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SUMMARY/ZUSAMMENFASSUNG

Summary/Zusammenfassung

Summary

The aim of this thesis was to develop porous sponges with a three dimensional (3D)
interconnected network, ultralow density, high porosity, and hierarchical pore
structure for various applications. The underlying concept was to freeze-dry a
dispersion of short electrospun fibers to remove the solvent and to form the fibrous
porous structures by self-assembly. Further modifications of the fibrous sponges
provided more functionalities, e.g. enhanced mechanical properties, or tunable
wetting behavior, which can be used for different applications in liquid absorption, cell
growth, catalysis, drug release and many more. Furthermore the copolymerization

with 2-vinyl pyridine also allowed the immobilization of metal particles.

The major challenge of this thesis was to prepare the 3D porous sponges from
electrospun fibers. In Section 2.1, dispersions of short electrospun fibers were
produced for the preparation of 3D sponges by self-assembly. The preparation of the
sponge involved the synthesis of the UV cross-linkable polymer, electrospinning of the
polymer, UV cross-linking, cutting the fibers to a short fiber dispersion and freeze-
drying the dispersion to 3D sponges. The highly porous structure of the sponges was
investigated by scanning electron microscopy and micro-CT. The sponges had superior
compression elasticity that the sponges could be performed with cyclic compression
and bending. The highly porous structures granted the sponges an excellent liquid
absorption. The hydrophobicity of the sponges made them applicable to absorb oil
from water. Besides, the sponges also showed good compatibility with cells and the
cells could survive and colonize in the sponges. This investigation on cell growth opens

great opportunities of fibrous sponges for applications in tissue engineering.

The sponges introduced in Section 2.1 showed many distinguished properties and
applications, but they exhibit disadvantages of relatively low compression strength (<1
kPa) and poor solvent resistance. In Section 2.2, a novel strategy was applied to solve
these problems. An additional polymer layer of poly(p-xylylene) (PPX) with different
thickness was coated onto the whole surface of the sponge. This additional layer,
which possessed excellent mechanical properties, thermal stability, and chemical

resistance, generated junctions between the fibers due to film formation and
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enhanced the stability of the sponges. By controlling the density of the neat sponges
and the coating thickness of the PPX layer, sponges with densities in the range of 4.83-
22.59 mg/cm3, and water contact angles in the range of 114-156° were obtained. The
compression strength of the PPX coated sponges at 50% compression strain could be
increased up to 12.1 kPa, which was ten times more than that of the sponges without
PPX coating. Due to the improved chemical and mechanical stability, the PPX coated
sponges could keep their structure integrity in different solvents even after intense

shaking.

Section 2.3 and 2.4 present two applications of the fibrous 3D sponges. In Section 2.3,
the porous fibrous sponges were used to immobilize gold nanoparticles (AuNPs) as a
catalyst carrier for the reduction of 4-aminophenol. Firstly, copolymer with the
functional group of 2-vinylpyridine (2-VP) was synthesized and electrospun into fibers
for immobilization of very small amounts of AuNPs. Then the AuNP immobilized fibers
were mechanically cut to produce a short fiber dispersion and freeze-dried into 3D
sponge (Au-sponge) as catalyst support. The prepared Au-sponges exhibited small
specific surface areas but a very high pore volume, which could efficiently facilitate the
mass transfer of educts and products. In comparison to other AuNPs immobilized
catalyst systems, the Au-sponge offered a very high normalized reaction rate constant.
The Au-sponge also showed reversible compression stability, which is in favor for the
cyclic use of the Au-sponge as catalyst. In section 2.4, the fibrous sponges were loaded
with drugs to examine the controllable drug release. The high pore volume of the
sponges provided a large drug loading capacity, which was achieved on the use of 1
vol% of the pore volume of the sponges. This small portion of usage of the pore volume
suggested the promising improvement on drug loading capacity in the future. PPX
coating with various coating thicknesses on the drug-loaded sponges led to a
controllable drug release. Thicker PPX layers resulted in slower drug release. The drug
release performance could be controlled by the diffusion barrier behavior of the PPX

layer and the changing wetting between PPX layer and the liquid medium.

Traditional organogels are usually formed by a bottom-up approach from the self-
assembly of low- or high-molecular weight molecules. In Section 2.5, a novel top-down
approach to prepare gels from polymer fibrous sponges was developed. The spongy
gels were formed from a pre-formed 3D fibrous sponge followed with filling of apolar
liquid. The spongy gels exhibited the same features as an organic gel, such as a liquid
phase, a 3D network, and essentially no flow, but also possessed their distinct

advantages of fine control over the nature and structure of the 3D fibrous network, no
14
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shrinkage, no sensitivity to impurities on gel formation and provide a wide range of
possibilities for functionalization owing to the wealth of modification of electrospun
fibers. These spongy gels were mechanically stable and the evaporation of both
wettable and nonwettable solvents from the spongy gels could be considered as
shrinking-in-time blobs. These spongy gels could be found many promising
applications in bioengineering, sensors, templates, oil recovery, lubrication, catalyst,

and drug delivery.

The future work and challenges on 3D fibrous sponges are (1) exploring a green
technique to produce the sponges without solvents or only with environmental
friendly solvents like water and ethanol; (2) producing the sponges in large scale; (3)
thoroughly investigating of the wetting behavior between the sponges and a liquid;
and (4) providing sponges with more functionalities to enable access to different kinds

of applications.

In conclusion, the 3D sponges with hierarchical pore structures have been successfully
prepared with electrospun fibers. The densities, compression properties, water
contact angle, and solvent resistance of the sponges could be improved by an
additional PPX coating. The functionalized sponges with pre-immobilization of AuNPs
were successfully applied as catalyst supporter and possessed superior normalized
reaction rate constant. Due to the large pore volume, the sponges had very high drug
loading capacity based on the use of 1 vol% of the pores in the sponges. An additional
PPX coating on the drug-loaded sponges could effectively provide the controllable
drug release. Development on spongy gels based on fibrous porous sponges is initiated

and shows bright future on the gel field.

Zusammenfassung

Das Ziel dieser Arbeit war die Entwicklung poréser Schwamme mit einem
dreidimensionalen (3D) miteinander verbundenem Netzwerk, sehr geringer Dichte,
hoher Porositat und hierarchischer Porenstruktur fiir verschiedene Anwendungen. Das
zugrundeliegende Konzept war das Gefriertrocknen einer Dispersion aus
elektrogesponnenen Kurzschnittfasern zur Entfernung des Losungsmittels und zur
Bildung der porosen Struktur durch Selbstanordnung der Fasern. Modifikationen der
Schwamme lieferten zusatzliche Funktionalititen wie verbesserte mechanische
Eigenschaften oder ein einstellbares Benetzungsverhalten, welche fir

unterschiedliche Anwendungen in der Absorption von Flissigkeiten, Zellwachstum,
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Katalyse, Medikamentenfreisetzung und vielen mehr eingesetzt werden kénnten. Des
Weiteren erlaubte die Copolymerisation von 2-Vinylpyridin die Immobilisierung von

Metallpartikeln.

Die groRte Herausforderung dieser Arbeit war die Herstellung der pordsen 3D
Schwamme aus elektrogesponnenen Fasern. In Abschnitt 2.1 wurden Dispersionen
von elektroversponnenen Kurzschnittfasern hergestellt, welche fiir die Darstellung von
Schwammen durch deren Selbstanordnung verwendet wurden. Die Anfertigung der
Schwamme umfasste die Synthese eines UV-vernetzbaren Polymers, das Verspinnen
dieses Polymers, die UV-Vernetzung, das Schneiden der Fasern zu einer
Kurzschnittfaser-Dispersion und das Gefriertrocknen der Dispersion zum Schwamm.
Die hochporoése Struktur der Schwamme wurde mittels Rasterelektronenmikroskopie
und Mikro-CT (berprift. Die Schwamme hatten eine Uberdurchschnittliche
Kompressionselastizitdat, welche durch zyklisches Zusammenpressen und Biegen
gezeigt werden konnte. Die hochporose Struktur erlaubte die Absorption von
Flussigkeiten. Durch die Hydrophobizitdt der Schwamme eigneten sich diese fir die
selektive Absorption von Ol aus Wasser. Des Weiteren zeigten die Schwiamme eine
gute Biokompatibilitdt und Zellen konnten im Schwamm angesiedelt werden. Durch
den Nachweis des Zellwachstums bieten sich Anwendungsmoglichkeiten der

Faserschwdamme im Bereich des Tissue Engineerings.

Die in Abschnitt 2.1 eingeflihrten Schwamme zeigten viele herausragende Eigen-
schaften und Anwendungsmoéglichkeiten, allerdings auch Nachteile wie eine relativ
niedrige Druckfestigkeit (<1 kPa) und schlechte Losungsmittelbestandigkeit. In
Abschnitt 2.2 wurde ein neues Konzept fir die Losung dieser Probleme eingefiihrt. Die
gesamte Oberflache des Schwammes wurde mit einer zusatzlichen Poly(p-xylylen)
(PPX) Polymerschicht unterschiedlicher Dicken beschichtet. Diese Schicht, welche
exzellente mechanische Eigenschaften, thermische Stabilitat und
Chemikalienbestandigkeit aufweist, bildete Vernetzungspunkte zwischen den Fasern
durch Filmbildung und verbesserte die Stabilitdt der Schwamme. Durch die Kontrolle
der Dichte des Schwammes und der Beschichtungsdicke des PPX konnten Schwamme
mit Dichten von 4.83-22.59 mg/cm? und Kontaktwinkel von 114-156° erhalten werden.
Die Druckfestigkeit der PPX-beschichteten Schwamme bei einer Stauchung von 50%
konnte auf 12.1 kPa erhoht werden, was dem Zehnfachen im Vergleich zum
unbeschichteten Schwamm entspricht. Aufgrund der verbesserten
Chemikalienbestandigkeit und mechanischen Stabilitat behielten die beschichteten

Schwamme ihre Form nach dem Einlegen in verschiedene Losungsmittel auch nach
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intensivem Schtteln.

In Abschnitt 2.3 und 2.4 wurden zwei Anwendungen fiir die Schwamme vorgestellt. In
Abschnitt 2.3 wurden die Schwamme fiir die Immobilisierung von Goldnanopartikeln
(AuNPs) verwendet, welche als Katalysatoren zur Reduktion von 4-Aminophenol
dienen. Dazu wurde zuerst ein Copolymer mit 2-Vinylpyridin synthetisiert und
versponnen, sodass sehr kleine Mengen von AuNPs auf den Fasern immobilisiert
werden konnten. AnschlieRend wurden die Fasern maschinell zerschnitten um eine
Kurzschnittfaser-Dispersion zu erhalten, welche gefriergetrocknet wurde, um einen
Schwamm (Au-Schwamm) als Katalysatortrager zu erhalten. Der Schwamm wies eine
kleine spezifische Oberflache bei gleichzeitig sehr grolfem Porenvolumen auf, welches
den Massentransfer der Edukte und Produkte erleichtern kénnte. Im Vergleich zu
anderen Immobilisierungssystemen fir AuNP, boten die Au-Schwamme eine sehr
hohe normalisierte Reaktionsgeschwindigkeitskonstante. AuBerdem zeigten die
Schwamme eine reversible Kompressionsstabilitdt was vorteilhaft fiir die wiederholte
Nutzung der Schwamme als Katalysator war. In Abschnitt 2.4 wurden die Schwamme
mit Medikamenten beladen, um das kontrollierte Freisetzungsverhalten zu unter-
suchen. Das grof3e Porenvolumen der Schwamme lieferte reichlich Kapazitat fir die
Medikamentenbeladung, welche bereits bei einer Nutzung von 1% des Volumens
erreicht wurde. Dieser kleine verwendete Teil des Porenvolumens deutet die
vielversprechenden Perspektiven der Medikamentenbeladungskapazititen fiir die
Zukunft an. PPX-Beschichtungen der beladenen Schwamme mit unterschiedlichen
Schichtdicken flihrten zur kontrollierten Freisetzung der Medikamente. Dickere PPX-
Schichten bewirkten eine langsamere Freisetzung. Das Freisetzungsverhalten konnte
durch die Barriereeigenschaften der PPX-Schichten und dem wechselnden

Benetzungsverhalten kontrolliert werden.

Konventionelle Organogele werden im Allgemeinen (iber einen Bottom-up-Ansatz
ausgehend von der Selbstanordnung nieder- oder hochmolekularer Verbindungen
hergestellt. In Abschnitt 2.5 wurde ein neuer Top-down-Zugang fiir die Herstellung von
Gelen (iber Faserschwamme entwickelt. Diese schwammartigen Gele wurden durch
Beladung eines vorgeformten 3D Faserschwammes mit apolaren Flissigkeiten
hergestellt. Sie besallen die gleichen Eigenschaften wie ein Organogel, zum Beispiel
eine flussige Phase, ein 3D Netzwerk und nahezu keinen Fluss. Weiterhin zeigten sie
eindeutige Vorteile wie die Feinsteuerung der Natur und Struktur des 3D Netzwerks,
keinen Schrumpf, keine Empfindlichkeit gegen Verunreinigungen bei der

Gelherstellung und sie eroffneten einen breiten Bereich fiir Funktionalisierungen
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aufgrund der Vielzahl der Modifikationsmoglichkeiten von elektrogesponnenen Fasern.
Die hier vorgestellten schwammartigen Gele waren mechanisch stabil und das
Abdampfen sowohl benetzender als auch unbenetzender Lésungsmittel aus den Gelen
kann als zeitabhangiges Schrumpfen eines Tropfens beschrieben werden. Die
schwammartigen Gele besitzen viele potentielle Anwendungen in der Biotechnologie,
in Sensoren, als Template, zur Riickgewinnung von Olen, fiir Schmiermittel, in der

Katalyse und zur Freisetzung von Medikamenten.

Die weiteren Arbeiten und Herausforderungen zu Faserschwammen sind (1)
Entwicklung einer ,griinen” Herstellung der Schwamme ohne oder mit Verwendung
umweltfreundlicher Losungsmittel wie Wasser und Ethanol; (2) die Herstellung im
groBeren MaRstab; (3) die umfassende Untersuchung des Benetzungsverhaltens und

(4) die Entwicklung neuer Eigenschaften, um neue Anwendungen zu finden.

Die 3D Schwamme mit einer hierarchischen Porenstruktur wurden erfolgreich aus
elektrogesponnen Fasern hergestellt. Die Dichten, Kompressionseigenschaften,
Kontaktwinkel zu Wasser und Losungsmittelbestandigkeit der Schwamme konnten
durch eine zusatzliche PPX-Beschichtung verbessert werden. Die funktionalisierten
Schwamme mit einer vorgelagerten AuNP-Immobilisierung wurden erfolgreich als
Katalysatortrager eingesetzt und zeigten eine verbesserte
Reaktionsgeschwindigkeitskonstante. Aufgrund des groRBen Porenvolumens war die
Medikamentenbeladungskapazitat schon bei der Verwendung von einem Prozent des
Porenvolumens sehr hoch. Eine weitere PPX-Beschichtung der beladenen Schwamme
sorgte fir eine kontrollierte Freisetzung. Die Entwicklung von schwammartigen Gelen
basierend auf Faserschwammen wurde begonnen und eréffnet eine strahlende

Zukunft im Bereich der Gele.
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1 Introduction

1.1 Motivation

Electrospinning is an efficient method to form fibers with diameters in the range of
nanometers to micrometers and with dimensions from one dimensional (1D) single
fiber, two dimensional (2D) fibrous membranes and even three dimensional (3D)
fibrous constructs. The interests on the 1D single fiber focus on the original mechanical
properties of electrospun fibers, where size effect on the tensile strength, Young’'s
modulus and toughness have been demonstrated. The research on mechanical
properties of 1D single fiber provides the basic data for the applications of electrospun
fibers. 2D electrospun fibrous membranes can be obtained by directly assembling the
1D fibers during electrospinning process. Till now, most applications on electrospun
fibers are based on the 2D membranes. The 2D electrospun fibrous membranes have
found applications in textile industry, filtration, tissue engineering, composites,

catalysts, and drug release.

Compared to 1D single fiber and 2D fibrous membranes, 3D fibrous constructs
possesses unique characteristics, such as 3D connected networks, ultra-light weight,
high porosity and hierarchical pore structures. The pioneer work on 3D constructs by
electrospinning is to increase the thickness to form the third dimension. These 3D
constructs are usually used as scaffolds for tissue engineering applications. However,
this kind of 3D constructs have disadvantages like weak mechanical properties,
unstable 3D structure, which limited their applications in other areas. Therefore, how
to get stable and mechanically strong 3D constructs from electrospun fibers and
explore the applications of these 3D constructs, become an interesting and important
topic that attracts more and more attention in the last few years. Till now, only
countable reports are available in this topic. For this quite new field of mechanical
strong and stable 3D constructs from electrospun fibers, more studies regarding the
preparation and applications are highly required, which are highlighted in the present

thesis.

1.2 Submicrometer fibers by electrospinning

Conventional fibers have fiber diameters no smaller than 2 um [1]. However, fibrous
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materials with scale in the nanometer and sub micrometer play an important role in
various fields [2, 3]. Electrospinning is such a facile and versatile method to produce
fibrous materials with fiber diameter in the range from several nanometers to a few
micrometers [4-6]. It is considered as the simplest and lowest cost method for
preparation of nanofibers [7]. Depending on the feeding materials, electrospinning can
be divided into solution electrospinning, melt electrospinning and emulsion
electrospinning. In the following sections, a brief introduction on the development of
electrospinning including the electrospinning classifications, the materials, assembly

of electrospun fibers, and the morphology of electrospun fibers will be given.

1.2.1 Solution, melt, and emulsion electrospinning

Depending on the form of the feeding materials, electrospinning can be divided into
three main types of solution, melt, and emulsion electrospinning. All the three
electrospinning types use a similar set-up, which contains four parts: a high voltage
supply, a collector, a syringe pump and a syringe filled with feeding materials (Figure
1-1). However, there are also some differences between them. First, the types of the
feeding materials are different as polymer solutions, polymer melts, and emulsions are
used respectively. Solution electrospinning requires a viscous polymer solution where
polymers are dissolved in proper solvents, melt electrospinning requires that the
polymers have a melting point or glass transition temperature, and emulsion
electrospinning requires that the emulsions are mixed with some other spinnable
polymers. Second, the set-up for melt electrospinning differs from the other two
electrospinning techniques that an external heating set-up is mounted around the
syringe. The heating approach can realized from electricity or hot gas. Solution
electrospinning is the earliest and highly developed to produce very fine fibers with
sizes from tens of nanometers to 1 micrometer. Melt electrospinning usually results in
much larger fibers with fiber diameter in micrometer range. Emulsion electrospinning

typically produces as-spun fibers with matrix polymer and the emulsion particles.
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Figure 1-1. Schematic drawing of solution (a), melt (b) and emulsion (c)

electrospinning.

1.2.2 Materials for electrospinning

Since 2000 electrospinning technology experienced a burst development and
hundreds of materials are processed into fibers by electrospinning. The materials used
for electrospinning can be polymers, inorganic materials, and bioactive materials [4-6].
Table 1-1 summarizes the typical polymers and the solvents for electrospinning. The
polymers used for electrospinning can be liquid crystalline polymers (nomex,
Polybenzimidazole (PBI), Polysulfone amide (PSA)) [8-11], water soluble polymers
(Polyethylene oxide (PEQ), Polyvinyl alcohol (PVA)) [12, 13], polyamides (PA6, PA66,
PA1010) [14-16], textile fabric polymers (PAN) [17], biodegradable polymers (Polylactic
acid (PLA), Polycaprolactone (PCL), silk) [18-22], rubber (polybutadiene,
polyisobutylene-isoprene, and silicon rubber) [23], natural polymer (cellulose) [24, 25]
and other polymers (Polyamic acid (PAA), Polyurethanes (PU), Polycarbonate (PC),
Polyvinylpyrrolidone (PVP), Poly(methyl methacrylate) (PMMA), Polystyrene (PS),
Polyvinylidene fluoride (PVDF)) [26-38]. Depending on the polymers, different kinds of
solvents are used for electrospinning. Generally, the solvents used for polymer
electrospinning should have a good solubility for the polymers and should not possess
too high boiling point. Dimethylacetamide (DMAc), dimethylformamide (DMF), formic
acid (FA), acetic acid (AcOH), 2,2,2-trifluoroacetic acid (TFE), 1,1,1,3,3,3-hexafluoro-2-

propanol (HFIP), chloroform, dichloromethane, ethanol, and methanol are mostly
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used organic solvents while water is considered as an environmentally-friendly solvent
for solution electrospinning. Inorganic materials including metals, metal oxides,
ceramics, and their precursors can also be directly used for electrospinning to produce
functional inorganic fibers [39-43]. In addition, bioactive materials, such as bacteria
[44], virus [45], DNA [46], and enzymes [47], can also be incorporated in the
electrospinning solution for electrospinning. These bioactive materials give
electrospun fibers many biofunctionalities and can be used for biocatalysts,

biomedicine, and biosensor.

Table 1-1. Summary of typical polymers and solvents for electrospinning.

Materials Solvent References
Nomex DMAc+LiCl (8, 9]
Polybenzimidazole (PBI) DMACc+LiCl [10, 11]
Polysulfone amide (PSA) DMF [8]
Polyethylene oxide (PEO)  water [12]
Polyvinyl alcohol (PVA) water [13]
Polyamide (PA6, PA66, FA+AcOH, TFE, HFIP [14-16]
PA1010)

Polyacrylonitrile (PAN) DMF [17]
Polylactic acid (PLA) HFIP, chloroform [18, 19]
Polycaprolactone (PCL) chloroform/DMF, chloroform/methanol  [20, 21]
silk HFIP, water [18, 22]
Rubber THF/DMF [23]
Cellulose acetone, AcOH, DMAc, DMAc+LiCl [24, 25]
Polyamic acid (PAA) DMF, DMAc [26, 27]
Polyurethanes (PU) DMF [28]
Polycarbonate (PC) dichloromethane, [29-31]

chloroform+THF+DMF, THF+DMF
Polyvinylpyrrolidone (PVP) DMF, ethanol [32, 33]
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PMMA DMF, chloroform, dichloromethane [34, 35]
Polystyrene (PS) DMF, chloroform, [28, 36]
1,2-dichloroethane

PVDF DMF, DMAc [37, 38]

1.2.3 Morphology of electrospun fibers

In most cases, electrospun fibers with smooth surface and beads-free are required to
guarantee the mechanical properties of the fibers/mats for their further applications.
However, the various electrospinning parameters provide a great diversity of
electrospun fiber morphologies (Figure 1-2). Porous electrospun fibers can be
produced by controlling the humidity and the evaporation of solvents during
electrospinning process due to the phase separation [48, 49]. Necklace-like structures
can be achieved from the electrospinning of the blend of PVA and Silica particles in
water by adjusting the weight ratio of PVA/SiO,/water and the applied voltage [50].
Interesting fiber shapes with firecracker-shape and rice grain-shape are fabricated by
combining electrospinning and post-treatment [51, 52]. Koombhongse et al. reported
ribbon-like and branched fibers, which are formed from the thin skin of the rapid
evaporation of solvent and by the ejection of smaller jets from the surface of the
primary jets, respectively [53]. In another report, Holzmeister et al. presented a
“barbed” shaped fiber from electrospinning by carefully controlling the concentration

of PVA solutions [54].

Figure 1-2. Electrospun fibers with porous structure of PLA (a) (Reprinted with
permission from ref. [48]. Copyright 2010, Springer) and PS (b) (Reprinted with
permission from ref. [49]. Copyright 2004, American Chemical Society), necklace-like
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(c) (Reprinted with permission from ref. [50]. Copyright 2010, American Chemical
Society), firecracker-shaped (d) (Reprinted with permission from ref. [51]. Copyright
2011, Royal Society of Chemistry), rice grain-shaped (e) (Reprinted with permission
from ref. [52]. Copyright 2011, Royal Society of Chemistry), ribbon-like and branched
(f and g) (Reprinted with permission from ref. [53]. Copyright 2001, John Wiley and
Sons), and barbed (h) morphologies (Reprinted with permission from ref. [54].

Copyright 2008, John Wiley and Sons).

The spinnerets used for electrospinning also plays an important role to the fiber
morphologies (Figure 1-3). The well-known core-shell and hollow structures can be
achieved by the coaxial spinneret [19, 55]. Further modifying the spinneret into triaxial
shape, then the fibers exhibit triaxial structures with three different layers [28]. Janus
fibers [56] can be produced by side-by-side electrospinning with two different polymer
solutions. With the same side-by-side electrospinning technique, Chen et al. prepared
spring fibers from flexible and rigid polymers [9]. Zhao et al. modified the spinneret by
embedding two to five metallic capillaries and successfully produced tubular with two
to five channels in the fibers [57]. In another report, Chen et al. developed a
multifluidic coaxial electrospinning approach to produce core-shell fibers with a novel

nanowire-in-microtube structures [58].

Figure 1-3. Core-sheath (a) (Reprinted with permission from ref. [19]. Copyright 2003,
John Wiley and Sons), hollow (b) (Reprinted with permission from ref. [55]. Copyright

2004, American Chemical Society), triaxial (c) (Reprinted with permission from ref. [28].
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Copyright 2014, American Chemical Society), Janus (d) (Reprinted with permission
from ref. [56]. Copyright 2014, John Wiley and Sons), spring (e) (Reprinted with
permission from ref. [9]. Copyright 2009, John Wiley and Sons), nanowire-in-microtube
(f) (Reprinted with permission from ref. [58]. Copyright 2010, American Chemical
Society), and multi-channel tubular (g-j) (Reprinted with permission from ref. [57])

structures of electrospun fibers obtained by the modification of spinnerets.

1.2.4 Short electrospun fibers

Traditional short microfibers have been broadly applied in composites as
reinforcements due to their good distribution in matrix and good processing by
industrial methods, for instance, extrusion. However, the studies on short electrospun
fibers are countable. It is believed that short nanofibers prepared directly from
electrospinning would greatly promote the development of electrospinning
technology and electrospun nanofibers. Researchers tried many attempts to fabricate
electrospun short fibers by optimizing electrospinning parameters (Figure 1-4). Luo et
al. presented short microfibers with aspect ratio in the range of 10-200 directly by
electrospinning [59]. However, the fibers are not smooth and uniform in diameter,
which would limit their applications. Recently, Fathona and Yabuki successfully
obtained cellulose acetate short electrospun fibers by carefully adjusting the
concentration of the polymer solution [60]. They found the good concentration should
be ranging from 13 to 15% and the length of short fibers increased by increasing the
flow rate and decreasing the applied voltage. However, the concentration region was
too small and the studies did not show the universality for other polymers. In another
report from the same group [61], they incorporated TiO2 nanoparticles into cellulose
acetate solution to prepare short electrospun composite nanofibers and studied the
effects of nanoparticle concentration and surface charge on the fiber length. The
increased nanoparticle concentration led to the decrease of fiber length and the
negatively charged nanoparticle in negatively charged polymers would lead to the
elongation of the short fibers [61]. The most developed method to prepare short
electrospun fibers are post-treatments on the obtained electrospun continuous long
fibers. Stoiljkovic et al. developed an effective method to prepare short electrospun
fibers by using a UV cutting method [62]. The short fibers were prepared by removing
the non-cross-linked soluble part and the length of the short fibers can be controlled
by changing the size of the employed mask [62]. Zhao et al. [63], Sawawi et al. [64],

and Xu et al. [65] reported the short electrospun glass, PS and carbon fibers by ultra-
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sonication. In those examples, the materials used for the preparation showed the
common characteristic of brittleness and non-uniform fiber length. Our group
developed a mechanical cutting method with a high speed mixer/blender to fabricate
the short electrospun fibers and showed different applications for controlled
movement [66], composites [67, 68], inhalation applications [69], and sponges [70].
Recently, a similar strategy to prepare short electrospun fiber dispersions with
mechanical homogenization was adopted by Ding’s group for the aerogel preparations
[71, 72].

LN

%

Figure 1-4. Short electrospun fibers. (a) Polymethylsilsesquioxane (PMSQ) (Reprinted

Y

LRSS Y(top”
with permission from ref. [59]. Copyright 2011, Springer), (b) cellulose acetate
(Reprinted with permission from ref. [60]. Copyright 2014, Springer), (c) cellulose/TiO;
(Reprinted with permission from ref. [61]. Copyright 2014, Elsevier), (d) UV cross-
linked polymer (Reprinted with permission from ref. [62]. Copyright 2008, John Wiley
and Sons), (e) glass (Reprinted with permission from ref. [63]. Copyright 2015, John
Wiley and Sons), (f) PS (Reprinted with permission from ref. [64]. Copyright 2013,
Elsevier), (g) carbon (Reprinted with permission from ref. [65]. Copyright 2015,
Elsevier), (h) Co/P(MMA-c-VA) (Reprinted with permission from ref. [66]. Copyright
2007, John Wiley and Sons), (i) nylon-6 (Reprinted with permission from ref. [67].
Copyright 2013, Elsevier), (j) polyimide (PI) (Reprinted with permission from ref. [68].
Copyright 2013, Elsevier), (k) poly(lactide-co-ethylene oxide) (Reprinted with
permission from ref. [69]. Copyright 2009, John Wiley and Sons), and (l) cross-linked
poly(MA-MMA-MABP) ([70]. Open access, John Wiley and Sons).
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1.2.5 Assembly of electrospun fibers

Single fiber prepared from electrospinning belongs to the group of one dimensional
materials. However, their assembly from one dimensional to three dimensional have

attracted broad interests including the physical properties and applications.

1.2.5.1 One dimensional electrospun fiber

During the electrospinning, the charged jet is stretched thousands of times along the
fiber axis to form ultrathin fibers. In this process, the macromolecules in the jet are
drawn and oriented, which greatly enhances the mechanical properties of the single
electrospun fiber. In most cases, it is difficult to isolate the single electrospun fiber for
investigations. However, in order to get the mechanical properties of single
electrospun fiber, researchers developed approaches to catch and handle the
individual fiber. For example, Chen et al. proposed a simple procedure to get the
individual electrospun fiber and make it easy to be handled for single fiber tensile test
[73]. The procedure contains four steps: (1) using a rectangle steel frame to catch
electrospun fibers; (2) using another pre-taped paper frame to pick up an individual
fiber; (3) dropping super glue to fix tightly the single fiber and (4) covering a piece of
paper on the paper frame to avoid the adhesive tape sticking to the clamps of the
tensile tester [73]. With this method, the mechanical properties of single polyimide (PI)
electrospun fiber was measured, which showed superior tensile strength of 1.7 GPa
and E modulus of 76 GPa [73]. Recently, Papkov et al. found that a single electrospun
fiber showed size effect on mechanical properties (Figure 1-5) [74]. They took a single
PAN electrospun fiber for studies and demonstrated that toughness, elastic modulus
and tensile strength dramatically increased, when the fiber diameter was reduced

from 2.8 um to about 100 nm [74].
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Figure 1-5. Comparison of specific strength and specific energy to failure of as-spun
PAN nanofibers (diamonds) with typical values for commercial and developmental
fibers and materials. The arrow density indicates approximate values of nanofiber
diameters (see scale bar). The colored area represents the strength/toughness region
occupied by traditional materials. (Reprinted with permission from ref. [74]. Copyright

2013, American Chemical Society).

In addition, 1D electrospun single fiber can be assembled into bigger 1D fiber bundles,
yarns and ropes by modification the electrospinning setup [75, 76]. These 1D fiber
bundles, yarns and ropes shows special mechanical properties and are promising

materials for the textile-based applications.

1.2.5.2 Two dimensional electrospun fiber materials

The electrospun fibers can be collected in different 2D morphologies. Generally,
electrospun fibers with random deposition can be collected by normal substrates, such
as aluminum foil, stainless steel meshes, and drums with low speed rotation [5].
However, special modifications on the electrospinning set-up can lead to an assembly
of the nanofibers as aligned and patterned nanofibers/nanofiber products (Figure 1-
6). The highly aligned nanofibers can be prepared by some special designed collectors,
such as high speed rotating discs [77], and aluminum plates with electric field assisted
[78]. Uniaxially aligned nanofiber arrays can be fabricated by a device with two, four
or six electrodes deposited on quartz wafers and collectors with magnetic field assisted
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[79]. Fan-shaped nanofiber pattern with similar surface pattern of goose leaf can be
collected by a speculate copper needle perpendicular to a rectilinear copper strip [80].
Other kinds of patterned nanofiber mats can be realized by controlling the pattern of

the collectors, such as stainless mesh and electro-conductive templates [81].

() (d)

aligned fibers aligned fibers a)

rotate
substrate ————
m o)

Figure 1-6. 2D electrospun fiber assembly. (a) Randomly (Reprinted with permission
from ref. [5]. Copyright 2007, John Wiley and Sons), (b) (Reprinted with permission
from ref. [77]. Copyright 2015, Royal Society of Chemistry) and (c) aligned (Reprinted
with permission from ref. [78]. Copyright 2007, American Chemical Society), (d)
(Reprinted with permission from ref. [82]. Copyright 2004, John Wiley and Sons) and
(e) (Reprinted with permission from ref. [79]. Copyright 2007, John Wiley and Sons)
weaved, (f) fan-shape (Reprinted with permission from ref. [80]. Copyright 2008, Royal
Society of Chemistry) and (g) grid-patterned (Reprinted with permission from ref. [81].
Copyright 2007, John Wiley and Sons).

1.2.5.3 Three dimensional electrospun fiber materials

Three dimensional (3D) electrospun fiber materials assembling from 1D electrospun
fibers possess highly porous structures and have attracted a lot of attention for
applications in cellular infiltration [83], bone tissue regeneration [84], tissue
engineering [85], electrodes in microbial fuel cells [86], and oil adsorption [87] (Figure

1-7). The straight-forward way to make 3D fiber scaffolds can be achieved by
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deposition of electrospun fibers for a long time and therefore form the third dimension
in “Z” direction. Cai et al. fabricated 3D electrospun fiber scaffold for cell culture based
on the principle of electrostatic repulsion [88]. Compared with the 2D scaffold, the 3D
structure led to an improvement of nearly 5 times in cell proliferation after 7 days of
cell culture [88]. 3D shaped nanofiber materials could also be fabricated by depositing
the nanofibers on 3D with/without interconnected tubular structures [89]. 3D fibrous
tubes with different sizes, shapes, structures and patterns were prepared by using this
method, and the tubes are expected to be used in biomedical and industrial
applications [89]. Simonet et al. used ice crystals as a removable void template and
successfully prepared 3D ultraporous polymer meshes, which showed four times
higher porosity when compared to the conventional fiber electrospinning [90]. Salts
(NaCl [91] and NaOH [92]) were also used as removable templates used in
electrospinning for the preparation of 3D porous scaffolds. Chen et al. presented 3D
porous electrospun carbon fiber nonwovens for microbial fuel cell applications, which
was produced by a solution-blown assisted electrospinning technology [86]. Our group
recently developed the self-assembly of the short electrospun fibers to form ultralight
sponges, which show low density, high porosity and superior compression properties
[70]. The obtained sponges exhibit various applications, such as uptake of hydrophobic
liguids and cell culture [70]. Ding’s group developed 3D nanofibrous composite
aerogels with cellular structures, highly compression strength and ultralow density [71,
72]. The obtained aerogels showed wide applications, such as thermal insulation,
sound absorption, emulsion separation, electric conduction and oil/water separation
[71, 72]. Recently, Xu et al. reported an electrospun PCL 3D nanofibrous scaffold with
interconnected and hierarchically structured pores by self-agglomeration followed by

freeze-drying and showed its application in bone tissue engineering [93].
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Figure 1-7. 3D electrospun fibrous porous materials. (a) zein electrospun scaffolds
(Reprinted with permission from ref. [88]. Open access, American Chemical Society),
(b) 3D fibrous tubes with different shapes (Reprinted with permission from ref. [89].
Copyright 2008, American Chemical Society), (c) poly(lactic acid-co-glycolic acid)
(PLGA) (Reprinted with permission from ref. [90]. Copyright 2007, John Wiley and
Sons), (d) hyaluronic acid/collagen/salt hybrid scaffold (Reprinted with permission
from ref. [92]. Copyright 2008, Elsevier), (e) PLLA (Reprinted with permission from ref.
[91]. Copyright 2011, Elsevier), (f) carbon (Reprinted with permission from ref. [86].
Copyright 2011, Royal Society of Chemistry), (g) cross-linked poly(MA-co-MMA-co-ABP)
(Reprinted with permission from ref. [70]. Open acess, John Wiley and Sons), (h)
PAN/SiO; (Reprinted with permission from ref. [71]. Copyright 2014, Nature Publishing
Group) and (i) PCL (Reprinted with permission from ref. [93]. Copyright 2015, John
Wiley and Sons).

1.2.6 Applications of electrospun materials

1.2.6.1 Filtration and separation

Air pollution is one of the most serious problems in many cities, which trigger the fast
development of filter media. In recently years, electrospun fibrous porous membranes
have gained great interest as filter media due to their fascinating characteristics like
high surface-area-to-volume ratio, high porosity, tunable pore structure and pore size,

light weight, easy-tailored functionalization, and many others [94, 95]. Two main kinds
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of electrospun materials have been reported as efficient air filter media for fine
particle filtration. The first class is self-standing electrospun polymeric fibrous
membranes. Polyamide (PA) [96-98], polyacrylonitrile (PAN) [99], polyurethane (PU)
[100], polyethylene oxide (PEO) [101, 102], and polycarbonate (PC) [103], were
successfully processed into electrospun fibrous membranes and served as air filter
media. Kim et al. investigated the effect of electrospun fiber diameter in the ranges of
100-730 nm on the filtration efficiency and found that the filter with fiber mean
diameter of 100 nm had a much lower pressure drop performance and the highest
filtration efficiency of over 99.98% with tested particle size of 0.02-1.0 um (Figure 1-8)
[98].
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Figure 1-8. Electrospun PA6 nanofiber membranes with different mean fiber diameters
of (a) 100 nm, (b) 430 nm and (c) 730 nm, and their pressure drop (d) and filtration
efficiency (e) performance for filtration application (Reprinted with permission from
ref. [98]. Copyright 2008, Springer).

The second class is the hybrid fibrous membrane. Zhang et al. found that multiple thin
layered nanofiber membranes had a better filter quality factor than the single thick
layer nanofiber membrane [104]. Wang et al. fabricated a multilevel structured fibrous
composite mat of silica nanoparticles and electrospun PAN nanofibers [105]. The
filtration efficiency could be tunable by changing the composition of the precursor
solutions and the layer-by-layer stacking structure[105]. Another interesting work by
the same group (Wang et al.) presented a two-tier composite structure with one
nanofiber/net top layer and a conventional nonwoven microfibrous support layer for

high filtration efficiency with a low pressure drop [106]. Recently, Liu et al. reported
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an impressive work for high efficiency PM2.5 (Particulate matter with particle size
below 2.5 um) capture [107]. They fabricated transparent air filters by electrospinning
one very thin layer of ultrafine polymeric nanofibers on fiber glass wire mesh and
found that these transparent composite filters could achieve high air flow filtration

with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions [107].

« NaCl particle

Flow direction

Nonwoven PP substrate
—— ===

Figure 1-9. Schematics of preparation of 3D PA66 nanofiber/nets on nonwoven PP
scaffold and their filtration process (a-c) (Reprinted with permission from ref. [106].
Copyright 2011, Royal Society of Chemistry), transparent polymeric nanofibers on
fiber glass wire mesh with different optical transparency of 85, 75, 55, 30 and 10% (d)
and optical microscopy images on in-situ study of PM capture at different time (e)

(Reprinted with permission from ref. [107]. Copyright 2015, Nature Publishing Group).

Water pollution is another serious problem in the world. Many efforts have been
devoted to develop the liquid filtration to remove the undesired suspended particles,
ions, and bacteria. (Figure 1-10). Gopal et al. published a series of works regarding the
particle filtration from water by electrospun fibrous membranes from different
polymers, like PS [108], PSA [109], PVDF [108]. Wang et al. fabricated an electrospun
PAN/polyethylene terephthalate (PET) composite filter, which showed excellent
filtration for micro-particles [110]. Electrospun PA6 [111], carbon [112, 113] and PAN
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[110, 114] nanofiber membranes were also reported for efficient particle filtration
from water. Interesting application on E. coli bacteria filtration by electrospun fiber
membranes was also reported [115]. Another pollutant source are the heavy metal
ions in water. Electrospun fibrous membranes could be applied to absorb the metal
ions in water. Haider and Park electrospun chitosan nanofiber mats for Cu(ll) and Pb(ll)
adsorption [116]. Compared to the Cu(ll) adsorption by chitosan microsphere and
plain chitosan, electrospun chitosan nanofibers showed 6 and 11 times higher
adsorption capacity. Similar removal of heavy metal ions, like Cu(ll), Hg(ll), Cd(Il), and

Ag(l), was also achieved by electrospun cellulose acetate, PCL and PA6 [117-119].

Figure 1-10. Electrospun PVDF fiber membrane for particle separation (a) (Reprinted
with permission from ref. [108]. Copyright 2006, Elsevier), grain proteins/PEO
composite fiber membrane for bacteria filtration (b) (Reprinted with permission from
ref. [115]. Copyright 2016, Royal Society of Chemistry) and cellulose acetate
electrospun fibers mat before (c) and after (d) Cu(ll) adsorption (Reprinted with

permission from ref. [118]. Copyright 2011, Elsevier).

Oil contamination is another pollution sources of water. In the last decades, separation
oil from water has become a hot topic, which is important for recycling the oil and
cleaning the water. Many groups paid their attentions to use electrospun fibrous
membranes for oil/water separation. Shang et al. coated electrospun cellulose acetate
nanofibers with a functionalized layer of SiO, nanoparticles to get a superhydrophobic-
superoleophilic membrane [120]. The membranes showed opportunities to increase
the oil/water separation efficiency. Lee et al. successfully fabricated
superhydrophobic-superoleophilic membrane for oil/water separation by simply
depositing electrospun PS nanofibers onto a stainless steel mesh (Figure 1-11) [121].
Tai et al. successfully applied electrospun carbon-silica nanofibrous membranes for

ultrafast gravity-triggered oil/water separation [122]. In addition, many others
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electrospun fibrous membranes, like polysulfone and polysulfone-amorphous SiO;
nanoparticle composites [123, 124], PVDF [125], TPU [126], polyvinyl
chloride/polystyrene [127], core-shell polystyrene/polyurethane [128], and
poly(styrene-butyl acrylate) [129], have been reported as powerful oil/water

separators.
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Figure 1-11. A schematic showing the electrospun membrane for oil/water separation.
(a) Electrospinning process, (b) a schematic of separation process, (c) SEM images with
high and low magnifications, (d) A photograph showing superoleophilic and
superhydrophobic PS nanofiber membrane, and (e) The real scale as-prepared PS
nanofiber membrane attached to the stainless mesh, whose size is compared with a
coin (Reprinted with permission from ref. [121]. Copyright 2013, American Chemical
Society).

Compared with the conventional nonwovens, electrospun fiber membranes showed
smaller pore size, higher porosity and air permeability, which make them excellent
candidates as battery separators [130]. Until now, many kinds of fiber materials
processed by electrospinning, like polyimide [131], PAN [132], cellulose [133], PET
[134], and PVDF [135], have been used for battery separators and showed outstanding

battery performances, like high-rate capability, long cycle life and large capacity.

Besides the above mentioned filtrations and separations, electrospun fibrous
membranes also show some other interesting separation applications. Strain et al.
used recycled PET bottles for electrospinning and applied the tough fibrous PET
membranes for smoke filtration [136]. The membranes with 0.4 um thick fibers
showed the best smoke filtration efficiency (Figure 1-12). Recently, Sevam and

Nallathambi applied electrospun silver nanoparticle (AgNP) incorporated PAN
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nanofibrous membranes for bacterial filtration and anti-bacteria applications [137].
The novel filter showed 99% bacterial filtration efficiency and good anti-bacteria
activity, which renders it a good candidate for protective mask applications. Similar
research was done by Ma et al. [138]. They prepared surface functionalized PAN
electrospun nanofibers as microfiltration membrane systems for effective removal of

bacteria and viruses from contaminated water.
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Figure 1-12. Electrospun PET nanofibers from recycled PET bottles (a), fiber mats
before (b) and after (c) smoke filtration testing (1.0 mm diameter), IR-spectroscopy (e)
of a clean fiber mat compared to that of smoke-exposed fiber mats with different fiber
diameters (Reprinted with permission from ref. [136]. Open access, Royal Society of

Chemistry).

1.2.6.2 Scaffolds for tissue engineering

Nanofiber scaffolds prepared by electrospinning consist of entangled polymer
ultrathin fibers, which are packed into 3D materials. They have characteristics like high
porosity, low density, suitable mechanical performance, and bidegradability, making
them good candicates for tissue engineering application. Generally, the choice of
materials, fiber diameters, fiber alignment, porosity and surface properties play a key
role for the microscopic and macroscopic properties of electrospun fibrous scaffolds
for tissue engineering. The most important characteristic is that the materials should
be biocompatible. In previous reports, many biocompatible materials have been

electrospun into fibrous scaffolds, such as PLLA [139, 140], silk [141, 142], PCL [143,
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144], PLGA [145, 146], and collagen [147]. Fiber geometry including fiber diameter,
fiber alignment, pore size and porosity can be controlled by electrospinning
parameters. Many researchers studied the effect of fiber geometry on the cell
proliferation [148-153]. Badami et al. prepared PLA fibrous substrates and found that
the fiber diameter significantly influenced the spreading and proliferation of
osteoblastic cells [152]. Lowery et al. found that the pore size of electrospun PCL
scaffolds had effect on the growth of cells [148]. A faster cell growth rate was found
when using the scaffolds with peak pore size larger than 6 um and the cells began to
align to single fibers instead of multiple fibers when changing the peak pore diameter
from 12 to 23 um. Recently, Zhong et al. found that aligned electrospun fibrous
scaffolds could maintain cell shapes (Figure 1-13 d-f) but the random nanofibrous

scaffolds could not during the cell culture process (Figure 1-13 a-c) [153].
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Figure 1-13. Effect of electrospun fiber alignment on the grow of cells (Reprinted with

permission from ref. [153]. Copyright 2015, Elsevier).

Although many kinds of biocompatible polymers have been electrospun into fibrous
scaffolds, there are still challenges for large-scale application in tissue engineering.
One challenge is to develop the electrospun scaffolds with suitable mechanical
properties. The possible strategies could either invole incorproating biacompatible
reinforcements into the fibers, like cellulose nanocrystals [154, 155], montmorillonite
[156], CNTs [157], and graphenes [158], or coating other kinds of polymers with better
mechanical performance, such as poly(p-xylylene) (PPX). Another challenge is to
prepare the fibrous scaffolds by green electrospinning. Until now, most of the scaffolds
in the previous reports involved using organic solvents, which are harmful to the
environment and toxcic to human bodies. One of the solutions could be to develop
water soluble polymers for electrospinning, which could be post-treated into water

insoluble materials. Another solution could be to prepare the fibrous scaffolds by
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emulsion electrospinning [159, 160]. The polymeric particles were embedded into a
water soluble polymer matrix and later the matrix was removed by water treatment

or a sintering process.

1.2.6.3 Catalyst

Electrospun ultrafine nanofibers have attracted a lot of attention in catalyst application
as efficient catalysts or catalyst supports due to their high porosity and reusability.
Generally, three main kinds of catalysts could be prepared by electrospinning. The first
class is electrospun carbon nanofibers (ECNFs) without any additives, which are usually
used as an electrocatalyst and low-cost alternative to platinum in batteries [161-163].
Chen et al. prepared 3D ECNFs as electrodes for bioelectrochemical systems such as
microbial fuel cells or microbial electrolysis cells (Figure 1-14a) [162]. Similar research
was also done by Ghasemi et al., who successfully applied activated ECNFs as an
alternative cathode catalyst to platinum in microbial fuel cells [163]. Joshi et al. used
ECNFs as an alternative to platinum for triiodide reduction in dye-sensitized solar cells
[161]. The obtained ECNFs counter electrodes showed a large capacitance and fast
reaction rates for triiodide reduction. The second class are electrospun carbon
nanofiber supported catalysts. In this case, the catalysts can be deposited on the
surface of ECNFs, blended with ECNFs or located in-between ECNFs. Li et al. deposited
platinum clusters on ECNFs by cyclic voltammetry (CV) method for catalyzing methanol
oxidation and revealed that the special structure of fibrous carbon nanofiber mats
could efficiently improve the catalyst performance (Figure 1-14b) [164]. Many kinds of
metal catalyst precursor can be incorporated into the precursor of ECNFs and after
annealing, the catalyst precursors are converted into catalysts supported in ECNFs.
ECNFs supported silver [165], gold [166], CNTs [167], Co/Ce0O; [168], TiO2[169], and Pt
[170], have been successfully prepared and applied as catalysts. The third class of
catalysts is the nanofibers self-assembling from the metal particles by a sintering
process. These catalyst fibers were prepared by electrospinning the blend of the
precursor of catalyst and another sacrificial polymer like PEO, PVP, and PVA. Wang et
al. fabricated Bi>O3 nanofibers with diameter of 70-200 nm as photocatalysts by
electrospinning the precursor blends of PAN and bismuth nitrate followed by
calcination at 500-600 °C (Figure 1-14c) [171]. The similar strategy is also applied to
prepare bimetallic nanofibers for catalisation, like PtRh/PtRu [172], Cu-doped cerium
oxide [173], Ce02-Zn0O [174], Erbium-TiO, [175], Fe-Pt [176], Pt-Co [177], Pt-Au [178],

and many more.
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Figure 1-14. (a) ECNF supported electroactive biofilm for microbial fuel cells (Reprinted
with permission from ref. [162]. Copyright 2011, Royal Society of Chemistry), (b)
platinum clusters deposited on ECNFs for catalyzing methanol oxidation (Reprinted
with permission from ref. [164]. Copyright 2008, Elsevier) and (c) electrospun Bi>Os
fibers for photodegradation of thevorganic pollutant Rhodamine B (Reprinted with

permission from ref. [171]. Copyright 2009, Elsevier).

1.2.6.4 Drug delivery

Due to the high porosity, high specific surface area to volume ratio and highly tailored
properties, electrospun nanofibers can act as drug carrier for drug delivery systems
[179-181]. Numerous drugs such as anti-cancer drugs [182-184], anti-biotics [185, 186],
proteins/enzymes [187-190], DNA/RNA [191-194] and anti-inflammatory agents [195-
197], have been incorporated into electrospun polymeric nanofibers for drug delivery
systems. As an efficient drug delivery system, the first important goal is to load the
drugs into the electrospun fibers. Till now, there are several methods to load drugs

into the fibers.

(1) Loading the drugs by adsorption. This is a straightforward method to produce drug-
loaded fibrous systems, which provide versatile drug delivery platforms to release the
drugs from the same fiber matrix and can avoid the exposure of drugs to the
electrospinning process. However, this method possesses the disadvantage of burst
release due to the open-porous system. Boelgen et al. successfully loaded the anti-
biotic ornidazole to PCL electrospun nanofiber mats by adsorption, but the system
showed burst release (80%) of the drugs in 3 h [198].
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(2) Loading the drugs by electrospinning the blend of drugs and the polymer solutions.
This method has been adopted by most of the researchers, as it provides more
possibilities to control the drug release by controlling the properties of drugs and
polymer matrix. The affinities among the drugs, polymer fiber matrix and the delivery
environment play an important role on the drug delivery. For example, Zeng et al.
studied the influence of the solubility and compatibility of anti-cancer drugs in the
drug/polymers/solvents system on the loading of drugs in the PLLA electrospun fibers
and the release behavior [199]. A burst release was observed when the dispersion of
the acid-based drugs in PLLA was electrospun, which was attributed to the fast wash-
off of the drugs from the surface of the fibers whereas for the base-based drugs in
PLLA solutions were used for electrospinning, a modest burst release was observed
[199]. In addition, the polymer degradation also plays an important role on the release
of drugs from electrospun fibers. Ranganath and Wang compared the sustained drug
release from electrospun PLGA copolymer fibers with 85:15 and 50:50 monomer ratios
[200]. It took more than 80 days for the drug release from the fibers and a faster
release rate from PLGA 50:50 was observed than from PLGA 85:15 fibers, which could
be due to the faster degradation of polyesters with higher amount of glycolic acid

component [200].

(3) Loading the drugs by coaxial electrospinning. This method can protect the drug
during electrospinning, provide the possibility to load non-spinnable drugs as core
encapsulated by the shell and avoid the initial burst release due to the barrier of the
shell. For instance, Zhang et al. successfully decreased the initial burst of FITC-labeled
BSA by coaxial electrospinning where the core solution of PCL was incorporated with
FITC-labeled BSA and the shell solution of PEG, when comparing with the traditional
electrospinning from the blends of PCL and PEG with addition of FITC-labeled BSA
[201].

The above electrospun nanofiber delivery systems only show a temporary and spatial
control of the drugs by controlling the fiber diameter, fiber porosity, drug dissolution
and diffusion, and polymer degradation. In the future, efforts to develop smart drug
release systems with activation and feedbacks from electrospun fibers to initiate the
release of drugs over time are highly required. The successful smart drug delivery
systems might be derived from smart electrospun nanofibers which could be

stimulated by light, temperature, pH, electrical field or magnetic field [202].
Another important issue for drug release from electrospun fibers is their drug loading
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capacity. Until now, due to the 2D characteristics of the mat, the drug loading capacity
is not too high, which requests an advanced hierarchical structure of nanofibers as
support for drug loading. This structures made of electrospun nanofibers with high
drug loading capacity can be achieved by the nanofiber sponges with super high
porosity. In our recently report, the sponges prepared from electrospun nanofibers
shows a super high porosity of 99.6%, which would be a good candidate as drug

loading support for drug release [70].

1.3 Ultralight porous 3D materials

Recently ultralight porous 3D materials have attracted a lot of attention because of
their 3D connected networks, high porosity, high flexibility and elasticity, and
abundant material resources. These materials have been widely applied as electrode
materials in the energy and sensor area, absorber materials including absorbing both
gases and liquids, insulating materials (thermal, sound and electromagnetism), tissue
engineering, oil/water separation, and many more [203-206]. In the published reports,

” “"

three words, “sponge”, “aeroge

III

and “foam” are usually used to describe these
ultralight porous 3D materials. Depending on the material sources, ultralight porous
3D materials can be divided into four main classifications, including carbon-based,
polymer-based, inorganic, and hybrid ultralight porous materials. In the following
sections, an introduction to these four classes of 3D material and their applications are

briefly described.

1.3.1 Carbon-based ultralight porous 3D materials

Carbon materials are one class of the most attractive materials in last several decades.
They includes carbon black, CNTs, graphenes and carbon fibers. Among them, CNTs,
graphene and carbon fibers are famous high performance carbon materials with
superior properties of electrical conductivity, thermal conductivity and excellent
mechanical properties. In last few years, many researcher have devoted their efforts
to develop CNT, graphene and CNT/graphene hybrid based ultralight porous 3D
materials and have successfully applied them in adsorption (liquid, gas, heavy ions),
capacitor, battery, catalyst, insulation, and many more, due to their high porosity
(>95%), low density (<10 mg/cm?3), high specific surface area and high electrical
conductivity (Figure 1-15) [204, 205, 207-211]. Carbon fibers are also high

performance carbon materials. However, there are countable reports regarding the
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ultralight porous 3D materials of carbon fibers. Bi et al. prepared carbon fiber aerogels
from raw cotton and used it as efficient and recyclable sorbent for oils and organic
solvents [212]. The obtained carbon fiber aerogel possesses a relatively low density of
12 mg/cm?3, but high sorption capacity of 50-192 g/g. Compared to the ultralow density
of CNT and graphene based aerogel/sponge, the relatively high density in Bi’s report
could be attributed to the large fiber diameter in the range of 15-20 um [212]. Another
report on using carbon nanofiber to prepare carbon nanofiber aerogels was from Yu’s
group [213]. The carbon nanofiber aerogel by sol-gel process has a self-assembled,
interconnected, 3D network structure with low density (10 mg/cm?3), high porosity
(>99%), excellent mechanical stability, high hydrophobicity and superoleophilicity
[213]. Electrospinning is an effective method to produce carbon nanofibers with
diameters in the range of tens of nanometers to several micrometers [17, 162, 214,

215]. Electrospun carbon nanofibers could be promising candidates for the fabrication

of ultralight porous materials in the future.

Figure 1-15. A monolithic CNT sponge with a bulk density of 7.5 mg/cm3 (a), cross-
sectional SEM image of (a) showing a porous morphology and overlapped CNT (b),
illustration of the sponge consisting of CNT piles (black lines) as the skeleton and open
pores (c), images of the fabrication process of the graphene aerogel (d), an image of
an original aerogel (left) and a flame treated aerogel (right) sitting on a green
bristlegrass (e), SEM image of the cellulose fibers in raw cotton (f), SEM image of the
carbon fibers in carbon fiber aerogel (g), photograph of a water droplet supported on
a carbon fiber aerogel (h) and mirror-reflection can be observed when a carbon fiber

aerogel was immersed into water, which is convincing evidence for the hydrophobicity
42



INTRODUCTION

of the TCF aerogel (i). (a-c) (Reprinted with permission from ref. [207]. Copyright 2009,
John Wiley and Sons), (d, e) (Reprinted with permission from ref. [211]. Copyright 2013,
Royal Society of Chemistry) and (f-i) (Reprinted with permission from ref. [212].
Copyright 2013, John Wiley and Sons).

1.3.2 Polymer-based ultralight porous 3D materials

Polymers have their own special characteristic of low density with comparison to the
inorganic materials. Therefore, they can be the natural option for preparing ultralight
porous 3D materials. One main class of polymer materials for polymer-based ultralight
3D materials is cellulose [216-218]. Zhang et al. demonstrated a compressed cross-
linked native cellulose nano/micro fibril cellulose aerogel with fast recovery properties
(Figure 1-16a) [219]. Carlsson et al. presented an electroactive nanofibrillated
cellulose aerogel composite, which showed tunable structure and electrochemical
properties [220]. Liebnar et al. showed an ultralight cellulose aerogel with density
range from 0.05 to 0.26 g/cm? [221]. In Granstrom’s report, water repellent cellulose
aerogels were prepared from cellulose aerogel with a chemical esterification method
[222]. Similar hydrophobic cellulose aerogel for oil absorption was also shown in many
other reports [223-228].

Besides of cellulose, other polymers were also found to be used as materials for the
preparation of ultralight porous 3D materials. Lorjai et al. made polybenzoxazine-
based organic aerogel by thermal curing reaction of a benzoxazine monomer with
xylene [229]. However, because of the high concentrations of benzoxazine in the
solution (20 and 40 wt%), the resulting aerogels showed high densities of 260 and 590
mg/cm?3, respectively. Gioia et al. reported a porous chitosan aerogel for catalyst
application [230]. In another report, a polysaccharide-based aerogel was fabricated for
oral drug delivery [231]. Song et al. presented a ultra-flyweight compressible
hydrophobic poly(m-phenylenediamine) aerogel for selective absorption (Figure 1-
16b) [232]. The aerogel exhibited ultralow density of 0.8 mg/cm3, large surface area of
338 m?/g, low thermal conductivity of 0.0125W/m/K and excellent mechanical
properties [232]. Cardea et al. prepared PVDF aerogels as drug delivery systems [233].
A homogenous drug distribution in the aerogel, a quasi-constant release rate and no
burst release effect were achieved by the aerogels (Figure 1-16¢) [233]. Lee et al.
reported a lightweight polydicyclopentadiene-based aerogels [234]. The aerogel with
high porosity and low thermal conductivity showed promising applications for thermal
and acoustic insulation [234].
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Polymers are good candidates to be processed into nanofibers by electrospinning and
the electrospun fibers recently are reported to be used for the preparation of 3D
porous materials. Ding’s group successfully fabricated ultralight electrospun
nanofiber-assembled aerogels with superelasticity and showed multifunctionalities
like ultralow density, rapid mechanical recovery, efficient energy absorption, thermal
insulation, sound absorption and oil/water separation [71, 72]. Fong’s group firstly
reported electrospun PCL 3D nanofibrous scaffolds [93]. The scaffolds showed very
high porosity of about 96.4% and were successfully applied in bone tissue engineering
[93]. Our group also fabricated ultralight polymer sponges by freeze-drying dispersions
of short electrospun fibers [70]. The sponges show extremely low density of smaller
than 3 mg/cm?3, softness with reversible compression, hydrophobicity with excellent

uptake for hydrophobic liquids, and successfully applied for cell culturing (Figure 1-

16d) [70].
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Figure 1-16. (a) Compressed cross-linked native cellulose nano/micro fibriliar cellulose
aerogels with fast recovery properties in water (Reprinted with permission from ref.
[219]. Copyright 2012, Royal Society of Chemistry), (b) ultra-flyweight hydrophobic
poly(m-phenylenediamine) aerogel with compression recovery for 50 cycles
(Reprinted with permission from ref. [232]. Copyright 2014, Royal Society of
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Chemistry), (c) PVDF sponges loaded with amoxicillin for drug release (Reprinted with
permission from ref. [233]. Copyright 2011, Elsevier), and (d) electrospun polymer
nanofibers for cell culture (green: live cells; red: dead cells) (Reprinted with permission

from ref. [70]. Open access, John Wiley and Sons).

1.3.3 Inorganic ultralight porous 3D materials

Compared to polymers, inorganic materials possess exceptional properties, such as
superior thermal resistance, chemical resistance, ultralow permittivity dielectrics and
high E modulus. Until now, a lot of inorganic materials have been processed into
ultralight porous 3D materials. Among these materials, silica aerogels are the most
studied ultralight porous 3D materials [203, 235-237]. They have highly abundant
sources and are highly porous with a 3D silica connected skeleton. This characteristic
make silica aerogels broadly applicable as absorption materials and encapsulation
supporters. Cui et al. used silica aerogels to adsorb nitrobenzene from wastewater
[238] while Simirnova et al. applied them for the adsorption and release of ketoprofen

[239, 240].
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Figure 1-17. Loading (a) and release (b) profiles of ketoprofen from hydrophilic and

hydrophobic silica aerogels of different densities in 0.1N HCl at 37 °C (Reprinted with
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permission from ref. [240]. Copyright 2004, Elsevier).

Silica aerogels possess very low thermal conductivity, which is even much lower than
that of air. Thus, they are considered as the best thermal insulating materials [241,
242]. Although silica aerogels are highly porous and tend to scatter the transmitted
light, they can be optically transparent with high light transmittance, which make them
good candidates for transparent thermal insulating components, such as windows
[243, 244]. Recently, Tabata et al. presented hydrophobic transparent silica aerogel
tiles with large area of 18 x 18 x 2 cm3 and high refractive index of about 1.05 for
application as Cherenkov radiators (Figure 18) [245]. The high porosity, highly
interconnected network and the full-filling of air make silica aerogels a good choice for
applications as sound insulating materials [246, 247]. In silica aerogels, the
propagation of sound is attenuated both in amplitude and velocity from the air inside
the aerogels to the aerogel solid network [246, 247]. Another characteristic of silica
aerogels is their low dielectric constant in the range of 1-2 [248-250]. Thus, silica

aerogels can be used as electrical insulation materials [251, 252].

Transmittance
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Figure 1-1-18. Silica aerogel sample with refractive index (n) = 1.045 and size of 18 x
18 x 2 cm3(a) and UV-Vis spectra of 20 mm thick aerogel tiles with n = 1.045 and n =
1.055, respectively (b) (Reprinted with permission from ref. [245]. Copyright 2016,

Elsevier).

Besides of the silica aerogels, there are also many kinds of other ultralight porous 3D
inorganic materials. Yin et al. fabricated 3D porous boron nitride foams with density
below 10 mg/cm?3, ultralow permittivity of 1.03 and excellent mechanical recovery
(Figure 19) [253]. Jung et al. developed a facile method to produce inorganic nanowire
aerogels in large scale and at low cost [254]. Depending on the used materials, the
obtained aerogels can be used for catalyst or adsorption for heavy metal ions and toxic
organic contents. Recently, Chabi et al. prepared ultralight and strong 3D SiC foams

with low density ranging between 9 and 17 mg/cm?3, superior compression strength
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and mechanical recovery [255]. Kim et al. reported a Ni-Al aerogel catalysts, which
showed remarkably improved activity to convert CO, to CHs when comparing with the
catalyst prepared by conventional impregnation method [256]. In Le’s report, V205
aerogels showed a high surface area up to 450 m?/g and a specific pore volume of 2.3
cm3/g, which were used as reversible and high capacity hosts for lithium ion
intercalation [257]. Similar application as intercalation host for sodium ion battery
from V,0s5 aerogels was also shown by Passerini’s group [258]. Wei et al. made
mesoporous cobalt oxide aerogels with high specific surface areas and high porosity
for supercapacitor application [259]. The cobalt oxide aerogel-based supercapacitor
exhibited more than 600 F/g capacitance, onset frequencies and excellent reversibility

and cycle stability.
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Figure 1-19. 3D porous boron nitride foam with thermal stability to 850 oC, mechanical
recovery and low dielectric constant (Reprinted with permission from ref. [253].

Copyright 2013, American Chemical Society).

1.3.4 Hybrid-based ultralight porous 3D materials

Hybrids of different materials provide more choices for the preparation of ultralight
porous 3D materials by different combinations. Hybrid-based ultralight porous 3D
materials can be the combination of carbon-based, polymer-based and inorganic-
based materials, and the combination of different functionalities. The most studied
hybrid-based ultralight porous 3D materials are the combination of carbon-based
materials with other materials. Carbon-based hybrid aerogels are usually applied in
energy storage applications. Nickel cobaltite/carbon aerogel composites [260] by
Chien et al., cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogels
[261] by Gao et al., and graphene/polypyrrole nanotube hybrid aerogel [262] by Ye et
al., graphene/Mn0O; composite [263] by He et al., were applied for the preparation of
supercapacitors. Xiao et al. fabricated Fe,Os/graphene oxide aerogel for lithium

storage application which showed excellent reversible capacity of 995 mA h/g after 50
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cycles with the charge rate of 100 mA/g (Figure 1-20) [264]. Besides the energe storage
application, aerogels based on MWCNTs/FeCo(Ni)/SiO; [265], graphene/carbon [266],
TiOy/carbon [267], Pt/carbon [268, 269], and sulfur/carbon [270], were reported for
catalyst application. Other composite aerogels with polymers and inorganics are also
attracted a lot of attention for different applications. For example, Williams et al.
developed a ZnO/Ti0,/SiO; hybrid aerogel for fast electron transportation in dye-
sensitized solar cells [271]. Casu et al. studied the magnetic properties and structure
morphology of highly porous CoFe,04/SiO; aerogels [272] while Kwon et al. applied
silica aerogel doped with TiO, powder for thermal insulation application [273]. Ding’s
group prepared PAN/SiO, composite aerogels from a dispersion of the corrsponding
electrospun fibers followed by freeze-drying and sintering [71, 72]. The obtained
composite aerogels showed ultralow density, rapid mechanical recovery and
superhydrophobic-superoleophilic property, and presented various applications, like

oil/water separation, thermal insulation, sound absorption, and many more [71, 72].
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Figure 1-20. A schematic illustration of the preparation of 3D porous Fe203/graphene
oxide hybrid aerogel (a), SEM image showing the 3D macroporous structure (b) and
the discharge curves at the current density of 100 mA/g between 0.01 and 3.0 V in the
first, second, fifth and 50t cycle (Reprinted with permission from ref. [264]. Copyright
2013, American Chemical Society).

1.3.5 Modifications on ultralight porous 3D materials
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Ultralight porous 3D materials possess high porosity and hierarchical pore structures,
which made them good candidates for further development to new materials. By filling
apolar liquid in the pores of porous 3D materials, the newly formed 3D constructs
could be considered as a spongy gel, which not only possesses the same features as a
traditional gel (a liquid phase, a 3D network, and essentially no flow), but also shows
its own advantages, such as the controlled structure of the 3D fibrous network, no
shrinkage, no sensitivity to impurities on gel formation and provide a wide range of
possibilities for functionalization. Unlikely the traditional formation of organogels via
bottom-up approach, this spongy gel is formed by a top-down approach, where a pre-
formed 3D sponge was used to fill apolar liquid. Chemical vapor deposition (CVD) is
another effective approach to functionalize the 3D materials. Yavari et al. modified
nickel foams by CVD of methane for gas sensor application [274]. The modified sponge
showed very high sensitivities to NH3 and NO2 and the response time was very shot.
In another report, Langner et al. modified electrical insulated melamine-formaldehyde
foam with silver and copper nanoparticles by wet-chemical metallization and the
resultant composite foams could achieve very high electrical conductivity [275]. In
addition, due to the high porosity and the relatively large pore sizes, the ultralight
porous 3D materials could also be used to seed cells and bacterial for further

applications [70, 276, 277].
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This thesis contains four publications and one manuscript in Section 2.1 to 2.5. The
main contents involve the preparation, properties and applications of fibrous porous
three dimensional (3D) sponges, which are summarized in the following sections. In
Section 2.1, initial investigations of 3D sponges from electrospun fibers on the
fabrication, structures, mechanical properties and applications including liquid uptake
and cell growth are performed. Section 2.2 aims at the disadvantages (poor
mechanical properties and instability in solvents) of the sponges prepared in Section
2.1, proposing a useful strategy by coating another polymers on the whole surface of
the sponges to form stable junctions between the fibers to improve the compression
properties and solvent resistance. Section 2.3 applies functionalized 3D fibrous
sponges with immobilized Au nanoparticles (Au-sponge) as efficient catalyst support.
The Au-sponge possesses low density and carried small amount of AuNPs, but the Au-
sponges exhibit superior high normalized rate constant versus the amount of
immobilized AuNPs due to the large pore volume of the sponge. Section 2.4 uses the
porous sponges as drug carrier for drug release. Due to the large pore volume of the
sponge, the drug loading capacity by the sponge can be up to 2639 mg/g. The drug
release from the sponge can be controlled by adjusting the thickness of an additional
polymer coating. The last section (Section 2.5) aims the development of new spongy
gel based on the 3D sponges from electrospun fibers. The spongy gels exhibited not
only the same features as traditional organogels, but also possessed advantages such
as no shrinkage, no sensitivity to impurities on gel formation, good control over the 3D
network, and a wide range of possibilities for functionalization due to the abundant
resources of electrospun fibers. Detailed coverage of the experimental parts, results

and discussions can be found in Chapter 3.
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2.1 Ultralight, soft polymer sponges by self-assembly of short

electrospun fibers in colloidal dispersions
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This work has already been published in:

Gaigai Duan, Shaohua Jiang, Valérie Jérome, Joachim H Wendorff, Amir Fathi,
Jaqueline Uhm, Volker Altstadt, Markus Herling, Josef Breu, Ruth Freitag, Seema
Agarwal, Andreas Greiner. Ultralight, Soft Polymer Sponges by Self-Assembly of Short
Electrospun Fibers in Colloidal Dispersions. Adv. Funct. Mater. 2015; 25(19):2850-2856.

Specific contributions by authors:

Gaigai Duan was involved in the whole work on the experimental part and wrote the
manuscript. Dr. Shaohua Jiang have done all the SEM measurement and gave many
suggestion and discussion on the project and manuscript. Dr. Valérie Jérdme and Prof.

Ruth Freitag carried out the application of cell growth and wrote the corresponding
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part of the manuscript. Amir Fathi, Jaqueline Uhm and Prof. Volker Altstadt
contributed to the work by the performance of micro-CT analysis. Markus Herling and
Prof. Josef Breu carried out the BET measurement on the specific surface area of the
sponges. Prof. Seema Agarwal gave many valuable suggestions and discussion for this

project. Prof. Andreas Greiner was in charge for the whole project.
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Three dimensional (3D) sponges with interconnected networks possess excellent
properties, such as large porosity, hierarchical pore structure, low density, and
reversible compressibility. However, it is difficult to fabricate such mechanical stable
3D sponges straightforwardly from electrospinning. In this work, we developed a novel
procedure to prepare 3D sponges from electrospun fibers (Figure 2-1). By changing
the concentrations of short electrospun fibers from 2.42 to 8.76 mg/mL in the
dispersion, the sponges exhibits ultralow density in the range of 2.72-9.12 mg/cm3. A
highly porous structure with porosity >99% is found in the fibrous sponge and the
sponge contains hierarchical order of the pores and interconnection of the fibers,

where big pores of 300-430 um and small pores of 10-30 um are observed (Figure 2-

l L T g AR
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— > > ) >
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Figure 2-1. Preparation of fibrous and porous sponge from short electrospun fibers

and the porous structure of the sponge.

The sponge exhibits reversible compressibility and bendability without any fracture
and tunable compression properties (Figure 2-2). As the density increased from 2.72
to 5.05 mg/cm3, the compression strength at 50% compression strain increases from
0.3 to 1 kPa. Although the density of the sponge is low, the fibrous sponge can cover
an important area in the Ashby plot of the compression stress vs density with

comparison to other porous materials and is also close to the natural sponge (spongia
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Figure 2-2. Digital photos of the reversibly compressive and bendable sponge (a),
compression stress-strain curves of the sponges with different densities (b), and Ashby
plot of the compression stress vs density with comparison to other porous materials.
(1) boron nitride, (2) carbon nanotube, (3) carbon aerogel, (4) cellulose fiber, (5) cross-
linked polystyrene, (6) polyolefin (closed cell), (7) polyethylene (closed cell), (8)
polyimide, (9) polyethylene (50% strain), (10) silk fibroin, (11) melamine-formaldehyde
(rigid), (12) tannin-based (rigid), (13) PDLLA/Bioglass composite, (14) latex rubber, (15)
PAN-microspheres and fibers, (16) rigid polyurethane, (17) PVC (cross-linked), (18)
epoxy-boroxine, (19) bio-based macroporous polymers, (20) silicon oxycarbide

ceramic, (21) aluminum foams.

Due to the highly porous structure, the fibrous sponges are successfully applied for
high capacity oil adsorption and cell tissue engineering (Figure 2-3). Unlikely other
surface wetting behavior for liquid adsorption, the porous sponges exhibits a pore
filling mechanism for the oil adsorption so that large oil adsorption and reversible
sorption and desorption from the sponge can be achieved (Figure 2-3a, b). 3D porous
structure is also highly required for the growth of cells. The Jurkat cells can be survived
in the sponge and formed cell clusters (Figure 2-3c). Further incubation of Jurkat cells
indicates that the sponge is suitable for the cell growth into tissue even after 30 days’

incubation (Figure 2-3d).

70



CUMULATIVE PART OF DISSERTATION

(a) 30000 272mgem’| (b)) 6000
% ] 3.75mg/em’
7 e 5 g/em
250004 |7~ 5.05mg/em’ s 5000+
< 75 [0 sa2mgem] T
e S .12 mg/cm
c %o c 4000
-5 20000+ 77 ggv i
(=} RN D 3000
£ 15000 77BN 7 <
o 755N % 2 2000
o= 7 RRRINN (]
o 1 38 f
2 10000+ 77 }Q N / = 1000
5000 [7F50N f 0-
55N 755N
o LZEN NI 88N\
mineral oil cyclohexane petroleum ether

Figure 2-3. Weight gain of liquids (mineral oil, cyclohexane and petroleum ether) (a)

and reversible sorption and desorption of cyclohexane (b) from the porous sponge;
Jurkat cells colonized on a sponge (c); and 3D confocal images of Jurkat cells incubation
for 13, 20 and 30 days in the sponges (d), where green and red color indicated the live
and dead cells.

In conclusion, fibrous 3D sponges with ultralow density, low specific surface area and
high pore volume are successfully prepared from dispersions of short electrospun
fibers. The sponges have excellent mechanical compression properties and liquid
absorption and are successfully applied for cell growth. This technique for the
fabrication of fibrous porous sponges opens a wide door to prepare the sponges from
various electrospun fibers and to functionalize the sponge with various functions for

different applications.
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2.2 Ultralight open cell polymer sponges with advanced properties

by PPX CVD coating
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This work has already been published in:

Gaigai Duan, Shaohua Jiang, Tobias Moss, Seema Agarwal, Andreas Greiner. Ultralight
open cell polymer sponges with advanced properties by PPX CVD coating. Polym. Chem.
2016; 7(15):2759-2764.

Specific contributions by authors:

Gaigai Duan performed the whole work on the experimental part and wrote the
manuscript. Dr. Shaohua Jiang has done all the SEM measurements and corrected the
first version of the manuscript. Tobias Moss carried out the experiment of PPX coating
and wrote the corresponding part of the manuscript. Prof. Seema Agarwal gave many
valuable suggestions and discussion for this project. Prof. Andreas Greiner was

responsible for the guidance and supervision of the whole project.
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In Section 2.1, we showed ultralight 3D fibrous sponges made from short electrospun
fibers which possesses low density, large porosity and compressibility, and can be
applied for oil absorption and cell tissue engineering. However, the relatively low
compressive strength (<1 kPa) and the poor resistance of the sponges to the solvents
greatly limited their applications in harsh environment. In this work, an additional
polymer coating of poly(p-xylylene) (PPX), which has good adhesion to other surfaces,
excellent chemical resistance, mechanical properties and thermal stability, is coated
on the surface of the fibrous sponges (Figure 2-4a). Depending on the density of the
un-coated original sponges and the coating thickness of PPX, the PPX coated sponges
possesses tunable densities, compression properties, water contact angle and

enhanced solvent resistance.

(f) 11943° 1354:1" 15613 ¢ 144 +1° 131 x320°

20000

PPX-0 nm PPX-100 nm PPX-280 nm PPX-360 nm  PPX-1000 nm

Figure 2-4. Digital photo of PPX-coated sponge (a); SEM images of original sponge (b,
c) with density of 5.16 mg/cm3, and the corresponding sponge after PPX coating with
1000 nm (d, e); Typical water contact angle of sponges with different PPX coating

thicknesses (f).
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The original sponges shows fibrous porous structures (Figure 2-4b) and have densities
in the range of 4.34-8.42 mg/cm?3. After coating by a uniform layer of PPX with different
coating thicknesses, the density increases in the range of 4.83-22.59 mg/cm? and the

fibers show core-shell structures as shown in Figure 2-4c, d, e.

The PPX coating on the sponges leads to a significant improvement on water contact
angle (Figure 2-4f). The PPX coated sponge shows superhydrophobicity with water
contact angle of 156° in comparison to the 119° of the original sponges. In addition,
depending on the sponge densities and the coating densities, the water contact angle

can be varied in the range of 114-156°.
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Figure 2-5. Compression stress-strain curves of the sponges with different densities
and different PPX coating thicknesses. The densities for the sponges without PPX
coating of (a), (b), (c) and (d) are 4.34, 5.16, 7.43 and 8.42 mg/cm3, respectively.

The PPX coating on the fibrous sponges leads to an obvious improvement on
compression properties (Figure 2-5). As expected, the sponges with smaller density
show lower compression strength at 50% compression strain. After coating with PPX
with increased thickness, the compression strength of the sponge also increases.
Compared to the bare sponges, the sponge coating with 100 nm and 1000 nm PPX
shows more than 2 times and 10 times compression strength, which greatly improve
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the mechanical stability of the sponges. The cyclic compression measurements show
that the PPX coated sponge exhibits the same compression strength after one cycle of

compressing and releasing.

a) Without coating b) PPX-280 nm

water EtOH"aceton?éf CHCI;" water EtOH acetonq CHC|3’

Figure 2-6. Solvent resistance of the sponges without (a) and with (b) 280 nm PPX

coating.

Due to the excellent solvent resistance of PPX and the stable junctions formed in-
between the fibers as cross-linking network, the sponges coated with PPX also show
improved solvent resistance (Figure 2-6), which provides many more chances for
different kinds of applications. The sponge without PPX coating would be disintegrated
in the solvents after shaking. As comparison, the sponges coated with 280 nm PPX
show excellent solvent resistance so that higher shape stability is observed even if the

sponges are strongly shaken in the solvents.

In conclusion, CVD method is successfully applied to modify the fibrous sponges with
improved mechanical properties, tunable wetting properties and enhanced solvent
resistance. This improvement on mechanical stability and solvent resistance of the
sponges provides the opportunity to apply the sponges in harsher environment. The
superhydrophobicity of the composite sponges would attract particular interest for

application in oil/water separation.
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2.3 Highly efficient reusable sponge-type catalyst carriers based on

short electrospun fibers

18€0.65

Au-Sponge3.56

This work has already been published in:

Gaigai Duan, Melissa Koehn-Serrano, Andreas Greiner. Highly Efficient Reusable
Sponge-Type Catalyst Carriers Based on Short Electrospun Fibers. Macromol. Rapid
Comm. 2017; 38: 1600511.

Specific contributions by authors:

Gaigai Duan performed the whole work on the experimental part and wrote the
manuscript. Dr. Melissa Koehn-Serrano prepared the gold nanoparticles. Prof. Andreas

Greiner was responsible for the guidance and supervision of the whole project.
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Carriers for catalysts with highly efficiency often require large specific surface area and
large amount of catalyst. In this work, a novel catalyst carrier with low specific surface
area but large pore volume presents highly efficient mass transfer of educts and
products, and can reduce the blockage of the active catalyst carrier surface by product
adhesion. The spongy carrier is made from functionalized electrospun fibers with
immobilized Au nanoparticles (AuNPs). Following with the same preparation
procedure as described in section 2.1 and section 2.2, the sponges with different
amount of AuNPs (0.29 wt%, 0.65 wt% and 3.56 wt%, Au-sponge) are prepared (Figure
2-7).

\

V-70 X Electrospinning
2 VP

HF, 40 °C \N (o] poly(MA MMA-MABP), PAN
DMF, DMSO, acetone V4
N

MABP
poly(2VP-co- MABP)

Wetting In-situ reduction Cutting Freeze Au-Sponge0 Au-Sponge0.6
ammonia water AuNPs dioxane Drying g ‘ ;

Figure 2-7. Procedure of the preparation of Au-sponges.

As expected, the Au-sponge possesses hierarchical porous structure that the pore size
can be as large as 400 um (Figure 2-8a). The immobilization of AuNPs with average
particle size of 5.7 + 0.8 nm was confirmed by EDX spectra (Figure 2-8b) and TEM
images (Figure 2-8c). In addition, the Au-sponge also shows excellent mechanical
stability (Figure 2-8d). The Au-sponge3.56 shows a compression strength of 0.55 kPa
at 50% compression. The cyclic compression test indicated that the sponge possesses
the same compression strength after one cycle compression and release. This

mechanical stability provides the possibility of the reuse of the Au-sponge for catalysis.
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Figure 2-8. SEM image of Au-sponge3.56 (a), EDX spectra of AuNP-immobilized fibers
(b), TEM images of AuNPs on the sponge (c), and cyclic compression measurement of
Au-sponge3.56 (d).

The catalytic performance indicates that the amount of AuNPs in the sponge plays an
important role on the catalyst efficiency (Figure 2-9a, b). With the same reaction time
of 32 min, Au-sponge3.56 shows a higher efficiency than Au-sponge0.29 for the
reduction of 4-nitrophenol. The intensity of the absorption peak at 400 nm decreases
to 0.06 and 0.22 and the color of the product become colorless and still light yellow,
respectively. Further investigation on the normalized reaction rate constant (Knor)
indicates that the Au-sponge possessed very high value of Knor of 10 /(min g), which
can be achieved by very small amount of AuNPs (0.0029 mg). This value is 100% more
efficient than that achieves by other carrier system with immobilized AuNPs. Other
dispersed AuNPs also show comparable Knor to the Au-sponge system, but these
systems are hardly achieving the reusability of the catalyst. In this work, the sponge
catalyst (Au-sponge3.56) shows feasible reuse for catalysis so that after 5 cycles of

reuse, the rate constant decreases slightly from 0.090/min to 0.072/min.
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Figure 2-9. UV-Vis spectra to monitor the reduction of 4-nitrophenol using Au-
sponge0.29 (a) and Au-sponge3.56 (b) as catalysts, and Ashby plot of the comparison
of normalized rate constant (Knor) versus the amount of AuNPs on the different kinds
of supports.

In conclusion, the Au-sponge system with very small amount of AuUNPs and low specific
surface areas possesses surprisingly high catalytic rate constants, which are in the
range of the top values with comparison to other AuNP carrier systems with high
specific surface area. The large pore volume of the Au-sponge can effectively improve
the mass transfer of the educts and products in the reaction solution. It is obvious that
the mass transfer in the reaction system also plays a very important role in catalyst
efficiency. This Au-sponge system also opens a new direction for design of new catalyst

carrier system with large pore volume but small specific surface area.
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2.4 Exploration of Macroporous Polymeric Sponges As Drug Carriers
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This work has already been published in:

Gaigai Duan, Amir Reza Bagheri, Shaohua lJiang, Jacob Golenser, Seema Agarwal,
Andreas Greiner. Exploration of Macroporous Polymeric Sponges As Drug Carriers.
Biomacromolecules. 2017; DOI: 10.1021/acs.biomac.7b00852.

Specific contributions by authors:

Gaigai Duan performed the whole work on the experimental part and wrote the
manuscript. Amir Reza Bagheri helped with the drug release. Dr. Shaohua Jiang gave
suggestions on the experiment and wrote the manuscript. Prof. Seema Agarwal and
Prof. Jacob Golenser gave many valuable suggestions and discussion for this project.
Prof. Andreas Greiner was responsible for the guidance and supervision of the whole

project.
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How to achieve a high drug loading capacity and a controlled drug release is the
challenges for the current drug release system. In this work, a novel drug carrier of
fibrous porous sponges is developed to solve the above problems. Due to the large
pore volume (up to 285 cm3/g), the sponges can load superior high drug amounts of
up to 2693 mg/g by freeze-drying (Figure 2-10), which is achieved by only using 1 vol%
of the total pore volume of the sponges. Additional PPX coating around the whole drug

loaded sponges (Figure 2-10) is used to realize the controllable drug release.

;
ﬁ freeze CVvD

/' Drug crystal

PPX coated drug

Figure 2-10. Procedure of the preparation of drug-loaded sponge.

The as-prepared sponges with density of 3.5 mg/cm3 (SG3.5) exhibits hierarchical
porous structures (Figure 2-11a) and high specific pore volume, which are useful to
load large amounts of drug. After loading with the drug, Artemisone in this work, the
drug is distributed in-between the fibers (Figure 2-11b, c). After the coating, the whole
sponges including the fibers and the drugs are completely covered by the PPX coating
(Figure 2-11d, e). The EDX spectra by sulfur element mapping (Figure 2-11f) indicates

the homogeneous distribution of the drug (Artemisone) in the sponge.
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Figure 2-11. SEM images of as-prepared sponge (3.5 mg/cm?3, SG3.5) (a), sponge (6
mg/cm?3, SG6) loading with drug Artemisone (b, c), drug-loaded SG6 after coating with
PPX thickness of 150 nm (d) and 423 nm (e), and the corresponding EDX mapping of
Artemisone distribution in the sponges by monitoring the sulfur element (f).

Previous reports indicated that the specific drug loading capacity increased as
increasing the initial feeding drug concentrations (Figure 2-12). However, most of
previous reported drug carrier systems, such as dispersion, mesoporous materials,
metal organic frameworks (MOF), nanocarrier and hydrogel, possessed specific drug
loading capacity below 1000 mg/g even with very high drug concentrations. In
comparison, the porous sponges used in this work exhibits superior specific drug
loading capacity of 1870 and 2639 mg/g, when applying the initial feeding drug
concentration of 14 and 25 mg/mL, respectively. If considering the volume of the
loaded drugs, only 1 vol% of the pore volume of the sponges is used, which suggests a

larger potential increment in the drug loading capacity by the fibrous porous sponges.
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Figure 2-12. Drug loading capacity of sponges with comparison to other supporters.

The drug release from the sponge carrier is highly influenced by the density of the
sponge and the coating thickness of the sponges (Figure 2-13). The sponges without
PPX coating and with lower density (5G3.5) show burst drug release in the first 1 h with
comparison to SG6, which can be due to the quicker mass transfer between the drug
and the liquid medium. After increasing the thickness of the PPX layer, the drug release
rate become slower and slower so that the sponges with 88, 150, 423 and 1000 nm
PPX coating thickness release 33 wt%, 13 wt%, 7 wt%, and 1 wt% of the drug after 2 h,
and 67 wt%, 30 wt%, 16 wt% and 2 wt% after 5 h. On the one hand, the additional PPX
coating layer acts as an effective diffusion barrier for the drug release from inside to
outside. On the other hand, the PPX coating increases the hydrophobicity of the

sponges and postpones the contact between the sponge and the liquid medium.
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Figure 2-13. Drug release profile of drug-loaded sponges with densities of 3.5 and 6
mg/cm?3 and PPX coating thicknesses of 0, 88, 150, 423 and 1000 nm.

In conclusion, fibrous sponges with high pore volume up to 285 cm3/g are successfully
applied as drug carrier with high drug loading capacity in the range of 1870-2639 mg/g.
Only 1 vol% of the pore volume of the sponges is needed for drug loading, suggesting
the promising improvement on the drug loading capacity from the sponges.

Controllable drug release can be realized by an additional coating of PPX.
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2.5 Spongy gels by a top-down approach from polymer fibrous

sponges
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This work has been accepted by Angewandte Chemie.

Shaohua Jiang, Gaigai Duan, Ute Kuhn, Michaela Morl, Volker Altstadt, Alexander L.

Yarin, Andreas Greiner. Spongy gels by a top-down approach from polymer fibrous

sponges. Angew. Chem. 2017; DOI: 10.1002/ange.201611787.

Specific contributions by authors:

Gaigai Duan and Shaohua Jiang contributed equally in this work. Shaohua Jiang and

Gaigai Duan carried out the experiments and wrote the manuscr

ipt. Ute Kuhn and

Michaela Morl carried out the rheological measurements and wrote the manuscript.

Alexander L. Yarin applied the theory. Alexander L. Yarin, Volker Alt

Greiner directed the project and wrote the manuscript.
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Organogels compose of a liquid organic phase within a three-dimensional, cross-linked
network, which are formed from the self-assembly of low- or high-molecular weight
molecules via a bottom-up approach. However, these organogels have disadvantages
of high cost and sensitivity to impurities in conjunction with the gelation process,
which greatly hamper their technical applications. In this work, a novel spongy gel was
produced based on polymer fibrous sponges via a top-down approach. This spongy
gels not only possess the same characteristics as an organogel, but also exhibit their
own advantages, such as no shrinkage, no sensitivity to impurities on gel formation,
good control over the 3D network, and a wide range of possibilities for

functionalization due to the abundant resources of electrospun fibers.

The spongy gel can be formed by filling apolar liquid into the 3D fibrous sponges made
from electrospun fibers (Figure 2-14). It possesses the same features as an organogel,

such as a liquid phase, a 3D network, and essentially no flow.

Figure 2-14. Sponge made from electrospun fibers (a) and the spongy gel after uptake
of mineral oil.

Organogels show no flow but their storage modulus should larger than loss modulus.
In this work, the spongy gels also exhibited the same rheological behavior as the
organogels. As shown in Figure 2-15, all the curves showed the larger storage modulus
than loss modulus in the entire measuring range. This behavior suggests a highly
elasticity of the material, which is typical for an organogel. The frequency-dependent
measurements at 25 and 50 °C indicate that the storage modulus is almost constant

over the entire frequency range, which is another feature for gel behavior.
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Figure 2-15. Dynamic oscillatory shear rheological properties of spongy gel loaded
with ethylene glycol as functions of strain (a), temperature (b), and frenquency at 25
(c) and 50 °C (d).

For practical applications, the evaporation of the liquid from the spongy gel could be
a serious issue. Therefore, the evaporation behavior of wetting (ethanol) and non-
wetting (water) liquids, the sponges with different densities (P-SG1: 16.2 mg/cm3; P-
SG2: 30.6 mg/cm?3), and the methods of liquid delivery are investigated (Figure 2-16).
The evaporation of water and ethanol from the sponges is similar and independent of
the sponge density, but the evaporation rate greatly differed for the wetting and non-
wetting liquid. This behavior could not only be due to the different vapor pressures of
water and ethanol. Therefore, a modified d?-law for droplet evaporation was
developed to describe the evaporation of ethanol and water from spongy gels. In all
of the cases, the modified d?-law fit the experimental data accurately, which ascertains
that the liquid evaporation from the sponge could be considered as a shrinking-in-time
blob.
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Figure 2-16. Evaporation of water and ethanol from sponges of P-SG1 and P-SG2.

In conclusion, highly porous sponges made from electrospun fibers have been
successfully applied to load organic solvents to form spongy gels. These spongy gels
possess similar features as organic gels including a liquid phase, a 3D network, no flow,
mechanical stability, and similar rheological behavior. The modified d?-law can be
successfully used to describe the evaporation behavior of ethanol and water from the
spongy gels and the evaporation of both solvents could be considered as shrinking-in-

time blobs. These spongy gels could be found many applications in the future.
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Ultralight, Soft Polymer Sponges by Self-Assembly of Short
Electrospun Fibers in Colloidal Dispersions

Gaigai Duan, Shaohua Jiang, Valérie Jéréme, Joachim H. Wendorff, Amir Fathi,
Jaqueline Uhm, Volker Altstidt, Markus Herling, Josef Breu, Ruth Freitag,

Seema Agarwal, and Andreas Greiner*

Ultralight polymer sponges are prepared by freeze-drying of dispersions of
short electrospun fibers. In contrast to many other highly porous materials,
these sponges show extremely low densities (<3 mg cm~) in combination
with low specific surface areas. The resulting hierarchical pore structure of
the sponges gives basis for soft and reversibly compressible materials and to
hydrophobic behavior in combination with excellent uptake for hydrophobic
liquids. Owing to their large porosity, cell culturing is successful after hydro-

philic modification of the sponges.

1. Introduction

Natural sponges (porifera) arc multicellular animals (metazoa)
with large diversity and highly attractive properties not yet met
by man-made substances.! For instances, natural sponges
are light-weight materials with a density of 15 mg cm™ (dried
sponge) displaying excellent reversible compressibility. They
can lake-up large amounts of liquids and are excellent fil-
ters. Sponges with a volume of 1000 cm? can process up to
3000 L water h™'. Furthermore, they can conduct light as dis-
covered recently by Briitmmer et all?l In addition, Natalio et al.
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reported on the formation of sponge skel-
etons shown to feature great bending
strength and on the role of silicatein-a
in the biomineralization of silicates in
sponges, which accounts for the high
reversible compressibility of sponges
in spite of low densities.”! Aizenberg
et al. pointed out on the example of the
so-called glass sponges (Euplectella) the
important role of the hierarchical design
from the nanomeler to macroscopic
length scale for structural materials.* The
structural base of sponges are multiarmed spicules of silicate
or calcium carbonate, which form highly porous structures of
several hierarchical layers as shown in Figure 1A,B. This leads
to highly porous ultralight 3D materials (ultralight is defined
when the density of material is <10 mg cm 3).%! In recent lit-
erature, a variety of highly porous ultralight 3D materials were
reported based on carbon, ceramics, and cellulose, which were
characterized by porosities >99% and relatively high compres-
sive strength.*-1% Carbon and cellulose based sponges show
ultralow densities and excellent mechanical properties but sofl
sponges with similar mechanical integrity are missing.

Since spicules of natural sponges conspicuously resemble
polymer fibers, formation of such fibrous structures by elec-
trospinning !l could be a promising concept for the prepara-
tion of polymer-based biomimetic analogous of natural sponges
and would open the huge potential of electrospun materials for
3D sponge-type structures. Indeed, 3D porous structures were
prepared by electrospinning which was nicely summarized in
comprehensive review in recent literature.”! However, previous
efforts of making 3D highly porous electrospun materials, for
example, via ultrasonic treatment, resulted in higher densities
and correspondingly lower porosities of <99%,1?l as well as
relatively poor mechanical performance. Remarkably, Eichhorn
et al. claimed that theoretically ultrahigh porosities of electro-
spun nonwovens >99% could not be achieved.* In contrast to
these reports, we present here the formation of ultralight weight
highly porous 3D electrospun polymer fiber-based spongy
structures with densities as low as 2.7 mg cm™ corresponding
to a porosity of 99.6%. They were prepared by electrospinning
of a photo cross-linkable polymer followed by UV cross-linking,
mechanical cutting, suspending cut fibers in liquid dispersion,
and freeze-drying. These polymer sponges showed in analogy
to natural sponges very good reversible soft compressibility and
bendability without structural disintegration. Applications of

Adv. Funct. Mater. 2015, 25, 2850-2856



PUBLICATIONS

MekSeS ¢

www.MaterialsViews.com

(E)

¥)

Figure 1. SEM images of A,B) a skeleton of a dried natural sponge (spongia officinalis) and of C,D) a polymer sponge prepared by freeze-drying of short
electrospun fiber dispersion of cross-linked poly(MA-MMA-MABP). u-CT analysis (sample no. 2) with top view, magnification: E} 60x and F) 3D side

view, magnification: 90x.

these materials can be envisioned in a broad spectrum ranging
from efficient filters and separation materials, functional con-
struction materials (electrical, sound, or heat—cold insulation),
scaffolds for tissue engineering, shape responsive materials,
and confined catalysts.

2. Results and Discussion
2.1. Preparation of Polymer Sponges

An acrylate copolymer with photo cross-linkable units
(poly(methylacrylate(MA)-co-methyl ~ methacrylate(MMA)-co-4-
methacryloyloxybenzophenone(MABP)  (poly(MA-co-MMA-co-

Adv. Funct. Mater. 2015, 25, 2850-2856

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

MABP)), Scheme 1, details are given in Supporting Information)
was synthesized and electrospun together with polyacrylonitrile
(PAN) [rom pure DMF or a mixture of DMF, DMSO. As a result,
fibers of different average diameters were obtained. Subsequently,
dispersions of short electrospun fibers were prepared by cutting
of the electrospun nonwovens of poly(MA-co-MMA-co-MABP) in
dioxane in different concentrations. Sponges of different densi-
lies were prepared {rom these dispersions by freeze drying.

2.2. Structure and Mechanical Properties of Sponges

Based on the finding that dispersions of short electrospun
fibers with high aspect ratio could form—under certain
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Scheme 1. Preparation of poly(MA-MMA-MABP) from MA, MMA, and MABP by free radical copolymerization.

conditions—sponge-like structures combined with knowledge
about the structure of natural sponges, we anticipate that per-
colation in combination with sclf-assembly played a significant
role in the formation of man-made polymer sponge structure.
Important for the formation of stable spongy structures after
freeze drying was the use of short electrospun fibers with aspect
ratio of 120-150 dispersed in dioxane. Obviously, porosily and
density should correspond to the one defined by percolation
threshold of fibers of a fibrillary structure with given length and
radius. According to Berhan and Sastry, ™ the threshold can be
represented for fibers with large aspect ratios by Equation (1)
\4

=1 1
where ¢ is the volume fraction of the fibers. Here, the fibers are
represented as capped cylinders. The volume V and excluded
volume V,, of such a fiber with length L and radius r is given by
Equations (2) and (3)

3
L @

32zr

Voo = +8nlrt +nl'r (3)

For typical values of the system under consideration with
L =100 pm, r = 250 nm, we find ¢, = 0.00245 and a porosity
e=(1- ¢) = 0.9975, which is close to the observed one of
£=0.9981. In terms of predictions going from a radius of 250 nm
to one of 25 nm, we estimate ¢. = 0.000249 and € = 0.99975
{p = 0.27 mg cm™*) which are highly interesting values since
these porosities and densities are close to the ones reported
for record aerogels.!'s) These calculations strongly support the
experimental findings reported here for the sponge porosity.
Analysis of the present polymer sponges by scanning electron
microscopy (SEM) showed hierarchical order of the pores and
intercormection of the fibers (fiber diameters in the range of
0.5-0.8 pm). Large pores of about 300-430 um in diameter
(Figure 1C) contained smaller pores of 10-30 um (Figure 1D).
The large pores could be attributed to the formation of crystals
of frozen solvent formed in the freeze-drying process. The spe-
cific densities of the sponge were readily controlled by the con-
centration of the fibers in dispersion and by the average fiber
diameter (Table S1, Supporting Information). The sponge den-
sity varied from 2.72 to 9.12 mg cm ? on changing the short
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fiber dispersion concentration from 2.42 to 8.76 mg mL™' for
fibers with average diameter between 400 and 500 nm.

BET-surfaces of the present sponges generally were
very low. For example, we measured a specific surface of
2.66 m? g~' (determined with argon gas) for a sponge with a
density of 3.75 mg cm™>. According to micro-computer tomog-
raphy (p-CT), the fibers were homogenously distributed in the
sponge (Figure 1E,F) which attributed to the integral stability of
the sponge.

2.3. Properties of Sponges

Although the density of the sponge was extremely low, they could
be handled manually without disintegration (Figure 2A-C).
The compressive strength correlated with decreasing density
of the sponge (Figure 2D). The Ashby plot of the compressive
strength versus material density clearly revealed that electro-
spun polymer fiber sponges cover an important gap in this
plot in comparison to other porous materials and are close to
natural sponge (Figure 2F).

The high porosity of the sponge evidently has also signifi-
cant effects on a variety of macroscopic properties. An illustra-
tive example of macroscopic properties was the uptake of min-
eral oil from water. In these experiments, we found that the
oil was taken up selectively from water in less than a minute
as soon as the present sponge came in contact with the liquid
phase (Figure 3A). After complete uptake of oil it was still
shape persistent (inset in Figure 3B). Interestingly, with sponge
sample no. 1 of lowest density (2.72 mg cm™, Table S1, Sup-
porting Information), the weight of mineral oil in the sponge
closely corresponded to the density of the mineral oil itself and,
thereby, close to 30 000% of the weight of the pure sponge. This
indicates the role of a fiber network in the sponge-like material
for the stabilization of the liquids which compares to the role
of collagen nanofiber networks in natural tissues. Interestingly,
the as prepared sponges were hydrophobic (Figure 3B), which
makes them of interest for membrane applications.

The liquid absorption capacity of the electrospun freeze
dried sponges was inversely proportional to their densities
(Figure 3C), which indicates pore filling as mechanism for oil
uptake rather than surface wetting. Similar behaviour for selec-
tive uptake of other hydrophobic organic liquids from water
was observed (Figure 3C). For instances, reversible sorption and
desorption of cyclohexane was found (Figure 3D). Importantly,

Ady. Funct. Mater. 2015, 25, 2850-2856
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Figure 2. A) Reversible manual compression, B) bending test, C) demonstration of ultralight weight of a present electrospun/freeze dried sponge
(sample no. 3), D) compression test of sponges of different densities, and E) Ashby plot of sponge compressive strength versus density for different
materials. 1) Boron nitride,® 2) carbon nanotube,® 3) carbon aerogel,'! 4) cellulose fiber!'®l 5) cross-linked polystyrene,l'’! 6) polyolefin (closed
cell)["®! 7) polyethylene (closed cell),l" 8) polyimide,”% 9) polyethylene (50% strain),'®! 10} silk fibroin,?'l 11) melamine-formaldehyde (rigid),”!
12) tannin-based (rigid),?*! 13) PDLLA/Bioglass composite,"] 14) latex rubber,['®l 15) PAN-microspheres and fibers,”* 16) rigid polyurethane,?% 17)
PVC (cross-linked),[271 18) epoxy-boroxine, 128l 19) bio-based macroporous polymers 2%l 20) silicon oxycarbide ceramic,?% andi2'y aluminum foams.*")

when the procedure was repeated several times, no loss in effi-
ciency was observed. It should not remain unmentioned here
that similar liquid uptakes were reported for other ultralight
3D structures,®!% however observed with other materials than
man-made polymers.

2.4. Application of Electrospun Sponges

3D nanostructured materials are also of interest for other
applications such as for filtration, mechanical damping,
calalysis, and cell-malerial biointerface design.*?l High
porosities are required for the successful growth of cells in
materials. In contrast to known ultralight high porosity mate-
rials, the mechanical softness of the present polymer sponges
and its potential for chemical and biological functionaliza-
tion is of major interest for cell tissue formation. In order
to explore whether cells could grow in the present polymer
sponges, Jurkat cells, which were used previously in cell

Adv. Funct. Mater. 2015, 25, 2850-2856
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electrospinning, were brought into contact with the sponge.
Before contact the sponges were coated with poly(vinyl
alcohol) in order to provide sufficient hydrophilicity for
contact with cell culture media. After 2 d of incubation, the
cells have formed cell clusters with the sponge (Figure 4A).
SEM revealed that clusters of cells grew on to the fibers of
the sponge and cells adhered to the fibers (Figure 4B). Viable
cells were found inside the sponge by confocal microscopy
after 13, 20, and 30 d of culture, indicating significant cell
growth (Figure 4C-F). 1.929 cells gave similar results but are
not reported here in detail.

3. Conclusion

In conclusion, ultralight highly porous 3D polymer sponges
of extremely low density and low specific surface area were
obtained from dispersions of short electrospun fibers in an
attempt to mimic the design principle of natural sponges.
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Figure 3. Liquid uptake by polymer fiber sponges. Photographs of A) mineral oil {dyed by Sudan red) uptake from water, B} one drop of rhodamine
B dyed water on the top of sponge sample 7 (inset shows shape persistent sponge completely soaked with mineral oil (1.2 cm x 0.9 cm x 0.85 cm)).
C) Uptake of hydrophobic liquids from water in wt% as a function of sponge density. D) Reversibility of cyclohexane uptake (sample 4, p=9.12 mgem3),

after uptake cyclohexane was evaporated for deloading the sponge.

The porosity of the polymer sponges obtained from the dis-
persions of short electrospun fibers produced by subsequent
freeze drying could be understood by the classical percolation
theory. Remarkably, the pore morphologies of the sponge [ea-
tured hierarchical order for reasons currently not yet under-
stood, but which could account to the surprisingly good
reversible compressibility and bendability, given their low den-
sities, which was also confirmed by the recent contribution of
Ding et al.*¥l The mechanical properties of the novel polymer
sponges close an important gap in an Ashby plot of compress-
ibility versus density. It should not remain unmentioned that
the compressive strength of the sponge could be tailored
with negligible loss in porosity by several coating techniques
which are presently under invesligalion in our lab. In conlrast
to many other highly porous materials, the present sponges
prepared by electrospinning/freeze-drying gain functionality
pore filling rather than surface wetting, which opens com-
pletely new perspectives for functional materials. Given the
wide variety of polymers that can and have been electrospun
into filaments combined with the formation process presented
here, such sponge materials will enable the design of many
new functional materials ranging from ultralight materials to
membranes, filters, insulators, electrodes, and scaffolds for
biomedical applications.
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4. Experimental Section

All experimental details regarding polymer synthesis, characterization,
UV cross-inking, sponge densities, cell studies are provided in
Supporting Information.

Electrospinning of Fibers: Solutions for electrospinning were prepared
by dissolving 8.0 g of poly(MA-co-MMA-co-MABP) and 1.0 g of PAN
in a mixture of solvents (31.0 g of DMSO, 6.5 g of DMF and 1.8 g of
acetone; total polymer concentration = 18.6 wt9%). Another solution for
electrospinning with polymer concentration of 20 wt% was prepared
by dissolving poly(MA-co-MMA-co-MABP) (8 g) and PAN (1 g) in pure
DMF (36 g). The conditions used for electrospinning were: electric
potential 12 kV, flow rate 1.8 mL h', and a distance between the
electrodes of 13.0 cm. The electrospun fibers were collected in the form
of a nonwoven on a grounded rotating drum (diameter 20 cm) with a
rotating speed of 20 rotations per minute.

Preparation of Electrospun Fiber Dispersion: The electrospun fiber
nonwoven was first dried in vacuum oven at room temperature for 3 d
and then irradiated under UV light (UV lamp 250 GS) with a distance of
15 ecm for 5 h. Afterward the cross-linked nonwoven was cut into short
fibers in dioxane with a mixer at a rotation speed of about 5000 rpm
for 45 s. Short fiber dispersions with different concentrations (Table S1,
Supporting Information) were prepared by controlling the weight ratio
of fiber nonwoven in the dispersion and the volume of the dispersion
solvent, here dioxane.

Preparation of Polymer Sponges: The above short fiber dispersions
were freeze-dried in cylindrical glass vials for 48 h to yield sponges with
different densities (Table S1, Supporting Information).

Adv. Funct. Mater. 2015, 25, 2850-2856
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Figure 4. Cell growth in electrospun/freeze dried polymer fiber sponges. A) Image (MTT staining, long axis of the sponge is about 5 mm) and B) SEM
photo of Jurkat cells colonized on a sponge {(sample no. 2) after 2 d of colonization. 3D confocal microscopy of live (green) and dead (red) Jurkat cells
in sponge (sample no. 2 after 13 d (C) (x X y x z =450 x 450 x 250 um}), 20 d (D) (x X y X z = 450 x 450 x 400 pm), and 30 d (E) (x x y X z =450 x

450 x 300 um) of cells incubation.

Supporting Information

Supporting Information is available from the Wiley Online Library or
from the author.
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Materials and methods for the synthesis of poly(MA-MMA-MABP)

Materials

Methyl acrylate (MA, Aldrich, 99%) and methyl methacrylate (MMA, Aldrich, 99%)
were purified by distillation at reduced pressure. 2, 2’-Azobis (isobutyronitrile) (AIBN,
Fluka, 98%) was recrystallized from methanol before use. Polyacrylonitrile (Mw
150,000, polyscience Inc.), dimethyl sulfoxide (DMSO, Fisher Chemical, 99.99%),
dimethyl formamide (DMF, Fisher Chemical, 99.99%), methanol (Aldrich, 99.8%),
dioxane (technical grade), and acetone (technical grade) were used without further
purification. 4-Methacryloyloxybenzophenone (MABP) was synthesized according to

the previous work in our group?.

Synthesis of poly(MA-MMA-MABP)

Poly (MA-MMA-MABP) was prepared by free radical copolymerization of MA, MMA
and MABP using AIBN as an initiator at 70 °C under nitrogen atmosphere. 8.66 ml of
MA (96 mmol), 6.78 ml of MMA (64 mmol), 2.3408 g of MABP (8.8 mmol), 0.1466 g of
AIBN (0.89 mmol) and 20 ml of DMSO were added to a three-necked flask. The mixture
was reacted for 6 h. The poly (MA-MMA-MABP) was precipitated by methanol and
dried at 50 °C in vacuum oven for 24 h. The yield was 88 % and molar mass (Mn) as
determined by gel permeation chromatography using THF as eluting solvent was 2.43

x 10°g/mol.

Characterization of poly(MA-MMA-MABP)

The 'HNMR spectra of poly (MA-MMA-MABP) was shown in Figure S1. The assignment
of protons was indicated in the chemical structure and the spectra respectively. Both

the structure and the spectra were in good agreement.
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Figure S1. 'HNMR spectra of poly (MA-MMA-MABP). (Mol ratio = 6:4:0.06 calculated
by NMR).

The thermal properties were characterized by thermogravimetric analysis (TGA)
(Figure S2). Thermal properties of the composites were evaluated on Mettler Toledo
TGA/SDTA 851e at a heating rate of 10 °C/min in N, from 25 to 800 °C. The poly (MA-
MMA-MABP) had good thermal stability with the starting decomposition temperature,
5% and 10% weight loss temperature at about 250, 333 and 345 °C respectively.
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Figure S2. TGA curves of poly (MA-MMA-MABP).

UV crosslinking of poly (MA-MMA-MABP)
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The cross-linking led to insolubility of fibers in organic solvents. Moreover, the cross-
linking of poly(MA-MMA-MABP) could also be confirmed by ATR-IR measurement
according to the literature (Figure $3)? as MABP is a well-known photo cross-linkable
monomer. After treating with UV light, two characteristic peaks of MABP at 1659 cm”
1 (-C(O)- stretching vibrations) and 1597cm™ (-C=C- stretching vibrations of benzene
ring in conjugation with -C(O)-) nearly disappeared. The UV-exposure generates
radicals at carbonyl carbon which initiate cross-linking reaction leading to a network
structure which was followed by disappearance of vibrations originating from

carbonyl (-C=0) and conjugated double bonds of benzene rings (-C=C-C(0)-) in ATR-IR.

Before UV

S

After UV

f : T ) T J T v T T T T T T 1
2000 1800 1600 1400 1200 1000 800 600
Wave numbers (cm”)

Figure S3. ATR-IR spectra of poly(MA-MMA-MABP) before and after cross-linking by
UV light.

Table S1. Densities of sponges composed of short nanofibers with different diameters

and concentrations in dispersions.

S | Concentration  of
ample Average fiber Density of sponges
nanofibers in
diameter (nm) (mg/cm3)
No. dispersion (mg/mL)
12 400-500 2.42 2.72+£0.02
2°) 800-1000 2.57 3.65+0.23
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3) 400-500 3.00 3.75 £0.04
4°) 800-1000 3.58 4.41+0.19
52) 400-500 3.74 4.63 +0.06
6v 800-1000 4.24 5.05+0.13
72 400-500 8.76 9.12 +0.17

a) DMF was used as solvent for electrospinning; b) A mixture of DMSO, DMF and

acetone was used for electrospinning.

Materials and Methods for cell incubation

Materials for cell incubation

Plastic materials and standard chemicals were from established suppliers and used as
received. High quality water (MilliQ) was produced by a Millipore unit. Culture media
(RPMI 1640 with and without phenol red) and solutions (Trypsin, L-Glutamine,
Dulbecco’s PBS1X (D-PBS)) were from PAA Laboratories GmbH, Austria. Minimum
Essential Medium (MEM) cell culture media (with and without phenol red) and fetal
calf serum (FCS) were from BioChrom, Germany. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-
diphenyl-2H-tetrazolium bromide (MTT) and glutardialdehyde solution (grade I, 25%)

was from Sigma-Aldrich, Germany. Agarose was from Bioline, Germany.

Cells and cell culture

Jurkat cells (DMSZ number: ACC 282) were maintained in RPMI1640 culture medium,
supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, 100 units/mL
penicillin and 100 pg/mL streptomycin. Cells were cultivated at 37°Cin a humidified 5%
CO; atmosphere. Jurkat cells were collected by centrifugation (200 g, 5 min) and then
use for the described experiments. Experiments were performed in 6-well plates

coated with agarose to immobilize the nanofiber sponges.

Cell seeding technique

One small piece of sterilized (UV-254nm, 5 h) ultra-light sponge was placed and
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immobilized per well into 6-well plates coated with agarose. The sponge was wetted
with culture medium followed by coating with FCS. 1 x 10° cells were resuspended in
40 pL of culture medium. The cell suspension was carefully dispersed evenly on the
top surface of the sponge. The seeded sponge was transferred into the 37°C/5% CO-
incubator for 30 min to let the cells enter the sponge. Five hundred microliters of
medium were then added to each well. After a further two hours of incubation,
enough medium was slowly and carefully added along the side of the well to
completely cover the sponge. Well plates were placed back into the 37°C/5% CO;
incubator and the cells cultured for the indicate time. Throughout the cultivation, the
medium was exchanged daily to supply the cells with nutrients and remove

metabolites.

MTT staining

At the indicate time, the cultivated sponges were rinsed with D-PBS, placed in fresh 6-
well plates and incubated at 37°C for 2 h with 0.5 mg/mL MTT in the respective culture
medium without phenol red to assess the spatial distribution of cells. MTT is converted
by the mitochondria of metabolically active cells into an insoluble purple formazan salt
and therefore allows a qualitative assessment of the cellular location within the
sponge. For analysis, the MTT-stained sponges were vertically cross-sectioned at the
middle of the sponge and observed with a stereo-microscope (HUND WERZLAR
FLQ150).

Cell viability

Viability of the cells within the sponges was determined with the Live/Dead® reduced
biohazard viability/cytotoxicity kit (Invitrogen, Germany) that stains living cells green
ith the highly permeable-permanent nucleic acid dye SYTO 10 and dead cells red with
the cell-impermeant dye DEAD Red™. At the indicated time, the cultivated sponges
were rinsed with D-PBS, placed in new 6-well plates and stained according to the
manufacturer’s instruction. For analysis, images were acquired using a confocal

microscope (LSM 710, Carl Zeiss, Germany) at 20x ZEN 2008 software.
Sample for SEM
Cells spreading in the sponges was investigated through scanning electron microscopy

(SEM). For this, the sponges were rinsed twice with D-PBS and the ingrown cells fixed
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with 2.5% glutardialdehyde in D-PBS for 60 minutes. After washing with MilliQ water,
dehydration was performed by slow water replacement using series of ethanol
solutions (35%, 50%, 75%, and 95%) for 15 minutes with final dehydration in absolute

ethanol for 15 minutes.
Characterization of the sponges

The densities (p) of the cylinder-shaped sponges were calculated by the following

equation based on the weight (m) and the volume (V) of the sponges:

m im

P=V = rdzn

where d and h are the diameter and the height of the sponges, measured by the

Vernier caliper.

The morphologies of the sponges and cells on the sponges were characterized by SEM
(Zeiss LEO 1530, EHT = 3 kV). Prior to scanning, the samples were sputter-coated with

platinum of 3.0 nm thickness.

Compression tests were carried out by a universal Zwick/Roell Z 2.5 with a 20 N load
sensor at a compressing speed of 3 mm/min at room temperature. Cylinder-shaped

sponge with height of 32 mm and diameter of 27 mm were used for the tests.

Micro CT photos and three-dimensional (3D) images were scanned with Skyscan 1072
Micro-CT (Bruker, Artselaar, Belgium). The images with 90x and 60x magnifications
were taken by the conditions of a linear resolution of 3.11 and 4.67 um, an accelerating
voltage of 63 and 31kV, and tube current of 162 and 178 UA, respectively. Projection
images were acquired over 180° at angular increments of 0.23° with an exposure time
of 1.0 seconds per frame averaged over four frames. 3D images were reconstructed
using the reconstruction software provided by the manufacturer (NRecon Version
1.6.4.1).

The specific surface area of the sponges was performed on Quantachrome Autosorb
1. Prior to measurement, the samples were dried 24 h at 100 °C in high vacuum.
Physisorption of Argon measurements were done at 87.35 K. The software of ASiQ

V3.00 was used for analysis and to obtain the data of specific surface area.
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Introduction

Ultraporous, ultralight, three-dimensional (3D) materials are
very attractive due to their high porosity and elasticity that
makes them suitable for various fields, including energy appli-
cations, absorber materials, insulating materials, and tissue
engineering.'™ Among these materials, 3D ultralight polymer
scaffolds assembled from electrospun fibres recently experi-
enced a fast development in applications for tissue
engineering,”” microbial fuel cells,® oil adsorption,® and oil/
water separation.'® Recently, our group developed novel ultra-
light 3D sponges from the dispersion of short electrospun
fibres, which possessed ultralow density (2.7-9.1 mg cm %)
and high porosity (99.6%)."" These sponges are highly breath-
able open cell solids. The sponges showed applications in cell
culture and high uptake of hydrophobic liquids."* In another
recent report, Xu et al. adopted a similar strategy and prepared
a 3D nanofibrous polycaprolactone (PCL) scaffold for bone
tissue engineering.'”> However, due to the highly porous struc-
tures, these 3D fibrous sponges/scaffolds showed poor mech-
anical properties, which would greatly limit their practical
applications. A solution for the disadvantage of such sponges
could be additional coatings on the surface of the fibres, in
particular at the junction points. Poly(p-xylylene) (PPX) pre-
pared by chemical vapour deposition (CVD) could be an ideal
coating material due to its homogeneous and conformal sur-
faces, good adhesion to other materials, chemical resistance,
excellent biocompatibility, and thermal stability.'*™"* It can be
used for hydrophobic coating for moisture barriers,'®"”
reinforcement of microstructures,'® and protection materials
for plastic, rubber, and metals from a harsh environment,"*>"
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Ultralight polyacrylate sponges were prepared from dispersions of short electrospun polymer fibres by
freeze drying and coated with poly(p-xylylene) (PPX} by chemical vapour deposition (CVD). The PPX
coating of the sponges increased the compression strength, the water contact angle, and the solvent
resistance significantly without significant alteration of the sponge morphology.

In this work, PPX was coated onto the ultralight polymer
fibre sponges. By varying the coating thickness, PPX reinforced
composite sponges exhibited tuneable properties including
densities, mechanical properties, water contact angle, and
solvent resistance.

Experimental
Materials

Methyl acrylate (MA, Aldrich, 99%) and methyl methacrylate
(MMA, Aldrich, 99%) were purified by passing through a
neutral aluminium oxide column. 2,2"-Azobis (isobutyronitrile)
(AIBN, Fluka, 98%) was recrystallised from methanol (Aldrich,
99.8%). Parylene N (Specialty Coating Systems), polyacrylo-
nitrile (M, = 150000, polyscience Inc.), dimethyl sulfoxide
(DMSO, Fisher Chemical, 99.99%), dimethyl formamide (DMF,
Fisher Chemical, 99.99%), dioxane (technical grade), and
acetone (technical grade) were used as received. 4-Methacryloyl-
oxybenzophenone (MABP) was synthesised according to a pre-
vious report.”’

Preparation of sponges

The polymer fibre sponges were prepared according to our pre-
vious report.'* In brief, copolymer poly(MA-co-MMA-MABP)
was prepared by radical copolymerisation of MMA (13.5 ml),
MA (17.3 ml), and MABP (4.681 g) using ATBN (0.293 g) as
initiator in DMSO at 70 °C for 5 hours. The copolymer was pre-
cipitated in methanol and dried in a vacuum oven at 40 °C for
2 days. The obtained poly(MA-co-MMA-MABP) had a molar
mass (M) of 2.43 x 10° as determined by gel permeation
chromatography using THF as the eluting solvent against poly
(methyl methacrylate) standards.

6.17 g of poly(MA-co-MMA-MABP) were dissolved in DMSO
with a concentration of 20 wt%. A 13.2 wt% PAN solution was
prepared by dissolving PAN in DMF.

Polym. Chemn., 2016, 7, 2759-2/64 | 2759
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Table 1 Detailed information about short electrospun fibre dispersions
and densities of the sponges

Volume of short Volume of Density
Sponge fibre dispersion (ml) dioxane (ml) (mg em™)
1 65 0 8.42
2 60 5 7.43
3 50 15 6.61
4 40 25 5.16
5 30 35 4.34

The solution (17.8 wt%) for electrospinning was prepared
by mixing 26.2 g of poly(MA-co-MMA-MABP) solution in DMSO
(20 wt%), 2 g of PAN solution in DMF (13.2 wt%) and 2.68 g of
acetone. Electrospinning was performed by applying a voltage
of 9 kV and a flow rate of 1.5 ml h™ in 55% humidity. The
electrospun fibres were collected on aluminium foil and dried
in a vacuum oven at 40 °C for 24 h.

1.17 g of the above electrospun fibres were cross-linked
using UV light (UV lamp 250GS) with a distance of 15 ¢m for
5 h. Then the cross-linked nanofibres were cut into short
fibres with a length of 150 + 30 um in 350 ml of dioxane with a
razor blade at a rotation of 5000 rpm for 45 s. Different short
fibre dispersions were prepared by controlling the volume of
the above short fibre dispersion and dioxane (Table 1).
Sponges with different densities of 8.42, 7.43, 6.61, 5.16, and
4.34 mg em™ were prepared by freeze-drying the above short
fibre dispersions in cylindrical glass tubes at 0.03 mbar for
48 h.

PPX coating on sponge fibres

The above sponges were put in the deposition chamber of a
CVD coater. For CVD coating, 170 mg of [2.2]paracyclophane
were sublimed at 150 °C followed by pyrolysis at 650 °C in a
pyrolysis oven of the coater under reduced pressure. The pyro-
lysed monomer gas was deposited on the fibres of the sponges
at 20 °C under 52 mtorr in the deposition chamber and
formed a PPX film with 100 nm thickness. Different samples
with varied coating thickness of PPX (100, 280, 360, and
1000 nm) were made by changing the amount of the
precursor.

Characterisation

The morphology of sponges was characterised by scanning
electron microscopy (SEM, Zeiss Leo 1530) and all the samples
were sputtered with 3 nm thick platinum before measure-
ments. A compression test was done using a Z 2.5 machine
with a 20 N sensor at a speed of 10 mm min™. The samples
for the compression test were cut into cylindrical shape with a
diameter of 20 mm and a height of 8 mm. Each of these
samples was compressed once, released, and compressed
again for measurement. The water contact angle was measured
by using a G10 contact angle analysis system (Kriiss,
Hamburg, Germany) using an 8 pl water droplet. The PPX
coating thickness was measured using a Veeco Dektak 150 pro-
filometer. An indirect method was used for thickness determi-
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nation. A glass side was coated simultaneously to the sponge.
The PPX coated layer on the glass slide was cut at three
different positions and the thickness of the layer was deter-
mined by analysing the step height with the profilometer. The
average height at the three positions was used as the coating
thickness.

Results and discussion

Electrospun nanofibres were fabricated from a blended solu-
tion of poly(MA-co-MMA-MABP) and PAN. The fibres have a
smooth surface without any beads and the diameter of the
fibre was 1000 + 100 nm (Fig. 1). The polymer sponge prepared
from short electrospun nanofibre dispersion was free-standing
with a 3D cylindrical-shape with a diameter of 20 + 2 mm
(Fig. 1, inset).

The pore size could be tuned by controlling the density
of the sponge. As shown in Fig. 2, the pore size of the
sponge became larger as the density decreased from 8.12 to
5.16 mgem ™,

The average fibre diameter of the sponge was about 1000 +
100 nm (Fig. 2D), which is similar to the starting nanofibres
before cutting and freeze-drying. The fibre diameter increased
after PPX coating depending upon the coating thickness
(Fig. 2E). The increasing PPX thickness led to the film
formation around the entanglement position of the fibres
(Fig. 2E), which could contribute to the increase in com-
pression strength observed for the coated sponges (see below).
Fig. 2F shows the cross-sectional morphology of the PPX
coated fibres, where a core (original sponge fibre)-shell (PPX)
morphology was clearly obvious. CVD (gas phase polymeri-
sation) of PPX has the advantage that it provides uniform
coating without film deposition on the surface. PPX coating
also provides an additional way of tuning the density of
sponges. The sponge density increased with an increase in
PPX thickness (Table 2). For uncoated sponges, the density is
controlled by the amount of short fibres in the dispersion for

A

Fig. 1 SEM image of an electrospun nanofibre mat and the digital
photo of sponge made after cutting and drying (inset).

This journal is © The Royal Socey of Caenstry 2016
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Fig. 2 SEM images of original sponge 1 (A, 8.42 mg cm 2), sponge 2 (B, 7.43 mg cm 3), sponge 4 (C, 5.16 mg cm ), higher magnification of sponge
4 (D), sponge 4 coated with 1000 nm PPX (E, sponge 4-1000), and the corresponding cross section of sponge 4-1000.

Table 2 Densities of sponges before and after PPX coating

Density (mg em™)

PPX thickness (nm) Sponge1 Sponge2 Sponged  Sponge 5
0 8.42 7.43 5.16 1.31
100 9.41 8.55 6.40 4.83
280 12.45 10.99 7.30 6.41
360 14.48 13.05 8.66 7.42
1000 22,59 20.06 13.93 12.15

freeze-drying. The original electrospun fibre sponges exhibited
densities in the range of 4.34-8.42 mg em™. Upon coating
with different thicknesses of PPX, the composite sponges
showed a considerable density variation from 4.83 to 22.59 mg
em ? without a major change in the pore structure of the
sponges. This diversity in density would greatly promote the
sponges in different applications.

The compression properties of sponges with different
densities and PPX coating thicknesses were investigated. The
compression stress-strain curves are shown in Fig. 3 and the
corresponding data are summarized in Table 3. As expected, a
higher sponge density led to higher compression strength.
When compressed at 50% strain, sponge 5 (density =
1.31 mg cm ™), sponge 4 (density = 5.16 mg cm™?), sponge 2
(density = 7.43 mg em™), and sponge 1 (density = 8.43
mg e¢m *) possessed a compression strength of 0.26, 0.47,
0.76, and 0.92 kPa, respectively. After coating with PPX, the
composite sponges showed significant enhancement in com-
pression stress. The composite sponges with a coating of
100 nm thick PPX exhibited compression strength more than

This jourmal s © The Royal Scciety of Chemistry 2016
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two times compared to that of the bare sponges. When
1000 nm of PPX were coated on the sponges, the compression
strength increased more than 10 times the original sponges.
One cyclic compression test was also performed to assess the
mechanical performance of the sponges before and after PPX
coating. As shown in Fig. 3, it is obvious that the second com-
pression curves (c) are always under the first compression
curves (a) and there are blank areas in between curves a and c.
These arcas could be used to access the energy loss during
the cyclic compression test. The sponges with higher density
showed higher compression strength, but they also showed
much more energy loss during the cyclic test. Although there
was energy loss, the ultimate compression strength of the
second compression could return to the same values as the
first test showed. Fig. 4 shows the relationship between the
compression strength and the densities of the sponges. It was
obvious that the thicker PPX coating led to a higher density
and the sponges with higher densities possessed higher com-
pression strength. Furthermore, a coated sponge (density was
5.0 + 0.1 mg cm’, before coating) with 100 nm PPX can
support a piece of dry ice on the top without compression
deformation, whereas an uncoated sponge is not able to bear
such a force. These sponges have low thermal conductivity of
about 0.05 W (K m)™". A sponge could protect human skin
from dry ice (CO,, —78 °C} as shown in a real time video in the
ESL*¥

Previous research by Boduroglu et al. reported that the
structured PPX films showed superhydrophobicity with a water
contact angle (WCA) of about 152°.'® A PPX coating on sponge
fibres could also lead to a significant increase of the hydro-
phobicity of the sponges, which was indeed the case but not as

Potym. Chem., 2016, 7, 2759-2767 | 2761
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Table 3 Compression stress of sponges before and after PPX coating

PprX thickness (nm)

Compression stress (kPa)

Sponge1  Sponge2  Sponged  Sponge 5
0 0.92 0.76 0.47 0.26
100 2.31 1.93 0.97 0.81
280 4.13 2.74 1.40 1.20
360 6.21 5.19 2.89 1.72
1000 12.13 8.67 6.52 3.08

expected. Fig. 5A presents the typical WCA of sponge 2 with
varying PPX coating thickness. The as-prepared sponge 2 had
a WCA of 1192, When the PPX thickness increased to 280 nm,
the composite sponge (sponge 2-280) became superhydro-
phobic with a WCA of 156°. A further increase of the PPX
coating thickness led to a decrease of WCA, but the WCA (144
and 131°) was still much higher than that of the as-prepared
sponge (119°). Fig. 5B reveals the relationship between the
WCA and the PPX thickness. Generally, the WCA on PPX
coated sponges showed a trend of an increase in contact angle
with thickness up to a certain value and then decreased on a

2762

Polym. Chern., 2016, 7, 2759-2764

110

Fig. 4 Compression stress of sponges before and after PPX coating as

a function of density.
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PPX coating thickness of sponges 1, 2, 4, and 5 (B).

further increase in PPX coating thickness. The optimum PPX
thickness providing the highest contact angles was about
280 nm. An analogous trend of the hydrophobicity as a func-
tion of PPX thickness was found for electrospun mats (see the
ESI Fig. S17).

Surface structures play an important role on the WCA. In
this study, the surfaces of the sponge fibres were observed by
SEM. The as-prepared sponge fibre showed many nanopores
(Fig. 6A), which could be attributed to the phase separation
during the preparation of the sponge. These pores led to a

1pm
—_—

Fig. 6 SEM images of sponge (sponge 2) fibres with the PPX thick-
nesses of 0 (A), 100 (B), 280 (C), and 1000 nm (D).
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rough surface and this may be the reason for the hydrophobi-
city of the as-prepared electrospun polymer sponge. The
coating of PPX greatly changed the surface morphology of the
composite sponge fibres. When coated with 100 nm PPX, the
fibre surface became smooth but some salient features were
observed (Fig. 2B), which could be due to the occupation of
the nanopores of the as-prepared fibres. The composite
sponge fibres exhibited bigger salient features and much
smoother surface when the sponges were coated with 280 and
1000 nm PPX, respectively (Fig. 6C and D). This explains the
lower WCA at higher PPX coating thicknesses. Quite obviously,
the hydrophobicity of fibrous materials as a function of PPX
coating thickness is a combined effect of inherent hydrophobi-
city and surface roughness which becomes smaller when
thicker PPX layers flatten fibrous substrates.

PPX has excellent solvent resistance. Therefore, we expected
improved solvent resistance of the sponges by PPX coating,
which would open up many new chances for advanced appli-
cations. The solvent resistance of the sponges with and
without PPX coating was investigated in water, ethanol,
acetone, and chloroform. As shown in Fig. 7, the sponges with
the size of 3 mm x 5 mm x 7 mm were put in a 1.5 mL vial
with 0.8 mL solvents. Both uncoated and coated sponge
floated on the surface of water but they were totally soaked by
organic solvents (Fig. 7A and B). Interestingly, the sponges
sank to the bottom of the vial in ethanol and acetone, but
floated in chloroform due to the density difference between
the sponge polymer and solvents: the polymer density of the
sponges was larger than those of ethanol and acetone, but
smaller than the density of chloroform. It is necessary to point
out that the stability of non-coated sponges in organic solvents
depends upon the type of the solvent used. The sponges kept
their original shapes in ethanol even for a very long time but
swelled a little in acetone and chloroform. Coated sponges had
higher shape stability even after intense shaking (Fig. 7D).

Fig. 7 Sponges in different solvents (from left to right: water, ethanol,
acetone, chloroform). (A) before coating, (B) PPX coating thickness of
280 nm, (C) and (D) after intense shaking of (A) and (B) respectively.

Polym. Chemn,, 2016, 7, 2759-2764 | 2763
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However, uncoated sponges lost their structure in acetone and
chloroform during shaking by hand (Fig. 7C), which forces the
formation of short fibres and these short fibres can be reused
for the preparation of new sponges in dioxane.

Conclusions

Ultralight composite sponges were achieved by CVD coating
with different coating thicknesses of PPX on the as-prepared
short electrospun polymer sponges under ambient conditions.
The density, compression strength, and the water contact
angle of the composite sponges could be well tuned by adjust-
ing the thickness of the PPX coating layer. However, with
higher PPX layer thickness the hydrophobicity of the sponges
decreased, which could be explained by planarization of the
fractal structure on the fibre surfaces. In addition, the PPX
coating could significantly improve the solvent resistance of
the sponges and retain their shape in various solvents. The
PPX coating removes the inherent disadvantage of lower
chemical and mechanical stability of polymeric sponges macde
from short electrospun fibres without destroying their porous
structure. This is a big step forward in the direction of future
use of 3D porous fibrous scaffolds under harsh conditions.
With this the PPX coated sponges have become of particular
interest for separation applications. Due to the low thermal
conductivity and the improvement of the mechanical pro-
perties of sponges after PPX coating, these coated sponges can
be applied in the heat insulation field as a new kind of light
weight material.
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Supplementary Information

Fig. S1 showed the water contact angle of fiber mat before PPX coating was no more
than 110°, and it has nearly 140° when coated with 280 nm PPX then water contact
angle decreased if PPX layer become thicker. This trend was consistent with water
contact angle of sponge before and after coating. It was easy to find that PPX is one
kind of hydrophobic materials, and different thickness PPX coating changed the surface

roughness of fiber.
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Figure S1. Water contact angle of fiber mat as a function of different thickness of PPX

coating.
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Gaigai Duan, Melissa Koehn-Serrano, Andreas Greiner*

Communication

This study reports on gold nanoparticles (AuNPs) immobilized in a sponge made of short elec-
trospun fibers (Au-sponge), which show surprisingly high reaction rates at extremely low
gold amount. Au-sponges are made by freeze-drying of dispersions of short electrospun fibers
with preimmobilization of AuNPs. The resulting Au-sponges show very low densities around
7 mg cm3 corresponding to a pore volume of about 150 mL g, but low surface area and very
low amount of AuNPs in the range of 0.29-3.56 wt%. In general, catalysts with immobilized
AuNPs show much low reaction rates compared to systems with dispersed AuNPs. By contrast,

the Au-sponge catalyst with immobilized AuNPs is discerned

here as an extremely efficient catalyst even superior to other
systems with dispersed AuNPs. The fidelity of the Au-sponges
after reactions is good enough for manifold use and thereby
provides a sustainable catalyst design as well.

1. Introduction

Supported catalysts are most topical as they offer unique
chances for the design of novel highly efficient catalytic
systems.!l Gold nanoparticles {AuNPs) play an impor-
tant role as catalysts in the investigation of novel cata-
lyst concepts including CO oxidation,? hydrogenation,®!
carbon—carbon coupling® and degradation of organic
molecules.®] In many cases, AuNPs are irmmobilized on
supports, such as micelles,®! dendrimers,”) colloid parti-
cles,/®) and nanorods.¥) These kinds of Au catalysts showed
good catalytic performance, but they also exhibited disad-
vantages in efficiency and manifold use. Efforts have been
made to develop reusable AuNP catalysts by immobiliza-
tion of AuNPs on 2D fibrous porous membranes. Exam-
ples are carbon nanotubes," polyethylenimine-modified
polyacrylonitrile,*! polyphenol-grafted collagen fibers, 12!
and boron nitride nanosheets”¥] Our group developed
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a “tea-bag-like” AuNP catalyst for repeated use with
AuNP-loaded polymer nanotubes as catalyst.** The cata-
lyst showed significantly increased catalytic activity and
excellent reusability due to the large amount of immo-
bilized AuNPs and the protective shell of the polymer
tube.l*%! Recently, 2D electrospun fibrous membranes were
reported as support of AuNPs for catalyst application.**]
3D porous materials received growing attention as cata-
lyst support due to their special 3D-connected networks,
ultrahigh porosity, and tunable mechanical properties.
3D carbon materials, like graphene aerogel and foam,*¢!
graphite foam,'7] carbon aerogel ¥/ carbon nanotube
aerogel/sponge,’®l and carbon nanofiber aerogel, ! are
the most studied supports for catalytic applications.

A novel class of 3D sponge-type materials made
from electrospun fibers was reported recently by sev-
eral groups.l?! These fibrous sponges display very low
densities at low surface to volume ratio (=2 m? g%)
and high mechanical integrity, with applications in
separation of water from organic liquids?®*< and cell
culturing.2**4 The mechanical properties of these fibrous
sponges were further increased by additional coating of
poly(p-xylylene) (PPX) from the vapor phase.?!¢) These
PPX-coated sponges showed additional features of supe-
thydrophobicity, excellent solvent resistance, and very
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good thermal insulation. Surface-functionalized sponges
made of electrospun fibers are not known. A promising
polymer for the surface functionalization of sponges
could be poly(vinyl pyridine), including poly(2-vinyl pyri-
dine) (P2VP) and poly(4-vinyl pyridine) (P4VP), which can
efficiently immobilize various metal nanoparticles.*5422]
The combination of the novel 3D sponge made from
short electrospun fibers and P2VP could be an excellent car-
rier for AuNPs and a promising novel catalyst carrier. Highly
efficient known catalyst carriers display large surface to
volume ratio and require often large amount of catalysts,
which is in strong contrast to spongy catalysts described in
this contribution. The expectation from the spongy catalyst
is that the large pore volume and combination with low
surface area will allow highly efficient mass transfer of
educts and products and reduce blockage of the active cata-
lyst carrier surface by product adhesion. In order to verify
this hypothesis, we have investigated spongy catalysts. The
spongy catalyst made of ultraporous sponges from short
electrospun fibers loaded with different amount of AuNPs
was assigned here as Au-sponge. The AuNPs were immobi-
lized in the scaffold of the sponge while the positioning of
AuNPs in the sponge mimics a dispersion-like distribution.
In order to challenge the new system by a sound quanti-
tative comparison of this new system with other known
catalysts systems we employed the well-documented
AuNP-catalyzed reduction of p-nitrophenol. Surprisingly,
the Au-sponge showed the highest catalytic rates in com-
parison to immobilized and dispersed systems at the lowest
gold amount. As an additional feature the Au-sponges were
reusable many times. With these features, the Au-sponges
represent a novel type of catalyst paradigm combining the
advantages of dispersed systems and immobilized systems.

2. Results & Discussion

Au-sponges with different amount of AuNPs were pre-
pared by the following protocol:

1. Synthesis of poly(2VP-co-MABP) according to Scheme
S1 (Supporting Information).

2. Fiber nonwoven preparation by electrospinning of a
mixture of poly(2VP-co-MABP) and polyacrylonitrile
(PAN) in dimethyl formamide (DMF).

. Photo cross-linking of the nonwovens.

4. Hydrophilization of the nonwovens by treatment with

ammonia water.

5. Loading of the nonwovens by wetting with auric acid

solution of different concentrations.

6. Reduction of Au®* by treatment with sodium borohydride.

7. Purification of the nonwovens by washing with water.

8. Preparation of short fibers by cutting of the AuNP-

loaded nonwovens.

9. Sponge preparation by freeze-drying of short nanofiber

dispersions.

w
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Details of the experimental procedure are available in
the Supporting Information.

The electrospun fibers were uniform with an average
diameter of 3.04 um and showed a fractal surface
(Figure 1a,b). The structured surface of the fibers could
be due to phase separation during electrospinning and
fast evaporation of solvents as previously reported for
MMA/P4VP24 and other blends in relevant publica-
tions.[?3] The sponges showed typical hierarchical pore
structures with big pores (50-400 pm) due to the drying
of solvent crystals during freeze-drying and small pores
(tens micrometers) between the short fibers (Figure 1c).
All the sponges possessed high porosity of >99%, which
was agreed with the porosity value of the sponges from
the same preparation method.[12%] Figure 1d shows the
sponges with different amounts of AuNPs. The sponges
used for the catalysis reactions had a diameter of 1.6 cm,
a thickness of 0.5 cm, and a density of 7 mg cm™. As
expected, the color of the sponges became darker with
increasing amount of AuNPs. The presence of AuNPs
on the fibers was further confirmed by energy disper-
sive X-ray spectroscopy (EDX), as shown in Figure le.
One cyclic compression test was performed to show the
mechanical stability of the Au-sponge. As shown in
Figure 1f, the Au-sponge3.56 exhibited a compression
strength of 0.55 kPa at 50% compression rate and there
was blank area between the first and second compres-
sion curves. This area could be attributed to the energy
loss during the cyclic test. Although the energy loss
existed, the compression strength could come back to the
same value as the first compression, which indicated the
mechanical stability and compressive reversibility of the
sponges. These excellent mechanical properties provided
the possibility of the reuse of the sponges in further cata-
lyst application.

Transmission electron microscope (TEM) images
were used to characterize the morphology of AuNPs
and the distribution of AuNPs on the fibers. Nonaggre-
gated AuNPs were observed on the surface as proved by
Figure 2a-d. The diameter of AuNPs was in the range
of 1-13 nm with an average particle size of 5.7 + 0.8 nm
(Figure 2e). The overall amount of Au in the sponges was
analyzed by thermal gravity analyzer (TGA). The sponges
with different amount of Au were assigned according to
the amount of gold found in the sponge.

The catalytic performance of Au-sponges was inves-
tigated by reduction of 4-nitrophenol to 4-aminophenol
with NaBH,. The reaction progress was monitored by
time-dependent UV-vis spectrometry. The characteristic
peak of 4-nitrophenol was at =400 nm, which could be
assigned to the 4-nitrophenolate ions.'?l The reaction
mixture without catalyst exhibited no color change even
after few days. In comparison, the addition of the catalyst
Au-sponge0.29 to the solution caused color fading from
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AuNPs on the fibers; d) photograph of the sponges with different amount of AuNPs; e) EDX spectra of AuNP-immobilized fibers; and f) cyclic

I Figure 1. a,b) Scanning electron microscope (SEM) images of as-spun fibers; c) SEM images of the pore structure of the Au-sponge3.56 with
compression test of Au-sponges3.56.

yellow to faint yellow (inset of Figure 3a) in combination
with a decrease of the intensity of the absorption peak at
400 nm to 0.43 after 32 min (Figure 3a). When the amount
of AuNPs was increased to 0.65 wt%, the intensity of the
absorption peak at 400 nm decreased to 0.22 in the same

(a) (b)

time (32 min) (Figure 3b). This result indicates that more
4-nitrophenol has been reduced to 4-aminophenol by the
catalyst Au-sponge0.65 than by Au-sponge0.29.

When Au-sponge3.56 was applied, after the same reac-
tion time of 32 min, the solution became colorless (inset

(c) ’
‘l‘.{k
0 15 3 45 6 75 9 105 12 135
Diameter (nm)

Figure 2. TEM images of different amounts of AuNPs immobilized on nanofibers of the sponges a) 0.29 wt%, b) 0.65 wt%, and c) 3.56 wt%.
The insets of (a), (b), and (c) indicate the individual AuNP. Higher magnification of TEM image of (c) and d,e) diameter distribution of AuNPs.

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

Macromol. Rapid Commun. 2017, 38, 160051

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (3 of 6) 1600511

120



PUBLICATIONS

Macromolecular
Rapid Communications

G.Duan et al.

www.mrc-journal.de

0 min —2 min
4 min — 7 min
=9 min — 11 min
—— 13 min — 15 min

Absorbance (a.u.)

~—0 min — 2 min
~—4 min — 6 min
——9 min — 11 min
~—— 14 min — 16 min

—_—
(2]
~—

Absorbance (a.u.)

——17 min — 21 min ; 0.8 —— 19 min — 22 min
~—23min—26min @ —— 25 min — 28 min
—— 29 min — 32 min ® 0.6 — 32 min
2 o4
S8
‘5 0.2
Au-sponge0.29 & oo Au-sponge0.65
<
T T T T y 0.2+ T T T T \
350 400 450 500 550 250 300 350 400 450 550
Wavelength (nm) Wavelength (nm)
—— 0 min —2 min (d) 0.04
e § MiN 7 min
——9 min— 12 min 054
e 14 Min —— 16 min
~—— 18 min — 22 min 1.04 Au4pong.0:‘29
—24min—2Tmin B 0.029 min
—29min—32min O 4] o Au-sponge0.65
© 0.048 min”
£ -2.04
-2.54 A 3.56
Au-Sponge3.56 u-sponge3.
o 0.090 min
-3.04
250 300 350 400 450 500 550 0 5 10 15 20 25 30 35
Wavelength (nm) Time (min)

) Au-sponge3.56 as catalysts, and pseudo-first-order plot of In{C/C,,) versus time and the corresponding rate constant values for the reduc-

I Figure 3. Time-dependent UV-vis absorption spectra for the reduction of 4-nitrophenol using a) Au-spongeo.29, b) Au-spongeo.65, and

tion of g-nitrophenol by d) Au-sponges. The insets of (a) and (c) show the color change depending on the time and the catalysts.

of Figure 3c) and the intensity of the absorption peak at
400 nm decreased to 0.06 (Figure 3), suggesting that most
of the 4-nitrophenol has been reduced to 4-aminophenol.
During the experiment, the concentration of NaBH, was
much larger than the concentration of 4-nitrophenol],
thus the reduction rate could be considered independent
of the concentration of NaBH,. Therefore, the evaluation
of the catalytic rate of the reduction of 4-nitrophenol by
Au-sponges could be applied by a pseudo-first-order with
regard to the concentration of 4-nitrophenol and the reac-
tion kinetics can be described by equation(1224]

—In L In

o o

S

)
where K is the reaction rate constant, t is the reaction time,
C; and C, are the concentration of 4-nitrophenol at time ¢
and at the initial time 0 min, respectively, and A; and A,
are the intensity of the absorption peak at 400 nm at
time t and at the initial time 0 min, respectively. Figure 3d
presents the plot of In(C;/C;) versus time. As expected, the
In(C;/C,) showed a linear correlation to the reaction time t
and the rate constant K could be obtained from the abso-
lute value of the slope. As the amount of the AuNPs in the
sponges increased, the kinetic rate constant K increased.
The K values were 0.029, 0.048, and 0.090 min™ for the
reduction catalyzed by Au-sponge0.29, Au-sponge0.65,
and Au-sponge3.56, respectively. The amount of AuNPs
has a significant effect on the rate constant for the

reduction of 4-nitrophenol?? The excellent catalytic
performance of the Au-sponges related to immobilized
and dispersed systems is shown in the Ashby plot of
the normalized rate constant (K., min? mg?) versus
the amount of AuNPs (Figure 4). In general, systems
reported in the literature with dispersed AuNPs showed
significantly higher reaction rates compared to sys-
tems with immobilized AuNPs. In contrast, Au-sponge
with immobilized AuNPs showed even higher rate con-
stant compared to systems with dispersed AuNPs and
more than 100% more efficiency than any system with
immobilized AuNPs. Recently, Zhang et al. reported an
Au/PEI/GO composite sponge with AuNPs immobilized
on graphene oxide (GO) for catalyzing 4-nitrophenol.l?’]
The Au/PEI/GO composite sponge showed a very high
K value of 9.87 x 1072 s (= 0.5922 min™), which was
achieved on the base of high amount (0.68 mg, 13.6 wt%)
of AuNPs in the sponges.[?] If considering the effect of
the amount of AuNPs on the K value, then the K,,,, was
0.871 min~* mg*, which was much smaller than our Au-
sponge catalysts. The possible reason could be the much
more gold atoms on the surface of the AuNPs in this work
than in Zhang’s report due to the particle size effect.

The immobilization of the AuNPs in the sponge as car-
rier allowed their reusability, which is hard to achieve
with dispersed AuNPs. The reusability of the Au-sponges
was validated by removal from the reaction system,
rinsing with distilled water, and drying. The cleaned
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nanoparticles in fibrous sponges with
large pore volumes represents a novel
and general concept for a novel family
of sustainable catalysts. This new
finding will open completely new direc-
tions for novel catalyst carrier systems
which could exploit the huge poten-
tial of electrospinning in combination
with the superior efficiency of this new
fibrous sponge-type system.

Supporting Information

Supporting Information is available from the
Wiley Online Library or from the author.
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Au-sponges were reused up to five cycles for new reduc-
tions. The experiments with Au-sponge3.56 as catalyst
showed that the rate constant decreased only slightly
from 0.090 min! to 0.072 min?, after five-time use
(Figure $1, Supporting Information). The slightly decrease
of the rate constant might be due to the leakage of AuNPs
from the sponges.

3. Conclusion

In conclusion, AuNPs immobilized in fibrous sponges,
named here Au-sponge, represent a new class of catalyst
carrier systems which display surprisingly high efficien-
cies with immobilized AuNPs. The rate constants are in
the top range of catalyst systems with dispersed AuNPs.
We believe that the excellent efficiency of Au-sponge is
due to the quasi-dispersion-like immobilization of AuNPs
in sponges in combination with very high pore volumes
of about 150 mL g™*. This large pore volume allows effec-
tive mass transfer of the reaction solution to the catalytic
sites (AuNPs) and thereby accounts for the high rate
constants. The novelty of this catalyst paradigm is the
exploitation of the large pore volume while other catalyst
systems make use of large surface area. Quite obviously
the mass transfer of reagents plays a much larger role in
catalysts efficiency than expected, which could balance
easily humble amount of available catalysts at smaller
surface area. As additional feature the Au-sponge cata-
lysts could be reused manifold times. The preparation
of the Au-sponges is highly versatile and straightfor-
ward and could therefore be transferred into many other
nanoparticle-based catalyst systems with better catalyst
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Materials

2-vinyl pyridine (2-VP, 97%, Aldrich) was distilled under reduced pressure prior
to use. Polyacrylonitrile (PAN, My=150,000, Polyscience Inc), 4-nitrophenol
(299.5%, Aldrich), 2, 2’-azobis(4-methoxy-2.4-dimethyl valeronitrile) (V-70,
Wako), and 4-nitrophenol (299%, Aldrich) were used as received. Auric acid (1
mM) and sodium borohydride (0.15 M and 0.10 M) were prepared from
tetrachloroaurate trihydriate (HAuCl)s 3H,0, 50% Au basis, (Aldrich) and sodium
borohydride (299%, FLUKA). Poly (methylacrylate-co-methylmethacrylate-co-
4dmethacryloyloxybenzophenone) (poly (MA-MMA-MABP)) and 4-
methacryloyloxybenzo-phenone (MABP) was synthesized according to our

previous report.t
Polymer synthesis and electrospinning

Poly(2VP-co-MABP) was synthesized by free radical polymerization of 2-VP (15
ml) and MABP (1.84 g) in tetrahydrofuran (THF, 45 ml) with an initiator (V-70)
(0.12g) at 39°Cfor 18 hiin argon (Scheme 1). The resulting polymer solution was
precipitated in cyclohexane. After filtration, the light yellow powder was dried
at room temperature for 48 h. The yield was 73%. The molecular weight M\ and
Mn was 5800 and 4600, respectively, and the amount of MABP was 9 mol% in
poly(2VP-co-MABP) as determined by 'H NMR.

RN
. V-70 x y

~ _—

B ©7 0 mRaoccT (TSN 070

= =

2-VP O
e e
MABP

poly(2VP-co-MABP)

Scheme S1. Synthesis of poly (2VP-co-MABP).

The electrospinning solution was prepared by dissolution of 0.42 g of poly(2VP-
co-MABP), 1.27 g of poly (MA-MMA-MABP), and 0.21 g of PAN in a solvent
mixture of 1.83 g of DMF, 2.00 g of DMSO, and 0.56 g of acetone. The
electrospinning was performed by applying high voltage of 20 kV, flow rate of
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0.4 mL/h, and collecting distance of 13 cm between the two electrodes. The
electrospun nanofiber nonwovens were collected on an aluminum foil and
cross-linked under UV light (UV lamp 250 GS) for 5 h.

Sponge supported AuNPs

Nanofiber nonwovens with different amount of Au were prepared by
controlling the mass of nanofiber nonwovens and the volume of auric acid (1
mM) (Table S1). The nanofiber nonwovens were first wetted by ammonia water
(25 wt%) to increase the hydrophilicity of the nanofibers. Then different
amounts of auric acid (1 mM) were added to the nonwovens and reduced by 2
mL of sodium borohydride (0.15 M) for 3 min. After the reduction, the mats
supported with AuNPs were washed with water for several times in order to
remove the residual sodium borohydride. The nanofiber nonwovens with
AuNPs were cut into short fibers in dioxane by a mixer rotating at 5000 rpm for
35 s and then dried by freeze-drying. 7 mg of the above short fibers with an
average length of 650 + 218 um were re-dispersed in 1.40 mL of dioxane. The
dispersions were frozen at -20°C and then freeze-dried to yield the sponges with
different amounts of AuNPs as determined by thermogravimetric (TGA)
analysis. The sponges were designated as Au-sponge0.29, Au-sponge0.65, and

Au-sponge3.56, respectively with 0.29, 0.65, and 3.56 wt% AuNPs.

Table S1. Summary of the composition of sponges.

Sponge Fiber mat (mg) Auric acid (1 mM) (mL) Au (wt%)
A 16.8 0.33 0.29
B 14.0 0.56 0.65
C 11.0 2.20 3.56
Catalysis

The performance of sponge-based nanoparticle catalyst was characterized by a
typical reduction reaction of 4-nitrophenol. 2 ml of sodium borohydride (0.1 M)
and 300 pl of 4-nitrophenol (3.4 mg/50 ml) were put in a 10 mm quartz cuvette

which has a magnetic stirrer at the bottom for UV-vis measurement. The stirring
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speed was 300 rpm. 1.0 mg of the above sponges with different AUNP loadings
were put in the holder for the sponges. At different time intervals, the reaction

progress was monitored by UV-vis spectroscopy.
Characterization

The molecular weight of poly (2VP-MABP) was measured by gel permeation
chromatography (GPC) using THF as eluent and the amounts of MABP in the
polymer were calculated from 'H NMR (Bruker 300 MHz NMR) with deuterated
chloroform as solvent. A scanning electron microscope (SEM, Zeiss Leo 1530),
equipped with an EDX detector, and a transmission electron microscope (TEM,
Zeiss LEO 922 OMEGA) were used to observe the morphology of sponge and
AuNPs. Thermogravimetric analysis (TGA) was performed on a Netzsch TG 209
FllLibra under N2 with a heating rate of 10°C / min from 25 to 800°C. The weight
of the samples was measured by OHAUS Discovery balance with a readability of
0.01 mg. Time-dependent reduction of 4-nitrophenol was performed on a UV-

vis spectrometer (V-630, JASCO) with a scanning range of 550-250 nm.

0.10+

0.08 -
0.06-
0.02
0.00-
1 2 4 5

3
Cycles

K (min™)
2

Figure S1. Rate constant values (k) of the reduction in five cycles using Au-sponge3.56

as catalyst.
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ABSTRACT: Achieving high drug loading capacity and
controlling drug delivery are two main challenges related to
drug carriers. In this study, polymeric macroporous sponges
with very high pore volume and large porosity are introduced
as a new-type of drug carrier. Due to the high pore volume
(285 and 166 cm?/g for the sponges with densities of 3.5 and
6.0 mg/cm’, respectively), the sponges exhibit very high drug
loading capacities with average values of 1870 + 114 and 2697
+ 73 mg/g in the present study, which is much higher than the
meso and microporous drug carriers (<1500 mg/g). In order

to control the release profiles, an additional poly(p-xylylene) (PPX) coating was deposited by chemical vapor deposition on the
drug loaded sponge. Consequently, Artemisone (ART) release in the aqueous medium could be retarded, depending on the
density of the sponge and the thickness of the coating. In future, the new 3D polymeric sponges would be highly beneficial as
drug carriers for the programmed release of drugs for treatment of chronic diseases.

B INTRODUCTION

Porous materials have attracted a great deal of attention due to
their low density, high surface area, and large porosity and have
been widely applied for tissue engineering, catalyst carrier, oil/
water separation, gas storage/separation, sensor, and drug
release.' ™ Numerous research interests are focused on using
meso and microporous materials as drug carriers.””” The
incorporation of the drug in such carriers is mainly carried out
by soaking a concentrated drug solution, followed by drying.
Therefore, the ordered accessible pore structure, the high
surface area, and the high porosity are essential for optimum
loading and controlled release. Mesoporous silica (function-
alized and nonfunctionalized) and metal—organic frameworks
are the most common porous drug carriers. The large surface
area leads to the high drug adsorption, which can be stored and
released from meso and micropores on the surface or in bulk.
The drug loading capacity of mesoporous silica is less than S0
wt %, which can be increased to some extent by
functionalization.'" The metal—organic frameworks show
relatively higher drug-loading capacity (as high as 150 wt %)
due to the large surface area.'" The drug loading capacity is of
major importance for highly efficient drug-carrier systems next
to the controlled and targeted release. In the past decade, two-
dimensional electrospun polymeric porous nonwovens have
emerged as another option of porous drug carrier.”™"®
Controllable drug release could be achieved by electrospun
nonwovens; however, the drug-loading capacity was relatively
low.

Recently, a novel class of polymeric three-dimensional (3D)
sponges made from short electrospun fibers have attracted
growing interest. These fibrous sponges have potential

v ACS Publications © XXXX American Chemical Society
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applications in cell culturing, liquid separation, catalytic
reactions, sound absorbing, and electromagnetism insulating/
shielding due to their excellent properties like very low density
(<10 mg/cm®), large pore volume (150 cm®/g), mechanical
stability, and very high porosity (>99%).'“™'? The capacity of
these sponges for the uptake of liquids was found to be as high
as 100X the mass of the sponge itself.”” The sponges have a
hierarchical order of the macropores with a bimodal
distribution of big pores (300-430 um) formed by the
sublimation of solvent crystals and smaller pores (10-30 ym)
formed by the interconnection of the short fibers. Such sponges
could be an ideal macroporous carrier for drugs, with high
loading and intrinsic mechanical compressibility and multiple
potential uses.'” This would allow implantation of the drug-
loaded sponge.

Here, we explored whether such 3D-polymeric macroporous
sponges could serve as a novel drug carrier with very high drug-
loading capacity, despite very low surface area (1 m?/g) due to
the extremely large pore volume (>150 cm?®/g). For
comparison, the pore volume of mesostructured conventional
drug carrier is only about 2 cm?®/g. Most of the existing drug
delivery structures (DDS) have low drug-loading content,
causing extra toxicity and burden on patients due to the need to
excrete carrier materials. With this in mind, emergence and
fabrication of high drug-loading carriers may not provide the
ultimate answer, but present a promising alternative approach

Received: June 16, 2017
Revised:  August 15, 2017
Published: August 18, 2017

DOL: 10.1021/acs biomac.7b00852
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Scheme 1. Schematic Drawing for the Preparation of Drug Loaded Sponges
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to solve these problems, because of the reduced use of carrier
materials.

In order to probe potential applications, we used Artemisone
(ART) as an artemisinin model drug due to its high relevance
for antimalarial therapy.”"** Artemisinins are considered as the
first line drugs against malaria. ART is an attractive drug
because, in comparison to current artemisinins, it is not
neurotoxic.”*** This is essential for the treatment of cerebral
malaria, the most profound symptom of malaria. ART has an
improved pharmacokinetics in comparison with other artemi-
sinins.”*" ART was found to be highly effective in culture
against Plasmodium falciparum, the causative agent of CM,”’
and in vivo against murine CM induced by P. berghei ANKA™
and against P. falciparum in monkeys.” Also, ART can cure
Toxoplasma gondii)”” Neospora caninum,™ and Schistosoma
mansoni’” in animal models. ART also had an anticancer
effect.”” However, being a hydrophobic compound, it is difficult
to use it unless dissolved in DMSO, and for these chronic
diseases there is a need to apply the drug in repeated injections
during several days.”*~*"*! In order to improve the treatment,
ART release rate from the sponges was tailored by an extra
coating of biocompatible poly(p-xylylene) (PPX) through
conformal chemical vapor deposition (CVD). The advantage
of the CVD coating of the sponges by PPX is that it hardly
reduces the porosity of the sponges. Drug combinations of
artemisinins and other antimalarials have been suggested to
reduce side effects (by reducing individual drug concentrations)
and prevent induction of resistance.”’ Thus, controlled release
of drug combinations using our new system will be investigated
at a later stage.

B EXPERIMENTAL SECTION

Sponge Preparation. The macroporous sponges were prepared as
reported previously.'”* In brief, poly(MA-co-MMA-MABP) was
made in dimethyl sulfoxide (DMSO, Fisher Chemical, 99.99%) at
70 °C for 5 h from methyl methacrylate (13.5 mL, MMA, Aldrich,
99%), methyl acrylate (17.3 mL, MA, Aldrich, 99%), and 4-
methacryloyloxybenzophenone (4.6810 g, MABP) using 2'-Azobis
(isobutyronitrile) (0.2930 g, AIBN, Fluka, 98%, purified by
recrystallization from methanol) as radical initiator. Then 26.20 g of
poly(MA-co-MMA-MABP) solution (20 wt %) in DMSO, 2 g of
polyacrylonitrile (PAN, M, = 150000, Sigma-Aldrich) solution (13.2
wt %) in dimethylformamide (DMF, Fisher Chemical, 99.99%), and
2.68 g of acetone were mixed for electrospinning by use of a voltage of
9 kV, a flow rate of 1.5 mL/h, and a humidity of 40—60%. The
obtained fibers were dried (40 °C, 24 h, a vacuum oven), cross-linked
by UV light (UV lamp 250GS, 5 h), and processed into short fiber
dispersions in dioxane (3.1 and 5.5 mg/mL) using a mixer (5000 rpm,
45 s). The short fibers in the dispersion possessed an average fiber
diameter of 1.1 + 0.2 ym and an average length of 320 + 105 ym. The
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dispersions were transferred in cylindrical glass tubes and freeze-dried
(0.03 mbar, 48 h). The resultant sponges from 3.1 and 5.4 mg/mL
dispersions possessed densities of 3.5 and 6.0 mg/cm’ and were
denoted as SG3.5 and SG6, respectively.

Drug Loading. ART (CIPLA, India) was dissolved in tert-butanol
in concentrations of 14 and 25 mg/mL. Then, 1 mL of drug solution
was filled in a syringe and slowly dropped onto the precut SG3.5 and
SG6 (10 X 10 X 5 mm) at room temperature (22 + 1 °C) until the
whole sponge was wetted by the solution. Drug-wetted sponges were
put in liquid nitrogen for freezing and drying in vacuum for 24 h by a
freeze-dryer. The amount of ART in the sponge was determined by a
high precision analytical balance with a readability of 0.01 mg.

PPX Coating. The ART-loaded sponges were coated with PPX by
CVD, as reported previously.'” By controlling the amount of the
monomer ([2.2] paracyclophane), the sponge SG6 with different PPX
coating thicknesses of 88, 150, 423, and 1000 nm were prepared, and
the corresponding sponges were marked as SG6-88, SG6-150, SG6-
423, and SG6-1000. For a comparison, the sponges loaded with the
drug but without PPX coating were also prepared and marked as
$G3.5-0 and SG6-0, respectively. A schematic drawing for the drug
loading was shown in Scheme 1.

In Vitro Drug Release. Pieces of the ART loaded sponges were
immersed in the glass vessels containing 10 mL of an aqueous medium
as the drug release medium. The aqueous medium consists of 1% w/v
sodium lauryl sulfate (SLS) in distilled water. The solubility of ART
could be clearly increased by addition of SLS, so that we could check
the drug release pattern of ART from carriers until approximately
100% drug release. Without SLS addition, complete release was not
easily achievable because of the hydrophobic nature of ART.
Furthermore, it is obvious that the presence of SLS could support
the sink condition because of its role in reduction of surface tension in
aqueous medium.'® The pH of the medium was adjusted at 7.4 + 0.1
by the addition of a very little amount of sodium bicarbonate. The
vessel was sealed and placed in a thermostatic incubator at 37 + 0.5 °C
and shaken at SO rpm. After prefixed time intervals, 400 uL of the
medium was taken out, and 400 pL fresh medium was added to the
vessel. The concentration of the drug inside was determined by high-
pressure liquid chromatography (HPLC) technique. The amounts of
released ART from sponges were determined by comparison to
standard solutions of ART. HPLC instrument was equipped with an
Eclipse XDB-C18, 4.6 X 150 mm, S gm column. The mixture of
acetonitrile (50 v/v %), H,0 (30 v/v %), and methanol (20 v/v %)
was used as the mobile phase, and UV detector was adjusted at : 260
nm. The temperature of the column was adjusted to 35 °C, the flow
rate of the mobile phase was 0.8 mL/min, and the injection volume
was 20 pL. All release experiments have been repeated at least three
times, and the results are reported as mean data + standard deviation
(SD).

Characterizations. The morphology and the distribution of sulfur
element in the sponge were measured by a scanning electron
microscope (SEM) equipped with Oxford 6901 EDX detector. Before

t, the ples for the SEM were coated with 3 nm of
platinum by a sputter coater 208 HR from Cressington. Sulfur element
mapping to determine the ART distribution was performed by EDX.
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Figure 1. Cross-sectional SEM images of as-prepared sponges SG3.5 (A) and SG6 (B), and SG6 after loading with ART (C, D).

Table 1. Change of ART Loading Capacity of SG6 by Using tert-Butanol Solutions of ART with Concentrations of 14 and 25

mg/mL
mass SG6+drug
mass SG6 (mg) (mg)

14 mg/mL 247 6.78 431

2.56 7.32 4.76

251 748 4.94

2.51 + 005 7.18 + 0.36 467 £ 0.32
25 mg/mL 2.38 8.71 6.34

2.62 9.31 6.70

2.54 9.39 6.85

2351 +£0.12 9.14 £ 0.37 6.63 £ 0.26

mass ART (mg) ART loading capacity (mg ART/g sponge)/ART loading ratio (mass ART/mass sponge)

1745/1.75
1896/1.90
1968/1.97
1870 + 114/1.87 + 0.11
2664/2.66
2557/2.56
2697/2.70
2639 + 73/2.64 £ 0.07

B RESULTS AND DISCUSSION

We report the utilization of macroporous sponges with
densities of 3.5 and 6 mg/cm® (SG3.5 and SG6) as a drug
carrier. The sponges displayed a bimodal pore-size distribution,
including pores with a size of about 100 ym and pores of a few
micrometers, between the fiber interconnections (Figure 14,B).
The porosity (P) and specific pore volume (SPV) of the
sponges could greatly influence the drug loading capacity and
the drug release process'®** and can be calculated from the
following equations:

),
p:[1 -ﬁ)x 100%
Pru (1)
Py X 107 (2)

where pgg is the density of the sponge and pyy = 1.2 g/cm® is
the density of the polymer in the bulk state. Both the SG3.5
and SG6 possessed high P of 99.7% and 99.5%, respectively. In
comparison with the literature known microporous and
mesoporous inorganic materials, the fibrous $G3.5 and SG6
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in this work exhibited much higher SPV of 285 and 166 cm?/ g
High ART loading was accomplished successfully with sponge
SG6, which is visualized in Figure 1C,D. In contrast, the
mechanical integrity of sponge SG3.5 due to its very low
density was too low for the applied loading procedure. Owing
to the much better mechanical stability of SG6, most of the
following experiments were focused on the SG6.

In parallel with the increased concentration of the ART
solution from 14 to 25 mg/mL, the ART loading amount of
SG6 (2.51 mg) was changed from 4.67 to 6.63 mg, meaning
that the loading capacity was increased from 1870 to 2639 mg/
g (ART loading ratio increasing from 1.87 to 2.64) (Table 1).
The free remaining pore volume after the ART loading is still
about 99% of the original sponge volume. Although only 1% of
the total volume was occupied by the drug, the drug loading
capacities were still higher than the values obtained from
functionalized mesoporous $iO,-based materials.'’

Figure 2 shows an Ashby plot for the comparison of the ART
loading capacity by our macroporous sponge, with a capacity of
up to 2697 [mg ART]/[g sponge] and other drug carrier
systems with different drugs. Most of the carriers using a
mesoporous system showed a drug loading capacity below 1000
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Figure 2. Comparison of drug loading capacity by sponges and other
supports. Fibers (TiO," SiO,—AgNPs"), ordered mesoporous
system  (Si0,,*** Ti0,=8i0,, 8§i0,—ALO;"), hollow sphere/
mesoporous shell (Si0,"), metal organic frames (MOF; Cr-
based,***" Zn-based,"' Zr-Bl’YDC,'Z Zn-TATAT'”), dispersion
(nanotubes,”” functionalized C-MPG1*"), nanocarrier (calcium
phosphate-AC and calcium phosphate-ibuprofen*”), and hydrogel
(alginate-g-polyAA/kaolin*®).

mg/g, even when very high drug concentration was
applied.”™*" Another broadly used carrier system is metal
organic frames (MOFs)."”™** These materials yielded a drug
loading capacity below 750 mg/g and the applied drug
concentration below 30 mg/mL. Fibers and hydrogels were
also reported as drug carriers, but their drug loading capacity
was even lower, smaller than 500 mg/g.""™"® Nanotubes in
dispersion, serving as drug carriers, exhibited high drug loading
capacity.”” ™" These preparations possessed a drug loading

capacity of up to 1500 mg/g when applying very low drug
concentration (10—80 mg/mL). However, in comparison, our
fibrous sponge carrier exhibited superior drug loading capacity.

Overall, the macroporous sponge possessed high pore
volume and very high ART loading capacity. However, ART
was loosely placed on the surface of the fibrous network of the
sponges or just settled in the pores, which would lead to losses
induced by mechanical stress and to burst release of ART
during the initial release process. To improve the fixation of
ART in the sponge and retard its release in a controlled fashion,
we applied CVD coating of PPX with different thicknesses in
the form of a conformal coating (Figure 3). The shapes of the
ART crystals (Figure 3A) were still recognizable, with a PPX
coating thickness of 150 nm, whereas with a PPX thickness of
423 nm, the ART crystals were hardly visible anymore (Figure
3B). These results of PPX coating lead to the retention of the
high pore volume of the sponges (Figure 3A,B), which would
facilitate the mass transfer of the drugs through the sponges
during the release process. The EDX spectra by sulfur element
scanning showed a homogeneous distribution of ART in the
sponge (Figure 3C).

The porous structures of the sponge and the PPX coating
play a major role in the drug release. For comparison, the drug
release profile from the ART powder was also examined
(Figure 4). The neat ART powder exhibited a burst release in
the initial 20 min followed by a retarded release, which could be
attributed to the broad size distribution (several micrometers to
hundreds of micrometers) of ART crystals in the powders.'”
Previous reports showed that smaller particles of drugs exhibit
faster dissolution than bigger ones, resulting in a quicker
release.””" Similarly, the small crystals of ART in the powder
could be dissolved in the first stages of the release process. This

Position Y (mm)

Artemisone

4 6
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Sulfur (wt%)
1.500
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Figure 3. Morphology of the ART-loaded sponges (SG6) after coating with different PPX thicknesses of 150 (A) and 423 nm (B), and the
corresponding EDX spectra of ART distribution in the sponges (SG6-150) by sulfur element scanning. Insets of (A) and (B) are the corresponding

images with higher magnifications.
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Figure 4. In vitro ART release from the ART powder and from
sponges with different densities (3.5 and 6 mg/cm®) and PPX coating
thickness (0, 88, 150, 423, and 1000 nm).

behavior caused a burst release, seen in the initial 20 min. After
that, the bigger particles of ART crystals gradually dissolve,
initiating the retarded release. By loading the drug in the fibrous
sponge with small density (3.5 mg/cm®, $G3.5-0) without PPX
coating, 100% of the drug was released within the first hour.
The ART loaded sponges were treated by freeze-drying that
caused ART recrystallization into small crystals with a size of
several micrometers, which led to the fast dissolution in the
liquid medium and the fast burst release. In comparison, when
the sponge with higher density (6 mg/cm®, SG6—0) was used, a
retarded release was observed: about 50 and 87 wt % of ART
was released in 2 and S h, respectively. The different drug
release profiles from the sponges without PPX coating (SG3.5-
0 and $G6-0) could be attributed to the much higher specific
pore volume (SPV) of SG3.5 compared to SG6 (285 vs 166
cm®/g), which facilitated the mass transfer of ART to the liquid
medium. The coating of PPX on the surface of loaded sponges
delays ART release; after 2 and S h, a very thin layer of PPX (88
nm) led to ART releases of 33 and 67 wt % from SG6-88,
which were 17 and 20 wt % lower than SG6-0, respectively.
Increasing the coating thickness of PPX was in correlation with
the retardation of ART release, as shown in Table 2. Obviously,
coating with the 1000 nm PPX is not useful because it
completely prevents ART release.

Table 2. Amount of ART Release from Sponges with
Different PPX Coating Thicknesses after 2 and 5 h

PPX thickness (nm) 0 88 150 423 1000
ART release after 2 h (wt %) 49 33 13 7 1
ART release after 5 h (wt %) 87 67 30 16 2

The retarded release of ART from the PPX coated sponges
could be attributed to core—shell structure and triggered
wettability. Additional shell on the surface of drug-loaded core
perform as an efficient diffusion barrier that slows drug
release®”** and the liquid slowly permeates through the PPX
layer.**™>* Our recent work also clearly showed that PPX
coating on the surface of electrospun fibers led to a core—shell
structure.'” In this work, the additional PPX coating covered
the drug-loaded fibers and also could form core—shell structure
on the surface of ART crystals (Figure 3). Therefore, probably
the liquid permeability of PPX coating on the drug loaded
fibers would change the drug diffusion and consequently delay
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the release. In addition, our previous results also showed that
PPX coating would increase water contact angle, in correlation
with PPX thickness.'” Improved hydrophobicity of the sponge
would then weaken the contact of the drug with the water-
based liquid medium and therefore also contribute to the
retarded time-dependent drug release.

B CONCLUSIONS

Polymeric fibrous sponges have been successfully prepared and
used as a carrier system for the programmed release of the
antimalarial drug ART. The extremely high pore volume of the
sponges enables very high loading capacity of ART. The stable
fixation of ART in the pores of the sponges and the
programmed release of ART from the sponges under sink
conditions was achieved by CVD coating of PPX. The release
rate of ART was programmed by the control of the layer
thickness of PPX coating which covered the ART crystals
conformal in the sponges as well as the fiber scaffold of the
sponges. The superhydrophobicity of the PPX coated sponges
might contribute to the mass transport. Surely, drug loaded
sponges like those shown here could be used as drug reservoir
either for implantation or infusion systems. It could be further
utilized for other drugs as well, and it could be even adapted to
biodegradable sponges and multicompartment drug release
sponges. It is obvious that sponges based on short electrospun
fibers offer numerous advantages over other nonpolymer
systems. However, a particular not yet exploited the advantage
of polymer based sponges could be the versatile chemical
reactivity of polymers which enables further programming of
drug-release rates and even more complex multidrug systems.
Various administration methods of this device should be now
examined for the specific diseases, e.g. subcutaneous insertion,
infusion bags, stents and topical implants.

The PPX has been known as a coating material with robust
adhesion and high biocompatibility. Likewise, it has been used
for coating implantable medical devices,””™ and so are the
sponges.”®> Our results suggest that the coated polymeric
fibrous sponges are appropriate candidates for drug delivery of
ART, for treating diseases that are caused by ART sensitive
parasites and tumors.
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3.5 Spongy gels by a top-down approach from polymer fibrous

sponges
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Spongy Gels by a Top-Down Approach from Polymer Fibrous Sponges
Shaohua Jiang®, Gaigai Duan®, Ute Kuhn, Michaela Morl, Volker Altstidt, Alexander L. Yarin,*

and Andreas Greiner*

Abstract: Ultralight cellular sponges offer a unique set of
properties. We show here that solvent uptake by these sponges
resulls in new gel-like materials, which we term spongy gefs.
The appearance of the spongy gels is very similar to classic
organogels. Usually, organogels are formed by a bottom-up
process. In contrasi, the spongy gels are formed by a top-down
approach that offers numerous advantages for the design of
their properties, reproducibility, and stability. The sponges
themselves represent the scaffold of a gel that could be filled
with a solvent, and thereby fornm a mechanically stable gel-like
maderial, The spongy gels are independeni of a time-consuming
or otherwise demanding in situ scaffold formation. As solvent
evaporation from gels is a concern for various applications, we
also studied solvent evaporation of weiting and non-welling
liguids dispersed in the sponge.

Ultralight-wcighl scaffolds with open cell fibrous structures
arc known [or a variety ol materials prepared by diflerent
methods."! One of the most common methods is the use of
a dispersion ol a solid scalfold material in a solution Iollowed
by a frecze-drying step.” This method has also been success-
fully used recently for dispersions of short electrospun
polymer fibers.! The resulling polymer scallolds are termed
as acrogels or sponges. In contrast to classic acrogels, the
sponges are made directly from fibers and not from gels. The
solid scallold ol the sponges is pre-lormed by electrospun
fibers, while the shape and dimension of the solid scaffold of
the aerogel is formed during the gelation process. Typically,
the sponges made from electrospun fibers have very low
densities (10 mgem™) and show very high porosities
(>99.5%) like classic acrogels, but much larger pore size in
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the range of several 10 pm, while aerogels are mostly
mesoporous.** The sponges are water-repelling but oleo-
philic. which makes them perfect materials for membranes for
separation of organic compounds (such as oil or organic
solvents) rom water™¥ An amazing feature of these
sponges is the absorption of huge amounts of oily liquids
while keeping their shape. in spite of a tiny mass of the solid
scallold of the sponges.™" The huge capacity can be under-
stood by the large pore volume of 200-300 mLg ' of the
sponges derived from their densities. With a liquid of a density
of 1gem *, 30 mg of polymer spongy scaflold (Figure 1a)

Figure 1. Sponge made of electrospun fibers with mass of 0.03 g (a)
and the sponge after uptake of 30 g of mineral oil (b}.

keeps 30 g of liquid in a shape that is 1000-times the mass of
the spongy scaffold. The appearance of the sponge/liquid
mixture after uptake of the liquid is gel-like (Figure 1b). This
type of gel-like material represents a new paradigm [or gels
and is defined here as spongy gels. Essentially, the mixture
shows all ol the characteristics ol a thixotropic gel: a liquid
phasc, a 3D network, and practically no flow.

A similar relation, but in a reverse fashion, can be found in
the so-called organogels (also referred to as molecular gels),
which consist of a solid self-assembled 3D fibrous network (in
some cases il could be also platelets) and a nonpolar liquid.!*®!
Organogels arc formed by sclf-assembly of an organogelator
to an entangled fibrous 3D network in a nonpolar liquid
(Figure 2a). The self-assembly process could be initiated by
different stimuli, such as temperature, concentration, pH,
light, and current. The organogelators can possess different
chemical nature ranging [rom low-molecular weight 1o
polymer organogelators, and even coordination compounds.
The chemical nature of the organogelators and apolar liquid
could lead to a variety of different applications including drug
delivery, sensors. lubrication, templates, oil recovery, and
optical media."® An important feature for drug delivery
applications of organogels is that they are thermodynamically
stable but could also disintegrale under certain conditions.
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Figure 2. Drawing of the formation of organogels by action of organo-
gelators on liquids (a) and by filling of electrospun fiber sponges with

liquids (b).

Similar to spongy gels. organogels are thixotropic gels from
the rheological point of view. Spongy gels obtained by contact
of clectrospun sponges with organic liquids show essentially
the same features as an organogel: the formation of a 3D
fibrous network, commonly assigned as self-assembled fibril-
lary network, [illed with an apolar liquid. Even the disinte-
gration of spongy gels is possible as reported previously.™ In
contrast to organogels, the 3D fibrous network of spongy gels
is pre-formed and then filled with the apolar liquid (Fig-
urc 2b). To avoid any misunderstanding or confusion of
scientific terminology, it should be emphasized here that
spongy gels are not organogels, as organogels are based on
self-assembly of low- or high-molecular weight molecules,!*!
while spongy gels are based on fibrous scaffolds. The
appearance ol organogels and spongy gels are very similar,
but the spongy gels have the distinet advantages of fine
control over the nature and structure of the 3D fibrous
network, no shrinkage, no sensitivity to impurities on gel
formation, and provide a wide range of possibilitics for
functionalization owing to the wealth of maodifications of
electrospun fibers. Although a wide variety of beautiful
examples [or the [unctionalization of organogels has been
shown, their realization is often laborious, in particular as far
as the synthesis of the organgelators is concerned, which
makes organogels quite expensive.”” Another disadvantage
of organogels is their sensitivity to impuritics in conjunction
with the gelation process, which hampers technical applica-
tions!*” With this set of diflerences, spongy gels offer
completely new possibilitics but also raise several questions
that we want to discuss in this paper. We report here on the
preparation of spongy gels by a top-down process. We
obtaincd the spongy gels by filling of macroporous ultralight
polymer sponges with wetting and non-wetting liquid. We
show that spongy gels behave in many respects similar to
organogcls. It is important to note that the sponges used here
were made from dispersions of short electrospun fibers that
can disintegrate upon contact with solvents. As recently
shown, the sponges could be stabilized by an additional
conformal coating by poly(p-xylylene) (PPX) by deposition
from the vapor phase.™ This PPX coating makes the sponges
highly stable against solvents, which enables the formation of
gels according to Figure 2b. To gain understanding ol organo-
gels based on spongy gels, we discuss here the mechanical
properties of the spongy gels and the evaporation of wetting
and non-wetting liquids from the spongy gels backed by
theoretical considerations.
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The PPX-coated sponges under investigation were made
according to a previously published procedure with densitics
of 16.2 (P-SG1) and 30.6 (P-SG2) mgem *, respectively.™
The cross-section morphologies of the sponges showed for P-
SG1 much higher pore size than those of P-SG2 (Figure 3).

Figure 3. Cross-section morphology of the P-SG1 (a, b) and
P-SG2 (c,d). Scale bar: 100 um. Insert of (a) and (c) are the water
contact angle of the corresponding sponges.

The differences in the density and the pore size lead to the
dillerent porosity (P), which was determined according to
Equation (1).

- (l -”‘—") x 100% m
Poun

Herein, pg; and py are the density of the sponges and the
corresponding bulk density, respectively. The bulk densities
for the P-SG1 and P-SG2 are 953 and 1457 mgem™,
respectively. The calculated corresponding porositics for the
P-SG1 and P-SG2 are 98.3 % and 97.9%, respectively, which
are slightly smaller than the porosity (99.5%) of the original
[ibrous sponges due to the additional PPX coating.

The sponges P-SG1 and P-SG2 were hydrophobic, with
water contact angles (WCA) of 148+3° and 142+2°,
respectively. Consequently, water is a non-wetting liquid for
both sponges. In contrast, ethanol is a wetting liquid for the
spongcs, with contact angles of 0° (Supporting Information).

For a variety of applications, the evaporation behavior of
liquids from the sponges could be of major importance.
Therelore, we investigated the cvaporation of diflerent
liquids and differentiated between wetting and non-wetting
liquids, sponges of different densities, and methods of liquid
delivery into the sponges. The evaporation of a wetling liquid
from the sponges was analyzed with cthanol while water was
used as a non-wetting liquid. The results clearly showed that
the evaporation was very similar, with ethanol, for the
sponges P-SG1 and P-SG2 with dilferent densities
(Figurc 4). The cvaporation was also independent of the
sponge density for ethanol injected into the sponge and water,
but the cvaporation rate differed significantly for the wetting
and non-wetting liquid that could not be only due to the
different vapor pressures of ethanol and water. Therefore, we

Angew. Chem. 2017, 129, 1-5
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Figure 4. Evaporation of ethanol and water from P-SG1 and P-5G2.

developed a model for the evaporation of cthanol and water
from spongy gels.

Zuschriften

The surface temperature of evaporating levitating drop-
lets can be calculated quite aceurately.” However, in the
present case, the sponge with the evaporating liquid was
supported by a metal holder, which inevitably increased the
droplel surface temperature due to the high thermal con-
ductivity of metal. Therefore, when calculating the saturated
liquid vapor concentration over the liquid surface, the surface
temperature T, was taken as the values histed in the caption Lo
Figure 5, which illustrates the comparisons of the predictions
of [Eq. (2)] for the four experimental cases. Two panels in
Figure 5a and 5b correspond o evaporation ol a non-wel-
table liquid (water) from the sponge. while two other pancls
(Figure 5S¢ and 5d) correspond to evaporation of a wettable
liquid (ethanol). In all of the cases. [Eg. (3)] describes the data
quite accurately, which ascertains that liquid evaporating
from sponge can always be considered as a shrinking-in-time
blob. Note also that sample porosities are of the order of ¢ =
0.9. The diflusion coellicient D decreases with porosity & as
D =D where D, is the value of the vapor diffusion
coefficient in open space (¢=1)."1 Because the sample

The so-called d’-law [or
spherical drop cvaporation pre-
dicts that the drop diameter d (@) o, (b}t
decreases linearly in time. izl .8
Accordingly, the drop volume
and thus its mass decreases in 0.6 0.64
time as per Equation (2).
= 04 = 04
M= M1 %ln[l + B iz -
@
&2 PR R A R T T n A % @ @ %
Herein, B = (c,—c. )Py —c,) i i tmbsi
the Spalding number, M is the 4 = )5
current mass ol water in the 084 084
sample, M, is the initial mass of
liguid in the sample, a, is the 0.6 0.5
initial radius (or a characteristic g g
length) of liquid body. D is the 0.4 0.4
diffusion coefficient of the
liquid vapor in air, ¢, is the Lo N 31
saturated liquid vapor concen- i . . . L . . . ] . . P
tration over the liquid surface 2 4 6 8 1 w0 @ © L
t, min t, min

(depending on surface temper-
ature 7,), ¢.. is the liquid vapor
concentration in air determined
by humidity. p,, is the density of

. . . ZEro.
the air-vapor mixture, p is the

liquid density, and ¢ is time.

For liquid evaporation in air at room temperature, as in
the present case, the vapor concentration is small, which
implies that {¢,—c,)<p,, and ¢, <p,. Then, the Spalding
number B <€ 1, which means that the Stefan flow is negligibly
small and vapor diffusion is dominant compared to the
conveclive transport. Therelore, Equation (2) reduces to
Equation (3).

2D (cp —c,) 1P
M= M1 - ,M,
@ P

3
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Figure 5. Evaporation from the sponges. a) Non-wettable sponge, 7.57 mg of water; 7, —12°C. b) Non-
wettable sponge, 6.38 mg of water; T, — 11°C. ¢) Wettable sponge, 4.2 mg of ethanol; T, —12°C.
d) Wettable sponge, 190.66 mg of ethanol; T,—18°C, In all of the cases, the humidity was assumed to be

porosity is at least £=0.9, the presence ol the sponge
structure practically does not restrict diffusion of vapor
molecules, and accordingly, the value of the diffusion
coefficient D can be taken approximately as Dy,

Gels arc liquid/solid mixtures that show essentially no
flow but should display a larger storage modulus G’ than a loss
modulus G”. Dynamic oscillatory shear experiments were
carricd out with P-SG2 in gel state filled with ethylenc glycol
(Figure 6). The strain sweep test for P-SG2 filled with
ethylene glycol is shown in Figure 6a. The storage modulus
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Figure 6. Dynamic oscillatory shear rheological properties of P-SG2 gel loaded with ethylene glycol as
functions of strain (a), temperature (b), and frequency at 25 (c) and 50°C (d).

is almost constant at low strains and shows a clear decrease at
strains higher than 1%, whereas G” shows an increase up to
2% strain. G’ is higher than G” in the entire range that has
been investigated. For the [ollowing mcasurcments (fre-
quency sweep and temperature sweep), a strain of 0.2% was
chosen to ensure that the deformation is within the linear
regime. Similar measurements have already been performed
on hydrogels in the literature.™" In Figure 6b, the temper-
ature-dependent behavior of the materials shows a much
higher storage modulus than the loss modulus over the entire
temperature range. This indicates a highly elastic behavior of
the matcrial, which is typical for a gel. The [requency tests of
the materials at 25°C and 50°C can be found in Figure 6¢ and
6d. The elastic modulus is almost constant and much higher
than the storage modulus over the entire frequency range,
which is another characteristic gel behavior.

The rheological measurements of the dry sponges can be
found in the Supporting Information (Figure S2). The behav-
ior of the dry materials is in general very similar to the oncs
filled with ethylene glycol. The decrease in storage modulus at
higher strains and higher temperatures is, however, a little less
pronounced in the dry materials. The loss modulus in all the
measurements is lower for the dry materials. This indicates
a lower plastic deformation of the dry materials compared to
the ethylene-glycol-filled ones.

In conclusion, ultraporous [ibrous polymer sponges with
tunable porosity and density have been successfully applied to
load organic solvents for the formation of spongy gels. These
spongy gels was mechanically stable and presented similar
rheological behavior to classic organogels. The evaporation
behavior of nonwettable and wettable solvents from the
spongy gels are successfully described by the d* evaporation
model, and the evaporation ol both solvents could be
considered as shrinking-in-time blobs. These spongy gels
could find potential applications in drug delivery, bioengi-
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Experimental Section

Preparation of the P-SG

The PPX coated fiber sponges (P-SG) were prepared according to our previous
report.1 13.5 mL of methyl methacrylate (MMA, Aldrich, 99%), 17.3 mL of methyl
acrylate (MA, Aldrich, 99%), 4.6810 g of 4-methacryloyloxybenzophenone (MABP,
synthesized according to our previous work?) and 0.2930 g of 2, 2’-Azobis
(isobutyronitrile) (AIBN, Fluka, 98%, purified by recrystallized from methanol) were
reacted in DMSO at 70 °C for 5 hours. After that, the copolymer poly(MA-co-MMA-
MABP) was precipitated by methanol and dried at 40 °C for 2 days in vacuum oven.
The solution for electrospinning was prepared by dissolving 26.20 g of poly(MA-co-
MMA-MABP) solution (20 wt%) in dimethyl sulfoxide (DMSO, Fisher Chemical,
99.99%), 2 g of PAN solution (13.2 wt%) in dimethyl formamide (DMF, Fisher Chemical,
99.99%) and 2.68 g of acetone. During electrospinning, a high voltage of 9 kV, a flow
rate of 1.5 ml h'* and a humidity of 40-60% were applied. The electrospun fibers were
collected by an alumina foil and dried in vacuum oven at 40 °C for 24 h. The obtained
fibers were firstly cross-linked by UV light (UV lamp 250GS) with a distance of 15 cm
for 5 h and then processed into short fiber dispersion with concentration of 7 and 14
mg mL* in dioxane, respectively by a razor blade at a rotation of 5000 rpm for 45 s.
100 mL of the dispersions (7 and 14 mg mL™) were filled in cylindrical glass tubes and
freeze-dried at 0.03 mbar for 48 h. The obtained sponges were coated with PPX by
chemical vapor deposition (CVD) of 2.20 g of [2.2]paracyclophane with procedure of
firstly sublimation at 150 °C and then pyrolysis at 650 °Cin pyrolysis oven of the coater
under reduced pressure. In deposition chamber, the pyrolysed monomer was formed
a PPX film on the surface of the fibers of the sponges at 20 °C under 35 mtorr. The
average thickness of the PPX layer was about 1.042 um, which was measured by
analyzing the step height with the profilometer. The densities of the above two P-SG
made from 7 and 14 mg mL? dispersions were 16.2 and 30.6 mg cm3, respectively.
The P-SG with densities of 16.2 and 30.6 mg cm™ were denoted as P-SG1 and P-SG2

respectively.

Evaporation of water and ethanol from P-SG

The P-SG was cut into small pieces with a size of 0.8 cm x 0.8 cm x 1.0 cm. One small
water/ethanol droplet was injected inside of the P-SG by a 1 ml syringe equipped with
tiny needle (0.40 mm diameter). The initial weight and the evaporated weight of the

liguids were measured by a highly precise analytical balance with readability of 0.01
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mg. In another experiment, P-SG1 (0.4 cm x 0.4 cm x 0.6 cm and P-SG2 (0.4 cm x 0.5
cm x 0.7 cm) were immersed into ethanol and completely wetted by the ethanol. The
weight of the adsorbent ethanol and the evaporation weight of the ethanol were
monitored by the precise analytical balance. The P-SG with small droplet or after
immersing in the ethanol were put on a metal holder or fixed by a stainless steel wire
as shown in Figure S1. All the measurements were carried out in a constant

environment with temperature of 21 °C and humidity of 27%.

Figure S1. Set-up for measurement of liquid evaporation from P-SG. (a) Small liquid
droplet was injected in the P-SG and the sample was hold by a metal holder; (b) The

P-SG was immersed in the ethanol and the sample was fixed by a stainless steel wire.

Cross-section morphology and porosity of P-SG

The cross-section morphology of the P-SG were observed by scanning electron
microscopy (Zeiss Leo 1530). Before the measurement, the samples were sputtered
with platinum for 120 s.

Dynamic oscillatory shear rheological measurement

Dynamic oscillatory shear rheological properties were measured on a MCR 702 from
Anton Paar with plate/plate geometry. The strain sweep was carried out in a
deformation range from 0.001 to 2% strain at a temperature of 25 °C and a frequency
of 1 rad s*. Frequency sweeps were carried out from 100 to 0.01 rad s at 25 °C and
50 °C with 0.2% strain. Temperature sweeps were carried out from 25 °C to 60 °C with
a heating rate of 1 °C min, 0.2% strain and 1 rad s™. All measurements were carried

out in a nitrogen atmosphere.
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Figure S2. Dynamic oscillatory shear rheological properties of P-SG2 in dry state as

functions of strain (a), temperature (b), and frequency at 25 (c) and 50 °C (d).

Sl-video

Sl-video shows the wetting behavior of ethanol with P-SG.
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4 Outlook

Recently, more and more groups are focusing on the research of fibrous sponge from
electrospun fibers due to the highly porous structures. The lab scale fabrication of the
sponges is nearly perfectly completed and the current applications of the fibrous
sponges include tissue engineering, oil/water separation, energy fields, liquid
absorption, thermal/acoustic insulations, drug release, and catalysts. However, for this
relatively new area of fibrous sponges from electrospun fibers, more investigations are

highly required in different aspects.

(1) Large scale fabrication. Recent studies always prepared the sponges by freeze-
drying in lab scale due to the production limitation of the applied freeze-drier. In
the future, novel techniques should be developed to satisfy the industrial
applications of the sponges, for example, changing the drying procedure, and

applying big freeze-drier.

(2) Solvent problems. The current technique to produce the sponges involved large
amounts of solvents, in most cases, organic solvents. In the future, developing new
systems with green solvents, such as water, or even without solvents to prepare

the fibrous sponges is highly required.

(3) Wetting behavior. The wetting behavior of the fibrous sponges is very important
for practical applications of the sponges. Therefore, detailed investigations on the

wetting behavior between sponges and liquid are highly interesting.

(4) Functionalized sponges. The development of the world requires more and more
materials with single or multi functions. In the future, how to prepare
functionalized fibrous sponges with single or multi functions will be a big challenge

and a hot topic for the scientists from polymer engineering and polymer chemistry.

149



ACKNOWLEDGEMENTS

5 Acknowledgements

Herein | want to give my best appreciation to all the people around and thank for their

endless help and support for my life during my PhD period.

First | would like to send my thanks to Prof. Dr. Andreas Greiner for the support during
my doctor research including the guidance on the projects, financial support, and
attending conferences. It is really a pleasure to work with him. Then | want to thank

Prof. Dr. Seema Agarwal for her useful suggestions and discussions on my projects.

| would like to present my thanks to Prof. Dr. Haoging Hou in College of Chemistry and
Chemical Engineering, Jiangxi Normal University, for recommending me to Prof.

Greiner’s group.

| also thank the Deutsche Forschungsgemeinschaft (DFG) and the University of

Bayreuth Graduate School for financial support.

Many thanks to the colleagues and cooperators who helped me a lot during my PhD
work: Dr. Shaohua Jiang, Dr. Valérie Jérome, Prof. Dr. Joachim H Wendorff, Dr. Amir
Fathi, Jaqueline Uhm, Prof. Dr. Volker Altstadt, Markus Herling, Prof. Dr. Josef Breu, Prof.
Dr. Ruth Freitag, Tobias Moss, Dr. Mellisa Koehn-Serrano, Amir Reza Bagheri, Markus

Langer and Dr. Roland Dersch.

In particular, | want to thank Dr. Roland Dersch, Annette Krokel, Rika Schneider, Bianca
Uch, Martina Heider, Dr. Beate Foerster, Melanie Fértsch and Annika Pfeppenberger

for their technical supports.

Many thanks to my colleagues, who provided nice atmosphere around me for my life
and study, Dr. llka E. Paulus, Dr. Holger Pletsch, Dr. Peter Ohlendorf, Dr. Hui Wang, Dr.
Zhicheng Zheng, Dr. Hadi Bakhshi, Lisa Hamel, Florian Kafer, Martin Pretscher, Oliver
Hauenstein, Holger Pletsch, Dr. Holger Schmalz, Paul Pineda, Amanda Pineda, Viola
Buchholz, Judith Schébel, Markus Langner, Steffen Reich, Matthias Burgard, Marius
Feldmann, Julia Kronawitt, Michael Mader, Pin Hu, Lu Chen, Ziyin Fan, Yinfeng Shi, Li

Liu, Xiaojian Liao, Jian Zhu, Minde Jin and Dr. Fangyao Liu.

Special thanks to Cornelia Nicodemus, previous member from Welcome Center,

150



ACKNOWLEDGEMENTS

University of Bayreuth for her help at the beginning of my enrollment at the University
of Bayreuth and for the given opportunity to travel to many beautiful towns in

Germany.

Appreciations to Tobias Moss and Judith Schobel for helping me to translate the
summary of my PhD thesis into German, to Oliver Hauenstein, Judith Schobel,

Matthias Burgard and Dr. Shaohua Jiang for proof-reading of my thesis.

Last but not least, | would like to deeply thank my family for the endless help and
encourages for my life and my study during my PhD studies, especially my husband, Dr.

Shaohua Jiang and my son, Zhenhao Jiang.

151



LIST OF PUBLICATIONS

6 List of publications

(1) Gaigai Duan, Amir Reza Bagheri, Shaohua Jiang, Jacob Golenser, Seema Agarwal,
Andreas Greiner. Exploration of Macroporous Polymeric Sponges As Drug Carriers.
Biomacromolecules. 2017; DOI: 10.1021/acs.biomac.7b00852.

(2) Jiang S, Duan G, Kuhn U, Mérl M, Altstadt V, Yarin AL, Greiner A. Spongy gels by a
top-down approach from polymer fibrous sponges. Angewandte Chemie 2017; DOI:
10.1002/ange.201611787.

(3) Duan G, Jiang S, Jérome V, Wendorff JH, Fathi A, Uhm J, Altstadt V, Herling M, Breu
J, Freitag R, Agarwal S, Greiner A. Ultralight, Soft Polymer Sponges by Self-Assembly
of Short Electrospun Fibers in Colloidal Dispersions. Advanced Functional Materials
2015, 25(19): 2850-2856.

(4) Duan G, JiangS, Moss T, Agarwal S, Greiner A. Ultralight open cell polymer sponges
with advanced properties by PPX CVD coating. Polymer Chemistry 2016, 7: 2759-
2764.

(5) Duan_G, Mellisa Koehn-Serrano, Andreas Greiner. Highly Efficient Reusable
Sponge-Type Catalyst Carriers Based on Short Electrospun Fibers. Macromolecular
Rapid Communications 2017, 38: 1600511.

(6) Jiang S, Duan G, Zussman E, Greiner A, Agarwal S. Highly flexible and tough

concentric triaxial polystyrene fibers. ACS Applied Materials & Interfaces 2014, 6(8):
5918-5923.

(7) Jiang S, Duan G, Hou H, Greiner A, Agarwal S. Novel layer-by-layer procedure for
making nylon-6 nanofiber reinforced high strength, tough, and transparent
thermoplastic polyurethane composites. ACS Applied Materials & Interfaces 2012,
4(8): 4366-4372.

(8) Jiang S, Duan G, Schobel J, Agarwal S, Greiner A. Short electrospun polymeric

nanofibers reinforced polyimide nanocomposites. Composites Science and
Technology 2013, 88: 57-61.

152



(Eidesstattliche) Versicherungen und Erkldarungen

(§8S.2Nr. 6 PromO)

Hiermit erkidire ich mich damit einverstanden, dass die elektronische Fassung meiner
Dissertation unter Wahrung meiner Urheberrechte und des Datenschutzes einer gesonderten
Uberpriifung hinsichtlich der eigenstindigen Anfertigung der Dissertation unterzogen werden
kann.

(§ 8S.2Nr. 8 PromO)

Hiermit erkldre ich eidesstattlich, dass ich die Dissertation selbstdndig verfasst und keine
anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe.

(§ 8S.2Nr.9PromQ)

Ich habe die Dissertation nicht bereits zur Erlangung eines akademischen Grades anderweitig
eingereicht und habe auch nicht bereits diese oder eine gleichartige Doktorpriifung endgiiltig
nicht bestanden.

(§8S.2Nr. 10 PromO)

Hiermit erkldre ich, dass ich keine Hilfe von gewerblichen Promotionsberatern bzw. -
vermittlern in Anspruch genommen habe und auch kiinftig nicht nehmen werde.

Ort, Datum, Unterschrift

153



