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Abstract

This paper presents first results for the stability analysis of Model Predictive Control
schemes applied to the Fokker-Planck equation for tracking probability density functions.
The analysis is carried out for linear dynamics and Gaussian distributions, where the distance
to the desired reference is measured in the L2-norm. We present results for general such
systems with and without control penalization. Refined results are given for the special case
of the Ornstein-Uhlenbeck process. Some of the results establish stability for the shortest
possible (discrete time) optimization horizon N = 2.

Keywords Model Predictive Control · Fokker-Planck equation · Probability density function ·
Stochastic optimal control

1 Introduction

In recent numerical simulations, Model Predictive Control (MPC) has proven to be an efficient
method for the control of probability density functions (PDFs) of controlled stochastic processes
[2, 3, 11, 25]. In this approach, the distance of the actual PDF to the desired reference PDF,
integrated or summed over several time steps into the future, is minimized using the Fokker-
Planck equation as a model for predicting the actual PDF. The first piece of the resulting optimal
control function is then applied to the stochastic system and the whole process is repeated
iteratively. For more details on MPC we refer to [15] or [23], for more information on the
Fokker-Planck equation to [24].

The optimal control problem to be solved in each step of the MPC scheme belongs to the class
of tracking type optimal control problems governed by partial differential equations (PDEs) and
the usual norm for measuring the distance to a reference in PDE based optimal tracking control
is the L2-norm [27]. The L2-norm is advantageous because existence and well posedness of the
solution of the resulting optimal control problem for the Fokker-Planck equation was recently
established [12]. Moreover, the fact that L2 is a Hilbert space significantly simplifies, e.g., the
computation of gradients, which is crucial for the implementation of numerical optimization
algorithms. In this paper we thus follow the existing literature and use the L2-norm as distance
measure in our MPC optimal control problem.

So far, the efficiency of MPC for the Fokker-Planck equation was only verified by means of
numerical simulations1. Particularly, it is not clear whether the process controlled by MPC —
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the so called MPC closed loop — will converge to the desired reference PDF. This is the question
about the stability of the closed loop at the reference PDF. Moreover, it is not clear how large
the time span into the future over which the distance is optimized — the so called optimization
horizon — must be in order to obtain stability. Clearly, the shorter the optimization horizon, the
less computationally demanding the numerical solution of the optimal control problem in each
MPC step, and in numerical examples it was observed that in a discrete time setting a prediction
horizon of one step into the future is often enough to obtain a stable closed loop. It is the goal
of this paper to establish rigorous mathematical result which guarantee stability and in some
cases also an upper bound on the necessary optimization horizon. These results are based on
general MPC stability and performance guarantees from [14, 16] and [15, Chapter 6], which rely
on appropriate controllability properties of the stage cost, i.e., the L2 distance to the reference
PDF in our setting, along the controlled dynamics, i.e., along the solutions of the Fokker-Planck
PDE.

While the Fokker-Planck MPC framework is in principle applicable to arbitrary nonlinear
stochastic control systems and arbitrary initial and reference PDFs, a rigorous analysis of such
a general setting appears out of reach to the moment. Therefore, as a first step, in this paper we
restrict the analysis to a more limited setting in which we consider linear stochastic dynamics
and Gaussian PDFs. This class of systems often appears in engineering problems and has the
advantage that its controllability properties are well understood due to the recent paper [6].
However, even with the availability of the results from [6] the analysis of the MPC scheme is
not straightforward, because the implications of these controllability properties for the PDFs
on the controllability controllability of the L2 stage cost are indirect and difficult to analyze.
This is the point where the use of the otherwise very convenient L2 stage cost turns out to be
disadvantageous and a substantial part of this paper is thus devoted to an in-depth analysis of
this cost. Moreover, we will see that even in the simplifying linear and Gaussian setting of this
paper, the assumptions from [14, 16] and [15, Chapter 6] are not always satisfied. Hence, for
some of our results we need to develop new arguments for proving stability of the MPC closed
loop, cf. Section 5.2.1.

The remainder of this paper is structured as follows. The precise problem formulation and
assumptions are presented in Section 2. The principles of MPC and its stability analysis are
explained in Section 3. Section 4 collects important auxiliary results for the L2 stage cost used
in this paper. The main results of this paper are then presented in Section 5. The section is
divided into results for general linear stochastic control systems in Subsection 5.1 and results for
the particular case of the Ornstein-Uhlenbeck process in Subsection 5.2, which demonstrate in
which sense the general results can be further improved for a particular form of the stochastic
dynamics. Section 6 finally concludes the paper.

2 Problem Formulation and Assumptions

We start with a continuous-time stochastic processes described by the Itô stochastic differential
equation

dXt = b(Xt, t;u)dt+D(Xt, t)dWt, t ∈ (0, T ) (1)

with initial condition X0 ∈ Rd. Here, Wt ∈ Rm is an m-dimensional Wiener process, b =
(b1, ..., bd) is the vector valued drift function, and the diffusion matrix D(Xt, t) ∈ Rd×m is
assumed to have full rank.

Under appropriate assumptions, cf. [21, p. 227] and [22, p. 297], the evolution of probability
density functions associated with (1) is modeled by the Fokker–Planck equation, also called
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Forward Kolmogorov equation:

∂tρ(x, t)−
d∑

i,j=1

∂2
ij (αij(x, t)ρ(x, t)) +

d∑
i=1

∂i (bi(x, t;u)ρ(x, t)) = 0 in Q, (2)

ρ(·, 0) = ρ0. (3)

The diffusion coefficients αij : Q→ R and the drift coefficients bi : Q×U → R are given functions
for i, j = 1, ..., d. The domain of interest is given by Q = Ω × (0, T ), where either Ω = Rd
or Ω ⊂ Rd is a bounded domain with C1 boundary. The function ρ0 : Ω → R≥0 is a given
initial probability density function (PDF) and ρ : Q → R≥0 is the unknown PDF. The control
u acting on the drift term may depend on time and/or space. The coefficient functions αij in
(2) are related to D via αij =

∑
kDikDjk/2. For an exhaustive theory and more details on the

connection between stochastic processes and the Fokker-Planck equation, we refer to [24].
Since ρ is required to be a probability density function, it shall satisfy the standard properties

of a PDF, i.e.,

ρ(x, t) ≥ 0 ∀(x, t) ∈ Q and

∫
Ω

ρ(x, t) dx = 1 ∀t ∈ ]0, T [ . (4)

Note that if the FP equation evolves on a bounded domain Ω ⊂ Rd, e.g. in case of localized
SDEs [26], suitable boundary conditions on ∂Ω × (0, T ) have to be employed. A complete
characterization of possible boundary conditions for d = 1 can be found in the work of Feller [9].
In the multidimensional case, one possible choice is the zero-flux boundary condition n·j(x, t) = 0
on ∂Ω×(0, T ), where j denotes the probability flux and n is the unit normal vector to the surface
∂Ω, see [3, 4]. With this, the conservation of mass property in (4) holds. Another possibility is
to use homogeneous Dirichlet boundary conditions, which, while appropriate in some scenarios
[2, 3, 12], in general do not guarantee conservation of mass in space. See also [17, Chapter 5]
for a comparison between the Gihman-Skorohod [13] and the Feller classification of boundary
conditions.

In this work, we consider Ω = Rd and natural boundary conditions, i.e., ρ(x, t) → 0 as
‖x‖ → ∞ for all t > 0, as we want to focus on Gaussian distributions. More precisely, we look
at solutions of (2) of the form

ρ(x, t;u) := |2πΣ(t;u)|−1/2 exp

(
−1

2
(x− µ(t;u))TΣ(t;u)−1(x− µ(t;u))

)
, (5)

where µ(t;u) ∈ Rd is the (controlled) mean and Σ(t;u) ∈ Rd×d is the (controlled) covariance
matrix, which is symmetric and positive definite. For matrices A ∈ Rd×d, throughout the paper,
we write |A| := det(A). We want to attain a Gaussian PDF

ρ̄(x) := |2πΣ̄|−1/2 exp

(
−1

2
(x− µ̄)T Σ̄−1(x− µ̄)

)
, (6)

where µ̄ and Σ̄ are the desired mean and state covariance, respectively.
In the following, we derive conditions on the coefficients αij and bi in the Fokker-Planck

equation (2) such that (5) is a solution of (2). We start with the one-dimensional case and write
Σ(t) = σ(t)2. Then we have

∂xρ = −x− µ
σ2

ρ, and ∂2
xxρ =

[
− 1

σ2
+

(x− µ)2

σ4

]
ρ, (7)

3



resulting in

∂tρ =

[
−∂t(σ

2)

2σ2
+

(x− µ)∂tµ

σ2
+

(x− µ)2∂t(σ
2)

2σ4

]
ρ =

1

2
∂t(σ

2)∂2
xxρ− ∂tµ∂xρ. (8)

Therefore,

0 = ∂tρ− ∂2
xx(αρ) + ∂x(bρ)

=
ρ

σ2

[(
1

2
∂t(σ

2)− α
)(

(x− µ)2

σ2
− 1

)
+ (x− µ) (∂tµ+ 2∂xα− b)

−σ2(∂2
xxα+ ∂xb)

]
⇔
(

1

2
∂t(σ

2)− α
)(

(x− µ)2

σ2
− 1

)
+ (x− µ) (∂tµ+ 2∂xα− b)

− σ2(∂2
xxα+ ∂xb) = 0.

(9)

The case of several space dimensions is much more technical. As a special case, let us consider
linear stochastic systems of the form

dXt = AXtdt+Bu(t)dt+DdWt, t ∈ (0, T ),

Xt(t = 0) = X0 a.s.,
(10)

where A ∈ Rd×d, B ∈ Rd×l, D ∈ Rd×m and a control u(t) is defined by

u(t) := −K(t)Xt + c(t) (11)

for functions K : R≥0 → Rl×d and c : R≥0 → Rl. This results in

dXt = (A−BK(t))Xtdt+Bc(t)dt+DdWt, t ∈ (0, T ),

Xt(t = 0) = X0 a.s..
(12)

i.e., a stochastic process with constant diffusion D(Xt, t) ≡ D and a linear drift term b(Xt, t;u) =
(A − BK(t))Xt + Bc(t), cf. (1), from which the coefficients for the associated Fokker-Planck
equation (2) can be derived. If X0 ∼ N (µ̊, Σ̊) with mean µ̊ ∈ Rd and covariance matrix Σ̊ ∈
Rd×d > 0, the corresponding initial PDF in (3) is given by

ρ0(x) := |2πΣ̊|−1/2 exp

(
−1

2
(x− µ̊)T Σ̊−1(x− µ̊)

)
. (13)

Then due to linearity of the process, the solution of the corresponding Fokker-Planck IVP (2)-(3),
ρ(x, t), is also a Gaussian PDF of form (5), cf. [22, 6, 5]. The same holds if A, B and D are
time-dependent, cf. [24, Section 6.5].

In the rest of this paper, we consider linear stochastic systems of type (12) with corresponding
initial PDF (13). We can characterize these processes via the following ODE system for the
corresponding mean µ(t) and covariance matrix Σ(t), see [5, p. 117]:

µ̇(t) = (A−BK(t))µ(t) +Bc(t), µ(0) = µ̊,

Σ̇(t) = (A−BK(t))Σ(t) + Σ(t)(A−BK(t))T +DDT , Σ(0) = Σ̊.
(14)

Note that even though the control (11) enters through the drift term, cf. (10), since it is linear
in space, both mean and variance are affected.

One particular process of this form is the Ornstein-Uhlenbeck process. Besides the geometric
Brownian movement, it is one of the simplest and most widely used processes defined by a
stochastic differential equation.

4



Example 1 (Ornstein-Uhlenbeck). (a) For given parameters θ, ς > 0 and ν ∈ R, the uncon-
trolled one-dimensional Ornstein-Uhlenbeck process is defined by

dXt = θ (ν −Xt) dt+ ςdWt, Xt(t = 0) = X0. (15)

Adding a control of type (11) results in

dXt = − (θ +K(t))Xtdt+ (θν + c(t)) dt+ ςdWt, Xt(t = 0) = X0. (16)

By translating c(t) we can set ν = 0 without loss of generality. Then the controlled
Ornstein-Uhlenbeck process is given by (12) with

A = −θ, B = 1, and D = ς. (17)

To keep the properties of the process, we require that θ + K(t) > 0, i.e., K(t) > −θ. We
do not (need to) impose any constraints on c(t).

(b) An easy extension to the multi-dimensional case is made by considering

A = diag(−θ1, . . . ,−θd),
B = I,

D = diag(ς1, . . . , ςd),

K(t) = diag(k1(t), . . . , kd(t)),

c(t) = (c1(t), . . . , cd(t)),

(18)

where analogously we require that ki(t) > −θi.
Let us assume that ρ0 is a Gaussian PDF with mean µ̊ ∈ Rd and covariance matrix Σ̊ij =
δij σ̊

2
i , where δij is the Kronecker delta. Furthermore, let us view the control coefficients

(K(t), c(t)) as parameters for the moment and assume that they are constant, i.e., ki(t) ≡ k̄i
and ci(t) ≡ c̄i, i = 1, . . . , d. Then (14) can be solved analytically, with the mean given by

µi(t) =
c̄i

θi + k̄i
+

(
µ̊i −

c̄i
θi + k̄i

)
e−(θi+k̄i)t (19)

and covariance matrix
Σij(t) = δijσ

2
i (t), (20)

where

σ2
i (t) :=

ς2i
2(θi + k̄i)

+

(
σ̊2
i −

ς2i
2(θi + k̄i)

)
e−2(θi+k̄i)t. (21)

Moreover,

lim
t→∞

µi(t) =
c̄i

θi + k̄i
=: µ̄i and lim

t→∞
Σij(t) = δij

ς2i
2(θi + k̄i)

=: Σ̄ij . (22)

Due to the fixed form of the control, (11), in the following we will use the term ”control”
for both u(x, t) and the pair of coefficients (K(t), c(t)), depending on the context. Likewise, our
objective to steer the solution ρ(x, t;u) to ρ̄(x) and remain there is equivalent to steer the pair
(Σ(t), µ(t)) to (Σ̄, µ̄) and maintain that state.

While in Example 1 it is easy to see that any desired state of type (6) can be reached by
choosing appropriate functions (K(t), c(t)) and stabilized with constant (K̄, c̄), in general this
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is not the case. To ensure the existence of controls (K(t), c(t)) such that at some given time
T > 0, ρ̄(x) is reached, it is necessary and sufficient to require (A,B) to be a controllable pair,
see [6, Sections II and III] or [5, Theorems 2.10.5 and 2.10.6]. After having reached ρ̄, the aim
is to stay there. In this work, we want to focus on stationary states that can be stabilized by
applying static state-feedback, i.e., (11) with some constant (K̄, c̄). In general, not every desired
state ρ̄ can be stabilized in this manner. To this end, some conditions on Σ̄ and the dynamics
were derived in [6, Section III-B]. Overall, we end up with the following conditions, which we
assume throughout the paper:

Assumption 2. (a) The pair (A,B) is controllable.

(b) The covariance matrix of the desired Gaussian PDF ρ̄(x), Σ̄, is such that the equation

0 = AΣ̄ + Σ̄AT +BXT +XBT +DDT (23)

can be solved for X.

(c) A−BK̄ is a Hurwitz matrix for K̄ = −XT Σ̄−1 and X the solution of (23).

(d) The equation
0 = (A−BK̄)µ̄+Bc̄ (24)

has a solution (K̄, c̄) with K̄ as in (c).

As mentioned above, the first condition guarantees the existence of controls (K(t), c(t)) such
that a given Gaussian PDF ρ̄, characterized by the pair (µ̄, Σ̄), can be reached. From (14) we see
that Assumption 2(b) is a necessary condition such that Σ̄ can be stabilized using a constant K̄:
If it holds for a given Σ̄, then the algebraic Lyapunov equation

(A−BK̄)Σ̄ + Σ̄(A−BK̄)T = −DDT (25)

is satisfied with K̄ = −XT Σ̄−1. If, additionally, Assumption 2(c) holds for this K̄, then Σ̄ is
an admissible stationary state covariance in the sense that it can be stabilized using a constant
control K̄. In order to stabilize a desired mean µ̄ as well, in addition to the previous assumptions,
we require Assumption 2(d) to hold. This condition is sufficient due to (14) and the fact that
A−BK̄ is Hurwitz according to Assumption 2(c). For more details, see [6].

Remark 3. If one ignores the mean or assumes it is constant for all times, then one can drop
Assumption 2(d). Furthermore, Assumption 2(c) can be guaranteed if the range of B is a subset
of the range of D, i.e., R(B) ⊆ R(D), which one can verify without knowing K̄, cf. [6].

To summarize, we consider stochastic processes (12) with corresponding initial PDF (13). Our
objective is to steer to and remain at a certain stationary PDF (6), which can be characterized
by its mean µ̄ and covariance matrix Σ̄. Therefore, we can equivalently study the dynamics (14).
With Assumption 2 we ensure the feasibility of the problem.

In a next step, we want to solve this problem. It can be formulated as an infinite horizon
optimal control problem with the objective to minimize

J∞(ρ0, u) :=

∫ ∞
0

`(ρ(x, t;u; ρ0), u(t)) dt (26)

for a given stage cost ` with respect to u, subject to the dynamics (2)-(3) associated to the
stochastic process (12). A common choice in PDE-constrained optimization is to penalize the
distance to the desired state in the L2 norm and add some control cost function p(u(t)), e.g.,

`(ρ, u) :=
1

2

∫
Ω

(ρ(x, t;u; ρ0)− ρ̄(x))
2
dx+ p(u(t)). (27)

6



We address this optimization problem using Model Predictive Control (MPC), which we intro-
duce in the following section.

3 Model Predictive Control

In this section, we briefly present the concept of MPC. A more detailed introduction can be
found in the monographs [15] and [23].

As we will describe below, in MPC the control input is synthesized by solving an optimal
control problem at discrete points in time tk, k ∈ N0. It is therefore convenient to rewrite the
dynamics in discrete time form. Hence, suppose we have a process whose state z(k) is measured
at discrete points in time tk, k ∈ N0, and which we can control on the time interval [tk, tk+1) via
a control signal u(k). Then we can consider nonlinear discrete time control systems

z(k + 1) = f(z(k), u(k)), z(0) = z0, (28)

with state z(k) ∈ X ⊂ Z and control u(k) ∈ U ⊂ U , where Z and U are metric spaces. State
and control constraints are incorporated in X and U, respectively. Continuous time models such
as the one presented in Section 2 are sampled using a (constant) sampling rate Ts > 0, i.e.,
tk = t0 +kTs. Given an initial state z0 and a control sequence (u(k))k∈N0

, the solution trajectory
is denoted by zu(·; z0). Note that the control sequence is not necessarily piecewise constant, i.e.,
u(k) for some k ∈ N is not constant in general.

Stabilization and tracking problems can be recast as infinite horizon optimal control prob-
lems using a tracking type cost function (26). However, solving infinite horizon optimal control
problems governed by PDEs is in general computationally hard. The idea behind MPC is to
circumvent this issue by iteratively solving optimal control problems on a shorter, finite time
horizon and use the resulting optimal control values to construct a feedback law F : X → U for
the closed loop system

zF (k + 1) = f(zF (k),F(zF (k))). (29)

Instead of minimizing a cost functional

J∞(z0, u) :=

∞∑
k=0

`(zu(k; z0), u(k)), (30)

the finite horizon cost functional

JN (z0, u) :=

N−1∑
k=0

`(zu(k; z0), u(k)) (31)

is minimized, where N ≥ 2 is the optimization horizon length and the continuous function
` : Z × U → R≥0 defines the stage costs, also called running costs. The feedback law F is
constructed through the following MPC scheme:

0. Given an initial value zF (0) ∈ X, fix the length of receding horizon N ≥ 2 and set n = 0.

1. Initialize the state z0 = zF (n) and minimize (31) subject to (28). Apply the first value of
the resulting optimal control sequence denoted by u∗ ∈ UN , i.e., set F(zF (n)) := u∗(0).

2. Evaluate zF (n+ 1) according to relation (29), set n := n+ 1 and go to step 1.
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By truncating the infinite horizon, an important question is whether the MPC closed loop
system is asymptotically stable. One way to enforce stability is to add terminal conditions to
(31). In the PDE setting, this approach has been investigated, e.g., by [18, 8, 7]. Terminal
constraints are added to the state constraints X, terminal costs influence the cost functional JN .
However, constructing a suitable terminal region or finding an appropriate terminal cost is a
challenging task, cf. [15]. MPC schemes that do not rely on these methods are much easier to set
up and implement and are therefore often preferred in practice. In this case, the choice of the
horizon length N in step 0 of the MPC algorithm is crucial: Longer horizons make the problem
computationally harder, shorter horizon lengths may lead to instability of the MPC closed loop
system. Therefore, the smallest horizon that yields a stabilizing feedback is of particular interest,
both from the theoretical and practical point of view. Finding it is the main task of this paper.

Similar to [1], the study in this work relies on a stability condition proposed in [15] that,
together with the exponential controllability assumption below, ensures the relaxed Lyapunov
inequality, cf. [15, Thm. 6.14 and Prop. 6.17]. This inequality has been introduced in [19] to
guarantee stability of the MPC closed loop solution.

Definition 4. The system (28) is called exponentially controllable with respect to the stage costs
` :⇔ ∃C ≥ 1, δ ∈ (0, 1) such that for each state z̊ ∈ Z there exists a control uz̊ ∈ U satisfying

`(zuz̊
(k; z̊), uz̊(k)) ≤ Cδk min

u∈U
`(̊z, u) (32)

for all k ∈ N0.

Using the stability condition from [15], the minimal stabilizing horizon can be deduced from
the values of the overshoot bound C and the decay rate δ. For more details, see [1]. The most
important difference in the influence of C and δ for our study is that for fixed C, it is generally
impossible to arbitrarily reduce the horizon N by reducing δ. However, for C = 1, stability can
be ensured even for the shortest meaningful horizon N = 2. Note that condition (32) depends
on the stage cost `, which, in this paper, are given by

`(z(k), u(k)) =
1

2
‖z(k)− z̄‖2 +

γ

2
‖u(k)− ū‖2 (33)

for some norm ‖·‖, where (z̄, ū) constitutes an equilibrium of (28), i.e., f(z̄, ū) = z̄. Note that
ū only makes z̄ an equilibrium; it is not required that with u(k) ≡ ū we converge towards z̄.
However, we have `(z̄, ū) = 0 and `(z, u) > 0 for (z, u) 6= (z̄, ū), which are necessary conditions
for the following theorem resulting from [15, Theorem 6.18 and Section 6.6] to hold.

Theorem 5. Consider the MPC scheme with stage cost (33) satisfying the exponential control-
lability property from Definition 4 with C ≥ 1 and δ ∈ (0, 1).

(a) Then there exists some optimization horizon N̄ ≥ 2 such that the equilibrium z̄ is globally
asymptotically stable for the MPC closed loop for each optimization horizon N ≥ N̄ .

(b) If C = 1 then N̄ = 2.

In both cases, the optimal value function VN (z0) := infu0
JN (z0, u0) for (31) is a Lyapunov

function for the closed loop, which in particular satisfies VN (zF (n + 1)) < VN (zF (n)) whenever
VN (zF (n)) 6= 0.

This result states that the MPC closed loop has the same qualitative stability property as
the solution of the infinite horizon optimal control problem (30). In addition to this qualitative
property, the results from [15] also yield that the MPC closed loop is approximately optimal for
the infinite horizon functional (30), i.e., that they are quantitatively similar to the infinite horizon
problem. However, in order not to overload the presentation, we will focus on the stability aspect
in the remainder of this paper.
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4 Design and Properties of the Stage Cost `

Before we turn to the analysis of the MPC problem, we take a closer look at designing suitable
stage cost `. In light of Theorem 5, the standard choice of using quadratic costs in the state
and the control penalization (33) certainly appears to be viable. A common choice of norms
in PDE-constrained optimization problems is the L2 norm, cf. [27], which is meaningful for the
term penalizing the state. However, since the control (11) acts on the whole domain Ω = Rd and

is linear in space, using, e.g., ‖u− ū‖2L2(Rd) is not meaningful. Here, ū is of form (11) and can

be characterized by its coeffients (K̄, c̄) that satisfy Assumption 2. Therefore, we penalize the
deviation of the control coefficients (K(t), c(t)) from (K̄, c̄), which results in

`(ρ, u) :=
1

2
‖ρ− ρ̄‖2L2(Rd) +

γ

2

∥∥BK −BK̄∥∥2

F
+
γ

2
‖Bc−Bc̄‖22 (34)

for some weight γ ≥ 0 and where ‖·‖F denotes the Frobenius norm.
In our setting, ρ = ρ(x, t;u) is a Gaussian PDF of form (5) with mean µ(t) and covariance

matrix Σ(t). If we turn our focus from the Fokker-Planck equation (2)-(3) to the associated
dynamics (14), it is sensible to depict the term penalizing the state in (34) in terms of µ and Σ.

Lemma 6. Let ρ(x, t;u) and ρ̄(x) be given by (5) and (6), respectively. We drop the argument
u in ρ(x, t;u), Σ(t;u) and µ(t;u) for better readability. Then for all t ≥ 0

‖ρ(·, t)− ρ̄(·)‖2L2(Rd) = 2−dπ−
d
2

[
|Σ(t)|− 1

2 + |Σ̄|− 1
2

−2

∣∣∣∣12(Σ(t) + Σ̄)

∣∣∣∣− 1
2

exp

(
−1

2
(µ(t)− µ̄)

T
(Σ(t) + Σ̄)−1 (µ(t)− µ̄)

)]
. (35)

We recall that |A| = det(A) for A ∈ Rd×d.

Proof. We split the L2 norm into

‖ρ(t)− ρ̄‖2L2(Rd) = ‖ρ(t)‖2L2(Rd) + ‖ρ̄‖2L2(Rd) − 2

∫
Rd

ρ(t)ρ̄ dx (36)

and consider the three terms separately. Since only spatial integrals are involved while the time t
remains fixed, in the following we may drop the argument whenever it is clear from the context,
i.e., intead of ρ(x, t) we write ρ(x).

We can apply standard results regarding integrals of Gaussians, cf. [20, Section 8.1.1] to

ρ(x)2 = |2πΣ|−1 exp
(
−(x− µ)TΣ−1(x− µ)

)
(37)

to get

‖ρ‖2L2(Rd) = |2πΣ|−1

∣∣∣∣2π(1

2
Σ

)∣∣∣∣ 1
2

= 2−dπ
d
2 |Σ|− 1

2 . (38)

Analogously, we have

‖ρ̄‖2L2(Rd) = 2−dπ
d
2 |Σ̄|− 1

2 . (39)

The last term in (36) is a bit more involved. First, we note that

ρρ̄ = |2πΣ|− 1
2 |2πΣ̄|− 1

2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)− 1

2
(x− µ̄T )Σ̄−1(x− µ̄)

]
= |2πΣ|− 1

2 |2πΣ̄|− 1
2 eC exp

[
−1

2
(x− µc)TΣ−1

c (x− µc)
]
,

(40)
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where the second equality holds with

Σ−1
c := Σ−1 + Σ̄−1,

µc := (Σ−1 + Σ̄−1)−1(Σ−1µ+ Σ̄−1µ̄),

C :=
1

2
(µTΣ−1 + µ̄T Σ̄−1)(Σ−1 + Σ̄−1)−1(Σ−1µ+ Σ̄−1µ̄)

− 1

2
(µTΣ−1µ+ µ̄T Σ̄−1µ̄),

(41)

cf. [20, Section 8.1.7]. Now we can apply the standard results from above to (40) in order to get∫
Rd

ρρ̄ dx = |2πΣ|− 1
2 |2πΣ̄|− 1

2 |2πΣc|
1
2 eC

= (2π)−
d
2 |Σ|− 1

2 |Σ̄|− 1
2 |
(
Σ−1 + Σ̄−1

)−1 | 12 eC

= (2π)−
d
2 |Σ|− 1

2 |Σ̄|− 1
2 |Σ−1 + Σ̄−1|− 1

2 eC

= (2π)−
d
2 |Σ

(
Σ−1 + Σ̄−1

)
Σ̄|− 1

2 eC

= (2π)−
d
2 |Σ̄ + Σ|− 1

2 eC

= 2−dπ
d
2

∣∣∣∣12 (Σ + Σ̄
)∣∣∣∣− 1

2

eC .

(42)

Therefore, it is left to show that

C = −1

2
(µ− µ̄)T (Σ + Σ̄)−1(µ− µ̄). (43)

Since Σ̄ ∈ Rd×d is symmetric and positive definite, we can do a Cholesky decomposition, i.e.,
there exists a matrix L ∈ Rd×d such that Σ̄ = LTL. Furthermore, since for arbitrary but
fixed t ≥ 0 the matrix Σ(t) ∈ Rd×d is symmetric, L−TΣ(t)L−1 has the same property and both
matrices can be diagonalized unitarily, i.e., there exists some matrix U(t) with U(t)TU(t) = I and
U(t)−TL−TΣ(t)L−1U(t)−1 = Λ(t), where Λ(t) is a positive definite diagonal matrix. Defining
S(t) := U(t)L we get that Σ̄ = S(t)TS(t) and Σ(t) = S(t)TΛ(t)S(t). With this, we see that

Σ̄−1
(
Σ(t)−1 + Σ̄−1

)−1
Σ(t)−1

= S(t)−1Λ(t)−1S(t)−TS(t)T
(
I + Λ(t)−1

)−1
S(t)S(t)−1S(t)−T

= S(t)−1Λ(t)−1
(
I + Λ(t)−1

)−1
S(t)−T

= S(t)−1 (I + Λ(t))
−1
S(t)−T

=
(
S(t)T (I + Λ(t))S(t)

)−1

=
(
Σ(t) + Σ̄

)−1

(44)

and, analogously,

Σ(t)−1
(
Σ(t)−1 + Σ̄−1

)−1
Σ(t)−1 − Σ(t)−1 = −

(
Σ(t) + Σ̄

)−1
. (45)

These two results allow us to calculate C. In the following, we once again omit the argument t
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for better readability. We have

C =
1

2
(µTΣ−1 + µ̄T Σ̄−1)(Σ−1 + Σ̄−1)−1(Σ−1µ+ Σ̄−1µ̄)

− 1

2
(µTΣ−1µ+ µ̄T Σ̄−1µ̄)

=
1

2
µTΣ−1(Σ−1 + Σ̄−1)−1Σ−1µ+

1

2
µ̄T Σ̄−1(Σ−1 + Σ̄−1)−1Σ̄−1µ̄

− 1

2
(µTΣ−1µ+ µ̄T Σ̄−1µ̄) +

1

2
µT Σ−1(Σ−1 + Σ̄−1)−1Σ̄−1︸ ︷︷ ︸

=(Σ+Σ̄)−1

µ̄

+
1

2
µ̄T Σ̄−1(Σ−1 + Σ̄−1)−1Σ−1︸ ︷︷ ︸

=(Σ+Σ̄)−1

µ

=
1

2
µT
[
Σ−1

(
Σ−1 + Σ̄−1

)−1
Σ−1 − Σ−1

]
︸ ︷︷ ︸

=−(Σ+Σ̄)−1

µ

+
1

2
µ̄T
[
Σ̄−1

(
Σ−1 + Σ̄−1

)−1
Σ̄−1 − Σ̄−1

]
︸ ︷︷ ︸

=−(Σ+Σ̄)−1

µ̄+ µT (Σ + Σ̄)−1µ̄

= − 1

2
µT (Σ + Σ̄)−1µ− 1

2
µ̄T (Σ + Σ̄)−1µ̄+ µT (Σ + Σ̄)−1µ̄

= − 1

2
(µ− µ̄)T (Σ + Σ̄)−1(µ− µ̄),

(46)

which concludes the proof.

In the course of this work it will be useful to restrict the target PDF ρ̄ of form (6) to

ρ̄(x) = (2π)−d/2 exp

(
−1

2
xTx

)
, (47)

i.e., µ̄ = 0 ∈ Rd and Σ̄ = I ∈ Rd×d. Then due to Assumption 2(d) we have that Bc̄ = 0, cf. (14).
Therefore, expressing the stage cost (34) in terms of the state (Σ, µ) and control (K, c) using
Lemma 6 leads to

`((Σ, µ), (K, c))

= 2−dπ−d/2

[
|Σ|− 1

2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣− 1
2

exp

(
−1

2
µT (Σ + I)−1µ

)]
+
γ

2

∥∥BK −BK̄∥∥2

F
+
γ

2
‖Bc‖22 .

(48)

This restriction on ρ̄ does not affect the generality of this paper, see the following lemma.

Lemma 7. We can assume (Σ̄, µ̄) = (I, 0) without loss of generality in the following sense: Any
statement that holds for the special case (Σ̄, µ̄) = (I, 0) with stage cost (34) also holds for general
symmetric and positive definite matrices Σ̄ and vectors µ̄ ∈ Rd with the modified stage cost

`2(ρ, u) :=
1

2
|Σ̄| 12 ‖ρ− ρ̄‖2L2(Rd) +

γ

2

∥∥∥Σ̄−
1
2

(
BK −BK̄

)
Σ̄

1
2

∥∥∥2

F

+
γ

2

∥∥∥Σ̄−
1
2 [(A−BK) µ̄+Bc]

∥∥∥2

2
.

(49)
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The idea of the proof is to first consider (47) and work with the corresponding stage cost (34)
and then encompass arbitrary target normal distributions ρ̄ characterized by some mean µ̄ ∈ Rd
and covariance matrix 0 < Σ̄ ∈ Rd×d by transforming the dynamical system and modifying the
stage cost (34) in a suitable way. For example, it should make no difference in cost and in the
control sequence whether we steer the expected value of a normal distribution from 10 to zero
or from 11 to 1.

Proof. Starting from the SDE (12) and some arbitrary target normal distribution ρ̄ characterized
by some µ̄ ∈ Rd and 0 < Σ̄ ∈ Rd×d, we introduce a new random variable Yt := Σ̄−1/2 (Xt − µ̄).
Then due to linearity of the expected value, we get

µY (t) = E [Yt] = E
[
Σ̄−1/2 (Xt − µ̄)

]
= Σ̄−1/2 (E [Xt]− µ̄) = Σ̄−1/2 (µ(t)− µ̄) (50)

and with
Yt − µY (t) = Σ̄−1/2 (Xt − µ̄)− µY (t) = Σ̄−1/2 (Xt − µ(t)) (51)

we get

ΣY (t) = E
[
(Yt − µY (t)) (Yt − µY (t))

T
]

= E
[
Σ̄−1/2 (Xt − µ(t)) (Xt − µ(t))

T
Σ̄−1/2

]
= Σ̄−1/2E

[
(Xt − µ(t)) (Xt − µ(t))

T
]

Σ̄−1/2 = Σ̄−1/2Σ(t)Σ̄−1/2.

(52)

Transforming (14) into the new variables (ΣY , µY ) yields

µ̇Y (t) = Σ̄−1/2(A−BK(t))Σ̄1/2µY (t) + Σ̄−1/2 [(A−BK(t))µ̄+Bc(t)] ,

µY (0) = Σ̄−1/2 (µ̊− µ̄) ,

Σ̇Y (t) = Σ̄−1/2(A−BK(t))Σ̄1/2ΣY (t) + ΣY (t)Σ̄1/2(A−BK(t))T Σ̄−1/2

+ Σ̄−1/2DDT Σ̄−1/2,

ΣY (0) = Σ̄−1/2Σ̊Σ̄−1/2.

(53)

Therefore, steering the system (53) to (Σ̄Y , µ̄Y ) = (I, 0) is equivalent to steering (14) to (Σ̄, µ̄).
In particular, if Assumption 2 holds for (14), then (53) can be steered towards (I, 0).

For the moment, let us assume that (Σ̄, µ̄) = (I, 0). Then the stage cost (34) results to (48).
We claim that any statement that holds for the special case (Σ̄, µ̄) = (I, 0) with stage cost (34)
also holds for general (Σ̄, µ̄) if using the modified stage cost (49) instead. The idea is to compare
the system (14) in the special case (Σ̄, µ̄) = (I, 0) to (53) and adjust the stage cost accordingly.
For instance, Σ̄−1/2(A − BK(t))Σ̄1/2 takes the role of (A − BK(t))2 and instead of Bc(t) we
have Σ̄−1/2 [(A−BK(t))µ̄+Bc(t)]. Therefore, we adjust the stage cost (48) accordingly:

‖Bc‖22  
∥∥∥Σ̄−1/2 [(A−BK)µ̄+Bc]

∥∥∥2

2
(54)

and ∥∥BK −BK̄∥∥2

F
=
∥∥(A−BK)− (A−BK̄)

∥∥2

F

 
∥∥∥Σ̄−

1
2 (A−BK) Σ̄

1
2 − Σ̄−

1
2

(
A−BK̄

)
Σ̄

1
2

∥∥∥2

F
=
∥∥∥Σ̄−

1
2

(
BK −BK̄

)
Σ̄

1
2

∥∥∥2

F
.

(55)

2To see this in the equation for Σ̇Y (t) it is helpful to use (25), which holds due to Assumption 2(b).
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The only term left to adjust is ‖ρ− ρ̄‖2L2(Rd). Since Σ(t) = Σ̄1/2ΣY (t)Σ̄1/2 and Σ(t) + Σ̄ =

Σ̄1/2 (ΣY (t) + I) Σ̄1/2, we have

|Σ(t)|− 1
2 = |Σ̄1/2ΣY (t)Σ̄1/2|− 1

2 = |Σ̄|− 1
2 |ΣY (t)|− 1

2 ,∣∣∣∣12(Σ(t) + Σ̄)

∣∣∣∣− 1
2

=

∣∣∣∣12(Σ̄1/2 (ΣY (t) + I) Σ̄1/2)

∣∣∣∣− 1
2

= |Σ̄|− 1
2

∣∣∣∣12(ΣY (t) + I)

∣∣∣∣− 1
2

.
(56)

Furthermore, since µ̄ = 0 and therefore µY (t) = Σ̄−
1
2 (µ(t)− µ̄) = Σ̄−

1
2µ(t), we have that

|Σ(t)|− 1
2 + |Σ̄|− 1

2 − 2

∣∣∣∣12(Σ(t) + Σ̄)

∣∣∣∣− 1
2

exp

(
−1

2
µ(t)T (Σ(t) + Σ̄)−1µ(t)

)
= |Σ̄|− 1

2

[
|ΣY (t)|− 1

2 + 1

−2

∣∣∣∣12(ΣY (t) + I)

∣∣∣∣− 1
2

exp

(
−1

2
µY (t)T (ΣY (t) + I)−1µY (t)

)]
.

(57)

This together with (48) explains the last necessary adjustment, namely the factor |Σ̄| 12 in front
of the term penalizing the state in (49).

In the special case of µ(t) ≡ µ̄, i.e., if the target mean is reached and stays at the target, the
restriction to Σ̄ = I gives rise to the following result.

Lemma 8. Let µ(t) ≡ µ̄ and Σ̄ = I. Define Λ(t) := diag(λ1(t), . . . , λd(t)), where λi(t), i =
1, . . . , d, are the Eigenvalues of Σ(t). Then

‖ρ(·, t)− ρ̄(·)‖2L2(Rd) = 2−dπ−d/2f(Λ(t)) (58)

with

f(Λ) := 1 + |Λ|−1/2 − 2

∣∣∣∣12(Λ + I)

∣∣∣∣−1/2

. (59)

Proof. Since Σ̄ = I and µ(t) ≡ µ̄, the state cost (35) becomes

‖ρ(·, t)− ρ̄(·)‖2L2(Rd) = 2−dπ−d/2

[
|Σ(t)|− 1

2 + 1− 2

∣∣∣∣12(Σ(t) + I)

∣∣∣∣− 1
2

]
. (60)

If λ1(t), . . . , λd(t) are the Eigenvalues of Σ(t), then λi(t) + 1, i = 1, . . . , d, are the Eigenvalues of
Σ(t) + I. Since |Σ(t)| = |Λ(t)| and |Σ(t) + I| = |Λ(t) + I| the assertion follows.

5 Minimal Stabilizing Horizon Estimates

In this section, we want to study the behavior of the MPC closed loop system that emerges when
we use Model Predictive Control. More precisely, we are interested in estimating minimal horizon
lengths N such that our desired equilibrium ρ̄, respectively (Σ̄, µ̄), is asymptotically stable for
the MPC closed loop.

Whether we consider The Fokker-Planck IVP (2)-(3) with state ρ or, equivalently, the dy-
namics (14) with state (Σ(t), µ(t)), they are always sampled in order to obtain the discrete time
system described in Section 3. That is, if (Σ(t), µ(t)) is the solution trajectory of (14), then we
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denote by Σ(k) the evaluation of Σ(t) at time tk := t0 + kTs, where k ∈ N0 and Ts > 0 is the
sampling rate.

In order to prove asymptotic stability we can use the exponential controllability property,
cf. Theorem 5. Suitable stage costs ` are given by (34) or (49). In both cases, the state ρ is
penalized in the L2 norm, which is well suited for PDE-constrained optimization as explained
in the introduction. However, expressing the stage cost (34) in terms of the state (Σ(t), µ(t))
instead of ρ(x, t) leads to rather uncommon expressions, cf. Lemma 6. Yet, we strive to show
that MPC does cope with these types of cost in this setting.

To this end, in Section 5.1 we present results for general stochastic processes (12) with
X0 ∼ N (µ̊, Σ̊), i.e., general dynamics of type (14). Then in Section 5.2 we try to improve
these results for a special case, namely the Ornstein-Uhlenbeck process that was introduced in
Example 1.

5.1 General dynamics of type (12)

In this section we consider general dynamics given by (10) with control (11), leading to the
controlled linear dynamics (12) and the equivalent dynamics (14) for the Fokker-Planck equation
(2). We start with the most simple case, in which there are no state constraints, no control
constraints and no control costs.

Theorem 9. Consider the system (14) associated to a linear stochastic process defined by (12)
with a Gaussian initial condition (13) and a desired PDF ρ̄(x) given by (6). Let the stage cost
be given by (34) with γ = 0. Then the equilibrium ρ̄(x) is globally asymptotically stable for the
MPC closed loop for each optimization horizon N ≥ 2.

Proof. In absence of state or control constraints, it is obvious that any system of type (14) that
satisfies Assumption 2(a) can reach any desired state ρ̄(x), which is characterized by some mean
µ̄ ∈ Rd and some covariance matrix Σ̄, in an arbitrarily short time. In particular, this can
be done in one discrete time step by choosing an appropriate K(0) to steer the covariance and
then choosing a corresponding c(0) to control the mean. In the next discrete time step, due to
Assumptions 2(b)-(d), we may switch the control to (K̄, c̄) and stay at ρ̄, invoking zero cost from
then on.

Remark 10. In general, the coefficients (K(0), c(0)) needed in the first step are not constant.
While this is no issue in theory, in practice the discretization of the control sequence u(k) is often
coupled with the discretization of the dynamics, leading to control sequences that are constant in
every MPC time step. If the system cannot be steered towards the desired state within one
discrete time step using constant (K, c), then one should adjust the discretization of the control
in time. Furthermore, one might need to carefully select an initial guess for the NLP solver used
to numerically solve the (arising) non-linear optimization problem.

Now we turn to the more interesting case where γ > 0 and/or control constraints are present.
In this case, in general we cannot guarantee that the target ρ̄(x) is asymptotically stable for
N = 2. Yet, we can recover the asymptotic stability by choosing N ≥ 2 sufficiently large, cf.
Theorem 12. In the proof thereof, however, we need a result that we state in the following
Lemma.

Lemma 11. Consider (14) for K(t) ≡ K̄. Then∥∥Σ(t)− Σ̄
∥∥
F
≤ Ce−κt

∥∥Σ(0)− Σ̄
∥∥
F

(61)

for some constants C, κ > 0.
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Proof. Due to Assumption 2 A−BK̄ is a Hurwitz matrix and (25) holds. Therefore,

Σ̇(t) = (A−BK̄)Σ(t) + Σ(t)(A−BK̄)T +DDT

(25)
= (A−BK̄)(Σ(t)− Σ̄) + (Σ(t)− Σ̄)(A−BK̄)T .

(62)

Defining M := A−BK̄ and Z(t) := Σ(t)− Σ̄ we can rewrite the above equation to

Ż(t) = MZ(t) + Z(t)MT . (63)

Then we vectorize this equation by going through the matrix Z(t) row by row, i.e., for

Z(t) =

 z11(t) . . . z1d(t)
...

...
zd1(t) . . . zdd(t)

 (64)

we define yet another variable

z(t) := (z11(t), . . . , z1d(t), z21(t), . . . , z2d(t), . . . , zd1(t), . . . , zdd(t)) (65)

and arrive at
ż(t) = Ãz(t) (66)

with Ã ∈ Rd2×d2

defined by

Ã :=

 m11(t)I . . . m1d(t)I
...

...
md1(t)I . . . mdd(t)I

+

 M
. . .

M

 . (67)

Let %(M) be the set of all Eigenvalues of M . Then one can calculate that the set of all Eigenvalues
of Ã, %(Ã), consists of all possible sums λm1 +λm2 , where λm1 , λ

m
2 ∈ %(M). In particular, %(Ã) ⊂ C−

since %(M) ⊂ C−. Therefore,
‖z(t)‖2 ≤ Ce

−κt ‖z(0)‖2 (68)

for some constant C, κ > 0. Since ‖z(t)‖2 = ‖Z(t)‖F =
∥∥Σ(t)− Σ̄

∥∥
F

we arrive at (61).

Theorem 12. Consider the dynamic system (14) associated to a linear stochastic process defined
by (12) with a Gaussian initial condition (13) and a desired PDF ρ̄(x) given by (47). Let the
stage cost be given by (34) with γ ≥ 0. Moreover, we impose the following state constraints: For
the Eigenvalues λi(t), i = 1, . . . , d, of Σ(t), we require that 0 < ε ≤ λi ≤ 1/ε for some ε ∈ (0, 1).
Likewise, we need bounds on the mean, i.e., − 1

ε ≤ µi ≤ 1
ε . Then there exists some N̄ ≥ 2

such that the equilibrium ρ̄(x) is globally asymptotically stable for the MPC closed loop for each
optimization horizon N ≥ N̄ .

Proof. We want to prove exponential controllability of the system (14) w.r.t. the stage cost de-
fined by (34), cf. Definition 4. Then our assertion follows from Theorem 5. Having Assumption 2
in mind, a natural control candidate to prove exponential controllability is (K̄, c̄). We will use
this control candidate throughout the proof. In this case, our stage cost reduces to the term
penalizing the state, 1

2 ‖ρ(k)− ρ̄‖2L2(Rd). To prove exponential controllability, we show that

‖ρ(t)− ρ̄‖2L2(Rd) ≤ Ce
−κt ‖ρ(0)− ρ̄‖2L2(Rd) (69)
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in continuous time for some κ > 0 and define δ := e−κTs to arrive at (32). Due to (35), proving
(69) is equivalent to showing

f(Σ(t), µ(t)) ≤ Ce−κtf(Σ(0), µ(0)), (70)

where

f(Σ(t), µ(t)) := |Σ(t)|− 1
2 + 1− 2

∣∣∣∣12(Σ(t) + I)

∣∣∣∣− 1
2

exp

(
−1

2
µ(t)T (Σ(t) + I)−1µ(t)

)
. (71)

Let λi(t), i = 1, . . . , d be the Eigenvalues of Σ(t). Then λi(t) + 1, are the Eigenvalues of Σ(t) + I
and 1

λi(t)+1 are the Eigenvalues of (Σ(t) + I)−1. Since 0 < ε ≤ λi(t) ≤ 1/ε we have

1 >
1

λi(t) + 1
≥ 1

1
ε + 1

=
ε

ε+ 1
. (72)

Then we can bound the exponential term of f in (71):

ε

ε+ 1
‖µ(t)‖22 ≤ µ(t)T (Σ(t) + I)−1µ(t) ≤ ‖µ(t)‖22 . (73)

Therefore,

1− exp

(
− ε

2(ε+ 1)
‖µ(t)‖22

)
≤ 1− exp

(
−1

2
µ(t)T (Σ(t) + I)−1µ(t)

)
≤ 1− exp

(
−1

2
‖µ(t)‖22

)
.

(74)

Since

f(Σ, µ) = |Σ|− 1
2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣− 1
2

+ 2

∣∣∣∣12(Σ + I)

∣∣∣∣− 1
2
[
1− exp

(
−1

2
µT (Σ + I)−1µ

)] (75)

we can bound f(Σ(t), µ(t)):

fl(Σ(t), µ(t)) ≤ f(Σ(t), µ(t)) ≤ fu(Σ(t), µ(t)), (76)

where

fl(Σ, µ) := |Σ|− 1
2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣− 1
2

(77)

+ 2

∣∣∣∣12(Σ + I)

∣∣∣∣− 1
2
[
1− exp

(
− ε

2(ε+ 1)
‖µ‖22

)]
, (78)

fu(Σ, µ) := |Σ|− 1
2 + 1− 2

∣∣∣∣12(Σ + I)

∣∣∣∣− 1
2

+ 2

∣∣∣∣12(Σ + I)

∣∣∣∣− 1
2
[
1− exp

(
−1

2
‖µ‖22

)]
. (79)

Let Λ := diag (λ1, . . . , λd), where λi, i = 1, . . . , d are the Eigenvalues of Σ. Then fl(Σ, µ) =
fl(Λ, µ) and fu(Σ, µ) = fu(Λ, µ). Moreover, since

|Σ| = |Λ| =
d∏
i=1

λi and

∣∣∣∣12(Σ + I)

∣∣∣∣ =

∣∣∣∣12(Λ + I)

∣∣∣∣ =

d∏
i=1

λi + 1

2
, (80)
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we can view the functions fl and fu as functions of a vector λ := (λ1, . . . , λd) instead of a matrix
Λ and calculate for all j = 1, . . . , d:

∂λj
fl(λ, µ) =

1

2

( d∏
i=1

λi + 1

2

)− 1
2 (

λj + 1

2

)−1

exp

(
− ε

2(ε+ 1)
‖µ‖22

)

−

(
d∏
i=1

λi

)− 1
2

λ−1
j

 ,
∂µjfl(λ, µ) =

(
d∏
i=1

λi + 1

2

)− 1
2

ε

ε+ 1
µj exp

(
− ε

2(ε+ 1)
‖µ‖22

)
.

(81)

Denoting by ~1 the d-dimensional vector of ones we get

fl(~1, 0) = 0, ∂λj
fl(~1, 0) = 0, ∂µj

fl(~1, 0) = 0 (82)

and analogously,
fu(~1, 0) = 0, ∂λj

fu(~1, 0) = 0, ∂µj
fu(~1, 0) = 0. (83)

As a consequence, no constant or linear terms appear in the Taylor expansion of either fl(λ, µ)
or fu(λ, µ) around (~1, 0). Thus there are symmetrical positive definite matrices P1, P2 ∈ R2d×2d

such that for all 0 < ε ≤ λi ≤ 1/ε and − 1
ε ≤ µi ≤

1
ε :

(λ−~1, µ)TP1(λ−~1, µ) ≤ fl(λ, µ),

(λ−~1, µ)TP2(λ−~1, µ) ≥ fu(λ, µ).
(84)

All in all, then, we have:

(λ− 1, µ)TP1(λ− 1, µ) ≤ fl(λ, µ)
(76)

≤ f(Σ, µ)
(76)

≤ fu(λ, µ) ≤ (λ− 1, µ)TP2(λ− 1, µ). (85)

Due to equivalence of norms there are constants C1, C2 > 0 such that

(λ− 1, µ)TP2(λ− 1, µ) ≤ C2 ‖(λ− 1, µ)‖22 , (86)

‖(λ− 1, µ)‖22 ≤
1

C1
(λ− 1, µ)TP1(λ− 1, µ). (87)

Since A − BK̄ is a Hurwitz matrix and µ̄ = 0, Bc̄ equals zero, cf. Assumption 2(d). Therefore
it is easy to see from the dynamics (14) that there exist some constants C3, κ1 > 0 such that

‖µ(t)‖2 ≤ C3e
−κ1t ‖µ(0)‖2 . (88)

Due to Lemma 11 we have that ‖Σ(t)− I‖F ≤ C4e
−κ2t ‖Σ(0)− I‖F for some C4, κ2 > 0. Fur-

thermore, ‖Σ(t)− I‖F = ‖Λ(t)− I‖F = ‖λ(t) − ~1‖2, where the first equation holds because
Σ(t)− I is a real and symmetric and therefore normal matrix and the Eigenvalues of (Σ(t)− I)
coincide with those of (Λ(t)− I). Consequently,

‖λ(t)−~1‖2 ≤ C4e
−κ2t‖λ(0)−~1‖2. (89)
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With C5 := max {C3, C4} and κ := min {κ1, κ2}, we finally have that

f(Σ(t), µ(t))
(85)

≤ (λ(t)−~1, µ(t))TP2(λ(t)−~1, µ(t))

(86)

≤ C2‖(λ(t)−~1, µ(t))‖22
= C2

(
‖λ(t)−~1‖22+‖µ(t)‖22

)
(88),(89)

≤ C2

(
C2

4e
−2κ2t‖λ(0)−~1‖22+C2

3e
−2κ1t‖µ(0)‖22

)
≤ C2C

2
5e
−2κt

(
‖λ(0)−~1‖22+ ‖µ(0)‖22

)
= C2C

2
5e
−2κt‖(λ(0)−~1, µ(0))‖22

(87)

≤ C2

C1
C2

5e
−2κt(λ(0)−~1, µ(0))TP1(λ(0)−~1, µ(0))

(85)

≤ C2

C1
C2

5e
−2κtf(Σ(0), µ(0)),

(90)

concluding the proof.

As mentioned in Chapter 3, one can derive N̄ from the values of C and κ in the proof of
Theorem 12, see [15].

5.2 The Ornstein-Uhlenbeck Process

For more specific dynamics, the results from Theorem 12 can be improved by determining
the constants C and κ or at least (tighter) estimates of those. To this end, we look more
closely at the Ornstein-Uhlenbeck process introduced in Example 1, i.e., we consider (14) with
A,B,D,K(t), c(t) as in (18). We recall that, as in Example 1, we impose control constraints
k1(t) > −θi.

Due to Lemma 7 we assume that the target probability density function is characterized by
(Σ̄, µ̄) = (I, 0), i.e., ρ̄(x) is given by (47). The stage cost is given by (34).

Numerical simulations suggest that (Σ̄, µ̄) = (I, 0) is globally asymptotically stable for the
MPC closed loop for the shortest possible horizon N = 2 also for γ > 0. Although performance
degrades with shorter N and depends on the sampling time Ts, the stability property is main-
tained for various initial conditions ρ̊, sampling times Ts and weights γ ≥ 0, cf. also the examples
in this section. If we could prove exponential controllability of the system with respect to stage
cost (34) with C = 1 independent of the weight γ, then Theorem 5 would confirm our conjecture
drawn from numerical findings. A canonical control candidate in this matter is (K̄, c̄) because it
induces no control cost. However, as shown in the following, this simple solution often does not
work.

The rest of this section is divided up into two parts. In the first, we state results for general
weights γ ≥ 0. In particular, for the one-dimensional Ornstein-Uhlenbeck process, we prove that
(Σ̄, µ̄) = (I, 0) is globally asymptotically stable for the MPC closed loop for N ≥ 2. The multi-
dimensional case is more involved and thus, we consider the special case γ = 0 in the second
part. Note that although control costs are eliminated, this scenario is not covered by Theorem 9
due to control constraints ki(t) > −θi.
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5.2.1 The case of γ ≥ 0

We start by illustrating the problems when using the canonical control candidate (K̄, c̄), see the
following example.

Example 13. Consider the 1D Ornstein-Uhlenbeck process with (model) parameters

A = θ = 4, B = 1, D = ς =
√

6, (µ̊, Σ̊) = (14, 12), (µ̄, Σ̄) = (0, 1) (91)

and some γ > 0. From (19), (21) and (22) we can calculate explicitly the constant control

(K̄, c̄) = (ς2/(2Σ̄)− θ, 0) = (ς2/2− θ, 0) = (−1, 0) (92)

that can be used to converge to and stabilize (Σ̄, µ̄). We set the MPC horizon to N = 2, the
sampling rate to Ts = 0.1 and use the stage cost (34). In Figure 1 (left) we illustrate the cost
J2((µ(k),Σ(k)), u(k)), cf. (31), for u(k) = (K̄, c̄) =: ū (blue circle) and for optimal controls
u(k) = (K∗(k), c∗(k)) =: u∗(k) with γ = 0.015 (red cross) as well as γ = 10−5 (green diamond).
For a high enough weight γ > 0 even the optimal sequence u∗(k) leads to temporarily increasing
cost. Since for optimal controls u∗(k) we have J2((µ(k),Σ(k)), u∗(k)) = V2((µ(k),Σ(k)), cf.
Theorem 5, the figure also shows that the optimal value function V2 grows. In particular, this
function cannot be a Lyapunov function for N = 2. Hence, based on this numerical evidence,
Theorem 5 implies that exponential controllability with C = 1 cannot hold.

Yet, from Figure 1 (right), which depicts the normalized Euclidean distances

∆(µ) := ‖µ− µ̄‖22 / ‖µ̊− µ̄‖
2
2 and ∆(Σ) :=

∥∥Σ− Σ̄
∥∥2

F
/‖Σ̊− Σ̄‖2F (93)

of µ(k) (filled) and the variance Σ(k) (empty) from the respective target values for (K̄, c̄) (blue
circle) and optimal controls (K∗(k), c∗(k)) for γ = 0.015 (red square) and γ = 10−5 (green
diamond), we see that the target is reached in all cases.

Figure 1: Objective function (31) for N = 2 with stage cost given by (34) (left) and normalized
differences (93) (right) for Example 13.

In light of Example 13 it is apt to explore other means of proving (global) asymptotic stability
of the MPC closed loop (for N = 2). Already in the proof of Theorem 12 we needed to treat the
mean µ(t) and the covariance matrix Σ(t) separately. For the dynamics given by the Ornstein-
Uhlenbeck process, we can indeed decouple these two.
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Proposition 14. Consider the (multi-dimensional) Ornstein-Uhlenbeck process from Example 1,
i.e., (14) with A,B,D,K(t), c(t) as in (18) and a desired PDF ρ̄(x) given by (47). Furthermore,
let the stage cost be given by (34) with γ ≥ 0. Then each component of the mean µi(t) converges
exponentially towards µ̄i = 0 in the MPC closed loop for each optimization horizon N ≥ 2.

Proof. Let N ≥ 2. If we express the stage cost (34) in terms of (Σ, µ), cf. (35), then the objective
function (31) can be written as

JN ((Σ̊, µ̊), (K, c)) =

N−1∑
k=0

`((Σ(k), µ(k)), (K(k), c(k))) (94)

with

`((Σ(k), µ(k)), (K(k), c(k)))

= 2−dπ−
d
2

[
|Σ(k)|− 1

2 + 1− 2

∣∣∣∣12(Σ(k) + I)

∣∣∣∣− 1
2

exp

(
−1

2
µ(k)T (Σ(k) + I)−1µ(k)

)]
+
γ

2

∥∥BK(k)−BK̄
∥∥2

F
+
γ

2
‖Bc(k)‖22 ,

(95)

cf. (48). Let (K∗(k), c∗(k))k=0,...,N−1 be the optimal control sequence that, together with the
corresponding state trajectory (Σ∗(k), µ∗(k))k=0,...,N−1 minimizes (94) given some initial value

(Σ̊, µ̊).
Looking at (14), we note that K(t) influences both the mean µ(t) and the covariance matrix

Σ(t), while c(t) has an impact on µ(t) only. Therefore, we are able to control the mean µ(t) in-
dependent of the covariance matrix Σ(t). Since |B| 6= 0, every component µi(t) can be controlled
individually. Hence, to prove our assertion, it is sufficient to exclude two things:

1. It is optimal to not approach or to deviate from the target zero in any component of the
mean at any time, i.e., ∃k̃ ∈ {1, . . . , N − 1}, j ∈ {1, . . . , d} :

µ∗j (k̃) > µ∗j (k̃ − 1), if µ∗j (k̃ − 1) > 0

µ∗j (k̃) < µ∗j (k̃ − 1), if µ∗j (k̃ − 1) < 0

µ∗j (k̃) 6= µ∗j (k̃ − 1), if µ∗j (k̃ − 1) = 0

µ∗j (k̃) = µ∗j (k̃ − 1), if µ∗j (k̃ − 1) 6= 0.

. (96)

2. It is optimal to overshoot the target zero in any component of the mean at any time, i.e.,
∃k̃ ∈ {1, . . . , N − 1}, j ∈ {1, . . . , d} :{

µ∗j (k̃) < 0, if µ∗j (k̃ − 1) > 0

µ∗j (k̃) > 0, if µ∗j (k̃ − 1) < 0
. (97)

We note that due to the constraints on K(t), i.e., ki(t) > −θi for i = 1, . . . , d, A − BK(t) =
−diag(θ1+k1(t), . . . , θd+kd(t)) is a negative definite diagonal matrix. Furthermore, c̃(t) := Bc(t)
enters the equation for µ̇(t) linearly and additively, cf. (14). In particular, one can achieve
monotone convergence to zero of each component with c̃(t) ≡ 0 regardless of K(t).

Let us now assume that (96) holds for some j and some k̃. We consider the smallest k̃ ∈
{1, . . . , N − 1} for which (96) holds. Then c̃∗j (k̃ − 1) 6= 0. But then we can construct a better

control sequence (c∗∗(k))k=0,...,N−1 in terms of cost: First, we change c∗∗(k̃ − 1) such that
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c̃∗∗j (k̃ − 1) = 0 and c̃∗∗i (k̃ − 1) = c̃∗i (k̃ − 1) for i 6= j, which is possible since |B| 6= 0. With

this, we clearly reduce the control cost at time k̃ − 1, but also the state cost at time k̃ since
µ∗∗j (k̃) is now closer to zero, cf. (95). Note that we do not touch (K∗(k))k=0,...,N−1 and therefore

Σ∗∗(k) = Σ∗(k) for all k ∈ {0, . . . , N − 1}. The evolution of the mean may change for k > k̃,
but only for the better: If, for the changed control sequence, (96) holds for k̃ + 1 and the same
j, we repeat this procedure for k̃ + 1. If not, it means that we approach the target (and maybe
overshoot it) at time k̃ + 1. In this case, since c̃(t) enters the equation for µ̇(t) linearly and
additively, we can get µ∗∗j (k̃ + 1) = µ∗j (k̃ + 1) with a lower value of |c̃∗∗j (k̃)| compared to |c̃∗j (k̃)|,
resulting in lower control cost while retaining the same state cost. We proceed in this manner
for all k̃ ∈ {1, . . . , N − 1} and all j ∈ {1, . . . , d} for which (96) holds, ending up with a strictly
better performance. Therefore, for all k = 0, . . . , N − 1 it is always best to approach the target
zero in each component of the mean, regardless of Σ(k) and K(k).

Next, we assume that (97) holds for some j and some k̃ and consider again the smallest
k̃ ∈ {1, . . . , N − 1} for which (97) holds. As above, we know that c̃∗j (k̃ − 1) 6= 0. Again, we
can construct a better control sequence: Since c̃(t) enters the equation for µ̇(t) linearly and
additively, we can have that µ∗∗j (k̃) = 0 with a lower value of |c̃∗∗j (k̃−1)| compared to |c̃∗j (k̃−1)|.
Then for all k ≥ k̃, we set c̃∗∗j (k) = 0, resulting in even lower state and control cost, cf. (95).

Therefore, we have shown monotone convergence of µi(t) to µ̄i. Since the ODE for µ(t) in
(14) is linear, the convergence is indeed exponential.

We note that the proof of Proposition 14 is the same if we include constraints on c̃(t) = Bc(t),
as long as c̃(t) = 0 is admissible; for instance c̃1 ≤ c̃(t) ≤ c̃u with c̃l ≤ 0 ≤ c̃u.

Furthermore, Proposition 14 extends to other stochastic processes where the dynamics are
given by (14) provided that

• each component of the mean can be controlled separately and

• we can approach the target (in each component) invoking zero control cost (with respect
to Bci(k)) regardless of how K(k) is chosen.

While it is debatable whether the first ingredient is really necessary, Example 15 illustrates what
happens if the second property is violated.

Example 15. Consider a shifted version of Example 13: instead of (µ̄, µ̊) = (0, 14) we consider
(µ̄, µ̊) = (1, 15). The other model parameters remain the same. In order to take the control
constraint K(t) > −θ into account, we set K(t) + θ ≥ ε with ε = 10−8 in our numerical
simulation. Due to (22) we have (K̄, c̄) = (−1, 3). In this example, we specifically use the
original stage cost (34), not the modified cost (49). Looking at Figure 1 from Example 13, for
low enough values of γ we expect the variance to increase at the beginning, which indeed is the
case for γ = 10−5. However, the mean µ(k) also grows in time, cf. Table 15, which is due to
(19): with c̄ = 3 the mean does not converge to its target for all admissible K(k). This results
in a PDF that is drifting away from its target rather than converging towards it, as desired.

Of course, using the modified stage cost (49) restores the second key property: we can again
approach the target (in each component) invoking zero control cost with respect to Bc(k) for
any admissible K(k). Needless to say, rerunning the numerical simulation of Example 15 with
the modified stage cost, we end up with the exact same behavior as in Example 13.

Having established exponential convergence of the mean in Proposition 14, we can confirm
our numerical findings in the one-dimensional case.
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k 0 1 2 3 4 5 6 7 . . . 200

µ(k) 15 15.23 15.47 15.7 15.93 16.15 16.38 16.61 . . . 72.38
Σ(k) 12 12.6 13.2 13.8 14.4 15 15.6 16.2 . . . 131.4
K(k) ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 ε− 4 . . . ε− 4
c(k) 2.34 2.32 2.3 2.29 2.28 2.27 2.27 2.26 . . . 3
V2(k) .362 .361 .359 .357 .356 .354 .353 .351 . . . .307

Table 1: State, control and corresponding cost for Example 15.

Proposition 16. Consider the one-dimensional Ornstein-Uhlenbeck process from Example 1,
i.e., (14) with A = θ > 0, B = 1, D = ς > 0, K(t) > −θ and c(t) ∈ R. Assume that the desired
PDF ρ̄(x) is given by (47). Furthermore, let the stage cost be given by (34) with γ ≥ 0. Then
the MPC closed loop converges to the equilibrium ρ̄(x) for each optimization horizon N ≥ 2 and
each initial condition.

Proof. Due to Proposition 14, we can assume that µ̊ is arbitrarily close to µ̄ = 0. For |̊µ|
sufficiently small, we argue below that the exponential controllability condition (32) with respect
to stage cost (34) holds with C = 1 for the control candidate (K̄, c̄). Then we apply Theorem 5
to conclude the assertion.

First, due to µ̄ = 0, we have that c̄ = 0. Then due to Σ̄ = 1 we see from (19), (21) and (22)
that applying (K̄, c̄) results in

µ(t) = µ̊e−2(θ+K̄)t and Σ(t) = 1 +
(

Σ̊− 1
)
e−2(θ+K̄)t > 0. (98)

We define
θ̄ := θ + K̄ > 0. (99)

Then the stage cost (34) can be written as

f̃(t) := 1 +
[
1 +

(
Σ̊− 1

)
e−2θ̄t

]− 1
2

− 2

2 +
(

Σ̊− 1
)
e−2θ̄t

2

−
1
2

exp

(
− µ̊2e−2θ̄t

2(2 + (Σ̊− 1)e−2θ̄t)

)
,

(100)

cf. Lemma 6.
Our aim is to show f̃(t) ≤ e−κtf̃(0) for some κ > 0 (for sufficiently small µ̊2). Then (32)

holds with overshoot bound C = 1 and decay rate δ = e−κTs . We claim that f̃(t) ≤ e−κtf̃(0)
with

κ :=
θ̄

Σ̊ + 1
> 0. (101)

To this end, we prove f̃ ′(t) + κf̃(t) ≤ 0. First, to shorten the notation, we introduce

a := Σ̊− 1 ∈ (−1,∞), τ := e−2θ̄t ∈ (0, 1], χ :=
µ̊2τ

(aτ + 2)
≥ 0, (102)

a1 := 2
√

2e−χ/2 −
(
aτ + 2

aτ + 1

)3/2

, and a2 := 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2(a+ 2)

(aτ + 2)3/2
. (103)
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Then, we can express f̃ ′(t)+κf̃(t)

θ̄
by − h(τ)

(aτ+2)3/2(a+2)
, where

h(τ) := a1 (aτ(a+ 2) + aτ + 2)− a2(aτ + 2)3/2, (104)

which means we have to show that h(τ) ≥ 0. We consider the two cases Σ̊ > 1 respective a > 0
and Σ̊ < 1 respective a < 0. The case Σ̊ = 1 is trivial.

First, let us assume a > 0. In this case, we set µ̊2 = εa for some ε ≥ 0. Then

h(τ) = a1 (aτ(a+ 2) + aτ + 2)− a2(aτ + 2)3/2

≥ a1 (aτ(a+ 2) + aτ + 2)− a3(aτ + 2)3/2
(105)

with

a3 := 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2

(aτ + 2)1/2
(106)

due to a+ 2 ≥ aτ + 2. If a1 ≥ 0, which we prove below, then

h(τ) ≥ a1 (aτ + 2) + a1aτ(a+ 2)︸ ︷︷ ︸
≥a1aτ(aτ+2)

−a3(aτ + 2)3/2

≥ (aτ + 2)︸ ︷︷ ︸
>0

(a1 + a1aτ − a3

√
aτ + 2)

= (aτ + 2)(a1(aτ + 1)− a3

√
aτ + 2),

(107)

i.e., it is left to show that a1(aτ + 1)− a2

√
aτ + 2 ≥ 0. Furthermore, if a3 ≥ 0, then,

a1(aτ + 1)− a3

√
aτ + 2 ≥ a1(aτ + 1)− a3

(
aτ

2
√

2
+
√

2

)
(108)

= a1(aτ + 1)−
√

2a3

(aτ
4

+ 1
)

(109)

= a1(aτ + 1)−
√

2a3 (aτ + 1) +
3

4

√
2a3aτ (110)

≥ (aτ + 1)(a1 −
√

2a3), (111)

reducing the problem further to
a1 −

√
2a3 ≥ 0. (112)

Since a1 ≥ 0 follows from (112), we only need to prove (112) and a3 ≥ 0. Regarding the latter,
with ã := aτ ∈ [0,∞) and for ε ∈ [0, 1

2 ] we have

a3 = 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2

(aτ + 2)1/2

= 1− 1

(ã+ 1)3/2
− 4

√
2εã

(ã+ 2)3/2
exp

(
− εã

2(ã+ 2)

)
≥ 1− 1

(ã+ 1)3/2
− 2

√
2ã

(ã+ 2)3/2
exp

(
− ã

4(ã+ 2)

)
≥ 0.

(113)

Now we can turn our attention to (112), which we claim holds for ε ∈
[
0, 1

4

]
. With ã = aτ as

above, we get

a1 −
√

2a3 = 2
√

2 exp

(
− εã

2(ã+ 2)

)(
1 +

2
√

2εã

(2 + ã)3/2

)
−
(
ã+ 2

ã+ 1

)3/2

−
√

2

(
1− 1

(ã+ 1)3/2

)
,

(114)
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which unfortunately is not monotone with respect to ε. We know, however, that

(a1 −
√

2a3)|ã=0 = 0 and (a1 −
√

2a3)→ 2
√

2√
eε
− (
√

2 + 1), ã→∞, (115)

where the limit is positive for ε ∈ [0, 1
4 ]. Moreover, in the special case ε = 0, we see that

d(a1 −
√

2a3)

dã
=

3

2(ã+ 1)2

(√
1 +

1

ã+ 1
−
√

2√
ã+ 1

)
≥ 0⇔ ã

ã+ 1
≥ 0⇔ ã ≥ 0, (116)

which, together with (115) proves that h(τ) ≥ 0 for ε = 0. In general we have that

d(a1 −
√

2a2)

dã |ã=0
=

3√
2
ε. (117)

A similar but more involved argument can be made to show that the derivative has at most one
root for ã > 0 and arbitrary but fixed ε ∈ [0, 1

4 ]. Then from (115) and (117) follows that h(τ) ≥ 0
for ε ∈ [0, 1

4 ] and a > 0.
For a ∈ (−1, 0) we cannot choose µ̊2 = εa. Instead, we set µ̊2 = ε ∈ [0, 1] and note that

aτ ∈ (−1, 0). Then

h(τ) = a1 (aτ(a+ 2) + aτ + 2)− a2(aτ + 2)3/2

≥ a1 (aτ(a+ 2) + aτ + 2)− a4(aτ + 2)3/2
(118)

with

a4 := 1− 1

(aτ + 1)3/2
− 4
√

2χe−χ/2

(aτ + 2)3/2
(119)

due to a < 1. If a1, a4 ≤ 0, then due to aτ ∈ (−1, 0) we have that

a1 (aτ + 2) + a1aτ︸︷︷︸
≥0

(a+ 2)︸ ︷︷ ︸
≥1

−a4(aτ + 2)3/2 ≥ a1 (aτ + 2) + a1aτ − a4(aτ + 2)3/2

= 2a1(aτ + 1)−a4︸︷︷︸
≥0

(aτ + 2)3/2︸ ︷︷ ︸
≥2
√

2(aτ+1)

≥ 2(aτ + 1)
(
a1 −

√
2a4

)
.

(120)

Note that (aτ + 2)3/2 ≥ 2
√

2(aτ + 1) only holds for aτ ∈ (−1, 0). We only show a1 −
√

2a4 ≥ 0
and a1 ≤ 0, since a4 ≤ 0 then follows. Regarding the latter, with µ̊2 = ε we have

a1 = 2
√

2e−χ/2 −
(
aτ + 2

aτ + 1

) 3
2

= 2
√

2 exp

(
− ετ

2(aτ + 2)

)
−
(
aτ + 2

aτ + 1

) 3
2

≤ 2
√

2−
(
aτ + 2

aτ + 1

) 3
2

≤ 0.

(121)

In a last step, we prove a1 −
√

2a4 ≥ 0:

a1 −
√

2a4

= 2
√

2 exp

(
− ετ

2(aτ + 2)

)(
1 +

2
√

2ετ

(2 + aτ)
5
2

)
−
(
aτ + 2

aτ + 1

) 3
2

−
√

2

(
1− 1

(aτ + 1)
3
2

)
(122)

24



One can set ε = −a ∈ (0, 1) and use ã = aτ to obtain a function depending only on one
variable and prove the assertion directly. An alternative approach is to show that a1 −

√
2a4 is

monotonously decreasing in ε for ε ∈ (0, 1), which is easy to show. Recall that this property did
not hold in case of a > 1. Consequently, it suffices to consider ε = 0, for which

(a1 −
√

2a4)|ε=0 = (a1 −
√

2a3)|ε=0. (123)

In particular, we can use (116). Since the derivative is negative for ã < 0 and the first equation
in (115) holds we have h(τ) ≥ 0 for a < 0.

As such, in the one-dimensional case, we have confirmed our numerical findings. However, in
the multi-dimensional case, even if µ(0) = µ̄, we face again the issue of increasing cost, see the
following Example.

Example 17. Consider the 2D Ornstein-Uhlenbeck process with (model) parameters

A = diag(3.1, 11), B = I, D = diag(0.2,
√

20), µ̊ = 0 = µ̄, Σ̊ = diag(0.02, 200), Σ̄ = I

and some γ > 0. We set the MPC horizon to N = 2, the sampling rate to Ts = 0.2 and use stage
cost (34).

As in Example 13, we depict the cost J2((µ(k),Σ(k)), u(k)), cf. (31), for u(k) = (K̄, c̄) =: ū
(blue dash-dot) and for optimal controls u(k) = (K∗(k), c∗(k)) =: u∗(k) with γ = 0.0005 (red
dash) as well as γ = 10−5 (green dot). As above, the figure also shows that the optimal value
function V2 grows, implying that exponential controllability with C = 1 cannot hold. Yet, like in
Example 13, the target is reached in all cases, as Figure 2 (right) shows.3

Figure 2: Objective function (31) for N = 2 with stage cost given by (34) (left) and normalized
differences (93) (right) for Example 17.

As a consequence, similar to Example 13, for a sufficiently large weight γ > 0 the exponential
controllability property does not hold with C = 1. Moreover, in contrast to the mean, cf.
Proposition 14, numerical simulations illustrate that we can neither expect monotone convergence
of each component Σii to 1 nor monotone convergence of ‖Σ(t)− I‖F to zero.

In order to get more insight on how to develop alternative methods to circumvent this issue,
we focus on the state cost (35) by setting γ = 0.

3In Figure 2 (right) we have depicted the normalized differences (93) only for the first 10 steps as there are no
visual changes afterwards.
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5.2.2 The case of γ = 0

Setting γ = 0 allows us to focus on the state cost (35). We recall that we still impose the control
constraints ki(t) > −θi, cf. Example 1, hence Theorem 9 does not apply. These restrictions affect
the dynamics as follows. Assuming Σ̊ is a diagonal matrix as in Example 1, one can show from
(20) and (21) that, while Σii(t) can be decreased to an arbitrarily smaller positive value within
one discrete time step, there is an upper bound. More precisely, with Ts = tk+1 − tk one can
show that

0 < Σii(tk+1) ≤ Σii(tk) + 2Tsς
2
i . (124)

In light of Example 17 we want to focus on steering this variance. Since γ = 0 and there are no
restrictions on c(t), we can assume that µ(t) ≡ µ̄ since µ̄ can be reached within one time step.

Even though we consider the Ornstein-Uhlenbeck process, most of the content in this section
extends naturally to general dynamics (14) with (Σ̄, µ̄) = (I, 0). This is due to Lemma 8, which
depicts the state cost (35) in terms of the Eigenvalues λi(t) of Σ(t).

In order to keep this generality, instead of looking at Σ(t), we look at its Eigenvalues λi(t)
collected in the matrix Λ(t) = diag(λi(t), . . . , λd(t)). Likewise, instead of (35), we consider only
the relevant part of the state cost, namely (59).

The goal of this section is to understand better the L2 cost and to show that for γ = 0 the
MPC closed loop is stable with N = 2, cf. Corollary 21. Regarding the former, we will look at the
level sets of (59). Regarding the latter, we proceed as follows. First, we show in Proposition 18
that going in the direction of the target I is profitable in terms of cost. Second, since there might
be other directions that are more profitable in the short term – and with N = 2 we only look
one step ahead – we need to rule out that we drift away from the target indefinitely.

We start by studying the equivalent state cost (59). As in the proof of Theorem 12 we can
interpret the matrix Λ = diag(λ1, . . . , λd) as a vector λ = (λ1, . . . , λd). In this case we write
f(λ) instead of f(Λ). Then the gradient of f(λ) is given by

∇f(λ) =
1

2

( d∏
i=1

λi + 1

2

)−1/2(
λj + 1

2

)−1

−

(
d∏
i=1

λi

)−1/2

λ−1
j


j=1,...,d

. (125)

Figure 3 gives an impression of the level sets and gradients of f(λ) in the two-dimensional
case and illustrates the problem that occurs in Example 17. First we note that in the Ornstein-
Uhlenbeck process under consideration, Σ(t) is diagonal and therefore Λii(t) = Σii(t). Then due
to (21) and (22), each component Σii respective λi converges monotonously to 1 when using K̄.
In particular, if λ1 and λ2 are both greater than 1 or both smaller than 1, the costs do not rise
when using K̄ and one can prove exponential controllability with C = 1 by applying the proof
of the one-dimensional case, cf. Proposition 16, to each component. However, we may run into
problems if sign(λ1−1) 6= sign(λ2−1) as in Example 17. Moreover, as can be seen by the arrows
representing the gradient of f(λ) in Figure 3, the optimal control sequence calculated in one

MPC iteration might drive the state in the problematic region even if starting from e.g. λ̊i > 0,
i = 1, 2. Therefore, the sets {λ ∈ Rd | ∀i = 1, . . . , d : λi > 1} and {λ ∈ Rd | ∀i = 1, . . . , d : λi < 1}
are not forward-invariant. Hence, showing the exponential controllability property only for these
sets is not fruitful.

In the following, we therefore follow a different path to prove that with N = 2 a stable MPC
closed loop is obtained.

Proposition 18. Let Λ 6= I. Then for f(Λ) defined in (59) I − Λ is a descent direction.
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Figure 3: Level sets and gradient of f(λ) in the two-dimensional setting (left) and the trajectory
(blue) from Example 17 (right)

Proof. We show that Df(Λ)(I − Λ) < 0 for all Λ 6= I. Let A,H ∈ Rd×d. Due to

D(detA)H = det(A)tr(A−1H) = |A|tr(A−1H), (126)

we have

Df(Λ)H = − 1

2
|Λ|−3/2D (det(Λ))H +

∣∣∣∣12(Λ + I)

∣∣∣∣−3/2

D

(
det

(
1

2
(Λ + I)

))
H · 1

2

= − 1

2
|Λ|−3/2|Λ|tr(Λ−1H)

+
1

2

∣∣∣∣12(Λ + I)

∣∣∣∣−3/2 ∣∣∣∣12(Λ + I)

∣∣∣∣ tr
((

1

2
(Λ + I)

)−1

H

)
︸ ︷︷ ︸

=2tr((Λ+I)−1H)

= − 1

2
|Λ|−1/2tr(Λ−1H) +

∣∣∣∣12(Λ + I)

∣∣∣∣−1/2

tr((Λ + I)−1H).

(127)

Therefore,

Df(Λ)(I − Λ)

= − 1

2
|Λ|−1/2tr(Λ−1(I − Λ)) +

∣∣∣∣12 (Λ + I)

∣∣∣∣−1/2

tr((Λ + I)−1(I − Λ))

=
1

2
|Λ|−1/2

[
−tr(Λ−1 − I) + 2

∣∣∣∣12 (I + Λ−1
)∣∣∣∣−1/2

tr((I + Λ−1)−1(Λ−1 − I))

]
.

(128)
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Defining Θ := 1
2 (I + Λ−1) = diag(ϑ1, . . . , ϑd) with ϑi ≥ 1

2 , we have that

Df(Λ)(I − Λ) < 0

⇔ − tr(Λ−1 − I) + 2

∣∣∣∣12(I + Λ−1)

∣∣∣∣−1/2

tr((I + Λ−1)−1(Λ−1 − I)) < 0

⇔ − 2tr(Θ − I) + 2|Θ|−1/2tr((2Θ)−1(2Θ − 2I)) < 0

⇔ |Θ|1/2tr(Θ − I) > tr(Θ−1(Θ − I))

⇔

(
d∏
i=1

ϑi

)1/2 d∑
i=1

(ϑi − 1) >

d∑
i=1

(
1− 1

ϑi

)
.

(129)

For each i = 1, . . . , d the inequality ϑi − 1 ≥ 1− 1
ϑi

holds, with equality if and only if ϑi = 1. In

particular,
∑

(ϑi − 1) ≤ 0 implies
∑(

1− 1
ϑi

)
≤ 0. It is therefore sufficient to show that

(a)
∏
ϑi ≤ 1, if

∑
(ϑi − 1) ≤ 0 and

(b)
∏
ϑi ≥ 1, if

∑(
1− 1

ϑi

)
≥ 0.

First we show (a). To this end, we have

d∑
i=1

(ϑi − 1) ≤ 0 ⇔
d∑
i=1

ϑi ≤ d ⇔
d∑
i=1

ϑi
d
≤ 1. (130)

Due to ϑi > 0, by using the inequality of arithmetic and geometric means we get(
d∏
i=1

ϑi

)1/d

≤
d∑
i=1

ϑi
d
≤ 1, (131)

from which the assertion
∏
ϑi ≤ 1 follows, again due to ϑi > 0.

To show (b) we recognize that∑(
1− 1

ϑi

)
≥ 0 ⇔

∑ 1

ϑi
≤ d. (132)

In particular, due to (a) we get
∏

1
ϑi
≤ 1, from which the assertion in (b) follows.

Corollary 19. The equivalent state cost f(Λ) defined in (59) has a unique stationary point I,
which is the global minimum with f(I) = 0. Moreover, the level sets Lc := {Λ : f(Λ) = c}, where
Λ = diag(λ1, . . . , λd) with λi > 0 for each i = 1, . . . , d, are connected.

Note that this is not enough to prevent effects similar to the ones observed in Example 15,
i.e., we cannot exclude that the MPC closed loop solution drifts away indefinitely (albeit with
monotonously decreasing cost), not even for γ = 0. This is due to possibly unbounded level sets,
which we characterize in the following Lemma.

Lemma 20. The level sets from Corollary 19 are bounded for c < 1 and unbounded otherwise.
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Proof. We first show that the level sets are unbounded for c ≥ 1:

f(Λ) ≤ 1⇔ |Λ|−1/2 − 2

∣∣∣∣12(Λ + I)

∣∣∣∣−1/2

≤ 0

⇔
∣∣∣∣12(Λ + I)

∣∣∣∣ ≤ 4|Λ|

⇔ |(Λ + I)| ≤ 2d+2|Λ|

⇔ 2d+2 ≥
d∏
i=1

λi + 1

λi
=

(
1 +

1

λ1

) d∏
i=2

λi + 1

λi

⇔ λ1 ≥

(
2d+2

d∏
i=2

λi
λi + 1

− 1

)−1

.

(133)

In particular, we can find some λ1 > 0 such that f(Λ) = 1 even as λi →∞, i = 2, . . . , d. Clearly,
the indexes are interchangeable, i.e. we have lower bounds on each λi, but no upper bound.

As for the other claim, we have

f(Λ) = 1 + |Λ|−1/2 − 2

∣∣∣∣12(Λ + I)

∣∣∣∣−1/2

< 1 + |Λ + I|−1/2 − 2

∣∣∣∣12(Λ + I)

∣∣∣∣−1/2

= 1 +
(

1− 21+d/2
)
|Λ + I|−1/2 =: h(Λ).

(134)

Therefore, we can bound the level sets of f(Λ) by those of h(Λ). To this end, for 0 ≤ c < 1 we
have

h(Λ) ≤ c⇔
(

1− 21+d/2
)
|Λ + I|−1/2 ≤ c− 1

⇔ 1− 21+d/2

c− 1
≥ |Λ + I|1/2

⇔
(

1− 21+d/2

c− 1

)2

≥ |Λ + I| =
d∏
i=1

(λi + 1),

(135)

which results in upper bounds λi ≤
(

1−21+d/2

c−1

)2

− 1, i = 1, . . . , d. Note that the last equivalence

in (135) holds due to both sides being positive. Since λi > 0, the level sets of h(Λ) and,
consequently, those of f(Λ), are contained in a d-dimensional hypercube.

Combining the last three results, we arrive at the following.

Corollary 21. Consider the (multi-dimensional) Ornstein-Uhlenbeck process from Example 1,
i.e., (14) with A,B,D,K(t), c(t) as in (18) and a desired PDF ρ̄(x) given by (47). Furthermore,
let the stage cost be given by (34) with γ = 0. Assume that

(a) f(Λ(0)) < 1 or

(b) ε ≤ λi ≤ 1
ε for some ε > 0.

Then the equilibrium ρ̄(x) is globally asymptotically stable for the MPC closed loop for N = 2.
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Since the properties of f(Λ) were derived disregarding the dynamics of the system, Corol-
lary 21 can be extended to other systems (14), with one caveat: In each discrete time step, we
need to be able to reduce the state cost, i.e. there must exist some admissible control K(tk)
such that f(Λ(tk+1)) < f(Λ(tk)). In the Ornstein-Uhlenbeck process, this can be guaranteed, cf.
(124).

6 Conclusion

In this paper we have analyzed the stability of the closed loop generated by Model Predictive
Control schemes applied to tracking problems involving the Fokker-Planck equation. We have
considered a setting involving linear dynamics and Gaussian PDFs. Even in this relatively simple
setting, the use of the L2 cost, which is standard in PDE tracking problems, leads to a rather
involved analysis. Particularly, stability does not always hold for the shortest possible horizon
N = 2. Even in some cases where it does hold, the usual exponential controllability condition
without overshoot (i.e., with C = 1) is not satisfied and a different technique for the stability
analysis had to be developed. Future research will address classes of nonlinear dynamics and
should also investigate whether distances other than L2 could facilitate the analysis.
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