Minimum weights of the Gray images for q = 4 and size = 4^9:


To get more detailed infos about the codes, click on the entries in the table.
For an explanation of what the different colors mean, look below.

n2024283236404448525660646872768084889296100104108112116120124128132136140144148152156160164168172176180184188192196200204208212216220224228232236240244248252256260264268272276280284288292296300304308312316320324328332336340344348352356360364368372376380384388392396
lin. bounds8-91214-1516-1819-2121-2424-2728-3032-3333-3636-3939-4242-4544-4848-5149-5452-5756-6058-6360-6663-6967-7269-7572-7874-8178-8480-8784-9087-9389-9692-9996-10298-105101-108104-111108-113110-116114-119117-122119-125122-128124-131127-134130-137132-140135-143138-146142-149144-152147-155149-158152-161156-164158-167161-170164-173167-176171-179174-182176-186
best46812151821242528323537404446485255576063666972747780838688929597100103106108112115117120123126129132135138140144146149152155158161164167169172175178181184187190193196199201204208211213216219222225228231234236240242245248251254257260263266269272275
F4[X,F]/(X^2)-2+2+2+2+146812151821242528323537404446485254576063666972747680838688929597100103106108112115117120123126129132135137140144146149152155158161164167169172175178181184187190193196199201204207210213216219222225228231234236240242245248251254257260263266268272275
F4[X]/(X^2)-2+2+2+2+146812151821242528323537404446485155576063666872747780838688929597100103106108112115117120123126129132135138140144146149152155158161164167169172175178181184187190193196199201204208210213216219222225228231234236240242245248251254257260263266269272275
GR(16,4)-2+2+2+2+146812151821242528323537404446485254576063666872747780838588929597100103106108112115117120123126129132135138140144146149152155158161164167169172175178181184187190193196199201204207211213216219222225228231234236240242245248251254257260263266268272275

The color scheme indicates how the minimum distance of the Gray image compares to that of the best known linear codes over GF(4). It is as follows:
d There are linear codes over GF(4) with minimum distance higher than d.
d The best known linear codes over GF(4) have minimum distance d.
d It is possible that there are linear codes over GF(4) with minimum distance d or higher, but none is known yet (BTKL=better-than-known-linear).
d There are no linear codes over GF(4) with minimum distance d or higher (BTL=better-than-linear).
d There was no information about the corresponding linear codes over GF(4) in the database.

Back to main page