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Abstract— We consider model predictive control with termi-
nal conditions for discrete-time multiobjective optimal control
problems for classical and economic stage costs. In this paper
it is demonstrated that choosing an appropriate solution to
the multiobjective optimization problem in each step of the
MPC algorithm yields a near Pareto-optimal infinite-horizon
performance of the MPC feedback for each cost criterion.

I. INTRODUCTION

Multiobjective (MO) model predictive control (MPC) is an
attempt to incorporate optimal control problems with multi-
ple objectives into the MPC framework. A multiobjective op-
timal control problem typically arises if one system/process
has multiple (conflicting) objectives or if several agents
with individual dynamics all have their own objective(s)
but are coupled through inputs, dynamics, and/or costs. The
existing research on multiobjective model predictive control
is usually embedded in a cooperative setting and aims to
obtain stability. A common approach is to define a weighted
sum of all objectives, see e.g. [2], [6], [14], [16]. Since
this approach reduces MO MPC to classical scalar-valued
MPC, stability can be achieved by proving that the weighted
sum of objectives is a Lyapunov function. Advantageous
features of this strategy are the low computiational effort and
that all the results from classical MPC are readily available.
Other approaches to handle the MO optimization problem are
hierarchical MPC algorithms (e.g. [9]), the so called utopia-
tracking approach in [18] and iterative schemes, see [11]. The
aforementioned all prove stability via the construction of a
Lyapunov function. Conceptually closer to our work are the
refs. [5], [10], [12] as well as [13], [17]. In the former papers
in each step of the MO MPC algorithm an approximation to
the Pareto front is calculated and then – according to some
pre-specified criterion – a Pareto optimum is chosen. The
latter skip the approximation of the Pareto front.

Though often possible, a performance analysis is usually
not carried out for MO MPC. An exception is the work
[6], making a performace statement on the (unweighted)
sum of objectives. While one could extend this result by
deriving estimates for the weighted sum of objectives or
for the most prioritized objective, in this paper we pursue
a different approach and present an MO MPC scheme with
terminal conditions which enables us to make performance
statements for every single objective. One reason why such
an analysis is needed is that statements on the performance
of the weighted sum do not imply statements on the single
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L. Grüne and M. Stieler are with the Department of

Mathematics, University of Bayreuth, 95440 Bayreuth, Germany.
{lars.gruene,marleen.stieler}@uni-bayreuth.de

objectives, see [8]. The setting of multiple objectives for one
system or multiple systems with own objective can both be
handled. The idea of our approach is the following: In each
iteration of the MPC algorithm we choose a Pareto optimal
sequence within certain constraints and – as usual in MPC
– apply the first piece of it to the system. We will show that
the infinite-horizon performance of our MO MPC algorithm
is bounded by the objective of a Pareto optimum on a finite
horizon for each objective.

The novelty of our findings mainly arises from the ability
to make a statement on the performance of every objective
and from the fact that, a priori, we do not have to define a
weighting or prioritization of objectives. Moreover, we do
not restrict ourselves to a specific technique to calculate
the Pareto optima. Hence, our theoretical analysis does
not depend on such a technique, and we can choose the
optimization method that suits best for the given problem.

II. SETTING AND DEFINITIONS

We consider a discrete-time system

x+ = f(x, u), f : Rn × Rm → Rn (1)

and admissible state and control spaces X ⊆ Rn and U ⊆
Rm. Moreover, stage costs `i : X× U → R≥0 and terminal
costs Fi : X0 → R, i ∈ {1, . . . , s}, are given and we define
the cost functionals

JNi (x,u) :=

N−1∑
k=0

`i (x(k), u(k)) + Fi(x(N)), (2)

that we aim to minimize wrt. u. Here, the expression x(·)
refers to the trajectory corresponding to the control sequence
u = (u(0), u(1), . . . , u(N − 1)) ∈ UN and initial value x.
If necessary, we will use the notation xu(·, x) to indicate
the control sequence and the initial value generating the
respective trajectory.

Our setting can reflect different situations. Either (1) is
one system with multiple objectives to be minimized, or (1)
is a collection of individual systems

x+ =

x
+
1
...
x+p

 =

f1(x, u)
...

fp(x, u)

 =: f(x, u), (3)

with fi : Rn × Rm → Rni and n =
∑p
i=1 ni, xi ∈ Rni ,

where each system has at least one cost criterion `i (i.e.
s ≥ p). In an MPC approach with terminal constraints we



have to solve the problem

min
u

(
JN1 (x,u), . . . , JNs (x,u)

)︸ ︷︷ ︸
=:JN (x,u)

s.t. x(k + 1) = f(x(k), u(k)), k = 0, . . . , N − 1,

x(k) ∈ X, k = 1, . . . , N − 1, (4)
x(N) ∈ X0 ⊆ X,
u ∈ UN .

in a sequential manner. Since the terminal constraint x(N) ∈
X0 can generally not be satisfied by all initial values x ∈
X, we define the feasible set XN := {x ∈ X|∃u ∈ UN :
x(k) ∈ X, k = 1, . . . , N−1, x(N) ∈ X0}, cf. [7, Definition
3.9] or [14, Section 2.3]. For x ∈ XN we define the set of
admissible controls for the Pareto optimization problem (4)
by UN (x) := {u ∈ UN | x(k + 1) = f(x(k), u(k)), k =
0, . . . , N − 1, x(k) ∈ X, k = 1, . . . , N − 1, x(N) ∈ X0}.

Due to the fact that (4) contains more than one cost
functional, in general it is not possible to find an admissible
control sequence u that minimizes all cost functionals simul-
taneously, giving rise to the following cooperative notion of
optimality.

Definition 1 (Pareto Optimality, Nondominated Point): A
control sequence u? ∈ UN (x) is a Pareto optimal (control)
sequence (POS) of length N for initial value x ∈ XN if
there is no u ∈ UN (x) such that

∀i ∈ {1, . . . , s} : JNi (x,u) ≤ JNi (x,u?) and

∃i ∈ {1, . . . , s} : JNi (x,u) < JNi (x,u?).

The objective value JN (x,u?) is called nondominated. The
set of all POS of length N for initial value x ∈ XN will be
denoted by UNP (x).
Usually, Pareto optimal sequences are not unique. It is rather
typical that there exists a set or even continuum of such se-
quences as shown in Fig. 1 for the case of two objectives. The
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Fig. 1. Schematic illustration of a Pareto front for two objectives.

gray surface represent the set of admissible values JN (x) :=
{JN (x,u) = (JN1 (x,u), . . . , JNs (x,u))|u ∈ UN (x)}, the
black curve the set JNP (x) := {(JN1 (x,u), JN2 (x,u))|u ∈
UNP (x)} of nondominated values. This set is often referred
to as the efficient or nondominated set or Pareto front. Even
though all points on the black curve are equally optimal in

terms of the optimization problem (4), they are obviously
not from each objective’s point of view.

From the definition of Pareto optimal sequences we deduce
the following property, which is similar to the Dynamic Pro-
gramming Principle for single-objective optimization prob-
lems.

Lemma 2 (Tails of POS are POS): If u? ∈ UNP (x), then
u?,K := u?(·+K) ∈ UN−KP (xu

?

(K,x)) for all K ∈ N<N ,
where u?(·+K) := (u?(K),u?(K + 1), . . . ,u?(N − 1)).

Proof: We assume that u?,K is not a POS of length
N−K for initial value xu

?

(K,x). This implies the existence
of u ∈ UN−K(xu

?

(K,x)) satisfying

∀i : JN−Ki (xu
?

(K,x),u) ≤ JN−Ki (xu
?

(K,x),u?,K) and

∃j : JN−Kj (xu
?

(K,x),u) < JN−Kj (xu
?

(K,x),u?,K).

Hence,

∀i : JNi (x,u?) ≥
K−1∑
k=0

`i(x
u?

(k, x), u?(k)) + JN−Ki (xu
?

(K,x),u) and

∃j : JNj (x,u?) =

K−1∑
k=0

`j(x
u?

(k, x), u?(k)) + JN−Kj (xu
?

(K,x),u?,K)

>

K−1∑
k=0

`j(x
u?

(k, x), u?(k)) + JN−Kj (xu
?

(K,x),u).

This contradicts the fact that u? ∈ UNP (x).

III. A MULTIOBJECTIVE MPC ALGORITHM

In the sequel we will deal with the following question:
Provided that we achieve a Pareto optimal control in every
step of the MPC iteration, does the performance of the
closed-loop solution inherit similar optimality properties
from the iterations? We start our investigations under the
following assumptions, which are a straightforward extension
of the assumptions for single-objective MPC with terminal
conditions, see also [2].

Assumption 3: 1) There is an equilibrium pair
(x∗, u∗) ∈ X× U, i.e., f(x∗, u∗) = x∗.

2) There are α`,i ∈ K such that all stage costs `i,
i ∈ {1, . . . , s}, satisfy minu∈U `i(x, u) ≥ α`,i(‖x −
x∗‖) ∀x ∈ X.

Assumption 4 (Lyapunov function terminal cost): We as-
sume that x∗ from Assumption 3 is contained in X0, Fi(x) ≥
0 for all i and all x ∈ X0, and the existence of a local
feedback κ : X0 → U satisfying

1) f(x, κ(x)) ∈ X0 and
2) ∀x ∈ X0, i ∈ {1, . . . , s} : Fi(f(x, κ(x))) +

`i(x, κ(x)) ≤ Fi(x).
Imposing Assumption 4 ensures that it is always possible to
remain within the terminal constraint set X0 and that the cost
of this control action is bounded from above by the original
terminal cost. As we will see in the proof of Theorem 11
this leads to the fact, that the terminal constraint x(N) ∈ X0



is more restrictive for smaller than for larger optimization
horizon N . The following is the MO MPC algorithm we
propose in this paper.

Algorithm 5 (MO MPC with terminal conditions):
(0) At time n = 0 : Measure x(n) and choose a POS

u?,Nx(n) ∈ UNP (x(n)). Go to (2).
(1) Measure x(n). Choose a POS u?,Nx(n) such that

JNi

(
x(n),u?,Nx(n)

)
≤ JNi

(
x(n),uNx(n)

)
∀ i.

(2) For x := x
u?,N

x(n)(N, x(n)) set

uNx(n+1) :=
(
u?,Nx(n)(1), . . . , u?,Nx(n)(N − 1), κ(x)

)
.

(3) Apply the feedback µN (x(n)) := u?,Nx(n)(0), set
n = n+ 1 and go to (1).

In the remainder of this section we analyze the feasibility
of the choice of the POS u?,Nx(n) ∈ UNP (x(n)) in Algorithm 5,
step (1). The following Definitions 6, 7 and Theorem 8
from the theory of multiobjective optimization are adapted
from [4], [15] to our setting. Theorem 8 implies the desired
feasibility result. The idea is to find conditions which imply
that there are nondominated points in the lower left part of
JN (x) (cf. Fig. 1). Finally, Lemma 9 gives easily checkable
sufficient conditions for the assumptions of Theorem 8.

Definition 6 (External stability): If the set of admissible
values JN (x), x ∈ XN , has the property that for each j ∈
JN (x)\JNP (x) there is jP ∈ JNP (x) such that j ≥ jP holds
componentwise, we call JN (x) externally stable.

Definition 7 (Cone-Compactness): The set JN (x) is
called Rs≥0-compact if ∀j ∈ JN (x) the set (j − Rs≥0) ∩
JN (x) is compact.

Theorem 8: Given a horizon N ∈ N≥1 and an initial value
x ∈ XN . If

1) JN (x) 6= ∅ and
2) JN (x) is Rs≥0-compact,

then the set JN (x) is externally stable.
We will now present sufficient conditions which ascertain
that the requirements of Theorem 8 are met and which are
fulfilled by the example in Section V.

Lemma 9: If U is compact, X and X0 are closed and
f, Fi and `i are continuous for all i, then the conditions
of Theorem 8 are fulfilled for all x ∈ XN and all N ∈ N.

Proof: Let an initial value x ∈ XN and a horizon
N ∈ N≥1 be given.

1) It follows from the definition of XN that that UN (x) 6=
∅ for x ∈ XN and therefore JN (x) 6= ∅.

2) It was proven in [3] that (under the given assumptions)
the set ∆, that contains all feasible trajectories with
respective control sequences (xu(·),u), is a compact
subset of Z := Rn × · · · × Rn︸ ︷︷ ︸

N times

×Rm × · · · × Rm︸ ︷︷ ︸
N−1 times

. If

we interpret JN as a function that maps from Z to

Rs, then the compactness of JN (x) can be concluded
from compactness of ∆ and continuity of the `i and
Fi. The cone-compactness required in condition 2 of
Theorem 8 is an immediate consequence from the
stronger property of compactness.

IV. PROPERTIES OF THE MO MPC ALGORITHM -
PERFORMANCE AND CONVERGENCE

Fig. 2 schematically visualizes the choice of the POS
in step (1) of the algorithm. The bounds resulting from
uNx(n) are visualized by the dashed lines and determine the
set of nondominated points that may be chosen (thick, red
line). The basic idea (formalized in Lemma 10) is that the
control sequence uNx(n) in step (2) is a POS of length N − 1
prolonged by the local feedback from Assumption 4 and that
the prolongation reduces the value of the objective functions.
Our preliminary considerations in Section III moreover show

J2

J1

JN
(
x(n),uN

x(n)

)

Fig. 2. Step (1) in Algorithm 5.

that – under appropriate assumptions – there is a POS
with smaller objective value than the prolonged sequence
(for each i). Hence, for each u?,N−1 ∈ UN−1P (x) there is
u?,N ∈ UNP (x) with

JNi (x,u?,N ) ≤ JN−1i (x,u?,N−1) ∀i ∈ {1, . . . , s}.

Lemma 10: If Assumption 4 holds and if there is a POS
u?,N−1 ∈ UN−1P (x), x ∈ XN , then there exists a sequence
uN ∈ UN (x) satisfying

JNi (x,uN ) ≤ JN−1i (x,u?,N−1) ∀i ∈ {1, . . . , s}.
Proof: We define uN as follows. uN (k) := u?,N−1(k)

for k = 0, . . . , N − 2 and uN (N − 1) := κ(x̄) from
Assumption 4, where x̄ := xu

N

(N − 1, x). Then uN is
feasible because u?,N−1 ∈ UN−1(x), and therefore, x̄ ∈ X0.
Assumption 4 ensures feasibility of κ(x̄) and f(x̄, κ(x̄)).



With the definition of uN we obtain the estimates

JNi (x,uN ) =

N−1∑
k=0

`i(x
uN

(k, x),uN (k)) + Fi(x
uN

(N, x))

=

N−2∑
k=0

`i(x
uN

(k, x),uN (k)) + `i(x̄, κ(x̄))

+ Fi(fi(x̄, κ(x̄)))

≤
N−2∑
k=0

`i(x
u?,N−1

(k, x),u?,N−1(k)) + Fi(x̄)

= JN−1i (x,u?,N−1).

By means of the ideas that we explained in the beginning of
the section, we are now ready to give our main result on the
performance of the MPC feedback on an infinite horizon.

Theorem 11 (MO MPC Performance Theorem):
Consider a problem with system dynamics (1), cost
criteria (2), and let N ∈ N≥2. Let Assumptions 3 and 4
hold and let the set JN (x) be externally stable for each
x ∈ XN . Then, the MPC feedback µN : X → U defined in
Algorithm 5 has the following infinite-horizon closed-loop
performance:

J∞i
(
x(0), µN

)
:= lim

K→∞

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ JNi

(
x(0),u?,Nx(0)

)
(5)

for all objectives i ∈ {1, . . . , s}, in which u?,Nx(0) denotes the
POS of step (0) in Algorithm 5.

Proof: Feasibility: The existence of the POS in step (0)
and (1) is concluded from external stability of JN (x).
Feasibility of uNx(n+1) in (2) follows from Assumption 4.
Performance: It follows from the definition of the cost
functional in (2) that

JNi

(
x(k),u?,Nx(k)

)
= `i

(
x(k), u?,Nx(k)(0)

)
+JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)
,

and hence, for arbitrary K ∈ N≥1
K−1∑
k=0

`i(x(k), µN (x(k))) =

K−1∑
k=0

`i(x(k), u?,Nx(k)(0))

=

K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
−JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)]
≤
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
−JNi

(
f(x(k), u?,Nx(k)(0)),uNx(k+1)

)]
,

in which the inequality follows from Lemma 10 in combi-
nation with Lemma 2, and u?,Nx(k) is the POS chosen in the

algorithm at time k. In step (1), u?,Nx(k+1) is constructed such
that

JNi

(
x(k + 1),u?,Nx(k+1)

)
≤ JNi

(
x(k + 1),uNx(k+1)

)
.

Thus, we finally obtain
K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤JNi

(
x(0),u?,Nx(0)

)
− JNi

(
x(K),uNx(K)

)
≤JNi

(
x(0),u?,Nx(0)

)
,

because of the positivity of JNi . The expression on the left
hand side of the inequality is monotonically increasing and
due to its boundedness, the limit for K →∞ exists and we
conclude the assertion.

Remark 12: A closer look at Algorithm 5 reveals that only
for k ≥ 1 the choice of u?,Nx(k) is subject to additional con-
straints (see step (1)). The first POS u?,Nx(0), which determines
the bound on the performance of the MPC algorithm, can be
chosen arbitrarily. Thus, the performance can be calculated
a priori from a multiobjective optimization of horizon N .

Corollary 13: Under the assumptions of Theorem 11 it
holds that the trajectory x(·) driven by the feedback µN from
Algorithm 5 converges to the equilibrium x∗.

Proof: It follows from Theorem 11 that
the sum

∑∞
k=0 `i

(
x(k), µN (x(k))

)
converges

for each i ∈ {1, . . . , s}. Hence, the sequences(
`i
(
x(k), µN (x(k))

))
k∈N0

, i ∈ {1, . . . , s}, tend to
zero. Together with Assumption 3 for arbitrary i we obtain

∀ε > 0 ∃K ∈ N0 : ∀k ≥ K :

ε > |`i
(
x(k), µN (x(k))

)
| = `i

(
x(k), µN (x(k))

)
≥ min
u∈U(x(k))

`i(x(k), u) ≥ α`,i(‖x(k)− x∗‖).

Since α`,i is a K function, we conclude

α`,i

(
lim
k→∞

‖x(k)− x∗‖
)

= lim
k→∞

α`,i (‖x(k)− x∗‖) = 0

⇔ lim
k→∞

‖x(k)− x∗‖ = 0.

We have proved in Theorem 11 that the inequalities

J∞i
(
x(0), µN

)
≤ JNi

(
x(0),u?,Nx(0)

)
∀ i ∈ {1, . . . , s}

hold for the MPC feedback µN from Algorithm 5. Usually,
one would like to compare the infinite-horizon MPC cost to
an expression of the form J∞i (x(0),u?,∞x(0)), where u?,∞x(0) is
a POS for the infinite-horizon problem

min
u

(J∞1 (x(0),u), . . . , J∞s (x(0),u)) ,

with J∞i (x(0),u) :=

∞∑
k=0

`i(x(k), u(k))

s.t. x(k + 1) = f(x(k), u(k)), k ∈ N0, (6)
x(k) ∈ X, k ∈ N
u ∈ U∞.



We now show that it is, in general, not possible to bound
J∞i

(
x(0), µN

)
from above by J∞i (x(0),u?,∞x(0)). Again, we

summarize all constraints in (6) by writing u ∈ U∞(x(0)).
Lemma 14: Let N ∈ N≥2, x ∈ XN be given.

Let the assumptions of Theorem 11 hold and assume
furthermore external stability of the set J∞(x) :=
{(J∞1 (x,u), . . . , J∞s (x,u))|u ∈ U∞(x)}. Then, for each
u?,N ∈ UNP (x) there is u?,∞ ∈ U∞P (x) such that the
inequalities

JNi
(
x,u?,N

)
≥ J∞i (x,u?,∞)

hold for all i = 1, . . . , s.
Proof: For N ∈ N≥2 and x ∈ XN fix an arbitrary

u?,N ∈ UNP (x). Define the MPC feedback µN according to
Algorithm 5 and define u ∈ U∞(x) via u(k) = µN (xµ

N

(k))
for k ∈ N≥0. Then, we have

JNi
(
x,u?,N

) Thm. 11
≥ J∞i

(
x, µN

)
= J∞i (x,u) ∀ i.

Since we assume external stability of the set J∞(x), there
exists u?,∞ ∈ U∞P (x) satisfying

J∞i (x,u) ≥ J∞i (x,u?,∞) ∀ i.

This yields the assertion.
Lemma 14 implies that Theorem 11 cannot be used to
establish the inequality J∞i

(
x(0), µN

)
≤ J∞i (x(0),u?,∞).

However, we will be able to show an approximate estimate of
this form in Theorem 16. As a preparation, we first show that
the trajectory corresponding to any infinite-horizon control
sequence with bounded objectives gets arbitrarily close to
the equilibrium x∗ in a finite number of time steps.

Lemma 15: Let δ > 0, x ∈ X and u∞ ∈ U∞(x) be given.
Under Assumption 3 and if there is K ∈ R≥0 satisfying

J∞i (x,u∞) ≤ K ∀i ∈ {1, . . . , s},

then the index k̂ := min{k ∈ N0|xu
∞

(k) ∈ Bδ(x∗)} fulfills
k̂ ≤ K

mini α`,i(δ)
. Here, Bδ(x∗) := {x ∈ X : ‖x− x∗‖ ≤ δ}.

Proof: Assume k̂ > K
mini α`,i(δ)

, then it holds

J∞i (x,u∞) =

k̂−1∑
k=0

`i(x(k), u∞(k)) +

∞∑
k=k̂

`i(x(k), u∞(k))

≥
k̂−1∑
k=0

α`,i(‖x(k)− x∗‖)

>

k̂−1∑
k=0

α`,i(δ) = k̂ · α`,i(δ) > K,

contradicting the assumption.
Theorem 16: Consider the optimal control problem (4)

with cost criteria (2) and the corresponding optimal control
problem on the infinite horizon (6) with the same constraints
and running costs. Let the Assumptions 3 and 4 hold and
assume furthermore the existence of σi ∈ K such that
Fi(x) ≤ σi(‖x − x∗‖) holds for all x ∈ X0 and all i ∈
{1, . . . , s}. Consider an arbitrary initial value x ∈ XN and a

sequence u?,∞ ∈ U∞P (x) with J∞i (x,u?,∞) ≤ C ∀i, C ∈
R≥0. Assume there is N̄ ∈ N such that the sets JN (x)
are externally stable for all N ≥ N̄ . Then, for each ε > 0
there exists N0 ∈ N such that for all N ≥ N0 there is
u?,N ∈ UNP (x) satisfying

JNi
(
x,u?,N

)
≤ J∞i (x,u?,∞) + ε ∀i. (7)

In particular, u?,∞ can be approximated arbitrarily well by
µN in terms of the infinite-horizon performance, that is,

JNi
(
x, µN

)
≤ J∞i (x,u?,∞) + ε. (8)

Proof: Let ε > 0 and choose δ > 0 such that σi(δ) ≤
ε ∀i and Bδ(x∗) ⊆ X0. For the sequence u?,∞ ∈ U∞P (x) it
holds J∞i (x,u?,∞) ≤ C ∀i. From Lemma 15 we know that
the index k̂ := min{k ∈ N0|xu

?,∞
(k) ∈ Bδ(x∗)} satisfies

k̂ ≤ C
mini α`,i(δ)

. Now let us choose N0 ∈ N such that N0 ≥
max{k̂ + 1, N̄}. For N ≥ N0 define the sequence u ∈
UN (x) via

u(k) =

{
u?,∞(k), k = 0, . . . , k̂ − 1,

κ(x(k)), k = k̂, . . . , N − 1,

with κ from Assumption 4. Since xu
?,∞

(k̂) ∈ Bδ(x∗) ⊆
X0, κ can be applied and it holds xu(N) ∈ X0. From the
definition of u we obtain

JNi (x,u) =

N−1∑
k=0

`i(x(k), u(k)) + Fi(x(N))

=

k̂−1∑
k=0

`i(x(k), u?,∞(k)) +

N−1∑
k=k̂

`i(x(k), κ(x(k)))

+ Fi(x(N))

≤J∞i (x,u?,∞) +

N−1∑
k=k̂

[Fi(x(k))− Fi(f(x(k), κ(x(k))))]

+ Fi(x(N))

=J∞i (x,u?,∞) + Fi(x(k̂))

≤J∞i (x,u?,∞) + σi(‖x(k̂)− x∗‖︸ ︷︷ ︸
≤δ

)

≤J∞i (x,u?,∞) + ε.

Due to external stability of JN (x) we conclude the existence
of u?,N ∈ UNP (x) such that

JNi
(
x,u?,N

)
≤ JNi (x,u) ≤ J∞i (x,u?,∞) + ε,

i.e. (7) holds. Choosing u?,Nx(n) = u?,N in step (0) of
Algorithm 5 and combining the estimates (5) and (7) yields
(8).
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Fig. 3. Visualization of the Pareto front for Example 17 , N = 2 and
x = x(1) and the bounds in step (1) in the algorithm.

V. NUMERICAL EXAMPLE

Example 17: We consider the following linear optimal
control problem with two objectives from [2].

x+ = Ax+Bu

`1(x, u) = xTQ1x+ uTR1u, F1(x) = xTP1x

`2(x, u) = ‖Q2x‖∞ + ‖R2u‖∞ F2(x) = ‖P2x‖∞,

A =

(
1 1
0 1

)
, B =

(
0.5
1

)
, Q1 =

(
0.1 0
0 1

)
,

R1 = 0.2, P1 =

(
0.5649 0.4054
0.4054 1.6027

)
,

Q2 =

(
1 0
0 0.1

)
, R2 = 0.1,

P2 =

(
9.6085 1.1401
−0.2965 9.4107

)
and constraints |x1|, |x2|, |u| ≤ 10. Assumption 4 is sat-
isfied with a linear feedback and terminal region X0 (cf.
[2]). Moreover, the example sastisfies the assumptions of
Theorem 11. We have implemented Algorithm 5 in MAT-
LAB to illustrate our theoretical findings. The convex MO
optimization problems were solved using a weighted sum
approach (see e.g. [4] for a proof that this yields POS). In
Fig. 3 we see the example of a Pareto front for Example 17
and the value JN (x(1),uNx(1)) that determines the possible
choices for the POS in step (1) of the algorithm at time
n = 1. Fig. 4 shows that the infinite-horizon closed-loop
cost J∞i (x, µN ) is bounded by JNi (x,u?,Nx ), i.e., the cost
of the first PO chosen in Algorithm 5. This confirms the
statement of Theorem 11. Moreover, we see in Fig. 5 that
the closed-loop trajectories converge to the origin as stated in
Corollary 13. To demonstrate the nessecity of the constraint
in step (1) of Algorithm 5, we run the algorithm without this
constraint. In Fig. 6 we see that the first objective violates the
upper bound but still converges. Thus, the trajectories still
converge (not illustrated) but the performance deteriorates.

2 4 6 8 10 12

k

50

100

150

J
1

Jk
1 (x,µ

N )

JN
1 (x,u⋆,N )

2 4 6 8 10 12

k

0

50

100

J
2

Jk
2 (x,µ

N )

JN
2 (x,u⋆,N )

Fig. 4. Comparison of the accumulated MPC cost to the theoretically
deduced upper bound for both objectives of Example 17 for N = 2 and
x = x(0) = (7.5, 7.5)T .
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Fig. 5. Closed-loop trajectories of Example 17 for N = 2 and x(0) =
(7.5, 7.5)T .
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Fig. 6. Performance of the closed loop without the constraint in step (1)
of Algorithm 5.



VI. MULTIOBJECTIVE ECONOMIC MPC
In case at least one of the cost criteria does not satisfy

Assumption 3 but rather reflects some ’economic’ objective,
the theory presented in Section III does not apply to the
control problem. As in the single-objective setting, it is
still possible to make performance statements. The following
assumption on the terminal condition, which is an extension
of [1, Assumption 6] (see also [7, Assumption 8.5]), takes
the place of the Assumptions 3 and 4.

Assumption 18: 1) There is an equilibrium (x∗, u∗) ∈
X×U with x∗ ∈ X0 and Fi(x∗) = 0 ∀i ∈ {1, . . . , s}.

2) There is κ : X0 → U such that f(x, κ(x)) ∈ X0 and
∀i ∈ {1, . . . , s} it holds

Fi(f(x, κ(x))) ≤ Fi(x)− `i(x, κ(x)) + `i(x∗, u∗).
By means of these conditions we can formulate an averaged
performance result for Algorithm 5 for the economic setting.

Theorem 19 (Averaged Performance Theorem): Consider
a problem with system dynamics (1), cost criteria (2), and
let N ∈ N≥2. Let Assumption 18 hold and let the set JN (x)
be externally stable for each x ∈ XN . We furthermore
assume, that there is M ∈ R such that JNi (x,u?) ≥ M for
all x ∈ XN , u? ∈ UNP (x) and i ∈ {1, . . . , s}. Then, the
MPC feedback µN : X→ U defined in Algorithm 5 has the
following infinite-horizon averged closed-loop performance:

lim sup
K→∞

1

K

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ `i(x∗, u∗).

Proof: We follow the reasoning in the proof of Theo-
rem 11. Feasibility of all chosen POS holds with the same
arguments. For the performance we obtain

K−1∑
k=0

`i(x(k), µN (x(k)))

=

K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
−JN−1i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)]
≤
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
−JNi

(
f(x(k), u?,Nx(k)(0)),uNx(k+1)

)
+ `i(x∗, u∗)

]
,

in which the inequality is obtained as in Lemma 10 for
the terminal cost from Assumption 18 in combination with
Lemma 2, and u?,Nx(k) is the POS chosen in the algorithm at
time k. In step (1) u?,Nx(k+1) is constructed such that

JNi

(
x(k + 1),u?,Nx(k+1)

)
≤ JNi

(
x(k + 1),uNx(k+1)

)
.

Thus, we obtain
K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤JNi

(
x(0),u?,Nx(0)

)
− JNi

(
x(K),u?,Nx(K)

)
+K`i(x∗, u∗)

≤JNi
(
x(0),u?,Nx(0)

)
−M +K`i(x∗, u∗).

Taking the average and the limit superior on both sides of
the inequality yields the assertion.
As before, we are again able to estimate the performance of
every single objective.

VII. CONCLUSIONS

In this paper we have developed an MO MPC algorithm
that allows for a performance analysis for all cost criteria and
which does not rely on a specific multiobjective optimization
method. Results for MO MPC without terminal conditions
for the stabilizing as well as for the economic setting are
subject of our current research.
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[7] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory
and Algorithms, 2nd ed., ser. Communications and Control Engineer-
ing. Springer, 2017.

[8] C. M. Hackl, F. Larcher, A. Dötlinger, and R. M. Kennel, “Is
multiple-objective model-predictive control “optimal”?” in 2013 IEEE
International Symposium on Sensorless Control for Electrical Drives
and Predictive Control of Electrical Drives and Power Electronics
(SLED/PRECEDE), 2013.

[9] D. He, L. Wang, and J. Sun, “On stability of multiobjective NMPC
with objective prioritization,” Automatica, vol. 57, pp. 189–198, 2015.

[10] K. Laabidi, F. Bouani, and M. Ksouri, “Multi-criteria optimization in
nonlinear predictive control,” Mathematics and Computers in Simula-
tion, vol. 76, no. 56, pp. 363–374, 2008.
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