
Excitation dynamics in molecular
systems from efficient grid-based
real-time density functional theory

von

Ingo Schelter

Excitation dynamics in molecular
systems from efficient grid-based
real-time density functional theory

Genehmigte Abhandlung
Von der Universität Bayreuth

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

von

Ingo Schelter

geboren in Marktredwitz

1. Gutachter: Prof. Dr. Stephan Kümmel
2. Gutachter: Prof. Dr. Matthias Ullmann

Tag der Einreichung: 19. Dezember 2016
Tag des Kolloquiums: 10. März 2016

Abstract

Making use of solar energy is a very promising approach for satisfying the energy needs
of mankind. Nature has perfected its light harvesting mechanisms in plants, algae, and
photosynthetic bacteria with respect to efficiency and stability. The complexes that
participate in the photosynthetic process are typically aggregates of chromophores
that are often anchored inside a protein scaffold. To understand the underlying pro-
cesses that make natural light harvesting so efficient on the one hand and protect
the participating protein-chromophore complexes from damage on the other hand is a
key issue for the development of artificial light harvesting devices. Next to extensive
experimental studies, this requires a detailed theoretical description on the molecular,
quantum-mechanical level.
Time-dependent density functional theory (TDDFT) appears as a natural choice in

this respect since it combines predictive power and reliability with computational effi-
ciency. Especially its real-space and real-time implementation is applicable to molec-
ular systems with hundreds or even up to a few thousands of electrons. However,
utilizing the theoretical potential of TDDFT requires modern, highly parallel com-
puters and programs that are able to exploit their full computational power. One
major part of this thesis is dedicated to the development of the real-space and real-
time TDDFT code BTDFT. The challenges within this part include a highly scalable
parallelization and the development of data structures that allow for efficient memory
access while keeping the code simple and flexible.
The reliable simulation of excitation-energy transfer (EET) within real-time TDDFT

requires an accurate description of the relevant excited states and their nature. This
includes excitation energies, oscillator strengths, and transition densities, which allow
to visualize the spatial oscillations of the time-dependent electron density. A second
part in this work addresses the accurate computation of these quantities from real-time
TDDFT.
The exchange-correlation (xc) energy, which describes the non-trivial many-particle

interactions within TDDFT, has to be approximated. The size of typical light-har-
vesting systems requires the use of lightweight approximations to exchange and cor-
relation. These are well established and were used in the past with great success but
also have well known deficiencies. The most critical one within this work is their
systematic inability to describe charge-transfer processes correctly, which results from
a spurious self-interaction of an electron with its own charge density. The last part
within this thesis discusses the reliability of real-time TDDFT with lightweight xc
approximations for EET simulations in natural systems by means of one and two ag-
gregated chromophores that appear in nature. Their environment, which consists of
a protein scaffold and other chromophores, is included into these investigations ex-
plicitly or through an electrostatic potential. Finally, the outlook is dedicated to the
general real-time simulation of energy transfer processes within real-time TDDFT.

Kurzfassung

Die Verwendung der Sonnenenergie zur Deckung des stetig wachsenden Energiebedarfs
der Menschheit birgt großes Potential. Die Natur hat ihre Lichtsammelkomplexe in
Pflanzen, Algen und photosynthetischen Bakterien bereits im Hinblick auf Effizienz
und Stabilität perfektioniert. Die an der Photosynthese beteiligten Komplexe sind typ-
ischerweise Aggregate aus Chromophoren, die in ein Proteingerüst eingebettet sind.
Ein vielversprechender Ansatz zur Entwicklung effizienter Solarzellen besteht darin, die
den natürlichen Photosystemen zugrundeliegenden Prozesse zu verstehen, welche die
Systeme einerseits effizient machen und andererseits vor Umwelteinflüssen schützen.
Neben einer umfassenden experimentellen Erforschung bedarf es dazu einer detail-
lierten theoretischen Beschreibung auf molekularer, quantenmechanischer Ebene.
Zu diesem Zweck verwende ich im Rahmen meiner Arbeit die zeitabhängige Dichte-

funktionaltheorie, da sie Vorhersagekraft und Verlässlichkeit mit Recheneffizienz vere-
int. Ihre Echtzeit-Implementierung auf einem Realraum-Gitter ist für molekulare Sys-
teme mit hunderten oder sogar einigen tausend Elektronen geeignet. Um das volle
Potential der Dichtefunktionaltheorie nutzen zu können, sind hochparallele Computer
sowie Programme, die deren volle Rechenleistung ausschöpfen, erforderlich. Daher be-
handelt ein wesentlicher Teil meiner Arbeit die Entwicklung des Programms BTDFT,
welches die zugrundeliegenden Gleichungen gitterbasiert und effizient im Zeitraum löst.
Zu den wesentlichen Herausforderungen zählt hierbei die skalierbare Parallelisierung
und die Entwicklung von Datenstrukturen, welche einen effizienten Speicherzugriff
ermöglichen, das Programm aber gleichzeitig einfach und flexibel halten.
Für eine verlässliche Simulation von Energietransferprozessen braucht es eine genaue

Beschreibung der relevanten, elektronischen Anregungen und ihres Charakters. Das
bedeutet insbesondere die Vorhersage von Anregungsenergien, Dipolstärken und Über-
gangsdichten, welche eine Visualisierung der räumlichen Dichteoszillationen ermögli-
chen. Ein weiterer Teil meiner Arbeit behandelt die genaue Auswertung dieser Größen
im Rahmen zeitabhängiger Dichtefunktionaltheorie im Echtzeit-Formalismus.
In der Dichtefunktionaltheorie werden alle nicht-trivialen Wechselwirkungseffekte

durch das Austauschkorrelationsfunktional (xc-Funktional) beschrieben. Aufgrund
der Größe typischer Lichtsammelsysteme können zu deren Beschreibung nur einfache
Näherungen an das xc-Funktional verwendet werden. Diese sind zwar etabliert und
wurden in der Vergangenheit mit großem Erfolg eingesetzt, weisen allerdings wohlbekan-
nte Schwächen auf. Jene zeigen sich im Zusammenhang mit meiner Arbeit durch
systematische Defizite bei der Beschreibung von Ladungstransferprozessen, was von
einer spuriosen Selbstwechselwirkung eines Elektrons mit seiner eigenen Ladungs-
dichte herrührt. Unter Verwendung eines oder zweier gekoppelter, natürlicher Chro-
mophore diskutiere ich im letzten Teil meiner Arbeit die Aussagekraft einer bes-
timmten Näherung für die Simulation von Energietransferprozessen. Dabei wird die
Umgebung der Chromophore im Proteingerüst teilweise explizit oder implizit durch ein
elektrostatisches Potential berücksichtigt. Abschließend gebe ich einen Ausblick auf
die allgemeine Echtzeit-Simulation von Energietransferprozessen unter Verwendung
der zeitabhängigen Dichtefunktionaltheorie.

Contents

Abstract 5

1. Introduction 1

2. Density functional theory and time-dependent density functional theory 3
2.1. Quantum mechanics and the exponential wall 3
2.2. Kohn-Sham density functional theory 4

2.2.1. The Hohenberg-Kohn theorem and variational principle 4
2.2.2. The Kohn-Sham equations . 5

2.3. Time-dependent Kohn-Sham density functional theory 6
2.3.1. The Runge-Gross theorem . 6
2.3.2. The time-dependent Kohn-Sham equations 7

2.4. Spin density functional theory in spin-unpolarized systems 8
2.5. Approximations to the exchange-correlation functional 8

2.5.1. The local density approximation 9
2.5.2. Self interaction and charge transfer 10
2.5.3. Range-separated hybrid functionals 11

3. The BTDFT program set 13
3.1. Introductory notes . 13
3.2. Modern computer architectures and parallelization 15

3.2.1. Modern computer architectures 15
3.2.2. Parallelization with MPI . 16

3.3. Grid setup, parallelization, and algorithms 17
3.3.1. The real-space grid and grid parallelization 18
3.3.2. Orbital parallelization and virtual process topology 21
3.3.3. Non-local pseudo potentials . 23
3.3.4. Diagonalization of the Kohn-Sham equations 24
3.3.5. Propagation of the time-dependent Kohn-Sham equations . . . 25
3.3.6. Hartree potential and multipole expansion 27

3.4. Performance engineering . 28
3.4.1. The memory-bandwidth bottleneck 29
3.4.2. The BTDFT Hamiltonian . 30
3.4.3. Cache blocking . 35

3.5. Performance tests . 38
3.5.1. Polyacetylen chain . 38
3.5.2. Two bacteriochlorophylls . 40

4. Evaluation of electronic spectra and transition densities 43
4.1. Traditional real-time evaluation of spectra and transition densities . . 43
4.2. Refined excitation energies and oscillator strengths 45
4.3. Refined transition densities . 51

5. Excitation dynamics between bacteriochlorophylls 55
5.1. The LH2 complex of Rhodoblastus acidophilus 56

5.2. Modelling the environment . 59
5.2.1. Electrostatic environment potential and ligands 59
5.2.2. Influence on the electronic ground state 59

5.3. Spectra of B850 bacteriochlorophylls from TDLDA and ωPBE 60
5.3.1. Spectra of single bacteriochlorophylls 60
5.3.2. Spectra of two aggregated bacteriochlorophylls 63
5.3.3. Influence of the environment on the spectra 65

5.4. Coupling strengths and real-time energy transfer 65
5.4.1. A two-level donor-acceptor model 67
5.4.2. Description of excitation-energy transfer 71
5.4.3. Prediction of coupling strengths 74

5.5. Coupling strengths between chromophores from real-time TDDFT . . 76
5.6. Conclusion and outlook . 79

Appendix 81

A. BTDFT - Additional documentation 83
A.1. File tree and release policy . 83

A.1.1. The BTDFT file tree . 83
A.1.2. Release history and release policy 84

A.2. Compilation and execution . 84
A.2.1. Compilation . 85
A.2.2. Configuration . 86
A.2.3. Submit files . 86
A.2.4. Execution . 86
A.2.5. Practical remarks . 88

A.3. Implementation principles . 90
A.3.1. Program sequences . 90
A.3.2. Grid details . 92
A.3.3. Mapping MPI processes onto the hardware 94
A.3.4. Optimized convergence criteria 95
A.3.5. File layout and implementation 95

A.4. The ACE file format . 103
A.5. The Doxygen documentation . 104
A.6. Version control with Git . 104

B. Computer clusters in Bayreuth 109
B.1. btrzx5 . 109
B.2. btrzx3 . 110

C. Additional benchmarks and performance engineering 113
C.1. Latency and bandwidth in parallel networks 113
C.2. Node-level hardware parallelization . 115
C.3. Impact of the cache hierarchy . 116
C.4. Code optimization made simple . 117

C.4.1. General approach . 117
C.4.2. Easy rules . 118

C.4.3. Remarks about OpenMP and the 3D Jacobi smoother 121

D. Proof concerning density fluctuations in a donor-acceptor model 125

E. Numerical details and supporting information 131
E.1. Pseudo potentials . 131
E.2. Presented calculations . 132

E.2.1. Section 3 . 132
E.2.2. Section 4 . 132
E.2.3. Section 5 . 134

E.3. Additional calculations . 135
E.3.1. Additional spectra of B301, B302, and B303 135
E.3.2. Transition densities and natural transition orbitals 137

F. Preparation of the LH2 structure and the environment potential 147
F.1. Preparation of the LH2 structure . 147
F.2. Truncation of phytyl tails . 147
F.3. Preparation of histidine residues . 147
F.4. The environment potential . 148

List of Abbreviations 149

Bibliography 151

Danksagung 167

Eidesstattliche Versicherung 169

1. Introduction

In view of the increasing energy demands of mankind accompanied by the pollution
of our environment due to conventional power plants, the need for renewable energy
sources moves more and more into the awareness of our society. This is mirrored by
many public and political processes of the last years in many countries all over the
world. The sun is the most important energy source for most organisms on earth.
Since the incident solar energy exceeds the world’s energy consumption by a factor of
several thousand, its direct use appears as one of the most promising candidates for
resolving the above mentioned problems. [Tur+00; Tur+12; Rog+12]
While established, inorganic solar cells are reliable and efficient they are also expen-

sive in production. This moves the focus towards solar cells made of organic materials
that are cheap to produce and highly flexible in their application, not least due to the
huge variety of possibilities for engineering in organic and macromolecular chemistry.
Still, at the moment, they cannot compete with their inorganic counterparts in terms
of lifetime and efficiency. [GNS07; TF08; Hag+10]
Nature has perfected its light-harvesting mechanisms in plants, algae, and special

kinds of bacteria. Photosynthetic purple bacteria, as an outstanding example, con-
vert the incident light energy with an efficiency of nearly 100 %. Furthermore, they
developed effective photoprotection techniques that prevent the related macromolec-
ular complexes from being damaged by the incoming radiation. It is not surprising
that the investigation of the underlying biological, chemical, and physical processes
preoccupies natural science since many years, not least in view of applications in ar-
tificial light harvesting. At the center of this discussion are questions concerning the
occurrence of quantum-mechanical coherence in the excitation-energy transfer (EET)
or the separation of charges within the reaction center (RC). [Küh95; Hu+02; CGK06;
Eng+07; CF09; Fle+12; SŞS12]
To understand the related, complex processes that ultimately lead to the observed

efficiency and stability of natural light harvesting, a theoretical description by means of
quantum mechanics is mandatory. The size of light-harvesting systems with thousands
of electrons, the biological environment, and the underlying processes taking place on
various length and time scales makes this task challenging for state-of-the-art methods.
Moreover, theory cannot simulate nature in its full complexity but relies on model
assumptions and approximations, which typically have a narrow scope. It is therefore
necessary to combine different methods to answer distinct aspects of the fundamental
questions, which may be merged into an image of reality. [Hu+02; CF09; CM16]
At the lower end of length and time scales, this begins with the molecules that are

the key building blocks of natural light-harvesting systems. Investigating the dynamics
of electronic excitations therein requires a powerful machinery of many-body quantum
theory and its implementation through efficient program codes that are optimized for
modern, highly parallel computers. For this task time-dependent density functional
theory (TDDFT) is a natural candidate since it combines a first principles approach
with reliability, computational efficiency, and flexibility. In particular, its efficient real-
time formulation as well as the increasing computational power bring natural light-
harvesting systems into the reach of modern computational physics. [YB96; CRS97;
SS96; YB99; CMR04; Kro+06; And+15; Jor+15]
During my work, I developed a program called BTDFT that performs calculations in

1

the real-space and real-time framework of TDDFT. In view of large molecular systems
with up to a few thousand electrons, I laid special emphasis on an scalable paralleliza-
tion and an efficient memory-access. Since the proper description of excitations and
excited states lies at the heart of EET simulations, I elaborated a scheme to obtain
those data accurately from real-time propagations. I used this scheme to investigate
the reliability and predictive power of real-time TDDFT for the description of EET
between the chromophores in the LH2 antenna complex of purple bacteria. In the
focus of my study were the occurrence of spurious excitations, the role of the elec-
trostatic environment of the chromophores, and the proper description of real-time
energy transfer.
This thesis is organized as follows: In section 2 I introduce the main concepts of

TDDFT. These include the fundamental theorems of Hohenberg and Kohn as well
as Runge and Gross and the Kohn-Sham formulation of TDDFT. Subsequently, I
present the BTDFT program in section 3. After a short excursus about modern
computer architectures, I explain the basic grid setup, the parallelization, and the
most important principles and algorithms. I finally discuss one of the fundamental
approaches for the performance engineering on BTDFT and show performance tests
for practically relevant systems. More details on the implementation, compilation,
execution, etc. of BTDFT can be found in appendix A. General remarks on simple
performance engineering approaches are summarized in appendix C. The subsequent
discussion about the real-time description of EET requires a detailed knowledge of
excited states in the relevant energy range. Therefore, I elaborate a scheme to obtain
accurate excitation energies, oscillator strengths, and transition densities from real-
time TDDFT in section 4. Finally, section 5, which reports the current state of my
research, is dedicated to the dynamics of excitation energy between chromophores
that appear in the LH2 antenna complex of Rhodoblastus (Rbl.) acidophilus. In
this course, I introduce the relevant structural features of the chromophore-protein
complex and discuss the reliability of EET simulations with real-time TDDFT in
the so-called B850 ring by means of one and two aggregated bacteriochlorophylls
(BChl). The latter includes the effect of the BChl’s environment, which is treated
by an electrostatic potential or partly explicitly within the TDDFT calculation. I
further investigate the computation of coupling strengths from real-time simulations
and discuss the direct use of density fluctuations as a measure for an energy density
or an energy per chromophore in view of future EET simulations.

2

2. Density functional theory and time-dependent density
functional theory

2.1. Quantum mechanics and the exponential wall

Quantum mechanics is the fundamental theory for the description of microscopic sys-
tems. While there exist many philosophical interpretations of quantum mechanics
concerning, e.g., determinism or the role of measurement processes, its mathematical
evaluation and application is, in principle, clear. All information about a station-
ary system is contained in an abstract wave function |ψ〉 that obeys the stationary
Schrödinger equation [Sch26]

Ĥ|ψ〉 = E|ψ〉 (2.1)

with the energy
E = 〈ψ|Ĥ|ψ〉 (2.2)

and the Hamiltonian Ĥ. For a system in an external potential v(r) with a two-particle
interaction w(r, r′) the Hamiltonian in its spatial representation reads

Ĥ =

N∑
j=1

− ~2

2m
∆rj︸ ︷︷ ︸

T̂

+

N∑
j=1

v(rj)︸ ︷︷ ︸
V̂

+
1

2

N∑
j,k=1

j 6=k

w(rj , rk)

︸ ︷︷ ︸
Ŵ

. (2.3)

It can be split into operators for the kinetic energy T̂ , the potential energy V̂ , and
the interaction energy Ŵ . N is the number of particles and ∆rj is the Laplacian that
acts on the coordinate rj of the jth particle. m is the particle’s mass and ~ is Plank’s
constant. Expectation values of observables, which are described by an operator Ô,
are calculated via

〈Ô〉ψ = 〈ψ|Ô|ψ〉 =

∫
. . .

∫
ψ∗({xj})Ôψ({xj})dx1 . . . dxN , (2.4)

where {xj} is a shorthand notation for (r1, s1), . . . , (rN , sN) and sj is the spin index.
The integral over dxj includes a spatial integration over d3rj and a summation over
the spin values sj .
From equation (2.1) and (2.3) it is clear that the wave function in its spatial repre-

sentation depends on the coordinates of all N particles. The analytical solution of the
Schrödinger equation is impossible in almost all cases and the effort for its numerical
solution rises exponentially with the number of particles. This is commonly known as
’exponential wall’ [Koh99, p. 1257].
The complexity of the wave function makes approximations necessary for practical

applications. On the one hand, many of the earlier approaches such as the one of
Heitler and London [HL27] or the one of Hartree and Fock [Har28; Foc30] approx-
imated the wave function itself. On the other hand, Thomas-Fermi theory [Tho27;
Fer27], even if not very successful in many respects [Cap06; Bur07], can be considered
as the first, approximate description of quantum mechanics that only uses the particle
density as the central object.

3

2.2. Kohn-Sham density functional theory

2.2.1. The Hohenberg-Kohn theorem and variational principle

Modern density functional theory (DFT) is a reformulation of quantum mechanics that
relies on the ground-state particle density n0(r) alone. The fundamental statement of
DFT for non-degenerate systems is that there exists a one-to-one correspondence be-
tween the ground-state density and the external potential, up to an additive constant.
As a consequence, the wave function and therefore all ground-state observables are
unique functionals of the ground-state density, i.e., |ψ〉 = |ψ[n0]〉 and O[n0] = 〈Ô〉ψ[n0].
This was proven by Hohenberg and Kohn (HK) in 1964 [HK64] and is therefore termed
HK theorem. Deeper insights into the contents of the current section are subject of
other reviews and books, e.g., [DG90; Koh99; Fio+03; PK03; Cap06; Bur07].
The proof of the HK theorem employs that the Hamiltonian in equation (2.3) is, for

a given two-particle interaction w(r, r′), uniquely determined by the potential v(r)
and the number of particles N . The particle number is obtained from the ground-state
density by spatial integration and thus a simple functional of the density. Hohenberg
and Kohn showed in their proof that the same is true for the potential v = v[n0] and
thus for the whole Hamiltonian and its eigenvalues and eigenfunctions.
The second statement, termed HK variational principle, says that the energyEv[n] =
〈T̂ + V̂ + Ŵ 〉ψ[n] is as well a functional of the density and minimized by the GS den-
sity n0. E0 = Ev[n0] = min∫ n(r)d3r=N Ev[n] is the corresponding ground-state energy
where the minimization is constrained to the densities that result from a valid potential
v(r) and integrate to the particle number N .
The HK theorem, on the one hand, guarantees the uniqueness of a system that

corresponds to a given ground-state density. The HK variational principle, on the
other hand, is a first step towards its application since it sets a route to determine the
GS density from the minimization of the energy functional. The latter is not known
in general but can be divided into two parts

Ev[n] = 〈V̂ 〉ψ[n]︸ ︷︷ ︸
=V [n]

+ 〈T̂ + Ŵ 〉ψ[n]︸ ︷︷ ︸
=FHK[n]

. (2.5)

The first functional reads
V [n] =

∫
n(r)v(r)d3r (2.6)

and is easily evaluated for a given density and potential. The HK functional FHK[n]
is unknown but only depends on the kind of two-particle interaction. Hence, FHK[n]
is the same for all systems with the same two-particle interaction and is universal in
this respect.
The restriction to non-degenerate systems can be lifted. The only difference is that

the functional dependence of an observable may not be unique if two degenerate states
provide the same density. All other statements remain, especially that the ground-
state energy remains a functional of the density as well as the HK variational principle.
[DG90]

4

2.2.2. The Kohn-Sham equations

The statement of the HK theorem that all information about a time-independent
system is given by its ground-state density is remarkable. Further does the HK vari-
ational principle set a route for obtaining the ground state from an unknown but
approximable energy functional by minimizing it with respect to valid N -particle den-
sities. The dawn of DFT, however, came with its Kohn-Sham (KS) formulation [KS65],
which made DFT applicable to a broad scope of applications while delivering results
with high accuracy and computational efficiency [DG90]. The contents in this section
again follow [DG90].
Kohn and Sham formulated DFT using an auxiliary system of N non-interacting

particles that move in an effective, local potential vKS and reproduce the density of
the interacting system. The KS particles follow the equation

ĤKSϕj(r) = εjϕj(r) , ε1 ≤ ε2 ≤ . . . (2.7)

with the KS Hamiltonian

ĤKS = − ~2

2m
∆ + vKS(r) , (2.8)

the KS orbitals ϕj , and KS eigenvalues εj for j = 1, . . . , N . Since the HK theorem
guarantees that vKS is unique1, the KS orbitals are functionals of the density ϕj =
ϕj [n]. The density of the KS system, and therefore the density of the real interacting
one, is given by

n(r) = nKS(r) =

N∑
j=1

|ϕj(r)|2 . (2.9)

The resulting equations look like those of an effective single-particle theory. Still,
the reformulation of quantum mechanics in the KS scheme is in principle exact if the
exact KS potential vKS is chosen. In order to derive an expression for vKS, one applies
the HK variational principle to the energy, which is split into

Ev[n] = TKS[n] +

∫
v(r)n(r)d3r +

1

2

∫
n(r)w(r, r′)n(r′)d3rd3r′ + Exc[n] . (2.10)

TKS[n] is the kinetic energy of the non-interacting KS system

TKS[n] = −
∫

~2

2m

N∑
j=1

ϕ∗j (r)∆ϕj(r)d3r , (2.11)

which is a valid density functional since the KS orbitals are valid density functionals.
For interacting electrons, w is the Coulomb interaction w(r, r′) = e2

4πε0
1

|r−r′| and the
third term on the right hand side of equation (2.10) is the Hartree energy [Har28;
Cap06; DG90]

EH[n] =
e2

8πε0

∫
n(r)n(r′)

|r − r′|
d3rd3r′ . (2.12)

1Implications of this statement are discussed in [DG90] under the heading “v-representability”.

5

The so-called exchange-correlation (xc) energy

Exc[n] = FHK [n]− TKS[n]− 1

2

∫
n(r)w(r, r′)n(r′)d3rd3r′ (2.13)

contains all remaining many-particle effects.
Employing the HK variational principle to the energy (2.10) results in an expression

for the KS potential
vKS(r) = v(r) + vH(r) + vxc(r) (2.14)

with the Hartree potential

vH(r) =
e2

4πε0

∫
n(r′)

|r − r′|
d3r′ (2.15)

and the xc potential

vxc(r) =
δExc[n]

δn(r)
. (2.16)

Equations (2.7), (2.9), and (2.14) define the KS equations that are usually solved
self-consistently. The xc energy typically has to be approximated in practice. The xc
approximations used in this thesis are outlined in section 2.5.
Finally, the KS eigenvalues and KS orbitals have been introduced as purely math-

ematical objects and one has to be careful in interpreting them in terms of phys-
ical quantities. However, at least some of them have an important meaning (see
e.g. [DG90; Cap06]). The eigenvalue of the highest occupied molecular orbital
(HOMO) of an N -electron system equals minus the first ionization energy IP (N) =
E0(N −1)−E0(N). The HOMO eigenvalue of the system with N +1 electrons equals
minus the electron affinity EA(N) = E0(N)−E0(N+1), i.e., [Per+82; LPS84; AB85;
Cap06]

εHOMO(N) = −IP(N) and εHOMO(N + 1) = −EA(N) . (2.17)

E0(M) from above is the ground-state energy of the respective M -electron system. In
addition, the density is asymptotically dominated by the orbital density of the HOMO2

[Kre+98], which is therefore important for the electronic structure of a molecule as it
is seen from outside.
The above equalities are only exact if the exact xc energy functional is applied.

Since usually approximations have to be used, the approximate εHOMO may often be
an unsatisfying approximation to the real IP or EA [Cap06].

2.3. Time-dependent Kohn-Sham density functional theory

2.3.1. The Runge-Gross theorem

Time-dependent density functional theory (TDDFT) [ZS80; RG84; CAS95; PGG96;
GDP96; Lee98; Lee01; MG04; Mar+12] is an extension of the ideas of DFT to time-
dependent systems. In analogy to its time-independent counterpart, TDDFT states
that the time-dependent particle density n(r, t) determines the time-dependent poten-
tial v(r, t) up to a purely time-dependent function. The related proof was formulated

2But on nodal surfaces of the HOMO [KP03].

6

by Runge and Gross (RG) in 1984 [RG84]. The contents of this section follow [MG04;
GDP96].
In TDDFT the role of the energy (2.2) is replaced by the action

A[ψ] =

∫ t1

t0

〈ψ(t)|i~ ∂
∂t
− Ĥ(t)|ψ(t)〉 (2.18)

with the Hamiltonian of equation (2.3) but a time-dependent external potential v =
v(r, t). The wave function that makes the action stationary is the solution of the
time-dependent Schrödinger equation. At its stationary point, the action is always
zero. This makes the action a much less useful quantity compared to the energy in
the time-independent case since the action at its stationary point contains no physical
information. Moreover, the replacement of the minimum principle by a stationary
principle makes the proof of the RG theorem more elaborate than that of the HK
theorem. In addition, the stationary point of the action, and therefore the time-
dependent density and all related quantities, depends on the initial state of the system
since the time-dependent Schrödinger equation is an initial value problem. This means
that the one-to-one correspondence between the time-dependent density and the time-
dependent potential in the RG theorem holds only for a fixed initial state.

2.3.2. The time-dependent Kohn-Sham equations

The time-dependent Kohn-Sham (TDKS) scheme seems to be a straightforward ex-
tension of the ground-state ideas. The KS orbitals follow the effective single-particle
equation [MG04; GDP96]

i~
∂

∂t
ϕj(r, t) =

[
− ~2

2m
∆ + vKS(r, t)

]
︸ ︷︷ ︸

=ĤKS(t)

ϕj(r, t) (2.19)

with the KS potential

vKS(r, t) = v(r, t) + vH(r, t) + vxc(r, t) . (2.20)

The time-dependent density is

n(r, t) =

N∑
j=1

|ϕj(r, t)|2 (2.21)

and the time-dependent Hartree potential is the one of equation (2.15) evaluated with
n(r, t).
However, the time-dependent xc potential is more involved. Similar to the time-

independent case, vxc can be defined as the functional derivative of an xc action
functional with respect to the time-dependent density. However, this leads to an
inconsistency concerning causality [GDP96, §5.1] that was resolved by van Leeuwen
[Lee98] by defining a new action functional Ã within the Keldysh formalism. The
time-dependent xc potential can thus be expressed as

vxc(r, t) =
δÃxc

δn(r, τK)

∣∣∣∣∣
n(r,t)

(2.22)

7

with the Keldysh pseudo time τK.
A further, practical problem is that finding good approximations for the action is

cumbersome. Instead, it is common practice to use an adiabatic approximation. To
this end, the time-dependent density is inserted into an approximate ground-state xc
functional. Adiabatic approximations are local in time and therefore neglect memory
effects. [GDP96; Fio+03; MG04]

2.4. Spin density functional theory in spin-unpolarized systems

The electronic systems addressed in this thesis have an additional spin degree of free-
dom that did not appear so far. Still, all presented theorems can easily be extended
to spin-dependent systems [BH72; RC73; DG90; PK03; Fio+03]. In this respect, the
total density is decomposed into the spin densities of the two spin channels up (↑) and
down (↓)

n =
∑
σ=↑,↓

nσ =
∑
σ=↑,↓

Nσ∑
j=1

|ϕjσ|2 , (2.23)

where Nσ is the number of occupied spin orbitals ϕjσ in the spin channel σ. The
density and the orbitals can be time-dependent or time-independent in this equation.
All (TD)KS equations remain essentially the same. Yet, the xc energy (or action)

now depends on both spin densities rather than the total density alone, i.e., Exc =
Exc[n↑, n↓]. In ground-state DFT the spin-dependent xc potential is therefore defined
as

vxc,σ(r) =
δExc[n↑, n↓]

nσ(r)
. (2.24)

The same applies to the time-dependent case.
The KS orbitals, the KS eigenvalues, the KS potential, and therefore the KS Hamil-

tonian get an additional spin index. This means that the (TD)KS equations must in
principle be solved for both spin channels, which are coupled by the Hartree and xc
potentials. However, if the system has no spin polarization, i.e., both spin channels
are equally occupied and have equal spin densities, only one spin channel needs to be
calculated. This is the case in all of the calculations presented in this work.

2.5. Approximations to the exchange-correlation functional

The sections about the KS formulation of ground-state DFT and TDDFT introduced
the concept of exchange and correlation, which is also known from other many-particle
quantum theories such as Hartree-Fock [Har28; Foc30] and successors. A key issue in
DFT is to choose a meaningful approximation for the xc energy (or action) func-
tional, which leads to the xc potential appearing in the (TD)KS equations. At the
current stage of the theory, many xc functionals have been developed that improve
the predictive power of (TD)DFT but also increase the computational effort.
The development of new xc functionals has been described by John Perdew by

means of Jacob’s ladder [PK03; KK08]: On the first rung stands the local density
approximation (LDA) [KS65], which depends on the density in a spatially local way.
Each further rung adds complexity to the functionals.

8

Including the gradient of the density leads to the semi-local generalized gradient
approximations (GGA), of which the one of Perdew, Burke, and Ernzerhof (PBE)
[PBE96; PBE97] is very prominent. So-called orbital functionals [KK08] are expressed
through the KS orbitals Exc = Exc[{ϕj [n]}] and thus depend on the density in a
non-local way. The exact exchange (EXX) [GG95; GKG97], which is the Hartree-
Fock exchange evaluated with the KS orbitals, and self-interaction corrected (SIC)
[PZ81] functionals are of this type. Both counteract the so-called self-interaction error
discussed in a subsequent section. [Cap06; KK08]
A further step in the development of new functionals is to mix the EXX func-

tional with semi-local exchange and correlation, which results in so-called global hy-
brids such as B3LYP [Bec93; Ste+94]. Finally, range-separated hybrid (RSH) [BN05;
SKB09b; SKB09a; BLS10; Kar+11; Kör+11; Kro+12; KKK13] functionals such as
ωPBE [VS06] split the interaction into a long-range and a short-range part, which are
treated with different approximations for exchange and correlation.
Evaluating the xc potential from orbital functionals through equation (2.16) requires

the solution of the optimized effective potential (OEP) equation [SH53; TS76; KLI92a;
KLI92b; EV93; LKI93; GG95; GKG97]. This is cumbersome in ground-state DFT and
almost impossible in TDDFT [KK08; WU08; Sch13]. Therefore, approximations by,
e.g., Krieger, Li, and Iafrate (KLI) [KLI90] or localized Hartree-Fock (LHF) [DG01;
GGB02] are widely used. An alternative scheme that circumvents the OEP equation
uses orbital-specific xc potentials and requires a generalized KS (GKS) framework
[Sei+96].
The list of ground-state xc functionals given above is incomplete but shows the

variety of possibilities, each with strengths and weaknesses [Fio+03; PK03; KK08].
In TDDFT things usually get even more involved since the exact xc action functional
is known to be non-local in both, space and time [Fio+03; PK03; KK08]. However,
adiabatic approximations, which are local in time, have demonstrated their usefulness
in practice [Cal+00; Fio+03]. In the course of this thesis, the adiabatic time-dependent
LDA (TDLDA) and the optimally tuned ωPBE are of importance. In the following,
I briefly introduce those two, especially in view of the self-interaction error and the
description of charge-transfer excitations.

2.5.1. The local density approximation

The LDA [KS65] is one of the most important and basic xc functionals. The LDA
exchange energy is given by

ELDA
x [n] =

∫
eLDA
x [n]

∣∣
n(r)

d3r , (2.25)

where

eLDA
x = − 3e2

16πε0

(
3

π

) 1
3

n
4
3 (2.26)

is the exchange energy density of the homogeneous electron gas with constant density
n. For the correlation energy density of the homogeneous electron gas, one uses a
parametrized expression that satisfies exact constraints such as the one of Perdew and
Wang [PW92]. The parameters are then fitted to data from accurate quantum Monte
Carlo simulations [CA80]. In the time-dependent case the TDLDA functional uses the

9

same expression but is evaluated with the time-dependent density in the sense of an
adiabatic approximation. [GDP96; Fio+03; MG04; Cap06]
Due to the simplicity of the (TD)LDA, one is tempted to think that it only per-

forms well for systems with a density that varies slowly in space and time. However,
(TD)LDA performs reasonably well in many situations and is computationally effi-
cient. [Cap06]
It still has well known deficiencies. Some of those lead to quantitative errors as for

the prediction of chemical bond lengths, which can often be improved by using GGA
functionals [Cap06; KK08]. Others, such as the wrong description of charge transfer
and charge-transfer excitations [LLS03; Toz03; DH04; Moo+15], are of fundamental
nature and wrongly described by all typical (semi-)local functionals [KK08]. The latter
is related to the self-interaction error, which is discussed in the following.

2.5.2. Self interaction and charge transfer

The self-interaction error [KK08] is the reason for many deficiencies of (semi-)local xc
functionals. It is based on the splitting of the interaction energy into a Hartree part
(2.12) and an xc part. In the one-electron limit there is no electron-electron interaction
and the xc part of the energy in equation (2.10) must cancel the Hartree contribution.
However, typical (semi-)local xc functionals do not fulfill the requirement of being
free from one-particle self interaction as defined in [PZ81]. This leads to electrons
interacting with their own charge density. [KK08]
Typical symptoms that are related to the presence of self-interaction are a wrong

asymptotic behaviour of the xc potential [PZ81; Kre+98; Fio+03; KK08], a missing
derivative discontinuity [Per+82; CMY08; KK08] of the xc energy, and a missing field-
counteracting effect of the xc potential [Gis+99; KK08; HK12]. In practice, this leads
to a wrong description of, among others, charge-transfer processes [KK08] and charge-
transfer states [LLS03; Toz03; DH04; Moo+15]. As a simplified example, consider one
electron sitting in one of two potential wells that are separated by a finite barrier,
e.g., two separated molecules. Since an electron is repelled by its own charge density
due to the spurious self interaction, the movement from one site to the other, i.e., the
related charge transfer, is much easier than it should be without the self-interaction
error. In molecules, the excitation energies of excitations that show a charge-transfer
character are usually underestimated substantially [DH04; SKB09b].
An expression that is known to cancel the one-particle self-interaction error exactly

is the Fock exchange energy or EXX [KK08]

Eexact
x = − e2

8πε0

∑
σ=↑,↓

Nσ∑
j,k=1

∫ ∫
ϕ∗j,σ(r)ϕ∗k,σ(r′)ϕj,σ(r′)ϕk,σ(r)

|r − r′|
d3rd3r′ , (2.27)

which is evaluated with the KS spin orbitals. The EXX functional corrects many of
the above mentioned issues such as the asymptotic behaviour of the xc potential and
the missing derivative discontinuity of the xc energy but completely lacks correlation.
However, it is not straightforward to add correlation in a compatible way [KK08].
The approach of a global hybrid is to mix semi-local exchange and EXX with a global
parameter while treating correlation in a completely semi-local way. This leads to a

10

useful form of a hybrid functional [KK08]

Ehybrid
xc = bEexact

x + (1− b)Eapprox
x + Eapprox

c (2.28)

with a global parameter b that is usually fitted to a set of test systems. Eexact
x of

the ansatz above denotes the EXX functional whereas Eapprox
x and Eapprox

c are the
exchange and correlation energies of a semi-local approximation. Modern hybrid func-
tionals such as B3LYP [Bec93; Ste+94] usually have a more complex form.

2.5.3. Range-separated hybrid functionals

The idea of RSH functionals [BN05; SKB09b; SKB09a; BLS10; Kar+11; Kör+11;
Kro+12; KKK13] is to split the Coulomb interaction into a long-range and a short-
range contribution [SF95; Lei+97]

1

r
=

fω(r)

r︸ ︷︷ ︸
Long-range

+
1− fω(r)

r︸ ︷︷ ︸
Short-range

. (2.29)

fω(r) weights the long-range and short-range parts of the interaction and typically
depends on a range-separation parameter ω. One common choice for fω(r) is the error
function, i.e., fω(r) = erf(ωr) [Kör+11].
The parameter ω determines the transition from short-range interaction to long-

range interaction and introduces a characteristic length scale 1
ω . The splitting of

the Coulomb interaction in equation (2.29) provides the possibility to combine the
advantages of semi-local (or hybrid) exchange in the short-range part with the long-
range behaviour of EXX [Kör+11].
Since the RSH approach can be applied with different semi-local or hybrid exchange

functionals for the short-range part, one can think of the RSH functional in terms of
a long-range correction [VS06; Kör+11]. This typically resolves the wrong asymp-
totic behaviour from the underlying semi-local exchange functional and counteracts
the self-interaction error. In particular, RSH functionals are typically well suited for
the description of charge transfer [SKB09b] and charge-transfer excitations [SKB09a;
Kar+11]. Thus, they resolve one of the major deficiencies of (TD)DFT, at least partly
[LB07]. Nevertheless, RSH functionals again have fundamental issues like the violation
of size consistency [Kar+11], which is not part of this thesis.
There exist two major approaches to determine the range-separation parameter

ω. The first one is to use a value that is optimized for the description of a set of
test systems [CH08]. The second one is to perform a tuning procedure for every single
system, which is known as optimal tuning [LB07; SKB09b; SKB09a; Kör+11; Kar+11;
KKK13]. To this end, ω is usually chosen to fulfill an exact property such as the
IP theorem from equation (2.17) [SKB09b; SKB09a]. This requires a self-consistent
procedure and the solution of possibly many DFT calculations with different values
of ω.
While the first option is computationally less demanding, it is known that the

optimal value of ω can strongly depend on the system under consideration. The
optimal tuning approach, which is employed in the calculations presented in this thesis,
usually delivers results with a much better quality. [SKB09b; SKB09a; Kör+11]

11

In the course of this thesis, the PBE functional was chosen for the semi-local part.
This results in the RSH functional ωPBE [VS06]. Finally, one should keep in mind
that the RSH functionals are usually treated within the framework of GKS [Sei+96].
This is also the case for the ωPBE calculations presented in section 5 of this work.

12

3. The BTDFT program set

3.1. Introductory notes

All real-space and real-time calculations presented in this thesis have been done with
a program called BTDFT (Bayreuth density functional theory)3. It is solely written
in Fortran in the 2003 standard [Ada+09] and contains some object-oriented elements
to structure the code. Programs with a similar scope are PARSEC [Kro+06] and
Octopus [Mar03a; Cas+06; And+15].
I developed BTDFT as a major part of my PhD, so I dedicated an own section to

it. The aim of BTDFT is to solve the (TD)KS equations of sections 2.3.2 and 2.2.2 on
a real-space grid in real time with equidistant grid and time spacings. The first goal
of this project was to create an easily extendable program that establishes an efficient
framework for further development of (TD)DFT. The second goal was to provide a
fast program for studying large-scale quantum systems within (TD)DFT in real space
and real time. In this spirit I laid special emphasis on an efficient parallelization
and memory-access as well as a modular code structure that allows for the simple
implementation of extensions.
The most striking differences to PARSEC are an additional orbital parallelization

and the way of applying semi-local operators such as the Laplacian or Hamiltonian,
on which the program spends most of its computation time. Apart from that, I used
different algorithms for, e.g., the real-time propagation. While I introduce most of the
ideas by means of simple models and example calculations, I present performance tests
on two relevant molecular systems in section 3.5. One outcome of the tests is that
BTDFT can perform a propagation in less than 5% of the time required by PARSEC.
Using an improved propagation algorithm and the additional orbital parallelization
results in additional performance boosts. Hence, my hope and expectation is that
BTDFT will contribute to the study of natural light harvesting and other fields of
interest in the future.
During the development, several group members have been using BTDFT and al-

ready have implemented their own work into the code. Among the current capabil-
ities of BTDFT, which are not part of this work, are the simulation of AFM im-
ages [Sch16], charge transfer [Sch16], and angle-resolved photoemission spectroscopy
(ARPES) [Dau16; Dau+16]. To this end, a variety of time-dependent external poten-
tials such as classical electric fields with linear or circular polarization, a Förster-type
Hartree potential [HKK10; Ber16], absorbing and anti-absorbing boundary conditions
[Sch16; SK16], or an external environment potential (see section 5.2.1) have been
implemented. In the current version of BTDFT (Nov. 2016) the (TD)LDA [KS65;
RG84; PW92] xc functional as well as (TD)EXX [GG95; GKG97; KK08] and KS
(TD)LDA-SIC [PZ81; KK08; KKM08]4 in the KLI [KLI90] and LHF [DG01; GGB02]
approximations are supported.
BTDFT comprises five programs: BTDFT_guess, BTDFT_gs, BTDFT_td, ace2hu-

man, and parsec2ace. BTDFT_guess, BTDFT_gs, and BTDFT_td make an initial
guess for the density of a given atom setup, calculate the ground state of the system
by solving the KS equations, and finally propagate the system in time. These three

3In former thesis BTDFT is referred to as yACES, which was its unofficial name.
4Currently without unitary orbital transformations [KKM08; HKK12; HK12; Hof+12].

13

programs communicate with each other through files in a special binary format I called
ACE. The splitting into individual programs has practical reasons, which is explained
in appendix A in more detail.
The program ace2human reads ACE files and outputs their contents, such as the

density, into human readable form. Gaussian cube files [Fri+], which are widely used
to store data on real-space grids, are also supported. parsec2ace, on the other hand,
converts a special PARSEC output file into an ACE file that can be used as input for
a propagation with BTDFT_td. To get the appropriate PARSEC output, I imple-
mented an interface Fortran module that can be added to the PARSEC code.
The programs BTDFT_gs and BTDFT_td are parallelized with the Message Pass-

ing Interface (MPI) [MPI12]. To keep the communication between MPI processes
efficient, I used non-blocking communication, derived MPI types for non-contiguous
send and receive buffers, virtual process topologies, and parallel input and output (IO).
Some of the underlying ideas are introduced or mentioned in the following sections.
Besides the source code, the project consists of various files that are used for com-

piling and running the code as well as a Doxygen [Hee16] documentation. The file tree
is explained in appendix A.1 and is under git version control (see appendix A.6). Ad-
ditional information can be found in appendix A and in the Doxygen documentation
introduced in appendix A.5.
Since the goal of my work was to develop an efficient program for (TD)DFT cal-

culations, I explain the most important considerations in this respect. In particular,
section 3.2 is about modern computer architectures, especially in view of the comput-
ers and the MPI parallelization used. In section 3.3 I introduce the real-space grid of
BTDFT and the grid parallelization as well as the additional orbital parallelization.
Moreover, I discuss the most important algorithms and approaches used for the solu-
tion of the (TD)KS equations and the Hartree potential. Section 3.4 is dedicated to
some of the performance engineering. Specifically, I introduce a simple memory-access
model and show how BTDFT applies the Hamiltonian operator. The latter has a
strong impact on the overall performance of the code. Further, more general perfor-
mance considerations are discussed in appendix C. Finally, I show two test cases in
section 3.5, particularly regarding the total performance of BTDFT and the additional
orbital parallelization.
For more information I recommend the following literature, which was the basis of

my work: General algorithms such as the fast Fourier transform (FFT), the Crank-
Nicolson propagator, or finite differences schemes are found in the Numerical Recipes
[Pre+92]. Iterative solver algorithms for linear systems of equations are well explained
in [Mei11]. MPI is defined in the MPI standard [MPI12] and a tutorial is given in
[Pac96]. Modern computer architectures and an introduction to performance models
and performance engineering is given in [HW10]. For performance benchmarking and
related utilities I used the STREAM benchmarks [McC95], the LIKWID [THW10]
program package, which is related to the authors of the latter book, and the OMB
(OSU Micro Benchmarks) [Pan16] package for MPI.

14

Switch

(a) Nodes (N) in a fat-tree network. (Repro-
duced from [HW10, Fig. 4.16] in a similar
fashion)

L3

C
L1D
L2

C
L1D
L2

Memory

Memory Interface

L3

C
L1D
L2

C
L1D
L2

Memory

Memory Interface
IC

NUMA domain (UMA) NUMA domain (UMA)
ccNUMA

(b) Schematic of a ccNUMA node with two
sockets and two cores (C) each. (Repro-
duced from [HW10, Fig. 4.5] in a similar
fashion)

Figure 3.1: Sketch of a modern supercomputer with ccNUMA nodes in a fat-tree net-
work.

3.2. Modern computer architectures and parallelization

3.2.1. Modern computer architectures

A natural point to start the discussion about writing efficient program code is to
talk about modern computer architectures. Many of today’s supercomputers, such
as btrzx3 and btrzx5 at the University of Bayreuth (UBT), consist of nodes that are
connected by a communication network. An example is the fat-tree network shown
in figure 3.1a. In this fat-tree network, which is only one out of many possibilities
[HW10, §4.5], the nodes are the leaves that are connected by switches in a tree-like
manner. Each node has its own operating system and main memory that can usually
not directly be accessed by a remote node. One therefore speaks of a distributed
memory computer [HW10, §4.3] on this level. [HW10, §4]
A today’s node usually consists of a certain number of physical processors, which

are mounted on sockets on the node and connected by an coherent interconnection
(IC) network [HW10, §4.2.3]. Figure 3.1b shows an example of such a node with two
multi-core processors with two cores (C) each. Each core consists of a separate L1
data (L1D) and L2 cache as well as controllers, registers, and functional units that are
responsible for integer and floating point operations (not shown). In this example both
cores within the same processor have an additional, shared L3 cache that is connected
to the main memory through a memory interface. The caches are fast but have a
small memory capacity. They are used to intermediately hold data that are used by
the processor. The closer the cache is to a core’s registers (the memory the computing
units actually work on) the smaller and faster it usually is. [HW10, §1+§4]
A core requests needed data from the next higher level memory, i.e., the L1D cache.

If the L1D does not hold the requested data, which is called a ’cache miss’, the core
must reach to higher levels of the memory hierarchy up to the comparatively slow main
memory. In terms of performance it is therefore desirable to load data as fast and as
early as possible and to use the loaded data as often as possible. This principle is the

15

basis for most of the performance optimizations presented in this thesis. In this context
it also becomes important that different cores share distinct resources. Examples
from figure 3.1b are the L3 cache and the memory bandwidth, which determines the
maximum data transfer rate from the memory. [HW10, §1+4]
Each of the two processors in figure 3.1b has its own, local main memory that it

accesses directly via its memory interface (local memory access). A single processor on
this node together with its local memory is a uniform memory access (UMA) system
because all cores on this single processor share the same route to the attached local
memory. A core on the second processor can access the local memory of the first one
through the IC network (remote memory access). Thus, the total memory attached
to the node builds a single address space and the node is a shared memory computer
[HW10, §4.2]. However, the route and access times for remote and local memory access
are different, which makes this node a (typically cache-coherent) non-uniform memory
access (ccNUMA) shared memory computer. The UMA building blocks therein are
called NUMA domains. The whole cluster is therefore a distributed memory computer
with shared memory ccNUMA nodes. [HW10, §4]
In the following I use the cluster setup as presented in this section since the UBT

clusters btrzx5 and btrzx3 are of this type. Besides, there also exist, e.g., large scale
shared memory computers [HW10, §4.2.3] or GPU clusters that rely on graphics cards.
Furthermore, there is also progress in the field of high-performance computing and
computer architectures. One example is the recent release of Intel’s Xeon Phi Knights
Landing processor [Sti16]. More details about computer architectures can be found in
[HW10, §1+§4]. More information specifically about the UBT nodes can be found in
appendix B.

3.2.2. Parallelization with MPI

To process a computation in parallel, the workload must be distributed among the
cores of potentially many nodes. In principle there exist two ways of doing this:
First, functional parallelization divides a task into subtasks with different scopes.

These are then processed by different programs, which communicate with each other to
solve the complete problem. An example is the simulation of a car in a wind channel.
One program simulates the car with a finite elements method while a second program
simulates the wind by means of computational fluid dynamics.
Second, with data parallelization a single task is processed on a large set of data

that is divided into subsets. A typical example is the division of the three dimensional
(3D) space in a real-space code as BTDFT. There, each core (or process running on
a core) gets a certain subgrid. The different processes must usually exchange data at
the interfaces between neighboring subgrids. [HW10, §5.2]
There exist a lot of parallelization paradigms that are specialized in shared or dis-

tributed memory machines. A very common one is the message passing interface
(MPI) [MPI12; Pac96], which is used within BTDFT. A program that is parallelized
with MPI can be executed with a number of MPI processes that are mapped onto
the hardware, i.e., the processor’s cores. MPI processes on the same node can act on
the same main memory. Still, each MPI process manages its own part of the main
memory and therefore treats a physically shared memory as a logically distributed

16

one5. [HW10, §4.3]
During a computation the MPI processes communicate with each other by sending

and receiving messages. Processes that communicate with each other are organized in
communicators. Inside one communicator each process is identified by a unique rank.
Still, each process can be part of several communicators and typically has different
ranks in different communicators. [Pac96; MPI12]
In view of the communication between MPI processes it becomes important how the

communicators are mapped onto the hardware. This can be controlled by the MPI
execution command and a virtual process topology, which I discuss in a subsequent
section. Sending a message between two processes takes a certain time, which is
determined by the latency and the bandwidth of the respective network in between.
In general, the communication takes longer the farther the processes are apart from
each other. Typical situations are that the processes run, e.g., on the same processor,
on different processors on the same node, or on different nodes in the communication
network. The time for sending a message between two nodes across the network
(i.e., the latter case) additionally depends on the relative position of the nodes in the
network topology and how many switches the message must pass (compare to figure
3.1a). Latency and bandwidth are further explained in appendix C.1, supported by
measurements on the btrzx5 cluster.
Finally, MPI for logically distributed memory computers is complemented by Open-

MP [Ope13], which is designed for shared memory computers. In contrast to MPI,
OpenMP only starts a single process that opens a number of threads in parallel regions
that are specified inside the code. All threads share the same logical memory. OpenMP
is not of particular importance in the current version of BTDFT but is used for some
of the examples presented in the following sections. An example of OpenMP is given in
appendix C.4.3 together with the pitfall of remote memory access when programming
ccNUMA systems.
The concepts of MPI and OpenMP can be combined in a hybrid approach [HW10,

§11]. To this end, one can start, e.g., one MPI process per NUMA domain with each
process being parallelized with OpenMP. Each MPI process can then open threads that
are pinned to the respective NUMA domain of the process. In this way the strengths
of MPI, e.g., its scalability to large distributed memory computers, is combined with
the strengths of OpenMP, which can partly make better use of shared resources.

3.3. Grid setup, parallelization, and algorithms

In this section I introduce the basic setup of the real-space grid, the parallelization,
and the most important algorithms that are use to solve the (TD)KS equations. In
this course I lay special emphasis on the efficient application of semi-local operators
such as the Laplacian or the Hamiltonian, which are the major performance bottle-
necks. In appendix C I go deeper into the general performance engineering and discuss
performance critical issues supported by measurements on the UBT clusters.

5With the MPI standard 3.0 [MPI12] shared memory windows were introduced.

17

(a) 3D grid stretched in z-direction. The five
xy-planes are highlighted with different
colors. (b) xy-plane at iz = 0.

Figure 3.2: Schematic of the BTDFT real-space grid. The contiguous 1D index is
indicated by the red line (dashed segments in (b) connect adjacent x-rows).
The 1D index runs through each x-row in the same direction as indicated
by the red arrows in (b). Values for mz, my, and mx are given for this
small example grid.

3.3.1. The real-space grid and grid parallelization

Grid setup The BTDFT real-space grid (see figure 3.2a) is centered around the origin
of the coordinate system and framed by a boundary ellipsoid with the half-axes ax,
ay, and az in x, y, and z-direction. The grid points are distributed equidistantly
with a grid spacing of ∆x in all three coordinate directions with one grid point at the
origin. Their coordinates can therefore be described by a 3D index i = (ix, iy, iz) ∈ N3

through

ri = i∆x with
∑

γ=x,y,z

i2γ
a2
γ

(∆x)2 < 1 . (3.1)

The total number of grid points is Ngrid.
The maximum z-index (iz) is calledmz. Therefore, iz ranges within−mz ≤ iz ≤ mz.

The maximum y-index (iy) in each xy-plane with z-index iz is called my(|iz|). iy
runs within −my(|iz|) ≤ iy ≤ my(|iz|) in this xy-plane (see figure 3.2b). Finally,
the maximum x-index (ix) in each x-row with z-index iz and y-index iy is called
mx(|iy|, |iz|). In this x-row, ix is defined within −mx(|iy|, |iz|) ≤ ix ≤ mx(|iy|, |iz|).
The whole grid shape can therefore be described by mz, my(|iz|) and mx(|iy|, |iz|)
with maximally possible indices of mz, my(0), and mx(0, 0) in x-, y-, and z-direction,
respectively.
A function of space f(r) is represented by its function values at the grid points

f(i∆x). Due to the ellipsoidal shape of the grid the function values are stored in
a one-dimensional (1D) value array with an 1D index n = 1, . . . , Ngrid ∈ N, i.e.,
fn = f(i∆x). In view of the later performance engineering (section 3.4) the one-to-
one mapping between the 1D index n and the 3D index i is kept as simple as possible

18

(see figure 3.2): n always runs from the most negative index to the most positive
one with the z-index being the most slowly varying one and the x-index being the
fastest varying one. That means that n runs, one after another, through all xy-planes
starting with the one at the smallest z-index. In each xy-plane, n runs, one after
another, through all x-rows starting with the one at the smallest y-index. In each
x-row, n again runs from the smallest to the largest x-index.6

Grid parallelization and halo communication The Ngrid grid points are distributed
evenly among a number of MPI processes such that each process gets a subgrid that
is contiguous in the 1D index. This is exemplified in figure 3.3. Both subfigures show
the decomposition of the grid into three subgrids, once from the perspective of the 1D
value arrays and once for the real-space grid (as two-dimensional (2D) sketch). The
white and blue highlighted grid points or array elements belong to a process’s own
subgrid.
The MPI processes frequently need information from each other and therefore send

and receive messages. One of the most common situations where this happens is a
spatial integral of some function that is defined on the real-space grid. In this case,
the processes perform the integration locally in their own subgrids and subsequently
sum up the local values using a collective MPI reduction.
BTDFT spends most of the computation time on the application of the Hamiltonian

or the Laplacian, which are represented by finite differences of up to 6th order (Norder =
6). In order to apply the finite-differences Laplacian to a function at a specific grid
point, the function’s values at the Norder/2 neighboring grid points are required in
each of the six directions. This is shown in figure 3.3b. At the boundary of a process’s
subgrid there are boundary layers (blue highlighted in figure 3.3) that must be sent to
the processes that contain the neighboring subgrids. Consequently, each process needs
additional layers of grid points that store the function values received from processes
with neighboring subgrids. These are called halo or ghost layers [HW10, §5.2.1] (red
highlighted in figure 3.3) and must be updated each time before a finite differences
operator is applied. The latter is called halo communication and indicated with green
arrows in figure 3.3.
The grid structure chosen above ensures that the halo layers are almost7 contiguous

in the 1D index. Since BTDFT spends much computation time in the application of
the Laplacian or the Hamiltonian, the halo layers are directly attached to all arrays in
BTDFT that require halo communication. When performing local operations on those
arrays, such as the multiplication with a number, the halo layers should, however, be
excluded8 since this would cause a lot of overhead.
In addition, figure 3.3a shows one additional array element at the lower end of the

1D arrays. This element contains the value of the respective function outside of the
6In BTDFT the maps are stored in the index arrays idx (3D→1D) and kx, ky, and kz (1D→3D) in
the t_grid structure.

7If the grid layers at the surface between two subgrids do not match perfectly, there appear single
grid points that are not required by the respective neighboring process and do not need to be
sent. Sending the pure halo layer without those values as a single message is still possible through
derived MPI types and non-contiguous buffers [MPI12, §4]. Since this usually affects only a view
single, isolated grid points in the boundary layers, this has no practical relevance.

8The process-specific 1D indices that define a process’ own range and the halo layers are explained
in appendix A.3.2 in more detail.

19

1 23

0

0

0

Ngrid...

Proc 0

}
Halo

n

}

Halo

}

Halo

}

Halo

Proc 1

Proc 2

outside

(a) 1D value arrays on the three processes.

outside

Proc 1

Proc 0

Proc 2

Halo

Halo

(b) Decomposition of a 2D elliptical grid. The contiguous 1D index is indicated by the red
line in the topmost subgrid.

Figure 3.3: BTDFT grid parallelization and halo communication among three pro-
cesses. White and blue highlighted regions belong to a process’s own sub-
grid, red highlighted regions are the halo layers that contain copies of the
blue highlighted data from the respective neighboring process. The green
arrows indicate the corresponding halo communication.

20

x

y

z

Figure 3.4: 6th order finite differences stencil in three dimensions. The Laplacian is
applied at the centered grid point. The function values at three neighboring
grid points in each direction, connected by the greed line, are required.

grid and should contain 0 for the zero boundary conditions9. If the index array that
converts a 3D index into its corresponding 1D index is applied to a 3D index outside
of the grid, the resulting 1D index points to this element.

3.3.2. Orbital parallelization and virtual process topology

The solution of the TDKS equations in real time is divided into discrete time steps (see
section 3.3.5). If the time-dependent potentials that appear in the TDKS equation
2.19 are known, the time step of a specific KS orbital can be done independently of
the other KS orbitals. An additional orbital parallelization of the TDKS equation
therefore makes sense, especially in view of large systems with many electrons.
To this end, the MPI processes are organized in orbital units with an equal number

of processes per unit. Each orbital unit is responsible for a certain fraction of KS
orbitals. This is illustrated in figure 3.5b for an example setup with eight processes,
eight orbitals, and 400 grid points. The orbital units can be identified with the two
rows in the graphic. Within the MPI processes of one orbital unit the computation is
grid-parallelized as introduced in the previous section. In different orbital units there
are processes that hold equal subgrid, just with different orbitals. These build the grid
units, which are the columns in figure 3.5b.
Two layers of communication must be taken into account: The solution of the TDKS

equation 2.19 requires the application of semi-local operators (see section 3.3.5) and
therefore halo communication between the subgrids within the orbital units (intra-
orbital-unit communication). After the time step the total density must be calculated
(e.g., for new Hartree and xc potentials), which requires communication within the grid
units, i.e., between the orbital units (inter-orbital-unit communication). As depicted
in figure 3.5b this means that a certain process must communicate with its left and
right horizontal neighbors as well as with all vertical neighbors.
When BTDFT is started with a certain number of MPI processes, they are organized

in the default communicator MPI_COMM_WORLD (or comm_w in BTDFT).

9The solution of boundary value problems with non-zero boundary conditions at the surface of the
grid is discussed in section 3.3.6.

21

O
rb

it
a
l
u
n

it
 0

0 1 2 3

4 5 6 7

0

0

O
rb

it
a
l
u
n

it
 1

MPI_COMM_WORLD (comm_w)

comm_o

comm_o

comm_g comm_g comm_gcomm_g

1 2 3

0 1 2 3

0 0 0

1 1 1 1

(a) MPI communicators and ranks in corre-
sponding colors.

O
rb

it
a
l
u
n

it
 0

O
rb

it
a
l
u
n

it
 1

Orbitals 1-4

Orbitals 5-8

1-100 101-200 201-300 301-400
Grid points

Grid parallelization

Grid parallelization

(b) Example parallelization with 400 grid
points and eight orbitals.

Figure 3.5: Virtual process topology with two orbital units and four processes each
(black boxes). Processes within the same orbital unit (blue) share the
same orbitals but have different subgrids, processes within the same grid
unit (green) share the same subgrids but hold different orbitals.

The world communicator comm_w for the discussed example is indicated by the red
box in figure 3.5a. The ranks of the processes in this communicator are given by
the red numbers inside the processes (black boxes). In order to tell MPI as much as
possible about the patterns of intra-orbital-unit and inter-orbital-unit communication,
it is practical to reorganize the MPI processes in two additional communicators. The
resulting orbital-unit (grid-unit) communicators comm_o (comm_g) are indicated by
the blue (green) boxes with ranks in corresponding colors.
There is one master process that has extra tasks such as writing out the main

status file or distributing BTDFT’s configuration setup during the initialization. The
global master process is the one with rank 0 in the world communicator comm_w.
Additionally, each orbital unit has an orbital-unit master, which is the process with
rank 0 in each orbital-unit communicator comm_o.
There exist different possibilities to map the virtual process topology onto the hard-

ware. This can be controlled by the setup of the virtual topology and mapping op-
tions of the MPI command used to run BTDFT. The effect of different mappings is
exemplified in appendix A.3.3 by means of a test systems from section 3.5. The de-
fault configuration is that orbital units are close-packed such that the more frequent
intra-orbital-unit communication, i.e., exchanging the halo layers, is privileged. If a
calculation is started, e.g., with as many orbital units as nodes, each node gets the
processes that belong to one orbital unit.
There are some tasks between two time steps that are not orbital specific. Examples

are the calculation of the Hartree potential or observables that only require the total
density. The orbital parallelization does not work in this case and the respective task
must be performed by each orbital unit separately. Another approach is to introduce an
additional layer of the grid parallelization such that the non-orbital-specific operations
can be performed grid-parallelized among all processes. This is explained in appendix
A.3.2 together with some details of the grid setup inside of BTDFT.
The orbital parallelization introduces some additional overhead. One way to reduce

22

this overhead is to choose the time-step size ∆t as large as possible. This reduces the
total number of time steps and thus the inter-orbital-unit communication. A guideline
on choosing the right parallelization and the number of orbital units can be found in
appendix A.2.5 and in the performance tests in section 3.5.

3.3.3. Non-local pseudo potentials

The Coulomb potential vNuc(r) =
∑NNuc

i=1
−Zie2

4πε0|r−Ri| that is generated by NNuc nuclei
with proton numbers Zi shows singularities at the nuclei’s positions Ri. The core
electrons that are bound to a nucleus have high kinetic energies and the KS orbitals
show rapid spatial oscillations in this region. Hence, their proper description on the
real-space grid would require a very fine grid spacing and thus large numerical effort.
Yet, the chemical properties of a molecule are determined primarily by its valence
electrons. [Kro+06]
To resolve these issues, BTDFT uses, in exactly the same way as PARSEC [Kro+06],

norm conserving pseudo potentials from first principles for the description of the nuclei
together with their core electrons. Pseudo potentials represent a screened, effective
core potential. They are rather smooth in the proximity of the nuclei, which allows
for a larger grid spacing and removes the core electrons from the explicit (TD)DFT
calculation.
The remaining KS orbitals represent the valence electron density. Especially norm

conserving Troullier-Martins pseudo potentials [TM91], which have been optimized
for a plane-wave basis, are found to work very well on the real-space grid. However,
the nuclei’s pseudo potentials typically differ for components with different angular
momentum (l,m) and require non-local projectors onto these components. The pseudo
potential can be written as [Kro+06]

v̂ps(r) =
∑
l,m

vps,l(r)|l,m〉〈l,m| . (3.2)

The Kleinman-Bylander transformation [KB82] divides the pseudo potential into a
local and a non-local part [Kro+06]

v̂KB
ps (r) = vlocal

ps (r) + v̂non−local
ps (r) . (3.3)

The local part of the pseudo potential in equation (3.3) builds the local ionic poten-
tial in BTDFT. The non-local part includes the application of the angular-momentum
projectors onto the KS orbitals, which requires a spatial integration in spheres around
the nuclei with a certain cutoff radius [Kro+06]. The number of grid points inside of
these spheres is usually small compared to the total number of grid points. Therefore,
I neglect the non-local parts of the pseudo potentials in the performance considera-
tions in section 3.4. From a numerical point of view the hermeticity and sparseness
of the KS Hamiltonian is conserved such that the diagonalization of the KS equations
and the propagation as introduced in the following is not influenced.
For the calculations presented in this thesis I used well established Troullier-Martins

pseudo potentials [TM91], which are listed in appendix E.1. However, for magnesium
a new pseudo potential had to be generated and tested, which is also discussed in
appendix E.1.

23

3.3.4. Diagonalization of the Kohn-Sham equations

Since the KS potential (2.14) in the KS equation (2.7) depends on the density (2.9) that
again depends on the KS orbitals, the KS equations must be solved self-consistently
[KS65] within a self-consistent field (SCF) iteration. Beginning with an initial guess
for the density, the KS potential can be calculated and the KS equation can be solved
subsequently. This results in a new density that can be used in a further iteration. This
procedure is repeated till convergence. The realization inside of BTDFT is explained
in appendix A.3.1 by means of a program sequence.
The SCF scheme requires the frequent solution of the KS equation. The latter, which

is a differential equation in space, can be cast into an eigenvalue problem through the
spatial discretization on the real-space grid. This turns the KS orbitals into Ngrid-
dimensional vectors (the 1D value arrays) and the KS Hamiltonian, which essentially
consists of the local KS potential and the semi-local Laplacian operator, into a sparse
Ngrid ×Ngrid matrix.
In BTDFT the eigenvalue problem is solved using the parallel version of ARPACK

(PARPACK) [LSY97]. The latter only requires the frequent application of the KS
Hamiltonian. Due to the exponential decay of bound orbitals outside a finite system
[Kre+98], the KS orbitals are assumed to be zero at the grid’s surface. Thus, zero
boundary conditions apply.
As convergence criterion for the SCF iteration BTDFT uses the self-consistency

residual error (SRE) [Kro+06]

SRE =

√∫
[vnew

KS (r)− vold
KS(r)]2d3r (3.4)

and the charge-weighted SRE

SRECW =

√∫
[vnew

KS (r)− vold
KS(r)]2n(r)d3r∫

n(r)d3r
. (3.5)

Both measure the difference between the KS potentials vnew
KS and vold

KS between two
consecutive SCF iterations. In addition I implemented their normalized counterparts

SREnorm =

√∫
[vnew

KS (r)− vold
KS(r)]2d3r∫

[vnew
KS (r)]2d3r

(3.6)

and

SREnorm
CW =

√∫
[vnew

KS (r)− vold
KS(r)]2n(r)d3r∫

[vnew
KS (r)]2n(r)d3r

. (3.7)

The charge-weighted variants give more weight to regions of space with higher den-
sity. Since these regions usually converge faster, the charge-weighted SREs lead to an
overall faster convergence at the cost of typically less accurate KS potentials outside
the electronic system.
The normalized SREs have the advantage of being bare numbers without a physical

unit. While the non-normalized SREs measure a kind of absolute error of the total
energy, the normalized SREs measure a relative error and hardly depend on the system

24

size. By default BTDFT uses the normalized SREs (charge weighted or not can be
specified in the configuration file). The non-normalized SREs are computed as well
but currently not used.
Finally, to stabilize the SCF scheme, KS potentials of previous iterations are usually

mixed into the KS potential that is used for solution of the KS equation in the current
iteration. Without this mixing, the SCF iteration can get stuck in a status in which it
jumps back and forth between two states. This results in a constant SRE value and no
further convergence. Two mixing algorithms are currently implemented in BTDFT:
A linear one that mixes old and new potentials according to avnew

KS + (1− a)vold
KS with

a ∈]0, 1] and the Anderson mixer [And65] that uses an arbitrary number of previous
potentials. References to different mixing schemes are listed in [Fio+03].

3.3.5. Propagation of the time-dependent Kohn-Sham equations

The real-time solution [SS96; YB96; YB99; CRS97; Cal+00; CMR04; MUN09; Mar03a;
Cas+06; And+15] of the TDKS equation (2.19) is usually done by using the propaga-
tor [MUN09; CMR04]

ϕj (r, t) = U(t, t0)ϕj (r, t0) = T̂ exp

{
− i
~

∫ t

t0

ĤKS

(
r, t′

)
dt′
}
ϕj (r, t0) . (3.8)

U(t, t0) propagates the orbital ϕj from t0 → t. T̂ is the time-ordering operator.
The propagator can be divided into time steps with size ∆t according to

U(t, t0) = U(t, t0 + (Nt − 1)∆t) . . . U(t0 + 2∆t, t0 + ∆t)U(t0 + ∆t, t0) (3.9)

with t = t0 + Nt∆t. If ∆t is small enough10, the KS potential can be assumed to be
constant during one time step. Thus, the time-step propagator can be approximated
by

U(t+ ∆t, t) ≈ exp
{
− i
~
ĤKS∆t

}
, (3.10)

which represents a discretization of time. The KS Hamiltonian is usually taken at the
time t+ ∆t

2 , which requires a predictor-corrector scheme or a potential extrapolation
[Pre+92]. Previous versions of BTDFT used the predictor-corrector method. How-
ever, the currently implemented polynomial extrapolation is more efficient and works
at least as well. Since in the real-time propagation the time-step propagators are
automatically applied in the correct causal order, the time ordering operator can be
dropped. The time-step propagators are further approximated, which results, in the
context of BTDFT, in the Taylor or Crank-Nicolson propagators described below11.

Taylor propagator The Taylor propagator approximates the exponential in equation
(3.10) by a Taylor series or fourth order

ϕj(r, t+ ∆t) ≈
4∑

n=0

[
1

n!

(
− i∆t

~
ĤKS

)n]
ϕj(r, t) . (3.11)

10This is either determined by the stability of the propagation algorithm or the time scales of the
observed dynamics.

11See [MUN09; CMR04] for further propagators.

25

The fourth order Taylor propagator is the lowest order propagator that is conditionally
stable and allows for reasonable time-step sizes. For each time step it requires four
applications of the KS Hamiltonian. However, it is not norm conserving such that the
orbitals are renormalized in BTDFT after every time step12. [MUN09; CMR04]

Crank-Nicolson propagator The Crank-Nicolson propagator is more evolved [Pre+92;
Cal+00; CMR04]. It conserves the norm and the time-reversal symmetry per con-
struction and is unconditionally stable. By using U−1(t, t′) = U(t′, t), the discretized
propagation step is split up symmetrically such that U(t + ∆t

2 , t + ∆t)ϕj(t + ∆t) =
U(t+ ∆t

2 , t)ϕj(t). The exponentials in the half-step propagators are then expanded in
their Taylor series up to first order in ∆t[

1 +
i∆t

2~
ĤKS

]
ϕj(r, t+ ∆t) =

[
1− i∆t

2~
ĤKS

]
ϕj(r, t) . (3.12)

In view of the discretization of space equation 3.12 can be transformed into a matrix
equation Ax = b. The matrix A =

[
1 + i∆t

2~ ĤKS

]
is sparse, complex-valued, and

symmetric. The right-hand side is defined as b =
[
1− i∆t

2~ ĤKS

]
ϕj(r, t) and the

solution vector on the left-hand side is defined as x = ϕj(r, t+ ∆t).
In BTDFT the Crank-Nicolson equation (3.12) is solved using a variant of the iter-

ative conjugate gradient (CG) method [SS07; Mei11] that works for complex-valued,
symmetric matrices instead of hermitian ones. This variant, which I abbreviate by
CG-SYM, can be derived from the more general bi-conjugate gradient (BiCG) [JAC86;
Mei11] algorithm by assuming a symmetric (and in general complex) matrix13. As the
standard CG algorithm, CG-SYM only requires the application of the matrix to a
given vector (e.g., as a subroutine call).
As a convergence criterion I implemented the backward error [SS07]

‖b−Axn‖
‖A‖ ‖xn‖+ ‖b‖

< εtol , (3.13)

where xn is the approximate solution of the equation after n iterations and εtol is the
convergence threshold or tolerance. In BTDFT the 2-norm is used as the vector norm
and the matrix norm14 ‖A‖ is usually approximated by 0 or 1. BTDFT can auto-
matically choose an optimized convergence threshold, which is explained in appendix
A.3.4.
Due to its unconditional stability, the Crank-Nicolson propagator allows for much

larger time steps than the Taylor propagator. However, every time step is compu-
tationally more expensive due to the solution of a linear equation that requires the

12This is omitted if absorbing boundary conditions are used [Dau16; Dau+16; Sch16; SK16]. The
change of norm for typical time-step sizes is usually negligible.

13CG-SYM also works for local, complex-valued potentials on the diagonal of A as they appear for,
e.g., absorbing boundary conditions [Dau16; Dau+16; Sch16; SK16].

14In practice this is not relevant since the backward error does not specify which norm to use.
However, a reasonable ‖A‖ can be estimated by the spectral radius of A, which can again be
estimated using the maximum kinetic single-particle energy that can be represented on the real-
space grid. The result depends only on the grid spacing ∆x and the order of the finite differences
used.

26

frequent application of the operator A, which is essentially the Hamiltonian. The Tay-
lor and Crank-Nicolson propagators are tested in section 3.5.1. In view of the orbital
parallelization and the stability, the Crank-Nicolson propagator should typically be
favored since a larger time-step size reduces the inter-orbital-unit communication.

3.3.6. Hartree potential and multipole expansion

Calculating the Hartree potential from the integral equation 2.15 is a heavy task on a
3D real-space grid. Alternatively, one can solve Poisson’s equation [Bur+03; Kro+06]

∆vH(r) = −e
2

ε0
n(r) . (3.14)

This is a boundary value problem with zero boundary conditions at infinity. However,
since the Coulomb interaction has a long range, the Hartree potential decays slowly
such that typical grid sizes are by far not large enough that the Hartree potential can
be assumed to be zero at the grid’s surface.
To resolve this issue, one can divide the Hartree potential as vH = vasymptotic

H +
vresidual

H into an asymptotic part and a residual. The asymptotic Hartree potential
shall be exact outside the grid such that vresidual

H = vH − vasymptotic
H is zero outside the

grid. Thus, Poisson’s equation for vresidual
H can be solved with zero boundary conditions

at the grid’s surface

∆vresidual
H (r) = −e

2

ε0
n(r)−∆vasymptotic

H (r)︸ ︷︷ ︸
=− e2

ε0
nboundary

. (3.15)

nboundary represents a density that generates vasymptotic
H .

If the grid size is large enough, vasymptotic
H outside the grid is well described by a

multipole expansion [Bur+03]. Still, there is some freedom in choosing the division of
vH into vasymptotic

H and vresidual
H inside the grid.

In BTDFT (as well as in PARSEC [Kro+06]), vasymptotic
H is chosen to be zero inside

the grid such that vresidual
H is the full Hartree potential inside the grid. Outside the

grid vasymptotic
H is set to the multipole expansion of usually ninth order. Therefore,

vasymptotic
H and vresidual

H are not steady at the grid’s surface. With the discretized real-
space grid and the Laplacian represented by finite differences, this is numerically not
relevant. The boundary density ∆vasymptotic

H = − e2

ε0
nboundary inside the grid is non-

zero only in a shell at the grid’s surface at as many grid points as can be accessed by
the finite differences from outside the grid.
Since a finite differences Laplacian on a real-space grid is represented by a real-

valued, symmetric matrix, BTDFT solves equation 3.15 with the standard CG method
[SS07; Mei11] using the backward error (3.13) as convergence criterion. On demand,
the time-dependent code BTDFT_td can again choose an optimized convergence
threshold, which is explained in A.3.4.

27

CPU registers

Cache

Memory

CL CL

C(:) A(:)

CL CL

write

allocate

evict

(delayed)

(1)

(2)

(3)

(4)

(5)

Figure 3.6: Memory access model for a
copy operation [HW10, §3].

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8

P
e
rf

o
rm

a
n
c
e
 [
M

L
u
p
/s

]

Number of Threads

40 GB/s, 24 Byte/Lup

-O0

-O3

Memory bandwidth bottleneck

Figure 3.7: Parallel performance of the Ja-
cobi smoother on one socket
of the btrzx5 node258 (Intel
Xeon E5-2670).

3.4. Performance engineering

The performance of a code depends on the hardware and how well the code can exploit
the related resources. In the last decades a modern CPU’s15 theoretical potential in
terms of operations per second evolved very rapidly while the speed for accessing the
main memory could not keep up. Since many scientific codes such as BTDFT usually
perform rather basic operations on very large data sets, a very common performance
bottleneck is the memory bandwidth, i.e., the maximum rate at which data can be
loaded from the main memory to a processor’s cache. The memory bandwidth problem
is particularly important for the application of the Hamiltonian, the Laplacian, or
derivatives thereof. [HW10, §3.1]
In BTDFT the Hamiltonian operator is not stored as a matrix in the memory but

implemented as a subroutine. Why the performance of BTDFT can be improved sig-
nificantly by optimizing the memory access can be explained by the following example.
In order to apply the discretized Laplacian as g = ∆f at a certain grid point, the val-
ues of f at the neighboring grid points in 3D space are required (see figure 3.4). Here,
I want to emphasize that f exceeds the available cache by far. Thus, only small parts
of f can be stored inside the cache at a time. A specific value of f , which corresponds
to a specific grid point, is used several times since it is neighbor to several grid points.
Therefore, this value should be kept inside the cache as long as it is needed to avoid
loading it again from the main memory. If a value of f is still inside one of the cache
levels when it is needed the next time strongly depends on the cache sizes, the size of
the data set f , and the order in which f is stored and accessed. The latter depends
on the mapping between the 3D grid and the 1D value arrays. This is elaborated in
the following in more detail.

28

3.4.1. The memory-bandwidth bottleneck

The memory access is exemplified by a copy operation from one array C to another
array A by means of a simple model with only one cache level [HW10, §3]. All steps
discussed are displayed in figure 3.6. Therein one can see a memory that initially holds
the array C, the cache, and the registers of the CPU16. In order to copy C, the CPU
requests the data from the cache which again requests the data from the memory.
The communication between the memory and the cache is done in units of cache lines,
which are groups of typically 64 Byte, which equals 8 double precision (DP) words17.
This means 8 DP words are loaded (step (1) in figure 3.6). Subsequently, the first

value is loaded from the cache to the CPU’s registers (step (2) in figure 3.6). In order
to write the copied data to a cache line that corresponds to the array A, this cache
line must also be loaded from the memory. This is called ’write allocate’ (step (3)
in figure 3.6). After that, the cache line of C can be copied to the corresponding
cache line of A in the cache (step (4) in figure 3.6) and is finally written back to
the memory, i.e., evicted (step (5) in figure 3.6) which can be delayed. In total the
copy operation requires to load C, to store A, and an additional write allocate, which
corresponds to loading A. As long as a cache line resides inside the cache, the data can
be reused without loading them from the memory again, which opens the potential
for memory-access optimizations.
The time for loading data from the memory can be characterized by the memory

bandwidth and a latency time. The latter is more or less the time it takes to initiate
the data transfer and has to be paid for every memory access (see appendix C.1).
Organizing the data transfer in units of cache lines hides a part of the latency since it
must only be paid once per cache line and not for every DP word. Furthermore, the
processor tries to predict which data are needed in the near future and loads the data
before they are actually required. This is called prefetching [HW10, §1.3.3]. In the
following considerations the latency is assumed to be completely hidden by concepts
as cache lines and prefetching. [HW10, §1+§3]
A single core of a modern processor cannot saturate the memory bandwidth. How-

ever, the same memory bandwidth is typically shared by many cores, which can easily
put enough pressure onto the memory interface to hit the memory-bandwidth bottle-
neck. This is shown for a Jacobi smoother in listing 3.1 according to [HW10, §3.3].
The Jacobi smoother already has a similar structure as the 2nd order finite dif-

ference Laplacian and is parallelized with OpenMP (see appendix C.4.3 for further
comments). The parallel performance of the code, with and without compiler opti-
mization, on one processor of the btrzx5 node258 (Intel Xeon E5-2670) (see appendix
B.1) is shown in figure 3.7. The size of the data set has been chosen large enough
that it does not fit completely into the cache. Thus, the code performance is bound
to the memory bandwidth. All of the eight threads share the same memory interface.
The performance is measured in Lup/s which means ’lattice site updates per second’.
Hence, one Lup corresponds to the evaluation of the loop kernel in listing 3.1 for one
grid point, i.e., one lattice site.

15A CPU in this thesis might be a processor or a single core.
16In the case of a copy operation the CPU is not performing any operation on the data, still the data

must be loaded. This is why copy operations should be avoided.
17The cache-line size might vary between different CPUs and even between different cache levels.

29

1 do n=1, c y c l e s
2 ! $omp p a r a l l e l p r i va t e (i , j , k)
3 ! $omp do
4 do k = 1 ,nk
5 do j = 1 , nj
6 do i = 1 , n i
7 y (i , j , k) = b ∗ (x (i −1, j , k) + x(i +1, j , k) + x(i , j −1,k) + &
8 x (i , j +1,k) + x(i , j , k−1) + x(i , j , k+1))
9 end do

10 end do
11 end do
12 ! $omp end do
13 ! $omp end p a r a l l e l
14 c a l l dummy(x , y)
15 end do

Listing 3.1: 3D Jacobi smoother.

In figure 3.7 one clearly sees that the performance of the optimized code scales well
for up to four threads and then saturates. The saturation limit can be understood if
one relates the memory bandwidth with the size of the data that are loaded per Lup.
The example shown in figure 3.7 has been chosen such that only one value of x must
be loaded per Lup, which is the best possible case. In this best-case scenario, which is
explained in section 3.4.3 in more detail, the remaining values of x are still inside the
cache. Further, one value of y is stored and there is one write allocate. In total, this
results in 3 DP words/Lup = 24 Byte/Lup, which is the same as for the copy operation
discussed above.
The memory bandwidth for this specific processor is about 40 GB/s18, which re-

sults in a maximum performance of about 1710 MLup/s. This performance marks the
memory-bandwidth bottleneck in figure 3.7, which is almost approached by the code.
In contrast, the performance of the non-optimized code scales well for up to eight

threads but does not get close to the bottleneck and therefore is simply not efficient.
Since the data structure in BTDFT is, due to the ellipsoidal grid shape, more involved
than the cubic one of the Jacobi smoother, the goal of the following performance engi-
neering will be (i) to write code that is efficient enough to hit the memory-bandwidth
bottleneck and (ii) to improve the memory-access patterns to make better use of every
byte loaded from the memory, i.e., to raise the bottleneck as measured in MLup/s.

3.4.2. The BTDFT Hamiltonian

On a cubic grid the Hamiltonian with 6th order finite differences would be implemented
as in listing 3.2. The index and grid-shape variables are named as introduced in section
3.3.1 except that mx and my are not arrays but single integers (due to the cubic grid
shape). The array orb contains a complex-valued KS orbital with 16 Byte per double
complex (DC) word and horb contains the Hamiltonian applied to the orbital. The
real-valued potential pot with 8 Byte per DP word is added to the diagonal component

18The measured bandwidth is 41068.5 MB/s using the STREAM benchmark copy kernel [McC95]
under consideration of the write allocate. The measured bandwidth in general differs between
different kernels, i.e., a different ratio of load and store streams.

30

1 2 4 6 12 24
MPI Processes

Socket 0

64 GB/s, 56 Byte/Lup

2 Index blocks

No index arrays (1)
With cache blocking

0

200

400

600

800

1000

1200

1 2 4 6 12 24

P
e
rf

o
rm

a
n
c
e
 [
M

L
u
p

/s
]

MPI Processes

Socket 0

Every 2
nd

core

Every core

64 GB/s, 56 Byte/Lup

No index arrays (1)
With index arrays (2)

With grid shape information (3)
Index arrays only in the grid shell (4)

1 2 4 6 12 24
MPI Processes

Socket 0

64 GB/s, 56 Byte/Lup

Index blocks

2

4

No index arrays (1)
With cache blocking

1 2 4 6 12 24
MPI Processes

Socket 0

64 GB/s, 56 Byte/Lup

Index blocks

2
4

6

8
10
12
14

No index arrays (1)
With cache blocking

S
m
a
ll

M
e
d
iu
m

L
a
r
g
e

(a1) (a2)

(c2)

(b2)

0

200

400

600

800

1000

1200

1 2 4 6 12 24

P
e
rf

o
rm

a
n
c
e
 [
M

L
u
p
/s

]

MPI Processes

Socket 0

64 GB/s, 56 Byte/Lup

64 GB/s, 152 Byte/Lup

No index arrays (1)
With index arrays (2)

With grid shape information (3)
Index arrays only in the grid shell (4)

0

200

400

600

800

1000

1200

1 2 4 6 12 24

P
e
rf

o
rm

a
n
c
e
 [
M

L
u
p
/s

]

MPI Processes

Socket 0

64 GB/s, 56 Byte/Lup

Shared L3 Cache

No index arrays (1)
With index arrays (2)

With grid shape information (3)
Index arrays only in the grid shell (4)

(b1)

(c1)

Figure 3.8: Performance of the 6th order Hamiltonian with complex-valued orbitals
depending on the number of MPI processes on one btrzx3 node (2 sockets)
for three different system sizes and different numerical kernels described in
the text. The MPI processes are scattered as far apart from each other as
possible within one socket (up to 6 processes that use every second core)
and then within the whole node (12 processes use every second core, 24
processes use every core). The halo communication is turned off such that
the data only show memory-access effects.

31

1 do i z = −mz, mz
2 do iy = −my, my
3 do ix = −mx, mx
4 horb (ix , iy , i z) = (pot (ix , iy , i z)+c (0)) ∗orb (ix , iy , i z) +&
5 c (1) ∗(&
6 orb (ix −1, iy , i z) + orb (ix+1, iy , i z) +&
7 orb (ix , iy −1, i z) + orb (ix , i y +1, i z) +&
8 orb (ix , iy , i z −1) + orb (ix , iy , i z +1)) +&
9 c (2) ∗(&

10 orb (ix −2, iy , i z) + orb (ix+2, iy , i z) +&
11 orb (ix , iy −2, i z) + orb (ix , i y +2, i z) +&
12 orb (ix , iy , i z −2) + orb (ix , iy , i z +2)) +&
13 c (3) ∗(&
14 orb (ix −3, iy , i z) + orb (ix+3, iy , i z) +&
15 orb (ix , iy −3, i z) + orb (ix , i y +3, i z) +&
16 orb (ix , iy , i z −3) + orb (ix , iy , i z +3))
17 end do
18 end do
19 end do

Listing 3.2: Hamiltonian without index arrays.

of the Hamiltonian. The DP array c(0 : 3) contains the constant coefficients of the
6th order finite differences Laplacian for the central (c(0)) and the three neighboring
(c(1)-c(3)) grid points on each side (see figure 3.4).
The performance of this code parallelized among a 2-socket btrzx3 node (2× AMD

Opteron 6348 with 12 cores each) is shown in figure 3.8 (a1, Data set 1 ’No index
arrays’) for a small grid for different numbers of MPI processes. The terms ’small’,
’medium’ and ’large’ refer to the system size and are specified in section 3.4.3 in more
detail. Up to six MPI processes are distributed among a single socket, i.e., one AMD
processor on socket 0. They are scattered as far apart from each other as possible
within this socket to make best use of the parallel resources. The calculations with 12
and 24 MPI processes ran on both sockets and correspond to ’every second core used’
and ’every core used’.
The best-case memory-bandwidth bottleneck is again indicated as a black line at

about 1120 MLup/s. The bandwidth of the node is approximately 64 GB19. The
56 Byte/Lup used for the bottleneck stem from the same memory-access model as for
the Jacobi smoother from section 3.4.1 but with complex-valued orbitals and a real-
valued potential. This means 1 DC + 1 DP = 24 Byte from loading one orbital value
and one potential value, 1 DC = 16 Byte from storing the resulting value of horb and
1 DC = 16 Byte for the corresponding write allocate.
The performance of the code from listing 3.2, which is the performance reference

in the following, scales well on the node and gets close to the memory-bandwidth
bottleneck with 24 MPI processes. The halo communication has been turned off for
these measurements such that only memory-access effects are measured.
19This has been measured with the LIKWID benchmark set with a result of 62869 MB/s. For the

measurement I used the maximum number of OpenMP threads per NUMA domain and the copy
kernel under consideration of the write allocate. The copy kernel describes the load and store
streams only approximately in this case since three DP load streams come on two DP store
streams due to the complex-valued orbitals.

32

1 do i = 1 , ndim
2 i x = kx (i)
3 i y = ky (i)
4 i z = kz (i)
5 do order = 1 , norder /2
6 horb (i) = horb (i) + c (order)∗(&
7 orb (idx (ix−order , iy , i z)) + orb (idx (ix+order , iy , i z)) +&
8 orb (idx (ix , iy−order , i z)) + orb (idx (ix , i y+order , i z)) +&
9 orb (idx (ix , iy , i z−order)) + orb (idx (ix , iy , i z+order)))

10 end do
11 end do

Listing 3.3: Hamiltonian with index arrays.

Due to the ellipsoidal grid shape of the BTDFT grid, the Hamiltonian cannot be
implemented in the way displayed in listing 3.2 but one must include the mapping
between the 3D grid index and the 1D index of the value arrays. The most simple way
to apply the Hamiltonian in this case is shown in listing 3.3. In this piece of code there
is no nested loop over the 3D grid but a single loop over the 1D value index. This is
simpler because of BTDFT’s grid parallelization that divides the 1D index range into
contiguous parts.
The index arrays idx (3D → 1D) and kx, ky, and kz (1D → 3D), which are just

conversion tables, hide the information about the grid shape, the mapping between the
3D grid points and 1D values and therefore the storage order of the value arrays in the
memory. Moreover, the sum over the contributions from neighboring grid points with
different distances is packed into an inner loop with the finite-difference coefficients
in the array c(0 : 3)20. Still, if the code from listing 3.3 is applied to the same cubic
grid as the previous one from listing 3.2 with the same finite-difference order, it does
exactly the same computation.
The performance of the code from listing 3.3 is shown as data set 2 ’With index

arrays’ in figure 3.8 (a1). It also scales with the number of MPI processes but its
total performance does not reach the bottleneck. This has several reasons: First of
all, the four index arrays, which posses as many elements as the 1D value arrays,
have to be loaded additionally. This increases the bytes loaded per Lup and decreases
the bottleneck performance. Second, the index arrays completely hide the grid shape
and storage order of the value arrays in the memory from the compiler at the time
of compilation and from the processor at run-time. The former prevents the compiler
from optimizing the code, which alone has large impact on the performance (remember
the non-optimized Jacobi smoother in figure 3.7). The latter enforces that a core must
first load and evaluate an index array before it knows the next value that must be
loaded. This prevents prefetching of data and therefore increases latency effects.
The question discussed in the following is how the code in listing 3.3 can be improved

such that the performance gets closer to the one of the ideal code from listing 3.2, which
is specialized for cubic grids. As a starting point one may think about the following

20In this implementation the order of the finite differences is not known at compile time and hence
information hidden from the compiler. This alone already has huge influence on the performance
and would also decrease the performance of the code in listing 3.2 by approximately 1/4 to 1/3
(not shown here). The effect is much smaller on the code from listing 3.3.

33

1 i = 0
2 do i z = −mz, mz
3 do iy = −my(abs (i z)) , my(abs (i z))
4 do ix = −mx(abs (iy) , abs (i z)) , mx(abs (i y) , abs (i z))
5 i = i+1
6 horb (i) = (pot (i)+c (0)) ∗orb (i) +&
7 c (1) ∗(&
8 orb (idx (ix −1, iy , i z)) + orb (idx (ix+1, iy , i z)) +&
9 orb (idx (ix , iy −1, i z)) + orb (idx (ix , i y +1, i z)) +&

10 orb (idx (ix , iy , i z −1)) + orb (idx (ix , iy , i z +1))) +&
11 c (2) ∗(&
12 orb (idx (ix −2, iy , i z)) + orb (idx (ix+2, iy , i z)) +&
13 orb (idx (ix , iy −2, i z)) + orb (idx (ix , i y +2, i z)) +&
14 orb (idx (ix , iy , i z −2)) + orb (idx (ix , iy , i z +2))) +&
15 c (3) ∗(&
16 orb (idx (ix −3, iy , i z)) + orb (idx (ix+3, iy , i z)) +&
17 orb (idx (ix , iy −3, i z)) + orb (idx (ix , i y +3, i z)) +&
18 orb (idx (ix , iy , i z −3)) + orb (idx (ix , iy , i z +3)))
19 end do
20 end do
21 end do

Listing 3.4: Hamiltonian with grid information.

problem: Neither the compiler nor the process at run-time know the structure of the
grid or the storage order of the 1D values arrays. However, this information is in
principle available through the grid setup in section 3.3.1.
A first approach is therefore to use the grid-shape information that is given through

the values of mz and the arrays my(:) and mx(:, :) from section 3.3.1 and the storage
order of the value arrays in the sense that it is clear, per construction, how the 1D
index runs through the 3D grid. One can start with the evaluation of the Hamiltonian
at the 3D grid point that corresponds to the first 1D index in a process’ range and run
through the 3D grid in the same order as the 1D index. Thus, one only increments the
1D index in the innermost loop. In this way, the 1D index of the currently processed
grid point as well as its 3D index are always known. Only the 1D indices of the
neighboring grid points have to be looked up from the idx index array. The kx, ky
and kz index arrays are replaced completely.
The corresponding Hamiltonian is shown in listing 3.4. Its performance is shown as

data set 3 in figure 3.8 (a1)21. As expected, this code performs considerably better
than that of listing 3.3. Still, there is room for further improvement.
Most of the remaining calls of the idx index arrays can be dropped if one additionally

uses the fact that the 1D index runs through each x-row in the same direction (see
figure 3.2). If the 1D index of the current grid point and of all its neighbors is known
at the beginning of one row, one gets the 1D indices of the subsequent neighbors by
incrementation. Therefore, the idx index array only has to be used inside a shell at
the grid’s surface with a width of as many neighbors as the finite differences scheme

21To ensure the comparability of the results, the performance measurement has again been done on
the same cubic grid, i.e., the my and mx arrays contain a single value. However, the compiler and
the processor at run-time do not know that. Thus, the performance on the BTDFT grid can be
simulated in this way.

34

Figure 3.9: Finite differences of 2nd order in an xy-plane of the ellipsoidal BTDFT grid
(compare to figure 3.2). The green stencil and arrows show the collective
incrementation of the 1D indices of the currently processed grid point (blue
circled) and the neighboring ones (red circled) in the inner region of the
grid. The index array idx only needs to be used in the outer grid shell.

requires. This is shown graphically in figure 3.9.
The code from listing 3.4 with the additional improvements in the inner part of the

grid as discussed by means of figure 3.9 is similar to the Hamiltonian as implemented
in BTDFT. This implementation of the Hamiltonian (data set 4) increases the perfor-
mance again towards the reference. The remaining difference is only due to the use if
the idx array in the grid shell and the index bounds my and mx, which are in general
not single values. Thus, the performance should converge towards the reference if the
system size is increased (to the ’medium’ and ’large’ systems).
The performance of the systems called ’medium’ and ’large’ is shown in figure 3.8

(b1) and (c1) for all of the implementations of the Hamiltonian discussed so far.
For the medium system a sudden drop in performance appears at 24 processes for all
versions including the reference. The performance of the large system is generally poor
and at 12 processes already seems to hit a bottleneck that is far below the best-case
bottleneck.
Still, the former expectation that the code from listing 3.4 with the improvements of

figure 3.9 (data set (4)) converges towards the reference (data set (1)) holds true. This
is not the case for the pure Hamiltonian from listing 3.4 without the improvements of
figure 3.9 (data set (3)). The code corresponding to data set 4 is therefore reasonably
efficient in the sense that it hits a bottleneck, especially for large systems that are the
most critical ones in terms of total computation time. Just the bottleneck is not the
one of the best case, which is discussed in the following.

3.4.3. Cache blocking

To estimate the memory bandwidth bottleneck in the former section, I used a best-
case value of 56 Byte/Lup. This resulted from the assumption that only one value of
the orbital array must be loaded per Lup. The performance drops for larger systems
appear because more than one value has to be loaded.

35

This can be understood by a simple model: If a value has been loaded from the
memory to the cache, it stays there until it is replaced due to the limited cache size.
If that specific value is not required anymore by the Hamiltonian at the time it is
replaced, the best case holds true. The values that are stored inside the cache are
those that have been used last and are probably needed in the near future.
This is illustrated in figure 3.10 (a)-(c) by a 2D example with 2nd order finite dif-

ferences for the small, medium, and large systems. The arrows indicate the order
the code runs through the 2D grid, which equals the storage order of the 1D index
for figures 3.10 (a)-(c). The values that are inside the cache are highlighted22. This
example appears in a similar way in [HW10, §3.3] for the Jacobi smoother above.
To evaluate the finite differences for the small system in this example, the top

neighbor must in any case be loaded from the memory. The left neighbor has just
been used and is for sure still inside the cache. When the top neighbor is loaded
into the cache, the last value in the tail behind the currently processed grid point is
evicted. If the cache is large enough to hold, in this example, at least two complete
rows, the other two neighbors are also still inside the cache. This corresponds to
best-case scenario from above (small system).
When the system’s size gets larger in the horizontal direction such that less than

two rows fit into the cache, one additional value must be loaded from the memory for
each Lup (medium system). Thus, each value must be loaded twice in total. If the
system gets even larger such that less than one row fits into the cache, also the third
neighbor has to be loaded (large system). In total this means that more data have
to be loaded per Lup and the performance at the memory-bandwidth bottleneck is
decreased.
This example works analogously in three dimensions and with finite differences of

higher order. For the 6th order finite differences discussed above, in total six xy-planes
must fit into the cache for the best-case memory access (small system). The bottleneck
that is hit by the performance curves for the large system in figure 3.8 (c1) is simply
that of the worst case.
The worst case happens if the cache holds less than a single xy-plane. In this

situation the three neighbors in the xy-planes above and below as well as one value
in the same xy-plane must be loaded23. This results in 7 DC = 112 Byte from loading
the orbitals, 1 DP = 8 Byte from the potential, and 2 DC = 32 Byte for storing the
resulting value and the associated write allocate. The resulting worst-case bottleneck
with 152Byte/Lup is marked in the performance graph of the large system in figure
3.8 (c1) and fits perfectly to the data.
This example demonstrates that the code reacts sensitive on the cache size, which

explains the performance drop of the medium system if the parallelization is increased
from 12 to 24 MPI processes in figure 3.9 (b1). Since the L3 cache is shared among
the processes, each of the 24 processes only gets half of the cache compared to running

22The real cache occupation is probably different. This is just an idealized example for illustration
purposes.

23The values at neighboring grid points in x-direction are in the same x-row and have just been
loaded into the cache. All values at neighboring grid points in y-direction, up to the foremost,
have already been used in this xy-plane and are also still inside the cache. The next performance
drop would appear when the cache gets too small to hold six x-rows which is not realistic in the
context of BTDFT.

36

Small

Large

Medium

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
Large

Small

Block Block

Smalla) b)

c)

d)

Figure 3.10: 2D example of the cache occupation with 2nd order finite differences for
the small (a), medium (b), and large (c) systems and with additional
cache blocking (d). The central blue-circled grid point is the one currently
processed. The red-circled ones are those currently needed by the finite
differences. The order the code runs through the grid is indicated by the
green arrows. Data that are stored in the cache are highlighted.

the code with 12 processes. Therefore, one gets into the worst case with 24 processes
and must load the data more often than in the case of 12 processes.
To counteract this effect, one can use cache blocking or index blocking [HW10, §3.5],

which is illustrated in figure 3.10 (d). In the 2D example, one divides the grid into
blocks by blocking the horizontal index. The Hamiltonian is then applied block-by-
block. In a 3D grid is is usually sufficient to block one of the indices in the xy-plane.
This adds an additional outermost loop. The mapping between the 1D index and the
3D grid is not influenced, only the order in which the Hamiltonian is applied changes.
In terms of the memory-access pattern, cache blocking has the effect of dividing a

large system into many small ones. The overhead that is generated at the boundary
between two blocks is usually negligible. In BTDFT the y-index is blocked as demon-
strated in listing 3.5 by means of the reference code from listing 3.2. In this code the
y-coordinate is divided into nblock blocks with start and stop y-index contained in
the array yblocks.
The effect of cache blocking is shown in figure 3.8 (a2), (b2), and (c2) for the 3D

reference Hamiltonian as discussed in a former section. As expected, the performance
of the small system cannot be increased since it already shows the best-case memory
access. However, the performance of the medium and large systems can be raised
almost to the optimal case. The medium system already reacts on two and four blocks.
The large system requires more blocks and the data set with only two blocks results
in no improvement at all. For 24 MPI processes the performance can be enhanced
significantly when, e.g., 14 blocks are used. In BTDFT the number of index blocks is
determined automatically if the relevant cache size per process is given as preprocessor
constant to the compiler (see appendix A.2.1).

37

1 do b = 1 , nblock
2 do i z = −mz, mz
3 do iy = yblocks (b) , yb locks (b+1)−1
4 do ix = −mx, mx
5 horb (ix , iy , i z) = (pot (ix , iy , i z)+c (0)) ∗orb (ix , iy , i z) + &
6 ! [. . .]
7 end do
8 end do
9 end do

10 end do

Listing 3.5: Hamiltonian without index arrays with blocked y-index.

3.5. Performance tests

To test the overall performance of BTDFT and to get a feeling for the performance
for different time steps and the orbital parallelization, I discuss two cases: A linear
polyacetylen chain with 80 KS orbitals and 5.2 · 106 grid points and a small aggregate
of two bacteriochlorophylls a (BChla) with 240 KS orbitals and 3.3 ·106 grid points. I
ran the calculations of polyacetylen on the btrzx3 cluster and the BChla calculations
on the Intel Xeon E5620 nodes of the btrzx5 cluster (see appendix B) with various
time steps and parallelizations for short propagation times. For the tests I always
used the TDLDA functional, which can be evaluated with negligible effort between
two time steps.
As a measure of performance I use the inverse of the computation time. However, I

only show the relative performance (or scaling) with respect to a reference calculation.
A scaling or relative performance of ’x2.00’ means that this calculation requires half
the computation time of the respective reference calculation, which translates to twice
the performance.
As already stated, there exist different possibilities to map the MPI processes onto

the hardware. In the following the MPI processes in one orbital unit are close-packed.
This specifically means that in a calculation with, e.g., 4 nodes and 2 orbital units,
each orbital unit is distributed among two nodes. This setup privileges the halo
communication, which happens more frequently. The effect of a mapping in which
each orbital unit is scattered across all nodes is discussed in appendix A.3.3 and the
scaling behaviour of BTDFT for the polyacetylen system is shown for up to 40 nodes
on btrzx3. Numerical details for the presented calculations are listed in appendix
E.2.1.

3.5.1. Polyacetylen chain

BTDFT was first planned as an extension of PARSEC [Kro+06] to time-dependent
systems. However, in the Bayreuth version of PARSEC there already exists a time-
dependent extension (TD-PARSEC), which uses the Taylor propagator. I use this as
additional reference to make a statement about the absolute performance of BTDFT.
To this end, I first compare propagations on the polyacetylen system performed

with

• TD-PARSEC with Taylor propagator for ∆t = 0.0005 fs,

38

 0

 1

 2

 3

 4

 5

 6

 0 0.01 0.02 0.03 0.04 0.05

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Time step [fs]

x0.034 (57 h 04 min)
TD-PARSEC

x0.80 (2 h 26 min)
4th order Taylor

x1.00 (1 h 58 min)

x1.53 (1 h 17 min)

x2.24 (53 min)

x3.74 (32 min)

Meassured
Linear (ideal)

(a) Variation of the time step on two nodes of
btrzx3 without orbital parallelization.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 8 16

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Number of nodes

x1.00 (1 h 58 min)

x1.99 (59 min)

x3.70 (32 min)

x6.53 (18 min)

Meassured
Linear (ideal)

(b) Additional orbital parallelization (∆t =
0.01 fs). Two nodes share one orbital unit.

Figure 3.11: Performance of BTDFT on the polyacetylen system described in the text
with respect to a reference calculation with only grid parallelization. The
reference calculation (scaling factor ’x1.00’) in both subfigures is the same
with propagation time T = 1 fs and time step ∆t = 0.01 fs. Each orbital
unit is grid-parallelized among two nodes of btrzx3. The dashed line
marks the ideal scaling behaviour.

• BTDFT with Taylor propagator for ∆t = 0.0005 fs, and

• BTDFT with Crank-Nicolson propagator for varying time-step sizes ranging
from ∆t = 0.01 fs to 0.05 fs.

The calculation is only grid-parallelized and the parallelization is kept constant among
two nodes of the btrzx3 cluster with every second core occupied (i.e., 12 MPI processes
per node). To make the calculations comparable, I aligned the linear polyacetylen
along the parallelized Cartesian coordinate in TD-PARSEC and BTDFT such that
halo communication is reduced to a minimum24.
For the comparison between TD-PARSEC and BTDFT with the Taylor propagator,

I used the same numerical parameters, as far as possible. As a result, for a propagation
time of T = 1 fs TD-PARSEC requires about 57 h whereas BTDFT requires only
2 h 26 min, which is a factor of > 23 faster.
Using the Crank-Nicolson propagator with larger time-step sizes can further increase

the performance. The results are displayed in figure 3.11a, where the calculation
with ∆t = 0.01 fs is chosen as reference. For comparison the performance from TD-
PARSEC and BTDFT with the Taylor propagator are also depicted in figure 3.11a at
∆t = 0.0005 fs and indicated by arrows. The computation times given in the figure
refer again to a propagation time of T = 1 fs.
The optimal scaling behaviour, which means a doubling in performance when dou-

bling the time-step size, is indicated by the straight line in figure 3.11a. When the
time-step size is increased, the performance increases as expected but does not scale
optimally. Doubling the time-step size does not double the performance since the
solution of the Crank-Nicolson equation requires more effort the larger the time step

24In TD-PARSEC this is the x-direction, in BTDFT this is the z-direction

39

is.25. Still, the Crank-Nicolson propagator improves the performance with respect to
the Taylor propagator.
Finally, when the additional orbital parallelization is switched on, the number of

nodes can be increased. The grid parallelization within each orbital unit is still kept
fixed among two nodes such that the number of orbital units equals half the number
of nodes. The resulting performance for different numbers of nodes (and hence orbital
units) is shown in figure 3.11b with the Crank-Nicolson propagator and a constant
time-step size of ∆t = 0.01 fs. Hence, the reference value in figures 3.11a and 3.11b is
the same.
One can clearly see that the orbital parallelization scales well. Even if eight times

the resources are used (i.e., there are eight orbital units and in total 16 nodes), the
performance is increased by a factor of 6.53. The latter is still close to the optimal
scaling factor of 8.0026.

3.5.2. Two bacteriochlorophylls

Since the polyacetylen system is a linear molecular chain, it requires only few KS
orbitals but a relatively large grid. It is therefore not well suited for the orbital
parallelization.
In addition I investigate an aggregate of two BChls with a smaller grid but three

times the number of KS orbitals on the btrzx5 cluster27. I used this system to check
the influence of different ratios between orbital parallelization and grid parallelization.
The results of this test are shown in figure 3.12. Data points with the same color
indicate an equal grid parallelization (but different total parallelization and number of
orbital units). Data points with the same total parallelization but different numbers
of orbital units, as indicated by the ’units’ labels in figure 3.12, show different ratios
between orbital parallelization and grid parallelization.
At this point I want to make three observations:

• For a total parallelization among four nodes the performance of the calculations
with four orbital units is a factor of about 1.72 faster than the one with one
orbital unit (i.e., only grid parallelization among four nodes). This means that
a grid parallelization among four nodes is not efficient for this example.

• For a parallelization among eight nodes the same can be stated since the cal-
culation with two orbital units (i.e., again a grid parallelization among four
nodes) is slower than the calculations with four and eight orbital units (i.e., a
grid parallelization among two nodes or one node, respectively.). However, the
performance for four and eight orbital units is quite the same, which means that
a grid parallelization among two nodes is still efficient.

• Keeping the grid parallelization among two nodes but doubling the total par-
allelization to 16 nodes with eight orbital units almost doubles the resulting

25The larger a time step is, the larger is typically the difference between the time-dependent potentials
at t and t+ ∆t.

26The approximately constant time for initialization and output of about 1 min disturbs the result a
little for these small total computation times. If this is taken into account, the scaling factor for
16 nodes is about 6.85.

27Nodes with two Intel Xeon E5620 processors, eight MPI processes per node, see appendix B.1.

40

 0

 1

 2

 3

 4

 5

 6

 7

 4 8 16

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Number of nodes

1 unit

4 units

2 units

4 units
(x1.00)

8 units

8 units
(x1.96)

Global reference (x1.00)

Grid parallelization
Among 1 node
Among 2 nodes
Among 4 nodes

Figure 3.12: Performance of the BChla aggregate on btrzx5 with different paralleliza-
tions. The data sets with equal colors have the same grid parallelization.
For the blue data set with a grid parallelization among two nodes the
ideal scaling curve is shown.

performance (factor of 1.96 compared to the optimal scaling factor of 2.00). The
optimal scaling behaviour with the calculation with eight nodes and four orbital
units as reference is indicated by the straight line.

In summary, the grid parallelization is already maxed out for two (or maybe three)
nodes and further grid parallelization is not efficient for the BChla system. However,
by using additional orbital units, the parallelizability is enhanced by far. The almost
perfect scaling from eight to 16 nodes with the same grid parallelization (blue data
points) indicates that the code scales also well for � 16 nodes and underlines the effi-
ciency of the orbital parallelization. Thus, one can conclude that BTDFT is expected
to be well suited for TDDFT simulations of the large multichromophoric systems that
are the subject of subsequent sections and future work.

41

4. Evaluation of electronic spectra and transition densities

The energy transfer in light-harvesting systems such as the LH2 complex, which is
introduced in the next section, is mediated through excited electronic states. For its
correct theoretical description by means of real-time TDDFT, the proper description
of the participating excited states is mandatory.
Electronic excitations can be described by their energy, oscillator strength (or dipole

strength), and transition density [KAR01; Bro+04; TK09]. Typical quantum chem-
istry codes, such as Gaussian [Fri+] or QChem [Sha+15], solve the TDKS equations
in frequency space within the linear-response formalism [CAS95; PGG96; GDP96;
Cas+98] and return these quantities quite naturally. In contrast to that, the real-time
implementation [SS96; YB96; YB99; CRS97; Cal+00; CMR04; MUN09; Mar03a;
Cas+06; And+15] requires more effort to extract those data since its only output is
the time-dependent density n(r, t).
Optical excitations are usually extracted from the time-dependent dipole moment

or, more exactly, its Fourier transform after a dipole-like excitation as shown below
[SS96; YB96; CRS97; YB99]. However, the direct interpretation of the results as
optical spectra limits the accuracy due to the finite resolution of the discrete Fourier
transform and the finite propagation time [CRS97]. The quantitative information
about single excitation energies and oscillator strengths can still be extracted from
those spectra by fitting excitations with the correct line shape. This was already
pointed out in [CRS97].
Predicting accurate excitation energies from real-time TDDFT is still of interest

[And+15]. Therefore, I advanced the existing evaluation scheme for dipole active elec-
tronic excitations and their transition densities from real-time TDDFT and present
the results in this section. This technique is fundamental for the discussion in section
5 since it returns, within the approximations done in applied TDDFT, accurate values
for excitation energies and oscillator strengths. It even reveals small excitations that
are otherwise overseen. The same is true for the transition densities, which directly dis-
play the motion of the density at a certain excitation frequency28 and characterize the
respective transition. The technique presented here makes transition densities of weak
transitions accessible from real-time TDDFT and even useful for quantitative pur-
poses. This is applied to the calculation of coupling strengths between chromophores
in section 5.5.

4.1. Traditional real-time evaluation of spectra and transition densities

In order to calculate the photoabsorption spectrum from real-time TDDFT, one ini-
tially applies a boost excitation to the ground-state KS orbitals ϕ(GS)

j [YB96]

ϕj(r, t = 0) = eik·rϕ
(GS)
j (r) . (4.1)

If the boost strength k = |k| is small, this corresponds to a dipole-like, instantaneous
kick with energy Eboost = N ~2k2

2m and direction of k. N is the number of electrons, m

28The terms excitation frequency and excitation energy are used equivalently in this work due to
their direct correspondence Eexcit = ~ωexcit.

43

is the electron mass, and ~ is Plank’s constant. The meaning of the boost is explained
below in more detail.
The induced dipole moment

δµ(t) = µ(t)− µ(GS) (4.2)

with
µ(t) = −e

∫
rn(r, t)d3r (4.3)

displays the density oscillations of dipole active excitations with their corresponding
excitation energies. e is the elementary charge.
If the system is excited in three orthogonal directions (here: ϑ ∈ {x, y, z}) in three

separate calculations, this results in three induced dipole moment vectors δµ(ϑ). The
componentwise (γ ∈ {x, y, z}) Fourier transform of the three dipole vectors builds the
dynamic polarizability tensor [YB99; Mar03a]

αϑγ(ω) =
−e
~k
F
[
δµ(ϑ)

γ

]
(ω) . (4.4)

The Fourier transform F from the time domain to the domain of angular frequency is
in the following denoted by a tilde, i.e., f̃ = F [f]. The imaginary part of the trace of
the polarizability tensor corresponds directly to the photoabsorption cross section (in
CGS units) [ZS80; Mar+12; Mar03a]

σ(ω)
CGS
=

4πω

3c
={Tr [αϑγ(ω)]} . (4.5)

The imaginary part is denoted by = whereas the trace operator is Tr and c is the
speed of light. Building the trace in the photoabsorption cross section corresponds
to averaging over all orientations of the system. This removes the dependence of the
resulting spectrum on the direction of the boost excitation, which becomes clear in
the derivation below.
An equivalent quantity, which is commonly used, is the dipole strength function

(DSF) [ZS80; YB99; Mar+12]

S(~ω) = − 2mω

3πe~2k
=
{

Tr

[
δ̃µ

(ϑ)

γ (ω)

]}
(4.6)

The DSF integrates to the total oscillator strength, which must equal the number of
electrons due to the Thomas-Reiche-Kuhn or f-sum rule [YB96; YB98; YB99; Mar03a].
The absorption cross section and the DSF show peaks at the excitation energies

of dipole active singlet excitations. These peaks are artificially broadened due to the
finite propagation time T of the real-time simulation, which is explained below in more
detail. Usually, the outcome of equations (4.5) or (4.6) is directly compared to optical
spectra from the experiment or excitation energies read out from the peak positions.
[YB96; CRS97; YB99; Cal+00; LSR02; MG04; MK06; MK07; WU08; MUN09; TK09;
HKK12; HK12; Mar+12]
In this context, the power spectral density (PSD) [CRS97; MUN09; Pre+92] of the

time dependent dipole moment

P (~ω) = 2 Tr

[∣∣∣∣δ̃µ(ϑ)

γ (ω)

∣∣∣∣2
]

(4.7)

44

is another commonly used quantity29. If one is only interested in the excitation energies
of strong dipole excitations, it is usually sufficient to excite the system once with a
boost that is non-orthogonal to the dipole excitations of interest.
The DSF and the PSD of the Na4 cluster and a BChla30 are drawn in figure 4.1

(a1)+(a2) and (b1)+(b2). The spectra arise from real-time propagations with a prop-
agation time of T = 50 fs (Na4) and T = 100 fs (BChla), respectively. They are
typically found this way in the literature [YB96; CRS97; YB99; Cal+00; LSR02;
MG04; MK06; MK07; WU08; MUN09; TK09; HKK12; HK12; Mar+12]. For both
systems the spectra only display the energy range up to about 3.5 eV and 2.1 eV, re-
spectively. The discrete Fourier transform was done with the Fast Fourier Transform
(FFT) algorithm [Pre+92]. Further numerical details for the calculations presented in
this section are listed in appendix E.2.2.
DSF as well as PSD for both molecules show, as expected, peaks at excitation ener-

gies. For Na4 three to five excitations can be identified from figures 4.1 (a1)+(a2). For
BChla two peaks can be identified from figures 4.1 (b1)+(b2). The latter correspond
to the prominent Q-band excitations [Gou61; Hu+02; CGK06] Qy (larger one) and
Qx (smaller one) excitations (see section 5). Yet, the spectra look quite spiky and
the identification and evaluation of excitations is questionable. Smaller excitations
that are close to the identified larger ones can be overseen and excitation energies can
only be determined with a resolution of ∆ω = 2π

T , which is the sampling rate in the
frequency domain from the discrete Fourier transform [Pre+92].
Moreover, the DSF shows negative values, which is incompatible with its direct

interpretation as an absorption cross section. One possibility to resolve this issue is to
damp the time-dependent dipole moment, e.g., with a decaying exponential function,
which simulates a kind of finite lifetime of the excited states. If the signal is damped
sufficiently, this results in smooth spectral lines but is accompanied by a loss of spectral
resolution. [YB96; CRS97]
Finally, the transition densities, which directly display the density oscillation at a

given excitation energy, suffer from similar problems. From a real-time simulation
they are usually evaluated as the Fourier transform of the induced density fluctuation
δn(r, t) = n(r, t)− n(GS)(r) [KAR01; TK09; HKK12; HK12]

ρif (r) = 〈i|n̂(r)|f〉 ∝ ={ñ(r, ωif)} (4.8)

for the excitation from an initial state the |i〉 to a final state |f〉 with energy ~ωif and
the density operator n̂.

4.2. Refined excitation energies and oscillator strengths

For the later discussion detailed information about small, artificial states is required.
In the following, I elaborate a scheme to evaluate the dipole spectra for accurate
excitation energies, oscillator strengths, and transition densities. To this end, I first
derive the expression for the DSF after a numerical propagation with a weak boost.

29I define the PSD with a factor of 2, which is explained in [Pre+92] (one-sided PSD).
30Structure taken from [ONS10].

45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o

w
e

r
s
p
e
c
tr

u
m

 P
(- h

ω
)

[a
rb

it
ra

ry
 u

n
it
s
]

PSD

-5

0

5

10

15

20

25

30

D
ip

o
le

 s
tr

e
n
g

th
 S

(- h
ω

)
[1

/e
V

]

DSF

-5

0

5

10

15

20

25

30

D
ip

o
le

 s
tr

e
n

g
th

 S
(- h

ω
)

[1
/e

V
]

Refined DSF
Fit

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5

O
s
c
ill

a
to

r
s
tr

e
n

g
th

 (
P

e
a

k
 h

ig
h

t)

Excitation energy [eV]

Evaluated spectrum
Along Z
Along Y
Along X

Z1

Z2 Z3
Z4

Y1

Y2

Y3
X1

X2

X3

0

0.05

0.1

0.15

0.2

P
o

w
e

r
s
p
e

c
tr

u
m

 P
(- h

ω
)

[a
rb

it
ra

ry
 u

n
it
s
]

PSD

-2

0

2

4

6

8

10

12

D
ip

o
le

 s
tr

e
n

g
th

 S
(- h

ω
)

[1
/e

V
]

DSF

-2

0

2

4

6

8

10

12

D
ip

o
le

 s
tr

e
n

g
th

 S
(- h

ω
)

[1
/e

V
]

Refined DSF
Fit

0

0.05

0.1

0.15

0.2

0.25

1.5 1.6 1.7 1.8 1.9 2 2.1

O
s
c
ill

a
to

r
s
tr

e
n

g
th

 (
P

e
a

k
 h

ig
h

t)

Excitation energy [eV]

Evaluated spectrum
Qy

CT1
CT2

Qx

Qy

Qx

CT2CT1

a1 b1

a2 b2

a3 b3

b4a4

Figure 4.1: PSD (a1)+(b1), DSF (a2)+(b2), refined DSF with fitted excitations
(a3)+(b3), and the evaluated spectrum (a4)+(b4) of Na4 (T = 50 fs) (a1)-
(a4) and BChla (T = 100 fs) (b1)-(b4). The lines in the evaluated spec-
trum are artificially broadened by Gaussian functions e−[~(ω−ω0j)/η]2 with
η = 0.05 eV (a4) and η = 0.025 eV (b4).

46

The time-dependent dipole moment The real-valued many-body eigenstates of the
ground-state Hamiltonian are denoted by {|j〉} with the ground state |0〉 and energies
Ej = ~ωj . The system is in its ground state for t < 0 and is subject to a boost
excitation at t = 0. The many-electron wave function at t = 0 reads

|ψ(t = 0)〉 = eik·r̂ |0〉 . (4.9)

The boost acts on all electronic coordinates as eik·
∑N
j=1 rj . The time-dependent wave

function can be expanded into the basis {|j〉}

|ψ(t)〉 =
∞∑
j=0

cj |j〉 e−iωjt . (4.10)

The expansion coefficients cj are constant during the evolution for t > 0 since the
Hamiltonian is time-independent after the boost. The coefficients are determined by
the initial condition

cj = 〈j |ψ(t = 0)〉 = 〈j| eik·r̂ |0〉 . (4.11)

The time-dependent dipole moment follows from

µ(t) = 〈ψ(t)| − er̂ |ψ(t)〉 = −e
∞∑
j,l=0

c∗l cje
−iωljtrlj . (4.12)

The asterisk denotes complex conjugation. Further, ωlj = ωj − ωl is the excitation
frequency for the l → j transition and rlj = 〈l| r̂ |j〉 the corresponding transition
dipole moment 31.
For small boost strengths the exponential in equation (4.11) can be expanded into

a finite Taylor series. This way, the expansion coefficients reduce to

cj ≈ 〈j| 1 + ik · r̂ |0〉 = δj0 + ik · rj0 . (4.13)

The weak boost acts as a dipole-like excitation with the direction of k.
By neglecting terms proportional to (k · rj0)(k · rl0), the products c∗l cj in equation

(4.12) read
c∗l cj ≈ δl0δj0 + ik · (δl0rj0 − δj0rl0) . (4.14)

The first term in this equation leads to the static dipole moment of the ground state
µ(t = 0) = −e〈0|r̂|0〉, which is of no interest. The remaining induced dipole moment
is

δµ(t) ≈ −ie
∞∑
j,l=0

k · (δl0rj0 − δj0rl0) e−iωljtrlj

= −ie
∞∑
j=0

(k · r0j) r0j

[
e−iω0jt − eiω0jt

]
= −2e

∞∑
j=1

(k · r0j) r0j sin(ω0jt) . (4.15)

31The transition dipoles are −erlj . However, I also use the term freely without the factor −e.

47

Here, ωjl = −ωlj and rj0 = r0j ∈ R have been used. The induced dipole moment
oscillates, as expected, with the excitation frequencies ω0j of the 0 → j transitions.
The amplitudes of the single spectral components depend only on their respective
transition dipoles and on their angle with respect to the boost vector through the
inner product k · r0j .
The dependence on the angles between boost and transition dipoles can be removed

by performing three calculations with orthogonal boost vectors k(ϑ) = kêϑ. In the
following, I use the Cartesian directions with ϑ ∈ {x, y, z}, where êϑ are the corre-
sponding unit vectors. The trace of the dipole moment matrix δµ(ϑ)

γ with γ ∈ {x, y, z}
reads

Tr
[
δµ(ϑ)

γ

]
=

∑
l=x,y,z

δµ
(l)
l = −2ek

∞∑
j=1

|r0j |2 sin(ω0jt) = −3e~k
m

∞∑
j=1

f0j

ω0j
sin(ω0jt) .

(4.16)
In the latter equality the definition of oscillator strength [Bro+04]

f0j =
2mω0j |r0j |2

3~
(4.17)

as well as ∑
l=x,y,z

(kêl · r0j) r0j,l = k
(
r2

0j,x + r2
0j,y + r2

0j,z

)
= k |r0j |2 (4.18)

and again r0j ∈ R have been used.

Spectral analysis The Fourier transform [Pre+92]

F [g] = g̃(ω) =

∫
g(t)e−iωtdt (4.19)

F−1 [g̃] = g(t) =
1

2π

∫
g̃(ω)eiωtdω (4.20)

of equation (4.16) shows peaks at the excitation energies with amplitudes proportional
to the respective oscillator strength. However, due to the finite propagation time T ,
equation (4.16) is only valid for 0 ≤ t ≤ T . This is described by a window function

WT (t) = Θ(t)−Θ(t− T) (4.21)

which is multiplied onto the expression of equation (4.16).
The separate Fourier transforms of the sine from equation (4.16) and the window

function are

F [sin(ω0jt)] (ω) =
i

2
[δ(ω − ω0j)− δ(ω + ω0j)] and (4.22)

F [WT] (ω) =
[
cos
(ω

2
T
)

+ i sin
(ω

2
T
)] sin

(
ω
2T
)

ω
2

, (4.23)

where δ(·) denotes Dirac’s delta distribution.

48

Due to the convolution theorem F [fg] = F [f]∗F [g] the final result for the imaginary
part of the Fourier transform of equation (4.16) is

− 2m

3e~k
=
{

Tr

[
δ̃µ

(ϑ)

γ (ω)

]}
=
∞∑
j=1

f0j

ω0j

[
sin((ω − ω0j)T)

ω − ω0j
− sin((ω + ω0j)T)

ω + ω0j

]
. (4.24)

It consists of sine cardinal shaped lines at the excitation energies ω0j and −ω0j = ωj0.
The spectrum for ω < 0 is the one for ω > 0 mirrored and with negative strengths.
Therefore, it contains no additional information and can be omitted if ω0jT � 1 for
all excitations 0 → j32. The latter condition, which is easily fulfilled in practice,
ensures that the tails of the sine cardinal shaped lines in the ω < 0 spectrum do not
penetrate into the ω > 0 spectrum. Under this assumption, I omit the ω < 0 part in
the following and only consider ω > 0 for simplicity.
With the results from equation (4.24) the DSF from equation (4.6) reads33

S(~ω) =

∞∑
j=1

f0j
ω

ω0j

sin((ω − ω0j)T)

π~(ω − ω0j)

T→∞−→
∞∑
j=1

f0jδ(~ω − ~ω0j) . (4.25)

The DSF can be calculated from real-time TDDFT according to equation (4.6). En-
ergies and oscillator strengths of excitations can then be fitted according to equation
(4.25).
The resulting data of the induced dipole moment are given on an equidistant time

grid with a time-step size ∆t for 0 ≤ t ≤ T = Nt∆t. The FFT algorithm requires
the number of time steps to be N (ft)

t = 2n with n ∈ N and T (ft) = N
(ft)
t ∆t ≥ T . The

data from the calculation with 0 ≤ t ≤ T are usually filled up with zeros up to T (ft)

to enforce this constraint.
Due to Nyquist’s sampling theorem [Pre+92] the discrete DSF is defined in the

interval − π
∆t ≤ ω ≤ π

∆t . The part of the spectrum with ω < 0 is again the one that I
omit. The sampling rate in the frequency domain is determined by ∆ω = 2π

T (ft) .
The latter can be used as a simple numerical trick. By attaching zeros to the dipole

moment data, one can arbitrarily refine the sampling rate in the frequency domain,
which only depends on T (ft). The shape of the spectral lines remains untouched since
it only depends on the real propagation time T .
This leads to the refined DSF in figures 4.1 (a3)+(b3) with ~∆ω = 0.0063 eV. In

comparison to the original DSF in figures 4.1 (a2)+(b2) with ~∆ω = 0.05 eV, the
sampling rate is refined by a factor of eight. This way, the spectra can be analyzed
much better and the identification of distinct spectral lines is much easier.
The fit to equation (4.25), which is also shown in figures 4.1 (a3)+(b3), matches

the simulated spectrum perfectly for both test systems. The energetic positions of
the fitted excitations are indicated by arrows. The evaluated spectra are displayed
in figures 4.1 (a4)+(b4) with the single excitations artificially broadened by Gaussian
functions.
The Na4 excitations are named by their symmetry with respect to the coordinate

system drawn in figure 4.1 (a1) and their energetic order. Instead of the previously

32The spectrum for ω < 0 represents the reverse transitions j → 0.
33Note that ω

ω0j
δ(ω − ω0j)→ δ(ω − ω0j).

49

identified three to five excitations, the refined spectrum reveals 11. The overall spec-
trum compares well to former TDLDA Casida [CAS95; Cas+98] calculations and the
experiment [VÖC99].
The two dominant excitations of BChla are called Qy at 1.677 eV with a strength of

0.256 and Qx at 1.994 eV with a strength of 0.075. Both compare well to the results
of [ONS10] who get Qy at 1.73 eV and Qx at 2.02 eV for the exact same structure
with a density functional tight-binding Hamiltonian. Both are reasonable close to the
experiment as published in [CGK06, Figure 3] and [FLC96] with Qy at 772 nm ≈
1.61 eV and Qx at 590 nm ≈ 2.10 eV. Especially the Qy excitation plays a major role
in natural light harvesting processes, which is discussed in the last section.
Between Qy and Qx there are two additional states with a distinct charge-transfer

character34 at 1.739 eV with a strength of 0.018 (CT1) and at 1.863 eV with a strength
of 0.012 (CT2). The states CT1 and CT2 are artifacts, which are predicted at too
low excitation energies due to the self-interaction error of the TDLDA functional and
the missing derivative discontinuity [Toz03; DH04] as discussed in section 2.5.2. They
do not appear within this energy range in similar calculations with a tuned RSH
functional (see section 5.3.1).
The appearance of spurious excitations in spectra from TDDFT with pure density

functionals in BChla and similar systems is also discussed in the literature [Sun99;
Sun00; Sun03; DH04; Cai+06; Qu+09]. For the later discussion about the reliability
of TDLDA for the description of energy transfer in aggregates of BChla, these states
are of importance. However, one would not have been able to recognize them from
the traditional evaluation of real-time dipole spectra in figures 4.1 (b1)+(b2).
At the end of this part, I conclude with the comment that dark excitations with

vanishing oscillator strength cannot be seen with the evaluation scheme as presented
so far. However, dark states that are dipole-symmetry forbidden can be identified if
one chooses an excitation and an observable that do not show dipole symmetry. An
example is the excitation that arises from the anti-symmetric coupling between two
identical 2-level systems as discussed in section 5.4. This transition is not excited
by a weak, global boost and cannot be seen in the total dipole moment. It can still
be identified by, e.g., applying the boost in the half-space of one 2-level system and
observing the dipole moment in this half-space.

Transition dipole moments The transition dipoles r0j of an excitation are often used
in models of coupled chromophores (see section 5.4). Their absolute values are given
by the corresponding oscillator strengths through equation (4.17). Their direction is
given by the Fourier coefficients of the induced dipole moment vector at the respective
transition frequency, i.e.,

r0j ∝ δ̃µ(ω0j) . (4.26)

This can be seen from equation (4.15).
The information about the direction of the transition dipoles can be used to calculate

the angles between boost and the transition dipoles, which appear in the factors k ·r0j

in equation (4.15). This way, one can also calculate the oscillator strengths from a

34The transitions could be identified by their transition densities and the analysis of their natural
transition orbitals (NTO) [Mar03b] from Q-Chem TDLDA calculations, which are presented in
section 5 and appendix E.3.2.

50

single propagation as long as the initial boost is not orthogonal to any of the transition
dipoles. Performing a single calculation can be less accurate for oscillator strengths
but is often sufficient, especially if one is only interested in the excitation energies of
excitations with reasonable strength.

4.3. Refined transition densities

If the dipole operator in equation (4.12) is replaced by the density operator n̂, one
gets, after similar considerations, an expression for the imaginary part of the Fourier
transformed density fluctuation δ̃n = F [n− nGS] (for ω > 0)

=
{
δ̃n (r, ω)

}
= −

∞∑
j=1

(k · r0j) ρ0j (r)
sin ((ω − ω0j)T)

(ω − ω0j)
. (4.27)

At a certain transition frequency ω0n, this reads

=
{
δ̃n (r, ω0n)

}
= −T (k · r0n) ρ0n (r)−

∞∑
j=1

j 6=n

(k · r0j) ρ0j (r)
sin ((ω0n − ω0j)T)

ω0n − ω0j
(4.28)

with limω→ω0j

sin((ω−ω0j)T)
ω−ω0j

→ T .
Transition densities of excitations that are energetically close to ~ω0n penetrate into
=
{
δ̃n (r, ω0n)

}
similar to the spectral lines in figures 4.1 (a3)+(b3). The proportion-

ality in equation (4.8) corresponds to the approximation

=
{
δ̃n (r, ω0n)

}
≈ −T (k · r0n) ρ0n (r) . (4.29)

Hence, it is only valid for |ω0n − ω0j |T � 1 for all j 6= n.
However, the real transition densities can be calculated by inverting equation (4.28)

for a closed set of M interfering transitions 0→ n1...M . For this finite subset equation
(4.28) can be written as a matrix-vector equation with a M ×M correlation matrix
C and a diagonal normalization matrix A

=
{
δ̃n
}

= CAρ . (4.30)

The vector =
{
δ̃n
}

consists of the =
{
δ̃n
}

at energies ~ω0n1...M while ρ consists of

the pure transition densities ρ0n1...M . A contains the coefficients Ajj = −T
(
k · r0nj

)
.

C contains the correlation factors Cij =
sin
(

(ω0ni
−ω0nj

)T
)

(ω0ni
−ω0nj

)T . Therefore, it is symmetric
and one on its diagonal. Moreover, C only depends on the excitation energies and A
only on their strengths. The approximation (4.29) corresponds to setting C to unity.
The inversion of equation (4.28), which is used for decoupling the transition densities

in the following, finally reads

ρ = A−1C−1 =
{
δ̃n
}
. (4.31)

A is diagonal and is easily inverted while C can be inverted by standard algorithms.

51

Boost ~yz

Y1
Boost ~y

Z2
Boost ~z

Boost ~yz

Z1 Y2

Figure 4.2: Transition densities of the Z1, Z2, Y1, and Y2 transitions of Na4. The Z2
and Y1 transition densities are displayed for different propagation times
and boost directions before and after the correction described in the text.
The gray arrows indicate the correction. (iso-surface at ±0.0001 a0

−3)

The approximated and corrected transition densities are discussed using figure 4.2
by means of the Na4 cluster and its spectrum in figures 4.1 (a3)+(a4) for different prop-
agation times and boost directions. The latter are chosen parallel to the z-coordinate
(∼ z), parallel to the y-coordinate (∼ y), or along the diagonal in the yz-plane (∼ yz).
Thus, the excitations with transition dipoles parallel to the x-axis (X1-X3) are always
switched off. The Z1 and Y2 excitations, whose transition densities are shown in figure
4.2 (top left block), are the dominant ones and hardly affected by the correction.
According to the spectrum in figure 4.1 (a3) transition densities of the Z1 and, if

excited, the Y2 excitations notably penetrate into the Z2 transition density, which
is shown in figure 4.2 (right block). The approximated transition densities according
to equation (4.29) are shown on the left-hand side inside this block. For a boost
parallel to the z-direction and a propagation time of 50 fs the transition density is
already well described such that the decoupling (right-hand side inside the block) just
adds a small correction. If the propagation time is reduced to 10 fs, the approximated
transition density is highly polluted by the Z1 transition density but corrected by the

52

decoupling. Finally, a boost along the diagonal of the yz-plane additionally excites
the Y2 excitation, which breaks the z-symmetry of the approximated Z2 transition
density. The correction, however, also removes this effect such that all corrected
transition densities match perfectly.
This works the same for the other excitations seen in the spectrum. Still, a difficult

benchmark case is the Y1 excitation, which is completely hidden by the Z1 excitation
(if it is excited). If the Z1 excitation is switched off by a boost in y-direction, the
Y1 transition density is accessible and, after T = 50 fs, the correction is rather small
(figure 4.2, bottom left block). For a boost in yz-direction the Y1 transition density
is completely hidden behind the Z1 transition density. The decoupling scheme can
remove most of its influence and restore Y1 at least qualitatively.

50 fs

Figure 4.3: Transition densities of the Qy and Qx transitions as well as the CT1 and
CT2 transitions before and after the correction. The gray arrows indicate
the correction. (iso-surface at ±0.0002 a0

−3)

The same scheme works as well for the BChla with the spectrum in figures 4.1
(b3)+(b4). The respective transition densities, which all stem from a single 50 fs
propagation, are shown in figure 4.3. The stronger Qy and Qx transitions are hardly
influenced by the correction with this propagation time. However, the states CT1 an
CT2, which are highly polluted especially by the Qy transition, are decoupled success-
fully. The corrected transition densities of these two states allow for the comparison
with the transition densities from Q-Chem TDLDA calculations and their identifica-
tion. They show increased intensity in the top left (CT1) and bottom right (CT2)
corners inside the figure.
Finally, to measure the quality of the corrected transition densities, one can check

how well the transition density reproduces the transition dipole from the spectral
evaluation, i.e.,

r0j
!

=

∫
rρ0j(r)d3r . (4.32)

If the left-hand side and the right-hand side of equation (4.32) result in two vectors

53

with different directions, the correction did not work well as for the Y1 excitation of
Na4

35. If the left-hand side and the right-hand side result in two vectors with almost
identical directions but amplitudes that differ by some factor C, probably only the
scaling with the matrix A−1 did not work well since the oscillator strength used within
A was not accurate enough.
The latter can be used to refine the strength and therefore the amplitude of the

transition density of this excitation. If, e.g., r0j = C
∫
ρ0jrd

3r, the improved transi-
tion dipole is 1√

C
r0j , which leads, after renormalization with the improved A−1, to a

consistently improved transition density
√
Cρ0j .

As final remark in this section, I want to emphasize that many of the excitations of
the presented test systems cannot be identified with the traditional evaluation of real-
time spectra and typical propagation times. The techniques presented in this section
allow for a quantitative evaluation with even shorter propagation times.

35For the Y1 excitation of Na4 the right-hand side of equation (4.32) from the transition density in
figure 4.2 (Y1, boost ∼ yz, corrected) still has a significant contribution in z-direction whereas
the left-hand side of equation (4.32) from the spectral evaluation only has a y-component, as
expected.

54

5. Excitation dynamics between bacteriochlorophylls

In view of the increasing energy demands of humanity and the demand for renew-
able energy sources such as solar energy, the investigation of natural light-harvesting
systems remains in the focus of science. Nature has developed a highly efficient ma-
chinery for light absorption, excitation-energy transfer (EET), and charge separation
while protecting the participating chromophore-protein structures from being dam-
aged by the incoming radiation. All of these properties are also relevant for artificial
light harvesting. Among the different photosynthetic organisms, i.e., plants, algae,
and different kinds of bacteria, photosynthetic purple bacteria belong to the ones best
studied. Recent reviews on this topic are given in [Hu+98; Hu+02; CGK06; SR06;
CF09; CK10; Fle+12; CM16].
The photosynthetic apparatus of purple bacteria consists of highly structured chro-

mophore-protein complexes that are arranged in the cytoplasmic membrane of these
bacteria. Sun light is absorbed by ring-shaped antenna complexes called LH2. These
transfer the related excitation energy towards reaction centers (RC), which are embed-
ded inside of larger, ring-shaped complexes called LH1. The RC uses the excitation
energy to ultimately generate a proton gradient between the two sides of the mem-
brane. This gradient is the driving force for the synthesis of ATP, which acts as energy
source inside the organism. [CGK06; Hu+02]
To understand the complex processes within the photosynthetic apparatus of purple

bacteria requires the collaboration between different fields from physics, chemistry, and
biology as well as a combination of experimental studies and theoretical models. Espe-
cially in view of the highly efficient EET inside the LH2 complex of Rbl. acidophilus,
which is the subject of this section, a detailed theoretical analysis is mandatory to
reveal the underlying mechanisms. This includes the electronic coupling mechanisms
between the chromophores inside the complex and their interaction with the surround-
ing environment. [Hu+02; CGK06; Eng+07; CF09; Fle+12; SŞS12]
Modern TDDFT is well suited for the description of large molecules or molecular

aggregates due to its good ratio between efficiency and accuracy. The simulation of the
whole LH2 complex or its main chromophores with thousands of valence electrons is
not possible so far. However, it comes into reach due to the increasing computational
power of modern computers and parallel codes such as BTDFT. [Jor+15; CM16]
Still, the simulation of the LH2 (or its chromophores) as one quantum system by

means of TDDFT is only possible with a light-weight xc functional such as TDLDA.
These have well known deficiencies such as their inability to describe excitations with
a charge-transfer character (see section 2.5) [Toz03; DH04]. I already mentioned this
in the last section when I showed the spectrum of a BChla chromophore with two
spurious CT36 excitations (CT1 and CT2) in figures 4.1 (b3)+(b4).
In view of the simulation of EET within the LH2 complex from real-time TDDFT,

the first question is therefore how well light-weight functionals such as TDLDA are
suited for its description. This is directly connected to the question of how to describe
EET using real-time TDDFT since its only reliable output is the time-dependent
density n(r, t). The chromophores are embedded in a protein scaffold, which leads to
their distortion and influences their coupling to each other [CGK06; Pap+03; AHD16].

36I label those excitations with ’CT’. However, they only have some charge-transfer character.

55

Thus, a further question is how much of the environment must be included explicitly
into the TDDFT calculation and which part can be modeled.
I introduce the LH2 complex of Rbl. acidophilus in section 5.1 and the modelling

of the environment in proximity to the relevant chromophores by an electrostatic
potential in section 5.2. The following sections address the first steps towards a first-
principles simulation of EET within the LH2 complex with real-time TDDFT and,
in particular, the questions mentioned above. Therefore, I investigate the description
of the relevant excitations of a single BChla and two aggregated BChls within the
so-called B850 ring inside the LH2 complex in section 5.3. This includes a discussion
about the influence of the environment, which is treated by an electrostatic potential
or partly directly within the TDDFT calculation.
Section 5.4 is dedicated to the general description of real-time energy transfer and

the prediction of coupling strengths from real-time TDDFT. In section 5.5, the latter
is applied to a donor-acceptor system consisting of two resonant sodium dimers or two
BChla molecules, respectively. These sections report the current state of my work,
which is concluded in section 5.6.

5.1. The LH2 complex of Rhodoblastus acidophilus

The LH2 complex of purple bacteria, here in particular of Rbl. acidophilus (Strain
10050), is subject to intense investigations since many years. Its study experienced
a boost after revealing detailed structural information from X-ray analysis [Küh95;
McD+95]. These structural data undisclosed the arrangement of the embedded chro-
mophores, i.e., BChls and carotenoids, which play a dominant role in light-harvesting
processes. These chromophores are anchored in an apoprotein scaffold. The structure
of [McD+95] has been refined by [Pap+03] who revealed new structural information.
The structure used in this thesis by [GC] shows the same structural features as the
one from [Pap+03] but with a better resolution of 1.85 Å. [Fre+96; Hu+02; CGK06;
CF09]
The LH2 complex of Rbl. acidophilus has a ring-shaped structure with a nine-fold

symmetry. The main EET is mediated through BChla molecules, which are organized
in two rings called B800 and B850, corresponding to the wavelength of their maximum
in-vivo absorption (in nm). The latter are displayed in figure 5.1 (a) without the
apoprotein scaffold and the carotenoids. The nine B800 BChls are separated from
each other while the 18 B850 BChls build a close aggregate. This aggregation leads
to a strong coupling between the B850 BChls, which lowers the excitation energy of
the lowest dipole-active state and shifts the absorption towards red. The B850 ring is
the one discussed in this work. [Hu+02; CGK06]
The apoprotein scaffold builds rod-like structures inside (α) and outside (β) the

BChl rings. These rods are nearly perpendicular to the drawing plane of figure 5.1 (a)
(not shown). Every second B850 BChl is ligated by an α-apoprotein (α-BChl), the
other half by a β-apoprotein (β-BChl). A pair of one α-BChl and one β-BChl builds
a dimer. α-BChls and β-BChls are chemically identical but are distorted differently
due to their different local environments. [Pap+03; CGK06]
In figure 5.1 (a), the BChls with residue labels BCL-301, BCL-302, and BCL-303

(in the following only B301, B302, and B303) are pointed to by arrows. B301 and
B303 are α-BChls whereas B302 is a β-BChl. In figure 5.1 (b), these BChls are

56

BCL-302

()

BCL-303 (
)

B
C
L-302

BCL-303

BCL-301

HIS
-3

0

BCL-301 ()

Phytyl tail(a) (b)

Figure 5.1: (a) BChla molecules inside the LH2 complex of Rbl. acidophilus organized
in two rings called B800 (blue) and B850 (red). (b) Closeup of the BChla
molecules BCL-301, BCL-302, and BCL-303 together with the HIS-30 lig-
and, which coordinates the central magnesium atom of BCL-302. (The
figures were generated with PyMOL [Sch15].)

shown together with some of their surrounding environment (white) and especially the
histidine residue HIS-30 (purple). The latter is part of a β-apoprotein and coordinates
the central magnesium atom of B302. Also indicated in figure 5.1 (b) are the phytyl
tails [CGK06; Fre+96] of the BChls, which play a mainly structural role [Fre+96] and
are truncated for the TDDFT calculations. This is described in appendix F.2 and
commonly done in the literature, e.g., [Sun00; VB07; ONS10; OS11; KN13].
Figure 5.2 shows a single BChla (B302) once from the front (a) with the Qy and

Qx transition dipole moments indicated as arrows according to [CGK06] and once
along the Qy transition dipole (b) with the additional histidine (HIS-30) ligand as
used for the calculations presented below. The numbering of the pyrrol rings within
the bacteriochlorin matches the IUPAC standard [Mos87; CGK06]37. The position at
which the phytyl tail has been replaced by a hydrogen atom is marked in both figures.
The Qy and Qx transition dipoles are almost perpendicular to each other. The BChls

in the B850 ring are oriented such that their Qy transition dipoles lie roughly inside
the drawing plane, their Qx dipoles are perpendicular to the plane. Two neighboring
B850 BChls are oriented in a head-to-head or tail-to-tail alignment. [CGK06; Hu+02]
The designation of the Q-band excitations Qy and Qx goes back to Gouterman’s

four-orbital model [Gou61], which explained the strong absorption bands of BChla
in the visible spectrum and near infrared (Q-band) and at higher energies (Soret or
B-band). The strong Qy dipole approximately connects the pyrrol rings (I) and (III)
as indicated in figure 5.2 (a) and shows its absorption at about 772 nm ≈ 1.61 eV in
an organic solvent [CGK06, Figure 3]. In the protein environment of the LH2 complex
and with other BChls in close proximity, the absorption shifts to towards ≈ 800 nm
(B800) and ≈ 850 nm (B850) [CGK06, §3.2].
The Qx dipole of BChla is much weaker and shows absorption at about 590 nm ≈

37Note that the BChla from section 4 in figures 4.1 (b1) and 4.3 are viewed from the opposite side.
There, the pyrrol ring (I) is top left and the pyrrol rings (III) and (V) are bottom right and the
numbering is counter clockwise.

57

IV

I

II

III

V

Figure 5.2: (a) B302 front view with Qy and Qx transition dipoles according to
[CGK06] and (b) view along the Qy dipole with the coordinating histi-
dine. Carbon is gray, hydrogen white, oxygen red, nitrogen blue, and
magnesium green. The Qy dipole connects the pyrrol rings (I) and (III)
while Qx connects (II) and (IV). (The figures have been generated with
Avogadro [Han+12].)

2.10 eV in the same solvent [CGK06, Figure 3]. The B-band is not relevant for the EET
in the B850 ring [Hu+02, §3.1.1] and is not discussed here as well as the carotenoids,
which build a second class of chromophores inside the LH2.
The different energy pathways inside the LH2 complex are explained in much detail

together with the corresponding experimental and theoretical references in [CGK06,
§6] and [Hu+02, §3]. At some point after the absorption of sun light, the related
excitation energy is transferred onto the B850 ring or directly absorbed by B850 BChls.
The excitation energy then travels around the B850 ring and can be transferred onto
neighboring LH2 complexes or the LH1 towards the RC.
Experimental evidence was found [Eng+07; SŞS12] that the EET around the B850

ring gains its efficiency from exploiting quantum mechanical coherence, i.e., excited
states that are delocalized among a couple of B850 BChls [Dah+01; CGK06; SR06].
Within an exciton Hamiltonian picture [CGK06, §5], the delocalization length of an
excitation depends on a number of factors such as static and dynamic disorder. This
is of special interest since light harvesting takes place close to room temperature.
The ratio between the coupling strength between the BChls and the energetic dis-

order determines if the EET can be described as an incoherent hopping process or a
coherent wave-like transport. Different theoretical descriptions, which are summarized
in [CGK06, Table 4], have been used to estimate coupling strengths and disorder and
lead to partly different results [CGK06]. More recent model Hamiltonian approaches
are reported in [LK06; Veg+15].
The underlying EET mechanisms in the B850 ring of the LH2 complex remain a

matter of strong interest [CGK06; CF09; Fle+12; SŞS12]. A description with real-
time TDDFT, which treats the whole (or a part of) the LH2 complex intrinsically as
one quantum system and is flexible enough to include environment effects, can help

58

to get further insights into this process. This section only sets the first steps towards
a TDDFT simulation of the EET processes in the LH2 complex and tries to make
some comments on the feasibility of this approach. Another approach to reveal the
real-time excitation dynamics in LH2 is reported in [Veg+15].

5.2. Modelling the environment

5.2.1. Electrostatic environment potential and ligands

The B850 ring resides in the protein scaffold of the LH2 complex with other chro-
mophores in its proximity. The LH2 complex, again, is embedded in a lipid-bilayer
membrane. The environment of a BChla tunes its absorption by the coupling to other
chromophores, coordination by ligands such as histidine, or screening effects. On the
other hand, vibrational states interact with the B850 BChls and influence the EET.
[CGK06; Fle+12; Veg+15]
In this thesis, the environment is described as a dielectric medium with static, par-

tial charges sitting on the atoms in the proximity to the investigated chromophores and
free charges in the surrounding solvent [UB14]. This is processed into an environment
potential, which can be included as an external potential into the TDDFT calculation
and modifies the ionic potential from the simulated molecules. The environment po-
tential, which is unique for each of the different molecular setups discussed below, was
generated by Johannes Förster from the group of Prof. Matthias Ullmann (Computa-
tional biochemistry, University of Bayreuth). The details of the environment potential
and the structure preparation are explained in appendix F.
I want to make clear that the environment potential is the only quantity that enters

the TDDFT calculations termed ’with environment’ below. The dielectric medium is
not included into the solution of Poisson’s equation for the Hartree potential. The
static polarization of the surrounding medium due to the presence of the B850 BChl
(or BChls) is represented by the reaction field [UB14] inside the environment potential.
Since the environment as described by the potential is static but dynamic effects in

the electronic coupling to neighboring ligands can be important, I additionally included
the respective coordinating histidine residues directly into some of the simulations. For
B302, this leads to the setup as shown in figure 5.2 (b). To this end, I truncated each
histidine residue from its protein backbone, which is also described in appendix F.

5.2.2. Influence on the electronic ground state

The influence of the environment potential on the ground-state properties of a single
B850 BChl (B302) was investigated by Nikolaj Swiridoff [Swi15]. I summarize the
most important results in the following.
The environment potential had only negligible effects in this study. Nikolaj found

that the KS eigenvalues are hardly affected by the potential. The changes with envi-
ronment potential are close to those one would get from varying numerical parameters
such as the grid spacing. Moreover, the energetic order of the KS orbitals around the
HOMO is unchanged. Since a KS eigenvalue determines the asymptotic exponential
decay of its corresponding KS orbital [Kre+98], the electronic structure of the B850
BChl as seen from outside is not influenced strongly by the environment potential.

59

In total, this means that the environment potential as used here does not lead
to dramatic changes but is considered as a small correction. This is also expected
since the environment tunes the absorption of the chromophores but does not change
it fundamentally [CGK06; Jor+15]. The influence on the ground-state quantities is
small. Yet, the potential has an important effect on the excitation structure of the
B850 BChls from real-time TDLDA, which is discussed in the following.

5.3. Spectra of B850 bacteriochlorophylls from TDLDA and ωPBE

5.3.1. Spectra of single bacteriochlorophylls

In the past, the reliability of the Gouterman model for porphyrins [Gou61] was ques-
tioned [Sun99; Sun00; CSR02] due to the appearance of additional, weak states from
TDDFT calculations in the energy range of the Q-band and between Q- and B-band.
These states were found to have a charge-transfer character as the CT1 and CT2 states
from the real-time TDLDA spectrum of the BChla in section 4.2. They are usually
found at energies above the B-band as predicted by other methods [Cai+06; LK06].
The energetic downshift of states with charge-transfer character was explained by

[Toz03] and [DH04] and attributed to the missing derivative discontinuity and the
self-interaction error of pure density functionals. This wrong description of excita-
tions was shown explicitly for porphyrins [CSR02] and chlorophylls [DR05]. However,
functionals have been developed that describe charge transfer in a much better way
[CM16]. These are the CAM-B3LYP functional [Cai+06; YTH04] and tuned RSH
functionals [SKB09b; SKB09a; BLS10; Kar+11; Kör+11; Kro+12; KKK13]38.
Therefore, the TDLDA spectra below are compared to Q-Chem [Sha+15] calcula-

tions with the tuned ωPBE functional, which is of the latter type and expected to
deliver reliable results [SKB09b; SKB09a; TEE10; Moo+15]. The range separation
parameter ω was tuned as described in appendix E.2.3. All Q-Chem calculations
were performed by Prof. Thiago Branquinho de Queiroz (Federal university of ABC,
Brasil).
Transition densities and natural transition orbitals (NTO) [Mar03b] of the excita-

tions discussed below are attached to this work in appendix E.3.2 as supporting infor-
mation. These were used to identify excitations and determine their charge-transfer
character39.
The stereotypes of excitations are those already identified for the BChla from section

4 with transition densities in figure 4.3 on page 53. What I termed CT1 excitation
in that section has a strong transition density on the pyrrol ring (I) while the CT2
excitation has a strong transition density on the pyrrol rings (III) and (V).
The spectrum of B302 is shown in figure 5.3 from real-time (RT, solid) and Q-Chem

linear-response (LR, dashed) calculations with the TDLDA functional for different grid
spacings or basis sets, respectively. The evaluation of the real-time spectra followed
section 4.2. The excitation energies and strengths were obtained with the same quality
as those from section 4.2 (see figure 4.1). The excitations are labeled by Sn in their
energetic order.
38Also see [Moo+15] for a discussion of charge transfer and charge-transfer excitations in TDDFT.
39NTOs describe an excitation as an electron-hole transition. A charge-transfer-like excitation shows

electron and hole orbitals that are spatially separated while those of a non-charge-transfer exci-
tations occupy the same space.

60

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.7 1.8 1.9 2 2.1 2.2 2.3

O
sc

ill
at

or
 s

tr
en

gt
h

Energy [eV]

LR−LDA 6−31G(d,p)
LR−LDA 6−311G(d,p)

LR−LDA 6−311++G(3df,3pd)
RT−LDA ∆x=0.18 Å
RT−LDA ∆x=0.15 Å

B302
(a) (b)

1.7 1.8 1.9 2 2.1 2.2 2.3

Energy [eV]

LR−LDA 6−311++G(3df,3pd)
LR−ω PBE 6−31G(d,p)

RT−LDA ∆x=0.15 Å

Data
RT-TDLDA LR-TDLDA LR-ωPBE

Excit. ∆x = 0.18 Å ∆x = 0.15 Å 6-31G(d,p) 6-311G(d,p) 6-311++ 6-31G(d,p)
state G(3df,3pd)
S1 1.768 (0.282) 1.778 (0.266) 1.789 (0.002) 1.828 (0.128) 1.807 (0.282) 1.827 (0.322)
S2 1.992 (0.011) 1.872 (0.005) 1.859 (0.284) 1.837 (0.155) 1.892 (0.006) 2.285 (0.069)
S3 2.119 (0.052) 2.125 (0.056) 2.186 (0.054) 2.168 (0.058) 2.149 (0.058) –
S4 – – 2.248 (0.000) 2.267 (0.000) 2.254 (0.001) –

Figure 5.3: Real-time (RT, solid) TDLDA and Q-Chem linear-response (LR, dashed)
TDLDA and ωPBE singlet spectra for B302 with different grid spacings or
basis sets. (a) TDLDA results with different parameters, (b) best TDLDA
results compared to LR-ωPBE. Energies are in eV, strengths in parenthesis.
Q-Chem calculations were done by Prof. Thiago Branquinho de Queiroz
(Federal university of ABC, Brasil).

The real-time spectrum of B302 with ∆x = 0.18 Å shows the Qy excitation at
1.768 eV, the Qx excitation at 2.119 eV, and one additional, weak excitation at 1.992 eV.
The latter can be identified with the CT2 excitation (see figure E.3).
If the grid spacing is refined to ∆x = 0.15 Å, Qy and Qx excitations are quite stable

but slightly blue-shifted. The CT2 excitation, on the other hand, reacts more sensitive.
It is red-shifted by ≈ 0.12 eV and shows about half the strength. Further refinement of
the grid spacing or other parameters does not lead to major changes, which is shown
in appendix E.3.1. I already showed in section 4.2 that the energies of the Q-band
excitations of BChla are reasonably well described by TDLDA as compared to the
experiment. I expect this to hold true also for the single B850 BChls with a slightly
different structure.
The Q-Chem TDLDA spectra were calculated using Gaussian basis sets as im-

plemented in Q-Chem [Sha+15]. The basis sets used for the smaller atoms were
6-31G(d,p) (small, standard), 6-311G(d,p) (medium), and 6-311++G(3df,3pd) (very
large). For magnesium, the EPC-LANL2DZ basis set was used.
The calculation with the 6-31G(d,p) basis set predicts the Qy excitation at 1.859 eV

and Qx at 2.186 eV. The CT2 excitation is predicted below Qy at 1.789 eV. CT1
can be identified at 2.248 eV with overall tiny strength (see figure E.4). If the CT1

61

transition is present in the real-time calculations, it can probably not be identified due
to its small strength.
If a larger basis set is used, the CT1 and Qx excitations remain stable up to a

small red-shift of 0.02 eV of 0.04 eV, respectively. The Qy and CT2 excitations, on
the other hand, mix strangely if one uses the 6-311G(d,p) basis set. With the 6-
311++G(3df,3pd) basis set, they are again separated but with Qy below CT2 as
predicted by the real-time calculation. For illustration, the NTOs for the states S1

and S2 are shown in figures E.7, E.8, and E.9 for the three basis sets.
The final Qy energy is predicted at 1.807 eV and Qx at 2.168 eV, which is sys-

tematically blue-shifted by < 0.03 eV with respect to the real-time calculation with
∆x = 0.15 Å. This also holds true for the CT2 state. The remaining shift can be at-
tributed to further basis-set issues or the principle difference between the Q-Chem and
BTDFT ways of treating core electrons, i.e., explicitly or through pseudo potentials.
The CT2 state is highly sensitive to variations of the grid spacing or the basis set.

The 6-311G(d,p) basis set even predicts a mixing between CT2 and Qy, which results
in two mixed states with similar oscillator strengths.
The best results of both TDLDA approaches are compared to a calculation with

the tuned ωPBE functional and 6-31G(d,p) basis set in figure 5.3 (b). The ωPBE
calculation shows no spurious states but only the expected Q-band transitions (see
figures E.5 and E.6). Qx is blue-shifted with respect to all TDLDA calculations. Qy is
shifted by 0.049 eV with respect to the best real-time TDLDA calculation. Since the
ωPBE calculation is computationally expensive, using a larger basis set is difficult.
However, if one assumes the same red-shift as for the Q-Chem TDLDA when the basis
set is improved, the gap between the Qy excitations as predicted by real-time TDLDA
and Q-Chem ωPBE closes completely.
In total, the important Qy and Qx states are well described by real-time and Q-Chem

TDLDA. However, in Q-Chem, a really large basis set is necessary to converge the Qy

energy and describe the transition qualitatively correct. The oscillator strengths from
TDLDA and ωPBE are reasonably close to each other.
The latter is also true for the transition dipoles. The angle between Qy and Qx

transition dipoles as predicted by Q-Chem ωPBE is 76.7◦, which matches perfectly
with the 76.6◦ from the real-time calculation at ∆x = 0.18 Å40.
The meaning of the spurious states CT1 and CT2 in view of the EET is a matter

that requires more investigation. This is especially true since the the pyrrol rings (I) as
well as (III) and (V), which show high CT1 and CT2 transition densities, are the ones
that overlap between neighboring B850 BChls (see figures 5.1 and 5.2). Therefore,
CT1 and CT2 could contribute substantially to the coupling between the BChls and
influence the EET simulation, even if they show weak dipole strengths.
Finally, the spectra of B303 as well as real-time spectra of B301 are shown in

appendix E.3.1. B303 transition densities from real-time TDLDA and Q-Chem ωPBE
are displayed in figures E.11 and E.12. The details differ a little, e.g., that B301
and B303 both show the CT1 and CT2 states with non-vanishing strengths. Yet, the
overall message remains the same.

40I estimated the error of the real-time evaluation scheme in this case to ≈ 0.4◦ by comparing results
from two calculations with different boost directions.

62

5.3.2. Spectra of two aggregated bacteriochlorophylls

The excitation pattern of aggregated BChls is often described by means of an exciton
Hamiltonian approach in which the Qy transitions of the single chromophores are
coupled with a certain coupling strength [CGK06; SR06]. This way, one expects that
the spectrum of two aggregated BChls shows a line splitting according to Davydov
[Dav64]. I go more into the details of a similar model in section 5.4.1.
The Qy dipoles of neighboring B850 BChl are almost parallel to each other and build

a kind of J-aggregate [KRA65; SR06]. Similar to a coupled pendulum, one expects
one transition that corresponds to a symmetric coupling between the Qy transitions
of the single chromophores with almost twice the dipole strength and one transition
that corresponds to an antisymmetric coupling with almost vanishing strength. In
the J-aggregate, the symmetric transition has lower energy such that the aggregate’s
absorption is red-shifted with respect to the single chromophores.
The spectrum of the combined B302-B303 system is shown in figure 5.4 from real-

time TDLDA, Q-Chem TDLDA, and Q-Chem ωPBE. The Q-Chem calculations for
the combined system were only possible with the 6-31G(d,p) basis set.
The ωPBE calculation shows the expected behaviour as described above. The Qy

transitions split up into two transitions. The one at lower energy 1.788 eV shows a
much larger strength than the one at higher energy 1.848 eV. The NTOs of both states
are displayed in figure E.17 on page 146. The electron and hole orbitals occupy the
same space as expected from an excitation without charge-transfer character.
The real-time TDLDA and Q-Chem TDLDA calculations predict many artificial

states and the deviation between ωPBE and TDLDA results becomes more pro-
nounced. Some of the additional, spurious states are far below the Qy energy, others
are mixed with the Qy states of the single chromophores. In the real-time calculation,
this results in four excitations S4-S7 that are within 0.06 eV very close in energy. The
transition densities of the two largest real-time transitions S4 and S5 are shown in
figure E.13 on page 143. S4 is best represented by the two symmetrically coupled Qy

transitions. S5 seems to be a mixed state between B302-Qy and B303-CT1.
The NTOs of the states S1-S10 from Q-Chem TDLDA are shown in figures E.14,

E.15, and E.16 on pages 144 to 146. The weak transitions S1-S4 at low energies
show electron and hole orbitals on different BChls and hence a strong charge-transfer
character of the excitation. The transitions S1-S3 from Q-Chem TDLDA and real-
time TDLDA have similar energies with the systematic shifts already seen from the
single B302. Therefore, they can be identified with each other. The electron and
hole orbitals from the Q-Chem TDLDA transitions S5-S10 also show a charge-transfer
character and often a high amplitude on the overlapping pyrrol rings. This again
indicates the participation of the former CT1 and CT2 states in the transitions of the
coupled system.
The two excitations with the respective highest strengths from real-time TDLDA at

∆x = 0.18 Å and Q-Chem TDLDA at 6-31G(d,p) differ again by about 0.1 eV. If one
assumes the same spectral shifts of the real-time and Q-Chem data as for B302 when
improving the grid spacing and the basis set, one again expects real-time TDLDA and
Q-Chem TDLDA data to converge.
In conclusion, the coupled B302-B303 system shows spurious, weak excitations at

low energies with a strong charge-transfer character as well as excitations that are the

63

B302-B303

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 1.2 1.4 1.6 1.8 2 2.2

O
sc

ill
at

or
 s

tr
en

gt
h

Energy [eV]

LR−LDA 6−31G(d,p)
LR−ωPBE 6−31G(d,p)

RT−LDA ∆x=0.18 Å

Data
RT-TDLDA LR-TDLDA LR-ωPBE

Excit. ∆x = 0.18 Å 6-31G(d,p) 6-31G(d,p)
state
S1 1.047 (0.012) 1.100 (0.013) 1.788 (0.690)
S2 1.299 (0.008) 1.363 (0.007) 1.848 (0.046)
S3 1.552 (0.005) 1.575 (0.003) 2.224 (0.050)
S4 1.729 (0.348) 1.665 (0.002) 2.297 (0.061)
S5 1.750 (0.181) 1.734 (0.006) 2.326 (0.007)
S6 1.763 (0.038) 1.767 (0.001) –
S7 1.786 (0.037) 1.793 (0.001) –
S8 1.878 (0.004) 1.812 (0.005) –
S9 1.995 (0.014) 1.843 (0.263) –
S10 2.018 (0.008) 1.864 (0.324) –
S11 2.089 (0.029) 1.895 (0.004) –
S12 2.141 (0.045) 1.909 (0.038) –
S13 – 1.915 (0.001) –
S14 – 2.080 (0.000) –
S15 – 2.160 (0.043) –
S16 – 2.210 (0.045) –

Figure 5.4: Real-time (RT, solid) TDLDA and Q-Chem linear-response (LR, dashed)
TDLDA and ωPBE singlet spectra for the combined B302-B303 system
with different grid spacings or basis sets. Excitation energies are in eV,
oscillator strength in parenthesis. Q-Chem (LR) calculations were done by
Prof. Thiago Branquinho de Queiroz (Federal university of ABC, Brasil).

64

Qy states mixed with charge-transfer-like excitations. In view of EET simulations,
the former are probably less important since one can simulate an excitation that is
tuned to only excite a narrow energy band around the Qy states. Still, the appearance
of mixed states makes the applicability of TDLDA for qualitative EET simulations
questionable.

5.3.3. Influence of the environment on the spectra

Finally, I investigate the influence of the environment on the spectra of the single B302
and the coupled B302-B303 system. The environment is treated by the environment
potential as introduced in section 5.2.1. The related spectra are shown in figure 5.5.
The data sets without environment (green data) are the ones that I already discussed
in the previous sections. In the spectra with environment, the environment is once
treated entirely by the environment potential (red data) and once histidine residues
are part of the TDDFT simulation and excluded from the potential (blue data).
The overall effect of the environment potential on the Q-band states of the single

B302 is rather small. The Qy transition is hardly influenced by the pure environment
potential. Treating the histidine directly within the TDDFT calculation shifts its
energy by ≈ 0.01 eV towards red. The Qx transition reacts a little stronger and
is red-shifted by ≈ 0.03 eV and ≈ 0.09 eV, respectively. However, the critical CT2
state, which is predicted between Qy and Qx without environment, vanishes if the
environment is included.
The same effect is encountered in the coupled B302-B303 system. The states S1 and

S2, which were assigned to the charge-transfer excitations between B302 and B303,
remain at the lower energy end (not shown in the graphic). However, the calculations
with environment potential show the correct excitation pattern for the coupled Q-
band states. Just the calculation in which the environment is entirely treated by
the potential (red data) still shows one small excitation in the Q-band. The latter
disappears if the histidine residues are treated directly within the TDDFT calculation.
This result is important for two reasons: First, including the electrostatic environ-

ment and the histidine into the TDDFT calculation seems to remove the most critical
spurious excitations in the Q-band systematically. Second, since the Qy excitation of
a single BChla is hardly affected by the environment in the way it is treated here,
one can now investigate the role of the spurious states for the EET as simulated with
TDLDA. The latter can be done by performing EET simulations with and without
environment and comparing the results. If there is no difference, the spurious states
are probably less important. If both simulations differ significantly, including the en-
vironment potential seems to resolve the issues that are related to TDLDA in this
case.

5.4. Coupling strengths and real-time energy transfer

In a real-time simulation of EET one would like to excite a system that consists
of several chromophores and visualize and quantify the energy pathway [Hof+13].
However, at this moment the question arises about a physically meaningful energy
density or an energy per chromophore.

65

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.7 1.8 1.9 2 2.1 2.2 2.3

O
sc

ill
at

or
 s

tr
en

gt
h

Energy [eV]

RT−LDA ∆x=0.18 Å
with environment

+ HIS explicit

B302 & B302-B303 Environment
(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.7 1.8 1.9 2 2.1 2.2 2.3

Energy [eV]

RT−LDA ∆x=0.18 Å
with environment

+ HIS explicit

Data
RT-TDLDA, ∆x = 0.18Å

Excit. No Env. Env. pot. Env. pot.
state HIS via TDDFT
(a) B302
S1 1.768 (0.282) 1.768 (0.278) 1.756 (0.264)
S2 1.992 (0.011) 2.086 (0.064) 2.033 (0.060)
S3 2.119 (0.052) – –
(b) B302-B303
S1 1.047 (0.012) 0.978 (0.013) 1.037 (0.013)
S2 1.299 (0.008) 1.352 (0.010) 1.274 (0.009)
S3 1.552 (0.005) 1.731 (0.585) 1.462 (0.003)
S4 1.729 (0.348) 1.770 (0.033) 1.713 (0.558)
S5 1.750 (0.181) 1.963 (0.006) 1.754 (0.031)
S6 1.764 (0.038) 2.016 (0.040) 1.934 (0.054)
S7 1.787 (0.037) 2.065 (0.063) 2.010 (0.057)
S8 1.878 (0.004) – –
S9 1.995 (0.014) – –
S10 2.018 (0.008) – –
S11 2.089 (0.029) – –
S12 2.141 (0.045) – –

Figure 5.5: Real-time (RT) TDLDA singlet spectra for B302 and the combined B302-
B303 system without environment (No Env.), with environment potential
(Env.), and with environment potential but histidine ligands included in
the TDDFT calculation (Env. & HIS) for ∆x = 0.18 Å. Excitation ener-
gies are in eV, oscillator strength in parenthesis.

66

Indeed, there are several natural candidates: The first one is an energy density that
can be defined as

e(r, t) =
∑
σ=↑,↓

Nσ∑
j=1

ϕ∗jσ(r, t)ĤKSϕjσ(r, t)−
[

1

2
vH(r, t) + vxc(r, t)

]
n(r, t) + exc(r, t) .

(5.1)
This expression is, in an adiabatic way, evaluated with the time-dependent density and
the time-dependent KS orbitals. exc[n] is the adiabatic xc energy density. Expression
(5.1) integrates to the total energy [Cap06] as defined in an adiabatic way with the
ground-state energy functional evaluated with the time-dependent quantities. The
total excitation energy per chromophore can be defined by

δEi(t) =

∫
Vi

e(r, t)− e(GS)(r)d3r , (5.2)

where Vi is the space associated with chromophore i and e(GS) is the ground-state
energy density according to equation (5.1).
Another, rather pragmatic measure is the time-dependent induced dipole moment

of the single chromophores, i.e., δµi(t) =
∫
Vi
rδn(r, t)d3r [Hof+13]. This is motivated

by the idea that a strong density oscillation in a chromophore’s associated space can
be identified with its energy. In which sense the latter is connected to an energy or an
energy density is again not directly clear.
In order to shed some light upon this problem and present ideas of meaningful

quantities that can be interpreted as energy densities or energies per chromophore, I
take a step back and discuss a simple two-level donor-acceptor model. In particular, I
want to model the density fluctuation one expects after a boost-like excitation of the
donor. This is done in the following section.

5.4.1. A two-level donor-acceptor model

Model Hamiltonian As a first step I discuss the eigenvalues and eigenfunctions of
a coupled two-level system consisting of a donor (D) and an acceptor (A). I model
this system in the basis of |AD〉 (ground state), |A∗D〉 (only A is excited), and |AD∗〉
(only D is excited) by the exciton Hamiltonian

Ĥex = EAD|AD〉〈AD| (5.3)
+ EA∗D|A∗D〉〈A∗D|+ EAD∗ |AD∗〉〈AD∗|
+ V |A∗D〉〈AD∗|+ V |AD∗〉〈A∗D| .

EAD, EA∗D, and EAD∗ are the energies of the antisymmetrized product states |AD〉,
|A∗D〉, and |AD∗〉. V is the coupling matrix element 〈A∗D|V̂ C |AD∗〉 = 〈AD∗|V̂ C |A∗D〉
with the Coulomb interaction V̂ C , which mediates between the excited donor and
acceptor states. In many typical exciton models [CGK06, §9.2], the ground state
is not necessarily part of the model Hamiltonian but the system is only modeled in
the vector space that is spanned by |A∗D〉 and |AD∗〉. Since I want to model the
density oscillation that results from a real-time TDDFT calculation after a boost-like
excitation, I include the ground state explicitly into the model.

67

A resonant coupling in the following means that EA∗D = EAD∗ . Otherwise, donor
and acceptor are non-resonant. I further define

Ē =
EA∗D + EAD∗

2
and ∆E =

EA∗D − EAD∗

2
. (5.4)

The eigenvalues of Ĥex are E0 = EAD and E1/2 = Ē ±
√

∆E2 + V 2 with corre-
sponding eigenvectors

|0〉 =|AD〉 (5.5)

|1/2〉 =± sgn(V)
1√
2

√
1± ∆E√

∆E2 + V 2
|A∗D〉

+
1√
2

√
1∓ ∆E√

∆E2 + V 2
|AD∗〉 ,

where sgn(V) = 1(−1) for V ≥ 0 (V < 0). In this notation the upper sign belongs
to the first state |1〉 and the lower sign belongs to the second state |2〉. In the case
of resonant coupling with ∆E = 0, the excited eigenstates reduce to a symmetric
and an antisymmetric coupling between the single acceptor and donor transitions
|1/2〉 = 1√

2
(±sgn(V)|A∗D〉 + |AD∗〉) with energies E1/2 = Ē ± |V |. In the case of

vanishing coupling with V = 0 and ∆E > 0, the eigenvectors are |1〉 = |A∗D〉 and
|2〉 = |AD∗〉 with energies E1 = EA∗D and E2 = EAD∗ . For ∆E < 0 the eigenvectors
are |1〉 = |AD∗〉 and |2〉 = −|A∗D〉 with energies E1 = EAD∗ and E2 = EA∗D.
The splitting of the energy levels of the single chromophores into the energy levels

of the coupled exciton system is often called Davydov splitting [Dav64]. In a real-time
TDDFT simulation, the dipole moment shows oscillations with the excitation energies
E1/2−E0 as discussed in section 4.2. Therefore, the dipole spectrum shows two peaks
that are separated by 2

√
∆E2 + V 2.

This can be used to investigate coupling strengths between chromophores from a
real-time TDDFT calculation. If one of the excited eigenstates is dipole-forbidden,
such as the antisymmetric state in the case of resonant coupling between two equal
chromophores, one must choose an excitation and an observable that do not show this
dipole symmetry in order to see the spectral line. One option is to apply the boost in
the donor half-space only and observe the dipole moment in the donor or acceptor half-
spaces separately. I use this to compute the coupling strengths between two resonant
sodium dimers and two BChls for different distances in a subsequent section. In the
time domain, the dipole moments in the donor and acceptor half-spaces show a beat
signal that can be evaluated equivalently for the coupling strength [HKK10].

Boost excitation For simplicity, I assume in the following that the single donor and
acceptor states do not overlap and the space can be divided into a donor half-space VD

and an acceptor half-space VA. In order to model the density fluctuation that arises
from a real-time TDDFT calculation, I apply a weak boost-like excitation in the donor
half-space VD at t = 0. After that, the system is in the state

|ψ(t = 0)〉 = cAD|AD〉+ cAD∗ |AD∗〉 (5.6)
= c0|0〉+ c1|1〉+ c2|2〉 .

68

The boost is applied in the way of section 4.2. Hence, cAD∗ = ik · rDD∗ with the
transition dipole −erDD∗ of the D → D∗ excitation and cAD =

√
1− |cAD∗ |2 due to

the normalization of the states. The coefficients cj = 〈j|ψ(t = 0)〉, which relate to
the eigenvectors in the second line of equation (5.6), are calculated by expressing the
states |AD∗〉 and |AD〉 through the eigenvectors. The coefficients are

c0 = cAD =
√

1− |k · rDD∗ |2 (5.7)

c1/2 = cAD∗
1√
2

√
1∓ ∆E√

∆E2 + V 2
= ik · rDD∗

1√
2

√
1∓ ∆E√

∆E2 + V 2

The state of the system for t > 0 is

|ψ(t > 0)〉 =

2∑
j=0

cj |j〉e−iωjt with ~ωj = Ej . (5.8)

Note that the coefficients c0, c1, and c2 are time-independent and given by equation
(5.7) since they measure the occupation of the eigenstates |0〉, |1〉, and |2〉 after the
boost. Since the Hamiltonian remains time-independent for t > 0, the occupation of
the eigenstates remains constant as well. The coefficients cA∗D and cAD∗ , however, are
time-dependent. If donor and acceptor states are non-overlapping, the coefficients are
given through

cA∗D(t) = 〈A∗D|ψ(t)〉 (5.9)

= i
k · rDD∗

2

V√
∆E2 + V 2

[
e−iω1t − e−iω2t

]
cAD∗(t) = 〈AD∗|ψ(t)〉 (5.10)

= i
k · rDD∗

2

[(
1− ∆E√

∆E2 + V 2

)
e−iω1t +

(
1 +

∆E√
∆E2 + V 2

)
e−iω2t

]
.

Hence, the probability of finding the system in one of the states |A∗D〉 or |AD∗〉 is

|cA∗D(t)|2 = |k · rDD∗ |2
V 2

∆E2 + V 2
sin2 (ω̃t) (5.11)

|cAD∗(t)|2 = |k · rDD∗ |2
[

∆E2

∆E2 + V 2
+

V 2

∆E2 + V 2
cos2 (ω̃t)

]
(5.12)

= |k · rDD∗ |2
[
1− V 2

∆E2 + V 2
sin2 (ω̃t)

]
with ~ω̃ =

√
∆E2 + V 2 = 1

2(E1 − E2). This can be interpreted as an oscillation of
the total excitation energy between donor and acceptor with frequency ω̃. In the case
of resonant coupling, this is a complete beat signal. Without coupling the energy
remains at the donor. Finally, in the general case of V 6= 0 and ∆E 6= 0, the beat is
incomplete and only a part of the energy is transferred between donor and acceptor.

Density fluctuation By applying the same approximations for a weak boost as in
section 4.2, one can write the density fluctuation as

δn (r, t) = 〈ψ(t)|n̂|ψ(t)〉 − n0 (r) = −2i
∑
j=1,2

cj sin(ω0jt)ρ0j (r) . (5.13)

69

Here, the ground-state density is n0 = 〈AD|n̂|AD〉. Following the same notation as
in the preceding sections, ~ω0j = Ej − E0 is the excitation energy for the |0〉 → |j〉
transition with transition density ρ0j = 〈0|n̂|j〉.
One can express the transition densities in equation (5.13) through the basis vectors
{|AD〉, |A∗D〉, |AD∗〉} by using equation (5.5). In the case of non-overlapping donor
and acceptor states, 〈AD|n̂|A∗D〉 = ρAA∗ and 〈AD|n̂|AD∗〉 = ρDD∗ are the transi-
tion densities of the single A → A∗ and D → D∗ transitions of acceptor and donor,
respectively. This results in

ρ01/02 (r) = ±sgn(V)
1√
2

√
1± ∆E√

∆E2 + V 2
ρAA∗ (r)+

1√
2

√
1∓ ∆E√

∆E2 + V 2
ρDD∗ (r) .

(5.14)
By inserting equation (5.14) into equation (5.13), the density fluctuation can be ex-
pressed in terms of the donor and acceptor transition densities

δn (r, t) = 2k · rDD∗

{
V

~ω̃
[sin (ω̃t) cos (ω̄t)] ρAA∗ (r)

}
︸ ︷︷ ︸

=δnA(r,t)

(5.15)

+ 2k · rDD∗

{[
cos (ω̃t) sin (ω̄t)− ∆E

~ω̃
sin (ω̃t) cos (ω̄t)

]
ρDD∗ (r)

}
︸ ︷︷ ︸

=δnD(r,t)

with ~ω̃ =
√

∆E2 + V 2 and ~ω̄ = Ē − E0.
The density fluctuation in equation (5.15) has contributions from the single donor

and acceptor transition densities, which can be assigned to density fluctuations in
their respective half-spaces VD and VA. In the case of resonant coupling, it follows
that |V |~ω̃ = 1 and ∆E

~ω̃ = 0. The respective expression for the density fluctuation

δn∆E=0 (r, t) = 2k · rD{sgn(V) [sin (ω̃t) cos (ω̄t)] ρAA∗ (r) (5.16)
+ [cos (ω̃t) sin (ω̄t)] ρDD∗ (r)}

has a symmetric form for acceptor and donor. On both sides the density has a rapidly
fluctuating contribution ω̄ that is enveloped by a sine or cosine with frequency ω̃.
Again, the slow oscillation with ω̃ can be identified with the energy transfer between
donor and acceptor. The fast oscillation with ω̄ is the result of the ground state
|0〉 = |AD〉 being still occupied after the boost excitation.
In the case of no coupling with V = 0, the situation is reversed and the density

fluctuation reduces to

δnV=0 (r, t) = 2k · rD { [cos (ω̃t) sin (ω̄t)]− [sin (ω̃t) cos (ω̄t)] } ρDD∗ (r) (5.17)

= 2k · rD sin

(
EAD∗ − EAD

~
t

)
ρDD∗ (r) .

As expected, only the initially excited donor density oscillates with its related excita-
tion energy EAD∗ − EAD.
In the general case for ∆E 6= 0 and V 6= 0 in equation (5.15), the time dependence

on the acceptor side remains simple with the amplitude of the fluctuation scaled down

70

by a factor of |V |√
∆E2+V 2

. On the donor side the time dependence gets more involved
and is discussed in a subsequent section in more detail.
The time-dependent induced dipole moments of acceptor and donor, δµA and δµD,

follow directly from equation (5.15)

δµ(t) =−2ek · rDD∗

{
V

~ω̃
[sin (ω̃t) cos (ω̄t)] rAA∗

}
︸ ︷︷ ︸

=δµA(t)

(5.18)

−2ek · rDD∗

{[
cos (ω̃t) sin (ω̄t)− ∆E

~ω̃
sin (ω̃t) cos (ω̄t)

]
rDD∗

}
︸ ︷︷ ︸

=δµD(t)

with the transition dipoles

rAA∗ =

∫
VA

rρAA∗(r)d3r and rDD∗ =

∫
VD

rρDD∗(r)d3r . (5.19)

The dipole moments of donor and acceptor show the same time dependence as the
induced density.

5.4.2. Description of excitation-energy transfer

The amplitude of the density fluctuation or the induced dipole moment oscillates
between donor and acceptor with the same frequency ~ω̃ =

√
∆E2 + V 2 as the occu-

pation of the single donor and acceptor excited states from equations (5.11) and (5.12).
It can therefore be used as an indicator for a total excitation energy per chromophore
within the scope of the model.
I exemplify this by means of two sodium dimers that are aligned parallel to each

other with an inter-dimer distance of 16 a0. The single dimers are aligned with their
symmetry axis in z-direction and are separated from each other in x-direction. In one
system the sodium dimers are resonant with an intra-dimer bond length of 5.78 a0 and
a coupling strength41 of V = 0.0695 eV. In a second system the bond of the acceptor
dimer is shortened by 0.5 a0 as in [Hof+13]. The latter results in an off-resonance42 of
|∆E| = 0.0628 eV and a coupling strength of V = 0.0661 eV with very similar values
|∆E| ≈ V .
A sodium dimer is very well described by the two-level model since it shows an

isolated, strong excitation with transition dipole along its symmetry axis. I performed
a real-time TDDFT simulation of the combined donor-acceptor systems with a boost
in the donor half-space parallel to the symmetry axis of the sodium dimer with energy
Eboost ≈ 6.8 · 10−4 eV. Figures 5.6 (a1) and (a2) show the resulting absolute density
fluctuation43 of acceptor and donor

δNA/D(t) =

∫
VA/D

|δn(r, t)|d3r . (5.20)

41The computation of coupling strengths is explained below.
42I computed ∆E from the excitation energies of the single dimers.
43Note that the integral over a transition density without taking its absolute value is always zero∫

ρijd
3r = 0 since the underlying eigenstates |i〉 and |j〉 are orthogonal.

71

0

0.005

0.01

0.015

0.02

0.025

0.03

δ
N

A
/D

Donor
Acceptor

Donor
Acceptor

0

2

4

6

8

0 10 20 30 40 50

δ
E

A
/D

[1
0

-4
e
V

]

Time [fs]

Donor
Acceptor

Total

0 10 20 30 40 50

Time [fs]

Donor
Acceptor

Total

0

2

4

6

8

(δ
N

A
/D

)2
[1

0
-4

]

Donor
Acceptor

Total

Donor
Acceptor

Total

Resonant (E=0) Non-resonant (E V)

(a1) (a2)

(b2)(b1)

(c1) (c2)

Linear fit Linear fit

Figure 5.6: Absolute density fluctuation (a1)+(a2), squared absolute density fluctua-
tion (b1)+(b2), and energy according to equation (5.2) (c1)+(c2) of donor
and acceptor in a resonant (a1)-(c1) and a non-resonant (a2)-(c2) donor-
acceptor system consisting of two sodium dimers. In figures (a1)+(a2) a
linear fit to the envelope of the acceptor density fluctuation is displayed.

72

The envelope of δNA/D is a measure for the strength of the density oscillation in
the respective half-space. It can be estimated numerically by time-integration over
the periodic time of the fast oscillation τ̄ = 2π

ω̄ , i.e.,

δN
τ̄
A/D(t) ≈ π

2

1

τ̄

∫ t+ τ̄
2

t− τ̄
2

δNA/D(t′)dt′ for ω̄ � ω̃ . (5.21)

The latter is usually fulfilled as long as the two chromophores can be described by the
exciton Hamiltonian model and do not build a single molecule.
The envelopes of δNA/D in figures 5.6 (a1) and (a2) are fits to the estimated en-

velopes from equation (5.21) with the assumed shape according to (5.15). In the
resonant case in figure 5.6 (a1), δNA and δND show the time dependence as predicted
from the donor-acceptor model with the predicted beat. The envelope of the acceptor
is proportional to | sin (ω̃t) |, the envelope of the donor is proportional to | cos (ω̃t) |
according to equation (5.16). In the non-resonant case in figure 5.6 (a2), the envelope
of the acceptor shows the same behaviour proportional to | sin (ω̃t) | as in the resonant
case, just scaled by |V |√

∆E2+V 2
≈ 1√

2
for |∆E| ≈ |V |. The donor shows an envelope

that can be described by
√

1− V 2

∆E2+V 2 sin2(ω̃t), which is discussed below.
The initial slope of the acceptor envelope is proportional to |V | in both cases since

in equation (5.15)
∣∣ V
~ω̃ sin(ω̃t)

∣∣ t→0−→ |V |
~ t. A linear fit to the acceptor envelope is

also indicated in figures 5.6 (a1) and (a2). The initial slopes of the acceptor density
fluctuation of both systems are, as expected, very similar since the coupling strength
is almost identical. However, the beat frequency ω̃ is larger by a factor of about

√
2

in the non-resonant case.
The envelope of δNA/D already shows the correct frequency of the energy transfer

between donor and acceptor. One expects the energy to behave in the way of the
coefficients |cA∗D|2 and |cAD∗ |2 from equations (5.11) and (5.12). This is perfectly
reproduced by the energy per chromophore as defined through equations (5.1) and
(5.2) and shown in figures 5.6 (c1) and (c2). As expected, the energy is completely
transferred between donor and acceptor in the resonant case and only partially with
amplitude V 2

∆E2+V 2 ≈ 1
2 in the non-resonant case. The total energy is indicated by the

black line.44

The oscillations of the total energy mark the numerical accuracy. The faster oscil-
lations that modulate the energies in the single donor and acceptor half-spaces cancel
each other. They are no noise but probably the effect of slightly overlapping densities
of donor and acceptor.
Considering the density fluctuations, the correct time dependence with the correct

dependence on V and ∆E for the acceptor is achieved by the envelope of (δNA)2. In
the resonant case, it is easily seen that this holds true for the donor. In the general
case, the time-dependence of (δND)2 according to (5.15) is more involved. However,
one can show that[

cos (ω̃t) sin (ω̄t)− ∆E

~ω̃
sin (ω̃t) cos (ω̄t)

]2

=

[
1− V 2

∆E2 + V 2
sin2 (ω̃t)

]
h(t) , (5.22)

44Note that the single contributions of the energy density as defined in equation (5.1) show rapid
oscillations [Sol16] that cancel each other when summed up.

73

where h(t) is a fast oscillating function with a time-dependent frequency but unity
amplitude without beat. Hence,

[
1− V 2

∆E2+V 2 sin2 (ω̃t)
]
is the envelope of (δND)2,

which is the shape expected from the coefficient |cAD∗ |2. This also explains the shape
of the envelope of δND in figure 5.6 (a2). The proof of equation (5.22) is presented in
appendix D.

(δNA)2 and (δND)2 are shown in figures 5.6 (b1) and (b2) for the resonant and non-
resonant system. In the resonant case, both show exactly the behaviour one expects
for an energy per chromophore, such as δEA/D in figure 5.6 (c1). In the non-resonant
case, the time-dependence for both, the donor and acceptor separately, is correct as
well. However, the sum of the two envelops, indicated by the black line, is not constant.
The reason lies in the different amplitudes of the donor and acceptor oscillations

since
∫
|ρAA∗ |d3r and

∫
|ρDD∗ |d3r in equation (5.15) are not necessarily equal. Since

the non-resonant system still consists of two molecules that differ only slightly from
each other, their transition densities are still similar. The interpretation of (δNA)2 and
(δND)2 as energy is therefore still valid. Yet, if the chromophores are very different, it
is, to my knowledge, not guaranteed that

∫
|ρAA∗ |d3r and

∫
|ρDD∗ |d3r are similar. In

this case, (δNA)2 and (δND)2 cannot be analyzed quantitatively in this simple way.
Finally, I want to point out that in figures 5.6 (b1) and (b2) I show

[∫
|δnA/D|d3r

]2,
not

∫
|δnA/D|2d3r. Still, I do not state that this is necessarily the best measure

for a pragmatically defined energy per chromophore. There could be a possibility
to relate the amplitude of the density fluctuation directly to an energy such that
energy conservation is reproduced correctly. The numerical details of the presented
calculations are listed in appendix E.2.3.

5.4.3. Prediction of coupling strengths

While the meaning of the density fluctuations as a direct measure for an energy per
chromophore needs more investigation, one can utilize the results from the above
sections to calculate coupling strengths and off-resonances from real-time TDDFT.
This can be done in time space and frequency space in an equivalent way.
In time space one can get the values of V and ∆E from fits to the density fluctuations

of donor and acceptor. This is equivalent to measuring the periodic time of the induced
dipole moment [HKK10]. Since the initial slope of the acceptor density fluctuation is
proportional to |V |, one can also use a linear fit to the envelope for small times to get
relative values for |V | for different distances.
In frequency space one can also utilize the induced acceptor and donor dipole mo-

ments from equation (5.18). This works for each component of the dipole moment as
long as the excitation shows a dipole oscillation in this direction. The induced dipole
moment is better suited for an analysis in frequency space since one does not need to
take the absolute value of the density fluctuation and can simply use the results of
section 4.2.
In the general case, one can write the time dependence of the acceptor dipole moment

as

V√
∆E2 + V 2

[sin (ω̃t) cos (ω̄t)] =
V√

∆E2 + V 2

1

2
[sin[(ω̄+ ω̃)t]− sin[(ω̄− ω̃)t]] . (5.23)

74

Thus, due to the results from section 4.2 the Fourier transformed dipole moment of
the acceptor shows two sine-cardinal-shaped peaks at ω̄+ ω̃ with positive strength and
at ω̄ − ω̃ with equal, negative strength (for V > 0 and reversed for V < 0).

Resonant (E=0) Non-resonant (E V)

(a1) (a2)

D
S

F
 (

z
-c

o
m

p
o
n
e
n
t)

 [
a
rb

.
u
n
it
s
]

-2

0

2

4

6

1.8 1.9 2 2.1 2.2 2.3 2.4

Energy [eV]

Donor
Fit

1.8 1.9 2 2.1 2.2 2.3 2.4

Energy [eV]

Donor
Fit

-4

-2

0

2

4
Acceptor

Fit
Acceptor

Fit

(b1) (b2)

Figure 5.7: DSF as calculated from the z-component of the dipole moments of the ac-
ceptor (a1)+(a2) and donor (b1)+(b2) in the resonant (a1)+(b1) and non-
resonant (a2)+(b2) sodium dimer systems. The single dimers are aligned
with their symmetry axis parallel to the z-direction and are separated from
each other along the x-direction.

This is shown in figures 5.7 (a1) and (a2) for the resonant and the non-resonant
system, respectively. The perfect fit to the data (fitted spectral lines are indicated
by the two arrows) indicates again that the time dependence of the density is well
described by the donor-acceptor model.
The time dependence of the dipole moment of the donor can be written as(

1 +
∆E√

∆E2 + V 2

)
sin[(ω̄ − ω̃)t] +

(
1− ∆E√

∆E2 + V 2

)
sin[(ω̄ + ω̃)t] . (5.24)

In frequency space it also shows two peaks at the eigenenergies but both with positive
heights since

∣∣∣ ∆E√
∆E2+V 2

∣∣∣ ≤ 1.
This is shown in figures 5.7 (b1) and (b2) for the resonant and the non-resonant

system. Note that in the non-resonant case, the excitation energy of the acceptor
with the reduced bond length is larger than the energy of the donor excitation, i.e.,
EA∗D > EAD∗ . This means that in this case ∆E > 0 and the peak at ~(ω̄ − ω̃) is the
stronger one.

75

The ratio between the heights of the donor lines is a direct measure for the off-
resonance. To this end, I define f̄ = f+ + f− and ∆f = f+ − f−, where f+ ∝(

1− ∆E√
∆E2+V 2

)
and f− ∝

(
1 + ∆E√

∆E2+V 2

)
are the heights of the lines at ω̄ + ω̃ and

ω̄ − ω̃. The ration between |∆E| and |V | results in |∆E| = |V |
√

∆f2

f̄2−∆f2
.

The evaluation in frequency space still works if |V | is much smaller than the line
width of a sine cardinal. In time space this means that the propagation time is shorter
than the periodic time of the beat. In addition, the evaluation in frequency space
still works if the system is not a proper two-level system. This is true as long as the
coupling can be described as a coupling between two states, one from the donor and
one from the acceptor.
In time space one cannot measure an accurate beat frequency or a periodic time

in this case with a boost excitation. However, for the time-space evaluation one can
apply a perturbation that mostly stimulates the excitations of interest, e.g., by an
oscillating electric field that is tuned to the respective excitation energy. I use this
approach to calculate coupling strengths between two resonant sodium dimers and two
resonant BChls, respectively, for different distances in the following section.

5.5. Coupling strengths between chromophores from real-time TDDFT

Exciton Hamiltonians such as the one introduced in the last section are commonly
used in the field of natural light harvesting systems [Hu+02; CGK06; SR06; JCM14].
The coupling strengths between the chromophores are often modeled by, e.g., Förster’s
dipole coupling or more involved approaches [För48; LKH99; CGK06; Hu+02]. In the
following, I use real-time TDDFT with TDLDA to determine the coupling strength
between two resonant sodium dimers and between the Qy transitions of two resonant
BChls. The sodium dimers are those already introduced in the last section with tran-
sition dipoles along the z-direction and separated along the x-axis. For the two BChls
I used the structure from [ONS10] rotated by 45◦ around the z-axis and subsequently
by −45◦ around the x-axis to orient the bacteriochlorin ring approximately parallel to
the xy-plane. I duplicated this structure and separated the two resulting BChls along
the z-axis to align them face-to-face.
From real-time TDDFT I computed the coupling strengths V Dav mainly in the

frequency domain as described above. I compare the TDDFT results to the strengths
from a pure Coulomb-like coupling between the chromophores. The full Coulomb
coupling matrix element can be expressed through the transition densities ρAA∗ and
ρDD∗ and reads [För48; SFK09; JCM14]

V Coul =
e2

4πε0

∫∫
ρAA∗ (r) ρDD∗ (r′)

|r − r′|
d3rd3r′ . (5.25)

V Coul is often approximated through a Förster-type coupling between the transition
dipoles [För48; SFK09; HKK10]

V dd = κe2 |rAA∗ ||rDD∗ |
4πε0R3

. (5.26)

κ = eDD∗ · eAA∗ − 3(eDD∗ · eR)(eAA∗ · eR). eAA∗ and eDD∗ are the unit vectors in
the direction of the respective transition dipoles of donor and acceptor. eR is the unit

76

 0.05

 0.1

 0.5

 10 11 12 14 16 18 20 22

C
o

u
p

lin
g

 s
tr

e
n

g
th

 [
e

V
]

Distance R [a0]

[]

[]

Dipole-Dipole coupling
Full Coulomb coupling

Davydov splitting
Beat evaluation

Slope evaluation

(a) Two sodium dimers parallel to each other.

 0.001

 0.01

 0.05

 14 16 18 20 30 40 50 60

C
o

u
p

lin
g

 s
tr

e
n

g
th

 [
e

V
]

Distance R [a0]

Dipole-Dipole coupling
Full Coulomb coupling

Davydov splitting

(b) Two BChls aligned face-to-face.

Figure 5.8: Coupling strengths from transition densities, transition dipoles, and Davy-
dov splitting in frequency and time domains for two sodium dimers and
two BChls against the inter-chromophore distance.

vector in the direction of the relative vector between the two chromophores, i.e., ex
for the sodium system and ez for the BChla system. In the following, I calculated the
transition dipoles from the transition densities through

r0j =

∫
rρ0j(r)d3r . (5.27)

Sodium dimers The different coupling strengths for the sodium system are displayed
in figure 5.8a against the inter-chromophore distance R on a logarithmic scale. Per
construction, the orientation factor for this system is κ = 1. As expected, the dipole-
dipole strength shows the R−3 behaviour from equation (5.26). The coupling strengths
from dipole-dipole and transition density coupling approach each other for large dis-
tances per construction through equation (5.27). I tested this explicitly for distances
up to 1000 a0 (not shown) to ensure the validity of the computation of V Coul, which
is described in appendix E.2.3 along with other numerical details.
For distances of less than 20 a0 the dipole-dipole coupling begins to differ signif-

icantly from the full Coulomb coupling. Figure 5.9 shows the relative error of the
dipole-dipole coupling compared to the full Coulomb coupling. The error behaves as
a power law45 ∝ R−2 and deceeds the 10% threshold at distances R ≥ 20 a0.
The Davydov strengths in figure 5.8a fit perfectly to those of the pure Coulomb

coupling for R > 16 a0. I tested this explicitly up to R = 50 a0. For R = 16 a0, V Coul

differs from V Dav by ≈ 3% and by ≈ 10% for R = 14 a0. The sodium dimers can
still be described through two coupled chromophores for R < 16 a0 but the coupling
strengths cannot be calculated as a pure Coulomb coupling between the unperturbed
transition densities of the single chromophores.
Finally, for R < 10 a0 the spectrum cannot be interpreted in the sense of the two-

level donor-acceptor model and a Davydov evaluation is not possible. The deviations
from the donor-acceptor model already begin at R = 11 a0. They become visible

45The next higher multipole order neglected by the dipole-dipole coupling decays ∝ R−5 which
explains, compared to the dipole-dipole strength ∝ R−3, the ∝ R−2 behaviour of the error.

77

5%

10%

50%

100%

 14 16 18 20 30 40 50 60

(V
d
d
-V

C
o
u
l)/

V
C

o
u
l

Distance R [a0]

Na2 - Na2
BChl - BChl

Figure 5.9: Error of the dipole-dipole coupling approximation compared to the full
Coulomb coupling for different distances.

through the unequal heights of the two spectral lines and other excitations appearing
at similar energies. The corresponding data points are enclosed in brackets in figure
5.8a.
In addition, I evaluated the coupling strength between the sodium dimers in the time

domain by fitting the beat frequency to the envelope of δNA (V Beat) and fitting the
slope (V Slope) as shown in figure 5.6 (a1) and (a2). As expected, the beat-frequency
evaluation in the time domain according to [HKK10] leads to the same results as the
Davydov evaluation in the frequency domain. To get absolute values for the coupling
strengths from the slope evaluation, I fixed the missing proportionality constant to
the coupling strength from the beat-frequency evaluation at 50 a0, i.e., V Slope(R =

50 a0)
!

= V Beat(R = 50 a0). The values of V Slope shown in figure 5.8a are relative to
this fixpoint and coincide well with the Davydov and beat-frequency evaluation. Still,
for smaller distances the evaluation of the slope is less accurate since the beat becomes
faster and the fitting range narrower.

Bacteriochlorophylls The coupling strength between the BChls for distances be-
tween 14 a0 and 60 a0 from dipole-dipole and full Coulomb coupling are shown in
figure 5.8b. The orientation factor between the Qy transition dipoles is κ = 0.975842
for this setup. The coupling strengths behave qualitatively similar to the ones of the
sodium system but are smaller. The relative error of the dipole approximation com-
pared to the full Coulomb coupling is also shown in Figure 5.9. Since the BChls are
much larger than the sodium dimers, the error of the dipole approximation is much
larger at the same distance. Still, it shows the same R−2 behaviour. The error of the
dipole coupling reaches the 10% level at a distance of R = 50 a0

46.
In addition to the discussed data, I computed a single coupling strength from

the Davydov splitting approach for the same setup with an inter-BChl distance of
R = 8 Å ≈ 15.12 a0. The data point is marked in figure 5.8b. The predicted cou-
pling strength of V Dav = 0.02570 eV exceeds the one from pure Coulomb coupling
V Coul = 0.02469 eV by about 4 %. Hence, the Coulomb coupling as described by
the unperturbed transition densities of the single BChls is still valid for this setup at

46Note that the calculation is done in vacuum.

78

R ≈ 15 a0. For smaller distances, one can again expect deviations between V Dav and
V Coul. Numerical details can again be found in appendix E.2.3.

5.6. Conclusion and outlook

In this section I showed that the important Q-band transitions of single B850 BChls
in the LH2 complex are well described by TDLDA as calculated from real-time and
Q-Chem linear-response TDDFT and compared to Q-Chem ωPBE calculations. Still,
Q-Chem TDLDA requires a large basis set for an accurate description and the TDLDA
calculations in general show one or two additional, spurious states with a distinct
charge-transfer character.
This becomes more disturbing in the TDLDA spectra of two coupled B850 BChls,

which show a large number of spurious excitations. The latter partly result from a
coupling between the Qy and the spurious charge-transfer states of the single BChls
and do not appear in the respective ωPBE calculation. The overall spectrum is not
well described by TDLDA in this case.
Including the environment into the real-time TDLDA calculations resolves this issue

and removes the most critical states. This opens the possibility to perform qualita-
tively reliable EET simulations within the B850 ring with real-time TDDFT in the
future and to check the relevance of the spurious states in this respect.
For EET simulations one requires a meaningful measure for an energy density or

an energy per chromophore. Apart from the energy density as defined in equation
(5.1), the direct evaluation of the induced density fluctuation is a valid approach. In
conclusion, real-time TDDFT provides an attractive tool for the efficient simulation
of energy transfer processes in light-harvesting systems from first principles. Yet,
to exploit its full power and flexibility to extract meaningful results requires more
investigations, which is the subject of future work.

79

Appendix

81

BTDFT/

release.txt build/ calc/ doc/src/

Make le

bin/

dox/

include/

[program].conf

x3.sub

x5.sub

[program]_dox/

doxygen/

[program].f90

ace2human/

basic/

guess/

io/

mixer/

observables/

operators/

parallel/

parsec2ace/

parsec_interface/

physical/

propagator/

scf/

solver/

test/

tools/

Figure A.1: BTDFT directory tree. [program] is a placeholder for any of the five
BTDFT programs.

A. BTDFT - Additional documentation

A.1. File tree and release policy

A.1.1. The BTDFT file tree

The BTDFT directory tree is drawn in figure A.1. The contents of the directories
are shortly described in the following. The source code files are listed in detail in the
Doxygen documentation (see appendix A.5). Note also that BTDFT was previously
referred to as yACES, which was its unofficial name.

release.txt The only file in the main project directory BTDFT/ is release.txt. For
each release it contains the version tag and the change log.

src/ The directory src/ contains the source code of the BTDFT project. It con-
tains the main files of the five BTDFT programs (BTDFT_td.f90, BTDFT_gs.f90,
BTDFT_guess.f90, ace2human.f90, and parsec2ace.f90) and directories with further
source files as listed in figure A.1.

build/ The build/ directory is used for compiling the BTDFT programs and the
Doxygen documentation. This is described in more detail in appendix A.2. It contains

83

a makefile and several directories. The include/ directory contains make include files
called ’make.[architecture]’ in which environment and compiler variables can be set for
each architecture. The doc/ directory contains the configuration files for the Doxygen
documentation. After the compilation, a bin/ directory is created, which contains the
executables. Moreover, directories are generated that contain the module and object
files for the specific programs and architectures. These are reused in a new compilation
on the same architecture such that only new or changed files need to be compiled.

calc/ The calc/ directory contains sample submit files for the UBT clusters btrzx3
(x3.sub) and btrzx5 (x5.sub) as well as sample configuration files for BTDFT_td,
BTDFT_gs, and BTDFT_guess. The latter contain all possible configuration param-
eters, which are explained in the Doxygen documentation. The programs ace2human
and parsec2ace only use command line arguments and do not need extra configuration
files.

doc/ The doc/ directory contains one extra documentation folder for each of the
five BTDFT programs with the ending ’_dox’. They contain several files with the
main documentation pages that are built into the Doxygen documentation. After
compilation, a directory doxygen/ is generated that contains the html documenta-
tion for BTDFT. The documentation can then be opened by loading the respective
doxygen/[program]/html/index.html file in a browser.

git There are hidden files and directories such as .git/ and .gitignore. They are
described, as far as necessary, in appendix A.6.

A.1.2. Release history and release policy

The current release has the tag v1.6.5. The file release.txt in the main project directory
contains the release history and the change log. The version number is generated as
following:

• The third digit is increased if the new release only contains small changes of the
existing code and bugfixes.

• The second digit is increased when new major features enter the code.

• The first digit is increased when backwards compatibility breaks, e.g., if the ACE
file format changes.

A.2. Compilation and execution

Before compiling and running BTDFT, one should ensure that the right environment
modules are loaded. The environment modules that are loaded at compile time should
be the same as the ones that are loaded when running BTDFT.

84

A.2.1. Compilation

BTDFT The compilation of BTDFT is done in build/ in the main project directory.
include/ contains files in which compiler, flags, library paths, preprocessor constants,
etc. are specified. Currently, the libraries Intel MKL, gfortran, and the parallel version
of ARPACK (PARPACK) are linked. PARPACK must be compiled separately.
The whole project is built by ’make’. The makefile in build/ tells ’make’ to look for

source code files in the src/ directory, compile them one after another, and finally link
them. After compilation, an additional bin/ directory and several module and object
directories are generated. bin/ contains the compiled executables with a suffix that
identifies the respective architecture.
There is one module directory for each BTDFT program and for each architecture

as well as one object directory for each architecture. The module and object files are
reused if the project is built a second time on the same machine such that only new
or changed files need to be compiled.
The architecture-specific module and object directories prevent conflicts if the same

project directory is mounted in the file systems of different computers. Moreover, each
of the BTDFT programs needs its own module directory and object file extension since
the different programs partly use the same source code files but eventually a slightly
different implementation. E.g., BTDFT_td and BTDFT_gs use the same routine
to calculate the density from the KS orbitals. But, once the orbitals are real-valued
and once they are complex-valued. The behaviour of the routine is controlled by
preprocessor directives. Hence, a single source code file can result in different object
and module files, depending on the program it is compiled for.
The targets in the makefile are.

’make’ / ’make all’ Build the five BTDFT programs.

’make prepare’ and ’make header’ Used internally to print information.

’make (program)’ Only build the given program.

’make clean’ Remove the binaries, module files, and object files for the current ar-
chitecture.

’make clean_(program)’ Clean up the files of a single program.

’make doc’ Build the Doxygen documentation.

Doxygen documentation The Doxygen documentation is built in the build/ direc-
tory by calling ’make doc’. Each of the five BTDFT programs has its own documenta-
tion with an own Doxygen configuration file in build/dox/ with the suffix ’*.cfg’. The
most important parameters in the configuration file are those that set input and out-
put directories, the project’s name, a release tag, or a filter for input files. The second
kind of file in ’build/dox/’ has the suffix ’.filter’ (see appendix A.5 for an explanation).
Usually, the configuration files need not to be changed. Exceptions are, e.g., if a

new release is built (then the new release tag must be set) or if a new source code file
is not yet recognized by Doxygen due to some filter (then the new file has to be added
to the list of input files).

85

ARPACK The ARPACK library [LSY97] and its parallel version PARPACK are
required by BTDFT_gs to solve the ground-state KS equation. Precompiled versions
for various machines, including the btrzx5 and btrzx3 clusters, exist. How to build
PARPACK is explained in various README files in the corresponding directory and
an additional file, which I wrote specifically for the UBT clusters.

A.2.2. Configuration

As most of the other contents, all configuration options are explained in the Doxy-
gen documentation (see section A.5). There are three configuration files for each
of the three programs BTDFT_guess, BTDFT_gs, and BTDFT_td. When running
BTDFT, the configuration files must have the respective file names BTDFT_guess.conf,
BTDFT_gs.conf, and BTDFT_td.conf. The order of parameters inside the files does
not matter. Empty lines and comment lines starting with ’#’ can be added. The
parameter keywords are case insensitive and additional delimiters such as ’_’ are ig-
nored.

A.2.3. Submit files

The submit files are used for submitting a job to the clusters. Their main purpose is
to request resources, set up the environment, and finally start the program. Sample
submit files for btrzx5 and btrzx3 are included in the BTDFT/calc/ directory.

A.2.4. Execution

In the following, I explain how to set up a BTDFT calculation as well as the role of
certain input and output files. This is done in the order the single programs are called
one after another. I.e., an initial guess is created from the atom coordinates and the
grid parameters. The initial state can be used to calculate the ground state, which
can subsequently be used in a propagation. ace2human and parsec2ace are explained
further below.
When running a program in a directory, all files that are required by that program

have to be copied or linked into this directory. Symbolic links are often preferable for
large input files, especially for the ACE files that are used as input to BTDFT_gs and
BTDFT_td. Moreover, BTDFT_td and BTDFT_gs are the only programs that are
parallelized. BTDFT_guess, ace2human, and parsec2ace are sequential programs.

BTDFT_guess A BTDFT calculation starts with an initial guess that is com-
puted from BTDFT_guess. As input, BTDFT_guess requires the configuration file
’BTDFT_guess.conf’ and one pseudo potential file for each atom type47. These must
be called ’[atom name]_POTRE.DAT’. The ’[atom name]’ is the usual atom abbrevi-
ation from the periodic table. The first letter must be upper case, the second letter,
if it exists, is lower case.

47BTDFT usually uses non-local Troullier-Martins pseudo potentials [TM91] that are given on a
radial, logarithmic grid. The Kleinman-Bylander transformation [KB82] is done inside the code.
The local component of each atom specific pseudo potential must be chosen in the configuration
file (see section 3.3.3).

86

The BTDFT_guess configuration file determines the grid size, grid spacing, atom
types, their coordinates, and the local component of the atom specific pseudo poten-
tials. From this, BTDFT_guess sets up the grid and calculates the initial density, the
local ion potential, and the non-local pseudo potentials.
The initial guess is output as ’initial_guess.ace’ and can be used as input to a

ground-state calculation with BTDFT_gs. Moreover, a file ’guess.stat’ is output that
contains additional information about the initial guess.

BTDFT_gs The ground-state calculation requires an ’initial_guess.ace’ file, the
configuration file ’BTDFT_gs.conf’ as input, and a submit file to run the job. The ini-
tial guess can be any valid ACE file but is usually taken directly from BTDFT_guess.
The configuration file determines, among others, the number of orbitals, the total

charge of the system, if the calculation shall be spin polarized or spin unpolarized,
which xc approximation shall be used, and numerical details such as convergence
criteria and mixing parameters. The parallelization is set in the submit file by the re-
quested resources and the number of MPI processes. At the current state BTDFT_gs
only supports grid parallelization.
BTDFT_gs outputs a master output file ’master.out’ with status information about

the program setup and the single SCF iterations including the SRE error, KS eigen-
values, and energies. Additionally, each MPI process writes specific information into
its own ’out.[process rank]’ file.
At the end, one of ’ground_state.ace’ or ’not_ground_state.ace’, depending on the

final state of convergence, and optional observable files are output. There is also an
option to periodically output additional ACE files after a number of SCF iterations,
which are called ’SCF_restart_[iteration].ace’. These can be used as initial guess to
resume the ground-state calculation if, e.g., the calculation crashed for some reason.

BTDFT_td The propagation needs an ’initial_state.ace’ file and the configuration
file ’BTDFT_td.conf’ as input and again a submit file. The initial state can be a
ground state from BTDFT_gs or any other ACE file that contains orbitals. The
latter excludes ACE files that contain an initial guess from BTDFT_guess and the
restart files from BTDFT_gs. It is particularly possible to resume a propagation.
The configuration file determines the ratio between orbital and grid parallelization,

propagation parameters such as the propagation time, the time step, and the propaga-
tor as well as external potentials, other kinds of excitations, and several observables.
The total parallelization is again set in the submit file by the requested resources and
the number of MPI processes.
BTDFT_td outputs a ’master.out’ file and process specific ’out.[process rank]’ files

with similar contents as BTDFT_gs. At the end of the propagation, a ’final_state.ace’
file is output, which contains the final state at the end of the propagation. This file
can be used to resume the propagation. Of course, additional files are output that
contain the requested observable data, etc.

ace2human ace2human is a command line program that is used to read and output
the contents of ACE files. A complete list of all supported command line arguments
is given in the corresponding Doxygen documentation.

87

Each time ace2human is called with a valid ACE file as input, a ’header.dat’ and
a ’reader.stat’ are output. ’header.dat’ contains all information in the header of the
ACE file including electronic structure data and the grid parameters. ’reader.stat’
only contains information about the success of the call. Additional command line ar-
guments can be used to output the density, potentials, pseudo potentials, and orbitals
as Gaussian cube files or as human-readable data files in a plane or parallel to any
Cartesian axis.

parsec2ace parsec2ace is used to convert a special PARSEC [Kro+06] output file
into a valid ACE file that can be used in a propagation. To this end, I extended
the local version of PARSEC by an additional interface module (source code inside
BTDFT/src/parsec_interface/). Since the grid parallelization of BTDFT differs from
the one of PARSEC, parsec2ace offers the opportunity to rotate the system around the
original coordinate axes of the PARSEC grid (subsequently up to two times around
different axes). BTDFT works best if the largest half-axis of the boundary ellipsoid
is aligned in z-direction. parsec2ace outputs a status file ’converter.stat’ and the
requested ACE file.

A.2.5. Practical remarks

At the end of this section I add some remarks about the choice of parameters and the
parallelization.

System Alignment The parallelization is one-dimensional along the z-direction as
introduced in section 3.3.1. For an optimal grid parallelization it is recommended to
align the system with the largest half-axis of the boundary ellipsoid along the z-axis.
This reduces the size of the halo layers and thus the MPI communication and memory
access overhead when applying differential operators.

Grid size and grid spacing In view of the calculations presented in this work, the
grid spacing was determined by the kind of atoms in the system. A grid spacing of
0.3 a0 is usually sufficient for systems that contain carbon, which can be seen from the
discussion in appendix E.3.1. For sodium systems a larger grid spacing of 0.7 a0−0.8 a0

is valid.
The grid size must be large enough that the multipole expansion that is used as

boundary condition for the solution of Poisson’s equation for the Hartree potential is
valid. This depends on the size of the system, its shape, and its alignment inside the
grid.

Time step The optimal time step depends on the propagator used and the time scales
of the observed dynamics. The Taylor propagator is conditionally stable for time steps
that are smaller than a critical time step, which depends on the grid spacing. For a
grid spacing of ∆x = 0.3 a0, the critical time step is ∆tcrit ≈ 0.0005 fs. Since the
observed dynamics is usually much slower than this critical time step, there is no
other restriction.
The Crank-Nicolson propagator is unconditionally stable. The reliability of the

results depends on the validity of the time discretization. The time scales of the

88

dynamics is determined by, e.g., oscillating external potentials or the excitation fre-
quencies. I found that a time step of up to ∆tcrit = 0.02 fs is reliable to describe the
dynamics in an energy range of up to ≈ 2−3 eV (see section E.3.1). This corresponds
to about 70-100 time steps per period of an oscillation with this energy. Excitations
with higher excitation energies are typically red-shifted due to the discretization error.
A larger Crank-Nicolson time step requires more computation time than a Taylor

time step. Yet, due to the larger possible time-step sizes it is typically faster. Moreover,
the potentials are evaluated once per time step and therefore less frequent with a larger
Crank-Nicolson time step.

Parallelization If finite differences of 6th order are used, each MPI process should
contain at least six xy-planes of grid points in its own range48. In this case, the halo
region of each MPI process consists of three xy-planes below and above its own range.
The halo layers occupy extra memory and must be loaded from the memory each
time the finite differences are applied. Since the total halo region is as large as the
process’ own range (i.e., six xy-planes), the program requires about twice the memory
of a sequential run and the performance is at best 50% of what would be possible
with optimal scaling. A higher parallelization is still valid but uses disproportionate
resources, also in view of the additional MPI communication.
In a propagation the orbital parallelization can be added in addition to the grid

parallelization. The processes are organized in orbital units as explained in section
3.3.2 with grid parallelization within each orbital unit. The number of orbital units
can be specified in the BTDFT_td configuration file.
There are two hard constraints to the number of orbital units: First, there must be

at least as many orbitals as orbital units such that each orbital units contains at least
one orbital. Second, the number of MPI processes must be an integer multiple of the
number of orbital units (see figure 3.5).
A good practice is to choose a certain grid parallelization, e.g., among one or two

nodes, and increase the number of requested nodes proportional to the number of
orbital units. This way the second constraint is always fulfilled.
Additionally, the number of orbitals should be an integer multiple of the number

of orbital units, if possible. The latter states that all orbital units contain the same
number of orbitals, which ensures an optimal load balance.

PARPACK basis PARPACK builds up a 2Norb +Nextra-dimensional subspace of the
Ngrid-dimensional vector space and stores as many basis vectors. Norb is the number
of orbitals, Ngrid is the number of grid points, and Nextra is an additional basis size
that can be specified in the BTDFT_gs configuration file.
In general, Nextra should be larger the more orbitals are treated. If Nextra is too

small, this can lead to convergence issues or poor performance. For small systems
5 ≤ Nextra ≤ 10 is usually sufficient. For a ground-state calculation with 706 orbitals
and 15.2 · 106 grid points I used up to Nextra = 100.

48In this consideration I ignore the ellipsoidal shape of the grid.

89

Setup con guration
(Read con g le + ACE header)

Init 1
(Setup grid +

parallelization,

allocate arrays, ...)

Fill structures
(Read ACE body)

Init 2
(Setup solver,

pseudo potentials,

observables, ...)

Calculation

Clean up

SCF iteration

Mix potentials

Diagonalize

KS equations

do

Converged?

Calculate:
 - Occupation

 - Density

 - Potentials

 - Energy

 - SRE

Init
(Operators, potentials,

mixer, diagonalizer, ...)

T

F

BTDFT_td / BTDFT_gs

Postprocessing
(Last observables,

Output)

Propagation

Init
(Operators, potentials,

extrapolation, energy,

observables, ...)

do

Finished?

Extrapolate

potentials

Time step
(t -> t+dt)

Calculate:
 - Density

 - Potentials

Modify state:
(e.g. apply absorbing boundaries)

Record

observables

T F

SCF Propagation

Figure A.2: Overview of the BTDFT_td and BTDFT_gs program sequences.

A.3. Implementation principles

A.3.1. Program sequences

An overview of the program sequences of BTDFT_td and BTDFT_gs is shown in fig-
ure A.2. The left part of the figure shows the contents of the main files BTDFT_td.f90
and BTDFT_gs.f90. In the sketch, they only differ in the ’Calculation’ part when
BTDFT_gs starts the SCF iteration whereas BTDFT_td starts the propagation. An
overview of the sequence of the SCF iteration and the propagation are displayed in the
middle and right parts of figure A.2. The single parts are discussed in the following:

Setup configuration: The main derived types, which contain data and subroutines
concerning, e.g., the grid structures, the parallelization, and the electronic structure,
are declared once at the beginning of BTDFT_gs and BTDFT_td. Both programs
then read the contents of the respective configuration file (BTDFT*.conf) and the
contents of the input ACE file. In BTDFT_gs the input ACE file must be called
initial_guess.ace. In BTDFT_td is must be called initial_state.ace.
The parameters in the configuration file determine the parameters for the respec-

tive SCF iteration or propagation such as convergence criteria and the propagation
time. The input ACE file contains an initial guess (BTDFT_gs) or an initial state
(BTDFT_td). Its header contains information about the number of atoms and atom

90

types, the grid, etc. with a fixed layout.
Input parameters and ACE file header are then used to create configuration struc-

tures that are used to configure all major derived types in the ’Init 1’ block. The
compatibility of the ACE file header and the configuration parameters are checked.
The configuration files are then broadcasted to all MPI processes.

Init 1: The ACE file header and the configuration parameters contain all information
that is necessary to set up the major derived types. This means setting parameters
in the respective data structures, setting up the parallelization and the grid, and
allocating arrays for, e.g., potentials, density, and orbitals.

Fill structures: After all parameters are set and arrays are allocated the ACE file
body is read into the structures. This is done in parallel by all MPI processes, which
open the ACE file collectively using MPI_IO routines. Therefore, each MPI process
reads its own data from the ACE file body.
For very large ACE files, which usually contain many KS orbitals with a large

number of grid points, this has the special advantage that a single process does not
need to store a complete set of data that must be scattered across all MPI processes.
For really large systems, a single orbital can theoretically occupy more than 1 GB
in the main memory, a complete ACE file many tens of GB. This can, in certain
situations, lead to segmentation faults due to a lack of main memory capacity.

Init 2: The second initialization step completes the initialization. Here, all things
are done that require the explicit knowledge of data such as the atom coordinates
and the non-local parts of the pseudo potentials. Since the latter are only defined on
subgrids around the atoms they can first be scattered across the MPI processes as
soon as the coordinates of the atoms and the subgrids of the pseudo potentials are
known. Since this information depends on the number of atoms and atom types, it
is stored in the body part of the input ACE file and is therefore first available after
the ’Fill structures’ block in figure A.2 (see appendix A.4 for information about the
format of the ACE file).

Calculation [SCF / Propagator]: In the ’Calculation’ part the SCF iteration or
the propagation are started, respectively. In the main program this is just a single
subroutine call, which takes the initialized derived types such as the grid and the initial
electronic structure data as input and returns the converged or propagated data. The
flow charts of the SCF iteration and propagation are displayed in the middle and right
parts of figure A.2 and explained in the following.

SCF: At the beginning of the SCF iteration, additional structures such as operators
and the mixer are initialized and the potentials are calculated for the first time
from the initial guess density. The self-consistency loop then starts with the
diagonalization of the KS equations, which returns new KS orbitals and KS
eigenvalues. From those the new occupation numbers, density, and potentials
are calculated. From the new and old potentials the SRE error is determined
and checked for convergence. If the iteration converged, the routine returns to

91

the main program. Otherwise, the new and old potentials are mixed and used
for the next iteration cycle.

Propagator: As for the SCF iteration, additional structures are initialized and the
potentials are calculated from the initial density. The loop performs time steps
from t→ t+∆t until the total propagation time is reached. Since the potentials
at t + ∆t

2 are used in a propagation step, the potentials are first extrapolated
from t, t − ∆t, t − 2∆t, . . . to t + ∆t

2 using a polynomial expansion (second
order works well). The orbitals are then propagated from t→ t+ ∆t using the
Taylor of Crank-Nicolson propagator. From the new orbitals the density and
potentials at t + ∆t are calculated and observables such as the dipole moment
are recorded. In between, the state can be modified by, e.g., applying special
absorbing boundaries as used for ARPES or charge-transfer simulations [Sch16;
Dau16; Dau+16].

Postprocessing: After the SCF iteration or the propagation have finished and the
converged or propagated data are returned from the ’Calculation’ block, the ’Postpro-
cessing’ block calculates outstanding observables and outputs the respective data. In
BTDFT_gs an ACE file named ground_state.ace or not_ground_state.ace is output,
depending on the success of the SCF iteration. In BTDFT_td an ACE file named
final_state.ace is output from which the propagation can be resumed.

Clean up: Finally, all main structures are destroyed, i.e., the underlying arrays are
deallocated.

A.3.2. Grid details

Some operations are not orbital-specific. Examples are the calculation of the Hartree
potential or the dipole moment, which only require the total density. In this case the
operation is only grid-parallelized and all orbital units usually do exactly the same
calculation.
In the case of a pure observable such as the dipole moment, it is sufficient if one

orbital unit performs the computation. However, the computation can also be done in
parallel by all processes if the grid is distributed among all processes, not only among
the processes in one orbital unit. To achieve this, the processes in the same grid unit,
which contain the same subgrids, must again split up this subgrid. This leads to new,
smaller subgrids and new halo layers as well as halo communication within the grid
units (if a semi-local operator is applied as for the Hartree potential).
This is clarified by figure A.3, which also illustrates the meaning of important index

variables inside the t_grid structure of BTDFT. The figure shows 1D arrays on three
processes, which are in the same grid unit, i.e., share the same subgrids but contain
different orbitals. On the left-hand side and right-hand side of the figure, neighboring
grid units are indicated. Also compare this figure to figures 3.3a on page 20 and 3.5
on page 22.
The single 1D arrays are visually divided into an upper and a lower section. The

upper section shows the boundary (blue) and halo (red) layers in the orbital unit’s

92

0

0

Figure A.3: Additional grid parallelization within a grid unit and important indices
as found in the t_grid structure of BTDFT. Details are discussed in the
text.

subgrid (or index range), which is labeled with _o. This orbital unit range is the one
that is introduced in section 3.3.1.
The lower section of the 1D arrays shows boundary (blue) and halo (red) layers of

the world communicator’s range, which is labeled with _w and is not discussed in
section 3.3.1. The latter is only relevant if the grid is parallelized among all processes.
The green arrows indicate the halo communication inside the grid unit in the case
that a semi-local operator is applied with grid parallelization among all processes in
the world communicator.
An array that requires halo communication, such as the density or the KS orbitals,

is allocated in its orbital unit range with halo layers and an outside element attached
to a process’ own range. Figure A.3 explains this for the middle process with orbital-
unit specific (_o) quantities written above and world-communicator specific (_w)
quantities written below the array. In view of this figure, the orbital-unit range runs
from low_o − 1 to up_o. The array element with one-dimensional index low_o − 1
contains the outside-value 0, which is the value that is used for grid points outside
the boundary ellipsoid. The process’ own subgrid ranges from myLow_o to myUp_o
and is the same on all processes in the same grid unit. The number of grid points in
the orbital-unit range is myDim_o = myUp_o−myLow_o+ 1.
The additional grid parallelization within the grid unit leads to the world-communica-

tor indices (_w), which differ between processes in the same grid unit. In this example
with three orbital units each process in the grid unit gets one third of the grid unit’s
total subgrid. The meaning of the _w indices and myDim_w is the same as for the
_o ones but with the total grid parallelization.
By default, arrays in BTDFT are allocated with their orbital unit range. The addi-

tional grid parallelization within the grid units can be useful in some situations, e.g.,
the calculation of the dipole moment. If an operation is performed by every orbital unit
and grid-parallelized only within the respective orbital unit (_o) or grid-parallelized

93

 0

 5

 10

 15

 20

 25

 2 4 8 10 16 20 32 40
R

e
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

Number of nodes

Reference: only grid parallelization

x11.6

x14.2

Orbital units close
Grid units close

Linear (ideal)

Figure A.4: Dependence of the performance of BTDFT for the polyacetylen chain from
section 3.5.1 with different process mappings: Once the orbital units are
close-packed, once they are scattered across all nodes.

among all processes (_w) is typically controlled by a flag called orbUnitF lag. If this
flag is .true., which is the default, the computation is done by each orbital unit and
only in the orbital-unit range.
The additional grid parallelization must be treated with care and does not gener-

ally lead to a better performance, especially with semi-local operators, which require
halo communication. If the default grid parallelization with the orbital-unit ranges is
already maxed out, the additional grid parallelization hampers the performance.

A.3.3. Mapping MPI processes onto the hardware

The 2D virtual topology, which BTDFT uses for its grid and orbital parallelization
(see figure 3.5), must be mapped onto the hardware. As outlined in appendix A.2.5,
it is rational to specify a grid parallelization among a certain number of nodes (M)
and run the job with this number of nodes times the number of orbital units specified
in the configuration file.
The virtual topology is set up such that the MPI processes in the same orbital

unit are packed close on the hardware to achieve a good halo-communication per-
formance. In this case, each orbital unit is only distributed among these M nodes.
The MPI communication patterns are simple: Halo communication (or intra-orbital-
unit communication) takes place within each set of M nodes and inter-orbital-unit
communication between the sets of M nodes that contain different orbital units.
The opposite is also possible, i.e., scattering the orbital units across all nodes and

pack the grid units close (but keeping the ratio of nodes per orbital unit). I compare
the resulting performance of both approaches for the polyacetylen chain from section
3.5.1 in a similar way as in figure 3.11b. The results are displayed in figure A.4,
again for a grid parallelization among two nodes (i.e., M = 2 in the close-packed
case). Note that the performance cannot be compared directly to the one in figure
3.11b since I chose different numerical parameters and this version of BTDFT uses a
predictor-corrector scheme instead of the potential extrapolation.
The close-packed variant shows a better performance and a more regular scaling

behaviour while the scattered variant shows performance drops at 8 and 20 nodes. In

94

general, the communication paths with the scattered orbital units are very inhomoge-
neous and vary with different numbers of nodes if the ratio of nodes per orbital unit
is kept constant. Therefore, the close-packed variant has clear advantages.

A.3.4. Optimized convergence criteria

The convergence criteria of the Crank-Nicolson and Hartree equations for the time-
dependent code can be chosen automatically by BTDFT if a negative value is given
as tolerance in the configuration file. However, this works only if the initial state is a
proper ground state of the system.

Crank-Nicolson equation If one would start the propagation with the exact ground-
state orbitals ϕGS

j and would not apply a perturbation, the time dependent KS orbitals
would only get a phase factor ϕj(t) = ϕGS

j e−iεjt/~. One can now take the approximate
ground-state orbitals ϕGS,approx

j from the input and do a Crank-Nicolson time step ∆t

with the initial guess ϕGS,approx
j e−iεj∆t/~ and a specified number of iterations. The

final backward error of this procedure, or the minimum over all orbitals, is then taken
as convergence criterion.
The argument behind this scheme is that it makes no sense to solve the Crank-

Nicolson equation with a higher quality than the input orbitals yield. In practice,
this worked fine so far, which I checked by choosing stronger and weaker criteria. A
too weak criterion can be recognized by, e.g., line shapes in the dipole spectrum that
are no proper sine cardinals. In the time-domain the dipole moment shows some self-
enhancement or damping behaviour in this case. Still, if the input orbitals are of bad
quality (or no ground-state orbitals), one should manually choose a criterion.

Poisson’s equation for the Hartree potential To get a proper Hartree tolerance,
BTDFT uses a similar scheme. This time, the input density is used to calculate the
Hartree potential with the input Hartree potential as initial guess. This is again done
with a specified number of iterations, usually one in this case. The final backward error
is taken as convergence criterion. Since the input Hartree potential has been calculated
before by the ground-state BTDFT code or PARSEC, the resulting criterion is a little
stronger but very similar to that from the ground-state calculation.

A.3.5. File layout and implementation

The BTDFT project consists of several files including source code files, which are
themselves organized in a directory tree. Nevertheless, most of the source code files
follow a strict format and naming scheme, which is described in the following.
The main files of the five BTDFT programs are located in the src/ directory and

called BTDFT_td.f90, BTDFT_gs.f90, BTDFT_guess.f90, ace2human.f90, and par-
sec2ace.f90. BTDFT strictly uses Fortran modules, which are included via the use
statement, as well as derived data types and type bound procedures.
All module names begin with m_ such as m_grid or m_parallel. The latter

contain the data and routines concerning the real-space grid and the parallelization,
respectively. Each Fortran module is implemented in a single file that is named after

95

the module such as grid.f90 and parallel.f90 in the upper example. In most of the
modules a derived type is defined beginning with t_ such as t_grid and t_parallel.
With this naming scheme it is always clear that, e.g., the grid data and routines are
part of the t_grid structure in the m_grid module which is implemented in the file
grid.f90.

1 module m_sample
2 ! [Use−i n c l ud e s . . .]
3 imp l i c i t none
4

5 ! [V i s i b i l i t y]
6 pr i va t e
7 pub l i c : : t_sample
8

9 ! [Derived types]
10 type : : t_sample
11 i n t ege r , pub l i c : : ndim
12 r ea l , dimension (:) , a l l o c a t ab l e , pub l i c : : va l
13 ! [Other data . . .]
14 conta in s
15 procedure , publ ic , pass : : i n i t => s amp l e I n i t i a l i z e
16 procedure , publ ic , pass : : de l => sampleDelete
17 procedure , publ ic , pass : : out => sampleOut
18 ! [Other type bound procedures . . .]
19 end type
20

21 conta in s
22

23 ! [Module procedures]
24

25 !−−!
26 ! Constructor
27 subrout ine s amp l e I n i t i a l i z e (th i s , ndim)
28 imp l i c i t none
29 c l a s s (t_sample) : : t h i s
30 i n t ege r , i n t en t (in) : : ndim
31 c a l l t h i s%de l () !<=> c a l l sampleDelete (t h i s)
32 t h i s%ndim = ndim
33 a l l o c a t e (t h i s%va l (ndim))
34 t h i s%va l = 0 .0
35 end subrout ine s amp l e I n i t i a l i z e
36

37 !−−!
38 ! Dest ructor
39 subrout ine sampleDelete (t h i s)
40 imp l i c i t none
41 c l a s s (t_sample) : : t h i s
42 i f (a l l o c a t e d (t h i s%va l)) d e a l l o c a t e (t h i s%va l)
43 end subrout ine sampleDelete
44

45 !−−!
46 ! Pr int contents o f the g iven t_sample s t r u c tu r e ’ th i s ’
47 subrout ine sampleOut (th i s , s t r i n g)
48 imp l i c i t none
49 c l a s s (t_sample) : : t h i s
50 cha rac t e r (∗) , i n t en t (in) : : s t r i n g
51 wr i t e (∗ ,∗) s t r i n g

96

52 wr i t e (∗ ,∗) t h i s%ndim
53 wr i t e (∗ ,∗) t h i s%va l
54 end subrout ine sampleOut
55

56 end module m_sample

Listing A.1: sample.f90

A typical file sample.f90 looks as displayed in listing A.1. Lines 7-8 in sample.f90
set the visibility of all module contents but the t_sample structure to private. E.g.,
if the module m_sample is use-included somewhere, only the t_sample structure is
accessible from outside the module.
Lines 11-20 define the derived type t_sample, which contains a data part (lines 12-

14) and type bound procedures (lines 16-19) after the types’s contains statement (line
14). The type bound procedures are linked to module procedures that are implemented
in the m_sample module (lines 25-54) after the module’s contains statement (line
21). All components of t_sample, i.e., data and type bound procedures, are public
and therefore accessible from outside the module through the t_sample structure
using the % operator.

1 program useSample
2 use m_sample
3 ! [Other use−i n c l ud e s . . .]
4 imp l i c i t none
5

6 ! [Dec la ra t i on]
7 type (t_sample) : : sample , noSample
8

9 ! [I n i t i a l i z a t i o n]
10 c a l l sample%i n i t (2) !<=> c a l l s amp l e I n i t i a l i z e (sample , 2)
11 c a l l noSample%i n i t (4) !<=> c a l l s amp l e I n i t i a l i z e (noSample , 4)
12

13 ! [Output]
14 c a l l sample%out (" I ’m a sample")
15 c a l l noSample%out (" I ’m no sample ! ! ")
16

17 ! [De lete]
18 c a l l sample%de l ()
19 c a l l noSample%de l ()
20

21 end program useSample
22

23 ! [Output]
24 ! I ’m a sample
25 ! 2
26 ! 0 .00000000 0.00000000
27 ! I ’m no sample ! !
28 ! 4
29 ! 0 .00000000 0.00000000 0.00000000 0.00000000

Listing A.2: useSample.f90

The type bound procedures have the pass (default) or nopass attribute. The pass
attribute states that the corresponding bound subroutine must get an instance of
the structure itself as first argument, i.e., a variable of type class(t_sample) in this
example. The latter is usually called this inside the module procedures.

97

A type bound procedure can be accessed through the structure via the % operator
in the same way as any data inside the structure. When the subroutine is called as
type bound procedure (with the pass attribute) of the corresponding structure, the
first argument this is given implicitly (e.g., in the call of sample%init in useSam-
ple.f90). Two instances of t_sample are declared in useSample.f90 called sample and
noSample, which both have their own data49. Hence, sample and noSample can be
initialized independently from each other, contain different data, and produce different
output. Still, they use the same implementation of the subroutines.

Allocatable arrays vs. Fortran pointers Inside the code I use allocatable arrays
as well as Fortran pointers. To some extent these are interchangeable, yet they are
different. I will briefly explain their differences and reasons for using one or the other
in certain situations. Still, I restrict myself to the points that are important for this
work.
Fortran pointers can be allocated as allocatable arrays, i.e., space in the main mem-

ory can be reserved. Still, in the code I only allocate allocatable arrays. Pointers, on
the other hand, are not allocated in BTDFT but strictly used to point to arrays or
other objects that already exist.
From my point of view, the main difference between Fortran pointers and allocatable

arrays is that arrays are permanently assigned to the memory that was allocated for
them whereas pointers can be assigned to other objects. This is illustrated in the code
example below showing a sample file pointers.f90.

1 program po in t e r s
2 use m_sample
3 imp l i c i t none
4

5 ! [Dec la ra t i on]
6 type (t_sample) , t a r g e t : : sample
7 type (t_sample) , po in t e r : : p_sample
8 r ea l , dimension (:) , a l l o c a t ab l e , t a r g e t : : a1 , a2
9 r ea l , dimension (:) , po in t e r : : p1 , p2 , ptmp

10

11 ! [A l l o ca t e ar rays]
12 a l l o c a t e (a1 (2))
13 a l l o c a t e (a2 (3))
14 a1 = 1 .0
15 a2 = 2 .0
16

17 ! [Assign po i n t e r s]
18 p1 => a1
19 p2 => a2
20 wr i t e (∗ ,∗) p1
21 wr i t e (∗ ,∗) p2
22

23 ! [Rotate po i n t e r s]
24 ptmp => p1
25 p1 => p2
26 p2 => ptmp
27 wr i t e (∗ ,∗) p1
28 wr i t e (∗ ,∗) p2

49Even arrays can be created from a derived type and derived types can be nested.

98

29

30 !−−!
31

32 ! [I n i t i a l i z e sample]
33 c a l l sample%i n i t (4)
34

35 ! [Assign p_sample to sample]
36 p_sample => sample
37

38 ! [Assign p1 to sample%va l]
39 p1 => p_sample%va l
40 wr i t e (∗ ,∗) p1
41

42 end program po in t e r s
43

44 ! [Output]
45 ! Before r o t a t i on :
46 ! 1 .00000000 1.00000000 (p1 po in t s to a1)
47 ! 2 .00000000 2.00000000 2.00000000 (p2 po in t s to a2)
48 ! After r o t a t i on :
49 ! 2 .00000000 2.00000000 2.00000000 (p1 po in t s to a2)
50 ! 1 .00000000 1.00000000 (p2 po in t s to a1)
51 ! p1 po in t s to p_sample%va l (and hence to sample%va l) :
52 ! 0 .00000000 0.00000000 0.00000000 0.00000000

Listing A.3: pointers.f90

In listing A.3, a1 and a2 are allocatable arrays that are allocated and initialized
inside the code (lines 12–15). The pointers p1 and p2 are assigned to a1 and a2 (lines
18–19), respectively, and can be used as aliases. The arrays a1 and a2 therefore need
the target attribute. Fortran pointers are only references to a memory address. p1
and a1, at this point, are assigned to the same address and changing a value in a1
directly changes the same value in p1.
One example in which a pointer can be useful is in switching or rotating data between

arrays (lines 24–26). After this rotation p1 is assigned to a2 and p2 is assigned to a1.
When doing the same directly with the arrays a1 and a2 a lot of memory-to-memory
copies must be performed, which is expensive in terms of computation time if the
arrays are large. On the other hand, the same can also be done completely without
a1 and a2 by directly allocating p1 and p2.
I do not use the direct allocation of pointers for a few reasons. First of all, if a

pointer is allocated and subsequently assigned to another object, the originally allo-
cated memory is not assigned nor accessible if not another pointer has been assigned
to it before. Second, there is the threat of pointer aliasing that can in principle
happen [HW10, §2.4.3]. Compilers are usually cautious and try to prevent this at
compile time, which causes performance losses. Third, pointers can be assigned to
non-contiguous arrays such as every second element of an array or a non-contiguous
subarray of a multi-dimensional array. This may cause errors if the pointer is then
given to a subroutine that expects a contiguous array.
Last but not least, pointers can also be assigned to derived types as with p_sample

(line 36) or to components of derived types (line 39). In the latter case the whole
derived type needs the target attribute.

99

Polymorphism The operator and solver structures in BTDFT use inheritance and
polymorphism, which are concepts of object-oriented programming. I will therefore
explain them briefly by means of a minimal example. Yet, the following is again far
from being a complete reference.
The Krylov subspace solvers that are used in BTDFT only require the frequent

application of a linear operator Ô to solve the equation Ôx = y for x. The operator
needs not to be given explicitly as a matrix but only as a subroutine that takes some
function (i.e., array) f as input and returns the result Ôf . The Krylov subspace solver
itself is generic and can be implemented without any knowledge of the operator.
To keep the solver implementation general, the solver shall get the inhomogeneity y

and the operator Ô as derived type t_operator as input. A general operator structure
must only implement a type bound procedure that knows how to apply the operator.
The structure t_operator in listing A.4 below (lines 6–11) contains, in this minimal
example, everything necessary: A type bound routine apply (line 10) and, since the
operator acts on 1D arrays, the array dimension ndim (line 7).

1 module m_operator
2 ! [Use−i n c l ud e s]
3 imp l i c i t none
4

5 ! [Def ine ab s t r a c t parent s t r u c tu r e with de f e r r ed rou t in e]
6 type , ab s t r a c t : : t_operator
7 i n t e g e r : : ndim
8 ! [Further contents . . .]
9 conta in s

10 procedure (apply) , publ ic , pass , d e f e r r ed : : apply
11 end type
12

13 ! [Def ine operator t_op1]
14 type , extends (t_operator) : : t_op1
15 ! [Further contents . . .]
16 conta in s
17 procedure , publ ic , pass : : apply => op1Apply
18 end type
19

20 ! [Def ine operator t_op2]
21 type , extends (t_operator) : : t_op2
22 ! [Further contents . . .]
23 conta in s
24 procedure , publ ic , pass : : apply => op2Apply
25 end type
26

27 ! [Abstract i n t e r f a c e]
28 abs t r a c t i n t e r f a c e
29 subrout ine apply (th i s , i , o)
30 import : : t_operator
31 c l a s s (t_operator) : : t h i s
32 i n t ege r , dimension (1 :) , i n t en t (in) : : i
33 i n t ege r , dimension (1 :) , i n t en t (out) : : o
34 end subrout ine apply
35 end i n t e r f a c e
36

37 conta in s
38

39 ! [Module procedures]

100

40

41 ! [t_op1 subrout ine]
42 subrout ine op1Apply (th i s , i , o)
43 imp l i c i t none
44 c l a s s (t_op1) : : t h i s
45 i n t ege r , dimension (1 :) , i n t en t (in) : : i
46 i n t ege r , dimension (1 :) , i n t en t (out) : : o
47 i f (s i z e (i)/=th i s%ndim . or . s i z e (o)/=th i s%ndim) return
48 o = i
49 end subrout ine op1Apply
50

51 ! [t_op2 subrout ine]
52 subrout ine op2Apply (th i s , i , o)
53 imp l i c i t none
54 c l a s s (t_op2) : : t h i s
55 i n t ege r , dimension (1 :) , i n t en t (in) : : i
56 i n t ege r , dimension (1 :) , i n t en t (out) : : o
57 i f (s i z e (i)/=th i s%ndim . or . s i z e (o)/=th i s%ndim) return
58 o = 2∗ i
59 end subrout ine op2Apply
60

61 end module m_operator

Listing A.4: operator.f90

The operator structure is abstract (line 6) which states that no instance of t_operator
can be created. The reason for this is that the apply procedure has no implementation,
only an abstract interface (lines 28–35) that defines the layout of the apply routine.
The interface tells the t_operator structure that its type bound apply procedure must
get the the t_operator structure itself as well as an integer array i as input and re-
turns an integer array o as output. Moreover, the apply procedure has the deferred
attribute, which states that all derived types that extend the original, abstract oper-
ator type must implement the apply procedure. Therefore, t_operator is used as a
template of an operator and defines a kind of scaffold.
In m_operator, there are two additional derived types called t_op1 (lines 14–18)

and t_op2 (lines 21–25) that extend the abstract t_operator. Thus, they inherit the
ndim component and the type bound apply procedure as well as the type itself. This
means that t_op1 and t_op2 are both also of type t_operator. Since t_op1 and t_op2
are not abstract, they must implement the apply procedure with the correct interface
(lines 28–35). The respective implementations are the module procedures op1Apply
(lines 42–49) and op2Apply (lines 52–59).
The module procedure solver in listing A.5 simulates some kind of solver algorithm

that solves Ôx = y. The type of the input operator is t_operator. While t_operator
itself is abstract, t_op1 and t_op2 are also of type t_operator. Thus, t_op1 and
t_op2 are both valid inputs since both extent t_operator and therefore implement
an apply procedure. Somewhere inside the solver algorithm the operator can then be
applied (line 12).
The solver can be called as in listing A.6. There, the solver is called once with t_op1

(line 21) and once with t_op2 (line 25) and uses the corresponding implementation of
apply, i.e., op1Apply or op2Apply, which can be seen in the respective output.

101

1 module m_solver
2 use m_operator
3 imp l i c i t none
4 conta in s
5 ! [Module procedures]
6 subrout ine s o l v e r (op , i , o)
7 imp l i c i t none
8 c l a s s (t_operator) : : op
9 i n t ege r , dimension (1 :) , i n t en t (in) : : i

10 i n t ege r , dimension (1 :) , i n t en t (out) : : o
11 ! [Some algor i thm . . .]
12 c a l l op%apply (i , o)
13 ! [. . .]
14 end subrout ine s o l v e r
15 end module m_solver

Listing A.5: solver.f90

1 program polymorphisms
2 use m_operator
3 use m_solver
4 imp l i c i t none
5

6 ! [Dec l a ra t i on s]
7 i n t ege r , parameter : : ndim = 2
8 i n t ege r , dimension (ndim) : : i , o
9 type (t_op1) , t a r g e t : : op1

10 type (t_op2) , t a r g e t : : op2
11

12 ! [Set ndim in the operator s t r u c t u r e s]
13 op1%ndim = ndim
14 op2%ndim = ndim
15

16 ! [I n i t i a l i z e a r rays]
17 i (:) = 1
18 o (:) = 0 ! va lue s not used
19

20 ! [Ca l l s o l v e r with operator op1 and input i]
21 c a l l s o l v e r (op1 , i , o)
22 wr i t e (∗ ,∗) o
23

24 ! [Ca l l s o l v e r with operator op2 and input i]
25 c a l l s o l v e r (op2 , i , o)
26 wr i t e (∗ ,∗) o
27

28 end program polymorphisms
29

30 ! [Output]
31 ! 1 1 (With t_op1 : o = i)
32 ! 2 2 (With t_op2 : o = 2∗ i)

Listing A.6: polymorphism.f90

102

A.4. The ACE file format

Contents The ACE file format is a binary format that is used by BTDFT. An ACE
file consists of two parts: A header with a fixed format, which contains data such
as the total number of grid points and the number of orbitals, and a body, which
contains, e.g., the density, orbitals, eigenvalues, etc. The format, content, and size of
the body is solely determined by the header information. The exact contents of the
ACE file format are described in the Doxygen documentation (see appendix A.5) and
in the corresponding source code files in more detail.
Different ACE files can have different contents, depending on their source and pur-

pose. E.g., an ACE file can contain orbitals or not and if the orbitals are stored,
they can be real-valued or complex-valued. In any case, BTDFT can handle any valid
ACE file as input with the only exception that an ACE file that stems from an initial
guess or from a restart file of BTDFT_gs cannot be used as input to the propagator
BTDFT_td since no orbitals are stored.
In particular, the following is possible:

• Create an ACE file from a special PARSEC output file using parsec2ace.

• Start a new ground-state calculation from any ACE file, even one that was
output as final_state.ace by the propagator.

• Refine the accuracy of a previously calculated ground state or from a restart
ACE file.

• Resume a propagation from a file that already contains a propagated state.

Binary format and portability The MPI programs BTDFT_gs and BTDFT_td
read and write the ACE files using MPI_IO routines. These allow the MPI processes
to open a file collectively and write or read in parallel, each MPI process its own
data (implemented in the file BTDFT/src/io/io_interface.ace). The ACE file data
are stored bytewise one after another in the memory, which requires the native data
representation. This is explained in the MPI standard [MPI12] in detail.
In the sequential programs yACES_guess, ace2human, and parsec2ace the ACE

files are accessed via Fortran’s stream IO, which has been introduced with the For-
tran 2003 standard [Ada+09]. The stream IO also allows to write (read) numerical
values bytewise into (from) the memory. Thus, if one outputs a double precision value
(8 Byte) after three integer values (4 Byte each), one knows exactly that the three
integers occupy the bytes 0-3, 4-7, and 8-11 relative to the beginning of the file, while
the double precision value occupies the bytes 12-1750. Since this is exactly the way
the MPI_IO routines write the data to the memory, the communication between the
parallel and sequential programs via ACE files works fine.
The native representation of data in the memory can differ between different com-

puters. This restricts the portability of an ACE file. Hence, an ACE file that was
generated at one computer may not be used at another computer since the represen-
tation of numerical values in the memory can be different51.
50In record based Fortran IO, which is the default, this is not possible since the IO is organized in

subunits called records.
51There is no portability problem between btrzx5 and btrzx3.

103

Other possibilities for the data representation of MPI_IO are internal and external32.
internal guarantees portability but requires to use the same MPI implementation (e.g.,
Intel MPI, OpenMPI, or MPICH) to read the file at another machine. external32 is
portable and can be read by any MPI implementation. However, the Fortran stream
IO in the sequential BTDFT programs requires the ACE files to be stored bytewise in
the file system’s native representation (up to my understanding). Still, user defined
data representations can in principle be used to restore portability [MPI12].

A.5. The Doxygen documentation

Doxygen [Hee16] is a program that creates a documentation (e.g., in html) by parsing
and interpreting source code files directly. It was originally written for C but, by
now, also supports Fortran code to some extent. In the source code files it recognizes,
e.g., derived types and their components as well as module procedures or module
data and creates links and dependency trees. Comments in the source code that are
given in a specific format (including some keywords) are automatically added to the
corresponding documentation. Additional documentation pages can be added and
linked into the documentation.
Each of the five BTDFT programs has its own documentation with its own config-

uration file. The configuration files are located at BTDFT/build/dox/ and have the
suffix ’.cfg’. All options that can be controlled in the configuration file are explained
in the manual. Among them are the project’s name, a release tag, output and source
directories, file filters, etc.
The second kind of file in BTDFT/build/dox/ has the suffix ’.filter’. These files

contain a bash script that preprocesses the source code files the same way it is done
by ’make’ during the compilation of the BTDFT code.
Each of the BTDFT programs has specific documentation contents located in the

directory BTDFT/doc/[program]_dox/. The additional documentation files in the
latter directories must be written as C comments.
The documentation can be compiled in BTDFT/build/ by calling ’make doc’. Its

output is generated in BTDFT/doc/doxygen/[program]/html/ and can be opened in
any browser (open the index.html in the former directory). The main documentation
is the one of the propagator BTDFT_td. On the main page of each of the program
documentations, there is some explanation about how to run the program and, in
the case of ace2human and parsec2ace, a list of command line arguments. For the
three main programs there are some subpages that contain, e.g., the layout of the
ACE file, the release history, explain the configuration parameters, or describe how
to implement typical things like new parameters or external potentials. Moreover, all
source code files are listed in the documentation with their contents as given by the
comments inside the source code files.

A.6. Version control with Git

How version control with Git works is best explained in some tutorials or books avail-
able in the web [Git; CS14]. In the following, I introduce a few of the most important
features and commands to use Git in the context of BTDFT.

104

Currently, the root Git repository is located in the file system of the IT service
center of the UBT. The root repository is a pure repository without working directory
to allow for ’push’ commands as explained below. There is one master branch and
one extra branch for each person who works with the code to allow for a parallel
development.
There are different user privileges: normal users and administrators. The only

difference between them is that only administrators are allowed to ’push’ commits
onto any branch of the root repository, specifically the master branch. Normal users
can only ’push’ onto their own branch named by their own user identifier (usually the
bt- or s1- identifier) to prevent confusion. If a piece of code shall enter the master
branch of the program, I recommend to merge the branch of the normal user into
the local master branch and let the administrator do the ’push’. This behaviour is
controlled by Git hooks and explained in one of the following paragraphs.

Getting started First of all, practical information on how to use git in the context
of BTDFT can also be found in the file BTDFT.README, which is located in the
same directory as the root repository itself.
To start with an own working copy of BTDFT, the root repository must be cloned.

This is done by ’git clone [parent repository]’ in the directory where the local working
repository shall be generated. This way, a new directory called BTDFT/ will appear
with the underlying file tree (see appendix A.1).
Change to the BTDFT/ directory (’cd BTDFT/’). By default, only the master

branch is checked out. A list of existing branches can be printed using ’git branch’.
To set up a new branch with the bt-identifier, call ’git branch [identifier]’. To check

out the new branch, call ’git checkout [identifier]’. In the local repository, there should
now be a new branch labeled with the identifier (check with ’git branch’). To generate
the branch with the same identifier in the remote root repository, type ’git push
origin [identifier]’. The ’origin’ keyword in the last command identifies the remote
git repository the local repository was cloned from. As a normal user, this does only
work with your own bt-identifier. Still, every one can pull every other branch from
the remote root directory by ’git pull [remote repository identifier] [branch name]’.

Useful commands

• Add a (modified) file to the git repository (or more precisely: to the staging
area): ’git add [file]’

• Output status information about files that are untracked, modified, etc.: ’git
status’

• Ignore files that fit a certain pattern: Edit the file BTDFT/.gitignore

• Commit your changes (after you added them via ’git add’ to the staging area):
’git commit’

• ’git commit’ asks you to comment the commit. The commit history (log) is
output via ’git log’

• List tags: ’git tag’

105

• Show the difference between the current working directory and the last commit:
’git diff’

• ’git diff’ can also be called with further arguments to list the differences between
arbitrary commits.

• Create a new branch: ’git branch [branch name]’

• Switch to a branch (checkout): ’git checkout [branch name]’

• Merge one branch (’feature’) into another branch (’develop’):

– ’git checkout develop’

– ’git merge feature’

– If necessary: resolve merge conflicts manually and commit your changes

• Delete a branch: ’git branch -d [branch]’

• Restore a file to the state of your last commit: ’git checkout -- [file]’

• Create a tag: ’git tag -a [tag name] -m [comment]’

Workflow In the work with BTDFT, Git can be ignored completely. Nevertheless,
it helps a lot with the development. This is especially true if there is more than
one programmer since the coordination of different code versions and merges is quite
simple. Still, even for a single developer, it is quite handy to go back and forth in
the commit and release history to track changes and bugs. Therefore, I present the
workflow I used in the development of BTDFT in the following (see [Git; CS14]).
In the local repository, there should be at least two branches: master and the branch

of the user labeled with the bt-identifier, e.g., bt123456. The master branch contains
the official version of BTDFT and can be updated from the remote repository origin
via ’git pull origin master’ if there has been a new release. The branch bt123456 should
be the own stable branch.
For the development, a local development branch develop can be generated through

’git branch develop’ and ’git checkout develop’. After the implementation of new
features, the changes can be merged back into the stable branch via ’git checkout
bt123456’ and ’git merge develop’. The develop branch itself can also be branched into
several feature branches. Branching in Git is very cheap, since it only uses pointers to
certain commits. Thus, extensive branching is recommended. Also, tagging important
commits is recommended since they are easily checked out later.

Publishing via ’push’ In order to publish the new code, the own bt-branch (e.g.,
bt123456) can be pushed onto the corresponding branch of the remote repository. This
is done by ’git checkout bt123456’ and ’git push origin bt123456’. To push tags, run
’git push --tags’. If the work shall enter the master branch the project administrator
can merge the bt123456 branch into the master branch and push it.

106

Project administrator As mentioned before, only the project administrator can
’push’ onto the root master branch while normal users are only allowed to push onto
their own branch in the root repository. The corresponding settings are done via Git
hooks in the file ’hooks/pre-receive’ inside the root repository.

Generation of the root repository The information in this paragraph explains, how
the root repository has been setup and is just for documentation. The root repository
has been created from an initially existing git repository which is called local in the
following.

• Change directory to the location of the new root repository

• Make directory for the repository:
’mkdir BTDFT.git’
’cd BTDFT.git’

• Initialize git with options ’--bare’ (no working directory, ’push’ is only allowed to
a bare repository) and ’--shared’ (repository is shared, all who have write access
are in principle allowed to push):
’git init --bare --shared’

• Change the group of the repository to ’btpc’, allow group write access and restore
the SGID bit for all directories (applied to directories, this ensures that the
access rights of a directory are handed down to the child directories and files.
The SGID bit is set by the ’--shared’ option of ’git init’ but destroyed by the
’chgrp’ command below. Therefore, it has to be restored because otherwise no
one would be allowed to ’push’ to the remote repository):
’chgrp -R btpc BTDFT.git’
’chmod -R g+w BTDFT.git’
’chmod -R g+s ‘find BTDFT.git -type d‘’

• Add the new remote repository as origin to the local repository and ’push’ the
branch with the latest BTDFT version to the new remote repository:
’cd [local repository]’
’git checkout master’
’git remote move origin origin_old’ (move the old origin repository to origin_old
or remove it if it is not used anymore via ’git remote remove origin’)
’git remote add origin [remote repository]’ (add the new remote repository as
new origin)
’git push origin master’ (’push’ the local master branch onto the new remote
master branch)

107

B. Computer clusters in Bayreuth

The main specifications of the UBT clusters are listed below. The corresponding
nominal52 data can be found in the web [CPUc; CPUd; CPUb; CPUa; Intb; Intc;
Inta] and the web pages of the UBT IT service center (for members of the UBT).
Schematics of the processors that are built into the UBT nodes are shown in Figure
B.1.

B.1. btrzx5

nodes001–node201

Node 2 sockets
CPU 2× Intel(R) Xeon(R) E5520 (Intel Core Bloomfield)
Total Cores 2× 4
Clock rate 2.27 GHz
Memory 2× 12 GB
Peak (node) 72.64 GFlop/s
SIMD SSE
Bandwidth 2× 25.6 GB/s
L1D 2× 4× 32 kB, each shared among 1 thread
L2 2× 4× 256 kB, each shared among 1 thread
L3 2× 1× 8 MB, each shared among 4 threads

nodes205–node256

Node 2 sockets
CPU 2× Intel(R) Xeon(R) E5620 (Intel Core Westmere)
Total Cores 2× 4
Clock rate 2.40 GHz
Memory 2× 12 GB
Peak (node) 76.80 GFlop/s
SIMD SSE
Bandwidth 2× 25.6 GB/s
L1D 2× 4× 32 kB, each shared among 1 thread
L2 2× 4× 256 kB, each shared among 1 thread
L3 2× 1× 12 MB, each shared among 4 threads

nodes257–node264

Node 2 sockets
CPU 2× Intel(R) Xeon(R) E5-2670 (Intel Core SandyBridge EP)
Total Cores 2× 8
Clock rate 2.60 GHz
Memory 2× 32 GB
Peak (node) 332.80 GFlop/s

52The nominal bandwidth usually deviates usually from a measured one. In practice one cannot
expect to get higher bandwidths than those measured with the STREAM [McC95] benchmarks.

109

SIMD AVX
Bandwidth 2× 51.2 GB/s
L1D 2× 8× 32 kB, each shared among 1 thread
L2 2× 8× 256 kB, each shared among 1 thread
L3 2× 1× 20 MB, each shared among 8 threads

B.2. btrzx3

2-socket nodes

Node 2 sockets
CPU 2× AMD Opteron(tm) 6348 (AMD Interlagos)
Total Cores 2× 12 (Each two build a Piledriver module and share one FPU)
Clock rate 2.80 GHz
Memory 4× 16 GB
Peak (node) 268.80 GFlop/s
SIMD AVX
Bandwidth 2× 51.2 GB/s
L1D 2× 12× 16 kB, each shared among 1 thread
L2 2× 6× 2 MB, each shared among 2 threads
L3 2× 2× 6 MB, each shared among 6 threads

4-socket nodes
Nodes: r05n37, r05n38, r12n33, r12n34, r14n01, r14n02, r14n03, r14n04

Node 4 sockets
CPU 4× AMD Opteron(tm) 6348 (AMD Interlagos)
Total Cores 4× 12 (Each two build a Piledriver module and share one FPU)
Clock rate 2.80 GHz
Memory 8× 32 GB
Peak (node) 537.6 GFlop/s
SIMD AVX
Bandwidth 4× 51.2 GB/s
L1D 4× 12× 16 kB, each shared among 1 thread
L2 4× 6× 2 MB, each shared among 2 threads
L3 4× 2× 6 MB, each shared among 6 threads

110

Intel Xeon E5520

(btrzx5: node001-node201)

Intel Xeon E5-2670 (btrzx5: node257-node264)

AMD Opteron 6348 (btrzx3)

Intel Xeon E5620

(btrzx5: node205-node256)

Figure B.1: Processors that are built onto the sockets of the UBT nodes.

111

C. Additional benchmarks and performance engineering

Since this work shall also serve as an additional documentation of BTDFT, I discuss
several performance aspects in this section. However, this summary is far from being
complete or very detailed but just an outline of techniques and thoughts that I found
useful in the course of writing BTDFT. Most of the examples and explanations are
takes from [HW10], supported by my own measurements, and applied in the context
of BTDFT.

C.1. Latency and bandwidth in parallel networks

The communication between two MPI processes in a network can be described by two
measures. These are the latency Tl, which is the time it takes for sending a message of
zero size, and the bandwidth B, which is the maximum rate at which data can be sent
across the network53. Both are in principle determined by the network technology, the
transmission protocols used, and the distance of the communication partners within
the network topology.
Both, latency and bandwidth, can be combined into an effective bandwidth that

measures the effective data transfer rate depending on the size of the message Nmessage.
It reads [HW10]

Beff =
Nmessage

Tl +
Nmessage

B

(C.1)

which is essentially the size of the message divided by the total time it takes for
sending it. From this definition one can see that for small message sizes the effective
bandwidth is capped by the latency whereas for large message sizes it converges to the
theoretical bandwidth B. Therefore, the range at which the communication is latency
or bandwidth dominated depends on their ratio.
Latency and bandwidth can be measured, e.g., by using the OMB suite [Pan16].

The results are shown in figure C.1 for point-to-point communications between MPI
processes sitting on two different nodes (i, by node) and on the same node, once in
different NUMA domains (ii, by socket) and once in the same NUMA domain (iii, by
core). Thus, the first measurement (i) tests the network between the two nodes (170
and 171 on btrzx5), the second measurement (ii) the IC between the NUMA domains
(in this case the processors) on node 171, and the third measurement (iii) essentially
a memory-to-memory copy without network in between.
The latency measurement is done for small messages with the latency being the

limit for Nmessage → 0. The values shake a little but one can clearly see that, as
expected, the latency is the larger the slower the network connection is. For the
2.27 GHz clock frequency of the underlying processor, the inter-node latency takes
about 4000 processor cycles.
The bandwidth measurement in figure C.1b is done for various message sizes. Hence,

one should effectively measures Beff from equation (C.1). As expected, the effective
bandwidth for large messages converges, e.g., for the inter-node communication to-
wards 1 GB/s (which also is the nominal bandwidth of the network between these
53Note that the bandwidth from a point-to-point communication with one node sending and one

receiving is usually different from the bandwidth measured if both nodes send and receive data
(bidirectional bandwidth) or if the communication is collective.

113

 1

 1 10 100 1000

L
a
te

n
c
y
 [

µ
s
]

Message size [Byte]

Clock speed: 2.27 GHz

0.61 µs ~ 1385 cpu cycles

0.95 µs ~ 2157 cpu cycles

1.76 µs ~ 3995 cpu cycles

Latency by core
Latency by socket

Latency by node

(a) Blocking latency measurement.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

B
a
n
d
w

id
th

 [
M

B
/s

]

Message size [Byte]

B=8774 MB/s
B=4695 MB/s

B= 992 MB/s

Bandwidth by core

Meassured: Tl = 0.65 µs

Fit: Tl = 0.61 µs

Bandwidth by socket

Meassured: Tl = 0.88 µs

Fit: Tl = 0.95 µs

Bandwidth by node

Meassured: Tl = 0.52 µs

Fit: Tl = 1.76 µs

(b) Non-blocking bandwidth measurement.

Figure C.1: Latency and bandwidth measurements with the OMB benchmark suit
[Pan16] on the nodes 171-170 of btrzx5 between the nodes (i,by node),
between the processors (NUMA domains) on one node (ii, by socket) and
within a single processor (iii, by core).

nodes). Compared to that the inter-processor bandwidth (ii, by socket) on the same
node is more than four times and the intra-processor bandwidth (iii, by core) is more
than eight times larger. For smaller message sizes the latency becomes important
and hampers the communication. The dashed lines in the figure show the effective
bandwidth according to equation (C.1) with the latency taken from the latency mea-
surement and the bandwidth fitted for large message sizes.
The solid lines also show the effective bandwidth but with the latency fitted to the

small-message region. For the two intra-node measurements (ii) and (iii) both fit well
to the data within the uncertainties of the latency measurement. However, the latency
fitted to the bandwidth data of the inter-node (i) communication is much smaller
than the one measured before in the latency measurement. Up to my understanding,
this is because the latency measurement uses blocking MPI communication while
the bandwidth measurement uses non-blocking MPI communication [MPI12; Pan16],
which hides a part of the latency.
Finally, the kink that appears in the transition region between the latency and

bandwidth dominated parts of the bandwidth measurements can not be described
by means of the effective bandwidth from equation (C.1). This indicates that the
underlying implementation and technology is more complicated. [HW10]
As a conclusion, one can state that non-blocking MPI communication can, if sup-

ported by the architecture, hide latency times [MPI12]. Moreover, sending one larger
message instead of many small message has clear advantages since the latency only
has to be paid once54. The latter does not apply if one of the ’small’ messages is al-
ready large enough to be in the bandwidth dominated part of the effective bandwidth.
Examples are the halo layers of the KS orbitals. In this case, doing a collective halo
communication in a single message for all orbitals at the same time typically gives no
improvement.

54For data that are non-contiguous in the memory, derived MPI types can be used [MPI12].

114

C.2. Node-level hardware parallelization

A single floating point operation (Flop), i.e., MULT or ADD, takes 4-5 processor
cycles to be processed. However, a single core in a modern processor can perform
up to (theoretically) 4 Flops per processor cycle, which is because of the hardware
parallelization in the cores I briefly introduce this in the following according to [HW10].
The theoretical number of up to 4 Flops per cycles results in the so-called peak

performance, which is an often stressed measure for the performance of computers.
Still, it is a quite theoretical value one can only come close to with highly optimized
benchmark codes. For example, in the benchmark test in appendix C.3 I reached a
maximum of 30% of the nominal peak performance on a UBT node.

Pipelining Pipelining works as assembly-line work in industry. In order to perform
a Flop like an ADD operation, the data have to pass several stages whereas each stage
takes a processor cycle. The first stage is, e.g., to fetch the data. When the first DP
word passed the first stage and moves on to the second stage, the second DP word
can already enter the first stage. At the moment the pipeline is completely filled the
core can output one result per cycle, which is a huge performance boost compared to
the 4-5 cycles a single stand-alone operation takes.

SMT The pipelining does usually not work perfectly, which leads to gaps in the
pipeline called pipeline bubbles. Simultaneous multithreading (SMT) is used to run a
second thread per core. Both threads share most of the resources such as the cache and,
necessarily, the floating point unit (FPU) but can together eventually make better use
of the pipeline. However, if a computation is sensitive to the cache size, this hampers
the performance since the caches are shared between the SMT threads. Intel’s version
of SMT is Hyper-Threading whereas AMD’s approach uses hardware threads that
form Bulldozer or Piledriver modules. The latter consist of two physical cores that
share resources such as the FPU (see appendix B.2).

SIMD vectorization The idea of SIMD (’single instruction multiple data’) vectoriza-
tion is to apply an operation not to a single DP word but on a vector of DP words at a
time. If a processor supports SIMD vectorization can be seen from the instruction set
it supports. The SSE instruction set works on SIMD registers with a width of 2 DP
words (e.g., most btrzx5 nodes), the AVX instruction set works on SIMD registers with
a width of 4 DP words (e.g., btrzx3) (see appendix B). While the pipelining improves
the theoretical performance to 1 Flops/cycle, the additional SIMD vectorization raises
this value to 2 (SSE) or 4 (AVX) Flops/cycle.

Peak performance The peak performance of a processor or node in Flops per second
can then be calculated from the number of FPUs (per processor or node) times 2 (ADD
and MULT operations count separately since they can operate in parallel) times the
number of Flops per cycle per FPU times the number of cycles per second, which is
the clock frequency of a processor. This results in the values for the peak performance
given in appendix B. Note that each two of the cores on the btrzx3 nodes build a
Piledriver module and thus share a single FPU.

115

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

L1D L2 L3

P
e
rf

o
rm

a
n
c
e
 [
G

F
lo

p
/s

]

Size [MByte]

32 kB

256 kB

8 MB

1 Thread

(a) Performance for one thread.

 0

 2

 4

 6

 8

 10

 12

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

P
e
rf

o
rm

a
n
c
e
 [
G

F
lo

p
/s

]

Size [MByte]

L1

2xL1

4xL1

L2

2xL2

4xL2

L3 (shared)

30% peak 1 Thread

2 Threads

4 Threads

(b) Performance for up to four threads.

Figure C.2: Performance of the vector triad on one socket of the btrzx5 node193 (Intel
Xeon E5520, four cores) for different sizes of the working set (logarith-
mic scale). Performance drops appear when the size of the working set
exceeds the (combined) size of a cache level. For larger working sets the
performance is capped by the memory bandwidth. At best about 30% of
the nominal peak performance is reached.

Conclusion In view of the main memory latency of about 100 cycles and a cache-line
size of typically 8 or 16 DP words55 the high theoretical performance of a processor
underlines the necessity to think about efficient memory access and cache usage. The
effects of the hardware parallelization from above can only be used if the data are
loaded fast enough.

C.3. Impact of the cache hierarchy

The vector triad A(:) = B(:)+C(:)∗D(:) [HW10], where A, B, C, andD are DP arrays
of dimension ndim, is an often used benchmark kernel. MULT and ADD operations,
which can in principle be done in parallel by the FPU, are balanced in the vector
triad. For the computation the arrays B, C, and D have to be loaded and the array A
must be stored (+ 1 write allocate). Hence, there are in total four (five) steams56 that
have to pass the memory interface. Therefore, the computation of one component of
A requires two Flops and 4(5)× 8 Byte = 32(40) Byte.
The following code serves for the performance measurement of the vector triad

[HW10] The conditional in line 5 prevents the compiler from interchanging the two
loops. It therefore enforces that the arrays are loaded in each iteration.
Figure C.2 shows the performance of the vector triad on a single socket of the btrzx5

node193 (Intel Xeon E5520, see figure B.1 top left) depending on the total size of the
arrays A, B, C, andD in the memory. In figure C.2a the performance of a single thread
(i.e., without parallelization) increases first and then shows sharp drops each time the
size of the working set exceeds the size of a cache level. The drops can be explained
by the lower bandwidths and higher latencies of upper level caches. Therefore, if the
data are too large to fit into a certain cache level, they have to be loaded from the next

55I.e., the main memory latency has to be paid once for each 8 or 16 DP words.
563 LOAD + 1 STORE (+ 1 write allocate).

116

1 do j = 1 , n i t e r
2 do i = 1 , ndim
3 A(i) = B(i) + C(i) ∗D(i)
4 end do
5 i f ([something that i s never t rue]) c a l l dummy(A,B,C,D)
6 end do

Listing C.1: Vector triad [HW10].

higher cache or the main memory, which takes more time. The performance for large
working sets is finally capped by the main memory performance. The above mentioned
hardware parallelization techniques such as pipelining and SIMD vectorization work
inefficient if the array sizes are very small, which explains the initial performance
increase. [HW10]
If the inner loop is parallelized with OpenMP (figure C.2b), the performance in-

creases in the non-memory-bound region and reaches up to about 30% of the peak
performance of the processor. Since the working set is equally distributed among
the threads, the total L1D and L2 capacities get larger proportional to the number
of threads, i.e., the performance drops appear at larger working sets. The L3 drop,
however, always appears at the same size since the L3 cache is shared among all
threads (see figure B.1 top left) and already fully available for a single thread. The
memory-bound performance at the large-size end of figure C.2b already saturates for
two threads. This is because the total memory bandwidth is as well shared between
all threads on the processor.
This example demonstrates the effect of the different cache levels and of sharing

resources among threads (L3 cache and memory bandwidth). The BTDFT data sets
usually exceed the typical cache sizes by far and BTDFT operates in the memory-
bound region and must handle these shared resources. This demonstrates that it
makes sense to use data that still reside in the cache as often as possible and do more
computations per byte loaded from the memory. This is the subject of appendix C.4.

C.4. Code optimization made simple

C.4.1. General approach

In this section I briefly introduce some simple rules to improve the memory access be-
haviour of typical code samples. The general rules follow [HW10], which I recommend
as reference.
When optimizing a program as BTDFT that consists of many thousands of lines

of source code, one must make two decisions: First, which part of the code shall be
optimized and, second, how can this code be optimized. In other words, is the code
efficient enough to hit a bottleneck such as the memory bandwidth saturation and
how can the code be optimized in this respect.
In BTDFT, as in most scientific codes [HW10], the memory bandwidth is the rel-

evant bottleneck since one operation is usually applied to a large set of data that
does not fit into any of the cache levels and has to be loaded each time a new oper-
ation is applied. Therefore, I mostly discuss this topic, i.e., how to do more useful
computations per byte loaded from the memory.

117

In any case, most of the optimization is finally done by the compiler as shown in
figure 3.7 and again as the left part of figure C.3. It is therefore mandatory to help the
compiler to optimize the code and not to hide performance critical operations behind
subroutines or index arrays as discussed in section 3.4.

C.4.2. Easy rules

Expensive operations and subexpressions The evaluation of a sine, an exponential
function, or a power function costs a lot of processor cycles, which partly can be
avoided. The square of a number, e.g., can be computed as a2 or a ·a, where the latter
is much cheaper. This is especially true if the operation is used in a subexpression in
some loop as in listing C.2. In this case, s+ r ∗ exp(x) can as well be calculated once
before the loop and stored in a temporal variable57. [HW10]

1 do i = 1 , n
2 A(i) = A(i) + s+r ∗exp (x)
3 end do

Listing C.2: Avoid subexpressions.

1 do j = 1 , nj
2 do i = 1 , n i
3 i f (i>j) then
4 [. . .]
5 e l s e
6 [. . .]
7 end i f
8 end do
9 end do

Listing C.3: Branches in inner loops.

Branches in loops Branches in the innermost of a nested loop as in listing C.3 should
be avoided. In order to keep the data flow at a constant rate, the processor tries to
guess the outcome of a condition, which is called branch prediction [HW10]. If the
guess is wrong but the related data are already in the pipeline, the pipeline is flushed
completely. To avoid this the nested loop in listing C.3 can be divided into two nested
loops, one for i > j and one for i ≤ j. [HW10]

Copy operations As discussed in section 3.4.1, every copy operation requires data
to be loaded from the memory, especially if the copied data are large. In many cases
copy operations can be avoided. One example is given in listing C.4 in which the
arrays a and b are given to some subroutine and change their roles at the end of the
loop. There, a is copied to a temporary array tmp, b is copied to a, and finally tmp
to b, i.e., in total are the contents of a and b switched.
Copying of these data can be avoided: First, by using a two-dimensional array

a(:, :) with a(:, 1) being the former a and a(:, 2) being the former b [HW10]. Instead
of switching the data, it is sufficient to switch the second index (listing C.5). Second,
by using pointers pa and pb that are initially assigned to a and b. In this case, only
the pointer’s references are switched at the end of the loop (listing C.6).

57This sounds simple. However, the strict division of BTDFT in an initialization part and a calcu-
lation part as introduced in appendix A.3.1 is the same, just on another scale.

118

1 !
2 !
3 do i = 1 , n
4 c a l l dummy(a , b)
5 tmp (:) = a (:)
6 a (:) = b (:)
7 b (:) = tmp (:)
8 end do

Listing C.4: Copy 1

1 i 1 = 1
2 i 2 = 2
3 do i = 1 , n
4 c a l l dummy(a (: , i 1) , a (: , i 2))
5 itmp = i1
6 i 1 = i 2
7 i 2 = itmp
8 end do

Listing C.5: Copy 2

1 pa => a (:)
2 pb => b (:)
3 do i = 1 , n
4 c a l l dummy(pa , pb)
5 ptmp => pa
6 pa => pb
7 pb => ptmp
8 end do

Listing C.6: Copy 3

Loop fusion A further example to improve memory access is shown in listing C.7.
There, the arrays a and b are summed up into res and the norm of res is computed.
In this example a and b are loaded in line 3 and res is stored (+ 1 write allocate). In
line 4 res is again loaded to calculate the norm, which results in 3 LOAD streams and
1 STORE stream (+ 1 write allocate).
Lines 3 and 4 can be seen as two loops. res is used in both lines but is too large to

stay in the cache in between and is loaded twice. This can be resolved by loop fusion
[HW10]. One can combine both loops and reuse each element of res for the norm as
soon as it has been calculated as shown in listing C.8. This way, one saves one LOAD
stream of the res array and therefore about 20%58 of the computation time. [HW10]
Smart compilers might be able to optimize the given code by themselves. Still, if the

situation is more complex, e.g., if calculating the norm is initially outsourced into an
extra subroutine, loop fusion might work fine. I could, e.g., increase the performance
of my naively written CG solvers by about 30% only by applying loop fusion.

1 !
2 !
3 r e s (:) = a (:) + b (:)
4 norm = sum(r e s (:) ∗ r e s (:))
5 !
6 norm = sqr t (norm)

Listing C.7: Loop fusion 1

1 norm = 0.0
2 do i = 1 , n
3 r e s (i) = a (i) + b(i)
4 norm = norm + re s (i) ∗ r e s (i)
5 end do
6 norm = sqr t (norm)

Listing C.8: Loop fusion 2

An example that has a similar scope is the application of an operator such as 1+a·Ĥ
as it appears in the Crank-Nicolson propagator. In a code as BTDFT there usually
exists a subroutine that applies the Hamiltonian Ĥ. Hence, the intuitive way to apply
1 + a · Ĥ to an array psi is to apply Ĥ to psi and store the result in hpsi (hpsi(:) =
H ∗ psi(:)) a first step, and add those in a second step to hpsi(:) = psi(:) + a ∗hpsi(:).
For this, one in total requires to load psi twice, load hpsi once, and store hpsi twice
(+1 write allocate for the first line of the code59). Including write allocate, this results
in six streams (not counting Ĥ).
This code can be improved significantly by implementing a new operator that di-

rectly applies Ĥnew = 1 + a · Ĥ. If the relevant performance bottleneck is the memory
bandwidth, its application requires as much computation time as the application of

58If LOAD, STORE, and write allocate are counted equally.
59The second step does not require a write allocate since hpsi is in any case loaded for the right-hand

side of the source line.

119

Ĥ but saves the second step from above. This way, psi is loaded only once and hpsi
is stored once (+ 1 write allocate), i.e., three streams including write allocate. This
reduces the computation time by about 50% (making the same assumptions as above).

Strided memory access The memory access as well as the communication between
the cache levels is organized in cache lines of usually 8 or 16 DP words to hide latency
times. If the memory access to some large array is strided, e.g., only every second
value is used, a significant part of the bandwidth is wasted.

1 do j =1,n1
2 do i =1,n2
3 a (i , j) = [. . .]
4 end do
5 end do

Listing C.9: Nested loop over a 2D array

For the same reason the access of a two-dimensional array in a nested loop is sensitive
to the order of the loops. Fortran stores multi-dimensional arrays column-wise, i.e.,
the first index is the one that is contiguous in memory. A nested loop should therefore
run through the array as in listing C.9. If the order of the two loops is interchanged
and the second dimension of the array is large enough that a previously loaded cache
line is evicted from the cache before the next time it is needed, 7/8th (for a cache-line
size of 8 DP words) of the theoretical bandwidth is wasted and the latency time has
to be paid for each single element.
A more involved example of strided memory access, in which one must find a com-

promise between different strides, is the calculation of the density from the KS orbitals.
This is similar to the code in listings C.10 and C.11 with a complex-valued orbital ar-
ray orb and a real-valued density array dens. In listing C.10 the density is summed up
orbital-wise, i.e., the outer loop runs through the orbitals whereas the inner loop runs
through the grid points. This case seems to be the natural choice since the orbital
array orb is always accessed continuously. However, since the single orbitals are large,
the density array dens must be loaded and stored anew for each orbital.
In listing C.11 the density is summed up grid-point-wise and the situation is re-

versed. The density array is loaded only once but how often the orbital array is
loaded depends on the total number of orbitals norb. If norb is small, i.e., at least one
cache line of each orbital fits into the relevant cache, the orbital array is also loaded
once only. However, if norb gets larger, orbital cache lines that are needed in the near
future might already be evicted and must be loaded again from the next higher cache
level. Since the computation itself is very primitive, a low level cache such as the L1D
might already be the relevant one in this case. This means that norb must be quite
small for this code to work well.

120

1 do io rb = 1 , norb
2 do i = 1 , ndim
3 dens (i) = dens (i) + conjg (orb (i , i o rb)) ∗orb (i , i o rb)
4 end do
5 end do

Listing C.10: Density 1

1 do i = 1 , ndim
2 do io rb = 1 , norb
3 dens (i) = dens (i) + conjg (orb (i , i o rb)) ∗orb (i , i o rb)
4 end do
5 end do

Listing C.11: Density 2

1 do lb = 1 , norb , s t r i d e
2 do i = 1 , ndim
3 ub = lb + s t r i d e − 1
4 do io rb = lb , ub
5 dens (i) = dens (i) + conjg (orb (i , i o rb)) ∗orb (i , i o rb)
6 end do
7 end do
8 end do

Listing C.12: Density 3

These two cases are only boundary cases of a more flexible approach in listing
C.12. There, the total number of orbitals is divided into blocks with a fixed number
of orbitals60 (stride). lb is the lower bound and ub the upper bound of each block.
Inside each block, the number of orbitals is assumed to be small and the code from
listing C.11 is efficient. The density array must be loaded once per block. stride = 1
results in the code of listing C.10 whereas stride = norb results in the code of listing
C.11. In some tests, I found a global performance maximum at strides between four
and seven on one of the local workstation computers and around 16 on the btrzx5
node260 (Intel Xeon E5-2670). This example is related to the efficient application of
dense matrices as discussed in [HW10].

C.4.3. Remarks about OpenMP and the 3D Jacobi smoother

Listing 3.1 on page 30 shows the code of the 3D Jacobi smoother, which I used for
the introduction of the memory bandwidth bottleneck in section 3.4.1. As in the vec-
tor triad (listing C.1) the outermost loop simply repeats the Jacobi smoother to get
macroscopic computation times for the performance evaluation. The dummy subrou-
tine again fools the compiler and prevents it from doing unwanted optimizations.
The Jacobi smoother inside this loop consists of three nested loops that run through

the three dimensional cubic grid with dimensions ni, nj, and nk. x is the real-valued
function (as a three-dimensional array) that is smoothed and y is the result. b is some

60If the total number of orbitals is not divisible by the stride, the remaining orbitals must be handled
in a smaller block.

121

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
e

rf
o

rm
a

n
c
e

 [
M

L
u

p
/s

]

Number of Threads

40 GB/s, 24 Byte/Lup

Socket 0,
local memory access

Socket 1,
remote memory access

-O0

-O3

-O0 without pinning

-O3 without pinning

Memory bandwidth bottleneck

Figure C.3: Parallel performance of the Jacobi smoother [HW10] on both sockets of
the btrzx5 node258 (2× Intel Xeon E5-2670) with and without compiler
optimization and thread-pinning.

real value.
The outermost of the nested loops is parallelized with OpenMP, which is done

through the comment-like lines in the listing. These tell the program where a parallel
region begins and ends and how the parallelization shall be done. In this case, the
third dimension nk is equally distributed among the OpenMP threads.
The parallelization with OpenMP looks easy at the first glance but it is easy as well

to write code with a poor efficiency. As an example, I again show the performance
of the Jacobi smoother [HW10] from section 3.4.1 with and without compiler opti-
mization but with the parallelization extended to the second socket of the node (see
figure C.3). In the naive implementation I used, there is one process with one master
thread pinned to socket 0. In a parallel region of the OpenMP code the master thread
opens a number of additional threads that are first pinned onto socket 0 until it is
fully occupied. The remaining threads are pinned to cores on socket 1.
As already discussed, the memory bandwidth saturates if the threads are only pinned

onto socket 0. One would naively expect a performance increase when additional
threads are pinned to socket 1 since they could utilize an independent memory inter-
face. However, the optimized (blue) curve in figure C.3 does not exceed the memory
bandwidth bottleneck of the single socket for a parallelization beyond socket 0 and the
performance finally decreases again. This is because in the implementation shown in
listing 3.1 only the master thread on socket 0 allocates arrays in its local memory, i.e.,
the memory attached to socket 0. Threads pinned to socket 1 use a remote memory
access across the intra-node IC network, which hampers the performance.
In order to use OpenMP parallelization efficiently, e.g., in addition to MPI, one

possibility is to run one MPI process per NUMA domain (in this case one MPI process
per socket). Each MPI process opens up to eight threads that are pinned to the
domain of the respective process. Defining such thread domains in combination with
MPI processes can be done by either using LIKWID [THW10] to start the job or via
Intel’s MPI implementation (other MPI implementations should support this as well).
By default, the threads are not pinned to a specific core or domain (so far, I always

pinned OpenMP threads as far as used). In this case, the threads are moved around
within the ccNUMA node by the operating system. This causes, among others, casual

122

remote memory access and related performance drops. [HW10]
The related performance without thread-pinning is shown as dashed lines in figure

C.3. One clearly sees that the performance without pinning is usually lower than the
one with pinning (the case discussed so far)61 and that there is no clear performance
trend depending on the number of threads. A more detailed discussion can again be
found in [HW10].

61The higher performance of the not-pinned run with -O3 optimization for one and two threads could
be due to the different compilers I used for calculations with and without pinning.

123

D. Proof concerning density fluctuations in a
donor-acceptor model

In this section, I present the proof that

[cos(ω̃t) sin(ω̄t)− a sin(ω̃t) cos(ω̄t)]2︸ ︷︷ ︸
f(t)

=
[
1− (1− a2) sin2(ω̃t)

]︸ ︷︷ ︸
g(t)

h(t) (D.1)

with the envelope

g(t) = 1− (1− a2) sin2(ω̃t) = cos2(ω̃t) + a2 sin(ω̃t) (D.2)

and a fast oscillating function h(t) with time-dependent frequency but an amplitude
of one without beat.
In comparison to section 5.4.1, a = ∆E√

∆E2+V 2
with −1 ≤ a ≤ 1 measures the ratio

between the energetic off-resonance ∆E between the donor and acceptor excited states
and their coupling strength V . The limiting cases a = ±1 mean ’no coupling’ and
a = 0 ’resonant coupling’. The angular frequencies that appear in equation D.1 are
defined by ~ω̃ =

√
∆E2 + V 2 and ~ω̄ = Ē−E0 with typically ω̄ � ω̃. In the following,

I will assume 0 ≤ a ≤ 1, i.e., the acceptor excited state has equal or higher energy
than the donor excited state. The proof for a < 0 works essentially the same. Below,
I make comments where something changes.

Rewrite f(t)

f(t) can be decomposed into a Fourier series.

f(t) = [cos(ω̃t) sin(ω̄t)− a sin(ω̃t) cos(ω̄t)]2

=
1 + a2

4
+

1− a2

4
cos(2ω̃t)− 1− a2

4
cos(2ω̄t) (D.3)

− (1 + a)2

8
cos[2(ω̄ − ω̃)t]− (1− a)2

8
cos[2(ω̄ + ω̃)t]

with coefficients

O(1) :
1 + a2

4

O(cos[2ω̃t]) :
1− a2

4

O(cos[2(ω̄ + ω̃)t]) : − (1− a)2

8

O(cos[2ω̄t]) : − 1− a2

4

O(cos[2(ω̄ − ω̃)t]) : − (1 + a)2

8
O(cos[2(ω̄ − nω̃)t]) : 0 for |n| ≥ 2 . (D.4)

125

Ansatz for h(t) for a ≥ 0

f(t) can be written as a product of the envelope g(t) and a fast oscillating function
h(t). For a > 0, I make the ansatz

h(t) =
∞∑
n=0

cn sin2[(ω̄ − nω̃)t] with
∞∑
n=0

cn = 1 (D.5)

and rewrite g(t) and h(t) in the same way as f(t). g(t) reads

g(t) =
1 + a2

2
+

1− a2

2
cos[2ω̃t] . (D.6)

The ansatz of h(t) can be expressed through

h(t) =
1

2
− 1

2

∞∑
n=0

cn cos[2(ω̄ − nω̃)t] . (D.7)

Inserting this into the ansatz for f(t) reads

f(t) =g(t)h(t)

=
1 + a2

4
+

1− a2

4
cos[2ω̃t]− 1 + a2

4
c0 cos[2ω̄t]

− 1− a2

8
c0 cos[2(ω̄ + ω̃)t]− 1− a2

8
c1 cos[2ω̄t]

− 1 + a2

4

∞∑
n=1

cn cos[2(ω̄ − nω̃)t]

− 1− a2

8

∞∑
n=1

[cn−1 + cn+1] cos[2(ω̄ − nω̃)t] . (D.8)

Sorting this into corresponding Fourier components results in

O(1) :
1 + a2

4

O(cos[2ω̃t]) :
1− a2

4

O(cos[2(ω̄ + ω̃)t]) : − 1− a2

8
c0

O(cos[2ω̄t]) : − 1 + a2

4
c0 −

1− a2

8
c1

O(cos[2(ω̄ − nω̃)t]) : − 1 + a2

4
cn −

1− a2

8
[cn−1 + cn+1] for n ≥ 1 . (D.9)

The latter can be compared to the expansion coefficients from equation D.4. Terms
of O(1) and O(cos[2ω̃t]) already coincide. The O(cos[2(ω̄ + ω̃)t]) terms lead to

c0 =
1− a
1 + a

∈ [0, 1] for 0 ≤ a ≤ 1 . (D.10)

126

Using this, the O(cos[2ω̄t]) terms lead to

c1 =
4a

(1 + a)2
= 1− c2

0 . (D.11)

Comparing the O(cos[2(ω̄ − ω̃)t]) terms

− (1 + a)2

8

!
= −1 + a2

4
c1 −

1− a2

8
[c0 + c2] , (D.12)

results in
c2 = −4a(1− a)

(1 + a)3
= −c0c1 . (D.13)

Comparing the O(cos[2(ω̄ − 2ω̃)t]) terms

0
!

= −1 + a2

4
c2 −

1− a2

8
[c1 − c3] (D.14)

results in

c3 =
(1− a)2

(1 + a)2
c1 = c2

0c1 (D.15)

Therefore, I make the ansatz

cn = −c0cn−1 = (−c0)n−1c1 = (−c0)n−1(1− c2
0) for n ≥ 2 , (D.16)

which I proof with mathematical induction.
I already showed that the latter is fulfilled for c2 = −c0c1 and c3 = c2

0c1. I assume
that the ansatz is correct up to cn and proof its correctness for n + 1 using the
O(cos[2(ω̄ − nω̃)t]) terms

0
!

= −1 + a2

4
cn −

1− a2

8
[cn−1 − cn+1] . (D.17)

This results in
cn+1 = −1− a

1 + a
cn = −c0cn (D.18)

and finishes the proof.
Moreover, the condition

∑∞
n=0 cn = 1 is automatically fulfilled: In the case of no

coupling (a = 1), c1 = 1 and the other coefficients vanish, which results in f(t) =
sin2[(ω̄ − ω̃)t] with ~(ω̄ − ω̃) = Ē − E0 + ∆E = EAD∗ − E0. As expected, this is an
oscillation of the donor density with the donor excitation frequency, which independent
of the acceptor. In the case of resonant coupling (a = 0), c0 = 1 and the other
coefficients vanish. This again results in the expected result f(t) = cos2(ω̃t) sin2(ω̄t)
with ~ω̃ = |V | of the donor-part from equation (5.16). In general, for 0 < a < 1 and
therefore 0 < c0 < 1

∞∑
n=0

cn = c0 + c1 +
∞∑
n=2

c1(−c0)n−1 = c0 + c1

[
1 +

∞∑
n=1

(−c0)n

]

= c0 + (1− c2
0)︸ ︷︷ ︸

=c1

∞∑
n=0

(−c0)n︸ ︷︷ ︸
= 1

1+c0

= c0 + (1− c0) = 1 . (D.19)

127

Ansatz for h(t) for a ≤ 0

For −1 ≤ a ≤ 0, the proof is essentially the same if one uses the ansatz

h(t) =
∞∑
n=0

cn sin2[(ω̄ + nω̃)t] with
∞∑
n=0

cn = 1 . (D.20)

The only difference to the a > 0 case is the sign in front of nω̃ inside the sine. During
the evaluation, this interchanges the roles of theO(cos[2(ω̄−ω̃)t]) andO(cos[2(ω̄+ω̃)t])
terms and leads to c0 = 1+a

1−a ∈ [0, 1].

Proof that h(t) has amplitude one

At this stage, I showed that the time dependence of the squared density oscillation of
the donor can be decomposed into a product of an envelope g(t) and a fast oscillating
function h(t). In general, a function that is the sum of different Fourier components
with different frequencies shows a kind of beat signal. In order to show that g(t)
is really the envelope of f(t), one has to proof that h(t) shows no beat but can
be expressed through an oscillating function with a time-dependent frequency but a
constant amplitude of one. For the limiting cases a = 1 and a = 0, this is easily
fulfilled. In view of the representation of h(t) in equation (D.7), it is sufficient to show
(here again for a > 0) that

∞∑
n=0

cn cos[2(ω̄ − nω̃)t]
!

= cos[ω(t)t]

⇔1

2

∞∑
n=0

cne
2i(ω̄−nω̃)t + c.c.

!
=

1

2
eiω(t)t + c.c. (D.21)

with ω(t) ∈ R and c.c. being the complex conjugate of the expression in front of it.
This is fulfilled if

eiω(t)t =
∞∑
n=0

cne
2i(ω̄−nω̃)t . (D.22)

Application of the complex logarithm to this expression for t > 0 results in

ω(t) =
−i
t

ln

[∞∑
n=0

cne
2i(ω̄−nω̃)t

]
=
−i
t

ln

[
e2iω̄t

∞∑
n=0

cne
−2niω̃t

]
(D.23)

= 2ω̄ − i

t
ln

[∞∑
n=0

cne
−2niω̃t

︸ ︷︷ ︸
z︸ ︷︷ ︸

ν

]
. (D.24)

z and ν are complex numbers. ν can be expressed through the complex logarithm by
ν = ln(|z|) + i arg(z) where arg(z) is the argument of z. ω(t) is real exactly if ν is

128

purely imaginary, which is true for |z| = 1⇔ |z|2 = zz∗ = 1. The latter reads

zz∗
cn∈R=

∞∑
n=0

∞∑
n′=0

cncn′e
−2(n−n′)iω̃t =

∞∑
n=0

c2
n︸ ︷︷ ︸

(I)

+
∞∑
n=0

∞∑
n′=n+1

cncn′

=2 cos[2(n−n′)ω̃t]︷ ︸︸ ︷[
e−2(n−n′)iω̃t + c.c.

]
︸ ︷︷ ︸

(II)

.

(D.25)
The n = n′-part (I) reads (note again that a > 0 here)

∞∑
n=0

c2
n = c2

0 + (1− c2
0)2︸ ︷︷ ︸

=c21

∞∑
n=0

c2n
0︸ ︷︷ ︸

c0∈[0,1[
= 1

1−c20

= c2
0 + (1− c2

0) = 1 . (D.26)

The n 6= n′-part (II) can be sorted by its Fourier components

2

∞∑
n=0

∞∑
n′=n+1

cncn′ cos[2(n− n′)ω̃t] k=n′−n
= 2

∞∑
n=0

∞∑
k=1

cncn+k cos[2kω̃t]

= 2
∞∑
k=1

cos[2kω̃t]

[
c0ck︸︷︷︸

=(−1)k−1ck0c1

+
∞∑
n=1

cn cn+k︸︷︷︸
=(−c0)kcn

]

= 2
∞∑
k=1

(−1)k cos[2kω̃t]

[
− ck0c1 + ck0

∞∑
n=1

c2
n︸ ︷︷ ︸

(I)
=1−c20=c1

]

︸ ︷︷ ︸
=0

= 0 . (D.27)

Hence, |z|2 = (I) + (II) = 1. This works analogously for a < 0. Thus, I proved that
h(t) is a fast oscillating function with a time-dependent, real-valued frequency ω(t)
but an amplitude of one. g(t) is therefore the envelope of f(t) and shows the time-
dependence of the donor energy from the donor-acceptor model presented in section
5.4.1 for a resonant and non-resonant coupling.

129

E. Numerical details and supporting information

In the following, I outline the fundamental numerical parameters for the calculations
presented in the main text and show supporting material. I always checked the reli-
ability of my calculations by compating to calculations with different numerical pa-
rameters.

E.1. Pseudo potentials

The norm-conserving Troullier-Martins pseudo potentials [TM91] that I used for car-
bon (C), nitrogen (N), oxygen (O), hydrogen (H), and sodium (Na) are well tested.
Yet, for magnesium (Mg) a new one had to be generated62 and tested. The tests are
outlined in the following.
To test the Mg pseudo potential, I did ground state DFT calculations for different

molecules using the real-space pseudo-potential code PARSEC [Kro+06] and compared
the eigenvalues with all-electron basis-set calculations63 using Q-Chem [Sha+15]. We
did calculations for benzene and different variations of BChla. Specifically, to sort
out the influence of real-space grid and basis-set parameters, we considered a normal
BChla, a BChla without the Mg atom, and the BChla with the Mg atom replaced by
a C atom. Each BChla was once treated with the complete phytyl tail and with the
phytyl tail replaced by H.
In Q-Chem we used the basis sets 6-31G, 6-31G(d,p), and 6-311G(d,p). In PARSEC

we used different grid sizes, grid spacings (0.3 − 0.4 a0 for BChla and 0.125 − 0.3 a0

for benzene), convergence criteria, and pseudo potentials.
For all test sets, the eigenvalues around the HOMO differed by about 0.4 − 0.6 eV

between PARSEC and Q-Chem with the 6-31G and 6-31G(d,p) basis sets. Since the
deviation is significant, we tested the influence on the PARSEC parameters, especially
the grid spacing. We found the results to be quite insensitive to these variations,
especially for a grid spacing ≤ 0.3 a0. Finally, using a larger basis set 6-311G(d,p)
changed the Q-Chem eigenvalues by up to ≈ 0.3 eV, which closed most of the gap
between Q-Chem and PARSEC results.
The differences between the Q-Chem and PARSEC eigenvalues of the original BChla

(i.e., with Mg pseudo potential) and the BChla with Mg replaced by C (i.e., without
Mg pseudo potential) were very close. Tests with different pseudo potentials for other
atoms, specifically for C and H, had negligible influence.
I therefore conclude that the newly generated Mg pseudo potential with a cutoff

radius of 2.56 a0 works well. This is also confirmed by the fact that changing the
Q-Chem basis set had a much larger effect than using different pseudo potentials. The
large effect of different Q-Chem basis sets is also exemplified by the B302 spectra in
figure 5.3.
The cutoff radii of the pseudo potentials used for calculations throughout this thesis

were: C (1.09 a0), H (1.39 a0), O (1.10 a0), N (0.99 a0), Mg (2.56 a0), and Na (3.09 a0).
All pseudo potentials have been generated self-consistently with the LDA functional.
As local component for the Kleinman-Bylander transformation [KB82; Kro+06], I

62Pseudo potentials were generated by Prof. Stephan Kümmel (University of Bayreuth, Germany).
63Q-Chem calculations were performed by Prof. Thiago Branquinho de Queiroz (Federal university

of ABC, Brasil).

131

chose the s-component (l = 0) for all atom types but for O, for which I chose the
p-component (l = 1).

E.2. Presented calculations

E.2.1. Section 3

Polyacetylen The linear polyacetylen chain discussed in section 3.5 consists of 30
carbon atoms and 34 hydrogen atoms, which results in 77 occupied orbitals for one
spin channel in a spin-unpolarized calculation. I did the calculation with 80 orbitals
in total, i.e., three additional, virtual orbitals. In BTDFT the chain is aligned in z-
direction, in TD-PARSEC it is aligned in x-direction such that the grid parallelization
can be utilized in an optimal way in both programs. In BTDFT the half-axes of the
grid were (30, 30, 45) a0. In TD-PARSEC, the large half-axis is aligned towards the
x-direction. The grid spacing was 0.32 a0, which results in about 5.2 · 106 grid points.
The system was initially excited with a boost as explained in section 4 with an energy
of 0.01 Ry in z-direction. In BTDFT the tolerances for solving the Hartree potential
and the Crank-Nicolson equation were 10−7 with the backward error as introduced in
section 3.3.5. In TD-PARSEC, the tolerance for solving the Hartree potential cannot
be specified in the configuration file. The time-step sizes and the parallelization used
are discussed in the main text in section 3.5.
Note that the boost as chosen above is a small perturbation of the system. If the

system is subject to a stronger excitation, the solution of the Crank-Nicolson equation
can be more effort such that the performance drops down. This influences specifically
the comparison between the BTDFT calculations with the Taylor and the Crank-
Nicolson propagators.

Two bacteriochlorophylls The bacteriochlorophyll system used for the second per-
formance test is the B302-B303 system discussed in section 5.3.2. It consists of 35
carbon atoms, 36 hydrogen atoms, six oxygen atoms, four nitrogen atoms, and one
magnesium atom, which results in 234 occupied orbitals for one spin channel in a
spin-unpolarized calculation. For the performance test I used in total 240 orbitals,
i.e., six additional, virtual orbitals. The half-axes of the grid were (34, 34, 27) a0. The
grid spacing was 0.18 Å ≈ 0.34 a0, which results in about 3.3 · 106. The system was
initially excited with a boost as explained in section 4 with an energy of 0.01 Ry in
z-direction. The type of excitation has no effect on the relative performance data as
presented in section 3.5.2. In BTDFT the tolerance for solving the Hartree potential
was 10−7, the one for solving the Crank-Nicolson equation was 10−6 with the back-
ward error as introduced in section 3.3.5. The time-step size used was 0.01 fs for a
total propagation time of 0.3 fs for the tests. The computation times for initialization
and IO are excluded in the data shown in section 3.5.2, which were generated with
the current version of BTDFT. Thus, the presented data represent the time required
for the pure propagation and justifies the short total propagation time.

E.2.2. Section 4

Remarks about numerical parameters In section 4 I showed that the electronic
dipole spectra after a boost excitation consist of sine cardinal shaped lines. However,

132

this is only true if the numerical parameters are chosen properly. The following can
happen:

• If the initial state is no proper ground state of the system, the line shapes will
deviate from sine cardinals and additional artifacts can appear.

• If the convergence criteria for solving the Crank-Nicolson equation or Poisson’s
equation for the Hartree potential are too weak, the amplitude of the time-
dependent dipole moment is not stable, i.e., the system shows some kind of
self-enhancement or damping. In this case, the line shapes deviate from sine
cardinals, e.g., their side minima are much deeper. Yet, I found the excitation
energies usually well described.

• Finally, if the boost is too strong, the spectrum shows additional artifacts. If
the boost is too weak, numerical noise disturbs the resulting spectrum.

The convergence criteria used for the Crank-Nicolson propagator and the Hartree
solver can be chosen automatically by BTDFT (if a negative value is given in the
configuration file, see appendix A.3.4). So far, I found the resulting criteria to be
sufficient to get reliable results such as those shown in figure 4.1. The valid regime of
the boost strength is quite large. For sodium systems, I usually used a boost energy
of E(boost) = 0.0001 Ry. For the BChla systems, I typically used E(boost) = 0.01 Ry.

Spectrum and transition densities of the sodium-4 cluster The Na4 structure is
described in figure 4.1 (a1). I used a grid spacing of 0.9 a0

64 as in [VÖC99]. The bound-
ary ellipsoid had half-axes of 25 a0, the time-step size was 0.01 fs, the boost strength
was Eboost = 0.0001 Ry. Propagation times and boost directions are described in the
text.
Excitations above 3 eV were still sensitive to the grid size up to half-axes of about

50 a0
65. This might be due to the exponential decay of the TDLDA potential, which

raises the potential well at the position of the finite system. The latter leads to
excited states that are too weakly bound66 and have an extent that reaches towards
the boundary of the grid.

Spectrum and transition densities of the bacteriochlorophyll The BChla structure
is displayed in figure 4.1 (b1) and taken from [ONS10]. The original structure was
rotated around the z-axis by +45◦ and subsequently around the x-axis by −45◦. This
moves the bacteriochlorin ring into the xy-plane.
For the spectrum and the transition densities I used a grid spacing of 0.34 a0. For

a single BChla I used a grid radius of 22 a0, which I found to be sufficient for the
description of the Q-band excitations through various tests with different grid sizes.
Furthermore, I used a boost strength of Eboost = 0.01 Ry, a propagation time of 100 fs
for the spectrum, and 50 fs for the transition densities. I further discuss the influence
of different parameters by means of B302 in appendix E.3.1.

64For a better quality, a grid spacing of 0.7− 0.8 a0 should be used.
65Confirmed by Sebastian Hammon, group of Prof. Stephan Kümmel (University of Bayreuth).
66This effect also leads to the difficulty in computing electron affinities as noted by [Cap06, Footnote

15].

133

E.2.3. Section 5

Tuning the range separation parameter The tuning procedure was done by Prof.
Thiago Branquinho de Queiroz (Federal university of ABC, Brasil) along with all Q-
Chem calculations. I extracted the following details from a compilation of his results.
The range separation parameter ω was tuned such that the ionization potentials

IP (i) of the neutral (i = N) and anionic (i = N + 1) systems as calculated from
DFT total energy differences agree as close as possible with the respective HOMO
eigenvalues εHOMO(N) and εHOMO(N + 1) [SKB09b; SKB09a; Kar+11] (compare
to equation (2.17)). The tuning was done only for B302 and the 6-31G(d,p) basis
set for smaller atoms and EPC-LANL2DZ for magnesium. This resulted in ω =
0.171 a−1

0 for ωPBE. The corresponding values for ionization energies and HOMO
eigenvalues are IP (N) = 5.826 eV, εHOMO(N) = −5.836 eV, IP (N + 1) = 1.601 eV,
and εHOMO(N + 1) = −1.575 eV. The calculations on B303 and the combined B302-
B303 system used the same ω.

Real-time spectra of B850 bacteriochlorophylls The presented spectra were ob-
tained with a propagation time of typically 100 fs and 200 fs for the coupled B302-B303
system. Other numerical parameters for the different calculations are discussed in the
main text in section 5.3 and in appendix E.3.1.

General Coulomb coupling strengths To compute V Coul between two transition
densities ρ1 and ρ2, which are both given on a real-space grid, I compute the energy
of one transition density in the Hartree potential that is generated by the second
transition density

V Coul =

∫
ρ1 (r)

[∫
e2

4πε0

ρ2 (r′)

|r − r′|
d3r′

]
︸ ︷︷ ︸

=vH [ρ2](r)

d3r . (E.1)

To this end, I extend the grid of ρ2 to enclose the grid of ρ1 and calculate the Hartree
potential vH[ρ2] by solving Poisson’s equation on the extended grid. Since the grid
points of the real-space grids of both transition densities do in general not match, I
use linearly interpolated values of vH[ρ2] to evaluate the r-integral on the real-space
grid of ρ1.

Coupling strengths between sodium dimers The single Na2 calculations were done
on a grid with a spacing of 0.8 a0 and half-axes of 25 a0 perpendicular and 35 a0 parallel
to the molecular axis. For the Na2−Na2 calculations I used the same grid but increased
the radius along the inter-dimer axis to 45 a0 for inter-dimer distances above 20 a0.
At the distance of 20 a0 between the dimers I checked the consistency of the results
from calculations with both grid sizes. For all calculations, I used a time-step size of
0.01 fs, a propagation time of 50 fs for spectrum and transition densities, and a boost
strengths of Eboost = 0.00005 Ry in one half-space.

Coupling strengths between bacteriochlorophylls I used the Qy transition densities
and excitation energies from the single BChla calculations as presented in section 4.

134

The structure of the original BChla was rotated by 45◦ around the z-axis and sub-
sequently by −45◦ around the x-axis. After this transformation, the bacteriochlorin
ring of the BChla lies approximately in the xy-plane with the Qy transition dipole
along (0.4497,−0.8887,−0.0897) as predicted from real-time TDLDA. For the Davy-
dov splitting calculation with an inter-BChla distance of 8 Å (along the z-axis), I
primarily boosted the Qy transition of the donor (∝ (1,−1, 0)), with 0.005 Ry in the
donor half-space.
The donor and acceptor dipole moments were analyzed separately and lead to equal

results for the splitting of the Qy lines. The fit of two lines to the data was per-
fectly possible in this case, even if BChla is no real two-level system (but treated as
one). However, the heights of the lines resulting from symmetric and anti-symmetric
coupling differed in contradiction to the expectation from section 5.4.3. For these
calculations, I used the same grid spacing as for a single BChla and an ellipsoidal grid
with half-axes of 28 a0 in x- and y- directions and 35 a0 along z. The propagation time
was 100 fs.

E.3. Additional calculations

E.3.1. Additional spectra of B301, B302, and B303

I checked the reliability of the B302 spectra that I presented in section 5.3 by vary-
ing relevant numerical parameters: The grid spacing (∆x = 0.15 Å, ∆x = 0.18 Å,
∆x = 0.09 Å), the grid size with half-axes a (typically a = (22, 22, 22) a0 or a =
(25, 25, 27) a0), and the time-step size (∆t = 0.01 fs or ∆t = 0.02 fs). The results for
B302 are shown in figure 5.4 (a).
Data set (1) and (3) are the ones shown in the main part of the thesis. Data set

(3) was calculated with half-axes of a = (22, 22, 22) a0 while (1) had a larger grid
with a = (25, 25, 27) a0. The Qy and Qx transitions are stable under variation of all
numerical parameters.
Decreasing the time-step size from 0.02 fs to 0.01 fs causes a blue-shift of the spectral

lines by ≈ 0.01 eV, which can be attributed to the time-discretization error. The
different grid sizes of (1) and (2) do not change this such that the grid size of a =
(22, 22, 22) a0 is sufficient.
As already mentioned in section 5.3, the spurious charge-transfer states (CT1 and

CT2) react sensitive on the grid spacing (see (1) vs. (3) and (2) vs. (4)). Decreasing
the grid spacing from 0.18 Å to 0.15 Å shifts the charge-transfer states by ≈ 0.12 eV
down in energy. The effect on the Qy and Qx transitions is again≈ 0.01 eV. Decreasing
the grid spacing further to 0.09 Å but keeping the other parameters from data set
(3) (indicated by the arrows, oscillator strengths are not available) gives no further
improvement. A grid spacing of ∆x = 0.15 Å is therefore sufficient to describe all
of the observed states, a grid spacing of ∆x = 0.18 Å is sufficient for the Q-band
excitations.
The geometry of different BChls in the crystal structure is slightly different, even

for two α-BChls such as B301 and B303. Figure E.1 (b) shows the real-time spectra
of B301, B302, and B303 as calculated with ∆x = 0.18 Å and ∆t = 0.02 fs. While the
Q-band excitations are quite close to each other, there are major differences in the
spurious states that depend on these structural differences.

135

0

0.05

0.1

0.15

0.2

0.25

0.3

1.7 1.8 1.9 2 2.1 2.2 2.3

O
sc

ill
at

or
 s

tr
en

gt
h

Energy [eV]

(3) with ∆x=0.09 Å

a>22 a0, ∆x=0.18 Å, ∆t=0.02 fs (1)
a=22 a0, ∆x=0.18 Å, ∆t=0.01 fs (2)
a=22 a0, ∆x=0.15 Å, ∆t=0.02 fs (3)
a=22 a0, ∆x=0.15 Å, ∆t=0.01 fs (4)

B301, B302, and B303
(a) (b)

1.7 1.8 1.9 2 2.1 2.2 2.3

Energy [eV]

Qx

Qy

B301 (α)
B302 (β)
B303 (α)

Data (a)
RT-TDLDA

Excit. ∆x = 0.18 Å ∆x = 0.15 Å ∆x = 0.09 Å
state ∆t = 0.02 fs ∆t = 0.01 fs ∆t = 0.02 fs ∆t = 0.01 fs ∆t = 0.02 fs

S1 1.768 (0.282) 1.777 (0.274) 1.778 (0.266) 1.784 (0.273) 1.7831 (–)
S2 1.992 (0.011) 2.001 (0.011) 1.872 (0.005) 1.881 (0.005) 1.8831 (–)
S3 2.119 (0.052) 2.128 (0.052) 2.125 (0.056) 2.132 (0.058) 2.1253 (–)

Data (b)
RT-TDLDA, ∆x = 0.18Å

Excit. B301 B302 B303
state
S1 1.660 (0.012) 1.768 (0.282) 1.757 (0.262)
S2 1.781 (0.294) 1.992 (0.011) 1.847 (0.011)
S3 1.831 (0.078) 2.119 (0.052) 1.990 (0.028)
S4 2.101 (0.100) – 2.081 (0.046)

Figure E.1: Real-time TDLDA singlet spectra of (a) B302 with different grid spacings
and time-step sizes and of (b) B301, B302, and B303. Excitation energies
are in eV, oscillator strengths in parenthesis.

B302 shows only one state between Qy and Qx, which can be identified with the
CT2 state with a high transition density on the pyrrol rings (III) and (V). B303 shows
the CT1 and CT2 states between Qy and Qx. B301 shows one charge-transfer state
below Qy (CT2) and one between Qy and Qx (CT1) for these numerical parameters.
Their BTDFT transition densities are shown in figures E.3, E.10, and E.11 below.
To complete the study of the B302-B303 system, the real-time and Q-Chem spectra

of B303 are displayed in figure E.2 in the way of the B302 spectra in figure 5.3. The
main results are the same: The Q-band excitations of B303 from real-time TDLDA
are quite stable with respect to variations of the grid spacing while two spurious states
are seen at different energies around the Qy excitation. The Q-Chem TDLDA result
is again highly sensitive to basis-set variations, which leads to several states with
non-vanishing oscillator strength in the Qy region. The ωPBE calculation with the
6-31G(d,p) basis set shows exactly one Qy and one Qx transition whereas the latter is
again shifted towards higher energies with respect to the TDLDA results. Real-time
TDLDA and Q-Chem ωPBE transition densities are shown in figures E.11 and E.12.

136

B303
(a) (b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.7 1.8 1.9 2 2.1 2.2 2.3

O
sc

ill
at

or
 s

tr
en

gt
h

Energy [eV]

LR−LDA 6−31G(d,p)
LR−LDA 6−311G(d,p)

RT−LDA ∆x=0.18 Å
RT−LDA ∆x=0.15 Å

1.7 1.8 1.9 2 2.1 2.2 2.3

Energy [eV]

LR−LDA 6−311G(d,p)
LR−ω PBE 6−31G(d,p)

RT−LDA ∆x=0.15 Å

Data
RT-TDLDA LR-TDLDA LR-ωPBE

Excit. ∆x = 0.18 Å ∆x = 0.15 Å 6-31G(d,p) 6-311G(d,p) 6-31G(d,p)
state
S1 1.757 (0.262) 1.784 (0.266) 1.773 (0.002) 1.818 (0.065) 1.814 (0.345)
S2 1.847 (0.011) 1.841 (0.008) 1.825 (0.077) 1.829 (0.172) 2.205 (0.086)
S3 1.990 (0.028) 1.868 (0.016) 1.865 (0.213) 1.867 (0.060) –
S4 2.081 (0.046) 2.073 (0.074) 2.120 (0.072) 2.104 (0.070) –

Figure E.2: Real-time (RT, solid) TDLDA and Q-Chem linear-response (LR, dashed)
TDLDA and ωPBE singlet spectra for B303 with different grid spacings or
basis sets. (a) TDLDA results with different parameters, (b) best TDLDA
results compared to LR-ωPBE. Energies are in eV, strengths in parenthe-
sis. Q-Chem calculations were performed by Prof. Thiago Branquinho de
Queiroz (Federal university of ABC, Brasil).

E.3.2. Transition densities and natural transition orbitals

The transition densities and NTOs of some excitations discussed in this thesis, specifi-
cally of B302, B303, and the combined B302-B303 system, are displayed in the figures
below. Their contents are described in their captions and referred to in sections 5.3
and E.3.1. The states are labeled by their energetic order through Sn and additionally
by their character, e.g., Qy or CT1 in parenthesis. The Q-Chem calculations and NTO
figures were generated by Prof. Thiago Branquinho de Queiroz (Federal university of
ABC, Brasil). The latter are printed with his permission. All transition densities are
taken at the same iso-surface of ±0.0002 a0

−3.

137

Figure E.3: Transition densities of the states S1-S3 of B302 from real-time TDLDA
with ∆x = 0.18 Å.

Figure E.4: Transition densities of the states S1-S4 of B302 from Q-Chem TDLDA
with basis set 6-31G(d,p). Calculation done by Prof. Thiago Branquinho
de Queiroz (Federal university of ABC, Brasil).

138

Figure E.5: Transition densities of the states S1-S2 of B302 from Q-Chem ωPBE with
basis set 6-31G(d,p). Calculation done by Prof. Thiago Branquinho de
Queiroz (Federal university of ABC, Brasil).

Figure E.6: NTOs of the states S1-S2 of B302 from Q-Chem ωPBE with basis set
6-31G(d,p). Graphic generated by Prof. Thiago Branquinho de Queiroz
(Federal university of ABC, Brasil). Printed with permission.

139

Figure E.7: NTOs of the states S1-S2 of B302 from Q-Chem TDLDA with basis set
6-31G(d,p). Graphic generated by Prof. Thiago Branquinho de Queiroz
(Federal university of ABC, Brasil). Printed with permission.

Figure E.8: NTOs of the states S1-S2 of B302 from Q-Chem TDLDA with basis set
6-311G(d,p). Graphic generated by Prof. Thiago Branquinho de Queiroz
(Federal university of ABC, Brasil). Printed with permission.

140

Figure E.9: NTOs of the states S1-S2 of B302 from Q-Chem TDLDA with basis set
6-311++G(3df,3pd). Graphic generated by Prof. Thiago Branquinho de
Queiroz (Federal university of ABC, Brasil). Printed with permission.

Figure E.10: Transition densities of the states S1-S4 of B301 from real-time TDLDA
with ∆x = 0.18 Å.

141

Figure E.11: Transition densities of the states S1-S4 of B303 from real-time TDLDA
with ∆x = 0.18 Å.

Figure E.12: Transition densities of the states S1-S2 of B303 from Q-Chem ωPBE with
basis set 6-31G(d,p). Calculation done by Prof. Thiago Branquinho de
Queiroz (Federal university of ABC, Brasil).

142

Figure E.13: Transition densities of the states S4-S5 of the B302-B303 system from
real-time TDLDA with ∆x = 0.18 Å.

143

Figure E.14: NTOs of the states S1-S4 of the B302-B303 system from Q-Chem TDLDA
with basis set 6-31G(d,p). Graphic generated by Prof. Thiago Bran-
quinho de Queiroz (Federal university of ABC, Brasil). Printed with
permission.

144

Figure E.15: NTOs of the states S5-S8 of the B302-B303 system from Q-Chem TDLDA
with basis set 6-31G(d,p). Graphic generated by Prof. Thiago Bran-
quinho de Queiroz (Federal university of ABC, Brasil). Printed with
permission.

145

Figure E.16: NTOs of the states S9-S10 of the B302-B303 system from Q-Chem
TDLDA with basis set 6-31G(d,p). Graphic generated by Prof. Thi-
ago Branquinho de Queiroz (Federal university of ABC, Brasil). Printed
with permission.

Figure E.17: NTOs of the states S1-S2 of the B302-B303 system from Q-Chem ωPBE
with basis set 6-31G(d,p). Graphic generated by Prof. Thiago Bran-
quinho de Queiroz (Federal university of ABC, Brasil). Printed with
permission.

146

F. Preparation of the LH2 structure and the environment
potential

I briefly outline the preparation of the LH2 structure as used in the context of the
calculations done on the B850 ring during my work. The work in this section has been
discussed with Prof. Matthias Ullmann (Computational biochemistry, University of
Bayreuth) and Johannes Förster in his group and was mostly done by Johannes. I
refer to him again in the sections below.

F.1. Preparation of the LH2 structure

The structure of the LH2 complex of Rbl. acidophilus (Strain 10050) was determined
in the first place in 1995 by [McD+95] and again by [Pap+03] with a resolution of
2.0 Å and new structural features. It is explained in great detail in the literature
[Fre+96; Pap+03; Hu+02; CGK06]. The structure that I used throughout shows the
same structural features and was determined by Dr. Alastair Gardiner [GC] from
the group of Prof. Richard Cogdell (Institute of Molecular Cell and Systems Biology,
University of Glasgow) with a better resolution of 1.85 Å. The preparation of the LH2
structure for the TDDFT calculations was done by Johannes Förster and is outlined
in the following.
The hydrogen atoms are usually not resolved by X-ray structure analysis and are

therefore not included in the crystal structure data. They were added subsequently by
minimizing the total energy with the CHARMM [Bro+83; Mac+98] force field while
keeping the position of non-hydrogen atoms fixed. Since the protonation state of some
residues depends on the pH-value, the temperature, and the respective environment,
the overall protonation state [UB14; UU12] was checked for anomalies under standard
(in-vivo) conditions.

F.2. Truncation of phytyl tails

The BChla molecules in the LH2 complex have a phytyl tail, which is attached to the
bacteriochlorin ring by an ester group (see figures 5.1 and 5.2). The phytyl tail plays
an important, yet mostly structural role in that is anchors the BChla in the protein
scaffold [Fre+96]. Therefore, the phytyl tail is not relevant for the present electronic
structure simulations and was truncated by replacing it with a hydrogen atom.
I added the hydrogen atom in the direction of the first carbon atom of the phytyl

tail but with the respective C − H bond length (0.975 Å) inside resulting carboxyl
group. Replacing the phytyl tail by a methyl group instead of a hydrogen atom had
negligible influence.

F.3. Preparation of histidine residues

The central magnesium atom (or Mg2+ ion) of a B850 BChl is coordinated by a
histidine residue (see figures 5.1 (b) and 5.2 (b)), which distorts the bacteriochlorin
ring. The histidine is therefore included directly in some of the TDDFT calculations.
This can have an effect on the details of the intermolecular coupling and the energy
transfer within the B850 ring. [CGK06, §3.2]

147

The respective histidine amino acids are integrated in the protein backbone of the
respective α- of β-apoproteins inside the LH2 complex. In order to include them into
the TDDFT calculation, I truncated the residues from their protein backbones. I did
this between the Cα atom, which is part of the protein backbone, and the Cβ , which is
the first carbon atoms in the residue. The residue was saturated by a hydrogen atom
in the same way as the phytyl tail, i.e., from the perspective of Cβ in direction of the
Cα with the bond length of a C −H single bond (1.09 Å).
The protonation of the histidine residue (seen in figure 5.2 (b)) was chosen such that

the nitrogen next to the BChla’s central magnesium atoms was not protonated. The
second nitrogen in the aromatic histidine ring was protonated. The distance between
the central magnesium atom and the nearest nitrogen atom from the histidine residue
is comparable to the distances between the magnesium atom and the nitrogen atoms
within the bacteriochlorin ring.

F.4. The environment potential

The protein and solvent environment as well as the chromophores that were not sim-
ulated within TDDFT were modeled by an electrostatic environment potential by
Johannes Förster. The environment was modeled as a dielectric medium with a di-
electric constant of εr = 80 for the surrounding water (with a salt concentration of
0.15 mol/L), εr = 4 inside the protein complex, and εr = 1 at the position of the di-
rectly simulated molecules at a temperature of T = 298 K. The environment potential
consist of two parts:

Protein potential The protein (and solvent) potential is generated by the partial
charges that are assigned to the atoms in the surrounding environment and
free charges in the surrounding solvent. The partial charges on the atoms of
the amino acids in the protein are given by standard values [Bro+83; Mac+98].
The partial charges on the atoms of a B850 BChl were determined by CHELPG
according to [BW90]. The charge density of the BChla was determined by DFT
calculations with the B3LYP functional [Bec93; Ste+94]. The BChla was refined
in two steps with the Def2-SV(P) and subsequently with the Def2-TZVP basis
set using ORCA [Nee12]. The protein potential was then calculated by solving
the Poisson-Boltzmann equation [Dol+07; Dol+04; Bak+01].

Reaction field The part of the LH2 complex that is directly simulated with TDDFT
is not included in the protein potential. Still, it influences the environment. The
reaction field displays the polarization in the environment that is generated by
the simulated molecules. It is the difference between the protein potential as
calculated above, once with and once without the directly simulated molecules.
[Li+98; UB14]

The final environment potentials were given on an equidistant real-space grid with a
grid spacing of 0.18 Å.

148

List of Abbreviations

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
ARPES Angle-resolved photoemission spectroscopy
BChl Bacteriochlorophyll
BiCG Biconjugate gradient
BTDFT The TDDFT program developed in this work
ccNUMA Cache coherent non-uniform memory access
CG Conjugate gradient
CG-SYM Conjugate-gradient-like solver for complex-valued, symmetric matrices
CPU Central processing unit
DC Double complex
DFT Density functional theory
DP Double precision
DSF Dipole strength function
EET Excitation-energy transfer
EXX Exact exchange
FFT Fast Fourier transform
Flop Floating point operation
FPU Floating point unit
GGA Generalized gradient approximation
GKS Generalized Kohn-Sham
HK Hohenberg-Kohn
HOMO Highest occupied molecular orbital
IC Interconnection (network)
IO Input and output
KLI Krieger, Li, and Iafrate
KS Kohn-Sham
LDA Local density approximation
LHF Localized Hartree-Fock
Lup Lattice site update
MPI Message passing interface
NTO Natural transition orbital
OEP Optimized effective potential
OMB Ohio state university (OSU) Micro Benchmarks
PBE Perdew, Burke, and Ernzerhof
PSD Power spectral density
RC Reaction center
Rbl. Rhodoblastus
RG Runge-Gross
SCF Self-consistent field
SIC Self-interaction correction
SMT Simultaneous multithreading
SRE Self-consistency residual error

149

TDDFT Time-dependent density functional theory
TDKS Time-dependent Kohn-Sham
TDLDA Time-dependent local density approximation
UBT University of Bayreuth
UMA Uniform memory access
xc Exchange-correlation

150

Bibliography

[Ada+09] J. C. Adams, W. S. Brainerd, R. a. Hendrickson, R. E. Maine, J. T.
Martin, and B. T. Smith. The Fortran 2003 Handbook. London: Springer
London, 2009, page 713. isbn: 978-1-84628-378-9 (cited on pages 13, 103).

[AB85] C.-O. Almbladh and U. von Barth. “Exact results for the charge and spin
densities, exchange-correlation potentials, and density-functional eigen-
values”. In: Phys. Rev. B 31.6 (1985), pages 3231–3244 (cited on page 6).

[AHD16] A. Anda, T. Hansen, and L. De Vico. “Multireference Excitation Ener-
gies for Bacteriochlorophylls A within Light Harvesting System 2”. In: J.
Chem. Theory Comput. 12.3 (2016), pages 1305–1313 (cited on page 55).

[And65] D. G. Anderson. “Iterative Procedures for Nonlinear Integral Equations”.
In: J. ACM 12.4 (1965), pages 547–560 (cited on page 25).

[And+15] X. Andrade, D. Strubbe, U. De Giovannini, A. H. Larsen, M. J. T.
Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. J.
Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M. A. L.
Marques, and A. Rubio. “Real-space grids and the Octopus code as tools
for the development of new simulation approaches for electronic systems”.
In: Phys. Chem. Chem. Phys. 17.47 (2015), pages 31371–31396 (cited on
pages 1, 13, 25, 43).

[BLS10] R. Baer, E. Livshits, and U. Salzner. “Tuned Range-Separated Hybrids
in Density Functional Theory”. In: Annu. Rev. Phys. Chem. 61.1 (2010),
pages 85–109 (cited on pages 9, 11, 60).

[BN05] R. Baer and D. Neuhauser. “Density Functional Theory with Correct
Long-Range Asymptotic Behavior”. In: Phys. Rev. Lett. 94.4 (2005), page
043002 (cited on pages 9, 11).

[Bak+01] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon.
“Electrostatics of nanosystems: application to microtubules and the ribo-
some.” In: Proc. Natl. Acad. Sci. U. S. A. 98.18 (2001), pages 10037–41
(cited on page 148).

[BH72] U. von Barth and L. Hedin. “A local exchange-correlation potential for
the spin polarized case: I”. In: J. Phys. C Solid State Phys. 5.13 (1972),
pages 1629–1642 (cited on page 8).

[Bec93] A. D. Becke. “A new mixing of Hartree–Fock and local density-functional
theories”. In: J. Chem. Phys. 98.2 (1993), page 1372 (cited on pages 9, 11,
148).

[Ber16] F. Bertoldo. “Berechnung von Energietransfer in molekularen Systemen”.
Bachelor’s thesis. University of Bayreuth, 2016 (cited on page 13).

[BW90] C. M. Breneman and K. B. Wiberg. “Determining atom-centered mono-
poles from molecular electrostatic potentials. The need for high sampling
density in formamide conformational analysis”. In: J. Comput. Chem. 11.3
(1990), pages 361–373 (cited on page 148).

151

[Bro+04] R. A. Broglia, G. Col‘o, G. Onida, and E. Roman. Solid State Physics of
Finite Systems. Edited by R. A. Broglia. Springer-Verlag Berlin Heidel-
berg, 2004 (cited on pages 43, 48).

[Bro+83] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus. “CHARMM: A program for macromolecular
energy, minimization, and dynamics calculations”. In: J. Comput. Chem.
4.2 (1983), pages 187–217 (cited on pages 147, 148).

[Bur+03] W. Burdick, Y. Saad, L. Kronik, I. Vasiliev, M. Jain, and J. R. Che-
likowsky. “Parallel implementation of time-dependent density functional
theory”. In: Comput. Phys. Commun. 156.1 (2003), pages 22–42 (cited on
page 27).

[Bur07] K. Burke. “The abc of dft”. In: Dep. Chem. Univ. Calif. (2007) (cited on
pages 3, 4).

[Cai+06] Z.-L. Cai, M. J. Crossley, J. R. Reimers, R. Kobayashi, and R. D. Amos.
“Density Functional Theory for Charge Transfer: The Nature of the N-
Bands of Porphyrins and Chlorophylls Revealed through CAM-B3LYP,
CASPT2, and SAC-CI Calculations”. In: J. Phys. Chem. B 110.31 (2006),
pages 15624–15632 (cited on pages 50, 60).

[CSR02] Z.-L. Cai, K. Sendt, and J. R. Reimers. “Failure of density-functional
theory and time-dependent density-functional theory for large extended π
systems”. In: J. Chem. Phys. 117.12 (2002), page 5543 (cited on page 60).

[CRS97] F. Calvayrac, P. Reinhard, and E. Suraud. “Spectral Signals from Elec-
tronic Dynamics in Sodium Clusters”. In: Ann. Phys. (N. Y). 255.1 (1997),
pages 125–162 (cited on pages 1, 25, 43–45).

[Cal+00] F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. Ullrich. “Nonlinear elec-
tron dynamics in metal clusters”. In: Phys. Rep. 337.6 (2000), pages 493–
578 (cited on pages 9, 25, 26, 43–45).

[Cap06] K. Capelle. “A bird’s-eye view of density-functional theory”. In: Brazilian
J. Phys. 36.4a (2006), pages 1318–1343 (cited on pages 3–6, 9, 10, 67,
133).

[CAS95] M. E. CASIDA. “Time-Dependent Density Functional Response Theory
for Molecules”. In: Recent Adv. Density Funct. Methods, Vol. 1. Volume 9.
1995, pages 155–192 (cited on pages 6, 43, 50).

[Cas+98] M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub. “Molec-
ular excitation energies to high-lying bound states from time-dependent
density-functional response theory: Characterization and correction of the
time-dependent local density approximation ionization threshold”. In: J.
Chem. Phys. 108.11 (1998) (cited on pages 43, 50).

[Cas+06] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen,
M. A. L. Marques, E. K. U. Gross, and A. Rubio. “octopus: a tool for the
application of time-dependent density functional theory”. In: Phys. status
solidi 243.11 (2006), pages 2465–2488 (cited on pages 13, 25, 43).

152

[CMR04] A. Castro, M. A. L. Marques, and A. Rubio. “Propagators for the time-
dependent Kohn–Sham equations”. In: J. Chem. Phys. 121.8 (2004), pages
3425 (cited on pages 1, 25, 26, 43).

[CA80] D. M. Ceperley and B. J. Alder. “Ground State of the Electron Gas by a
Stochastic Method”. In: Phys. Rev. Lett. 45.7 (1980), pages 566–569 (cited
on page 9).

[CS14] S. Chacon and B. Straub. Pro Git. 2nd. Berkely, CA, USA: Apress, 2014.
isbn: 1484200772, 9781484200773 (cited on pages 104, 106).

[CH08] J. D. Chai and M. Head-Gordon. “Systematic optimization of long-range
corrected hybrid density functionals”. In: J. Chem. Phys. 128.8 (2008)
(cited on page 11).

[CF09] Y.-C. Cheng and G. R. Fleming. “Dynamics of Light Harvesting in Photo-
synthesis”. In: Annu. Rev. Phys. Chem. 60.1 (2009), pages 241–262 (cited
on pages 1, 55, 56, 58).

[CGK06] R. J. Cogdell, A. Gall, and J. Köhler. “The architecture and function of
the light-harvesting apparatus of purple bacteria: from single molecules
to in vivo membranes”. In: Q. Rev. Biophys. 39.03 (2006), page 227 (cited
on pages 1, 45, 50, 55–60, 63, 67, 76, 147).

[CK10] R. J. Cogdell and J. Köhler. “Sunlight, Purple Bacteria, and Quantum
Mechanics: How Purple Bacteria Harness Quantum Mechanics for Effi-
cient Light Harvesting”. In: Semicond. Semimetals. Volume 83. C. 2010,
pages 77–94 (cited on page 55).

[CMY08] A. J. Cohen, P. Mori-Sánchez, and W. Yang. “Insights into Current Limi-
tations of Density Functional Theory”. In: Science 321.5890 (2008), pages
(cited on page 10).

[CPUa] CPU-World. AMD Opteron 6348 specifications. url: http://www.cpu-
world.com/CPUs/Bulldozer/AMD-Opteron%206348%20-%20OS6348WKTC
GHK.html (visited on 10/21/2016) (cited on page 109).

[CPUb] CPU-World. Intel Xeon E5-2670 specifications. url: http://www.cpu
- world.com/CPUs/Xeon/Intel- Xeon%20E5- 2670.html (visited on
10/21/2016) (cited on page 109).

[CPUc] CPU-World. Intel Xeon E5520 specifications. url: http://www.cpu-
world.com/CPUs/Xeon/Intel-Xeon%20E5520%20-%20AT80602002091AA
%20(BX80602E5520).html (visited on 10/21/2016) (cited on page 109).

[CPUd] CPU-World. Intel Xeon E5620 specifications. url: http://www.cpu-
world.com/CPUs/Xeon/Intel-Xeon%20E5620%20-%20AT80614005073AB
%20(BX80614E5620).html (visited on 10/21/2016) (cited on page 109).

[CM16] C. Curutchet and B. Mennucci. “Quantum Chemical Studies of Light Har-
vesting”. In: Chem. Rev. (2016), acs.chemrev.5b00700 (cited on pages 1,
55, 60).

153

http://www.cpu-world.com/CPUs/Bulldozer/AMD-Opteron%206348%20-%20OS6348WKTCGHK.html
http://www.cpu-world.com/CPUs/Bulldozer/AMD-Opteron%206348%20-%20OS6348WKTCGHK.html
http://www.cpu-world.com/CPUs/Bulldozer/AMD-Opteron%206348%20-%20OS6348WKTCGHK.html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5-2670.html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5-2670.html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5520%20-%20AT80602002091AA%20(BX80602E5520).html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5520%20-%20AT80602002091AA%20(BX80602E5520).html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5520%20-%20AT80602002091AA%20(BX80602E5520).html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5620%20-%20AT80614005073AB%20(BX80614E5620).html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5620%20-%20AT80614005073AB%20(BX80614E5620).html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5620%20-%20AT80614005073AB%20(BX80614E5620).html

[Dah+01] M. Dahlbom, T. Pullerits, S. Mukamel, and V. Sundström. “Exciton Delo-
calization in the B850 Light-Harvesting Complex: Comparison of Different
Measures”. In: J. Phys. Chem. B 105.23 (2001), pages 5515–5524 (cited
on page 58).

[DR05] M. G. Dahlbom and J. R. Reimers. “Successes and failures of time-
dependent density functional theory for the low-lying excited states of
chlorophylls”. In: Mol. Phys. 103.6-8 (2005), pages 1057–1065 (cited on
page 60).

[Dau+16] M. Dauth, M. Graus, I. Schelter, M. Wießner, A. Schöll, F. Reinert, and S.
Kümmel. “Perpendicular Emission, Dichroism, and Energy Dependence
in Angle-Resolved Photoemission: The Importance of The Final State”.
In: Phys. Rev. Lett. 117.18 (2016), page 183001 (cited on pages 13, 26,
92).

[Dau16] M. Dauth. “Predicting photoemission: From the single-particle interpre-
tation to the many-electron picture”. PhD thesis. University of Bayreuth,
2016 (cited on pages 13, 26, 92).

[Dav64] A. S. Davydov. “THE THEORY OF MOLECULAR EXCITONS”. In:
Sov. Phys. Uspekhi 7.2 (1964), page 145 (cited on pages 63, 68).

[DG01] F. Della Sala and A. Görling. “Efficient localized Hartree–Fock methods
as effective exact-exchange Kohn–Sham methods for molecules”. In: J.
Chem. Phys. 115.13 (2001), page 5718 (cited on pages 9, 13).

[Dol+07] T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen, G.
Klebe, and N. A. Baker. “PDB2PQR: expanding and upgrading auto-
mated preparation of biomolecular structures for molecular simulations”.
In: Nucleic Acids Res. 35.Web Server (2007), W522–W525 (cited on page 148).

[Dol+04] T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker. “PDB-
2PQR: an automated pipeline for the setup of Poisson-Boltzmann electro-
statics calculations”. In: Nucleic Acids Res. 32.Web Server (2004), W665–
W667 (cited on page 148).

[DG90] R. Dreizler and E. Gross.Density functional theory. Springer-Verlag Berlin
Heidelberg, 1990. isbn: 3-540-51993-9 (cited on pages 4–6, 8).

[DH04] A. Dreuw and M. Head-Gordon. “Failure of Time-Dependent Density
Functional Theory for Long-Range Charge-Transfer Excited States: The
Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene
Complexes”. In: J. Am. Chem. Soc. 126.12 (2004), pages 4007–4016 (cited
on pages 10, 50, 55, 60).

[EV93] E. Engel and S. H. Vosko. “Accurate optimized-potential-model solu-
tions for spherical spin-polarized atoms: Evidence for limitations of the
exchange-only local spin-density and generalized-gradient approximations”.
In: Phys. Rev. A 47.4 (1993), pages 2800–2811 (cited on page 9).

[Eng+07] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C.
Cheng, R. E. Blankenship, and G. R. Fleming. “Evidence for wavelike
energy transfer through quantum coherence in photosynthetic systems”.
In: Nature 446.7137 (2007), pages 782–786 (cited on pages 1, 55, 58).

154

[Fer27] E. Fermi. “Un Metodo Statistico per la determinazione di Alcune priorieta
dell’ atome”. In: Rend. Accad. Naz. Lincei 6 (1927), page 602 (cited on
page 3).

[Fio+03] C. Fiolhais, F. Nogueira, M. Marques, and E. Engel. “A Primer in Den-
sity Functional Theory”. In: Mater. Today 6.12 (2003), page 59 (cited on
pages 4, 8–10, 25).

[Fle+12] G. R. Fleming, G. S. Schlau-Cohen, K. Amarnath, and J. Zaks. “Design
principles of photosynthetic light-harvesting”. In: Faraday Discuss. 155
(2012), pages 27–41 (cited on pages 1, 55, 58, 59).

[Foc30] V. Fock. “Näherungsmethode zur Lösung des quantenmechanischen Mehr-
körperproblems”. In: Zeitschrift für Phys. 61.1-2 (1930), pages 126–148
(cited on pages 3, 8).

[För48] T. Förster. “Zwischenmolekulare Energiewanderung und Fluoreszenz”. In:
Ann. Phys. 437.1-2 (1948), pages 55–75 (cited on page 76).

[Fre+96] A. Freer, S. Prince, K. Sauer, M. Papiz, A. H. Lawless, G. McDermott,
R. Cogdell, and N. W. Isaacs. “Pigment–pigment interactions and en-
ergy transfer in the antenna complex of the photosynthetic bacterium
Rhodopseudomonas acidophila”. In: Structure 4.4 (1996), pages 449–462
(cited on pages 56, 57, 147).

[FLC96] N.-U. Frigaard, K. L. Larsen, and R. P. Cox. “Spectrochromatography
of photosynthetic pigments as a fingerprinting technique for microbial
phototrophs”. In: FEMS Microbiol. Ecol. 20.2 (1996), pages 69–77 (cited
on page 50).

[Fri+] M. J. Frisch et al. Gaussian 09 Revision E.01 (cited on pages 14, 43).

[GC] A. T. Gardiner and R. J. Cogdell. Crystal structure of the LH2 complex
from rhodoblastus acidophilus (strain 10050) at 1.85Å resolution. Techni-
cal report (cited on pages 56, 147).

[Gis+99] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends,
J. G. Snijders, B. Champagne, and B. Kirtman. “Electric Field Depen-
dence of the Exchange-Correlation Potential in Molecular Chains”. In:
Phys. Rev. Lett. 83.4 (1999), pages 694–697 (cited on page 10).

[Git] Git. Git. url: https://git-scm.com/ (visited on 10/21/2016) (cited on
pages 104, 106).

[Gou61] M. Gouterman. “Spectra of porphyrins”. In: J. Mol. Spectrosc. 6 (1961),
pages 138–163 (cited on pages 45, 57, 60).

[GKG97] T. Grabo, T. Kreibich, and E. Gross. “Optimized Effective Potential for
Atoms and Molecules”. In: Mol. Eng. 7.1/2 (1997), pages 27–50 (cited on
pages 9, 13).

[GG95] T. Grabo and E. Gross. “Density-functional theory using an optimized
exchange-correlation potential”. In: Chem. Phys. Lett. 240.1-3 (1995),
pages (cited on pages 9, 13).

155

https://git-scm.com/

[GDP96] E. K. U. Gross, J. F. Dobson, and M. Petersilka. “Density functional
theory of time-dependent phenomena”. In: Current 181 (1996), pages 81–
172 (cited on pages 6–8, 10, 43).

[GGB02] M. Grüning, O. V. Gritsenko, and E. J. Baerends. “Exchange potential
from the common energy denominator approximation for the Kohn–Sham
Green’s function: Application to (hyper)polarizabilities of molecular chains”.
In: J. Chem. Phys. 116.15 (2002), page 6435 (cited on pages 9, 13).

[GNS07] S. Günes, H. Neugebauer, and N. S. Sariciftci. “Conjugated Polymer-
Based Organic Solar Cells”. In: Chem. Rev. 107.4 (2007), pages 1324–
1338 (cited on page 1).

[HW10] G. Hager and G. Wellein. Introduction to High Performance Computing
for Scientists and Engineers. 1st. CRC Press, Inc., 2010. isbn: 143981192X,
9781439811924 (cited on pages 14–17, 19, 28, 29, 36, 37, 99, 113–119, 121–
123).

[Hag+10] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson. “Dye-
Sensitized Solar Cells”. In: Chem. Rev. 110.11 (2010), pages 6595–6663
(cited on page 1).

[Han+12] M. D. M. Hanwell et al. “Avogadro: an advanced semantic chemical edi-
tor, visualization, and analysis platform.” In: J. Cheminform. 4.1 (2012),
page 17 (cited on page 58).

[Har28] D. R. Hartree. “The Wave Mechanics of an Atom with a Non-Coulomb
Central Field. Part I. Theory and Methods”. In: Math. Proc. Cambridge
Philos. Soc. 24.01 (1928), page 89 (cited on pages 3, 5, 8).

[Hee16] D. van Heesch. Doxygen. Web Resource. 2016. url: http://www.stack.
nl/~dimitri/doxygen/index.html (visited on 10/21/2016) (cited on
pages 14, 104).

[HL27] W. Heitler and F. London. “Wechselwirkung neutraler Atome und ho-
möopolare Bindung nach der Quantenmechanik”. In: Zeitschrift für Phys.
44.6-7 (1927), pages 455–472 (cited on page 3).

[Hof+12] D. Hofmann, S. Klüpfel, P. Klüpfel, and S. Kümmel. “Using complex de-
grees of freedom in the Kohn-Sham self-interaction correction”. In: Phys.
Rev. A 85.6 (2012), page 062514 (cited on page 13).

[HKK10] D. Hofmann, T. Körzdörfer, and S. Kümmel. “Energy transfer and Förster’s
dipole coupling approximation investigated in a real-time Kohn-Sham
scheme”. In: Phys. Rev. A 82.1 (2010), page 012509 (cited on pages 13,
68, 74, 76, 78).

[HKK12] D. Hofmann, T. Körzdörfer, and S. Kümmel. “Kohn-Sham Self-Interaction
Correction in Real Time”. In: Phys. Rev. Lett. 108.14 (2012), page 146401
(cited on pages 13, 44, 45).

[HK12] D. Hofmann and S. Kümmel. “Self-interaction correction in a real-time
Kohn-Sham scheme: Access to difficult excitations in time-dependent den-
sity functional theory”. In: J. Chem. Phys. 137.6 (2012), page 064117
(cited on pages 10, 13, 44, 45).

156

http://www.stack.nl/~dimitri/doxygen/index.html
http://www.stack.nl/~dimitri/doxygen/index.html

[Hof+13] D. Hofmann-Mees, H. Appel, M. Di Ventra, and S. Kümmel. “Deter-
mining Excitation-Energy Transfer Times and Mechanisms from Stochas-
tic Time-Dependent Density Functional Theory”. In: J. Phys. Chem. B
117.46 (2013), pages 14408–14419 (cited on pages 65, 67, 71).

[HK64] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys.
Rev. 136.3B (1964), B864–B871 (cited on page 4).

[Hu+98] X. Hu, A. Damjanović, T. Ritz, and K. Schulten. “Architecture and mech-
anism of the light-harvesting apparatus of purple bacteria.” In: Proc. Natl.
Acad. Sci. U. S. A. 95.11 (1998), pages 5935–41 (cited on page 55).

[Hu+02] X. Hu, T. Ritz, A. Damjanovic, F. Autenrieth, and K. Schulten. “Photo-
synthetic apparatus of purple bacteria”. In: Q. Rev. Biophys. 35.01 (2002),
pages 1–62 (cited on pages 1, 45, 55–58, 76, 147).

[Inta] Intel. Intel R© Xeon R© Processor E5-2670 Specifications. url: http://ark.
intel.com/de/products/64595/Intel-Xeon-Processor-E5-2670-
20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI (visited on 10/21/2016)
(cited on page 109).

[Intb] Intel. Intel R© Xeon R© Processor E5520 Specifications. url: http://ark.
intel.com/de/products/40200/Intel-Xeon-Processor-E5520-8M-
Cache-2_26-GHz-5_86-GTs-Intel-QPI (visited on 10/21/2016) (cited
on page 109).

[Intc] Intel. Intel R© Xeon R© Processor E5620 Specifications. url: http://ark.
intel.com/de/products/47925/Intel-Xeon-Processor-E5620-12M-
Cache-2_40-GHz-5_86-GTs-Intel-QPI (visited on 10/21/2016) (cited
on page 109).

[JAC86] D. A. H. JACOBS. “A Generalization of the Conjugate-Gradient Method
to Solve Complex Systems”. In: IMA J. Numer. Anal. 6.4 (1986), pages 447–
452 (cited on page 26).

[Jor+15] J. Jornet-Somoza, J. Alberdi-Rodriguez, B. F. Milne, X. Andrade, M. A. L.
Marques, F. Nogueira, M. J. T. Oliveira, J. J. P. Stewart, and A. Ru-
bio. “Insights into colour-tuning of chlorophyll optical response in green
plants”. In: Phys. Chem. Chem. Phys. 17.40 (2015), pages 26599–26606
(cited on pages 1, 55, 60).

[JCM14] S. Jurinovich, C. Curutchet, and B. Mennucci. “The Fenna-Matthews-
Olson Protein Revisited: A Fully Polarizable (TD)DFT/MMDescription”.
In: ChemPhysChem 15.15 (2014), pages 3194–3204 (cited on page 76).

[Kar+11] A. Karolewski, T. Stein, R. Baer, and S. Kümmel. “Communication: Tai-
loring the optical gap in light-harvesting molecules”. In: J. Chem. Phys.
134.15 (2011), page 151101 (cited on pages 9, 11, 60, 134).

[KKK13] A. Karolewski, L. Kronik, and S. Kümmel. “Using optimally tuned range
separated hybrid functionals in ground-state calculations: Consequences
and caveats”. In: J. Chem. Phys. 138.20 (2013), page 204115 (cited on
pages 9, 11, 60).

157

http://ark.intel.com/de/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/de/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/de/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/de/products/40200/Intel-Xeon-Processor-E5520-8M-Cache-2_26-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/de/products/40200/Intel-Xeon-Processor-E5520-8M-Cache-2_26-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/de/products/40200/Intel-Xeon-Processor-E5520-8M-Cache-2_26-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/de/products/47925/Intel-Xeon-Processor-E5620-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/de/products/47925/Intel-Xeon-Processor-E5620-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/de/products/47925/Intel-Xeon-Processor-E5620-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI

[KRA65] M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi. “The exciton model in
molecular spectroscopy”. In: Pure Appl. Chem. 11.3-4 (1965), pages 371–
392 (cited on page 63).

[KB82] L. Kleinman and D. M. Bylander. “Efficacious Form for Model Pseu-
dopotentials”. In: Phys. Rev. Lett. 48.20 (1982), pages 1425–1428 (cited
on pages 23, 86, 131).

[Koh99] W. Kohn. “Nobel Lecture: Electronic structure of matter—wave functions
and density functionals”. In: Rev. Mod. Phys. 71.5 (1999), pages 1253–1266
(cited on pages 3, 4).

[KS65] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange
and Correlation Effects”. In: Phys. Rev. 140.4A (1965), A1133–A1138
(cited on pages 5, 8, 9, 13, 24).

[KN13] C. König and J. Neugebauer. “Exciton Coupling Mechanisms Analyzed
with Subsystem TDDFT: Direct vs Pseudo Exchange Effects”. In: J. Phys.
Chem. B 117.13 (2013), pages 3480–3487 (cited on page 57).

[KKM08] T. Körzdörfer, S. Kümmel, and M. Mundt. “Self-interaction correction
and the optimized effective potential”. In: J. Chem. Phys. 129.1 (2008),
page 014110 (cited on page 13).

[Kör+11] T. Körzdörfer, J. S. Sears, C. Sutton, and J.-L. Brédas. “Long-range cor-
rected hybrid functionals for π-conjugated systems: Dependence of the
range-separation parameter on conjugation length”. In: J. Chem. Phys.
135.20 (2011), page 204107 (cited on pages 9, 11, 60).

[Kre+98] T. Kreibich, S. Kurth, T. Grabo, and E. Gross. “Asymptotic Properties of
the Optimized Effective Potential”. In: edited by P.-O. Löwdin. Volume 33.
Advances in Quantum Chemistry. Academic Press, 1998, pages 31–48
(cited on pages 6, 10, 24, 59).

[KLI92a] J. B. Krieger, Y. Li, and G. J. Iafrate. “Construction and application of an
accurate local spin-polarized Kohn-Sham potential with integer disconti-
nuity: Exchange-only theory”. In: Phys. Rev. A 45.1 (1992), pages 101–
126 (cited on page 9).

[KLI92b] J. B. Krieger, Y. Li, and G. J. Iafrate. “Systematic approximations to
the optimized effective potential: Application to orbital-density-functional
theory”. In: Phys. Rev. A 46.9 (1992), pages 5453–5458 (cited on page 9).

[KLI90] J. Krieger, Y. Li, and G. Iafrate. “Derivation and application of an accu-
rate Kohn-Sham potential with integer discontinuity”. In: Phys. Lett. A
146.5 (1990), pages 256–260 (cited on pages 9, 13).

[Kro+06] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X.
Huang, Y. Saad, and J. R. Chelikowsky. “PARSEC – the pseudopotential
algorithm for real-space electronic structure calculations: recent advances
and novel applications to nano-structures”. In: Phys. status solidi 243.5
(2006), pages 1063–1079 (cited on pages 1, 13, 23, 24, 27, 38, 88, 131).

158

[Kro+12] L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer. “Excitation Gaps
of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid
Functionals”. In: J. Chem. Theory Comput. 8.5 (2012), pages 1515–1531
(cited on pages 9, 11, 60).

[Küh95] W. Kühlbrandt. “Many wheels make light work”. In: Nature 374.6522
(1995), pages 497–498 (cited on pages 1, 56).

[KAR01] S. Kümmel, K. Andrae, and P.-G. Reinhard. “Collectivity in the optical
response. of small metal clusters”. In: Appl. Phys. B Lasers Opt. 73.4
(2001), pages 293–297 (cited on pages 43, 45).

[KK08] S. Kümmel and L. Kronik. “Orbital-dependent density functionals: The-
ory and applications”. In: Rev. Mod. Phys. 80.1 (2008), pages 3–60 (cited
on pages 8–11, 13).

[KP03] S. Kümmel and J. P. Perdew. “Optimized effective potential made simple:
Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange
potential”. In: Phys. Rev. B 68.3 (2003), page 035103 (cited on page 6).

[Lee98] R. van Leeuwen. “Causality and Symmetry in Time-Dependent Density-
Functional Theory”. In: Phys. Rev. Lett. 80.6 (1998), pages 1280–1283
(cited on pages 6, 7).

[Lee01] R. van Leeuwen. “KEY CONCEPTS IN TIME-DEPENDENTDENSITY-
FUNCTIONAL THEORY”. In: Int. J. Mod. Phys. B 15.14 (2001), pages
(cited on page 6).

[LSR02] C. Legrand, E. Suraud, and P.-G. Reinhard. “Comparison of self-interaction-
corrections for metal clusters”. In: J. Phys. B At. Mol. Opt. Phys. 35.4
(2002), pages 1115–1128 (cited on pages 44, 45).

[LSY97] R. Lehoucq, D. Sorensen, and C. Yang. Arpack users’ guide: Solution of
large scale eigenvalue problems with implicitly restarted Arnoldi methods.
1997. url: http://www.caam.rice.edu/software/ARPACK/UG/ug.html
(visited on 12/09/2016) (cited on pages 24, 86).

[Lei+97] T. Leininger, H. Stoll, H.-J. Werner, and A. Savin. “Combining long-range
configuration interaction with short-range density functionals”. In: Chem.
Phys. Lett. 275.3-4 (1997), pages 151–160 (cited on page 11).

[LPS84] M. Levy, J. P. Perdew, and V. Sahni. “Exact differential equation for the
density and ionization energy of a many-particle system”. In: Phys. Rev.
A 30.5 (1984), pages 2745–2748 (cited on page 6).

[Li+98] J. Li, M. R. Nelson, C. Y. Peng, D. Bashford, and L. Noodleman. “In-
corporating Protein Environments in Density Functional Theory: A Self-
Consistent Reaction Field Calculation of Redox Potentials of [2Fe2S] Clus-
ters in Ferredoxin and Phthalate Dioxygenase Reductase”. In: J. Phys.
Chem. A 102.31 (1998), pages 6311–6324 (cited on page 148).

[LKI93] Y. Li, J. B. Krieger, and G. J. Iafrate. “Self-consistent calculations of
atomic properties using self-interaction-free exchange-only Kohn-Sham
potentials”. In: Phys. Rev. A 47.1 (1993), pages 165–181 (cited on page 9).

159

http://www.caam.rice.edu/software/ARPACK/UG/ug.html

[LLS03] M. S. Liao, Y. Lu, and S. Scheiner. “Performance assessment of density-
functional methods for study of charge-transfer complexes”. In: J. Com-
put. Chem. 24.5 (2003), pages 623–631 (cited on page 10).

[LKH99] J. Linnanto, J. E. I. Korppi-Tommola, and V. M. Helenius. “Electronic
States, Absorption Spectrum and Circular Dichroism Spectrum of the
Photosynthetic Bacterial LH2 Antenna of Rhodopseudomonas acidophila
as Predicted by Exciton Theory and Semiempirical Calculations”. In: J.
Phys. Chem. B 103.41 (1999), pages 8739–8750 (cited on page 76).

[LK06] J. Linnanto and J. Korppi-Tommola. “Quantum chemical simulation of
excited states of chlorophylls, bacteriochlorophylls and their complexes”.
In: Phys. Chem. Chem. Phys. 8.6 (2006), pages 663–687 (cited on pages 58,
60).

[LB07] E. Livshits and R. Baer. “A well-tempered density functional theory
of electrons in molecules”. In: Phys. Chem. Chem. Phys. 9.23 (2007),
pages 2932–2941 (cited on page 11).

[Mac+98] A. D. MacKerell et al. “All-Atom Empirical Potential for Molecular Mod-
eling and Dynamics Studies of Proteins”. In: J. Phys. Chem. B 102.18
(1998), pages 3586–3616 (cited on pages 147, 148).

[Mar03a] M. Marques. “octopus: a first-principles tool for excited electron–ion dy-
namics”. In: Comput. Phys. Commun. 151.1 (2003), pages 60–78 (cited on
pages 13, 25, 43, 44).

[MG04] M. Marques and E. Gross. “Time-Dependent Density Functional Theory”.
In: Annu. Rev. Phys. Chem. 55.1 (2004), pages 427–455 (cited on pages 6–
8, 10, 44, 45).

[Mar+12] M. a. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U. Gross, and
A. Rubio. Fundamentals of Time-Dependent Density Functional Theory.
Edited by M. A. Marques, N. T. Maitra, F. M. Nogueira, E. Gross, and A.
Rubio. Volume 837. Lecture Notes in Physics. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012. isbn: 978-3-642-23517-7 (cited on pages 6, 44,
45).

[Mar03b] R. L. Martin. “Natural transition orbitals”. In: J. Chem. Phys. 118.11
(2003), page 4775 (cited on pages 50, 60).

[McC95] J. D. McCalpin. “Memory Bandwidth and Machine Balance in Current
High Performance Computers”. In: IEEE Comput. Soc. Tech. Comm.
Comput. Archit. Newsl. May (1995), pages 19–25 (cited on pages 14, 30,
109).

[McD+95] G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless,
M. Z. Papiz, R. J. Cogdell, and N. W. Isaacs. “Crystal structure of an in-
tegral membrane light-harvesting complex from photosynthetic bacteria”.
In: Nature 374.6522 (1995), pages 517–521 (cited on pages 56, 147).

[Mei11] A. Meister. Numerik linearer Gleichungssysteme. 4th. Wiesbaden: Vie-
weg+Teubner, 2011. isbn: 978-3-8348-1550-7 (cited on pages 14, 26, 27).

160

[Moo+15] B. Moore, H. Sun, N. Govind, K. Kowalski, and J. Autschbach. “Charge-
Transfer Versus Charge-Transfer-Like Excitations Revisited”. In: J. Chem.
Theory Comput. 11.7 (2015), pages 3305–3320 (cited on pages 10, 60).

[Mos87] G. P. Moss. “Nomenclature of tetrapyrroles (Recommendations 1986)”.
In: Pure Appl. Chem. 59.6 (1987), pages 779–832 (cited on page 57).

[MPI12] MPI.MPI: A Message-Passing Interface Standard. Version 3.0. Technical
report. University of Tennesse, 2012 (cited on pages 14, 16, 17, 19, 103,
104, 114).

[MUN09] M. MUNDT. “REAL-TIME APPROACH TO TIME-DEPENDENTDEN-
SITY-FUNCTIONAL THEORY IN THE LINEAR AND NONLINEAR
REGIME”. In: J. Theor. Comput. Chem. 08.04 (2009), pages 561–574
(cited on pages 25, 26, 43–45).

[MK06] M. Mundt and S. Kümmel. “Optimized effective potential in real time:
Problems and prospects in time-dependent density-functional theory”. In:
Phys. Rev. A 74.2 (2006), page 022511 (cited on pages 44, 45).

[MK07] M. Mundt and S. Kümmel. “Photoelectron spectra of anionic sodium
clusters from time-dependent density-functional theory in real time”. In:
Phys. Rev. B 76.3 (2007), page 035413 (cited on pages 44, 45).

[Nee12] F. Neese. “The ORCA program system”. In: Wiley Interdiscip. Rev. Com-
put. Mol. Sci. 2.1 (2012), pages 73–78 (cited on page 148).

[Ope13] OpenMP. OpenMP Application Program Interface - Version 4.0. Techni-
cal report. 2013 (cited on page 17).

[ONS10] M. B. Oviedo, C. F. A. Negre, and C. G. Sánchez. “Dynamical simula-
tion of the optical response of photosynthetic pigments”. In: Phys. Chem.
Chem. Phys. 12.25 (2010), page 6706 (cited on pages 45, 50, 57, 76, 133).

[OS11] M. B. Oviedo and C. G. Sánchez. “Transition Dipole Moments of the Q y
Band in Photosynthetic Pigments”. In: J. Phys. Chem. A 115.44 (2011),
pages 12280–12285 (cited on page 57).

[Pac96] P. S. Pacheco. Parallel Programming with MPI. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1996. isbn: 1-55860-339-5 (cited on
pages 14, 16, 17).

[Pan16] D. K. Panda. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/i-
WARP, and RoCE. 2016. url: http://mvapich.cse.ohio-state.edu/
benchmarks/ (visited on 12/08/2016) (cited on pages 14, 113, 114).

[Pap+03] M. Z. Papiz, S. M. Prince, T. Howard, R. J. Cogdell, and N. W. Isaacs.
“The Structure and Thermal Motion of the B800–850 LH2 Complex from
Rps. acidophila at 2.0Å Resolution and 100K: New Structural Features
and Functionally Relevant Motions”. In: J. Mol. Biol. 326.5 (2003), pages
(cited on pages 55, 56, 147).

[PZ81] J. P. Perdew and A. Zunger. “Self-interaction correction to density-func-
tional approximations for many-electron systems”. In: Phys. Rev. B 23.10
(1981), pages 5048–5079 (cited on pages 9, 10, 13).

161

http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/

[PBE96] J. P. Perdew, K. Burke, and M. Ernzerhof. “Generalized Gradient Approx-
imation Made Simple”. In: Phys. Rev. Lett. 77.18 (1996), pages 3865–3868
(cited on page 9).

[PBE97] J. P. Perdew, K. Burke, and M. Ernzerhof. “Generalized Gradient Ap-
proximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]”. In: Phys.
Rev. Lett. 78.7 (1997), pages 1396–1396 (cited on page 9).

[PK03] J. P. Perdew and S. Kurth. “Density Functionals for Non-relativistic Cou-
lomb Systems in the New Century”. In: A Prim. Density Funct. Theory
620 (2003), pages 1–55 (cited on pages 4, 8, 9).

[Per+82] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz. “Density-Functional
Theory for Fractional Particle Number: Derivative Discontinuities of the
Energy”. In: Phys. Rev. Lett. 49.23 (1982), pages 1691–1694 (cited on
pages 6, 10).

[PW92] J. P. Perdew and Y. Wang. “Accurate and simple analytic representation
of the electron-gas correlation energy”. In: Phys. Rev. B 45.23 (1992),
pages 13244–13249 (cited on pages 9, 13).

[PGG96] M. Petersilka, U. J. Gossmann, and E. K. U. Gross. “Excitation Energies
from Time-Dependent Density-Functional Theory”. In: Phys. Rev. Lett.
76.8 (1996), pages 1212–1215 (cited on pages 6, 43).

[Pre+92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in Fortran. Edited by W. H. Press. 2nd edition. Cam-
bridge University Press, 1992 (cited on pages 14, 25, 26, 44, 45, 48, 49).

[Qu+09] Z.-w. Qu, H. Zhu, V. May, and R. Schinke. “Time-Dependent Density
Functional Theory Study of the Electronic Excitation Spectra of Chloro-
phyllide a and Pheophorbide a in Solvents”. In: J. Phys. Chem. B 113.14
(2009), pages 4817–4825 (cited on page 50).

[RC73] A. K. Rajagopal and J. Callaway. “Inhomogeneous Electron Gas”. In:
Phys. Rev. B 7.5 (1973), pages 1912–1919 (cited on page 8).

[Rog+12] H.-H. Rogner, R. F. Aguilera, C. Archer, R. Bertani, S. C. Bhattacharya,
M. B. Dusseault, L. Gagnon, H. Haberl, M. Hoogwijk, A. Johnson, M. L.
Rogner, H. Wagner, and V. Yakushev. “Chapter 7 - Energy Resources and
Potentials”. In: Glob. Energy Assess. - Towar. a Sustain. Futur. Edited
by J. Zou. Cambridge University Press, Cambridge, UK, New York, NY,
USA, and the International Institute for Applied Systems Analysis, Lax-
enburg, Austria, 2012, pages 423–512 (cited on page 1).

[RG84] E. Runge and E. K. U. Gross. “Density-Functional Theory for Time-De-
pendent Systems”. In: Phys. Rev. Lett. 52.12 (1984), pages 997–1000 (cited
on pages 6, 7, 13).

[SS96] U. Saalmann and R. Schmidt. “Non-adiabatic quantum molecular dynam-
ics: basic formalism and case study”. In: Zeitschrift für Phys. D Atoms,
Mol. Clust. 38.2 (1996), pages 153–163 (cited on pages 1, 25, 43).

162

[SFK09] E. Sagvolden, F. Furche, and A. Köhn. “Förster Energy Transfer and
Davydov Splittings in Time-Dependent Density Functional Theory: Les-
sons from 2-Pyridone Dimer”. In: J. Chem. Theory Comput. 5.4 (2009),
pages (cited on page 76).

[SF95] A. Savin and H.-J. Flad. “Density functionals for the Yukawa electron-
electron interaction”. In: Int. J. Quantum Chem. 56.4 (1995), pages 327–
332 (cited on page 11).

[Sch16] P. Schaffhauser. “Ladungstransport in molekularen Systemen und Visu-
alisierung molekularer Strukturen”. PhD thesis. University of Bayreuth,
2016 (cited on pages 13, 26, 92).

[SK16] P. Schaffhauser and S. Kümmel. “Using time-dependent density functional
theory in real time for calculating electronic transport”. In: Phys. Rev. B
93.3 (2016), page 35115 (cited on pages 13, 26).

[Sch13] I. Schelter. “Numerische Lösung des Optimized Effective Potential”. Mas-
ter’s thesis. University of Bayreuth, 2013 (cited on page 9).

[SR06] G. D. Scholes and G. Rumbles. “Excitons in nanoscale systems”. In: Nat.
Mater. 5.9 (2006), pages 683–696 (cited on pages 55, 58, 63, 76).

[Sch15] Schrödinger, LLC. “The PyMOL Molecular Graphics System, Version
1.8”. 2015 (cited on page 57).

[Sch26] E. Schrödinger. “Quantisierung als Eigenwertproblem - Erste Mitteilung”.
In: Ann. Phys. 79 (1926), pages 361–376 (cited on page 3).

[Sei+96] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy. “Generalized
Kohn-Sham schemes and the band-gap problem”. In: Phys. Rev. B 53.7
(1996), pages 3764–3774 (cited on pages 9, 12).

[Sha+15] Y. Shao et al. “Advances in molecular quantum chemistry contained in
the Q-Chem 4 program package”. In: Mol. Phys. 113.2 (2015), pages 184–
215 (cited on pages 43, 60, 61, 131).

[SH53] R. T. Sharp and G. K. Horton. “A Variational Approach to the Unipoten-
tial Many-Electron Problem”. In: Phys. Rev. 90.2 (1953), pages 317–317
(cited on page 9).

[SS07] V. Simoncini and D. B. Szyld. “Recent computational developments in
Krylov subspace methods for linear systems”. In: Numer. Linear Algebr.
with Appl. 14.1 (2007), pages 1–59 (cited on pages 26, 27).

[Sol16] C. Soldner. “Untersuchung des Energietransfers in molekularen Syste-
men”. Master’s thesis. University of Bayreuth, 2016 (cited on page 73).

[SKB09a] T. Stein, L. Kronik, and R. Baer. “Prediction of charge-transfer exci-
tations in coumarin-based dyes using a range-separated functional tuned
from first principles”. In: J. Chem. Phys. 131.24 (2009), page 244119 (cited
on pages 9, 11, 60, 134).

[SKB09b] T. Stein, L. Kronik, and R. Baer. “Reliable Prediction of Charge Trans-
fer Excitations in Molecular Complexes Using Time-Dependent Density
Functional Theory”. In: J. Am. Chem. Soc. 131.8 (2009), pages 2818–2820
(cited on pages 9–11, 60, 134).

163

[Ste+94] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. “Ab Ini-
tio Calculation of Vibrational Absorption and Circular Dichroism Spectra
Using Density Functional Force Fields”. In: J. Phys. Chem. 98.45 (1994),
pages 11623–11627 (cited on pages 9, 11, 148).

[Sti16] A. Stiller. Intel bringt (endlich) den HPC-Prozessor Xeon Phi Knights
Landing. 2016. url: http://www.heise.de/newsticker/meldung/
Intel- bringt- endlich- den- HPC- Prozessor- Xeon- Phi- Knights-
Landing-3241370.html (visited on 11/01/2016) (cited on page 16).

[SŞS12] J. Strümpfer, M. Şener, and K. Schulten. “How Quantum Coherence
Assists Photosynthetic Light-Harvesting”. In: J. Phys. Chem. Lett. 3.4
(2012), pages 536–542 (cited on pages 1, 55, 58).

[Sun03] D. Sundholm. “A density-functional-theory study of bacteriochlorophyll
b”. In: Phys. Chem. Chem. Phys. 5.19 (2003), page 4265 (cited on page 50).

[Sun00] D. Sundholm. “Comparison of the electronic excitation spectra of chloro-
phyll a and pheophytin a calculated at density functional theory level”.
In: Chem. Phys. Lett. 317.6 (2000), pages 545–552 (cited on pages 50, 57,
60).

[Sun99] D. Sundholm. “Density functional theory calculations of the visible spec-
trum of chlorophyll a”. In: Chem. Phys. Lett. 302.5-6 (1999), pages 480–
484 (cited on pages 50, 60).

[Swi15] N. Swiridoff. “Untersuchung des Einflusses von Effektivpotentialen auf die
elektronische Struktur von Bacteriochlorophyll”. Bachelor’s thesis. Uni-
versity of Bayreuth, 2015 (cited on page 59).

[TS76] J. D. Talman and W. F. Shadwick. “Optimized effective atomic central
potential”. In: Phys. Rev. A 14.1 (1976), pages 36–40 (cited on page 9).

[TK09] M. Thiele and S. Kümmel. “Photoabsorption spectra from adiabatically
exact time-dependent density-functional theory in real time”. In: Phys.
Chem. Chem. Phys. 11.22 (2009), page 4631 (cited on pages 43–45).

[Tho27] L. H. Thomas. “The calculation of atomic fields”. In: Math. Proc. Cam-
bridge Philos. Soc. 23.05 (1927), page 542 (cited on page 3).

[TF08] B. C. Thompson and J. M. J. Fréchet. “Polymer–Fullerene Composite
Solar Cells”. In: Angew. Chemie Int. Ed. 47.1 (2008), pages 58–77 (cited
on page 1).

[TEE10] B. Tian, E. S. E. Eriksson, and L. A. Eriksson. “Can Range-Separated
and Hybrid DFT Functionals Predict Low-Lying Excitations? A Tookad
Case Study”. In: J. Chem. Theory Comput. 6.7 (2010), pages 2086–2094
(cited on page 60).

[Toz03] D. J. Tozer. “Relationship between long-range charge-transfer excitation
energy error and integer discontinuity in Kohn-Sham theory”. In: J. Chem.
Phys. 119.24 (2003) (cited on pages 10, 50, 55, 60).

164

http://www.heise.de/newsticker/meldung/Intel-bringt-endlich-den-HPC-Prozessor-Xeon-Phi-Knights-Landing-3241370.html
http://www.heise.de/newsticker/meldung/Intel-bringt-endlich-den-HPC-Prozessor-Xeon-Phi-Knights-Landing-3241370.html
http://www.heise.de/newsticker/meldung/Intel-bringt-endlich-den-HPC-Prozessor-Xeon-Phi-Knights-Landing-3241370.html

[THW10] J. Treibig, G. Hager, and G. Wellein. “Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments”. In: 2010 39th Int.
Conf. Parallel Process. Work. IEEE. 2010, pages 207–216 (cited on pages 14,
122).

[TM91] N. Troullier and J. L. Martins. “Efficient pseudopotentials for plane-wave
calculations”. In: Phys. Rev. B 43.3 (1991), pages 1993–2006 (cited on
pages 23, 86, 131).

[Tur+00] W. C. Turkenburg, J. Beurskens, A. Faaij, P. Fraenkel, I. Fridleifsson, E.
Lysen, D. Mills, J. R. Moreira, L. J. Nilsson, A. Schaap, and W. C. Sinke.
Chapter 7 - Renewable Energy Technologies. United Nations Development
Programme et al., 2000 (cited on page 1).

[Tur+12] W. C. Turkenburg, D. J. Arent, R. Bertani, A. Faaij, M. Hand, W. Kre-
witt, E. D. Larson, J. Lund, M. Mehos, T. Merrigan, C. Mitchell, J. R.
Moreira, W. Sinke, V. Sonntag-O’Brien, B. Thresher, W. van Sark, E.
Usher, and E. Usher. “Chapter 11 - Renewable Energy”. In: Glob. Energy
Assess. - Towar. a Sustain. Futur. Cambridge University Press, Cam-
bridge, UK, New York, NY, USA, and the International Institute for Ap-
plied Systems Analysis, Laxenburg, Austria, 2012, pages 761–900 (cited
on page 1).

[UB14] G. M. Ullmann and E. Bombarda. “Continuum Electrostatic Analysis of
Proteins”. In: Protein Model. Edited by G. Náray-Szabó. Cham: Springer
International Publishing, 2014, pages 135–163 (cited on pages 59, 147,
148).

[UU12] R. T. Ullmann and G. M. Ullmann. “GMCT : A Monte Carlo simulation
package for macromolecular receptors”. In: J. Comput. Chem. 33.8 (2012),
pages 887–900 (cited on page 147).

[VÖC99] I. Vasiliev, S. Öğüt, and J. R. Chelikowsky. “Ab Initio Excitation Spectra
and Collective Electronic Response in Atoms and Clusters”. In: Phys. Rev.
Lett. 82.9 (1999), pages 1919–1922 (cited on pages 50, 133).

[Veg+15] C. P. van der Vegte, J. D. Prajapati, U. Kleinekathöfer, J. Knoester,
and T. L. C. Jansen. “Atomistic Modeling of Two-Dimensional Electronic
Spectra and Excited-State Dynamics for a Light Harvesting 2 Complex”.
In: J. Phys. Chem. B 119.4 (2015), pages 1302–1313 (cited on pages 58,
59).

[VB07] Z. Vokáčová and J. V. Burda. “Computational Study on Spectral Prop-
erties of the Selected Pigments from Various Photosystems: Structure-
Transition Energy Relationship”. In: J. Phys. Chem. A 111.26 (2007),
pages 5864–5878 (cited on page 57).

[VS06] O. A. Vydrov and G. E. Scuseria. “Assessment of a long-range corrected
hybrid functional”. In: J. Chem. Phys. 125.23 (2006) (cited on pages 9,
11, 12).

[WU08] H. O. Wijewardane and C. A. Ullrich. “Real-Time Electron Dynamics
with Exact-Exchange Time-Dependent Density-Functional Theory”. In:
Phys. Rev. Lett. 100.5 (2008), page 056404 (cited on pages 9, 44, 45).

165

[YB98] K. Yabana and G. F. Bertsch. “Oscillator strengths with pseudopoten-
tials”. In: Phys. Rev. A 58.3 (1998), pages 2604–2607 (cited on page 44).

[YB96] K. Yabana and G. F. Bertsch. “Time-dependent local-density approxima-
tion in real time”. In: Phys. Rev. B 54.7 (1996), pages 4484–4487 (cited
on pages 1, 25, 43–45).

[YB99] K. Yabana and G. F. Bertsch. “Time-dependent local-density approxi-
mation in real time: Application to conjugated molecules”. In: Int. J.
Quantum Chem. 75.1 (1999), pages 55–66 (cited on pages 1, 25, 43–45).

[YTH04] T. Yanai, D. P. Tew, and N. C. Handy. “A new hybrid exchange–correlation
functional using the Coulomb-attenuating method (CAM-B3LYP)”. In:
Chem. Phys. Lett. 393.1-3 (2004), pages 51–57 (cited on page 60).

[ZS80] A. Zangwill and P. Soven. “Density-functional approach to local-field ef-
fects in finite systems: Photoabsorption in the rare gases”. In: Phys. Rev.
A 21.5 (1980), pages 1561–1572 (cited on pages 6, 44).

166

Danksagung
Im Laufe der letzten Jahre während meiner Studienzeit in Bayreuth habe ich viele

Bekanntschaften geschlossen und gute Freunde gefunden, die mich auf dieser aufregen-
den Etappe meines Lebens begleitet haben. Genauso gibt es etliche Personen, die ich
schon viel länger kenne und die immer an mir festgehalten haben. Ich möchte diese
Zeilen nutzen, um mich bei ihnen zu bedanken.
Allen voran danke ich Stephan Kümmel, der mich während meines Studiums und

schließlich als Doktorvater über viele Jahre hinweg betreut hat. Neben seinen fach-
lichen Fähigkeiten haben mich besonders seine menschliche Art und die Begeisterung
für die Physik, mit der er mich immer wieder mitreißen konnte, fasziniert. In diesen
Jahren war Stephan nicht nur ein herausragender Mentor sondern auch ein sehr guter
Kollege und Freund.
Genauso danke ich den Freunden, die ich im Laufe der Zeit am Lehrstuhl “The-

oretische Physik IV” gefunden habe. Darunter sind Linn Leppert, Dirk Hofmann-
Mees, Andreas Karolewski, Tobias Schmidt, Matthias Dauth, Thiago de Queiroz,
Philipp Schaffhauser, Thilo Aschebrock, Fabian Hofmann, Julian Garhammer, Chris-
toph Soldner und Alexander Kaiser. Besonders herausheben möchte ich Dirk, Thiago,
Christoph und Alexander, die mit mir zeitweise dasselbe Büro geteilt haben, sowie
Thiago, Philipp und Matthias für die großartige Zusammenarbeit bei verschiedenen
Projekten.
Über meinen Lehrstuhl hinaus danke ich weiterhin dem Graduiertenkolleg GRK1640,

insbesondere meinen Mentoren Matthias Ullmann und Richard Hildner sowie Johannes
Förster für die sehr gute Zusammenarbeit und Freundschaft.
Natürlich würden alle Rädchen stillstehen ohne die guten Seelen, die sich uner-

müdlich um allerhand Organisatorisches und die Administration der Computer küm-
mern und bei jeder Gelegenheit zur Stelle sind. Für ihre Hilfsbereitschaft und ihr
Engagement bedanke ich mich ganz herzlich bei Monika Birkelbach, Claudia Geier,
Markus Hilt, Bernhard Winkler und Werner Reichstein.
An dieser Stelle danke ich auch allen Freunden, die ich während der Schulzeit,

des Studiums und meiner Zeit in der Fachschaftsvertretung und im Absolventenverein
meiner Fakultät kennengelernt habe. Insbesondere Lisa Wohlrab und Dominic Raithel
sind mir seit dem ersten Semester sehr gute Freunde, auf die ich mich immer verlassen
kann. Noch weiter zurück reicht die Freundschaft zu Jonas Zeitler, Florian Wilhelm
und Christopher Michael, die mich schon seit vielen Jahren durch dick und dünn
begleiten.
Besonders danke ich natürlich meiner Familie, die mir auf meinem Weg von Beginn

an alles ermöglicht und mich immer unterstützt hat. Darunter sind meine Eltern
Ulrike und Jürgen Schelter, meine Großeltern Hanna und Fritz Schelter und Gisela
und Georg Macht, mein Onkel Harald Schelter und meine Paten Waltraud und Werner
Heußinger. Ebenso danke ich der Familie meiner Freundin, insbesondere Roswitha und
Roland Kopp und Marianne Seyferth, dafür, dass sie mich ganz herzlich in ihre Mitte
aufgenommen haben. Am Ende gilt mein ganz besonderer Dank meiner Freundin
Eva, auf die ich mich immer verlassen kann und die stets zu mir gehalten und mich in
schwierigen Zeiten unterstützt hat.

167

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet
habe.

Weiterhin erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern bzw.
-vermittlern oder ähnlichen Dienstleistern weder bisher in Anspruch genommen habe,
noch künftig in Anspruch nehmen werde.

Zusätzlich erkläre ich hiermit, dass ich keinerlei frühere Promotionsversuche unter-
nommen habe.

Ort, Datum Unterschrift (Ingo Schelter)

	Abstract
	Introduction
	Density functional theory and time-dependent density functional theory
	Quantum mechanics and the exponential wall
	Kohn-Sham density functional theory
	The Hohenberg-Kohn theorem and variational principle
	The Kohn-Sham equations

	Time-dependent Kohn-Sham density functional theory
	The Runge-Gross theorem
	The time-dependent Kohn-Sham equations

	Spin density functional theory in spin-unpolarized systems
	Approximations to the exchange-correlation functional
	The local density approximation
	Self interaction and charge transfer
	Range-separated hybrid functionals

	The BTDFT program set
	Introductory notes
	Modern computer architectures and parallelization
	Modern computer architectures
	Parallelization with MPI

	Grid setup, parallelization, and algorithms
	The real-space grid and grid parallelization
	Orbital parallelization and virtual process topology
	Non-local pseudo potentials
	Diagonalization of the Kohn-Sham equations
	Propagation of the time-dependent Kohn-Sham equations
	Hartree potential and multipole expansion

	Performance engineering
	The memory-bandwidth bottleneck
	The BTDFT Hamiltonian
	Cache blocking

	Performance tests
	Polyacetylen chain
	Two bacteriochlorophylls

	Evaluation of electronic spectra and transition densities
	Traditional real-time evaluation of spectra and transition densities
	Refined excitation energies and oscillator strengths
	Refined transition densities

	Excitation dynamics between bacteriochlorophylls
	The LH2 complex of Rhodoblastus acidophilus
	Modelling the environment
	Electrostatic environment potential and ligands
	Influence on the electronic ground state

	Spectra of B850 bacteriochlorophylls from TDLDA and PBE
	Spectra of single bacteriochlorophylls
	Spectra of two aggregated bacteriochlorophylls
	Influence of the environment on the spectra

	Coupling strengths and real-time energy transfer
	A two-level donor-acceptor model
	Description of excitation-energy transfer
	Prediction of coupling strengths

	Coupling strengths between chromophores from real-time TDDFT
	Conclusion and outlook

	Appendix
	BTDFT - Additional documentation
	File tree and release policy
	The BTDFT file tree
	Release history and release policy

	Compilation and execution
	Compilation
	Configuration
	Submit files
	Execution
	Practical remarks

	Implementation principles
	Program sequences
	Grid details
	Mapping MPI processes onto the hardware
	Optimized convergence criteria
	File layout and implementation

	The ACE file format
	The Doxygen documentation
	Version control with Git

	Computer clusters in Bayreuth
	btrzx5
	btrzx3

	Additional benchmarks and performance engineering
	Latency and bandwidth in parallel networks
	Node-level hardware parallelization
	Impact of the cache hierarchy
	Code optimization made simple
	General approach
	Easy rules
	Remarks about OpenMP and the 3D Jacobi smoother

	Proof concerning density fluctuations in a donor-acceptor model
	Numerical details and supporting information
	Pseudo potentials
	Presented calculations
	Section 3
	Section 4
	Section 5

	Additional calculations
	Additional spectra of B301, B302, and B303
	Transition densities and natural transition orbitals

	Preparation of the LH2 structure and the environment potential
	Preparation of the LH2 structure
	Truncation of phytyl tails
	Preparation of histidine residues
	The environment potential

	List of Abbreviations
	Bibliography
	Danksagung
	Eidesstattliche Versicherung

