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List of symbols and abbreviations 

A       cross-section area 

A∥        parallel-polarized infrared absorbance intensity 

A⊥       perpendicular-polarized infrared absorbance intensity 

ABP      4-acryloyl-benzophenone 

AIBN      Azobisisobutyronitrile 

Ala       Alanine 

Amide I      C=O stretching 

Amide II     C-N stretching and C-N-H bending 

Butyl methacrylate   BMA 

B. mori      Bombyx mori 

CLSM      Confocal laser scanning microscopy 

cm / mm /µm / nm   centimeter / millimeter / micrometer / nanometer 

D / d      Diameter / inner diameter of tube 

Da / kDa      Unified atomic mass unit 

DMF      N, N’-dimethylformamide 

DSC      Differential scanning calorimetry 

ECM      Extracellular matrix 

ESB       European society for biomaterials 

etc       et cetera 

F       applied load 

FDA      Food and drug administration 

FSD      Fourier self-deconvolution 

FTIC I      Fluorescein isothiocyanate isomer I 

FTIR      Fourier-transform infrared spectroscopy 

Gly       Glycine 

GPC      Gel permeation chromatography 
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g / mg      gram / milligram 

h       hour 

HFIP      1,1,1,3,3,3-hexafluoro-2-propanol 

kV       kilovolt 

L       Length 

LCST      Lower critical solution temperature 

L / mL      Liter / milliliter 

MeOH      methanol 

Mn       number average molar mass 

Mw       weight average molar mass 

Min       minute 

MPa / GPa     Megapascal / Gigapascal 

MWD      Molecular weight distribution 

NaHCO3     Sodium hydrogen carbonate 

n       number 

N2       Nitrogen 

OD       Offset-degree 

PAN      Polyacrylonitrile 

PCL       Polycaprolactone 

PDO      Polydioxanone 

PEI       Poly(ethyleneimine) 

PEO      Poly(ethylene oxide) 

PLA      Polylactide 

PLLA      Poly(L-lactide) 

PMMA      Poly(methyl methacrylate) 

PNIPAM      Poly(N-isopropylacrylamide)  

PSI       Polysuccinimide 

R       Dichroic ratio 

r       radius 

ROP      Ring-opening polymerization 
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rpm       revolutions per minute 

RT       Room temperature 

s       second 

sd       standard deviation 

Ser       Serine 

SEM      Scanning electronic microscopy 

SF       Silk fibroin  

Silk I      Water-soluble state of silk 

Silk II       The crystalline silk 

Silk III      Interface orientation of silk 

T / t       Thickness of fiber mat / thickness of layer 

TEM      Transmission electron microscopy 

Tg       Glass obtained  

TPU      Thermoplastic polyurethane 

UV       Ultraviolet 

W       Width 

1D / 2D / 3D     one- / two- / three- dimensional 

ε       porosity 

μS       micro-siemens 

σ       tensile strength 

ρ / ρ’      average density / standard density 

o       Degree of contact angle 

oC       Degree of temperature   
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1. Introduction and aim of this work 

The application of electrospun nanofiber mats in various domains such as tissue 

engineering[1-7], drug delivery[6-8], gene delivery[9-11], wound dressings[7, 12-15], 

sensors[16-18] and filtration membranes[19-21], energy storage/conversion[22] and 

electronic devices[23,24] has increased enormously in the recent past and leads to an 

increased interests of scientists and engineers to invent novel structures involving 

nanofibers and efficient processes for producing them.  

In recent years, a lot of works were carried out in order to improve the quality and 

functionality of the electrospun nanofibers. As one typical mode, bicomponent fiber 

has gained much attention and holds great promise in a variety of applications 

because of many excellent advantages[25-29]: 1) It can utilize the properties of different 

polymers in one system; 2) It can improve the material performance suitable for 

specific needs by tailoring one or more properties with minimal sacrifice of other 

properties; 3) It can bring about multifunctional properties without the loss of 

mechanical properties; 4) It can exploit capabilities not existing in each of the 

individual polymers. 

Such structures are of increasing interest for making nanofiber mats with special 

properties, such as biocompatible, biodegradable and stimuli-responsive. 

Therefore, the broad aim of this thesis is to explore combination of polymer properties 

in form of bicomponent fibers and porous fibrous membranes with special 

morphologies, such as side-by-side, layer-by-layer and coaxial for potential 
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applications in medical field, textiles, sensors and actuators. To achieve the aim, 

bicomponent fibers and fibers membranes were made by bicomponent electrospinning 

techniques using special nozzles. Indepth studies were carried out for the formation, 

characterization and properties of the fibers and corresponding fibrous membranes 

with special morphologies. Biomaterials and responsive polymers are chosen for this 

work.  

The results of this thesis are presented in three parts, in each part the systems are 

investigated in order to extent the understanding and possible application of these 

bicomponent fibers and fibers membranes. 

In the first part, new two-in-one bio-based ductile composite fibers and fiber mats of 

poly(L-lactide) (PLLA) and silk fibroin (SF) with side-by-side morphology were 

produced by side-by-side electrospinning. Besides establishing the method of making 

fibers with side-by-side morphology, the effect of fiber diameter, orientation of fibers 

and molecular orientation on the resulting mechanical properties on the scale of single 

fiber and fiber mat is studied. 

Further, the bicomponent morphology was studied using different combination of 

polymers to generate a responsive system. Thermoresponsive poly(N- 

isopropylacrylamide) (PNIPAM) was combined with a nonresponsive polymer such 

as thermoplastic polyurethane (TPU) in the form of a side-by-side or off-centered 

morphology. Due to the asymmetry in swelling of the fiber on putting in water at 

different temperature, compressive stress at the interface led to a reversible crimping 

of fibers. The results described in part 2 of the thesis. 
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The compressive stress at the interface can also be generated by creating asymmetry 

in swelling by making bicomponent layer-by-layer structure using responsive/ 

nonresponsive polymers as two layers. This effect was studied and utilized in making 

a tubular scaffold by self-folding of 2D bilayer sheets in the last part of the work. For 

the bilayer system, two conventional biodegradable polymers polylactide (PLA) and 

polycaprolactone (PCL) were used. None of the two polymers (PLA and PCL) are 

responsive. Still the bilayer sheets rolled to tubular scaffold at 40 °C in wet/dry 

conditions. The phenomenon was studied in details and found to be due to the 

asymmetrical shrinkage. The inner diameter of the tube and the number of layers in 

the wall were dependent upon the temperature, thickness ratio of the two polymer 

fiber layers. 
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2. Theoretical background 

2.1 Biomaterials 

A biomaterial is defined as “a nonviable material used in a medical device, intended 

to interact with biological systems” in the first consensus conference of the European 

Society for Biomaterials (ESB) in 1976.[30] However, with the evolution of the field of 

biomaterials, a biomaterial refers to “any material intended to interface with 

biological systems to evaluate, treat, augment or replace any tissue, organ or function 

of the body”.[30,31] Biomaterials evolved from interacting to influencing with the body 

and toward to the goal of tissue regeneration. 

From the sources, biomaterials can be divided into two fields: natural biomaterials 

and artificial biomaterials. The natural biomaterials group includes naturally occurring 

biomaterials and chemical modifications of these materials, such as silk, gelatin, 

collagen, cellulose, amylose, chitin, etc. All synthesized biomaterials like polymers, 

ceramics, composite or metallic components belong to artificial biomaterials. Each of 

these individual biomaterial groups has specific advantages. Usually, natural 

biomaterials have better biocompatibility, biodegradability and remodeling ability. 

But artificial biomaterials are easy to manufacture and modify.  

2.1.1 Silk fibroin (SF) 

Silk is a natural protein fiber, which produced by lepidoptera larvae like silkworms 

and by merbers of class Arachnida (spiders), etc.[32, 33] Silk from the silkworm Bombyx 
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mori (B. mori) has been used in the traditional textile industry for more than 5000 

years due to the good mechanical properties and pearly luster.[34,35] Recently, it has 

gained interest as a biomaterial because of its biocompatibility, chemical modification 

capability, tunable degradation, processing into multiple formats and sufficient 

supply.[32,33,35-37]  

Mainly, the silk consists two different proteins: fibroin (70-75%) and sericin 

(25-30%)(figure 1).[36,38] Sericin is a kind of adhesive protein, which coats the fibroin 

molecules to keep the structural integrity of the fibers.[35, 38] Silk fibroin (SF) is the 

core protein, which provides the biocompatibility, biodegradability for using as a 

biomaterial. To get the fibroin, sericin must be removed by a degumming 

thermochemical process. [36]  

 

 

Figure 1: Schematic representation of the deduced silk fiber structure. (Reprinted 

with permission from Ref 38, Copyright 2015 John Wiley & Sons)  

 

The silk fibroin consists of two proteins: a light chain (Mw ~26 kDa) and a heavy 

chain (Mw ~390 kDa). These two proteins are linked by a single disulfide bond at the 
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C-terminus of the two subunits with a 1:1 ratio.[35,36, 39] The amino acid composition 

of SF from B. Mori consists primarily of glycine (Gly, 43%), alanine (Ala, 30%) and 

serine (Ser, 12%).[33,35,40] The hydrophobic domain of heavy chain contain a repetitive 

amino acid sequence of Gly-Ala-Gly-Ala-Gly-Ser (figure 2).[35, 40,41] The light chain is 

more hydrophilic and elastic, because of the non-repetitiveness of the amino acid 

sequence.[33,35]  

 

 

 

Figure 2: Amino acid sequence of hydrophobic domain of heavy chain. 

 

SF has three structures: the water-solube state (Silk I), the crystalline silk (Silk II) and 

an interface orientation (Silk III).[33, 38] The Silk I structure is a metastable structure, 

belonging to the orthorhombic system. The Silk II structure is an anti-parallel β-sheet 

structure, belonging to the monoclinic system.[35] With a heating or methanol 

treatment, Silk I structure converts to Silk II structure very easily.[33,35]  

The US Food and Drug Administration (FDA) recognized SF as a biomaterial in 

1993.[35] Many studies about SF were carried out in recent years. With the versatile 

process ability, SF solution can be fabricated into different formats like fibers, mats, 

films, microspheres, tubes, sponges, hydrogels, etc.[36,42] With these morphologies, SF 

has a range of potential applications such as drug delivery, scaffolds for tissue 

engineering, surgical suture, optics, sensing, etc.[42] 
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Figure 3: Various morphologies of SF, fabricated from SF solution (organic and 

aqueous). (Reprinted with permission from Ref 36, Copyright 2011 Nature Publishing 

Group) 

2.1.2 Polylactide (PLA) 

Polylactide (PLA, figure 4) is one of the well-known biodegradable and bioactive 

thermoplastic aliphatic polyester, which pioneered by Carothers in 1932. [43] The 

molecular weight of Carothers’ PLA was low. The production of PLA with high 

molecular weight was patented by DuPont in 1954. [43]  

 

 

Figure 4: Chemical structure of PLA. 
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Two methods were used to produce the monomer of PLA, lactic acid (2-hydroxy 

propionic acid): fermentation and petrochemical. Lactic acid is chiral, consisting of 

two optical isomers: L-(+)-lactic acid and D-(-)-lactic acid. A mixture of the two 

isomers in equal amounts is called DL-lactic acid or racemic lactic acid. 

 

 

Figure 5: Two preparation methods of lactic acid. (Reprinted with permission from 

Ref 44, Copyright 2015 Budapest University of Technology and Economics Faculty 

of Mechanical Engineering Department of Polymer Engineering)  

 

Compared to the petrochemical process, industry prefers to use fermentation process 

to produce lactic acid because the synthetic routes have many major limitations: 

limited capacity because of occurrence of side products, inability to make the 

desirable L-lactic acid stereoisomer only and high manufacturing costs. [45,46] 

In comparison to other biopolymers, the advantages of PLA are numerous: 1) 

renewable agricultural source such as corn; 2) fixation of significant quantities of 

carbon dioxide; 3) significant energy saving; 4) the ability to recycle back to lactic 
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acid by hydrolysis or alcoholysis; 5) the capability of producing hybrid paper-plastic 

packaging that is compostable; 6) reduction of landfill volumes; 7) improvement of 

the agricultural economy and 8) the all-important ability to tailor physical properties 

through material modifications.[45,47] 

 

Figure 6: Life cycle of PLA, from raw material to final disposal. 

 

PLA is widely used in biomedical fields due to its ability to degrade into innocuous 

lactic acid. From medical implants, including anchors, screws, plates, pins and rods, 

to membrane applications, such as wound covers, and also for surgical sutures, drug 

delivery systems, PLA shows a great potential. [45,48,49] PLA can also be used as a 

decomposable packing material. Cups and bags such as food packing, loose-fill 

packing, compost bags, have been made from this material. (Figure 6)[45] 
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2.1.3 Polycaprolactone (PCL) 

Polycaprolactone (PCL, figure 7) is another well-known biodegradable aliphatic 

polyester. It is a hydrophobic, semi-crystalline polymer with a glass transition 

temperature (Tg) of -60 oC and a melting point ranging between 59 and 64 oC, which 

firstly synthesized by the Carothers group in the early 1930s. [50]  

 

 

Figure 7: Chemical structure of PCL. 

 

Two main pathways are used to produce polycaprolactone: polycondensation of 

6-hydroxyhexanoic acid and ring-opening polymerization (ROP) of ε-caprolactone .[51] 

Several papers describe the preparation of PCL by polycondensation with and without 

catalysts.[51-54] Limitation of polycondensed PCL is the low molecular weight and 

high polydispersity. Unlike polycondensation, ROP occurs under milder reaction 

conditions and can give polymers with higher molecular weight and lower 

polydispersity. [55] Therefore, industry prefers to use ROP process to produce PCL.  

 

 

Figure 8: Ring-opening polymerization of ε-caprolactone. 
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There are four main mechanisms which affect the ROP of PCL. According to catalyst, 

they can be divided into anionic, cationic, monomer-activated [56] and coordination- 

insertion ROP. [51] Each method affects the molecular weight, molecular weight 

distribution of PCL. [50]  

With the excellent biocompatibility, flexibility, thermoplasticity, miscibility with a 

large range of other polymers and biodegradability, PCL has been proposed for use in 

biomedical and biomaterial application, such as drug delivery, sutures, wound 

dressings, contraceptive devices, fixation devices, dentistry, etc. [50, 57]  

Dictated by the crystalline nature, superior rheological and viscoelastic properties, 

PCL can be easily manufactured and manipulated into scaffolds, and shows a great 

potential application in tissue engineering. Many studies about PCL in bone, cartilage, 

tendon and ligament, cardiovascular, blood vessel, skin and nerve engineering have 

been carried out.[50] Otherwise, PCL has also uses in microelectronics [58], adhesives 

[59] and packaging [60] fields. 

2.2 Smart Polymers 

Smart polymers or stimuli-responsive polymers are high performance polymers which 

have ability to respond to external stimuli in different environment. The stimuli 

include temperature, humidity, pH, ionic strength, electric or magnetic field, light, etc. 

Consequently, the smart polymers have a wide range of applications in drug delivery, 

gene delivery, tissue engineering, textile engineering, sensors, actuators, molecular 

gates and switches, stimuli-responsive surfaces, etc. [61, 62] 
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2.2.1 Poly(N-isopropylacrylamide) (PNIPAM) 

Several polymer systems respond to temperature, undergoing a lower critical solution 

temperature (LCST) phase transition: above the LCST, these polymers become 

insoluble in water. (Figure 9) 

 

Figure 9: Phase diagram for a polymer solution exhibiting an LCST. 

 

A well know polymer with the LCST behavior is PNIPAM, which first described by 

Heskins and Guillet.[63,64] It is synthesized via a free-radical polymerization (figure 10) 

and exhibits a coil-to-globule phase transition at 32 oC [65] which is close to normal 

physiological body temperature. 

 

 

Figure 10: Free-radical polymerization of N-isopropylacrylamide with radical 

initiator azobisisobutyronitrile (AIBN). 
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Several architecture based on PNIPAM such as macroscopic gel, microgel, nanogel, 

membranes, films and surfaces were produced and they have a wide range of 

applications for drug delivery, biosensing, tissue engineering, micro-actuators, 

artificial muscles and cartilages, matrices for biseparation, flexible bioelectronics, 

stimuli-responsive electronic devices, self-adaptive electronics, etc.[66-73] 

2.3 Background of electrospinning 

Electrospinning is a fascinating process of fabricating of continuous polymeric fibers 

with diameter ranging from several nanometers to several micrometers.[74-77] So far, 

this method is used for synthetic and natural polymers, including conventional 

polymers, functional polymers, proteins, peptides, to produce fibers with micro- or 

nano-scale.[74, 77,78] Polymers loaded with carbon nanotubes[79-83], electronic[84], 

biological[85, 86], magnetic[87, 88], optical materials[89, 90], also some microorganisms 

such as bacteria[91-93] and virus[91, 94], and cells [95-98] were spun with this method to 

obtain multifunctional nanofibers for some amazing applications. Various modified 

electrospinning techniques and further treatments for producing special fibers with 

complex architectures like side-by-side, core-shell or hollow fibers have been 

reported in the literature [74, 113], such as silk [26,99], ceramic [100-102], metal [103,104], 

metal-oxide [105, 106] nanofibers and polymeric [107, 108], ceramic[109,110], metal[111] , 

metal-oxide [112] hollow nanofibers. Diverse structures of nanofibers ranging from 

single fibers to ordered arrangements of fibers can also be fabricated by 

electrospinning. [114-117] Electrospun fibers have a very broad scope of applications in 
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medicine, filtration, sensor, electronics fields, which already mentioned at the 

beginning of the introduction. 

2.3.1 History of electrospinning development 

Electrospinning is an old technique. Bose found that, when high electric potentials are 

applied to drops of fluids, aerosols will be formed, in 1745. This process was named 

as electrostatic atomization or electrospray. After over 100 years, Lord Rayleigh 

studied the unstable equilibrium of a charged drop of liquid in 1882.[118] He 

mentioned that, when the charge repulsion is over the surface tension of the charged 

drop, electrostatic atomization will occur. 20 years later, Cooley and Morton patented 

the first devices for electrically dispersing of fluids in 1902. [74] Later, Zeleny studied 

the instability of surfaces of liquid drops under a high electric field. [119, 120] In 1929, a 

manufacturing method of artificial silk by applying electric current was patented by 

Hagiwara. [74] Anton Formhals patented firstly the process and apparatus about 

electrospinning of polymers in the year 1934, and this patent was considered as the 

beginning of preparation of fibers by electrospinning technique. [74] From 1930s to 

1980s, the process of development of electrospinning technique was relatively slow. 

In 1971, Baumgarten obtained fibers with diameter less than 1μm by electrospinning 

from dimethyl formamide (DMF) solution of acrylic resin.[121] In 1987, Hayati et al. 

studied the effects of electric field, experimental conditions and the factors affecting 

the fiber stability and atomization.[122] But there was still little interest in the technique 

of electrospinning technique till the nineties.  
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In the 1990s, the research work about electrospinning by Reneker’s group [123] gained 

substantial academic attention. [74] The reason for the captivation of electrospinning is 

the increased knowledge on the application potential of nanofibers in different areas, 

such as filtration, textile, catalyst and adsorbent materials.[75] The rapid development 

of electrospinning technique is reflected by the sky rocketing numbers of scientific 

publications and patents as shown in figure 11. Although the number of scientific 

publications and patents in 2016 is a little less than in 2015, with development of new 

electrospinning technique and applications, the number increased again (in only half 

year of 2017, over 3000 scientific publications and patents about electrospinning have 

been already reported).  

 

Figure 11: Number (n) of scientific publications and patents per year (01. 2000–07. 

2017) with the keyword “electrospinning” (source: SciFinder Scholar). 
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2.3.2 Electrospinning theory and process 

Electrospinning is a unique technique of producing continuous ultra-thin fibers by 

using electrostatic forces. The setup for electrospinning is shown in figure 12. In this 

technique, a polymer solution or the melt is passed through a spinneret by using of 

syringe pump to form a drop at the capillary tip and a collector is placed opposite to 

the spinneret. High voltage potential is applied between the spinneret and the collector. 

Both spinneret and collector have electrical conductivity and separated by an 

optimum distance. The polymer solution obtained free charges after pressing through 

the charged spinneret. The interaction of the charges in the polymer solution in 

response to the applied external electric field and the charged ions move towards the 

opposite polarity charged collector. At the capillary tip, the pendant droplet deformed 

into a cone like projection called the “Taylor cone” in the presence of the electric field. 

When the applied potential reaches a critical value at which repulsive electrostatic 

forces overcome the surface tension of the liquid, a fine charged jet of liquid is ejected 

from the tip of the Taylor cone. After the initiation from the Taylor cone, the charged 

jets undergo a whipping motion and elongate continuously until they are deposited 

onto the collector as the fine fibers.[124] The jets travel through the atmosphere, the 

solvent evaporates, leaving behind a dry fiber on the collecting device. In this process, 

the solutions properties (molecular weight of polymers[125], concentration[121,126], 

viscosity[121], surface tension[127], conductivity[121], solvents[128] and temperature of 

polymer solution[129]), operating parameters (applied voltage[126], solution feeding 

rate[121], distance between spinneret and collector[130] and diameter of spinneret[131]) 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

20 
 

and surroundings parameters (temperature[132] and humidity[133]) will influence the 

formation of nanofibers.[75] Therefore, electrospun fibers with various morphologies 

and diameters can be produced by changing of the electrospinning parameters.  

 

Figure 12: Schematic diagram of setup for electrospinning. (Reprinted with 

permission from Ref 74, Copyright 2007 John Wiley & Sons) 

2.3.3 Bicomponent electrospinning 

It is mentioned already at the beginning of introduction that bicomponent fibers have 

gained much attention and holds great promise in a variety of applications. To get 

multicomponent fibers via electrospinning technique, single spinneret must be 

modified with number of channels/capillaries for bi-, tri- or multi-component 

electrospinning. For bicomponent electrospinning, core-shell and side-by-side 

electrospun fibers can be produced by controlling the location of two 

channels/capillaries with core-shell and side-by-side way. (Figure 13)  Moreover, 
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coaxial electrospinning becomes gas-jacketed/assisted electrospinning after replacing 

one polymer solution by gas in the outer tube. 

With various modified electrospinning technique, bicomponent fibers with novel 

morphologies such as side-by-side [135, 136], core-shell [137, 139], “islands-in-the-sea” [138], 

segmented-pie [139] types, were produced. (Figure 14)  

 

Figure 13: Schematic diagram of bicomponent electrospinning spinnerets, A) a) 

coaxial, b) off-centered and B) side-by-side electrospinning spinnerets. (Reprinted 

with permission from Ref 134, Copyright 2009 John Wiley & Sons) 

 

 

Figure 14: Schematic diagrams showing the typical cross sections of various 

bicomponent polymers in a single filament: (a) concentric core/shell; (b) eccentric 

core/shell; (c) 50/50 side-by-side; (d) unequal side-by-side; (e) islands-in-the-sea; and 

(f) segmented-pie fibers. (Reprinted with permission from Ref 139, Copyright 2016 

SAGE Publications) 
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2.3.3.1 Side-by-side electrospinning 

The side-by-side electrospinning is a common and popular bicomponent 

electrospinning technique. In side-by-side electrospinning, two polymer solutions are 

delivered through a spinneret which is separated by a thin polymer or metal film into 

two cavities. (Figure 13 B) At the capillary tip, a pendant droplet contains two kinds 

of solutions. Only one jet is generated on the tip of the deformed droplet after 

applying voltage. (Figure 15) In an ideal case, a side-by-side nanofiber is created.  

 

 

Figure 15: Digital image of a typical biphasic side-by-side Taylor cone with jet. Two 

phases were labelled with fluorescein isothiocyanate-conjugated dextran (green) and 

rhodamine-B- conjugated dextran (red) respectively. (Scale bar: 1 mm) (Reprinted 

with permission from Ref 140, Copyright 2005 Nature Publishing Group) 

 

In side-by-side electrospinning, controlling the electric field strength is more 

important than in normal electrospinning. Gupta et al. who demonstrated firstly the 

potential of bicomponent electrospinning found that: when the distance between the 

nozzle tip and the collector is too far, the electric field strength is insufficient to 
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initiate electrospinning; however, when the distance is too near, the field strength is 

relatively too strong and induces a strong electrostatic repulsion force, therefore, two 

separate Taylor cones were formed. [141]  

Side-by-side nanofiber is an anisotropic system. Polymers with different physical 

characteristics are combined in one fiber by an anisotropic but regular way, this leads 

to some interesting mechanical behavior, such as bending, crimping etc.[134, 135] This 

behavior has been attributed to differential shrinkage within the fibers which causes 

one of the components to compress. An advantage of the side-by-side fibers is that 

each component can show its own properties in one single fiber. 

2.3.3.2 Coaxial electrospinning 

The coaxial electrospinning is another common and popular bicomponent 

electrospinning technique. In coaxial electrospinning, two polymer solutions are 

delivered through a spinneret which contains two concentrically aligned 

channels/capillaries. (Figure 13 A) Under a high voltage, the electrospinning liquid is 

drawn out from spinneret and forms a compound Taylor cone with a core-shell 

structure. (Figure 16) After coaxial jet, the core-shell structure will be built and kept 

in the fibers on collecting on a collector.  
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Figure 16: Digital image of a typical biphasic core-shell Taylor cone with jet. PAN: 

Polyacrylonitrile; PMMA: Poly(methyl methacrylate) (Reprinted with permission 

from Ref 142, Copyright 2006 John Wiley & Sons) 

 

In this process, one common problem is that the outer droplet can be transformed into 

a jet, while the inner droplet cannot because there are no surface charges on inner 

droplet. The deformation of the inner droplet into the core fiber is left to viscous 

forces alone. It also has been illustrated by a mathematical model that the formation 

of core/shell jets and nanofibers via coaxial electrospinning in the considered range of 

parameters is greatly facilitated when the core tube protrudes outside the shell tube by 

around 0.5 of its radius. [143] 

Not only polymer solutions but also non-polymeric liquid or powder (as core) can be 

used for coaxial electrospinning. Systems with discontinuous drop-shaped inclusions 

inside a continuous shell can also be generated. This drop-shape core morphology is 

of interest for inclusion of biological objects, such as bacteria, virus, cells or drugs as 

mentioned before. The interest in encapsulation may be motivated by many reasons: 

to isolate an unstable component from an aggressive environment, to avoid 

Shell capillary 

Core capillary 

PAN solution 

PMMA solution 
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decomposition of a labile compound under a certain atmosphere, to deliver a given 

substance to a particular receptor, and so forth. [146] 

Another excellent function of coaxial electrospinning is production of hollow and 

non-spinnable material nanofibers by selective of the removed core or shell of 

nanofibers. [113, 142-145] When the inner component in the core-shell fibers is removed 

by selective solvents or heat treatment, hollow nanofibers are obtained. The 

non-spinnable solutions can be extruded through the inner capillary while the 

spinnable solution is extruded through the outer capillary. The outer solution would 

carry the inner solution during electrospinning. When the outer polymer is removed, 

the desired inner nanofiber is retained. 
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3. Results and discussion 

3.1 Side-by-side composite fibers of Silk fibroin (SF) and 

Poly(L-lactide) (PLLA): from single fibers to fiber mats  

(This work has been published in Macromol. Mater. Eng. 2016, 301, 48-55, with the 

title: “ Two-in-one composite fibers with side-by-side arrangement of silk fibroin and 

poly(L-lacride) by electrospinning” by Ling Peng, Shaohua Jiang, Maximilian Seuß, 

Andreas Fery, Gregor Lang, Thomas Scheibel and Seema Agarwal) 

Silk proteins can be processed into different forms such as hydrogels, sponges, 

composites, microspheres, thin films and fibers.[33, 36] Silk fibers are used in textile 

industry and for biomedical applications like sutures, wound dressing, tissue 

engineering scaffolds etc..[147, 148] Electrospinning is one of the fiber forming 

techniques which is highly used in the recent times for making nanofibers.[74, 76, 77] 

Electrospinning of silk proteins from different sources in solvents such as formic acid, 

hexafluoroisopropanol (HFIP) and hexafluoroacetone is also documented.[149-152] The 

protein secondary structure in electrospun fibers is dependent upon the type of solvent 

used for spinning. Formic acid as solvent for electrospinning provides immediately 

β-sheet structures in the silk fibers which is in contrast to fiber mats produced by 

spinning from HFIP, which mainly show random coil and helical structure.[153] In most 

of the studies the silk fibrous mats were electrospun with an aim to get artificial 

scaffolds for tissue engineering.[154] The nanofibrous network structure produced by 

electrospinning and material properties of silk proteins provide one of the best 
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combinations for mimicking the extracellular matrix (ECM). Electrospun silk fibrous 

mats were already shown to support growth and proliferation of various cell lines like 

normal human keratinocytes, fibroblasts and osteoblasts. [155]  

Recently hybrid fibers were produced using blends of silk with other synthetic and 

natural biodegradable and biocompatible polymers like chitosan[156], polyethylene 

oxide[157], cellulose acetate[158], gelatin[159], polycaprolactone (PCL)[160, 161] and 

polydioxanone (PDO)[160], poly(lactide)[162] either to make electrospinning of silk 

more feasible or tune its properties.  

Another way of combining properties of two polymers in one material is the 

sequential spinning leading to layered structures. One of such examples is the 

sequential electrospinning of silk fibroin (SF)-gelatin solutions followed by 

poly(L-lactide) (PLLA) spinning forming randomly oriented layered fibrous structure 

as studied by Wang et al.[163]   

Other possibilities of combining silk with synthetic polymers are in the form of 

bicomponent fibers with core-shell and side-by-side morphology. The combination of 

SF with another biopolymer in side-by-side parallel arrangement in one fiber 

(two-in-one bio-composite fibers) with retained secondary structure of silk would 

open up many new application possibilities. Unlike blends, layer-by-layer and 

core-shell structures, the side-by-side morphology offer many potential advantages. 

The side-by-side fibers will make both sides available for post-spinning modifications. 

Moreover, they have potential as compatibilizers in fiber reinforced biodegradable 

composites, co-culture of different cells, tuning degradability profile and drug-release 
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from scaffolds utilizing different surface chemistry of the two sides.  Electrospinning 

can be used as a tool for making side-by-side biofibers. The first ever side-by-side 

electrospun fibers were produced by Wilkes et al. using poly(vinyl 

chloride)/segmented polyurethane and poly(vinyl chloride)–poly(vinylidiene fluoride) 

as two sides.[27] Polymeric nanosprings were made by Agarwal et al. previously by 

combining polymers of different modulus in a side-by-side morphology.[28, 164] Getting 

homogenous side-by-side fibers for any new combination of polymers is still not 

trivial.  

In this work bio-based PLLA and Bombyx mori silk fibroin are combined in a single 

fiber with side-by-side morphology i.e. the two polymers making different sides of the 

same fiber. The fibers will be designated as SF-s-PLLA in the subsequent text. The 

process of making two-in-one fibers with uniform morphologies using side-by-side 

electrospinning nozzles is presented in this chapter. The two-in-one fibers were 

characterized for morphology using SEM and confocal laser scanning microscope and 

showed presence of side-by-side structure with an asymmetric wrapping-up 

morphology with SF wrapping PLLA fibers from one side. The secondary structure of 

polymers in SF-s-PLLA fibers was studied using Fourier transformed infrared 

spectroscopy. The effect of fiber alignment on morphology, molecular orientation and 

mechanical properties was also studied in comparison to the randomly oriented fibers 

and fibers made from blends of PLLA and SF. 
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3.1.1 Side-by-side composite single fiber of SF and PLLA 

Two-in-one bio-composite fibers of silk fibroin and synthetic biodegradable polymer 

poly (L-lactide) (PLLA) (denoted as SF-s-PLLA; SF: PLLA 5:2 wt:wt) were made by 

electrospinning using special side-by-side nozzle in which two sides were separated 

by a thin copper foil. The nozzle used for side-by-side spinning is similar as described 

in publication 28. [28] Both silk fibroin and PLLA were dissolved in HFIP at 100 

mg/mL and 40 mg/mL, respectively. Two injector jet pumps were used to control the 

flow rates of the two solutions (0.33 ml/h each) (Figure 17). The distance between the 

nozzle and the collector was 15 cm and the applied voltage was 12.5 kV. A stainless 

steel frame with an inner rectangular size 17.5 x 3.0 cm was used as the collector to 

collect the side-by-side single fibers. A rotating disk (diameter 20 cm) was used with a 

rotation speed of 1800 rpm to collect the aligned fiber mats. 

 

Figure 17: Sketch for side-by-side electrospinning 

 

Scanning electron micrographs showed randomly oriented uniform cylindrical 

asymmetric side-by-side structure in the form of a wrapped-up morphology i.e. thin 

PLLA SF 

12.5 kV 
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fibers (around 150 nm diameter) wrapped-up on one side with thicker fibers (Figure 

18). The overall average fiber diameter was 698 nm ± 136 nm. The electrospinning of 

pure SF from HFIP using single nozzle provided belt shaped fibers whereas PLLA 

fibers were cylindrical with average diameters around 322 nm ± 66 nm (Figure 18).  

Many researchers [165-167] considered that the elongation of the jet and evaporation rate 

of the solvent changed the shape and the charge of the jet, which determined the final 

morphology. Under our experimental conditions, the side-by-side spinning of SF 

(tendency to flatten) and PLLA (tendency to make cylindrical fibers) using 

side-by-side nozzle provided bicomponent fibers with asymmetric morphology. The 

PLLA fibers were wrapped by belt shaped SF fibers from one side as shown in Figure 

18b and sketched in Figure 19. The conductivity of SF-HFIP sloution (20.3 μS/cm) is 

much higher than the conductivity of PLLA-HFIP sloution (0.4 μS/cm). Fast 

evaporation of the spinning solvent from PLLA side leads to collapse of SF side 

giving wrap-up morphology.  

Confocal laser scanning microscopy (CLSM) was further used for confirming the 

bicomponent nature and the asymmetric sides of the fibers. The spinning solutions 

were dyed with different fluorescent dyes (Fluorescein sodium and Rhodamine B 

were added in SF and PLLA solutions, respectively) and the resulting fibers were 

observed using a confocal microscope. The fluorescence of both dyes within one fiber 

can be shown by superimposition while three dimensional images confirm 

asymmetric side-by-side morphology (Figure 20). CLSM studies were carried out in 

collaboration with Prof. Fery’s group. 
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Figure 18: SEM images showing surface morphology of randomly oriented 

electrospun fibers: (a) silk fibroin fibers (SF) (b) two-in-one (SF-s-PLLA ) fibers (c) 

poly(L-lactide) fibers (PLLA). 

 

 

 

Figure 19: Schematic of formation of asymmetric wrap-up morphology by 

side-by-side spinning. 
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Figure 20: CLSM images of fluorescence labeled two-in-one SF-s-PLLA fibers 

showing the bicomponent nature. (a) Fluorescence image of Fluorescein sodium 

labeled SF; (b) fluorescence image of Rhodamine B labeled PLLA; (c) 

superimposition of (a) and (b); (d) three dimensional image. 

 

The cross-section area is needed to measure the mechanical properties of single fibers. 

SF single fibers have a belt-like form. (Figure 18a) To get the cross-section area of SF 

single fiber, both the width and thickness of the SF nanofibers should be measured. 

The cross sectional area of SF nanofiber should be equated with diameter. For 

example, in figure 21, the thickness (T) and the width (W) of SF nanofiber are 270.8 

nm and 914.0 nm respectively. The cross sectional area is: A = T x W = 270.8 nm x 

914 nm = 2.475 e5 nm2, A = πD2/4. So the equated diameter of SF nanofiber in figure 

34 is about 561 nm. 
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Figure 21: SEM image of SF single nanofiber after tensile test. 

 

The E-modulus, true stress and strain at break were used to describe the mechanical 

properties of nanofibers. The values about the mechanical properties were extracted 

from individual tensile test results of single nanofibers. The variations of mechanical 

properties of single as-spun SF nanofibers are showed in figure 22. The analysis 

shows that, the mechanical properties of SF nanofibers are not as good as that of 

PLLA nanofibers. The average strain at break of SF nanofibers is only about 4 %. 

Maybe that is the major reason, which limits the study about mechanical properties 

and application of single SF nanofibers. After the methanol treatment, the SF 

nanofibers were too brittle for the tensile test and no measurements could be 

performed. To improve the mechanical properties and at the same time not decrease 

the biocompatibility of SF nanofibers, combination of SF with some other 

biomaterials which have good mechanical properties is a good strategy. 

 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

34 
 

 

Figure 22: Mechanical properties of as-spun SF single nanofibers: (a) true stress, (b) 

E-modulus and (c) true strain at break. 

 

In some previous studies, the crystallinity was discussed as the most important factor 

for the mechanical properties of single nanofibers. Papkov et al. reported that with 

higher crystallinity, the strength and E-modulus of PAN nanofibers will increase, but 

the strain will be lower [168]. The crystallinity of PLLA fibers will increase by 

annealing at 80 oC. [169] It is very interesting to study the mechanical properties of 

as-spun and annealed PLLA single nanofibers. 

The variations of mechanical properties of single as-spun and annealed PLLA 

nanofibers are shown in figure 23. The analysis shows that, after annealing the 

mechanical properties of single PLLA nanofibers are similar to that of as-spun PLLA 

a b 

c 
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single nanofibers. Both stress and E-modulus have a size effect: with decreased 

diameter (especially under 400 nm), the mechanical properties had an intensive 

increasing. The average strain at break of PLLA nanofibers is about 150 %. With the 

analysis results of PLLA single nanofibers, it would be hypothesized that not 

crystallinity but chain orientation in ultrafine nanofibers is the major cause of change 

of mechanical properties.  

 

 

 

Figure 23: Mechanical properties of PLLA single nanofibers (before and after 

annealing): (a) true stress, (b) E-modulus and (c) true strain at break. 

 

From the results, the true stress and E-modulus showed a size effect very clearly 

(figure 23 a, b). When the diameter of nanofibers decreased, especially blow 400 nm, 

a b 

c 
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they increased rapidly. This effect was not obvious for strain at break. The average 

strain at break of PLLA nanofibers is about 190 %, the average strain at break of 

SF-s-PLLA nanofibers is about 50% and the average strain at break of SF nanofibers 

is about 4%. The true stain at break of SF single nanofibers has a detectable 

improvement after combination with PLLA in other side. 

Because of the size effect, the fibers with similar diameters were chosen to compare 

the mechanical properties of SF-, PLLA-and SF-s-PLLA single nanofibers. As shown 

in figure 24, both the strain and stress of SF fibers are weaker than the of SF-s-PLLA 

and PLLA fibers. Because of the high sensitivity, the curves were not smooth. The SF 

fibers were brittle, the strain of SF fiber is very low (<4 %). When the brittle SF fibers 

combined with PLLA through side-by-side electrospinning to form side-by-side 

SF-s-PLLA fibers, the strain of the nanofibers increased from about 4% to 50%. The 

mechanical properties of same nanofibers were also dependent on diameter. Thinner 

nanofibers have higher stress and lower strain, that’s why E-modulus increased so 

rapidly.  

The possible reason about the size effect of nanofibers is the polymer chain 

orientation. When the nanofiber diameter decreased, the inner space for the polymer 

chains is limited; as a result, the polymer chains will be oriented. High orientation 

caused the change in the mechanical properties. 
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Figure 24: Typical stress-strain curves of single as-spun nanofibers with different 

diameter. 

 

The strains at break of two sides in SF-s-PLLA fibers are very different. Whether the 

two sides during the tensile tests break at the same time or not was studied further in 

this work.  

 

 

Figure 25: Photos of point at break of single as-spun SF-s-PLLA nanofiber (diameter 

of as-spun fiber: 429 nm) 
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The tensile process was monitored by high speed camera, which can take 4000 photos 

per second. Figure 25 shows the break moment of single SF-s-PLLA nanofiber. It 

broke at the middle of the nanofiber. Some tensile tests of SF-s-PLLA nanofibers were 

stopped before sample broke at different elongations to study the surface morphology 

of two sides. As show in figure 26, at 10% and 20% elongations, the surfaces of 

side-by-side fiber were still smooth, although the elongations were already higher 

than the elongation of strain at break of SF nanofiber. At about 30% elongation some 

cracks were obvious on one side of the SF-s-PLLA nanofiber.  

 

 

Figure 26: SEM images of the surface morphology of electrospun SF-s-PLLA fibers 

at different elongantions: (a) 10%, (b) 20% and (c) 30%. 

 

Significant improvement in the mechanical properties of SF fibers could be achieved 

by PLLA in combination with a side-by-side fibrous morphology. The strain at break 

of nanofiber was increased from <4% (SF) to about 50% (side-by-side), there was no 

cracks till elongation 20% of SF-s-PLLA fiber. Because of better mechanical 

a b c 
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properties, the SF-PLLA nanofiber may expand the application area of SF nanofiber. 

3.1.2 Side-by-side composite fiber mat of SF and PLLA 

The preparation processing and results of morphological studies of SF and PLLA 

fibers were already shown in part 3.1.1. The use of a disk (diameter 20 cm) rotating 

with a speed of 1800 rpm as collector provided macroscopic alignment of 

(SF-s-PLLA) composite fibers (Figure 27). Better alignment by increasing the 

rotation speed of the collector was tried. The large amounts of samples for further 

characterization at high rotation speeds beyond 1800 rpm could not be made due to 

the fast evaporation of the solvent (HFIP) used for electrospinnig leading to an 

unstable spinning process with frequent clogging of the needle. 

The molecular orientation of polymer chains within the fibers were studied using 

polarized FTIR. The fibers collected at 1800 rpm showed a significant difference in 

characteristic absorption peak intensities of various bonds (carbonyl and amide) in the  

 

 

Figure 27: SEM image of two-in-one (SF-s-PLLA) fibers collected on a rotating disk 

with 1800 rpm. 
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polarized IR spectra obtained in perpendicular and parallel directions to the fiber axes 

(Figure 28a). Dichroic ratio (R), which is calculated by the ratio of A∥ / A⊥ (A∥ and 

A⊥ are the parallel-polarized and the perpendicular-polarized infrared absorbance 

intensity, respectively) for a particular vibration band was used to define the 

molecular orientation.[170] The carbonyl stretching vibrations of PLLA centered at 

1755 cm-1, and amide I at 1650 cm-1 of SF showed R values of 0.43 and 0.36, 

respectively due to the perpendicular polarization to the fiber axis. For the vibration 

band of Amide II of SF observed between 1480 to 1580 cm-1, the R value is 0.53 

(Table 1). This is due to the two mutually perpendicular vibrations in Amide II: C-N 

stretching is parallel and at the same time C-N-H bending is perpendicular to the 

polypeptide backbone. On the other hand, the absorption peaks from PLLA and SF in 

two-in-one SF-s-PLLA fiber mats having randomly oriented fibers in any two 

perpendicular directions are similar and showed R values of 0.97-0.98 with almost no 

macroscopic molecular orientation (Figure 28b). A similar behavior was observed for 

pristine PLLA and SF fibers as shown in the Figures 29 and 30. 

 

Table 1: Dichroic ratio of different absorption peaks of PLLA and SF in two-in-one 

(SF-s-PLLA) random and aligned fibers for studying molecular orientation. 

Vibration band  (cm-1) Dichroic ratio (R) 

Aligned fibers     Random fibers 

1720-1790 (C=O stretching  PLLA) 0.43 0.98 

1590-1710 (C=O stretching  Amide I) 0.36 0.97 

1480-1580 (C-N stretching and C-N-H bending 

Amide II) 

0.53 0.98 
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Figure 28: Polarized FTIR spectra of (a) aligned and (b) randomly oriented 

two-in-one (SF-s-PLLA) nanofibers: angle of the IR beam perpendicular to the fiber 

axis (0° and 180°) and parallel to the fiber axis (90° and 270°), respectively. 
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Figure 29: Polarized FTIR spectra of aligned PLLA (a) and SF (b) nanofibers: 

electric vector of IR beam perpendicular to the fiber axis (0° and 180°) and parallel to 

the fiber axis (90° and 270°), respectively. 

 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

43 
 

 

Figure 30: Polarized FTIR spectra of randomly PLLA (a) and SF (b) nanofibers: 

electric vector of IR beam perpendicular to the fiber axis (0° and 180°) and parallel to 

the fiber axis (90° and 270°), respectively. 

 

Further, FTIR was used to monitor the crystallinity and secondary structure of 

two-in-one (SF-S-PLLA) fibers. The effect of post-spin treatment on secondary 

structure and crystallinity was also monitored. Infrared spectroscopy is a good 
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technique to monitor the crystallinity of PLA and secondary structure of SF. [171-173] In 

general, the SF protein in side-by-side fibers can have random coil, α-helix or β-sheet 

structure which might change with annealing (post-spin treatment) conditions. 

Similarly, PLLA side can be amorphous or semi-crystalline. For comparison purposes 

pure PLLA and SF fibers made by electrospinning were also analyzed. It was 

interesting to study if the interface between SF and PLLA in two-in-one SF-s-PLLA 

composite fibers could transmit/affect an intentional change in the supramolecular 

structure from one side to the other. Annealing of two-in-one fibers at 80 oC for 1 h 

led to change in position and shape of absorption band at 1751 cm-1 (C=O stretching 

band of PLLA) as shown in Figure 31. The peak shifted to higher frequency and 

became narrow signifying increased crystallinity as shown previously for PLLA fibers 

by Ribeiro et al. [169] The fiber morphology was retained after annealing (Figure 32). 

The time of thermal annealing was optimized by studying crystallisation of pure 

PLLA electrsopun fibers by differential scanning calorimetry (DSC). A change in 

crystallinity of randomly oriented PLLA fibers from almost amorphous to around 47% 

on annealing at 80oC for 1h (Figure 33) was observed. The % crystallinity did not 

change further on increasing the annealing time to 10 h. The as-spun aligned PLLA 

fibers were semi-crystalline (crystallinity 22%) and showed enhanced crystallinity to 

around 59% after annealing. The molecular orientation as observed by polarized FTIR 

could be responsible for high crystallinity in aligned side-by-side fibers. 

Stress-induced crystallization is easier for oriented macromolecules.   

A change in secondary structure of MeOH annealed SF fibers from random coil to a 
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β-sheet conformation was also observed by FTIR in two-in-one fibers. As shown in 

figure 31, the characteristic absorption peaks of SF in two-in-one nanofibers were 

observed at 1539 cm-1 (amide II), 1651 cm-1 (amide I) together with a small shoulder 

at 1520 cm-1 in as-spun randomly oriented and aligned two-in-one fibers showing 

mainly random coil conformation with small amounts of β-sheet structure. The 

absorption peak at 1520 cm-1 is attributed to the β-sheet structure. [173] 

 

Figure 31: FTIR transmission spectra of two-in-one (SF-s-PLLA) electrospun 

nanofiber mats (a: randomly oriented and b: aligned fibers) with different post-spin 

treatments. 
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Figure 32: Side-by-side (A) and PLLA (B) fibers after annealing at 80 oC for 10 h. 
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Figure 33: DSC thermograms of PLLA and PLLA electrospun fiber mats (a: random 

b: aligned fiber mats): before and after annealing at 80°C for different times (1 and 10 

h). The DSC measurements were carried out under N2 atmosphere from 25 to 250 °C 

with a heating rate of 10 K/min.  

 

After methanol treatment the peaks were shifted to 1520 and 1628 cm-1, which were 

attributed to the change in structure of SF fibers to mainly β-sheet structure. Fourier 

self-deconvolution (FSD) of the infrared spectra was carried out to quantify change in 

secondary structure of as-spun fibers after annealing.[171] Figure 34 shows the FSD 

spectra in the amide I region of two-in-one (SF-S-PLLA) aligned fibers before and 

after MeOH annealing. The fraction of β-sheet structure in MeOH annealed 

two-in-one aligned fibers was 35% which was significantly increased from 7-9 % 

β-sheets structure in as-spun fibers (Table 2). At the same time, the fractions of other 

structures like random coils and turns decreased from 40-45% and 30-34% to 30-33 % 

and 21-23%, respectively on MeOH treatment. The similar behavior was also 
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observed for two-in-one randomly oriented fibers (Figure 35 and Table 3). There was 

no influence of MeOH treatment on the structure of PLLA. The thermal annealing 

conditions (80 oC for 1h) used for PLLA also did not bring any structural change in 

SF side. The two sides of two-in-one composite fibers reacted to different annealing 

conditions individually. FSD studies were carried out in collaboration with Prof. 

Scheibel’s group. 

 

Figure 34: Fourier self-deconvoluted absorbance spectra of two-in-one SF-s-PLLA 

aligned fibers in amide I region (a) as-spun fiber mat; (b) after MeOH and 80 °C 
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post-spin treatment.  

 

Table 2: Secondary structure of two-in-one (SF-S-PLLA) aligned fibers before and 

after post-spin treatments as determined by fourier self-deconvolution in amide I 

region 

 Wavenumber 

[cm-1] 

1605-1615 1616-1637, 

1697-1703 

1656-1662 1638-1655 1663-1696 

Assignment Side chain β-sheets α-helices random 

coils 

turns 

As-spun fraction [%] 0.44 6.77 17.16 44.78 30.85 

sd [%] 0.18 0.91 1.29 2.19 3.38 

80 °C fraction [%] 0.67 9.10 16.76 39.62 33.85 

sd [%] 0.38 2.14 1.13 2.18 2.50 

MeOH fraction [%] 0.34 34.52 11.50 32.62 21.02 

sd [%] 0.72 2.33 0.47 1.48 2.03 

80°C 

MeOH 

fraction [%] 0.58 34.94 10.73 30.48 23.27 

sd [%] 0.61 1.39 0.70 1.65 0.42 
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Figure 35: Fourier self-deconvoluted absorbance spectra of two-in-one SF-s-PLLA 

randomly fibers in amide I region (a) as-spun fiber mat; (b) after MeOH and 80 °C 

post-spin treatment. 

 

Table 3: Secondary structure of two-in-one (SF-S-PLLA) randomly oriented fibers 

before and after post-spin treatments as determined by fourier self-deconvolution in 

amide I region.  

 Wavenumber 

[cm-1] 

1605-1615 1616-1637, 

1697-1703 

1656-1662 1638-1655 1663-1696 

Assignment Side chain β-sheets α-helices random 

coils 

turns 

Before fraction [%] 0.48 7.71 18.12 43.19 30.50 

sd [%] 0.28 0.72 2.26 2.74 1.72 

80 °C fraction [%] 0.40 6.31 20.65 41.71 30.93 

sd [%] 0.03 2.90 1.75 2.24 1.58 

MeOH fraction [%] 0 44.23 10.04 28.80 16.93 

sd [%] 0 1.73 0.64 0.62 1.15 

80°C 

MeOH 

fraction [%] 0 40.52 10.51 31.08 17.89 

sd [%] 0 0.44 0.64 0.86 0.82 
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It is interesting to study mechanical properties of side-by-side biocomposite fibers. In 

general, the electrospun silk fibers have low mechanical properties and brittle in 

nature. The Bombyx mori silk fiber mat with randomly oriented fibers made by 

solution electrospinning in formic acid showed ultimate tensile strength of 7.25 MPa, 

elongation at break 3.2% and initial modulus of 515 MPa, respectively. [153] It is worth 

mentioning that use of formic acid for electrospinning provides β-sheet structure 

which is expected to provide better mechanical properties than the fiber mats with 

random coil structure as produced by spinning from HFIP. The SF fiber mat spun 

from HFIP in the present work showed tensile strength 2.66 ± 0.23 MPa, modulus 

61.8 ± 8.98 MPa (the modulus was calculated from the ratio of stress and strain for 

1-2% elongation, Figure 36 and Table 4) and elongation at break 12.9 ± 1.3 %. The 

side-by-side SF-s-PLLA fibers were ductile with improved mechanical properties. 

This could be due to the strong interface between PLLA, SF sides and PLLA bearing 

applied load. Randomly oriented bio-based synthetic PLLA fibers showed higher 

tensile strength (4.9 ± 0.72 MPa), modulus 39.9 ±10.4 MPa and significantly higher 

elongation at break (136.9 ± 34.7 %) (Figure 37 and table 5). The randomly oriented 

SF-s-PLLA fibers with side-by-side morphology showed tensile strength of 3.83 ± 0.9 

MPa, modulus 73.8 ± 18.7 MPa with elongation at break of 39%. The tensile strength 

and elongation at break for two-in-one fibers lie between the corresponding values for 

PLLA and SF randomly oriented fibers. 
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Figure 36: Stress-Strain curves of SF nanofiber mats (randomly and aligned, before 

and after MeOH treatment). 

 

Table 4: Mechanical properties of SF nanofiber mats 

 E-moduls (GPa) Stress (MPa) Strain % 

As-spun random 0.0618 ± 0.00898 2.66 ± 0.23 12.9 ± 1.3 

Treatment* random 0.0731 ± 0.0165 3.52 ± 0.63 14.0 ± 4.9 

As-spun parallel 0.17 ± 0.021 7.19 ± 0.98 8.4 ± 1.2 

Treatment* parallel 0.194 ± 0.0484 7.05 ± 1.54 6.1 ± 2.0 

As-spun orthogonal 0.0166 ± 0.00332 1.40 ± 0.09 11.2 ± 1.5 

Treatment* orthogonal 0.0209 ± 0.00353 1.49 ± 0.18 13.4 ± 3.9 

* Treatment: The SF nanofiber mats were treated in MeOH atmosphere for 24 h. 
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Figure 37: Stress-Strain curves of PLLA nanofiber mats (random and aligned, before 

and after annealing). 

 

Table 5: Mechanical properties of PLLA nanofiber mats 

*Annealed: The PLLA nanofiber mats were annealed at 80 °C for 10 h. 

 

 E-moduls(GPa) Stress (MPa) Strain % 

As-spun random 0.0399 ± 0.0104 4.90 ± 0.70 136.9 ± 34.7 

Annealed* random 0.0219 ± 0.00476 5.06 ± 1.40 95.9 ± 28.0 

As-spun parallel 0.358 ± 0.109 25.72 ± 3.97 38.6 ± 6.5 

Annealed* parallel 0.319 ± 0.0364 24.80 ± 2.20 51.8 ± 5.0 

As-spun orthogonal 0.0073±0.00329 1.70 ± 0.20 349.1 ± 28.1 

Annealed* orthogonal 0.00660 ± 0.00105 1.90 ± 0.40 253.8 ± 5.3 
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Additionally, the aligned fiber morphology for scaffold applications could be highly 

desirable to guide cellular behavior including cell attachment and proliferation for 

future applications. Therefore, macroscopically aligned fibers were also tested for 

mechanical properties. Anisotropy in the mechanical properties i.e. directional 

dependent mechanical properties were observed in aligned fiber mats. Mechanical 

properties were much higher in the direction of fiber alignment in comparison to 

randomly oriented fibers or in the direction perpendicular to fiber alignment. Tensile 

strength and modulus were 13.97 ± 1.67 MPa and 299 ± 48.7 MPa, respectively, in 

the direction of fiber alignment with 20% elongation at break and showed strain 

hardening. The elongation was less than in the randomly oriented fibers due to more 

entanglements in random fibers and therefore alignment during tensile testing.[174] The 

tensile strength and modulus were low in the direction perpendicular to the fiber 

alignment (1.67 ± 0.11 and 32.8 ± 3.79 MPa) with higher elongation at break (52%) 

(Figure 38). The anisotropy in mechanical properties is a common behavior in 

oriented fibers [175] due to the fact that applied forces act on strong covalent bonds in 

parallel direction in which unfolded molecules are aligned in the direction of the fiber 

axis whereas in the perpendicular direction it acts on weak van der Waals forces 

between the macromolecules leading to higher elongation and lower strength and 

modulus. Similar behavior was also observed for pure PLLA and SF fibers (Figure 36 

and 37). PLLA fibers showed much higher tensile strength and modulus in the 

direction of fiber alignment (25.72 ± 3.97 MPa, 358 ± 109 MPa) in comparison to SF 

fibers (7.19 ± 0.98 MPa and 170 ± 21 MPa) which could be due to the stress-induced 
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crystallinity in PLLA fibers during alignment described in the previous section 

bringing more strength in parallel direction besides load being carried out by covalent 

bonds. SF fibers had predominantly α-helix structure. Mechanical properties could be 

further improved by annealing of both sides of SF-s-PLLA fibers by MeOH and heat 

treatment at 80 °C (structural changes described in previous sections). SF-s-PLLA 

annealed fibers with predominantly β-sheet structures in SF-side with highly 

crystalline PLLA side provided tensile strength 16.46 ± 1.38 MPa, modulus 205 ± 

20.6 MPa and elongation at break 53.1 ± 8.1%. The values are comparable to the 

fibers made from a blend of SF and PLA (5:2 wt:wt) by conventional electrospinning 

and annealed under similar conditions which shows tensile strength 14.82 ± 0.34 MPa, 

modulus 239 ± 12 MPa and elongation at break 67.7 ± 5.9% (Figure 39, table 6). 1D 

biocomposite fibers with side-by-side morphology makes two sides available for 

further biofunctionalisation, co-culture of cells, drug carrier with dual release-profile 

etc. which is either limited or not possible with monolith blend fibers. Future research 

will be directed towards use of these fibers for various applications including 

cell-culture studies.  
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Figure 38: Stress-Strain curves of SF-s-PLLA fiber mats (randomly oriented and 

aligned, fibers before and after post-spin treatments). 

 

Figure 39: Stress-Strain curves of fiber mats made from a blend of SF and PLLA 

(SF:PLLA 5:2 wt:wt) (randomly orinted and aligned, fibers before and after post-spin 

treatments). 
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Table 6: Mechanical properties of fibers made from a blend of SF and PLLA 

 E-moduls(GPa) Stress (MPa) Strain % 

As-spun random 0.0652 ± 0.0349 6.54 ± 0.83 44.3 ± 11.3 

Annealed* random 0.0905 ± 0.0307 6.64 ± 0.98 38.5 ± 11.9 

As-spun parallel 0.2790 ± 0.0144 18.16 ± 1.09 24.8 ± 2.1 

Annealed* parallel 0.2390 ± 0.0120 14.82 ± 0.34 30.4 ± 4.5 

As-spun orthogonal 0.0281 ± 0.0045 2.72 ± 0.09 101.8 ± 4.0 

Annealed* orthogonal 0.0360 ± 0.0064 3.14 ± 0.14 67.7 ± 5.9 

*Annealed: The nanofiber mats were treated in MeOH atmosphere for 24 h then at 

80 °C for 10 h. 

 

The results about the mechanical properties of single nanofiber and nanofiber mats 

show that, the crystallinity is not the key point for the mechanical properties. From 

our results, the most important factor for mechanical properties is the orientation of 

polymer chains and nanofibers.  

As show in figure 40, in thin nanofiber, the orientation of polymer chains is higher 

than in thick nanofiber. The stress of single fiber increased with the increase of 

orientation of polymer chains. Similar in nanofiber mats, both aligned and randomly 

nanofiber mat were spun at the same conditions, only difference is the aligned 

nanofiber mat has a higher orientation of nanofibers, as a result, the stress of aligned 

nanofiber mat (parallel) is also higher.  
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Figure 40: Polymer chains in single nanofiber and nanofiber mats. 

3.1.3 Conclusion 

A combination of appropriate reinforcing material and morphology is necessary for 

the properties improvement of a polymeric fibrous material. Two-in-one (SF-s-PLLA) 

(PLLA: SF = 2:5, wt: wt) bio-based ductile composite fibers with side-by-side 

morphology and good mechanical properties were generated using bicomponent 

electrospinning. Significant improvement in the mechanical properties of SF fibers 

could be achieved by PLLA in combination with a side-by-side fibrous morphology. 

The strain at break of nanofiber was increased from <4% (SF) to about 50% 

(side-by-side), there was no cracks till elongation 20% of SF-s-PLLA fiber. Because 

of better mechanical properties, the SF-PLLA nanofiber may expand the application 

area of SF nanofiber. 

The size of nanofiber is the most important factor for the mechanical properties. In the 

ultrafine nanofibers, the polymer chains will be oriented. After annealing the 

crystallinity of PLLA nanofibers increased. But mechanical properties of annealed 
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PLLA nanofibers are almost same mechanical properties of as as-spun PLLA 

nanofibers. As a result, the most cause of size effect is high orientation of polymer 

chains. It is possible to make the nanofibers with the aimed mechanical properties 

through combination of different materials and control of diameter of nanofibers.  

The two sides of two-in-one fibers retained their individual secondary structure before 

and after annealing without affecting each-other in a significant way. The annealed 

fibers on both sides by MeOH and heat treatment at 80 oC provided predominantly 

crystalline and β-sheet structures with tensile strength 16.5 ± 1.4 MPa, modulus 205 ± 

20.6 MPa and elongation at break 53 ± 8% in silk based electrospun fibers. These 

values are very similar to the fibers made from a blend of SF and PLLA using similar 

ratio of the two components (SF: PLLA 5:2) as used for making side-by-side fibers. It 

would be interesting to use such fibers for biodegradation studies, cell culture, 

scaffold and drug-release applications in the future to exploit the utility of 

side-by-side morphology, and surface chemistry of two sides. 

3.2 A self-coiled bicomponent nanofiber of Poly(N-isopropylacryl 

amide) (PNIPAM) and thermoplastic polyurethane (TPU) 

(Part of this work has been published in Macromol. Mater. Eng. 2017, 1700248 with 

the title: “ Tailoring the Morphology of Responsive Bioinspired Bicomponent Fibers” 

by Marvin Gernhardt, Ling Peng, Matthias Burgard, Shaohua Jiang, Beate Förster, 

Holger Schmalz and Seema Agarwal) 

After establishing conditions for the formation of side-by-side fibers combination of 
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SF and PLLA, it was of interest to use such fiber morphologies for different 

combination of polymers. One of the interesting combinations could be PNIPAM and 

TPU.  

PNIPAM is one of the widely used thermoresponsive polymers for different 

applications including actuators. It possesses the lower critical solution temperature 

(LCST) around 32oC. The cross-linked PNIPAM reveals temperature dependent 

swelling / shrinkage below and above LCST. Thermoresponsive actuators are based 

on a bilayer structure with an active polymer undergoing swelling / shrinkage at 

different temperatures in water and a passive layer which is not affected by 

temperature and water.[176-178] In bilayer structures with PNIPAM as an active layer, 

the differential swelling / shrinkage between the two layers leads to actuation. The 

actuation time varies from many seconds to minutes and hours depending on the layer 

size and materials used in bilayers.[179-183] Recently, our group demonstrated ultra-fast 

thermoresponsive rectangular-shaped actuators with direction-controlled reversible 

rolling, coiling and bending motions at different temperatures in water based on 

bilayer fibrous nonwovens in 0.6-5 s.[180, 181] PNIPAM and thermoplastic polyurethane 

(TPU) fibers oriented in different directions were used as active and passive layers, 

respectively.   

The polymers of different polarity, functionality, physical properties, etc. can also be 

combined in one fiber in the form of side-by-side and coaxial structures and provide 

novel opportunities of getting special morphologies, dual functionality, extreme 

dipole moments, multiple drug release profiles, etc.[26, 28, 184-188]  One of the 
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interesting aspect of the bicomponent morphology in textile fibers is to make 

self-crimping synthetic fibers by using difference in modulus or differential shrinkage 

of the two components in the fiber.[189-191] Very thin (250-400 nm) self-crimping / 

coiling synthetic fibers with two components were discussed in literature using 

various combinations of polymers such as poylacrylonitrile-polyuretahne[135],  

poly(m-phenylene isophthalamide)-polyurethane[28, 164] formed by electrospinning[76]. 

Not only side-by-side but off-centered coaxial morphology of fibers also provide 

coiled fibers.[28] Forming self-crimping fibers is inspired by the structurally 

asymmetrical self-crimping wool fibers in which ortho-cortical and para-cortical cells 

adhere to each other as two sides of a fiber in a side-by-side morphology.[192, 193] The 

differential swelling on two sides of the fibers with moisture leads to the fiber crimp. 

Side-by-side bilayer micro-fibers with poly(vinyl cinnamte) (swellable in organic 

solvent) and chemically cross-linked 1:1 mixture of poly(ethyleneimine) (PEI)/(PEO) 

(hydrogel; swellable in water) revealed a reversible change between coils and straight 

fibers when put in dioxane and water respectively.[184]  

In this work experimental results of temperature-triggered reversible coiling and 

decoiling of bicomponent fibers of PNIPAM and TPU are presented. The effect of 

temperature and the ratio of two polymers on coiling behavior were also studied. 

3.2.1 Bicomponent single fiber of PNIPAM and TPU 

Bicomponent fibers were combined a copolymer of NIPAM and 4-acryloyl- 

benzophenone (ABP) as responsive polymer and TPU as a nonresponsive polymer.  
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The bicomponent fibers of PNIPAM-ABP and TPU were prepared using special 

off-centered and side-by-side nozzle[28] using 32 and 18 wt.% solutions of 

PNIPAM-ABP and TPU, respectively, in DMF (Figure 41). Fluorescein 

isothiocyanate isomer I (FTIC I, 0.8 wt% with respect to the weight of PNIPAM) was 

added to the PNIPAM solution. ABP (4 wt% with respect to the weight of TPU) was 

added to TPU solution. Two injector jet pumps were used to control the flow rates of 

the two solutions to form bicomponent fibers with different polymer ratios. The 

distance between the nozzle and the collector was 15 cm and the applied voltage was 

12.5 kV. An aluminum frame was used for collecting single fibers.  

 

 

Figure 41: a) Sketch of off-centered electrospinning; b) Sketch of side-by-side 

electrospinning; c) aluminium frame for collecting single fibers. 

 

PNIPAM shows thermal dependent water solubility, to provide a water stable 

bicomponent fiber with PNIPAM as one of the components, it was necessary to 

cross-linked PNIPAM. Therefore a copolymer of NIPAM with 4 wt% photo cross 

TPU PNIPAM 

12.5 kV 
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linkable ABP monomer was used as active responsive component. This cross linked 

PNIPAM-ABP fibers shows LCST at 27 °C. (Figure 42) This work was done by Li 

Liu, a PhD student of our group. 

 

Figure 42: μ-DSC curve of PNIPAM-ABP. 

 

After spinning the PNIPAM side was cross-linked by exposing to UV light of 320-400 

nm wavelength for 30 min. The PNIPAM-ABP and TPU fibers using side-by-side 

spinneret with different ratios of polymers in two sides were prepared as shown in 

Figure 43. The morphology of fibers was revealed by scanning SEM and fluorescence 

microscopy. The PNIPAM side with FTIC showed green color under 450-490 nm 

light (Figure 44).  
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Figure 43: SEM images of side-by-side as-spun (a) PNIPAM, (b) TPU, (c) 

PNIPAM-ABP:TPU (7:3) and (d) PNIPAM-ABP:TPU (3:7) fibers. 

 

  

Figure 44: Images of side-by-side as-spun PNIPAM-TPU fibers under fluorescence 

microscopy: (a) normal light; (b) 450-490 nm light. Scale bar 20 μm. 

 

For unambiguous characterization of fiber morphology, the fiber cross-sections were 

scanned by TEM. After cutting of fibers embedded in epoxy, the off-centered 

a b 
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morphology of fibers was revealed by scanning TEM. As show in figure 45, 

off-centered fibers were formed from both off-centered and side-by-side spinnerets.  

 

  

Figure 45: TEM images of cross section of as-spun PNIPAM-ABP: TPU (7:3) fibers: 

(a) off-centered spinning; (b) side-by-side spinning 

 

Cross section of fibers with different polymer weight ratios on the two sides of the 

spinneret were also scanned with TEM. It shows clearly that, polymer areas are 

different in fibers (figure 46). The indirect experiment of changing the weight ratios 

of the two polymers clearly showed that the PNIPAM-ABP made the shell and TPU 

made the core of the fibers. The off-centered morphology was also proved by the 

results of fluorescence microscopy: the FTIC labelled PNIPAM part covered TPU part 

in fiber and the fiber showed only green color under fluorescence microscope (figure 

44).  

 

a b 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

66 
 

   

Figure 46: TEM images of cross section of side-by-side as-spun PNIPAM-ABP: TPU 

fibers: polymer ratio PNIPAM-ABP: TPU = (a) 7:3; (b) 1:1 and (c) 3:7. 

 

  

   

Figure 47: Images of side-by-side as-spun fibers under fluorescence microscope in 

aqueous environment: (a) pure TPU fiber in ice water; (b) pure PNIPAM-ABP fiber in 

ice water; (c) PNIPAM-ABP-TPU fiber in 40 °C water; (d) PNIPAM-ABP-TPU fiber 

in 18°C water and (e) PNIPAM-ABP-TPU fiber in ice water. Scale bar 10 μm. 

 

PNIPAM-ABP swelled in water. Compared with pure TPU or PNIPAM-ABP fibers, 

the PNIPAM-ABP-TPU fibers show clearly two components in one fiber: the 

transparent component (outside) is PNIPAM-ABP, the other component (inside) is 

a b c 

a b 

c d e 
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TPU. (Figure 47) 

Single fiber self-crimping test was carried out on a glass slide with off-centered spun 

single fibers. One end of the single fiber was fixed on the glass slide with glue. The 

other end of fiber was free. The fiber was free lying on the glass slide. Then a pipette 

was used to put on the fiber a drop cold or hot aqueous water.  

Under different polymer ratios, 5 single fibers with different diameters (the diameter 

of fibers was determined by SEM, figure 48) were tested respectively. Results are 

show in table 7. 

 

Table 7: Self-crimping test of off-centered spun fibers with dfferent polymer ratios: 

Ratio: (PNIPAM:TPU) The number of fiber 

coiled 

The number of fiber did not 

coiled 

7:3 1 4 

1:1 0 5 

3:7 0 5 

 

As show in figure 49, most of off-centered spun fibers have no self-crimping ability. 

Only some bending/buckling behaviors were observed. Although the single fibers 

have different diameters, these fibers had similar behavior in self-crimping test. That 

means diameter should have no influence on crimping behavior of fibers. 
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Figure 48: SEM images of off-centered spun fibers: PNIPAM-ABP:TPU (7:3) (a, b); 

PNIPAM-ABP:TPU (1:1) (c, d); PNIPAM-ABP:TPU (3:7) (e, f) fibers. Scale bar 1 

μm. 

 

As shown in Figure 45, because of difference of electrical conductivity of polymer 

solutions (TPU: 4.1 μS/cm; PNIPAM-ABP: 1.5 μS/cm), the side-by-side spun fibers 

have also an off-centered morphology. Same single fiber self-crimping tests were 

carried out with these fibers. The fiber coiled in ice-cold water (0 ○C, temperature 

below LCST) and the sizes of the coils were dependent upon the ratio of the two 

polymers. More PNIPAM-ABP in side-by-side spun fibers (7:3 PNIPAM-ABP: TPU) 

provided smaller coils (radius ~ 9 µm) in comparison to the fibers with more TPU 

(1:1 PNIPAM-ABP: TPU, radius ~12.6 µm; 3:7 PNIPAM-ABP: TPU, radius ~ 21 

µm). The coils unraveled which resulted in straight fibers in water at temperature 40 

○C (temperature above LCST) (Figure 50). The process was reversible. Results of 

self-crimping test of side-by-side spun fibers are show in table 8. Five samples were 

tested each time and the reproducibility is also documented in table 8. 

a b 

d 

c 

f e 
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PNIPAM-ABP: TPU = 7:3 

 

 

PNIPAM-ABP: TPU = 1:1 

 

 

 

PNIPAM-ABP: TPU = 3:7 
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Figure 49: Self-crimping test of off-centered spun PNIPAM-ABP: TPU fibers with 

different polymer ratios. Scale bar 100 μm. 

 

 

 

 

 

Figure 50: Images of PNIPAM-TPU fibers with different ratios of PNIPAM and TPU 

at different temperatures in water. Scale bar 100 μm. 

 

The curvature = 1/r was used to describe the coiling degree of PNIPAM-ABP-TPU 

As-spun 

PNIPAM : TPU = 7 : 3 PNIPAM : TPU = 3 : 7 

0 ○C 

40 ○C 

 

  

PNIPAM : TPU = 1 : 1 
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single fiber in ice water. As shown in table 8 and figure 50, the curvature of single 

fiber was increased with higher PNIPAM-ABP ratio. The curvature is linearly 

increased against PNIPAM-ABP ratio. (Figure 51) 

 

Table 8: Self-crimping test of PNIPAM-ABP-TPU fibers using side-by-side spinneret 

with different polymer ratios 

Ratio 

(PNIPAM:TPU) 

The number of 

fiber coiled 

The number of fiber 

did not coiled 

Curvature (μm-1) 

7:3 5 0 0.11 ± 0.004 

1:1 4 1 0.079 ± 0.003 

3:7 4 1 0.047 ± 0.001 

 

Although both off-centered and side-by-side spun fibers have off-centered 

morphology, but in side-by-side spun fibers, the position of two polymer layers is 

more asymmetrical (Figure 45), this caused the different behaviors of electrospun 

single fiber in ice water. Offset-degree (OD) was used to define the off center 

morphology of these fibers. As show in figure 52, in cross section of one fiber, the 

largest distance d1 and the smallest distance d2 between outside surface and inner 

interface were found out. d1 and d2 should be in one line, and this line should pass 

through the center point of this fiber. The offset-degree OD = d1/d2. OD≧1. When 

the fiber is core-shell fiber, d1=d2, OD = 1; When the fiber is side-by-side fiber, d2 = 

0, OD → ∞. 
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Figure 51: Plot of curvature against PNIPAM ratio in PNIPAM-TPU single fiber.  

 

Table 9: Offset degree of different fibers: 

Ratio (PNIPAM:TPU) 3:7 1:1 7:3 

Use of side-by-side 

spinneret 

3.56 ± 1.23 3.71 ± 0.69 6.35 ± 0.93 

Use of off-set coaxial 

spinneret 

1.61 ± 0.54 1.66 ± 0.05 1.83 ± 0.19 

 

As show in table 9, the “side-by-side” spun fibers have higher OD value. With higher 

PNIPAM-ABP ratio, the electrospun fibers have higher OD value. Compared with 

“off-set” spun fibers, the “side-by-side” spun fibers show more anisotropic 

morphology. That’s the reason, why the “side-by-side” spun fibers show more 

intensive coiling behavior than “off-set” spun fibers in ice water. 
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PNIPAM-ABP: TPU = 3:7 

  

PNIPAM-ABP: TPU = 1:1 

  

PNIPAM-ABP: TPU = 7:3 

  

Figure 52: TEM images of cross section of off-center spun (a, c and e) and 

side-by-side spun (b, d and f) PNIPAM-ABP-TPU fibers with different polymer 

weight ratios. 

a b 

c d 

e f 

d1 

d2 
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PNIPAM-ABP-TPU (7:3) single fiber was used to study time temperature dependent 

coiling. At 18 °C (even kept for 30 min) the fiber showed buckling. The same fiber 

coiled on decreasing the temperature to 0 °C by putting ice. (Figure 53) 

 

  

  

Figure 53: PNIPAM-TPU 7:3 side-by-side spun fiber in water at different 

temperatures. Scale bar 100 μm; scale bar in magnified image 10μm. 

 

Further to test our hypothesis, we tried another combination of PNIPAM and a 

copolymer of methyl methacrylate and butyl methacrylate (P(MMA-co-BMA)) (1:1). 

The bicomponent fiber shows a clearly side-by-side morphology.[240] The work was 

done by Marvin Gernhardt, a former master student of our group. This single fiber 

was used to study temperature dependent coiling. The coiled fiber decoiled itself 

when temperature increased. (Figure 54) 

 

As-Spun 1 min in 

18 °C water 

 

30 min in 

18 °C water 

 

0 °C water 
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Figure 54: PNIPAM-P(MMA-co-BMA) 1:1 side-by-side spun fiber in water at 

different temperatures. Scale bar 100 μm. 

3.2.2 Conclusions 

A self-coiled bicomponent (PNIPAM-TPU) fiber with off-centered morphology was 

generated by using bicomponent electrospinning. The off-centered morphology was 

confirmed by TEM and SEM. PNIPAM was proved as shell where TPU was as core. 

Unlike off-centered spun PNIPAM-TPU fiber, due to higher asymmetry of two 

polymers in fiber, the side-by-side spun PNIPAM-TPU fiber shows a self-crimping 

ability. The single side-by-side spun fiber showed reversible self-coiling/decoiling in 

water when the temperature is changed. The sizes of the coils were dependent upon 

the ratio of the two polymers. The curvature of single fiber was increasing with higher 

PNIPAM-ABP ratio. Temperature is a very important factor for self-coiling behavior 

of single fiber. In water the coiled PNIPAM-P(MMA-BMA) bicomponent fiber 

showed a self-decoiling process with increasing of temperature. 
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3.3 Self-rolled porous hollow tubes made up of biodegradable 

polymers with bicomponent layer-by-layer morphology 

(This work has been published in Macromol. Rapid. Commun. 2017, DOI: 

10.1002/marc.201700034, with the title: “Self-Rolled Porous Hollow Tubes Made up 

of Biodegradable Polymers” by Ling Peng, Jian Zhu and Seema Agarwal) 

Similar to reversible self-coiling/decoiling ability of PNIPAM-ABP-TPU 

bicomponent single fiber, reversible shape change in an aqueous solution in response 

to external triggers such as temperature and pH is a common phenomenon for 

polymeric bilayer architectures. In these bilayers, one layer is active 

(thermo-responsive) responding to the stimulus leading to change in volume and the 

other one is passive (not affected by the external stimulus). [194-200] Not only simple 

bending but also curling, rolling, and complex motions are possible in a reversible 

way.[201-204] Reversibility is seen as an advantage because the actuation can last for 

many cycles in a reproducible way. On the other hand, if actuation/shape change is 

stopped at the first stage, the irreversible actuation can provide designed 3D 

structured materials at small scale which otherwise is either not possible or requires 

sophisticated bottom-up approaches such as phase-separation and self-assembly 

procedures.[205, 206] Making 3D structures at the macroscale is straightforward, but 

going to micro- and nanoscales requires special methods and optimizations.[207-212] 

The 3D polymeric structures are of importance as scaffolds for tissue engineering, 

confined catalysis, etc. One of these desirable structures is the polymeric hollow tubes 

of diameters smaller than 6 mm, which are of interest for tissue engineering of 
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vascular grafts. [213-225] Coating of polymers on glass rod of appropriate diameter and 

electrospinning on a rotating mandrel-type collector are some of the methods of 

making hollow polymeric tubes of small diameter.[209, 212, 213] However, the 

detachment of hollow tube from the glass rod or collector is a tricky step and might 

lead to cracks.  

Making 3D structures by the irreversible actuation of polymeric bilayers due to 

differential shrinkage/swelling is rare. In one of the examples, a cross-linked 

polysuccinimide (PSI)/polycaprolactone (PCL) bilayer was used. Hydrolysis of PSI in 

physiological buffer led to in situ formation of water-swellable biodegradable 

polyaspartic acid, which leads to formation of tubes. Since hydrolysis of PSI is a slow 

process, it took several hours (at least 9 h) for tube formation and provided 

uncontrolled rolling.[226] In another study, a cross-linked gelatin-hydrophobic polymer 

bilayered film folded irreversibly at 37 °C, but the folding was nonuniform, leading to 

half-open tubes.[227] 

In our group recently showed the formation of highly stable hollow tubes made by 

very fast self-rolling of 2D bilayer porous membrane of poly(N-isopropylacrylamide) 

(poly(NIPAm)) in contact with water. The asymmetry in swelling/shrinkage required 

for irreversible rolling was created by fiber alignment along the membrane 

thickness.[228] In this part of the work, I studied stimulus triggered formation of 3D 

hollow tubes with the following uniqueness: (1) the tubes are formed by actuation of a 

bilayer 2D porous membrane in water without use of any classical thermoresponsive 

polymer. The bilayer is composed of PLA and PCL; (2) formation of 3D hollow 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

79 
 

porous tubes takes place within minutes in water at 40 °C due to the 

temperature-induced relaxation of intrinsic stress in as-prepared porous PLA side of 

the membrane; (3) the tube walls allow exchange of gases while the tubes retain water 

without leakage; (4) the diameter of the tube is controlled by the thickness of PLA and 

PCL, whereas the number of rolls are dependent upon the sample size; and (5) the 

tubes keep their form and size in water at all temperatures once they are formed. 

Notably, the nonpolymeric curled structures including nanotubes with diameter less 

than 1 µm made by self-folding of stressed thin films are known. [229-232] 

3.3.1 Bilayer self-rolled porous hollow tubes of PLA and PCL 

A bilayer fibrous mat of PLA and PCL was fabricated by sequential electrospinning of 

PLA and PCL on a rotating disk-type collector. PLA and PCL were dissolved in HFIP 

and 8 wt% solution of each was used for spinning. The flow rates of the polymer 

solutions (0.88 mL h−1) were regulated by injector jet pumps. The distance between 

the electrodes (nozzle and collector) was 15 cm and the voltage applied was 12.5 kV. 

The rotating disk type collector of diameter 20 cm was used for collecting the aligned 

fibers. It was rotating with a rotation speed of 800 rpm. 

The PLA and PCL fiber mats had fibers with average fiber diameters 1.4 ± 0.2 and 2.4 

± 0.1 µm, respectively (Figure 55 a, b). The porosity was more than 60%–70%, as 

calculated using Equation (7) (Table 10). The fibers were aligned along the long axis 

of the sample with degree of alignment ≈95% and 92% in PLA and PCL fiber mats, 

respectively. A minimum of 100 fibers were considered for calculating the degree of 
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alignment values from SEM images using the literature procedure. [233] 

Interestingly, upon placing the PLA fiber mat in water at 40 °C for about 30 min, a 

significant asymmetric change in dimensions was observed. The length decreased by 

almost 35% whereas the decrease in width was less than 10%. The thickness of the 

mat increased from 46 to 61 µm. In contrast, there was no change in the dimensions 

of PCL mat under similar conditions (Figure 55 c, Table 11). The PLA fibers shrank in 

the direction of fiber alignment significantly. The thermal transitions and degree of 

crystallinity of PLA remained the same even after putting in water at 40 °C, as 

determined by DSC and FTIR (Figures 56 and 57, Table 12). Therefore, change in the 

crystallinity or melting of crystallites could not be the reason of causing shrinkage.[234] 

It is known from the literature that, in several cases, the electrospun fibers are 

collected in an energetically unstable stretched state just after spinning and try to 

acquire the low-energy unstretched conformation when heated near their glass 

transition temperature or come in contact with an appropriate solvent due to the chain 

movement.[180,181,202,235] The glass transition of electrospun PLA fibers is around 50 °C, 

as noted from DSC (Figure 56). PLA fibers, when put in water at 40 °C, most 

probably led to easy chain movement due to the combined effect of temperature close 

to Tg and plasticization by water and hence the shrinkage. Heating at 40 °C under dry 

conditions showed only 3.4% shrinkage in length whereas heating at 20 °C (much 

below the glass transition temperature) even in water did not show any change in 

dimensions (Figure 58, Table 13). 

PLA and PCL porous membranes with aligned fibers were combined in the form of a 
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bilayer (PLA-bi-PCL) by sequential spinning. The bilayer showed an intermingled 

interface with adhesion between the two layers (Figure 55d). The bilayer (PLA:PCL 

2:1 thickness ratio, PLA = 25 µm; PCL = 50 µm) rolls to a hollow tube with 

multilayered wall on putting in water at 40 °C for 5 min due to differential shrinkage 

in length (PLA side shrinks in length whereas PCL length remained the same) 

exerting compressive stress on PCL. The diameter of the tube was 419.7 ± 7.4 µm 

(Figure 55e). 

 

Table 10: Porosity of PLA, PCL and PLA-bi-PCL fiber mats (as-spun and 40 o C 

water treated for 30 minutes). 

Samples Porosity / % 

PLA as-spun 74 ± 1 

PCL as-spun 67 ± 1 

PLA:PCL=1: 3 as-spun 67 ± 3 

PLA:PCL=1: 3 treated 69 ± 2 

PLA:PCL=3: 1 as-spun 74 ± 1 

PLA:PCL=3: 1 treated 73 ± 1 

 

Table 11: Size of PLA and PCL aligned fiber mat (as-spun and 40 o C water treated 

for 30 minutes)  

 PCL as-spun PCL treated PLA as-spun PLA treated 

Length / cm 6.0 6.0 6.0 3.9 

Width / cm 1.0 1.0 1.0 0.9 

Thickness/μm 48 47 46 61 
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Figure 55: Images of PLA, PCL and PLA-bi-PCL electrsopun fiber mats. (a) SEM 

image of PLA(scale bar 10μm), (b) SEM image of PCL(scale bar 10μm), (c) Photos 

of PCL and PLA fiber mats (fibers are aligned along arrow direction) before and after 

putting in water at 40 oC for 30 minutes, (d) Cross-sections of PLA-bi-PCL (PLA: 

PCL 2:1 thickness ratio, PLA= 25 µm; PCL = 50 µm) and (e) PLA-bi-PCL after 

putting in water at 40 oC for 30 minutes. 

 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

83 
 

 

Figure 56: DSC normalized thermograms of PLA fiber mat samples (as-spun and 

heated at 40 oC for 30 minutes with and without water). 

 

Table 12: Tg and Crystallinity of PLA fiber mat samples 

 Glass transition temperature (Tg) Crystallinity 

As-spun 50 o C 5 % 

40 o C 53 o C 5 % 

40 o C water 50 o C 5 % 

 

Table 13: Size of PLA aligned fiber mat (20 o C water and 40 o C oven treatment) 

 PLA as-spun 20 o C water PLA as-spun 40 o C oven 

Length / cm 6.0 6.0 6.0 5.8 

Width / cm 1.0 1.0 1.0 0.95 

Thickness / μm 38 38 43 43 
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Figure 57: FTIR spectra of PLA fiber mats (as-spun and heated at 40 oC for 30 

minutes with and without water). 

 

 

Figure 58: Photos of PLA aligned fiber mats (fibers are along arrow direction). 
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The folding of bilayer, inner diameter of the tube, and the number of layers 

comprising the wall of the tubes were dependent upon the temperature, thickness ratio 

of the two layers, that is, PLA and PCL, and the length of the fibrous mat. The rolling 

of PLA-bi-PCL bilayer fiber mat with a PLA: PCL thickness ratio of 2:1 was tested at 

different temperatures (from 20 to 40 °C) in water. The sample started bending and 

rolled to a hollow tube of diameter around 0.25 cm at 28 ° C in about 30 min with 

PLA, making an inside layer. On increasing the temperature, more compact hollow 

tubes were made in less time with a greater number of rolls. A hollow tube at 40 °C 

was made by self-rolling with diameter 419.7 ± 7.4 µm in 5 min (Figure 59A). The 

tube kept its form and size on changing the temperature. The self-rolling was 

irreversible and the tube does not open again in cold water. Tubes were dried and kept 

their form and size even in air at room temperature. 

Further, the PLA layer thickness had significant influence on the diameter of the tube 

formed after self-rolling (Figure 59B). On increasing the PLA thickness in bilayers 

the inner diameter of the tubes decreased. A hollow tube with inner diameter 321.5 ± 

1.4 µm was generated on using PLA: PCL thickness ratio 3:1. 

In the next experiment, we kept the length and width of the samples the same (L = 5 

cm length in the direction of fiber alignment; W = 1 cm) and studied the effect of PLA: 

PCL thickness ratio on the number of coils. The increase in the thickness of PLA in 

PLA-bi-PCL led to hollow tubes with lower diameter and greater number of coils. The 

sample with thickness ratio (PLA: PCL) 2:1 made a tube with nine layers whereas the 

one with PLA: PCL thickness ratio 1:3 had only six layers. (Figure 59C) Interestingly, 
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Figure 59: Photos of PLA-bi-PCL bilayer tube. (A) Temperature dependent rolling of 

(PLA: PCL 2:1 thickness ratio, PLA= 25 µm; PCL = 50 µm: length = 0.5 cm) 

PLA-bi-PCL bilayer fiber mats. (fibers are aligned along arrow direction, scale of grid 

is 0.5 cm) (B) PLA-bi-PCL bilayer tubes with different thickness ratios of PLA and 

PCL. (a) PLA: PCL= 3:1(scale bar 100 μm); (b) PLA: PCL= 2:1 (scale bar 200 μm); 

(c) PLA: PCL= 1:1 (scale bar 200 μm) and (d) PLA: PCL= 1:3 (scale bar 200 μm). (C) 

Cross-section images of PLA-bi-PCL bilayer tubes with different thickness ratios of 

PLA and PCL and sample sizes. (a) PLA: PCL= 2:1 (1x5 cm) and (b) PLA: PCL= 

1:1(1x5 cm). 
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the inner diameter of PLA-bi-PCL tube only depends on the thickness ratio of PLA 

and PCL layers. By controlling the length of PLA-PCL fiber mat, the number of 

layers in the wall of PLA-PCL tube (number of coils) can also be controlled (Figure 

60). 

 

 

Figure 60: Cross-section images of PLA-PCL bilayer tubes with different layer 

thickness ratios and different sample sizes. (a) PLA: PCL= 2:1 and (b) PLA: PCL= 

1:1. 

 

PLA-PCL fiber mats with different thickness ratio were cut into 1x5 cm size (5 cm 

length in direction of fibers). Both samples were immersed in 40 oC water for 1 hour. 

With higher PLA thickness ratio, the number of layers in wall is also higher. (Figure 

46C) PLA-PCL=2:1 tube had 9 layers, PLA-PCL=1:3 had 6 layers. 

As we know the length of fiber mat, the number of layers in wall can be calculated 

with an equation (1): 

 

n: number of layer n≧2; d: inner diameter of tube; t: thickness of layer; L: length of 

(1) 
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fiber mat in direction of fiber). 

As show in figure 61, the spiral cross-section of PLA-PCL tube is approximated to a 

concentric circle. The PCL layer has no shrinking behavior in 40 oC water, so the total 

outside circumference of PCL layer should be same to the length of as-spun fiber mat. 

The diameter of PCL layer is the inner diameter of tube plus 2 times thickness of 

layer.  

For PLA: PCL = 2:1 tube, d= 420μm, t = 125μm, L= 5cm. So n = 9. 

For PLA: PCL = 1:3 tube, d= 1590μm, t= 120μm, L= 5cm. So n = 6. 

 

 

Figure 61: Simulation of cross-section of PLA-PCL tube with multi-layers. Red layer 

is PLA layer, green layer is PCL layer. 

 

The calculated results are same as the experimental results. 

The inner diameter of PLA-PCL tube only depends on the thickness ratio of PLA and 

PCL layers. By controlling the size of PLA-PCL fiber mat (in direction of fibers), the 

number of layers in the wall of PLA-PCL tube can be also controlled. 

Both PLA layer and PCL layer of as-spun PLA-PCL (2:1) aligned fiber mat are 

hydrophobic. Contact angle of PCL layer was 142 ± 5 o; contact angle of PLA layer 

was 132 ± 1o. (Figure 62) 
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The PCL-PLA aligned fiber mat was treated in water at 40 °C for 1 hour, and dried in 

oven for 3 days. The PCL layer became hydrophilic: the water drop diffused into the 

PCL layer of fiber mat after 11 min, contact angle was 0 o. (Figure 63) 

 

 

Figure 62: Contact angle images of Polycaprolactone layer and Polylactide layer of 

as-spun Polylactide-Polycaprolactone aligned fiber mat. 

 

 

Figure 63: Contact angle images of Polycaprolactone layer of treated Polylactide- 

Polycaprolactone aligned fiber mat at different times. 
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After treating at 40 °C in water, contact angle of PLA layer was also decreased. After 

15 min, the contact angle was 117 o.(Figure 64) The PLA layer became also more 

hydrophilic as before.  

 

 

Figure 64: Contact angle images of Polylactide layer of treated Polylactide- 

Polycaprolactone aligned fiber mat at different times. 

 

As show in figure 65, after treating at 40 °C in water, the aligned morphology of PCL 

layer became distorted. At 40 °C in water, the PLA layer started to shrink. The stress 

generated at the interface pulled the PCL layer to form a tube. Therefore, the 

orientation of PCL layer was destroyed. Some bigger pores between fibers of PCL 

layer were occurred. Due to this morphology change, the wettability changed. 

Stability performance of polymer tube was tested in different pH environment. 4 

pieces of tube (PLA: PCL =2:1) were immersed in buffer solutions with different pH 

values. All of the samples were kept at 37 o C for different time intervals. (Figure 66) 
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Even after 6 days, the tubes kept the form in the buffer solutions. 

 

 

Figure 65: SEM images of PLA and PCL layer of PLA-PCL (2:1) fiber mat. (a) 

as-spun PLA layer; (b) as-spun PCL layer; (c) PLA layer after treating in 40 °C water 

and (d) PCL layer after treating in 40 °C water. 

 

 

Figure 66: Stability test of PLA: PCL= 2: 1 bilayer tube in different buffer solutions. 
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The mechanical properties of fibrous mats after water treatment at 40 °C in water for 

1 h are shown in Table 14. Mechanical properties were dependent upon the direction 

of fiber alignment. [26] Tensile strength and modulus were 11 ± 1 and 146 ± 22 MPa, 

respectively, in the direction perpendicular to the fiber alignment with ≈280% 

elongation at break for PLA-bi-PCL with thickness ratio PLA:PCL 3:1, whereas the 

fiber mats showed significantly higher tensile strength and modulus (11.1 ± 0.8 and 

146 ± 22 MPa, respectively) in the direction parallel to the fiber alignment. The 

mechanical properties of PLA-bi-PCL bilayer fiber mats were also dependent upon 

the thickness ratio of PLA and PCL in the bilayers (Table 14, Figure 67). In all cases, 

PLA-bi-PCL bilayer scaffolds are able to maintain the range of elasticity of typical 

vascular structures.[209, 236] Notably, the mechanical properties reported in the present 

work are determined using a flat bilayer PLA-bi-PCL sheet obtained after 

mechanically opening the rolled tubes. The tubes as such in reality should have 

enhanced mechanical properties due to the multilayered walls formed by rolling. The 

bilayer fibrous membranes were very porous (60%–70% porosity, Table 10) and 

retained their porosity even after contact with water at 40 °C, as quantified by 

calculations based on the density of the bulk films and fibrous mats. In another 

experiment, the porosity of the self-rolled tube was proved by fixing the mat obtained 

after mechanically opening the self-rolled tubes at one end of a plastic water pipe, as 

shown in Figure 68a. The end of the water pipe was closed with the bilayer membrane 

immersed in a flask containing limewater with phenolphthalein indicator, while the 

open end was put in another flask containing solid carbon dioxide. The passage of 
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carbon dioxide through the bilayer mat tied at one end of a plastic tube discolors the 

phenolphthalein/limewater solution in several seconds, proving the porous nature 

(Figure 68a).  

 

Table 14: Mechanical properties of electrospun fiber mat (40 oC water treated).  

Direction of force was perpendicular to the direction of fiber alignment. 

Samples        Young’s modulus  Ultimate Stress Elongation at break 

[MPa]           [MPa]             [%] 

PLA treated 46 ± 5.4 3 ± 0.2 446 ± 53 

PCL treated 2 ± 0.3 1 ± 0.2 1087 ± 110 

PLA:PCL=1: 3 treated 4 ± 0.5 1 ± 0.2 473 ± 20 

PLA:PCL=3: 1 treated 31 ± 4.4 3 ± 0.1 287 ± 23 

 

Direction of force was parallel to the direction of fiber alignment. 

Samples       Young’s modulus Ultimate Stress  Elongation at break 

                 [MPa]           [MPa]             [%] 

PLA treated 214 ± 32 17 ± 1 329 ± 20 

PCL treated 53 ± 4 15 ± 2 657 ± 34 

PLA:PCL=1: 3 treated 143 ± 38 11 ± 3 718 ± 40 

PLA:PCL=3: 1 treated 136 ± 22 11 ± 1 287 ± 40 
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Figure 67: Stress-Strain curves of electrospun PLA, PCL and PLA-bi-PCL fiber mat 

(treated in 40 oC water for 1 hour): (a) Force in the direction perpendicular to the fiber 

alignment; (b) Force in the direction parallel to the fiber alignment. 

 

On the other hand, the hollow tubes allowed flow of water without leakage. A water 

flow test was carried out with PLA-bi-PCL (3:1) bilayer tube (inner diameter around 

320 µm). The two separate pieces of a plastic water pipe were connected through a 

self-rolled PLA-bi-PCL tube. Water with a velocity of 10 cm s−1 was pumped through 

one end of the tube and collected at the other end passing through the connecting 

self-rolled PLA-bi-PCL tube without leakage. Even multitubular structures can also 

be made at the same time in a simple way by cutting the 2D bilayer PLA: PCL 
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membrane in appropriate shapes and putting them in water at 40 °C. One of such 

structures is shown in Figure 68b. 

 

 

Figure 68: (a) Permeability test of PLA-bi-PCL (3:1) bilayer tube. (b) 3D-tube 

scaffold of PLA-bi-PCL (2:1) bilayer fiber mat. 

3.3.2 Conclusions 

In this work, self-folding behavior of multilayer fiber mat without responsive 

polymers was studied. Firstly, a simple method of making tubular scaffolds in few 

minutes by self-folding of 2D sheets is shown. This was possible using conventional 

biodegradable polymers without need of any thermo-/pH-responsive polymers. The 

inherent tendency of PLA fiber mats made by electrospinning to shrink in water at 

40°C was used to generate stress at the bilayer interface required for rolling of a 

PLA-PCL bilayer system. The folding of bilayer, inner diameter of the tube, and the 

number of layers in the wall were dependent upon the temperature, thickness ratio of 
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the two layers, that is, PLA and PCL, and the length of the mat. The combination of 

good mechanical properties and porosity make such tubes a promising candidate for 

further studies as scaffolds for blood vessels. The real application requires in-depth 

experimental and theoretical studies in the future regarding the effect of liquid 

pressure, number of rolls (i.e., wall thickness), type of liquids, and liquid contact time 

on stability of tubes. 
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4. Experimental part 

4.1 Chemicals 

Azobis(isobutyronitrile) Fluka, recrystallized from ethanol. 

Buffer solution (pH = 6) Apollo Scientific Limited, used as received. 

Buffer solutions (pH = 7, 8, and 10) VWR Chemicals, used as received. 

Fluorescein isothiocyanate isomer I Aldrich, used as received. 

Fluorescein sodium salt     Sigma-Aldrich, used as received. 

N-Isopropylacrylamide    Aldrich, recrystallized from cyclohexane. 

N, N’-dimethylformamide   Aldrich, ≧99.8%, used as received. 

Polycaprolactone      Perstorp Group, Capa 6800, used as received. 

Poly(methyl methacrylate )   Aldrich, Mw ~120000 g/mol, used as received. 

Polylactide       Natureworks 4043D, used as received. 

Poly(L-lactide)  Boehringer Ingelheim, Germany. Resomer 

L210, i.v. 3.3-4.3 dl/g, used as received. 

Rhodamine B Sigma-Aldrich, used as received. 

Thermoplastic polyurethane Bayer Materials Science, Desmopan DP 2590, 

used as received. 

Toluene        VWR Chemicals, ≧99.8%, used as received. 

1,1,1,3,3,3-hexafluoro-2-propanol Apollo Scientific Limited, > 99.9%, used as 

received. 
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4.2 Characterization methods 

4.2.1 Tensile testing of single fiber 

The method of preparation of single fiber and tensile tests process were according to 

the previous reports [237, 238]. First of all, a stainless steel frame with an inner 

rectangular size 17.5 x 3.0 cm was used as the collector to collect the side-by-side 

single fibers. The fibers were picked by tweezers. Then a paper frame with an inner 

rectangular size 8 x 5 mm was used to hold the single fiber. Two pieces of double-side 

electrically conductive tape were used to fix the single fiber. After that, two pieces of 

paper were used to cover the ends of the paper frame to make sure that the fiber was 

tightly adhered to the conductive tape. (Figure 69) After the tensile testing the broken 

fiber segments were measured by SEM to obtain the accurate diameter of single fiber. 

Annealing of single fibers was done in MeOH atmosphere for 24 h and by heating at 

80 oC for 10h. 

To calculate the mechanical properties of single fiber, a diameter displacement 

method was applied in this experiment. [237] An equation which is based on the 

relationship between the tensile strength (σ), cross-section area (A) or diameter (D) 

and applied load (F) is shown as follows: 

      σ = F / A = 4F / (πD2)                 (2) 

During the tensile testing, the diameter of single fibers was assumed as 1 μm (D1). 

The accurate fiber diameter (D2) was measured by SEM after tensile test. The real 

tensile strength (σ2) could be calculated by the following equations: 
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         σ1 = F / A = 4F / (πD1
2)                (3) 

         σ2 = F / A = 4F / (πD2
2)                (4) 

         σ2 =σ1 (D1
2 / D2

2)                     (5) 

where the tensile strength (σ1) were directly obtained from the software of the tensile 

test machine. 

 

Figure 69: Digital photographs of electrospun single fiber for tensile test: (A) 

mounting the paper frame with single electrospun fiber (indicated by arrows) on the 

machine, (B) cutting the paper frame and (C) stretching the single electrospun fiber, 

and (D) collecting the broken fiber segments for SEM measurements. (Reprinted with 

permission from Ref 237, Copyright 2014 American Chemical Society) 
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4.2.2 Tensile testing of fiber mat 

The fiber mats were cut into dog-bone shaped samples of dimensions shown in Figure 

70 for the tensile tests using Zwick / Roell, BT1-FR0.5TN-D14, Germany tensile 

tester. TextXpert II software was used to control the tensile test. The test speed was 5 

mm/min. For each fiber mat, 5 replicated tests were run for the calculation. Annealing 

of fiber mats was done in MeOH atmosphere for 24 h and by heating at 80 oC for 10h. 

 

Figure 70: Sketch for tensile-test specimen dimensions. 

4.2.3 Scanning electronic microscopy (SEM) 

The morphology of electrospun fibers and fiber mats were observed by SEM. The 

samples were sputter-coated with platinum (3.0 nm). A Zeiss LEO 1530 equipment 

was used for the study. The diameters of electrospun fibers were measured by ImageJ 

(Version 1.50b).  

Cross sections of fiber mats were observed with desktop SEM (Phenom Pro, 

Phenom-World B.V.). 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

101 
 

4.2.4 Conductivity measurements 

The conductivities of polymer solutions were measured with inoLab Cond Level 3 

instrument (WTW GmbH, Germany). Ultra-pure water was used to calibrate this 

equipment.  

4.2.5 Fourier transform infrared spectroscopy (FTIR) 

FTIR spectroscopy measurements were performed on a DIGILAB FT5 3000 

spectrometer, equipped with a ZnSe crystal with attenuated total reflection technique. 

Analysis was carried out by using Win-IR Pro 3.3 software. The molecular orientation 

of polymer chains in fibers was characterized by a polarized Fourier transform 

infrared spectroscopy (FTIR, PerkinElmer Spectrum 100, USA).  

4.2.6 Differential scanning calorimetry (DSC) 

The thermal behavior and crystallization of polymers was studied by a DSC 

instrument from Mettler Toledo (Type DSC 821e), which was calibrated with indium 

and zinc. The DSC measurements were carried out with ~ 10 mg samples in 

aluminum pans under N2 atmosphere from 25 to 250 °C with a heating rate of 10 

K/min. The glass transition temperature (Tg) was obtained from the first hearting 

curve using a Mettler Toledo STARe software. The degree of crystallinity of PLLA 

nanofibers was calculated with the method which reported by C. Ribeiro et al [169]. 

The degree of crystallinity (ΔXc) of the electrospun mats was calculated using the 

following equation (6): 
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ΔH is the area under the thermogram after Tg and ΔHm
0 is the enthalpy of melting for 

a fully crystallized PLLA sample, which the value is 93.1 J/g.  

4.2.7 Confocal laser scanning microscopy (CLSM) 

Confocal laser scanning microscopy (CLSM, Zeiss LSM 710) was performed with 

Rhodamine B labeled PLLA and Fluorescein sodium labelled SF nanofibers. 

Fluorescein sodium was excited with an Argon LASER at 458 nm and fluorescence 

was detected in the range between 480 and 530 nm. For Rhodamine B a Helium-Neon 

LASER at 543 nm was used while detecting Fluorescence between 555 and 620 nm. 

Visualization and analysis of the morphology was done using the ZEN 2008 software. 

4.2.8 Fourier self-deconvolution (FSD) 

Fourier self-deconvolution (FSD) of the infrared spectra was performed by Opus 6.5 

software. The baseline was corrected firstly. Then the original spectra were smoothed 

with a five-point Savitzky-Golay smoothing filter. Lorentzian line shape with 

bandwidth 23 cm-1 and a noise reduction factor of 0.3 was used to perform 

deconvolution. After that the baseline was corrected again. 11 peaks (centered around 

on 1611, 1619, 1624, 1630, 1640, 1650, 1659, 1666, 1680, 1691 and 1698 cm-1) [31] 

were used to fit the FSD amide I region (1595-1705 cm-1). For each sample, 3 

(6) 
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measurements were made, and for each measurement, calculations were made twice 

to get the average value. 

4.2.9 Transmission electron microscopy (TEM) 

Cross sections of fibers were observed with TEM (Zeiss CEM902). The fibers were 

cut in epoxy. Samples were prepared onto copper grids.  

4.2.10 Digital Microscopy 

The images of stained single fibers were observed using fluorescence microscope 

(Leica DMRX, Type 020-525.706, Germany) with a camera (Leica DC 200). 

IrfanView software was applied to obtain the images. Cross-sectional images of 

fibrous hollow tubes were obtained using digital microscope (VHX-100K, 

KEYENCE Co., Japan). 

4.2.11 Gel-Permeation Chromatography (GPC) 

The molecular weight of polymer was determined by GPC (solvent DMF, 

polystyrene-standard, SDV-linear-column 10μ 8x600 mm from PSS, refractive index 

detector from Agilent and UV detector from Knauer) using software Win GPC Unity. 

4.2.12 Porosity 

The porosity was calculated according to the method described by Vaz et al. [210] Fiber 

mats were cut into rectangular samples (1 cm × 6 cm). Thickness of samples was 

measured with a micrometer (Mitutoyo, Japan). Dry weight was measured with a 
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microbalance (Cubis MSA 6.6S, Sartorius, Germany) accurate to 10−3 mg. The 

porosity (ε) was calculated with the measured average density (ρ) of the samples and 

the standard density (ρ’) of polymers (ρ(PLA) = 1.2 g cm−3; ρ(PCL) = 1.145 g cm−3). 

(Equation (7))  

 

4.3 General procedures for preparation of polymer solutions  

4.3.1 Preparation of silk fibroin solution 

10 g Bombyx mori silk was first degummed twice, in each case with 2 L 0.5 % (g/L) 

NaHCO3 solution at 100 °C for 1.5 hour. Then the sericin-free silk fibers were 

thoroughly washed with deionized water. After complete drying, the extracted silk 

fibers were dissolved in HFIP. Before electrospinning the insoluble flocculents were 

removed by centrifugation. The final concentration of silk fibroin (SF) was about 100 

mg/mL. In 1 mL SF solution, 0.4 mg fluorescein sodium was added. 

4.3.2 Preparation of PLLA soultion  

PLLA was dissolved in HFIP at 40 mg/mL. In 1 mL PLLA solution, 0.2 mg 

Rhodamine B was added. 

4.3.3 Preparation of TPU solution 

TPU was dissolved in DMF at 18 wt.%.  

(7) 
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4.3.4 Preparation of PNIPAM solution 

The photo-cross-linker 4-acryloyl-benzophenone (ABP) (figure 71) was made in lab 

by Dr. Yinfeng Shi according to the literature [239]. 

 

 

Figure 71: Chemical structure of ABP. 

 

The synthesis of photo cross-linkable PNIPAM with number average molar mass (Mn) 

104000 Da and molar mass dispersity (MWD = 1.92) was also conducted according 

to the literature [239]. NIPAM (11g), ABP (0.5g) and AIBN (33 mg) were transferred 

into a 250 Schlenk Flask and dissolved in 80 ml 1, 4- Dioxane. The solution was 

degassed by the method of bubble for 1.5 h. Then the mixture was placed into a 

preheated oil batch at 70 ℃. Polymerization was carried out for 24 h. After 24 hours, 

polymerization was quenched by cooling in liquid nitrogen for several seconds and 

subsequent air contact. The polymer was precipitated in 800 mL diethyl ether giving 

white solid. The dispersion was transferred in Bucher funnel for suction filtration. 

Finally the solid was dried at room temperature in a vacuum oven for 24 h.  

The photo cross-linkable PNIPAM was dissolved in DMF at 32 wt.%. In 1 mL 

PNIPAM solution 0.2 mg Fluorescein isothiocyanate isomer I was added. 
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4.3.5 Preparation of PLA, PCL and PMMA solutions 

PLA and PCL were dissolved in HFIP and 8 wt.% solution of each was used for 

spinning. PMMA was dissolved in HFIP at 15 wt.%.  
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5. Summary  

The work is focused on novel meso-structured bicomponent porous nanofiber mats 

made by electrospinning with special fiber morphologies, such as side-by-side (Janus), 

off-centered fiber and layer-by-layer structures, arrangement of two different 

polymers. The mutual interaction between the two components, both capable of 

having their own supramolecular structures, could lead to novel meso-structured 

porous materials with special properties. Bombyx mori silk and synthetic polymers 

(semi crystalline poly(L-latide), polycaprolactone, thermoplastic polyurethane and 

thermoresponsive poly(N-isopropylacrylamide), showing a LCST-type phase 

transition) were used for making bicomponent fibrous membrane and studies the 

synergetic effect.  

 

The arrangement of polymers in different morphologies provided special effects, like 

increasing of the mechanical properties for side-by-side (Janus) arrangement of 

bombyx mori silk and poly(L-latide). The two sides of two-in-one fiber retained their 

individual secondary structure before and after annealing without affecting each-other 

in a significant way. A size-effect of single nanofibers was observed on the 

mechanical properties, there is an abrupt increase below 400 nm fiber diameter. 

 

Applying different polymers for making special fiber morphologies provided 

interesting set of novel properties. The use of a responsive polymer as one of the 
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components, such as thermoresponsive poly(N-isopropylacrylamide), led to a 

compressive stress at the interface due to swelling/deswelling at different temperature 

in bicomponent fibers,which leading to a reversible coling/decoling behavior. 

Detailed studies were carried out to understand this behavior. 

 

Further, it was discovered that layer-by-layer arrangement of bicomponents with 

differential elasticities could also lead to actuation by temperature getting 

compressive stress at the interface. This was proved by making bilayer fiber mat of 

poly(L-latide) and polycaprolactone. The bilayer rolled to tubular scaffolds in very 

short time (few minute, at 40 oC in wet and dry condition). The phenomenon was 

studied in details by changing the layer thickness ratio and size of fiber mat.  

 

 

 

 

 

 

 

 

 



 
Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties 

109 
 

6. Zusammenfassung 

Die Arbeit fokussiert auf neuartige meso-strukturierte Bikomponenten-poröse 

Nanofaser-Matten, die durch Elektrospinnen mit speziellen Fasermorphologien der 

Anordnung von zwei verschiedenen Polymeren: wie z. B. nebeneinanderliegende 

(Janus), abzentrierte Faserstruktur und Schicht-für-Schicht, hergestellt werden. Die 

gegenseitige Wechselwirkung zwischen den beiden Komponenten, die beide ihre 

eigenen supermolekularen Strukturen haben können, könnte zu neuartigen 

meso-strukturierten porösen Materialien mit besonderen Eigenschaften führen. 

Bombyx mori Seide und synthetische Polymere (halbkristallines Poly (L-latid), 

Polycaprolacton, thermoplastisches Polyurethan und thermoresponsives Poly (N- 

isopropylacrylamid), eine LCST-Phasenübergang gezeigt wird) wurden zur 

Herstellung von Bikomponenten-Fasermembran und Untersuchung der 

synergetischen Wirkung verwendet. 

 

Die Anordnung von Polymeren in verschiedenen Morphologien lieferte Spezialeffekte, 

beispielsweise synergistische Zunahme der mechanischen Eigenschaften für die 

nebeneinanderliegende (Janus) Anordnung von Bombyx mori Seide und Poly(L-latid). 

Die beiden Seiten der Zwei-in-Eins-Faser behalten ihre individuelle Sekundärstruktur 

vor und nach dem Glühen, ohne sich in einer signifikanten Weise zu beeinträchtigen. 

Bei den mechanischen Eigenschaften wurde ein Größeneffekt einzelner Nanofasern 

beobachtet: ein plötzlicher Anstieg der mechanischen Eigenschaften unterhalb von 
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400 nm Faserdurchmesser. 

 

Die Veränderung des Polymertyps zur Herstellung spezieller Fasermorphologien 

lieferte interessante neuartige Eigenschaften. Die Verwendung eines ansprechenden 

Polymers als einer der Komponenten, wie z. B. thermoresponsives Poly (N- 

isopropylacrylamid), führte zu einer Druckspannung an der Grenzfläche aufgrund von 

Schwellung /Abschwellung bei unterschiedlicher Temperatur in Bikomponentenfasern, 

was zu einem reversiblen Windend- / Entfaltungsverhalten führte. Detaillierte 

Untersuchungen wurden um dieses Verhalten zu verstehen durchgeführt. 

 

Weiterhin wurde entdeckt, dass eine Schicht-zu-Schicht-Anordnung von 

Bikomponenten mit differentiellen Elastizitäten, die durch Temperatur eine 

Druckspannung an der Grenzfläche erhält können, auch zu einer Betätigung führen 

könnte. Dies wurde durch die bilayer Fasermatte aus Poly(L-latid) und 

Polycaprolacton bewiesen. Die Doppelschicht wurde in sehr kurzer Zeit zu 

röhrenförmigen Gerüsten gerollt (wenige Minuten, bei 40 ° C nass / trocken 

Bedingungen). Das Phänomen wurde in Einzelheiten durch Ändern des 

Schichtdickenverhältnisses der beiden Schichten, der Größe der Fasermatte, 

untersucht. 
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7. Outlook 

This work was done particularly in regard to bicomponent fibers and fiber mats with 

novel morphologies and behaviors through bicomponent electrospinning technique. 

Basic work for future projects has been carried out. Possible research directions with 

these fibers and fiber mats for potential applications in future have been designed. 

As SF-PLLA fiber has better mechanical properties than pure SF fiber, the SF-PLLA 

fiber may expand the application area of SF fiber. Diameter of fibers and orientation 

of fibers in fiber mats influence the mechanical properties. It is possible to make 

single fibers and fiber mats which with the aimed mechanical properties through 

combination of different materials and control of diameter of fibers and orientation of 

fibers in fiber mats. The SF-PLLA fiber has a side-by-side morphology, both SF and 

PLLA sides can be modified. It would be interesting to use such fibers for 

biodegradation studies, cell culture, scaffold and drug-release applications in 

nano-scale to exploit the utility of side-by-side morphology, and surface chemistry of 

two sides. 

With the bicomponent PNIPAM-TPU single fiber with off-centered morphology, a 

self-crimping ability was observed. The single side-by-side spun fiber can reversibly 

self-coil/decoil in water with the changing of temperature. The sizes of the coils were 

dependent upon the ratio of the two polymers. With the reversible self-crimping 

ability, this fiber can be used as a micro actuator or micro spring in aqueous 

environment. 
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The PLA-PCL bilayer fiber mat shows a simple method of making tubular scaffolds 

in few minutes by self-folding of 2D sheets. The folding of bilayer, inner diameter of 

the tube, and the number of layers in the wall were dependent upon the temperature, 

thickness ratio of the two layers, that is, PLA and PCL, and the length of the mat. The 

combination of good mechanical properties and porosity make such tubes a promising 

candidate for further studies as scaffolds for blood vessels. The real application 

requires in-depth experimental and theoretical studies in the future regarding the 

effect of liquid pressure, number of rolls (i.e., wall thickness), type of liquids, and 

liquid contact time on stability of tubes. The make such fiber mats a promising 

candidate for further studies as drug release without many limits conditions like 

temperature, pH etc.  
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