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Abstract— We propose a hybrid solution for the stabilization
of the origin of a linear time-invariant stabilizable system with
the property that a suitable neighborhood of a pre-defined
unsafe point in the state space is avoided by the closed-
loop solutions. Hybrid tools are motivated by the fact that
the task at hand cannot be solved with continuous feedback,
whereas the proposed hybrid solution induces nominal and
robust asymptotic stability of the origin. More specifically, we
formulate a semiglobal version of the problem at hand and
describe a fully constructive approach under the assumption
that the unsafe point to be avoided does not belong to the
equilibrium subspace induced by the control input on the linear
dynamics. The approach is illustrated on a numerical example.

I. INTRODUCTION

Lyapunov functions [5] provide a well established tool
to analyze and characterize stability properties of general
dynamical systems and are an important mechanism in
the control literature to construct stabilizing feedback laws.
While global asymptotic stability/stabilization (GAS) of un-
constrained dynamical systems is well understood, stabil-
ity/stabilization of dynamical systems subject to bounded
state constraints, e.g., obstacle avoidance for mobile robots
or collision avoidance in the coordination of drones, has yet
to be addressed rigorously for general classes of dynamical
systems. While in the context of unconstrained stabilization,
discontinuous control laws only need to be considered for
the class of systems that are asymptotically controllable
but not Lipschitz continuous feedback stabilizable (e.g., the
nonholonomic integrator [3]), discontinuous feedback laws
are necessary in the presence of bounded constraints, inde-
pendent of the system dynamics (see [2] for an illustrative
proof). A similar need for discontinuous feedback laws is
discussed in [6] in terms of topological obstructions on
manifolds.

When using control Lyapunov functions, the need for
discontinuous feedback laws precludes the use of Sontag’s
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universal formula [13], for example, since it leads to a con-
tinuous feedback law. Thus, approaches extending classical
results on control Lyapunov functions by control barrier
functions [17] to include constraints in the state space, are
limited to constraints defining unbounded sets. In particular,
this impacts approaches in [7], [14], [1], [10], since they rely
on the existence of continuous feedback laws.

Additionally, note that the model predicitive control lit-
erature does not provide a general framework for obstacle
avoidance and global stabilization. Even though it is simple
to define an optimization problem to iteratively compute a
feedback law, proving GAS of the closed loop and recursive
feasibility is nontrivial.

One way to define discontinuous feedback laws, and which
we will follow in this paper, is to unite local and global
controllers. This approach traces back to [15] and was further
investigated and established using the formalism of hybrid
dynamical systems in [8], [16], [9], [11], [12]. While the
results in these works are promising and motivating, the
papers address particular applications and do not provide a
general tool for controller design subject to bounded state
contsraints.

In contrast to the approaches discussed above, we propose
a constructive method to design a hybrid control law for
a controllable linear system that simultaneously guarantees
GAS of the origin and avoidance of a neighborhood around a
given obstacle described by a single point. While we address
the case of a single unsafe point, our approach easily extends
to the case of multiple points.

The paper is structured as follows. In Section II the
mathematical setting and the problem under consideration
are formalized. In Section III the “wipeout” property is in-
troduced, ensuring that solutions getting close to the obstacle
are guaranteed to leave a neighborhood around the obstacle
in finite time. This result is used in Section IV to define
a local obstacle avoidance controller. Section V combines
the results to obtain a global hybrid control law. Here, the
main result providing GAS while avoiding the obstacle is
stated. The results of the hybrid controller are illustrated on a
numerical example in Section VI before the paper concludes
in Section VII.

Throughout the paper the following notation is used. For
x ∈ Rn we use the vector norm |x| =

√∑n
i=1 x

2
i . Similarly,

the distance to a point y ∈ Rn is denoted by |x|y = |x− y|.
For a closed set A ∈ Rn and r > 0 we define Br(A) =
{x ∈ Rn|miny∈A |x− y| ≤ r}. The closure, the boundary
and the interior of a set are denoted by A, ∂A and int(A),
respectively. The identiy matrix of appropriate dimension is
denoted by I .



II. SETTING & PROBLEM FORMULATION

In this paper we consider linear dynamical systems

ẋ = Ax+Bu, x0 = x(0) ∈ Rn (1)

with state x ∈ Rn, one dimensional input u ∈ R and matrices
A ∈ Rn×n, B ∈ Rn. An extension to the multidimensional
input case u ∈ Rm, m ∈ N, is straightforward. As motivated
in the introduction, the paper addresses the following general
problem and provides a solution under some simplifying
assumptions described below.

Problem 1: (Semiglobal xa-avoidance augmentation with
GAS) Given an “unsafe” point xa ∈ Rn that must be avoided
by the controller, and a stabilizing state feedback us = Ksx,
for each δ > 0, design a feedback selection of u that
guarantees

(i) (GAS) uniform global asymptotic stability of the ori-
gin;

(ii) (semiglobal preservation) the feedback matches the
original stabilizer u(x) = Ksx in Rn \ Bδ(xa); and

(iii) (semiglobal xa-avoidance) all solutions starting outside
the ball Bδ(xa) never enter a suitable “safety” neigh-
borhood of xa. y

Problem 1 entails the desirable property that the modifica-
tions enforced by the avoidance augmentation are minimally
invasive, because semiglobal preservation ensures that the
pre-defined stabilizer us is unchanged in an arbitrarily large
subset of the state space. Note that this goal is similar but
not quite the same as the one of safety region avoidance,
addressed in [10] and [1].

In contrast to those works, we do not assume the exis-
tence of a control Lyapunov function and a control barrier
function avoiding an a priori fixed neighborhood around xa,
characterized in item (iii). Instead we provide a constructive
method to design the control and provide a corresponding
bound on the size of the neighborhood that can be avoided.
To keep the discussion simple, we only address one point
xa but our construction carries over trivially to the case
of multiple unsafe points, always providing a constructive
solution to the corresponding semiglobal avoidance design.
We emphasize again that Problem 1 cannot be solved by a
continuous feedback, as motivated in the introduction, and
thus we provide a hybrid solution to the problem here. For
our construction, we will enforce the following assumption
on the system data.

Assumption 1: Basic assumptions:
(a) Matrix As := A+BKs is Hurwitz.
(b) Vectors Axa and B are linearly independent.
(c) Vector B is a unit vector (namely |B| = 1).
(d) The norm x 7→ |x|2 is contractive under the stabilizer

us = Ksx (equivalently, As +ATs < 0). y
We note that Assumption 1(a) is a necessary condition for

Problem 1(i,ii), whereas Assumptions 1(c) and 1(d) are sim-
plifying assumptions that can be easily removed by suitable
input and state transformations, respectively. In particular,
Assumption 1(c) can be achieved through the definition
ẋ = Ax+B◦u◦, where u◦ := |B|u and B◦ := B/|B|. With
respect to Assumption 1(d), if V (x) = xTSx is a Lyapunov

function for the closed-loop system ẋ = Asx, then V (x̃) =
|x̃|2 is a Lyapunov function in the coordinates x̃ = SFx,
where STFSF = S denotes the Cholesky factorization of S.

Assumption 1(b) is the only substantial restriction that
we make in this paper and will be addressed in future
work. Even under this simplifying assumption it appears that
Problem 1 requires a sufficient amount of sophistication. As-
sumption 1(b) enables us to exploit the convenient property
that solutions transit through any small enough neighborhood
of xa independently of the input u. This property, that we
call the “wipeout” property, is characterized in Section III
hereafter, and is one of the two main ingredients of our
solution. The other ingredient corresponds to a suitable re-
pulsive control design, characterized in Section IV, ensuring
that solutions that approach xa are suitably modified to
avoid entering a peculiar “shell” corresponding to the above
characterized “safety neighborhood” of xa. We emphasize
that the two above mentioned ingredients, developed in
Sections III and IV below, are independent of each other,
which establishes a desirable modularity in our design, prone
for future developments of this research direction.

III. η-NEIGHBORHOOD AND WIPEOUT PROPERTY

In this section we provide a thorough characterization of
the implications of Assumption 1(b) to ensure that local
equilibria around xa cannot be created by whatever feedback
solution u we may design to solve Problem 1. We first
provide a few equivalences.

Lemma 1: The following items are equivalent:
(i) Assumption 1(b) holds.

(ii) The point xa cannot be an induced equilibrium of the
linear dynamics, namely

xa /∈ E := {y ∈ Rn : ∃u∗, Ay +Bu∗ = 0}. (2)

(iii) It holds that

ABxa := (I −BBT )Axa 6= 0. (3)

y
Proof: The equivalence between (i) and (ii) is a trivial

consequence of the definition of linear independence.
“(ii) ⇒ (iii):” If (I − BBT )Axa = 0, then selecting u∗ =
−BTAxa leads to Axa +Bu∗ = 0.
“(iii) ⇒ (ii):” If ∃u∗ such that Axa +Bu∗ = 0, then, using
BTB = 1 and Axa = −Bu∗ implies (I − BBT )Axa =
Axa +BBTBu∗.

In light of the property in (2), an important parameter in
the control design proposed here is the (positive) distance
between xa and the subspace E , defined as

η2 := min
y∈E
|xa − y|2. (4)

The parameter η is a positive scalar under Assumption 1
(by virtue of Lemma 1) and its positivity is essential for
establishing that there exists a linear function of the state that
monotonically increases in the interior of Bη(xa), regardless
of the choice of the input u. This property, called “wipeout”
henceforth, is useful to establish that any solution flowing in
Bη(xa) must approach its boundary and leave any compact



subset of its interior, in finite time. This wipeout feature helps
in the analysis of the evolution of solutions within Bη(xa),
because solutions naturally drift away from small enough
neighborhoods of xa, regardless of the input u.

Proposition 1: (Wipeout Property). Let Assumption 1
hold. Consider the function H(x) := xTa A

T
Bx, where AB

is defined in (3), and the scalar η > 0 is defined in (4). For
each x ∈ Bη(xa) we have 〈∇H(x), Ax + Bu〉 ≥ 0 for all
u ∈ R. Moreover, for each η̄ < η, there exists h > 0 such
that

〈∇H(x), Ax+Bu〉 ≥ h, ∀u ∈ R,∀x ∈ Bη̄(xa). (5)

y
Proof: Consider the identities, where we use the fact

that the projection ΠB := (I −BBT ) satisfies Π2
B = ΠB :

Ḣ(x) = xTa A
T
Bẋ = xTa A

T (I −BBT )(Ax+Bu)

= xTa A
T (I −BBT )Ax = (ABxa)T (ABx). (6)

By definition of η, and the left expression in (6), we know
that Ḣ(x) 6= 0 in Bη(xa). By the right expression in (6),
we know that Ḣ(xa) > 0 and from continuity we obtain
Ḣ(x) > 0 for all x ∈ int(Bη(xa)). Then (5) follows from
Bη̄(xa) ⊂ int(Bη(xa)), for all η̄ < η. Finally, 〈∇H(x), Ax+
Bu〉 ≥ 0 in Bη(xa) follows from continuity of Ḣ(·).

Remark 1: Observe that due to the linearity of H(x),
∇H(x) is independent of x and defines a direction

wxa
= ∇H(x)
|∇H(x)| = ABxa√

xTa A
T
BABxa

,

which is well-defined through (3). This implies that (5)
provides a lower bound on the speed the solution x(t) moves
in direction wxa

for all η̄ ≤ η, i.e., 〈wxa
, ẋ〉 ≥ hη̄ for

hη̄ = h/|∇H(x)|. In particular, a solution x(·) such that
x(t) ∈ Bη̄(xa) for all t ∈ [0, T ], satisfies

〈wxa
, x(T )− x(0)〉 ≥ Thη̄. (7)

Moreover, a solution x(·) such that x(t) ∈ Bη(xa) for all
t ∈ [0, T ], satisfies

〈wxa , x(t2)− x(t1)〉 ≥ 0 for all 0 ≤ t1 ≤ t2 ≤ T. (8)
IV. UNSAFE SHELL AND AVOIDANCE CONTROLLER

A. The eye-shaped shell S
A second ingredient used in this paper, whose construction

is parallel to, and independent of the wipeout function H
introduced in the previous section, is the safety or avoidance
controller ua, acting in a neighborhood of the unsafe point
xa. The neighborhood is a nonsmooth compact set, having
the shape of an eye, as visualized in Figure 1, defined based
on two geometrical parameters:

1) the size δ ∈ R>0 of the shell;
2) the aspect ratio µ ∈ (0, 2) of the shell.
Based on these two parameters, the shell S is the following

intersection between two balls centered at some shifted
versions of the unsafe point xa:

δµ := δ
(

1
µ −

µ
4

)
, (9a)

Oq := B(µδ2 +δµ)(xa − qδµB), q ∈ {1,−1}, (9b)

S(δ) := O1

⋂
O−1. (9c)

xaS(δ)

xa + δµB

xa − δµB
δµ + µδ

2

δµ

δ

µδ
2

O−1

O1

µ = 1

µ = 0.5

µ = 1.5

Fig. 1. The construction of the eye-shaped shell S(δ) around the unsafe
point xa, based on the size δ ∈ R>0 and the aspect ratio µ ∈ (0, 2).

Figure 1 represents a few possible shapes of these sets
together with the distances that go with them. Note that
µ ∈ (0, 2) fixes the aspect ratio of the shell, whose height
corresponds to µδ, which resembles an eye that is increas-
ingly closed as µ approaches its lower limit 0. Conversely, as
µ approaches its upper limit 2, the eye is increasingly open
and converges to a circle. In our construction, we will assume
that a certain desired aspect ratio µ is fixed a priori, and
we will establish suitable results by exploiting the fact that
the shell S(δ) can be made arbitrarily large and arbitrarily
small, by adjusting the positive parameter δ. In particular,
the following fact will be used throughout our constructions.

Lemma 2: Given an aspect ratio µ ∈ (0, 2), for each δ >
0, the following inclusions hold for the shell S(δ) defined
in (9):

Bµδ
2

(xa) ⊂ S(δ) ⊂ Bδ(xa). (10)

Proof: Let x ∈ Bµδ
2

(xa), i.e., |x− xa| ≤ µδ
2 . Then for

each q ∈ {−1, 1} the triangle inequality leads to the estimate

|x− xa + qδµB| ≤ |x− xa|+ |qδµB|

≤ µδ
2 + δµ = δ

(
1
µ + µ

4

)
,

which implies that x ∈ Oq for all q ∈ {−1, 1}, and thus
x ∈ S(δ). Hence Bµδ

2
(xa) ⊂ S(δ) satisfied.

We define the set

Smax =
{
x ∈ S(δ) : |x|xa ≥ maxy∈S(δ) |y|xa

}
.

It is clear that for all x ∈ Smax either x ∈ ∂O1 and/or
x ∈ ∂O−1 is satisfied since otherwise the condition |x|xa

≥
maxy∈S(δ) |y|xa

cannot hold. Similarly if x ∈ Smax, x ∈
∂Oq and x ∈ int(O−q), q ∈ {−1, 1}, for all ε > 0 there
needs to exist x̃ ∈ Bε(x)∩∂Oq∩O−q such that |x̃|xa > |x|xa .
Thus, the set Smax satisfies Smax ⊂ ∂O1 ∩ ∂O−1. Using
the definitions of O1 and O−1, and Pythagoras theorem for
pairwise orthogonal vectors provides the identities

|x− xa|2 =
(
δµ + µδ

2

)2

− δ2
µ

= δ2
(

1
µ + µ

4

)2

−
(

1
µ −

µ
4

)2

= δ2

for all x ∈ ∂O1 ∩ ∂O−1 (visualized in Figure 1). This
particularly implies that S(δ) ⊂ Bδ(xa).
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Fig. 2. The shrunken shell Sh(δ) and the half shells S/1 and S/−1
considered in Proposition 2.

B. Avoidance Controller

The shell S(δ) introduced in the previous section is
intrinsically composed of two separate boundaries, thereby
simplifying the design of a hybrid-based avoidance controller
that depends on a logical state q ∈ {1,−1}. The value of
q indicates whether the avoidance controller should cause
sliding of the solution “under” the shell (so to speak, based
on the “up” direction of the unit vector B) if q = −1, or
over the shell if q = 1.

We define such a “binary” avoidance controller as a
parametric state feedback defined for q ∈ {1,−1} as

ua(x, q) := −BTAx− 〈x− (xa − qδµB), (I −BBT )Ax〉
〈x− (xa − qδµB), B〉

.

(11)
The avoidance control law (11) is activated by some hybrid

logic in the solution proposed in Section V, wherein a
suitable h-hysteresis switching is enforced, based on a region
Sh(δ) obtained by shrinking S(δ) by a factor h ∈ (0, 1)
as follows, and according to the pictorial representation in
Figure 2:

Oh,q := Bhµδ2 +δµ
(xa − qδµB), q ∈ {1,−1}, (12)

Sh(δ) := Oh,1
⋂
Oh,−1. (13)

It is clear that for each q ∈ {1,−1} the set Oh,q is a ball
sharing the same center as Oq but having a smaller radius
that approaches δµ as h approaches 0. As a consequence,
Sh(δ) is a smaller eye-shaped set, with the same aspect ratio
as S(δ) (see Figure 2).

The desirable features of the avoidance controller (11) is
that it enforces sliding of the solution above or below the
shell Sh(δ) because it does enforce a constant distance from
the upper and the lower balls Oh,1, Oh,−1 involved in the
definition of Sh(δ). Such a desirable sliding mechanism is
well understood in terms of the following closed half shells

S/q := S(δ)∩{x ∈ Rn : qBT (x−xa) ≥ 0}, q ∈ {−1, 1},
(14)

represented in Figure 2.
The following lemma ensures that whenever using the

avoidance controller (11) with a suitable value of q, the
ensuing solution does not enter the shell Sh(δ) and actually
remains at a constant distance from the corresponding ball
containing Sh(δ).

Proposition 2: Let µ ∈ (0, 2/
√

3), δ > 0 and h ∈ (0, 1)
be given. For each q ∈ {−1, 1} and any point x0 ∈ Sh(δ) ⊂
S(δ), the local controller u = ua(x0, q), in (11), is well
defined. Moreover, the solution to (1) with u = ua(x, q)
starting at x0 remains at a constant (non-negative) distance
from the center xa − qδµB of the ball Oh,q until it remains

in S(δ). y
Proof: We show the assertion of the lemma for all

x0 ∈ S(δ), which includes the results for x0 ∈ Sh(δ) due to
the set inclusion Sh(δ) ⊂ S(δ) for all h ∈ (0, 1). To simplify
the notation we define the points

pq = xa − qδµB, q ∈ {−1, 1},
as the centers of Oq . As a first step, we show that the local
control law (11) is well defined under the condition µ ∈
(0, 2/

√
3), i.e., we show that 〈x − pq, B〉 6= 0 for all x ∈

S(δ), q ∈ {−1, 1}. Due to the definition of δµ in (9a) and
µ satisfying 0 < µ < µ∗ := 2/

√
3, it holds that

δµ = δ
µ

(
1− µ2

4

)
> δ

µ∗

(
1− (µ∗)2

4

)
= δ√

3
= δµ∗

2 > δµ
2 ,

which particularly implies that pq /∈ O−q , q ∈ {−1, 1}.
Thus, every x0 ∈ S(δ) can be represented as x0 = pq +
qαB + βB⊥, where α > 0, β ∈ R and B⊥ ∈ Rn satisfies
〈B,B⊥〉 = 0. Due to this definition, it holds that

〈x0 − pq, B〉 = 〈pq + qαB + βB⊥ − pq, B〉
= qα|B| = qα 6= 0

and the local controller (11) is well defined for all x0 ∈ S(δ).
To show the second statement of the lemma, which means

|x(t)|pq is constant for the closed loop system using the
feedback law ua(x, q), we show that d

dt |x(t) − pq|2 = 0
is satisfied. Hence, we show that

〈x− pq, Ax+Bua(x, q)〉 = 0

holds for all x ∈ S(δ). To shorten the expressions we use
the notation xpq = x−pq and AB = (I−BBT )A. With the
definition of ua(x, q) and using the fact that 〈x−pq, B〉 6= 0
for all x ∈ S(δ) it holds that

〈xpq , B〉 · 〈xpq , Ax−BBTAx−B
〈xpq , ABx〉
〈xpq , B〉

〉

= 〈xpq , B〉 · 〈xpq , ABx〉 − 〈xpq , ABx〉 · 〈xpqB〉 = 0.

which completes the proof.
The avoidance controller ua provides a tool to ensure that

the inner shell Sh(δ) is not entered by the closed loop-
solution. In the next section we show how the avoidance
controller can be combined with the stabilizing controller us

to ensure asymptotic stability of the origin.
Remark 2: Note that the non-smoothness of the boundary

of the shell S(δ) in ∂O−1 ∩ ∂O1 is an essential property
for the avoidance controller (11). The idea of sliding along
the boundary S(δ) cannot be replaced by sliding along the
boundary of a set with a smooth boundary, e.g., a ball
centered around xa. In the case of a smooth boundary there
always exists at least one point x on the boundary such that
〈x − (xa + αB), B〉 = 0 for some α ∈ R, i.e., the tangent
of the boundary in x is aligned with the direction of the
vector B. Thus, a finite input u does not keep the closed-
loop solution on the boundary. y

V. A HYBRID CONTROL SOLUTION

A. Hybrid dynamics selection
To ensure global asymptotic stability of the origin for

the closed loop, we need to patch the two feedback laws
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B B

xa−x
Sh(δ) Sh(δ)

Fig. 3. The upper and lower half-shells associated to D1 and D−1,
respectively, in (16).

us(x) (the stabilizing controller), and ua(x, q) (the avoidance
controller). Such a patching operation is done here using a
hybrid switching strategy exploiting the h-hysteresis margin
between Sh(δ)) and S(δ). Hybrid feedback is a natural
choice in light of the discussion above that no continuous
feedback can simultaneously ensure GAS of the origin and
avoidance of xa.

To suitably orchestrate the choice of the active controller,
we define an augmented state ξ = (x, q) for the hybrid
dynamics, comprising the plant state x and the quantity
q ∈ {1, 0,−1} already discussed in the previous section
and responsible for whether solutions should slide above
(q = 1) or below (q = −1) the shell when using the
avoidance feedback. The value q = 0 is associated to
the activation of the stabilizing feedback us. The control
selection is summarized by the feedback law

u = γ(x, q) := (1− |q|)us(x) + |q|ua(x, q). (15)

The overall idea of the controller is to use the feedback
law us until solutions enter the shell S(δ). To ensure a
robust switching between the local and global controllers,
we exploit the h-hysteresis and orchestrate the switching of
the logic variable q as follows:

ξ+ =

[
x+

q+

]
∈
[

x
Gq(ξ)

]
, ξ ∈ D1 ∪ D−1 ∪ D0 (16)

Dq :=
(
Sh(δ) ∩ S/q

)
× {0}, q ∈ {1,−1}

D0 := Rn \ S(δ)× {1,−1}

Gq(ξ) :=


1, if ξ ∈ D1 \ D−1

−1, if ξ ∈ D−1 \ D1

{1,−1} if ξ ∈ D1 ∩ D−1

0 if ξ ∈ D0,

(17)

where, according to the representation in Figure 3, the two
sets D1 and D−1 correspond to the upper and lower halves
of the shell Sh(δ). Note that these sets have a nonzero
intersection, associated to the equator plane of the shell. To
ensure suitable regularity properties of the jump map G in
(17), we perform a set-valued selection, which allows for
either q+ = 1 or q+ = −1. Note that this does not generate
multiple simultaneous jumps because we impose q = 0 in
the jump sets D1 ∪ D−1, so that, once a decision has been
made about whether sliding above or below the shell, this
decision can not be changed.

The hybrid closed loop behavior is completed by the
following flow dynamics, emerging from (1) and (15),

ξ̇ =

[
ẋ
q̇

]
= F (ξ) =

[
Ax+Bγ(x, q)

0

]
, ξ ∈ C, (18)

where the flow set C, is defined as the closed complement

of all the jump sets defined above. In particular, using Ξ :=
Rn × {−1, 0, 1}, we select

C := Ξ \ (D1 ∪ D−1 ∪ D0), (19)

which, using the fact that S/1 ∪ S/−1 = S(δ) ⊃ Sh(δ), can
also be expressed as

C =C1 ∪ C0 (20)

:={ξ : |q|=1 ∧ x ∈ S(δ)} ∪ {ξ : q=0 ∧ x ∈ Rn\Sh(δ)}.
The selection above for the proposed jump sets has the

important advantage that immediately after a jump the solu-
tion is in the interior of the flow set at a distance of at least
(1−h)µδ/2 from the jump set D. Before our main result is
given in the next section, we note that the following structural
regularity conditions of the dynamical system are satisfied,
whose proof is straightforward and therefore omitted.

Lemma 3: The closed-loop dynamics (15)–(19) satisfies
the hybrid basic conditions in [4, Assumption 6.5] and all
maximal solutions are complete. y

B. Main result: GAS and local preservation

We now prove that the hybrid solution proposed in the
previous section provides a solution to Problem 1 discussed
in Section II. In particular, we provide quantitative informa-
tion about a maximal size δ∗ of the shell S(δ), such that the
hybrid control solution in (15)–(19) solves Problem 1 for any
δ < δ∗. A trivial corollary of our result is that regardless of
all the parameters, there always exists a small enough δ for
which our solution is guaranteed to solve Problem 1.

To the end of providing the value δ∗, we need the
following quantity

ζ := − 2|As|
λmax(ATs +As)

> 0, (21)

which is positive due to Assumption 1(d), ensuring that ATs +
As is negative definite. Then, we define δ∗ as

δ∗ := 1
2

(
|xa|+η+ζ−

√
(|xa|+ η+ ζ)2 − 4|xa|η

)
>0, (22)

which is notably independent of µ and is well characterized
in the next lemma.

Lemma 4: Under Assumption 1, given η in (4), the scalar
δ∗ in (22) is a positive real number, and for any value of δ
satisfying δ < δ∗, we have δ < η. y

Proof: Since η, ζ > 0 and η < |xa|, by expanding the
squared terms, it is straightforward to verify the inequalities.

0 < (|xa| − η + ζ)2 < (|xa|+ η + ζ)2 − 4|xa|η. (23)

Taking the square root and adding 2η on both sides provides

|xa| − η + ζ + 2η <
√

(|xa|+ η + ζ)2 − 4|xa|η + 2η.

Finally, moving the square root to the left leads to the
estimate

2δ∗ = |xa|+ η + ζ −
√

(|xa|+ η + ζ)2 − 4|xa|η < 2η,

which shows the assertion δ∗ < η.
The proof is complete since δ∗ ∈ R>0 follows from (23),

showing that the square root in (22) is positive.
The selection of δ∗ in (22) is used in the following

proposition.



S(δ)

Bδ(xa)

Bη(xa)

x(t0, j0)

x(tin, j0)

x(tout, j1)

x(t1, j1)

Fig. 4. The intuition behind the two statements of Proposition 3 and the
hybrid times (t0, j0) ≤ (tin, j0) ≤ (tout, j1) ≤ (t1, j1), characterized in
its statement and its proof.

Proposition 3: Let Assumption 1 hold for the hybrid
system (15)–(19). Let δ ∈ (0, δ∗) be chosen such that
δ < η

1+ζ . Then the following properties hold for solutions
ξ(·, ·) starting at ξ0.

(i) (Wipeout property) Let ξ0 ∈ Bδ(xa)×{−1, 0, 1}. Then
there exists a time (t∗, j∗) ∈ dom(ξ) such that either
ξ(t∗, j∗) ∈ ∂Bη(xa)×{−1, 0, 1} or ξ(t, j) /∈ Bδ(xa)×
{−1, 0, 1} for all (t, j) ≥ (t∗, j∗).

(ii) (Decrease property) Let ξ0 ∈ Rn \ S(δ)× {−1, 0, 1}.
Additionally, consider any four times in the domain of
ξ(·, ·), such that

(t0, j0) ≤ (tin, j0) ≤ (tout, j1) ≤ (t1, j1), (24)

and
ξ(t0, j0), ξ(t1, j1) ∈ ∂Bη(xa)× {0},
ξ(tin, j0), ξ(tout, j1) ∈ ∂Bδ(xa)× {0}. (25)

Then either

|x(t1, j1)| < min
z∈S(δ)

|z| or |x(t1, j1)| ≤ |x(t0, j0)| − ε

(26)
for ε > 0, is satisfied. y

The intuition behind the two items of Proposition 3 is
illustrated in Figure 4. Item (i) ensures that any solution
evolving with the avoidance controller ua will switch to
the stabilizing controller us and will not switch back to
ua unless its x component first reaches the set ∂Bη(xa).
Item (ii) ensures that any solution crossing ∂Bη(xa) × {0}
at some time (t0, j0) and then switching to the avoidance
controller ua, if crossing again ∂Bη(xa)×{0} at some later
time (t1, j1), must satisfy (26), compensating for the increase
in |x|2 due to the avoidance controller. The two cases in (26)
are helpful to prove asymptotic stability. If a solution enters
and leaves the ball Bη(xa) a decrease of at least ε in the
Lyapunov function V (x) = |x| is guaranteed. Otherwise,
x(t1, j1) < minz∈S(δ) |z| implies q(t1, j1) = 0 and u = us

which leads to the fact that B|x(t1,j1)|(0) is forward invariant
and thus x(t, j) /∈ S(δ) for all (t, j) ≥ (t1, j1).

We make the following claim regarding the condition δ <
η

1+ζ which will be used in the proof of Proposition 3 to
define ε.

Claim 1: (Selection of δ). Let η and ζ be defined through,

(4) and (21), respectively. Then

ε(δ) := 2
ζ(η − δ)− 2δ > 0 ∀ δ ∈ (0, η

1+ζ ). (27)
Proof: Since ε is linear in δ, the assertion follows

immediately from ε(0) = 2
ζ η > 0 and ε( η

1+ζ ) = 0.

Proof of Proposition 3.
Proof of item (i): Let us consider a solution ξ(·, ·), whose
x-component x(·, ·), denoted by solutionx in the following,
is starting in Bδ(xa). Two cases may happen: either the
solutionx reaches ∂Bη(xa) in finite time, or it never reaches
it. In the first case the item is proven. In the second case,
solutionx must remain in the interior of Bη(xa) for all times,
and the derivations in Remark 1 apply for all times in
dom(ξ). Let x(t1, j1) ∈ Bδ(xa) for some time (t1, j1) ∈
dom(ξ). Thus using the completeness of solutions from
Lemma 3 and according to the estimate (7) applied with
η̄ = δ (which satisfies η̄ < η from Lemma 4), there exists
h, δ > 0 such that for a t∗ > 2δhδ + t1, j∗ ≥ j1 it holds
that (t∗, j∗) ∈ dom(ξ) and x(t∗, j∗) /∈ Bδ(xa). Moreover,
for all (t, j) ≥ (t∗, j∗), (t, j) ∈ dom(ξ) it holds that
〈wxa

, x(t, j) − x(t∗, j∗)〉 ≥ 0 due to the property (8). Thus
x(t, j) /∈ Bδ(xa) for all (t, j) ≥ (t∗, j∗), (t, j) ∈ dom(ξ).
Proof of item (ii): Consider any such solution ξ(·, ·) and
first notice that due to the expression in (20) of the flow set,
the solutionx can only flow in Bη(xa) \ S(δ) if q(t, j) = 0.
Let us now split the proof in two cases:
Case (a): For some (t∗, j∗) ∈ dom(ξ) satisfying (t0, j0) ≤
(t∗, j∗) ≤ (t1, j1) we have |x(t∗, j∗)| < minz∈S(δ) |z|. Since
from Assumption 1(d) the norm is contractive along flows
with q = 0, the solutionx satisfies |x(t, j)| ≤ |x(t∗, j∗)| <
minz∈S(δ) |z| for all (t, j) ≥ (t∗, j∗), which also includes
(t1, j1), and the proof is complete.
Case (b): For all (t, j) ∈ dom(ξ) satisfying (t0, j0) ≤
(t, j) ≤ (t1, j1) we have

|x(t, j)| ≥ min
z∈S(δ)

|z| ≥ |xa| − δ, (28)

where we used Lemma 2 in the last inequality. In this
second case we will prove that |x(t1, j1)| ≤ |x(t0, j0)| − ε,
where ε := ε(δ) > 0 as defined in (27). In particular, due
to the stated assumptions, the solutionx must go through
three phases characterized by the four hybrid times in (24),
and corresponding to: 1) flow from x(t0, j0) ∈ ∂Bη(xa)
to x(tin, j0) ∈ ∂Bδ(xa), 2) hit the boundary ∂Bδ(xa) at
time (tin, j0) and reach x(tout, j1) ∈ ∂Bδ(xa) again after
some finite time, 3) flow from x(tout, j1) ∈ ∂Bδ(xa) to
x(t1, j1) ∈ ∂Bη(xa).

We show below that |x| increases at most by 2δ (corre-
sponding to the rightmost term in (27)) during phase 2, and
decreases by at least half of the remaining amount of ε(δ)
in (27) during phases 1 and 3.
Phase 2. It holds that

|xa| − δ = min
z∈Bδ(xa)

|z| and |xa|+ δ = max
z∈Bδ(xa)

|z|

and therefore we obtain the estimate

|x(tout, j1)| − |x(tin, j0)| ≤ |xa|+ δ − (|xa| − δ) = 2δ.

Phases 1 and 3. We will only address phase 1 because



parallel arguments apply to Phase 3. Since x(t, j) flows
within Bη(xa) \ Bδ(xa) for all (t, j) satisfying (t0, j0) ≤
(t, j) < (tin, j0), then q(t, j) = 0 for all such (t, j) and the
following inequality holds:

|ẋ(t, j)| ≤ |As||x(t, j)| ≤ |As|(|xa|+ η). (29)

Using |x(tin, j0) − x(t0, j0)| ≥ η − δ (which holds because
of the distance between ∂Bη(xa) and ∂Bδ(xa)), we obtain

tin − t0 ≥
η − δ

|As|(|xa|+ η)
. (30)

Consider now the following upper bound of the decrease rate
of the norm:

˙︷ ︸︸ ︷
|x(t, j)| := d

dt

√
|x(t, j)|2 ≤ λmax(As +ATs )

2|x(t, j)|
|x(t, j)|2

≤ 1
2λmax(As +ATs )(|xa|+ η),

which is well defined because |x(t, j)| ≥ |xa| − δ according
to (28). Integrating on both sides provides the estimate

|x(tin, j0)|−|x(t0, j0)| ≤ 1
2 (tin−t0)λmax(As +ATs )(|xa|+η)

and since As is Hurwitz, the right-hand side is negative. Thus
we can use (30) to estimate the decrease

|x(tin, j0)|−|x(t0, j0)| ≤ (tin−t0)λmax(As +ATs )(|xa|+ η)

(30)
≤ λmax(As +ATs )

2|As|
(η − δ)

= −ζ−1(η − δ) (31)

which is a lower bound on the decrease in phase 1 and 3,
and ζ was defined in (21).

Combining the increase and decrease bounds established
in (29) and (31), we get

|x(t1, j1)| − |x(t0, j0)| = |x(t1, j1)| − |x(tout, j1)|
+ |x(tout, j1)| − |x(tin, j0)|+ |x(tin, j0)| − |x(t0, j0)| ≤ −ε

from (27) and where ε := ε(δ). �
Theorem 1: Let Assumption 1 be satisfied. Given any

scalar δ ∈ (0,min{δ∗, η
1+ζ }), according to (22), any µ ∈

(0, 2/
√

3), and h ∈ (0, 1), the hybrid controller (15)–(19)
guarantees that

(i) the origin ξ = (x, q) = (0, 0) is uniformly globally
asymptotically stable from Ξ;

(ii) for any initial condition ξ(0, 0) ∈ (Rn\S(δ)) ×
{−1, 0, 1}, all the arising solutions satisfy |x(t, j)|xa

≥
hµδ2 for all (t, j) ∈ dom(ξ).

(iii) for any initial condition ξ(0, 0) ∈ (Rn\{xa}) × {0},
all the arising solutions satisfy x(t, j) 6= xa for all
(t, j) ∈ dom(ξ). y

Remark 3: In light of Theorem 1, we may conclude
that the hybrid controller (15)–(19) solves Problem 1. In
particular, from Lemma 2, and the fact that any positive
value of δ < min{δ∗, η

1+ζ } can be selected, it is possible
to make set S(δ) arbitrarily small, which in turn implies:
• semiglobal preservation, because from (20) no solution

can flow with q 6= 0 outside S(δ), and
• semiglobal xa avoidance, because of Theorem 1,

item (ii) combined with S(δ) ⊂ Bδ(xa), we conclude

that solutions never enter the “safety neighborhood” of
xa corresponding to Bhµδ2 (xa).

Finally, GAS is guaranteed directly by Theorem 1(i). y

Proof: Proof of Item (i): To prove uniform global
asymptotic stability (UGAS) of the origin, we exploit the
fact, established in Lemma 3(i), that the closed loop satisfies
the hybrid basic conditions of [4] and all maximal solutions
are complete. Then, using [4, Thm. 7.12], it is sufficient to
prove (local) Lyapunov stability and global (not necessarily
uniform) convergence to the origin, to obtain uniform global
asymptotic stability. The two properties are proven below.

Local Stability: We first observe that η defined in (4)
satisfies η ≤ |xa|, because y = 0 trivially belongs to E in (2).
Moreover, from Lemma 4 we have δ < η ≤ |xa|, whose strict
inequality, together with the inclusion S(δ) ⊂ Bδ(xa), estab-
lished in Lemma 2, implies that 0 /∈ S(δ). As a consequence,
there exists an r > 0, such that Br(0)∩S(δ) = ∅. Moreover,
for any initial state ξ ∈ Br(0) × {−1, 0, 1} the x- and q-
components satisfy the following properties. If q(0, 0) 6= 0,
the dynamics will jump immediately to q(0, 1) = 0 (due to
the definition of D0) and the x-component satisfies x+ =
x across any jump. Thus, either after the first jump, or
immediately, the solution ξ(t, j) belongs to the interior of C0
and, from Assumption 1(d), it flows forever in the forward
invariant set Br(0)× {0}. Asymptotic stability then follows
from the asymptotic stability of ẋ = Asx and q = 0.

Global Convergence: Consider any solution ξ = (x, q),
and based on the two possibilities in Proposition 3(i) we
break the analysis in two cases.
Case (a): The solution never reaches ∂Bη(xa). In this case,
from Proposition 3(i) the solution remains in the stabilizing
mode (i.e., u = us and q = 0) on its tail. Then, the origin
is asymptotically stable due to the dynamics ẋ = Asx and
Assumption 1(a).
Case (b): The solution reaches ∂Bη(xa) at some time
(t0, j0). In this second case, either there exists a finite
time after which the solution does not evolve using the
avoidance controller (i.e., using u = ua and with |q| = 1)
anymore (and the analysis of case (a) applies), or there
exists a sequence of times (tk, jk), k ∈ N satisfying
|x(tk+1, jk+1)| ≤ |x(tk, jk)| − ε, according to (26), which
leads to a contradiction.

Proof of Item (ii): Let h, δ and µ be fixed and consider
ξ = (x, q) with x(0, 0) /∈ S(δ). By the definition of Sh(δ)
and from Lemma 2, it holds that |x(0, 0)|xa

≥ hµδ2 . If
q(0, 0) ∈ {−1, 1}, then due to the definition of the jump
set, the solution must jump to q+(0, 0) = 0.

Let us consider without loss of generality, q(0, 0) = 0.
Since int(S(δ) \ Sh(δ)) 6= ∅, the solution must flow with
|x(t, 0)|xa ≥ h

µδ
2 for all t ≥ 0 (which would prove the item),

or otherwise until x(t1, 0) ∈ ∂Sh(δ) for some t1 > 0 when
the solution jumps from x(t1, 0) ∈ D. Depending on whether
x(t1, 0) ∈ D−1 or x(t1, 0) ∈ D1, u switches to the avoidance
controller ua and x(t, 1) satisfies |x(t, 1)|xa

≥ hµδ2 for all
t ≥ t1 such that (t, 1) ∈ dom(ξ) due to the properties of the
local controller established in Proposition 2. If the solution



jumps again to q+ = 0, then, by definition of the jump set D0

in (16), it must be outside Sh(δ) and the reasoning above
can be repeated for the subsequent evolution, so that it is
impossible for the solution to enter the interior of Sh(δ),
thus proving the item (ii).

Proof of Item (iii): We consider two cases.
Case (a): Let x ∈ Rn \ Sh(δ) and q(0, 0) = 0. Then the
same arguments as in item (ii) imply that |x(t, j)|xa

≥ hµδ2 ,
i.e., x(t, j) 6= xa for all (t, j) ∈ domx.
Case (b): Let x ∈ Sh(δ) \ {xa} and q(0, 0) = 0. Due to
the definition of the jump sets Dq , q ∈ {−1, 1} the solution
immediately jumps to

ξ(0, 1) =

[
x(0, 0)
q(0, 1)

]
for q(0, 1) ∈ {−1, 1}. We assume without loss of generality
that x(0, 0) ∈ S/1 and q(0, 1) = 1. Moreover, it holds that

|x(0, 1)− (xa − δµB)| > δµ = |xa − (xa − δµB)|.
Due to the properties of the avoidance controller (11) estab-
lished in Proposition 2, it holds that

δµ < |x(0, 1)− (xa − δµB)| = |x(t, 1)− (xa − δµB)|
for all t ≥ 0 such that (t, 1) ∈ dom(ξ), which particularly
implies that x(t, 1) 6= xa for all t ≥ 0 and (t, 1) ∈ domx.
By definition of the jump set D0 in (16), the solution will
jump back to q+ = 0 only when its x component is outside
Sh(δ), and then the analysis carried out in case (a) applies.

VI. NUMERICAL EXAMPLES

To illustrate our results we simulate the controller for the
simple two-dimensional system defined by

A =

[
−1.0 1.5
−1.5 −1.0

]
, B =

[
1
0

]
(32)

and one obstacle xa = [0 1]T , which does not belong to the
subspace E in (2). The eigenvalues of the matrix A are given
by σ(A) = {−1 + 1.5i,−1− 1.5i} and the matrix A+AT

satisfies σ(A + AT ) = {−2,−2}, which implies that for
us = 0 and As = A the origin of the closed-loop system
is asymptotically stable and V (x) = |x|2 is a Lyapunov
function. The optimization problem (4) provides a value of
η = 0.8321, we set µ = 1.15 < 2/

√
3 leading to ζ = 1.8028

and δ∗ = 0.2455. For the hysteresis we use a value of
h = 0.9 and δ = δ∗ (even though the condition δ < δ∗

is not satisfied). The simulation results for 50 initial values
with |x0| = 2 (and q0 = 0) are shown in Figure 5, where
the subspace E is shown as a red line. As one might expect
from the theoretical results, all initial values asymptotically
approach the origin while avoiding the neighborhood around
the unsafe point.

VII. CONCLUSIONS

In this paper we proposed a hybrid controller ensuring
GAS of the origin and avoidance of a neighborhood around
a given point xa 6= 0 representing an obstacle. In this respect,
an explicit formula for the control law as well as for the size
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Fig. 5. Avoidance of the unsafe point xa = [0 1]T and closed-loop
solutions corresponding to initial values with |x0| = 2 (and q0 = 0).
Additionally, the shell S(δ), the η- and δ-ball, and the subspace E are
shown.

of the neighborhood are given. Even though the result are
conservative with respect to the size of the neighborhood and
only a single obstacle is considered, the results are presented
in such a way that an exension to multiple obstacles and more
general system dynamics is straightforward.
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