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Abstract

Recently, [17] proposed control Lyapunov barrier functions (CLBFSs) for the stabi-
lization of nonlinear dynamical systems with state constraints. Under the assump-
tion of the existence of a smooth CLBF, Sontag’s universal formula was used to
define a continuous feedback ensuring that the constraints are satisfied. However,
as we demonstrate in this paper, the above approach neglects the necessity of discon-
tinuous controllers in the case of state constraints. Additionally, we show that the
assumption of a smooth CLBF limits the state constraints to those defined by un-
bounded sets. Consequently, we introduce the notion of nonsmooth complete control
Lyapunov functions (CCLFs) and indicate how they may be used for stabilization
in the presence of state constraints.

Key words: (nonsmooth) control Lyapunov functions; control of constrained
systems; asymptotic stabilization

1 Introduction & motivation

The problem of uniting local and global controllers formally traces back to [22],
where the initial problem of interest was designing a global anti-windup con-
troller to complement a (pre-designed) local controller. This work continued
in [13] where it was shown that merging local and global stabilizing controllers
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generally requires the use of time-varying or dynamic hybrid controllers. Sub-
sequently, the uniting output feedback stabilization problem was solved in [14]
by means of a dynamic hybrid stabilizer.

Of particular note is that the strategies in [13,14] are robust to various small
perturbations such as measurement noise or external disturbances. This stems
from the use of Lyapunov-based techniques and the associated robustness that
comes with such approaches [4,6,8,20,23].

Originally introduced for dynamical systems without inputs, the concept of
Lyapunov functions [11] was extended to control Lyapunov functions (CLFs)
by Artstein [2] and Sontag [18] for systems with additional degrees of freedom,
in the form of inputs, providing the possibility to design feedback laws using
CLFs. For controllable, control affine dynamical systems Sontag developed
a universal formula [19], providing a (smooth except at the origin) asymp-
totically stabilizing feedback law based on the knowledge of a smooth CLF.
However, assuming that a smooth CLF exists is, in general, overly restrictive,
which can for example be illustrated on the dynamics of the nonholonomic

integrator [3], showing the necessity of discontinuous feedback laws and non-
smooth CLFs.

Nonsmooth CLFs using the Dini derivative for the decrease condition were
introduced by Sontag in [18]. With this definition Rifford [15,16] and Kel-
lett and Teel [9,10] demonstrated existence of nonsmooth CLFs in the Dini
sense assuming asymptotic controllability, and additionally provided feedback
stabilizers. See [5] for a comprehensive survey.

Alternatively, control barrier functions (CBFs) were introduced in [24] where,
given a set of “unsafe” states, a feedback law similar to Sontag’s universal
formula [19] was presented to guarantee “safety”. Here, safety referred to a
form of forward invariance where trajectories starting in the set of safe states
will not enter the set of unsafe sets. Subsequent work looked to simultaneously
address the safety and stabilization problems using integrator backstepping
[12,21] and quadratic programming [1] to jointly construct a CLF and a CBF.
A crucial assumption in these works is that the set of unsafe sets is unbounded.

Recently, [17] formalized the uniting controller problem for safety and sta-
bilization. In other words, in contrast to the work of [22,13,14] looking to
unite local and global stabilizing feedbacks, [17] proposed to unite a stabiliz-
ing feedback with a safety guaranteed feedback. To this end, smooth CLFs are
combined with CBFs to guarantee satisfaction of state constraints and sta-
bilization of the origin. These united functions are called Control Lyapunov
Barrier Functions (CLBFs). Under the strong assumption of the existence of
a smooth CLBF, [17] uses Sontag’s universal formula [19] to define a continu-
ous feedback law stabilizing the dynamical system while respecting the state



constraints.

Critically, unboundedness of the state constraints is not assumed in [17] and,
furthermore, numerical examples are presented that claim global (on the safe
set domain) asymptotic stability of the origin. However, as we demonstrate
below, the existence of a continuously differentiable CLBF necessarily requires
that the constraint sets are unbounded. As an alternative, we propose (nons-
mooth) complete control Lyapunov functions (CCLFs) as an extension of com-
plete Lyapunov functions [7], to simultaneously solve the safety and asymp-
totic feedback stabilization problems.

The paper is structured as follows. Section 2 reviews results and definitions on
CLBFs from [17]. Section 3 discusses the assumption on existence of CLBFs
and shows that continuously differentiable CLBFs can only exist if the set
of state constraints is unbounded. In Section 4 we illustrate the necessity of
discontinuous feedback laws. CCLFs, using the Dini derivative, are described
in Section 5 and examples are provided. The paper concludes in Section 6.

Throughout the paper, the following notation is used. For x € R™ and € > 0,
B.(z) = {y € R"|||x — y|| < €} denotes an open ball with radius e centered
around z. Moreover, D and 9D denote the closure and the boundary of a set
D C R™. For a smooth function V' : R® — R and g : R"*? — R" we denote
the Lie derivative by

LV (@) = O ()g(a)

A continuous function « : R>¢ — R is said to belong to class K if a(0) = 0,
« is strictly increasing and «(t) — oo for t — oc.

2 Definitions and results on control Lyapunov barrier functions

To be able to give results and definitions on control Lyapunov barrier functions
derived in [17] we first provide necessary definitions on Lyapunov stability
here. Throughout this paper we follow the notation used in [17] where possible.

2.1 Lyapunov stability

We consider nonlinear dynamical systems

T = F(x,u), z(0) = xg (1)



with state x € R”, input u € R? and a Lipschitz continuous right hand side
F : R"xRP — R"™. A special form of nonlinear systems, particularly considered
in [17], are affine systems

F(z,u) = f(x) +g(x)u,  z(0) = o (2)

with smooth right hand side f : R® — R", g : R* — R"*?. Without loss of
generality we assume that F'(0) = 0 and f(0) = 0, i.e., 0 € R™ is an equilibrium
of the dynamical system.

For a given control function u : R>y — R? and a given initial value zo € R"
the solution of the dynamical system (1) or (2), respectively, is denoted by
o(-,u(-),z0). In the case that v : Ryy — RP is fixed, we rewrite (1) as a
autonomous ordinary differential equation

&= Fy(r) = F(z,u(),  2(0)= o, (3)

F, : R" — R", with solution ¢,(-, o). Stability properties of the equilibrium
can be characterized by Lyapunov and control Lyapunov functions (CLFs).

Definition 1 A continuously differentiable proper' and positive definite func-
tion V : R™ — R is a Lyapunov function for the ordinary differential (3) if

Lp,V(z) <0

u

for all x € R™\{0}.

Definition 2 A continuously differentiable proper and positive definite func-
tion V : R" — R is a CLF for the nonlinear system (1) if for all x € R™\{0}
there exists u € RP such that

ov

%(x)F(x,u) < 0.

For affine dynamical systems, Definition 2 can be equivalently written as fol-
lows.

Definition 3 A continuously differentiable proper and positive definite func-
tion V : R™ — R is a CLF for the nonlinear system (2) if

LiV(z) <0  Vxe{zeR"\{0}L,V(z) =0}
To ensure the existence of a continuous feedback particularly around the ori-
gin, the small control property needs to be satisfied.

LA function V : R® — R is called proper if {x|V (x) < ¢} is compact for all ¢ € R.



Definition 4 Let V : R" — R be a continuously differentiable CLF for the
nonlinear system (1). We say that (1) has the small control property with
respect to V if for every € > 0 there exists a 0 > 0 such that for every
x € Bs(0) there exists u € B.(0) with

ov

%(a:)F(a:,u) < 0.

If a CLF for an affine system (2) is known, a stabilizing feedback can be
constructed by using Sontag’s universal control law, k : R x R x RP,

_atyvaribi” \/CILJQTJI;’”“’HALZ,7 ifb£0
k(v,a,b) = (4)
0, otherwise

Theorem 5 ([19]) Let V' be a continuously differentiable CLF for the non-
linear system (2) satisfying the small control property. Then for fized v > 0
the feedback law

u(@) = k(y, LV (x), (LyV(2))")
15 continuous and the closed loop system
i = f(x) + g(2)k(y, LV (2), (LyV(2))")
15 globally asymptotically stable.

Theorem 5 reduces nonlinear systems to autonomous ordinary differential
equations

Fy(z) = f(2) + g(@)k(y, LV (@), (LV (2))").

Thus, if V is a CLF for system (2) then V' is a Lyapunov function for the
ordinary differential equation (3) defined through Sontag’s universal formula.

2.2 Barrier functions and state constraints

In [17] state constraints are incorporated in the consideration of stability for
dynamical systems by introducing the notion of safety and by using the results
derived in [24] on barrier functions. We here review key results from [17].

Definition 6 Let D C R", Xy C R", and Xy N D = (. The autonomous
ordinary differential equation (3) is called safe for all xq € Xy with respect to
D if ¢(t,z9) & D for allt > 0 and for all o € Xp.



Definition 7 Let D C R". A continuously differentiable function B : R" — R
is called control barrier function (CBF) for the system (2) with respect to D
if it satisfies the following conditions:

B(z) >0 Ve €D,
LiB(z) <0 Vo € {z €e R"\D|L,B(z) = 0},
U :={x eR"B(x) <0} #0.

Theorem 8 ([17, Thm. 2]) Let B : R" — R be a continuously differentiable
CBF of system (2) with respect to D C R™. The autonomous system

i = f() + g(2)k(y, LsB(x), (LyB(x))"),
v > 0, is safe for all vy € Xy =U according to Definition 6. If
RA\DUUNU = ()

then the autonomous system is safe with Xy = R™\D.

2.8  Control Lyapunov barrier functions

To achieve asymptotic stability and simultaneously satisfy state constraints
(i.e., safety), [17] proposed combining CLFs and CBFs.

Definition 9 ([17, Def. 2]) Given a set of unsafe states D, a proper and
lower-bounded continuously differentiable function W : R™ — R satisfying

W(zx) >0 Vo € D,

LW <0 Vo € {z € R"\(DU{0})|L,W(z) = 0},
U={xeR"'\W(x) <0} #£0,

RADUUND =,

is called a control Lyapunov barrier function (CLBF).
With the definition of a CLBF the following result is presented in [17].

Theorem 10 ([17, Thm. 3]) Assume that the system (2) admits a contin-
uwously differentiable CLBF W : R" — R with a given set of unsafe states

D and (2) satisfies the small control property with respect to W. Then the
feedback law

u = k(vy, L;W (x), (LW (2))T),



v > 0, satisfies

tli}m ¢u(t,xg) =0 YV xo € R"\D, and
bu(t, zo) € D Voo e R\D, Vt>0.

3 Discussion on the existence of continuously differentiable CLBF's

While, in principle, Theorem 10 provides an elegant method to accommodate
state constraints in a Lyapunov-based stabilizing feedback, the assumption
on the existence of CLBFs is very restrictive. Moreover, the construction of
a CLBF based on the knowledge of a CLF and a CBF is not as simple as
described in [17, Prop. 3] and applied in [17, Sec. 6] to two numerical examples.
These two points are discussed in this and the following section.

The general assumption on the existence of a continuously differentiable CLBF
is very strong. Here, we will show that a CLBF can only exist if the set of
unsafe states D is unbounded.

Theorem 11 Assume that W : R"™ — R is a continuously differentiable
CLBF of system (2) for a given set of unsafe states D. Additionally, assume
that (2) satisfies the small control property with respect to W. Then Theo-
rem 10 can only hold if D is unbounded.

PROOF. We consider the ordinary differential equation

i = Fi(x) = f(z) + g(2)k(v, LV (2), (LV (2))T)

for v > 0 with solution ¢y(-,z¢), o € R"\D, and assume that the set D is
bounded. Additionally, without loss of generality, we assume that the set D is
connected. (If D is the union of disjoint sets, the following arguments can be
used for each connected component.) According to Theorem 10 the feedback
k asymptotically stabilizes every initial state xy € R"\D, i.e.,

tlgcr}o or(t, xo) — 0.

Let X, be defined as the level set X, = {z € R"|W(z) < ¢} and let ¢ > 0 be
chosen such that DU{0} C X.\0X,. (This is possible since D is bounded and
W is continuous on R™.) Since Lp, () < 0 for all x € 90X, the set is forward
invariant, i.e.,

Qbk(‘; SL’O) C XC

for all xy € 0X..



Since the solutions ¢y (-, o) are continuous with respect to the initial state x,
there need to exist initial values zq € 90X, such that ¢ (-, o) passes D from
all possible directions. This means the trajectories Uy, ecox, @k (-, o) surround
the set D. Moreover, again due to continuity with respect to the initial state,
there needs to exist an Ty € 90X, such that for all £ > 0 the solutions

U or (-, o)

20€8X.NBe (Z0)

surround the set D which implies the existence of a heteroclinic orbit around
the set D. In particular it implies that

lim ¢y (£, Zo) # 0

which contradicts the global asymptotic stability. Thus, the assumption on
the boundedness of D or the asymptotic stability of Theorem 10 was wrong.
In the case that D is not connected, but is the union of disjoint subsets, with
the same arguments a heteroclinic orbit around every connected subset of D
can be concluded. This contradiction completes the proof.

The idea of the proof in the two dimensional case is visualized in Figure 1. The
figure particularly shows the necessity of discontinuous feedback laws in the
case of bounded sets D in order to select to pass the obstacle to the left or the
right. This discontinuity cannot be achieved by the use of Sontag’s formula

(4)-

4 Construction of CLBFs

In [17] two numerical two-dimensional examples for the construction of CLBFs
and bounded sets D are provided. However, as we have just seen, a continu-
ously differentiable CLBF W cannot exist if Sontag’s formula is used for the
feedback design. In this section, by considering a simplified dynamical system,
we illustrate the missing condition on the CLBF in the derivation in [17, Sec.
6]. For completeness we provide the result given in [17] for the construction of
CLBFs.

Claim 12 ([17, Prop. 3]) Suppose that for system (2), with a given open
set of unsafe states D C R™, there ewxist a continuously differentiable CLF
V:R"™ = R and a continuously differentiable CBF B : R™ — R which satisfy

allz|]? < Vi(z) < cof|z]? Ve R", (5)



Fig. 1. Visualization of the idea of the proof of Theorem 11. The black lines indicate
limit cycles and ¢’s indicate equilibria of the ordinary differential equation. The
existence of solutions ¢y (-, x1) and ¢y(-, z2) passing the set D from the left and the
right implies the existence of an initial state Z( such that ¢y (t, Z9) does not converge
to the origin for ¢t — oco.

c1 >0, co >0, and a compact and connected set X such that

DCX,0¢X, and B(z) = —c <0Vz € R\ X.

If
L;W(x) <0 Vo e {zeR"\(DU{0})|L,W(z) =0} (6)
where
W(x) =V (x)+ AB(z) + &,
with X > S9=A% k= —c¢i¢y, c3 = MaXpepx ||2|°, ¢4 = mingesp ||z, then

the feedback law
u(w) = k(vy, LW (), (LW (2))") (7)

satisfies

tli>m Gu(t; z0) =0 V 2 € R™"\Drelaxed, and
¢u(t7 ZE()) ¢ Drelaxed v S Rn\Drelaxeda Vi Z 0,



where Diyejzed = {x € X|W(z) > 0} D D. Moreover if (2) satisfies the small
control property with respect to V' then it satisfies the small control property
with respect to W.

Remark 13 Observe that due to the compactness of X in Claim 12 the set
D C X needs to be bounded.

To illustrate a key point in the numerical examples in [17, Sec. 6], we consider
the linear dynamical system

T -1 0 T 10 U
L 1+ 1' (8)

jfg 0-—1 ) 01 U9

The smooth function
V(x) = || 9)

is a global CLF for the dynamical system and satisfies the technical con-
straints (5) trivially for the constants ¢; = ¢ = 1. For the construction of a
CLBF we discuss two examples following the arguments given in [17, Sec. 6].

Example 14 For the construction of the CBF, consider X = (1,3) x (1,3)
and

1 1
D = eX <4
{x ‘1—(x1—2)2+1—(a;2—2)2 }

and define the CBF

. 1 1
e (1—<$1—2)2+1—(x2—2>2) —e? forze X

—e 4, for x € RA\X

B(z) =

The constants c3 and cy can be defined as c3 = 18 and ¢y = 3.34. Thus,
according to Claim 12, with € = 10™* the constants A and k can be defined as
A = 146600 and k = —3.34 to obtain the CLBF

W(x) =V (x)+ AB(z) + k. (10)

For the derivative, it holds that

LiV(z) = =2|z]* <0 and L,V (x) =

21‘1 2.272

10



For the function B it holds that

2 . +— 1 21‘1((L’1 — 2) 2.T2<I2 — 2)
L B — i —4x1+3 z5—4x9+3
sB(z) = en ’ <(x% — 4z + 3)? * (23 — 4ao + 3)?

1 1
+
_ z2 -4z +3 22 4z +3 2($ —2) 2(33 —2)
= —e%1 1 272 1 2
LgB(a:) € [ (@2 —4z1+3)% (23—4x2+3)?

for all x € X and LyB(x) = 0 for all x € R"\X with L,B(z) = 0. Thus it
follows that B is a CBF, and following the arguments in [17], this implies that
W defined in (10) is a CLBF.

However, even though V' is a CLF and B is a CBF the decrease condition
cannot be satisfied for all x € Xy as visualized in Figure 2. For x € R? with
x1 = xo > 3 the trajectory ¢r(-, x) does not converge to the origin but converges
to a different equilibrium of the closed loop system, as indicated by the saddle
point shown in Figure 3. Here, a discontinuous feedback would be necessary

5
g0t ] -2640
& 2660
= 2680
-5
-5 . 0
-5 0 5
T
X1 X1 5 -5 ’

Fig. 2. Visualization of closed loop trajectories of the dynamical system for different
initial states on the left and the CLBF on the right. On the left, the blue set denotes
the set D. For initial states on the axis 1 = z9 and x7 large enough, asymptotic
stability does not hold.

to make a decision to pass the equilibrium from the left or from the right. This
situation exactly captures the situation illustrated in Figure 1.

The numerical examples in [17, Sec. 6] necessarily face the same issue, but
the critical trajectory is not visualized and is harder to identify due to a more
complex geometry.

Example 14 might lead to the conjecture that a form of almost everywhere
stabilizability might be achievable; i.e., that the above issue is restricted to a
set of measure zero. However, this is not the case as demonstrated in the next
example where the set of unsafe states D is shifted to the x;-axis.

11
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Fig. 3. Contour plot of the CLBF. The CLBF has a saddle point in the positive
orthant. Trajectories ¢y (-, xo) converging to the saddle point are not asymptotically
stabilized by the feedback law. The red line indicates the boundary of the set of
unsafe states.

Example 15 Consider the set X = (1,3) x (—1,1) and

1 1
D= X 4
{xe ‘1—(x1—2)2+1—:v§< }

Define

_<+2+%)
e \1Tm2T e ) o=t forgp e X
—e? for x € RA\X

and the constants c3 = 10 and ¢y = 1.4. Thus, again according to Claim 12,
we set ¢ = 1074, X = 86000 and k = —1.4 to obtain the CLBF

Wiz)=V(z)+AB(z)+ kK
where V(x) = ||z||* as before.

The function B satisfies
L +—t 2I‘1 (1‘1 — 2) 21’2
L B — z%—4z1+3 zg—l 2
fBz)=e <(2_4x1+3)2+(1_33%)2

1
9:2—4x1+3 221 2($1—2) 219
B —_= 1 2
L (JZ) —€ |: (x%_41.1+3)2 (1—:17%)2

for allz € X, and LyB(x) = 0 for all x € R"\X with L,B(x) = 0. Thus it
follows that B is a CBF.

12



Similar to Example 14 asymptotic stability is not guaranteed for all x € Xj.
In addition to the positive x1-axis with x1 > 3, trajectories corresponding to
nitial values close to the xi-axis are not asymptotically stabilized as visual-
1zed in Figure 4. Hence, not only a set of measure zero is problematic in this
example.

5
©s 0 5

T

Fig. 4. Visualization of closed loop trajectories of the dynamical system for different
initial states on the left and the CLBF on the right. On the left, the blue set denotes
the set D. Red lines indicate trajectories which do not converge to the origin. Here,
not only a set of measure zero is not asymptotically stabilized by the feedback law.

N
1
O/ O

Fig. 5. Contour plot of the CLBF. The CLBF has a local minimum on the z;-axis
which explains why the feedback law does not asymptotically stabilize certain initial
values xg. The red line indicates the boundary of the set of unsafe states.

2 The numerical simulations are performed in Matlab. Due to the steep slope of
the function W, (which is used in the feedback law,) the numerical solution is very
sensitive to the state x.



5 Complete Lyapunov functions using the Dini derivative

The previous sections show that a continuous feedback cannot be used in
general to asymptotically stabilize a dynamical system with state constraints.
As a consequence, the use of continuously differentiable CLBFs and Sontag’s
Formula (4) are insufficient for the consideration of this problem. Instead,
based on existence results for nonsmooth CLFs using the Dini derivative or
proximal gradients for systems which do not admit a smooth CLF, we propose
an alternative idea to CLBF's which we refer to as complete control Lyapunov
functions (CCLFs).

The lower right Dini derivative of a Lipschitz continuous function V' : R® — R
is defined as

Vv tw) -V
D,V (z;w) = liminf (z+ tw) (I)
t\0 t
If V' is continuously differentiable, then the Dini derivative coincides with the
Lie derivative, i.e.,

LpV(z) = D V(x; F(z,u))

where F'(x,u) denotes the right hand side of the dynamical system (1). With
this definition we can define CCLF's incorporating state constraints.

Definition 16 (CCLF) Fori=1,...,N, N € N, let D; C R™ be compact
and connected. A Lipschitz continuous function Vo : R — R is called com-
plete control Lyapunov function (CCLF) for the dynamical system (1) with
constraints D;, 1 = 1,..., N, if there exist a1, s, a3 € Ko and open neighbor-
hoods O; C R, D; C O;, 0 ¢ UN,O;, such that

Vo(r) < ;2%} Vely), Ve(z) = Ve(Z) YV, z e 00, (11)
ar(flz]l) < Velz) < aa([|]]), (12)
min D, Ve(z, Fz,u)) < 0 Vo eR™ (UL,0,U{0}). (13)

llull<es(llz]l)

Conditions (12) and (13) are the usual conditions for control Lyapunov func-
tions in the Dini sense. Here, the IC.-function a;z ensures that the small control
property is satisfied with respect to the function Vi. Condition (11) ensures
that O; defines a local level set of the function V¢ with a local maximum in D;.
From the definition of a CCLF it is clear that for all x ¢ UY ,O; there exists
an input u(-) such that Vo (o(t, u(t), x)) is strictly decreasing for all ¢ with
o(t,u(t),z)) # 0. Thus, there exists an asymptotically stabilizing feedback
(possibly discontinuous) and ¢(¢, u(t), x)) ¢ D; for all t > 0.

14



Theorem 17 Assume there exists a Lipschitz continuous CCLF Vo : R* — R
for a given dynamical system (1) and compact and disjoint state constraints
D;, v =1,...,N, N € N, where each D; is connected. Then for all x €
R™\ (Uﬁil(%) there exists a (possibly discontinuous) feedback law k : R™ — RP,
such that

[k(z)[| < a(l!xH)
lim (¢, k(z(t)), ) =

ol k(z(tr)), ><¢<t2, (e(t)x) Vb <t
o(t, k(x(t)). 2) ¢ UV, O, Vi o

In Theorem 17 the feedback can for example be defined as

k(xz) € argmin D Vg(z, F(x,u)), (14)

l[ull<ers(ll]])

even though it might in general be impossible to give a closed-form expression
for k£ : R" — RP.

Similar to the approach in [17], existence and the construction of CCLFs
are crucial questions in this context. Here we discuss two simple examples
particularly pointing out the necessity of nonsmooth CCLFs.

Example 18 We start with the simple two dimensional fully actuated dy-
namical system T, = uy, o = ug. For the state constraints we consider the
set

D = {x € R*|2] + (25 — 2)* < 0.25} (15)
and we define the function
Ve(r) = max{2? 4+ 22,40 — 25(2% + (z, — 2))}.

The function Ve is visualized in F wgure 6. The constraints are indicated by the
red circle. The neighborhood O can for example be defined as

O = {z € R*|z] + (v2 — 2)* < 0.3}.
The decrease condition

min D, Ve (z, F(z,u)) <0

l[ull <[]l

holds for allmost all x € R™\ (Uf\;l(’)i U {0}) Moreover, functions a; and oo

can for example be defined as a;(x) = ||z||* and as(||z]]) = maxy|<|. Vely)+
(Bl

15



Fig. 6. Visualization of the function Vc(x) = max{x? + 23,40 — 25(2? + (v2 — 2)%)}.
The red circle (left) shows the boundary of the constraints 9D.

Howewver, the function Ve has a local minimum on the xo-azis where
r2 = 40 — 25(xy — 2)?, z9 >0

holds. Since here the tangent of the inner circles and outer circles point in
opposite directions (fee Figure 6, left), we have a local minimum and not a
saddle point. Thus, Vi is not a CCLF.

The function
Vo(r) = max{z? + 23,40 — 25(|z1| + |22 — 2|)} (16)
visualized in Figure 7 is a CCLF with respect to the constraints D. Here the

5

2 5 5 .

Fig. 7. Visualization of the function Vg (x) = max{a? + 23,40 — 25(|x1| + |22 — 2|)}.
The red circle (left) shows the boundary of the constraints 9D.

same observations as in the case of ‘70 hold, but additionally, the critical point
on the xo-axis is not a local minimum and there exist decreasing directions
passing the diamond shaped peak on the left or on the right.

Example 18 indicates that even for fully actuated linear systems smooth
CCLFs fail to exist. An ansatz of a smooth CCLF naturally creates a point z €

16



R™\(OU{0}) behind the constraint set, where min,egn Dy Vo (z, F(x,u)) = 0.

In a second example we highlight the connection between the shape of the set
O and the possible directions of the flow of the dynamical system.

Example 19 Consider the linear dynamical system

j,’l T1+To+ U

i‘g —T9 + U

with input constraints |u| < 5||x||. Again, we consider the set of constraints D
defined in (15). Here, the function (16) is not a CCLF. Since u is one dimen-
stonal it 1s not possible to move in an arbitrary direction. For a neighborhood
around the set D, V¢ is visualized in Figure 8 (left). Possible directions of the
dynamical system are indicated by blue (u = 0), red (u = 5||x||) and yellow
(u = =5||z||) arrows. All possible directions at a state x are given by convex
combinations of the red and the yellow arrows. One can see that for some
states in the north-west of the constraint set D there does not exist a feasible
decreasing direction since all possible directions point into higher level sets of
Ve. By changing the shape of the function around the constraint set D, for

Fig. 8. Contour plots of the function Vi (z) = max{z? + 23,40 — 25(|z1| + |22 — 2|)}
(left) and Vo (x) = max{x?+x2,40—25(2|z1|+|ro—2|)} (right). The red circle shows
the boundary of the constraints 0D. The arrows indicate the possible directions for
u =0 (blue), u = 5||z| (red) and v = —5||z| (yellow).

example by using the function
Vo(x) = max{z] + 23,40 — 25(2|2,| + |29 — 2])},

a decreasing direction can be guaranteed (Figure 8, right). Here, for example

the input u = —5||z|| provides a decrease for the critical states in the north-
west of the set D.
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6 Conclusion

In this paper we discussed the results on smooth CLBFs derived in [17]. In
particular, we described the necessity of nonsmooth functions and discontin-
uous feedback laws in the context of control problems with state constraints.
This led us to introduce nonsmooth CCLFs in the Dini sense. The definition
of CCLFs naturally extends the definition of CLFs for nonlinear dynamical
systems and complete Lyapunov functions for systems without inputs. The
existence of a CCLF for a system with an asymptotically controllable origin
with (compact) state constraints, and an associated robust feedback stabilizer,
remains an open question.
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