Best found linear codes over Z4 of size 2^4:
To get more detailed infos about the codes, click on the entries in the table.
For an explanation of what the different colors mean, look
below
.
n
best
2+1+1
2+2
2
1
1
3
2
2
2
4
4
4
4
5
4
4
4
6
6
4
6
7
6
6
6
8
8
8
8
9
8
8
8
10
10
10
10
11
10
10
10
12
12
12
12
13
13
13
12
14
14
14
14
15
16
16
16
16
16
16
16
17
17
17
17
18
18
18
18
19
20
20
20
20
20
20
20
21
22
21
22
22
22
22
22
23
24
24
24
24
24
24
24
25
26
26
26
26
26
26
26
27
28
28
28
28
29
29
29
29
30
30
30
30
32
32
32
31
32
32
32
32
33
33
33
33
34
34
34
34
36
36
36
35
36
36
36
36
38
37
38
37
38
38
38
38
40
40
40
39
40
40
40
40
42
42
42
41
42
42
42
42
44
44
44
43
45
45
45
44
46
46
46
45
48
48
48
46
48
48
48
47
49
49
49
48
50
50
50
49
52
52
52
50
52
52
52
51
54
53
54
52
54
54
54
53
56
56
56
54
56
56
56
55
58
58
58
56
58
58
58
57
60
60
60
58
61
61
61
59
62
62
62
60
64
64
64
61
64
64
64
62
65
65
65
63
66
66
66
64
68
68
68
65
68
68
68
66
70
69
70
67
70
70
70
68
72
72
72
69
72
72
72
70
74
74
74
71
74
74
74
72
76
76
76
73
77
77
77
74
78
78
78
75
80
80
80
76
80
80
80
77
81
81
81
78
82
82
82
79
84
84
84
80
84
84
84
81
86
85
86
82
86
86
86
83
88
88
88
84
88
88
88
85
90
90
90
86
90
90
90
87
92
92
92
88
93
93
93
89
94
94
94
90
96
96
96
91
96
96
96
92
97
97
97
93
98
98
98
94
100
100
100
95
100
100
100
96
102
101
102
97
102
102
102
98
104
104
104
99
104
104
104
The color scheme indicates how the homogeneous minimum distance of the entry compares to that of other linear codes over Z4 of the same length and size 2^4.
It is as follows:
d
This code has the best minimum distance within our database, however it is possible that better ones exist.
d
This code has optimal minimum distance.
d
There are better codes of same size and length but different shape in the database.
Best found linear codes over Z4 in dependence of the size
Comparison of the Gray images for q = 2 and size = 2^4