Best found linear codes over Z8 of size 2^5:
To get more detailed infos about the codes, click on the entries in the table.
For an explanation of what the different colors mean, look
below
.
n
best
3+1+1
3+2
2
1
1
3
2
2
2
4
4
4
4
5
4
4
4
6
5
4
5
7
6
6
6
8
8
8
8
9
8
8
8
10
10
9
10
11
10
10
10
12
12
12
12
13
12
12
12
14
14
13
14
15
14
14
14
16
16
16
16
17
16
16
16
18
18
18
18
19
18
18
18
20
20
20
20
21
20
20
20
22
22
22
22
23
22
22
22
24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
28
28
28
28
29
29
29
29
30
30
30
30
31
32
32
32
32
32
32
32
33
33
33
33
34
34
34
34
35
36
36
36
36
36
36
36
37
37
37
37
38
38
38
38
39
40
40
40
40
40
40
40
41
42
41
42
42
42
42
42
43
44
44
44
44
44
44
44
45
46
45
46
46
46
46
46
47
48
48
48
48
48
48
48
49
50
50
50
50
50
50
50
51
52
52
52
52
52
52
52
53
54
54
54
54
54
54
54
55
56
56
56
56
57
57
57
57
58
58
58
58
59
59
59
59
60
60
60
60
61
61
61
61
62
62
62
62
64
64
64
63
64
64
64
64
65
65
65
65
66
66
66
66
68
68
68
67
68
68
68
68
69
69
69
69
70
70
70
70
72
72
72
71
72
72
72
72
74
73
74
73
74
74
74
74
76
76
76
75
76
76
76
76
78
77
78
77
78
78
78
78
80
80
80
79
80
80
80
80
82
82
82
81
82
82
82
82
84
84
84
83
84
84
84
84
86
86
86
85
86
86
86
86
88
88
88
87
89
89
89
88
90
90
90
89
91
91
91
90
92
92
92
91
93
93
93
92
94
94
94
93
96
96
96
94
96
96
96
95
97
97
97
96
98
98
98
97
100
100
100
98
100
100
100
99
101
101
101
The color scheme indicates how the homogeneous minimum distance of the entry compares to that of other linear codes over Z8 of the same length and size 2^5.
It is as follows:
d
This code has the best minimum distance within our database, however it is possible that better ones exist.
d
This code has optimal minimum distance.
d
There are better codes of same size and length but different shape in the database.
Best found linear codes over Z8 in dependence of the size
Comparison of the Gray images for q = 2 and size = 2^5