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ABSTRACT. A vector space partition of Fvq is a collection of subspaces such that every non-zero vector is contained in a
unique element. We improve a lower bound of Heden on the number of elements of the smallest occurring dimension.

1. INTRODUCTION

In this note we translate Heden [5] into geometry and find that the same theory now only takes a small fraction of the
space. Having decoded the approach using mixed perfect 1-codes, we go along the lines of [7] and improve Heden’s
result a little. In [7] analytic solutions of linear programming methods for projective linear codes or sets of points
have been applied in order to compute upper bounds for partial spreads. Interestingly enough, the very same happened
in [3], where the authors translated and improved a lower bound of Heden on the size of maximal partial line spreads.

Let q > 1 be a prime power and v a positive integer. A vector space partition P of Fv
q is a collection of subspaces

with the property that every non-zero vector is contained in a unique member of P . If P contains md subspaces of
dimension d, then P is of type kmk . . . 1m1 . We may leave out some of the cases with md = 0. If d1 is the smallest
dimension with md1

6= 0, we call md1
the length of the tail. Subspaces of dimension d are also called d-spaces.

1-spaces are called points and each k-space contains
[
k
1

]
q

:= qk−1
q−1 points. Heden’s main result is:

Theorem 1. (Theorem 1 in [5]) Let P be a vector space partition of type dl
ul . . . d2

u2d1
u1 of Fv

q , where u1, u2 > 0.

(i) If qd2−d1 does not divide u1 and if d2 < 2d1, then u1 ≥ qd1 + 1;
(ii) if qd2−d1 does not divide u1 and if d2 ≥ 2d1, then either d1 divides d2 and u1 =

[
d2

1

]
q
/
[
d1

1

]
q

or u1 > 2qd2−d1 ;
(iii) if qd2−d1 divides u1 and d2 < 2d1, then u1 ≥ qd2 − qd1 + qd2−d1 ;
(iv) if qd2−d1 divides u1 and d2 ≥ 2d1, then u1 ≥ qd2 .

The other theorems of [5] are as follows: Theorems 2 and 3 classify the possible sets of d1-spaces for u1 = qd1 + 1
and u1 =

[
d2

1

]
q
/
[
d1

1

]
q
, respectively. Theorem 4 is the direct application of Theorem 3 and Theorem 1(i).

2. SETS OF DISJOINT k-SPACES AND THEIR INCIDENCES WITH HYPERPLANES

For a positive integer k let N be a set of pairwise disjoint k-spaces in Fv
q , where v is minimal. By ai we denote the

number of hyperplanes H of Fv
q with #(N ∩H) := #{U ∈ N : U ≤ H} = i and set n := #N . Double-counting

the incidences of the tuples (H), (B1, H), and (B1, B2, H), where H is a hyperplane and B1 6= B2 are elements of
N contained in H gives:

n−1∑
i=0

ai =

[
v

1

]
q

,

n−1∑
i=0

iai = n ·
[
v − k

1

]
q

, and
n−1∑
i=0

i(i− 1)ai = n(n− 1) ·
[
v − 2k

1

]
q

. (1)

For three different elements B1, B2, B3 ofN their span 〈B1, B2, B3〉 has a dimension i between 2k and 3k. Denoting
the number of corresponding triples by bi, double-counting gives:

n−1∑
i=0

i(i− 1)(i− 2)ai =

3k∑
i=2k

bi

[
v − i

1

]
q

and
3k∑

i=2k

bi = n(n− 1)(n− 2). (2)

Given parameters q, k, n, and v the so-called (integer) linear programming method, developed for association schemes
by Delsarte [4], asks for a solution of the equation system given by (1) and (2) with ai, bi ∈ R≥0 (ai, bi ∈ N). If no
solution exists, then no corresponding set N can exist. For k = 1 one can take the elements of N as the columns of a
generator matrix of a projective linear code over Fq . In this case, the equations from (1) and (2) correspond to the first
four MacWilliams identities, see e.g. [6].

Lemma 2. If ai = 0 for all i 6= r > 0 and k < v in the above setting, then there exists an integer s ≥ 2 with v = sk

and N consists of qv−1
qk−1

disjoint k-spaces partitioning Fv
q . Additionally we have r = qv−k−1

qk−1
.
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PROOF. Solving (1) for r, ar, and n gives n = q2v−k−qv−qv−k+1
qv−qv−k−qk+1

. Writing v = sk+ t with s, t ∈ N and 0 ≤ t < k we

obtain n =
∑s

i=1 q
v−ik + qv−k+t−qv−k−qt+1

qv−qv−k−qk+1
. Since n ∈ N and 0 ≤ qv−k+t − qv−k − qt + 1 < qv − qv−k − qk + 1

we have qv−k+t − qv−k − qt + 1 = 0 so that t = 0 and n = qv−1
qk−1

. Counting points gives that N partitions Fv
q . �

We remark that r = 0 forces n ∈ {0, 1} so that N is empty or consists of a single k-space in Fk
q and v = k implies

the latter case. So, this degenerated cases correspond to s ∈ {0, 1} in Lemma 2. As pointed out after [5, Theorem 2],
such results can be proved in different ways. While the case that only one ai is non-zero is rather special, we can show
that many ai are equal to zero in our setting.

Lemma 3. Let P be a vector space partition of type dl
ul . . . d2

u2d1
u1 of Fv

q , where u1, u2 > 0, and N be the set of
d1-spaces. Then, we have #N ≡ #(N ∩H) (mod qd2−d1) for every hyperplane H of Fv

q .

PROOF. For each U ∈ P we have dim(U ∩H) ∈ {dim(U),dim(U)− 1}. So counting points in Fv
q and H gives the

existence of integers a, a′ withm ·
[
d2

1

]
q
+aqd2 +u1

[
d1

1

]
q

=
[
v
1

]
q

andm ·
[
d2−1

1

]
q
+a′qd2−1 +u′1q

d1−1 +u1

[
d1−1

1

]
q

=[
v−1

1

]
q
, wherem :=

∑l
i=2 ui and u′1 := #(N ∩H). By subtraction we obtainmqd2−1 +aqd2−a′qd2−1 +u1q

d1−1−
u′1q

d1−1 = qv−1, so that u1q
d1−1 ≡ u′1qd1−1 (mod qd2−1). �

Definition 4. Let N be a set of k-spaces in Fv
q . If there exists a positive integer r such that ai is non-zero only if

#N − i is divisible by qr and the k-spaces are pairwise disjoint, then we call N qr-divisible.

Using the notation of Lemma 3, N is qd2−d1 -divisible. For d1 = 1, taking the elements of N as columns of a
generator matrix, we obtain a projective linear code, whose Hamming weights are divisible by qd2−1.

Lemma 5. For a qr-divisible set N of k-spaces in Fv
q , there exists a hyperplane H with #(N ∩H) ≤ n/qk.

PROOF. Let i be the smallest index with ai 6= 0. Then, the first two equations of (1) are equivalent to
∑

j≥0 ai+qrj =[
v
1

]
q

and
∑

j≥0 (i+ qrj) · ai+qrj = n
[
v−k

1

]
q
. Subtracting i times the first equation from the second equation gives∑

j>0 q
rjai+qrj = n · q

v−k−1
q−1 − i · q

v−1
q−1 . Since the left-hand side is non-negative, we have i ≤ qv−k−1

qv−1 · n ≤
n
qk

. �
Stated less technical, the proof of Lemma 5 is given by the fact that the hyperplane with the minimum number of

k-spaces contains at most as many k-spaces as the average number of k-spaces per hyperplane.

Lemma 6. Letm ∈ Z andN be a qr-divisible set of k-spaces in Fv
q . Then, τ(n, qr, qk,m)·qv−2k−2r−m(m−1) ≥ 0,

where τ(n,∆, u,m) := ∆2u2m(m− 1)− n(2m− 1)u(u− 1)∆ + n(u− 1)(n(u− 1) + 1).

PROOF. With y = qv−2k, u = qk, and ∆ = qr, we can rewrite the equations of (1) to u2y − 1 = (q − 1)
∑

i∈Z ai,
n · (uy − 1) = (q − 1)

∑
i∈Z iai, and n(n − 1) · (y − 1) =

∑
i∈Z i(i − 1)ai. (n −m∆)(n − (m − 1)∆) times the

first minus 2n − (2m − 1)∆ − 1 times the second plus the third equation gives y · τ(n,∆, u,m) −∆2m(m − 1) =
(q − 1)

∑
i∈Z(n−m∆− i)(n− (m− 1)∆− i)ai = (q − 1)

∑
h∈Z ∆2(m− h)(m− h+ 1)an−h∆ ≥ 0. �

Lemma 7. If N is a q-divisible set of k-spaces in Fv
q of cardinality qk + 1, then N partitions F2k

q .

PROOF. Setting ci := (q − 1)a1+iq and l := qk−1 − 1 we can rewrite the equations of (1) to
∑l

i=0 ci = qv − 1,∑l
i=0(1 + iq)ci = (qk + 1)

(
qv−k − 1

)
, and

∑l
i=0 iq(1 + iq)ci = (qk + 1)qk

(
qv−2k − 1

)
. Since ql + 1 times the

second minus ql + 1 times the first minus the third equation gives 0 ≤
∑l

i=0 iq
2(l − i)ci = −qk+1

(
qv−2k − 1

)
, we

have v = 2k. Every point of Fv
q is covered by an element from N due to

[
2k
1

]
q
/
[
k
1

]
q

= qk + 1. �

3. PROOF OF HEDEN’S RESULTS AND FURTHER IMPROVEMENTS

Let P be a vector space partition of type dlul . . . d2
u2d1

u1 of Fv
q , where u1, u2 > 0, and N the set of d1-spaces.

Assume that qd2−d1 does not divide u1. We have #(N ∩ H) ≥ 1 for every hyperplane H due to Lemma 3, so
that Lemma 5 gives u1 ≥ qd1 . Thus, we have u1 ≥ qd1 + 1 and can apply Lemma 7. If u1 < 2qd2−d1 we can apply
Lemma 2 so that either d2 divides d1 and u1 = (qd2 − 1)/(qd1 − 1) or u1 > 2qd2−d1 .

Assume that qd2−d1 divides u1. Setting ∆ = qd2−d1 , u = qd1 , n = l∆, andm = l† for some integer l, we conclude
τ(n,∆, u,m) = l∆(∆l −∆u+ u− 1) ≥ 0 from Lemma 6, so that l ≥

⌈
u− u

∆ + 1
∆

⌉
. The right-hand side is equal

to u = qd1 if d2 ≥ 2d1 and to u − u/∆ + 1 = qd1 − q2d1−d2 + 1 otherwise, which is equivalent to n ≥ qd2 and
n ≥ qd2 − qd1 + qd2−d1 . We remark that equality is achievable in the latter case via the 2-weight codes constructed
in [2] (with parameters n′ = d1 and m = d2 − d1). We do not know whether the corresponding qd2−d1 -divisible
set of d1-spaces can be realized as a vector space partition of Fv

q .‡ For the first case a construction is given by lifted
maximum rank distance codes, cf. [5, Example 1].

†The choice for m can be obtained by minimizing τ(n,∆, u,m), i.e., solving ∂τ(n,∆,u,m)
∂m

= 0 and rounding.
‡A suitable test case might be to decide whether a vector space partition of type 44313526 exists in F10

2 .
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The above comprises [5, Theorems 1-4]. Just Theorem 1(i), for the case where d1 does not divide d2, leaves some
space for improving the lower bound on u1. To that end we analyze Lemma 6 in more detail.

Proposition 8. Let N be a qr-divisible set of k-spaces in Fv
q , u = qk and ∆ = qr. Then, n /∈

[
1, q

k+r−1
qr−1

)
and n /∈[⌈

1
u−1 ·

(
∆um− ∆u+1

2 − 1
2

√
ω
)⌉
,
⌊

1
u−1 ·

(
∆um− ∆u+1

2 + 1
2

√
ω
)⌋]

, where ω = (∆u− 2m)
2
+
(
2∆u+ 1− 4m2

)
,

for all m ∈ N with 2 ≤ m ≤
⌊

∆u
4 + 1

2 + 1
4∆u

⌋
.

PROOF. We set ∆ = ∆u and n = n(u − 1) so that τ(n,∆, u,m) = ∆
2
m(m − 1) − n∆(2m − 1) + n(n + 1). We

have τ(n,∆, u,m) ≤ 0 iff
∣∣∣n−∆m+ ∆+1

2

∣∣∣ ≤ 1
2

√
∆

2 − 4m∆ + 2∆ + 1 and m ≤ ∆
4 + 1

2 + 1
4∆

. Rewriting and

applying Lemma 6 with 1 ≤ m ≤
⌊

∆u
4 + 1

2 + 1
4∆u

⌋
gives the result since m(m− 1) > 0 for m ≥ 2. �

Proposition 9. Let N be a qr-divisible set of k-spaces in Fv
q , where r = ak + b with a, b ∈ N, 0 < b < k and a ≥ 1.

Then, n ≥ q(a+2)k−1
qk−1

= qr · qk−b + qr·qk−b−1
qk−1

= ∆qk−b + qkΘ + 1, where ∆ := qr and Θ := qak−1
qk−1

.

PROOF. From Lemma 2 we conclude n ≥ 2qr and set u = qk. For 2 ≤ m ≤ qk−b we have 2∆u + 1 − 4m2 > 0,
so that Proposition 8 gives n /∈

[⌈
∆u(m−1)−1/2+m

u−1

⌉
,
⌊

∆um−1/2−m
u−1

⌋]
. Since ∆(m − 1) ≤

⌈
∆u(m−1)−1/2+m

u−1

⌉
=

∆(m− 1) +
⌈

∆(m−1)−1/2+m
u−1

⌉
≤ ∆m and

⌊
∆um−1/2−m

u−1

⌋
= ∆m + mqbΘ +

⌊
mqb−1/2−m

qk−1

⌋
= ∆m + mqbΘ, we

conclude n /∈
[
∆m,∆m+mqbΘ

]
for 2 ≤ m ≤ qk−b.

It remains to show n /∈
[
∆m,∆m+mqbΘ + 1,∆(m+ 1)− 1

]
=: Im for all 2 ≤ m ≤ qk−b − 1. If n ∈ Im,

then we can write n = ∆m+mqbΘ +x with x ≥ 1 and mqbΘ +x < ∆, so that qk ·
(
mqbΘ + x

)
= ∆m+mqbΘ +(

xqk −mqb
)
< ∆m+mqbΘ + x = n, which contradicts Lemma 5. �

In other words, in the case of Theorem 1(i), where d2 = ad1 + b with 0 < b < d1 and a, b ∈ N, we have
u1 ≥ qd2−d1 · qd1−b + q(a+1)d1−1

qd1−1
= q(a+2)d1−1

qd1−1
, which can be attained by an d1-spread in F(a+2)d1

q . Without the

knowledge of b, we can state u1 ≥ q · qd2−d1 +
⌈
qd2+1−1
qd1−1

⌉
, which also improves Theorem 1(i) and is tight whenever

d2 + 1 is divisible by d1. Summarizing our findings we obtain:

Theorem 10. For a non-empty qr-divisible set N of k-spaces in Fv
q the following bounds on n = #N are tight.

(i) We have n ≥ qk + 1 and if r ≥ k then either k divides r and n ≥ qk+r−1
qk−1

or n ≥ q(a+2)k−1
qk−1

, where r = ak + b

with 0 < b < k and a, b ∈ N.
(ii) Let qr divide n. If r < k then n ≥ qk+r − qk + qr and n ≥ qk+r otherwise.

While the smallest cardinality of a non-empty qr-divisible set of k-spaces over Fq has been determined, the spec-
trum of possible cardinalities remains widely unknown. For k = 1 [6, Theorem 12] states that either n > rqr+1

or there exists integers a, b with n = a
[
r+1

1

]
q

+ bqr+1 and bounds for the maximum excluded cardinality have
been determined in [1]. However, Lemma 5 and Lemma 6, applied via Proposition 8, give restrictions going far
beyond Theorem 10. For q = 2, r = 3, k = 2, and n ≤ 81 we exemplarily state that only n ∈ {21, 32, 33, 42,
43, 44, 52, . . . , 55, 62, . . . , 66, 72, . . . , 78} might be attainable. The mentioned constructions cover the cases n ∈
{21, 32, 42, 53, 63, 64, 74} ⊆ {21a+ 32b : a, b ∈ N}. Replacing the lines by their contained 3 points, we obtain 24-
divisible sets of 1-spaces in Fv

q of cardinality 3n, for which two further exclusion criteria have been presented in [6],
excluding the cases n ∈ {33, 44}. [6, Lemma 23] is based on a cubic polynomial obtained from (1) and (2), similar to
the quadratic polynomial from Lemma 6 obtained from (1). Here, the presence of k additional bi-variables may make
the analysis more difficult for k > 1. For a qr-divisible set N of 1-spaces we have that N ∩H is qr−1-divisible for
every hyperplane H , which allows a recursive application of the linear programming method. For k > 1 we need to
consider k-spaces and k − 1-spaces in H , see [6, Section 6.3], which makes the bookkeeping more complicated.
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