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Summary/Zusammenfassung 

Summary 

The aim of this thesis was to develop porous sponges with a three dimensional (3D) 

interconnected network, ultralow density, high porosity, and hierarchical pore 

structure for various applications. The underlying concept was to freeze-dry a 

dispersion of short electrospun fibers to remove the solvent and to form the fibrous 

porous structures by self-assembly. Further modifications of the fibrous sponges 

provided more functionalities, e.g. enhanced mechanical properties, or tunable 

wetting behavior, which can be used for different applications in liquid absorption, cell 

growth, catalysis, drug release and many more. Furthermore the copolymerization 

with 2-vinyl pyridine also allowed the immobilization of metal particles.  

The major challenge of this thesis was to prepare the 3D porous sponges from 

electrospun fibers. In Section 2.1, dispersions of short electrospun fibers were 

produced for the preparation of 3D sponges by self-assembly. The preparation of the 

sponge involved the synthesis of the UV cross-linkable polymer, electrospinning of the 

polymer, UV cross-linking, cutting the fibers to a short fiber dispersion and freeze-

drying the dispersion to 3D sponges. The highly porous structure of the sponges was 

investigated by scanning electron microscopy and micro-CT. The sponges had superior 

compression elasticity that the sponges could be performed with cyclic compression 

and bending. The highly porous structures granted the sponges an excellent liquid 

absorption. The hydrophobicity of the sponges made them applicable to absorb oil 

from water. Besides, the sponges also showed good compatibility with cells and the 

cells could survive and colonize in the sponges. This investigation on cell growth opens 

great opportunities of fibrous sponges for applications in tissue engineering.  

The sponges introduced in Section 2.1 showed many distinguished properties and 

applications, but they exhibit disadvantages of relatively low compression strength (<1 

kPa) and poor solvent resistance. In Section 2.2, a novel strategy was applied to solve 

these problems. An additional polymer layer of poly(p-xylylene) (PPX) with different 

thickness was coated onto the whole surface of the sponge. This additional layer, 

which possessed excellent mechanical properties, thermal stability, and chemical 

resistance, generated junctions between the fibers due to film formation and 
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enhanced the stability of the sponges. By controlling the density of the neat sponges 

and the coating thickness of the PPX layer, sponges with densities in the range of 4.83-

22.59 mg/cm3, and water contact angles in the range of 114-156° were obtained. The 

compression strength of the PPX coated sponges at 50% compression strain could be 

increased up to 12.1 kPa, which was ten times more than that of the sponges without 

PPX coating. Due to the improved chemical and mechanical stability, the PPX coated 

sponges could keep their structure integrity in different solvents even after intense 

shaking. 

Section 2.3 and 2.4 present two applications of the fibrous 3D sponges. In Section 2.3, 

the porous fibrous sponges were used to immobilize gold nanoparticles (AuNPs) as a 

catalyst carrier for the reduction of 4-aminophenol. Firstly, copolymer with the 

functional group of 2-vinylpyridine (2-VP) was synthesized and electrospun into fibers 

for immobilization of very small amounts of AuNPs. Then the AuNP immobilized fibers 

were mechanically cut to produce a short fiber dispersion and freeze-dried into 3D 

sponge (Au-sponge) as catalyst support. The prepared Au-sponges exhibited small 

specific surface areas but a very high pore volume, which could efficiently facilitate the 

mass transfer of educts and products. In comparison to other AuNPs immobilized 

catalyst systems, the Au-sponge offered a very high normalized reaction rate constant. 

The Au-sponge also showed reversible compression stability, which is in favor for the 

cyclic use of the Au-sponge as catalyst. In section 2.4, the fibrous sponges were loaded 

with drugs to examine the controllable drug release. The high pore volume of the 

sponges provided a large drug loading capacity, which was achieved on the use of 1 

vol% of the pore volume of the sponges. This small portion of usage of the pore volume 

suggested the promising improvement on drug loading capacity in the future. PPX 

coating with various coating thicknesses on the drug-loaded sponges led to a 

controllable drug release. Thicker PPX layers resulted in slower drug release. The drug 

release performance could be controlled by the diffusion barrier behavior of the PPX 

layer and the changing wetting between PPX layer and the liquid medium. 

Traditional organogels are usually formed by a bottom-up approach from the self-

assembly of low- or high-molecular weight molecules. In Section 2.5, a novel top-down 

approach to prepare gels from polymer fibrous sponges was developed. The spongy 

gels were formed from a pre-formed 3D fibrous sponge followed with filling of apolar 

liquid. The spongy gels exhibited the same features as an organic gel, such as a liquid 

phase, a 3D network, and essentially no flow, but also possessed their distinct 

advantages of fine control over the nature and structure of the 3D fibrous network, no 
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shrinkage, no sensitivity to impurities on gel formation and provide a wide range of 

possibilities for functionalization owing to the wealth of modification of electrospun 

fibers. These spongy gels were mechanically stable and the evaporation of both 

wettable and nonwettable solvents from the spongy gels could be considered as 

shrinking-in-time blobs. These spongy gels could be found many promising 

applications in bioengineering, sensors, templates, oil recovery, lubrication, catalyst, 

and drug delivery. 

The future work and challenges on 3D fibrous sponges are (1) exploring a green 

technique to produce the sponges without solvents or only with environmental 

friendly solvents like water and ethanol; (2) producing the sponges in large scale; (3) 

thoroughly investigating of the wetting behavior between the sponges and a liquid; 

and (4) providing sponges with more functionalities to enable access to different kinds 

of applications.  

In conclusion, the 3D sponges with hierarchical pore structures have been successfully 

prepared with electrospun fibers. The densities, compression properties, water 

contact angle, and solvent resistance of the sponges could be improved by an 

additional PPX coating. The functionalized sponges with pre-immobilization of AuNPs 

were successfully applied as catalyst supporter and possessed superior normalized 

reaction rate constant. Due to the large pore volume, the sponges had very high drug 

loading capacity based on the use of 1 vol% of the pores in the sponges. An additional 

PPX coating on the drug-loaded sponges could effectively provide the controllable 

drug release. Development on spongy gels based on fibrous porous sponges is initiated 

and shows bright future on the gel field. 

Zusammenfassung 

Das Ziel dieser Arbeit war die Entwicklung poröser Schwämme mit einem 

dreidimensionalen (3D) miteinander verbundenem Netzwerk, sehr geringer Dichte, 

hoher Porosität und hierarchischer Porenstruktur für verschiedene Anwendungen. Das 

zugrundeliegende Konzept war das Gefriertrocknen einer Dispersion aus 

elektrogesponnenen Kurzschnittfasern zur Entfernung des Lösungsmittels und zur 

Bildung der porösen Struktur durch Selbstanordnung der Fasern. Modifikationen der 

Schwämme lieferten zusätzliche Funktionalitäten wie verbesserte mechanische 

Eigenschaften oder ein einstellbares Benetzungsverhalten, welche für 

unterschiedliche Anwendungen in der Absorption von Flüssigkeiten, Zellwachstum, 
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Katalyse, Medikamentenfreisetzung und vielen mehr eingesetzt werden könnten. Des 

Weiteren erlaubte die Copolymerisation von 2-Vinylpyridin die Immobilisierung von 

Metallpartikeln. 

Die größte Herausforderung dieser Arbeit war die Herstellung der porösen 3D 

Schwämme aus elektrogesponnenen Fasern. In Abschnitt 2.1 wurden Dispersionen 

von elektroversponnenen Kurzschnittfasern hergestellt, welche für die Darstellung von 

Schwämmen durch deren Selbstanordnung verwendet wurden. Die Anfertigung der 

Schwämme umfasste die Synthese eines UV-vernetzbaren Polymers, das Verspinnen 

dieses Polymers, die UV-Vernetzung, das Schneiden der Fasern zu einer 

Kurzschnittfaser-Dispersion und das Gefriertrocknen der Dispersion zum Schwamm. 

Die hochporöse Struktur der Schwämme wurde mittels Rasterelektronenmikroskopie 

und Mikro-CT überprüft. Die Schwämme hatten eine überdurchschnittliche 

Kompressionselastizität, welche durch zyklisches Zusammenpressen und Biegen 

gezeigt werden konnte. Die hochporöse Struktur erlaubte die Absorption von 

Flüssigkeiten. Durch die Hydrophobizität der Schwämme eigneten sich diese für die 

selektive Absorption von Öl aus Wasser. Des Weiteren zeigten die Schwämme eine 

gute Biokompatibilität und Zellen konnten im Schwamm angesiedelt werden. Durch 

den Nachweis des Zellwachstums bieten sich Anwendungsmöglichkeiten der 

Faserschwämme im Bereich des Tissue Engineerings. 

Die in Abschnitt 2.1 eingeführten Schwämme zeigten viele herausragende Eigen-

schaften und Anwendungsmöglichkeiten, allerdings auch Nachteile wie eine relativ 

niedrige Druckfestigkeit (<1 kPa) und schlechte Lösungsmittelbeständigkeit. In 

Abschnitt 2.2 wurde ein neues Konzept für die Lösung dieser Probleme eingeführt. Die 

gesamte Oberfläche des Schwammes wurde mit einer zusätzlichen Poly(p-xylylen) 

(PPX) Polymerschicht unterschiedlicher Dicken beschichtet. Diese Schicht, welche 

exzellente mechanische Eigenschaften, thermische Stabilität und 

Chemikalienbeständigkeit aufweist, bildete Vernetzungspunkte zwischen den Fasern 

durch Filmbildung und verbesserte die Stabilität der Schwämme. Durch die Kontrolle 

der Dichte des Schwammes und der Beschichtungsdicke des PPX konnten Schwämme 

mit Dichten von 4.83-22.59 mg/cm3 und Kontaktwinkel von 114-156° erhalten werden. 

Die Druckfestigkeit der PPX-beschichteten Schwämme bei einer Stauchung von 50% 

konnte auf 12.1 kPa erhöht werden, was dem Zehnfachen im Vergleich zum 

unbeschichteten Schwamm entspricht. Aufgrund der verbesserten 

Chemikalienbeständigkeit und mechanischen Stabilität behielten die beschichteten 

Schwämme ihre Form nach dem Einlegen in verschiedene Lösungsmittel auch nach 
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intensivem Schütteln. 

In Abschnitt 2.3 und 2.4 wurden zwei Anwendungen für die Schwämme vorgestellt. In 

Abschnitt 2.3 wurden die Schwämme für die Immobilisierung von Goldnanopartikeln 

(AuNPs) verwendet, welche als Katalysatoren zur Reduktion von 4-Aminophenol 

dienen. Dazu wurde zuerst ein Copolymer mit 2-Vinylpyridin synthetisiert und 

versponnen, sodass sehr kleine Mengen von AuNPs auf den Fasern immobilisiert 

werden konnten. Anschließend wurden die Fasern maschinell zerschnitten um eine 

Kurzschnittfaser-Dispersion zu erhalten, welche gefriergetrocknet wurde, um einen 

Schwamm (Au-Schwamm) als Katalysatorträger zu erhalten. Der Schwamm wies eine 

kleine spezifische Oberfläche bei gleichzeitig sehr großem Porenvolumen auf, welches 

den Massentransfer der Edukte und Produkte erleichtern könnte. Im Vergleich zu 

anderen Immobilisierungssystemen für AuNP, boten die Au-Schwämme eine sehr 

hohe normalisierte Reaktionsgeschwindigkeitskonstante. Außerdem zeigten die 

Schwämme eine reversible Kompressionsstabilität was vorteilhaft für die wiederholte 

Nutzung der Schwämme als Katalysator war. In Abschnitt 2.4 wurden die Schwämme 

mit Medikamenten beladen, um das kontrollierte Freisetzungsverhalten zu unter-

suchen. Das große Porenvolumen der Schwämme lieferte reichlich Kapazität für die 

Medikamentenbeladung, welche bereits bei einer Nutzung von 1% des Volumens 

erreicht wurde. Dieser kleine verwendete Teil des Porenvolumens deutet die 

vielversprechenden Perspektiven der Medikamentenbeladungskapazitäten für die 

Zukunft an. PPX-Beschichtungen der beladenen Schwämme mit unterschiedlichen 

Schichtdicken führten zur kontrollierten Freisetzung der Medikamente. Dickere PPX-

Schichten bewirkten eine langsamere Freisetzung. Das Freisetzungsverhalten konnte 

durch die Barriereeigenschaften der PPX-Schichten und dem wechselnden 

Benetzungsverhalten kontrolliert werden. 

Konventionelle Organogele werden im Allgemeinen über einen Bottom-up-Ansatz 

ausgehend von der Selbstanordnung nieder- oder hochmolekularer Verbindungen 

hergestellt. In Abschnitt 2.5 wurde ein neuer Top-down-Zugang für die Herstellung von 

Gelen über Faserschwämme entwickelt. Diese schwammartigen Gele wurden durch 

Beladung eines vorgeformten 3D Faserschwammes mit apolaren Flüssigkeiten 

hergestellt. Sie besaßen die gleichen Eigenschaften wie ein Organogel, zum Beispiel 

eine flüssige Phase, ein 3D Netzwerk und nahezu keinen Fluss. Weiterhin zeigten sie 

eindeutige Vorteile wie die Feinsteuerung der Natur und Struktur des 3D Netzwerks, 

keinen Schrumpf, keine Empfindlichkeit gegen Verunreinigungen bei der 

Gelherstellung und sie eröffneten einen breiten Bereich für Funktionalisierungen 
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aufgrund der Vielzahl der Modifikationsmöglichkeiten von elektrogesponnenen Fasern. 

Die hier vorgestellten schwammartigen Gele waren mechanisch stabil und das 

Abdampfen sowohl benetzender als auch unbenetzender Lösungsmittel aus den Gelen 

kann als zeitabhängiges Schrumpfen eines Tropfens beschrieben werden. Die 

schwammartigen Gele besitzen viele potentielle Anwendungen in der Biotechnologie, 

in Sensoren, als Template, zur Rückgewinnung von Ölen, für Schmiermittel, in der 

Katalyse und zur Freisetzung von Medikamenten. 

Die weiteren Arbeiten und Herausforderungen zu Faserschwämmen sind (1) 

Entwicklung einer „grünen“ Herstellung der Schwämme ohne oder mit Verwendung 

umweltfreundlicher Lösungsmittel wie Wasser und Ethanol; (2) die Herstellung im 

größeren Maßstab; (3) die umfassende Untersuchung des Benetzungsverhaltens und 

(4) die Entwicklung neuer Eigenschaften, um neue Anwendungen zu finden. 

Die 3D Schwämme mit einer hierarchischen Porenstruktur wurden erfolgreich aus 

elektrogesponnen Fasern hergestellt. Die Dichten, Kompressionseigenschaften, 

Kontaktwinkel zu Wasser und Lösungsmittelbeständigkeit der Schwämme konnten 

durch eine zusätzliche PPX-Beschichtung verbessert werden. Die funktionalisierten 

Schwämme mit einer vorgelagerten AuNP-Immobilisierung wurden erfolgreich als 

Katalysatorträger eingesetzt und zeigten eine verbesserte 

Reaktionsgeschwindigkeitskonstante. Aufgrund des großen Porenvolumens war die 

Medikamentenbeladungskapazität schon bei der Verwendung von einem Prozent des 

Porenvolumens sehr hoch. Eine weitere PPX-Beschichtung der beladenen Schwämme 

sorgte für eine kontrollierte Freisetzung. Die Entwicklung von schwammartigen Gelen 

basierend auf Faserschwämmen wurde begonnen und eröffnet eine strahlende 

Zukunft im Bereich der Gele. 
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1 Introduction 

1.1 Motivation 

Electrospinning is an efficient method to form fibers with diameters in the range of 

nanometers to micrometers and with dimensions from one dimensional (1D) single 

fiber, two dimensional (2D) fibrous membranes and even three dimensional (3D) 

fibrous constructs. The interests on the 1D single fiber focus on the original mechanical 

properties of electrospun fibers, where size effect on the tensile strength, Young’s 

modulus and toughness have been demonstrated. The research on mechanical 

properties of 1D single fiber provides the basic data for the applications of electrospun 

fibers. 2D electrospun fibrous membranes can be obtained by directly assembling the 

1D fibers during electrospinning process. Till now, most applications on electrospun 

fibers are based on the 2D membranes. The 2D electrospun fibrous membranes have 

found applications in textile industry, filtration, tissue engineering, composites, 

catalysts, and drug release.  

Compared to 1D single fiber and 2D fibrous membranes, 3D fibrous constructs 

possesses unique characteristics, such as 3D connected networks, ultra-light weight, 

high porosity and hierarchical pore structures. The pioneer work on 3D constructs by 

electrospinning is to increase the thickness to form the third dimension. These 3D 

constructs are usually used as scaffolds for tissue engineering applications. However, 

this kind of 3D constructs have disadvantages like weak mechanical properties, 

unstable 3D structure, which limited their applications in other areas. Therefore, how 

to get stable and mechanically strong 3D constructs from electrospun fibers and 

explore the applications of these 3D constructs, become an interesting and important 

topic that attracts more and more attention in the last few years. Till now, only 

countable reports are available in this topic. For this quite new field of mechanical 

strong and stable 3D constructs from electrospun fibers, more studies regarding the 

preparation and applications are highly required, which are highlighted in the present 

thesis.  

1.2 Submicrometer fibers by electrospinning 

Conventional fibers have fiber diameters no smaller than 2 µm [1]. However, fibrous 
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materials with scale in the nanometer and sub micrometer play an important role in 

various fields [2, 3]. Electrospinning is such a facile and versatile method to produce 

fibrous materials with fiber diameter in the range from several nanometers to a few 

micrometers [4-6]. It is considered as the simplest and lowest cost method for 

preparation of nanofibers [7]. Depending on the feeding materials, electrospinning can 

be divided into solution electrospinning, melt electrospinning and emulsion 

electrospinning. In the following sections, a brief introduction on the development of 

electrospinning including the electrospinning classifications, the materials, assembly 

of electrospun fibers, and the morphology of electrospun fibers will be given.  

1.2.1 Solution, melt, and emulsion electrospinning 

Depending on the form of the feeding materials, electrospinning can be divided into 

three main types of solution, melt, and emulsion electrospinning. All the three 

electrospinning types use a similar set-up, which contains four parts: a high voltage 

supply, a collector, a syringe pump and a syringe filled with feeding materials (Figure 

1-1). However, there are also some differences between them. First, the types of the 

feeding materials are different as polymer solutions, polymer melts, and emulsions are 

used respectively. Solution electrospinning requires a viscous polymer solution where 

polymers are dissolved in proper solvents, melt electrospinning requires that the 

polymers have a melting point or glass transition temperature, and emulsion 

electrospinning requires that the emulsions are mixed with some other spinnable 

polymers. Second, the set-up for melt electrospinning differs from the other two 

electrospinning techniques that an external heating set-up is mounted around the 

syringe. The heating approach can realized from electricity or hot gas. Solution 

electrospinning is the earliest and highly developed to produce very fine fibers with 

sizes from tens of nanometers to 1 micrometer. Melt electrospinning usually results in 

much larger fibers with fiber diameter in micrometer range. Emulsion electrospinning 

typically produces as-spun fibers with matrix polymer and the emulsion particles.  
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Figure 1-1. Schematic drawing of solution (a), melt (b) and emulsion (c) 

electrospinning. 

1.2.2 Materials for electrospinning 

Since 2000 electrospinning technology experienced a burst development and 

hundreds of materials are processed into fibers by electrospinning. The materials used 

for electrospinning can be polymers, inorganic materials, and bioactive materials [4-6]. 

Table 1-1 summarizes the typical polymers and the solvents for electrospinning. The 

polymers used for electrospinning can be liquid crystalline polymers (nomex, 

Polybenzimidazole (PBI), Polysulfone amide (PSA)) [8-11], water soluble polymers 

(Polyethylene oxide (PEO), Polyvinyl alcohol (PVA)) [12, 13], polyamides (PA6, PA66, 

PA1010) [14-16], textile fabric polymers (PAN) [17], biodegradable polymers (Polylactic 

acid (PLA), Polycaprolactone (PCL), silk) [18-22], rubber (polybutadiene, 

polyisobutylene-isoprene, and silicon rubber) [23], natural polymer (cellulose) [24, 25] 

and other polymers (Polyamic acid (PAA), Polyurethanes (PU), Polycarbonate (PC), 

Polyvinylpyrrolidone (PVP), Poly(methyl methacrylate) (PMMA), Polystyrene (PS), 

Polyvinylidene fluoride (PVDF)) [26-38]. Depending on the polymers, different kinds of 

solvents are used for electrospinning. Generally, the solvents used for polymer 

electrospinning should have a good solubility for the polymers and should not possess 

too high boiling point. Dimethylacetamide (DMAc), dimethylformamide (DMF), formic 

acid (FA), acetic acid (AcOH), 2,2,2-trifluoroacetic acid (TFE), 1,1,1,3,3,3-hexafluoro-2-

propanol (HFIP), chloroform, dichloromethane, ethanol, and methanol are mostly 
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used organic solvents while water is considered as an environmentally-friendly solvent 

for solution electrospinning. Inorganic materials including metals, metal oxides, 

ceramics, and their precursors can also be directly used for electrospinning to produce 

functional inorganic fibers [39-43]. In addition, bioactive materials, such as bacteria 

[44], virus [45], DNA [46], and enzymes [47], can also be incorporated in the 

electrospinning solution for electrospinning. These bioactive materials give 

electrospun fibers many biofunctionalities and can be used for biocatalysts, 

biomedicine, and biosensor. 

Table 1-1. Summary of typical polymers and solvents for electrospinning. 

Materials Solvent References 

Nomex DMAc+LiCl [8, 9] 

Polybenzimidazole (PBI) DMAc+LiCl [10, 11] 

Polysulfone amide (PSA) DMF [8] 

Polyethylene oxide (PEO) water [12] 

Polyvinyl alcohol (PVA) water [13] 

Polyamide (PA6, PA66, 

PA1010) 

FA+AcOH, TFE, HFIP  [14-16] 

Polyacrylonitrile (PAN) DMF [17] 

Polylactic acid (PLA) HFIP, chloroform [18, 19] 

Polycaprolactone (PCL) chloroform/DMF, chloroform/methanol [20, 21] 

silk HFIP, water [18, 22] 

Rubber THF/DMF [23] 

Cellulose acetone, AcOH,  DMAc, DMAc+LiCl [24, 25] 

Polyamic acid (PAA) DMF, DMAc [26, 27] 

Polyurethanes (PU) DMF [28] 

Polycarbonate (PC) dichloromethane, 

chloroform+THF+DMF, THF+DMF 

[29-31] 

Polyvinylpyrrolidone (PVP) DMF, ethanol [32, 33] 
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PMMA DMF, chloroform, dichloromethane [34, 35] 

Polystyrene (PS) DMF, chloroform, 

1,2-dichloroethane 

[28, 36] 

PVDF DMF, DMAc [37, 38] 

 

1.2.3 Morphology of electrospun fibers 

In most cases, electrospun fibers with smooth surface and beads-free are required to 

guarantee the mechanical properties of the fibers/mats for their further applications. 

However, the various electrospinning parameters provide a great diversity of 

electrospun fiber morphologies (Figure 1-2). Porous electrospun fibers can be 

produced by controlling the humidity and the evaporation of solvents during 

electrospinning process due to the phase separation [48, 49]. Necklace-like structures 

can be achieved from the electrospinning of the blend of PVA and Silica particles in 

water by adjusting the weight ratio of PVA/SiO2/water and the applied voltage [50]. 

Interesting fiber shapes with firecracker-shape and rice grain-shape are fabricated by 

combining electrospinning and post-treatment [51, 52]. Koombhongse et al. reported 

ribbon-like and branched fibers, which are formed from the thin skin of the rapid 

evaporation of solvent and by the ejection of smaller jets from the surface of the 

primary jets, respectively [53]. In another report, Holzmeister et al. presented a 

“barbed” shaped fiber from electrospinning by carefully controlling the concentration 

of PVA solutions [54]. 

 

Figure 1-2. Electrospun fibers with porous structure of PLA (a) (Reprinted with 

permission from ref. [48]. Copyright 2010, Springer) and PS (b) (Reprinted with 

permission from ref. [49]. Copyright 2004, American Chemical Society), necklace-like 
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(c) (Reprinted with permission from ref. [50]. Copyright 2010, American Chemical 

Society), firecracker-shaped (d) (Reprinted with permission from ref. [51]. Copyright 

2011, Royal Society of Chemistry), rice grain-shaped (e) (Reprinted with permission 

from ref. [52]. Copyright 2011, Royal Society of Chemistry), ribbon-like and branched 

(f and g) (Reprinted with permission from ref. [53]. Copyright 2001, John Wiley and 

Sons), and barbed (h) morphologies (Reprinted with permission from ref. [54]. 

Copyright 2008, John Wiley and Sons). 

The spinnerets used for electrospinning also plays an important role to the fiber 

morphologies (Figure 1-3). The well-known core-shell and hollow structures can be 

achieved by the coaxial spinneret [19, 55]. Further modifying the spinneret into triaxial 

shape, then the fibers exhibit triaxial structures with three different layers [28]. Janus 

fibers [56] can be produced by side-by-side electrospinning with two different polymer 

solutions. With the same side-by-side electrospinning technique, Chen et al. prepared 

spring fibers from flexible and rigid polymers [9]. Zhao et al. modified the spinneret by 

embedding two to five metallic capillaries and successfully produced tubular with two 

to five channels in the fibers [57]. In another report, Chen et al. developed a 

multifluidic coaxial electrospinning approach to produce core-shell fibers with a novel 

nanowire-in-microtube structures [58]. 

 

Figure 1-3. Core-sheath (a) (Reprinted with permission from ref. [19]. Copyright 2003, 

John Wiley and Sons), hollow (b) (Reprinted with permission from ref. [55]. Copyright 

2004, American Chemical Society), triaxial (c) (Reprinted with permission from ref. [28]. 
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Copyright 2014, American Chemical Society), Janus (d) (Reprinted with permission 

from ref. [56]. Copyright 2014, John Wiley and Sons), spring (e) (Reprinted with 

permission from ref. [9]. Copyright 2009, John Wiley and Sons), nanowire-in-microtube 

(f) (Reprinted with permission from ref. [58]. Copyright 2010, American Chemical 

Society), and multi-channel tubular (g-j) (Reprinted with permission from ref. [57]) 

structures of electrospun fibers obtained by the modification of spinnerets. 

1.2.4 Short electrospun fibers 

Traditional short microfibers have been broadly applied in composites as 

reinforcements due to their good distribution in matrix and good processing by 

industrial methods, for instance, extrusion. However, the studies on short electrospun 

fibers are countable. It is believed that short nanofibers prepared directly from 

electrospinning would greatly promote the development of electrospinning 

technology and electrospun nanofibers. Researchers tried many attempts to fabricate 

electrospun short fibers by optimizing electrospinning parameters (Figure 1-4). Luo et 

al. presented short microfibers with aspect ratio in the range of 10-200 directly by 

electrospinning [59]. However, the fibers are not smooth and uniform in diameter, 

which would limit their applications. Recently, Fathona and Yabuki successfully 

obtained cellulose acetate short electrospun fibers by carefully adjusting the 

concentration of the polymer solution [60]. They found the good concentration should 

be ranging from 13 to 15% and the length of short fibers increased by increasing the 

flow rate and decreasing the applied voltage. However, the concentration region was 

too small and the studies did not show the universality for other polymers. In another 

report from the same group [61], they incorporated TiO2 nanoparticles into cellulose 

acetate solution to prepare short electrospun composite nanofibers and studied the 

effects of nanoparticle concentration and surface charge on the fiber length. The 

increased nanoparticle concentration led to the decrease of fiber length and the 

negatively charged nanoparticle in negatively charged polymers would lead to the 

elongation of the short fibers [61]. The most developed method to prepare short 

electrospun fibers are post-treatments on the obtained electrospun continuous long 

fibers. Stoiljkovic et al. developed an effective method to prepare short electrospun 

fibers by using a UV cutting method [62]. The short fibers were prepared by removing 

the non-cross-linked soluble part and the length of the short fibers can be controlled 

by changing the size of the employed mask [62]. Zhao et al. [63], Sawawi et al. [64], 

and Xu et al. [65] reported the short electrospun glass, PS and carbon fibers by ultra-
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sonication. In those examples, the materials used for the preparation showed the 

common characteristic of brittleness and non-uniform fiber length. Our group 

developed a mechanical cutting method with a high speed mixer/blender to fabricate 

the short electrospun fibers and showed different applications for controlled 

movement [66], composites [67, 68], inhalation applications [69], and sponges [70]. 

Recently, a similar strategy to prepare short electrospun fiber dispersions with 

mechanical homogenization was adopted by Ding’s group for the aerogel preparations 

[71, 72].  

 

Figure 1-4. Short electrospun fibers. (a) Polymethylsilsesquioxane (PMSQ) (Reprinted 

with permission from ref. [59]. Copyright 2011, Springer), (b) cellulose acetate 

(Reprinted with permission from ref. [60]. Copyright 2014, Springer), (c) cellulose/TiO2 

(Reprinted with permission from ref. [61]. Copyright 2014, Elsevier), (d) UV cross-

linked polymer (Reprinted with permission from ref. [62]. Copyright 2008, John Wiley 

and Sons), (e) glass (Reprinted with permission from ref. [63]. Copyright 2015, John 

Wiley and Sons), (f) PS (Reprinted with permission from ref. [64]. Copyright 2013, 

Elsevier), (g) carbon (Reprinted with permission from ref. [65]. Copyright 2015, 

Elsevier), (h) Co/P(MMA-c-VA) (Reprinted with permission from ref. [66]. Copyright 

2007, John Wiley and Sons), (i) nylon-6 (Reprinted with permission from ref. [67]. 

Copyright 2013, Elsevier), (j) polyimide (PI) (Reprinted with permission from ref. [68]. 

Copyright 2013, Elsevier), (k) poly(lactide-co-ethylene oxide) (Reprinted with 

permission from ref. [69]. Copyright 2009, John Wiley and Sons), and (l) cross-linked 

poly(MA-MMA-MABP) ([70]. Open access, John Wiley and Sons). 
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1.2.5 Assembly of electrospun fibers 

Single fiber prepared from electrospinning belongs to the group of one dimensional 

materials. However, their assembly from one dimensional to three dimensional have 

attracted broad interests including the physical properties and applications.  

1.2.5.1 One dimensional electrospun fiber 

During the electrospinning, the charged jet is stretched thousands of times along the 

fiber axis to form ultrathin fibers. In this process, the macromolecules in the jet are 

drawn and oriented, which greatly enhances the mechanical properties of the single 

electrospun fiber. In most cases, it is difficult to isolate the single electrospun fiber for 

investigations. However, in order to get the mechanical properties of single 

electrospun fiber, researchers developed approaches to catch and handle the 

individual fiber. For example, Chen et al. proposed a simple procedure to get the 

individual electrospun fiber and make it easy to be handled for single fiber tensile test 

[73]. The procedure contains four steps: (1) using a rectangle steel frame to catch 

electrospun fibers; (2) using another pre-taped paper frame to pick up an individual 

fiber; (3) dropping super glue to fix tightly the single fiber and (4) covering a piece of 

paper on the paper frame to avoid the adhesive tape sticking to the clamps of the 

tensile tester [73]. With this method, the mechanical properties of single polyimide (PI) 

electrospun fiber was measured, which showed superior tensile strength of 1.7 GPa 

and E modulus of 76 GPa [73]. Recently, Papkov et al. found that a single electrospun 

fiber showed size effect on mechanical properties (Figure 1-5) [74]. They took a single 

PAN electrospun fiber for studies and demonstrated that toughness, elastic modulus 

and tensile strength dramatically increased, when the fiber diameter was reduced 

from 2.8 µm to about 100 nm [74].  
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Figure 1-5. Comparison of specific strength and specific energy to failure of as-spun 

PAN nanofibers (diamonds) with typical values for commercial and developmental 

fibers and materials. The arrow density indicates approximate values of nanofiber 

diameters (see scale bar). The colored area represents the strength/toughness region 

occupied by traditional materials. (Reprinted with permission from ref. [74]. Copyright 

2013, American Chemical Society). 

In addition, 1D electrospun single fiber can be assembled into bigger 1D fiber bundles, 

yarns and ropes by modification the electrospinning setup [75, 76]. These 1D fiber 

bundles, yarns and ropes shows special mechanical properties and are promising 

materials for the textile-based applications. 

1.2.5.2 Two dimensional electrospun fiber materials 

The electrospun fibers can be collected in different 2D morphologies. Generally, 

electrospun fibers with random deposition can be collected by normal substrates, such 

as aluminum foil, stainless steel meshes, and drums with low speed rotation [5]. 

However, special modifications on the electrospinning set-up can lead to an assembly 

of the nanofibers as aligned and patterned nanofibers/nanofiber products (Figure 1-

6). The highly aligned nanofibers can be prepared by some special designed collectors, 

such as high speed rotating discs [77], and aluminum plates with electric field assisted 

[78]. Uniaxially aligned nanofiber arrays can be fabricated by a device with two, four 

or six electrodes deposited on quartz wafers and collectors with magnetic field assisted 
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[79]. Fan-shaped nanofiber pattern with similar surface pattern of goose leaf can be 

collected by a speculate copper needle perpendicular to a rectilinear copper strip [80]. 

Other kinds of patterned nanofiber mats can be realized by controlling the pattern of 

the collectors, such as stainless mesh and electro-conductive templates [81]. 

 

Figure 1-6. 2D electrospun fiber assembly. (a) Randomly (Reprinted with permission 

from ref. [5]. Copyright 2007, John Wiley and Sons), (b) (Reprinted with permission 

from ref. [77]. Copyright 2015, Royal Society of Chemistry) and (c) aligned (Reprinted 

with permission from ref. [78]. Copyright 2007, American Chemical Society), (d) 

(Reprinted with permission from ref. [82]. Copyright 2004, John Wiley and Sons) and 

(e) (Reprinted with permission from ref. [79]. Copyright 2007, John Wiley and Sons) 

weaved, (f) fan-shape (Reprinted with permission from ref. [80]. Copyright 2008, Royal 

Society of Chemistry) and (g) grid-patterned (Reprinted with permission from ref. [81]. 

Copyright 2007, John Wiley and Sons). 

1.2.5.3 Three dimensional electrospun fiber materials 

Three dimensional (3D) electrospun fiber materials assembling from 1D electrospun 

fibers possess highly porous structures and have attracted a lot of attention for 

applications in cellular infiltration [83], bone tissue regeneration [84], tissue 

engineering [85], electrodes in microbial fuel cells [86], and oil adsorption [87] (Figure 

1-7). The straight-forward way to make 3D fiber scaffolds can be achieved by 
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deposition of electrospun fibers for a long time and therefore form the third dimension 

in “Z” direction. Cai et al. fabricated 3D electrospun fiber scaffold for cell culture based 

on the principle of electrostatic repulsion [88]. Compared with the 2D scaffold, the 3D 

structure led to an improvement of nearly 5 times in cell proliferation after 7 days of 

cell culture [88]. 3D shaped nanofiber materials could also be fabricated by depositing 

the nanofibers on 3D with/without interconnected tubular structures [89]. 3D fibrous 

tubes with different sizes, shapes, structures and patterns were prepared by using this 

method, and the tubes are expected to be used in biomedical and industrial 

applications [89]. Simonet et al. used ice crystals as a removable void template and 

successfully prepared 3D ultraporous polymer meshes, which showed four times 

higher porosity when compared to the conventional fiber electrospinning [90]. Salts 

(NaCl [91] and NaOH [92]) were also used as removable templates used in 

electrospinning for the preparation of 3D porous scaffolds. Chen et al. presented 3D 

porous electrospun carbon fiber nonwovens for microbial fuel cell applications, which 

was produced by a solution-blown assisted electrospinning technology [86]. Our group 

recently developed the self-assembly of the short electrospun fibers to form ultralight 

sponges, which show low density, high porosity and superior compression properties 

[70]. The obtained sponges exhibit various applications, such as uptake of hydrophobic 

liquids and cell culture [70]. Ding’s group developed 3D nanofibrous composite 

aerogels with cellular structures, highly compression strength and ultralow density [71, 

72]. The obtained aerogels showed wide applications, such as thermal insulation, 

sound absorption, emulsion separation, electric conduction and oil/water separation 

[71, 72]. Recently, Xu et al. reported an electrospun PCL 3D nanofibrous scaffold with 

interconnected and hierarchically structured pores by self-agglomeration followed by 

freeze-drying and showed its application in bone tissue engineering [93].  
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Figure 1-7. 3D electrospun fibrous porous materials. (a) zein electrospun scaffolds  

(Reprinted with permission from ref. [88]. Open access, American Chemical Society), 

(b) 3D fibrous tubes with different shapes (Reprinted with permission from ref. [89]. 

Copyright 2008, American Chemical Society), (c) poly(lactic  acid-co-glycolic  acid) 

(PLGA) (Reprinted with permission from ref. [90]. Copyright 2007, John Wiley and 

Sons), (d) hyaluronic acid/collagen/salt hybrid scaffold (Reprinted with permission 

from ref. [92]. Copyright 2008, Elsevier), (e) PLLA (Reprinted with permission from ref. 

[91]. Copyright 2011, Elsevier), (f) carbon (Reprinted with permission from ref. [86]. 

Copyright 2011, Royal Society of Chemistry), (g) cross-linked poly(MA-co-MMA-co-ABP) 

(Reprinted with permission from ref. [70]. Open acess, John Wiley and Sons), (h) 

PAN/SiO2 (Reprinted with permission from ref. [71]. Copyright 2014, Nature Publishing 

Group) and (i) PCL (Reprinted with permission from ref. [93]. Copyright 2015, John 

Wiley and Sons). 

1.2.6 Applications of electrospun materials 

1.2.6.1 Filtration and separation 

Air pollution is one of the most serious problems in many cities, which trigger the fast 

development of filter media. In recently years, electrospun fibrous porous membranes 

have gained great interest as filter media due to their fascinating characteristics like 

high surface-area-to-volume ratio, high porosity, tunable pore structure and pore size, 

light weight, easy-tailored functionalization, and many others [94, 95]. Two main kinds 
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of electrospun materials have been reported as efficient air filter media for fine 

particle filtration. The first class is self-standing electrospun polymeric fibrous 

membranes. Polyamide (PA) [96-98], polyacrylonitrile (PAN) [99], polyurethane (PU) 

[100], polyethylene oxide (PEO) [101, 102], and polycarbonate (PC) [103], were 

successfully processed into electrospun fibrous membranes and served as air filter 

media. Kim et al. investigated the effect of electrospun fiber diameter in the ranges of 

100-730 nm on the filtration efficiency and found that the filter with fiber mean 

diameter of 100 nm had a much lower pressure drop performance and the highest 

filtration efficiency of over 99.98% with tested particle size of 0.02-1.0 µm (Figure 1-8) 

[98].  

 

Figure 1-8. Electrospun PA6 nanofiber membranes with different mean fiber diameters 

of (a) 100 nm, (b) 430 nm and (c) 730 nm, and their pressure drop (d) and filtration 

efficiency (e) performance for filtration application (Reprinted with permission from 

ref. [98]. Copyright 2008, Springer). 

The second class is the hybrid fibrous membrane. Zhang et al. found that multiple thin 

layered nanofiber membranes had a better filter quality factor than the single thick 

layer nanofiber membrane [104]. Wang et al. fabricated a multilevel structured fibrous 

composite mat of silica nanoparticles and electrospun PAN nanofibers [105]. The 

filtration efficiency could be tunable by changing the composition of the precursor 

solutions and the layer-by-layer stacking structure[105]. Another interesting work by 

the same group (Wang et al.) presented a two-tier composite structure with one 

nanofiber/net top layer and a conventional nonwoven microfibrous support layer for 

high filtration efficiency with a low pressure drop [106]. Recently, Liu et al. reported 
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an impressive work for high efficiency PM2.5 (Particulate matter with particle size 

below 2.5 μm) capture [107]. They fabricated transparent air filters by electrospinning 

one very thin layer of ultrafine polymeric nanofibers on fiber glass wire mesh and 

found that these transparent composite filters could achieve high air flow filtration 

with > 95.00% removal of PM2.5 under extreme hazardous air-quality conditions [107].  

 

Figure 1-9. Schematics of preparation of 3D PA66 nanofiber/nets on nonwoven PP 

scaffold and their filtration process (a-c) (Reprinted with permission from ref. [106]. 

Copyright 2011,  Royal Society of Chemistry), transparent polymeric nanofibers on 

fiber glass wire mesh with different optical transparency of 85, 75, 55, 30 and 10% (d) 

and optical microscopy images on in-situ study of PM capture at different time (e) 

(Reprinted with permission from ref. [107]. Copyright 2015, Nature Publishing Group). 

Water pollution is another serious problem in the world. Many efforts have been 

devoted to develop the liquid filtration to remove the undesired suspended particles, 

ions, and bacteria. (Figure 1-10). Gopal et al. published a series of works regarding the 

particle filtration from water by electrospun fibrous membranes from different 

polymers, like PS [108], PSA [109], PVDF [108]. Wang et al. fabricated an electrospun 

PAN/polyethylene terephthalate (PET) composite filter, which showed excellent 

filtration for micro-particles [110]. Electrospun PA6 [111], carbon [112, 113] and PAN 
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[110, 114] nanofiber membranes were also reported for efficient particle filtration 

from water. Interesting application on E. coli bacteria filtration by electrospun fiber 

membranes was also reported [115]. Another pollutant source are the heavy metal 

ions in water. Electrospun fibrous membranes could be applied to absorb the metal 

ions in water. Haider and Park electrospun chitosan nanofiber mats for Cu(II) and Pb(II) 

adsorption [116]. Compared to the Cu(II) adsorption by chitosan microsphere and 

plain chitosan, electrospun chitosan nanofibers showed 6 and 11 times higher 

adsorption capacity. Similar removal of heavy metal ions, like Cu(II), Hg(II), Cd(II), and 

Ag(I), was also achieved by electrospun cellulose acetate, PCL and PA6 [117-119]. 

 

Figure 1-10. Electrospun PVDF fiber membrane for particle separation (a) (Reprinted 

with permission from ref. [108]. Copyright 2006, Elsevier), grain proteins/PEO 

composite fiber membrane for bacteria filtration (b) (Reprinted with permission from 

ref. [115]. Copyright 2016, Royal Society of Chemistry) and cellulose acetate 

electrospun fibers mat before (c) and after (d) Cu(II) adsorption (Reprinted with 

permission from ref. [118]. Copyright 2011, Elsevier). 

Oil contamination is another pollution sources of water. In the last decades, separation 

oil from water has become a hot topic, which is important for recycling the oil and 

cleaning the water. Many groups paid their attentions to use electrospun fibrous 

membranes for oil/water separation. Shang et al. coated electrospun cellulose acetate 

nanofibers with a functionalized layer of SiO2 nanoparticles to get a superhydrophobic-

superoleophilic membrane [120]. The membranes showed opportunities to increase 

the oil/water separation efficiency. Lee et al. successfully fabricated 

superhydrophobic-superoleophilic membrane for oil/water separation by simply 

depositing electrospun PS nanofibers onto a stainless steel mesh (Figure 1-11) [121]. 

Tai et al. successfully applied electrospun carbon-silica nanofibrous membranes for 

ultrafast gravity-triggered oil/water separation [122]. In addition, many others 
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electrospun fibrous membranes, like polysulfone and polysulfone-amorphous SiO2 

nanoparticle composites [123, 124], PVDF [125], TPU [126], polyvinyl 

chloride/polystyrene [127], core-shell polystyrene/polyurethane [128], and 

poly(styrene-butyl acrylate) [129], have been reported as powerful oil/water 

separators.  

 

Figure 1-11. A schematic showing the electrospun membrane for oil/water separation. 

(a) Electrospinning process, (b) a schematic of separation process, (c) SEM images with 

high and low magnifications, (d) A photograph showing superoleophilic and 

superhydrophobic PS nanofiber membrane, and (e) The real scale as-prepared PS 

nanofiber membrane attached to the stainless mesh, whose size is compared with a 

coin (Reprinted with permission from ref. [121]. Copyright 2013, American Chemical 

Society). 

Compared with the conventional nonwovens, electrospun fiber membranes showed 

smaller pore size, higher porosity and air permeability, which make them excellent 

candidates as battery separators [130]. Until now, many kinds of fiber materials 

processed by electrospinning, like polyimide [131], PAN [132], cellulose [133], PET 

[134], and PVDF [135], have been used for battery separators and showed outstanding 

battery performances, like high-rate capability, long cycle life and large capacity.  

Besides the above mentioned filtrations and separations, electrospun fibrous 

membranes also show some other interesting separation applications. Strain et al. 

used recycled PET bottles for electrospinning and applied the tough fibrous PET 

membranes for smoke filtration [136]. The membranes with 0.4 µm thick fibers 

showed the best smoke filtration efficiency (Figure 1-12). Recently, Sevam and 

Nallathambi applied electrospun silver nanoparticle (AgNP) incorporated PAN 
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nanofibrous membranes for bacterial filtration and anti-bacteria applications [137]. 

The novel filter showed 99% bacterial filtration efficiency and good anti-bacteria 

activity, which renders it a good candidate for protective mask applications. Similar 

research was done by Ma et al. [138]. They prepared surface functionalized PAN 

electrospun nanofibers as microfiltration membrane systems for effective removal of 

bacteria and viruses from contaminated water. 

 

Figure 1-12. Electrospun PET nanofibers from recycled PET bottles (a), fiber mats 

before (b) and after (c) smoke filtration testing (1.0 mm diameter), IR-spectroscopy (e) 

of a clean fiber mat compared to that of smoke-exposed fiber mats with different fiber 

diameters (Reprinted with permission from ref. [136]. Open access, Royal Society of 

Chemistry). 

1.2.6.2 Scaffolds for tissue engineering 

Nanofiber scaffolds prepared by electrospinning consist of entangled polymer 

ultrathin fibers, which are packed into 3D materials. They have characteristics like high 

porosity, low density, suitable mechanical performance, and bidegradability, making 

them good candicates for tissue engineering application. Generally, the choice of 

materials, fiber diameters, fiber alignment, porosity and surface properties play a key 

role for the microscopic and macroscopic properties of electrospun fibrous scaffolds 

for tissue engineering. The most important characteristic is that the materials should 

be biocompatible. In previous reports, many biocompatible materials have been 

electrospun into fibrous scaffolds, such as PLLA [139, 140], silk [141, 142], PCL [143, 
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144], PLGA [145, 146], and collagen [147]. Fiber geometry including fiber diameter, 

fiber alignment, pore size and porosity can be controlled by electrospinning 

parameters. Many researchers studied the effect of fiber geometry on the cell 

proliferation [148-153]. Badami et al. prepared PLA fibrous substrates and found that 

the fiber diameter significantly influenced the spreading and proliferation of 

osteoblastic cells [152]. Lowery et al. found that the pore size of electrospun PCL 

scaffolds had effect on the growth of cells [148]. A faster cell growth rate was found 

when using the scaffolds with peak pore size larger than 6 μm and the cells began to 

align to single fibers instead of multiple fibers when changing the peak pore diameter 

from 12 to 23 μm. Recently, Zhong et al. found that aligned electrospun fibrous 

scaffolds could maintain cell shapes (Figure 1-13 d-f) but the random nanofibrous 

scaffolds could not during the cell culture process (Figure 1-13 a-c) [153].  

  

Figure 1-13. Effect of electrospun fiber alignment on the grow of cells (Reprinted with 

permission from ref. [153]. Copyright 2015, Elsevier). 

Although many kinds of biocompatible polymers have been electrospun into fibrous 

scaffolds, there are still challenges for large-scale application in tissue engineering. 

One challenge is to develop the electrospun scaffolds with suitable mechanical 

properties. The possible strategies could either invole incorproating biacompatible 

reinforcements into the fibers, like cellulose nanocrystals [154, 155], montmorillonite 

[156], CNTs [157], and graphenes [158], or coating other kinds of polymers with better 

mechanical performance, such as poly(p-xylylene) (PPX). Another challenge is to 

prepare the fibrous scaffolds by green electrospinning. Until now, most of the scaffolds 

in the previous reports involved using organic solvents, which are harmful to the 

environment and toxcic to human bodies. One of the solutions could be to develop 

water soluble polymers for electrospinning, which could be post-treated into water 

insoluble materials. Another solution could be to prepare the fibrous scaffolds by 



INTRODUCTION 

38 
 

emulsion electrospinning [159, 160]. The polymeric particles were embedded into a 

water soluble polymer matrix and later the matrix was removed by water treatment 

or a sintering process.  

1.2.6.3 Catalyst  

Electrospun ultrafine nanofibers have attracted a lot of attention in catalyst application 

as efficient catalysts or catalyst supports due to their high porosity and reusability. 

Generally, three main kinds of catalysts could be prepared by electrospinning. The first 

class is electrospun carbon nanofibers (ECNFs) without any additives, which are usually 

used as an electrocatalyst and low-cost alternative to platinum in batteries [161-163]. 

Chen et al. prepared 3D ECNFs as electrodes for bioelectrochemical systems such as 

microbial fuel cells or microbial electrolysis cells (Figure 1-14a) [162]. Similar research 

was also done by Ghasemi et al., who successfully applied activated ECNFs as an 

alternative cathode catalyst to platinum in microbial fuel cells [163]. Joshi et al. used 

ECNFs as an alternative to platinum for triiodide reduction in dye-sensitized solar cells 

[161]. The obtained ECNFs counter electrodes showed a large capacitance and fast 

reaction rates for triiodide reduction. The second class are electrospun carbon 

nanofiber supported catalysts. In this case, the catalysts can be deposited on the 

surface of ECNFs, blended with ECNFs or located in-between ECNFs. Li et al. deposited 

platinum clusters on ECNFs by cyclic voltammetry (CV) method for catalyzing methanol 

oxidation and revealed that the special structure of fibrous carbon nanofiber mats 

could efficiently improve the catalyst performance (Figure 1-14b) [164]. Many kinds of 

metal catalyst precursor can be incorporated into the precursor of ECNFs and after 

annealing, the catalyst precursors are converted into catalysts supported in ECNFs. 

ECNFs supported silver [165], gold [166], CNTs [167], Co/CeO2 [168], TiO2 [169], and Pt 

[170], have been successfully prepared and applied as catalysts. The third class of 

catalysts is the nanofibers self-assembling from the metal particles by a sintering 

process. These catalyst fibers were prepared by electrospinning the blend of the 

precursor of catalyst and another sacrificial polymer like PEO, PVP, and PVA. Wang et 

al. fabricated Bi2O3 nanofibers with diameter of 70-200 nm as photocatalysts by 

electrospinning the precursor blends of PAN and bismuth nitrate followed by 

calcination at 500-600 °C (Figure 1-14c) [171]. The similar strategy is also applied to 

prepare bimetallic nanofibers for catalisation, like PtRh/PtRu [172], Cu-doped cerium 

oxide [173], CeO2-ZnO [174], Erbium-TiO2 [175], Fe-Pt [176], Pt-Co [177], Pt-Au [178], 

and many more.  
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Figure 1-14. (a) ECNF supported electroactive biofilm for microbial fuel cells (Reprinted 

with permission from ref. [162]. Copyright 2011, Royal Society of Chemistry), (b) 

platinum clusters deposited on ECNFs for catalyzing methanol oxidation (Reprinted 

with permission from ref. [164]. Copyright 2008, Elsevier) and (c) electrospun Bi2O3 

fibers for photodegradation of thevorganic pollutant Rhodamine B (Reprinted with 

permission from ref. [171]. Copyright 2009, Elsevier). 

1.2.6.4 Drug delivery 

Due to the high porosity, high specific surface area to volume ratio and highly tailored 

properties, electrospun nanofibers can act as drug carrier for drug delivery systems 

[179-181]. Numerous drugs such as anti-cancer drugs [182-184], anti-biotics [185, 186], 

proteins/enzymes [187-190], DNA/RNA [191-194] and anti-inflammatory agents [195-

197], have been incorporated into electrospun polymeric nanofibers for drug delivery 

systems. As an efficient drug delivery system, the first important goal is to load the 

drugs into the electrospun fibers. Till now, there are several methods to load drugs 

into the fibers.  

(1) Loading the drugs by adsorption. This is a straightforward method to produce drug-

loaded fibrous systems, which provide versatile drug delivery platforms to release the 

drugs from the same fiber matrix and can avoid the exposure of drugs to the 

electrospinning process. However, this method possesses the disadvantage of burst 

release due to the open-porous system. Boelgen et al. successfully loaded the anti-

biotic ornidazole to PCL electrospun nanofiber mats by adsorption, but the system 

showed burst release (80%) of the drugs in 3 h [198]. 
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(2) Loading the drugs by electrospinning the blend of drugs and the polymer solutions. 

This method has been adopted by most of the researchers, as it provides more 

possibilities to control the drug release by controlling the properties of drugs and 

polymer matrix. The affinities among the drugs, polymer fiber matrix and the delivery 

environment play an important role on the drug delivery. For example, Zeng et al. 

studied the influence of the solubility and compatibility of anti-cancer drugs in the 

drug/polymers/solvents system on the loading of drugs in the PLLA electrospun fibers 

and the release behavior [199]. A burst release was observed when the dispersion of 

the acid-based drugs in PLLA was electrospun, which was attributed to the fast wash-

off of the drugs from the surface of the fibers whereas for the base-based drugs in 

PLLA solutions were used for electrospinning, a modest burst release was observed 

[199]. In addition, the polymer degradation also plays an important role on the release 

of drugs from electrospun fibers. Ranganath and Wang compared the sustained drug 

release from electrospun PLGA copolymer fibers with 85:15 and 50:50 monomer ratios 

[200]. It took more than 80 days for the drug release from the fibers and a faster 

release rate from PLGA 50:50 was observed than from PLGA 85:15 fibers, which could 

be due to the faster degradation of polyesters with higher amount of glycolic acid 

component [200]. 

(3) Loading the drugs by coaxial electrospinning. This method can protect the drug 

during electrospinning, provide the possibility to load non-spinnable drugs as core 

encapsulated by the shell and avoid the initial burst release due to the barrier of the 

shell. For instance, Zhang et al. successfully decreased the initial burst of FITC-labeled 

BSA by coaxial electrospinning where the core solution of PCL was incorporated with 

FITC-labeled BSA and the shell solution of PEG, when comparing with the traditional 

electrospinning from the blends of PCL and PEG with addition of FITC-labeled BSA 

[201].  

The above electrospun nanofiber delivery systems only show a temporary and spatial 

control of the drugs by controlling the fiber diameter, fiber porosity, drug dissolution 

and diffusion, and polymer degradation. In the future, efforts to develop smart drug 

release systems with activation and feedbacks from electrospun fibers to initiate the 

release of drugs over time are highly required. The successful smart drug delivery 

systems might be derived from smart electrospun nanofibers which could be 

stimulated by light, temperature, pH, electrical field or magnetic field [202].  

Another important issue for drug release from electrospun fibers is their drug loading 
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capacity. Until now, due to the 2D characteristics of the mat, the drug loading capacity 

is not too high, which requests an advanced hierarchical structure of nanofibers as 

support for drug loading. This structures made of electrospun nanofibers with high 

drug loading capacity can be achieved by the nanofiber sponges with super high 

porosity. In our recently report, the sponges prepared from electrospun nanofibers 

shows a super high porosity of 99.6%, which would be a good candidate as drug 

loading support for drug release [70]. 

1.3 Ultralight porous 3D materials 

Recently ultralight porous 3D materials have attracted a lot of attention because of 

their 3D connected networks, high porosity, high flexibility and elasticity, and 

abundant material resources. These materials have been widely applied as electrode 

materials in the energy and sensor area, absorber materials including absorbing both 

gases and liquids, insulating materials (thermal, sound and electromagnetism), tissue 

engineering, oil/water separation, and many more [203-206]. In the published reports, 

three words, “sponge”, “aerogel” and “foam” are usually used to describe these 

ultralight porous 3D materials. Depending on the material sources, ultralight porous 

3D materials can be divided into four main classifications, including carbon-based, 

polymer-based, inorganic, and hybrid ultralight porous materials. In the following 

sections, an introduction to these four classes of 3D material and their applications are 

briefly described.  

1.3.1 Carbon-based ultralight porous 3D materials 

Carbon materials are one class of the most attractive materials in last several decades. 

They includes carbon black, CNTs, graphenes and carbon fibers. Among them, CNTs, 

graphene and carbon fibers are famous high performance carbon materials with 

superior properties of electrical conductivity, thermal conductivity and excellent 

mechanical properties. In last few years, many researcher have devoted their efforts 

to develop CNT, graphene and CNT/graphene hybrid based ultralight porous 3D 

materials and have successfully applied them in adsorption (liquid, gas, heavy ions), 

capacitor, battery, catalyst, insulation, and many more, due to their high porosity 

(>95%), low density (<10 mg/cm3), high specific surface area and high electrical 

conductivity (Figure 1-15) [204, 205, 207-211]. Carbon fibers are also high 

performance carbon materials. However, there are countable reports regarding the 
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ultralight porous 3D materials of carbon fibers. Bi et al. prepared carbon fiber aerogels 

from raw cotton and used it as efficient and recyclable sorbent for oils and organic 

solvents [212]. The obtained carbon fiber aerogel possesses a relatively low density of 

12 mg/cm3, but high sorption capacity of 50-192 g/g. Compared to the ultralow density 

of CNT and graphene based aerogel/sponge, the relatively high density in Bi’s report 

could be attributed to the large fiber diameter in the range of 15-20 µm [212]. Another 

report on using carbon nanofiber to prepare carbon nanofiber aerogels was from Yu’s 

group [213]. The carbon nanofiber aerogel by sol-gel process has a self-assembled, 

interconnected, 3D network structure with low density (10 mg/cm3), high porosity 

(>99%), excellent mechanical stability, high hydrophobicity and superoleophilicity 

[213]. Electrospinning is an effective method to produce carbon nanofibers with 

diameters in the range of tens of nanometers to several micrometers [17, 162, 214, 

215]. Electrospun carbon nanofibers could be promising candidates for the fabrication 

of ultralight porous materials in the future. 

 

Figure 1-15. A monolithic CNT sponge with a bulk density of 7.5 mg/cm3 (a), cross-

sectional SEM image of (a) showing a porous morphology and overlapped CNT (b), 

illustration of the sponge consisting of CNT piles (black lines) as the skeleton and open 

pores (c), images of the fabrication process of the graphene aerogel (d), an image of 

an original aerogel (left) and a flame treated aerogel (right) sitting on a green 

bristlegrass (e), SEM image of the cellulose fibers in raw cotton (f), SEM image of the 

carbon fibers in carbon fiber aerogel (g), photograph of a water droplet supported on 

a carbon fiber aerogel (h) and mirror-reflection can be observed when a carbon fiber 

aerogel was immersed into water, which is convincing evidence for the hydrophobicity 
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of the TCF aerogel (i). (a-c) (Reprinted with permission from ref. [207]. Copyright 2009, 

John Wiley and Sons), (d, e) (Reprinted with permission from ref. [211]. Copyright 2013, 

Royal Society of Chemistry) and (f-i) (Reprinted with permission from ref. [212]. 

Copyright 2013, John Wiley and Sons). 

1.3.2 Polymer-based ultralight porous 3D materials 

Polymers have their own special characteristic of low density with comparison to the 

inorganic materials. Therefore, they can be the natural option for preparing ultralight 

porous 3D materials. One main class of polymer materials for polymer-based ultralight 

3D materials is cellulose [216-218]. Zhang et al. demonstrated a compressed cross-

linked native cellulose nano/micro fibril cellulose aerogel with fast recovery properties 

(Figure 1-16a) [219]. Carlsson et al. presented an electroactive nanofibrillated 

cellulose aerogel composite, which showed tunable structure and electrochemical 

properties [220]. Liebnar et al. showed an ultralight cellulose aerogel with density 

range from 0.05 to 0.26 g/cm3 [221]. In Granstrom’s report, water repellent cellulose 

aerogels were prepared from cellulose aerogel with a chemical esterification method 

[222]. Similar hydrophobic cellulose aerogel for oil absorption was also shown in many 

other reports [223-228].  

Besides of cellulose, other polymers were also found to be used as materials for the 

preparation of ultralight porous 3D materials. Lorjai et al. made polybenzoxazine-

based organic aerogel by thermal curing reaction of a benzoxazine monomer with 

xylene [229]. However, because of the high concentrations of benzoxazine in the 

solution (20 and 40 wt%), the resulting aerogels showed high densities of 260 and 590 

mg/cm3, respectively. Gioia et al. reported a porous chitosan aerogel for catalyst 

application [230]. In another report, a polysaccharide-based aerogel was fabricated for 

oral drug delivery [231]. Song et al. presented a ultra-flyweight compressible 

hydrophobic poly(m-phenylenediamine) aerogel for selective absorption (Figure 1-

16b) [232]. The aerogel exhibited ultralow density of 0.8 mg/cm3, large surface area of 

338 m2/g, low thermal conductivity of 0.0125W/m/K and excellent mechanical 

properties [232]. Cardea et al. prepared PVDF aerogels as drug delivery systems [233]. 

A homogenous drug distribution in the aerogel, a quasi-constant release rate and no 

burst release effect were achieved by the aerogels (Figure 1-16c) [233]. Lee et al. 

reported a lightweight polydicyclopentadiene-based aerogels [234]. The aerogel with 

high porosity and low thermal conductivity showed promising applications for thermal 

and acoustic insulation [234].  
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Polymers are good candidates to be processed into nanofibers by electrospinning and 

the electrospun fibers recently are reported to be used for the preparation of 3D 

porous materials. Ding’s group successfully fabricated ultralight electrospun 

nanofiber-assembled aerogels with superelasticity and showed multifunctionalities 

like ultralow density, rapid mechanical recovery, efficient energy absorption, thermal 

insulation, sound absorption and oil/water separation [71, 72]. Fong’s group firstly 

reported electrospun PCL 3D nanofibrous scaffolds [93]. The scaffolds showed very 

high porosity of about 96.4% and were successfully applied in bone tissue engineering 

[93]. Our group also fabricated ultralight polymer sponges by freeze-drying dispersions 

of short electrospun fibers [70]. The sponges show extremely low density of smaller 

than 3 mg/cm3, softness with reversible compression, hydrophobicity with excellent 

uptake for hydrophobic liquids, and successfully applied for cell culturing (Figure 1-

16d) [70]. 

 

Figure 1-16. (a) Compressed cross-linked native cellulose nano/micro fibriliar cellulose 

aerogels with fast recovery properties in water (Reprinted with permission from ref. 

[219]. Copyright 2012, Royal Society of Chemistry), (b) ultra-flyweight hydrophobic 

poly(m-phenylenediamine) aerogel with compression recovery for 50 cycles 

(Reprinted with permission from ref. [232]. Copyright 2014, Royal Society of 
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Chemistry), (c) PVDF sponges loaded with amoxicillin for drug release (Reprinted with 

permission from ref. [233]. Copyright 2011, Elsevier), and (d) electrospun polymer 

nanofibers for cell culture (green: live cells; red: dead cells) (Reprinted with permission 

from ref. [70]. Open access, John Wiley and Sons). 

1.3.3 Inorganic ultralight porous 3D materials 

Compared to polymers, inorganic materials possess exceptional properties, such as 

superior thermal resistance, chemical resistance, ultralow permittivity dielectrics and 

high E modulus. Until now, a lot of inorganic materials have been processed into 

ultralight porous 3D materials. Among these materials, silica aerogels are the most 

studied ultralight porous 3D materials [203, 235-237]. They have highly abundant 

sources and are highly porous with a 3D silica connected skeleton. This characteristic 

make silica aerogels broadly applicable as absorption materials and encapsulation 

supporters. Cui et al. used silica aerogels to adsorb nitrobenzene from wastewater 

[238] while Simirnova et al. applied them for the adsorption and release of ketoprofen 

[239, 240].  

 

Figure 1-17. Loading (a) and release (b) profiles of ketoprofen from hydrophilic and 

hydrophobic silica aerogels of different densities in 0.1N HCl at 37 oC (Reprinted with 
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permission from ref. [240]. Copyright 2004, Elsevier). 

Silica aerogels possess very low thermal conductivity, which is even much lower than 

that of air. Thus, they are considered as the best thermal insulating materials [241, 

242]. Although silica aerogels are highly porous and tend to scatter the transmitted 

light, they can be optically transparent with high light transmittance, which make them 

good candidates for transparent thermal insulating components, such as windows 

[243, 244]. Recently, Tabata et al. presented hydrophobic transparent silica aerogel 

tiles with large area of 18 × 18 × 2 cm3 and high refractive index of about 1.05 for 

application as Cherenkov radiators (Figure 18) [245]. The high porosity, highly 

interconnected network and the full-filling of air make silica aerogels a good choice for 

applications as sound insulating materials [246, 247]. In silica aerogels, the 

propagation of sound is attenuated both in amplitude and velocity from the air inside 

the aerogels to the aerogel solid network [246, 247]. Another characteristic of silica 

aerogels is their low dielectric constant in the range of 1-2 [248-250]. Thus, silica 

aerogels can be used as electrical insulation materials [251, 252].  

 

Figure 1-1-18. Silica aerogel sample with refractive index (n) = 1.045 and size of 18 × 

18 × 2 cm3 (a) and UV-Vis spectra of 20 mm thick aerogel tiles with n = 1.045 and n = 

1.055, respectively (b) (Reprinted with permission from ref. [245]. Copyright 2016, 

Elsevier). 

Besides of the silica aerogels, there are also many kinds of other ultralight porous 3D 

inorganic materials. Yin et al. fabricated 3D porous boron nitride foams with density 

below 10 mg/cm3, ultralow permittivity of 1.03 and excellent mechanical recovery 

(Figure 19) [253]. Jung et al. developed a facile method to produce inorganic nanowire 

aerogels in large scale and at low cost [254]. Depending on the used materials, the 

obtained aerogels can be used for catalyst or adsorption for heavy metal ions and toxic 

organic contents. Recently, Chabi et al. prepared ultralight and strong 3D SiC foams 

with low density ranging between 9 and 17 mg/cm3, superior compression strength 
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and mechanical recovery [255]. Kim et al. reported a Ni-Al aerogel catalysts, which 

showed remarkably improved activity to convert CO2 to CH4 when comparing with the 

catalyst prepared by conventional impregnation method [256]. In Le’s report, V2O5 

aerogels showed a high surface area up to 450 m2/g and a specific pore volume of 2.3 

cm3/g, which were used as reversible and high capacity hosts for lithium ion 

intercalation [257]. Similar application as intercalation host for sodium ion battery 

from V2O5 aerogels was also shown by Passerini’s group [258]. Wei et al. made 

mesoporous cobalt oxide aerogels with high specific surface areas and high porosity 

for supercapacitor application [259]. The cobalt oxide aerogel-based supercapacitor 

exhibited more than 600 F/g capacitance, onset frequencies and excellent reversibility 

and cycle stability. 

 

Figure 1-19. 3D porous boron nitride foam with thermal stability to 850 oC, mechanical 

recovery and low dielectric constant (Reprinted with permission from ref. [253]. 

Copyright 2013, American Chemical Society). 

1.3.4 Hybrid-based ultralight porous 3D materials 

Hybrids of different materials provide more choices for the preparation of ultralight 

porous 3D materials by different combinations. Hybrid-based ultralight porous 3D 

materials can be the combination of carbon-based, polymer-based and inorganic-

based materials, and the combination of different functionalities. The most studied 

hybrid-based ultralight porous 3D materials are the combination of carbon-based 

materials with other materials. Carbon-based hybrid aerogels are usually applied in 

energy storage applications. Nickel cobaltite/carbon aerogel composites [260] by 

Chien et al., cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogels 

[261] by Gao et al., and graphene/polypyrrole nanotube hybrid aerogel [262] by Ye et 

al., graphene/MnO2 composite [263] by He et al., were applied for the preparation of 

supercapacitors. Xiao et al. fabricated Fe2O3/graphene oxide aerogel for lithium 

storage application which showed excellent reversible capacity of 995 mA h/g after 50 
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cycles with the charge rate of 100 mA/g (Figure 1-20) [264]. Besides the energe storage 

application, aerogels based on MWCNTs/FeCo(Ni)/SiO2 [265], graphene/carbon [266], 

TiO2/carbon [267], Pt/carbon [268, 269], and sulfur/carbon [270], were reported for 

catalyst application. Other composite aerogels with polymers and inorganics are also 

attracted a lot of attention for different applications. For example, Williams et al. 

developed a ZnO/TiO2/SiO2 hybrid aerogel for fast electron transportation in dye-

sensitized solar cells [271]. Casu et al. studied the magnetic properties and structure 

morphology of highly porous CoFe2O4/SiO2 aerogels [272] while Kwon et al. applied 

silica aerogel doped with TiO2 powder for thermal insulation application [273]. Ding’s 

group prepared PAN/SiO2 composite aerogels from a dispersion of the corrsponding 

electrospun fibers followed by freeze-drying and sintering [71, 72]. The obtained 

composite aerogels showed ultralow density, rapid mechanical recovery and 

superhydrophobic-superoleophilic property, and presented various applications, like 

oil/water separation, thermal insulation, sound absorption, and many more [71, 72]. 

 

Figure 1-20. A schematic illustration of the preparation of 3D porous Fe2O3/graphene 

oxide hybrid aerogel (a), SEM image showing the 3D macroporous structure (b) and 

the discharge curves at the current density of 100 mA/g between 0.01 and 3.0 V in the 

first, second, fifth and 50th cycle (Reprinted with permission from ref. [264]. Copyright 

2013, American Chemical Society). 

1.3.5 Modifications on ultralight porous 3D materials 
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Ultralight porous 3D materials possess high porosity and hierarchical pore structures, 

which made them good candidates for further development to new materials. By filling 

apolar liquid in the pores of porous 3D materials, the newly formed 3D constructs 

could be considered as a spongy gel, which not only possesses the same features as a 

traditional gel (a liquid phase, a 3D network, and essentially no flow), but also shows 

its own advantages, such as the controlled structure of the 3D fibrous network, no 

shrinkage, no sensitivity to impurities on gel formation and provide a wide range of 

possibilities for functionalization. Unlikely the traditional formation of organogels via 

bottom-up approach, this spongy gel is formed by a top-down approach, where a pre-

formed 3D sponge was used to fill apolar liquid. Chemical vapor deposition (CVD) is 

another effective approach to functionalize the 3D materials. Yavari et al. modified 

nickel foams by CVD of methane for gas sensor application [274]. The modified sponge 

showed very high sensitivities to NH3 and NO2 and the response time was very shot. 

In another report, Langner et al. modified electrical insulated melamine-formaldehyde 

foam with silver and copper nanoparticles by wet-chemical metallization and the 

resultant composite foams could achieve very high electrical conductivity [275]. In 

addition, due to the high porosity and the relatively large pore sizes, the ultralight 

porous 3D materials could also be used to seed cells and bacterial for further 

applications [70, 276, 277].   
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This thesis contains four publications and one manuscript in Section 2.1 to 2.5. The 

main contents involve the preparation, properties and applications of fibrous porous 

three dimensional (3D) sponges, which are summarized in the following sections. In 

Section 2.1, initial investigations of 3D sponges from electrospun fibers on the 

fabrication, structures, mechanical properties and applications including liquid uptake 

and cell growth are performed. Section 2.2 aims at the disadvantages (poor 

mechanical properties and instability in solvents) of the sponges prepared in Section 

2.1, proposing a useful strategy by coating another polymers on the whole surface of 

the sponges to form stable junctions between the fibers to improve the compression 

properties and solvent resistance. Section 2.3 applies functionalized 3D fibrous 

sponges with immobilized Au nanoparticles (Au-sponge) as efficient catalyst support. 

The Au-sponge possesses low density and carried small amount of AuNPs, but the Au-

sponges exhibit superior high normalized rate constant versus the amount of 

immobilized AuNPs due to the large pore volume of the sponge. Section 2.4 uses the 

porous sponges as drug carrier for drug release. Due to the large pore volume of the 

sponge, the drug loading capacity by the sponge can be up to 2639 mg/g. The drug 

release from the sponge can be controlled by adjusting the thickness of an additional 

polymer coating. The last section (Section 2.5) aims the development of new spongy 

gel based on the 3D sponges from electrospun fibers. The spongy gels exhibited not 

only the same features as traditional organogels, but also possessed advantages such 

as no shrinkage, no sensitivity to impurities on gel formation, good control over the 3D 

network, and a wide range of possibilities for functionalization due to the abundant 

resources of electrospun fibers. Detailed coverage of the experimental parts, results 

and discussions can be found in Chapter 3. 
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2.1 Ultralight, soft polymer sponges by self-assembly of short 

electrospun fibers in colloidal dispersions 

 

 

This work has already been published in: 

Gaigai Duan, Shaohua Jiang, Valérie Jérôme, Joachim H Wendorff, Amir Fathi, 

Jaqueline Uhm, Volker Altstädt, Markus Herling, Josef Breu, Ruth Freitag, Seema 

Agarwal, Andreas Greiner. Ultralight, Soft Polymer Sponges by Self-Assembly of Short 

Electrospun Fibers in Colloidal Dispersions. Adv. Funct. Mater. 2015; 25(19):2850-2856. 

 

Specific contributions by authors: 

Gaigai Duan was involved in the whole work on the experimental part and wrote the 

manuscript. Dr. Shaohua Jiang have done all the SEM measurement and gave many 

suggestion and discussion on the project and manuscript. Dr. Valérie Jérôme and Prof. 

Ruth Freitag carried out the application of cell growth and wrote the corresponding 
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part of the manuscript. Amir Fathi, Jaqueline Uhm and Prof. Volker Altstädt 

contributed to the work by the performance of micro-CT analysis. Markus Herling and 

Prof. Josef Breu carried out the BET measurement on the specific surface area of the 

sponges. Prof. Seema Agarwal gave many valuable suggestions and discussion for this 

project. Prof. Andreas Greiner was in charge for the whole project. 
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Three dimensional (3D) sponges with interconnected networks possess excellent 

properties, such as large porosity, hierarchical pore structure, low density, and 

reversible compressibility. However, it is difficult to fabricate such mechanical stable 

3D sponges straightforwardly from electrospinning. In this work, we developed a novel 

procedure to prepare 3D sponges from electrospun fibers (Figure 2-1). By changing 

the concentrations of short electrospun fibers from 2.42 to 8.76 mg/mL in the 

dispersion, the sponges exhibits ultralow density in the range of 2.72-9.12 mg/cm3. A 

highly porous structure with porosity >99% is found in the fibrous sponge and the 

sponge contains hierarchical order of the pores and interconnection of the fibers, 

where big pores of 300-430 µm and small pores of 10-30 µm are observed (Figure 2-

1).   

 

Figure 2-1. Preparation of fibrous and porous sponge from short electrospun fibers 

and the porous structure of the sponge. 

The sponge exhibits reversible compressibility and bendability without any fracture 

and tunable compression properties (Figure 2-2). As the density increased from 2.72 

to 5.05 mg/cm3, the compression strength at 50% compression strain increases from 

0.3 to 1 kPa. Although the density of the sponge is low, the fibrous sponge can cover 

an important area in the Ashby plot of the compression stress vs density with 

comparison to other porous materials and is also close to the natural sponge (spongia 
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officinalis).   

 

Figure 2-2. Digital photos of the reversibly compressive and bendable sponge (a), 

compression stress-strain curves of the sponges with different densities (b), and Ashby 

plot of the compression stress vs density with comparison to other porous materials. 

(1) boron nitride, (2) carbon nanotube, (3) carbon aerogel, (4) cellulose fiber, (5) cross-

linked polystyrene, (6) polyolefin (closed cell), (7) polyethylene (closed cell), (8) 

polyimide, (9) polyethylene (50% strain), (10) silk fibroin, (11) melamine-formaldehyde 

(rigid), (12) tannin-based (rigid), (13) PDLLA/Bioglass composite, (14) latex rubber, (15) 

PAN-microspheres and fibers, (16) rigid polyurethane, (17) PVC (cross-linked), (18) 

epoxy-boroxine, (19) bio-based macroporous polymers, (20) silicon oxycarbide 

ceramic, (21) aluminum foams. 

Due to the highly porous structure, the fibrous sponges are successfully applied for 

high capacity oil adsorption and cell tissue engineering (Figure 2-3). Unlikely other 

surface wetting behavior for liquid adsorption, the porous sponges exhibits a pore 

filling mechanism for the oil adsorption so that large oil adsorption and reversible 

sorption and desorption from the sponge can be achieved (Figure 2-3a, b). 3D porous 

structure is also highly required for the growth of cells. The Jurkat cells can be survived 

in the sponge and formed cell clusters (Figure 2-3c). Further incubation of Jurkat cells 

indicates that the sponge is suitable for the cell growth into tissue even after 30 days’ 

incubation (Figure 2-3d). 
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Figure 2-3. Weight gain of liquids (mineral oil, cyclohexane and petroleum ether) (a) 

and reversible sorption and desorption of cyclohexane (b) from the porous sponge; 

Jurkat cells colonized on a sponge (c); and 3D confocal images of Jurkat cells incubation 

for 13, 20 and 30 days in the sponges (d), where green and red color indicated the live 

and dead cells. 

In conclusion, fibrous 3D sponges with ultralow density, low specific surface area and 

high pore volume are successfully prepared from dispersions of short electrospun 

fibers. The sponges have excellent mechanical compression properties and liquid 

absorption and are successfully applied for cell growth. This technique for the 

fabrication of fibrous porous sponges opens a wide door to prepare the sponges from 

various electrospun fibers and to functionalize the sponge with various functions for 

different applications. 
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2.2 Ultralight open cell polymer sponges with advanced properties 

by PPX CVD coating 

 

 

This work has already been published in: 

Gaigai Duan, Shaohua Jiang, Tobias Moss, Seema Agarwal, Andreas Greiner. Ultralight 

open cell polymer sponges with advanced properties by PPX CVD coating. Polym. Chem. 

2016; 7(15):2759-2764. 

 

Specific contributions by authors: 

Gaigai Duan performed the whole work on the experimental part and wrote the 

manuscript. Dr. Shaohua Jiang has done all the SEM measurements and corrected the 

first version of the manuscript. Tobias Moss carried out the experiment of PPX coating 

and wrote the corresponding part of the manuscript. Prof. Seema Agarwal gave many 

valuable suggestions and discussion for this project. Prof. Andreas Greiner was 

responsible for the guidance and supervision of the whole project. 
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In Section 2.1, we showed ultralight 3D fibrous sponges made from short electrospun 

fibers which possesses low density, large porosity and compressibility, and can be 

applied for oil absorption and cell tissue engineering. However, the relatively low 

compressive strength (<1 kPa) and the poor resistance of the sponges to the solvents 

greatly limited their applications in harsh environment. In this work, an additional 

polymer coating of poly(p-xylylene) (PPX), which has good adhesion to other surfaces, 

excellent chemical resistance, mechanical properties and thermal stability, is coated 

on the surface of the fibrous sponges (Figure 2-4a). Depending on the density of the 

un-coated original sponges and the coating thickness of PPX, the PPX coated sponges 

possesses tunable densities, compression properties, water contact angle and 

enhanced solvent resistance.  

 

Figure 2-4. Digital photo of PPX-coated sponge (a); SEM images of original sponge (b, 

c) with density of 5.16 mg/cm3, and the corresponding sponge after PPX coating with 

1000 nm (d, e); Typical water contact angle of sponges with different PPX coating 

thicknesses (f). 
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The original sponges shows fibrous porous structures (Figure 2-4b) and have densities 

in the range of 4.34-8.42 mg/cm3. After coating by a uniform layer of PPX with different 

coating thicknesses, the density increases in the range of 4.83-22.59 mg/cm3 and the 

fibers show core-shell structures as shown in Figure 2-4c, d, e.  

The PPX coating on the sponges leads to a significant improvement on water contact 

angle (Figure 2-4f). The PPX coated sponge shows superhydrophobicity with water 

contact angle of 156° in comparison to the 119° of the original sponges. In addition, 

depending on the sponge densities and the coating densities, the water contact angle 

can be varied in the range of 114-156°. 

 

Figure 2-5. Compression stress-strain curves of the sponges with different densities 

and different PPX coating thicknesses. The densities for the sponges without PPX 

coating of (a), (b), (c) and (d) are 4.34, 5.16, 7.43 and 8.42 mg/cm3, respectively. 

The PPX coating on the fibrous sponges leads to an obvious improvement on 

compression properties (Figure 2-5). As expected, the sponges with smaller density 

show lower compression strength at 50% compression strain. After coating with PPX 

with increased thickness, the compression strength of the sponge also increases. 

Compared to the bare sponges, the sponge coating with 100 nm and 1000 nm PPX 

shows more than 2 times and 10 times compression strength, which greatly improve 
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the mechanical stability of the sponges. The cyclic compression measurements show 

that the PPX coated sponge exhibits the same compression strength after one cycle of 

compressing and releasing.  

 

Figure 2-6. Solvent resistance of the sponges without (a) and with (b) 280 nm PPX 

coating. 

Due to the excellent solvent resistance of PPX and the stable junctions formed in-

between the fibers as cross-linking network, the sponges coated with PPX also show 

improved solvent resistance (Figure 2-6), which provides many more chances for 

different kinds of applications. The sponge without PPX coating would be disintegrated 

in the solvents after shaking. As comparison, the sponges coated with 280 nm PPX 

show excellent solvent resistance so that higher shape stability is observed even if the 

sponges are strongly shaken in the solvents.  

In conclusion, CVD method is successfully applied to modify the fibrous sponges with 

improved mechanical properties, tunable wetting properties and enhanced solvent 

resistance. This improvement on mechanical stability and solvent resistance of the 

sponges provides the opportunity to apply the sponges in harsher environment. The 

superhydrophobicity of the composite sponges would attract particular interest for 

application in oil/water separation.   
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2.3 Highly efficient reusable sponge-type catalyst carriers based on 

short electrospun fibers 

 

 

This work has already been published in: 

Gaigai Duan, Melissa Koehn-Serrano, Andreas Greiner. Highly Efficient Reusable 

Sponge-Type Catalyst Carriers Based on Short Electrospun Fibers. Macromol. Rapid 

Comm. 2017; 38: 1600511. 

Specific contributions by authors: 

Gaigai Duan performed the whole work on the experimental part and wrote the 

manuscript. Dr. Melissa Koehn-Serrano prepared the gold nanoparticles. Prof. Andreas 

Greiner was responsible for the guidance and supervision of the whole project. 
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Carriers for catalysts with highly efficiency often require large specific surface area and 

large amount of catalyst. In this work, a novel catalyst carrier with low specific surface 

area but large pore volume presents highly efficient mass transfer of educts and 

products, and can reduce the blockage of the active catalyst carrier surface by product 

adhesion. The spongy carrier is made from functionalized electrospun fibers with 

immobilized Au nanoparticles (AuNPs). Following with the same preparation 

procedure as described in section 2.1 and section 2.2, the sponges with different 

amount of AuNPs (0.29 wt%, 0.65 wt% and 3.56 wt%, Au-sponge) are prepared (Figure 

2-7).  

 

Figure 2-7. Procedure of the preparation of Au-sponges. 

As expected, the Au-sponge possesses hierarchical porous structure that the pore size 

can be as large as 400 µm (Figure 2-8a). The immobilization of AuNPs with average 

particle size of 5.7 ± 0.8 nm was confirmed by EDX spectra (Figure 2-8b) and TEM 

images (Figure 2-8c). In addition, the Au-sponge also shows excellent mechanical 

stability (Figure 2-8d). The Au-sponge3.56 shows a compression strength of 0.55 kPa 

at 50% compression. The cyclic compression test indicated that the sponge possesses 

the same compression strength after one cycle compression and release. This 

mechanical stability provides the possibility of the reuse of the Au-sponge for catalysis. 
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Figure 2-8. SEM image of Au-sponge3.56 (a), EDX spectra of AuNP-immobilized fibers 

(b), TEM images of AuNPs on the sponge (c), and cyclic compression measurement of 

Au-sponge3.56 (d). 

The catalytic performance indicates that the amount of AuNPs in the sponge plays an 

important role on the catalyst efficiency (Figure 2-9a, b). With the same reaction time 

of 32 min, Au-sponge3.56 shows a higher efficiency than Au-sponge0.29 for the 

reduction of 4-nitrophenol. The intensity of the absorption peak at 400 nm decreases 

to 0.06 and 0.22 and the color of the product become colorless and still light yellow, 

respectively. Further investigation on the normalized reaction rate constant (Knor) 

indicates that the Au-sponge possessed very high value of Knor of 10 /(min g), which 

can be achieved by very small amount of AuNPs (0.0029 mg). This value is 100% more 

efficient than that achieves by other carrier system with immobilized AuNPs. Other 

dispersed AuNPs also show comparable Knor to the Au-sponge system, but these 

systems are hardly achieving the reusability of the catalyst. In this work, the sponge 

catalyst (Au-sponge3.56) shows feasible reuse for catalysis so that after 5 cycles of 

reuse, the rate constant decreases slightly from 0.090/min to 0.072/min.  
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Figure 2-9. UV-Vis spectra to monitor the reduction of 4-nitrophenol using Au-

sponge0.29 (a) and Au-sponge3.56 (b) as catalysts, and Ashby plot of the comparison 

of normalized rate constant (Knor) versus the amount of AuNPs on the different kinds 

of supports.  

In conclusion, the Au-sponge system with very small amount of AuNPs and low specific 

surface areas possesses surprisingly high catalytic rate constants, which are in the 

range of the top values with comparison to other AuNP carrier systems with high 

specific surface area. The large pore volume of the Au-sponge can effectively improve 

the mass transfer of the educts and products in the reaction solution. It is obvious that 

the mass transfer in the reaction system also plays a very important role in catalyst 

efficiency. This Au-sponge system also opens a new direction for design of new catalyst 

carrier system with large pore volume but small specific surface area. 
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2.4 Exploration of Macroporous Polymeric Sponges As Drug Carriers 

 

 

This work has already been published in: 

Gaigai Duan, Amir Reza Bagheri, Shaohua Jiang, Jacob Golenser, Seema Agarwal, 

Andreas Greiner. Exploration of Macroporous Polymeric Sponges As Drug Carriers. 

Biomacromolecules. 2017; DOI: 10.1021/acs.biomac.7b00852. 

 

Specific contributions by authors: 

Gaigai Duan performed the whole work on the experimental part and wrote the 

manuscript. Amir Reza Bagheri helped with the drug release. Dr. Shaohua Jiang gave 

suggestions on the experiment and wrote the manuscript. Prof. Seema Agarwal and 

Prof. Jacob Golenser gave many valuable suggestions and discussion for this project. 

Prof. Andreas Greiner was responsible for the guidance and supervision of the whole 

project. 
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How to achieve a high drug loading capacity and a controlled drug release is the 

challenges for the current drug release system. In this work, a novel drug carrier of 

fibrous porous sponges is developed to solve the above problems. Due to the large 

pore volume (up to 285 cm3/g), the sponges can load superior high drug amounts of 

up to 2693 mg/g by freeze-drying (Figure 2-10), which is achieved by only using 1 vol% 

of the total pore volume of the sponges. Additional PPX coating around the whole drug 

loaded sponges (Figure 2-10) is used to realize the controllable drug release.  

 

Figure 2-10. Procedure of the preparation of drug-loaded sponge. 

The as-prepared sponges with density of 3.5 mg/cm3 (SG3.5) exhibits hierarchical 

porous structures (Figure 2-11a) and high specific pore volume, which are useful to 

load large amounts of drug. After loading with the drug, Artemisone in this work, the 

drug is distributed in-between the fibers (Figure 2-11b, c). After the coating, the whole 

sponges including the fibers and the drugs are completely covered by the PPX coating 

(Figure 2-11d, e). The EDX spectra by sulfur element mapping (Figure 2-11f) indicates 

the homogeneous distribution of the drug (Artemisone) in the sponge.  



CUMULATIVE PART OF DISSERTATION 

82 
 

 

Figure 2-11. SEM images of as-prepared sponge (3.5 mg/cm3, SG3.5) (a), sponge (6 

mg/cm3, SG6) loading with drug Artemisone (b, c), drug-loaded SG6 after coating with 

PPX thickness of 150 nm (d) and 423 nm (e), and the corresponding EDX mapping of 

Artemisone distribution in the sponges by monitoring the sulfur element (f). 

Previous reports indicated that the specific drug loading capacity increased as 

increasing the initial feeding drug concentrations (Figure 2-12). However, most of 

previous reported drug carrier systems, such as dispersion, mesoporous materials, 

metal organic frameworks (MOF), nanocarrier and hydrogel, possessed specific drug 

loading capacity below 1000 mg/g even with very high drug concentrations. In 

comparison, the porous sponges used in this work exhibits superior specific drug 

loading capacity of 1870 and 2639 mg/g, when applying the initial feeding drug 

concentration of 14 and 25 mg/mL, respectively. If considering the volume of the 

loaded drugs, only 1 vol% of the pore volume of the sponges is used, which suggests a 

larger potential increment in the drug loading capacity by the fibrous porous sponges.  
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Figure 2-12. Drug loading capacity of sponges with comparison to other supporters. 

The drug release from the sponge carrier is highly influenced by the density of the 

sponge and the coating thickness of the sponges (Figure 2-13). The sponges without 

PPX coating and with lower density (SG3.5) show burst drug release in the first 1 h with 

comparison to SG6, which can be due to the quicker mass transfer between the drug 

and the liquid medium. After increasing the thickness of the PPX layer, the drug release 

rate become slower and slower so that the sponges with 88, 150, 423 and 1000 nm 

PPX coating thickness release 33 wt%, 13 wt%, 7 wt%, and 1 wt% of the drug after 2 h, 

and 67 wt%, 30 wt%, 16 wt% and 2 wt% after 5 h. On the one hand, the additional PPX 

coating layer acts as an effective diffusion barrier for the drug release from inside to 

outside. On the other hand, the PPX coating increases the hydrophobicity of the 

sponges and postpones the contact between the sponge and the liquid medium.  
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Figure 2-13. Drug release profile of drug-loaded sponges with densities of 3.5 and 6 

mg/cm3 and PPX coating thicknesses of 0, 88, 150, 423 and 1000 nm. 

In conclusion, fibrous sponges with high pore volume up to 285 cm3/g are successfully 

applied as drug carrier with high drug loading capacity in the range of 1870-2639 mg/g. 

Only 1 vol% of the pore volume of the sponges is needed for drug loading, suggesting 

the promising improvement on the drug loading capacity from the sponges. 

Controllable drug release can be realized by an additional coating of PPX.  
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2.5 Spongy gels by a top-down approach from polymer fibrous 

sponges 

 

This work has been accepted by Angewandte Chemie. 

Shaohua Jiang, Gaigai Duan, Ute Kuhn, Michaela Mörl, Volker Altstädt, Alexander L. 

Yarin, Andreas Greiner. Spongy gels by a top-down approach from polymer fibrous 

sponges. Angew. Chem. 2017; DOI: 10.1002/ange.201611787. 

 

Specific contributions by authors: 

Gaigai Duan and Shaohua Jiang contributed equally in this work. Shaohua Jiang and 

Gaigai Duan carried out the experiments and wrote the manuscript. Ute Kuhn and 

Michaela Mörl carried out the rheological measurements and wrote the manuscript. 

Alexander L. Yarin applied the theory. Alexander L. Yarin, Volker Altstädt and Andreas 

Greiner directed the project and wrote the manuscript. 
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Organogels compose of a liquid organic phase within a three-dimensional, cross-linked 

network, which are formed from the self-assembly of low- or high-molecular weight 

molecules via a bottom-up approach. However, these organogels have disadvantages 

of high cost and sensitivity to impurities in conjunction with the gelation process, 

which greatly hamper their technical applications. In this work, a novel spongy gel was 

produced based on polymer fibrous sponges via a top-down approach. This spongy 

gels not only possess the same characteristics as an organogel, but also exhibit their 

own advantages, such as no shrinkage, no sensitivity to impurities on gel formation, 

good control over the 3D network, and a wide range of possibilities for 

functionalization due to the abundant resources of electrospun fibers.  

The spongy gel can be formed by filling apolar liquid into the 3D fibrous sponges made 

from electrospun fibers (Figure 2-14). It possesses the same features as an organogel, 

such as a liquid phase, a 3D network, and essentially no flow.  

 

Figure 2-14. Sponge made from electrospun fibers (a) and the spongy gel after uptake 

of mineral oil. 

Organogels show no flow but their storage modulus should larger than loss modulus. 

In this work, the spongy gels also exhibited the same rheological behavior as the 

organogels. As shown in Figure 2-15, all the curves showed the larger storage modulus 

than loss modulus in the entire measuring range. This behavior suggests a highly 

elasticity of the material, which is typical for an organogel. The frequency-dependent 

measurements at 25 and 50 °C indicate that the storage modulus is almost constant 

over the entire frequency range, which is another feature for gel behavior.  
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Figure 2-15. Dynamic oscillatory shear rheological properties of spongy gel loaded 

with ethylene glycol as functions of strain (a), temperature (b), and frenquency at 25 

(c) and 50 °C (d). 

For practical applications, the evaporation of the liquid from the spongy gel could be 

a serious issue. Therefore, the evaporation behavior of wetting (ethanol) and non-

wetting (water) liquids, the sponges with different densities (P-SG1: 16.2 mg/cm3; P-

SG2: 30.6 mg/cm3), and the methods of liquid delivery are investigated (Figure 2-16). 

The evaporation of water and ethanol from the sponges is similar and independent of 

the sponge density, but the evaporation rate greatly differed for the wetting and non-

wetting liquid. This behavior could not only be due to the different vapor pressures of 

water and ethanol. Therefore, a modified d2-law for droplet evaporation was 

developed to describe the evaporation of ethanol and water from spongy gels. In all 

of the cases, the modified d2-law fit the experimental data accurately, which ascertains 

that the liquid evaporation from the sponge could be considered as a shrinking-in-time 

blob.  
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Figure 2-16. Evaporation of water and ethanol from sponges of P-SG1 and P-SG2. 

In conclusion, highly porous sponges made from electrospun fibers have been 

successfully applied to load organic solvents to form spongy gels. These spongy gels 

possess similar features as organic gels including a liquid phase, a 3D network, no flow, 

mechanical stability, and similar rheological behavior. The modified d2-law can be 

successfully used to describe the evaporation behavior of ethanol and water from the 

spongy gels and the evaporation of both solvents could be considered as shrinking-in-

time blobs. These spongy gels could be found many applications in the future. 
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3.1 Ultralight, soft polymer sponges by self-assembly of short 

electrospun fibers in colloidal dispersions 

 

 

This is an open access article under the terms of the Creative Commons Attribution-

NonCommercial-NoDerivs License, which permits use and distribution in any medium, 

provided the original work is properly cited, the use is non-commercial and no 

modifications or adaptations are made. 

 

 

 

 

 

 

 

 

 

 

Gaigai Duan, Shaohua Jiang, Valérie Jérôme, Joachim H Wendorff, Amir Fathi, 

Jaqueline Uhm, Volker Altstädt, Markus Herling, Josef Breu, Ruth Freitag, Seema 

Agarwal, Andreas Greiner. Ultralight, Soft Polymer Sponges by Self-Assembly of 

Short Electrospun Fibers in Colloidal Dispersions. Adv. Funct. Mater. 2015; 

25(19):2850-2856. 
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Materials and methods for the synthesis of poly(MA-MMA-MABP) 

Materials 

Methyl acrylate (MA, Aldrich, 99%) and methyl methacrylate (MMA, Aldrich, 99%) 

were purified by distillation at reduced pressure. 2, 2′-Azobis (isobutyronitrile) (AIBN, 

Fluka, 98%) was recrystallized from methanol before use. Polyacrylonitrile (Mw 

150,000, polyscience Inc.), dimethyl sulfoxide (DMSO, Fisher Chemical, 99.99%), 

dimethyl formamide (DMF, Fisher Chemical, 99.99%), methanol (Aldrich, 99.8%), 

dioxane (technical grade), and acetone (technical grade) were used without further 

purification. 4-Methacryloyloxybenzophenone (MABP) was synthesized according to 

the previous work in our group1.  

Synthesis of poly(MA-MMA-MABP) 

Poly (MA-MMA-MABP) was prepared by free radical copolymerization of MA, MMA 

and MABP using AIBN as an initiator at 70 oC under nitrogen atmosphere. 8.66 ml of 

MA (96 mmol), 6.78 ml of MMA (64 mmol), 2.3408 g of MABP (8.8 mmol), 0.1466 g of 

AIBN (0.89 mmol) and 20 ml of DMSO were added to a three-necked flask. The mixture 

was reacted for 6 h. The poly (MA-MMA-MABP) was precipitated by methanol and 

dried at 50 oC in vacuum oven for 24 h. The yield was 88 % and molar mass (Mn) as 

determined by gel permeation chromatography using THF as eluting solvent was 2.43 

× 105 g/mol. 

Characterization of poly(MA-MMA-MABP) 

The 1HNMR spectra of poly (MA-MMA-MABP) was shown in Figure S1. The assignment 

of protons was indicated in the chemical structure and the spectra respectively. Both 

the structure and the spectra were in good agreement. 
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Figure S1. 1HNMR spectra of poly (MA-MMA-MABP). (Mol ratio = 6:4:0.06 calculated 

by NMR). 

The thermal properties were characterized by thermogravimetric analysis (TGA) 

(Figure S2). Thermal properties of the composites were evaluated on Mettler Toledo 

TGA/SDTA 851e at a heating rate of 10 °C/min in N2 from 25 to 800 °C. The poly (MA-

MMA-MABP) had good thermal stability with the starting decomposition temperature, 

5% and 10% weight loss temperature at about 250, 333 and 345 oC respectively. 

 

Figure S2. TGA curves of poly (MA-MMA-MABP). 

UV crosslinking of poly (MA-MMA-MABP) 
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The cross-linking led to insolubility of fibers in organic solvents. Moreover, the cross-

linking of poly(MA-MMA-MABP) could also be confirmed by ATR-IR measurement 

according to the literature (Figure S3)2-5 as MABP is a well-known photo cross-linkable 

monomer. After treating with UV light, two characteristic peaks of MABP at 1659 cm-

1 (-C(O)- stretching vibrations) and 1597cm-1 (-C=C- stretching vibrations of benzene 

ring in conjugation with -C(O)-) nearly disappeared. The UV-exposure generates 

radicals at carbonyl carbon which initiate cross-linking reaction leading to a network 

structure which was followed by disappearance of vibrations originating from 

carbonyl (-C=O) and conjugated double bonds of benzene rings (-C=C-C(O)-) in ATR-IR. 

 

Figure S3. ATR-IR spectra of poly(MA-MMA-MABP) before and after cross-linking by 

UV light. 

Table S1. Densities of sponges composed of short nanofibers with different diameters 

and concentrations in dispersions. 

Sample 

No. 

Average fiber 

diameter (nm) 

Concentration of 

nanofibers in 

dispersion (mg/mL) 

Density of sponges 

(mg/cm3) 

1a) 400-500 2.42 2.72 ± 0.02 

2b) 800-1000 2.57 3.65 ± 0.23 
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3a) 400-500 3.00 3.75 ± 0.04 

4b) 800-1000 3.58 4.41 ± 0.19 

5a) 400-500 3.74 4.63 ± 0.06 

6b) 800-1000 4.24 5.05 ± 0.13 

7a) 400-500 8.76 9.12 ± 0.17 

a) DMF was used as solvent for electrospinning; b) A mixture of DMSO, DMF and 

acetone was used for electrospinning. 

Materials and Methods for cell incubation 

Materials for cell incubation 

Plastic materials and standard chemicals were from established suppliers and used as 

received. High quality water (MilliQ) was produced by a Millipore unit. Culture media 

(RPMI 1640 with and without phenol red) and solutions (Trypsin, L-Glutamine, 

Dulbecco’s PBS1X (D-PBS)) were from PAA Laboratories GmbH, Austria. Minimum 

Essential Medium (MEM) cell culture media (with and without phenol red) and fetal 

calf serum (FCS) were from BioChrom, Germany. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-

diphenyl-2H-tetrazolium bromide (MTT) and glutardialdehyde solution (grade I, 25%) 

was from Sigma-Aldrich, Germany. Agarose was from Bioline, Germany.  

Cells and cell culture 

Jurkat cells (DMSZ number: ACC 282) were maintained in RPMI1640 culture medium, 

supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, 100 units/mL 

penicillin and 100 µg/mL streptomycin. Cells were cultivated at 37°C in a humidified 5% 

CO2 atmosphere. Jurkat cells were collected by centrifugation (200 g, 5 min) and then 

use for the described experiments. Experiments were performed in 6-well plates 

coated with agarose to immobilize the nanofiber sponges.  

Cell seeding technique 

One small piece of sterilized (UV-254nm, 5 h) ultra-light sponge was placed and 
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immobilized per well into 6-well plates coated with agarose. The sponge was wetted 

with culture medium followed by coating with FCS. 1 × 106 cells were resuspended in 

40 µL of culture medium. The cell suspension was carefully dispersed evenly on the 

top surface of the sponge. The seeded sponge was transferred into the 37°C/5% CO2 

incubator for 30 min to let the cells enter the sponge. Five hundred microliters of 

medium were then added to each well. After a further two hours of incubation, 

enough medium was slowly and carefully added along the side of the well to 

completely cover the sponge. Well plates were placed back into the 37°C/5% CO2 

incubator and the cells cultured for the indicate time. Throughout the cultivation, the 

medium was exchanged daily to supply the cells with nutrients and remove 

metabolites. 

MTT staining 

At the indicate time, the cultivated sponges were rinsed with D-PBS, placed in fresh 6-

well plates and incubated at 37°C for 2 h with 0.5 mg/mL MTT in the respective culture 

medium without phenol red to assess the spatial distribution of cells. MTT is converted 

by the mitochondria of metabolically active cells into an insoluble purple formazan salt 

and therefore allows a qualitative assessment of the cellular location within the 

sponge. For analysis, the MTT-stained sponges were vertically cross-sectioned at the 

middle of the sponge and observed with a stereo-microscope (HUND WERZLAR 

FLQ150). 

Cell viability 

Viability of the cells within the sponges was determined with the Live/Dead reduced 

biohazard viability/cytotoxicity kit (Invitrogen, Germany) that stains living cells green 

ith the highly permeable-permanent nucleic acid dye SYTO 10 and dead cells red with 

the cell-impermeant dye DEAD Red. At the indicated time, the cultivated sponges 

were rinsed with D-PBS, placed in new 6-well plates and stained according to the 

manufacturer’s instruction. For analysis, images were acquired using a confocal 

microscope (LSM 710, Carl Zeiss, Germany) at 20x ZEN 2008 software.  

Sample for SEM 

Cells spreading in the sponges was investigated through scanning electron microscopy 

(SEM). For this, the sponges were rinsed twice with D-PBS and the ingrown cells fixed 
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with 2.5% glutardialdehyde in D-PBS for 60 minutes. After washing with MilliQ water, 

dehydration was performed by slow water replacement using series of ethanol 

solutions (35%, 50%, 75%, and 95%) for 15 minutes with final dehydration in absolute 

ethanol for 15 minutes.  

Characterization of the sponges 

The densities (ρ) of the cylinder-shaped sponges were calculated by the following 

equation based on the weight (m) and the volume (V) of the sponges: 

𝜌 =
𝑚

𝑉
=

4𝑚

𝜋𝑑2ℎ
 

where d and h are the diameter and the height of the sponges, measured by the 

Vernier caliper. 

The morphologies of the sponges and cells on the sponges were characterized by SEM 

(Zeiss LEO 1530, EHT = 3 kV). Prior to scanning, the samples were sputter-coated with 

platinum of 3.0 nm thickness. 

Compression tests were carried out by a universal Zwick/Roell Z 2.5 with a 20 N load 

sensor at a compressing speed of 3 mm/min at room temperature. Cylinder-shaped 

sponge with height of 32 mm and diameter of 27 mm were used for the tests. 

Micro CT photos and three-dimensional (3D) images were scanned with Skyscan 1072 

Micro-CT (Bruker, Artselaar, Belgium). The images with 90x and 60x magnifications 

were taken by the conditions of a linear resolution of 3.11 and 4.67 μm, an accelerating 

voltage of 63 and 31kV, and tube current of 162 and 178 μA, respectively. Projection 

images were acquired over 180° at angular increments of 0.23° with an exposure time 

of 1.0 seconds per frame averaged over four frames. 3D images were reconstructed 

using the reconstruction software provided by the manufacturer (NRecon Version 

1.6.4.1). 

The specific surface area of the sponges was performed on Quantachrome Autosorb 

1. Prior to measurement, the samples were dried 24 h at 100 °C in high vacuum. 

Physisorption of Argon measurements were done at 87.35 K. The software of ASiQ 

V3.00 was used for analysis and to obtain the data of specific surface area. 
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3.2 Ultralight open cell polymer sponges with advanced properties 

by PPX CVD coating 

 

 

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 

Unported Licence. Material from this article can be used in other publications provided 

that the correct acknowledgement is given with the reproduced material and it is not 

used for commercial purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

Gaigai Duan, Shaohua Jiang, Tobias Moss, Seema Agarwal, Andreas Greiner. 

Ultralight open cell polymer sponges with advanced properties by PPX CVD coating. 

Polym. Chem. 2016; 7(15):2759-2764. 



PUBLICATIONS 

107 
 

 



PUBLICATIONS 

108 
 



PUBLICATIONS 

109 
 



PUBLICATIONS 

110 
 



PUBLICATIONS 

111 
 



PUBLICATIONS 

112 
 

 

 

 

 



PUBLICATIONS 

113 
 

Supplementary Information 

Fig. S1 showed the water contact angle of fiber mat before PPX coating was no more 

than 110°, and it has nearly 140° when coated with 280 nm PPX then water contact 

angle decreased if PPX layer become thicker. This trend was consistent with water 

contact angle of sponge before and after coating. It was easy to find that PPX is one 

kind of hydrophobic materials, and different thickness PPX coating changed the surface 

roughness of fiber. 

 

Figure S1. Water contact angle of fiber mat as a function of different thickness of PPX 

coating. 
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3.3 Highly efficient reusable sponge-type catalyst carriers based on 

short electrospun fibers 
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Materials 

2-vinyl pyridine (2-VP, 97%, Aldrich) was distilled under reduced pressure prior 

to use. Polyacrylonitrile (PAN, Mw=150,000, Polyscience Inc), 4-nitrophenol 

(≥99.5%, Aldrich), 2, 2’-azobis(4-methoxy-2.4-dimethyl valeronitrile) (V-70, 

Wako), and 4-nitrophenol (≥99%, Aldrich) were used as received. Auric acid (1 

mM) and sodium borohydride (0.15 M and 0.10 M) were prepared from 

tetrachloroaurate trihydriate (HAuCl)4 3H2O, 50% Au basis, (Aldrich) and sodium 

borohydride (≥99%, FLUKA). Poly (methylacrylate-co-methylmethacrylate-co-

4methacryloyloxybenzophenone) (poly (MA-MMA-MABP)) and 4-

methacryloyloxybenzo-phenone (MABP) was synthesized according to our 

previous report.[1] 

Polymer synthesis and electrospinning 

Poly(2VP-co-MABP) was synthesized by free radical polymerization of 2-VP (15 

ml) and MABP (1.84 g) in tetrahydrofuran (THF, 45 ml) with an initiator (V-70) 

(0.12g) at 39oC for 18 h in argon (Scheme 1). The resulting polymer solution was 

precipitated in cyclohexane. After filtration, the light yellow powder was dried 

at room temperature for 48 h. The yield was 73%. The molecular weight Mw and 

Mn was 5800 and 4600, respectively, and the amount of MABP was 9 mol% in 

poly(2VP-co-MABP) as determined by 1H NMR. 

 

Scheme S1. Synthesis of poly (2VP-co-MABP). 

The electrospinning solution was prepared by dissolution of 0.42 g of poly(2VP-

co-MABP), 1.27 g of poly (MA-MMA-MABP), and 0.21 g of PAN in a solvent 

mixture of 1.83 g of DMF, 2.00 g of DMSO, and 0.56 g of acetone. The 

electrospinning was performed by applying high voltage of 20 kV, flow rate of 



PUBLICATIONS 

126 
 

0.4 mL/h, and collecting distance of 13 cm between the two electrodes. The 

electrospun nanofiber nonwovens were collected on an aluminum foil and 

cross-linked under UV light (UV lamp 250 GS) for 5 h. 

Sponge supported AuNPs 

Nanofiber nonwovens with different amount of Au were prepared by 

controlling the mass of nanofiber nonwovens and the volume of auric acid (1 

mM) (Table S1). The nanofiber nonwovens were first wetted by ammonia water 

(25 wt%) to increase the hydrophilicity of the nanofibers. Then different 

amounts of auric acid (1 mM) were added to the nonwovens and reduced by 2 

mL of sodium borohydride (0.15 M) for 3 min. After the reduction, the mats 

supported with AuNPs were washed with water for several times in order to 

remove the residual sodium borohydride. The nanofiber nonwovens with 

AuNPs were cut into short fibers in dioxane by a mixer rotating at 5000 rpm for 

35 s and then dried by freeze-drying. 7 mg of the above short fibers with an 

average length of 650 ± 218 µm were re-dispersed in 1.40 mL of dioxane. The 

dispersions were frozen at -20oC and then freeze-dried to yield the sponges with 

different amounts of AuNPs as determined by thermogravimetric (TGA) 

analysis. The sponges were designated as Au-sponge0.29, Au-sponge0.65, and 

Au-sponge3.56, respectively with 0.29, 0.65, and 3.56 wt% AuNPs.  

Table S1. Summary of the composition of sponges. 

Sponge Fiber mat (mg) Auric acid (1 mM) (mL) Au (wt%) 

A 16.8 0.33 0.29 

B 14.0 0.56 0.65 

C 11.0 2.20 3.56 

 

Catalysis 

The performance of sponge-based nanoparticle catalyst was characterized by a 

typical reduction reaction of 4-nitrophenol. 2 ml of sodium borohydride (0.1 M) 

and 300 µl of 4-nitrophenol (3.4 mg/50 ml) were put in a 10 mm quartz cuvette 

which has a magnetic stirrer at the bottom for UV-vis measurement. The stirring 
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speed was 300 rpm. 1.0 mg of the above sponges with different AuNP loadings 

were put in the holder for the sponges. At different time intervals, the reaction 

progress was monitored by UV-vis spectroscopy. 

Characterization 

The molecular weight of poly (2VP-MABP) was measured by gel permeation 

chromatography (GPC) using THF as eluent and the amounts of MABP in the 

polymer were calculated from 1H NMR (Bruker 300 MHz NMR) with deuterated 

chloroform  as solvent. A scanning electron microscope (SEM, Zeiss Leo 1530), 

equipped with an EDX detector, and a transmission electron microscope (TEM, 

Zeiss LEO 922 OMEGA) were used to observe the morphology of sponge and 

AuNPs. Thermogravimetric analysis (TGA) was performed on a Netzsch TG 209 

F1Libra under N2 with a heating rate of 10oC / min from 25 to 800oC. The weight 

of the samples was measured by OHAUS Discovery balance with a readability of 

0.01 mg. Time-dependent reduction of 4-nitrophenol was performed on a UV-

vis spectrometer (V-630, JASCO) with a scanning range of 550-250 nm. 

 

Figure S1. Rate constant values (k) of the reduction in five cycles using Au-sponge3.56 

as catalyst. 
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3.4 Exploration of Macroporous Polymeric Sponges As Drug Carriers 
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3.5 Spongy gels by a top-down approach from polymer fibrous 

sponges 
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Experimental Section 

Preparation of the P-SG  

The PPX coated fiber sponges (P-SG) were prepared according to our previous 

report.[1] 13.5 mL of methyl methacrylate (MMA, Aldrich, 99%), 17.3 mL of methyl 

acrylate (MA, Aldrich, 99%), 4.6810 g of 4-methacryloyloxybenzophenone (MABP, 

synthesized according to our previous work[2]) and 0.2930 g of 2, 2’-Azobis 

(isobutyronitrile) (AIBN, Fluka, 98%, purified by recrystallized from methanol) were 

reacted in DMSO at 70 °C for 5 hours. After that, the copolymer poly(MA-co-MMA-

MABP) was precipitated by methanol and dried at 40 °C for 2 days in vacuum oven. 

The solution for electrospinning was prepared by dissolving 26.20 g of poly(MA-co-

MMA-MABP) solution (20 wt%) in dimethyl sulfoxide (DMSO, Fisher Chemical, 

99.99%), 2 g of PAN solution (13.2 wt%) in dimethyl formamide (DMF, Fisher Chemical, 

99.99%) and 2.68 g of acetone. During electrospinning, a high voltage of 9 kV, a flow 

rate of 1.5 ml h-1 and a humidity of 40-60% were applied. The electrospun fibers were 

collected by an alumina foil and dried in vacuum oven at 40 °C for 24 h. The obtained 

fibers were firstly cross-linked by UV light (UV lamp 250GS) with a distance of 15 cm 

for 5 h and then processed into short fiber dispersion with concentration of 7 and 14 

mg mL-1 in dioxane, respectively by a razor blade at a rotation of 5000 rpm for 45 s. 

100 mL of the dispersions (7 and 14 mg mL-1) were filled in cylindrical glass tubes and 

freeze-dried at 0.03 mbar for 48 h. The obtained sponges were coated with PPX by 

chemical vapor deposition (CVD) of 2.20 g of [2.2]paracyclophane with procedure of 

firstly sublimation at 150 °C and then pyrolysis at 650 °C in pyrolysis oven of the coater 

under reduced pressure. In deposition chamber, the pyrolysed monomer was formed 

a PPX film on the surface of the fibers of the sponges at 20 °C under 35 mtorr. The 

average thickness of the PPX layer was about 1.042 µm, which was measured by 

analyzing the step height with the profilometer. The densities of the above two P-SG 

made from 7 and 14 mg mL-1 dispersions were 16.2 and 30.6 mg cm-3, respectively. 

The P-SG with densities of 16.2 and 30.6 mg cm-3 were denoted as P-SG1 and P-SG2 

respectively. 

 

Evaporation of water and ethanol from P-SG 

The P-SG was cut into small pieces with a size of 0.8 cm × 0.8 cm × 1.0 cm. One small 

water/ethanol droplet was injected inside of the P-SG by a 1 ml syringe equipped with 

tiny needle (0.40 mm diameter). The initial weight and the evaporated weight of the 

liquids were measured by a highly precise analytical balance with readability of 0.01 
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mg. In another experiment, P-SG1 (0.4 cm × 0.4 cm × 0.6 cm and P-SG2 (0.4 cm × 0.5 

cm × 0.7 cm) were immersed into ethanol and completely wetted by the ethanol. The 

weight of the adsorbent ethanol and the evaporation weight of the ethanol were 

monitored by the precise analytical balance. The P-SG with small droplet or after 

immersing in the ethanol were put on a metal holder or fixed by a stainless steel wire 

as shown in Figure S1. All the measurements were carried out in a constant 

environment with temperature of 21 °C and humidity of 27%. 

 

Figure S1. Set-up for measurement of liquid evaporation from P-SG. (a) Small liquid 

droplet was injected in the P-SG and the sample was hold by a metal holder; (b) The 

P-SG was immersed in the ethanol and the sample was fixed by a stainless steel wire. 

 

Cross-section morphology and porosity of P-SG 

The cross-section morphology of the P-SG were observed by scanning electron 

microscopy (Zeiss Leo 1530). Before the measurement, the samples were sputtered 

with platinum for 120 s.  

Dynamic oscillatory shear rheological measurement  

Dynamic oscillatory shear rheological properties were measured on a MCR 702 from 

Anton Paar with plate/plate geometry. The strain sweep was carried out in a 

deformation range from 0.001 to 2% strain at a temperature of 25 °C and a frequency 

of 1 rad s-1. Frequency sweeps were carried out from 100 to 0.01 rad s-1 at 25 °C and 

50 °C with 0.2% strain. Temperature sweeps were carried out from 25 °C to 60 °C with 

a heating rate of 1 °C min-1, 0.2% strain and 1 rad s-1. All measurements were carried 

out in a nitrogen atmosphere. 
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Figure S2. Dynamic oscillatory shear rheological properties of P-SG2 in dry state as 

functions of strain (a), temperature (b), and frequency at 25 (c) and 50 °C (d). 

SI-video 

SI-video shows the wetting behavior of ethanol with P-SG. 
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4 Outlook 

Recently, more and more groups are focusing on the research of fibrous sponge from 

electrospun fibers due to the highly porous structures. The lab scale fabrication of the 

sponges is nearly perfectly completed and the current applications of the fibrous 

sponges include tissue engineering, oil/water separation, energy fields, liquid 

absorption, thermal/acoustic insulations, drug release, and catalysts. However, for this 

relatively new area of fibrous sponges from electrospun fibers, more investigations are 

highly required in different aspects. 

(1) Large scale fabrication. Recent studies always prepared the sponges by freeze-

drying in lab scale due to the production limitation of the applied freeze-drier. In 

the future, novel techniques should be developed to satisfy the industrial 

applications of the sponges, for example, changing the drying procedure, and 

applying big freeze-drier. 

(2) Solvent problems. The current technique to produce the sponges involved large 

amounts of solvents, in most cases, organic solvents. In the future, developing new 

systems with green solvents, such as water, or even without solvents to prepare 

the fibrous sponges is highly required. 

(3) Wetting behavior. The wetting behavior of the fibrous sponges is very important 

for practical applications of the sponges. Therefore, detailed investigations on the 

wetting behavior between sponges and liquid are highly interesting. 

(4) Functionalized sponges. The development of the world requires more and more 

materials with single or multi functions. In the future, how to prepare 

functionalized fibrous sponges with single or multi functions will be a big challenge 

and a hot topic for the scientists from polymer engineering and polymer chemistry.  
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