to a shear rate
of s ≈ 544 s−1 if the bubble is positioned one diameter (2Rsoft) away from the wall.
Hence, τdeform = 1/s≈ 1.8 ms, which is approximately one order of magnitude larger
than the relaxation time scale τstiff in the stiff state. This explains why the latter
dominates the margination behaviour. We remark that the ratio τstiff /τdeform is formally
equivalent to the capillary number Ca = 2Rstiff sµ/γstiff for the bubbles in the stiff
state, i.e. Ca determines their behaviour while being stiff. The interpretation of the
ratio τstiff /τdeform, however, is fundamentally different here, as it makes a comparison
between the two different states rather than making a statement about only one state.

The above argument can be explicitly confirmed by considering an oscillating
microbubble in a simple linear shear flow in an infinite domain simulated with
VCO-BIM (VΓ →∞, compare § 2.2.5). As a measure of deformation, we extract the
asphericity b :=

[
(λ1 − λ2)

2
+ (λ2 − λ3)

2
+ (λ3 − λ1)

2
]
/(2R4

g) from the shape, where
R2

g := λ1 + λ2 + λ3 is the squared radius of gyration and λ1, λ2 and λ3 are the
eigenvalues of the gyration tensor (Fedosov et al. 2011). For reference, the discocyte
equilibrium shape of an RBC leads to b ≈ 0.15. Figure 5(a) shows that the bubble
remains almost spherical for δ values as low as 0.1, meaning that the bubble is stiff
only during ≈9 % of the ultrasound period. Only below a rather sharp threshold at
δ≈ 0.05 the bubble behaves akin to a truly soft object exhibiting strong deformation.
Note that this value matches well with the ratio τstiff /τdeform ≈ 0.056, and reasonably
well with the bubbles’ transition from the inner core to the outside in figure 4(b).
Furthermore, the value b≈ 0.015 at δ = 1 approximately agrees with the asphericity
observed for the simulation in figure 4(a) after the ultrasound was switched on, as
depicted in figure 5(b).

3.3.3. Further investigations
Pure margination is an isotropic effect: there is no preferred initial migration

direction nor a preferred position close to the wall. We exemplify this in figure 6
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FIGURE 6. (Colour online) Polar plot of several bubble trajectories (i.e. as viewed from
the outlet). The figure shows the δ = 0.74 and δ = 1 simulations used for figure 4(b),
representing different system realizations. Trajectories only shown for t > 1 s or after
definite margination. Rare short-lived migration events to the inside occur. Each bubble
in each simulation is shown in a different colour. The outer grey dashed line depicts the
vessel radius.

where we show the trajectories of migrated bubbles from several simulations
representing different system realizations. Obviously, no specific accumulation point
exists. This is in contrast to migration induced by buoyancy or radiation forces
at much higher frequencies (Dayton et al. 1999; Rychak et al. 2007; Kilroy et al.
2014; Johnson et al. 2016). Note that the inclusion of radiation forces for the chosen
parameters leaves the qualitative results unchanged, as described in detail in the SI.
The major influence on figure 6 comes therefore from the initial conditions and the
length of the simulations.

Figure 7(a) shows that increasing the frequency from f = 1 kHz to 10 kHz leaves
the qualitative results for the radial position unchanged when radiation forces are
neglected. Most interestingly, however, the asphericity is approximately reduced by
half in the case of the faster oscillations (figure 7b). The reason is that for 10 kHz
less time within one period is available to deform the bubbles before the stiff state
takes over, as suggested by the above time scale estimates. This strongly indicates
that higher frequencies reinforce the effect that small values of δ are sufficient to
obtain ultrasound-triggered margination. Even more, this serves as a hint that the
effect of UTM, which has been overlooked so far, might have provided a noticeable
contribution to the effectiveness of microbubbles for targeted drug delivery observed
in recent in vivo and clinical studies that used higher frequencies (Lammertink et al.
2015; Kotopoulis et al. 2016).

Continuing, we demonstrate that UTM intrinsically hinges on the presence of the
red blood cells. If they are removed, the result in figure 8(a) is obtained, showing
clearly that oscillating lipid-coated microbubbles move towards the centre of the
channel for δ= 1. This is in notable contrast to figure 4(a), where rapid margination
for the same set of parameters is observed. Hence, neglecting the influence of the
red blood cells in in vitro experiments can easily lead to conclusions that no longer
hold for the in vivo case. On the other hand, with a finite haematocrit, margination
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FIGURE 7. (Colour online) Influence of frequency: behaviour of two oscillating
lipid-coated microbubbles for δ = 1 and a haematocrit of 16 %, once for a frequency of
f = 1 kHz and once for 10 kHz (two distinct simulations); umax≈ 4.7 mm s−1. (a) Radial
positions of the centroids. The red blood cells are shown in light grey. (b) Corresponding
microbubble asphericities averaged over consecutive time intervals of 50 ms.
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FIGURE 8. (Colour online) Influence of haematocrit: (a) only bubbles (haematocrit= 0);
(b) average radial position for δ = 1 as a function of haematocrit. Values and error bars
extracted from several simulations as in figure 4(b).

is always observed in the sense that the RBCs are located at the interior and the
bubbles form an outer layer (figure 8b). The position of this outer layer depends on
the size of the RBC-rich inner region which grows when more RBCs are present
(Müller et al. 2014), with the average radial position being reminiscent of a pitchfork
bifurcation. The reason is that the RBCs migrate to the centre and push the bubbles
to the outside because the latter are seen as stiffer on average as already described
above.

Moreover, we depict in figure 9 the influence of the flow velocity. Margination still
occurs in all cases, but higher velocities tend to decrease the radial position of the
marginated bubbles. The effect, however, is comparably small. The upper horizontal
axis displays a corresponding effective non-dimensional shear rate defined here by

s∗ :=
umax

2RVessel

µD3
RBC

κB
, (3.3)

with an effective RBC diameter DRBC :=
√

ARBC/π and the RBC surface ARBC ≈

137 µm2. This definition is similar to the one by Müller et al. (2014) except that
we use the maximal instead of the average flow velocity. Hence, we find qualitative
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FIGURE 9. (Colour online) Influence of the velocity for δ= 1 and a haematocrit of 16 %:
average radial position as a function of the flow velocity. Values and error bars extracted
from several simulations as in figure 4(b).

agreement with their results for spherical rigid particles (compare figure 3a in Müller
et al. 2014): margination is only a little affected by the shear rate if it is high enough.

Finally, we note that the effect of UTM does not change significantly if the
effective surface tension in the soft state is decreased to γsoft = 0.1κS or the stiff
tension is increased to γstiff = 25κS, if the size of the bubbles is halved to R0= 1 µm,
if the initial particle distribution is varied or if the simulation box length is doubled
as shown in the SI. Moreover, the average of the nodal velocity of the vessel wall
(§ 3.2.1) after a short initial startup phase is .0.08umax and the nodes move less than
0.1RRBC, indicating that the spring wall suitably replaces a completely stationary wall.
Nevertheless, we also show in the SI that the results do not change if the vessel wall
is made five times stiffer.

4. Conclusion
In the first part of our work we developed an extended boundary integral method

to simulate volume-changing objects such as microbubbles in a 3-D periodic domain
(VCO-BIM). In contrast to all other commonly used ‘capsule-like’ objects (vesicles,
cells, drops), these bubbles contain a compressible gas with very low viscosity. As a
consequence their volume can change as a function of time. This behaviour leads to
two additional terms in the boundary integral equations which arise from (i) integrals
over the unit cell and (ii) ensuring uniqueness of the solution. We showed that the
latter, which can be seen as part of a Wielandt deflation procedure, is optional for
capsule-like objects with a finite inner viscosity but becomes a necessary ingredient
for bubbles. To this end, we proved that the resulting Fredholm integral equation has
exactly one solution for an arbitrary number of bubbles and capsule-like entities with
arbitrary viscosity ratios. Although periodic boundary integral methods for cells and
capsules have been amply used in the past, such a proof has so far not appeared in
the literature. The proof can be easily adapted for the case of other Green’s functions,
e.g. in infinite domains.

In the second part we used our method to show that lipid-coated microbubbles
possess unique and highly desirable properties which are not found for other drug
delivery agents. During transport from the injection site to the target organ, with
no ultrasound present, the bubbles behave as soft objects akin to red blood cells,
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travelling near the centre of blood vessels. Application of a localized ultrasound at
the target region then causes the bubbles to alternate between a soft and a stiff state.
This leads to their isotropic margination towards the vessel wall within less than one
second in the presence of red blood cells. Surprisingly, margination even happens
when the time spent in the stiff state is more than three times smaller than the time
in the soft state. We explain this observation by the fact that the effective surface
tension (leading to a spherical shape during the stiff stage) acts on much shorter time
scales than the surrounding flow (which deforms the bubble during the soft stage).
This, together with the presented studies regarding frequency, haematocrit and flow
velocity indicates that ultrasound-triggered margination is a robust effect. Given that
it leads to a uniform bubble distribution on the vessel wall while other targeting
mechanisms such as radiation forces often cause large inhomogeneities, the effect
identified here might open a promising route to design novel drug delivery systems
in the future.
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Appendix A. List of important symbols
For the reader’s convenience, we provide in table 1 a short overview of the

important symbols used in § 2 together with their point of definition.

Appendix B. Objects overlapping with the unit cell boundary
Section 2 assumed that all objects are completely located within the unit cell Γ .

However, satisfying this condition is impossible for dense suspensions even for a
single time step, and because flowing objects regularly leave and enter Γ during the
course of dynamic simulations. Moreover, it is much more convenient to carry out
integrations over the full surfaces of objects (i.e. including parts that lie partially
outside of Γ ), as otherwise the meshes would need to be split. The possibility of
doing this is often assumed in the literature. Yet, due to the centroids that appear
explicitly in the BI and FBI equations (2.33) and (2.1), respectively, and the linear
term in the stresslet (2.18) it is not clear a priori whether this is indeed possible
since these parts contain striking non-periodicities. Here we explicitly show that the
equations nevertheless hold if applied correctly.

B.1. The boundary integral equation with cut objects
We consider a system with overlapping objects as sketched in figure 10. The outer
boundary of Ω is thus not formed by ∂Γ but rather by ∂Γ̃ , A and B. The usual
derivation of the BI equation starts with integrating the reciprocal identity over Ω
(e.g. Pozrikidis 1992, chap. 2.3). Subsequent use of the divergence theorem then
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Symbol Meaning

Ok The kth object (of any type), § 2.1.2.
Bk The kth bubble, § 2.1.2.
Ck The kth capsule-like entity (a capsule, vesicle, red blood cell, . . . ), § 2.1.2.
Wk The kth wall (walls do not have any inside), § 2.1.2.
NO The total number of objects, § 2.1.2.
NB, NC , NW The number of bubbles, capsules and walls, § 2.1.2.
Ω The ambient fluid (the set outside of any object), § 2.1.2.
Γ The unit cell, § 2.1.1.
∂Ok The surface of object Ok, § 2.1.2.
VOk , VΓ The volume of the kth object and of the unit cell Γ , § 2.1.1.
a(1), a(2), a(3) The three base vectors spanning the unit cell Γ , § 2.1.1.
X(α) A periodic grid vector in the real space with grid index α ∈Z3,

equation (2.2).
b(1), b(2), b(3) The reciprocal base vectors, § 2.1.1.
k(κ) A periodic grid vector in the reciprocal space with grid index κ ∈Z3,

equation (2.4).
u The velocity, § 2.1.2.
x A generic point, often also the integration variable.
x0 The evaluation point, § 2.2.
n The outside normalized normal vector, § 2.1.2.
P The pressure, equation (2.6).
µ The viscosity of the ambient fluid Ω , § 2.1.2.
σij The stress tensor, equation (2.8).
t The time.
λC The viscosity ratio of capsule C, § 2.1.2.
λO The effective viscosity ratio of object O, equation (2.13).
f , f+, f− The traction (general, outside and inside), equation (2.7).
f̆ The periodic part of the traction, equation (2.25).
1f The traction jump, equation (2.9).
F The ‘unified traction’ ( f+ or 1f ), § 2.2.1.
(N∂Oq F) The single-layer integral over the surface ∂Oq, equation (2.11).
(K∂Oq u) The double-layer integral over the surface ∂Oq, equation (2.12).
Gij The Green’s function for the single-layer integral (Stokeslet), equation (2.14).
Tijl The Green’s function of the double-layer integral (stresslet), equation (2.18).
T̆ijl The periodic part of Tijl, equation (2.18).
ck The prescribed velocity divergence of the bubbles, equations (2.5) and (2.31).
QOk The flux out of or into the object Ok, equation (2.31).
χ
(Ok)
j , χ (Ok) The geometric centroid of object Ok, equation (2.30).

z(k)j The Wielandt deflation prefactor, equation (2.46).
〈•〉Γ The volume average over the whole unit cell Γ , equation (2.24).
hj An eigensolution to the homogeneous version of the BI equation,

equation (2.39).
aj Eigensolutions to the adjoint of the homogeneous equation, equation (2.40).
Mj[a] Most of the right-hand side of the adjoint equation, equation (2.41).
Rj Collection of the terms missing in the homogeneous equation,

equation (2.42).

TABLE 1. List of important symbols used throughout the text.
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FIGURE 10. Overlapping of objects with the unit cell boundary ∂Γ = ∂Γ̃ ∪ a′ ∪ b′. Primed
quantities lie outside of the unit cell (except a′ and b′ which form portions of ∂Γ ). A
single object O′B ∪OA is shown. This object has a periodic image OB ∪O′A. Furthermore,
both are cut at the same place into two parts as they overlap with ∂Γ . The four closed
sets are O′B, OA, OB and O′A. The corresponding surfaces without the cut faces are B′, A, B
and A′. For the left object, the cut faces (dotted) are a and b′, where both lie on ∂Γ and
are identical except that their normal vectors point in opposite directions; i.e. there is no
gap between a and b′. Similar for its right image (but with b and a′). Moreover, there is
no real gap between ∂Γ̃ and the objects. ∂Ω in this figure is given by ∂Ω = ∂Γ̃ ∪A∪B;
in the general case ∂Ω also contains the full surfaces of objects completely located within
the unit cell.

explicitly introduces the boundaries of Ω . In § 2.2.1 the outer boundary was simply
∂Γ as all objects were located within Γ , but here it is given by ∂Γ̃ ∪ A ∪ B. This
leads to

uj(x0) = · · · −
1

8πµ
(NA∪B f+)j(x0)+

1
8π
(KA∪Bu)j(x0)

−
1

8πµ
(N∂Γ̃ f+)j(x0)+

1
8π
(K∂Γ̃ u)j(x0), x0 ∈Ω, j= 1, 2, 3. (B 1)

We will use the notation introduced in figure 10 from now on and only deal explicitly
with one object and its periodic image (as also seen in this figure). Additional objects
that lie partially outside of the unit cell result in analogous terms. Objects that lie
completely within Γ do not require special treatment here. Both types of omitted
terms will be indicated by an ellipsis to shorten notation.

The first goal now is to recover integrals over the full unit cell surface ∂Γ instead
of only over ∂Γ̃ in (B 1). For this we exploit

∫
a +

∫
b′ = 0 and

∫
b +

∫
a′ = 0 for the

single- or double-layer kernels. This holds since a and b′ (and b and a′) denote the
same surface but with antiparallel normal vectors (again, see figure 10). a′, b′ and ∂Γ̃
can be combined to ∂Γ , and the remaining sets form the surfaces of the closed sets
OA and OB. Thus, equation (B 1) becomes

uj(x0) = −
1

8πµ
(N∂OA∪∂OB f+)j(x0)+

1
8π
(K∂OA∪∂OBu)j(x0)+ · · ·

−
1

8πµ
(N∂Γ f+)j(x0)+

1
8π
(K∂Γ u)j(x0), x0 ∈Ω, j= 1, 2, 3. (B 2)
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988 A. Guckenberger and S. Gekle

If OA and OB are parts of a capsule filled with a Stokesian fluid, the reciprocal
identity also holds for their insides. Integrating it over their volumes, using the
divergence theorem and adding the result to the above equation (compare Pozrikidis
1992, pp. 37 and 143) recovers the form of (2.10) that includes the viscosity ratios
and the traction jumps, but now with separate terms for each object part:

uj(x0) = −
1

8πµ
(N∂OA∪∂OBF)j(x0)+

1−λOA∪OB

8π
(K∂OA∪∂OBu)j(x0)+ · · ·

−
1

8πµ
(N∂Γ f )j(x0)+

1
8π
(K∂Γ u)j(x0), x0 ∈Ω, j= 1, 2, 3. (B 3)

Here λOA∪OB :=λOA ≡λOB denotes the effective viscosity ratio of the two object parts,
and f := f+. Hence, the original equation (2.10) remains valid if (i) only the surface
parts located within Γ are taken into account, and (ii) the surfaces of the cuts lying
on ∂Γ are added.

The next goal is to check if the unconnected set OA ∪OB in equation (B 3) can be
replaced with the actual connected object OA ∪ O′B without changing the result. We
additionally have to see if the equation is invariant under translation of the evaluation
point x0 by some periodic grid vector X(α). This has to be done separately for the
single- and double-layer integrals. Moreover, we do this for some arbitrary point x0 ∈

Γ because both integral types are always well defined and we need it for the FBI
equation.

B.2. The single-layer potentials

First consider the single-layer integral for the outer traction f := f+ over ∂O′B for
some general evaluation point x0 ∈ Γ and an arbitrary grid vector X(α′) (cf. § 2.1.1).
Outer tractions only appear for bubbles which always have closed surfaces (capsule-
like objects and walls possess traction jumps instead). Furthermore, the object O′B
is offset by construction from OB by some particular grid vector X(α). Hence, we
compute

(N∂O′Bf )j(x0 +X(α′)) =

∮
∂O′B

fi(x)Gij(x, x0 +X(α′)) dS(x)

=

∮
∂OB

fi(x+X(α))Gij(x+X(α), x0 +X(α′)) dS(x)

= −〈∇P〉Γ ·X(α)

∮
∂OB

ni(x)Gij(x, x0) dS(x)+ (N∂O′B f )j(x0)

= (N∂OB f )j(x0). (B 4)

We made a simple substitution from the first to the second line. From the second to
the third line, we used the periodicity of the Green’s function Gij, equation (2.20a),
as well as relation (2.25). The last line follows because of (2.22).

If an object requires the traction jump 1f (capsules, walls) and is possibly open,
an analogous result holds because 1f = f+ − f− = f̆

+

− f̆
−

is periodic as the linear
terms from equation (2.25) drop out. Adding the OA contribution, we have

(N∂OA∪∂O′BF)(x0 +X(α′))= (N∂OA∪∂OBF)(x0), x0 ∈ Γ , ∀α
′
∈Z3. (B 5)
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Thus, we find for some general object that the single-layer integrals are invariant
under any possible periodic translations. Moreover, the single-layer integral over
∂Γ appearing in (B 3) simply vanishes for an arbitrary evaluation point x0 ∈ R3 as
in § 2.2.4.

B.3. The double-layer potentials

As for the single-layer potential, consider x0 ∈ Γ and an arbitrary grid vector X(α′).
Note that open objects (walls) do not require this integral (due to λW = 1) and will
therefore not be considered. Then,

(K∂O′Bu)j(x0 +X(α′)) =

∮
∂O′B

ui(x)Tijl(x, x0 +X(α′))nl(x) dS(x)

=

∮
∂OB

ui(x)Tijl(x+X(α), x0 +X(α′))nl(x) dS(x)

= −
8π

VΓ
X(α)

j

∮
∂OB

uini dS+ (K∂OBu)j(x0), (B 6)

where a simple substitution was performed again, and the periodicity of the velocity
(2.23), the normal vector and the second argument of the stresslet from (2.18) was
used. The first argument of the stresslet contributes the linear part. After using the
divergence theorem and adding the OA term, we obtain for x0 ∈ Γ

(K∂OA∪∂OBu)j(x0)=
8π

VΓ
X(α)

j

∫
OB

∇ · u dx3
+ (K∂OA∪∂O′Bu)j(x0 +X(α′)). (B 7)

Hence, the double-layer integral is invariant under periodic offsets X(α′) regarding the
evaluation point x0, but not under periodic translations of some object when its flux
is non-zero. At first sight this would mean that bubbles cause major troubles and
somewhat destroy the formalism for practical purposes as offsetting them leads to an
additional term.

However, the BI equation additionally contains a double-layer integral over ∂Γ .
This integral also depends on the objects via the velocity. We will see that the
interplay between this integral and the double-layer integrals for the objects will
recover the invariance. Thus, consider

(K∂Γ u)j(x0 +X(α′))=−
8π

VΓ

∮
∂Γ

xjui(x)ni(x) dS(x), x0 ∈ Γ . (B 8)

Note that the periodic contribution of the stresslet vanishes as in § 2.2.4, and that
periodic offsets of x0 leave the equation unchanged, compare expression (2.18).
Splitting up ∂Γ and exploiting that b and a′ (and a′ and b) denote the same surfaces
but with antiparallel normal vectors, we have

∮
∂Γ
=
∫
∂Γ̃
−
∫

a −
∫

b (with the same
integrands as above). Next, we add a zero by inserting 0=

∫
A +

∫
B −

∫
A −

∫
B + · · · ,

and then use
∮
∂Ω
=
∫
∂Γ̃
+
∫

A +
∫

B + · · · , where the ellipsis contains analogous terms
for other objects. We also have

∫
A +

∫
a =
∮
∂OA

and
∫

B +
∫

b =
∮
∂OB

. With this we find

(K∂Γ u)j(x0 +X(α′)) = −
8π

VΓ

[∮
∂Ω

xjuini dS

−

∮
∂OA

xjuini dS−
∮
∂OB

xjuini dS
]
+ · · · , x0 ∈ Γ . (B 9)
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990 A. Guckenberger and S. Gekle

Applying the divergence theorem as in § 2.2.4 together with (2.6b) yields

(K∂Γ u)j(x0 +X(α′)) = 8π〈uj〉Γ

+
8π

VΓ

[∫
OA

xj∇ · u dx3
+

∫
OB

xj∇ · u dx3

]
+ · · · ,

x0 ∈ Γ , j= 1, 2, 3. (B 10)

The appearance of the average flow is consistent with the results from § 2.2.4. The two
integrals vanish for capsules, i.e. just like in (B 7) and as for the single-layer potential
they do not cause any trouble. Thus, we will now concentrate on the special case of
bubbles.

To this end, consider the combined double-layer potentials for the bubbles and the
unit cell. Define the double-layer parts from (B 3) as

DLj(x0) := (K∂OA∪∂OBu)j(x0)+ (K∂Γ u)j(x0)+ · · · , x0 ∈ Γ , j= 1, 2, 3, (B 11)

where λOA∪OB = 0 for bubbles has been used. By virtue of (B 7) and (B 10) we have

DLj(x0 +X(α′))=DLj(x0), x0 ∈ Γ , j= 1, 2, 3 (B 12)

and

DLj(x0) = (K∂OA∪∂O′Bu)j(x0)+
8π

VΓ

[∫
OA

xj∇ · u dx3

+

∫
OB

(
xj + X(α)

j

)
∇ · u(x) dx3

]
+ · · · , x0 ∈ Γ , (B 13)

where 〈u〉Γ is hidden in the ellipsis. Using the periodicity of the velocity from (2.23),
we find that the last integral is identical to

∫
O′B

xj∇ · u(x) dx3. Thus,

DLj(x0) = (K∂OA∪∂O′Bu)j(x0)+
8π

VΓ

∫
OA∪O′B

xj∇ · u(x) dx3
+ · · · , x0 ∈ Γ , j= 1, 2, 3

(B 14)

or by means of (2.29) and (2.31)

DLj(x0) = (K∂OA∪∂O′Bu)j(x0)+
8π

VΓ
QOA∪O′Bχ

(OA∪O′B)
j + · · · , x0 ∈ Γ , j= 1, 2, 3.

(B 15)

Here χ (OA∪O′B) is the centroid of the combined object parts OA and O′B (i.e. the centroid
of the non-split object), and QOA∪O′B the prescribed flux.

B.4. Putting it all together
Given the above results, the BI equation (B 3) for split bubbles is thus

uj(x0) = −
1

8πµ
(N∂OA∪∂O′BF)j(x0)+

1
8π
(K∂OA∪∂O′Bu)j(x0)

+
8π

VΓ
QOA∪O′Bχ

(OA∪O′B)
j + · · · , x0 ∈Ω, j= 1, 2, 3. (B 16)
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If we did not move around the objects with the help of periodicity, equation (B 10)
would have led to the equivalent expression

uj(x0) = −
1

8πµ
(N∂OA∪∂OBF)j(x0)+

1
8π
(K∂OA∪∂OBu)j(x0)

+
8π

VΓ
[QOAχ

(OA)
j +QOBχ

(OB)
j ] + · · · , x0 ∈Ω, j= 1, 2, 3. (B 17)

Comparing these two equations, we can draw the following conclusion regarding the
original BI equation (2.33). If some bubble overlaps with the unit cell’s boundary,
we can either split it up and use the two unconnected parts (OA and OB) on the
opposite sides of the unit cell separately, including different centroids (B 17). Or, more
conveniently and intuitively, we can simply integrate over the surface of the whole
connected bubble OA ∪O′B including the parts that lie outside of Γ and use its actual
centroid (B 16). This is highly desirable for the numerical implementation because we
only have to deal with whole objects and no splitting of the meshes is required. It
also shows that the choice of the unit cell’s position in the 3-D Cartesian coordinate
system does not matter.

We further note that the non-zero contributions from the double-layer integrals
over ∂Γ containing the centroids are crucial to obtain invariance for bubbles, and
hence the above results are non-trivial. If they were missing (by assuming K∂Γ u= 0),
equation (B 7) would have introduced an additional position-dependent term. This
would lead to changes in the flow field if a bubble is moved by a periodic grid
vector – which is clearly unphysical.

For objects other than bubbles, the fluxes are missing and additional viscosity
ratios appear. Nevertheless, the above statement (that we can simply choose the
whole objects) remains true because the individual single- and double-layer integrals
are invariant under periodic translations for objects with zero flux (compare (B 7),
(B 10) and § B.2).

Analogous conclusions can be drawn for the FBI equation (2.1) which in the end is
evaluated by our numerical code. First, §§ B.2 and B.3 considered a general evaluation
point x0 ∈ Γ and thus remain valid if x0 is located on the surface of some object.
We additionally saw that the integrals are invariant if x0 is moved by some periodic
grid vector X(α′), allowing x0 to be on the parts of surfaces that lie outside of Γ .
Second, the imposed flow as well as the Wielandt deflation term are periodic due
to (2.46). Third, the proof from § 2.3.4 is largely independent of the position of the
objects. Where integrals over ∂Γ occur (e.g. in the energy conservation statements),
they can be reconstructed from ∂Γ̃ in the same way as was done for (B 2), leaving
the procedure unchanged. Replacing the object parts with the whole objects therefore
does not affect the proof in § 2.3.
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S1 Determination of error bars and average RBC/bubble
positions

The error bars and average positions in the figures (such as fig. 4 (b)) are determined via the following steps:

1) We take the minimum, maximum and arithmetic mean of the centroids of all RBCs or bubbles in the system
in each time step for t > 1s or after definite margination. This gives three graphs as a function of time, once
for the set of all RBCs and once for the set of the two bubbles. See figure S1 for an illustration.

2) These time series are then averaged to obtain a mean minimal, maximal and average centroid position. See
the straight horizontal lines in figure S1.

3) This is then done for all simulations with the same set of parameters. Each of the resulting six values per
simulation (three for the RBCs and three for the bubbles) are then averaged over the different simulations
with the considered durations as weights. This gives the final minimal, maximal and average values which
are then depicted as error bars and points, respectively.

Note that this procedure is similar to the one from reference [1].

∗Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Bayreuth
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Figure S1: Illustration of the first two steps to ob-
tain the error bars and average object positions,
exemplified via the simulation from figure 4 (a)
from the main text. The jagged lines show the
minimal, maximal and average positions of the
centroids as a function of time. The straight lines
depict the corresponding temporal averages.

S2 Results with included radiation force
As explained in the main text, bubbles under the influence of ultrasound experience so-called radiation forces
[2–4]. The primary radiation force F rad pushes them usually away from the sound source, while the secondary
radiation force tends to attract the bubbles towards each other. They have been neglected in the main text.
We include the primary radiation force here explicitly in order to show that it plays only a minor role for the
parameters from the main text (which have been intentionally chosen such that isotropic margination dominates).
The remaining system setup is identical to the standard one from section 3.2, if not noted otherwise.

S2.1 Method
The primary radiation force is given by [5]

F rad = −〈V (t)∇P(t)〉t , (1)

where V (t) is the bubble volume and the pressure gradient is computed from

∇P = −kPA cos(2π f t) (2)

with the wavevector k = 2π f /c êz of the incoming acoustic wave in the positive z-direction which is perpendicular
to the vessel’s axis. f is the acoustic frequency and PA the prescribed pressure amplitude. The angular brackets
indicate the temporal average. The time evolution of the bubble volume is obtained by solving the modified
Rayleigh-Plesset equation given by reference [6, eq. (3)] for a single bubble numerically. Thus, the primary
radiation force is computed under the assumption of negligible deformation and an infinite ambient fluid reservoir.

We solve the Rayleigh-Plesset equation in MATLAB, where we include a certain pressure amplitude PA, a
surface dilatational viscosity of 1.5× 10−8 kg/s, a plasma density of ρ = 103 kg/m3, a polytropic gas exponent of
κ = 1.095 and the speed of sound c = 1480m/s [6]. We solve it for at least 16 periods with a relative tolerance of
10−12 and an absolute tolerance of 10−12R0 using the ode45 integrator. To prevent numerical artifacts, a small
finite elastic compression modulus [6] of typically χ = 0.002 N/m is included (we checked that the results are
insensitive to the exact value of χ). The remaining two parameters that need to be specified are the radii R0
and Rsoft. The solution then provides us with the constant force F rad, which is converted to a traction jump as
explained by reference [7, sec. 2.3]. Otherwise, the numerical procedure is identical to the one from the main text
where radiation forces are not included.

S2.2 Results for PA = 45 kPa

As an example, setting PA = 45 kPa, f = 1kHz and R0 = Rsoft = 2µm as in the main text leads to |F rad| ≈
1.2× 10−15 N. Examining again the case of two bubbles without RBCs in figure S2 (a), we find that contrary to
figure 8 (a) from the main manuscript some outward migration occurs. Nevertheless, the final radial position
is halved compared to full margination as observed when RBCs are included (see any graphic with RBCs, e.g.
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Figure S2: Radial positions of the centroids of two oscillating microbubbles ( f = 1kHz, Reff ∈ [1.7;2.23]µm) that are coated with lipid
molecules (γ ∈ [0.5;10]κS) for δ = 1. Primary radiation force for 45kPa included in the positive z-direction (|F rad| ≈ 1.2× 10−15 N).
(a) Without red blood cells. (b) With red blood cells (hematocrit: 16%). (c) and (d) The y- and z-coordinates of the two bubbles from (b).

figure S2 (b)). This indicates that margination due to the interactions with the RBCs is the dominating factor for
the outward migration.

Including RBCs as well as the primary radiation force F rad in the positive z-direction leads to figure S2 (b).
Obviously, UTM still occurs. If this would be primarily due to the radiation force, one would expect that the
bubbles are pushed in the direction of the force, i.e. in the positive z-direction. However, as figures S2 (c) and (d)
show, the initial margination of one bubble is in the negative y-direction and thus perpendicular to F rad.

Both examples highlight that the primary radiation force plays only a secondary role for PA = 45kPa and
f = 1kHz. For f = 10 kHz, however, we find |F rad| ≈ 10−13 N, a value which leads to a dominating influence
of the radiation force. As this goes hand in hand with the undesired one-sided agglomeration away from the
ultrasound source, we thus propose to reduce the pressure amplitude at higher frequencies in order to exploit the
isotropy of UTM. Corresponding results will be considered next.

S2.3 Results for PA = 6 kPa

Reducing the pressure amplitude to PA = 6kPa, we find for f = 1 kHz and R0 = Rsoft = 2µm a value of
|F rad| ≈ 1.5× 10−17 N. For the PA = 6kPa simulations we also extract the minimal and maximal radial excursions
(Rmin and Rmax, respectively) and thus the flux amplitudes Ai from the solution of the Rayleigh-Plesset equation.

Without RBCs, the bubbles once again migrate to the channel center as displayed in figure S3 (a), showing
that a radiation force of |F rad| ≈ 1.5× 10−17 N is indeed negligible. This is further confirmed in figure S3 (b),
where RBCs are included but the effective surface tension during the oscillations is held constant: The soft bubbles
remain in the center as expected. The same figure also shows (see the stiff bubbles) that the smaller pressure
amplitude and thus the smaller radial excursions compared to the main manuscript do not affect the margination
behavior.
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Figure S3: Radial positions of the centroids of two oscillating microbubbles ( f = 1kHz, Reff ∈ [1.96;2.03]µm, PA = 6kPa). Primary
radiation force included (|F rad| ≈ 1.5× 10−17 N). (a) Without red blood cells. Lipid-coated microbubbles, i.e. γ ∈ [0.5;10]κS with δ = 1.
(b) Margination behavior of purely soft and purely stiff oscillating microbubbles with RBCs. Two distinct simulations: The constant surface
tensions are γ= γsoft = 0.5κS (red/orange) and γ= γstiff = 10κS (black/gray). The hematocrit is fixed to 16%. The soft bubbles (γ= γsoft)
remain in the center, whereas the stiff bubbles (γ= γstiff) show margination.

We further study this case in figure S4 (a) where we show the analogous result to figure 4 (a) from the main
text. After switching on the oscillations, rapid migration within less than one second is observed. The transition in
figure S4 (b) roughly corresponds to figure 4 (b); some slight differences are observed as the realized trajectories
are different. Moreover, figure S5 highlights that the margination is still isotropic (i.e. similar to figure 6 from the
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Figure S4: Ultrasound-triggered margination. Primary radiation force included for oscillating bubbles ( f = 1kHz, PA = 6kPa). (a) Radial
positions of the centroids of two microbubbles coated with lipids. When the acoustic pressure is switched on at ≈ 4 s, ultrasound-triggered
margination leads to rapid migration to the vessel wall. Here, δ = 1, i.e. the bubbles are stiff for the first half of the ultrasound period and
soft during the second one with their effective surface tension varying in the range γ ∈ [0.5;10]κS. The effective radii alternate between
1.96µm and 2.03µm. The primary radiation force is |F rad| ≈ 1.5× 10−17 N. (b) Average radial positions of the oscillating bubbles and RBCs
for several different values of δ. Note that the rightmost point corresponds to the limit δ→∞ (i.e. always stiff). The primary radiation force
varies only slightly with δ (|F rad| ≈ 1.5− 1.6× 10−17 N). The determination of the error bars is explained in section S1.

main text), despite the inclusion of the radiation force.
Increasing the frequency from f = 1kHz to 10 kHz at PA = 6 kPa while the primary radiation force is included

leaves the qualitative results for the radial position unchanged but approximately halves the average asphericity,
as depicted in figure S6. This matches with the observations from the main manuscript where no radiation forces
were considered (figure 7).

S3 Parameter robustness
Ultrasound-triggered margination is a robust effect. Figures S7 and S8 show that reducing the effective surface
tension in the soft state to γsoft = 0.1κS, increasing the stiff state tension to γstiff = 25κS, or changing numerical
parameters such as the precision of the solver, the initial position or the length of the periodic vessel does not
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Figure S5: Polar plot of several bubble trajectories (i.e. as viewed from the outlet).
The figure shows the δ ≈ 0.78 and δ = 1 simulations used for figure S4 (b),
representing different system realizations. Hence, the primary radiation force
is included (for f = 1kHz and PA = 6 kPa; direction indicated by the arrow).
Trajectories only shown for t > 1 s or after definite margination. Rare short-lived
migration events to the inside occur. Each bubble in each simulation is shown in a
different color. The outer gray dashed line depicts the vessel radius.
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Figure S6: Behavior of two oscillating lipid coated microbubbles for δ = 1 with red blood cells, once for a frequency of f = 1 kHz and
once for 10kHz (two distinct simulations; the f = 1kHz curve is the simulation from figure S4 (a), but shown only from the beginning of
the oscillations). The primary radiation force for 6 kPa is included (|F rad| ≈ 1.5× 10−17 N for 1 kHz and |F rad| ≈ 1.6× 10−15 N for 10 kHz).
(a) Radial positions of the centroids. The red blood cells are shown in light gray. (b) Corresponding microbubble asphericities averaged over
consecutive time intervals of 50ms.
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affect the overall results qualitatively (i.e. margination on average is still observed). Furthermore, halving the
bubbles’ equilibrium radius or making the vessel wall stiffer does not lead to significant changes either (fig. S8).
Note that depending on the exact history, short lived migrations toward the vessel center can occur sometimes,
which are nevertheless again followed by rapid movement to the vessel walls.
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Figure S7: Radial positions of the centroids of two oscillating lipid coated microbubbles ( f = 1 kHz, PA = 45kPa) for δ = 1 with red blood
cells. Radiation forces not included. (a) The surface tension in the soft state is reduced to γsoft = 0.1κS, retaining the effect of margination
without qualitative changes (red/orange). The gray lines indicate the red blood cells. (b) Three different simulations for γsoft = 0.5κS: One
with more precise SPME parameters (cutoff errors below ® 0.001 %, i.e. one order of magnitude smaller than usual; also see section 2.5 in the
main manuscript; black/gray lines), one with the larger system from figure 2 (a) from the main text (vessel length 48µm and hematocrit
16%; dark/light green), and one with different initial positions for all particles compared to the remaining simulations (RBCs initialized in
regular arrays; purple/blue). Red blood cells omitted for clarity.
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results remain unchanged in all cases.

S4 Code verification
We performed extensive testing of our code to ensure correctness of both the chosen algorithms as well as of the
implementation itself. For example, we compared the results of the single- and double-layer integrals for both the
infinite and the periodic Green’s functions with analytically known values (similar to ref. [8]). The red blood cell
model was validated by considering, amongst others, the deformation of a capsule in an infinite shear flow, as
published in reference [7] and further explored below, as well as by comparing with analytical calculations for a
diffusing particle near elastic membranes [9–14]. We also used the code to compute the shapes assumed by red
blood cells in microchannels [? ].

For further verifications we consider a single bubble in an extensional flow in figure S9. More precisely, the
flow is solved with VCO-BIM in an infinite domain (VΓ →∞) as explained in the main text with the imposed
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flow set to u∞(x ) = s (2x ,−y,−z), where s is the shear rate (for infinite domains, more general imposed flows
u∞(x ) are possible instead of only a constant flow 〈u〉Γ [15]). The bubble starts with 5120 triangles and is
refined as needed [16]. Moreover, the mean curvature is computed via Method C from ref. [7] and the mesh
stabilization routine from equation (2.72) from the main text is employed. The proper dimensionless parameter
is the capillary number Ca= sµR/γ, where µ is the dynamic viscosity of the ambient fluid, R the initial bubble
radius and γ the surface tension. For comparison with the literature, we extract the Taylor deformation parameter
D = (a− c)/(a+ c). The length of the largest half-axis a and of the smallest half-axis c of the deformed object
are computed from an ellipsoid with the same inertia tensor [17, 18]. Figure S9 (a) shows a cut through the
bubble in the z = 0 plane in the stationary state and compares it with the shapes found by Youngren and Acrivos
using an axisymmetric boundary integral method [19]. Furthermore, figure S9 (b) depicts the stationary value for
the deformation parameter D as a function of the capillary number. We compare it with the numerical results
of Youngren and Acrivos [19] and with the analytical O (Ca2) theory of Barthès-Biesel and Acrivos [20]. In both
cases very good agreement is observed. We also note that the deformation in the Ca = 0.1 case corresponds to an
asphericity of around 0.295, which is larger than any values observed for the full setup from the main text. Hence
we conclude that we obtain correct behavior within the relevant deformation range.

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y
/R

x/R

(a)

Youngren et al.
Ca-1 = 10
Ca-1 = 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.02  0.04  0.06  0.08  0.1  0.12

S
ta

ti
o
n
a
ry

 d
e
fo

rm
a
ti
o
n
 D

Capillary number Ca

(b)

Barthès-Biesel et al.
Youngren et al.

Our results

Figure S9: Verification of the bubble in an infinite extensional flow. (a) Cut through the stationary 3D shape of the bubble in the z = 0 plane
for two different capillary numbers. The black lines depict the results obtained by Youngren and Acrivos using an axisymmetric boundary
integral method [19]. (b) Stationary Taylor deformation parameter D as a function of the capillary number. The black dots depict the result by
Youngren and Acrivos [19], the orange squares our results. Furthermore, we show the analytical theory of Barthès-Biesel and Acrivos as a
black line [20]. Note that it quickly diverges contrary to numerical evidence [19]. Hence, its validity appears to be limited to Ca® 0.06 where
excellent agreement is found.

In reference [7] we treated the case of a capsule in an infinite shear flow, and found very good matching with
the literature (figures 12 and 17 therein). For the periodic system we show a similar result in figure S10. Namely,
we place two flat walls with a distance h = 19R in a cubic unit cell with side lengths 20R together with an initially
spherical capsule of radius R. We implement the shear flow by prescribing the velocities u = (±sh/2,0, 0) at the
walls, whereas the top (bottom) sign corresponds to the top (bottom) wall and s is the shear rate. The capsule
is endowed not only with some shear elasticity modeled according to the neo-Hookean law (shear modulus κS
[7]), but also with some bending rigidity following the Canham-Helfrich law [21–23] (bending modulus κB,
Method C from ref. [7], flat reference state). We set the inner viscosity to be identical to the dynamic viscosity
µ of the ambient fluid. Hence, two dimensionless parameters are relevant: The capillary number Ca= sµR/κS
and the reduced bending modulus κ̂B = κB/(R2κS). As before, we extract the Taylor deformation parameter D.
See reference [7] for further details and section 3.2 in the main text for the remaining parameters. Varying the
distance between the walls does not change the results significantly compared to h = 19R. We therefore effectively
mimic an infinite system and comparisons with results from unbounded flows are appropriate. However, the
keypoint here is that we use the very same SPME code that is also employed for the simulations in the main
paper, and thereby further validate the implementation. Numerical parameters include 1280 triangles for the
capsule (which is well converged [7] and roughly corresponds to the maximal resolution used for the red blood
cells in the margination simulations) and 800 triangles per wall. The SPME error is ® 0.01% (similar to the
main simulations). Obviously, figure S10 shows that our results compare very favorably with data extracted from
Tsubota [24], proving that our code works as intended.
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Figure S10: Deformation of a single spherical capsule (endowed
with shear elasticity and bending rigidity) in a periodic system
for two different capillary numbers Ca, compared to results from
reference [24] (“model H” therein). We set κ̂B = 2/15. Since
the wall distance h is chosen sufficiently large, the data matches
very well although the values from the literature were obtained
for a capsule in an infinite (rather than a periodic) system.

S5 Dynamic mesh refinement
As outlined in the main text, we employ Rivara’s longest-edge bisection algorithm [16] in order to refine the
triangular meshes locally when objects come close to each other and at high curvature regions. Lower resolutions
are sufficient for the other regions, i.e. we coarsen the previously refined areas again in this case. Example
snapshots are shown in figure S11.

Figure S11: Example snapshots from the simulations, highlighting the dynamic mesh refinement due to close contact and high curvature
regions.
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We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in

flow. This enables us to recover the full 3D representation of several hundred living cells per

minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome

this restriction and present a method to access the 3D shape of moving objects. The key of our prin-

ciple is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope.

This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual

layers of passing cells are recorded, which can then be assembled to obtain the volumetric represen-

tation. The full 3D information allows for a detailed comparison with theoretical and numerical

predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing

red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We

observe two very different types of shapes: “croissants” and “slippers.” Additionally, we perform

3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imag-

ing of cells in flow has not yet been realized, we see high potential in the field of flow cytometry

where cell classification thus far mostly relies on 1D scattering and fluorescence signals. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4986392]

The optical detection and classification of biological

cells are usually performed by two complementary

approaches. On the one hand, optical microscopy is suitable

for small sample amounts and steady specimens such as tis-

sue slices. Many techniques exist that allow us to reveal tex-

tures at high resolutions on the sub-lm scale. For example,

detailed 3D images of resting bio-particles such as red blood

cells (RBCs) can be produced with confocal microscopes by

scanning the z-axis of the objective in subsequent steps.1–4

This technique also allows us to highlight special structures

by activating specifically dyed regions of interest. However,

even with fast spinning Nipkow disks, the recording of mov-

ing objects such as cells in flow is highly challenging.

Constraints mainly arise from the limited scanning perfor-

mance of the mechanical actuators of microscopes. On the

other hand, flow cytometry targets bio-particles suspended in

flowing liquids and allows for high-throughput classification

of objects.5,6 Statistical information based on a few measure-

ment parameters (fluorescence emission and scattering sig-

nals) finally serves to discriminate between different cell

populations.

Obtaining the 3D shape of individual cells in flow has

thus far been restricted to special circumstances such as

when the cell performs a full rotation in the microscope’s

field of view.7 However, being able to analyze individual

cells under general flow conditions is a very important task

as it can give answers to basic questions concerning the

physical properties of the cell membrane (elastic moduli,

stress-free shape, etc.) or the preferred shape in various

environments. Understanding the detailed behavior of indi-

vidual cells also serves as a first step towards an in-depth

comprehension of multi-particle interactions or even dense

suspensions.4,8,9

Here, we introduce a flow cytometry technique based on

confocal imaging to record the three-dimensional shape of

flowing cells in a micro-channel. The basic idea is to not

actuate the objective or sample stage but rather to tilt the

channel such that successive frames record different slices of

the object moving through the focal plane of the confocal

microscope (Fig. 1). Depending on the cell velocity, about

one hundred layers of a single cell can be recorded and then

assembled to obtain a full 3D reconstruction. The acquisition

speed is only limited by the rotation speed of the employed

Nipkow disk and the frame rate of the used camera.

FIG. 1. Sketch of the used setup. With a tilted stage, we incline our micro-

channels with respect to the focal plane (yellow) of the objective such that

we can take advantage of the objective’s full field of view. Cells traverse the

focal plane sectional-wise and a stack of image slices is recorded to recover

the full 3D representation. Since movement of mechanical stages is not nec-

essary, frame rates up to 600 frames per second (FPS) can be realized. The

used channel has a cross-section of 25 lm� 10 lm (width� height) and is

tilted by an angle of �3�.a)Stephan.Quint@physik.uni-saarland.de
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Typically, a throughput of several hundred cells per minute

can be handled and reconstructed by our technique. We

exemplify our technique by considering the shapes of single

human red blood cells (RBCs) in channel-sizes comparable

to the structures found in the microvasculature. The attained

shapes are of high importance for the macroscopic properties

such as the pronounced shear thinning of blood. Yet, current

research on this topic was so far limited to 2D imaging meth-

ods10–18 where the shapes are not always clearly identifi-

able,12 3D imaging of “frozen” cells where the method of

freezing might influence the form,4,19 and 2D20–26 as well as

3D27–34 simulations. Our method allows for the full 3D cap-

turing of moving bio-particles in micro-sized channels,

which has so far been impossible (Fig. 2). We found two

very different shapes of RBCs in the experiments: a

croissant-like and a slipper-like shape. These observations

are confirmed by 3D numerical simulations.

Our 3D imaging technique enables us to access the full

3D information at frame rates comparable to 2D approaches.

In contrast to common z-scanning methods, we use a micro-

fluidic channel which is tilted by a small angle with respect

to the focal plane of a confocal microscope (Fig. 1). This

arrangement forces cells to pass the focal plane in an

inclined manner and the acquisition of cross-sectional

images (slices) of cells becomes possible without objective

or stage motion. Due to their velocity, cells pass the field of

view in the x-direction while the z-axis is automatically

scanned in subsequent frames. In a post-processing step, the

cell contour is then cropped from individual pictures and the

volumetric representation assembled. Data acquisition is per-

formed at a maximum rate of 600 frames per second (FPS),

which facilitates capturing cells at velocities up to 1:5 mm=s.

This mostly covers the physically relevant range of blood in

the microvascular system. Limitations mainly arise from the

maximum rotation speed of the Nipkow disks and the frame

rate of the used camera.

Special care is required when choosing the objective.

Since channels are tilted, sufficient working distance of the

objective is mandatory for mechanical reasons. Specifically if

channels with heights >10 lm are used, the tilt angle must be

increased to fully capture the cross-section of the channel by

the field of view. However, this can easily lead to mechanical

collision of the channel substrate and the objective housing.

For our experiments, we found an inclination angle of approx-

imately 3� to be sufficient to fully take advantage of the avail-

able field of view (225 lm� 225 lm). Measurements are

taken at a distance of �50 mm away from the channel inlet.

Our micro-fluidic channels are fabricated in a standard

soft-lithography process and are made of polydimethylsilox-

ane (PDMS) based substrates attached to glass slides.

The channel cross-section corresponds to 25 lm� 10 lm

(width� height). For our experiments, cells are stained with

Cell-MaskTM Red which is excited at 647 nm. Using a stan-

dard protocol for staining, this dye very homogeneously

attaches to the cell membrane and cross-sectional images

clearly show the cell outlines (Fig. 3). Achieving high selec-

tivity between different slices, a 60� oil immersion objective

at high numerical aperture (NA ¼ 1:2) is used for confocal

imaging. Aiming to characterize single cells, highly diluted

RBC concentrations are used (approximately 10 ll blood sus-

pended in 1 ml phosphate buffered saline (PBS)). Within the

buffer solution, the viscosity contrast (ratio of inner and outer

viscosity of cells) corresponds to k � 5, which is in accor-

dance with physiological conditions.35

Confocal cross-sectional imaging is performed with a

spinning micro-lens enhanced Nipkow disk. Rotating at

4000 min�1 � 67 s�1 and equipped with multiple micro-lens

sections, the disk allows for a nominal frame rate of

200 FPS. Since the camera exhibits an acquisition speed of

600 FPS, images are taken three times faster than the maxi-

mum rate specified for the disk. This results in noticeable

dark areas from the micro-lens array that can be seen at

FIG. 2. 3D reconstruction of moving RBCs in micro-fluidic flow (top row). The channel dimension corresponds to 25 lm� 10 lm (width� height). 3D assem-

blies are made up of about 250 cross-sectional images and show two possible RBC configurations at the same applied pressure drop: a slipper at �330 lm=s

and a croissant at �370 lm=s (the difference in cell velocity results from a different vertical cell position). A perspective as well as a side view of the slipper

and the croissant shapes are illustrated. Pictures are rotated to give a proper impression on the cell geometry. However, since the rotation of cells relative to the

flow is different, slices course from front to back in the case of the slipper shape and from top to bottom for the croissant. Simulations of the respective cell

shapes (bottom row) are generated using the periodic boundary integral method (see text). Giving a better impression on the volumetric representation, we refer

the reader to our supplementary material videos.
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individual image frames taken at a maximum of 600 FPS

(Fig. 3) and mainly concerns the illumination as well as the

fluorescence detection at certain image areas. For overcom-

ing these disturbances, two obvious approaches exist. First, the

camera could be synchronized with the rotating disk. Doing

so, an overall sample rate of 200 FPS would result which lim-

its the observable velocity range of passing cells. Second, the

camera can be decoupled from the disk, runs at maximum

acquisition speed, and records complete as well as fractional

cell images (preferred method). Due to this oversampling,

more information content on cells or fraction of cells can be

gathered. However, for reconstructing a clean 3D representa-

tion of each cell, partial images must be supplemented by com-

plete frames. This can be done by taking bundles of three

subsequent cross-sectional slices which are continuously sum-

marized to obtain the full representation of the cell membrane.

Besides the effect that dark areas from confocal imaging are

smoothed out, an improved signal-to-noise-ratio (factor� 1:7)

is obtained, which enhances the image contrast.

Moreover, due to cell motion, the spatial shift of cell

signals between subsequent frames must be determined for

correct volumetric recovery. To access this shift, the cell

velocity has to be measured. This is achieved by calculating

the center of mass of individual cells for each time-step

(frame) to obtain a position (pixel) vs. time diagram that is

linearly fitted. Taking the magnification into account, the

slope of this fit represents the cell velocity. Finally, a veloc-

ity corrected stack of cross-sectional cell images is obtained,

which is then assembled to get the full 3D representation.

At equilibrium, shape assembly errors may only be due to

statistical rotational or translational fluctuations caused by

Brownian motion. Giving the reader a rough estimation on

diffusion processes, spherical particles of similar volume

serve as a placeholder in the following calculation. Assuming

a velocity of 350 lm=s, cells take s ¼ 660 ms to pass the field

of view (225 lm). With a radius of R ¼ 4 lm and dynamic

viscosity g ¼ 1 mPa s of the medium, the root mean-square

angular deviation during the interaction corresponds toffiffiffiffiffiffiffiffiffiffi
hH2i

q
¼ 0:057 rad ¼ 3:25 �. Moreover, the translational

root mean square displacement amounts to
ffiffiffiffiffiffiffiffi
hx2i

p
¼ 0:26 lm.

Consequently, the rotational diffusion accounts for less than

1% of a full rotation. Translational diffusion corresponds to

�6:5% of the object size during its time of flight. Both diffu-

sion processes may lead to slight displacements when the

cross-sectional image slices are assembled. Fortunately, the

main features of cell geometries are maintained and clear pic-

tures evolve in practice. Thus, our measuring approach is in

principle not affected by Brownian motion.

Figure 2 (top row) shows typical 3D measurements for

RBCs within a Poiseuille flow, comprising a slipper and a

croissant shape as also observed in previous experi-

ments10,11,13,14,19 and simulations20–22,24,27,31 (see the supple-

mentary material for movies). The slipper has a somewhat

lower velocity (�330 lm=s) than the croissant (�370 lm=s),

despite being driven by the same pressure drop, because it is

slightly off-centered. This is in agreement with previous 2D

simulations.24 Note that the croissant shape is similar to a

parachute. But where the latter is perfectly rotationally sym-

metric around its axis, the croissant has only two symmetry

planes. This is due to the rectangular form of the channel.

In addition to our experiments, we perform numerical

simulations to confirm these shapes theoretically by using the

periodic boundary integral method.36 As it is based on the

Stokes equation, the Reynolds number must be small in order

to faithfully capture the dynamics. For the present case, it can

be estimated to be Re ¼ DRBCuq=l < 10�2, with the equilib-

rium diameter of the red blood cell DRBC � 8 lm, the velocity

u � 370 lm=s, the density q � 103 kg=m3, and the dynamic

viscosity l � 10�3 kg=ðs mÞ. The simulated channel has the

same cross-section (25 lm� 10 lm) as in the experiments

and a length of 60 lm. A single red blood cell is started in the

equilibrium discocyte state and axis-aligned with the channel

axis. The viscosity at the inside is chosen to be 5 times higher

than at the outside (k¼ 5). For further details, we refer the

reader to our recent publications36–38 and the supplementary

material. Depending on the starting position, either an off-

centered and slower slipper or a centered and faster croissant

can be observed (see the supplementary material for movies).

They compare favorably with the experimentally obtained

forms as shown at the bottom of Fig. 2. Note that the croissant

shape is found to be metastable for the present parameters,

i.e., it switches to a slipper shape after several seconds. This

also suggests that the croissant as seen in the experiments

might be of transient nature. However, further studies are

needed to confirm this observation. Moreover, the slipper was

found to exhibit pronounced tank-treading in accordance with

previous publications.24,31

Summarizing, we developed a tomography based 3D

imaging technique for moving bio-particles in micro-fluidic

flow. Our approach will enable a large set of practically rele-

vant application scenarios which have hitherto been

FIG. 3. Post-processing of subsequent velocity corrected image frames

(“camera stream”) taken at discrete time-steps k. Artifacts from confocal

imaging can exemplarily be seen for three subsequent cross-sectional images

(“captured frames”). Areas (hatched) which are not excited by the light

source and not seen by the camera remain dark and the observed cell reveals

missing parts. Therefore, the superposition of three subsequent images is

continuously built to get the full representation of the cell for each time-step

(“smoothed stream”). As a side-effect, this procedure additionally improves

the signal-to-noise ratio by a factor of �1:7 and therefore enhances the

image contrast.

103701-3 Quint et al. Appl. Phys. Lett. 111, 103701 (2017)

Pub 4

ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-035736
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-035736
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-035736
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-035736
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-035736


inaccessible to the confocal (or any other) 3D imaging tech-

nique. The key of our approach is a tilted channel that allows

objects to traverse the field of view in an inclined manner. At

sufficient frame rates, a number of cross-sectional images

are taken, which are then assembled to obtain the full 3D

representation of bio-particles. This method enables us to

characterize the shape of flowing cells, exemplified herein

by using human RBCs. With 3D tomography, we are able to

confirm or refute theoretical and numerical predictions of

cell shapes and can therefore provide more detailed informa-

tion on cell-intrinsic parameters. In addition to our experi-

mental technique, we performed numerical simulations of

RBCs in the same environment as in the experiments.

Employing the periodic boundary integral method, we found

good agreement with the experimental results. Our approach

could be utilized for diagnostics, e.g., to identify shape-

related anomalies such as sickle-cell anemia. This makes

micro-fluidic based 3D tomography a possible supplement or

even replacement for flow cytometers in specific use-cases.

See supplementary material for a detailed description of

the numerical simulation methods used as well as for videos

of our results.
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S1 Numerical method

S1.1 The boundary integral method
We use the boundary integral method (BIM) [1] with periodic boundary conditions [2, 3] to perform our numerical
simulations. An essential property of this method is that only integrals over the surface of the objects appear (due
to the linearity of the underlying Stokes equation), making a discretization of the fluid volume unnecessary. Two
objects are required in the present case: One red blood cell (RBC) and one rectangular channel. Flat triangles are
used for the surface discretization in all cases.

The RBC is discretized with 2048 triangles. The ratio of the viscosities at the inside and outside is set to λ= 5
which is the typical physiological value of healthy red blood cells [4, 5]. Furthermore, the in-plane elasticity of
the RBC is modeled with the Skalak law [6] with a shear modulus of κS = 5× 10−6 N/m and an area dilatation
modulus of κA = 100κS. The reference state is taken to be the typical equilibrium shape [7, 8] of the RBC.
Using e.g. an oblate spheroid as the reference state will cause only minor changes to the results for λ = 5 as
shown by Cordasco et al. [9]. Moreover, the bending resistance follows from the Helfrich model [10, 11] with
a bending modulus of κB = 3× 10−19 N m and the spontaneous curvature set to zero. Computing the bending
forces is actually non-trivial because a fourth order derivative of the surface is required. We use Method C from
refs. [11, 12] for this purpose. For a comparison with other algorithms we also refer the reader to these two
publications.

The channel itself has a width of 25µm, a height of 10µm and a length of 60µm. It is modeled with 4374 flat
triangles. To prevent numerical problems, its corners are “rounded” (compare figure S1). Furthermore, prescribing
a velocity of zero on the surface would result in a numerically very stiff system. For efficiency we therefore adapt
the approach from refs. [2, 5] and fix the nodes with springs to their original positions. The corresponding spring
constant is set to the high value of κW = 1.875× 107 N/m3 to ensure negligible influence on the results.

The boundary integral equation is computed by a combination of the standard Gaussian quadrature [13]
(7 Gauss points per triangle) with appropriate singularity removal procedures [2]. Evaluation of the Green’s
functions are accelerated by the smooth particle mesh Ewald method [3, 14] (errors are kept below 5× 10−5).
This results in a linear system that is solved via GMRES [15] (residuum ¶ 10−4). We employ the adaptive
Bogacki-Shampine method [16] to integrate the system in time with an absolute tolerance of 10−5RRBC, where
RRBC is the initial large radius of the RBC (see below). Changes in the total RBC surface area are usually below
0.1% due to the high value of κA. The volume is kept constant as in reference [2] by a combined hyperplane and
rescaling method. Further implementation details together with validation results can be found in our previous
publications [2, 11, 12, 17].
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S1.2 Initial condition
The RBC is initially in the typical equilibrium shape [7, 8] with a large radius of RRBC = 4µm (compare figure S1).
Its initial axis is aligned with the channel’s axis. The initial position perpendicular to the symmetry axis, however,
is varied: Moving the cell along the long side of the channel’s cross-section favors slippers, whereas an initial
offset along the short side produces (metastable) croissants.

Figure S1: Numerical setup: A single red blood cell flows in a rectangular channel. The initial shape is the typical discocyte shape axis-aligned
with the channel axis, and offset from the channel center.
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Numerical–experimental observation of shape
bistability of red blood cells flowing in a
microchannel†

Achim Guckenberger, ‡*a Alexander Kihm, ‡b Thomas John,b

Christian Wagner §bc and Stephan Gekle §a

Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high

deformability. Predicting the realized shapes is a complex field as they are determined by the intricate

interplay between the flow conditions and the membrane mechanics. In this work we construct the

shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a

microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to

complement the respective other one. Numerically, we have easy control over the initial starting

configuration and natural access to the full 3D shape. With this information we obtain the phase

diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the

occurrence frequency of the different shapes as a function of the cell velocity to construct the

experimental diagram which is in good agreement with the numerical observations. Two different major

shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low

(o1 mm s�1) and high velocities (43 mm s�1) while in-between only croissants are stable. This

pronounced bistability indicates that RBC shapes are not only determined by system parameters such as

flow velocity or channel size, but also strongly depend on the initial conditions.

1 Introduction

Red blood cells (RBCs) are the major constituent of mammalian
blood and therefore determine the majority of its flow proper-
ties. One of the most amazing features of RBCs is their
deformability, allowing them to squeeze through channels with
diameters much smaller than their own equilibrium size.1–3

Another consequence of their deformability is the wide range of
stationary and non-stationary shapes assumed by the RBCs in
microchannel flows with dimensions similar to or slightly
larger than the RBC equilibrium radius.4–6 Understanding
and being able to predict these shapes is of high importance

for a variety of reasons. From a fundamental point of view, it
serves as the foundation in a bottom-up approach to under-
stand the properties of red blood cell suspensions which are
chiefly determined by single particle behavior.7–13 From an
applied perspective, a series of recent investigations have
devised promising approaches for sorting cells based on their
mechanical properties either in lateral displacement devices14

or using high-speed video microscopy.15 Finally, knowledge of
the precise cell shape is also essential for accurately measuring
geometric properties of cells.16

The most frequently observed shapes of RBCs in micro-
channel flows are the so-called ‘‘croissant’’ and ‘‘slipper’’
shapes. Examples are depicted in Fig. 1. Some researchers refer
to croissants also as parachutes, although here we prefer the
term croissant since our shapes are not perfectly rotationally
symmetric (similar to the ones found by Farutin and Misbah17).
Probably one of the earliest experimental studies on isolated
red blood cells in flow was performed by Gaehtgens et al.,18

where slippers as well as parachutes have been found depend-
ing on the diameter of the cylindrical channel. Suzuki et al.19

presented an in vivo phase diagram of parachutes and slippers
as a function of velocity and confinement. Slippers dominated
at smaller diameters and higher velocities. Secomb et al.20

compared experiments with 2D simulations in cylindrical
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channels of 8 mm diameter for a cell velocity of approximately
1.25 mm s�1. Furthermore, two other publications21,22 consid-
ered the flow of RBCs at very low viscosity ratios of l t 0.27.
They presented a phase diagram showing parachutes and
slippers, where the velocity was varied in the very high regime
of 10 to 170 mm s�1. Tomaiuolo et al.23 found parachutes at
smaller and slippers at higher velocities in cylindrical channels
of 10 mm diameter. A subsequent study24 as well as Prado
et al.26 considered the transient during start-up of the flow.
Cluitmans et al.26 detected croissants at lower (t5 mm s�1) and
slippers at higher velocities (\10 mm s�1) in rectangular channels
with widths r10 mm. Moreover, Quint et al.27 found a stable
slipper and a metastable croissant at the same set of parameters in
a wider channel of 25 mm � 10 mm. Other publications presenting
experiments in channel flow also touch the subject of RBC shapes
but focus on other aspects such as the methodology,28–35 dense
suspensions and cell interactions18,22,35–42 or use vastly larger
channel diameters.13,43

Numerical simulations and semi-analytical calculations of
isolated particles in microchannels mostly studied axisym-
metric RBCs44–46 or 2D vesicles.5,6,47–52 The numerical work
by Aouane et al.,5 for example, identified a large amount of
dynamics including deterministic chaos. The first full 3D simula-
tion of a single cell with a realistic RBC model (but with a ratio of
inner to outer viscosity of l = 1) was conducted by Noguchi and
Gompper53 who used a cylindrical tube with a diameter of 9.2 mm.
They found the typical discocyte shape below and parachutes
above a critical velocity which depends on the elastic parameters.
A subsequent study by the same group additionally explored this
threshold as a function of confinement.54 Moreover, Fedosov et al.4

presented very detailed phase-diagrams where the velocity and
confinement was varied for three different sets of elastic moduli
and a viscosity ratio of l = 1. They observed four distinct regions
where snaking, tumbling, slippers and parachutes occurred.
Recently, Ye et al.55 considered the shapes of an RBC with l = 1
in rectangular microchannels (with width 10 mm and aspect ratios
1 to 2) for the three cell velocities 4, 20 and 100 mm s�1 and
observation times up to E0.03 s. Snapshots after this short initial
transient showed parachutes or slightly slipper-like shapes.

Bistability, i.e. the observation of two different stable shapes
depending on the initial condition but at otherwise identical
system parameters, was barely considered so far. It was

observed for simpler situations such as close-to-spherical vesicles
in unbounded Poiseuille flow analytically56 and numerically17 or
near a single wall,57 for a 2D RBC model in bounded Poiseuille
flow,20 for the initial transient of a red blood cell in a rectangular
channel55 or for simple shear flows.13,58–60 No systematic experi-
mental investigations exist for cells flowing in microchannels.
Moreover, the 3D simulations and experimental investigations
that were mentioned above and that consider the RBC shapes in
microchannels in more detail all used a viscosity ratio of l r 1,
although analytical and numerical computations showed that
choosing a physiologically more realistic value of l E 561 can
significantly affect RBC dynamics.6,17,50,56

Here we present a detailed systematic experimental-
numerical study on the steady-state shape of isolated red blood
cells in a rectangular microchannel. We use the physiological
viscosity ratio of l = 5 appropriate for healthy human red blood
cells in the microcirculation.61 The initial position is varied in
the simulations directly, while experimentally we determine
it via measurements at the channel entrance. Our central
finding is that the initial starting position of the RBC has a
decisive influence on the final steady-state shape of the red
blood cell.

We begin by outlining our experimental and numerical
methods in Section 2. Afterwards, the results from our experi-
ments (Section 3) and simulations (Section 4) are presented,
while Section 5 is dedicated to their detailed comparison.
Finally, we conclude our work in Section 6.

2 Methods
2.1 Experimental setup

The sample preparation and experimental setup is mostly
identical to the one used recently by Claverı́a et al.36 In short,
human red blood cells were obtained from healthy donors by
needle-prick and used within three hours. After appropriate
preparation,36 they are suspended in a phosphate buffered
saline (PBS) and bovine serum albumin solution which has a
viscosity of approximately 1 mPa s. The viscosity ratio of
the cells is therefore l E 5.27 This value corresponds to the
typical physiological value of healthy red blood cells in blood
plasma.61 The RBCs are pumped at room temperature through

Fig. 1 Typical RBC shapes from simulations and experiments. (a) The typical discocyte shape employed in some of the simulations as the starting shape.
Half of it was made transparent for illustration purposes. Its horizontal diameter is 8 mm. (b) A typical croissant observed in the experiments when applying
a pressure drop of 100 mbar (cell velocity 0.98 � 0.07 mm s�1). (c) A croissant with a velocity of E1.1 mm s�1 obtained from the numerical simulations.
(d) The cross-section of the croissant from (c). (e) A slipper from the experiments at 500 mbar (cell velocity 5.16 � 0.11 mm s�1). (f) A typical slipper from
the simulations with a cell velocity of E5.2 mm s�1. (g) The cross-section of the slipper from (f). The black lines on the shapes from the simulations depict
the mesh. The bottom and top black lines in all figures are the walls (Ly E 12 mm apart), while the small black lines are scale bars of length 2 mm. The flow is
in the positive x-direction (except in figure (a) where no flow exists).
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rectangular, PDMS-based channels by a high-precision pressure
device (Elveflow OB 1, MK II) with pressure drops ranging from
20 to 1000 mbar. The channels have a cross-section width of
Ly = (11.9 � 0.3) mm and a height of Lz = (9.7 � 0.3) mm without
any applied pressure drop and are thus similar to the vessel
diameters found in the microvascular system.62,63 Their length
is approximately Lx = 40 mm. We use rectangular rather than
cylindrical channels since they are easier to manufacture, are
therefore prevalent in lab-on-a-chip devices63,64 and have the
merit that cells are not rotated randomly around their axis
due to the missing rotational symmetry. The latter property
greatly simplifies the microscopic observation and analysis of
the RBCs.

The hematocrit (volume percentage of RBCs) in the reservoir
before the inlet is always t1.0%, i.e. very low. Nevertheless, we
find cells flowing in clusters as well as single cells. For the
present work we have analyzed only the latter. To this end,
previous experimental and theoretical results showed that the
hydrodynamic interaction in a linear channel decays exponen-
tially, and becomes negligible if the inter-particle distance is
more than twice the channel width.54,65,66 Considering that our
channel has the dimensions E12 mm � 10 mm, cells can be
considered as being single for distances \25 mm. We only used
cells that were at least 40 mm apart from other entities.

We perform measurements at two locations along the channel,
namely at the entrance (x = 0 mm) and at x = 10 mm downstream.
Claverı́a et al.36 showed that only minor differences occur
between measurements at x = 2 mm and x = 10 mm, i.e. the
cells are well converged at the latter position. This position is
also consistent with other references18,22,26 and our simula-
tions as explained in the ESI.† Vessel lengths in-between
bifurcations in the microvascular system are less than 1 mm,
i.e. much shorter.67 Nevertheless, this is not necessarily true for
in vitro experiments or lab-on-a-chip devices, and the long-time
behavior also holds information about the general intrinsic
properties. The flowing RBCs are recorded by an inverted bright-
field microscope (Nikon TE 2000-S) with an oil-immersion
objective (Nikon CFI Plan Fluor 60�, NA = 1.25) and a high-
resolution camera (Fastec HiSpec 2G) at a frame rate of 400 frames
per second. The camera is aligned along the z-direction so that
the photographs show the cells in the x–y-plane (compare Fig. 2).
Hence, determination of the z-position is not possible, but also
not absolutely necessary as our simulations always show a
z-position of nearly 0 (see Section 5). We analyze the recorded
image sequence with a custom MATLAB script that detects each
projected cell shape and the corresponding 2D center of mass
position. It additionally tracks the cell position over the image
sequence to obtain the individual cell velocity. Considering
the optical setup, we assume an uncertainty in the position
measurements of �sP with sP = 0.1 mm. The cell shapes are
classified by hand.

2.2 Simulation setup

The numerical simulations mimic our experimental setup as
far as possible. Hence, we place a single red blood cell in a
rectangular channel as shown in Fig. 2. The channel has a

cross-section of width Ly = 12 mm and height Lz = 10 mm.
Periodic boundary conditions are assumed in the x-direction
with a periodicity of Lx = 42.7 mm, in agreement with above
estimates for the decay of hydrodynamic interactions.

We vary the initial y–z-position (relative to the channel
center) of the RBC’s centroid along the line zinit = 5yinit/9, which
almost corresponds to the channel diagonal. The corresponding

initial radial position is thus simply given by rinit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yinit2 þ zinit2

p
.

Apart from the initial position, we also vary the initial shape. The
first employed shape is the typical discocyte equilibrium
shape,68,69 as depicted in Fig. 1(a), where the RBC axis is aligned
with the channel axis (as shown in Fig. 2). The second and third
starting shapes are a croissant and slipper, whose geometries are
obtained from two simulations that start with a discocyte. They are
further detailed in the ESI.†

Cell velocities are extracted by considering the difference of
the centroids between successive time steps. During the simu-
lation, we monitor several quantities such as the radial, y- and
z-positions, the RBC asphericity and the cell velocity as well as
the full 3D shape to determine when the steady state has been
fully reached. The assumed shapes are classified manually by
considering the 3D geometry and the graphs of the cell posi-
tion, velocity and asphericity, similar to ref. 4. For example,
slippers are off-centered and show periodic oscillations in the
graphs, while croissants are centered and have a static shape
(also compare the ESI†).

Regarding the actual modeling of the constituents, the RBC
is filled with a Newtonian fluid with a dynamic viscosity mRBC,
whereas the ambient flow is a Newtonian fluid with the
dynamic viscosity m = 1.2 mPa s of blood plasma.70–72 We set
the viscosity ratio l = mRBC/m to a value of 5 in all simulations.
The surface area of the RBC is set to 140 mm2 and the volume is
set to 100 mm3 (see e.g. ref. 71 and 73), leading to a large radius
of RRBC = 4 mm when the cell is in the typical discocyte

Fig. 2 Simulation setup: a single red blood cell is placed in a rectangular
channel of width Ly = 12 mm and height Lz = 10 mm. Periodic boundary
conditions are employed. Initially, the centroid of the cell is offset from the
center axis along the left black arrow by a distance rinit. The depicted RBC
illustrates the discocyte starting shape, although other shapes have been
used, too, as explained in the main text and the ESI.† Furthermore, the
black lines on the surfaces illustrate the employed meshes. The arrow at
the top shows the view from the camera in the experiments (i.e. onto the
x–y-plane) and the flow is in the positive x-direction.
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equilibrium shape (Fig. 1(a)). The mechanics of the infinitely thin
membrane are governed by Skalak’s law74,75 for the in-plane
elasticity with a shear modulus of kS = 5 � 10�6 N m�1 76,77 and
an area dilatation modulus of kA = 100kS. This value for kA

ensures that the area changes remain below 2% in all cases. We
take the reference state for the Skalak model to be the typical
discocyte shape.68,69 The membrane is additionally endowed
with some bending resistance which is modeled according to
the Canham–Helfrich law,78–80 where the bending modulus is
fixed to kB = 3 � 10�19 N m.77,81 The spontaneous curvature is
set to zero.

We use 2048 flat triangles to discretize the RBC in our
numerical implementation. The forces are computed as described
by Guckenberger et al.,82 with Method C therein being used for
the bending contribution. An unavoidable artificial volume drift
of the cell is countered by adjusting the velocity to obey the no-flux
condition and by a subsequent rescaling of the object.83,84 More-
over, the channel is represented by 2166 flat triangles. The corners
are rounded to prevent numerical problems (compare Fig. 2).
Rather than prescribing a zero velocity at the channel walls, we
use a penalty method for efficiency reasons with a spring constant
of kW = 1.9� 107 N m�3.6,84 Increasing the triangle counts and the
box length Lx did not change the results significantly.

The Reynolds number in the considered system is defined as
Re = 2RRBCumaxr/m. For a velocity of umax r 10 mm s�1 and the
density r E 103 kg m�3 of the ambient and inner liquid we
therefore have Re o 0.1. Hence, the flow can be appropriately
described using the Stokes equation. This allows us to employ
the boundary integral method (BIM)85 for 3D periodic
systems.84,86 Note that this method requires to prescribe a
certain average flow through the whole unit cell instead of a
pressure drop within the channel. The latter is unfortunately
not easily accessible. We therefore compare with experiments
by means of cell velocities. Continuing, the integrals are
computed by a standard Gaussian quadrature with 7 points
per triangle in conjunction with linear interpolation of nodal
quantities and appropriate singularity removal for the single-
and double-layer potentials.84 Furthermore, we use the smooth
particle mesh Ewald (SPME) method87 to accelerate the com-
putation of the periodic Green’s functions; cutoff errors are
kept below 5 � 10�5. The resulting linear system is solved via
GMRES88 up to a residuum of 10�5, and the kinematic condi-
tion is integrated in time using the adaptive Bogacki–Shampine
algorithm89 with the absolute tolerance set to 10�5RRBC. When
the run-times are normalized to a two-socket system with 28
cores, each simulation took 1 to 29 days, with an average of
around 5 days. The phase diagrams below are formed by 329 of
such simulations in total. Further details on the numerical
method as well as verifications of the implementation can be
found in our previous publications.27,82,84,90

3 Experimental results

We classify cells in the experiments either as croissants, slip-
pers or ‘‘other’’ not uniquely identifiable or completely

different shapes. Typical slipper and croissant shapes are
shown in the photographs (b and e) of Fig. 1. See the ESI† for
a collection of all images.

To systematically investigate the occurrence of the different
shapes, we vary the imposed pressure drops from 20 to
1000 mbar. The corresponding cell velocities range from
0.14 mm s�1 to 10.6 mm s�1, covering the whole physiological
range in microchannels.62,91,92 We consider the cells 10 mm
away from the channel entrance where most of the cells
reached a steady state.36 Fig. 3(a) depicts the fraction of
observed shapes as a function of the measured cell velocities,
constituting our central result from the experiments. This
distribution was obtained by considering typically more than
100 cells per imposed pressure drop. The average velocities
were computed by averaging over all cells at a certain pressure
drop, with the horizontal error bars showing the corres-
ponding standard deviations su in cell velocity. Not all
velocities are the same because croissants and slippers have
different velocities at otherwise identical flow conditions,27

and because of the natural variations of cell properties such
as elasticity and size, as also noted by Tomaiuolo et al.23

See the ESI† for more details. Considering Fig. 3(a), high
velocities obviously favor slippers while croissants are the
most prominent for medium velocities. A pronounced peak
exists from around 1 to 2 mm s�1. Very small velocities
produce mostly shapes that fall outside our simple two-state
classification.

Fig. 3(b) illustrates the corresponding estimated probability
density function of the center of mass y-position of the cells at
the various pressure drops. This estimate was obtained from
the measured y-positions by using the kernel density estimator
as implemented in MATLAB R2017a (ksdensity) with a support
of [�6,6] mm and otherwise default settings. Thus, croissants
and ‘‘others’’ occurring at lower velocities are centered in the
channel, while slippers occurring at high velocities show a
pronounced off-centered position. The assumed shapes there-
fore imply a certain y-position within the channel with slippers
being off-centered and croissants centered. This is confirmed
when analyzing the offset distribution separately for each shape
class as shown in the ESI.†

From Fig. 3(a) it is tempting to conclude that the
flow velocity is the major parameter that determines the RBC
shape, with low velocities favoring centered and high velocities
favoring off-centered flow positions. However, looking at the
cell positions near the channel entrance (Fig. 4) we find that
already upon entering the channel RBCs are not homo-
geneously distributed. At low velocities we observe a clear bias
towards a centered initial position, with the distribution
becoming approximately homogeneous only at the highest
measured velocities. These experimental observations allow
two distinct parameters as the reason for the dominance of
the slipper shapes at high velocities: either the higher flow
velocity itself or the more off-centered entry into the channel.
To disentangle these two possibilities we now present numerical
simulations whose geometry directly corresponds to the
experimental setup.
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4 Numerical results

We numerically study the behavior of a single RBC in a
rectangular microchannel by varying the imposed flow velocity,
the initial shape and the initial offset rinit from the centerline of
the tube (see Section 2.2). After starting the flow, we wait until
the RBC reaches the steady state where the shape as well as the
radial position does no longer change, or alternatively until
periodic motion is observed.

In the majority of cases, we observe two different states: a
croissant shape (which moves as a rigid body, Fig. 1(c)) and a
slipper shape (Fig. 1(f)). The latter exhibits tank-treading (TT)
and oscillatory contractions similar to the slippers seen by
Fedosov et al.4 (see the ESI† for a movie and the insets in
Fig. 5). Tank-treading refers to the motion of the membrane
around a (more or less) static shape. Note that perfectly
axisymmetric parachutes are suppressed by the rectangular
channel flow, contrary to the situation for cylindrical tubes4

or unbounded Poiseuille flows.17

To start the systematic study, we take a red blood cell that is
initially in the typical discocyte shape with its rotation axis aligned
along the tube’s axis (cf. Fig. 2). We then vary the radial offset rinit

from the center line as described in Section 2.2 and record the
final radial position as well as the shape. The mean of the radial
position is extracted by a temporal average once the cell is in the
steady state (see the ESI† for more details). Fig. 5 shows the result
for a cell velocity of E6.5 mm s�1. A single sharp transition

Fig. 4 Experimental results: estimated probability density function of the
cells’ center-of-mass y-position at the channel entrance (position x =
0 mm). The pressure drops increase from the bottom (20 mbar) to the top
(1000 mbar) with the numbers on the left side indicating the corres-
ponding value in millibar. We display the respective measured mean cell
velocities in mm s�1 on the right side. The area under the curves is
normalized to one. The curves are offset in the vertical direction for
illustration purpose.

Fig. 3 Experimental results: (a) fraction of observed cell shapes as a function of the applied pressure drop (top axis) and mean cell velocity (bottom axis).
The horizontal error bars depict the standard deviation of the measured cell velocities for each applied pressured drop. The shaded background is a guide
to the eye. Furthermore, the insets show examples of experimental images (see the ESI† for a collection of all photographs). (b) Estimated probability
density function of the RBCs’ center-of-mass y-position within the channel for various pressure drops (indicated as numbers on the left in millibar) for all
shapes combined. The corresponding measured mean cell velocities are depicted on the right in mm s�1. We show the separated contributions of each
shape to the distribution in the ESI.† The area under the curves is normalized to one. The dashed lines illustrate the wall positions. Both figures are for the
position 10 mm downstream from the channel entrance.
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at rinit E 0.7 mm from centered croissants to off-centered slippers
is observed. The final position of the slippers is mostly offset only
along the wider width of the channel ( y-direction), but not along
the smaller height (z-direction). Due to the transition we find
pronounced bistability: the result is significantly determined by
the initial condition and two different shapes (croissant and
slipper) coexist. This is consistent with the 2D simulations by
Secomb et al.20 and Tahiri et al.6 It also agrees qualitatively with
observations by Farutin and Misbah for 3D simulations of vesicles
in unbounded Poiseuille flow.17

To study the bistability in more detail, we vary the imposed
flow velocity as well as the initial offset rinit and characterize the
behavior in the steady state. This yields the shape phase
diagram depicted in Fig. 6(a). The cell velocity is extracted in
the steady state via a temporal average. For slippers the velocity
varies periodically (similar to the radial position): the mini-
mum and maximum in one period is indicated by the horizon-
tal error bars. Overall, the mean cell velocity u ranges from
0.132 mm s�1 to 10.4 mm s�1, matching with the experimentally
covered range. The corresponding shear capillary number CaS :¼
mu/kS varies therefore in the interval CaS A [0.0317, 2.50], while the
bending capillary number CaB :¼ muRRBC

2/kB lies in the range
CaB A [8.45, 666]. The reddish area illustrates the approximated
region where croissants exist. Furthermore, there is a maximal
initial offset rinit above which overlapping with the vessel wall
would occur.

The shape phase diagram in Fig. 6(a) (together with (b and c)
explained below) constitutes our main result from the simula-
tions. Starting near the channel center (in the reddish region)
results in croissants, whereas higher initial offsets lead to
slippers. The transition is found to be sharp, and depends
significantly on the velocity. Croissants are the only stable
steady state in a small region ranging from around 2 to
3 mm s�1, independently of the initial radial position. Smaller
and larger velocities tend to favor slippers. Stable croissants do
not appear below 0.25 mm s�1.

While the final shape is recognizable often early on, some
small changes can still occur before the cell completely reaches
the steady state. In the case of the slippers, the final perfectly
periodic state is usually reached after roughly 2 s to 10 s.
Relative to a typical flow timescale of t :¼ RRBC/u (where u is
the mean cell velocity), it is typically reached after 1t to 500t. In
contrast, the final croissant state is in some cases achieved only
after more than 30 s (i.e. 4104t), possibly after an intermediate

Fig. 5 Simulation results: averaged radial position in the steady state
as a function of the initial radial offset for a cell velocity of E6.5 mm s�1.
The RBC starts in the typical discocyte shape with its rotation axis
aligned with the tube’s axis (Fig. 2). The dotted line is a guide to the eye.
Half of the channel’s extent along the y-direction (width) is shown as a
dashed line at the top. The extent in the z-direction (height) is of less
significance here since the steady states are always almost centered in
the z-direction. Furthermore, the radial position for the converged slippers
oscillates around a mean value and their shapes show periodic ‘‘contrac-
tions’’ as indicated by the vertical error bars and the right two insets,
respectively.

Fig. 6 Simulation results: shapes obtained when varying the initial offset rinit and the velocity. Each symbol corresponds to one simulation. The lower
horizontal axis shows the average cell velocity in the steady state, while horizontal error bars depict the minimal and maximal velocities in one period
(variations for croissants nearly zero and thus not visible). The upper dashed line represents the maximal initial offset: above this offset, the cell would
overlap with the wall. The other lines and the colored areas are guides to the eye and illustrate the different regions in the phase diagram. Each figure
corresponds to a different initial shape, namely (a) to the typical discocyte shape, (b) to a croissant and (c) to a slipper. These shapes are shown in Fig. 1(a)
and in the ESI.† The inset in the last figure depicts an example of a tank-treading croissant. Fig. 5 corresponds to the vertical column at E6.5 mm s�1 in
sub-figure (a).
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slipper state that can last several seconds (see Fig. S7 and the
movie in the ESI†). Hence, shapes observed in the simulations
much earlier than one second can often turn out to be tran-
sient, contrary to the interpretation of Ye et al.55 but in agree-
ment with Prado et al.25

Considering our results in Fig. 6(a) in more detail, we find
that two different types of croissants and slippers are possible.
On the one hand, at very low velocities (t0.7 mm s�1)
the slippers no longer exhibit tank-treading motion of the
membrane and instead show tumbling behavior: the cell
rotates around the z-axis while approximately preserving its
shape (similar to a rigid-body, see the ESI† for a movie). The
difference compared to the tumbling motion observed by
Fedosov et al.4 is that the cell still exhibits a clear slipper-like
instead of a proper discocyte shape. Hence, we classify this
mode still as slipper. On the other hand, at very high velocities
(\7 mm s�1) slightly asymmetric shapes strongly reminiscent
of croissants with a distinct tank-treading motion can some-
times be observed (see the inset in Fig. 6(c) for an example). As
the shape itself is very close to a croissant, we will nevertheless
consider it to be a croissant below.

A natural question that occurs in light of the profound
bistability is the influence of other initial shapes on the
result. To this end, we consider a typical croissant as well as
a typical slipper as the starting shape. Both were obtained
from previous simulations that started with the discocyte
form and are characterized in the ESI.† We once again
construct the shape phase diagram as before and display
the results in Fig. 6(b) and (c). Note that the different starting
shapes admit a larger initial radial position rinit of the

centroid. In short, starting with a croissant favors croissants
in the steady state (the reddish area is larger than in Fig. 6(a)).
For slippers it is the other way around: starting with a slipper
tends to produce more slippers (reddish area smaller than
in Fig. 6(a)). Despite this, the croissant-only region from
around 2 to 3 mm s�1 still exists unscathed. Overall, only
two qualitative differences occur between the phase diagrams
of different initial shapes, both at lower velocity when starting
with the croissant shape (Fig. 6(b)): first, stable croissants
emerge at very low velocities (t0.7 mm s�1) and second, the
croissant-only peak exhibits a ‘‘protrusion’’ into the slipper
space. This observation suggests that slippers and croissants
can be stable below 2 mm s�1 for most rinit values. It is further
confirmed by simulations that start with differently rotated
discocytes in the ESI.†

Another interesting aspect concerns the radial positions of
the centroids in the final steady states. The average values are
obtained by computing the temporal average in the steady state
first for each simulation, and then combining the results for
identical shapes via a weighted arithmetic mean. We use the
observation time in the steady state as the weight. This proce-
dure leads to Fig. 7(a). Obviously, the final radial positions are
independent of the initial starting shape, i.e. a particular steady
state shape at a certain velocity is always located at the same
position. Furthermore, non-tank-treading croissants are always
almost centered, with only minor deviations away from zero.
These slight deviations in the range from 2 to 4 mm s�1 are
mainly due to some croissants exhibiting minuscule periodic
shape deformations. Moreover, the centroids of tank-treading
croissants occurring at velocities \8 mm s�1 are located near

Fig. 7 Simulation results: (a) average radial positions of the steady states from Fig. 6 as a function of cell velocity for the three different starting shapes.
The lower curves are for steady states forming non-TT croissants and TT croissants, the upper curves are for (TT and non-TT) slippers. Note that the data
points coincide for different starting configurations, showing that the initial shape does not influence the final radial position. We show on the vertical axis
the weighted temporal mean of the radial centroid position of RBCs that assume the same shapes. The vertical error bars depict the total minimal and
maximal position, while the horizontal error bars show the total minimal and maximal cell velocities (in each period of the steady states, respectively).
(b) Extents of the slipper shapes from figure (a) in the flow (x-)direction (length) and along the other two axes, as illustrated by the inset showing the
channel-aligned bounding box around a slipper. The vertical error bars depict the minimum and maximum extents during the periodic contractions,
while the horizontal error bars are the same as in (a).
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but not directly in the center. Their slight off-centered position
is a result of their asymmetry.

In contrast to croissants, slippers are located 0.8 to 1.5 mm
away from the channel’s axis. The minimum position is
attained for velocities near the border of the croissant-only
region in the phase diagram (at around 2 and 3 mm s�1,
compare Fig. 6). Above, the off-center position increases and
seems to converge to a value of around 1.5 mm. The reason for
this increase is that slippers become more elongated and
thinner at higher velocities (up to a certain degree), as shown
in Fig. 7(b) and also observed in previous experiments.23 Thus,
they effectively become thinner in the radial direction and their
centroids can move closer to the wall. We note that the distance
between the wall and the upper side of the slipper approxi-
mately remains the same for all velocities. This also hints at
that the ‘‘optimal’’ off-center position for the slippers is more
than 1.5 mm away from the center, and that this particular value
is due to the smallness of the channel.

5 Comparison between experiments
and simulations
5.1 Comparison of shapes

Considering Fig. 1, the croissants obtained from simulations
and experiments look very similar, although the experimental
shapes appear to be somewhat larger. The reason is diffraction:
the ‘‘true’’ cell border lies in the bright and not within the dark
rim. However, the slippers appear to look qualitatively different.
This is due to the high magnification and numerical aperture of
the objective which results in a small depth of field of around
1 mm. Cell borders above and below the middle plane are therefore
blurred out and become invisible while the mid-plane cut becomes
dominant. Thus, for comparison we should use the middle cross-
section of the numerically obtained shapes. Here we find good
agreement (compare Fig. 1(g) with Fig. 1(e)).

5.2 Comparison of the phase diagrams

A qualitative comparison between the phase diagrams of steady
states from the experiments (Fig. 3(a)) and the simulations
(Fig. 6) shows a striking resemblance: both exhibit a distinct peak
in the number of croissants at lower velocities (1 to 3 mm s�1) at
the expense of the number of slippers. The latter dominate the
picture at high velocities (47 mm s�1). At intermediate velocities
both shapes coexist and can therefore be observed simultaneously
in the measurements. Moreover, the simulations at very low
velocities showed croissants only if the initial RBC was already
prepared in that state, meaning that in the experiments this shape
is highly unexpected. Indeed, we were not able to clearly classify
most of the observed shapes in that regime as either croissants or
slippers.

Obtaining a direct quantitative comparison requires a trans-
lation of the numerical threshold in Fig. 6 (which is in terms of
the initial offset) into a prediction regarding the fraction of
shapes, because the experimental diagram is in terms of the
observed fraction of shapes. This is done by counting the

fraction of croissants entering the channel with an offset below
the numerical threshold. This fraction corresponds directly to
the predicted fraction of croissant shapes. More precisely, we
first define rtrans as the initial radial offset which separates
croissants from slippers in the simulations by using the black
line in Fig. 6. An exception is the small croissant-only region
(i.e. the interval of the topmost horizontal line in Fig. 6) where
we take rtrans - N. This is consistent with our interpretation
that only croissants exist in this particular interval. One rtrans is
computed for each experimental cell velocity from Fig. 3(a).
Second, each radial position rtrans is projected onto the y-axis
to give ytrans (see Section 2.2) because only the y-offset is known
from experiments. Third, from the experimental offset distri-
bution at the channel entrance (Fig. 4) we can then estimate the
fraction of cells f that enter the channel with an offset below
ytrans. Accordingly, the simulations predict a fraction f of
croissants in the steady state. The value of f can thus be
directly compared with the experimental phase diagram from
Fig. 3(a). This is done once for every starting configuration
employed in the simulations.

Fig. 8 shows this key result of our contribution, i.e. the
predicted fraction of croissants f as a function of the cell
velocity for each starting shape. The vertical error bars depict
the uncertainty in the prediction, whose computation is explained
in the ESI.† They are comparably large in the croissant-only region
because the experimental velocities lie very near its sharp boundary.
The horizontal error bars illustrate the standard deviation su of the
experimentally measured cell velocities. Clearly, we find very good
agreement between the prediction from the simulation and the
experimental observation when considering the slipper starting
shape (Fig. 8(c)). Starting with a discocyte or croissant leads to
slightly more pronounced deviations (Fig. 8(a) and (b)), but still a
satisfactory semi-quantitative agreement is maintained. This
suggests the intuitive conclusion that the starting shapes in the
experiment are closer to the rather asymmetric slippers than to
the highly symmetric discocytes or croissants. Indeed, as
explicitly shown in the ESI,† we only observe non-classifiable
and rather asymmetric ‘‘other’’ shapes at the channel entrance.

As mentioned in the introduction, experimental investiga-
tions with more detailed shape studies are rather scarce. A
comparison of the phase diagrams with the experimental
literature is therefore limited to rough qualitative statements.
Tomaiuolo et al.23 found croissants and ‘‘others’’ for a cell
velocity of 1.1 mm s�1 using l E 5 in a cylindrical tube with
diameter 10 mm. This is in agreement with our results. At
36 mm s�1, slippers but also croissants have been observed.
Since we cannot reach velocities that high, we can neither
confirm nor refute the occurrence of the latter. Extrapolation
of Fig. 8 is dangerous since the Reynolds number at 36 mm s�1

is around Re E 0.24 and thus inertia effects might have
noticeable contributions.93,94 Continuing, Cluitmans et al.26

found croissants and tumbling ‘‘others’’ at 1.1 mm s�1 and
slippers at 13.6 mm s�1 in rectangular channels of 10 mm and
7 mm widths and a height of 10 mm, which is consistent with our
results. The experimental phase diagram presented in ref. 22 and
21 also agrees with our results insofar that slippers occur at higher
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and croissants at lower velocities. Yet, the considered velocities
were higher than 10 mm s�1 and the viscosity ratio was l t 0.27,
i.e. much lower. Furthermore, Fig. 3 in ref. 19 (in vivo experiments)
also showed coexistence of croissants and slippers for velocities
t1 mm s�1 and only croissants in the range 1–2 mm s�1,
matching approximately with our results.

Regarding previous numerical studies, Fedosov et al.4 per-
formed detailed 3D numerical simulations in cylindrical channels
for l = 1. Taking a diameter of 10 mm (translating into a confine-
ment value of w = 0.65 in their work), they varied the average
velocity from around 0.05 mm s�1 to 0.7 mm s�1. They observed a
transition from snaking, to tumbling, to tank-treading slippers and
finally to parachutes (which are very similar to croissants). In our
simulations we found tumbling and tank-treading slippers at
velocities of the order of 0.1 mm s�1, and an increasing frequency
of croissants above. This matches at least qualitatively with
Fedosov et al.’s results. However, they did not vary the initial
condition.

5.3 Comparison of cell positions

Next, we compare the preferred position of the cells in the
steady state. The simulations predict a centered positioning of
croissants (Fig. 7(a)), i.e. both the y- and the z-offsets are nearly
zero. This matches with Fig. 3(b) where a very sharp peak at the
channel center is found for the pressure drops within the
croissant-peak region.

For slippers, the simulations showed an increase of the
radial position of up to around 1.5 mm (Fig. 7(a)). Considering
the y- and z-coordinates separately in Fig. 9, we see that z E 0
and the major offset happens in the y-direction. This is rather
fortunate as the y-offset is also easily accessible in the experi-
ments, contrary to the z-offset. As can be seen in the measured
y-distribution (Fig. 3(b)), we have two off-centered peaks for
slippers. Taking the distribution function for only the slippers,
we extract the positions yl and yr of the two peaks. Exploiting
the �y-symmetry of the channel, the off-centered position is

then computed as (yr – yl)/2, i.e. in essence as the average of the
two peak distances to the central minimum. Fig. 9 compares
these values with the numerical results: the behavior is the
same (an increase with velocity) and the predicted values show
only a small systematic deviation of around E0.3 mm, i.e. of less
than 4% of the RBC diameter 2RRBC. A possible reason is that
the optically recorded boundaries of the RBC and the channel
walls are somewhat blurry (compare the experimental images
in Fig. 1).

5.4 Implications of the comparison

There has been quite some debate in the literature if the
croissant (or parachute) shapes observed via light microscopy
are indeed what they appear to be. Gaehtgens et al.18 (Fig. 4
therein), for example, solidified the flowing RBCs with

Fig. 9 Comparison between the centroid positions from the simulations
(absolute values of the y- and z-coordinates) and experiments (absolute
value of the y-coordinate) for cells that have a TT-slipper shape in the
steady state. Error bars for the simulations as in Fig. 7(a). The horizontal
error bars for the experimental data depict the standard deviation su of
the cell velocities, while the vertical error bars represent the estimated
uncertainty in the position determination.

Fig. 8 Fraction of croissants f predicted by the simulations, once for each starting configuration employed in the simulations: (a) simulations started
with the typical discocyte, (b) with the croissant and (c) with the slipper shape. To allow for a direct comparison, we included the experimental results
from Fig. 3(a) in each diagram (black dashed line). The horizontal error bars depict the standard deviation su of the measured cell velocities (as in Fig. 3(a)),
while the vertical error bars show the uncertainty in the prediction as explained in the ESI.† The lines and shaded areas serve as guides to the eye. See the
main text for further details.
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glutaraldehyde and found that the croissant-like shapes were
actually slipper-like. Skalak and Branemark38 pointed out that
such shapes can also be ‘‘edge-on’’ discocytes with a flattened
back. Ultimately, to uniquely identify the forms one needs
some method to record the full 3D geometry of the flowing
cells (e.g. as in ref. 16, 27, 33 and 95–99). This is unfortunately
very hard to implement in the present experimental setup.
However, this missing information is complemented here by
the numerical simulations which are in good agreement with
the experiments and thus our interpretation of the shapes as
croissants should be correct.

The good agreement furthermore implies that our red blood
cell model and simulation method is fully appropriate for
describing the flow of RBCs in a straight microchannel. More
sophisticated methods including e.g. thermal fluctuations or
surface viscosity4,25,53,54,100,101 are, at least for the present
geometry, not required. For croissants this is intuitive since
membrane movement such as tank-treading is absent, for the
tank-treading slippers it is somewhat less obvious.

6 Summary & conclusion

To summarize, we have performed in vitro experiments and 3D
simulations of healthy red blood cells flowing in a microchannel.
The viscosity ratio was approximately 5 and the flow velocities
ranged from around 0.1 mm s�1 to 10 mm s�1 in both method-
ologies, corresponding to the typical conditions prevailing in the
microvascular system. We found that both the flow velocity as well
as the initial starting configuration (shape and offset from channel
center) have a major impact on the final steady state of the cells.
Using three different starting shapes (discocyte, croissant and
slipper), we constructed the corresponding phase diagrams via
simulations. In most cases the cells assumed one out of two
different forms: either a centered croissant or an off-centered
slipper. Interestingly, for most velocities bistability, i.e. a depen-
dence of the final shape on the initial condition, was observed.
Only in a small range of velocities (at around E1 mm s�1) was the
final shape found to be always a croissant. The experimental
diagram showed very good agreement with the numerical result,
especially when considering the simulations that used the rather
asymmetric slipper as starting shape.

We thus conclude that the employed numerical RBC model
can sensibly describe the cell behavior in the presented setup.
Moreover, since we used physiological viscosity ratios and flow
velocities, we speculate that croissants and slippers can occur
in the microvasculature at the same set of system parameters
not just as transients but rather that both are states which are
intrinsically assumed by the cells. Our results are important for
applications where the cells should be in a specific state (e.g. in
lab-on-a-chip devices) and allow for a comprehensive validation
of numerical models.
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75 T. Krüger, F. Varnik and D. Raabe, Comput. Math. Appl.,

2011, 61, 3485–3505.
76 Y.-Z. Yoon, J. Kotar, G. Yoon and P. Cicuta, Phys. Biol.,

2008, 5, 036007.
77 J. B. Freund, Annu. Rev. Fluid Mech., 2014, 46, 67–95.

Soft Matter Paper

Pub 5



This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 2032--2043 | 2043

78 P. B. Canham, J. Theor. Biol., 1970, 26, 61–81.
79 W. Helfrich, Z. Naturforsch., C: J. Biosci., 1973, 28, 693–703.
80 A. Guckenberger and S. Gekle, J. Phys.: Condens. Matter,

2017, 29, 203001.
81 Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld,

T. Kuriabova, M. L. Henle, A. J. Levine and G. Popescu,
Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 6731–6736.

82 A. Guckenberger, M. P. Schraml, P. G. Chen, M. Leonetti
and S. Gekle, Comput. Phys. Commun., 2016, 207, 1–23.

83 A. Farutin, T. Biben and C. Misbah, J. Comput. Phys., 2014,
275, 539–568.

84 A. Guckenberger and S. Gekle, J. Fluid Mech., 2018, 836,
952–997.

85 C. Pozrikidis, J. Comput. Phys., 2001, 169, 250–301.
86 H. Zhao, A. H. Isfahani, L. N. Olson and J. B. Freund,

J. Comput. Phys., 2010, 229, 3726–3744.
87 D. Saintillan, E. Darve and E. S. G. Shaqfeh, Phys. Fluids,

2005, 17, 033301.
88 Y. Saad and M. Schultz, SIAM J. Sci. Stat. Comput., 1986, 7,

856–869.
89 P. Bogacki and L. F. Shampine, Appl. Math. Lett., 1989, 2,

321–325.

90 A. Daddi-Moussa-Ider, A. Guckenberger and S. Gekle, Phys.
Rev. E, 2016, 93, 012612.

91 A. R. Pries, T. W. Secomb and P. Gaehtgens, Am. J. Physiol.:
Heart Circ. Physiol., 1995, 269, H1713–H1722.

92 O. Baskurt, B. Neu and H. Meiselman, Red Blood Cell
Aggregation, CRC Press, 2011.

93 B. Kaoui and J. Harting, Rheol. Acta, 2016, 55, 465–475.
94 C. Schaaf and H. Stark, Soft Matter, 2017, 13, 3544–3555.
95 N. C. Pégard and J. W. Fleischer, J. Biomed. Opt., 2013,

18, 040503.
96 N. C. Pégard, M. L. Toth, M. Driscoll and J. W. Fleischer,

Lab Chip, 2014, 14, 4447–4450.
97 V. K. Jagannadh, M. D. Mackenzie, P. Pal, A. K. Kar and

S. S. Gorthi, Opt. Express, 2016, 24, 22144–22158.
98 K. Kim, K. Choe, I. Park, P. Kim and Y. Park, Sci. Rep., 2016,

6, 33084.
99 C. K. Rasmi, S. Padmanabhan, K. Shirlekar, K. Rajan,

R. Manjithaya, V. Singh and P. P. Mondal, Appl. Phys. Lett.,
2017, 111, 243702.

100 G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli
and S. Guido, Lab Chip, 2011, 11, 449–454.

101 A. Yazdani and P. Bagchi, J. Fluid Mech., 2013, 718, 569–595.

Paper Soft Matter

Pub 5





Supplementary information for
“Numerical-experimental observation of shape bistability of

red blood cells flowing in a microchannel”

Achim Guckenbergera, Alexander Kihmb, Thomas John,b Christian Wagner,b c Stephan Geklea

Dated: January 22, 2018

Contents
S1 About the initial condition 1

S1.1 Croissant and slipper initial shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
S1.2 Starting with rotated discocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

S2 Time evolution and steady state details 4

S3 About the error bars in the prediction 5

S4 Supplementary information for the experiments 7
S4.1 Inlet in the experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
S4.2 Additional experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

S5 References 10

S6 Raw experimental images at x = 10mm 11

S7 Raw experimental images at x = 0mm 16

S1 About the initial condition

S1.1 Croissant and slipper initial shapes
Figure S1 shows the employed red blood cell (RBC) shapes when the initial shape is taken to be a croissant
or slipper. These shapes were obtained from previous simulations where we started with the typical discocyte
shape1 whose axis was aligned with the channel’s axis (see figure 2 in the main text). On the one hand, the
croissant shape was extracted from a converged simulation where the initial radial offset was 0.17µm and
the steady state cell velocity was 6.61 mm/s. The ellipsoidal rim of the croissant has a diameter ranging from
6.0µm to 6.6µm. Moreover, the total length of the cell (rim to tip) is 6.7µm, while the distance from the dent
to the tip is 4.4µm. On the other hand, the slipper was retrieved from a simulation with an initial radial offset
of 0.86µm, with the average cell velocity in the steady state being 6.48 mm/s. The slipper has a total length
of 9.7µm, a height (y-extent) of 4.0µm and a width (z-extent) of 6.2µm. We chose a frame in the middle of
the periodic contraction/expansion of the cell. Hence, these two shapes correspond to two simulations from
figure 5 in the main text. The slightly different velocities come from the fact that at otherwise identical flow

aBiofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Bayreuth
bExperimental Physics, Saarland University, 66123, Saarbrücken, Germany
cPhysics and Materials Science Research Unit, University of Luxembourg, Luxembourg, Luxembourg
1For the formula of the typical discocyte shape see references [1, 2].

1
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parameters croissants are faster than slippers as the first are centered while the second are off-centered (and
thus see a lower flow velocity) [3].

Figure S2 depicts the corresponding simulation setups, which are identical to the one from the main text
except for the different RBC shape. Especially note that the initial radial offset rinit of the centroid is along the
same line. We always use the same croissant or slipper shape, regardless of the value of rinit.

The slipper and croissant shapes represent the “extreme” cases, as the steady state consists of slippers and
croissants and thus by starting with the respective shape one expects to “manipulate” the cells into these
particular shapes. The discocyte shape represents the equilibrium shape assumed by RBCs without external
forces and is thus another natural starting point.

(a) (b) (c)

Figure S1: Employed initial shapes in the simulations when starting as a (a) croissant or (b) slipper. Figure (c) shows the cross-section of
the slipper from (b). The black lines on the surfaces represent the used mesh.

Figure S2: The simulation setups when starting with a croissant (left) or a slipper shape (right), similar to figure 2 from the main text. The
cell shapes are the ones from figure S1.

S1.2 Starting with rotated discocytes
When we start with the discocyte shape in the main text, it is axis-aligned with the channel’s axis (x-axis; see
figure 2 in the main text). A natural question that occurs is thus how the results change if the rotation is varied.
We therefore present in figure S3 phase diagrams when the symmetry axis of the initial discocyte is aligned with
the y-axis (a) or z-axis (b).

Compared to the results from the main text, we observe that many more of the final shapes are croissants,
even for high initial radial positions rinit that resulted in slippers for our main starting shapes (croissant, slipper,
x-aligned discocyte). Considering the time evolution of the radial position (exemplified in figure S4), we find
that the rotated discocytes are quickly pushed into the center of the channel before sufficient deformations can
occur that would induce a slipper as the final state. In other words, the initial transient of these initial shapes
happens to favor croissants. A more detailed analysis of this behavior and the underlying reason will be left for
future research.

Some of the experimental recordings at the channel entrance (see section S7) appear to be somewhat similar
to z-aligned discocytes. However, as we almost only find croissants in the steady state for this particular starting
shape in the simulations (figure S3(b)), contrary to the actually observed domination of slippers in the steady
state in the experiments (figure 3(a) in the main text), it is likely that many of these cells at the channel entrance
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Figure S3: Phase diagrams obtained from the simulations when starting with the typical discocyte shape which is aligned with (a) the y-axis
and (b) the z-axis. Figure elements as in figure 6 in the main text.
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Figure S4: Radial position of an RBC started in the typical
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offset of rinit ≈ 1.54µm. It has a cell velocity of approxi-
mately 6.61 mm/s in the steady state. The initial transient
quickly pushes the cell to the center of the channel, where
it becomes a croissant.
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are actually not discocytes but rather deformed shapes, such as slippers viewed from the top or “edge-on”
discocytes [4].

S2 Time evolution and steady state details
As noted in the main text and shown in the TTSlipper supplementary video, the tank-treading (TT) slipper
exhibits oscillatory contractions. These result in periodic variations of the radial position and the cell velocity, as
exemplified in figure S5. This figure also illustrates how we extract the average, minimal and maximal values
after reaching the steady state. The simulation results from the main text depict the average values as the main
data points and the minimal and maximal values via error bars. Note that we do the same for the other shapes,
although the resulting error bars are too small to be seen in the figures.
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Figure S5: Time evolution of (a) the radial position and (b) the cell velocity for a slipper shape. The data is for the numerical simulation
with rinit = 1.2µm from figure 5 in the main text. The orange lines show from bottom to top the minimum, average and maximum values
that are extracted in the steady state, which is taken to begin at 2 s in this particular example.

Furthermore, reaching the steady state often takes a few seconds. Convergence into the croissant shape
usually takes longer than reaching a steady slipper state. This is illustrated in figure S6(a) where we show for
each simulation from figure 6 in the main text the approximated time tsteady until the steady state is reached.
This time tsteady is the duration measured from the start of the simulations until the position, shape, velocity
and asphericity (a measure of deformation [5]) of the cells no longer change or become periodic. Figure S6(b)
shows the same times non-dimensionalized with a typical flow timescale τ := RRBC/u, where u is the mean cell
velocity.

The longest times are observed when the velocity lies in the croissant-only range. An example for such a case
is displayed in figure S7: For around eight seconds, the cell is in an almost periodic slipper state before moving
to the center and becoming a croissant. However, after another four seconds some membrane rotation occurs,
i.e. the RBC dimples (which are special points due to the discocyte reference state) move to a slightly different
location. This results in a short lived and slightly off-centered position. After a total time of around 14 s the
cell is in the final croissant state, with no movement occurring anymore. See the video LongCroissant for an
illustration.

Regarding a more quantitative measure for the steady state: Within a time frame spanning several oscillations
or a time frame of 1000τmeasured from the beginning of the steady state (tsteady), the changes are approximately

• below 2 % for the radial position (even below 0.2 % for u> 0.8mm/s; relative to RRBC),

• below 1 % for the cell velocity (even below 0.1 % for u> 0.8 mm/s; relative to the average cell velocity u)
and

• below 1 % for the asphericity (relative to the average asphericity).

For periodic motion, the maxima/minima within the time frame are considered.
It is important to note that the times reported here are the times until the cell shapes have entirely converged.

The rough cell shape (TT/non-TT croissant or TT/non-TT slipper) are usually apparent much earlier. For
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example, in figures S5 the slipper can be recognized even before 1 s, while the perfectly periodic state is reached
only after 2 s. Another example is figure S7, where we find a croissant already at approximately 9 s, and only
minor differences occur compared to the fully converged state at 14 s. Considering the times until the rough cell
shape is apparent together with the cell velocities, we find that in the overwhelming majority of cases the cells
have traveled for less than 10 mm before the rough cell shape is attained. This is in agreement with our choice
of measurement position in the experiments (10 mm away from the channel entrance).
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Figure S6: Estimates of the time tsteady it takes for the cells to reach the steady state. Figure (a) depicts this time in seconds, while figure (b)
shows the time non-dimensionalized with a typical flow timescale τ. The images show the results for all simulations from the three diagrams
from figure 6 in the main text, where the cell was initialized as x-aligned discocyte, croissant and slipper, respectively. These three initial
shapes are indicated by the purple, orange and green borders around the symbols (see the three rows in the legend). The final steady state
shapes (non-tank-treading croissant, tank-treading croissant, non-tank-treading slipper and tank-treading slipper) are represented by the
same symbols as in the main text (compare the four columns in the legend).
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Figure S7: Time evolution of the radial position of a cell which
is initially in the x-aligned discocyte state with rinit ≈ 1.89µm
and has an average velocity of ≈ 2.79mm/s in the steady
state (i.e. it lies in the croissant-only region). The steady
state begins at around 14 s. See the movie LongCroissant
for a 3D visualization.

S3 About the error bars in the prediction
The determination of the vertical error bars in the comparison between experiments and simulations (figure 8
in the main text) consists of several steps that will be described in the following. To this end, consider figure S8.
This figure shows exemplarily the numerical phase diagram when the starting shape is the x-aligned discocyte,
i.e. the symbols that indicate the steady states are identical to figure 6(a) from the main text. The middle gray
line represents the position of the approximated transition threshold rtrans between croissants and slippers,
which was obtained by averaging the values from the adjacent simulation symbols.
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Figure S8: Numerical phase diagram from figure 6(a) from the main text for the x-aligned discocyte starting shape. The nearly transparent
shape symbols and the maximal offset are identical to figure 6(a). The violet, gray and green lines depict the minimal, average and maximal
position, respectively, of the transition threshold rtrans between croissants and slippers. These lines are evaluated at the experimental
velocities u and u±σu, giving the circular and triangular symbols. Each triple of these symbols that shares the same color corresponds to
one particular experimental velocity and shows the lowest, best and largest guess for rtrans. This is exemplified via the three labels and
arrows for u±σu = (3.16± 0.14)mm/s which corresponds to a pressure drop of ∆P = 300mbar. The horizontal error bars depict σu. Also
note that in the croissant-only region we take rtrans→∞, as indicated by the∞ symbol on the top left.
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The first step in the determination of the vertical error bars is to compute a lower and upper bound for the
transition threshold. We do this by drawing a line through the highest croissant and lowest slipper symbols.
This leads to the lower violet and upper green lines in figure S8. Thus, these two lines represent the uncertainty
of the transition, which is a result of the finite distance between the simulations.

An exception in the construction of the three lines occurs in the region where the simulations predict only
croissants. Due to the particular starting shape, there is a maximal initial offset. Experimentally, however, it is
of course possible that the cells at the channel entrance have a larger offset (i.e. one that lies above the black
dashed line in figure S8). Since the results from the simulations indicate that only croissants really exist in this
region (regardless of the initial shape and offset), we take rtrans→∞. That way we predict a value of 1 for the
fraction of croissants.

Second, we need to evaluate the transition lines at the experimental velocities. However, the measured
velocities have not only an average u but also a certain standard deviation σu. σu is taken as the uncertainty
in the velocity here. Evaluating the middle gray line at the average velocity u results in the “best guess for
rtrans” (the circular symbols in figure S8). This value is then directly converted into the predicted fraction of
croissants φ as described in the main text (via conversion to ytrans and the measured offset distribution at the
channel entrance). For the vertical error bars, we evaluate the three numerical transition lines (lower, middle
and upper, i.e. violet, gray and green) at the three velocities u, u−σu and u+σu, leading to nine values for
rtrans. The ones that will yield the lowest and largest fraction of croissants are shown as triangular symbols in
figure S8 (the “lowest guess for rtrans” and the “largest guess for rtrans”).

Third, the predicted fractions of croissants are computed from the offset distribution at the channel entrance
for each of these nine rtrans values (as described in the main text), and additionally for rtrans± sP. This takes into
account the uncertainty in the offset distribution due to the uncertainty sP in the position measurement. As a
result, we now have 27 predictions.

Fourth, we search for the minimum (φmin) and maximum (φmax) of these 27 values. φmin and φmax are then
interpreted as the uncertainty in the prediction. The vertical error bars in figure 8 from the main text therefore
depict φmin and φmax.

All of this is performed not only for the phase diagram with the discocyte, but also for the ones with the
croissant and slipper starting shapes. In case of the croissant starting shape, rtrans is not a proper function due to
the protrusions, i.e. we find several transition offsets for certain velocities (compare figure 6(b) in the main
text). Hence, the simple “counting of cells that enter with an offset below rtrans” to form the prediction becomes
a “counting of cells that enter with offsets in the intervals formed by the numerical transition offsets”. As an
example, if a certain velocity leads to transitions at r1, r2 and r3 (such that the simulations yield croissants in the
two intervals [0, r1] and [r2, r3]), then we count how many cells enter the channel with offsets that lie in these
two intervals (after their projection on the y-axis). The computation of the uncertainty is adapted accordingly.

S4 Supplementary information for the experiments

S4.1 Inlet in the experimental setup
Figure S9 depicts part of the inlet reservoir and the start of the channels. The whole chip is made of PDMS.
The total reservoir is rectangular with a length of 4 mm and a width of 1 mm. Multiple channels are connected
to this reservoir, having a width of L y ≈ 12µm and a height of Lz ≈ 10µm. Using our microscope, we record
several channels simultaneously to increase the throughput.

To connect the reservoir with our high-precision pressure device, we pinch a hole into the PDMS substrate. Its
diameter is approximately 1 mm, matching with the diameter of the connected tube. In the example in figure S9
the flow together with the RBCs is coming from the top. The RBCs then flow into the channels since the outlet
is at the end of them. The outlet reservoir looks similar. Also note that the distribution of the RBCs before the
channel entrances is without significance for the present work since we record the actual state directly beyond
the entrance, effectively defining it as the initial condition in the experiments (see below for the shapes and
figure 4 in the main text).
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Figure S9: Part of the channel inlet used in the experiments. Top-view, i.e. gravity is going into the image plane (z-direction). Note that the
total length of the channels is Lx ≈ 40mm, i.e. only the entry part is shown here.

S4.2 Additional experimental data
We depict in figure S10 the measured cell velocities for each applied pressure drop ∆P. The data shows the
result when the averaging goes over all cells regardless of their shape (“All”), and also for the three shape classes
separately. Obviously, the cell velocities are roughly proportional to ∆P. However, croissants tend to be a bit
faster than slippers because croissants are located in the high-velocity center of the channel while slippers are
off-centered (see the main text). This is in agreement with previous publications [3, 6].

Table S1 lists the corresponding raw data, as well as the number of cells that were taken into account. It
additionally shows the number of cells at the channel entrance. The raw images from the experiments are
included in sections S6 and S7 below.

Furthermore, we list in an extra Excel sheet (SI_rawYPos_pos0.xls) the raw y-positions of the cells at
the channel entrance. This data makes it possible to compare one’s own simulation results with our experiments
(as we did in figure 8 in the main text).

Moreover, figure S11 depicts the experimental y-offset distributions separated into the contributions from
the three different shapes (croissants, slippers and “others”) at position x = 10mm in the channel. This figure
complements figure 3(b) from the main text where all three shapes have been considered together.
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Figure S10: Measured average cell velocities for each applied pressure
drop for the three different shape classes and once for all shapes
together (“All”). The vertical error bars depict the standard deviation
σu. Measurements were performed at position x = 10mm in the
channel. The corresponding raw data is listed in table S1. The lines
are guides for the eyes.
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∆P [mbar] N all
0 N all

10 NCrois
10 N Slipper

10 NOther
10 uall

10 [mm/s] uCrois
10 [mm/s] uSlipper

10 [mm/s] uOther
10 [mm/s]

20 35 107 9 0 98 0.135± 0.021 0.132± 0.020 0.135± 0.021
50 10 52 9 0 43 0.43± 0.04 0.440± 0.005 0.43± 0.04
100 29 205 165 2 38 0.98± 0.07 0.98± 0.07 0.996± 0.002 0.99± 0.04
200 71 484 252 22 210 2.07± 0.10 2.09± 0.08 2.03± 0.06 2.06± 0.12
300 95 475 102 120 253 3.16± 0.14 3.19± 0.20 3.10± 0.09 3.18± 0.13
400 90 463 80 167 216 4.19± 0.19 4.33± 0.14 4.08± 0.15 4.23± 0.19
500 179 215 17 117 81 5.2± 0.4 5.46± 0.16 5.16± 0.11 5.2± 0.7
600 151 176 8 124 44 6.1± 0.4 6.57± 0.10 6.0± 0.4 6.19± 0.25
700 159 123 0 105 18 7.3± 0.7 7.3± 0.7 7.3± 0.7
800 75 200 0 169 31 8.2± 0.8 8.2± 0.7 8.21± 1.40
900 187 282 2 241 39 9.3± 1.2 10.17± 0.06 9.3± 1.3 9.6± 0.3
1000 141 305 0 266 39 10.6± 0.9 10.5± 1.0 10.7± 0.6

Table S1: Experimental data: The table lists for each applied pressure drop ∆P the total number of analyzed cells Nall
0 at position x = 0 mm

in the channel and the total number of analyzed cells Nall
10 at position x = 10mm. For the latter we also show the number of croissants,

slippers and “others”, together with the measured velocities u10. The uncertainties are the standard deviation. The subscripts “0” and “10”
in the heading specify the x-position in the channel (0 mm or 10 mm).
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Figure S11: Estimated probability density functions for the experimental y-offset distributions at position x = 10mm in the channel for
(a) the croissant, (b) the slipper and (c) the “other” shapes. The result for all three shapes combined was shown in figure 3(b) in the main
text. The area below each curve is normalized to 1, and they are offset in the vertical direction for illustration purposes. The applied
pressure drop is indicate on the left side of the figures in millibars, while the corresponding mean cell velocity is shown on the right side
in mm/s. Also note the different scale of the horizontal axis in the first figure.
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S6 Raw experimental images at x = 10mm
Note: The images in the individual collections are ordered from centered to off-centered.
Note: Many of the “others” (e.g. for ∆P = 200 mbar) might be croissants, but they can also be slippers that are viewed from the “top” (i.e. when camera would point
along the z-direction, one might see slippers). Since we cannot decide this from these images, we classify them as “others”.

∆P = 20mbar, x = 10 mm

∆P = 50mbar, x = 10mm

∆P = 100 mbar, x = 10mm

11

Pub 5 (SI)



∆P = 200mbar, x = 10mm

∆P = 300mbar, x = 10mm
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∆P = 400mbar, x = 10mm

∆P = 500mbar, x = 10mm

∆P = 600 mbar, x = 10 mm
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∆P = 700mbar, x = 10 mm

∆P = 800 mbar, x = 10mm
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∆P = 900mbar, x = 10mm

∆P = 1000mbar, x = 10mm
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S7 Raw experimental images at x = 0mm
Note: The images in the individual collections are ordered from centered to off-centered.

∆P = 20mbar, x = 0 mm

∆P = 50mbar, x = 0mm

∆P = 100 mbar, x = 0mm

∆P = 200 mbar, x = 0mm

∆P = 300 mbar, x = 0mm ∆P = 400 mbar, x = 0mm

∆P = 500mbar, x = 0 mm
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∆P = 600mbar, x = 0mm ∆P = 700 mbar, x = 0 mm

∆P = 800mbar, x = 0 mm

∆P = 900 mbar, x = 0mm

∆P = 1000mbar, x = 0mm
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