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Hierarchical Distributed Model Predictive
Control of Interconnected Microgrids

C. A. Hans, P. Braun, J. Raisch, L. Grüne, and C. Reincke-Collon

Abstract—In this work, we propose a hierarchical distributed
model predictive control strategy to operate interconnected
microgrids (MGs) with the goal of increasing the overall infeed
of renewable energy sources. In particular, we investigate how
renewable infeed of MGs can be increased by using a trans-
mission network allowing the exchange of energy. To obtain an
model predictive control scheme which is scalable with respect to
the number of MGs and preserves their independent structure,
we make use of the alternating direction method of multipliers
leading to local controllers communicating through a central
entity. This entity is in charge of the power lines and ensures
that the constraints on the transmission capacities are met. The
results are illustrated in a numerical case study.

I. INTRODUCTION

Motivated by environmental, political, economic and tech-
nological aspects, electric power systems worldwide are under-
going large changes due to an increasing number of renewable
energy sources [1]. Since many of these are small-scale dis-
tributed units connected to the grid via AC inverters, the power
generation structure is moving from large, centralized plants
to smaller, distributed units. Thus, strategies to operate future
power systems in a safe and efficient way are needed [2].

In this context, the microgrid (MG) concept has recently
attracted increasing attention. An MG gathers a combination
of generation units, loads and energy storage elements into
a system that can be controlled by a local operator [3].
To increase security of supply, MGs can be operated in a
completely isolated manner from the main transmission grid
if failures occur [4]. Motivated by existing control strategies
in conventional power systems, a hierarchical approach has
also been advocated for MGs (see, e.g., [5]). One typically
distinguishes primary and secondary control (as in conven-
tional power systems), while the top control level, which is
mostly referred to as operation control or energy management,
comprises tertiary control and scheduling in conventional
power systems. The operation control level aims at maximizing
infeed from renewable energy sources (RES) as, once installed,
they provide power at a relatively low price and very small
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negative ecological effects. Another objective of this layer is to
minimize conventional thermal generation. A way to determine
setpoints for operation control is by solving an optimization
problem with these objectives while accounting for limits on
power and energy [6]. A widely chosen strategy to achieve this
is model predictive control (MPC), which allows to include
forecasts and to plan the operation for several hours ahead.

Recent results for grid-connected operation control include
mixed-integer MPC where the predictions of load and RES
were assumed to be certain over the prediction horizon (see,
e.g., [7]). Furthermore, in [8], [9] scenario-based MPC ap-
proaches for the grid-connected operation of MGs were pro-
posed. Others concentrate on MGs in islanded mode, e.g., [10],
[11] where a mixed integer program (MIP) is solved, assuming
that RES and load predictions are certain. Furthermore, in [12],
a mixed-integer MPC assuming bounded uncertain load and
RES and in [13] a scenario-based approach were proposed.
However, all these strategies focus on the operation of single
MGs and do not consider possible benefits of connecting them.

For the operation of interconnected MGs several approaches
have been proposed. For instance, in [14] a distributed opti-
mization, based on the alternating direction method of multi-
pliers (ADMM) was introduced. It was assumed that the power
flow on every transmission line can be fully controlled. For the
coordination of so called energy hubs a distributed algorithm
was illustrated in [15]. Both approaches assume that the local
controllers of the MGs or energy hubs communicate with each
other to find an optimal operation regime. However, this does
not comply with the widely present division of responsibilities
for the local MGs and the transmission network.

To fill this gap, hierarchical approaches that tolerate the
different responsibilities of the utilities used in the operation
of interconnected MGs were presented. In [16], a conceptual
scheme where each MG is operated by its own controller was
proposed. On a higher hierarchical layer, a distribution man-
agement system coordinates the operation of different MGs
that act on price signals. For optimal power flow and for
charging electric vehicles similar schemes were introduced,
respectively, in [17] and [18]. Furthermore, in [19], [20],
[21] centralized and hierarchical distributed optimization al-
gorithms for MPC of residential energy systems including
storage devices with focus on scalability and flexibility with
respect to the network size were proposed and investigated.

Even though some of the approaches allow for a division
of responsibilities for the different utilities, they do not fully
cover all aspects of the operation of complex interconnected
MGs. For example, the approach presented by [17] concen-
trates on optimal power flow and does not include storage
devices or a possible limitation of RES infeed. The focus of
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[18], [20], [21] is less on complex interconnected MGs with
high share of RES. They aim more at solutions for charging
electric vehicles [18] or residential energy systems [20], [21],
where RES cannot be limited and it is not necessary to include
the power flow over transmission lines in the operation regime.

We aim to fill this gap by proposing a hierarchical dis-
tributed scheme that allows to optimize the operation of
multiple interconnected MGs. Based on ideas from [20], [21],
we use the ADMM (see, e.g., [22], [23]) to decompose
and solve an optimization problem in a distributed way. On
the MG layer, local optimization problems, similar to the
ones considered in [7], [12], are solved. The resulting power
provided to, or from, each MG is then reported to a central
entity on a higher layer, which processes the data before it
communicates results to the MGs again. In this context the
ADMM allows to conceal the local cost functions from the
central entity, as the individual MGs only communicate the
power that they want to provide to the grid. Thus, MGs
maintain autonomy in their own operation but can benefit
from the transmission network. Since every MG that will be
considered in the overall optimization problem retains its local
controller, flexibility and scalability in this approach is much
better than in central approaches. Furthermore, the proposed
scheme integrates well into the configuration of many present
power systems, where the responsibilities for each MG and
the transmission network lie within different entities. In an
extensive case study, four interconnected MGs are operated
using the proposed scheme. The gain from interconnecting
the MGs is assessed by comparing the simulation results to a
case where all MGs are operated in islanded mode.

The remainder of this paper is structured as follows. In
Section II we discuss the generic problem of operating a
network of interconnected MGs. Then, in Section III a model
for the local MGs and the electrical network connecting the
MGs is proposed. Section IV introduces the costs for the
operation of the network of MGs. In Section V the hierarchical
distributed optimization algorithm is introduced and embedded
into an MPC scheme. Finally, the use of the algorithm is
illustrated in Section VI.

II. GENERAL DESCRIPTION OF A NETWORK OF
INTERCONNECTED MGS AND NOTATIONS

Before we give a detailed description of the interconnected
MGs and the distributed MPC algorithm, the general system
and some notation are introduced in this section.

Throughout this paper, we consider a network of intercon-
nected MGs, which are able to share power over transmission
lines. An example of such a network with four MGs is
visualized in Figure 1. We assume that the MGs can operate
independently from each other and thus, that the dynamics of a
single MG are described by a discrete-time dynamical system

xi(k + 1) = fi(xi(k), ui(k)), (1a)
pi(k) = gi(ui(k), wi(k)). (1b)

Here, fi : RSi × RMi → RSi defines the dynamics of the
system and xi(k) ∈ Xi ⊂ RSi describes the internal states of
charge of the storage units. Furthermore, ui(k) ∈ Ui ⊂ RMi

denotes the input, pi(k) ∈ RQi the power and wi(k) ∈ RRi
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Fig. 1. Exemplary network of MGs connected by transmission lines.

the exogenous signals at time k ∈ N of MG i ∈ I, where
I = {1, . . . , I} ⊂ N is the set of all MGs.

The power contribution of the individual parts of a single
MG, denoted by pi(k), is described by gi : RMi×RRi → RQi .
The vector pi(k) includes the scalar pg,i(k) which describes
the power injected into or taken from the transmission net-
work. To ensure global power balance, the constraint∑I

i=1 pg,i(k) = 0 (2)

needs to be satisfied for all k ∈ N. Moreover, depending
on the transmission lines, pg(k) = (pg,1(k), . . . , pg,I(k))> is
bounded, i.e., we assume that pg(k) ∈ PE ⊂ RI holds and the
set PE is defined according to the capacities of the transmission
lines. Equation (2) also motivates the use of a global controller
in the case that the MGs want to exchange power.

In addition, we use the following notation. We define the
set of real nonnegative numbers R≥0 = {x ∈ R|x ≥ 0}, and
the sets R≤0, R>0, R<0 and N≥0 in a similar manner. The
cardinality of a set A is |A|. For a sequence xl ∈ Rn, l ∈ N,
the notation (xl)l∈N ⊂ Rn is used. Furthermore, 0nm is the
n×m matrix of all zeros and 1nm the matrix of all ones with
the same size. Likewise, the identity matrix of size n×n is In.
Let 0n be the n-dimensional column vector of all zeros and 1n
the vector of all ones with the same size. The diagonal matrix
with entries ai, i = 1, . . . , n, is denoted by diag(a1, . . . , an).

III. SYSTEM MODEL

In this section we model the behavior of a single MG and
the power flow over transmission lines. Before starting with
the MG model, some assumptions are posed.

Throughout this work, it is assumed that the units of all MGs
can run in an autonomous way for several minutes. Hence,
providing power setpoints to the units with a sampling time
on the same time scale is sufficient. In addition, the startup
and shutdown time of the thermal generators is assumed to
be negligible compared to the sampling time of the MPC.
For simplicity, no minimum on- or off-times of these units
are assumed. This can be easily abandoned later by adding
additional MIP constraints or using switching costs (see, e.g.,
[13]). Package loss and failure of communication lines will
not be taken into account. Compared to the sampling time the
communication delays are small, and thus will be neglected.

The voltage amplitudes of the nodes in the grid are assumed
to be constant and the voltage phase angle differences small.
Also, the lines are assumed to be purely inductive. Hence, the
linearized DC power flow model can be used to describe the
power flowing over the transmission lines. The error caused by
the linearized model is assumed to be negligible compared to
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the uncertainty introduced by load and renewable generation.
Furthermore, as reactive power flow is not considered, limits
of the lines are only considered in an approximate way.
The underlying control layers are assumed to ensure that the
storage devices cover all the variations inside the local MGs.
If a MG incorporates no storage units, the thermal units are
assumed to cover all variations. Thus, the power provided to,
or from, an MG is assumed to follow the value determined by
the operational control.

A. Model of a single microgrid

In the model considered, we assume that an MG consists
a number of units which can be classified in four categories:
thermal generators, storage devices, RES and loads. An MG
with one of each of these units is visualized in Figure 2.

Storage devices can be described by the state of charge
xi(k) ∈ R≥0 and an input variable us,i(k) ∈ R capturing the
power supplied to or taken from the storage over a certain
amount of time Ts ∈ R>0, i.e.,

xi(k + 1) = xi(k)− Tsus,i(k). (3)

Clearly, the power supplied to or taken from the storage,
i.e., us,i(k) ∈ R, is the power taken from or supplied to the
MG, denoted by ps,i(k) ∈ R, i.e.,

ps,i(k) = us,i(k). (4a)

The state of charge as well as the power is bounded by

xs,i ≤ xi(k) ≤ xs,i, p
s,i
≤ us,i(k) ≤ ps,i, (4b)

with xs,i ∈ R≥0, xs,i ∈ R>0, p
s,i
∈ R<0 and ps,i ∈ R>0.

If a thermal generator is switched on, it can produce the
power pt,i(k) ∈ R≥0, which is bounded by lower and upper
limits 0 < p

t,i
< pt,i. If the thermal generator is switched off,

it does not contribute to the power flow of the MG. Thus, the
power of a thermal generator can be described by

pt,i(k) = ut,i(k) (4c)

and the bounds

p
t,i
δt,i(k) ≤ ut,i(k) ≤ pt,iδt,i(k), δt,i(k) ∈ {0, 1}. (4d)

Here, δt,i(k) denotes a binary input variable. If δt,i(k) = 0,
then ut,i(k) and consequently also pt,i(k) is forced to zero. If
δt,i(k) = 1, then the power generated by the thermal generator
can be set by ut,i(k) in the interval [p

t,i
, pt,i].

The power pr,i(k) ∈ R≥0 generated by RES, like wind
turbines or solar generators, is limited due to the size of
the plants and thus bounded by certain values p

r,i
∈ R≥0,

pr,i ∈ R≥0. Within theses bounds the value of pr,i(k) can be
controlled if weather conditions allow. The latter are captured
in the signal wr,i(k), which represents the maximum infeed
under actual weather conditions at time k ∈ N. By denoting

the control variable, i.e., the desired infeed, by ur,i(k), the
actual power infeed of the RES can be described by

pr,i(k) = ur,i(k), and (4e)
p
r,i
≤ ur,i(k) ≤ min{pr,i, wr,i(k)}. (4f)

A load wd,i(k) ∈ R≥0 only impacts the local power balance

0 = pr,i(k) + pt,i(k) + ps,i(k) + pg,i(k) + wd,i(k) (4g)

that has to be satisfied at every time step k. Here pg,i(k)
denotes the power exchange with the transmission network.
This power is limited by

p
g,i
≤ pg,i(k) ≤ pg,i. (4h)

Remark III.1. Note that in the local power balance (4g) we
assumed that the MG contains exactly one of each of the units
introduced in this section. This is also the case for the MG
visualized in Figure 2. However, this setting can be easily
extended to MG with multiple or zero units of a certain type
by including/excluding the corresponding power in (4g). For
the remainder of this paper, we assume that every MG consists
of exactly one thermal generator, one storage device, one RES
unit and one load, for simplicity.

The equations derived in this section can be rewritten as

fi(xi, ui) = xi − Tsus,i,

gi(ui, wi) = (ur,i, ut,i, us,i,−ur,i − ut,i − us,i − wd,i)
>
,

pi = (pt,i, ps,i, pr,i, pg,i)
>
,

ui = (δt,i, ut,i, us,i, ur,i)
>
, and wi = (wr,i, wd,i)

>
.

Additionally, with the definitions Xi = [xs,i, xs,i] and

Ui(k) =
(
(0, 0) ∪ (1, [p

t,i
, pt,i])

)
× [p

s,i
, ps,i]× [p

r,i
,min{pr,i, wr,i(k)}]

the constraints xi ∈ Xi and ui ∈ Ui(k) are defined. Note that
the constraints Ui(k) are time dependent due to wr,i(k).

B. Transmission network
The individual MGs are connected by transmission lines.

We model the grid connecting the MGs as a weighted, undi-
rected, connected graph G = (I, E , y). Every MG is repre-
sented by one node in the set I = {1, . . . , I}. Additionally,
E = {E1, . . . , E|E|} is the set of vertices of G, i.e., the
transmission lines and y : E → R>0 is a weighting function
assigning a susceptance to every line. We first choose an
arbitrary direction for every edge Ej ∈ E . The edge-node
incidence matrix F of the resulting directed graph is defined
element wise as

Fi,j =


−1 if node i is the sink of edge Ej ,

1 if node i is the source of edge Ej , and
0 otherwise.

Power flow over the lines in AC networks can be described
in a nonlinear way (see, e.g., [24]). Assuming small differences
in voltage amplitude and phase angles, as well as lossless
lines, we can use the linearized DC power flow equations
instead [25]. With these, the power flowing over the lines,
pE(k) ∈ R|E|, can be derived by

pE(k) = diag(y1, . . . , y|E|)F
>Θ(k), (5)
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where yj = y(Ej) is the susceptance of line Ej and Θ(k) =
(θ1(k), . . . , θI(k))> are the phase angles at the nodes. The
power taken from or supplied to the transmission grid at the
individual nodes is given by pg(k) = FpE(k). Therefore,

pg(k) = YΘ(k), (6)

where Y = F diag(y1, . . . , y|E|)F> is the weighted Laplacian
of G. To consider the power flow over the lines, we need to
derive pE(k) from pg(k). Y is symmetric and has rank I − 1
as G is connected. To calculate pE(k) as a linear function of
pg(k) we thus use the transformation(

Θ̃(k)
θI(k)

)
=

θ1(k)− θI(k)
...

θI(k)

=

(
II−1 −1I−1
0>
I−1 1

)
︸ ︷︷ ︸

T

Θ(k). (7)

Denoting (pg,1(k), . . . , pg,I−1(k))> by p̃g(k) and combining
(6) and (7) yields(

p̃g(k)
pg,I(k)

)
= YT−1

(
Θ̃(k)
θI(k)

)
=

(
Ỹ 0I−1
b> 0

)(
Θ̃(k)
θI(k)

)
, (8)

where Ỹ = T̃YT̃> with T̃ = (II−1, 0(I−1)) and b> =

(0>

(I−1), 1)YT̃>. Note that Ỹ is invertible (see [26]). Inserting
(7) and p̃g(k) = ỸΘ̃(k) into (5) yields

pE(k) = diag(y1, . . . , y|E|)F
>T−1

(
Ỹ−1p̃g(k)
θI(k)

)
. (9a)

Additionally, the last row of (8),

pg,I(k) = b>Ỹ−1p̃g(k), (9b)

needs to be satisfied.
Observe that b>Ỹ−1 = −1>

I−1. This can be easily seen by
using b> = −1>

I−1Ỹ and inserting Ỹ = T̃YT̃> which results
in

(0>

(I−1), 1)YT̃> = −1>
I−1T̃YT̃>.

With T̃ = (II−1, 0(I−1)) this becomes(
(0>

(I−1), 1) + (1>
I−1, 0)>

)
YT̃> = 0>

I−1.

As G is connected, Y has a simple zero eigenvalue and
corresponding right eigenvector 1I . Hence, 1IY = 0I and
(9b) is equivalent to (2).

As power flow only depends on the phase angle differ-
ences, we can freely choose θI(k) = 0, ∀ k ∈ N. Then,
(9) can be expressed with b̃ = (−b>Ỹ−1, 1)> = 1I and
F̃ = diag(y1, . . . , y|E|)F>T−1T̃>Ỹ−1T̃ ∈ R|E|×I as

pE(k) = F̃pg(k), and 0 = b̃>pg(k) = 1>
I pg(k). (10)

The maximum power that can be transmitted over the lines is
limited by the bounds pE ∈ R|E|, pE ∈ R|E| , i.e.,

pE ≤ pE(k) ≤ pE .

With p
g

= (p
g,1
, . . . , p

g,I
)>, pg = (pg,1, . . . , pg,I)

> and

PE = {pg ∈ [p
g
, pg] | pE ≤ F̃pg ≤ pE ∧ 0 = 1>

I pg} (11)

we obtain the constraints for the power exchange, pg(k) ∈ PE .

IV. OPERATIONAL COSTS

The costs to operate an MG at time k, i.e., to allocate the
correct amount of energy, depends on the devices used to

provide the power. We assume that the operation costs can
be expressed in the variables ui and pg,i, which for all i ∈ I
will be abbreviated by the variable zi(k) = (ui(k)>, pg,i(k))>.
Then the stage cost `i : RMi×R→ R of MG i is composed of

`i(zi) = `t,i(zi) + `r,i(zi) + `s,i(zi) + `g,i(zi). (12a)

Here, motivated by [27], the cost of the thermal units
`t,i(zi(k)) ∈ R is approximated by

`t,i(zi(k)) = ct,iδt,i(k) + c′t,iut,i(k) + c′′t,i(ut,i(k))2, (12b)

with the weights ct,i ∈ R>0, c′t,i ∈ R>0 and c′′t,i ∈ R>0.
Once installed, RES units can provide energy at a very low

price compared to other units. Even in times of low load it
is advantages to store infeed from RES for later use in times
of high load or low infeed. Thus, it is desirable to emphasize
RES infeed and chose `r,i(zi(k)) ∈ R with cr,i ∈ R>0 as

`r,i(zi(k)) = cr,i(pr,i − ur,i(k))2. (12c)

For simplicity, costs depending on the state of charge of
storage device are not considered. However, depending on the
efficiency of a storage unit, there are losses based on the usage
that usually grow quadratically in power. With cs,i ∈ R>0,
costs due to conversion losses of storage units are included as

`s,i(zi(k)) = cs,i(us,i(k))2. (12d)

Finally, the exchange of power with the transmission grid
is included in the cost function by

`g,i(zi(k)) = c′g,ipg,i(k) + c′′g,i|pg,i(k)|. (12e)

Here, the first part of the equation, with c′g,i ∈ R>0 assumes
a certain price for energy. The second part, with c′′g,i ∈ R>0

represents a fixed cost per absolute value of traded power.
In addition to the costs assumed for every MG, costs for

transmitting power are also taken into account. Assuming that
line losses increase quadratically with the transmitted power
and using F̃ from Section III-B, they can be modeled as

`E(pg(k)) = (F̃pg(k))>CE(F̃pg(k)) (13)

with the positive definite real matrix CE .
With z(k) = (z1(k)>, . . . , zI(k)>)>, the overall costs are

`(z(k)) = `E(pg(k)) +
∑I
i=1 `i(zi(j)). (14)

V. MPC FOR A NETWORK OF INTERCONNECTED MGS

In Section III, we introduced the model of a grid consisting
of independent MGs connected through transmission lines.
The objective in the grid operation is the minimization of the
costs (14). The MPC scheme used to achieve this is discussed
in the first part of this section. In the second part we present
a distributed optimization algorithm based on the ADMM to
solve the optimization problem involved in the MPC scheme at
every time step on the level of the individual MGs and a central
entity, which corresponds to the transmission grid operator.

A. Optimal control problem and model predictive control

The time dependent exogenous signals wi(k), i ∈ I can
only be predicted some time into the future with sufficient
accuracy. Thus, we use an MPC scheme to compute the input
ui(k) and thereby the power infeed pi(k) of all MGs at time
instant k ∈ N in a receding fashion using a fixed prediction
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horizon K ∈ N>0. To emphasize immediate costs with lower
uncertainty over far future costs with higher uncertainty we
use a discount factor γ ∈ (0, 1]. To simplify notation, we use

ui(k) = (ui(k)>, . . . , ui(k +K − 1)>)>, and

zi(k) = (ui(k)>, pg,i(k)>, . . . , pg,i(k +K − 1))>.

With the state measurement, xki ∈ RSi

≥0, and forecasts of
the uncertain values, wi(j) ∈ RRi , at time k ∈ N for
j = k, . . . , k +K − 1, the predicted minimal costs to operate
the network over the next K time steps can be obtained from
the solution of the following optimization problem.

Problem 1. Mixed integer quadratic problem

min
u1(k),...,uI(k)

∑k+K−1
j=k γ(j−k)

(
`E(pg(k)) +

∑I
i=1 `i(zi(j))

)
s.t. xi(k) = xki , xi(j + 1) ∈ Xi, ui(j) ∈ Ui(j), (15)

xi(j + 1) = fi(xi(j), ui(j)), (16)
pi(j) = gi(ui(j), wi(j)), (17)
pg(j) ∈ PE (18)

∀ j = k, . . . , k +K − 1, ∀ i ∈ I

Assuming that Xi, Ui and PE are defined such that Prob-
lem 1 is feasible, in an MPC scheme, the problem is solved at
every time step k to obtain an optimal solution u?i (k) for every
i ∈ I. From this, u?i (k) is applied as a feedback in MG i. This
leads to the next state measurement at time k + 1 and a new
optimization problem, which is solved to repeat the process.

Problem 1 is a mixed integer quadratic program (MIQP) due
to the binary decision variables δt,i(k) ∈ {0, 1}. Even though
the MIQP is non-convex, efficient algorithms, e.g., branch-
and-bound, exist to find an optimal solution of the problem.
However, for the distributed ADMM investigated in the next
section, a convex problem is needed to ensure convergence.
Thus, we consider a second optimization problem, a relaxation
of Problem 1. To this end, we relax the constraints (4d) by
allowing δt,i(k) in the continuous interval [0, 1], i.e.,

p
t,i
δt,i(k) ≤ ut,i(k) ≤ pt,iδt,i(k), δt,i(k) ∈ [0, 1] (19)

i.e., the constraint set Ui(k) becomes

Uci (k) = {(δt,i, ut,i)|δt,i ∈ [0, 1], ut,i ∈ [p
t,i
δt,i, pt,iδt,i]}

× [p
s,i
, ps,i]× [p

r,i
,min{pr,i, wr,i(k)}].

Using the constraint set Uci (k) instead of Ui(k) leads to a
quadratic convex optimization problem.

Problem 2. Quadratic convex optimization problem

min
u1(k),...,uI(k)

∑k+K−1
j=k γ(j−k)

(
`E(pg(j)) +

∑I
i=1 `i(zi(j))

)
s.t. xi(k) = xki , xi(j + 1) ∈ Xi, ui(j) ∈ Uci (j), (20)

and (16)–(18)
∀ j = k, . . . , k +K − 1, ∀ i ∈ I.

Remark V.1. The only difference between Problem 2 and
Problem 1 is in the constraint sets Uci (j) and Ui(j). Uci (j)
is convex and the resulting Problem 2 is a convex problem.
Since it is a relaxation of Problem 1, one cannot expect
that their solutions coincide. However, to ensure that (4d)

holds, Problem 2, is only used to determine pg. After pg is
determined, local MIQPs can be solved to obtain a feasible
solution of Problem 1 (see Algorithm 1). An exemplary
quantification of the error introduced by the relaxation can
be found in Section VI.

B. Hierarchical distributed optimization

To maintain autonomy of the individual MGs we use the
ADMM to solve Problem 2 in a distributed way by exchanging
information on pg between the MGs and an additional central
entity responsible for the transmission lines. For details on the
ADMM see, e.g, [22], [23], and the references therein. Here,
we only review the main ideas necessary for our application.

To solve Problem 2 using the ADMM, we introduce copies
of pg(j) denoted by p̂g(j) for j = k, . . . , k +K − 1,

p̂g(k) = (p̂g(k), . . . , p̂g(k +K − 1)>)>

and add the additional redundant constraints

pg(j)− p̂g(j) = 0 (21)

to Problem 2. With this definition and with a fixed parameter
ρ > 0, the augmented Lagrangian of Problem 2 is given by

L
(
zi(k), p̂g(k),Λ(k)

)
=∑k+K−1

j=k

(
γ(j−k)

(
`E(p̂g(j)) +

∑I
i=1 `i(zi(j))

)
+
∑I
i=1

(
λi(j)(pg,i(j)− p̂g,i(j))+ ρ

2‖pg,i(j)− p̂g,i(j)‖
2
2

))
.

Here, λ(j) = (λ1(j), . . . , λI(j))
> for j = k, . . . , k + K − 1

and Λ(k) = (λ(k)>, . . . , λ(k+K−1)>)> denote the Lagrange
multipliers corresponding to the equality constraints (21).

The decoupled structure of the constraints of Problem 2
allows for an iterative solution of the optimization problem by
sequentially performing the following updates for an arbitrary
initialization (z0i (k), p̂0

g(k),Λ0(k)). The individual MGs solve
the decoupled optimization problems

zl+1
i (k) ∈ argmin

zi(k)

∑k+K−1
j=k

(
γ(j−k)`i(zi(j)) (22)

+ λli(j)pg,i(j) +
ρ

2
‖pg,i(j)− p̂lg,i(j)‖22

)
s.t. (16), (17) and (20) ∀ j = k, . . . , k +K − 1.

in parallel for fixed p̂lg(k) and Λl(k). The updates pl+1
g,i (j),

j = k, . . . , k+K − 1, extracted from zl+1
i (k), are sent to the

central entity, which then solves the optimization problem

p̂l+1
g (k) ∈ argmin

p̂g(k)

∑k+K−1
j=k

(
γ(j−k)`E(p̂g(j)) (23)

− p̂g(j)>λ(j)l +
ρ

2
‖pl+1
g (j)− p̂g(j)‖22

)
s.t. p̂g(j) ∈ PE ∀ j = k, . . . , k +K − 1.

and afterwards updates the Lagrange multipliers

λl+1
i (j) = λli + ρ(pl+1

g,i (j)− p̂l+1
g,i (j)) (24)

∀ j = k, . . . , k +K − 1, ∀ i ∈ I.
For j = k, . . . , k + K − 1, p̂l+1

g,i (j) and λl+1
i (j) are commu-

nicated to the MGs and the steps are repeated for l = l + 1.
For the scheme, the following convergence properties hold.
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Theorem V.2. Let (zl, p̂lg,Λ
l)l∈N be a sequence generated by

iteratively computing the updates (22)–(24) for arbitrary initial
values (z0, p̂0

g,Λ
0). Then the following holds.

(i) The sequence (zl, p̂lg,Λ
l)l∈N is bounded, and every limit

point of (zl)l∈N is an optimal solution of Problem 2.
(ii) The sequence(∑k+K−1

j=k γ(j−k)
(
`E(p̂lg(j)) +

∑I
i=1 `i(z

l
i(j))

))
l∈N

converges to the optimal value of Problem 2.

Proof. See [22, Proposition 4.2.] or [23, Chapter 3.2] for a
general proof for convex optimization problems.

Remark V.3. One property of the ADMM scheme is that the
essential optimization step can be performed autonomously by
each MG. As each MG only shares the variable pg,i with the
network, the structure and cost function of MG i only has to be
known to MG i itself. Furthermore, the size and complexity of
the local optimization problems only depends on the prediction
horizon and on the number of devices in the MG, but not on
the size of the overall network. Another important aspect of the
ADMM scheme is that the optimization problem of the central
entity can change, e.g., if the topology of the transmission grid
changes, without giving notice to the MGs.

C. Hierarchical distributed model predictive control algorithm

Algorithm 1 Distributed model predictive control algorithm
(1) Initialization at time k ∈ N:

– MG For i, . . . , I , measure xi(k) = xki
– Central Entity: Define grid constraints PE

(2) Main Loop (ADMM): For l = 1, . . . , lmax − 1 ∈ N
(i) MGs: For i = 1, . . . , I , solve (22) in parallel and send

pl+1
g,i (k), . . . , pl+1

g,i (k +K − 1) to the central entity.
(ii) Central Entity:

• Solve (23)
• Update the Lagrange multipliers (24)
• Communicate p̂g,i(k), . . . , p̂g,i(k + K − 1) and
λi(k), . . . , λi(k +K − 1) to the MGs.

(3) Mixed integer update:
For l = lmax, for all MGs i = 1, . . . , I

• Solve (22) where Uci (j) is replaced by Ui(j) and
the constraints pg,i(j)− p̂lmax

g,i (j) = 0 are added for
j = k, . . . , k +K − 1.

(4) Application of ulmax+1
i (k), increment k and go to (1).

At every time instance k ∈ N the relaxed optimization
Problem 2 is solved in a distributed way using the ADMM
updates (22)–(24) in step (2) of Algorithm 1 by performing
a fixed number of iterations, lmax ∈ N, or until a stopping
criterion, e.g., based on the difference of (zli(k), p̂lg(k),Λl(k))

and (zl−1i (k), p̂l−1g (k),Λl−1(k)) is satisfied. Then, to obtain a
feasible solution of the original Problem 1, a single MIQP
is solved in every MG in step (3). Here, the constraints
pg,i(j)− p̂lmax

g,i (j) = 0 are added to Problem 1 which implies
that plmax+1

g (j) = p̂lmax
g (j) ∈ PE for all j = k, . . . , k+K−1.

The resulting solution is again denoted by u?i (k). From this
u?i (k) is extracted and applied in the standard MPC fashion.

Remark V.4. In general, it is possible that the mixed integer
update (step (3) in Algorithm 1) is infeasible. However,
such an infeasibility was not encountered in the numeri-
cal simulations in Section VI. Infeasibility could occur if
ulmax+1
t,i (j) ∈ (0, p

t,i
) holds for at least one i ∈ I and

one j ∈ {k, . . . ,K + k − 1}. Nevertheless, it is possible
to set ut,i(j) = 0 or ut,i(j) = p

t,i
by changing us,i(j),

or by reducing the renewable infeed. However, a rigorous
investigation on sufficient conditions for feasibility of the
mixed integer update still needs to be performed.

VI. CASE STUDY

To illustrate the performance of Algorithm 1 a numerical
case study was performed. Before presenting the results, the
grid and the simulation parameters are introduced.

In the case study, the topology in Figure 3 was used. It
consists of four MGs, each containing a thermal generator,
a storage unit and an RES. Every MG has a load connected
to its busbar and a connection to the transmission network.
The limits of the units and the point of common coupling
are equal for all MGs as shown in Table I. Every MG i is
equipped such that in case of islanded operation the power
demand, wd,i(k), can always be provided by the units inside
the MG. To ensure this, every MG has a thermal generator
as backup unit in case of transmission line failures or low
RES infeed. A sampling time of Ts = 0.5 h and a prediction
horizon of K = 12 was used to predict a possible full charge
or discharge of the storage units that have a capacity of 6 pu h
and a nominal power of 1 pu. For the prediction of load and
RES infeed, a naïve forecast (see, e.g., [28]) was used that
assumes that all values in the future are equal to the ones
that are currently measured. The time series for wind and
irradiation were derived from [29], the load time series was
emulated based on real load data. As indicated in Section III,
every storage unit covers the uncertainties introduced by
the imperfect forecast. In practice, the possible constraint
violations caused by this, could be reduced by tightening the
bounds of desired power or energy of the storage units. The
weights for stage costs (12), (13) were chosen according to
Table II. For the thermal generators, the costs were calculated
by normalizing the values from [27] to 1 pu. The scheme was
implemented in MATLAB® 2015a and YALMIP R20160930
[30] with Gurobi 6.5.1 as solver.

TABLE I
OPERATION LIMITS OF UNITS AND TRANSMISSION LINES (i = 1, . . . , 4).

Parameter Value

(p
t,i

, p
r,i

, p
s,i

, p
g,i

)> (0.2, 0,−1,−1)> pu

(pt,i, pr,i, ps,i, pg,i)
> (1, 2, 1, 1)> pu

(xi, xi)
> (0, 6)> puh

x0 (1, 3.4, 2.9, 5.6)> puh

pE (−1,−1,−1,−1)> pu

pE (1, 1, 1, 1)> pu

y (20, 20, 20, 20)> pu
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Fig. 3. Simulation topology and results.

In Figure 3 the results of the operation using Algorithm 1
over a simulation interval of seven days is visualized. To
show the flexibility of the MPC algorithm with respect to the
network structure, a failure of the transmission line connecting
MG 1 and MG 2 on the third day of the simulation is assumed.
As pointed out in Section V, only the central entity has to
change its optimization problem (23), or more precisely the
set PE . It can be seen that the power balance (4g) holds for all
MGs and all time steps. Furthermore, the plots show that the
stored energy xi, i = 1, . . . , 4 stays inside the recommended
bounds most of the time. The observed violations of the
recommended bounds are due to imprecise forecasts. However,
global power balance is always maintained. The plots further
show that the photovoltaic units provide power during the day

TABLE II
WEIGHTS OF COST FUNCTIONS (i = 1, . . . , 4).

Weight Value Weight Value

ct,i 0.1178 c′′s,i 0.05 1/pu2

c′t,i 0.751 1/pu c′g,i 0.5 1/pu2

c′′t,i 0.0048 1/pu2 c′′g,i 0.1 1/pu2

c′′r,i 1 1/pu2 CE 0.1 · diag(1, 2, 3, 6) 1/pu2

that is stored and provided during the night. Additionally,
it can be observed that the power flow over the passive
transmission lines pE,i, i = 1, . . . , 4 stays inside the bounds.
Power exchange between MG 3 and 4 is close to zero almost
all the time. This is probably due to similar patterns of
photovoltaic infeed in MG 3 and 4. In contrast, the other lines
are used extensively.

The results visualized in Figure 3 and those of simulation
using different settings are summarized in Table III. In the first
column the accumulated values of Figure 3 using Algorithm 1
are given. Note that in the closed-loop solution, the effect of
imperfect forecasts causes an increase in costs of about 5 %.

In the second column of Table III, the central MIQP
of Problem 1 is solved and directly applied to all MGs.
Comparing column one and two, it can be seen that solving
Problem 1 leads to a small improvement in RES and thermal
infeed, as well as operation costs. However, this comes at
the expense of a much higher computational complexity of
the global MIQP. Furthermore, Algorithm 1 allows for more
flexibility and autonomy of the MGs as well as scalability with
respect to the essential optimization step.

In column three of Table III, the results using Algorithm 1
for the operation of four islanded MGs are provided. Here,
no power is exchanged over the transmission lines, i.e.,
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TABLE III
ACCUMULATED RESULTS OF DIFFERENT SIMULATIONS.

MG 2 one day islanded

local MIP global MIP Islanded

RES energy in pu h 406.5 406.9 314.5
Thermal energy in pu h 46.9 46.5 139.7
Costs (perfect forecast) 3087.0 3083.9 3551.5

Costs MG 1 358.7 356.5 666.4
MG 2 819.8 818.3 930.1
MG 3 1014.3 1012.7 1024.1
MG 4 1036.2 1038.5 1062.7

Transmission 7.0 7.2 0.0
MG 1–4 & transmission 3236.1 3233.2 3683.3

PE = {0I}, and thus pg(k) = 0I for all k ∈ N. As to be
expected, the costs of the connected operation in column one
are significantly lower than in the islanded operation. This
reduction results from an increase of RES infeed of 29 %
and a decrease of thermal infeed of 66 % compared to the
islanded case. In addition, the cost of each individual MG
decreases when sharing power over the transmission network.
Hence, trading energy between the MGs pays-off and every
MG benefits from a collaboration. Nevertheless, there seems
to be a difference in the decrease of costs for MGs equipped
with wind turbines and MGs equipped with photovoltaic power
plants (see Figure 3 and Table III). In the simulation, trading
energy between the MGs especially pays-off, if their RES
infeed differs. If all MGs were only equipped with photovoltaic
units, an interconnection of the MGs might not result in such a
high benefit as seen for pE,4. Still, an interconnection can help
decrease thermal generation and increase the share of RES.

VII. CONCLUSIONS

In this paper we proposed a hierarchical distributed control
strategy based on the ADMM to operate interconnected MGs.
The strategy allows to perform the essential optimization
step autonomously by each individual MG. In particular,
the structure and the local cost function of each individual
MG does not need to be revealed to the other MGs or the
central authority. It was shown that the algorithm used has
the potential to increase the overall infeed from RES while
maintaining flexibility in the operation of local MGs.

Next steps include testing the control scheme for a larger
number of MGs and more complex MG setups to assess
how the computing time scales. Additionally, more accurate
forecasts and a more comprehensive model that includes,
e.g., reactive power flow and a more detailed model of the
storage units, shall be employed. Furthermore, investigations
for feasibility of the mixed integer update are planned.
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