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Abstract

Elastic confinements are an important component of many soft matter systems and dictate the

transport properties of suspended particles under flow. In this thesis, we present a fully analytical

theory of the hydrodynamic interactions and Brownian motion of nanoparticles immersed in a

Newtonian fluid, moving in close vicinity to a realistically modeled elastic cell membrane. The

membrane is attached to a cross-linked cytoskeleton network providing a resistance towards shearing

and consists of a lipid bilayer to enable resistance towards bending. We assume that the fluid

surrounding the particles is governed by the linear Stokes equations where the viscous forces dominate

over the inertial forces. Our analytical calculations start with the computation of the Green’s functions

representing the flow field due to a concentrated point force singularity acting nearby the elastic

membrane. We then compute the frequency-dependent mobility functions connecting the force and

torque with the translational and rotational velocities of the suspended particles. Thereupon, we

derive analytical expressions of the diffusion tensor which can directly be obtained from the particle

mobility functions via the fluctuation-dissipation theorem. Our most important finding is that the

elastic nature of the confining membrane induces a memory effect in the system, leading to a long-lived

anomalous subdiffusive behavior of nearby particles.

The determination of the Green’s functions in the presence of an elastic boundary consists of

writing the general solution of the Stokes equations as a sum of a bulk contribution and a correction

term that is required to satisfy the regularity and boundary conditions imposed at the membrane.

Depending on the membrane geometry we use three vastly different analytical approaches: (a) two

dimensional Fourier transform technique for planar membranes, (b) a Fourier-Bessel integral for cylin-

drical membranes and (c) spherical harmonics for membranes with spherical geometry. Accordingly,

the Green’s functions can conveniently be expressed in terms of infinite integrals over the wavenumber

or as convergent infinite sums of spherical harmonics. By considering a vanishing actuation frequency,

the Green’s functions are found to be identical to that predicted nearby a hard boundary with stick

boundary conditions.

The exactly known Green’s functions allow then for the analysis of the effect of the membrane on

the motion of particles, notably for the calculation of self- and pair-mobility functions relevant to fluid
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transport nearby elastic membranes. Analytical expressions of the mobility functions can be obtained

by considering a distribution of point force singularities over the surface of the particles. Nonetheless,

we restrict ourselves in most cases to the commonly employed point-particle approximation. The

latter represents the leading-order term in an expansion of the mobility function in a power series

with respect to the ratio between the particle radius and the distance from the membrane for the

self-mobilities, or between the particle radius and the interparticle distance for the pair-mobilities.

We show that this approximation despite its simplicity can surprisingly lead to a good estimate of

the mobility functions when comparing with fully resolved numerical simulations performed using

truly finite-sized particles.

The computation of the frequency-dependent mobility functions provides the memory kernel

of the particle-membrane system and thus allows for the investigation of the diffusional motion of

Brownian particles nearby elastic cell membranes via a generalized Langevin formalism. A complete

characterization of particle diffusion can be performed by computing the mean-square displacement

(MSD) which is known to be a linear function of time in bulk fluid. Nearby an elastic membrane

however, the MSD exhibits a transient anomalous subdiffusion at intermediate time scales of motion

with a scaling exponent that depends strongly on the distance separating the particles from the

confining membrane. The steady MSD is found to follow a standard linear behavior and the diffusion

coefficient approaches the one predicted close to a hard boundary. Using physical parameters corre-

sponding to a typical red blood cell membrane, we find that the subdiffusive regime may enhance

residence times and binding rates of nearby nanoparticles by up to 50 % and therefore might be of

possible physiological significance for the uptake of targeted nanocarriers or viral particles by cell

membranes via endocytosis.

Key words Stokes flow • anomalous diffusion • Brownian motion • Green’s functions • singularity

methods • boundary integral methods • membrane mechanics • elasticity theory • biological fluid

dynamics • hydrodynamic mobility.



Zusammenfassung

Elastische Wände sind wichtige Komponenten im Kontext weicher Materie und bestimmen die

Transporteigenschaften von Partikeln in Suspension unter Einfluss von Strömung. In dieser Arbeit

präsentieren wir eine vollständig analytische Theorie der hydrodynamischen Wechselwirkungen und

der Brownschen Bewegung von Nanopartikeln, die in eine Newtonsche Flüssigkeit eingebettet sind

und sich in unmittelbarer Nähe zu einer realistisch modellierten elastischen Zellmembran bewegen.

Die Membran ist verbunden mit dem vernetzten Zytoskelett der Zelle, das einen Widerstand gegen

Scherdeformationenen bietet, und baut sich aus einer Lipiddoppelschicht auf, die einen Widerstand

gegen Biegdeformationen bietet. Wir nehmen an, dass die die Partikel umgebende Flüssigkeit durch

die linearen Stokes-Gleichungen beschrieben werden kann, wobei die viskosen Kräfte über die Trägheit-

skräfte dominieren. Diese Näherung ist angebracht aufgrund kleiner Geschwindigkeiten auf Skalen

einzelner Zellen. Unsere analytischen Berechnungen basieren auf der Berechnung der Greenschen

Funktionen, die das Strömungsfeld aufgrund einer Punktkraft-Singularität widerspiegeln, die in der

Nähe der elastischen Membran wirkt. Wir berechnen dann die frequenzabhängigen Mobilitätsfunk-

tionen, die die Kraft und das Drehmoment mit den Translations- und Rotationsgeschwindigkeiten

der suspendierten Teilchen in Verbindung setzen. Daraufhin leiten wir analytische Ausdrücke des

Diffusionstensors ab, die direkt aus den Mobilitätsfunktionen über das Fluktuationsdissipationsthe-

orem erhalten werden können. Unser wichtigstes Ergebnis ist, dass die elastischen Eigenschaften

der Membran einen Gedächtniseffekt im System induzieren, was zu einem langlebigen anomalen

subdiffusiven Verhalten der nahe gelegenen Partikel führt.

Die Bestimmung der Greenschen Funktionen in Gegenwart einer elastischen Membran besteht

darin, die allgemeine Lösung der Stokes-Gleichungen als Summe eines Bulk-Terms und eines Korrek-

turterms zu schreiben, der erforderlich ist, um die an der Membran auferlegten Regelmäßigkeits- und

Randbedingungen zu erfüllen. Je nachMembrangeometrie verwenden wir drei sehr unterschiedliche an-

alytische Ansätze: (a) zweidimensionale Fourier-Transformation für planare Membranen, (b) Fourier-

Bessel-Integral für zylindrische Membranen und (c) Kugelflächenfunktionen für Membranen mit

sphärischer Geometrie. Dementsprechend können die Greenschen Funktionen in Form von unendlichen

Integralen über die Wellenzahl oder als konvergente unendliche Summen von Kugelflächenfunktionen
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ausgedrückt werden. In Grenzfall einer verschwindenden Frequenz werden die Greenschen Funktionen

identisch mit denen, die in der Nähe einer harten Wand mit Haftbedingung vorhergesagt werden.

Die exakt berechneten Greenschen Funktionen erlauben die Untersuchung des Einfluss der Mem-

bran auf die Bewegung von Partikeln, insbesondere wird die Berechnung von Eigen- und Paar-

Mobilitätsfunktionen möglich. Diese sind für den Transport von Suspensionen in elastischen Gefäßen

relevant. Analytische Ausdrücke für die Mobilitätsfunktionen können durch Berücksichtigung einer

Verteilung von Punktkräften über die Teilchenoberfläche erhalten werden. Dennoch beschränken wir

uns in den meisten Fällen auf die allgemein verwendete Punktpartikel-Näherung. Letztere repräsen-

tiert die führende Ordnung der Entwicklung der Mobilitätsfunktion als Potenzreihe des Verhältnisses

zwischen Partikelradius und Abstand von der Membran für die Eigen-Mobilitäten oder zwischen

Partikelradius und Partikelabstand für die Paar-Mobilitäten. Wir zeigen, dass die Punktpartikel-

Näherung, trotz ihrer Einfachheit überraschenderweise zu guter Übereinstimmung in den Mobilitäts-

funktionen führt verglichen mit numerischen Simulationen von Partikeln mit endlichem Radius.

Die Berechnung der frequenzabhängigen Mobilitätsfunktionen liefert den Gedächtnisterm des

Partikel-Membran-Systems und ermöglicht so die Untersuchung der Diffusionsbewegung von Brown-

schen Partikeln in der Nähe der elastischen Zellmembran über einen generalisierten Langevin-

Formalismus. Eine vollständige Charakterisierung der Partikeldiffusion kann durchgeführt werden,

indem die mittlere quadratische Verschiebung (MSD) berechnet wird, von der bekannt ist, dass sie

im Bulk eine lineare Funktion der Zeit ist. In der Nähe einer elastischen Membran jedoch weist das

MSD eine transiente anomale Subdiffusion auf, die auf intermediären Zeitskalen stattfindet und einen

Skalierungsexponenten besitzt, der stark von der Distanz zur Membran abhängt. Das MSD im Grenz-

fall langer Zeiten zeigt ein normales lineares Verhalten und der Diffusionskoeffizient nimmt den nahe

an einer harten Wand vorhergesagten Wert an. Unter Verwendung von physikalischen Parametern,

die einer Membran eines roten Blutkörperchens entsprechen, finden wir, dass das Subdiffusionsregime

die Verweilzeiten und Bindungsraten von nahe gelegenen Nanopartikeln bis zu 50 % erhöhen kann

und daher eine mögliche physiologische Bedeutung für die Aufnahme von medizinisch verwendeten

Nanopartikeln oder Viren durch Endozytose aufweist.

Schlüsselwörter Stokes-Strömung • anomale Diffusion • Brownsche Bewegung • Greensche Funk-

tionen • Singularitätsmethoden • Randintegralmethoden • Membranmechanik • Elastizitätstheorie •

biologische Fluiddynamik • hydrodynamische Mobilität.
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Chapter 1

Introduction

We are here and now. Further than that,
all knowledge is moonshine.

Henry Louis Mencken

1.1 Motivation

Diffusion and hydrodynamic interactions between nanosized particles in soft matter systems is a
long standing and established research topic. Over the last few decades, considerable effort has been
devoted to the study of nanoparticle dynamics in blood flow [1–5] due to their importance and
relevance in basic scientific research and potential biological and technological applications. Notable
examples include drug delivery and chemotherapy via nanocarriers [6–9] which release the active
agent in disease sites such as tumors or inflammation areas. During uptake by a living cell via
endocytosis [10–12], nanoparticles often come into close vicinity of cell membranes which alter their
motion in a complex fashion. Furthermore, nanoparticles play a key role in a variety of biological
functions including cell division [13–16] and metabolism [17–19]. Due to their small size, the dynamics
of nanoparticles is strongly affected by Brownian motion.

At small length and time scales of motion, an accurate description of fluid flows is achieved by
the linear Stokes equations [20], where viscous forces are more important than inertial forces. In
these conditions, a complete representation of the motion of a suspended particle is possible via
the hydrodynamic mobility function, which bridges between the velocity moments of the particle
and the moments of the force density on its surface. Particle motion in an unbounded medium is
well understood and has been studied since a long time ago since the pioneering work of Stokes [21]
who computed analytically the friction of fluids on the motion of pendulums. Nonetheless, particle
motion in real situations often occurs in geometric confinements. When a small particle moves in
close vicinity of an interface, the mobility is remarkably changed relative to its values in a bulk fluid.
The effect of confining boundaries on nearby particles in a viscous fluid plays an important role in
a variety of processes ranging from the rheology of colloidal suspensions [22–26] to the transport of
nanoparticles and various molecules through nanochannels [27, 28].

1.2 State of the art

The first attempt to address the near-wall hindered mobility dates back to Lorentz [29] who used
the image solution technique to compute the fluid motion resulting from a point-force acting nearby

5



6 Chapter 1. Introduction

an infinitely extended planar hard-wall. His solution method permits the determination of the parti-
cle mobility functions provided that the particle is at moderate distance from the wall. Analytical
solutions that account for truly finite-sized particles have been later derived using bispherical co-
ordinates [30–32]. The latter method has successfully been employed by Jeffery and coworkers to
address the steady rotation of a solid of revolution [33] or the motion of two spheres in a viscous
fluid [34]. The slow viscous translational motion of a sphere parallel to a planar wall has further
been investigated using matched asymptotic expansions [35, 36], finding that the wall introduces a
coupling between rotation and translation. Both the translational and rotational motions have later
been reconsidered by Perkins & Jones who expressed the particle mobility in terms of a set of scalar
functions that depend on the sphere radius and distance to a free [37] or rigid interface [38, 39].
Lorentz calculations have been extended to account for finite frequency of motion by Wakiya for the
motion parallel to a hard-wall [40].

Under a uniform shear flow, near-wall particle dynamics has first been investigated using bipolar
coordinates by Goldman [41] to derive exact solutions of the Stokes equations for the translational and
rotational motions of a neutrally buoyant sphere. His solution is supplemented by a lubrication-theory-
like approximation valid when the gap between the sphere and the wall is small, and by a method of
reflection valid in the opposite case. Particle motion in shear flow past a plane wall has been later
revisited using bipolar coordinates [42–44] and the image representation technique [45]. More recently,
the hard-wall effect on the velocity autocorrelation function and long-time tails of Brownian motion
has been studied by Felderhof [46, 47] and has recently been confirmed experimentally using optical
traps [48]. The predicted long-time tails have been verified by direct inverse Fourier transform [49]
and by a computational study using large-scale molecular dynamics simulations [50].

The influence of a second boundary on particle hydrodynamic mobility has also received re-
searchers’ attention since a long time ago. The most simple and intuitive approach is due to Os-
een [51] who suggested that the particle mobility of a sphere confined between two rigid walls could
conveniently be approximated by superposition of the leading-order terms from each single wall. A
more rigorous approach has been adopted by Faxén [52, 53], who computed in his dissertation the
particle mobility parallel to the walls for the special cases when the particle is in the mid-plane or
the quarter-plane between the two hard-walls [20]. For an arbitrary position between the two walls,
exact solutions for a point particle are obtained and expressed in terms of convergent series using
the image technique for both incompressible [54, 55] and compressible flows [56–58]. For a truly
extended particle, multipole expansions [59, 60] as well as joint analytical-numerical solutions have
been presented for the motion perpendicular [61] and parallel [62] between two plane rigid boundaries.
It has been found that the first-order reflexion theory proposed by Ho & Leal [63] provides reasonable
agreement with their exact results only when the sphere is sufficiently far away from both walls.
Further theoretical investigations have been carried out nearby two perpendicular walls [64] and for
a sphere confined on the centerline of a rectangular channel [65].

During the past few decades, the field remarkably regained greater interest after the advent of
experimental techniques which allow an accurate and reliable measurement of particle mobility nearby
complex interfaces. Among the most efficient techniques that have been utilized are laser [66, 67]
and optical tweezers [68–73], fluorescence [74, 75] and digital video microscopy [76–82], evanescent
wave dynamic light scattering [83–96] and the three-dimensional total internal reflection velocimetry
technique [97]. Calculations of the mobility functions have been extended to include particles nearby
interfaces with partial slip [98–100], an interface separating two mutually immiscible liquids [101] or
inside a liquid film between two incompressible fluids [102]. Explicit analytical expressions for the
flow field induced by a point-force acting close to a fluid-fluid interface have been further obtained
using the image solution technique [103]. For a truly extended particle, analytical solutions have been
later proposed by Lee and coworkers using a generalization of the method of Lorentz [104] and bipolar
coordinates [105]. The effect of small deformations of an initially flat fluid interface on the force and
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torque experienced by a nearby translating and rotating sphere has also been considered [106, 107].
Additional works have been carried out nearby a viscous interface [108–110] or an interface covered
with surfactant [111–113].

A great deal of attention has been also given to particle motion nearby curved boundaries such
as cylindrical channels, due to their relevance as model systems for particle transport in tubular
confinements and microfluidic devices [114–116]. In particular, the axial motion along the cylinder
axis has been studied using the method of reflections by Wakiya [117], Bohlin [118] and Faxén [119], to
name a few, expressing the mobility in power series of the ratio of particle to cylinder diameter. More
recently, Zimmerman [120] presented a computer extended series approach for the determination of
the drag force up the 21st order, thus complementing the singular perturbation solution known in
the literature. These works have been extended to finite-sized spheres [121, 122] and non-spherical
particles [123, 124]. For an arbitrarily positioned particle, the procedure has been generalized to
yield expressions in terms of the particle and channel radius, and the eccentricity of the position
of the particle, as derived e.g. in the works of Happel and collaborators [125–128] and Liron &
Shahar [129]. The slow motion of two spherical particles symmetrically placed about the axis of a
cylinder in the direction perpendicular to their line of centers has later been studied by Greenstein
& Happel [130]. Experimental verification of these theoretical results has been performed e.g. by
the use of laser interferometry by Lecoq et al. [131] where an excellent agreement has been found
with the point-particle approximation. Digital video microscopy measurements by Cui et al. [76, 132]
of the hydrodynamic coupling between Brownian colloidal particles diffusing along a linear channel
revealed a sharply screened hydrodynamic interaction, resulting in a significant interaction only
when the interparticle distance is relatively small. Theoretical developments have been supplemented
by computer simulations of the resistance functions for spheres, bubbles and drops in cylindrical
tubes [133–138]. Other works include the asymmetric motion perpendicular to the axis [139], finite
length of the tube [140] and the flow around a line of equispaced spheres moving at a prescribed
velocity along the axis of a circular tube [141]. Transient effects have also be taken into account in
recent works by Felderhof, both in the case of an incompressible [142] and compressible fluid [143–145].

The rotational motion of a sphere inside a cylinder is of enormous importance in the theory of
rotational viscometers [146–148] and in determining the power required for the agitation of viscous
fluids [149, 150]. The symmetric slow rotation of a sphere inside an infinitely long hard cylinder has
been first investigated by Haberman [151] and independently by Brenner & Sonshine [152], giving
the hydrodynamic torque acting on the rotating sphere up to the 14th order in the ratio of particle
to cylinder diameter. The rotation of an axially symmetric body of otherwise arbitrary shape within
a circular cylinder of finite length has been theoretically investigated by Brenner [153] using the
point couple approximation technique. The frictional force [154] and torque [155] exerted on a slowly
rotating eccentrically positioned sphere within an infinitely long circular cylinder has been studied
by Greenstein and coworkers, and later by Zheng et al. [156] who reviewed and corrected previous
calculations. Complementary theoretical works have been conducted by Hirschfeld and coworkers [157,
158] to determine the first- and second-order wall effects upon the viscous asymmetric motion of
an arbitrarily-shaped particle, arbitrarily positioned and oriented within a circular hard cylinder.
Additionally, perturbative solutions for the rotation of eccentric spheres flowing in a cylindrical tube
have been derived by Tözeren [159–161], finding a good agreement with the previous calculations.
Further, modeling of hydrodynamic interactions involving a torus and circular cylinder using point
singularities has been presented [162].

Considerable advances have been made into understanding the slow motion of particles of non-
spherical shape, such as spheroids or rod-like particles due to their importance in the modeling
of viruses or parasitic particles [163]. The first attempt to investigate the Brownian motion of an
anisotropic particle dates back to Perrin [164, 165] who computed analytically the drag coefficients
for a spheroid diffusing in a bulk fluid. A few decades later, Batchelor [166] pioneered the idea that
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the flow field surrounding an elongated particle (often termed as a slender body), may appropriately
be represented by a line distribution of point-force singularities along the line connecting the foci. The
method has successfully been applied to a wide range of free-stream profiles and body shapes [167]
and near boundaries such as a planar hard-wall [168–170] or a fluid-fluid interface [171]. Using the
multipole expansion of the near-wall flow field, Lisicki et al. [172] have recently shown that to leading-
order, the mobility of an arbitrary axisymmetric particle near a hard-wall can be expressed in closed
form by combining the relevant Green’s functions with the particle bulk mobility functions. They have
shown that the mobility corrections scale as powers of inverse wall-particle distance and their angular
structure can be expressed as simple polynomials in sines and cosines of the particle inclination
angle to the wall. Direct numerical simulations of axisymmetric colloidal particles near a wall have
been carried out using boundary integral methods [173], stochastic rotation dynamics [174, 175]
and recently finite element methods [176]. Diffusion of micrometer-sized ellipsoidal particles has
been experimentally investigated using digital video microscopy [177–179], elucidating the effects
of coupling between rotational and translational motion. Experiments on actin filaments have been
conducted using fluorescence imaging and particle tracking [180] finding that the measured diffusion
coefficients can conveniently be accounted for by a correction resting on the hydrodynamic theory of
a long cylinder confined between two walls. The confined Brownian rotational diffusion coefficients
of carbon nanotubes have been measured using fluorescence video microscopy [181] and optical
microscopy [182], where a reasonable agreement has been reported with theoretical predictions.
Using light scattering measurements, the translational and rotational diffusion constants of TMV, a
simple rod-shaped helical virus, have been determined [183] based on previous theoretical treatment
by Pecora [184]. Additionally, the three-dimensional rotational diffusion of nanorods [185] and rod-like
colloids have been measured using video [186] and confocal microscopy [187].

Despite enormous and extensive studies on particle motion nearby solid or fluid boundaries,
only little is known about the influence of elastic interfaces on the dynamics of nearby particles.
Hitherto, particle motion nearby a planar membrane endowed with surface tension [188, 189], bending
resistance [190] or membrane elasticity [191, 192] has been theoretically studied. Further theoretical
investigations near elastic interfaces have been carried out via thin-film soft lubrication theory [193–
195]. Experimentally, particle motion nearby elastic cell membranes has been investigated using
optical traps [196–199], magnetic particle actuation [200] and quasi-elastic light scattering [201–203],
where a significant decrease in the mobility normal to the cell membrane has been observed in line
with theoretical predictions. Setting a particle nearby a cell membrane has been further used in
interfacial microrheological experiments as an efficient and often accurate way to extract membrane
unknown moduli [198, 204].

1.3 Thesis contribution

The present thesis is a further contribution to the works that have been carried out in this field and is
devoted to the theoretical and numerical modeling of particle motion nearby a realistically modeled
elastic membrane simultaneously endowed with both shearing and bending rigidities [205–209], such
as a red blood cell (RBC) membrane. Unlike fluid-solid or fluid-fluid interfaces, elastic membranes
stand apart as they endow the system with memory. Accordingly, particle motion depends strongly
on its prior history and diffusional dynamics is treated within a generalized Langevin formalism
non-local in time. This behavior implies the emergence of a transient anomalous subdiffusive regime
induced by the elastic nature of the membrane. Moreover, the membrane undergoes deformation in
both in-plane and out-of-plane directions in response to the imbalance of the stress tensor at the
interface between the fluids on both sides. As a result, a reflected backflow is created as the membrane
relaxes back to its undeformed state, altering the motion of the particle in a complex fashion. Our
calculations have been extended nearby cylindrical [210, 211] and spherical membranes [212, 213]
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and inside a spherical elastic cavity [214], finding that the shearing effect plays a more significant role
than bending. Our analytical predictions have favorably been compared with fully resolved boundary
integral simulations where a very good agreement is obtained.

1.4 Thesis outline

The reminder of the first part of this cumulative thesis is composed of six chapters and is meant to be
an introduction for the publications appended in the second part. In chapter 2, we introduce a physical
model system for biological cell membranes and discuss their mechanical behavior, in particular their
resistance towards shearing and bending. Additionally, we outline the main derivation steps of
the traction jump equations across an elastic membrane undergoing elastic deformation due to an
external load. In chapter 3, we provide the reader with a broad overview on the computation of the
Green’s functions, which represent the solution of the governing equations of fluid motion due to
a point force acting nearby an elastic membrane of various geometries. For that, we first introduce
the two-dimensional (2D) Fourier transform technique we employe to find analytical expressions of
the Green’s functions nearby an infinitely extended planar elastic membrane. We then present the
Fourier-Bessel integral technique which is well suited for membranes with cylindrical geometry and
the spherical harmonics technique which is found to be appropriate for spherical membranes. We
then define in chapter 4 the particle hydrodynamic mobility functions and present an analytical
method for their determination from the Green’s functions by combining the multipole expansion and
Faxén’s theorem. In chapter 5, we introduce the multipole method and show how the leading-order
mobility of an axisymmetric particle nearby an interface can be determined from the knowledge
of the system Green’s functions and particle bulk mobilities. We then investigate in chapter 6 the
diffusional motion of a Brownian particle nearby a cell membrane and examine the mean-square
displacement for diffusion parallel or perpendicular to a planar membrane. Finally, we present in
chapter 7 the boundary integral method (BIM) we use to assess the accuracy and appropriateness of
our theoretical predictions. The appendix includes further technical details regarding the 2D Fourier
transform, relevant for the computation of the Green’s functions nearby planar membranes. The
second part includes the publications related to this thesis.
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Chapter 2

Membrane model

If the facts don’t fit the theory, change the
facts.

Albert Einstein

2.1 Overview

The basic biological function of membranes is to protect the cell from its surroundings and regulate
diffusion of proteins, ions and other molecules across the cell. The red blood cell membranes consist
of a lipid bilayer with embedded proteins providing the membrane a resistance towards bending.
The lipid bilayer is made of two layers of lipid molecules and are usually composed of a hydrophilic
phosphate head and a hydrohobic tail (see Fig. 2.1 for a cartoon representation of a lipid bilyer.)
The packing of lipid molecules within the bilayer affects the cell mechanical properties including its
resistance towards shearing and bending. The resistance against bending is described following the
celebrated Helfrich model [224] and is characterized by the bending modulus κB and the Gaussian
curvature modulus κK [225].

Additionally, RBC membranes are endowed with cross-linked cytoskeleton networks that provide
the mechanical flexibility required to cope with the shear stresses encountered during cell motion in
the microcirculation. The networks can exhibit highly nonlinear elasticity and their physical treatment
goes beyond linear elasticity theory. The membrane elasticity is commonly described by the well-
established Skalak model [216] which incorporates into a single strain energy functional both the
resistance towards shearing and area conservation. Accordingly, the Skalak model is characterized by
a shear modulus κS and an area dilatation (extension) modulus κA [217–221]. The latter is typically
very large compared to κS to mimic membrane area incompressibility. Other elastic models have
been further proposed in the literature including the neo-Hookean model [222] and the zero-thickness
shell model [223], both of which are characterized by a unique shear modulus κS.

In the following, we shall introduce a parametrization for the membrane and determine analytical
expressions of the traction jump equations across a membrane possessing shearing and bending
rigidities.

2.2 Membrane parametrization

Here we show how to derive analytically the traction jump equations across an elastic membrane
endowed with shearing and bending resistances. For this, we shall recall and employ some basic

11
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Figure 2.1: An elastic membrane consisting of the lipid bilayer. Illustration taken from the paper by
Peletier and Röger [215].

concepts of differential geometry [226] in order to describe the surface of a membrane undergoing
small deformation. We adopt a local coordinate system {θ1, θ2} for the undeformed membrane
surface and describe a mapping that assigns each pair (θ1, θ2) to the position vector A defined in
the Cartesian coordinate system as [227]

A(θ1, θ2) = Axex +Ayey +Azez , (2.1)

where Ax, Ay and Az are functions of θ1 and θ2.
After deformation, the position vector reads

a(θ1, θ2) = (Ax + ux)ex + (Ay + uy)ey + (Az + uz)ez , (2.2)

where ux, uy and uz are the Cartesian components of the displacement vector which are all functions
of θ1 and θ2. Hereafter, we shall use capital roman letters for the undeformed state and small roman
letters for the deformed. The membrane can be defined by the covariant base vectors

gα :=
∂a

∂θα
, α ∈ {1, 2} , (2.3)

which are tangent to the membrane surface but not generally perpendicular to each other. We now
complete the basis by defining the unit normal vector n as

n =
g1 × g2
|g1 × g2|

. (2.4)

The covariant components of the metric tensor are defined in the usual way by the scalar product
gαβ = gα · gβ. The contravariant tensor gαβ is the inverse of the metric tensor and satisfies the
identity

gαβg
βγ = δγα , (2.5)

where δγα is the delta Kronecker tensor. Here Einstein’s summation convention over repeated indices
is used. Clearly, both the covariant and contravariant tensors are symmetric by construction. The
corresponding tensors in the undeformed state Gαβ and Gαβ can immediately be obtained by con-
sidering vanishing displacements in gαβ and gαβ, respectively. In what follows, we shall derive a
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linearized form of the underlying equilibrium equations for a membrane under load conditions.

2.3 Shearing and bending

Depending on the biological composition of the cell, the membrane may exhibit a resistance towards
shearing and/or bending. In this section, we shall consider first an idealized membrane with pure
shearing resistance such as that of an artificial elastic capsule designed for drug delivery. We then
consider the situation where the membrane resists only towards bending as it is the case for a fluid
vesicle. Finally, we show how to derive the traction jump equations when the membrane is endowed
simultaneously with both shearing and bending rigidities.

2.3.1 Shearing

Here we derive the traction jump equations across a membrane endowed with an in-plane shearing
resistance. We introduce the transformation gradient as [228]

daα = Fαβ dAβ , (2.6)

bridging between the infinitesimal displacements in the deformed and undeformed spaces. From
Eq. (2.3), it can clearly be seen that da = gα dθα and that dA = Gα dθα, leading to an expression
of the transformation gradient tensor as a dyadic product such that F = gα ⊗Gα .

We now define the right Cauchy-Green deformation tensor Cαβ = FγαFγβ whose invariants are
given by Green and Adkins as [229, 230]

I1 = Gαβgαβ − 2 , (2.7a)

I2 = detGαβ det gαβ − 1 . (2.7b)

Provided knowledge of the membrane constitutive law, the contravariant components of the stress
tensor ταβ can readily be obtained from [218]

ταβ =
2

JS

∂W

∂I1
Gαβ + 2JS

∂W

∂I2
gαβ , (2.8)

wherein W is the areal strain energy functional and JS :=
√

1 + I2 is the Jacobian determinant,
representing the ratio between the deformed and undeformed local surface areas. As already pointed
out, various models have been proposed in the literature to describe the elastic properties of cell
membranes. The most simple and popular one is the neo-Hookean (NH) model whose areal strain
energy reads [218]

WNH(I1, I2) =
κS
6

(
I1 − 1 +

1

1 + I2

)
. (2.9)

There exists another formulation which is equivalent to the neo-Hookean model in the small defor-
mation limit, known as the zero-thickness shell formulation, employed by Ramanujan and Pozrikidis
(RP), in which the areal strain energy is given by [223]

WRP =
κS
6

(
I1 − ln(I2 + 1) +

1

2
ln2(I2 + 1)

)
. (2.10)

The Skalak model [216] is more commonly used for RBC membranes because it explicitly includes
the local area-incompressibility constraint into the model. The corresponding areal strain energy
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reads [219]
W SK =

κS
12

(
(I21 + 2I1 − 2I2) + CI22

)
, (2.11)

where C := κA/κS is the Skalak parameter. For C = 1, the Skalak model predicts for small deforma-
tions the same behavior as the Neo-Hookean or the thin-shell formulation [218].

Having introduced the stress tensor resulting from membrane deformation, we now write the
equilibrium equations balancing between the membrane elastic forces and external load as

∇αταβ + ∆fβ = 0 , (2.12a)

ταβbαβ + ∆fn = 0 , (2.12b)

where ∆f = ∆fβgβ + ∆fnn is the traction jump vector across the membrane. Here ∇α stands for
the covariant derivative, which for a second-rank tensor is defined as

∇αταβ = ταβ,α + Γααητ
ηβ + Γβαητ

αη , (2.13)

where Γλαβ are the Christoffel symbols of the second kind which read [231]

Γλαβ =
1

2
gλη (gαη,β + gηβ,α − gαβ,η) . (2.14)

Moreover, bαβ is the curvature (second fundamental form) tensor defined by

bαβ =
∂gα
∂θβ
· n = −gα ·

∂n

∂θβ
. (2.15)

In the following, we shall derive the equilibrium equations for a membrane that exhibits a pure
resistance towards bending.

2.3.2 Bending

According to the Helfrich model, the bending energy is described by a quadratic curvature-elastic
continuum model as

EB =

∫
S

2κB (H −H0)
2 dS +

∫
S
κKK dS , (2.16)

where H is the mean curvature defined as the average of the principal curvatures κ1 and κ2, and K
is the Gaussian curvature, defined as the product of κ1 and κ2. Here H0 is the spontaneous curvature
for which we consistently take the initial undisturbed shape throughout this thesis. For an excellent
overview of the Helfrich model and its actual numerical implementation, we refer the acknowledgeable
reader to a recent review article by Guckenberger and Gekle [232].

The traction jump equations across a membrane endowed with a resistance towards bending can
readily be obtained via a variational approach by minimizing the sum of the bending and external
potential energy to obtain

∆f = −2κB
(
2(H2 −K +H0H) + ∆‖

)
(H −H0)n , (2.17)

and it is commonly denominated the Euler-Lagrange equation [233–236]. The mean and Gaussian
curvatures are respectively expressed by

H =
1

2
bαα , K = det bβα , (2.18)
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with bβα being the mixed version of the curvature tensor related to the covariant representation of
the curvature tensor by bβα = bαδg

δβ . Continuing, ∆‖ denotes the Laplace-Beltrami operator defined
for a given scalar function φ(θ1, θ2) as [227]

∆‖φ =
1
√
g

∂

∂θα

(
√
ggαβ

∂φ

∂θβ

)
, (2.19)

wherein g is the determinant of the metric tensor. Interestingly, bending as derived from the Helfrich
model does not introduce a jump in the tangential traction [237].

It is worth mentioning that bending stresses are sometimes computed by assuming a linear
isotropic model for the bending moments. Accordingly, the membrane bending moment is related to
the curvature tensor via the linear relation [238, 239]

Mβ
α = −κB

(
bβα −Bβ

α

)
. (2.20)

The contravariant components of the transverse shearing vector Q can then be obtained from
a local torque balance with the applied moment as Qβ = ∇αMαβ. We note that the raising and
lowering indices operations imply that Mαβ = Mγαg

γβ . In this way, the equilibrium equations read

∇αNαβ − bβαQα + ∆fβ = 0 , (2.21a)

Nαβbαβ +∇αQα + ∆fn = 0 , (2.21b)

where for a first-rank tensor the covariant derivative is defined as ∇βQα = ∂βQ
α+ ΓαβδQ

δ. Moreover,
Nαβ is the in-plane tension tensor determined from a local torque balance and expressed by [232]

Nαβ =
1

2
κBB

µ
γ bλµ

(
gαλgγβ − gαγgλβ

)
. (2.22)

For a membrane endowed simultaneously with both shearing and bending rigidities, the resulting
traction jump equations are obtained by linear superposition of the traction jump due to pure shearing
and pure bending as stated by Eqs. (2.12) and (2.21), respectively. Under flow conditions, the elastic
stresses are balanced by a jump in the fluid stress tensor across the membrane and the underlying
equilibrium equations serve as boundary conditions for the computation of the Green’s functions as
explained in more details in the next chapter.
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Chapter 3

Green’s functions

Science may set limits to knowledge, but
should not set limits to imagination.

Bertrand Russell

In the context of linear hydrodynamics, the Green’s functions are the solutions of the Stokes
equations subject to a point-force acting on the fluid. The solution for an arbitrarily force distribution
can readily be determined through the superposition principle thanks to the linearity of the equations
governing the fluid motion. We define the flow Reynolds number Re, representing the ratio of inertial
forces to viscous forces as

Re =
UL

ν
, (3.1)

where L and U are respectively characteristic length and velocity of the flow, and ν is the fluid
kinematic viscosity, defined as the ratio between dynamic viscosity η and density ρ. Throughout this
thesis, our theoretical developments are valid in the limit of small Reynolds number where viscous
effects dominate. Accordingly, the distance traveled by suspended particles is assumed to be very
short on the characteristic time scale associated with vorticity diffusion.

In this chapter, we shall be interested in finding analytical solutions of the steady Stokes equations
governing the dynamics of an incompressible viscous flow [240],

η∇2v(r)−∇p(r) + f(r) = 0 , (3.2)
∇ · v(r) = 0 , (3.3)

in the presence of nearby elastic confinements. Here v denotes the fluid velocity, p is the pressure
field and f is an arbitrary time-dependent force density exerted on the fluid by an immersed particle.
We first consider the point-particle approximation in which we only take the monopole force moment
into account such that f(r) = F δ(r− r0), where r0 is the particle position. For an infinite medium,
the solution for the velocity field is known as the Oseen tensor [51].

Depending on the membrane geometry, we shall employ three very different analytical approaches.
First, we begin with the simplistic situation where the membrane is planar and infinitely extended
along the horizontal plane. In this case, the Green’s functions can readily be found using a 2D Fourier
transform technique. Second, we describe the Fourier-Bessel Integral technique which is found to
be convenient for solving the fluid motion equations in domains bounded by a cylindrical geometry.
Third, we present the spherical harmonics technique based on the idea of expanding the velocity field
and pressure in terms of spherical harmonics centered at the origin. The latter method is perfectly
suited for searching for solutions of the Stokes equations in the presence of a spherical boundary.

17
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z0

a

Figure 3.1: Illustration of particle motion nearby an elastic membrane. The membrane is extended
in the xy plane and the solid particle of radius a is located at z = z0.

3.1 Fourier transform technique

As already pointed out, the equations governing the fluid motion nearby planar interfaces are more
conveniently solved using a 2D Fourier transform technique. The latter consists of transforming the
partial differential equations (3.2) and (3.3) governing the fluid motion into ordinary differential
equations for the out-of-plane coordinate z, whereas the dependence on the in-plane coordinates x
and y are Fourier transformed into wavevector components qx and qy.

The Fourier transform technique can also be applied for the determination of the Green’s functions
in systems composed with two or more parallel interfaces. Nevertheless, although the method is
perfectly suited for planar geometries, it can unfortunately not be applied for general shapes. In what
follows, we shall provide some technical details regarding this analytical method.

3.1.1 Formulation

The fluid motion is described by the steady Stokes equations stated by Eqs. (3.2) and (3.3). We
assume that the point-force F is acting at the position r0 = (0, 0, z0) with z0 > 0, above an elastic
membrane infinitely extended in the xy plane (see Fig. 3.1 for an illustration of the system setup.)
Without loss of generality, we assume that the fluid has the same and constant properties everywhere.

We define the spacial 2D (forward) Fourier transform

F{f(ρ)} = f̃(q) =

∫
R2

f(ρ)e−iq.ρ d2ρ , (3.4)

together with its inverse transform

F−1{f̃(q)} = f(ρ) =
1

(2π)2

∫
R2

f̃(q)eiq.ρ d2q , (3.5)

where ρ = (x, y) is the projection of the position vector r onto the horizontal plane, and q = (qx, qy)
is the Fourier transform variable. It turns out to be convenient to use the orthogonal coordinate
system previously introduced by Bickel [188, 190] in which all the vector fields are decomposed into
longitudinal, transverse and normal components. For a given Fourier transformed quantity Ã, whose
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horizontal components in the Cartesian coordinate basis are (Ãx, Ãy), its components in the new
orthogonal base are given by the following orthogonal transformation(

Ãx
Ãy

)
=

1

q

(
qx qy
qy −qx

)(
Ãl
Ãt

)
, (3.6)

where Ãl and Ãt refer to the longitudinal and transverse components, respectively, and q := |q| is
the wavenumber. Clearly, the normal component Ãz is left unchanged by this transformation. Note
that the inverse transformation is also given by the same transformation matrix in Eq. (3.6).

As the membrane shape depends on the history of particle motion, we shall perform additionally
a Fourier analysis in time. For a function f(t) living in the real space, its (forward) Fourier transform
to the frequency domain is defined as

f(ω) =

∫
R
f(t)e−iωt dt , (3.7)

and the inverse Fourier transform back to the real space reads

f(t) =
1

2π

∫
R
f(ω)eiωt dω . (3.8)

Since both the spatial and temporal Fourier transforms are performed here, we shall use the convention
where the two functions f(t) and f(ω) are distinguished only by their argument. The tilde will
therefore be reserved for the spatial 2D Fourier transform.

The steady Stokes equations (3.2) and (3.3) upon 2D Fourier transform result in the following
ordinary differential equations with the variable z,

η(−q2ṽl + ṽl,zz)− iqp̃+ Fl δ(z − z0) = 0 , (3.9)

η(−q2ṽt + ṽt,zz) + Ft δ(z − z0) = 0 , (3.10)

η(−q2ṽz + ṽz,zz)− p̃,z + Fz δ(z − z0) = 0 , (3.11)
iqṽl + ṽz,z = 0 , (3.12)

obtained after making use of the transformation equations (3.6). The transverse component ṽt is
therefore separated out and can directly be obtained by solving Eq. (3.10). Moreover, the pressure
in Eq. (3.9) can readily be eliminated using Eq. (3.11). Since the continuity equation (3.12) gives a
direct relation between the components ṽl and ṽz, a fourth-order differential equation for the normal
velocity ṽz is obtained as

ṽz,zzzz − 2q2ṽz,zz + q4ṽz =
q2

η
Fz δ(z − z0) +

iq

η
Fl δ

′(z − z0) , (3.13)

where δ′ is the derivative of the delta Dirac function, satisfying the property xδ′(x) = −δ(x), for
x ∈ R. The components of the Green tensor in Fourier space are defined as ṽz

ṽl
ṽt

 =

 G̃zz G̃zl 0

G̃lz G̃ll 0

0 0 G̃tt

 Fz
Fl
Ft

 . (3.14)

Having introduced the governing equations of fluid motion, the Green’s functions in the presence of
a planar elastic membrane can therefore be determined by applying the relevant boundary conditions.
At the undisplaced membrane, we require the natural continuity of the velocity components and the
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discontinuity of the fluid stress tensor due to membrane shearing and bending, previously derived
in chapter 2. The Green’s functions serve then as a direct input for the computation of the particle
hydrodynamic mobilities as it will be detailed in chapter 4.

We further define the characteristic frequency for shearing and bending as

β :=
6z0ηBω

κS
, βB := 2z0

(
4ηω

κB

)1/3

, (3.15)

with B := 2/(1 + C) for the Skalak model and B = 1 otherwise1. Moreover, we define the reduced
bending modulus, quantifying the coupling between shearing and bending as EB := κB/(κSz

2
0).

In the vanishing frequency limit, or equivalently for infinite membrane shearing and bending
rigidities, the Green tensor nearby a hard-wall is recovered [241]

GB(r) = G(0)(rrel)− G(0)(R) + GD(R)− GSD(R) , (3.16)

and it is commonly denominated the Blake tensor [242]. Here rrel := r − r0 and R := r − r0 with
r0 = (0, 0,−z0) being the position of the Stokeslet image. Furthermore, r := |r| and R := |R|. The
infinite space Green’s function (Oseen tensor) G(0), the Stokes doublet GD and the source doublet
GSD are given by

G(0)αβ (r) =
1

8πη

(
δαβ
r

+
rαrβ
r3

)
, (3.17)

GDαβ(R) =
2z20(1− 2δβz)

8πη

(
δαβ
R3
−

3RαRβ
R5

)
, (3.18)

GSDαβ (R) =
2z0(1− 2δβz)

8πη

(
δαβRz
R3

−
δαzRβ
R3

+
δβzRα
R3

−
3RαRβRz

R5

)
. (3.19)

It is worth noting that nearby a single membrane, shearing and bending present a decoupled
nature. Therefore, the Green’s functions nearby a membrane endowed simultaneously with both shear-
ing and bending rigidities can appropriately be determined by linear superposition of the Green’s
functions associated with membranes with pure shearing and pure bending as obtained indepen-
dently. This interesting feature is however not observed nearby two parallel elastic membranes [Pub2]
where shearing and bending present a coupling behavior. Further details have been discussed in our
publications for the Green’s functions nearby a single [Pub1] or two [Pub2] planar elastic membranes.

In the following, we shall introduce the Fourier-Bessel integral technique which we have employed
for the determination of the Green’s functions associated with a point-force acting at the centerline
of an elastic cylinder whose membrane exhibits a resistance towards shearing and bending.

3.2 Fourier-Bessel integral technique

Many biological and industrial processes occur in cylindrical confinements where they play a key
role in determining the diffusional dynamics of suspended particles. In this section, we compute the
Green’s functions associated with a point-force acting at the centerline of a cylindrical elastic tube of
initial (undeformed) radius R. The tube membrane exhibits resistance against shearing and bending.
We choose the cylindrical coordinate system (r, φ, z) where the z coordinate is directed along the
cylinder axis with the origin located at the center of a particle whose radius is a� R. We label the
flow properties inside and outside the cylinder 1 and 2, respectively.

1As already pointed out in chapter 2, the neo-Hookean model and the zero-thickness shell formulation model are
equivalent to the Skalak model when C = 1 for small deformation.
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Figure 3.2: Illustration of the system setup. A small spherical solid particle of radius a located at
the origin moving on the centerline of a deformable elastic tube of radius R.

We proceed by computing the Green’s functions which are solutions of the forced Stokes equations
(3.2) and (3.3) inside the tube (for r < R) and the homogeneous (force free) Stokes equations outside
(for r > R). We therefore need to solve the governing equations for a point-force F acting at the
origin and subject to the regularity conditions

|v1| <∞ for |r| = 0 , (3.20)
v1 → 0 for z →∞ , (3.21)
v2 → 0 for |r| → ∞ , (3.22)

together with the boundary conditions stemming from shearing and bending which are imposed at
the membrane.

We begin by expressing the solution of Eqs. (3.2) inside the cylinder as a sum of a point-force
flow field and the flow reflected from the interface,

v1 = vS + v∗ ,

p1 = pS + p∗ ,

where vS and pS are the Stokeslet solution in an infinite (unbounded) medium, and v∗ and p∗ are
the solutions of the force free Stokes equations, required to satisfy the regularity and boundary
conditions.

The resolution methodology consists of expanding the velocity and pressure fields in the form of
Fourier integrals in two distinct regions, inside and outside the cylindrical membrane. The solution
is then written in terms of integrals of harmonic functions with unknown coefficients, which we then
determine from the usual boundary conditions of continuity of fluid velocities and traction jumps
deriving from the elastic properties of the membrane. The cases of axial (axisymmetric) and radial
(asymmetric) motion are treated separately.

The detailed solution has been reported in our publication [Pub6]. Therein, we have shown that
the image solution for the axisymmetric motion due to an axial point-force acting along the cylinder
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axis F = Fzez can be written as an infinite integral over the wavenumber q as

v∗r =
Fz

4π2η

∫ ∞
0

q
((
rqI0 − I1

)
φ∗‖ + I1ψ

∗
‖

)
sin qz dq , (3.23)

v∗z =
Fz

4π2η

∫ ∞
0

q
((
rqI1(qr) + I0

)
φ∗‖ + I0ψ

∗
‖

)
cos qz dq , (3.24)

p∗ =
Fz
2π2

∫ ∞
0

q2φ∗‖I0 sin qz dq , (3.25)

and v∗φ = 0 due to axisymmetry. Moreover, Ik denotes the kth order modified Bessel function of
the first kind [243] having the argument qr which is dropped for brevity. Here φ∗‖ and ψ

∗
‖ are two

unknown functions which depend on the wavenumber q only, to be determined from the boundary
conditions.

For a force directed perpendicular to the cylinder axis, the image solution has a more complex
form due to asymmetry and can be expressed in a similar fashion as an infinite integral over q as

v∗r =
Fr

4π2ηr

∫ ∞
0

( ((
2 + (qr)2

)
I1 − qrI0

)
φ∗⊥ + (qrI0 − I1)ψ∗⊥ + I1 γ

∗
⊥
)

cos qz dq , (3.26)

v∗φ =
Fφ

4π2ηr

∫ ∞
0

(
(qrI0 − 2I1)φ

∗
⊥ + I1ψ

∗
⊥ + (qrI0 − I1) γ∗⊥

)
cos qz dq , (3.27)

v∗z = − Fr
4π2η

∫ ∞
0

q
(
qrI0φ

∗
⊥ + I1ψ

∗
⊥
)

sin qz dq , (3.28)

p∗ =
Fr
2π2

∫ ∞
0

q2I1φ
∗
⊥ cos qz dq , (3.29)

where Fr and Fφ are the radial and polar components of the force, respectively, and φ∗⊥, ψ
∗
⊥ and γ∗⊥

are three wavenumber-dependent unknown functions.

The solutions outside the cylinder can also be determined and expressed in an analogous way
but they are rather not relevant for the calculations of the particle mobility functions and are thus
omitted here.

In the vanishing frequency limit, we recover the solutions nearby a hard-cylinder as first obtained
by Liron & Shahar [129]. For the axial motion we obtain

ψ∗‖

R
=

(I0K1 + I1K0)s
2 − (I0K0 + I1K1)s+ 2I1K0

s
(
sI20 − sI21 − 2I0I1

) , (3.30)

φ∗‖

R
=

2I1K0 − (I0K0 + I1K1)s

s
(
sI20 − sI21 − 2I0I1

) , (3.31)

where Kk denotes the kth order modified Bessel function of the second kind and s := qR is the
argument of the modified Bessel functions. For the asymmetric motion perpendicular to the cylinder
axis, the unknown functions read in this limit

φ∗⊥
R

=
s(sI0 − I1)(I0K0 + I1K1)− 2I21K0

s
(
s(sI0 − I1)(I20 − I21 )− 2I0I21

) , (3.32)

ψ∗⊥
R

=
s(I1 − sI0)(I0K1 + I1K0)

s(sI0 − I1)(I20 − I21 )− 2I0I21
, (3.33)

γ∗⊥
R

= 2
sI1(I0K0 + I1K1) + 2I21K0 − s2K0(I

2
0 − I21 )

s
(
s(sI0 − I1)(I20 − I21 )− 2I0I21

) . (3.34)
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Figure 3.3: Illustration of a small solid spherical particle of radius b positioned at x2 = Rez nearby
a large spherical capsule of radius a centered at the origin. In an axisymmetric configuration, the
force is directed parallel the unit vector d ≡ −ez while in a asymmetric configuration the force is
perpendicular to d.

Interestingly, the latter hard limits are recovered even when the membrane is endowed with a pure
shearing resistance. We further mention that for elastic cylindrical membranes, shearing and bending
present a coupled nature. As a result, the contributions to the Green’s functions from shearing and
bending cannot be added independently on top of each other as it is the case for a single planar
membrane.

A similar resolution methodology can be adopted for the determination of the flow field due to
a point-torque (point-couple) exerted along or perpendicular to the cylinder axis. In this case, the
solution of fluid motion can readily be used for the determination of the rotational mobilities of
particles located on the centerline of a an elastic tube. These calculations have been considered in
details in our publication [Pub7].

In the following, we shall briefly outline the main derivation steps for the computation of the
Green’s functions for a point-force acting outside a spherical elastic membrane.

3.3 Spherical harmonics technique

Membranes in soft matter systems often assume spherical shapes such as that of vesicles [244–246] or
elastic capsules [247]. In this section, we shall outline the main derivation steps for the determination
of the Green’s functions associated with a point-force acting at the center of a solid particle of radius b
nearby a large spherical membrane of radius a. Here we shall use the term “capsule” to denote a
spherical particle containing some fluid inside and enclosed by an elastic membrane possessing both
shearing and bending resistances.

It is most natural to solve the fluid equations of motion in the spherical coordinate system.
We consider that the origin of coordinates is located at x1, the center of the large capsule. The
mathematical problem is equivalent to solving the forced Stokes equations (3.2) and (3.3) for a point-
force F acting at x2 = Rez, with R > a. We define the unit vector d := (x1−x2)/|x1−x2| connecting
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between the center of the capsule and the point-force position (see Fig. 3.3 for an illustration.) Inside
the capsule, the fluid motion is governed by the homogeneous (force free) Stokes equation. We shall
consider the cases that the force is acting either parallel or perpendicular to the vector d.

The resolution approach is based on the image solution method proposed by Fuentes et al. [248,
249] who computed about three decades ago the motion of two unequal size viscous drops in Stokes
flow. Accordingly, the exterior fluid velocity can be written in the usual way as a sum of two distinct
contributions,

v = vS + v∗ , (3.35)

where vS is the velocity field induced by a point-force acting at x2 in an infinite medium, i.e. in the
absence of the capsule and v∗ is the image system required to satisfy the boundary conditions at the
capsule membrane.

The determination of the Green’s functions proceeds through the three following main steps. First,
the velocity vS due to the Stokeslet acting at x2 is written in terms of spherical harmonics which
are transformed afterward into harmonics based at x1 via the Legendre expansion [250]. Second, the
image system solution v∗ is expressed as multipole series at x2 which subsequently is rewritten in
terms of spherical harmonics centered at x1. Third, the solution inside the capsule v(i) is expressed
using Lamb’s solution [251] also written in terms of spherical harmonics centered at x1. The last step
consists of determining the series expansion coefficients by satisfying the boundary conditions at the
membrane surface. It appeared convenient to scale all the lengths by the capsule radius a. Analytical
expressions for the Green’s functions in the axisymmetric and asymmetric cases have been reported
in our two part series publications [Pub8, Pub9].

Outside the capsule, the image solution for the axisymmetric motion, i.e. for F ‖ d can conve-
niently be written in the form of an infinite sum as

v∗ = − F

8πη

∞∑
n=0

[
A‖n

(
(n− 1)dϕn + (n+ 1)rϕn+1

)
+ 2(n+ 1)B‖n∇ϕn+1

]
, (3.36)

where A‖n and B‖n are series coefficients to be determined from the boundary conditions. Moreover,
ϕn are the harmonics of degree n, related to the Legendre polynomials of degree n via the relation

ϕn(r, θ) :=
(d ·∇)n

n!

1

r
=

1

rn+1
Pn(cos θ) . (3.37)

Similar, for the asymmetric motion, i.e. for F ⊥ d, the image solution can be written in terms
of an infinite series as

v∗ =
1

8πη

∞∑
n=0

[
A⊥n

(
(1− n)Fϕn − rψn

)
− 2B⊥n∇ψn

]
+

∞∑
n=1

[
C⊥n −A⊥n+1

]
γn , (3.38)

where the coefficients A⊥n , B⊥n and C⊥n are to be determined from the boundary conditions. We have
further defined the harmonics

ψn = (F ·∇)ϕn , γn = (t×∇)ϕn , (3.39)

with t = F × d.
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In the vanishing frequency limit, we recover the solutions nearby a rigid sphere, namely [240]

A‖n = −
(
n+

3

2

)
1

Rn+1
+

(
n+

1

2

)
1

Rn+3
, (3.40)

B‖n = −1

4
(1−R2)2

1

Rn+5
, (3.41)

for the axisymmetric motion and

A⊥n =
1

2(n+ 2)

(
(2n+ 3)(n− 1)

Rn+1
− (2n+ 1)(n+ 1)

Rn+3

)
, (3.42)

B⊥n =
n− 1

4(n+ 2)

1

Rn+1
+

n+ 1

4(n+ 4)

1

Rn+5
− n2 + 3n− 1

2(n+ 2)(n+ 4)

1

Rn+3
, (3.43)

C⊥n =
2n+ 3

n+ 3

(
1

Rn+2
− 1

Rn+4

)
, (3.44)

for the asymmetric motion. Similar, the hard-sphere limit is recovered as well for a spherical membrane
with pure shearing, i.e. in the same way as observed for cylindrical membranes.

Analogous theoretical calculations can be carried out to compute the flow field due to a point-force
acting inside a spherical elastic cavity. In particular, an exact analytical solution of the hydrodynamic
mobility is possible using the stream function technique when the particle center coincides with
the center of the cavity. Further details and discussions can be found in a publication that is in
preparation [Pub10].

The Green’s functions obtained from the outlined derivations and given in details in our publi-
cations will serve as a basis for the computation of the particle mobilities in the presence of planar,
cylindrical or spherical confinements. This will be the subject of the next chapter.
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Chapter 4

Particle mobility

Know how to solve every problem that has
ever been solved.

Richard Feynman

Having outlined in the previous chapter the derivation of the Green’s functions nearby an elastic
boundary, we now probe the effect of nearby membranes on the motion of suspended particles.
Particularly, we shall be interested in the determination of the particle self- and pair-mobility functions.
In this section, we present analytical calculations of the particle mobilities in the presence of arbitrary
shaped membrane and outline the approach we use for their computation using a combination of the
multipole expansion and Faxén’s theorem.

We consider the situation of particles moving in a viscous fluid governed by the steady Stokes
equations stated by Eqs. (3.2) and (3.3). The grand mobility is a tensorial quantity that couples the
velocity moments of the particles relative to an imposed flow to the moments of the force density on
the particles’ surfaces, V − v0Ω− ω0

−S

 =

µtt µtr µtd

µrt µrr µrd

µdt µdr µdd

FL
E0

 , (4.1)

wherein v0,ω0 andE0 are the velocity, vorticity and the rate of strain of the imposed flow, respectively,
and F , L and S are the hydrodynamic force, torque and stresslet (symmetric force dipole) exerted
on the particles. Moreover, t, r and d are the lowest-order multipole matrix elements corresponding
to translational, rotational and dipolar motion types.

We now consider a representative configuration of a pair of particles denoted γ and λ located nearby
an elastic membrane, as schematically sketched in Fig. 4.1. We shall restrict ourselves throughout this
thesis to the case of quiescent fluid where the background fluid is at rest. Accordingly, the disturbance
velocity field caused at any point r by the particle labeled λ located at rλ can be written as

v(r, rλ, ω) = v(0)(r, rλ) + v∗(r, rλ, ω) , (4.2)

where a Fourier transformation has been applied to the temporal dependence of all fields. Here v(0)

denotes the induced fluid flow in an unbounded (infinite) fluid and v∗ is the flow field required to
satisfy the boundary conditions at the membrane. The disturbance field can be written as an integral
over the surface of the sphere λ as

v(r, rλ, ω) =

∮
Sλ

G(r, r′, ω) · fλ(r′, ω) d2r′ , (4.3)

27
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a

a

Particle γ

Particle λ

Figure 4.1: Illustration of particle motion nearby an elastic membrane of arbitrary shape. The
particles labeled γ and λ have a radius a and are located at rγ and rλ, respectively.

where G is the Green’s function associated with a point-force acting at rλ. Similar, the Green’s
functions can be split up into two distinct contributions,

G(r, r′, ω) = G(0)(r, r′) + GM(r, r′, ω) , (4.4)

where G(0) is the infinite-space Green’s function (Oseen tensor) given by Eq. (3.17). The second term
GM represents the frequency-dependent correction to the Green’s function due to the presence of the
membrane.

Far away from the particle λ, the integration vector variable r′ in Eq. (4.3) can conveniently be
expanded around the particle center rλ following a multipole (Taylor) expansion approach. Up to
the second order, and assuming a constant force density over the particle surface, the disturbance
velocity can be approximated by [252, 253]

v(r, rλ, ω) ≈
(

1 +
a2

6
∇2
rλ

)
G(r, rλ, ω) · F (ω) +

1

2
∇rλ × G(r, rλ, ω) ·L(ω) , (4.5)

where ∇rλ stands for the gradient operator taken with respect to the singularity position rλ and the
curl of a given tensor T is defined as [254]

(∇× T )αβ = εαµν∂µTνβ , (4.6)

with εαµν being the Levi-Civita tensor. Note that for a single sphere in bulk, the flow field given by
Eq. (4.5) satisfies exactly the no-slip boundary conditions at the surface of the sphere [255].

Using Faxén’s theorem [256], the translational and rotational velocities of the adjacent particle γ
in this flow read [252, 253]

Vγ(ω) = µtt0 Fγ(ω) +

(
1 +

a2

6
∇2
rγ

)
v(rγ , rλ, ω) , (4.7)

Ωγ(ω) = µrr0 Lγ(ω) +
1

2
∇rγ × v(rγ , rλ, ω) , (4.8)

where µtt0 := 1/(6πηa) and µrr0 := 1/(8πηa3) denote the translational and rotational bulk mobilities,
respectively. We further emphasize that the disturbance flow v incorporates both the disturbance from
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the particle λ and the disturbance caused by the presence of the membrane. By inserting Eq. (4.5)
into the Faxén’s formulas stated by Eqs. (4.7) and (4.8), the frequency-dependent translational,
coupling and rotational pair-mobility tensors can be obtained from the total Green’s functions as

µtt,γλ(ω) =

(
1 +

a2

6
∇2
rγ

)(
1 +

a2

6
∇2
rλ

)
G(rγ , rλ, ω) , (4.9)

µtr,γλ(ω) =
1

2

(
1 +

a2

6
∇2
rγ

)
∇rλ × G(rγ , rλ, ω) , (4.10)

µrr,γλ(ω) =
1

4
∇rγ ×∇rλ × G(rγ , rλ, ω) . (4.11)

Special care should be undertaken when taking the gradient operators with respect to the position
of either γ or λ. The components of the rt pair-mobility tensor can be determined in an analogous
way. This however, is not necessary thanks to the symmetry property of the mobility tensor. For the
self-mobilities, only the correction to the flow field v∗ due to the presence of the membrane in Eq. (4.2)
should be considered in the Faxén’s formulas. Therefore, the frequency-dependent self-mobility tensors
are directly determined from the correction to the Green’s functions to obtain

µtt,γγ(ω) = µtt0 1 + lim
r→rγ

(
1 +

a2

6
∇2
r

)(
1 +

a2

6
∇2
rγ

)
GM(r, rγ , ω) , (4.12)

µtr,γγ(ω) =
1

2
lim
r→rγ

(
1 +

a2

6
∇2
rγ

)
∇r × GM(r, rγ , ω) , (4.13)

µrr,γγ(ω) = µrr0 1 +
1

4
lim
r→rγ

∇rγ ×∇r × GM(r, rγ , ω) , (4.14)

where 1 denotes the unit tensor. We note that the particle self- and pair-mobility functions in the
point-particle approximation are obtained by setting a = 0 in the above equations. Based on the
solution of the Green’s functions obtained in the previous chapter, we shall present in the following
illustrative calculations of the mobility functions nearby membranes of various shapes.

4.1 Planar membrane

Here we consider a pair of particles positioned a distance h apart and a distance z0 above a planar
elastic membrane, such that xγ = (0, 0, z0) and xλ = (h, 0, z0). As previously pointed out, the
corrections to the particle self- and pair-mobilities nearby a planar membrane can conveniently
be split up into a contribution due to shearing together with a contribution due to bending. We
shall denote by µab,γγ = µab,S with a, b ∈ {t, r} the self-mobility tensor and by µab,γλ = µab,P the
pair-mobility tensor. The self-mobility corrections can conveniently be expressed as a power series of
ε := a/z0 while the pair-mobilities as a power series of σ := a/h. The self- and pair-mobility tensors
nearby a planar membrane for this typical configuration have the form

µS =

 µSxx 0 0
0 µSyy 0

0 0 µSzz

 , µP =

 µPxx 0 µPxz
0 µPyy 0

µPzx 0 µPzz

 . (4.15)

Intuitively, the xx and yy components of the self mobility are equal since they are both associated with
motion parallel to the membrane, while the zz component is associated with the perpendicular motion.
Moreover, the off-diagonal components xz and zx of the pair-mobility in the current configuration
have same absolute value and differ only in sign. We further note that µtrxz = µrtzx as required by the
symmetry of the mobility tensors.
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Analytical predictions of the translational self- and pair-mobilities have been reported in our
publication [Pub3] while the coupling and rotational mobilities have been considered in a publication
that is in preparation [Pub4]. In the vanishing frequency limit, we recover the well-known self-mobility
corrections nearby a no-slip planar wall [252]

∆µS‖

µ0
= − 9

16
ε+

1

8
ε3 − 1

16
ε5 ,

∆µS⊥
µ0

= −9

8
ε+

1

2
ε3 − 1

8
ε5 , (4.16)

for the parallel and perpendicular motion, respectively. Note that the leading order terms in ε represent
the self-mobility correction in the point-particle framework. Clearly, the motion perpendicular to the
wall is significantly slowed down compared to the parallel motion.

In attempt to investigate the effect of membrane finite curvature on the mobility functions, we
shall further investigate the particle mobility functions nearby cylindrical and spherical membranes.

4.2 Cylindrical membrane

Having computed in chapter 3 the Green’s functions nearby a cylindrical membrane, we now turn
our attention to the computation of the mobility functions. Here we restrict ourselves to the point-
particle approximation but higher order corrections terms can readily be obtained, although this
is technically demanding for non-planar geometries. The leading-order self-mobility correction is
calculated by evaluating the reflected flow field at the particle position as given by Eqs. (3.24) and
(3.26), for axial and radial motion, respectively. We obtain

∆µS‖

µ0
=

3

2π

a

R

∫ ∞
0

s

R

(
ψ∗‖ + φ∗‖

)
ds , (4.17)

∆µS⊥
µ0

=
3

4π

a

R

∫ ∞
0

s

R

(
ψ∗⊥ + γ∗⊥

)
ds . (4.18)

Clearly, the correction vanishes for a very wide channel as R → ∞. The corrections nearby a no-
slip cylinder are obtained in the vanishing frequency limit provided that the membrane possesses a
resistance towards shearing, and can be approximated by

∆µS‖

µ0
≈ −2.10444

a

R
,

∆µS⊥
µ0
≈ −1.80436

a

R
, (4.19)

for the axial and radial motion, respectively. Note that the axial motion along the cylinder axis is
more slowed down compared to the radial motion.

Due to the strong confinement induced by the presence of the cylindrical membrane, considering
higher order correction terms becomes necessary for an accurate determination of the mobility when
the particle is of comparable size to that of the cylinder. In the next section, we shall perform
analogous investigations for particle motion nearby a spherical elastic membrane.

4.3 Spherical membrane

The exact Green’s functions evaluated in the previous chapter allow for the calculations of the
particle mobilities nearby a spherical membrane. Similar, we restrict ourselves here for simplicity
to the point-particle approximation but going beyond that is feasible although somewhat tedious.
The leading-order correction can directly be obtained by evaluating the reflected flow field at the
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particle position, as given by Eqs. (3.36) and (3.38), for the axisymmetric and asymmetric motion,
respectively.

After computation, we find that the correction to the self-mobilities can conveniently be expressed
in terms of an infinite series as

∆µ‖

µ0
=

3b

4

∞∑
n=0

2
(
A‖n − (n+ 1)(n+ 2)ξ2B‖n

)
ξn+1 , (4.20)

∆µ⊥
µ0

=
3b

4

∞∑
n=0

(
A⊥n + (n+ 1)(n+ 2)ξ2B⊥n − (n+ 1)ξC⊥n

)
ξn+1 , (4.21)

where ξ := 1/R ∈ [0, 1), bearing in mind that all the lengths have been scaled by the capsule radius a.
In the vanishing frequency limit, we recover the corrections nearby a no-slip sphere, namely [257]

∆µ‖

µ0
= −ξ

3(15− 7ξ2 + ξ4)

4(1− ξ2)
b

R
,

∆µ⊥
µ0

= −ξ
5(17 + ξ2)

16(1− ξ2)
b

R
. (4.22)

It is worth mentioning that the hard limits are recovered only if the membrane possesses a non-
vanishing resistance towards shearing, i.e. in the same way as previously observed for cylindrical
membranes.
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Chapter 5

Multipole method

Ars Conjectandi, (The Art of Conjecturing)

Jacobi Bernoulli

The calculations presented in the previous section are applied for the determination of the mobility
functions of spherically shaped particles. Here we extend our results by evaluating the leading-order
corrections to the mobility functions of axisymmetric particles nearby an elastic membrane. For this
goal, we shall first present some analytical tools based on the multipole method that will be necessary
for our further calculations.

5.1 Preliminaries

The multipole method is a well-established analytic-numerical method intended for solving problems
related to particle motion in the Stokes regime. It has been developed during the last few decades
by Felderhof and collaborators [258–264]. The method is based on an expansion in spherical basis
functions and is meant to provide the friction and mobility tensors to arbitrary accuracy. In this
chapter, we show how the Green tensor is expanded in terms of complete sets of solutions to the steady
Stokes equations and introduce the multipole description. We then use these results to compute the
leading-order correction to the mobility function of an axisymmetric particle nearby a planar elastic
membrane.

We now consider a suspension of N hard spherical particles of radius a moving in an infinite
incompressible Newtonian fluid. Here we use the concept of “induced forces” introduced by Bedeaux
and Mazur [265] in which the validity of the Stokes equations can formally be extended inside the
particles. At the surface of each particle, we impose the usual stick boundary condition

v(r) = vi(r) = Vi + Ωi × (r −Ri) , (5.1)

for |r−Ri| ≤ a, where Vi and Ωi are respectively the translational and angular velocities of a sphere
labeled i whose center is located at Ri. By decomposing the total force density in terms of separate
contributions coming from each of the force densities fj(r) on sphere j, a formal solution of the
Stokes equations can be written as [263]

vi(r)− v0(r) =
N∑
j=1

∫
G(r, r′) · fj(r′) dr′ , r ∈ Si , (5.2)

33
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where v0 is a regular solution to the Stokes equations, representing an incident flow which may be
imposed in the absence of the particles. The latter equation can further be rewritten by separating
out the contributions from distinct particles and the particle i itself. Defining the Green integral
operator or simply propagator as

[P(ij)fj ](r) :=

∫
G(r, r′) · fj(r′) dr′ , (5.3)

Eq. (5.2) can therefore be written as

vi(r)− v0(r) = Z−10 fi(r) +
N∑
j 6=i

[P(ij)fj ](r) , i = 1, . . . , N , (5.4)

where Z0 is the friction kernel, also known as the particle resistance operator.

5.2 Spherical basis set of solutions

The basic idea behind the multipole expansion is to expand the velocities and force densities in a
basis set of functions with suitable spherical symmetry. We define two sets of spherical solutions
to the homogeneous (force free) Stokes equations denoted {v+lmσ(r)} and {v−lmσ(r)} [261, 263]. The
set v+lmσ is regular at r = 0 and diverges at infinity whereas the set v−lmσ is singular at r = 0 and
vanishes at infinity. The angular momentum l takes the values l = 1, 2, 3, . . . , the azimuthal number
m = −l,−l + 1, . . . , l − 1, l and the superscript σ = 0, 1, 2. Accordingly, the Oseen tensor G(0) can
be expanded about some arbitrary origin r0 as [37]

G(0)(r − r′) =
1

η

∑
lmσ

1

n2lm
v−lmσ(r>)v+lmσ(r<) , (5.5)

wherein the bar denotes the complex conjugate and r> and r< are are the longer and shorter vectors
of the difference r − r0 and r′ − r0, respectively. Furthermore, nlm is a normalization

nlm =

(
4π

2l + 1

(l +m)!

(l −m)!

)1/2

. (5.6)

Moreover, we define the complementary set of solutions {w±lmσ(r)} satisfying the following or-
thogonality property on a sphere of radius a [263]

〈w±lmσ(r)δa|v±l′m′σ′(r)〉 = δll′δmm′δσσ′ , (5.7)

where the scalar product of two vectors v1 and v2 is defined by

〈v1|v2〉 :=

∫
v1(r) · v2(r) dr , (5.8)

and δa(r) = a−1 δ (|r| − a) . Expanding the field vi − v0 on the surface of the particle i in terms of
the set of solutions {v+lmσ} centered on Ri we obtain

vi(r)− v0(r) =
∑
lmσ

c(ilmσ)v+lmσ(r −Ri) . (5.9)

By making use of the orthogonality property Eq. (5.7), the expansion coefficients c(ilmσ) are calcu-



5.2. Spherical basis set of solutions 35

lated as
c(ilmσ) = 〈w+

lmσ(i)δa(i)|vi − v0〉 , (5.10)

wherein w+
lmσ(i) and δa(i) are shorthands for w+

lmσ(r−Ri) and δa(r−Ri), respectively. Similar, we
define the force multipole moments on the sphere labeled j by

f(jlmσ) =

∫
v+lmσ(r′ −Rj) · fj(r′) dr′ = 〈v+lmσ|fj〉 . (5.11)

Continuing, the Green tensor associated with the present geometry can be decomposed in the
usual way into two contributions,

G = G(0) + GM , (5.12)

where GM is the (known) correction arising from the boundary, which can be a rigid or free interface
or an elastic membrane. An analogous expansion in a basis set of functions can be made for the
correction GM as well. Accordingly, the associated propagator can be split up into a bulk contribution
P(0) together with a correction stemming from the presence of the boundary PM such that

P = P(0) + PM . (5.13)

Inserting Eqs. (5.9) and (5.11) into Eq. (5.4), the following infinite system of equations is obtained

c(ilmσ) =
∑

jl′m′σ′

(lmσ|M(ij)|l′m′σ′)f(jl′m′σ′) , (5.14)

where (lmσ|M(ij)|l′m′σ′) stands for the multipole matrix elements of the operator M defined as

M(ij) = Z−10 (i)δij + P(ij)(1− δij) . (5.15)

By collecting the expansion coefficients of the velocities vi − v0 and force density f in infinite-
dimensional vectors c and f , Eq. (5.14) can be written in a compact and often more transparent
form as [172]

c =
(
Z−10 + P

)
· f , (5.16)

which upon inversion gives the grand resistance matrix Z

f = Z · c , Z =
(
Z−10 + P

)−1
. (5.17)

The lowest-order multipole matrix elements are commonly denoted as t (translational), r (rota-
tional) and d (dipolar), corresponding to (lmσ) equal to (1m0), 1m1 and 2m0. These have already
been presented in chapter 4. Projecting the matrix Z on the subset t, r, d, the generalized friction
matrix reads FT

S

 =

ζtt ζtr ζtd

ζrt ζrr ζrd

ζdt ζdr ζdd

v0 − Vω0 −Ω
E0

 . (5.18)

Numerically, the infinite matrices Z0 and P are truncated at the multipole order ` in such a way
that only the multipole elements l ≤ ` are considered. Afterward, the matrix (Z−10 + P) is inverted,
leading directly to the determination of the force multipoles.

Asymptotic expressions for the correction to the bulk friction matrix can be obtained using the
scattering expansion technique [266]. Accordingly, the grand resistance matrix

Z =
(
Z−10 + P(0) + PM

)−1
, (5.19)
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can be expanded by assuming that the contribution from the boundary is small compared to the
bulk contribution to obtain [172]

Z = ZB −ZBPMZB + ZBPMZBPMZB − · · · , (5.20)

wherein ZB :=
(
Z−10 + P(0)

)−1
is the particle bulk resistance matrix.

It is worth mentioning that the multipole method briefly described above has been implemented
in the HYDROMULTIPOLE code [262] developed by Wajnryb and collaborators in Warschau back
in the nineties. Hereafter, we shall introduce the bulk mobility tensor of an axisymmetric particle and
the strategy we follow for the computation of its hydrodynamic mobility nearby an elastic interface.

5.3 Mobility of an axisymmetric particle

We now consider an axially symmetric particle immersed in an incompressible Newtonian fluid,
moving close to an elastic membrane, as illustrated for a prolate spheroid 1 in Fig. 5.1. The position
of the center of the particle is r0 = (0, 0, z0), while its orientation is described by the unit vector u1

pointing along the symmetry axis. The laboratory frame is spanned by the basis vectors {ex, ey, ez}.
The undisplaced membrane is located at the plane z = 0 and extended infinitely in the horizontal

plane xy. It is convenient to introduce the body-fixed frame of reference, formed by the three basis
vectors {u1,u2,u3}. The unit vector u2 is parallel to the undisplaced membrane and perpendicular
to the particle axis, and u3 completes the orthonormal basis. We define θ as the angle between u1

and the unit vector ez normal to the undisplaced membrane such that cos θ = ez ·u1. The basis
vectors in the particle frame are then given by u2 = (ez × u1)/ |ez × u1| and u3 = u1 × u2.

For an axisymmetric particle with inversional symmetry, such as a rod-like particle of a spheroid,
the particle mobility in bulk has the form [267]

µ0 =

µtt0 0 0
0 µrr0 µrd0
0 µdr0 µdd0

 . (5.21)

The bulk translational and rotational mobility tensors of a general axisymmetric particle can be
written as a function of the orientation vector u1 as

µtt,rr0 = µt,r‖ u1u1 + µt,r⊥ (1− u1u1) , (5.22)

where µt,r‖ and µt,r⊥ are the (known) bulk mobilities for the translational/rotational motion along
or perpendicular to the spheroid axis of revolution. The third-order tensors µrd0 and µdr0 have the
Cartesian components

(µrd0 )αβγ = µrduσεσαβuγ
(βγ)

, (5.23)

(µdr0 )αβγ = µdruαεβγσ
(αβ)

uσ , (5.24)

where the symbol (αβ) denotes the symmetric and traceless part with respect to indices α, β [172].
Moreover, it follows from the Lorentz reciprocal theorem that [240]

µdr = µrd . (5.25)

1Spheroid is an ellipsoid of revolution and prolate refers to an elongated spheroid obtained by rotating an ellipse
about its major axis.
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c

x

θ

u1u3

Figure 5.1: Illustration of a spheroidal particle located at z = z0 above an elastic cell membrane. The
short and long axes are denoted by a and c, respectively. The unit vector u1 is pointing along the
spheroid symmetry axis and u2 is the unit vector perpendicular to the plane of the figure. The unit
vector u3 is defined to be orthogonal to both u1 and u2.

In the following, asymptotic corrections to the bulk mobility nearby an elastic membrane shall
be provided. As recently shown by Lisicki et al. [172], by building up the axisymmetric particle with
a conglomerate of interacting solid particles, the leading-order correction to the propagator nearby a
boundary takes the simple form PM (R = 2z0n), where n is the vector normal to the wall. That is
to say that, for a particle sufficiently far away from the wall, the dominant correction to the friction
matrix can be viewed as an interaction between the particle center and its hydrodynamic image with
respect to the wall. In this way, the form of the matrix elements of PM is identical to that of the
bulk mobility tensor, with the orientation vector u replaced by the normal vector n. Therefore, the
matrix elements of PM can be expressed as

Pαβ
M (R = 2z0n) =

1

8πη

1

(2z0)a
gαβ(n) , (5.26)

where gαβ are the directional tensors where α, β ∈ {t, r, d}. Moreover, a = l+ l′+σ+σ′− 1 with the
indices l, σ refer to the superscript α while l′, σ′ refer to β, so that a = 1 for tt, a = 2 for (tr, rt, td, dt)
and a = 2 for (dr, rd, rr, dd).

Knowing the expression of the propagator, the friction matrix can readily be obtained from
Eq. (5.20). The friction matrix can be split up into the bulk and the correction term as

ζ = ζ0 +∆ζ . (5.27)

The corrections to the particle mobility can be obtained by an inversion procedure from the equation
µζ = 1 , defining the relations between elements of the friction and mobility tensors, to finally
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obtain [208]

∆µtt =
1

8πη

1

2z0
gtt +O(z−30 ) , (5.28)

∆µtr = − 1

8πη

1

(2z0)2
gtdµdr0 +O(z−30 ) , (5.29)

∆µrt =
1

8πη

1

(2z0)2
µrd0 g

dt +O(z−30 ) , (5.30)

∆µrr =
1

8πη

1

(2z0)3
[
grr − µrd0 gdr + grdµdr0 − µrd0 gddµdr0

]
+O(z−40 ) . (5.31)

Interestingly, the leading-order correction to the translational mobility decays with distance from the
membrane as z−10 whereas the coupling and rotational mobility exhibit a faster decay as z−20 and z−30 ,
respectively. In the reference frame of the particle spanned by the unit basis vectors {u1,u2,u3},
the mobility correction tensors of an axisymmetric particle have the form

∆µtt,rr =

∆µtt,rr11 0 ∆µtt,rr13

0 ∆µtt,rr22 0

∆µtt,rr13 0 ∆µtt,rr33

 , ∆µtr =

0 ∆µtr12 0
0 0 ∆µtr23
0 ∆µtr32 0

 , (5.32)

for the translational/rotational and the translation-rotation coupling tensor, respectively. The rotation-
translation coupling tensor is obtained by simply taking the transpose of the translation-rotation
coupling tensor given above.

As we have shown in our publication [Pub5], the dominant term in the mobility corrections
for an axisymmetric particle possesses a simple angular structure stemming from the contraction
of the particle friction tensors with the vertical multipole components of the Green tensor in the
present geometry. Polynomials in sine and cosine functions of the inclination angle result from the
transformation of the corresponding tensors into the common frame of reference. Further derivation
details and results have been reported in [Pub5].

The frequency-dependent mobilities calculated in chapters 4 and 5 serve as an input for the
computation of the particle diffusion tensor, via the fluctuation-dissipation theorem. In the next
chapter, we shall investigate theoretically the Brownian motion nearby elastic cell membranes and
show that the aforementioned memory effect induces a long-lived subdiffusive behavior on the nearby
suspended particles.



Chapter 6

Brownian motion

Not everything that can be counted counts,
and not everything that counts can be
counted.

Albert Einstein

Brownian motion is the apparently random movement of particles suspended in a fluid resulting
from their collision with the surrounding atoms or molecules. Brownian motion is named after the
British botanist Robert Brown in 1827, who observed through a microscope the random trajectories
of pollen grains immersed in water. A physical explanation of the mechanisms by which particles
undergo such random movements has been provided in 1905 by Einstein in his seminal work [268]. A
few years later, Einstein’s result was confirmed experimentally by Perrin [269, 270] providing direct
evidence that atoms and molecules exist. In 1926, Perrin was awarded a Nobel Prize in physics “for
his work on the discontinuous structure of matter, and especially for his discovery of sedimentation
equilibrium.” [271].

6.1 Langevin equation

The dynamics of an isolated Brownian particle in a bulk fluid is governed by the celebrated Langevin
equation. The latter is a stochastic differential equation [272] for one dimensional motion in a viscous
fluid and reads [273]

m
dV (t)

dt
= −γ0V (t) + F (t) , (6.1)

where m is the particle mass, V (t) is the particle translational velocity, γ0 = µ−10 = 6πηa is the bulk
friction coefficient and F (t) is the stochastic random force modeling the effect of the background
noise caused by the fluid on the Brownian particle. The random force is Gaussian distributed and
satisfies the statistical properties

〈F (t)〉 = 0 , 〈F (t)F (t′)〉 = 2γ0kBTδ(t− t′) , (6.2)

where brackets mean ensemble average, kB is the Boltzmann constant and T is the absolute temper-
ature of the system. Here we assume that there are no other external forces acting on the particle.

In a suspension of particles, there are three vastly different timescales, denoted τS, τB and τP. The
time τS is the short atomic timescale, which is of the order of picoseconds. The second timescale τB
is the Brownian timescale, required for the particle to relax towards that of the fluid. It is of the
order of the ratio between the particle mass and the bulk friction coefficient, that is τB ' m/γ0. In
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typical colloidal systems, this time is of the order of microseconds. Lastly, τP is the time required
for the particle to diffuse across its own radius a, such that τP ' a2/D0, where D0 is the molecular
diffusion coefficient. The latter can be calculated from Einstein’s relation [268]

D0 =
kBT

γ0
. (6.3)

The time τP is of the order of hours or even days and strongly depends on the particle size. Hereinafter,
we shall be focusing on diffusion in the overdamped regime, i.e. for timescales in the range τB � τ �
τP.

The presence of an elastic membrane introduces a memory in the system [274] and the particle
dynamics should therefore be treated within a generalized Langevin formalism [275, 276]

m
dV (t)

dt
= −

∫ t

−∞
γ(t− t′)V (t′) dt′ + F (t) , (6.4)

where γ(t) is the time dependent friction retardation function (expressed in kg/s2). In the particular
case when γ(t) = 2γ0 δ(t), Eq. (6.4) is reduced to the classical non-retarded Langevin equation given
by Eq. (6.1), in which the random force has been assumed to be a purely Gaussian process delta
correlated in time.

The computation of the particle mean-square displacement (MSD) requires as an intermediate
step the determination of the velocity autocorrelation function via the fluctuation-dissipation theorem.
This will be the subject of the next section.

6.2 Fluctuation-dissipation theorem

By evaluating the Fourier transform of both members in Eq. (6.4) as previously defined by Eq. (3.7),
we obtain

imωV (ω) = −
∫ ∞
t=−∞

e−iωt dt

∫ t′=t

t′=−∞
γ(t− t′)V (t′) dt′ + F (ω) . (6.5)

Using the change of variables u = t− t′, together with the shift property in time domain of Fourier
transforms1, the particle velocity is related to the fluctuating force via the equation

V (ω) =
F (ω)

imω + γ[ω]
, (6.6)

where γ[ω] is the Fourier-Laplace (also called one-sided Fourier) transform of the retardation function,
defined by

γ[ω] =

∫ ∞
0

γ(t)eiωt dt . (6.7)

In virtue of the fluctuation-dissipation theorem (FDT) [275], the frictional forces and the random
forces are not independent quantities, but they are rather related to each other via the correlation

〈F (ω)F (ω′)〉 = φF(ω) δ(ω + ω′) , (6.8)

where φF(ω) is the Fourier transform of the velocity autocorrelation function φF(t), known also in
the literature as the power spectrum of F (ω). In term of the friction kernel, the power spectrum is

1The shift in time domain is the property F{F (t− x)} = e−ixωF (ω) for x ∈ R.
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given by
φF(ω) = kBT (γ[ω] + γ[−ω]) = 2kBT Re (γ[ω]) , (6.9)

noting that γ[ω] = γ[−ω], as can be inferred from Eq. (6.7). The power spectra of V (ω) and F (ω)
are thus related to each other via the relation

φV(ω) =
φF(ω)

|imω + γ[ω]|2
. (6.10)

By making use of Eq. (6.9), we obtain

φV(ω) =
kBT

imω + γ[ω]
+ c.c. , (6.11)

where c.c. stands for complex conjugate. Provided that γ[ω] is known, it is therefore possible to
transform φV(ω) back to the time domain, leading directly to the velocity autocorrelation function

φV(t) := 〈V (0)V (t)〉 =
kBT

2π

∫ ∞
−∞

(
1

imω + γ[ω]
+ c.c.

)
eiωt dω . (6.12)

It can be shown that the contribution from the second term in Eq. (6.12) vanishes for t > 0 since
the integrand is analytic in the upper half plane in which Imω > 0 [277]. As a result, the velocity
autocorrelation function can be written for t > 0 as

φV(t) =
kBT

2π

∫ ∞−iε
−∞−iε

eiωt

imω + γ[ω]
dω , (6.13)

where ε > 0 is a contour integration parameter. In the overdamped regime, i.e. in the massless limit,
Eq. (6.13) is drastically simplified to finally obtain [277]

φV(t) =
kBT

2π

∫ ∞
−∞

µ(ω)eiωt dω . (6.14)

for t > 0.

6.3 Diffusion near cell membranes

Having computed the velocity autocorrelation function φV, the mean-squared displacement (MSD)
can thus be obtained. The distance traveled by the Brownian particle in a time interval [0, t] is the
integral of its velocity, such that

x(t) =

∫ t

0
V (t1) dt1 , (6.15)

whose square reads

x(t)2 =

∫ t

0

∫ t

0
V (t1)V (t2) dt1 dt2 . (6.16)

Using the change of variables t2 = t1 + s, and integrating with respect to the variable t1, the
mean-squared displacement reads

〈x(t)2〉 = 2

∫ t

0
(t− s)φV(s) ds , (6.17)
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Figure 6.1: Scaled mean-squared dis-
placement versus the scaled time for a
particle diffusion parallel (blue) or per-
pendicular (red) to an elastic membrane
for a/z0 = 3/5. Here we take τ = TS =
TB as a characteristic time scale for the
particle-membrane system.

noting that the autocorrelation is a stationary process that depends only on the time difference
t1 − t2 [277]. The particle long-time diffusion coefficient is computed as

D∞ := lim
t→∞

〈x(t)2〉
2t

=

∫ ∞
0

φV(s) ds . (6.18)

In the following, we shall be interested in the MSD of a solid particle initially located at z = z0,
moving parallel or perpendicular to a planar elastic membrane possessing both shearing and bending
rigidities. Analogous predictions can be performed nearby a membrane of an arbitrary shape provided
that the frequency-dependent mobility functions associated with the geometry of interest are known.

The resulting MSD is the sum of the MSDs for parallel diffusion along the x and y directions
and the MSD for perpendicular diffusion along the z direction such that

〈r(t)2〉 = 2〈x‖(t)2〉+ 〈x⊥(t)2〉 . (6.19)

We further emphasize that we neglect here the z-dependence of the mobility functions in our
MSD calculations for diffusion normal to the membrane. Indeed, it would be of interest to investigate
the more complex scenario in which 〈x⊥(t)2〉 is of the same order of magnitude as z20 , and thus
accounting for the z-dependence of the mobility becomes crucial for an accurate computation of the
particle diffusion normal to the membrane.

Another way to quantify the slowing down of the particle is to investigate the time-dependent
scaling exponent of the MSD, which is defined as the logarithmic derivative of the MSD such that

γα(t) :=
d ln〈xα(t)2〉

d ln t
, α ∈ {‖,⊥} . (6.20)

If diffusion is normal (standard), then the scaling exponent is one. Anomalous subdiffusion is char-
acterized by a scaling exponent that is less than one and is often encountered in biological media
with obstacles [278] or binding sites [279]. In the following, we shall present some illustrative results
to get an idea about the mechanism of diffusion nearby cell membranes. Further results have been
reported in our publications [Pub1, Pub2, Pub3, Pub9].

In Fig. 6.1, we show the particle time-dependent MSD for the diffusional motion parallel (blue)
and perpendicular (red) to a planar elastic membrane. The ratio of the particle radius to the distance
from the membrane is taken a/z0 = 3/5. We define the characteristic time scale for shearing as
TS := 6z0η/κS, and for bending as TB := 4ηz30/κB. We then scale the time by τ := TS = TB for
which membrane shearing and bending moduli are related via the relation z20 = 3κB/(2κS).
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Figure 6.2: Variations of the scaling exponent for the motion parallel (a) and perpendicular (b) to
the membranes as given by Eq. (6.20) versus the scaled time.

At short time scales for which t � τ , we observe that the MSDs follow faithfully the linear
behavior in a bulk fluid, with the normal diffusion coefficient D0 predicted from Einstein’s theory.
This is justified by the fact that the particle does not yet feel the presence of the membrane at
these short time scales. As the time increases, the MSDs substantially bend down to asymmetrically
approach the linear behavior predicted nearby a non-slip hard-wall.

Fig. 6.2 shows the temporal evolution of the scaling exponent as defined by Eq. (6.20) which is
found to be strongly dependent on the distance separating the particle from the membrane. We first
remark that the scaling exponent amounts to a value of 1 as t → 0 and as t → ∞, at which the
particle experiences normal diffusion. For t ∼ τ , we observe a bending down of the scaling exponent,
resulting in a long-lasting subdiffusive regime that extends up to 103τ in the parallel direction and
even further in the perpendicular direction. As the ratio a/z0 gets larger, the hydrodynamic coupling
between the particle and the membrane becomes more important and thus the subdiffusive behavior
is enhanced. For a/z0 = 3/5, we find that the exponent can go as low as 0.93 for the parallel motion
and as low as 0.88 for the perpendicular motion.

In the next chapter, we present the boundary integral method we use to verify and validate our
analytical theory together with some technical implementation details.
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Chapter 7

Numerical method

docendo disco, scribendo cogito

Seneca the Younger

For the simulations we use the boundary integral method (BIM) [280] whose foundation is the
steady Stokes equations (3.2) and (3.3). The core idea of the method is to expresses the solution
of the Stokes equations in terms of singularity distributions over the domain boundary [238]. The
method permits a complete description of the fluid flow inside a control volume while requiring only
the knowledge of velocity or traction on boundaries. A special advantage of BIM is the fact that only
a single 2D grid is needed which can be used for the surface deformation as well as for the 3D flow
computation.

7.1 Boundary integral equation

We consider a suspension of N particles moving under the influence of an imposed external flow v∞.
The velocity of a point x in the fluid domain is given by the integral representation [280]

vj(x) = v∞j (x)−
N∑
m=1

(Nm∆f)j(x) +
N∑
m=1

(1− λm) (Kmv)j(x) , (7.1)

where ∆f denotes the jump of the traction across the particles. We define the single layer integral
for a given vectorial function g as

(Nm g)j(x) :=

∫
Sm

gi(y)G(0)ij (y,x) dS(y) , (7.2)

where integration over the surface of the particle Sm needs to be performed. The double layer integral
is defined as

(Km g)j(x) :=

∫
Sm

gi(y) T (0)
ijk (y,x)nk(y) dS(y) . (7.3)

The remaining quantities are the viscosity contrast λm := ηm/η representing the ratio of inner to
outer viscosity, the outer normal vector n pointing into the ambient fluid, the free-space Stokeslet
defined by Eq. (3.17), and the corresponding Stresslet

T (0)
ijk (y,x) := − 3

4π

sisjsk
s5

, (7.4)
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with s := y − x and s := |s|.
Taking the limit when x approaches the surface of the pth particle, we derive the boundary

integral equation, which is a Fredholm integral of the second kind for the velocity,

vj(x) =
2

1 + λp

(
v∞j (x)−

N∑
m=1

(Nm∆f)j(x) +
N∑
m=1

(1− λm) (KPV
m v)j(x)

)
, (7.5)

where PV denotes the principal value of the double-layer integral [238]. Taking λp = 1 with 1 ≤ p ≤ N ,
the last equation is drastically simplified and reduced to a Fredholm equation of the first kind.

7.2 Completed double layer BIM

We now consider N deformable particles (referred to as BIM objects which in our case have an elastic
nature) and N rigid particles (referred to as CDL objects) flowing under the influence of an imposed
flow field. Treating rigid objects in the direct formulation is difficult and inefficient since it would
lead to a Fredholm equation of the first kind. Instead, it is worthwhile to employ an extension called
the completed double layer boundary integral method (CDLBIM) [281–283]. Restricting to a unit
viscosity contrast for the BIM objects, the CDLBIM equations read

vj(x) = Hj(x) , x ∈ Sp , (7.6a)

1

2
φj(x) +

6∑
i=1

ϕ
(i)
j (x) 〈ϕ(i),φ〉 = Hj(x) , x ∈ Sq . (7.6b)

where Sp is the surface of the pth deformable BIM object, and Sq is the surface of the qth rigid CDL
object, where 1 ≤ p ≤ N and 1 ≤ q ≤ N . Moreover, v represents the velocity on the BIM objects
while φ denotes the so-called double layer density function on S. The latter is an unphysical auxiliary
field. However, the corresponding physical translational and rotational velocities can be retrieved via

V (x) =

3∑
i=1

ϕ(i)(x)〈ϕ(i),φ〉 , x ∈ Sq , (7.7a)

Ω(x)× (x−Xq) =

3∑
i=1

ϕ(i+3)(x)〈ϕ(i+3),φ〉 , x ∈ Sq , (7.7b)

where Xq being the centroid of the particle q and ϕ(i) are known functions representing the six
possible rigid body movements of the solid particles [281]. The brackets denote the inner product in
the vector space of real functions whose domain is Sq. Continuing, the function Hj is given by

Hj(x) := v∞j (x)−
N∑
m=1

(Nm∆f)j(x)−
N∑
m=1

(Kmφ)j(x)

+
N∑
m=1

(
G(0)jk (x,Xk)Fk +R(0)

jk (x,Xk)Lk

)
,

(7.8)

where Fk and Lk are the known force and torque acting on the particle surface, respectively. Moreover,
the rotlet solution reads

R(0)
ij (y,x) :=

1

8π

εijksk
s3

. (7.9)
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Clearly, in the absence of CDL objects, Eq. (7.6a) reduces to the standard boundary integral
equation given by Eq. (7.5) in the general case for arbitrary viscosity contrast.

Given the traction jumps ∆f computed from the current deformation, and the forces and torques
as inputs, equations (7.6) constitute a set of Fredholm integral equations of the second kind for
the unknown velocity v on the BIM objects and the density φ on the rigid particles. To solve this
equation numerically, we discretize all surfaces with flat triangles. For a rigid spherical particle, this
is done by consecutively refining an icosahedron [219, 284]. We perform the integration numerically
by a Gaussian quadrature with seven points per triangle [285] together with linear interpolation of
nodal values across each triangle [280]. The singularities appearing in the single layer integral are
treated via the polar integration rule [286], while the singularities of the double layer integral are
eliminated by the standard singularity subtraction scheme [280]. With this the integral equation
can be evaluated at all nodes, forming a dense and asymmetric linear system of equations which
is then subsequently solved by GMRES [287]. The residuum of the solver is consistently fixed to
10−4. This provides us with the velocity v at each node of the BIM objects and, after application of
equation (7.7), also of the rigid particle. The dynamical evolution of the system is hence obtained
by solving the kinematic condition [238]

dx

dt
= v(x) , (7.10)

with the explicit Euler scheme. Throughout this thesis, we chose a step size that is dependent on the
wiggling frequency of the force (see the last section of this chapter for more details.)

7.3 Computation of the traction jumps

Here we provide some technical details regarding the computation of the traction jump ∆f across
the membranes, as required for Eq. (7.8). The membranes are endowed with shear and area elasticity
together with bending rigidity.

7.3.1 Shear elasticity

We employ either the neo-Hookean or the Skalak model whose areal energy densities W are given by
Eq. (2.9) and (2.11), respectively. The strain invariants I1 and I2 are related to the principal in-plane
stretch ratios via I1 = λ21 + λ22 − 2 and I2 = λ21λ

2
2 − 1. Hence, the total energy of a membrane Sp is

given by

ES =

∫
S
(0)
p

W dS0 , (7.11)

where the integration is performed over the surface in the reference state S(0)
p . To obtain the force

at each node, we assume that the deformation is a linear function of position in each triangle. After
discretization of the integral, the energy ES depends explicitly on the node positions xi. Therefore,
according to the principle of virtual work, the total force is then given by the gradient

F (xi) =
∂ES

∂xi
. (7.12)

This derivative can be computed analytically as detailed in references [219, 288]. The traction jump
is thus obtained by

∆f(xi) =
F (xi)

Ai
, (7.13)
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whereas Ai is the area associated with node xi and is taken as one third of the total area of the
triangles containing the node [283].

7.3.2 Bending rigidity

The bending forces are modeled according to the constitutive law proposed Helfrich [224] leading to
the traction jump stated by Eq. (2.17). The mean curvature H is calculated according to the relation
H(x) = −1

2

(
∆‖xi

)
ni(x). We use the algorithms presented by Meyer et al. [289] for the computation

of the Laplace-Beltrami operator ∆‖ and the Gaussian curvatureK. The normal vector n is computed
according to the “mean weighted by angle” method. This provides reasonable results in the application
of viscous flows [237]. We note that we set ∆f to zero for nodes located at the border of open meshes.

7.4 Determination of particle mobilities

Now we consider two particles labeled γ and λ moving nearby an elastic membrane as schematically
illustrated in Fig. 4.1. For the numerical determination of the particle mobility functions, a harmonic
force Fλ(t) = Aλe

iω0t or torque Lλ(t) = Bλe
iω0t is exerted at the surface of the particle λ. After

a brief transient evolution, the translational and rotational velocities of the particle γ evolve as
Vγ(t) = Cγe

i(ω0t+δγ) and Ωγ(t) = Dγe
i(ω0t+ϕγ), respectively, and analogously for the particle λ. The

amplitudes and phase shifts can accurately be determined by a fitting procedure of the numerically
recorded velocities using the trust region method [290]. In this way, the tt and rt components can
be computed for a torque-free particle as

µtt,λλαβ =
Cλα
Aλβ

eiδλ , µrt,λλαβ =
Dλα

Aλβ
eiϕλ , (7.14)

for the self-mobilities and

µtt,γλαβ =
Cγα
Aλβ

eiδλ , µrt,γλαβ =
Dγα

Aλβ
eiϕλ , (7.15)

for the pair-mobilities. For a force-free particle, the components tr and rr are computed from

µtr,λλαβ =
Cλα
Bλβ

eiδλ , µrr,λλαβ =
Dλα

Bλβ
eiϕλ , (7.16)

for the self-mobilities and

µtr,γλαβ =
Cγα
Bλβ

eiδγ , µrr,γλαβ =
Dγα

Bλβ
eiϕγ . (7.17)

for the pair-mobilities.
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In mathematics you don’t understand
things. You just get used to them.

Johann von Neumann

In this appendix, we shall provide some technical details with regard to the computation of the
2D forward and inverse Fourier transform relevant for the calculation of the Green’s functions nearby
planar elastic membranes.

The spatial 2D Fourier transform as defined by Eq. (3.4) can also be expressed using polar
coordinates. By introducing the coordinate transformations x = ρ cosφ and y = ρ sinφ, and similarly
for the wavevector components qx = q cos θ and qy = q sin θ, we obtain

f̃(q, θ) =

∫ ∞
0

∫ π

−π
f(ρ, φ)e−iρq cos(θ−φ)ρdρdφ . (7.18)

Depending on the symmetry properties of f(ρ, φ) we shall consider two different cases separately.

Radially symmetric functions

For radially symmetric functions, i.e. when f depends only on the radial distance ρ, the integral
given by Eq. (7.18) can be expressed as

f̃(q, θ) =

∫ ∞
0

ρf(ρ)

∫ π

−π
e−iρq cos(θ−φ) dφ dρ . (7.19)

Introducing the zero-order Bessel function [291]

J0(ρq) :=
1

2π

∫ π

−π
e−iρq cosφ dφ =

1

2π

∫ π

−π
e−iρq cos(θ−φ) dφ . (7.20)

Eq. (7.19) can then be written as

f̃(q) = 2π

∫ ∞
0

ρf(ρ)J0(qρ) dρ , (7.21)

which is in fact nothing but the zeroth order Hankel transform of f(ρ) apart from a factor of 2π.
Similarly, it can be shown that the inverse 2D Fourier transform stated by Eq. (3.5) can be written
for radially symmetric functions as

F−1{f̃(q)} =
1

2π

∫ ∞
0

qf̃(q)J0(ρq) dq . (7.22)
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Non-radially symmetric functions

In order to perform the inverse 2D Fourier transform for a non-radially symmetric function, we shall
use a generalization of the method previously applied for radially symmetric functions. When f is a
function of both ρ and φ, and periodic in φ, it can then be expanded into a Fourier series as

f(ρ, φ) =

∞∑
n=−∞

fn(ρ)einφ , (7.23)

where the Fourier coefficients are given by

fn(ρ) =
1

2π

∫ 2π

0
f(ρ, φ)e−inφ dφ . (7.24)

In the same way, the Fourier transform f̃(q, θ) can also be expanded into a Fourier series such
that

f̃(q, θ) =
∞∑

n=−∞
f̃n(q)einθ , (7.25)

where

f̃n(q) =
1

2π

∫ 2π

0
f̃(q, θ)e−inθ dθ . (7.26)

By making use of the following remarkable identity [292, 293]

e−iq.ρ =
∞∑

m=−∞
i−mJm(qρ)e−imφeimθ , (7.27)

together with the Fourier series given in Eq. (7.23), the forward 2D Fourier transform is then obtained
as

f̃(q, θ) =

∫ ∞
0

∫ 2π

0

( ∞∑
n=−∞

fn(ρ)einφ

)( ∞∑
m=−∞

i−mJm(qρ)e−imφeimθ

)
dφρ dρ . (7.28)

Since ∫ 2π

0
einφdφ = 2πδn0 , (7.29)

only the terms with m = n remain, leading to

f̃(q, θ) =
∞∑

n=−∞
2πi−neinθ

∫ ∞
0

fn(ρ)Jn(qρ)ρ dρ . (7.30)

By identification with the Fourier series of f̃ as written in (7.25), we immediately recover the
Fourier coefficients,

f̃n(q) = 2πi−n
∫ ∞
0

fn(ρ)Jn(qρ)ρdρ , (7.31)

which is the nth order Hankel transform of fn(ρ) multiplied by 2πi−n. In a similar way, it is easy to
obtain the inverse Fourier transform of f̃ by using this time the identity

eiq.ρ =
∞∑

m=−∞
imJm(qρ)eimφe−imθ , (7.32)
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to find the Fourier series coefficients fn(ρ) as

fn(ρ) =
in

2π

∫ ∞
0

f̃n(q)Jn(ρq)q dq . (7.33)

In summary, in order to find the inverse Fourier transform for a given non-radially symmetric
function f̃(ρ, φ), two steps are required:

1. Evaluate the function series f̃n(q) from Eq. (7.26).

2. Find fn(ρ) using the formula (7.33).

The solution f(ρ, φ) is written as infinite series as presented in Eq. (7.23).
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Summary and outlooks

There are no such things as applied
sciences, only applications of science.

Louis Pasteur

We present an analytical theory supplemented by fully resolved boundary integral simulations
of the hydrodynamic interactions and diffusion of particles nearby a realistically modeled red blood
cell membrane endowed with resistance towards shearing and bending. In the first step, the theory
provides the Green’s functions which are solutions of the linear hydrodynamic equations for the fluid
flow field induced by a concentrated point-force singularity acting close to the membrane. Depending
on the membrane geometry, we adopt three different approaches for the computation of the Green’s
functions. Firstly, we present the 2D Fourier transform technique which is based on transforming the
Stokes equations governing the fluid motion into a linear system of ordinary differential equations
written in the spatial and temporal frequency domains. The method is known to be appropriate for
the determination of the solutions of the Stokes equations in systems composed by parallel planar
interfaces. Upon inverse Fourier transformation, the resulting Green’s functions can conveniently be
expressed as convergent infinite integrals over the wavenumber. Secondly, we present the Fourier-
Bessel integral technique which consists of expanding the solution in the form of Fourier integrals
which involve unknown coefficients that can be determined from the boundary conditions. The
method is perfectly suited for domains bounded by interfaces of cylindrical geometry. Thirdly, we
present the spherical harmonics technique which is based on the idea of expressing the solution
of the fluid flow nearby spherical boundaries in terms of infinite sums of independent harmonics
with unknown coefficients. The sum can then be truncated at some finite integer depending on the
desired precision. In the limits of vanishing forcing frequencies, all three approaches yield the correct
hard-wall limits with stick boundary conditions.

In the next step, we characterize the fluid mediated hydrodynamic interactions between particles
by analytically computing the hydrodynamic mobility functions which couple the particles’ trans-
lational and rotational velocities to the torques and forces applied on their surfaces. For that, we
employ a combination of the multipole expansion and Faxén theorem to yield analytical expressions
of the particle self- and pair-mobilities obtained directly from the Green’s functions associated with
the geometry of interest. For a planar elastic membrane, the corrections to the mobility function are
expressed as a power series up to the 5th order of the ratio between particle radius and distance from
the membrane for the self-mobilities, and between particle radius and interparticle distance for the
pair-mobilities. The mobilities are found to be complex valued frequency-dependent functions whose
real parts are generally logistic-like functions, whereas the imaginary parts exhibit at intermediate
frequencies typical peak structures. The latter are a clear signature of the memory effect induced
by the elastic nature of the membrane. In the high frequency limit, the corrections to the mobilities
vanish and thus we recover the behavior in a bulk fluid.

We further show that the particle mobilities nearby a single membrane can appropriately be
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expressed as a linear superposition of the contributions due to shearing and bending as obtained
independently. Additionally, we demonstrate that the shearing and bending related parts may have
additive or suppressive contribution to the total mobility. This interesting behavior is elucidated
by considering the steady motion of two particles towards a membrane. The interaction nearby a
membrane with pure bending resistance is found to be always repulsive, i.e. as in the case of a hard
wall, while nearby a membrane of pure shearing, the interaction may be attractive. Moreover, we show
that there exists a frequency range in which some of the pair-mobility components may interestingly
exceed their bulk values. This leads to a short-lived superdiffusive behavior when considering the
joint mean-square displacement.

Considering curved membranes, we find that membrane shearing manifests itself in a more pro-
nounced way compared to bending and thus strongly determines the qualitative behavior of elastically
confined particles near red blood cell membranes. Moreover, we recover the Green’s functions and
particle mobilities in the hard boundary limits only if the membrane possesses some finite resistance
towards shearing. For curved membranes, our theoretical calculations are restricted to the point-
particle approximation representing the leading order term in the mobility corrections but going
beyond that is feasible although laborious. We further show that for spherical membranes, curvature
leads to the appearance of a prominent additional low-frequency peak in the mobility functions. The
peak is attributed to the fact that the traction jumps due to shearing involve a contribution from
the normal displacement in contrast to planar membranes where these traction jumps depend solely
on the in-plane tangential displacements. Furthermore, we examine the motion of a spherical capsule
due to a nearby point force, finding that the pair-mobility function is uniquely dependent on shearing
resistance and can well be describe by a Debye-like model with a single relaxation time.

In the last step, the analytical calculations of the frequency-dependent mobilities provide the
friction kernel of the system and thus enable the study of particle diffusional dynamics nearby elastic
cell membranes. For that purpose, we apply a generalized Langevin equation governing the time
evolution of the particle velocity in systems with memory effect. Using the fluctuation-dissipation
theorem relating the friction forces to the stochastic random forces, we compute the particle mean-
square displacement which fully characterizes the diffusion process. We show that in the presence of the
membrane the particle undergoes a long-lasting anomalous subdiffusion at intermediate time scales of
motion. The steady diffusion coefficient is found to be universal and identical to that predicted nearby
a hard wall with stick boundary conditions. This subdiffusive behavior can significantly enhance
residence time and binding rates nearby membranes and thus may increase the probability to trigger
the uptake of particles via endocytosis.

Outlooks

As a future perspective, it would be of interest to supplement and complement the present work by
considering further related aspects of particle motion nearby elastic confinement. Possible research
topics include

• computing the Green’s functions and mobility functions nearby a planar membrane with finite
size by solving non-trivial dual integral equations that arise from this mixed boundary problem.

• elucidating the role of inertia by carrying out analogous calculations at finite Reynolds number
using matched asymptotic solutions. The analytical predictions can then be compared with
numerical simulations performed using a full Navier Stokes solver that accounts for fluid inertia,
e.g. the lattice Boltzmann method.

• investigating the motion of an axisymmetric particle such as a spheroid or a rod-like particle
nearby curved membranes and find out how the coupling and rotational mobilities scale with
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distance from the membrane.

• exploring the asymmetric motions of spherical particles inside a spherical elastic cavity.

• carrying out analytical calculations of the self and pair-mobility functions of particles moving
inside an elastic cylinder for arbitrary eccentricity. The solution can be formulated as an
infinite sum of Fourier-Bessel integrals over the wavenumber. The obtained results can then
be compared with those obtained earlier for an infinitely extended planar elastic membrane by
considering a very wide channel. A low frequency peak in the imaginary part is expected to
occur in the imaginary part together with a dispersion step in the real part, i.e. in the same
way as observed previously nearby a spherical membrane.

• performing “exact” analytical calculations of the Green’s functions and particle frequency-
dependent mobilities nearby elastic confinements using the bipolar coordinate technique.

• carrying out analogous theoretical investigations by computing the remaining components of
the grand mobility tensor. This allows to address particle motion relative to an arbitrary
external flow, e.g. an oscillatory shear flow.

• computing the lift force induced by the elastic membrane on a nearby particle by accounting
for the second order term in the kinematic condition at the membrane surface. The lift force is
expected to be quadratic in the particle parallel translational velocity.

• investigating the motion of swimming microorganisms and self-propelled active particles nearby
and through cell membranes, where the aforementioned memory effect or mobility sign reversal
may lead to interesting and novel behaviors.
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Abstract

The physical approach of a small particle (virus, medical drug) to the cell membrane represents the
crucial first step before active internalization and is governed by thermal diffusion. Using a fully
analytical theory we show that the stretching and bending of the elastic membrane by the approaching
particle induces a memory in the system which leads to anomalous diffusion, even though the particle
is immersed in a purely Newtonian liquid. For typical cell membranes the transient subdiffusive
regime extends beyond 10ms and can enhance residence times and binding rates up to 50%. Our
analytical predictions are validated by numerical simulations.

1 Introduction

Endocytosis, the uptake of a small particle by a living cell is one of the most important processes
in biology [1–3]. Current research is focused mainly on the biophysical and biochemical mechanisms
which govern endocytosis when particle and cell are in direct physical contact. Much less investigated,
yet equally important, is the approach of the particle to the cell membrane before physical contact is
established [4]. In many physiologically relevant situations, e.g., inside the blood stream, the cell and
the particle are both suspended in a surrounding liquid and the approach is governed by thermal
diffusion of the small particle. The thermal diffusion of small particles (fibrinogen) naturally occurring
in human blood has furthermore been suggested as the root cause of red blood cell aggregation [5–7].

Thermal diffusion of a spherical particle in a bulk fluid is well understood and governed by
the celebrated Stokes-Einstein relation. This relation builds a bridge between the particle mobility
when an external force is applied to it and the random trajectories observed when only thermal
fluctuations are present. Particle mobilities and thermal diffusion near solid walls have been thoroughly
investigated both theoretically [8–13] and experimentally [14–25] finding a reduction of the particle
mobility due to the proximity of the wall. Some theoretical works have investigated particle mobilities
and diffusion close to fluid-fluid interfaces endowed with surface tension [26–29] or surface elasticity [30–
32] with corresponding experiments [33–39]. For the case of a membrane with bending resistance
transient subdiffusive behavior has been observed in the perpendicular direction [40]. Regarding
biological cells, recent experiments have measured particle mobilities near different types of cells as
well as giant unilamellar vesicles (GUVs), both of which possess an elastic membrane separating two
fluids, and found that the mobility near the cell walls does decrease but not as strongly as near a
hard wall [4].

Here we derive a fully analytical theory for the diffusion of a small particle in the vicinity of a
realistic cell membrane possessing shear and bending resistance with fluid on both sides. As the typical
sizes and velocities are small, the theory is derived in the small Reynolds number regime neglecting the
non-linear term, but including the unsteady contribution in the Navier-Stokes equations. Our most
important finding is that there exists a long-lasting subdiffusive regime with local exponents as low as
0.87 extending over time scales beyond 10ms. Such behavior is qualitatively different from diffusion
near hard walls where the diffusion, albeit being slowed down, still remains normal (i.e. the mean-
square-displacement increases linearly with time). Remarkably, our system exhibits subdiffusion in a
purely Newtonian liquid whereas most commonly subdiffusion is observed for particles in viscoelastic
media. The subdiffusive regime increases the residence time of the particle in the vicinity of the
membrane by up to 50% and is thus expected to be of important physiological significance. Our
analytical particle mobilities are quantitatively verified by detailed boundary-integral simulations.
Power-spectral densities which are amenable to direct experimental validation using optical traps
are provided.
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Figure 1: Mean-square displacement (red line) of a particle with radius R=100nm diffusing z0=153nm
above a red-blood cell membrane in lateral (top) and perpendicular (bottom) direction as predicted
by our theory at T = 300K. For short times t . 50µs the MSD follows bulk behavior (black dashed
line) while for long times the MSD follows hard-wall behavior (blue dash-dotted line). In between,
a subdiffusive regime is evident extending up to 10ms and beyond. Insets show the local exponent
which goes down until 0.87 for perpendicular diffusion.

2 Results

A spherical particle with radius R = 100nm is located at a distance z0 = 153nm above an elastic
membrane and exhibits diffusive motion as illustrated in the inset of Fig. 1. The membrane has a
shear resistance κS = 5 ·10−6N/m and bending modulus κB = 2 ·10−19Nm which are typical values of
red blood cells [41]. The area dilatation modulus is κA = 100κS. The fluid properties correspond to
blood plasma with viscosity η = 1.2mPas. Figure 1 shows the mean-square-displacement (MSD) for
parallel as well as perpendicular motion as obtained from our fully analytical theory to be described
below. For short times (t < 50µs) the MSD follows a linear behavior with the normal bulk diffusion
coefficient D0 since the membrane does not have sufficient time to react on these short scales. This
is in agreement with a simple balance between viscosity and elasticity for shear, τS = ηR/κS ≈ 37µs,
and bending, τB = ηR3/κB ≈ 22µs. For t > 50µs we observe a downward bending of the MSD which
is a clear signature of subdiffusive behavior. Indeed, as shown in the insets of Fig. 1, the local exponent
α = ∂ log〈x2〉

∂ log t diminishes from 1 down to 0.92 in the parallel and 0.87 in the perpendicular direction.
The subdiffusive regime extends up to 10ms in the parallel and even further in the perpendicular
direction, which is long enough to be of possible physiological significance. Finally, for long times, the
behavior turns back to normal diffusion with α ≈ 1. Compared to the short-time regime, however,
the diffusion coefficient is now significantly lower and approaches the well-known behavior near a
solid hard wall with Dwall,‖ = D0(1− 9/16R/z0) in the parallel and Dwall,⊥ = D0(1− 9/8R/z0) in
the perpendicular case, respectively. Diffusion for long times therefore turns out to depend only on
the particle distance and to be independent of the membrane properties.
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Figure 2: (a) Minimum of the local exponent plotted against particle-membrane separation. Significant
subdiffusion is observed up to distances roughly ten times the particle radius. (b) The time required
to diffuse one particle radius increases due to the presence of the membrane thus leading to an
enhanced residence time of the particle in the vicinity of the membrane which may increase the
probability of triggering endocytosis.

In Fig. 2 (a) we show the minimum of the local exponent for different particle-membrane separa-
tions. Even for distances ten times the particle radius, a significant deviation of the local exponent
from 1 is still observable. From the MSDs it is straightforward to estimate the time TD required by
the particle to diffuse a distance equal to its own radius which gives an approximate measure of the
”diffusion speed”. As expected based on the data from Fig. 1, diffusion in the perpendicular direction
is slowed down significantly more than for lateral motion, see Fig. 2 (b), in agreement with recent
experimental observations [4].

Experimentally, long MSDs can be difficult to measure as the particle may move out of the focal
plane during the recording time. A commonly used technique is therefore to confine the particle
to its position using optical traps. One then records the power spectral density (PSD) of particle
fluctuations around its equilibrium position. The PSDs predicted by our theory for a typical optical
trap with spring constant K = 10−5N/m [4] as a function of frequency f = ω/2π are shown in
Fig. 3. The general behavior of the unconstrained system is not qualitatively altered by the optical
confinement: for high frequencies the behavior is bulk-like (mirroring the bulk-like MSD at short
times) while for low frequencies the PSD approaches that expected near a solid wall (mirroring the
hard-wall like MSD at long times). The frequency range of the transition lies mainly below 1 kHz
and should thus be experimentally accessible.

3 Theory

Our theoretical development leading to figures 1 through 3 proceeds via the calculation of particle
mobilities and the fluctuation-dissipation theorem and can be sketched as follows (a detailed derivation
is given in Appendices A-C). We consider a spherical particle of radius R driven by an oscillating
force Fω(t) = F0e

iωt in a fluid with density ρ and dynamic viscosity η whose complex mobility µ(ω)
for a fixed ω is defined as

Vω (t) = µ (ω)Fω (t) , (3.34)

and can be separated into the three contributions

µ (ω) = µ0 + µu0(ω) + ∆µ (ω, z0) . (3.35)
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Figure 3: Predicted power-spectral density of position fluctuations if the same bead as in Fig. 1 is
confined by a typical optical trap of strength K = 10−5N/m [4]. Similar as in the MSD of Fig. 1
a transition from hard-wall-like behavior (blue dash-dotted line) for low frequencies to bulk-like
behavior (black dashed line) at high frequencies is seen.

Here, µ0 = 1/(6πηR) is the usual steady-state bulk mobility,

µu0(ω) = µ0

(
e−Rλ

√
−i − 1

)
(3.36)

with λ2 = ρω/η is the correction due to fluid inertia [42] and ∆µ (ω, z0) is the correction due to the
elastic membrane at distance z0. In order to derive the mobility corrections, we employ the commonly
used approximation of a small particle (R/z0 � 1). Using numerical simulations of a truly extended
particle, we will show below that this approximation is surprisingly good even for R/z0 = 0.65. The
problem is thus equivalent to solving the unsteady Stokes equations with an arbitrary time dependent
point force F located at r0

−ρ∂v
∂t

+ η∇2v −∇p+ F δ(r − r0) = 0 ,

∇ · v = 0 ,
(3.37)

with the fluid velocity v, the pressure p and the point force position r0. The elastic membrane is
located at z = 0, has infinite extent in x and y directions and is surrounded by fluid on both sides.
Following the usual approximation of small deformations, we impose the traction jump at z = 0
which follows from the Skalak [43] and Helfrich [44] laws for the shear and bending resistance as
detailed in Appendix A

∆fx = −κS
3

(2 (1 + C)ux,xx + ux,yy + (1 + 2C)uy,xy) ,

∆fy = −κS
3

(uy,xx + 2 (1 + C)uy,yy + (1 + 2C)ux,xy) ,

∆fz = κB (uz,xxxx + 2uz,xxyy + uz,yyyy) ,

(3.38)
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where the membrane deformation is u and the notation u,· denotes partial spatial derivatives. The
moduli are κS for shear resistance and κB for bending resistance while the ratio between shear and
area dilatation modulus is C = κA/κS. The no-slip condition at the membrane surface relates the
surface deformation to the local fluid velocity

du

dt
= v|z=0 , (3.39)

Together with equations (3.37), (3.38) and (3.39) this represents a closed mathematical problem
for the velocity field v. For its solution, the Stokes equations (3.37) are first Fourier-transformed
into frequency space. The dependency on the x and y coordinates is Fourier-transformed into wave
vectors qx and qy which subsequently allows us to consider the contributions of the longitudinal and
transversal velocity components separately [27]. After eliminating the pressure, this leads to three
differential equations for the three velocity components for which an analytical solution can be found.
From the velocity field the mobility correction of the particle is directly obtained. The details are
given in Appendix B.

The mobility correction is a tensorial quantity which in the present case has two components for
the mobility parallel ∆µ‖(ω, z0) and perpendicular ∆µ⊥(ω, z0) to the membrane. Furthermore, the
mobility correction in each direction can be split into a contribution ∆µB due to bending resistance
and a contribution ∆µS due to shear resistance and area dilatation. The final results are conveniently
expressed in terms of the dimensionless numbers:

β =
12z0ηω

κS + κA
,

βB = 2z0

(
4ηω

κB

)1/3

,

σ = z0

(
ρω

η

)1/2

,

(3.40)

where β captures the effect of shear resistance and area dilatation, βB the effect of bending resistance
and σ the effect of fluid inertia on the mobility corrections.

The mobility corrections are

∆µ‖,S

µ0
=

3i

σ2
R

z0

∫ ∞
0

s3(re−r − se−s)2

4(r − s)s2 − βσ2
ds ,+

3i

4

R

z0

∫ ∞
0

s3e−2r

r
(
1+C
2 βr − is2

) ds , (3.41)

∆µ‖,B

µ0
=

3i

σ2
R

z0

∫ ∞
0

4rs7(e−r − e−s)2

16s5(r − s)− rβ3Bσ2
ds , (3.42)

∆µ⊥,S
µ0

=
6i

σ2
R

z0

∫ ∞
0

s5 (e−s − e−r)2

4(r − s)s2 − σ2β
ds , (3.43)

∆µ⊥,B
µ0

=
6i

σ2
R

z0

∫ ∞
0

4s7(se−r − re−s)2

r(16s5(r − s)− rβ3Bσ2)
ds , (3.44)

with r =
√
s2 + iσ2. The integrals are well-behaved and thus amenable to straightforward numerical

integration. The effect of inertia on the diffusion has recently been investigated in bulk systems [45–
49]. However, as shown in the Supporting Information [50] for the realistic situation treated in figure 1,
the contribution of fluid inertia is completely negligible in the frequency range that is affected by
membrane elasticity which is the focus of this work.

In the following, we will thus consider the case σ = 0, for which an analytical solution is possible:
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∆µ‖,S

µ0
=

3

8

R

z0

(
− 5

4
+
β2

8
− 3iβ

8
+ iβ(1 + C)eiβ(1+C)E1(iβ(1 + C))

+

(
−β

2

2
+
iβ

2

(
1− β2

4

))
eiβE1(iβ)

)
, (3.45)

∆µ‖,B

µ0
=

3

64

R

z0

(
−2 +

iβ3B
3

(
φ+ + e−iβBE1(−iβB)

))
, (3.46)

∆µ⊥,S
µ0

=
9i

16

R

z0

1

β

(
1− 4eiβE5(iβ)

)
, (3.47)

∆µ⊥,B
µ0

=
3iβB

8

R

z0

((
β2B
12

+
iβB
6

+
1

6

)
φ+ +

√
3

6
(βB + i)φ− +

5i

2βB

+ e−iβBE1(−iβB)

(
β2B
12
− iβB

3
− 1

3

))
, (3.48)

with
φ± = e−izBE1 (−izB)± e−izBE1 (−izB) , (3.49)

where zB = jβB and j = e2iπ/3. Bar denotes complex conjugate. En denotes the exponential integral
En(x) =

∫∞
1 e−xt/tndt [51].

From the frequency-dependent mobilities the mean-square displacement in a thermally fluctuating
system can be computed using the fluctuation-dissipation theorem with the velocity autocorrelation
function φv(t) as an intermediate step [52] as detailed in Appendix C

φv(t) =
kBT

2π

∫ ∞
−∞

µ(ω)eiωt dω , (3.50)

〈
x(t)2

〉
= 2

∫ t

0
(t− s)φv(s) ds . (3.51)

Using the mobilities from Eqs. (3.45) - (3.48), the MSD can be analytically computed and the resulting
equations are given in Appendix C. In order to compute the MSDs shown in figure 1 mobilities are
calculated using the initial particle-membrane distance z0, which is equivalent to assuming a not too
large deviation of the particle from its initial position.

Similarly, the power spectral densities of the position fluctuations as shown in figure 3 can be
calculated as [12]

S(ω) =
2kBTRe

[
µ(ω)−1

]
(ωRe [µ(ω)−1])2 + (ωIm [µ(ω)−1] +K)2

. (3.52)

4 Mobility Simulations

We use boundary-integral (BIM) simulations to obtain a direct validation of the frequency-dependent
mobilities and to assess the accuracy of the point-particle approximation for finite-radius particles.
BIMs are a standard method for solving the steady Stokes equations [53] including elastic surfaces [54].
Some details on our implementation are given in the SI. Compared with most other flow solvers,
BIMs have the advantage that they are able to treat a truly inifinite fluid domain thus excluding
artifacts due to periodic replications of the system.

We simulate a spherical particle driven by an oscillating force with frequency ω. By recording the
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Figure 4: The complex mobility of a spherical particle driven by a sinusoidal force with frequency
ω situated a distance z0 above the membrane. Theoretical predictions from Eqs. (3.45)-(3.48) are
shown as black dashed lines (real part) and black solid lines (imaginary part) and compared to BIM
simulations shown as circles (real part) and squares (imaginary part). The green and red lines show
the contributions due to shear and bending resistance, respectively. For R/z0 = 0.1 (with C = 1,
κSR

2/κB = 2) the agreement between theory and simulations is excellent. For very low frequencies
the hard wall behavior is obtained (blue dashed line).

instantaneous particle velocity, the mobility correction ∆µ(ω) can be obtained from the amplitude
ratio and the phase shift between force and velocity as illustrated in the SI.

In Fig. 4 we compare our theoretical prediction to the result of BIM simulations with R/z0 = 0.1
and find excellent agreement. Splitting the mobility correction into the contributions due to shear/area
resistance (green line in Fig. 4) on the one hand and bending resistance (red line) on the other, we
find that bending resistance manifests itself at significantly lower frequencies than shear resistance.
As might intuitively be expected, the parallel mobility is mainly determined by shear resistance, while
for the perpendicular mobility bending resistance dominates. Yet, we note that for both directions,
shear/area resistance and bending resistance are important. This becomes apparent especially at
low frequencies: neither shear/area resistance nor bending resistance alone are able to recover the
hard-wall limit. As shown in the SI, a similar effect appears in the limit of infinitely stiff membranes:
only if shear and bending stiffness both tend to infinity does one recover the hard-wall limit.

Finally, we investigate the validity of the point-particle approximation for particles close to the
interface. For this, we use the parameters as in Fig. 1. Even for R/z0 = 0.65 the agreement is still
surprisingly good as shown in Fig. 5.
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Figure 5: The real part (dashed lines) and the imaginary part (solid lines) of the complex mobility for
a particle moving parallel (a) or perpendicular (b) to a realistically modeled red blood cell membrane
with parameters corresponding to Fig. 1. Even for R/z0 = 0.65 as used here the agreement is still
good.

5 Conclusion

We have presented a fully analytical theory for the thermal diffusion of a small spherical particle
in close vicinity to an elastic cell membrane. The frequency-dependent particle mobilities predicted
by the theory are in excellent agreement with boundary-integral simulations, even for surprisingly
large particles where the point-force approximation made in the theory is no longer strictly valid.
Independent of the membrane properties, the mean-square displacement is shown to be bulk-like at
short and hard-wall-like at very long times. In between, however, there exists a significant time span
during which the particle shows subdiffusion with exponents as low as 0.87. For membrane parameters
corresponding to a typical red blood cell the subdiffusive regime extends up to and beyond 10ms
and may thus be of possible physiological significance, e.g., for the uptake of drug carriers or viruses
by a living cell. Our results can be directly verified experimentally by comparing the power-spectral
densities of the position fluctuations in Fig. 3.

In living cells the membrane elastic properties depend on the local cholesterol level [55] which can
lead to localized patches of varying stiffness. According to our calculations, adjusting the shear/bend-
ing rigidity would allow the cell to specifically influence the endocytosis probability: An enhanced
bending stiffness combined with reduced shear elasticity would reduce perpendicular diffusion – keep-
ing the approaching particle close to the membrane for a longer time – and at the same time
enhance parallel diffusion – allowing the particle to survey more quickly the cell surface for favorable
biochemical binding sites.
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Appendices

A Membrane mechanics

In this appendix, we give the derivation of the linearized tangential and normal traction jumps as
stated in Eq. (3.38) of the main text. Initially, the interface is described by the infinite plane z = 0.
Let the position vector of a material point before deformation be A, and a after deformation. In the
undeformed state, we have A(x, y) = xex + yey, where ei, with i ∈ {x, y, z} are the Cartesian base
vectors. Hereafter, we shall reserve the capital roman letters for the undeformed state. The membrane
can be defined using two covariant base vectors a1 and a2, together with the normal vector n. a1
and a2 are the local non-unit tangent vectors to coordinate lines. In the Cartesian coordinate system,
a1 = a,x and a2 = a,y, where the comma denotes a spatial derivative. The unit normal vector to the
interface reads

n =
a1 × a2
|a1 × a2|

. (A.1)

It can be seen that the covariant base vectors in the undeformed state are identical to those of the
Cartesian base. The displacement vector of a point on the membrane can be written as

u = a−A = uxex + uyey + uzez . (A.2)

The covariant base vectors are therefore

a1 = (1 + ux,x) ex + uy,xey + uz,xez , (A.3)
a2 = ux,yex + (1 + uy,y) ey + uz,yez , (A.4)

and the linearized normal vector reads

n ≈ −uz,xex − uz,yey + ez . (A.5)

The components of the metric tensor in the deformed state are defined by the inner product
aαβ = aα ·aβ . Note that Aαβ is then nothing but the second order identity tensor δαβ . Form Eqs. (A.3)
and (A.4), aαβ can straightforwardly be computed. The contravariant tensor (conjugate metric) is
the inverse of the covariant tensor. We directly have to the first order

aαβ ≈
(

1− 2ux,x −2ε
−2ε 1− 2uy,y

)
, (A.6)

where 2ε = ux,y+uy,x is the engineering shear strain. In the following, we will first derive the in-plane
stress tensor. A resistance to bending will be added independently by assuming a linear isotropic
model equivalent to the Helfrich model for small deformations [56].

In-plane stress tensor

Here we use the Einstein summation convention, in which a covariant index followed by the identical
contravariant index (or vice versa) is implicitly summed over the index. The two invariants of the
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transformation are given by Green and Adkins [57]

I1 = Aαβaαβ − 2 , (A.7)

I2 = detAαβ det aαβ − 1 , (A.8)

where Aαβ = δαβ, is the contravariant metric tensor of the undeformed state. The two invariants
are found to be equal and they are given by I1 = I2 = 2e = 2 (ux,x + uy,y), where e denotes the
dilatation. The contravariant components of the stress tensor ταβ are related to the strain energy
W (I1, I2) via a constitutive law. We have [58]

ταβ =
2

Js

∂W

∂I1
Aαβ + 2Js

∂W

∂I2
aαβ, (A.9)

where Js :=
√

1 + I2 ≈ 1+e is the Jacobian determinant, representing the ratio between the deformed
and undeformed local surface area.

Several models have been proposed in order to describe the mechanics of elastic membranes. The
neo-Hookean model is characterized by a single parameter containing the membrane elastic shear
and area dilatation modulus, while the Skalak model [43] uses two separate parameters for shear and
area dilatation resistance, respectively. The strain energy in the Skalak model reads [59]

W SK =
κS
12

(
(I21 + 2I1 − 2I2) + CI22

)
, (A.10)

where C = κA/κS is the ratio between the area dilatation and the shear modulus. By taking C = 1,
the Skalak model predicts the same behavior as the neo-Hookean for small deformations [58]. The
calculations yield to the first order a stress tensor in the form of

ταβ ≈ 2κS
3

(
ux,x + Ce ε

ε uy,y + Ce

)
. (A.11)

Bending resistance

Under the action of an external load, the initially plane membrane bends. For small membrane
curvatures, the bending moment M can be related to the curvature tensor via the linear isotropic
model [56, 60]

Mβ
α = −κB(bβα −Bβ

α) , (A.12)

where κB is the bending modulus, having the dimension of energy. Here bβα is the mixed version of
the second fundamental form which follows from the curvature tensor (second fundamental form)

bαβ = n · aα,β for α, β ∈ {1, 2} , (A.13)

via bβα = bαδa
δβ ≈ uz,αβ. As the surface reference is a flat membrane, Bβ

α therefore vanishes. The
bending moment reads

Mβ
α ≈ −κBuz,αβ . (A.14)

The surface transverse shear vector Q is obtained from a local torque balance with the exerted
moment by [60]

∇αMαβ −Qβ = 0 , (A.15)

where ∇α is the covariant derivative defined for a contravariant tensor Mαβ by

∇λMαβ = ∂λM
αβ + ΓαληM

ηβ + ΓβληM
αη , (A.16)
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where Γλαβ are the Christoffel symbols of the second kind, defined by Γλαβ = aα,β ·aλ, and aλ are the
contravariant basis vectors, which are related to those of the covariant basis via the contravariant
metric tensor by aα = aαβaβ . To first order, only the partial derivative in Eq. (A.16) remains.

The raising and lowering indices operation on the second order tensor M implies that Mαβ =
aαγaβδMγδ, which, to the first order, is the same as Mβ

α given by Eq. (A.14). The contravariant
component of the transverse shear vector is therefore

Qβ ≈ −κBuz,αβα . (A.17)

Equilibrium Equation

The membrane equilibrium condition including both the shear and the bending forces reads [60]

∇αταβ − bβαQα = −∆fβ , (A.18)

ταβbαβ +∇αQα = −∆fz , (A.19)

where ∆fβ , with β ∈ {x, y} is the tangential traction jump at the elastic wall, and ∆fz is the normal
traction jump. The second term on the left-hand side (LHS) of Eq. (A.18) is irrelevant in the first
order approximation. The same is true for the first term on the LHS of Eq. (A.19).

Finally, the linearized traction jump across the membrane is

κS
3

(
∆‖uβ + (1 + 2C)e,β

)
= −∆fβ ,

κB∆2
‖uz = +∆fz , (A.20)

where ∆‖f = f,xx + f,yy is the horizontal Laplace-Beltrami of a given function f . Eqs. (A.20) are
equivalent to Eqs. (3.38) of the main text.

B Derivation of particle mobilities

B.1 Hydrodynamic equations in Fourier space

We start by transforming Eqs. (3.37) of the main text to Fourier space. The spatial 2D Fourier
transform for a given function f is defined as

F{f(ρ)} = f̃(q) =

∫
R2

f(ρ)e−iq.ρd2ρ , (B.1)

where ρ = (x, y) is the projection of the position vector r onto the horizontal plane, and q = (qx, qy)
is the Fourier transform variable. Similarly as in Bickel [27], all the vector fields are subsequently
decomposed into longitudinal, transversal and normal components. For a given quantity Q̃, whose
components are (Q̃x, Q̃y) in the Cartesian coordinate base, its components in the new orthogonal
base (Q̃l, Q̃t) are given by the following transformation(

Q̃x
Q̃y

)
=

1

q

(
qx qy
qy −qx

)(
Q̃l
Q̃t

)
, (B.2)

where q := |q|. Note that the inverse transformation is given also by Eq. (B.2). Since the membrane
shape depends on the history of the particle motion we also perform a Fourier analysis in time which
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for a function f(t) is

F{f(t)} = f(ω) =

∫
R
f(t)e−iωtdt . (B.3)

In the following, the Fourier-transformed function pair f(t) and f(ω) are distinguished only by their
argument while the tilde is reserved to denote the spatial 2D Fourier transforms. The unsteady Stokes
equations (3.37) thus become

−(iρω + ηq2)ṽl + ηṽl,zz − iqp̃+ Flδ(z − z0) = 0 , (B.4)

−(iρω + ηq2)ṽt + ηṽt,zz + Ftδ(z − z0) = 0 , (B.5)

−(iρω + ηq2)ṽz + ηṽz,zz − p̃,z + Fzδ(z − z0) = 0 , (B.6)
iqṽl + ṽz,z = 0 . (B.7)

The pressure in Eq. (B.4) can be eliminated using Eq. (B.6). Since the continuity equation (B.7)
gives a direct relation between the components ṽl and ṽz, the following fourth-order differential
equation for vz is obtained

ṽz,zzzz − (2q2 + iλ2)ṽz,zz + q2(q2 + iλ2)ṽz =
q2

η
Fzδ(z − z0) +

iqFl
η
δ′(z − z0) , (B.8)

where δ′ is the derivative of the delta Dirac function, satisfying the property xδ′(x) = −δ(x) for a
real x, and λ2 = ρω/η.

B.2 Boundary conditions

Velocity boundary conditions

At the interface z = 0, the velocity components are continuous

[ṽα] = 0 , (B.9)

where α ∈ {l, t, z} and [f ] = f(z = 0+) − f(z = 0−) denotes the jump of quantity f across the
interface. In addition, the no-slip condition Eq. (3.39) gives

ṽα(q, z = 0, ω) = iωũα(q, ω) . (B.10)

Tangential stress jump

The presence of the membrane leads to elastic stresses which, in equilibrium, are balanced by a jump
in the fluid stress across the membrane:

[σzα] = [η(vz,α + vα,z)] = ∆fα , (B.11)

where α ∈ {x, y}. The tangential traction jump ∆fα for an elastic membrane experiencing a small
deformation is given by Eq. (3.38). We mention that only the resistance to shear and area dilatation
is relevant to the first order approximation for the tangential traction jump.

Using the transformations given by (B.2) together with the no-slip condition Eq. (B.10), we
straightforwardly express the first and second derivatives of ux and uy in our new orthogonal basis.
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After some algebra, the two tangential conditions are

[ṽt,z] = −iαSq
2ṽt|z=0 , (B.12)

[iqṽz + ṽl,z] = −4iαq2ṽl|z=0 , (B.13)

where
αS = κS/3ηω (B.14)

is a characteristic length for shear and

α = αS/B = (κS + κA)/6ηω , (B.15)

with B = 2/(1 + C).

Eq. (B.12) gives the jump condition at the interface for the transverse velocity component ṽt.
Note that the latter is independent of area-dilatation, whereas both κS and κA are involved in the
longitudinal and the normal velocities. Eq. (B.13) can be written by employing the incompressibility
equation (B.7) together with the continuity of the normal velocity across the interface as

[ṽz,zz] = −4iαq2ṽz,z|z=0 . (B.16)

Normal stress jump

The normal-normal component of the jump in the stress tensor reads

[σzz] = [−p+ 2ηvz,z] = ∆fz . (B.17)

Only the bending effect is present in ∆fz to the first order, as it can be seen from Eq. (3.38).
Using the incompressibility equation (B.7) and the continuity of the longitudinal velocity component
across the interface, the normal stress jump in Fourier space reads

[ṽz,zzz] = 4iα3
Bq

6ṽz|z=0 , (B.18)

where
αB = 3

√
κB
4ηω

, (B.19)

is a characteristic length for bending.

B.3 Green functions

The Green’s functions are tensorial quantities which describe the fluid velocity in direction α

ṽα = G̃αβF̃β , (B.20)

for α, β ∈ {l, t, z}. For computing the particle mobilities the relevant quantities are the diagonal
components G̃tt, G̃zz, and G̃ll which can be derived by solving first the independent Eq. (B.5) for
G̃tt, then Eq. (B.8) for G̃zz and finally obtaining G̃ll from solving Eq. (B.8) and employing the
incompressibility condition (B.7) as detailed in the following.
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Transverse-transverse component

Let us denote by K the principal square root of q2 + iλ2, i.e.

K =

√
q2 +

√
q4 + λ4

2
+ i

√
−q2 +

√
q4 + λ4

2
. (B.21)

Note that for the steady Stokes equations, λ = 0 and therefore K = q. The general solution of
Eq. (B.5) for the transverse velocity component is

ṽt =


Ae−Kz for z > z0 ,

BeKz + Ce−Kz for 0 < z < z0 ,

DeKz for z < 0 .

(B.22)

The integration constants A–D are determined by the boundary conditions. ṽt is continuous at
z = z0, whereas the first derivative is discontinuous due to the delta Dirac function,

ṽt,z|z=z+0 − ṽt,z|z=z−0 = −Ft
η
. (B.23)

In order to evaluate the four constants, two additional equations must be provided. By applying
the continuity of the transverse velocity component at the interface together with the tangential
traction jump given by Eq. (B.12), we find that the transverse-transverse component of the Green
function is given by

G̃tt =
1

2ηK

(
e−K|z−z0| +

iαSq
2

2K − iαSq2
e−K(z+z0)

)
, (B.24)

for z ≥ 0 and by

G̃tt =
1

η

1

2K − iαSq2
e−K(z0−z) , (B.25)

for z ≤ 0. For the steady Stokes equations, the solution reads

G̃tt =
1

2ηq

(
e−q|z−z0| +

iαSq

2− iαSq
e−q(z+z0)

)
, (B.26)

for z ≥ 0 and
G̃tt =

1

ηq

1

2− iαSq
e−q(z0−z) , (B.27)

for z ≤ 0.

Normal-normal component

As we are interested here in G̃zz we set F̃l = 0 in Eq. (B.8). The general solution of this fourth order
differential equation is

ṽz =


Ae−qz +Be−Kz for z > z0 ,

Ceqz +De−qz + EeKz + Fe−Kz for 0 < z < z0 ,

Geqz +HeKz for z < 0 .

(B.28)
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At the singularity position, i.e. at z = z0, the velocity ṽz and its first two derivatives are continuous.
However, the delta Dirac function imposes the discontinuity of the third derivative

ṽz,zzz|z=z+0 − ṽz,zzz|z=z−0 =
q2Fz
η

. (B.29)

At the membrane, ṽz and its first derivative are continuous. However, shear and bending impose
a discontinuity in the second and third derivatives respectively (Eqs. (B.16) and (B.18)). The system
can readily be solved in order to determine the constants. The calculations are straightforward but
lengthy and thus omitted here. We find that the normal-normal component of the Green function is
given in a compact form by

G̃zz =
q

2µKZS

(
Ke−q|z−z0| − qe−K|z−z0| + sgn (z)

2iαq3K(P −Q)

ZPQ(2iαq2 − S)

(
e−q|z| − e−K|z|

)
+

2iα3
Bq

5(qP −KQ)

ZPQ(2iα3
Bq

5 −KS)

(
Ke−q|z| − qe−K|z|

))
.

(B.30)

Here P = eqz0 , Q = eKz0 , S = K + q and Z = K − q.

For the steady Stokes equations, i.e. by taking the limits when K → q and Q→ P , one gets

G̃zz =
1

4ηq

(
(1 + q|z − z0|) e−q|z−z0| +

(
iαzz0q

3

1− iαq
+
iα3

Bq
3(1 + qz0)(1 + qz)

1− iα3
Bq

3

)
e−q(z+z0)

)
, (B.31)

for z ≥ 0 and

G̃zz =
1

4ηq

(
1 + q(z0 − z) +

iαzz0q
3

1− iαq
+
iα3

Bq
3(1 + qz0)(1− qz)

1− iα3
Bq

3

)
e−q(z0−z) , (B.32)

for z ≤ 0. Note that both the shear and the bending moduli are involved in the normal-normal
component of the Green functions.

Longitudinal-longitudinal component

When the normal force Fz is set to zero in Eq. (B.8), and only a tangential force Fl is applied, the
derivative of the Dirac function imposes the discontinuity of the second derivative at z = z0, whereas
the third derivative is continuous. We have

ṽz,zz|z=z+0 − ṽz,zz|z=z−0 =
iqFl
η

. (B.33)

After solving Eq. (B.8) for the normal velocity ṽz, the longitudinal velocity ṽl can directly be obtained
thanks to the incompressibility equation (B.7). We find that the longitudinal-longitudinal component
G̃ll is

G̃ll =
1

2ηZS

(
Ke−K|z−z0| − qe−q|z−z0| + 2iαq2(KP − qQ)

ZPQ(2iαq2 − S)

(
qe−q|z| −Ke−K|z|

)
+ sgn (z)

2iα3
Bq

6K(P −Q)

ZPQ(2iα3
Bq

5 −KS)

(
e−q|z| − e−K|z|

))
.

(B.34)
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When the steady Stokes equations are considered, one simply gets

G̃ll =
1

4ηq

(
(1− q|z − z0|)e−q|z−z0| +

(
iαq(1− qz0)(1− qz)

1− iαq
+
izz0α

3
Bq

5

1− iα3
Bq

3

)
e−q(z+z0)

)
, (B.35)

for z ≥ 0 and

G̃ll =
1

4ηq

(
1− q(z0 − z) +

iαq(1 + qz)(1− qz0)
1− iαq

+
izz0α

3
Bq

5

1− iα3
Bq

3

)
e−q(z0−z) , (B.36)

for z ≤ 0.

B.4 Particle mobilities

We now obtain the mobility corrections defined in Eq. (3.34) and given specifically in Eqs. (3.41)–
(3.44) (including the inertial term) and Eqs. (3.45)-(3.48) (without fluid inertia) of the main text. For
this, using Eq. (B.2) on Eq. (B.20), one derives the transformation of the tensorial Green’s functions
back to Cartesian directions:

G̃xx(q, z, ω) =
q2y
q2
G̃tt(q, z, ω) +

q2x
q2
G̃ll(q, z, ω) , (B.37)

G̃yy(q, z, ω) =
q2x
q2
G̃tt(q, z, ω) +

q2y
q2
G̃ll(q, z, ω) . (B.38)

We then subtract the infinite space Green’s functions in the Fourier domain which can be obtained
via the above derivation with the membrane moduli set to zero, i.e.

∆G̃(0)γγ (q, z, ω) = G̃γγ(q, z, ω)− G̃γγ(q, z, ω)|α,αB=0 , (B.39)

where γ ∈ {x, y, z}. This defines the wave-vector dependent corrections

∆G̃‖ (q, z, ω) = G̃xx (q, z, ω)− G̃(0)xx (q, z, ω) ,

= G̃yy (q, z, ω)− G̃(0)yy (q, z, ω) ,

∆G̃⊥ (q, z, ω) = G̃zz (q, z, ω)− G̃(0)zz (q, z, ω) . (B.40)

Due to the point-particle approximation it is sufficient to obtain the fluid velocity at the particle
position which is equal to the velocity of the particle itself. Instead of the full inverse Fourier transform
of the Green’s functions to real space coordinates (ρ, z), we can thus limit ourselves to evaluate
the inverse Fourier transform of Eqs. (B.40) at (ρ = 0, z = z0). By passage to polar coordinates
qx = q cosφ and qy = q sinφ, the correction in the particle mobility to the first order of R/z0 can be
obtained

∆µ‖(ω) =
1

(2π)2

∫ 2π

0

∫ ∞
0

∆G̃‖(q, φ, z = z0, ω) q dq dφ

∆µ⊥(ω) =
1

2π

∫ ∞
0

∆G̃⊥(q, z = z0, ω) q dq ,

(B.41)

which directly lead to Eqs. (3.41)–(3.44) of the main text. A similar procedure can be followed for
the steady case where the fluid inertia is neglected leading to Eqs. (3.45)-(3.48).
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C Computing mean square displacements from particle mobilities

C.1 Time dependent mobility corrections

A crucial step in order to compute the mean-square-displacements as described in the following
section is to transform the frequency-dependent particle mobilities back to the time domain. As
shown in the Supporting Information, the inertial contribution to the mobilitiy correction is negligible
for realistic scenarios and we therefore restrict ourselves from now on to the case σ = 0. For the sake
of simplicity, we do not start from the real-space particle mobilities given in Eqs. (3.45)–(3.48), but
instead depart from the wave-vector-dependent Green’s functions in Eq. (B.40) to perform first an
inverse Fourier transform in time followed by an inverse Fourier transform in space. Note that the
inverse order is possible for the shear-related part, but the calculations are much more complicated.

Parallel mobility

Shear effect. Considering only the part due to shear resistance in Eqs. (B.35) and (B.26) and using
Eq. (B.40) with (B.39), we find after passing to polar coordinates:

∆G̃‖,S(q, φ, ω)|z=z0 =
iz0e

−2qz0

2η

(
sin2 φ

TSω − iqz0
+

(1− qz0)2 cos2 φ

BTSω − 2iqz0

)
, (C.1)

where TS = 6z0η/κS is a characteristic time for shear. The temporal inverse Fourier transform reads

∆G̃‖,S(q, φ, t)|z=z0 = −z0e
−2qz0θ(t)

2ηTS

(
e
− qz0t

TS sin2 φ+
(1− qz0)2

B
e
−2qz0t
BTS cos2 φ

)
. (C.2)

An exact expression of the time dependent mobility correction due to shear in the parallel case
can then be obtained by spatial inverse Fourier transform

∆µ‖,S(τ)

µ0
= − 3

32

R

z0

θ(τ)

TS

NB(τ)

(2 + τ)2(τ +B)4
, (C.3)

where τ = t/TS, and again B = 2/(1 +C). θ(t) denotes the Heaviside step function, with θ(0) = 1/2
and

NB(τ) = 4B3(1 + 2B) + 36B3τ +B(B2 + 48B + 8)τ2 + 40Bτ3 + 2(B + 4)τ4 . (C.4)

Bending effect. Considering the part due to bending resistance we obtain

∆G̃‖,B(q, φ, ω)|z=z0 =
cos2 φ

4η

iq4z50
TBω − iq3z30

e−2qz0 , (C.5)

to give after applying the temporal inverse Fourier transform

∆G̃‖,B(q, φ, t)|z=z0 = −q
4z50θ(t) cos2 φ

4ηTB
e
−2qz0−

tq3z30
TB . (C.6)

The time dependent mobility can immediately be obtained after applying the inverse Fourier
transform

∆µ‖,B(t)

µ0
= −3

8

a

z0

θ(t)

TB

∫ ∞
0

u5e
−2u− t

TB
u3

du , (C.7)

where TB = 4ηz30/κB. The presence of u3 in the exponential argument makes the analytical evaluation
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of this integral impossible. To overcome this difficulty, we evaluate the integral numerically and fit
the result (as a function of t) with an analytical empirical form which is necessary to proceed further.
This procedure is known as the Batchelor parametrization [61]. It can be shown that the integral
decays following a t−2 law for larger times. Therefore, we can write

∆µ‖,B(τ‖,B)

µ0
= −45

64

R

z0

θ(τ‖,B)

TB

1(
τp‖,B + 1

) 2
p

, (C.8)

where p = 1/2 is the fitting parameter and τ‖,B = 2/5t/TB. A comparison between the numerically
obtained value of the integral and the fitting formula in presented in the SI, where a good agreement
is obtained.

Perpendicular motion

Shear effect. Considering only the part due to shear resistance in Eq. (B.31) and using Eq. (B.40)
with Eq. (B.39) we find after passing to polar coordinates:

∆G̃⊥,S(q, ω)|z=z0 =
iq2z30

2η

e−2qz0

BTSω − 2iqz0
. (C.9)

The computation of the temporal inverse Fourier transform leads to

∆G̃⊥,S(q, t)|z=z0 = −q
2z30θ(t)

2ηBTS
e
−2qz0

(
1+ t

BTS

)
. (C.10)

After applying the spatial inverse Fourier transform to this equation, we find that the time
dependent mobility correction due to shear reads

∆µ⊥,S(τ)

µ0
= − 9

16

R

z0

θ(τ)

TS

B3

(τ +B)4
. (C.11)

Bending effect. Considering only the part due to bending resistance we obtain

∆G̃⊥,B(q, ω)|z=z0 =
iq2z30(1 + qz0)

2

4η

e−2qz0

TBω − iq3z30
. (C.12)

The temporal inverse Fourier transform is

∆G̃⊥,B(q, t)|z=z0 = −q
2z30(1 + qz0)

2θ(t)

4ηTB
e
−2qz0−

tq3z30
TB . (C.13)

After Fourier-transform in space, the time dependent mobility correction due to bending is
expressed by the following improper integral

∆µ⊥,B(t)

µ0
= −3

4

a

z0

θ(t)

TB

∫ ∞
0

u3(1 + u)2e
−2u− tu

3

TB du . (C.14)

As above, we use the Batchelor parametrization [61] to represent the integral. At t = 0, the inte-
gral above can be solved analytically, and it is equal to 15/4. At larger times, the integral decays



92 Pub1. Long-lived anomalous thermal diffusion

monotonically following a t−4/3 law. We set

∆µ⊥,B(τ⊥,B)

µ0
= −45

16

R

z0

θ(τB)

TB

1(
τp⊥,B + 1

) 4
3p

, (C.15)

where τ⊥,B = 9π/4t/TB and p = 2/3 is a fitting parameter, governing the evolution of the mobility
correction at short times. Again, the fitting formula and the numerical solution are in excellent
agreement as seen in the Supporting Information.

C.2 Mean-square-displacements

The dynamics of a Brownian particle are governed by the generalized Langevin equation [62]

m
dvα
dt

= −
∫ t

−∞
γα(t− t′)vα(t′) dt′ + F (t) , (C.16)

where m is the particle mass and vα is its velocity in direction α =‖,⊥. γα(t) denotes the time
dependent friction retardation function (expressed in kg / s2), and F is the random force which is
zero on average. The random force results from the impacts with the fluid molecules due to the
thermal fluctuation. The relation between the mobility and the friction function is given by [52, Eq.
(1.6.4) p. 32] [63]

µα(ω) =
1

imω + γα[ω]
, (C.17)

where γα[ω] is the one-sided Fourier transform of the retardation function defined by

γα[ω] =

∫ ∞
0

γα(t)e−iωt dt . (C.18)

The frictional forces and the random forces are not independent quantities, but are related to
each other via the fluctuation-dissipation theorem (FDT) [62]. According to the FDT, the velocity
autocorrelation function (VACF) has the following expression [52, Eq. (1.6.14) p. 34]

φv,α(t) := 〈vα(0)vα(t)〉 =
kBT

2π

∫ ∞
−∞

µα(ω)eiωt dω . (C.19)

In the overdamped regime, i.e. for a massless particle, Eq. (C.19) is reduced to

φv,α(t) = D0

(
2δ(t) +

∆µα(t)

µ0

)
, (C.20)

where D0 = kBTµ0, is the bulk diffusion coefficient given by the Einstein relation [64].

Next, the particle MSDs can be computed knowing the VACF as [62]

〈x(t)2〉 = 2

∫ t

0
(t− s)φv,‖(s) ds

〈z(t)2〉 = 2

∫ t

0
(t− s)φv,⊥(s) ds , (C.21)
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which can be conveniently split up into a bulk contribution and a correction defined by:

∆‖(t) = 1− 〈x(t)2〉
2D0t

and ∆⊥(t) = 1− 〈z(t)
2〉

2D0t
. (C.22)

By inserting the time-dependent mobility corrections derived in Eqs. (C.3), (C.8), (C.11), (C.15)
in Eq. (C.20) and using Eqs. (C.21) we obtain analytical expressions for the excess mean-square-
displacement as follows:

∆⊥,S(τ) =
3

16

R

z0

τ(3B + 2τ)

2(B + τ)2
, (C.23)

∆⊥,B(τ⊥,B) =
15

16

R

z0

2

π

arctan τ
1
3
⊥,B −

2

τ
1
3
⊥,B

+
2

τ⊥,B
ln

(
1 + τ

2
3
⊥,B

) , (C.24)

∆‖,S(τ) =
15

32

R

z0

1

10

(
(2τ + 3B)(5τ + 4B)

(B + τ)2
− 4B

τ
ln
(

1 +
τ

B

)
− 16

τ
ln
(

1 +
τ

2

))
, (C.25)

∆‖,B(τ‖,B) =
3

32

R

z0

τ3/2‖,B + 2τ‖,B + 9
√
τ‖,B + 6

√
τ‖,B(1 +

√
τ‖,B)2

− 6

τ‖,B
ln
(

1 +
√
τ‖,B

) . (C.26)
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Abstract

We study the motion of a solid particle immersed in a Newtonian fluid and confined between two
parallel elastic membranes possessing shear and bending rigidity. The hydrodynamic mobility depends
on the frequency of the particle motion due to the elastic energy stored in the membrane. Unlike
the single-membrane case, a coupling between shearing and bending exists. The commonly used
approximation of superposing two single-membrane contributions is found to give reasonable results
only for motions in the parallel, but not in the perpendicular direction. We also compute analytically
the membrane deformation resulting from the motion of the particle, showing that the presence of the
second membrane reduces deformation. Using the fluctuation-dissipation theorem we compute the
Brownian motion of the particle, finding a long-lasting subdiffusive regime at intermediate time scales.
We finally assess the accuracy of the employed point-particle approximation via boundary-integral
simulations for a truly extended particle. They are found to be in excellent agreement with the
analytical predictions.

1 Introduction

The hydrodynamic motion of nanoparticles near elastic membranes plays an essential role in a variety
of biological processes and medical applications. Examples include the potential use of nanoparticles
as drug delivery agents [1–3] or possible adverse health effects due to nanoparticles generated, e.g.,
from combustion processes and chemical industries [4]. One of the strongest biological side effects
is expected when nanoparticles are taken up by living cells through endocytosis [5–8] for which the
hydrodynamically governed approach towards the cell membrane is the essential first step.

Several theoretical and experimental studies have investigated particle dynamics near a single
boundary such as a rigid wall [9–32] or cylinder [33], a fluid-fluid interface [34–41], a partial-slip
interface [42, 43] and an elastic membrane [44–52]. The latter stands apart from both rigid and fluid
interfaces as the stretching of the elastic membrane by the moving particle introduces a memory
effect in the system.

The influence of a second boundary on particle dynamics has so far been studied only for hard
walls. The most simple approach is due to Oseen [53] who suggested that the hydrodynamic mobility
of a sphere confined between two rigid walls could be approximated by superposition of the leading-
order terms from each single wall. A more rigorous attempt goes back to Faxén [54] who computed
in his dissertation the particle mobility parallel to the walls for the special cases when the particle
is in the mid-plane or the quarter-plane between the two hard walls [55]. For an arbitrary location
between the two walls, exact solutions for a point particle can be obtained in terms of convergent series
using the image technique [56–59]. For a truly extended particle, multipole expansions [60] as well
as joint analytical-numerical solutions have been presented [61, 62]. Experimentally, the Brownian
dynamics of a spherical particle confined between two parallel rigid walls has been studied using
direct imaging measurements in the parallel direction [63] who found good agreement with Oseen’s
superposition approximation. Dynamic-light-scattering [57] and video microscopy combined with
optical traps [64, 65] also found good agreement with theoretical predictions. Despite the significant
progress in this field, the particle motion between two confining elastic interfaces has not been studied
so far. An understanding of how the particle motion is affected by two adjacent elastic walls can be
useful to model the diffusion of medical drugs across the extracellular space between neighboring
cells [66] or the transport of macromolecules across endothelial cells that line the surface of blood
vessels [67].

In this paper, we derive an analytical theory for the translational motion of a small solid parti-
cle confined between two parallel elastic membranes with both shear and bending resistance. The
theoretical predictions are confirmed by boundary integral simulations. We find that shearing and
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z0

(1 + σ)z0

a

Figure 1: Illustration of the problem setup: A spherical particle of radius a at vertical position z0
moves between two membranes located at z = 0 and z = (1 + σ)z0. The membranes have infinite
extent in the x and y directions.

bending contributions are intrinsically coupled which is in strong contrast to the single-membrane
case where shearing and bending parts are independent and add up linearly to produce the full parti-
cle mobility [51]. We show that Oseen’s often used superposition approximation leads to a reasonably
good prediction of the particle mobility only for the parallel, but not for the perpendicular motion,
with errors in the mobility correction as high as 55 %. Furthermore, we investigate the membrane
deformation induced by the moving particle and show that the presence of the second membrane
significantly reduces deformation compared to the single membrane case. Finally, the subdiffusive
nature of the Brownian motion, which has recently been observed near a single membrane [44, 51] is
shown to be further enhanced by the presence of the second membrane.

The paper is organized as follows. In Sec. 2, we detail the mathematical derivation of the particle
mobility for the motion perpendicular and parallel to the membranes. In Sec. 3, we present the
boundary integral method (BIM) and its implementation together with the procedure that we
use to extract the particle mobility. Particle mobilities, membrane deformations and mean-square
displacements are provided in dimensionless form in Sec. 4. Concluding remarks are offered in Sec. 5.

2 Mathematical formulation

2.1 Problem setup

We consider a small spherical solid particle of radius a located at z = z0 > 0, moving between two
parallel elastic membranes having infinite extent in the xy plane. The first undisplaced membrane is
located at z = 0 and the second one at z = (1 + σ)z0, where σ ≥ 1 is a parameter (see Fig. 1 for an
illustration.) For σ = 1, the particle is at equal distance from the two membranes. The one-membrane
limit may be recovered by taking the limit when σ tends to infinity. Furthermore, the fluid in the
whole domain is considered as incompressible and with constant dynamic viscosity η.

2.2 Particle mobility

We aim at computing the particle mobility µαβ, a geometry and frequency dependent tensorial
quantity that relates the velocity V of a solid particle located at r0 to a force F applied on its
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surface. Transforming to temporal Fourier space, we have

Vα(ω) = µαβ(r0, ω)Fβ(ω) . (2.1)

Summation over repeated indices is assumed. The particle mobility can be split up into two contri-
butions:

µαβ(r0, ω) = µ0 δαβ + ∆µαβ(r0, ω) , (2.2)

where µ0 = 1/(6πηa) is the common bulk mobility and δαβ is the Kronecker tensor. The mobility
correction ∆µαβ in the point particle approximation a� z0 is expressed as

∆µαβ(r0, ω) = lim
r→r0

(
Gαβ(r, r0, ω)− G(0)αβ (r, r0)

)
, (2.3)

where Gαβ is the Green’s function of the fluid velocity v in the presence of the membranes, defined as

vα(r, ω) = Gαβ(r, r0, ω)Fβ(ω) , (2.4)

and G(0)αβ is the infinite space Green’s function, given by

G(0)αβ (r, r0) =
1

8πη

(
δαβ
s

+
sαsβ
s3

)
, (2.5)

where s := r − r0 and s := |s|.
The particle mobility can be obtained after solving the forced equations of fluid motion for the

present boundary conditions. We solve them by Fourier-transforming the coordinates parallel to the
membranes x and y. Afterward, the mobility corrections are obtained from Eq. (2.3). The particle
mobility provides the memory kernel of our system and serves as an input for the generalized Langevin
equation that governs the diffusional dynamics of the Brownian particle, as will be described in details
in Sec. 4.

2.3 Stokes equations

For a small Reynolds number, the fluid velocity v(r, t) and pressure p(r, t) are governed by the steady
Stokes equations

η∇2v −∇p+ F δ(r − r0) = 0 , (2.6)
∇ · v = 0 , (2.7)

where F (t) denotes a time-dependent point force (expressed in Newton) acting on the particle position
r0 = (0, 0, z0). Furthermore, δ signifies the three-dimensional Dirac delta function. In a previous
work [51], we have shown that the unsteady term in the momentum equation leads to negligible
contribution in the mobility correction and is thus not considered here. The no-slip boundary condition
at the membranes provides a direct link between the fluid velocity and the membrane displacement
field u(x, y), which at leading order in deformation reads

v =
du

dt

∣∣∣∣
z=0

and v =
du

dt

∣∣∣∣
z=(1+σ)z0

. (2.8)

Hereafter, we shall denote by zm the vertical position of each undisplaced membrane, i.e. zm ∈
{0, (1 + σ)z0}. The velocity is continuous at zm whereas the stretching and bending forces impose a
discontinuity in the fluid stress tensor. Deformation properties of the RBC membrane are modeled by
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the Skalak model [68] involving as parameters the shear modulus κS and the area expansion modulus
κA [51]. The membrane resists toward bending according to the Helfrich model [69]. Membrane
viscosity can in principle be included into our model by adding an imaginary part to the shear
modulus κS. Yet, since membrane viscosity is a damping term akin to the already included fluid
viscosity, we do not expect our results to change significantly if it were to be included. As we shall
see below, the anomalous diffusion on which we focus in the present paper comes from the membrane
elasticity providing a memory to the system.

With the Skalak and Helfrich models it follows that the linearized tangential and normal fluid
stress jumps across the interface are related to the membrane displacement field at zm by [51]

[σzα] = −κS
3

(
∆‖uα + (1 + 2C)e,α

)
, α ∈ {x, y} , (2.9a)

[σzz] = κB∆2
‖uz , (2.9b)

where [g] = g(z+m) − g(z−m) denotes the jump of a quantity g across the membrane located at zm.
Furthermore, C := κA/κS is the ratio of the area expansion to shear modulus, ∆‖ = ∂,xx + ∂,yy is
the Laplace-Beltrami operator along the membrane and e = ux,x + uy,y is the dilatation. A comma
in indices denotes derivatives. The components σzα of the stress tensor are expressed by

σzα = −p δzα + η(vz,α + vα,z) , α ∈ {x, y, z} . (2.10)

The Stokes equations can conveniently be solved using a two-dimensional Fourier transform
technique [36, 45, 51]. Moreover, the dependence of the membrane shape on the motion history
suggests a temporal Fourier mode analysis. Here we use the common convention of a negative
exponent in the forward Fourier transforms. As both spacial as well as temporal transformations will
be performed, we shall reserve the tilde for the spatially transformed functions while the function
and its temporal Fourier transform will be distinguished uniquely by their arguments.

Continuing, it is convenient to adopt the orthogonal coordinate system in which the Fourier
transformed vectors are decomposed into longitudinal, transverse and normal components [36, 51, 70],
denoted by ṽl, ṽt and ṽz, respectively. For some given vectorial quantity Q̃, the passage from the new
orthogonal basis to the usual Cartesian basis can be performed via the orthogonal transformation(

Q̃x
Q̃y

)
=

1

q

(
qx qy
qy −qx

)(
Q̃l
Q̃t

)
, (2.11)

where qx and the qy are the components of the wavevector q and q := |q|. Note that the component
Q̃z along the direction normal to the membranes is left unchanged.

After applying these transformations to Eqs. (2.6) and (2.7), we can eliminate the pressure and
obtain two decoupled ordinary differential equations for ṽt and ṽz, such that [36, 51]

q2ṽt − ṽt,zz =
Ft
η
δ(z − z0) , (2.12a)

ṽz,zzzz − 2q2ṽz,zz + q4ṽz =
q2Fz
η

δ(z − z0) +
iqFl
η

δ′(z − z0) , (2.12b)

where δ′ stands for the derivative of the Dirac delta function. The incompressibility equation (2.7)
allows for the determination of ṽl from ṽz such that

ṽl =
iṽz,z
q

. (2.13)
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For the sake of amenable mathematical equations, we will only consider the case that the two
membranes have the same elastic and bending properties. Indeed, this is usually encountered in blood
vessels where the RBCs posses similar physical properties. After some algebra it can be shown that
the stress jump due to shear and area expansion from Eq. (2.9a) imposes the following discontinuities
at zm [51]:

[ṽt,z] = −iBαq2ṽt
∣∣
z=zm

, (2.14a)

[ṽz,zz] = −4iαq2ṽz,z
∣∣
z=zm

, (2.14b)

where α := κS/(3Bηω) with B := 2/(1 + C) is a characteristic length for shear and area expansion.
The normal stress jump given by Eq. (2.9b) leads to

[ṽz,zzz] = 4iα3
Bq

6ṽz
∣∣
z=zm

, (2.15)

where αB := (κB/(4ηω))1/3 is a characteristic length for bending.

2.4 Solutions

The basic approach for solving such a system of equations (2.12) and (2.13) to obtain the particle
mobility was detailed in an earlier work [51]. Here we only outline the major differences and steps.

Since the system is isotropic with respect to the x and y directions the mobility tensor only
contains diagonal components. The normal-normal component G̃zz can be obtained from solving
Eq. (2.12b) in which only the normal force Fz is considered, i.e. Fl = 0. By applying the appropriate
boundary conditions at zm and z0, the integration constants are readily determined. At z = zm, the
normal velocity ṽz and its first derivative are continuous whereas the second and third derivatives are
discontinuous because of shearing and bending, as prescribed in Eqs. (2.14b) and (2.15) respectively.
At the point force position, i.e. at z = z0, the normal velocity and its first and second derivatives
are continuous while the Dirac delta function imposes the discontinuity of the third derivative (see
Eq. (2.12b)).

For the motion parallel to the membranes, it is sufficient to consider a force Fx and solve for the
Green’s function component G̃xx. The latter can be expressed by employing Eq. (2.11) via

G̃xx(q, φ, ω) = G̃tt(q, ω) sin2 φ+ G̃ll(q, ω) cos2 φ , (2.16)

where φ := arctan(qy/qx). Accordingly, the determination of G̃xx requires two steps. First, the
transverse-transverse component G̃tt is determined from solving Eq. (2.12a). The transverse velocity
ṽt is continuous at the membranes whereas shearing imposes the discontinuity of the first derivative
as prescribed by Eq. (2.14a). At z = z0, the transverse velocity is continuous while its first derivative
is discontinuous because of the Dirac delta function (see Eq. (2.12a)). Second, the normal velocity
component ṽz is determined as an intermediate step from solving first Eq. (2.12b) by only consid-
ering the longitudinal force Fl, i.e. Fz = 0. In this situation, the Dirac delta function imposes the
discontinuity of the second derivative at z0 whereas the third derivative is continuous. Afterward,
the velocity component ṽl is immediately recovered thanks to the incompressibility equation (2.13),
giving access to the longitudinal-longitudinal component G̃ll.

What remains for the determination of the particle mobility is to apply the spatial inverse Fourier
transform by integrating over φ and the wavenumber q. In the point particle approximation, the
mobility correction can readily be calculated by subtracting the bulk term and taking the limit when
r tends to r0, as described by Eq. (2.3).

For convenience, we define the subscripts ⊥ and ‖ to denote the tensorial components zz and xx,
respectively. The yy component of the mobility tensor is identical to the xx component. Moreover,
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we define kσ⊥(β, βB) and kσ‖ (β, βB), two frequency dependent complex quantities which are related
to the first order correction in the mobility via

∆µα(z0, ω)

µ0
= −kσα(β, βB)

a

z0
, α ∈ {⊥, ‖} , (2.17)

where β := 2z0/α ∼ ω and βB := 2z0/αB ∼ ω1/3 are two dimensionless frequencies related to the
shear and bending effects, respectively. Analytical expressions for kσα(β, βB) can be obtained with
computer algebra software, but they are not listed here due to their complexity and lengthiness [71].
These expressions are the basis for the computation of the Brownian motion and therefore constitute
one of the central results of our work.

We proceed to investigate the limiting case of Eq. (2.17) in which both shearing and bending
modulus tend to infinity and therefore β and βB both tend to zero. In this case, which physically
represents a hard wall, the general expression for kσα as it appears in Eq. (2.17) reduces to

kσ⊥(0, 0) =

∫ ∞
0

3

4Γ

(
φ1+e

2σu − φ1−e−2σu + φσ+e
2u − φσ−e−2u + e−2(1+σ)u − ψ+

)
du , (2.18a)

kσ‖ (0, 0) =

∫ ∞
0

(
3

8Γ

(
φ1−e

2σu − φ1+e−2σu + φσ−e
2u − φσ+e−2u + e−2(1+σ)u − ψ−

)
− 3

4

e2u + e2σu − 2

e2(1+σ)u − 1

)
du , (2.18b)

where we defined

φσ± := σu(σu± 1) +
1

2
, (2.19a)

ψ± := 1 + 2(1 + σ)2u2 ± 2(1 + σ)(1 + 2σu2)u , (2.19b)

Γ := 1 + 2(1 + σ)2u2 − cosh (2(1 + σ)u) . (2.19c)

Expressions (2.18) are valid for arbitrary positions of the upper wall given by (1 + σ)z0. For specific
values of σ we recover three results obtained earlier: First, the single hard wall limits k∞⊥ (0, 0) = 9/8
and k∞‖ (0, 0) = 9/16 [9, 34] are obtained for σ → ∞. Second, the two wall case for σ = 1 and
σ = 3 lead to the first order correction terms for the parallel motion as computed by Faxén [55],
namely k1‖(0, 0) ≈ 1.0041 and k3‖(0, 0) ≈ 0.6526. Third, we find the result by Felderhof [59] for the
perpendicular motion, k1⊥(0, 0) ≈ 1.4516.

2.5 Coupling of shear and bending contributions

In this subsection we address one particular aspect of the boundary conditions for the two membranes.
In our recent work [51] we found that the particle mobility near a single elastic membrane could be
expressed as the linear combination of the two independent shear and bending contributions. For the
two membrane case as discussed in the present work, however, the solution of Eq. (2.12b) requires
to simultaneously consider the boundary conditions stated by Eqs. (2.14b) and (2.15). This is a
qualitative difference compared to the one membrane case.

To see this, consider two different setups, one with only bending resistance (α = 0) and one
with only shear resistance (αB = 0). Furthermore, let the corresponding perpendicular velocities be
denoted by ṽBz and ṽSz , respectively. If the expression ṽSz + ṽBz − ṽbulkz should be the solution of two
membranes with shear and bending resistance, it would have to fulfill the boundary conditions (2.14b)
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and (2.15). This is true if and only if

ṽBz,z
∣∣
z=zm

= 0 and ṽSz
∣∣
z=zm

= 0 , (2.20)

which is in general satisfied only in the one membrane limit. As a result, the contributions from
shearing and bending cannot be added independently on top of each other in the resulting mobility
corrections, defined by Eq. (2.17).

2.6 Computation of membrane deformations

A force acting on a particle will induce a motion in the fluid. As a result, the imbalance in the
stress tensor across the membranes leads to their deformation. In this subsection we compute the
deformation resulting from a time dependent point force located at z0, whereas the force is oriented
perpendicularly or parallel to the membranes. Once the fluid velocity field is computed in the whole
domain, the displacement field for each membrane can be obtained via Eq. (2.8). For each membrane
we define a frequency and wavevector dependent reaction tensor ψ̃αβ as

ũα(q, ω) = ψ̃αβ(q, ω)Fβ(ω) . (2.21)

For the perpendicular motion, the radial symmetry suggests that the displacement vector will
have a normal component uz and a radial component ur. By performing the spatial inverse Fourier
transform for a radially symmetric function [72], we immediately get the normal-normal component
of the reaction tensor in real-space:

ψzz(ρ, ω) =
1

2π

∫ ∞
0

ψ̃zz(q, ω) J0(ρq) q dq , (2.22)

where ρ :=
√
x2 + y2 and J0 is the zeroth-order Bessel function.

To compute the radial-normal component, we first note that from the transformation equa-
tions (2.11) ψ̃xz = ψ̃lz cosφ since ψ̃tz = 0 in virtue of the decoupled nature of Eqs. (2.12a) and (2.12b).
Thus, the spatial inverse Fourier transform applied to the non-radially symmetric function ψ̃xz(q, φ, ω)
leads to

ψrz(ρ, ω) =
i

2π

∫ ∞
0

ψ̃lz(q, ω) J1(ρq) q dq , (2.23)

using the fact that ψxz = ψrz cos θ and ψyz = ψrz sin θ where θ := arctan(y/x).
Let us consider next the deformation due to a time dependent point force parallel to the mem-

branes. Due to the symmetry it suffices to consider a force applied along the x-direction. Furthermore,
this force can be decomposed into a longitudinal component Fl = Fx cosφ and a transverse com-
ponent Ft = Fx sinφ. For the normal-tangential component ψzx, it follows from the transformation
equations (2.11) that ψ̃zx = ψ̃zl cosφ since ψ̃zt = 0 for the same reason as ψ̃tz. Therefore, the inverse
Fourier transform back into real space gives

ψzx(ρ, θ, ω) =
i cos θ

2π

∫ ∞
0

ψ̃zl(q, ω) J1(ρq) q dq , (2.24)

meaning that the vertical deformation is maximal in the plane y = 0 containing the support of the
vector force, and vanishes in the plane x = 0 perpendicular to it.

To compute the lateral stretching of the membrane due to a parallel force on the particle, we
require the components ψxx and ψyx giving access to the two in-plane displacements ux and uy,
respectively. It follows immediately from applying the transformation equations (2.11) together with
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the definition of the reaction tensor Eq. (2.21) that

ψ̃xx(q, φ, ω) = ψ̃ll(q, ω) cos2 φ+ ψ̃tt(q, ω) sin2 φ , (2.25)

leading after spatial inverse Fourier transform to

ψxx(ρ, θ, ω) =
1

4π

∫ ∞
0

((
ψ̃ll(q, ω) + ψ̃tt(q, ω)

)
J0(ρq) +

(
ψ̃tt(q, ω)− ψ̃ll(q, ω)

)
J2(ρq) cos 2θ

)
q dq .

(2.26)
Similar, for ψyx we have

ψ̃yx(q, φ, ω) =
(
ψ̃ll(q, ω)− ψ̃tt(q, ω)

)
cosφ sinφ , (2.27)

whose inverse Fourier transform is

ψyx(ρ, θ, ω) =
sin 2θ

4π

∫ ∞
0

(
ψ̃tt(q, ω)− ψ̃ll(q, ω)

)
J2(ρq) q dq . (2.28)

Although not transparent from Eq. (2.26), the deformation in the x-direction is maximal in the
plane y = 0 and minimal in the plane x = 0. On the other hand, deformation is maximal for the
y-direction in the bisector planes y = ±x, and vanishes in the planes x = 0 and y = 0. Under the
action of an arbitrary time dependent point force F (t), the membrane deformation can subsequently
be obtained by applying the temporal inverse Fourier transform.

3 Simulations

3.1 Boundary Integral Method

For the simulations we use the boundary integral method (BIM) [73] whose foundation is the steady
Stokes equations. The core idea is to write them as an integral equation, made possible by the fact
that we deal with a linear equation. However, treating rigid objects in the direct formulation is difficult
and inefficient since it would lead to a Fredholm equation of the first kind. Instead, we employ an
extension called the completed double layer boundary integral equation method (CDLBIEM) [74, 75].
For the system with the two membranes the equations read

vj(x) = Hj(x) , x ∈ Sm , (3.1a)

1

2
φj(x) +

6∑
i=1

ϕ
(i)
j (x) 〈ϕ(i),φ〉 = Hj(x) , x ∈ Sp . (3.1b)

Here, Sm := Sm1 ∪ Sm2 where Sm1 and Sm2 are the surfaces of the two elastic membranes, and
Sp is the surface of the rigid particle of radius a. The two membranes have a square shape with a
length of 300a. v represents the velocity on the membranes while φ denotes the so-called double
layer density function on Sp. The latter is an unphysical auxiliary field. However, the corresponding
physical velocity can be retrieved via

Vj(x) =

6∑
i=1

ϕ
(i)
j (x) 〈ϕ(i),φ〉 , x ∈ Sp . (3.2)

where the ϕ(i) are known functions representing the six possible rigid body movements of the solid
particle [74]. The brackets denote the inner product in the vector space of real functions whose
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domain is Sp. Continuing, the function Hj with j = 1, 2, 3 is given by

Hj(x) := −(Nm∆f)j(x)− (Kpφ)j(x) + G(0)jk (x,xc)Fk , (3.3)

with xc being the particle centroid. We defined the single layer integral via

(Nm∆f)j(x) :=

∫
Sm

∆fi(y)G(0)ij (y,x) dS(y) (3.4)

where integration over both membrane surfaces Sm := Sm1 ∪Sm2 needs to be performed. The double
layer integral is

(Kpφ)j(x) :=

∮
Sp

φi(y)T (0)
ijk (y,x)nk(y) dS(y) . (3.5)

The remaining quantities are the jump of the traction ∆f across the membranes, the known force F
acting on the rigid particle, the outer normal vector n, the free-space Stokeslet as defined in Eq. (2.5),
and the corresponding Stresslet

T (0)
ijk (y,x) := − 3

4π

sisjsk
s5

, (3.6)

with s := y − x and s := |s|.
Given the traction jump ∆f (computed from the current deformation as explained in the ap-

pendix) and the force F as input, equations (3.1) constitute a set of Fredholm integral equations of
the second kind for the unknown velocity v on the membranes and the density φ on the rigid particle.
To solve this equation numerically, we discretize all surfaces with flat triangles. For the rigid particle,
this is done by consecutively refining an icosahedron [87] while gmsh [76] was used for the membranes:
The quadratic planes were meshed with triangles, with increasing resolution towards their center.
We perform the integration numerically by a Gaussian quadrature with seven points per triangle [77]
together with linear interpolation of nodal values across each triangle [73]. The singularities appearing
in the single layer integral are treated via the polar integration rule [78], while the singularities of the
double layer integral are eliminated by the standard singularity subtraction scheme [73]. With this
the integral equation can be evaluated at all nodes, forming a dense and asymmetric linear system of
equations which is then subsequently solved by GMRES [79]. The residuum of the solver was fixed to
10−4. This provides us with the velocity v at each node of the two membranes and, after application
of equation (3.2), also of the rigid particle. The dynamical evolution of the system is hence obtained
by solving the kinematic condition [80]

dx

dt
= v(x) (3.7)

with the explicit Euler scheme. We chose a step size that is dependent on the wiggling frequency of
the force (cf. the next section).

3.2 Obtaining the mobility from BIM simulations

In order to obtain the frequency dependent particle mobility from the BIM simulations, an oscillating
force F (t) = Aeiω0t of amplitude A and frequency ω0 is exerted on the particle, in the direction
perpendicular or parallel to the membranes. After an initial transitory evolution, the particle begins
to oscillate with the same frequency as V ei(ω0t+δ). The velocity amplitude V and the phase shift δ
can be accurately obtained by fitting the numerically recorded velocity. For that, we use a nonlinear
least-squares solver based on the trust region method [81]. The complex frequency dependent particle
mobility can then be evaluated from

µα(ω0) =
Vα
Aα

eiδ . (3.8)
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For each applied frequency, the force is exerted during three periods in order to ensure that the
steady state has been reached properly. Therefore, lower frequencies require larger computation times.
For instance, for β = 10−3, which is the lowest scaled frequency that we use in our simulations, each
period requires around 30 hours using 40 CPUs.

4 Results and discussion

4.1 Particle mobility

We consider a spherical particle equally distant from both membranes (σ = 1) and located at z0 = 10a.
The membrane reduced bending modulus, defined as EB := κB/(a

2κS), is taken to be EB = 1/2. We
examine the case where C = 1, for which the Skalak model is equivalent to the common neo-Hookean
model [82] for small deformations [83]. As shown in Fig. 2, the analytical and numerical results are
in very good agreement for the whole range of the applied frequencies, similar as in earlier work for
a single membrane [51].

For a frequency of zero, the imaginary part vanishes. On the other hand, the real part reaches its
minimal value which corresponds to the two-hard-walls limit, namely −1.4516a/z0 and −1.0041a/z0
for the perpendicular and parallel motions, respectively. This is in agreement with earlier works [55,
59].

By taking the frequency to infinity, both the real and imaginary parts of the particle mobility
correction vanish and one recovers the bulk behavior in which the particle motion is no longer affected
by the presence of the membranes. In between, the imaginary part peaks around β ≈ 1 and βB ≈ 1 for
the perpendicular motion, and around β ≈ 1 for the parallel motion. The peak around β ≈ 1, which is
observed in both directions, is a shearing signature in the mobility correction, whereas the frequency
peak around βB ≈ 1 is a signature of bending. The latter is found to be insignificant in the parallel
motion. Physically, the peak frequencies correspond to the situation where the particle-membranes
system naturally vibrates to absorb more energy.

As already remarked, a commonly used approximation to compute mobilities between two walls
is Oseen’s approach [53] which assumes that the mobility corrections can be approximated by
superposing the contributions from each membrane independently as

∆µα(z0, ω)

µ0
= −

(
k∞α (β, βB) +

k∞α (σβ, σβB)

σ

)
a

z0
, (4.1)

which reduces in the two-hard-wall limit to

∆µα(z0, 0)

µ0
= −k∞α (0, 0)

(
1 +

1

σ

)
a

z0
. (4.2)

The superposition approximation as given by Eq. (4.1) for the elastic membranes is compared
in Fig. 2 against our analytical predictions from Eq. (2.17) (see also the Supporting Material) and
numerical simulations in order to assess its accuracy. For the perpendicular motion, we observe that
it only agrees well with the analytical predictions and the BIM simulations for frequencies βB > 1.
At lower frequencies substantial disagreement is observed which, in the limit of a vanishing frequency
(hard-walls), amounts to 55 %. This deviation is due to the fact that the superposition approximation
allows the fluid to drain away, as the no-slip boundary condition is no longer satisfied at both
membranes simultaneously. As expected, it is therefore more pronounced the more the membrane
deforms, i.e. for smaller frequencies. On the other hand, for the motion parallel to the membranes,
the agreement is reasonable down to a dimensionless frequency β of order unity. Below that, however,
a significant mismatch between the two curves is observed. In the limit for a vanishing frequency, a
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Figure 2: (Color online) The scaled frequency dependent correction to the particle mobility versus
the dimensionless frequencies β (lower axis) and βB (upper axis) for the perpendicular (a) and
parallel (b) motions. Here, the particle is equidistant from both membranes (σ = 1) and located at
z0 = 10a. The theoretical predictions from Eq. (2.17) are shown as red lines (real part) and blue
lines (imaginary part) whereas the BIM simulation results are marked as rectangles (real part) and
circles (imaginary part). Dashed lines represent the superposition approximation by summing up
the contributions of each membrane independently as given by Eq. (4.1). The solid horizontal lines
indicate the two-hard-wall limits (−1.4516a/z0 and −1.0041a/z0 for the perpendicular and parallel
motions, respectively) and the dotted horizontal lines result from the superposition approximation
of the hard wall as stated in Eq. (4.2). For the other simulation parameters, see main text.

relative deviation of 12 % from Faxén’s value is obtained. All in all, the superposition approximation
consistently underestimates the particle mobility.

4.2 Membrane deformation

We now consider the membrane deformation induced by the moving particle. For this, we set the
complex driving force to be harmonic with components Fα(t) = Aαe

iω0t, whose temporal Fourier
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Figure 3: (Color online) Comparison between analytical predictions (solid lines) and numerical
simulations (symbols) of the scaled membrane displacement as given by Eq. (4.3) for the motion
perpendicular (a and b) and parallel (c, d and e) to the membranes, for the parameters given in Fig. 2
(σ = 1). In this example, we take ω0TS = 1 and tω0 = π/2.

transform is Fα(ω) = 2πAαδ(ω − ω0). In this case, the membrane displacement is expressed as

uα(ρ, θ, t) = ψαβ(ρ, θ, ω0)Aβe
iω0t . (4.3)

The physical displacement of the membrane is obtained by simply taking the real part of the right
hand side in Eq. (4.3).

Fig. 3 depicts a comparison of the membrane displacements between analytical predictions and
BIM simulations. Here we use the same set of parameters as in Fig. 2. As the particle is equally
distant from both membranes, the displacement fields of each membrane are equal in magnitude, but
may differ in sign. For instance, for a particle moving perpendicularly to the membranes, the normal
displacements of each membrane have the same sign whereas the radial displacements have opposite
signs. However, the vertical displacements in the parallel motion have different signs from each other
whereas the in-plane displacements have similar signs. Hereafter, all the components are evaluated
in their plane of maximal displacement: uz and ux in the plane y = 0 and uy in the plane y = x. The
theoretical predictions are found to be in good agreement with the numerical simulations for both
the perpendicular and parallel motions. The reason behind the small discrepancy between theory and
simulation is most likely the fact that the analytical theory treats truly infinite membranes whereas
the corresponding BIM simulations necessarily only account for finite sized membranes.

In the perpendicular motion, the deformation is more pronounced in the normal than in the
x-direction. The maximum displacement for the first occurs at the center. Far away, the membrane
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Figure 4: (Color online) Effect of the oscillation
frequency on the amplitude of the reaction ten-
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Figure 5: (Color online) (a) R⊥ and (b) R‖ for
different values of σ for ω0τ = 0.01 with z0 =
(3κB/(2κS))1/2.

deformation decays rapidly with distance and vanishes as x tends to infinity. On the other hand, radial
symmetry implies that the displacement ur should vanish at the origin, suggesting the existence of
an extremum at some intermediate radial position. The latter is found to be in magnitude around 40
times smaller than that obtained for the normal displacement. Accordingly, the in-plane deformation
does not play a significant role for the motion perpendicular to the membranes.

Considering the translational motion parallel to the membranes, we observe that the displaced
membranes exhibit a fundamentally different shape. Not surprisingly, it turns out that the in-plane
deformation ux along the direction parallel to the applied force is the most significant. The maximum
displacements reached in uz and uy are respectively found to be about twice and 10 times smaller in
comparison with that reached in ux.

Membrane deformability is largely determined by shearing and bending properties. Henceforth,
we shall consider a typical case for which both effects have the same relevance. Thus, before we can
continue, we define the characteristic time scale for shearing as TS := 6ηz0/κS and the characteristic
time scale for bending as TB := 4ηz30/κB [51]. Both time scales are equal for a distance z0 =
(3κB/(2κS))1/2. We adapt this value for the remainder of this section. Furthermore, let τ := TS = TB.

It is also of interest to compute the maximum displacement (amplitude) of the membrane during
the particle oscillation. The maximum is not necessarily reached for tω0 = π/2, as taken in Fig. 3.
In Fig. 4, we show the effect of frequency on the oscillation amplitude. Higher frequencies induce
smaller deformation, because the membrane does not have enough time to respond to the fast particle
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as given by Eq. (4.8) versus the scaled time
for σ = 1.

wiggling. By comparing the reaction tensor amplitudes with and without a second membrane, we
see that the presence of a second membrane reduces |ψzz| less strongly than |ψxx|. This is similar to
the observations for the MSD in the next section (see Fig. 6).

In order to examine the effect of the disposition of the upper membrane relative to the lower
one, we define the following ratios of the reaction tensor amplitudes between the upper and lower
membranes:

R⊥ :=
|ψzz|upper

|ψzz|lower
and R‖ :=

|ψxx|upper

|ψxx|lower
. (4.4)

These are two quantities that vanish for σ →∞ and are equal to one for σ = 1. In Fig. 5, we plot the
variations of R⊥ and R‖ as functions of the scaled distance from the membrane center for different
values of σ. Here the calculations are carried out in the plane of maximal displacement y = 0, for
a scaled frequency of ω0τ = 0.01. We remark that the upper membrane shows significantly less
vertical displacement as σ increases (ratio less than unity.) Further apart from the center, where less
deformation occurs, the two membranes have an essentially comparable deformation behavior, and
both ratios approach the upper limit one as x increases.

4.3 Brownian motion

The computation of the particle mean-square displacement (MSD) requires as an intermediate step the
determination of the velocity autocorrelation function φv,α(t) := 〈Vα(0)Vα(t)〉. The latter is related
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to the temporal inverse Fourier transform of the particle mobility via Kubo’s fluctuation-dissipation
theorem (FDT) such that [84]

φv,α(t) =
kBT

2π

∫ ∞
−∞

(
µαα(ω) + µαα(ω)

)
eiωtdω , (4.5)

where kB is the Boltzmann constant and T the absolute temperature of the system. The bar denotes
complex conjugate.

The particle MSD is computed as

〈∆rα(t)2〉 = 2

∫ t

0
(t− s)φv,α(s) ds . (4.6)

For convenience, we define the excess MSD as

∆α(t) := 1− 〈∆rα(t)2〉
2D0t

, (4.7)

where D0 = µ0kBT is the bulk diffusion coefficient given by the Einstein relation [85].
We show in Fig. 6 the variations of the perpendicular and parallel excess MSDs as computed from

Eq. (4.7) versus the scaled time. For short times, the particle does not yet perceive the membranes
and thus experiences a bulk diffusion. By increasing the time up to t ≈ τ , the effect of the confining
membranes becomes noticeable. By comparing the total excess MSDs for σ =∞ and σ = 1 we find
that diffusion in the long-time limit is slowed down by a factor 1.78 for the parallel direction, but
only a factor 1.29 in the perpendicular direction, due to the introduction of the second membrane.

As explained in Sec. 2.5, the particle mobility and, consequently, also the MSD cannot be split
up directly into a shear and bending contribution for the two membrane case. We therefore consider
the two cases separately, taking one membrane with α = 0 and one with αB = 0. We find that for
the shear-only membrane (αB = 0, blue curve in Fig. 6) the time needed to reach the steady state is
about 10τ for the perpendicular motion, and about 100τ for the parallel motion. On the other hand,
the bending-only membrane (α = 0, red curve in Fig. 6) takes for both directions a significantly
longer time of about 104τ before the steady state is attained.
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Another way to quantify the slowing down of the particle is to investigate the time-dependent
scaling exponent of the MSD, which can be defined as

γα(t) :=
d ln〈∆rα(t)2〉

d ln t
= 1− t

1−∆α(t)

d∆α(t)

dt
. (4.8)

Fig. 7 shows the temporal evolution of the scaling exponent which strongly depends on the distance
separating the particle from the membranes. We first remark that the scaling exponent is γ(t) = 1
at t = 0 and for t→∞. The particle thus experiences normal diffusion in these cases. This is similar
to the single-membrane case [51]. For t ≈ τ , we observe a bending down of the scaling exponent,
resulting in a subdiffusive regime that extends up to 103τ in the parallel and even further in the
perpendicular direction. In Fig. 8 we present the variation of the minimal scaling exponent for σ = 1
and σ =∞ upon varying the particle-membrane distance. For a/z0 = 0.6, the exponent is found to
be as low as 0.75 for the perpendicular motion, and 0.86 for the parallel motion. These values are
significantly smaller than the ones previously found in the one-membrane limit (σ =∞) [51], where
the scaling exponent is around 0.89 and 0.92 for the perpendicular and parallel motions, respectively.
We therefore conclude that the second membrane leads to a notable slow-down of the dynamics.

5 Conclusions

We have investigated the translational motion of a spherical particle confined between two parallel
elastic membranes and determined the frequency dependent mobility for the motion perpendicular
and parallel to the membranes in the point particle limit. Contrary to the single wall, shear and
bending are intrinsically coupled and their contributions cannot be added linearly. Our analytical
predictions have been compared to boundary integral simulations for a finite-sized particle and very
good agreement has been observed. The frequently used superposition approximation, originally
suggested by Oseen [53] for two hard walls, has been tested for elastic membranes. Reasonably
good agreement with the analytically exact predictions is observed for the parallel, but not for the
perpendicular motion, especially in the low frequency regime.

Subsequently, we have provided analytical predictions validated by numerical simulations of the
membrane deformation due to a particle upon which an oscillating force is exerted perpendicular
or parallel to the membranes. We have observed that the deformation is most pronounced in the
direction along which the force acts, and that the presence of the second membrane significantly
reduces the membrane deformations.

Finally, we have shown that the elastic membranes induce a memory effect in the system, leading
to a subdiffusive Brownian motion at intermediate time scales. This is qualitatively similar, yet more
pronounced, as in the single membrane situation [51]. To provide typical physical values, consider a red
blood cell with a shear modulus of κS = 5× 10−6 N/m and a bending modulus of κB = 2× 10−19 Nm
that flows in a fluid with dynamic viscosity η = 1.2× 10−3 Pa s [86]. A typical nanoparticle of radius
a = 150 nm that is located at a distance of z0 = 250 nm from both red blood cells will undergo a
long-lived subdiffusive motion that can last up to 100 ms. The corresponding scaling exponent of
the MSD can go as low as 0.77 in the perpendicular and as low as 0.87 in the parallel direction.

In the future, it will be interesting to carry out similar calculations in more severe confinements
such as cylindrical elastic channels where even stronger effects are expected.
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Appendix

A Computation of the traction jump for the membranes

In this appendix, we provide some technical details regarding the computation of the traction jump
∆f across the membranes, as required for Eq. (3.3). The membranes are endowed with shear and
area elasticity together with some bending rigidity.

A.1 Shear and area elasticity

We employ the Skalak model [68] which is often used to model the membranes of red blood cells. Its
areal energy density is given by [87]

εS =
κS
12

(I21 + 2I1 − 2I2 + CI22 ) . (A.1)

The strain invariants I1 and I2 are related to the principal in-plane stretch ratios via I1 = λ21+λ22−2
and I2 = λ21λ

2
2 − 1. Hence, the total energy of a membrane Smi is given by

ES =

∫
S
(0)
mi

εS dS0 , (A.2)

where the integration is performed over the surface in the reference state S(0)
mi . In our case this is a

simple flat sheet. To obtain the force at each node, we assume that the deformation is a linear function
of position in each triangle. After discretization of the integral the energy ES depends explicitly on
the node positions xi. Therefore, according to the principle of virtual work, the total force is then
given by the gradient

F (xi) =
∂ES

∂xi
. (A.3)

This derivative can be computed analytically as detailed in references [88, 89]. The traction jump is
thus obtained by

∆f(xi) =
F (xi)

Ai
, (A.4)

whereas Ai is the area associated with node xi and is taken as one third of the total area of the
triangles containing the node [75].

A.2 Bending rigidity

The bending forces are modeled according to the constitutive law proposed by Canham [90] and
Helfrich [69], which for a flat reference state becomes

EB = 2κB

∫
Smi

H2 dS . (A.5)

H denotes the mean curvature and κB the bending modulus. Applying the principle of virtual work is
possible before the discretization, leading to the following contribution to the traction jump [91, 92]:

∆f(x) = −2κB
(
2H(H2 −K) + ∆SH

)
n . (A.6)

The mean curvature H is calculated according to the relation H(x) = −1
2 (∆Sxi)ni(x). We use the

algorithms presented by Meyer et al. [93] for the computation of the Laplace-Beltrami operator ∆S
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and the Gaussian curvature K. The normal vector n is computed according to the “mean weighted
by angle” method [94]. This provides reasonable results in the application of viscous flows [95]. Note
that we set ∆f to zero for nodes located at the border of the meshes.
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Abstract

We present an analytical calculation of the hydrodynamic interaction between two spherical particles
near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self-
and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between
particle diameter and wall distance as well as between diameter and interparticle distance. We
find that particle motion towards a membrane with pure bending resistance always leads to mutual
repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing
resistance, however, we observe an attractive interaction in a certain parameter range which is in
contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions.
Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular
motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical
particle mobilities we compute collective and relative diffusion coefficients. The appropriateness of
the approximations in our analytical results is demonstrated by corresponding boundary integral
simulations which are in excellent agreement with the theoretical predictions.

1 Introduction

The hydrodynamic interaction between particles moving through a liquid is essential to determine
the behavior of colloidal suspensions [1], polymer solutions [2, 3], chemical reaction kinetics [4, 5],
bilayer assembly [6] or cellular flows [7, 8]. As an example, hydrodynamic interactions result in a
notable alteration of the collective motion behavior of catalytically powered self-propelled particles [9]
or bacterial suspensions [10–14]. Many of the occurring phenomena can be explained on the basis
of two-particle interactions [15] which in bulk are well understood. Some of the most intriguing
observations, however, are made when particles interact hydrodynamically in the close vicinity of
interfaces – a prominent example being the attraction of like-charged colloid particles during their
motion away from a hard wall [16–18].

In the low Reynolds number regime hydrodynamic interactions between two particles are fully
described by the mobility tensor which provides a linear relation between the force applied on one
particle and the resulting velocity of either the same or the neighboring particle. In an unbounded
flow, algebraic expressions for the hydrodynamic interactions between two [15, 19–23] and several [24–
29] spherical particles are well established. Experimentally, the predicted hydrodynamic coupling has
been confirmed using optical tweezers [30–33] and atomic force microscopy [34].

The presence of an interface is known to drastically alter the hydrodynamic mobility. For a single
particle, this wall-induced drag effect has been studied extensively over recent decades theoretically
and numerically near a rigid [35–44], a fluid-fluid [45–50] or an elastic interface [51–57]. While rigid
interfaces in general simply lead to a reduction of particle mobility, the memory effect caused by elastic
interfaces leads to a frequency dependence of the particle mobility and can cause novel phenomena
such as transient subdiffusion [55]. On the experimental side, the single particle mobility has been
investigated using optical tweezers [58–60], evanescent wave dynamic light scattering [61–70] or video
microscopy [71–73]. The influence of a nearby elastic cell membrane has recently been investigated
using magnetic particle actuation [74] and optical traps [52, 75, 76].

Hydrodynamic interactions between two particles near a planar rigid wall have been studied theo-
retically [17, 77] and experimentally using optical tweezers [78, 79] and digital video microscopy [80].
Narrow channels [81, 82], 2D confinement [83] or liquid-liquid interfaces have also been investi-
gated [84, 85]. Near elastic interfaces, however, no work regarding hydrodynamic interactions has so
far been reported. Given the complex behavior of a single particle near an elastic interface (caused
by the above-mentioned memory effect) such hydrodynamic interactions can be expected to present
a very rich phenomenology.
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Figure 1: Illustration of the problem setup. Two small particles labeled γ and λ of radius a are located
a distance h := xλ−xγ apart and a distance z0 above an elastic membrane. The dimensionless length
scales of the problem are ε := a/z0 and σ := a/h.

In this paper, we calculate the motion of two spherical particles positioned above an elastic
membrane both analytically and numerically. We find that the shearing and bending related parts
in the pair-mobility can in some situations have opposite contributions to the total mobility. Most
prominently, we find that two particles approaching an idealized membrane exhibiting only shear
resistance will be attracted to each other which is just opposite to the well-known hydrodynamic
repulsion for motion towards a hard wall [17]. Additionally, we show that the pair-mobility at
intermediate frequencies may even exceed its bulk value, a feature which is not observed in bulk or
near a rigid wall. This increase in pair-mobility results in a short-lived superdiffusion in the joint
mean-square displacement.

The remainder of the paper is organized as follows. In Sec. 2, we introduce the theoretical approach
to computing the frequency-dependent self- and pair-mobilities from the multipole expansion and
Faxén’s theorem, up to the 5th order in the ratio between particle radius and particle-wall or
particle-particle distance. In Sec. 3, we present the boundary integral method which we have used
to numerically confirm our theoretical predictions. In Sec. 4, we provide analytical expressions of
the particle self- and pair-mobilities in terms of power series, finding excellent agreement with our
numerical simulations. Expressions of the self- and pair-diffusion coefficients are derived in Sec. 5.
Concluding remarks are made in Sec. 6.

2 Theory

We consider a pair of particles of radius a suspended in a Newtonian fluid of viscosity η above a
planar elastic membrane extending in the xy plane. The two particles are placed at rγ = (xγ , 0, z0)
and rλ = (xλ, 0, z0), i.e. the line connecting the two particles is parallel to the undisplaced membrane.
We denote by h := xλ − xγ the center-to-center separation measured from the left (γ) to the right
(λ) particle (see Fig. 1 for an illustration).

The particle mobility is a tensorial quantity that linearly couples the velocity Vγα of particle γ
in direction α to an external force in the direction β applied on the same (Fγβ) or the other (Fλβ)
particle. Transforming to the frequency domain we thus have [86, ch. 7]

Vγα(ω) = µγγαβ(rγ , rγ , ω)Fγβ(ω) + µγλαβ(rγ , rλ, ω)Fλβ(ω) ,

where Einstein’s convention for summation over repeated indices is assumed. The particle mobility
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tensor in the present geometry can be written as an algebraic sum of two distinct contributions

µγλαβ(rγ , rλ, ω) = bγλαβ(rγ , rλ) + ∆µγλαβ(rγ , rλ, ω) , (2.1)

where bγλαβ is the pair-mobility in an unbounded geometry (bulk flow), and ∆µγλαβ is the frequency-
dependent correction due to the presence of the elastic membrane. An analogous relation holds for
µγγαβ .

For the determination of the particle mobility, we consider a force density f acting on the surface
Sλ of the particle λ, related to the total force by

Fλβ(ω) =

∮
Sλ

fβ(r′, ω) d2r′ ,

which induces the disturbance flow velocity at point r

vα(r, rλ, ω) =

∮
Sλ

Gαβ(r, r′, ω)fβ(r′, ω) d2r′ , (2.2)

where Gαβ denotes the velocity Green’s function (Stokeslet), i.e. the flow velocity field resulting from
a point-force acting on rλ. The disturbance velocity at any point r can be split up into two parts,

vα(r, rλ, ω) = v(0)α (r, rλ) + ∆vα(r, rλ, ω) , (2.3)

where v(0)α is the flow field induced by the particle λ in an unbounded geometry, and ∆vα is the flow
satisfying the no-slip boundary condition at the membrane. In this way, the Green’s function can be
written as

Gαβ(r, r′, ω) = G(0)αβ (r, r′) + ∆Gαβ(r, r′, ω) , (2.4)

where G(0)αβ is the infinite-space Green’s function (Oseen’s tensor) given by

G(0)αβ (r, r′) =
1

8πη

(
δαβ
s

+
sαsβ
s3

)
, (2.5)

with s := r − r′ and s := |s|. The term ∆Gαβ represents the frequency-dependent correction due
to the presence of the membrane. Far away from the particle λ, the vector r′ in Eq. (2.2) can
be expanded around the particle center rλ following a multipole expansion approach. Up to the
second order, and assuming a constant force density, the disturbance velocity can be approximated
by [77, 87–89]

vα(r, rλ, ω) ≈
(

1 +
a2

6
∇2
rλ

)
Gαβ(r, rλ, ω)Fλβ(ω) , (2.6)

where ∇rλ stands for the gradient operator taken with respect to the singularity position rλ. Note
that for a single sphere in bulk, the flow field given by Eq. (2.6) satisfies exactly the no-slip boundary
conditions at the surface of the sphere, i.e. in the frame moving with the particle, both the normal
and tangential velocities vanish. Using Faxén’s theorem, the velocity of the second particle γ in this
flow reads [77, 87–89]

Vγα(ω) = µ0Fγα(ω) +

(
1 +

a2

6
∇2
rγ

)
vα(rγ , rλ, ω) , (2.7)

where µ0 := 1/(6πηa) denotes the usual bulk mobility, given by the Stokes’ law. The disturbance
flow vα incorporates both the disturbance from the particle λ and the disturbance caused by the
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presence of the membrane. By plugging Eq. (2.6) into Faxén’s formula given by Eq. (2.7), the αβ
component of the frequency-dependent pair-mobilities can be obtained from

µγλαβ(ω) =

(
1 +

a2

6
∇2
rγ

)(
1 +

a2

6
∇2
rλ

)
Gαβ(rγ , rλ, ω) . (2.8)

For the self-mobilities, only the correction in the flow field ∆vα due to the presence of the
membrane in Eq. (2.3) is considered in Faxén’s formula (the influence of the second particle on
the self-mobility is neglected here for simplicity [77, 88]). Therefore, the frequency-dependent self-
mobilities read

µγγαβ(ω) = µ0 + lim
r→rγ

(
1 +

a2

6
∇2
r

)(
1 +

a2

6
∇2
rγ

)
∆Gαβ(r, rγ , ω) , (2.9)

and analogously for µλλαβ .

In order to use the particle pair- and self-mobilities from Eqs. (2.8) and (2.9), the velocity Green’s
functions in the presence of the membrane are required. These have been calculated in our earlier
work [55] and their derivation is only briefly sketched here with more details in Appendix A.

We proceed by solving the steady Stokes equations with an arbitrary time-dependent point-force F
acting at r0 = (0, 0, z0),

η∇2v −∇p+ F δ(r − r0) = 0 , (2.10)
∇ · v = 0 , (2.11)

where p is the pressure field. The determination of the Green’s functions at rλ is straightforward
thanks to the system translational symmetry along the xy plane. After solving the above equations
and appropriately applying the boundary conditions at the membrane, we find that the Green’s
functions are conveniently expressed by

Gzz(r, rλ, ω) =
1

2π

∫ ∞
0
G̃zz(q, z, z0, ω)J0(ρq) q dq , (2.12a)

Gxx(r, rλ, ω) =
1

4π

∫ ∞
0

(
G̃+(q, z, z0, ω)J0(ρq) + G̃−(q, z, z0, ω)J2(ρq) cos 2θ

)
q dq , (2.12b)

Gyy(r, rλ, ω) =
1

4π

∫ ∞
0

(
G̃+(q, z, z0, ω)J0(ρq)− G̃−(q, z, z0, ω)J2(ρq) cos 2θ

)
q dq , (2.12c)

Gxz(r, rλ, ω) =
i cos θ

2π

∫ ∞
0
G̃lz(q, z, z0, ω)J1(ρq) dq , (2.12d)

where ρ :=
√

(x− xλ)2 + y2, θ := arctan(y/(x− xλ)) with r = (x, y, z). Here Jn denotes the Bessel
function of the first kind of order n. The functions G̃±, G̃lz and G̃zz are provided in Appendix A. It is
worth to mention here that the unsteady term in the Stokes equations leads to negligible contribution
in the correction to the Green’s functions [55], and it is therefore not considered in the present work.

The membrane elasticity is described by the well-established Skalak model [90], commonly used
to describe deformation properties of red blood cell (RBC) membranes [91–93]. The elastic model
has as parameters the shearing modulus κS and the area-expansion modulus κA. The two moduli are
related via the dimensionless number C := κA/κS. Moreover, the membrane resists towards bending
according to Helfrich’s model [94], with the corresponding bending rigidity κB.
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3 Boundary integral methods

In this section, we introduce the numerical method used to compute the particle self- and pair-
mobilities. The numerical results will subsequently be compared with the analytical predictions
presented in Sec. 2.

For solving the fluid motion equations in the inertia-free Stokes regime, we use a boundary integral
method (BIM). The method is well suited for problems with deforming boundaries such as RBC
membranes [95, 96]. In order to solve for the particle velocity given an exerted force, a completed
double layer boundary integral method (CDLBIM) [97, 98] has been combined with the classical
BIM [99]. The integral equations for the two-particle membrane systems read

vβ(x) = Hβ(x) , x ∈ Sm ,

1

2
φβ(x) +

6∑
α=1

ϕ
(α)
β (x) 〈ϕ(α),φ〉 = Hβ(x) , x ∈ Sp .

(3.1)

where Sm is the surface of the elastic membrane and Sp := Spγ ∪Spλ is the surface of the two spheres.
Here v denotes the velocity on the membrane whereas φ represents the double layer density function
on Sp, related to the velocity of the particle γ via

Vγβ(x) =
6∑

α=1

ϕ
(α)
β (x) 〈ϕ(α),φ〉 , x ∈ Spγ . (3.2)

where ϕ(α) are known functions [98]. The brackets stand for the inner product in the space of real
functions whose domain is Spγ , and the function Hβ is defined by

Hβ(x) := −(Nm∆f)β(x)− (Kpφ)β(x) + G(0)βµ (x,xλc)Fµ ,

with xλc being the centroid of the sphere labeled λ upon which the force is applied. The single layer
integral is defined as

(Nm∆f)β(x) :=

∫
Sm

∆fα(y)G(0)αβ (y,x) dS(y)

and the double layer integral as

(Kpφ)β(x) :=

∮
Sp

φα(y)T (0)
αβµ(y,x)nµ(y) dS(y) .

Here, ∆f is the traction jump, n denotes the outer normal vector at the particle surfaces and F
is the force acting on the rigid particle. The infinite-space Green’s function is given by Eq. (2.5) and
the corresponding Stresslet, defined as the symmetric part of the first moment of the force density,
reads [86]

T (0)
αβµ(y,x) = − 3

4π

sαsβsµ
s5

,

with s := y − x and s := |s|. The traction jump across the membrane ∆f is an input for the
equations, determined from the instantaneous deformation of the membrane. In order to solve
Eqs. (3.1) numerically, the membrane and particles’ surfaces are discretized with flat triangles. The
resulting linear system of equations for the velocity v on the membrane and the density φ on the
rigid particles is solved iteratively by GMRES [100]. The velocity of each particle is determined from
(3.2). For further details concerning the algorithm and its implementation, we refer the reader to
Ref. [55]. Bending forces are computed using Method C from [101].
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In order to compute the particle self- and pair-mobilities numerically, a harmonic oscillating force
Fλ(t) = Aλe

iω0t of amplitude Aλ and frequency ω0 is applied at the surface of the particle λ. After
a brief transient time, both particles begin to oscillate at the same frequency as Vλ(t) = Bλe

i(ω0t+δλ)

and as Vγ(t) = Bγe
i(ω0t+δγ). The velocity amplitudes and phase shifts can accurately be obtained

by a fitting procedure of the numerically recorded particle velocities. For that, we use a nonlinear
least-squares algorithm based on the trust region method [102]. Afterward, the αβ component of the
frequency-dependent complex self- and pair-mobilities can be calculated as

µλλαβ =
Bλα
Aλβ

eiδλ , µγλαβ =
Bγα
Aλβ

eiδγ .

4 Results

For a single membrane, the corrections to the particle mobility can conveniently be split up into a
correction due to shearing and area expansion together with a correction due to bending [55]. In the
following, we denote by µγγαβ = µλλαβ = µSαβ (“self”) the components of the self-mobility tensor, and by
µγλαβ = µλγβα = µPαβ (“pair”) the components of the pair-mobility tensor. Note that for α 6= β, µSαβ = 0

and that µPαβ = −µPβα.

4.1 Self-mobilities for finite-sized particles

Mathematical expressions for the translational particle self-mobility corrections will be derived in
terms of ε = a/z0. The point-particle approximation presented in earlier work [55] represents the
first order in the perturbation series, valid when the particle is far away from the membrane.

Perpendicular to membrane

The particle mobility perpendicular to the membrane is readily obtained after plugging the correction
∆Gzz as defined by Eq. (2.4) to the normal-normal component of the Green’s function from Eq. (2.12a)
into Eq. (2.9). After computation, we find that the contribution due to shearing and bending can be
expressed as

∆µSzz,S
µ0

= eiβ
(
− 9

16
E4(iβ)ε+

3

4
E5(iβ)ε3 − 5

16
E6(iβ)ε5

)
, (4.1a)

∆µSzz,B
µ0

= εf1 + ε3f3 + ε5f5 , (4.1b)

where the subscripts S and B stand for shearing and bending, respectively. The function En is
the generalized exponential integral defined as En(x) :=

∫∞
1 t−ne−xtdt [103]. Furthermore, β :=

6Bz0ηω/κS is a dimensionless frequency associated with the shearing resistance, whereas B :=
2/(1 +C). Moreover, βB := 2z0(4ηω/κB)1/3 is a dimensionless number associated with bending. The
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functions fi, with i ∈ {1, 3, 5} are defined by

f1 = −15

16
+

3iβB
8

((
β2B
12

+
iβB
6

+
1

6

)
φ+ +

√
3

6
(βB + i)φ− +

(
β2B
12
− iβB

3
− 1

3

)
ψ

)
,

f3 =
5

16
−
β3B
48

((
βB
4

+ i

)
φ+ +

i
√

3βB
4

φ− −
(
βB
2
− i
)
ψ +

3i

2

)
,

f5 = − 1

16
+
β3B
384

(
β2B
3

(√
3

2
φ− +

i

2
φ+ − iψ

)
+ i

)
,

with

φ± := e−izB E1 (−izB)± e−izB E1 (−izB) ,

ψ := e−iβB E1(−iβB) ,

where zB := jβB and j := e2iπ/3 being the principal cubic-root of unity. The bar designates complex
conjugate.

The total mobility correction is obtained by adding the individual contributions due to shearing
and bending, as given by Eqs. (4.1a) and (4.1b). In the vanishing frequency limit, the known result
for a hard-wall [89] is obtained:

lim
β,βB→0

∆µSzz
µ0

= −9

8
ε+

1

2
ε3 − 1

8
ε5 . (4.2)

The particle mobility near an elastic membrane is determined by membrane shearing and bending
properties. We therefore consider a typical case for which both effect manifests themselves equally.
For that purpose, we define a characteristic time scale for shearing as TS := 6z0η/κS together with a
characteristic time scale for bending as TB := 4ηz30/κB [55]. Then we take z20κS/κB = 3/2 such that
the two time scales are equal and can be denoted by TS = TB =: T . In this case, the two dimensionless
numbers β and βB are related by βB = 2(β/B)1/3. The situation for a membrane with the typical
parameters of a red blood cell is qualitatively similar as shown in the Supporting Information [104].

In Fig. 2 a), we show the particle scaled self-mobility corrections versus the scaled frequency β,
as stated by Eqs. (4.1a) and (4.1b). The particle is set a distance z0 = 2a above the membrane. We
observe that the real part is a monotonically increasing function with respect to frequency while
the imaginary part exhibits a bell-shaped dependence on frequency centered around β ∼ 1. In the
limit of infinite frequencies, both the real and imaginary parts of the self-mobility corrections vanish,
and thus one recovers the bulk behavior. For the perpendicular motion we observe that the particle
mobility correction is primarily determined by the bending part.

A very good agreement is obtained between the analytical predictions and the numerical simula-
tions over the whole range of frequencies. Additionally, we assess the accuracy of the point-particle
approximation employed in earlier work [55], in which only the first order correction term in the
perturbation parameter ε was considered. While this approximation slightly underestimates particle
mobilities, it nevertheless leads to a surprisingly good prediction, even though the particle is set only
one diameter above the membrane.
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Parallel to membrane

We proceed in a similar way for the motion parallel to the membrane. By plugging the correction
∆Gxx from the Green’s function in Eq. (2.12b) into Eq. (2.9) we find

∆µSxx,S
µ0

= eiβ
(
− 3

32

(
3 E4(iβ)− 4 E3(iβ) + 2 E2(iβ) + 4eiCβ E2(i(1 + C)β)

)
ε (4.3a)

+
3

16
(2 E5(iβ)− E4(iβ)) ε3 − 5

32
E6(iβ)ε5

)
,

∆µSxx,B
µ0

= εg1 + ε3g3 + ε5g5 , (4.3b)

where we defined

g1 = − 3

32
+
iβ3B
64

(φ+ + ψ) ,

g3 =
3

32
+
β3B
64

(
−i+

βB
3

(
ψ − 1

2
φ+ −

i
√

3

2
φ−

))
,

g5 = − 1

32
+
β3B
768

(
i+

β2B
3

(
i

2
φ+ +

√
3

2
φ− − iψ

))
.

The well-known hard-wall limit, as first calculated by Faxén [89, 105], is recovered by considering
the vanishing frequency limit:

lim
β,βB→0

∆µSxx
µ0

= − 9

16
ε+

1

8
ε3 − 1

16
ε5 . (4.4)

The mobility corrections in the parallel direction are shown in Fig. 2 b). We observe that the total
correction is mainly determined by the shearing part in contrast to the perpendicular case where
bending dominates.

4.2 Pair-mobilities for finite-sized particles

In the following, expressions for the pair-mobility corrections in terms of a power series in σ = a/h
will be provided. To start, let us first recall the particle pair-mobilities in an unbounded geometry.
By applying Eq. (2.8) to the infinite space Green’s function Eq. (2.5), the bulk pair-mobilities for
the motion perpendicular to and along the line of centers read [86, p. 190]

µPzz
µ0

=
3

4
σ +

1

2
σ3 ,

µPxx
µ0

=
3

2
σ − σ3 , (4.5)

and are commonly denominated the Rotne-Prager tensor [26, 106]. Note that the terms with σ5 vanish
for the bulk mobilities when considering only the first reflection as is done here. The axial symmetry
along the line connecting the two spheres in bulk requires that µPyy = µPzz and that the off-diagonal
components of the mobility tensor are zero. Physically, the parameter σ only takes values between
0 and 1/2 as overlap between the two particles is not allowed. In this interval, the pair-mobility
perpendicular to the line of centers µPzz is always lower than the pair-mobility µPxx, since it is easier
to move the fluid aside than to push it into or to squeeze it out of the gap between the two particles.

Consider next the pair-mobilities near an elastic membrane. By applying Eq. (2.8) to Eqs. (2.12a)
through (2.12d), we find that the corrections to the pair-mobilities can conveniently be expressed in
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Figure 2: (Color online) The scaled frequency-dependent self-mobility correction versus the scaled
frequency for the motion perpendicular (a) and parallel (b) to the membrane. The particle is located
at z0 = 2a. We take z20κS/κB = 3/2 and C = 1 in the Skalak model. The analytical predictions are
shown as dashed lines for the real part, and as solid lines for the imaginary part. Symbols refer to
BIM simulations. The shearing and bending contributions are shown in green and red respectively.
The dotted-dashed line in blue corresponds to the first order correction in the particle self-mobility,
as previously determined in Ref. [55]. Horizontal dashed lines represent the mobility corrections near
a hard-wall as given by Eqs. (4.2) and (4.4).

terms of the following convergent integrals,

∆µPzz
µ0

=

∫ ∞
0
− iσu

3

3ξ5/2

(
Λ2

2iu− β
+

4Γ2
−

8iu3 − β3B

)
χ0e
−2udu , (4.6a)

∆µPxx
µ0

=

∫ ∞
0

(
iσ

6ξ5/2

(
Γ2
+

2iu− β
+

4u4Λ2

8iu3 − β3B

)(
ξ1/2χ1 − 2uχ0

)
− 3σB

2

χ1

Bu+ iβ

)
e−2udu , (4.6b)

∆µPyy
µ0

=

∫ ∞
0

(
− iσ

6ξ2

(
Γ2
+

2iu− β
+

4u4Λ2

8iu3 − β3B

)
χ1 +

3σB

2ξ1/2
ξ1/2χ1 − 2uχ0

Bu+ iβ

)
e−2udu , (4.6c)

∆µPxz
µ0

=

∫ ∞
0

iσu2

3ξ5/2
Λ

(
Γ+

2iu− β
+

4u2Γ−
8iu3 − β3B

)
χ1e
−2udu , (4.6d)
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Figure 3: (Color online) The scaled pair-mobility corrections versus the scaled frequency β. The
two particles are located above the membrane at z0 = 2a with a distance h = 4a. The real and
imaginary parts of the mobility correction are shown as dashed and solid lines, respectively. The
shearing and bending related parts are shown in green and red, respectively. The hard-wall limits are
shown as horizontal dashed lines. The inset in a) shows that the amplitude of the total pair-mobility
component zz exceeds its bulk value (dotted line) in a small frequency range around β ∼ 1.

where ξ := 4z20/h
2 = 4σ2/ε2 and

Λ := 4σ2u− 3ξ ,

Γ± := 4σ2u2 − 3uξ ± 3ξ ,

χn := Jn

(
2u

ξ1/2

)
.

The terms involving β and βB in Eqs. (4.6a) through (4.6d) are the contributions coming from
shearing and bending, respectively. Due to symmetry, µPαy = 0 for α ∈ {x, z}.

For future reference, we note that each component of the frequency-dependent particle self- and
pair-mobility tensor can conveniently be cast in the form

µ(ω)

µ0
= b+

∫ ∞
0

ϕ1(u)

ϕ2(u) + iωT
du , (4.7)
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where indices and superscripts have been omitted. Here b denotes the scaled bulk mobility (cf. Eq. (2.1)),
and the integral term represents either shearing or bending related parts in the mobility correction.
Note that ϕ1 and ϕ2 are real functions which do not depend on frequency. Moreover, ϕ2(u) = 2u/B or
ϕ2(u) = u for the shearing related parts and ϕ2(u) = u3 for bending such that ϕ2(u) ≥ 0, ∀u ∈ [0,∞).

In the vanishing frequency limit, i.e. for β, βB both taken to zero we recover the pair-mobilities
near a hard-wall with stick boundary conditions, namely

∆µPzz
µ0

= −3

4

3ξ2 + 5
2ξ + 1

(1 + ξ)5/2
σ +

4ξ2 − 4ξ − 1
2

(1 + ξ)7/2
σ3 −

4ξ2 − 12ξ + 3
2

(1 + ξ)9/2
σ5 , (4.8a)

∆µPxx
µ0

= −3

2

1 + ξ + 3
4ξ

2

(1 + ξ)5/2
σ +

ξ2 − 11
2 ξ + 1

(1 + ξ)7/2
σ3 −

2ξ2 − 27
2 ξ + 2

(1 + ξ)9/2
σ5 , (4.8b)

∆µPyy
µ0

= −3

4

1 + 3
2ξ

(1 + ξ)3/2
σ +

ξ − 1
2

(1 + ξ)5/2
σ3 −

2ξ − 1
2

(1 + ξ)7/2
σ5 , (4.8c)

∆µPxz
µ0

=
9

8

ξ3/2

(1 + ξ)5/2
σ − 3

2

(4ξ − 1)ξ1/2

(1 + ξ)7/2
σ3 +

5

2

(4ξ − 3)ξ1/2

(1 + ξ)9/2
σ5 , (4.8d)

in agreement with the results by Swan and Brady [77].
In Fig. 3 we plot the particle pair-mobilities as given by Eqs. (4.6a) through (4.6d) as functions of

the dimensionless frequency β for h = 4a. We observe that the real and imaginary parts have basically
the same evolution as the self-mobilities. Nevertheless, two qualitatively different effects are apparent
from Fig. 3: First, the amplitude of the normal-normal pair-mobility

∣∣µPzz∣∣ in a small frequency range
even exceeds its bulk value. This enhanced mobility results in a short-lasting superdiffusive behavior
as will be described in Sec. 5.

Secondly, for the components xx and xz in Fig. 3 we find that, unlike the self-mobilities, shearing
and bending may have opposite contributions to the total pair-mobilities. For the xz component
this implies the interesting behavior that hydrodynamic interactions can be either attractive or
repulsive depending on the membrane properties. This will be investigated in more detail in the next
subsection.

4.3 Perpendicular steady motion

A situation in which hydrodynamic interactions are particularly relevant is the steady approach
of two particles towards an interface, such as e.g. drug molecules approaching a cell membrane,
reactant species approaching a catalyst interface, charged colloids being attracted by an oppositely
charged membrane, etc. For hard walls, it is known that hydrodynamic interactions in this case are
repulsive [17, 77, 80] leading to the dispersion of particles on the surface. Near elastic membranes,
the different signs of the bending and shear contributions to the pair-mobility in Fig. 3 b) point to a
much more complex scenario including the possibility of particle attraction.

The physical situation of two particles being initially located at z = z0 and suddenly set into
motion towards the interface is described by a Heaviside step function force F (t) = Aθ(t). Its Fourier
transform to the frequency domain reads [107]

F (ω) =

(
πδ(ω)− i

ω

)
A .

Using the general form of Eq. (4.7), the scaled particle velocity in the temporal domain is then given
by

V (τ)

µ0A
=

(
b+

∫ ∞
0

ϕ1(u)

ϕ2(u)

(
1− e−ϕ2(u)τ

)
du

)
θ(τ) , (4.9)
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Figure 4: (Color online) The scaled particle velocities perpendicular to the membrane (a) and relative
to each other (b) versus the scaled time for a constant force acting downward on both particles near
a membrane endowed with only shearing (green), only bending (red) or both rigidities (black). Solid
lines are the analytical predictions as given by Eq. (4.9), symbols are obtained by boundary-integral
simulations. Horizontal dotted and dashed lines stand for the bulk and vanishing frequency limits
respectively.

where τ := t/T is a dimensionless time. At larger times, the exponential in Eq. (4.9) can be neglected
compared to one. In this way, we recover the steady velocity near a hard-wall.

In corresponding BIM simulations, a constant force of small amplitude towards the wall is applied
on both particles in order to retain the system symmetry. At the end of the simulations, the vertical
position of the particles changes by about 8 % compared to their initial positions z0.

In Fig. 4 a) we show the time dependence of the vertical velocity which at first increases and then
approaches its steady-state value. Figure 4 b) shows the relative velocity between the two particles:
clearly, the motion is attractive for a membrane with negligible bending resistance (such as a typical
artificial capsule) which is the opposite of the behavior near a membrane with only bending resistance
(such as a vesicle) or a hard wall.

In order to illustrate more clearly for which wall and particle distances a repulsion/attraction is
expected we show in Fig. 5 the pair-mobility correction for the shear ∆µPxz,S and bending ∆µPxz,B
contributions in the (ε, σ) plane. To reduce the parameter space and to bring out the considered
effects most clearly, we consider the idealized limit ω → 0. In this limit, the contributions become
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Figure 5: (Color online) Contour diagram (ε, σ) of the shearing (a) and bending (b) contribution in the
vanishing frequency limit in the xz pair-mobility as stated by Eq. (B.1d) for shearing and by Eq. (B.2d)
for bending. c) is the same contour near a hard-wall as given by Eq. (4.8d). The perturbation solution
given by Eq. (4.10) is presented as circles in (a). Contrary to a membrane with bending resistance and
to a hard wall, the mobility changes sign near a membrane with shearing resistance. This sign change
directly reflects the physically observable situation as the bulk contribution for the xz pair-mobility
is zero.

independent of the elastic moduli since ω → 0 directly implies that β, βB → 0 meaning that even
infinitesimally small shearing and bending resistances would make the membrane behave identical
to the hard wall. This unphysical behavior is remedied in a realistic situation where a small bending
resistance will lead to a correspondingly large time scale TB and thus to a long-lived transient regime
as given by Eq. (4.9) and shown in the Supporting Information. Therefore, the contours shown in
Fig. 5 faithfully represent the behavior of membranes with small bending (Fig. 5 a)) or small shear
(Fig. 5 b)) resistance. The corresponding equations can be found in Appendix B.

By equating Eq. (B.1d) to zero and solving the resulting equation perturbatively, the threshold
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lines where the shearing contribution changes sign are given up to fifth order in σ by

εth =
√

2

(
σ − 4

3
σ3 +

17

27
σ5
)

+O(σ7) . (4.10)

Eq. (4.10) is shown as circles in Fig. 5. The bending contribution in Fig. 5 b) always has a positive
sign corresponding to a repulsive interaction similar as the hard wall.

Similar changes in sign are observed for ∆µPzz,S for shear and ∆µPxx,B for bending. The corre-
sponding contours are given in the Supporting Information. Their physical relevance, however, is less
important than for ∆µPxz shown in Fig. 5 as the effects may be overshadowed by the bulk values of
the mobilities (which is zero only for µPxz).

5 Diffusion

The diffusive dynamics of a pair of Brownian particles is governed by the generalized Langevin
equation written for each velocity component of particle γ as [108]

m
dVγα

dt
= −

∫ t

−∞
ζγγαβ(t− t′)Vγβ(t′)dt′ −

∫ t

−∞
ζγλαβ(t− t′)Vλβ(t′)dt′ + Fγα(t) . (5.1)

A similar equation can be written for the velocity components of the other particle λ. Here, m
denotes the particles’ mass, ζγλαβ(t) stands for the time-dependent two-particle friction retardation
tensor (expressed in kg/s2) and Fγα is a random force which is zero on average. By evaluating the
Fourier transform of both members in Eq. (5.1) and using the change of variables w = t− t′ together
with the shift property in the time domain of Fourier transforms we get

imωVγα(ω) + ζγγαβ[ω]Vγβ(ω) + ζγλαβ[ω]Vλβ(ω) = Fγα(ω) , (5.2)

where ζγλαβ[ω] and ζγγαβ[ω] are the Fourier-Laplace transforms of the retardation function defined as

ζγλαβ[ω] :=

∫ ∞
0

ζγλαβ(t)e−iωtdt , (5.3)

and analogously for ζγγαβ[ω].

In the following, we shall consider the overdamped regime for which the particles are massless
(m = 0). Solving Eq. (5.2) for the particle velocities and equating with the definition of the mobilities,

Vγα(ω) = µγγαβ(ω)Fγβ(ω) + µγλαβ(ω)Fλβ(ω) , (5.4a)

Vλα(ω) = µλλαβ(ω)Fλβ(ω) + µλγαβ(ω)Fγβ(ω) , (5.4b)
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leads to expressions of the mobilities in terms of the friction coefficients:

µSxx(ω) =
ζSxxζ

P
zz

(ζSxx
2 − ζPxx

2)ζPzz − ζPxxζPxz
2 ,

µPxx(ω) = − ζPxxζ
P
zz

(ζSxx
2 − ζPxx

2)ζPzz − ζPxxζPxz
2 ,

µSyy(ω) =
ζSyy

ζSyy
2 − ζPyy

2 ,

µPyy(ω) = −
ζPyy

ζSyy
2 − ζPyy

2 .

µSzz(ω) =
ζSxxζ

S
zz

(ζSzz
2 − ζPzz

2)ζSxx − ζSzzζPxz
2 ,

µPzz(ω) = − ζSxxζ
P
zz

(ζSzz
2 − ζPzz

2)ζSxx − ζSzzζPxz
2 ,

µPxz(ω) = − ζSzzζ
P
xz

(ζSzz
2 − ζPzz

2)ζSxx − ζSzzζPxz
2 ,

where the brackets [ ] are dropped out for the sake of clarity. Similar as for the mobilities, the self- and
pair components of the retardation function are denoted by ζγγαβ = ζλλαβ = ζSαβ and ζγλαβ = ζλγβα = ζPαβ,
respectively. Note that ζPxxζSzz = ζSxxζ

P
zz so that µSxz = 0 as required by symmetry.

According to the fluctuation-dissipation theorem, the frictional and random forces are related
via [109][p. 33][110]

〈Fγ(ω)Fλ(ω′)〉 = kBT
(
ζγλαβ[ω] + ζγλαβ[ω]

)
δ(ω − ω′) , (5.6)

and analogously for the γγ component, where kB is the Boltzmann constant and T is the absolute
temperature of the system [111].

Multiplying Eq. (5.4a) by its complex conjugate, taking the ensemble average and using Eq. (5.6),
it can be shown that the velocity power spectrum obeys the relation

PVS
αβ(ω) = kBT

(
µSαβ(ω) + µSαβ(ω)

)
. (5.7)

Next, by considering both Eqs. (5.4a) and (5.4b) together with Eq. (5.6) we find in a similar fashion

PVP
αβ(ω) = kBT

(
µPαβ(ω) + µPαβ(ω)

)
. (5.8)

According to the Wiener-Khinchin-Einstein theorem, the velocity auto/cross-correlation functions
can directly be obtained from the temporal inverse Fourier transform as [109]

φγλαβ(t) =
kBT

2π

∫ ∞
−∞

(
µγλαβ(ω) + µγλαβ(ω)

)
eiωtdω . (5.9)

It can be shown using the residue theorem [109, p. 34] that the integral over the second term in
Eq. (5.9) vanishes if the mobility is an analytic function for Im(ω) < 0. The present mobilities all
fulfill this condition as can be seen by their general form in Eq. (4.7).

Most commonly, diffusion is studied in terms of the mean-square displacement (MSD) which can
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be calculated from the correlation function as [109, p. 37]

〈∆rγα(t)∆rλβ(t)〉 = 2

∫ t

0
(t− s)φγλαβ(s)ds , (5.10)

where ∆rγα denotes the displacement of the particle γ in the direction α. Furthermore, we define
the time-dependent pair-diffusion tensor as

Dγλ
αβ(t) :=

〈∆rγα(t)∆rλβ(t)〉
2t

. (5.11)

Analogous relations to Eqs. (5.9)-(5.11) hold for the γγ component. We now consider the collective
motions of the center of mass ρ := rλ + rγ as well as the relative motion h := rλ − rγ with the
corresponding diagonal pair-diffusion tensor

DC,R
αα = 2

(
DS
αα ±DP

αα

)
, (5.12)

where the positive sign applies for the collective mode of motion and the negative sign to the relative
mode. In the absence of the membrane, Eqs. (5.12) reduces to the generalization of the Einstein
relation as calculated by Batchelor [25] for the relative mode, namely

DR
zz

2D0
= 1− 3

4
σ − σ3

2
,

DR
xx

2D0
= 1− 3

2
σ + σ3 , (5.13)

where D0 := µ0kBT is the diffusion coefficient. The collective diffusion coefficients read

DC
zz

2D0
= 1 +

3

4
σ +

σ3

2
,

DC
xx

2D0
= 1 +

3

2
σ − σ3 , (5.14)

5.1 Self-diffusion for finite-sized particles

From Eqs. (5.9)-(5.11) we first obtain the scaled self-diffusion coefficient for the motion of a single
particle perpendicular to the membrane,

DS
zz

D0
= 1− 3

32

τS(3B + 2τS)

(B + τS)2
ε+

τS
16

3τ2S + 8BτS + 6B2

(B + τS)3
ε3 − τS

64

4τ3S + 15Bτ2S + 20B2τS + 10B3

(B + τS)4
ε5

− ε

12

∫ ∞
0

(
3 + 3u− ε2u2

)2(
1− 1− e−τBu3

τBu3

)
e−2udu ,

(5.15)

where τS := t/TS and τB := t/TB are dimensionless times for shearing and bending, respectively.
For motion parallel to the membrane the scaled self-diffusion coefficient reads

DS
xx

D0
= 1− 3

64

(
(2τS + 3B)(5τS + 4B)

(τS +B)2
− 4B

τS
ln
(

1 +
τS
B

)
− 16

τS
ln
(

1 +
τS
2

))
ε

+
τS
32

τ2S + 3BτS + 3B2

(τS +B)3
ε3 − τS

128

4τ3S + 15Bτ2S + 20B2τS + 10B3

(τS +B)4
ε5

− ε

12

∫ ∞
0

(
3− ε2u

)2(
u2 − 1− e−τBu3

τBu

)
e−2udu .

We mention that Eqs. (5.15) and (5.16) correspond to leading order in ε to the ones reported in our
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Figure 6: (Color online) The zz component of the scaled pair-diffusion tensor versus the scaled time
as given by Eq. (5.16a) for different values of σ with the parameters of Fig. 3. Horizontal dotted and
dashed lines represent the bulk and hard-wall limits, respectively. For large inter-particle distances
(small σ) a short superdiffusive regime is observed.

earlier work [55]. For long times, the perpendicular velocity auto-correlation function φSzz,S decays
as t−4 whereas the bending part φSzz,B as t−4/3. For parallel motion, both the shearing and bending
parts in the velocity auto-correlation function have a long-time tail of t−2.

5.2 Pair-diffusion for finite-sized particles

The pair-diffusion coefficients are readily obtained by plugging Eqs. (4.6a) through (4.6d) into
Eqs. (5.9)-(5.11):

DP
zz

D0
=

3σ

4
+
σ3

2
− σ

12ξ5/2

∫ ∞
0

(
uΛ2ΠS +

2Γ2
−

u3
ΠB

)
χ0e
−2udu , (5.16a)

DP
xx

D0
=

3σ

2
− σ3 − σ

∫ ∞
0

(
1

24ξ5/2

(
−ξ1/2χ1 + 2uχ0

) (
Γ2
+ΠS + 2Λ2ΠB

)
+

3χ1

2
Π′S

)
e−2u

u2
du ,

(5.16b)

DP
yy

D0
=

3σ

4
+
σ3

2
− σ

∫ ∞
0

(
χ1

24ξ2
(
Γ2
+ΠS + 2Λ2ΠB

)
+

3Π′S
2ξ1/2

(
−ξ1/2χ1 + 2uχ0

)) e−2u

u2
du , (5.16c)

DP
xz

D0
=

σ

12ξ5/2

∫ ∞
0

(
Γ+ΠS +

2Γ−ΠB

u2

)
χ1Λe

−2udu , (5.16d)

where we define

ΠS :=
Be−

2uτS
B + 2uτS −B

τS
, Π′S :=

e−τSu + τSu− 1

τS
, ΠB :=

e−τBu
3

+ τBu
3 − 1

τB
.

We observe that the xx, yy and zz cross-correlation functions have the same large time behavior
as their corresponding auto-correlation functions. For the component φPxz, the shearing and bending
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Figure 7: (Color online) The scaled collective (a) and relative (b) diffusion coefficients as defined by
Eq. (5.12) versus the scaled time. The horizontal dotted and dashed lines correspond to the bulk
and hard-wall limits, respectively.

related parts have large-time tails of t−4 and t−2, respectively.

Fig. 6 shows the variations of the zz component of the scaled pair-diffusion coefficient as stated
by Eq. (5.16a) upon varying σ. We observe that as σ decreases, i.e. when the two particles stand
further apart, the pair-diffusion coefficient can rise and exceed the bulk value for intermediate time
scales as hinted on already by the pair-mobility around β ∼ 1 (cf. inset of Fig. 3 a). Such behavior
is a clear signature of a short-lived superdiffusive regime.

In Fig. 7 we show the variations of the scaled collective and relative diffusion coefficients as
defined by Eq. (5.12), versus the scaled time τ , using the parameters of Fig. 3. At shorter time scales,
the particle pair exhibits a normal bulk diffusion, since the motion is hardly affected by the presence
of the membrane. As a result, the diffusion coefficients are the same as calculated by Batchelor and
given by Eq. (5.13). As the time increases, both diffusion coefficients’ curves bend down substantially
to asymptotically approach the diffusion coefficients near a hard-wall.
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6 Conclusions

We have investigated the hydrodynamic interaction of a finite-size particle pair nearby an elastic
membrane endowed with shear and bending rigidity. Using multipole expansions together with
Faxén’s law, we have provided analytical expressions for the frequency-dependent self- and pair-
mobilities. We have demonstrated that shearing and bending contributions may give positive or
negative contributions to particle pair-mobilities depending on the inter-particle distance and the
pair location above the membrane. Most prominently, we have found that two particles approaching a
membrane with only shearing resistance (as is typically assumed for elastic capsules) may experience
hydrodynamic attraction in contrast to the well-known case of a hard wall where the interaction is
repulsive. This unexpected effect will facilitate chemical reactions near the surface and may possibly
even lead to the formation of particle clusters near elastic membranes. On the other hand, membranes
with bending resistance (such as vesicles) induce repulsive interactions similar to the hard wall. All
our theoretical mobilities are validated by detailed boundary integral simulations.

Using the frequency-dependent particle mobilities, we have computed self- and pair-diffusion
coefficients. Most commonly, relative and collective pair-diffusion is subdiffusive on intermediate time
scales similar to earlier observations on the diffusion of a single particle [55]. A notable exception is
the zz-component of the pair-mobility tensor which for certain parameters and frequencies surpasses
its corresponding bulk value. This induces a short-lasting superdiffusive regime in the corresponding
mean-square-displacement.
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Appendices

A Derivation of Green’s functions

In this appendix, we briefly sketch the derivation of the Green’s functions in the presence of an
elastic membrane, as stated by Eqs. (2.12a) through (2.12d) of the main text. For the solution of the
steady Stokes equations Eqs. (2.10) and (2.11), we use a two-dimensional Fourier transform technique.
The variables x and y are transformed into the wavevector components qx and qy. Here we use the
convention with a negative exponent for the forward Fourier transforms. The transformed equations
read

−q2ṽx + ṽx,zz + iqxp̃+ F̃xδ(z − z0) = 0 ,

−q2ṽy + ṽy,zz + iqyp̃+ F̃yδ(z − z0) = 0 ,

−q2ṽz + ṽz,zz − p̃,z + F̃zδ(z − z0) = 0 ,

−iqxṽx − iqyṽy + ṽz,z = 0 ,

where a comma in indices denotes the spatial derivative with respect to the following coordinate.
We introduce a new orthonormal system in which the Fourier transformed vectorial quantities

are decomposed into longitudinal, transverse and normal components, denoted by ṽl, ṽt and ṽz
respectively. The corresponding orthonormal in-plane unit vector basis are

ql :=
qx
q
ex +

qy
q
ey , qt :=

qy
q
ex −

qx
q
ey , (A.1)
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where q :=
√
q2x + q2y is the wavenumber. After transformation, the momentum equations become [48]

q2ṽt − ṽt,zz =
F̃t
η
δ(z − z0) , (A.2a)

ṽz,zzzz − 2q2ṽz,zz + q4ṽz =
q2F̃z
η

δ(z − z0) +
iqF̃l
η
δ′(z − z0) , (A.2b)

where δ′ is the derivative of the Dirac delta function. The longitudinal component ṽl is readily
determined from ṽz via the incompressibility equation (2.11) such that

ṽl =
iṽz,z
q

. (A.3)

According to the Skalak [90] and Helfrich [94] models, the linearized tangential and normal
traction jumps across the membrane are related to the membrane displacement field u at z = 0
by [55]

[σzα] = −κS
3

(
∆‖uα + (1 + 2C)e,α

)
, α ∈ {x, y} , (A.4a)

[σzz] = κB∆2
‖uz , (A.4b)

where the notation [w] := w(0+)−w(0−) designates the jump of the quantity w across the membrane.
Here C := κA/κS is a dimensionless number representing the ratio of the area expansion modulus to
shear modulus, and κB is the membrane bending modulus. ∆‖ := ∂,xx + ∂,yy denotes the Laplace-
Beltrami operator along the membrane and e := ux,x+uy,y is the dilatation function, mathematically
defined as the trace of the in-plane strain tensor.

The membrane displacement u as appearing in Eqs. (A.4a) and (A.4b) is related to the fluid
velocity by the no-slip boundary condition at the undisplaced membrane which reads

ṽα = iωũα|z=0 . (A.5)

After solving the transformed equations (A.2a), (A.2b) and (A.3) and properly applying the
boundary conditions at the membrane, we find that the diagonal components of the Green’s function
for z ≥ 0 read

G̃zz =
1

4ηq

(
(1 + q|z − z0|) e−q|z−z0| +

(
iαzz0q

3

1− iαq
+
iα3

Bq
3(1 + qz)(1 + qz0)

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃ll =
1

4ηq

(
(1− q|z − z0|)e−q|z−z0| +

(
iαq(1− qz0)(1− qz)

1− iαq
+
izz0α

3
Bq

5

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃tt =
1

2ηq

(
e−q|z−z0| +

iBαq

2− iBαq
e−q(z+z0)

)
,

and the off-diagonal component G̃lz reads

G̃lz =
i

4ηq

(
− q(z − z0)e−q|z−z0| +

(
iαz0q

2(1− qz)
1− iαq

−
iα3

Bzq
4(1 + qz0)

1− iα3
Bq

3

)
e−q(z+z0)

)
,

where α := κS/(3Bηω) is a characteristic length scale for shearing and area expansion withB := 2/(1+
C), and αB := (κB/(4ηω))1/3 is a characteristic length scale for bending. Furthermore, G̃tz = G̃zt = 0
because of the decoupled nature of Eqs. (A.2a) and (A.2b). Employing the transformation equations
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(A.1) back to the usual Cartesian basis, we obtain

G̃xx(q, z, ω) = G̃ll(q, z, ω) cos2 φ+ G̃tt(q, z, ω) sin2 φ ,

G̃yy(q, z, ω) = G̃ll(q, z, ω) sin2 φ+ G̃tt(q, z, ω) cos2 φ ,

G̃xz(q, z, ω) = G̃lz(q, z, ω) cosφ ,

where φ := arctan(qy/qx).
The components G̃yz and G̃zy are irrelevant for our discussion because the resulting mobilities

vanish, thus they are omitted here. In addition, the component G̃zx leads to the same mobility as
G̃xz because of the symmetry of the mobility tensor. Furthermore, we define

G̃±(q, z, ω) := G̃tt(q, z, ω)± G̃ll(q, z, ω) .

Eqs. (2.12a)-(2.12d) of the main text follow immediately after performing the two dimensional inverse
spatial Fourier transform of the Green’s function [107].

B Vanishing frequency behavior

In the following, analytical expressions of the shearing and bending related parts in the particle self-
and pair-mobilities are provided in the vanishing frequency limit.

B.1 Self mobilities

By taking the vanishing frequencies limit in Eqs. (4.1a) and (4.1b), the shearing and bending related
corrections for the perpendicular motion read

lim
β→0

∆µSzz,S
µ0

= − 3

16
ε+

3

16
ε3 − 1

16
ε5 ,

lim
βB→0

∆µSzz,B
µ0

= −15

16
ε+

5

16
ε3 − 1

16
ε5 ,

leading to the hard-wall limit Eq. (4.2) after summing up both contributions term by term. Similarly,
for the parallel motion, by taking the vanishing frequency limit in Eqs. (4.3a) and (4.3b) we get

lim
β→0

∆µSxx,S
µ0

= −15

32
ε+

1

32
ε3 − 1

32
ε5 ,

lim
βB→0

∆µSxx,B
µ0

= − 3

32
ε+

3

32
ε3 − 1

32
ε5 ,

which also give the hard-wall limit Eq. (4.4) when summing up both parts.

B.2 Pair mobilities

By considering independently the shearing and bending related parts in the pair-mobility corrections
as given by Eqs. (4.6a) through (4.6d), and taking the vanishing frequency limit, we obtain for the
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shearing part

lim
β→0

∆µPzz,S
µ0

= − 3

16

ξ(2ξ − 1)

(1 + ξ)5/2
σ +

3

4

ξ(2ξ − 3)

(1 + ξ)7/2
σ3 −

2ξ2 − 6ξ + 3
4

(1 + ξ)9/2
σ5 , (B.1a)

lim
β→0

∆µPxx,S
µ0

= − 3

16

5ξ2 + 10ξ + 8

(1 + ξ)5/2
σ +

1

4

ξ2 − 10ξ + 4

(1 + ξ)7/2
σ3 −

ξ2 − 27
4 ξ + 1

(1 + ξ)9/2
σ5 , (B.1b)

lim
β→0

∆µPyy,S
µ0

= − 3

16

5ξ + 4

(1 + ξ)3/2
σ +

1

4

ξ − 2

(1 + ξ)5/2
σ3 −

ξ − 1
4

(1 + ξ)7/2
σ5 , (B.1c)

lim
β→0

∆µPxz,S
µ0

=
3

16

(ξ − 2)ξ1/2

(1 + ξ)5/2
σ − 3

4

(3ξ − 2)ξ1/2

(1 + ξ)7/2
σ3 +

5

4

(4ξ − 3)ξ1/2

(1 + ξ)9/2
σ5 , (B.1d)

and for the bending part

lim
βB→0

∆µPzz,B
µ0

= − 3

16

10ξ2 + 11ξ + 4

(1 + ξ)5/2
σ +

1

4

10ξ2 − 7ξ − 2

(1 + ξ)7/2
σ3 −

2ξ2 − 6ξ + 3
4

(1 + ξ)9/2
σ5 , (B.2a)

lim
βB→0

∆µPxx,B
µ0

= − 3

16

ξ(ξ − 2)

(1 + ξ)5/2
σ +

3

4

ξ(ξ − 4)

(1 + ξ)7/2
σ3 −

ξ2 − 27
4 ξ + 1

(1 + ξ)9/2
σ5 , (B.2b)

lim
βB→0

∆µPyy,B
µ0

= − 3

16

ξ

(1 + ξ)3/2
σ +

3

4

ξ

(1 + ξ)5/2
σ3 −

ξ − 1
4

(1 + ξ)7/2
σ5 , (B.2c)

lim
βB→0

∆µPxz,B
µ0

=
3

16

(5ξ + 2)ξ1/2

(1 + ξ)5/2
σ − 15

4

ξ3/2

(1 + ξ)7/2
σ3 +

5

4

(4ξ − 3)ξ1/2

(1 + ξ)9/2
σ5 . (B.2d)

The total correction as given by Eqs. (4.8a) through (4.8d) is recovered by summing up term by
term both contributions.
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Abstract

In this paper, we study the coupling and rotational hydrodynamic interactions between spherical
particles nearby a planar elastic membrane exhibiting resistance towards shearing and bending. Using
a combination of the multipole expansion and Faxén’s theorem, we express the frequency-dependent
hydrodynamic mobility functions as power series of the ratio between particle radius and distance
from the membrane as well as between radius and interparticle distance. We find that the shearing
and bending related contributions to the particle mobility may undergo under some circumstances
a change of sign. As a model system for bacterial locomotion, we study the rotational motion of a
torque-free doublet nearby an elastic membrane, finding that the steady rotation rate around its
center of mass may differ in magnitude and direction depending on membrane shearing and bending
properties. Nearby a membrane with pure shearing, the doublet undergoes clockwise rotation i.e. in
the same way as observed nearby a no-slip wall. Nearby a membrane with pure bending however,
we find that the doublet rotates counterclockwise. Our analytical predictions are supplemented and
compared with fully resolved boundary integral simulations where a very good agreement is obtained.

1 Introduction

The dynamics of elastic membranes is important for understanding the biological functions and trans-
port properties in living cells [1–4]. The assessment of hydrodynamic interactions between membranes
and suspended tracer particles can be used as a monitor for determining the membrane mechanical
properties via interfacial microrheology measurements [5–10]. The method has the advantage of
being non-destructive and has extensively been employed for the determination of viscous and elastic
moduli [11–14] and the characterization of fluctuating forces in complex fluids [15, 16].

At small length and time scales of motion, an accurate description of the fluid flow surrounding
the particles is well achieved by the linear Stokes equations [17]. In these conditions, a complete
description of particle motion is possible via the hydrodynamic mobility tensor, which bridges between
the translational and rotational velocities of the suspended particles and the forces and torques applied
on their surfaces. Particle motion in an unbounded medium is well understood and has been studied
since a long time ago [18]. However, motion in real situations often occurs in geometric confinements,
where the hydrodynamic mobility is notably changed relative to its value in a bulk fluid.

During the past few decades, the field knew greater interest among physicists after the advent
of elaborate experimental techniques which allow an accurate and reliable measurement of particle
mobility nearby interfaces. Among the most efficient techniques that have been utilized are laser [19,
20] and optical tweezers [21–26], fluorescence [27, 28] and digital video microscopy [29–33], evanescent
wave dynamic light scattering [34–47] and three-dimensional total internal reflection velocimetry
technique [48]. Calculations of mobility functions have been carried out to include particles nearby
hard-walls [49–62], interfaces with partial slip [63–65], an interface separating two mutually immiscible
liquids [66–71], inside a liquid film between two fluids [72] or nearby a spherical drop [73, 74]. Further
works have examined particle dynamics nearby viscous interfaces [75–77] or an interface covered with
surfactant [78–84].

More recently, particle motion close to membranes with surface elasticity has been attracted
researchers’ attention, due to their relevance as realistic models for cell membranes [85–88]. Unlike
fluid-solid or fluid-fluid interfaces, elastic membranes stand apart as they endow the system with
memory. Accordingly, the motion of the particles depend strongly on their prior history and their
diffusional dynamics is treated within a generalized Langevin formalism. This implies the emergence
of a long-lived subdiffusive behavior [89–92] induced by the membrane on nearby particles. Particle
motion nearby elastic cell membranes has been experimentally investigated using optical traps [93–
96], magnetic particle actuation [97] and quasi-elastic light scattering [98–100], where a significant
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Figure 1: Illustration of the system setup. A sample configuration of a pair of particles labeled γ and
λ, located a distance h apart and a distance z0 above an elastic cell membrane. Here xγ = (0, 0, z0)
and xλ = (h, 0, z0). We define the dimensionless parameters of the system ε := a/z0 and σ := a/h.

decrease in the mobility normal to the cell membrane has been observed in line with theoretical
predictions.

In our earlier work [101], we have studied analytically and numerically the hydrodynamic interac-
tions between spherical particles undergoing translational motion nearby a planar elastic membrane.
We have found that the steady approach of two particles towards an idealized membrane with pure
shearing resistance may lead to attractive interactions, in contrast to the behavior know nearby
a hard-wall where the interaction is know to be repulsive [102]. In this paper, we complete and
supplement our analysis by computing the hydrodynamic coupling and rotational mobilities of a
pair of particles moving nearby a realistically modeled red blood cell membrane. We model the
membrane using the Skalak model [103] for shearing and area dilatation, and the Helfrich model [104]
for bending. We find that the contributions due to shearing and bending of the particle self- and
pair-mobilities may have additive or suppressive effects depending on the membrane properties and
the relative separation between the interacting particles and the membrane. More importantly, we
find that the magnitude and direction of rotation of a torque-free doublet of particles about their
center of mass, which can be seen as a model system for bacterial swimming, is strongly dictated by
membrane shearing and bending properties.

The remainder of the paper is organized as follows. In Sec. 2 we present the theoretical framework
we use to analytically compute the particle mobility functions by combining the multipole expansion
and Faxén’s theorem. In Sec. 3 we present the completed double layer boundary integral method and
the approach we have employed to numerically compute the hydrodynamic mobilities. Sec. 4 provides
explicit analytical expressions of the frequency-dependent coupling and rotational self- and pair-
mobilities together with a close comparison with numerical simulations where a very good agreement
is obtained. Concluding remarks summarizing our findings and results are offered in Sec. 5.

2 Mathematical model

We consider a suspension of N solid spherical particles of radius a immersed in an incompressible
Newtonian fluid of viscosity η moving nearby a planar elastic membrane infinitely extended in the
xy plane. We assume that the fluid surrounding the particles is at rest. The creeping flow of the
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suspending fluid is governed by the forced Stokes equations [18]

η∇2v −∇p+
N∑
α=1

fα = 0 , (2.1)

∇ · v = 0 , (2.2)

where v and p are the velocity and pressure fields, respectively. Here fα is an arbitrary time dependent
force density acting on the fluid due to the presence of the particle α. We denote by µ the mobility
tensor which couples between the velocity moments of the particles to the moments of the force
density on the particle surfaces, [17](

V
Ω

)
=

(
µtt µtr

µrt µrr

)(
F
L

)
, (2.3)

where V and Ω are the translational and rotational velocities, respectively, and F and L are the
hydrodynamic force and torque on the particles. The off-diagonal components are the hydrodynamic
coupling mobilities between torque and translation (tr) and between force and rotation (rt) and they
are the transpose of each other.

2.1 Multipole expansion and Faxén’s theorem

We now consider a representative configuration of a pair of particles denoted γ and λ located a
distance h apart and a distance z0 above an elastic membrane, as schematically sketched in Fig. 1.
The fluid on both sides of the membrane is assumed to have the same properties. The disturbance
velocity field caused at any observation point r by a particle labeled λ located at rλ can be written
as

v(r, rλ, ω) = v(0)(r, rλ) + v∗(r, rλ, ω) , (2.4)

where v(0) denotes the fluid flow in an unbounded (infinite) fluid and v∗ is the flow field required to
satisfy the boundary conditions at the membrane. Here all the quantities are Fourier transformed
into the frequency space. The disturbance field can be written as an integral over the surface of the
sphere λ as

v(r, rλ, ω) =

∮
Sλ

G(r, r′, ω) · fλ(r′, ω) d2r′ , (2.5)

where G denotes the velocity Green’s function (Stokeslet), i.e. the flow velocity field resulting from a
point-force acting on rλ. Similar, the Green’s function can be split up into two distinct contributions,

G(r, r′, ω) = G(0)(r, r′) + GM(r, r′, ω) , (2.6)

where G(0) is the infinite-space Green’s function (Oseen’s tensor)

G(0)αβ (r, r′) =
1

8πη

(
δαβ
s

+
sαsβ
s3

)
, (2.7)

with s := r− r′ and s := |s|. The second term GM represents the frequency-dependent correction to
the Green’s function due to the presence of the membrane.

Far away from the particle λ, the integration vector variable r′ in Eq. (2.5) can be expanded
around the particle center rλ following a multipole expansion approach. Up to the second order,
and assuming a constant force density over the particle surface, the disturbance velocity can be
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approximated by [60, 61]

v(r, rλ, ω) ≈
(

1 +
a2

6
∇2
rλ

)
G(r, rλ, ω) · F (ω) +

1

2
∇rλ × G(r, rλ, ω) ·L(ω) , (2.8)

where ∇rλ stands for the gradient operator taken with respect to the singularity position rλ and the
curl of a given tensor T is obtained as [105]

(∇× T )αβ = εαµν∂µTνβ , (2.9)

with εαµν being the Levi-Civita tensor. Note that for a single sphere in bulk, the flow field given
by Eq. (2.8) satisfies exactly the no-slip boundary conditions at the surface of the sphere [106].
Using Faxén’s theorem [107], the translational and rotational velocities of the particle γ in this flow
reads [60, 61]

Vγ(ω) = µtt0 Fγ(ω) +

(
1 +

a2

6
∇2
rγ

)
v(rγ , rλ, ω) , (2.10)

Ωγ(ω) = µrr0 Lγ(ω) +
1

2
∇rγ × v(rγ , rλ, ω) , (2.11)

where µtt0 := 1/(6πηa) and µrr0 := 1/(8πηa3) denote the translational and rotational bulk mobilities,
respectively. We further emphasize that the disturbance flow v incorporates both the disturbance from
the particle λ and the disturbance caused by the presence of the membrane. By inserting Eq. (2.8)
into Faxén’s formula stated by Eqs. (2.10) and (2.11), the frequency-dependent translational, coupling
and rotational pair-mobility tensors can be obtained from

µtt,γλ(ω) =

(
1 +

a2

6
∇2
rγ

)(
1 +

a2

6
∇2
rλ

)
G(rγ , rλ, ω) , (2.12)

µtr,γλ(ω) =
1

2

(
1 +

a2

6
∇2
rγ

)
∇rλ × G(rγ , rλ, ω) , (2.13)

µrr,γλ(ω) =
1

4
∇rγ ×∇rλ × G(rγ , rλ, ω) . (2.14)

Special care should be undertaken when taking the gradient operators with respect to the position
of either γ or λ. For the self-mobilities, only the correction in the flow field v∗ due to the presence of the
membrane in Eq. (2.4) should be considered in Faxén’s formula. Therefore, the frequency-dependent
self-mobility tensors read

µtt,γγ(ω) = µtt0 1 + lim
r→rγ

(
1 +

a2

6
∇2
r

)(
1 +

a2

6
∇2
rγ

)
GM(r, rγ , ω) , (2.15)

µtr,γγ(ω) =
1

2
lim
r→rγ

(
1 +

a2

6
∇2
rγ

)
∇r × GM(r, rγ , ω) , (2.16)

µrr,γγ(ω) = µrr0 1 +
1

4
lim
r→rγ

∇rγ ×∇r × GM(r, rγ , ω) , (2.17)

where 1 denotes the unit tensor.

Having constructed the self- and pair-mobility tensors, the Green’s functions associated with the
elastic membrane need to be introduced at this point.
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2.2 Green’s functions

The exact Green’s functions for a point-force acting nearby a planar elastic membrane has been
determined in our earlier works, see e.g. Refs. [91] and [108]. The membrane is considered as a two
dimensional sheet made by an hyperelastic material that exhibits resistance towards shearing and
bending. Membrane shearing elasticity is described by the wall-established Skalak model [103] which
is often used as a practical model for red-blood cell membranes [109–111]. The model is characterized
by the shear modulus κS and the area dilatation modulus κA, both related to each other by the Skalak
coefficient C := κA/κS. The resistance towards bending is modeled by the Helfrich model [104, 112],
with the corresponding bending modulus κB. The Green’s functions can conveniently be computed
using a two-dimensional Fourier transform technique [85–87] and appropriately applying the boundary
conditions stemming from shearing and bending of the membrane. For a point-force exerted at xλ
above the membrane, the Green’s functions can be expressed in terms of infinite integrals over the
wavenumber q as

Gxx(r, rλ, ω) =
1

4π

∫ ∞
0

(
G̃+(q, z, z0, ω)J0(ρλq) + G̃−(q, z, z0, ω)J2(ρλq) cos 2θλ

)
q dq , (2.18a)

Gyy(r, rλ, ω) =
1

4π

∫ ∞
0

(
G̃+(q, z, z0, ω)J0(ρλq)− G̃−(q, z, z0, ω)J2(ρλq) cos 2θλ

)
q dq , (2.18b)

Gzz(r, rλ, ω) =
1

2π

∫ ∞
0
G̃zz(q, z, z0, ω)J0(ρλq)q dq , (2.18c)

Gxy(r, rλ, ω) =
sin 2θλ

4π

∫ ∞
0
G̃−(q, z, z0, ω)J2(ρλq)q dq , (2.18d)

Grz(r, rλ, ω) =
i

2π

∫ ∞
0
G̃lz(q, z, z0, ω)J1(ρλq)q dq , (2.18e)

Gzr(r, rλ, ω) =
i

2π

∫ ∞
0
G̃zl(q, z, z0, ω)J1(ρλq)q dq , (2.18f)

where ρ2λ := (x− xλ)2 + y2 and θλ := arctan(y/(x − xλ)) being the polar angle. Here Jn denotes
the Bessel function of the first kind of order n [113]. Moreover,

G̃zz =
1

4ηq

(
(1 + q|z − z0|) e−q|z−z0| +

(
iαzz0q

3

1− iαq
+
iα3

Bq
3(1 + qz)(1 + qz0)

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃lz =
i

4ηq

(
− q(z − z0)e−q|z−z0| +

(
iαz0q

2(1− qz)
1− iαq

−
iα3

Bzq
4(1 + qz0)

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃zl =
i

4ηq

(
− q(z − z0)e−q|z−z0| +

(
− iαzq2(1− qz0)

1− iαq
+
iα3

Bq
4z0(1 + qz)

1− iα3
Bq

3

)
e−q(z+z0)

)
.

and
G̃±(q, z, ω) := G̃tt(q, z, ω)± G̃ll(q, z, ω) ,

with

G̃ll =
1

4ηq

(
(1− q|z − z0|)e−q|z−z0| +

(
iαq(1− qz0)(1− qz)

1− iαq
+
izz0α

3
Bq

5

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃tt =
1

2ηq

(
e−q|z−z0| +

iBαq

2− iBαq
e−q(z+z0)

)
,

where α := κS/(3Bηω) is a characteristic length scale for shearing and area expansion with B :=
2/(1 + C), and α3

B := κB/(4ηω) is a characteristic cubic length scale for bending. Thus, the terms
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involving α and α3
B in the above equations are associated with shearing and bending, respectively.

Furthermore, the other components can readily be determined from the usual transformation relations
Gxz = Grz cos θλ, Gyz = Grz sin θλ, Gzx = Gzr cos θλ, Gzy = Gzr sin θλ and Gyx = Gxy. It is worth
mentioning that the Green’s functions nearby an elastic membrane reduce in the vanishing frequency
limit to the celebrated Blake tensor [114] in which the membrane motion is completely restricted.

3 Boundary integral methods

In order to assess the appropriateness and accuracy of the multipole expansion approach employed
throughout this work, we shall compare our analytical predictions with fully resolved computer
simulations based on the completed double layer boundary integral equation method (CDLBIEM) [115–
119]. The method is known to be particularly suited for the simulation of Stokes flows [120] where
both solid and deformed boundaries are present. In this way, the translational and rotational velocities
of the particles can be determined provided knowledge of the forces and torques exerted on their
surfaces. Hereafter, we briefly provide some technical details regarding the numerical method.

The integral equations for the particle-membrane system are expressed as

vβ(x) = Hβ(x) , x ∈ Sm ,

1

2
φβ(x) +

6∑
α=1

ϕ
(α)
β (x)〈ϕ(α),φ〉 = Hβ(x) , x ∈ Sp ,

where Sm and Sp denote the surface of the elastic membrane and the particles respectively. Here v is
the velocity of points belonging to the membrane surface and φ is the so-called double layer density
function on the surface of the particles Sp, related to the translational and rotational velocities via

V (x) =

3∑
α=1

ϕ(α)(x)〈ϕ(α),φ〉 , x ∈ Sp ,

Ω(x)× (x− xc) =
3∑

α=1

ϕ(α+3)(x)〈ϕ(α+3),φ〉 , x ∈ Sp ,

where xc is the particle center and ϕ(α) are known vectorial functions that are dependent on particle
position, its surface area and the moment of inertia tensor [17][p. 472]. The brackets stand for the
inner product which is defined as

〈ϕ(α),φ〉 :=

∮
Sp

ϕ(α)(y) ·φ(y) dS(y) ,

and the function Hβ is defined by

Hβ(x) := −(Nm∆f)β(x)− (Kpφ)β(x) + G(0)βµ (x,xc)Fµ +R(0)
βµ(x,xc)Lµ .

The single and double layer integrals are given by

(Nm∆f)β(x) :=

∫
Sm

∆fα(y)G(0)αβ (y,x) dS(y) ,

(Kpφ)β(x) :=

∮
Sp

φα(y)T (0)
αβµ(y,x)nµ(y) dS(y) ,
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with n being the outer normal vector at the particle surfaces. Moreover, ∆f is the traction jump, T (0)
αβµ

is the Stresslet and R(0)
βµ is the rotlet [17] in an infinite space. From the instantaneous deformation of

the membrane, the traction jump across the membrane ∆f is readily determined from the membrane
constitutive models. For further details with regard to the numerical computation of the traction
jumps, we refer the reader to Ref. [92, 121].

In our simulations, the planar membrane is a flat quadratic surface with a size of 300a×300a and is
meshed with 1740 triangles created using the open source software gmsh [122]. The spherical particle is
discretized by 320 triangular elements obtained by consecutive refinement of an icosahedron [123, 124].

For the determination of the particle mobility functions numerically, a harmonic force Fλ(t) =
Aλe

iω0t or torque Lλ(t) = Bλe
iω0t is exerted at the surface of the particle λ. After a transient

evolution, the translational and rotational velocities of the particle γ evolve as Vγ(t) = Cγe
i(ω0t+δγ)

and Ωγ(t) = Dγe
i(ω0t+ϕγ), respectively, and analogously for the particle λ. The amplitudes and phase

shifts can accurately be determined by a fitting procedure of the numerically recorded velocities using
the trust region method [125]. In this way, the rt components can be computed for a torque-free
particle as

µrt,λλαβ =
Dλα

Aλβ
eiϕλ , µrt,γλαβ =

Dγα

Aλβ
eiϕλ . (3.3)

For a force-free particle, the components tr and rr are computed from

µtr,λλαβ =
Cλα
Bλβ

eiδλ , µrr,λλαβ =
Dλα

Bλβ
eiϕλ , (3.4)

for the self-mobilities and

µtr,γλαβ =
Cγα
Bλβ

eiδγ , µrr,γλαβ =
Dγα

Bλβ
eiϕγ . (3.5)

for the pair-mobilities.

4 Results

In our previous work [101], we have provided analytical expressions of the translational mobility
functions for the motion nearby an elastic membrane. We have shown that the frequency-dependent
corrections to the particle self- and pair-mobility functions can exactly be written as a linear super-
position of the contributions stemming from shearing and bending resistances. In this section, we
shall carry out analogous calculations of the coupling and rotational self- and pair-mobilities.

4.1 Self-mobilities

Mathematical expressions for the hydrodynamic coupling and rotational self-mobility corrections will
be derived and expressed in terms of power series of the ratio of particle radius to membrane distance
ε := a/z0. We have shown that for the translational mobility corrections, the leading order term
scales as ε. In the course of what follows, we shall show that the coupling and rotational self-mobility
corrections scale at leading order as ε2 and ε3, respectively.

Translation-rotation coupling

For isolated particles in an unbounded geometry, no coupling between translation and rotation
occurs [126]. The commonly observed Magnus effect [127] resulting in a drift force of a rotating
sphere follows from the full non-linear Navier Stokes equations [128]. In the following, the coupling
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mobilities will be scaled by µtr0 ≡ µrt0 = 1/(6πηa2). The translation-rotation coupling mobility is
readily obtained after inserting the Green’s functions as defined by Eq. (2.18) into Eq. (2.16). After
computation, we find that the contribution due to shearing and bending can explicitly be expressed
as

µtr,Sxy,S

µtr0
=

3

64

(
β2(2 + iβ)Γ1 + iβ − β2 − 2 +

4iβ

B
+

3β2Γ2

B2

)
ε2

+

(
− 3

64
+

β

128

(
2i+ β − iβ2 − β3Γ1

))
ε4 , (4.1)

µtr,Sxy,B

µtr0
=

(
3

32
−
iβ3B
64

(ψ + φ+)

)
ε2 +

(
− 3

64
+
β3B
384

(
3i− βBψ − ψ′

))
ε4 , (4.2)

where the subscripts S and B respectively stand for shearing and bending, and the S appearing as a
superscript stand for self. The total coupling mobility is obtained by linear superposition. It follows
from the symmetry of the mobility tensor that µtryx = −µtrxy and that µtryx = µrtxy. Moreover, the
function En denotes the generalized exponential integral defined as En(x) :=

∫∞
1 t−ne−xtdt [113].

Here β := 6Bz0ηω/κS is a dimensionless frequency associated with the shearing resistance and
βB := 2z0(4ηω/κB)1/3 is a dimensionless number associated with bending [91]. Furthermore, we
define the auxiliary functions

φ± := e−izB E1 (−izB)± e−izB E1 (−izB) ,

ψ := e−iβB E1(−iβB) ,

where zB := jβB and j := e2iπ/3 is the principal cubic-root of unity. The bar designates complex
conjugate. We further define

Γ1 = eiβ E1(iβ) , Γ2 = e
2iβ
B E1

(
2iβ

B

)
, (4.3)

and
ψ′ = zBe

−izB E1(−izB) + zBe
−izB E1(−izB) . (4.4)

We recall that B = 2/(1+C), a parameter associated with the Skalak model. By taking the vanishing
frequency limit in Eqs. (4.1) and (4.2), the shearing and bending related corrections for the xy
component of coupling mobility read

lim
β→0

∆µtr,Sxy,S

µtr0
= − 3

32
ε2 − 3

64
ε4 , (4.5)

lim
βB→0

∆µtr,Sxy,B

µtr0
=

3

32
ε2 − 3

64
ε4 , (4.6)

leading to the hard-wall limit obtained upon summing up both contributions term by term, namely [60]

lim
β,βB→0

µtr,Sxy

µtr0
= − 3

32
ε4 , (4.7)

as first computed by Goldman [129]. Interestingly, the leading order terms with ε2 drop out in the
steady limit where the resulting correction to the coupling pair-mobility scales as ε4. We further
remark that the shearing and bending related parts have opposite contributions to the total mobility.
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Figure 2: (Color online) The scaled frequency-dependent coupling self-mobility versus the scaled
frequency. The solid particle is set a distance z0 = 2a above a planar elastic membrane whose reduced
bending modulus EB = 2/3. Here we take C = 1 in the Skalak parameter. The theoretical predictions
are shown as dashed lines for the real (reactive) part, and as solid lines for the imaginary (dissipative)
part. Symbols refer to boundary integral simulations results. The shearing/area dilatation and
bending related parts as stated by Eqs. (4.1) and (4.2) are shown in green and red, respectively. Blue
symbols refer to the rt component as obtained numerically. The horizontal dashed line stands for
the coupling self-mobility nearby a no-slip wall given by Eq. (4.7).

This interesting feature will play a significant role in the rotational dynamics of a torque-free doublet
of particles nearby an elastic membrane as it is detailed below.

In Fig. 2, we show the scaled coupling self-mobility versus the scaled frequency β of a particle
located a distance z0 = 2a above a planar elastic membrane. Here we consider a reduced bending
modulus EB := κB/(κSz

2
0) for which the characteristic time scale for shearing TS := 6z0η/κS and for

bending TB := 4ηz30/κB are equal [101]. We further observe that the real and imaginary parts are
nonmonotonic functions of frequency that vanish for larger frequencies, thus recovering the behavior
in a bulk fluid. In the low frequency regime, the coupling mobility approaches that predicted nearby
a hard wall as given by Eq. (4.7). We observe that shearing manifest itself somehow in a more
pronounced way compared to bending. The coupling mobilities tr and rt as obtained numerically
clearly satisfy the symmetry property required for particles in Stokes flows. A good agreement is
obtained between theoretical predictions and boundary integral simulations over the whole range of
applied frequencies.

Rotational mobilities

The correction to the rotational-mobility for the rotation around an axis parallel to the membrane
is readily obtained by inserting the Green’s functions as defined by Eqs. (2.18) into Eq. (2.17) to



160 Pub4. Hydrodynamic coupling and rotational mobilities

-0.04

-0.02

0

0.02

10−4 10−2 100 102

µ
r
r,
S

x
x

/ µrr 0

β

(a)

-0.02

-0.01

0

0.01

10−4 10−2 100 102

µ
r
r,
S

z
z

/ µrr 0

β

(b)

Figure 3: (Color online) The scaled frequency-dependent rotational self-mobility versus the scaled
frequency. The analytical predictions are given by Eqs. (4.8) through (4.11). Here we use the same
color code as in Fig. 2. Horizontal dashed lines are the hard-wall predictions given by Eqs. (4.14)
and (4.15) for the components xx and zz, respectively.

obtain

∆µrr,Sxx,S

µrr0
= − 1

16

(
iβ3
(

Γ1 +
4Γ2

B3

)
− β2

(
1 +

2

B2

)
− iβ

(
1 +

1

B

)
+ 3

)
ε3 , (4.8)

∆µrr,Sxx,B

µrr0
=

1

48

(
iβ3B (ψ + φ+)− 6

)
ε3 , (4.9)

for the shearing and bending related parts, respectively. Similar, the total mobility is obtained by
superposition of the contributions due to shearing and bending. The component yy has an analogous
expression due to the system symmetry along the horizontal plane. Continuing, for the rotation
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around an axis perpendicular to the membrane, the shearing and bending related corrections read

∆µrr,Szz,S

µrr0
= −3iB

16β

(
4e

2iβ
B E5

(
2iβ

B

)
− 1

)
ε3 , (4.10)

∆µrr,Szz,B

µrr0
= 0 . (4.11)

Clearly, the rotational self-mobilities have a leading-order term scaling as ε3. Interestingly, the zz
component depends only on membrane shearing properties and does not depend on bending. Not
surprisingly, the torque exerted on the particle along an axis perpendicular to the planar membrane
induces only an in-plane displacement and therefore the resulting stresses do not cause any out-of-
plane deformation or bending. By taking the vanishing frequency limit in the xx component of the
rotational mobilities in Eqs. (4.8) and (4.9) we obtain

lim
β→0

∆µrr,Sxx,S

µrr0
= − 3

16
ε3 , (4.12)

lim
βB→0

∆µrr,Sxx,B

µrr0
= −1

8
ε3 , (4.13)

leading after summing up both contributions term by term to the result near a hard-wall [60]

lim
β,βB→0

∆µrr,Sxx

µrr0
= − 5

16
ε3 . (4.14)

For the zz component we obtain

lim
β,βB→0

∆µrr,Szz

µrr0
= lim

β→0

∆µrr,Szz,S

µrr0
= −1

8
ε3 . (4.15)

In the steady limit, we observe that the correction to the xx component of the rotational self-mobility
is 2.5 times larger than that of the zz component. It is therefore much easier to rotate the particle
along an axis perpendicular than parallel to a membrane endowed with a finite shearing rigidity.

In Fig. 3, we show the scaled rotational self-mobilities versus the scaled frequency β for the
rotation about an axis parallel (a) and perpendicular (b) to the planar elastic membrane. We observe
that the real part is a monotonically increasing function of frequency while the imaginary part exhibits
the typical peak structure which occurs at β ∼ 1. Considering the xx component, we remark that
shearing and bending have additive contribution to the total mobility, in contrast to the behavior
observed for the coupling mobilities. Moreover, the contribution due to shearing is found to be to
some extent more pronounced than that due to bending. The zz component is solely determined by
membrane shearing resistance and that bending does not play any role, in complete agreement with
theoretical predictions.

4.2 Pair-mobilities

Having computed the coupling and rotational self-mobilities, we now consider the fluid mediated
hydrodynamic interactions between two particles. For a pair of particles in an unbounded geometry,
coupling between translation and rotation occurs only when considering higher order reflections,
and it is not captured in the Rotne-Prager approximation [130, 131]. Hereafter, expressions for the
pair-mobility corrections will be derived and expressed in terms of a power series in σ = a/h. The
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Figure 4: (Color online) The scaled frequency-dependent coupling pair-mobilities versus the scales
frequency as predicted theoretically by Eqs. (4.16) through (4.19). The color code is the same as in
Fig. (2). Here the pair is located at z0 = 2a with a distance h = 4a. Horizontal dashed lines are the
hard-wall predictions given by Eqs. (4.20) through (4.23).

latter takes only physical values strictly between 0 and 1/2 as overlap between the two particles
should be avoided. For the translational mobility, we have shown that the leading order corrections
scale linearly with respect to σ. We shall show that the leading order corrections terms for the
hydrodynamic coupling and rotational pair-mobilities scale as σ2 and σ3, respectively.

Translation-rotation coupling

We first consider the translation-rotation coupling components of the pair-mobility tensor nearby an
elastic membrane. By inserting the expressions of the Green’s functions as stated by Eqs. (2.18) into
Eq. (2.13), the coupling pair-mobilities can conveniently be expressed in terms of convergent infinite
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Figure 5: (Color online) The scaled frequency-dependent rotational pair-mobilities versus the scales
frequency as predicted theoretically by Eqs. (4.32) through (4.35). Horizontal dashes lines are the
corrections predicted nearby a hard wall given by Eqs. (4.36) through (4.39). The color code is the
same as in Fig. (2).

integrals as

µtr,Pxy

µtr0
=

∫ ∞
0

iσ2u

ξ1/2

(
1

ξ3/2

(
ξ1/2χ1Γ+ − 2u (3ξ + uΛ)χ0

2iu− β
+

4u3Λϕ

8iu3 − β3B

)
+

3iB

2

χ1

Bu+ iβ

)
e−2u du ,

(4.16)

µtr,Pyx

µtr0
=

∫ ∞
0

σ2u

ξ

(
− 3B

2

ϕ

Bu+ iβ
+

i

ξ1/2

(
χ1Γ+

2iu− β
+

4u3χ1Λ

8iu3 − β3B

))
e−2u du , (4.17)

µtr,Pyz

µtr0
=

∫ ∞
0

3Bσ2u2χ1

ξ

e−2u

Bu+ iβ
du , (4.18)

µtr,Pzy

µtr0
=

∫ ∞
0

2iσ2u3χ1

ξ2

(
Λ

2iu− β
+

4uΓ−
8iu3 − β3B

)
e−2udu , (4.19)
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where P appearing as a superscript stand for pair, and is a shorthand for the component γλ. Fur-
thermore, we define the geometric parameter ξ := 4z20/h

2 = 4σ2/ε2 and

Λ := 4σ2u− 3ξ ,

Γ± := 4σ2u2 − 3uξ ± 3ξ ,

χn := Jn

(
2u

ξ1/2

)
,

ϕ := ξ1/2χ1 − 2uχ0 .

The terms involving β and βB in Eqs. (4.16) through (4.19) are the contributions stemming from
shearing and bending, respectively.

Interestingly, the component yz (and thus zy of the rt coupling mobility) does not depend on
membrane bending properties. In the vanishing frequency limit, or equivalently for infinite membrane
shearing and bending moduli, we recover the coupling pair-mobility functions near a hard-wall, with
stick boundary conditions namely

lim
β,βB→0

µtr,Pxy

µtr0
= −9

4

ξ1/2

(1 + ξ)5/2
σ2 − 3

2

ξ1/2(ξ − 4)

(1 + ξ)7/2
σ4 , (4.20)

lim
β,βB→0

µtr,Pyx

µtr0
=

3

2

ξ1/2

(1 + ξ)5/2
σ4 , (4.21)

lim
β,βB→0

µtr,Pyz

µtr0
=

3

4

σ2

(1 + ξ)3/2
, (4.22)

lim
β,βB→0

µtr,Pzy

µtr0
= −3

4

1 + 4ξ

(1 + ξ)5/2
σ2 +

3

2

4ξ − 1

(1 + ξ)7/2
σ4 , (4.23)

in full agreement with the results by Swan and Brady [60]. Note that the components xy and zy
keep a negative sign and that xy and yz keep a positive sign in the physical range of parameters in
which ε ∈ [0, 1] and σ ∈ [0, 12 ].

By considering independently the shearing and bending contributions to the pair-mobility cor-
rections from Eqs. (4.16) through (4.19), and taking the limit of vanishing frequency, we obtain for
the xy component

lim
β→0

µtr,Pxy,S

µtr0
= −3

8

ξ1/2(ξ + 4)

(1 + ξ)5/2
σ2 − 3

4

ξ1/2(ξ − 4)

(1 + ξ)7/2
σ4 , (4.24)

lim
βB→0

µtr,Pxy,B

µtr0
=

3

8

ξ1/2(ξ − 2)

(1 + ξ)5/2
σ2 − 3

4

ξ1/2(ξ − 4)

(1 + ξ)7/2
σ4 , (4.25)

leading to Eq. (4.20) after summing up both contributions. It can be shown that the shearing related
part is negative whereas the bending related part undergoes a change of sign. By solving Eq. (4.25)
perturbatively, the threshold line where the bending contribution changes sign is given in power
series of σ by

εth =
√

2σ

(
1 +

σ2

3
+

29

54
σ4
)

+O(σ7) . (4.26)

Hence, for ε > εth, the bending related part in the coupling mobility is negative whereas it is positive
for ε < εth.
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Considering next the shearing and bending contributions to the component yx, we obtain

lim
β→0

µtr,Pyx,S

µtr0
=

3

8

ξ1/2

(1 + ξ)3/2
σ2 +

3

4

ξ1/2

(1 + ξ)5/2
σ4 , (4.27)

lim
βB→0

µtr,Pyx,B

µtr0
= −3

8

ξ1/2

(1 + ξ)3/2
σ2 +

3

4

ξ1/2

(1 + ξ)5/2
σ4 , (4.28)

which keep positive and negative signs, respectively, leading to Eq. (4.21) by considering both con-
tributions. Continuing, for the yz component we get

lim
β→0

µtr,Pzy,S

µtr0
= −9

8

ξ

(1 + ξ)5/2
σ2 +

3

4

4ξ − 1

(1 + ξ)7/2
σ4 (4.29)

lim
βB→0

µtr,Pzy,B

µtr0
= −3

8

2 + 5ξ

(1 + ξ)5/2
σ2 +

3

4

4ξ − 1

(1 + ξ)7/2
σ4 , (4.30)

both of which are negative valued, leading to Eq. (4.23) after summing up both contributions.

Fig. 4 shows the tr and rt coupling pair-mobilities versus the scaled frequency for a pair of
particles located above the elastic membrane at z0 = 2a, far apart a distance h = 4a. Membrane
shearing manifests itself in a more pronounced way for the components xy, yx and yz, whereas
bending effect is more significant for the yz component. The simulations results are consistent with
the fact that the tr and rt coupling mobility tensors are the transpose of each other, which is indeed
ineluctable for Stokes flows. A very good agreement is obtained between theoretical predictions and
BIM simulations.

Rotational mobilities

We now turn our attention to the rotational pair-mobility nearby an elastic membrane. In a bulk
fluid, the particle rotational mobilities are obtained by inserting the infinite-space Green’s function
(Oseen tensor) given by Eq. (2.7) into (2.14) to obtain

µrr,Pxx

µrr0
= σ3 ,

µrr,Pyy

µrr0
=
µrr,Pzz

µrr0
= −1

2
σ3 , (4.31)

where again µrr0 = 1/(8πηa3) is the rotational bulk mobility. Clearly, the two particles undergo
rotation in the same direction along their line of centers but in opposite direction for the rotation
about a line perpendicular to the line of centers. Moreover, the rotational pair-mobility along the line
of centers connecting the two particles is in magnitude twice larger than the rotational pair-mobility
perpendicular to it.

Nearby an elastic membrane, the components of the correction to the rotational mobility are
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obtained by inserting Eqs. (2.18) into Eq. (2.14) to get

∆µrrxx
µrr0

=

∫ ∞
0

2σ3u2

ξ

(
B

ξ1/2
ϕ

Bu+ iβ
− 4iχ1

(
1

2iu− β
+

4u2

8iu3 − β3B

))
e−2u du , (4.32)

∆µrrxz
µrr0

=

∫ ∞
0

4Bσ3u3χ1

ξ3/2
e−2u

Bu+ iβ
du , (4.33)

∆µrryy
µrr0

=

∫ ∞
0

2σ3u2

ξ

(
4iϕ

ξ1/2

(
1

2iu− β
+

4u2

8iu3 − β3B

)
− Bχ1

Bu+ iβ

)
e−2u du , (4.34)

∆µrrzz
µrr0

=

∫ ∞
0
−4Bσ3u3χ0

ξ3/2
e−2u

Bu+ iβ
du . (4.35)

Similar, the terms involving β and βB are related to shearing/area dilatation and bending respectively.
It can remarkably be seen that the components xz and zz depends on membrane shearing only. In
particular, the correction nearby a no-slip hard-wall is recovered in the zero frequency limit to obtain

∆µrrxx
µrr0

= −1

2

2 + 5ξ

(1 + ξ)5/2
σ3 , (4.36)

∆µrrxz
µrr0

=
3

2

ξ1/2

(1 + ξ)5/2
σ3 , (4.37)

∆µrryy
µrr0

= −1

2

5ξ − 7

(1 + ξ)5/2
σ3 , (4.38)

∆µrrzz
µrr0

= −1

2

2ξ − 1

(1 + ξ)5/2
σ3 , (4.39)

in agreement with the results by Swan and Brady [60]. Interestingly, the components yy and zz
undergo a change of sign for ξ = 7/5 and ξ = 1/2, respectively. By considering the shearing and
bending contributions to the pair-mobility corrections independently, from Eqs. (4.32) – (4.35), and
taking the vanishing frequency limit, we obtain for the xx component

lim
β→0

µrr,Pxx,S

µtr0
= −3

2

ξ

(1 + ξ)5/2
σ3 , (4.40)

lim
βB→0

µrr,Pxx,B

µtr0
= − σ3

(1 + ξ)3/2
, (4.41)

leading to Eq. (4.36) after summing up both contributions. For the component xx we obtain

lim
β→0

µrr,Pyy,S

µtr0
= −3

2

ξ − 1

(1 + ξ)5/2
σ3 , (4.42)

lim
βB→0

µrr,Pyy,B

µtr0
= − ξ − 2

(1 + ξ)5/2
σ3 , (4.43)

leading to Eq. (4.38). Accordingly, the shearing and bending related parts in the steady limit vanish
for ξ = 1 and ξ = 2, respectively.

In Fig. 5, we show the particle scaled rotational pair-mobility functions versus the scaled frequency
using the same parameters of Fig. 4, i.e. for a distance from the membranes z0 = 2a and an
interparticle distance h = 4a. As already pointed out, the components xz and zz depend solely
on membrane shearing resistance whereas both shearing and bending manifest themselves for xx
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Figure 6: (Color online) Contour diagrams of the scaled steady rotation rate of doublet as stated by
Eq. (4.48) for a membrane with pure shearing, Eq. (4.49) for pure bending, and Eq. (4.47) for both
shearing and bending.

and yy components. As ξ = 1, the shearing related part in the yy mobility vanishes in the zero
frequency limit, and the behavior in the low frequency regime is mainly bending dominated. Since
the rotational pair-mobilities exhibit a scaling as σ3, we observe that the corrections are significantly
small as compared to the coupling pair-mobilities.

4.3 Doublet co-rotation

In order to elucidate the effect and role of the change of sign observed in the particle self- and
pair-mobilities, we shall consider as an example setup the co-rotation of a doublet of particles close
to an elastic membrane. We assume equal and opposite external torques applied on the pair of
particles along the line of centers, causing the pair to rotate in opposite directions. Due to the
aforementioned hydrodynamic coupling between the particles and the membrane, the two particles
undergo translational motion along the direction perpendicular to the line of centers. Accordingly,
an induced rotational motion occurs about the center of mass of the doublet along the z direction
with a rotation rate

Ω = −2L

h

(
µtr,Syx − µtr,Pyx

)
, (4.44)

where the external torques are applied on both particles along the x direction such that Lλx =
−Lγx = L(t). In the frequency domain, the rotation rate can conveniently be cast in the following
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Figure 7: (Color online) Scaled rotation rate of doublet versus the scaled time nearby a membrane
with pure shearing (green), pure bending (red) and both rigidities (black). Analytical prediction
correspond to Eq. (4.46) and symbols refer to boundary integral simulations. Here we use the same
parameters as in Fig. (4) for z0 = 2a and h = 4a.

generic form

Ω(ω) = L(ω)

∫ ∞
0

ϕ1(u)

ϕ2(u) + iωT
du , (4.45)

where the integral represents either the shearing or bending related parts. Here ϕ2(u) ∈ {u, 2u/B}
for the shearing contribution and ϕ2(u) = u3 for bending. Moreover, ϕ1(u) is a real function that
does not depend on frequency. By considering now a Heaviside type function for the torque for
which L(t) = L0 θ(t), whose temporal Fourier transform to the frequency domain reads L(ω) =
(πδ(ω)− i/ω)L0, with δ(ω) being the delta Dirac function, the time-dependent rotation rate reads

Ω(t)

L0
= θ(t)

∫ ∞
0

ϕ1(u)

ϕ2(u)

(
1− e−ϕ2(u)τ

)
du , (4.46)

wherein τ := t/T is a scaled time. In the steady limit for which τ → ∞, the rotation rate can be
written in a scaled form as

lim
τ→∞

Ω

µrr0 L0
= σε4

(
8σ5

ρ5
− 1

4

)
, (4.47)

where ρ2 = ε2 +4σ2. Now, by considering an idealized membrane with pure shearing or pure bending,
we obtain

lim
τ→∞

ΩS

µrr0 L0
= σε2

(
−1

4
− ε2

8
+

2σ3

ρ3

(
1 +

2σ2ε2

ρ2

))
, (4.48)

lim
τ→∞

ΩB

µrr0 L0
= σε2

(
1

4
− ε2

8
− 2σ3

ρ3

(
1− 2σ2ε2

ρ2

))
, (4.49)

leading to Eq. (4.47) after summing up both members term by term. We further note that since the
zx components of the tr coupling self- and pair-mobilities vanish, the pair remain at the same height
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during its rotational motion above the membrane.
In Fig. 6, we show the contour diagrams of the scaled rotation rate as predicted theoretically by

Eqs. (4.47) – (4.49) in the steady limit. Clearly, the steady rotation of a torque-free doublet about its
center nearby a membrane with pure shearing is clockwise, i.e. in the same way as nearby a hard-wall.
The rotation is however found to be counterclockwise nearby a membrane with pure bending.

In Fig. (7) we present the time-dependent rotation rate of the doublet rotating under a constant
external torque exerted along the line of centers, nearby a membrane with shearing-only (green),
bending-only (red) or both rigidities (black), as predicted theoretically by Eq. (4.46). We observe
that at smaller time scales, for which t/TS � 1, the rotation rates amount to small values since
the doublet does not yet perceive the presence of the membrane at these short time scales. As the
time increases, we observe that the rotation rates asymptotically approach the values predicted in
the steady limit. For a membrane with both shearing and bending rigidities, the effect of shearing
is noticeably more pronounced, leading to a clockwise rotation as predicted nearby a no-slip wall.
For a membrane with pure bending however, the steady rotation rate is positive and therefore
the pair undergoes counterclockwise rotation. This interesting behavior can dramatically alter the
near membrane dynamics and behavior of force- and torque-free flagellated bacteria and swimming
microorganisms that use helical propulsion as a locomotion strategy [132, 133].

5 Conclusions

In this paper, we have studied analytically and numerically the coupling and rotational hydrodynamic
mobilities of a pair of particle moving nearby a realistically modeled red blood cell membrane
that exhibits resistance towards shearing and bending. We have modeled the elastic membrane by
combining the Skalak model for the in-plane shearing resistance and the Helfrich model for the out-
of-plane bending resistance. For a vanishing actuation frequency or equivalently for higher membrane
shear and bending moduli, our results perfectly coincide with those predicted nearby a hard-wall
with stick boundary conditions.

Using the multipole expansion and Faxén’s theorem, we have expressed the coupling and rotational
self- and pair-mobility functions as power series of the ratio between particle radius and membrane
distance and between radius and interparticle distance. We have found that the shearing and bending
related contributions may manifest themselves in a additive of suppressive manner depending on the
membrane properties and the geometric configuration of the particle-membrane system. As a model
system for bacterial locomotion, we have studied the rotational dynamics of torque-free doublet of
particles in close vicinity to an elastic membrane, finding that the magnitude and direction of rotation
in the steady limit strongly depend on membrane properties: A shearing-only membrane leads to a
clockwise rotation whereas rotation is counterclockwise nearby a bending-only membrane.

Finally, we have verified our theoretical predictions via numerical simulations performed using a
completed double boundary integral method where a very good agreement is obtained. Our analyti-
cally computed mobility functions may find applications as a basis for Brownian simulation studies
nearby planar elastic confinements.
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1 Abstract

Using a fully analytical theory, we compute the leading order corrections to the translational, rota-
tional and translation-rotation coupling mobilities of an arbitrary axisymmetric particle immersed in
a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching
and bending. The frequency-dependent mobility corrections are expressed as general relations involv-
ing separately the particle’s shape-dependent bulk mobility and the shape-independent parameters
such as the membrane-particle distance, the particle orientation and the characteristic frequencies
associated with shearing and bending of the membrane. This makes the equations applicable to an
arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analyti-
cally or numerically. For a spheroidal particle, these general relations reduce to simple expressions in
terms of the particle’s eccentricity. We find that the corrections to the translation-rotation coupling
mobility are primarily determined by bending, whereas shearing manifests itself in a more pronounced
way in the rotational mobility. We demonstrate the validity of the analytical approximations by a
detailed comparison with boundary integral simulations of a truly extended spheroidal particle. They
are found to be in a good agreement over the whole range of applied frequencies.

2 Introduction

Hydrodynamic interactions between nanoparticles and cell membranes play an important role in many
medical and biological applications. Prime examples are drug delivery and targeting via nanocarriers
which release the active agent in disease sites such as tumours or inflammation areas [1–3]. During
navigation through the blood stream, but especially during uptake by a living cell via endocytosis [4–6],
nanoparticles frequently come into close contact with cell membranes which alter their hydrodynamic
mobilities in a complex fashion.

Over the last few decades, considerable research effort has been devoted to study the motion of
particles in the vicinity of interfaces. The particularly simple example of a solid spherical particle
has been extensively studied theoretically near a rigid no-slip wall [7–14], an interface separating
two immiscible liquids [15–20], an interface with partial-slip [21, 22] and a membrane with surface
elasticity [23–31]. Elastic membranes stand apart from both liquid-solid and liquid-liquid interfaces,
since the elasticity of the membrane introduces a memory effect in the system causing, e.g., anomalous
diffusion [28] or a sign reversal of two-particle hydrodynamic interactions [30]. On the experimental
side, the near-wall mobility of a spherical particle has been investigated using optical tweezers [32–
35], digital video microscopy [36–39] and evanescent wave dynamic light scattering [40–46], where a
significant alteration of particle motion has been observed in line with theoretical predictions. The
influence of a nearby elastic cell membrane has been further investigated using optical traps [25, 47–49]
and magnetic particle actuation [50].

Particles with a non-spherical shape, such as spheroids or rod-like particles, have also received
researchers’ attention. The first attempt to investigate the Brownian motion of an anisotropic particle
dates back to Perrin [51, 52] who computed analytically the drag coefficients for a spheroid diffusing
in a bulk fluid. A few decades later, Batchelor [53] pioneered the idea that the flow field surrounding
a slender body, such as an elongated particle, may conveniently be represented by a line distribution
of Stokeslets between the foci. The method has successfully been applied to a wide range of external
flows [54] and near boundaries such as a plane hard wall [55–57] or a fluid-fluid interface [58]. Using
the multipole expansion of the near-wall flow field, Lisicki et al. [59] have shown that to leading order
the mobility of an arbitrary axisymmetric particle near a hard wall can be expressed in closed form
by combining the appropriate Green’s function with the particle’s bulk mobility. Direct simulation
numerical investigations of colloidal axisymmetric particles near a wall have been carried out using
boundary integral methods [60], stochastic rotation dynamics [61, 62] and finite element methods [63].
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Diffusion of micrometer-sized ellipsoidal particles has been investigated experimentally using
digital video microscopy [62, 64–66]. Experiments on actin filaments have been conducted using
fluorescence imaging and particle tracking [67] finding that the measured diffusion coefficients can
appropriately be accounted for by a correction resting on the hydrodynamic theory of a long cylinder
confined between two walls. The confined rotational diffusion coefficients of carbon nanotubes have
been measured using fluorescence video microscopy [68] and optical microscopy [69], where a reason-
able agreement has been reported with theoretical predictions. More recently, the three-dimensional
rotational diffusion of nanorods [70] and rod-like colloids have been measured using video [71] and
confocal microscopy [72].

Yet, to the best of our knowledge, motion of a non-spherical particle in the vicinity of deformable
elastic interfaces has not been studied so far. In this contribution, we examine the dynamics of an
axisymmetric particle near a red blood cell (RBC) membrane using theoretical predictions in close
combination with fully resolved boundary integral simulations. The results of the present theory
may be used in microrheology experiments in order to characterize the mechanical properties of the
membrane [73].

The paper is organised as follows. In Sec. 3, we formulate the theoretical framework for the
description of the motion of a colloidal particle in the vicinity of an elastic membrane. We introduce
the notion of hydrodynamic friction, mobility, and a model for the membrane. In Sec. 4 we outline
the mathematical derivation of the correction to the bulk mobility tensor of the particle due to
the presence of an interface and provide explicit expressions for the correction valid for any axially
symmetric particle. In Sec. 5, we describe the boundary integral method (BIM) used to numerically
compute the components of the mobility tensor. Sec. 6 contains a comparison of analytical predictions
and numerical simulations for a spheroidal particle, followed by concluding remarks in Sec. 7. The
mathematical details arising in the course of the work are discussed in the Appendices.

3 Hydrodynamics near a membrane

We consider an axially symmetric particle immersed in an incompressible Newtonian fluid, moving
close to an elastic membrane. The fluid is assumed to have the same dynamic viscosity η on both
sides of the membrane. As an example, we will focus later on a prolate spheroidal particle as shown in
figure 1. The position of the centre of the particle is r0, while its orientation is described by the unit
vector u1 pointing along the symmetry axis. The laboratory frame is spanned by the basis vectors
{ex, ey, ez}.

We denote by z0 the vertical distance separating the centre of the particle from the undisplaced
membrane located at the plane z = 0 and extended infinitely in the horizontal plane xy. It is conve-
nient to introduce the body-fixed frame of reference, formed by the three basis vectors {u1,u2,u3}.
The unit vector u2 is parallel to the undisplaced membrane and perpendicular to the particle axis,
and u3 completes the orthonormal basis. We define θ as the angle between u1 and ez such that
cos θ = ez ·u1. The basis vectors in the particle frame are then given by u2 = (ez × u1)/ |ez × u1|
and u3 = u1 × u2.

In the inertia-free regime of motion, the fluid dynamics are governed by the stationary incom-
pressible Stokes equations

η∇2v(r)−∇p(r) + f(r) = 0 , (3.1)
∇ ·v(r) = 0 , (3.2)

where v is the fluid velocity, p is the pressure field and f is the force density acting on the fluid due
to the presence of the particle. We omit the unsteady term in the Stokes equations, since in realistic
situations it leads to a negligible contribution to the mobility corrections [28]. For a discussion
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z0

a
c

x

θ

u1u3

Figure 1: Illustration of a spheroidal particle located at z = z0 above an elastic cell membrane. The
short and long axes are denoted by a and c, respectively. The unit vector u1 is pointing along the
spheroid symmetry axis and u2 is the unit vector perpendicular to the plane of the figure. The unit
vector u3 is defined to be orthogonal to both u1 and u2.

accounting for the unsteady term in bulk flow, see recent work by Felderhof [74]. The flow v(r) may
be superposed with an arbitrary external flow v0(r) being a solution to the homogeneous Stokes
equations in the absence of the particle.

Consider now a colloidal particle near the membrane. The total force F , torque T and stresslet
(symmetric force dipole) S are linearly related to the velocities (translational V and angular Ω) of
the particle relative to an external flow by the generalised friction tensor [75]FT

S

 =

ζtt ζtr ζtd

ζrt ζrr ζrd

ζdt ζdr ζdd

v0 − Vω0 −Ω
E0

 , (3.3)

with v0 = v0(r0), the vorticity ω0 = 1
2∇ × v0(r0), and the rate of strain E0 = ∇v0(r0) of the

external flow (the bar denotes the symmetric and traceless part of the velocity gradient).
A complimentary relation defines the generalised mobility tensorV − v0Ω− ω0

−S

 =

µtt µtr µtd

µrt µrr µrd

µdt µdr µdd

FT
E0

 . (3.4)

Upon examining Eqs. (3.3) and (3.4), we note that the 6× 6 mobility tensor µ is the inverse of the
friction tensor ζ

ζ−1 =

(
ζtt ζtr

ζrt ζrr

)−1
=

(
µtt µtr

µrt µrr

)
= µ . (3.5)

Relations between other elements of the generalised mobility and friction tensors may be found
directly from Eqs. (3.3) and (3.4). These are general properties of Stokes flows following from the
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linearity of the governing equations. Finding an explicit form of these tensors requires the solution
of Stokes equations (3.1) and (3.2) with appropriate boundary conditions on the confining interfaces.
Since we aim at computing the particle mobility nearby a membrane endowed with surface elasticity
and bending resistance, a relevant model for the membrane dynamics needs to be introduced at this
point.

The Skalak model [76] is well-established and commonly used to represent RBC membranes [77, 78].
The elastic properties of the interface are characterised by two moduli: elastic shear modulus κS
and area dilatation modulus κA. Resistance towards bending has been further included following
the model of Helfrich [79] with the associated bending modulus κB. In this approach, the linearized
tangential and normal traction jumps across the membrane are related to the membrane displacement
field h at z = 0 and the dilatation ε by [28]

[σzα] = −κS
3

(
∆‖hα + (1 + 2C)∂αε

)
, α ∈ {x, y} , (3.6)

[σzz] = κB∆2
‖hz , (3.7)

where [f ] := f(z = 0+)− f(z = 0−) denotes the jump of the quantity f across the membrane. The
dilatation ε := ∂xhx + ∂yhy is the trace of the strain tensor. The Skalak parameter is defined as C :=
κA/κS. Here ∆‖ := ∂2x + ∂2y is the Laplace-Beltrami operator along the membrane. The components
σzα of the stress tensor in the fluid are expressed in a standard way by σzα = −pδzα+η(∂αvz +∂zvα)
for α ∈ {x, y, z} [75].

The membrane displacement h and the fluid velocity v are related by the no-slip boundary
condition at the undisplaced membrane, which in Fourier space takes the form

vα = iωhα|z=0 , α ∈ {x, y, z} , (3.8)

with ω being the characteristic frequency of forcing in the system. The frequency-dependent elastic
deformation effects are characterised by two dimensionless parameters, as described in Daddi-Moussa-
Ider et al. [28]

β =
12z0ηω

κS + κA
, βB = 2z0

(
4ηω

κB

)1/3

, (3.9)

Further details of the derivation of β and βB can be found in Appendix A. The effect of shear
resistance and area dilatation is thus captured by β, while βB describes the bending resistance of
the membrane. In the steady case for which β = βB = 0, corresponding to a vanishing frequency or
to an infinitely stiff membrane, we expect to recover the results for a hard no-slip wall.

In the case of periodic forcing or time-dependent deformation of the membrane, the quantity of
interest is the frequency-dependent mobility tensor. Our aim in this work is to find all the components
of µ(ω) for an axisymmetric particle close to an elastic membrane. Accordingly, due to the presence of
the interface, the near-membrane mobility will then have a correction on top of the bulk mobility µ0,

µ(ω) = µ0 + ∆µ(ω) , (3.10)

stemming from the interaction of the flow created by the particle with the boundary. To determine
the form of µ(ω) in an approximate manner, we use the results by Lisicki et al. [59] valid for a
hard no-slip wall and generalize them to the case of an elastic membrane. Their idea is based on a
multipole expansion [80] of the flow field around an axially symmetric particle close to a boundary,
with a corresponding expansion of the force distribution on its surface. If the particle is sufficiently
far away from the wall, they have shown that the dominant correction to its friction matrix can
be viewed as an interaction between the centre of the particle and its hydrodynamic image. They
provide explicit expressions for the elements of the friction tensor for all types of motion (translation,
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rotation and coupling terms) which yields the corrected mobility tensor upon inversion. The same
route may be followed for a membrane, provided that the form of the Green’s tensor for the system
is known.

A general Stokes flow can be constructed using the Green’s function G(r, r′) being the solution
of Eqs. (3.1) and (3.2) subject to a time-dependent point force f(r) = F (t)δ(r − r′) with the
appropriate boundary conditions on the membrane. In an unbounded fluid, the Green’s tensor is the
Oseen tensor [75] G0(r, r

′) = G0(r − r′), with G0(r) =
(
1 + rr/r2

)
/(8πηr), with r := |r|. In the

presence of boundaries, the Green’s tensor contains the extra term ∆G describing the flow reflected
from the membrane, so that G = G0 + ∆G.

The exact Green’s function for a point force close to a membrane has recently been computed
by some of us in Ref. [28]. For the resolution of Eqs. (3.1) and (3.2) with a point force acting at
r0 = (0, 0, z0), the two-dimensional Fourier transform in the xy plane was used to solve the resulting
equations with accordingly transformed boundary conditions. The procedure has been previously
described in detail and therefore we only list the main steps for the determination of the Green’s
tensor in Appendix A of this work.

4 Near-membrane mobility tensors

We search for the near-membrane mobility tensor, µ(ω) = µ0 + ∆µ(ω) by calculating the leading-
order correction to the bulk mobility. To this end, we follow the route outlined in a recent contribution
by Lisicki et al. [59] who derived analytic expressions for the friction tensor of an axially symmetric
particle in the presence of a hard no-slip wall. The friction tensor, similarly to the mobility tensor,
can be split into the bulk and the correction term

ζ = ζ0 + ∆ζ. (4.1)

The final expressions for the corrected friction tensor involve elements of the bulk friction tensor of
the particle, and the distance- and orientation-dependent (derivatives of) the appropriate Green’s
function. For the hard no-slip wall treated in Lisicki et al. [59] the latter is the Blake tensor [81]
while in the present case the frequency-dependent Green’s functions from Daddi-Moussa-Ider et al.
[28] are employed. The expressions for the friction tensor with a general Green’s function read [59]

∆ζtt =− 1

8πη

1

2z0
ζtt0 g

ttζtt0 +
1

(8πη)2
1

(2z0)2
ζtt0 g

ttζtt0 g
ttζtt0 + O(z−30 ) , (4.2)

∆ζtr =− 1

8πη

1

(2z0)2
ζtt0 g

tdζdr0 + O(z−30 ) , (4.3)

∆ζrt =− 1

8πη

1

(2z0)2
ζrd0 g

dtζtt0 + O(z−30 ) , (4.4)

∆ζrr =− 1

8πη

1

(2z0)3
[ζrr0 g

rrζrr0 + ζrr0 g
rdζdr0 + ζrd0 g

drζrr0 + ζrd0 g
ddζdr0 ] + O(z−40 ) . (4.5)

where the directional tensors g are defined by

∆Gγδ =
1

8πη

1

(2z0)a
gγδ. (4.6)

Here, ∆Gγδ are the multipole elements of the Green’s integral operator which will be derived below.
Further, γ, δ ∈ {t, r, d} and a = 1 for tt, a = 2 for (tr, rt, td, dt) and a = 3 for (dr, rd, rr, dd) parts.
In Eqs. (4.2)–(4.5) it should be understood that the tensors are appropriately contracted to yield
second-order tensor corrections.
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We now apply this result to our system. Our goal is to obtain explicit expressions for the mobility
tensors for an axially symmetric particle in the presence of a membrane in terms of its bulk mobilities.
This can be done in two steps.

Firstly, we invert the friction relations (4.2)–(4.5), as detailed in Appendix B, to obtain analogous
relations for the mobilities:

∆µtt =
1

8πη

1

2z0
gtt + O(z−30 ) , (4.7)

∆µtr = − 1

8πη

1

(2z0)2
gtdµdr0 + O(z−30 ) , (4.8)

∆µrt =
1

8πη

1

(2z0)2
µrd0 g

dt + O(z−30 ) , (4.9)

∆µrr =
1

8πη

1

(2z0)3
[
grr − µrd0 gdr + grdµdr0 − µrd0 gddµdr0

]
+ O(z−40 ) . (4.10)

These expressions allow straightforward computation of the near-membrane mobilities for arbitrarily-
shaped axisymmetric particles if their bulk mobilities are known, either numerically or analytically.
Compared to a numerical inversion of the friction tensor, which in principle would be preferable as
it avoids the possibility of negative mobilities [59], this approach has the advantage that explicit
analytical expressions for the mobility can be obtained.

Remarkably, the final formulae include only one bulk characteristic of the particle, namely the ten-
sors µrd0 and µdr0 which describe the rotational motion of the particle in response to elongational flow.
This form follows from the particular symmetries of an axially symmetric particle with inversional
symmetry (u1 ↔ −u1).

Secondly, to obtain the directional tensors g, we consider a general Green’s tensor G(r, r′) =
G0(r − r′) + ∆G(r, r′) and a body placed at r0 with a force distribution f(r) on its surface. The
flow at a point r due to this forcing may be written as the integral equation

v(r) =

∫
dr′G(r, r′)·f(r′) , (4.11)

with the integral performed over the surface of the body. The idea of the derivation of the correction
is to find, given the force density, the flow incident on the particle itself due to the presence of an
interface. Thus we consider Eq. (4.11) with only the membrane-interaction part ∆G(r, r′) of the
Green’s tensor and expand it in both arguments around r = r′ = r0. The integrals of the subsequent
terms on the RHS reproduce the force multipole moments, while the expansion of the LHS yields the
multipole expansion of the flow field. By matching the relevant multipoles, we find explicit expressions
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for the ∆Gγδ, with γ, δ ∈ {t, r, d}, as described in Lisicki et al. [59]. The resulting formulae are

∆Gttαβ = lim
r,r′→r0

∆Gαβ , (4.12)

∆Gtrαβ = lim
r,r′→r0

1

2
εαµν∂µ∆Gνβ , (4.13)

∆Grtαβ = lim
r,r′→r0

−1

2
εµνβ∂

′
ν∆Gαµ , (4.14)

∆Grrαβ = lim
r,r′→r0

1

4
εαµγεβνη∂γ∂

′
η∆Gµν , (4.15)

∆Gtdαβγ = lim
r,r′→r0

∂′γ∆Gαβ , (4.16)

∆Gdtαβγ = lim
r,r′→r0

∂α∆Gβγ , (4.17)

∆Gdrαβγ = lim
r,r′→r0

−1

2
εγµν∂

′
ν∂α∆Gβµ

(αβ)
, (4.18)

∆Grdαβγ = lim
r,r′→r0

1

2
εαµν∂

′
µ∂β∆Gνγ

(βγ)
, (4.19)

∆Gddαβγδ = lim
r,r′→r0

∂α∂
′
δ∆Gβγ

(αβ)(γδ)

, (4.20)

where εαµν is the Levi-Civita tensor and the symbol (αβ) denotes the symmetric and traceless part
with respect to indices α, β. Explicitly, the reductions for an arbitrary 3rd and 4th order traceless
tensor read

Mαβγ

(αβ)
=

1

2
(Mαβγ +Mβαγ) ,

Mαβγδ

(αβ)(γδ)
=

1

4
(Mαβγδ +Mβαγδ +Mαβδγ +Mβαδγ) .

The prime denotes a derivative with respect to the second argument. We note that the tensors
∆Gdr,rd,dd are traceless due to the incompressibility of the fluid, and therefore the trace needs not be
subtracted in the procedure of symmetrization. We further remark that Eqs. (4.12) through (4.20)
involve differentiations and elementary operations that are well defined for complex quantities, and
hence lead to convergent limits.

It is most natural to consider the correction in the reference frame of the particle, spanned by the
three unit basis vectors {u1,u2,u3}. In this frame, the mobility tensors of an axisymmetric particle
have the form

∆µtt,rr =

∆µtt,rr11 0 ∆µtt,rr13

0 ∆µtt,rr22 0

∆µtt,rr13 0 ∆µtt,rr33

 (4.21)

for translational and rotational motion, while the translation-rotation coupling tensor reads

∆µtr =

0 ∆µtr12 0
0 0 ∆µtr23
0 ∆µtr32 0

 . (4.22)

The rotation-translation coupling tensor ∆µrt is obtained by simply taking the transpose of the
translation-rotation coupling tensor given above. (See Supplemental Material at https://doi.org/10.
1017/jfm.2016.739 for the frequency-dependent mobility corrections expressed in LAB frame).

https://doi.org/10.1017/jfm.2016.739
https://doi.org/10.1017/jfm.2016.739
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5 Boundary Integral Method

Here we introduce the boundary-integral method [82] used to numerically compute the mobility tensor
of a truly extended spheroidal particle. The method is perfectly suited for treating 3D problems with
complex, deforming boundaries such as RBC membranes in the Stokes regime [83, 84]. In order to
solve for the particle motion, given an applied force or torque, we combine a completed double layer
boundary integral method (CDLBIM) [85] to the classical BIM [86]. The resulting equations are then
discretised and transformed into a system of algebraic equations as detailed in [29, 87].

For the numerical determination of the particle mobility components, a harmonic force F (t) =
Aeiω0t or torque T (t) = Beiω0t is applied at the particle surface. After a short transient evolution, the
particle linear and angular velocities can be described as V (t) = Cei(ω0t+δt) and Ω(t) = Dei(ω0t+δr)

respectively. The amplitudes and phase shifts can be determined accurately by fitting the numerically
recorded velocities using the trust region method [88]. In the LAB frame, the components µttαβ and
µrtαβ of the mobility are determined for a torque-free particle as

µttαβ =
Cα
Aβ

eiδt , µrtαβ =
Dα

Aβ
eiδr . (5.1)

For a force-free particle, the components µtrαβ and µrrαβ are obtained from

µtrαβ =
Cα
Bβ

eiδt , µrrαβ =
Dα

Bβ
eiδr . (5.2)

6 Spheroid close to a membrane: theoretical and numerical results

In this Section, we present a comparison of our theoretical results to numerical simulations using the
example of a prolate spheroidal particle. To begin with, we discuss the bulk mobility of a spheroid.
Further on, we show the explicit form of the correction, and finally compare the components of the
corrected mobility matrix to numerical simulations.

The bulk translational and rotational mobility tensors of a general axisymmetric particle have
the form

µtt,rr0 = µt,r‖ u1u1 + µt,r⊥ (1− u1u1) . (6.1)

The third-order tensors µrd0 and µdr0 have the Cartesian components

(µrd0 )αβγ = µrduσεσαβuγ
(βγ)

, (6.2)

(µdr0 )αβγ = µdruαεβγσ
(αβ)

uσ , (6.3)

where, following from the Lorentz reciprocal theorem [75]

µdr = µrd =: λ . (6.4)

Note that due to the axial and inversional symmetry in bulk, we have µtr0 = µrt0 = 0 and µtd0 = µdt0 = 0.

For a prolate spheroidal particle of eccentricity e, analytical results are available and the bulk
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mobility coefficients are given by [75, Tab. 3.4],

µt‖ =
1

6πηc

3

8

−2e+ (1 + e2)L

e3
, (6.5)

µt⊥ =
1

6πηc

3

16

2e+ (3e2 − 1)L

e3
, (6.6)

µr‖ =
1

8πηc3
3

4

2e− (1− e2)L
e3(1− e2)

, (6.7)

µr⊥ =
1

8πηc3
3

4

−2e+ (1 + e2)L

e3(2− e2)
, (6.8)

where a and c are the short and long axis of the spheroid and

e =

√
1−

(a
c

)2
, L = ln

(
1 + e

1− e

)
. (6.9)

To obtain the final ingredient µrd, we observe from the definitions in Eqs. (3.3) and (3.4) that
µrdαβγ = µrrαδζ

rd
δβγ and µdrαβγ = −ζdrαβδµrrδγ , leading to

µrd = µr⊥ζ
rd. (6.10)

The component rd of the friction tensor is [75]

ζrd

8πηc3
=

4

3

e5

−2e+ (1 + e2)L
. (6.11)

Therefore we obtain the rd coefficient of the mobility tensor

λ =
e2

2− e2
. (6.12)

Having introduced the bulk hydrodynamic mobilities of a spheroid, we turn our attention to the
membrane correction which in the frame of the particle can be written as in Eqs (4.21) and (4.22).
We find that the corrections to the translational mobilities as given in general form in Eq. (4.7) can,
for a spheroid, be written in closed form as

8πη(2z0)∆µ
tt
11 = P sin2 θ +Q cos2 θ, (6.13)

8πη(2z0)∆µ
tt
13 = (P −Q) sin θ cos θ, (6.14)

8πη(2z0)∆µ
tt
22 = P, (6.15)

8πη(2z0)∆µ
tt
33 = P cos2 θ +Q sin2 θ, (6.16)

and ∆µtt13 = ∆µtt31. Thus they have the desired symmetry of Eq. (4.21). Expressions for P (β, βB) =
PS(β) + PB(βB) and Q(β, βB) = QS(β) +QB(βB) are provided explicitly in Appendix C.

For the translation-rotation coupling, the non-vanishing mobility corrections as given by Eq. (4.8),
can be cast in the frame of the particle as

8πη(2z0)
2∆µtr12 = λ sin θ

(
M +N cos2 θ

)
, (6.17)

8πη(2z0)
2∆µtr23 = λM cos θ , (6.18)

8πη(2z0)
2∆µtr32 = −λ cos θ

(
M +N sin2 θ

)
, (6.19)
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Figure 2: (Color online) The scaled translational mobility correction components versus the scaled
frequency. The spheroid is located above the membrane at z0 = 2c inclined at an angle θ = π/3 from
the vertical. The analytical predictions of the real and imaginary parts of the translational mobility
corrections are shown as dashed and solid lines, respectively. The corrections due to shearing and
bending are shown respectively in green (bright grey in a black and white printout) and red (dark grey
in a black and white printout). Horizontal dotted lines represent the hard-wall limits from Lisicki et al.
[59]. BIM simulations are marked as squares and circles for the real and imaginary parts, respectively.
For the membrane parameters we take a reduced bending modulus EB := κB/(c

2κS) = 2/3 and the
Skalak parameter C = 1.

where M and N are now functions of the parameters β and βB, and can likewise be decomposed
into shearing and bending contributions. The dependence on the bulk rd mobility λ is explicitly
separated out.

Finally, considering the rotational part as stated by Eq. (4.10), the non-vanishing components of
the mobility correction in the frame of the particle can conveniently be cast in the following forms

8πη(2z0)
3∆µrr11 = A0 +A2 cos2 θ , (6.20)

8πη(2z0)
3∆µrr13 = D sin θ cos θ , (6.21)

8πη(2z0)
3∆µrr22 = C0 + λC2 cos2 θ + λ2C4 cos4 θ , (6.22)

8πη(2z0)
3∆µrr33 = H0 +H2 cos2 θ, (6.23)

and with ∆µrr13 = ∆µrr31. All the functions depend on (β, βB) and are decomposed into bending and
shearing parts in appendix C. In addition, the functions C, D and H depend on the coefficient λ.
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Figure 3: (Color online) The scaled coupling mobility corrections versus the scaled frequency. Black
and blue symbols refer to the tr and rt components, respectively, obtained from BIM simulations.
The other colors are the same as in figure 2.

It can be seen that the mobility corrections for an axisymmetric particle in their dominant terms
possess a simple angular structure. The latter stems from the contraction of the particle friction
tensors (which have an axial symmetry, dictated by their shape, with respect to the body axis) with
the vertical multipole components of the Blake tensor (which have the same structure but with
respect to a different axis, i.e. the vertical direction). This contraction requires transformation of
corresponding tensors into the common frame of reference, which generates simple polynomials in
sine and cosine functions of the inclination angle as discussed in Lisicki et al. [59].

In the following, we shall present a comparison between these analytical predictions and numerical
simulations using the Boundary Integral Method, presented in Sec. 5. We consider a prolate spheroid
of aspect ratio p := c/a = 2, inclined at an angle θ = π/3 to the z axis, positioned at z0 = 2c
above a planar elastic membrane. For the membrane, we take a reduced bending modulus EB :=
c2κS/κB = 3/2 for which the characteristic frequencies β and β3B have the same order of magnitude.
The Skalak parameter is C = 1. Corresponding data showing the effect of the inclination angle and
the reduced bending modulus can be found in the Supporting Information. Our analytical predictions
are applicable for large and moderate membrane-particle distances for which c/z0 ∼ O(1) where we
find good agreement with numerical simulations.

Henceforth, the mobility corrections will be scaled by the associated bulk values. For diagonal
terms, we choose the corresponding diagonal elements, namely µt,r‖ for µt,r11 and µt,r⊥ for µt,r22,33. For

non-diagonal terms, we use an appropriate combination of bulk mobilities, that is
√
µt,r‖ µ

t,r
⊥ for
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Figure 4: (Color online) The scaled rotational mobility correction component versus the scaled
frequency. Black and blue symbols refer to the 13 and 31 components, respectively, obtained from
BIM simulations. The color code is the same as in figure 2.

translations and rotations. The translation-rotation coupling tensors are scaled by
√
µt⊥µ

r
⊥.

In figure 2 we compare the components of the translational mobility calculated from Eq. (6.13)–
(6.16) with those obtained from BIM simulations. For the diagonal components we observe that
the real part of the complex mobility corrections is monotonically increasing with frequency. The
imaginary part exhibits a non-monotonic bell-shaped dependence on frequency that peaks around
β ∼ 1. The off-diagonal components 13 and 31 show a more complex dependence on frequency.
In the vanishing frequency limit, we recover the corrections near a hard-wall with stick boundary
conditions recently calculated by Lisicki et al. [59]. We further remark that for the present inclination
of θ = π/3 the components 33 and 13 are principally determined by bending resistance whereas
shearing effect is more pronounced in the components 11 and 22. A very good agreement is obtained
between analytical predictions and numerical simulations for all components over the entire range of
frequencies.

By examining the off-diagonal component 31 shown in figure 2 b), it is clear that the shearing-
and bending-related parts may have opposite contributions to the total translational mobility. This
observed trend implies that upon exerting a force along u1, there exists a drift motion along u3,
either away or towards the membrane, depending on the shearing and bending properties. In fact,
for a membrane with bending-only resistance, such as a fluid vesicle, the spheroid is pushed away
from the membrane in the same way as near a hard-wall. On the other hand, for a membrane with
shearing-only resistance, such as an artificial capsule, the motion is directed towards the membrane.
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Figure 3 shows the corrections to the translation-rotation coupling mobility versus the scaled
frequency computed from Eq. (6.17) and (6.19). We observe that bending resistance is essentially
the dominant contributor to the coupling mobility. It can be shown that this trend is always the case
regardless of spheroid orientation. The BIM simulation results are consistent with the fact that the
tr and rt mobility tensors are the transpose of each other and a good agreement is obtained between
analytical predictions and simulations. The coupling terms are generally very small compared to
the relevant bulk quantities. This makes them somewhat more difficult to obtain precisely from the
simulations which explains the small discrepancy notable in figure 3 a).

In figure 4 we present the corrections to the components of the rotational mobility tensor as
calculated by Eq. (6.20)–(6.23) compared to the BIM simulations. We remark that the shearing
contribution manifests itself in a more pronounced way for the rotational mobilities. Moreover, the
correction to the rotational motion is less noticeable compared to the translational motion especially
for the off-diagonal component. This observation can be explained by the fact that the rotational
mobility corrections exhibit a faster decay with the distance from the membrane, scaling as z−30

compared to z−10 for translational motion. Again, a good agreement is obtained for the rotational
mobility corrections between analytical predictions and numerical simulations.

7 Conclusions

In this paper we have computed the leading-order translational, rotational and translation-rotation
coupling hydrodynamic mobilities of an arbitrary shaped axisymmetric particle immersed in a New-
tonian fluid in the vicinity of an elastic cell membrane. The resulting equations contain (i) the
particle-independent mulitpole elements of the near-membrane Green’s integral operator which have
been calculated in analytical form in the present work and (ii) the mobility tensor of the particle in
bulk. The mobility corrections are frequency-dependent complex quantities due to the memory induced
by the membrane. They are expressed in terms of the particle orientation and two dimensionless
parameters β and βB that account for the shearing and bending related contributions, respectively.
In the zero-frequency limit, or equivalently for infinite elastic and bending moduli, we recover the
mobilities near a hard no-slip wall. We apply our general formalism to a prolate spheroid and find
very good agreement with numerical simulations performed for a truly extended spheroidal particle
over the whole frequency spectrum.
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Appendices

A The Green’s function for an elastic membrane

The Green’s functions for an elastic membrane have been derived and discussed in detail in earlier
papers [28, 30]. Here, we only sketch the derivation which starts with a 2D Fourier transform of
the Stokes equations and boundary conditions. It is convenient to introduce an orthogonal basis in
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the xy plane, spanned by the unit vectors el = q/|q| and et = ez × el, respectively parallel and
perpendicular to the wave vector q. This basis is rotated by the angle φ = arctan(qy/qx) with respect
to the laboratory frame.

After the pressure has been eliminated from the Fourier transformed momentum equations, the
following set of ordinary differential equations is obtained

q2ṽt − ṽt,zz =
F̃t
η
δ(z − z0) , (A.1a)

ṽz,zzzz − 2q2ṽz,zz + q4ṽz =
q2F̃z
η

δ(z − z0) +
iqF̃l
η
δ′(z − z0) , (A.1b)

ṽl =
iṽz,z
q

, (A.1c)

where δ′ is the derivative of the Dirac delta function. After some algebra, it can be shown that the
traction jump due to shearing as stated in Eq. (3.6) imposes at z = 0 the following discontinuities

[ṽt,z] = −iBαq2ṽt
∣∣
z=0

, [ṽz,zz] = −4iαq2ṽz,z
∣∣
z=0

, (A.2)

where α := κS/3Bηω is a characteristic length for shear and area dilatation with B := 2/(1 + C).
The normal traction jump as given by Eq. (3.7) leads to

[ṽz,zzz] = 4iα3
Bq

6ṽz
∣∣
z=0

, (A.3)

where α3
B := κB/4ηω, with αB being a characteristic length for bending. The dimensionless numbers

β and βB stated in Eq. (3.9) are defined as β := 2z0/α and βB := 2z0/αB.

The Green’s tensor in this basis {el, et, ez} has the form

G̃(q, z, ω) =

 G̃ll 0 G̃lz
0 G̃tt 0

G̃zl 0 G̃zz

 . (A.4)

The components of the Green’s functions for z ≥ 0 are expressed by

G̃zz =
1

4ηq

(
(1 + q|z − z0|) e−q|z−z0| +

(
iαzz0q

3

1− iαq
+
iα3

Bq
3(1 + qz)(1 + qz0)

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃ll =
1

4ηq

(
(1− q|z − z0|)e−q|z−z0| +

(
iαq(1− qz0)(1− qz)

1− iαq
+
izz0α

3
Bq

5

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃tt =
1

2ηq

(
e−q|z−z0| +

iBαq

2− iBαq
e−q(z+z0)

)
,

with the off-diagonal components

G̃lz =
i

4ηq

(
− q(z − z0)e−q|z−z0| +

(
iαz0q

2(1− qz)
1− iαq

−
iα3

Bzq
4(1 + qz0)

1− iα3
Bq

3

)
e−q(z+z0)

)
,

G̃zl =
i

4ηq

(
− q(z − z0)e−q|z−z0| +

(
− iαzq

2(1− qz0)
1− iαq

+
iα3

Bq
4z0(1 + qz)

1− iα3
Bq

3

)
e−q(z+z0)

)
.

The terms which contain e−q|z−z0| are the Fourier-transformed elements of the Oseen tensor and do
not depend on the elastic properties of the membrane. The remaining part comes from interactions
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with the interface. We now back-transform (A.4) to the laboratory frame. Defining

G̃±(q, z, ω) := G̃tt(q, z, ω)± G̃ll(q, z, ω) ,

and performing the inverse spatial Fourier transform [89], we find that the Green’s functions for a
point force acting at r0 = (0, 0, z0) can be presented in terms of the following convergent infinite
integrals

Gzz(r, ω) =
1

2π

∫ ∞
0
G̃zz(q, z, z0, ω)J0(ρq)qdq ,

Gxx(r, ω) =
1

4π

∫ ∞
0

(
G̃+(q, z, z0, ω)J0(ρq) + G̃−(q, z, z0, ω)J2(ρq) cos 2Θ

)
qdq ,

Gyy(r, ω) =
1

4π

∫ ∞
0

(
G̃+(q, z, z0, ω)J0(ρq)− G̃−(q, z, z0, ω)J2(ρq) cos 2Θ

)
qdq ,

Gxy(r, ω) =
sin 2Θ

4π

∫ ∞
0
G̃−(q, z, z0, ω)J2(ρq)qdq ,

Grz(r, ω) =
i

2π

∫ ∞
0
G̃lz(q, z, z0, ω)J1(ρq)qdq ,

Gzr(r, ω) =
i

2π

∫ ∞
0
G̃zl(q, z, z0, ω)J1(ρq)qdq ,

where ρ :=
√
x2 + y2 is the radial distance from the origin, and Θ := arctan(y/x) is the angle

formed by the radial and x axis. Furthermore, Gxz = Grz cos Θ, Gyz = Grz sin Θ, Gzx = Gzr cos Θ,
Gzy = Gzr sin Θ and Gyx = Gxy. Here Jn denotes the Bessel function [90] of the first kind of order n.

In the vanishing frequency limit, or equivalently for infinite membrane shearing and bending
rigidities, the well-known Blake tensor [81] is recovered for all the components of the Green’s functions.

B Derivation of general mobility relations

Here we sketch the manipulations that lead from the corrected friction tensor, given by Eqs. (4.2)
through (4.5), to the mobility correction in Eqs. (4.7) through (4.10). We shall focus on the tt
part only, since the others follow analogously. Relation (3.5), rewritten as µζ = 1, defines the
relations between elements of the friction and mobility tensors of a particle close to a membrane.
The membrane-corrected tt friction tensor and the membrane-corrected tt mobility are thus related
by

µttζtt + µtrζrt = 1 , (B.1)
µttζtr + µtrζrr = 0 , (B.2)

from which we have
µtt = [ζtt − ζtr(ζrr)−1ζrt]−1. (B.3)

We know from Eqs. (4.2)-(4.5) that the corrected friction has the following structure

ζtt = ζtt0 + ∆ζtt , (B.4)
ζrr = ζrr0 + ∆ζrr , (B.5)
ζtr = ∆ζtr , (B.6)
ζrt = ∆ζrt , (B.7)
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with the known distance-dependence of these elements. Moreover, for an axially symmetric particle,
we have

ζtt0 = (µtt0 )−1, ζrr0 = (µrr0 )−1, (B.8)

since the bulk friction and mobility tensors are diagonal. We now rewrite Eq. (B.3) as

µtt = µtt0

[
1 + ∆ζttµtt0 −∆ζtr (ζrr0 + ∆ζrr)−1 ∆ζrtµtt0

]−1
(B.9)

and expand the expression 1/(1 + δ) = 1 − δ + δ2 − . . . around the bulk quantities. Restricting to
quantities decaying slower than z−30 , we immediately find Eq. (4.7). An analogous procedure leads
to the tr, rt and rr mobilities, where the elements of the bulk friction and mobility tensors combine
to contribute only in the form of µdr0 = µrr0 ζ

rd
0 and µrd0 = −ζdr0 µrr0 . The latter relations follow from

the definitions (3.3) and (3.4).

C Expressions required for the spheroid mobilities

The results for the correction are given in terms of the wall-particle distance z0, its inclination angle θ
and functions denoted by capital letters in Eqs. (6.13) through (6.23) of the dimensionless shearing
and bending parameters, β and βB. Below, we provide explicit expressions for these functions. They
can conveniently be expressed in terms of higher order exponential integrals [90]. The contributions
from the membrane shearing (index S) and bending (index B) are given separately. By summing up
both, we arrive at the final expressions. Notably, in the limit of vanishing frequency, our results are
in complete agreement with those given by Refs. [59, 91].

C.1 Translational mobility

For the functions P and Q, we find the shearing contribution as

PS(β) = −5

4
+
β2

8
− 3iβ

8
+

2iβ

B
Γ2 +

(
−β

2

2
+
iβ

2

(
1− β2

4

))
eiβ E1(iβ) ,

QS(β) = −3

2
eiβ E4(iβ) ,

and the bending part

PB(βB) = −1

4
+
iβ3B
24

(φ+ + ΓB) ,

QB(βB) = −5

2
+ iβB

((
β2B
12

+
iβB
6

+
1

6

)
φ+ +

(
β2B
12
− iβB

3
− 1

3

)
e−iβB E1(−iβB) +

√
3

6
(βB + i)φ−

)
,

with

φ± = e−izB E1(−izB)± e−izB E1(−izB) ,

Γ2 = e
2iβ
B E1

(
2iβ

B

)
,

ΓB = e−iβB E1(−iβB) ,

where zB := βBe
2iπ/3 and the bar denotes the complex conjugate. The function En is the generalised

exponential integral, En(x) =
∫∞
1 t−ne−xtdt.
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C.2 Translation-rotation coupling

The translation-rotation coupling is determined by the functions M and N , which we similarly
decompose into two parts. Recalling that B = 2/(1 + C), the shearing part reads

MS(β) =
3

4
− iβ

(
1

4
+

1

B

)
+

3β2

8
+
iβ3

8
− β2

2

(
1 + iβ − β2

4

)
Γ1 −

2β2

B2
Γ2 ,

NS(β) = −3

4
+ iβ

(
1

2
+

2

B

)
− 3β2

8
+
iβ3

8
+ β2

(
1 +

iβ

4
+
β2

8

)
Γ1 +

4β2

B2
Γ2 ,

while the bending part is

MB(βB) =
3

4
−
iβ3B
8

+
β4B
24

ΓB +
β3B
24
ψ ,

NB(βB) =
9

4
−
iβ3B
8
−
β3B
4

(
i− βB

6

)
ΓB +

β3B
24
ψ −

iβ3B
4
φ+ ,

where we defined

Γ1 = eiβ E1(iβ) ,

ψ = zBe
−izB E1(−izB) + zBe

−izB E1(−izB) .

C.3 Rotational mobility

The rotational mobility is described by a set of functions. The functions A0 and A2 defined for the
component ∆µrr11 in Eq. (6.20) are given by

A0,S(β) = −3

2
+
iβ

2

(
1 +

1

B

)
+ β2

(
1

2
+

1

B2

)
− iβ3

2
Γ1 −

2iβ3

B3
Γ2 ,

A2,S(β) =
1

2
+
iβ

2

(
1

B
− 1

)
+ β2

(
1

B2
− 1

2

)
+
iβ3

2
Γ1 −

2iβ3

B3
Γ2 ,

A0,B(βB) = −A2,B(βB) = −1 +
iβ3B
6

(φ+ + ΓB) .

For the component ∆µrr13, the function D defined in Eq. (6.21) is given by

DS(β) = −1

2
+
iβ

2

(
1− 1− λ

B

)
+ β2

(
1

2
+
λ

4
− 1− λ

B2

)
+ iβ3

(
2(1− λ)

B3
Γ2

− λ+ 1

2
Γ1 +

λ

4

)
+
λβ4

4
Γ1 ,

DB(βB) = −1 +
3λ

2
+
β3B
4

(
−iλ+

2i

3
ΓB +

2iφ+ + λψ

3

)
+
λβ4B
12

ΓB .

Further, the shearing related parts of C0,C2 and C4 as defined for the correction ∆µrr22 in Eq. (6.22)
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read

C0,S(β) = −3

2

(
1 + λ2

)
+

(
iλ2β2

8
− λ(1− λ)β

2
− i(1− λ)2

2

)
β3Γ1 −

2i

B3
(1− λ)2β3Γ2

+
iβ

4

(
λ2 + 2 +

2(1− λ)2

B

)
+
β2

4

(
λ2 − 2λ+ 2 +

4(1− λ)2

B2

)
− iλβ3

(
1

2
− 3λ

8

)
− λ2β4

8
,

C2,S(β) =
3λ

4
− β3(2 + iβ)

(
i− 3

32
λ(β − 2i)

)
Γ1 −

2i

B3
(4− 3λ)β3Γ2 +

iβ

2

(
3λ

8
+

4− 3λ

B

)
+ β2

(
3λ

16
+ 1 +

4− 3λ

B2

)
+ iβ3

(
9λ

32
+ 1

)
− 3λ

32
β4 ,

C4,S(β) = −3

4
+ 3iβ

(
− 1

16
+

1

2B

)
+ 3β2

(
− 1

16
+

1

B2

)
+ iβ3

(
− 9

32
− 6

B3
Γ2

)
+

3

8
β3
(
i− β − i

4
β2
)

Γ1 +
3

32
β4 ,

and the bending-related parts read

C0,B(βB) = −1− 3λ(1 + λ) +
iβ3B
8
λ(λ+ 4)−

β3B
24

(iλ2β2B + 4λβB − 4i)ΓB

+
β3B
6

(
iφ+ − λψ +

iλ2

4
βB(ψ + βBφ+)

)
,

C2,B(βB) = 6− 9

4
λ− iβ3B

(
1− 3λ

32

)
+

(
1

3
− iλβB

32

)
β4BΓB +

β3B
3
ψ +

iλβ4B
32

(ψ + βBφ+) ,

C4,B(βB) =
9

4
−

3iβ3B
32

+
iβ5B
32

ΓB −
iβ4B
32

(ψ + βBφ+) ,

Finally, the functions H0 and H2 defined for the component ∆µrr33 in Eq. (6.23) read

H0,S(β) = −1− 3

4
λ2 + iβ

(
λ2 + 2

2B
+
λ2

16

)
+ β2

(
2 + λ2

B2
+
λ2

16

)
+
λ2β3

32
(iβ2 − 4i+ 4β)Γ1

+ β3
(

3iλ2

32
− 2i

B3
(λ2 + 2)Γ2

)
− λ2β4

32
,

H2,S(β) = −1

2
− 3

4
λ2 + β

(
3i

16
λ2 +

iλ

B
+
i

2
− i

2B

)
+ β2

(
3

16
λ2 +

λ+ 1

2
+

2λ

B2
− 1

B2

)
+
β3

32

(
9iλ2 + 16iλ+

64i(1− 2λ)Γ2

B3
+ (4 + 6λ+ 3iλβ)(λβ − 2iλ− 4i)Γ1

)
− 3λ2β4

32
,

and

H0,B(βB) = λ2
(
−3

4
+
iβ3B
32
−
iβ5B
96

ΓB +
iβ4B
96

(ψ + βBφ+)

)
,

H2,B(βB) = −1 + 3λ− 9

4
λ2 + β3B

(
iλ

(
3

32
λ− 1

2

)
+

1

6

(
i+ λβB −

3iλ2β2B
16

)
ΓB

)
+
iλ2β4B

32
(ψ + βBφ+) +

β3B
6

(λψ + iφ+) .
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Abstract

Elastic channels are an important component of many soft matter systems, in which hydrodynamic
interactions with confining membranes determine the behavior of particles in flow. In this work,
we derive analytical expressions for the Green’s functions associated to a point-force (Stokeslet)
directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance
against shearing and bending. We then compute the leading order self- and pair-mobility functions
of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane
shearing and that bending does not play a significant role. In the vanishing-frequency limit, the
particle self- and pair-mobilities near a no-slip hard cylinder are recovered only if the membrane
possess a non-vanishing shearing rigidity. We further compute the membrane deformation, finding
that deformation is generally more pronounced in the axial and radial directions, for the motion along
and perpendicular to the cylinder centerline, respectively. Our analytical predictions are verified and
compared to fully resolved boundary integral simulations where a very good agreement is obtained.

1 Introduction

Many biological and industrial microscale processes occur in geometric confinement, which is known
to strongly affect the diffusional dynamics in a viscous fluid [1, 2]. Hydrodynamic interactions
with boundaries play a key role in such systems by determining their transport properties [3–7].
Tubular confinement is of particular interest, since flow in living organisms often involves channel-like
structures, such as arteries in the cardiovascular system [8]. A common feature of these complex
networks of channels is the elasticity of their building material. Arteries and capillaries of the blood
system involve a large number of collagen and elastin filaments, which gives them the ability to
stretch in response to changing pressure [9, 10]. Elastic deformation has been further utilized to
control and direct fluid flow within flexible microfluidic devices [11–13].

The motion of a small sphere in a viscous fluid filling a rigid cylinder is a well studied problem. A
review of most analytical developments can be found in the classic book of Happel and Brenner [14]. In
particular, axial motion has been studied using the method of reflections by Faxén [15, 16],Wakiya [17],
Bohlin [18] and Zimmerman [19], to name a few, expressing the mobility in power series of the ratio
of particle to cylinder diameter. These works have been extended to finite-sized spheres [20, 21],
pair interactions [22, 23] and recently to non-spherical particles [25]. For an arbitrarily positioned
particle, and in the presence of an external Poiseuille flow, the procedure has been generalized to yield
expressions in terms of the particle and channel radius, and the eccentricity of the position of the
particle, as derived e.g. in the works of Happel and collaborators [26–29] and Liron and Shahar [30].
The slow motion of two spherical particles symmetrically placed about the axis of a cylinder in a
direction perpendicular to their line of centers has later been studied by Greenstein and Happel [31].
Experimental verification of these results has been performed e.g. by the use of laser interferometry
by Lecoq et al.[32] or using digital video microscopy measurements by Cui et al. [22]. Theoretical
developments have been supplemented by numerical computations of the resistance functions for
spheres, bubbles and drops in cylindrical tubes [33–38]. Other works include motion perpendicular to
the axis [39], finite length of the tube [40] and the flow around a line of equispaced spheres moving
at a prescribed velocity along the axis of a circular tube [41]. Transient effects have also been taken
into account in the works of Felderhof, both in the case of an incompressible [42] and compressible
fluid [43–45].

For elastic cylinders, most previous work has focused on the flow itself which is driven through
a deformable elastic channel [46, 47] where various physiological phenomena related to the cardio-
vascular and respiratory systems have been observed, including the generation of instabilities [48],
small-amplitude wave propagation [49, 50], hysteresis behavior of arterial walls [51] and anomalous
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bubble propagation [52, 53]. Further work has been devoted to investigate the influence of elastic
tube deformation on flow behavior of a shear-thinning fluid [54–56], the steady flow in thick-walled
flexible elastic tubes [57, 58] or the tensile instability under an axial load [59, 60]. More recently,
the lateral mobility of membrane inclusions in a cylindrical biological membrane has been studied
theoretically [61, 62].

The mobility of a particle inside an elastic cylinder, despite its importance for blood flow, has
not been studied so far. Motivated by this knowledge gap, we turn our attention to the problem of
hydrodynamic mobility of a small spherical particle slowly moving in a viscous fluid filling a circular
cylindrical elastic tube. In blood flow through small capillaries, the Reynolds number is typically very
small allowing us to adopt the framework of creeping (Stokes) flow [63]. It is known from previous
works on systems bounded by elastic surfaces [64] that their deformations introduce memory into
the system, which may lead to transient anomalous diffusion [65, 66] or a change of sign of pair
hydrodynamic interactions [67]. We determine the frequency-dependent mobility of a small particle
confined in a cylindrical membrane of given elastic shearing modulus and bending rigidity in an
incompressible Newtonian fluid filling the whole space. The solution is obtained by directly solving
the Stokes equations in cylindrical geometry by the use of Fourier-Bessel expansion to represent the
fluid velocity and pressure.

The remainder of the paper is organised as follows. In section 2, we formulate the problem of
axial and radial motions of a small colloid inside an elastic tube in terms of the Stokes equations
supplemented by appropriate boundary conditions. We then present the method of solving these
equations and use the obtained results in section 3 to derive explicit expressions for the frequency-
dependent self- and pair mobility functions for colloids moving along or perpendicular to the centreline
of the tube. Further, we calculate the reaction tensor which allows to find the deformation of the
membrane for a given actuation. In section 4, we compare our theoretical developments to boundary
integral numerical simulations for a chosen set of parameters for particles moving under a harmonic
or a steady constant external force. We conclude the paper in section 5 and relegate technical details
to the appendices. In appendix A, we derive in cylindrical coordinates the traction jumps across a
membrane endowed with shear and bending resistances, which serve as boundary conditions for the
calculation of the relevant Stokes flow. Appendices B and C provide explicit analytical solutions for
axial and radial motions, respectively, for the two limiting cases of a membrane resisting either only
to shear or only to bending. The solution combining the two can be derived in the same way.

2 Theoretical description

We consider a small spherical particle of radius a fully immersed in a Newtonian fluid and moving
on the axis of a cylindrical elastic tube of initial (undeformed) radius R� a. The tube membrane
exhibits resistance against shear and bending. We choose the cylindrical coordinate system (r, φ, z)
where the z coordinate is directed along the cylinder axis with the origin located at the centre of
the particle (see figure 1 for an illustration of the system setup). The regions inside and outside the
cylinder are labeled 1 and 2, respectively.

We proceed by computing the Green’s functions which are solutions of the Stokes equations

η∇2v1 −∇p1 + F (t) δ(r) = 0 , (2.1a)
∇ · v1 = 0 , (2.1b)
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Figure 1: Illustration of the system setup. A small spherical solid particle of radius a located at the
origin moving on the centreline of a deformable elastic tube of radius R.

inside the tube (for r < R) and

η∇2v2 −∇p2 = 0 , (2.2a)
∇ · v2 = 0 , (2.2b)

outside (for r > R). Here η denotes the fluid shear viscosity, assumed to be the same everywhere.
F (t) is an arbitrary time-dependent point-force acting at the particle position. We therefore need to
solve Eqs. (2.1) and (2.2) subject to the regularity conditions

|v1| <∞ for |r| = 0 , (2.3)
v1 → 0 for z →∞ , (2.4)
v2 → 0 for |r| → ∞ , (2.5)

together with the boundary conditions imposed at the surface r = R, assuming small deformations,
namely the natural continuity of fluid velocity

[vr] = 0 , (2.6)
[vφ] = 0 , (2.7)
[vz] = 0 , (2.8)

and the traction jumps stemming from membrane elastic deformation

[σzr] = ∆fSz , (2.9)

[σφr] = ∆fSφ , (2.10)

[σrr] = ∆fSr + ∆fBr , (2.11)

where the notation [w] := w(r = R+) − w(r = R−) stands for the jump of a given quantity w
across the cylindrical elastic membrane. These linearised traction jumps can be decomposed into two
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contributions due to shear (superscript S) and bending (superscript B). The membrane is modeled
by combining the neo-Hookean model for shear [68–71], and the Helfrich model [72, 73] for bending
of its surface. As derived in appendix A, the linearised traction jumps due to shear are written as

∆fSφ = −κS
3

(
uφ,zz +

3uz,φz
R

+
4(ur,φ + uφ,φφ)

R2

)
, (2.12a)

∆fSz = −κS
3

(
4uz,zz +

2ur,z + 3uφ,zφ
R

+
uz,φφ
R2

)
, (2.12b)

∆fSr =
2κS
3

(
2(ur + uφ,φ)

R2
+
uz,z
R

)
, (2.12c)

where κS is the surface shear modulus (expressed in N/m). Here u(φ, z) = ur(φ, z)er + uφ(φ, z)eφ +
uz(φ, z)ez is the membrane deformation field. The comma in indices denotes a partial spatial deriva-
tive.

For bending, only a normal traction jump appears

∆fBr = κB

(
R3ur,zzzz + 2R(ur,zz + ur,zzφφ) +

ur + 2ur,φφ + ur,φφφφ
R

)
, (2.13)

where κB is the bending modulus (expressed in Nm). Note that Helfrich bending does not introduce
a discontinuity in the tangential traction jumps [73].

The effect of these two elastic modes, given the characteristic frequency of actuation ω, is deter-
mined by two dimensionless quantities, the shear coefficient α and the bending coefficient αB, defined
as

α :=
2κS

3ηRω
, αB :=

1

R

(
κB
ηω

)1/3

. (2.14)

Note that this definition is slightly different than in our earlier works [65]. The actuation frequency ω
is assumed to be small enough so that the flow Strouhal number St = ωR/V remains small, with V
being the amplitude of the particle velocity.

In cylindrical coordinates, the components of the fluid stress tensor are expressed in the usual
way as [74]

σφr = η

(
vφ,r −

vφ + vr,φ
r

)
,

σzr = η(vz,r + vr,z) ,

σrr = −p+ 2ηvr,r .

A direct relationship between velocity and displacement at the undisplaced membrane r = R can
be obtained from the no-slip boundary condition, v = ∂tu. Transforming to the temporal Fourier
space, we have [75]

uα(φ, z) =
vα(r, φ, z)

iω

∣∣∣∣
r=R

, α ∈ {r, φ, z} . (2.15)

We then solve the equations of motion by expanding them in the form of Fourier integrals in
two distinct regions (inside and outside the cylindrical membrane). The solution can be written in
terms of integrals of harmonic functions with unknown coefficients, which we then determine from
the boundary conditions of (a) continuity of radial, azimuthal and axial velocities, and (b) surface
traction jumps deriving from the elastic properties of the membrane. We present the full analytic
solutions for two limiting models of the membrane susceptible only to shear or bending deformations.

We begin by expressing the solution of Eqs. (2.1) inside the cylinder as a sum of a point-force
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flow field and the flow reflected from the interface [76, 77]

v1 = vS + v∗ ,

p1 = pS + p∗ ,

where vS and pS are the Stokeslet solution in an infinite (unbounded) medium and v∗ and p∗ are
the solutions of the homogenous (force-free) Stokes equations

η∇2v∗ −∇p∗ = 0 , (2.16a)
∇ · v∗ = 0 , (2.16b)

required such that the full flow field satisfies the regularity and boundary conditions. In the following,
we shall consider the cases of particle motion parallel or perpendicular to the cylinder centreline
separately.

2.1 Axial motion

The Stokeslet solution for a point-force located at the origin and directed along the cylinder axis
reads [78]

vSr =
Fz

8πη

zr

d3
, vSz =

Fz
8πη

(
1

d
+
z2

d3

)
, pS =

Fz
4π

z

d3
,

where d :=
√
r2 + z2 is the distance from the singularity position. We now rewrite the Stokeslet

solution in the form of a Fourier integral expansion noting that

rz

d3
= − ∂

∂r

z

d
,

1

d
+
z2

d3
=

2

d
− ∂

∂z

z

d
, (2.17)

and making use of the integral relations [27, 79]

1

d
=

2

π

∫ ∞
0

K0(qr) cos qz dq , (2.18a)

z

d
=

2

π
r

∫ ∞
0

K1(qr) sin qz dq , (2.18b)

wherein Kα is the αth order modified Bessel function of the second kind [80]. We thus express the
axisymmetric Stokeslet solution in the integral form with the wavenumber q as

vSr (r, z) =
Fz

4π2η

∫ ∞
0

rqK0(qr) sin qz dq , (2.19a)

vSz (r, z) =
Fz

4π2η

∫ ∞
0

(
2K0(qr)− qrK1(qr)

)
cos qz dq , (2.19b)

pS(r, z) =
Fz
2π2

∫ ∞
0

qK0(qr) sin qz dq , (2.19c)

using the relation ∂K1(qr)/∂r = −qK0(qr)−K1(qr)/r .

The reflected flow can also be represented in a similar way by noting that the homogenous Stokes
equations (2.16) for axisymmetric motion have a general solution expressed in terms of two harmonic
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functions Ψ‖ and Φ‖ as [14, p. 77]

v∗r = Ψ‖,r + rΦ‖,rr , (2.20a)

v∗z = Ψ‖,z + rΦ‖,rz + Φ‖,z , (2.20b)

p∗ = −2ηΦ‖,zz . (2.20c)

The two functions Ψ‖ and Φ‖ are solutions to the axisymmetric Laplace equation which can be
written in an integral form as

Φ‖ =
Fz

4π2η

∫ ∞
0

φ‖(q)f‖(qr) sin(qz) dq , (2.21a)

Ψ‖ =
Fz

4π2η

∫ ∞
0

ψ‖(q)f‖(qr) sin(qz) dq , (2.21b)

where φ‖ and ψ‖ are to be determined from the boundary conditions. At this point, the arbitrary
prefactor outside the integral is chosen such that the resulting velocity and pressure fields will in the
end have a similar representation as the Stokeslet solution given by Eq. (2.19). For Ψ‖ and Φ‖ to
be solutions to the axisymmetric Laplace equation, the function f‖ has to satisfy the zeroth order
modified Bessel equation [80]. Since the image solution inside the cylinder has to be regular at the
origin owing to Eq. (2.3), we take f‖ ≡ I0 in the inner solution. Combining Eqs. (2.20) and (2.21)
together, the solution of Eq. (2.16) reads

v∗r (r, z) =
Fz

4π2η

∫ ∞
0

q
((
rqI0(qr)− I1(qr)

)
φ∗‖(q) + I1(qr)ψ

∗
‖(q)

)
sin qz dq , (2.22a)

v∗z(r, z) =
Fz

4π2η

∫ ∞
0

q
((
rqI1(qr) + I0(qr)

)
φ∗‖(q) + I0(qr)ψ

∗
‖(q)

)
cos qz dq , (2.22b)

p∗(r, z) =
Fz
2π2

∫ ∞
0

q2φ∗‖(q)I0(qr) sin qz dq . (2.22c)

Thus the Green’s function inside the elastic cylindrical channel for the axial point-force is given
explicitly by summing up the Stokeslet contribution (2.19) and the reflected flow (2.22).

The outer solution for the force-free Stokes equations (2.2) has an analogous structure with the
only difference that the flow has to decay at infinity by virtue of Eq. (2.5) and we therefore take
f‖ ≡ K0 leading to

v2r(r, z) =
Fz

4π2η

∫ ∞
0

q
((
rqK0(qr) +K1(qr)

)
φ2‖(q)−K1(qr)ψ2‖(q)

)
sin qz dq , (2.23a)

v2z(r, z) =
Fz

4π2η

∫ ∞
0

q
((
K0(qr)− rqK1(qr)

)
φ2‖(q) +K0(qr)ψ2‖(q)

)
cos qz dq , (2.23b)

p2(r, z) =
Fz
2π2

∫ ∞
0

q2φ2‖(q)K0(qr) sin qz dq , (2.23c)

after making use of the relations ∂I0(qr)/∂r = qI1(qr), ∂I1(qr)/∂r = qI0(qr) − I1(qr)/r and
∂K0(qr)/∂r = −qK1(qr) . The unknown functions ψ∗‖, φ

∗
‖, ψ2‖ and φ2‖ remain to be determined from

the boundary conditions of continuous velocity and prescribed traction jumps at the membrane.

The continuity of radial and axial velocity components across the membrane expressed by Eqs. (2.6)
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and (2.8) leads to the expression of the functions ψ2‖ and φ2‖ in terms of ψ∗‖ and φ
∗
‖ as

ψ2‖ =
G‖ψ

∗
‖ + (1 + s2)S‖φ

∗
‖

D‖
+
R

s
, (2.24a)

φ2‖ =
S‖ψ

∗
‖ +G‖φ

∗
‖

D‖
+
R

s
, (2.24b)

where s := qR is a dimensionless wavenumber and

S‖ = K1I0 +K0I1 ,

G‖ =
(
sK1 −K0

)
I1 +

(
sK0 +K1

)
I0 ,

D‖ = sK2
0 − sK2

1 + 2K0K1 .

The modified Bessel functions have the argument s which is dropped for brevity.

The form of ψ∗‖ and φ∗‖ may be determined given the constitutive model of the membrane. In
appendix B, we provide explicit analytical expressions for ψ∗‖ and φ

∗
‖ by considering independently

a shear-only or a bending-only membrane. An analogous resolution procedure can be employed by
considering simultaneously shear and bending resistances.

For future reference, we shall express the solution near a membrane with both shear and bending
rigidities as

ψ∗‖ = R
M‖

N‖
, φ∗‖ = R

L‖

N‖
. (2.25)

We note that the steady solution near a hard cylinder as first computed by [30] stated by Eq. (B.4)
is recovered in the vanishing frequency limit. In the following, the solution for a point-force acting
perpendicular to the cylinder axis will be derived.

2.2 Radial motion

Without loss of generality, we shall consider for the radial motion that the point force is located at
the origin and directed along the x direction in Cartesian coordinates. The induced velocity field
reads [78]

vSx =
Fx
8πη

(
1

d
+
x2

d3

)
, vSy =

Fx
8πη

xy

d3
, vSz =

Fx
8πη

xz

d3
,

and the pressure

pS =
Fx
4π

x

d3
.

Setting x = r cosφ and y = r sinφ, the radial and tangential velocities read

vSr =
Fx
8πη

(
1

d
+
r2

d3

)
cosφ , vSφ = − Fx

8πη

sinφ

d
.

By making use of Eqs. (2.17) and (2.18), the Stokeslet solution can thus be written in the form
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of a Fourier-Bessel integral expansion as

vSr (r, φ, z) =
Fx

4π2η
cosφ

∫ ∞
0

(K0(qr) + qrK1(qr)) cos qz dq , (2.26a)

vSφ(r, φ, z) = − Fx
4π2η

sinφ

∫ ∞
0

K0(qr) cos qz dq , (2.26b)

vSz (r, φ, z) =
Fx

4π2η
cosφ

∫ ∞
0

qrK0(qr) sin qz dq , (2.26c)

pS(r, φ, z) =
Fx
2π2

cosφ

∫ ∞
0

qK1(qr) cos qz dq . (2.26d)

Similar, the reflected flow can also be represented by noting that the force-free Stokes equa-
tions (2.16) have a general solution expressed in terms of three harmonic functions Ψ⊥, Φ⊥ and Γ⊥
as [14, p. 77]

v∗r = Ψ⊥,r +
Γ⊥,φ
r

+ rΦ⊥,rr , (2.27a)

v∗φ =
Ψ⊥,φ
r
− Γ⊥,r −

Φ⊥,φ
r

+ Φ⊥,φr , (2.27b)

v∗z = Ψ⊥,z + rΦ⊥,rz + Φ⊥,z , (2.27c)
p∗ = −2ηΦ⊥,zz . (2.27d)

The functions Ψ⊥, Φ⊥ and Γ⊥ are solutions to the asymmetric Laplace equation which can be
written in an integral form as

Φ⊥ =
Fx

4π2η
cosφ

∫ ∞
0

φ⊥(q)f⊥(qr) cos(qz) dq , (2.28a)

Ψ⊥ =
Fx

4π2η
cosφ

∫ ∞
0

ψ⊥(q)f⊥(qr) cos(qz) dq , (2.28b)

Γ⊥ =
Fx

4π2η
sinφ

∫ ∞
0

γ⊥(q)f⊥(qr) cos(qz) dq , (2.28c)

where φ⊥, ψ⊥ and γ⊥ are wavenumber-dependent quantities to be determined from the prescribed
boundary conditions at the membrane.

For Ψ⊥, Φ⊥ and Γ⊥ to be solutions to Laplace equation, the function f⊥ should be solution to the
first order modified Bessel equation [80]. In order to satisfy the regularity of the image solution inside
the elastic cylinder as stated by Eq. (2.3), we take f⊥ ≡ I1 in the inner solution. Upon combination
of Eqs. (2.27) and (2.28) together, the solution of Eq. (2.16) for a radial Stokeslet reads

v∗r (r, φ, z) =
Fx

4π2η

cosφ

r

∫ ∞
0

( (
(2 + q2r2)I1(qr)− qrI0(qr)

)
φ∗⊥(q)

+ (qrI0(qr)− I1(qr))ψ∗⊥(q) + I1(qr) γ
∗
⊥(q)

)
cos qz dq , (2.29a)

v∗φ(r, φ, z) = − Fx
4π2η

sinφ

r

∫ ∞
0

(
(qrI0(qr)− 2I1(qr))φ

∗
⊥(q)

+ I1(qr)ψ
∗
⊥(q) + (qrI0(qr)− I1(qr)) γ∗⊥(q)

)
cos qz dq , (2.29b)

v∗z(r, φ, z) = −Fx cosφ

4π2η

∫ ∞
0

q
(
qrI0(qr)φ

∗
⊥(q) + I1(qr)ψ

∗
⊥(q)

)
sin qz dq , (2.29c)

p∗(r, φ, z) =
Fx cosφ

2π2

∫ ∞
0

q2I1(qr)φ
∗
⊥(q) cos qz dq . (2.29d)
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The outer solution for the force-free Stokes equations (2.2) has to decay at infinity owing to
Eq. (2.5), suggesting to take f⊥ ≡ K1 leading to

v2r(r, φ, z) =
Fx

4π2η

cosφ

r

∫ ∞
0

( (
(2 + q2r2)K1(qr) + qrK0(qr)

)
φ2⊥(q)

− (qrK0(qr) +K1(qr))ψ2⊥(q) +K1(qr) γ2⊥(q)
)

cos qz dq , (2.30a)

v2φ(r, φ, z) =
Fx

4π2η

sinφ

r

∫ ∞
0

(
(qrK0(qr) + 2K1(qr))φ2⊥(q)

−K1(qr)ψ2⊥(q) + (qrK0(qr) +K1(qr)) γ2⊥(q)
)

cos qz dq , (2.30b)

v2z(r, φ, z) =
Fx cosφ

4π2η

∫ ∞
0

q (qrK0(qr)φ2⊥(q)−K1(qr)ψ2⊥(q)) sin qz dq , (2.30c)

p2(r, φ, z) =
Fx cosφ

2π2

∫ ∞
0

q2K1(qr)φ2⊥(q) cos qz dq . (2.30d)

The six unknown functions can thus be determined from the imposed boundary conditions, namely
the continuity of fluid velocity and the traction jumps across the membrane.

The continuity of the velocity field expressed by Eqs. (2.6) through (2.8) leads to the expression
of the unknown functions φ2⊥, ψ2⊥ and γ2⊥ outside the cylinder in terms of φ∗⊥, ψ

∗
⊥ and γ∗⊥ on the

inside as

φ2⊥ =
S⊥φ

∗
⊥ + (K1 + sK0)G⊥ψ

∗
⊥ +K1G⊥γ

∗
⊥

D⊥
+
R

s
, (2.31)

ψ2⊥ =
s
(
(2 + s2)K0 + sK1

)
G⊥φ

∗
⊥ + S⊥ψ

∗
⊥ + sK0G⊥γ

∗
⊥

D⊥
, (2.32)

γ2⊥ =

(
S⊥ −G⊥

(
sK0 + (2 + s2)K1

))
γ∗⊥

D⊥
−

2sK0G⊥φ
∗
⊥ − 2K1G⊥ψ

∗
⊥

D⊥
− 2R

s
, (2.33)

where we have defined

S⊥ = −sK0K1

(
sI0 + (2 + s2)I1

)
− s2

(
sI0K

2
0 + I1K

2
1

)
,

G⊥ = −s (I0K1 + I1K0) ,

D⊥ = s
(
s2K3

0 + sK2
0K1 − sK3

1 − (2 + s2)K0K
2
1

)
.

In appendix C, we provide explicitly the expressions of ψ∗⊥, φ
∗
⊥ and γ∗⊥ by considering indepen-

dently membranes with pure shear or pure bending.
For future reference, we shall express the solution for a membrane endowed with both shear and

bending as

ψ∗⊥ = R
M⊥
N⊥

, φ∗⊥ = R
L⊥
N⊥

, γ∗⊥ = R
K⊥
N⊥

. (2.34)

We note here that for cylindrical membranes, shear and bending contributions do not add up
linearly in the solution of the flow field, i.e. in a similar way as previously observed between two
parallel planar elastic membranes [66] or a spherical membrane [81, 82] and in contrast to the case
of a single planar membrane [65].

3 Particle mobility and membrane deformation

The exact results obtained in the previous section allow for the analysis of the effect of the membrane
on the axial and radial motion of a colloidal particle, particularly for the calculation of leading-order
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self- and pair mobility functions [83] relevant to transport of suspensions in a cylindrical channel. A
more accurate description would be achievable by considering a distribution of point forces over the
particle surface. Our simpler approximation nevertheless leads to a good agreement with numerical
simulations performed with truly extended particles as will be shown below.

3.1 Axial mobility

We first compute the particle self-mobility correction due to the presence of the membrane for the
axisymmetric motion parallel to the cylinder axis. At leading order, the self-mobility correction is
calculated by evaluating the axial velocity component of the reflected flow field at the Stokeslet
position such that

∆µS‖ = F−1z lim
r→0

v∗z , (3.1)

where S appearing as superscript refers to “self”. By making use of Eq. (2.22b), the latter equation
can be written as

∆µS‖ =
1

4π2η

∫ ∞
0

q
(
ψ∗‖ + φ∗‖

)
dq . (3.2)

Inserting ψ∗‖ and φ
∗
‖ from (2.25), the scaled self-mobility correction reads

∆µS‖

µ0
=

3

2π

a

R

∫ ∞
0

M‖ + L‖

N‖
sds , (3.3)

where µ0 = 1/(6πηa) is the usual bulk mobility given by the Stokes law. Notably, the correction
vanishes for a very wide channel, as R→∞.

Considering a membrane with both shear and bending resistances, and by taking α to infinity,
we recover the mobility correction near a hard cylinder with stick boundary conditions, namely

lim
α→∞

∆µS‖

µ0
= − 3

2π

a

R

∫ ∞
0

w‖

W‖
ds ≈ −2.10444

a

R
, (3.4)

where numerical integration has been performed to obtain the latter estimate, which is in agreement
with results known in the literature [14, 16–18]. Moreover,

w‖ = (I0K1 + I1K0)s
2 − 2(I0K0 + I1K1)s+ 4I1K0 ,

W‖ = s(I21 − I20 ) + 2I0I1 .

The same result is obtained when considering a membrane with only shear rigidity.
It is worth noting that a bending-only membrane produces a different correction to particle

self-mobility when αB is taken to infinity, namely

lim
αB→∞

∆µS‖,B

µ0
= − 3

2π

a

R

∫ ∞
0

w‖B
W‖B

ds ≈ −1.80414
a

R
, (3.5)

where

w‖B = sK2
0 ,

W‖B = s(I1K0 − I0K1) + 2I1K1 .

Clearly, Eq. (3.5) does not coincide with the hard cylinder limit predicted by Eq. (3.4). The reason is
the same as discussed in the appendix below Eq. (C.6c), namely that bending only restricts normal
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but not tangential motion.
We now turn our attention to hydrodynamic interactions between two particles positioned on

the centreline of an elastic cylinder, with the second particle of the same radius a placed along the
cylinder axis at z = h. For future reference, we shall denote by γ the particle located at the origin
and by λ the particle at z = h. The leading order particle pair mobility parallel to the line of centres
is readily obtained from the total flow field evaluated at the position of the second particle,

µP‖ = F−1z lim
r→rλ

v1z , (3.6)

where P appearing as superscript stands for “pair”. The latter equation can be written in a scaled
form as

µP‖

µ0
=

3

2

a

h
+

3

2π

a

R

∫ ∞
0

M‖ + L‖

N‖
cos (σs) s ds , (3.7)

where σ := h/R. Note that h > 2a as overlap between the two particles should be avoided. The
first term in Eq. (3.7) is the leading-order bulk contribution to the pair mobility obtained from the
Stokeslet solution [84–86], whereas the second term is the frequency-dependent correction to the
particle pair mobility due to the presence of the elastic membrane.

Similarly, for an infinite membrane shear modulus, the pair mobility near a hard cylinder limit is
obtained,

lim
α→∞

µP‖

µ0
=

3

2

a

h
− 3

2π

a

R

∫ ∞
0

w‖

W‖
cos (σs) ds . (3.8)

Interestingly, the latter result can also be expressed in terms of convergent infinite series as [22, 87]

lim
α→∞

µP‖

µ0
=

3

4

∞∑
n=1

(
an cos(βnσ) + bn sin(βnσ)

)
e−αnσ , (3.9)

where un = αn + iβn are the complex roots of the equation u(J2
0 (un) + J2

1 (un)) = 2J0(un)J1(un).
Moreover, an + ibn = 2

(
π
(
2J1(un)Y0(un)− un(J0(un)Y0(un) + J1(un)Y1(un))

)
− un

)
/J2

1 (un), where
Jα and Yα are the αth order Bessel functions of the first and second kind, respectively. Although
being different in form, our expressions (3.8) and (3.9) give identical numerical values. The pair
mobility therefore has a sharp exponential decay as the interparticle distance becomes larger. For
σ � 1, the series in Eq. (3.9) can conveniently be truncated at the first term to give the estimate

lim
α→∞

µP‖

µ0
' 3

4

(
a1 cos(β1σ) + b1 sin(β1σ)

)
e−α1σ , (3.10)

where α1 ' 4.46630, β1 ' 1.46747, a1 ' −0.03698 and b1 ' 13.80821. We further mention that
the pair mobility function inside a hard cylinder undergoes a sign reversal for σ & 2.14206 before it
vanishes as σ goes to infinity [22].

3.2 Radial mobility

We now compute the particle self-mobility correction caused by the presence of the membrane for the
asymmetric motion perpendicular to the cylinder axis. At leading order in the ratio a/R, the mobility
corrections are calculated by evaluating the reflected fluid velocity at the point-force position. Since
the particle is located on the cylinder axis, the mobility tensor possesses only two unique components:
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∆µ‖ for axial motion and ∆µ⊥ for motion perpendicular to the axis. Accordingly,

∆µS⊥ = F−1r lim
r→0

v∗r ≡ F−1φ lim
r→0

v∗φ , (3.11)

where Fr = Fx cosφ and Fφ = −Fx sinφ. Upon using Eq. (2.29a), we readily obtain

∆µS⊥ =
1

8π2η

∫ ∞
0

q
(
ψ∗⊥ + γ∗⊥

)
dq . (3.12)

Inserting ψ∗⊥ and γ∗⊥ from the general form given by (2.34), and scaling by the bulk mobility µ0, we
get

∆µS⊥
µ0

=
3

4π

a

R

∫ ∞
0

M⊥ +K⊥
N⊥

sds . (3.13)

Similar, by taking α to infinity, we recover the mobility correction near a no-slip cylinder, namely

lim
α→∞

∆µS⊥
µ0

= − 3

4π

a

R

∫ ∞
0

w⊥
W⊥

ds ≈ −1.80436
a

R
, (3.14)

in full agreement with previous studies [39, 44], where we have defined

w⊥ = I0(I0K1 + I1K0)s
3 +

(
(2I20 − 3I21 )K0 − I0I1K1

)
s2 − 2I1(I0K0 + I1K1)s− 4K0I

2
1 ,

W⊥ = I0(I
2
0 − I21 )s2 + I1(I

2
1 − I20 )s− 2I0I

2
1 .

The same steady mobility is obtained when the membrane is endowed with pure shear.

It is worth to note that for a bending-only membrane, however, the particle self-mobility in the
limit when αB is taken to infinity reads

lim
αB→∞

∆µS⊥,B
µ0

= − 3

4π

a

R

∫ ∞
0

w⊥B
W⊥B

ds ≈ −1.55060
a

R
, (3.15)

where we defined

w⊥B = s2(sK1 +K0)
2 ,

W⊥B = s
(
(s2 + 3)K1 + 2sK0

)
I0 − (s2 + 3)(sK0 + 2K1)I1 .

Continuing, the particle pair mobility function is determined by evaluating the total velocity field
at the nearby particle position leading to

µP⊥ = F−1r lim
r→rλ

v1r ≡ F−1φ lim
r→rλ

v1φ . (3.16)

Eq. (3.16) can be written in a scaled form as

µP⊥
µ0

=
3

4

a

h
+

3

4π

a

R

∫ ∞
0

M⊥ +K⊥
N⊥

cos (σs) s ds . (3.17)

Similar, for an infinite membrane shear modulus, we recover the pair mobility near a hard cylinder,

lim
α→∞

µP⊥
µ0

=
3

4

a

h
− 3

4π

a

R

∫ ∞
0

w⊥
W⊥

cos (σs) ds . (3.18)
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3.3 Startup motion

Here we will derive the mobility coefficients for a particle starting from rest and then moving
under a constant external force (e.g. gravity) exerted along or perpendicular to the cylinder axis.
Mathematically, such force can be described by a Heaviside step function force F (t) = A θ(t) whose
Fourier transform in the frequency domain reads [88]

F (ω) =

(
πδ(ω)− i

ω

)
A . (3.19)

Applying back Fourier transform, the time-dependent correction to the particle mobility for a startup
motion reads

∆µ(t) =
∆µ(0)

2
+

1

2iπ

∫ +∞

−∞

∆µ(ω)

ω
eiωt dω . (3.20)

The second term in Eq. (3.20) is a real valued quantity which takes values between −∆µ(0)/2
when t → 0 and +∆µ(0)/2 as t → ∞. Since the frequency-dependent mobility corrections are
expressed as a Fourier-Bessel integral over the scaled wavenumber s, the computation of the time-
dependent mobility requires a double integration procedure. For this purpose, we use the Cuba
Divonne algorithm [89, 90] for an accurate and fast numerical computation.

3.4 Membrane deformation

Finally, our results can be used to compute the membrane deformation resulting from an arbitrary
time-dependent point-force acting along or perpendicular to the cylinder axis. The membrane dis-
placement field is readily obtained from the velocity at r = R via the no-slip boundary condition
stated by Eq. (2.15). We define the membrane frequency-dependent reaction tensor as [91]

uα(φ, z, ω) = Rαβ(φ, z, ω)Fβ(ω) , (3.21)

bridging between the membrane displacement field and the force acting on the nearby particle.
Restricting to a harmonic driving force Fα(t) = Aαe

iω0t, the membrane deformation in the temporal
domain is calculated as

uα(φ, z, t) = Rαβ(φ, z, ω0)Aβe
iω0t . (3.22)

Further, the physical displacement is obtained by taking the real part of the latter equation. The
radial-axial and axial-axial components of the reaction tensor are then computed from Eq. (2.23) as

Rrz = Λ

∫ ∞
0

s
((
sK0 +K1

)
φ2‖ −K1ψ2‖

)
sin
(sz
R

)
ds ,

Rzz = Λ

∫ ∞
0

s
((
K0 − sK1

)
φ2‖ +K0ψ2‖

)
cos
(sz
R

)
ds ,

with Λ := 1/(4iπ2ηωR2), which give access to the radial and axial displacements after making use
of Eq. (3.21). Moreover, Rφz = 0 due to axial symmetry.

For a point force directed perpendicular to the cylinder axis, the components of the reaction
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Figure 2: (Color online) a) The parallel component of the scaled frequency-dependent self-mobility
correction versus the scaled frequency β = 1/α nearby a cylindrical membrane endowed with only-
shear (green or bright gray in a black and white printout), only-bending (red or dark gray in a black
and white printout) and both rigidities (black). The particle is set on the centreline of an elastic
cylinder of radius R = 4a. Here we take a reduced bending modulus EB = 1/6. The theoretical
predictions are presented as dashed and solid lines for the real and imaginary parts, respectively.
Boundary integral simulations results are shown as squares for the real part and circles for the
imaginary part. The horizontal dashed lines are the vanishing frequency limits given by Eqs. (3.4)
and (3.5). b) The parallel component of the scaled frequency-dependent pair mobility correction
versus the scaled frequency β. The two particles are set a distance h = R apart on the centreline of
an elastic cylinder of radius R = 4a.

tensor can readily be computed from Eqs. (2.30) to obtain

Rrr = Λ

∫ ∞
0

( (
(2 + s2)K1 + sK0

)
φ2⊥ − (sK0 +K1)ψ2⊥ +K1γ2⊥

)
cos
(sz
R

)
ds ,

Rφφ = −Λ

∫ ∞
0

(
(sK0 + 2K1)φ2⊥ −K1ψ2⊥ + (sK0 +K1) γ2⊥

)
cos
(sz
R

)
ds ,

Rzr = Λ

∫ ∞
0

s (sK0φ2⊥ −K1ψ2⊥) sin
(sz
R

)
ds .

Additionally, we have Rrφ = Rφr = Rzφ = 0.

4 Comparison with Boundary Integral simulations

The accuracy of the point-particle approximation employed throughout this work can be assessed
by direct comparison with fully resolved numerical simulations. To this end, we employ a completed
double layer boundary integral method [92–95] which has proven to be perfectly suited for simulating
solid particles in the presence of deforming boundaries. Technical details concerning the algorithm
and its numerical implementation have been reported by some of us elsewhere, e.g. [66] and [96]. The
cylindrical membrane has a length of 200a, meshed uniformly with 6550 triangles, and the spherical
particle is meshed with 320 triangles obtained by consecutively refining an icosahedron [97, 98].

In order to determine the particle self- and pair mobilities numerically, a harmonic force Fλα(t) =
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Aλαe
iω0t of amplitude Aλα and frequency ω0 is applied along the direction α at the surface of the

particle labeled λ either along (z direction) or perpendicular (x direction) to the cylinder axis. After
a brief transient evolution, both particles oscillate at the same frequency with different phases, i.e.
Vλα = Bλαe

iω0t+δλ and Vγα = Bγαe
iω0t+δγ . For the accurate determination of the velocity amplitudes

and phase shifts, we use a nonlinear least-squares algorithm [99] based on the trust region method [100].
The particle self- and pair mobility functions can therefore be computed as

µSαβ =
Bλα
Aλβ

eiδλ , µPαβ =
Bγα
Aλβ

eiδγ . (4.1)

We now define the characteristic frequency for shear, β := 1/α = 3ηωR/(2κS), and for bending,
βB := 1/α3

B = ηωR3/κB. We also introduce the membrane reduced bending modulus as EB :=
κB/(κSR

2) quantifying the nonlinear coupling between shear and bending [101].
In figure 2 a), we show the correction to particle self-mobility versus the scaled frequency β as

predicted theoretically by Eq. (3.3). The particle is set on the centreline of an elastic cylinder of
radius R = 4a. For the simulation parameters, we take a reduced bending EB = 1/6 for which β
and βB have about the same order of magnitude, and thus shear and bending manifest themselves
equally. We observe that the real part is a monotonically increasing function of frequency whereas
the imaginary part exhibits the typical bell-shaped curve characterising dynamical systems with
memory. For small forcing frequencies, the real part of the mobility correction approaches that near
a no-slip hard cylinder only if the membrane possesses resistance against shear. For large forcing
frequencies, both the real and imaginary parts vanish, which corresponds to the bulk behaviour. It
can clearly be seen that the mobility correction is primarily determined by shear resistance and
bending does not play a significant role, similarly to what has been recently observed for spherical
elastic membranes [81, 82]. A good quantitative agreement is obtained between analytical predictions
and numerical simulations over the whole range of applied frequencies.

Analogous predictions for the pair mobility versus the scaled frequency β are shown in figure 2 b).
The two particles are set a distance h = R apart along the axis of an elastic cylinder of radius
R = 4a. The overall shapes resemble those observed for the self-mobility, where again the effect of
shear is more pronounced. However, it can be seen that the real part for a bending-only membrane
may undergo a change of sign at some intermediate frequencies in the same way as observed nearby
planar membranes [67]. Interestingly, we find that the correction to the pair mobility induced by the
elastic membrane is almost as large as the bulk pair mobility itself.

The frequency-dependent self- and pair mobility corrections for the motion perpendicular to the
cylinder axis are shown in figure 3. We observe that the total mobility corrections are primarily
determined by membrane shear resistance as it has been observed for the axial motion along the
cylinder axis. Notably, the correction near a rigid cylinder is recovered only if the membrane possesses
a finite resistance towards shear.

In figure 4, we show the time-dependent translational velocity of a particle starting from rest
and subsequently moving under the action of a constant axial or radial force nearby a cylindrical
membrane endowed with shear-only (green), bending-only (red) or both shear and bending resistances
(black). The time is scaled by the characteristic time scale for shear τ := β/ω = 3ηR/(2κS). At short
time scales, we observe that the mobility correction amounts to a small value since the particle does
not yet feel the presence of the elastic membrane. As the time increases, the membrane effect becomes
more noticeable and the mobility curves bend down substantially to asymptotically approach the
correction nearby a hard cylinder if the membrane possesses a non-vanishing resistance towards shear.
Moreover, we observe that the steady state is more quickly achieved for the axial (parallel) motion
than for the radial motion (perpendicular), i.e. in a way similar to what has been observed nearby
planar elastic membranes [65]. At the end of the simulations, the particle position changes only by
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Figure 3: (Color online) The perpendicular component of the scaled frequency-dependent self a) and
pair b) mobility corrections versus the scaled frequency β. The color code is the same as in figure 2.
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Figure 4: Translational velocity of a particle starting from rest for a) axial and b) radial motion
under the action of a constant external force, obtained using the same parameters as in figure 2 for
a membrane with pure shear (green or bright gray in a black and white printout), pure bending (red
or dark gray in a black and white printout) and both rigidities (black). Solid lines are the analytical
predictions obtained from by Eq. (3.20) and symbols are the boundary integral simulations results.
Horizontal dashed lines are our theoretical predictions in the steady limit based on the point-particle
approximation and the blue dotted lines are the higher order corrections given by Eqs. (4.2) and
(4.3) for the axial and radial motions, respectively. Here τ is a characteristic time scale defined as
τ := β/ω.
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Figure 5: (Color online) The scaled radial a) and axial b) membrane displacements versus z/a at
four different forcing frequencies calculated at quarter period, i.e. when ω0t = π/2 and the particle
reaches its maximal amplitude moving to the right along the z axis. Solid lines refer to theoretical
predictions and symbols are the boundary integral simulations.

about 10 % of its radius.
Before continuing, we briefly comment on the importance of higher order terms. For this, we

consider a hard cylinder for which the correction to the axial mobility can be obtained from Bohlin
inverse series coefficients as [19, Tab. 2.1]

lim
α→∞

∆µS‖

µ0
= −2.104443

( a
R

)
+ 2.086694

( a
R

)3
+ · · · , (4.2)

which has been truncated at the 3rd order here since higher order terms amount to an insignificant
correction for a� R. For the radial motion, this reads

lim
α→∞

∆µS⊥
µ0

= −1.804360
( a
R

)
+ 1.430590

( a
R

)3
+ · · · . (4.3)

Comparing the first and third order in the above equations for the present parameters, we find
that the higher order terms lead to a correction of about 5 %.

The membrane displacements induced by axial motion of the particle are illustrated in figure 5,
which includes the theoretical predictions (solid lines) and boundary integral simulations (symbols)
for four different forcing frequencies. The natural scale for the displacement, Az/κS is set by the
amplitude of forcing Az and the shear resistance κS. Here we use the same parameters as in figure 2 for
a membrane with both shear and bending rigidities. We plot the axial and radial displacement of the
axial section (along z) of the tube wall in the moment in which a particle moving harmonically with a
very small amplitude reaches its maximal axial position. We observe that the radial displacement ur
is an odd function of z that vanishes at the origin and at infinity. The axial deformation uz shows
a fundamentally different evolution with respect to z, where the membrane is displaced along the
direction of the force. Moreover, the maximum deformation reached in uz is found to be about three
times larger than that reached in ur. Interestingly, the maximum in uz is not attained at the particle
position z = 0, but slightly besides. By comparing the membrane deformation at various forcing
frequencies, it can rather be seen that larger frequencies induce smaller deformations as the elastic
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Figure 6: (Color online) The scaled radial a), azimuthal b) and axial c) membrane displacements versus
z/a at four forcing frequencies calculated at quarter period for ω0t = π/2 when the particle reaches its
maximal radial position. Here deformations are shown in the plane of maximum deformation. Solid
lines refer to theoretical predictions determined and symbols are the boundary integral simulations.

membrane does not have enough time to react to the rapidly wiggling particle.
In figure 6, we show the scaled radial, axial and azimuthal displacement fields induced by the

particle radial motion upon varying the forcing frequency. Deformations are plotted when the os-
cillating particle reaches its maximal amplitude, in the plane of maximum deformation, i.e. φ = 0
(or y = 0) for ur and uz, and φ = π/2 (or x = 0) for uφ for a force directed along the x direction.
Not surprisingly, we observe that the membrane mainly undergoes radial deformation. The latter is
found to be about twice as large as the azimuthal deformation and even six times larger that axial
deformation. The numerical simulations are found to be in a very good agreement with analytical
predictions, over the whole length of the deformed cylinder.

For typical situations, the order of magnitude of the forces exerted by optical tweezers on suspended
particles are of the order of 1 pN [102]. For a cylinder radius of 10−6 m, a shear modulus of about
10−6 N/m and a scaled forcing frequency β = 2, the membrane undergoes a maximal deformation
of about 2 % and 5 % of its undeformed radius for the axial and radial motions, respectively. As a
result, deformations are small and deviations from cylindrical shape are indeed negligible.

As a final remark, we shall show that the range of frequencies employed throughout this work is
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consistent with the assumption of small Reynolds and Strouhal numbers. In fact, by taking a fluid
density ρ = 103 kg/m3, a shear viscosity η = 1.2 × 10−3 Pas and a membrane bending modulus
κB = 2× 10−19 as typical values [70], the condition Re St� 1 leads to

β � 3η2

2ρRκS
≈ 2200 , βB �

Rη2

ρκB
≈ 7200 . (4.4)

Clearly, both scaled frequencies satisfy these conditions in the frequency range considered in the
present work.

5 Conclusions

In this paper, we derived explicit analytic expressions for the Green’s functions, i.e., the flow field
generated by a point particle (Stokeslet), acting either axially along or perpendicular to the centreline
of an elastic cylindrical tube which exhibits resistance towards shear and bending. For this, we first
derived the appropriate boundary conditions determining the surface traction jump across the
membrane and then used a Fourier integral expansion to solve the Stokes equations. By examining
the influence of shear and bending motion, we determined the full form of the solutions and discussed
their behaviour for the whole range of actuation frequencies for arbitrary elastic parameters of the
membrane – the bending rigidity κB and elastic modulus κS.

The solution was then used to compute the leading order correction to the self- and pair mobility
of particles moving axially or radially in the elastic tube, which are in good agreement with fully
resolved boundary integral simulations performed for the particle radius being a quarter of the channel
size. We have also computed the deformation field of the membrane for an arbitrary time-dependent
forcing and compared it with fully resolved numerical simulations.

The theoretical results prove that in this case the coupling between the effects of bending and
shear of the membrane has a nonlinear nature, and the limit of a rigid tube is recovered only for
non-zero shear resistance. We have also shown that the effects of shear are far more important for
both axial and radial motions than bending and therefore determine the qualitative behaviour of the
elastically confined particle. For two hydrodynamically interacting particles, the correction to pair
mobility is found to be of the same order as the bulk pair mobility itself thus hinting at a possibly
significant influence on particle agglomeration processes near elastic interfaces.
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Appendix

A Membrane mechanics

In this appendix, we derive equations in cylindrical coordinates for the traction jump across a
membrane endowed with shear and bending rigidities. We denote by a = Rer + zez the position
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vector of the points located at the undisplaced membrane, with R being the undeformed membrane
radius. Here r, φ and z are used to refer to the radial, azimuthal and axial coordinates, respectively.
After deformation, the vector position reads

r = (R+ ur)er + uφeφ + (z + uz)ez , (A.1)

where u denotes the displacement vector field. Hereafter, we shall use capital roman letters for the
undeformed state and small roman letters for the deformed. The cylindrical membrane can be defined
by the covariant base vectors g1 := r,φ and g2 := r,z. The unit normal vector n is defined as

n =
g1 × g2
|g1 × g2|

. (A.2)

Hence, the covariant base vectors read

g1 = (ur,φ − uφ)er + (R+ ur + uφ,φ)eφ + uz,φez , (A.3)
g2 = ur,zer + uφ,zeφ + (1 + uz,z)ez , (A.4)

and the unit normal vector at leading order in deformation reads

n = er +
uφ − ur,φ

R
eφ − ur,zez . (A.5)

Note that g1 has length dimension while g2 and n are dimensionless. The covariant components
of the metric tensor are defined by the scalar product gαβ = gα · gβ . The contravariant tensor gαβ is
the inverse of the metric tensor. In a linearised form, we obtain

gαβ =

(
R2 + 2R(ur + uφ,φ) uz,φ +Ruφ,z

uz,φ +Ruφ,z 1 + 2uz,z

)
, (A.6)

gαβ =

(
1
R2 − 2

ur+uφ,φ
R3 −uz,φ+Ruφ,z

R2

−uz,φ+Ruφ,z
R2 1− 2uz,z

)
. (A.7)

The covariant and contravariant tensors in the undeformed state Gαβ and Gαβ can immediately
be obtained by considering a vanishing displacement field in Eq. (A.7).

A.1 Shear

In the following, we shall derive the traction jump equations across a cylindrical membrane endowed
by an in-plane shear resistance. The two transformation invariants are given by Green and Adkins
as [103, 104]

I1 = Gαβgαβ − 2 , (A.8a)

I2 = detGαβ det gαβ − 1 . (A.8b)

From the membrane constitutive relation, the contravariant components of the stress tensor ταβ

can readily be obtained such that [69, 105]

ταβ =
2

JS

∂W

∂I1
Gαβ + 2JS

∂W

∂I2
gαβ , (A.9)

wherein W is the areal strain energy functional and JS :=
√

1 + I2 is the Jacobian determinant.
In the linear theory of elasticity, JS ' 1 + e, where e := (ur + uφ,φ)/R + uz,z being the dilatation
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function [106]. In the present paper, we use the neo-Hookean model to describe the elastic properties
of the membrane, whose areal strain energy reads [107, 108]

W (I1, I2) =
κS
6

(
I1 − 1 +

1

1 + I2

)
. (A.10)

By plugging Eq. (A.10) into Eq. (A.9), the linearised in-plane stress tensor reads

ταβ =
2κS
3

( ur+uφ,φ
R3 + e

R2
1
2R

(
uφ,z +

uz,φ
R

)
1
2R

(
uφ,z +

uz,φ
R

)
uz,z + e

)
. (A.11)

The equilibrium equations balancing the membrane elastic and external forces read

∇αταβ + ∆fβ = 0 , (A.12a)

ταβbαβ + ∆fn = 0 , (A.12b)

where ∆f = ∆fβgβ + ∆fnn is the traction jump vector across the membrane. Here ∇α stands for
the covariant derivative, which for a second-rank tensor is defined as [109]

∇αταβ = ταβ,α + Γααητ
ηβ + Γβαητ

αη , (A.13)

with Γλαβ being the Christoffel symbols of the second kind which read [110]

Γλαβ =
1

2
gλη (gαη,β + gηβ,α − gαβ,η) . (A.14)

Moreover, bαβ is the curvature tensor defined by the dot product bαβ = gα,β · n. We obtain

bαβ =

(
ur,φφ − (R+ ur + 2uφ,φ) ur,φz − uφ,z

ur,θz − uφ,z ur,zz

)
. (A.15)

At leading order in deformation, only the partial derivative remains in Eq. (A.13). After some
algebra, we find that the traction jumps across the membrane given by Eqs. (A.12) are written in
the cylindrical coordinate basis as

κS
3

(
uφ,zz +

3uz,φz
R

+
4(ur,φ + uφ,φφ)

R2

)
+ ∆fφ = 0 , (A.16a)

κS
3

(
4uz,zz +

2ur,z + 3uφ,zφ
R

+
uz,φφ
R2

)
+ ∆fz = 0 , (A.16b)

−2κS
3

(
2(ur + uφ,φ)

R2
+
uz,z
R

)
+ ∆fr = 0 . (A.16c)

Note that for curved membranes, the normal traction jump does not vanish in the plane stress
formulation employed throughout this work as the zeroth order in the curvature tensor is not identi-
cally null. For a planar elastic membrane however, the resistance to shear introduces a jump only in
the tangential traction jumps [65–67].

Continuing, the jump in the fluid stress tensor across the membrane reads

[σβr] = ∆fβ , β ∈ {z, r} . (A.17)
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Therefore, From Eqs. (A.16), (A.17) and (2.15), it follows that

[vφ,r] =
iα

2

(
Rvφ,zz + 3vz,φz +

4(vr,φ + vφ,φφ)

R

)∣∣∣∣
r=R

, (A.18a)

[vz,r] =
iα

2

(
4Rvz,zz + 2vr,z + 3vφ,zφ +

vz,φφ
R

)∣∣∣∣
r=R

, (A.18b)[
−p
η

]
= −iα

(
2(vr + vφ,φ)

R
+ vz,z

)∣∣∣∣
r=R

, (A.18c)

where α := 2κS/(3ηRω) is a dimensionless number characteristic for shear. Note that it follows from
the incompressibility equation

vr + vφ,φ
r

+ vr,r + vz,z = 0 , (A.19)

that [vr,r] = 0. Hereafter, we shall derive the traction jump equations across a membrane possessing
a bending rigidity.

A.2 Bending

Here we use the full Helfrich model for the bending energy. For small deformations and planar
membranes, this is equivalent to the ”linear bending model” used in our earlier works [65–67, 111], see
ref. [73] for details. For a curved surface that we consider here, however, the latter leads to unphysical
tangential components. The traction jump equations across the membranes are given by [73, 112]

∆f = −2κB
(
2(H2 −K +H0H) + ∆‖

)
(H −H0)n , (A.20)

where κB is the bending modulus, H and K are the mean and Gaussian curvatures, respectively
given by

H =
1

2
bαα , K = det bβα , (A.21)

with bβα being the mixed version of the curvature tensor related to the covariant representation of the
curvature tensor by bβα = bαδg

δβ. Continuing, ∆‖ is the horizontal Laplace operator and H0 is the
spontaneous curvature for which we take the initial undisturbed shape here. The linearised traction
jumps are therefore given by

−κB
(
R3ur,zzzz + 2R(ur,zz + ur,zzφφ) +

ur + 2ur,φφ + ur,φφφφ
R

)
+ ∆fr = 0 . (A.22)

and ∆fφ = ∆fz = 0.

Interestingly, bending does not introduce at leading order a jump in the tangential traction [96].
The traction jump equations take the following final from

[vφ,r] = 0 , (A.23a)
[vz,r] = 0 , (A.23b)[
−p
η

]
= −iα3

B

(
R3vr,zzzz + 2R(vr,zz + vr,zzφφ) +

vr + 2vr,φφ + vr,φφφφ
R

)∣∣∣∣
r=R

, (A.23c)

where αB = (κB/(ηω))1/3/R is the dimensionless number characteristic for bending.
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B Determination of the unknown functions for axial motion

In this appendix, we derive the expressions of the two functions ψ∗‖ and φ
∗
‖ associated to the solution

of the Stokes equations due to a point force directed along a cylindrical membrane possessing pure
shear or pure bending rigidities.

B.1 Pure shear

As a first model, we consider an idealised membrane with a finite shear resistance and no bending
resistance, such as an artificial capsule [113–117]. The tangential traction jump given by Eq. (2.9) is
in leading order independent of bending resistance and readily leads to

− s2I1ψ∗‖ − s
2
(
I1 + sI0

)
φ∗‖ + s2

(
(iα− 1)K1 + 2iαsK0

)
ψ2‖

−
(
(1 + iα+ 2iαs2)K1 − (1 + iα)sK0

)
s2φ2‖ = Rs

(
sK0 − 2K1

)
,

(B.1)

where α = 2κS/(3ηRω) is the shear parameter. Neglecting the bending contribution ∆fBr in the
radial traction jump in Eq. (2.11) yields

2s2I0φ
∗
‖ − iαs

(
sK0 + 2K1

)
ψ2‖ + s

(
iα(2 + s2)K1 + s(iα− 2)K0

)
φ2‖ = −2RsK0 . (B.2)

Eqs. (2.24) together with (B.1) and (B.2) form a linear system of equations for the four unknown
functions, amenable to immediate resolution via the standard substitution method. We obtain

ψ∗‖ = R
M‖S
N‖S

, φ∗‖ = R
L‖S
N‖S

, (B.3)

where the numerators read

M‖S = α
(

(I0K1 + I1K0)
(
3iαK2

0 − (4 + 3iα)K2
1

)
s3 +

(
− 3iαI0K

3
0 + (8 + 3iα)I1K

2
0K1

+ (8 + 9iα)I0K0K
2
1 + 3iαI1K

3
1

)
s2 +

(
6(iα− 1)I1K

3
0 − 6(iα+ 1)I0K

2
0K1

− 2(1 + 6iα)I1K0K
2
1 − 2I0K

3
1

)
s+ 12iαK2

0K1I1

)
,

L‖S =
((
− 3iαI0K

3
0 + (4− 3iα)I1K

2
0K1 + (4 + 3iα)I0K0K

2
1 + 3iαI1K

3
1

)
s2

+
(
6(iα− 1)I1K

3
0 − 6(1 + iα)I0K

2
0K1 + 2(1− 6iα)I1K0K

2
1 + 2I0K

3
1

)
s

+ 12iαI1K
2
0K1

)
α ,

and the denominator

N‖S =
(
3i(K2

0 −K2
1 )(I20 − I21 )α+ 4(I21K

2
0 − I20K2

1 )
)
αs3 + 2αs2(I0K0 + I1K1)

×
(
3iα(I0K1 − I1K0) + 2(I0K1 + I1K0)

)
+ 4
(
− 3iI0I1K0K1α

2 + α(I21K
2
0 − I20K2

1 )

+ i(I0K1 + I1K0)
2
)
s+ 8αI1K1(I0K1 + I1K0) .

Taking α→∞, which is achieved either by considering an infinite shear modulus κS or a vanishing
actuation frequency, we recover the known solution for a hard cylinder with stick boundary conditions,
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namely

lim
α→∞

ψ∗‖

R
=

(I0K1 + I1K0)s
2 − (I0K0 + I1K1)s+ 2I1K0

s
(
sI20 − sI21 − 2I0I1

) , (B.4a)

lim
α→∞

φ∗‖

R
=

2I1K0 − (I0K0 + I1K1)s

s
(
sI20 − sI21 − 2I0I1

) , (B.4b)

in agreement with the results of Liron & Shahar [30]. Note that both ψ2‖ and φ2‖ vanish in this
limit, meaning that the fluid outside the cylinder is stagnant.

B.2 Pure bending

A complimentary model membrane involves only a finite bending resistance, as considered previously
to model a typical fluid vesicle [118–121]. The effects of bending are determined by the dimensionless
number αB = (κB/(ηω))1/3/R. We now set ∆fSz = ∆fSr = 0 in Eqs. (2.9) and (2.11). The tangential-
normal stress component is therefore continuous, leading to

− s2I1ψ∗‖ − s
2
(
I1 + sI0

)
φ∗‖ − s

2K1ψ2‖ −
(
K1 − sK0

)
s2φ2‖ = Rs

(
sK0 − 2K1

)
,

while the discontinuity in the normal traction jump leads to

s
(
2sI0 + iα3

B(sI0 − I1)(s2 − 1)2
)
φ∗‖ + iα3

Bs(s
2 − 1)2I1ψ

∗
‖

− 2s2K0φ2‖ = Rs
(
2 + iα3

B(s2 − 1)2
)
K0 .

The functions ψ∗‖ and φ
∗
‖ can be cast in a form similar to Eq. (B.3) as

ψ∗‖ = R
M‖B
N‖B

, φ∗‖ = R
L‖B
N‖B

, (B.5)

with the numerators

M‖B = α3
B(s2 − 1)2K0(K1 + sK0) ,

L‖B = −α3
B(s2 − 1)2K0K1 ,

and the denominator

N‖B = (s2 − 1)2 (s(I0K1 − I1K0)− 2I1K1)α
3
B − 2is(I0K1 + I1K0) .

Importantly, by considering the limit αB →∞ (corresponding to an infinite bending modulus of
a vanishing actuation frequency) we obtain

lim
αB→∞

ψ∗‖

R
=

K0

(
sK0 +K1

)(
sI0 − 2I1

)
K1 − sK0I1

,

lim
αB→∞

φ∗‖

R
= − K0K1(

sI0 − 2I1
)
K1 − sK0I1

,

which is found to be different from the solution for a hard cylinder given by Eqs. (B.4). This difference
will be explained later on, as it is characteristic for many elastohydrodynamic systems.
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C Determination of the unknown functions for radial motion

In this appendix, we provide analytical expressions of the three functions φ∗⊥, ψ
∗
⊥ and γ∗⊥ associated to

a point force acting perpendicular to a cylindrical membrane with either shear or bending rigidities.

C.1 Pure shear

We first consider an idealised membrane with a finite shear resistance and no bending resistance.
The tangential traction jump along the z direction given by Eq. (2.9) is independent of bending
leading to

s2(I0 + sI1)φ
∗
⊥ + s(sI0 − I1)ψ∗⊥ + s

(
s
(
1 + iα(3 + 2s2)

)
K0 +

(
iα(5 + s2)− s2

)
K1

)
φ2⊥

+
iαs

2
(3sK0 + 5K1) γ2⊥ + s

(
s(1− iα)K0 +

(
1− iα(3 + 2s2)

)
K1

)
ψ2⊥ = Rs(K0 − sK1) , (C.1)

and the tangential traction jump along the φ direction given by Eq. (2.10) leads to(
(4 + s2)I1 − 2sI0

)
φ∗⊥ + (sI0 − 2I1)ψ

∗
⊥ +

(
(2 + s2)I1 − sI0

)
γ∗⊥ + 1

2

((
iα
(
8 + s2

)
− (4 + 2s2)

)
K1 + s

(
iα
(
4 + s2

)
− 2
)
K0

)
γ2⊥ +

( (
iα(8 + 3s2)− (4 + s2)

)
K1

+ 2s
(
iα(2 + s2)− 1

)
K0

)
φ2⊥ +

(
2
(
1− iα(2 + s2)

)
K1 + s(1− 2iα)K0

)
ψ2⊥ = RsK1 . (C.2)

Continuing, te shear related part in the normal traction jump given by Eq. (2.11) yields

2s2I1φ
∗
⊥ +

(
iαs(4 + s2)K0 + 2

(
iα(4 + s2)− s2

)
K1

)
φ2⊥ − iα

(
2sK0 + (4 + s2)K1

)
ψ2⊥

+ 2iα(sK0 + 2K1)γ2⊥ = −2RsK1 .

Inserting the expressions of φ2⊥, ψ2⊥ and γ2⊥ given by Eqs. (2.31) through (2.33) into Eqs. (C.1)
through (C.3a), we obtain the unknown functions φ∗⊥,ψ

∗
⊥ and γ∗⊥ inside the channel. Explicit analytical

expressions are not listed here due to their complexity and lengthiness. Particularly, by taking α→∞,
we recover the solution for a no-slip cylinder, namely

lim
α→∞

φ∗⊥
R

=
s(sI0 − I1)(I0K0 + I1K1)− 2I21K0

s
(
s(sI0 − I1)(I20 − I21 )− 2I0I21

) , (C.3a)

lim
α→∞

ψ∗⊥
R

=
s(I1 − sI0)(I0K1 + I1K0)

s(sI0 − I1)(I20 − I21 )− 2I0I21
, (C.3b)

lim
α→∞

γ∗⊥
R

= 2
sI1(I0K0 + I1K1) + 2I21K0 − s2K0(I

2
0 − I21 )

s
(
s(sI0 − I1)(I20 − I21 )− 2I0I21

) , (C.3c)

and φ2⊥ = ψ2⊥ = γ2⊥ = 0, in complete agreement with the results by Liron & Shahar [30].

C.2 Pure bending

Neglecting the shear contribution in the tangential traction jump along the z direction given by
Eq. (2.9), we obtain

s2(I0 + sI1)φ
∗
⊥ + s(sI0 − I1)ψ∗⊥ + s2(K0 − sK1)φ2⊥ + s(K1 + sK0)ψ2⊥ = Rs(K0 − sK1) . (C.4)
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The traction jump along the φ direction stated by Eq. (2.10) is continuous, leading to(
(4 + s2)I1 − 2sI0

)
φ∗⊥ + (sI0 − 2I1)ψ

∗
⊥ +

(
(2 + s2)I1 − sI0

)
γ∗⊥ + (sK0 + 2K1)ψ2⊥

−
(
2sK0 + (4 + s2)K1

)
φ2⊥ −

(
sK0 +

(
s2 + 2

)
K1

)
γ2⊥ = RsK1 .

while the discontinuity of the normal traction jump due to pure bending leads to

2sI1ψ
∗
⊥ +

(
iα3

Bs
3
(
(s2 + 2)K1 + sK0

)
− 2sK1

)
φ2⊥

− iα3
Bs

3(sK0 +K1)ψ2⊥ + iα3
Bs

3K1γ2⊥ = −2RK1 .
(C.5)

The unknown functions φ∗⊥, ψ
∗
⊥ and γ∗⊥ are readily obtained after plugging the expressions of

φ2⊥, ψ2⊥ and γ2⊥ given by Eqs. (2.31) through (2.33) into Eqs. (C.4) through (C.5). Further, by
taking αB →∞, we obtain

lim
αB→∞

φ∗⊥
R

=
(K0 + sK1)(sK0 +K1)

sK0 ((3 + s2)I1 − 2sI0)− (3 + s2)(2I1 − sI0)K1
, (C.6a)

lim
αB→∞

ψ∗⊥
R

=
(K0 + sK1)

(
sK0 + (2 + s2)K1

)
sK0 ((3 + s2)I1 − 2sI0)− (3 + s2)(2I1 − sI0)K1

, (C.6b)

lim
αB→∞

γ∗⊥
R

=
2K1(K0 + sK1)

sK0 ((3 + s2)I1 − 2sI0)− (3 + s2)(2I1 − sI0)K1
, (C.6c)

which is not identical to the solution for a no-slip cylinder given by Eqs. (C.3), i.e. in the same way
as observed for the axial motion. This feature is justified by the fact that bending does not introduce
a discontinuity in the tangential traction jumps and that the normal traction jumps due to bending
resistance as prescribed by Helfrich law in Eq. (2.13) depends only on the normal displacement ur.
Therefore, even when considering an infinite bending modulus, the tangential components of the
membrane displacement uφ and uz are still completely free. As a result, this behaviour cannot
represent the hard cylinder where all membrane displacements should be restricted. A similar feature
has been found for spherical membranes [81, 82].
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1 Abstract

In this paper, we present an analytical calculation of the rotational mobility functions of a particle
rotating on the centerline of an elastic cylindrical tube whose membrane exhibits resistance towards
shearing and bending. We find that the correction to the particle rotational mobility about the cylinder
axis depends solely on membrane shearing properties while both shearing and bending manifest
themselves for the rotational mobility about an axis perpendicular to the cylinder axis. In the quasi-
steady limit of vanishing frequency, the particle rotational mobility nearby a no-slip rigid cylinder is
recovered only if the membrane possesses a non-vanishing resistance towards shearing. We further
show that for the asymmetric rotation along the cylinder radial axis, a coupling between shearing and
bending exists. Our analytical predictions are compared and validated with corresponding boundary
integral simulations where a very good agreement is obtained.

2 Introduction

The assessment of effects of geometric confinement on the motion of microparticles in a viscous fluid is
of great importance, since such conditions are found in numerous biological or industrial processes [1, 2].
In such systems, the long-range hydrodynamic interactions which determine macroscopic transport
coefficients, are significantly modified due to the flows reflected from the confining boundaries [3–6].
Many of the works have been devoted to motion in tubular channels for their relevance to transport
of fluids in microfluidic systems [7, 8] or in human arteries [9]. Notably, an important property of
these networks of channels is the elasticity of their building material. Blood flow in capillaries relies
on the collagen and elastin filaments within their wall, which enable them to deform in response to
changing pressure [10, 11].

Theoretical modeling of slow viscous dynamics and hydrodynamics of particles in narrow channels
has been mostly focused on flows within hard cylindrical tubes. The monograph of Happel and
Brenner [3] encompasses most theoretical results available. Axial motion of a point particle has
been studied extensively due to relevance to rheology measurements [12–19], with later extensions
to account for the finite size [20] or non-spherical shape [21]. The motion perpendicular to the axis
has been further studied by Hasimoto [22].

The first attempt to address the slow symmetric rotation of a sphere in an infinitely long hard
cylinder dates back to Haberman [23] and later by Brenner and Sonshine [24] who gave the torque act-
ing on the rotating sphere as power series of the ratio of particle to cylinder diameter. The rotation of
an axisymmetric body within a circular cylinder of finite length has been investigated by Brenner [25]
using the point couple approximation technique. The frictional force [26] and torque [27] exerted on
a slowly rotating eccentrically positioned sphere within an infinitely long circular cylinder has been
studied by Greenstein and coworkers. The latter further investigated the slow rotation of two spheres
placed about the cylinder axis in a direction perpendicular to their line of centers [28]. Complemen-
tary theoretical works have been conducted by Hirschfeld and coworkers [29, 30] to determine the
cylindrical wall effects on the translating-rotating particle of arbitrary shape. Additionally, perturba-
tive solutions for the rotation of eccentric spheres flowing in a cylindrical tube have been derived by
Tözeren [31–33], finding a good agreement with the previous solutions. Modeling of hydrodynamic
interactions involving a torus or a circular orifice [34] has been further presented [35].

Despite an abundance of results available for hard confining boundaries, not many studies fo-
cus on the role of elasticity on the motion of microparticles in confinement. Observations of flow
through a deformable elastic channel [36, 37] demonstrate phenomena that can be related to the
cardiovascular and respiratory systems, including the generation of instabilities [38–40], propagation
of small-amplitude waves [41, 42], and hysteretic shearing of arterial walls [43]. The flexibility in
microfluidic devices has also been indicated as a potential way of controlling flow [44, 45]. More
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recent works have been devoted to the influence of elastic tube deformation on flow behavior of
a shear-thinning fluid [46, 47] or the steady flow in thick-walled flexible elastic tubes [48, 49]. No
theoretical studies, however, explore the role of elastic confinement on the hydrodynamic mobility of
particles.

This motivates us to compute the flow field generated by a particle rotating inside a realistically
modeled elastic channel. We have modeled the membrane using the neo-Hookean model for shear-
ing [50–53], and the Helfrich model [54–56] for bending of its surface. An analogous approach has
been successfully applied to the motion of small particles in the presence of planar membranes [57–
61], between two elastic sheets [62] and in the vicinity of a spherical elastic capsule [63, 64]. The
theoretical results presented in some of these works have been favorably compared with fully re-
solved boundary integral method (BIM) simulations, and thus constitute a practical approximate
tool for analysis of confined motion in elastically bounded systems. The present study computes the
frequency-dependent rotational mobility corrections due to the elastic confinement which has not
been previously analyzed.

The remainder of the paper is organized as follows. In Sec. 3, we derive analytical expressions
for the flow field induced by a point-torque oriented either parallel or perpendicular to the cylinder
axis, by expressing the solutions of the Stokes equations in terms of Fourier-Bessel integrals. We
then compute in Sec. 4 the leading order self- and pair-mobility functions for the rotation along
or perpendicular to the cylinder axis. Moreover, the membrane displacement field induced by the
particle for a given actuation is presented. For a given set of parameters, we compare in Sec. 5 our
analytical predictions with fully resolved boundary integral simulations, where a good agreement
is obtained. Concluding remarks are offered in Sec. 6. The appendix outlines the main derivation
steps for the determination of the linearized traction jumps stemming from membrane shearing and
bending rigidities.

3 Theoretical description

We consider a small solid spherical particle of radius a, placed on the axis of a cylindrical elastic tube
of undisturbed radius R� a. The fluid inside and outside the tube is assumed to be incompressible
of the same shear viscosity η. An oscillatory torque acts on the particle inducing periodic rotational
motion whose amplitude is linearly related to the amplitude of the acting torque. Our final goal is
to compute the rotational mobility representing the coefficient of proportionality between torque
and motion. We employ the cylindrical coordinate system (r, φ, z) where r is the radius, φ is the
azimuthal angle and z is the axial direction along the cylinder axis with the origin located at the
center of the particle (see Fig. 1 for an illustration of the system setup). The flow fields inside and
outside the cylindrical channel are labeled 1 and 2, respectively.

We proceed by computing the rotlet solution which follows from the solution of the forced Stokes
equations

η∇2v1 −∇p1 + F (r) = 0 , (3.1a)
∇ · v1 = 0 , (3.1b)

inside the tube (for r < R) and

η∇2v2 −∇p2 = 0 , (3.2a)
∇ · v2 = 0 , (3.2b)

outside (for r > R). Here F (r) represents an arbitrary time-dependent force density acting on the
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Figure 1: Illustration of the system setup. A small spherical particle of radius a placed at the origin
rotating nearby an elastic tube of undisturbed radius R.

fluid. We specifically consider a distribution that has only the asymmetric dipolar term∮
S
r × F dS = L , (3.3)

where the integral is taken over the surface S of the spherical particle. Since the particle is small,
we shall consider its point-like limit. Then the antisymmetric dipolar term in the force multipole
expansion yields the flow field induced by a rotlet of strength L. The flow field around a rotlet in an
infinite fluid is given by [65]

v(r) =
1

8πη

L× r
r3

. (3.4)

Our aim is to find the corresponding solution in the space confined by an elastic cylindrical tube.

For realistic parameters, we have shown in earlier work [59] that the term with a time derivative
in the unsteady Stokes equations leads to a negligible contribution to the total mobility corrections
and thus is not considered in the present work.

Eqs. (3.1) and (3.2) are subject to the regularity conditions

|v1| <∞ for |r| = 0 , (3.5)
v1 → 0 for z →∞ , (3.6)
v2 → 0 for |r| → ∞ , (3.7)

together with the boundary conditions imposed at the undisplaced membrane r = R. This commonly
used simplification is justified since we are dealing with small deformations only. In other situations,
when the finite amplitude of deformation is important, it becomes necessary to apply the boundary
conditions at the displaced membrane, see for instance Refs. [66–70]. The velocity field across the
membrane is continuous, leading to

[vr] = 0 , (3.8)
[vφ] = 0 , (3.9)
[vz] = 0 , (3.10)
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while the elastic membrane introduces a discontinuity in the fluid stress tensor

[σφr] = ∆fSφ , (3.11)

[σzr] = ∆fSz , (3.12)

[σrr] = ∆fSr + ∆fBr , (3.13)

with the notation [w] := w(r = R+)− w(r = R−) refering to the jump of a given quantity w across
the membrane. The fluid stress tensor is expressed in cylindrical coordinates as [71]

σφr = η

(
vφ,r −

vφ + vr,φ
r

)
,

σzr = η(vz,r + vr,z) ,

σrr = −p+ 2ηvr,r .

The traction jumps can be decomposed into a contribution due to the in-plane shearing elasticity
(superscript S) and a contribution stemming from membrane bending rigidity (superscript B). Shear-
ing is accounted for using the neo-Hookean model [50]. As derived in the Appendix, the linearized
traction jumps due to shearing elasticity are written as

∆fSφ = −κS
3

(
uφ,zz +

3uz,φz
R

+
4(ur,φ + uφ,φφ)

R2

)
, (3.14a)

∆fSz = −κS
3

(
4uz,zz +

2ur,z + 3uφ,zφ
R

+
uz,φφ
R2

)
, (3.14b)

∆fSr =
2κS
3

(
2(ur + uφ,φ)

R2
+
uz,z
R

)
, (3.14c)

where κS is the elastic shear modulus. The comma in indices denotes a partial spatial derivative.
Bending of the membrane is described following the Helfrich model [54, 56] as

∆fBr = κB

(
R3ur,zzzz + 2R(ur,zz + ur,zzφφ) +

ur + 2ur,φφ + ur,φφφφ
R

)
, (3.15)

where κB is the bending modulus. Moreover, ∆fBφ = ∆fBz = 0 since bending does not introduce a
discontinuity in the tangential traction jumps [56].

Similar as above, we apply the no-slip boundary condition at the undisplaced membrane sur-
face [72]

∂u(φ, z)

∂t
= v(r, φ, z)|r=R , (3.16)

which in Fourier space is written as

u(φ, z) =
v(r, φ, z)

iω

∣∣∣∣
r=R

. (3.17)

Having introduced the regularity and boundary conditions, we then solve the equations of fluid
motion by expanding them in the form of Fourier-Bessel integrals. For this aim, solutions will be
searched for in the two distinct regions i.e. inside and outside the cylindrical membrane separately.
We write the solution in terms of integrals of harmonic functions with unknown coefficients, which
we then determine from the boundary conditions.

We begin by expressing the solution of Eqs. (3.1) inside the cylinder as a sum of a point-torque
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(point-couple) flow field and the flow field reflected from the membrane, as

v1 = vR + v∗ ,

p1 = pR + p∗ ,

where vR and pR are the rotlet solution in an unbounded medium and v∗ and p∗ are the solutions
of the homogenous Stokes equations

η∇2v∗ −∇p∗ = 0 , (3.18a)
∇ · v∗ = 0 , (3.18b)

required to satisfy the regularity and boundary conditions. In the next section, we shall first consider
the axisymmetric rotational motion about the cylinder axis.

3.1 Axial rotlet

The solution for a point-torque of strength L = Lzez, located at the origin and directed along the z
direction reads [65]

vRx = − Lz
8πη

y

d3
, vRy =

Lz
8πη

x

d3
, vRz = 0 ,

and pR = 0. Here d :=
√
r2 + z2 is the distance from the rotlet position. Therefore, the velocity field

is purely directed along the azimuthal direction such that

vRr = 0 , vRφ =
Lz
8πη

r

d3
= − Lz

8πη

∂

∂r

1

d
. (3.19)

By making use of the integral relation [73, 74]

1

d
=

2

π

∫ ∞
0

K0(qr) cos qz dq , (3.20)

wherein K0 is the zeroth order modified Bessel function of the second kind [75], the integral repre-
sentation of the azimuthal fluid velocity field due to a point-torque reads

vRφ =
Lz

4π2η

∫ ∞
0

qK1(qr) cos qz dq . (3.21)

For symmetric rotation about the cylinder axis, the homogenous Stokes equations Eqs. (3.2) and
(3.18) reduce to,

v∗φ,rr +
v∗φ,r
r
−
v∗φ
r2

+ v∗φ,zz = 0 , (3.22)

and analogously for vφ2. Using the method of separation of variables [76], and by making use of the
regularity equations stated by Eqs. (3.5) through (3.7), the image solution and external fluid velocity
can therefore be presented in integral form as [24]

v∗φ =
Lz

4π2η

∫ ∞
0

A∗(q)I1(qr) cos qz dq , (3.23a)

vφ2 =
Lz

4π2η

∫ ∞
0

A2(q)K1(qr) cos qz dq . (3.23b)

The azimuthal velocity component across the membrane is continuous in virtue of Eq. (3.9)
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leading to

K1A2 − I1A∗ =
sK1

R
, (3.24)

where s := qR. The modified Bessel functions have the argument s which is dropped here for brevity.
The unknown functions A∗ and A2 are to be determined from the imposed traction jumps at the
membrane.

The discontinuity of the azimuthal-normal component of the fluid stress jump stated by Eq. (3.11)
leads to

(sI0 − I1)A∗ +

((
1− iαs2

2

)
K1 + sK0

)
A2 =

s(sK0 +K1)

R
, (3.25)

where we have defined the shearing coefficient as

α :=
2κS

3ηRω
, (3.26)

which quantifies the effect of shearing for a given actuation frequency ω.
Solving Eqs. (3.24) and (3.25) for the unknown coefficients A∗ and A2 we obtain

A∗ =
1

R

iαs2K2
1

(2I0 − iαsI1)K1 + 2K0I1
, (3.27)

A2 =
1

R

2s(I0K1 + I1K0)

(2K0 − iαsK1)I1 + 2I0K1
. (3.28)

Interestingly, the coefficients A∗ and A2 and thus the inner and outer flow fields depend solely on
shear and do not depend on bending. In particular, for α = 0, the image solution Eq. (3.23a) vanishes
and the solution outside the cylinder (3.23b) is identical to the rotlet solution given by Eq. (3.21).

In the limit α → ∞ corresponding to the quasi-steady limit of vanishing actuation frequency,
or equivalently to an infinite membrane shearing modulus, we recover the result obtained earlier by
Brenner [25], namely

lim
α→∞

A∗ = −sK1

RI1
,

and A2 = 0 for which the outer fluid is stagnant. In the following, the solution for a radial rotlet will
be derived.

3.2 Radial rotlet

Without loss of generality, we shall assume that the rotlet is exerted along the x direction. The
induced velocity field reads [65]

vRx = 0 , vRy = − Lx
8πη

z

d3
, vRz =

Lx
8πη

y

d3
,

and pR = 0. Transforming to cylindrical coordinates, we obtain

vRr = − Lx
8πη

z sinφ

d3
, vRφ = − Lx

8πη

z cosφ

d3
, vRz =

Lx
8πη

r sinφ

d3
.

After making use of Eq. (3.20) together with [73, 74]

z

d
=

2

π
r

∫ ∞
0

K1(qr) sin qz dq , (3.29)
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and by noting that
z

d3
= −1

r

∂

∂r

z

d
,

r

d3
= − ∂

∂r

1

d
, (3.30)

the rotlet solution can therefore be expressed in an integral form as

vRr = − Lx
4π2η

sinφ

∫ ∞
0

qK0(qr) sin qz dq , (3.31a)

vRφ = − Lx
4π2η

cosφ

∫ ∞
0

qK0(qr) sin qz dq , (3.31b)

vRz =
Lx

4π2η
sinφ

∫ ∞
0

qK1(qr) cos qz dq . (3.31c)

The reflected flow can be represented by using the fact that the homogenous Stokes equations (3.18)
have a general solution expressed in terms of three harmonic functions Φ, Ψ and Γ as [3, p. 77]

v∗r = Ψ,r +
Γ,φ
r

+ rΦ,rr , (3.32a)

v∗φ =
Ψ,φ

r
− Γ,r −

Φ,φ

r
+ Φ,φr , (3.32b)

v∗z = Ψ,z + rΦ,rz + Φ,z , (3.32c)
p∗ = −2ηΦ,zz . (3.32d)

The functions Ψ, Φ and Γ are solutions to the Laplace equation which can be written in an integral
form as

Φ =
Lx

4π2η
sinφ

∫ ∞
0

ϕ(q)g(qr) sin qz dq , (3.33a)

Ψ =
Lx

4π2η
sinφ

∫ ∞
0

ψ(q)g(qr) sin qz dq , (3.33b)

Γ =
Lx

4π2η
cosφ

∫ ∞
0

γ(q)g(qr) sin qz dq , (3.33c)

where ϕ,ψ and γ are wavenumber-dependent unknown functions to be determined from the underlying
boundary conditions. Moreover, g is a solution of the first order modified Bessel equation [75]. Since
the solution needs to be regular at the origin owing to Eq. (3.5), we take g ≡ I1 for the image solution,
directly leading to

v∗r =
Lx

4π2η

sinφ

r

∫ ∞
0

((
(2 + q2r2)I1(qr)− qrI0(qr)

)
ϕ∗(q) + (qrI0(qr)− I1(qr))ψ∗(q)

− I1(qr) γ∗(q)
)

sin qz dq , (3.34a)

v∗φ =
Lx

4π2η

cosφ

r

∫ ∞
0

(
(qrI0(qr)− 2I1(qr))ϕ

∗(q) + I1(qr)ψ
∗(q)

+ (I1(qr)− qrI0(qr)) γ∗(q)
)

sin qz dq , (3.34b)

v∗z =
Lx

4π2η
sinφ

∫ ∞
0

q (qrI0(qr)ϕ
∗(q) + I1(qr)ψ

∗(q)) cos qz dq . (3.34c)

p∗ =
Lx
2π2

sinφ

∫ ∞
0

q2I1(qr)ϕ
∗(q) sin qz dq . (3.34d)
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Since the solution has to decay at infinity in virtue of Eq. (3.7), we thus take g ≡ K1 for the fluid
outside, leading to

vr2 =
Lx

4π2η

sinφ

r

∫ ∞
0

((
(2 + q2r2)K1(qr) + qrK0(qr)

)
ϕ2(q)− (qrK0(qr) +K1(qr))ψ

∗(q)

−K1(qr) γ
∗(q)

)
sin qz dq , (3.35a)

vφ2 =
Lx

4π2η

cosφ

r

∫ ∞
0

(
− (qrK0(qr) + 2K1(qr))ϕ2(q) +K1(qr)ψ

∗(q)

+ (K1(qr) + qrK0(qr)) γ
∗(q)

)
sin qz dq , (3.35b)

vz2 =
Lx sinφ

4π2η

∫ ∞
0

q (−qrK0(qr)ϕ2(q) +K1(qr)ψ
∗(q)) cos qz dq , (3.35c)

p2 =
Lx sinφ

2π2

∫ ∞
0

q2K1(qr)ϕ2(q) sin qz dq . (3.35d)

The continuity of the fluid velocity field across the membrane as stated by Eqs. (3.8) through (3.10)
leads to(
sI0 − (2 + s2)I1

)
ϕ∗ + (I1 − sI0)ψ∗ + I1γ

∗ − (K1 + sK0)ψ2 +
(
sK0 + (2 + s2)K1

)
ϕ2 −K1γ2 = −sK0 ,

(3.36)

(2I1 − sI0)ϕ∗ − I1ψ∗ + (sI0 − I1)γ∗ − (sK0 + 2K1)ϕ2 +K1ψ2 + (K1 + sK0) γ2 = −sK0 ,
(3.37)

−s2I0ϕ∗ − sI1ψ∗ − s2K0ϕ2 + sK1ψ2 = sK1 .
(3.38)

The unknown functions ϕ2, ψ2 and γ2 associated to the external flow field can readily be expressed
in terms of ϕ∗, ψ∗ and γ∗ by solving Eqs. (3.36) through (3.38) to obtain

ϕ2 =
Sϕ∗ + (K1 + sK0)Gψ

∗ −K1Gγ
∗

D
, (3.39)

ψ2 =
s
(
(2 + s2)K0 + sK1

)
Gϕ∗ + Sψ∗ − sK0Gγ

∗

D
+ 1 , (3.40)

γ2 =
2sK0Gϕ

∗ + 2K1Gψ
∗

D
+

(
S −G

(
sK0 + (2 + s2)K1

))
γ∗

D
− 1 , (3.41)

where we have defined

S = −sK0K1

(
sI0 + (2 + s2)I1

)
− s2

(
sI0K

2
0 + I1K

2
1

)
,

G = −s (I0K1 + I1K0) ,

D = s
(
s2K3

0 + sK2
0K1 − sK3

1 − (2 + s2)K0K
2
1

)
.

The expressions of ϕ∗, ψ∗ and γ∗ may be determined given the membrane constitutive model. In
the following, explicit analytical expressions will be derived by considering independently an idealized
membrane with pure shearing or pure bending.
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Pure shearing

As a first model, we consider an idealized elastic membrane with pure shearing resistance, such as
an artificial capsule [77, 78]. The traction jump along the azimuthal direction given by Eq. (3.11)
depends only on membrane shearing resistance. We obtain(

(4 + s2)I1 − 2sI0
)
ϕ∗ + (sI0 − 2I1)ψ

∗ +
(
sI0 − (2 + s2)I1

)
γ∗ +

( (
iα(8 + 3s2)− (4 + s2)

)
K1

+ 2s
(
iα(2 + s2)− 1

)
K0

)
ϕ2 +

1

2

((
4 + 2s2 − iα

(
8 + s2

))
K1 + s

(
2− iα

(
4 + s2

))
K0

)
γ2

+
(
2
(
1− iα(2 + s2)

)
K1 + s(1− 2iα)K0

)
ψ2 = −s2K1 .

(3.42)

The traction jump along the axial direction stated by Eq. (3.12) is also independent of bending
leading to

s2(I0 + sI1)ϕ
∗ + s(sI0 − I1)ψ∗ + s

(
s
(
1 + iα(3 + 2s2)

)
K0 +

(
iα(5 + s2)− s2

)
K1

)
ϕ2

+ s
((

1− iα(3 + 2s2)
)
K1 + s(1− iα)K0

)
ψ2 −

iαs

2
(3sK0 + 5K1) γ2 = −s(sK0 +K1) .

(3.43)

By considering only the shearing contribution in the normal traction jump in Eq. (3.13) we get

2s2I1ϕ
∗ +

(
iαs(4 + s2)K0 + 2

(
iα(4 + s2)− s2

)
K1

)
ϕ2 − iα

(
2sK0 + (4 + s2)K1

)
ψ2

− 2iα(sK0 + 2K1)γ2 = 0 .
(3.44)

Eqs. (3.39) through (3.44) form a closed system of equations for the unknown functions. Due to
their complexity, analytical expressions are not listed here. In particular, in the limit α → ∞ we
obtain

lim
α→∞

ϕ∗ =
(I0K1 + I1K0)(2I1 − sI0)
s(sI0 − I1)(I20 − I21 )− 2I0I21

, (3.45)

lim
α→∞

ψ∗ =
sI20 (sK0 −K1) + I0I1(s

2K1 − 2sK0 + 2K1)− sI21K1

s(sI0 − I1)(I20 − I21 )− 2I0I21
, (3.46)

lim
α→∞

γ∗ =
(s2K0 + sK1 + 4K0)I

2
1 + 2I0I1K1 − sI20 (sK0 +K1)

s(sI0 − I1)(I20 − I21 )− 2I0I21
, (3.47)

where the functions ϕ2, ψ2 and γ2 vanish in this limit.

Pure bending

Another membrane model involves only a bending resistance, as commonly considered for fluid
vesicles [79, 80]. Neglecting the shearing contribution in the traction jump along the φ direction,
Eq. (3.11) reads(

(4 + s2)I1 − 2sI0
)
ϕ∗ + (sI0 − 2I1)ψ

∗ +
(
sI0 − (2 + s2)I1

)
γ∗ −

(
(4 + s2)K1 + 2sK0

)
ϕ2

+ (2K1 + sK0)ψ2 +
((

2 + s2
)
K1 + sK0

)
γ2 = −s2K1 .

(3.48)

The traction jump across the z direction in the absence of shearing is continuous leading to

s(I0 + sI1)ϕ
∗ + (sI0 − I1)ψ∗ + s (K0 − sK1)ϕ2 + (K1 + sK0)ψ2 = −(sK0 +K1) . (3.49)
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while the normal traction jump is discontinuous leading to

2I1ϕ
∗ +

(
iα3

Bs
2
(
sK0 + (2 + s2)K1

)
− 2K1

)
ϕ2 − iα3

Bs
2(sK0 +K1)ψ2 − iα3

Bs
2K1γ2 = 0 , (3.50)

where we have defined the bending coefficient αB as

αB :=
1

R

(
κB
ηω

)1/3

, (3.51)

quantifying the effect of bending.
By plugging the expressions of ϕ2, ψ2 and γ2 as given by Eqs. (3.39) through (3.41) into Eqs. (3.48)

through (3.50), expressions for ϕ∗, ψ∗ and γ∗ can be obtained. In particular, by taking the limit
αB →∞ the coefficients read

lim
αB→∞

ϕ∗ =
−sK0(sK0 +K1)

sK0 (2sI0 − (3 + s2)I1) + (3 + s2)(sI0 − 2I1)K1
,

lim
αB→∞

ψ∗ =
sK0

(
sK0 + (2 + s2)K1

)
sK0 (2sI0 − (3 + s2)I1) + (3 + s2)(sI0 − 2I1)K1

,

lim
αB→∞

γ∗ =
2sK0K1

sK0 (2sI0 − (3 + s2)I1) + (3 + s2)(sI0 − 2I1)K1
,

which are in contrast to the solution for a hard-cylinder with stick boundary conditions given by
Eqs. (3.45) through (3.47). This difference is explained by the fact that bending following the Helfrich
model does not lead to a discontinuity in the tangential traction jumps [56]. Moreover, the normal
traction jump as stated by Eq. (3.15) depends uniquely on the radial (normal) displacement and
does not involve the tangential displacements uφ and uz. As a result, even by taking an infinite
membrane bending modulus, the tangential displacements are still completely free. This behavior
therefore cannot represent the rigid cylinder limit where membrane deformation in all directions must
be restricted. Such behavior has previously been observed near spherical membranes as well [63, 64].

Shearing and bending

For a membrane endowed simultaneously with shearing and bending rigidities, a similar resolution
procedure can be employed. Explicit analytical expressions can be obtained via computer algebra
systems, but they are rather complicated and are therefore not listed here. We further mention
that a coupling between shearing and bending exists, meaning that the solutions derived above
for pure shearing and bending cannot be added up linearly. This coupling behavior has previously
been observed for two parallel planar [62] or spherical membranes [63, 64], in contrast to the single
membrane case where adding up linearly the shearing and bending related solutions holds [59, 61].

In order to clarify the mentioned coupling between shear and bending, consider two different
idealized membranes, one with pure bending resistance (α = 0) and another one with pure shear
resistance (αB = 0). For a membrane endowed simultaneously with both shear and bending rigidities,
we have shown in Eqs. (3.39)–(3.41) that the unknown functions outside the tube X2 are related to
the functions inside X∗ in the following way

X2 = AX∗ + b , (3.52)

where X2 = (ϕ2, ψ2, γ2)
T, X∗ = (ϕ∗, ψ∗, γ∗)T, A is a 3× 3 known matrix and b = (0, 1,−1)T.

We now denote by X2S, X2B the solutions outside the tube for a membrane with pure shear and
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pure bending, respectively, and by X∗S, X
∗
B the corresponding image system solutions. Accordingly,

X2S = AX∗S + b , X2B = AX∗B + b , (3.53)

leading after taking the sum member by member to

X̂2 = AX̂∗ + 2b , (3.54)

where X̂2 = X2S +X2B and X̂∗ = X∗S +X∗B are the superposition solutions. Clearly, this relation is
different from the original equation (3.52) since b 6= 0, and therefore the true solutions X2 and X∗

cannot both be identical to the superposed functions X̂2 and X̂∗. As a consequence, they cannot
satisfy the correct boundary conditions showing that shear and bending are coupled and cannot be
added up linearly.

4 Particle rotational mobility and membrane deformation

The rotlet solution obtained in the previous section serves as a basis for the determination of the
particle rotational mobilities along and perpendicular to the cylinder axis. We restrict our present
consideration to the point-particle approximation, and thus the particle size is much smaller than
the cylinder radius. We shall show that this approximation, despite its simplicity, can lead to a
surprisingly good agreement with boundary integral simulations of truly extended particles.

4.1 Axial rotational mobility

Beginning with the rotational motion symmetrically around the cylinder axis, the leading-order
correction to the rotational mobility of a point-particle is

∆µS‖ = L−1z lim
r→0

Ω∗z , (4.1)

with

Ω∗z =
1

2

(
v∗φ,r +

v∗φ
r

)
,

being the z component of the correction to the fluid angular velocity Ω∗ := 1
2∇× v

∗. Making use of
Eq. (3.23a), we obtain

∆µS‖ =
1

8π2η

∫ ∞
0

qA∗ dq .

Scaling by the bulk rotational mobility µrr0 = 1/(8πηa3), the scaled frequency-dependent correction
to the rotational mobility takes the form

∆µS‖

µrr0
=

1

π

( a
R

)3 ∫ ∞
0

iαs3K2
1

(2I0 − iαsI1)K1 + 2K0I1
ds . (4.2)

Notably, the correction at lowest order follows a cubic dependence in the ratio of particle to cylinder
radius. Particularly, in the hard cylinder limit we get

lim
α→∞

∆µS‖

µrr0
= − 1

π

( a
R

)3 ∫ ∞
0

s2K1

I1
ds ≈ −0.79682

( a
R

)3
. (4.3)

in agreement with the result know in the literature [24, 81–83]. We further emphasize that in the
absence of shearing, the correction to the particle rotational mobility vanishes.
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We now turn our attention to hydrodynamic interactions between two spherical particles of equal
radius [84, 85] positioned on the centerline of an elastic cylinder. For the rest of our discussion, we
shall denote by γ the particle located at z = 0 and by λ the particle at z = h. The particle rotational
pair-mobility function about the line connecting the two centers is computed at leading order as

µP‖ = L−1z lim
r→rλ

Ω1z . (4.4)

Using Eqs. (3.19) and (3.23a), we get

µP‖ =
1

8πηh3
+

1

8π2η

∫ ∞
0

qA∗ cos (σs) dq .

wherein σ := h/R. The first term in the equation above is the leading-order rotational pair-mobility
for two isolated spheres, i.e. in an unbounded medium [86]. Scaling by the bulk rotational mobility,
we obtain

µP‖

µrr0
=
(a
h

)3
+

1

π

( a
R

)3 ∫ ∞
0

iαs3K2
1 cos (σs)

(2I0 − iαsI1)K1 + 2K0I1
ds ,

which is dependent on membrane shearing properties only. The hard-cylinder limit is recovered by
taking α→∞ to obtain

lim
α→∞

µP‖

µrr0
=
(a
h

)3
− 1

π

( a
R

)3 ∫ ∞
0

s2K1

I1
cos (σs) ds , (4.5)

that is positively defined for all values of σ. Therefore, the two particle have always the same sense
of rotation around the cylinder axis, in the same way as in an unbounded flow.

4.2 Radial rotational mobility

We compute the particle self-mobility correction for the asymmetric rotation around an axis perpen-
dicular to the cylinder axis which for a point particle situated on the cylinder axis is

∆µS⊥ = L−1r lim
r→0

Ω∗r = L−1φ lim
r→0

Ω∗φ , (4.6a)

where Lr = Lx cosφ and Lφ = −Lx sinφ and

Ω∗r =
1

2

(
v∗z,φ
r
− v∗φ,z

)
, Ω∗φ =

1

2
(v∗r,z − v∗z,r) ,

are the corrections to the radial and azimuthal fluid angular velocity, respectively. By making use of
Eqs. (3.34b) and (3.34c) we get

∆µS⊥
µrr0

=
1

2π

( a
R

)3 ∫ ∞
0

(γ∗ + 2ϕ∗) s2 ds .

Considering a membrane with both shearing and bending, and by taking the vanishing frequency
limit we obtain

lim
α→∞

∆µS⊥
µrr0

= − 1

2π

( a
R

)3 ∫ ∞
0

w

W
ds ≈ −0.73555

( a
R

)3
, (4.7)
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in agreement with the literature [24, 81]. Moreover,

w = s2
(
2I0I1(sK0 − 3K1) + sI20 (sK0 + 3K1)− I21

(
(s2 + 8)K0 + sK1

) )
, (4.8a)

W = sI31 − (s2 + 2)I0I
2
1 − sI20I1 + s2I30 . (4.8b)

The same limit is obtained when considering a membrane with pure shearing. Another limit is
recovered if the membrane possesses only a resistance towards bending such that

lim
α→∞

∆µS⊥,B
µrr0

= − 1

π

( a
R

)3 ∫ ∞
0

wB

WB
ds ≈ −0.24688

( a
R

)3
, (4.9)

where we have defined

wB = s4K2
0 ,

WB = sI0
(
(3 + s2)K1 + 2sK0

)
− (3 + s2)(sK0 + 2K1)I1 .

Next, we turn our attention to the rotational pair-mobility perpendicular to the line of centers.
At leading order we have

µP⊥ = L−1r lim
r→rλ

Ω1r = L−1φ lim
r→rλ

Ω1φ . (4.10)

In a scaled form we obtain

µP⊥
µrr0

= −1

2

(a
h

)3
+

1

2π

( a
R

)3 ∫ ∞
0

(γ∗ + 2ϕ∗) s2 cos (σs) ds , (4.11)

which in the vanishing frequency limit reduces to

lim
α→∞

µP⊥
µrr0

= −1

2

(a
h

)3
− 1

2π

( a
R

)3 ∫ ∞
0

w

W
cos (σs) ds , (4.12)

with w and W given above by Eqs (4.8). It can be shown that upon integration, the second term
in the latter equation is negatively valued for all value of σ. Therefore, the two particles undergo
rotation in opposite directions for all values of σ, i.e. in the same way as in a bulk fluid.

4.3 Startup rotational motion

We now compute the mobility coefficients for a particle starting from rest and then rotating under a
constant external torque (e.g. a magnetic or optical torque) exerted either in the direction parallel
or perpendicular to the cylinder axis. The steady torque is mathematically modeled by a Heaviside
step function L(t) = A θ(t) whose Fourier transform in the frequency domain reads [87]

L(ω) =

(
πδ(ω)− i

ω

)
A . (4.13)

The components of the time-dependent angular velocity can readily be obtained upon inverse Fourier
transformation to obtain

ωk(t)

µrr0 Ak
= 1 +

∆µSkk(0)

2
+

1

2iπ

∫ +∞

−∞

∆µSkk(ω)

ω
eiωt dω , k ∈ {r, φ, z} . (4.14)

We note that the third term in Eq. (4.14) is a real quantity which takes values between −∆µSkk(0)/2
when t→ 0 and +∆µSkk(0)/2 as t→∞, corresponding to the bulk and hard-wall behaviors, respec-
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tively. As the frequency-dependent mobilities are expressed as integrals over the scaled wavenumber
s, the computation of the time-dependent angular velocities requires a double integration procedure.
For this aim, we use the Cuba Divonne algorithm [88, 89] which is found to be suitable for the
numerical computation of the present double integrals.

4.4 Membrane deformation

Finally, our results can be employed to compute the membrane deformation resulting from an arbitrary
time-dependent point-torque acting parallel or perpendicular to the cylinder axis. The membrane
displacement field can readily be computed from the fluid velocity at r = R via the non-slip relation
stated by Eq. (3.17). We define the membrane frequency-dependent reaction tensor in the same way
as previously defined for a point-force as [62, 90]

ui(z, φ, ω) = Qij(z, φ, ω)Lj(ω) , (4.15)

relating between the membrane displacement field u and the torque L acting on the nearby particle.
Considering a harmonic-type driving torque Li(t) = Aie

iω0t, the membrane deformation in the time
domain is calculated as

ui(z, φ, t) = Qij(z, φ, ω0)Aje
iω0t . (4.16)

The physical displacement is then obtained by taking the real part of the latter equation. From
Eqs. (3.23b) and (3.28), we obtain

Qφz = Λ

∫ ∞
0

2sK1(I0K1 + I1K0)

(2K0 − iαsK1)I1 + 2I0K1
cos
(sz
R

)
ds ,

wherein Λ := 1/(4iπ2ηωR2), giving access to the membrane azimuthal deformation when an axial
torque is exerted on the particle. We further have Qrz = Qzz = 0 due to symmetry.

Next, considering a torque acing along an axis perpendicular to the cylinder axis, we obtain

Qrφ = −Λ

∫ ∞
0

((
(2 + s2)K1 + sK0

)
ϕ2 − (sK0 +K1)ψ

∗ −K1 γ
∗
)

sin
(sz
R

)
ds ,

Qφr = Λ

∫ ∞
0

(
− (sK0 + 2K1)ϕ2 +K1ψ

∗ + (K1 + sK0) γ
∗
)

sin
(sz
R

)
ds ,

Qzφ = −Λ

∫ ∞
0

s (−sK0ϕ2 +K1ψ
∗) cos

(sz
R

)
ds ,

and Qrr = Qφφ = Qzr = 0.

5 Comparison with numerical simulations

In order to assess the validity and appropriateness of the point particle approximation employed
throughout this work, we compare our analytical predictions with computer simulations performed
using a completed double layer boundary integral equation method [91–95]. The method is known
to be ideally suited for simulation of fluid flows in the Stokes regime [96] where both solid objects
and deformed boundaries are present. Technical details regarding the method and its numerical
implementation have been reported by some of us elsewhere, see e.g. Refs. [62, 97].

In the simulations, the cylindrical membrane is of length 200a uniformly meshed with 6550
triangles. The spherical particle is discretized by 320 triangular elements obtained by refining an
icosahedron consecutively [98, 99].
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Figure 2: (Color online) The scaled frequency dependent self- (a) and pair- (b) mobilities versus the
scaled frequency β for the rotational motion around the cylinder axis. The membrane is endowed
with only-shearing (green), only-bending (red) or both shearing and bending rigidities (black). Green
lines/symbols are hardly visible as they overlap with the black lines/symbols. Here the particle is
set on the centerline of an elastic cylindrical membrane of radius R = 4a. For the pair-mobility, the
interparticle distance is set h = R. The analytical predictions are shown as dashed and solid lines for
the real and imaginary parts, respectively. BIM simulations are presented as squares and circles for the
real and imaginary parts, respectively. The horizontal dashed lines represent the hard-cylinder limits
predicted by Eq. (4.3) and (4.5) for the self- and pair-mobilities respectively. For other parameters,
see main text.
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Figure 3: (Color online) The scaled frequency dependent self- (a) and pair- (b) mobilities versus the
scaled frequency β for the rotational motion around an axis perpendicular to the cylinder axis. The
color code is the same as in Fig. 2.
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Figure 4: (Color online) Scaled particle self-mobility corrections versus β for various values of the
reduced bending modulus EB for the rotational motion around an axis perpendicular to the cylinder
axis. Here we take R = 4a and C = 1.

In order to compute numerically the particle rotational self- and pair-mobility functions, a time
dependent harmonic torque Lλi(t) = Aλie

iω0t of amplitude Aλi and frequency ω0 is exerted along
the direction i at the particle labeled λ either parallel (z direction) or perpendicular (x direction) to
the cylinder axis. After a short transient evolution, both particles undergo oscillatory rotation with
the same frequency ω0 but with different phases, such that Ωλi = Bλie

iω0t+δλ and Ωγi = Bγie
iω0t+δγ .

For an accurate determination of the angular velocity amplitudes and phase shifts, we use a nonlinear
least-squares solver based on the trust region method [100]. The particle rotational self- and pair-
mobilities are then computed as

µSij =
Bλi
Aλj

eiδλ , µPij =
Bγi
Aλj

eiδγ . (5.1)

We then define the characteristic frequency associated to shearing as β := 1/α = 3ηωR/(2κS),
and for bending as βB := 1/α3

B = ηωR3/κB. Additionally, we define the reduced bending modulus
EB := κB/(κSR

2) a parameter quantifying the relative effect between membrane shearing and
bending.

As an example setup, we place a spherical particle on the centerline of an elastic cylinder of
initial (undeformed) radius R = 4a. We mostly take a reduced bending modulus EB = 1/6 for
which the characteristic frequencies associated to shearing and bending have about the same order
of magnitude, and thus both effects manifest themselves equally.

Fig. 2 a) shows the parallel component of the correction to the rotational self-mobility function
upon variation of the forcing frequency β. For a membrane with bending-only resistance (shown in
red), both the real and imaginary parts of the mobility correction vanish, in agreement with our
theoretical prediction stated by Eq. (4.2). Not surprisingly, the torque exerted on the particle along
the cylinder axis induces only membrane torsion and therefore the resulting stresses do not cause
any out-of-plane deformation or bending. For a membrane with a non-vanishing shearing resistance,
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Figure 5: (Color online) Time-dependent angular velocity of a particle starting from rest for a) axial
and b) radial rotational motion under the action of a constant external torque. Here we use the
same parameters as in Fig. 2 with a membrane with both shearing and bending rigidities. Solid lines
are the analytical predictions obtained from Eq. (4.14) whereas symbols are the boundary integral
simulations results. Black dashed lines are our theoretical predictions based on the point particle
approximation. Here τ is a characteristic time scale defined as τ := β/ω.

however, we observe that the mobility correction exhibits a monotonically increasing real part and
the typical peak structure for the imaginary part. In the vanishing frequency limit, the correction
to rotational mobility is identical to that predicted nearby a hard-cylinder with stick boundary
conditions, given by Eq. (4.3). Moreover, the bulk behavior is recovered for large forcing frequencies
where both the real and imaginary parts vanish.

In Fig. 2 b) we present the rotational pair-mobility function for two particles located on the
cylinder centerline a distance h = R apart. Similarly, a membrane with pure bending resistance does
not introduce a correction to the particle pair-mobility. Yet, the latter is markedly affected by the
membrane shearing resistance where the correction approaches that near a hard-cylinder in the low
frequency regime. For high forcing frequencies, the pair mobility equals that of two equal-sized spheres
in an unbounded medium, given at leading order by (a/h)3. A good agreement is obtained between
theoretical predictions and the numerical simulations we performed using a completed double layer
boundary integral method.

We now carry out for the rotation about an axis perpendicular to the cylinder axis. In Fig. 3,
we show the perpendicular component of the particle rotational self- and pair-mobilities nearby a
membrane endowed with shearing-only (green), bending-only (red) or both shearing and bending
rigidities (black). The mobility functions show basically a similar evolution as in the previous case of
axisymmetric rotation around the cylinder axis. As explained before, we observe that the mobility
near a no-slip cylinder is recovered only if the membrane possesses a non-vanishing shearing resistance.
The pair-mobility in the high frequency regime can appropriately be estimated from the leading
order bulk pair-mobility −(1/2)(a/h)3.

In order to probe the effect of the aforementioned coupling between shear and bending, we show
in Fig. 4 the particle self-mobility function versus β for the rotational motion perpendicular to the
cylinder axis upon variation of the reduced bending modulus EB while keeping R = 4a. We observe
that as EB increases, a second peak of lower amplitude emerges for higher forcing frequencies in
the imaginary part. Additionally, a dispersion step in the real part occurs that bridges between the



250 Pub7. Slow rotation inside an elastic tube

0

0.01

0.02

0.03

-40 -20 0 20 40

u
φ

/ A
z

R
κ
S

z/a

β = 2
β = 5
β = 10
β = 20

Figure 6: (Color online) The scaled azimuthal membrane displacements versus z/a at four forcing
frequencies computed at quarter oscillation period for tω0 = π/2. Solid lines are the analytical
predictions and symbols refer to boundary integral simulations.

hard-cylinder limit Eq. (4.7) and the bending limit predicted by Eq. (4.9). In fact, the peak observed
at β ∼ 1 is attributed to the membrane resistance towards shear and can conveniently be estimated
by a simple balance between fluid viscosity and membrane elasticity as ω ∼ κS/(ηR). The high-
frequency peak is however attributed to the membrane resistance towards bending and its position
can properly be estimated by a balance between fluid viscosity and bending such that ω ∼ κB/(ηR3)
corresponding to βB ∼ 1. Since βB = 2β/(3EB), the second peak occurs at β ∼ EB. Particularly, for
EB = 1, the shear and bending related peaks coincide for which both effects manifest themselves
equally. Analogous predictions can be made for the pair-mobility where similar conclusions can be
drawn.

In Fig. 5, we show the time-dependent angular velocity of a particle initially at rest, rotating
under the action of a constant external torque. We scale the time by the characteristic time scale
for shearing defined as τ := β/ω = 3ηR/(2κS). At short time scales for which t� τ , the membrane
introduces a small correction to the particle mobility since it does not have enough time to react on
these short time scales. As the time increases, the membrane effect becomes more important and
the mobility curves bend down substantially to asymptotically approach the correction predicted
nearby a hard cylinder. The steady rotational mobilities undergo small corrections relative to the bulk
values, making them more difficult to obtain precisely from the simulations. This explains the small
discrepancy between theory and simulations, notably for a membrane with pure bending resistance.

The membrane displacement induced by the symmetric rotation of the particle around the cylinder
axis is shown in Fig. 6 where both analytical predictions (solid lines) and numerical simulations
(symbols) are presented. Here we use the same parameters as in Fig. 2 and four different actuation
frequencies. Displacement fields are plotted when the oscillating particle reaches its maximal angular
position. We observe that the membrane azimuthal deformation exhibits a bell-shaped behavior
that peaks at the origin where deformation is more pronounced. By comparing the membrane
displacement field at various forcing frequencies, we observe that as the forcing frequency gets larger,
the membrane undergoes remarkably smaller deformation since the membrane does not have sufficient
time to respond to the fast rotating particle.

Analogous predictions for asymmetric deformation induced by the particle radial rotation are
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Figure 7: (Color online) The scaled radial a), axial b) and azimuthal c) membrane displacement field
versus scaled distance along the axis z/a for four forcing frequencies calculated at quarter period for
ω0t = π/2 when the particle reaches its maximal radial position. Here deformations are shown in
the plane of maximum deformation. Solid lines are the theoretical predictions and symbols refer to
the boundary integral simulation results.

shown in Fig. 7. Here deformations are shown in the plan of maximum deformation, i.e. φ = 0 for
uφ, and φ = π/2 for ur and uz. The radial and azimuthal deformations have fundamentally the same
evolution where both have symmetry with respect to the origin at which the deformation vanishes.
On the other hand, axial deformation reaches its maximal value at the origin and decays far away
as the ratio z/a gets larger. It can clearly be seen that upon particle radial rotation, the membrane
undergoes primarily axial deformation with a maximum that is about three times larger than that
reached in the radial or azimuthal deformations.

For typical flow parameters, the torques exerted by optical tweezers on suspended nanoparticles
are of the order of 1 pN µm [101]. Assuming a cylinder radius of 10−6 m, a membrane shearing
modulus of about 10−6 N/m and an actuation frequency β = 2, the membrane undergoes a maximal
deformation of about 3 % of its undeformed radius. Therefore, deformations upon particle rotational
motion are small and deviations from cylindrical shape are negligible.
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6 Conclusions

In this contribution we have presented analytical calculations of the Stokes flow induced by a point-
torque exerted parallel or perpendicular to the axis of an elastic circular tube. The membrane is
modeled by a combination of the neo-Hookean model for shearing and Helfrich model for bending. The
solution of the fluid flow is expressed in terms of Fourier-Bessel integrals with unknown coefficients
which are determined from the boundary conditions imposed at the membrane.

The result is the Green’s function for two orientations of the rotlet singularity. In the limit when
shearing and bending coefficients are large, corresponding to a stiff membrane, our results converge
to the expressions previously derived in literature for a hard cylindrical no-slip tube.

Our results are directly applicable to the determination of the leading-order correction to the self-
and pair-mobility functions of particles rotating parallel or perpendicular to the cylinder axis. Notably,
the correction to self mobility follows a cubic dependence on the ratio of particle to cylinder radius. We
also find that the rotational mobilities along the axis depend solely on membrane shearing resistance
and that bending does not play any role. Both shearing and bending however manifest themselves
for the rotational motion along an axis perpendicular to the cylinder axis. More importantly, the
steady particle mobility nearby a hard-cylinder with stick boundary conditions is recovered only if the
membrane possesses a non-vanishing resistance towards shearing. As an example, we have calculated
the effects of startup motion, i.e. particle initially at rest starting to rotate under a steady torque.
The Green’s function can also be applied to the calculation of the resulting membrane deformation.
For realistic values of parameters, however, this turns out to be negligible.

Our analytical predictions are verified and supplemented by corresponding boundary integral
simulations where a good agreement is obtained.
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Appendix

A Membrane mechanics

In this Appendix, the traction jump across a membrane endowed with shearing and bending rigidities
will be derived in the cylindrical coordinates system. We denote by a = Rer+zez the position vector
of the points located at the undeformed membrane. Here R is the membrane (undeformed) radius
and z is the axial distance along the cylinder axis. Here r, φ and z refer to the radial, azimuthal and
vertical coordinates, respectively. After deformation, the vector position reads

r = (R+ ur)er + uφeφ + (z + uz)ez , (A.1)

where u denotes the displacement vector field, which depends on the in-plane variables φ and z. In
the following, we shall use capital Roman letters for the undeformed state and small roman letters
for the deformed. The cylindrical membrane is defined by the covariant base vectors g1 := r,φ and
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g2 := r,z, which read

g1 = (ur,φ − uφ)er + (R+ ur + uφ,φ)eφ + uz,φez , (A.2)
g2 = ur,zer + uφ,zeφ + (1 + uz,z)ez . (A.3)

The unit normal vector n is defined as

n =
g1 × g2
|g1 × g2|

, (A.4)

which, at leading order in deformation reads

n = er +
uφ − ur,φ

R
eφ − ur,zez . (A.5)

The covariant components of the first fundamental form (metric tensor) are defined by the scalar
product gij = gi · gj . Upon linearization, we obtain

gij =

(
R2 + 2R(ur + uφ,φ) uz,φ +Ruφ,z

uz,φ +Ruφ,z 1 + 2uz,z

)
. (A.6)

The contravariant tensor gij is the inverse of the metric tensor [102], and at leading order reads

gij =

(
1
R2 − 2

ur+uφ,φ
R3 −uz,φ+Ruφ,z

R2

−uz,φ+Ruφ,z
R2 1− 2uz,z

)
. (A.7)

The covariant and contravariant tensors in the undeformed state Gij and Gij can immediately
be obtained by considering a vanishing displacement in Eqs. (A.6) and (A.7), respectively. In the
following, the traction jump equations across a cylindrical membrane endowed by an in-plane shearing
resistance shall be derived.

A.1 Shearing

The two transformation invariants are given by Green and Adkins as [103, 104]

I1 = Gijgij − 2 , (A.8a)

I2 = detGij det gij − 1 . (A.8b)

The contravariant components of the stress tensor τ ij can readily be obtained from the membrane
constitutive relation such that [52]

τ ij =
2

JS

∂W

∂I1
Gij + 2JS

∂W

∂I2
gij , (A.9)

where W (I1, I2) is the areal strain energy density and JS :=
√

1 + I2 is the Jacobian determinant,
representing the ratio between the deformed and undeformed local surface area. In the linear theory
of elasticity, JS ' 1 + e, where e := (ur + uφ,φ)/R + uz,z is the dilatation function. In the present
work, we use the neo-Hookean model to describe the elastic properties of the membrane, whose areal
strain energy reads [105, 106]

W (I1, I2) =
κS
6

(
I1 − 1 +

1

1 + I2

)
. (A.10)
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Plugging Eq. (A.10) into Eq. (A.9), the linearized in-plane stress tensor reads

τ ij =
2κS
3

( ur+uφ,φ
R3 + e

R2
1
2R

(
uφ,z +

uz,φ
R

)
1
2R

(
uφ,z +

uz,φ
R

)
uz,z + e

)
. (A.11)

The membrane elastic forces are balanced by the external forces via the equilibrium equations

∇iτ ij + ∆f j = 0 , (A.12a)

τ ijbij + ∆fn = 0 , (A.12b)

where ∆f = ∆f jgj + ∆fnn is the traction jump vector across the membrane. Here ∇i stands for
the covariant derivative [107] and bij is the second fundamental form (curvature tensor) defined by
the dot product bij = gi,j · n. At leading order we obtain

bij =

(
ur,φφ − (R+ ur + 2uφ,φ) ur,φz − uφ,z

ur,θz − uφ,z ur,zz

)
. (A.13)

After some algebra, the traction jump equations across the membrane given by Eqs. (A.12) read

κS
3

(
uφ,zz +

3uz,φz
R

+
4(ur,φ + uφ,φφ)

R2

)
+ ∆fφ = 0 , (A.14a)

κS
3

(
4uz,zz +

2ur,z + 3uφ,zφ
R

+
uz,φφ
R2

)
+ ∆fz = 0 , (A.14b)

−2κS
3

(
2(ur + uφ,φ)

R2
+
uz,z
R

)
+ ∆fr = 0 . (A.14c)

Continuing, the jump in the fluid stress tensor across the membrane reads

[σjr] = ∆fj , j ∈ {z, r} . (A.15)

Therefore, From Eqs. (A.14), (A.15) and (3.17), it follows that

[vφ,r] =
iα

2

(
Rvφ,zz + 3vz,φz +

4(vr,φ + vφ,φφ)

R

)∣∣∣∣
r=R

, (A.16a)

[vz,r] =
iα

2

(
4Rvz,zz + 2vr,z + 3vφ,zφ +

vz,φφ
R

)∣∣∣∣
r=R

, (A.16b)[
−p
η

]
= −iα

(
2(vr + vφ,φ)

R
+ vz,z

)∣∣∣∣
r=R

, (A.16c)

where α := 2κS/(3ηRω) is the shearing coefficient. Note that it follows from the incompressibility
equation

vr + vφ,φ
r

+ vr,r + vz,z = 0 , (A.17)

that [vr,r] = 0. In the following, we shall derive the traction jump equations across a membrane with
pure bending rigidity.
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A.2 Bending

We use the Helfrich model, in which the traction jump equations across the membranes are given
by [56, 59]

∆f = −2κB
(
2(H2 −K +H0H) + ∆‖

)
(H −H0)n , (A.18)

where κB is the bending modulus, H and K are respectively the mean and Gaussian curvatures,
given by

H =
1

2
bii , K = det bji , (A.19)

with bji being the mixed version of the curvature tensor related to the covariant representation of
the curvature tensor by bji = bikg

kj . Continuing, ∆‖ is the Laplace-Beltrami operator and H0 is the
spontaneous curvature, for which we take the initial undisturbed shape here. The linearized traction
jump due to bending are therefore given by

−κB
(
R3ur,zzzz + 2R(ur,zz + ur,zzφφ) +

ur + 2ur,φφ + ur,φφφφ
R

)
+ ∆fr = 0 . (A.20)

and ∆fφ = ∆fz = 0.
Note that bending does not introduce at leading order a jump in the tangential traction [56]. The

traction jump equations take the following final from

[vφ,r] = 0 , (A.21a)
[vz,r] = 0 , (A.21b)[
−p
η

]
= −iα3

B

(
R3vr,zzzz + 2R(vr,zz + vr,zzφφ) +

vr + 2vr,φφ + vr,φφφφ
R

)∣∣∣∣
r=R

, (A.21c)

where αB = (κB/(ηω))1/3/R is the bending coefficient.
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Abstract

We use the image solution technique to compute the leading order frequency-dependent self-mobility
function of a small solid particle moving perpendicular to the surface of a spherical capsule whose
membrane possesses shearing and bending rigidities. Comparing our results with those obtained earlier
for an infinitely extended planar elastic membrane, we find that membrane curvature leads to the
appearance of a prominent additional peak in the mobility. This peak is attributed to the fact that the
shear resistance of the curved membrane involves a contribution from surface-normal displacements
which is not the case for planar membranes. In the vanishing frequency limit, the particle self-mobility
near a no-slip hard sphere is recovered only when the membrane possesses a non-vanishing resistance
towards shearing. We further investigate capsule motion, finding that the pair-mobility function is
solely determined by membrane shearing properties. Our analytical predictions are validated by fully
resolved boundary integral simulations where a very good agreement is obtained.

1 Introduction

Nanoparticles nowadays are widely used in medicine as therapeutic drug delivery agents because of
their ability to target specific areas including tumors and inflammation sites [1, 2]. Once they are
injected into the blood circulation, nanoparticles interact hydrodynamically with neighboring cell
membranes in a complex fashion.

In these situations, the Reynolds number is typically very low and a complete description of
particle motion is possible via the mobility tensor which gives a linear relation between the particle
velocity and the force applied on it. In the presence of a boundary (interface) the mobility is
anisotropic and depends on the distance between the particle and the interface. For fluid-solid and
fluid-fluid interfaces these mobility tensors have been studied intensively both theoretically [3–18]
and experimentally [19–35] since quite some time ago. Due to their relevance as model systems for
cell membranes, also elastic interfaces have started to attract some attention recently. Here, any
motion of the particle causes membrane deformation and a flow is created when the membrane
relaxes back to its undeformed state, acting back on the particle motion at a later time. Accordingly
the system possesses a memory and the mobility depends not only on the distance, but also on time
or, after temporal Fourier-transformation, on frequency. Particle motion nearby elastic membranes
has been investigated experimentally using optical traps [36–38], magnetic particle actuation [39]
and quasi-elastic light scattering [40, 41], where a significant decrease in mobility normal to the cell
membrane has been observed similar to that observed near a hard wall. Particle mobility inside
a spherical cell has further been measured by optical microscopy [42]. Setting a particle nearby
a cell membrane has been used in interfacial microrheological experiments as an efficient way to
extract membrane’s unknown moduli [37, 43]. Theoretical investigations near elastic interfaces have
been carried out using lubrication theory [44–46], the point-particle approximation [47–54] and have
recently been extended by including higher-order singularities and the hydrodynamic interaction
between two particles [55]. All these works considered an infinitely large planar interface which might
not always be an appropriate model for a curved cell membrane. Since their solution technique is
based on 2D spatial Fourier transforms [13, 56], their approach cannot be extended to non-planar
interfaces.

In this paper, we therefore employ a different approach based on the image solution technique
to compute the frequency dependent mobility of a small particle moving perpendicular to an ini-
tially spherical elastic object (which can be a cell, a capsule or a vesicle) whose membrane exhibits
resistance towards shearing and bending. The method has originally been introduced by Fuentes
and coworkers [57, 58] who investigated the hydrodynamic interactions between two unequal viscous
drops when the interparticle gap is of the order of the diameter of the smaller one.
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The remainder of the paper is organized as follows. In Sec. 2, we compute the flow field by
expressing the solution of the fluid motion as a multipole expansion. In Sec. 3, we give analytical
expressions of the particle frequency-dependent self-mobility in terms of infinite series, nearby idealized
membranes with shearing-only or bending-only rigidities. The motion of the capsule is studied in
Sec. 4, finding that the pair-mobility function depends only on membrane shearing properties. A
comparison between theoretical predictions and numerical simulations is provided in Sec. 5 where
a very good agreement is obtained. A conclusion summarizing our results is offered in Sec. 6. The
technical details are relegated to the appendices.

2 Singularity solution

In this section, we derive the image solution for a point-force acting nearby a spherical capsule of
radius a. We will use the term “capsule” to denote a general soft object including cells or vesicles. The
origin of spherical coordinates is located at x1, the center of the capsule. An arbitrary time-dependent
point-force F is acting at x2 = Rez (see Fig. 1 for an illustration of the system setup.) The problem
is thus equivalent to solving the forced Stokes equations

η∇2v −∇p+ F δ(x− x2) = 0 , (2.1)
∇ · v = 0 , (2.2)

for the fluid outside the capsule and

η∇2v(i) −∇p(i) = 0 , (2.3)

∇ · v(i) = 0 , (2.4)

inside. Here v and p denote the flow velocity and the pressure outside the capsule, and the super-
script (i) denote the corresponding interior fields. For simplicity, the fluid is assumed to have the
same dynamic viscosity η everywhere.

We therefore need to solve Eqs. (2.1) through (2.4) for the boundary conditions imposed at the
membrane equilibrium position r = a,

[vθ] = 0 , (2.5)
[vr] = 0 , (2.6)

[σθr] = ∆fSθ + ∆fBθ , (2.7)

[σrr] = ∆fSr + ∆fBr , (2.8)

where the notation [w] := w(r = a+)− w(r = a−) represents the jump of a given quantity w across
the membrane. Here we assume axisymmetry such that all azimuthal components vanish. Throughout
the remainder of this paper, all the lengths will be scaled by the capsule radius a unless otherwise
stated. For convenience, the transition rules to physical quantities are summarized in appendix B.
The non-vanishing components of the fluid stress tensor are expressed in spherical coordinates as [59]

σθr = η
(
vθ,r −

vθ
r

+
vr,θ
r

)
, (2.9a)

σrr = −p+ 2ηvr,r , (2.9b)

where comma in indices denotes a spatial partial derivative. Note that Eqs. (2.5) and (2.6) represent
the natural continuity of the flow field across the membrane, whereas Eqs. (2.7) and (2.8) are the
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Figure 1: Illustration of the system setup. A small solid spherical particle of radius b positioned at
x2 = Rez nearby a large spherical capsule of radius a. In an axisymmetric configuration, the force is
directed along the unit vector d ≡ −ez.

discontinuity of the normal-tangential and normal-normal components of the fluid stress tensor at
the membrane. Here ∆fθ and ∆fr are the meridional and radial traction where the superscripts S
and B stand for the shearing and bending related parts, respectively. As derived in Appendix A,
according to the Skalak model [60] the linearized traction due to shearing elasticity reads

∆fSθ = −2κS
3

(
(1 + 2C)ur,θ + (1 + C)uθ,θθ + (1 + C)uθ,θ cot θ −

(
(1 + C) cot2 θ + C

)
uθ

)
, (2.10a)

∆fSr =
2κS
3

(1 + 2C) (2ur + uθ,θ + uθ cot θ) . (2.10b)

The traction jump due to bending resistance can be derived from the Helfrich model [61] or by
assuming a linear constitutive relation for the bending moments [62]. For small deformations, both
formulations are equivalent [63] leading to the traction (cf. appendix A)

∆fBθ = κB
((

1− cot2 θ
)
ur,θ + ur,θθ cot θ + ur,θθθ

)
, (2.11a)

∆fBr = κB

((
3 cot θ + cot3 θ

)
ur,θ − ur,θθ cot2 θ + 2ur,θθθ cot θ + ur,θθθθ

)
. (2.11b)

Here u(θ) = ur(θ)er + uθ(θ)eθ denotes the membrane displacement vector, related to the fluid
velocity by the no-slip relation at r = 1 by

v|r=1 =
du

dt
, (2.12)

which can thus be written in temporal Fourier space as v = iωu evaluated at r = 1. The membrane
parameters κS and κB are the shearing and bending moduli, respectively, and C is the Skalak
parameter defined as the ratio between area expansion modulus κA and shear modulus κS. An
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unscaled version of the above equations in physical units can be obtained by applying the rules given
in appendix B.

Our resolution approach is based on the image solution method proposed by Fuentes et al. [57]
who computed the axisymmetric motion of two viscous drops in Stokes flow. Accordingly, the exterior
fluid velocity can be written as a sum of two contributions,

vi = vSi + v∗i , (2.13)

where vSi := Gij(x−x2)Fj is the velocity field induced by a point-force acting at x2 (cf. equation (2.14))
in an infinite medium, i.e. in the absence of the capsule and v∗i is the image system required to satisfy
the boundary conditions at the capsule membrane.

Now we briefly sketch the main resolution steps. First, the velocity vS due to the Stokeslet acting
at x2 is written in terms of spherical harmonics which are transformed afterward into harmonics based
at x1 via the Legendre expansion. Second, the image system solution v∗ is expressed as multipole
series at x1 which subsequently is rewritten in terms of spherical harmonics centered at x1. Third,
the solution inside the capsule v(i) is expressed using Lamb’s solution [64] also written in terms of
spherical harmonics at x1. The last step consists of determining the series expansion coefficients by
satisfying the boundary conditions at the membrane surface stated by Eqs. (2.5) through (2.8).

2.1 Stokeslet representation

We begin with writing the Stokeslet acting at x2,

vSi = GijFj =
1

8πη

(
Fi

1

s
+ Fj(x− x2)i∇2j

1

s

)
, (2.14)

where s := |x − x2|. Here ∇2j := ∂/∂x2j denotes the nabla operator taken with respect to the
singularity position x2. Using Legendre expansion, the harmonics based at x2 can be expanded as

1

s
=
∞∑
n=0

r2n+1

Rn+1

(d ·∇)n

n!

1

r
, (2.15)

where the unit vector d := (x1 − x2)/R = −ez, r = x − x1 and r := |r|. Moreover, we denote by
ϕn the harmonic of degree n, related to the Legendre polynomials of degree n by [65]

ϕn(r, θ) :=
(d ·∇)n

n!

1

r
=

1

rn+1
Pn(cos θ) . (2.16)

For the axisymmetric case, the force is exerted along the unit vector d and can be written as
F = Fd. By making use of the identities

∇2
1

Rn+1
=
n+ 1

Rn+2
d , (d ·∇2)d = 0 , (2.17)

Eq. (2.14) can therefore be written as

vS =
F

8πη

[ ∞∑
n=0

(n+ 2)
r2n+1

Rn+1
dϕn +

∞∑
n=0

(n+ 1)
r2n+1

Rn+2
rϕn

]
. (2.18)

Hence, the Stokeslet is written in terms of harmonics based at x1. Note that the terms with
dϕn in Eq. (2.18) are not independent harmonics. For their elimination, we shall use the following
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recurrence property [57]

dϕn =
1

2n+ 1

(
∇ϕn−1 − r2∇ϕn+1 − (2n+ 3)r ϕn+1

)
, (2.19)

leading after substitution into Eq. (2.18) to

vS =
F

8πη

∞∑
n=1

[(
n+ 3

2n+ 3

r2n+3

Rn+2
− n+ 1

2n− 1

r2n+1

Rn

)
∇ϕn

+

(
(n+ 1)

r2n+1

Rn+2
− (n+ 1)(2n+ 1)

2n− 1

r2n−1

Rn

)
rϕn

]
.

(2.20)

Note that the terms with n = 0 cancel so that the summation starts from n = 1.

2.2 Image system representation

Next, we write the image system solution following a multipole expansion approach as

v∗i =
F dj
8πη

∞∑
n=0

[
An

(d ·∇)n

n!
Gij(r) +Bn

(d ·∇)n

n!
∇2Gij(r)

]
, (2.21)

where the solution form is assumed as a result of the system axisymmetry [57] with the constants
An and Bn to be determined by the boundary conditions. By making use of the identity

(d ·∇)n

n!
Gij(r) = δijϕn − ri

∂ϕn
∂xj
− di

∂ϕn−1
∂xj

.

together with

∇2Gij(r) = − ∂2

∂xi∂xj

2

r
,

the image solution can be written as

v∗ = − F

8πη

∞∑
n=0

[
An

(
(n− 1)dϕn + (n+ 1)rϕn+1

)
+ 2(n+ 1)Bn∇ϕn+1

]
. (2.22)

Further, the elimination of the dependent harmonics dϕn is readily achieved using Eq. (2.19).
Shifting the index to start the sum from n = 1, we finally obtain

v∗ =
F

8πη

∞∑
n=1

[(
n− 2

2n− 1
r2An−1 −

n

2n+ 3
An+1 − 2nBn−1

)
∇ϕn −

2(n+ 1)

2n− 1
An−1rϕn

]
. (2.23)
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2.3 Solution inside the capsule

For the flow field inside the capsule, we use Lamb’s general solution [66, 67], which can be expressed
in terms of interior harmonics based at x1 as [57]

v(i) =
F

8πη

∞∑
n=1

[
an

(
n+ 3

2
r2n+3∇ϕn +

(n+ 1)(2n+ 3)

2
r2n+1rϕn

)

+ bn
(
r2n+1∇ϕn + (2n+ 1)r2n−1rϕn

) ]
.

(2.24)

The determination of the series coefficients outside the capsule An and Bn and inside the capsule
an and bn is achieved by applying the boundary conditions at the capsule membrane. This will be
subject of the next subsections.

2.4 Determination of the series coefficients

Hereafter, for the sake of completeness, we shall state explicitly the expressions of the projected
velocity components onto the radial and tangential directions. For this aim, we make use of the
following identities for the projection onto the radial direction,

er ·∇ϕn = −n+ 1

r
ϕn , (2.25a)

er · rϕn = rϕn . (2.25b)

For the projection onto the tangential direction, we make use of

eθ · rϕn = 0 . (2.26)

We further define
ψn := eθ ·∇ϕn =

1

r

∂ϕn
∂θ

. (2.27)

From Eq. (2.20), the radial and tangential components of the Stokeslet solution follow forthwith.
We obtain

vSr =
F

8πη

∞∑
n=1

[
n(n+ 1)

2n+ 3

r2n+2

Rn+2
− n(n+ 1)

2n− 1

r2n

Rn

]
ϕn , (2.28)

vSθ =
F

8πη

∞∑
n=1

[
n+ 3

2n+ 3

r2n+3

Rn+2
− n+ 1

2n− 1

r2n+1

Rn

]
ψn . (2.29)

Similar, from Eq. (2.23) we obtain the components of the image solutions as

v∗r =
F

8πη

∞∑
n=1

[
− n(n+ 1)

2n− 1
rAn−1 +

n(n+ 1)

2n+ 3

An+1

r
+ 2n(n+ 1)

Bn−1
r

]
ϕn , (2.30)

v∗θ =
F

8πη

∞∑
n=1

[
n− 2

2n− 1
r2An−1 −

nAn+1

2n+ 3
− 2nBn−1

]
ψn . (2.31)
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From Eq. (2.24), the components of the flow field inside the capsule read

v(i)r =
F

8πη

∞∑
n=1

[
n(n+ 1)

2
r2n+2an + nr2nbn

]
ϕn , (2.32)

v
(i)
θ =

F

8πη

∞∑
n=1

[
n+ 3

2
r2n+3an + r2n+1bn

]
ψn . (2.33)

Pressure field

In order to proceed later, we need to express the pressure field in terms of a multipole expansion.
The form of the pressure p in the exterior fluid follows from the general solution of the axisymmetric
Laplace equation in spherical coordinates as

p =
F

8π

∞∑
n=1

(Sn +Qnr
2n+1)ϕn .

Since the form of the velocity field is known from Eqs. (2.28)–(2.31), the coefficients Sn and Qn can
be related to the coefficients of the velocity field by using Eq. (2.1) leading to

Sn = −2nAn−1 , Qn =
2(n+ 1)

Rn+2
. (2.34)

Inside the capsule, all harmonics of negative order which lead to a singularity at r = 0 need to
be discarded reducing the form of the pressure to

p(i) =
F

8π

∞∑
n=1

pnr
2n+1ϕn .

Using Eqs. (2.3), (2.32) and (2.33) we find

pn = (n+ 1)(2n+ 3)an . (2.35)

Continuity of velocity

After substituting Eqs. (2.28) through (2.33) into Eqs. (2.5) and (2.6), the continuity of the tangential
and radial fluid velocity components across the membrane leads to the two following equations

n(n+ 1)

2
an + nbn = −n(n+ 1)

2n− 1
An−1 +

n(n+ 1)

2n+ 3
An+1 + 2n(n+ 1)Bn−1 +

n(n+ 1)

2n+ 3

1

Rn+2

− n(n+ 1)

2n− 1

1

Rn
,

n+ 3

2
an + bn =

n− 2

2n− 1
An−1 −

nAn+1

2n+ 3
− 2nBn−1 +

n+ 3

2n+ 3

1

Rn+2
− n+ 1

2n− 1

1

Rn
,

which can be solved for the coefficients an and bn to obtain

an = An−1 −
2n+ 1

2n+ 3
An+1 − 2(2n+ 1)Bn−1 +

2

2n+ 3

1

Rn+2
, (2.37)

bn = −(n+ 1)(2n+ 1)

2(2n− 1)
An−1 +

n+ 1

2
An+1 + (n+ 1)(2n+ 3)Bn−1 −

n+ 1

2n− 1

1

Rn
. (2.38)
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Discontinuity of stress tensor

Expressions for An and Bn can be determined from the discontinuity of the traction across the
membrane. In order to assess the effect of shearing and bending on particle self-mobility, we shall
consider in the following shearing and bending effects separately.

Shearing contribution Here we consider an idealized membrane with a shearing-only resistance,
such as a typical artificial capsule [68]. After setting ∆fBr = ∆fBθ = 0 in the traction jump equations
given by Eqs. (2.7) and (2.8), we readily obtain

[vθ,r] = −α
(

(1 + 2C)vr,θ + (1 + C) (vθ,θθ + vθ,θ cot θ)−
(
(1 + C) cot2 θ + C

)
vθ

)∣∣∣∣
r=1

, (2.39a)[
p

η

]
= α(1 + 2C)vr,r|r=1 , (2.39b)

where iα := 2κS/(3ηω) upon using the incompressibility equation

2vr
r

+ vr,r +
vθ,θ + vθ cot θ

r
= 0 .

It follows immediately that [vr,r] = 0. Furthermore, note that [vr,θ] = 0.
Continuing, we proceed first by substituting the expressions of the velocity components given

by Eqs. (2.28)–(2.33) into the tangential traction jump Eq. (2.39a) and replacing an and bn with
their expressions given by Eqs. (2.37) and (2.38), respectively. For the determination of the unknown
coefficients, we multiply both equation members by ψm sin θ and integrate over the polar angle θ
between 0 and π. By making use of the following orthogonality properties∫ π

0
ψmψn sin θdθ =

2n(n+ 1)

2n+ 1

δmn
r2n+4

, (2.40)

and ∫ π

0
ψm
(
ψn,θθ + ψn,θ cot θ − ψn cot2 θ

)
sin θdθ = −2n(n+ 1)(n2 + n− 1)

2n+ 1

δmn
r2n+4

. (2.41)

the resulting equation reads

(2n+ 1)
(

2(2n+ 3)Bn−1 −An−1 +An+1

)
=

−α
(

(1 + 2C)n(n+ 1)

(
An+1

2n+ 3
− An−1

2n− 1
+ 2Bn−1 −

1

2n− 1

1

Rn
+

1

2n+ 3

1

Rn+2

)
+

(
n− 2

2n− 1
An−1 −

n

2n+ 3
An+1 − 2nBn−1 −

n+ 1

2n− 1

1

Rn
+

n+ 3

2n+ 3

1

Rn+2

)
× (1− (1 + C)n(n+ 1))

)
,

(2.42)

for n ≥ 1. Next, we write a similar equation for the normal traction jump Eq. (2.39b). After
substituting the velocity and the pressure into Eq. (2.39b), multiplying both members by ϕm sin θ
and employing the orthogonality properties∫ π

0
ϕnϕm sin θdθ =

2

2n+ 1

δmn
r2n+2

. (2.43)
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and ∫ π

0
ϕm (ϕn,θθ + ϕn,θ cot θ) sin θdθ = −2n(n+ 1)

2n+ 1

δmn
r2n+2

. (2.44)

we get after replacing an and bn with their corresponding expressions

−2(2n+ 3)(2n+ 1)(n+ 1)Bn−1 + (2n2 + 7n+ 3)An−1 − (2n2 + 3n+ 1)An+1

=

(
− n

2n− 1
An−1 +

n+ 2

2n+ 3
An+1 + 2(n+ 2)Bn−1 +

n− 1

2n− 1

1

Rn
− n+ 1

2n+ 3

1

Rn+2

)
×α(1 + 2C)n(n+ 1) ,

(2.45)

for n ≥ 1.

The equations (2.42) and (2.45) form a closed linear system of equations, amenable to immediate
resolution using the standard substitution method. From Eq. (2.42), Bn−1 can be expressed in terms
of An−1 and An+1. We obtain

Bn = − An+2

4n+ 10
+

1

2G

(
G′An
2n+ 1

+
αG3

2n+ 5

1

Rn+3
− αG1

2n+ 1

1

Rn+1

)
, (2.46)

for n ≥ 0, where we defined

G := (C + 1)αn3 + [(6C + 5)α+ 4]n2 + [(11C + 7)α+ 16]n+ (6C + 3)α+ 15 ,

G′ := α(1 + C)n3 + [(4C + 3)α+ 4]n2 + [(5C + 1)α+ 8]n+ (1 + 2C)α+ 3 ,

G1 := (C + 1)n3 + (3C + 4)n2 + 2(C + 2)n ,

G3 := (1 + C)n3 + (5C + 6)n2 + (8C + 10)n+ (4C + 2) .

Next, by substituting the expression of Bn−1 into Eq. (2.45), we obtain the general term for An
as

An =
αn(n+ 2)

K

(
K3

Rn+3
− K1

Rn+1

)
, (2.48)

for n ≥ 0 where

K := 8(C + 1)αn5 + [(4C + 2)α2 + 60(C + 1)α+ 32]n4 + (36C + 18)α+ 90

+ [(24C + 12)α2 + 172(C + 1)α+ 192]n3 + [(44C + 22)α2 + 234(C + 1)α+ 400]n2

+ [(24C + 12)α2 + (150C + 138)α+ 336]n ,

K1 := 4(C + 1)n4 + [(4C + 2)α+ 20C + 28]n3 + [(22C + 11)α+ 31C + 75]n2

+ [(36C + 18)α+ 15C + 93]n+ (18C + 9)α+ 45 ,

K3 := 4(C + 1)n4 + [(4C + 2)α+ 20C + 28]n3 + [(18C + 9)α+ 35C + 71]n2

+ [(20C + 10)α+ 25C + 71]n+ (6C + 3)α+ 6C + 21 .

The general term for Bn can then be obtained by substituting the expressions of An and An+2

determined from Eq. (2.48) into Eq. (2.46).

In particular, for α→∞ (achieved either by taking an infinite membrane elastic modulus or by
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considering a vanishing frequency) we recover the hard-sphere limit, namely

lim
α→∞

An = −
(
n+

3

2

)
1

Rn+1
+

(
n+

1

2

)
1

Rn+3
, (2.50a)

lim
α→∞

Bn = −1

4
(1−R2)2

1

Rn+5
, (2.50b)

in agreement with the results by Kim and Karrila [59, p. 243] .

Bending contribution In the following, we consider an idealized membrane with a bending-only
resistance such as an artificial vesicle. By setting ∆fSr = ∆fSθ = 0 in the traction jump equations
given by Eqs. (2.7) and (2.8), we get

[vθ,r] = αB

((
1− cot2 θ

)
vr,θ + vr,θθ cot θ + vr,θθθ

)∣∣
r=1

, (2.51a)[
− p

η

]
= αB

((
3 cot θ + cot3 θ

)
vr,θ − vr,θθ cot2 θ + 2vr,θθθ cot θ + vr,θθθθ

)∣∣∣∣
r=1

, (2.51b)

where iαB := κB/(ηω). Note that the right hand side of Eq. (2.51b) stands for the tangential
biharmonic operator [69] applied to the velocity radial component vr.

We then substitute the expressions of the velocity components given by Eqs. (2.28)–(2.33) into the
tangential traction jump Eq. (2.51a) and replace an and bn with their expressions given respectively
by Eqs. (2.37) and (2.38). After multiplying both members by ψm sin θ, preforming the integration
between 0 and π, and making use of the orthogonality identities (2.40) and (2.41) together with
Eq. (2.27), we obtain

(2n+ 1)
(

2(2n+ 3)Bn−1 −An−1 +An+1

)
=

αB

(
An+1

2n+ 3
− An−1

2n− 1
+ 2Bn−1 −

1

2n− 1

1

Rn
+

1

2n+ 3

1

Rn+2

)
n(n+ 1)(−n2 − n+ 2) ,

(2.52)

for n ≥ 1.
Next, after substitution in the normal traction jump Eq. (2.51b), multiplying both members by

ϕm sin θ and using Eq. (2.43) together with the orthogonality identity∫ π

0
ϕm

((
3 cot θ + cot3 θ

)
ϕn,θ − ϕn,θθ cot2 θ + 2ϕn,θθθ cot θ + ϕn,θθθθ

)
sin θdθ

=
2n(n− 1)(n+ 1)(n+ 2)

2n+ 1

δmn
r2n+2

,

we get after replacing an and bn with their corresponding expressions

− 2(2n+ 3)(2n+ 1)(n+ 1)Bn−1 + (2n2 + 7n+ 3)An−1 − (2n2 + 3n+ 1)An+1

= αB

(
An+1

2n+ 3
− An−1

2n− 1
+ 2Bn−1 −

1

2n− 1

1

Rn
+

1

2n+ 3

1

Rn+2

)
(n− 1)n2(n+ 1)2(n+ 2) ,

(2.53)

for n ≥ 1.
From Eq. (2.52), Bn−1 can straightforwardly be expressed in terms of An−1 and An+1. We obtain

Bn = − An+2

4n+ 10
+

1

S

(
S′An

2n+ 1
+ αBn(n+ 1)(n+ 2)(n+ 3)

(
1

2n+ 1

1

Rn+1
− 1

2n+ 5

1

Rn+3

))
,

(2.54)
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for n ≥ 0, where we defined

S := 2
(
αBn

4 + 6αBn
3 + (11αB + 4)n2 + (6αB + 16)n+ 15

)
,

S′ := S/2− 8n− 12 .

After plugging the expression of Bn−1 into Eq. (2.53), we get the general term of An as

An =
αBn

2(n+ 1)(n+ 3)(n+ 2)2

W

(
2n+ 1

Rn+3
− 2n+ 5

Rn+1

)
, (2.56)

for n ≥ 0, where

W := 4αBn
6 + 36αBn

5 + 118αBn
4 + (168αB + 16)n3 + (94αB + 72)n2 + (12αB + 92)n+ 30 .

The general term forBn can be obtained by substituting An andAn+2 as computed from Eq. (2.56)
into Eq. (2.54). Interestingly, by taking αB to infinity, An and Bn do not tend to the hard-sphere
limits as it has been shown to be the case for a shearing-only membrane. In this case we rather
obtain

lim
αB→∞

An =
n(n+ 2)

2(2n2 + 6n+ 1)

(
2n+ 1

Rn+3
− 2n+ 5

Rn+1

)
,

lim
αB→∞

Bn =
1

4

(
− n2 + 2n− 2

2n2 + 6n+ 1
− (n+ 2)(n+ 4)

2n2 + 14n+ 21

1

R4
+

2n4 + 18n3 + 49n2 + 42n+ 3

(2n2 + 6n+ 1)(2n2 + 14n+ 21)

2

R2

)
1

Rn+1
.

A similar resolution approach can be adopted for the determination of the series coefficients
when the membrane is simultaneously endowed with both shearing and bending rigidities. Analytical
expression can be obtained by computer algebra software, but they are not included here due to their
complexity and lengthiness. We note that the shearing and bending contributions to the particle
mobility do not superpose linearly which is in contrast to a planar membrane [52] but similar to
what has been observed between two planar membranes [53].

3 Particle self-mobility

In this section, we compute the correction to the particle self-mobility in the point-particle framework.
Here we assume no net force on the capsule and an external force F2 on the solid particle. As shown
in Appendix C, for finite membrane shearing modulus, the capsule is in fact force free.

The zeroth-order solution for the particle velocity is given by the Stokes law as V (0)
2 = µ0F2,

where µ0 := 1/(6πηb) is the usual bulk mobility. The first-order correction to the particle self-mobility
∆µ is obtained by evaluating the reflected flow field at the particle position such that

v∗|x=x2 = ∆µF2 . (3.1)

Since the force points along the axis of symmetry of the system, the mobility correction is a simple
scalar and not a tensor as it would be for an arbitrary direction of the force. In the following, we



Pub8. Mobility nearby a spherical membrane: Axisymmetric motion 273

shall make use of the following identities

(d ·∇)n

n!
G(r)

∣∣∣∣
x=x2

F2 =
2

Rn+1
F2 ,

(d ·∇)n

n!
∇2G(r)

∣∣∣∣
x=x2

F2 = −2(n+ 1)(n+ 2)

Rn+3
F2 .

to finally obtain
∆µ

µ0
=

3b

4

∞∑
n=0

2
(
An − (n+ 1)(n+ 2)ξ2Bn

)
ξn+1 , (3.3)

wherein ξ := 1/R ∈ [0, 1). This is the central result of our work. We recall that the unscaled form for
an arbitrary capsule radius a can be obtained from Eq. (3.3) by the replacement rules in Appendix B.
The number of terms to be included before the series is truncated can be estimated for a desired
precision as detailed in appendix D. Due to the point-particle approximation, the particle radius
only enters upon rescaling the particle self-mobility correction by the bulk mobility µ0.

3.1 Shearing contribution

For a membrane exhibiting a shearing-only resistance, the particle self-mobility correction can be
computed by plugging the expressions of Bn and An as stated respectively by Eqs. (2.46) and (2.48)
into Eq. (3.3). By taking the limit when α→∞ we recover the rigid sphere limit,

∆µS,∞
µ0

:= lim
α→∞

∆µS
µ0

= −ξ
3(15− 7ξ2 + ξ4)

4(1− ξ2)
b

R
, (3.4)

in agreement with the result by Ekiel-Jeżewska and Felderhof [70, Eq. (2.26)]. For an infinite membrane
radius, we obtain

∆µS,∞
µ0

= −9

8

b

h
, (3.5)

where h := R− 1 being the distance from the center of the solid particle to the closest point on the
capsule surface. We thus recover the well-known result for a planar rigid wall as first calculated by
Lorentz about one century ago [3].

We define the characteristic frequency for shearing as β := 6Bηωh/κS with B := 2/(1 + C). In
Fig. 2 we plot the variations of the scaled self-mobility correction for a shearing-only membrane
versus β upon varying the particle radius b while keeping the distance from the membrane h = 2b
and setting the Skalak parameter C = 1. We observe that the real part of the mobility correction is
a monotonically increasing function of frequency and the imaginary part exhibits the typical peak
structure which is a signature of the memory effect induced by the elastic nature of the membrane.
In the vanishing frequency limit, the correction is identical to that near a hard-sphere with stick
boundary conditions, given by Eq. (3.4).

For sufficiently small values of b (or equivalently for larger capsule radii), we observe that in the
high frequency regime for which β ≥ 1, both the real and imaginary parts of the mobility correction
follow faithfully the evolution of those predicted for a planar membrane which is [52]

∆µS(β)

µ0
= − 9

16

b

h
eiβ E4(iβ) . (3.6)

The peak position around β ∼ 1 can be estimated by a simple balance between membrane elasticity
and fluid viscosity as ω ∼ κS/(ηh). A strong departure is however observed in the low frequency
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Figure 2: (Color online) Scaled particle self-mobility correction versus β for various values of b
for a shearing-only membrane. The real and imaginary parts are shown as dashed and solid lines
respectively. Horizontal dashed lines represent the hard-sphere limit as given by Eq. (3.4). The curve
in gray corresponds to the self-mobility correction for a planar membrane as given by Eq. (3.6). Here
we set the solid particle at h = 2b.
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Figure 3: Log-log plot of the rescaled peak-frequency versus particle radius for different particle-to-
membrane distance h.
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regime where a second peak of more pronounced amplitude occurs in the imaginary part. This second
peak is the most prominent signature which distinguishes the spherical membrane from the planar
case. The peak height remains typically constant for a large range of values of b because the mobility
correction has been rescaled by the bulk mobility.

We attribute the two peaks in Fig. 2 to in-plane deformations (uθ) and surface-normal defor-
mations (ur), respectively. The radius-independent peak around β ∼ 1 corresponds to in-plane
deformations uθ which are present in a similar way for the planar membrane thus explaining the
agreement with Eq. (3.6). The larger and radius-dependent peak corresponds to surface-normal de-
formations which contribute to the traction jump even for a shear-only membrane as can be seen in
Eq. (2.10). This contribution is due to the membrane curvature: in the planar case, surface-normal
deformations do not contribute to the traction jump associated with shear at first order (cf. equa-
tion (A20) of Ref. [52]) and therefore this peak is not observed for the planar membrane. Indeed,
upon increasing the capsule radius (decreasing b), the second peak gradually shifts towards lower
frequencies and eventually disappears for b→ 0.

In Fig. 3, we plot the variations of the rescaled peak frequency occurring in the imaginary part of
the particle self-mobility versus particle radius b at different values of h. For sufficiently small particles
(b < 0.05), the peak frequency shows a quadratic increase with particle radius b. By rescaling the
peak frequencies by (h/b)2, a master curve is obtained and the peak frequency position can accurately
be computed from the relation βpeak = 2h2.

3.2 Bending contribution

For a bending-only membrane, the mobility correction is readily obtained after plugging the series
coefficients Bn and An respectively given by Eqs. (2.54) and (2.56) into Eq. (3.3). In particular, by
taking αB →∞, the leading order self-mobility correction can conveniently be approximated by

∆µB,∞
µ0

:= lim
αB→∞

∆µB
µ0
' − 7ξ3

4(1− ξ2)

[
1 +

ξ2

5
− 9ξ4

70

]
b

R
, (3.7)

which, for an infinite radius reads
∆µB,∞
µ0

= −15

16

b

h
, (3.8)

corresponding to the vanishing frequency limit for a planar membrane with bending-only as calculated
in earlier work [52]. Note that this limit is the same as that for a flat fluid-fluid interface separating
two immiscible liquids having the same dynamic viscosity [7].

We define the characteristic frequency for bending as βB := 2h(4ηω/κB)1/3. In Fig. 4, we present
the particle self-mobility correction nearby a membrane exhibiting a bending-only resistance versus βB.
Unlike a membrane with shearing resistance only, the particle mobility correction nearby a bending-
only membrane does not exhibit a second peak of pronounced amplitude. The single peak observed is
the characteristic peak for bending which occurs at β3B ∼ 1 and is largely independent of the radius.
In fact, this peak position can be estimated by a balance between fluid viscosity and membrane
bending such that ω ∼ κB/(ηh

3). As can be seen from equations (2.11), the traction jump for a
bending-only membrane involves only the radial deformation which explain the absence of a second
peak in contrast to the two-peak structure seen in the shearing-only case.

As already pointed out in Sec. 2, the hard-sphere solution is not recovered for a bending-only
membrane in the vanishing frequency limit. A similar trend has been observed in earlier work for
planar membranes where bending alone is not sufficient to recover the hard-wall limit [52]. This
feature is again justified by the fact that the traction jumps due to bending in Eq. (2.11) do not
depend on the tangential displacement uθ. Even when considering an infinite bending modulus κB,
the tangential component of the membrane displacement is thus still completely free. This behavior
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Figure 4: (Color online) Scaled self-mobility correction versus βB for various values of the capsule ra-
dius, for a bending-only membrane. The dashed and continuous lines represent the real and imaginary
parts respectively. The horizontal dashed lines are the vanishing frequency limits as approximated
be Eq. (3.7). The curve in gray is the solution for a planar membrane given by Eq. (3.9). Here we
take h = 2b.

cannot represent the hard sphere where both radial and tangential displacements are restricted.
We further remark that for smaller values of b, the evolution of both the real and imaginary part

is found to be in excellent agreement with the solution for a planar membrane [52] in the whole range
of frequencies:

∆µB(βB)

µ0
=

3iβB
8

b

h

((
β2B
12

+
iβB
6

+
1

6

)
φ+ +

√
3

6
(βB + i)φ− +

5i

2βB

+

(
β2B
12
− iβB

3
− 1

3

)
e−iβB E1(−iβB)

)
,

(3.9)

with
φ± = e−izB E1(−izB)± e−izB E1(−izB) , (3.10)

where zB := βBe
2iπ/3.

We therefore conclude that for large capsules, the mobility correction for a bending-only membrane
can be appropriately estimated from the planar membrane limit. For moderate capsule radii, the
planar membrane prediction gives a reasonable agreement only in the high frequency regime for
which βB � 1.

3.3 Shearing-bending coupling

Unlike for a single planar membrane, shearing and bending are intrinsically coupled for a spherical
membrane and the particle mobility near a membrane exhibiting shearing and bending resistance
cannot be obtained by linear superposition as for a planar membrane [52]. A similar coupling is also
observed for the mobility of a particle between two parallel planar membranes [53] as well as for
thermal fluctuations of two closely-coupled [71] or ”warped” [72] membranes. Therefore, the solution
requires to simultaneously consider shearing and bending in the traction jump equations. In order
to investigate this coupling effect, we define the reduced bending modulus as EB := κB/(κSh

2), a
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Figure 5: (Color online) a) Scaled particle self-mobility correction versus β for various values of the
particle radius b for a membrane endowed with both shearing and bending rigidities. The real and
imaginary parts are shown as dashed and solid lines respectively. Horizontal dashed lines represent the
hard-sphere limit as given by Eq. (3.4). The curve in gray corresponds to the self-mobility correction
for a planar membrane as obtained by linear superposition of Eqs. (3.6) and (3.9). Here we set the
solid particle at h = 2b and we take a reduced bending modulus EB = 1. b) Scaled self-mobility
correction versus β for various values of the reduced bending modulus. The horizontal black dashed
line is the hard-sphere limit given by Eq. (3.4) whereas the gray dashed line is the infinite bending
rigidity limit for a bending-only membrane as given by Eq. (3.7). Here we take b = 1/10 and h = 2b.

parameter that quantifies the relative contributions of shearing and bending.
In Fig. 5 a) we show the scaled self-mobility correction versus β nearby a membrane with both

shearing and bending resistances upon varying b. We observe that in the high frequency regime, i.e.
for β > 1, the mobility correction follows faithfully the evolution predicted for a planar membrane.
For lower values of b, the planar membrane solution provides a very good estimation even deeper
into the low frequency regime. Here, we take h = 2b and a reduced bending modulus EB = 1, for
which shearing and bending manifest themselves equally.

In Fig. 5 b), we show the mobility correction versus β for a membrane with both rigidities
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upon varying the reduced bending modulus EB while keeping b = 1/10 and h = 2b. For EB = 0
corresponding to a shearing-only membrane, a low frequency peak as in Fig. 2 is observed. For
EB ≈ 1 and above, this peak quickly disappears which confirms our hypothesis that it is due to
radial deformations as reasoned above: In the case of large bending resistance these deformations
are suppressed and therefore the peak height diminishes and eventually disappears.

The imaginary part exhibits an additional peak of typically constant height that is shifted
progressively toward the higher frequency domain for increasing EB. From the definitions of β
and βB, it can be seen that

β3B =
16

3BEB
β . (3.11)

Therefore, the peak observed at β ∼ 1 is attributed to shearing whereas the high frequency peak is
attributed to bending because β ∼ EB when β3B ∼ 1. Particularly, for EB = 1, the position of the
two peaks coincides as β ∼ β3B for which shearing and bending have equal contribution.

4 Capsule motion and deformation

Next, we examine the capsule motion induced by the nearby moving solid particle. For this aim, we
define the pair-mobility function µP as the ratio between the centroid velocity of the capsule V1 and
the force F2 applied on the solid particle, i.e. V1 = µPF2. The net translational velocity of the capsule
can readily be computed by volume integration of the z component of the fluid velocity inside the
capsule [73],

V1(ω) =
2π

Ω

∫ π

0

∫ 1

0
v(i)z (r, θ, ω) r2 sin θ drdθ , (4.1)

where Ω := 4π/3 being the volume of the undeformed capsule and v(i)z = v
(i)
r cos θ− v(i)θ sin θ. Analyt-

ical expressions for v(i)r and v(i)θ are given by Eqs. (2.32) and (2.33) respectively. After computation,
only the terms with n = 1 of the series remain. The frequency-dependent pair-mobility reads

µP = − 1

8πη
(a1 + b1) , (4.2)

which can be simplified to obtain

6πηµP =
3

2
ξ − ξ3

2

3 + (1 + 2C)α

5 + (1 + 2C)α
. (4.3)

The leading order pair-mobility correction is therefore expressed as a Debye-type model with a
relaxation time given by

τ =
15

2(1 + 2C)

η

κS
. (4.4)

Interestingly, the pair-mobility µP depends only on the shear resistance of the membrane, but
not on membrane bending properties. In the limiting cases, we recover two known results. First, for
an infinite membrane shearing modulus, we get the leading-order pair-mobility between two unequal
hard-spheres

lim
α→∞

6πηµP =
3

2
ξ − ξ3

2
. (4.5)

Second, for a vanishing membrane shearing modulus, we obtain the leading-order pair-mobility
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between a solid particle and a viscous drop

lim
α→0

6πηµP =
3

2
ξ − 3

10
ξ3 , (4.6)

both of which are in agreement with those reported by Fuentes et al. [57, Eq. (12)].

Membrane deformation

In this subsection, we compute the capsule deformation resulting from an arbitrary time-dependent
point-force F acting nearby the spherical capsule. The membrane displacement field is related to the
fluid velocity at r = 1 via the no-slip equation given by Eq. (2.12). In order to proceed, we define
the frequency-dependent reaction tensor ψij as

ui(θ, ω) = ψij(θ, ω)Fj(ω) . (4.7)

By setting a harmonic driving force Fi(t) = Kie
iω0t, which in the frequency domain reads

Fi(ω) = 2πKiδ(ω − ω0), the membrane time-dependent displacement can readily be evaluated by
inverse Fourier transform of Eq. (4.7) to obtain

ui(θ, t) = ψij(θ, ω0)Kje
iω0t . (4.8)

In an axisymmetric situation, we are interested in the components ψrz and ψθz of the reaction
tensor, giving access to the displacements ur and uθ under the action of a point force directed along
the z direction. By making use of Eqs. (2.32) and (2.33), we immediately obtain

ψrz = − 1

8πηiω

∞∑
n=1

[
n(n+ 1)

2
an + nbn

]
Pn(cos θ) , (4.9a)

ψθz = − 1

8πηiω

∞∑
n=1

[
n+ 3

2
an + bn

]
dPn(cos θ)

dθ
. (4.9b)

The first derivative of Legendre polynomial can be computed using the recurrence formula [65]

dPn(cos θ)

dθ
= − n

sin θ

[
Pn−1(cos θ)− cos θPn(cos θ)

]
.

5 Comparison with boundary integral simulations

In order to assess the appropriateness of the point particle approximation employed throughout this
work, we shall compare our analytical predictions with fully resolved boundary integral simulations of
truly extended particles. The simulations are based on the completed double-layer boundary integral
equation method (CDLBIEM) [74–76] which allows for the efficient simulation of deformable as well
as truly solid objects. Details on the algorithm and its implementation have been reported elsewhere,
see for instance Refs. [53, 77, 78].

For the determination of the solid particle self-mobility, a harmonic oscillating force Keiω0t

is applied at the surface of the particle along the z direction. After a transient evolution, the
particle begins to oscillate with the same frequency ω0 as V2ei(ω0t+δ2). The velocity amplitude V2 and
phase shift δ2 are accurately determined by fitting the numerically recorded velocity using the trust
region method [79]. The frequency-dependent self-mobility of the solid particle is then computed as
µ = (V2/K)eiδ2 . Under the effect of the oscillating force, the volume centroid of the capsule undergoes
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Figure 6: (Color online) a) Scaled frequency-dependent particle mobility correction versus the scaled
frequency β nearby a membrane endowed with only shearing (green / light gray), only bending (red
/ dark gray) and both rigidities (black). The small particle has a radius b = 1/10 set a distance
h = 2b. Here we take C = 1 and a reduced bending modulus EB = 2/3. The theoretical predictions
are shown as dashed lines for the real parts and as solid lines for the imaginary parts. Symbols refer
to boundary integral simulations where the real and imaginary parts are shown as squares and circles
respectively. The horizontal dashed lines are the vanishing frequency limits given by Eqs. (3.4) and
(3.7). b) shows the scaled frequency-dependent mobility correction versus ηω/κS nearby a membrane
endowed with both shearing and bending rigidities for C = 1 (black) and C = 100 (blue / dark gray)
for the same set of parameters in a).

an oscillatory motion along the z direction as X1e
i(ω0t+δ1). The capsule pair-mobility is therefore

computed as µP = (iω0X1/K)eiδ1 .
In Fig. 6 a), we present the scaled self-mobility correction versus the scaled frequency β as given

theoretically by Eq. (3.3). The solid particle has a radius b = 1/10 positioned at h = 2b nearby a
large capsule. For the simulations parameters, we take C = 1 and EB = 2/3. Results for shearing-only
and bending-only membrane are also shown in green and red respectively. We observe that in the
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Figure 7: (Color online) Scaled Pair-mobility correction versus the scaled frequency nearby a mem-
brane possessing only shearing (green / light gray), only bending (red / dark gray) and both rigidities
(black). The analytical prediction given by Eq. (4.3) is shown as dashed line for the real part and as
solid line for the imaginary part. Simulation results are shown as squares and circles for the real and
imaginary parts, respectively. The horizontal dashed lines are the vanishing frequency limit predicted
by Eq. (4.5) where the dotted lines are the limit corresponding to vanishing membrane moduli as
given by Eq. (4.6).

low-frequency regime, the near hard-sphere mobility correction is approached only if the membrane
exhibits a resistance towards shearing, in agreement with theoretical calculations.

In Fig. 6 b), we show the scaled self-mobility correction for C = 1 and C = 100. A very large
C is typical for vesicles or red blood cells [80–82] where the surface area remains almost unchanged
during deformation. We observe that the effect of area expansion is more pronounced in the high
frequency regime. A very good agreement is obtained between analytical predictions and boundary
integral simulations over the whole range of applied frequencies.

We now turn to the motion of the capsule. In Fig. 7, we show the correction to the scaled
pair-mobility versus the scaled frequency β. The correction for a shearing-only membrane is almost
indistinguishable from that of a membrane with both shearing and bending rigidities. In the low-
frequency regime for which β � 1, the pair-mobility correction approaches that near a hard-sphere
given by Eq. (4.5). On the other hand, in the high-frequency regime for which β � 1, the correction
approaches that near a viscous drop as given by Eq. (4.6). Moreover, the correction nearby a bending-
only membrane remains typically unchanged over the whole range of frequencies, and equals that for
a viscous drop. Indeed, these observations are in complete agreement with the analytical prediction
stated by Eq. (4.3).

In Fig. 8, we show the membrane scaled radial and meridional displacements versus the polar
angle θ at quarter period for tω0 = π/2. The natural scale for membrane deformation is Kz/κS
the ratio between the forcing amplitude Kz and the shearing resistance κS. We observe that the
radial displacement ur is a monotonically decreasing function of θ and eventually changes sign at
some intermediate angle. On the other hand, the meridional displacement uθ is negatively valued
and vanishes at θ = 0 and θ = π due to the system axial symmetry, suggesting the existence of an
extremum in between. Moreover, the maximum displacement reached in ur is found to be about 3
times larger in comparison to that reached in uθ.

By examining the displacement at various forcing frequencies, we observe that larger frequencies
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Figure 8: (Color online) Scaled radial a) and meridional b) membrane displacement versus the polar
angle θ for three scaled forcing frequencies β at quarter period for tω0 = π/2. Solid lines are the
theoretical predictions obtained from Eqs. (4.9a) and (4.9b) and symbols are boundary integral
simulations.

induce remarkably smaller deformation since the capsule membrane does not have enough time to
respond to the fast oscillating particle. In typical situations, the forces acting by optical tweezers on
suspended particles are of the order of 1 pN [83] and the capsule has a radius 10−6 m and a shearing
modulus 5 × 10−6 N/m [84]. For a forcing frequency β = 4, the membrane undergoes a maximal
deformation of about 1 % of its undeformed radius. Therefore, deformations are significantly small
and deviations from sphericity are negligible. The analytical predictions based on the linear theory
of small deformation are found to be in a good agreement with simulations. A small deviation is
observed notably for uθ at small angles which is possibly due to a finite size effect since the analytical
predictions are based on the point-particle approximation whereas simulations treat truly extended
particle of finite size.

6 Conclusion

Using the image solution technique, we have computed the leading-order hydrodynamic self-mobility of
a solid spherical particle axisymmetrically moving nearby a large deformable capsule whose membrane
exhibits resistance towards shearing and bending. The mobility corrections are expressed in terms of
infinite but convergent series whose coefficients are frequency-dependent complex quantities. We have
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shown that in the vanishing frequency limit, the particle self-mobility near a hard sphere is recovered
only when the membrane possesses a resistance towards shearing. For a large membrane radius, our
results perfectly overlap with those obtained earlier for a planar membrane in the high frequency
regime. The major qualitative difference between the planar and the spherical membrane is the
existence of a second, low-frequency peak in the imaginary part (and a corresponding dispersion step
in the real part) caused by shear resistance. The appearance of two peaks can be understood by the
simple fact that the membrane traction jump stemming from shear resistance contains contributions
from normal (radial) as well as in-plane (tangential) displacements. For a planar membrane, only in-
plane displacements contribute to shear resistance which explains why the observed peak disappears
at large radii. For a bending-only membrane, curvature effects are much less pronounced and the
planar membrane gives a fairly good approximation even deep in the low frequency regime.

Considering the capsule motion, we have found that the pair-mobility function depends solely on
the membrane shearing properties and it can be well described by a Debye-like model with a single
relaxation time. The pair-mobility function for a bending-only membrane is therefore frequency-
independent and it is identical to that for a viscous drop. We have further found that the point
particle approximation despite its simplicity leads to a very good agreement with the numerical
simulations preformed for a truly extended particle using a completed double layer boundary integral
method.
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Appendices

A Membrane mechanics

In this appendix, we shall derive equations in spherical coordinates for the traction jump across a
membrane endowed with shearing and bending rigidities. Here we follow the convention in which the
symbols for the radial, azimuthal and polar angle coordinates are taken as r, φ and θ respectively,
with the corresponding orthonormal basis vectors er, eφ and eθ. Similar, all the lengths will be scaled
by capsule radius a. We denote by a = er the position vector of the points located at the undisplaced
membrane. After axisymmetric deformation, the vector position reads

r = (1 + ur)er + uθeθ , (A.1)

where ur and uθ denote the radial and meridional displacements. In the following, capital Roman
letters shall be reserved for the undeformed state while small letters for the deformed. The spherical
membrane can be defined by the covariant base vectors g1 := r,θ and g2 := r,φ. The unit normal
vector n is defined in such a way to form a direct trihedron with g1 and g2. The covariant base
vectors are

g1 = (ur,θ − uθ)er + (1 + ur + uθ,θ)eθ , (A.2a)
g2 =

(
(1 + ur) sin θ + uθ cos θ

)
eφ , (A.2b)
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and the unit normal vector at leading order in deformation reads

n = er − (ur,θ − uθ) eθ . (A.3)

Note that g1 and g2 have (scaled) length dimension while n is dimensionless. In the deformed
state, the components of the metric tensor are defined by the scalar product gαβ = gα · gβ. The
contravariant tensor gαβ , defined as the inverse of the metric tensor, is linearized as

gαβ =

(
1− 2εθθ 0

0
1−2εφφ
sin2 θ

)
, (A.4)

where εαβ represents the components of the in-plane strain tensor written in spherical coordinates
as [85]

εθθ = ur + uθ,θ , (A.5a)
εφφ = ur + uθ cot θ . (A.5b)

The contravariant tensor in the undeformed state Gαβ can immediately be obtained by considering
a vanishing strain tensor in Eq. (A.4).

A.1 Shearing contribution

In this subsection, we shall derive the traction jump equations across a membrane endowed with an
in-plane shearing resistance. The two invariants of the strain tensor are given by Green and Adkins
as [86, 87]

I1 = Gαβgαβ − 2 , (A.6a)

I2 = detGαβ det gαβ − 1 . (A.6b)

The contravariant components of the stress tensor ταβ can then be obtained provided knowledge
of the membrane constitutive elastic law, whose areal strain energy functional is W (I1, I2), such
that [88]

ταβ =
2

JS

∂W

∂I1
Gαβ + 2JS

∂W

∂I2
gαβ , (A.7)

where JS :=
√

1 + I2 is the Jacobian determinant, prescribing the ratio between deformed and
undeformed local areas. In the linear theory of elasticity, JS ' 1 + e, where e := εθθ + εφφ being
the trace of the in-plane strain tensor, commonly know as the dilatation. In this work, we use the
Skalak model to describe the elastic properties of the capsule membrane, whose areal strain energy
reads [84, 89]

W (I1, I2) =
κS
12

(
I21 + 2I1 − 2I2 + CI22

)
, (A.8)

where C := κA/κS. Note that for C = 1, the Skalak model is equivalent to the Neo-Hookean model
for small deformations [88]. After plugging Eq. (A.8) into Eq. (A.7), the linearized in-plane stress
tensor reads

ταβ =
2κS
3

(
εθθ + Ce 0

0
εφφ+Ce

sin2 θ

)
. (A.9)
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The membrane equilibrium equations balancing the elastic and external forces read

∇αταβ + ∆fβ = 0 , (A.10a)

ταβbαβ + ∆fn = 0 , (A.10b)

where ∆f = ∆fβgβ +∆fnn is the traction jump across the membrane and ∇α denotes the covariant
derivative defined for a second-rank tensor as

∇αταβ = ταβ,α + Γααητ
ηβ + Γβαητ

αη , (A.11)

and Γλαβ are the Christoffel symbols of the second kind defined as [90] [ch. 2]

Γλαβ =
1

2
gλη (gαη,β + gηβ,α − gαβ,η) . (A.12)

Continuing, bαβ is the second fundamental form (curvature tensor) defined as

bαβ = gα,β · n . (A.13)

Note that at zeroth order, the non-vanishing components of the Christoffel symbols are Γφφθ =

Γφθφ = cot θ and Γθφφ = − sin θ cos θ. After some algebra, we find that the meridional tangential
traction jump across the membrane given by Eq. (A.10a) reads

τ θθ,θ + Γφφθτ
θθ + Γθφφτ

φφ + ∆fθ = 0 . (A.14)

At zeroth order, the non-vanishing components of the curvature tensor are bθθ = −1 and bφφ =
− sin2 θ. For the normal traction jump Eq. (A.10b) we therefore get

− τ θθ − sin2 θτφφ + ∆fn = 0 . (A.15)

After substitution and writing the projected equations in the spherical coordinates basis vectors,
we immediately get the following set of equations,

2κS
3

(
(1 + C)εθθ,θ + Cεφφ,θ + (εθθ − εφφ) cot θ

)
+ ∆fθ = 0 , (A.16a)

−2κS
3

(1 + 2C) (εθθ + εφφ) + ∆fn = 0 . (A.16b)

We further mention that for curved membranes, the normal traction jump does not vanish in
the plane stress formulation employed here because the zeroth order in the curvature tensor is not
identically null. Indeed, this is not the case for a planar elastic membrane where the resistance to
shearing only introduces a jump in the tangential traction jumps [52, 53].

By substituting εθθ and εφφ with their expressions, Eqs. (A.16) turn into the traction jumps
equations (2.10).

A.2 Bending contribution

For the bending resistance, we use the linear model, in which the bending moment is related to the
curvature tensor via [91, 92]

Mβ
α = −κB

(
bβα −Bβ

α

)
, (A.17)
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where κB is the bending modulus and the spontaneous curvature is set to Bβ
α = Gα,β ·n corresponding

to the undeformed sphere. The mixed version of the curvature tensor bβα is related to the covariant
representation via bβα = bαδg

δβ. The contravariant components of the transverse shearing vector Q
is obtained from a local torque balance with the applied moment as Qβ = ∇αMαβ. Note that the
raising and lowering indices operations imply that Mαβ = gαγgβδMγδ and that Mαβ = M δ

αgδβ . The
meridional force reads

Qθ = −κB
( (

1− cot2 θ
)
ur,θ + ur,θθ cot θ + ur,θθθ

)
.

The membrane equilibrium equations balancing the bending forces reads

−bβαQα + ∆fβ = 0 , (A.18a)
∇αQα + ∆fn = 0 , (A.18b)

where for a first-rank tensor (vector) the covariant derivative is defined as ∇βQα = ∂βQ
α + ΓαβδQ

δ.
The equilibrium equations can thus be written as

− κB
((

1− cot2 θ
)
ur,θ + ur,θθ cot θ + ur,θθθ

)
+ ∆fθ = 0 , (A.19a)

− κB
((

3 cot θ + cot3 θ
)
ur,θ − ur,θθ cot2 θ + 2ur,θθθ cot θ + ur,θθθθ

)
+ ∆fn = 0 (A.19b)

corresponding to the traction jump given in Eq. (2.11).

B Transformation equations between the scaled and physical quan-
tities

In this appendix, we shall state the transformation relations between the scaled and physical quantities.
The physical quantities are denoted by a tilde while the absence of tilde refers to the scaled ones.
For the variables with the dimension of length, such as r and R, we have r̃ = ra and R̃ = Ra. For
the velocity we have ṽ = va, for the force F̃ = Fa, for the fluid viscosity η̃ = η/a, for the pressure
p̃ = p/a and similar for the traction jump ∆̃f = ∆f/a. For the shearing modulus κ̃S = κS, for the
bending modulus κ̃B = κBa

2. It follows that α̃ = αa and α̃B = αBa
3.

C Force-free condition

In this appendix, we shall show that for finite shearing modulus, the force free condition assumed
for the capsule is satisfied.

The induced hydrodynamic force on the capsule is computed by integrating the normal stress
vector over the capsule’s outside surface A+ as [93]

F1 =

∫
A+

σ · er dA = A0F2 , (C.1)

meaning that the hydrodynamic force in the multipole expansion is given only by the coefficient of
the monopole field [59]. For shearing-only and bending-only membranes, we have shown that A0 = 0
as can be inferred from Eqs. (2.48) and (2.56). This is the case also for a membrane with both
shearing and bending resistances. We therefore conclude that no net force is exerted on the capsule.

We note that, for infinite shearing modulus, i.e. in the hard-sphere limit, A0 6= 0 as can clearly
be seen in Eq. (2.50a). Additional singularities therefore need to be added to the reflected flow field
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in order to ensure the force free assumption (see Ref. [57] for further details.)

D Estimation of the number of terms required for the computation
of particle self-mobility

In this appendix, we shall determine the number of terms required for the computation of particle
self-mobility in order to achieve a given precision.

Let us denote by fn(ξ) the general term of the function series giving the particle mobility correction
in Eq. (3.3). For a large value of n, we have the leading order asymptotic behavior

fn(ξ) =
3b

8

(
1− ξ2

)2
n2ξ2n+4 +O

(
nξ2n

)
, (D.1)

which does not depend on capsule shearing and bending properties. In order to compute an infinite
series numerically up to a given precision, we define the truncation error as

E(N) :=

∣∣∣∣∣
∞∑

n=N+1

fn(ξ)

∣∣∣∣∣ ' 3b

8

−N2ξ4 + (2N2 + 2N − 1)ξ2 − (N + 1)2

1− ξ2
ξ2N+6 .

Given a certain precision ε, the number of terms N required to achieve the desired precision can
be determined by solving the inequality E(N) < ε. For example, by taking h = 2b, b = 1/10 and
requiring a precision ε = 10−4, only 29 terms in the series are needed. For b = 10−3 however, 2993
terms are needed. As a result, more terms are required for convergence when the capsule radius is
taken very large, i.e. when ξ ∼ 1. By requiring a precision ε = 10−6, 44 and 4316 terms are necessary
for b = 1/10 and b = 10−3 respectively. A precision of ε = 10−4 has been consistently adopted
throughout this work.
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Abstract

In this paper, we derive analytical expressions for the leading-order hydrodynamic mobility of a small
solid particle undergoing motion tangential to a nearby large spherical capsule whose membrane
possesses resistance towards shearing and bending. Together with the results obtained in the first part
(Daddi-Moussa-Ider and Gekle, Phys. Rev. E 95, 013108 (2017)) where the axisymmetric motion
perpendicular to the capsule membrane is considered, the solution of the general mobility problem
is thus determined. We find that shearing resistance induces a low-frequency peak in the particle
self-mobility, resulting from the membrane normal displacement in the same way, although less
pronounced, to what has been observed for the axisymmetric motion. In the zero frequency limit, the
self-mobility correction near a hard sphere is recovered only if the membrane has a non-vanishing
resistance towards shearing. We further compute the in-plane mean-square displacement of a nearby
diffusing particle, finding that the membrane induces a long-lasting subdiffusive regime. Considering
capsule motion, we find that the correction to the pair-mobility function is solely determined by
membrane shearing properties. Our analytical calculations are compared and validated with fully
resolved boundary integral simulations where a very good agreement is obtained.

1 Introduction

Transport processes on the microscale play a key role in many biological and industrial applications [1,
2]. Typical examples include drug delivery involving nanoparticles required to reach specific areas
of patients’ bodies [3, 4], problems of blood circulation [5–7], and also motion in crowded cellular
environments [8–10]. A common feature of these processes is the presence of nearby interfaces,
thus the motion occurs predominantly in geometric confinement. In living systems, the confining
boundaries often possess a certain degree of elasticity which introduces additional memory effects to
the system [11–13].

At small length scales, aqueous systems are typically characterized by a negligibly small Reynolds
number, and the resulting overdamped motion can therefore be accurately described within the
framework of linear Stokes equations [14, 15]. The relations between forces and velocities of particles
in flow are therefore linear and quantified by the hydrodynamic mobility coefficients. They are
determined by the long-range, fluid-mediated hydrodynamic interactions.

In this work, we focus on the case of a small colloidal particle translating under the action of a
force in the presence of a nearby large spherical elastic capsule. This system may be looked upon as a
simplistic model of transport of colloids close to cellular membranes [16–18]. Our aim is to assess the
effects of elasticity on the motion of the particle itself, and also on the deformable capsule. A similar
problem has been examined before by Fuentes and coworkers [19, 20], who have treated analytically
the case of interactions between two unequal spherical drops at moderate separations. Being purely
viscous, however, that system does not possess a memory and thus leads to hydrodynamic mobilities
which are independent of frequency. Their idea of solution relied on the image singularities technique,
i.e. finding an appropriate system of images for a given distribution of forces outside a spherical
droplet. Inspired by this work, we aim to find the analytical expression for the Green’s function for a
point-force near a spherical capsule. The surface of the capsule is made of an elastic membrane [21],
which resists against shearing and bending deformation, and is modeled using the combined Skalak [22]
and Helfrich [23] models. This model has been successfully used in our previous works for the case
of confinement by one [13, 24, 25] or two planar membranes [26]. Further theoretical investigations
near elastic interfaces have been carried out via soft lubrication theory [27–29].

In the preceding paper [30] (hereafter referred to as part I), we have derived the expression for
the Green’s function in the case when the point-force is directed along the symmetry axis, joining
the centers of the particle and the capsule. In this contribution, we extend these results by providing
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Figure 1: The configuration of the system. A small solid particle of radius b situated at x2 = Rez
nearby a large spherical capsule of undeformed radius a. In an asymmetric situation, the force is
directed perpendicularly to d shown here along the x-direction.

a direct solution for the case when the point-force acts tangentially to the surface of the membrane,
thus determining together the solution of the general mobility problem. The Green’s function is
then used to evaluate the frequency-dependent self-mobility of a small particle moving close to the
capsule, and the pair-mobility, which quantifies the effect of the force on the motion of the capsule
itself. The solution is also used to compute the resulting deformation of the spherical capsule. The
theoretical predictions at zero frequency are in agreement with the hard-sphere limit provided that
the membrane possesses a non-vanishing resistance towards shearing. Our analytical results comply
with fully resolved boundary integral simulations which we have performed to validate the model.

The paper is organized as follows. In Sec. 2, the solution of the fluid motion inside and outside the
elastic capsule is expressed in terms of multipole expansions. In Sec. 3, analytical expressions of the
particle frequency-dependent self-mobility nearby a membrane with pure shearing or pure bending
are obtained in the point-particle framework and expressed in terms of infinite but convergent
series. We compute in Sec. 4 the particle in-plane mean-square displacement, finding that the
membrane introduces a memory in the system, leading at intermediate time scales of motion to a
subdiffusive behavior of the nearby particle. Capsule motion and membrane deformation are computed
in Sec. 5. In Sec. 6, a comparison between analytical predictions and fully resolved boundary integral
simulations is made where a very good agreement is obtained. Concluding remarks are offered in
Sec. 7. Mathematical details which are not essential to understand our approach are given in the
appendices.
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2 Singularity solution

We are interested in the flow field due to a point-force (Stokeslet) acting close to a large spherical
capsule, for which we shall find a fully analytical solution. The Stokeslet is oriented perpendicularly
to the line connecting its position and the center of the capsule. We introduce a spherical coordinate
system, centered at the capsule position x1, with the point-force acting at x2 = Rez. The whole
system is sketched in Fig. 1.

Mathematically, the problem is reduced to solving the forced Stokes equations outside the capsule

η∇2v −∇p+ F δ(x− x2) = 0 , (2.1)
∇ · v = 0 , (2.2)

and homogeneous equations for the fluid inside

η∇2v(i) −∇p(i) = 0 , (2.3)

∇ · v(i) = 0 . (2.4)

Here v and p denote the exterior velocity and pressure fields and the superscript (i) stands for the
corresponding interior fields. For simplicity, we assume the fluid to have the same dynamic viscosity η
everywhere. The boundary conditions are imposed at r = a. We require the natural continuity of the
fluid velocity field

[vθ] = 0 , (2.5)
[vφ] = 0 , (2.6)
[vr] = 0 , (2.7)

and a fluid stress jump across the membrane imposed by its elastic properties,

[σθr] = ∆fSθ + ∆fBθ , (2.8)

[σφr] = ∆fSφ + ∆fBφ , (2.9)

[σrr] = ∆fSr + ∆fBr , (2.10)

where the notation [w] := w(r = a+)−w(r = a−) for the jump of a quantity w across the membrane
and the superscripts S and B denoting the shearing and bending related parts in the traction jump,
respectively. Throughout the remaining of the paper, we scale all the lengths by the capsule radius a.
The corresponding quantities in physical units can be obtained by the transformation rules given in
Appendix B of part I [30]. The components of the fluid stress tensor in spherical coordinates read [15]

σθr = η
(
vθ,r −

vθ
r

+
vr,θ
r

)
, (2.11a)

σφr = η
( vr,φ
r sin θ

+ vφ,r −
vφ
r

)
, (2.11b)

σrr = −p+ 2ηvr,r, (2.11c)

where the indices after commas indicate partial spatial derivatives, e.g. vr,φ ≡ ∂vr/∂φ, etc.
We model the elastic properties of the membrane by introducing its resistance towards shearing

and bending. As derived in the Appendix, the linearized traction jumps due to shearing according
to the Skalak model [22, 31], characterized by a coefficient λ, in terms of the membrane deformation
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u read

∆fSθ = −κS
[
(2λ− 1)ur,θ + λuθ,θθ + λuθ,θ cot θ − uθ

(
λ cot2 θ + λ− 1

)
+

uθ,φφ

2 sin2 θ
(2.12a)

−
(
λ+

1

2

)
cot θ

sin θ
uφ,φ +

(
λ− 1

2

)
uφ,φθ
sin θ

]
,

∆fSφ = −κS
[
(2λ− 1)

ur,φ
sin θ

+

(
λ+

1

2

)
cot θ

sin θ
uθ,φ +

(
λ− 1

2

)
uθ,φθ
sin θ

+
1

2

(
1− cot2 θ

)
uφ (2.12b)

+
uφ,θ

2
cot θ +

uφ,θθ
2

+ λ
uφ,φφ

sin2 θ

]
,

∆fSr =
2κS
3

(2λ− 1)
(

2ur + uθ,θ + uθ cot θ +
uφ,φ
sin θ

)
, (2.12c)

where λ := C + 1 with C being the ratio of the area expansion modulus κA and the shear modulus
κS [32].

The stress jump related to bending is derived from a linear isotropic model for the bending
moments which is equivalent to the well-known Helfrich model [23] for small deformations [33, 34].
The linearized traction due to bending reads (cf. Appendix)

∆fBθ = κB

[ (
1− cot2 θ

)
ur,θ + ur,θθ cot θ + ur,θθθ + (1 + cot2 θ) (ur,φφθ − 2ur,φφ cot θ)

]
, (2.13a)

∆fBφ = κB(1 + cot2 θ)
(
ur,φθ cot θ + 2ur,φ + ur,φθθ + (1 + cot2 θ)ur,φφφ

)
sin θ , (2.13b)

∆fBr = κB

[ (
3 cot θ + cot3 θ

)
ur,θ − ur,θθ cot2 θ + 2ur,θθθ cot θ + ur,θθθθ

+ (1 + cot2 θ)
(
2ur,φφθθ − 2ur,φφθ cot θ + (1 + cot2 θ)(4ur,φφ + ur,φφφφ)

)]
, (2.13c)

where u(θ, φ) is the membrane displacement field. These expressions reduce to the axisymmetric
case of part I by setting uφ = 0 and dropping all φ-derivatives. The displacement is related to the
fluid velocity at r = 1 via the no-slip condition,

v|r=1 =
du

dt
,

which in the Fourier space takes the form

v|r=1 = iωu . (2.14)

Our approach is inspired by the work of Fuentes et al. [20], who computed the solution of the
Stokes equation nearby a viscous drop for the asymmetric force case. We write the exterior fluid
velocity outside the capsule as

v = vS + v∗ ,

where vSi := Gij(x − x2)Fj is the velocity field induced by a point-force acting at x2 in an infinite
fluid, and v∗ is the flow due to an image system required to satisfy the boundary conditions at the
capsule membrane, also called the reflected flow.

Now we sketch briefly the main steps of our solution methodology. Firstly, we express the Stokeslet
velocity vS at x2 in terms of spherical harmonics, which are then transformed into harmonics centered
at x1 via the Legendre expansion. Secondly, we write a multipole expansion for the image system v∗

at x1, and afterward we rewrite it in terms of spherical harmonics based at x1. Thirdly, the solution
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inside the capsule v(i) is written using Lamb’s general solution [35], also expressed in terms of spherical
harmonics at x1. The last step consists of determining the unknown series expansion coefficients by
satisfying the boundary conditions at the membrane stated by Eqs. (2.5) through (2.10).

In conjunction with the results of part I on the axisymmetric motion, the general solution of the
Stokes equations for an arbitrary force direction is thus obtained.

2.1 Stokeslet representation

We begin with writing the Stokeslet positioned at x2,

vS = G · F =
1

8πη

(
1

s
+ s∇2

1

s

)
· F , (2.15)

where s := x−x2 and s := |s|. Here ∇2j := ∂/∂x2j denotes the gradient operator taken with respect
to x2. Using the Legendre expansion, the harmonics based at x2 can be expressed in terms of those
centered at x1 as

1

s
=
∞∑
n=0

r2n+1

Rn+1

(d ·∇)n

n!

1

r
,

with the unit vector d := (x1−x2)/R = −ez, r = x−x1, and r := |r|. The derivatives with respect
to x2 are taken care of by noting that

∇2
1

Rn+1
=
n+ 1

Rn+2
d , (d ·∇2)d = 0 .

Moreover, we denote by ϕn the harmonic of degree n, related to the Legendre polynomials of degree n,
Pn by [36]

ϕn(r, θ) :=
(d ·∇)n

n!

1

r
=

1

rn+1
Pn(cos θ) .

In this work, we focus our attention on the asymmetric case when the force is purely tangential and
therefore F · d = 0. Taking this into account, the Stokeslet in Eq. (2.15) can be written as

8πηvS = F

∞∑
n=0

r2n+1

Rn+1
ϕn − r

∞∑
n=1

r2n+1

Rn+2
(F ·∇)ϕn−1 − d

∞∑
n=1

r2n+1

Rn+1
(F ·∇)ϕn−1 .

Thus we have expressed the Stokeslet solution in terms of spherical harmonics centered at x1. By
defining t = F × d, we have the identity

d(F ·∇)ϕn = (t×∇)ϕn + (n+ 1)Fϕn+1 . (2.16)

Moreover, for F · d = 0, we can write

(2n+ 3)rψn = −r2∇ψn + ∇ψn−2 − (2n+ 1)(n+ 1)Fϕn − (2n+ 1)γn−1 , (2.17)

where we have defined
ψn = (F ·∇)ϕn , γn = (t×∇)ϕn .
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Note that the harmonics ψn are defined differently than in part I and that the additional set γn is
not required for the simpler axisymmetric case of part I. Finally, the Stokeslet can be written as

8πηvS =

∞∑
n=1

[
n− 2

(2n− 1)n

r2n+1

Rn
− n

(n+ 2)(2n+ 3)

r2n+3

Rn+2

]
∇ψn−1

− 2

n+ 1

r2n+1

Rn+1
γn−1 +

[
(n− 2)(2n+ 1)

n(2n− 1)

r2n−1

Rn
− r2n+1

Rn+2

]
rψn−1.

(2.18)

We have chosen the vector basis functions here to be ∇ψn, rψn, and γn. We now proceed to deriving
analogous expansions for the reflected flow and the velocity inside the capsule, in order to finally
match them using the boundary conditions given above.

2.2 Image system representation

The corresponding image system representation can be written as a multipole expansion, which
involves the derivatives of the free-space Green’s function G(r), as [15]

8πηv∗ =
∞∑
n=0

[
An

(d ·∇)n

n!
G(r) + Bn

(d ·∇)n

n!
∇2G(r)

]
· F +

∞∑
n=0

[
Cn

(d ·∇)n

n!
(t×∇)

1

r

]
. (2.19)

We convert these expressions into harmonics ϕn using the identity

(d ·∇)n

n!
Gij(r) = δijϕn − ri∇jϕn − di∇jϕn−1,

and the fact that the Laplacian of the Oseen tensor is written conveniently as

∇2G(r) = −2∇∇1

r
.

Making use of Eq. (2.16), the image system solution can finally be written as

8πηv∗ =

∞∑
n=0

[
An

(
(1− n)Fϕn − rψn

)
− 2Bn∇ψn

]
+
∞∑
n=1

[Cn −An+1]γn . (2.20)

2.3 The interior solution

The interior solution has a generic form derived first by Lamb [15, 35]. It involves three families of
unknown coefficients and can be written in the asymmetric situation as

8πηv(i) =
∞∑
n=1

cn

[
r2n−1γn−1 + (2n− 1)r2n−3(t× r)ϕn−1

]
+ bn

[
r2n+1

n
∇ψn−1

+
2n+ 1

n
r2n−1rψn−1

]
+ an

[
n+ 3

2n
r2n+3∇ψn−1 +

(n+ 1)(2n+ 3)

2n
r2n+1rψn−1

]
. (2.21)

We note that the interior solution here has three unknown coefficients while the axisymmetric motion
in part I involves only two.
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2.4 The full flow field

The velocity fields vS, v∗, and v(i) thus suffice to describe the flow in the whole space. The matching
conditions at the surface of the capsule are determined by the known stress jump due to the membrane
elasticity and continuity of the velocity field, as expressed by Eqs. (2.5) through (2.10). These allow
computation of the free constants (An, Bn, Cn for the reflected flow, and an, bn, cn for the inner
flow) as detailed in Appendix B.

3 Particle self-mobility

In the preceding section, we have computed the Green’s function for the problem of a point-force
acting in the direction tangential to the surface of an elastic spherical capsule. The exterior velocity
field due to a Stokeslet is then given by vS + v∗. In this section, we discuss the consequences of
the presence of the membrane for the motion of the nearby particle. In order to assess the effects
of the presence of the capsule, we now compute the leading-order correction term to the particle
self-mobility. We assume an external force F2 to be acting on the solid particle and no force or torque
to be exerted on the capsule.

The zeroth-order solution for the particle velocity is V (0)
2 = µ0F2 as given by the Stokes law

with µ0 := 1/(6πηb) being the usual bulk mobility. The leading-order correction to the particle
self-mobility is computed from the image solution as

v∗
∣∣
x=x2

= ∆µF2 . (3.1)

Making use of the following relations

(d ·∇)n

n!
G(x− x1)

∣∣∣∣
x=x2

· F2 =
1

Rn+1
F2 ,

(d ·∇)n

n!
∇2G(x− x1)

∣∣∣∣
x=x2

· F2 =
(n+ 1)(n+ 2)

Rn+3
F2 ,

(d ·∇)n

n!
(t×∇)

1

r

∣∣∣∣
x=x2

= −n+ 1

Rn+2
F2 ,

together with Eq. (2.19), the scaled particle self-mobility function reads

∆µ

µ0
=

3b

4

∞∑
n=0

[
An + (n+ 1)(n+ 2)ξ2Bn − (n+ 1)ξCn

]
ξn+1 , (3.2)

where ξ := 1/R ∈ [0, 1). We denote by fn(ξ) the general term of the function series giving the particle
scaled mobility correction stated above. For large n, we obtain the leading order asymptotic behavior

fn(ξ) =
3b

16

(
1− ξ2

)2
n2ξ2n+4 +O

(
nξ2n

)
, (3.3)

which is independent of shearing and bending properties. The number of terms required for conver-
gence can thus be estimated for a given precision as in Appendix C of part I [30].

It is worth to mention here that for finite membrane shearing modulus (i.e. for a non hard-sphere),
no net force is exerted on the spherical capsule, since A0 = 0. In this case, the capsule is also torque-
free, since C0 − A1 = 0. For a hard-sphere, however, additional singularities should be involved in
the computation of particle mobility to ensure the force- and torque-free assumptions (see Fuentes
et al. [20] for further details.)
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Figure 2: (Color online) Scaled particle self-mobility correction versus scaled frequency β for various
values of the small particle radius b for a membrane with pure shearing. The real and imaginary
parts are shown as dashed and solid lines, respectively. Dashed lines on the vertical axis at small β
represent the hard-sphere limit given by Eq. (3.4). The curve in gray corresponds to the self-mobility
correction for a planar membrane given by Eq. (3.6). Here the solid particle is set at h = 2b.

3.1 Shearing contribution

For a membrane exhibiting a shearing-only resistance, the self-mobility correction can be computed
by plugging the expressions of An, Bn and Cn as stated respectively by Eqs. (B.26), (B.27) and
(B.28) into Eq. (3.2). By taking the limit α→∞ we recover the rigid sphere limit,

∆µS,∞
µ0

:= lim
α→∞

∆µ

µ0
= −ξ

5(17 + ξ2)

16(1− ξ2)
b

R
, (3.4)

in agreement with the result by Ekiel-Jeżewska and Felderhof [37, Eq. (2.26)]. Taking in addition an
infinite membrane radius, we obtain

∆µS,∞
µ0

= − 9

16

b

h
, (3.5)

where h := R− 1 is the distance separating the center of the solid particle to the closest point on the
capsule surface. We therefore recover the leading-order mobility correction for the motion parallel to
a planar hard-wall as computed by Lorentz [38].

To characterize the dynamic effects at different forcing frequencies, we define the dimensionless
shearing frequency as β := 6Bηωh/κS where B := 2/λ. In Fig. 2 we show the scaled self-mobility
correction for a membrane with pure shearing with C = 1 (λ = 2) versus the scaled frequency β
upon variation of the particle radius b while keeping h = 2b. We remark that the real part of the
mobility correction (shown as dashed lines) is an increasing function of frequency while the imaginary
part (shown as solid lines) has the typical peak structure attributed to the memory effect induced
by membrane elasticity. In the vanishing frequency limit, the mobility correction near a hard-sphere
given by Eq. (3.4) is recovered.

As the particle radius decreases, we observe that in the high frequency regime both the real and
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Figure 3: Log-log plot of the rescaled peak-frequency βpeak versus b for different particle-to-membrane
distance h.

imaginary parts follow faithfully the evolution predicted for a planar membrane which reads [13]

∆µS
µ0

=
3

8

b

h

[
− 5

4
+
β2

8
+ iλβeiλβ E1 (iλβ)− 3iβ

8
+

(
−β

2

2
+
iβ

2

(
1− β2

4

))
eiβ E1(iβ)

]
. (3.6)

The peak occurring at β ∼ 1 can be estimated by a balance between membrane elasticity and fluid
viscosity as ω ∼ κS/(ηh). This peak is attributed to membrane in-plane displacements uθ and uφ
which are observed in the same way for planar membranes. The second peak of small amplitude
occurring in the low frequency regime is attributed to membrane normal displacement along ur which
is not involved in the traction jumps for planar membranes. In fact, for the axisymmetric motion
examined in part I [see 30, Fig. 2], we observe that the low-frequency peak has a remarkably higher
amplitude since the membrane displacement ur manifests itself in a more pronounced way for the
motion perpendicular than for the motion parallel to the membrane.

Interestingly, the frequency corresponding to the left peak of the imaginary part of the mobility
correction is found to be proportional to b2, as plotted in Fig. 3. For different radii and separations,
the same master curve is recovered and the second peak frequency position can conveniently be
estimated from the relation βpeak = h2. It is worth noting that a scaling relation βpeak = 2h2 has
been obtained for the axisymmetric motion considered in part I.

3.2 Bending contribution

For a membrane possessing only bending rigidity, the self-mobility correction is determined by
plugging the expressions of An, Bn and Cn as stated respectively by Eqs. (B.33), (B.34) and (B.35)
into Eq. (3.2). By taking the limit αB →∞, the leading-order self-mobility can be approximated by

∆µB,∞
µ0

:= lim
αB→∞

∆µ

µ0
' − ξ5

70(1− ξ2)

[
−9 + 71ξ2 − 183

2
ξ4 +

341

8
ξ6
]
b

R
, (3.7)

which for an infinite radius reads
∆µB,∞
µ0

= − 3

32

b

h
,
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Figure 4: (Color online) Scaled self-mobility correction versus βB for various values of the capsule
radius, for a membrane with pure bending. The dashed and continuous lines represent the real
and imaginary parts, respectively. The horizontal dashed lines are the vanishing frequency limits
approximated by Eq. (3.7). The curve shown in gray is the solution given by Eq. (3.8) for a planar
membrane. Here we take h = 2b.

corresponding to the vanishing frequency limit for an idealized membrane with pure bending. Note
that this limit is different from the hard-sphere limit but identical to that of a planar interface
separating two immiscible fluids having the same viscosity [14, 39]. A similar behavior has been
observed for planar membranes with pure bending resistance. This can be justified by the fact that
the bending traction jump stated by Eq. (2.13) is determined only by the radial displacement ur and
does not involve the tangential displacements uθ and uφ. As a result, even for an infinite bending
modulus, the membrane tangential displacements remain completely free. This behavior is in contrast
to the hard-sphere where all the displacement field components are restricted.

We define the characteristic frequency for bending as βB := 2h(4ηω/κB)1/3. In Fig. 4, we show the
scaled self-mobility correction versus βB of a particle moving nearby a membrane with bending-only
resistance. Unlike a membrane with pure shearing resistance, the second low frequency peak is not
observed nearby a membrane with pure bending resistance. This can be understood since the traction
jumps due to bending involve only the radial displacement ur. The peak observed at β3B ∼ 1 is the
characteristic peak for bending which can be estimated by a simple balance between membrane
bending and fluid viscosity as ω ∼ κB/(h

3η). This trend is in contrast to what has been observed
for membrane with pure shearing resistance where the traction jumps involve both the radial and
tangential displacements.

For sufficiently small values of b, we observe that both the real and imaginary parts of the mobility
correction are in good agreement with the planar membrane solution [13]

∆µB(βB)

µ0
=

3

64

b

h

[
−2 +

iβ3B
3

(
φ+ + e−iβB E1(−iβB)

)]
, (3.8)

wherein
φ+ = e−izB E1(−izB) + e−izB E1(−izB) ,
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Figure 5: (Color online) a) Scaled particle mobility correction versus β for various values b for
a membrane possessing both shearing and bending rigidities. The real and imaginary parts are
shown as dashed and solid lines, respectively. Horizontal dashed lines are the hard-sphere limit given
by Eq. (3.4). The curve shown in gray corresponds to the mobility correction for a planar elastic
membrane [13] as obtained by linear superposition of Eqs. (3.6) and (3.8). Here the solid particle
is set at h = 2b and the membrane has a reduced bending modulus EB = 1. b) Scaled mobility
correction versus β for various values of EB. The horizontal dashed line in black is the hard-sphere
limit given by Eq. (3.4), whereas the gray dashed line corresponds to the infinite bending rigidity
limit predicted for a bending-only membrane as given by Eq. (3.7). Here we take b = 1/10 and
h = 2b.

and zB = βBe
2iπ/3. As a result, a very good estimate of particle mobility can be made for large

capsules with bending-only resistance from the planar membrane limit. For moderate and small
capsule radii however, the planar membrane solution leads to a reasonable agreement only in the
high frequency regime for which βB > 1, in the same way as observed in part I for the motion
perpendicular to the membrane [30].
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3.3 Shearing-bending coupling

Unlike for a planar membrane, shearing and bending are intrinsically coupled for a spherical mem-
brane. As a result, the mobility correction is not a linear superposition of independent contributions
from shearing and bending. A similar coupling behavior is observed between two planar elastic in-
terfaces [26] or thermally fluctuating membranes [40, 41]. In order to investigate this coupling, we
define the reduced bending modulus as EB := κB/(κSh

2), a parameter that quantifies the relative
contributions of shearing and bending.

In Fig. 5 a) we show the scaled self-mobility correction versus β nearby a membrane with both
shearing and bending resistances upon varying b. We observe that in the high frequency regime,
i.e. for β > 1, the mobility correction follows the evolution predicted for a planar elastic membrane.
For lower values of b, the planar membrane prediction leads to a very good estimation even deeper
into the low-frequency regime. In the following, we take h = 2b and a membrane reduced bending
modulus EB = 1, for which shearing and bending effects manifest themselves equally.

In Fig. 5 b), we show the particle self-mobility correction versus the scaled frequency β for a
membrane with both shearing and bending rigidities upon varying the reduced bending modulus EB

while keeping b = 1/10 and h = 2b. For EB = 0 (shearing-only membrane), a low frequency peak as
in Fig. 2 emerges. For higher values of EB this peak completely disappears confirming our hypothesis
that it is due to radial deformations which are suppressed by bending resistance.

The imaginary part exhibits a high frequency peak of typically constant height for increasing EB.
Since β and βB are related by

β3B =
16

3BEB
β ,

the peak observed at β ∼ 1 is attributed to shearing, whereas the peak occurring in the high frequency
regime is attributed to bending, since β ∼ EB for β3B ∼ 1. Particularly, for EB = 1, the position of
the two peaks coincides as β ∼ β3B for which shearing and bending effects have equal contribution.

4 Diffusion nearby cell membranes

The analytical predictions of the particle self-mobility presented in the previous section serve as a
basis for the study of particle diffusional motion nearby spherical cell membranes. The determination
of the mean-square displacement (MSD) requires as an intermediate step the computation of the
velocity autocorrelation function which is derived from the fluctuation-dissipation theorem as [42, 43]

φv(t) =
kBT

2π

∫ ∞
−∞

(
µ(ω) + µ(ω)

)
eiωt dω , (4.1)

wherein kB is the Boltzmann constant and T is the absolute temperature of the system. In this way,
the particle MSD is computed as

〈∆r(t)2〉 = 2

∫ t

0
(t− s)φv(s) ds . (4.2)

Further, for the sake of convenience, we define the excess MSD as the membrane induced scaled
correction to the full MSD as [13]

∆(t) := 1− 〈∆r(t)
2〉

2D0t
, (4.3)

wherein D0 = µ0kBT is the usual bulk diffusion coefficient predicted from Einstein theory [44, 45].
In typical physiological situations, red blood cell membranes have a shear modulus κS = 5 ×

10−6N/m, a bending modulus κB = 2×10−19Nm [31] and a discocyte shape of local radius a = 10µm.
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Figure 6: Mean-square displacement versus time for Brownian motion of a 100nm particle parallel
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dashed lines represent the corresponding MSDs near a hard wall or sphere, respectively. The inset
shows the variation of the excess MSD as defined by Eq. (4.3).

We then consider a solid particle of radius b = a/10 located a distance h = 2b for which the reduced
bending modulus EB = 1. We scale the time by the characteristic time scale for shearing TS = 6hη/κS
which is of about 0.3 µs considering a typical dynamic viscosity of blood plasma η = 1.2 mPas.

In Fig. 6, we show the scaled MSD versus the scaled time for a particle diffusing nearby a planar
or a spherical membrane using the above mentioned parameters. We observe that at short time scales
of motion, the MSD follows a linear bulk behavior and the corresponding excess MSD amounts to
very small values. This behavior is justified by the fact that the particle does not yet perceive the
presence of the membrane at these very short time scales. As the time increases, the effect of the
membrane becomes noticeable and the particle experiences at intermediate time scales a long-lasting
subdiffusive regime that can extend up to 102 TS nearby a spherical membrane and even further
for a planar membrane. In the steady limit in which t � TS, the MSD progressively approaches
the value predicted nearby a hard boundary. For the current set of physically realistic parameters,
the steady excess MSD is found to be about twice larger for a planar membrane than that for a
spherical membrane. Therefore, accounting for membrane curvature becomes crucial for an accurate
and precise computation of the particle diffusional motion.

5 Capsule motion and deformation

Having analyzed the capsule-induced correction to the self-mobility, we now focus on the motion of
the capsule itself. This is characterized by the pair-mobility µ12, defined as the ratio between the
velocity of the capsule centroid V1 and the force F2 applied on the nearby solid particle such that
V1 = µ12F2. Without loss of generality, we assume that the force is directed along the x direction.
The capsule translational velocity can be computed by volume integration of the fluid velocity inside
the capsule [46],

V1(ω) =
1

Ω

∫ 1

0

〈
v(i)x (r, φ, θ, ω)

〉
r2 dr,
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wherein Ω := 4π/3 is the volume of the undeformed capsule, 〈·〉 denotes angular averaging defined
by Eq. (B.6), and v(i)x = v

(i)
r sin θ cosφ+ v

(i)
θ cos θ cosφ− v(i)φ sinφ. After integration, only the terms

with n = 1 of the series remain, leading to the frequency-dependent pair-mobility

µ12 = − 1

8πη
(a1 + b1 − c2) ,

which after computation simplifies to

6πηµ12 =
3

4
ξ +

ξ3

4

3 + (2λ− 1)α

5 + (2λ− 1)α
. (5.1)

The correction to the pair-mobility can therefore be expressed as a Debye-type model with a
relaxation time given by

τ =
15

2(2λ− 1)

η

κS
,

which is identical to that obtained for the axisymmetric motion [30].
In the limiting cases, two known results are recovered. Firstly, for α→∞, we obtain the leading-

order pair-mobility between two unequal hard-spheres

lim
α→∞

6πηµ12 =
3

4
ξ +

ξ3

4
. (5.2)

Secondly, for α→ 0, we get the leading-order pair-mobility between a solid particle and large spherical
viscous drop

lim
α→0

6πηµ12 =
3

4
ξ +

3

20
ξ3 , (5.3)

both of which are in agreement with the results by Fuentes et al. [20, Eq. (16)].

Membrane deformation

The force exerted on the particle induces a fluid motion which creates imbalance in the stress
tensor across the membrane. As a result, the membrane deforms elastically. We now compute the
capsule deformation field resulting from a nearby point-force. To leading order in deformation,
the displacement of the membrane is related to the fluid velocity via the no-slip relation given by
Eq. (2.14). From Eqs. (B.5) and (B.12) we obtain

ur =
1

8πηiω

∞∑
n=1

[
n+ 1

2
an + bn − cn+1

]
ψn−1 , (5.4)

Πu =
1

8πηiω

[ ∞∑
n=1

(
cn+3

n+ 2
− cn+1

n
+
bn
n

+
n+ 3

2n
an

)
Ψn−1 −

∞∑
n=0

n+ 1

n+ 2
cn+3 Γn

]
, (5.5)

where Π denotes the projection operator defined as

Π := 1− erer ,

and
Γn := Πγn , Ψn := Π∇ψn .

We define the frequency-dependent reaction tensor Rij relating the membrane displacement to
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Figure 7: (Color online) Scaled frequency-dependent particle self-mobility correction versus the scaled
frequency β nearby a membrane endowed with only shearing (green), only bending (red) and both
rigidities (black). The small particle of radius b = 1/10 is at a distance h = 2b. Here we take a Skalak
ratio C = 1 and a reduced bending modulus EB = 2/3. The theoretical predictions are presented as
dashed lines for the real parts and as solid lines for the imaginary parts. Symbols refer to boundary
integral simulations where the real and imaginary parts are shown as squares and circles, respectively.
The horizontal dashed lines are the vanishing frequency limits predicted by Eqs. (3.4) and (3.7).

the point-force as [47]
ui(φ, θ, ω) = Rij(φ, θ, ω)Fj(ω) .

In particular, by considering a harmonic driving force Fi(t) = Kie
iω0t of frequency ω0, which

in the frequency domain has the form Fi(ω) = 2πKiδ(ω − ω0), the membrane displacement in the
temporal domain obtained upon inverse Fourier transform is calculated as

ui(φ, θ, t) = Rij(φ, θ, ω0)Kje
iω0t .

Explicit expression for the reaction tensor can readily be obtained from Eqs. (5.4) and (5.5) upon
separating out the force F in ψn−1, Ψn−1 and Γn.

6 Comparison with boundary integral simulations

In order to assess the validity and accuracy of the point-particle approximation used throughout this
work, we compare our analytical predictions with fully resolved numerical simulations. The simulation
method is based on the completed double layer boundary integral equation method (CDLBIEM) [48–
51], which has been proven to be perfectly suited for simulating deformable soft objects and solid
particles in the vanishing Reynolds number regime. Further technical details regarding the algorithm
and its numerical implementation have been reported by some of us elsewhere, see e.g. Ref. [26]
and [33].

In Fig. 7, we show the scaled particle self-mobility correction versus the scaled frequency predicted
theoretically by Eq. (3.2). The solid particle of radius b = 1/10 is positioned at h = 2b close to a
large spherical capsule. Here we take the same simulation parameters as in part I for a Skalak ratio
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Figure 8: (Color online) The scaled pair-mobility correction versus the scaled frequency nearby a
membrane possessing only shearing (green), only bending (red) and both rigidities (black). The
analytical prediction given by Eq. (5.1) is shown as dashed line for the real part and as solid line for
the imaginary part. Simulation results are shown as squares and circles for the real and imaginary
parts, respectively. The horizontal long-dashed line is the hard-sphere limit predicted by Eq. (5.2)
where the short-dashed line is the viscous drop limit given by Eq. (5.3).

C = 1 (λ = 2) and a reduced bending modulus EB = 2/3. We also show results for an idealized
membrane with pure shearing (green) and pure bending (red).

We observe that shearing resistance manifests itself in a more pronounced way compared to
bending. The mobility correction nearby a hard-sphere is recovered only if the membrane possesses a
non-vanishing resistance towards shearing, in line with theoretical predictions. A very good agreement
is obtained between analytical predictions and boundary integral simulations over the whole range
of applied frequencies.

Next, we turn our attention to the motion of the capsule induced by the nearby solid particle. In
Fig. 8 we plot the scaled pair-mobility correction versus the scaled frequency as predicted theoretically
by Eq. (5.1). We observe that the correction for a membrane with pure shearing is almost identical
to that of a membrane with both shearing and bending resistances, thus confirming the dominant
contribution of shearing to the pair-mobility. For small forcing frequencies, the correction approaches
that near a hard-sphere given by Eq. (5.2). On the other hand, the correction approaches that near
a viscous drop for high frequencies as given by Eq. (5.3). The correction nearby a membrane with
pure bending remains typically constant upon changing the actuation frequency, and equals to that
predicted nearby a viscous drop, in agreement with theoretical predictions.

In Fig. 9, we present a comparison between analytical prediction and boundary integral simulations
of the capsule deformation for a membrane possessing both shearing and bending resistances, using
the same parameters as in Fig. 7. The displacement field is shown in the plane of maximal deformation
(the plane φ = 0 for ur and uθ and the plane φ = π/2 for uφ), plotted at quarter period for which
tω0 = π/2 i.e. when the oscillating particle reaches its maximal position. We observe that the radial
displacement vanishes at the capsule poles and shows a non-monotonic dependence on the polar angle
θ. On the other hand, the in-plane displacements uθ and uφ are monotonically decreasing functions of
θ and reach their maximum at θ = 0. We observe that the in-plane displacement along the membrane
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Figure 9: (Color online) The membrane displacement versus the polar angle θ in the plane of maximum
displacement (the plane φ = 0 for ur and uθ and the plane φ = π/2 for uφ) for three scaled forcing
frequencies β at quarter period for tω0 = π/2. Solid lines are the theoretical predictions obtained
from Eqs. (5.4) and (5.5) and symbols are boundary integral simulations.

is about five times larger than the radial displacement, in contrast to the axisymmetric motion
where the radial displacement is found to be about three times larger than tangential displacement.
By analyzing the displacement at various actuation frequencies, we observe that larger frequencies
induce smaller deformation as the capsule membrane does not have enough time to respond to the
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fast wiggling particle. As shown in part I for typical situations, taking a forcing frequency β = 4
induces a maximal membrane deformation of about 1 % of its initially undeformed radius. As a
result, departure from sphericity is negligible and the system can accurately be studied within the
frame of the linear theory of elasticity adopted throughout this work. The analytical predictions are
found to be in a very good agreement with boundary integral simulations.

7 Conclusions

This work, together with an earlier paper [30], provides a complete solution of the hydrodynamic
problem of flow induced by a point-force acting close to an elastic spherical capsule. The answer is
formulated in terms of the Green’s function. The problem for the force acting along the symmetry
axis of the system has been treated in the first part of our considerations, while here we have extended
the results to account for the force being tangential to the surface of the sphere. Together with the
result of part I, the fluid flow field and thus the particle mobility functions can then be obtained for
an arbitrary direction of motion. The solution has been found using the image technique. Giving
all the technical details, we have done our calculations for the two cases of a membrane exhibiting
resistance against shearing and bending, respectively, and explicit formulas have been presented. The
same technique has been used to assess the combined effect of the two deformation modes.

We have then used the solution to characterize various dynamic effects related to this motion.
To explore the effect of confinement on the motion of the particle, we have calculated the leading-
order frequency-dependent hydrodynamic self-mobility of a small solid sphere moving close to the
capsule. We have shown that shearing resistance induces a second low-frequency peak resulting from
the membrane normal displacement. Moreover, we have demonstrated, in agreement with previous
studies in different complex geometries, that in the vanishing frequency limit the particle self-mobility
near a hard sphere is recovered only when the membrane possesses a non-zero resistance against
shearing. By applying the fluctuation-dissipation theorem, we find that the elastic nature of the
membrane introduces a memory in the system resulting to a long-lived subdiffusive regime on nearby
Brownian particles. The planar membrane assumption is found to be not valid for strongly curved
membranes where the steady excess MSD is significantly smaller than that predicted for the planar
case.

The effect of the point-force on the capsule has been quantified in two ways. Firstly, we have
calculated and analyzed the pair-mobility function, which is determined solely by the shearing prop-
erties of the membrane. We have shown it to be well described by a Debye-like model with a single
relaxation time. Secondly, we have computed, in leading order, the deformation of the membrane
due to the action of a point-force nearby.

All the theoretical results shown in the paper have been favorably verified in representative cases
by fully resolved numerical simulations for a truly extended particle using the completed double layer
boundary integral method.
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Appendices

A Membrane mechanics

In this appendix, we derive the traction jumps across a membrane endowed with shearing and bending
rigidities expressed in the spherical coordinates system for an asymmetric deformation. Here we follow
the convention in which the symbols for the radial, azimuthal and polar angle coordinates are taken
as r, φ and θ respectively, with the corresponding orthonormal basis vectors er, eφ and eθ.

Similarly, all the lengths shall be scaled by the capsule radius a. We denote by a = er the position
vector of the points situated at the undisplaced membrane. After deformation, the vector position
reads

r = (1 + ur)er + uθeθ + uφeφ , (A.1)

where u denotes the displacement vector field. In the following, capital roman letters will be reserved
for the undeformed state while small letters for the deformed. The spherical membrane can be
defined by the covariant base vectors g1 := r,θ and g2 := r,φ, where commas in indices denote spatial
derivatives. The unit vector n normal to the membrane is defined in such a way to form a direct
trihedron with g1 and g2. The covariant base vectors are

g1 =(ur,θ − uθ)er + (1 + ur + uθ,θ)eθ + uφ,θeφ , (A.2a)
g2 =(ur,φ − uφ sin θ)er + (uθ,φ − uφ cos θ)eθ + ((1 + ur) sin θ + uθ cos θ + uφ,φ) eφ , (A.2b)

and the linearized unit normal vector reads

n = er − (ur,θ − uθ) eθ −
( ur,φ

sin θ
− uφ

)
eφ . (A.3)

Note that g1 and g2 have (scaled) length dimension while the normal vector n is dimensionless. In
the deformed state, the components of the metric tensor are defined by the scalar product gαβ = gα ·gβ .
The contravariant tensor gαβ , being the inverse of the metric tensor is linearized as

gαβ =

(
1− 2εθθ −2εθφ

sin θ

−2εθφ
sin θ

1−2εφφ
sin2 θ

)
, (A.4)

wherein εαβ are the components of the in-plane strain tensor expressed in spherical coordinates as [52]

εθθ = (ur + uθ,θ) , (A.5a)

εθφ =
1

2

( uθ,φ
sin θ

+ uφ,θ − uφ cot θ
)
, (A.5b)

εφφ =
(
ur +

uφ,φ
sin θ

+ uθ cot θ
)
. (A.5c)

The contravariant tensor in the undeformed state Gαβ is readily obtained by considering a
vanishing strain tensor in Eq. (A.4).
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A.1 Shearing contribution

In this subsection, we derive the traction jump equations across a membrane endowed with a pure
shearing resistance. The two strain tensor invariants are given by Green and Adkins as [53–55]

I1 = Gαβgαβ − 2 , (A.6a)

I2 = detGαβ det gαβ − 1 . (A.6b)

The stress tensor contravariant components ταβ can be obtained provided knowledge of the
constitutive elastic law of the membrane, whose areal strain energy functional is W (I1, I2), such
that [56]

ταβ =
2

JS

∂W

∂I1
Gαβ + 2JS

∂W

∂I2
gαβ , (A.7)

wherein JS :=
√

1 + I2 is the Jacobian determinant, quantifying the ratio between deformed and
undeformed local areas. In the linear theory of elasticity, JS ' 1 + e, with e := εθθ + εφφ being the
trace of the in-plane strain tensor, also know as the dilatation function [57]. In this work, we use the
Skalak model to describe the elastic properties of the capsule membrane such that [58–61]

W (I1, I2) =
κS
12

(
I21 + 2I1 − 2I2 + CI22

)
, (A.8)

where C := κA/κS is a dimensionless parameter defined as the ratio between the area expansion and
shear modulus. We note that for C = 1, the Skalak model and the Neo-Hookean model are equivalent
for small deformations [56]. Upon plugging Eq. (A.8) into Eq. (A.7), the linearized in-plane stress
tensor reads

ταβ =
2κS
3

(
εθθ + Ce

εθφ
sin θ

εθφ
sin θ

εφφ+Ce

sin2 θ

)
. (A.9)

The membrane equilibrium equations which balance the elastic and external forces read

∇αταβ + ∆fβ = 0 , (A.10a)

ταβbαβ + ∆fn = 0 , (A.10b)

where ∆f = ∆fβgβ + ∆fnn is the traction jump and ∇α stands for the covariant derivative defined
for a second-rank tensor as [62]

∇αταβ = ταβ,α + Γααητ
ηβ + Γβαητ

αη , (A.11)

and Γλαβ are the Christoffel symbols of the second kind defined as [63]

Γλαβ =
1

2
gλη (gαη,β + gηβ,α − gαβ,η) . (A.12)

Further, bαβ is the second fundamental form (curvature tensor) defined as

bαβ = gα,β · n . (A.13)

In spherical coordinates, the non-vanishing components of the Christoffel symbols at zeroth order
are Γφφθ = Γφθφ = cot θ and Γθφφ = − sin θ cos θ. We find after some algebra that the tangential traction
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jumps across the membrane as given by Eq. (A.10a) read

τ θθ,θ + τ θφ,φ + Γφφθτ
θθ + Γθφφτ

φφ + ∆fθ = 0 , (A.14a)

τ θφ,θ + τφφ,φ +
(

2Γφφθ + Γφθφ

)
τ θφ + ∆fφ = 0 . (A.14b)

At zeroth order, the non-vanishing components of the curvature tensor are bθθ = −1 and bφφ =
− sin2 θ. For the normal traction jump Eq. (A.10b) we obtain

− τ θθ − sin2 θτφφ + ∆fn = 0 . (A.15)

After substitution and writing the projected equations in the spherical coordinates basis, we
immediately get the following set of equations for the traction jump,

∆fθ = −2κS
3

(
(1 + C)εθθ,θ + Cεφφ,θ +

εθφ,φ
sin θ

+ (εθθ − εφφ) cot θ

)
, (A.16a)

∆fφ = −2κS
3

(
εθφ,θ +

1

sin θ
(Cεθθ,φ + (1 + C)εφφ,φ) + 2εθφ cot θ

)
, (A.16b)

∆fn =
2κS
3

(1 + 2C) (εθθ + εφφ) . (A.16c)

It is worth to mention here that for curved membranes, the normal traction jump does not
vanish in the plane stress formulation employed throughout this work as the zeroth order in the
curvature tensor is not identically null. In fact, this is not the case for a planar elastic membrane
where the resistance to shearing introduces a jump in the tangential traction jumps only [13, 24, 26].
By substituting εθθ, εφφ and εθφ with their expressions, Eqs. (A.16) turn into the traction equations
given by Eq. (2.12) of the main text. In the following, the traction jump equations across a membrane
with a bending rigidity shall be derived.

A.2 Bending contribution

For the membrane resistance towards bending, we use the linear isotropic model, in which the bending
moment is related to the curvature tensor via [64]

Mβ
α = −κB

(
bβα −Bβ

α

)
, (A.17)

where κB is the membrane bending modulus. This model is equivalent to the Helfrich model for
small deformations [34]. The mixed version of the curvature tensor bβα is related to its covariant
representation by bβα = bαδg

δβ. The contravariant components of the transverse shearing vector Q
can be obtained from a local torque balance with the applied moment as Qβ = ∇αMαβ . We note that
the raising and lowering indices operations implies that Mαβ = Mα

δ g
δβ. Therefore, the components

of the shearing force read

Qθ = −κB
[ (

1− cot2 θ
)
ur,θ + ur,θθ cot θ + ur,θθθ + (1 + cot2 θ) (ur,φφθ − 2ur,φφ cot θ)

]
, (A.18a)

Qφ = −κB(1 + cot2 θ)
(
ur,φθ cot θ + 2ur,φ + ur,φθθ + (1 + cot2 θ)ur,φφφ

)
. (A.18b)
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The equilibrium equations read

−bβαQα + ∆fβ = 0 , (A.19a)
∇αQα + ∆fn = 0 , (A.19b)

where for a first-rank tensor the covariant derivative is defined as ∇βQα = ∂βQ
α + ΓαβδQ

δ. By
substituting Qθ and Qφ with their expressions, we thus obtain the traction jumps given by Eqs. (2.13)
of the main text.

B Determination of the unknown coefficients

In this appendix, we present technical details regarding the determination of the unknown coefficients
(An, Bn, Cn for the reflected flow, and an, bn, cn for the inner flow). For that purpose, we first project
the velocities on the surface of the membrane onto the radial and tangential directions following the
approach of Fuentes et al [19, 20].

B.1 Velocity projections

For the radial projection, we use the following identities

er ·∇ψn−1 = −n+ 1

r
ψn−1 , (B.1a)

er · rψn−1 = rψn−1 , (B.1b)

er · γn−1 = −1

r
ψn−2 , (B.1c)

er · (t× r)ϕn−1 = 0 . (B.1d)

Moreover, the projection of Eq. (2.17) onto the radial direction leads to

er · Fϕn =
1

2n+ 1

(
ψn−2
r
− rψn

)
. (B.2)

Therefore, the radial components can all be expressed in terms of a single harmonic ψn. Using these
identities in Eqs. (2.18), (2.20) and (2.21), we obtain

8πηvSr =
∞∑
n=1

[
n− 2

2n− 1

r2n

Rn
− n

2n+ 3

r2n+2

Rn+2

]
ψn−1 , (B.3)

8πηv∗r =

∞∑
n=1

[
− n+ 1

2n− 1
rAn−1 +

n+ 3

2n+ 3

An+1

r
+ 2(n+ 1)

Bn−1
r
− Cn

r

]
ψn−1 , (B.4)

8πηv(i)r =
∞∑
n=1

[
n+ 1

2
anr

2n+2 + bnr
2n − cn+1r

2n

]
ψn−1 . (B.5)

For the projection onto the tangential direction, we need to use the orthogonality properties of
spherical harmonics on a spherical surface. To this end, we introduce the following notation for the
average of a given scalar quantity M over a sphere,

〈M〉 :=
1

2π

∫ 2π

0

∫ π

0
M sin θ dθ dφ , (B.6)
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which we will use extensively for writing the orthogonality properties of the considered functions. In
particular, we have

〈ϕm−1ϕn−1〉 =
2

2n+ 1

δmn
r2n+2

,

〈ψm−1ψn−1〉 =
n(n+ 1)

2n+ 1

δmn
r2n+2

.

We also define the operator
Π := 1− erer ,

which projects vectors on a plane tangent to the spherical membrane surface. By applying the
projection operator to Eq. (2.17), we obtain

(n+ 1)(ΠF )ϕn =
1

2n+ 1

(
Ψn−2 − r2Ψn

)
− Γn−1, (B.7)

where we have defined
Γn := Πγn , Ψn := Π∇ψn .

We also note the relation

(2n− 1)Π(t× r)ϕn−1 = Γn−3 − r2Γn−1 + (2n− 3)(ΠF )ϕn−2 , (B.8)

which upon using Eq. (B.7) gives

(2n− 1)Π(t× r)ϕn−1 =
1

n− 1

(
Ψn−4 − r2Ψn−2

)
− n− 2

n− 1
Γn−3 − r2 Γn−1 . (B.9)

Applying the projection relations Eq. (B.7) and (B.9) to Eqs. (2.18), (2.20) and (2.21), we finally
obtain

8πηΠvS =
∞∑
n=1

[
n− 2

(2n− 1)n

r2n+1

Rn
− n

(n+ 2)(2n+ 3)

r2n+3

Rn+2

]
Ψn−1 +

∞∑
n=0

− 2

n+ 2

r2n+3

Rn+2
Γn , (B.10)

8πηΠv∗ =

∞∑
n=1

[
− n

(n+ 2)(2n+ 3)
An+1 +

n− 2

n(2n− 1)
r2An−1 − 2Bn−1

]
Ψn−1

+
∞∑
n=0

[
Cn −

2

n+ 2
An+1

]
Γn , (B.11)

8πηΠv(i) =

∞∑
n=1

[
r2n+3

n+ 2
cn+3 −

r2n+1

n
cn+1 + bn

r2n+1

n
+ an

n+ 3

2n
r2n+3

]
Ψn−1

+

∞∑
n=0

−n+ 1

n+ 2
r2n+3cn+3 Γn . (B.12)

The functions Ψn−1 and Γn satisfy the following orthogonality relations

〈Ψm−1 ·Ψn−1〉 =
n2(n+ 1)2

2n+ 1

δmn
r2n+4

, (B.13)

〈Γm · Γn〉 =
4(n+ 1)3

(2n+ 1)(2n+ 3)

δmn
r2n+4

, (B.14)
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and also for cross terms

〈Ψm−1 · Γn〉 =
n2(n+ 1)

2n+ 1

δmn
r2n+4

. (B.15)

We note that their derivatives with respect to r needed for the computation of stresses can be obtained
from

Ψn−1,r = −n+ 2

r
Ψn−1 ,

Γn,r = −n+ 2

r
Γn .

Having introduced these tools, we now proceed to the calculation of the fluid velocity coefficients.

B.2 Pressure field

The pressure field can be found by multipole expansion. The general form of the pressure p in the
exterior fluid is written as a sum of exterior and interior harmonics as

8πp =
∞∑
n=1

(
Sn +Qnr

2n+1
)
ψn−1 .

The coefficients Sn and Qn can be related to the coefficients of the velocity thanks to the Stokes
equation (2.1), leading to

Sn = −2An−1 , Qn = − 2

Rn+2
.

For the fluid inside the capsule, all harmonics of negative order that lead to a singularity at the
origin should be discarded, thus reducing the form of the pressure to

8πp(i) =
∞∑
n=1

pnr
2n+1ψn−1 ,

leading upon using Eq. (2.3) to

pn =
(n+ 1)(2n+ 3)

n
an .

B.3 Continuity of velocity

After substituting the radially projected velocities given by Eqs. (B.3) through (B.5) into Eq. (2.7),
the continuity of the radial component at the membrane leads to

n+ 3

2n+ 3
An+1 −

n+ 1

2n− 1
An−1 + 2(n+ 1)Bn−1 − Cn +

n− 2

2n− 1

1

Rn
− n

2n+ 3

1

Rn+2
(B.16)

=
n+ 1

2
an + bn − cn+1,

in direct analogy with Fuentes et al[20].

Substituting Eqs. (B.10) through (B.12) into Eq. (2.5) and (2.6), the continuity of the tangential
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velocity across the membrane leads to the two following equations

− n

(n+ 2)(2n+ 3)
An+1 +

n− 2

n(2n− 1)
An−1−2Bn−1 +

n− 2

n(2n− 1)

1

Rn
(B.17)

− n

(n+ 2)(2n+ 3)

1

Rn+2
=

cn+3

n+ 2
− cn+1

n
+
bn
n

+
n+ 3

2n
an ,

2

n+ 2
An+1 − Cn +

2

n+ 2

1

Rn+2
=
n+ 1

n+ 2
cn+3 . (B.18)

We note that Fuentes et al. [20, p. 64] reported −2Bn−1 with an erroneous plus sign, which we correct
here.

Solving Eqs. (B.16), (B.17) and (B.18) for the unknown coefficients inside the capsule an, bn and
cn leads to

an = An−1 −
2n2 + 7n+ 3

2n2 + 5n+ 3
An+1 − 2(2n+ 1)Bn−1 +

2n+ 1

n+ 1
Cn −

2n

2n2 + 5n+ 3

1

Rn+2
, (B.19)

bn = −2n3 + n2 − 10n+ 3

2(n− 1)(2n− 1)
An−1 +

n+ 3

2
An+1 + (2n2 + 5n+ 3)Bn−1 −

n

n− 1
Cn−2 (B.20)

− 2n+ 3

2
Cn +

n(n+ 1)

(2n− 1)(n− 1)

1

Rn
,

cn =
2

n− 2
An−2 −

n− 1

n− 2
Cn−3 +

2

n− 2

1

Rn−1
. (B.21)

B.4 Discontinuity of stress tensor

Expressions for An, Bn and Cn can be determined from the discontinuity of the fluid stress tensor
across the membrane. In order to gauge the effect of membrane shearing and bending on the particle
mobility, we hereafter consider shearing and bending effects separately.

Pure shearing

For the sake of clarity, we write the radial and tangential velocities respectively stated by Eqs. (B.3)-
(B.5) and (B.10)-(B.12) as

vr =

∞∑
n=1

ρnψn−1 , Πv =

∞∑
n=1

αnΨn−1 +

∞∑
n=0

βnΓn ,

for the fluid velocity outside the capsule wherein ρn, αn and βn are functions of r only. Analogous
expressions can be written for the radial and tangential velocities inside with the corresponding
coefficients ρ(i)n , α(i)

n and β(i)n .
Eqs. (2.8) and (2.9) with the shearing part only, as given by Eqs. (2.12a) and (2.12b), can be

cast in the following form

∞∑
n=1

α̃nΨn−1 +

∞∑
n=0

β̃nΓn =

∞∑
n=1

αnFn +

∞∑
n=0

βnGn +

∞∑
n=1

ρnfn , (B.22)

where
α̃n = αn,r − α(i)

n,r − (n+ 2)
(
αn − α(i)

n

)
,

and analogously for β̃n. Expressions for Fn, Gn and fn can readily be obtained by identification.
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Multiplying both members of Eq. (B.22) by Ψm−1 and by Γm, and averaging over the surface of the
sphere allows us to use the following orthogonality relations

〈Fn ·Ψm−1〉 =
αn2(n+ 1)2

2n+ 1
(n(n+ 1)λ− 1) ,

〈Gn ·Ψm−1〉 =
αn2(n+ 1)

2n+ 1
(n(n+ 1)λ− 1) ,

〈fn ·Ψm−1〉 = −αn
2(n+ 1)2

2n+ 1
(2λ− 1) ,

〈Fn · Γm〉 =
αn2(n+ 1)

2n+ 1
(n(n+ 1)λ− 1) ,

〈Gn · Γm〉 =
αn(n+ 1)

2(2n+ 1)(2n+ 3)

(
12 + 22n+ 13n2 + 2n3 + 2n2(2n+ 3)λ

)
,

〈fn · Γm〉 = −αn
2(n+ 1)

2n+ 1
(2λ− 1) ,

where iα = 2κS/(3ηω). Combining these with Eqs. (B.13) through (B.15), we get

(n+ 1)α̃n + β̃n = α
[

[(n+ 1)αn + βn] [n(n+ 1)λ− 1]− (n+ 1)(2λ− 1)ρn

]
, (B.23)

α̃n +
4(n+ 1)2

(2n+ 3)n2
β̃n = α

[
(n(n+ 1)λ− 1)αn (B.24)

+
12 + 22n+ 13n2 + 2n3 + 2n2(2n+ 3)λ

2n(2n+ 3)
βn − (2λ− 1)ρn

]
.

Further, the normal traction jump, given by Eqs. (2.10) and (2.12c), can be written as

∞∑
n=1

(
pn − p(i)n

)
ψn−1 = α(2λ− 1)

∞∑
n=1

[ρn,r − (n+ 1)ρn]ψn−1 ,

leading directly to
pn − p(i)n = α(2λ− 1) [ρn,r − (n+ 1)ρn] . (B.25)

Eqs. (B.23), (B.24) and (B.25) together with (B.19) through (B.21) form a closed system of
equations amenable to immediate resolution by the standard substitution method. Finally, we obtain

An =
αn

K

(
K1

Rn+1
− K3

Rn+3

)
, (B.26)

with the auxiliary functions

K1 = (2n+ 3)(n− 1)
[
(4− α)(n2 + 4n+ 3) + 3 +

(
2n2 + (2α+ 5)n+ 6α

)
(n+ 1)λ

]
,

K3 = (2n+ 1)(n+ 1)
[
(4− α)(n2 + 4n+ 3) + 3 +

(
2n2 + (2α+ 7)n+ 6α+ 6

)
(n+ 1)λ

]
,

K = 8λαn5 + 2
[
(2λ− 1)α2 + 30λα+ 16

]
n4 + 4

[
3(2λ− 1)α2 + 43λα+ 48

]
n3

+ 2
[
11(2λ− 1)α2 + 117λα+ 200

]
n2 + 6

[
2(2λ− 1)α2 + (25λ− 2)α+ 56

]
n

+ 18(2λ− 1)α+ 90 .
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Further, we express Bn in terms of An and An+2 as

Bn = − n+ 1

2(n+ 3)(2n+ 5)
An+2 +

1

2G

[
1

2n+ 1

(
G′An +

αnG1

Rn+1

)
(B.27)

− α(n+ 1)G3

(n+ 3)(2n+ 5) (αn2 + (5α+ 4)n+ 4α+ 10)

1

Rn+3

]
,

with

G = λαn3 + ((6λ− 1)α+ 4)n2 + [(11λ− 4)α+ 16]n+ 3(2λ− 1)α+ 15 ,

G′ = λαn3 + [(4λ− 1)α+ 4]n2 + [(5λ− 4)α+ 8]n+ (2λ− 1)α+ 3 ,

G1 = λn2 + n− (λ+ 1) ,

G3 = λαn5 + [(7λ+ 1)α+ 4λ]n4 + [3(λ+ 4)α+ 2(17λ− 6)]n3

+ [2(52λ− 47)− (71λ− 51)α]n2 + 2 [67λ− 171− 2(41λ− 22)α]n

− 48(2λ− 1)α+ 30(2λ− 11) .

The last coefficient, Cn, is found as

Cn =
2

n+ 2
An+1 +

2n(n+ 3)α

(n+ 2) (αn2 + (3α+ 4)n+ 6)

1

Rn+2
. (B.28)

In particular, for α → ∞ (obtained either by considering an infinite shearing modulus or a
vanishing forcing frequency), we recover the coefficients near a hard-sphere with stick boundary
conditions, namely

lim
α→∞

An =
1

2(n+ 2)

(
(2n+ 3)(n− 1)

Rn+1
− (2n+ 1)(n+ 1)

Rn+3

)
,

lim
α→∞

Bn =
n− 1

4(n+ 2)

1

Rn+1
+

n+ 1

4(n+ 4)

1

Rn+5
− n2 + 3n− 1

2(n+ 2)(n+ 4)

1

Rn+3
,

lim
α→∞

Cn =
2n+ 3

n+ 3

(
1

Rn+2
− 1

Rn+4

)
,

all in agreement with the results of Fuentes et al. [20], and as given in Kim and Karrila [15, p. 246].

Pure bending

In complete analogy with the previous section, Eqs. (2.8) and (2.9) with the right-hand side given
by (2.13b) and (2.13a), respectively, can be written as

∞∑
n=1

α̃nΨn−1 +

∞∑
n=0

β̃nΓn =

∞∑
n=1

ρngn , (B.29)

where g can directly be determined by identification. Multiplying both members of Eq. (B.29)
by Ψm−1 and by Γm, averaging over the surface of the sphere upon making use of the following
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orthogonality relations

〈gn ·Ψm−1〉 = −αB
(n2 − 1)n2(n+ 1)(n+ 2)

2n+ 1
δmn ,

〈gn · Γm〉 = −αB
(n2 − 1)n2(n+ 2)

2n+ 1
δmn ,

together with Eqs. (B.13) through (B.15), we get

α̃n +
1

n+ 1
β̃n = −αB(n− 1)(n+ 2)ρn , (B.30)

α̃n +
4(n+ 1)2

n2(2n+ 3)
β̃n = −αB(n− 1)(n+ 2)ρn , (B.31)

where iαB = κB/(ηω).

For the normal traction jump, Eq. (2.10) with (2.13c) can be written as

−
∞∑
n=1

(
pn − p(i)n

)
ψn−1 =

∞∑
n=1

ρnHn .

After making use of the orthogonality property

〈Hnψm−1〉 = −αB
(n2 − 1)n2(n+ 1)(n+ 2)

2n+ 1
δmn ,

we obtain
pn − p(i)n = −αB(n2 − 1)n(n+ 2)ρn . (B.32)

Solving the system of equations formed of Eqs. (B.30), (B.31) and (B.32) together with (B.19)
through (B.21), we obtain the first set of coefficients as

An =
αBw

W

[
(2n+ 5)(n− 1)

Rn+1
− (2n+ 1)(n+ 1)

Rn+3

]
, (B.33)

where

w = n2(n+ 1)(n+ 2)(n+ 3),

W = 30 + (12αB + 92)n+ (94αB + 72)n2 + (168αB + 16)n3 + 118αBn
4 + 36αBn

5 + 4αBn
6.

For the set Bn, we find

Bn = − (n+ 1)An+2

2(n+ 3)(2n+ 5)
+

1

S

[
S′An

2n+ 1
+ αBn(n+ 3)

(
(n+ 1)2

2n+ 5

1

Rn+3
− n2 − 1

2n+ 1

1

Rn+1

)]
, (B.34)

where we defined

S = 2
[
αBn

4 + 6αBn
3 + (11αB + 4)n2 + 2(3αB + 8)n+ 15

]
,

S′ =
S

2
− 8n− 12 .

Finally, the last set is simply given by

Cn =
2An+1

n+ 2
. (B.35)



322 Pub9. Mobility nearby a spherical membrane: II. Asymmetric motion

The same resolution procedure can be applied to the evaluation of the series coefficients when
the membrane is endowed simultaneously with both shearing and bending resistances. Analytical
expressions can be derived by computer algebra software but they are not listed here due to their
complexity and lengthiness. It is worth to mention that a coupling between shearing and bending
exists, i.e. in the same way as observed in part I [30] and for two parallel planar membranes [26] but
in contrast to what has been observed for a single membrane [13, 25].
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Abstract

On the basis of the linear hydrodynamic equations, we present a fully analytical theory of the creeping
motion of a solid particle moving inside a spherical elastic cavity which can be seen as a model system
for a living cell. In the particular situation where the particle is concentric with the cavity, we use
the stream function technique to find exact analytical solutions of the fluid motion equations on both
sides of the elastic cavity. In this particular situation, we find that the solution of the hydrodynamic
equations is solely determined by membrane shearing properties and that bending does not play a
role. For an arbitrary position within the spherical cavity, we employ the image solution technique to
compute the axisymmetric flow field induced by a point-force (Stokeslet). We then obtain analytical
expressions of the leading order mobility functions describing the fluid mediated hydrodynamic
interactions between the particle and confining elastic cavity. In the vanishing frequency limit, we
find that the particle self-mobility is lower than that predicted inside a rigid cavity. Considering the
cavity motion, we find that the pair-mobility function is determined only by membrane shearing
properties. Our analytical predictions are supplemented and validated by fully resolved boundary
integral simulations where a very good agreement is obtained over the whole range of applied forcing
frequencies.

1 Introduction

Transport phenomena are ubiquitous in nature and are essential for the understanding of a variety
of processes in biological physics, chemistry and bioengineering [1–3]. Prime examples include the
paracellular transport of drugs and macromolecules across an epithelium in organs and target-
tissues [4, 5], and the active locomotion of swimming microorganisms inside living cells [6, 7].

In the microscopic world, the fluid motion is well described by the linear Stokes equations where
the viscous forces play a dominant role compared to the inertial forces. In these situations, a full
representation of the motion of suspended particles is achieved by the mobility tensor [8] which
bridges between the velocity moments of the particle and the moments of the force density on its
surface. In biological media, the motion of suspended tracer particles is sensitive to the mechanical
state of living cells and the experimentally recorded trajectories can provide useful information about
the membrane structure [9] or the nature of active processes driving particle motion inside living
cells [10]. Over the last few decades, intracellular particle tracking experiments have widely been
used as a powerful and often accurate tool for the characterization and diagnostic of individual living
cells [11–14] or the determination of the cell mechanical properties [15–17].

From a theoretical point of view, particle motion inside a rigid spherical cavity with a fluid
velocity satisfying the no-slip boundary condition at the inner cavity is well understood and has been
solved since some time ago. The exact solution of fluid flow takes a particularly simple form when
the particle is located at the center of the cavity and can be determined using the stream function
technique as derived e.g. by Happel and Brenner [18]. The first attempt to obtain the fundamental
solution to the Stokes equations due to a point force acting in a Newtonian fluid bounded by a rigid
spherical contained dates back to Oseen [19] who used the image solution technique. Complementary
works which represent extensions of Oseen’s solution, commonly known under the name of sphere
theorem, have been later presented by Butler [20], Collins [21, 22], Hasimoto [23–25], Shail [26, 27]
and Sellier [28], to name a few. A more transparent form of the solution has been presented by Maul
and Kim [29, 30] where both the axisymmetric and asymmetric Stokeslets have been considered
independently. Their results are more useful for computational purposes using boundary integral
methods [31] and their resolution approach is based on the method presented by Fuentes et al. [32, 33].
The latter computed the flow field due to a Stokeslet acting outside a viscous drop using the image
solution technique. The coupling and rotational mobilities have been later reconsidered by Felderhof
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and Sellier [34] who employed the point-particle approximation which is valid when particle radius is
very small compared to that of the cavity. More recently, a combination of multipole expansion and
Faxén’s theorem has been used by Aponte-Rivera and Zia [35], providing the elements of the grand
mobility tensor of finite-sized particles moving inside a rigid spherical cavity.

Despite enormous studies on particle motion inside a rigid cavity, to the best of our knowledge,
no works have been conducted yet to investigate particle motion inside an elastic cavity. Indeed,
elastic interfaces stand apart from rigid boundaries as they endow the system with memory, leading
to a long-lived transient anomalous subdiffusive behavior of nearby particles [36, 37]. Accordingly,
particle mobility does not depend only on geometry but also on the actuation frequency of the
system. The goal of this work is to compute analytically and numerically the frequency-dependent
mobility function of a solid particle moving inside a spherical elastic cavity. The membrane cavity is
modeled as a thin two-dimensional surface made of an hyperelastic material endowed with a shearing
elasticity and a bending rigidity. Membrane resistance towards shearing stresses is modeled by the
well-established Skalak model [38] which is used as a practical model for capsules and red blood
cells [39]. For calculating the membrane bending forces, we compare two models. The first model is
based on the Helfrich free energy functional [40] which is often used for lipid bilayers and biological
membranes. The second model is the linear isotropic model which is derived from the linear elastic
theory of plates and shells.

When the particle is concentric with the cavity, we use the stream function technique to find
exact solutions of the equations of fluid motion. For an arbitrary position within the cavity, we use
the image solution technique to find analytical expressions of the axisymmetric flow field due to
a Stokeslet and the leading order correction to the particle mobility. Moreover, we investigate the
cavity motion, finding that the correction to the pair-mobility function for an arbitrary eccentricity
within the cavity is solely determined by membrane shearing properties and that bending does not
a play a role. In order to assess the validity and appropriateness of our analytical predictions, we
compare our results with fully resolved boundary integral simulations where a very good agreement
is obtained.

The remainder of the paper is organized as follows. In Sec. 2, we present the stream function
technique and determine exact expressions of the flow field and the hydrodynamic mobility functions.
We then present in Sec. 3 the image solution technique and compute the particle mobilities in the
point-particle framework. Concluding remarks summarizing our findings and results are offered in
Sec. 4.

2 Stream functions

We consider the steady translational motion of a spherical solid particle of radius b inside a spherical
elastic cavity of initial (undeformed) radius a. The origin of coordinates is located at x1 the center of
the cavity and the solid particle is located at x2 = Rez, with R < a− b, as schematically illustrated
in Fig. 1.

For small amplitude and frequency of motion, the fluid dynamics inside and outside the cavity is
governed by the steady Stokes equations

η∇2vα −∇pα = 0 , (2.1)
∇ · vα = 0 , (2.2)

where α = 1 for the fluid inside and α = 2 for the fluid outside. The fluid on both sides has the same
dynamic viscosity η. For the sake of convenience, we shall scale from now on all the lengths by the
cavity radius a.

We begin with the relatively simple situation where the two spheres are concentric corresponding
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Figure 1: Illustration of the system setup. A small solid particle of radius b positioned at x2 = Rez
inside a large spherical elastic cavity of radius a. The Stokeslet is directed along d connecting the
centers of the particle and the cavity.

to x2 = x1 and thus R = 0. Since the flow is axisymmetric, it is more convenient to express the
solution of the equations of motion in term of the stream function. Accordingly, the solution is
reduced to the search of a single scalar function instead of solving simultaneously for the velocity
field and pressure. The stream functions inside and outside the elastic cavity satisfy [18]

E4ψα(r, θ) = 0 , α ∈ {1, 2} , (2.3)

where r and θ are the radial distance and polar angle, respectively, and the operator E2 in spherical
coordinates reads

E2 =
∂

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
. (2.4)

We now assume that the particle moves in the positive z direction with a constant velocity U .
Additionally, we require the regularity conditions for the solution outside the cavity

ψ2

r2
→ 0 as r →∞ , (2.5)

and no regularity conditions for the solution inside are required. The boundary conditions that must
be satisfied on the particle surface read [18, p. 119]

ψ1|r=b = −Ub
2

2
sin2 θ , (2.6)

ψ1,r

∣∣
r=b

= −Ub sin2 θ . (2.7)

The general solution for the steam function in Eq. (2.3) as suggested by the regularity and boundary
conditions has been derived earlier by Happel and Brenner [18] and can be written as

ψ1 =

(
Ar +Dr2 + Er4 +

F

r

)
sin2 θ , (2.8)

ψ2 =

(
Gr +

H

r

)
sin2 θ , (2.9)
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where A,D,E, F,G andH are six unknown constants to be determined from the boundary conditions
imposed at the particle and cavity surfaces.

The flow radial and meridional velocity components are then computed from the stream functions
as

vr = −
ψ,θ

r2 sin θ
, vθ =

ψ,r
r sin θ

, (2.10)

leading to

v1r = −
(

2A

r
+ 2D + 2Er2 +

2F

r3

)
cos θ , (2.11)

v1θ =

(
A

r
+ 2D + 4Er2 − F

r3

)
sin θ , (2.12)

for the fluid inside and

v2r = −2

r

(
G+

H

r2

)
cos θ , (2.13)

v2θ =
1

r

(
G− H

r2

)
sin θ , (2.14)

for the fluid outside.

Continuing, the general expressions of the hydrodynamic pressure inside and outside the spherical
cavity can readily be determined from the momentum equation (2.1) to obtain

p1
η

= −2

(
A

r2
+ 10Er

)
cos θ , (2.15)

p2
η

= −2G

r2
cos θ . (2.16)

Having expressed the general solution of fluid motion on both sides of the cavity, we now determine
the six unknown coefficients by applying the appropriate boundary conditions: (a) the non-slip
conditions given by Eqs. (2.6) and (2.7) imposed at the particle surface, (b) the natural continuity
of the fluid velocity between the two sides of the cavity and (c) the discontinuity of the fluid stress
tensor due to the presence of the elastic membrane. Mathematically, we may formulate the problem
as

[vr] = 0 , (2.17)
[vθ] = 0 , (2.18)

[σθr] = ∆fSθ + ∆fBθ , (2.19)

[σrr] = ∆fSr + ∆fBr , (2.20)

where the notation [w] := w2(r = 1) − w1(r = 1) represents the jump of a quantity w across the
cavity membrane. In spherical coordinates, the non-vanishing components of the fluid stress tensor
are expressed in the usual way as [8]

σθr = η
(
vθ,r −

vθ
r

+
vr,θ
r

)
, (2.21)

σrr = −p+ 2ηvr,r , (2.22)

where comma in indices denotes a spatial partial derivative. Furthermore, ∆fr and ∆fθ stand for the
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radial and meridional traction jump across the cavity where the superscripts S and B respectively
stand for the shearing and bending related parts. As derived in earlier work [41], the traction due to
shearing elasticity according to the Skalak model reads

∆fSθ = −2κS
3

(
(1 + 2C)ur,θ + (1 + C)uθ,θθ + (1 + C)uθ,θ cot θ −

(
(1 + C) cot2 θ + C

)
uθ

)
, (2.23)

∆fSr =
2κS
3

(1 + 2C) (2ur + uθ,θ + uθ cot θ) , (2.24)

where κS is the shearing modulus (expressed in N/m) and C is a dimensionless number commonly
known in the blood flow community as the Skalak parameter [42–45], defined as the ratio between
area expansion modulus κA and shearing modulus κS. Moreover, ur and uθ are respectively the
membrane radial and meridional displacements, related to the fluid velocity in Fourier space by the
no-slip relation imposed at r = 1 by [46]

vα|r=a = iω uα , α ∈ {r, θ} . (2.25)

Additionally, we include a resistance towards bending which can be modeled following the cel-
ebrated Helfrich model [40, 47] or by assuming a linear isotropic model for the bending moments
following a thin-shell theory approach [48]. The two formulations are equivalent for a planar mem-
brane but not necessarily for membranes of arbitrary geometry [49]. Considering first a linear isotropic
model, the traction jumps due to bending read [41]

∆fBθ = κB

((
1− cot2 θ

)
ur,θ + ur,θθ cot θ + ur,θθθ

)
, (2.26)

∆fBr = κB

((
3 cot θ + cot3 θ

)
ur,θ − ur,θθ cot2 θ + 2 cot θur,θθθ + ur,θθθθ

)
, (2.27)

where κB is the membrane bending modulus (expressed in Nm). Considering next the Helfrich model,
the traction jump reads [49]

∆f = −2κB
(
2(H2 −K +H0H) + ∆‖

)
(H −H0)n , (2.28)

where H and K are the mean and Gaussian curvatures, respectively given by

H =
1

2
bαα , K = det bβα , (2.29)

with bβα being the mixed version of the curvature tensor. The other quantities are the spontaneous
curvature H0 which we take the initial undeformed shape here, the vector normal to the spherical
cavity n and the Laplace-Beltrami operator ∆‖ [50]. Accordingly, bending introduces a discontinuity
only in the normal traction such that

∆fBθ = 0 , (2.30)

∆fBr = κB

(
4ur + (5 + cot2 θ) cot θ ur,θ + (2− cot2 θ)ur,θθ + 2 cot θ ur,θθθ + ur,θθθθ

)
. (2.31)

It is worth to mention here that the traction jumps due to membrane bending depend only on the
normal (radial) displacement in contrast to the traction jumps due to shearing which may depend
on both the normal and tangential displacements.

Employing the no-slip conditions stated by Eqs. (2.6) and (2.7) together with the boundary
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conditions imposed at the membranes stated by Eqs. (2.17) through (2.20), and solving for the
unknown coefficients by considering first a linear-isotropic model for bending, we obtain

A = −6bUλ
(
(1 + 2C)(1− b5)α+ 5

)
, (2.32)

D = 5bUλα(1 + 2C)
(
1− b2

)
, (2.33)

E = −3bUλα(1 + 2C)(1− b2) , (2.34)

F = 2b3Uλ
(
(1 + 2C)(1− b3)α+ 5

)
, (2.35)

G = A , (2.36)

H = 2bUλ
(
(1 + 2C)

(
1− b5

)
α+ 5b2

)
, (2.37)

where we have defined
iα =

2κS
3ηω

, (2.38)

as a characteristic number associated to membrane resistance towards shearing and

λ−1 := 40 + 2α(1− b)(1 + 2C)
(
4− b(1 + b)

(
1− 9b2

))
. (2.39)

Interestingly, the same solution is obtained when considering the Helfrich model for the traction
jumps as given by Eqs. (2.30) and (2.31). We therefore conclude that the stream functions for a
particle concentric to the cavity are solely determined by membrane shearing resistance and do not
depend on membrane bending.

2.1 Particle mobility

The exact analytical solution obtained for the stream functions can be used for the computation of
the particle self-mobility function. The force exerted by the fluid on the sphere is calculated from
the stream function using the formula [18, p. 115]

F2 = ηπ

∫ π

0
ρ3
∂

∂r

(
E2ψ1

ρ2

)
r dθ = 8πηA , (2.40)

and is equivalent to the expression given by Stimson and Jeffery [51]. Here ρ = r sin θ is the polar
distance. We define the membrane correction factor K as the ratio between the drag in the presence
of the outer spherical membrane and the drag in a bulk fluid such that F2 = −6πηbUK, leading to

K =
4
(
(1 + 2C)(1− b5)α+ 5

)
20 + α(1− b)(1 + 2C) (4− b(1 + b) (1− 9b2))

. (2.41)

Equivalently, the fluid mediated hydrodynamic interactions can also be assessed by determining
the correction to the particle self-mobility function defined in a scaled form as

∆µ

µ0
:=

1

K
− 1 = −5

4

bα(1 + 2C)
(
1− b2

)2
5 + α(1 + 2C)(1− b5)

, (2.42)

where µ0 = 1/(6πηb) is the usual bulk mobility. Not surprisingly, the frequency-dependent particle
mobility is solely determined by membrane shearing properties. At leading order in b, Eq. (2.42) can
be expanded as

∆µ

µ0
= −5

4

α(1 + 2C)

5 + α(1 + 2C)
b+O(b3) , (2.43)

and is commonly denominated the mobility correction in the point-particle approximation. Taking
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Figure 2: (Color online) The scaled self-mobility correction versus the scaled frequency β inside
a spherical elastic cavity whose membrane is endowed with pure shearing (green), pure bending
(red) of both shearing and bending rigidities (black). The small solid particle has a radius b = 1/10
concentric to a large spherical cavity of unit radius. For the membrane parameters, we take C = 1
and a reduced bending modulus EB = 8/3. The analytical predictions are shown as solid lines for
the imaginary parts and as dashed lines for the real parts. Symbols refer to the boundary integral
simulations where squares are for the real part and circles are for the imaginary part. The horizontal
dashed line represent the vanishing frequency limit predicted by Eq. (2.44).

α → ∞, corresponding to an infinite shearing modulus or equivalently to a vanishing actuation
frequency, we obtain

lim
α→∞

∆µ

µ0
= −5

4

b
(
1− b2

)2
1− b5

= −5

4
b+O(b3) . (2.44)

For a rigid spherical cavity with stick boundary conditions at the inner surface, the cavity does
not move and thus creating an additional resistance to the motion of the particle. Accordingly, the
particle mobility is obtained as

µR = lim
α→∞

µ− 1

6πη
, (2.45)

where the subscript R stands for rigid and the second term on the right hand side is the bulk mobility
of the cavity. Scaling by the particle bulk mobility, the correction for a hard cavity reads

∆µR
µ0

= −b

(
1 +

5

4

(
1− b2

)2
1− b5

)
= −9

4
b+O(b3) , (2.46)

in full agreement with the solution by Happel and Brenner [18] and with the solution by Aponte-
Rivera and Zia [35], who accounted for the particle finite-size up to the 5th order in b. Therefore, apart
from a term b, the mobility in the vanishing frequency limit for an elastic cavity as given by Eq. (2.44)
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is identical to that obtained inside a rigid cavity given by Eq. (2.46). Indeed, the additional term is
due to the fact that the rigid cavity remains at rest while the elastic cavity necessarily undergoes
translational motion.

In a way analogous to a planar elastic membrane [36], we define the characteristic frequency for
shearing as β := 6Bηhω/κS where B := 2/(1 +C), where h = 1−R is the distance from the particle
center to the closest point on the cavity surface, such that h = 1 for concentric spheres. In Fig. 2, we
show the scaled correction to the frequency-dependent self-mobility versus the scaled frequency β.
Here the particle has a radius b = 1/10 concentric to a spherical elastic cavity of unit radius. We
consider the situations where the membrane is endowed with pure shearing (green), pure bending
(red) or both rigidities (black). We take a Skalak parameter C = 1 and a reduced bending modulus
EB := κB/(h

2κS) = 8/3. We observe that the correction to the particle mobility depends uniquely
on membrane shearing resistance, and thus in full agreement with our theoretical calculations. We
find that the real part (shown as dashed line) is a logistic-like function whereas the imaginary part
exhibits at intermediate frequencies around β ∼ 1 the typical peak structure. The latter is a clear
signature of the memory effect induced by the elastic nature of the membrane on the system. In
the high frequency limit, the correction to the mobility vanish and thus we recover the behavior in
a bulk fluid. In the low frequency limit, the correction approaches that predicted theoretically by
Eq. (2.44) which is the same apart from a term b as the hard cavity limit given by Eq. (2.46). A
prefect agreement is obtained between the exact analytical calculations and the numerical simulations
we have performed using a completed double layer boundary integral method.

2.2 Cavity motion

In the following, we examine the motion of the cavity induced by a concentric solid particle translating
along the z direction. For that purpose, we define the pair-mobility function µ12 as the ratio between
the capsule velocity V1 and the force exerted by the solid particle on the fluid. The net translational
velocity of the cavity can be computed by volume integration of the z component of the fluid velocity
inside the cavity [52],

V1(ω) =
2π

Ω

∫ π

0

∫ 1

b
v1z(r, θ, ω) r2 sin θ dr dθ , (2.47)

where Ω := 4π/3 is the volume of the undeformed cavity and v1z = v1r cos θ − v1θ sin θ is the
fluid velocity along the z direction, where the radial and meridional velocities can be obtained from
Eqs. (2.11) and (2.12), respectively. This leads to the pair-mobility written in a scaled form as

6πηµ12 =
3

2

(
1− b2

)
− α

4

(1 + 2C)(1− b)3(1 + b)
(
3b2(2 + b) + 2(1 + 2b)

)
5 + α(1 + 2C) (1− b5)

. (2.48)

The first term on the right-hand side in the above equation represents the bulk contribution coming
from the Stokeslet in an unbounded medium whereas the second term is the frequency-dependent
correction due to the presence of the elastic cavity. The correction can therefore be expressed as a
Debye-like model with a single relaxation time given by

τ =
15

2(1 + 2C) (1− b5)
η

κS
. (2.49)

At leading order in b, the scaled pair-mobility given by Eq. (2.48) reads

6πηµ12 =
3

2
− α

2

1 + 2C

5 + α(1 + 2C)
+O(b2) . (2.50)
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Figure 3: (Color online) The scaled pair-mobility versus the scaled frequency for a membrane cavity
endowed with pure shearing (green), pure bending (red) or both rigidities (black). The analytical
prediction given by Eq. (2.48) is shown as dashed and solid lines for the real and imaginary parts,
respectively. Symbols refer to the corresponding BIM simulations. Horizontal dashed in the low
frequency regime corresponds to the limit predicted theoretically by Eq. (2.51). Here we use the
same particle/membrane parameters as in Fig. 2.

Taking α→∞, Eq. (2.48) yields the following

lim
α→∞

6πηµ12 =
(1− b2)

(
4 + b3

(
5− 9b2

))
4 (1− b5)

= 1 +O
(
b2
)
, (2.51)

We further mention that the hydrodynamic force acting by the fluid on the cavity internal
surface S1 is readily determined by integrating the normal stress vector over the surface to obtain

F1 = −
∫
S1

σ · er dS = −8πηA ez , (2.52)

which is found to be the same in magnitude but opposite in sign as the force F2 acting by the fluid
on the solid particle.

In Fig. 3 we show the scaled pair-mobility function versus the scaled frequency β using the same
parameters as in Fig. 2. For a membrane with pure bending, the real part of the pair-mobility amounts
to (3/2)(1− b2) and the imaginary part vanishes and thus recovering the behavior observed in a bulk
fluid. On the other hand, a membrane endowed with shearing resistance shows a more richer dynamics
where the pair-mobility depends strongly on the actuation frequency. Indeed, the pair-mobility for a
cavity membrane possessing both shearing and bending rigidities is undistinguished from that of a
membrane with a pure shearing. A very good agreement is obtained between theory and simulations.

Analogous exact analytical predictions using the stream function technique can be carried out
for an arbitrary position within the spherical cavity where the general solution may conveniently be
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expressed in term of an infinite series involving Legendre functions. Nevertheless, due the complex
nature of the underlying boundary conditions, the resolution is laborious and non-trivial. In order to
overcome this difficulty, we shall employ as an alternative way, a fundamentally different approach
based on the image solution technique to compute the flow field induced by a Stokeslet acting inside
a spherical elastic cavity. This will result to the computation of the hydrodynamic mobility functions
in the point-particle approximation, valid when b� 1 as it is detailed in the next section.

3 Singularity solution

The following image solution technique has originally been proposed by Fuentes et al. [32, 33] who
computed the flow field induced by a point-force acting outside a spherical drop. The same approach
has been employed by us in earlier works [41, 53] to address the fluid motion induced by a point-force
acting nearby a spherical elastic membrane with shearing and bending rigidities. Accordingly, the
fluid flow inside the cavity can be written as a sum of two distinct contributions

v = vS + v∗ , (3.1)

where vS is the velocity field induced by a point-force acting at the particle position x2, and v∗ is
the image solution required to satisfy the regularity and boundary conditions.

Now we briefly sketch the main resolution steps. First, the velocity vS due to the Stokeslet is
written in terms of spherical harmonics which are then transformed into harmonics based at x1 via
the Legendre expansion. Second, the image system solution v∗ and the solution outside the capsule
v(o) are respectively expressed as interior and exterior harmonics based at x1 using Lamb’s general
solution [54, 55]. The last step consists of determining the series unknown expansion coefficients by
satisfying the boundary conditions at the membrane surface stated by Eqs. (2.17) through (2.20).

3.1 Stokeslet solution

We begin with writing the Stokeslet acting at x2,

vSi = GijFj =
1

8πη

(
Fi

1

s
+ Fj(x− x2)i∇2j

1

s

)
, (3.2)

where s := |x − x2|. Here ∇2j := ∂/∂x2j stands for the nabla operator taken with respect to the
singularity position x2. Using Legendre expansion, the harmonics based at x2 can be expanded as

1

s
=
∞∑
n=0

Rn ϕn(r, θ) , (3.3)

where the unit vector d := (x1 − x2)/R = −ez, the position vector r = x − x1 and r := |r|.
Furthermore, ϕn are the harmonics of degree n, related to the Legendre polynomials of degree n
by [56]

ϕn(r, θ) :=
(d ·∇)n

n!

1

r
=

1

rn+1
Pn(cos θ) . (3.4)

For the axisymmetric case, the force is exerted along the unit vector d and can thus be written
as F = Fd. By making use of the identities

∇2R
n = −nRn−1 d , (d ·∇2)d = 0 , (3.5)
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Eq. (3.2) can therefore be written as

vS = − F

8πη

∞∑
n=0

Rn−1
[
(n− 1)Rd+ n r

]
ϕn . (3.6)

Hence, the Stokeslet at x2 is written in terms of harmonics based at x1. Note that the terms with
dϕn in Eq. (3.6) are not independent harmonics. For their elimination, we shall use [41]

dϕn =
1

2n+ 1

[
∇ϕn−1 − r2∇ϕn+1 − (2n+ 3)r ϕn+1

]
,

leading after substitution into Eq. (3.6) to

vS =
F

8πη

∞∑
n=1

[(
n− 2

2n− 1
r2Rn−1 − n

2n+ 3
Rn+1

)
∇ϕn −

2(n+ 1)

2n− 1
Rn−1rϕn

]
. (3.7)

For future reference, we shall state explicitly the projected velocity components onto the radial
(normal) and meridional (tangential) directions. For that purpose, we shall make use of the following
identities

er ·∇ϕn = −n+ 1

r
ϕn , (3.8a)

er · rϕn = rϕn , (3.8b)
eθ · rϕn = 0 , (3.8c)

leading to the Stokeslet solution

vSr =
F

8πη

∞∑
n=1

[
−n(n+ 1)

2n− 1
rRn−1 +

n(n+ 1)

2n+ 3

Rn+1

r

]
ϕn , (3.9)

vSθ =
F

8πη

∞∑
n=1

[
n− 2

2n− 1
r2Rn−1 − n

2n+ 3
Rn+1

]
ψn , (3.10)

where we have defined
ψn := eθ ·∇ϕn =

1

r

∂ϕn
∂θ

. (3.11)

The pressure can directly be determined by integration of Eq. (2.1) to obtain

pS =
F

8π

∞∑
n=1

−2nRn−1ϕn . (3.12)

We further note that ϕn and ψn constitute sets of independent harmonics satisfying the properties∫ π

0
ϕnϕm sin θ dθ =

2

2n+ 1

δmn
r2n+2

. (3.13)∫ π

0
ψmψn sin θ dθ =

2n(n+ 1)

2n+ 1

δmn
r2n+4

. (3.14)

In the following, the image system solution and the the solution inside the cavity shall be derived.
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3.2 Image system solution

For the image system solution inside the cavity, we use Lamb’s general solution [55, 57], which can
be written in terms of interior harmonics based at x1 as

v∗ =
F

8πη

∞∑
n=1

[
An

(
n+ 3

2
r2n+3∇ϕn +

(n+ 1)(2n+ 3)

2
r2n+1rϕn

)

+Bn
(
r2n+1∇ϕn + (2n+ 1)r2n−1rϕn

) ]
.

(3.15)

After making use of Eqs. (3.8a) through (3.8c), the projected components of the image system
solution read

v∗r =
F

8πη

∞∑
n=1

[
n(n+ 1)

2
r2n+2An + nr2nBn

]
ϕn , (3.16)

v∗θ =
F

8πη

∞∑
n=1

[
n+ 3

2
r2n+3An + r2n+1Bn

]
ψn , (3.17)

and the solution for the pressure field inside the cavity is obtained as

p∗ =
F

8π

∞∑
n=1

(n+ 1)(2n+ 3)Anr
2n+1ϕn . (3.18)

3.3 Solution outside the cavity

We use Lamb’s general solution which can be written in terms of exterior harmonics based at x1 as

v(o) =
F

8πη

∞∑
n=1

[
an

(
− n− 2

2
r2∇ϕn + (n+ 1) rϕn

)
+ bn∇ϕn ,

]
. (3.19)

which can be projected onto normal and tangential components to obtain

v(o)r =
F

8πη

∞∑
n=1

[
n(n+ 1)

2
ran −

n+ 1

r
bn

]
ϕn , (3.20)

v
(o)
θ =

F

8πη

∞∑
n=1

[
−n− 2

2
r2an + bn

]
ψn . (3.21)

The pressure field outside the cavity can then be presented as

p(o) =
F

8π

∞∑
n=1

n(2n− 1)anϕn . (3.22)

Having expressed the general solution for the velocity and pressure fields, we now proceed for the
determination of the unknown coefficients inside the cavity An and Bn, and outside the cavity an
and bn.
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3.4 Determination of the series coefficients

Continuity of velocity

The continuity of the radial and meridional velocities as stated by Eqs. (2.17) and (2.18) leads to

an
2
− bn
n

=
An
2

+
Bn
n+ 1

− Rn−1

2n− 1
+

Rn+1

2n+ 3
,

−n− 2

2
an + bn =

n+ 3

2
An +Bn +

n− 2

2n− 1
Rn−1 − nRn+1

2n+ 3
.

Solving these two equations for an and bn, the coefficients outside the cavity can be expressed in
terms of those inside as

an =
2n+ 3

2
An +

2n+ 1

n+ 1
Bn −

2

2n− 1
Rn−1 , (3.23)

bn =
n(2n+ 1)

4
An +

n(2n− 1)

2(n+ 1)
Bn −

n

2n+ 3
Rn+1 . (3.24)

The coefficients An and Bn can be determined from the traction jump equations stemming from
membrane shearing and bending resistances. In order to probe the effect of these two elasticity modes
in more depth, we shall consider in the following idealized membranes with pure shearing or pure
bending resistances.

Discontinuity of stress tensor

Shearing contribution We first consider a membrane with only-shearing resistance such as that
of a typical artificial capsule designed for drag delivery [44]. It follows from Eqs. (2.19) and (2.20)
representing the tangential and normal traction jumps that

[vθ,r] = −α
(

(1 + 2C)vr,θ + (1 + C) (vθ,θθ + vθ,θ cot θ)−
(
(1 + C) cot2 θ + C

)
vθ

)∣∣∣∣
r=1

, (3.25)[
− p

η

]
= −α(1 + 2C)vr,r|r=1 , (3.26)

where again iα := 2κS/(3ηω) is a shearing parameter. In order to handle the derivatives with respect
to r, we shall make use of the identities

ϕn,r = −n+ 1

r
ϕn , ψn,r = −n+ 2

r
ψn , (3.27)

By making use of the orthogonality property given by Eq. (3.14) together with∫ π

0
ψm
(
ψn,θθ + ψn,θ cot θ − ψn cot2 θ

)
sin θ dθ = −2n(n+ 1)(n2 + n− 1)

2n+ 1

δmn
r2n+4

, (3.28)

the tangential traction jump equation given by Eq. (3.25) leads to

(2n+ 1)(2n+ 3)An +
2(4n2 − 1)

n+ 1
Bn = α

(
(1 + 2C)(n+ 1) (nan − 2bn)

+ (1− (1 + C)n(n+ 1)) (−(n− 2)an + 2bn)

)
.

(3.29)
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Further, the contribution due to shearing to the normal traction equation given by Eq. (3.26) results
to

(n− 2)(2n+ 1)(2n+ 3)An +
2n(4n2 − 1)

n+ 1
Bn = α(1 + 2C)(n+ 1)

(
−n2an + 2(n+ 2)bn

)
. (3.30)

Eqs. (3.29) and (3.30) together with Eqs. (3.23) and (3.24) form a closed system of linear equations
amenable to direct resolution via the standard substitution technique. We obtain

An =
αn(n+ 2)

K

(
2n+ 1

2n+ 3
Rn+1K+ −Rn−1K−

)
, (3.31)

Bn =
α(n+ 1)

2M

(
2n+ 1

2n− 1
Rn−1M− − n(n+ 2)Rn+1M+

)
, (3.32)

where the coefficients K, K±, M and M± have rather complex and lengthy expressions and are
therefore provided in the appendix. Particularly, by taking α → ∞, corresponding to taking an
infinite shearing modulus or a vanishing frequency limit, we obtain

lim
α→∞

An =
2n+ 1

2n+ 3
Rn+1 −Rn−1 , (3.33)

lim
α→∞

Bn =
(n+ 1)(2n+ 1)

2(2n− 1)
Rn−1 − n+ 1

2
Rn+1 . (3.34)

The latter limit is identical to the solution obtained for a point-force acting inside a rigid spherical
cavity with stick boundary conditions. Moreover, both an and bn vanish in this limit in which the
fluid outside the cavity is at rest.

Bending contribution Next, we consider a membrane endowed with pure bending resistance
such as that of a fluid vesicle [58, 59]. As already pointed out, two models are commonly used to
describe membrane resistance towards bending. We shall first provide explicit analytical expressions
by assuming a linear isotropic model for the bending moments. The corresponding traction jump
equations given by Eqs. (2.19) and (2.20) read

[vθ,r] = αB

((
1− cot2 θ

)
vr,θ + vr,θθ cot θ + vr,θθθ

)∣∣∣∣
r=1

, (3.35)[
− p

η

]
= αB

((
3 cot θ + cot3 θ

)
vr,θ − cot2 θ vr,θθ + 2 cot θ vr,θθθ + vr,θθθθ

)∣∣∣∣
r=1

, (3.36)

where iαB := κB/(ηω) is a bending parameter. By making use of Eqs. (3.14) and (3.28), the tangential
traction jump reads

(2n+ 1)(2n+ 3)An +
2(4n2 − 1)

n+ 1
Bn = αB(n2 + n− 2)(n+ 1) (nan − 2bn) , (3.37)

Continuing, using Eq. (3.13) together with the orthogonality relation∫ π

0
ϕm

((
3 cot θ + cot3 θ

)
ϕn,θ − ϕn,θθ cot2 θ + 2ϕn,θθθ cot θ + ϕn,θθθθ

)
sin θdθ

=
2n(n− 1)(n+ 1)(n+ 2)

2n+ 1

δmn
r2n+2

,
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the normal traction jump reads

(n− 2)(2n+ 1)(2n+ 3)An +
2n(4n2 − 1)

n+ 1
Bn = −αBn(n− 1)(n+ 1)2(n+ 2) (nan − 2bn) . (3.38)

Solving the system of linear equations arising from Eqs. (3.23) and (3.24) together with (3.37)
and (3.38) leads to the determination of the unknown coefficients. We obtain

An =
αBn

2(n+ 2)2(n2 − 1)

KB

(
2n− 1

2n+ 3
Rn+1 −Rn−1

)
, (3.39)

Bn =
αBn(n+ 2)(n− 1)(n+ 1)2(n2 + 2n− 2)

2KB

(
2n+ 3

2n− 1
Rn−1 −Rn+1

)
, (3.40)

where

KB = 2αBn
6 + 6αBn

5 − αBn
4 + 4(2− 3αB)n3 + (12− αB)n2 + 2(3αB − 1)n− 3 . (3.41)

Taking the limit αB →∞, which corresponds to taking an infinite membrane bending modulus or a
vanishing forcing frequency, the two coefficients read

lim
αB→∞

An =
n(n+ 2)

2n2 + 2n− 3

(
2n+ 3

2n− 1
Rn−1 −Rn+1

)
,

lim
αB→∞

Bn =
(n+ 1)(n2 + 2n− 2)

2(2n2 + 2n− 3)

(
2n+ 3

2n− 1
Rn−1 −Rn+1

)
,

which are found to be different from the solution previously obtained when taking α → ∞ in a
shearing-only membrane, as can clearly be seen from Eqs. (3.33) and (3.34).

Continuing, we next consider the Helfrich model for membrane bending, leading to the traction
jumps equations

[vθ,r] = 0 , (3.42)[
− p

η

]
= αB

(
4vr + (5 + cot2 θ) cot θ vr,θ + (2− cot2 θ)vr,θθ + 2 cot θ vr,θθθ + vr,θθθθ

)∣∣∣∣
r=1

. (3.43)

After making use of the orthogonality property (3.13) together with∫ π

0
ϕm
(
4ϕn + (5 + cot2 θ) cot θ ϕn,θ + (2− cot2 θ)ϕn,θθ + 2 cot θ ϕn,θθθ + ϕn,θθθθ

)
sin θ dθ

=
2(n+ 2)2(n− 1)2

2n+ 1

δmn
r2n+2

,

(3.44)

we obtain the two following equations

(2n+ 1)(2n+ 3)An +
2(4n2 − 1)

n+ 1
Bn = 0 , (3.45)

(n− 2)(2n+ 1)(2n+ 3)An +
2n(4n2 − 1)

n+ 1
Bn = −αB(n+ 2)2(n− 1)2(n+ 1)(nan − 2bn) . (3.46)
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which upon making use of Eqs. (3.23) and (3.24) and solving for An and Bn yields

An =
αB(n− 1)2n(n+ 1)(n+ 2)2

KH

(
2n− 1

2n+ 3
Rn+1 −Rn−1

)
, (3.47)

Bn =
αB(n− 1)2n(n+ 1)2(n+ 2)2

2KH

(
2n+ 3

2n− 1
Rn−1 −Rn+1

)
, (3.48)

with

KH = 2αBn
6 + 6αBn

5 − 2αBn
4 + 2(4− 7αB)n3 + 12n2 + 2(4α− 1)n− 3 . (3.49)

Similar, by taking the limit αB →∞, Eqs. (3.42) and (3.43) lead to

lim
αB→∞

An =
1

2

(
2n− 1

2n+ 3
Rn+1 −Rn−1

)
, (3.50)

lim
αB→∞

Bn =
n+ 1

4

(
2n+ 3

2n− 1
Rn−1 −Rn+1

)
. (3.51)

Clearly, the coefficients also differ from those obtained previously for a shearing-only membrane given
by Eqs. (3.33) and (3.34).

3.5 Particle mobility

The leading-order particle mobility is obtained by evaluating the image system solution given by
Eq. (3.15) at the particle position as

v∗|x=x2
= ∆µF , (3.52)

leading to the particle mobility correction, which can conveniently be written in a scaled form as an
infinite series

∆µ

µ0
= −3b

8

∞∑
n=1

[
n(n+ 1)Rn+1An + 2nRn−1Bn

]
. (3.53)

In the particular case when R = 0 corresponding to the concentric case earlier treated in Sec. 2,
only the term with n = 1 remains and we recover the leading-order self-mobility

∆µ

µ0

∣∣∣∣
R=0

= −3b

4
B1 = −5

4

α(1 + 2C)

5 + α(1 + 2C)
b , (3.54)

in full agreement with Eq. (2.43) obtained using the stream function technique. Clearly, the mobility
correction depends only on membrane resistance towards shearing since B1 = 0 for bending-only
membranes (see Eqs. (3.40) and (3.48) for the general expressions of Bn using the two bending
models.)

Now, by taking the limit α→∞ in Eq. (3.53), the correction to the particle self-mobility reads

lim
α→∞

∆µ

µ0
= b

(
1− 9

4

1

1−R2

)
. (3.55)

The same limit is obtained when considering a membrane with pure shearing. For a large cavity
radius, Eq. (3.55) reduces to the leading-order mobility correction nearby a no-slip planar wall as
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first obtained using the method of reflection by Lorentz [60], mainly

lim
α→∞

∆µ

µ0
= −9

8

b

h
+O

(
1

a

)
. (3.56)

By considering the coefficients (3.33) and (3.34) associated to a hard cavity, the scaled correction
to the particle mobility reads [28, 34]

∆µR
µ0

= −9

4

b

1−R2
, (3.57)

being identical to the leading-order correction given by Eq. (2.46) for R = 0. Again, the mobility
inside a hard cavity is recovered in the vanishing frequency limit apart from a term b as explained
in Eq. (2.45).

In fact, the sum over n in Eq. (3.53) and the limit when α → ∞ cannot be swapped. In other
words, taking the limit when α → ∞ before evaluating the sum as it is the case for a hard cavity
does not lead to the same result as evaluating the sum first and then taking the limit as it is done
for an elastic cavity. This is justified by the fact that the dominated convergence theorem does not
hold here for the infinite series given by Eq. (3.53).

Now by considering a membrane with pure bending resistance modeled by the Helfrich model,
the mobility correction in the vanishing frequency limit reads

lim
αB→∞

∆µ

µ0
= b

(
1− 15

8

1

1−R2

)
. (3.58)

We further recover for large cavity radius the well know mobility correction nearby a planar interface
separating two fluids having the same viscosity, namely [61, 62]

lim
αB→∞

∆µ

µ0
= −15

16

b

h
+O

(
1

a

)
. (3.59)

In Fig. 4 we show the scaled frequency-dependent self-mobility correction versus the scaled
frequency β for a particle of radius b = 1/10 located at R = 4/5 inside a spherical cavity. Unlike
the situation where the particle is concentric to the cavity, a contribution from bending resistance
arises. We observe that the Helfrich model (thick red lines) leads to a better agreement with the BIM
simulations than the linear isotropic model (thin red lines). Considering the shearing-only membrane,
we observe that a second peak of more pronounced amplitude arises in the low frequency regime. This
peak does not occur in planar membranes but has been observed previously for a particle moving
outside a large spherical capsule [41, 53]. In fact, the peak is attributed to the fact that the traction
jumps due to shearing involve a contribution from the normal displacement in contrast to planar
membranes where these traction jumps depend solely on the in-plane tangential displacements. Only
one single peak however occurs for a bending-only membrane for both models since the traction
jumps due to bending involve only the normal deformations and thus explaining the absence of the
second peak.

3.6 Cavity motion

Finally, the cavity translational velocity is computed by integrating the fluid velocity as stated by
Eq. (2.47) with the exception that the radial variable r is integrated between 0 and 1. We find that
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Figure 4: (Color online) The scaled frequency-dependent mobility correction versus the scale frequency
inside a spherical elastic cavity with pure shearing (green), pure bending (red) and both shearing and
bending (black). The thin and thick red lines correspond to the linear isotropic model and Helfrich
model respectively. The particle has a radius b = 1/10 and is positioned at R = 4/5. Horizontal dashes
lines shown in black and red correspond to the vanishing-frequency limits predicted by Eqs. (3.55)
and (3.58), respectively. Here we use the same membrane parameters as in Fig. 2.

only the term with n = 1 of the series remains leading to

µ12 = − 1

8πη

(
A1 +B1 − 2 +

2

5
R2

)
, (3.60)

which, upon substitution of the coefficients with their expressions yields

6πηµ12 =
3

2
− 3

10
R2 − 5− 3R2

10

α(1 + 2C)

5 + α(1 + 2C)
. (3.61)

Interestingly, even for R 6= 0, the pair-mobility depends solely on membrane shearing and bending
does not play a role, i.e. in the same way as observed for a concentric sphere. As α→∞, the pair-
mobility tends to unity independently of the value of R. In particular, for R = 0 we recover the
leading-order solution given by Eq. (2.50) obtained for two concentric spheres. The correction to the
pair-mobility follows a Debye-like model with a relaxation time given by the leading-order term in
Eq. (2.49).

Similar, it can be shown that the force exerted by the fluid on the internal surface of the cavity
is equal in magnitude but opposite in sign to the friction force F2 acting on the particle.

In Fig. 5 we show the scaled pair-mobility function versus the scaled frequency using the same
parameters as in Fig. 4. The pair-mobility for a bending-only membrane remains unchanged and
amounts to 3/2−3R2/10 in the whole range of forcing frequencies. For a cavity with a finite shearing
resistance, the real part is a monotonically increasing function of frequency that varies between 1
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Figure 5: (Color online) The scaled pair-mobility versus the scaled frequency for cavity with only-
shearing (green), only-bending (red) or both shearing and bending (black). The particle has a radius
b = 1/10 and is positioned at R = 4/5. The analytical prediction stated by Eq. (3.61) is shown as
dashed and solid lines for the real and imaginary parts, respectively, while symbols are the BIM
simulations. Horizontal dashed in the low frequency regime corresponds to one. For the membrane
parameters, see Fig. 2.

and 3/2− 3R2/10 while the imaginary parts exhibits the usual bell-shaped behavior with the typical
peak at β ∼ 1. Our analytical predictions are favorably compared with BIM simulations.

4 Conclusions

In this paper, we have presented an analytical theory of the creeping motion of small particle slowly
moving inside a large spherical elastic cavity. We have modeled the membrane resistance towards
shearing forces by the Skalak model which incorporates into a single strain energy functional both
the resistance towards shearing and area conservation. We have assessed two different models for
bending namely the Helfrich model and the linear isotropic model.

We have first solved the underlying equations of fluid motion in the relatively simple situation
where the particle is concentric to the cavity, where exact analytical solutions are obtained and
expressed in a closed mathematical form using the stream function technique. In this case, we have
found that the fluid flow is solely determined by membrane shearing and that bending does not play
any role. Moreover, we have shown that in the vanishing frequency limit, the particle hydrodynamic
mobility is larger than that obtained inside a rigid cavity with stick boundary conditions at its inner
surface. This behavior has been justified by the fact that a steady rigid cavity exerts an additional
hindrance in particle motion and thus reducing particle hydrodynamic mobility significantly.

For an arbitrary position of the particle inside the spherical cavity, we have used the image
solution technique to find analytical expression of the axisymmetric flow field induced by a point
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force acting on the fluid. This leads to expressions of the mobility functions in the point-particle
framework, valid when the particle size is smaller than that of the spherical elastic cavity. Considering
the motion of the cavity, we find that the pair-mobility function depends uniquely on membrane
shearing properties and that for an arbitrary value of the particle eccentricity. As an example setup,
we have favorable compared our analytical predictions with fully resolved numerical simulations that
we have performed using a completed double layer boundary integral method.
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Appendices

A Mathematical expression

The analytical expressions of the functions appearing in Eqs. (3.31) and (3.32) are given for the series
coefficient An by

K+ = 2(1 + C)n3 + ((2α+ 5)C + α+ 1)n2 + (1 + C)n− (1 + 2C)(1 + α) ,

K− = 2(1 + C)n3 + ((2α+ 3)C + α− 1)n2 + (1 + C)n− (1 + 2C)α+ 1 ,

K = 4(1 + C)αn5 +
(
16 + (1 + 2C)α2 + 10(1 + C)α

)
n4 + 2

(
16 + (1 + 2C)α2 + 3(1 + C)α

)
n3

+
(
8− (1 + 2C)α2 − (1 + C)α

)
n2 −

(
8 + 2(1 + 2C)α2 + (7 + C)α

)
n− 3(1 + α) ,

and for Bn by

M− = −12 + 2(1 + C)n5 + ((2α+ 5)C + α+ 1)n4 + ((4α+ 3)C + 2α− 5)n3 + (9− (1 + 2C)α)n2

− 2 ((1 + 2C)α− 5)n ,

M+ = 2(1 + C)n3 + ((2α+ 3)C + α− 1)n2 + (1 + C)n− α(1 + 2C) + 1 ,

M = 4(1 + C)αn5 +
(
16 + (1 + 2C)α2 + 10(1 + C)α

)
n4 + 2

(
16 + (1 + 2C)α2 + 3(1 + C)α

)
n3

+
(
8− (1 + 2C)α2 − (1 + C)α

)
n2 −

(
8 + 2(1 + 2C)α2 + (C + 7)α

)
n− 3(1 + α) ,
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