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Abstract

This cumulative thesis is dedicated to the experimental and theoretical study of the
dynamics of mesoscopic colloidal systems. I am presenting new strategies for the mani-
pulation of micrometer sized living and non-living colloidal particles based on magnetic
fields. I am thereby following three different approaches that either aim to design novel
mechanisms for the transport of colloidal particles or to use colloids as model systems
for dynamic phenomena in other condensed matter systems. The three parts are (i)
the topologically protected transport of colloidal particles, (ii) the magnetic guidance of
magnetotactic bacteria and (iii) the dynamics of monopole defects in artificial colloidal
ice.
In the first part I am presenting a novel approach for the transport of magnetic colloidal
particles based on topological protection. The colloids are placed above a periodic ma-
gnetic lattice of alternating domains with a lattice constant of the order of the particle
size. The system is driven by closed periodic modulation loops of a time-dependent ex-
ternal magnetic field. With a clever choice of modulation loops it is possible to transport
the particles via adiabatic or deterministic ratchet motion. The theoretical investigation
of the connection between the driving loops and the colloidal motion shows that the
transport in our system is topologically protected. In consequence the colloidal motion
turns out to be robust, for example against thermal fluctuations or details of the modu-
lation loops. Therefore multiple particles can be transported in a dispersion free manner.
Beyond that it is even possible to simultaneously control two different types of particles
(paramagnetic and diamagnetic colloids) and to move them into independent directions.
The topology is thereby inherently connected to the symmetry of the magnetic lattices.
Different symmetries favor distinct transport modes. This is used to implement a colloi-
dal topological insulator. Colloids can be stably guided along arbitrary edges between
patterns of different symmetry without explicit information over their location or orien-
tation.

In contrast to the topologically protected transport of passive particles, the mechanism
in the second part is based on actively swimming particles. I am using magnetotac-
tic bacteria, which have a internal permanent magnetic moment. This facilitates the
manipulation of the bacteria with external magnetic fields. Magnetotactic bacteria are
therefore suitable to study the influence of external constraints on the bacterial motion.
The bacteria are placed to swim above the magnetic domain structures of garnet films,
which allows the stable guidance of magnetotactic bacteria along straight or curved stri-
pe domains. Two features are important for this, the active swimming of the bacteria
and the magnetic forces and torques exerted on the magnetic moment of the bacteria. A
careful balance of these two ingredients results in a stable guidance of the magnetotactic
bacteria.
The last part is not concerned with the transport of the mesoscopic particles themselves
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but with their use as a model system for spin ice. The elementary magnetic moments
(spins) of this remarkable material are strongly frustrated, which results in a highly
degenerate ground state. The basic excitations of the spins turned out to be emergent
magnetic monopoles. Here I am using a colloidal system to model the dynamics of
spins and monopole defects in a two dimensional projection of the spin ice crystal. The
colloidal particles are confined in a gravitational double well structure. The collective
behavior of the interacting magnetic colloids resembles the frustrated behavior of the
spins in spin ice. With the help of colloidal spin ice I observed the dynamics of monopole
excitations in real-time, which allowed to draw conclusions on the interactions between
pairs of defects. This way I could experimentally confirm that defects in fact show a
characteristic monopole behavior. Beyond that I am using colloidal spin ice to realize
a universal logic gate based on monopole excitations and suggest a novel approach to
recover the degenerate ground state of the original 3D spin ice in the 2D colloidal model
system.
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Kurzdarstellung

Diese kumulative Dissertation widmet sich der experimentellen und theoretischen Unter-
suchung der Dynamik mesoskopischer kolloidaler Systeme. Ich präsentiere neue Strate-
gien zur Manipulation von mikrometergroßen, lebenden und nicht lebenden, kolloidalen
Teilchen, die auf Magnetfeldern basieren. Dabei verfolge ich drei verschiedene Ansät-
ze, die entweder darauf abzielen neue Mechanismen für den Transport von Kolloiden
zu entwerfen, oder Kolloide als Modellsysteme für dynamische Phänomene in anderen
Systemen der kondensierten Materie zu verwenden. Die drei Teile dieser Arbeit sind (i)
der topologisch geschützte Transport kolloidaler Teilchen, (ii) die magnetische Führung
magnetotaktischer Bakterien und (iii) die Dynamik von Monopoldefekten in künstlichem
kolloidalem Eis.
Im ersten Teil präsentiere ich eine neue Herangehensweise für den Transport von ma-
gnetischen Kolloiden, die auf topologischem Schutz basiert. Die Kolloide werden auf der
Domänenstruktur eines periodischen magnetischen Musters platziert, welches eine Git-
terkonstante in der Größenordnung der Teilchengröße hat. Das System wird durch die
geschlossene und periodische Modulation eines zeitabhängigen externen Magnetfeldes
angetrieben. Durch eine geschickte Wahl dieser Modulation ist es möglich, die Kolloide
adiabatisch oder per deterministischer Ratsche zu transportieren. Durch die theoretische
Untersuchung des Zusammenhangs zwischen der externen Modulation und der kolloida-
len Bewegung konnte gezeigt werden, dass der Transport in unserem System topologisch
geschützt ist. Infolgedessen ist die kolloidale Bewegung robust, zum Beispiel gegen ther-
mische Fluktuationen und Details der externen Modulation. Daher können viele Kolloide
gleichzeitig und dispersionsfrei transportiert werden. Darüber hinaus ist es sogar mög-
lich, zwei verschiedene Teilchensorten (paramagnetische und diamagnetische Kolloide)
unabhängig voneinander zu kontrollieren und in verschiedene Richtungen zu bewegen.
Topologie und Symmetrie der magnetischen Gitter sind dabei untrennbar verbunden.
Verschiedene Symmetrien begünstigen unterschiedliche Transportmoden. Diese Tatsache
wird verwendet, um einen kolloidalen topologischen Isolator zu implementieren. Kolloide
können stabil entlang der Grenzen zwischen zwei Mustern, mit unterschiedlicher Symme-
trie, transportiert werden. Dabei ist keine explizite Information über die Position oder
Orientierung dieser Grenze notwendig.
Im Gegensatz zum topologisch geschützten Transport passiver Kolloide basiert der im
zweiten Teil vorgestellte Ansatz auf aktiv schwimmenden Teilchen. Ich benutze magne-
totaktische Bakterien, die ein internes permanentes magnetisches Moment besitzen. Dies
ermöglicht die Manipulation der Bakterien mit externen Magnetfeldern. Magnetotakti-
sche Bakterien sind daher hervorragend geeignet, um den Einfluss von außen auferlegter
Zwänge auf die bakterielle Bewegung zu untersuchen. Die Bakterien werden dazu auf
Granatfilmen platziert, sodass sie oberhalb der Domänenstruktur schwimmen können.
Diese Konstellation erlaubt die stabile Führung magnetotaktischer Bakterien entlang
gerader oder gekrümmter Streifendomänen. Zwei Merkmale sind dafür wichtig. Zum
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einen das aktive Schwimmen der Bakterien und zum anderen die magnetischen Kräfte
und Drehmomente, die auf das magnetische Moment der Bakterien wirken. Ein sorg-
fältig ausbalanciertes Gleichgewicht dieser beiden Bestandteile führt zu einer stabilen
Bewegung der magnetotaktischen Bakterien.
Der letzte Teil dieser Arbeit befasst sich nicht mit dem Transport der mesoskopischen
Teilchen selbst, sondern mit ihrer Verwendung als Modellsystem für Spin-Eis. Die ele-
mentaren magnetischen Momente (Spins) dieses bemerkenswerten Materials sind geome-
trisch frustriert, was zu einem vielfach entarteten Grundzustand führt. Die elementaren
Anregungen in Spin-Eis sind magnetische Quasi-Monopole. In meiner Arbeit verwen-
de ich ein kolloidales System, um die Dynamik von Spins und Monopolanregungen in
einer zweidimensionalen Projektion des Spin-Eis Kristalls nachzubilden. Die kolloida-
len Teilchen werden durch die Gravitation in Doppelmuldenstrukturen eingeschlossen.
Das kollektive Verhalten der wechselwirkenden magnetischen Kolloide bildet die Verhal-
ten der frustrierten Spins im Spin-Eis nach. Ich benutze dieses kolloidale Modellsystem,
um die Dynamik von Monopolanregungen in Echtzeit zu studieren, wodurch sich Rück-
schlüsse auf die Wechselwirkungen zwischen Defektpaaren ziehen lassen. Auf diese Weise
konnte ich experimentell bestätigen, dass Anregungen in Spin-Eis tatsächlich ein cha-
rakteristisches Monopolverhalten zeigen. Darüber hinaus verwende ich das kolloidale
Modellsystem, um ein universelles Logikgatter auf der Basis von Monopolanregungen zu
realisieren, und stelle einen neuen Ansatz vor, um den entarteten Grundzustand des ur-
sprünglich dreidimensionalen Systems im zweidimensionalen, kolloidalen Modellsystem
wiederherzustellen.
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Chapter 1
Physics of colloidal motion

Motion on the mesoscopic scale is essential for living organisms. Nutrients and other
molecular cargo need to be transported through the body in various purposes, either
between different cells or within single cells [1]. The investigation of such dynamic
processes requires a fundamental understanding of motion at this scale. This thesis aims
to contribute to this. I am studying the magnetically induced dynamics of living and
non-living mesoscopic colloidal particles.
A colloid is a mixture of mesoscopic nanometer to micrometer sized particles (colloidal
particles, often they are also-called colloids), which are dispersed in a continuous phase,
e.g. water. I am using particles with a size of a few microns. Colloids appear in a lot of
products we use on a daily basis including cosmetics, pharmaceuticals and food [2]. The
macroscopic properties like the viscosity of colloidal suspensions are strongly dependent
on the microscopic details, e.g. the interaction potential between the colloidal parti-
cles [3]. The dynamics of such soft matter systems is of current interest in experimental
and theoretical physics [4, 5] and is subject of this thesis. There are several fundamental
questions related to motion on the mesoscopic scale. The most important question is of
course how to mediate transport. In general there are two opposing strategies to achieve
motion, that is passive transport or active locomotion. Passive motion is induced by
external forces applied to an object. In contrast, active motion requires an advanced
mechanism of the object itself. It is almost always based on periodic changes of the con-
formation of the object, which are translated into a linear translation in various different
ways. The most obvious example is a walking person. The periodic rearrangement of
our legs translates us above a solid surface. These two distinct strategies for motion
have a very universal character. Nonetheless the details of the realization are of course
different on the mesoscopic scale. The central question is therefore how to implement
suitable transport mechanisms for mesoscopic particles. This question as well as the two
potential solutions, active and passive transport, will guide us through the whole thesis.
I am using magnetic fields to manipulate the motion of colloidal particles. Due to the
long range of magnetic interactions, magnetism is a perfect candidate to apply forces
at the mesoscopic scale. Other microscopic interactions, like for example the van der
Waals interaction or electrostatic interaction, which is screened in physiological environ-
ments [6], have a low effective range of only a few nanometers and are therefore less
suitable candidates for the study of mesoscopic objects. There is a broad availability
of paramagnetic and ferromagnetic colloidal particles, both living and non-living. To
manipulate the magnetic colloids I am using a combination of a time-dependent exter-
nal field and the heterogeneous field of ferrite garnet films. Garnets are ferrimagnetic
materials which have magnetic domain structures that vary on the size of the colloidal
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Chapter 1 Physics of colloidal motion

particles. Therefore they are predestined to control passive as well as active colloidal
transport.
Beyond the choice of suitable interactions the surrounding fluid is another important
aspect for colloidal motion. Mesoscopic Reynolds numbers Re � 1 are small 1. Hence
inertia becomes negligible and motion is governed by viscous forces. In addition thermal
fluctuations become important at the mesoscopic length scale. For stable transport it is
thus important to either overcome fluctuations or to harness and to convert them into
directed motion [7]. In summary there are a lot of fundamental challenges that have to
be faced to achieve reliable mesoscopic transport.
Nature has its own rich toolbox of fascinating transport mechanisms including both,
passive and active strategies [1]. The first mechanism is exemplified by the advective
carrying of oxygen and nutrients in the blood flow. The second one relies on active
micro-transporters, so-called molecular motors. A well known example is Kinesin. It is
used for the intracellular transport of molecular cargo or in the mitosis, the division of
the cell nucleus [9]. Kinesin moves along predefined tracks on the cytoskeleton of the
cells, the microtubule filaments. The motor protein consists of a tail and two heads of
which one is always bound to the microtubule. The motion of Kinesin is powered by
the hydrolysis of ATP, the energy currency of biological systems. One cycle consists of
the binding of ATP, its hydrolysis and the final release of ADP. This chemical cycle is
directly related to a cyclic change in the conformation. First the Kinesin protein rotates,
then the free head binds to the track and in the last step the other head, that was bound
before, is released. This results in a step of 8 nm, which is exactly one repetition unit
of the microtubule. Hence one chemical cycle corresponds to one translation step. The
periodic repetition of this process allows the motor protein to actively move along its
track over huge distance up to the order of micrometers. The commensurability of the
chemical cycle and of the step width with the periodicity of the track on which it moves
is an essential ingredient for the proper functionality of this molecular motor. Similar
commensurability questions will play an important role for the motion in my mesoscopic
systems.
Advances in microscopic fabrication technologies favored the emergence of artificial
miniaturized micro machines. Natural molecular motors are thereby a constant source of
inspiration. Designing, engineering and building micro machines has become one of the
major tasks in current soft matter physics. Artificial mesoscopic systems with precisely
engineered properties are perfect tools to study existing and to develop new fundamental
strategies for mesoscopic motion [10]. Alongside there are also a lot of potential appli-
cations for such systems. A prominent example is health care, both inside and outside
of living organisms. This includes among many other examples the targeted delivery of
drugs [11, 12].
The ultimate goal in this regard is the so-called lab on a chip [13]. Some 50 years ago
computers used to occupy big halls [14]. Nowadays everyone of us can carry a computing

1The Reynolds number is defined as Re = ρdv/η [8]. In water the dynamical viscosity is η ≈ 1mPas and
the density is ρ ≈ 103kg/m3. The typical speed of particles in the used colloidal system is v = 10µm/s
and a typical size is d = 1µm. This results in a Reynolds number Re = 10−5 � 1.
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device, which is even way more powerful, in the pocket. The idea behind lab on a chip
devices is the same. Today chemical processing is done by chemists in big laboratories.
The dream is to automatize and to miniaturize chemical tasks down to size of a chip card.
The accurate mediation of miniaturized chemical reactions requires a reliable transport of
smallest amounts of reactants within a very limited space. Therefore one of the first steps
towards the realization of lab on a chip devices has to be the fundamental understanding
of the required mesoscopic transport processes. Like in the natural archetype there
exist two distinct ways of achieving transport on this small scale. The first is passive
transport of cargo in advective flows. The investigation and manipulation of flows at the
scale of micrometers is known as microfluidics [15]. Smallest volumes (a few microliters)
of fluids can be transported in narrow channels of only several micrometers in width.
In this thesis however, I will focus on the second approach, which is based on micro-
transporters. These carriers are employed to transport cargo to desired locations or
along predefined paths. Suitable candidates are biological molecular motors transferred
to artificial environments [16] or artificially constructed molecular motors [17]. A third,
alternative approach is the use of passive colloidal particles. Here I am referring to
colloids in a very classical sense, that is mesoscopic polystyrene or silica spheres dispersed
in water.
The advantage of these particles is that their surfaces can be chemically functionalized.
Therefore colloids can fulfill a lot of diverse chemical tasks, which makes them impor-
tant tools for example in medical application. Examples are given by the separation of
biological cells from blood on micro-devices [18, 19] or the hyperthermia treatment of
cancer [20]. In the latter magnetic colloids are injected into a tumor. Upon application
of an oscillating magnetic field the particles start to rapidly move, which generates heat
and destroys tumor cells. However, the probably most important role of colloidal par-
ticles is their use as micro carriers for molecular cargo [21]. With short DNA strands
bound to their functionalized surface [22], the exploitation of hydrodynamic flows [23] or
the use of colloidal rings [24] basically any cargo can be attached to colloidal particles.
Moving the particles via external fields results in the desired transport of the attached
cargo [25].
This thesis is concerned with the fundamental study of the dynamics of mesoscopic
colloidal particles. I am presenting two novel approaches, one is based on passive colloids
and the other one on actively swimming particles.
The question in the first part is how to achieve reliable transport of passive colloidal
particles. There exist a lot of standard techniques to control colloidal particles, including
gradient fields [26], liquid crystal based solvent [27] or thermal ratchets [28]. One of the
problems is the intrinsic polydispersity of colloids. There is always a certain distribution
in the particle properties like size, mass or susceptibility. For this reason transport
with the above mentioned strategies will always result in a diffuse broadening of the
particle trajectories, which makes these mechanisms unsuitable for the transport of big
collections of particles.
I am going to show an alternative to the prior mechanisms which overcomes these limi-
tations. Magnetic colloidal particles are transported above a periodic magnetic pattern
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Chapter 1 Physics of colloidal motion

of e.g. a garnet film. The motion is driven by periodic modulation loops of an external
magnetic field. The idea to use garnet films for colloidal transport has already been
successfully tested [25]. However the transport in these previous systems is based on
thermal ratchet motion of colloidal particles. Non-equilibrium thermal fluctuations in
the system cause irreversible jumps of the particles between the wells of an underlying
potential. The motion can be directed by an asymmetry of the potential [29]. Due to
complicated correlations between noise [30], disorder [31] and particle interactions [32],
the thermal ratchet motion is complex. It is already difficult to direct the motion of a
single particle and hence virtually impossible to maintain simultaneous control over the
transport of two different types of particles.
The novel approach that I present in this thesis is based on topological protection. Col-
loidal particles are transported via adiabatic or deterministic ratchet motion. Therefore
the transport no longer relies on the complicated thermal ratchet mechanism. Fur-
thermore the system is extended to two distinct types of particles, paramagnetic and
diamagnetic colloids 2. There exist periodic modulation loops of the external magnetic
field, that allow for the simultaneous control over both types of particles. Despite the
use of passive particles the basic mechanism of motion is similar to the one applied by
active particles. In Kinesin each chemical cycle translates the protein by one step. In the
colloidal transport it is an appropriate cycle of the external modulation that transports
the passive particles by one unit vector of the magnetic lattice. The externally imposed
driving thereby allows to easily manipulate the motion from outside.
To explore the connection between the modulation loops of the external field and the
transport of colloidal particles, a new theoretical framework is developed. With the
help of this theory I could prove that the transport of colloidal particles in our system is
topologically protected. Topological protection ensures a great robustness of the particle
transport. It is for example stable against thermal fluctuations, details of the modulation
loops or disorder in the magnetic structures. This enables the dispersion free transport
of huge collections of particles. Depending on the symmetry of the magnetic pattern
it is even possible to transport paramagnetic and diamagnetic particles into indepen-
dent directions. Lattices of different symmetries are also used to implement a colloidal
topological insulator. The colloidal topological insulator as well as the possibility of two
independent transport directions offer a whole new variety of possible transport modes,
which might be interesting for potential applications. I used the possibility of two inde-
pendent transport directions to implement an automatic quality control of a chemical
reaction.
In the second part of this thesis I present a fundamentally different approach. It is no
longer based on passive particles but on active mesoscopic particles. Thus the ques-
tion is no longer how to use external forces to transport a passive particle, but how to
control and direct the motion of the actively swimming particle. Similar to molecular
motors, active particles convert chemical energy from their environment into a directed
swimming motion. Due to the small Reynolds numbers, swimming on the mesoscopic

2Diamagnetic colloids are actually nonmagnetic particles that are dispersed in ferrofluid. They are thus
magnetic holes in the surrounding ferrofluid and therefore effectively diamagnetic.
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scale is fundamentally different from the macroscopic scale and requires a non-reciprocal
sequence of motion [33]. One possible swimming strategy in the viscous regime is the
periodic rotation of a chiral object, similar to a ship’s propelling screw [33]. This mech-
anism is applied by biological microswimmers, such as bacteria like Escherichia Coli,
which propel themselves by the rotation of a helical bundle of flagella [34]. The rotary
motion is again connected to a molecular motor [1]. Obviously the basic idea behind
the strategy for motion is similar to the molecular motor Kinesin which was discussed
above. The periodic repetition of a process, the rotation of flagella, is converted into a
linear motion of the bacterium.
I am using magnetotactic bacteria, a special type of bacteria that has a built-in per-
manent magnetic moment. In their natural habitat, magnetotactic bacteria use their
magnetic moment to navigate in the geomagnetic field. The unique magnetic moment
offers the possibility to manipulate the motion of the bacteria with magnetic fields. Con-
sidering this and the bacteria size of a few micrometers, it is an obvious choice to use the
domains of garnet films to direct the bacterial motion. I will show that magnetotactic
bacteria can be stably guided along arbitrary stripe domains of magnetic patterns.
So far I presented two novel strategies to control and to transport mesoscopic particles.
On studying these colloidal systems, or in general any physical system, it is often very
helpful not to restrict all the considerations to one specific problem but to see a bigger
picture. The problems encountered in one discipline are often very similar to those
in other areas. To solve problems in one’s own system it might therefore be helpful to
apply concepts and strategies from other fields. An example is given by the topologically
protected colloidal transport. The concept of topological transport originally stems from
solid state physics [35]. It is for example important in topological insulators, which are
insulating in the bulk but posses topologically protected conducting edge states [36].
I borrowed this concept and applied it to colloids. Topological protection helped to
theoretically understand the colloidal transport and to show its robustness. In a second
step the inspiration was even more obvious. The motion of electrons in the semiclassical
picture of the quantum Hall effect was directly transfered to the motion of the particles
in the colloidal topological insulator. Hence a concept from another area of physics
helped to understand and to improve transport in our colloidal system.
This exchange, however, is not a one-way road. Beyond the above discussed use for
the transport of cargo, there is another intriguing aspect about colloidal particles. The
advantage of colloids is their easily accessible size and timescale. The colloidal dynamics
are observable in real time with optical microscopy. Furthermore, the interaction be-
tween colloids can be easily tuned with external fields. In contrast to this, particles in
condensed matter often cannot be visualized. These particles are hidden in the bulk of
the material and their length scales are too small or their timescales too fast to observe
the dynamics. This has triggered the use of alternative model systems. Due to their
unique accessibility, colloids are perfect candidates for the modeling of such systems.
Colloids became an important tool which helps to understand basic mechanisms in sys-
tems from other fields of physics. There are various examples for colloidal model systems.
Colloids are often used to mimic the behavior of atoms [37] and molecules [38] or to study
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Chapter 1 Physics of colloidal motion

phase transitions and coexistence in crystalline systems [39]. It is even possible to model
advanced phenomena like the quantization of currents in condensed matter systems [40].
Also the colloidal topological insulator is not only inspired by the quantum Hall effect.
At the same time, it is also one of the first experimental visualizations of the motion of
electrons within the semi-classical interpretation of the quantum Hall effect.
In the third and last part of this thesis I am going to use a colloidal model system for
the behavior of the spin degrees of freedom in spin ice. Spin ice is a fascinating magnetic
material, whose elementary magnetic moments are highly frustrated [41]. This results
in a multifold degenerate ground state and the unusual property of residual entropy.
Recently another intriguing aspect of this material was discovered. The elementary
excitations in spin ice are emergent magnetic monopoles [42]. These can move through
the spin ice lattice. The translation from one vertex to the next is thereby related to
the flipping of one spin. Thus it is again a stepwise motion on a discrete lattice. This
time, however, it is not initiated by periodic repetitions of a driving process. Another
difference is of course that it is no longer a massive object that moves, but an excitation
in a crystal. However there is little knowledge about the dynamics of the elementary
monopole excitations [43]. The spin degrees of freedom and their dynamics, in the bulk
of the spin ice material, are not directly accessible in experiments. Considering this it
seems an obvious choice to use colloidal particles to study the spin dynamics in spin ice.
In the employed colloidal model system magnetic colloids mimic the elementary magnetic
moments in spin ice. The particles are constrained such that their collective behavior
mimics the phenomenology of the frustrated spins. I am using this system to observe
the dynamics of monopole excitations in real time. This makes it possible to study the
interaction potential between defects and to confirm their monopole character.
Beyond that, I am suggesting a design for a universal logic gate based on monopole
currents. Although it is probably not very efficient to use a colloidal system for logic
operations, it would be a breakthrough to transfer the concept to the original spin ice
system. This could foster the realization of computing units based on magnetricity which
can be miniaturized to the scale of a few spins in a spin ice crystal. Since the race for
smaller and more efficient electronic computing devices is going to cease in foreseeable
time [44], magnetricity could be a welcome alternative.

Altogether I am presenting novel routes for the motion of mesoscopic particles based on
magnetic fields. Transport is either induced by external fields, by the collective inter-
action between the colloids or by active swimming of the particles themselves. Besides
studying new methods to achieve robust transport of mesoscopic particles, I am using
colloids as model systems.
The whole thesis is based on experimental observations which are complemented with
theoretical explanations. This involves mathematical methods (topology) and, if re-
quired, numerical simulations. In addition, biological particles (magnetotactic bacteria)
are used. The insights gained this way address fundamental questions about the dy-
namics of mesoscopic particles. The results are not limited to colloidal systems but
include implications on other areas of physics, e.g. the dynamics of emergent magnetic
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monopoles and the presence of topological protection in truly dissipative systems. Some
of the results might also be interesting for potential future applications.
This cumulative thesis is organized in the following way. Part I aims to give a short
overview over the topics in which my work is embedded. Furthermore it contains brief
summaries of the publications and establishes the connection between them. Part II
are the publications themselves. They are sorted thematically and are referenced in the
text as [P1] to [P6]. The appendix summarizes details of the experimental setups and
methods used throughout this thesis.
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Chapter 2
Topological protection

The theoretical study of the quantum Hall effect introduced a new way of classifying
physical systems based on topology [35]. Thouless and co-workers discovered that topo-
logically protected edge states give rise to the quantized Hall conductance. Due to
topological protection the edge channels, and therefore the quantized Hall conductance,
are robust against perturbations and disorder in the system.
Within the work on the quantum Hall effect and its variations a fascinating novel type
of materials was discovered, the so-called topological insulators [36]. Topological insu-
lators are insulating in the bulk and have topologically protected conducting edge or
surface states. Just like in the quantum Hall effect, topologically protection ensures the
robust and dissipation free transport of quantum mechanical excitations in these edge
channels. Their robustness makes them appealing for various applications ranging, from
spintronics [45] to quantum computing [46].
The concept of topological protection is not limited to quantum mechanical systems. It
can also be used in classical materials for the robust transport of classical waves, e.g. of
sound waves in mechanical meta materials [47].
In this chapter I present a new example of topological protection, the driven dissipative
transport of colloidal particles. Magnetic colloids are driven above a periodic magnetic
film by periodic modulation loops of a time dependent external magnetic field. In pub-
lications [P1] to [P4] I show that the colloidal transport in these systems is also topolog-
ically protected. In contrast to quantum mechanical excitations or classical waves, here
the concept of topological protection ensures the robust transport of classical colloidal
particles.
Topological protection is a promising approach to overcome the problems of previ-
ous colloidal transport systems that are discussed in the introduction and enables the
dispersion-free transport of big collections of colloidal particles. I also succeeded to en-
hance our system with a second type of particles. It is possible to have independent
control over the transport of paramagnetic and diamagnetic colloids.
I start this chapter by explaining the concept of topological protection. The original
example of the quantum Hall effect is used to illustrate how topology enters into physics
and how topological protection results in robust physical properties. This is completed
with a short survey over topological insulators and their presence in a huge variety
of different physical systems. The second half is dedicated to the colloidal transport
system. I show how the topological classification of modulation loops of the driving
field results in the topological protection of colloidal transport. The chapter is com-
pleted by a brief summary of the work presented in the appendant publications. In
publications [P1] to [P3] I am experimentally studying the colloidal transport. This is
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complemented by a new theoretical framework that explains the colloidal motion and
proves that it is topologically protected. In addition a direct applicationm an automatic
quality control for a chemical hybridization reaction is implemented in publication [P2].
Finally in publication [P4] I realized a colloidal topological insulator which establishes
the connection to other topologically protected systems.

2.1 The concept of topological protection
Topology is one of the central areas of mathematics. It is concerned with the charac-
terization of solid figures and spaces. Of special interest are thereby properties of such
objects that are invariant under continuous deformations. In the sense of topology two
solid figures are similar or homotopic when they originate from one another through
continuous transformations. Homotopic figures can be grouped into equivalence classes,
which are labeled by topological invariants. Objects with the same topological invariant
are similar and belong to the same equivalence class [48].

Figure 2.1: Two dimensional surfaces of different genus. A sphere and a cube both
have genus g = 0. In contrast a torus and a coffee cup both have a hole and therefore
genus g = 1.

12
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Probably the most concrete example of a topological invariant is the genus g. It is the
number of holes in a geometric object. For example a sphere and a cube both have g = 0
since they don’t have a hole (figure 2.1). Hence they belong to the same equivalence class
and can be continuously deformed into each other. In contrast to them a donut or a cup
belong to a different class with genus g = 1. A sphere cannot be continuously deformed
into donut without puncturing the surface at some point. Topological invariants like
the genus are robust properties that are invariant under small perturbations. Changing
them requires a fundamental change in the system. They are global properties of the
system and thus robust against local perturbations such as defects in a physical system.
Since they are (mostly) integer valued they do not change continuously, but in discrete
steps.
In physics the concept of topological protection relies on topological invariants. A phys-
ical quantity that only depends on a topological invariant inherits its robustness and is
thus topologically protected.

Quantum Hall effect

The Hall effect was already discovered in 1879 by Edwin H. Hall [49]. Imagine a two
dimensional sample with a magnetic field B perpendicular to it. Upon simultaneous
application of a current I a perpendicular Hall voltage UH can be measured (figure 2.2).
Hall determined the Hall conductivity σxy = I/UH ∝ 1/B to be proportional to the
inverse magnetic field, which can be explained by the balance of electromagnetic forces.
In 1980 Klitzing measured the Hall conductivity again in a two dimensional electron
gas (realized with a silicon metal-oxide-semiconductor field-effect transistor) at high
magnetic fields B ∼ 15T and low temperatures T < 2K [50]. The surprising result was
that the Hall conductance is quantized and varies in discrete steps

σxy = N · e
2

h
(2.1)

that only depend on the electron charge e and Plancks constant h, which are both
fundamental physical constants. The filling factor N = 1, 2, ... is an integer which
establishes the name integer quantum Hall effect.
The effect is nowadays well understood and can be described on a single electron level
without having to consider electron-electron interactions 1. In a magnetic field the en-
ergy levels of charged particles are quantized to the highly degenerate Landau levels
En = (n+ 1

2) · ~ωc with the cyclotron frequency ωc. Each fully filled Landau level con-
tributes to the Hall conductance with e2/h. The reason for this are one dimensional,
perfectly conducting edge states. A semiclassical approach gives an intuitive picture for
the presence of these edge channels. As shown in figure 2.2 electrons in the bulk of
the material circle around the perpendicular magnetic field. Electrons close to the edge
however cannot complete the circles due to the hard boundaries and have to perform

1In contrast to this, the fractional quantum Hall effect (the filling factor is a rational number) requires
an intrinsic many body approach with electron-electron interactions.
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Figure 2.2: Setup to measure the Hall voltage. A magnetic field B is applied per-
pendicular to the sample. A current along the sample will then result in a transverse
Hall voltage UH . The black circles illustrate the semi-classical picture to explain the
edge currents. An electron in the bulk is forced on closed cyclotron orbits around the
magnetic flux by the Lorentz force. Electrons close to the edge however cannot complete
the circles and perform so-called skipping orbits. Successive skipping orbits result in
counter propagating 1D edge channels which are depicted by red arrows.

skipping orbits. A series of these skipping orbits results in helical edge currents along the
boundaries of the sample. Each of the one dimensional edge channels contributes e2/h
to the quantum hall conductance σxy 2. Each Landau level generates one edge state.
In consequence the filling factor N of the Landau levels determines the quantized Hall
conductance [51].
In 1982 Thouless and co-workers succeeded to show that the origin of the edge states
and therefore of the quantum Hall conductance is of topological nature [35]. A topo-
logically non-trivial quantum Hall state can’t be distinguished from a trivial insulator
by only looking at the band structure Em(k) (m is the band index and k the crystal
momentum). The difference is encoded in the topology of the system. The situation is
similar to the descriptive example of the mapping from 2D surfaces to 3D space which is
topologically classified by the genus (see section 2.1). Now we have to consider the map-
ping between the crystal momentum k and the Bloch Hamiltonian H(k) as well as the
Bloch wave functions |um(k)〉. We can subdivide H(k) into equivalence classes that can
be continuously deformed into each other without closing the energy gap. This allows
to topologically classify band structures. The topological invariant that distinguishes
different classes is the so-called Chern number n, an integer valued quantity [36]. From
a physical point of view the Chern number can be understood in terms of the Berry

2The relation between conducting edge states and Hall conductance can be understood with the
Landauer-Büttiker formalism [51, p. 92 et seq.].
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phase γ. It is a phase that the Bloch wave function acquires when k is adiabatically
evolved along a closed line in the Brillouin zone [51, p. 48 et seq.].
Thouless and co-workers proved that the filling factor N = n is the overall Chern number
n, which is the sum of the Chern numbers of all occupied bands [35]. Therefore the
quantized Hall conductance σxy = n · e2

h as well as the conducting edge channels only
depend on the topologically invariant n and are thus topologically protected. That is
both are invariant under smooth deformation of H(k) as long as they do not cause a
gap closure.
The topology of the bulk determines the existence of edge states, something known
as bulk-boundary correspondence: When the Chern number n changes, for example at
the boundary between a nontrivial quantum Hall state (n 6= 0) and a trivial insulator
(n = 0, e.g. the vacuum), there has to be an edge mode (figure 2.3a). The edge mode
lives in the gap of the bulk band structure (figure 2.3b). This prevents scattering into
the bulk since there are no corresponding bulk states of the same energy. Backscattering
is also not possible because the backward channel only exists on the opposite boundary,
which is well separated by the insulating bulk. Due to the absence of backscattering,
the transport in the edge channels is dissipation free. The robustness of the edge states
is the manifestation of the topological protection.

Figure 2.3: a) At the edge between a trivial insulator and a quantum Hall state have
to be topological protected edge states. b) These helical edge states sit in the energy
gap of the bulk band structure. Picture adapted from [36]

Quantum anomalous Hall effect In 1988 Haldane proposed that their might even be
quantum Hall conductance without a net magnetic field [52]. He used a lattice system of
spinless electrons with a periodically varying magnetic field, which has the same symme-
try as the underlying lattice but is zero in average. Later on it was found that the role of
the periodic magnetic field can be replaced by spin-orbit coupling. It was suggested that
this so-called quantum anomalous Hall effect can be found in ferromagnetic insulators
with strong spin-orbit coupling [51]. However only recently, 25 years after the theoretical
prediction, this phenomenon was experimentally verified [53]. Even in the absence of a
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magnetic field there is still a Hall conductance and conducting edge states. Both are still
protected by a Chern number, this time of the electron bands instead of Landau levels.

Topological insulators

A topological insulator is a novel material that has a bulk band gap. In contrast to
a trivial insulator it exhibits topologically required conducting edge states similar to
those in the integer quantum Hall effect. A 2D topological insulator is also known as a
quantum spin Hall insulator [36]. The quantum spin Hall effect consists of an insulating
bulk with two counter propagating gapless edge states, one for spin up and one for spin
down electrons (figure 2.4) 3. The two edge channels result in a vanishing electric current,
but in a non zero spin current and a corresponding spin Hall conductance. In contrast to
integer and anomalous quantum Hall effect the time reversal symmetry remains intact.
Since this requires the Chern number n to vanish, Kane and Mele introduced a new Z2
topological invariant ν. It distinguishes between a conventional insulator with ν = 0
and a quantum spin Hall state with ν = 1 [54]. Backscattering in the opposite traveling
channel is not possible because time reversal symmetry requires that this state is already
occupied. Thus the transport in the edge states is again ballistic [36].

Figure 2.4: a) Counter propagating edge states for the opposite spin directions at
the edge between a quantum spin Hall insulator and a trivial insulator. The two edge
currents result in a vanishing electric current but exhibit a non zero spin current. b)
Both edge states live in the bulk energy gap. Picture adapted from [36]

The quantum spin Hall effect was originally proposed in graphene with spin-orbit cou-
pling by Kane and Mele in 2005 [55]. The spin-orbit coupling effectively emulates the

3In the strict sense, speaking of spin up and down requires the z-component Sz of the spin to be
conserved. If this is valid the quantum spin Hall Effect can be understood as two independent copies
(for the two spins) of the above discussed Haldane model. In real systems however there are always
Sz non-conserving terms. Kane and Mele showed that this nevertheless doesn’t destroy the topological
order with the two counter propagating edge states [55]. The two different channels are still referred to
as spin up and down.
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role of the magnetic field in the integer quantum Hall effect and enables a topologically
non-trivial band structure with an energy gap. The experimental verification followed in
2007 by König and co-workers. They measured the spin conductance in HgCdTe quan-
tum well structures [56]. Breaking the time reversal symmetry, for example by doping
a topological insulator with ferromagnetic materials, can result in topological insulators
with unidirectional edge states similar to the quantum anomalous Hall effect [53].

3D topological insulators There is no quantum Hall effect in three dimension. However
the topological characterization of the quantum spin Hall insulator can be generalized
from 2D to 3D [57]. A 3D topological insulator is still insulating in the bulk and has two
dimensional conducting surface states, similar to the one dimensional edge states in 2D
topological insulators. In contrast to 2D the topological characterization in 3D requires
four Z2 bulk invariants (ν0; ν1, ν2, ν3). The set (ν1, ν2, ν3) can be understood as miller
indices indicating the orientation of the surface states. The first invariant ν0 distinguishes
between a strong and a weak topological insulator. In a weak topological insulator
(ν0 = 0) the surface states are not protected by time reversal symmetry. Although they
are predicted for clean surfaces they are not robust against disorder and can be trapped
there. The surface states of a strong topological insulator (ν0 = 1), however, are more
robust. They form a two dimensional topological metal [57] and cannot be trapped by
disorder, which is similar to the situation in 2D topological insulators [36].
The first experimental observation of a 3D topological insulator was in the semicon-
ducting alloy Bi1−xSbx [58] in 2008, one year after the theoretical prediction. However,
directly observing the edge currents with charge transport experiments is more prob-
lematic in 3D due to the difficulty of separating bulk and surface contributions [36].
In both, two and three dimension, the robust and spin selective edge currents could be
useful for application in spintronic devices or low power consumption electronic devices
based on the dissipation free nature of the edge channels [45]. Topological insulators
might also foster the development of novel magnetic devices [59].

Floquet topological insulators The topologically classification of band structures can
also be applied to periodically driven systems. Periodically driving a system can result
in topologically protected edge states in spite of topologically trivial bulk bands [60].
In a driven system the Floquet spectrum is the analogue of the band structures of the
static system. It consists of the eigenvalues of the Floquet operator, which is the time
evolution operator evaluated over one period of the external drive. Since the operator
is unitary, the eigenvalues can be expressed in terms of the quasi energy ε as a complex
phase e−iεT , where T is the driving period. The quasi energy spectrum is 2π/T periodic
in ε. Applying periodic boundary conditions allows to fold the quasi energy zone into a
circle.
The quasi energy bands can again be characterized by a topological invariant. However
the invariants used in the static case are no longer sufficient to fully characterize the
topology of driven systems. This requires a new invariant, the winding number ν [61].
The winding number counts the number of times a quasi energy band winds around
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the quasi energy zone. This new invariant again allows to establish a bulk-boundary
correspondence and predict the existence of topologically protected edge states.

Topological insulators in classical wave systems The concept of topological protec-
tion is not limited to the various quantum Hall systems or to quantum mechanics in
general. The robustness of transport in topologically protected edge channels might
also be a promising tool to stabilize transport of classical waves such as sound and
light waves [62]. Artificial meta materials are specially designed to realize topologically
non-trivial systems. This results in devices with new functionalities. One example are
waveguides with unidirectional transport in only one direction, which is the equivalent
to the helical edge states in the integer quantum Hall effect [62]. Other possibilities are
vibration isolation, cloaking or adaptive behavior [47].
There are various approaches to design classical topological insulators with topologi-
cally protected edge states. The key is to engineer the meta materials in a way that
the classical equations, that describe their dynamics, can be mapped onto the quantum
mechanical Dirac equation, which describes the quantum mechanical topological insula-
tors [47, 51]. Once this is done the description is similar to the electronic case, nontrivial
bulk bands result in topologically required edge states.
A mechanical implementation was for example achieved by Süsstrunk and Huber with
a lattice of coupled pendula [63]. Similar to the quantum spin Hall effect, this system
exhibits counter propagating edge channels of phonons of opposite polarization. Other
realization use active components, such as lattices of driven gyroscopes [64] or resonators
with circular flowing air [65]. In both cases the active components break the time reversal
symmetry. This situation is comparable to the quantum (anomalous) Hall effect with
only one helical edge state in which sound waves are transported around the edge of the
lattice.
There are also optical topological insulators. Rechtsman and colleagues realized an op-
tical analog by using a honeycomb lattice of coupled helical waveguides [66]. Marquardt
and his group even unified both, sound and light. They realized a Chern insulator that
relies on the interaction between photons and phonons [67]. Similar to Floquet insu-
lators, the topological transport of phonons can be manipulated in situ by adjusting a
driving laser.

Topological superconductors Another member of the family of topological materials
might be superconductors. The Bogoliubov-de Gennes equation for superconductors has
a structure which is very similar to the Dirac equation for topological insulators [51].
This might allow to topologically classify superconductors. Tunneling spectroscopy gave
first indications for the possible existence of chiral edge states in a Sr2RuO4 supercon-
ductor [68].
1D topological superconductors are thereby of special interest. Due to particle hole
symmetry, the two edge states at the end points are their own antiparticles. They
hence fulfill the defining criterion of majorana fermions [36]. Kitaev proposed that this
topological approach might be an important tool to stabilize quantum computing [46].

18



2.2 Topologically protected colloidal transport

The well separated pair of Majoranas form a degenerate two level system with potential
application as qubit [36].

In summary there are various different types of topological insulators. The variety
spans from electronic transport in the original topological insulators to classical wave
systems and even topological superconductors. Despite their obvious differences all these
systems are based on a very similar mathematical foundation. Another unifying feature
is that symmetry plays an important role. Among the most important symmetries is
the time reversal symmetry in topological insulators and the particle-hole symmetry
in topological superconductors [51]. Also the symmetry of the underlaying lattice can
be important. Different lattice symmetries can result in physically and topologically
distinct effects [69]. The lattice symmetry is for example of importance in topological
crystalline insulators [70]. It also plays a central role in our colloidal transport system
that I present in the following section.

2.2 Topologically protected colloidal transport
In publications [P1] to [P4] I show that the transport of magnetic colloids in our system
can be topologically protected. Here the protection of the transport is different to the
previously discussed systems. In contrast to these Hamiltonian systems the colloidal
transport is a driven dissipative system. Furthermore the topologically transport in our
system is not based on edge channels but happens above the bulk of the two dimensional
magnetic patterns.
In the following I will introduce our colloidal transport system and I am explaining how
the topological classification of the modulation loops results in topological protected
transport of colloidal particles. Geometry and topology are thereby deeply connected.
We thus study the interplay of the lattice symmetry and the way transport is topological
protected. The knowledge on bulk transport is then used to design a colloidal topological
insulator with robust transport along the edges between patterns of different symmetries.

Colloidal transport system

The core of the experimental setup are thin magnetic films 4. The films have magnetic
domains with a magnetization along the z-direction normal to the surface. We use
films with as much area magnetized in the positive as in the negative z-direction. The
alternating domains form a periodic pattern (figure 2.5a). Magnetic lithography allows
us to create patterns of any desired rotational point symmetry.
Paramagnetic and diamagnetic colloids are placed above the magnetic structures. Dia-
magnetic colloids are nonmagnetic particles that form holes in a surrounding ferrofluid
and therefore effectively behave diamagnetic. The colloidal particles are confined to a
fixed elevation z above the pattern. The two dimensional space in which the colloids

4The experimental setup is described in detail in the appendix A.1.
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Figure 2.5: a) Magnetic structures of different rotational point symmetries CN . Black
and white areas denote domains of up and down magnetization. Colloidal particles move
at a fixed distance z above the magnetic structure in the action space A. Identifying
the periodic boundary conditions the unit cell is topologically a torus as sketched at the
bottom. b) The system is driven by an external field Hext, with a constant magnitude.
Therefore all possible field directions live on a sphere, the control space C. The external
field performs closed periodic modulations loops LC that induce action loops LA of the
particles in A. Picture adapted from [P1].

move is called the action space A. The particle positions are described by the two
component vector xA. To transport magnetic colloids the magnetic field Hp(xA) of the
pattern is modulated by a homogeneous, but time-dependent external field Hext(t). The
external field is varied along closed periodic loops.
In a magnetic field a colloid of effective susceptibility χeff acquires a magnetic moment

m = χeffVH (2.2)

where V is the particle volume and H = Hext+Hp the total magnetic field. The particles
thus have a potential energy

E = −χeffV H2. (2.3)

Defining the colloidal potential U = H2 enables the description of both types of particles.
The paramagnetic colloids (χeff > 0) will go the the maxima of U while diamagnetic
particles (χeff < 0) will go to the minima of U .
Particular interest lies in the motion of colloids at large elevations z, because there the
potential U becomes universal. The magnetic field Hp of the pattern can be expressed as
a Fourier series. At high elevations z & λ of the order of the lattice constant λ only the
contributions of the reciprocal lattice vectors with the lowest absolute value are relevant
(for details see publication [P1]). The colloidal potential becomes the universal potential

U∗ ∝ Hext ·Hp. (2.4)
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It is universal in the sense that it no longer depends on details of the magnetic pattern.
Its symmetry becomes the only important property. In the universal potential U∗ the
position of the extrema is independent of the magnitude of the external field. Control
space C, which is the space of all possible external field directions, is therefore a sphere
(figure 2.5b).
There exist two distinct ways of transporting the particles from one unit cell to the next
along one of the crystallographic directions of the magnetic pattern. The first possibility
is adiabatic transport. There are modulation loops of the external field that move an
extremum of the colloidal potential from one unit cell to the next. If the modulation
is sufficiently slow, a particle that sits in the extremum (a maximum for paramagnetic
colloids or a minimum for diamagnetic particles) will stay there and adiabatically follow
the motion. Like this the particle can be transported to another unit cell.
The second possible transport mode is a deterministic ratchet. Initially the particle is
also transported adiabatically in a stationary point. But the modulation is now such
that the transporting extremum disappears at some point. Suddenly the particle is no
longer in its energetically favorable position. It therefore performs a ratchet jump along
the path of steepest descent of the potential into another extremum. In contrast to the
adiabatic motion, the ratchet jumps are irreversible. Reversing the modulation loop will
in general not result in a reversed trajectory of the particle.
The fundamental question that has to be answered is: what are the requirements for
modulation loops in control space to induce adiabatic or ratchet transport of colloids in
action space? In the next section I will explain that the answer to this question is of
topological nature.

Topological classification of modulation loops

The periodicity of the magnetic pattern allows to introduce a topological description of
our system. Using periodic boundary conditions at the edges of the unit cell we can
wrap action space A to a torus (see figure 2.5a). In this picture transport from one unit
cell to the next is translated to winding around the torus. There are two distinct ways of
winding around a torus which correspond to transport along one of the two lattice vectors
of the magnetic pattern. We can therefore characterize loops LA in action space by their
two winding numbers ω(LA) around the torus. Intercellular transport corresponds to a
non-zero winding number.
In contrast to action space, control space C is a sphere without holes. Therefore every
loop LC in C can be continuously deformed into a point and is thus zero-homotopic. In
publications [P1] to [P3] I show that non-trivial transport of colloidal particles in action
space is possible. In other words there have to be trivial modulation loops LC that
induce non-trivial transport loops LA. But what are the topological requirements for a
modulation loop to induce non-trivial intercellular transport of colloids in action space?
This question has two different answers. In the universal limit of a twofold rotation
symmetric pattern (C2), a stripe pattern (compare figure 2.5a), the answer is rather
simple. The pattern is invariant along the stripe direction and therefore quasi one
dimensional. Thus we can also restrict control space to this one dimension and the
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sphere C reduces to a circle Cr. A circle is no longer topologically trivial and in [P1] we
show that a non-trivial winding number ω(LCr ) 6= 0 around the circle directly induces a
nontrivial transport loop LA in action space with

ω(LA) = ω(LCr ). (2.5)

In all other cases the answer is not that simple anymore. Solving it requires to consider
the full dynamics of the system, which takes place in the product phase space C ⊗
A. The transport is mostly governed by the stationary points ∇AU = 0 in action
space. Therefore we can restrict our considerations to the two dimensional stationary
manifold M, which is the subset of all stationary points in phase space C ⊗ A. In
publications [P1] to [P3] we show that the topology of this stationary manifold fully
governs the whole variety of possible transport in our system.
Since the whole derivation is described in the publications, I will limit my explanation
here to the basic underlying idea. The key lies in the projection of special objects from
the stationary manifold M to control space C. These projected objects puncture C at
specific points or introduce more complicated, extended objects on its surface. The
result is a constrained control space C̃ which is no longer trivial. The challenging task
that remains is to find these objects and to find out how modulation loops have to wind
around them in order to induce colloidal transport. Once this is done the initial question
again has the simple answer

ω(LA) = ω(LC̃) (2.6)

where ω(LC̃) is the winding number of a modulation loop around the projected objects
in C̃.
The winding number ω(LC̃) is the topological invariant of the modulation loops. It allows
to divide them into topologically distinct classes that cause different transport in A. The
colloidal transport in action space is directly related to the topological invariant ω(LC̃)
in Control space via equation (2.6). Therefore the transport of colloids in our system is
topologically protected by the winding number ω(LC̃) of loops in control space.
This relation is illustrated in figure 2.6. In the case of a four fold symmetric pattern
control space is punctured at four equally spaced points on the equator e.g. along the Q1
direction. All modulation loops in figure 2.6a have a winding number ω(LC̃) = 1 around
this point. Therefore all loops induce the same transport of colloids in action space as
shown in figure 2.6b. The exact shape of the trajectories in A is noticeable different.
However, the result after one period of the modulation is the same: the particle is
transport by one unit vector to the top. Winding around other puncture points will
induce transport into another direction.
This nicely demonstrates the robustness that goes along with the topological protection.
The transport is independent of the exact shape or speed of the modulation loop. As long
as it does not change its winding number the transport in A is preserved. Topological
protection also ensures a high robustness of the transport against thermal noise. Fur-
thermore the transport is independent of small changes in the properties of the colloidal
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Figure 2.6: a) Control space of the four fold symmetric pattern. It is punctured at
four equally spaced points on the equator e.g. along the Q1 direction. Despite their
different shape all shown modulation loops have the same winding number around this
point. b) Reflection microscopy image of the 4 fold symmetric pattern with experimental
trajectories. All modulation loops induce the same transport by one unit vector to the
top. For clarity I added the theoretical pattern at the right hand side. The lattice
constant is 7µm. Picture adapted from [P1].

particles such as size, mass and effective susceptibility. This enables the dispersion free
and precise transport of a big collection of particles despite their intrinsic polydispersity.

From topologically protected transport to the colloidal topological insulator

This section summarizes publications [P1] to [P4] and establishes the connections be-
tween them. Similar to crystalline topological insulators, geometry and topology are
inherently connected in our colloidal system. The lattice symmetry has a profound im-
pact on the way the colloidal transport is topologically protected. This is directly visible
in the topology of the stationary manifold. It is characterized by the genus, which is dif-
ferent for lattices of differing rotational symmetry. This results in a different puncturing
of constrained control space C̃ and different transport modes of colloids in action space A.

The connection between geometry and topology is the subject in publication [P1]. There
I study the topologically protected transport above magnetic films of all possible two
dimensional magnetic point group symmetries with lattice vectors of equal length. The
first structure is the two fold symmetric stripe pattern (see figure 2.5). As I already
discussed in the previous section (2.2) the two fold symmetric pattern has a special
role. The pattern and control space C can be reduced to one dimension. This has the
advantage that the phase space C⊗A has only two dimensions and the full dynamics can
be visualized. Therefore this special case is used to introduce all the concepts and the
terminology that will be important in the higher symmetric patterns. Furthermore we
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also use this simplicity to study non universal effect that arise when the elevation of the
particles above the magnetic structures is reduced. The transport thereby crosses over
from adiabatic via a deterministic ratchet towards a non transporting regime. The other
patterns with higher symmetry are more complex. Therefore the study of transport on
higher symmetric patterns is limited to the universal case.
The next step, after the stripe pattern, is the four fold symmetric pattern which is a
generalization of the two fold symmetry. This truly two dimensional structure enables
transport in any direction from one unit cell into one of the eight neighboring unit cells.
In the universal case the transport is fully adiabatic. Paramagnetic and diamagnetic
colloids are always transported into the same direction.
The three fold symmetry is the most difficult case. It consists of a whole family of
patterns. The pattern continuously varies with a phase variable from a six fold symmetric
pattern C6 to a six fold inversion symmetric pattern S6

5 (see figure 2.5a). We show that
this whole variety of patterns can be sorted into two topologically distinct classes. The
interesting topological transition in between is theoretically analyzed and experimentally
demonstrated.
In addition all three fold symmetric patterns offer more possible transport modes com-
pared to the four fold symmetry. The transport is not restricted to adiabatic motion, it
is also possible to have deterministic ratchet motion. The most striking feature, however,
is that paramagnetic and diamagnetic colloids are no longer limited to move into the
same direction. They can now be transported independently into two different directions
of the lattice.
In publication [P2] the C6 symmetric pattern is examined in a more detailed way 6. The
connection between loops in C, A and the stationary manifoldM is analyzed. We answer
the interesting question how it is possible to change the transport direction although it is
topologically protected. Deterministic ratchets play an essential role for this transition.
The ratchets and their irreversible nature are also discussed in detail. In addition I
realize a direct application based on the possibility to transport both types of colloids
into different directions. An automatic quality control for the chemical reaction between
two functionalized colloids is implemented. Paramagnetic and diamagnetic particles
are functionalized with complementary strands of DNA. If both particles meet on the
pattern and the DNA fragments match, they can bind together and form a quadrupole.
This new type of particle can then be transported into a third, independent direction.
If the binding reaction is not successful, both initial particles will simply follow their
previous directions. This quality control is internal since the system does not require
any external input to distinguish between a successful and an unsuccessful reaction.
In the third publication [P3] we initially studied the four fold symmetry pattern 7. It

5The inversion symmetry S6 consists of a rotation by 2π/6 and a reflection at the film plane, which
inverts up and down magnetization.

6Note that we used slightly different conventions in [P1] and [P2]. In [P2] the pattern is rotated by 150◦.
Apart from this shift all results coincide in both publications.

7The conventions in [P3] also differ from [P1]. In [P3] we inverted the indices of the submanifolds
and the gates. In Consequence the results for diamagnetic particles in [P3] are the same as those for
paramagnetic particles in [P1].
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contains a detailed derivation of the underlaying theory which is confirmed by numerical
simulations. Simulations are also used to demonstrate the robustness of the transport
against thermal fluctuations. Experiments on the four fold symmetric pattern were made
up later and are presented in [P1].

Colloidal topological insulator Finally the connection between our colloidal system
and the various topological insulators that I discussed in section 2.1 can be established.
In [P4] I apply the theory which was developed in the previous publications to design
a colloidal topological insulator. It is based on a hexagonal magnetic pattern that has
edges towards a stripe pattern. The modulation can be chosen such that only the motion
above the hexagonal pattern becomes nontrivial while the stripe pattern remains trivial.
The colloids on the bulk of the hexagonal pattern are transported in closed circles. That
is after completing one circular orbit they return to their initial position. Thus there is
no net transport and the bulk is insulating. Close to the edges towards the trivial stripe
pattern, however, the particles cannot complete their full orbits and have to perform
skipping orbits. Just like in the semiclassical picture of the quantum Hall effect (see
figure 2.2), this results in robust helical edge states that transport colloidal particles
along the edge between the two patterns. Above that we also implemented an analogue
of the quantum spin Hall effect where particles of opposite susceptibility (paramagnets
and diamagnets) are transported into opposing direction along the same edge.
On one hand this is an interesting new approach for stable transport of colloidal particles.
The particles can be transported along arbitrary edges into any desired direction and
even around corners of these edges. In addition it is possible to transport multiple
particles along multiple edges into different directions, all with one and the same external
modulation. On the other hand our system is also an interesting model system. It is
among the first experimental visualizations of the semiclassical picture of the quantum
Hall effect. Often colloids are used as model systems for atoms [37] or molecules [38].
Here I go one step further and use my colloidal system as a model for the motion of
electrons.

2.3 Summary and discussion
In this chapter I presented a novel approach for the driven dissipative transport of
magnetic colloidal particles. I could show that the transport of colloids in our system
is topologically protected. Modulation loops LC of the external driving field can be
divided into topological classes that cause different transport of colloids in action space.
The transport is therefore topologically protected by winding numbers ω(LC) of the
modulation loops in control space.
Similarly to the protected robust edge channels in topological insulators, topological pro-
tection guarantees robust colloidal transport in our system. The topologically protected
transport is a promising tool to overcome the drawbacks of former colloid transport sys-
tems, based e.g. on thermal ratchets. Our system allows to transport big collections of
particles in a precise and dispersion free manner. Furthermore in a three fold symmetric
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Chapter 2 Topological protection

pattern we have independent control over two different types of particles, paramagnetic
and diamagnetic colloids.
To describe the transport in our system and to show that it is topologically protected
we developed a new theoretical framework. This theoretical approach is quite different
to the ones used in other topologically protected systems. Instead of Chern number
associated to the bulk band structures our explanation is based on the topology of the
stationary surface, which is described by its genus.
Despite these different approaches we can establish a connection to the other topologi-
cally protected systems. The colloidal topological insulator shows the same phenomenol-
ogy as all the others: Particles are only transported along the edge between a trivial and
a nontrivial pattern.

Discussion and outlook This last analogy might give rise to two interesting open ques-
tion. First, is it possible to describe the colloidal system within the theoretical framework
of the quantum Hall effect. One possibility might be the fact that we can assign a sta-
tionary field 8 Hs

ext(xA) to every point xA on the torus of action space A. This defines
a vector bundle [48] which is similar to the mapping between the complex Bloch wave
function |um(k)〉 and k on the torus of the Brillouin-zone and could provide an analyses
of the colloidal transport similar to other topological insulators.
The second question is of rather speculative nature. In our system we mainly deal with
topologically protected bulk transport. Nonetheless we can find a design that facilitates
transport in edge states. In reverse conclusion, one could ask if it’s possible to construct
a topological insulator such that it exhibits topological bulk modes.
Another intriguing aspect of our system is its dissipative character. So far topological
phases are mainly discussed in Hamiltonian systems [71]. It is possible to engineer open
quantum systems with dissipation. Diehl and co-workers showed that they can extract
topologically protected edge states from such a system [71]. But the final edge modes
are nonetheless dissipation free. In contrast to this our colloidal system and especially
the deterministic ratchet motion is intrinsically dissipative. It cannot be described by
an effective Hamiltonian.
The developed theory is not limited to this specific colloidal transport system. In princi-
pal it can be extended to any, not necessarily magnetic, system with the same symmetry.
An example that we realized in our working group in Bayreuth is a macroscopic steel
pump [72]. There the magnetic pattern is generated by millimeter sized permanent
magnets. The external field is emulated by two opposing strong magnets with a tunable
orientation. In this macroscopic system we can transport millimeter sized steel spheres
(behave like paramagnets) and diamagnetic superconducting particles in the same way
we transport colloids in the mesoscopic system. This setup has the advantage that we
can simultaneously visualize the particle motion and the external field direction. Fur-
thermore it is possible to observe a special type of ratchets in the S6 symmetric pattern,
which was not possible in the colloidal system due to experimental limitations which are
discussed in [P1].
8The stationary field Hs

ext(xA) is the external magnetic field that renders the point xA stationary.
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2.3 Summary and discussion

In addition to the above discussed aspects there is probably a lot of room left for further
investigations based on the colloidal transport system and the new theoretical approach.
So far we could experimentally only confirm our theory by using paramagnetic and
diamagnetic colloids. These are suitable to examine the behavior of maxima and minima
of the colloidal potential U . However, an experimental verification for the predicted
behavior of saddle points U remains elusive. A composite particle built of four dipolar
particles (two paramagnets and two diamagnets) in a octupolar configuration might be
a promising approach for a saddle point seeker. Within certain approximation, these
particles should go to the saddle points of the potential U and can be used to study
their behavior.
Another interesting question for future investigations might be the impact of particle-
particle interactions and manybody effects. So far the colloidal suspension was highly
diluted. Hence different particles moved at sufficient distance and did not influence
each other. In reference [40] Pietro Tierno and Thomas Fischer showed that manybody
effects can be an important factor in transporting colloidal particles above periodic
potentials. The open question is how these multi particle effects can be combined with
the topological framework of this thesis. In combination with the possibility of two
independent transport directions this might offer interesting routes to construct novel
modes of colloidal motion.
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Chapter 3
Magnetic guidance of magnetotactic
bacteria

The previous chapter dealt with the topologically protected transport of passive micro
particles. In this chapter I am following a different route based on the motion of active
particles. Hence the challenge is no longer to induce motion but rather to rectify the
otherwise non-directional motion of the active particles.
The motion of passive or Brownian particles is governed by Brownian dynamics. The
equilibrium thermal fluctuations of the particles are driven by random collisions with
molecules of the surrounding solvent [73]. In contrast to passive particles active or self-
propelled particles are consuming energy from their environment, which is converted
into directed motion of the particles [10]. Their motion is therefore governed by both,
Brownian dynamics and the capability of active swimming. The constant consumption
of energy drives them into a far from equilibrium state [74].
Active mesoscopic particles were originally studied as a model for the swarming behavior
of macroscopic animals, such as birds and fishes [75]. In fact the non-equilibrium nature
of these particles gives rise to novel collective phenomena which cannot be observed with
passive particles [76]. Examples are swarming, clustering to living crystals [77] or active
turbulence [78]. Beyond that active particles are ideal model systems to study aspects
of far from equilibrium physics [10, 79].
The ability of active self propulsion is widespread in biological microorganisms such as
bacteria. In their natural habitat they use swimming for the efficient search for nutrition
and to avoid toxic substances [80]. One of the best studied examples is the bacterium
Escherichia Coli [34]. It is propelled by a bundle of helical flagella which are rotated by
a molecular motor. The motion follows a run and tumble pattern. Periods of straight
active swimming (run) are interrupted by actively induced but random reorientations
(tumble). Using chemotactic sensing E.Coli can navigate in chemical gradients. Run
phases are longer when the bacterium swims towards favorable conditions and shorter
when it swims in the wrong direction [81].
Like in countless other examples, nature is the inspiration for man-made objects that
mimic the behavior of biological microorganisms. The engineering of such artificial mi-
croswimmers with precisely designed properties is particularly interesting for studying
their motion and understanding the fundamental mechanisms behind it. Meanwhile
there are various different approaches for artificial self-propelled particles [10]. The
most prominent among them are active Brownian particles. They are driven by a force
of constant magnitude whose orientation undergoes rotational diffusion dynamics. Most
of such systems are so-called Janus particles, which are colloidal particles with a bro-
ken symmetry due to local coating with catalytic materials. This asymmetry induces
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local gradients in the solvent around the particle, which results in a selfdiffusiophoretic
propulsion of the particle [82]. An example is the partial platinum coating which causes
a gradient of H2O and O2 in a hydrogen peroxide solvent. Other realizations of artificial
active particles are based on external fields, for example chiral particles that are rotated
by external magnetic fields in a way that they act like propellers [83]. Other externally
driven microparticles are rotating colloids [84] or self assembled colloidal wheels [85]
in the proximity of a confining wall. Despite the huge effort that is recently invested
in the investigation of active particles, their applicability in realistic environments, a
fundamental prerequisite for real applications, is still in its infancy [10].
Here and in publication [P5], I present a novel approach that might solve some aspects
of this problem. I achieved the precise guidance of single bacteria along arbitrary lines
of mechanical instability. I am using magnetotactic bacteria, a special type of actively
swimming bacteria that additionally has a built-in permanent magnetic moment. This
remarkable property is used to manipulate the bacteria with the magnetic fields of a
garnet film. Like this it is possible to study the interplay of active motion and the
presence of external constraints. These can be chosen such that a stable guidance of the
bacteria is achieved.
This chapter starts with the introduction of magnetotactic bacteria. Following this I
explain how the interplay of active swimming and the built-in magnetic moment enables
the stable guidance of bacteria in the heterogeneous magnetic field of garnet films. Apart
from the need for swimming, the guiding process itself is passive. It does not require any
active feedback of the magnetic fields on the swimming behavior of the bacteria. The
guidance only relies on a careful balance between propulsion and magnetism.

3.1 Magnetotactic bacteria

Figure 3.1: a) Dark-field scanning-transmission electron microscope (STEM) image
of an uncultured magnetotactic bacterium. The white magnetosome chain along the
elongated cell body is clearly visible. b) High magnification image of the ferrite crystals
inside the magnetosomes. Picture adapted from [86].

Magnetotactic bacteria are aquatic unicellular prokaryotes [87]. They were first discov-
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3.1 Magnetotactic bacteria

ered in 1970 by Richard Blakemore [88]. In this thesis I used the bacterium Magneto-
tacticum gryphiswaldense [89]. These bacteria have an elongated shape with few microns
in length (∼ 3µm) and approximately one micron in diameter. An example is shown in
figure 3.1. They possess two helical flagella located at the opposite poles of the cells [90].
These enable the bacteria to actively swim back and forth. The change of direction is
achieved by reversing the sense of rotation of the flagella.
The unique characteristic, that distinguishes magnetotactic bacteria from other conven-
tional bacteria, is the so-called magnetosome chain (see figure 3.1). Magnetosomes are
vesicles of magnetite crystals (Fe3O4) that are surrounded by lipid bilayers. They have a
typical size of 35-120 nm (figure 3.1b). The magnetosomes are arranged in a chain that is
oriented along the long axis of the bacterium [86]. This arrangement maximizes the re-
sulting permanent magnetic moment which is of the order ofm ≈ 1.5·10−15 Am2 [91, 92].
The natural habitat of magnetotactic bacteria is the sediment at the bottom of lakes. In
the oxic-anoxic transition zone they find the required oxygen concentration for perfect
growth conditions. Magnetotactic bacteria use their unique constructional property to
tweak the navigation towards the optimal oxygen concentration. The predominant point
of view is that the magnetosome chain and therefore the bacterium is passively aligned
with the geomagnetic field and swims actively along the field lines [93].
This so-called magnetotaxis is inherently linked to aerotaxis. The bacteria swim in a run
and reverse pattern back and forth along the field lines to find the optimal oxygen con-
centration. This combined process is also known as magnet-aerotaxis [94] and provides
an efficient way of navigating in oxygen gradients. The process of scanning the oxygen
concentration is reduced from the full three dimensional space to the one dimensional
field lines.
There exist two different types of magneto-aerotaxis, axial and polar magneto-aerotaxis
[93]. In the first case the magnetic field is only used to align the bacteria. These bacteria
navigate along the field lines by sensing the oxygen gradient 1. In the second case, the
polar magneto-aerotaxis, the bacteria are not only aligned by the field, but the field
direction also determines the direction of motion. Therefore these bacteria only need
to sense the local oxygen concentration. If it is too high (low) they e.g. swim parallel
(anti parallel) to the field direction. The polar magneto-aerotaxis is the predominant
mechanism under natural conditions, while the axial type is only present in cultivated
bacteria.
The geomagnetic field lines are pointing upwards in the Southern hemisphere and down-
wards on the Northern hemisphere. For this reason there exist two opposite polarizations
of polar magnetotactic bacteria [86]. On the Northern hemisphere they preferentially
swim parallel to the field lines and are called North-seeking. On the southern hemisphere
the situation is inverted, the South-Seeking bacteria living there are preferentially swim-
ming anti parallel to the field direction 2.

1In reality bacteria cannot measure the oxygen gradient but only its concentration. The gradient is
determined by comparing the concentrations at two different locations.

2Strong pulses of a magnetic field (H ≈ 50 kA/m) can invert this property. North seeking bacteria can
be converted into South seeking bacteria and vice versa [95].
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Magnetotactic bacteria attract a lot of multidisciplinary scientific interest in various ar-
eas, even beyond biology. For example the precisely controlled synthesis of biomineral
crystals in the magnetosomes makes them interesting for material scientist. Under-
standing how the mineralization works in the bacteria might help to improve synthesis
processes in the lab [96].
They are also of interest for physicists. The possibility to manipulate them with external
magnetic fields facilitates the study of the interplay of biological control mechanisms and
external constraints. In the next section I show that it is possible to impose external
constraints such that the bacteria are forced to swim along predefined arbitrary paths.

3.2 Guidance of the fitter
Within the magnetotactic bacteria’s natural run and reverse swimming pattern the tra-
jectories consist of straight lines that are interrupted by sharp edges of approximately
180°. These non differentiable curves make it hard to imagine that it is possible to guide
bacteria along smooth curves.
In publication [P5] I showed that this is nonetheless possible. Magnetotactic bacteria can
be guided by the heterogeneous magnetic fields of a garnet film. The field conditions are
substantially different from the rather weak and homogeneous geomagnetic field. This
arrangement allows to guide magnetotactic bacteria along lines of mechanical instability
above the garnet.
For the experiments in [P5], I use ferrite garnet films. These are similar to the magnetic
structures used in chapter 2. Here the up and down magnetized domains from a pattern
of (not necessarily straight) stripes (compare figure A.2 and 2.5). The bacteria are
placed above of the magnetic film 3. For the experiments and the theoretical description
I am assuming that the bacteria remain in the run mode during the whole observation
time and that the magnetic field does not generate any active feedback to the swimming
behavior of the bacteria. The only effect of the garnet film are magnetic forces and
torques acting on the permanent moment of the bacteria.
I performed experiments with three different field strengths of the garnet film and thereby
observed three distinct types of motion. If the field is very strong, most of the bacteria
are trapped on top of the domain walls. This is the equilibrium position with the lowest
magnetostatic energy. The trapping field is too strong and the bacteria cannot escape.
If the field strength is reduced some of the bacteria can escape and start to swim. Their
active motion no longer restricts them to these equilibrium positions, but enables a new
type of motion. The bacteria can now swim along the stripe domains. This is working
for straight and curved stripes.
For the swimming bacteria the stripe domains are lines of mechanical instability. If
they are right above the center of the stripe and aligned to its direction, they are free of
magnetic forces and torques. But as soon as they deviate from this position, the magnetic
field repels them further away from the line. To achieve guidance along these lines the

3The experimental setup is described in detail in the appendix A.1.
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repelling magnetic forces must be balanced. This is done by the interplay of passive
reorientation towards the line and active swimming against the magnetic forces. The
swimming directions are thereby sorted on the opposite stripe domain of the magnetic
pattern. Bacteria that swim parallel (anti parallel) to their magnetic moment can only
be guided above downwards (upwards) magnetized stripes.
In the third and last case of the lowest magnetic field, the percentage of guided bacteria
is again reduced. Instead a third type of motion, the ignorant bacteria, emerge. The
magnetic field is no longer strong enough to guide these. Therefore they ignore the stripe
pattern and follow their current swimming direction.
We complement our experimental observations with a theoretical model. By balancing
magnetic and viscous forces and torques, the motion of the bacteria can be explained in
terms of their relative fitness

f = Fpropulsion
Fmagnetic

(3.1)

which is defined as the ratio of the propulsion force and the maximum magnetic force.
The best guidance is achieved for the ideal fitness f = 2. For low fitnesses f < 1, which
corresponds to strong magnetic fields or non motile bacteria (f = 0), all bacteria will get
trapped above the domain walls. For higher fitnesses f > 2, the percentage of ignorant
bacteria increases on the expense of the percentage of guided bacteria.
Therefore here it is not the strongest that triumphs over all the others. It is the fitter,
but not the fittest bacteria that are guided best.

3.3 Discussion

I showed that the active motion of magnetotactic bacteria in combination with the
magnetosome chain and the heterogeneous field of the garnet film can result in a novel
pattern of motion. Bacteria are passively guided along (curved) lines of mechanical
instability. The precise control over the motion of bacteria makes this system ready for
potential applications.
This unusual combination of garnet films and the unique magnetotactic bacteria could
serve to answer further interesting questions, both from biology and physics. One impli-
cation is already clear from the given experimental results. Bacteria that are swimming
parallel and anti parallel to their magnetic moment can only be guided above one of
the stripe domains. Both types of bacteria are thereby moving under the same external
conditions. They experience the same oxygen concentration and therefore also the same
deviation from the optimal concentration. Under natural conditions the moments are
aligned along the geomagnetic field and all moments point into the same direction. This
implies that, despite the very same external conditions, these two types of bacteria would
swim into different directions. In magnetotactic bacteria with polar magneto-aerotaxis
this can only be the case for North-seeking and South-seeking bacteria. In consequence,
our system can be used as a tool to sort North-seeking and South-seeking magnetotactic
bacteria. Both types move on oppositely magnetized stripes.
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Another subject of discussion is the validity of the assumption that the magnetic field
does not induce an active feedback to the bacterial motion. The dominating point of view
is that magnetotactic bacteria are only passively aligned along the geomagnetic field lines
without any active reaction to the magnetic field [93]. However, it is still highly debated
if the geomagnetic field is actually strong enough to completely align the bacteria. In
Ref. [97] the authors show that magnetotactic bacteria can perform active magneto-
aerotaxis if the magnetic field is too weak to align them. They sense the direction of the
external field and use this information for navigation similar to the chemotaxis of E.Coli
bacteria. In addition magnetotactic bacteria could even be able to sense magnetic forces
due to external magnetic gradients [98]. In the natural environment this feature might
be useful to avoid trapping at naturally occurring magnetic materials such as iron ore.
In the presented experimental setup we cannot observe any active feedback or at least a
potentially present feedback was not of importance for the guiding process. The domain
structures of the garnet films with their strong magnetic fields and gradients nonetheless
seem to be perfect candidates to study potentially existing feedback mechanisms. Maybe
different, more sophisticated patterns of magnetic domains could induce active feedback.
Once this turns out to be possible, one could dream of engineering magnetic patterns
that allow to selectively manipulate bacteria. Possible manipulations could thereby
include active inducing of swimming reversals or even the control over the swimming
speed. Another interesting direction for future research could be the enhancement of
the (passive or active) magnetic manipulation with additional control parameters. An
additional oxygen gradient could for example allow to study the competition between
these two influence factors, their interplay in the internal signal processing cascade of
the bacteria and their impact on the swimming behavior.
Both approaches could be helpful to learn new aspects about magnetotactic bacteria.
Moreover they are also interesting for physical applications. Additional control mecha-
nisms could significantly enhance the ability to guide and control the motion of magne-
totactic bacteria.
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Chapter 4
Defect dynamics in spin ice

So far I discussed the transport of active and passive colloidal particles. Beyond that
the colloidal topological insulator was simultaneously a model system for the motion of
electrons within the semiclassical picture of the quantum Hall effect. The work presented
in this section is also based on colloidal particles but the interest no longer lies in the
motion of the particles itself. Here, colloids are purely used as a model system for so-
called spin ice. The collective behavior of the mesoscopic particles emulates the dynamics
of the spin degrees of freedom in the spin ice crystal. This approach offers the possibility
to access the otherwise hidden dynamics of the spins in real space and real time.
Spin ices are rare-earth pyrochlore oxides and form a class of exotic magnetic materi-
als with remarkable properties. Its spins are geometrically frustrated, which prevents
ordering of the spins and leads to a macroscopically degenerate ground state. This is
observable as a residual entropy that persist even upon cooling of the material to ab-
solute zero. Another striking feature is the existence of emergent magnetic monopoles
in spin ice. Despite a huge effort that is invested in the search for magnetic monopoles,
there is only one other experimental observation of magnetic monopoles in the synthetic
magnetic field produced by a Bose-Einstein condensate [99, 100].
However the spins and their dynamics in bulk spin ice can only be studied by indirect
measurements, such as for example neutron scattering [101]. A direct experimental
observation remains elusive. The design of two dimensional model systems, so-called
artificial spin ices (ASI), avoids these limitations [43]. In publication [P6] I am using
a special version of ASI, the artificial colloid ice. Colloids that are confined in bistable
gravitational traps take the role of the spin degrees of freedom. The advantage is, that
the colloids can be individually observed in real space and time.
In publication [P6] colloidal ice is used to study the dynamics of monopole defects. I
experimentally observe the motion of monopole excitations in real time and examine
the interaction between pairs of them. Furthermore I am using the system to design a
universal logic gate based on the motion of monopole excitations. Transferring this to
ordinary ASI or even real spin ice might foster novel circuitry based on magnetricity
instead of electricity.
I will start this chapter by explaining frustration and how it results in the macroscopically
degenerate ground states of water and spin ice. After that I give a brief introduction to
the model systems of spin ice, artificial spin ice and colloidal ice. I will then summarize
how colloidal ice is used to experimentally measure the interaction of charged excitations
in publication [P6]. In the last part of the chapter I present a novel approach to restoring
the residual entropy in colloidal ice.
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4.1 Geometrical frustration

Figure 4.1: Antiferromagnetic spins on the corner of a triangle. The first two spins
can be placed in opposite direction such that they minimize their energy. However it is
not possible to place the third spin in a way that it simultaneously satisfies all pairwise
interactions. This geometric frustration result in two possible lowest energy states.

Geometrical frustration is a widespread phenomenon in physical and biological systems.
It is a unifying concept with an important role not only in various fields of condensed
matter, but also far beyond [102]. In physics the presence of frustration reaches from
magnetic moments in disordered solids [103] to high temperature superconductors [104].
Moreover it is also important in biological systems, exemplified by the folding of pro-
teins [105] or neural networks [106].
Frustration arises when geometric or topological constraints impede the simultaneous
satisfaction of all local interactions [107]. A consequence of geometric frustration can be
a multifold degenerate ground state. In water ice or spin ices this goes along with the
observation of residual entropy [108, 109].
A traditional example of frustration is the antiferromagnetic Ising triangle [107, 110]. It
consist of three Ising spins with antiferromagnetic coupling residing on the three corners
of a triangle as shown in figure 4.1. The first two spins can be aligned in opposite
directions. There is however no possibility to place the third spin anti parallel to the
first two spins. The minimization of one of the nearest neighbor interactions is always
violated. Like this the triangular geometry causes the system to be frustrated with two
possible lowest energy states.

4.2 Water ice and residual entropy

Historically the first frustrated system found was water ice, a material that might seem
rather trivial at first glance. Crystalline cubic ice (Ic) has disorder that remains down
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4.2 Water ice and residual entropy

Figure 4.2: In crystalline water ice each oxygen atom (red) is surrounded by a tetra-
hedral arrangement of four other oxygen atoms. In-between two neighboring oxygens
there is one hydrogen atom (blue) which sits close to one of the two oxygen atoms. The
ground state configuration is given by the ice rules: Two of the four hydrogen atoms are
close to the central oxygen atom.

to extreme low temperatures. The corresponding residual entropy was measured for the
first time in 1933 by Giauque and Ashley [108]. Two years later Pauling came up with
his famous explanation [111]. He found that there is a discrepancy between the crystal
symmetry and the preferred number of bonds of each oxygen atom.
The arrangement of oxygen atoms in crystalline ice is well known. Each oxygen atom is
surrounded by four others in a tetrahedral configuration as shown in figure 4.2. Between
each pair of oxygen atoms there is one hydrogen atom. These however do not sit right
in the middle of the oxygen pairs but have two possible locations closer to one of the
two surrounding atoms.
It is known that the concentration of (OH)− and (H3O)+ ions is small in water. This
situation is expected to be unchanged in ice. Therefore the hydrogen atoms will be
located such that each oxygen has two hydrogen atoms close to it. These local ordering
scheme with two hydrogen atoms close to the oxygen atom and two further away obeys
the so-called ice rules [112].
This gives rise to a huge number of possible crystal configuration with different locations
of the hydrogen atoms. Cooling the crystal to low temperatures freezes it into one of
the disordered configurations. But it would not turn into a perfectly ordered crystal, at
least not in reasonable time scales. The number W of possible configuration is related
to the residual entropy S = kB ln(W ) which persists all the way down to absolute
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zero temperature. Here kB is the Boltzmann constant. In the following the number of
configurations W will be calculated. A mole of ice consists of N = 6 · 1023 molecules.
Each of the two hydrogen atoms of a molecule has two possible locations resulting in
22N configurations. But from the 16 possible arrangements of the four hydrogen atoms
surrounding a central oxygen atom only 6 will fulfill the two “in“ and two “out“ice rules.
Hence we have a total number

W = 22N ·
( 6

16

)N
=
(3

2

)N
(4.1)

of ground state configurations. The residual entropy per mole of ice is thus S = R ln
(

3
2

)
,

where R is the universal gas constant. The value for the residual entropy calculated by
Pauling shows a remarkable agreement with the experimental values [108].

4.3 Spin ice and emergent magnetic monopoles

Figure 4.3: Scheme of spin arrangement in spin ice. The spins sit on the corner of a
tetrahedron and are restricted to either point towards the center or away from it. The
picture shows the ground state with two spins pointing in and two out.

Already in 1956 Anderson thought of a spin system that obeys the ice rule and shows the
same highly degenerate ground state of water ice [113]. It took considerably longer to
experimentally find such a system. In 1997 Harris and co-workers used neutron scattering
to study the rare earth pyrochlore material Ho2Ti2O7 [114]. They found that even at
extremely low temperatures (down to 0.05K) this material does not have an ordered
ground state, which indicates the presence of strong frustration. They could show that
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below T ∼ 1K the spins in this system in fact obey the ice rule, which explains the
absence of any long range order. This was later confirmed experimentally by measuring
the residual entropy. Since it was the first physical realization of a magnetic analogue
for water ice, it was called spin ice [41].
In this system the spins of the holmium (Ho3+) ions occupy a pyrochlore lattice of corner
sharing tetrahedra. The local crystal structure thereby restricts the possible orientations
of the spins. They can either point towards the center of a tetrahedron or away from it as
shown in figure 4.3 [41]. The magnetic moments are rather large (approximately 10µB)
and are therefore often described classically [43]. The interaction between the spins can
be well approximated with nearest neighbor exchange and long range dipolar interaction.
Together they result in an effective ferromagnetic coupling between the spins.
The pyrochlore lattice can be directly mapped on the water ice lattice. An inward
pointing spin corresponds to a hydrogen atom that is close to the central oxygen atom
and vice versa. The ground state of such a tetrahedron of ferromagnetic spins obeys
the ice rules with two spins pointing in (towards the center) and two spin pointing
out such that the overall spin in the tetrahedron vanishes [109]. This gives rise to the
same macroscopic degeneracy as previously described in water ice. Considering the
ferromagnetic coupling of the spins, it is surprising to find frustration in this system.
Normally one would not expect frustration in a ferromagnetic system [41]. To date
Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7 are the only materials in which a spin ice phase
could be found [41].

Monopole excitations and the dumbbell model Maybe the most exciting aspect of
spin ice is the existence of defects that behave like magnetic monopoles. In 2008 Castel-
novo and co-workers found, that the dipole moments of the underlying spin degrees of
freedom fractionalize into magnetic monopoles [42]. To overcome the system’s complex-
ity they formally replaced the magnetic moments with dumbbells of opposite magnetic
charges ±qm (Figure 4.4a). The head of the spin is replaced by a positive charge and
the tail by a negative charge.
For a vertex that fulfills the ice rule, this means that the overall magnetic charge vanishes.
Two positive charges +qm, from the two inward pointing spins, and two negative charges
−qm (from the outward pointing spins) sum up to a total charge Q = 0 (Figure 4.4b).
The situation however becomes more interesting if we leave the ground state. The
simplest case is if exactly one of the spins is flipped. This will create two excited
vertices, one with three inward pointing spins and another one with only one inward
pointing spin. In terms of the dumbbell model this corresponds to a pair of magnetic
monopoles with magnetic charges Q = ±2qm (Figure 4.4c). It is now possible to separate
this two monopoles by flipping more spins, without creating additional charged vertices
(Figure 4.4d).
Castelnovo et al. derived, that two monopoles with chargesQα andQβ that are separated
by a distance rαβ really interact via a magnetic Coulomb law with the potential

V (rαβ) = µ0
4π

QαQβ
rαβ

α 6= β. (4.2)
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Figure 4.4: a) In the dumbbell model each spin (denoted by an arrow) is replaced
by a positive charge q = +qm at the head (red) and a negative charge q = −qm at its
tail (blue). b) Excerpt of the charge distribution of two vertices. For simplicity a two
dimensional projection of the tetrahedral configuration is used. Both vertices fulfill the
ice rule, which corresponds to overall uncharged Q = 0 sites. c) Flipping one spin (green
dumbbell) creates two monopoles. The upper one is positively charged while the lower
one carries a net negative charge. d) Flipping more spins separates the two monopoles
without creating further charged vertices. Both defects are linked by a Dirac string.

This expressions is exact up to small corrections decaying with 1/r5 or faster [42]. Two
monopoles separated by a distance r will thus experience a potential energy −µ0q

2
m/(πr).

They are connected by a Dirac string [115] which is observable but energetically irrele-
vant. Since it only takes a finite energy to infinitely separate both monopoles, they are
deconfined and therefore elementary excitations of the system [42]. Elementary excita-
tions in spin ice are emergent magnetic monopoles.
Only a short time after their theoretical prediction, the existence of emergent magnetic
monopoles in spin ice was confirmed in experiments, e.g. by neutron scattering [118] or
specific heat measurements [101]. Furthermore the existence of monopoles accounts for
phase transitions in spin ice that were observed before [116, 117]. These phase transitions
turned out to be liquid-gas transitions of the magnetic monopoles [42].

4.4 Artificial spin ice

As shown in the previous sections spin ice has a lot of interesting properties. However
it is not possible to directly observe single spins and their frustrated arrangement in the
bulk of the material. Therefore all measurements are restricted to indirect observation,
e.g. by neutron scattering [118] or the measurement of averaged quantities such as the
heat capacity [119].
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4.4 Artificial spin ice

One way to overcome this problem is to design two dimensional artificial model systems
that do not show these limitations. The idea that came up in 2006 was to model the
classical behavior of the spins with nanoscale magnets. To enable the observation of
single spins the three dimensional tetrahedral arrangement is projected into two dimen-
sions. There are two different possibilities of doing so, the spins can be arranged either
into a square lattice [120] or a honeycomb lattice [121].

Figure 4.5: a)Arrangement of the nanoislands into a two dimensional square lattice.
Each vertex has four adjacent spins. b) Energetically favorable and unfavorable arrange-
ment of a pair of either nearest neighbor spins or opposite spins at the same vertex. c)
The 16 possible spin configuration are divided into 4 topologically distinct types sorted
according to their energy. The percentage given corresponds to the fraction of vertices
in a system of non interacting spins. Picture adapted from [120]

To realize the artificial square ice, Wang and co workers used elongated permalloy nanois-
lands (80 nm by 220 nm laterally and 25 nm thick) that were built using lithographic
methods [120]. The size is chosen such that each island has a single-domain ferromagnetic
moment which is stable at room temperature. This stability of the magnetic moments
renders artificial spin ice athermal. The shape anisotropy restricts the magnetic moment
to point along the long axis of the island. Such islands therefore behave like nanoscale
analogues of the Ising spins in spin ice. The direction of the spin could be visualized by
magnetic force microscopy (MFM).
The islands are then arranged in a two dimensional square lattice as shown in Figure 4.5a.
Each vertex of the lattice has, like in 3D spin ice, four incoming spins which results in
16 possible configurations. However, in the two dimensional projection the interaction
between the spins is no longer equal for all pairs. The interaction between two per-
pendicular nearest neighbors is stronger than the between two opposite parallel spins,
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because the latter have a longer distance. Favorable and unfavorable pair alignments
for both situations are shown in figure 4.5b. All 6 pairwise interactions add up to the
total vertex energy. The 16 possible spin configurations are divided into 4 topologically
distinct classes, which are sorted according to their energy in figure 4.5c. Type I and
type II fulfill the two in two out ice rule.

Figure 4.6: Excess percentage of the different vertex types, which is defined as the
difference between the observed vertex fraction and the one expected for a random dis-
tribution. With an increasing interaction between the spins (decreasing lattice spacing)
the percentage of vertices that obey the ice rule (type I and II) increases while the other
vertex types are suppressed. Picture adapted from [120]

Wang et. al. could prove that their system in fact mimics the behavior of real 3D spin
ice. When the interaction strength between the magnetic moments is increased (which
is realized by reducing the lattice spacing) the number of type I and II vertices increases,
while the energetically less favorable type III and IV vertices are suppressed. Thus the
system follows the ice rule. Its ground state is made of vertices with a two in and two
out spin configuration.
A second possibility for artificial spin ice is the honeycomb structure shown in figure
4.7e. Tanaka and co-workers implemented it with a continuous network of ferromagnetic
wires [121]. The idea remains the same as in the square artificial spin ice, nanoscale
magnetic moments emulate the role of the spins. In contrast to the previous case only
three spins meet at each vertex (Figure 4.7). Thus the ground state can no longer follow
the ice rule and obeys a pseudo ice rule instead. Three in (Figure 4.7a) and three out
vertices (Figure 4.7d) are suppressed. The ground state is made of one in (Figure 4.7c)
and two in (Figure 4.7b) sites. However they did not find long range ordering of the
two different types of ground state vertices. Note that within the dumbbell model
with magnetic charges only the square ice ground state vertices are uncharged. In the
honeycomb lattice vertices always carry a charge.

42



4.4 Artificial spin ice

Figure 4.7: a)-d) Possible configurations of the three spins meeting at each vertex.
The pseudo ice rule favors the ’one in, two out’ and the ’two in, in out’ configurations.
e) Arrangement of the spins on the honeycomb geometry. While the vertices sit on
the corners of a honeycomb lattice, the center of the spins are located on the sites of a
kagome lattice. Picture adapted from [121]

Lack of residual entropy in artificial spin ice The biggest drawback in all artificial spin
ices is the loss of the ground state degeneracy. In square ice the reason for this is quite
obvious. In the three dimensional configuration a spin has the same distance to the other
three spins on the same tetrahedron. This is no longer true in the square lattice. The
opposite spins have a larger distance than the two neighboring, perpendicular spins.
In consequence type I vertices have lower energy than type II vertices (Figure 4.5c).
The system’s unique ground state is therefore made of a alternating pattern of the two
different type I vertices.
In the honeycomb lattice the situation is less obvious. On the vertex level all three
spins are equal. The degeneracy is nonetheless lifted because every ground state vertex
carries a net charge and also a net dipole moment. Upon cooling honeycomb ice it will
first reach ice I phase where the system follows the pseudo ice rule. Further cooling will
result in ordering due to the Coulombic interaction of the charged vertices. The system
reaches the ice II phase where positive charges reside on one sublattice of the honeycomb
and negative on the other one. At even lower temperatures the dipole moments of the
vertices start to order and form a long range ordered spin ’solid’ without any remaining
entropy [43]. First indications for the ice II were found in experiments [122] while the
spin ’solid’ state was so far only observed in simulations [43].
There have been different approaches to regain the residual entropy in artificial spin ices.
One approach is to change the geometry of the two dimensional lattice towards a shakti
lattice which in fact shows residual entropy [123]. However it is clear that a full analogue
to spin ice with four equal spins per vertex requires a 3D arrangement of the spins.
One possibility of realizing a three dimensional version is through self assembly [124].
Unfortunately this allows for little control over the system and its symmetry. Another
approach is to start from the two dimensional lithographic patterns and add the third
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dimension by stacking multiple layers [125]. This however involves technical problems
in the lithographic nano-fabrication process which makes the experimental realization
challenging [43]. Recently there were nonetheless some first samples realized with this
difficult technique [126].

In section 4.7 I present a new approach to restore the degeneracy in our two dimensional
colloidal model system. It preserves the square geometry and the four coordinated
vertices and nonetheless allows to stick to two dimension. The latter should pave the
way far a fast experimental realization.

4.5 Artificial colloidal ice

Artificial spin ice allows us to probe and manipulate single spins and to observe the
statistics of its ground state. It is for example possible to visualize the location of
defects in response to different external magnetic fields [127]. A central aspect however
remains elusive. Due to the extreme fast spin flipping processes all the dynamics of
artificial spin ices are hardly experimentally accessible.

Artificial colloidal ice overcomes this limitation. In this system the nanomagnetic islands
are replaced by interacting colloids that are confined in double well traps. As I will show
in the following, such a system can exhibit a collective behavior similar to artificial spin
ice. The use of micron sized colloidal particles has the major advantage that they can
be directly observed with video microscopy and that their timescales are easily experi-
mentally accessible. Also the particles as well as their interactions can be manipulated
in real time.

The first proposal to realize such a colloidal system came from Libal et.al. [128]. It is
based on electrostatically interacting colloids that are confined in a lattice of bistable
optical traps. However, the experimental realization of optically based colloidal ice
turned out to be challenging. On the one hand, it is difficult to stabilize and control
the electric charges of the colloids. On the other hand, the huge number of optical traps
would require a very high laser power.

Antonio Ortiz and Pietro Tierno succeeded to experimentally realize an alternative sys-
tem [129]. Instead of optical traps they used soft lithography to create gravitational
double well structures (Figure 4.8). These are elliptic cavities (21µm by 11µm) with a
small hill in the center (figure 4.8a-c). A colloidal particle placed in these traps has two
possible stable positions, one in each side of the hill. The depth of the trap is chosen
such that the interaction with the other colloids can push the particle over the central
hill but the particles can never escape the trap. Thermal fluctuation cannot induce a
jump over the hill which makes the system athermal like artificial spin ice.
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Figure 4.8: a) Scheme of colloidal spin ice in honeycomb geometry. The external
magnetic field B (purple arrow) induces magnetic moments in the paramagnetic colloids.
b) Profilometer measurement of the soft lithographic structure. c) Cross section of the
profile along a double well trap (along the blue line in (a) and (b)). The two stable
positions and the central hill are clearly visible. d,e) Spin configurations of honeycomb
ice (lattice constant a = 44µm) and square ice (a = 33µm). Blue arrows denote the
assigned spin direction. A ground state vertex is highlighted in both cases. f,g) Vertex
configuration for honeycomb and square ice sorted according to the corresponding energy.
Scale bar for all images is 20µm. Picture adapted from [129].

The double well traps are then arranged either in a square (figure 4.8e) or a honeycomb
lattice (figure 4.8d). The colloidal ice can be compared to conventional artificial spin
ice by simply assigning arrows to each trap pointing from the vacant to the filled site
(figure 4.8d,e). The system can also be described by the dumbbell model introduced in
section 4. In this picture a particle close to the vertex would be a positive elementary
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charge and a particle on the remote position a negative charge 1.
The interaction between the colloids is introduced by using paramagnetic colloids (di-
ameter 2r = 10.3µm). Under application of an external magnetic field B the particles
acquire magnetic moments m = V χB/µ0, where V is the particle volume and χ ∼ 0.1
the volume susceptibility. The magnetic field is applied perpendicular to the crystal
plane (figure 4.8a). The particles will therefore interact via a repulsive isotropic dipolar
potential

U = µ0m
2

4πr3
ij

∝ B2. (4.3)

The advantage in comparison to artificial spin ice is obvious, changing the interaction
strength no longer requires changing the lithographic pattern but can be easily done by
varying the applied magnetic field.
The pairwise repulsion gives rise to four energetically different vertex configuration in
the honeycomb lattice (fig. 4.8f) and 6 different configuration in the square lattice
(fig. 4.8g). On a single vertex level the repulsive interaction tries to maximize the
distance between the particles and therefore negatively charged vertices are energetically
favorable. Considering the whole lattice this is no longer true. In contrast to artificial
spin ice the overall ground state cannot be derived from a single vertex consideration but
arises from a collective effect of all interacting particles. The reason is that the colloidal
particles move in contrast to the spins, which results in a higher energy for positive
charges than for negative ones. Both are though topologically connected. To maintain
overall charge neutrality a negatively charged vertex always has to be balanced by a
positive one. In consequence the ground state is not made of the lowest energy vertices
but of uncharged SIII and SIV vertices (KII and KIII for the honeycomb lattice), that
obey the (pseudo) ice rule.
In [129] this was experimentally verified. The results are shown in figure 4.9. In the
square ice the SIII type vertices dominate as the interaction between the particles is
increased. The reason for the suppression of SIV vertices is the artifact of the two
dimensional projection, which was discussed in the previous section. In the honeycomb
colloidal ice KII and KIII vertices dominate in agreement with the pseudo ice rule.
In summary colloidal ice also follows the (pseudo) ice rule. Like conventional artificial
spin ice it is a suitable two dimensional model system for spin ice, which additionally
has access to the dynamics of the system.

1Since the underlaying degrees of freedom in this case are not magnetic moments or spins, the elementary
charges introduced here are not magnetic monopoles. Hence also excited vertices will not carry an overall
magnetic charge and are therefore not magnetic monopoles. They can be considered as topological
charges or monopoles. Nonetheless, publication [P6] shows that these charges closely resemble the
behavior of magnetic monopoles.
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Figure 4.9: Measurement and simulation (line) of the fraction of vertex types as a
function of the external magnetic field for square ice (a) and honeycomb ice (b). At
low field strengths the distribution is random but with increasing field the ground state
dominates. It is made of SIII vertices 6 in square ice and of KII and KIII vertices in
the honeycomb ice. The fraction of KIII is only lower due to finite size effects of the
system. Picture adapted from Ref. [129]. Note that the fraction of SIII and SIV vertices
is confused. In fact the vertices SIII are dominating the ground state of square colloidal
ice.

4.6 Defect dynamics in artificial colloidal ice
So far the descriptions were mainly focused on the ground states properties of spin ice and
its model system. An intriguing aspect in spin ice are of course the magnetic monopole
excitations and in particular their dynamics. A lot of theoretical and numerical work
based on artificial spin ice was invested in this topic [130, 131]. However the spin flipping
processes in artificial spin ice are too fast and therefore experimentally accessible. Hence
the experimental confirmation of the theoretical predictions remain elusive. It is only
with colloidal ice that the dynamics in the system becomes accessible in real time.
In [P6], I use colloidal square ice to experimentally examine the dynamics and the inter-
action of charged defects 2. This work confirms former theoretical findings and proves
that defects in the system in fact behave like bound magnetic monopoles. Furthermore
I demonstrate how the system can be manipulated with external magnetic fields and
gradients and how they were used to build a logic gate based on magnetricity.
One of the major differences between three dimensional spin ice and two dimensional
artificial spin ice is the interaction of defects. Two charged defects are linked by a
Dirac string (compare figure 4.4). In 3D the Dirac string is energetically unimportant
and charged defects interact only through a magnetic Coulomb law [42]. In the two
dimensional projection this is no longer true. The string is made of SIV vertices which
have a higher energy than the ground state SIII vertices. This gives rise to an additional
interaction energy in form of a line tension [130], that is a contribution that grows
linearly with the distance of the defects. Therefore monopoles are bound, as opposed to

2Details on the experimental setup are described in the appendix A.2.
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the unbound monopoles in three dimensional spin ice.
In the experiments I used an arrangement of two oppositely charged defects embedded
in a lattice of ground state vertices. The initial configuration was set with the help of the
optical tweezers. Once this is done the magnetic field is switched on. The two defects
start to attract through Coulombic interaction and line tension. Both defects approach
each other until they finally meet and neutralize.
The real-time observation of this process is then used to determine, the Coulombic
as well as the line tension contribution of the interaction potential between the two
defects. With the contraction speed as a function of the defect distance, and assuming
an overdamped motion, a value for the charge of monopole defects in our system could
be extracted 3. The integrated equation of motion is fitted to the experimental data.
The good agreement proves that defects in colloidal ice interact via Coulomb potential
and line tension. This result was further validated with numerical simulations following
the scheme presented in the supplementary material of [P6].
Unfortunately the Coulombic contribution is small compared to the line tension. To
further illustrate the Coulombic interaction I used a different setup of biased vertices.
All colloids are biased towards the left upper corner. Hence this metastable configuration
is made up of SIV vertices. This setup has the advantage that defect lines with positive
or negative line tension can be created.
To extract the Coulombic contribution the dynamics of a defect line with both interac-
tions is compared to the motion of a single defect that is only driven by line tension.
To better visualize the Coulomb contribution I took advantage of the cleanliness of the
simulation environment. This helped to clearly demonstrates that charged defects in
colloidal ice obey the Coulomb law. All experimental and numerical results are in good
agreement to the theoretical assumptions.
In addition I showed how the system and its defects can be manipulated by external
magnetic fields and gradients. I used this to implement a ’NOR’ gate. It is a complete
logical function, which means every logical operation can be constructed in terms of a
’NOR’ gate. The novelty is that it is based on the motion of monopole defects instead of
electric charges. Our results should be transferable to artificial spin ice or maybe even
real spin ice. The possibility to control monopoles in spin ice systems might stimulate
the realization of a new class of computing devices based on magnetricity, the motion of
magnetic charges (magnetic current), instead of electricity.

4.7 Restoring the residual entropy in artificial colloidal ice
Artificial spin ice and especially colloidal spin ice offer a lot of new opportunities com-
pared to real three dimensional spin ice. They allow for direct observation and manipu-
lation of the single spin degrees of freedom and even open up the possibility to directly
observe the dynamics of monopole defects. However, as discussed two dimensional model

3It is clear that due to their low Reynolds numbers (Re ∼ 10−6) the colloidal motion is overdamped,
that is inertia is negligible. This suggests that defects in colloidal ice follow the same dynamics. In the
supplementary material of [P6] we validated this assumptions with the help of numerical simulations
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systems have one major drawback. As discussed in the chapter on artificial spin ice (sec-
tion 4.4) they do not reproduce one of the most intriguing features of 3D spin ice, its
residual entropy.
In this chapter I will present a new approach to restore residual entropy in colloidal ice.
In contrast to previous attempts based on artificial spin ice this truly two dimensional
approach should be easier to realize in experiments. The idea is to combine two particles
of different magnetic moments with two types of traps with different lengths. In the
following I will theoretically show that there are combinations of lengths and moments
that result in equal energies for all ice rule vertex configurations and hence gives rise to
residual entropy. I validate the theoretical result with numerical simulations. This gives
strong indications that our approach in fact shows the ground state degeneracy of 3D
spin ice.

Figure 4.10: Vertex geometry of the modified spin ice. The horizontal traps are shorter
than the vertical traps. The two different types of traps contain particles of different
magnetic moments (red and blue). a) All four SIV type vertices have equal energy
E1. b,c) The two former ground state configuration (SIII) now have different energies
E2 6= E3

A vertex of the modified system is shown in figure 4.10. It consists of traps of different
lengths lx along the x-direction and ly along the y-direction. The length of the trap is
defined as the distance between the two stable positions on both sides of the central hill.
The vertices thereby remain in their original square configuration with a lattice constant
a.
The different types of traps are occupied by two different types of particles with magnetic
moments mx and my. Here again a perpendicular magnetic field B is used to induce
dipolar interactions between the paramagnetic colloids. The two magnetic moments
mi = χiViB can be realized by either using particles of different volume susceptibility
χi or with colloids of different diameter and therefore different volume Vi.
The sum of the 6 pairwise dipolar interaction energies
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Uij = µ0mimj

4πr3
ij

(4.4)

of the 4 particles per vertex gives the total vertex energy

E =
4∑

i,j=1
j>i

Uij (4.5)

where rij is the distance between the particles i and j. All 4 possible SIV vertices have
the same energy E1 (figure 4.10a). But the two former ground state SIII can now have
different energies E2 6= E3 (figure 4.10b,c). The requirement for residual entropy is, that
all 6 configurations that fulfill the ice rule must have the same energy. Thus the set of
equations

E1 = E2 = E3 (4.6)

has to be solved, where each of the energies E = E(lx, ly, my

mx
) is a nonlinear function of

the system parameters. Note that the two magnetic moment degrees of freedom can be
reduced to the ratio since the total moment is anyways scaled by the magnitude of the
external field. I used a self made maple program to numerically determine parameters
that solve equation (4.6). I obtained several sets of parameters that physically possible
solutions to the problem. Although a lot of them contain values that are difficult to be
realized in experiments there are still solution that lie in the experimentally accessible
range.
I then performed numerical simulations with these solutions. The parameter set that
yields the best results in simulations is

lx = 0.291 · a; ly = 0.835 · a; my

mx
= 0.082. (4.7)

The simulations scheme is the same that I also used in [P6]. The particles have the
same size 2r = 10.3µm, but different susceptibility with χx = 0.08 for the higher value.
The system of 15 by 15 vertices is bigger than the in experiments accessible size. Only
the central 4 by 4 vertices are used to determine the statistics of the ground state. In
the beginning the system is in a disordered state. The simulations runs for 30 s (time
step ∆t = 0.01 s) with the magnetic field switched. After that the vertex distribution is
measured. All results are averaged over 100 simulation runs.
The result is shown in figure 4.11. At high magnetic fields the ground state is dominated
by SIII and SIV vertices that obey the ice rule. But in contrast to the normal colloidal
ice (compare figure 4.9) the SIV are no longer suppressed and instead now have approx-
imately twice the fraction of the SIII sites. This is expected from the different numbers
of possible configurations (4 and 2). Note that the system used for simulation is bigger
than the experimental system. But the behavior in a smaller, experimentally accessible
system is basically the same except for a slightly higher fraction of non ground state SII
vertices due to finite size effects. To increase the number of ice rule vertices and to get
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Figure 4.11: Fraction of vertices in the ground state of modified spin ice for various
magnetic fields. Ice rule vertices are SIII and SIV type vertices. For low fields the
distribution of vertices is random while at higher fields ice rule vertices dominate with
up to 75%. The SIV vertices are approximately twice as frequent as SIII ones.

rid of remaining defects one could think of further modifications to the system, such as
for example a improved shape of the gravitational traps. Another approach could be to
introduce some equilibration scheme instead of instantaneously switching the field from
zero to its maximum value.
In summary I could show that it is possible to modify the colloidal ice system in a way
that it recuperates its residual entropy. Numerical simulations prove that our theoretical
idea works. This system thus overcomes the biggest drawback of two dimensional spin ice
model systems and could pave the way for the study of countless interesting properties
of spin ice that are related to its residual entropy.

4.8 Summary and outlook
Spin ice is a interesting class of magnetic materials. Despite the ferromagnetic coupling
between the single spin degrees of freedom they are highly frustrated. This frustration
results in a multi fold degenerate ground state configuration of the spins that causes the
residual entropy. To examine the configuration of the spins, which is normally hidden
in the bulk of the spin ice, a two dimensional model system, so-called artificial spin ices,
proved helpful.
My work presented in this chapter and in publication [P6] is based on colloidal artificial
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ice which has the advantage of accessible dynamics. I used it to experimentally examine
the interaction potential between charged defects. something that was only done in
theory and simulations before. I could verify that they behave like bound magnetic
monopoles. That is they obey a Coulomb law with an additional line tension, an artifact
of the two dimensional projection.
The second major result is a proposal for restoring the residual entropy in colloidal ice.
The colloidal system is modified by using gravitational traps of two different lengths
and colloids of two different susceptibilities. By carefully choosing these parameters it is
possible to adjust the energy of all 6 ice rule vertices to be equal. The system therefore
shows the same ground state behavior as 3D spin ice. This could pave the way for a
lot of interesting future studies. The dynamics of monopoles for example would not be
governed by line tension and excitations would therefore behave like the free emergent
monopoles in real spin ice.
Another interesting aspect of [P6] is the realization of a universal logic gate in colloidal
ice. It is not based an electric current but on the motion of monopole defects. In [129]
a storage device based on colloidal ice was already proposed. Together this could foster
the development of new generation of computing devices. Probably it is not desirable to
realize this in colloidal ice but it would be interesting to transfer these ideas to artificial
or even real spin ice. This could open the possibility to build computing units at the
scale of only a few atomic building blocks.
Beyond that, there are a lot of interesting topics to continue the work on artificial
colloidal ice. The most promising thing is probably the experimental realization of
colloidal ice with residual entropy. It is work that is already in progress by Pietro Tierno
and his group in Barcelona. Another thing where colloidal ice could prove superior to
artificial spin ice is the thermalization of the system. A topic that despite intensive effort
remains difficult in artificial spin ice [43]. In colloidal ice this could be reached by simply
downscaling the system. Using smaller particles of diameters around one micron and
equally smaller lithographic patterns could introduce considerable thermal fluctuations
to the system. Colloidal ice would offer the possibility to follow the dynamics, e.g. of
monopole defects, related to thermal activity in the system.
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Appendix A
Materials and Methods

In this section I outline the details of the setups and methods necessary to prepare
and to perform the experiments presented in this thesis. For the topological protection
(chapter 2) as well as for the work on the bacteria (chapter 3) the experimental setup is
built around a commercial polarization microscope. It is equipped with coils to generate
external magnetic fields. For the colloidal ice experiments (chapter 4), however, I used
a more sophisticated magneto optical setup. It is composed of a homemade microscope
equipped with optical tweezers to prepare the initial configuration of the colloidal ice.

A.1 Topologically protected transport and magnetic guidance
of bacteria

Figure A.1: a) Picture of the experimental setup. The polarization microscope is
equipped with a CCD camera on top and a set of coils on the slide table. b) Close up
on the arrangement of coils. There are two coils each for the x and the y direction and
one for the z direction. The magnetic patterns (with the samples) are placed on top of
the z coil.
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Figure A.1a shows the heart of the experimental setup, the polarization microscope
DM2500P from Leica. It is used to simultaneously visualize the particles and the mag-
netic structures. Five coils are mounted on top of the slide table to generate the external
magnetic fields (fig. A.1b). The magnetic structures were placed directly on top of the z-
coil. The respective samples (colloids or bacteria) are then put on top of structures with
a pipette. In the following I will present the single components and their functionality.

Recovery of particle trajectories: A CCD-camera (Leica DFC360 FX)was attached on
top of the microscope (fig. A.1a). Together with the commercial software StreamPix the
dynamics could be recorded with a resolution of 1392 × 1040 at 20 frames per second.
The particle trajectories were extracted from the videos using tracking routines that I
implemented in Matlab. To measure distances and velocities of the particles the camera
was calibrated with an object micrometer.

External magnetic fields To superpose time-dependent, homogeneous external mag-
netic field to the heterogeneous field of the magnetic structures, the arrangement of coils
shown in figure A.1b is used. It consists of five coils, two each for the x and y direction
and one for the z direction 1. Due to the macroscopic dimension of the coils we can
in good approximation assume, that the magnetic fields are constant on the observed
mesoscopic length scale. To generate the time-dependent fields the coils are connected to
a wave generator (Aim-TTi TGA 1244 ) via a bi-polar amplifier (Kepco BOP 20-50GL).
The wave generator is capable of playing arbitrary wave forms that were beforehand cre-
ated with a Matlab program.To convert the applied voltage into a defined field strength
the coils are calibrated with a Gauss meter (LakeShore 410 ). Like this it is possible to
apply any desired, time-dependent modulation of the external magnetic field.

Magnetic structures The most important ingredient in the experimental setup were
magnetic structures generating the desired magnetic potentials. For stripe patterns as
well as for hexagonal patterns we could use magnetic garnet films. All other symmetries
required custom designed lithographic magnetic patterns.

Garnet films Ferrite garnet films (FGF) are a few micrometer thin layers that are de-
posited on a substrate (Gadolinium-Gallium-Granat) by Liquid-phase-epitaxy [132, 133].
The chemical composition of the films is Y2.5Bi0.5Fe5?qGaqO12 (q = 0.5−1). This results
in ferrimagnetic materials with uniaxial anisotropy. Ferrimagnetic materials have a van-
ishing macroscopic magnetization but nonetheless posses mesoscopic magnetic domains.
These domains have the saturation magnetization MS which is oriented perpendicular
to the film, pointing either in the positive or the negative z-direction. The saturation

1An earlier design used in [P2] and [P5] only had one coil each for the x and the y directions. But in
experiments with ferrofluid drops on top of the lithographic magnetic patterns it turned out that the
gradients in the x−y-plane caused by this arrangement of coils were too strong. To reduce the in-plane
gradient the experimental setup was enhanced with two additional coils for the x− y-plane.
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Figure A.2: Polarization microscopy images of the domain structures of ferrite garnet
films. Bright and dark areas are oppositely magnetize domains. a) Disordered, stable
labyrinth pattern. b) Metastable regular stripe and c) hexagonal bubble lattice.

magnetization is of the order of MS ≈ 10 kA/m. If an external magnetic field is ap-
plied perpendicular to the film, the domains magnetized parallel to the field grow on the
expense of the anti parallel domains. The domains can be observed with the polariza-
tion microscope in transmission mode via the Faraday effect [134, 135]. The oppositely
magnetized domains have a different brightness in the microscope image (compare fig.
A.2).
Figure A.2a shows the stable configuration which is a labyrinth pattern of stripe domains
with a typical wavelength λ ≈ 10µm. Using a suitable external modulation this disor-
dered pattern can be transformed into metastable states with higher symmetries. It is
possible to create a regular stripe pattern (fig. A.2b) or a hexagonal bubble lattice (fig.
A.2c). The necessary modulation consists of a strong perpendicular field Hz ≈ 0.7 ·MS

that is very slowly (within some minutes) reduced to zero. If an oscillating in plane
field H = H0 cos(2πft) with a magnitude H0 ≈ 0.7 ·MS and a frequency f ≈ 20Hz is
simultaneously applied the pattern tends to form stripes along the field direction. An
in plane rotating field with equal magnitude and frequency will favor the formation of a
hexagonal bubble lattice. The derivation of the magnetic field of the patterns is shown
in detail in Ref. [136] for the stripe pattern and in Ref. [135] for hexagonal bubble lattice.
Applying a field Hext ≥ 0.7 ·MS destroys the metastable states and leads back to the
unordered labyrinth pattern.

Lithographic magnetic patterns The lithographic process presented in this section
allowed for the creation of magnetic structures with any desired domain pattern. The
starting point are [Co/Au] multilayer structures with perpendicular magnetic anisotropy.
The pattern is imposed by the bombardment of the material with He-ions through a
shadow mask. The mask has the pattern of the desired domain structures. The He-ions
will only hit the areas that are not covered in the mask. This results in a local decrease
of the materials coercive field. Applying a field with a field strength between the initial
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and the new coercive field will invert the magnetization in the bombarded areas and
therefore result in the formation of up and down magnetized domains. The domain
pattern will coincide with the geometry that was imposed on the shadow mask. Unfor-
tunately the used lattice constant a = 7µm is close to the lower end of the lithographic
resolution. Therefore some smaller details of the structures are lost and also the overall
magnetization did not vanish as theoretically assumed. This gave rise to some of the
experimental problems discussed in publication [P1]. Details of the production process
are described in the appendix of [P1].
Despite the higher saturation magnetization MS = 1420kA/m the field strength Hp on
top of the pattern is lower than on top of garnets. This is because of the layer thickness
t ≈ 3.5 nm which is orders of magnitude smaller than the lattice constant a. Therefore
the magnetic field on top of the pattern is given by Hp = MS · t · Q ≈ 3kA/m. In
contrast the thickness of the garnet films is of the order of the lattice constant and thus
the field is given by Hp = MS . This lower field strength prohibited the visualization of
the domain pattern via the Faraday effect.The ion bombardment also slightly changed
the color of the multilayer surface. This weak contrast is enough to identify the patterns
in direct view. In the recorded videos, especially with ferrofluid on top of the structure,
the domains are nonetheless hardly visible. Due to the non transparent substrate, the
magnetic structures and the particles had to be observed in reflection mode.

Samples

Colloids on garnet films The garnet films were used for the experiments presented
in [P2] and for the experiments on the 2 fold symmetric pattern in [P1]. The colloidal
suspension is placed directly on top of the film. It contains nonmagnetic polystyrene
particles (FluoroMax, ThermoScientific) of diameter 2r = 3.1µm and polystyrene par-
ticles that are doped with iron and thus superparamagnetic (2r = 2.8µm, Dynabeads
M-270 ) with an effective susceptibility χp,eff ≈ 0.4 [137]. Beyond that the suspen-
sion contains nonmagnetic spacer particles (FluoroMax, ThermoScientific) with a bigger
diameter 2r = 4.8µm. Together with a top cover slip this ensures a constant layer
thickness d = 4.8µm.
The colloidal particles are immersed in diluted aqueous ferrofluid (EMG707, FerroTec)
of susceptibility χf ≈ 0.1 2. On the one hand, this renormalizes the susceptibility of the
nonmagnetic particles such that it becomes negative and the particles behave effectively
diamagnetic while the paramagnetic particles do not change their behavior. On the
other hand, the boundary conditions at the transition from the ferrofluid to the top
cover glass and to the garnet film cause the formation of virtual image dipoles outside
of the ferrofluid. These push the particles in the mid-film plane at a constant elevation
d/2 = 2.4µm above the surface of the garnet film. This height turned out to be a good
compromise of achieving a sufficiently universal potential and keeping the magnetic fields

2In [P2] we state that the susceptibility is χ = 0.6. Later on it turned out that this measurement was
wrong. Apart from the total value all results presented in [P2] remain qualitatively correct.
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of the patterns strong enough. A picture of the setup is shown in [P2]. A more detailed
description of the magnetic levitation mechanisms can be found in Ref. [135].
The different elevations d studied for the two fold symmetric stripe pattern in [P1] are
realized by two different sizes of spacers, 2r = 10µm (d = 5µm) and 2r = 4.8µm
(d = 2.4µm). For even lower elevations the ferrofluid was replaced by water causing the
paramagnetic colloids to sediment onto the surface of the garnet film. We approximated
the elevation d = 1.4µm with the particle radius. Using smaller paramagnetic particles
of diameter 2r = 1µm (Dynabeads MyOne, χp,eff ≈ 1 [138]) enables the exploration of
an even lower elevation d = 0.5µm.
To realize the hybridization reaction presented in [P2] I functionalized streptavidin
coated colloidal particles with complementary strands of single stranded DNA (ssDNA).
The particles are first separately washed and redisperesd into a 20mMNaCl TE-buffer so-
lution (pH 8.0). Then the DNA sequences are added to the two separate particles suspen-
sions: 5’-/5Bio/TCA CTC AGT ACG ATA TGC GGC ACA G-3’ to the paramagnetic
particles (Dynabeads M270 ) and its complementary strand 5’-/5Bio/CTG TGC CGC
ATA TCG TAC TGA GTG A-3’ to the diamagnetic particles (SpheroTech, 2r ≈ 3µm).
To allow the binding of the biotinylated ends of the DNA to the streptavidin of the
particles, the suspensions are equilibrated for 30 minutes under continuous shaking (to
avoid particle sedimentation). Afterwards the particles were washed again to get rid of
unbound sequences of DNA. The different batches of particles were only mixed directly
prior to putting the sample on the garnet film to be sure of having unbound particles in
the beginning. During the hybridization experiment the linkage between a paramagnetic
and a diamagnetic particle can now take place once they meet above a bubble of the
magnetic pattern.

Colloids on lithographic magnetic structures All experiments in [P4] and [P1], ex-
cept for those on the two fold symmetric pattern, were based on lithographic magnetic
structures. Since their magnetic fields are significantly weaker magnetic levitation of
colloidal particles did not reliably work. To nonetheless ensure the universal elevation
of the particles the structures were coated with a photo resist (AZ-1512HS, Microchem,
Newton, MA) of defined thickness 1.6µm. It was deposited using spin coating at a speed
of 3000 rpm for 30 s, with an acceleration of 300 rpm/s. After the spin coating the resist
was baked for 1min at 115◦C on a heat-plate.
A drop of the colloidal suspension is then placed on top of the photo resist layer. This
time the sample is not closed with a cover slip and the objective is immersed into the
liquid from above. The negligible magnetic levitation on top of the photo layer will cause
the particles to sediment (due to their higher density). Like this, they are again moving
at a fixed, sufficiently universal, elevation.

Magnetotactic bacteria on garnet films The work presented in [P5] is based on a
wild type strain of the magnetotactic bacteria Magnetospirillum gryphiswaldense. The
bacteria are grown in a flask standard growth medium following the procedure described
in [139]. The growing process was handled by Dr. Daniel Pfeiffer at the chair of microbi-
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ology on the university of Bayreuth. The result were bacteria of average length l ≈ 3µm
and average diameter d ≈ 1µm. The magnetic moment of the magnetosome chain is of
the order of m ≈ 1.5 · 10−15Am2 [91, 92].
For performing the experiments, a drop of the growth medium containing the right con-
centration of bacteria, was put on top of the garnet films. The three different relative
fitnesses presented in [P5] are obtained by using garnet films with different saturation
magnetizations MS and different elevations of the bacteria above the film surface. The
strongest Magnetization is achieved by using a garnet with MS = 20kA/m and a wave-
length λ = 4.8µm of the stripe pattern. The medium magnetization corresponds to
a garnet with a weaker saturation magnetization MS = 10kA/m (λ = 6.3µm). The
weakest magnetic field is obtained by again using the high magnetization garnet. In
this case, however, the bacteria are not deposited right on top of the garnet, but are
elevated at a hight z = 1.2µm above it, which results in a lower field strength. The
elevation is again realized by depositing a photo resist layer on top of the garnet film
(a higher speed of 6000 rpm results in a thinner layer). To fit experimental data and
theoretical predictions, an effective magnetization, which was roughly 40 times smaller
than the saturation magnetization, is used 3. This value arises, among other things, since
we reduce the magnetic field of the pattern to its leading Fourier component.
An issue when dealing with living bacteria is of course that their properties, such as
size, magnetic moment and motility, underlie natural fluctuations. These were especially
significant between bacteria from different samples. To minimize these effects as far as
possible, all experiments shown in [P5] were performed with the same batch of bacteria.

A.2 Artificial colloidal ice
The experiments on the artificial colloidal ice in [P6] are based on the setup shown in
figure A.3. It is a homemade inverted optical microscope provided with optical tweezers
and magnetic coils. The samples are illuminated from above with a white light LED. The
colloids as well as the double well pattern is observed from below with a 100X achromatic
microscope objective with a high numerical aperture NA = 1.2 (Nikon). The dynamics
are captured by a CCD camera (Basler A311f ). The objective fits through the center of
the z-coil that is used to introduce the repulsive interaction between the paramagnetic
colloids. The optical tweezers are realized with a Butterfly Laser Diode (Thorlabs) with
a wavelength λ = 975 nm and a power P = 330mW. The laser beam is coupled in by
an optical fiber and a dichroitic mirror and is tightly focused by the same objective that
is used for observation. The coils are mounted onto a motorized slide table. Therefor it
is possible to move the sample with respect to the fixed objective and the laser beam.
Hence an optically trapped particle can be moved across the lithographic structures.
The heart of the setup are the soft lithographic double well structures. The traps are
realized by etching elliptical inlets with small hills in the middle into a photo resist. The
single traps are arranged to form a square lattice. Details of the production process are
3In [P5] we state that the effective magnetization is 20 times smaller than the saturation magnetization.
Unfortunately an error slipped in there, it is actually 40 times smaller.
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Figure A.3: a) Picture of the inverted optical microscope and its single components.
It is equipped with a set of five coils of which only the central z-coil is used here. b)
Schematic of the setup. The IR-laser is coupled in via a dichroitic mirror and tightly
focused by the same objective that is also used for observation. The soft lithographic
structures are placed directly on top of the z-coil. A drop of the colloidal suspension is
put on top of the lithographic pattern.

given in the supporting information of [P6]. To avoid sticking of the colloidal particles
to the surface of the structures, they are functionalized with negative charges. These is
done by coating them with polysodium 4-styrene sulfonate, a negatively charged poly-
electrolyte, following the procedure described in [129]. The particles are also negatively
charged due to the dissociation of COOH groups and are therefore repelled from the
surface.
The structures are placed on top of the z-coil. A drop of the colloidal suspension is put
right on top of them. It contained paramagnetic particles (Microparticles GmbH ) of
diameter d = 10.3µm and susceptibility χ = 0.08. The colloids are allowed to sediment
onto the surface of the structure. The laser tweezers are then used to assure a filling ratio
of one particle per double well trap and to prepare the desired initial configuration of
the colloidal ice. Once this is done, the magnetic field is switched on and the relaxation
process is recorded. All components are remotely controlled via a custom made LabView
program which is simultaneously used for image recording.
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The topologically protected transport of colloidal particles on top of periodic magnetic patterns is

studied experimentally, theoretically, and with computer simulations. To uncover the interplay between

topology and symmetry we use patterns of all possible two dimensional magnetic point group symmetries

with equal lengths lattice vectors. Transport of colloids is achieved by modulating the potential with

external, homogeneous but time dependent magnetic fields. The modulation loops can be classified into

topologically distinct classes. All loops falling into the same class cause motion in the same direction,

making the transport robust against internal and external perturbations. We show that the lattice symmetry

has a profound influence on the transport modes, the accessibility of transport networks, and the

individual transport directions of paramagnetic and diamagnetic colloidal particles. We show how the

transport of colloidal particles above a two fold symmetric stripe pattern changes from universal adiabatic

transport at large elevations via a topologically protected ratchet motion at intermediate elevations toward

a non-transport regime at low elevations. Transport above four-fold symmetric patterns is closely related

to the two-fold symmetric case. The three-fold symmetric case however consists of a whole family of

patterns that continuously vary with a phase variable. We show how this family can be divided into two

topologically distinct classes supporting different transport modes and being protected by proper and

improper six fold symmetries. We discuss and experimentally demonstrate the topological transition

between both classes. All three-fold symmetric patterns support independent transport directions of

paramagnetic and diamagnetic particles. The similarities and the differences in the lattice symmetry

protected transport of classical over-damped colloidal particles versus the topologically protected

transport in quantum mechanical systems are emphasized.

1 Introduction

The theoretical description of topological insulators high-
lighted the connection between symmetry and topology in
quantum phases of matter.1,2 Symmetries and the topology of
quantum matter are deeply intertwined. The exploration of the

role of symmetry in topological phases has led to a topological
classification of phases of matter.3 The complex quantum wave
function of an excitation in a lattice can be considered as a two
dimensional vector with real and imaginary part components
that lives in the first Brillouin zone of the reciprocal lattice.
When one identifies the borders of the first Brillouin zone it is
topologically a torus. Attaching the quantum wave function
vector to this torus mathematically defines a vector bundle that
can be characterized by Chern classes. These classes must be
compatible with the symmetries of the Hamiltonian. Chern
classes are symmetry protected against perturbations com-
patible with the symmetry. Amongst the most prominent
symmetries protecting topological insulators are the time
reversal symmetry, the particle hole symmetry, but also the
point symmetry of the lattice.4–6 Different constraints of the
lattice symmetries cause physical distinct effects on lattices of
different symmetry.7,8 In topological nontrivial systems Dirac
cones play a crucial role. The number of these Dirac cones in a
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hexagonal and a square lattice differ and their robustness
against perturbations is different if they are located at a high
symmetry point, a high symmetry line or a generic location of
the Brillouin zone.9

The variety of phenomena enriches when considering time
dependent periodically driven systems. In such systems the fre-
quency or energy of an excitation is conserved only modulo the
frequency of the driving field and the first frequency zone can be
folded into a circle in the same spirit as folding the first Brillouin
zone into a torus.10,11 Floquet topological insulators are one example
of topologically non trivial systems arising from periodic driving.

The discreteness of spectra of quantum phenomena is one
ingredient shared also with spectra of bound classical waves
and with the nature of topological invariants. The quantum
Hall effect is one important example, where transport coeffi-
cients increase in discrete steps that contain only fundamental
constants of nature including Planck’s constant. The discrete-
ness of the steps are caused by topology.12

The topological classification of phases is not restricted to
quantum systems. There are other non-quantum vector waves
in lattices13–18 that can be characterized in just the same way.
Hence the topological discreteness also appears in many clas-
sical wave like systems. The topological characterization is not
restricted to classical vector bundles. It has been applied to
non-equilibrium stochastic systems that describe biochemical
reactions.19 We applied the concept of topological protection
to the dissipative transport of magnetic colloidal particles on
top of a modulated periodic magnetic potential.20,21 There the
transport of the point particle is fully characterized by the
topology of the mathematical manifold on which it moves.
The manifold does not carry any vector property. It can be
characterized by its genus, a topological invariant somewhat
more descriptive than the Chern class. We have shown that the
driven transport of paramagnetic or diamagnetic colloidal
particles above a two dimensional lattice is topologically pro-
tected by topological invariants of the modulation loops used to
drive the transport.20,21 Non-topological transport of particles
in a dissipative environment is usually vulnerable because of a
spreading of the driven motion with the distribution of properties
of the classical particles22–28 as well as due to the abundance of
possible hydrodynamic instabilities29,30 that limit the control over
their motion. Topologically protected particle transport in con-
trast is robust against sufficiently small continuous modifications
of the external modulation. Only when the modulation loops are
changed drastically they will fall into another topological class,
and the direction of the transport changes in a discrete step.

In this work we investigate how the topological classes of
modulation loops are affected by the lattice symmetry. We use
experiments, theory and simulations to study transport above
lattices of all possible two dimensional magnetic point sym-
metry groups and examine the impact of the symmetry on the
number of transport modes, the number of topological invariants
and on the type (adiabatic or ratchet) of transport. We show
that lattice symmetry, as in topological crystalline insulators,4–9

has a profound influence on the topologically protected trans-
port modes.

Applying periodic boundary conditions the unit cell of each
lattice is a torus, which defines the action space. That is, the
space in which the colloids move. The colloids are driven with
periodic modulation loops of an external magnetic field, the
direction of which defines the control parameter space. As a
result of the interplay between the external magnetic field and
the static magnetic field of the pattern, action space is divided
into accessible and forbidden regions for the colloidal particles.
For every point in an accessible region there exist a direction of
the external magnetic field such that the magnetic potential
has a minimum at that point. The borders between different
regions in action space are characterized by special objects in
control space. Modulation loops of the external field that wind
around these special objects in control space cause colloidal
transport along lattice vectors in action space.

In ref. 20 and 21 we studied the motion of colloids above
hexagonal and square patterns, respectively. Here, we extend
our previous studies in several ways. We corroborate the theory
developed in ref. 20 and 21 with experiments on four-fold
symmetric patterns and prove experimentally the existence of
ratchet modes in the six-fold symmetric patterns. We also develop
a theory for two- and three-fold patterns and prove their validity
with experiments. Moreover, we find theoretically two new topo-
logical transitions, one in the non-universal stripe pattern, and
one in the family of three-fold patterns. All theoretical predictions
are tested experimentally.

2 Colloidal transport system

In this section we introduce a soft matter system for Floquet
crystalline symmetry protected driven transport of colloidal
particles on top of two dimensional magnetic lattices of different
symmetry.

2.1 Magnetic colloids on magnetic lattices

Our system consists of a two dimensional periodic magnetic
film having domains magnetized in the z-direction normal to
the film (Fig. 1a). We consider a film that has as much area

Fig. 1 (a) Magnetic pattern of symmetry C2, C3, C4, and C6 with wavelength
l = 2p/Q and magnetization M xAð Þ. The magnetic colloidal particles move
in the two dimensional action space A on top of the film at fixed elevation
z 4 l. (b) A modulation loop LC of the external magnetic field Hext in the
control space C causes a transport loop LA of the colloidal particle.
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magnetized in the +z as in the �z direction. The magnetic
field Hp of the pattern can be derived from a scalar magnetic
potential

Hp = �rc (1)

that satisfies the Laplace equation and can be written as

c ¼
X
Q

cQe
�QzeiQ�xA (2)

where the sum is taken over the reciprocal lattice vectors Q
(Q = 2p/l for the smallest non-zero reciprocal lattice vector) of
the two dimensional lattice and xA is a two dimensional vector
in the lattice plane. Lower Fourier modes dominate the sum (2)
at higher elevation z.

Magnetic colloids can be confined in a liquid at a fixed
elevation z that is larger than the wavelength of the pattern l by
coating the magnetic film with a polymer film of defined
thickness or by immersing the colloids into a ferrofluid that
causes magnetic levitation of the colloids.20 We call the two-
dimensional space in which the particles move the action space
A. We will use a number of geometric spaces and objects. Their
definitions are listed in Appendix A.3. The positions of the
particles are described by the vector xA.

Magnetic fields induce magnetic moments

m = weff VH (3)

of the colloids of effective susceptibility weff and volume V. We
define the colloidal potential U = H2. The colloids thus acquire a
potential energy E = �weff VU. This depends on the square of the
total magnetic field H = Hp + Hext which is the superposition of
a homogeneous time dependent external field to the hetero-
geneous pattern field. The potential energy E has a different sign
for paramagnetic and diamagnetic colloids. Hence, paramagnetic
particles move to positions that are maxima of U while diamag-
netic colloids move to the minima.

We are particularly interested in the motion of paramagnetic
and diamagnetic colloids at an elevation z 4 l above the mag-
netic film such that only the contributions of the lowest non zero
reciprocal lattice vectors to eqn (2) are relevant. At this elevation
the response of the colloidal particles moving in action space A
becomes universal, i.e. independent of the details of the pattern.
The symmetry of the pattern becomes the only important pro-
perty. If the lattice has a proper CN rotation symmetry or an
improper SN symmetry there are N reciprocal lattice vectors
of lowest absolute value contributing to the universal scalar
magnetic potential c* and we find

c� ¼ ~ce�Qz
XN�1
n¼0

det Rn
N

� �
ei R

n
N �Q½ ��xA (4)

where Q is one of the lowest absolute value reciprocal unit
vectors and RN denotes a proper rotation matrix by 2p/N
det RNð Þ ¼ þ1ð Þ or an improper rotation consisting of a rota-

tion by 2p/N and a reflection at the film plane det RNð Þ ¼ �1ð Þ.
The universal scalar magnetic potential is determined only by
the symmetry of the lattice and a prefactor carrying a phase f

and an amplitude, ~c = | ~c|exp(if). The amplitude is irrelevant
and the phase f is only important in the N = 3 case. The scalar
magnetic potential will be the same for all lattices sharing the
same point symmetry.

Magnetization patterns generating such universal magnetic
potentials are shown in Fig. 2. The magnetization is given by

M xAð Þ ¼Msezsign tðfÞ þ
XN�1
n¼0

cos Rn
N �Q

� �
� xA � f

� � !
(5)

with tðfÞ � 1

2
cosð3fÞdN;3 chosen such that the magnetic moment

of a unit cell (UC) vanishes,ð
UC

M xAð ÞdxA ¼ 0: (6)

The colloidal potential can now be reduced to the leading
non-constant term, which is described by the universal colloidal
potential:

U� ¼ eQzHext �Hp xAð Þ: (7)

Note that the prefactor eQz rescales the potential such that it
is independent of z, see eqn (4).

As we will see, adiabatic transport where the colloids
adiabatically follow the maximum/minimum of the potential
is possible along the crystallographic directions of the lattices
when the potential is modulated with external fields. We call
the space of the external field that may alter the colloidal
potential the control space C. Following eqn (7) we see that in
the universal case changing the magnitude of Hext does not
alter the position of the extrema of the colloidal potential.
Control space C, is thus a sphere of the external fields of
constant magnitude. Each direction of the external field,
which is a point in C, produces a different colloidal potential
(see Fig. 1b).

2.2 Lattice symmetries and topology

In Fig. 2 we depict the Wigner Seitz unit cells (with lattice
vectors a1 and a2) of the periodic magnetic patterns defined by
eqn (5) for N = 2, 3, 4 and N = 6 and show the points of these
patterns having CN (green) or S2, S4 or S6 (red) symmetry. The
patterns in Fig. 2 exhaust all possible single lattice constant
(a1 = a2) magnetic point groups in 2D. White areas of the unit
cell are magnetized in the positive z-direction and black areas
in the negative z-direction. There are other patterns creating the
same universal potential, the field of which differs from the
field of the patterns of Fig. 2 if experienced at lower Qz o 1
(non-universal) elevation. Patterns having both CN (green)
and SN (red) symmetries (N = 2 or N = 4) can be generated by
using either proper or improper rotations. N = 3 can be
generated only with proper rotations. The C6 and S6 symmetries
arise if we chose N = 3 in eqn (5) and f = 0 (f = p/6). They can
equally well be produced with N = 6 and using proper (improper)
rotations.

Let us start with the topological characterization of action
space. For a lattice with two-fold symmetry there is only one
relevant reciprocal lattice vector and therefore the lattice is
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quasi one dimensional (see Fig. 2a). Since the lattice is periodic,
we can deform the Wigner Seitz cell to merge the opposite
borders. For N = 2 the Wigner Seitz cell is a one dimensional
segment, and hence action space A2 becomes topologically a
circle. For all other symmetries, action space AN , with N 4 2,
is a torus.

Action space is topologically nontrivial for both N = 2 and
N 4 2 since both a circle and a torus have a hole. For N = 2
there is one winding number around the hole, while for a torus
there are two winding numbers. The winding number of action
space A has a very simple meaning in the underlying lattice.
A winding around the circle (torus) corresponds to a translation
by one unit vector in the lattice.

As we already mentioned, control space C is a sphere of
radius Hext. The two-fold symmetric colloidal potential is inde-
pendent of the in-plane external field component perpendi-
cular to Q1. Therefore, in the two dimensional problem we only
need a reduced control space Cr2, which is the intersection
of C with the plane spanned by Q1 and the vector normal to
the film n = ez. Like action space A2 the reduced control space
Cr2 is a circle.

The topology of the reduced control space Cr2 is fundamentally
different from the full control space C. The latter is a genus zero
spherical surface that has no holes. For this reason we can
continuously deform any closed loop of the external field LC into

any other loop LC
0
. This is not the case if we restrict the modula-

tion loops to lie on the reduced control space Cr2, which is a circle
with a hole. Modulation loops in Cr2 can be characterized by their

winding number around the hole w LrC
� �

. The winding number is a
topological invariant and we cannot continuously deform a modu-
lation loop Lr

C with one winding number w into another modula-

tion loop Lr0
C with a different winding number w0 a w.

2.3 Classification of modulation loops

The fundamental question that we address in this work is, what
are the topological requirements for a modulation loop LC in
control space to cause action loops LA with different, non
vanishing winding numbers in action space and hence induce
transport of the colloidal particles.

For N = 2 the answer is simple in reduced control space Cr2
but less obvious in full control space C. Reduced control and

Fig. 2 Wigner Seitz cells, unit vectors (blue), and reciprocal lattice vectors (gray) of all possible two dimensional single lattice constant magnetic point
groups generating lattices. Black and white indicate the discrete down and up magnetized pattern according to eqn (5) that creates a universal colloidal
potential at an elevation z 4 l above the pattern. The Q1 vector is always pointing to the right in the x-direction. In (a) we show the unit cell of the two-
fold and in (b) of the four-fold symmetric pattern, and in (c) 24 smaller three-fold symmetric unit cells. The magnetic pattern of these three-fold
symmetric unit cells continuously varies with the phase f of eqn (5). We show a sequence of such cells in steps of Df = p/12 starting at f = 0 at the top.
For each case there are 3 symmetry points with C3 symmetry per unit cell. They are shown in 3 different colors (pink, yellow, cyan) in the unit cell next to
f = 0. For special values of f one of these three points acquires a proper or improper six-fold symmetry. N-Fold symmetric points of all unit cells are
marked in green for proper rotation symmetries CN and in red for improper rotation symmetries SN.
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action space are non trivial. One might guess that the non-
trivial topological classification of modulation loops in reduced
control space directly translates into the same topological
classification of induced action-loops, i.e.

w LAð Þ ¼ w LCrð Þ; for N ¼ 2: (8)

We will show that this indeed is the correct answer to
the question for the universal case. But there are other, non-
universal answers to this question. At low elevation the transport
in the two-fold symmetric potential differs from this simple
answer.

Eqn (8) does not hold in full control space, i.e. there are
loops with w LAð Þaw LCð Þ for any N. Otherwise there would not
be transport since w LCð Þ ¼ 0 for any loop. Full control space C
becomes nontrivial if we puncture it at specific points or introduce
even more complicated objects on it. The result is a constrained

control space ~C, for which the simple answer

w LAð Þ ¼ w L~C
� �

(9)

with w L~C
� �

the winding numbers around the objects of ~C holds.
The task is to find the objects that we need to project onto full
control space and figure out how winding around those objects
allows for a classification of the modulation loops into classes
that induce topologically different transport of colloids in
action space.

2.4 Computer simulations

We use Brownian dynamics to simulate the motion of a single
point paramagnetic colloid above the different patterns. The
motion of the particle is described by the stochastic differential
Langevin equation

g
dxAðtÞ
dt

¼ �rAE xA;HextðtÞð Þ þ fðtÞ;

with t the time, g the friction coefficient, and f a Gaussian
random force. The variance of the random force is determined
by the fluctuation–dissipation theorem. As usual, we integrate
the equation of motion in time using a standard Euler algo-
rithm. We always equilibrate the system before the modulation
loop in control space starts, such that the colloidal particles
always start in the minimum of the potential energy E at t = 0.

The phase diagrams of the transport modes that we present
in the next sections were initially obtained with computer
simulations and can now also be predicted theoretically.

2.5 Outline

The rest of the paper is organized as follows. In Section 3 we
treat the case N = 2. The simplicity of Cr2 allows us to visualize
many concepts that cannot be visualized for N 4 2 such as the
full dynamics in phase space. We also study the non-universal
transport for N = 2, and the connection to previous works.32–35

We outline the concept of topologically protected ratchets with
this very simple example. We then extend the treatment of N = 2
to the full control space, introducing the concept of the con-

strained control space ~C. The case N = 4 is related to the case N = 2
and is treated in Section 4. In Section 5 we analyze the case N = 3

that consists of a whole family of patterns continuously varying
with the phase f of the pattern. This includes the two special
cases, C6 symmetry (f = 0) and S6 symmetry (f = p/6). We find a
new topological transition between C6- and S6-like three-fold
symmetric lattices. Section 6 contains a discussion of the experi-
ments, a comparison to the theoretical and numerical predic-
tions, and a discussion of the results in comparison to quantum
systems. Finally Section 7 summarizes the main conclusions
concerning transport.

3 Two-fold symmetry

In this section we study the transport on top of a two-fold
symmetric pattern. We start with the universal case and sub-
sequently reduce the elevation of the colloids towards non
universal cases. This allows us to first study the transition from
topologically protected adiabatic motion towards ratchet motion,
and then to a non transporting regime.

3.1 Theory

A stripe pattern is a magnetic pattern with two-fold symmetry
(see Fig. 2a). The magnetic field of a thick (tQ 4 1, t being the
thickness of the magnetic film) pattern of stripes of opposite
magnetization �M alternating along the x direction reads:

Hp
x þ iHp

z ¼
2M

p
ln tanðQðxþ izÞÞ½ �

¼
X1
n¼0

8M

ð2nþ 1Þ2e
ið2nþ1ÞQðxþizÞ;

(10)

where Hp
a are the (real) components of the pattern magnetic

field, and in the last part of eqn (10) we have decomposed the
field into its Fourier-components. The non-universal colloidal
potential valid at any height z reads:

U = (Hp
x + Hext cosjext)

2 + (Hp
z + Hext sinjext)

2, (11)

where

Hext ¼ Hext

sinjext

cosjext

 !
; jext 2 ½0; 2p� (12)

denotes the external magnetic field lying in the reduced control
space Cr2. In the limit Qz 4 1 the pattern field is well described by

HpðQz4 1Þ ¼ 8Me�Qz
sinQx

cosQx

 !
; Qx 2 ½0; 2p� (13)

and the universal potential reads, cf. (7)

U* = 8MHext cos(Qx � jext). (14)

The over-damped Brownian motion of a colloidal particle in
the x-direction is given by

g _x ¼ weffV
@U x;jextð Þ

@x
þ fBrown (15)

where fBrown is a zero average random force fulfilling the
fluctuation dissipation theorem, g p Z the friction coefficient
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of the colloid in the liquid of viscosity Z, and the effective
magnetic susceptibility weff has a different sign for the para-
magnets and diamagnets. Since our colloidal potential is
sufficiently strong we can neglect the random force.

There are two kinds of colloidal dynamics that occur on separate
time scales, when we adiabatically modulate the direction of the
external field, which is described by jext(t). One is the intrinsic
dynamics of the colloids on an intrinsic short time scale tint

g _x tintð Þ ¼ weffV
@U x tintð Þ;jext tfixedð Þð Þ

@x
(16)

with which the colloids follow the path of steepest descent along
the slope of the colloidal potential along the x-direction towards an
extremum in U. The typical angular speed of this intrinsic motion
is of the order oint = Q

:
x p e�Qzweffm0MHext(QV1/3)2/Z; (the intrinsic

angular frequency renormalizes by an additional factor tQ o 1 for

thin magnetic films). Since the external modulation frequency
oext {oint is significantly slower this happens at fixed external field
(jext(t) = jext(tfixed)). The other timescale is an adiabatic creeping of
the colloid with the maximum/minimum of the colloidal potential,

0 ¼ �@U x textð Þ;jext textð Þð Þ
@x

; (17)

with a small velocity dictated by the much slower time scale text

of the external field modulation. Making use of the periodicity of
the pattern we wrap the Qx-coordinate into a circle of circum-
sphere 2p such that action space A is a circle. Reduced control
space Cr2 is also a circle with radius Hext and coordinate jext. The
full dynamics occurs in phase space Cr2 �A, which is the product
space of the reduced control and action space and thus a torus.

In Fig. 3a we depict the reduced phase space Cr2 �A, together
with the directions Qx of action space and jext of the reduced

Fig. 3 Reduced phase space of the two-fold symmetric system: (a) the black lines depict the locations of the domain walls separating regions of
opposite magnetization in phase space, which are two copies of control space at x = 0, p. We may use the first one as reduced control space Cr (orange).
Equally a level curve at fixed angle j (yellow) is a copy of action space. A point in phase space may be projected onto either control or action space, see
an example in panel (a) pink arrows. (b) Reduced phase space and intrinsic dynamics of paramagnetic colloids for the universal potential in the limit
Qz 4 1. The stationary manifoldsMr

� andMr
þ are depicted in green and red. The intrinsic dynamics is shown as a vector field of generalized velocities

with cyan arrows (pointing in positive x-direction) and blue arrows (pointing in negative �x-direction). Adiabatic motion of colloidal particles occurs on
the stable stationary manifold via the external modulation. (c) At a lower non universal elevation Qz = 0.4. The topology is still the same as in the universal
case. As in all the following cases we choose Hext = M. (d) Development of fences inMr

� at Qz = 0.34 and the transition towards topological protected

ratchet jumps (yellow) from the fence (border between pink and green color onMr) toward the pseudo fence (border between green and light green
color onMr) for paramagnetic particles (see Appendix A.3 for a concise definition of fence and pseudo fence). Both fence and pseudo fences onM are
projected into the same fence points in control space (border between gray and black on the domain wall). Preimages of the gray (m = 4) excess line of
control space are the two pink and two bright green lines. Preimages of the black (m = 2) part of control space are the full red and full green colored lines.
(e) Dynamics at an elevation Qz = 0.2. (f) At Qz = 0.1 fences also start to develop in Mr

þ causing ratchet jumps for the diamagnets (not shown) and

additional feeder ratchet jumps (orange) starting from Mr;isolated
� for the paramagnets. (g) Dynamics at the transition elevation Qz = 0.09 toward a non

transporting regime. (h) Phase space and dynamics at low Qz = 0.07 elevation. There are now four disconnected stationary manifolds (two of each kind)
which all have zero winding number in action space.
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control space. As indicated by the pink arrows in Fig. 3a each
point (x,jext) can be projected into the copy x = 0 of reduced
control space 0;jextð Þ ¼ PCr2 Qx;jextð Þ as well as into the copy

jext = 0 of action space ðQx; 0Þ ¼ PA Qx;jextð Þ.
Fig. 3b–h are plots of the phase space Cr2 �A at different

elevations Qz above the pattern and for an external field-
strength of Hext = M. As we will see in the non-universal case the
magnitude of Hext matters. The intrinsic dynamics, see eqn (16), is
shown as a vector field on the torus. According to eqn (16) the
trajectories move along lines of constant external field direction
jext(tfixed) = const, either in Qx or �Qx direction. Regions of phase
space with one sense of motion are colored in blue, regions of
phase space with opposite sense in cyan. Both regions are sepa-
rated from each other by the reduced stationary manifold Mr, a
line consisting of all points for which the potential is stationary
qxU = 0. A stationary point is either a minimum Qx;jextð Þ 2 Mr

þ
(red) or a maximum Qx;jextð Þ 2 Mr

� (green). The intrinsic
dynamics of the paramagnetic colloids starts at the red mini-
mum line Mr

þ and ends at the green maximum line Mr
�.

The reduced stationary manifold Mr of the universal
potential (Fig. 3b) consists of two lines: the line jext = Qx
(red) is the set of minimaMr

þ and the line jext = Qx + p (green)
is the set of maxima Mr

�. Following eqn (17) the adiabatic
creeping of the particles has to happen along the stationary
manifolds. Paramagnetic colloids will adiabatically follow the
green Mr

� line while diamagnetic ones will follow Mr
þ (red).

The simplicity of the universal stationary manifold (Fig. 3b)
thereby converts any motion in control space into similar
motion in action space. If we loop around the control circle
we also loop around the action circle and thus induce transport
by one unit vector. Both, paramagnetic and diamagnetic parti-
cles move at a fixed distance l/2. A general modulation loop LrC
in reduced control space causes an action loop LA in action
space with similar winding number wA ¼ wr

C. The particles can
stay on the corresponding manifold during the entire modula-
tion. Therefore the dynamics is completely adiabatic and thus
dominated by the external modulation.

When we lower the colloidal plane to Qz = 0.4 the manifold
Mr deforms (Fig. 3c). Eventually at Qz = 0.34, Mr

� becomes
parallel to the tangent vector of action space ex in one critical
point of Mr

�. At this critical point qxU = qx
2U = qx

3U = 0 and
therefore the point is no longer a maximum. As one further

lowers Qz an isolated section Mr;isolated
þ (pink) interrupts Mr

�.
Two fence points F r ¼ x;jextð Þj@xU ¼ @x2U ¼ 0

� �
as com-

mon borders between Mr;isolated
þ (pink) and Mr

� (bright green)
develop from the formerly closed Mr

� loop (Fig. 3d). When a
paramagnetic colloid adiabatically creeps along Mr

� via the
externally induced dynamics and reaches the fence F r it must
leave the stationary manifold, follows the intrinsic dynamics
and jumps (yellow arrow) toward a new maximum that we call
the pseudo fence PF r

� (border between the bright and full
green in Fig. 3e). A pseudo fence is a point onM different from
the fence that has the same projection onto reduced control
space (border between the black and gray line) as the fence but
different projections onto action space.

The intrinsic dynamics is irreversible, i.e. one can move
along the path of steepest descent only in one direction. When

we are at the critical elevation the Mr;isolated
þ interruption has

zero length, fence and pseudo fence fall on top of each other.
Like this the path of steepest descent has zero length. When we
decrease the elevation Qz the path of steepest descent continu-
ously grows. Although it is no longer on Mr it falls into the
same homotopy class as the section ofMr that it bypasses. That
is, both are topologically equivalent and transport by one unit
vector can still be achieved by winding around the control space.
The dynamics of the colloids, however, undergoes a phase transi-
tion from adiabatic toward a ratchet motion.36–42 The ratchet
jumps occur along the path of steepest descend with jump times
short compared to the external modulation dynamics. The result
of a ratchet transport is the same as the adiabatic motion at
higher elevations because of the homotopy between the avoided
section of Mr and the path of steepest descent. Like this the
transport is topologically protected at the adiabatic to ratchet
transition.

If we further decrease the elevation to Qz = 0.1 the same
thing happens to the other sub-manifold Mr

þ. It is now inter-

rupted by aMr;isolated
� section resulting in irreversible jumps for

the diamagnetic colloids (Fig. 3f). This section also opens up a
new possible ratchet jump of paramagnetic particles initially

located onMr;isolated
� onto the disconnected other parts ofMr

�.
The special thing about these feeder jumps is, that once a
colloidal particle leaves the isolated section it will never return

due to the absence of pseudo fences in Mr;isolated
� .

The projection of a point in Cr �A onto a point in Cr defines
a mapping from Mr onto Cr. The inverse of this map is not a
map because the projection maps several points ofMr onto the
same point in Cr. We call the number of preimages of the
projection on Mr the multiplicity. Note that, the two (bright
green) sections between pseudo fence and fence, the (pink)

Mr;isolated
þ insertion as well as a non isolated section (pink) of

Mr
þ are projected onto the same (gray) excess segment of control

space. Consequently the (gray) excess segment has multiplicity
m = 4 (it has four preimages on the manifoldMr). The rest ofMr

is projected twice on the remaining (black, multiplicity m = 2)
section of Cr2. Like this there are sections of control space with
different multiplicity. When we move from the m = 2-region of
control space to the m = 4 region a maximum minimum pair is
created inMr.

The topology of Mr does not change at the adiabatic to
ratchet transition. It is only the distribution of points on Mr

into the subsets Mr
� and Mr

þ that changes. A transition of
the topology of Mr occurs at Qz = 0.09 when the formerly
disconnected parts ofMr touch each other in four fence points
(Fig. 3g) and then separate into four disconnected parts
(Fig. 3h). Two of the new disconnected parts after the disjoining
are entirely of typeMr

� and two are of typeMr
þ. TheMr

� parts
are localized near the domain walls, while the Mr

þ parts lie on
top of a domain. All four parts ofMr have non vanishing winding
number around the reduced control space but vanishing winding
numbers around action space. Any control loop will thus only
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create periodic motion in action space that is associated with
no net transport over a period.

We have given a description of the dynamics of paramagnets.
The dynamics of diamagnets is the reversed intrinsic dynamics
coupled with the external dynamics onMr

þ. For the universal case
at high elevations both types of particles move exactly the same
way however they are separated by half the wavelength DQx = p of
the pattern. At lower elevation the transitions to a ratchet motion
occurs for different elevations Qz = 0.34 (Fig. 3d) for the para-
magnets and Qz = 0.1 (Fig. 3f) for the diamagnets. The transition
from transport to no transport happens for both particles simulta-
neously at an elevation of Qz = 0.09 (Fig. 3g). Paramagnets are then
confined to the domain walls and diamagnets to the domains.

3.2 Experiments

We have performed experiments with paramagnetic colloids above
the stripe pattern of wavelength l = 7.2 mm, and magnetization
M E 20 kA m�1 of a magnetic garnet film.43,44 We covered the
garnet film with a ferrofluid of defined thickness d. Magnetic
levitation lifts the colloids to the mid plane of the film at a fixed
elevation z. Since we were limited in the variation of the thickness
d we used the amplitude Hext of the external field as a second
control parameter. Both, decreasing the field or decreasing the
elevation renders the transport behavior non-universal. The modu-
lation of the external magnetic field that drove the dynamics was
generated by three coils arranged along the x, y, and z axes.31 We

applied a palindrome modulation loop LCr ¼ ~LCr ~LCr�1, i.e. a com-

bination of a forward loop ~LCr of winding number w ~LCr
� �

¼ 1

followed by the time reversed backward loop ~LCr�1 with winding

number w ~LCr�1
� �

¼ �1, each subloop has a duration of Dt = 5 s.

We measured the corresponding trajectories in reduced phase
space Cr2 �A at different heights. By video tracking we obtained
the coordinate xAðtÞ of the trajectory in action space. Simulta-
neously we determine jext(t) by measuring the width of an up
magnetized stripe that periodically varies with the external field
and is visualized in the same video (see ref. 45) via the polar
Faraday effect.

At the universal elevation (Fig. 4a) the colloids creep adia-
batically along the stationary manifold Mr

�. Forward (green)
and backward (olive) trajectories fall almost on top of each
other. If we lower the elevation we can observe ratchet motion
(Fig. 4b). There we can identify the sections of the trajectories
that lie onMr

� as those where the speed of the colloids on the
trajectories is slow (adiabatic) (see green data in Fig. 4b). The
paths of steepest descent are the regions where the velocity is
high (intrinsic dynamics). In the forward loop the adiabatic
motion passes the pseudo fence and the particle jumps when it
reaches the fence. The path of steepest descent reunites with
the backward trajectory at the pseudo fence. The two sections
onMr between fence and pseudo fence together with the paths
of steepest descend connecting fence and pseudo fence define
the hysteresis between forward and backward ratchet loops.
A fully adiabatic motion has negligible hysteresis.

At even lower elevations, below the topological transition
height, we no longer observe transport. The paramagnetic
particles are attached to the domain walls (Fig. 4c).

In a ratchet motion the path of steepest descent, and therefore
the hysteresis, develops continuously from the critical point. The

winding number w ~LA
� �

¼ �w ~LA�1
� �

of the forward loop does not
change across this continuous transition. In contrast, the topological
transition towards the non transporting regime is discontinuous.

Fig. 4 Reduced phase space (torus), intrinsic dynamics (vector field), stationary manifolds (green and red solid lines), and experimental trajectories
(green, olive, yellow and orange) for three different non-universal elevations. (a) Adiabatic motion in a nearly universal potential Qz = 4.34, Hext = 0.2M.
(b) Ratchet motion at an elevation Qz = 0.43, Hext = 0.2M. (c) No motion at a elevation Qz = 0.43, Hext = 0.1M below the topological transition.
Experimentally measured data for a forward (backward) modulation loop with wC ¼ 1ð�1Þ is shown as green (olive) spheres for adiabatic, i.e. slow, motion
and in yellow (orange) for the fast ratchet jumps. The ratchet motion in (b) exhibits hysteresis between forward and backward motion (yellow shaded
area). The experimental data does not perfectly match the theory (solid green line) since the changes of the stripe pattern of the garnet film with the
external field (relevant at non-universal elevation) have not been included into the theory. Both experimental data and theory however fall into the same
homotopy class. A video clip of the adiabatic motion of the paramagnetic colloidal particle in (a) is provided in ref. 45.
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In Fig. 5 we plot the area of the hysteresis versus the non-
universality parameters (external field Hext and elevation Qz).
Both the continuous adiabatic toward ratchet transition as well
as the discontinuous ratchet to adiabatic non-transport transi-
tion can be clearly identified from the figure.

3.3 Constrained control space

In Section 4 we will discuss the universal potential of a four-fold
symmetric pattern. It is useful to first reiterate the universal
case of the two-fold symmetric problem, using full control
space C.

In the Section 3.2 we reduced the control space of the stripe
system to fields that are lying in the plane spanned by the
normal vector n to the pattern and by the unique reciprocal
unit vector Q. We just dropped the physically possible external
field component along the indifferent �n 	 Q direction. Here
we do not ignore this component. Hence, since the magnitude
of the external field Hext does not play a role for the universal
case, full control space is a sphere. The constrained control

space ~C2 of the stripe pattern is a two punctured sphere. The
two points along the �n 	 Q direction are removed from the
sphere of the full control space C since these points produce an
indifferent constant potential in action space.

Topologically, the two punctured sphere ~C2 and the circle Cr2
are equivalent. Since only the topology of control space is
important we may expand Cr2 to the constrained control space
~C2. Note that the winding number of a modulation loop in Cr2
becomes the winding number of a modulation loop around the
indifferent �n 	 Q axis through the two removed points of the

punctured sphere in ~C2. The reduced control space is just
the grand circle on the sphere around this axis. We can predict
the result of modulation loops in the constrained control space
~C2: winding around the punctured points induces transport in
action space.

To make the connection to the topologically trivial full con-
trol spaces of lattices with higher point symmetries, we can

reinsert the removed points into the punctured sphere ~C2.
That is, we recover the topologically trivial full control space
C allowing fields pointing into the indifferent direction. This
enables us to continuously deform a modulation loop with one
winding number around the axis into a modulation loop with
different winding number. The transition in winding number
occurs when the modulation loop passes through the reinserted
point.

Note that the indifferent direction satisfies

rAU� ¼ 0; (18)

and

det rArAU�ð Þ ¼ 0; (19)

for any point xA 2 A. We call points in C � A that fulfill
eqn (18) and (19) the fences F on M. For the stripe pattern
and the universal case fence points only exist in C � A, not in

C2r �A. In the stationary manifold of the reduced control space
Mr the sub-manifolds are two disconnected lines (maximum
and minimum) without fences (Fig. 3b). On the full stationary
manifold M the fence consists of two copies (one for each of
the opposite indifferent points in C) of the one dimensional
action space and thus consists of two disconnected circles.

The fences separate the maxima of the stationary manifold
from the minima (Fig. 6). Hence using the constrained control
space the stationary manifoldM is a two dimensional manifold
that is not disconnected. M� and Mþ are both copies of the
punctured sphere, with the puncture point enlarged to a circular
fence and there joined to one closed surface. Fig. 6 shows the
topology of the universal stationary manifold M for the full
control space. Mþ is depicted in red and M� in green.

The constrained control space ~C2 can be subdivided into two
hemispheres, the northern hemisphere for which Hext,z 4 0
and the southern hemisphere (Hext,z o 0). Both hemispheres
are simply connected areas, i.e. areas where every loop is zero

Fig. 5 Experimentally measured area of the hysteresis of the transport.
The area of the hysteresis is measured on the surface of the torus Cr2 �A.
The total area of a torus is (2p)2 E 40. On the right we lowered the
elevation Qz. This reveals the continuous transition from adiabatic trans-
port toward ratchet motion. On the left side we decrease the external field
amplitude at constant elevation. This reveals the discontinuous topological
transition towards no transport.

Fig. 6 The stationary manifold for the universal potential of the stripe
pattern for the full control space C.Mþ is depicted in red andM� in green.
Both are connected by two circular fences F . Copies of the northern
hemispheres of C are shown in full colors, while the southern ones are
shown in light colors. (See Appendix A.3 for a concise definition of the
hemispheres and the equator.)
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homotopic. The areas are glued together at the two sections g1

and g2 of the equator between the puncture points. In Fig. 6 we
show the simply connected areas of the stationary manifold

that are projected into both hemispheres of ~C2.
Two lines circle the stationary manifold, see Fig. 6. We call

these lines the equator since they are projected onto the

equator of ~C2, see Fig. 7a. When the equator hits the puncture

point in ~C2 the two equators of the stationary manifold cross the
fences in M. Topologically M is a genus one surface with two
winding numbers. The winding numbers of the fences are
different from the winding numbers of the equator.

Fig. 7 shows the topological transition of the transport
modes on M and A due to the continuous deformation of a
control loop in C. We start with a control loop (dark blue loop)
that is entirely in the north and hence does not wind around
the indifferent point. The loop has two preimages on M, one
on M� and one on Mþ. Both are zero homotopic. Now we
further deform the modulation loop such that it crosses the
fence point (blue loop). The preimage on M is the union of
the two formerly disconnected loops and the fence itself.
Mathematically the preimage is not a loop but a lemniscate.46

When we slightly enlarge the loop (cyan), such that it is now
winding around the fence point in C, the lemniscate on M
disjoins again into two loops onM� andMþ. Now, both loops
have non vanishing winding numbers. The projection of the
loop inM� (Mþ) corresponds to a maximum (minimum) of the
potential in A that adiabatically moves around with a winding
number similar to the winding number around the indifferent
axis in C, wA ¼ wC.

We now understand how to produce a topological transition
of the transport modes by continuously deforming the loop
in control space. The transport direction in action space is
topologically protected for any deformation of the modulation
loop that does not alter the winding number around the fence
points. A topological transition occurs when we move the loop
across one of the fence points.

We can characterize the simplest modulation loops by the
two segments of the equator that they cross. We define kgi,
i = 1, 2 as a south traveling path that passes the equator
segment gi between the two fence points. We complete the loop
with an analogous north traveling path, mg j. In Fig. 7d we depict
a phase diagram of the transport for the fundamental loops
LC ¼ # gi " gj . Modulation loops that do not cross the equator,
as well as those passing the same equator segment south and
north, cause no transport. Modulation loops passing one segment
south and the other one north induce transport.

4 Four fold symmetry

In ref. 21 we study in detail theoretically and with computer
simulations four-fold symmetric patterns. Here we summarize
the theoretical results, present experimental data, and show the
connection to the two-fold symmetric system.

4.1 Theory

The four-fold symmetric magnetic potential

c4(z,x,y) = c2(z,x) + c2(z,y) (20)

is closely related to the two-fold symmetric potential c2, where
ex points along Q1 and ey points along Q2. Action space
A4 ¼ A2 �A2 is the product space of two circles and thus a
torus with both Qx and Qy varying from 0 to 2p. There is no
indifferent direction and hence it is simpler to use full control
space C. However there exist fence-points satisfying eqn (18)
and (19). These fence points play the same role as in N = 2-case
in generating transport.

The universal scalar magnetic potential is the superposition
of two stripe potentials that separate the variables x and y
in action space. Therefore, we have four fence points on the
equator of the control space sitting in the�ex and�ey directions
(Fig. 8a).

Fig. 7 (a) Full control space of the stripe pattern. (b) Section of the stationary manifoldM and (c) its projection into action space. Several modulation
loops LC in C and their preimages LM onM and the further projections LA into A are shown. In (a) the reduced control space is shown in pink together
with a projection of a full external field Hext into the reduced external field Hr

ext is also shown. (d) Phase diagram of the transport modes for the

fundamental loops LC ¼ # gi " gj . Colored squares indicate transport, white squares indicate no transport.
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We define the unit vectors

e1 xAð Þ ¼ @1H
p

@1Hpj j; e2 xAð Þ ¼ @2H
p

@2Hpj j; (21)

where q1,2 denote the partial derivatives with respect to the two
coordinates in A. Points in A with e1 	 e2 a 0 are made
stationary by two opposite external fields20,21

H
ðsÞ
ext ¼ �

e1 	 e2

e1 	 e2j j: (22)

The two signs in (22) cause opposite curvature of U* and thus
each point in A can be made either an extremum (maximum or
minimum) or a saddle point. Hence, we can split action space
into forbidden and accessible regions (see Fig. 8c). Allowed
regions are regions of extrema and they are colored green, while
forbidden regions are regions of saddle points and are colored
red and yellow.

Each field in control space renders 4 points in action space
stationary, a maximum a minimum and two saddle-points.
Hence our stationary manifold consists of four copies of control
space (instead of two for the case N = 2). The indices of the four
sub-manifolds Mþþ, Mþ�, M�þ, and M�� correspond to a
minimum (index +) or a maximum (index �) along the

x (first index) and y (second index) coordinates. The four fence
points in control space deform into circular fences in M. The
four sub-manifolds are glued together at eight fences to form
the full stationary manifold, see Fig. 8b. The stationary mani-
fold is a genus five surface.

The fences inM are projected onto lines in action space that
are the borders between the forbidden and allowed regions.
The fences do not intersect on M but they do in A. This is
possible because the fences meet at special points in A with
e1 	 e2 = 0, that we call the gates. As we will show below, the
gates are the only points that connect two consecutive allowed
regions. From eqn (7), (21) and (22) we conclude that the gates
are rendered stationary by the whole grand circle on C around
e1 = e2. For the four-fold symmetric pattern there are four
coinciding gates gi, i = 1, 2, 3, 4 in C that run across the equator
right through the four fence points, see Fig. 8a. In C � A each
gate is a line on M that lies in a single copy of the equator of
control space and that is projected into the gate in A. Since one
gate in C cuts through all four fences the gate in A must be the
same as the intersection of fences in A.

In C the fence points cut each gate into 4 segments gi
+ +, gi

+�,
gi
� +, gi

��, that are projections of the gates in the corresponding
sub-manifolds ofM. Each gate crosses four of the eight fences

Fig. 8 (a) Top view of the four-fold symmetric control space including the fence points and the maximum segments gi
��, i = 1, 2, 3, 4 of the four gates.

(b) Genus five stationary manifoldM. Blue colors correspond to minima (Mþþ), green to maxima (M��), red and yellow to saddle points. (c) Projection of
the half of M lying closer to M�� into action space. The cut in A is the projection of the points in M separating both halves. (d) Magnetic pattern
generating the four-fold symmetric universal potential. (see Appendix A.3 for a concise definition of the gates).
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in M and passes over all four sub-manifolds. Each fence
crosses two of the four gates. The gate gi+1

ab in C coincides with
the gate gi

ab rotated by p/2. Therefore the maximum segments of
the gates gi

��, i = 1, 2, 3, 4 fill the whole equator and subdivide
C as well as all sub-manifolds Ma;b and their projections on A
into simply connected northern and southern hemispheres.
Northern and southern allowed regions touch each other in A
only at the gates. Nontrivial adiabatic transport therefore must
pass these singular points.

In the following we will first deal with the transport of
paramagnetic particles. Since these reside on the maxima of
U*, we are only interested in loops onM��. Modulation loops
that remain in one hemisphere of control space are zero
homotopic loops of the four punctured sphere and have zero
homotopic preimage loops on M. The simplest non trivial
modulation loop must cross the equator twice. Such loop
LC ¼ # gi " gj consists of two paths kgi and mg j. kgi is a path
from north to south passing the gate gi

�� and mg j is the reverse
path passing through gate gj

�� from south to north. The wind-
ing numbers in control space around the fences cause similar
winding in action space. Fig. 9 shows the phase diagram of the
transport directions of the simplest gate crossing modulation
loops. The topological transition between different transport

modes is similar to the two-fold case. Modulation loops passing
a fence cause topological transitions.

Diamagnetic particles move synchronously with the para-
magnetic ones at a fixed distance d = 1/2(a1 + a2), to the
paramagnets.

4.2 Experiments

Four fold symmetric patterns have been created by lithography.47–50

The lithographic magnetic patterns are designed to have the four-
fold symmetric pattern of Fig. 2b with a period a = 7 mm. The
strength of the pattern field directly on top of the surface of the thin
Qt o 1 lithographic film is Hp E 3 kA m�1. Details on the
production process are given in the Appendix A.2.

Lithographic edge effects of the pattern production process
render white regions larger than the black regions such that the
average magnetization of the film is non-zero. This breaks
the S4-symmetry of the pattern, but it does not affect the
S4-symmetry of the universal limit Qz 4 1 and the C4 symmetry
is preserved for the pattern and the universal limit. We coat the
patterned magnetic film with a photo-resist of thickness 1.6 mm.
The thickness is a compromise of achieving universality and
keeping the magnetic field of the pattern sufficiently strong.
Paramagnetic colloids (diameter d = 2.7 mm) immersed into
deionized water are placed on top of the coating.

In Fig. 10a we apply fundamental modulation loops. They all
fall in the class LC ¼ # g1 " g4, but have different proximity to
the fence point in the Q1 direction in C. In Fig. 10b we plot the
corresponding experimental trajectories of paramagnetic parti-
cles. No matter which particular modulation loop within the
same homotopy class we choose, the global result after com-
pleting the loop is the transport of the particle by one unit
vector a2. Modulation loops closer to the encircled fence point

Fig. 9 Phase diagram of the transport modes in a four-fold symmetric
system. Black arrows denote the traveling direction in the first, south
heading part of the modulation, gray ones describe the transport direction of
the second part, and white arrows describe the travel direction of the full
loop. The colors of the squares indicate the traveling direction. Loops passing
through the same gate twice do not induce transport (white). All other
combinations induce transport in one of the eight neighboring unit cells.

Fig. 10 (a) various modulation loops in control space of the type

LC ¼ # g1 " g4. (b) Resulting trajectories of paramagnetic colloids. All
modulation loops induce transport into the same a2-direction. (c) Trajec-
tories of a paramagnetic (thick line) and a diamagnetic colloid (thin line)
subjected to the large (red) modulation loop. Trajectories are colored in dark
red for the kg1 segment and in bright red for the mg4 segment of the loop.
Both types of particles are synchronously transported into the same direc-
tion. The trajectories however are shifted by d = 1/2(a1 + a2). The background
in (b and c) are reflection microscopy images of the four-fold symmetric
pattern. We have added the theoretical pattern to the lower part of (c) for
clarity. The length of the arrows indicating the lattice vectors is equivalent to
the lattice constant a = 7 mm. A video clip of the motion of the paramagnetic
and the diamagnetic colloidal particle in (c) is provided in ref. 45.
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have a straighter trajectory than loops passing the equator far
from it (see Fig. 10b).

In Fig. 10c we repeat the experiment with paramagnetic and
diamagnetic colloids using the largest modulation loop (red).
We immerse paramagnetic and non magnetic (polystyrene
d = 4 mm, susceptibility B �10�5) particles in ferrofluid which
renders the non magnetic particles effectively diamagnetic. The
direction of the magnetic field inside the ferrofluid is used for
the direction in control space. It has a higher tilt angle to the
film normal then the tilt of the external field applied by the
coils, because of refraction at the glass ferrofluid interface. All
loops with colloids immersed in ferrofluids are corrected for
this effect. Both particles are transported in a2 direction by
the red loop and the predicted shift of both trajectories by
1/2(a1 + a2) is clearly visible.

In Fig. 11 we show the motion of a paramagnetic particle
subject to a modulation poly-loop that consists of all sixteen
fundamental loops kgimg j of the phase diagram of Fig. 9. We
plot the fundamental sections of the trajectory of the particles

in the colors of the corresponding fundamental loops in the
phase diagram (Fig. 9). It can easily be seen that all funda-
mental loops induce the theoretically predicted transport. Due
to the lack of S4-symmetry the lemniscates of the zero homo-
topic loops in A (white) lose their inversion symmetry with
respect to the gate in A (the crossing point of the lemniscate)
resulting in a big and a tiny white loop. We conclude that the
experimental response of the particles to all modulation loops
is in perfect agreement with the theoretical predictions.

5 Three-fold symmetry

In ref. 20 we studied the motion on a C6-symmetric pattern
theoretically and provided experiments of the adiabatic motion
on this pattern. The C6-symmetric pattern is part of the family
of three-fold symmetric patterns. Here, we extend the theory to
this entire family, explain a new topological transition within
the family and corroborate the theory with experiments on
adiabatic and ratchet transport for all family members. We also
confirm experimentally the new topological transition from
C6-like toward S6-like topology.

5.1 Control space, stationary manifold and action space

The transport on the three-fold symmetric pattern is more com-
plex than on the two-fold and four-fold patterns. The increased
complexity is related to the fact that the three reciprocal lattice
vectors Q1, Q2 and Q3 are linearly dependent. In Fig. 12 we show
the control spaces, the stationary manifolds, and the action
spaces of the three-fold symmetric system for various values of
the phase f of the pattern. The phase f varies in an interval
0 r f r p/6 which covers all possible three-fold symmetries
including C6 (f = 0) and S6 (f = p/6). We call the range
p/9 o f r p/6 the S6-like case and the range 0 r f o p/9
the C6-like case. The range p/6 o fo 2p repeats those patterns,
however, centered around one of the other two three-fold
symmetric points and/or interchanging up and down magne-
tized regions, see Fig. 2c. For each value of the phase f of the
pattern the stationary manifold M in Fig. 12 is a genus seven
surface. As in the two and four-fold cases there are fences ofM
separating different sub-manifolds. We distinguish two different
fences: (i) the maximum fence F� ¼M� \M0, which is the
border between the regions of maxima of the colloidal potential
(green colors) and the saddle point regions (red colors), and
(ii) the minimum fence Fþ ¼Mþ \M0, which is the border
between saddle points and minima (blue colors).

Due to the separability of the two-fold and four-fold problem
the fences were projected onto single points in control space.
For N = 3 the fences in control space C are not points but closed
lines. In Fig. 12a the maximum fences F� are shown as green
lines and the minimum fences Fþ as blue lines in control
space. The fences in C separate regions of different multiplicity
of preimages in M. For any value of f there is one multiply
connected area (gray) that we call the tropics. This area has
multiplicity m = 4, that is, one external field renders 4 points in
action space A stationary: one maximum, one minimum and

Fig. 11 Experimental trajectory of a paramagnetic colloidal particle in
action space A caused by a modulation poly-loop in C. The poly-loop
consists of a sequence of all fundamental modulation loops in the phase
diagram of Fig. 9. The single fundamental loops are colored according to
the color in the phase diagram in Fig. 9. South traveling segments are
marked as thick lines while north traveling segments are marked as thin
lines. Consecutive loops are connected by trivial constant latitude con-
nections that remain in the north of C (black trajectories). The type of the
single loops is indicated inside the region surrounded by the trajectory. The
background is the reflection microscopy image of the underlying square
magnetic pattern. At the bottom we show a scheme of the theoretical
pattern aligned and oriented to the weakly visible experimental pattern on
the top. A video clip of the motion of the paramagnetic colloidal particle is
provided in ref. 45.
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two saddle points. In addition there are concave excess regions
of multiplicity m = 6. In the yellow regions surrounded by
F� there is an extra maximum and an extra saddle point, while
in the cyan regions (surrounded by Fþ) there is an additional
minimum and also a saddle point. The control space always shows
the C3 symmetry and the inversion symmetry U*(Hext) =�U*(�Hext),

see eqn (7). For this reason the cyan regions are the inverted yellow
regions on the opposite side of control space. A rotation of control
space by 2p/3 leaves the control space invariant. Not all excess
regions are visible in Fig. 12a. We can infer the location of
hidden excess regions from the visible excess regions using these
two symmetry operations.

Fig. 12 Topology of the three-fold symmetric case as a function of the phase f: (a) control spaces with areas of different multiplicity m = 4 (gray), m = 6
extra maximum areas (yellow) which are surrounded by the southern fence F� (green lines) and m = 6 extra minimum areas (cyan) surrounded by the
northern fence Fþ (blue lines). The gates g are colored according to their segments. (b) Genus seven stationary manifoldsM. Blue colors correspond to
minima (Mþ), red colors to saddle points (M0) and green colors to maxima (M�). Fences are the boundaries between the color families and pseudo
fences are the boundaries between the colors of one family. Areas with labeled with a prefix (n) are projected into the northern area or the northern
satellites in C, with a prefix (s) to the south, with a prefix (t) to the tropical m = 4 area of C. (c) Projection of the lower half of the stationary manifold into
action space A. The projection of the upper half exactly matches the lower projection, however, with the colors of the upper half replacing those of the
lower half. The areas 0t1 and 0t2 contain cuts (not shown) that connect the shown projection of the southern half ofM0 to its similar twin projection of
the northern half. (d) Magnetic patterns corresponding to the different phases. Up magnetized regions shown in white and down magnetized regions in
black. The pink, yellow and cyan circles mark the three high symmetry points of the lattice and the high symmetry lines connecting the points form the
12-, 23-, and 31-network. Higher resolution images ofA, C, andM for each of the phases with further details can be found in the Appendix A.1, definitions
of the various geometrical objects in Appendix A.3.
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The stationary manifold is formed from multiple copies
(according to the multiplicity) of the areas in C. As already
mentioned the two fences separate the three sub-manifolds of
M. But on M there are additional preimages of the fences
in C that are different from the fences inM. As in the two-fold
case we call these pseudo fences. The pseudo fences inM and
in A (Fig. 12b and c) are the borders between the areas with
different colors belonging to the same color family (red, green
or blue).

In the three-fold case we have an additional type of point
that we did not have in the two- and four- fold cases. They are
bifurcation points,51 located on the fences onM. These are the
only points where more than two areas of different colors meet.
We have B� (Bþ) bifurcation points where three areas on
M� (Mþ) and one area onM0 meet, and B0 bifurcation points
where three areas on M0 and one area in either M� or Mþ
meet. Both types of bifurcation points split the fences onM, as
well as their projection onto C and onto A, into single segments
(Fig. 12a).

We now consider a control loop LC that passes through a
multiplicity m = 6 excess region. When the loop crosses the
fence towards this region the multiplicity increases by two. This
happens via the creation of an extremum–saddle point pair at
the fence on M. At the same time the other preexisting
stationary points pass a pseudo fence. When the modulation
loop leaves the excess region the multiplicity returns to m = 4.
Now a extremum–saddle point pair is annihilated at the fence.
When the loop transports a paramagnetic colloidal particle, the
particle is now either adiabatically transported through the
pseudo fence or the colloid carrying maximum is annihilated at
the fence resulting in ratchet motion.

The type of transport is directly related to the number of
bifurcation points of each excess area enclosed by the modula-
tion loop. When the modulation loop in C encircles an even
number of B� (Bþ) bifurcation points of one excess area, then
the exit of the excess area corresponds to a pseudo fence on
M� (Mþ) and the transport is adiabatic. If the number of
encircled B� (Bþ) bifurcation points in an excess area is odd the
exit of the excess area corresponds to the fence ofM� and the loop
induces a ratchet. This ratchet is time reversible if the number of
encircled B0 bifurcation points is a multiple of 2 (3) for each excess
area in the S6 (C6)-like case, and non-time reversible otherwise.
A time reversal ratchet is a ratchet where the reversed modulation
results in the reversed transport direction.

5.2 S6–C6-Topological transition

The topology of the S6-like (C6-like) systems is the same as the
S6- (C6) symmetric system. A topological transition between
S6-like and C6-like occurs at a critical phase fc = p/9 of the
pattern. The topological transition can be easily seen in control
space. Control space consists of areas with different multi-
plicity. The shape and location of the areas vary with the phase
f. The topology of these areas, however, only differs for the two
situations p/9 o f r p/6 (S6-like) and |f| o p/9 (C6-like).
Fig. 12a shows examples of the control spaces C for these two
cases as well as for the critical transition value fc = p/9.

For any value of the phase f there is one multiply connected
area in control space C, the tropics (gray) having four preimages
(m = 4). In the S6-like case there are four areas (yellow)
surrounded by a maximum fence F� (green) with multiplicity
m = 6 housing an extra maximum–saddle point pair. One area is
a (hidden) southern area (opposite to the visible cyan northern
area) surrounded by a maximum fence F� with 6 segments
joined at six B0 bifurcation points. The other three are southern
satellites surrounded by a maximum fence F� with four seg-
ments joined at two B0 and two B� bifurcation points. We call
these areas southern satellites since at the topological transi-
tion they merge with the southern area. The southern area
shrinks to zero as the phase approaches f = p/6 (S6-symmetry).
Four further areas of multiplicity m = 6 (cyan) housing an
extra minimum-, saddle point pair are located opposite to the
yellow ones.

The topological transition occurs at fc = p/9 where the three
southern satellites join with the corresponding southern area.
Simultaneously the northern satellites join with the northern
area. In each satellite one B0 bifurcation point merges with one
B0 bifurcation point from the polar area. Thus the two polar
fence segments of a satellite are both unified with two fence
segments of the polar region. This results in a new topology
with only two polar areas for the C6-like case. Both areas are
surrounded by a fence with twelve segments that are separated
by a sequence of bifurcation points alternating between B0 and
B� (Bþ).

Due to the inversion symmetry U*(Hext) = �U*(�Hext) the
transport of diamagnetic particles onMþ is the same as those of
the transport of paramagnetic particles on M� at the inverted
external magnetic field. In Fig. 12b we depict the topology of
the stationary manifold for five different phases f. The true
stationary manifold is embedded in a four dimensional curved
phase space and we can only show its topology by deforming
it until it finally is embedded into three dimensions. The
deformation partially breaks the three-fold C3-symmetry, how-
ever, the inversion symmetry shows up as a up-down mirror
symmetry of the manifolds, accompanied by an inversion of the
sign of the index of the submanifolds.

In the S6-like case there is a (hidden) preimage onM of the
southern excess area of C that is entirely surrounded by M0

areas and therefore disconnected from the rest ofM�. We call

this region Misolated
� and it lies opposite to the visible Misolated

þ
region in Fig. 12b. This isolated area is surrounded by fences
and does not contain pseudo fences. Therefore, all paths of
steepest descend can only lead away from it since return points

lie on pseudo fences. For this reason the isolated areaMisolated
�

might be emptied once of a colloid but can never be refilled.
Since we are interested in the motion occurring by the periodic
repetition of modulation loops this area and hence its projec-
tion into C is completely irrelevant. After the topological transi-
tion to the C6-like case the formerly irrelevant polar areas on C
incorporate the three corresponding satellites. Hence Misolated

�
is no longer disconnected from the rest of M� and becomes
relevant for the motion.
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For any f the stationary manifold M is a genus seven
surface and there are thus 14 different winding numbers. In
the S6-like case only two linear independent winding numbers
correspond to loops LM 
M� that are lying entirely in M�.
Therefore there are only two ways of nontrivial adiabatic

transport modes. When Misolated
� joins with the other part of

M� (f = p/9) two additional windings around holes of M�
occur allowing two new transport routes through the formerly
isolated region of A.

Fig. 12c shows the projection of the lower half of the
stationary manifold into action space A. The projection of the
upper half exactly matches the lower projection, however, with
the colors of the upper half replacing those of the lower half.
Fig. 12d shows possible magnetization patterns that generate the
universal potentials U*. We also show the three-fold symmetric
points xA;1; xA;2; and xA;3 within the pattern. Their connections
form a 12-, 23-, and 31-network which are the three kinds of high
symmetry lines of the lattice.

5.3 Modulation loops in the S6-like case

As in the four-fold symmetric case, in the three-fold case two
neighboring allowed regions in A only touch each other at a
single point, the gate. Hence modulation loops in C causing
adiabatic transport in A have to pass through the grand circles
of the gates in C.

In the three-fold symmetric case there are six gates gi, gi,
i = 1, 2, 3 of two different types gi and gi. All gates inM are closed
curves dissected twice by Fþ and twice by F� (the gates on M
are shown in more detailed images ofM in the Appendix A.1 of
this work). Hence, for the projection of each gate into C there is
one minimum gate segment g+ (blue in Fig. 12a) projected from
Mþ, one maximum segment g� (green) projected fromM�, and
two saddle point gate segments g0 (red).

Whenever we cross a gate segment of type gi
� or gi,� in the

m = 4 (gray) region of C the unique maximum in A adiabatically
passes from one allowed area through the gate gi

� or gi,� in A to
the allowed area on the other side. For the S6-like case the
maximum segments gi,� of the three gates gi, i = 1, 2, 3 lie entirely
in the irrelevant southern excess region of C and are hence
unimportant for transport. For the C6-like case all six gates cross
both polar excess regions. Therefore all gates become important
for transport. Eventually if we have C6-symmetry (at f = 0) the
difference in character between both types of gates gi and gi

completely vanishes. Gates cross each other in C but inM they
do not cross. Only when we have a S6-symmetry (f = p/6) the
three gates gi of the isolated allowed region merge such that they
touch each other inM and are all projected into the one monkey
saddle point in A. Otherwise the gates are separated curves on
M much in the same way as in the four-fold case.

For the S6-like case we can characterize fundamental modu-
lation loops LC ¼# s " s0 in C by two loop segments. One is a
south heading path ks and the other is a north heading path
ms0. There are three possible types of south traveling paths. It is

either of type kgi
�, of type # F i

�l, or of type # F i
�r with i = 1, 2, 3

in all cases.

Each gate segment gi
� has two B� bifurcation points close to

it. A path of type kgi
� is a path that moves south between these

two bifurcation points. It might thereby completely stay in the
gray m = 4 area or eventually enter a southern satellite (yellow) and
exit it again via the same southern fence segment. Examples of all

types of paths are shown in Fig. 13a. A path of type # F i
�l passes

left of the two bifurcation points. It thereby has to enter the m = 6
satellite to the left of gate gi

� through one of the two upper fence
segments. The path exits the satellite via the lower right fence
segment that is also crossed by the corresponding gate segment

gi
�. A path of type # F i

�r is the equivalent path that passes right of
the two bifurcation points and enters the satellite to the right of

gate gig
�. Since the paths # F i

�l and # F i
�r are fence crossing paths

they induce ratchet motion and therefore they do not necessarily

have to cross the gate. The paths # F i
�l and # F i

�r are topologi-
cally protected by the path kgi through the neighboring gate.

Fig. 13 Paths in the southern hemisphere of C relevant for the loops in the

S6-like case. Paths of type kg1
� and mg1

� are shown in green, # F 1
�l and

" F 1l
� in red and # F 1

�r and " F 1r
� in purple. The fences of the satellites are

enumerated according to the gate closest to them. The index l (r) indicates
that the fences are left (right) of the corresponding gate and the position of
the index (subscript or superscript) indicates the location of the fence
segment in the satellite (up or down). The fence segments of the irrelevant
polar fence share the names with those segments of the satellites with
which they will join beyond the topological transition. (a) South traveling
paths for which the lower fences (highlighted) are relevant. (b) North traveling
paths for which the upper fence segments (highlighted) are relevant. See
Appendix A.3 for definitions and terminology.
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We complete the fundamental loop with a north traveling

path of type mgi
�, " F il

� or " F ir
�. A path of type " F il

� is a north
traveling path that passes left of the two bifurcation points. It
enters the satellite left of gate gi

� and exits it via the upper right
fence segment attached to the gate segment gi

� (for examples
see Fig. 13b).

In Fig. 14 we depict the phase diagram of the transport
induced by the fundamental loops LC ¼ # s " s0 for the S6-like
case. Loops for which both paths are of type g are adiabatic,
while loops containing at least one path of type F are ratchets.
Note that the transport direction is independent of how we
enter an m = 6 satellite region. We therefore do not specify the
point of entry in the phase diagram. The entry determines
whether a ratchet loop is a time reversal or non time reversal
loop. If the entry and the exit are attached to a different gate
segment the modulation loop is predicted to cause a non-time
reversal ratchet. In contrast, loops where paths enter and exit
the satellites through the fence segments attached to the same
gate are time reversal ratchet loops.

5.4 Modulation loops in the C6-like case

The C6-like case is easier than the S6-like case. There is one
single southern fence. Non trivial transport of paramagnetic
particles occurs for modulation loops that cross the southern
fence. Fundamental loops LC ¼ # s " s0 can be characterized by
the south traveling path ks through fence segment s and the
path ms0 traveling north through fence segment s0. We abbre-
viate the fence segments for the C6-like case with the names of
the segments for the S6-like case from which they developed.
The type of transport as well as the direction can also be

explained by the bifurcation points the modulation loop encloses.
The exact way the gates are crossed is still important. The gates,
however, lie in such a way that crossing a fence segment
dictates which gate the loop must pass. Hence, the fence
segments passed by the loop fully determine the transport
direction. Fig. 15 depicts the phase diagram of the transport
directions of the C6-like case. It is a checker board of adiabatic
and ratchet loops. Despite the topological transition the clus-
tering of colors and therefore directions is quite similar to the
phase diagram of the S6-like case (Fig. 14). Note that in contrast
to the S6 situation we use the same fence segments for both
directions of the modulation loops.

Due to the symmetry of the universal potential U* diamag-
netic transport can be achieved in the same way by simply
reversing the field Hext - �Hext. In contrast to the four-fold case
the transport in all three-fold cases is more versatile. Paramag-
netic and diamagnetic colloids are no longer fixed to the same
transport direction but can be transported fully independently,
because F� and Fþ are well separated in C.

5.5 Three and six fold symmetry

Let us reconsider the symmetry of the three-fold lattice. As we
have seen there are three points x1A ¼ 0, x2A ¼ a1 þ a2ð Þ=3 and

x3A ¼ � a1 þ a2ð Þ=3 in the unit cell of A with three-fold sym-
metry (see Fig. 2c). As we vary f one of these points acquires a
higher C6 symmetry at f = np/3, with n = 1, 2, 3,. . . The higher

Fig. 14 Phase diagram of the transport of paramagnetic colloids for
S6-like case. All paths (small arrows) occur on the 31-network. The terminology
of the paths is explained in Section 5.3.

Fig. 15 Phase diagram of the transport for C6-like case. Ratchets are
topologically protected by the adiabatic loop sharing the same south traveling
path. Paths occur on the 31-network (black) or on the 12-network (gray
arrows). The choice of network depends on the south heading path # F i

�.
The terminology of the paths is explained in Sections 5.3 and 5.4.
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symmetry permutes amongst the three points. Similarly, one of
the points acquires a S6 symmetry for f = p/6 + np/3. Connec-

tions between two different points xiA and x
j
A define a ij-network

that might enable transport between two unit cells. There are
three possible networks: the 12-network, the 23-network, and the
31-network (see Fig. 16a).

For a polar orientation of the external field at least one of the
three points is a minimum and at least one is a maximum. At
the S6 symmetry point the potential has a monkey saddle for a
polar external field orientation and a normal saddle point
otherwise. In any case the S6 point lies in the forbidden region.
Hence the S6 symmetry shuts off all connections to the point
with S6 symmetry. Only the network between the remaining two
symmetry points can be used for transport via appropriate
modulation loops. In contrast when the pattern acquires C6

symmetry the point with C6 symmetry is connected to both
other symmetry points via two networks. The network between
the lower C3 symmetry points is shut off.

As we vary f from 0 to 2p each network is switched on and
off twice. For any f at least one network is on and at least one
network is off. The exact number of active networks depends on
whether f is in the neighborhood of a C6 or a S6 symmetry.
In Fig. 16b we plot the symmetry of the three points and
the state of the three networks as a function of f. Note the
close relationship to an antiferromagnetic equilibrium Ising
system in a triangular lattice.52 Both systems are geometrically
frustrated, with not all possible connections between sites being
turned on.

5.6 Experiments on the S6-like symmetry

Three fold symmetric patterns with lattice constant a = 7 mm
have been created in the same way as the four-fold patterns.
Here again lithographic edge effects of the patterning process
render white regions larger than the black regions such that the

average magnetization of the film is non-zero. This breaks the
S6-symmetry and shifts the phase f o fmask of the patterns
away from the phase fmask of the lithographic mask toward the
C6-like symmetric direction.

To show the topological protection of the transport directions
in the S6-like case we apply different fundamental modulation

loops that all fall in the classes LC ¼# F 2
�r " F 3l

�; # g2 " g3, or

# F 2
�l " F 3r

� , but have different proximity to the satellite centered
at �Q1 in C. In Fig. 17 we plot the corresponding trajectories of
paramagnetic particles on a S6-like pattern. All loops induce
transport in the a2 direction, which is in accordance with the
predictions of Section 5.3. It does not matter which particular
modulation loop within the same homotopy class we choose, the
global result after completing the loop is the transport of the
paramagnetic particle by one unit vector a2. Modulation loops
closer to the encircled satellite have a straighter trajectory than
loops passing the equator far from it (see Fig. 17). For small as
well as for large modulation loops passing the equator close to
one of the southern (green) satellites, we observe the transition
from adiabatic toward ratchet motion (dashed modulation loops
in Fig. 17a). Therefore, ratchet loops are observed in a larger
region than expected from the theoretically predicted positions
of the B� bifurcation points and the fences of the satellites.
However their occurrence is topologically equivalent to the theo-
retical model. Note that passing the blue fences is irrelevant for
the motion of paramagnetic particles. The difference between
the adiabatic and ratchet motion will be shown in detail in
Section 5.7.

In a second step we immersed the paramagnetic particles
into a ferrofluid on top of the pattern and added effectively

Fig. 16 (a) Threefold unit cell with the three possible symmetry points x1

(purple), x2 (yellow) and x3 (cyan). There are three networks along which
transport is possible, the 12-network (red lines), the 31-network (blue) and
the 23-network (green). (b) State of each network as a function of the phase
of the pattern. Activated (on) networks have full colors while deactivated
(off) networks have light colors. Phases f, where one of the symmetry
points acquire higher S6 or C6 symmetry are marked by circles of the color
of the high symmetry point. Topological transitions between S6 and C6

symmetries are also marked with colored thick lines. The state of a network
can only change at the topological transition. See Appendix A.3 for defini-
tions and terminology.

Fig. 17 (a) Different modulation loops in C encircling the satellite around

�Q1. The loops fall into the three classes LC ¼# F 2
�r " F 3l

� (dashed red),

LC ¼# g2 " g3 (solid yellow, green, light green, and blue) and LC ¼# F 2
�l " F 3r

�
(dashed purple and magenta), where dashed lines are indicating modulation
loops that induce ratchets. (b) Corresponding experimental trajectories of
a paramagnetic colloidal particle on top of the S6-pattern. The (dashed)
ratchet loops fall into the same homotopy class as the (solid) adiabatic
loops and therefore the travel direction (along a2) is topologically pro-
tected. Passing blue fences is irrelevant for the motion of the paramagnets.
Note that some of the experimentally observed ratchet loops do not pass
through the theoretical green fences of control space. The background in
(b) is the reflection microscopy image of the underlaying lithographic
magnetic pattern. A video clip of the motion of the paramagnetic colloidal
particle is provided in ref. 45.
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diamagnetic particles. We subjected both types of particles to a

double loop LC ¼ L1
CL2
C consisting of two fundamental loops

L1
C ¼ # g3� " g1� ¼ # g2þ " g2þ, and L2C ¼ # g3� " g3� ¼ # g2þ " g1þ

(Fig. 18a). The first loop L1
C (blue) transports the paramagnetic

particles by the unit vector �a1. L1
C is zero homotopic for the

diamagnets since it is only crossing the same minimum seg-

ment g2
+ twice. The second fundamental loop L2

C (red) is zero
homotopic for the paramagnets and transports the diamagnets
in the different a1–a2 direction. The resulting trajectories of
paramagnetic and diamagnetic particles to the double loop LC
are shown in Fig. 18b. The double loop LC is an example of a
combination of two modulation loops that induces transport of
paramagnetic and diamagnetic particles in two independent
arbitrary directions on top of a S6-like pattern.

The experimental trajectories not only are in accordance
with the theory for the previous loops, but for all possible
fundamental loops. To experimentally show this we applied a
poly-loop for paramagnetic particles that combines all the
fundamental loops of the phase diagram of Fig. 14. In Fig. 19
we plot the experimental trajectory of paramagnetic particles
with the fundamental sections colored with the color of the
corresponding theoretical fundamental loop of Fig. 14. All
fundamental loops transport into the theoretically predicted
directions. In conclusion the experimental response of the
particles on a S6-like pattern to all shown modulation loops is
in topological agreement with the theoretical predictions. The
only phenomenon that we could not observe in our experi-
ments is a non time reversal ratchet. The reasons for this are
discussed in Section 6.

5.7 Experiments on the C6-like symmetry

The experimental trajectories of the adiabatic modulation loops
of the C6-like case are also in accordance with the theory.

Fig. 20 shows the trajectory of a paramagnetic particle subject
to an adiabatic poly-loop that consists of all different adiabatic
right fence segment crossing fundamental loops of the phase
diagram in Fig. 15 combined. We plot the trajectories of the
particles in the color of the corresponding fundamental loops
of the phase diagram. All adiabatic loops transport into the
directions predicted by the theory.

In contrast to the universal two-fold and four-fold symmetric
patterns the three and sixfold symmetric patterns not only
support adiabatic motion but also ratchet type motion can be
observed. To visualize the characteristics of the different types

of motion we use palindrome modulation loops LC ¼ ~LC ~LC�1 ¼
# F 3r " s # s " F 3r ¼ LC�1. They consist of a loop ~LC ¼ # F 3r " s
that is first played in the forward direction and afterwards played
again but this time reversed, i.e., in the backward direction.

While the first path # F 3r of ~LC is kept the same, the second path
ms varies along the eleventh column of the phase diagram

(Fig. 15). We start with (a) s ¼ F 1l which makes LC an adiabatic
zero homotopic loop and then trace the transition towards

adiabatic transport (d) (s ¼ F 2l) via two different non time

reversal ratchets (b) (s ¼ F 1
l ) and (c) (s ¼ F 1

r ). Afterwards we
show the crossover toward another adiabatic transport direc-
tion (g) (s ¼ F 2r), this time by passing a time reversal ratchet (e)

(s ¼ F 2
l ) and another non time reversal ratchet (f) (s ¼ F 2

r ).
Trajectories of these motions are shown in Fig. 21.

Fig. 18 (a) Control space C with the applied modulation double loop

LC ¼ # g3� " g1� # g3� " g3� ¼ # g2þ " g2þ # g2þ " g1þ consisting of two joint fun-

damental modulation loops. (b) Experimental trajectories of a paramag-
netic and a diamagnetic colloidal particle in action space A caused by this
loop. The result is the transport of paramagnetic and diamagnetic particles
in directions differing by an angle of 2p/3. While the first (blue) funda-
mental loop transports the paramagnetic particles it is zero homotopic for
the diamagnetic particles and vice versa for the second (red) loop. The
background is the reflection microscopy image of the lithographic magnetic
pattern. A video clip of the motion of the paramagnetic colloidal particle is
provided in ref. 45.

Fig. 19 Experimental trajectory of a paramagnetic colloidal particle on
top of a S6 pattern caused by a modulation poly-loop in C consisting of a
sequence of all fundamental modulation loops. The fundamental loops are
colored according to the loops in the phase diagram in Fig. 14. South
traveling segments are marked as thick lines. North traveling segments are
marked as thin lines. A video clip of the motion of the paramagnetic
colloidal particle is provided in ref. 45.
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Obviously, if the induced motion is adiabatic the colloidal
particle is tracing some path in A during the forward motion,
and then returns to the initial position by tracing the exact
same path in the backward direction. Three such adiabatic
paths (a, d and g) are shown in Fig. 21. All adiabatic paths are
caused by modulation loops making use of only upper type
fence crossings and cause motion on the 12-network only. In
contrast the irreversible nature of ratchet jumps causes the
colloidal particles to move on a different path in A during the
forward and backward modulation loop. The reason for this is

that the forward loop ~LC uses a south traveling path crossing an
upper type fence F 3r and a north traveling path crossing a lower

type fence. When ~LC is played forward the colloid travels the
first half adiabatically from xA;1 toward xA;2 since the modu-
lation path enters the southern excess region and upper type
fence crossings support motion on the 12-network. The second

half of ~LC must bring the particle back to xA;1. However, adiabatic
motion with lower type fence crossing paths is possible only on
the 31-network and our particle is currently at xA;2 that is not
part of this network. Hence the particle performs a ratchet

jump back toward xA;1. When ~LC is played backward the particle
adiabatically moves from xA;1 toward xA;3 and jumps back via a
ratchet jump. The full palindrome loop hence visits the high
symmetry points in the sequence: xA;1, xA;2, xA;1, xA;3, xA;1. For
time reversal ratchets the colloidal particle returns to its initial
position after the full modulation loop LC, however by using a
backward path in A different from the forward path. Such a
time reversible ratchet path is shown in Fig. 21e. In general
palindrome modulation loops cause non-time reversal ratchet
motion. The particle does not return to its initial position after
a complete modulation loop but is transported by one unit
vector. Three non-time reversible ratchet paths of this type are
shown in Fig. 21b, c, and f.

The characteristics of the adiabatic and ratchet motion can
also be inferred without looking at the differences between the
forward and backward paths in A. We measure the speed _sA of
the colloids in A versus the normalized path length sC of the
modulation loop. We parametrize the forward modulation loop
~LC from 0 to 2p and the backward loop ~LC�1 from 2p to 0 such
that the path length sC in Fig. 22 runs back and forth between
0 and 2p. Ratchet loops can be distinguished from adiabatic
loops by the ratchet jumps that have a significantly higher
speed than the adiabatic motion. These jumps occur during the
second half (magenta) of the forward and the second half
(green) of the backward modulation when the modulation hits
the fences and leaves the southern excess region in C. There are
also smaller maxima in the speed of the adiabatic motion when
the beads pass the gates. The increased gate speed is a result of

Fig. 20 Experimental trajectory of a paramagnetic colloidal particle on
top of a C6-pattern. The colloidal particle is subjected to a modulation
poly-loop in C which is a combination of all adiabatic right fence segment
crossing fundamental modulation loops. The single fundamental loops are
colored according to the loops in the phase diagram in Fig. 15. South
traveling segments are again marked as thick lines while north traveling
segments are thin lines. Similar to the theory the circular bubble domains
have positive magnetization. However the reflection microscopy image in
the background has an inverted contrast such that the bubbles are dark.
A video clip of the motion of the paramagnetic colloidal particle is provided
in ref. 45.

Fig. 21 Experimental trajectories of paramagnetic colloidal particles in
action space A above a C6-symmetric pattern. The trajectories are caused by

various zero homotopic palindrome modulation loops LC ¼ # F 3r " s # s " F 3r

with (a) s ¼ F 1l (b) s ¼ F 1
l , (c) s ¼ F 1

r , (d) s ¼ F 2l, (e) s ¼ F 2
l , (f) s ¼ F 2

r , and

(g) s ¼ F 2r. The paths in A are colored according to the four paths of the
modulation loop as indicated by the squares in the phase diagram Fig. 15.
In the cases (a, d and g) the motion is adiabatic and the colloidal path in
A consists of two forward paths that coincide with the backward path. The
case (e) corresponds to a time reversible ratchet with a zero homotopic
path in A. However the colloid is moving on different forward and back-
ward paths that belong to two different networks indicated to the right.
The other cases (b, c and f) are non time reversible ratchets where the zero
homotopic modulation loops in C induce non-zero homotopic (open)
paths of the colloids inA. The predicted paths between the high symmetry
points for all loops are shown to the right. Video clips of the motion of the
paramagnetic colloidal particle caused by the loops in (b, d and e), are
provided in ref. 45.
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the way that curves which are passing the gates in M are
projected intoA and C. The projections are causing a maximum
in the conversion of the speed in action space versus the speed
in control space at the gate. In our special case the gates seem
to be located less polar than the fences, which contradicts
the theoretical predictions for the C6-symmetric case but is in
accordance with theoretical predictions for weakly broken
C6-symmetry.

We are hence able to independently characterize the type of
motion and the particular path taken by the colloids. Both
the experimentally determined types of motion as well as the
directions are in perfect agreement with the theoretically pre-
dicted phase diagram (Fig. 15) for the C6-like case.

For the S6-like case we also observe adiabatic and ratchet
motion in topological agreement to the theory. However, we did
not succeed in finding palindrome loops causing non-time
reversible ratchets as predicted by the theory and simulations.
Instead, we observe that loops, which are supposed to induce
non time reversal ratchets, cause the coexistence of time rever-
sible ratchets with different directions above different unit cells.
The directions thereby correspond to either the theoretically
predicted forward or backward direction.

5.8 Experiments on the S6–C6-topological transition

To illustrate the S6–C6-topological transition we produced
lithographic patterns with a slowly varying pattern phase f(x).
This continuously converts a C6 pattern into a S6 pattern within
a spacial range of approximately 20 unit cells. In Fig. 23 we

show the motion of paramagnetic particles on such a phase
gradient pattern induced by two different modulation loops
(blue and red) encircling the �Q3 point. Both loops induce
transport on the S6-like pattern. However as the phase of the
pattern declines towards zero (the phase of the C6-pattern) the
encircled satellite excess region of control space moves out of
the blue loop such that the motion ceases beyond the critical
phase f o fc = p/9. The blue loop then touches the southern
fence of the C6-symmetric pattern, which is no longer sufficient
to induce transport on the C6-like pattern. The red loop fully
crosses the southern fences of the C6-symmetric pattern. There-
fore the motion of the particle persists as it enters C6-like
territory in action space A. The direction of transport is thereby
topologically protected over the transition.

Upon the transition between S6 and C6 also the state of
networks available for transport changes. While in the C6-like
pattern the 12- and the 31-networks are active the first one is
switched off in a S6-like pattern and only the 31-network is
available for transport (see Fig. 16). To experimentally demon-

strate this we apply a double loop of the type LC ¼ L12C L31
C with

L12
C ¼ # F 2

�r " F 1
�r a fundamental loop passing through the

lower fence segments (blue loop) and L31C ¼ # F 2r
� " F 3r

� (red
loop) a fundamental loop passing through upper fence seg-
ments of the C6-symmetric case as shown in Fig. 24d. For the
C6-like patterns the theory predicts an alternating use of the
12-network and the 31-network. The overall transport direction
is the same for both fundamental loops. The same double loop
converts into a LC ¼ # g2� " g1� # g2� " g1� loop for the S6-like case
where transport is only possible on the 31-network. In Fig. 24a
and b we show the motion subject to this modulation loop on
the C6-like and the S6-like patterns, respectively. Clearly the
motion of the paramagnetic particle on the C6-like pattern makes
use of the 12- and the 31-network. We observe an alternating

Fig. 22 Speed _sA in A of the colloidal motion induced by the palindrome
modulation loop (d) and (e) of Fig. 21. The speed is normalized by the
lattice constant a and the period T of one sub loop. It is plotted against the
normalized path length sC of the modulation in C ranging from 0 to 2p for
the forward modulation and from 2p to 0 for the backward modulation.
Ratchet jumps in the ratchet modulation loop (maximum speed) occur in
the second half of the forward (magenta maximum) and backward path
(green maximum) when the modulation loop leaves the southern excess
region in C via the fence. Also the adiabatic speed profile (magenta/blue/
yellow/green modulation, (d) in Fig. 21) exhibits maxima when the modu-
lation crosses the gates. But they are clearly smaller then the maxima of
the ratchet jumps.

Fig. 23 Motion of colloids in a phase gradient pattern. (a) Control space
with two modulation loops (blue and red) circulating around �Q3. We have
plotted the relevant excess satellite regions of the S6-symmetric case (red
area) and the excess region of the C6-symmetric case (green area).
(b) Scheme of the slowly varying phase pattern. The pattern is C6-like to
the left and S6-like to the right. (c) Experimental trajectories of paramagnetic
particles induced by the two modulation loops. Both loops encircle the
S6-symmetric satellite excess region and thus induce transport on the
S6-like pattern. The blue modulation loop barely touches the C6-like fence
in C which destroys the motion of the corresponding particle when it reaches
C6-like territory. The red loop in contrast fully enters the southern
C6-symmetric excess region in control space and leaves it only once.
Therefore the red trajectory persists well in to the C6-like territory. A video
clip of the motion of the paramagnetic colloidal particle is provided in ref. 45.
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transport over these two networks. On the S6-like pattern
transport happens via the 31-network only. The motion is again
topologically protected in the direction, i.e. the modulation that
before enforced the use the other network now also has to use
the 31-network into the same direction.

6 Discussion

We have seen that most of the theoretically predicted features
are experimentally robust. This ensures that colloids elevated
only a few microns above the pattern behave pretty much the
same way as predicted for universal potentials. The few devia-
tions of experiment and theory can mostly be attributed to non-
universal proximity effects. These arise from larger reciprocal
lattice vectors contributing to the colloidal potential. We have
shown, however, that higher reciprocal lattice vectors change
the position of certain transport direction transitions, but not
the topology of the problem as long as their influence is not too
strong. Experimental proofs for proximity effects have been
shown at different elevations for the two-fold symmetric pro-
blem. These effects will of course also play a role on lattices of
higher symmetry and for non-symmetric magnetic lattices where
such symmetry is broken by higher reciprocal lattice vector
contributions. For the higher symmetric patterns we did not
discuss these effects in detail and minimized them by performing
experiments at sufficient elevation above the pattern. However,
they are still visible in some experimental features. In the four-
fold symmetric experiments for example the fence point is not a
point but a finite area. Modulation loops must wind around this

larger area instead of winding around the theoretical point and
hence modulation loops can not be chosen arbitrarily small to
cause adiabatic transport.

The Bravais lattice of any periodic pattern has inversion
symmetry and thus C2 symmetry. Filling the unit cell of such a
Bravais lattice with a magnetization pattern that has no net
magnetic moment will generate a Fourier series that has
contributions from Fourier coefficients at the non zero recipro-
cal lattice vectors. The contributions from the shortest recipro-
cal lattice vectors will always have one of the universal rotation
symmetries. The symmetry can be broken by higher order
reciprocal lattice vectors. The magnetic field contribution to a
reciprocal lattice vector decays in the z-direction with the
magnitude of the reciprocal lattice vectors, which is the reason
why every transport at sufficient elevation of the order of the
period will have exactly the characteristics of one of the patterns
described in this paper. The transport remains topologically
protected also for the symmetry broken case when the breaking
of the symmetry is not too strong. There will be a topological
transition to a non-transport regime for any type of pattern if
one places the colloids close enough to the pattern. There
might be other topological transport modes for symmetry
broken patterns at intermediate elevation. These however are
not universal as they will depend on all details of the pattern,
field strength etc.

A difference between experiment and theory that cannot be
explained with non universal proximity effects is the absence of
non time reversible ratchets in the three-fold symmetric S6-like
case. There instead of non time reversible ratchets we observed
the coexistence of time reversible ratchets of different direction
above different unit cells of the pattern. We attribute those
effects to the noise of the magnetic patterns. Presumably the
net magnetization of each unit cell does not vanish as required
by eqn (6), but acquires values that might differ from one unit
cell to the next. A non vanishing magnetization acts like an
additional external field in the z-direction and therefore shifts
the satellites to the north or to the south. We may see the effect
of magnetization noise for the simple example of an addi-
tional staggered magnetization alternating between positive
and negative values in neighboring unit cells. The staggered
magnetization doubles the unit cell and therefore also doubles
the length of the fence. Each satellite becomes a double satellite
around which the fence circles twice. When we increase the
magnitude of the staggered magnetization one half of the
double satellite moves north while the other half moves south
(see Fig. 25). Let us consider a modulation loop segment (red)
that passes the unsplit double satellite on opposing segments.
We expect this loop to induce a non time reversal ratchet. When
the satellite splits the modulation loop segment will eventually
pass the upper half of the double satellite south of the two
B� bifurcation points and the lower half north of the other two
B� bifurcation points. This, however, will now cause time reversible
ratchets into different directions on one and the other half of the
larger unit cell. This is exactly what we observe in the experiments,
however, of course not in the simple staggered way predicted by our
simplified period doubled theory.

Fig. 24 Motion of paramagnetic colloids on (a) a C6 symmetric pattern
(scheme in (c)) and (b) a S6 symmetric pattern (scheme in (e)). The particles
are subject to a modulation double loop LC ¼ L12C L31

C with L12
C ¼# F 2

�r " F 1
�r

(blue loop) and L31C ¼# F 2r
� " F 3r

� (red loop) crossing different segments of

the C6-fence. (d) Control space with the combined modulation loop
consisting of two fundamental loops (blue and red) which are both encircling
the S6-symmetric excess region. We have plotted the relevant excess regions
of the S6-symmetric (f = �p/6) case (red area) and the C6-symmetric case
(green area). The induced motion on a C6-symmetric pattern is shown in (a).
Both sub-loops induce motion on different networks resulting in a trajectory
that alternately uses the 12 and the 31 network. In the S6-symmetric pattern
only the 31-network is active. Therefore the induced motion shown in (b) has
to use the 31-network during both sub-loops.
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In Fig. 22 we measured the speed of adiabatically moving
colloidal particles. Gates in control space can then be identified
by the location of the maximum speed in A. The experiments
measured the positions of the extremum segments of the gates
to lie in the m = 4 region, while the theory of the C6 symmetric
case predicts that they lie inside of the excess area in C. We have
already mentioned that there might be a mismatch between the
phase of the lithographic mask and the phase of the actual
pattern. Indeed the lithographic writing process presumably
produces a magnetization pattern with a phase that differs
from the desired phase. A phase that is slightly different from
the C6-symmetry would allow for gates in the tropics of C and
hence explain the observed deviation. Since the exact path of
the gate on M is a feature that is not topologically robust it is
conceivable that either the phase shift or proximity effects
might cause this discrepancy.

To achieve adiabatic transport our modulation loops in
control space must be modulated at an angular frequency
oext that is significantly smaller than the intrinsic angular
frequency oint p e�QzM. For the lithographic magnetic pat-
terns this restricts our modulation frequencies to oext E 0.1 Hz.
For useful applications one would have to improve the satura-
tion magnetization or the thickness of the lithographic patterns
to increase the modulation frequency. The garnet films we used
for the two-fold stripe pattern as well as for experiments on
C6-like patterns in ref. 20 allowed for the use of up to two orders
of magnitude higher modulation frequencies. The closer the
particles are to the pattern the faster we might modulate
the field, however, the less universal will be the behavior of
the transport. An elevation of roughly half the lattice constant
seems to be a good compromise that does not yet change the
topology of the transport.

We describe our ratchet as a deterministic ratchet, i.e.
thermal diffusion of particles only happens during very short
and therefore irrelevant times when the colloidal particles sit
right on the fence. This short diffusion will not lead to a
broadening distribution of transport directions as long as we
avoid the B0 points. When using modulation loops passing close
to a B0 point the particles may access the two alternative paths of
steepest descend also in the surroundings of this point. Thermal
effects broaden the fences. A transition to a thermal ratchet will
occur for temperatures where the broadened fences overlap.
Some of the topological properties might persist even then and
thus also explain the omni-directional transport observed in
such thermal ratchets.28

Comparing our system with topological crystalline insulators4–9

we note that the gates in our system are the analogues to the
Dirac-cones in the quantum systems. Gates are lying on high
symmetry points in the lattices with even C4, and C6 symmetries,
while they lie on the ij-network for the three-fold symmetric lattices.
The situation is comparable to the position of Dirac-cones lying on
high symmetry points and lines in the first Brillouin zone of
the lattices of different symmetry. As in topological crystalline
insulators their number and robustness varies based on the
symmetry of the lattice.

Comparing our driven system with Floquet topological
quantum systems10,11 we note that time dependent interactions
of Floquet topological insulators usually must wind around the
north–south axis to cause topologically non trivial behavior.
This is because the unperturbed time independent Hamilton
operator is diagonalized with respect to the z-component of the
spin respectively pseudo spin operator. Different time dependent
driving, such as THz-oscillating magnetic fields, stress modula-
tion, or modest in plane electric field modulations53 are experi-
mental ways to achieve non trivial behavior. Only perturbations
that have non commuting contributions of non-diagonalized
spin components will couple the different bands and cause non
trivial dynamics. Floquet topological insulators so far have been
investigated mainly with respect to time reversal symmetry and
particle hole symmetry protecting the topology. We are not aware
of a crystalline Floquet topological insulator, which would be the
quantum system in closest analogy to our system. Due to the
lattice symmetry in our colloidal system we have a variety of
different axes around which the perturbing external field may be
wound. The reason for this is the multi-fold lattice symmetry
that causes multiple stable points in the absence of a perturbing
external field. In contrast to the quantum systems we have a
richer variety of driving loops that can wind around alternative
points of control space.

We should also mention that the dynamics of our colloidal
system occurs in direct space not in reciprocal space. Direct
space is an affine lattice having no natural origin. Each unit cell
is equivalent to any other unit cell. Floquet topological quantum
systems operate in reciprocal space where we can distinguish the
first Brillouin zone from all the higher order Brillouin zones. For
example in a hexagonal lattice the G-point in reciprocal space
plays a different role than the K-points, while in our affine three-
fold lattice all high symmetry points are equivalent and cause

Fig. 25 Splitting of a satellite when switching on a staggered magnetiza-
tion that doubles the period, doubles the fence and doubles the multiplicity
m. The net magnetization of the two new different half unit cells shifts one
half of the satellite fence to the north and the other half to the south. As a
result a path that initially passed the fences on opposite sides of the satellites
(red arrow) now cuts the northern (southern) half of the double satellites on
the neighboring southern (northern) fence segments (blue arrow). Instead
of a non time reversal ratchet this produces time reversible ratchets with
different directions in one and the other new half unit cell.
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lattice symmetries to have different effects in our colloidal
system than in quantum systems.

Finally our system is dissipative causing irreversible relaxa-
tion processes to contribute to the dynamics. These irreversible
processes can be rendered unimportant only on the stationary
manifold via the adiabatic driving, but not on the paths of
steepest decent. This is causing the non-time reversible ratchet
processes that have no analogue in the topological quantum
systems.

7 Conclusions

Paramagnetic and diamagnetic colloids above a magnetic pat-
tern can be transported by modulating the potential with time
dependent homogeneous external fields. If such modulation
loops wind around specific points (fence points for the two- and
four-fold symmetries, bifurcation points for the three- and
six-fold symmetry) or pass through fence segments (three-
and six-fold symmetry) in control space the topologically trivial
modulation can be translated into non trivial motion of colloids.
A summary of the relevant points and segments is shown as
stereographic projection of control space for lattices of C2, C4,
S6-like, and C6-like symmetry in Fig. 26. It shows the deep
connection between symmetry and topology since all objects
are completely different for the various symmetries. The lattice
symmetry determines the transport modes, which are possible
along the primitive lattice vectors.

Modulation loops can be sorted into topologically equivalent
classes, according to their winding around those points and/or
by the sequence of segment crossings. All modulation loops

belonging to the same class induce motion in the same direc-
tion, which makes the transport very robust against perturba-
tions. Noise in the pattern only affects the less robust features
of the transport while it doesn’t alter its topological class.

On top of C2- and the C4-symmetric patterns para- and
diamagnets are adiabatically transported into the same direc-
tion. In contrast above 3-fold and 6-fold symmetric patterns
both types of particles can be transported into independent
directions and the motion happens either adiabatically or via
irreversible ratchets.

Classes of modulation loops causing transport modes into
one direction cluster around the adiabatic paths. Ratchet modu-
lation loops are topological protected by their neighboring
adiabatic loops and hence transport into the same direction.
The whole variety of possible transport is described by a set of
topological invariants, which are winding numbers around the
holes of the stationary surfaces M.

The robustness of the topological transport can be used to
transport a collection of colloids with a broad distribution of
properties, such as size-polydispersity without dispersion. This is a
clear advantage over other collective transport methods such as
thermal ratchets, external gradients and active motion. The possi-
bility of independent motion of paramagnets and diamagnets
facilitates other applications such as guiding chemical reactions
and assembly.20

A Appendix
A.1 Three fold symmetric stationary manifolds

In Fig. 27–31 we give a high resolution view of C, A, and M of
the three-fold symmetric patterns at five different values of f,
where we explain specific details in one of the figures each.
These details apply to all different phases if not stated other-
wise. The positions of the six gates in each space is explained in
Fig. 27 and remains the same throughout the rest of the figures.
In Fig. 28 we show the color coding of the areas in C as well as
the color coding shared betweenM and A. The poles of C have
2 	 6 preimages inM that all lie on the central axis ofM either
on a pole of a hemispherical cap or at the apex or base of the
three central holes. When projectingM into A the poles on the
hemispheres fall onto the three-fold symmetric points of A,
while the saddle point poles ofM0 in the three central holes are
expelled in the surroundings of xA;2. The topological transition
happens in Fig. 27. Two B0 bifurcation points (pseudo bifurca-
tion points) one from a satellite and one from a polar fence
(polar pseudo fence) annihilate when the satellite excess area
coalesces with the polar excess area at the ends of the full
(dashed) arrows. Since only the lower half of M is projected
intoA there occur two cuts in the brown and red tropical regions
of M0. The cut in M and its projection into A is shown in
Fig. 31. The cut in A circles twice around xA;2 and around xA;3
and twists each of the six times it passes a gate thereby alter-
nating between the lower half lying inside and outside the cut.
The cuts in the other figures are topologically equivalent to those
in Fig. 31. The projection of areas in M into C preserves the

Fig. 26 Stereographic projection of control space with all relevant objects
for the lattices of different symmetry. White circles are relevant for both
paramagnets and diamagnets while green fences are relevant for the para-
magnets only and blue fences are relevant for diamagnets only.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
6 

Ju
ly

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
23

/1
1/

20
17

 1
3:

10
:5

3.
 

View Article Online



5068 | Soft Matter, 2017, 13, 5044--5075 This journal is©The Royal Society of Chemistry 2017

Fig. 27 Universal topology of C, A andM for a pattern with S6 symmetry (f = p/6). We have marked the six gates g1, g2, g3, g1, g2, g3 that are projected
into the six gate points in A. OnM the upper gates g1, g2, g3 travel on the handles while the lower gates g1, g2, g3 pass through polar regions that will
become isolated in the S6-like case.
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Fig. 28 Universal topology of C, A andM for a pattern with S6-like symmetry (f = 5p/36) together with color codes for the areas of C and the shared
color codes of M and A. The coloring of the gates is the same as in Fig. 27.
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Fig. 29 Universal topology of C, A andM for a pattern at the transition from S6-like to C6-like symmetry (fc = p/9) with gates colored similar to Fig. 27.
Two B0 (pseudo) bifurcation points from two (pseudo) fences annihilate at the topological transition points at the solid (dashed) arrows where the
satellites merge with the polar excess areas.
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Fig. 30 Universal topology of C, A and M for a pattern with C6-like symmetry (f = p/18).
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Fig. 31 Universal topology of C, A andM for a pattern with C6 symmetry (f = 0). We have marked the cut in A that is the projection of the boundary
between the projected lower half of M and the upper half.
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orientation of half the areas and switches sign for the others.
Each time one passes a pseudo fence that is connected to a
bifurcation point one switches the orientation of the projection
in C. The orientation of the projection fromM into A switches
sign when we pass from one side of the gate to the other side.
The southern excess region south of the gates gi

� (gi,�) in C
switches orientation when its preimages inM� are mapped into
the bright (dark) green regions around xA;3 (around xA;2) in A.

A.2 Lithographic magnetic structures

Magnetic patterns with the desired symmetry have been created
by 10 keV He-ion bombardment induced magnetic patterning
of magnetic multilayer structures with perpendicular magnetic
anisotropy49,54 using a home-built ion source for 5–30 keV He
ions.55 First, the layer system Ti4nm/Au60nm/[Co0.7nm/Au1nm]5 with Ms

of 1420 kA m�1 was fabricated by DC magnetron sputter deposition
on a silicon substrate.56,57 The sample’s magnetic properties were
characterized by polar magneto-optical Kerr effect magnetometry,
possessing an initial coercive field of 19.5 � 0.5 kA m�1. The
magnetic domain structure was introduced by a local change of
the sample’s coercive field via 10 keV He ion bombardment through
a shadow mask with an ion fluency of 1 	 1015 Ions per cm2.
Here, the geometry of the mask coincides with the desired four-
fold symmetric, three-fold symmetric, or phase gradient pattern
with a period length of 7 mm (Fig. 2). The mask locally pre-
vents the He ions to penetrate into the layer system.54 In the
uncovered areas, however, ion bombardment leads to a decrease
of the perpendicular magnetic anisotropy and hence, the coercive
field, primarily due to defect creation at the interfaces of the
[Co/Au] multilayer structure.48,50 In preliminary experiments,
the decrease of the coercive field was characterized via polar
magneto-optical Kerr effect magnetometry and determined to
be 6.5 � 0.5 kA m�1. The shadow mask was prepared via UV
lithography on top of the sample. For this purpose, the sample
was first spin coated with a photo-resist layer of AZ nLOF 2070
(MicroChemicals, AZ nLOF 2070 diluted with AZ EBR, ratio 4 : 1)
with an average layer thickness of 2 mm as determined from
atomic force microscopy measurements. The lithographic
structure was introduced by UV exposure through a structured
chromium hard mask and subsequent development in AZ 826
MIF (MicroChemicals) to remove the unexposed parts of the
resist. After ion bombardment without external magnetic fields
applied during the process, the sample was first treated with
1-methyl-2-pyrrolidone for 24 h at 80 1C, than ultrasonicated for
1 minute and finally cleaned with acetone and isopropanol.
Due to the thickness t = 3.5 nm of the magnetic layer, which is
small in comparison to the wavelength of our structures (tQ o 1),
the pattern magnetic field on top of the lithographic pattern is
attenuated to Hp = Ms�t�Q in comparison to the value Hp = Ms of a
thick (tQ 4 1) garnet film.

A.3 Definitions

Action space: the plane z = const, where the colloidal particles
move. Due to the periodicity different unit cells can be identi-
fied with each other which folds action space into a torus.

Adiabatic motion: a motion enslaved by the external modu-
lation, possible when one preimage inM of a modulation loop
in C lies in M�.

Allowed regions: projection of the minimum/maximum sections
ofM into A.

Bifurcation points: bifurcation points on M and on A are
crossings of fences with pseudo fences. In C the bifurcation points
are cusps of the fence. Bifurcation points exist for the three- and
six-fold pattern not for the two- and four-fold pattern.

Control space: the endpoints of the external magnetic field
of constant magnitude, a sphere.

Equator: the boundary between the two hemispheres in
control space excluding fence points. The equators in M are
the preimages of the equator in C of the projection from M
onto C. The equators are relevant for the two-fold pattern, where
there are no gates.

Excess area: a connected set of points in C with higher
multiplicity.

Fence: the fence in M is the boundary between minima
(or maxima) and the saddle points on M. We use the same
names for its projection into control and action space. Fences
on M and on the torus A are closed lines. Fences on C are
points for the two- and four-fold symmetric pattern and lines
for the three- and six-fold symmetric pattern.

Forbidden regions: projection of the saddle point regions of
M into A. Allowed and forbidden regions are disjunct areas in
A for all but the two-fold patterns.

Gates: a gate in A is a crossing point of two fences in A.
Gates exist for the three-, four-, and six-fold pattern not for the
two-fold pattern. The preimage in M of a gate in A of the
projection from C � A onto A is the gate (a closed line) onM.
The projection of the gate inM onto C is the gate in C.A gate in
C is a grand circle.

Irrelevant fence: a fence that has no Bþ and no B� bifurcation
points.

Lemniscate: a preimage inM of a modulation loop in C that
is not a set of loops in M.

Modulation loop: a loop in C.
Multiplicity: the multiplicity of a point Hext 2 C is the

number of preimages Hext; xAð Þ 2 M 
 C �A mapped from
M onto Hext 2 C by the projection onto control space.

Non-time reversible ratchet: a ratchet motion that follows an
open path when playing a palindrome modulation loop.

Northern hemisphere: the northern hemisphere are simply
connected regions on C and on M with Hz,ext 4 0. A similar
definition holds for the southern hemisphere.

Palindrome modulation loop: a loop in C consisting of two
loops that are the inverse of each other.

Path: a path is a directed segment of a modulation loop.
Phase space the (multiply connected) product space of

control space and action space and thus the product of a sphere
and a torus.

Pseudo bifurcation points: pseudo bifurcation points in
M are preimages of the bifurcation points in C that are not
bifurcation points. Pseudo bifurcation points exist in three- and
six-fold symmetric patterns. Pseudo bifurcation points in A are
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the projection of the pseudo bifurcation points in M. Pseudo
bifurcation points in M and in A are located at cusps of the
pseudo fences.

Pseudo fence: a line in M different from the fence in M
that is projected onto the fence in C. Pseudo fences are closed
lines in M and A that exist for the three- and six-fold sym-
metric pattern not the universal two- and four-fold symmetric
pattern.

Ratchet motion: a motion where the adiabatic motion is
interrupted by jumps following the intrinsic dynamics.

Reduced control space: the cut of control space with the
space spanned by the single reciprocal lattice vector Q1 of the
two-fold pattern and the normal vector n.

Satellites: excess areas for the S6-like pattern that merge with
their polar parent excess area upon the topological transition to
a C6-like pattern.

Stationary manifold: a two dimensional manifold in phase
space, where the action gradient of the colloidal potential
vanishes.

Time reversible ratchet: a ratchet motion that follows a
closed path when playing a palindrome modulation loop.

12-Network: the three-fold symmetric pattern has three
different points per unit cell with three-fold rotation symmetry.
The straight lines between the first two points define the
12-network. Similar definitions hold for the 23-network and
the 31-network.
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50 M. Urbaniak, P. Kuświk, Z. Kurant, M. Tekielak, D. Engel,
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Topological invariants are global properties of a system that
remain unchanged by local perturbations. A property that
depends only on topological invariants is topologically

protected and is very robust against local changes. Topological
protection is a promising approach to stabilize quantum
computing1 and is used to, for example, maintain robust
transport in Hamiltonian systems. Topologically required edge
states2 in a bulk system can support transport of quantum
mechanical excitations3, classical mechanical solitons4,
dislocations5 and gyroscopic waves6. When the edge states are
located in a gap of the bulk excitation spectrum, they are
protected against scattering into bulk states. Conservation of the
Chern number, which is a topological invariant, makes the edge
states robust against perturbative interactions. Topological
insulators7, which are based on this concept, conduct at the
surface but insulate in bulk. In driven Hamiltonian systems,
additional invariants, such as the winding number8,9 around
quasi energy bands, add to the topological variety of possible
transport phenomena.

Transport of a collection of classical particles with different
properties, such as size, mobility and so on, usually generates a
diffuse broadening of the trajectories. Topological protection
might be used to transport a broad distribution of particles
without dispersion, despite their different properties. High
precision multiparticle transport is an important ingredient in,
for example, multifunctional lab-on-a-chip devices10,11.

Topological protection is also possible in driven dissipative
(non-Hamiltonian) systems. The interplay between dissipation
and topology has been studied in open quantum systems, see for
example refs 12,13 for details. In driven dissipative lattices14–18,
transport typically involves the thermal ratchet effect19–22, that is,
biased irreversible jumps between neighbouring potential wells.
Complicated correlations between the noise23, disorder24 and
many particle interactions25 cause a motion of astonishing
complexity. The thermal ratchet mechanism is not robust when
transporting simultaneously different types of particles. The
complexity makes it hard to maintain control over the transport
of one type of particles when adjusting the external drive to
control the transport of another particle type.

Here, we show an example of topological protection in a driven
dissipative colloidal system. We achieve predictable multiparticle
transport of diamagnetic and paramagnetic colloids above a

hexagonal magnetic lattice. Using periodic boundary conditions,
we describe the unit cell of the lattice as a torus, which defines the
action space in which the colloids move. We drive the colloids
with periodic modulation loops of an external magnetic field. The
direction of the external field defines our control parameter space.
The topological correspondence between control and action space
is nontrivial, and enables robust, topologically protected, colloidal
transport along the lattice vectors. The topological invariant in
action space is the set of the two winding numbers around the
torus, in close analogy with driven quantum systems8,9. We
demonstrate experimentally the robustness of the motion and
implement a topologically protected quality control of a chemical
reaction between functionalized colloids. We also develop a
theoretical framework that fully describes the experimental
findings. Our results apply to any hexagonal pattern.

Results
Colloidal model system. We use paramagnetic polystyrene core
shell and solid polystyrene colloids of average diameters 2.8 and
3.1 mm, respectively, dispersed in a mixture of diluted water-based
ferrofluid. The immersion of the colloids renormalizes their
effective susceptibilities such that wp,eff40 and wd,effo0 for
paramagnetic and diamagnetic colloids, respectively. The colloids
immersed in the ferrofluid are placed on top of a magnetically
patterned ferrite garnet film (FGF), see Fig. 1a. Spacer beads and a
top glass plate create a ferrofluid film of thickness d¼ 4.8 mm.
Magnetic boundary conditions at the garnet-ferrofluid and
glass-ferrofluid interfaces distort the magnetic field lines (created
by the magnetic moments of the colloids) to be parallel to both
interfaces. Virtual image dipoles form in the garnet film and the
top glass plate and generate a potential that levitates the colloids
into the mid-film plane, far away from the FGF, see Fig. 1b.
Without the ferrofluid the colloids sediment to the pattern26,27.
The FGF is characterized by a hexagonal lattice of magnetic
bubble domains magnetized normal to the film (saturation
magnetization Ms¼ 17 kA m" 1). The bubbles are immersed in a
continuous phase of opposite magnetization. In an external field
Hz

ext normal to the film, the bubbles grow on the expense of the
continuous phase if Hz

ext40 and shrink if Hz
exto0.

Control space. We use a homogeneous time-dependent magnetic
external field Hext(t) of constant magnitude, Hext¼ 5 kA m" 1,

Hext(t)
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Figure 1 | Schematic of the system. (a) Hexagonal garnet film with lattice constant a¼ 11.6mm covered with ferrofluid of thickness d¼4.8mm. One
Wigner–Seitz unit cell is marked with a dashed line. By adjusting a closed modulation loop of a spatially homogeneous magnetic field Hext(t), we have total
control over the transport of paramagnetic (blue) and diamagnetic (green) colloids immersed into the ferrofluid. (b) Lateral view of the system showing
the distortion of the dipolar magnetic field (the field of the garnet pattern is omitted here) of an individual particle immersed in ferrofluid. The field
distortion pushes the colloidal particle into the midplane of the ferrofluid film. (c) The direction of Hext varies on the surface of a sphere, defining control
space C. Control space can be divided into three regions: the north, the tropics and the south. The northern and southern borders separate the tropics from
the north and the south, respectively. Each border consists of 12 segments that we number from 0 to 11. The segments join at special points, indicated by
empty circles and squares. LC is an example of a closed modulation loop of Hext that induces transport of diamagnetic particles along the lattice. The loop
crosses the northern border through segments 1 and 4.
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to drive the system. Hence, our control space C is the surface of a
sphere. Each point on C corresponds to a direction of Hext. For
reasons that will become clear later, we can divide C in three
regions: the north, the tropics and the south, see Fig. 1c. We call
the interface between the tropics and the north (south) as the
northern (southern) border. Each border is made of 12 segments.
We experimentally perform periodic closed modulation loops LC
of the external magnetic field. The period of the modulation is
irrelevant provided that it is large enough such that the particles
can follow the changes of the potential generated by Hext. There
exist loops that induce intercellular colloidal transport. That is,
when LC returns to its initial point, the colloids are not in their
initial positions but on a different unit cell.

Experimental phase diagram. Only loops that cross the northern
(southern) border of C induce intercellular transport of the
diamagnets (paramagnets). We discuss first the motion of the
diamagnets. Let LC ¼ (iN, jN) be a loop in C that crosses the ith
segment of the northern border from the tropics to the north and
returns to the tropics using the jth segment, see an example in
Fig. 1c. The experimental phase diagram showing the motion of
diamagnetic colloids for all possible modulation loops of type
LC¼ (iN, jN) is shown in Fig. 2a. The precise shape of the loop is
irrelevant, a clear sign of the robustness of the transport. Only the
segments of the northern border crossed by LC and their order is
important. We can transport the diamagnets along the six
fundamental lattice translations plus intracellular transport. Each
direction is represented by a different colour in the phase
diagram. The clustering of identical colours indicates the
topological protection of the transport direction. A rotation of LC
by p/3 around the polar axis, that is, from LC¼ (iN, jN) to
LC¼ (iNþ 2, jNþ 2), is equivalent to rotate the sample by "p/3,
and hence changes the transport direction by p/3. Therefore, the
sixfold symmetry of the pattern guarantees that if transport is
possible along one direction then it must also be possible in the
other five directions.

There are two types of motion, adiabatic and deterministic
ratchet moves. The phase diagram is a checkerboard of

alternating adiabatic- and ratchet-squares. In an adiabatic
motion, the diamagnets always travel following the minimum
generated by the magnetic potential. Hence, the speed of the
modulation determines the speed of the colloids along the full
trajectory. In contrast, the speed of the modulation loop does not
fully determine the speed of the colloids in a ratchet. At some
points during the modulation loop, the diamagnets hop between
two minima of the magnetic potential at an intrinsic speed that is
uncorrelated to the speed of the modulation.

The adiabatic motion is fully reversible. Reversing the
modulation from LC ¼ (iN, jN) to LC ¼ (jN, iN) always reverts
the direction of motion, and there is no hysteresis when
comparing forward and backward trajectories of the colloids.
For example, the loop LC ¼ (0N, 4N) transports the diamagnets
adiabatically to the left, and the reverse loop LC ¼ (4N, 0N) to the
right. In a deterministic ratchet motion, reversing the direction of
the modulation loop does not usually revert the direction of the
transported colloids. LC ¼ (0N, 3N), for example, induces a ratchet
transporting the diamagnets to the left, but the reverse loop
LC ¼ (3N, 0N) does not transport the particles to the right. Only
some of the modulation loops induce a time reversal ratchet
in which reversing the modulation also reverts the direction of
motion. See for example, the loops (0N, 6N) and (6N, 0N) in
Fig. 2a. There is always hysteresis in ratchet-like motion between
forward and backward trajectories, even in the case of time
reversal ratchets.

The dynamics we have discussed for the diamagnets on the
northern border holds also for the paramagnets on the southern
border of C. The phase diagram of the paramagnets is the same as
the one of the diamagnets, cf Fig. 2a, if instead of modulation
loops of type LC¼ (iN, jN) we perform modulation loops of type
LC ¼ (iS, jS). That is, loops that cross the southern border of C
from the tropics to the south using segment i and back to the
tropics through segment j. An implicit equation to compute
the location of the borders is given in the Methods section,
and the exact location of the borders is shown in Supplementary
Fig. 1.

The northern and southern borders of C are well separated.
Hence, it is easy to transport the diamagnets and paramagnets
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Figure 2 | Phase diagram and colloidal motion. (a) Experimental phase diagram showing the direction and type of motion of the diamagnets for the
fundamental loops LC ¼ (iN, jN) crossing the northern border in C. The same diagram holds for the paramagnets if the modulation loops cross the southern
border: LC ¼ (iS, jS). Each colour corresponds to a direction of motion, as indicated. Non-textured squares indicate adiabatic motion, and striped textured
squares indicate ratchet motion. Empty circles mark the time reversal ratchets. (b) Polarization microscopy images of the pattern and the diamagnetic and
paramagnetic colloidal particles at the end of a transport process. Scale bar (yellow rectangle middle image), 10mm. The path of one paramagnet (blue
arrow) and one diamagnet (green arrow) in A is depicted in the figure. The pink (cyan) segments of each path indicate the loop in C is on the southern
(northern) hemisphere. The outer images show the transport of diamagnets into the x direction and paramagnets into one of the six crystallographic
directions, by using modulation loops of type LC ¼ (4N, 0N, iS, jS). The middle image is a Franconian folk dance performed by a paramagnetic and
diamagnetic couple circulating around a central bubble in opposite sense and with different radius of the hexagon.
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successively by using a loop LC ¼ (iN, jN, kS, lS). The loop starts on
the tropics and goes to the north of C crossing the segment iN,
then returns to the tropics (jN) and moves to the south (kS).
It finally returns to the starting point on the tropics of C crossing
the segment lS. In Fig. 2b, we show polarization microscopy
images of the combined transport of six representative
modulation loops of the form LC ¼ (4N, 0N, iS, jS). The loops
induce adiabatic transport of diamagnets along the x-direction
and adiabatic transport of paramagnets along the six possible
lattice translations. The trajectories are coloured in pink (cyan)
when LC travels on the northern (southern) hemisphere of C.

We have total control over the colloidal motion, including the
ability to programme complex trajectories. An example is given in
the centre of Fig. 2b where we use a complex modulation loop
such that the paramagnets and diamagnets perform a traditional
Franconian folk dance. Videos showing the colloidal motion are
provided in Supplementary Movies 1–7.

We next develop the theoretical framework needed to explain
the experimental observations we have discussed above. An
experimental application will be shown at the end of the Results
section.

Action space. We call the space accessible to the colloids the
action space A. Action space is a two-dimensional periodic
hexagonal lattice at a fixed elevation above the FGF. Topologically
A is a torus if we use periodic boundary conditions at the edges of
a unit cell of the lattice, see Fig. 3a. Intercellular transport from
one unit cell to the next cell via one of the two lattice vectors in
real space is the same as one of the two windings around the
torus. Loops LA in A that correspond to intercellular transport
of colloids have non-zero winding numbers, and cannot be
continuously deformed into a point. That is, lattice translation
action loops are non-zero-homotopic. This is not the case in
control space. Any modulation loop LC $ C can be continuously
deformed into any other desired modulation loop. For instance,
we can continuously deform LC into a point on C. Therefore,
all loops in C are zero-homotopic.

Here, we have demonstrated that there exist modulation loops
LC in control space that induce either adiabatic or deterministic
ratchet intercellular transport of the colloids. That is, there are
zero-homotopic loops in C that induce non-zero-homotopic
action loops LA with non-vanishing winding number around the
torus. To understand how this is possible, we study theoretically
the motion of point dipoles in the magnetic potential generated
by the garnet and the external field.

Stationary manifold. The full dynamics is described by a point
(Hext, xA) moving in the product phase space C % A, where
xA 2 A is the position in action space. The energy landscape
is given by the magnetic potential Vm¼ " weffm0H2, with H the
total magnetic field and m0 the vacuum permeability. H is the sum
of the external field HextAC and the internal field Hg(xA) from
the garnet film. The effective susceptibility weff is positive for
the paramagnets and negative for the diamagnets. Therefore, the
unique scaled-potential V¼H2 is enough to qualitatively describe
the motion of both types of colloids. The stable points for the
diamagnetic (paramagnetic) colloids are the minima (maxima)
of V. The colloids are far away from the garnet film. Hence,
we can approximate the potential by its leading non-constant
term at large elevations, which is given by:

V /
X6

i¼1

H j jext
~Hz

ext

! "
& q2i

sin q2i
& xA

# $

q2 cos q2i
& xA

# $
! "

; ð1Þ

where the sum runs only over the six reciprocal lattice vectors of
the second Brillouin zone, q2i

, all of which have magnitude q2.
The full expression of V, at any elevation, is given in the
Supplementary Note 1. Hjjext and ~Hz

ext ¼ Hz
ext= 1þ wð Þ are the

components of the external magnetic field in the ferrofluid par-
allel and normal to the garnet film, respectively. w is the magnetic
susceptibility of the ferrofluid. V is independent of the details of
the FGF, and hence the following theory can be transferred to
other systems with the same symmetry. For each value of Hext,
the stationary points (Hext, xA) are those for which rAV¼0,
where rA indicates the gradient in action space. The set of these
points forms the stationary manifold M, which is a two-
dimensional manifold in C % A. Only if M contains non-zero-
homotopic loops, we can achieve intercellular transport. M can
be viewed as the unification of three submanifolds:
M¼Mþ[M0[M" . The Hessian matrix is positive definite in
Mþ (minima of V and hence stable points for the diamagnets),
indefinite in M0 (unstable saddle points for both colloids) and
negative definite in M" (maxima of V and hence stable points
for the paramagnets). One can show that M has genus 7 with 3
holes inM0 and 2 holes in each,Mþ andM" , see Fig. 3b and
Supplementary Fig. 2.
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Figure 3 | Topology. (a) Action space A is the space accessible to the
colloids, a hexagonal lattice. Using periodic boundary conditions, action
space is topologically a torus. (b) Two-dimensional projection of the
stationary manifold M, which has genus 7 and it is formed by 16 bijective
areas indicated by different colours and listed in c.Mþ ,M0 andM" are
the set of minima, saddle points and maxima of the magnetic potential,

respectively. The fence F0þ (F0" ) separatesM0 andMþ (M" ), and it
is projected onto the northern (southern) border of control space, cf. Fig. 1c.

In b, empty squares (circles) on F0þ are triple plus Bþ (zero B0)
bifurcation points, at which 4 bijective areas meet. Three out of these

bijective areas lie onMþ (M0) in a Bþ (B0) point. LM (b) is an example
of a non-zero-homotopic loop that winds around the holes of Mþ . The
corresponding control loop is LC ¼ (1N, 4N). This loop in action space LA
induces intercellular transport of the diamagnets along the " x direction,
black arrows in a. The colours in a show the projection of Mþ and M0

onto action space.
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Let PC be the projection that maps any poinst in C % A into
control space. A key point is that PC is multifold on M, that is,
several points xM¼ Hext; xAð Þ are mapped on the same point
HextAC. The north, the south and the tropics of C, cf. Fig. 1c, have
different multiplicity of preimages on M. The multiplicity
changes at the borders of C via generation or annihilation of
pairs involving one saddle point and one minimum or one
maximum. We can divide M0;) into a collection of bijective
areas, {nþ 1, nþ 2, tþ , sþ }CMþ , {n01, n02, n03, t01, t02, s01, s02,
s03}CM0 and {n" , t" , s" 1, s" 2}CM" . Each area has exactly
one preimage of either the north, the tropics or the south of C.
The letter indicates if the area is projected onto the north (n), the
tropics (t) or the south (s) of C. These areas are listed in Fig. 3c
(with the colours corresponding to the colouring of M, Fig. 3b).
The first subindex (0, þ , " ) indicates if the area lies on M0,
Mþ or on M" . The second subindex labels the areas in case
more than one area share the same letter and first subindex.

Fences and bifurcation points. We call the boundary between
M0 and Mþ (M" ) as the northern F 0þ (southern F 0" )
fence, see Fig. 3b. A segment of F 0þ separates a northern area on
Mþ (nþ ,1 or nþ ,2) from a northern area on M0 (n0,1, n0,2
or n0,3) and starts and ends at vertices that are bifurcation points.
Four different bijective areas in M meet at a bifurcation point,
see Fig. 3b. There are three types of bifurcation points: triple zero
bifurcation points B0, where three out of the four areas meeting at
the point are onM0, and triple plus Bþ (minus B" ) bifurcation
points, where three out of the four areas meeting at the point are
on Mþ (M" ). In total, each fence has 12 bifurcation points

that alternate between B0 and Bþ or B" , depending on the fence.
No further points where more than two areas meet on M exist.
The vertices on the fence are the only bifurcation points on M.
The projection PC maps each of the 12 segments of F 0þ (F 0" )
onto one segment of the northern (southern) border of C, see
Fig. 1c. PC also maps the bifurcation points on F 0þ (F 0" ) onto
12 points at the northern (southern) border of C where two
segments join. As PC is multifold on M, the preimage of the
borders of C are the fences and other lines that we call the pseudo
fences. The preimage of the projection of the bifurcation points
are the bifurcation points and other points that we call pseudo
bifurcation points. The pseudo fences separate different bijective
areas on M, and are also divided in 12 segments, which are
separated by pseudo bifurcation points. We label the segments of
the borders of C, and the segments of the fences and pseudo
fences in M from 0 to 11. A segment i on M is projected onto
the segment i on C. Therefore, if we cross the ith segment of the
border in C, we cross several ith segments of fences and pseudo
fences on M.

Adiabatic motion. We next explain the adiabatic transport of
diamagnets, similar arguments apply for the paramagnets. To
achieve adiabatic transport of diamagnets, we need a modulation
loop LC with a preimage loop LM in M lying entirely in Mþ ,
such that the diamagnets can adiabatically follow the minimum of
the magnetic potential. In addition, LM has to be non-zero-
homotopic, that is, it has to wind around at least one of the two
holes in Mþ . This non-zero-homotopic loop is then projected
onto a loop in A that can be non-zero-homotopic, and induce
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Figure 4 | Joining and disjoining loops in M. Schematic of different modulation loops LC in control space C and their corresponding preimage loops on
the stationary surfaceM. (a) LC crosses the first segment of the northern border of C. When LC touches the border (red loop) a pair of a minimum and a
saddle point is created inM (red point). When LC crosses the border twice (yellow loop), a loop crossing the fence inM (fence-crossing loop) is created
(yellow loop). This fence-crossing loop lies in bothMþ andM0. (b) We enlarge LC such that it encircles the projection of a triple plus bifurcation point.

InM, the fence-crossing loop joins with the loop inMþ . No loop lies entirely inMþ . (c) LC encircles the projection of two bifurcation points, one Bþ and

one B0. The fence-crossing loop joins again with another loop that this time lies in M0. (d) LC encircles now the projection of two Bþ and one B0

bifurcation points. The four areas meeting at the second Bþ point (nþ 1, nþ 2, tþ and n02) were already joined in the fence-crossing loop. As a result, the
fence-crossing loop disjoins into two loops, that in this case are non-zero homotopic with opposite winding numbers. One of the disjoint loops lies inMþ
and induces intercellular adiabatic motion. All loops in a–c are zero-homotopic.
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intercellular transport. As we have already shown adiabatic
motion along any lattice direction, a¼w1a1þw2a2, with ai the
basic lattice vectors in A, is possible. Each transport direction
corresponds to a value of the set of the two winding numbers {w1,
w2} around the hole in A. Hence, our topological invariant is the
set of winding numbers in A. InM there are 7 holes, and hence
14 winding numbers. The sum of any winding number inM over
all loops LM corresponding to a given loop in C is zero since all
loops in C are zero-homotopic. We can only achieve a non-zero-
homotopic loop in M by first joining two zero-homotopic loops
in M, and next disjoining them into two loops with opposite
winding numbers. The detailed explanation is shown next.

Consider the preimage in M of the modulation loop
LC¼ (1N, 1N). We show a schematic of LC and all its preimage
loops in M in Fig. 4a. If LC is entirely in the tropics of C (black
loop) there are four zero-homotopic preimage loops on M. One
is in M" , two in M0 and another one in Mþ . When LC
touches the northern border of C (red loop), a pair of a minimum
and a saddle point is generated at the fence F 0þ . As LC crosses
the northern border of C (yellow loop), the minimum-saddle
point pair deforms into a fifth (zero-homotopic) loop onM that
crosses the fence F 0þ . This new loop eventually disjoins into two
new loops, one onM0 and one onMþ , when LC fully enters the
north of C (blue loop). At each stage in C, the other four loops on
M smoothly pass through different pseudo fences on M. All
loops on M produced with modulation loops LC ¼ (iN, iN) are
zero-homotopic and therefore do not produce transport in A.
The specific bijective areas covered by the loops onM depend on
the segment of the border that we cross in C. A figure showing the
bijective areas that meet at each segment of fences and pseudo
fences is given in Supplementary Fig. 3.

Let us now deform LC such that it finally encircles the
projection of a triple plus bifurcation point, see Fig. 4b. The final
loop is LC ¼ (1N, 2N). When LC crosses the projection of Bþ , the
corresponding loop LM crossing the fence on M joins with the
pseudo fence-crossing loop onMþ . The result is a new loop that
crosses the fence and passes through four areas onM. This loop
lies in bothM0 andMþ . As no other loop entirely lies onMþ ,
the diamagnets will follow a ratchet motion, leaving the stationary
surfaceM when the loop crosses the fence towardsM0. We will
explain the ratchet motion later on. The winding number of the
joint fence-crossing loop on M is the sum of the winding
numbers of the loops before the joining. In this case, the joining

loops are zero-homotopic and hence the joint loop is also
zero-homotopic and induces no transport in A.

In Fig. 4c, we further expand the modulation loop such that it
encircles the following projection of a bifurcation point, a B0.
The final loop is LC ¼ (1N, 3N). In M, we again join the fence-
crossing loop with a pseudo fence-crossing loop that now lies in
M0. The result is, as in the previous case, a zero-homotopic
fence-crossing loop.

We continue expanding the modulation loop such that
it finally encircles the projection of two Bþ points with
LC ¼ (1N, 4N), see Fig. 4d. Now, all four areas that meet at the
second Bþ bifurcation point in M are already joined in the
fence-crossing loop. Therefore, crossing this bifurcation point
disjoins the fence-crossing loops in two loops. The disjoint loops
are no longer zero-homotopic. They have winding numbers with
equal magnitude but opposite sign such that the sum is zero.
One of the disjoint loops lies entirely in Mþ , crosses the
segments 1 and 4 of the pseudo fence between nþ 2 and tþ and
winds around the holes in Mþ . This loop is projected into a
non-zero-homotopic loop in A that induces adiabatic transport
of the diamagnets along the " x direction.

Encircling the next projection of a Bþ point, LC ¼ (1N, 6N),
joins again the loop in Mþ with a fence-crossing loop and
creates a ratchet motion. The adiabatic transport is recovered by
encircling a further projection of a Bþ with LC ¼ (1N, 8N).
This disjoins the fence-crossing loop and generates a new
non-zero-homotopic loop in Mþ . This new loop crosses
segments and pseudo fences in Mþ that are different than the
previous non-zero-homotopic loop, and induces transport in a
different lattice direction.

Deterministic ratchet motion. We next explain why the deter-
ministic ratchet is topologically protected and its fundamental
role in the phase diagram. A ratchet motion occurs if there is no
loop that lies entirely on Mþ . In this case, the minimum of the
magnetic potential that transports the diamagnets disappears at
the fence, and the particles leave the stationary manifold M
jumping to another minimum.

Our modulation is adiabatic, that is, the relaxation time of the
colloids in the cage around the minimum is orders of magnitude
faster than the period of the modulation. Hence, if the diamagnets
are on Mþ , they follow the minimum of the potential with a
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dynamics given by the modulation. If, on the contrary, the
diamagnets are not onMþ , they move along the path of steepest
descend of an effectively frozen potential in C. This path brings
the diamagnets back to Mþ .

Consider again the modulation loop LC ¼ (1N, 2N) that
encircles the projection of a Bþ point and creates a ratchet. In
Fig. 5a, we plot the loop in C and the corresponding fence-
crossing loop in M. We start LC in the tropics of C. In M, the
diamagnets follow the segment in tþ of the loop. Next, LC crosses
the first segment of the northern border, and the diamagnets
cross the first segment of the pseudo fence between tþ and nþ 2
in M. Finally, LC crosses the second segment of the border.
At this point, the loop inM touches the fence. The minimum in
nþ 2 that adiabatically transported the particles annihilates with a
saddle point and disappears. The colloids leave the stationary
surface M at the annihilation site. Diamagnets follow now the
path of steepest descend and are brought back to Mþ through
the return site, see Fig. 5a. Hence, the fence-crossing loop in M
can be divided into accessible and inaccessible parts. The particles
can stay only in the accessible part. The path of steepest descend
connecting the annihilation and the return sites is topologically
trivial. It cannot change the homotopy class of the adiabatic loop
that emerges by taking the accessible part of the loop and gluing
both ends, annihilation and return sites, together, see Fig. 5a.
The reason is that the path of steepest descend develops in a
continuous manner from the bifurcation point Bþ . To under-
stand this, imagine we make LC smaller and smaller but always
encircling the projection of Bþ . Then, annihilation and return
sites come closer and closer to each other, and eventually meet at
the bifurcation point. This argument holds for any other ratchet
motion in the system. A ratchet loop is always topologically
protected by an adiabatic loop. Both loops have the same
homotopy class, and therefore the same direction of motion.

Let us now revert the direction of LC, see Fig. 5b. The accessible
part of the loop and the annihilation and return sites change.
The forward and backward adiabatic loops that protect the
ratchets are different, but induce transport in opposite directions.
Therefore, the ratchet is time reversal. Reverting the modulation
reverts the colloidal motion. There is, however, hysteresis since
forward and backward loops differ in the path of steepest
descend, and in the segments being crossed in M. Usually,
forward and backward loops are protected by adiabatic loops that
induce transport in different, non-opposite, directions, resulting
in a non-time reversal ratchet.

Ratchets play a fundamental role in the system. The homotopy
class of an adiabatic loop, which lies onMþ , cannot be changed
by continuous deformations. Therefore, the direction of transport
cannot change if the motion remains adiabatic (note that all
neighbouring adiabatic loops in the phase diagram of Fig. 2a
induce transport in the same direction). It is only via ratchets that
we can change the homotopy class of a loop and hence the
transport direction. See, for example, in Fig. 2a, the ratchet loop
LC¼ (1N, 2N) (protected by the adiabatic loop (1N, 1N)) and the
ratchet loop (1N, 3N) (protected by (1N, 4N)). The topological
transition that changes the transport direction occurs when LC
encircles the projection of a B0 point (Supplementary Fig. 4).

Theory and experiments are in perfect agreement. The above
theory predicts exactly the same phase diagram we have found
experimentally, cf Fig. 2a. In addition, we have also performed
Brownian dynamic simulations of paramagnetic and diamagnetic
particles moving in the potential given by equation (1). The
simulations are also in perfect agreement with the theory and the
experiments. The simulation allows us to introduce thermal noise
in the system. We have verified that the topological protection is
very robust against thermal fluctuations. When the noise is very
high, such that it erases the energy landscape, the topological

protection is lost. The degradation of the topological protection
starts at both interfaces between different types of motion in the
phase diagram: adiabatic-ratchet interface and the interface
between deterministic ratchets along different directions.

The transport direction is also robust against other
perturbations, such as the precise shape and speed of the
modulation loop, changes in size, mobility and magnetic
susceptibility of the colloids, and changes in the pattern that do
not affect its symmetry (for example, the shape of the bubbles).
Most strikingly, the directions of the ratchets are protected, that
is, the topology of the stationary surface determines not only the
direction of the adiabatic motion but also of the non-equilibrium
ratchet motion.

There are always operations that break the topological
protection. In our system, we can break the protection by
changing the topology of M as we describe next.

Elevation above the garnet. We return now to the experiments.
We have discussed the transport of colloids at elevations z far
away from the garnet film so that the potential is given by
equation (1). At low elevations, the field created by the garnet is
very strong compared with the external magnetic field and the
potential is given by that of the pattern alone. In this situation,
the different parts of M are disconnected manifolds and have
a trivial topology (spheres) missing the requirements for
topological transport.

Depending on the dilution of the ferrofluid, the image-dipole
potential may or may not overcome the gravitational potential.
Hence, controlling the ferrofluid susceptibility gives direct control
over the colloidal elevation z above the garnet film. Consider a
loop in C that induces lattice translations if the colloids are at high
elevations. By performing the same loop for different ferrofluid-
water compositions, and hence varying the susceptibility w, we
can observe the transition from non-zero-homotopic loops in A
to zero-homotopic loops. The results are shown in Fig. 5c.
The topological transition takes place at wE0.1. For wt0.1, the
particles descend below a critical elevation zc, and the transition
to the non-transport phase occurs. Above zc the effects of the
hexagonal pattern are the same for any z, and topologically
protected modulation loops work for any hexagonal pattern,
independently of the fine details. By decreasing the elevation
below zc, we remove the holes of M inducing a topological
transition. This plays the role of gap closure in the dispersion
relation of wave-like systems28.

Application. We use the topological protection to implement an
experimental internal quality control of a chemical reaction. We
consider the hybridization reaction between two complementary
single-stranded oligo nucleotides of DNA, which we attach to
the paramagnetic and diamagnetic colloids. If the hybridization
is successful, the paramagnet (p) and diamagnet (d) irreversibly
bind to form a quadrupole (q)

pþ d ! q: ð2Þ

We want to emulate the conditional command: if the reaction
is successful, then transport the product q along a given direction
aq, otherwise transport the educts p and d along directions ap and
ad, respectively.

We have already shown how to induce topologically
protected transport of the educts (dipoles). The product of the
reaction is a quadrupole that senses the quadrupolar potential
Vq¼ " (rAV)2. The modulation loops T p $ C and T d $ C for
the transport of the educts can be chosen such that they do not
affect the motion of the quadrupoles. We also find an appropriate
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modulation loop T q $ C that transports the quadrupoles in the
required direction without affecting the dipoles.

The paramagnets and diamagnets reside on opposite parts
(M" and Mþ ) of the stationary surface and, in the presence of
the pattern, do not approach each other in A to allow the
hybridization. To bring the colloids together, we perform a non-
adiabatic hybridization loopH $ C around the equator of C with
a very high angular frequency. Hence, the colloids cannot follow
the instantaneous potential and feel an almost flat averaged
potential. Effectively, we erase the potential of the pattern such
that the weak dipolar attractive interaction is enough to bring
paramagnets and diamagnets together. The colloids meet in a
bubble and rotate around each other such that hybridization is
possible. After hybridization, the bond is strong enough to resist
the magnetic stress exerted by the potential of the next
modulation loops such that the bond is irreversible. The particle
pair remains inseparable and behaves like a stable quadrupole.
The entire modulation is a loop of the type T pT dHT q, see
Fig. 6a. We show the transport of the colloids after a successful
and a non-successful hybridization in Fig. 6b,c, respectively.
Videos are provided in Supplementary Movies 8–9. This quality
control is internal as we do not change the modulation loop after
we have measured externally whether the reaction was successful.
The quality control works without active intervention.

Discussion
When the modulation loop is in the north of C, the magnetic
potential presents two minima, one in nþ 1 and one in nþ 2 that
are projected onto different points on A. No colloidal transport
between the minima exists as the potential barrier is too high.
Phase space is hence divided into different nonergodic regions,
and thermal equilibration only occurs over the cage around each
minimum. The cage can only be left in a ratchet-like motion
when the modulation loop touches the fence. Hence, our ratchet
is associated with an ergodic-nonergodic transition, and might
serve as a model for the cage effect in supercooled liquids29 and
glasses30.

Dissipation has been used in open quantum systems12 to
isolate topologically protected edge modes from a bath. The
final state of the edge modes is nevertheless dissipation free.

In contrast, our system must be driven to maintain the transport.
Moreover, the ratchet effect (crucial to change the direction of
motion) is intrinsically dissipative and cannot, in general, be
described with an effective Hamiltonian.

In one-dimensional systems, one can prove that thermal
ratchets31, in which the potential evolves in time adiabatically, are
always time reversal ratchets. We have shown here an example in
two dimensions of a non-time reversal ratchet in an adiabatically
evolving potential.

The construction of the stationary surfaceM and the mappings
to action and control space is completely general and can be used
for any potential. Other potentials might or might not support
topologically protected transport, depending on the topological
properties of M. Our results are directly transferable to any
system with hexagonal symmetry, and a potential proportional to
the square of a field, which satisfies the Laplace equation.

High-quality magnetic bubbles lattices, like the one we have
used here, have been studied extensively32 and hence the
technology for its fabrication is well known. In addition, we
note that any patterned substrates, such as lithographic magnetic
patterns33, will induce similar transport.

Methods
Experimental preparation and measurements. The FGF films were grown by
Tom Johansen (Oslo) via liquid phase epitaxy. We use the water-based ferrofluid
EMG 707 from FerroTec GmbH, Germany. We dilute the ferrofluid with water.
The final magnetic susceptibility is wE0.6. The time-dependent magnetic field is
generated by three coils, following the ideas presented in ref. 34. Each coil controls
the magnetic field along one of the three Cartesian axis. The current through the
coils is provided by three phase-locked channels of programmable waveform
generators (TTi TG1244) via three bipolar (KEPCO 20–50GL) amplifiers. The
system is monitored via polarization microscopy. The pattern is visualized via the
polar Faraday effect, and the colloids via ordinary transmission microscopy.
Modulation loops in control space are programmed on a computer and transferred
to the waveform generators.

For the hybridization reaction, we functionalize the colloids with streptavidin.
The diamagnets and paramagnets are immersed separately into two solutions of
biotinylated and complementary oligonucleotides. The complementary sequences
are 50-/5Bio/TCACTCAGTACGATATGCGGCACAG-30 and 50-/5Bio/CTGTGC
CGCATATCGTACTGAGTGA-30 .

Topology of the stationary manifold. We first find the projection of the
bifurcation points and the fences onto action space. Next, we map action space into
control space, so that we obtain the projection of the fences and bifurcation points
in C. With these projections we compute the vertices v¼ 96, edges e¼ 124 and
areas a¼ 16 ofM. The Euler characteristic ofM is w(M)¼ v" eþ a¼ " 12, and
it has genus g(M)¼ 1" w(M)/2¼ 7. The mapping of A into C also allows the
determination of how the bijective areas are glued in M. Further details are
given below.

Projection of the fence. We use coordinates

xA ¼ x1a1; x2a2ð Þ; ð3Þ

in action space A, where a1 and a2 are the basic lattice vectors of the hexagonal
lattice. In control space, we use coordinates

Hext ¼ Hext cosf sin y; sinf sin y; cos yð Þ; ð4Þ

where the azimuthal angle f is measured with respect to the direction of a1
and the polar angle y with respect to the z-direction. Consider the unit vectors
êi(x1, x2)¼ qiHg/|qiHg|, i¼ 1, 2, where Hg is the magnetic field of the garnet film.
As we have seen, the leading term of the magnetic potential is VpHext &Hg and the
stationary points are those for whichrAV¼0. Then, a point (Hext, xA) in C % A is
stationary, and hence lies onM, if the direction of Hext is perpendicular to both ê1
and ê2. Therefore, a point in A with coordinates (x1, x2) in the basis (a1, a2)
has two stationary preimages in M that correspond to external magnetic fields
H sð Þ

ext x1; x2ð Þ ¼ )Hext ê1*ê2ð Þ= ê1*ê2j j. The superscript (s) in H sð Þ
ext x1; x2ð Þ indicates

that this field makes the point (x1, x2) in A stationary. Consider now the
Hessian matrix,

rArAV ¼ HðsÞext & @1@1Hg HðsÞext & @1@2Hg

HðsÞext & @2@1Hg HðsÞext & @2@2Hg

 !
: ð5Þ

When crossing the fence on M from M0 to Mþ , a saddle point changes to a
minimum. Hence, the determinant of the above Hessian matrix must vanish at the

+

Hτd τqτp

a

b c

Figure 6 | Application. (a) Schematic of the hybridization reaction and the
emulation of a conditional command that transport each type of particle in
different directions. Polarization images of a successful and non-successful
reaction are shown in b,c, respectively. The trajectories of the diamagnets,
paramagnets and quadrupoles are highlighted in pink, cyan and yellow,
respectively. The green (red) circle indicates the area where the dipoles
meet and the hybridization takes place (fails). Scale bars (b,c), 10mm.
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fence, rArAVk kfence¼0. In this way, we find an implicit equation for the pro-
jection of the fences in action space. Both fences, F 0þ and F 0" , are projected into
the same region in A with coordinates (x1,f, x2,f) given implicitly by:

0 ¼ F2 " 2SF" 3S2 " 4 f1f2 þ f1f3 þ f2f3ð Þ; ð6Þ

where

F ¼ f1 þ f2 þ f3;

S ¼ c1 þ c2 þ c3;

fi ¼ 1þ ci þ c2
i ; i ¼ 1; 2; 3;

c1 ¼ cos 2px1;f
# $

;

c2 ¼ cosð2px2;f Þ;
c3 ¼ cos 2p x1;f þ x2;f

% &# $
:

ð7Þ

The projection of the fence F 0þ in control space, that is, the northern border
on C is given by:

y ¼ atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1 þ 2H1H2 cos p=3ð ÞþH2
2

p

H0 sin p=3ð Þ

 !
;

f ¼ atan
sin p=3ð Þ

H1=H2 þ cos p=3ð Þ

! "
;

ð8Þ

where

H1 ¼ c3 s1 " s2ð Þþ c2 s1 þ s3ð Þ;
H2 ¼ c3 s2 " s1ð Þþ c1 s2 þ s3ð Þ;
H0 ¼ c1c2 þ c2c3 þ c3c1;

s1 ¼ sin 2px1;f
# $

;

s2 ¼ sin 2px2;f
# $

;

s3 ¼ sin 2p x1;f þ x2;f
% &# $

:

ð9Þ

The coordinates of the southern border on C are then obtained via the
transformation y-p" y and f-f" p. Supplementary Fig. 1 shows the
projection of the fences in the f" y plane of control space.

Projection of bifurcation points. Four bijective areas meet at a bifurcation point
in M. Four segments (two fence segments and two pseudo-fence segments) form
the branches that bifurcate in a bifurcation point inM. If we follow the fence F 0þ

and cross a bifurcation point, then either the minimum or the saddle point that
meet at the fence (depending on the type of bifurcation point) changes the bijective
area to which it belongs. If we cross the projection of a triple plus bifurcation point
in C from the tropics to the north, then in A a minimum undergoes a pitchfork
bifurcation into two minima and one saddle point. An equivalent bifurcation
happens if we cross the projection of a triple zero bifurcation point, in which case
the roles of saddle points and minima are reversed.

The mathematical condition for a bifurcation point is as follows. Let v0 be the
eigenvector of the Hessian matrix, cf. equation (5), at the fence with eigenvalue 0.
Then, a bifurcation point is a fence point that satisfies

v0 &rAð Þ3V ¼ 0: ð10Þ

Solving the above equation, we find the projection in C of a triple plus bifurcation
point lying on the fence F 0þ at (y, f)¼ (p/3, p). The coordinates in C of the
projection of a triple zero bifurcation point in F 0þ are (y, f)¼ (0.381p, 7p/6). The
other projections of bifurcation points belonging to the fence F 0þ are obtained,
for symmetry reasons, via rotations around the z axis by multiples of p/3. Using the
transformation y-p" y and f-f"p, one finds the projection of the bifurcation
points in F 0" .

Bijective areas and the genus ofM. We can thus map each point in A onto two
opposing points in C. The mapping of a point in A onto the two points in C will fall
either in the north and the south (one point in each region), or both points fall into
the tropics of C. This gives the projections PA of the bijective areas of M into
action space. Hence, we can see how the bijective areas are glued together in A and
M. A bijective area is a connected preimage of either the north, the south or the
tropics of control space. That is, there is a one-to-one correspondence between the
bijective area inM and its corresponding region in C. Any loop inM lying entirely
in a bijective area is projected onto a zero homotopic loop in A. Hence, in order to
achieve intercellular transport, a loop must cross different bijective areas. The
neighbouring bijective areas inM are shown in Supplementary Fig. 3. We can use
it to construct the sequence of bijective areas for a given LC . For example, consider
the loop LC ¼ (1N, 4N). We start in the tropics, where there is only one minimum
which is located in tþ . Segment 1N connects tþ to nþ 2, and segment 4N connects
nþ 2 to tþ , which closes the loop.

To compute the Euler characteristic of M and hence its genus, we need to
count the vertices, edges and bijective areas, as detailed next. Topologically, the
north of C is a simply connected area (that is, all loops are zero homotopic) with 12
edges (segments of the borders) and 12 vertices (projection of bifurcation points).
Each point in the north of C has 6 preimages on M. Hence, the north of C

contributes with 6 bijective areas, 12* 6¼ 72 edges and 12* 6¼ 72 vertices toM.
A similar contribution comes from the south of C. The tropics of C is a non-simply
connected area, for example, the equator is zero homotopic in C but not in the
tropics of C. To easily compute the Euler characteristic, we need simply connected
areas. We make the tropics of C simply connected by cutting it along a longitude
that connects the projection of two bifurcation points, one in each border of C. The
total number of edges of the tropics is thus 12þ 12þ 2¼ 26 and the total number
of vertices is 12þ 12þ 2¼ 26. There are 4 preimages of the tropics onM. Hence,
the total contribution of the tropics of C to M is 4 bijective areas, 4* 26¼ 104
edges and 4* 26¼ 104 vertices.

Next, we glue the bijective areas to form M. Two unglued edges are glued to
form a single edge such that the number of glued edges of M is (72þ 72þ 104)/
2¼ 124. Regarding the vertices, we have 72þ 72þ 104¼ 248 before gluing them in
M. We have to subtract 8 vertices that were artificially produced by cutting the
tropics of C in order to have a simply connected area. We have then 248" 8¼ 240
unglued vertices. There are two types of vertices onM: bifurcation points where 4
bijective areas meet, and pseudo-bifurcation points where 2 bijective areas meet.
There are 24 bifurcation points on M. Hence, we need 4* 24¼ 96 unglued
vertices to glue together the bijective areas at the bifurcation points. The remaining
240" 96¼ 144 unglued vertices are glued in pairs to form 144/2¼ 72 pseudo
bifurcation points. The total number of vertices onM is the sum of the number of
bifurcation and pseudo bifurcation points: 24þ 72¼ 96.

Finally, the Euler characteristic ofM is w(M)¼ 96" 124þ 16¼ " 12 and the
genus ofM is g(M)¼ 1" w(M)/2¼ 7. Similar arguments can be used to calculate
the genus of the submanifolds that formM, that is,Mþ ,M0 andM" . We show
in Supplementary Fig. 2 a plaster model of M.

Computer simulations. We simulate the motion of point dipoles moving in the
potential given by equation (1) using Brownian dynamic simulations. The equation
of motion is

x _xA tð Þ ¼ )V xA;Hext tð Þð Þþ ZðtÞ; ð11Þ

where t is the time, xA is the position of the dipoles in A, x is the friction
coefficient and Z is a Gaussian random force with a variance given by the
fluctuation-dissipation theorem. The plus (minus) sign in front of the potential
holds for the diamagnetic (paramagnetic) colloids. The equation of motion is
integrated in time with a standard Euler algorithm. We use a time step
T/dtE2 & 105 with T the period of a modulation loop LC . Simulations fully
reproduce the experimental phase diagram.

Data availability. The data that supports the findings of this study are available
from the corresponding author upon request.
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Supplementary Figure 1. Borders of control space. The borders of control space are the projections of the fences. Each
border contains 12 segments that we label from 0 to 11 as indicated. The projection of F0+ (F0−) is the northern (southern)
border and separates the tropics from the north (south) of C. Empty circles are projection of triple zero bifurcation points.
Empty squares in the northern (southern) border indicate the projection of triple plus (minus) points.



Supplementary Figure 2. Stationary surfaceM. A plaster model of the stationary surfaceM. Each color is a bijective area.
The green (blue) areas represent M+ (M−). The remaining areas (earth color tones) form M0. The black and white lines
separating two different areas represent segments of fences or pseudo fences. The color of the line indicates whether the segment
is odd (white) or even (black). The stationary manifoldM is actually a two-dimensional surface in the four-dimensional curved
space C ⊗A that cannot be visualized. We can however embedM in a Cartesian three-dimensional space, as the figure shows.
Both, the real M in C ⊗ A and the model shown in the figure are topologically equivalent. That is, both can be continuously
deformed into each other.



Supplementary Figure 3. Neighbouring areas in M. The top-most row indicates a segment of a fence or a pseudo fence
in M. The left-most column is a list of the bijective areas involved in the motion of diamagnets. The inner cells indicate the
neighbouring bijective areas. For example, the neighbour of t+ in segment 1 is n+2. This is a segment of a pseudo fence since
both areas t+ and n+2 are on M+. The neighbour of n+1 in segment 9 is n02. In this case the segment belongs to the fence
F0+ since it separates areas onM0 andM+. A similar table can be constructed for the bijective areas involved in the motion
of paramagnets.
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Supplementary Figure 4. Topological transition of the transport direction. Ratchet modulation loop (a) LC = (1N, 2N),
(b) passing through the projection of a B0 bifurcation point, and (c) LC = (1N, 3N) (top panels) and their corresponding path
of steepest descend connecting points in M (bottom panels). (a) The accessible path of steepest descend (Pl) connects the
annihilation and return sites. The annihilation site is a preimage of the point where LC crosses from the north to the tropics
in C. Another preimage of the same point is the pseudo annihilation site, which is also connected to the return site through
the path of steepest descend Pr. However, Pr is inaccessible because it develops from M0. Both Pl and Pr are in C ⊗ A, not
in M. They lie on opposite sides of the hole of C ⊗ A, and hence induce transport in different directions. (b) The modulation
loop passes through the projection of B0. The annihilation site has moved (red arrow) along the segment 2 of the fence toward
the B0 bifurcation point. The return site has moved (green arrow) along the segment 2 of the pseudo fence in M+ toward
the pseudo bifurcation point. The pseudo annihilation site has moved (yellow arrow) along the segment 2 of the pseudo fence
in M0 toward the B0 bifurcation point. Hence, the annihilation and the pseudo-annihilation site merge at the B0 bifurcation
point. Both paths of steepest descend Pl and Pr are at this point accessible and they are topologically distinct. Following one
path of steepest descend and returning in opposite direction via the other defines a non-zero homotopic loop that winds around
a hole of C ⊗A. For this LC two ratchets with different directions coexist. (c) LC encircles the projection of B0, and hence the
former annihilation site in (a) has moved along the segment 3 of a pseudo fence inM0, changing to a pseudo annihilation site.
Its corresponding path of steepest descend Pl is now inaccessible. The other path Pr is now accessible, changing the transport
direction.



SUPPLEMENTARY NOTE 1

Total external field. The pattern is a hexagonal lattice of bubbles with positive magnetization M immersed in
an extended domain of negative magnetization −M . The domain walls between regions of opposite magnetization
are very sharp. To obtain the total magnetic field H we solve the Laplace equation ∆H = 0 subject to the boundary
conditions:

H(xA, z →∞) = Hext

Hz(xA, z = 0) = m(xA), (1)

where the local magnetization m(xA) is given by

m(xA) =

{
+M if xA ∈ bubble
−M if xA /∈ bubble.

(2)

The solution, given as a Fourier series, is:

H(xA, z) =

(
H
||
ext

H̃z
ext

)
+ 2(M̃ + H̃z

ext)

∞∑

n=0

n−1∑

m=0

′
J1(qnmR)

(qnmR)2
e−(qnmz)

6∑

j=1

(
Rj
π/3 · qnmR sin(Rj

π/3 · qnm · xA)

qnmR cos(Rj
π/3 · qnm · xA).

)
(3)

The presence of the ferrofluid renormalizes the magnetization and the z component of the external field, M̃ =
M/(1 + χ) and H̃z

ext = Hz
ext/(1 + χ). In the above expression J1 is the order one Bessel function of the first kind,

qnm = nq(1) +mq(2) is a reciprocal lattice vector with reciprocal unit vectors

q(1) =
2π

a sin(π/3)

(
cos(π/6)
− sin(π/6)

)
q(2) =

2π

a sin(π/3)

(
0
1

)
. (4)

qnm denotes the magnitude of qnm. The radius of the magnetic bubbles can be found by matching the magnetic
flux at z = 0 and z → ∞, the result is R = a

√
(Hz

ext/M + 1) sin(π/3)/(2π), with a the period of the hexagonal
lattice. The prime at the double sum in Supplementary Eq. (3) denotes the exclusion of the zero reciprocal vector
(n = m = 0) of the first Brillouin zone from the sum. Rπ/3 is a rotation matrix that rotates all vectors by π/3 in the
plane.

The Fourier modes decay exponentially as one moves away from the garnet film surface. At the elevation of the
colloids only the leading order reciprocal lattice vectors of the second Brillouin zone (n = 1,m = 0) are needed for an
accurate description of the field. The magnetic field at high elevations is therefore given by

H(xA, z >> 0) ≈
(

H
||
ext

H̃z
ext

)
+ 2(M̃ + H̃z

ext)
J1(q2R)

(q2R)2
e−(q2z)

6∑

i=1

(
q2i sin(q2i · xA)
q2 cos(q2i · xA)

)
, (5)

where the sum runs only over the six reciprocal lattice vectors of the second Brillouin zone

q2i
=

2π

a

(
− sin(2πi/6)
cos(2πi/6)

)
, i = 1, .., 6, (6)

and q2 = 2π/a. The colloids follow the magnetic potential Vm = −χeffµ0H
2. We use the unique scaled-potential

V = H2 to describe the motion of both diamagnets and paramagnets. At high elevations, the leading (not constant)
term of V is given by

V ∝
6∑

i=1

(
H
||
ext

H̃z
ext

)
·
(

q2i
sin(q2i

· xA)
q2 cos(q2i

· xA)

)
. (7)
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Abstract
We theoretically study themotion ofmagnetic colloidal particles above amagnetic pattern and
compare the predictions with Brownian dynamics simulations. The pattern consists of alternating
square domains of positive and negativemagnetization. The colloidalmotion is driven by periodic
modulation loops of an externalmagneticfield. There exist loops that induce topologically protected
colloidal transport between two different unit cells of the pattern. The transport is very robust against
internal and external perturbations. Theory and simulations are in perfect agreement. Our theory is
applicable to other systemswith the same symmetry.

1. Introduction

Controlling the transport of colloidal particles is a requisite in several applications such as lab-on-a-chip devices
[1], drug delivery with colloidal carriers [2, 3], and computationwith colloids [4].

Techniques to control themotion of colloids include the use of gradient fields [5], thermal ratchets [6–8],
liquid crystal-based solvents [9, 10], and active particles [11]. Colloidal particles are usually polydisperse in e.g.
size,mass, etc. Therefore, the transport of a collection of colloids using the above techniques results always in a
dispersion of themotion.One can avoid this by using optical tweezers [12] but at the expenses of having tomove
the colloids on a one-by-one basis.

Topological protection is a promising tool to overcome these problems. If the dynamics depends only on a
topological invariant it is possible to have total control over the colloidalmotion, independently of the intrinsic
characteristics of the particles. Recently, we have studied themotion ofmagnetic colloids above a hexagonal
magnetic pattern [13]. The system is driven by an externalmagnetic field. The positions of the colloids above the
pattern are given by theminima of themagnetic potential which has contributions from the static field of the
pattern and the time dependent external field. The set of stationary points of the potential form a surface in the
full phase spacewhose topological properties fully determine the colloidalmotion. There exist transportmodes
that are topologically protected and therefore extremely robust against perturbations.

The topology of the stationary surface, and hence the topologically protected transportmodes, are unique
for each type of lattice.Here, we theoretically study the transport of diamagnetic colloidal particles above a
squaremagnetic lattice, and compare the results with computer simulations.

2. Theory

The colloidsmove in a plane at a distance >d a above the pattern, with a the side-length of the unit cell of the
pattern, see figure 1. A time-dependent externalmagnetic field ( )tHext drives the system. The variation in time
of ( )tHext is slow enough such that the colloidal particles can adiabatically follow theminima of themagnetic
potential at any time t. Themagnetic potential is c m= - ·V H Heff 0 , where H is the totalmagnetic fieldwith
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contributions from the square pattern and the external potential, c < 0eff is the effectivemagnetic susceptibility
of the diamagnets in the solvent, and m0 is the vacuumpermeability.

H can be expressed as a Fourier series with Fouriermodes that decay exponentially with z. Hence, at high
elevations, >z a, the potential is well approximated by µ ( ) · ( )V tH H xext p , where

åµ
=

( )
( · )
( · )

( · )
( )







⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

q

q

q

H x

q x

q x

q x

sin

sin

cos

, 1
i

i x i

i y i

i

p
1

4 ,

,

is, up to amultiplicative constant, the contribution from themagnetic pattern. Here,

p p
p

=
-

=
( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟a

iq
2 sin 2 i 4

cos 2 i 4
, 1 ,.., 4, 2i

are the reciprocal lattice vectors of the secondBrillouin zonewith p=q a2 their commonmagnitude.
= + x xx a a1 1 2 2 with ai the basic lattice vectors of the square pattern (see figure 1), are the coordinates in action

space, i.e, the plane above the pattern inwhich the colloidsmove.We vary ( )tHext on the surface of a sphere,

f q f q q= ( ) ( )HH cos sin , sin sin , cos . 3t t t t text ext

The set q f( ),t t define our control space,  , see figure 2(a).Wemeasure qt with respect to the z axis and ft with
respect to a1. The system is drivenwith periodic closed loops of ( )tHext . There exist special loops that induce
transport between different unit cells, i.e., when Hext returns to its initial position the particle is in a different
unit cell.

To understand themotionwe need to look at the full phase space, i.e, the product space Ä , with states
given by ( ( ) )tH x,ext . The stationary points satisfy  =V 0, with  the gradient in. The set of all
stationary points is a two-dimensionalmanifold in Ä  that we call the stationarymanifold,, see
figure 2(b).

The correspondence between and  is not bijective. Each direction of the external field is a point in  .
For each point in  (with the exception of four special points that we discuss later) there are four points
(preimages) in, the solutions of  =V 0. Two solutions are saddle points ofV, one is amaximum, and the
other one is aminimum. In the four points form a square of side a 2.

The correspondence between and is also not bijective. Consider the unit vectors
= ¶ ¶ˆ ( ) ∣ ∣e x H Hi A i ip p , i=1, 2. Then, a point xA in is stationary if the externalfield points in a direction

perpendicular to both ê1 and ê2, i.e.,

= 
´
´

( ) ˆ ˆ
∣ˆ ˆ ∣

( )( )
 HH x

e e

e e
. 4ext

s
ext

1 2

1 2

The subscript ( )s stands for stationary. That is, each point in has two preimages ( )( )
H x,ext

s in (except for
special points that we describe later).

Figure 1. Schematic top- (a) and side- (b) views of the system. The pattern is a periodic lattice of squares with diagonal length a and
alternating positive and negativemagnetization perpendicular to thefilm, +mp and-mp, respectively. A time-dependent external
magnetic field ( )tHext drives the system. The diamagnetic colloids (orange spheres) are located at a distance >d a above the pattern.
A unit cell, square of side-length a, is highlightedwith a blue-dashed line in (a). Another unit cell (top of panel (a)) is colored indicating
the allowed (green) and forbidden (red) regions for the colloids.
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Consider now thematrix of the second derivatives ofV evaluated at the stationaryfield

  =
¶ ¶ ¶ ¶

¶ ¶ ¶ ¶
∣

· ·

· ·
( )

( ) ( )

( ) ( )
( ) 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟V

H H H H

H H H H
, 5H

ext
s

1 1 p ext
s

1 2 p

ext
s

2 1 p ext
s

2 2 p
ext
s

which is diagonal since themixed derivatives vanish, see (1). The stationarymanifold is the union of
submanifolds ab , whereα (β) is the opposite sign of the eigenvalue of (5)with eigenvector pointing in the a1

(a2) direction. That is, È È È= ++ +- -+ --     . Hence the stable trajectories for the colloids
reside in -- (minima ofV ). ++ aremaxima ofV, and both +- and -+ are saddle points. All the
submanifolds are topologically equivalent since each point in  has one preimage in each of the submanifolds.

The submanifolds share commonborders in that we call the fences. Any two submanifolds with one
common sign of one of the eigenvalues are glued together in through two fences. At the fences one eigenvalue
changes its sign, i.e., the determinant of(5) vanishes. For example, ++ and -+ share two fences. At both
fences the eigenvalue of the eigenvector pointing along the a1direction changes its sign. The stationaryfield,
equation (4), points along+a2 in one fence and along-a2 in the other fence. Hence, inwe have four
submanifolds, and each one is double-joined to other two submanifolds. In otherwords, is a genus 5 surface,
see figure 2(b).

Solving   =∣∣ ∣∣ V 0we can see the fences in action and control space. In  the fences are four equispaced
points along the equator, corresponding to external fields pointing alonga1 anda2, seefigure 2(a). The
fences divide action space in a square lattice (length a 2) of alternating allowed and forbidden regions, see
figure 2(c) andfigure 1(a). Using periodic boundary conditions is a torus. The allowed regions are areas of
minima ofV (projection of the submanifold -- into). In the forbidden areas all the stationary points are
saddle points. Aswe have seen, a point in can bemade stationarywith two opposite externalfields. Therefore

++ and -- are projected into the same regions in. In other words, if there is aminimumof the potential
in a given point in we can turn it into amaximumby just pointing the external field in the opposite direction.

+- and -+ are also projected into the same areas in. Infigure 2(c)we show the projection of half of
into (the half that contains all points closer to -- than to ++ ) such that each area has a uniquemeaning.
That is, the projection of this half of into is bijective.

The fences cross in at points that we call the gates since they connect two allowed regions in. There are
four gates ( )g i , =i 1 ,.., 4, see figure 2(c). The gates play a vital role for the colloidalmotion. Tofind the gates in
 wenote that the fences do not cross inbut they do cross in. Hence, ( )Hext

s cannot be unique at the gates in
 (crossing points between fences in). The only possibility is that ê1 is parallel to ê2, see equation (4), at the
gates. Therefore, as ^ˆ ˆ( )H e e,s

ext 1 2, the gates in  are great circles. For the present square lattice the gates in  are
located on the equator. Each gate is divided in four segments, ab

( )g i where a b = , are again the opposite signs

Figure 2.Control space  (a), the stationary surface (b), and action space  (c). Each color in (b) represents a bijective area, as
indicated (dark colors for northern areas and soft colors for southern areas). The solid lines are fences and the dotted and dashed lines
are gates. In  (a) the solid lines on the equator are the segments ofminima of the gates and the empty circles are the fences. In  (c)
the fences are represented by solid lines and the gates by circles with arrows indicating the possible transport directions. The color of
 is given by the projection of half of into . The violet dashed line in (a) is a control loop, = ( ¯ ) g g,C 1 4 , that crosses two gates
and induces colloidal transport. The preimage loop in -- is indicated by M and the corresponding loop in  by A.
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of the eigenvalues of (5). Although all gates in  are in the equator, they are rotated such that the union of four
segments with identical signs of the eigenvalues form a full equator, see figure 2(a).

The gates split  in two parts, the south ( )s and the north ( )n , see figure 2(a). They also split each
submanifold of in two parts È=ab ab ab

( ) ( )  n s , see figure 2(b). This splitting is very convenient since

the resulting regions ab
n( ) with n = n, s are simply connected bijective areas. That is, there are no holes in ab

n( )

and the correspondences between ab
n( ) and the other spaces ( and) are unique.

3. Results

Weare now in a position to understand the colloidalmotion. Let C be a closedmodulation loop of the external
field in  . C has four preimage loops in, one in each submanifold ab . Only the loop lying in -- is
populatedwith colloids. This populated loop can be then projected into  wherewe can read the actual
trajectory of the colloids. Loops C that induce colloidal transport fromone unit cell to another in are only
those that cross at least two different gates in control space, which is equivalent to enclosing at least one fence in
 .When C crosses the segment --

( )g i in  , the corresponding loop that transport the colloids in also crosses
the gate ( )g i . Each gate in  can be crossed from the north to the south or from the south to the north, which in
 results in opposite senses. Let = ( ¯ ) g g,C i j be a loop of the externalfield that starts on the north of  , then

goes to the south of  crossing the segment ofminima of the potential of the gate i ( --)( )g i and returns to the initial
point in the north of  using the segment ofminima of the gate j. An example of such a loop is represented in
figure 2(a). The phase diagramof the colloidalmotion in the - ¯g gi j plane is depicted infigure 3(a). It has been
obtained (i) theoretically by translating loops in  into loops in using the stationary surface and (ii)with
standard Brownian dynamics simulations. Details of the simulations are provided in the appendix. The
agreement between theory and simulations is perfect.

Loops that cross the same gate twice, i.e, = ( ¯ ) g g,C i i , do not induce transport between different unit cells
(the initial and the final positions are the same). Loops that cross different gates induce transport between
nearest or second nearest unit cells. There are two possible routes for each of the nearest unit cells (see e.g.

= ( ¯ ) g g,C 1 4 and ( ¯ )g g,2 3 ) and only one in the case of second nearest unit cells (e.g., = ( ¯ ) g g,C 1 3 . Infigure 3(b)
we showBrownian dynamics trajectories for selectedmodulation loops.

The colloidal transport is very robust against internal and external perturbations. The shape of C, for
example, is completely irrelevant. Only the gates that C crosses are important. Infigure 4we show the

Figure 3. (a)Phase diagramof the colloidalmotion in the plane - ¯g gi j for the fundamentalmodulation loops in control space

= ( ¯ ) g g,C i j . The loop starts in the north of  then goes to the south using the gate segment --
( )g i and returns to the south trough the

segment --
( )g j . Each color represents a transport direction. The arrows indicate which gates are crossed and inwhich sense. (b)

Examples of the trajectories of the colloids in  according to BD simulations for themodulation loops: (i) = ( ¯ ) g g,C 2 4 , (ii)
= ( ¯ ) g g,C 1 3 , (iii) = ( ¯ ) g g,C 4 1 , (iv) = ( ¯ ) g g,C 3 2 , and (v) = ( ¯ ) g g,C 1 1 . The solid lines are the fences in . The forbidden regions

aremarkedwith amiddle red circle. The allowed regions are colored according to the phase diagram in (a).We show four trajectories,
(i)–(iv), corresponding to loops that induce colloidal transport (the initial position of the colloids is the allowed region centered at the
origin), and one trajectory corresponding to a topologically trivial control loop (v) that does not induce transport (the initial position
of the colloid is the allowed region centered at = -x a 1and = -y a 1). Themagnetic pattern is also represented usingwhite and
gray regions.
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trajectories in action space for threemodulation loops that cross the same two gates, = ( ¯ ) g g,C 1 2 , yet following
different paths. The trajectories in differ but the starting and ending allowed regions are the same. Themotion
is also robust against changes in the speed of themodulation, the thermal noise, and properties of the colloidal
particles such as size,mass, effective susceptibility, etc (see an example in figure 5). Therefore we can transport in
a dispersion-free and precise way a collection of particles with a broad distribution ofmasses, sizes, etc.

The reason behind this robustness is that the transport direction depends only on a topological invariant,
and hence it is topologically protected. For each loop inwe can define a set of 10winding numbers, two for
each hole of. S , the set of winding numbers of the loop in -- , is the topological invariant. In each of the
regions of the phase diagram S does not vary. Alternatively we can define the topological invariant of loops in

 and  . The loop that lies in -- is projected into a loop in and  . Since -- is topologically equivalent
to control spacewithout the fences, ¢ , the correspondence between loops in -- and ¢ is bijective. S , the set
of winding numbers of loops around the fences in ¢ induce correspondingwinding numbers of loops around
the torus in action space ( = { }S w w,1 2 with = w 0, 1i ) via the loops in -- . Each of the eight non-zero
values of S corresponds to a type of transport in. S and S are also topological invariants, they remain
unchanged for each type of transport, i.e, in each region of the phase diagramoffigure 3(a).

Figure 4. (a)Modulations loops in control space of type = ( ¯ ) g g,C 1 2 . The direction and the starting point of the loops are indicated
by arrows and filled circles, respectively. The empty circles are the fences in control space and the horizontal black line are the gates as
indicated. (b)Trajectories in action space corresponding to the loops showed in (a). The trajectories are colored according to the color
of the loops in (a). Thewhite and gray areas indicate themagnetic pattern. The squares are the allowed and forbidden areas of action
space. The forbidden areas are highlightedwith a red circle in themiddle. The initial position of the colloids is the allowed area
centered at the origin.

Figure 5.Trajectories in action space of a diamagnetic colloid under a control loop = ( ¯ ) g g,C 1 3 for different values of the scaled
temperature =k T 0.01B (a), 0.1 (b), and 1.0 (c). Here kB is the Boltzmann constant, and ò sets the unit of energy of themagnetic
potentialV. Thewhite and gray areas indicate themagnetic pattern. The squares are the allowed and forbidden areas of action space.
The forbidden areas are highlightedwith a red circle in themiddle. The initial position of the colloids is the allowed area centered at the
origin.
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How is it possible to change the direction of transport if it is topologically protected? There are always
operations that break the topological protection. This is precisely what happens at the interface between two
transport directions in the phase diagram, see figure 3(a). At the interfaces between two different transport
modes the topological protection is lost allowing for a change in the transportmode. This occurs formodulation
loops that cross at least one of the fences in control space. Infigure 6we show an example of this process. The
loop labeled as (1) lies entirely on the north of  . That is, it does not cross gates and hence does not induce
transport between different unit cells. The corresponding loops in lie on the northern areas of. There is
one loop in each of the submanifolds of. Figure 6 shows only the loops in -- and +- .When the loop in
 touches one of the fences (see loop (2) infigure 6) the loops in -- and +- join at the fence (the loops in

++ and -+ also join at a different fence). At this point the colloids, which follow the loop in -- , have two
alternative paths: (i) a loop that resides entirely in the north of -- and (ii) a loop that lies in both the north and
the south of -- and hence induce colloidal transport between different cells. Themotion is not topologically
protected in the sense that two different trajectories are possible. Next, we expand the loop in  such that it
encloses one fence in  and hence crosses two gates, see loop (3) infigure 6. In the loops in -- and +-
are nowdisjoined and have interchanged a segment at the fence. The result is two loops that no longer reside in
the northern areas of. The loop in -- winds around the holes of inducing colloidal transport. The
direction of transport has changedwith respect to the initial loop (1).

Due to the thermal noise in Brownian dynamics simulations the particles fluctuate around theminima of the
potential, exploring the neighborhood of -- in Ä . Hence,modulation loops in control space that do not
cross a fence, but pass close enough to it,might also be topologically unprotected, leading to two differing
transportmodes in. How close the control loop has to be to the fence in order to be deprotected depends on
themagnitude of the thermal noise. The thermal noise effectively expand the fences in  into the surrounding
areas, and broaden the topological transition in.

4.Discussion

Wehave explained themotion of diamagnetic colloids for which the effective susceptibility is negative.
Paramagnetic colloids have a positive effective susceptibility, and hencewill follow themaxima ofV. The
minima and themaxima ofV always comove in separated by = ( )a ar 2, 2 . Therefore, paramagnetic
colloids perform the samemotion as diamagnets but displaced by r.

From an experimental view point, it is possible to usemagnetic bubble lattices [14] or lithographic patterns
[15] to generate the pattern. Possiblemethods to levitate the colloids above the pattern consists of using a
ferrofluid solvent [13] and the deposition of a polymer layer [16] on themagnetic pattern.

The colloidal transport is fully determined by the topology of themanifold, which is unique for each type
ofmagnetic pattern. For example, the stationarymanifold of a hexagonal pattern is a genus 7 surface [13]. There,
themodulation loops in  that induce transport of colloidsmust cross the fences in  , which are lines instead of
points as in the present study. As a result, transportmodes of hexagonal and square patterns are completely
different. In both, hexagonal and square lattices, the topological invariant in is the set of twowinding
numbers around the hole in. This is just a consequence of the dimension of. Control space  neither
contains all the information. For example, in square lattices the transition between transportmodes occurs for

Figure 6.Control space  (a) and part of the stationarymanifold (b). Threemodulation loops C in control space and their
corresponding loops in -- and +- are indicated by violet lines. The loops are representedwith a solid (dashed) line in the north
(south) of control space and the stationarymanifold. The arrows indicate the direction of the loops.
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those loops that cross a fence.However, in hexagonal lattices, a fence crossing loop in  is a necessary but not
sufficient condition to change the transportmode.What fully determines the transportmodes is the stationary
manifold (the topology, the fences, and how is projected into and ). In the topological invariant is
the set of winding numbers around the holes, which is very different in square (has genus 5) and hexagonal
(has genus 7) lattices.

The topologically protected transportmodes we have shown here can be understood as bulkmodes
sustained (driven) by an externalfield. The transport occurs in the bulk of the periodic system.Other forms of
topologically protectedmotion occur at the edges of a periodic system, such as e.g., themotion of electrons in
topological insulators [17], mechanical solitons [18–20], phonons [21], and photons [22, 23] among others.
There, a perturbation populates an edge state that cannot scatter into the bulk due to the topology of the system.
Our theory is transferable to other systemswith the same symmetry. Hence, topological bulk statesmight exist in
e.g. excitons in superlattices [24, 25], tight-bindingmodels [26], and cold atoms in optical lattices [27].
Topologically protected edge statesmight also occur at the borders offinitemagnetic lattices. Their topological
propertiesmight be substantially different from those of bulk states. How the edge states in our particle system
compare to other edge states in wave systems is a very interesting subject for future studies.

Inwave systems, such as e.g. topological insulators, the topology of the band structure is characterized by the
Chern numbers of the bands. EachChern number can be computed as an integral over the Berry curvature of the
band [28]. In our particle systemwe describe the topological protection in terms of the stationarymanifold. Both
descriptions are probably equivalent in some form.
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Appendix. Brownian dynamics simulations

Weuse Brownian dynamics to simulate themotion of a diamagnetic colloid above the pattern. The coordinates
in action space are x , and the equation ofmotion is given by

x h= - +
( ) ( ( )) ( )

 
dx t

dt
V x t tH, ,ext

where t is the time, ξ is the friction coefficient, and h is aGaussian random force with a variance given by the
fluctuation-dissipation theorem. Themagnetic potentialVhas contributions from the externalfield Hext and
themagnetic pattern (see themain text).

The equation ofmotion is integrated in timewith a standard Euler algorithm:

d+ D = -  D +( ) ( ) ( )  t t t V tx x r, A1

whereDt is the time step, and dr is a randomdisplacement sampled from a gaussian distributionwith standard
deviation xDtk T2 B . Here kB is the Boltzmann constant, andT is absolute temperature. Before starting the
modulation loop in  we first equilibrate the systemby running 104 time steps such that the colloids find the
minimumof themagnetic potential at t=0.
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Topologically protected quantum edge states arise from the
non trivial topology (non-vanishing Chern number) of the
bulk band structure1. If the Fermi energy is located in the

gap of the bulk band structure, like in an ordinary insulator, edge
currents might propagate along the edges of the bulk material.
The edge currents are protected as long as perturbations to the
system do not cause a band gap closure. The topological
mechanism at work is not limited to quantum systems but has
been shown to work equally well for classical photonic2,3, pho-
nonic4,5, solitonic6, gyroscopic7, coupled pendulums8, and sto-
chastic9 waves. It is also known that the topological properties
survive the particle limit when the particle size is small compared
to the width of the edge. In the semi-classical picture of the
quantum Hall effect, the magnetic field enforces the electrons to
perform closed cyclotron orbits in the bulk of the material. Near
the edge, the electrons can only perform skipping orbits, i.e., open
trajectories that allow electronic transport along the edge10.
Considerable effort to simulate such semi-classical trajectories has
been undertaken10–13. Their experimental observation, however,
is quite difficult. So far, skipping orbits were only observed in two
dimensional electron gas driven by microwaves14 and with neu-
tral atomic fermions in synthetic Hall ribbons15.

We present here the experimental observation in a colloidal
system of skipping orbits and hence edge states. These edge states
allow for a robust transport of colloids along the edges and also
the corners of the underlying magnetic lattice.

Results
We use a thin cobalt-based magnetic film lithographically pat-
terned via ion bombardment16–18. The pattern consists of a patch
of hexagonally arranged circular domains (mesoscopic pattern
lattice constant a ≈ 7 µm) surrounded by a stripe pattern, see
Fig. 1a. Both magnetic regions consist of alternating domains
magnetized in the ±z-direction normal to the film. Paramagnetic
colloidal particles of diameter 2.8 µm are immersed in water (or
aqueous ferrofluid) and move at a fixed elevation above the
pattern. Hence, the particles move in a two-dimensional plane
that we refer to as action space, A. A uniform time-dependent
external magnetic field Hext(t) of constant magnitude (Hext =
4kAm−1) is superimposed to the non-uniform and time-
independent magnetic field of the pattern Hp. We vary Hext(t)
on the surface of a sphere that we call the control space C
(Fig. 1b).

In Refs. 18–20. we demonstrate how bulk transport of colloids
above different magnetic lattices can be topologically protected.

For each lattice symmetry there exist special modulation loops of
Hext in C that induce transport of colloids in A. These loops share
a common feature, they wind around special objects in C18–20. For
a hexagonal, six-fold symmetric lattice, the control space of
paramagnetic colloids is characterized by twelve points connected
by six pairs of segments (Fig. 1b). A modulation loop encircling
one pair of segments in C transports the colloids in A one unit
cell along one of the six possible directions of the hexagonal
lattice ± ah1 ; a

h
2 ; ± ðah1 � ah2Þ, with ah1 , and ah2 the lattice vectors.

For example, encircling the red segments in Fig. 1b transports the
paramagnetic particles into the ðah1 � ah2Þ-direction. If we now
rotate the modulation loop such that it encircles the yellow seg-
ments, the transport occurs along ah1 , i.e., the transport direction
rotates π/3 with respect to the previous ðah1 � ah2Þ-direction. Using
these results we construct a hexagonal cyclotron orbit of hex-
agonal side length nah, n = 1,2,3... of a paramagnetic particle
above the bulk of a hexagonal lattice. The corresponding cyclo-
tron modulation loop in C consists of six connected parts. Each of
the six parts of the loop winds n times around a different pair of
segments of C, and therefore transports a particle n unit cells
along one of the hexagonal directions in A. In Fig. 1b we show a
n = 2 cyclotron modulation loop in C. The corresponding colloi-
dal trajectory in A is depicted in Fig. 2a, b. Colloidal particles
above the bulk of the hexagonal pattern perform closed hexagonal
cyclotron orbits of the desired side length. The cyclotron mod-
ulation loop does not wind around the special objects in C for a
stripe pattern (located on the equator of C18). Hence, the colloids
above the stripes are not transported. For the current modulation
loops, the edge between the hexagonal and the stripe pattern is an
edge between topologically non-trivial and trivial patterns, and
allows for the existence of edge states, as it is the case in quantum
topological insulators. Edge states are possible for those particles
close to the edge between both patterns. The paramagnetic par-
ticles perform skipping orbits, see Fig. 2a, b and Supplementary
Movie 1. That is, the particles do not follow all six directions of
the closed cyclotron orbit but skip one of the hexagonal direc-
tions. The skipping direction is different for different orientations
of the edge. A successive series of these skipping orbits results in
an open trajectory along the edge direction. The skipping orbits
allow for robust transport in armchair edges, i.e., edges oriented
along one of the six directions of the hexagonal lattice, and also
around the corners where two edges join.

The skipping of single directions can be explained by taking a
closer look at the bulk transport mechanism, explained in detail
in Refs. 18–20. Here, we just summarize the main concepts. For a

Hexagonal pattern
7 µm

Colloid Edge

Solvent

Loop
2x 2x 2x 2x 2x 2x

Stripe
pattern

ba

Equator

Fig. 1 Colloidal topological insulator. a Paramagnetic colloids are confined at a constant distance above a magnetically structured film of thickness 3.5 nm
with regions of positive (white) and negative (black) magnetization perpendicular to the film. The film is a hexagonal lattice embedded into a stripe pattern.
b Control space C for a hexagonal lattice: twelve bifurcation points (empty circles) connected by segments (solid lines). Winding around a pair of equal
color segments moves the colloids one unit cell along one of the hexagonal directions. The modulation loop used here is indicated by dashed lines and also
in the legend. The loop starts at the red square and winds anticlockwise twice around each pair of equal color segments
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fixed external field there are stationary points of the magnetic
potential in each unit cell of the magnetic lattice. The colloids are
transported by following the minima of the magnetic potential.
Action space can be split into allowed, forbidden, and indifferent
regions. In the allowed regions the stationary points are minima,
whereas in the forbidden regions the only possible stationary
points are saddle points. No extrema of the total magnetic
potential exist in the indifferent regions, which are present only in
stripe patterns. Therefore, the colloids can occupy only allowed
and indifferent regions. We show in Fig. 2c the split of A into the
different types of regions for the current pattern. Two adjacent
allowed regions touch each other at special points in A that we
refer to as the gates. To achieve transport between adjacent unit
cells, a colloid has to pass through two gates. In the bulk of the
hexagonal lattice transport is possible along all six crystal-
lographic directions19. However, close to the edge this is no
longer true. The necessary gates to transport the particle into the
edge or parallel to it are no longer available. In consequence those
particles close to the edge have to perform skipping orbits.

Transport above an infinite lattice remains unchanged if the
magnetization of both the pattern and the colloidal particles is
inverted. Thus, diamagnetic particles (magnetic holes) on a pat-
tern respond to the external field in the same way as para-
magnetic particles on an inverted pattern. In Fig. 3 and
Supplementary Movie 2 we show the chiral response of para-
magnetic and diamagnetic particles at the edge between two
hexagonal patterns with inverted magnetization. The suscept-
ibility of the ferrofluid-based solvent is set to a value in between
the effective particle susceptibilities. We use the same cyclotron
modulation loop as before. The loop induces anticlockwise
cyclotron orbits of paramagnets on the bulk of one lattice and of
diamagnets on the bulk of the inverted lattice. Near the edge, both
types of colloids perform skipping orbits above the pattern that is
non-trivial for them. Since the edge between both patterns is
located in opposite directions from the center of the corre-
sponding orbits, the skipping directions are antiparallel. Hence,
this results in skipping orbits along the edge where both types of
particles move on opposite sides of the edge in opposite direc-
tions. This represents the colloidal analogue of the quantum spin
Hall effect21, in which electrons of opposite spins move in dif-
ferent directions along the same edge.

Discussion
A nontrivial topology of the shape of colloidal particles can be
used to control the formation of topological defects in a nematic
host22,23. Here we have used topology in a dynamic way to
control the motion of colloidal particles. We experimentally
demonstrated how to realize a colloidal topological insulator. Like
in the semi-classical picture of the quantum Hall effect, particles
above the bulk of the material move following closed orbits, and
particles close to the edge perform skipping orbits giving rise to
robust edge states. The fine details of the pattern are irrelevant to
determine the bulk transport properties18. At the edges, however,
transport does depend on the details of the pattern. For example
the exact positions of the stripes with respect to the circular
domains and the orientation of the edges influence the edge
states. Similar effects are also observed in graphene, where only
certain edges support edge states. The versatility of our robust
colloidal transport opens the possibility to transport multiple
particles along multiple different edges into different directions
using just a unique external modulation.

Our skipping orbits are an example of a purely geometric
trajectory. As long as the modulation period T is slow enough, i.e.,

H

m

Fig. 3 Colloidal spin Hall effect. Trajectories followed by a paramagnetic
(red) and a diamagnetic (blue) particle along the edge (yellow lines) of two
hexagonal magnetic patterns with opposite magnetization. The scale bar is
7 µm. The particles are driven by the modulation loop shown in Fig. 1b. The
magnetic moment m of the paramagnets (diamagnets) is parallel
(antiparallel) to the total magnetic field H. A video of the colloidal motion is
provided in the Supplementary Movie 2

Trivial motion

Bulk orbit
a b c

Colloid

Skipping orbit

a2
h

a1
h

Fig. 2 Skipping and bulk orbits. a Microscopy images of paramagnetic colloidal particles at the end of a transport process. Scale bar 15µm. Three
trajectories are shown and indicated: a bulk orbit on top of the hexagonal pattern, a skipping orbit at the edge, and the trivial motion of a particle above the
stripe pattern. The color of the trajectories matches that of the modulation loop (Fig. 1b). The edge between the hexagonal and the stripe patterns is
indicated by a dashed yellow line. The colloidal motion can be seen in the Supplementary Movie 1. b Colloidal trajectories superimposed on the actual
magnetic pattern. c Bulk (top) and skipping (bottom) orbits superimposed on action space, A. The white (black) areas are allowed (forbidden) regions for
the colloids. The grey area is the indifferent region on top of the stripe pattern. In the skipping orbits the colloids skip the green section of the bulk-
trajectory. Three gates connecting adjacent allowed regions are highlighted with orange circles in the top panel
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T ≳ 10s, and the external magnetic field is sufficiently strong, Hext

≳ 0.5 kAm−1, the transport of the colloids does neither depend on
the period, nor does it depend on the absolute value of the
external field. Under those conditions only a small fraction of the
colloidal particles, which adhere to the surface of the magnetic
film, is not transported. The displacement over one period of the
mobile particles, however, does only depend on the initial posi-
tion of the particles with respect to the edge of the hexagonal
pattern: particles in the bulk show no displacement over one
period, while particles close to the edge are displaced parallel to
the edge. The strongest limitation is therefore the period of the
modulation, which is solely imposed by the magnetization of the
pattern. Modulation periods orders of magnitude faster can be
achieved by using e.g., garnet films19,24.

Here we have worked at a low particle density: less than one
particle per unit cell. New phenomenology will arise at high
densities due to excluded volume effects. We expect for example
quantized particle edge currents, as have been observed in the
hexagonal bulk25.

Colloids can be used to mimic aspects of molecules26 and
atoms27. Our colloidal topological insulator goes a step further
and mimics the behaviour of electrons in a colloidal system.

Data availability. The datasets generated during and/or analyzed
during the current study are available from the corresponding
author on reasonable request.
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Magnetic guidance of the magnetotactic
bacterium Magnetospirillum gryphiswaldense†

Johannes Loehr, Daniel Pfeiffer, Dirk Schüler and Thomas M. Fischer

Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment

capable of swimming using two bipolarly located flagella. In their natural environment these bacteria

swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern

and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless

achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic

field of a garnet film. The successful guidance of the bacteria depends on the right balance between

motility and the magnetic moment of the magnetosome chain.

1 Introduction

Bacteria are comparably simple organisms living in a low Reynolds
number environment.1 Active swimming in one forward or back-
ward direction using periodic conformational changes of flagella
requires non-reciprocal conformational pathways of the flagella.
The additional capability of an active change in orientation of a
bacterium requires a second non-reciprocal closed pathway in the
flagella motion. Well studied bacteria like Escherichia coli2–4 take
advantage of active locomotion (run) and active yet random
reorientations (tumble). Chemotactic sensing enables bacteria to
regulate the length of run-periods5 and thus to navigate in
chemical gradients. Non-reciprocal counterclockwise rotation of
a helical bundle of flagella lets the cell run straight forward, while a
clockwise rotation randomly disintegrates the bundle and causes
Escherichia coli to tumble i.e. to randomly reorient. The marine
bacterium Vibrio alginolyticus that possesses a single left-handed
polar flagellum seems to have another solution to the steering
problem. It swims back and forth via clockwise or counter-
clockwise rotation of the single flagellum and uses flicks,6

i.e. conformational changes of the flagellum where the tip of
the flagellum traces a hyperbolic spiral to change orientation.

The same flagellum with respect to the cell body is used to
swim and to reorient. Consequently swimming and reorientation
conformational changes are executed during different periods of
time one after another. This results in a non-differentiable typical
type of trajectory consisting of relatively straight segments that are
interrupted by fast changes in orientation that when ignoring
the different distribution of step sizes share some similarities to
Levy walks.7 These trajectories are well adapted for chemotaxis.

However, their inability to swim along differentiable curves
makes it hard to imagine a way of steering the bacteria along
arbitrary smooth paths. In this work we will demonstrate that
passive guidance of bacteria along lines of instability is possible.

Lines of instability are locations of vanishing force on
immotile bacteria, but repelling force in the line surroundings.
Therefore any deviation from the line of instabilty will induce
forces pushing the bacteria away from this location (Fig. 1b). To
counteract these forces one needs the interplay of a passive
reorientation of the organism towards the line and of the active
swimming of the bacterium against the forces that push it away
from the line (Fig. 1c). Passive guidance is then possible if their
swimming speed lets them dwell into regions of different
magnetic field orientations faster than they passively reorient
to the new field directions. We will show that Magnetospirillum
gryphiswaldense is the apparent tightrope artist among the
bacteria.

This magnetotactic bacterium has two bipolarly located
flagella to swim back and forth8,9 and a permanent longitudinal
magnetic moment14 m E 1.5 � 10�15 A m2 that arises from
magnetosomes (membrane vesicles filled with magnetite
and attached to a cytoskeleton). In nature Magnetospirillum
gryphiswaldense is preferentially oriented along the geomagnetic
field lines. The magnetosome chain and the ability to sense
oxygen are supposed to facilitate navigation to its growth-
favoring zones close to the oxic-anoxic transition zone in aquatic
environments.9–13 Swimming reversals occur when both flagella
reverse their angular frequency of rotation.8 Trajectories are
straight lines with sharp approximately p edges.

The design of magnetic patterns on garnet films causes
heterogeneous magnetic fields differing substantially from
the homogeneous field of the natural habitat. It enabled us to
guide Magnetospirillum gryphiswaldense along lines of instability, if
the bacteria’s force of propulsion surmounts a certain threshold.
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The guided steering of Magnetospirillum gryphiswaldense works
whether the line is straight or curved.

2 Experimental

It is reasonable to assume that the magnetosome chain is
the only component of Magnetospirillum gryphiswaldense that
responds to the magnetic field. A heterogeneous magnetic field
will cause a magnetic Kelvin force F = m0r(m�H) and a magnetic
torque t = m0m�H on the bacteria without generating an active

feedback to the swimming behavior of the bacteria during the
time of observation. Here m0 is the vacuum permittivity.

We used a wild type strain of Magnetospirillum gryphiswaldense
dispersed in flask standard growth medium (FSM)15 placed on
top of two ferrite garnet films (FGFs) with a magnetic stripe
pattern of period l = 4.8(6.3) mm with different effective magne-
tizations that are (or are not) coated with a photoresist of
thickness h = 1.2 mm (h = 0) (Fig. 1) to vary the magnetic forces.
Video polarization microscopy is used for simultaneous visuali-
zation of the stripe pattern and the bacteria. Fig. 2 shows three
polarization microscopy images of bacteria on the uncoated

Fig. 1 Scheme of (a) Magnetospirillum gryphiswaldense with magnetic moment m (purple) on top of the stripe pattern of the garnet film of period l with
definitions of the orientational coordinates (y, j) at the position (x = 0, y = 0, z = h) of the axial-symmetric bacterium. The height h of the photo-resist spin
coated on top of the garnet film defines the elevation of the bacterium above the garnet surface. The blue arrows depict the basic features of the
magnetic field texture. If the parameters of the habitat are designed appropriately one can guide the bacteria although evolution did not provide those
microorganisms with sophisticated motion control. The ratio of the propulsion force of the bacteria to the magnetic force of the pattern on the magnetic
moment defines a relative fitness f (eqn (6)). (b) Side view of the setup including the magnetic field lines (blue) of the granet film. In the middle of the
stripes the magnetic field (red lines) has no component parallel to the film. Therefore the force on immotile bacteria (f o 1) vanishes on these lines of
instability (pink bacteria). For small deviations from these lines immotile bacteria will be forced to align along the field lines and ultimatly be trapped over
the domainwalls (blue and purple bacteria). (c) The magnetic torque, that tries to align the magnetic moment of the bacteria to the external field, reorients
the bacteria in such a way that together with their active motion a passive guidance along the stripes can be achieved. Note that only one polarization
(velocity v (green) parallel to the magnetic moment m (purple)) can be guided on top of the bright stripes (middle trajectory). The other polarization
(v parallel to -m) can only be guided on top of the dark stripes (left trajectory). If the type of stripe does not match the type of bacterium the reorientation
does not guide the bacterium (right trajectory).

Fig. 2 Polarization microscopy images of trapped Magnetospirillum gryphiswaldense (colored blue and purple) on various garnet films with different
effective magnetization and guided (pink) and ignorant (green) trajectories of the non-trapped bacteria. Initially downward starting trajectories are
marked as dotted lines while upward trajectories are marked as solid lines. (a) Shows a high magnetization, (b) a low magnetization and (c) a coated high
magnetization garnet film. This causes the relative fitness to increase from (a) (fa o 1) over (b) (fb E 2) to (c) (fc E 2.5). Guided bacteria undulate around
the central line in the middle of the stripe (see pink trajectories in (c)). Video clips of the bacteria on the three garnet films are supplied with the ESI.†
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(a and b) and coated (c) garnet film together with the trajectories
on top of the film. A homogeneous external magnetic field pulse
(Hext = Hextey, Hext = 4000 A m�1, and time duration Dt = 1 s) in
the y-direction (along the major direction j = p/2 of the stripes
of the garnet film pattern) preorients the magnetic moments of
all bacteria in the same positive y-direction. The trajectories
of the bacteria after the pulse are then recorded as a function of
time. We distinguish between three types of bacteria: trapped
(blue and purple) bacteria, guided (pink) bacteria, and ignorant
(green) bacteria.

Most of the bacteria on the uncoated high magnetization
film in Fig. 2a are bacteria that are trapped at the domain walls
x/l = (n + 1/2)p, j = np with n even (purple) and n odd (blue),
where they are oriented along the field lines perpendicular to the
stripes and no longer move. Some (the pink trajectories) bacteria,
however, are guided along the stripes. They swim on top of
the stripe domains with an orientation along the stripes and
apparently avoid the domain walls. Although they are oriented
perpendicular to the magnetic field lines, a stable guidance is
achieved. All guided bacteria swimming in the direction of their
magnetic moment (dotted lines) swim on top of a downward
magnetized (bright) stripe x/l = 2np, and all bacteria swimming
antiparallel to their magnetic moment (solid lines) swim on
upward magnetized stripes x/l = (2n + 1)p (dark stripes)
(Fig. 2b). The guided bacteria remain on the same type of stripe
when a stripe makes a U-turn, such that long after the pre-
orienting pulse one observes guided bacteria swimming on either
type of stripe in either direction. On a spin-coated garnet film
(Fig. 2c) non-trapped bacteria become more frequent as com-
pared to the uncoated film, however their ability to follow curved
or even straight stripes decreases such that some guided bacteria
ignore the stripes and are converted into ignorant bacteria (green
trajectories) that follow their momentary swimming direction
rather than the stripes. The behavior of the bacteria with orienta-
tion perpendicular to the stripes changes with the thickness of
the coating. On coated garnet patterns they no longer get trapped
(if they are motile) but follow trajectories crossing the stripe
pattern and are thus ignorant bacteria.

3 Theoretical model

We can theoretically understand the classification of trapped,
guided, and ignorant bacteria in terms of their relative fitness,
defined as the ratio of propulsion to magnetic forces: we assume
that magnetic forces normal to the garnet film and in plane
magnetic torques are both balanced by hydrodynamic interactions
with the solid garnet film such that neither the height z nor the tilt
angle to the normal y of the bacteria change with time. The leading
term of the magnetic field above the stripe pattern of wavelength
l = 2p/q and effective magnetization M16 can be written as

H = rc (1)

where

c ¼M

q
e�qz cosðqxÞ (2)

We approximate the hydrodynamic mobility of the bacteria by
that of a rigid rod of length l and diameter d placed in a liquid of
shear viscosity Z. We assume an isotropic translational mobility17

mt ¼
lnðl=dÞ þ 0:19315

4pZl
(3)

and a rotational mobility18

mr ¼
3ðlnð2l=dÞ � 0:8Þ

pZl3
(4)

of the bacteria and a constant propulsion force F into the direction
of the magnetic moment.

m = m(cosj sin y,sinj sin y,cos y) (5)

Hence we assume that the bacteria are in the run-mode and
perform conformational changes of the forward flagellum that
are uncorrelated to the forces on the magnetosome chain. The
bacteria are hence completely unaware of the stripe pattern such
that the magnetic forces and torques are acting on their bodies
without producing active counter actions of the flagella. We use
dimensionless units defined by the dimensionless length qx = x̂
and the dimensionless time qmtFt = t̂. Two dimensionless para-
meters govern the dynamics: the relative fitness

f ¼ Feqh

qm0mM sin y
(6)

is defined as the ratio of the propulsion force of the bacterium
to the maximum magnetic force exerted on it at an elevation h.
The mobility parameter b = mr/q

2mt measures whether it is easier
to turn (b 4 1) or to translate (b o 1). Both parameters can be
changed by changing either the properties of the bacteria or the
properties of the stripe pattern. Using these abbreviations we
end up with the differential equations

_x

_y

 !
¼

1� f �1 cos x
� �

cosj

sinj

 !

_j ¼ b
f
sinj sinx; (7)

where we have dropped the hat above the non-dimensional
quantities. sign p = sign f = sign(m�v) defines the polarization of
the bacterium and measures whether its velocity v is parallel or
antiparallel to the magnetic moment.19 The differential equa-
tion is invariant under the transformation f -�f and x - x + p
that maps bacteria of one polarization on one type of stripe on
bacteria of opposite polarization on the opposite stripe. For
the discussion we may therefore without the loss of generality
assume that f 4 0. The trajectories in x, j space have the
solutions

sinj
sinj0

¼ f � cosx

f � cosx0

� �b

(8)

If :x = 0 = _j then we have a fixed point in the subspace of the
variables x and j. There are motile fixed points if :y a 0 i.e.
bacteria that move and immotile fixed points if :y = 0 and the
bacteria do not move. The differential equation has motile fixed

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
4 

M
ar

ch
 2

01
6.

 D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
T

 B
A

Y
R

E
U

T
H

 o
n 

26
/0

6/
20

17
 1

0:
53

:4
1.

 

View Article Online



3634 | Soft Matter, 2016, 12, 3631--3635 This journal is©The Royal Society of Chemistry 2016

points at xm = np, jm = p/2, 3p/2 and immotile fixed points at
xi = �(�1)narccos f, ji = np. For relative fitness 0 o f o 1 the
fixpoints xm, jm are unstable and the bacteria at t -N end up
in the immotile fixed points xi = �(�1)narccos f, ji = np (cyan
and purple arrows in Fig. 3 top). There is no motion in the
immotile fixed points. For relative fitness f 4 1 the motile fix
points xm = np, jm = �p/2 with even n correspond to a stable
motion along or against the y-direction along the stripe (red circles
around the fixed points in Fig. 3 bottom). The odd stripes (n odd)
are unstable (fixed points in the crossing of the blue separatrix
in Fig. 3 bottom). Bacteria can be guided only above one type of
stripe not on the other. On the stripe center they then have the
unperturbed speed vJ and the angular frequency oJ = vJ/l = 1
sets our clock of reference. The angular frequency of undula-
tions ou of the guided bacteria and the angular frequency of
traversing the pattern o> of the ignorant bacteria within the
linearized solutions of (7) and for a relative fitness above the
threshold f 4 1:

ou ¼ f�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð f � 1Þ

p

o? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f �2

p
(9)

The maximum frequency

ou;max ¼
1

2

ffiffiffi
b

p
: (10)

of the undulations is reached when the relative fitness equals f = 2. It
is the ideal relative fitness allowing the bacteria to cope the best with
curved stripes. Guided bacteria coexist with ignorant bacteria. Apart
from guided trajectories circulating around a fixed point there are
extended trajectories in the region j = np. They correspond to
ignorant bacteria crossing the stripe pattern. Non-magnetic bacteria
(m = 0, 8f - N) that have infinite relative fitness are not guided
since the (pink) area enclosed by the separatrix shrinks to zero and
the vanishing fraction of guided bacteria has zero reaction angular
frequency such that they are unable to cope with curved stripes. At
f - N all bacteria are ignorant bacteria. Guiding thus requires a
finite magnetic moment. Increasing the magnetic moment reduces
the relative fitness (6) since the bacteria have to cope with magnetic
forces. The magnetic moment must be strong enough to reorient
the bacteria in a reasonable time, but not too strong to keep the
relative fitness above the threshold relative fitness.

We can vary the relative fitness of the bacteria by coating the
garnet film with a photo-resist that levitates the bacteria to a
value z = h above the garnet surface. Without a photo-resist the
bacteria relative fitness is below the threshold f o 1 and the
bacteria get trapped in the magnetic pattern and seize to move
(Fig. 2a). As the relative fitness (6) increases more and more
bacteria are guided along the stripes (Fig. 2b). Even higher
f causes more and more bacteria to become ignorant (Fig. 2c).
Fig. 4 shows that measurements of the undulation and ignorant
frequencies on different garnet films and different heights agree
well with the theoretical predictions of eqn (9).

4 Conclusions

In conclusion, among the fit, fitter, and fittest (cf. eqn (6)) magne-
totactic bacteria the fitter bacteria are guided best. The magnetic

Fig. 3 Trajectories of bacteria of subcritical relative fitness 0 o f = 0.5 o 1
(top) and of optimal relative fitness f = 2 4 1 (bottom) (mobility parameter
b = 0.6).

Fig. 4 Guidance reaction angular frequency ou and stripe traversing
angular frequency o> as a function of the relative fitness for a mobility
parameter of b = 0.6. The data are measurements of ou, o>, and f by using
eqn (6) and the effective magnetization of the film as described in ref. 16.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
4 

M
ar

ch
 2

01
6.

 D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
T

 B
A

Y
R

E
U

T
H

 o
n 

26
/0

6/
20

17
 1

0:
53

:4
1.

 

View Article Online



This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 3631--3635 | 3635

pattern consists of two types of stripes creating opposite
magnetic field textures that both are instable for immotile
bacteria. Beyond the critical threshold fitness bacteria can be
divided into guided and ignorant bacteria, coexisting with each
other. Guided bacteria are guided on one of the stripes when in
the forward swimming mode and on the other when in the
backward swimming mode. The average orientation of guided
bacteria is with their magnetic moment pointing into a non-
equilibrium direction perpendicular to the average magnetic
field. The guidance is an emergent phenomenon arising with-
out the need of active reaction of the bacteria to the artificial
environment.
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We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of
topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction
of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-
time experiments with simulations, we prove that these defects behave like emergent topological
monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a
completely resettable “NOR” gate, which provides guidelines for fabrication of nanoscale logic devices
based on the motion of topological magnetic monopoles.

DOI: 10.1103/PhysRevLett.117.168001

Geometric frustration is a complex phenomenon which
encompasses a broad range of systems, from magnetic
materials [1], to ferroelectrics [2], trapped ions [3],
confined microgel particles [4], and folding proteins [5].
It emerges when the spatial arrangement of the system
elements cannot simultaneously minimize all interaction
energies, and leads to exotic phases of matter with a
low-temperature degenerate ground state, such as spin ice
[6–8]. Artificial spin ice systems (ASI) are lattices of
interacting nanoscale ferromagnetic islands, recently intro-
duced as a versatile model to investigate geometrically
frustrated states [9,10], including the role of disorder
[11,12], thermalization [13–15], and the excitation dynam-
ics [16–20]. In opposition to bulk spin ice such as
pyrochlore compounds, ASI allow us to directly visualize
the spin textures and to tailor the spatial arrangement of the
system elements.
An intriguing aspect in ASI, which is attracting much

theoretical interest, is the dynamics of defects [21–28]. The
interactions between pairs of defects is one of the distinc-
tive features between three dimensional (3D) and two
dimensional (2D) spin ice. In a 3D pyrochlore compound,
the spins are located on a lattice of corner-sharing tetra-
hedra, and can point either towards the tetrahedra center
(spin in), or away from it (spin out). Thus the ground state
(GS) follows the “ice rules,” with two spins coming in and
two going out of each vertex in order to decrease the vertex
energy. At finite temperature, defects that behave like
“magnetic monopoles” [29,30] can emerge when a spin
flips, producing a local increase of the magnetic energy. A
way to overcome the system complexity is to use the
“dumbbell”model [31], which only considers the magnetic
charge distribution at the vertices of the lattice. Within this
formalism, it was shown that in 3D spin ice, a pair of
defects connected by strings of flipped spins only interact

through a magnetic Coulomb law at low temperature. In
contrast, numerical simulations show that for a 2D square
ASI, i.e., a projection of the 3D ice system on a plane, such
a string requires an additional energetic term in the form of
a line tension [21]. The reason is that, while in a 3D system
all spin configurations that satisfy the ice rules have
equal energy, in the 2D square ASI the distance at a vertex
between opposing spins is greater than the distance between
adjacent spins. This results in a lift of the degeneracy of
the ground state, which is now represented by a twofold
degenerate antiferromagnetic order.
String tension and the Coulombic interactions in ASI

have been calculated by Monte Carlo simulations
[22,23,27]; however, direct experimental measurements
remain elusive. The difficulty of preparing the system in
the GS and the extremely fast spin dynamics in nanoscale
ASI makes real-time observation challenging, suggesting
the use of alternative systems. Here we overcome these
limitations by realizing an artificial colloidal spin ice
system, a microscale soft matter analog of a frustrated
nanoscale ASI. In this system we investigate the real-time
dynamics of monopolelike defects via experiments and
numerical simulations, and directly measure the line
tension and Coulombic contributions. Further, we demon-
strate defect manipulation via external field, and realize a
logic operation based on magnetic current.
Our experimental system is inspired by previous theo-

retical works on electrostatically interacting colloids in
bistable optical traps [32,33]. The schematic in Fig. 1(a)
and the experimental realization in Fig. 1(b) illustrate the
main idea. By soft lithography, we realize a square lattice of
bistable topographic traps with lattice constant a ¼ 29 μm.
Each trap is composed of two wells of depth ∼3 μm,
connected by a small hill at the middle with average
elevation hhi ¼ 0.86 μm, Figs. 1(d)–1(f) [34]. These traps

PRL 117, 168001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

14 OCTOBER 2016

0031-9007=16=117(16)=168001(5) 168001-1 © 2016 American Physical Society



are designed to confine a colloidal particle in one of the
two sides, such that the particle can cross the hill
when subjected to an external force, but it cannot escape
from the bistable confinement. We induce repulsive inter-
actions by using paramagnetic colloids with diameter d ¼
10.3 μm and magnetic volume susceptibility χ ¼ 0.08
(Microparticles GmbH). Under an external magnetic field
perpendicular to the particle plane, B ¼ Bzẑ, the colloids
repel by a tunable pair potential, Um

ij ¼ ωða3=r3ijÞ, where
ω ¼ μ0m2=ð4πa3Þ is the coupling constant with m ¼
πd3χB=ð6μ0Þ the induced moment, rij ¼ jri − rjj, and ri
is the position of particle i. The gravitational potential for a
particle to jump a hill is Uhill

g ¼ 910kBT, and Uwall
g ¼

3740kBT to leave the bistable trap. Here kB is the
Boltzmann constant, T ¼ 293 K, and we apply the external
field such that Uhill

g < Um < Uout
g [37].

Once filled with one particle per double well, one can
assign a vector (analogous to a spin) to each particle, such
that it points from the free well to the well occupied by the
particle. As shown in Fig. 1(c), it is possible to construct a
set of ice rules for the colloidal artificial ice similar to the
nanoscale ASI [32,38]. Vertices with three (SV) or four
(SVI) colloids in are energetically unfavorable, and they are

topologically connected with low energy vertices having
three (SII) or four (SI) colloids out. Thus, the GS is
composed of SIII vertices [35], while the metastable biased
state has high energy SIV vertices. Both configurations
satisfy the ice rules. According to the dumbbell model [31],
we can associate to each spin a “magnetic charge,” which is
positive (negative) for spin in (out). The total charge at each
vertex i is given by the sum over all neighboring spins
q ¼ P

iqi, and both the GS and the biased state correspond
to q ¼ 0, while all other vertices have a net charge.
We start by analyzing the contraction of a pair of

q ¼ �2 (SII and SV) charged defects connected by a line
of six flipped spins along the diagonal in the GS, Figs. 1(b)
and 2(a) [39]. After preparing the system with the optical
tweezers, we switch the field on and measure the relaxation
toward equilibrium. As shown in Fig. 2(a) and VideoS1 in
Ref. [34], both defects approach via a stepwise flipping of
the colloids position and the system recovers the GS.
Theoretical work [22] based on the dumbbell model [31]
predicts the interaction potential between the two defects in
the 2D ASI as VðlÞ ¼ −Q=lþ κlþ c. Here, Q is the
topological Coulombic charge, κ the line tension, and c
a constant associated with the creation of the defect pairs
[25]. We confirm the validity of this assumption in our
system, by explicitly calculating the energy cost VðlÞ ¼
EexcðlÞ − EGS of a defect line of length l in the GS, which
can be obtained by subtracting the GS energy from the
energy of the excited configuration. The magnetic energy is
given by the sum of all dipole interactions as
E ¼ P

i

P
j≠i U

m
ij. In the inset of Fig. 2(b), we show the

normalized potential VðlÞ=ω. We subtract its linear part in
order to emphasize the presence of a magnetic Coulombic
term. Since VðlÞ scales with the coupling constant, it
follows that Q; κ ∼ ω ∼H2. By fitting this potential, we
obtain the ratio Q=κ ¼ 0.0290� 0.0014a2 between the
Coulombic and line tension contribution, which is 1 order
of magnitude lower than the corresponding one found for
ASI [21].
Figure 2(b) shows experiments and simulations of the

average line length hli obtained by measuring the particle
residence time within the traps [34]. We describe the
dynamics of the defect line with an overdamped equation
of motion with a friction coefficient γ:

γ
dl
dt

¼ −
∂V
∂l ¼ −

Q
l2
− κ: ð1Þ

We assume negligible the thermal fluctuations given the
large size of the employed particles, and we justify our
choice of overdamped dynamics, as opposed to the infra-
damped dynamics in nanoscale ASI [27], by checking that
the defect motion effectively shows a velocity profile linear
with the applied force [34]. By solving Eq. (1), we fit its
solution to the experimental data in Fig. 2(b) [34]. We use
the ratio Q=κ obtained from the calculation of VðrÞ [inset

FIG. 1. (a) Schematic showing the colloidal spin ice composed
by interacting colloids in a square lattice of double wells. The
red line shows a defect line separating two q ¼ �2 defects in the
GS. (b) Microscope image of an experimental defect line in a
square lattice of lithographic double wells filled with para-
magnetic colloids. Blue arrows denote spin directions, red arrows
highlight the defect line. Scale bar is 15 μm. (c) Vertex configu-
rations for the colloidal square ice. Vertex energy increases
from left to right. (d) Optical profilometer image of the litho-
graphic square lattice. (e) Cross section of a typical double well
characterized by a central hill of height h ¼ 0.73 μm. (f) Dis-
tribution of hill height h fitted with a Gaussian function
(continuous line).
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Fig. 2(b)], and reduce to Q=γ the sole unknown parameter.
Figure 2(b) shows the results of this procedure, confirming
that the observed phenomena are well captured by Eq. (1).
In all our analysis we use γ as the scaling factor for the
topological Coulomb charge Q. However, Q may be
estimated in first approximation by considering that the
defects are composed by colloidal particles approaching at
a constant speed in a liquid medium [40]. For an applied
field of Bz ¼ 30 mT, we obtain for the colloidal spin ice
QM∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πjQj=μ0

p ¼5.7�1.5×10−8m=s. To further vali-
date our analysis, we complement the experimental mea-
surements with Brownian dynamics simulation, following
the scheme described in Ref. [34]. In the simulation, we use
the same experimental parameters and disorder level, and
find again very good agreement with the measured data,
Fig. 2(b).
We can clearly visualize the effect of the magnetic

Coulombic contribution by studying defect motion in the
biased system, which can be prepared by displacing all
particles towards one of the system corners with the optical
tweezers. In this state, it is possible to generate defect lines
characterized by positive or negative line tension, or single
defects with zero Coulombic contribution that propagate

along a diagonal [41]. Of these three cases, Figs. 3(a)
and 3(b) show the first and the last one; the rest is in
Ref. [34]. The first case is shown in Fig. 3(a), where two
q ¼ �2 defects approach when an external field Bz ¼
25.7 mT is applied, leaving a series of SIII vertices behind.
This situation is similar to the defect motion in the GS, with
attractive line tension and Coulombic interaction. We also
calculate the interaction potential VðlÞ (data not shown),
obtaining an almost identical plot as the inset in Fig. 2(c). In
contrast, in Fig. 3(b) a single q ¼ −2 defect propagates
along the lattice only due to line tension, since the absence
of other charges sets the Coulombic term in Eq. (1) to 0. In
the bias state we find that the defect dynamics are much
slower than in the GS, and usually in the experiments
the particles stop propagating due to disorder (Fig. 1(f)).
We thus cannot directly measure the small Coulombic
contribution in this state; however, we can resolve it by
using simulations with the same experimental conditions
as in Figs. 3(a) and 3(b) and a much larger, disorder
free system. The results of these simulations are shown in
Fig. 3(c), where we compare the motion of single (QM ¼ 0)

FIG. 2. (a) Color map showing the net vertex charges in the
experiments for a defect line connecting two q ¼ �2 defects
under a field Bz ¼ 25.7 mT (VideoS1 in Ref. [34]). The line
consists of high energy SIV vertices with a zero charge but a net
dipole, which give raise to the additional line-tension term.
(b) Average line length hli versus time for three different
magnetic fields. Closed (empty) symbols denote experiments
(numerical simulation), continuous lines are fit from Eq. (1) in the
text. Inset: normalized interaction potential VðlÞ=ω between two
topological defects minus its linear contribution (αlþ β). Red
line is a fit using the potential described in the text.

FIG. 3. (a),(b) Experimental vertex charges for a closing line
(a) and for a single q ¼ −2 propagating defect (b) in the biased
state. Black (blue) arrows are spins flipped by the motion of the
original (spontaneously emerged) defects. Corresponding movies
(VideoS2, VideoS3) are in Ref. [34]. (c) Numerical simulation of
case (a) (with one end fixed) and (b) showing the evolution of the
line length hli for an applied field Bz ¼ 18.8 mT. Continuous
lines are fits from Eq. (1). Bottom inset: difference between the
two curves in the main panel (empty squares) versus line length
plotted with Eq. (1) with κ ¼ 0 (continuous line).
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and double defects (QM > 0). Both have the same line-
tension contribution and therefore move at an identical
speed for large distances. However, the closing line speeds
up when the two defects are approaching at the end of the
process due to sole Coulombic interaction. This time
difference is shown in the inset of Fig. 3(c), and can be
well fitted by Eq. (1) with κ ¼ 0 (continuous line), resulting
in a similar value for the topological Coulomb charge as in
the GS.
A major driving interest in studying defect dynamics in

ASI lays on the possibility of realizing dissipation-free
“magnetronic” circuitry [10,42]. We demonstrate that the
colloidal spin ice system can be used to perform logic
operations based on the motion of topological monopole
defects. Figure 4 shows the realization, by numerical
simulation, of a NOR gate, which is a functionally complete
port capable of generating all logical functions [43]. The
gate is completely resettable, since it requires only external
fields or gradients to work, and not individual manipulation
via laser tweezers. It is realized in a biased system, which
could be formed and reset by an external magnetic force
F ∼ ðB ·∇BÞ applied along one diagonal direction,
F1 ¼ F1ðŷ − x̂Þ. In the preparation step [Fig. 4(a)] the
system is biased by a force F1 ¼ 2.8 pN, which displaces
all particles except for a pinned one which represents a
fixed spin, [top left corner in Fig. 4(a)]. We use a second
type of paramagnetic colloids with a higher magnetic
susceptibility, χ2 and ratio χ2=χ1 ¼ 1.15, a prerequisite
which forced us to restrict the realization only to the
numerical scheme. These particles are placed along two
parallel rows spaced by two lattice constants (magenta
arrows in Fig. 4). In the second preparation step [Fig. 4(b)]
these particles are selectively manipulated by a small
in-plane force F2 ¼ F2x̂, F2 ¼ 1.6 pN, while all other
particles (χ1) remain at rest. The two rows represent the
inputs of the logic gate: a 0 (1) is associated with a shifted
(unshifted) row. After preparation of the system, a Bz ¼
15 mT field perpendicular to the plane induces the defect
propagation, Figs. 4(c)–4(f). The output of the gate is
measured at the bottom left corner of the sample: it is 1 if

there is a magnetic current, 0 otherwise. Figures 4(c)–4(d)
describe the situation of the input (0,0) with output 1,
while Figs. 4(e)–4(f) have input (1,0) and output 0. In the
third step [Figs. 4(c) and 4(e)] a small locking force
F3 ¼ F3ðŷ − x̂Þ, F3 ¼ 0.7 pN is applied to hold the defect
in place while the input is prepared. Now let us consider the
case of the (1,0) input: an applied magnetic current causes
the upper first magenta line to flip back into the x < 0
direction. In Fig. 4(f), F3 is set to 0 and the defect starts
moving. When it reaches the flipped input row, the defect
changes its path, ending in a different place; thus the output
is 0. Since only (0,0) input gives a 1 output, our logic port
behaves like a NOR gate. A similar system could be
engineered in nanoscale ASI using islands of different size
or magnetic materials, which would give spins that behave
differently under an external field. In this context, a recent
work demonstrated the possibility to reorient the magneti-
zation of the nanoislands in ASI with an MFM tip [44].
In summary, we studied the defect dynamics in an

artificial colloidal spin ice in the GS and in the biased
state and directly measure their energetic contributions. Our
findings also confirm former theoretical assumptions and
clearly demonstrate that these defects behave like bound
magnetic monopoles. We finally demonstrate a resettable
functionally complete NOR gate. The possibility to control
topological monople defects in spin ice states may foster
the realization of novel memory and logic devices based on
magnetic current [42,45,46].
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REALIZATION OF THE SOFT LITHOGRAPHIC
STRUCTURES.

We fabricate a mask containing a square lattice of dou-
ble wells on a 5-inch glass wafer covered with a 500nm
layer of Cr. To write the motifs on the mask, we use
Direct Write Laser Lithography (DWL 66, Heidelberg
Instruments Mikrotechnik GmbH) with a 405nm laser
diode working at a speed of 5.7mm2min−1. The struc-
tures are designed using a commercial software (CleWin
4, PhoeniX Software). In contrast to Ref. [1], the mask
design has been improved in order: (i) to obtain a re-
duced and more controlled degree of disorder of the cen-
tral hill (Fig.1(f) of the main text), and (ii) to avoid the
anisotropy of the double wells which could affect the mea-
surements of the defect lines along the diagonals of the
square lattice. The first issue is resolved by changing the
design of the small hills. In previous work the hill was ob-
tained by reducing the width of the elongated trap at the
middle (see Supporting Information in Ref. [1]). In the
new mask the hills are obtained by designing small rect-
angular spots at the center of the elliptical confinements,
as shown in Fig.1(a). The outer ellipse has a length of
21µm and a width of 9µm, while the spot covers an area
of 4µm× 2µm. The size of the spot is below the vertical
resolution of the lithographic process. Thus it blurs the
exposing light resulting in a small hill with a lower height
at the center of the islands. The anisotropy of the double
wells result from the fact that the x and y direction have
both an inherently different resolution in the mask writ-
ing process. This second issue was resolved by rotating
the whole mask design by 45 degrees.

After being impressed above the Cr mask, the micro-
features are etched on a 2.8µm layer of photoresist AZ-
1512HS, (Microchem, Newton, MA). The photoresist is
deposited on top of a 100µm thick glass coverslip by
spin coating (Spinner Ws-650Sz, Laurell) at 500 rpm for
5 second and afterwards at 1000 rpm for 30 seconds, both
steps with an acceleration of 500 rpm/s. Different thick-
ness of the photoresist could be obtained by varying the
rotating speed, however we find that ∼ 3µm works well
to create topographical traps capable of capturing the
particles within the double wells for most of the applied
fields. After the deposition process, the photoresist is ir-
radiated with UV light passing through the Cr mask, for

FIG. 1. (a) Schematic showing the design of the lattice of
double wells with small rectangular holes in the middle. (b)
Optical profilometer image of the square lattice of double wells
after the lithographic process. Scale bars are 15µm for both
images.

3.5s at power of 25 mW/cm2 (UV-NIL, SUSS Microtech).
The light passing through the motifs of the mask uncross-
links only the exposed part of the photoresist. The ex-
posed parts are then eliminated by submerging the film
in a AZ726MF developer solution (Microchem, Newton
MA) for 7 seconds.

MAGNETO-OPTICAL SET-UP

It is composed by an inverted homemade optical mi-
croscope equipped with a white light illumination LED
(MCWHL5 from Thorlabs), a charge-coupled device
(Basler A311f) and custom-made coil perpendicular to
the sample cell such that the main axis points along the
z-direction. The coil was connected to a programmable
power supply (KEPCO BOP-20 10M) which is remotely
controlled along with the image acquisition and recording
with a custom made LabVIEW program. The photore-
sist is sensitive to UV light, so the white light of the LED
is filtered with a long pass filter with a cut off at 500nm
(FEL0500 Thorlabs). Optical tweezers are realized by
tightly focusing a λ = 975nm, P = 330mW, Butterfly
Laser Diode (Thorlabs) with a 100× Achromatic micro-
scope objective (Nikon, NA = 1.2) which is also used for
observation purpose.
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AVERAGING PROCEDURE IN THE
DETERMINATION OF 〈l〉

During the experiments, we measure the shrinking of
defect lines due to the presence of attractive line tension
and topological ”Coulumbic” interactions. The defect
line is composed by a total of 6 spins connecting the two
charged defects. Although longer lines could be studied,
we find that the presence of disorder in the distribution
of hills breaks longer lines during shrinkage, making dif-
ficult to analyze their dynamics. Moreover, the optical
tweezers setup forces us to have a limited field of view,
and within this limitation, a defect line of 6 spins is still
2 spins away from the boundary, which helps minimize
finite size effects.

Typical trajectories obtained from a single experiment
of a closing line of two q = ±2 charged defects placed
in the ground state are shown by the dashed curves in
Fig.2. Since the line motion is caused by spin flips, which
occur when the particles jump above the small hill con-
necting the two traps, the line length l of a single exper-
iment always changes in integer multiples of the lattice
constant a. In order to have enough statistical data for
further processing, each experiment was repeated at least
24 times for each field. We also averaged over different
sets of traps characterized by different degree of disorder,
by repeating the experiments along the 2 diagonals of the
square system and for all the 4 possible arrangements of
the charged defects.

Fig.2 shows two possible averages of the experimental
data along the vertical (blue line), and the horizontal (red
line) direction. The first way of averaging introduces an
artifact at the end of the line length. With the first lines
having closed, the number of averaged data decreases,
increasing the corresponding relaxation time. Performing
the average along the horizontal direction instead reduces
the number of points in the experiments, but gives more
uniform statistics of the data, eliminating the artifact of
the slowing down of the curve at the end point.

BROWNIAN DYNAMICS SIMULATION

We complement the experimental data with Brownian
dynamics simulation in order to improve statistics and
explore the system in the absence of disorder. The nu-
merical scheme consists of solving the Langevin equation
by Euler’s method as described in Ref. [2]. We considerN
particles arranged into an ensemble of double well traps.
For each particle i at position ri ≡ (xi, yi) we solve the
set of overdamped equations:

γẋi = Ftot · êx + ξx(t)

γẏi = Ftot · êy + ξy(t)
(1)

where γ is the friction coefficient, Ftot = Fg + FN + FM
is the sum of external forces acting on the particle, com-

FIG. 2. Length of a defect line l versus time t in the ground
state under an applied field Bz = 25.7mT. The dashed cyan
lines are individual experiments, the blue line is the vertically
averaged line-length, while the red line is obtained from an
horizontally average. Error bars represent the distribution
(standard deviation) of the single experiments.

posed by the gravitational force, Fg, the normal force
exerted by the double wall confinement, FN and the mag-
netic dipolar force FM . We express Fg = gV∆ρêz, with
V the particle volume and ∆ρ the density mismatch. The
shape of the double well potential, was approximated by
parabolic functions,

U(δr) = |Fg| k×


δr · ê⊥ +

(∣∣δr · ê‖
∣∣− d

2

)2
if
∣∣δr · ê‖

∣∣ > d
2

δr · ê⊥ + h
k

[
1−

(
2
dδr · ê‖

)2]
if
∣∣δr · ê‖

∣∣ ≤ d
2

(2)

where δr is the displacement vector from the center of
the trap, d = 10µm is the distance between the two sta-
ble minima, k = H/r2 is the spring constant, that is
determined by the radius r of the particles and the sub-
strate height H = 3µm and h the hill height. The two
unit vectors ê‖ and ê⊥ define the orientation of the trap:
the first is the vector that joins the two stable positions,
while the second connect the transverse axis. Assuming
a small inclination angle of the walls, the normal force
can be than calculated as FN = ∇tU . The magnetic in-
teraction between the particles with an induced magnetic
moment mi = |B|χV/µ0~z, is given by,

FM =
N∑

j=1

3µ0

2π|rij |4
r̂ij . (3)

Here B = Bzêz is the amplitude of the magnetic field, χ
the magnetic volume susceptibility, µ0 = 4π × 10−7H/m
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and rij is the vector that goes from particle i to par-
ticle j. Thermal noise ξ(t) is modeled as a Gaussian
white noise with zero mean, and a correlation function
〈ξ(t)ξ(t′)〉 = 2γkBTδ(t−t′), with kB the Boltzmann con-
stant and T ∼ 293K the experimental temperature. The
equations of motion are numerically solved using a time
step of ∆t = 0.01s. Using the experimental parameters,
we achieved very good agreement between simulation and
experimental data.

OVERDAMPED DYNAMICS OF DEFECT LINE

In our colloidal spin ice system we describe the inter-
action between defects using an overdamped equation of
motion, namely Eq.(1) in the main text. This equation
has the form of a nonlinear first order Chini equation,
which admits as solution an implicit function which can
be written as,

t−t0 =
1

β

[
l0−r+

√
α
(

arctan
( r√

α

)
−arctan

( l0√
α

))]
.

(4)
We next shows the result of an additional series of nu-

merical simulations of the shrinkage of a line connecting
a pair of q = ±2 defects in the ground state of the artifi-
cial colloidal ice with different magnetic fields and under
experimental conditions, as shown in Figure 3(a). We
use Eq. (4) to fit these numerical data and also the ex-
perimental data in the main text (Fig.3 and 4). In all
cases, we use as parameters α = Q/κ, β = κ/γ and
l0 = l(t = t0) which is the initial position of the line
length. The first one was fixed to α = (0.0290±0.0014)a2,
since it was independently determined by fitting the po-
tential V (r) calculated in the inset Fig.2(b) of the main
text.

In Fig.3(b) we plot the obtained values of Q/γ (m3s−1)
versus the square of the magnetic field Bz, in order to em-
phasize the linear dependence of the topological Coulomb
charge with the applied magnetic force Fm = −∂Vr

∂r . This
results from the proportionality Fm ∼ m2 ∼ B2

z of the
dipolar magnetic force.

Finally, we use the simulation data to confirm the
validity of our assumption of overdamped dynamics in
Eq.(1) of the manuscript. Already the fact that particle
motion occurs at very low Reynolds (Re) number sug-
gests the negligible role of inertial forces. We estimate
this number as Re =

avp
η ∼ 10−6 for pair of particles

with radius a (assumed the same as the colloidal radius)
approaching at a maximum speed of vp = 120µms−1 in
water. From the simulation data we measured the av-
erage speed of the contracting line 〈vl〉, and observe a
linear dependence with the square of the magnetic field
B2
z , as shown in Fig.3(c), continuous line. Thus we con-

firm our assumption of overdamped dynamics of the de-
fects in artificial colloidal ice moving at an average speed

FIG. 3. (a) Numerical simulation of the average line length
〈l〉 versus time in a semilogarithmic plot of a defect line con-
tracting due to different applied fields Bz in the ground state.
Scattered points refer to numerical simulations while continu-
ous line are a fit of Eq. (4) in this Supporting Information. (b)
Normalized topological Coulomb charge Q/γ versus square of
the applied field B2

z calculated from the fits in Fig.3(a). (c)
Average speed of contracting line 〈vl〉 versus B2

z . Continuous
red lines in Figs.3(b,c) are linear fits.

〈vl〉 ∼ Fm ∼ B2 proportional to the applied force.

DEFECT REPULSION AND LOGIC
OPERATIONS

We show in Fig.4 the left situation for a pair of q = ±2
charged defect placed in the biased state and repelling
upon application of an Bz = 25.7mT magnetic field. In



4

FIG. 4. Color map showing the net vertex charges in the
experiments for a pair of q = ±2 defects repelling in the biased
system upon application of an external field with amplitude
Bz = 25.7mT.

FIG. 5. Top row: Images showing the system preparation.
In (1) a force F1 applied along the diagonal bias the system,
(2) a smaller force F2 shifts two rows of particles (pink) with
high magnetic susceptibilities. Middle row: images showing
a 0 output obtained from inputs (0, 1). Bottom row: images
showing a 0 output obtained from inputs (1, 1) . The corre-
sponding videos can be found in the Supporting Information.

the biased state, the pair of defects are introduced by flip-
ping a single particle (spin), as shown in Fig.4, t = 0s.
Upon application of the external field, the two defect
shows repulsion due to line tension and attraction be-
cause of Coulumbic interaction, which result in a slowest
motion of the defect line. The spins flipped due to the

motion of the initially placed defects are marked in red.
In the biased state, further spin flips which spontaneously
occur are marked in blue. Moreover, due to the strong
Coulumbic attraction, we found that sometimes (depend-
ing on the noise distribution) the defect line was unable
to open, but rather the particle flip back in the biased
state configuration. This problem was avoided by fixing
one particle with the laser tweezers.

Figure 5 shows the remaining two cases left to demon-
strate the NOR gate described in the last image of the
main text.

SUPPORTING VIDEOS

With the article there are 7 videoclips as supplements
of the Figures and Main text.

• MovieS1(.AVI): Dynamics of a defect line con-
necting a pair of approaching q = ±2 charged de-
fects in the ground state. The external magnetic
field has amplitude Bz = 25mT. The correspond-
ing process is illustrated in Fig. 2(a) of the article.

• MovieS2(.AVI): Dynamics of a defect line con-
necting a pair of approaching q = ±2 charged de-
fects in the biased system. The external magnetic
field has amplitude Bz = 25mT. The correspond-
ing process is illustrated in Fig. 3(a) of the article.

• MovieS3(.AVI): Dynamics of a single q = −2
charged defect propagating along the diagonal in
the biased system due to line tension alone. The
applied field has amplitude Bz = 25mT. The cor-
responding process is illustrated in Fig. 3(b) of the
article.

• MovieS4(.AVI): Video illustrating the logic op-
eration of the NOR gate for inputs (0, 0) and its
corresponding 1 output. The defect motion is trig-
gered by an external field of amplitude Bz = 15mT.
Forces used are: F1 = 2.8pN, F2 = 1.6pN and
F3 = 0.7pN as described in the main text. The
corresponding process is described in Fig. 4(a-d) of
the article. The video is displayed 10 times faster.

• MovieS5(.AVI): Video illustrating the logic op-
eration of the NOR gate for inputs (1, 0) and its
corresponding 0 output. The values of the param-
eters Bz, F1,2,3 are the same as in MovieS4. The
corresponding process is described in Fig. 4(a-f) of
the article. The video is displayed 10 times faster.

• MovieS6(.AVI): Logic operation of the NOR
gate for inputs (0, 1) and its corresponding 0 out-
put. The values of the parameters Bz, F1,2,3 are
the same as in MovieS4. The corresponding pro-
cess is illustrated in this Supporting Information.
The video is displayed 10 times faster.
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• MovieS7(.AVI): Logic operation of the NOR
gate for a inputs (1, 1) and its corresponding 0 out-
put. The values of the parameters Bz, F1,2,3 are
the same as in MovieS4. The corresponding pro-
cess is illustrated in this Supporting Information.
The video is displayed 10 times faster.
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