Minimum weights of the Gray images for q = 5 and size = 5^4:


To get more detailed infos about the codes, click on the entries in the table.
For an explanation of what the different colors mean, look below.

n101520253035404550556065707580859095100105110115120125130135140145150155160165170175180185190195200205210215220225230235240245250255260265270275280285290295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465470475480485490495
lin. bounds610141922263034384246505559626670757982869095100103
best48121620242932374045495358616570747982869095100103107111115120120125129133137141145150154158162166170175179183186190195200203207211215220223227231235240241245250254258262266270275279283287290295300303307311315320323327331335340343347351355360362366370375379383387391395
Z25-2+1+15101520202530354040455055606065707580859095100100100105110115120123125130135140142145150155160163166170175180185190195200200202207211215220223226230235240243247250255260263267270275280285290295300300303307311315320323327331335340343347351355360363367371375380385390395
Z25-2+248121620242932374045495358616570747982869095100103107111115120120125129133137141145150154158162166170175179183186190195200203207211215220223227231235240241245250254258262266270275279283287290295300303307311315320323327331335340343347351355360362366370375379383387391395
Z5[X]/(X^2)-2+1+15101520202530354040455055606065707580859095100100100105110115120123125130135140142145150155160163166170175180185190195200200202207211215220223226230235240243247250255260263267270275280285290295300300303307311315320323327331335340343347351355360363367371375380385390395
Z5[X]/(X^2)-2+248121620242932374045495358616570747982869095100103107111115120120125129133137141145150154158162166170175179183186190195200203207211215220223227231235240241245250254258262266270275279283287290295300303307311315320323327331335340343347351355360362366370375379383387391395

The color scheme indicates how the minimum distance of the Gray image compares to that of the best known linear codes over GF(5). It is as follows:
d There are linear codes over GF(5) with minimum distance higher than d.
d The best known linear codes over GF(5) have minimum distance d.
d It is possible that there are linear codes over GF(5) with minimum distance d or higher, but none is known yet (BTKL=better-than-known-linear).
d There are no linear codes over GF(5) with minimum distance d or higher (BTL=better-than-linear).
d There was no information about the corresponding linear codes over GF(5) in the database.

Back to main page