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Summary

Movement of animals is a key element in maintaining ecological processes. In particu-
lar, biodiversity is stabilized through movement behaviour of animals as moving animals
provide connections between resources, genes and processes of otherwise isolated areas.
How and why animals move on small or greater scales is therefore of utmost importance.
For more than three decades, researchers aim to understand patterns of animal move-
ments by disentangling the complex cause-effect relationship between the internal state
of individuals and external conditions of their environment that leads to the observed
movement paths of animals. This study is a methodological contribution to the analysis
of animal movements with respect to the site selection of animals.

The process of movement is continuous in space and time, which is usually discretized
for the purpose of analysis. Based on the resolution of discretization, movement can
be analysed on different scales ranging from a small scale to broader scale processes.
The analysis of movement data is scale-dependent and so is its inference. Processes on
greater scale are assumed to be more strongly linked to fitness related processes as sur-
vival and reproduction than processes on smaller scale. However, as movement patterns
of greater spatio-temporal scales results from small-scale individual movement decision
a fundamental understanding of movement can only be obtained by a multi-scale ap-
proach. A hierarchical approach to understand the process of movement is crucial to
disentangle the interaction between animal and its environment.

In this thesis various approaches are applied to analyse the response of animals to en-
vironmental factors. For the analysis we used environmental and movement data from
the National Park Bavarian Forest, Germany, recorded between 2002 and 2011. GPS-
based location data of roe deer (Capreolus capreolus) and red deer (Cervus elaphus)
were analysed on different temporal and spatial scales with conventional methods such
as resource selection functions, approaches from other fields as multicategory logit mod-
els, as well as novel approaches as step selection functions and individual based models.
The aim was to identify and quantify sources of variation in the site selection of animals.

By analysing roe deer movement data, we revealed distinct temporal variation in habi-
tat selection of roe deer on different temporal scales, whereby daily and seasonal scales
interacted. The fine-scale temporal variation of habitat selection by roe deer followed a
nycthemeral cycle change mostly associated with daily variation of human disturbance.
In contrast, the larger-scale seasonal variation in habitat selection followed plant growth,
and hence mostly in response to food resource. Beside temporal variation, we tested for
spatial variation in habitat selection, namely the effect of the availability of a habitat on
the selection, known as functional response. We found distinct patterns of functional
response for different habitat types. We further revealed that the type of functional
response varied with time of day and time of year. We referred the shape of the func-
tional response to the trade-off in the choice between food and cover.



Furthermore we quantified the degree of variation in habitat selection that is due to
differences between and within individuals which relates to the plasticity in the be-
havioural response towards changing conditions of a species. A framework is presented
for partitioning variation in habitat selection into between- and within-individual vari-
ance components. Our analysis on red deer showed that consistency in site selection
behaviour and the degree of concordance among individuals varied over the time of
day. This study provides an approach for assessing the ability of a species to adapt to
changing environmental conditions. These information are of particular significance for
conservation management given the ongoing habitat loss and alternations.

Finally, we present a model technique that integrates the movement process in the
analysis of habitat selection, called individual-based movement model. This approach
does not only analyse habitat selection in a descriptive way, but also allows the re-
searcher to simulate movement of animals given a changing environment. This is in
particular relevant for evaluating management scenarios in advance. Methodological
approaches presented in this theses are supposed to contribute to an improved under-
standing about the ecology of animals, in particular about the movement behaviour. A
profound knowledge about the ecology of animals should guide conservation planning.
Given the ongoing loss of biodiversity and the associated high level of species extinction,
scientific studies can become an important cornerstone in nature conservation.

Zusammenfassung

Das Bewegungsverhalten von Tieren ist zentral fiir den Erhalt 6kologischer Prozesse.
Durch ihr Streif- und Wanderungsverhalten stabilisieren Tiere insbesondere die Bio-
diversitdt, da sie Bindeglied zwischen rdumlich urspriinglich getrennten Ressourcen,
Genen und Prozessen sind. Wie und warum Tiere sich auf ihre ganz spezielle Art
und Weise im groften wie im kleinen Mafstab bewegen, ist daher von grofsem Interesse
flir die Wissenschaft. Seit mehr als drei Jahrzehnten, versuchen Forscher Muster von
Tierbewegungen zu verstehen. Dabei gilt es, die komplexen Kausalzusammenhénge der
individuell-internen Bewegungsausloser einerseits, der externen Umweltfaktoren ander-
erseits, sowie deren Wechselwirkung zu entschliisseln, die zu den beobachtbaren Pfaden
der Tiere fiihren. Die vorliegende Arbeit ist ein methodischer Beitrag in der Analyse
von Bewegunsgdaten von Tieren im Bezug auf die Ortswahl.

Der Fortbewegungsprozess an sich ist zwar kontinuierlich in Raum und Zeit, fiir eine
Analyse hingegen, wird er diskretisiert. Abhéngig von der Auflésung der Daten kann
der Fortbewegungsprozess auf unterschiedlichen Skalen analysiert werden. FEine fein-
skalige Analyse erlaubt allerdings nur einen feinskaligen Einblick in das Bewegungsver-
halten, wihrend grobskalige Analysen Auskunft iber das Bewegungsverhalten iiber 1an-
gere Zeitrdume und grofere Radume erlauben. Es wird angenommen, dass Prozesse auf
grofer Skala fitnessbezogene Vorgéinge wie Uberleben und Fortpflanzung eines Tieres
starker beeinflussen als kleinskalige Prozesse. Da aber Prozesse auf grofser Ebene durch
Prozesse auf kleiner Ebene beeinflusst werden, ist eine Analyse auf mehreren Ebenen
notwendig, um das Bewegungsverhalten von Tieren in Abhéngigkeit von Umweltvari-
ablen als Ganzes zu verstehen.



In der vorliegenden Arbeit werden verschiedene Ansétze beleuchtet, die die Reaktion
von Tieren auf Umweltfaktoren untersuchen. Dafiir wurden Bewegungsdaten aus dem
Nationalpark Bayerischer Wald verwendet, die zwischen 2002 und 2011 erhoben wur-
den. Fiir die Analyse von GPS-Daten von Reh (Capreolus capreolus) und Rothirsch
(Cervus elaphus) verwendeten wir konventionelle Methoden wie Resource Selection
Functions, Anséatze anderer Disziplinen wie Multikategorielle Logit Modelle, als auch
neuere Herangehensweisen wie Step Selection Functions und Individuen-basierte Simu-
lationsmodelle. Unser Ziel war es, Ursachen fiir Verénderlichkeiten im Bewegungsver-
halten, speziell der Habitatselektion, zu identifizieren.

Eine wichtige Komponente ist Zeit. Dafiir analysierten wir die Auswahl von ver-
schiedenen Habitaten durch Rehe iiber mehrere rdumliche und zeitliche Skalen. Es
stellte sich heraus, dass die tageszeitliche und jahreszeitliche Skalen interagieren, wobei
sich auf tageszeitlicher Skala die Storung durch den Menschen als grofiter erkennbarer
Einfluss zeigte, wiahrend sich auf der jahreszeitlichen Skala der saisonale Verlauf des
Pflanzenwachstums stérker widerspiegelte. Neben der zeitlichen Komponente, unter-
suchten wir den rdumlichen Effekt der Verfiigbarkeit eines Habitats auf dessen Auswahl,
bekannt auch als functional response. Wir zeigen verschiedene Muster von functional
response, die tages- und jahreszeitenabhéngig sind. Die verschiedenen Muster konnten
wir auf einen Trade-off in der Wahl zwischen Nahrung und Deckung zuriickfiihren.

Eine weitere Quelle von Variabilitdt in der Habitatselektion ist Individualitdt. Wir
présentieren erstmalig eine statistische Methode, die die Varianz in der Habitatselektion
in Varianz zwischen Individuen einerseits und Varianz innerhalb der Individuen ander-
erseits unterteilt. Wir zeigen, dass das Ortswahlverhalten von Hirschen zu manchen
Tageszeiten konsistenter ist als an anderen, sowie dass die untersuchten Tiere sich zu
bestimmten Tageszeiten stirker in ihrer Ortswahl unterscheiden als an anderen. Un-
sere Methode erlaubt es zu quantifizieren, wie variabel Populationen auf schwankende
Umwelteinfliisse reagieren und damit wie grofs ihre Flexibilitdt und Anpassungsfihigkeit
ist.

Schlieflich wurde ein Modell angewendet, das das Bewegungsverhalten der Tiere in die
Analyse der Orstwahl einfliefsen ldsst. Dieser Ansatz erlaubt nicht nur eine beschreibende
Auswertung der Habitatwahl, sondern erméglicht zusétzlich eine Bewegungssimulation
unter verdnderten Rahmenbedingungen. Das ist aufserordentlich relevant fiir Manage-
mentmafnahmen, die im Vornherein evaluiert werden sollen. Grundlegendes Wissen
iiber das Bewegungsverhalten von Tieren ist notwendig, um nachhaltige Mafsnahmen in
Tier- und Naturschutz sinnvoll zu planen.
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Chapter

Introduction

1.1 Motivation of the thesis

Anthropocene is the suggested name of the new human-dominated geological epoch in
which we live today (Crutzen, 2002). The term illustrates the fact that mankind’s influ-
ence on the Earth’s environment has reached global significance. The human population
has explosively grown in recent decades with a subsequent impact on its environment.
About 30-50% of the planet’s land surface is utilized by humans (Vitousek et al., 1997).
Side effects of the massive exploitation are deforestation (van der Werf et al., 2010),
river diversion and dam building (Gregory, 2006), agricultural land conversion and in-
tensification (Matson et al., 1997), emissions of oxides substantially overriding natural
emissions (Crutzen, 2002), release of toxic substances into the environment (Koehler and
Triebskorn, 2013), urbanization (Turner et al., 2004) and introduction of alien species
(Ordonez et al., 2010), to name a few. Outcomes of anthropogenic activities are various.
But all have in common to cause land transformation such as habitat destruction which

leads to ecosystem simplification and a loss of biodiversity! (Tilman et al., 2001).
For example, agricultural intensification under the heading of the Green Revolution

often leads to monoculture due to the reduction of crop or livestock species. Population
abundance and taxonomic diversity of the macrofauna in agricultural systems were
shown to be less than half of that in a primary forest (Matson et al., 1997). Biodiversity
loss is known to reduce the efficiency in biological cycles like resource capture and
biomass production which has consequences for all trophic levels (Cardinale et al., 2012).

A ecosystem that is diverse in terms of species coexistence is known to be more stable

!The United Nation’s Convention on Biological Diversity defines biodiversity as: "the variability
among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic
ecosystems and the ecological complexes of which they are a part; this includes diversity within
species, between species, and of ecosystems." (United Nations, 1992)
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1 Introduction

since different life forms can respond more differentially and operate compensatorily

through equalizing and stabilizing effects? (Chesson, 2000).
However, biodiversity has been shown to decline continuously over the past four

decades indicated by decreasing population sizes of different kinds of indicator species
and an accelerated extinction risk of species (Butchart et al., 2010). Researchers already
discuss whether the loss of species over the past few centuries and millennia can be con-
sidered to be a mass extinction meaning the extinction of more than three-quarters of
species in a geologically short interval (Barnosky et al., 2011). The effect of the extinc-
tion of one species within an ecological network can be propagated through multiple
trophic levels, causing secondary extinctions and extinctions cascades® (Colwell et al.,

2012).
Efficient contribution for maintaining biodiversity are the preservation of valuable

habitats and threatened species (Margules and Pressey, 2000). Besides the discussion
about how massive the actual extinction is, there is still a high diversity in wildlife and
many species left, that require human effort to be saved. Today, 15.4 % of the earth’s
terrestrial area and 8.4 % of the marine areas belongs to protected areas* (Juffe-Bignoli
et al., 2014). Targets of those protected areas are effectiveness, equitability, connectivity

%, In protected areas biodiversity is aimed

to be increased. One goal is to conserve threatened species®.

But the question is how should endangered species be conserved that face habitat

and ecological representation of ecosystems

alteration and loss? Conservation management in ecology intervene in ecosystems to

maintain or increase biodiversity. Management plans and realizations were earlier based

2 “(a) equalizing because they tend to minimize average fitness differences between species, or (b)
stabilizing because they tend to increase negative intraspecific interactions relative to negative
interspecific interactions” (Chesson, 2000)

3This effect is known as coextinction, which is the “extinction of a species as a consequence of its
dependence on another that has gone extinct or declined below some threshold abundance” (p.184,
Colwell et al., 2012)

*Definition of the United Nation’s Convention on Biological Diversity:“"Protected area" means a
geographically defined area which is designated or regulated and managed to achieve specific con-
servation objectives” (United Nations, 1992)

5In 2010, a Strategic Plan was adopted by the 192 State Parties to the Convention on Biological
Diversity. The plan included the 20 Aichi Biodiversity Targets, which are aimed to be achieved by
2020. Target 11 states: “By 2020, at least 17 per cent of terrestrial and inland water areas and 10
per cent of coastal and marine areas, especially areas of particular importance for biodiversity and
ecosystem services, are conserved through effectively and equitably managed, ecologically represen-
tative and well-connected systems of protected areas and other effective area-based conservation
measures, and integrated into the wider landscape and seascape. ”(Juffe-Bignoli et al., 2014)

5Target 12 of the 20 Aichi Biodiversity Targets: “By 2020 the extinction of known threatened species
has been prevented and their conservation status, particularly of those most in decline, has been
improved and sustained.” (Juffe-Bignoli et al., 2014)

12



1.1 Motivation of the thesis

on experience and intuition (also known as “expert-based”, Stalmans et al., 2001; Guisan
and Thuiller, 2005). Today, science is becoming an important cornerstone in nature
conservation. Science can support in three ways (deduced from Margules and Pressey,
2000):

- Construction of policies based on scientific theory
- Implementation of policies and conventions

- Evaluation of effectiveness of interventions

Scientific studies that guide conservation planning are rarely found in the scientific
literature but are more and more commonly used in practice (Guisan et al., 2013). For
example, such studies involve the identification of critical habitats (Heinrichs et al.,
2010), selection of conserved areas (Ferrier et al., 2002) and managing invasive species
(Soberon et al., 2001). Science can support reintroduction programmes of extinct species
by spatially explicit dispersal models that helps to specify road-crossing management

or the selection of release points (Kramer-Schadt et al., 2004).
One prerequisite for protecting threatened species is to understand their ecology

which is associated with fitness. Fitness of a species is related to gene flow and genetic
variation (Shafer et al., 2012), metapopulation dynamics (Hawkes, 2009) and local or
global persistence of a population (Lindenmayer and Possingham, 1996) which all are
linked to biodiversity (Baguette et al., 2013). Hence, fundamental knowledge about the
functioning of cause and effect in the alteration of animal behaviour will provide a guide
to how biodiversity can be increased in ecosystems. The questions asked by researchers

concerning the ecology of animals are (modified from Cagnacci et al., 2010):

- Why and how do animals move (Nathan et al., 2008)7
- Why and how do animals use specific resources (Forester et al., 2009)?
- Why and how do animals avoid being killed (Lima, 1998)7

- Why and how do animals ensure reproduction (McLoughlin et al., 2006)?

All these questions are related to the spatial behaviour of animals. Ecology is fun-
damentally spatial, meaning that ecological processes are affected by the landscape
configuration, such as the spatial distribution and composition of resources (Cagnacci
et al., 2010). The effect of various factors on the ecology of animals vary over the
landscape as their presence, intensity or other antagonists effects vary over space. The
spatial heterogeneity of influencing factors and the spatial distribution of animals are

pointers to the drivers of biodiversity.
In particular, movement of animals is a key element for the conservation of biodiver-

sity (Jeltsch et al., 2013). Moving animals are mobile units that provide connections

13



1 Introduction

between resources, genes and processes of otherwise isolated areas. Connectivity of the
landscape is fundamental for the maintenance or structuring of biodiversity (Baguette
et al., 2013). Movement can further operate as stabilizer or equalizer in the media-
tion of coexistence of communities as mobile individuals can actively avoid or intensify
interactions with other species or individuals (Jeltsch et al., 2013). Equalizing and sta-
bilizing mechanisms in coexisting species has been shown to be essential for maintaining

diversity (Chesson, 2000).
The urge of understanding movement ecology of animals as a driver of biodiversity

has been identified (e.g. Jeltsch et al., 2013). Therefore, movement ecology has emerged
as a new field in ecology that tries to understand spatio-temporal patterns of movement
phenomena such as foraging, dispersal and seasonal migration (Nathan and Giuggi-
oli, 2013). Based on the knowledge of animal movement behaviour, conservation and
management interventions can be planned to ensure efficient and successful results to
maintain and establish biodiversity in ecosystems. So far, links between management
planning and knowledge based on movement ecology are rare (but see Allen and Singh,
2016). Conservation and management of wildlife animals require an understanding of

“where they are, why they are there, and where else they could be” (Aarts et al., 2008).
Researchers of movement ecology aim to find answers to “Where are the animals and

why are they there?”. Given that the selection of sites has direct effects on fitness
(Nathan et al., 2008) and further given, that animals aim to maximize its fitness (Mc-
Namara and Houston, 1986), animals are assumed to optimize site selection with respect
to the maximization of their fitness (Gaillard et al., 2010). The theory of a reasonably
balanced utilization of resources for maximizing the success of survival, growth and
reproduction (Charnov, 1976) is generally assumed when analysing site selection. It is
assumed, that animals allocate time to a location as a response to conditions present at
a site such as resource availability or disturbances. The access and range of conditions
vary over temporal and spatial scales. Also, the animal has needs that change over time
on different scales, such as energy requirements, need for shelter or search for mating
partners. Animals therefore have to cope by adapting site selection to both their current

demands and the spatial and temporal distribution of conditions.
Site selection behaviour is analysed in the field of habitat selection for more than

three decades (e.g. Johnson, 1980; Manly et al., 2002; Aarts et al., 2008). Within this
field, researcher aim to understand why, how and when do animals use specific sites.
Habitat selection studies try to identify factors that leads to selection or avoidance of
sites (Manly et al., 2002). For such studies, typically data on the animal’s space use is
collected and related to prevailing environmental conditions. The way environmental
data is related to space use data, is subject of ongoing discussions in the field of habitat
selection (e.g. Keating and Cherry, 2004; Warton and Shepherd, 2010). This thesis is
a contribution to the methodology in the field of habitat selection.

14



1.2 Research questions of the thesis

Habitat selection of animals is driven by a suite of underlying mechanisms, researchers
aims to identify. Animals’ responses to habitat conditions such as e.g. food availability,
degree of cover, predation risk, can be statistically quantified as long these variables
are measurable in the landscape. This is usually done in studies of habitat selection
(Manly et al., 2002). While movement, the underlying process of habitat selection, is
continuous in time (continuous trajectories) this continuous process is discretized into
a sequence of locations in the study of habitat selection. Such discrete data capture a
series of reflections of the continuous decision-making process of how and why animals

move.
Habitat selection studies try to identify prevailing attributes in the environment of

the animals that influence their movement decisions. Environmental attributes and the
animals’ response may vary over time and may interact with each other. By taking
variation and interaction into account, habitat selection studies can provide reliable
answers to the question, of where and when animals move. This thesis illustrates various
approaches for quantifying the effects of influencing factors that affect habitat selection
of moving animals. Moreover, methods commonly used in economics but rarely or
not at all in ecology are adapted to analyse the choice behaviour of animals. These
novel approaches provide new perspectives on known concepts in animal (movement)

behaviour such as temporal variation, repeatability or functional response.

1.2 Research questions of the thesis

This thesis aims to find and quantify sources of variation in habitat selection by con-
centrating on large herbivores. Therefore, when addressing the problem of “How do
animals move?”, motion capacity is not referred to. Instead the question of “ Why and
how do animals move?” is aimed to be approached by asking “ Where and when do
animals move?”. Different methodological approaches are presented that are adapted

to the particular research question.
This study is conducted in cooperation with the Bavarian Forest National Park.

Movement data of free-ranging roe deer (Capreolus capreolus) and red deer (Cervus
elaphus) inhabiting the Bavarian Forest National Park is analysed with respect to en-
vironmental conditions. This work provides answers to the question of where and when

animals move and propose suggestions to why the animals move.
Even though, the focus is on the methodology, research always starts with questions

about the ecological system. The technical implementations merely serve to answer

these questions. In particular, our research questions are:

1. Temporal variation: Is variation in habitat selection of roe deer over the time
of year and time of day related to temporal variation in environmental conditions?

(Research paper 1)

15
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2. Limiting factors on multiple scales: Finding food or avoiding disturbances -

what is the most limiting factor in habitat selection of roe deer? (Research paper
1)

3. Habitat availability: How does the availability of a habitat within the home

range influence its selection by roe deer? (Research paper 2)

4. Internal needs vs. availability: Does habitat use depend more strongly on

internal needs or on the availability of a habitat? (Research paper 2)

5. Repeatability: How consistent are individuals in their habitat selection be-
haviour so that natural selection can act upon that behaviour? (Research paper
3)

6. Individuality: Does the consistency in behaviour vary between different times

of day and between females and males? (Research paper 3)

7. Individual based movement: What are the underlying principles in the move-
ment behaviour of individuals that lead to the observed variations in movement

and habitat selection patterns on the population level? (Research paper 4)

1.3 Theoretical framework - Concepts and definitions

The movement decision of an animal is a multidimensional process, which researcher aim
to understand for more than three decades (e.g. Johnson, 1980; Manly et al., 2002; Aarts
et al., 2008). Usually, researcher study the output of the complex process, namely GPS-
based recorded positions of animals. Each recording contains the information about
the location (x and y coordinate), the time of recording and some other additional
information (e.g. temperature, activity), although the latter will not be used in this
study. A set of observations of an animal is called trajectory. Trajectories provide
pointers of the underlying process and inference to the decision-making process of where,
when and why animals move. Thanks to remote sensing of environmental variables,
researchers can couple visited location with local conditions. This helps to understand

the conditions animal select or avoid.
It is the aim of the researcher to identify the factors that affect movement decisions of

animals and to quantify its influence. Due to the great variety of variables influencing
habitat selection of animals, researchers need to carefully select the suite of factors to
the most essential ones. Some variables are measurable, others such as the internal state
of an animal (e.g. hunger, fatigue) are not. However, data would never be sufficient
to fully investigate all relevant processes in ecological procedures. Only by simplifying
nature to its basic processes, inference on the underlying processes can be made. The

pathway to understanding complex systems is simplification (Wissel, 1989).
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1.3 Theoretical framework - Concepts and definitions

In the next paragraphs general concepts and definitions in the field of habitat selection

are provided.

1.3.1 Resources and habitats

Presence, survival and reproduction of animals within a certain area is determined by
the availability of resources and environmental conditions (Orians and Wittenberger,
1991). Resources are items an individual selects to fulfil its current demands, such as
shelter when an animal is freezing or tired, food if it is hungry, water if it is thirsty.
Environmental conditions include all abiotic or biotic factors that influences the animal,
e.g. weather conditions (e.g. temperature, wind, sunlight, precipitation) or presence of
predators or conspecifics. The functional interaction of both resources and environmen-
tal conditions defines a habitat (Gaillard et al., 2010). This definition has its origin in
Hutchinson (1957), who describes the space (niche) in which a species can indefinitely
persist as a subset (hypervolume) of a n-dimensional space that is constructed by n
environmental variables. In habitat selection studies, models are constructed that are

supposed to describe this space with respect to environmental variables.
Availability of resources, like food or shelter, can be measured on a continuous scale.

Only if the availability of both resources are independent of each other, one can assume
that the axes of the 2-dimensional space are rectangular. In higher space, orthogonal-
ity between the axes of n-variables is only ensured if the variables are independent.
Certainly, resources in nature are rather entangled and often follow some dynamic gra-
dient which is determined by other environmental conditions or mutually influence each
other. For example, biomass and the degree of cover are presumably not independent
and therefore highly correlated. Non-detected correlation in statistical analysis can re-
sult in wrong conclusions (Dormann et al., 2013). Therefore a variable selection that

ensures non-collinearity of factors is necessary in advance when constructing a model.
Variable selection is always a question a researcher is faced with. How can the n-

dimensional space Hutchinson is thinking of best described? Technical innovations
have been improved and are still improving data acquisition of resource availability and
environmental factors to an almost continuous scale in landscape (Cagnacci et al., 2010).
But what are the ones that determines animal behaviour the most? In statistics, there
is a consensus that the most parsimonious model should be favoured (sensu Occam’s
Razor”) as with increasing number of variables the accuracy of the fit of our data

increases but at the same time the applicability of the model prediction for future

"The Occam’s Razor principle is attributed to the philosopher William of Ockham (1288-1347) which
states Non sunt multiplicanda entia sine necessitate ("Entities must not be multiplied beyond ne-
cessity").
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1 Introduction

events decreases. This is known as the bias-variance trade-off (Bolker, 2008). Therefore,
the researcher is adviced to carefully choose variables included in the model, also with

respect to earlier mentioned non-collinearity.
To circumvent variable selection and the resulting problems, habitat can also be de-

fined by well distinguishable categories in terms of e.g. vegetation communities (Gaillard
et al., 2010). In this case the researcher needs to divide the landscape into a finite sets
of discrete habitat units. Such a categorization comes at the cost of describing the
landscape from a human-perspective and, of course, involves a simplification of nature

(Bunnell and Huggard, 1999; Alldredge and Griswold, 2006).
Both description of habitats, the earlier mentioned functional resource approach and

the categorical framework, are legitimated and widely applied in ecological literature
(Manly et al., 2002). However, the approaches conceptually differ and makes a direct
comparison difficult (Aarts et al., 2012). Though, they complementarily contribute to
gain a deeper insight to the mechanism of habitat selection of animals when considering
that both frameworks refer to different scales with respect to time and space (Gaillard
et al., 2010). The matter of scale was found to play a crucial role in the analysis of

habitat selection (Johnson, 1980). The following section will give a brief overview.

1.3.2 The question of scale

The problem of scale is central in ecology (Levin, 1992). Ecological processes occur
and, hence, can be analysed on different scales of time and space. Spatial and temporal
scales can be considered as hierarchically structured whereby both scales are positive
correlated (Delcourt et al., 1982). For instance, roe deer (Capreolus capreolus) distri-
bution can be analysed over the whole area of Europe. Analysis of changes over such
broad regions make sense rather on a larger temporal scale, such as years, decades or
centuries. Dynamics of large-scale roe deer distribution may have been caused by re-
lated longer-term changes in vegetational, soil or climatic conditions. Such long-term
dynamics in landscape conditions are appropriately observed on a large spatial scale. In
contrast, dynamics that influence roe deer distribution in the Bavarian Forest National
Park, a small region in Central Europe, may be rather observed on a seasonal, weekly,
diurnal or even hourly scale. In order to relate environmental conditions to such small
spatial patterns of roe deer distribution, landscape must be characterised on a much

smaller spatial scale e.g. in terms of vegetation structure.
Besides the hierarchy and the positive correlation of temporal and spatial scales,

scale has two related aspects which are extent and grain. The extent corresponds to
the domain of interest, usually it is the size of study area. The grain is the minimum

resolution of the data.
The recognition of the importance of scale greatly influenced the analysis of habitat

selection which was initiated by a seminal work by Johnson (1980). According to
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Figure 1.1: The analysis of habitat selection of animals is a matter of scales. Johnson
(1980) structured the selection process in four hierarchical levels.
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Figure 1.2: Spatial and temporal scales in habitat selection are highly correlated. Data
can be provided on high or low resolution on spatial and temporal scale. The resolution
of data for an analysis must correspond to the research question. At very small scales
the energy intake of an individual can be captured, which would not be possible at broad
scales. On this scale, spatial dynamics of a population or species can be studied. (Source:
Gaillard et al., 2010)

Johnson (1980) the selection process can be ordered in four hierarchical levels (Fig.
1.1). The first-order selection occurs on the largest range, this is the geographical
space a species occupy (In Fig. 1.1 it is limited to the study area.). Selection of
second-order is the choice of home range of an individual or a group within the above
mentioned geographical space. Third-order selection is the choice of a site within the
home range and fourth-order selection the actual utilization of an item (resource) at
that site. Wiens (1989) adapted the positive correlation of spatial and temporal scales
and emphasized that Johnson’s spatial levels are directly linked to temporal levels (Fig.
1.2). Hence, the four levels can be transferred to the temporal scale: species persistence
> population/individual persistence > feeding/resting period > handling time. This
spatio-temporal hierarchy helps to clarify on which level a study intends to provide new
insights. It further gives implication of the degree of resolution (grain) the data needs to
have to be useful for answering the research question. The resolution of data can vary
in time (e.g. time-intervals of GPS-location) and space (e.g. grain size of a map). The
optimal scale on which habitat selection should be studied depends on the question
the researcher has (Boyce, 2006). If individual behaviour is the scope of the study
the resolution of the data needs to be small (Fig. 1.2). If the interest lies in general
patterns of the population, resolution can be broader. The question of whether there is
an “optimal” scale has not fully answered yet and is related to finding the characteristic

scales at which resources most restrictively affect an species’ fitness (Mayor et al., 2009).
The recognition of the hierarchical nature of habitat selection and the classification in
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different orders by Johnson (1980) helped to analyse and understand the process. Since
then, studies on habitat selection are usually conducted on multiple scales (Mayor et al.,
2009). Most studies concluded that results can not directly “scaled-up” or “scaled-
down” between different scales because of scale-dependent behavioural responses to
environmental factors (Bissonette, 1997; Boyce, 2006; Moreau et al., 2012). For example,
there has been found non-linear differences in the effect of factors between different
scales (Johnson et al., 2002). Consequently, habitat selection on a single scale can
not be transferred to another scale. A comprehensive insight can be obtained when
analysing habitat selection on multiple scales to define the relevant factors for each

scale.
Rettie and Messier (2000) suggested that the factors of different scales also operate

hierarchically in habitat selection, whereby factors of larger scales constrain selection
on smaller scales. The hierarchy theory is intuitive as habitat selection varies with
landscape features that are usually spatially nested in a hierarchical form. For exam-
ple, climate and geographical conditions constrain landscape features on a very large
scale, whereas availability of vegetation types influence habitat selection on a rather
small scale. Due to the nested structure of the effects of factors on scales, factors that
operate on a large scale are assumed to operate on each successive smaller scale, also.
Consequently, limiting factors that affect species’ fitness should be avoided at coarse
spatial scale, as these operate impairingly on each successive smaller scale. However,
Mayor et al. (2009) argued that studies on habitat selection not necessarily support this
“top-down” view of selection. Also, a “bottom-up” view is possible, when selection on a

small scale entail changes in patterns on large scale.
Concluding, results of habitat selection studies must be interpreted in the light of

the focal scale only. A study on multiple scales provide a more comprehensive insight
to movement behaviour of the animals. The determination of the scale involves the
determination of the extent and grain of the data, e.g. the landscape representation.
In the next section the necessity of a sensible choice of the right scale is motivated, as
it has direct implications for the definition of availability. The definition of availability,

in turn, is related to the evaluation of use and selection.

1.3.3 Clarification of concepts: Availability, use, selection

Availability of resources or habitats, respectively, is a matter of scale (Beyer et al.,
2010). In literature one can find several definitions of availability that can be related
to Johnson’s (1980) scale. For example, availability in habitat selection can be defined
based on either the geographic range occupied by a species, the study area, the home
range of an individual or even on a single location of an individual (Baasch et al., 2010).
As the definition of availability refers to the scale and therefore affects the outcome of

a study (Johnson, 1980; Boyce, 2006) the researcher must carefully choose the area of
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what is defined as available.
A resource or a habitat, from now on called unit, is defined as available to an animal if

it has access to it (Lele et al., 2013). The relative availability is the proportion of a unit
with respect to all available units. Hence, the sum of the proportions of all available
units must add up to 1. The use of a unit is the proportion of time spent utilizing
this unit (Johnson, 1980). The use distribution describes the proportion units are
used (Lele et al., 2013). A randomly walking animal would use a unit proportionally
to its availability (Aarts et al., 2013). However, use is selective if the proportion of
time spent on the unit is greater or less than its relative availability (Johnson, 1980).
It is important to note, that GPS-location data reflects instances of use rather than
quantity of use (Lele et al., 2013). However, the more instances are counted for a unit
(or conditions on a unit) with respect to the total number of instances the higher gets

its weight when calculating the use distribution.
The use distribution depends on the availability of a unit and the probability of se-

lection (Lele et al., 2013). The latter is the probability that a unit is selected if it is
encountered. Probability of use and probability of selection may strongly differ, if for

example an unit is rarely available.
We avoid using the term preference in the context of habitat selection, as it originally

was defined as selection that occurs under the condition of equal availabilities (Johnson,
1980). Equal availabilities of units in the field is just not realistic and therefore this

concept is not permissible in our study.
Study designs differ in the way data is pooled and hence, how availability and use

is measured (Thomas and Taylor, 1990). Some studies collect data on the population
level with not differentiating between individuals (design 1, Manly et al., 2002). Hence,
availability is based on what is present in the study area and equals for all animals and no
differences in use between individuals is assumed. Other distinguish between individuals
when evaluating use (design 2,3). From those some distinguish between individuals
when measuring availability (design 3). Finally, there are studies that measure use and

availability for each recording (design 4, Thomas and Taylor, 2006).
In the following applications are presented for for each design.

1.4 Statistical analysis in habitat selection studies

Due to the advent of GPS-based radiotelemetry large datasets on accurate fine-scale
relocations of free-ranging animals are available. Those positions represents the inter-
action of an individual with its environment. Tracking the animal over a longer period
of time results in a dataset of recordings, that provides insight to the history of an
individual. When multiple individuals are tracked, recorded time-series can be assumed

to represent the whole population. When those time-series are related to environmental
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data the researcher is able to describe the animals’ selection behaviour of landscape

characteristics over time and space (with respect to the focal scale, see 1.3.2).
For more than three decades researchers aim to answer the question what shapes

habitat selection of animals. There are thousands of studies that try to quantify the
effect of abiotic and biotic factors influencing habitat selection of animals. There are
several approaches that relate environmental characteristics to animal relocations. Usu-
ally characteristics of the used sites are compared with those at available or unused
sites. Or the intensity of use is related to landscape characteristics. The statistical
analysis of relocation data is diverse (Thomas and Taylor, 2006). In the following the
most commonly used approaches are introduced as well as novel approaches used in
the publications (chapter 2). But first the much-debated methodological obstacle of

autocorrelation in movement data is discussed.

1.4.1 Autocorrelation in movement data

The scale on which the study is wished to be performed determines the frequency with
which the positions are recorded. A high frequency of recordings allows a fine-scale
analysis where movement trajectories and their characteristics can be inspected. A
longer time of recorded positions represents a longer observed period of an animal and
allows an analysis on a larger scale like dispersal or migrating behaviour over more than
a year (Fryxell et al., 2008). Of course recordings can be easily deleted if frequency
is too high, but a high frequency in recording will reduce the overall time period of

recording due to limitation in battery life.
However, a high frequency of recordings in animal location data is also associated

with a high spatio-temporal autocorrelation (Forester et al., 2007). This is due to the
fact that animal movement data originates from a continuous process (Fleming et al.,
2015). Spatial autocorrelation implies that sites that are located in close proximity are
visited with a similar frequency than expected by chance (Aarts et al., 2008). Temporal
autocorrelation increases with a decreasing length of the time interval between successive
relocations of an animal. This means that the location at time ¢ is very similar in its

attributes to location at time ¢ — 1 if the length of the time interval is very short.
In the analysis of animal movement data, autocorrelation can both, provide valuable

information about the characteristics of movement (Fortin et al., 2005) and negatively
interfer the statistics by violating the statistical assumption of independence (Martin

et al., 2008).
Within the first case, researchers are interested in the patterns of autocorrelation and

aim to identify e.g. movement modes such as searching, foraging or resting behaviour
(Fleming et al., 2014). The focus is on the trajectory of an animal which is a path
of successive relocations. This path can be characterized by series of step lengths and

turning angles. The time series of both metrics can be analysed by measuring the auto-
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correlation which may reveal patterns such as periodicity (by autocorrelation functions,
Boyce et al., 2010) or seasonal variation in movement behaviour (Cushman et al., 2005).
Recent approaches involve variograms that have some statistical advantages over au-
tocorrelation functions (Fleming et al., 2014). But all have in common to use a high

temporal resolution to make inference on the dynamic process of movement.
In contrast, habitat selection studies historically analyse movement data in a static

way without considering any constraints due to the nature of movement such as navi-
gation and motion capacity of the animals. Researchers usually contrast locations that
were selected by the animals against locations that are randomly sampled from the
area that is defined to be available to the animal (see section 1.3.3). However, in lo-
cation data that is highly autocorrelated, two successive locations are very similar in
conditions as the animal did not have the chance to relocate to far places. So due to
physiological constrains of the animal, it could reach only a small part of the area that
is defined as available if the time interval is too short. This violates the assumption
underlying most statistical analysis that all randomly sampled locations are equally
available. Also, considering the recorded locations of a resting animal that has stayed
for a longer time in one place, the multiple recordings of the very same site where it
had stayed does not originate from actual selection but is nevertheless compared to the
randomly sampled locations from the available area. Therefore, a high autocorrelation
is known to increase the probability of type I errors, meaning that the null model of
random selection is rejected towards a model that supports specific habitat selection
(Martin et al., 2008). Consequently, for the classical approach of hypothesis testing in
habitat selection studies (e.g. resource selection functions in section 1.4.3) locations

must be independent in time and space (Manly et al., 2002).
To satisfy the assumption of independence or at least to approach it (Rooney et al.,

1998), data can be rarified through subsampling. Prior to that, an analysis is needed
that identifies the time lag beyond which autocorrelation is sufficiently small. Several
approaches have been proposed to identify the so called time to independence (TTI,
Rooney et al., 1998) such as Schoener‘s (1981) ratio statistic (Swihart and Slade, 1985)
or nonparametric variograms (Fleming et al., 2014). However, subsampling of data
means on the one hand discarding redundant information, on the other hand also a
loss of ecologically relevant information which may lead to wrong conclusions due to
a reduction of biological relevance (Rooney et al., 1998; De Solla et al., 1999). TTI is
related to the minimum time an animal needs to cross its entire home range (Rooney
et al., 1998). Therefore this approach is only applicable to animals that have a fixed

home range (Cushman et al., 2005).
Alternative to subsampling there is a post hoc approach where standard errors, that

are underestimated when autocorrelation is present in the data, can be adjusted for
(inflated) after the analysis (Nielson et al., 2002).
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One more alternative approach is to explicitly modelling autocorrelation by account-
ing for the serial structure of movement data (Fieberg et al., 2010). Within this approach
availability is location specific, which means that also the null model contains spatially
correlated locations. One framework, called step selection functions, is explained in

section 1.4.5.2 in more detail.

1.4.2 Compositional analysis

In compositional analysis (CA, Aebischer et al., 1993) the proportions of used habitats
are compared to the proportion of available habitats. Thereby, animals and not reloca-
tions are the sample unit. It can be applied for studies of design 2 and 3, meaning that
use enters the model per individual. Availability can be measured either on population
(design 2) or individual level (design 3). The designs refer to Johnsons’s second and

third order selection (see section 1.3.3, Johnson, 1980).
CA provides an order of habitats with respect to their relative preference of selec-

tion. However, CA is not appropriate when resource units are described by continuous

variables. Unless the variables are categorized in discrete categories.
Despite its wide application in literature, CA in habitat selection studies is not rec-

ommended for two reasons (Thomas and Taylor, 2006). First, usually the number of
recordings differ between individuals which violates the assumption of a constant co-
variance structure. Second, a high type I error was reported in several studies if use of
a resource is very low (e.g. Pendleton et al., 1998). Due to its popularity the approach
of CA is mentioned here. But due to its shortcomings it is not further considered in
this thesis.

1.4.3 Resource selection models

Resource selection functions (RSF) using logistic regression models has been the most
popular tool to link spatial patterns of animals to landscape characteristics (Duchesne
et al., 2010; McLoughlin et al., 2010). Usually, the data for such analysis contains
locations where an animal was found (location used) and is compared with available
locations (Warton and Aarts, 2013). This is known as use-availability design (Manly
et al., 2002). Its equivalence to presence/absence, used/unused or case-control designs

is shown in Warton and Aarts (2013).
The aim of logistic regression models is to calculate a likelihood that an animal is

present at a location, given a set of explaining variables. The response variable y; is
binary, and denotes wether a location i was visited (y; = 1) or not (y; = 0). Each loca-
tion ¢ is characterized by values of the covariate of dimension J, X; = (x;1, Zi2, - . ., TiJ),
which can be continuous or discrete. A resource selection probability function

P(Y; = 1|xq, ..., x4) = 7 is commonly computed using a logistic regression model
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with a log link (Manly et al., 2002)

J
m(z;) = %, i :/30+;[3jwzj (L.1)
where 1; = Bo + Bixi1 + Boxia + ... + Byx;y is the linear predictor function of the
explaining variables. The coefficients 8 = (B, f1, ..., Ss) are estimated and relate the
probability of use to the covariate variables X;. In matrix notation it is 7; = X;3.
The type of environmental variables can be continuous or discrete; quadratic terms or
splines can also be used. However, they are assumed to be independent of each other. Its
popularity is due to its simplicity in use (McLoughlin et al., 2010). Logistic regression
models belong to the family of generalized linear models (GLM, Zuur et al., 2009).
GLMs can be extended to generalized linear mixed models (GLMMSs) that can account
for heterogeneity and dependency in the response variable. In the context of habitat
selection it is advisable to use GLMMSs to consider e.g. variation between individuals
due to individuality or differences in landscape conditions or different samplings (Gillies

et al., 2006). In this case the linear predictor is extend to
ni = X3+ Z;b;, b ~ N(0, D) (1.2)

where b; is a random vector that contains random effects, with zero expected value
and covariance matrix D, Z; is the model matrix for the random effects. In habitat
selection studies random effects can be for example the id of individuals, that allows
some degree of heterogeneity among individuals and account for non-independence in
habitat selection behaviour within the individuals, respectively. Or random effects can
include the different study sites, that account for not specified differences. Also, possible
effects of the time of data recording can be included by adding a random effect of time
in the model. In general, random effects are reasonable to be included, if differences
between units (e.g. animals) are likely, and the degree of difference per unit is of no
interest. As the covariance matrix D is estimated one can quantify the variability in

habitat selection that is due to the differences between units.
Logistic regression in habitat selection studies has due to its simplicity and flexibility

many advantages. But it has also some well known problems, which are thoroughly
discussed in literature. Most problems are related to the choice of points that are des-
ignated to be available (y; = 0, e.g. Phillips et al., 2009; Hastie and Fithian, 2013;
Warton and Shepherd, 2010; Warton and Aarts, 2013). Three problems are illustrated
in Fig. 1.3. First, the problem of implementation: the way the available points (or
“pseudo-absences”) are generated are known to influence the model outcome and ac-

curacy. Preference or avoidance of a habitat can vary for different definitions of what
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R < present/used < present/used © present/used
= absent/available ‘ = absent/available

Figure 1.3: GPS-based recordings of positions (yellow) of a male adult roe deer in the
Bavarian Forest National Park. Figure A shows all positions ever recorded for this indi-
vidual. Figures B and C show only a subset of those, which is what the researcher usually
has acquired. Green points present possible generated available points. In contrast to
figure A it is obvious that green points are “pseudo-absence” points and are designed
for representing the conditions in the landscape. Figures B and C demonstrate that the
way “pseudo-absence” points are generated can influence the outcome of a model, as the
availability of conditions may differ between B and C.

is available to the animal (Beyer et al., 2010). Here, the researcher needs also to be
aware of the scale problematic (see section 1.3.2). The method of the generation of
random points affect the model’s predictive accuracy, so that it is recommended to
sample a large number of pseudo-absence points (Barbet-Massin et al., 2012). Second,
the problem of interpretation: estimated probabilities, also called “relative probabili-
ties” (Manly et al., 2002), depends on the number of “pseudo-absences” (Warton and
Shepherd, 2010) and are not necessarily proportional to probability of use (Keating and
Cherry, 2004). Third, the problem of contamination: in particular for mobile animals
one can not ensure that randomly chosen “pseudo-absences” have never been used. Such
“contaminated” controls are found to bias the estimation of model coefficients to a more
or less great extent when applying standard logistic regression (Rota et al., 2013). The
root of all potential problems lies in the more or less arbitrary researchers’ choices for

generating new data or “pseudo-absence” points.
All mentioned problems can certainly be issues when analysing movement data of

animals. But if the researcher is aware of all this, sensibly ponders optional approaches,
if decisions are reasonable and based on the research question, RSFs are a very useful

tool to analyse habitat selection of animals (Warton and Aarts, 2013).

1.4.4 Poisson point process models

Observed locations can also be analysed as the events of a spatial Poisson point process

(PPP). Properties of a PPP with intensity A > 0 in a two-dimensional region B are

(i) Poisson distributed number of points: the number of of points y falling in
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any region B C B is a Poisson random variable; Pois(y|\) =

(ii) Independence: if By C B and By C B are disjoint sets then the number of points

yp, and yp, are independent random variables.

A can be interpreted as the mean density of points in region B. In a homogeneous
PPP the points are uniformly distributed in space. Hence, for a homogeneous PPP the
expected number of points falling in B C B is [E[yg] = A - area(B). This means that
the number of visits in a subregion is related to its area in region B, hence, more visits
are predicted in larger regions. This area-occurrence-relation would be expected from
a randomly walking animal. However, in ecology the animal is assumed to optimize
resource selection. Hence, an animal is expected to visit those places more often that
maximizes its fitness. Therefore, to gain an understanding of what drives habitat se-
lection of animals, the number of occurrences y; in habitat (or region or location) i is
related to environmental covariates. This can be done with assuming a inhomogeneous

PPP model with a log-linear link function:

J
log(yi) = Bo+ Y _ Bjaij = Xif3 (1.3)
j=1
Also, quadratic effects or splines, as well as random effects can be included. If the
area differ between the categories or regions the logarithm of value of the area must be

included as an offset.
Such models rely on observed data only and do not need “pseudo-absences”. Warton

and Shepherd (2010) showed that under certain circumstances a logistic regression
model is asymptotically equivalent to a PPP model (PPM). They further clarify that
PPMs have natural solutions to all formerly mentioned issues of implementation, in-
terpretation and contamination (section 1.4.3). But there is one mathematical caveat.
PPMs for animal location data assume that the total number of recordings is unknown,
which is not correct. Indeed, as the number is known, the to be estimated intensities
of presences are not independent, which means that the count data is multinomial. An
alternative is a surrogate Poisson model that accounts for the multinomial structure of

the data (Venables and Ripley, 2002).
Let y; be the intensity of selection of habitat type 4, a; is the area of i, then the

surrogate Poisson model is written as an extension of equation 1.3:

log(X;) ~ [ [ 6-M; + log(a;) + Xi3 + +2Zb, b~ N(0,D) (1.4)

where b is a random vector that contains random effects, with zero expected value
and covariance matrix D, Z is the model matrix for the random effects. The first

term [, 6, M, refers to the multinomial structure of the data. It is the product of
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all factors for which a classification is wished and the counts refer to e.g. counts per
habitats and sex and age. These extra parameters must also be estimated. For the
example habitats per sex, it would mean 2K extra parameters for K habitats and 2 sex
categories. Hence, due to fitting this extra parameter, surrogate Poisson models imply a
high computational effort. Consequently, this approach is only feasible for a low number
of categories. The advantage of this approach is, that the model is easy to implement
as software is established for Poisson models. So, surrogate Poisson models present
a possible way to estimate multinomial models with a possibly high computational
burden. For models with a high dimension of categories, discrete-choice models may be
the better alternative. However, for discrete-choice models easy-to-use software is not

available yet, especially not when random effects are supposed to be included.

1.4.5 Discrete-choice models

If an animal is assumed to choose from a discrete set of options, e.g. habitat types or
specific patches, the choice can be modelled with discrete-choice models (Agresti, 2002).
The response variable consists of a discrete set of alternatives. Explanatory variables
that are supposed to explain the choice behaviour of the animals can be of two types:
i) characteristics of the alternatives and ii) characteristics of the chooser. In the first
case, the alternative, e.g. the habitat, is described by its properties, such as availability
of food and cover or its value for the animal. McFadden (1974) proposed this type
of model as a conditional logit model®. In the second case, properties of the chooser,
namely the animal are included that may influence habitat selection such as sex or age.
It is possible to include both types of variables in discrete-choice models (see pp. 313f

in Agresti, 2002, for the derivation).
If the number of alternatives is two, the response variable is dichotomous or binary,

otherwise it is called polytomous or multicategory. In the first case GLMs with a
binomial distribution can be used as explained in paragraph 1.4.3 (about RSFs). In
the case of a polytomous or multicategory variable discrete-choice models should be

analysed using multinomial models, which is the scope of the next two paragraphs.
Discrete-choice models are widely used in social science and economics for modeling a

subject’s choice from one of several discrete alternatives. Despite the apparent similarity
of the problems discrete-choice models are rarely used in studying habitat selection
(Vergara Cardozo et al., 2010). One reason for disregarding the multinomial structure

of the data might be the lack of adaptable software tools (but see Duchesne et al.,

8 McFadden (1974) called this type of model conditional logit since the influence of a variable on the
choice depends on the difference of the variable’s values for the choices. If there is no difference, the
model reveals no effect of the variable on the choice. In 2000, McFadden received the Nobel Prize
“for his development of theory and methods for analyzing discrete choice”.
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Figure 1.4: The same extraxt of landscape of the Bavarian Forest National Park (see Figs.
1.1 and 1.3 B) showing the landscape photographed by a satelite (left) and represented as
an area built up by well-defined categorical habitat types.

2010; Craiu et al., 2011). An alternative present surrogate Poisson models (see section
1.4.4), which however are computationally intensive if the number of alternatives is too
high.

In discrete choice models the probability of choosing a subject ¢ is conditional on the
choice set C; at time t. Each item i in the choice set is characterised by J explanatory
variables @y = (241, ..., 24y) , and let @ = (41, ..., @¢s). The probability of selecting
option ¢ at time ¢ is

w(B, xti)

7T’i(wt) = Zhect w(ﬁamth) (15)

where w(3, ) is some functional form of covariates & and coefficients 3. w(3,x) can

be regarded as a form of resource selection function, e.g. as n; in equation 1.1. Smooth
effects of the variables and random effects can be included to account for flexible forms
and multiple sources of variations in habitat selection. Also, characteristics of the
animal (e.g. age or sex) can be included (Agresti, 2002). Equation 1.5 ensures that the
sum of probabilities over the choice set C; equals 1. Discrete choice models were found
to provide the most accurate and precise estimate of coefficients in a simulation study
about habitat selection (Baasch et al., 2010). There are different ways of applications.
If the strength of selection of patches in a categorised landscape is the aim of the study
(Fig. 1.4), baseline-category logit models are appropriate. If one is interested in the

effect of specific variables on site selection, step selection functions are recommended.
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1.4.5.1 Baseline-category logit models

Given an animal that has the choice out of ¢ = 1,..., K habitats, one can calculate
the probability m; of choosing habitat ¢. As there are exact K choices the probabilities

must sum to 1, >, m = 1.
Multinomial logit models with a multicategory response can be fitted using baseline-

category logit models (Agresti, 2002). The baseline category should be the most com-
monly selected category. Given the multinomial structure of the model, the probability
of choosing the baseline category K is calculated as: g (x) = 1—mi(x)—...—7x_1(x),
where x is a vector of covariates describing the habitat and/or the individual. Prob-
abilities m;(x), i = 1,..., K — 1 are derived by first fitting K — 1 binary logit models
separately to the data. In this first step the response variable of K — 1 models is now
binary (y € {0,1}) and logistic regression is performed as shown in equation 1.1. The
1th model include observations from habitat ¢ and K only, where y = 1 if individual
was observed in habitat ¢ and y = 0 if it was observed in the reference habitat K.
Given f;(x), the selection ratio calculated from the logistic regression that contrasts the
selection between habitat ¢ and the reference type K, probability of selection of habitat

1 is estimated via the multinomial logit link:

_ eap(fi(e))
1+ 35 eap(fu(w))

mi(x) (1.6)
with f; being a general functional form of the explanatory variables that can be habitat-
specific. fx is 0 for identifiability reasons. The denominator of equation 1.6 is the same
for all . Explanatory variables & can be continuous or discrete, characterising the focal

habitat ¢ or properties of the individual.
Multinomial logit models have rarely been used in habitat selection studies, but

see very simple versions (Arthur et al., 1996; McCracken et al., 1998; Cooper and
Millspaugh, 1999; McDonald et al., 2006), despite the suite of advantages (Kneib et al.,
2011). For example, these models do not suffer from the in section 1.4.3 mentioned is-
sues of implementation, interpretation and contamination as these do not need “pseudo-
absences”. These models are based on observed data only. Furthermore, availability of
habitats can be included for each individual. The model formulation is highly flexible,
as the model can be formulated for each habitat separately. So that, for example, effects
of covariates can vary among habitats and over time. Random effects that account for

variation among individuals can also be integrated.
Another positive aspect of multinomial logit models over RSF is that it does not

implicitly assume the independence from irrelevant alternatives (ITA) as studies with
RSF wusually do (Duchesne et al., 2010). The hypothesis of IIA postulates that the

selection of a certain habitat over another is independent of the availability of other
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Figure 1.5: Landscape (same extraxt of landscape of the Bavarian Forest National Park
as in Figs. 1.1, 1.3 and 1.4) presented as a landscape of continuous variables. The left
figure shows the landscape according to the degree of canopy cover in summer, the darker
the higher the degree of cover. Black lines are roads. The right figure visualizes the
distance to settlements (yellow).

habitats. In multicategory logit models the probability of selecting a certain habitat
is conditional on the selection of all other habitat available to an individual (equation

1.6). Hence, the ITA is not assumed.
However, the analysis of habitat selection with multinomial logit models requires a

discretization of the landscape into categories. This may be an improper simplification
of nature. An alternative is to analyse how variables influence the selection of animals.

The analysis can be achieved by using step selection functions.

1.4.5.2 Step selection function

Another form of multinomial model is the conditional logit model, where the choice is
modelled as a function of the characteristics of the alternatives, e.g. percentage of cover,
availability of food or distance to settlements (Fig. 1.5). Conditional logit models are
usually applied in the context of step selection function (SSF, Thurfjell et al., 2014).
It is a rather new approach (Fortin et al., 2005) that has started to become more and
more applied. SSF analysis is structurally a RSF analysis of design 3 and 4 and refers
to Johnson’s third and fourth order selection. It allows to analyse data on a very fine
spatio-temporal scale. In SSF a series of animal relocations is analysed. The set of
available alternatives (C) is defined stepwise. Within a step the actual chosen location
is compared with locations that might have been chosen out of the direct surrounding

of the last step. So, the data consists of location data of the animal, where each visited
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1.5 Individual-based movement models

location is matched with a set of randomly chosen points. These random points are
usually sampled given the last position and a step length and a turning angle. The last
two are randomly sampled from some distributions of step lengths and turning angles

commonly obtained from other monitored animals (Fortin et al., 2005).
The fix rate, which is the frequency of sampling, determines the spatio-temporal

scale. Again, as stated in section 1.3.2, the resolution depends on the research question

(Thurfjell et al., 2014).
Structurally, SSF belong to discrete choice models. Given the matched (or case-

control) design of the data, a conditional logistic regression is needed to appropriately
analyse the data (Fortin et al., 2005). By doing this some of the earlier mentioned prob-
lems in RSF (section 1.4.3) are encompassed. Clearly, the problem of “implementation”
is still a decision the researcher has to made, but the influence is less than in RSFs
as the estimates are conditioned within the strata (Thurfjell et al., 2014). The risk of
“contamination” due to actually used sites is very small for a high temporal resolution,
albeit, increases with a lower temporal resolution. However, the problem of interpre-
tation remains as the estimated coefficients are calculated on a latent scale (which is

connected to probability via a link function which is conditioned within the strata).
The ITA is assumed in standard conditional logit models (McFadden, 1974), where

only attributes of the choices are included as fixed effects. However, if random effects are
added in equation 1.5 the assumption of ITA is attenuated on the levels of the random
effects, as changes of a variable influences the choice differently (Duchesne et al., 2010).
For example, the addition of a random effect for the individuals allows heterogeneity
on the population level and correlation of the choices within an individual, respectively.
Duchesne et al. (2010) shows that in case of a mixed multinomial logit model the choice

of a habitat depends on the local alternatives.

1.5 Individual-based movement models

A fundamental understanding of animal movement will help to predict species occur-
rence under changing global conditions. Approaches in the field of movement ecology
are diverse. Within the well established resource selection studies (RSF), selection of
habitats is analysed, given the relative availability and use of particular habitats. Intro-
duced during the 1970s (Manly, 1974), RSF have been intensively applied during the
last decades (Thomas and Taylor, 1990, 2006; Arthur et al., 1996; Aarts et al., 2008;
Forester et al., 2009). The relative use of resources is statistically compared with the
relative availability by applying a form of logistic regression. The fit of such analysis
provides a quantification of the strength of the selection of habitats or environmen-
tal conditions. RSF studies can offer an insight into the ecology of animals (Arthur
et al., 1996; Godvik et al., 2009; Duchesne et al., 2010) and help to answer the ques-
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tion of “How and why do animals move”. Inference from such studies can also be used
for evaluating management and conservation activities (Chetkiewicz and Boyce, 2009).
However, caution is needed in making inference from such models. Earlier studies reveal
the limits of the habitat selection design and argue that estimates of preference may
be prone to misleading interpretation (Keating and Cherry, 2004). Further, it is vague
whether such studies provide a reflection of the internal demands of animals (Keating

and Cherry, 2004; Beyer et al., 2010).
Individual-based movement models (IBMM) focus on the individual. The decision

making process of an individual at potentially small temporal and spatial scales is the
focus of IBMMs. The individual is the “building block” (Grimm and Railsback, 2005) of
a greater system and allows therefore inference on patterns of higher hierarchical levels,
such as population level. IBMMs have become very popular in movement ecology (Jon-
sen et al., 2005; Schick et al., 2008). Its framework include a hypothetical mechanistic
model (process model), which contains the movement rules, and an observation model,
which links the process model to data. The basic structure of the process model is
Markovian, meaning that the state, here the location, in the next time step only de-
pends on the current state/location (processes of higher order are also practical). The
transition from one location to the next is controlled by the transition state equation,
which contains the drivers of movement in focus. Drivers might be movement metrics
like step length and turning angle (e.g. correlated random walk, Franke et al., 2006;
Johnson et al., 2008; Gurarie et al., 2009, see an animation in the electronic appendix),
the attractivity or repulsion of landscape features (e.g. biased correlated random walk,
Avgar et al., 2013; Moorcroft et al., 2006) or both (Morales et al., 2004; Forester et al.,
2007). Drivers of movement are included as covariates in the transition state equation.
Its strength and the direction of its effect on the movement decision is determined by
parameters. The framework of IBMMs permits the parameters to change according to
different behaviorial modes such as resting or foraging. This allows the modeller to set

up a ecologically meaningful model.
A fundamental problem of IBMs is the verification of validation. An option is inverse

modelling (Latombe et al., 2011). An IBMs is a bottom-up model, meaning that pro-
cesses on a lower level (individual-level) are modelled to analyse general principles on
higher hierarchical levels (population level, Grimm et al., 2005). Hence, the modeller
aims to understand patterns found on the population level with generating mechanisms
modelled on the individual level (e.g. home range size, Van Moorter et al., 2009). The
model can be evaluated by its ability to reproduce patterns when it is used to simulate
new data. This begs the question of how complex must the model be to capture the be-
haviour and structure of a real system sufficiently well? Grimm et al. (2005) recommend
to use not only one but multiple patterns observed in nature to validate the model. If

a model is used to reproduce only one pattern, it probably lacks structural realism.
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1.5 Individual-based movement models

For example, Van Moorter et al. (2009) was able to reproduce realistic home ranges
with a mechanistic movement model based on a biased correlated random walk. The
model includes rules that describe geometric characteristics of movement, only, such as
directional persistence, step length or memory. Hence, it was built for the purpose of
generating home ranges, but, this model is not useful in gaining knowledge about the
underlying drivers of animal movement. Consequently, to ensure that the model cap-
tures essential mechanisms of a movement, multiple patterns should be used to validate
the model (Grimm et al., 2005). However, if there are too many patterns, the com-
plex design and analysis of the model may involve a disproportionate effort. Therefore,
Grimm et al. (2005) proclaimed the pattern-oriented modelling (POM) approach to find
the optimal complexity of a model. The development of an IBM using POM involves
five tasks: i) define the problem, ii) acquire theories, iii) choose model structure, iv)
implement the model, v) analyze the model (Grimm and Railsback, 2005). These steps
have to run through several times until the test-patterns can be adequately reproduced
by the individual-based simulation. Latombe et al. (2011) suggest to include one more
task between the third and the fourth point, which is model parametrization. A for-
ward modelling approach at this stage would simplify the parametrization using POM
as it shortens the parameters’ refinement process. Latombe et al. (2014) combined a
SSF approach with an IBM that integrated internal states such as stored energy and a
representation of the memory of visited locations. They were able to capture complex
patterns in the movement ecology of caribou (Rangifer tarandus caribou) with respect

to habitat selection and home range sizes.
The flexibility and the high complexity of IBMs usually entail computationally ex-

pensive statistical methods to estimate parameter distributions (Patterson et al., 2008)
such as Bayesian Monte Carlo methods. Even though there exist convenient software
that afford very little additional programming effort (Lunn et al., 2009) computational
time can be extremely long when parameter space and/or data sets are large. This
is even aggravated if the number of behaviorial modes is unknown (McClintock et al.,
2012).

In the past, conceptual individual-based movement models have provided links be-
tween individual behaviour and space use patterns like site fidelity (Fronhofer et al.,
2012; Van Moorter et al., 2009; Mueller and Fagan, 2008; Berger-Tal and Avgar, 2012;
Gautestad, 2011). But mechanistics used in such models are not easily transferable to
models that aim to reproduce empirical data. Especially cognitive abilities can not be
measured and its effect on movement decision is rather vague (Dalziel et al., 2008) and
can be estimated only indirectly (Avgar et al., 2013; Gautestad et al., 2013). However,
models that integrated internal states such as stored energy and a representation of the
memory of visited locations were able to capture complex patterns in the movement

ecology of caribou (Rangifer tarandus caribou, Latombe et al., 2014).
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1.6 Study system

1.6.1 The area — Bavarian Forest National Park

The Bavarian Forest National Park is situated in south-eastern Germany along the
border to the Czech Republic (49°30'19”N,13°12'9"E). Together with the Sumava
(Bohemian Forest) National Park they built up the largest protected area of forest
remainig in central Europe. Since its establishment in 1970 its managment philosophy
is “Let nature be nature” resulting in a large landscape of wild forests and bogs. On its

total area of 24,218 ha, 3,850 animal species have been identified.
Spectrozonal aerial images of the study area from 2008 (Heurich et al., 2012) were

used to classify forest areas according to the land cover (Belyaev et al., 2004). Images
with a resolution of 0.4 m were used to isolate vegetation against the background of other
underlying surfaces, different kinds of vegetation and different stages of vegetation of the
same species (Belyaev et al., 2004). This resulted in a categorization of the landscape

in 25 land-cover classes (Fig. 1.5).
The national park has three major forest types. Above 1,100 m a.s.l. (16% of the

area), sub-alpine spruce forests of Norway spruce (Picea abies) and some mountain ash
(Sorbus aucuparia) prevail. On the slopes between 600 m and 1,100 m a.s.l., mixed
montane forests with Norway spruce, white fir (Abies alba), European beech (Fagus
sylvatica) and sycamore maple (Acer pseudoplatanus) (68% of the area) are found. In
wet depressions in the bottom valleys (16% of the area), often associated with cold air
pockets, spruce forests prevail with Norway spruce, mountain ash and birch (Betula
pendula, Betula pubescens) (Heurich and Neufanger, 2005). Since the mid-1990s, the
forests of the national park have been affected by massive proliferation of the spruce bark
beetle (Ips typographus). By 2011, this had resulted in the death of mature spruce stands
over an area amounting to about 6,000 ha (Heurich et al., 2010; Lausch et al., 2010).
Management of roe deer in the national park is spatially limited to the wild ungulate
management zone. This management zone comprises approximately 20% of the study
area and serves as a buffer zone in the transition area to the landscape surrounding the
national park. This ensures that wildlife regulation measures are excluded from a core
area of 20,000 ha (Heurich et al., 2011). The estimated roe deer population density was
1-3 animals/km? (M. Heurich, unpublished data). During our study, roe deer in the
national park were subjected to predation by European lynx (Lynz lynz) which had

been reintroduced in the 1980s (Wolfl et al., 2001).
For our study we aggregated the 25 land-cover classes to meaningful habitat types

with respect to roe deer ecology (Fig. 1.6). Medium aged stands are characterised by a
natural undergrowth, and hence, provide cover and food of high quality. For deciduous
stands great changes occur in conditions on the seasonal scale. In winter due to snow,

there is hardly any food and no cover, in spring undergrowth supplies much highly

36



1.6 Study system

B Availability in study area
0 Use by roe deer
020

Proportion

=
=
I

0.05 —

0.00 - I:| .]
; _ 3 Ng

Figure 1.6: Percentual availability of habitats in the study area Bavarian Forest National
Park, Germany (grey bars) contrasted with the percentual use of habitats by roe deer
(blue bars).

nutritious food (Marell et al., 2009). In autumn, high-energy beechnuts are provided
(Olesen and Madsen, 2008). Undergrowth from spring to autumn also provide optimal
hunting conditions for lynx (Lone et al., 2014). Mature stands have sparse undergrowth,
providing low forage and cover. Low cover is connected to low predation risk by lynx.
Open habitats such as anthropogenic area and cultivated meadows, provide much food
of high quality. However, open areas provide no shelter from human disturbances,
but optimal visibility to avoid predation by lynx. Unmanaged meadows and young
stands provide both, much high-quality food and high cover. High cover results in
optimal shelter from humans, but simultanously in optimal hunting conditions for lynx
and therefore in a higher predation risk. The opening of the forest canopy in clearcut
areas results in a stronger growth of ground vegetation and therefore plenty of highly
nutritious food. These sites, however, provide hardly any cover, which reduces predation
risk by lynx but also shelter from human. Bark beetle areas, characterised by lying dead
wood and natural undergrowth, provide a good amount of high-quality food in summer.

Lying trunks and branches provide optimal hunting conditions for lynx.

1.6.2 The species — roe deer

A considerable plasticity in the habitat selection of European roe deer has been observed

but not fully understood (Morellet et al., 2011). Roe deer live in woods but are also
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widely distributed in fragmented and more open agricultural areas (Hewison et al.,
2001). Roe deer are strongly attached to their home ranges and occupy the same site for
many years (Linnel and Andersen, 1995). Their habitat use has been intensively studied,
and effects of habitat features on some life-history traits have been detected (Pettorelli
et al., 2003; Nilsen et al., 2004). Many studies on the spatial behaviour of roe deer have
differentiated between the sexes. Significant differences in spatio-temporal behaviour
between females and males have been reported, e.g. time-budgeting (Turner, 1979),
home range size (Cederlund, 1983), patterns in home range occupation (Bideau et al.,
1993), spatial displacement after capturing (Morellet et al., 2009), and residence time
in the summer range (Cagnacci et al., 2011). The results indicate that it is reasonable
to distinguish between the sexes in the analysis of roe deer habitat use. Despite the
vast number of studies of the use of space by roe deer, only little is known about the
rules governing roe deer habitat selection (Coulon et al., 2008), including preference and
avoidance of areas. Certain habitat types are visited more frequently than others relative
to their proportional availability (Tufto et al., 1996; Morellet and Guibert, 1999). There
are strong hints that roe deer behaviour changes monthly and diurnally (Turner, 1978;
Cederlund, 1989; Pettorelli et al., 2005; Le Corre et al., 2008) and the composition of the
roe deer diet varies seasonally (Cornelis et al., 1999). However, studies on the variation
in resource selection by roe deer have either not taken the temporal scale into account or
only considered a coarse temporal scale, such as day/night or season (Mysterud et al.,

1999; Morellet et al., 2011).
The roe deer is a highly concentrate feeder, which, combined with its relatively small

size make it particularly dependent on food quality. Because of its direct effect on
mortality and the sub-optimal use of habitats to minimize predation risk by prey species,
predation is generally regarded as the main factor limiting the fitness of large herbivores
(Lima and Dill, 1990).
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Paper I — Habitat selection by a large herbivore at multiple spatial and temporal scales
is primarily governed by food resources

Summary

Habitat selection can be considered as a hierarchical process in which animals satisfy
their habitat requirements at different ecological scales. Theory predicts that spatial and
temporal scales should co-vary in most ecological processes and that the most limiting
factors should drive habitat selection at coarse ecological scales, but be less influential
at finer scales. Using detailed location data on roe deer (Capreolus capreolus) inhabiting
the Bavarian Forest National Park, Germany, we investigated habitat selection at several
spatial and temporal scales. We tested (i) whether time-varying patterns were governed
by factors reported as having the largest effects on fitness, (i7) whether the trade-off
between forage and predation risks differed among spatial and temporal scales and (i)
if spatial and temporal scales are positively associated. We analysed the variation in
habitat selection within the landscape and within home ranges at monthly intervals,
with respect to land-cover type and proxys of food and cover over seasonal and diurnal
temporal scales. The fine-scale temporal variation follows a nycthemeral cycle linked to
diurnal variation in human disturbance. The large-scale variation matches seasonal plant
phenology, suggesting food resources being a greater limiting factor than lynx predation
risk. The trade-off between selection for food and cover was similar on seasonal and
diurnal scale. Habitat selection at the different scales may be the consequence of the
temporal variation and predictability of the limiting factors as much as its association
with fitness. The landscape of fear might have less importance at the studied scale
of habitat selection than generally accepted because of the predator hunting strategy.
Finally, seasonal variation in habitat selection was similar at the large and small spatial
scales, which may arise because of the marked philopatry of roe deer. The difference is

supposed to be greater for wider ranging herbivores.
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Introduction

Habitat selection can be considered as a hierarchical process in which animals constantly
satisfy their habitat requirements at different ecological scales (Johnson, 1980; Hutto,
1985). Accordingly, past studies have investigated habitat selection at different spatial
scales ranging from the selection of a plant species or food item (Gross et al., 1995; Shipley
et al., 1998), of habitat patches (Coulon et al., 2008; Herfindal et al., 2009) and the
habitat composition of their home range (Forester et al., 2007; McLoughlin et al., 2011),
up to the geographical distribution of a species (Guisan and Zimmermann, 2000). Several
studies have considered the different spatial scales of habitat selection, independently or
simultaneously, showing that some ecological processes can be consistent across spatial
scales or, conversely, different across scales (Boyce, 2006; Beyer et al., 2010; McGarigal
et al., 2016). For instance, in moose (Alces alces), forage availability was associated with
habitat use at the landscape scale but not at the within home range scale, where human
disturbance and the availability of cover were more influential (Herfindal et al., 2009).

Although spatial and temporal scales often co-vary in ecological processes (Wiens,
1989), variation in habitat selection across temporal scales receives typically less atten-
tion than across spatial scales (but see Forester et al., 2007; Bjorneraas et al., 2011).
Large herbivores show diurnal and seasonal patterns of activity that can potentially affect
their habitat selection at different temporal scales (Owen-Smith et al., 2010). The most
frequently considered temporal scale is seasonal variation in habitat selection (McLough-
lin et al., 2011; Singh et al., 2012), probably as changes in environmental conditions are
the largest between seasons. Migration has been found to be one strategy of ungulates
to access high quality or abundant forage at all seasons (van Beest et al., 2010; Zweifel-
Schielly et al., 2009; Cagnacci et al., 2011; Hebblewhite and Merrill, 2009). At a finer
temporal scale, behavioural decisions are governed by short-term responses to immediate
stimuli, such as the circadian rhythm (Ensing et al., 2014), rumination cycles in some
herbivore species (Kamler et al., 2007), weather (Ewald et al., 2014b), olfactory cues
(Eccard et al., 2015), or disturbance (Ciuti et al., 2012).

The decision rules, cues, and resources governing habitat selection by animals vary
among different temporal scales (Orians and Wittenberger, 1991; Fortin et al., 2002).
Habitat selection patterns should therefore vary at least as much between temporal scales
as between spatial scales (Mayor et al., 2009). Assuming that behavioural decisions made
at the largest ecological scales have the largest impact on fitness (Gaillard et al., 2010;
Owen-Smith et al., 2010), Rettie and Messier (2000) suggested that the most limiting

factors should drive habitat selection behaviour at coarse ecological scales, but be less
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influential at finer scales. So far the empirical support for the limiting factor avoidance
hypothesis across spatial scales of habitat selection is equivocal (support: Dussault et al.,
2005; Hebblewhite and Merrill, 2009; Johnson et al., 2002) (no support: Aldridge and
Boyce, 2008). While the limiting factor avoidance hypothesis (Rettie and Messier, 2000)
has been originally formulated across spatial scales, it also predicts different patterns of
habitat selection across temporal scales, whereby temporal variation in the most limiting
factors should drive habitat selection patterns over coarse time scales. Obviously, no
variation in habitat selection behaviour is to be expected in a constant environment
(Doligez et al., 2003). However, if forage quantity varies seasonally more than predation
risk, then selection for habitats offering food resources should show stronger seasonal
variation than habitat selection against predation given that food is the most influential
limiting factor. If predictable environments allow the avoidance of limiting factors at
coarse temporal scales, then animals may take into account the limiting factors at fine
temporal scales when selecting habitats in stochastic environmental conditions (Gaillard
et al., 2010).

Habitats are selected for those properties such as food availability or cover that are
related to the fitness of an individual (Clark, 1994). Among large herbivores, elk (Cervus
canadensis) shelter from wolves (Canis lupus) in closed, forested habitats (Fortin et al.,
2005); roe deer (Capreolus capreolus) strongly select ecotones where they can forage on
highly digestible resources (Tufto et al., 1996); and moose seek habitats offering thermal
cooling during the summertime (van Beest and Milner, 2013). Many ecological factors
can modulate habitat selection by animals by changing the costs and benefits provided
by the habitat (Lima and Dill, 1990). Animals may have to make behavioural trade-
offs when different habitats confer opposing benefits, such as food quality or quantity
vs. protection against predation (Brown, 1999; Godvik et al., 2009; Panzacchi et al.,
2010). The magnitude and strength of the trade-off may vary in time as well as across
time-scales, according to the relative influence of the different limiting factors.

In this study we took advantage of the fine temporal resolution of roe deer geolocation
data in the Bavarian Forest National Park, and first describe the temporal variation in
habitat selection with respect to land-cover type and continuous landscape variables,
i.e. food and cover, in the context of predation by Eurasian lynx (Lynz lynz) and
anthropogenic disturbance. According to McGarigal et al. (2016), this study is a multi-
level analysis in both space and time and a multi-scale analysis in space. Using airborne
Laser-scanning (LiDAR, Light detection and ranging, Ewald et al., 2014b), we assessed
how food availability and fractional vegetation cover, estimated in summer, could account

for the seasonal and diurnal variation in habitat selection by male and female roe deer.
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Based on n = 109, 669 geolocations on 52 roe deer (26 males, 26 females) monitored from
2006 to 2012, we tested the following predictions:

1) We expected that habitat selection would vary temporally on both a seasonal and the
diurnal scale (Mysterud et al., 19994, 19996; Godvik et al., 2009). As large temporal scale
processes should be strongly related to fitness (Mayor et al., 2009; Gaillard et al., 2010;
Owen-Smith et al., 2010) we predicted that the seasonal variation in habitat selection
would account for more of the temporal variability of habitat selection than diurnal
variation. We further expected an interaction between both temporal scales as food
availability and cover vary seasonally in temperate areas.

2) Applying the hypothesis of positive association between spatial and temporal scales
(Wiens, 1989; Mayor et al., 2009) to different scales of habitat selection defined by John-
son (1980), we predicted that seasonal variation in habitat selection at the larger second
order of selection (home range composition vs. landscape composition) should match the
seasonal variation of habitat selection at the smaller third order of selection (composition
of selected sites vs. home range composition).

3) We expected a stronger trade-off between food resources and shelter at the larger
seasonal scale than on the smaller diurnal scale (Mysterud and Ims, 1998) as variations
in habitat characteristics at the larger range of the temporal scale should be more con-
straining to the animal. First, according to the the limiting factor avoidance hypothesis
(Rettie and Messier, 2000), if forage is the main limiting factor to roe deer, variation of
habitat selection on a seasonal scale should be influenced by the availability of forage.
Alternatively, if lynx predation is the primary limiting factor to roe deer, then variation
of habitat selection on a seasonal scale should be strongly influenced by habitats offering
the best protection against predation. Second, on a diurnal scale, we expected habitat
selection to be associated with cover in response to human disturbance during the day
(Herfindal et al., 2009; Bonnot et al., 2013). However, to reduce predation risk during the
night, roe deer should seek more open areas to better spot predators (Panzacchi et al.,
2010) or should more strongly select for human related habitats because lynx avoid the

presence of humans (Basille et al., 2009).

Material and methods

Study area

The study area is located in the Bavarian Forest National Park (BFNP), which lies in

south-eastern Germany along the border between the Czech Republic and Germany (cen-
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ter coordinates: 49°3'19”N,13°12'9"E, Supplementary material Appendix 1, Fig. Al).
The BFNP comprises a mixture of three major forest types structured along the elevation
gradient. Above 1,100 m a.s.]. (16% of the area) are sub-alpine forests composed of Nor-
way spruce (Picea abies) and mountain ash (Sorbus aucuparia). Hills between 600 m and
1,100 m a.s.l. are covered with mixed forests of Norway spruce, white fir (Abies alba),
European beech (Fagus sylvatica) and sycamore maple (Acer pseudoplatanus) making
up 68% of the area. In wet, cold valley bottoms (16% of the area), Norway spruce,
mountain ash (Sorbus aucuparia) and birch (Betula pubescens, Heurich et al., 2010)
dominate. Since the mid-1990s, the forests of the national park have been affected by a
massive spruce bark beetle (Ips typographus) outbreak. By 2011, bark beetle attacks had
resulted in the death of mature spruce stands over an area of about 6,000 ha (Lausch
et al., 2013).

Roe deer are distributed over the whole of the BFNP, occupying a 24,218 ha area.
Management of roe deer in the BFPN is limited to the wild ungulate management zone
(~ 29% of the study area), which prohibits hunting in a core area of 17,000 ha (Most
et al., 2015). The estimated roe deer population density was low during the study period,
ranging from 1-3 animals km~2. Red deer also occur in the BENP at an estimated

density of 1.56 animals km™2.

During our study, roe deer in the BFNP were subject
to predation by European lynx which had been reintroduced in the 1980s (W6lfl et al.,
2001). Between 2005 and 2012, of the 168 individuals monitored 30% were killed by lynx,
making up about 50% of the mortality recorded. An additional 7% were killed in road
accidents (Heurich et al., 2012b). At present, the lynx population is stable in the BENP
(Miiller et al., 2014), with an estimated density of between 0.4 to 0.9 lynx 100 km~2 in

the core area (Weingarth et al., 2012).

Roe deer geolocation data

We used wooden box traps to capture roe deer during the winter months (from October
to March) baited with pomace, maize or silage. Traps were set during the evening
and inspected the following morning. We handled the deer and attached GPS-collars
without using chemical tranquilisers (Weilnbock et al., 2012). GPS-GSM collars (series
3.000) from VECTRONIC Aerospace, Berlin (Germany) were used to record roe deer
locations using a variety of sampling regimes, ranging from every 3 min to every 12 h.
We removed the first 10 days of each survey period to exclude any effect of the capture
and handling process on the animals’ behaviour (Morellet et al., 2009). For the analysis

we excluded those animals whose fix success rate, defined as the number of successfully
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stored locations divided by the number of attempts (Frair et al., 2010), was below 90
percent.

We used a total of 172,507 fixes from 52 roe deer (26 males, 26 females) before thinning
ranging from 136 to 17,044 fixes per individual (mean: 3,317, sd: 2,897) over a period
from 14 to 2,081 days (mean: 484, sd: 397). The spatial accuracy of the fixes was 10 m

on average with a maximum recorded error of 16.3 m (Stache et al., 2012).

Habitat characterisation and resource classification

We used spectrozonal aerial images of the study area from 2008 (Heurich et al., 2012a)
to classify forest areas according to land-cover type (Belyaev et al., 2004). We classified
land cover into 11 habitat classes (Table 1.1). We refer to the Supplementary Material
Appendix 1 for a description of seasonal variation in the availability of forage and cover
in the different habitat types. We estimated vegetation cover from airborne LiDAR data
acquired using a Riegl 680i laser scanner (350 KHz, nominal point density 30-40 points
m~2 ; altitude 650 m recorded at a 0.32 m footprint). Under leaf-on conditions data
were acquired within three days in June 2012 from the entire national park area. LiDAR
measurement points were grouped into a 5x 5 m grids and for each grid cell, we calculated
inverse penetration ratios at a height of 2-60 m above ground. This penetration ratio
is an estimation of the fractional vegetation cover at this height (see Ewald et al.
2014b; Latifi et al., 2015, for more information). As we do not have a direct measure
of predation risk we use this cover variable as a proxy for predation risk. Cover was
found to be positively related to predation risk in other studies on lynx and roe deer
(Podgorski et al., 2008; Lone et al., 2014). From a roe deer perspective, the greater the
cover index, the higher is the predation risk. Lynx are solitary, stalking predators, and
rely on remaining undetected until they come within about 20 m of their prey to initiate
an attack. Attacks from larger distances are usually unsuccessful (Haglund, 1966).

We assessed the relative food quantity for each habitat type based on estimations of
herbaceous biomass using a vegetation model PhytoCalc (Heinrichs et al., 2010). Phy-
toCalc relates plant species biomass to its cover and shoot length values using species-
specific allometric equations. We measured cover and shoot length values from vegetation
surveys conducted in June, July and August in 2009 to 2011 on 282 plots scattered over
the national park. The sampling design and coverage estimation method are described
in Ewald et al. (2014a). Shoot lengths of 20 individuals were measured for all species
with coverage exceeding 1%. Because the PhytoCalc estimation is restricted to forest

ground vegetation, the biomass of the herbaceous layer from cultivated and unmanaged
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meadows was derived empirically by harvesting (4 x 1 m?), drying (60°C, 2 days) and
weighing samples from 31 plots. The R? of the linear regression between values estimated
by PhytoCalc and real biomass values is between 0.52 and 0.57 (Ewald et al., 2014a).
Because we had more than one value for each land-cover type, we chose the median value
to define the relative food quantity of each habitat (Table I.1). As a concentrate feeder,
food selection of roe deer should be driven more by the availability of high quality forage
rather than by the overall biomass (Lashley et al., 2015). However, total herbaceous
biomass being related to food quality (Said et al., 2005), we used biomass as an overall

proxy for the availability of forage plants that roe deer seek after.

Statistical analysis

We analysed the temporal variation in habitat selection of roe deer using three comple-
mentary approaches: i) by comparing the monthly home range composition of individual
roe deer to the available habitat at the landscape scale, ii) selection of habitat types
within monthly home ranges; and iii) selection of the resources cover and biomass. The
first and second analysis of habitat type selection provides information on temporal vari-
ation in the selection of habitat categories on the second and third order of Johnson’s
(1980) scale. We set out to illustrate that sites sharing the same environmental factors
(pooled as habitat types) are visited with varying frequencies throughout the day and
throughout the year. With the third analysis we tried to understand these time-related
patterns of habitat selection by considering the fine-scale spatial heterogeneity of the

landscape using continuous variables.

Modelling habitat selection

Resource selection functions (RSF, Manly et al., 2002) using logistic regression models to
estimate parameters of interest have been the most popular tool used to link spatial pat-
terns of animal locations to landscape characteristics (Duchesne et al., 2010; McLoughlin
et al., 2010). If each resource unit is classified into one of several categories, such as
habitat type, then habitat selection can be measured using selection ratios (SRs) that
are comparable between categories (ch. 4, Manly et al., 2002). The SR of a category is
proportional to its selection probability, on condition that the animal has access to all
available units of the habitat. We investigated the time variation in habitat selection
of roe deer at two spatial scales by modelling time-dependent SRs of 11 habitats using
multicategorical models. To ensure that there are no auto-correlations between succes-

sive steps, we investigated variograms (Fleming et al., 2014, details in the Supplementary
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material Appendix 2). We used the time interval where the variogram reached 90% of
the home range size as the minimum time interval between successive steps in the anal-
ysis of monthly habitat selection (Fleming et al., 2014). In our data this interval was
approximately 25 h. We included only those individuals with more than 70 recordings.

Our data set contained then n =15,267 locations of 17 females and 19 males.

Second order spatial scale

We compared habitat availability a; and use u; of habitats ¢ = 1,...,11 (Tab. 1) on the
landscape scale by computing monthly SR as w; = Z—Z (McLoughlin et al., 2007). Habitat
availability at the landscape scale was defined as the proportion of the different habitat
types in the area covered by the 90% utilization distribution kernel of all locations of all
roe deer (red bordered polygons in the supplementary material in Fig. Al). Habitat use
for a given deer was defined as the proportion of a habitat in its monthly 95% minimum
convex polygon home range for each individual and month (coloured polygons in the
supplementary material in Fig. Al). For details about the model selection process see

the supplementary material A3.

Third order spatial scale

Multicategorical logit models can be fitted using baseline-category logit models (Agresti,
2002). We set the habitat type with the highest prevalence as the baseline, which in
our case was the old mixed stand habitat type, found in 27% of all recorded locations.
Given the multinomial structure of the model, it provides for the probability of choosing
the baseline category K: mg(x;) = 1 — mi(xj) — ... — mx—1(x;). Probabilities m;(x;),
i =1,..., K —1 were estimated by fitting K — 1 binary logit models. The ith model
included observations from habitat ¢ and K only, where y; = 1 if an individual j was
observed in habitat i, and y; = 0 if it was observed in the reference habitat K. The
probability of occurrence was estimated via the logit link.

We accounted for the variation in availability of habitats among individuals and over
time as follows. First, we calculated the monthly 100% home range (minimum convex
polygon) for each individual. Home ranges of individuals presenting a biologically unre-
alistic size due to dispersal were discarded, using the 90% percentile as a cut-off value
(for females: 182 ha, males: 459 ha). Second, we used a rasterized landscape with grid
cell size of 10 x 10m? to obtain the relative availability of each habitat type within the
monthly home ranges. Last, we calculated the relative availability a” of habitat type 4,

i.e. the fraction of the area covered by habitat type 4, in the home range of each different
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animal 7 and for each time of the year (m, month). We accounted for the variation in

habitat availability in our multicategorical logit models by entering the logarithm of the
()
im
the animal j as an offset term (called “base rate” in Manly et al. (2002, ch. 7)). Animals

availability a’ of a land-cover type within the corresponding monthly home range of
were discarded from the analysis of a habitat if the habitat was not available in the home
range.

Variation in selection across individuals and years were accounted for by including
random effects on the intercept for individuals (Gillies et al., 2006) and years. Variation
in habitat selection on the daily and seasonal scales was tested by including a term for
either time of day (hour) or time of year (month), modelled by a cyclic smooth function
(Wood, 2006). We tested for the interaction of both temporal scales by including a
tensor product smooth function over time of day and time of year. Smooth functions
were calculated either with or without distinguishing between the sexes. The model
selection process was based on AUC and is described in the Supplementary material

Appendix 4.

Modelling resource selection

We used SSF to test whether the habitat properties of food and cover influence habitat
selection of roe deer. The actual locations chosen were compared stepwise with locations
that might have been chosen out of the direct surroundings of the last step. This al-
lows inferences regarding habitat selection on finer temporal and spatial scales (Thurfjell
et al., 2014). To ensure that there are no auto-correlations between successive steps,
variograms (Fleming et al., 2014) suggested using a time interval of at least four hours
between two successive steps for all individuals (see Supplementary material Appendix
2 for more information). We included only those individuals with more than 70 record-
ings. This data set consisted of 63,490 locations of 17 females and 20 males. According
to the SSF framework, 10 random locations were sampled for each location based on
parametric distributions for turning angle (uniform) and step lengths (exponential with
parameter A equals twice the sample mean of observed step lengths, here: for females
241.6 m, for males 355.2 m; see Supplementary material Appendix 9 for a comparison of
three different sampling designs in the SSF framework, Forester et al., 2009). Separate
models were fitted for diurnal and seasonal scales, respectively for each season: Winter
(December—-March), Summer (May-Sep), Spring/Autumn (Apr, Oct, Nov) and time of
day by photoperiod: night, day, twilight where the time of twilight was defined as the

time between first light and sunrise or sunset to last light (nautical twilight), respectively.
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Fig. 1.1 AUC values for models explaining the selection of 11 habitat types by 52 roe deer
(26 males, 26 females) in the Bavarian Forest National Park, Germany from 2002 to
2011. AUC-values are in ascending order of the sum of AUC-values (over habitats).
The greater the AUC value, the better the predictive accuracy of the model. Model
components integrated in the model are shown in the table at the bottom of the figure.
All models included the variable id (for individual) and year as random effects. The red
symbol indicates the model with the highest AUC-value for a habitat. Abbrevations:
rel.avail, relative availability of habitat type; s, smooth term, for hour and month (it is
a cyclic smooth function); te, cyclic tensor product smooth term; by, a replicate of the
smooth term, it is produced for each factor level of each sex.

We estimated the parameters of the SSF with mixed conditional logistic regression
models using the package TwoStepClogit (Craiu et al., 2012). We tested for variation
in the coefficients over time of day and time of year by including B-spline smoothing
functions (Wood, 2003). The number of basis functions (rank) for time over year and
time over day refers to the flexibility of the curve. The maximum number of the rank
was six because a higher rank would have demanded a higher resolution of GPS fixes in
time for all individuals. The model selection process is described in the Supplementary
material Appendix 5.

We performed all analyses in the statistical software R (R Core Team, 2015) using
the packages mgcv (Wood, 2006) for GAMMs, adehabitatLT for home range calculations
(Calenge, 2006), Hab package (Basille, 2014) for random point generation and maptools
(Bivand and Lewin-Koh, 2013) for determining the time of day relative to sunrise and

sunset.
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Fig. 1.2 Habitat selection on 2nd order (landscape scale): Estimated selection ratios from gener-
alized additive mixed model for 17 female (top panel) and 19 male (bottom) roe deer in
the Bavarian Forest National Park, Germany recorded from 2002 to 2011; shaded areas
indicate 95% pointwise confidence intervals. Boxplots show variation of the proportions
of habitats in the home ranges over the time of year.

Results

Seasonal Second Order Habitat Selection (Landscape Scale)

The mean monthly home range size was 70.4 ha (sd: 41.5 ha) for females and 152.8 ha (sd:
101.7 ha) for males. Habitat composition within monthly home ranges differed markedly
from that of the study area for most of the eleven habitat types (Supplementary material
Appendix 3, Figs. A2, A3). We found a significant seasonal variation in the selection
ratios for almost all of the habitat types with the exception of cultivated meadows for
females and old mixed stands for males, with different patterns for males and females
(Figs. 1.2, A2, A3).

While males highly selected old mixed stands constantly throughout the year, females
showing in general a higher selection in winter and a lower selection in summer (Fig.
[.2). Selection of young stands and unmanaged meadows were higher in summer than in
winter, for both males and females. Higher selection in summer than in winter was also
found for medium mixed, bark beetle area, medium and old deciduous stands. A higher
selection in winter was found for medium deciduous, anthropogenic area, clearcuts (only

for females), cultivated meadows, and all old stands.
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Fig. 1.3 Habitat selection on 3rd order (within home range): Variation of the selection coefficient
over time of year (x-axis) and day (y-axis) for 17 female (top panel) and 19 male
(bottom) roe deer in the Bavarian Forest National Park, Germany recorded from 2002
to 2011. Horizontal lines show the times of sunrise and sunset.

Third Order Habitat Selection - Interaction between the Seasonal and
Diurnal Scales

Habitat selection by roe deer of both sexes showed marked time-variation for all habitat
types, and diurnal and seasonal temporal scales interacted with each other (Fig. 1.3,
Supplementary material Appendix 7, Figs. A4, A5 ). The main pattern was that habitat
selection varied more strongly at the seasonal scale, and models that included seasonal
variation had a higher predictive accuracy than those without, for almost all habitats
except from anthropogenic area and medium mixed (e.g., AUC=0.77 for clearcuts with
variation over day; AUC=0.82 with variation over year). When variation over both
temporal scales was considered, the predictive accuracy increased to a mean of 0.809
(M5, Fig.I.1, min: 0.7 for old deciduous, max: 0.92 for bark beetle area). Including sex
as a predictor increased the predictive accuracy for all habitats (M6, mean: 0.814) but
young stands, unmanaged meadows and clearcuts.

Overall, the diurnal pattern in habitat selection was consistent throughout the year for
most habitat types (e.g., cultivated meadows: highly selected during the night and rarely
selected during the day), the magnitude of the selection simply varying by the time of
year (e.g., cultivated meadows: high in summer and low in winter). The variation in
the magnitude of selection over the course of the year resulted in a seasonal alternation
between high and low selection of most habitats (Fig. 1.3) The interaction between

diurnal and seasonal variations of habitat selection is clearly driven by variations in day
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length (Fig. 1.3).

The observed temporal variation in selection coefficients was the largest for habitat
types closely associated to food resources such as meadows and anthropogenic area. For
cultivated meadows for instance, selection coefficient showed the largest variation at the
diurnal (sd: 1.4) and seasonal scale (sd: 0.8) in comparison to bark beetle areas (sd over
diurnal scale: 0.7 vs. sd over seasonal scale: 0.56), medium aged mixed stands (0.4 vs.
0.16) or anthropogenic (0.8 vs. 0.005). Other habitat types showed a higher variation
over the seasonal scale than over the diurnal scale: unmanaged meadows (sd over diurnal
scale: 0.36 vs. sd over old deciduous (0.0001 vs. 0.23), old coniferous (0.08 vs. 0.14) and
medium aged deciduous (0.00008 vs. 0.11).

Seasonal Variation of Second and Third Order Habitat Selection

As expected from the hypothesis of positive association between spatial and temporal
scales (Wiens, 1989; Mayor et al., 2009) we found a strong positive relation between the
seasonal patterns of the selection on second order and third order scales for most habitats
(eight of eleven, Tab. 1.2). In regards the comparison between the two spatial scales we
calculated the correlation of the SR over the seasonal scale. For the smaller third order
scale we averaged the values over the diurnal scale to correlate the mean selection values
per month with the monthly SR of the second order scale. This was done for males
and females separately. For most habitats the correlation was very high (Tab. 1.2) for
both sexes. Exceptions are found for cultivated meadows and medium deciduous stands.
Only for males, was the positive correlation for old deciduous and coniferous stands and

medium aged stands not significant.

Trade-off between Food Resources and Cover

Variation in selection for cover and biomass varied markedly diurnally and seasonally
(Fig. 1.4). At both temporal scales, time-variation in resource selection improved the
model prediction compared to a model with a constant resource selection over time (Tabs.
.3, 1.4) except for winter. For male roe deer in all cases the interaction between fractional
cover and biomass explained the highest degree of variation in site selection. However,
for females including biomass as a predictor did not improve model prediction and only
in winter did biomass influence site selection by females without any detectable temporal
variation over time of day.

We expected a trade-off between forage and shelter and, indeed, detected a negative
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Fig. 1.4 Variation in the selection coefficient for cover (left) and biomass (right) over time of day
(top panel) and year (bottom panel) for 26 male (blue lines) and 26 female (red lines) roe
deer recorded from 2002 to 2011 in the Bavarian Forest National Park, Germany over
summer time (dashed line), spring/autumn (solid) and winter (dotted), respectively,
during the daytime (dashed line), twilight (solid) and nighttime (dotted), based on step
selection functions. Shaded areas indicate the 95% pointwise confidence limits.

relationship in time between selection for cover and for biomass on both, seasonal and
diurnal scales. The temporal correlation between selection for cover and biomass was
moderately negative at the seasonal scale (—0.58, —0.57 and —0.67 for day, twilight and
night respectively). At the diurnal scale, correlation coefficients were highly negative in
summer (—0.88), moderately high in spring/autumn (—0.6) and low for winter (—0.43).
In contrast, the landscape fractional cover and biomass were moderately negatively cor-
related (r = —0.58).

Cover accounted for slightly more variation in resource selection by roe deer at both
temporal scales (maximum predictive accuracy on the seasonal scale R? = 7.2 %, on
the diurnal scale: R? = 8.8% ) than did biomass (maximum on the seasonal scale R? =
6.9%, and on the diurnal scale: R? = 6.98%). The explained variance in site selection

due to cover and food varied between seasons and the day but was relatively low. At the
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seasonal scale the highest predictive accuracy was found for night (males: 7.5, females:
6.6) and lowest for day (males: 3.5, females: 4.4). On the diurnal scale highest predictive
accuracy was obtained in summer for females (8.8). For males summer was the season
with the lowest R? (3.8); highest were found in winter (6.6), when models for females
obtained the lowest predictive accuracy (3.5).

Roe deer showed a high selection of open sites during the nightime (selection coefficient
(SC) for cover in summer at night: for males -2.24 (£0.49 (SE)), for females -3.87 (£0.52).
During the day cover seemed to influence site selection to a lower extent, as SC are closer
to 0, in particular in spring/autumn. For summer the SC is closer to 0 during dawn (e.g.,
for males -0.81 (£0.33)) than during noon ( -1.89 (£0.46)) and dusk ( -1.45 (£0.48)). In
winter habitats providing cover were more strongly selected by females throughout the
day (SC= 1.29 (+0.28)). For males the selection of cover was even higher during day
(SC= 1.74 (£0.38)) than during night (SC= 0.51 (£0.39)). Only male roe deer showed
a higher selection of biomass rich sites during summer (SC at night 1.14 (£0.61)) and
twilight 0.81 (£0.64)) and a higher selection of low forage sites during winter for all times
of day (SC: -0.73 (£0.55)). During day male roe deer selected sites with low biomass
(almost constant SC: -0.68 (£0.42)).

Discussion

As a prey species, we expected roe deer behaviour to be largely responsive to predation,
but with regards to habitat selection, we found support of a rather predominant role of
forage availability over lynx predation risk. First, the large-scale temporal variation in
habitat selection by roe deer seems primarily governed by food resources, and to a much
lower extent by predator avoidance or human disturbance. Second, the trade-off between
selection of habitat for forage and protection against predation is weak, and of similar
magnitude than the one observed at the landscape level. Hence, the landscape of fear
might not systematically apply to all predator-prey systems, depending for instance on

the predator’s hunting tactic and density.

Forage, the Main Driver of Habitat Selection

Because of its direct effect on mortality and the indirect induced sub-optimal use of
habitats, predation is generally regarded as the main factor limiting the fitness of large
herbivores (Lima and Dill, 1990). Rettie and Messier (2000) argued that limiting factors

greatly affecting the species’ fitness should be avoided at coarser spatial and temporal
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scale. Consequently, we expected roe deer to avoid predation by lynx by selecting habitats
offering the most effective shelter at coarse temporal scales (Rettie and Messier, 2000).
Seasonal habitat selection pattern by roe deer however matches with temporal variation
in food resources over time at both spatial scales of habitat selection (Figs. 1.2, 1.3).
For instance, undergrowth in young stands provides cover and optimal foraging for roe
deer with, e.g. mountain ash and herbaceous vegetation, and is selected in summer. In
contrast, the risk of predation by lynx being on average lower in winter than in summer
in the BENP (Belotti et al., 2013), one could expect roe deer to select habitat offering
shelter against predation in summer. We report the opposite pattern. Roe deer highly
selected habitats with a high risk of predation (e.g. unmanaged meadows, clearcuts,
Tab. 1.1) at both the second and third scale of selection (Johnson, 1980). Finally, during
winter sites providing cover were sought after when woody plants also form an important
food resource for roe deer at a time when availability of herbaceous plants is low because
of snow cover (Barancekova et al., 2010). Moreover, the presence of artificial feeding
sites could drive roe deer in forested areas at BFNP in winter, in addition to thermal
shelter and reduced movement costs linked to thick snow layer (Ewald et al., 2014b).
Consequently, at every time of the year roe deer strongly selected habitats based on
forage availability. Overall, these results suggest that food, and not predation, is the
main limiting factor for roe deer in the BFNP.

That forage availability drives most of the seasonal variation in habitat selection be-
haviour by roe deer agrees with the specific energy allocation tactic of this species. Roe
deer are concentrate feeders preferring energy-rich foods (Tixier and Duncan, 1996), with
a rapid process of digestion (Hofmann, 1989) requiring frequent and regular food intakes,
which cannot be delayed for extended periods of time. In addition, female roe deer being
income breeders (Jonsson, 1997) the availability of food resources at the time of partu-
rition is the main driver of their reproductive success (Andersen et al., 2000; Pettorelli
et al., 2005). Males are also actively engaged in an energy demanding territory defense
from April to September, with an activity peak in August (Johannsson, 1996; Melis
et al., 2005). Tracking vegetation flush in spring and selecting habitats offering highly
digestible food is therefore of prime importance to roe deer of both sexes, and failing
to do so would likely lead to a reduction in reproductive success. Contrary, because of
their ability to use stored energy to raise their young, species like red deer or caribou
(Rangifer tarandus) with a capital breeding tactic of resource allocation to reproduction
may be less risk prone in terms of habitat selection than income breeders during breeding.
Consequently, capital breeders may show a stronger avoidance of predation than income
breeders (e.g. Hebblewhite and Merrill, 2009, on elk).
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The overwhelming importance of forage over predation for roe deer is also reflected
by the trade-off between selection for forage and cover. Previous works on roe deer
suggested that habitats are selected either for maximizing food intake (Mysterud et al.,
1999b; Pellerin et al., 2010) or for reducing predation risk (Linnell et al., 2004; Bongi et al.,
2008; Panzacchi et al., 2010). In BFNP, the temporal variation in selection coefficients
for cover and for forage are apparently negatively correlated and similar at both temporal
scales for males (Fig. 1.4). By selecting habitats for forage in summer, male roe deer
also avoid densely covered habitats and may find themselves at lower risk of predation
because lynx hunt for their prey in covered areas with low visibility (Podgorski et al.,
2008; Valeix et al., 2009; Lone et al., 2014). For females, no significant relationship
between selection for food and cover did occur that we interpreted as resulting from a
more risk adverse habitat selection behaviour than for males because females use safer
habitats close to human settlements, as regularly reported among large herbivores with
highly vulnerable offspring to predation (Main and Coblentz, 1996). Although the trade-
off between foraging and protection from predators is supposed to be inherent to habitat
selection by prey species such as large herbivores (Houston et al., 1993; Brown and
Kotler, 2004; Hebblewhite and Merrill, 2009; Mabille et al., 2012), the apparent negative
association between selection for food and cover we found for roe deer could simply
result from the habitat structure rather than from a behavioural trade-off. In fact, the
temporal correlation between selection coefficients for forage and for cover is of similar
magnitude than the correlation between the two variables in the landscape in the BENP,
where locations providing abundant food resources also have generally lower cover values
(r = —0.56). However, because we did not account for seasonal variation in forage and

cover supply the negative association was probably less pronounced in winter.

Predictability and Variability of Environmental Factors

Prey species are assumed to live in a landscape of fear in which animals permanently
adjust their spatial behaviour to the perceived predation risk (Laundré et al., 2010). How-
ever, empirical evidence suggests that this response is hierarchical and context-dependent
(Hebblewhite et al., 2005), and not systematically observed at large spatio-temporal
scales of habitat selection. For instance, caribou (Rangifer tarandus) living under wolf
(Canis lupus) predation in Western America select habitats at large spatial scales more
in relation to food than to predation risk (Avgar et al., 2015). Similarly elk in the
Yellowstone NP did not show wolves avoidance in winter (Mao et al., 2005) and were

suggested to rely on alternative anti-predator strategies such as higher vigilance. Roe
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deer in the BFNP also showed small scales behavioural responses by increasing vigilance
when confronted with pulses of high predation risk (Eccard et al., 2015). At large spa-
tial and temporal scales roe deer select habitats providing high quality forage over those
decreasing predation risk (see Samelius et al., 2013). Predation represents the highest
cause of mortality in roe deer of the BFNP (Heurich et al., 20125), but depending on the
environmental context, especially the predator’s hunting strategy and density, predation
might not be perceived by large herbivores as the most limiting factor. Lynx are solitary
stalking and ambushing predators (Belotti et al., 2013). From a prey point of view, lynx
attacks are difficult to predict in time and space. Lynx is an elusive and highly efficient
predator whereby 70% of lynx attacks are successful (Haglund, 1966). In comparison, in
only 5-22% of wolf attacks the roe deer were killed (Wikenros et al., 2009). In combi-
nation with the low lynx density (Weingarth et al., 2012), the highly efficient predation
by lynx might leave few opportunities for its prey to learn where the riskiest areas are
located. In comparison, in a predator-prey system in Montana, USA, where mule deer
(Odocoileus hemionus) and elk (Cervus elaphus) are preyed by wolves and cougars (Puma
concolor), both prey species selected their habitat (3rd order) to limit enccounters with
wolves, a typical coursing predator (Atwood et al., 2007). However, habitats with high
risk of predation by cougar as an ambush predator where highly visited by mule deer.
Elks even shifted towards those risky habitats to avoid wolf predation. In a predator-
prey system involving a single cryptic predator such as lynx or cougar, prey may show
limited large-scale anti-predator habitat selection. More generally, predation is likely an
immediate stimuli for large herbivores, that occurs on an encounter-by-encounter basis,
generating rather small spatio-temporal scales behavioural response (Creel and Winnie,
2005; van Beest and Milner, 2013; Basille et al., 2015). Alternatively, given the high se-
lectivity of roe deer diet, the indirect long-term fitness costs of predation induced by the
use of sub-optimal habitats might outweigh its direct costs because of its low probability
of occurrence (Creel and Christianson, 2009).

Following Rettie and Messier’s (2000) hypothesis, our results could suggest that human
disturbance is a more limiting factor to roe deer than predation in the BEFNP. During the
day, roe deer indeed select habitat types that provide cover. Hiding behaviour usually
occurs in places frequently visited by humans, and in open areas where they can be
disturbed, and roe deer seek refuge in closed habitats during the day (Fig. 1.4, Herbold,
1995). The use of human related habitats (settlements, roads, cultivated meadows) by
roe deer varies more strongly over time of day than over seasons in the BFNP (Fig.
[.2, Supplementary material Appendix 7, Figs. A4-A7) likely to avoid encounters with

humans (Benhaiem et al., 2008; Shannon et al., 2014) despite hunting only occurs in
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autumn and winter and despite most roe deer are not hunted within the BFNP. Habitat
selection at the different scales of selection may hence be the consequence of the temporal
variation and predictability of the limiting factors for an individual as much as it is
associated with fitness (Rettie and Messier, 2000). For instance, in the BENP human
disturbance is certainly more predictable than is predation by lynx, and hence a better
predictor for habitat use of roe deer. Similarly, in the BFNP forage quantity varied
seasonally more than predation risk, and roe deer habitat selection showed stronger
seasonal than diurnal variation (Fig. 1.4). Accounting for the spatio-temporal variability
of limiting factors in the framework of Rettie and Messier’s (2000) hypothesis might help
at understanding why this hypothesis is only partially supported so far.

Convergence of Processes at Large Spatial and Temporal Scales

In most ecological processes, a positive association is expected between spatial and tem-
poral scales (Wiens, 1989; Mayor et al., 2009) because seasonal phenomenons like plant
phenology should have stronger effects on the larger scales of habitat selection than on
the fine-scale ones. Movement ability of the animals should drive the association between
spatial and temporal scales of habitat selection (Mayor et al., 2009). Although partial
migration is reported in some areas, roe deer is mostly philopatric and has restricted
movements for a medium-sized mammal (Cagnacci et al., 2016). Home range should
hence stay on the same location and should have little changes in composition in time.
At the BFNP, we nevertheless found that the small monthly variation in home range
composition of roe deer leads to a marked seasonal pattern at the 2nd order of habitat
selection (Fig. 1.2), similar to wider-ranging species like wapiti or caribou (Boyce et al.,
2003; Rettie and Messier, 2000). In addition, the seasonal variation in habitat selection
was strongly and positively correlated at the 2nd and 3rd order scales, but for cultivated
meadows and medium deciduous forests (Table 1.2). Given the restricted ranging be-
haviour of roe deer, large scale movements are small and may confound with movements
at smaller spatio-temporal scales. For resident roe deer, we might describe the same
behavioural decision rules in space use for home range relocation and for habitat patch
choices. At the seasonal time scale, roe deer seem to choose home range composition
and feeding sites in response to the same environmental drivers for most habitat types.
In summer for instance, young stands provides both cover and high quality forage to roe
deer and makes a larger proportion of both the surface area of the home range and time
spent in the different habitats than during winter (Figs. 1.2 and 1.3). The choice of using

young stands is therefore governed by broad-scale decisions in response to the relatively
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slow variation in food resources availability over the year. Conversely, the selection of
cultivated meadows is strongly diurnal in response to short-term variation in risk of hu-
man disturbance risks, which completely breaks its connection with the seasonal-scale
decisions (Table 1.2). The relationship between long temporal and broad-spatial scales
likely depends of habitat types and associated resources selected by animals. Our study
suggests that this association could be species-specific and determined by its ranging be-
haviour and ability. We therefore predict much more pronounced differences in habitat
selection patterns between temporal and spatial scales or between 2nd and 3rd order
scales of habitat selection for species like elk or caribou with larger movements and a

much less restricted annual home range than roe deer.

This study is part of a project on the predator-prey relationships of the Eurasian lynx, roe deer and red deer carried out by
the Bavarian Forest National Park Administration, Department of Research and Documentation. Financial support was provided
by the EU programme INTERREG IV (EFRE Ziel 3), and the Bavarian Forest National Park Administration. CD was supported
by the Scholarhip Programme of the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt). We thank
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Tab. I.1 Overview of availability of habitat types in the study area and availability within the
home ranges; the latter is the median for all individuals in order of decreasing selection.
The values for cover are the means (and standard deviations) of the fractional cover
above 2 m over the study area derived from high resolution airborne Laser-scanning
(LiDAR, Light detection and ranging) in summer. Biomass is the average value of
dried biomass within 1 m? of a habitat type. Predation risk is based on a preliminary
study, with ++ being very high risk, + high risk, 0 medium risk, and — low risk.

Habitat Avail. Avail. Cover Biomass Predation
in in (gm™=3) risk

study home

area ranges
Young stands 0.0203  0.0084 0.36 (0.27) 54 (-) +
Unmanaged 0.0203  0.0154  0.31 (0.26) 349 (41) o+
meadows

Medium aged 0.0146  0.0057  0.66 (0.36) 89 (114) 0
deciduous

Clearcuts 0.0459  0.0263 025 (0.24) 29 (57) o+
Bark beetle area 0.1108  0.0041  0.31 (0.24) 10 (53)

Medium aged mixed 0.0747  0.0467  0.67 (0.33) 85 (80)
Cultivated meadows 0.0511  0.0701  0.16 (0.2) 299 (91) -
Old deciduous 0.1838  0.2065 0.77 (0.31) 45 (79) -
Old coniferous 0.2204 0.204  0.63 (0.35) 24 (58) -
Anthropogenic 0.0273  0.0237  0.36 (0.33) 300 (-) —
Old mixed 0.2309  0.3891  0.73 (0.34) 54 (75) -
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Tab. 1.2 Correlation between the variation of 2nd and variation of 3rd order selection of habitats
over the seasonal scale. 3rd order selection was averaged over time of day; which is the
mean within home range selection per month.

females males

Bark beetle area 0.894 0.831
Unmanaged meadows 0.811  0.855
Cultivated meadows  -0.800 -0.880
Clearcuts  -0.355  0.428

Young stands 0.930 0.956

0Ol1d mixed 0.891  0.856

Old deciduous 0.923 -0.084
Medium mixed 0.883 -0.782
Medium deciduous  -0.313 -0.365
Anthropogenic 0.749  0.691

Old coniferous 0.611 -0.353
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Tab. 1.3 Mean R? (in percent) for models explaining the effect of cover and biomass on variation
in site selection (deviation from random choice) over time of day. The higher the R?,
the more accurate the prediction of a new data set (using 5-fold cross-validation). nk
refers to the number of basis functions used to build the spline, which equals the number
of parameters estimated for each variable. For each season (summer, spring/autumn,
winter) three models were estimated, including either cover, biomass, or both as ex-
planatory variables for site selection. Different flexibilities (nk) of the spline modelled
the variation in the coefficient over time of day. In the linear case there was no varia-
tion and a constant selection of cover or biomass over years was assumed, respectively
. Null deviation is based on a model where each proposed location in one step was
assigned the same probability. Bold values refer to the highest value of R?.

Sex Season Variables const nk=3 nk=4 nk=5 nk=6
males Summer cover+biomass 2.87 291 351 3.63 3.78
cover 3.05 297 331 335 3.1

biomass 1.99 207 265 279 292

Spr/Aut cover+biomass 3.65 3.73 3.93 4.00 4.06

cover 3.71 376 393 398 398

biomass 346 349 366 3.70 381

Winter  cover+biomass 6.56 6.53 6.61 6.58  6.60

cover 6.46 646 6.51 6.48  6.50

biomass 6.21 620 6.22 620 6.22

females Summer cover+biomass 7.70 7.84 839 846  8.54
cover 829 826 872 875 8.85

biomass 6.23 640 681 692 6.96

Spr/Aut cover+biomass 3.10 3.32 336 348  3.55

cover 338 344 353 339 3.61

biomass 267 290 293 3.01 3.08

Winter  cover+biomass 3.48 332 341 335 3.34

cover 340 327 334 328 3.27

biomass 3.07  3.02 3.07 3.03 3.02
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Tab. 1.4 Mean R? (in percent) for models explaining the effect of cover and biomass on variation
in site selection (deviation from random choice) over time of year. The higher the
R?, the more accurate the prediction of a new data set (using 5-fold cross-validation).
nk refers to the number of basis functions used to build the spline, which equals the
number of parameters estimated for each variable. For each time of day (day, twilight,
night) three models were estimated including either cover, biomass, or both as explana-
tory variables for site selection. Different flexibilities (nk) of the spline modelled the
variation in the coefficient over time of year. In the linear case there was no variation,
and a constant selection of cover or biomass, over year was assumed, respectively. Null
deviation is based on a model where each proposed location in one step was assigned
the same probability. Bold values refer to the highest value of R2.

Sex Daytime Variables const nk=3 nk=4 nk=5 nk=6

males day cover+biomass 2.724 3.071 3.563 3.556 3.577
cover 2,622 2972 3.464 3.454  3.448
biomass 2726 2.830 2955 2.958 2.958

twilight  cover+biomass 2.204 2.540 4.043 4.218 4.213
cover 2217 2473 3.927  3.931 3.933
biomass 2.044 2215 3.195 3.300 3.325
night cover+biomass 5.650 6.0569 7.531 7.523 7.583

cover 5.711 6.037 7.300 7.285  7.239
biomass 5.604 5.889 6.953 6.978 6.979
females day cover+biomass 3.499 3.662 4.310 4.282 4.388
cover 3.495 3.659 4.393 4394 4.415
biomass 3.424 3478 3.7142 3754 3.739

twilight  cover+biomass 2.493 2.938 4.904 4.768 4.729
cover 2781 3.137 4957 4.899 4.975
biomass 2,131 2477 3511 3408  3.418

night cover+biomass 4.019 4439 6.292 6.287 6.334
cover 4422 4709 6.653 6.592 6.648
biomass 3.854 4.239 5283 5.231 5.293
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Supplementary material

Appendix 1: Study area

GER

Bavarian CZ

Forest .
Nationalpark

Fig. A1 The Bavarian Forest National Park (yellow) is situated in south-east Germany. Polygons show the monthly home ranges of the
52 adult roe deer (26 males, 26 females) used in this study, and each colour represents one individual. Monthly home ranges were used to
caluclate the monthly availabilities of habitats. Availability on the larger scale was defined as the proportion of each habitat type within the
red-bordered area.

Seasonal variation of forage availability and quality is strongly related to the vegetation period: in spring, biomass
is dominated by high quality forage (Marell et al. 2009) while later in the growing season a large quantity of biomass
guarantees availability of palatable plants. In deciduous and mixed forests, ground plant growth can be massively
suppressed after foliation. In autumn high-energy beechnuts are abundant (Olesen and Madsen 2008). During winter,
only few palatable plants (e.g., Rubus spp., tree regeneration) are available. Vegetation cover and its impact on
predation risk changes with season. In forest habitats, leaves of tree regeneration offer cover from spring to autumn,
while on unmanaged meadows, dense and well-developed ground vegetation of late-spring and summer maximize

cover.
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Appendix 2: Handling autocorrelation

The two analyses, i.e. monthly habitat selection and resource step selection, make different assumptions about the
time scale over which successive locations are (conditionally) independent. Variograms can be used both to illustrate
the two time scales and to identify the corresponding time scales for a given data set (Fleming et al. 2014). For the
monthly habitat selection, it was assumed that successive locations are independent at the scale of the home range,
i.e. that the animal might have crossed the home range between successive steps. In the variogram, this condition is
found at the time interval between successive steps where the squared displacement distance (approximately) levels
off. Step selection functions make less strict assumptions; they simply assume that successive steps are conditionally
independent, in particular, that the speed of successive steps is uncorrelated. In the variogram, this condition is found
at the time interval where the variogram starts to become linear after an initial concave phase. Variograms were
displayed using the package ctmm (Fleming and Calabrese 2015). We visually inspected the short lag behaviour and

long range behaviour of each individual.
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Appendix 3: Large-scale analysis

We compared the availability and the use of habitat types based on the methodology used by McLoughlin et al.
(2007), computing selection coefficients. Habitat availability at the landscape scale was defined as the proportion of
the different habitat types in the area covered by the 90% utilization distribution kernel of all locations of all roe
deer (red bordered polygons in Fig. Al). This area defines the composition of habitats in the immediate surrounding
of the most frequented places by recorded roe deer. Habitat use for a given deer was defined as the proportion of a
habitat in its monthly 95% minimum convex polygon home range for each individual and month (coloured polygons
in Fig. A1). Here we aimed to define the area that is theoretically available to the animal, yet it includes areas that are
not used. Monthly selection indices for home ranges were then calculated as: w; = % where u; is the proportion of
habitat 7 in the home range of an individual and a; the proportional availability in the surrounding of all individuals.
W,
Y
i is selected by an individual given that all habitat types are equally available to the individual (McLoughlin et al.

The selection indices were standardized to B; =

iv,-' So that B; can be interpreted as the probability that habitat
2007). The analyses was conducted separately for females and males. Results are shown in Figs. A2 & A3. For 11
habitat types a random selection (no preference) would mean B; = 1/11 = 0.09. Variation of the proportions over the
seasonal scale was modelled by a generalized additive mixed model with a individual-specific random effect and a

beta distribution with a logit link (Wood 2006).
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Fig. A2 Variation of the probability that a habitat is selected by the individual over the seasonal scale for females at the second order scale
of selection (sensu Johnson 1980), i.e. by comapring the home-range composition with the composition of the landscape. Boxplots show
the calculated selection probabilities for all individuals. The graph was modelled by a generalized additive model and show the predicted
mean and the 95 percent confidence interval. Horizontal dotted line at 0.09 (1/11) refer to a selection that would indicate random choice.
edf are the estimated degrees of freedom of the smoother. The p-value refers to the significance of the smoother.
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Fig. A3 Variation of the probability that a habitat is selected by the individual over the seasonal scale for males at the second order scale
of selection (sensu Johnson 1980), i.e. by comapring the home-range composition with the composition of the landscape. Boxplots show
the calculated selection probabilities for all individuals. The graph was modelled by a generalized additive model and show the predicted
mean and the 95 percent confidence interval. Horizontal dotted line at 0.09 (1/11) refer to a selection that would indicate random choice.
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Appendix 4: Model selection process for multicategory models

In total, we fitted 6 different models for each habitat type (Fig. 1). To account for the problem of overfitting, we
measured the prediction accuracy of all the models by applying a cross-validation. Model predictive accuracy was
obtained for each habitat separately. To apply cross-validation we split the data into five subgroups, ensuring that:
(i) the data for each individual was evenly spread over all 10 groups; and (i7) within the groups, the data for all
times of the year and day were available. In each of the five runs, four of the subgroups were used to estimate
model coefficients which were applied to predict the outcome of the remaining 5th group. Because the prediction is
a probability and the observed variable is binary, a receiver operating characteristic (ROC) curve was used for model
selection (Pearce and Ferrier 2000, Agresti 2002, Boyce et al. 2002). The values of the area under the curve (AUC)
were calculated and averaged over the five runs. For the calculation of the ROC curves and AUC values we used the
package ROCR (Sing et al. 2005). The higher the AUC value, the higher the predictive accuracy of a model (Pearce
and Ferrier 2000). Predictive accuracy refers to the selection choice between a habitat and the reference type, which
in our case is the old mixed stands. That means that the more strongly the use of a habitat type differs compared to

the use of the reference type, with respect to the model variables, the better is the predictive accuracy.
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Appendix 5: Model selection process for SSF

The software we used does not provide any goodness of fit or model selection criteria for mixed conditional logistic
regression models. Therefore, the most parsimonious model was found by applying 5-fold cross-validation (Boyce
et al. 2002). Here, we used only 5-fold, to ensure that each fold contained sufficient data to calculate selection over
both time scales. Given a model M, we first estimated the coefficient of a subset (4/5) of the whole data set. We
did not include any random effects because individuals were not evenly spread over the folds. Given the estimated
coefficients, probabilities for all locations for each step were calculated for the 1/5 subset remaining. The residuals
on the response scale r(M;) for the k-fold were then calculated. Residuals were then compared with the residuals
of the Null Model MOy, where each position had the probability of 1/(number of available locations in step i). We
calculated R? = 1 — ¥ r(My)/ L. r(MOy).

83



Appendix 6: Temporal variation of habitat selection

Animation: Animation shows selection probability for all habitat types over time of day running over time of year
estimated for 26 male (left) and 26 female(right) roe deer in the Bavarian Forest National Park, Germany recorded
from 2002 to 2011. Estimates were based on the average availability over all animals (males and females sepa-

rately), shown at the rear of the plots.
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Appendix 7: Estimated selection coefficients

Selection coefficients are estimated for each habitat type at the third order scale of selection, for different times of
day (Oh, 4h, 8h, 12h, 16h, 20h), for different months (January, April, July, October) separated for females (f) and

males (m) based on cyclic gammes.

January Oh 4h 8h 12h 16h 20h
f m f m f m f m f m f m
Old mixed 030 025 027 0.13 0.31 0.12 035 024 039 040 039 041
Bark beetle area -1.08 -1.57 -0.59 -095 -0.34 0.31 0.32 0.58 -041 -036 -1.75 -1.34
Unmanaged meadows -0.55 -0.28 -0.84 -0.60 -1.61 -094 -1.69 -098 -1.16 -0.64 -0.73 -0.28
Cultivated meadows ~ 0.17 -024 027 022 -140 -092 -322 -254 -269 -226 -0.70 -0.82
Clearcuts -0.59 -0.78 -0.59 -0.70 -0.59 -0.67 -0.59 -0.74 -0.59 -0.84 -0.59 -0.85
Young stands -1.29 -1.12 -1.09 -091 -0.79 -046 -0.63 -032 -0.81 -0.66 -1.17 -1.06
Old deciduous -0.19 -0.15 -0.19 -0.15 -0.24 -0.15 -0.27 -0.15 -026 -0.15 -022 -0.15
Old coniferous -0.28 0.07 -0.19 027 0.13 044 0.31 037 0.12 0.13 -0.19 -0.01
Medium mixed -0.76 -0.39 -0.76 -0.29 -0.37 024 0.06 051 -0.17 0.17 -0.73 -0.28
Medium deciduous -0.03 -0.02 -0.30 -0.02 -0.52 -0.02 -0.56 -0.02 -0.37 -0.02 -0.08 -0.02
Anthropogenic  0.56  0.58 1.06 1.11 0.08 045 -071 -0.60 -0.76 -1.03 -035 -0.46

Table A1 Estimated selection coefficients for January for different times of day for females (f) and males (m).

April Oh 4h 8h 12h 16h 20h
f m f m f m f m f m f m
Old mixed 0.12 0.07 0.14 0.17 0.21 033 023 040 023 033 0.19 0.16
Bark beetle area -1.75 -1.41 -1.80 -1.20 -0.59 -0.01 099 0.82 1.00 047 -0.61 -0.63
Unmanaged meadows  0.85 0.67 038 0.15 -060 -0.58 -1.03 -0.78 -0.53 -036 038 0.32
Cultivated meadows 0.53 1.01 -0.22 038 -1.31 -1.52 -226 -2.78 -1.77 -2.04 -0.09 -0.05
Clearcuts -043 -0.13 -043 -0.12 -043 -0.18 -043 -0.25 -043 -026 -043 -0.20
Young stands -0.77 -0.28 -0.65 -048 -0.36 -0.31 -0.17 -0.17 -0.28 -0.11 -0.60 -0.08
Old deciduous -0.13 -0.15 -0.10 -0.15 -0.11 -0.15 -0.13 -0.15 -0.15 -0.15 -0.14 -0.15
Old coniferous -0.18 -0.24 -0.10 -0.29 0.18 -028 033 -0.21 0.15 -0.14 -0.12 -0.14
Medium mixed -0.84 -048 -0.78 -0.56 -0.06 -0.24 0.67 0.08 0.41 0.07 -0.51 -0.20
Medium deciduous 048 -0.10 0.16 -0.10 -0.13 -0.10 -0.16 -0.10 0.13 -0.10 047 -0.10
Anthropogenic  0.75 0.58  0.80 1.12 -026 046 -0.84 -0.59 -0.61 -1.03 -0.00 -0.46

Table A2 Estimated selection coefficients for April for different times of day for females (f) and males (m).

July Oh 4h 8h 12h 16h 20h
f m f m f m f m f m f m
Old mixed -0.66 -0.62 -0.52 -047 -0.33 -024 -030 -0.14 -044 -0.24 -0.61 -047
Bark beetle area 1.03  -0.03 0.53 -0.12 1.11 0.82 2.28 1.65 2.64 1.50 1.88 0.68
Unmanaged meadows  2.48 1.51 1.61 1.07 073 0.60 0.71 0.58 1.28 0.74 2.05 1.11
Cultivated meadows  3.26 328 226 2.12 0.68 -0.05 0.71 -1.27 149 -0.68 2.39 1.59
Clearcuts 1.10 1.01 1.10 1.01 1.10 0.94 1.10  0.85 1.10 0.86 1.10 0.94
Young stands  0.88 0.00 092 0.12 1.23  0.98 1.50 1.46 1.47 1.29 1.16  0.69
0Old deciduous 0.44 0.25 0.45 0.25 0.45 0.25 0.45 0.25 0.44 0.25 0.44 0.25
Old coniferous -0.30 0.12 -026 0.00 0.02 0.02 0.21 0.16 0.13 028 -0.12 0.26
Medium mixed 0.12 -0.53 0.16 -0.59 0.66 -0.03 1.20 0.62 1.19 0.67 0.61 0.07
Medium deciduous 0.30 0.12 0.25 0.12 0.44 0.12 0.67 0.12 0.72 0.12 0.54 0.12
Anthropogenic 1.24  0.58 1.30 1.11 -0.08 045 -095 -0.60 -0.74 -1.03 0.14 -046

Table A3 Estimated selection coefficients for July for different times of day for females (f) and males (m).
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October Oh 4h 8h 12h 16h 20h
f m f m f m f m f m f m
Old mixed -0.18 -0.36 -0.14 -0.38 -0.09 -0.30 -0.11 -0.21 -0.15 -0.13 -0.17 -0.18
Bark beetle area -0.31 -0.28 -0.50 0.05 0.22 1.18 1.71 1.59 143 084 -0.15 -0.03
Unmanaged meadows 1.02 068 052 039 -040 -0.15 -044 -041 0.10 -029 062 0.21
Cultivated meadows 1.77 230 122 206 -145 -021 -224 -201 -070 -143 094 0.78
Clearcuts 0.80 0.80 080 085 0.80 0.84 080 078 080 072 080 0.73
Young stands  0.03 -0.68 021 -0.08 0.85 1.10  1.37 154 123 087 051 -0.20
Old deciduous 0.33 037 033 037 030 037 028 037 028 037 031 037
Old coniferous -0.44 -045 -038 -0.30 -0.04 0.01 020 0.15 0.10 -0.05 -0.21 -0.35
Medium mixed -0.45 -0.50 -0.21 -0.39 051 0.39 1.10 1.01 086 0.74 -0.00 -0.06
Medium deciduous -0.20 0.18 -026 0.18 -0.10 0.18 0.09 0.18 0.12 0.18 -0.02 0.18
Anthropogenic 1.01  0.57 1.52 1.10 022 044 -0.84 -0.61 -091 -1.04 -023 -046

Table A4 Estimated selection coefficients for October for different times of day for females (f) and males (m).
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Fig. A4 Habitat selection on 3rd order (within home range): Variation of the selection coefficient over time of year (y-axis) and day (x-
axis) for 17 female roe deer in the Bavarian Forest National Park, Germany recorded from 2002 to 2011. Colour indicates the value of the
selection coefficient for the respective land-cover type. Estimated degrees of freedom (edf) refers to the “wiggliness” of the smooth.
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Fig. A5 Habitat selection on 3rd order (within home range): Variation of the selection coefficient over time of year (y-axis) and day (x-
axis) for 19 male roe deer in the Bavarian Forest National Park, Germany recorded from 2002 to 2011. Colour indicates the value of the
selection coefficient for the respective land-cover type. Estimated degrees of freedom (edf) refers to the “wiggliness” of the smooth.
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Appendix 8: Uncertainties of selection coefficients
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Fig. A6 Estimated selection coeffients over the diurnal scale in June for all habitats with 95% confidence intervals for females (red) and

males (blue).
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Appendix 9: Comparison of three different sampling designs in the SSF framework
Methods

The definition of available habitat to the animal can strongly affect the outcome of habitat selection analyses (see also
Northrup et al. 2013). We compared three different designs that differ in how random control location are drawn. We
sampled 10 different control location around each observed location by using three different distributions for drawing

step lengths and turning angles.

1. pooled: distributions are based on empirical samples of step-length and turning angles for all times; meaning
two distributions for all time periods only separated for the two sexes;

2. time-varying: distributions are time-specific and based on empirical samples of step-length and turning angles
for different time periods (defined by season and photoperiod/time of day); meaning six distributions for each of
the two sexes;

3. parametric: we used an exponential distribution for step lengths with parameter A equals twice the sample mean
of observed step lengths and an uniform distribution for turning angles (Forester et al. 2009); the movement
behaviour, namely the absolute turning angle and time-varying step length is included in the parameter estimation

process.

Season is defined as Winter (December—March), Summer (May—Sep), Spring/Autumn (Apr, Oct, Nov)
All analyses were conducted in R version 3.1.3 (R Core Team 2015) using the packages mgcv version 1.7-
22. (Wood 2006) for GAMMs, adehabitatLT version 0.3.5 for home range calculations (Calenge 2006), and xtable

version 1.7-0. (Dahl 2012) for exporting tables.

Results

Description of the AUC tables We present the mean R (in percent) for all models with varying numbers of covariates
(cover, biomass or cover and biomass) and different degress of flexibilies for explaining the variation of coefficients
over time of day and time of year. Models explain the effect of cover and biomass on variation in site selection
(deviation from random choice). The higher the R?, the more accurate is the prediction on a new data set (using
5-fold cross-validation). nk refers to the number of basis functions used to build the spline, which equals the number
of parameters estimated for each variable. For each season (summer, spring/autumn, winter), for each time of day
(day, twilight, night), three models were estimated, including either cover, biomass, or both as explanatory variables
for site selection. Different flexibilities (nk) of the spline modelled the variation in the coefficient over time of day. In
the linear case (const) there was no variation and a constant selection of cover or biomass over years was assumed,
respectively . Null deviation is based on a model where each proposed location in one step was assigned the same
probability. Bold values refer to the highest value of R

The models with the highest R? are shown in the figures and can be compared between the different sampling

designs.
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Description of the figures showing predictions of the model Variation in the selection coefficient for cover (left) and
biomass (right) over time of year and day for 21 male (blue lines) and 20 female (red lines) roe deer recorded from
2002 to 2011 in the Bavarian Forest National Park, Germany during the daytime (dashed line) and nighttime (solid

line), based on step selection functions. Shaded areas indicate the 95pointwise confidence limits.

Diurnal variation The results of the cross-validation for different designs support always models with the same
combinations of variables (Tab. AS). For males models that include both variables, biomass and cover, have always
the highest R?. For females in summer and spring/autumn models including only cover have the highest predictive
rate. For winter for males, models that include both variables are most strongly supported. However, the degree of
variation over time differs, meaning that splines with a different number of knots and therefore with different flexi-
bility are supported. Between the design with pooled distributions and the design with parametric distributions only
variation over time of day for males in winter differs. Here, for the parametric version slight variation is supported,
whereas for the pooled design a model with no variation is found to be the best. However, the design with time-
varying distributions differs for males in summer and spring/autumn supporting a lower flexibility of splines. Within
this design also a model with a constant selection of cover and biomass over the course of the day is supported for
males in winter.

Predicted patterns of the models are very similar for the pooled and the parametric designs (Tab. A7). The only
strong difference can be detected for males in winter. In general, in winter cover is strongly selected throughout the
day, found for all designs (estimated selection coefficient for females in all designs: ~ 1.3). Only in the paramteric
version, for males a time-variation in winter is detected, with a higher selection during daylight hours (max:1.7)
than during night (min:0.6). A higher selection of cover during daylight than during nighttime is found for summer
and autumn/spring for females and males. However, the rate of change was always higher for the pooled and the
parametric design than for the time-varying design (e.g. for females in summer maximum and minimum selection
coefficient for pooled design: —0.6 and —3.5, for time-varying design: —1.1 and —2.9)

Alteration of the selection of biomass over the course of day was less pronounced than the variation of selection
of cover. For females, biomass does not influence site selection of roe deer at all in summer and autumn/spring.
In winter biomass is selected with a constant rate throughout the day, which is about the same (=~ —0.4) for all
designs. For males, variation of the selection of biomass in summer and Autumn/Spring showed a minimum selection
during twilight hours, with a little peak during noon and a high peak during night hours. As the time-varying design
supported a model with lower flexibility, only one minimum during noon and one maximum at midnight can be

detected.

Seasonal variation Supported models match in the combination of variables and the degree of flexibility over the
course of the year for almost all times of day between the pooled and the parametric design (Tab. A6). The only
difference is found for females during the day. While in the pooled (and time-varying) version a combination of
cover and biomass with the highest flexibility is supported, in the parametric version only cover with the highest

flexibility is included in the most predictive model. Supported models in time-varying design differed only for males
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during twilight and females during the day by a lower flexibility of the variation of selection of biomass and cover
throughout the year.

For all designs the patterns of temporal variation of selection of cover and biomass equals (Tab. A7). Cover is
highly selected during winter for all times of the day (e.g. females at night for pooled design: 1.2, time-varying: 1,
parametric: 1.6), whereas the selection is lowest during the summer months. For night this seasonal pattern is most
pronounced even more strongly for females than for males, yielding the lowest selection coefficients (for pooled
design: —4.3, time-varying: —3.5, parametric: —3.9). There are hardly any differences in the prediction of the three
designs considering the selection of biomass over the seasonal scale by males. Biomass is highly selected during the
summer (Selection coefficient: 1.7) month and has its minimum in November/December (0.7). The only difference
in the different designs is found for females as already explained earlier. Predictions of the selection of biomass can
therefore only compared for seasonal variation during the night, which shows a maximum during summer (pooled:
—2, time-varying: —0.5). In the pooled design there is another local maximum (—0.6) in January, which is due
to the higher complexity of the spline function. The minimum for the pooled version is in March/April (selection

coefficient: —1.2), whereas the minimum for the time-varying design is in February (—1.6).

Discussion

For all designs we use the very same “present” locations. Only the sets of proposal locations are different which the
“present” locations are contrasted with.

In the time-varying design the proposal locations are drawn from different distributions for each time slot, e.g.
during day proposal locations are close to present location and therefore, given spatial auto-correlation, tend to be
similar in environmental conditions. Hence, when present location will be compared to similar locations in terms of
biomass and cover, selection will be estimated to be weak. Indeed, estimated coefficients in the time-varying design
are in general closer to O than estimated values of the pooled and parametric design.

In the pooled and parametric designs proposal locations are drawn from one distribution for all times. Proposal
locations represent what is theoretically available to the individual. Distributions of both designs yield similar sets of
proposal locations. However, when estimating selection coefficients, the parametric design also accounts for tempo-
ral patterns of movement behaviour, meaning that part of the explanation why the animal has chosen the particular
present location is explained by movement variables such as step lengths and turning angle, leaving less proportion
of deviance to environmental factors such as biomass and cover. Therefore, in the parametric design estimated coeffi-
cients should be and are mostly marginally closer to O than in the pooled design (This is not always true, e.g. seasonal
scale in winter). This is probably the reason why the selection of biomass over the course of the year by females was
not significant different from 0. Out of the set of included variables, movement characteristics and availability of
cover explains the difference between “present” and proposal location already. Biomass did not improve the model
fit.

As the parametric design explicitely takes the temporal patterns in movement distances into account without

limiting the set of proposal locations we favour this approach.
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Sex Season Variables const nk=3 nk=4 nk=5 nk=6
males Summer  cover+biomass  1.37 1.43 1.97 2.08 2.22
cover 1.5 1.45 1.82 1.88 2.00
= biomass 0.4 0.62 1.12 1.25 1.34
= AutSpr cover+biomass <0 0.18 0.34 0.42 0.46
g cover <0 021 036 041 042
= biomass <0 <0 014 022 025
Winter cover+biomass  0.73 0.63 0.72 0.67 0.67
cover 0.68 0.6 0.66 0.64 0.64
biomass 0.43 0.36 0.38 0.36 0.36
females  Summer cover+biomass <0 <0 <0 <0 2.58
cover <0 <0 <0 <0 2.82
biomass <0 <0 <0 <0 1.47
AutSpr cover+biomass <0 0.6 0.65 0.74 0.77
cover <0 0.7 0.81 0.86 0.87
biomass <0 0.14 0.19 0.24 0.29
Winter cover+biomass  1.15 0.74 0.86 0.81 0.80
cover 1.04 0.68 0.76 0.71 0.70
biomass 0.72 0.48 0.54 0.52 0.52
%D Sex Season Variables const nk=3 nk=4 nk=5 nk=6
E= males Summer  cover+biomass  0.25 0.24 0.29 0.27 0.25
g cover 0.25 0.24 0.25 0.24 0.23
3 biomass 0 0.00 0.05 0.04 0.04
= AutSpr cover+biomass  0.03 0.11 026 035 0.27
; cover 0.07 0.11 0.23 0.25 0.25
biomass <0 0.03 0.17 0.26 0.28
Winter cover+biomass  0.44 0.42 0.43 0.42 0.42
cover 0.39 0.40 0.41 0.41 0.41
biomass 0.22 0.21 0.21 0.20 0.20
females Summer cover+biomass  0.46 0.44 0.56 0.56 0.56
cover 0.54 0.51 0.57 0.57 0.57
biomass 0.12 0.15 0.24 0.25 0.25
AutSpr cover+biomass  0.15 0.23 0.28 0.35 0.37
cover 0.31 0.35 0.38 0.40 0.41
biomass <0 0.02 0.07 0.10 0.12
Winter cover+biomass  0.47 0.42 0.41 0.39 0.39
cover 0.43 0.39 0.38 0.36 0.36
biomass 0.23 0.22 0.22 0.21 0.21
5]
.E
g Sex Season Variables const nk=3 nk=4 nk=5 nk=6
E males Summer  cover+biomass 2.87 291 3.51 3.63 3.78
=] cover 3.05 2.97 3.31 3.35 3.51
= biomass 1.99 2.07 2.65 2.79 2.92
AutSpr cover+biomass 3.65 3.73 3.93 4.00 4.06
cover 3.71 3.76 3.93 3.98 3.98
biomass 3.46 3.49 3.66 3.75 3.81
Winter cover+biomass 6.56 6.53 6.61 6.58 6.60
cover 6.46 6.46 6.51 6.48 6.50
biomass 6.21 6.20 6.22 6.20 6.22
females  Summer cover+biomass 7.70 7.84 8.39 8.46 8.54
cover 8.29 8.26 8.72 8.75 8.85
biomass 6.23 6.40 6.81 6.92 6.96
AutSpr cover+biomass 3.10 3.32 3.36 3.48 3.55
cover 3.38 3.44 3.53 3.59 3.61
biomass 2.67 2.90 2.93 3.01 3.08
Winter cover+biomass 3.48 3.32 3.41 3.35 3.34
cover 3.40 3.27 3.34 3.28 3.27
biomass 3.07 3.02 3.07 3.03 3.02

Table A5 AUC tables of models explaining diurnal variation in site selection for the three different sampling schemes.
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Sex Daytime  Variables const nk=3 nk=4 nk=5 nk=6
males day cover+biomass  0.069  0.331 0.763  0.747  0.788
cover <0 0242  0.681 0.659 0.670
= biomass 0.055 0.145 0252 0250 0.264
= twilight cover+biomass  0.349  0.723  2.116 2309 2238
8 cover 0.406 0.633 2.075 2.158 2.087
= biomass 0.183 0.399 1.347 1440 1512
night cover+biomass  0.163  0.542 1.879 1908 1.959
cover 0.224 0491 1.665 1.654 1.652
biomass 0.135 0414 1348 1417 1.446
females  day cover+biomass  0.063 0.237 0.775 0.761  0.808
cover 0.018 0.194 0.779 0.797 0.797
biomass <0 0.051 0.308 0.317 0.307
twilight cover+biomass  0.633  1.205 2.535 2449 2508
cover 0.898 1.377 2746 2.696 2.819
biomass 0.244 0.660 1.416 1.265 1.348
night cover+biomass  0.171  0.596 2.022 2.059 2.019
cover 0502 0.810 2368 2321 2318
biomass 0.01 0328 1.213 1.200 1.216
EJJ Sex Daytime  Variables const nk=3 nk=4  nk=5 nk=6
E> males day cover+biomass  0.011  0.022 0.033 0.025 0.035
s cover <0 0.008 0.024 0.017  0.027
Z biomass 0.009 0.009 0.002 0.001 0.002
g twilight cover+biomass  0.351 0481 1.444 1.357 1.405
; cover 0.384 0.385 1.100 0.893 1.089
biomass 0213 0370 1.012 1.004 1.065
night cover+biomass  0.118  0.243  1.237 1.193 1.217
cover 0.153 0242 1.001 0937 1.006
biomass 0.085 0.164 0.819 0.828 0.848
females  day cover+biomass  0.02 0.039 0.075 0.062 0.071
cover <0 0.010 0.048 0.040 0.063
biomass 0.015 0.023 0.018 0.016 0.022
twilight cover+biomass  0.565 0.896 1961 1.852 2.114
cover 0.77 0925 1.772  1.586  2.065
biomass 0.237 0434 1.037 0.881 1.193
night cover+biomass  0.108  0.280 1.548 1483  1.537
cover 0315 0415 1.667 1545 1.661
biomass 0.013 0.172 0.873 0.881 0.859
=]
.E
g Sex Daytime  Variables const nk=3 nk=4 nk=5  nk=6
g males day cover+biomass  2.724  3.071 3.563 3.556  3.577
s cover 2,622 2972 3464 3454 3.448
A biomass 2726 2.830 2955 2958 2958
twilight cover+biomass  2.204 2540 4.043 4218 4213
cover 2217 2473 3927 3931 3.933
biomass 2.044 2215 3.195 3300 3.325
night cover+biomass  5.650  6.059 7.531 7.523  7.583
cover 5711 6.037 7300 7285 7.239
biomass 5.604 5.889 6953 6978 6.979
females  day cover+biomass  3.499  3.662 4310 4.282 4.388
cover 3495 3.659 4393 4394 4415
biomass 3424 3478 3742 3754 3.739
twilight cover+biomass 2493 2938 4904 4.768 4.729
cover 2781  3.137 4957 4899 4975
biomass 2.131 2477 3511 3408 3418
night cover+biomass  4.019 4439 6.292 6.287 6.334
cover 4422 4709 6.653 6.592 6.648
biomass 3854 4239 5283 5231 5.293

Table A6 AUC tables of models explaining seasonal variation in site selection for the three different sampling schemes.

95



20

Cover

I=
o
9
T 3
° ]
=]
=%
e Males Females o
_ s - R
4 SpriAu — -
Winter  -----  ---e-
0 4 8 12 16 20 24
Time of day (hour)
Cover
=)
E -
>
5
3 5
%)
E S
=
Males Females
. S - .
4 SpriAut — =
Winter  =-=--  eeees
0 4 8 12 16 20 24
Time of day (hour)
Cover
< =
= 5
R
g8
:E (@]
A
e Males Females ~ “<
_ s - I
4 SpriAu — =
Winter  -----  -----
0 4 8 12 16 20 24
Time of day (hour)
96

Biomass

Males Females
Summer --- S
Spr/Aut — —
Winter  ----- eeee-
4 8 12 16 20 24
Time of day (hour)
Biomass

Males Females
Summer =-=- --
SpriAut — J—
Winter  ----- eeeee
4 8 12 16 20 24
Time of day (hour)
Biomass

Males Females
Summer --- R
Spr/Aut — R
Winter  ----- --ee-
0 4 8 12 16 20 24
Time of day (hour)

Table A7 Estimates of models explaining diurnal variation in site selection for the three different sampling schemes.




21

Pooled

Time-varying

Parametric

Coefficient

Coefficient

Coefficient

Cover

Males Females

Daytime ---
Twilight —

2 oA Night | ----- eeeee
0-
-2
44 e
4 6 8 10 12
Time of year (month)
Cover
Males Females
Daytime --- -
Twilight — —
D Night — ----= -

-4
4 6 g8 10 12
Time of year (month)
Cover
Males Females
Daytime --- -
Twilight —
2 B T N e
0-
-2
-4

4 6 8

Time of year (month)

10 12

Biomass

Males Females
Daytime --- -=-
Twilight —— —_—
Night — ----- -

2

4 6 8 10

Time of year (month)

Biomass

12

Males Females
Daytime --- -=-
Twilight —— —_—
Night — ----- -

2

4 6 8 10

Time of year (month)

Biomass

12

Males Females

Daytime --- -=-
Twilight —— —_—
Night — ----- -

2

4 6 8 10

Time of year (month)

Table A8 Estimates of models explaining seasonal variation in site selection for the three different sampling schemes.

97




22

Seasonal variation

Diurnal variation

0.000 0.000
-0.001 1 -0.001 1
5-0.002 - -0.002
=2
© -0.003 1 -0.003 1 ©
Males Females
'0004 n Daytime -=- -= '0004 n
Twilight —— —_—
Night === ===
2 4 6 8 10 12

Fig. A8 Variation of the coefficient for step length over time of year (left) and time of day (right) for the parametric model.

98

Time of year (month)

Summer ---

Spr/Aut

Winter -

Males

0 4

8 12 16
Time of day (hour)

20

24



23

References

Agresti, A. 2002. Categorical Data Analysis. — John Wiley & Sons.

Boyce, M. et al. 2002. Evaluating resource selection functions. — Ecol. Model. 157: 281-300.

Calenge, C. 2006. The package adehabitat for the R software: tool for the analysis of space and habitat use by animals.

Dahl, D. B. 2012. xtable: Export tables to LaTeX or HTML. R package version 1.7-0.

Fleming, C. H. and Calabrese, J. M. 2015. ctmm: Continuous-time movement modeling. R package version 0.2.1.

Fleming, C. H. et al. 2014. From fine-scale foraging to home ranges: A semivariance approach to identifying move-
ment modes across spatiotemporal scales. — Am. Nat. 183: E154-E167.

Forester, J. D. et al. 2009. Accounting for animal movement in estimation of resource selection functions: sampling
and data analysis. — Ecology 90: 3554-3565.

Marell, A. et al. 2009. Floral herbivory of the wood anemone (Anemone nemorosa L.) by roe deer (Capreolus capre-
olus L.). — Plant Spec. Biol. 24: 209-214.

McLoughlin, P. et al. 2007. Lifetime reproductive success and composition of the home range in a large herbivore. —
Ecology 88: 3192-3201.

Northrup, J. M. et al. 2013. Practical guidance on characterizing availability in resource selection functions under a
use-availability design. — Ecology 94: 1456-1463.

Olesen, C. R. and Madsen, P. 2008. The impact of roe deer (Capreolus capreolus), seedbed, light and seed fall on
natural beech (Fagus sylvatica) regeneration. — Forest Ecol. Manag. 255: 3962-3972.

Pearce, J. and Ferrier, S. 2000. Evaluating the predictive performance of habitat models developed using logistic
regression. — Ecol. Model. 133: 225-245.

R Core Team 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Com-
puting, Vienna, Austria.

Sing, T. et al. 2005. Rocr: visualizing classifier performance in R. — Bioinformatics 21: 3940-3941.

Wood, S. 2006. Generalized Additive Models: An Introduction with R. — Chapman and Hall/CRC.

99



100

Old mixed
Anthropogenic
0.4 Medium deciduous
Z
?ﬂ 0.3

Medium mixed

Old coniferous

I
Selecgon P
[\*]

Old deciduous

Average Young stands
relative

- Iavailabilily

0.1

Clearcuts

Cultivated meadows
Sunset

& Unmanaged meadows
o
s Disturb
Medium mixed ® isturbance area
Old coniferous \@
Hap,, Old deciduous £8
Hat 11, Young stands
i pes Sunrise
Cultivated meadows

Unmanaged meadows

Disturbance area

Figure 2.1: An animation in the attached material shows the selection probability for all
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17 female (right) roe deer in the Bavarian Forest National Park, Germany recorded from

2002 to 2011. Estimates were based on the average availability over all animals (males
and females separately), shown at the rear of the plots.
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Paper II — Shape of functional response reveals strength of trade-off in resource use by

a large herbivore

Summary

1.

Holling (1959) was the first who related a predator’s consumption-rate with the
density of its prey and called it functional response. This concept has been trans-
ferred to habitat selection of herbivores, where it was defined as the change in

relative use with changing availability of habitats.

Functional response in habitat selection has been reported for several large her-
bivores at the home-range scale. However, none of these studies could link their
observed patterns to Holling’s types I, II or III, which may be due limitations of
the used methodology.

We used discrete choice models implemented as mixed-effects baseline-category
logit models to analyze variation of habitat selection of a large herbivore over sea-
sonal and diurnal time scales. We investigated how habitat use varies with its
availability in 11 habitat types used by roe deer in the Bavarian Forest National-

park, Germany.

. We found strong evidence for non-linear functional responses for all 11 habitat

types, which can be categorized as Holling’s type I, II, III and even IV, with a
predominance of type II. The shape of the functional response varies for females

and males as well as with season and day / night.

We propose that functional response in habitat selection is the consequence of
a trade-off in the use of habitats offering different resources by a herbivore that
has temporally varying needs. Our results imply that mainly the animals’ internal
needs and to a lesser extent the availability of habitats determines habitat selection

of animals, given a fixed composition of habitats within the home range.

Introduction

Holling (1959) first described for small insectivorous mammals the behavioural adjust-

ments of carnivores according to the level of prey availability. Depending on the time

required for searching, handling and consuming individual preys, three types of func-

tional responses may arise describing linear (type I), concave (Type II) to a convex (type

I1I) relationships between consumption and availability of preys by carnivores (Holling,

1959). Tt is assumed that specialist carnivores should have a type II functional response,

i.e.

the number of killed prey would increase rapidly with prey density and level off
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when searching time and prey manipulation constrain predators in ability to consume
more preys (Andersson and Erlinge, 1977). A generalist predator would instead show a
slower increase, resulting in the sigmoid curve of a type IIT response Holling (1959) ow-
ing to changes in search image, foraging habitat or prey switching (Taylor, 1984). Such
functional responses are well documented in large carnivores such as wolves (Canis lupus,
Messier, 1994) or lynx (Lynz lynz, Nilsen et al., 2009).

For herbivores, functional responses were historically investigated at the bite level
(Spalinger and Hobbs, 1992) to understand how much food animals could ingest and
process with increasing resource availability. Past experimental work suggested that
consumption of food is mainly governed by cropping and chewing times of plant parts in
mammalian herbivores (Gross et al., 1995). Similar to carnivores, behavioural constraints
will affect the ability of herbivores to find, select and process plant species or parts,
generally leading to type II functional responses (Real, 1977). As defined by Holling
(1959), functional responses take place at the finest scale of resource selection by animals
(Johnson, 1980). However, resource selection is a hierarchical process, ranging from the
fodder plant part to the species’ geographical range. How food processing at the smallest
scales of resource selection (level 3 or 4 according to Johnson, 1980) may scale-up to
higher spatio-temporal scales such as home range and landscape levels (level 1 or 2
according to Johnson, 1980), and what behavioural adjustments or constrains such as on
movement may occur currently lack understanding (but see Van Moorter et al., 2013).

Functional response in the sense of Holling (1959) relates the number of prey consumed
to the density of prey. Transfered to habitat selection on the home range level, functional
response becomes the function that relates the use of a habitat with its availability in
the home range. In a seminal paper, Mysterud and Ims (1998) merged the concept of
functional response with habitat selection behaviour at the home range scale (level 2 ac-
cording to Johnson, 1980). They suggest that the underlying biological processes leading
to functional responses in habitat selection are related to large-scale movements to reach
the different habitat types, the search for particular resource patches within habitats,
and the foraging and digestion process (Brown, 1999). Recently, an increasing number
of empirical studies reported functional responses in several species of large herbivores at
the home-range scale (moose (Alces alces): Bjorneraas et al., 2012); (caribou (Rangifer
tarandus): Moreau et al., 2012) where most describe linear variations of selection strength
with resource availability. For instance, red deer in western Norway selects the highly
nutritive meadows relatively more often when its availability in the individuals’ home
range is low (Godvik et al., 2009). However, whether functional responses in habitat

selection are general among large herbivores and how these functional responses vary in
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time, among habitat types, with individual traits or environmental factors is not well
understood. More importantly, the shapes of the functional responses for herbivores (i.e.
non-linearity) have not been described in connection with Holling (1959)’s original curve
typology.

Scarcity in studies of functional responses in large herbivores may partly lie in the
methodology used to analyze habitat selection (McLoughlin et al., 2010; Beyer et al.,
2010). A variety of methods are available to quantify habitat selection (Aebischer et al.,
1993; Warton and Shepherd, 2010). But, over the last decade, resource selection func-
tions (RSF, Manly et al., 2002) have been the most popular tool to link space use of
animals to landscape characteristics by using the combination of case-control sampling
and logistic regression (Duchesne et al., 2010; McLoughlin et al., 2010). However, associ-
ated issues with this approach are well-known, e.g. the way controls or “pseudo-absence”
data are generated highly influence the model performance (Phillips et al., 2009; Warton
and Shepherd, 2010; Warton and Aarts, 2013). Also, although commonly assumed, RSFs
using logistic regression are not necessarily proportional to probability of use (Keating
and Cherry, 2004). Nevertheless, RSFs were also applied to test for functional responses
in habitat selection, where interaction terms between habitat type and habitat avail-
ability are usually presented or the effect of availability on odds ratios (Moreau et al.,
2012; Godvik et al., 2009). Visualization of such a relationship obtained via RSF are
difficult to understand as they do not directly show functional response but indications
of it (e.g. Godvik et al., 2009) and are prone to misinterpretation (Beyer et al., 2010;
Van Moorter et al., 2013). Therefore, alternative methods may be advised when dealing
with functional responses in habitat selection such as multinomial logit discrete-choice
models (Cooper and Millspaugh, 1999). These relate relative use to relative availability
and account for the choice between multiple options. Finally, in spite of the flexibility of
Generalized Additive Models (GAM, Hastie and Tibshirani, 1986) to investigate non-
linear relationships between variables by smoothing-splines, GAMs have rarely been used
in the context of habitat selection to explore functional responses (but see Bjgrneraas
et al., 2012).

Using n > 15,000 GPS locations on 36 free-ranging roe deer in the Bavarian Forest
National Park, Germany, we first describe the selection pattern of 11 habitat types within
the home range of individuals (second-order habitat selection) and its temporal variation
at the daily and the monthly scales (Godvik et al., 2009; Herfindal et al., 2013). Specif-
ically, we investigated how the selection of a particular habitat varies with its relative
availability within the home-range (Mysterud and Ims, 1998). As repeatedly reported

in large mammalian carnivores for their prey consumption (Messier, 1994), we predict
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Tab. I1.1 Overview of relative availability of habitat types in the study area, relative availability
within the home ranges and relative use by roe deer in the Bavarian Forest National
Park, in descending order of use.

Habitat Avail. in study area  Avail. in home range  Use
Old deciduous 0.184 0.230 0.247
Old mixed 0.231 0.393 0.188
Old coniferous 0.220 0.188 0.170
Cultivated meadows 0.051 0.060 0.102
Medium mixed 0.075 0.045 0.079
Unmanaged meadows 0.020 0.014 0.064
Clearcuts 0.046 0.024 0.062
Young stands 0.020 0.009 0.047
Anthropogenic 0.027 0.022 0.018
Medium deciduous 0.015 0.007 0.014
Disturbance area 0.111 0.008 0.010

that non-linear relationship between the selection probability of a given habitat and its
availability (Type II or III) is the rule over a proportional use (type I). Type IT should
be more pronounced in habitats providing specific resources, such as primarily forage on
meadows. Because the costs-to-benefit ratio provided by the habitats and their selection
intensity changes with season, we expected the functional response to differ with season
(Godvik et al., 2009). Specifically, we expected the difference to be stronger for those

habitats that are subjected to greater environmental changes between seasons.

Material and Methods

Study area

The study area is located in the Bavarian Forest National Park (BFNP), which lies
in south-eastern Germany along the border to the Czech Republic (center coordinates
49°3'19”N,13°12'9"F). The BFNP has three major forest types structured along the
altitudinal gradient. Above 1,100 m a.s.l. (16% of the area), sub-alpine spruce forests
of Norway spruce (Picea abies) and some mountain ash (Sorbus aucuparia) prevail. On
the slopes between 600 m and 1,100 m.a.s.l., mixed montane forests with Norway spruce,
white fir (Abies alba), European beech (Fagus sylvatica) and sycamore maple (Acer pseu-
doplatanus, 68% of the area) are found (Heurich and Neufanger, 2005). Since the mid-
1990s, the forests of the BFNP have been affected by massive proliferation of the spruce
bark beetle (Ips typographus) which resulted in an dieback of old spruce trees totaling
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an area of 7000 ha of disturbed forests(Heurich et al., 2010; Lausch et al., 2013). Spec-
trozonal aerial images of the study area from 2008 (Heurich et al., 2012a) were used to
classify forest areas according to the land cover (Belyaev et al., 2004). Land cover was
grouped into 11 classes (Tab. II.1). Management of roe deer in the BENP is spatially
limited to the wild ungulate management zone (= 29% of study area). This ensures that
wildlife regulation is excluded from a core area of 7,000 ha (Most et al., 2015). The
estimated roe deer population density was low, ranging between 1-3 animals/km? (M.
Heurich, unpublished data). During our study, roe deer in the BFNP was preyed upon by
the European lynx (Lynz lynz) which had been reintroduced in the 1980s (W6lfl et al.,
2001). Between 2005 and 2012, 168 individuals were monitored. 30% of these were killed
by lynx, which is about 50% of mortality, 7% were killed in a road accident (Heurich
et al., 2012b).

Roe Deer Capture and Radiotelemetry Data

We used wooden box traps to capture roe deer in the winter months. The animals were
not chemically immobilized for attaching the neck-collar (Weilnbock et al., 2012). GPS-
GSM collars (series 3.000) from VECTRONIC Aerospace, Berlin (Germany) recorded
positions with different sampling intensities, ranging from every 3 min to every 12 h. For
the analysis, only one location per hour was kept to reduce spatio-temporal autocorre-
lation. We also removed the first 10 days of each survey period to exclude a possible
effect on behaviour owing to the capturing and handling of the animals (Morellet et al.,
2009). For the analysis we excluded those animals whose fix success rate, defined as the
number of successfully stored locations divided by the number of attempts (Frair et al.,
2010), was below 90 percent. The averaged fix success rate of the remaining animals was
then 97 percent. GPS errors were uniformly distributed across time of day (x? = 0.04,
df = 22, p > 0.999) and time of year (x*> = 0.1, df = 10, p > 0.999), we discarded
missing values from the analysis (n=6,138).

We used a total of 172,507 fixes of 52 roe deer ( 26 males, 26 females) before thinning
ranging from 136 to 17,044 fixes per individual (mean: 3,317, sd: 2,897) over a period
from 14 to 2,081 days (mean: 484, sd: 397). The spatial accuracy of the fixes was 10 m
on average with a maximum recorded error of 16.3 m (Stache et al., 2012).

Spatial autorcorrelation was analysed using variograms (Fleming et al., 2014). For
the monthly habitat selection, it is assumed that successive locations are independent
at the scale of the home range, i.e. that the animal might have crossed the home range

between successive steps. In the variogram, this condition is found at the time interval
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between successive steps where the squared displacement distance (approximately) levels
off. Variograms were calculated using the package ctmm (Fleming and Calabrese, 2015).
We visually inspected variograms of the long range behaviour of each individual. In our
data this interval was approximately 25 h. We included only those individuals with more
than 70 recordings. Our data set contained then n =15,267 locations of 17 females and

19 males.

Statistical methods
The multicategorical logit model

When considering site selection, individuals have the choice between different habitat
categories (Tab. II.1). Multicategory logit models can be fitted using baseline-category
logit models (Agresti, 2002). Following Agresti (2002), the habitat type with the highest
prevalence was chosen as baseline, which in our case was the old mixed stand habitat type,
used in 27% of all recorded positions. The probability of choosing the baseline category
K was calculated as: mg(x) = 1—mi(x)—...—7r_1(x), where x is a vector of covariates
describing the habitat and/or the individual and probabilities m;(x), i = 1,..., K — 1.
These probabilities were derived by first fitting K — 1 binary logit models separately to
the data. The ith model included observations (no “pseudo-absences”) from habitat i
and K only, where y = 1 if individual was observed in habitat ¢ and y = 0 if it was
observed in the reference habitat K. From the logistic regression models, we obtained
selection ratios f;(a) that models the selection between habitat i and the reference type
K. Given the selection ratio f;(x) probability of selection of habitat i was estimated via

the multinomial logit link:

_ enp(fila)
T+ S eap(fy(w))

v (33) (H.l)
with f; being a general functional form of the explanatory variables that was habitat-
specific. fg is 0 for identifiability reasons. The denominator of equation II.1 was the
same for all ¢ for a specific time. Explanatory variables & can be continuous or discrete,
characterising the focal habitat ¢ or properties of the individual. In particular, it can be

a function of the availability of the habitat.

Habitat availability

The accurate description of the functional response requires to adequately define habitat

availability and to account for its variation in time. First, we calculated the monthly
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100% home range (minimum convex polygon) for each individual using the package ade-
habitatHR (Calenge, 2006). Individuals presenting biologically unrealistic home range
size, due to e.g. dispersal behaviour were discarded using the 90% percentile as a cut-off
value (for females: 182 ha, males: 459 ha). We used a rasterized landscape with grid
cell size of 10 x 10m? to obtain the relative availability for each habitat type within the

monthly home ranges.

Model components

In the model, we included the effect of time and relative availability of the habitat on
habitat selection and also assessed whether there are differences in the selection behaviour
between males and females. Variation in selection across individuals and years were
accounted for by including random effects on the intercept for individuals (Gillies et al.,
2006) and years. The availability a; of habitat type i, i.e. the fraction of the area covered
by habitat type i, varied across the home ranges of different animals j and as well as
over time of year (m, month). To account for this, the logarithm of the availability
aﬁl of a land-cover type within the corresponding monthly home range of the animal
j was included as an offset term (called “base rate” in ch. 7 in Manly et al., 2002).
Any deviation from such a direct proportionality with factor 1 (functional response,
Mysterud and Ims, 1998) is detected by including either a linear or non-linear effect of
availability. Further we investigated whether the type of functional response varied for
season (growing season (Apr-Oct) and vegetative season (Nov-Mar)) and among sexes.
Smoothness of the spline functions over the range of availability was controlled by setting
the smoothing parameter to A = 2 (Wood, 2006, p.128). Temporal variation in habitat
selection was accounted for by including a term for time, modelled by a cyclic (tensor

product) smooth function either with or without distinguishing between the sexes.

Model selection, model fit & effect size

In total we estimated 39 different models for each habitat type. In order to take into
account the problem of overfitting, prediction performance of all models was measured by
applying cross-validation. Model prediction performance was obtained for each habitat
separately. For applying cross-validation we split the data into b subgroups, ensuring
that a) the data of one individual is evenly spread over all ten groups and b) within the
groups, data of all times of the year and the day was available.

As the prediction is a probability and the observed variable is binary, a receiver operating
characteristic (ROC) curve was used (Agresti, 2002; Boyce et al., 2002). The area under
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the curve (AUC) - values were calculated, averaged and used to identify the models with
the highest predictive power.

We performed all analyses in the statistical software R (R Core Team, 2015) using the
packages mgcv (Wood, 2006) for GAMMs and adehabitatLT for home range calculations
(Calenge, 2006).

Results

Habitat availability and general selection

The mean monthly home range size was 70.4 ha (sd: 41.5 ha) for females and 152.8ha
(sd: 101.7 ha) for males. Availability of habitats within the study area and availability
within the home ranges differed noticeably for most of the habitat types (Tab. II.1).
Since home range sizes varied across months (e.g. mean for females in January: 194
ha, in June 86 ha; for males in January 306 ha, in May 461 ha), availabilities of habitat
types within the monthly home ranges differed remarkably over the course of the year

and partially between sexes (Supplementary material Figs. S3 and S4, i.e. young stands).

Habitat Selection Patterns

On average, roe deer selection over time varied markedly among the 11 habitat types
we defined for the Bavarian forest (see Tab. II.1). In general, time-dependent variation
in habitat selection differed significantly between females and males for most habitat
types, except from unmanaged meadows, young stands and anthropogenic areas. The
interaction of both temporal scales is observable as the pattern of circadian variations
vary over the time of year, obviously driven by sunlight (see Appendix Figs. S1, S2 in
Supporting Information).

In general, most habitats are selected with the same daily selection patterns throughout
the year (e.g. cultivated meadows: selection during the night, avoidance during the day),
which simply varies in the magnitude over the time of year (e.g. cultivated meadows:
high in summer, low in winter). The variation of the magnitude of selection over the
course of the year results in a seasonal alternation between high and low selection of
habitats. Such a seasonal shift is observed for all habitats (Fig. S1, S2).

Functional Responses

The change in relative use of an habitat given its availability appeared to be general in

the roe deer population of the Bavarian Forest National Park. We indeed found notable
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Fig. I1.1 AUC values for models explaining the selection of 11 habitat types by 26 roe deer
(19 males, 17 females) in the National Park Bavarian Forest, Germany from 2002 to
2011. AUC-values are in ascending order of the sum of AUC-values (over habitats).
The greater the AUC value the better is the prediction performance of the model.
Model components integrated in the model are shown in the table on the bottom of
the figure. All models included the variable id (for individual) and year as random
effects. Abbrevations: rel.avail, relative avialability of habitat type; s, smoo{ﬂi]term,
for hour and month it is a cyclic smooth function; te, cyclic tensor product smooth
term; by, a replicate of the smooth is produced for each factor level of sex or season
or interaction of both, respectively.
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Tab. I1.2 Type of functional response found for habitats in summer and winter for females and
males. The form of the relation of selection probability and the relative availability of
a habitat can be described by a linear response (Type I), a concave upward response
(Type II) or a sigmoid response (Type III).

Type 1 Type 11 Type II1 Type IV
0 Availability 0 Availability 0 Availability 0 Availability
Summer
Old Cultivated meadows, Disturbance area Anthropogenic
mixed Disturbance area (day),  (night),
Clearcuts, Old coniferous
Young stands,
Unmanaged meadows,
Medium deciduous,
Old deciduous
Winter
Old Cultivated meadows, Disturbance area, Medium
mixed Clearcuts, Young stands, deciduous (9)
Anthropogenic, Medium  Unmanaged
deciduous (&), Old meadows,
deciduous Old coniferous
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functional responses for all the 11 habitat types as estimated selection probabilities dif-
fered strongly from straight lines (Figs. I1.2, S3). However, the strength of selection
of old mixed stands seems to be irrelevant of its availability in the home range of the
animals: Probability of selecting old mixed stands equals availability (Fig. S3).

Our analyses also revealed a distinct difference of the functional responses among
habitat types, between winter and summer seasons (e.g. M5, M12, M14, M15, M17, M18
in Fig. II.1) for all except from disturbance area. In addition the shape of functional
response differed between sexes to some extent (e.g. M9 vs. M10 and M13 vs. M16),
except from old decidous and young stands. The use of a non-parametric smoother
provided evidence for non-linear functional responses for all habitats but anthropogenic
area (M12) and clearcut area (M14).

Holling 1959 described four types of patterns that relate the intake (here use) to density
(here availability). When calculating the probability of use as a function of availability
given the selected models (Fig. II.1) we found four main patterns (Tab. I1.2): an
approximately linear (type I according to Holling (1959)), a concave curve (type II), a
convex curve (type IIT) and a decreasing curve (type IV) with increasing availability of
a habitat. Generally, the strength of use, i.e. preference or avoidance, of a habitat at
a particular time determines whether the curve is above or below the proportional use
probability with use probability = availability (grey lines in Figs. 11.2 and S3).

In case of a linear functional response the type of selection (high selection/avoidance)
does not change with availability. We found this pattern of type I only for old mixed
stands. For old mixed stands use equals availability throughout the observed range of
availability (from 0.01 to 0.5). In case of a concave curve (type II) the strength of
selection decreases with increasing availability. Often a switch occurs from preference to
avoidance with increasing availability. In mathematical terms, the slope of this function
monotonically decreases with increasing availability. We found this pattern in many
habitat types (meadows, disturbance area, clearcuts, young stands (in summer), medium
aged and old deciduous stands). As expected, we found type II strongly for habitats
that provide primarily a single resource, i.e. food in case of meadows. Probability of
use of cultivated meadows (Fig. I1.2) by females in summer increased with increasing
availability for very low values (< 0.03) with slope ~ 10. However, for higher values of
availability (> 0.1) the slope was almost 0. For many habitats, in particular in summer,
the decrease of the slope resulted in a shift from preference to avoidance if the availability
of a habitat exceeds a certain value.

Type III functional responses were found for old coniferous stands, young stands,

unmanaged meadows and disturbance area.
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Fig. I1.2 Estimated selection prob-
ability of clearcut area,
disturbance area and an-
thropogenic area as a
function of availability
for summer (left col-
umn) and winter (right
columns), time of day
(midnight:  solid line,
noon: dashed line) and
sex (females: top, males:
bottom) by 26 roe deer
(19 males, 17 females) in
the National Park Bavar-
ian Forest, Germany from
2002 to 2011. Grey lines
describe a selection prob-
ability directly propor-
tional to relative avail-
ability. Ticks above the
x-axis indicate observed
proportions of the habi-
tat within the analysed
monthly home ranges.
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Fig. I1.3 Effect of availability on

strength of selection on
the link scale with confi-
dence bands for different
habitats in summer and
winter for 17 females and
19 males roe recorded in
the National Park Bavar-
ian Forest, Germany from
2002 to 2011. Red
line indicates a propor-
tional selection to avail-
abilty. Ticks above the
x-axis indicate observed
proportions of the habi-
tat within the analysed
monthly home ranges.
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Type IV was exposed in anthropogenic area (in summer) and in winter in medium
deciduous stands for females only.

Functional response can also be detected on the link scale (Figs. 11.3, 1.4, S4). Esti-
mated functional response differ strongly from a constant proportional increase of selec-
tion with increasing availability. However, from the shapes of the functions on the link
scale, it remains difficult to determine the type of functional response. Intuitively, it is
obvious that the probability of use also depends on the availability and selection strength
of alternatives (Fig. S5). This is in particular true for those habitats where selection

coefficients are estimated to be close to 0 (Fig. S5).

Discussion

As expected, we found pervasive evidence for functional responses in the habitat selection
behaviour of roe deer, highlighting its distinct variability in shape among habitats with
time and between sexes. Non-linearity in the strength of selection with habitat avail-
ability appears as a general behaviour in roe deer, occurring in almost all habitat types
we considered except from the most common habitat old mixed stands. Most functional
responses we describe here present a concave shape comparable to a type II according to
Holling’s 1959 classification. That selection strength levels off as the habitat increases
in availability within the home range likely reflects the trade-offs acting on movements
faced by roe deer to exploit its home range. However, we also found examples for type

I, IIT and TV functional responses.

The Predominance of Functional Responses

On the observed ranges, we found that the relationship between use and availability of the
11 habitat types was non-linear for all seasons and, for males and females for almost all
habitats (exception: old mixed stands). Functional responses were previously reported
in caribou, moose and roe deer (Bjgrneraas et al., 2012; Moreau et al., 2012; Samelius
et al., 2013). Functional responses appear as a general behaviour in the resource selection
at the home-range scale in large herbivores.

Type II functional responses are characterized by a decelerating selection strength
with availability, which follows from the assumption that the consumer is limited by its
capacity to process or to find food. It assumes that herbivores uses the resources for
feeding. We found this type of functional response in most habitat types, especially in

summer.
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In carnivores Holling type III functional responses emerge as a result of a learning pro-
cess or of a prey switching by predators (Real, 1977). Selection is slow at low availabilities
but then increases more rapidly than a proportional selection. Type III functional re-
sponses were found for the disturbance area, in winter only for females at day and night,
for males only at night. As the shape of the functional response is not particularly dis-
tinct as for type II, we remain careful with the interpretation. Old coniferous are mostly
avoided by roe deer over its full range of availability. However, if availability exceeds
some threshold (& 0.2), selection increases, resulting in a type III of functional response.

Type IV (dome-shaped) functional response has been found in several predator-prey
systems (see Liznarova and Pekar, 2013, for an overview). The reason that preda-
tor consumption decreased with increasing prey density are various, e.g. confusion of
the predator (Jeschke and Tollrian, 2007), toxicity of the prey (Claver et al., 2003) or
limitation of the predator’s mobility (Heuermann et al., 2011). In habitat selection, an
increase of availability seems to have negative effects on the animals, that avoidance of
this habitat increase with availability as we have found for anthropogenic area. These
areas likely provide highly nutritional forage, but at the same time itposes an higher
risk with the consequence of an increased investment in allertness to avoid encounters
with humans (Benhaiem et al., 2008; Shannon et al., 2014). The tendency to balance
between food and human disturbance seems to decrease with increasing availability of

anthropogenic area in the home range of roe deer.

What shapes the Functional Response for Herbivores?

From the model point of view, there is no functional response if the use of a habitat
equals its availability, i.e. for proportional use.

However, if a habitat is favourably selected over others, functional response is the re-
sult, as relative use is greater than relative availability. If a habitat is favoured throughout
the whole range of its theoretical availability ranging from 0 to 1, the use curve will be
above the proportional use line. But nonetheless saturation will occur. Saturation in
use with increasing availability will occur due to the natural restrictions as relative use
is limited by 1 (Fig. II.4). In practice it means, an animal can not spend more time
in a habitat than there is time available. Such a saturation curve for one habitat has
direct implications for the other available habitats as the total amount of time has to
be allocated among all available habitats (Fig. S5). If one habitat is favourably selected
over all the others, the use curve of all other habitats will be below the proportional use

line.
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The example of an at all times favoured habitat is unlikely for herbivores in nature as
these have needs that vary in time and, in addition, conditions vary in time (Hebblewhite
and Merrill, 2009; Bjgrneraas et al., 2011). Moreover, habitat selection of herbivores is
characterised by a trade-off between competing resources, e.g. food and cover. For roe
deer, using meadows statisfies energy demands and at the same time poses a higher risk of
disturbances (e.g. caused by humans, Frid and Dill, 2002). Contrary, in old forest stands
herbivores may find shelter but lower quality forage (Bjgrneraas et al., 2012). Hence, roe
deer must balance between the opposing conditions which results in a functional response
in habitat selection (Mysterud and Ims, 1998). For roe deer we found patterns of curves
that show saturation for relatively small values for relative use. For example for females
in summer during the day the use of cultivated meadows (Fig. S3) is very high (=~ 0.2)
for low availabilities (= 0.05) and does rarely increase with further increasing availability.
This means that the animal does not need to spend more time on a meadow than one
fifth of its time. Certainly, spending a particular amount of time on meadows satisfies
the needs of roe deer, which does not change if availability increases within the home
range. However, if availability is greater than this necessary amount of time, selective
use will switch to avoidance. This is because, herbivores have also the urge to hide from
disturbances, resulting in a trade-off between food and cover (Godvik et al., 2009). This
pattern is found for almost all habitats of type II (and IIT) which implies that an animal
determines its site selection mainly by its internal needs and to a lesser extent by the
availability of habitats, given the already fixed composition of available habitats.

The composition of available habitats is determined by the roe deer in an earlier step
by selecting the home range on a larger scale. The heterogenuous composition of the
home range is necessary to choose between different options at different times. We have
shown that selection for habitats differs between seasons and times of day and so do
the curves for functional response. Different shapes of the curve for functional response
for different times of day and seasons support the finding that primarily the needs of
the animals and to a much lesser extent the availability of a habitat determines the use
of a habitat. Habitat are not selected per se but are selected for what they provide to
animals.

However, availability may influence habitat selection for those habitats where func-
tional response of type III was found. This type may occur if an animal needs to become
accustomed to a habitat type. An animal can avoid unsuitable conditions of a habitat if
it is rare within its home range, but have to opportunistically use it if it exceeds some
threshold. In this case availability more strongly influences the use of a habitat. Another

explanation can be that animals need some amount of energetic costs to enter those habi-
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tats, and raising this costs must be balanced by a reasonable benefit such as coming from
sufficient availability. For example we have found type III in disturbance areas where
there are fallen trees jammed all around which probably hamper the mobility of roe deer.
In particular in winter, snow layers over hollows poses a righ risk for roe deer te become
cooped up. However, high energetic forage from young regeneration may compensate the
high effort to reach this area. Hence, availability influences habitat selection.

Also for habitats with functional response of type IV, availability determines its use, as
we found for anthropogenic area (Fig. 11.2). Here, an increase of availability seems to have
negative effects on the animals, that avoidance of this habitat increase with availability.
In a prey-predator-sytem, functional response of type IV is assumed to take place due
to resource toxicity or predator confusion (Gentleman et al., 2003). Disturbances by

humans may function likewise.

Generalist vs. Specialist

As roe deer is specialized on using specific habitats to fulfill its needs we detected these
distinct functional curve patterns. As the needs and the conditions in habitats vary for
different times (day/night, seasons), shapes of the curves differ for different times and
hence types of functional response can also differ for the very same habitat for different
times (e.g. disturbance area, Fig. 11.2). For those habitats that offer a low variety
of resources, such as mere forage on meadows, we found a strong saturation that occurs
already for low values of availability. Here, the roe deer is focused or specialized on forage
intake and one would expect such saturation curve (Holling, 1959). This finding agrees
with the foraging strategie of herbivores, which first fill their stomachs and rest afterwards
in a safer place to chew and ruminate (Kamler et al., 2007). However, those habitats
that provide both food and cover such as young stands show only a slight attenuation
with increasing availability. In such habitats, roe deer is not focused on a single resource
and acts as a generalist.

Type II with a continuous decrease of selection with habitat availability is the most
commonly observed curve, especially in summer (Fig. 11.2). However, the degree of
saturation differs between habitats, seasons and daytime. In habitats that are mainly
used for foraging, time spent in these habitats should be strongly positively correlated
with forage intake. We therefore argue that for grazers the saturation should be more
pronounced in habitats that are used for foraging only and which are characterized by
a simple structure due to the strong correlation between bite size and intake of biomass

(see Gross et al., 1993). For roe deer as a browser, bite size depends on the leaf size

120



Paper II — Shape of functional response reveals strength of trade-off in resource use by
a large herbivore

(Gross et al., 1993), and hence, there is not necessarily a linear relationship between
time spend in a habitat and biomass intake. Consequently, the time needed to fill the
stomach depends on the detection rate of suitable forage that strongly varies between
habitats. In habitats where suitable forage is abundant and time of detection is low, such
as on meadows and clearcuts, use of a habitat should also be directly related to forage
intake as for grazers. Hence, functional response of type II should be predominant in

habitats mainly used for the purpose of foraging.

Accounting for Functional Responses in Habitat Selection Studies

Holling (1959) based his models about functional response on laboratory experiments
where a predator was faced with a single resource. However, we analyse field data, where
animals are confronted with multiple resources. We use multinomial models that take
into account the multinomial structure of the data, i.e. the animals can choose between
different habitat types. In our models, we relate probability of use to the availability
of a habitat. This relation is subjected to some straightforward model restrictions: if
availability is zero, probability of use is also zero, and if availability is one, probability
of use is also one (Fig. I1.4). In between these extremes, the shape of the curve is
determined by i) the type of general selection (selective use/avoidance), i) the type of
functional response, but also ii7) the composition of the home range, meaning the suite
of alternatives an animal can choose from (Fig. S5). This, however, can not be tested in
a laboratory and this is a great challenge when analysing functional response in the field.
The bumps in the curves for functional response of some habitats (e.g. medium mixed
in Fig. S3 ) may be due to different compositions of habitats in the home range of the
different animals. For instance, for medium mixed, old coniferous and old deciduous one
would expect rather straight lines for increasing availabilities. These wave-like curves
may arise when in some home ranges similar habitats also occurs in the home range to a
great extent, then saturation takes earlier place, and in other home ranges this habitat
with its characteristics is not accompanied by similar ones, then saturation in selection
takes place for higher availabilities. The composition is not accounted for in our models
as it would substantially increase the model complexity.

The ability to explore the shape of functional responses in habitat selection using
multinomial logit models comes at the costs of describing the landscape with discrete
categorical variables. As compared to the generally used RSF (Manly et al., 2002),
the multinomial logit model accounts explicitly for variation in resource availability for

animals, be it in time or among individuals. We detected a non-linear functional responses
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for almost all habitat types. Assuming a linear relation between use and availability of a
habitat a priori as in RSF is not supported for roe deer, except from the most common
habitat type old mixed stands. The gain in predictive power of our model with and
without non-linear relation is, however, slight (Fig. II.1) and we can assume that results
obtained from a RSF would not be strongly biased. Hence, using spline functions for
modelling functional response in habitat selection is not particularly necessary (M14
vs. M18 in Fig. II.1). In particular, for larger availabilities predictions might follow a
more distinct and biologically interpretable pattern then estimated by spline functions.
However, the “wiggliness” might also be due to a relatively low sample size for some
habitat types (e.g. medium mixed) and the earlier mentioned heterogeneity in habitat
composition. But we do see an advantage to favour splines over linear effects. Simple
linear effects are not capable to model functional response for very low values that exceed
a constant selection (see e.g. old deciduous or cultivated meadows). We advise to use a
combination of splines and linear effects. However, we realise that linear effects would

be easier to gain biologically relevant insights.

Conclusion

Functional response in the use of habitats is a common pattern found for roe deer as a
large herbivore in the Bavarian Forest National Park, Germany. The use of habitats is
primarily driven by the internal needs of the animals if the range of resources is narrow.
The use of a habitat is determined more strongly by its availability if the habitat offers a
large range of resources or opposing resources (e.g. food and cover). Time-varying shapes
of functional response reveal the trade-off between cover and food in the habitat selection
of roe deer. Multinomial logit models are highly suitable for modelling functional response
in habitat selection. With such models use and availability of habitats can be related

while accounting for the fact that animals can choose between multiple habitats.
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for different habitats in summer and winter for 17 females and 19 males roe recorded
in the National Park Bavarian Forest, Germany from 2002 to 2011. Red line indicate
a proportional selection to availabilty. Strokes above the x-axis indicate observed
proportions of the habitat within the analysed monthly home ranges.
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R-Code is provided in S6.
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Appendix S6 R-Code. R-Code that visualizes the effect of parameters on selection, odds
ratios and probability of use (see Fig. S5).
1|# Author: Dupke

2| #
HBHEHBRF RS H AR AR RARHEAAH AR H RS H BB R R AR F BRI R BAR SR ISR BRR SR ARA RSB ER SRR R RS RS

x <- seq(0.01,1,length=100)
#effect of x on selection with offset

sel_w <- function(betalO, betal,x){
betaO+betal*xlog(x)

© 0 N O Tt s W

10
11| #effect of x on selection with offset
12| sel <- function(betalO, betal,x){

13 sel_w(betal, betal,x)+log(x)
14] }

15
16| # odds ratio

17| OR<- function(betal, betal,x){

18 exp(sel(betal, betal,x))

19| }

20| OR2<- function(betal, betal,x){

21 exp(betal)*x~(betal+l)
22| }

23| # multinomial logit link function

24| getProb <- function(betal, alphaO,betal,alphal,x)q{

25 OR(betal ,betal ,x)/(0R(betal,betal ,x)+0R(alphal,alphal ,(1-x)))
26 }

27
28| # define parameters
20| ##EHHHHHHH

30| # use = availability
31| B0 <- 0

32|# use >> availability
33| BO_1 <- 1.5

34| # use > availability
35| BO_2 <- 0.5

36
37| # use < availability
38/ BO_3 <- -0.5

39| # use << availability
40/ B0_4 <- -1.5

41
42| ##use > availability, selection coefficient increases slowly with
availability

43|B1_0 <- 0.5

44| B1_1 <- 0.5

45| ##use > availability, selection coefficient decreases with availability
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46| B2_0 <- 0.5
47| B2_1 <- -0.5
48
49| ##use > availability, selection coefficient decreases with availability
50/ B3_0 <- 0.5

51| B3_1 <- -1

52| ## use < availability selection coefficient increases with availability
53| B4_0 <- -0.5

54| B4_1 <- 0.5

55
56| ##use < availability, selection coefficient decreases slowly with
availability

57| B5_0 <- -0.5

58/ B5_1 <- -0.5

59
60| ##use < availability, selection coefficient decreases with availability
61| B6_0 <- -0.5

62(B6_1 <- -1

63
64| #graphics

65| coll <- 1

66| col2 <- 2#"#D5BEQ00"
67| col3 <- 3#"#56B4E9"
68| cold <- 4#"#009E73"
69
70| lwdl <- 4
71| 1lwd2 <- 3
72| cxm <- 1.5
73| cxA <- 3
74
75| #make table

76| DF <- data.frame(matrix(c(B0,0,B0_1,0,B0_2,0,
77/B0O_3,0,B0_4,0,B1_0,B1_1,B2_0,B2_1,B3_0,B3_1,B4_0,B4_1,B5_0,B5_1,B6_0,B6_1),
ncol=2,

78| byrow=TRUE, dimnames=1list(c(),c("betald","betal"))),

79| col=c(rep(coll ,5) ,rep(col2,3) ,rep(col4d,3)),

80| lty=c(1:5,2:4,2:4),

81| lwd=c(1l,rep(lwd2,10)))

82
83| #par (mfrow=c(2,2),las=1,cex=1,mar=c(5,5,4,0.5))

84| layout.show(layout ((matrix(c(1:4,rep(5,4)),ncol=2)),widths=c(2.1,1)))
85| par (las=1,cex=1,mar=c(5,5,4,0.5))

86
87| plot(x,sel_w(B0,0,x),type="1",ylim=c(-2,5), ylab = "Effect on selection",
xlab = "Availability (x)",col=coll,cex.axis=1.5,cex.lab=1.5,1lwd=1wdl)

88| for(i in 2:nrow(DF)) lines(x,sel_w(DF[i,"betaO"],DF[i,"betal"],x),col=DF[i,"
col"],lty=DF[i,"1ty"],lwd=DF[i,"1wd"])

89| mtext (expression(beta[0]+beta[1]l*log(x)),cex=cxm)

90| mtext ("A",adj=0.2,1line=-2.5,cex=cx4)

91
o2 | HHHAHEH A HESAAS

133



Paper II — Shape of functional response reveals strength of trade-off in resource use by
a large herbivore

93| #selection with offset (log(availability))

94| plot(x,sel(B0,0,x),type="1",ylim=c(-5,2), ylab = "Effect on selection with
offset", xlab = "Availability (x)",col=coll,cex.axis=1.5,cex.lab=1.5,1lwd
=1lwdl)

95| for(i in 2:nrow(DF)) lines(x,sel(DF[i,"betaO"],DF[i,"betal"],x),col=DF[i,"
col"],lty=DF[i,"1ty"],lwd=DF[i,"1wd"])

96
97| mtext (expression(S=beta[0]+betal[1]*log(x)+log(x)),cex=cxm)
98| mtext ("B",adj=0.2,1line=-2.5,cex=cx4)

99
100 | #HGHAHHFHBHAHSHH S BB B ES

101| # 0dds ratios

102| plot (x,(O0R(BO, 0,x)),type="1",ylim=c(0,4.5), ylab = "Odds ratio", xlab = "
Availability (x)",col=coll,cex.axis=1.5,cex.lab=1.5,1lwd=1wdl)

103| for (i in 2:nrow(DF)) lines(x,0R(DF[i,"beta0O"],DF[i,"betal"],x),c0l=DF[i,"col
"],1ty=DF[i,"1ty"],1lwd=DF[i,"1lwd"])

104| mtext (expression(paste(omega(x,betal[0],betal1])==exp(betal[0]l+betal1]l*log(x)+
log(x)))),cex=cxm)

105| mtext ("C",adj=0.2,1line=-2.5,cex=cx4)

106
107 | #HHHHSHEF BB EH S HEHE

108| # Use

109| plot (x,getProb(B0,B0,0,0,x),type="1",ylim=c(0,1), ylab = expression(paste("
Probability of use ",pi(x,betal[0],betal[1]),"")), xlab = "Availability (
x)",col=coll,cex.axis=1.5,cex.lab=1.5,1lwd=1wdl)

110| lines (x,x, col="darkgrey")

111| for (i in 2:nrow(DF)) lines(x,getProb(DF[i,"beta0"],0,DF[i,"betal"],0,x),col=
DF[i,"col"],1ty=DF[i,"1ty"],lwd=DF[i,"1wd"])

112
113| mtext (expression(paste(pi(x,beta[0] ,betal[l])==frac(omega(x,beta[0],betall]),
omega(x,beta[0],beta[1])+omega(l1-x,0,0)))),cex=cxm)

114| mtext ("D",adj=0.2,1line=-2.5,cex=cx4)

115
116 | #

Rt bE R EE R RS RE SRR SRS EEEE RS R RS EEE R 2 2 R 2 21

117| ## make overview table
118
119| par (mar=c(0,1,0,1))

120| plotentry <- function(betal,betal,y,coli,ltyi,Hty,cex=1.5,...){

121 text (2,y,betald,cex=cex,...)

122 text (6,y,betal ,cex=cex,...)

123 lines(list(9,11),1list(y,y),col=coli,lty=1tyi,lwd=3)
124 text (14,y,Hty,cex=cex,...)

125 }

126

127 plot (0,0, type="n",x1lim=c(0.5,16) ,ylim=c(-10,30) ,bty="n",xaxt="n",yaxt="n"
xlab="",ylab="")

128 j <- 6

129 for (i in nrow(DF):1) {

130 plotentry (DF[i,"beta0O"] ,DF[i,"betal"],j,c0oli=DF[i,"col"],1tyi=DF[i,"
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1ty":| ,th=u "y

131 j <- j+1

132 }

133| plotentry (expression(beta[0]) ,expression(betal[1]) ,Hty="Hty",j+1,1,1tyi=0,cex
=2)

134| text (10,j+1,"Lty",cex=2)

135 #text (14,i+10.5,"Hty",cex=2)
136
137| abline (h=3+0.5)
138
139 | #HHHHHHHSHBSHHHHHHHH S B FHBF S HH S B S B H SRS HHES
140| # use for different alphas

141| # Use

142
143| #par (mfrow=c(2,2) ,las=1,cex=1,mar=c(5,5,4,0.5))

144| layout .show(layout ((matrix(c(1:4,5,5) ,nco0l=3,byrow=FALSE)) ,widths=c
(2.1,2.1,1)))

145| par (las=1,cex=1,mar=c(5,5,4,0.5))

146

147| for (alpha0 in ¢(0.5,-0.5)){

148 for(alphal in c(1,-.5)){

149| plot (x,getProb (B0, alpha0,0,alphal ,x),type="1",ylim=c(0,1), ylab =
expression(paste("Probability of use ")), xlab = "Availability (x)",col=
coll ,cex.axis=1.5,cex.lab=1.5,1lwd=1wdl,

150 main=substitute (paste (alpha[0]l==a0," ",alphal[ll==al),list(

a0=alpha0 ,al=alphal)),cex.main=cxm)

151| lines (x,x, col="darkgrey")

152| for (i in 2:nrow(DF)) lines(x,getProb(DF[i,"beta0"],0,DF[i,"betal"],0,x),col=
DF[i,"col"],1ty=DF[i,"1ty"],1lwd=DF[i,"1wd"])}

153 }

154

155| par (mar=c¢(0,0,0,0))

156| plotentry <- function(betal,betal,y,coli,ltyi,cex=1.5,...){

157 text (2,y,betal,cex=cex,...)

158 text (7,y,betal ,cex=cex,...)

159 lines(list(10,14),1list(y,y),col=coli,lty=1tyi,1lwd=3)
160 }

161

162 plot (0,0, type="n",xlim=c(0.5,16) ,ylim=c(-10,30) ,bty="n",xaxt="n",yaxt="n"
xlab="",y1ab="")

163|j <- 6

164| for (i in nrow(DF):1) {

165 plotentry (DF[i,"beta0O"] ,DF[i,"betal"],j,c0oli=DF[i,"col"],1tyi=DF[i,"
1ty "1)

166 j o<- j+1

167| }

168

169| plotentry (expression(beta[0]) ,expression(betal1]),j+1,1,1tyi=0,cex=2)
170 text (12, j+1,"Lty",cex=2)
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Quantifcation of repeatability in

habitat selection behaviour

Summary: Based on a novel framework, quantification of re-
peatability in habitat selection is quantified and reveals a
potential for natural selection acting on habitat selection be-

haviour for red deer.
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Summary
1. The value of repeatability is widely used to quantify the consistency of

animal behaviour at the individual level. In the context of movement
ecology, movement trajectories are particularly well suited as these pro-
vide repeated samplings of discrete habitat choice of individuals. Even
though repeatability in habitat selection of animals would have direct
implications for conservation and evolution theory, there is a lack of such

studies which might be due to methodological obstacles.

2. Mixed effects models have become the gold standard in calculating re-
peatability, and we here extend the class of covered models to mixed
conditional logistic regression, which is commonly used in step selection
function (SSF) analyses. Using a latent variable formulation of the SSF
model we derive the quantification of repeatability in habitat selection
behaviour of animals. We show that it is biologically meaningful that
repeatability of habitat selection explicitly depends on environmental
conditions. We use Bayesian statistics to estimate site selection of ani-
mals with respect to an environmental covariate that accounts for varia-
tion among and within individuals in environmental preferences. Based
on these estimates, we calculated the value of repeatability for habitat

selection behaviour and provide associated uncertainty estimates.

3. We evaluate the method using computer simulations, and apply it to
quantify variability in habitat selection behaviour of male and female
red deer (Cervus elaphus) at three different times of day in the Bavar-
ian Forest National Park, Germany, based on GPS relocation data. We
found considerably different posterior distributions for selection of for-
est cover on the population level between day and night between both
males and females. However, only for females we found differences in
repeatability during the day, with higher repeatability of selection for
cover during the day, a pattern that was driven by the relatively high
variation in selection among females during the day.

4. Given ongoing changes in habitat conditions, the ability of species to
adapt to changing environmental conditions assumes increasing rele-
vance. Repeatability of habitat selection can provide important infor-
mation about persistent variation in how individuals respond to the en-
vironment, and thereby contribute to an improved understanding about

animal movement useful for wildlife management.
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Introduction

Phenotypic variability among individuals is a central tenet of evolutionary theory (Dar-
win, 1859) as it reflects the opportunity for selection (Crow, 1958; Arnold and Wade,
1984). For instance, in the current context of global changes, phenotypic variability
among individuals could allow species to cope with new and rapidly changing environ-
mental conditions (Sih et al., 2012). For motile animals, fitness is related to resource
selection (Gaillard et al., 2010). The degree of plasticity in movement behaviour refers
to the ability of animals to adapt habitat selection to environmental changes such as
deterioration of local conditions or habitat loss on broader scales (Cagnacci et al., 2011).
Consequently, the behavioural variability in the context of habitat selection is of primary
interest for conservation (Jeltsch et al., 2013). The question arises whether and to what
extent are animals able to adjust their behaviour to changing quality and distribution of
habitats. For example, it has recently been shown for whooping cranes ( Grus americana)
that experienced individuals are important in innovating migration patterns and thus in
adapting to changing climatic conditions (Teitelbaum et al., 2016).

Investigation of the structuring factors of individual difference in habitat selection
behaviour showed that fixed attributes like sex (Marchand et al., 2015), or varying at-
tributes like age (Nielson et al., 2002) could account for part of the observed variability.
Habitat selection behaviour is also eminently context-dependent and may vary in time
and space for a given individual (Godvik et al., 2009; Dupke et al., 2016). However, in
the context of evolution, phenotypic variability per se is insufficient for characterising the
role of natural selection on behavioural traits (Dingemanse and Réale, 2005). Natural
selection can only operate on animal behavioural traits that sufficiently and repeatedly
differ between individuals (Boake, 1989). The extent to which a phenotypic trait is
consistently expressed by a given individual is measured by its repeatability (R), which
under certain conditions can be interpreted to set an upper bound for the heritability of
a trait (Dohm, 2002).

Repeatability is generally estimated empirically from observational data as the fraction
of the observed differences in behaviour that is due to variation among individuals by a
variance partitioning of a quantitative trait into between- and within-individual variance

components (Dingemanse et al., 2010; Plard et al., 2012):

Oy

R= (111.1)

Oy + 0w

where o, is the variation among individuals and o, is the within-individual variance.
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The value of repeatability is widely used to quantify the consistency of individual differ-
ences in animal behaviour (Bell et al., 2009) and can be used as test and a quantification
of personality (Reale et al., 2007). Mixed-effects models are the current gold standard for
partitioning variation into between- and within-individual variance components (Dinge-
manse and Dochtermann, 2013). Repeatability can be calculated for Gaussian data
using linear mixed-effects models and non-Gaussian data using generalised linear mixed-
effects models (GLMMs), although the latter case is less straightforward (Nakagawa and
Schielzeth, 2010).

In movement ecology, repeatability has been used to compare the variation of ex-
ploratory behaviour in novel environments within and among individuals in the great
tit (Parus major, Dingemanse et al., 2002), in the distance travelled per time unit
(Salvelinus confluentus, Taylor and Cooke, 2014) or the variation in dispersal behaviour
(Linyphiid spider (E. atra), Bonte et al., 2009). Reported values of repeatability for
spatial behaviour ranged between 0.2 < R < 0.8 for the distance traveled per time unit,
whereas for dispersal behaviour repeatability generally reach values of R < 0.2 (Bell
et al., 2009). In habitat selection behaviour, individual variability with respect to fac-
tors such as sex, age, reproductive status are well identified and easily accounted for by
fixed variables (Manly et al., 2002). Variation among individuals in habitat selection
behaviour has been reported for different species such as polar bears (Ursus maritimus,
Arthur et al., 1996), wolves (Canis lupus, Hebblewhite and Merrill, 2008), grey seals
(Halichoerus grypus, Aarts et al., 2008) or roe deer (Bonnot et al., 2015).

The particular structure of the data used in habitat selection studies in combination
with the specific modelling approach might have hampered the ability of ecologists to
quantify repeatability of the habitat selection behaviour. Movement trajectories are very
suited in the context of repeatability because they can be seen as replications, in space
and time, of habitat choices made by an individual. The statistical analysis of such a
data requires a conditional logistic regression (CLR, Duchesne et al., 2010).

We identified two difficulties to overcome to partition variance into its between- and
within-individual components for step selection functions (SSF, Thurfjell et al., 2014), a
structurally related approach to RSF that links movement trajectories to environmental
conditions. The difficulties are: (i) Estimates for the variances within and between
individuals are not provided in easy-to-use software (Nakagawa and Schielzeth, 2010);
and (i) Browne et al. (2005) showed that the value of repeatability in such a framework
is a function of the predictor variables, which means that the value of repeatability
depends on the landscape characteristics of the selected sites and the available sites.

This landscape dependence complicates comparisons of repeatability across sites that
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differ in landscape structure.

Here, we develop a method to quantify repeatability in habitat selection based on
SSFs with random effects accounting for variation in the response to environmental con-
ditions between individuals and within an individual. Software typically used for step
selection functions, such as the R packages TwoStepClogit (Craiu et al., 2012) or cozme
(Therneau, 2012), allows only to specify between individual random effects. However,
the implementation in standard software for Bayesian statistics such as jags (Plummer,
2003) or stan (Carpenter et al., 2016) is straightforward.

We derive the equation for repeatability from a threshold model formulation of the
CLR model to illustrate the link between the CLR model and the components in the
formula of repeatability. The threshold model formulation is used in discrete choice
models widely used in economics (McFadden and Train, 2000). The random utility
maximization framework underpinning these models provides a direct conceptual link
between observed movement decisions and their underlying utility as perceived by the
animal.

We evaluate the method for repeatability in habitat selection using SSF with simulated
data. We then apply it to red deer in the Bavarian Forest National Park, Germany,

showing that repeatability in habitat selection varies across sexes and time of day.

Materials and methods

Step selection functions

In step selection function analysis, the movement trajectory is represented as a series
of discrete and conditionally independent movement decisions. At each (time-)step j
an individual ¢ can choose from a set of discrete proposal locations S;; = {1,...,K}.
While this double discretisation (in time and in space) is somewhat artificial, it allows
applying standard statistical techniques, in particular CLR. Each location k is assigned an
SSF score W (k) depending on the environmental features x(k) of that location: W (k) =
exp(Bx(k)), where 3, the slope of the response to that environmental feature, is estimated
from the data. The larger the SSFE score, the higher the odds of the animal moving to
that location. The probability of choosing a location k, is then given by (Fortin et al.
2005; Thurfjell et al., 2014):
W (k)

Pr(location k is chosen) = Pr(Y = k) = =————— (I11.2)
21es W(0)
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In addition to fixed factor effects, the necessity to account for among-individual vari-
ation in the study of habitat selection have been repeatedly emphasized (Gillies et al.,
2006; Koper and Manseau, 2009; Duchesne et al., 2010). This can be done by integrating
a random effect v; ~ N(0,02) that captures the variation between individuals. As the
calculation of repeatability requires to estimate the variation within individuals we added
a random factor w;; ~ N(0,02) that varies for the individual in each step. o2 is the
variance among individuals and o2, is the variance within individuals. The score function

is then:

W (k) = exp((8 + v; + wij)z(k)) (I11.3)

While, to our knowledge, standard software for random effects CLR cannot estimate
the w;;, the model can be readily formulated and implemented in standard software for
Bayesian statistics (see Appendix). While it is tempting to directly use the estimations
of the variances for o2 and o2 from equation II1.3, this would overestimate repeatability
because the residual variation from the discrete choice is not taken into account (Naka-
gawa and Schielzeth, 2010). In order to calculate variance partitioning, it is convenient
to state the problem as a latent variable problem as is the custom in discrete choice
modeling (McFadden, 1974). With this formulation we link the variances estimated by
a CLR model to the components of the formula for repeatability.

Latent variable formulation of conditional logit models

It is assumed that the animals are rational and choose at each timestep the location with
the highest benefit, which is called utility. Each location k is assigned a value for utility
Uy. For the observer, the utility of the locations are not fully known, but they can be
modelled as random variables with a fixed component that reflects the environmental

features of a given location:

U, = ﬁx(k) + €k (111.4)

The familiar SSF score Wy, = Bz(k) thus corresponds to the fixed component of the
utility. The probability of choosing location k equals the probability that location k has
the maximum utility of all available K alternatives. If the residuals € are independent
and identically distributed with a standard Gumbel distribution (i.e. extreme value type
1), then it can be shown (Maddala 1983, appendix 2) that the probability of choosing k

1s:
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exp(Bz(k))
Pr(Y = k) =Pr(max(Uy,...,.Ux) =U) = =———— II1.5
(Y = k) = Pr(max( )= Uh) = e o) (111.5)
i.e. we recover the same functional relationship as in the familiar SSF formulation.
In the formulation for the per individual per step, the utility U;;, of location k for

individual ¢ at step 7 becomes:

Uiji = (B + vi + wij)z(kij) + €k (I11.6)

Ecologically, the parameter 3 stands for the average population-level utility with re-
spect to covariate z(k;j). v; models the deviation of utility from the population mean
for individual ¢, meaning that for some individuals the average utility may be higher or
lower than 3, the mean value of the population. The parameter w;; adds variation to
the individual mean in each time step, which allows some known degree of variability in

the utilities. This data-level random slope effect w;; (normally distributed with mean 0

2

o) accounts for heterogeneity in variance on the step-wise level. Such a

and variance o
step-wise heterogeneity is usually not assumed and the variance is supposed to be con-
stant and to depend on the underlying distribution (e.g. in a Poisson-distributed random
variable the variance equals the mean). However, if the assumption is not true, like in
case of overdispersion where the variance in the data is larger than expected, a normally
distributed random term in each step can account for this problem (Jiang, 2007).

For the purpose of simplification we will consider the choice between two sites, k and
[. The probability that location k is chosen is equal to the probability that its utility is

higher than that of location I:

Pr(location k is chosen) = Pr(Yj;, = 1) = Pr(Usj, > Uyji) (IT1.7)

By substituting equation II1.6 in equation II1.7 we obtain:

PI(Y;'jk = 1) = Pr(Uijk — Uijl > 0) (IIIS)
= Pr((ﬁ +v; + wij)a:(kij) + €ijk — (5 +v; + wij)x(lij) — €51 > 0) (111.9)
= Pr((ﬁ —+ v; + wij)(m(kij) - x(lz])) + €ijk — €ijl > 0) (IIIlO)

Hence, the probability of choosing location k is determined by the environmental fea-
tures at the two locations, as all parameters (3, v;, w;;) are the same for individual ¢ for
all locations at timestep j.

The CLR model II1.2 can now be formulated as a threshold model (Snijders and Bosker,
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2012):

1, ifyl.(k,1
Yir =1 y?( >0 (ITL.11)
0, if yij(k‘, 1) <0

where the unobserved latent random variable ygj(k, [) is a function of the difference of

the covariates Az;;(k,l) = x(kij) — x(l;j) at two locations, namely:

ygj(k, ) = B+uv+ wij)(x(k:ij) — x(lij)) + €ijk — €51 (I11.12)
A:Cij(k, l)ﬂ + A:vij(k, Z)Ui + sz-j(k:, l)wij + Tz‘j(k, l) (111.13)

where the residuals r;;(k, ), the difference of two standard Gumbel-distributed random
variables, follows a standard logistic distribution. The outcome of the observable di-
chotomous random variable Yj;; is thus determined by the value of the underlying latent
continuous random variable ygj, which is a function of covariates x(k;;), where parameters

B,v;, w;; are fixed within a stratum.

Repeatability for mixed conditional logit models

Repeatability is the fraction of total variation due to variance between individuals. To
calculate this value we need to decompose the sources of variation in the selection making
process. The variation in the selection making process is the variance of the unobserved
latent variable y;;(k,l) (Snijders and Bosker, 2012). The variance of y;;(k,l) can be

decomposed to
Var(ygj(k:, 1)) = (Ax;j(k, 0)%02 + (Azyji(k, )02 + var(rij(k,1)) (IIL.14)

given that Ax;;(k,[), v; and w; are independent of each other. o2 is the variance among
individuals and o2 is the variance within individuals. Aw;;(k,1) is the difference of the
covariate between positions £ and I. The variance of the residuals var(r;;(k,1)) follows a
logistic distribution and equals 72/3.

Finally, for two locations k, [ with [ # k a formula for repeatability can be derived:

(Azij(k,1))0?
(Azij(k,1)202 + (Azij(k,1))?02 + 72/3

R(k,1) = (I11.15)

Hence, the value of repeatability depends on the strength of the environmental gradient

between the two locations k and [ (Browne et al., 2005). This makes ecological sense in

that differences in behavioural variations will be more pronounced as the environmental
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gradient becomes steeper. Two extremes can be distinguished: As the environmental
gradient vanishes, i.e. the two sites are equivalent from the point of view of the observer,
repeatability approaches zero. In contrast, in the limit of an infinitely large environmental
gradient between the two locations, the habitat choice of the individual becomes de facto
deterministic also from the point of view of the observer, and repeatability simplifies to
the familiar R(k,l) = 02 /(02 + 02).

Evaluation with simulated data

We tested the method on simulated data with known parameter values. A one-dimensional
covariate of the location data was sampled from a landscape with uniformly distributed
resources (x(k) ~ unif(0,1)). Movement trajectories were simulated with a fixed value
for the selection coefficient 8 = 1 but different values for the variation between individ-
uals o, (0.1, 0.2, 0.5, 1, 2, 3) and within individuals o, (0.1, 0.2, 0.5, 1, 2, 3), numbers
of steps per individual (10, 25, 50, 100) and numbers of individuals (5, 10, 15, 20).

We estimated model parameter by fitting the model

B exp((B v +wig)w(kiy))
Pr(Yyj = k|B, 00, 00) = Zlesij exp((B +v; —1]- ’U)ij);'(lij))

using jags (Plummer, 2003) in R (R Core Team, 2015) and the R package R2jags (Su

and Yajima, 2014). As prior for the selection coefficient § we used a normal distribution

(111.16)

with mean 0 and standard deviation of 100. For the hyperpriors of the random effects
we chose a gamma distribution with shape parameter 1 and scale parameter 1/3. The
R Code is available in the attachment. Convergence of chains was tested with Gelman-
Rubin convergence diagnostics. We considered MCMC chains as converged when the

potential scale reduction factor the Gelman-Rubin diagnosis was less than 1.05.

lllustration with observed data
Landscape description

The study area is located in the Bavarian Forest national park, which lies in south-eastern
Germany along the border between Czech Republic and Germany (center coordinates:
49°3'19"N,13°12'9"E). We estimated vegetation cover from airborne LIDAR data ac-
quired using a Riegl LMS-Q 560 system operating with a wavelength of 1,550 nm. Leaf-off
data were acquired between April 2008 and November 2009 from the entire national park
area with an average point density of 9.8 points/m?. LiDAR measurement points were

grouped into 5 x5 m grid cells. For each grid cell, we calculated inverse penetration ratios
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Tab. ITI.1 Overview of red deer data used in the analysis. For month June we analysed the
data of 11 females and 8 males. For each individual we used 50 locations.

Sex Day Twilight Night
#Indiv #Positions #Indiv #Positions #Indiv F#Positions
Females 11 550 11 550 11 550
Males 8 400 8 400 8 400

at a height of 2-60 m above ground. This inverse penetration ratio is an estimation of the
fractional vegetation cover at this height (see Ewald et al., 2014, for more information),

and hence a suitable measure of habitat cover for ungulates (Lone et al., 2014).

Location data of red deer

Location data were derived from 11 female and 8 male red deer fitted with GPS (Global
Positioning System) collars in two subsequent years (2006/2007). We captured animals
while staying in winter enclosures by luring them in box traps with side windows. The
procedure was approved by the Government of Upper Bavaria, Germany.

In the analysis we used only data from June, to reduce possible seasonal variations.
Time difference between steps was at least 2 hours. GPS-data was further partitioned
according to time of recording in A) daytime (8-15h), B) night (22-2h) and C) twilight(16-
21h, 3-7h). We sampled 10 random locations for each recorded location based on em-
pirical distribution of turning angle and step lengths given by all other animals but the
focal individual. The distributions were calculated separately for time period of day:
daytime, night, twilight, as time of day is known to influence movement behaviour of
animals (Owen-Smith et al., 2010). For random point sampling we applied the package
hab (Basille, 2014). The data set consisted of exactly 50 locations per individual and
time period of the day for the analysis (N=2,850, see Tab. III.1 for details). We cal-
culated repeatability of habitat selection behaviour for daytime, night and twilight, and

separately for each sex.

Results

Simulation

For the simulated data, convergence differed across different parameters: chains for 8

and o, converged after 20,000 iterations, but for oy, i.e. the variation within individu-
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Fig. II1.1 Posterior distributions for variation within o,, and among o,, # and the resulting
value of repeatability R on the link scale for simulated paths of 15 individuals with
for each 100 steps given values for o, (0.1, 0.2, 0.5, 1, 2, 3), as well as a fixed value

for the general selection 5 =1 and variation within individuals o,, = 0.5.
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als, the number of iterations required for convergence increased with the number of steps
of an animal: for 10 steps 20,000 iterations were sufficient, for 100 steps per individual
220,000 iterations were needed. The number of individuals also affected the convergence
behaviour slightly negatively. In contrast, the value of the parameters o, and o, ap-
parently did not influence the convergence behaviour of the chains (Appendix S2). As
expected, the precision of the estimates increased with the number of individuals and the
number of steps per individual. Also the value of the parameters o, and o, influenced
the precision of the estimates (see below for details).

True values were in almost all cases within the 95% posterior credible intervals of the
estimates (Fig. III.1, Appendix S2). As the expected values of o, and o, increased (e.g.
o, = 3) posterior distributions for all estimated parameters became flatter. However, for
repeatability the effect was less pronounced since repeatability is not a linear function
of o, and o,. In particular, large values of either o, or o, with large 95% posterior
credible intervals did not translate into a as large as 95% posterior credible interval for

repeatability.

Repeatability for red deer

According to the Gelman-Rubin diagnostics all chains converged after 250,000 iterations.
The high number was needed as the chains of o, were highly autocorrelated.

The posterior distributions of the selection coefficient differed substantially between
day and night for male and female red deer as the corresponding posterior distributions
hardly overlap (Fig. III.2). During the night, sites with low cover were strongly se-
lected (median [2.5%, 97.5%]-quantiles of 8 for females: —3.11 [—4.04, —2.44], for males
—1.94 [-2.98,—0.93]), whereas during the day selected sites were characterized by higher
cover (mean of § for females: —0.13 [—1.45,1.16], for males 0.33 [—0.48,1.06]). For twi-
light the estimated selection coefficient was between the value for day and night (mean of
B for females: —1.34 [—2.16, —0.59], for males —0.72 [-2.01,0.55]). In general estimated
selection coefficients were lower for females, meaning that females selected open areas
more strongly than males did, which was even more pronounced during the night.

For males, the posterior distributions of the variation of habita selection for cover
within individuals o, was similar for night (0.62 [0.04,2.07]), day (0.88 [0.05,2.08])
and twilight (0.75 [0.04,1.85]). For females, distributions for o,, were similar for night
(0.8 [0.05,2.12]) and day (0.62 [0.03,1.92]). Although the variance within individuals
was higher for twilight (1.51 [0.06,2.75]), then during night and day, the difference was

not significant. In general, posterior distributions of the variation within individuals were
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Fig. II1.2 Selection of sites characterized by cover of red deer individuals (10 males, 10 fe-
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males) over different timeperiods of the day (day, night, twilight) in June. For each
timeperiod 50 relocations for each individual were used. Posterior distributions were
ascertained after 250,000 iterations of the meme-run based on a Bayesian framework.
Posterior distributions of the selection coefficient 8 (first column), variation within
ow (second column) and among individuals o, (third column) and repeatability on
the link scale (last column). First row shows results for females, second row for males.
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skewed toward low values, except for males at day, which was unimodal (peak at =~ 1)
and that for females at night, which was bimodal (one peak at 0 and one peak at ~ 1.7).
Posterior distributions for the variation among individuals o, were all unimodal, but
had different median values. For females highest values o, were found at
day (1.9 [1.11, 3.56]), while distributions for twilight (0.77 [0.1,1.86]) and
night (0.58 [0.04,1.77]) were rather similar. For males, highest value decreased from
twilight (1.73 [1,3.29]), to night (1.31 [0.69,2.66]) and day (0.79 [0.09,1.9]). The most
obvious discrepancy was found for the variation among individuals o, during the day.
Female red deer differed the most among each other in their habitat selection behaviour
during the day, when males selected similar sites with respect to cover. Differences in
site selection with respect to cover for male red deer were the highest during twilight.
Overall, the distributions of repeatability (Fig. II1.2), derived from variation within
and among individuals, was unimodal for all time-periods and both sexes. Values for
repeatability were highest for females during the day (0.32[0.21,0.49]), when males ex-
hibited the lowest values (0.16[0.02,0.32]). Repeatability in habitat selection behaviour
of males at night (0.25[0.15,0.4]) and twilight (0.3[0.19,0.46]) did not differ statistically,
while for females distributions of repeatability values for twilight (0.14][0.02,0.29]) and
night (0.12[0.01,0.3]) were very similar.

Discussion

Estimating Repeatability: model performance

Mixed effects models have become the approach of choice for repeatability quantification,
and extensions from linear to generalized linear models exist (Nakagawa and Schielzeth,
2010). Here, we extend the class of covered models to mixed CLR, which is commonly
used in SSF analyses (Thurfjell et al., 2014). This extension allows the quantification of
repeatability in habitat selection behaviour of animals by using movement trajectories.
We have shown that repeatability of habitat selection explicitly depends on environ-
mental conditions. The reason is that within- and between individual variability is esti-
mated with respect to their response to environmental conditions. Due to the particular
structure of CLR models, random effects apply to the regression coefficients (slope) be-
cause there is no intercept (Duchesne et al., 2010). Values of repeatability therefore need
to be accompanied by information describing the environmental conditions they were
calculated, such as minimum and maximum value of the factor. We suggest to use the

longest reasonable environmental range in order to not artificially reduce repeatability.
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Recently, Leclerc et al. (2016) estimated for the first time repeatability in habitat
selection of brown bears (Ursus arctos) using resource selection functions (RSF). They
overcame the problem of estimating the within-individual variation in the selection of a
habitat by referring it to the variation in the selection between years for an individual.
However, in the case of no variation between the years, this approach would not detect
any within-individual variation even if there was a high within-individual variation in
habitat selection.

The within-individual variation in habitat selection, oy, is directly estimated in our
approach as part of the model fitting. The inconvenience of our approach is that the
model currently needs to be implemented as a Bayesian model in software such as jags
(Plummer, 2003) or stan (Carpenter et al., 2016). However, an advantage is that it
provides an uncertainty estimate of repeatability (Nakagawa and Schielzeth, 2010). An
alternative and arguably simpler way to calculate point estimates of within-individual
variability is to first fit a statistical model, and then calculating the standard deviation
of model residuals for each individual (e.g. Briffa et al., 2013). However, the simpler
alternative approach risks inflating type I error by ignoring any uncertainty in the esti-
mate and makes the implicit assumption of homoscedasticity (residuals have the same
variance for all individuals, Cleasby et al., 2014). In addition, unbalanced sampling of
individuals may affect the outcome as individuals with more data will contribute more
strongly to the outcome (Gillies et al., 2006). Mixed effect models provide a solution
to this as such models decompose the variance into among and within individual vari-
ation by simultaneously accounting for unbalanced sampling schemes (Dingemanse and
Dochtermann, 2013). As SSF can be regarded as a special case of RSF (Potts et al.,
2014) the proposed framework can easily be generalised to RSF.

Repeatability rests upon the estimates of variation within and between individuals,
0y and o,. The values of these variances may be strongly influenced by the choice
of model structure and by the sampling regime. The aim of repeatability is to identify
consistent differences between individuals rather differences in conditions that individuals
are exposed to which leads to pseudo-repeatability. Pseudo-repeatability is a bias in the
repeatability estimate due to differences in the measurement conditions (Westneat et al.,
2011). This is especially a problem when dealing with behaviour that is measured in the
field where various variables may influence the behaviour under study. Here, we paid
particular attention not to vary too many factors in the field data. For example, we
ensured that for every time slot we analysed the very same individuals and the exactly
same number of time steps (50). In general, Dingemanse and Dochtermann (2013) showed

that pseudo-repeatability can be avoided by either including a between-individual fixed

152



Paper III — Quantification of repeatability in habitat selection behaviour

covariate capturing variation due to biased sampling, or by including additional random

effects which can be accomplished within the proposed framework.

Repeatability of red deer habitat selection behaviour

We applied our model to male and female red deer monitored in the Bavarian National
Park, Germany, to estimate within- and between-individual variability of habitat selec-
tion behaviour, as well as its repeatability (R). Both sexes selected for open areas at
night and twilight although females did so to a greater extent than males (Fig. 2). In
June, most females are breeding a calf and face high energy requirement, and seek at
night habitats providing them with abundant and high quality forage they find on open
areas (Bonenfant et al.,; 2004) to cope with this high energy demand. This between-sex
difference in habitat selection behaviour was also apparent in the estimated variation
among individuals, whereby males showed moderate values for o, with little variation
over the course of the day. On the contrary, if females had the largest among-individual
variability during the day, o, was the smallest at night and twilight (Fig. 2), meaning
that almost all females are consistent in selecting for open habitats outside of daytime.
This result suggests a strong constrain on habitat selection of female red deer, again,
likely associated with the costs of breeding and milking calves at this crucial time of
the year (Clutton-Brock et al., 1984). The resulting R values of repeatability mostly
mirrored the among-individual patterns in the two sexes, being less variable for males
among the three time periods we considered (Fig. 2). Ranging between 0.12 and 0.32,
and 0.16 and 0.30 for males and females respectively, repeatability of habitat selection for
red deer seems to be slightly smaller than 0.37 the average value of repeatability calcu-
lated in a review over all behaviours (Bell et al., 2009). This consistent among-individual
differences in habitat selection for cover we report suggest a potential for selection on this
behavioural traits (Reale et al., 2010), which is supported by the evolutionary changes
observed in the ranging behaviour of elk (Cervus elaphus) in response to hunting (Ciuti
et al., 2012). In our study, a combination of human-disturbance during the day along
with the low mobility of calves could force female red deer to a restricted ranging be-
haviour and hence, to a very low variation of habitat selection for cover during the day
for a given female (low o,,). Among-individual variation hence reflects the variability
in home range composition which, in turn, could make the highest R value found for
habitat selection of females during the day an environmental constraint rather than an
evolutionary potential for selection. Repeatability values should be interpreted carefully,

in association with within- and among-individual variation.
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Conclusion

GLMMs have been used and proven to decompose the observed variance in a behaviour
into between- and within-individual variation (Dingemanse and Dochtermann, 2013).
We have extend its application for the behaviour of habitat selection in the framework
of SSF, which can be generalised to RSF. A quantification of the between- and within-
individual variation in habitat selection behaviour is necessary to asses the plasticity of a
species towards changing conditions in the face of global change, showing the importance
of an improved understanding about animal movement for wildlife management. Within-
individual variance refers to the consistency in the behaviour of individuals, which is the
prerequisite for the heritability of a trait. Differences in behaviour between individuals
must be consistent so that selective pressure can act. Hence, only if the degree of con-
sistency in individual variation is evaluated, the ecological and evolutionary implications
of habitat selection behaviour can be assesed (Sih et al., 2012).
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Supplementary material to “Quantification of repeatability in habitat selection
behaviour” by Claudia Dupke et al.

Appendix S1 R-Code. R-Code and JAGS-Code for calculating values for repeatability on
simulated data.

1

2|#’ Calculating the fraction of variation due to between-individual and
3|#2 within-individual variability
4| #7

5/ sink ("ssfmodel_both.txt")

6| cat ("

7|model {

& # priors

9 sigma_a ~ dunif (0, 1000)

10 sigma_w ~ dunif (0, 1000)

11 tau_a <- 1 / (sigma_a * sigma_a)

12 tau_w <- 1 / (sigma_w * sigma_w)

13 beta ~ dnorm( O, 0.01)

14

15 #Likelihood

16 for (i in 1:m) { # m: number of individuals

17 u_ali] 7 dnorm(0, tau_a) # Among-individual random

effect

18 }

19 for (i in 1:n) { # n: number of steps

20 u_wl[i] ~ dnorm(0, tau_w) # Within-individual random effect,
overdispersion

21 for (j in 1l:alternatives) {

22 wli, j] <- exp((beta + u_w[i] + u_alindividuall[

i]]1) * X[(i-1)#*alternatives + j])

23 }

24 p[i] <- w[i, selected[i]] / sum(w[i,])

25 # Bernoulli error

26 y[i]l = dbern(pl[il)

27 ¥

28 }

29 ", fill = TRUE)

30| sink ()

33 init_fn_both <- function() {

34 list(

35 "beta" = 0,

36 "sigma_a" = 1,
37 "sigma_w" = 1
38 )

39| }

41|#’ Simulates step selection
42| #’ Xx: environment, e.g. forest cover, takes values between 0 and 1

13| sim_ssf <- function(b, sd_a = 0, sd_w = 0, m = 10, step_count = 50, K =
20) {

44 # b: slope of selection

45 # sd_a: among-individual variation

46 # sd_w: within-individual variation

47 # m: number of individuals
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# step_count: number of steps per individual

# K: number of alternative steps per step

x <- matrix(runif (K * step_count * m), ncol = K)
#standardize

#x <- (x-mean(x))/sd(x)

b_as <- rnorm(m, mean = 0, sd = sd_a)
b_a <- rep(b_as, each = step_count)
b_w <- rnorm(step_count * m, mean = 0, sd = sd_w)

w <- exp((b + b_a + b_w) * x)
p <- w / rowSums (w)
selected <- apply(p, 1, function(x) sample.int(K, size = 1, prob = x))
list("x" = x, "b_a" = b_as, "b_w" = b_w, "selected" = selected,
"b" = b, "sd_a" = sd_a, "sd_w" = sd_w, "m" = m, "step_count" =

step_count, "K" = K)

#’ Extract data in a format suitable for jags for simulated data
get_jags_data_sim <- function(ssf_data) {
list("m" = ssf_data$m,
"n" = nrow(ssf_data$x),
"alternatives" = ssf_data$k,
"X" = as.vector(t(ssf_data$x)),
"selected" = ssf_data$selected,
"y" = rep(1, nrow(ssf_data$x)),
"individual" = rep(l:ssf_data$m, each = ssf_data$step_count))

library (R2jags)

K <- 10 # number of alternative steps

step_count <- 2b# number of steps per animal

m <- 10 # number of animals

b <- 0.5 # slope

sa <- 0.3 # among individual variation (standard deviation)
sw <- 0.2 # within individual variation (standard deviation)

#’ Simulations with between-individual and within-individual random
effect

set.seed (2)

data <- sim_ssf(b, sd_a = sa, sd_w = sw, m = m, step_count = step_count,
K = K)

jags_data <- get_jags_data_sim(data)

set.seed (2)

#’ Parameter estimation

jags_both_full <- jags(data = jags_data, inits = init_fn_both,

parameters.to.save = c("beta", "sigma_a",
"Sigma_w”’”u_w"’ llu_all R
model.file = "ssfmodel_both.txt", n.chains

= 10, n.iter = 2000, n.burnin = 1000,
n.thin = 10)
#’ plot results
par (mfrow=c(1,3) ,cex.lab=1.5,cex.axis=1.5,las=1)
plot(density(jags_both_full$BUGSoutput$sims.list$sigma_w,na.rm=TRUE),
main=paste("Posterior s within ") ,xlab="s within")
abline(v=sw,col="red")
plot (density(jags_both_full$BUGSoutput$sims.list$sigma_a,na.rm=TRUE),
main=paste("Posterior s among ",sep=""),xlab="s among")
abline(v=sa,col="red")
plot (density(jags_both_full$BUGSoutput$sims.list$beta,na.rm=TRUE),
main=paste("Posterior beta ",sep=""),xlab="beta")
abline(v=b,col="red")
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On the move: Modelling habitat

selection of large herbivores

Summary: We propose a spatially-explicit discrete non-linear
individual-based movement model that produces realistic patterns on

the population level.
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Summary

Patterns of animal movement data are analysed to understand animal behaviour. Move-
ment patterns on the population level can be described with respect to environmental
conditions, albeit we are not able to understand the ultimate motivation of animal move-
ment. New conceptual frameworks in the field of movement ecology seem to be promis-
ing to support in understanding the behavioral process of movement. In particular,
individual-based movement models (IBMM) that focus on the individual and models its
internal state have been capable of linking patterns on the population level to behavioral
processes on the individual level. In this study, we set up a discrete non-linear IBMM
that combines the framework of the traditional method of resource selection functions and
IBMM. GPS-based position data of roe deer (Capreolus capreolus) and red deer (Cervus
elaphus) recorded from 2002 to 2012 in the Bavarian Forest National Park, Germany,
were used to parameterize the model with generalized mixed effect models. Forward-
simulation of the parameterized model were used to validate the model, by comparing
observed with simulated patterns on the population, such as home range size and dis-
tribution of step length. We further followed a pattern-oriented approach by testing
whether diurnal variation of attraction to and repulsion from environmental factors like
buildings, roads, home range centre, food and cover availability are analogous for empiri-
cal and simulated data. The forward simulation provided realistic pathways with respect
to the patterns under study. Our approach illustrates a feasible combination of forward-

and reverse-modelling.
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Introduction

GPS-based positions of animals provide an insight to impressive patterns of animal ecol-
ogy such as home range formation (Moorcroft et al., 2006; Kie et al., 2010), resource use
(Manly et al., 2002; Boyce et al., 2002), dispersal (Mueller and Fagan, 2008; Cagnacci
et al., 2011) and population dynamics (Morales et al., 2010). These patterns are usually
analysed on the population level by using descriptive and rather static approaches. For
example, resource use of animals is most commonly investigated using resource selec-
tion functions (RSF) where characteristics of the population is averaged (Johnson et al.,
2002). Nonetheless, RSF studies can give reliable answers to the question of “When
and where do animals move” as with these spatio-temporal patterns of the underlying
movement process can be detected. However, the question of “Why do they move” which
occupies researchers for more than three decades (e.g. Johnson, 1980; Manly et al., 2002;
Rota et al., 2013), remains a challenge. Traditional inferential methods seem to be not
capable of entangling the links between behavioural processes, environmental conditions
and patterns on the population level. This is where the emerging field of movement
ecology may provide new approaches by leaving the population level and focussing on
the individual that ultimately produces these patterns on the population level (Nathan
and Giuggioli, 2013).

One approach is to integrate a description of the internal state of an animal in the
analysis, which provides clues about the why. The internal state can be regarded as a
multidimensional vector described by temporal varying characteristics such as gut fill,
energy reserves, reproductive status, etc. (Nathan et al., 2008). The internal state
is assumed to indicate the motivation and readiness to move. Clearly, variables of the
internal state can hardly be measured in the field. Therefore, models have been developed
that account for variation in the internal states. These models are called individual-based
models (IBM, Grimm and Railsback, 2005).

Method

We have set up a discrete non-linear individual-based movement model (IBMM) that
combines the framework of RSF and IBMM. The framework is flexible in terms of model
rules where movement is modeled as a stochastic relocation process (Avgar et al., 2013).
Given the current location and a set of potential targets, probability of selecting one of
the potential targets is based on the so-called redistribution-/ displacement-/ movement-
kernel (Avgar et al., 2013; Dalziel et al., 2008). This probability-kernel is proportional to
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a link-function of the drivers of animal movement in focus. For parameter estimation we
applied computationally efficient generalized additive mixed effects models following the
concept of RSF (Craiu et al., 2011). Parameter may vary according to the elevation of the
sun or the time of the day, respectively, using a time-varying coefficient model instead of

state-switching for changing animal behaviour over time (Hastie and Tibshirani, 1993).

Covariates

In our model movement decisions are based on the probability of the presence of the
animal. We therefore chose covariates that influence the site selection of an individual
based on literature: distance to roads (Bjorneraas et al., 2012; Coulon et al., 2008),
distance to buildings (Coulon et al., 2008) and attractivity of forage and cover availability
(Benhaiem et al., 2008; Mysterud et al., 1999; Pellerin et al., 2010; Linnell et al., 2004;
Bongi et al., 2008; Panzacchi et al., 2010; Houston et al., 1993; Godvik et al., 2009; Creel
and Winnie, 2005). Roe deer and red deer exhibit stable home ranges throughout the
summer (Linnel and Andersen, 1995). We accounted for this by including the distance
to the home range centre which is calculated as the mean of the x- and y-coordinates of

the relocation data.

Model

The discrete nonlinear varying coefficient model provides rules that steer individuals

through a spatially explicit landscape.

State variables and scales

The landscape is represented by a grid with a grid cell size of 50 x 50m?. Individuals
are characterized by ID, sex, its home range centre and a perceptual range. As we work

with territorial animals the individuals are assumed to know the whole area.

Process overview and scheduling

In brief, one model step consists of the following substeps:
1. Set the time Ty41 = Ty + At.

2. Update parameter.
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Random effects

Time of the day

Covariates of the landscape

=
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Disturbances

Distance

Redistribution kernel

Movement decision

Figure IV.1: Model overview shows the components and the process of the simulation.

Given a current position, some covariates that describe the conditions of
the surrounding, the time of day, a specific individual and some earlier esti-

probabilities for each cell in the surrounding are calcu-

lated (redistribution kernel). Based on the probabilities, one cell is selected

randomly. Iterations of this process create a simulated path.

Y

mated parameters
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6.

. Get landscape and location-based information about each grid cell in the perceptual

range of the animal.

. Calculate a selection probability for each cell within the perceptual range.

. Select one cell by random given the former calculated probabilities.

Go to 1.

In greater detail:

1.

In our analysis we chose a time lag of one hour between two successive steps.

. One fundamental element of our model is time. In particular, for each time step

we calculated the sun elevation. Sun elevation was standardized with respect to
the maximum and minimum sun elevation in spring/summer (April - August).
By excluding a possible seasonal effect we ensure focussing on the diurnal effect.
Usually, time-varying behaviour of movement is accounted for by incorporating
different states in the field of state-space-modelling, which requires a Bayesian
framework and computationally expensive MCMC methods to estimate parameters.
We circumvented this problem by using time-varying parameters. As we wanted to
describe time-varying behaviour over the day we used cyclic B-splines to describe
variation over time/sun elevation. Fourier basis functions could equally be used.
With such an varying-coefficient model (Hastie and Tibshirani, 1993) we can employ
the computationally efficient generalized mixed effect model (GLMM) approach to
analyse parameters. For each covariate which are explained in 3) we incorporate
a set of parameters that determines the variation of relevance for the movement

decision.

. Landscape characteristics at a potential target are presumably strong drivers of

movement decisions. The landscape is characterized by the availability of biomass,
the degree of cover and the proximity to buildings and roads. Location-based
information are statistics that relate the current position to potential target cells
namely distance, turning angle and the distance to the fixed home-range centre.
The set of potential target cells equals all cells within a fixed radius around the

current position of the animal.

. Given the covariates and the corresponding parameters, probability of individual

n selecting cell Y; at time ¢ is calculated using the logit link
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exp(Xntﬁnt)

P(Ynit = yil Xot, Bnt) = 1+ exp(XntBnt))
n mn

(IV.1)

where y; is a vector of binary responses, y; = 1 if 7 is visited, y; = 0 otherwise.
Landscape, location-based and memory information for cell j are stored in the jth
row of covariate matrix X with k columns. B; = (B, B2, -- -, Bkt) s a vector
containing the time-varying coefficients, whith 8,; = f,(t) and

Brwt = frw(t) = 25—1 By (t)(Yuwp + bnwp), Where z is the number of basis functions
building the spline and B} (t) are recursively defined basis functions, see (Wood,
2006, p.152) for more details. The coefficients (Vup + bnwp) represent the mixed
effects structure of the model: 7, is the population mean (fixed effect) and by is
the animal-level random effect. The random effects are independent and multivari-
ate normally distributed with mean 0 and a diagonal variance matrix, assuming no

covariance to occur.

5. Given the probabilities for each potential target cell i from equation (IV.1) one cell

is chosen to be the realized position in the next time step.

Model parameterization

For each of the N individuals we have d,, positions paired with d,, * ¢, random positions
(depends on the perceptual range of animal n). The aim was to estimate the effects of
covariates on the selection. The mixed multinomial logit model is appropriate to account
for correlation within the data produced by a specific individual and also for heterogene-
ity between different individuals. We estimated the parameters of a mixed conditional
logistic regression model using the package TwoStepClogit version 1.2.1 (Craiu et al.,
2012).

We used roe deer and red deer data for model parameterization. We only used relo-
cations from summer (June, July, August) to reduce possible confounding disturbances
of seasonal effects. Information about the data of roe deer can be found in the methods
section of Paper I and II. Information about the data of red deer can be found in the
methods section of Paper III. For the analysis, we used no more than one location per

hour to homogenize the fix location sampling regime among individuals.

Simulation

Each individual was initialized with identity, sex, its home range centre and a perceptual

range.
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Figure TV.2: The concept of a cyclic B-spline. A cyclic smooth curve (black line) between
the interval |-1,1] is built up of 6 B-spline basis functions (grey lines). The
B-spline basis functions are non-zero over only 3 intervals, whereby 3 basis
functions overlap within one interval. Basis functions multiplied by their
associated coefficients (as shown) and summed up yields the spline itself,
represented by the black line.

Cyclic B-splines

B-spline curves present a convenient way of modelling time-varying variation of the influ-
ence of covariates on site selection. B-splines are defined as piecewise polynomials which
results in a high flexibility (Wood, 2006). Basis functions of a B-spline basis are strictly
local meaning that multiple parameters build a curve whereas each parameter affects
the curve only within the intervals where the corresponding basis function is non-zero
(Fig. IV.2). The number of basis functions (rank) indicates the flexibility of the curve,
the greater the more flexible. However, the greater the rank the higher the degrees of
freedom in our model. We therefore wanted to find the optimal number of basis function

that is needed to model time-varying behaviour.

Applications

Patterns of movement trajectories (summary statistics)

We tested for the predictive ability of the model by comparing simulated with empirical
movement trajectories (Fig. IV.3). In the attachment there is an animation showing

first the path as it was observed from a adult male roe deer (Nikolaus observed.avi)
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— roads — roads
¢ buildings 4 buildings
4 fraps

Figure IV.3: The comparison of simulated (left) and observed (right) paths can be
achieved with respect to various summary statistics. In our analysis we
have included home range size, distribution of step length, variation of at-
traction to and repulsion from environmental factors like buildings, roads,
home range centre, food and cover availability. The observed path comes
from a female adult roe deer.
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Figure IV.4: Comparison of simulated and observed paths with respect to home range
size. The area of the home range is calculated as the area of smallest possible
convex polygon that encloses all positions of an animal, called maximimum
convex polygon (MCP) method. MCP_90 and MCP _ 95 refers to a MCP
where 90 and 95 percent, respectively of the relocations are used. The 5 and
10 percent, respectively, of the relocations that are removed are outliers with
respect to the distance to the home range centre. Females have in general
smaller home ranges than males. Home range sizes of simulated paths and
observed paths are about the same size.

and second when it was simulated based on the model parameterized with the observed
data (Nikolaus simulated.avi). Different summary statistics have been applied in the
past. By far the most commonly used summary statistics is the frequency distribution of
step length (Fig. IV.5) and the home range size (Fig. IV.4) as it is fundamental to the
movement process (Moorcroft et al., 2006; Dalziel et al., 2008; Rupp and Rupp, 2010;
Gautestad et al., 2013). We further aimed to test whether diurnal variation of attraction
to and repulsion from environmental factors like buildings, roads, home range centre,
food and cover availability are analogous for empirical and simulated data (Fig. IV.6).

Of course, we tested only for patterns that are mimicked in our model.

Individuality in temporal variations of movement behaviour

The temporal variation of the effect of each covariate on the movement behaviour were
estimated by using B-splines (Fig. IV.2). We found that the effect of most covariates
(e.g. step length, cover, food, distance to builings, etc.) varied over the time of day (Fig.

IV.2). Less pronounced are variation over time of day for distance to roads and home
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Figure IV.5: Comparison of simulated and observed paths with respect to the distribution
of step lengths between relocations.

range centre for female roe deer (not shown). However, for red deer we found significant
variations of the effect of all covariates (Fig. IV.7). We also calculated and visualized
the deviation of each individual from the population mean (red lines in Fig. IV.7). By
visual inspection, we found that for some covariates the variation in movement behaviour
was surprisingly synchronized, such as for distance to roads, step length and attraction
to food. In contrast, a high degree of individual deviation was found for distance to

buildings and home range centre and for attraction to cover.

Use of the model

Our model combines a model for the probability of presence with movement metrics.
Probability of presence is independent from the temporal resolution which is appealing
as the temporal resolution is a great issue in modelling animal movement (Yackulic
et al., 2011; Nathan et al., 2008). Patterns of simulated paths resemble quite well those
observed in nature (Fig. IV.4, IV.5, IV.6). Thus, the forward simulation provides realistic
pathways with respect to the patterns under study.

However, we applied the patteren-oriented approach by simple visual inspection. This
approach was originally established as support in the model parameterization process
(Grimm et al., 2005). However, inverse modelling required a high computational effort

when many parameters have to be estimated as this involves a respectively higher num-
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ber of corresponding patterns (Wiegand et al., 2003). A forward modelling approach,
where parameter are estimated in a first step, as we have shown in our study, may be

advantagous in terms of computational time.
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Comparison of simulated and observed paths with respect to diurnal varia-
tions in step length, the selection of food and cover and avoidance of build-
ings on the population level differentiated between males (left) and females
(right). GPS-based locations of observed paths originates from 11 females
and 9 male roe deer recorded in June 2006/2007 in the Bavarian Forest

National Park.
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Figure IV.7: Variation of the effect of covariates over the time of day (sun elevation) for
female red deer in June 2006/2007 calculated with cyclic B-splines. Black
line indicates the population mean with standard error in blue shade. Red
lines show the estimates for the 6 individuals. Individual deviation is calu-
clated with random effects for each coefficient building up the splines (Fig.
IV.2).
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Chapter

Synthesis and outlook

3.1 Synthesis

Patterns of animal distribution on large scale are associated to the dynamical interaction
between the internal state of individual animals and the environment on small scale.
Relocation data of animals can be regarded as a reflection of this process. The aim
of this thesis was to provide an overview of how relocation data of moving animals
can be analysed with respect to habitat selection. In the introduction, methodological
obstacles in the field of the analysis of GPS-based location data were identified. The aim
was to sensitize researchers to adapt research-related decisions to the actual research
question. An overview of possible approaches towards habitat selection was given in
which relocation data of various temporal resolutions are related to spatial data that
describe the environmental conditions in the surrounding of an animal. Statistical
methods were presented that enable the researcher to describe the conditions which
make a site attractive or unattractive to an animal. Characteristics of the population

and /or the environmental conditions are usually averaged together.
In research paper 1 and 2 we quantified habitat selection of roe deer in the Bavarian

Forest National Park. GPS-based locations of roe deer were analysed with respect to

habitat selection.
In research paper 1 we show that temporal variation and the predictability of limiting

factor is essential to understand spatial patterns of animal movement on small but also
on larger scale. We argue that temporal scales have received insufficient attention in
past studies in contrast to the role of spatial scale in the study of habitat selection.
Even though it is well known that spatial and temporal scales often co-vary in most
ecological processes. Some studies have shown that the use of certain habitats by
animals differ for different times on different temporal scales (e.g. winter vs. summer
or day vs. night). However, based on our high temporally resoluted GPS position

data we show that seasonal and daily temporal scales interact with each other. We
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further link the temporally varying patterns of habitat selection with resource use,
namely food and cover. Earlier studies have shown that prey species such as large
herbivores trade off between foraging and protection. We confirm this trade-off with
respect to protection from human disturbances and further show that this trade-off is
also subjected to temporal variations. However, we found no hints that roe deer aim to
reduce predation risk by lynx through habitat selection behaviour. We conclude that
habitat selection patterns by large herbivores varied across temporal scales in terms
of ecological drivers, variation and predictability. The following three generalisations
are derived: i) Habitat selection at the different scales may be the consequences of the
temporal variation and predictability of the limiting factors as much as its association
with fitness. ii) The landscape of fear might have less importance at the studied scale of
habitat selection than generally accepted because of the predator hunting strategy. iii)
The difference in habitat selection at the 2nd and 3rd order is supposed to be greater

for wider ranging herbivores.
Given the continuous process of movement over time by roe deer that we clearly show

in research paper 1, we are convinced that studies would benefit from using smoothing
spline functions (in generalized additive mixed effects models) when analysing temporal
variation of habitat selection. A continuous consideration of habitat selection has rarely
been shown in literature. In contrast, the alternative of a categorization of a continuous
variable, as usually done in other studies, always involves a loss of information, namely
the data of other time slots. An analysis based on smoothing splines uses all data at

the same time.
In research paper 2 we illustrate that incorporating functional response in habitat

selection studies is biologically meaningful and technically essential. Most statistical
models used to analyse habitat selection data like RSFs or SSFEs assume a proportional
selection of a given habitat according to its relative availability (Aarts et al., 2013). This
assumption has been criticized as it limits or restricts the generality of a study (Moreau
et al., 2012). We relaxed this assumption by entering relative availability as an offset
variable assuming a proportional selection with availability (coefficient forced to 1) and
by adding an additional non-linear effect of relative availability. This parametrisation of
the model is particularly useful for describing the so-called functional response of habitat
selection (Mysterud and Ims, 1998). Functional response was originally described for a
changing consumption rate of a predator with respect to the density of its prey (Holling,
1959). Later it was transferred to habitat selection, where it was defined as the change

in relative use of habitats with changing availability (Mysterud and Ims, 1998).
Indeed, in our analysis of roe deer functional response was evident for almost all

habitats. We have shown that selection for habitats differs between seasons and times
of day and so do the curves for functional response. Different shapes of the curve

for functional response for different times of day and seasons support the finding that
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primarily the needs of the animals and to a much lesser extent the availability of a
habitat determines the use of a habitat. Habitat are not selected per se but are selected
for what they provide to animals. Roe deer has to choose between habitats offering
partially opposing resources. For example, meadows provide good quality forage but no
shelter and contrary, old forest stands provide shelter but only low quality forage. The
selection of habitats by herbivores is characterised by balancing between the need for
food and cover (Godvik et al., 2009). We show that this trade-off results in a adaption
of selection with respect to the internal needs that can be satisfied in a habitat and to
a lesser extent to its availability. Hence, functional response is the consequence of this

trade-off (Mysterud and Ims, 1998).
To our knowledge, this is the first study after the seminal paper of Mysterud and

Ims (1998) that truly related relative use of habitat to availability. In consequence of
this, we were the first who linked patterns of functional response in habitat selection to
Holling’s types I, I, III and IV (Holling, 1959). This was possible as we used baseline-
category logit models that account for the multinomial choice of roe deer when selecting
a habitat. Usually, when studies aim to detect functional response they showed varying
selection strength or selection coefficients with increasing availability of a habitat. We
therefore provided conceptual plots that shows a link between variation of selection
strength of a habitat with increasing availability and the variation of use of a habitat
with increasing availability. However, we indicated that the shape of the curve that
relates selection strength with availability is not necessarily a pointer to the shape of
the curve that relates use and availability. Consequently, with RSF it is hardly possible

to detect the Holling type correctly.
In research paper 1 and 2 we focused on temporal and spatial variation in habitat

selection. It is obvious, that considering time (of day and year) and the availability of
habitat is crucial to understand habitat selection of herbivores. In our analysis, both
sources are included in a discrete choice model to explain the variation in the selection
of a specific habitat. Furthermore, we also accounted for variation among individu-
als by integrating a random factor for the individuals in the model. However, we did
not quantify individuality as a source of variation in habitat selection in these studies.
Instead, we provided a quantification of the degree of individuality in research paper
3. For this, we used a step selection function (SSF, paragraph 1.4.5.2) approach that
estimates habitat selection with respect to a covariate (i.e. cover) at the population
level while accounting for variations among and within individuals. We proposed a
framework that obtains unbiased estimates for the population-level habitat selection
strength, for the variation among individuals, and the within-individual variance. The
latter two quantities are then used to calculate the value of repeatability of the habitat
selection behaviour (Nakagawa and Schielzeth, 2010). The framework was validated on

simulated data and tested on GPS-based location of red deer recorded in the Bavarian
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Forest National Park in 2006/2007. As expected, we found diurnal variation in habitat
selection with respect to cover on the population level. Moreover, results suggested
that variation among individuals differ for different times of day. For example females,
exhibited a high degree of individual behaviour during day, as differences among indi-
viduals were greater and variances within individuals were relatively low during daytime
compared to other daytimes. This means that during daytime female individuals are
consistant and, hence, more predictable in their habitat selection behaviour on the
individual-level, however, the variety of behaviour between individuals is greater and

makes it less predictable on the population level.
Inferences on the response of animals to various environmental factors helps to un-

derstand the ecology of animals and to make predictions. However, inferences and
predictions based on descriptive statistical models (e.g. RSF, discrete choice models,
SSF) should be referred to the specific study area and are difficult to be generalized to
other areas. This is because the response of an animal to environmental factors may
depend also on other factors that are either constant in the study area or not included
in the analysis and may be different in other areas such as predation risk, density of
conspecifics, forage quality or disturbances, to name a few. Hence, the predictive abil-
ity of descriptive statistical models is limited due to the rather static nature of this

modelling approach.
However, considering movement as the behavioral mechanism that precedes habitat

selection, leads to dynamic models that integrate the movement process in the analysis.
IBMs (section 1.5) offer a model technique that is able to capture the movement process
on a small scale and to reconstruct realistic ecological patterns on broader scales. Hence,
IBMs can help to understand broad scale phenomena by simulating a series of single
movement decisions of multiple individuals. We presented such a model in research
paper 4 that is able to produce realistic simulated paths with respect to home ranges
sizes, step length distribution, temporal variation in the selection of resources (i.e. food
and cover), temporal variation in avoidance of disturbances such as settlements and

roads, temporal variations in step lengths and exploiting behaviour.

3.2 Outlook

This work focused rather on the methodology in habitat selection studies. In particular
in research papers 3 and 4 we did not provide any ecological theories or implications.
However, all applied frameworks are dedicated to serve in planning wildlife manage-
ment and conservation. Approaches presented in this theses are designed for gaining
knowledge about the ecology of species which is essential before planning conservation
strategies. In particular, as explained in detail in the introduction, movement of animals

is a core component in sustaining biodiversity in ecological systems and needs therefore
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to be incorporated in conservation management (Jeltsch et al., 2013). The urge has
been identified and first publications provide suggestions for how wildlife management

can benefit from movement ecology (Allen and Singh, 2016).
First, habitat selection studies can help to describe the conditions that make a habitat

suitable for a species (Bjgrneraas et al., 2012). In particular, factors can be identified
that influence the fitness of animals. For this, proxys of fitness that measure the pop-
ulation’s performance such as survival or reproduction rate can be related to habitat
selection (McLoughlin et al., 2005, 2006). Models that relate habitat conditions to habi-
tat selection can be used to make predictions about the distribution and abundance of a
species (under certain conditions, though, Guisan and Zimmermann, 2000; Boyce et al.,
2016). For example, Moreau et al. (2012) analysed habitat selection for the threatened
woodland caribou (Rangifer tarandus) and found that the selection of old growth forests
increased with increasing effects of forestry (clearcut areas) in the direct surrounding.
The conservation relevance is obvious, however, this application also illustrates the im-
portance of biologically meaningful models through e.g. integrating concepts such as

functional response in the analysis. We covered this in research paper 2.
Second, the question of scale was discussed several times in this thesis (e.g. research

paper 1). Certainly, it is important in modelling habitat selection, but also in planning
management actions. Finding the right scale of management that is effective requires
an understand of “where, when, how and why animals move” (Allen and Singh, 2016).
Klar et al. (2008) implemented fine-scale habitat selection models for the European
wildcat (Felis silvestris) with which potential reintroduction sites were identified. They
suggested to enlarge and connect those small areas of suitable habitats. This may in-
volve localized management actions but the greater network of areas that would arise
would be of greater scale. Hence, even though conservation is needed on a large scale,
management actions may be required on a small scale for specific problems. This can be
identified when movement and habitat selection behaviour of the focal species is known.
Also, knowledge about temporal variation in movement behaviour can be an important
guide in conservation. For example, the route of Southern bluefin tuna ( Thunnus mac-
coyit) during annual winter migration intersects with a year-round tropical tuna longline
fishery. Hobday and Hartmann (2006) suggested to exclude fishery in those areas where
the Southern bluefin tuna, a quota-managed species, is predicted by a real-time habitat

model that bases its prediction on e.g. temperature preference.
Third, due to the ongoing process of climate change, animals are faced with a rapid

alteration and loss of environmental conditions their behaviour, in particular movement
behaviour, is adapted to. The question arises whether and to what extent animals are
able to adjust their behaviour to changing quality and distribution of habitats. The
degree of plasticity in movement behaviour refers to the ability of animals to adapt

movement to environmental changes such as deterioration of local conditions or habi-
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tat loss on broader scale (Cagnacci et al., 2011). The degree of phenotypic flexibility
of animals towards changing conditions is likely linked to the fitness of its population
(McNamara et al., 2011). Hence, the detection of factors that influence the plasticity of
a species’ behaviour is of direct value for conservation planning (Winkler et al., 2014).
With our study about quantifying repeatability in habitat selection behaviour of animals
(research paper 3) we provide a framework that can quantify the degree of plasticity in
animal movement behaviour towards an environmental factor. Identifying environmen-
tal stressors that affect trait variation and repeatability is crucial in evaluating possible
management strategies which has been reviewed for fishes (Killen et al., 2016). Also, for
whooping cranes (Grus americana) Teitelbaum et al. (2016) showed that experienced
individuals exhibited a higher plasticity in movement behaviour in response to envi-
ronmental change than younger individuals. Hence, for example managment strategies
such as selective harvesting to manipulate age- or sex-structures in populations require
theoretical investigations in advance to avoid undesired evolutionary and behavioural

consequences (Milner et al., 2007).
Fourth, the type of movement in populations, such as being sedentary or exhibiting

migration, dispersal or nomadism, is essential for management actions (Allen and Singh,
2016). The type of movement has direct implications for the necessity of maintaining
connectivity with e.g. corridors (Kramer-Schadt et al., 2004). In addition, character-
istics of movement such as “movement pathways, distance and timing of movements,
shapes and sizes of home ranges, habitat selection along movement paths [need to be
understood for| planning, designing and implementing management actions” (Allen and
Singh, 2016). This exactly is, what the IBM presented in this thesis was meant for;
understanding the movement process of animals (research paper 4). Furthermore, if an
IBM accounts for plasticity in the movement behaviour of animals, it can be applied
to make predictions of animal movements in a changing environment (Latombe et al.,
2014). This is particularly necessary, when management scenarios need to be evaluated
in advance. For example, Kanagaraj et al. (2013) used an individual-based, spatially
explicit dispersal model to quantify inter-patch connectivity between habitat patches
for tiger (Panthera tigris) in India and Nepal. Simulations of corridor restoration sce-
narios strengthened their assumption that current conditions leading to declining tiger

populations, may be mitigated by the implementation of tested management actions.
Finally, predictions based on a model can only be as good as the model is. LaPoint
et al. (2013) predicted corridors of fishers (Martes pennanti) based on GPS-based data
and a weighted compositional analysis (see section 1.4.2) for fisher habitat selection.
However, when predictions were compared with data from camera traps, strong diver-
gence were assessed. The authors discussed multiple reasons that may have lead to the
little overlap. All were, of course, linked to decisions made during the model process.
Consequently, in the last sentences of this thesis I would like to put emphasis on a
responsible awareness of the researcher modelling habitat selection of animals. It is
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important to bear in mind that a model is a very simplified version of reality, hence, we
will not make out the truth. A mathematical model is only a tool to gain knowledge
about the underlying ecological process. Whenever we implement models for making
predictions, we have to have in mind all our assumptions we made during the model
process. Hence, predictions are always built on a suite of assumptions that are some-
times controverse, arbitrary, or even unwitting. Predictions are also associated with
uncertainties which have to be reported and discussed. Nice-looking patterns must not
tempt researchers to hide great uncertainties - I know that there is such a temptation.
Furthermore, we are able to set up highly complex models that we can combine with
huge real data sets, thanks to the availability of low-cost computing power. However,
just because so much is technically and creatively possible, does not necessarily mean it
helps to answer the questions of our research. The challenge is to select the appropriate
level of complexity that the model can still be understood in terms of the effect of input
on output and most notably capture the process the researcher aims to understand. As
long as we aim to do natural science we are under the obligation to serve nature and we
can do this best, if we we are aware of and communicate our strengths and weaknesses
in modelling.
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Electronic Appendix

No. File/Folder Description
A correlated random walk.gif Simulation of a correlated random walk in a simulated
landscape

B Animation Appendix6.mpg Animation shows selection probability for all habitat
types over time of day running over time of year

C Nikolaus observed.avi Animation of the locations a male roe deer visited be-
tween January 2008 and April 2009 in the landscape
of the Bavarian Forest, whereby the map shows the
availability of food assessed in June.

D Nikolaus simulated.avi Animation of the simulated locations based on the lo-
cations of a male roe deer (see above) in the landscape
of the Bavarian Forest, whereby the map shows the
availability of food assessed in June.

E FunResp (folder) R package for the analysis of habitat selection of ani-
mals with multicategory logit models (including man-
uals)

F run_analysis.R R-Code that applies package FunResp to analyse
movement data

G IBM (folder) Contains all data and R-code to analyse and to simu-

late movement data using an IBM
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