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Summary 

Trypanosoma brucei is a unicellular, uniflagellated parasite causing sub-Saharan African 

trypanosomiasis, commonly known as sleeping sickness. In the effort to eradicate this 

disease, finding new drugs that are without severe side effects for patients and easy to 

administer, is a challenging task. This thesis assesses the mitotic kinesin TbKif13-1 as 

potential drug target. Attempts were made to establish the prerequisites for an in vivo and 

an in vitro TbKif13-1 high-throughput inhibitor screen with automated image analysis. The 

basis for both assays was the TbKif13-1 mediated microtubule depolymerisation and its 

prevention by an appropriate inhibitor. In the in vivo assay, the substrate was the interphase 

microtubulule cytoskeleton of HeLa cells. The prerequisite for this assay is a stable HeLa cell 

line exhibiting a depolymerised microtubule cytoskeleton after inducible overexpression of 

eGFP
TbKif13-1 S143A. The mutation prevents its inhibition by phosphorylation. The basic idea 

worked well in transiently transfected HeLa cells. However, generated stable cell lines did 

not show microtubule cytoskeleton depolymerisation after eGFP
TbKif13-1 S143A 

overexpression. In the in vitro assay, the depolymerisation substrate for recombinantly 

purified His6
TbKif13-1 were T. brucei cytoskeletons. The assay worked well on microscopy 

slides. However, it did not work in the prerequisited format, 384-well plates. 

In this thesis functional characterisation of TbKif13-1 domains occurred, using TbKif13-1 

deletion constructs for T. brucei in vivo and in vitro assays. Immunfluorescence studies 

indicated that the intranuclear TbKif13-1 localisation depends on a balance of several NLS 

and NES, with the strongest NLS in the C-terminus. TbKif13-1 was proteasome-dependent 

degraded and was not found in G1 cells. Degradation signals were supposed within its N- 

and C-terminus. Full-length TbKif13-1 bound in mitotic cytoskeleton samples in a shape 

resembling the mitotic spindle. In vitro it bound to and depolymerised taxol-stabilised 

microtubules in an ATP-dependent manner. The neck-motor domain in conjunction with the 

C-terminus was found to be its minimal functional construct for in vitro microtubule binding 

and depolymerisation. The decoupled mechanism of depolymerisation and ATPase activity is 

conserved in TbKif13-1. Ectopic expression of full-length TbKif13-1 led to reduced growth, 

zoid formation and defects in spindle formation. This dominant-negative phenotype was 

strongest after ectopic expression of the neck-motor domain. An expected inhibitory 

regulation of TbKif13-1´s depolymerisation activity by TbAuk1 mediated phoshorylation 

could not be confirmed. 



Zusammenfassung 

| VII 

 

Zusammenfassung 

Trypanosoma brucei ist ein einzelliger Parasit, der eine Flagelle besitzt. Er verursacht südlich 

der Sahara die afrikanische Trypanosomiasis, die allgemein als Schlafkrankheit bekannt ist. 

Eine anspruchsvolle Aufgabe beim Bekämpfen dieser Krankheit ist es, neue Medikamente zu 

finden, die ohne schwerwiegende Nebenwirkungen für den Patienten sowie einfach zu 

verabreichen sind. Diese Arbeit betrachtet das mitotische Kinesin TbKif13-1 als ein 

potentielles Angriffsziel für Medikamente. Es wurde versucht, die Vorraussetzungen für eine 

in vivo und eine in vitro Suche nach einem TbKif13-1 Inhibitor im Hochdurchsatz mit 

automatisierter Bildanalyse zu schaffen. Die Grundlage beider Analysemethoden war die 

durch TbKif13-1 vermittelte Depolymerisation von Mikrotubuli und deren Verhinderung 

durch einen passenden Inhibitor. Im in vivo Versuchsaufbau diente das 

Mikrotubulizytoskelett von HeLa Zellen in Interphase als Substrat. Die Vorraussetzung für 

diesen Versuch war eine stabile HeLa Zelllinie, die nach der induzierten Überexpression von 

eGFP
TbKif13-1 S143A ein depolymerisiertes Zytolskelett aufweist. Die eingebrachte Mutation 

verhinderte dabei seine Inhibition durch Phosphorylierung. Die Grundidee funktionierte in 

transient transfizierten HeLa Zellen. Allerdings zeigten die erzeugten stabilen Zelllinien keine 

Depolymerisation des Mikrotubulizytokeletts nach eGFP
TbKif13-1 S143A Überexpression. Im 

in vitro Versuchsaufbau dienten T. brucei Zytoskelette als Depolymerisationssubstrat für 

rekombinant aufgereinigtes His6
TbKif13-1. Dieser Versuch funktionierte gut auf 

Objektträgern. Jedoch funktionierte er nicht auf den vorausgesetzten 384-well Platten.  

In dieser Arbeit wurden TbKif13-1 Domänen funktionell charakterisiert, indem TbKif13-1 

Deletionskonstrukte in in vivo und in in vitro Versuche eingesetzt wurden. 

Immunfluoreszenz-Studien zeigten, dass die intranukleäre TbKif13-1 Lokalisation von einem 

Gleichgewicht verschiedener NLS und NES abhängt, mit der stärksten NLS im C-Terminus. 

TbKif13-1 wurde Proteasom-abhängig abgebaut und war in G1 Zellen nicht zu finden. 

Abbausignale wurden im N- und C-Terminus vermutet. TbKif13-1, in seiner vollen Länge, 

band in mitotischen Zytoskelettproben in einer Form, die an die mitotische Spindel erinnert. 

In vitro band es an Taxol stabilisierte Mikrotubuli und depolymerisierte diese ATP abhängig. 

Die neck-motor Domäne in Verbindung mit dem C-Terminus erwies sich als das minimal 

funktionelle Konstrukt für das Binden an und das Depolymerisieren von Mikrotubuli in vitro. 

Der entkoppelte Mechanismus von Depolymerisation und ATPase Aktivität ist in TbKif13-1 

konserviert. Die ektopische Expression des TbKif13-1 in seiner vollen Länge führte zu 
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reduziertem Wachstum, der Ausbildung von Zoiden und Defekten in der Ausbildung der 

Spindel. Dieser dominant-negative Phänotyp war am stärksten nach der ektopischen 

Expression der neck-motor Domäne ausgeprägt. Eine erwartete inhibierende Regulation der 

Depolymerisationsaktivität von TbKif13-1 durch eine TbAuk1-vermittelte Phosphorylierung 

konnte nicht bestätigt werden.  
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1. Introduction 

1.1. Trypanosoma brucei spp. and trypanosomiasis 

Trypanosoma brucei is a unicellular, uniflagellated parasite. It is the agent of sub-Saharan 

human African trypanosomiasis, commonly known as sleeping sickness. It is transmitted to 

humans by the bite of the tsetse fly (Glossina spp.). The tsetse fly is the vector, which 

receives the parasite itself from the mammalian host, when taking a blood meal on infected 

human or wild or domestic animal harbouring human pathogenic parasites. Since 

trypanosomiasis is a vector-borne disease, its occurance is restricted to areas where the 

tsetse fly is prevalent. 

Human African trypanosomiasis takes two known forms. They are grouped by causative 

agent, the T. brucei sub-species (Checchi et al., 2008; Odiit et al., 1997). T. b. gambiense is 

most common in western and Central Africa. To date it accounts for the larger part of 

reported cases of sleeping sickness. It causes a chronic infection and a slow progressing 

form. T. b. rhodesiense is found in eastern and southern Africa and is responsible to a smaller 

amount of reported cases of sleeping sickness. It induces an acute infection and a faster 

progressing form.  

The Latin American form of human trypanosomiasis (Chagas disease) is caused by T. cruzi. It 

is transmitted by a different vector, the triatomine bugs. Transmission occurs via their faeces 

or urine. 

The course of disease in human African trypanosomiasis includes a first haemo-lymphatic 

stage. In this stage, trypanosomes propagate in lymph, blood, skin, subcutaneous tissues, 

and interstitial spaces of organs (Capewell et al., 2016). In a mouse model, visceral adipose 

tissue also constitutes a trypanosome reservoir (Trindade et al., 2016). In the haemo-

lymphatic stage, patients suffer from bouts of fever, joint paints and headaches. After 

crossing the blood-brain barrier, parasites are found within the central nervous system. In 

this second neurological stage, typical symptoms are sensory disturbances, poor 

coordination, changed behaviour, confusion and a disturbed sleeping cycle. Unless 

treatment is provided, trypanosomiasis almost invariably is a fatal disease progressing to 

death. 
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Trypanosomes will successfully proliferate in the mammalian bloodstream by antigenic 

variation of a variant surface glycoprotein (VSG) coat and thus evade the human immune 

system. Humans and higher primates are innately immune to African T. b. brucei, the 

causative agent of animal African trypanosomiasis, nagana, in cattle. This disease reduces 

meat and milk availability in affected rural areas. The immunity of humans and higher 

primates is a result of trypanosome lytic factors (TLFs). TLF1 is a high density lipoprotein 

binding apolipoprotein L-I (apoL-I) and haptoglobin-related protein (Hpr). TLF2 is lipid-poor 

and contains apoL-I, IgM (immunglobulin M) and Hpr (Raper et al., 1999). TLF uptake in T. b. 

brucei and T. b. rhodesiense occurs, in addition to unkown mechanisms, via the haptoglobin-

haemoglobin receptor (TbHpHbR). There are about 300 copies within the flagellar pocket 

that basically serve the parasite for haem uptake (Bullard et al., 2012; Vanhollebeke et al., 

2008). In blood plasma, haem is bound to the carrier protein haptoglobin. This complex is 

recognised by TbHpHbR. Association of haemoglobin to TLF Hpr also faciliates TbHpHbR 

binding of the complex (Drain et al, 2001; Vanhollebeke et al., 2008; Widener et al., 2007). 

The exact mechanism for apoL-I induced Trypansomes´ lysis still remains unclear. There is 

strong evidence that upon endocytotic uptake, apoL-I is localised to acidic endosomes, 

integrates into their membrane, increases permeability for ions, and subsequent osmotic 

swelling results in cell death (Pérez-Morga et al., 2005; Vanhollebeke et al., 2007). T. b. 

rhodesiense prevents this by expressing a truncated VSG, the SRA (serum resistance-

associated) protein, which binds to apoL-I within endosomes (De Greef and Hamers, 1994; 

Stephens and Hajduk, 2011; Vanhamme et al., 2003; Xong et al., 1998). T. b. gambiense 

group 1 escapes TLF mediated lysis by several mechanisms. mRNA levels of TbgHpHbR are 

decreased and binding efficacy of TLF to TbgHpHbR is reduced due to a single nucleotide 

polymorphism (DeJesus et al., 2013; Higgins et al., 2013; Kieft et al., 2010). Moreover, a 

specific truncated VSG, TbgGP (T. brucei gambiense glycoprotein), stiffens membranes after 

binding to lipids, thus preventing apoL-I toxicity (Berberof et al., 2001; Capewell et al., 2013; 

Uzureau et al., 2013).  

Drugs are available for treatment of trypanosomiasis. Unfortunately, all of these drugs result 

in a variety of undesirable side effects. As first stage therapy, pentamidine is used to fight T. 

b. gambiense and suramin to fight T. b. rhodesiense infections. Treatment of second stage 

disease requires drugs that are able to cross the blood-brain barrier. Melarsoprol, a 

compound containing arsen, can be administered to patients of both infection forms. Yet, 
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melarsoprol risks high relapse rates, treatment failure, and a mortality rate of about 5% is 

documented (Balasegaram et al., 2009; Legros et al., 1999; Matovu et al., 2001; Mumba 

Ngoyi et al., 2010; Pépin et al., 1994; Robays et al., 2008). For T. b. gambiense infection, 

treatment with eflornithine is preferred to melarsoprol because it lowers the risk of death 

(Chappius et al., 2005). Easier in patient application, with reduced treatment time and 

frequency, and with reduced therapeutic costs compared to sole eflornithine treatment, is a 

combination of eflornithine and nifurtimox (Checchi et al., 2007; Priotto et al., 2009). The 

combination of drugs also is an attempt to counteract increasing drug resistance, which 

emphasises the need for new drugs against trypanosomiasis.  

Finding new drugs that are safe for patients and that are easy to administer remains a 

challenging task. 

 T. brucei life cycle 1.1.1.

The life cycle of T. brucei involves two hosts, the insect vector and the mammalian host. The 

insect vector is the tsetse fly (Glossina spp.). It transmits T. brucei between mammalian hosts 

by biting. Upon uptake of stumpy form trypanosomes from the mammalian host, they 

differentiate into proliferating procyclic trypomastigotes within the tsetse fly midgut. The 

VSG coat is replaced by a coat of procyclin and energy generation is changed from the 

bloodstream glycolysis to mitochondrion-based respiration. Midgut trypanosomes then 

migrate to the proventriculus, where they generate epimastigotes by asymmetric division. 

After arrival in the tsetse fly´s salivary glands, epimastigotes attach via their flagellum to the 

epithelial cells (Tetley and Vickerman, 1985). This proliferative form generates the non-

proliferative metacyclic form, which again possesses a VSG coat in adapation to the 

subsequent transmission to a new mammalian host (Rotureau et al., 2012). Within the 

mammalian bloodstream, trypanosomes proliferate as long slender forms, which establish 

and maintain an extracellular bloodstream infection. After penetrating the blood vesel 

endothelium, trypanosomes populate extravascular tissues like the central nervous system. 

With an increasing number of bloodstream tryanosomes, they change to non-proliferating 

stumpy forms pre-adapted to transmission by the tsetse fly (MacGregor et al., 2011; Vassella 

et al., 1997). 
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 T. brucei cell architecture 1.1.2.

T. brucei has an elongated cell shape defined by a polarised microtubule cytoskeleton. 

Microtubules of this subpellicular cytoskeleton are arranged with their plus ends posterior 

and their minus ends anterior, extending in a left-handed helical path (Figure 1 (A); Robinson 

et al., 1995).  

Within this microtubule cell corset the single-copy organelles, i.e. flagellar pocket, flagellum, 

Golgi, nucleus, kinetoplast and mitochondrion, are located between the posterior end and 

the centre of the cell (Figure 1 (A)). The most posterior is the flagellar pocket. It is the only 

site of endo- and exocytosis (Engstler et al., 2004). The flagellar pocket neck is encircled by 

the flagellar pocket collar.  

At the base of the flagellar pocket, the basal body is located. The single flagellum emerges 

from it. The trypanosomal flagellum contains in addition to the canonical nine-plus-two 

architecture of the axoneme, an insoluble, paracrystalline filament (Figure 1 (B)). This 

paraflagellar rod (PFR) runs in parallel to the axoneme and is necessary for flagellar 

movement (Bastin et al., 1998; Deflorin et al., 1994; Fuge, 1969; Schlaeppi et al., 1989; 

Vickerman, 1962). The flagellum is required for cell movement, cell division, cell size, 

infectivity, and potentially, sensory perception (Broadhead et al., 2006; Engstler et al., 2007; 

Kohl et al., 2003; Oberholzer et al., 2007). It runs in a left-handed helical pattern along the 

entire cell and the flagellar attachment zone (FAZ). The flagellum runs to the anterior tip 

until the flagellum´s distal tip leaves the cell (Woods et al., 1989).  

The FAZ is tightly bound to the cytoskeleton. It consists of an electron-dense filament and a 

specialised microtubule quartet (MtQ) with reversed polarity, which is connected to the 

endoplasmatic reticulum (Figure 1 (B); Lacomble et al., 2012; Robinson et al., 1995; 

Vickerman, 1969). The FAZ is linked to the flagellar pocket collar via the bilobe structure. The 

function of the bilobe structure is not clear. However, it seems to be involved in Golgi 

appartus duplication (Esson et al., 2012; He et al., 2005). 
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Figure 1: Model of the T. brucei cell structure. (A) T. brucei has an elongated shape. The single-copy 

organelles are located between the posterior end and the centre of the cell. The single 

mitochondrion contains the kinetoplast and extends along the length of the cell. Several cell 

components like the flagellar pocket collar, the endoplasmatic reticulum, lysosomes and endosomes 

are not depicted. Figure (A) is modified and adapted from Zhou et al., 2014. (B) Illustrated cross 

section of T. brucei, showing the cell body with its subpellicular microtubule corset and the FAZ 

consisting of a specialised microtubule quartet (MtQ) with reversed polarity, and an electron dense 

filament. The flagellum is depicted with its axoneme containing the classical nine-plus-two 

architecture, and the paraflagellar rod. 

The basal body and its orthogonally positioned immature probasal body are both linked to 

the mitochondrial kinetoplast by a tripartite attachment complex (TAC; Ogbadoyi et al., 

2003; Robinson and Gull, 1991). The mitochondrial genome is located within the disc-like 

structured kinetoplast. It consists of topologically interlocked circular DNA, the maxi- and 

minicircles. The 25 - 50 maxicircles (about 20 kb in size) encode mitochondrial proteins and 

ribosomal RNA. The thousands of minicircles (each about 1 kb in size) encode guide RNA, 

necessary for posttranscriptional editing of pre-mRNA from maxicircles. The single 

mitochondrion is unusual among eukaryotes, since it extends along the length of the cell.  

The Trypanosome nucleus contains different kinds of chromosomes. The eleven pairs of 

megabase chromosomes (between 1 and 6 Mbp in size) carry all actively transcribed genes. 

VSGs are encoded not only on megabase chromosomes, but also on the three to five 

intermediate chromosomes (200 - 500 kbp in size). The about 100 minichromosomes (30 – 
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50 kbp in size) code for silent VSGs. They are transcriptionally silent, but increase the 

number of VSGs. Silent VSGs become active upon duplicative transposition to active VSG 

expression sites on megabase chromosomes (Morrison et al., 2005; Robinson et al., 1999; 

Van der Ploeg et al., 1984a; Van der Ploeg et al., 1984b). 

 Chromosome segregation in T. brucei 1.1.3.

Trypanosomes undergo closed mitosis. The mitotic spindle microtubules originate from 

opposing plaques within the nuclear envelope. These do not exhibit obvious centriolar 

structures, but contain a ring-like structure (Ogbadoyi et al., 2000). ɣ-tubulin, a component 

of microtubule nucleating MTOCs (microtubule organising centres), colocalises with these 

poles (Scott et al., 1997). There is evidence that not all T. brucei chromosomes are 

segregated microtubule-dependent, since the number of chromosomes exceeds that of 

observed mitotic spindle microtubules (Vickerman, 1994; Vickerman and Preston, 1970). 

Trypanosomes lack the centromer-specific histone H3 variant CENP-A (centromere protein), 

which determines the site for kinetochore assembly in vertebrates. Also conventional 

kinetochore proteins are missing in Trypanosomes. Recently, kinetoplastid specific 

kinetochore proteins, and a distantly related protein of the outer kinetochore proteins 

Ndc80 (nuclear division cycle) and Nuf2 (nuclear filament-containing protein) were identified 

(Akiyoshi and Gull, 2014; D`Archivio and Wickstead, 2017; Nerusheva and Akiyoshi, 2016). 

Megabase chromosomes contain centromere sequences and electron microscopy studies 

suggest kinetochore like structures, into which spindle microtubules terminate (Obado et al., 

2007; Ogbadoyi et al., 2000). These data and fluorescence in situ hybridisation observations 

indicate a classical kinetochore-spindle association and segregation for megabase 

chromosomes during mitosis (Ersfeld and Gull, 1997). For intermediate and 

minichromosomes, no centromeric sequences were detected (Obado et al., 2007; Wickstead 

et al., 2004). Segregation of minichromosomes is spindle-dependent, but differs from that of 

megabase chromosomes (Ersfeld and Gull, 1997). Minichromosomes congress at the 

metaphase plate before occupying a polar position within the spindle during segregation 

(Ersfeld and Gull, 1997). A possible model for their segregation is the 'lateral stacking model', 

proposing a lateral attachment to spindle microtubules, possibly by repeat or telomeric 

sequences (Gull et al., 1998).  
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 T. brucei cell cycle 1.1.4.

Like in other eukaryotes, the cell cycle of Trypanosomes is divided into G1-, S-, G2- and M-

phase. The cell cycle phases of the kinetoplast and the nucleus are shifted to one another 

(Figure 2 (A); Sherwin and Gull, 1989; Woodward and Gull, 1990). 

During G1-phase, trypanosomes contain one flagellum, one kinetoplast, and one nucleus. 

This phase is termed 1K1N (Figure 2 (B)). The first marker of the G1-S transition is the 

formation of a new FAZ microtubule quartet besides the basal and pro-basal body (Lacomble 

et al., 2010). Upon cell cycle progression, it is linked with its proximal end to the new basal 

body and with its distal end to the old FAZ (Absalon et al., 2007; Kohl et al., 1999; Lacomble 

et al., 2010). Furthermore at G1-S transition, the probasal body matures and elongates, 

thereby forming a new flagellum, which invades the existing flagellar pocket (Lacomble et 

al., 2010). Within the shared flagellar pocket, the distal tip of the new elongating flagellum is 

connected to the old flagellum. It remains connected during cell duplication in procyclics via 

the flagella connector, a cytoskeletal structure probably providing positional guidance to the 

new flagellum (Briggs et al., 2004; Lacomble et al., 2010; Moreira-Leite et al., 2001).  

S-phases of the kinetoplast and the nucleus start almost completely simultaneous and can 

be determined by an extending kinetoplast, a stage termed 1-2K1N (Woodward and Gull, 

1990). During kinetoplast S-phase, the matured daughter basal body, together with its new 

flagellum, rotates anti-clockwise from its anterior position to posterior related to the mother 

basal body and old flagellum (Gluenz et al., 2011; Lacomble et al., 2010). A membranous 

structure protrudes between the two flagella, dividing the flagellar pocket into two 

(Lacomble et al., 2010). With the start of the nuclear S-phase new probasal bodies are 

formed (Woodward and Gull, 1990).  

At nuclear G2-phase, basal bodies segregate, probably as a result of base-to-tip waves of the 

new flagellum (Absalon et al., 2007; Robinson and Gull, 1991). Due to basal bodies´ TAC 

mediated linkage to the kinetoplast, its movement segregates the duplicated kinetoplast, 

resulting in 2K1N cells (Ogbadoyi et al., 2003; Robinson and Gull, 1991).  
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Figure 2: T. brucei cell cycle. (A) Exponentially growing procyclic T. brucei have a cell cycle of 8.5 

hours. The cell cycle of the kinetoplast and the nucleus are shifted to one another. Kinetoplast S-

phase (S) starts before and lasts shorter than the nuclear S-phase. Kinetoplast segregation (D) occurs 

before the onset of nuclear mitosis (M). In the kinetoplast apportioning (A) phase, separated 

kinetoplasts and the respective associated basal bodies continue to move apart. During cytokinesis 

(C) the cleavage furrow forms along the entire cell from anterior to posterior, running between the 

two flagella. Figure (A) is modified and adapted from Gull et al., 1990. (B) In G1-phase T. brucei 

contains one flagellum, one kinetoplast and one nucleus (1K1N). In S-phase the kinetoplast elongates 

(1-2K1N) and in G2-phase the basal bodies and the kinetoplast segregate (2K1N). Subsequently, 

nuclear mitosis occurs with an elongating nucleus, finally resulting in a cell with two kinetoplasts and 

two nuclei (2K2N). Cytokinesis runs longitudinally from anterior to posterior, leading to 1K1N cells. 
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After completing the kinetoplast segregation, closed nuclear mitosis starts and ends in 2K2N 

cells, positioning the new nucleus between the two kinetoplasts (Robinson et al., 1995; 

Sherwin and Gull, 1989). Cytokinesis initiates at the distal tip of the new flagellum, running 

longitudinally through the cell, thereby following the new flagellum and FAZ as axis (Kohl et 

al., 2003; Sherwin and Gull, 1989). This yields two cells with one nucleus, one kinetoplast 

and one flagellum each (1K1N). 

Cell cycle regulation differs in procyclic and bloodstream Trypanosomes. In procyclics 

initiation of cytokinesis depends primarily on the basal body/kinetoplast cycle (Hammarton 

et al., 2003; Li and Wang 2003; Ploubidou et al., 1999; Tu and Wang, 2004). Thus, mitotic 

block does not inhibit cytokinesis, resulting in anucleate cells (zoids (0N1K); Hammarton et 

al., 2003; Li and Wang 2003; Ploubidou et al., 1999; Tu and Wang, 2004). In contrast, mitotic 

block in bloodstream Trypanosomes leads to inhibition of cytokinesis but allows re-entry 

into G1- and S-phase (Hammarton et al., 2003; Tu and Wang, 2004). Kinetoplast duplication 

and segregation continues in these cells, resulting in cells with multiple kinetoplasts and an 

enlarged nucleus with high DNA content (Hammarton et al., 2003; Li and Wang, 2006; Tu 

and Wang, 2004).  

1.2. Microtubules 

Microtubules in Trypanosomes are involved in many essential cellular processes, like 

maintenance of cell shape, cell polarity, motility and mitosis. They form the subpellicular 

cytoskeleton, the axoneme of the flagellum, the mitotic spindle, and the basal body 

(Ogbadoyi et al., 2000; Robinson et al., 1995; Vickerman and Preston, 1970). In 

Trypanosomes six members (α, β, γ, δ, ϵ and ζ) of the tubulin superfamily are present (Scott 

et al., 1997; Vaughan et al., 2000). α- and β-tubulin protein sequences of T. brucei are similar 

to their mammalian homologues (Lama et al., 2012).  

The αβ-tubulin heterodimers are arranged in a head-to-tail fashion, forming longitudinal 

protofilaments (Desai and Mitchison, 1997). 13 protofilaments, laterally attached to one 

another, form the hollow cylindrical structure of a microtubule with a diameter of 25 nm. 

Microtubules are dynamic and are subject to a mechanism called 'dynamic instability', i.e. 

cycles of random shrinkage (catastrophe) and growth (resuce; Mitchison and Kirschner, 

1984). This preferentially happens at the plus end, exposing β-tubulin. α-tubulin points 

towards the minus end, which is slowly growing (Figure 3 (A)). 
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Microtubule nucleation of the minus end primarily occurs at MTOCs. They contain ɣ-tubulin, 

which is essential for nucleation. MTOCs differ among species: in animal cells this centre is 

primarily the cytoplasmic centrosome, consisting of a pair of centrioles surrounded by 

pericentriolar matrix. In S. cerevisiae the single MTOC is the spindle pole body, a trilaminar 

plaque located within the nuclear envelope, forming cytoplasmic microtubules and the 

spindle (King et al., 1982; Moens and Rapport, 1971; Robinow and Marak, 1966). In T. brucei 

there are at least two MTOCs. The first one is the basal body, which is located close to the 

kinetoplast and nucleates the flagellum. The second one are plaques within the nuclear 

envelope from which the mitotic spindle emerges (see 1.1.3.; Ogbadoyi et al., 2000). The 

microtubules of the subpellicular corset originate mainly from the anterior tip of the cell 

body and extend posterior. For them, no precise MTOCs have been identified. A study 

suggests that ɣ-tubulin accumulations at the anterior tip serve as their nucleation sites (Scott 

et al., 1997). 

The motor of microtubule plus ends´ dynamic instability is the hydrolysis of tubulin bound 

GTP. Each of the αβ-tubulin dimer subunits binds GTP. GTP-tubulin has a straight 

conformation. This is deemed to favour its integration into straight microtubule 

protofilament ends (Wang and Nogales, 2005). Free GDP-tubulin exhibits a curved shape, 

incapable of binding to microtubule ends (Wang and Nogales, 2005). 

In α-tubulin, the GTP binding site is located within the intradimer interface at the transition 

to β-tubulin (Figure 3 (B)). This burries the bound GTP and makes it non-exchangeable (N-

site; Nogales et al., 1998). GTP bound to the E-site (exchangeable) of β-tubulin is exposed in 

unpolymerised tubulin dimers as well as at microtubule polymer plus ends (Mitchison, 

1993). Upon assembly of a new αβ-tubulin dimer, the α subunit contacts the E-site of the 

terminal microtubule β-tubulin, leading to hydrolysis of β-tubulin´s GTP (Nogales et al., 

1999). While phosphate is released, GDP remains bound to β-tubulin within the lattice 

(Carlier and Pantaloni, 1981). High-resolution cryo-EM studies revealed that the release of 

phosphate leads to a compaction of the E-site (Alushin et al., 2014). This results in an 

internal rearrangement of α-tubulin, reminiscent in structure of the formerly supposed and 

observed straight-to-bent transition (Alushin et al., 2014). It is supposed that this induces a 

conformational strain within the microtubule, which is relaxed by bending during 

depolymerisation (Alushin et al., 2014). Depolymerisation of microtubules occurs mainly by 

disassembly of oligomeres (Mandelkow et al., 1991).  
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To prevent tubulin-GDP from depolymerisation within the polymerised microtubule, lateral 

side-by-side interactions are thought to stabilise them (Desai and Mitchison, 1997). The 

coupling of the polymerisation mechanism to GTP hydrolysis results in a GTP cap at the plus 

end, which should stabilise microtubules (Mitchison and Kirschner, 1984). Loss of the GTP 

cap leads to GDP-tubulin at the end of a protofilament, which exhibits less lateral 

interactions. This favours its curved conformation and subsequent depolymerisation (Desai 

and Mitchison, 1997). 

 
Figure 3: αβ-tubulin heterodimers form microtubules. (A) A microtubulus consists of 13 

protofilaments. Dynamic instability occurs mainly at the microtubule plus end with cycles of 

catastrophe and rescue. The plus end exposes β-tubulin, while the minus end exposes α-tubulin. (B) 

α- and β-tubulin dimer subunits both bind GTP. α-tubulin binds GTP within the intradimeric N-site 

(blue), where it is not hydrolysable; β-tubulin binds GTP in the E-site (green), in which it can be 

hydrolysed. αβ-tubulin GTP has a straight conformation ready for incorporation into the microtubule 

end. During incorporation, α-tubulin of the free tubulin dimer binds to the E-site of the microtubule 

end β-tubulin, whose GTP is hydrolysed (light green); free phosphate is released. β-tubulin GTP at the 

microtubule plus end forms the stabilising GTP cap. 

Stability of microtubules is also regulated by microtubule-associated proteins (MAPs). In 

Trypanosomes several MAPs link the subpellicular microtubules to each other and the cell 

membrane (Balaban and Goldman, 1992; Detmer et al., 1997; Hemphill et al., 1992; 

Vedrenne et al., 2002; Woods et al., 1992). 

MAPs also include microtubule plus end tracking proteins (+TIPs), to which the family of end-

binding (EB) proteins belongs. EB proteins interact with almost all other +TIPs and target 

them to microtubule plus ends. This mainly occurs via SxIP motifs in +TIPs (Honnappa et al., 

2009). SxIP motif containing proteins form a family, whose most prominent member is the 

microtubule depolymerising Kinesin-13 protein MCAK (mitotic centromere associated 

kinesin; Honnappa et al., 2009). For the Kinesin-13 TbKif13-1 in T. brucei, no SxIP site was 

detected. A T. brucei end-binding protein 1 (EB1) was identified (Sheriff et al., 2014). It 
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localises posterior, where the subpellicular microtubule plus ends are supposed (Sheriff et 

al., 2014). 

Microtubules from Trypanosomes are considered potential drug targets. Despite their 

protein sequence similarity to mammalian tubulin subunits, sufficient differences in tubulin 

structures are the reason for their exhibited selective drug sensitivity (Lama et al., 2012; 

Werbovetz et al., 2003). For instance, the tubulin binding site for colchicine, a drug that 

inhibits microtubule polymerisation by preventing curved tubulin to adopt a straight 

conformation in mammals, differs in T. brucei (Lama et al., 2012; Ravelli et al., 2004). Thus, 

colchicine sensivity in T. brucei is strongly reduced (Lama et al., 2012). Nocodazole, which 

stabilises microtubule dynamics at low concentrations and promotes depolymerisation at 

high concentrations, also binds to the colchicine-domain and exhibits a significantly different 

impact on mammalian cells compared to T. brucei (Jordan et al., 1992; Lama et al., 2012). In 

contrast, taxol mediates microtubule stabilisation by straightening GDP-bound β-tubulin 

within the protofilament with the same sensitivity in mammalian cells and in T. brucei (Elie-

Caille et al., 2007; Lama et al., 2012). 

1.3. Kinesins 

Eukaryotic cells contain three types of motor proteins: kinesins, dyneins and myosins. While 

myosins track on actin filaments, kinesins and dyneins use microtubules as surface. Of the 

three, only kinesins are ubiquitous to all eukaryotes (Kollmar, 2016; Richards and Cavalier-

Smith, 2005; Wickstead and Gull, 2006; Wickstead and Gull, 2007). All three have in common 

to use energy from ATP hydrolysis for force generation, and to consist of many members, 

grouped into families. Most members are found within kinesins. According to phylogenetic 

analysis, kinesins were classified in up to 17 families (Dagenbach and Endow, 2004; 

Lawrence et al., 2004; Wickstead and Gull, 2006).  

 Kinesin architecture  1.3.1.

Kinesins act as homo- or heterodimer or even higher-order complexes. They walk along the 

microtubule lattice in an unidirectional way, using the energy they produce by ATP 

hydrolysis. The ATP-binding site and the microtubule binding site are both located within the 

conserved globular motor domain, the head (Scholey et al., 1989). For ATP binding there are 

several conserved nucleotide binding motifs (N1-4) necessary within the motor domain 

(Sablin et al., 1996). The ATP adenine ring interacts with N4 RxRP, while α- and β-phosphate 
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bind via the P-loop N1 GQTxSGKT (Sablin et al., 1996). ɣ-phosphate is bound via switch I N2 

NxxSSRSH and switch II N3 DxxGxE. Both are assumed to be involved in ɣ-phosphate-sensing, 

i.e. sensing the presence or absence of ɣ-phosphate and triggering ATP hydrolysis and 

conformational changes within the motor structure (Kull and Endow, 2002; Naber et al., 

2003; Sablin et al., 1996). Switch II is directly connected to the microtubule binding site 

within kinesins (Woehlke et al., 1997). This spatial proximity indicates how the information 

between the state of the bound nucleotide and the microtubule binding state is exchanged 

within the kinesin (Woehlke et al., 1997). 

The location of the motor domain points to the direction of movement and used to serve as 

criterion for the first kinesin classification (Figure 4; Vale and Fletterick, 1997). Most kinesins 

(Kinesin-1 to -12) are plus end directed motors, possessing a N-terminal motor domain (N-

type kinesins). Kinesin-14 members contain a C-terminal motor domain (C-type kinesins) and 

exhibit a minus end directed movement. N- and C-type kinesins act as transporters for 

various cargoes, like vesicles and organelles within the cell. They are specific to their cargo. 

N- and C-type kinesins contain two variable domains, the stalk and the tail. The tail, by itself 

or by association with adaptor or scaffold proteins, binds to cargo proteins. The stalk 

mediates dimerisation via its coiled-coil structure. It is connected to the motor by the 

positively charged neck. The neck assists the catalytic core with generation of the kinesin 

movement. 

 
Figure 4: Model of kinesin types. (I) Plus end directed kinesin with a N-terminal motor domain. (II) 

Minus end directed kinesin with a C-terminal motor domain. Both kinesin types contain the catalytic 

motor domain (black) with conserved nucleotide binding motifs N1-N4 and the microtubule binding 

site; via the positively charged neck (grey stripes), that contributes to processivity; the motor domain 

is linked to the stalk and the tail (white); the stalk serves as dimerisation domain and the tail is used 

for interaction with cargo proteins. (III) Depolymerising kinesin with the motor domain in the middle. 

The motor domain contains in addition to the conserved nucleotide binding motifs N1-N4 and 

microtubule binding sites, the class specific elongated loop 2 with the KVD motif. The neck is located 

N-terminal to the catalytic core. It contributes to Kinesin-13´s depolymerisation activity. Both, the N- 

(white) and the C-terminus (spotted) contribute to dimerisation and subcellular localisation. 
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In contrast, there are kinesins not transporting cargo, but using the energy of ATP hydrolysis 

to depolymerise microtubules from one of its two ends. To these belong other members of 

the Kinesin-14 family and the Kinesin-8 family (Endow et al., 1994; Gupta et al., 2006; Mayr 

et al., 2007). The members of the Kinesin-13 family have the ability to depolymerise 

microtubules from both ends (Desai et al., 1999). The Kinesin-13 family is needed for 

modulation of microtubule dynamics during mitosis (see 1.3.3.) and interphase (Mennella et 

al., 2005). Several types of cancer are associated with overexpression of the Kinesin-13 

member MCAK/Kif2C (kif: kinesin superfamily; see 1.3.5.; Ishikawa et al., 2008). 

Kinesin-13 members are mainly homodimers. Their motor domain is located within the 

middle (M-type kinesins). Elements like the nucleotide binding motifs within the motor 

domain are conserved. N-terminal to the motor domain is the positively charged neck 

domain located. These two domains were shown to be necessary and sufficient for MCAK´s 

microtubule depolymerisation activity (Maney et al., 2001). Both, N- and C-terminal domain 

may contribute to MCAK´s dimerisation. N- or C-terminus deleted constructs are dimeric, 

while the neck-motor construct remains a monomer (Burns et al., 2014; Maney et al., 2001; 

Talapatra et al., 2015). Also subcellular localisation depends on these two domains (Moore 

et al., 2005; Welburn and Cheeseman, 2012; Wordeman et al., 1999). 

 Kinesin-13 movement and microtubule depolymerisation 1.3.2.

Kinesin-13 members do not walk along microtubules, but use unbiased one-dimensional (1D) 

diffusion to reach microtubules´ ends (Helenius et al., 2006). Movement by diffusion could 

be beneficial for targeting both microtubule ends and for fast movement, accelerating 

depolymerisation reactions (Helenius et al., 2006). While diffusion initiation depends on ATP 

hydrolysis, diffusion itself occurs without energy obtained from ATP hydrolysis (Burns et al. 

2014; Helenius et al., 2006).  

Kinesin-13 activity is regulated by conformational changes during its catalytic cycle of 

diffusion, depolymerisation and ATP hydrolysis. The extreme C-terminal tail and the neck-

motor domain are involved in these conformational changes, but also the state of the bound 

nucleotide is important (Burns et al., 2014; Ems-McClung et al., 2013). In solution MCAK´s 

activity is regulated by the extreme C-terminus. It folds back to the motor domain in 

proximity to the neck, bringing the molecule into a stabilised, closed conformation after ATP 

binding (Figure 5 (A); Burns et al., 2014; Ems-McClung et al., 2013; Moore and Wordeman, 

2004; Talapatra et al., 2015). The C-terminus does not interact with the nucleotide binding 
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sites, but enables stabilisation of MCAK´s dimeric nature (Talapatra et al., 2015; Zong et al., 

2016). For the interaction, the conserved EExxS motif within the C-terminal tail is essential 

(Talapatra et al., 2015; Zong et al., 2016).  

 
Figure 5: Model of closed and open conformation of the Kinesin-13 dimer. (A) In the closed 

conformation, the C-terminal tail with the EExxS motif interacts with the neck-motor domain and 

binds at the interface of two motor domains. The C-terminus, and to some extend also the N-

terminus, contributes to dimerisation. (B) Motor domain binding to microtubules and to the C-

terminus is mutually exclusive, inducing the open conformation. The negatively charged C-terminal 

EExxS motif and the negatively charged microtubule lattice contribute to 1D diffusion by electrostatic 

repulsion. Conformational change leads to settling of the neck domain to the microtubule lattice and 

the N-terminus delocalises. For simplification reasons two protofilaments represent the microtubule. 

The figure is modified and adapted from Talapatra et al., 2015. 

The C-terminal tail and its attachment to the motor domain also regulates adequate lattice 

binding of MCAK. Mutants with deleted C-terminus or mutants unable to bind the motor 

domain exhibit increased lattice binding (Moore et al., 2005; Talapatra et al., 2015; Zong et 

al., 2016). Also the microtubule E-hook, which consists of an array of negatively charged 

amino acids within the C-termini of α- and β-tubulin subunits, has an influence on MCAK´s 

lattice binding. While removal of the microtubule E-hook results in increased microtubule 

affinity of MCAK, it does not have an influence on the affinity of the mutant MCAK, in which 

the C-terminal tail is unable to bind to the motor (Talapatra et al., 2015). These results 

indicate that the neck-motor bound C-terminal tail and the E-hook cooperate in order to 

reduce MCAK´s lattice binding affinity and to support its movement to the microtubule tips 

(Figure 5 (B); Moore et al., 2005; Talapatra et al., 2015). Thus, the electrostatic repulsion 

between the C-terminal tail and the E-hook could contribute to the 1D diffusion.  

It was supposed that also electrostatic interactions between the positively charged neck and 

the tubulin E-hook are necessary for 1D diffusion (Helenius et al., 2006; Ovechkina et al., 

2002). In contrast to conventional kinesins with the neck in parallel to or away from the 

microtubule, the helical neck domain of Kinesin-13 extends towards microtubules (Ogawa et 

al., 2004). Data suggest that conformational changes to the open conformation upon lattice 
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binding induced ATP hydrolysis result in delocalisation of the N-terminus and in settling of 

the neck domain to the lattice (Burns et al., 2014; Cooper et al., 2010). Thus, by doing the 

initial step of lattice binding, the neck contributes to MCAK´s delivery to the microtubule 

ends. But it was disproved that the neck itself is needed for diffusion (Cooper et al., 2010). 

In solution MCAK is preferentially ATP bound and exists in a closed conformation (Ems-

McClung et al., 2013; Friel and Howard, 2011; Helenius et al., 2006). Upon microtubule 

lattice binding, Kinesin-13 changes to an open conformation in a post-hydrolysis ADP-Pi 

state. The open conformation probably results from C-terminal tail dissociation. It is 

presumably induced by a conformational change within the motor´s microtubule binding 

domain. C-terminal tail binding and microtubule binding to the motor domain are mutually 

exclusive (Talapatra et al., 2015). Thereby it is the lattice itself to trigger the release of the C-

terminal tail and not the E-hook (Talapatra et al., 2015). 

In the open state, Kinesin-13 is relaxed and binds weakly to the lattice, hence faciliating 1D 

diffusion (Figure 6; Asenjo et al., 2013; Burns et al., 2014; Ems-McClung et al., 2013; Helenius 

et al., 2006). This is in coincidance with MCAK´s lattice stimulated ATPase activity (Moore 

and Wordeman, 2004). Deletion of the C-terminal tail increases ATPase activity, indicating 

again its regulatory function (Moore and Wordeman, 2004).  

Reaching the microtubule ends by diffusion, nucleotide exchange from ADP to ATP is 

accelerated (Friel and Howard, 2011). This brings MCAK again into a high-affinity closed 

conformation (Burns et al., 2014; Ems-McClung et al., 2013). The C-terminal tail-neck 

interaction also contributes to the closed conformation. This could explain why the positive 

charges within the neck are essential for depolymerisation (Cooper et al., 2010; Ogawa et al., 

2004; Ovechkina et al., 2002; Talapatra et al., 2015).  
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Figure 6: Model of the Kinesin-13 working cycle. In solution Kinesin-13 is in a ATP bound, closed 

conformation. (I) Binding to the microtubule lattice induces (II) ATP hydrolysis and a conformational 

change to the open conformation. In this conformation Kinesin-13 uses 1D diffusion by repulsion of 

the negatively charged C-terminal Kinesin-13 tail and the negatively charged microtubule lattice for 

reaching one of the two microtuble ends. (III) At a microtubule end, Kinesin-13-ADP exchanges ADP 

for ATP and changes to the closed conformation. Alternatively, Kinesin-13-ATP directly binds from 

solution to a microtubule end, (IV) binds tightly to tubulin and bends it until it finally peels off the 

protofilament. (V) The ternary Kinesin-13-ATP-tubulin complex is released by ATP hydrolysis, which 

brings Kinesin-13 again into the open conformation. In solution ADP is exchanged for ATP and the 

working cycle starts again. For simplification reasons a Kinesin-13 monomer is depicted instead of the 

dimer, the three areas for tubulin binding are not depicted and a protofilament represents the 

microtubule. 

Kinesin-13-ATP binds to the tubulin intradimer interface (Asenjo et al., 2013; Moores et al., 

2002). Three areas of the kinesin are necessary for binding (Figure 7 (A)): area 1 contains 

loop 8 and binds close to the interdimeric end of β-tubulin (Asenjo et al., 2013). Area 2 

includes α4 and loop 11. Both belong to switch II. Switch II, in addition to switch I, changes 

conformation depending on the bound nucleotide species (Kull and Endow, 2002). 

Moreover, the KEC motif is located within this side. It is necessary for microtubule binding 

(Shipley et al., 2004). Area 2 binds at the intradimer interface of the αβ-tubulin heterodimer 
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(Asenjo et al., 2013). Area 3 is Kinesin-13 class specific and consists of loop 2. It contains the 

KVD motif necessary for binding, bending and depolymerising microtubule protofilaments 

(Asenjo et al., 2013; Ogawa et al., 2004; Shipley et al., 2004; Wang et al., 2015). The loop 2 

associates with the microtubule interdimer interface. The lysine and valine of the KVD motif 

interact with α-tubulin of the tubulin heterodimer, while aspartate interacts with the β-

tubulin of the subsequent tubulin heterodimer (Asenjo et al., 2013; Wang et al., 2015). The 

loop 2 mediated interaction with tubulin is missing for conventional kinesins and performs 

most of all the differences between walking along and bending microtubules (Asenjo et al., 

2013).  

The KVD interaction with the tubulin interdimer is essential for a conformational change in 

the depolymerising Kinesin-13-ATP upon microtubule end binding (Wang et al., 2015). 

Mutation of the switch II motif (DxxGxE) G495A in human MCAK inhibits this conformational 

change, keeping the kinesin in a pre-conformational change mimicking state (Wang et al., 

2012). The mutant is characterised by the remaining ability to bind to microtubules but its 

failure to depolymerise them and abolished ATPase activity (Wagenbach et al., 2008; Wang 

et al., 2012). 

 
Figure 7: Kinesin-13 binds to the tubulin intradimer interface and faciliates bending at the end of 

microtubules. A monomeric Kinesin-13 motor domain is illustrated with the three areas interacting 

with tubulin: area 1 binds to β-tubulin close to the interdimer interface; area 2 binds to the 

intradimer interface; the class-specific KVD motif of area 3 binds with lysine and valine to α-tubulin of 

the tubulin heterodimer while aspartate binds to β-tubulin of the subsequent dimer. (A) At the 

straight microtubule lattice Kinesin-13 binds weakly with dominating interactions of area 2 and 3 

with tubulin. (B) At the end of microtubules, Kinesin-13 binds tightly in a 'crossbow-type' leading to a 

curved-sheared tubulin conformation. Kinesin-13 pulling and pushing forces for tubulin bending are 

illustrated by light grey arrows, tubulin shearing forces are illustrated by white arrows. For 

simplification reasons a protofilament represents the microtubule. 

At microtubule ends, Kinesin-13-ATP binds in a 'crossbow-type', bringing the tubulin dimer in 

a curved-sheared conformation (Figure 7 (B); Asenjo et al., 2013; Mandelkow et al., 1991; 

Moores et al., 2002). The three areas within the motor domain bend the tubulin dimer. They 
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pull the plus and minus ends of the tubulin dimer relative to the intradimer interface (Asenjo 

et al., 2013). The bent tubulin dimers are unable to undergo stabilising lateral interaction 

again and finally peel off the microtubule (Asenjo et al., 2013). 

Instead of lattice diffusion by Kinesin-13-ADP-Pi, Kinesin-13-ATP may also directly bind from 

solution to the protofilament end and induce a curved conformation (Asenjo et al., 2013; 

Wang et al., 2012). One hypothesis why Kinesin-13 recognises microtubule ends is that there 

are lateral protofilament contacts missing, which enables their bending by Kinesin-13 

(Asenjo et al., 2013). At the straight tubulin of the microtubule lattice, Kinesin-13 binding 

sites are too far apart and Kinesin-13 is unable to bind tightly (Asenjo et al., 2013).  

Finally, depolymerisation releases a ternary complex of Kinesin-13-ATP-tubulin. This itself 

does not depend on ATP hydrolysis (Wang et al., 2015). Release of the ternary complex 

depends on ATP hydrolysis. It sets Kinesin-13 free, because Kinesins-13´s affinity for tubulin 

is reduced in the open state and when bound to ADP (Ems-McClung et al., 2013; Wagenbach 

et al., 2008). This step is blocked by the switch II motif mutant E497A, the post-

conformational change mimicking mutant, which keeps the ternary complex tightly bound 

(Wagenbach et al., 2008; Wang et al., 2015). 

In solution the new Kinesin-13 catalytic cycle begins with binding of ATP (Ems-McClung et al., 

2013). 

 Kinesin-13 family  1.3.3.

The microtubule depolymerising Kinesin-13 family consists of four members within human 

and mouse: Kif2A, Kif2B, Kif2C/MCAK and Kif24. Kif24 and Kif2A act as microtubule 

depolymerisers at the formation of cilia or at the regulation of axonal growth cones (Homma 

et al., 2003; Kobayashi et al., 2011; Miyamoto et al., 2015). Mitotic functions were described 

for Kif2A, Kif2B and MCAK (Ganem and Compton, 2004; Manning et al., 2007). 

During mitosis MCAK is located at centromeres and kinetochores, spindle poles and at 

microtuble plus ends, where it also localises in interphase (Moore et al., 2005; Wordeman 

and Mitchison, 1995). In the assembling bipolar spindle, it depolymerises non-kinetochore 

microtubule tips (Domnitz et al., 2012). This increases the amount of microtubules available 

for kinetochore attachments and thus, contributes to correct bipolar attachment (Domnitz 

et al., 2012). At low tension across the centromere, because of incorrect microtubule-

kinetochore attachments, centromeric MCAK translocates to the kinetochore inner plate in 
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close proximity to microtubule binding sites (Kline-Smith et al., 2004). Depletion studies of 

centromeric MCAK indicate that it enhances microtubule turnover at kinetochores for error 

correction in metaphase (Bakhoum et al., 2009; Kline-Smith et al., 2004; Wordeman et al., 

2007). In prometaphase this task is performed by Kif2B, which localises to kinetochores 

solely during this cell cycle phase (Bakhoum et al., 2009; Manning et al., 2007). However, 

MCAK is not directly involved in chromatid segregation during anaphaseA. 

In contrast, studies in D. melanogaster early embryos revealed that Klp10A (kinesin like 

protein) and Klp59C, corresponding to Kif2A and MCAK, respectively, are needed for 

chromosome-to-pole movement (Buster et al., 2007; Rogers et al., 2004). Klp59C 

depolymerises microtubules´ plus ends at kinetochores, contributing to the 'Pac-Man-

model', while centrosomal Klp10A depolymerises microtubules at their minus ends, leading 

to a poleward flux of chromatids (Buster et al., 2007; Rogers et al., 2004).  

Saccharomyces cerevisiae, like Schizosaccharomyces pombe, completely lacks Kinesin-13 

members. Depolymerisation activity is carried out by Kinesin-14 members (Kar3p 

(karyogamy) in S. cerevisiae; Pkl1p and Klp2p in S. pombe) and Kinesin-8 members (Kip3p 

(kinesin related protein) in S. cerevisiae; Klp5p and Klp6p in S. pombe), which depolymerise 

microtubules solely from the minus or plus end, respectively (Endow et al., 1994; Troxell et 

al., 2001; Unsworth et al., 2008; Varga et al., 2006). By heterodimerisation with Cik1p 

(chromosome instability and karyogamy), Kar3p also targets microtubule plus ends (Chu et 

al., 2005; Sproul et al., 2005). Of the six kinesins in budding yeast, five were shown to be 

involved in mitosis (DeZwaan et al., 1997; Gupta et al., 2006; Hepperla et al., 2014; Hoyt et 

al., 1992; Huyett et al., 1998; Miller et al., 1998; Roof et al., 1992; Saunders et al., 1997; 

Straight et al., 1998; Tytell and Sorger, 2006). 

 Kinesin-13 family in T. brucei 1.3.4.

Genome analysis revealed a large number of kinesin motor proteins in kinetoplastids 

(Berriman et al., 2005). In T. brucei (41) and in human (45) a similar quantity of kinesin family 

proteins was identified (Miki et al., 2001; Wickstead and Gull, 2006). In contrast to kinesins 

from vertebrates, only a few kinesins from Trypanosomes have yet been functionally 

characterised. Among the 41 kinesins in T. brucei, there are 13 kinetoplastid-specific and 15 

orphan kinesins (Wickstead and Gull, 2006). Orphan kinesins do not belong to any known 
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kinesin family. Kinetoplastid-specific and orphan kinesins could compensate the abscence of 

conserved mitotic kinesins, like kinesin-5 and -7 (Wickstead and Gull, 2006). 

A kinesin familiy that has been functionally characterised in T. brucei is the kinesin-13 family. 

In T. brucei sequence analysis revealed seven members of the Kinesin-13 family (Wickstead 

et al., 2010b). Based on phylogenetic typing of the catalytic domain and on protein 

architecture, TbKif13-1, -2, -3, -4a, -4b and -5 belong to the Kinesin-13A subfamily, while 

TbKif13-6 is a Kinesin-13C subfamily member (Wickstead et al., 2010a). All of them possess 

the KEC motif, necessary for microtubule binding (see 1.3.2.; Shipley et al., 2004). The KVD 

motif of TbKif13-1, -5 and -6, necessary for microtubule depolymerisation, is changed to RVD 

in the flagellar TbKif13-4a, b and 13-2, and to KYD in the cytoplasmatic TbKif13-3 (Shipley et 

al., 2004). 

Localisation studies of the Kinesin-13 family in T. brucei showed that only TbKif13-1 is 

located nuclear during closed mitosis and would thus be a possible mitotic kinesin (Chan et 

al., 2010; Wickstead et al., 2010a). Polyclonal antibody mediated staining of endogenous 

TbKif13-1 showed its cell cycle specific appearance from S-phase until the end of mitosis 

(Chan et al., 2010). In contrast, direct fluorescence microscopy of endogenous C-terminal 

GFP tagged TbKif13-1 detected it throughout the cell cycle (Wickstead et al., 2010a). Its 

mitotic localisation along the spindle differs to the spatially changing localisation of the 

vertebrate Kinesin-13B MCAK during mitosis (see 1.3.3.). Depletion of TbKif13-1 resulted in 

long and bent spindle structures in T. brucei, leading to segregation defects of both 

megabase and minichromosomes, indicating its necessity for proper spindle formation (Chan 

et al., 2010; Wickstead et al., 2010a). It also resulted in an increase of G2/early mitosis 

arrested cells and zoids, supporting its mitotic or cytokinetic function (Wickstead et al., 

2010a). After a few days, RNAi mediated TbKif13-1 depletion led to cell death of T. brucei 

(Chan et al., 2010; Wickstead et al., 2010a). This was also observed in a mouse model, where 

inoculated mice did not show infection several days after TbKif13-1 RNAi induction (Chan et 

al., 2010). 

TbKif13-2 is expressed weakly in procyclics. Only ectopically expressed myc-tagged TbKif13-2 

was detected at the flagellar tip (Chan, 2008; Chan et al., 2010). Also its Leishmania major 

orthologue LmjKin13-2 was only detectable after ectopic expression (Blaineau et al., 2007). 

In addition to the flagellar tip, LmjKin13-2 was found at the flagellum base and occasionally 



Introduction 

| 22 

 

along the flagellum (Blaineau et al., 2007). LmjKin13-2 regulates the length of the flagellum, 

whereas the function of TbKif13-2 in flagellar length control is supposed to be insignificant 

(Blaineau et al., 2007; Chan and Ersfeld, 2010). However, it has an impact on the initial 

growth of the new flagellum (Chan and Ersfeld, 2010). 

Alongside the flagellum, TbKif13-4a is located, but its function has not yet been identified 

(Chan, 2008; Chan et al., 2010). 

It is supposed that flagellar length control in T. brucei occurs at different levels, including 

intraflagellar transport and other proteins (Absalon et al., 2008; Casanova et al., 2009). 

The specific functions of the other T. brucei Kinesin-13 family members have not yet been 

determined. However, their subcellular localisations are determined. TbKif13-3 and TbKif13-

5 locate throughout the cell body (Chan, 2008; Chan et al., 2010). TbKif13-5 is detectable 

only after ectopic expression (Chan, 2008; Chan et al., 2010). 

In immunfluorescence studies, TbKif13-6 colocalises with the single mitochondrion in T. 

brucei (Chan, 2008). The failure of TbKif13-6 depletion by RNAi, and the failure of a TbKif13-6 

double knock-out cell line generation, indicates its basic necessity for T. brucei (Chan, 2008; 

unpublished data). 

 Mitotic kinesins as anti-cancer drug targets  1.3.5.

Cancer cells exhibit unregulated proliferation. This property is used by several anti-cancer 

drugs, focusing on mitotic proteins. Tubulin is one of the most used mitotic anti-cancer drug 

targets. Compounds that alter microtubule functions are e.g. vinca alkaloides and taxanes 

(Noble et al., 1958; Schiff et al., 1979; Wani et al., 1971). They are used for treatment of 

several cancer types (Mencoboni et al., 2017; Mukai et al., 2017; Scherz et al., 2017; Wagner 

et al., 2017). 

Mitotic kinesins that interact with the microtubular spindle are also considered potential 

cancer drug targets. A frequently mentioned target is Eg5 (Kif11, a Kinesin-5 member), which 

is necessary for bipolar spindle assembly in prophase (Blangy et al., 1995; Kapitein et al., 

2005). Many Eg5 inhibitor compounds have been tested in clinical trials, but failed to show 

sufficient clinical efficacy (Holen et al., 2011; Kantarjian et al., 2012; LoRusso et al., 2015; 

Purcell et al., 2010). Other Eg5 inhibitors, also in combination with additional drugs, are 

currently evaluated in clinical trials (Infante et al., 2017).  
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Anti-tumor activity is also shown for CENP-E (Kif10, a Kinesin-7 member) inhibitors (Bennet 

et al., 2015; Wood et al., 2010). CENP-E is required for progression from metaphase to 

anaphase because of its contribution to faciliating end-on attachments of laterally attached 

kinetochores (Ding et al., 2010; Schaar et al., 1997; Yen et al., 1991).  

The kinesin-8 family member Kif18A was found overexpressed in breast and colorectal 

cancer (Nagahara et al., 2011; Zhang et al., 2010). It is located at kinetochore microtubules 

and contributes to correct chromosome congression as microtubule depolymeriser (Stumpff 

et al., 2008; Stumpff et al., 2011; Stumpff et al., 2012). Yet, there have only been identified 

in vitro Kif18A inhibitors (Braun et al., 2015; Catarinella et al., 2009).  

Overexpression of the microtubule depolymeriser MCAK is found in colon, gastric and breast 

cancer, and it is associated with poor prognosis (Ishikawa et al., 2008; Nakamura et al., 2007; 

Shimo et al., 2008). Cell-based studies showed that MCAK overexpression mediates 

paclitaxel resistance, while its depletion increases sensitivity to anti-microtubule drugs 

(Ganguly et al., 2011a; Ganguly et al., 2011b; Hedrick et al., 2008). Thus, a combinatorial 

treatment of MCAK inhibition and paclitaxel addition is considered to overcome limiting 

success of sole paclitaxel treatment (Hedrick et al., 2008; Rizk et al., 2009). Identification of 

first potential drugs targeting MCAK occurred, but further studies are mandatory (Aoki et al., 

2005). 

1.4. Regulation of Kinesin-13 

 Aurora kinase 1.4.1.

Regulation of proteins is achieved in part by modifications, like phosphorylation mediated by 

kinases. One known kinase family is that of Aurora-like kinases. They are essential for mitosis 

and cytokinesis in eukaryotes. Aurora-like kinases are serine/threonine kinases. In yeast 

there is only a single Aurora-like kinase, Ipl1p (increase in ploidy) in S. cerevisiae and Ark1p 

(actin regulating kinase) in S. pombe. In D. melanogaster there are already two Aurora-like 

kinases, AuroraA and AuroraB. In vertebrates there is a third one, AuroraC. The three 

Aurora-like kinases in T. brucei are TbAuk1, TbAuk2 and TbAuk3 (Tu et al., 2006). 

AuroraB, like the single yeast Aurora kinases, forms the catalytic domain of the chromosomal 

passenger complex (CPC). In addition, the CPC contains the regulatory and subcellular 

targeting compontents INCENP (inner centromer protein), survivin and borealin (Cooke et 

al., 1987; Gassmann et al., 2004). INCENP contains a β-tubulin binding site within the N-
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terminus and an internal coiled-coil domain that is used for non-spindle microtubule binding 

(Ainsztein et al., 1998; Mackay et al., 1993; Wheatley et al., 2001). INCENP and survivin 

contain centromere targeting domains, and borealin contributes to chromosome and 

centromere binding (Ainsztein et al., 1998; Klein et al., 2006; Vader et al., 2006). 

The mitotic localisation of the CPC is connected to its respective mitotic function. At the 

onset of mitosis, the CPC moves from condensing chromosome arms to centromeres 

(Jeyaprakash et al., 2007; Klein et al., 2006; Murata-Hori et al., 2002). There, AuroraB is 

involved in resolving mal-oriented kinetochore-microtubule interactions during metaphase 

(Cimini et al., 2006; Hauf et al., 2003; Kallio et al., 2002; Knowlton et al., 2006; Lampson et 

al., 2004). It is supposed to phosphorylate subunits of the KMN (Knl1 complex, Mis12 

complex, Ndc80 complex) network (Cheeseman et al., 2006; Welburn et al., 2010). The KMN 

network is located at the outer kinetochore and is a keyplayer in kinetochore-microtubule 

attachments (Cheeseman et al., 2006). The fine tuning of correcting kinetochore-

microtubule attachments is supposed to occur via the AuroraB substrate MCAK, which 

weakens the interaction (Wordeman et al., 2007). 

At the metaphase to anaphase transition the CPC localises at the central spindle 

(Jeyaprakash et al., 2007; Murata-Hori et al., 2002). There, it contributes to anaphase onset, 

since AuroraB is involved in checkpoint signaling and recruits checkpoint proteins to 

kinetochores (Ditchfield et al., 2003; Kallio et al., 2002; Santaguida et al., 2011). Finally, the 

CPC moves to the midbody for cytokinesis (Jeyaprakash et al., 2007; Murata-Hori et al., 

2002). 

AuroraB regulates MCAK by phosphorylation of several sites within the N-terminus and the 

neck domain (Lan et al., 2004; Zhang et al., 2007). These affect MCAK´s subcellular 

localisation and activity (Lan et al., 2004; Zhang et al., 2007). The major phosphoregulation 

site of MCAK is within its neck domain at S196 (Xenopus laevis), which is conserved. 

Phosphorylation at that serine inhibits MCAK´s depolymerisation activity (Andrews et al., 

2004; Lan et al., 2004). It prevents the interaction of the C-terminus and the neck domain 

and thus, the necessary conformational change for tight microtubule lattice binding and 

depolymerisation (Ems-McClung et al., 2013). 

AuroraB phosphorylates MCAK also at other sites. These phosphorylations determine its 

inner centromeric or kinetochore localisation from prometa- to metaphase (Andrews et al., 

2004; Knowlton et al., 2006; Lan et al., 2004; Wordeman et al., 2007; Zhang et al., 2007). 
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AuroraA mediated phosphorylation regulates MCAK´s spindle association that enhances 

spindle bi-polarity (Zhang et al., 2008).  

 T. brucei Aurora kinase 1.4.2.

Among the three Aurora-like kinases in T. brucei, there is only TbAuk1 involved in mitosis 

and cytokinesis (Tu et al., 2006). TbAuk1 is the catalytic domain of the CPC. The T. brucei CPC 

also consists of the regulatory subunits TbCPC1 and TbCPC2, which do not have structural 

similarity to INCENP, survivin and borealin (Li et al., 2008a). The C-terminal tails of TbCPC1 

and TbCPC2 serve for interaction with each other and for binding to the N- and C-terminus of 

TbAuk1 (Hu et al., 2014). The TbCPC1 C-terminus contains the IN-box motif that is necessary 

for TbAuk1 binding and which is highly divergent from that in INCENP (Hu et al., 2014).  

The IN-box mediated binding of INCENP to AuroraB already activates low levels of kinase 

activity (Honda et al., 2003). The binding induces a conformational switch of the AuroraB T-

loop to the active state (Sessa et al., 2005). This enables AuroraB to phosphorylate the C-

terminal TSS motif within INCENP and T232 in AuroraB, phosphorylations that are necessary 

for full kinase activity (Honda et al., 2003; Yasui et al., 2004). These phosphorylations are 

probably conducted in trans by nearby CPCs (Cormier et al., 2013; Sessa et al., 2005).  

In TbAuk1 phosphorylation of the T-loop T184, the T232 equivalent, is necessary for its full 

kinase activity (Hu et al., 2014). T188 phosphorylation contributes to TbAuk1 activity, but to 

a lesser extend than T184 phosphorylation (Hu et al., 2014). Also the conserved lysine K58 is 

necessary for TbAuk1´s catalytic function (Li and Wang, 2006). Degradation of TbAuk1 is 

faciliated by the ubiquitin-proteasome pathway, using at least two D-boxes (destruction) 

within the TbAuk1 C-terminus (Hu et al., 2014). Like human AuroraB, TbAuk1 ubiquitination 

requires the APC/C (anaphase-promoting complex/cyclosome; Hu et al., 2014; Stewart and 

Fang, 2005). 

In procyclic and bloodstream T. brucei cells, TbAuk1 is necessary for spindle formation, 

proper chromosome segregation and cytokinesis (Li and Wang, 2006; Li et al., 2008b; Li et 

al., 2009; Tu et al., 2006). These functions are associated with its respective subcellular 

localisation. TbAuk1, in conjunction with TbCPC1 and TbCPC2, localises intranuclear in G2, is 

found at the mitotic spindle during metaphase and anaphaseA, and moves to the spindle 

midzone in anaphaseB (Li et al., 2008a; Li et al., 2008b). During anaphaseB the CPC starts to 

leave the nucleus and accumulates at the dorsal site of the cell (Li et al., 2008a). Recent 
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studies showed that TbAuk1 is recruited to the new FAZ tip during late anaphase by the 

trypanosome-specific protein TbCif1 (cytokinesis initiation factor; Zhou et al., 2016). 

Previously, TbCif1 is phosphorylated by TbPlk (polo-like kinase), which targets it to the new 

FAZ (Zhou et al., 2016). During cytokinesis the CPC and TbCif1 locate between the two 

seperating anterior tips, travelling along the cleavage furrow (Li et al., 2008a; Zhou et al., 

2016).  

The CPC contributes to TbAuk1´s localisation. Studies with truncated CPC subunits that are 

unable to interact with the other CPC subunits, indicate a TbCPC1-dependent CPC 

localisation (Hu et al., 2014). In contrast, RNAi studies revealed that all CPC subunits 

contribute to its localisation (Li et al., 2008a; Li et al., 2009). However, there have not yet 

been identified microtubule-binding motifs within the CPC subunits (Hu et al., 2014).  

Also the orphan kinesins TbKIN-A and TbKIN-B, that interact with TbAuk1, contribute to 

TbAuk1´s localisation (Li et al., 2008a; Li et al., 2008b). They are necessary for spindle 

segregation, chromosome segregation and cytokinesis (Li et al., 2008a). The Touseld-like 

kinase TbTlk1 associates with TbKIN-B and the CPC and contributes to their localisation (Li et 

al., 2008b). TbAuk1 cooperates with TbTlk1 to regulate spindle assembly and chromosome 

segregation (Li et al., 2007). TbTlk1 is a substrate of TbAuk1, but also autophosphorylates, 

and locates at the spindle poles during mitosis (Li et al., 2007). TbAuk1 or TbTlk1 depletion 

results in their mutual mislocalisation (Li et al., 2008b).  

1.5. Nuclear protein import and export 

The eukaryotic nucleus is delimited by a nuclear envelope. In Trypanosomes, the nuclear 

envelope is maintained even throughout mitosis, exhibiting closed mitosis. Thus, cell cycle-

dependent import or export of proteins is a possible way of regulating the activity of nuclear 

proteins, such as TbKif13-1. 

Nuclear pore complexes (NPC) allow energy-dependent nuclear import of proteins 

translated within the cytoplasm as well as nuclear export. For nuclear import, a heterodimer 

of αβ-importin is used as transporter. α-importin binds to the nuclear localisation sequence 

(NLS) of the cargo protein (Görlich et al., 1995). Classical monopartite NLS consist of three or 

four basic amino acids with the sequence K(K/R)X(K/R), while bipartite NLS show two 

clusters of basic amino acids separated by a spacer of ten to twelve amino acids (Conti and 

Kuriyan, 2000; Dang and Lee, 1988; Hodel et al., 2001; Kalderon et al., 1984; Robbins et al., 
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1991). These two kinds of NLS were also found in T. brucei (Lips et al., 1996; Marchetti et al., 

2000). Noncanonical NLS have the sequence KRX(W/F/Y)XXAF, (P/R)XXKR(K/R) or 

LGKR(K/R)(W/F/Y) (Kosugi et al., 2009a).  

β-importin binds the complex to the NPC and faciliates release of the cargo protein and α-

importin within the nucleus by binding to Ran-GTP (Görlich et al., 1995; Lee et al., 2005). The 

nucleotide state of Ran is mediated by the Ran guanine nucleotide exchange factor (RanGEF) 

in the nucleus and the Ran GTPase-activating protein (RanGAP) in the cytoplasm (Becker et 

al., 1995; Bischoff and Ponstingl, 1991; Corbett et al., 1995; Klebe et al., 1995). Within T. 

brucei the key components of the nuclear transport machinery were identified by proteomic 

analysis and bioinformatics, but like for all apicomplexa no RanGAP was identified (DeGrasse 

et al., 2009; Frankel and Knoll, 2009; O'Reilly et al., 2011; Yahya et al., 2012). Probably this 

function is realised by another protein. 

For nuclear export, cargo proteins are bound to exportin and RanGTP, whose hydrolysis to 

GDP within the cytoplasm sets cargo and exportin free (Askjaer et al., 1998; Fornerod et al., 

1997). Export cargo proteins contain nuclear export sequences (NES). In general NES are 

characterised by leucine-rich domains or hydrophobic patterns interspersed by negatively 

charged amino acids (Hellman et al., 2007; la Cour et al., 2004; Xu et al., 2012). 

1.6. Aims of the thesis 

Human African trypanosomiasis depends on cell proliferation within the mammalian host. 

This makes its progression similar to cancer. When fighting cancer, small molecule inhibitors 

of mitotic kinesins are tested as chemotherapeutics (see 1.3.5.). In T. brucei, RNAi mediated 

depletion of mitotic TbKif13-1 resulted in cell death and in prevention of infection in an 

inoculated mouse model (Chan et al., 2010; Wickstead et al., 2010a). This makes TbKif13-1 

an excellent potential drug target for fighting trypanosomiasis. 

In the first section of the thesis, the aim is to establish the prerequisites for a heterologous in 

vivo assay and an in vitro assay for a high-throughput inhibitor screen. The basic idea for 

both is that TbKif13-1 depolymerises microtubules, while an applied suitable small molecule 

inhibitor would prevent depolymerisation. As depolymerisation substrate should serve the 

cytoskeleton of HeLa cells in the heterologous in vivo assay, and the cytoskeleton of T. brucei 

cells in the in vitro assay. Analysis of the microtubule depolymerisation state shall occur via 

microscopy.  
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a) For the heterologous in vivo assay, a stable HeLa cell line shall be generated, 

inducibly overexpressing TbKif13-1, which is expected to result in cytoskeleton 

depolymerisation.  

b) For the in vitro assay, T. brucei cytoskeletons shall be prepared on 384-well plates 

that are depolymerisable by recombinantly purified TbKif13-1. 

In the second section of the thesis, the aim is the functional characterisation of TbKif13-1 

domains. Several TbKif13-1 deletion constructs and amino acid exchange mutants are 

constructed for in vivo and in vitro studies.  

For in vivo studies, transgenic cell lines, ectopically expressing TbKif13-1 deletion constructs, 

are generated for the following studies. 

a) Immunfluorescence studies throughout the cell cycle indicate TbKif13-1 domains 

necessary for nuclear import and export.  

b) Cell cycle-dependent regulation of TbKif13-1 is examined in terms of a proteasome-

dependent degradation with an assay that inhibits translation and the proteasome. 

c)  Toxicity of TbKif13-1 domains is indicated by growth curves and flow cytometry 

analysis.  

d) Negative influence of the domains to spindle formation and maintenance is 

determined by staining of the mitotic spindle for immunfluorescence studies. 

e) The ability of the TbKif13-1 domains to bind to spindle microtubules is examined via 

immunfluorescence microscopy of cytoskeleton preparations. 

For in vitro studies, TbKif13-1 deletion constructs are recombinantly purified and are used 

for the following studies. 

a) The microtubule binding ability of the TbKif13-1 domains is determined in vitro via 

the tubulin sedimentation assay. In addition, this assay displays TbKif13-1 domains 

necessary for microtubule depolymerisation. 

b) The microtubule depolymerisation activity of TbKif13-1 domains is verified using T. 

brucei cytoskeletons as substrate for an immunfluorescence microscopy 

depolymerisation assay. The depolymerisation assays will allow determination of 

TbKif13-1´s minimal functional construct.  

c) The conservation of the decoupled mechanism for microtubule depolymerisation and 

ATPase activity is tested for TbKif13-1. Recombinantly purified TbKif13-1 amino acid 
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mutants are applied to the malachite green assay to determine the state of their 

ATPase activity. Using the tubulin sedimentation assay, their depolymerisation 

activity is tested. 

In the third section of the thesis, the aim is to identify a possible phosphorylation and 

depolymerisation regulation of TbKif13-1 by TbAuk1.  

To this end, in vitro assays with recombinantly purified TbKif13-1 and immunoprecipitated 

TbAuk1 from T. brucei cell lysate are used.  

a) TbAuk1 mediated TbKif13-1 phosphorylation is examined with a 33P phosphorylation 

assay.  

b) An inhibitory regulation of TbKif13-1 by TbAuk1 is determined using the tubulin 

sedimentation assay. 
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2. Results 

2.1. Attempt to establish a procedure for a TbKif13-1 high-throughput inhibitor 

screen 

In this thesis it was tried to establish the prerequisites for a TbKif13-1 high-throughput 

inhibitor screen, using a small molecule library. An in vivo and an in vitro assay were 

considered. Both assays were based on a substrate microtubule cytoskeleton, which was 

expected to be depolymerised by TbKif13-1.  

For the heterologous in vivo assay, the substrate microtubule cytoskeleton was that of 

interphase HeLa cells. These HeLa cells should inducibly overexpress transgenic TbKif13-1 for 

depolymerisation. For the in vitro assay, the substrate microtubule cytoskeleton were T. 

brucei cytoskeleton preparations, to which recombinantly purified TbKif13-1 was added for 

depolymerisation.  

Addition of an appropriate inhibitor would prevent the microtubule cytoskeleton 

depolymerisation in both assays (Figure 8). Results should be determined by image analysis. 

 
Figure 8: Schematic illustration of the heterologous in vivo and the in vitro assay. (A) Heterologous 

in vivo assay. Interphase HeLa cells exhibit a spread microtubule cytoskeleton (black lines). Inducible 

overexpression of the transgenic TbKif13-1 is expected to lead to microtubule depolymerisation, 

while addition of an appropriate TbKif13-1 inhibitor would rescue the microtubule cytoskeleton from 

depolymerisation. (B) In vitro assay. T. brucei cytoskeleton preparations (microtubules are illustrated 

as black lines) serve as depolymerisation substrate for recombinantly purified TbKif13-1. Addition of 

an appropriate TbKif13-1 inhibitor would prevent cytoskeleton depolymerisation. Evaluation of both 

assays should occur via immunfluorescence microscopy of the microtubule cytoskeletons. 

 Heterologous in vivo assay 2.1.1.

The prerequisite for the heterologous in vivo inhibitor screen assay was the generation of a 

stable HeLa cell line that inducibly overexpresses TbKif13-1 for cytoskeleton 

depolymerisation. For easier microscopic visualisation of TbKif13-1, it was N-terminal eGFP 

TbKif13-1 
overexpression

TbKif13-1 
overexpression
+ TbKif13-1 inhibitor

recombinant
TbKif13-1

recombinant
TbKif13-1 
+ TbKif13-1 inhibitor

(B)(A)
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tagged. Furthermore, a S143A mutation in TbKif13-1 was introduced to prevent its 

inhibition, which is probably induced by AuroraB kinase mediated phosphorylation (see 

1.4.1.; Figure S 1). 

The basic functionality of the assay, regarding the ability of overexpressed eGFP
TbKif13-1 

S143A to depolymerise the microtubule cytoskeleton of HeLa interphase cells, was tested. 

HeLa Flp-In cells were transiently transfected with pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A. 

HeLa cells with reduced microtubule cytoskeleton were observed already twelve hours after 

induction of eGFP
TbKif13-1 S143A overexpression (Figure 9). It seemed that a more intense 

eGFP
TbKif13-1 S143A signal correlated with a stronger cytoskeleton depolymerisation effect. 

Non transfected and non induced cells served as control. For verification, HeLa cells were 

transiently transfected with the vector pCS2-
eGFP

TbKif13-1 S143A. It allowed constitutive 

expression of the transgene, in contrast to the inducible expression allowed by 

pcDNA5/FRT/TO. Depolymerisation effects in these cells were the same (Figure S 2). 

 
Figure 9: Microtubule cytoskeleton depolymerisation of HeLa Flp-In cells transiently transfected 

with pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A. (A) HeLa Flp-In cells transiently transfected with 

pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A, that overexpressed eGFP
TbKif13-1 S143A (green, 

autofluorescence), showed a reduced microtubule cytoskeleton (red, α-tubulin antibody TAT); white 

arrow: cell with reduced cytoskeleton; dashed arrow: cell with less reduced cytoskeleton, probably 

due to lower eGFP
TbKif13-1 S143A expression rate. The nucleus was DAPI (blue) stained. Cells were 

harvested 12 h after induction and fixed with methanol. Non transfected and non induced cells 

served as control. Scale bar 20 µm. (B) Westernblot of HeLa Flp-In cells transiently transfected with 

pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A, to verify the overexpression of eGFP
TbKif13-1 S143A after 

induction. eGFP
TbKif13-1 S143A was detected using α-GFP, tubulin was detected using α-tubulin 

antibody TAT. 

The generation of a stable HeLa cell line, inducibly overexpressing eGFP
TbKif13-1 S143A, used 

the 'Flp-InTM T-RExTM System' with HeLa Flp-In cells and the vector pcDNA5/FRT/TO-



Results 

| 32 

 

eGFP
TbKif13-1 S143A. No reduced microtubule cytoskeleton was observed within successful 

stable transfected cells from twelve to 72 h after overexpression induction (Figure 10). 

 
Figure 10: No microtubule cytoskeleton depolymerisation of HeLa Flp-In cells stable transfected 

with pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A 72 h after induction. (A) HeLa Flp-In cells stable 

transfected with pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A showed 72 h after induction of eGFP
TbKif13-1 

S143A overexpression (green, autofluorescence) no reduced microtubule cytoskeleton (red, α-

tubulin antibody TAT). The nucleus was DAPI (blue) stained. Cells were harvested 72 h after induction 

and fixed with methanol. Non induced cells served as control. Scale bar 20 µm. (B) Westernblot of 

pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A stable transfected HeLa Flp-In cells to verify the expression of 
eGFP

TbKif13-1 S143A 72 h after induction. eGFP
TbKif13-1 S143A was detected using α-GFP, tubulin was 

detected using α-tubulin antibody TAT. 

As a result of the observed correlation of the eGFP
TbKif13-1 S143A expression level and 

cytoskeleton depolymerisation effects within transiently transfected HeLa cells (Figure 9 and 

S 2), the stable cell line was transfected with the vector pcDNA3.1-
eGFP

TbKif13-1 S143A. This 

caused an additional random genomic integration of the transgene. It was expected to 

increase the expression level of eGFP
TbKif13-1 S143A. Induction of eGFP

TbKif13-1 S143A from 

twelve hours to five days in these double stable cell line clones did not result in 

depolymerisation of the microtubule cytoskeleton (Figure S 3). 

Addition of nocodazole to the single stable cell line was expected to support the eGFP
TbKif13-

1 S143A mediated depolymerisation by weakening the microtubules. Varying nocodazole 

concentrations from 20 – 110 ng/mL were added to the cells. In one approach 

overexpression of eGFP
TbKif13-1 S143A was induced simultaneously with nocodazole 

addition. In another approach it was induced twelve hours prior to nocodazole addition 

(Figure S 4). Effects to microtubule cytoskeleton depolymerisation were observed from 40 

ng/mL, while cells started to arrest in mitosis at 70 ng/mL nocodazole. However, the slight 

microtubule cytoskeleton depolymerisation in these cells deemed to be not sufficient for the 
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high-throughput inhibitor screen that requires a robust readout by automated image 

analysis. 

To conclude, the basic functionality of the heterologous in vivo assay was proven in 

transiently transfected HeLa cells. However, inducible overexpression of eGFP
TbKif13-1 S143A 

in the required generated stable HeLa cell line did not result in a sufficient cytoskeleton 

depolymerisation for a readout by automated image analysis. 

 In vitro T. brucei cytoskeleton assay 2.1.2.

The prerequisite of the in vitro inhibitor screen assay was the preparation of T. brucei 

cytoskeletons on 384-well plates that were depolymerisable by recombinantly purified 

His6
TbKif13-1. T. brucei cytoskeleton preparations are detergent-extracted cells, in which 

freely diffusing proteins are removed and only the cytoskeleton, cytoskeleton associated 

proteins, chromatin, the nucleolus and the spindle remain. 

The basic functionality of the assay, regarding the depolymerisation of T. brucei 

cytoskeletons by recombinantly purified His6
TbKif13-1, was tested. T. brucei cells were 

detergent-extracted on top of microscopy slides, incubated with His6
TbKif13-1 and ATP, 

methanol fixed and finally stained for immunfluorescence microscopy. A control occured 

without addition of ATP. T. brucei cytoskeletons were depolymerised by His6
TbKif13-1 in the 

presence of ATP (Figure 11). Only the flagellum was not depolymerised. 

 
Figure 11: In vitro depolymerisation of T. brucei cytoskeletons by recombinantly purified 
His6

TbKif13-1. T. brucei cytoskeletons were depolymerised by 0.5 µM His6
TbKif13-1 on microscopy 

slides. Control sample without ATP addition did not show cytoskeleton depolymerisation. The 

cytoskeleton tubulin (green) was stained with α-tubulin antibody (TAT). DNA was DAPI (red) stained. 

Scale bar 5 µm. 

The high-throughput inhibitor screen should occur on 384-well plates with bound 

cytoskeletons. The necessity of their preparation persisted. One approach was to distribute 
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equal amounts of cytoskeletons to the wells of a plate and to dry them over night. Addition 

of recombinantly purified His6
TbKif13-1 and ATP did not depolymerise these dried 

cytoskeletons. Another approach was to use cytoskeletons immediately after their 

detergent-extraction and distribution to the 384-well plate. Addition of His6
TbKif13-1 and ATP 

resulted in depolymerisation of cytoskeletons, but those of one well were not equally 

depolymerised. This prevents a robust readout by automated image analysis. 

The question persisted whether His6
TbKif13-1 sticked to the well surface. The used 384-well 

plates were polystyrene low-binding plates. Polystyrene exhibits non-specific affinity for 

biomolecular reagents, but it is reduced in low-binding plates. Thus, these plates were 

expected to exhibit low non-specific binding of His6
TbKif13-1 to the surface. In one approach 

it was tried to reduce the remaining non-specific binding to the plate´s surface by blocking 

the wells with BSA before His6
TbKif13-1 addition. This did not result in an equal 

depolymerisation of cytoskeletons. 

Another problem, preventing a robust readout by automated image analysis, was the loss of 

a variable amount of cytoskeletons per well during the assay´s procedure. The plate´s 

surface probably also reduced the binding ability of cytoskeletons. However, the use of 

medium-binding plates did not result in a higher amount of bound cytoskeletons.  

2.2. Functional dissection of TbKif13-1 domains 

Several deletion mutants were generated for the functional characterisation of TbKif13-1 

(Tb927.9.3650) domains (Figure 12). The approximate sections of the TbKif13-1 N-, motor 

and C-terminus were determined by using SMART (smart.embl-heidelberg.de). The neck 

domain is putative and was ascertained by comparison with results from MCAK studies in 

CHO cells (Maney et al., 2001). The APC/C recognition motif (D-box) was predicted by GPS-

ARM (arm.biocuckoo.org).  
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Figure 12: TbKif13-1 deletion constructs. According amino acid (aa) numbers of the domains and the 

deletion constructs are stated. As depicted for the full-length construct: white box: N-terminus (N); 

striped grey box: putative neck domain; black box: motor domain, which forms together with the 

neck domain the neck-motor domain (NM); grey box: predicted APC/C recognition motif (D-box); 

spotted box: C-terminus (C). For in vitro studies constructs were supplied with a N-terminal His6 tag. 

For in vivo studies constructs were N-terminal tagged with a myc tag, except for the contructs N and 

½ N, which were C-terminal GFP-myc tagged. 

For in vivo studies in T. brucei, the coding sequences for the deletion constructs were 

inserted into the pHD1801 vector. After transfection into T. brucei, this allowed their 

doxycycline-dependent ectopic expression with a N-terminal myc tag. Because the sole N-

terminal myc tag did not result in a detectable fluorescence and Westernblot signal, in 

contrast to all other TbKif13-1 constructs, the TbKif13-1 N-terminus and the bisected N-

terminus were expressed with a C-terminal GFP-myc tag. Their coding sequences were 

inserted into the pHD1800
GFP-myc

 vector. This allowed their doxycycline-dependent ectopic 

expression with a C-terminal GFP-myc tag after transfection.  

For in vitro studies, the coding sequences for the deletion constructs were inserted into the 

pTrcC FA vector, which allowed IPTG-dependent overexpression with a N-terminal His6 tag in 

transformed E. coli. 

 Localisation of TbKif13-1 deletion constructs in T. brucei 2.2.1.

myc
TbKif13-1 deletion constructs were ectopically expressed in transgenic 449 procyclic T. 

brucei cells to identify NLS and NES within TbKif13-1. The localisation of the respective 

construct was tracked and visualised with an α-myc antibody throughout the cell cycle. 

Cytoskeleton samples were prepared in addition to whole cell samples. Cytoskeleton 

samples faciliated the analysis of the myc
TbKif13-1 constructs´ binding to microtubule 

½ N + D-box (aa 32-480) 

N neck motor C

full-length (FL; aa 1-691)

½ N + C (aa 32-691)

NM + C (aa 59-691)

N + NM (aa 1-464)

½ N + NM (aa 32-464)

NM (aa 59-464)

C (aa 465-691)

NM + D-box (aa 59-480)

N (aa 1-58)

½ N (aa 32-58)

1-58 59-142 143-464 465-691aa
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structures, such as the mitotic spindle. The cell cycle-specific expression of the constructs 

during G1-, S-, M- and G2-phase was analysed in whole cell samples. According to 

kinetoplast and nucleus positioning (Figure 2), 100 cells of each cell cycle stage were 

evaluated for expression of the respective myc
TbKif13-1 deletion construct. This gave a first 

hint for sites within TbKif13-1, necessary for cell cycle-dependent degradation. 

myc
TbKif13-1 FL was not detected in G1-phase (1K1N) cells, but in 75% of S-phase (1-2K1N) 

cells its nuclear localisation could be shown (Figure 13 (A) and (B)). All late G2/mitotic 2K1N 

cells showed ectopically expressed myc
TbKif13-1 FL in the nucleus, which reduced to 90% of 

2K2N cells. Cytoskeleton samples revealed that myc
TbKif13-1 FL built a formation within the 

mitotic nucleus resembling the shape of the mitotic spindle (Figure 13 (C)).  

A very similar localisation phenotype in whole cell samples and cytoskeleton samples was 

observed for myc
TbKif13-1 with the half reduced N-terminus (myc

TbKif13-1 ½ N + C). In 

contrast, it was detected intranuclear already during G1-phase (1K1N) in almost half of the 

induced cells. It was found in all S-phase (1-2K1N) and late G2/mitotic 2K1N cells and within 

75% of 2K2N cells (Figure S 5 (A), (B) and (C)).  

 



Results 

| 37 

 

 
Figure 13: Nuclear localisation of 

myc
TbKif13-1 FL in T. brucei from 1-2K1N to 2K2N cell stages. (A) 

Whole cell samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 FL. DNA was DAPI (red) 

stained, myc
TbKif13-1 FL (green) was visualised using α-myc antibody. Scale bar 5 µm. (B) Diagram 

shows percentage of cells with visual detectable ectopically expressed myc
TbKif13-1 FL within each 

cell cycle stage, detected according to kinetoplast and nucleus postioning. (C) Cytoskeleton samples 

of transgenic 449 cells ectopically expressing myc
TbKif13-1 FL. Staining and scale bar according to 

subfigure (A). (D) Westernblot analysis verifying doxycycline (Dox) inducible ectopic expression of 
myc

TbKif13-1 FL in transgenic 449 cells with α-myc antibody. 449 cells were used as negative control, 

BiP staining was used as loading control. 

The complete deletion of the TbKif13-1 N-terminus resulted in the construct myc
TbKif13-1 

NM + C. It showed a slight staining within the cytoplasm in addition to nuclear staining 

within whole cell samples after ectopic expression (Figure 14 (A)). myc
TbKif13-1 NM + C was 

seen in 35% of G1-phase (1K1N) cells, 91% of S-phase (1-2K1N) cells, all late G2/mitotic 2K1N 

cells and in 45% of 2K2N cells (Figure 14 (B)). Cytoskeleton 2K1N samples showed myc
TbKif13-

1 NM + C localised in a formation resembling the shape of the mitotic spindle (Figure 14 (C)).  
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Figure 14: Nuclear and slight cytoplasmic localisation of 

myc
TbKif13-1 NM + C in T. brucei from 1-

2K1N to 2K2N cell stages. (A) Whole cell samples of transgenic 449 cells ectopically expressing 
myc

TbKif13-1 NM + C. DNA was DAPI (red) stained, myc
TbKif13-1 NM + C (green) was visualised using α-

myc antibody. Scale bar 5 µm. (B) Diagram shows percentage of cells with visual detectable 

ectopically expressed myc
TbKif13-1 NM + C within each cell cycle stage, detected according to 

kinetoplast and nucleus postioning. (C) Cytoskeleton samples of transgenic 449 cells ectopically 

expressing myc
TbKif13-1 NM + C. Staining and scale bar according to subfigure (A). (D) Westernblot 

analysis verifying doxycycline (Dox) inducible ectopic expression of myc
TbKif13-1 NM + C in transgenic 

449 cells with α-myc antibody. 449 cells were used as negative control, BiP staining was used as 

loading control. 

The reduction of the C-terminus from the full-length construct resulted in the construct 

myc
TbKif13-1 N + NM. It remained solely within the cytoplasm throughout the cell cycle after 

ectopic expression in the respective transgenic T. brucei cell line (Figure 15 (A)). It was seen 

in 80% of G1-phase (1K1N) and 2K2N cells and in all S-phase (1-2K1N) and late G2/mitotic 

2K1N cells (Figure 15 (B)). myc
TbKif13-1 N + NM was not found within cytoskeleton samples 

(Figure 15 (C)).  
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Figure 15: Cytoplasmic localisation of 

myc
TbKif3-1 N + NM in T. brucei throughout the cell cycle. (A) 

Whole cell samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 N + NM. DNA was DAPI 

(red) stained, myc
TbKif13-1 N + NM (green) was visualised using α-myc antibody. Scale bar 5 µm. (B) 

Diagram shows percentage of cells with visual detectable ectopically expressed myc
TbKif13-1 N + NM 

within each cell cycle stage, detected according to kinetoplast and nucleus postioning. (C) 

Cytoskeleton samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 N + NM. Staining and 

scale bar according to subfigure (A). (D) Westernblot analysis verifying doxycycline (Dox) inducible 

ectopic expression of myc
TbKif13-1 N + NM in transgenic 449 cells with α-myc antibody. 449 cells were 

used as negative control, BiP staining was used as loading control. 

myc
TbKif13-1 ½ N + NM with a bisected N-terminus and missing C-terminus, in contrast, was 

nuclear and only slightly cytoplasmic localised (Figure S 6 (A)). myc
TbKif13-1 ½ N + NM 

appeared throughout the cell cycle in whole cell samples, but it almost completely 

disappeared in cytoskeleton samples (Figure S 6 (B) and (C)).  

This localisation pattern and cell cycle-dependent distribution was similiar to that of 

myc
TbKif13-1 NM (Figure 16 (A) and (B)), where only the neck and motor domain of TbKif13-1 

was ectopically expressed with a N-terminal myc tag. Compared to myc
TbKif13-1 ½ N + NM, 

the neck-motor construct was more obvious within the nucleus in cytoskeleton samples 
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(Figure 16 (C)). It appeared in all cell cycle stages within the nucleus, but not in a formation 

resembling the shape of the mitotic spindle. 

 
Figure 16: Nuclear and slight cytoplasmic localisation of 

myc
TbKif3-1 NM in T. brucei throughout the 

cell cycle. (A) Whole cell samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 NM. DNA 

was DAPI (red) stained, myc
TbKif13-1 NM (green) was visualised using α-myc antibody. Scale bar 5 µm. 

(B) Diagram shows percentage of cells with visual detectable ectopically expressed myc
TbKif13-1 NM 

within each cell cycle stage, detected according to kinetoplast and nucleus postioning. (C) 

Cytoskeleton samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 NM. Staining and 

scale bar according to subfigure (A). (D) Westernblot analysis verifying doxycycline (Dox) inducible 

ectopic expression of myc
TbKif13-1 NM in transgenic 449 cells with α-myc antibody. 449 cells were 

used as negative control, BiP staining was used as loading control. 

The ectopically expressed TbKif13-1 myc tagged C-terminal domain construct myc
TbKif13-1 C 

localised within the nucleus in whole cell samples and cytoskeleton samples throughout the 

cell cycle (Figure 17 (A), (B) and (C)). Surprisingly, the myc
TbKif13-1 C signal in whole cell 

samples of late G2/mitotic 2K1N cells appeared in a more elongated shape than the full-

length construct. This phenotype was seen in 65% of 2K1N cells 24 h after induction and in 

71% of 2K1N cells 48 h after induction (Figure 17 (E)). Cytoskeleton samples of 2K1N cells 

confirmed this rather special elongated formation of myc
TbKif13-1 C (Figure 17 (C)). 



Results 

| 41 

 

 
Figure 17: Nuclear localisation of 

myc
TbKif3-1 C in T. brucei throughout the cell cycle. (A) Whole cell 

samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 C. DNA was DAPI (red) stained, 

myc
TbKif13-1 C (green) was visualised using α-myc antibody. Scale bar 5 µm. (B) Diagram shows 

percentage of cells with visual detectable ectopically expressed myc
TbKif13-1 C within each cell cycle 

stage, detected according to kinetoplast and nucleus postioning. (C) Cytoskeleton samples of 

transgenic 449 cells ectopically expressing myc
TbKif13-1 C. Staining and scale bar according to 

subfigure (A). (D) Westernblot analysis verifying doxycycline (Dox) inducible ectopic expression of 
myc

TbKif13-1 C in transgenic 449 cells with α-myc antibody. 449 cells were used as negative control, 

BiP staining was used as loading control. (E) Percentage of mitotic 2K1N cells with normal or 

elongated phenotype of myc
TbKif13-1 C 24 h and 48 h after doxycycline (Dox) dependent induction 

after its ectopic expression; black: normal phenotype; grey: elongated phenotype. 

Ectopically expressed TbKif13-1 NGFP-myc was detectable during all cell cycle stages in whole 

cell samples (Figure 18 (A) and (B)). In G1-phase (1K1N) and S-phase (1-2K1N) cells, TbKif13-1 

NGFP-myc was found in the cytoplasm, while it was additionally localised in the nucleus in late 

G2/mitotic 2K1N and 2K2N cells. TbKif13-1 NGFP-myc was not detectable in cytoskeleton 

samples (Figure 18 (C)). 
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Figure 18: Cytoplasmic and nuclear localisation of TbKif3-1 N

GFP-myc
 in T. brucei throughout the cell 

cycle. (A) Whole cell samples of transgenic 449 cells ectopically expressing TbKif13-1 NGFP-myc. DNA 

was DAPI (red) stained, TbKif13-1 NGFP-myc (green) was visualised using α-myc antibody. Scale bar 5 

µm. (B) Diagram shows percentage of cells with visual detectable ectopically expressed TbKif13-1 

NGFP-myc within each cell cycle stage, detected according to kinetoplast and nucleus postioning. (C) 

Cytoskeleton samples of transgenic 449 cells ectopically expressing TbKif13-1 NGFP-myc. Staining and 

scale bar according to subfigure (A). (D) Westernblot analysis verifying doxycycline (Dox) inducible 

ectopic expression of TbKif13-1 NGFP-myc in transgenic 449 cells with α-myc antibody. 449 cells were 

used as negative control, BiP staining was used as loading control. 

In contrast, TbKif13-1 ½ NGFP-myc was found solely in the cytoplasm throughout the cell cycle 

(Figure S 7 (A) and (B)). The exception were G1-phase (1K1N) cells, there it was in addition 

located to the nucleus. Like the whole N-terminal domain construct, TbKif13-1 ½ NGFP-myc was 

not detectable in cytoskeleton samples (Figure S 7 (C)). 

Control cells, ectopically expressing GFP-myc, showed GFP-myc localisation in whole cell 

samples throughout the cell cycle within the cytoplasm and the nucleus (Figure S 8 (A) and 

(B)). The staining of GFP-myc was stronger in the nucleus than in the cytoplasm. In 

cytoskeleton samples GFP-myc was not detectable (Figure S 8 (C)). 
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The localisation of the TbKif13-1 deletion constructs is summarised in Table 1. Their nuclear 

and cytoplasmic localisation in whole cell samples, as well as their occurence in cytoskeleton 

samples were taken into consideration. 

To conclude, full-length myc
TbKif13-1 FL was found nuclear from 1-2K1N to 2K2N cells, but 

not in G1 (1K1N) cells. In mitotic 2K1N cells it localised in a shape resembling the mitotic 

spindle. Ectopic expression of myc
TbKif13-1 C localised in a shape resembling an elongated 

spindle in mitotic 2K1N cells. 

Table 1: Localisation of the TbKif13-1 deletion constructs in T. brucei. Nuclear and cytoplasmic 

localisation of the TbKif13-1 deletion constructs in whole cell samples and their presence in 

cytoskeleton samples is stated. +: localisation; +/-: slight localisation; -: no localisation. The respective 

TbKif13-1 deletion constructs are depicted. White box: N-terminus; striped grey box: putative neck 

domain; black box: motor domain; spotted box: C-terminus. 

TbKif13-1 deletion 

construct 

nucleus cytoplasm cytoskeleton 

FL + - + 

½ N + C + - + 

NM + C + +/- + 

N + NM - + - 

½ N + NM + +/- +/- 

NM + +/- + 

C + - + 

N + + - 

½ N +/- + - 

 

 Proteasome-dependent degradation of TbKif13-1 2.2.2.

Immunfluorescence studies gave a first hint about TbKif13-1´s cell cycle-dependent 

degradation. The question remained, whether this occurred proteasome-dependent and if 

so, which TbKif13-1 domain was necessary for it.  

To analyse this, the turnover of myc
TbKif13-1 FL was monitored. myc

TbKif13-1 FL was 

ectopically expressed for four hours in the corresponding transgenic 449 cell line. 

Subsequently, in one approach translation was inhibited by cycloheximide (CHX) and in the 

other approach the proteasome was inhibited by MG 132 in addition to CHX treatment. 

Westernblot analysis from this assay revealed that myc
TbKif13-1 FL was degraded already two 

hours after translational inhibition (Figure 19). This degradation was prevented by inhibition 

of the proteasome, thus indicating its proteasome-dependent degradation. 
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Figure 19: Proteasome-dependent degradation of 

myc
TbKif13-1 FL. In transgenic 449 cells ectopic 

expression of myc
TbKif13-1 FL was induced for four hours. Then cycloheximide (CHX) was added for 

translational inhibiton (left Westernblot, CHX); in addition to CHX also MG 132 for proteasome 

inhibition was added (right Westernblot, CHX + MG 132). Westernblot samples were taken every two 

hours. Time point 0 marks when CHX or in addition MG 132 were added to the cell culture. For 

detection of myc
TbKif13-1 FL α-myc antibody was used; α-BiP served as loading control. 

To determine the domain necessary for proteasomal degradation, the assay was applied to 

the transgenic 449 cell lines ectopically expressing the myc
TbKif13-1 deletion constructs. 

For myc
TbKif13-1 ½ N + C the same result was received as for the full-length construct (Figure 

S 9). In contrast, the missing of the whole N-terminus resulted in a non-degradable construct 

myc
TbKif13-1 NM + C (Figure S 10). Also the absence of the C-terminus from the full-length 

construct (myc
TbKif13-1 N + NM) led to no degradation (Figure 20). 

 
Figure 20: No degradation of 

myc
TbKif13-1 N + NM. In transgenic 449 cells ectopic expression of 

myc
TbKif13-1 N + NM was induced for four hours. Then cycloheximide (CHX) was added for 

translational inhibiton (left Westernblot, CHX); in addition to CHX also MG 132 for proteasome 

inhibition was added (right Westernblot, CHX + MG 132). Westernblot samples were taken every two 

hours. Time point 0 marks when CHX or in addition MG 132 were added to the cell culture. For 

detection of myc
TbKif13-1 N + NM α-myc antibody was used; α-BiP served as loading control. 

Bisection of the N-terminus in this construct resulted in myc
TbKif13-1 ½ N + NM. It again was 

degraded in the approach with CHX treatment, while addition of MG 132 in the other 

approach prevented its degradation (Figure 21). 
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Figure 21: Proteasome-dependent degradation of 

myc
TbKif13-1 ½ N + NM. In transgenic 449 cells 

ectopic expression of myc
TbKif13-1 ½ N + NM was induced for four hours. Then cycloheximide (CHX) 

was added for translational inhibiton (left Westernblot, CHX); in addition to CHX also MG 132 for 

proteasome inhibition was added (right Westernblot, CHX + MG 132). Westernblot samples were 

taken every two hours. Time point 0 marks when CHX or in addition MG 132 were added to the cell 

culture. For detection of myc
TbKif13-1 ½ N + NM α-myc antibody was used; α-BiP served as loading 

control. 

Reduction of this half N-terminus in the construct myc
TbKif13-1 NM again resulted in a 

protein, which was not degraded after inhibition of translation (Figure 22). 

 
Figure 22: No degradation of 

myc
TbKif13-1 NM. In transgenic 449 cells ectopic expression of 

myc
TbKif13-1 NM was induced for four hours. Then cycloheximide (CHX) was added for translational 

inhibiton (left Westernblot, CHX); in addition to CHX also MG 132 for proteasome inhibition was 

added (right Westernblot, CHX + MG 132). Westerblot samples were taken every two hours. Time 

point 0 marks when CHX or in addition MG 132 were added to the cell culture. For detection of 
myc

TbKif13-1 NM α-myc antibody was used; α-BiP served as loading control. 

The single C-terminus in the construct myc
TbKif13-1 C showed proteasome-dependent 

degradation already two hours after CHX addition (Figure S 11). The single N-terminus 

TbKif13-1 NGFP-myc also was found to be proteasomal degraded (Figure S 12). The second half 

of the N-terminus in the construct TbKif13-1 ½ NGFP-myc was proteasomal degradable, yet to a 

lesser extend than the whole N-terminus (Figure S 13). A cell line ectopically expressing GFP-

myc was used as control. GFP-myc was not degraded (Figure S 14).  

In addition, TbKif13-1 FL was checked for D-boxes or KEN-boxes via GPS-ARM. D- and KEN-

boxes are recognition sequences for the E3 ubiquitin ligase APC/C. This revealed a single D-

box shortly after the transition from the predicted motor domain to the C-terminus at aa 

470-473. 

Due to the experimental results, a transgenic 449 cell line ectopically expressing the neck-

motor domain with the subsequent D-box motif (myc
TbKif13-1 NM + D-box; Figure 12) was 
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generated. This construct was used, because myc
TbKif13-1 NM was found not degraded after 

inhibition of translation. This was expected to be changed by the addition of the predicted D-

box. It was, however, found that myc
TbKif13-1 NM + D-box was also not degraded after 

translational inhibition (Figure 23). Furthermore, immunfluorescence studies in T. brucei 

showed that the nuclear localised, ectopically expressed myc
TbKif13-1 NM + D-box was not 

degraded during the cell cycle (Figure S 15 (A) and (B)). 

 
Figure 23: No degradation of 

myc
TbKif13-1 NM + D-box. In transgenic 449 cells ectopic expression of 

myc
TbKif13-1 NM + D-box was induced for four hours. Then cycloheximide (CHX) was added for 

translational inhibiton (left Westernblot, CHX); in addition to CHX also MG 132 for proteasome 

inhibition was added (right Westernblot, CHX and MG 132). Westernblot samples were taken every 

two hours. Time point 0 marks when CHX or in addition MG 132 were added to the cell culture. For 

detection of myc
TbKif13-1 NM + D-Box α-myc antibody was used; α-BiP served as loading control. 

myc
TbKif13-1 ½ N + D-box was used as control. The addition of the D-box sequence to 

myc
TbKif13-1 ½ N + NM did not have an influence on its proteasomal degradation and its 

appearance throughout the cell cylce in immunfluorescence studies (Figure S 16). 

The results of a possible degradation of myc
TbKif13-1 deletion constructs after inhibition of 

translation and their possible proteasome-dependent degradation, are summarised in Table 

2. 

myc
TbKif13-1 FL was proteasome-dependent degraded. Also the myc

TbKif13-1 N-terminus and 

the myc
TbKif13-1 C-terminus were proteasome-dependent degraded. The predicted D-box 

motif did not have an influence on degradation characteristics of the deletion constructs. N- 

and C-terminal degradation motifs were supposed. 
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Table 2: Proteasome-dependent degradation of 
myc

TbKif13-1 deletion constructs. Degradation of 

TbKif13-1 deletion constructs was determined by inhibition of translation in the respective 

transgentic 449 cell line ectopically expressing myc
TbKif13-1 deletion constructs. Proteasome-

dependent degradation was determined by additional inhibiton of the proteasome. +: degradation; 

+/-: degradation not pronounced; -: no degradation. The respective TbKif13-1 deletion constructs are 

depicted. White box: N-terminus; striped grey box: putative neck domain; black box: motor domain; 

grey box: predicted D-box motif; spotted box: C-terminus. 

TbKif13-1 deletion 

construct 

degradation 

after inhibiton 

of translation 

proteasome-

dependent 

degradation 

FL + + 

½ N + C + + 

NM + C - - 

N + NM - - 

½ N + NM + + 

NM - - 

C + + 

N + + 

½ N +/- +/- 

NM + D-box - - 

½ N + D-box + + 

 

  Effect of TbKif13-1 deletion constructs on cell cylce progression 2.2.3.

The effects of TbKif13-1 deletion constructs on cell cycle progression and cell viability give 

insight into functionality of TbKif13-1 domains by analysing possible dominant-negative 

phenotypes. To this end, the tagged TbKif13-1 deletion constructs were ectopically 

expressed in the respective transgenic procyclic 449 cell line and their growth was observed 

for six days. Moreover, cell cycle profiles of the cell lines were obtained via flow cytometry 

analysis at several days of ectopic expression. In cell lines exhibiting growth inhibition and 

increased zoid formation, spindle formation was observed for six days by staining 

microtubules with the KMX antibody, which recognises β-tubulin, and subsequent 

immunfluorescence microscopy. 
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Figure 24: Reduced growth and increase of zoids and cells >2N in the cell line ectopically expressing 
myc

TbKif13-1 FL. (A) Growth curve of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 

FL; control cells: non induced and non transfected 449 cells. (B) Flow cytometry analysis of the 

transgenic 449 cell line ectopically expressing myc
TbKif13-1 FL (+ Dox, upper panels), control cells: non 

induced (- Dox, lower panels). (C) Immunfluorescence analysis of mitotic 2K1N cells after ectopic 

expression of myc
TbKif13-1 FL, depicting a cell with spindle formation (upper panel) and one without 

detectable spindle (lower panel). KMX antibody was used for β-tubulin staining (green), DNA was 

stained with DAPI (red). Scale bar 3 µm. Diagram shows evaluation of spindle formation in mitotic 

2K1N cells ectopically expressing myc
TbKif13-1 FL from day 0 to day 6; black: spindle formation; grey: 

no spindle formation. 

The ectopic expression of the full-length construct myc
TbKif13-1 FL led to a reduced growth 

compared to non induced myc
TbKif13-1 FL transgenic cells and non transfected 449 cells 

(Figure 24 (A)). Flow cytometry analysis showed for this cell line an increase in zoids and cells 
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with >2N three and five days after induction (Figure 24 (B)). Flow cytometry results were 

confirmed via immunfluorescence microscopy. Based on kinetoplast and nucleus positioning, 

100 cells were noted for their cell cycle stage (Figure S 17). Spindle staining with KMX 

antibody showed in mitotic 2K1N cells a reduced spindle formation by 10 to 40% one to six 

days after ectopic expression of myc
TbKif13-1 FL, compared to cells without ectopic 

expression (Figure 24 (C)). 

Ectopic expression of the deletion constructs myc
TbKif13-1 ½ N + C and myc

TbKif13-1 NM + C, 

with bisected and reduced N-terminus respectively, also led to a growth defect (Figure S 18 

(A) and 25 (A)).  

Ectopic expression of myc
TbKif13-1 ½ N + C resulted in an increase of zoids and cells >2N 

three and five days after induction (Figure S 18 (B)). Flow cytometry data were confirmed via 

immunfluorescence microscopy (Figure S 18 (C)). KMX staining of the spindle in mitotic 2K1N 

cells showed a reduction in spindle formation by 20 to 60% within one to six days after 

ectopic expression of myc
TbKif13-1 ½ N + C, compared to non induced cells (Figure S 18 (D)). 

In contrast, ectopic expression of myc
TbKif13-1 NM + C resulted in an increase of zoids three 

days after induction. However, they were no longer detectable at day five (Figure 25 (B); for 

fluorescence microscopy evaluation refer to Figure S 19). Instead, a peak of dead cells 

appeared in flow cytometry analysis. Spindle formation in mitotic 2K1N cells was reduced by 

a maximum of only 20%, compared to non induced cells (Figure 25 (C)). Also the formation 

of a diffuse spindle occured. 
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Figure 25: Reduced growth of the cell line ectopically expressing 

myc
TbKif13-1 NM + C. (A) Growth 

curve of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 NM + C; control cells: non 

induced and non transfected 449 cells. (B) Flow cytometry analysis of the transgenic 449 cell line 

ectopically expressing myc
TbKif13-1 NM + C (+ Dox, upper panels), control cells: non induced (- Dox, 

lower panels). (C) Immunfluorescence analysis of mitotic 2K1N cells after ectopic expression of 
myc

TbKif13-1 NM + C, depicting a cell with spindle formation (upper panel) and one with a diffuse 

spindle (lower panel). KMX antibody was used for β-tubulin staining (green), DNA was stained with 

DAPI (red). Scale bar 3 µm. Diagram shows evaluation of spindle formation in mitotic 2K1N cells 

ectopically expressing myc
TbKif13-1 NM + C from day 0 to day 6; black: spindle formation; grey: no 

spindle formation. 

Compared to non induced cells, the ectopic expression of the construct without C-terminus, 

myc
TbKif13-1 N + NM, did not result in a growth defect. Despite both showed a growth 

reduction compared to non transfected 449 cells (Figure S 20 (A)). Flow cytometry analysis 
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and fluorescence microscopy evaluation showed no divergent increase of zoids between 

myc
TbKif13-1 N + NM induced and non induced cells (Figure S 20 (B) and (C)). The maximal 

observed reduction of spindle formation in mitotic 2K1N cells was by 20% at day one and six 

after myc
TbKif13-1 N + NM induction, compared to day 0 (Figure S 20 (D)). 

The bisection of the N-terminus within this construct led to myc
TbKif13-1 ½ N + NM. Its 

ectopic expression resulted in a growth defect (Figure 26 (A)). Flow cytometry analysis 

showed a strong increase in zoids and >2N cells up to three days after induction of 

myc
TbKif13-1 ½ N + NM ectopic expression (Figure 26 (B); for fluorescence microscopy 

evaluation refer to Figure S 21). This effect was reduced at day five after induction. KMX 

staining revealed a reduction of spindle formation in ectopically expressing myc
TbKif13-1 ½ N 

+ NM cells by 10 to 50% one to six days after induction (Figure 26 (C)).  

Ectopic expression of the neck-motor construct myc
TbKif13-1 NM also resulted in a growth 

defect (Figure 27 (A)). Flow cytometry analysis showed an unusual distribution of the cells 

within the cell cycle (Figure 27 (B); for fluorescence microscopy evaluation refer to Figure S 

22 (B)). After twelve hours of myc
TbKif13-1 NM ectopic expression, there was an increase of 

zoids, cell cycle stage shift from G1 to G2/M and an increasing amount of >2N cells. The only 

strong peak of the flow cytometry analysis was found for zoids. After five days of ectopic 

expression, most cells were dead (Figure S 22 (A)). KMX spindle staining showed that after 

twelve hours of myc
TbKif13-1 NM ectopic expression, only 8% of mitotic 2K1N cells formed a 

spindle. After 24 hours of myc
TbKif13-1 NM ectopic expression, there was no spindle 

detectable in mitotic 2K1N cells (Figure 27 (C)). 
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Figure 26: Reduced growth of the cell line ectopically expressing 

myc
TbKif13-1 ½ N + NM. (A) Growth 

curve of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 ½ N + NM; control cells: non 

induced and non transfected 449 cells. (B) Flow cytometry analysis of the transgenic 449 cell line 

ectopically expressing myc
TbKif13-1 ½ N + NM (+ Dox, upper panels), control cells: non induced (- Dox, 

lower panels). (C) Immunfluorescence analysis of mitotic 2K1N cells after ectopic expression of 
myc

TbKif13-1 ½ N + NM, depicting a cell with spindle formation (upper panel) and one without 

detectable spindle (lower panel). KMX antibody was used for β-tubulin staining (green), DNA was 

stained with DAPI (red). Scale bar 3 µm. Diagram shows evaluation of spindle formation in mitotic 

2K1N cells ectopically expressing myc
TbKif13-1 ½ N + NM from day 0 to day 6; black: spindle 

formation; grey: no spindle formation. 
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Figure 27: Reduced growth of the cell line ectopically expressing 

myc
TbKif13-1 NM. (A) Growth curve 

of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 NM; control cells: non induced and 

non transfected 449 cells. (B) Flow cytometry analysis of the transgenic 449 cell line ectopically 

expressing myc
TbKif13-1 NM (+ Dox, upper panels), control cells: non induced (- Dox, lower panels). 

(C) Immunfluorescence analysis of mitotic 2K1N cells after ectopic expression of myc
TbKif13-1 NM, 

depicting a cell with spindle formation (upper panel) and one without detectable spindle (lower 

panel). KMX antibody was used for β-tubulin staining (green), DNA was stained with DAPI (red). Scale 

bar 3 µm. Diagram shows evaluation of spindle formation in mitotic 2K1N cells ectopically expressing 
myc

TbKif13-1 NM at day 0 and 12 h and 24 h after induction; black: spindle formation; grey: no spindle 

formation. 

In comparison to non induced cells, ectopic expression of the myc
TbKif13-1 C-terminus did 

not result in a growth defect (Figure S 23 (A)). Also flow cytometry analysis did not show a 

divergent distribution of cells within the cell cycle from induced, ectopically expressing 

myc
TbKif13-1 C to non induced cells (Figure S 23 (B); for fluorescence microscopy evaluation 



Results 

| 54 

 

refer to Figure S 23 (C)). KMX staining of mitotic 2K1N cells ectopically expressing myc
TbKif13-

1 C showed that there was no reduction in spindle formation (Figure 28 (A) and (B)). 

However, more than half of the observed spindles had an elongated phenotype from day 

one to day six after ectopic expression of myc
TbKif13-1 C (Figure 28 (C)).  

 
Figure 28: Ectopic expression of 

myc
TbKif13-1 C led to an elongated spindle phenotype. (A) 

Immunfluorescence analysis of mitotic 2K1N after ectopic expression of myc
TbKif13-1 C, depicting a 

cell with normal spindle formation (upper panel), with an elongated spindle phenotype (middle 

panel) or with no detactable spindle (lower panel). KMX antibody was used for β-tubulin staining 

(green), DNA was stained with DAPI (red). Scale bar 3 µm. (B) Evaluation of spindle formation in 

mitotic 2K1N cells ectopically expressing myc
TbKif13-1 C from day 0 to day 6; black: spindle formation; 

grey: no spindle formation. (C) Evaluation of normal and elongated spindle phenotype in mitotic 

2K1N cells ectopically expressing myc
TbKif13-1 C from day 0 to day 6; black: normal spindle 

phenotype; grey: elongated spindle phenotype. 

The ectopic expression of the N-terminus or the bisected N-terminus (TbKif13-1 NGFP-myc and 

½ NGFP-myc) within the corresponding transgenic cell lines, did not result in growth inhibition 

(Figure S 24 (A) and S 25 (A)). Also flow cytometry analysis did not show any shift in cell cycle 

stage distribution (Figure S 24 (B) and (C), S 25 (B) and (C)). Spindle staining of mitotic 2K1N 

cells ectopically expressing TbKif13-1 ½ NGFP-myc  did not show any reduced spindle formation 

(Figure S 25 (D)). 
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The influence of the ectopically expressed TbKif13-1 deletion constructs to the cell cycle 

progression in the respective transgenic 449 cell line is summarised in Table 3. Focus was put 

on the dominant-negative phenotypes reduced growth of the respective cell lines, formation 

of zoids and missing spindle formation. 

To conclude, ectopic expression of full-length myc
TbKif13-1 reduced the growth of the 

respective transgenic cell line, and led to zoid formation and a reduction in spindle 

formation. The ectopic expression of the myc
TbKif13-1 neck-motor domain had a massive 

dominant-negative influence on cell viability and spindle formation. The ectopic expression 

of the myc
TbKif13-1 C-terminus led to an elongation of the spindle, but did not have a 

dominant-negative influence on cell viability.  

Table 3: Effects of ectopic expression of the TbKif13-1 deletion constructs on the cell cycle. Results 

were gained from growth curves and immunfluorescence microscopy. The dominant-negative 

phenotypes reduced growth, zoid formation and the missing spindle formation were considered. +: 

reduced growth, zoid formation or missing spindle formation; +/-: reduced growth, zoid formation or 

missing spindle formation is not pronounced; -: no reduced growth, no zoid formation or no missing 

spindle formation; enhanced effects are marked with repetetive signs; n.d.: not determined. The 

respective TbKif13-1 deletion constructs are depicted. White box: N-terminus; striped grey box: 

putative neck domain; black box: motor domain; spotted box: C-terminus. 

TbKif13-1 

deletion construct 

reduced 

growth 

zoid 

formation 

missing spindle 

formation 

FL + + + 

½ N + C + + ++ 

NM + C + + +/- 

N + NM - - +/- 

½ N + NM + ++ ++ 

NM +++ +++ +++ 

C - - - 

elongated spindle 

N - - n.d. 

½ N - - - 

 

 TbKif13-1 domains necessary for microtubule binding and depolymerisation 2.2.4.

Microtubule binding sites are essential for TbKif13-1´s depolymerisation activity. To identify 

necessary microtubule binding and depolymerisation domains in vitro, TbKif13-1 deletion 

constructs that contain a motor domain were N-terminal His6 tagged and recombinantly 
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purified from E. coli. To determine their functional purification, the ATPase activity of the 

purified His6
TbKif13-1 constructs was analysed using the malachite green assay. 

The tubulin sedimentation assay was used for in vitro microtubule binding and 

depolymerisation determination. To this end, the recombinantly purified His6
TbKif13-1 

constructs were incubated with taxol-stabilised microtubules and ATP. After binding to 

microtubules some constructs were able to depolymerise them. Subsequent centrifugation 

pelleted polymerised microtubules with bound His6
TbKif13-1 while depolymerised tubulin 

and unbound His6
TbKif13-1 were found in the supernatant. SDS PAGE analysis was done for 

visualisation of the results. 

An assay with T. brucei cytoskeleton preparations as depolymerisation substrate was done to 

verify the microtubule depolymerisation activity of purified His6
TbKif13-1 constructs. In this 

assay recombinantly purified His6
TbKif13-1 constructs and ATP, or without ATP for control, 

were added to cytoskeletons. Subsequent immunfluorescence microscopy monitored a 

possible depolymerisation. 

The full-length construct His6
TbKif13-1 FL depolymerised microtubules in the tubulin 

sedimentation assay and the cytoskeleton assay (Figure 29 (A) and 11). In the tubulin 

sedimentation assay, His6
TbKif13-1 FL was found together with polymerised tubulin in the 

pellet fraction of the control approach without ATP (Figure 29 (A)). This indicates its tubulin 

binding ability. The malachite green assay showed the ATPase activity of His6
TbKif13-1 FL, 

which increased with increasing His6
TbKif13-1 FL concentration (Figure 29 (B)). 

 
Figure 29:

 His6
TbKif13-1 FL is a microtubule depolymeriser. (A) Tubulin sedimentation assay. 1.5 µM 

His6
TbKif13-1 FL were used. Substrate were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample 

was not treated with recombinantly purified His6
TbKif13-1 FL. P: pellet; SN: supernatant; SDS-PAGE 

analysis. (B) Malachite green assay for His6
TbKif13-1 FL. ATPase activity of His6

TbKif13-1 FL increased 

with increasing His6
TbKif13-1 FL concentration. Approaches without tubulin or ATP served as control. 
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The recombinantly purified constructs His6
TbKif13-1 ½ N + C and His6

TbKif13-1 NM + C also 

depolymerised Trypanosome cytoskeletons (Figure S 26 (B) and S 27 (B)) and microtubules in 

the sedimentation assay (Figure S 26 (A) and S 27 (A)). Both deletion constructs were found 

with polymerised tubulin in the pellet fraction of the control approaches without ATP (Figure 

S 26 (A) and S 27(A)). This indicates their tubulin binding ability. The malachite green assays 

for His6
TbKif13-1 ½ N + C and His6

TbKif13-1 NM + C showed their increasing ATPase activity 

with increasing concentrations of His6
TbKif13-1 ½ N + C and His6

TbKif13-1 NM + C, respectively 

(Figure S 26 (C) and S 27 (C)).  

In contrast, the His6
TbKif13-1 deletion constructs with missing C-terminus, His6

TbKif13-1 N + 

NM, His6
TbKif13-1 ½ N + NM and His6

TbKif13-1 NM, were neither able to depolymerise 

microtubules within the tubulin sedimentation assay, nor to depolymerise Trypanosome 

cytoskeletons, despite concentrations between 1 µM and 5 µM were used (Figure 30 (A) an 

(C), S 28 (A) and (C), S 29 (A) and (C)). Malachite green assays confirmed the ATPase activity 

of these deletion constructs (Figure 30 (D), S 28 (D) and S 29 (D)). Hence, their missing 

depolymerisation acitivity did not result from ATPase inactivity. 

Westernblot analysis of their tubulin sedimentation assay samples was conducted to identify 

a microtubule binding ability of these deletion constructs, because of the similiar molecular 

weight of His6
TbKif13-1 N + NM, His6

TbKif13-1 ½ N + NM, His6
TbKif13-1 NM and tubulin. There 

were contradictory results of a possible microtubule binding ability of the His6
TbKif13-1 

deletion constructs. In the approaches with ATP, the deletion constructs were found in the 

supernatant, while polymerised microtubules were found in the pellet fraction (Figure 30  

(B), S 28 (B) and S 29 (B)). In the control approaches without ATP, the deletion constructs 

were also found in the pellet fraction with polymerised microtubules. 
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Figure 30:

 His6
TbKif13-1 NM is no microtubule depolymeriser but retains ATPase activity. (A) Tubulin 

sedimentation assay. 1.5 µM His6
TbKif13-1 NM were used. 1.5 µM His6

TbKif13-1 FL were used as 

positive control. Substrate were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample was not 

treated with recombinantly purified His6
TbKif13-1 NM. P: pellet; SN: supernatant; SDS-PAGE analysis. 

(B) Westernblot analysis of the tubulin sedimentation assay samples. His6
TbKif13-1 NM was detected 

using α-His antibody; tubulin was detected using α-tubulin antibody. (C) Cytoskeleton 

depolymerisation assay. 1 µM His6
TbKif13-1 NM was used. Cytoskeleton tubulin (green) was stained 

with α-tubulin antibody. DNA was DAPI (red) stained. Scale bar 5 µm. (D) Malachite green assay for 
His6

TbKif13-1 NM. ATPase activity of His6
TbKif13-1 NM increased with increasing His6

TbKif13-1 NM 

concentration. Approaches without tubulin or ATP served as control. 

The ability of the His6
TbKif13-1 deletion constructs to depolymerise the Trypanosome 

cytoskeleton and microtubules within the tubulin sedimentation assay, and their ability to 

bind to microtubules is summarised in Table 4.  

Results indicate that the neck-motor domain in conjuction with the C-terminus is necessary 

for TbKif13-1´s microtubule binding and depolymerisation activity. 
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Table 4: Microtubule binding and depolymerisation ability of 
His6

TbKif13-1 deletion constructs. The 

results were received from the tubulin sedimentation assay and the cytoskeleton depolymerisation 

assay. +: depolymerisation/binding to microtubules; -: no depolymerisation/no binding to 

microtubules. White box: N-terminus; striped grey box: putative neck domain; grey box: predicted 

APC/C recognition motif; black box: motor domain; spotted box: C-terminus. 

TbKif13-1 deletion 

construct 

depolymerisation microtubule 

binding 

FL + + 

½ N + C + + 

NM + C + + 

N + NM - - 

½ N + NM - - 

NM - - 

 

 Essential amino acids for depolymerisation and ATPase activity within the motor 2.2.5.

domain of TbKif13-1 

Studies with MCAK found that microtubule depolymerisation and ATPase activity are not 

interdependent (Wagenbach et al., 2008; Wang et al., 2012; Wang et al., 2015). The switch II 

motif (DxxGxE) within the motor domain plays an essential role in this issue (see 1.3.2.). 

Mutation of the switch II motif glycine in MCAK G495A resulted in a pre-conformational 

change-mimicking mutant. This mutant is able to bind to microtubules, but unable to 

hydrolyse ATP and to depolymerise microtubules (Wagenbach et al., 2008; Wang et al., 

2012). MCAK E497A was shown to be a post-conformational change-mimicking mutant, that 

is nearly ATPase deficient and able to depolymerise microtubules concentration-dependent 

(Wagenbach et al., 2008; Wang et al., 2015). 

Both amino acids are conserved within the TbKif13-1 motor domain, G371 and E373. It 

should be determined, whether they were also essential for its depolymerisation and ATPase 

activity, and whether both mechanisms were also not interdependent within TbKif13-1. 

His6
TbKif13-1 FL G371A and His6

TbKif13-1 FL E373A were recombinantly purified to test this 

hypothesis. Malachite green assays were individually performed with both proteins to check 

their ATPase activity. Tubulin sedimentation assays were carried out to check their 

depolymerisation activity.  

It was found that His6
TbKif13-1 FL G371A abolished ATPase activity, while His6

TbKif13-1 FL 

E373A was almost completely ATPase deficient (Figure 31 (A) and (B)). The pre-
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conformational change-mimicking mutant G371A did not depolymerise microtubules, even 

at increased His6
TbKif13-1 FL G371A concentrations (5 µM). But it was able to bind to 

microtubules (Figure 31 (C)). By contrast, the post-conformational change-mimicking mutant 

E373A depolymerised microtubules, an effect which was evident at higher (5 µM) 

His6
TbKif13-1 FL E373A concentrations (Figure 31 (D)). His6

TbKif13-1 FL E373A depolymerised 

microtubules independent of the presence of ATP (Figure 31 (D)).  

 
Figure 31: 

His6
TbKif13-1 FL G371A inhibits ATPase and depolymerisation activity, while 

His6
TbKif13-1 

FL E373A is ATPase deficient but depolymerises tubulin. (A) Malachite green assay for 
His6

TbKif13-1 

FL G371A. (B) Malachite green assay for 
His6

TbKif13-1 FL E373A. (C) Tubulin sedimentation assay. 1 to 

5 µM His6
TbKif13-1 FL G371A were used. 1 µM His6

TbKif13-1 FL was used as positive control. Substrate 

were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample was not treated with recombinantly 

purified His6
TbKif13-1 FL G371A. P: pellet; SN: supernatant. (D) Tubulin sedimentation assay. 1 to 5 

µM His6
TbKif13-1 FL E373 were used. 1 µM His6

TbKif13-1 FL was used as positive control. Substrate 

were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample was not treated with recombinantly 

purified His6
TbKif13-1 FL E373A. P: pellet; SN: supernatant. 
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2.3. TbAuk1 and TbKif13-1 

Mammalian MCAK is phosphorylated by AuroraB kinase for regulatory localisation and 

activity reasons (see 1.4.1.). The mitotic TbAuk1 is necessary for proper mitosis and 

cytokinesis and is located at the spindle during metaphase in T. brucei. This indicates that in 

T. brucei, TbAuk1 could regulate TbKif13-1´s activity by phosphorylation. 

To test this hypothesis, an in vitro 33P ɣATP phosphorylation assay was conducted with 

myc
TbAuk1 received from immunoprecipitation and His6

TbKif13-1 received from recombinant 

purification.  

In a first step, a transgenic 449 cell line ectopically expressing myc
TbAuk1 (Tb927.11.8220) 

was generated. Two transgenic 449 cell lines ectopically expressing published kinase-dead 

myc
TbAuk1 K58R and myc

TbAuk1 T184A, respectively, were generated for use as negative 

controls (silver staining of IP products (Figure S 30); Hu et al., 2014; Li and Wang, 2006). In 

order to confirm phosphorylation activity of immunoprecipitated myc
TbAuk1 and abolished 

phosphorylation activity in the immunoprecipitated kinase-dead mutants myc
TbAuk1 K58R 

and myc
TbAuk1 T184A, a 33P ɣATP phosphorylation assay using recombinantly purified 

TbHistoneH3His6 as substrate was conducted. 

Autoradiography analysis revealed that immunoprecipitated myc
TbAuk1 was able to 

phoshorylate TbHistoneH3His6 (Figure 32). However, for the published kinase-dead mutants 

myc
TbAuk1 K58R and myc

TbAuk1 T184A, TbHistoneH3His6 phosphorylation was also detected, 

despite to only about one third of the extend of myc
TbAuk1 mediated phosphorylation 

(Figure 32). Applied myc-coupled protein G-sepharose from immunoprecipitation of wild 

type 449 cell lysate also led to a weak phosphorylation of TbHistoneH3His6. For mock IP, 

protein G-sepharose without additional antibody was used in 449 wild type lysate. This did 

not result in TbHistoneH3His6 phosphorylation. To confirm addition of myc
TbAuk1, myc

TbAuk1 

K58R and TbHistoneH3His6, Westernblot analysis with the samples was conducted (Figure S 

31).  
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Figure 32: 

myc
TbAuk1 phosphorylates TbHistoneH3

His6
, but also kinase-dead 

myc
TbAuk1 K58R and 

myc
TbAuk1 T184A are able to phosphorylate TbHistoneH3

His6
, even though to a lesser extend. 

Autoradiography of myc
TbAuk1 and kinase-dead myc

TbAuk1 K58R and myc
TbAuk1 T184A 33P ɣATP kinase 

assay. myc
TbAuk1 and its mutants were immunoprecipitated from transgenic T. brucei cell lysates. As 

control, IP of 449 wild type cell lysates and mock IP without addition of antibody were conducted. 

The phosphorylation substrate was recombinantly purified TbHistoneH3His6 (1.5 µg). Phosphorlyation 

occurred in the presence of 33P ɣATP. Coomassie stained gels served as loading control. 

Another 33P ɣATP phosphorylation assay was used to check whether myc
TbAuk1 and its 

mutants myc
TbAuk1 K58R and myc

TbAuk1 T184A are able to phosphorylate His6
TbKif13-1. 

Previous studies with AuroraB kinase had shown that it needed microtubules for in vitro 

activation and that microtubules accelerate its kinase activity (Noujaim et al., 2014; Rosasco-

Nitcher et al., 2008). The 33P ɣATP phosphorylation assay was conducted with and without 

additional taxol-stabilised microtubules to test, whether this was also true for TbAuk1.  

The immunoprecipitated myc
TbAuk1, myc

TbAuk1 K58R or myc
TbAuk1 T184A was incubated 

with recombinantly purified His6
TbKif13-1, 33P ɣATP and with or without taxol-stabilised 

microtubules. Autoradiography analysis showed that myc
TbAuk1, like its mutants myc

TbAuk1 

K58R and myc
TbAuk1 T184A, phosphorylated His6

TbKif13-1 independent of the presence of 

microtubules (Figure 33). Microtubules were also phosphorylated by myc
TbAuk1, myc

TbAuk1 

K58R and myc
TbAuk1 T184A (Figure 33). Westernblot analysis of the samples showed that 

tubulin was also contained to a little extend in samples where no microtubules were added 

(Figure S 32). Samples with myc
TbAuk1 T184A showed an autophosphorylation signal (Figure 

33). Beads from wild type 449 cell lysate immunoprecipitation and mock IP served as 

negative controls.  
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Figure 33: 

myc
TbAuk1, 

myc
TbAuk1 K58R and 

myc
TbAuk1 T184A phosphorylate 

His6
TbKif13-1 

independent of the presence of microtubules. Prior to autoradiography analysis, 

immunoprecipitated myc
TbAuk1, myc

TbAuk1 K58R or myc
TbAuk1 T184A, respecitively, was incubated 

with recombinantly purified His6
TbKif13-1 (0.75 µM), 33P ɣATP and with or without taxol-stabilised 

microtubules. Coomassie stained gels served as loading control. IP from wild type 449 cell lysate and 

mock IP served as negative control. 

Finally, it was tested whether myc
TbAuk1 mediated phosphorylation inhibits the 

depolymerisation activity of His6
TbKif13-1 in vitro. A tubulin sedimentation assay was 

conducted and myc
TbAuk1 or myc

TbAuk1 T184A, respectively, was added to the 

depolymerisation approach. It was found that addition of immunoprecipitated myc
TbAuk1 did 

not inhibit His6
TbKif13-1´s depolymerisation activity in the assay (Figure 34). myc

TbAuk1 

T184A, which was added as negative control, did also not inhibit His6
TbKif13-1´s 

depolymerisation activity in the assay. Pre-incubation of myc
TbAuk1 and His6

TbKif13-1 in the 

presence of ATP before addition of taxol-stabilised microtubules, did also not result in 

inhibition of His6
TbKif13-1´s depolymerisation acitivity in the assay (Figure S 33).  

 
Figure 34: No inhibition of 

His6
TbKif13-1´s depolymerisation activity by the product of 

 myc
TbAuk1 IP. 

A depolymerisation assay with added immunoprecipitated myc
TbAuk1 or myc

TbAuk1 T184A, 

respectively, was conducted. 1 µM His6
TbKif13-1 was used. Control (Ctrl) sample was not treated with 

recombinantly purified His6
TbKif13-1. P: pellet; SN: supernatant.  



Results 

| 64 

 

To conclude, immunoprecipitated myc
TbAuk1 was active and phosphorylated 

TbHistoneH3His6. Also the immunoprecipitated kinase-dead myc
TbAuk1 K58R and myc

TbAuk1 

T184A, and wild type 449 immunoprecipitation products showed phosphorylation of 

TbHistoneH3His6, but to a lesser extend. His6
TbKif13-1 was phosphorylated by myc

TbAuk1, but 

also by myc
TbAuk1 K58R and myc

TbAuk1 T184A. myc
TbAuk1 did not inhibit His6

TbKif13-1´s 

depolymerisation activity in the tubulin sedimentation assay. 
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3. Discussion 

3.1. Attempt to establish a prodecure for a TbKif13-1 high-throughput inhibitor 

screen 

The failure of existing drugs against trypanosomiasis, difficulties in their administration and 

arising resistances, emphasise the urgent need for new drugs in the fight against 

trypanosomiasis. New drug targets include T. brucei proteins essential for their survival and 

best unique to Trypanosomes, thus reducing adverse side effects in the mammalian host. 

Drug libraries are screened for proper small molecule inhibitors in high-throughput assays 

(Smith et al., 2016; Volkov et al., 2017; Zimmermann et al., 2016). However, in vitro 

identified inhibitors from target-based approaches that screen the isolated protein, are not 

always reliable compounds in vivo. These in vitro identified compounds are not tested for 

membrane permeability and drug conversion in human cells, and in the case of anti-parasitic 

drugs for toxicity against the human host. Thus, the high-throughput phenotypic screening 

on cellular basis is more attractive. Two compounds against T. b. gambiense and T. b. 

rhodesiense were already found in phenotypic screens and entered clinical trials by DNDi 

(drugs for neglected diseases initiative; dndi.org; Jacobs et al., 2011; Kaiser et al., 2011; 

Torreele et al., 2010). 

In this thesis the attempt was made to establish the prerequisites for a heterologous in vivo 

high-throughput inhibitor screen. The promising drug target in this assay is the mitotic 

kinesin TbKif13-1. Previous studies showed that TbKif13-1 is necessary for proper mitotic 

spindle assembly and T. brucei survival, both in cell culture and in a mouse model (Chan et 

al., 2010; Wickstead et al., 2010a). Since trypanosomiasis´ progression and pathogenicity is 

caused by massive cell proliferation within the human host, it is supposed that prevention of 

trypanosomes´ proliferation could cure trypanosomiasis. A scenario reminding of fighting 

cancer, where mitotic kinesins came into focus as drug targets (see 1.3.5.). 

The principal setting of the heterologous in vivo assay in this thesis is simple and elaborate. 

Usually, inhibitor screens for kinesins are done using ATPase assays (DeBonis et al., 2004; 

Sakowicz et al., 2004). The heterologous in vivo assay has several advantages compared to in 

vitro assays. In contrast to those, the in vivo assay is able to identify inhibitors not only acting 

on the ATPase activity. Moreover, this assay selects for an inhibitor that is not cytotoxic for 
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HeLa cells, indicating that such an inhbitor is potentially also not cytotoxic to the human 

host. As a potential small molecule inhibitor from this screen would be membrane-

permeable, it could also be applied for intracellular Leishmania or T. cruzi, causing 

Leishmaniasis or Chagas disease, respectively. The disadvantage of the assay is its high 

selectivity towards a potential drug. Compounds that would need a chemical modification, 

like a functional group for inhibiting TbKif13-1, are not coming into focus. 

In Xenopus MCAK, S196 is an inhibitory phosphorylation site for AuroraB kinase, inhibiting 

MCAK´s microtubule depolymerisation effect (Andrews et al., 2004; Lan et al., 2004). 

Preliminary tests in this thesis also confirmed that mutation of the corresponding S143 in 

eGFP
TbKif13-1 is necessary for its microtubule depolymerisation activity in HeLa cells (Figure S 

1). While the assay´s functionality was proved in HeLa cells transiently transfected and 

expressing eGFP
TbKif13-1 S143A, stable HeLa cell lines inducibly overexpressing eGFP

TbKif13-1 

S143A, did not show cytoskeleton microtubule depolymerisation (Figure 9, 10 and S 2). 

Experimental data from transiently transfected cells indicated that a higher eGFP
TbKif13-1 

S143A expression rate resulted in better microtubule cytoskeleton depolymerisation rates 

(Figure 9 and S 2). Hence, it was considered to integrate additional eGFP
TbKif13-1 S143A 

copies into the genome of HeLa cells. However, also its additional random genomic 

integration into already single stable cells, did not result in the desired cytoskeleton 

depolymerisation (Figure S 3). High expression rates in mammalian cells are in general 

gained by an alternative transfection option, the lentiviral system (Mao et al., 2015; Varma 

et al., 2011). Vectors with the highest published expression rates contain the 

cytomegalovirus (CMV) promoter (Mao et al., 2015; Varma et al., 2011). This is the same 

promotor like in the vector used in this study for the generation of a stable cell line. 

However, the lentiviral system allows integration of several gene copies and could therefore 

allow higher expression rates. 

A correlation of the expression rate of depolymerising kinesin and cytoskeleton 

depolymerisation was also seen in stable CHO cells overexpressing MCAK (Ganguly et al., 

2011a). Interestingly, there seems to be a correlation between microtubule 

depolymerisation induced by MCAK and the cellular tubulin expression level. Cytoskeleton 

depolymerisation by overexpressed MCAK in CHO cells at first increases the amount of 

unpolymerised free tubulin, but then the level declines below that of free tubulin in control 
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cells (Ovechkina et al., 2002). The reason for this is supposed to be an autoregulation 

mechanism of tubulin. Microtubule depolymerising drugs that increase the level of free 

tubulin lead to decreasing mRNA levels of α- and β-tubulin (Cleveland et al., 1981; Gonzalez-

Garay and Cabral, 1996; Ovechkina et al., 2002). 

Moreover, CHO cells with high levels of overexpressed MCAK showed an increased 

sensitivity to microtubule depolymerising drugs, like colcemid (Ganguly et al., 2011a). 

Conversely, they also exhibited resistance to microtubule stabilising drugs, like paclitaxel 

(Ganguly et al., 2011a). This effect was not seen within this thesis. The stable HeLa cells, 

overexpressing eGFP
TbKif13-1 S143A, did not show a sufficient microtubule destabilising 

effect by nocodazole for use in a high-throughput assay (Figure S 4). This could be due to the 

expression level of eGFP
TbKif13-1 S143A. Low expression of MCAK did also not result in an 

increased sensitivity to colcemid in CHO cells (Ganguly et al., 2011a).  

Resistance to microtubule stabilising or destabilising drugs depends in addition to other 

mechanisms, like expression of a different tubulin isotype, on αβ-tubulin mutations 

(Gonzalez-Garay et al., 1999; Hari et al., 2003a; He et al., 2001; Schibler and Cabral, 1986). 

Cell lines with mutations in α- and β-tubulin, resulting in resistance to microtubule stabilising 

drugs, also showed less assembled microtubule polymers compared to wild type cells 

(Barlow et al., 2002; Minotti et al., 1991). Conversely, cells with resistance to microtubule 

destabilising drugs, contain hyperstable microtubules and more microtubule polymers 

compared to wild type cells (Barlow et al., 2002; Minotti et al., 1991). In both cases the 

increased or decreased amount of microtubule polymers does not depend on varying tubulin 

expression levels (Barlow et al., 2002).  

It is unlikely that the stable HeLa cells within this thesis are resistant to the used microtubule 

depolymerising drug nocodazole, because cells started to arrest in mitosis already at 

addtition of 70 ng/mL nocodazole. It is more likely that the maximal usable nocodazole 

concentration in conjunction with the level of overexpressed eGFP
TbKif13-1 S143A is not 

sufficient for microtubule depolymerisation, like it was mentioned above for MCAK 

expression levels in stable CHO cells and colcemid sensitivity (Ganguly et al., 2011a). 

Interestingly, in CHO cells addition of microtubule destabilising drugs at a level that does not 

result in mitotic arrest, decreases the dynamic instability of microtubules, making them 

more static (Yang et al., 2010). At higher concentrations, microtubule minus ends are 

released from centrosomes, resulting in microtubule fragments and mitotic arrest (Yang et 
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al., 2010). Cytoplasmic microtubules are depolymerised only at even higher drug 

concentrations (Yang et al., 2010).  

As an alternative to the in vivo assay, an in vitro assay for a high-throughput inhibitor screen 

is possbile. In this thesis the prerequisite for such an assay, regarding the depolymerisation 

of T. brucei cytoskeletons by recombinantly purified His6
TbKif13-1 within 384-well plates, 

should be established. The basic idea of the in vitro assay worked well. T. brucei 

cytoskeletons were depolymerisable by recombinantly purified His6
TbKif13-1 (Figure 11). 

However, providing 384-well plates with depolymerisable cytoskeletons is a challenging task. 

In this thesis it was found out that on-well-dried cytoskeletons are not depolymerisable. This 

diminishes the possibility to supply 384-well plates with on-well-dried cytoskeletons for the 

assay. This is regrettable since their use was much more practical for a high-throughput 

screen compared to cytoskeletons that are prepared immediately before usage.  

However, there was also found no possibility for a robuts readout by automated image 

analysis for cytoskeletons that were prepared shortly before addition of His6
TbKif13-1. The 

problems here were unequal depolymerisation of cytoskeletons within one well and the loss 

of variable amounts of cytoskeletons throughout the operating process. Possibly the use of 

384-well plates consisiting of another polymer could solve these problems. 

As these issues make the assay impractical for a high-throughput screen, a classical in vitro 

ATPase assay, like the enzyme-coupled assay, could be taken into consideration (Huang and 

Hackney, 1994). However, enzyme-coupled assays are at risk to exhibit off-target inhibition 

of the used enzymes that couple the reaction to a measurable product. In addition, an in 

vitro target-based assay would necessitate high amounts of recombinantly purified TbKif13-

1. 

In general, the heterologous in vivo assay is preferred. Possibly using another cell line, 

transfection plasmid or transfection method would generate an appropriate stable cell line 

clone. Possibly an approach according to the study in CHO cells overexpressing MCAK, which 

resulted in sufficient cytoskeleton depolymerisation, could generate an appropriate stable 

cell line (Ganguly et al., 2011a). 

3.2. Functional characterisation of TbKif13-1 

In this study more insight was gained into domains important for TbKif13-1´s subcellular 

localisation, cell cycle-dependent regulation, microtubule binding and depolymerisation 
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activity. To this end, TbKif13-1 deletion constructs were designed and several assays were 

conducted.  

 TbKif13-1 nuclear import and export sequences regulate its subcellular 3.2.1.

localisation 

This study, like two others, showed that full-length TbKif13-1 is solely nuclear and colocalises 

with the mitotic spindle (Figure 13; Chan et al., 2010; Wickstead et al., 2010a). Also the L. 

major orthologue LmjKin13-1 is strictly nuclear (Dubessay et al., 2005). In contrast, 

mammalian MCAK and its X. laevis homologue XKCM1 (Xenopus kinesin central motor 1) are 

equally distributed within the cytoplasm and the nucleus during interphase (Walczak et al., 

1996; Wordeman and Mitchison, 1995). Towards mitosis the MCAK level increases and it is 

recruited to the nucleus (Wordeman et al., 1999).  

For MCAK data suggest that its localisation depends on a balance of NLS and NES 

(Wordeman et al., 1999). The strict nuclear localisation of LmjKin13-1 depends on an atypical 

NLS with widely distributed NLS residues within its C-terminus (Dubessay et al., 2005). Also 

myc
TbKif13-1 deletion constructs containing the C-terminal domain were essentially nuclear, 

suggesting a NLS within (Figure 13, 14, 17 and S 5). Within the amino acid sequence of the C-

terminal domain there was a potential monopartite NLS found located at aa 562-565 (KRSR; 

Figure 35). But its functionality remains to be verified by polyalanine substitutions.  

 
Figure 35: Model for the localisation of (putative) NLS and NES in TbKif13-1. In the C-terminus there 

is a strong NLS KRSK (aa 562-565). The predicted NLS KRRK (aa 139-142) at the supposed neck-motor 

transition is in competition with the two putative N-terminal NES. Within the N-terminus there is a 

putative weak NLS. In full-length TbKif13-1 NLS dominate. White box: N-terminus (N); striped grey 

box: putative neck domain; black box: motor domain; spotted box: C-terminus (C). 

Another NLS sequence is supposed within the neck-motor domain, because the myc
TbKif13-1 

NM construct was essentially nuclear (Figure 16). At the supposed neck-motor transition 

there is a predicted NLS at aa 139-142 (KRRK; Kosugi et al., 2009b). Also within the motor 

domain of MCAK there is a predicted NLS, which was verified to be necessary in conjuction 

with the C-terminal NLS for MCAK´s complete nuclear localisation (Wordeman et al., 1999). 

N neck motor C

KRSRKRRKNES
NLS

NES 
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In contrast, in LmjKin13-1 the motor domain was found localised essentially in the cytoplasm 

and weakly in the nucleus (Dubessay et al., 2005).  

Also the single N-terminus of LmjKin13-1 localises within the cytoplasm (Dubessay et al., 

2005). For MCAK there was a NES identified within the second half of the bisected N-

terminus (Wordeman et al., 1999). Results from this thesis indicate that the second half of 

the TbKif13-1 N-terminus (TbKif13-1 ½ NGFP-myc) also contains a NES and a weak NLS. TbKif13-

1 ½ NGFP-myc localised within the cytoplasm throughout the cell cycle and was additionally 

nuclear in G1 (1K1N cells; Figure S 7). The small size of TbKif13-1 ½ NGFP-myc (36.9 kDa) could 

also raise the question of passive transport through the NPC. Its exclusive cytoplasmic 

localisation from S-phase to the end of mitosis (1-2K1N to 2K2N cells), however, indicates its 

active export. Unchanged essential nuclear localisation of the neck-motor construct after 

addition of the bisected N-terminus (construct myc
TbKif13-1 ½ N + NM) supposes that the N-

terminal NES is weaker than the NLS in the neck-motor domain together with the supposed 

NLS within the second half of the N-terminus (Figure 35 and S 6). Control ectopic expression 

of the used GFP-myc tag, and GFP tags from other studies, showed that both are cytoplasmic 

and nuclear throughout the cell cycle (Figure S 8; Marchetti et al., 2000). This supports the 

existence of the NES within TbKif13-1 ½ NGFP-myc. 

The nuclear and cytoplasmic localisation of TbKif13-1 NGFP-myc could be due to the supposed 

NLS and NES within the second half of the N-terminus (Figure 18). There also has to be 

another NES within the N-terminus, because myc
TbKif13-1 N + NM was strictly cytoplasmic, in 

contrast to the essentially nuclear localisation of myc
TbKif13-1 ½ N + NM (Figure 15 and S 6). 

Within the TbKif13-1 N-terminus several leucines are found, which could indicate a NES (la 

Cour et al., 2004; Hellman et al., 2007). However, no NES was predicted. Localisation studies 

of leucine-to-alanine substituted or of smaller fragmented N-terminal parts could shed more 

light on this topic. 

The data indicate that subcellular localisation of TbKif13-1, like shown for MCAK, depends on 

an interplay of NLS and NES, but NLS dominate the full-length TbKif13-1 localisation 

(Wordeman et al., 1999). 

 Cell cycle-specific and proteasome-dependent degradation of TbKif13-1 3.2.2.

In trypanosomatids, like in all other eukaryotes, misfolded and cell cycle specific proteins are 

degraded by the 26S proteasome (Hua et al., 1996; Li et al., 2002; Mutomba et al., 1997; 
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Wang et al., 2003). Proteins for degradation are marked with multiubiquitin chains using in 

general the D-box motif (RxxL) or the KEN-box motif (KEN) as recognition signal for the E3 

ubiquitin ligase APC/C with its activator Cdc20 (cell division cycle) or Cdh1 (cdc20 homolgue; 

Fang et al., 1998; Glotzer et al., 1991; Pfleger and Kirschner, 2000; Visintin et al., 1997). 

During mitosis APC/CCdc20 ubiquitinates MCAK, which subsequently is degraded at the 

metaphase-anaphase transition (Ganguly et al., 2008; Sanhaji et al., 2014). APC/CCdc20 binds 

to the D-box motif RxxL within the MCAK neck domain (Sanhaji et al., 2014). The D-box is 

made accessible for this by a conformational switch induced by Plk1 phosphorylation of the 

MCAK C-terminal S621 (Sanhaji et al., 2014).  

In T. brucei there were found APC/C subunit homologues, additional non-core proteins and a 

Cdc20 homologue (Bessat, 2014; Bessat et al., 2013; Kumar and Wang, 2005). Functional 

analysis indicated that APC/C acts on its own, because the Cdc20 homologue was not found 

associated to it (Bessat et al., 2013). 

In this thesis, a cell cycle-specific and proteasome-dependent degradation of TbKif13-1 was 

analysed. Studies using inhibition of translation and of the proteasome in the transgenic cell 

lines ectopically expressing myc
TbKif13-1 FL showed its proteasome-dependent degradation 

(Figure 19). Its cell cycle-specific degradation is supported by immunfluorescence 

microscopy analysis, showing its appearance from S-phase until the end of mitosis (1-2K1N 

to 2K2N cells), but not in G1-phase (1K1N cells; Figure 13). This is in accordance with a T. 

brucei study localising endogenous TbKif13-1 with a polyclonal antibody (Chan et al., 2010). 

In contrast, another T. brucei study using direct fluorescence microscopy of endogenous C-

terminal GFP tagged TbKif13-1 (TbKif13-1GFP), found TbKif13-1 not cell cycle regulated with 

its appearance throughout the cell cycle (Wickstead et al., 2010a). 

The L. major orthologue LmjKin13-1 is cell cycle-specific regulated by degradation, with its 

increase at the beginning of mitosis and its degradation at the end of mitosis (Dubessay et 

al., 2005). In LmjKin13-1 the C-terminus is necessary and sufficient for proteasomal 

degradation, though no D-box or KEN-box motif was identified (Dubessay et al., 2005). 

PEST sequences (sequences enriched in proline (P), glutamic acid (E), serine (S), threonine 

(T), and aspartic acid (D)) are a motif to direct ubiquitin-mediated proteasomal degradation 

by being phosphorylated (Marchal et al., 1998; Meyer et al., 2011; Rogers et al., 1986; 

Schnupf et al., 2006). Identified C- and N-terminal PEST sequences in LmjKin13-1 were found 

not necessary for degradation (Dubessay et al., 2005). This is consistent with proteins of 
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other organisms, showing that PEST is no destruction motif or that it is necessary but not 

sufficient, making a PEST sequence not a reliable indicator of proteasomal degradation 

(Pakdel et al., 1993; Salama et al., 1994). In TbKif13-1 a PEST motif was predicted within the 

putative neck domain at aa 64-115 (http://emboss.bioinformatics.nl/cgi-

bin/emboss/epestfind). However, the neck-motor construct (myc
TbKif13-1 NM) was not 

degraded after inhibition of translation (Figure 22). This indicates that the PEST motif is also 

not a reliable proteasomal degradation indicator in TbKif13-1. 

The results from this thesis indicate that there are several degradation signals within 

TbKif13-1 (Figure 36). Two motifs indicative of a proteasomal degradation signal are within 

the N-terminus of TbKif13-1. One is supposed in the first half and one in the second half of 

the N-terminus. There is also at least one degradation signal supposed within the C-terminus 

of TbKif13-1. The TbKif13-1 C-terminus (myc
TbKif13-1 C) and the N-terminus (TbKif13-1 NGFP-

myc) were proteasome-dependent degraded (Figure S 11 and S 12). Yet, each in conjunction 

with the non-degradable neck-motor domain (myc
TbKif13-1 N + NM and myc

TbKif13-1 NM + C) 

was not degraded (Figure 20 and S 10). The addition of the half N-terminus within both 

constructs (myc
TbKif13-1 ½ N + NM and myc

TbKif13-1 ½ N + C) led to their proteasome-

dependent degradation (Figure 21 and S 9). Proteasomal degradation of the second half of 

the N-terminus (TbKif13-1 ½ NGFP-myc) was not as pronounced as that one of the single N-

terminus (Figure S 13). 

 
Figure 36: Putative locations for proteasome-dependent degradation signals within TbKif13-1. 

There are three degradation motifs supposed, one within the first and one within the second half of 

the N-terminus, and one within the C-terminus (marked with *). The marked PEST motif within the 

putative neck domain at aa 64-115 is predicted, but evidence for its necessity in TbKif13-1´s 

proteasomal degradation is missing. Within the C-terminus at aa 470-473 there is a predicted D-box 

motif (RKPL), but positive evidence for its functionality is missing. White box: N-terminus (N); striped 

grey box: putative neck domain; black box: motor domain; spotted box: C-terminus (C).  

It is probable that the assumed degradation motifs cooperate for cell cycle-dependent 

proteasomal degradation. A single D-box motif (RKPL) was predicted at aa 470-473 within 

the TbKif13-1 C-terminus, shortly downstream of the neck-motor domain. It was shown to 

be not sufficient for proteasome-dependent degradation of the TbKif13-1 neck-motor 

N neck motor C

RKPLPEST**
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construct (myc
TbKif13-1 NM + D-box; Figure 23). This could be a result of missing lysine 

residues for ubiquitination within this construct. Identification of ubiquitination sites 

remains to be done. Whether the predicted D-box motif within the C-terminus serves as a 

signal for proteasomal degradation of the C-terminal construct (myc
TbKif13-1 C), could be 

analysed by mutation or deletion of the D-box motif within this construct.  

This brings the supposed two N-terminal and one C-terminal degradation signals again into 

focus. The proposed destruction motif within the second half of the N-terminus could be a 

strong signal due to the gained results. Because no canonical destruction motifs were found 

within the N-terminus, and because the initial results indicate that the predicted D-box motif 

within the C-terminus is possibly not sufficient for degradation, it could be non-canonical 

motifs. These were also identified within several proteins of other organisms, like in S. 

cerevisiae within members of the bimC family of kinesins, Cin8p (chromosome instability 

protein) and Kip1p, and in L. major LmjKin13-1. In these proteins a NLS was shown to be 

necessary but not sufficient for APC/C-dependent degradation (Dubessay et al., 2006; 

Gordon and Roof, 2001; Hildebrandt and Hoyt, 2001). Maybe this is also true for TbKif13-1. 

There is a supposed NLS within the second half of the N-terminus and a predicted NLS within 

the C-terminus (Figure 35). Mutation of lysines and arginines within the second half of the N-

terminus and mutation of the predicted NLS within the C-terminus would give a hint for their 

role as possible non-canonical degradation signal. 

Interestingly, the TbKif13-1 neck-motor construct with the C-terminus (myc
TbKif13-1 NM + C) 

appeared cell cycle-dependent degraded in immunfluorescence microscopy studies, while 

inhibition of translation did not lead to its reduction in Westernblot analysis (Figure 14 and S 

10). So far these results cannot be explained.  

To conclude, TbKif13-1 degradation signals are supposed in its C- and N-terminus, with the 

strongest in the second half of the N-terminus. Further studies are necessary to localise 

them. A predicted D-box motif within the C-terminus possibly does not function as 

degradation signal according to initial study results. Deletion or mutation studies could give 

more information about it.  

Further information about TbKif13-1 domains necessary for APC/C-dependent ubiquitination 

could be gained from immunoprecipitation of the respective TbKif13-1 deletion constructs 
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from cell lysates with inhibited proteasomal degradation. Their Westernblot analysis with an 

α-ubiquitin antibody (e.g. U5379, Sigma; P4D1, Santa Cruz Biotechnology) could identify 

ubiquitinated TbKif13-1 domains. For specific localisation of the ubiquitination sites mass 

spectrometry could be used (Kaiser and Wohlschlegel, 2005; Xu et al., 2013). 

 Ectopic expression of the TbKif13-1 neck-motor domain has a dominant-3.2.3.

negative effect on cell cycle progression 

The analysis of dominant-negative phenotypes from transgenic 449 cell lines ectopically 

expressing TbKif13-1 deletion constructs was expected to reveal the functionality of TbKif13-

1 domains. 

Ectopic expression of the depolymerising full-length myc
TbKif13-1 resulted in reduced growth 

in the respective transgenic 449 cell line (Figure 24). This is probably due to reduced spindle 

formation and hence unsuccessful mitosis, but occuring cytokinesis, leading to zoids and >2N 

cells (Figure 24). Reduced spindle formation after ectopic expression corresponds to the 

phenotype of long, bent spindles after RNAi mediated TbKif13-1 depletion (Chan et al., 2010; 

Wickstead et al., 2010a). Due to varying cellular functions, the effect of ectopically expressed 

MCAK in CHO cells is slightly different. It results in a reduced microtubule cytoskeleton, 

multinucleate cells and an accumulation of multipolar prometaphase-like spindles (Ganguly 

et al., 2011a; Maney et al., 2001).  

Growth curves and flow cytometry analysis showed that ectopic expression of the 

myc
TbKif13-1 C-terminus did not have a retarding effect on the cell cycle compared to non 

induced transgenic cells, but compared to wild type cells (Figure S 23). Maybe this is due to 

leaky expression in non induced cells. More than 50% of mitotic cells ectopically expressing 

myc
TbKif13-1 C exhibited an elongated spindle (Figure 28). This is conform with data from 

myc
TbKif13-1 C staining in this cell line. In whole cell and cytoskeleton samples, myc

TbKif13-1 C 

resembled the shape of the mitotic spindle, but in a more elongated kind (Figure 17). A 

double staining of the spindle and myc
TbKif13-1 C could determine a definite colocalisation 

and thus a possible binding of myc
TbKif13-1 C to spindle microtubules. KMX and α-myc 

double staining was not possible due to the experimental procedure. 

Ectopic expression of myc
TbKif13-1 C occurred within the wild type background. A possible 

explanation for the phenotype of the elongated spindle could be a simple competition of the 

endogenous TbKif13-1 with the non functional myc
TbKif13-1 C-terminus. An increased binding 
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of the TbKif13-1 C-terminus to the spindle could reduce binding of endogenous TbKif13-1 

and thus, reduce its spatial functionality. This possibility also corresponds to the TbKif13-1 

RNAi phenotype with long and bent spindles (Chan et al., 2010; Wickstead et al., 2010a). 

Despite the binding of myc
TbKif13-1 C resembling in shape the mitotic spindle in cytoskeleton 

preparation, direct evidence for its microtubule binding ability is missing (Figure 17). Tubulin 

sedimentation assays with recombinantly purified TbKif13-1 C could clarify its possbile 

binding ability. To figure out a possible competition, the tubulin binding affinities of full-

length and C-terminal TbKif13-1 could be determined in a varied tubulin sedimentation assay 

(Hertzer et al., 2006). This assay uses doubly stabilised microtubules to minimise 

depolymerisation. Increasing amounts of them are added to the respective kinesin. SDS-

PAGE analysis of the centrifugated pellet and supernatant samples, and subsequent 

quantification shows microtubule binding affinities. 

Another explanation for the elongated spindle phenotype is the binding of myc
TbKif13-1 C to 

wild type TbKif13-1. This construct could be less productive compared to a wild type TbKif13-

1 dimer because of just one motor domain. Also this possibility is conform with the TbKif13-1 

RNAi phenotype (Chan et al., 2010; Wickstead et al., 2010a). MCAK was shown to be a more 

potent depolymeriser as dimer, compared to the monomeric neck-motor construct (Cooper 

et al., 2010; Hertzer et al., 2006). In addition to two motor domains within the dimeric full-

length MCAK, it is mainly proposed that its release from detached tubulin dimers after 

depolymerisation is more promoted as dimer, facilitating repeated rounds of 

depolymerisation (Cooper et al., 2010; Hertzer et al., 2006).  

The MCAK C-terminus contributes to dimerisation by binding with its conserved EExxS motif 

at the interface of two motor domains (Ems-McClung et al., 2013; Talapatra et al., 2015). 

While the EExxS motif is conserved from Drosophila Klp10A to human MCAK, in TbKif13-1 

only the two glutamic acids are conserved (Talapatra et al., 2015). Instead of the conserved 

serine there is a cysteine within the sequence of TbKif13-1. Talapatra et al. (2015) showed 

that a larger side chain compared to serine would cause steric hindrance of C-terminus 

binding to the motor domain. The same side chain size of serine and cysteine probably does 

not prevent binding. Thus, there is a possibility that the spindle binding phenotype of 

myc
TbKif13-1 C is attributed to its binding to the wild type TbKif13-1.  

In vitro pull down assays and size exclusion chromatography using recombinantly purified 

full-length TbKif13-1, neck-motor domain TbKif13-1 and TbKif13-1 C, as well as substitution 
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or deletion mutants of the EExxC motif, could provide more knowledge about a possible C-

terminal interaction with the neck-motor domain. 

The most dominant-negative phenotype exhibited ectopically expressed myc
TbKif13-1 NM. 

The ectopic expression of the neck-motor construct did have a massive negative influence on 

cell viability and spindle formation within the transgenic 449 cell line (Figure 27). These 

effects were already indicated by ectopic expression of the neck-motor domain with the half 

N-terminus (myc
TbKif13-1 ½ N + NM; Figure 26). The ectopic expression of the neck-motor 

construct resulted in a strong growth defect due to missing spindles in mitotic cells already 

twelve hours after induction, a massive increase in zoids and mulitnuclear cells, and finally 

cell death five days after induction (Figure 27 and S 22). The subcellular localisation and 

phenotype of the basal body, flagellum and FAZ were analysed via immunfluorescence 

twelve and 24 hours after induction (data not shown). But there were found no 

abnormalities throughout the cell cycle, making the missing spindle the only hint. 

In cytoskeleton preparations of ectopically expressing  myc
TbKif13-1 NM cells, the neck-motor 

construct was still found within the nucleus, even though not in a spindle-resembling shape 

(Figure 16). The earliest microscopy analysis of these cells was done twelve hours after 

induction, a time at which almost no spindle was found anymore within this cell line. This 

could indicate that the neck-motor domain could have bound to nuclear tubulin either by 

itself or, which is more likely due to data from its missing in vitro microtubule binding ability 

in the presence of ATP, via another protein within the nucleus, possibly endogenous TbKif13-

1 (Figure 30). Dimerisation could occur as shown for MCAK via the C-terminus, which is able 

to bind two motor domains (Ems-McClung et al., 2013; Talapatra et al., 2015). Pull down 

assays and size exclusion chromatography would give more information about this possibility 

in TbKif13-1. 

One explanation for the dominant-negative phenotype could be that a possible TbKif13-1 

full-length and neck-motor dimer was more active than wild type TbKif13-1 due to missing 

regulatory sites. This could comprise conformational switches involving the C-terminus and 

the motor domain, which were shown to control conformation within the MCAK wild type 

dimer (Talapatra et al., 2015). But this could also comprise phosphoregulation sites due to 

their occurrence only once within such a chimeric dimer. For TbKif13-1 there have not yet 

been identified phosphoregulation sites. For MCAK there are several phosphoregulation 
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sites known within the N- and C-terminus, necessary for its localisation and activity (Lan et 

al., 2004; Shao et al., 2015; Zhang et al., 2007; Zhang et al., 2011).  

A possible dimerisation is conform with results from ectopic expression of the TbKif13-1 

neck-motor domain with the full or half N-terminus. Ectopic expression of myc
TbKif13-1 N + 

NM did not have an obvious effect on growth behaviour, the cell cycle or spindle assembly 

(Figure S 20). Moreover, it was not found within the nucleus in cytoskeleton preparations 

and in vitro it did not bind to microtubules (Figure 15 and S 28). Possibly, it could mainly 

dimerise with itself via its N-terminus. The N-terminus is also a dimerisation domain in MCAK 

(Maney et al., 2001). It is supported by data from ectopic expression of TbKif13-1 NGFP-myc, 

which was not found within the nucleus of cytoskeleton preparations (Figure 18).  

Reducing more than half of the MCAK N-terminus led to a quite reduced dimerisation ability 

of the N-terminus (Maney et al., 2001). In TbKif13-1 the neck-motor domain together with 

the half N-terminus (myc
TbKif13-1 ½ N + NM) led to a growth defect with an increase of zoids 

and >2N cells (Figure 26). These effects are probably due to the analysed up to 50% 

reduction in mitotic spindle formation (Figure 26). Based on data for reduced dimerisation 

ability of MCAK´s half N-terminus, it is possible that this TbKif13-1 construct also dimerises 

with itself to some extend, but that it also would dimerise with the endogenous wild type 

TbKif13-1 (Maney et al., 2001). A competition with endogenous TbKif13-1 should be 

excluded, because TbKif13-1 ½ N + NM was not found associated to microtubules within the 

tubulin sedimentation assay and did also not bind in a shape resembling the mitotic spindle 

in cytoskeleton preparations (Figure S 6 and S 29).  

This endogenous TbKif13-1 - myc
TbKif13-1 ½ N + NM chimeric dimer could, like it is supposed 

for the endogenous-neck-motor chimeric dimer, not be regulated sufficiently by 

phosphorylation or conformational changes. Unfortunately, there are no data available for 

TbKif13-1 regulatory sites. Phosphorylation sites could be identified using microcapillary 

liquid chromatography/tandem mass spectrometry (LC-MS/MS). Moreover data for 

dimerisation domains could be achieved by yeast-two-hybrid assays, pull down assays and 

size-exclusion chromatography. 

Another explanation for the ectopic expression phenotype of the neck-motor construct 

could be its possible inhibitory binding to another protein necessary for spindle assembly or 

maintenance. TbAuk1 was shown to be essential for spindle assembly, and endogenous 
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tagged TbAuk1HA3 was found at the central spindle and in the spindle midzone (Tu et al., 

2006; Li and Wang, 2006; Li et al., 2008a). RNAi of proteins necessary for correct TbAuk1 

localisation resulted in a missing spindle. Among them are TbKIN-A, TbKIN-B, the 

chromosomal passenger complex proteins TbCPC1 and TbCPC2 and the TbAuk1 substrate 

activator TbTlk1 (Li et al., 2007; Li et al., 2008a; Li et al., 2008b). TbKIN-A, TbKIN-B, TbCPC1 

and TbCPC2 are distributed throughout the nucleus during interphase and TbTlk1 forms a 

focal point in the interphase nucleus (Li et al., 2007; Li et al., 2008a; Li et al., 2008b). Also the 

ectopically expressed TbKif13-1 neck-motor construct localised throughout the nucleus 

(Figure 16). To get more information about a possible interaction of the TbKif13-1 neck-

motor construct with these proteins, a yeast-two-hybrid assays, pull down assays and size-

exclusion chromatography could be conducted. 

To conclude, further studies are necessary to understand the dominant-negative phenotype 

of ectopically expressed myc
TbKif13-1 NM and the elongated spindle phenotype of ectopically 

expressed myc
TbKif13-1 C. Of interest are studies concerning a possible microtubule binding 

competition with wild type TbKif13-1, as well as possible dimerisation domains, 

phoshoregulation sites and binding partners of TbKif13-1. 

 TbKif13-1 neck-motor domain and C-terminus are necessary for in vitro 3.2.4.

microtubule binding and depolymerisation 

The depolymerisation mechanism of Kinesin-13 family members depends on their ability to 

bind to microtubules (Asenjo et al., 2013; Burns et al., 2015; Ems-McClung et al., 2013; 

Moore and Wordeman, 2004).  

This study confirmed that TbKif13-1 binds to isolated microtubules and that it is a potent 

microtubule depolymeriser in an ATP-dependent manner (Figure 11 and 29; Chan et al., 

2010). Recombinantly purified His6
TbKif13-1 depolymerised Trypanosome cytoskeletons in 

vitro (Figure 11). The flagellum and possibly the FAZ remained. Both structures are known to 

remain even after high salt and detergent treatment, removing all other cytoskeleton 

components (Sherwin and Gull, 1989). 

The question persisted which TbKif13-1 domains are necessary for microtubule binding and 

depolymerisation. The Plasmodium falciparum KinI motor domain alone is sufficient for 

microtubule binding and depolymerisation (Moores et al., 2002). In MCAK the motor domain 

is sufficient for microtubule binding, while for depolymerisation the addition of the neck is 
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necessary (Maney et al., 2001). That is not true for TbKif13-1. The TbKif13-1 neck-motor 

domain alone (myc
TbKif13-1 NM) or together with the N-terminus (myc

TbKif13-1 N + NM) is 

not sufficient for in vitro microtubule binding or depolymerisation (Figure 30 and S 28). This 

study showed that for in vitro microtubule binding in the presence of ATP and for 

depolymerisation, the neck-motor domain in conjunction with the C-terminus is necessary 

(myc
TbKif13-1 NM + C; Figure S 27 and 37).  

It would be interesting to get more insight into which parts of the C-terminus in conjunction 

with the neck-motor domain are necessary for microtubule binding and depolymerisation. 

To analyse this, deletion constructs of the C-terminus in conjunction with the neck-motor 

domain would be necessary. 

 
Figure 37: Model depicting necessary TbKif13-1 domains for microtubule binding and microtubule 

depolymerisation. The TbKif13-1 neck-motor domain in conjunction with the C-terminus is necessary 

for microtubule binding and microtubule depolymerisation. White box: N-terminus (N); striped grey 

box: putative neck domain; black box: motor domain; spotted box: C-terminus (C). 

The neck-motor construct was shown to exhibit in vitro ATPase activity, but only when 

stimulated by added microtubules (Figure 30). ATPase activity of MCAK was shown to occur 

when it settles onto the microtubule lattice and when the MCAK-ATP-tubulin complex 

dissociates after depolymerisation (Burns et al., 2015; Ems-McClung et al., 2013; Moore and 

Wordeman, 2004). Because an in vitro depolymerisation activity of the neck-motor construct 

is missing, it is supposed that its ATPase activity here is attributed to the construct´s lattice 

binding. ATP hydrolysis weakens the binding of the kinesin to the lattice, which could explain 

why it was not found tightly bound to microtubules (Figure 30; Burns et al., 2014; Ems-

McClung et al., 2013). This would be in agreement with data from the neck-motor construct 

of MCAK, which was shown to bind more often to microtubules, but also to dissociate more 

rapidly than full-length MCAK (Cooper et al., 2010). 

Interestingly, results showed that the TbKif13-1 neck-motor domain with or without the half 

or whole N-terminus is able to bind to microtubules in vitro in the absence of ATP, but not in 

its presence (Figure 30, S 28 and S 29). Probably, this is due to a conformational difference of 

the motor when having ATP bound or not. Cryomicroscopy of Kar3, a depolymerising 

kinesin-14 family member, in different nucleotide states showed that the nucleotide-free 

N neck motor C

MT binding and depolymerisation
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state differs structurally from the others in that the α4 and loop 11 of switch II change 

conformation, resulting in strong binding to the tubulin intradimer (Hirose et al., 2006). The 

nucleotide-free state of full-length and C-terminal truncated MCAK leads to bundled 

microtubules decorated with the respective MCAK molecules (Moore and Wordeman, 2004). 

These data and those received in this thesis might imply that the nucleotide-free state of 

myc
TbKif13-1 NM, myc

TbKif13-1 N + NM and  myc
TbKif13-1 ½ N + NM binds stronger to tubulin 

possibly by nucleotide-dependent conformational changes.  

 Conserved decoupled mechanism of microtubule depolymerisation and ATP 3.2.5.

hydrolysis in TbKif13-1 

Kinesins, myosins and G proteins have conserved structures for ATP binding and hydrolysis, 

and change of the bound nucleotide state is accompanied by change in conformation 

(Bourne et al., 1990; Bourne et al., 1991; Kikkawa et al., 2001; Kull et al., 1996; Kull et al., 

1998; Sablin et al., 1996). The switch II (DxxGxE) is an important motif for ATP binding and 

hydrolysis, and it is directly connected to the microtubule binding site within kinesins 

(Woehlke et al., 1997).  

At microtubule ends, MCAK-ATP undergoes a conformational change that is necessary for 

microtubule bending and subsequent depolymerisation and ATP hydrolysis activity (Wang et 

al., 2015). Mutation of the switch II motif (DxxGxE) G495A in human MCAK inhibits this 

conformational change, keeping the kinesin in a pre-conformational change state (Wang et 

al., 2012). The mutant is characterised by the remaining ability to bind to microtubules, but 

its failure to depolymerise them and abolished ATPase activity (Wagenbach et al., 2008; 

Wang et al., 2012).  

The same effects were seen for His6
TbKif13-1 FL G371A (Figure 31). His6

TbKif13-1 FL G371A did 

not depolymerise microtubules within the tubulin sedimentation assay, independent of its 

concentration (Figure 31 (C)). In this assay it was found in the pellet fraction with 

polymerised microtubules, indicating its microtubule binding ability. The ATPase deficiency 

of His6
TbKif13-1 FL G371A was shown by the malachite green assay (Figure 31 (A)). 

Mutation of the glycine within the switch II motif abolishes a hydrogen bond to the ATP ɣ-

phosphate. Because the motif is conserved, glycine mutation also results within 

conventional kinesins and myosins in abolished ATPase activity (Kull et al., 1998; Rice et al., 

1999; Sasaki et al., 1998; Trivedi et al., 2012). 
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After the conformational change, MCAK-ATP is able to depolymerise microtubules, i.e. 

releases a ternary complex of MCAK-ATP-tubulin, which is afterwards dissolved by ATP 

hydrolysis. This step is blocked by the switch II motif mutant E497A and the ternary complex 

is kept tightly bound (Wagenbach et al., 2008; Wang et al., 2015). MCAK E497A was found 

nearly completely ATPase deficient, but it was still found sensitive to stimulation by 

microtubules (Wagenbach et al., 2008; Wang et al., 2015). The same effect was seen for 

TbKif13-1 E497A. In the malachite green assay, TbKif13-1 E497A exhibited almost no ATPase 

activity, but depending on higher microtubule concentration it increased slightly (Figure 31 

(B)). 

TbKif13-1 E497A was able to depolymerise microtubules, which was more evident at higher 

kinesin concentrations (Figure 31 (D)). This is also seen for MCAK E497A (Wagenbach et al., 

2008; Wang et al., 2015). The depolymerisation behaviour of the mutant differs from the 

wild type MCAK. In wild type MCAK a maximum is reached when protofilament ends are 

saturated (Hunter et al., 2003). This lower motor to tubulin ratio necessary for 

depoylmerisation was also seen for wild type TbKif13-1 (Figure 31 (C) and (D)).  

In contrast, efficient depolymerisation by MCAK E497A is only possible when the 

microtubule lattice is saturated with the kinesin. MCAK E497A is not able to do several 

rounds of depolymerisation (Wagenbach et al., 2008). This necessitates a saturated 

concentration of MCAK E497A along the microtubule lattice for efficient depolymerisation. 

Moreover, negative staining electron microscopy showed that at saturated levels, pelletable 

tubulin oligomers or rings occur because of the kinesin´s longitudinally linking (Wang et al., 

2015). At an unsaturated level of MCAK E497A only two tubulin heterodimers are linked, 

peel off the microtubule and are found soluble (Wang et al., 2015).  

The conserved switch II glutamic acid (DxxGxE) and the switch I arginine (NxxSSR) form a salt 

bridge in kinesins and myosins (Furch et al., 1999; Onishi et al., 1998; Yun et al., 2001). The 

effects seen in MCAK E497A are similar to those in myosins and other kinesins, pointing to 

the conserved communication mechanism between the switch motifs´ conformational 

changes and state of the bound nucleotide, even though ATPase cycles and according motor-

microtubule/actin interactions differ between motors. In myosin, mutation of the 

corresponding amino acids inhibits ATP hydrolysis (Furch et al., 1999; Onishi et al., 1998; 

Sasaki et al., 1998; Shimada et al., 1997; Trivedi et al., 2012). Also in the S. cerevisiae minus-

end directed microtubule depolymerising kinesin Kar3, mutation of the glutamic acid 
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resulted in stronger binding to microtubules compared to the wild type, probably because of 

the displacement of loop 8, and loss of microtubule activated ATPase activity (Yun et al., 

2001). Conventional kinesin with mutated switch II glutamic acid is also ATPase deficient, but 

the conformational change necessary for the subsequent forward step of the partner head 

occurs (Rice et al., 1999). 

In general kinesins, myosins and G-proteins are evolutionary linked because of several 

conserved core motifs and secondary elements, which show similar but different 

mechanisms (Kull et al., 1998; Sablin et al., 1996). In this study the conserved decoupled 

mechanism of microtubule depolymerisation and ATP hydrolysisis of Kinesin-13 family 

members was confirmed for T. brucei TbKif13-1. 

3.3. TbAuk1 and TbKif13-1 

MCAK is phosphorylated by AuroraB at several sites within the N-terminus and the neck 

domain for localisation and activity reasons (Lan et al., 2004; Zhang et al., 2007). Little is 

known about a possible regulation of TbKif13-1 in T. brucei. One issue of this thesis was to 

analyse whether TbKif13-1 was phosphorylated by the mitotic Aurora-like kinase TbAuk1 and 

whether this phosphorylation inhibited TbKif13-1´s depolymerisation activity.  

In a first step, myc
TbAuk1 was immunoprecipitated from a transgenic 449 cell line ectopically 

expressing myc
TbAuk1 in an active state, being able to phosphorylate TbHistoneH3His6 (Figure 

32). The N-terminus of TbHistoneH3 lacks phosphorylation sites corresponding to 

mammalian S10 and S28, which are phosphorylated by AuroraB. LC/MS/MS revealed that 

TbHistoneH3 is phosphorylated by TbAuk1 at T116 within the C-terminal domain (Jetton et 

al., 2009). 

The published kinase-dead mutants myc
TbAuk1 K58R and myc

TbAuk1 T184A were chosen as 

negative controls. However, both mutants were able to phosphorylate TbHistoneH3His6 to 

some extend (Figure 32; Hu et al., 2014; Li and Wang, 2006). There was no TbHistoneH3His6 

phosphorylation by the product of the mock IP, in which the protein G-sepharose was 

applied to wild type 449 cell lysate without antibody. This control excludes the possibility 

that contaminations of the cell lysate were responsible for the phosphorylation. 

The control IP product from wild type 449 cell lysate also showed slight TbHistoneH3His6 

phosphorylation, but to an even lesser extend than the kinase-dead controls (Figure 32). This 
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indicates that the myc-antibody bound protein G-sepharose purified a protein from 

Trypanosomes´ cell lysate capable of phosphorylating TbHistoneH3His6 to a small degree.  

The, in comparison, slightly increased TbHistoneH3His6 phosphorylation by the kinase-dead 

myc
TbAuk1 K58R and myc

TbAuk1 T184A mutants suggests the possibility of additional co-

immunoprecipitation of a protein able to oligomerise with myc
TbAuk1. Yeast-two-hybrid 

assays showed that TbAuk1 does not dimerise with itself but it does with TbTlk1 (Li et al., 

2007). TbTlk1 was already found co-immunoprecipitated with TbAuk1 from T. brucei cell 

lysates and it was shown to phosphorylate TbHistoneH3 in vitro (Li et al., 2007). Westernblot 

analysis or mass spectrometry of the immunoprecipitated products could determine 

whether TbTlk1 is contained in the IP products and whether other possible kinases were 

immunoprecipitated. 

In a next step, the product from myc
TbAuk1 IP was shown to phosphorylate His6

TbKif13-1 

(Figure 33). This occurred independent of microtubule addition. At first sight it suggests that 

TbAuk1, in contrast to AuroraB kinase, would not need tubulin for in vitro activity (Rosasco-

Nitcher et al., 2008). However, Westernblot analysis showed tubulin to a minor degree also 

in samples where microtubules were not added (Figure S 32). This could be the result of a 

spillover during gel loading. Another possibility is that it confirms studies where PTP 

mediated purification of TbAuk1 from T. brucei cell lysates also isolated tubulin, which could 

be due to TbAuk1´s association to spindle microtubules (Li et al., 2008a; Tu et al., 2006). 

Hence, as previously supposed for AuroraB kinase, TbAuk1 could have an increased activity 

towards other microtubule-bound proteins like TbKif13-1, compared to non-bound proteins 

(Noujaim et al., 2014). 

myc
TbAuk1 K58R and myc

TbAuk1 T184A resulted in the same phosphorylation effects, while 

wild type 449 IP product did not phosphorylate His6
TbKif13-1 and tubulin. One explanation 

could be the possibility that the published kinase-dead mutants are not entirely devoid of 

kinase activity. Another explanation could be the previously mentioned possibility of co-

purification of other kinases, capable to oligomerise with myc
TbAuk1. In addition to TbTlk1´s 

ability to phosphorylate TbHistoneH3, there is nothing known about its ability to 

phosphorylate TbAuk1 or TbKif13-1 (Li et al., 2007). MCAK´s motor domain phosphorylation 

by Cdk1 (cyclin-dependent kinase) diminishes its depolymerisation activity and contributes 

to spindle formation and chromosome positioning (Sanhaji et al., 2010). Cdk1 also 

phosphorylates unpolymerised tubulin (Fourest-Lieuvin et al., 2006). For the T. brucei Cdk1 
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homologue TbCrk3 (cdc2-related kinase) no interaction with tubulin, TbKif13-1 or TbAuk1 

has yet been identified (Hammarton et al., 2003; Tu and Wang, 2004).  

Furthermore, MCAK is also phosphorylated at five residues within the C-terminal domain by 

Plk1, stimulating its depolymerisation activity during early phases of mitosis (Shao et al., 

2015; Zhang et al., 2011). Such an stimulating effect of TbPlk to TbKif13-1 could explain the 

absent inhibition of His6
TbKif13-1´s depolymerisation activity by the myc

TbAuk1 IP product 

(Figure 34). However, for TbPlk an interaction with TbAuk1 or TbKif13-1 has not yet been 

shown. TbPlk is excluded from the nucleus throughout the cell cycle and does not play a role 

during mitosis, but during cytokinesis (Hammarton et al., 2007; Kumar and Wang, 2006). 

TbPlk, together with its substrates, is necessary for basal body segregation, Golgi and bilobe 

biogenesis and flagellum inheritance (de Graffenried et al., 2008; Hammarton et al., 2007; 

Hu et al., 2015; Ikeda and de Graffenried, 2012; McAllaster et al., 2015). Also for mammalian 

Plk1 there is nothing known about a AuroraB kinase phosphorylation.  

Other possible explanations could be that the used myc
TbAuk1 concentration in comparison 

to His6
TbKif13-1 was insufficient or that TbAuk1 simply does not inhibit TbKif13-1´s 

depolymerisation activity.  

To conclude, data from this thesis suggest a TbAuk1 mediated phosphorylation of TbKif13-1 

that does not inhibit its microtubule depolymerisation activity. However, mass spectrometry 

analysis of the immunoprecipitated products could figure out a possible co-

immunoprecipitation of other kinases. This will provide more information about the 

detected TbKif13-1 phosphorylation and the possible involvement of TbAuk1. 
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4. Material and methods 

4.1. Materials 

 Hard- and software 4.1.1.

This work was written on an Asus N56V (ASUSTeK COMPUTER INC., Taiwan, China) using 

Microsoft Word 2010 (Microsoft Corporation, Redmond, WA, USA). For the design of 

diagrams Sigma Plot 11.0 (Systat Software Inc., San José, CA, USA) was used. 

Chemiluminescence signals were detected with the 'LAS-4000' system (Fujifilm Europe, 

Düsseldorf). Autoradiographies were digitized using the 'FLA-7000' phosphorimager (Fuji 

Film Europe, Düsseldorf). Absorbance measurements on well plates were done using 

'FLUOstar Omega' (BMG Labtech, Ortenberg) according with its own control software and 

'MARS data analysis' software. Images were processed with 'Adobe Photoshop CS4' (Adobe 

Systems Inc., San Jose, CA, USA). Figures were generated using Microsoft PowerPoint 2010 

(Microsoft Corporation, Redmond, WA, USA). T. brucei DNA and protein sequences were 

received from www.genedb.org. Analysis of DNA sequences and virtual design of plasmids 

was done with 'DNASTAR Lasergene' (GATC Biotch, Konstanz). For sequence alignments a 

service of the European Bioinformatics Institute ('EMBOSS needle pairwise sequence 

alignment' algorithm, www.ebi.ac.uk) was used. Prediction of APC/C recognition motif was 

done with 'GPS-ARM 1.0' (the cuckoo workgroup, China, arm.biocuckoo.org). For analysis of 

protein domain architecture the European Molecular Biology Laboratory online tool 'SMART' 

(smart.embl-heidelberg.de) was used. The National Center for Biotechnology Information 

(www.ncbi.nhi.gov/) provided electronic online services for literature research. 

 Chemicals, reagents and kits 4.1.2.

All chemicals and reagents were purchased, unless noticed otherwise, from AppliChem 

(Darmstad), BioRad (Munich), Calbiochem (via Merck, Darmstadt), Fermentas (St. Leon-Rot), 

GE Healthcare (München), Merck (Darmstadt), Invitrogen (via Thermo Scientific, Schwerte), 

Macherey-Nagel (Düren), New England Biolabs (NEB, Frankfurt a. M.), Qiagen (Hilden), Roth 

(Karlsruhe), Serva (Heidelberg), Sigma-Aldrich (Steinheim) and Thermo Scientific (Schwerte). 

For all solutions, de-ionized sterile water was used. If needed, solutions were sterilised and 

sterile flasks were used. 
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 Antibodies 4.1.3.

Commercial and self-made antibodies were used in this study as follows (Table 5 and 6). 

Table 5: Primary antibodies. 

antibody class and species antigen dilution source/reference 

BiP mouse monoclonal BiP 1:3000 WB Gertrud Lallinger-Kube, 

Molecular Parasitology, 

University of Bayreuth 

GFP IgG 

mouse monoclonal 

GFP 1:1000 WB Markus Hermann, Genetics, 

University of Bayreuth 

His IgG1 

mouse monoclonal 

Histidin 1:2000 WB Santa Cruz Biotechnology, 

Dallas, TX, USA 

KMX IgG2b 

mouse monoclonal 

β-Tubulin/ 

spindle 

1:2000 IF Birkett et al., 1985 

TAT1 IgG2b 

mouse monoclonal 

α-Tubulin 

 

1:1000 IF 

1:10000 WB 

Woods et al., 1989 

TbHistone 

H3 

rabbit TbHistone 

H3 

1:50000 WB kind gift from Prof. Dr. 

Christian Janzen, Cell and 

Developmental Biology, 

University of Würzburg 

9E10 IgG 

mouse monoclonal 

myc 1:200 IF 

1:500 WB 

SeraLab, London, UK 

 

Table 6: Secondary antibodies. 

antibody antigen and species dilution source 

Atto 488 

FITC labelled 

α-mouse IgG (whole molecule), 

polyclonal, produced in goat 

1:500 IF Sigma-Aldrich, Steinheim 

Atto 550 

Cy3 labelled 

α-mouse IgG (whole molecule), 

polyclonal, produced in goat 

1:500 IF Sigma-Aldrich, Steinheim 

mouse-HRP α-mouse IgG (whole molecule), 

polyclonal, produced in rabbit 

1:80000 WB Sigma-Aldrich, Steinheim 

rabbit-HRP α-rabbit IgG (H+L) conjugated, 

polyclonal, produced in goat 

1:20000 WB Zymed via Invitrogen, 

Thermo Scientific, 

Schwerte 

 DNA oligonucleotides 4.1.4.

DNA oligonucleotides for this study were received from Microsynth (Balgach, Switzerland). 

Their design was as follows (Table 7, 8 and 9). 
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Table 7: DNA oligonucleotides for changing multiple cloning sites and tags in vectors. 

oligonucleotide sequence 5'->3' purpose 

MluIFseIPvuIAscIBamHI

_for2 

5'-CGC GTC GGG CCG 

GCC CGA TCG GGC GCG 

CCG-3' 

MluI FseI Pvu AscI BamHI 

changing MCS of pHD1701 to pHD1801; 

forward 

MluIFseIPvuIAscIBamHI

_rev2 

5'-GAT CCG GCG CGC 

CCG ATC GGG CCG GCC 

CGA-3' 

MluI FseI Pvu AscI BamHI 

changing MCS of pHD1701 to pHD1801; 

reverse 

FseIAscIApaIMluIBamH

I_for 

5'-CCA TTA TTG GGC 

GCG CCA TTG GGC CCA 

TTA CGC GTA TTG-3' 

FseI AscI ApaI MluI BamHI 

changing MCS of pHD1800; forward 

FseIAscIApaIMluIBamH

I_rev 

5'-GAT CCA ATA CGC 

GTA ATG GGC CCA ATG 

GCG CGC CAA TGG CCG 

G-3' 

FseI AscI ApaI MluI BamHI 

changing MCS of pHD1800; reverse 

GFP_Mlu_for 5'-ATA ACG CGT ATG 

GTG AGC AAG GGC 

GAG GAG C-3' 

GFP; with startcodon; MluI; forward; for 

cloning GFP into pHD1800, resulting in 

pHD1800-GFPmyc 

GFP_BamHI_re 5'-ATA GGA TCC CTT 

GTA CAG CTC GTC CAT 

GCC G-3' 

GFP; without stopcodon; BamHI; 

reverse; for cloning GFP into pHD1800, 

resulting in pHD1800-GFPmyc 

 

Table 8: DNA oligonucleotides for TbKif13-1 constructs. 

oligonucleotide sequence 5'->3' purpose 

pCS2tag_Kif13_1f Fse 5'-ATA GGC CGG CCG 

GCG AAG TGG GAA TTA 

AAG CTG-3' 

TbKif13-1 N-terminus, without 

startcodon; starts at 4th base of TbKif13-

1, FseI; forward; pHD1801, pTrc C FA, 

pcDNA5, pcDNA3.1, pCS2-eGFP 

pHD1800Kif13.1forFse 5'-ATA GGC CGG CCA 

TGG CGA AGT GGG AAT 

TAA AGC T-3' 

TbKif13-1 N-terminus, with startcodon; 

starts at 1st base of TbKif13-1, FseI; 

forward; pHD1801-GFPmyc 

13-1 NES_ATG_forFs 5'- ATA GGC CGG CCA 

TGG AAG AGT TCG TAG 

CCC TG-3' 

TbKif13-1 ½ N-terminus, with 

startcodon; FseI; forward; pHD1800-

GFPmyc 

NES for 5'-ATA GGC CGG CCG 

GAA GAG TTC GTA GCC 

CTG CAG-3' 

TbKif13-1 ½ N-terminus, without 

startcodon; starts at 94th base of 

TbKif13-1; FseI; forward; pHD1801, pTrc 

C FA 

pCS2tag_Kif13_1MfFse 5'-ATA GGC CGG CCC 

GCC ATA AAG AAG CTG 

CGC GGG-3' 

TbKif13-1 neck/motor domain, without 

startcodon; starts at 175th base of 

TbKif13-1; FseI; forward; pHD1801, pTrc 

C FA 

Tag-13-1 C-ter fF 5'-ATA GGC CGG CCG 

AAA AGC CGT AGT GAA 

AGA AAG CC-3' 

TbKif13-1 C-terminus, without 

startcodon; starts at 1396th base of 

TbKif13-1; FseI; forward; pHD1801 
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Kif13.1MycEGFPrev 5'-GGC GCG CCC TAA 

ATC CCG TTT TGC TCG 

AGA-3' 

TbKif13-1 C-terminus, with stopcodon; 

ends at 2073rd base of TbKif13-1; AscI; 

reverse; pHD1801, pTrc C FA, pcDNA5, 

pcDNA3.1, pCS2-eGFP 

pCS2tag_Kif13_1MrAsc 5'-GGC GCG CCT TAC 

TTT AAC TCC TTC ACA 

CGA TCA GCG TA-3' 

TbKif13-1 neck/motor domain, with 

stopcodon; ends at 1392nd base of 

TbKif13-1; AscI; reverse; pHD1801, pTrc 

C FA 

Kif13_1DBox_rev_Asc 5'-GGC GCG CCT TAC 

TCA GAT TGC TCA TTT 

TCC TCT AGA GG-3' 

TbKif13-1 DBox, with stopcodon; ends at 

2073th base of TbKif13-1; AscI; reverse; 

pHD1801 

13-1 N-term GFP_re 5'-ATA GGC GCG CCC 

GTG ATA CAA ATT CAC 

CGT ATC CTC-3' 

TbKif13-1 N-terminus, without 

stopcodon; ends at 174th base of 

TbKif13-1; AscI; reverse; pHD1800-

GFPmyc 

Kif13.1 143SA for 5'-GGG AGG TTA AAC 

GGC GTA AAG CCC GCA 

TCG TGG-3' 

TbKif13-1 S143A mutation within the 

motordomain; in ordert to prevent 

inhibitory phosphorylation of that 

serine; forward; pcDNA5, pcDNA3.1, 

pCS2-eGFP 

Kif13.1 143SA rev 5'-CCA CGA TGC GGG 

CTT TAC GCC GTT TAA 

CCT CCC-3' 

TbKif13-1 S143A mutation within the 

motordomain; in order to prevent 

inhibitory phosphorylation of that 

serine; reverse; pcDNA5, pcDNA3.1, 

pCS2-eGFP 

Kif13-1 G371A for 5'-CTT TTA TTG ATC 

TCG CTG CGA GTG AGC 

GTG GG-3' 

TbKif13-1 G371A mutation within one 

ATP binding motif in the motordomain; 

in order to prevent ATPase activity; 

forward; pTrc C FA 

Kif13-1 G371A rev 5'-CCC ACG CTC ACT 

CGC AGC GAG ATC AAT 

AAA AG-3' 

TbKif13-1 G371A mutation within one 

ATP binding motif in the motordomain; 

in order to prevent ATPase activity; 

reverse; pTrc C FA 

Kif13-1 E373A for 5'-CGC TGG GAG TGC 

GCG TGG GGC GG-3' 

TbKif13-1 E373A mutation within one 

ATP binding motif in the motordomain; 

in order to prevent ATPase activity and 

maintain depolymerisation activity; 

forward; pTrc C FA 

Kif13-1 E373A rev 5'-CCG CCC CAC GCG 

CAC TCC CAG CG-3' 

TbKif13-1 E373A mutation within one 

ATP binding motif in the motordomain; 

in order to prevent ATPase activity and 

maintain depolymerisation activity; 

reverse; pTrc C FA 
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Table 9: DNA oligonucleotides for TbAuk1 constructs. 

oligonucleotide sequence 5'->3' purpose 

pET-Auk1-forFseI 5'-ATA GGC CGG CCG 

AGG TCA ACT GAG GTC 

GGG CGT-3' 

TbAuk1 N-terminus, without 

startcodon; starts at 4th base of TbAuk1; 

FseI; forward; pHD1801 

pET-Auk1-revAscI 5'-GGC GCG CCT TAA 

TTC TCT TTC CCT GCA 

GTT GGC-3' TC 

TbAuk1 C-terminus, with stopcodon; 

ends at 927nd base of TbAuk1; AscI; 

reverse; pHD1801 

TbAuk K58R for 5'-GCA ATT TTG TTT 

GCG CGC TGA GAA GGT 

TGT CCA TTA AAA AAC 

T-3' 

TbAuk1 K58R mutation; kinase-dead 

mutant; forward; pHD1801 

TbAuk K58R rev 5'-AGT TTT TTA ATG 

GAC AAC CTT CTC AGC 

GCG CAA ACA AAA TTG 

C-3' 

TbAuk1 K58R mutation; kinase-dead 

mutant; reverse; pHD1801 

TbAukT184A for 5'-ACC GTC GCA AGG 

CAT CTT GCG GGA CG-

3' 

TbAuk1 T184A mutation; kinase-dead 

mutant; forward; pHD1801 

TbAukT184A rev 5'- CGT CCC GCA AGA 

TGC CTT GCG ACG GT-

3' 

TbAuk1 T184A mutation; kinase-dead 

mutant; forward; pHD1801 

 Plasmids 4.1.5.

The multiple cloning sites (MCS) of all used vectors were provided with unique FseI and AscI 

sites for easier and more rapid subcloning. Sequencing of PCR product inserts was done by 

Macrogen (Macrogen Europe, Amsterdam, the Netherlands) according to their instructions. 

The following vectors and plasmids were used during this study (Table 10 and 11). 
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 Table 10: Vectors. 

vector tag description and origin 

pTrc C FA N-His6 inducible expression vector in E. coli; trc promoter; 

ampicillin resistance; Thermo Scientific (Schwerte); 

modified by Bianca Kakoschky, Molecular 

Parasitology, University of Bayreuth 

pHD1800
GFP-myc GFP-myc-C inducible expression vector in T. brucei; procyclin 

promoter; ampicillin and hygromycin resistance; 

origin pHD1700, Dr. Voncken, University of Hull; 

modified in this study 

pHD1800 myc-C inducible expression vector in T. brucei; procyclin 

promoter; ampicillin and hygromycin resistance; 

origin pHD 1700, Dr. Voncken, University of Hull; 

modified in this study 

pHD1801 N-myc inducible expression vector in T. brucei; procyclin 

promoter; ampicillin and hygromycin resistance; 

origin pHD1701, Dr. Voncken, University of Hull; 

modified in this study 

pCS2-eGFP N-eGFP constitutive expression vector in mammlian cells; 

simian cytomegalovirus (CMV) IE94 

enhancer/promoter; ampicillin and hygromycin 

resistance; Turner and Weintraub (1994); modified 

by department of Genetics, University of Bayreuth 

pcDNA
TM

5/FRT/TO-

eGFP-FA 

N-eGFP inducible expression vector for the 'Flp-InTM T-RExTM 

System' (Invitrogen); hybrid human CMV/TetO2 

enhancer/promoter; contains FLP recombination site 

(FRT) for Flp recombinase-mediated integration into 

the genome; ampicillin and hygromycin resistance; 

Invitrogen via Thermo Scientific (Schwerte); modified 

by department of Genetics, University of Bayreuth 

pcDNA
TM

3.1-eGFP-FA N-eGFP inducible expression vector in mammalian cells, 

hybrid human CMV/TetO2 enhancer/promoter, 

ampicillin and neomycin resistance; Invitrogen via 

Thermo Scientific (Schwerte); modified by 

department of Genetics, University of Bayreuth and 

in this study 
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Table 11: Plasmids. 

plasmid insert tag  vector origin 

pTrc-TbKif13-1 FL TbKif13-1 FL N-His6 pTrc C FA this study 

pTrc-TbKif13-1 ½ N + C TbKif13-1 ½ N + C N-His6 pTrc C FA this study 

pTrc-TbKif13-1 NM + C TbKif13-1 NM + C N-His6 pTrc C FA this study 

pTrc-TbKif13-1 NM TbKif13-1 NM N-His6 pTrc C FA this study 

pTrc-TbKif13-1 N + M TbKif13-1 N + M N-His6 pTrc C FA this study 

pTrc-TbKif13-1 ½ N + M TbKif13-1 ½ N + M N-His6 pTrc C FA this study 

pTrc-TbKif13-1 N + D-box TbKif13-1 N + D-

box 

N-His6 pTrc C FA this study 

pTrc-TbKif13-1 ½ N + D-box TbKif13-1 ½ N + D-

box 

N-His6 pTrc C FA this study 

pTrc-TbKif13-1 FL G371A TbKif13-1 FL G371A N-His6 pTrc C FA this study 

pTrc-TbKif13-1 FL E373A TbKif13-1 FL E373A N-His6 pTrc C FA this study 

pHD1800-GFPmyc GFP myc-C pHD1800 this study 

pHD1800-TbKif13-1 N
GFP-myc TbKif13-1 N GFP-

myc-C 

pHD1800
GFP

-myc 

this study 

pHD1800-TbKif13-1 ½N
GFP-myc TbKif13-1 ½ N GFP-

myc-C 

pHD1800
GFP

-myc 

this study 

pHD1801-TbKif13-1 FL TbKif13-1 FL N-myc pHD1801 this study 

pHD1801-TbKif13-1 ½ N + C TbKif13-1 ½ N + C N-myc pHD1801 this study 

pHD1801-TbKif13-1 NM + C TbKif13-1 NM + C N-myc pHD1801 this study 

pHD1801-TbKif13-1 NM TbKif13-1 NM N-myc pHD1801 this study 

pHD1801-TbKif13-1 N + M TbKif13-1 N + M N-myc pHD1801 this study 

pHD1801-TbKif13-1 ½ N + M TbKif13-1 ½ N + M N-myc pHD1801 this study 

pHD1801-TbKif13-1 C TbKif13-1 C N-myc pHD1801 this study 

pHD1801-TbAuk1 TbAuk1 N-myc pHD1801 this study 

pHD1801-TbAuk1 K58R TbAuk1 K58R N-myc pHD1801 this study 

pHD1801-TbAuk1 T184A TbAuk1 T184A N-myc pHD1801 this study 

pQE60-TbHistoneH3 TbHistoneH3 His6-C pQE60 Larry Ruben, 

Southern 

Methodist 

University, 

Dallas, USA 

pCS2-eGFP-TbKif13-1 FL S143A TbKif13-1 FL S143A N-eGFP pCS2-eGFP this study 

pcDNA5/FRT/TO-
eGFP

TbKif13-1 

S143A 

TbKif13-1 FL S143A N-eGFP pcDNA5-

FRT-TO-

eGFP 

this study 

pcDNA
TM

3.1-
eGFP

TbKif13-1 

S143A 

TbKif13-1 FL S143A N-eGFP pcDNA
TM

3.1

-eGFP 

this study 

pAG1786 Flp-recominase - pCS2 Genetics, 

University of 

Bayreuth 
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4.2. Microbiological techniques 

 E. coli strains and media 4.2.1.

E. coli strains for molecular cloning or recombinant protein expression were used as follows 

(Table 12).  

 Table 12: E. coli strains. 

E. coli strain genotype purpose 

XL1-blue endA1 gyrA96(nal
R) thi-1 recA1 relA1 lac glnV44 

F'[ ::Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK
- mK

+) 

molecular cloning 

BL21 F
– ompT gal dcm lon hsdSB(rB

- mB
-) λ(DE3 [lacI 

lacUV5-T7 gene 1 ind1 sam7 nin5]) 

recombinant protein 

expression 

E. coli cells were grown in LB-media or on LB-agar plates. 

LB medium    LB-agar 

1% (w/v) tryptone   LB medium + 1.5% (w/v) agar 

0.5% (w/v) yeast extract 

0.5% (w/v) NaCl 

 Cultivation of E. coli 4.2.2.

E. coli strains were grown in LB media at 37°C or 18°C (protein expression) by shaking at 

about 130 rpm. LB-agar plates were incubated at 37°C. Selection of transformed bacteria 

was done with 100 µg/mL ampicillin in LB medium/-agar. Cell culture density was measured 

via absorbance at a wavelength of 600 nm (OD600; BioPhotometer, Eppendorf, Hamburg). 

Cultures on LB-agar plates were stored at 4°C for up to 30 days. 

 Transformation of plasmid DNA into chemical competent E. coli 4.2.3.

Frozen, chemical competent E. coli strains were thawed on ice. For transformation, 300 ng of 

plasmid DNA or 3 µL of ligation product were mixed with 200 µL of cells and incubated on ice 

for 30 min. A heat shock occurred at 42°C for 45 sec. Subsequently 1 mL of LB medium 

without antibiotics was added and cells recovered from that treatment for 1 h at 37°C with 

shaking. For liquid cultures, these cells were subsequently put to 20-50 mL of LB with 

antibiotics and grown by shaking at 37°C over night. For cultivation on plates, 100 µL, 10 µL 

and the resuspended bacterial pellet (13.200 rpm, 1 min; 5415 D, rotor F45-24-11, 

Eppendorf, Hamburg) were plated on LB-agar plates with antibiotics and grown at 37°C over 

night. 
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 Recombinant protein expression in E. coli 4.2.4.

After transformation of the desired plasmid into E. coli BL21, 1.5 L of LB were inoculated 

with 15 mL of the over night culture (see 4.2.3.) and grown at 37°C with shaking. At OD600 0.4 

- 0.6 (BioPhotometer, Eppendorf, Hamburg) selection with 100 µg/mL ampicillin and 

induction with 0.1 mM IPTG were started. Cells were grown for 16 h at 18°C with shaking for 

receiving overexpressed soluble protein, while for overexpressed protein in inclusion bodies 

cells were grown for 12 h at 30°C with shaking. Cultures were harvested at 5.500 rpm for 15 

min (Avanti J-26 XP Centrifuge, rotor JA 10, Beckman Coulter, Krefeld). 

4.3. Molecular biological methods 

Centrifugation within molecular biological methods occurred within a bench-top centrifuge 

(5415 D, rotor F45-24-11, Eppendorf, Hamburg). 

 Isolation of plasmid DNA from E. coli XL1-blue 4.3.1.

GTE buffer    Lysis buffer   TE 

50 mM glucose   0.2 N NaOH   10 mM Tris-HCl, pH 7.4 

25 mM Tris-HCl, pH 8.0  1% (v/v) SDS   1 mM EDTA 

10 mM EDTA, pH 8.0 

100 µg/mL boiled RNase 

For identification of a positive colony, containing the right plasmid after ligation (see 4.3.9.), 

XL1-blue single colonies were picked from LB-agar plates and grown in 3 mL LB with 100 

µg/mL ampicillin over night at 37°C with shaking. After harvesting cells (13.200 rpm, 1 min), 

plasmid DNA was isolated via alkaline lysis. Cell pellets were resuspended in 150 µL ice-cold 

GTE buffer by mixing properly and subsequently lysed with 200 µL lysis buffer on ice for 5 

min. 150 µL of 3 M KAc (pH 4.8) precipitated high molecular E. coli DNA within 5 min on ice. 

Chromosomal E. coli DNA was pelleted via centrifugation at 13.200 rpm for 5 min. Plasmid 

DNA remaining in the supernatant was precipitated by addition of 900 µL 100% (v/v) ethanol 

and pelleted by centrifugation at 13.200 rpm for 15 min. Plasmid DNA was washed with 200 

µL 70% (v/v) ethanol, cetrifugated at 13.200 rpm for 5 min, dryed at RT for 10 min and finally 

dissolved in 50 µL TE. 

In order to receive plasmid DNA for sequencing, purification took place with the 'GeneJET 

Plasmid Miniprep Kit' (Thermo Scientific, Schwerte) according to manufactorer´s instruction. 
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Higher concentrations of plasmid DNA were received by harvesting a 50 mL LB ampicillin 

(100 µg/mL) culture of the desired clone. Purification was done with the 'Qiagen Plasmid 

Plus Midi Kit' (Qiagen, Hilden) according to manufactorer´s instruction. 

 Determination of DNA concentration 4.3.2.

DNA concentration was determined by measuring the absorbance at a wavelength of 260 

nm (OD260) with a 'ND-1000 Spectrophotometer' (Peqlab, Erlangen). An OD260 1 equates 50 

µg/mL DNA. 

 Restriction hydrolysis of DNA 4.3.3.

Site-specific endonucleases were received from Fermentas (St. Leon-Rot) or NEB (Frankfurt 

a. M.) and used according to manufactorer´s instruction. 1 - 3 µg of DNA were hydrolysed 

with 1 - 10 units of restriction enzymes for 2 h at 37°C. For DNA hydrolysis with two 

endonucleases not suitable within the same buffer conditions, a sequential restriction was 

applied with a change of buffers using 'NucleoSpin® Gel and PCR Clean-up' (Macherey-Nagel, 

Düren) according to manufactorer´s instructions. Restriction hydrolysis was stopped by 

addition of loading dye. DNA hydrolysed for molecular cloning was separated on an agarose 

gel and subsequently purified (see 4.3.7. and 4.3.8.) in order to receive pure DNA fragments 

of desired weight. 

 Polymerase chain reaction 4.3.4.

For amplification of specific DNA fragments or genes out of genomic T. brucei DNA (strain 

449) or plasmids, polymerase chain reaction (PCR) was applied. Therfore 0.6 units 'Phusion 

High-Fidelity DNA Polymerase' (Fermentas, St. Leon-Rot) within a 50 µL approach were used. 

0.2 µM (each) specific DNA oligonucleotides flanking the DNA region of interest (see 4.1.4.), 

0.4 mM (each) deoxynucleotides (dNTPs, NEB, Frankfurt a. M.), 250 ng template DNA and 

supplied buffer (Fermentas, St. Leon-Rot) were added. 

PCR was performed in 'MyCyclerTM Thermocycler' (BioRad, Hercules, CA, USA). In general, 

the initial and first denaturation step during each cycle at 98°C leads to single stranded DNA, 

to which in the following annealing step single stranded DNA oligonucleotides can bind at 

complementary sites. This step is done 5 - 10°C underneath the melting temperature of the 

DNA oligonucleotides. During elongation within each cycle and the final elongation step, 

DNA is polymerised by integrating dNTPs. This takes place at a temperature specific for the 
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used polymerase. 'Phusion High Fidelity Polymerase' works best at 72°C, at which it 

elongates 1 kb wihtin 15 - 30 sec. PCR products were analysed on an agarose gel and purified 

using 'NucleoSpin® Gel and PCR Clean-up' (Macherey-Nagel, Düren) according to 

manufactorer´s instructions. 

 Mutagenesis of multiple cloning sites in plasmid DNA 4.3.5.

Mutagenesis of multiple cloning sites in vector DNA was used to insert additional restriction 

sites. DNA oligonucleotides were created containing sticky overhangs according to the 

respective endonuclease restriction sites at the 5' and 3' ends, via which they were ligated 

into the appropriate hydrolysed vector (see 4.1.4. and 4.3.3.). To this end, DNA 

oligonucleotides were phophorylated at 5', which is essential for subsequent ligation. For 

phosphorylation, 4 µM oligonucleotide were mixed with 1 mM dATP, 1x 'T4 Polynucleotide 

Kinase buffer' and 15 units 'T4 Polynucleotide Kinase' (NEB, Frankfurt a. M.) within 25 µL and 

incubated at 37°C for 30 min. Phosphorylated oligonucleotides were unified and kept for 

their hybridisation in a thermocycler (Techne, TC-512, Bibby Scientific Limited, Stone, UK) for 

5 min at 98°C, slowly cooled down to 65°C and held for 10 min at 65°C. The phosphorylated, 

hybridised oligonucleotides were diluted 1:20 and 1:100 in de-ionized sterile water and 1 µL 

of each was ligated with the desired endnuclease hydrolysed and dephosphorylated vector 

of choice. 5' dephosphorylation of linearised vectors is necessary to inhibit religation. 1 µg 

vector was dephosphorylated by 5 units 'Antarctic Phosphatase' (NEB, Frankfurt a. M) within 

1 h at 37°C. 

 Site-specific mutagenesis of plasmid DNA 4.3.6.

In order to introduce site-specific point mutations into plasmid DNA the 'QuikChange 

Lightning Site-Directed Mutagenesis Kit' (Agilent Technologies, Santa Clara, CA, USA) was 

used according to manufactorer´s instructions. The underlying principle is a PCR based 

amplification of the whole plasmid, whereby complementary oligonucleotides contain the 

desired basepair exchange (see 4.1.4.). Elongation is provided by the 'QuickChange Lightning 

enzyme', which is a blend containing a derivative of 'PfuUltra high fidelity DNA polymerase'. 

After temperature cycling, DpnI was added. This endonuclease (target sequence 5'-Gm6ATC-

3') specifically hydrolysis methylated and hemimethylated DNA. As DNA isolated from almost 

all E. coli strains is methylated, template DNA will be hydrolysed. The newly synthesised 
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mutagenetic plasmid DNA was afterwards transformed into E. coli cells. In this study, E. coli 

Xl1-blue cells were used, differing from manufactorer´s instruction. 

 Separation of DNA fragments by agarose gelelectrophoresis 4.3.7.

1x TAE     6x Loading dye 

0.04 M Tris    0.09% (w/v) bromphenol blue 

0.1142% (v/v) acetic acid  0.09% (w/v) xylene cyanol FF 

1.3 mM EDTA    60% (v/v) glycerol 

pH 8.5 with acetic acid  60 mM EDTA 

For analytical and preparative reasons, DNA was mixed with loading dye (to 1x) and loaded 

onto agarose gels ( 1- 2% agarose (SeaKem® LE agarose, Lonza, Rockland, ME, USA) in 1x 

TAE). Gels were run at 80 - 100 V in 1x TAE in an electorphoresis chamber ('HU6 Mini 

Horizontal', Scie-Plas Limited, Cambridge, UK) and subsequently stained in an ethidium 

bromide (0.5 µg/mL) 1x TAE bath for 10 min. Gels were analysed with an UV transilluminator 

('GenoSmart Compact Imaging System', VWR, Darmstadt). DNA size was estimated according 

to the self-made DNA ladder, received by EcoRI-restriction hydrolysed SPP1 bacteriophage 

DNA (Karin Angermann, Molecular Parasitolgy, Univeristy of Bayreuth). 

 Isolation of DNA from agarose gels 4.3.8.

For isolation of DNA from agarose gels, staining did not occur with ethidum bromide, but 

with 'SYBR Safe® DNA gel stain' (Invitrogen via Thermo Scientific, Schwerte) in 1x TAE 

according to manufactorer´s instruction. 'SYBR Safe®' is less mutagenetic than ethidium 

bromide and mutagenesis by UV light is circumvented because DNA is made visible with an 

excitation maximum of 502 nm and an emission maximum of 530 nm. A 'dark reader blue' 

transilluminator (Clare Chemical Research, Dolores, CO, USA) was used. DNA was cut from 

gels with 'X-tracta II' (Biozym Scientific, Hessisch Oldendorf). For purification of DNA from 

agarose gels, 'NucleoSpin® Gel and PCR Clean-up' (Macherey-Nagel, Düren) was applied 

according to manufactorer´s instruction. 

 Ligation 4.3.9.

Ligation serves for insertion of endonuclease hydrolysed DNA fragments, received from PCR 

or plasmids, into other linearised vectors or plasmids. A molar ratio vector to fragment of 1:6 

was used, which was estimated on an agarose gel. For ligation 5 units 'T4 DNA liagase' 
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(Fermentas, St. Leon-Rot), supplied 1x 'T4 DNA ligase buffer', linearised vector and 

hydrolysed fragment were combined within 10 µL for 2 h at RT or over night at 18°C. 

 Linearisation of plasmid DNA for transformation of T. brucei 4.3.10.

For homomolgous recombination of plasmid DNA with genomic T. brucei DNA, plasmid DNA 

had to be linearised. A unique NotI endonuclease cutting site within the plasmid´s rRNA 

locus, that is homologous to the rRNA locus within the genomic DNA, was used for 

linearisation. Therefore 30 ng plasmid DNA, 20 units endonuclease and supplied buffer (1x) 

were mixed witin a total of 40 µL and hydrolysation occurred for 16 h at 37°C. The linearised 

plasmid DNA was precipitated with 2 vol 100% (v/v) ice-cold ethanol and 1/10 vol 3 M 

sodium acetate. After 10 min of cetrifugation at 13.200 rpm, DNA was washed with 70% 

(v/v) ethanol and centrifuged again for 5 min at 13.200 rpm. The pellet was dried 

underneath a laminar flow (ScanLaf, Mars Safety Class, LaboGene, Lynge, DK) before being 

resuspended in 75 µL de-ionized sterile water. 2 µL were analysed for linearisation on an 

agarose gel. 

4.4. Protein biochemical methods 

 Denaturating sodium dodecyl sulfate polyacrylamid gelelectrophoresis (SDS-4.4.1.

PAGE) 

2x Laemmli     1x SDS-PAGE buffer 

125 mM Tris-HCl pH 6.8   25 mM Tris 

5% (v/v) glycerol    0,2 M glycine 

4% (v/v) SDS     0,001% (v/v) SDS 

5% (v/v) β-mercaptoethanol 

some crystals of bromphenol blue 
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10% Polyacrylamid gel 

30% (w/v) acrylamide-bisacrylamid solution, 37.5:1 (Serva, Heidelberg) was used for all 

polyacrylamid gels. 

Resolving gel (30 mL)     Stacking gel (14.65 mL) 

10 mL 30% (w/v) acrylamide-bisacrylamid  2 mL 30% (w/v) acrylamide-bisacrylamid 

7.5 mL 1.5 M Tris-HCl (pH 8.8)   3.25 mL 0.5 M Tris-HCl (pH 6.8) 

0.3 mL 10% (w/v) SDS     0.15 mL 10% (w/v) SDS 

12 mL ddH2O      9.15 mL ddH2O 

15 µL TEMED      15 µL TEMED 

0.15 mL 10% (w/v) APS    75 µL 10% (w/v) APS 

Gradient gel 8% - 17% 

8% solution (28 mL)     17% solution (30 mL)  

7 mL 30% (w/v) acrylamide-bisacrylamid  17 ml 30% (w/v) acrylamide-bisacrylamid 

7 mL 1.5 M Tris-HCl (pH 8.8)    7.5 mL 1.5 M Tris-HCl (pH 8.8) 

32 µL 10% (w/v) SDS      1.6 mL 2.5 M sucrose 

13.4 mL ddH2O     32 µL 10% (w/v) SDS 

11.2 µL TEMED     3.7 mL ddH2O 

0.128 mL 10% (w/v) APS    8.8 µL TEMED 

0.128 mL 10% (w/v) APS 

Stacking gel (39 ml): 

9.12 ml 30% (w/v) acrylamide-bisacrylamid  

4.92 mL 1 M Tris-HCl (pH 6.8) 

48 µL 10% (w/v) SDS 

24.7 mL ddH2O 

12 µL TEMED 

0.192 mL 10% (w/v) APS 

For separating proteins under denaturating conditions, a discontinuous SDS-PAGE was 

performed (Laemmli, 1970). This method separates proteins dependening on their molecular 

mass and independent of their initial charge within an electric field. As protein samples are 

mixed with hot Laemmli (to 1x) and boiled at 99°C for 10 min, proteins are negatively 
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charged by SDS and are unfolded upon, whereas β-mercaptoethanol reduces their disulfide 

bridges. 

For proteins with a molecular mass <30 kDa 8 - 17% gradient gels and for proteins >30 kDa 

10% polyacrylamid gels were used. As molecular weight ladder 'PageRuler Prestianed 

Protein Ladder' (Fermentas, St. Leon-Rot) was used. 

After loading of samples onto the stacking gel, they were run with 80 V until reaching the 

resolving gel, where it was turned to 130 V. 1x SDS-PAGE buffer was used as running buffer. 

 Methanol-chloroform precipitation of protein samples 4.4.2.

Protein samples for SDS-PAGE analysis containing GuaHCl or urea were methanol-

chloroform precipitated. 4 volumes methanol (100% (v/v)) and 1 volume chloroform (100% 

(v/v)) were added to the sample and mixed properly. 3 volumes of ddH2O were added and 

the sample mixed. Centrifugation was done at 12.300 rpm for 5 min (5415 D, rotor F45-24-

11, Eppendorf, Hamburg). The protein precipitate forms at the interphase of a bottom layer 

with chloroform, containing lipids and a top aqueous layer, containing detergens etc. After 

removal of the aqueous phase, 3 volumes methanol (100% (v/v)) were added, the sample 

mixed and centrifuged at 12.300 rpm for 5 min (5415 D, rotor F45-24-11, Eppendorf, 

Hamburg). Methanol was removed completely and the pellets dried for 10 min at RT before 

being boiled for 10 min at 99°C with Laemmli (to 1x). 

 Determination of protein concentration in solution 4.4.3.

In order to determine protein concentrations, a defined volume of the protein of interest in 

Laemmli (to 1x) was loaded onto an SDS-PAGE next to lanes where 1 µg, 0.5 µg and 0.25 µg 

BSA in Laemmli (to 1x) were loaded. After coomassie staining and destaining (see 4.4.5.) 

bands were compared to each other. 

In addition, recombinantly purified protein concentrations were measured via a Bradford 

assay (BioRad, Munich) according to manufactorer´s instruction. This colorimetric assay is 

based on the binding of a Coomassie Brilliant Blue G-250 solution dye to protein, which 

causes a shift in the absorption maximum of the dye from 465 nm to 595 nm (Bradford, 

1976). It measures total protein concentrations. A photometer (BioPhotometer, Eppendorf, 

Hamburg) was used. 
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 Westernblot (Immunoblot) 4.4.4.

1x Blotting buffer   1x PBS    1x PBS-T 

25 mM Tris    0.14 M NaCl   1x PBS 

0.2 M glycine    2.7 mM KCl   0.1% (v/v) Tween-20 

10% (v/v) methanol   8.5 mM Na2HPO4 x 2H2O 

     pH 7.4 

Blocking buffer   Ponceau S solution  Stripping buffer 

5% milk powder in PBS-T  3.3 mM ponceau S   0.1 M NaOH 

(Magermilchpulver, Sucofin,   40% (v/v) methanol  2% (w/v) SDS 

TSI, Zeven)    15% (v/v) acetic acid  0.5% (w/v) DTT 

For immunoblotting, proteins separated by SDS-PAGE, were transferred to a polyvinylidene 

difluoride (PVDF) membrane (Serva, Heidlberg). Prior to use, PVDF membranes are activated 

using 100% (v/v) methanol for 20 min and equilibrated in 1x blotting buffer. The activation 

step ensures that the membrane exposes its full protein binding capacity when aqueous 

buffers are used for immunoblotting. 

The electrophoretic transfer of the SDS gel-bound proteins to the membrane occurred via 

wet blotting within a 'Mini Trans-Blot® cell' (BioRad, Munich). Transfer occurred at 250 mA 

for 2 h while the blotting chamber was cooled by a surrounding ice box. 

The membrane was stained for a few seconds with Ponceau S solution to visualise blotted 

proteins as loading control. Non specific binding sites were blocked with blocking buffer 

twice for 15 min. Incubation with the primary and the secondary antibody, diluted in 

blocking buffer, occurred for 1 h at RT. After each antibody treatment, the membrane was 

washed three times for 10 min in PBS-T. The membrane was stored in PBS until detection. 

Detection was done with 'HRP-juice' (PJK, KLeinblittersdorf) or 'Lumigen ECL Ultra' (Lumigen, 

Southfield, MI, USA), both of which are chemiluminescent systems detecting horseradish 

peroxidase. Visualisation was done with the 'LAS-4000' detection system (Fujifilm Europe, 

Düsseldorf). 

In order to strip the PVDF membrane for a second time of primary antibody binding, it was 

incubated with stripping buffer for 1 h at 55°C under rotation. Stringent washing three times 

with 1x PBS-T for 10 min followed before primary antibody was admitted as described 

above. 



Material and methods 

| 101 

 

 Coomassie staining and destaining 4.4.5.

Staining solution     Destain solution 

3 mM Coomassie Brilliant Blue R 250  35% (v/v) methanol 

45.4% (v/v) methanol     5% (v/v) acetic acid 

0.92% (v/v) acetic acid 

In order to stain proteins after SDS-PAGE on the gel, it was put into Coomassie staining 

solution for 20 min with soft shaking. Afterwards it was destained until clear bands were 

seen. 

 Silver staining 4.4.6.

Fix solution      Stain solution  

50% (v/v) methanol     11.8 mM AgNO3 

12% (v/v) acetic acid     0.076% (v/v) formaldehyde (fresh) 

0.05% (v/v) formaldehyde (fresh)   on ice 

Developing solution     Stop solution 

0.57 mM Na2CO3     50% (v/v) methanol 

0.05% (v/v) formaldehyde (fresh)   12% (v/v) acetic acid 

0.025 mM Na2S2O3 

Silver staining of proteins separated by SDS-PAGE faciliates a more sensitive detection of 

proteins than Coomassie staining.  

After SDS-PAGE, gels were fixed for 2 h or over night in fix solution before they were washed 

three times for 20 min with 35% (v/v) ethanol. Alternatively, Coomassie stained and 

destained SDS gels (see 4.4.5.) were washed extensively with ddH2O. Subsequently, gels 

were sensitised for 2 min with 1.26 mM Na2S2O3 and washed three times for 5 min with 

ddH2O. Staining occurred for 20 min with stain solution. Afterwards, gels were washed two 

times for 1 min with ddH2O, developed with developing solution for as long as necessary and 

staining was stopped with stop solution for 5 min. Gels were stored in 1% (v/v) acetic acid. 

 Autoradiography 4.4.7.

After SDS-PAGE, Coomassie staining and destaining, gels were washed with water for 10 

min. Thereby proteins were fixed and unincorporated 33P was washed out. Drying of gels on 

chromatography paper (WhatmanTM 3 MM Chr, GE Healthcare, Little Chalfont, UK) was done 
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in a 'slab gel dryer' (GD2000, Hoefer, Holliston, MA, USA). Exposition to a film (BioMax MR, 

Kodak) lasted 4 h to 4 days, depending on the intensity of the expected signals. Digitisation 

occurred with a 'FLA-7000' phosphorimager (Fujifilm Europe, Düsseldorf). 

 Ni
2+

-NTA affinity purification of His6 tagged proteins 4.4.8.

His6 tagged, recombinantly expressed proteins were purified, both under native and 

denaturing conditions, using 'HisPur™ Ni-NTA Superflow Agarose' (Thermo Scientific, 

Schwerte). Ni2+ is bound to the NTA matrix in a way that one or more of its coordination sites 

are available for interacting with alkaline amino acides like histidine. 

4.4.8.1. Native conditions 

Lysis and wash buffer  High salt buffer  Elution buffer 

0.1 M PIPES, pH 6.9   0.1 M PIPES, pH 6.9  0.1 M PIPES, pH 6.9 

0.1 M NaCl    0.5 M NaCl   0.1 M NaCl 

1 mM MgCl2    1 mM MgCl2   1 mM MgCl2 

10 mM imidazol   10 mM imidazol  0.25 M imidazol 

pH 6.9     pH 6.9    pH 6.9 

add before use:   add before use:  add before use: 

1 mM ATP (lysis buffer)/   0.01 mM ATP   0.01 mM ATP 

0.01 mM ATP (wash buffer)  1 mM β-mercaptoethanol 1 mM β-mercaptoethanol 

1 mM β-mercaptoethanol  0.2 mM PMSF   0.2 mM PMSF 

0.2 mM PMSF   

Due to native purification, all used buffers were ice-cold and purification occurred within a 

4°C room. Harvested bacterial pellet (see 4.2.4.) was resuspended in 10 mL lysis buffer per g 

pellet. Cells were crushed for 20 min using a high pressure homogeniser ('EmulsiFlex-C5', 

Avestin, Ottawa, Canada). Soluble proteins were separated from non soluble cell material by 

cetrifugation at 11.500 rpm at 4°C for 15 min (Avanti J-26 XP Centrifuge, rotor JA 25.50, 

Beckman Coulter, Krefeld) and subsequently incubated with 1 mL lysis buffer equilibrated 

'HisPur™ Ni-NTA Superflow Agarose' resin for 30 min at 4°C under rotation. For purification, 

'Econo-Pac® Chromatography Columns' (BioRad, Munich) were used. His6 tagged proteins 

boud to Ni2+-NTA beads were washed with 10 bed volumes (bv) wash buffer, 10 bv high salt 

buffer to reduce non specific bound proteins and again with 10 bv wash buffer. Elution 

occurred with high concentration of imidazol, which competes with histidine for binding to 
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Ni2+. 2x 5 bv elution buffer were used and fractions of 0.5 mL were collected. Protein 

concentration within fractions was determined (see 4.4.3.) and those containing highest 

concentrations of protein were pooled. Aliquots with 50% (v/v) glycerol were snap frozen in 

liquid N2 and stored at -80°C. 

4.4.8.2. Denaturing conditions 

Lysis buffer   Extraction buffer   Wash buffer B 

50 mM HEPES, pH 6.9  100 mM sodium phosphate  100 mM sodium phosphate 

100 mM NaCl   10 mM Tris    10 mM Tris 

1 mM MgCl2   6 M GuaHCl    8 M urea 

pH 6.9    pH 8.0     pH 8.0 

add just before use:  add just before use:   add just before use: 

1 mM PMSF   1 mM PMSF    1 mM PMSF 

1 mM β-mercaptoethanol 1 mM β-mercaptoethanol  1 mM β-mercaptoethanol 

Wash buffer C    Elution buffer 

100 mM sodium phosphate  100 mM sodium phosphate 

10 mM Tris    10 mM Tris 

8 M urea    8 M urea 

pH 6.3     pH 4.3 

add just before use:   add just before use: 

1 mM PMSF    1 mM PMSF 

1 mM β-mercaptoethanol  1 mM β-mercaptoethanol 

Denaturing purification occurred at RT. Harvested bacterial pellet (see 4.2.4.) was 

resuspended in 10 mL lysis buffer per g pellet. Cells were crushed for 20 min using a high 

pressure homogeniser ('EmulsiFlex-C5', Avestin, Ottawa, Canada). Due to the relatively high 

density of inclusion bodies, they were pelleted with non soluble cell components by 

cetrifugation at 11.500 rpm for 15 min (Avanti J-26 XP Centrifuge, rotor JA 25.50, Beckman 

Coulter, Krefeld). The pellet was resuspended in 10 mL extraction buffer per g pellet and 

kept under rotation for 2 h to solubilise proteins of the inclusion bodies. By subsequent 

centrifugation at 11.400 rpm for 30 min (Avanti J-26 XP Centrifuge, rotor JA 25.50, Beckman 

Coulter, Krefeld), remaining aggregates were removed. The supernatant was incubated with 

0.5 mL extraction buffer equilibrated 'HisPur™ Ni-NTA Superflow Agarose' resin for 3 h at RT 
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under rotation. For purification, 'Poly-Prep® Chromatography Columns' (BioRad, Munich) 

were used. His6 tagged proteins boud to Ni2+-NTA beads were washed with 10 bv wash 

buffer B and 10 bv wash buffer C. The decreased pH of wash buffer C reduces non specific 

bound proteins. Elution occurred with a decreased pH 4.3, which leads to a protonation of 

histidine and thus, to a weaker or no binding of the resin to Ni2+. 2x 5 bv elution buffer were 

used and fractions of 0.5 mL were collected. Protein fractions containing the desired protein 

were detected via Westernblot (see 4.4.4.) and those containing the highest concentrations 

of protein were pooled and dialysed against ddH2O ('SnakeSkin® Dialysis Tubing', cut off 3.5 

kDa, Thermo Scientific, Schwerte). Dialysate concentration was determined (see 4.4.3.). 

Aliquots were snap frozen in liquid N2 and stored at -80°C.  

 Tubulin sedimentation assay 4.4.9.

Polymerisation buffer (PME)  Kinase buffer 

80 mM PIPES, pH 6.9    20 mM HEPES, pH 7.4 

2 mM MgCl2     150 mM KCl 

0.5 mM EGTA     5 mM MgCl2 

pH 6.9 

Microtubule depolymerisation activity of recombinantly purified His6
TbKif13-1 protein 

constructs was monitored using a tubulin sedimentation assay. Tubulin was isolated from pig 

brain according to the method of Borisy et al. (1975). The tubulin sedimentation assay was 

adopted from Desai and Walczak (2001). 

1 mg tubulin was thawed on ice. For promotion of polymerisation 1 mM GTP and DTT were 

added. Gradually increasing concentrations of taxol – 0.1 µM, 1 µM for five min each and 10 

µM for 15 min at 37°C - were added to stabilise microtubules. Following centrifugation at 

84.000 rpm for 15 min at 30°C (Beckman Optima TL-100 Benchtop Ultracentrifuge, rotor TLA 

100.1, tubes ref. 343776, Beckman Coulter, Krefeld), the pellet was resuspended in 2 mL 

37°C prewarmed PME buffer containing 1 mM DTT, 1mM GTP and 10 µM taxol.  

In order to test depolymerisation activity of the purified kinesin variants, PME buffer, 0.5 

mM DTT, 1.5 mM ATP, 50 mM KCl, 8.25 µg taxol stabilised microtubules and varying 

concentrations of kinesin variants were combined within 50 µL. As control the same 

approaches were done without ATP. After incubation for 30 min at 37°C the 

depolymerisation solution was spun at 84.000 rpm for 10 min at 23°C (Beckman Optima TL-
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100 Benchtop Ultracentrifuge, rotor TLA 100.1, tubes ref. 343776, Beckman Coulter, 

Krefeld). While the supernatant was boiled with Laemmli (to 1x), the pellet was dissolved in 

50 µL PME, 5 mM CaCl2, 50 mM KCl and kept on ice for ten minutes prior to that. Samples 

were analysed using SDS-PAGE (see 4.4.1.) and subsequent Coomassie staining (see 4.4.5.). 

To test whether His6
TbKif13-1 was inhibited by myc

TbAuk1 and its kinase-dead mutant T184A, 

two slightly modified versions of the tubulin sedimentation assay were used. In one 10 µL of 

protein G-sepharose bound kinase, 1 µM His6
TbKif13-1 and 1.5 mM ATP were pre-incubated 

in kinase buffer for 1 h at RT before all other depolymerisation activity testing components 

and 5 mM phosphatase inhibitor NaF were added for another 30 min at 37°C. The second 

approach unified all of these components without pre-incubation. After centrifugation 

(84.000 rpm for 10 min at 23°C; Beckman Optima TL-100 Benchtop Ultracentrifuge, rotor 

TLA 100.1, tubes ref. 343776, Beckman Coulter, Krefeld) and separation of pellet and 

supernatant, samples were boiled in Laemmli (to 1x) as described above. 

Malachite green assay 4.4.10.

Malachite green solution 

1 part 4.2% (w/v) ammonium-molybdate in 4 M HCl 

3 parts 0.045% (w/v) malachite green oxalate salt in ddH2O 

incubated over night at 4°C under rotation, filtered through 0.2 µm filter (Sarstedt, 

Nürnbrecht), storage at 4°C, put to RT 1 h before use, keep dark 

BRB80 

80 mM PIPES, pH 6.8 with KOH 

1 mM MgCl2 

1 mM EGTA, pH 6.8 with KOH 

The malachite green assay is a phosphatase assay, extremly sensitive to phosphate, which is 

why no glass ware was used and plastic equipment was not autoclaved. The assay was done 

on med-binding 384-well plates (781096, Greiner bio one, Frickenhausen). 

The malachite green assay is based on the complex formed between malachite green, 

ammonium-molybdate, and inorganic phosphate (Pi) under acidic conditions. Kinesin´s 

activity depends on its ability to hydrolyse ATP within its motor domain. This releases Pi from 

ATP, which in turn forms a complex with ammonium-molybdate in a solution of perchloric 
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acid. The subsequent formation of the malachite green phosphomolybdate complex is 

measured at 650 nm. Accordingly, this complex is directly related to the Pi concentration. 

Thus, it is possible to quantify the ATPase activity of the recombinantly purified His6
TbKif13-1 

variants. 

1 mg tubulin, isolated from pig brain (see 4.4.9.), was thawed on ice and centrifuged at 

84.000 rpm for 15 min at 30°C (Beckman Optima TL-100 Benchtop Ultracentrifuge, rotor TLA 

100.1, tubes ref. 343776, Beckman Coulter, Krefeld). The pellet was resuspended in BRB80. 

Its concentration was determined by denaturating 20 µL in 80 µL 6M GuaHCl and measuring 

its absorbance at A280 using a photometer (BioPhotometer, Eppendorf, Hamburg). Taking the 

tubulin extinction coefficient of 115.000, the layer thickness of the cuvette and the dilution 

into consideration, one can calculate the tubulin concentration via the Lambert-Beer law.  

395 nM tubulin, varying concentrations of His6
TbKif13-1 deletion constructs and 100 µM ATP 

were incubated in BRB80 (total volume 30 µL) for 18 min at RT. To stop kinesin´s ATP 

hydrolysis, 60 µL of 1.2 M (0.8 M final) ice-cold perchloric acid were added and 30 µL of the 

mix were put to 40 µL of malachite green solution. The reaction lasted 20 min at RT. The 

absorbance at A650 was measured using the plate reader 'FLUOstar Omega' (BMG Labtech, 

Ortenberg). 

Immunoprecipitation 4.4.11.

Lysis buffer    Wash buffer   Kinase buffer 

50 mM HEPES, pH 7.4   50 mM HEPES, pH 7.4  20 mM HEPES, pH 7.4 

100 mM KCl    100 mM KCl   150 mM KCl 

add just before use:   add just before use:  5 mM MgCl2 

1% (v/v) NP40    1 mM DTT   add just before use: 

1 mM DTT    1 mM PMSF   1 mM DTT 

1 mM PMSF    1x protease inhibitor  1 mM PMSF 

1x protease inhibitor        1x protease inhibitor 

(cOmplete, EDTA-free, Roche, Basel, Switzerland) 

Immunoprecipitation was done using T. brucei 449 cell lines, ectopically expressing 

myc
TbAuk1 or its mutant variants. After ectopic expression for 16 h 1x 109 cells were 

harvested by centrifugation at 3.000 rpm for 20 min (5702 R, rotor A-4-38, Eppendorf, 

Hamburg). Cell pellet was washed twice in 1x PBS. Lysis was done in 1 mL ice-cold lysis buffer 
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for 15 min on ice. To separate soluble from non soluble lysis compartments, the lysate was 

centrifuged at 10.400 rpm for 15 min at 4°C (Mikro 200R, rotor 2424, Hettich, Tuttlingen). 

The supernatant was pre-cleared with 40 µL resin of wash buffer equilibrated protein G-

sepharose ('Protein G SepharoseTM 4 Fast Flow', GE Healthcare Bio-Sciences AB, Uppsala, 

Sweden) for 2 h at 4°C with rotation, in order to reduce non specific binding to the resin. The 

pre-cleared beads were removed by centrifugation at 500 rpm for 2 min at 4°C (Mikro 200R, 

rotor 2424, Hettich, Tuttlingen). 50 µg myc antibody were added and incubated with the 

pre-cleared lysate for 3.5 h at 4°C under rotation to allow binding of the myc-tagged protein 

of interest. Myc is recognised by the antibody´s antigen binding site (paratope) consisting of 

three β-strand loops (complementary determining regions, CDRs) each on the light (VL) and 

heavy (VH) chains of the variable domains (Fv). 120 µL wash buffer equilibrated protein G-

sepharose was subjoined and incubated over night at 4°C under rotation. The Fc region of 

IgGs binds with high affinity to three homologous binding domains within the C-terminus of 

matrix bound protein G. Protein G-sepharose was settled by centrifugation at 500 rpm for 2 

min at 4°C (Mikro 200R, rotor 2424, Hettich, Tuttlingen) and subsequently washed twice 

with 10 bv ice-cold wash buffer. An equal volume of ice-cold kinase buffer was added to the 

protein G bound protein resin in preparation for its fresh use in further kinase assays. 

 
33

P kinase assays 4.4.12.

The kinase assay for testing phosphorylation activity of myc
TbAuk1 or its kinase-dead mutants 

used 5 µCi 33P ɣATP (10 µCi/µL, Hartmann Analytic, Braunschweig), 6.5 µL protein G-

sepharose coupled kinase (see 4.4.11.), 1.5 µg TbHistoneH3His6 and 5 mM NaF to inhibit 

phosphatases, in a total of 10 µL within kinase buffer. Incubation occurred for 30 min at RT, 

afterwards samples were boiled for 10 min at 99°C with Laemmli (to 1x). 

The kinase assay for testing the ability of myc
TbAuk1 or its kinase-dead mutants to 

phosphorylate recombinantly purified His6
TbKif13-1 was done similar to the tubulin 

sedimentation assay (see 4.4.9.). Taxol stabilised microtubules were obtained according to 

4.4.9. All components of the microtubule sedimentation assay were used and 5 µCi 33P ɣATP 

(10 µCi/µL, Hartmann Analytic, Braunschweig), 10 µL protein G-sepharose coupled kinase 

(see4.4.11.), 0.75 µM His6
TbKif13-1 and 5 mM phosphatase inhibitor NaF were added and 

incubated for 30 min at RT. Samples were boiled for 10 min at 99°C with Laemmli (to 1x). 
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Immunfluorescence 4.4.13.

Visualisation of immunflourescence labelled samples occurred with an 'Axio Imager 2' (Zeiss, 

Oberkochen) microscope, a 100x oil objective (Plan-Apochromat 100x/1.40 Oil Ph3 M27, 

Zeiss, Oberkochen), a 'SPOT Pursuit' camera (SPOT ImagingTM, Sterling Hights, MI, USA) and 

'VisiView®' software (Visitron Systems, Puchheim). Microscopic analysis of 384-well plates 

occurred with the microscope 'DMI 6000' equipped with a digital camera and 100x/0.4 oil 

objective ('HCX PL FUOTAR L'; Leica Microsystems, Wetzlar). 

4.4.13.1. T. brucei 

For immunostaining of specific cell structures in T. brucei, two different approaches were 

used. Whole cell microscopy samples were formaldehyd fixed. Preparation of cytoskeleton 

samples included extraction of T. brucei cells and subsequent methanol fixation.  

Fixed samples on poly L lysine (0.1 mg/mL poly L lysine hydrobromide (Sigma-Aldrich, 

Steinheim) in ddH2O) coated slides (Thermo Scientific Gerhard Menzel, Braunschweig) were 

incubated with primary and afterwards secondary antibody, diluted in 1x PBS-T (see 4.1.3.). 

Staining occurred for 1 h at RT within a wet chamber. After each antibody incubation, 

washing of the slide coated samples was done three times for 5 min at RT within coplin jars 

using 1x PBS-T Tween-20 within PBS-T is a detergent, reducing non specific antibody binding. 

To remove salts from the samples, washing with ddH2O occurred in a final step. DNA was 

stained with DAPI, which is already contained within the applied 5 µL mounting medium 

('Vectashield mounting medium with DAPI', Vector Laboratories, Burlingame, CA, USA). 

Cover slips (Marienfeld-Superior, Lauda-Königshafen) were fixed with nail polish. 

All centrifugation steps occurred at 1.600 rpm for 5 min in a bench-top centrifuge (5415 D, 

rotor F45-24-11, Eppendorf, Hamburg). 

Whole cell samples 

For whole cell samples 15x 106 cells were washed twice with PBS. Fixation was done within 1 

mL 3.7% (v/v) formaldehyde (diluted in 1x PBS) for 20 min under rotation at 5 rpm ('Intelli-

Mixer', Elmi laboratory equipment, Riga, Latvia). Formaldehyde cross-links proteins. Pellets 

were resuspended in 1x PBS, settled on poly L lysine coated slides for 10 min and washed in 

1x PBS. In order to keep T. brucei cells within a certain area on the slides, surrounding 

squares were drawn with the 'ImmEdge Hydrophobic Barrier Pen' (Vector Laboratories, 

Burlingame, CA, USA). To permeabilise formaldehyde fixed cells for antibodies, they were 
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treated with 0.1% (v/v) Triton-X100 in 1x PBS for 3 min at RT. Samples were washed with 1x 

PBS before antibody treatment.  

Cytoskeleton samples 

PEME buffer 

0.1 M PIPES 

2 mM EGTA 

1 mM MgSO4 

0.1 mM EDTA 

pH 6.9 

5x 106 cells were washed twice with PEME, settled on poly L lysine coated slides for 10 min 

at RT and washed with PEME. To receive cytoskeleton samples, cells were extracted with 1% 

(v/v) NP40 in PEME for 5 min on ice. Slides were washed with PEME before cells were fixed 

with 100% (v/v) ice-cold methanol within a coplin jar for at least 15 min at -20°C. Methanol is 

a precipative fixative, reducing the solubility of proteins and disrupting hydrophobic 

interactions within them. Cells were rehydrated by 1x PBS for 5 min. Staining with antibodies 

followed as described above. 

Spindle staining with KMX 

To stain spindles of mitotic T. brucei cells using KMX antibody, samples were treated like 

whole cell samples (see above). But it was necessary to use a fresh stock of formaldehyde for 

fixation. Permeabilisation occurred with 0.1% (v/v) NP40 for 5 min at RT. Dilution of 

antibodies and washing steps were done in 1x PBS. 

4.4.13.2. Mammalian cells 

Cover slips (ø12 mm, Marienfeld-Superior, Lauda-Königshofen), whereon HeLa cells had 

settled, were washed in 1x PBS for 5 min and fixed in 100% (v/v) ice-cold methanol for at 

least 15 min at -20°C in six-well plates (Cellstar®, Greiner bio one, Frickenhausen). Cells were 

rehydrated in 1x PBS for 5 min at RT. They were placed on top of a 'Parafilm' (Sigma-Aldrich, 

Steinheim) covered glass plate within a wet chamber. For staining with primary and 

secondary antibody, diluted in PBS-T (see 4.1.3.), they were put upside-down to reduce the 

required antibody volume. Washing of the cover slips occurred three times with 1 mL 1x 

PBS-T, which was slowly run over them. DNA was stained with DAPI, being part of the 5 µL 
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mounting medium ('Vectashield mounting medium with DAPI', Vector Laboratories, 

Burlingame, CA, USA) used to put cover slips upside-down onto slides (Thermo Scientific 

Gerhard Menzel, Braunschweig). Nail polish sealed cover slips at slides. 

4.4.13.3. Microscopic enumeration of T. brucei cells 

Several enumerations of T. brucei cells occured via microscopy. When necessary, specific 

subcellular proteins were stained for immunflourescence before. 

To study cell cycle specific expression of ectopically expressed myc
TbKif13-1 deletion 

constructs in T. brucei, for each cell cycle stage 100 cells were counted after 16 h of ectopic 

expression for expression or no expression.  

To verify T. brucei flow cytometry analysis results, 100 cells in total were counted for the 

given timepoints and their respective cell cycle stages were reported.  

For checking the assemly of a mitotic spindle in mitotic 2K1N cells after ectopic expression of 

the different myc
TbKif13-1 deletion constructs in T. brucei, 100 mitotic cells were counted at 

each timepoint for spindle formation. 

In vitro degradation of T. brucei cytoskeletons 4.4.14.

For in vitro degradation of T. brucei cytoskeletons strain 427 was used. Samples were 

prepared as described for cytoskeleton samples (see 4.4.13.1.). After extraction and 

subsequent PEME and ddH2O wash, varying concentrations of recombinantly purified 

His6
TbKif13-1 deletion constructs, 1.5 mM ATP and polymerisation buffer were put on top of 

the slide-bound cytoskeletons within a total of 80 µL per square. Incubation occurred within 

a wet chamber at 37°C for 30 min. Fixation and antibody staining was done as desribed 

above (see 4.4.13.1.). 

For the in vitro high-throughput inhibitor screen, PEME washed T. brucei cells (strain 427) 

were extracted with 0.5% (v/v) NP40 in PEME in an incubation tube on ice for 5 min. 

Cytoskeletons were resolved in ddH2O and settled on 384 well plates (781096, Greiner bio 

one, Frickenhausen) with 1x 106 cells per well. The remaining supernatant was removed. In 

one approach possible protein binding sites at the plastic surface of the plate should be 

blocked by addition of 3% (w/v) BSA for 1 h. After a ddH2O wash, varying concentrations of 

recombinantly purified His6
TbKif13-1 FL, 1.5 mM ATP and polymerisation buffer in a total of 

40 µL were put on top of the cytoskeletons. Degradation occurred at 37°C for 30 min. Wells 
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were ddH2O washed and subsequent fixation and antibody staining occurred as described 

above (see 4.4.13.1). 

4.5. Cell biological methods 

 T. brucei cell lines and cultivation 4.5.1.

In this study different T. brucei strains were used (Table 13). 

Table 13: T. brucei strains. 

cell line description and origin 

427 procyclic wild type 

449 procyclic; inducible cell line; constitutively expressing tet repressor 

from plasmid pHD 449 integrated at the tubulin locus; selection is 

kept with 5 µg/mL phleomycin; Biebinger et al., 1997 

The procyclic wild type cell line 427 was maintained in a semi-defined medium (SDM-79; 

Brun and Schönenberger, 1979; Gibco® by Life TechnologiesTM, Carlsbad, CA, USA) 

supplemented with 10% (v/v) heat-inactivated (30 min 56°C) fetal bovine serum (Sigma-

Aldrich, Steinheim) and 7.5 mg/L hemin (Sigma-Aldrich, Steinheim) at 27°C (MIR-154, Sanyo, 

Moriguchi, Japan).  

For ectopic expression, the procyclic cell line 449 was used, which constitutively expresses 

the tetracycline repressor (tetR). Therein, transgenic constructs from pHD1800 and pHD1801 

are put into non-transcribed spacers of the rRNA repeat via homologous recombination. 

Their orientation is opposite to that of the rRNA transcription (Biebinger et al., 1997). 

Transgenic 449 cell lines being transformed with pHD1800 or pHD1801 are held under 

selection with 50 µg/mL hygromycin (Invivogen, San Diego, CA, USA) in addition. 

Cultivation of T. brucei occurred in suspension culture flasks (Cellstar®, Greiner bio one, 

Frickenhausen) with regular splitting in a 1:50 – 1:100 ratio. 

Counting of T. brucei cells was provided by 'Casy® Cell Counter and Analyser System Modell 

TT' (Roche Innovatis, Bielefeld). 

 Mammalian cell lines and cultivation 4.5.2.

Depending on the purpose of the experiment, different mammalian cell types were used 

(Table 14). 
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Table 14: Mammalian cell lines. 

cell line description and origin 

HeLa L human cervix epithelial adenocarcinoma; transformed by 

humanpathogene Papilloma virus, subclone L 

HeLa Flp-In human cervix epithelial cells; modified according to 'Flp-InTM T-RExTM 

System' (Invitrogen, Thermo Scientific, Schwerte); stable integration 

of a pFRT/lacZeo plasmid (Invitrogen) carrying the FRT (Flp-

recombinase target) recognition site for site specific transgene 

integration by Flp-recombinase (mediates zeocin resistance), and 

pcDNA6/TR® plasmid (Invitrogen; modified by replacing the blastR 

gene with a puroR gene), for constitutive expression of the tet 

repressor (mediates puromycin resistance) under the control of the 

human CMV promotor; integration of both plasmids is random and 

occurs independently; this host cell line was kindly provided by 

Thomas U. Mayer (Department of Biology, University of Konstanz) 

HeLa cells were cultivated in Dulbecco´s Modified Eagle Medium (DMEM; Gibco® by Life 

TechnologiesTM, Carlsbad, CA, USA) supplemented with 10% (v/v) heat-inactivated (30 min 

56°C) fetal bovine serum (Sigma-Aldrich, Steinheim). Cultivation occurred in cell culture 

dishes (Cellstar®, Greiner bio one, Frickenhausen) at 37°C in 5% CO2 atmosphere ('Innova 

CO-170', New Brunswick Scientific, Eppendorf, Hamburg). For splitting/diluting, cells were 

washed with 1x PBS and subsequently incubated with 16 µl/cm2 Trypsin/EDTA solution (PAA, 

Pasching, Austria) at 37°C for 5 min, which proteolytically cleaves cell surface proteins. Fresh 

medium was repeatedly pipetted to dissolve cells. After centrifugation at 1.200 rpm for 3 

min (5810R, rotor A-4-62, Eppendorf, Hamburg), pelleted cells were resolved in fresh 

medium and a dilution was added to a new cell culture dish. 

For the purpose of immunfluorescence samples, cover slips were washed and sterilised in 

70% (v/v) ethanol, dryed within the laminar flow and put to the dishes´ground. Then, 

medium and cells were added. 

 Transformation of T. brucei 4.5.3.

2x Transformation buffer 

60 mM Na3PO4 

3.3 mM KCl 

0.1 mM CaCl2 

33.3 mM HEPES 

pH 7.3 
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Stable transformation of linearised DNA (see 4.3.10.) into the genome of T. brucei occurs via 

homologous recombination. In this study the pHD vector was used, which allows inducible, 

ectopic expression under the control of the procyclin promotor. For homologous 

recombination the rRNA locus is used (see 4.5.1.). 

Electroporation of linearised plasmid DNA in transformation buffer (to 1x) was done using 

the 'Nucleofector II®' (Amaxa biosystems, via Lonza, Basel, Switzerland) with sterile 

electroporation cuvettes (732-1136, VWR, Radnor, PA, USA). For transformation 25x 106 

procyclic 449 cells were centrifuged at 1.600 rpm for 5 min (5702 R, rotor A-4-38, Eppendorf, 

Hamburg) and resuspendend in 150 µL linearised plasmid in transformation buffer. For 

recovery reasons, cells were put to 10 mL SDM-79 without new antibiotic selection over 

night at 27°C. Cells were diluted 1:5 and 1:50 in final volumes of 50 mL containing all 

necessary selection antibiotics, and were plated on 24 well plates (Cellstar®, Greiner bio one, 

Frickenhausen) for selection of positive clones.  

 Transfection of mammalian cells 4.5.4.

4.5.4.1. Transient transfection 

Within transiently transfected mammalian cells plasmid DNA is not integrated into the 

genome, but genes may be ectopically expressed after induction.  

For transient transfection of HeLa cells, a culture confluency of 60% was needed. For 2 mL 

medium covering cells, 160 µL DMEM (Gibco® by Life TechnologiesTM, Carlsbad, CA, USA) 

with 10% (v/v) FCS (Sigma-Aldrich, Steinheim) and 2.5 µg plasmid DNA were incubated for 5 

min at RT. 10 µg polyethylenimine (PEI) were put to the solution, mixed well and after 15 

min at RT added dropwise all over the dish. Incubation occurred for 24 h at 37°C and 5% CO2 

atmosphere before changing medium. PEI is a polycation and therefore binds to negatively 

charged DNA (Boussif et al., 1995). Incorporation of that complex is assumed to happen via 

endocytosis. The needed dissociation of the complex within the cell or the nucleus is not yet 

understood. 

4.5.4.2. Stable transfection 

Stable transfected cells have integrated a transgene into their genome. In this study this was 

done primarily using the 'Flp-InTM T-RExTM System' (Invitrogen via Thermo Scientific, 

Schwerte). Therein site-specific integration of transgenic DNA into the genome occurred via 

FRT sites within the genome of HeLa Flp-In cells and FRT sites flanking the gene of interest in 
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the plasmid pcDNA5
TM

/FRT/TO. Recombination is faciliated by Flp-recombinase, which is 

encoded at the cotransfected pAG1786. For transfection HeLa Flp-Ins with a culture 

confluency of 60% on a ø145 mm dish (Cellstar®, Greiner bio one, Frickenhausen) were used. 

4 µg pcDNA5
TM

/FRT/TO containing the gene of interest, 40 µg pAG1786 and 2 mL Opti-MEM 

GlutamaxTM (Life Technologies, via Thermo Scientific, Schwerte) were incubated for 5 min at 

RT. 140 µg PEI were added, mixed well, incubated for 1 h at RT and added dropwise to the 

cells. 24 h later cells were trypsinised (see 4.5.2.) and distributed to 4 dishes. After another 

24 h 250 µg/mL hygromycin were added for selection. After three weeks of regular medium 

change to remove died off cells, cell clones became visible. They were trypsinised using small 

glass rings put around them and transferred to single well plates until grown for testing.  

To enhance expression of the transgene, a second transgenic plasmid was introduced into 

the generated single stable cell line. pcDNA
TM

3.1 (see 4.1.5.) was used, which allows random 

integration into the genome. 30 µg of pcDNA
TM

3.1 containing the gene of interest were 

linearised with 20 units PvuI at 37°C for 16 h and subsequently purified as described in 

4.3.10. Linearisation minimises the risk that integration of the vector disrupts elements 

necessary for expression in mammalian cells. The linearised plasmid was mixed with 2 mL 

Opti-MEM GlutamaxTM (Life Technologies, via Thermo Scientific, Schwerte), incubated for 5 

min at RT, mixed well with 140 µg PEI and incubated for 1 h at RT. The mixture was added 

dropwise all over the ø145 mm dish (Cellstar®, Greiner bio one, Frickenhausen), containing 

cells with a culture confluency of 60%. 24 h later cells were distributed to 4 dishes and after 

another 24 h 400 µg/mL neomycin were added for selection. 

 Subcloning of T. brucei 4.5.5.

Subcloning of T. brucei cells was done for receiving monoclonal cell cultures. Transgenic cell 

lines were plated to 96 well plates (Cellstar®, Greiner bio one, Frickenhausen) in a dilution of 

0.5 – 1 cell per well in appropriate cultivation medium with selection antibiotics and 20% 

(v/v) conditioned medium. Conditioned medium was received by centrifugation (10 min 

1.600 rpm; 5702 R, rotor A-4-38, Eppendorf, Hamburg) of logarithmically grown 427 wild 

type cells. 
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 Storage of T. brucei and mammalian cells 4.5.6.

Freezing medium T. brucei   Freezing medium mammalian cells 

SDM-79     FCS 

10% (v/v) FCS     10% (v/v) DMSO 

7% (v/v) glycerol 

sterile filtered 

For storage of logarithmically growing T. brucei, cell cultures of 10 mL were centrifuged for 5 

min at 1.600 rpm (5702 R, rotor A-4-38, Eppendorf, Hamburg) and resuspended in 0.5 mL 

freezing medium.  

Mammalian cells with a confluency of 70% were trypsinised (see 4.5.2.) and after 

centrifugation (1.200 rpm for 3 min; 5810R, rotor A-4-62, Eppendorf, Hamburg) resuspended 

in 1 mL freezing medium. 

T. brucei and mammalian cells in freezing medium were put in 'Cryogenic Vials' (VWR, 

Radnor, PA, USA) and cooled slowly to -80°C in 'Nalgene® Cryo 1°C' (Nalge Nunc, Rochester, 

NY, USA) freezing containers. Long term storage occurred in -80°C liquid N2. 

 Ectopic expression in T. brucei and mammalian cells 4.5.7.

For inducible, ectopic expression in T. brucei and mammlian cells 1 µg/mL doxycycline was 

used. 

 Growth curves 4.5.8.

For T. brucei growth curves 0.5x 106 cells/mL were seeded in 6 well plates (Cellstar®, Greiner 

bio one, Frickenhausen) within 2 mL. Seeding occured as triplicates. For six days the cell 

number was determined via 'Casy® Cell Counter and Analyser System Modell TT' (Roche 

Innovatis, Bielefeld). At a density of about 1.3x 107 cells were diluted. 

 Flow cytometry analysis 4.5.9.

Possible effects of ectopically expressed myc
TbKif13-1 deletion constructs on the T. brucei cell 

cycle were examined by flow cytometry analysis. 5x 106 cells of logarithmically growing cell 

cultures were washed with 1x PBS, fixed first with 0.5% formaldhyde in 1x PBS for 5 min on 

ice and then with 70% (v/v) ice-cold ethanol under continuous shaking. After 1 h at 4°C cells 

were centrifuged at 3.000 rpm for 5 min (5702 R, rotor A-4-38, Eppendorf, Hamburg) and the 
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pellet resuspended in 1x PBS containing 50 µg propidium iodide (Sigma-Aldrich, Steinheim) 

and 50 µg RNaseA (Sigma-Aldrich, Steinheim). For RNA degradation, samples were put to a 

37°C water bath for 30 min prior to flow cytometry. Analysis was done with 'Cytomics FC 

500' (Beckman Coulter, Krefeld) and associated 'CXP' software. 

Proteasome degradation assay 4.5.10.

To test APC/C-dependent proteasomal degradation of myc
TbKif13-1 deletion constructs in 

vivo, appropriate transgenic 449 T. brucei cells lines were induced for ectopic expression 

with 1 µg/mL doxycycline 4.5 h prior to addition of 50 µg/mL cycloheximide (CHX; 

AppliChem, Darmstadt) solely or in combination with 50 µM MG 132 (Sigma Aldrich, 

Steinheim).  

CHX inhibits translation by blocking the translocation step during the elongation phase at 

ribosomes. The binding of CHX to the E-site of the 60S ribosome together with a deacylated 

tRNA stops translocation and leads to an arrest of the ribosome at the second codon 

(Schneider-Poetsch et al., 2010). MG 132 blocks the proteolytic activity of the 26S 

proteasome by primarily binding covalently to the active site of the beta subunits of the 

chymotrypsin-like site within the 20S proteasome (Goldberg, 2012). 

Samples of 4.5x 106 cells were 1x PBS washed and boiled in hot Laemmli (to 1x) at the given 

timepoints. 
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5. Abbreviations 

APC/C  anaphase-promoting complex/cyclosome 

apoL-I   apolipoprotein L-I 

APS  ammonium persulfate 

Ark1  actin regulating kinase 1 

Auk  Aurora-like kinase 

Cdc20  cell division cycle 20 

Cdh1  cdc20 homolgue 1 

Cdk1  cyclin-dependent kinase 

CENP  centromere protein 

CHO  chinese hamster ovary 

CHX  cycloheximide 

Cif  cytokinesis initiation factor 

Cik  chromosome instability and karyogamy 

Cin  Chromosome instability protein 

CPC  chromosomal passenger complex 

Crk  cdc2-related kinase 

DAPI  4',6-diamidino-2-phenylindole 

D-box  destruction-box 

DMEM  Dulbecco´s Modified Eagle Medium 

EB  end-binding protein 

FAZ  flagellar attachment zone 

FCS  fetal calf serum 

GP  glycoprotein 

HeLa  Henrietta Lacks 

HpHbR  haptoglobin-haemoglobin receptor  

Hpr  haptoglobin-related protein 

Ig  immunglobulin 

INCENP inner centromer protein 

Ipl1  increase in ploidy 1 

IPTG  Isopropyl β-D-1-thiogalactopyranoside 
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Kar  karyogamy 

Kif  kinesin superfamily 

Kip  kinesin related protein 

Klp  kinesin like protein 

Knl1  kinetochore null protein 1 

MAP  microtubule-associated protein 

MCAK  mitotic centromere associated kinesin 

MCS  multiple cloning site 

Mis12  mis-segregation 12 

MTOC  microtubule organising centre 

MtQ  microtubule quartet 

Ndc80  nuclear division cycle 80 

NES  nuclear export sequence 

NLS  nuclear localisation sequence 

NPC  nuclear pore complex 

Nuf2  nuclear filament-containing protein 2 

PCR  polymerase chain reaction 

PFR  paraflagellar rod 

Plk  polo-like kinase 

PVDF  polyvinylidene difluoride 

Ran  ras-related nuclear protein 

RanGAP Ran GTPase-activating protein 

RanGEF Ran guanine nucleotide exchange factor  

SDM  semi-defined medium  

SDS-PAGE sodium dodecyl sulfate polyacrylamid gelelectrophoresis 

SRA  serum resistance-associated 

TAC  tripartite attachment complex 

+TIP  microtubule plus end tracking protein 

TLF  trypanosome lytic factor 

Tlk  touseld-like kinase  

VSG  variant surface glycoprotein  

XKCM1  Xenopus kinesin central motor 1 
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7. Supplementary figures 

 
Figure S 1: No Microtubule cytoskeleton depolymerisation of HeLa L cells transiently transfected 

with pCS2-
eGFP

TbKif13-1. (A) HeLa L cells transiently transfected with pCS2-
eGFP

TbKif13-1 that 

overexpressed eGFP
TbKif13-1 (green, autofluorescence) showed no reduced microtubule cytoskeleton 

(red, α-tubulin antibody TAT) 24 h after transfection; white arrow: cell that overexpressed 
eGFP

TbKif13-1, but showed no reduced cytoskeleton. The nucleus was DAPI (blue) stained. Cells were 

harvested 24 h after transfection and fixed with methanol. Non transfected cells and HeLa L cells 

transfected with the vector pCS2-eGFP served as control. Overexpression of eGFP did not result in 

cytoskeleton depolymerisation 24 h after transfection. Scale bar 20 µm. (B) Westernblot of pCS2-
eGFP

TbKif13-1 transfected HeLa L cells to verify the overexpression of GFP
TbKif13-1 after transfection. 

As control served cells transfected with pCS2-eGFP, expressing eGFP. eGFP
TbKif13-1 was detected 

using α-GFP, tubulin was detected using α-tubulin antibody TAT. 

 
Figure S 2: Microtubule cytoskeleton depolymerisation of HeLa L cells transiently transfected with 

pCS2-
eGFP

TbKif13-1 S143A. (A) HeLa L cells transiently transfected with pCS2-
eGFP

TbKif13-1 S143A that 

overexpressed eGFP
TbKif13-1 S143A (green, autofluorescence) showed a reduced microtubule 

cytoskeleton (red, α-tubulin antibody TAT) already 12 h after transfection; white arrow: cell with 

reduced cytoskeleton; dashed arrow: cell with less reduced cytoskeleton probably due to lower 
eGFP

TbKif13-1 S143A expression rate. The nucleus was DAPI (blue) stained. Cells were harvested 12 h 

after transfection and fixed with methanol. Non transfected cells served as control. Scale bar 20 µm. 

(B) Westernblot of pCS2-
eGFP

TbKif13-1 S143A transfected HeLa L cells to verify the overexpression of 
eGFP

TbKif13-1 S143A after transfection. eGFP
TbKif13-1 S143A was detected using α-GFP, tubulin was 

detected using α-tubulin antibody TAT. 
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Figure S 3: No microtubule cytoskeleton depolymerisation of double stable HeLa Flp-In cells 

transfected with pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A and pcDNA3.1-
eGFP

TbKif13-1 S143A 5 days 

after induction. (A) Double stable HeLa Flp-In cells transfected with pcDNA5/FRT/TO-
eGFP

TbKif13-1 

S143A and pcDNA3.1-
eGFP

TbKif13-1 S143A showed 5 days after induction of eGFP
TbKif13-1 S143A 

overexpression (green, autofluorescence) no reduced microtubule cytoskeleton (red, α-tubulin 

antibody TAT). The nucleus was DAPI (blue) stained. Cells were harvested 5 days after induction and 

fixed with methanol. Non induced cells served as control. Scale bar 20 µm. (B) Westernblot of 

pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A and pcDNA3.1-
eGFP

TbKif13-1 S143A stable transfected HeLa Flp-

In cells to verify the expression of eGFP
TbKif13-1 S143A after induction. eGFP

TbKif13-1 S143A was 

detected using α-GFP, tubulin was detected using α-tubulin antibody TAT. 

 
Figure S 4: No microtubule cytoskeleton depolymerisation of single stable HeLa Flp-In cells after 
eGFP

TbKif13-1 S143A overexpression and addition of nocodazole. To single stable HeLa Flp-In cells, 

transfected with pcDNA5/FRT/TO-
eGFP

TbKif13-1 S143A, 60 ng/mL and 65 ng/mL, respectively, 

nocodazole were added in order to favour microtubule cytoskeleton depolymerisation by 

overexpressed eGFP
TbKif13-1 S143A by weakening microtubules. Overexpression of eGFP

TbKif13-1 

S143A occurred simultaneously (+ Dox + 60 ng/mL Noc; middle panel line) or 12 h prior (+ 12 h Dox + 

65 ng/mL Noc; lower panel line) to nocodazole addition. Cells were harvested 24 h post induction 

and fixed with methanol. Control cells were not supplied with nocodazole, but overexpression of 
eGFP

TbKif13-1 S143A was induced. eGFP
TbKif13-1 S143A overexpression: green, autofluorescence; 

microtubule cytoskeleton: red, α-tubulin antibody TAT; nucleus: blue; DAPI. Scale bar 20 µm. 
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Figure S 5: Nuclear localisation of 

myc
TbKif13-1 ½ N + C in T. brucei from 1-2K1N to 2K2N cell stages. 

(A) Whole cell samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 ½ N + C. DNA was 

DAPI (red) stained, myc
TbKif13-1 ½ N + C (green) was visualised using α-myc antibody. Scale bar 5 µm. 

(B) Diagram shows percentage of cells with visual detectable ectopically expressed myc
TbKif13-1 ½ N + 

C within each cell cycle stage, detected according to kinetoplast and nucleus postioning. (C) 

Cytoskeleton samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 ½ N + C. Staining and 

scale bar according to subfigure (A). (D) Westernblot analysis verifying doxycycline (Dox) inducible 

ectopic expression of myc
TbKif13-1 ½ N + C in transgenic 449 cells with α-myc antibody. 449 cells were 

used as negative control, BiP staining was used as loading control. 
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Figure S 6: Nuclear and slight cytoplasmic localisation of 

myc
TbKif3-1 ½ N + NM in T. brucei 

throughout the cell cycle. (A) Whole cell samples of transgenic 449 cells ectopically expressing 
myc

TbKif13-1 ½ N + NM. DNA was DAPI (red) stained, myc
TbKif13-1 ½ N + NM (green) was visualised 

using α-myc antibody. Scale bar 5 µm. (B) Diagram shows percentage of cells with visual detectable 

ectopically expressed myc
TbKif13-1 ½ N + NM within each cell cycle stage, detected according to 

kinetoplast and nucleus postioning. (C) Cytoskeleton samples of transgenic 449 cells ectopically 

expressing myc
TbKif13-1 ½ N + NM. Staining and scale bar according to subfigure (A). (D) Westernblot 

analysis verifying doxycycline (Dox) inducible ectopic expression of myc
TbKif13-1 ½ N + NM in 

transgenic 449 cells with α-myc antibody. 449 cells were used as negative control, BiP staining was 

used as loading control. 
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Figure S 7: Cytoplasmic localisation of TbKif3-1 ½ N

GFP-myc
 in T. brucei throughout the cell cycle. (A) 

Whole cell samples of transgenic 449 cells ectopically expressing TbKif13-1 ½ NGFP-myc. DNA was DAPI 

(red) stained, TbKif13-1 ½ NGFP-myc (green) was visualised using α-myc antibody. Scale bar 5 µm. (B) 

Diagram shows percentage of cells with visual detectable ectopically expressed TbKif13-1 ½ NGFP-myc 

within each cell cycle stage, detected according to kinetoplast and nucleus postioning. (C) 

Cytoskeleton samples of transgenic 449 cells ectopically expressing TbKif13-1 ½ NGFP-myc. Staining and 

scale bar according to subfigure (A). (D) Westernblot analysis verifying doxycycline (Dox) inducible 

ectopic expression of TbKif13-1 ½ NGFP-myc  in transgenic 449 cells with α-myc antibody. 449 cells were 

used as negative control, BiP staining was used as loading control. 
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Figure S 8: Nuclear and cytoplasmic localisation of GFP-myc in T. brucei throughout the cell cycle. 

(A) Whole cell samples of transgenic 449 cells ectopically expressing GFP-myc. DNA was DAPI (red) 

stained, GFP-myc (green) was visualised using α-myc antibody. Scale bar 5 µm. (B) Diagram shows 

percentage of cells with visual detectable ectopically expressed GFP-myc within each cell cycle stage, 

detected according to kinetoplast and nucleus postioning. (C) Cytoskeleton samples of transgenic 449 

cells ectopically expressing GFP-myc. Staining and scale bar according to subfigure (A). (D) 

Westernblot analysis verifying doxycycline (Dox) inducible ectopic expression of GFP-myc in 

transgenic 449 cells with α-myc antibody. 449 cells were used as negative control, BiP staining was 

used as loading control. 

 
Figure S 9: Proteasome-dependent degradation of 

myc
TbKif13-1 ½ N + C. In transgenic 449 cells 

ectopic expression of myc
TbKif13-1 ½ N + C was induced for four hours. Then cycloheximide (CHX) was 

added for translational inhibiton (left Westernblot); in addition to CHX also MG 132 for proteasome 

inhibition was added (right Westernblot). Westerblot samples were kept every two hours. Time point 

0 is when CHX or in addition MG 132 were added to the cell culture. For detection of myc
TbKif13-1 ½ 

N + C α-myc antibody was used; α-BiP served as loading control. 
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Figure S 10: No degradation of 

myc
TbKif13-1 NM + C. In transgenic 449 cells ectopic expression of 

myc
TbKif13-1 NM + C was induced for four hours. Then cycloheximide (CHX) was added for 

translational inhibiton (left Westernblot); in addition to CHX also MG 132 for proteasome inhibition 

was added (right Westernblot). Westerblot samples were kept every two hours. Time point 0 is when 

CHX or in addition MG 132 were added to the cell culture. For detection of myc
TbKif13-1 NM + C α-

myc antibody was used; α-BiP served as loading control. 

 
Figure S 11: Proteasome-dependent degradation of 

myc
TbKif13-1 C. In transgenic 449 cells ectopic 

expression of myc
TbKif13-1 C was induced for four hours. Then cycloheximide (CHX) was added for 

translational inhibiton (left Westernblot); in addition to CHX also MG 132 for proteasome inhibition 

was added (right Westernblot). Westerblot samples were kept every two hours. Time point 0 is when 

CHX or in addition MG 132 were added to the cell culture. For detection of myc
TbKif13-1 C α-myc 

antibody was used; α-BiP served as loading control. 

 
Figure S 12: Proteasome-dependent degradation of TbKif13-1 N

GFP-myc
. In transgenic 449 cells 

ectopic expression of TbKif13-1 NGFP-myc was induced for four hours. Then cycloheximide (CHX) was 

added for translational inhibiton (left Westernblot); in addition to CHX also MG 132 for proteasome 

inhibition was added (right Westernblot). Westerblot samples were kept every two hours. Time point 

0 is when CHX or in addition MG 132 were added to the cell culture. For detection of TbKif13-1 NGFP-

myc α-myc antibody was used; α-BiP served as loading control. 
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Figure S 13: Proteasome dependent degradation of TbKif13-1 ½ N

GFP-myc
. In transgenic 449 cells 

ectopic expression of TbKif13-1 ½ NGFP-myc was induced for four hours. Then cycloheximide (CHX) was 

added for translational inhibiton (left Westernblot); in addition to CHX also MG 132 for proteasome 

inhibition was added (right Westernblot). Westerblot samples were kept every two hours. Time point 

0 is when CHX or in addition MG 132 were added to the cell culture. For detection of TbKif13-1 ½ 

NGFP-myc α-myc antibody was used; α-BiP served as loading control. 

 
Figure S 14:No degradation of GFP-myc. In transgenic 449 cells ectopic expression of GFP-myc was 

induced for four hours. Then cycloheximide (CHX) was added for translational inhibiton (left 

Westernblot); in addition to CHX also MG 132 for proteasome inhibition was added (right 

Westernblot). Westerblot samples were kept every two hours. Time point 0 is when CHX or in 

addition MG 132 were added to the cell culture. For detection of GFP-myc α-myc antibody was used; 

α-BiP served as loading control. 

 
Figure S 15: Nuclear localisation of 

myc
TbKif13-1 NM + D-box in T. brucei throughout the cell cycle. 

(A) Whole cell samples of transgenic 449 cells ectopically expressing myc
TbKif13-1 NM + D-box. DNA 

was DAPI (red) stained, myc
TbKif13-1 NM + D-box (green) was visualised using α-myc antibody. Scale 

bar 5 µm. (B) Diagram shows percentage of cells of each cell cycle stage ectopically expressing 
myc

TbKif13-1 NM + D-box, detected according to kinetoplast and nucleus postioning. (C) Westerblot 

verifying inducible ectopic expression of myc
TbKif13-1 NM + D-box in transgenic 449 cells with α-myc 

antibody. 449 cells were used as negative control, BiP staining was used as loading control. 
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Figure S 16: Nuclear localisation of 

myc
TbKif13-1 ½ N + D-box in T. brucei throughout the cell cycle 

and proteasome dependent degradation of 
myc

TbKif13-1 ½ N + D-box. (A) Whole cell samples of 

transgenic 449 cells ectopically expressing myc
TbKif13-1 ½ N + D-box. DNA was DAPI (red) stained, 

myc
TbKif13-1 ½ N + D-box (green) was visualised using α-myc antibody. Scale bar 5 µm. (B) Diagram 

shows percentage of cells with visual detectable ectopically expressed myc
TbKif13-1 ½ N + D-box 

within each cell cycle stage, detected according to kinetoplast and nucleus postioning. (C) 

Westernblot analysis verifying doxycycline (Dox) inducible ectopic expression of myc
TbKif13-1 ½ N + D-

box in transgenic 449 cells with α-myc antibody. 449 cells were used as negative control, BiP staining 

was used as loading control. (D) In transgenic 449 cells ectopic expression of myc
TbKif13-1 ½ N + D-

box was induced for four hours. Then cycloheximide (CHX) was added for translational inhibiton (left 

Westernblot, CHX); in addition to CHX also MG 132 for proteasome inhibition was added (right 

Westernblot, CHX + MG 132). Westernblot samples were taken every two hours. Time point 0 marks 

when CHX or in addition MG 132 were added to the cell culture. For detection of myc
TbKif13-1 ½ N + 

D-box α-myc antibody was used; α-BiP served as loading control. 
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Figure S 17: Immunfluorescence microscopy evaluation of flow cytometry analysis of the cell line

 

ectopically expressing
 myc

TbKif13-1 FL. 100 cells were determined for their cell cycle stage at the 

given time points.grey: induced transgenic 449 cell line for ectopic expression of myc
TbKif13-1 FL; 

black: non induced cell line. 
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Figure S 18: Reduced growth and increase of zoids and cells >2N in the cell line ectopically 

expressing 
myc

TbKif13-1 ½ N + C. (A) Growth curve of the transgenic 449 cell line ectopically 

expressing myc
TbKif13-1 ½ N + C; control cells: non induced and non transfected 449 cells. (B) Flow 

cytometry analysis of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 ½ N + C (+ Dox, 
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upper panels), control cells: non induced (- Dox, lower panels). (C) Immunfluorescence microscopy 

evaluation of flow cytometry analysis of the cell line ectopically expressing myc
TbKif13-1 ½ N + C. 100 

cells were determined for their cell cycle stage at the given time points. grey: induced transgenic 449 

cell line for ectopic expression of myc
TbKif13-1 ½ N + C; black: non induced cell line. (D) 

Immunfluorescence analysis of mitotic 2K1N cells after ectopic expression of myc
TbKif13-1 ½ N + C, 

depicting a cell with spindle formation (upper panel) and one without detectable spindle (lower 

panel). KMX antibody was used for β-tubulin staining (green), DNA was stained with DAPI (red). Scale 

bar 3 µm. Diagram shows evaluation of spindle formation in mitotic 2K1N cells ectopically expressing 
myc

TbKif13-1 ½ N + C from day 0 to day 6; black: spindle formation; grey: no spindle formation. 

 
Figure S 19: Immunfluorescence microscopy evaluation of flow cytometry analysis of the cell line 

ectopically expressing
 myc

TbKif13-1 NM + C. 100 cells were determined for their cell cycle stage at 

the given time points. grey: induced transgenic 449 cell line for ectopic expression of  myc
TbKif13-1 

NM + C; black: non induced cell line. 
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Figure S 20: No reduced growth of the cell line ectopically expressing 

myc
TbKif13-1 N + NM 

compared to non induced cells. (A) Growth curve of the transgenic 449 cell line ectopically 

expressing myc
TbKif13-1 N + NM; control cells: non induced and non transfected 449 cells. (B) Flow 

cytometry analysis of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 N + NM (+ Dox, 
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upper panels), control cells: non induced (- Dox, lower panels). (C) Immunfluorescence microscopy 

evaluation of flow cytometry analysis of the cell line ectopically expressing myc
TbKif13-1 N + NM. 100 

cells were determined for their cell cycle stage at the given time points. grey: induced cell line for 

ectopic expression of  myc
TbKif13-1 N + NM; black: non induced cell line. (D) Immunfluorescence 

analysis of mitotic 2K1N cells after ectopic expression of myc
TbKif13-1 N + NM, depicting a cell with 

spindle formation (upper panel) and one without detectable spindle (lower panel). KMX antibody 

was used for β-tubulin staining (green), DNA was stained with DAPI (red). Scale bar 3 µm. Diagram 

shows evaluation of spindle formation in mitotic 2K1N cells ectopically expressing myc
TbKif13-1 N + 

NM from day 0 to day 6; black: spindle formation; grey: no spindle formation. 

 
Figure S 21: Immunfluorescence microscopy evaluation of flow cytometry analysis of the cell line 

ectopically expressing
 myc

TbKif13-1 ½ N + NM. 100 cells were determined for their cell cycle stage at 

the given time points. grey: induced cell line for ectopic expression of myc
TbKif13-1 ½ N +NM; black: 

non induced cell line. 
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Figure S 22: Flow cytometry analysis of the transgenic 449 cell line ectopically expressing 
myc

TbKif13-1 NM at day 2, 3 and 5 after induction. (A) Flow cytometry analysis of the transgenic 449 

cell line ectopically expressing myc
TbKif13-1 NM (+ Dox, upper panels) at day 2, day 3 and day 5 after 

induction, control cells: non induced (- Dox, lower panels). (B) Immunfluorescence microscopy 

evaluation of flow cytometry analysis of the transgenic 449 cell line ectopically expressing myc
TbKif13-

1 NM. 100 cells were determined for their cell cycle stage at the given time points. grey: induced cell 

line for ectopic expression of myc
TbKif13-1 NM; black: non induced cell line. 
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Figure S 23: No reduced growth of the cell line ectopically expressing 

myc
TbKif13-1 C compared to 

non induced cells. (A) Growth curve of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 

C; control cells: non induced and non transfected 449 cells. (B) Flow cytometry analysis of the 

transgenic 449 cell line ectopically expressing myc
TbKif13-1 C (+ Dox, upper panels), control cells: non 

induced (- Dox, lower panels). (C) Immunfluorescence microscopy evaluation of flow cytometry 

analysis of the transgenic 449 cell line ectopically expressing myc
TbKif13-1 C. 100 cells were 

determined for their cell cycle stage at the given time points. grey: induced cell line for ectopic 

expression of myc
TbKif13-1 C; black: non induced cell line. 
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Figure S 24: No reduced growth of the cell line ectopically expressing TbKif13-1 N

GFP-myc
. (A) Growth 

curve of the transgenic 449 cell line ectopically expressing TbKif13-1 NGFP-myc; control cells: non 

induced and non transfected 449 cells. (B) Flow cytometry analysis of the transgenic 449 cell line 

ectopically expressing TbKif13-1 NGFP-myc (+ Dox, upper panels), control cells: non induced (- Dox, 

lower panels). (C) Immunfluorescence microscopy evaluation of flow cytometry analysis of the 

transgenic 449 cell line ectopically expressing TbKif13-1 NGFP-myc. 100 cells were determined for their 

cell cycle stage at the given time points. grey: induced cell line for ectopic expression of TbKif13-1 

NGFP-myc; black: non induced cell line. 
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Figure S 25: No reduced growth of the cell line ectopically expressing TbKif13-1 ½ N

GFP-myc
. (A) 

Growth curve of the transgenic 449 cell line ectopically expressing TbKif13-1 ½ NGFP-myc; control cells: 

non induced and non transfected 449 cells. (B) Flow cytometry analysis of the transgenic 449 cell line 

ectopically expressing TbKif13-1 ½ NGFP-myc (+ Dox, upper panels), control cells: non induced (- Dox, 
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lower panels). (C) Immunfluorescence microscopy evaluation of flow cytometry analysis of the 

transgenic 449 cell line ectopically expressing TbKif13-1 ½ NGFP-myc. 100 cells were determined for 

their cell cycle stage at the given time points. grey: induced cell line for ectopic expression of TbKif13-

1 ½ NGFP-myc; black: non induced cell line. (D) Immunfluorescence analysis of spindle formation in 

mitotic 2K1N cells after ectopic expression of TbKif13-1 ½ NGFP-myc; KMX antibody was used for 

staining β-tubulin (green), DNA was stained with DAPI (red). Scale bar 3 µm. Diagram shows 

evaluation of spindle formation in mitotic 2K1N cells ectopically expressing myc
TbKif13-1 ½ NGFP-myc 

from day 0 to day 6; black: spindle formation; grey: no spindle formation. 

 
Figure S 26:

 His6
TbKif13-1 ½ N + C is a microtubule depolymeriser. (A) Tubulin sedimentation assay. 

0.75 µM His6
TbKif13-1 ½ N + C were used. 1.5 µM His6

TbKif13-1 FL were used as positive control. 

Substrate were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample was not treated with 

recombinantly purified His6
TbKif13-1 ½ N + C. P: pellet; SN: supernatant; SDS-PAGE analysis. (B) 

Cytoskeleton depolymerisation assay. 0.5 µM His6
TbKif13-1 ½ N + C were used. Cytoskeleton tubulin 

(green) was stained with α-tubulin antibody. DNA was DAPI (red) stained. Scale bar 5 µm. (C) 

Malachite green assay for His6
TbKif13-1 ½ N + C. ATPase activity of His6

TbKif13-1 ½ N + C increased with 

increasing His6
TbKif13-1 ½ N + C concentration. Approaches without tubulin or ATP served as control. 
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Figure S 27:

 His6
TbKif13-1 NM + C is a microtubule depolymeriser. (A) Tubulin sedimentation assay. 1 

µM His6
TbKif13-1 NM + C was used. 1.5 µM His6

TbKif13-1 FL were used as positive control. Substrate 

were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample was not treated with recombinantly 

purified His6
TbKif13-1 NM + C. P: pellet; SN: supernatant; SDS-PAGE analysis. (B) Cytoskeleton 

depolymerisation assay. 0.5 µM His6
TbKif13-1 NM + C were used. Cytoskeleton tubulin (green) was 

stained with α-tubulin antibody. DNA was DAPI (red) stained. Scale bar 5 µm. (C) Malachite green 

assay for His6
TbKif13-1 NM + C. ATPase activity of His6

TbKif13-1 NM + C increased with increasing 
His6

TbKif13-1 NM + C concentration. Approaches without tubulin or ATP served as control. 
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Figure S 28: 

His6
TbKif13-1 N + NM is no microtubule depolymeriser but retains ATPase activity. (A) 

Tubulin sedimentation assay. 1 µM His6
TbKif13-1 N + NM was used. 1.5 µM His6

TbKif13-1 FL were used 

as positive control. Substrate were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample was not 

treated with recombinantly purified His6
TbKif13-1 N + NM. P: pellet; SN: supernatant; SDS-PAGE 

analysis. (B) Westernblot analysis of the tubulin sedimentation assay samples. His6
TbKif13-1 N + NM 

was detected using α-His antibody; tubulin was detected using α-tubulin antibody. (C) Cytoskeleton 

depolymerisation assay. 1 µM His6
TbKif13-1 N + NM was used. Cytoskeleton tubulin (green) was 

stained with α-tubulin antibody. DNA was DAPI (red) stained. Scale bar 5 µm. (D) Malachite green 

assay for His6
TbKif13-1 N + M. ATPase activity of His6

TbKif13-1 N + M increased with increasing 
His6

TbKif13-1 N + M concentration. Approaches without tubulin or ATP served as control. 
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Figure S 29: 

His6
TbKif13-1 ½ N + NM is no microtubule depolymeriser but retains ATPase activity. (A) 

Tubulin sedimentation assay. 1.5 µM His6
TbKif13-1 ½ N + M were used. 1.5 µM His6

TbKif13-1 FL were 

used as positive control. Substrate were 3 µM taxol-stabilised microtubules. Control (Ctrl) sample 

was not treated with recombinantly purified His6
TbKif13-1 ½ N + NM. P: pellet; SN: supernatant; SDS-

PAGE analysis. (B) Westernblot analysis of the tubulin sedimentation assay samples. His6
TbKif13-1 ½ N 

+ NM was detected using α-His antibody; tubulin was detected using α-tubulin antibody. (C) 

Cytoskeleton depolymerisation assay. 1 µM His6
TbKif13-1 ½ N + NM was used. Cytoskeleton tubulin 

(green) was stained with α-tubulin antibody. DNA was DAPI (red) stained. Scale bar 5 µm. (D) 

Malachite green assay for His6
TbKif13-1 ½ N + NM. ATPase activity of His6

TbKif13-1 N + NM increased 

with increasing His6
TbKif13-1 N + NM concentration. Approaches without tubulin or ATP served as 

control. 
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Figure S 30: Silver staining of immunoprecipitation products from 449 

myc
TbAuk1, 

myc
TbAuk1 K58R 

and 
myc

TbAuk1 T184A cell lysates. 10 µL of each immunoprecipitation product was loaded. BSA 

(bovine serum albumin) served as standard for concentration determination. myc
TbAuk1, myc

TbAuk1 

K58R and myc
TbAuk1 T184A were highlighted with boxes. 

 
Figure S 31: Westerblot analysis confirming addition of 

myc
TbAuk1, 

myc
TbAuk1 K58R and 

TbHistoneH3
His6

. Samples from the radioactive 33P ɣATP phosphorylation assay were used. myc
TbAuk1 

and myc
TbAuk1 K58R were deteceted using α-myc, TbHistoneH3His6 was detected using α-His. 

 
Figure S 32: Westerblot analysis confirming addition of 

His6
TbKif13-1, 

myc
TbAuk1, 

myc
TbAuk1 K58R, 

myc
TbAuk1 T184A and tubulin. Samples from radioactive 33P ɣATP phosphorylation assay were used. 

myc
TbAuk1, myc

TbAuk1 K58R and myc
TbAuk1 T184A were deteceted using α-myc, His6

TbKif13-1 was 

detected using α-His, tubulin was detected using TAT antibody. 
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Figure S 33: No inhibition of 

His6
TbKif13-1´s depolymerisation activity by

 myc
TbAuk1. A 

depolymerisation assay with addition of immunoprecipitated myc
TbAuk1 or myc

TbAuk1 T184A, 

respectively, was conducted. 1 µM His6
TbKif13-1 was used. The components were pre-incubated 1 h 

at RT before addition of 3 µM taxol stabilised microtubules. Control (Ctrl) sample was not treated 

with recombinant purified His6
TbKif13-1. P: pellet; SN: supernatant.  
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