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Zusammenfassung

Die vorliegende Arbeit besteht aus den erweiterten Ergebnissen eines Teils des Pro-
jekts CHAMP – Control of Heat in Automatic Model Production. Das Projekt
ist eine von der Oberfrankenstiftung geförderte Kooperation der Lehrstühle für
Wirtschafts- und Ingenieurmathematik der Universität Bayreuth sowie der Con-
cept Laser GmbH in Lichtenfels. Es befasst sich mit den Auswirkungen der Laser-
steuerung auf die Verzüge in Bauteilen, die mit dem patentierten LaserCUSING R©

Verfahren hergestellt werden. LaserCUSING R© ist eine Technologie zur additiven
Fertigung, bei der einkomponentiges Metallpulver vollständig aufgeschmolzen wird.
Dies geschieht schichtweise, wobei die einzelnen Schichten in sogenannte

”
Islands“

unterteilt sind. Das Aufschmelzen erfolgt Islandweise.
In dieser Arbeit werden die Auswirkungen unterschiedlicher Island-Strategien,

das heißt unterschiedlicher Island-Reihenfolgen, auf die Verzüge im Bauteil un-
tersucht, um dadurch die am besten geeignete Strategie zu finden. Dabei wird
das folgende Resultat erzielt: Bei unseren Testbauteilen aus einem nichtrosten-
den, austenitischen Stahl gibt es keine signifikanten Unterschiede bezüglich der
Verzüge bei sehr unterschiedlichen Island-Strategien. Folglich können kurze Dis-
tanzen zwischen aufeinanderfolgenden Islands die Verfahrwege des Lasers verringern
und die Produktionszeit verkürzen ohne dass man einen Verlust der Bauteilqualität
hinnehmen muss. Bei empfindlichen Bauteilen kann die Menge von erlaubten
Nachfolge-Islands eingeschränkt werden.

Bei der Untersuchung, ob verschiedene Optimierungsprobleme zur Modellierung
der Problemstellung geeignet sind, werden einige neue Erkenntnisse zum Maxi-
mum Scatter Traveling Salesman Problem (MSTSP) gewonnen. Beim MSTSP
wird eine Tour durch eine Punktemenge gesucht, in der die kürzeste vorkommende
Kante so lang wie möglich ist. Dieses Optimierungsproblem ist im allgemeinen NP-
vollständig. Für die Einschränkung auf den zweidimensionalen Fall mit euklidischen
Distanzen ist die Frage der NP-Vollständigkeit noch ungeklärt.

Ausgehend von einem Verfahren, das mit linearem Zeitaufwand eine optimale
Lösung für das MSTSP für Punkte auf einer Linie ausgibt, entwickeln wir ein Ver-
fahren für Punkte auf einem zweidimensionalen (m×n)-Gitter mit euklidischen Dis-
tanzen. Dieses wird mit Weave(m,n) bezeichnet. In Kombination mit zusätzlichen
kombinatorischen Lösungen des MSTSP (Bobeven(m,n) und Bobodd(m,n)) für
spezielle Arten von Gittern können wir so das MSTSP für die meisten Gittergrößen
optimal lösen; für die übrigen Fälle können wir zumindest asymptotische Opti-
malität zeigen. Bei fast allen Gittergrößen bis auf vier Ausnahmen beträgt die
kürzeste Kante aus unseren Verfahren mindestens 80% der Länge der maximalen
kürzesten Kante. Auch im dreidimensionalen Gitter können die neuen Verfahren
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unter Anpassungen an die neue Dimension angewandt werden. Für mehr als die
Hälfte aller möglichen Gittergrößen erhält man optimale Lösungen. Für die übrigen
Gittergrößen lassen sich Approximationen herleiten.

Gleichzeitig ist unsere neue Lösung des MSTSP eine asymptotisch optimale
Lösung für das

”
TSP on grids with forbidden neighborhoods“ (TSPN), wenn eine

bestimmte minimale Kantenlänge gewählt wird. Bei diesem Optimierungsprob-
lem wird eine kürzeste Tour durch eine gegebene Knotenmenge gesucht, wobei
die Mindestkantenlänge zwischen aufeinanderfolgenden Knoten fest vorgegeben ist.
Weave(m,n), Bobeven(m,n) und Bobodd(m,n) sind asymptotisch optimal für
das TSPN mit einer Mindestkantenlänge, die der Länge der kürzesten Kante des
kombinatorischen Algorithmus entspricht.

Des Weiteren wird eine allgemeinere Heuristik LS MSTSP zur Approximation
des Maximum Scatter TSP entwickelt. Diese basiert auf der Idee von local search-
Heuristiken und der Lin-Kernighan Heuristik. LS MSTSP hat eine Laufzeitkom-
plexität von O(n3). Diese Heuristik findet für über 80% der berechneten Beispielin-
stanzen eine Lösung mit einer kürzesten Kante von mindestens 80% der Länge der
maximalen kürzesten Kante.

Ein verwandtes Problem zum MSTSP ist das Max-Min 2-Neighbor TSP. Bei
diesem wird neben der kürzesten Kante einer Tour gleichzeitig auch die kürzeste
Kante zwischen dem Vorgänger und dem Nachfolger eines Knotens maximiert.
Die Berechnung einer Lösung ist mindestens genauso schwer wie beim MSTSP.
LS MSTSP wird für dieses Problem angepasst (LS MM2NTSP) mit gleichbleiben-
der Komplexität. Bei mehr als 30% der getesteten Instanzen liefert LS MM2NTSP
eine Tour mit einer Mindestkantenlänge, die das 0,5-fache der optimalen Min-
destkantenlänge beträgt. Für allgemeinere Instanzen als Gitter kann mit LS MSTSP
und LS MM2NTSP in Polynomialzeit eine Lösung approximiert werden.

Bisher finden die entwickelten Algorithmen noch keine direkte Anwendung im
Laserschmelzprozess, allerdings erscheinen sie gerade für eine Verkürzung der Laser-
wege mit einer Mindestsprungweite des Lasers weiterhin relevant.
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Abstract

The thesis at hand consists of the extended results of a part of the project CHAMP
– Control of Heat in Automatic Model Production. The project was carried out
in cooperation between the chairs of business mathematics and mathematics for
engineering sciences at the University of Bayreuth as well as Concept Laser GmbH
in Lichtenfels and supported by the Oberfrankenstiftung. It deals with the control
of a laser and its impact on the deflections in workpieces which are produced with
the patented LaserCUSING R© technology. LaserCUSING R© is a technology for ad-
ditive manufacturing which means that one-component metal powder is completely
melted. This process is completed layer by layer. The single layers are divided
into so-called “islands”. The laser – and therefore the melting – proceeds from one
island to another.

In this work, different island strategies are examined with regard to the deflec-
tions of the workpiece. The results are used to find the most appropriate strategy.
Thereby the following result is obtained: Despite very different island strategies,
our test samples made of austenitic stainless steel showed no significant differences
in the deflections. Consequently, short distances between consecutive islands can
reduce the length of the laser’s route and thus decrease the production time without
reducing the quality of the workpiece. If a workpiece is made of a very sensitive
material or has a very complex geometry, the amount of possible consecutive islands
can be restricted.

Testing the adequacy of the different optimization problems for modeling the
LaserCUSING R© process yields several new findings. The Maximum Scatter Trav-
eling Salesman Problem (MSTSP) aims to find a tour through a set of nodes such
that the shortest appearing edge is as long as possible. In general, this optimization
problem is NP-complete. Regarding the restriction to two-dimensional instances
with Euclidean distances, it still remains open whether it is NP hard or not.

Starting from a linear-time procedure which computes an optimal solution of
the MSTSP for nodes in one line, we develop an algorithm for nodes on a two-
dimensional (m × n)-grid with Euclidean distances. It is called Weave(m,n). In
combination with further combinatorial solutions of the MSTSP for particular kinds
of grid sizes (Bobeven(m,n) and Bobodd(m,n)), we can produce an optimal
solution of the MSTSP for most grid sizes; for the remaining cases, we can prove
at least an asymptotical optimality of Weave(m,n). For all but four grid sizes,
the length of the shortest edge received from our algorithms is at least 80% of
the optimal shortest edge. Weave(m,n), Bobeven(m,n) and Bobodd(m,n) can
be extended to a three-dimensional grid. For more than half of all possible grid
sizes, these extensions yield an optimal solution. For the remaining grid sizes,
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approximation algorithms can be deduced.
At the same time, the new solution of the MSTSP is an asymptotically optimal

solution for the “TSP with forbidden neighborhoods” (TSPN) if a particular mini-
mum edge length is chosen. In this optimization problem, the shortest tour through
a given set of nodes is required such that the used edges are longer than a minimum
length. Weave(m,n), Bobeven(m,n) and Bobodd(m,n) are asymptotically op-
timal for the TSPN with a specific minimum edge length which equals the length
of the shortest edge of the combinatorial algorithm.

Furthermore, a more general heuristic LS MSTSP is developed for the approx-
imation of the MSTSP. It is based on the idea of local search heuristics and the
heuristic of Lin and Kernighan. The complexity of LS MSTSP is O(n3). For more
than 80% of the tested instances, this heuristic computes a solution whose shortest
edge has a length of at least 80% of the longest possible shortest edge.

A related problem to the MSTSP is the Max-Min 2-Neighbor TSP (MM2NTSP).
In this optimization problem two kinds of edges are maximized at the same time:
the shortest edge in the tour and the shortest edge between the predecessor and
the successor of a node. The computation of a solution is at least as hard as for
the MSTSP. LS MSTSP is adapted to that problem (LS MM2NTSP) with remain-
ing complexity O(n3). For more than 30% of the tested instances, LS MM2NTSP
produces a tour whose shortest edge has a length of at least half the length of
the longest possible shortest edge. For more general instances than grids, solu-
tions of the MSTSP can be approximated in polynomial time by LS MSTSP and
LS MM2NTSP.

So far, the developed algorithms are not yet applied in the laser melting process,
but continue to appear relevant for a reduction of the laser’s route with certain
minimum distances.
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1. Introduction

Concept Laser GmbH in Lichtenfels is one of the key drivers of powder-bed-based
laser melting with metals. They developed the patented LaserCUSING R© which is
also referred to as 3D metal printing [27]. Their technology is used in various fields of
application which require functional parts with sophisticated geometries. This is the
case for the aviation, aerospace and the automotive industry. Further to that, dental
products such as crowns and caps or medical instruments and implants as well as
individual items of jewelry can be produced with the help of LaserCUSING R© [27].

LaserCUSING R© is a type of layered manufacturing method. Different types of
layered manufacturing methods are described in Nickel [64], such as stereolithog-
raphy, selective laser sintering and fused deposition modeling. The idea of layered
manufacturing is that a workpiece is designed as a computer solid model which is
dissected into several layers and eventually built layer by layer. LaserCUSING R© is
based on this concept, but differs from the previously mentioned types of methods.
It is a complete melting process with powder consisting of one single component.
The base material is steel powder or powder of various metal alloys or even gold. By
melting the powder in layers which are divided into several segments called islands
by a grid, the workpiece is produced step by step.

In laser melting processes like LaserCUSING R© deflections arise because of ther-
mal gradients in the material [53]. As the deflections usually come with porosity
and deformation of the workpiece, much effort is taken to reduce them. From pri-
vate communication with employees of Concept Laser we know that the process is
currently being improved by a good positioning of the workpiece in the working
space such that there are only little and steep overhangs. That way, the surface
which is connected to the base plate by solid material is as large as possible. Sup-
port structures – thin solid shapes of the same material as the workpiece – form
additional connections to the base plate. They stabilize the workpiece and simulta-
neously conduct heat to the base plate. By heat treatment after cooling and further
post processing steps several deflections can be reduced. Not always used but pos-
sible on certain machines is the heating of the base plate which allows less laser
power to cause a melting process and therefore diminishes heat peaks in certain
parts of the workpiece. The current exposure strategy is randomized such that it
is not predictable whether consecutive islands lie close on the grid.

In this work, we will examine the relation between the scanning order in a layer
and the resulting deflection in the workpiece. In order to find a good scanning
strategy, we will consider variations of traveling salesman problems (TSP) with
different objective functions which could describe the situation best. Thus, we will
attempt to find an optimal order by solving the optimization problem. We will

1



1. Introduction

complete the spectrum of strategies by considering some basic orders like a random
order or serial strategy and a slower strategy which leaves more time for cooling in
between heating.

For one of the optimization problems, namely the maximum scatter TSP (MSTSP)
introduced in Arkin et al. [7] we have developed linear-time procedures for nodes
on a regular grid. The MSTSP maximizes the shortest edge in a Hamiltonian tour.
Our procedures solve the problem in many cases or otherwise approximate a so-
lution such that the difference between the optimal value and the approximated
value is less than the distance between two columns which is 1 in our computa-
tions. We will introduce these procedures and deduce their properties concerning
the optimality or approximation ratio. Furthermore, we will consider an extension
to a three-dimensional grid and the applicability of the procedures on a different
yet very similar kind of optimization problem which turned out to be a good model
for the production process.

In regards to preliminary work, it has to be said that many studies have been done
on various parameters in the production process. Pohl et al. [70] have tested the
influence of several scan patterns on the residual stresses of the densified structure in
direct laser sintering. They also considered further process conditions and material
aspects like the hatch distance, the number of layers and the kind of material.
Their scan patterns include a typical raster pattern, a spiral pattern, stripes – a
combination of long and short raster patterns – and squares which resemble an
island grid. For their workpiece which comprised several layers of a rectangle, the
stripes and squares came proved to be the best strategies which also confirms the
use of an island grid in LaserCUSING R©. Even though their test was done for laser
sintering, the influence of the residual stresses is similar for LaserCUSING R© albeit
less intense. Kruth et al. [53] also tested long scanning vectors and two different
sizes of islands with serial heating and a distributed strategy which should lead
to the least heat influence between the scanned sectors. They also found that the
islands led to less deformation and that the island size did not have a significant
impact on the curvature, except that the energy input could be reduced for smaller
islands. They prefer the serial heating method, but as their figures mainly illustrate
the deformations in one direction and Concept Laser chose the randomized strategy
by experience, we did not exclude any strategy in advance.

Kruth et al. [55] compare different selective laser melting and selective laser
sintering machines in regards to their lasers, powder depositions and optics. They
focused on the best possible setting of the following parameters: the layer thickness,
the laser power and the scanning strategy which only affects the path of the laser
beam and not the island strategy in this work. Vandenbroucke and Kruth [78]
developed improved parameter settings of the laser power, the layer thickness, the
scan speed and the hatch spacing. In the specimens, mechanical properties such
as hardness, strength, stiffness and ductility were measured. Campanelli et al. [22]
worked out a good adjustment for scanning speed and laser power. Branner [20] and
Zaeh and Branner [82] developed a general method which numerically describes the
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influence of the process on the workpiece. However, there has not been any explicit
study regarding the influence of the island order on the deflections or an explicit
statement about a possible relation.

Considering the TSP and the MSTSP in particular, we refer to Gutin and Pun-
nen [44] who deal with many problems related to the classic TSP. We refer to
Papadimitriou [66], Papadimitriou et al. [67] and Arora et al. [9] for the back-
ground on complexity theory. The following basic definition will be frequently used
to express the complexity of a procedure.

Definition 1. Let f(n), g(n) be functions from the positive integers to the positive
reals. We write f(n) = O (g(n)) if there exists a constant c > 0 such that, for large
enough n, f(n) ≤ cg(n).

The MSTSP was introduced in Arkin et al. [7] who did a lot of basic and advanced
research on this problem like complexity results, approximation algorithms, and
many extensions to further problems. They proved that the MSTSP is NP-complete
in general, but it is not known whether this problem is NP-hard for nodes in the
plane with Euclidean distances. Particularly their procedures for an exact solution
for nodes on a line play an important role in the development of the new algorithm
Weave(m,n) for nodes on a regular grid in chapter 4 and is the basis of all further
considerations in that chapter.

This overview over the relevant literature is followed by the actual research done
in this dissertation. The contribution of this work is the following: According to
our tests, there is no significant influence of the island order on the deflections for
an austenitic stainless steel, a result which has not been proved or published be-
fore. In the tests, the workpieces are randomly positioned, the variety of strategies
representing nearly the whole spectrum of strategies spanning from a successive to
a randomized order to an order with a short break between the scanning of two
islands and without too close consecutive nodes. This surprising result allows us
to put our focus regarding the island order on productivity. As all of our test
workpieces consist of the same material and various powders, even more sensitive
ones, can be used for LaserCUSING R©, the new objective may be a shortest tour for
which we want to forbid shorter edges in the case of very complicated and delicate
geometries or very sensitive materials. Thus, we propose a solution of a TSP while
restricting the set of allowed edges. The solution could be computed for example
with Concorde [6]. These shorter tours reduce the production time of a sample.
For our test samples, about 3 − 5% of the melting and moving time of the laser
scan time could be reduced and also 80% of the move length of the laser between
the islands. Furthermore, also the abrasion of the LaserCUSING R© machine can be
diminished by shorter moves of the laser between the islands.

When considering different models and optimization problems, we put our fo-
cus on the MSTSP and especially on regular grids. In our case, the specification
“grid” describes only the arrangement of the nodes. The distances are the Eu-
clidean distances unless otherwise stated. For regular two-dimensional grids we
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1. Introduction

succeed in constructing a linear-time procedure Weave(m,n) and further proce-
dures Bobeven(m,n) and Bobodd(m,n) for special cases. These procedures are
asymptotically optimal and yield in many cases an optimal solution to the MSTSP.
Except for four small grid sizes, the yielded objective value is always greater than
0.8 times the optimal value. For more than three quarters of the possible (m× n)-
grids, an optimal solution of the MSTSP can be computed in linear time. The
regular grid is motivated by the island grid. For most workpieces the island grid
is not complete, there are missing nodes within the grid or single nodes which are
added at the edge of the grid. Some are even split into several components in
several layers, but connected in the other ones.

The start of our consideration, however, is the complete (m × n)-grid for which
we have gained new results concerning the solution of the MSTSP. Even though
we do not know whether this problem is NP-hard, we can solve it on the grid in
most cases in polynomial time. Building upon these new algorithms, this work
generates further progress. Not considering Euclidean distances but the Man-
hattan metric, the number of cases for which Weave(m,n) yields an optimal
solution increases. Taking all procedures together, the cases for which there is
an optimal solution are the same as for the Euclidean distances. However, for
the ∞-norm, we can yield an optimal solution for any (m × n)-grid either with
Weave(m,n), Bobeven(m,n) or Bobodd(m,n). Another consideration is the ex-
tension of Weave(m,n), Bobeven(m,n) and Bobodd(m,n) on a three-dimensional
grid. For certain cases dependent on the number of layers, rows and columns of the
grid, this extension yields an optimal solution.

We want to point out a particular result concerning another kind of TSP, namely
that the tours created by Weave(m,n), Bobeven(m,n) and Bobodd(m,n) also
yield an asymptotically optimal solution to the TSP with forbidden edges if we
set the minimum edge length to the length of the shortest edge in the tour of
the respective algorithm (Weave(m,n), Bobeven(m,n), Bobodd(m,n)). When
trying to find combinatorial solutions to that problem one usually starts at small
minimum edges. Fischer and Hungerländer [38] are currently dealing with this
topic as we know from private communication. Our approximation, however, yields
a solution to a TSP with large minimum edges, the longest possible or nearly
the longest possible minimum edges. This can be stated because our procedures
yield (approximate) solutions to the MSTSP, whose shortest edges are the longest
minimum ones such that there still exists a Hamiltonian tour. For longer minimum
edges there is no Hamiltonian cycle. Computations for a fixed set of grids yield
approximations with a tour length of less than 1.33 times the optimal value.

Furthermore, we develop an approximation procedure for the MSTSP and extend
this procedure to the Max-Min 2-Neighbor TSP (MM2NTSP). The MM2NTSP
maximizes the shortest edge between consecutive nodes in a tour and at the same
time the shortest edge between the predecessor and the successor of a node. For
both problems we develop a draft of an approximation strategy according to the
heuristic of Lin and Kernighan [57] and apply it to some samples like a number
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of grids and to some instances of the TSPLIB [72], a library of TSP instances.
We chose the grids as we know (close to) optimal solutions of the MSTSP for these
graphs. In order to better determine the quality of the heuristics of the MM2NTSP,
we deduce some closer new upper bounds for the regular two-dimensional grids. For
the tested samples both heuristics yield suitable results, especially the results for
the MSTSP, but also for many samples of the MM2NTSP. However, the current
results are a draft which could be enhanced by including more of the achievements
of the Lin-Kernighan heuristic.

During the writing of this thesis some obstacles had to be overcome. In the
project work, transmitting the order to the LaserCUSING R© machine proved rather
challenging. There is a common layer interface (CLI) [21], which can be read by
the software and then be transmitted to the machine, but as the current version
of the interface asks for the list of all scan vectors where the laser has to melt the
powder, each single scan vector has to be computed. Computing the scan vectors
was not the scope of this work, but it had to be done in order to be able to transmit
different island orders to the LaserCUSING R© machine. This had a great impact
on the choice of the test samples which could not be too complicated such that the
CLI-file could be created in reasonable time. But at the same time, the samples had
to fulfill certain criteria. For example, they should contain an acute angle and be
deposited on a small base and support structures which could fortunately be added
by Concept Laser. This resulted in the choice of mainly two kinds of samples with
a rectangular and a triangular contour and some special code which computes all
scan vectors in shifted islands where the scanning direction varies from layer to
layer. Some of the samples were cut faultily. Hence, it was not possible to measure
the deflection for them. In order to use them anyway, we invented computations
of the angle which made comparison possible. All in all, the cooperation worked
quite well and we successfully coped with the restricting points.

In the part of this work which deals with the models and algorithms, we were
frequently faced with case analyses. It was a challenge to keep an overview on
all cases done and to not forget any special case, be it during the development
of the procedures for the two- and three-dimensional grids or when decreasing
the upper bound for the MM2NTSP on a regular grid. When constructing the
first procedure, combining horizontal and vertical moves such that the total move
was long enough required dexterity. Another obstacle consisted in formalizing the
idea for a linear-time algorithm on a regular grid to a mapping that can be easily
applied. Furthermore, one should be able to prove with this formulation more or
less intuitively that the order from the mapping results in a Hamiltonian cycle and
it should be possible to determine the shortest edge of that tour in a reasonable
way.

The work at hand is composed in the following way. In chapter 2, we will consider
the project CHAMP, which initiated this dissertation and frames it. We will have a
look at the technical context and the problems we dealt with. In the third chapter,
we will introduce the models which we considered in the project and delve into
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1. Introduction

the literature we consulted regarding these. All of the models are variants of the
traveling salesman problem (TSP). One of them, the MSTSP, is examined in this
work in more detail in the fourth, fifth and sixth chapter. The fourth chapter which
contains the main part of this work is about a new combinatorial solution of the
MSTSP on a regular two-dimensional grid. For most kinds of grids, we can get an
optimal solution, for the remaining kinds of grids we obtain approximations. The
approximations are asymptotically optimal. Furthermore, we will also mention the
path version of the MSTSP.

This is followed by further considerations, like different metrics and the extension
of the procedure on a 3D-grid. We finally use our solution of the MSTSP on the
grid to approximate a TSP with the (nearly) longest possible minimum edge. This
tour is an asymptotically optimal approximation to another problem, namely a
TSP with a minimum edge length. After the combinatorial solution, we will also
consider the approach of Lin and Kernighan and start to adapt this procedure to
the MSTSP. We will do first computations with the first draft of this procedure.
The adaptation is expanded to the MM2NTSP, a problem related to the first one,
which considers one more predecessor than the MSTSP. The MM2NTSP is also an
important model which was applied in CHAMP. We will finish our considerations
by describing the tests of strategies that we did in CHAMP and presenting our
practical results in chapter 7.
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2. CHAMP – Control of Heat in
Automatic Model Production

The ideas and concepts that we describe and explain in this thesis were originally
motivated by a project about generative production. The project CHAMP took
place from March 2012 to March 2015. It was carried out in cooperation between
the University of Bayreuth – represented by the Chair of Business Mathematics and
the Chair of Mathematics for Engineering Sciences – and Concept Laser GmbH in
Lichtenfels. The project was supported by the Oberfrankenstiftung. The objec-
tive of the project was to diminish deflections in the LaserCUSING R© process by
regulating the order of islands and controlling the laser intensity.

The preliminaries of this project are described as well in my master thesis [47],
and its progress in the reports about the project [15, 14, 11, 12, 13]. Before explain-
ing the tests and results of the project in more detail in chapter 7, I will first give
an overview over the state of the art in Selective Laser Melting, particularly the
LaserCUSING R© technology from Concept Laser GmbH, then describe the objective
of the project and the models as well as the process parameters that we worked
with.

2.1. Generative Production and LaserCUSING R©

The variety of techniques of additive manufacturing is large. Nickel [64] gives an
overview over various techniques of layered manufacturing, such as stereolithog-
raphy, selective laser sintering, fused deposition modeling and shape deposition
manufacturing. Since then, the technologies have become more advanced and the
variety has increased. A current overview of methods and the used variety of ma-
terials is given in Gibson et al. [41].

In CHAMP, we cooperated with Concept Laser GmbH [27] who developed the
LaserCUSING R© technology which is a laser melting process. At this stage, it can
be applied to different metals, for example stainless steel, cobalt-chromium alloys,
precious metals and also reactive powder materials. That is why, in this work, we
focus on selective laser melting with metals and particularly on stainless steel in
our tests.

The following definition and description is based on the web page of Concept
Laser GmbH [27], the articles of Kruth et al. [55], Sinirlioglu [77], and Campan-
elli [22]. LaserCUSING R© is a technology that fuses metallic powder by heating it
with a laser beam. The components are generated layer by layer from 3D CAD
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2. CHAMP – Control of Heat in Automatic Model Production

data [27, 77]. It belongs to the additive manufacturing processes where material
is added to the workpiece, more precisely to the Selective Laser Melting processes.
“Selective Laser Sintering (SLS) and Selective Laser Melting (SLM) are layer-wise
material addition techniques that allow generating complex 3D parts by selectively
consolidating successive layers of powder material on top of each other, using ther-
mal energy supplied by a focused and computer controlled laser beam” (Kruth et
al. [55], introduction). In Selective Laser Sintering components of a low melting
point are melted. These components can be either synthetic materials or a polymer
coating of metal powders and ceramics. The latter requires post-treatment with
high energy in order to melt the metal component. That is why it is more common
to label the melting of synthetic material as Selective Laser Sintering. For the Se-
lective Laser Sintering, it is always either a binary component or two different grain
sizes of the powder that are used and only the component with a low melting point
is melted. Conversely, the Selective Laser Melting uses an integral powder metal
without adding low melting point elements. Therefore, Selective Laser Melting
requires a much higher energy density to completely melt the powder. The work-
pieces produced with a laser melting process are massively dense and have similar
metallurgical characteristics to workpieces produced with conventional production
processes (Campanelli et al. [22]). In the following, we describe the complete laser
melting process in more detail with the help of figure 2.1 from Concept Laser about
LaserCUSING R©. It is explained in the same way as in my master thesis [47].

Number (1) and (2) point to the dosing chamber filled with metal powder whose
base plate (3) can be moved upwards. (4) and (5) point to the coating system with
its coating blades that spread the powder for the new layer from the dosing chamber
evenly over the platform on which the workpiece is built (6). This platform can be
moved down so that the height of the latest layer is always the same.

The laser above the working platform (as well as the coating system) is high-
lighted in orange. It can be moved to allow for the powder to be melted at any
place on the platform. A mirror deflecting unit (scanner) directs the laser beam
more precisely.

The procedure is the following: A thin layer of powder is distributed on a plat-
form. After that, a high-energy fibre laser locally heats up the powder until it fuses.
The information which positions have to be heated and molten by the laser is gath-
ered from CAD-data that is divided into thin slices, each slice representing one
layer of powder. After this process, the base platform is moved down by the height
of one layer and a new layer of powder is spread. Thus the process restarts. This
explanation corresponds to the information about the technology on the Concept
Laser website [27].

This process offers some advantages compared to conventional procedures like
milling, two of which will be explained in the following. First of all, there is free-
dom of geometry. Very complex components can be built without using any tools.
Furthermore, almost all the powder can be used. As the powder that is not molten
in the process can be reused for another workpiece, the laser melting process pro-
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Figure 2.1.: LaserCUSING R© process [Concept Laser]

duces hardly any waste. Further advantages and information about the process can
be found on the website of Concept Laser [27] and in the dissertation of Branner [20]
(section 2.4).

Within a layer, there are many possibilities of directing the laser beam on the
surface. One frequently used strategy is the island principle. During a visit at Con-
cept Laser in April 2012, I received the following information from the development
manager Dr. Florian Bechmann. The surface of one layer is divided into equally
spaced small squares (of 0.25 mm2 at Concept Laser) called islands. The grid of
islands is shifted in each layer about 1mm in length and width, so the boundaries
of two different close layers do not coincide, therefore the quality of the connection
between two layers is improved and there is more stability in the production. As
described above, the CAD-data provides the information, in which islands the laser
beam has to melt powder, for each layer. The laser is then working through those
islands in a certain order, one after another. Within each island a separate strat-
egy describing the trajectory of the laser is applied. The orientation of the scan
vectors of two neighboring islands with one edge in common is perpendicular and
is changing from layer to layer. More information about the lengths of scan vectors
and the position of the island grid within a workpiece can be found in section 2.3.

In the beginning, additive manufacturing was mainly used to get prototypes of
different tools or more complex parts of machines. As the quality of the samples im-
proved considerably, it is nowadays well-known for Rapid Manufacturing or Rapid
Tooling, see Kruth et al. [54]. Due to the complete melting of the metal powder,
laser melting processes have the great advantage that the density of the material
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2. CHAMP – Control of Heat in Automatic Model Production

is almost full and the workpieces yield similar mechanical properties as samples
produced with traditional technologies, see Campanelli et al. [22]. However, the
high energy of the laser beam causes residual stresses and therefore deformations
in the workpieces which should be avoided (Kruth et al. [53]).

Several studies on the optimization of the production process by laser melting or
sintering have been conducted with different approaches. Residual stresses cause
deformation in the workpieces after cooling and partly already during the produc-
tion process. There are many parameters which can be varied to diminish the
distortions. Campanelli et al. [22], for instance, vary the scanning speed and the
laser power for several samples to find a good adjustment for the melting process.
Kruth et al. [55] carry out several tests on different Selective Laser Melting and
Selective Laser Sintering machines with different lasers, powder depositions and
optics in order to point out the limitations and challenges of the different proce-
dures. They consider the thickness of a layer as far as possible, the laser power and
the scanning strategy which contains the path which the laser beam passes along.
The criteria which are measured are surface roughness, density and bending tests.
Vandenbroucke and Kruth [78] test different values of laser power, layer thickness,
scan speed, and hatch spacing in the application of manufacturing of medical parts
in order to determine a good parameter setting. The economical aspects such as
production time and costs are considered, too. Abe [1] proposes a dual laser scan-
ning system to avoid the deformations and cracking, whereas Branner [20] and Zaeh
and Branner [82] develop a general method to numerically describe the influences
of the process on the workpiece. The simulation is a finite element method which
includes basics of heat transportation and simulates the temperature, distortions
and residual stresses. The benchmark workpiece to verify the simulation is a T-
cantilever.

Pohl et al. [70] test the influence of several scan patterns on the residual stresses
of the densified structure in direct laser sintering, but also of other aspects like the
hatch distance and the number of layers. Their favorite scan strategy is a special
kind of island strategy consisting of typical raster patterns, spiral patterns, stripes
and squares which resemble the islands. Kruth et al. [53] mention the effects that
arise from a large energy input like balling, residual stresses and deformations.
They examine the deformation and stresses and explain physical effects like the
temperature gradient mechanism and the difference in process temperatures. The
phenomena are verified by an experiment in which base plates are scanned with
different scanning patterns and their deflection in height is measured and analyzed.
In this paper a first study is included where the difference of deflection according
to an island scanning strategy is examined. They also find that island strategies
generally lead to better results.

Up to now Concept Laser has applied a stochastic exposure strategy which means
that the order of the islands is not given before the process but just developed
randomly. The patented process of Concept Laser that generates components in
layers using 3D-CAD-data with a stochastic exposure strategy in line with the
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island principle is called LaserCUSING R©. The term “CUSING” is a combination
of the words Concept (name of the company) and Fusing [27]. For large surfaces
with many islands this strategy works well.

In CHAMP, we focused on a small number of islands for which consecutive fu-
sion in neighboring islands happens more frequently. We examined different island
strategies in order to find out which one leads to the least distortions in the work-
pieces. Even though Kruth et al. [53] conclude from their test that a successive
order is preferable, which they have tested for a quadratic plate, experiences of
Concept Laser and their current method lead to the question if a spread entry of
heat within a layer could avoid distortions. Furthermore, there have been tests with
different levels of laser power, but most times, it was one adjustment of the power
per tests. So the question remains how a continuous control of the laser power
should look. At this point we started the project. The concrete task in CHAMP is
given in the following.

2.2. Objective of CHAMP

There are several parameters which could be adjusted to increase accuracy or to
diminish deflections. Just to name some examples, there are parameters which are
related to the process, like the single layer thickness, the scan velocity, the hatch
spacing and the scan strategy. There are also parameters depending on the laser,
like the laser power, the spot diameter and the wavelengths. Other parameters
depend on the type of material and the used powder or on the geometry of the
final component [22]. The original idea of the project CHAMP was to diminish
deflections in the workpieces by means of an order planning of the islands and a
control of laser intensity within an island. Figure 2.2 shows the original plan for
the project. This thesis focuses solely on the order of islands. The examination of
the control of the laser intensity will be part of Simon Bechmann’s work.

2.3. Technical Environment

During the project, several workpieces were produced to test strategies. The fol-
lowing measures and process properties were provided by staff members of Concept
Laser. The information was collected for the Technical Report [13]. The machine
used for our tests is the M2 machine of Concept Laser which has a working space
of 250×250×280mm3. The base plate has an area of 220×220mm2. The material
(powder) which our samples consist of is CL20 ES, an austenitic stainless steel. The
machine has a radiation system which we did not use in our production processes.
If no control for the power of the laser is given, the common value at Concept
Laser is 180 W, the speed of the laser beam within an island during the melting
process is 800 millimeters per second, and it is 1, 600 millimeters per second during
contouring. The diameter of a powder particle lies between 15µm to 45µm and is
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2. CHAMP – Control of Heat in Automatic Model Production
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Figure 2.2.: Original structure of the project

normally distributed. There is a laser on and off delay to synchronize the laser and
the scanner card and to avoid local energy peaks.

After the completion of each layer, the island grid is turned about 90◦ and at the
same time shifted about 1mm in horizontal and in vertical direction. Therefore,
the number of islands can vary from layer to layer even if the geometry remains the
same.

For our tests of strategies, we used the Common Layer Interface (CLI) [21] to
transmit the information about the proposed order of the islands and power of the
laser. The original version that we used was CLI 2.0, but there had to be some
adaptations to our needs. It was extended to combine the scan vector with an
individual value of the laser power and a value of the velocity. The creation of the
CLI-file will be described in more detail in section 7.1. The files were transmitted
to the server of Concept Laser and after downloading they could read it with the
control software of the LaserCUSING R© machine.

In order to compute the scan vectors, we have to know their exact positions.
The grid in each layer is defined independently for each component that is built
on the base plate. It starts 30µm within the contour of the workpiece. For the
single islands, which have a size of 5 × 5mm2 if they are complete, the partition
of figure 2.3 holds. The distance of the first scan vector to the boundary of an
island is 52.5µm. The laser beam has a diameter of 50µm. The width of the trace
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where the powder is molten is about 150µm. In order to get an overlapping of the
heating, the overlapping of two consecutive traces has a width of 45µm. There are
also non-complete islands which depend on the geometry and result from the shift
of grid. Even in those islands, the scan vectors start with the same distance to the
boundary of the non-complete island.

Within one layer, a path through all nodes would be sufficient. Nevertheless, the
tour is chosen to have a connection to the next layer such that, depending on the
strategy, the starting point is either not too close to the last point in the previous
layer or at a close position.

scan vectors

5000

52.5

Figure 2.3.: Position of the scan vectors within a complete island (in µm)

The contour of the workpiece is scanned with the laser at a distance of half a
track width (75µm) from the real contour when the scanning of islands of one layer
is finished. The speed of the laser beam is two times the speed within the islands
(800 and 1, 600mm/s). An overview on the different parts near the contour of the
workpiece is given in figure 2.4.

75

30

boundary of the workpiece

grid of islands

scan vector for the contour

boundary of domain of the scan vectors

82.5

Figure 2.4.: Distribution at the contour of the workpiece (lengths in µm)
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2.4. Models and Strategies

When we chose the models, we had in mind that according to Kruth et al. [53]
steep temperature gradients usually cause deflections. Heating very close islands in
succession leads to a high temperature in that place while the other parts are not
heated.

Therefore, we chose strategies which avoid scanning close islands right after one
another. We took existing optimization problems and modeled the problem in a
suitable way. The optimization problems had in common that they asked for a
tour through all nodes. When we reduced every island on its center and defined
the Euclidean distances between the nodes as the edge lengths, the situation was
adapted to the different kinds of TSP. With our tests, we wanted to ascertain the
best fitting model for the real problem. In order to cover more than only this kind
of orders and to get some reference samples, we also included serial and random
orders.

The following models were applied to workpieces:

The Maximum Scatter TSP (MSTSP) is a special form of the traveling salesman
problem (TSP). The MSTSP searches for a tour or a path through all vertices
in a graph such that the shortest edge of the tour is as long as possible (see
Arkin et al. [7]). In our considerations, we took the Euclidean distances.
More details about this model and its solution in certain cases will be given
in section 3.2 and sections 4-6.

The Max-Min-2-Neighbor TSP (MM2NTSP) maximizes the shortest edge of the
set of edges appearing in the tour and the edges between those vertices which
are connected with exactly one further vertex between them (see Arkin et
al. [7] and Chiang [23]). This model will be also considered in sections 3.2
and 6.3.

The TSP with Squared Inverse Distances (TSPSID) minimizes the tour length,
the length being defined as the sum of all squared inverted lengths of edges
in the tour. The longer the Euclidean distance between two vertices, the less
it increases the length of the tour.

The TSP with Forbidden Neighborhoods (TSPN) minimizes the length of a tour
containing exclusively edges of at least length L. L is a constant that is chosen
in advance. The TSPN will be considered in section 3.4.

A Random Order was included as well to have some reference pieces. The current
strategy of Concept Laser was imitated. In this strategy, the order of islands
in each layer is random.

A Serial Order is the order of islands in lines. For nearly all geometries there are
distinctions between horizontal and vertical direction as well as meandering
from row to row or always starting at the same side.
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The theory of the models and some approaches are described in more detail in
the following chapters.
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3. Modeling and Theory

This chapter deals with different kinds of the TSP which were applied to model the
islands in CHAMP and whose optimal tours were tested for the workpieces. Before
the introduction of the special TSP with different distances or objective functions,
we will give an overview over the necessary TSP background.

3.1. The Classic Traveling Salesman Problem

The traveling salesman problem (TSP) is a well-known and frequently studied dis-
crete optimization problem. There is a huge number of publications dealing with
this problem. The traveling salesman problem – A computational study by Ap-
plegate et al. [6], Cook’s In pursuit of the traveling salesman: mathematics at the
limits of computation [28], The traveling salesman: computational solutions for
TSP applications by Reinelt [73] as well as The traveling salesman problem and its
variations by Gutin and Punnen [44] are important books which cover a wide range
of TSP studies.

The traveling salesman problem (TSP) is to find a routing of a sales-
man who starts from a home location, visits a prescribed set of cities
and returns to the original location in such a way that the total distance
travelled is minimum and each city is visited exactly once ([44], chapter
1).

The TSP is relatively easy to understand but it is very challenging to solve it.
There is no general algorithm that solves any instance of a TSP in reasonable time.
This is one of the main reasons for the popularity of the problem [6]. We will deal
with this problem as a mixed-integer program which goes along with the notation
of one of the first well-known publications about the TSP by Dantzig, Fulkerson
and Johnson [31]. Let G = (V,A) be the graph of cities V with the connections A,
let n be the number of given cities, let aij be the cost of the distance between city
i and city j, and let xij be a binary variable of value 1 if the arc from city i to city
j belongs to the tour and is otherwise 0. The optimization problem can be written
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in the following way:

min
x∈{0,1}|A|

n∑
i=1

n∑
j=1

aijxij (3.1)

n∑
j=1

xij = 1 ∀i = 1, . . . , n (3.2)

n∑
i=1

xij = 1 ∀j = 1, . . . , n (3.3)∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀S : ∅ ⊂ S ⊂ {1, . . . , n}. (3.4)

The constraints (3.2) to (3.4) guarantee that the solution is a tour. A tour is
defined in the following as a set of arcs (i, j) which fulfills these three constraints.
We will later have a look at optimization problems that also yield a tour, but have
different objective functions. The formulation above is a general formulation of the
asymmetric TSP. In the case of a symmetric TSP, i.e. the distances between two
vertices are symmetric (dij = dji), we could also use a formulation with undirected
edges. Many studies about the complexity of this problem have been done and a
variety of approximations have been invented. According to Papadimitriou [65],
the Euclidean TSP is NP-complete. In general, it is NP-hard (Karp [50]). The
Euclidean TSP has a polynomial-time approximation scheme (PTAS) in any fixed
number of d dimensions (Arora [8]), so there are several possibilities to approximate
the solution of the Euclidean TSP. Applegate et al. [6] deal with procedures which
are significantly influenced by TSP studies. We will build on the following literature.
The mixed-integer programming formulation is created by Dantzig, Fulkerson and
Johnson [31] and the results and general research on this topic can be found in
Schrijver [75], Wolsey and Nemhauser [81] and Wolsey [80]. Grötschel et al. [42],
[43] determine inequalities and facets of the TSP. Many aspects of the mixed-integer
programming formulation are included in Concorde [6] which is a computer code for
the symmetric TSP and for some related network optimization problems. Applegate
et al. [6] explain the components of the solver which are LP bounds, cutting planes
of different kinds and most of the techniques regarding the TSP. Also the two
following techniques in this passage and a chained Lin Kernighan heuristic are
incorporated in Concorde. A second procedure is the branch-and-bound method
introduced by Little et al. [58], Bock [18], Croes [30], and Eastman [34]. The
optimization problem is solved by splitting the feasible set of solutions into two or
more subsets. Then, the optimal solution of each subset is computed and finally
the best solution of all subsets is the optimal solution for the optimization problem.

The heuristic search algorithms are designed to yield a good solution within a
small amount of time. This is a general approach, but also applies well to TSP
tours. Just to name two examples of heuristic search algorithms, there are local
search algorithms and the simulated annealing paradigm. Local search algorithms
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originate in Morton and Land [63], Flood [39], Bock [18] and Croes [30]. We will
consider their ideas of developing an optimal or nearly optimal tour by improving a
given tour in section 6.1. Kirkpatrick et al. [51] introduced the simulated annealing
paradigm. This procedure is a relaxed version of the local search algorithms; it
modifies a given initial tour but can accept a worse tour than the previous one
with a certain probability. The tours remain similar to the previous one which is
reasonable if the previous solution is already quite good. Martin et al. [61], [60]
extended this paradigm and developed the chained Lin Kernighan from it where
the slow annealing which preserves properties of the previous solutions is replaced
by faster steps.

In regards to approximation procedures, different results have been gained. Vy-
gen [79] gives an overview over the current approximation procedures of TSP and
the latest achievements for symmetric and asymmetric TSP as well as for graphic
TSP. One easily comprehensible 1.5-approximation which runs in O(n3) and had
an enormous impact on the research on TSP is the Christofides algorithm [24] for
metric TSP. It is still the best general approximation. For n nodes in R2 and every
fixed c > 1, Arora found a randomized scheme which yields a (1+ 1

c )-approximation

to the optimum TSP tour [8]. This algorithm runs in O(n(log n)O(c)). This result
was achieved for any fixed dimension Rd which means that the procedure needs

O(n(log n)(O(
√
dc))d−1

). Arora et al. [10] proved that unless P6=NP, the metric TSP
does not have a polynomial approximation scheme. Mitchel [62] independently

discovered a similar nO( 1
ε )-time approximation scheme.

There are many particular TSP using certain kinds of distances like the graphic
TSP which is described in Vygen [79] and the TSP with squared inverse distances
(see section 3.3). Furthermore, there are several variations of the TSP with different
objective functions. These variations are considered in Gutin and Punnen [44].

The basic problem of the TSP without any objective function is the Hamiltonian
circuit problem which asks if a graph contains a circuit consisting of all nodes. In
the plane, this problem is NP-complete [40]. The idea of preserving a Hamiltonian
tour is included in most approximation algorithms for the TSP or any variation.
In the following chapters, we will mainly deal with the maximum scatter TSP
(MSTSP), but also with the max-min 2-neighbor TSP (MM2NTSP) which were
both introduced by Arkin et al. [7]. As there are similar optimization problems
whose approximation algorithms do not work for the MSTSP according to Arkin
et al. [7], we refer to the bottleneck TSP and the maximum TSP which are both
considered in Gutin and Punnen [44]. In the bottleneck TSP (BTSP), the longest
edge in the tour must be minimized. There are exact branch-and-cut procedures as
well as approximate procedures for this problem. Approximation results are also
given in Parker et al. [68]. In Ramakrishnan et al. [71], an approximation procedure
according to Lin and Kernighan is introduced. They transform the BTSP to a
classic TSP and solve this transformed problem with the Lin Kernighan heuristic.

The maximum TSP (MAX TSP) is the optimization problem that asks for a
longest tour through a given set of nodes. This problem is NP-hard in general,
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particularly for nodes in Rd with d ≥ 3 with distances in the Euclidean norm
(Fekete [35]). For d = 2 it is not stated whether it is NP-hard. An ε-approximation
in O(n3) is achieved asymptotically for any fixed ε > 0 (Serdyukov [76]).

In Arkin et al. [7], it is stated that neither the approximation results of BTSP
nor of MAX TSP can be directly applied to the MSTSP. Hence, they considered
this problem in more detail. We will deal with this in the following section and the
following chapters.

3.2. The Max-Min 1 and 2-Neighbor TSP

This section deals with a TSP with a different objective function from the classic
TSP. To better understand the model, we will provide our example interpretation
of this model which fits the problem quite well. It was already introduced in my
master thesis [47].

A vet has to examine all carnivores in a zoo. Each animal has a cage of its own.
When the vet examines a carnivore, it gets aggressive. So do the carnivores in the
surrounding cages. The longer the distance to the cage where the vet is, the less
aggressive the animal gets. By and by, the carnivores calm down. The vet wants
the animals to be as calm as possible when he examines them. The task is to find
an order in which the vet should examine the carnivores.

The vet has to find a path or a tour through all nodes such that the shortest
distance between two consecutive cages is as long as possible. We only consider
the case when the examination is divided into two parts meaning that the vet has
to do a second turn and therefore needs a closed tour through the nodes. This
optimization problem is in line with the MSTSP which is described in equations
(3.7) - (3.10). Depending on how fast the carnivores calm down, he can also try
to keep a large distance to the predecessor cage of the last animal visited when
choosing the next cage. This problem equals the Max-Min 2-Neighbor TSP. In this
optimization problem, the set of edges of the tour and the set of edges between the
predecessor and the successor of a node are considered.

The max-min 1 and 2-Neighbor TSP was mainly considered by Arkin et al. [7]
and Chiang [23] who proved among other things that the maximum scatter TSP is
NP-complete in general, only for the geometric MSTSP they hypothesize that it is
still NP-hard.

Even though we usually use symmetric distances, we define the problem as an
asymmetric problem in order to generalize it and to get a clear formulation. Let
G(V,A) be the complete graph with the vertex set V with |V | = n and the set of
directed edges A. Let dij be the Euclidean distance between vertex i and vertex j
in V . Let x ∈ Bn×n determine which edges belong to the tour

xij =

{
1 if edge (i, j) is part of the tour

0 else.
(3.5)

The MSTSP can be formulated in the following way:
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max min
i∈V

n∑
j=1

dijxij (3.6)

s.t.

n∑
j=1

xij = 1 ∀i = 1, . . . , n (3.7)

n∑
i=1

xij = 1 ∀j = 1, . . . , n (3.8)∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀∅ ⊂ S ⊂ {1, . . . , n} (3.9)

x ∈ Bn×n. (3.10)

The constraints of the problem are exactly the same as of the classical TSP as the
MSTSP also requires a tour. The constraint xii = 0 is included in equation (3.9).
The objective contains a maximization of the shortest edge in the tour.

The MM2NTSP can be formulated as

max min{ min
j∈V

∑
i∈V \{j}

dijxij , min
j∈V

∑
i∈V \{j}

∑
k∈V \{i,j}

dijuikj} (3.11)

s.t.
n∑
j=1

xij = 1 ∀i ∈ V (3.12)

n∑
i=1

xij = 1 ∀j ∈ V (3.13)∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀S : ∅ ⊂ S ⊂ V (3.14)

uikj − xik ≤ 0 ∀i, k, j ∈ V and pairwise distinct (3.15)

uikj − xkj ≤ 0 ∀i, k, j ∈ V and pairwise distinct (3.16)

− uikj + xik + xkj ≤ 1 ∀i, k, j ∈ V and pairwise distinct (3.17)

uikj , xij ∈ B ∀i, k, j ∈ V and pairwise distinct. (3.18)

The definitions of V , E, x stay the same, but one further variable is introduced.
uikj = xik · xkj is a variable which linearizes the non-linear expressions in the 2-
neighbor problem. Its value is then and only then 1 if i and j are 2-neighbors and
k is the vertex between them. The constraints (3.12)-(3.14) are the same as for
the MSTSP and the classical TSP. Constraints (3.15)-(3.17) define uikj without
any non-linear expressions. The first two of them require that uikj may only be
1 if both arcs (i, k) and (k, j) belong to the tour. The third one guarantees that
uikj has to be 1 as soon as both edges are part of the tour. For the tests in the
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project CHAMP, we extended the objective function such that the edges between
2-neighbors do not count as much as the regular edges. There is a weight c ≥ 1 for
the 2-edges such that the edges between 2-neighbors do not have to have the same
lengths as the direct edges. In our computations, we set c = 1.5. We chose this
value because it is a weakening of the restrictions to a 2-edge, but at the same time
the distances between 2-neighbors influence the optimization.

When solving the problem with a MIP-solver, we have to rewrite the objective
function. We introduce a real variable z which we maximize. This variable has to be
smaller than any edge appearing in the tour. This means that the objective function
is reformulated in the following way and the following constraints are added:

max z (3.19)

z ≤
∑

i∈V \{j}

dijxij ∀j ∈ V ; (3.20)

(z ≤ min
j∈V

∑
i∈V \{j}

∑
k∈V \{i,j}

dijuikj ∀j ∈ V ) if MM2NTSP (3.21)

xij , uikj ∈ B ∀i, k, j ∈ V and pairwise distinct (3.22)

z ∈ R+
0 . (3.23)

In Gutin and Punnen [44] it is stated that an optimal solution of the MSTSP
with the weight matrix D is equivalent to an optimal solution of the BNTSP with
weight matrix C = −D and vice versa. However, most procedures for one of the
problems benefit from a special structure of the weight matrix which can easily be
violated by the transformation. So the procedure yields a much worse performance.
Therefore, both problems are considered separately and have different approxima-
tion procedures.

Arkin et al. [7] proposed an 1
2 -optimal approximation in O(n2) for the maximum

scatter TSP. The procedure removes the shortest edges from a graph and stops just
before one node has degree less than

⌈
n
2

⌉
. The shortest edge of any Hamiltonian

tour in the remaining graph has a length of at least half the optimum value of
the MSTSP. The condition that the degree of each node has to be greater than
or equal to

⌈
n
2

⌉
was established by Dirac [33]. Gutin and Punnen [44] proposed

further sufficient conditions of Hamiltonian cycles and showed how the algorithm
of Arkin et al. [7] can be adapted to one of these conditions. For special cases of
node configurations, which are nodes on a line or a circle, Arkin et al. [7] even gave
exact solutions. We will particularly refer to these results in chapter 4 where we
extend the results for nodes on a line to an equidistant grid. Arkin et al. [7] also
provided an upper bound for the MSTSP which was obtained in the following way:
From each subset of

⌊
n
2

⌋
nodes the longest edge between two nodes of the subset is

taken to a set. From this set of longest edges the length of the shortest edge is an
upper bound for the MSTSP.
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Furthermore, they introduced an 1
2 -optimal polynomial-time approximation for

the MM2NTSP. Chiang [23] pursued this topic and published an O(n2.5)-time ap-
proximation algorithm for the MM2NTSP with a factor of 18 for the cycle version
with distances which fulfill the triangle inequality.

For general solutions of the MM2NTSP, we also refer to Fischer [36] and Fischer et
al. [37] who dealt with cutting planes of the quadratic traveling salesman problem
(QTSP) and the lifting of valid inequalities of the symmetric TSP to stronger
inequalities for the symmetric QTSP. The MM2NTSP can be transformed to the
QTSP quite well.

3.3. The TSP with Squared Inverse Distances

In addition to the MSTSP, we will also consider a model which has a similar
objective but which is closer to the classical TSP. It was chosen for testing purposes
to see if slight changes of the order deduced from the solution of the MSTSP already
have an impact on the quality of the workpieces. If this were not the case and if the
solution of the MSTSP was a good strategy for an island order, this would mean
that it is possible to work with a less degenerate problem. Let G(V,E) be the graph
with n = |V | vertices and the edge set E. The TSP with squared inverse distances
is a classical TSP with the following distance function:

d̃ :V × V → R+
0

(i, j) 7→ 1

d2
ij

(3.24)

where dij is the Euclidean distance between vertex i and vertex j. Let T be the
set of all tours through all nodes of V . The optimization problem can be written
in the following way:

min
T∈T

∑
(i,j)∈T

1

d2
i,j

.

The longer the Euclidean length of an edge, the shorter is the value of the new
distance function and vice versa. This is caused by the inverse distance. By taking
the square of the inverse Euclidean distance, the longer edges become even more
preferable than the shorter ones.

As the TSP does not have a polynomial-time approximation scheme for arbitrary
symmetric distances [16], many of the efficient approximation procedures lose their
efficiency for problems which do not satisfy the triangle inequality. Several papers
consider traveling salesman problems with inputs satisfying a relaxed triangle in-
equality, that means that c(u, v) ≤ τ(c(u,w) + c(w, v)) for nodes u, v, w ∈ X and
the cost function c : X → R. Andreae and Bandelt [4] and Andreae [3] intro-
duced a heuristic called T 3-algorithm and refine it to a (τ2 + τ)-approximation.

Böckenhauer et al. [19] introduced a Christofides-based (3τ2

2 )-approximation and
de Berg et al. [32] found a 5-approximation algorithm for the TSP with squared
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distances. The approximations of Andreae [3] and Bandelt and Andreae [3] are
6-approximations just like the approximation of Böckenhauer et al. [19]. Bender
and Checkuri introduced a 4τ -approximation, that means an 8-approximation for
the squared distance, which is based on finding a minimum weight 2-connected
subgraph and a Hamiltonian tour in the square of this subgraph.

Unfortunately, these approximations can not be applied to the TSP with squared
inverse distances as the relaxed triangle inequality is not fulfilled. The following
proposition is proved in appendix B.

Proposition 1. There is no τ ∈ R+ such that for all a, b, c the following holds:

d̃(a, c) ≤ τ
(
d̃(a, b) + d̃(b, c)

)
(3.25)

with d̃ defined in equation (3.24).

Thus, for the TSP with squared inverse distances, the algorithms for the TSP
with a distance fulfilling a relaxed triangular inequality cannot be applied.

For the samples that we produced at Concept Laser, we computed the order of
the islands of the single layers with Concorde [6], a computer code for the symmetric
traveling salesman problem. The components of that code are described precisely in
Applegate et al. [6]. The format of the input files is according to the documentation
about the TSPLIB [74]. The distances are written in a lower triangular matrix with
a large enough value on the diagonal and scaled distances in order to get sufficiently
large and different integer lengths. As Concorde requires integer values for the
distances and the inverse distances are all smaller 1, we multiply the distances with
10,000 for smaller samples and with 1,000,000 for the greater samples where the
values of d̃ get quite small. For the samples in the tests at Concept Laser, we
set d̃ii = 2 which means 20,000 or 2,000,000 in the input file. In regards to our
workpieces, we were able to compute the solution by Concorde as one layer of the
samples was not too big and we did not have to include the computation of the
optimal order into the production process.

The samples are described in more detail in section 7.2. For testing this strategy,
we chose the value 2, but for general considerations this value should be chosen
more carefully.

3.4. TSP with Forbidden Neighborhoods

This section treats the TSP with forbidden neighborhoods (TSPN), a variation of
the TSP where the set of edges is restricted. Fischer and Hungerländer [38] work
on this optimization problem called TSPFN in their article.

Let G = (V,E) be a complete graph with the distance function d : E → R+
0 and

with a minimum distance dmin between two nodes. V is the set of vertices and E
the set of edges between the vertices. Let E∗ = {(i, j) ∈ E : d(i, j) ≥ dmin} be the
restricted set of edges. The objective is to find a tour through all nodes which only
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contains edges in E∗. The complexity of the TSPN on regular grids is not known at
the moment [38] and will not be considered in this work. Fischer and Hungerländer
approach this problem from small dmin as I know from private communication. They
create combinatorial solutions for regular grids as far as possible. In CHAMP, we
decided for this model in order to get a short tour through the islands while keeping
a minimum distance between consecutive islands. This is a compromise between the
optimization of the production time and at the same time an attempt to avoid heat
peaks at certain positions. For the test samples in the project, we computed the
order resulting from this problem by Concorde [6] by setting all smaller distances
to a large value such that they did not get chosen. In Concorde, the distances need
to be rounded to integer values.

One further step we did was to combine this problem with the MSTSP, setting
dmin to the objective value of the MSTSP. In doing so, we get the shortest tour
with the longest possible minimum edge. The approximation of this result will be
considered in section 5.3.
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4. Maximum Scatter TSP on an
Equidistant Grid

In this chapter, we will introduce a linear-time algorithm Weave(m,n) for the
maximum scatter TSP on a regular grid which is optimal for several cases and at
least asymptotically optimal in the remaining cases. We create Weave(m,n) by
extending the idea of an algorithm for points on a line from Arkin et al. [7] to a
regular grid. After an examination of upper and lower bounds, some further exact
procedures will be given for the cases where the tour returned from Weave(m,n)
is not optimal. This chapter includes a preprint [48] which is accepted for the
proceedings of the OR 2015.

4.1. Preliminaries

A regular rectangular grid is defined as the complete graph G(m,n) on the vertex
set V (m,n) = {

(
x
y

)
∈ Z2 : 0 ≤ x ≤ n − 1, 0 ≤ y ≤ m − 1} where m is the number

of rows and n the number of columns. On this graph with Euclidean distances
between the nodes, we will solve or at least approximate the geometric MSTSP in
the plane. Our procedure is called Weave(m,n).

The idea of our new algorithm Weave(m,n) comes from a solution presented in
Arkin et al. [7] (section 6). As the resulting order of the points on a line coincides
with the order of columns in the regular grid, we will consider their solution in more
detail before extending it.

In Arkin et al. [7], the nodes need not be equidistant, but this has an impact on
the starting node for the pattern of the solution. In the case of equidistant nodes,
the pattern can always be started at the first node. There are two subroutines
in the algorithm, one for an odd number of points and one for an even number
of points. For an odd number of points n = 2k + 1 ≥ 3, the distances between
subsequent points in the order are either k or k + 1, the order is 0, k + 1, 1, k +
2, 2, ..., 2k − 1, k − 1, 2k, k. The tour is completed by returning to the first point.
The pattern is illustrated for two examples in figure 4.1(a). For an even number
of points n = 2k ≥ 4 the distances are alternately k − 1 and k + 1 except when
either one of the endpoints or one of the points in the middle (nodes k − 1 and k)
is reached. In these cases, a single distance of k is inserted into the pattern. One
could also say that the end points have incident edges of length k and k+1 and the
two points around the center are incident to edges of length k−1 and k. The order
is 0, k+ 1, 2, k+ 3, . . . , n− 2, k− 1, n− 1, k− 2, n− 3, k− 4, . . . , 1, k if k is odd and
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4. Maximum Scatter TSP on an Equidistant Grid

0 1 2 3 4 0 1 2 3 4 5 6
(a) LineOdd(n)

0 1 2 3 4 5 0 1 2 3 4 5 6 7
(b) LineEven(n)

Figure 4.1.: Order of LineOdd(n) and LineEven(n) for n = 5, 6, 7, 8

0, k+1, 2, k+3, . . . , k−2, n−1, k−1, n−2, . . . , k+1 if k is even. This is visualized
in figure 4.1(b). In the following, we will call these procedures LineOdd(n) and
LineEven(n). For the small illustrated examples, not all of the listed nodes appear
in the order: for example for n = 6, node k + 1 is n − 2 and node k − 2 is 1, so
the part in between each of those two can be skipped. The procedure is completely
defined in function j(p) in the definition of Weave(m,n), see equations (4.2) and
(4.5).

From Arkin et al. [7] (section 6.1 and 6.2) it follows that the tours generated by
LineOdd(n) and LineEven(n) are optimal tours for the MSTSP for points on a
line. Thus, Weave(1, n) is set to LineOdd(n) or LineEven(n), respectively.

4.2. The Algorithm Weave(m,n) to find a Hamiltonian
Cycle

In the following, we will present Weave(m,n) for m ≥ 2. We will use the following
notation for the nodes.

Definition 2. A node in the regular (m×n)-grid is defined by an ordered pair (i, j)
of its row index i and its column index j.

W.l.o.g. we will consider grids with a distance of 1 between the columns and
rows and with m ≤ n. For any scaled grid, Weave(m,n) can also be applied. If
a grid has more rows than columns, we apply Weave(m,n) to the grid rotated by
90◦.

4.2.1. Procedure

Weave(m,n) uses the distances of LineOdd(n) and LineEven(n) in horizontal
direction. At the same time it takes vertical distances in order to get longer edges
than (0, k − 1)-edges. The order of columns is the same as in LineOdd(n) or
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i

i + t

(a) Even number of rows

0

t

n− 1

i

i + t

(b) Odd number of rows

Figure 4.2.: Pairs and triples of rows

LineEven(n) but the initial node is node k + 1. If we took the same pattern for
the rows as for the columns, we could not yield a closed tour and some of the
distances still would not be long enough, so we have to take a new pattern for the
rows.

The rows are partitioned in m
2 pairs of rows if m is even and in m−1

2 − 1 pairs
and one triple of rows if m is odd. The pairs are chosen such that the distance
between the two rows is t =

⌊
m
2

⌋
which is also true for the triple, see figure 4.2.

The idea is to jump back and forth inside a pair (triple) of rows where the order of
columns is given by Weave(1, n). For an odd number of columns, the pattern is
done twice in a pair and three times in a triple, so all nodes get visited. For n even,
applying Weave(1, n) twice to a pair would definitely yield a subtour visiting half
of the nodes in the pair twice. That is why the pattern is only applied to a pair
once for n even, then Weave(m,n) switches to the subsequent pair. When the
pattern has been applied to every pair once, Weave(m,n) returns to the second
row of the first pair for the second turn. When returning to a pair for the second
time, Weave(m,n) starts in the other row, respectively, to ensure that the second
half of the nodes is visited. If there is a triple of rows, the pattern is applied to it
three times in the beginning and afterwards the pairs are visited.

As switching to another pair can yield a short vertical distance of t− 1 or t− 2,
we compensate it with the longest possible horizontal distance from Weave(1, n),
i.e. we always combine it with a horizontal length of k + 1. In order to guarantee
this, we start with column k+ 1 in any pair, so we always finish one pair in column
0 and have a horizontal distance of k + 1 to the next node.

If m was odd and n was a multiple of 3, LineOdd(n) or LineEven(n) would
start three times in the same row when visiting the triple of rows. This has to
be avoided. Therefore, in this case Weave(m,n) skips one row of the triple when
restarting the order of LineOdd(n) or LineEven(n).

The complete definition of the algorithm is given in the following. In all defini-
tions of algorithms in this work, we usually make use of the residue class ring Z/nZ
with the canonical representatives 0, . . . , n− 1.
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4. Maximum Scatter TSP on an Equidistant Grid

Definition 3 (Weave(m,n)). We define Weave(m,n) as a mapping w from a
set P = {0, . . . ,m · n− 1} of positions to a node (i, j) in the two-dimensional grid.

Let M = {0, . . . ,m−1} be the index set of rows and N = {0, . . . , n−1} the index
set of columns. Weave(m,n) is described by

w : P →M ×N
p 7→ (i(p), j(p))

(4.1)

with i(p) and j(p) defined in the following way: If n is even,

j(p) =



(1− (p mod 2)) ·
(
(p mod n) + n

2 + 1
)

+(p mod 2) · ((p mod n) + 1) if p mod n < n
2 − 1

(1− (p mod 2)) ·
(

3
2n− 2− (p mod n)

)
+(p mod 2) · (n− 2− (p mod n)) if n

2 − 1 ≤ p mod n < n− 1

0 if p mod n = n− 1.

(4.2)
For m odd or even and n even, i(p) differs. If m even,

i(p) =


q + (p mod 2) · m2 if qn ≤ p < (q + 1)n

q ∈ {0, 1, . . . , m2 − 1}
q − (p mod 2) · m2 if qn ≤ p < (q + 1)n

q ∈ {m2 , . . . ,m− 1}

(4.3)

and if m odd,

i(p) =



(p mod 3) · m−1
2 if p < 3n and n mod 3 6= 0

(p mod 3) · m−1
2 if 0 ≤ p < n and n mod 3 = 0

((p+ 1) mod 3) · m−1
2 if n ≤ p < 2n and n mod 3 = 0

((p+ 2) mod 3) · m−1
2 if 2n ≤ p < 3n and n mod 3 = 0

q + (p mod 2) · m−1
2 if (3 + q − 1)n ≤ p < (3 + q)n

q ∈ {1, 2, . . . , m−1
2 − 1}

q + 1− (p mod 2) · m−1
2 if (3 + q − 1)n ≤ p < (3 + q)n

q ∈ {m−1
2 , . . . ,m− 3}.

(4.4)

If n is odd,

j(p) = (((p+ 1) mod n) mod 2) ·
(

((p+ 1) mod n)− 1

2
+
n+ 1

2

)
+ (1− (((p+ 1) mod n) mod 2)) · ((p+ 1) mod n)

2
.

(4.5)

If m is even and n is odd,

i(p) =
q

2
+ [p mod 2] · m

2
if qn ≤ p < (q + 2)n

and q ∈ {0, 2, 4, . . . , 2(
m

2
− 1)}.

(4.6)
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n o, m e n e, m e

(t, k) (t, k)
(t, k + 1) (t, k + 1)

(t− 1, k + 1) (t− 1, k + 1)
(m− 1, k + 1) (t, k − 1)

(t+ 1, k + 1)

Table 4.1.: Edge lengths for m even in Weave(m,n) (o=odd, e=even)

If m and n are odd,

i(p) =



(p mod 3) · m−1
2 if 0 ≤ p < 3n and n mod 3 6= 0

(p mod 3) · m−1
2 if 0 ≤ p < n and n mod 3 = 0

((p+ 1) mod 3) · m−1
2 if n ≤ p < 2n and n mod 3 = 0

((p+ 2) mod 3) · m−1
2 if 2n ≤ p < 3n and n mod 3 = 0

q
2 + ((p+ 1) mod 2) · m−1

2 if (q + 1)n ≤ p < (q + 3)n

and q ∈ {2, 4, . . . , 2(m−1
2 − 1)}.

(4.7)

If m = 3, then Weave(m,n) terminates when the triple of rows is finished with
a largest position of p = 3n − 1. If m = 2, the pattern of LineOdd(n) or
LineEven(n) is applied twice while the row changes after each node. If n even,
there is a (0, k + 1)-move between the first and the second turn.

We state the following lemma.

Lemma 1. Weave(m,n) yields a tour through all nodes.

We will prove in section 5.2 that w is a bijection. Thus, Weave(m,n) re-
turns a tour. In the following we will focus on the shortest edges which appear
in Weave(m,n).

4.2.2. Bounds

In the following descriptions, the first component t of a (t, k)-edge refers to the
vertical direction and the second one k to the horizontal direction. When we search
for a lower bound for the MSTSP(m,n), it is expedient to take a look at the
shortest edges appearing in Weave(m,n). Therefore, we have created a table of
all lengths appearing in Weave(m,n) (see tables 4.1 and 4.2).

We get these types of edges by computing the horizontal and vertical distance
between two subsequent nodes. We consider the definitions of i(p) and j(p) and
write down the different lengths in each direction. Therefore, we have to compute
several distances. Firstly, we need to compute the difference between the function
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n o, m o n mod 3 6= 0 e, m o n mod 3 = 0 e, m o

(t, k) (t, k) (t, k)
(t, k + 1) (t, k + 1) (t, k + 1)

(t, k − 1) (t, k − 1)
(t− 1, k + 1) (t− 1, k + 1) (t− 1, k + 1)

(m− 1, k) (m− 1, k) (m− 1, k)
(m− 1, k + 1) (m− 1, k + 1) (m− 1, k + 1)

(m− 1, k − 1) (m− 1, k − 1)
(m− 2, k + 1) (m− 2, k + 1)

(t− 2, k + 1) (t− 2, k + 1)
(t+ 1, k + 1) (t+ 1, k + 1)

Table 4.2.: Edge lengths for m odd in Weave(m,n) (o=odd, e=even)

values of consecutive positions within one interval. Afterwards, also the differences
between the function values of the last position in an interval and the first position
in the following interval are taken into account. And finally, the difference between
the function values of the last position of the last interval and the first position of
the first interval is computed. These differences are combined for each direction.

For example, we consider a grid with m even and n odd. We get the horizontal
distances from j(p) (equation (4.5)). Considering the first part of the first summand,
we obtain ((p+2) mod n) mod 2 6= ((p+1) mod n) mod 2 for (p+1) mod n 6= n−1.
In this case ((p + 1) mod n) mod 2 always changes between 0 and 1. If p + 1 is a
multiple of n, it is 0 for two consecutive positions. The distance is

|j(p+ 1)− j(p)| =
∣∣∣∣(((p+ 1 + 1) mod n)− 1

2
+
n+ 1

2

)
− ((p+ 1) mod n)

2

∣∣∣∣
=
n+ 1

2
= k + 1

(4.8)

for (p+ 1) mod n < n− 1 even and

|j(p+ 1)− j(p)| =
∣∣∣∣((p+ 1 + 1) mod n)

2
−
(

((p+ 1) mod n)− 1

2
+
n+ 1

2

)∣∣∣∣
=
n− 1

2
= k

(4.9)

for (p+ 1) mod n < n− 1 odd and

|j(n− 1)− j(n− 2)| =
∣∣∣∣((n− 1 + 1) mod n)

2
− ((n− 1) mod n)

2

∣∣∣∣ =
n− 1

2
= k

(4.10)
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for (p+1) mod n = n−1. In vertical direction we consider i(p). Within one interval
the distance is always

|i(p+ 1)− i(p)| =
∣∣∣q
2

+
m

2
− q

2

∣∣∣ =
m

2
= t. (4.11)

When changing from one interval to the next one, the position p of the last node
of the interval is odd. Thus, the distance is

|i(p+ 1)− i(p)| =
∣∣∣∣q + 2

2
− q

2
− m

2

∣∣∣∣ =
m

2
− 1 = t− 1. (4.12)

This vertical distance only appears for p = (q+2)n−1 odd. For such a p we always
have p mod n = n− 1 even and

|j(p+ 1)− j(p)| = |j(n)− j(n− 1)|

=

∣∣∣∣(((n+ 1) mod n)− 1

2
+
n+ 1

2

)
− n mod n

2

∣∣∣∣
=
n+ 1

2
= k + 1.

(4.13)

The last vertex is connected to the first vertex. In horizontal direction we get the
same distance as at any end of an interval, but in vertical direction, we compute

|i(0)− i(mn− 1)| =
∣∣∣−(m

2
− 1
)
− m

2

∣∣∣ = m− 1. (4.14)

Thus, Weave(m,n) takes (t − 1, k + 1)-edges, (m − 1, k + 1)-edges, (t, k)-edges
and (t, k + 1)-edges for m even and n odd. For all other cases we can compute the
distances analogously.

Because of the extending structure it is usually possible to consider first the
different moves in columns while the moves in rows are constantly the same within
one interval. The change of the row interval always goes along with the last move
in the column turn. The quantity of an edge can be computed or counted in
the mapping by counting the number of intervals in which an edge appears and
the number of times this edge appears per interval. A list of the edges and their
frequency can be found in the tables 5.3 and 5.4.

For many edges it is obvious that they are longer than others in the list. Hence,
the candidates for the shortest edge are (t, k) and (t − 1, k + 1) if n is odd and
(t− 2, k + 1) only if m is odd and m ≥ 5 , (t, k − 1) and (t− 1, k + 1) if n is even.
In the following, we compare the lengths of these edges:√

t2 + k2 ≤
√
t2 + k2 + 2 (k − t)︸ ︷︷ ︸

≥0

+2 =
√

(t− 1)2 + (k + 1)2 (4.15)

√
(t− 1)2 + (k + 1)2 ≥

√
(t− 2)2 + (k + 1)2

=
√
t2 + 5︸︷︷︸

≥1

+k2 + 2k − 4t︸ ︷︷ ︸
≥−2k

≥
√
t2 + (k − 1)2.

(4.16)
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4. Maximum Scatter TSP on an Equidistant Grid

(a) (t, k) for m,n odd (b) (t, k) for m even, n odd (c) (t, k) for m odd, n
even

(d) (t− 1, k) for m,n even

Figure 4.3.: Upper bounds for all kinds of grids

The straightforward calculations show that the shortest edge is a (t, k)-edge if n is
odd and a (t, k − 1)-edge if n is even.

We can get upper bounds for the MSTSP(m,n) by choosing one of the central
nodes and determining the second-longest edge incident to that node (see figure
4.3). This choice is motivated by the two facts that any node has to be connected
twice in a tour and that the longest incident edges to the central nodes are shorter
than those of the other nodes.

For all grids the (t, k)-edge is an upper bound for the longest of the shortest edges,
whereas for the grid with an even number of rows and columns, we can refine this
bound to a (t − 1, k)-edge. When we compare the upper and lower bounds, we
ascertain the following:

Proposition 2. Weave(m,n) produces an optimal solution of the MSTSP for
grids with n odd and for quadratic grids.

This proposition covers more than half of all possible grids. For grids with an
even number of columns, more detailed examinations have to be done. However,
it is evident that for a quadratic grid (m = n even) the upper bound equals the
lower bound since t = k. There is one further case in which the tour computed by
Weave(m,n) is optimal.

If m = 2, a tour using only edges of at least length
√

(t− 1)2 + k2 would always
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Figure 4.4.: Subtour for a (2× n)-grid

include subtours. This is due to the fact that the nodes in the center columns could
only be connected to the corners (see figure 4.4). Therefore, we can conclude:

Corollary 1. For any grid with m = 2, Weave(m,n) produces an optimal solution
of the MSTSP.

In all other cases, there is a gap which we will consider in the following subsec-
tions.

However, before we examine the gap, we will consider the upper bound in more
detail.

We state the following:

Proposition 3. Let n be even. If k > 1
2(3t2−2t+1) for m even and k > 1

2(3t2 +1)

for m odd, the objective value of the MSTSP is at most
√

(m− 1)2 + (k − 1)2.

Proof. Consider a grid with an odd number of rows (m = 2t + 1) and an even
number of columns (n = 2k) where the number of columns is greater than 3t2 + 1.
We transform the inequality in the following way:

k >
1

2
(3t2 + 1)

⇔ 0 > 3t2 + 1− 2k = 4t2 + 4t+ 1− 2k − t2 − 4t− 2 + 2 + k2 − k2

⇔ t2 + k2 > (2t+ 1)2 − 2(2t+ 1) + 1 + k2 − 2k + 1

⇔ t2 + k2 > m2 − 2m+ 1 + (k − 1)2

⇔ t2 + k2 > (m− 1)2 + (k − 1)2 > 0

⇔
√
t2 + k2 >

√
(m− 1)2 + (k − 1)2.

(4.17)

For an even number of rows and columns (m = 2t and n = 2k) with
k > 1

2(3t2 − 2t+ 1) we deduce

k >
1

2
(3t2 − 2t+ 1)

⇔ 0 > 3t2 − 2t+ 1− 2k = 4t2 − 4t+ 1 + k2 − 2k + 1− 1− k2 − t2 + 2t

⇔ t2 − 2t+ 1 + k2 > m2 − 2m+ 1 + (k − 1)2

⇔ (t− 1)2 + k2 > (m− 1)2 + (k − 1)2 > 0

⇔
√

(t− 1)2 + k2 >
√

(m− 1)2 + (k − 1)2.

(4.18)
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4. Maximum Scatter TSP on an Equidistant Grid

It is not possible to get a tour without any edge of the horizontal length k − 1 as
this would lead to subtours (see figure 4.5). Since an (m − 1, k − 1)-edge is the
longest possible edge with a horizontal distance of k − 1, we receive a new upper
bound of

√
(m− 1)2 + (k − 1)2 for k greater than the given bounds.

We can do the same calculation for k ≤ 1
2(3t2 + 1) and k ≤ 1

2(3t2 − 2t + 1) and
find that there is at least one kind of edge with a horizontal distance of k − 1 that
is longer than the current upper bound, so for these cases the value of the upper
bound does not change. Of course, it is not clear at that point if the upper bounds
and the optimal value coincide. An overview of the current upper bounds is given
in table 4.5.

Figure 4.5.: Candidates (red) for consecutive nodes for the nodes of the middle
columns (blue) with a horizontal distance of at least k

4.2.3. Approximation Ratio for an Even Number of Columns

From the bounds that we computed in the previous subsection we can now com-
pute the gap between the upper and lower bounds to derive the gap between
Weave(m,n) and an optimal solution for the different cases of the algorithm. In
table 4.3, the absolute values of the gaps and the gaps relative to the upper bounds
are listed. Figures 4.3 and 4.7 show the relative gaps from table 4.3 for some even
numbers of columns. In figures 4.6(a) and 4.6(b) smaller grids are illustrated while
figures 4.7(a) and 4.7(b) give an impression of the gap for larger grids. According
to the graphs, the following holds: For m odd the gap is monotonically decreasing
for an increasing number of columns, for m even it is decreasing for large values of
n.

For the quadratic grids (first point of each curve) with an even number of rows
and columns, the gap is monotonically decreasing for an increasing size of the grid.
The same holds for near-quadratic grids (m = n− 1) with m odd and n even. For
any fixed m, the relative gap converges to 0 for an increasing n.

We will prove most of these observations in the following.
For the absolute gap the following lemma, which we have also presented in [48],

holds.

Lemma 2. For any regular grid with n even, the gap between the solution of
Weave(m,n) and the upper bound of the MSTSP deduced from the distances be-
tween corner and central points is always smaller than one.
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Grid abs. value rel. value

m even, k < a
√

(t− 1)2 + k2 −
√
t2 + (k − 1)2 1−

√
1− 2(k−t)

(t−1)2+k2

m even, k ≥ a
√

(m− 1)2 + (k − 1)2 −
√
t2 + (k − 1)2 1−

√
1− 3t2−2t+1

(m−1)2+(k−1)2

m odd, k < b
√
t2 + k2 −

√
t2 + (k − 1)2 1−

√
1− 2k−1

t2+k2

m odd, k ≥ b
√

(m− 1)2 + (k − 1)2 −
√
t2 + (k − 1)2 1−

√
1− 3t2

(m−1)2+(k−1)2

Table 4.3.: Gaps between lower and upper bound for n even – absolute value and
value relative to the upper bound with a = 1

2(3t2 − 2t + 1) and b =
1
2(3t2 + 1)

Proof. As the upper bound for even m is smaller than the upper bound for odd m
(recall that

√
(t− 1)2 + k2 <

√
t2 + k2), it suffices to prove√

t2 + k2 <
√
t2 + (k − 1)2 + 1. (4.19)

We can square both sides of the inequality, because all values are greater zero:

t2 + k2 < t2 + (k − 1)2 + 2
√
t2 + (k − 1)2 + 1

⇔ 0 < −2k + 2 + 2
√
t2 + (k − 1)2

⇔ k − 1 <
√
t2 + (k − 1)2.

(4.20)

By observing that t2 > 0 for m > 1 on the right hand side, the strict inequality
is true. Therefore, the value of the gap between the lower and the upper bound is
always strictly smaller than one.

We can even prove that the convergence of Weave(m,n) to the optimum is
asymptotic.

Proposition 4. For n even and m odd we have

Weave(m,n) ≥
√

1− 2k − 1

t2 + k2︸ ︷︷ ︸
αt,k

·OPT (m,n).

For even m,n we have

Weave(m,n) ≥

√
1− 2(k − t)

(k − t)2 + 2t(k − 1) + 1︸ ︷︷ ︸
βt,k

·OPT (m,n).

37



4. Maximum Scatter TSP on an Equidistant Grid
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Figure 4.6.: Gaps for an even number of columns and a small number of rows

Proof. The proof works by straightforward calculations: It is obvious that

OPT (m,n) ≤ Upper Bound(m,n).

Therefore,

Weave(m,n) = αt,k ·Upper Bound(m,n) ≥ αt,k ·OPT (m,n) (4.21)

Weave(m,n) = βt,k ·Upper Bound(m,n) ≥ βt,k ·OPT (m,n) (4.22)

with

αt,k =
Weave(m,n)

Upper Bound(m,n)
=

√
t2 + (k − 1)2

√
t2 + k2

=

√
1− 2k − 1

t2 + k2
(4.23)
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Figure 4.7.: Gaps for an even number of columns and a large number of rows

if m odd and n even;

βt,k =
Weave(m,n)

Upper Bound(m,n)
=

√
t2 + (k − 1)2√
(t− 1)2 + k2

=

√
1− 2(k − t)

(k − t)2 + 2t(k − 1) + 1

(4.24)
if m even and n even.

Since the approximation guarantee converges to one for increasing m and n, we
conclude the following:

Corollary 2. For all but 4 small sizes of grids α, β ≥ 0.8. Moreover, for all t ≥ 1
limk→∞ αt,k = 1 and limt→∞,k→∞ αt,k = 1. The same convergence holds for βt,k.
In this sense, Weave(m,n) is asymptotically optimal.
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4. Maximum Scatter TSP on an Equidistant Grid

Proof. Obviously, for any t and k with 0 < t ≤ k

αtk =

√
t2 + (k − 1)2

t2 + k2
<

√
t2 + (k − 1)2

(t− 1)2 + k2
= βtk ≤ 1. (4.25)

After a transformation, we obtain

αtk =

√
1− 2k − 1

t2 + k2
. (4.26)

As limt,k→∞
2k−1
t2+k2

= 0, α converges to 1 and thus, with equation (4.25) β also
converges to 1.

Now, we prove that αtk is monotonically increasing. Thus, we restrict to grids
with an odd number of rows m and an even number of columns n. As in this case
t = m−1

2 and k = n
2 and m ≤ n, we need not consider the case of t = k for those

grids, but only t ≤ k− 1. As the square root is monotonically increasing, it suffices
to show for m odd that the subtrahend under the square root from equation (4.26)
is monotonically decreasing. The partial derivatives are

∂

∂t
(

2k − 1

t2 + k2
) = −(2k − 1) · 2t

(t2 + k2)2
< 0 (4.27)

∂

∂k
(

2k − 1

t2 + k2
) =

2(t2 − k2 + k)

(t2 + k2)2
. (4.28)

The derivative in equation (4.28) is negative if t ≤
√
k(k − 1). As

√
k(k − 1) >√

(k − 1)2 = k − 1, the derivative is negative for all considered grids. Thus, αtk is
monotonically increasing. We compute a list of αtk starting from a 3× 4-grid (α12)
and increasing k until αtk ≥ 0.8 for one grid. Then we continue with α56 and so
on. We see that αtk ≥ 0.8 for a 3 × 10-grid, a 5 × 8-grid and a 7 × 8-grid. For all
larger grids αtk ≥ 0.8. There are only 4 grid sizes, namely the 3×4-grid, 3×6-grid,
3× 8-grid, and the 5× 6-grid, for which αtk < 0.8.

For each grid with m and n even and m < n, there is a grid with m odd and n
even such that they have the same t and k and equation (4.25) holds. For quadratic
grids and for grids with two rows we have already proved that Weave(m,n) yields
an optimal solution. Therefore, we only check if β23 ≥ 0.8, which is true.

Since Weave(m,n) is a bijective mapping of the nodes to positions on the grid,
it is a linear-time algorithm in the number of nodes.

The following definition of the asymptotic performance ratio is taken from Korte
et al. [52] (S.361):

Definition 4. Let P be an optimization problem with nonnegative weights and
k ≥ 1. A k-factor approximation algorithm for P is a polynomial-time algo-
rithm A for P for which there exists a constant c such that

1

k
OPT(I) ≤ A(I) ≤ k OPT(I) (4.29)

for all instances I of P. We also say that A has performance ratio k.
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Let us set k = 1
α ≥ 1, respectively k = 1

β ≥ 1. We proved that 1
kOPT(m,n) ≤

Weave(m,n) and Weave(m,n) ≤ kOPT(m,n) is obvious. So Weave(m,n)

has an asymptotic performance ratio of
√

t2+k2

t2+(k−1)2
if m odd and n even and of√

(t−1)2+k2

t2+(k−1)2
if m and n even. For all other cases it is 1. For the following algorithms

for the MSTSP, we will mostly only mention α or β as these values describe how
close the approximation is to the optimum. The ratio could, however, easily be
computed.

4.3. Improvements for Special Cases

In addition to the summarized ideas of Weave(m,n) which were presented in our
preprint [48], we continue our considerations on procedures on grids for the MSTSP.
For some special cases where Weave(m,n) does not yield an optimal solution, we
have found other procedures to determine an optimal solution of the MSTSP. The
optimality of the procedures is derived from the current upper bound which can be
reached.

A list of the edges used in those further procedures is given in table 4.4. We will
deduce the algorithms and the related edges in the following.

Bobeven(m,n) Bobodd(m,n)

m = 4 m ≥ 6 m = 3 m = n− 1 5 ≤ m < n− 1

(t, k) (t, k) (t, k) (t, k)
(t− 1, k) (t− 1, k) (t+ 1, k − 1) (t− 1, k)

(t+ 1, k) (t+ 1, k)
(m− 1, k − 1) (m− 1, k − 1) (m− 1, k − 1) (t+ 1, k + 1) (m− 1, k − 1)
(m− 1, k + 1) (m− 1, k + 1) (m− 1, k + 1) (m− 2, k)

(m− 1, n− 1) (t+ 1, n− 1) (m− 3, k + 1)

Table 4.4.: Edges of the special procedures (for m = 5 the second edge in the list
does not appear)

For the description of the algorithms we will use the following notation:

Notation 1. If a formula does continue in the following line, it is marked with a
←↩.

4.3.1. Exact Algorithm for 4 and 6 Rows and an Even Number of
Columns

If the number of columns is even, Weave(m,n) does not yield an optimal solution.
We will deduce an optimal solution in a different way for grids with an even number
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of rows and columns. In this subsection we consider an optimal procedure for m = 4
and m = 6, which we will extend to an optimal procedure for grids with m and n
even in the next subsection. The general definition of the function b describing the
algorithm can be found in equation (4.31). In order to get a better understanding
of the construction of our second method, we will first consider the smaller cases.

For m = 4 the procedure starts at the node in the left upper corner and builds
a path through all rows by moves of (1, k), then returns to the second node in the
first row and goes on like this until it finishes by connecting the kth node of the
fourth row to the first node in the first row:

(0, 0), (1, k), (2, 0), (3, k), (0, 1), (1, k+1), . . . , (0, n−1), (1, k−1), (2, n−1), (3, k−1).

An example of a (4× 6)-grid is illustrated in figure 4.8(a). The edges that appear
are (1, k)-edges, (3, k − 1)-edges and (3, k + 1)-edges. Thus the shortest of them
is either the (2, k)-edge if k = 4 or the (3, k − 1)-edge for greater k. This yields
the upper bound from table 4.5. As we will also extend this procedure to a 3-
dimensional grid later on, the tour in a two-dimensional grid should be finished by
the longest edge of the algorithm which is a (3, k+ 1)-edge in this case. Therefore,
a new starting point (0, k + 1) is chosen. As the solution is a tour, it is easy to
start at another node without changing the order. For m = 6, the method works
similarly, particularly for the columns, but with paths through every second row
instead of every row. When a node in the second to last row is reached the method
gets on in the second row and finishes in the last row. The order of a (6× 8)-grid
is illustrated in figure 4.8(b) and we can write the order in the following way:

(0, 0), (2, k), (4, 0), (1, k), (3, 0), (5, k), (0, 1), (2, k + 1), . . . ,

(0, n− 1), (2, k − 1), (4, n− 1), (1, k − 1), (3, n− 1), (5, k − 1).
(4.30)

The edges which appear here are similar to those for m = 4: (t − 1, k)-edges,
(m − 1, k − 1)-edges, (m − 1, k + 1)-edges and additionally (t, k)-edges, which are
neither the shortest nor the longest edges. The shortest appearing edge is analogous
to m = 4 and also yields the upper bound from table 4.5. In this procedure we will
also start in general at node (0, k + 1) in order to terminate with a long edge.

4.3.2. General Algorithm for m > 6 Even

The previously mentioned optimal procedures for grids with 4 or 6 rows can be
extended to grids with an even number of rows and columns for m ≥ 8. We will
call it Bobeven(m,n) (definition 5) in the following. We have two triples of rows
consisting of the rows 0, t − 1, m − 2 and rows 1, t, m − 1 and the remaining
rows are matched to pairs of the distance t− 1. All columns of the distance k are
matched in pairs as well. Within one pair of columns, the following order which
is visualized in figure 4.9 is worked through: While continuously swaying between
the columns, the row number increases by t− 1 until it is no longer possible. This
is two times in a triple and once in a pair. Then a decrease of t guides to another
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(a) 4 rows (b) 6 rows

Figure 4.8.: Optimal procedure for 4 and 6 rows

pair. This is repeated until the second triple reaches the last row. The next pair
of columns is connected by an (m − 1, k − 1)-move backwards for the first half of
pairs and an (m− 1, k + 1)-move forward in the second half. The tour is closed by
an (m− 1, k − 1)-move. In the following, we will shift the procedure such that the
starting node is (0, k + 1) in order to have a long distance when closing the tour.

2

4

m− 2

m− 1

1

3

m− 3

0 m

k

t− 1

Figure 4.9.: Order of rows for m,n even

Bobeven(m,n) is defined as a mapping b from a set P of positions to a node in
the two-dimensional grid.

Definition 5 (Bobeven(m,n)). Let M = {0, . . . ,m− 1} be the index set of rows
and N = {0, . . . , n−1} the index set of columns. Then Bobeven(m,n) is described

43



4. Maximum Scatter TSP on an Equidistant Grid

by

b : P →M ×N
p 7→ (i(p), j(p))

(4.31)

with i(p) and j(p) defined in the following way:

i(p) =


0 if p mod m = 0

m− 1 if p mod m = m− 1

t− 1− (p mod 2) ·
(⌊

p mod m
2

⌋)
←↩

+ (1− (p mod 2)) · (t−
⌊
p mod m

2

⌋
) if p mod m ∈ {1, . . . ,m− 2}

(4.32)

j(p) =



(k + 1) + q − (p mod 2) · k if q ·m ≤ p < (q + 1) ·m,
q ∈ {0, . . . , k − 2}

q − (k − 1) + (p mod 2) · k if q ·m ≤ p < (q + 1) ·m,
q ∈ {k − 1, . . . , n− 2}

k − (p mod 2) · k if p = m(n− 1).

(4.33)

The mapping b yields a tour through all nodes. The proof that b is a bijection
works analogously to the proof for g in section 5.2 starting with the order of rows
i(p) instead of the order of columns j(p). Furthermore, the following proposition
holds.

Proposition 5. Let m, n be even. Then Bobeven(m,n) produces an optimal tour
for MSTSP(m,n).

Proof. We compute the appearing edge lengths in Bobeven(m,n) as described
in section 4.2.2. Edges which occur in the tour are (t − 1, k)-edges, (t, k)-edges,
(m − 1, k − 1)-edges and (m − 1, k + 1)-edges. It is obvious that a (t, k)-edge is
longer than a (t−1, k)-edge, therefore the shortest edges are either (t−1, k)-edges or
(m− 1, k− 1)-edges. The upper bounds of proposition 3 coincide with the solution
of Bobeven(m,n).

4.3.3. Optimal Procedure for a Grid with Three Rows and an Even
Number of Columns

We will create a separate procedure for grids with an odd number of rows and an
even number of columns which is a better approximation than Weave(m,n) and in
several cases yields an optimal solution, namely for m = 3, m = 5 or k ≥ 1

2 t(3t+2).
In order to make the construction understandable and also to stress the optimal
cases, we will treat these particular cases separately. We will consider the case of
m = 3 in this subsection, and the case of m = 5 and k ≥ 1

2 t(3t + 2) in the next
subsection after the general definition.
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For grids with 3 rows and an even number of columns, we have found a procedure
which only uses edges with a length of at least

√
t2 + k2 for the (3× 4)-grid and of√

(m− 1)2 + (k − 1)2 for n ≥ 6. These values coincide with the upper bounds of
table 4.5. The tour of some example grids are visualized in figure 4.10.

(a) (3 × 4)-grid (b) (3 × 6)-grid

(c) (3 × 8)-grid

Figure 4.10.: Tour in a (3× n)-grid

The procedure uses (t, k)-edges, that is (1, k)-edges, to connect the first to the
second row and the second to the third row. Every node of the second row is thus
connected to two edges. Furthermore, (2, k − 1)-edges and (2, k)-edges – n

2 of each
– are needed to connect the triples of nodes to a tour without producing subtours.
The node in the last row and in the first column is connected to the first node in
the kth column, the last node of the second column to the first node in the (k+1)st
column, and so on until the connection of the last node in the (k − 1)th column
to the first node in the (n− 1)th column. The last nodes of the following columns
j = k, . . . , n − 2 are connected to the first node in column j − k + 1. Finally, the
last node in the last column is connected to the first node in the first column.

The extended procedure is given in the following subsection and it can be proved
that it results in a tour. Regarding the principle, we can deduce the used edges.
They could also be obtained from definition 6. The procedure includes (t, k)-edges,
(m− 1, k− 1)-edges, (m− 1, k)-edges and one (m− 1, n− 1)-edge. The shortest of
them are obviously (t, k) and (m − 1, k − 1) which coincide with the table of the
upper bounds table 4.5 and therefore the new algorithm is an optimal procedure.

4.3.4. Approximation Algorithm for an Odd Number of Rows and an
Even Number of Columns

For all grids with an odd number of rows and an even number of columns, the
following procedure yields an approximation for the MSTSP that is closer to the
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4. Maximum Scatter TSP on an Equidistant Grid

optimum than Weave(m,n) and is optimal for large grids with a considerably
greater number of columns than rows. We will call this procedure Bobodd(m,n).
The exact sizes of grids are deduced in the following. The patterns that are applied
are illustrated in figure 4.13. The pattern from figure 4.11(a) is applied to all pairs
of columns starting with 0 in the first column. The last turn starts in column k− 1
and ends in the last row in column n− 1. For this pair, the algorithm starts with
the second pattern directly after finishing the first pattern and returns step by step
backwards to the first pair.

2

4

m− 1

m+ 1

0

m+ 2

1

3

5

m

k

t

t

(a) Pattern within a pair of columns in the
first run

m− 5

0

m− 4

1

k

(b) Pattern in the second run

Figure 4.11.: Pattern for m odd and n even (m > 5)

Formally, this procedure is defined in definition 6.

Definition 6 (Bobodd(m,n)). Let M = {0, . . . ,m − 1} be the index set of rows
and N = {0, . . . , n− 1} the index set of columns. Then Bobodd(m,n) is described
by

o : P →M ×N
p 7→ (i(p), j(p))

(4.34)

with i(p) and j(p) defined in the following way:
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i(p) =



0 if p mod (m+ 3) = 0

and p < 1
2n(m+ 3)

m− 1− (p mod 2) · m−1
2 ←↩ if p mod (m+ 3) > 0

−
⌊

(p mod (m+3))−1
2

⌋
and p < 1

2n(m+ 3)

m− 1 if p mod (m+ 3) = m+ 2

and p < 1
2n(m+ 3)

1 +
((
p− n(m+3)

2

)
mod 2

)
· m−1

2 ←↩

+
⌊
p−

1
2
n(m+3)

2

⌋
mod (m−3

2 ) if p ≥ 1
2n(m+ 3)

(4.35)

j(p) = q(p) + ((p mod (m+ 3)) mod 2) · n
2

(4.36)

with q(p) =


⌊
p mod (mn)

m+3

⌋
if p < (m+ 3) · n2

n
2 − 1−

⌊
(p mod (mn)−(m+3)·n

2 )
m−3

⌋
else.

(4.37)

It can be proved similar to the proof in section 5.2 that o is a bijection and
therefore, o yields a tour. The computed edges that appear in Bobodd(m,n) are
for the first pattern

(t, k) (4.38)

(t+ 1, k) (4.39)

(m− 1, k − 1). (4.40)

For the change between the patterns and the second pattern this set is extended
with

(m− 2, k) (4.41)

(t− 1, k) (4.42)

(m− 3, k + 1). (4.43)

The shortest edge is the (t−1, k)-edge if k < 1
2 t(3t+2) whose length is not equal to

the upper bound for grids of this kind. For k ≥ 1
2 t(3t+ 2), (m− 1, k− 1) is shorter

than (t− 1, k) and is therefore the shortest edge. This edge yields the upper bound
which is then

√
(m− 1)2 + (k − 1)2, so Bobodd(m,n) is optimal for those grids.

Analogous to the calculation of αtk, we derive

Bobodd(m,n) ≤
√

1− 2t− 1

t2 + k2
·OPT (m,n). (4.44)
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4. Maximum Scatter TSP on an Equidistant Grid

We compute the inverse approximation ratio αtk from section 4.2.3. Comparing
Bobodd(m,n) to the current upper bounds of the MSTSP, we see that

αtk ≥
√

1− 2t−1
t2+k2

for k <
1

2
(3t2 + 1) and

αtk ≥
√

1− 3t2+2t−2k
4t2+(k−1)2

for
1

2
(3t2 + 1) ≤ k < 1

2
t(3t+ 2).

For greater k we receive an optimal solution.
For m = 5, Bobodd(m,n) yields an optimal solution. As only one pair of nodes

is missing after the first pattern, we only do the (t, k)-move and then get on in the
next pair of columns, so the (t − 1, k)-move never appears. We can prove this by
considering the last case of equation (4.35). If m = 5, we compute the rounded
down summand modulo 1 and so it remains 0, i.e. i(p) changes between two values
in the last part of the algorithm. Also in the second case of equation (4.36) the
pair of columns is changed after every second node.

The current results are summarized in proposition 6.

Proposition 6. Let m odd, n even. Bobodd(m,n) produces a tour which is
asymptotically optimal for MSTSP(m,n) and whose shortest edge is longer than
αtk times the optimal value with

αtk ≥
√

1− 2t−1
t2+k2

for k <
1

2
(3t2 + 1) and (4.45)

αtk ≥
√

1− 3t2+2t−2k
4t2+(k−1)2

for
1

2
(3t2 + 1) ≤ k < 1

2
t(3t+ 2). (4.46)

If m = 3 or m = 5 or k ≥ 1
2 t(3t+ 2) the tour is optimal.

4.3.5. Special Case of m = n− 1

For grids with an even number of columns and m = n− 1 which results in m odd,
we will compute an optimal solution for MSTSP. As t = k−1, the length of a (t, k)-
edge is the same as of a (t+1, k−1)-edge (t2+k2 = (k−1)2+k2 = (k−1)2+(t+1)2).
Therefore, both of them are the shortest edges which may be used to construct an
optimal tour.

The procedure which is applied in an example in figure 4.12 for m = 5 and n = 6
is presented below. All nodes in the middle row t get connected twice by (t, k)-edges
to a node in row 0 and one in row m−1. All nodes in the other rows are connected
to one further node by a (t, k)-edge. Furthermore, all nodes, except those of row 0
and of row t+1 are incident to a (t+1, k)-edge. Now, there are only paths between
two columns at a time. Each path has its endpoints in row 0 and in row t+ 1. In
these two rows, the edges have to be chosen such that no subtours appear. The first
k+1 nodes in row 0 are each connected to the node in row t+1 with the horizontal
distance k − 1. The next k − 2 nodes in row 0 are connected to the node in row
t+ 1 with the horizontal distance k. The last node of the first row is connected to
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Figure 4.12.: Optimal tour for the MSTSP for a (5× 6)-grid

the first one in row t+ 1. Figure 4.13(b) illustrates the order of nodes by dividing
the procedure into patterns.

As the last node in the pattern is in the same column as the first one, it is obvious
how to combine the order in figure 4.13(b) with the pattern. The horizontal distance
between consecutive columns is either k − 1 or k, and in the very last step which
completes the tour, it is n − 1. Thus, the shortest movement in this pattern is a
(t+ 1, k− 1)-move, that is a (t, k)-move, which yields the upper bound. Therefore,
the procedure is optimal. This special procedure is defined as a mapping nq (nearly
quadratic) from a set P of positions to a node in the two-dimensional grid in
definition 7.

Definition 7 (Near Quadratic(m,n)). Let M = {0, . . . ,m−1} be the index set
of rows and N = {0, . . . , n− 1} the index set of columns. Near Quadratic(m,n)
is defined by

nq : P →M ×N
p 7→ (i(p), j(p))

(4.47)

with i(p) and j(p) defined in the following way:

i(p) =

{
0 if p mod m = m− 1

((p+ 1) mod m) mod 2 · m−1
2 + 1 +

⌊
p mod m

2

⌋
if p mod m 6= m− 1

(4.48)

j(p) =
q(p)

2
+ (p mod 2) · n

2

with q(p) =
(

1−
(⌊ p
m

⌋
mod 2

))
·
⌊ p
m

⌋
+ (
⌊ p
m

⌋
mod 2) ∗ (

⌊ p
m

⌋
− 1).

(4.49)
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4. Maximum Scatter TSP on an Equidistant Grid

m− 2

3

1

m− 3

2

0

m− 1

k

(a) Pattern within a pair of
columns

(b) Column of node 0 when one pattern is fin-
ished

Figure 4.13.: Pattern and order of the columns for n even and m = n− 1

This mapping is a bijection (proof analogous to the proof in section 5.2) and the
shortest edge is a (t, k)-edge if k ≤ 1

2(3t2 + 2) or else an (m− 1, k − 1)-edge.

Proposition 7. Near Quadratic(m,n) defined for regular (m × n)-grids with
m = n− 1 creates an optimal solution to the MSTSP with Euclidean distances.

4.4. A Variant to find a Hamiltonian Path

So far, the results do not change if the objective is to find a path instead of a tour.
We may leave out only one single edge in case of a path compared to a tour, but
the shortest edge appears several times in a tour. In the following we will have a
more detailed look at the upper bounds that we got by considering the nodes in the
middle. Either the nodes in the middle have two edges with the length of the upper
bound (when n is odd or m is odd) or there are 4 nodes in the middle and at most
two of them may be connected only once. So in those cases where we get optimal
solutions, the solution is still optimal for the path version of the problem. Also for
cases with an upper bound of

√
(m− 1)2 + (k − 1)2, the optimality is preserved.

If the solution is not optimal for the cycle problem, it is not optimal for the path
version either. The gap, however, is the same as for the tour, because the upper
and lower bounds are the same.

For m > 5 odd and n even with k ≤ 1
2 t(3t+ 2), we have not yet succeeded in the

construction of an optimal tour, but for the path, we can get a solution with the
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algorithm Path Algorithm(m,n) which yields an optimal solution. Figure 4.14
illustrates the order of rows within a pair of columns.

3m− 1

3m+ 1

3m+ 3

4m− 6

4m− 4

4m− 2

2m

2m+ 2

3m− 7

3m− 5

3m− 3

m− 3

m− 5

m− 7

2

0

2m− 2

2m− 4

2m− 6

m+ 3

m+ 1

m− 1

4m− 1

2m+ 1

2m+ 3

3m− 6

3m− 4

3m− 2

3m

3m+ 2

4m− 7

4m− 5

4m− 3

2m− 3

2m− 5

2m− 7

m+ 2

m

m− 2

m− 4

m− 6

3

1

2m− 1

k

t− 1

t− 1

1

Figure 4.14.: Scheme of an optimal path for odd m and even n

Proposition 8. The path version of the MSTSP on a regular (m× n)-grid can be
solved with the same procedures as the tour version. Any solution of the MSTSP
cycle version is an optimal solution for the path version. For m odd and n even,
Path Algorithm(m,n) produces an optimal solution to the path version, which
is not an optimal solution to the cycle version.

Path Algorithm(m,n) starts in the t + 2nd row in the kth column and only
changes between nodes of this column and nodes of the last column. The vertical
distance between consecutive nodes is either t or t+ 1. When all nodes of the two
columns have been visited, the next pair gets visited which consists of the column
left to the kth one and the column left to the last column. The algorithm starts
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4. Maximum Scatter TSP on an Equidistant Grid

for this pair in row t, so the pattern is now axisymmetrical to the first pattern
where the axis is the t+1st row. When we proceed to a following pair, we therefore
have a distance of

√
(t− 1)2 + (k + 1)2 which is always longer than

√
t2 + k2 as we

observe by transformations of the inequality:

(t− 1)2 + (k + 1)2 > t2 + k2 ⇔ 2(k − t+ 1) ≥ 2 > 0.

The path terminates at node (m, k + 1). We see that an edge closing the tour
would be too short, therefore the algorithm is only optimal for the path version.
The reflection on the t+ 1st row would not have been necessary to only receive an
optimal path, but it decreases the length of the path which is also in our interest
(see section 5.3). The order is defined by the following mapping.

Definition 8 (Path Algorithm(m,n)). Let m ≤ n with m odd and n even. P,
M , and N are defined as before. Let η(p) = p mod (4m). Path Algorithm(m,n)
is defined by the mapping gpath : P →M ×N , p 7→ (i(p), j(p)):

i(p) =



m−1
2 + 1− (p mod 2) · m−1

2 ←↩
+
⌊
p mod m

2

⌋
if η(p) < m− 1

(p mod 2) · (m−1
2 + 1)←↩

+
⌊

(p+1) mod m
2

⌋
if m− 1 ≤ η(p) < 2m− 1

0 if η(p) = 2m− 1
m−1

2 − 1 + (p mod 2) · m−1
2 ←↩

−
⌊
p mod m

2

⌋
if 2m ≤ η(p) < 3m− 1

m− 1− (p mod 2) · (m−1
2 + 1)− ←↩⌊

(p+1) mod m
2

⌋
if 3m− 1 ≤ η(p) < 4m− 1

m− 1 if η(p) = 4m− 1

(4.50)

j(p) =
n

2
− 1− q + (p mod 2) · n

2
if 2qm ≤ p < 2(q + 1)m

with q = 0, 1, . . . ,
n

2
.

(4.51)

We state the following lemma:

Lemma 3. The mapping gpath is a bijection and Path Algorithm(m,n) returns
an optimal solution to the MSTSP.

Analogously to the proof of theorem 3, it can be proved that gpath is a bijection
and by listing all appearing edges the optimality of the solution can be ensured.

4.5. Main Theorem about the MSTSP on a Regular Grid
with Euclidean Distances

We summarize the new insights of this chapter in Theorem 1 part of which was
presented in our preprint [48].
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Theorem 1. Let m ≤ n ∈ N, and let k =
⌊
n
2

⌋
and t =

⌊
m
2

⌋
. Then there is a

linear-time algorithm Weave(m,n) that specifies a feasible tour for MSTSP(m,n)
that is

(i) optimal whenever n is odd, m = n, or m = 2;

(ii) a
(√

(t−1)2+k2

t2+(k−1)2

)
-approximation whenever m and n are even;

(iii) a
(√

t2+k2

t2+(k−1)2

)
-approximation whenever n is even and m is odd.

For m = 3 or m = 5 or m = n − 1 or k ≥ 1
2 t(3t + 2) as well as for m

and n even, Bobodd(m,n), Near Quadratic(m,n) and Bobeven(m,n) are
linear-time procedures which specify optimal tours for MSTSP(m,n). For m > 5

odd and k ≤ 1
2 t(3t + 2), Bobodd(m,n) is a

(√
t2+k2

(t−1)2+k2

)
-approximation and

Path Algorithm(m,n) returns an optimal path. All of these approximation pro-
cedures create asymptotically optimal solutions. The upper bounds of table 4.5 are
the best known ones. The best procedure for the general problem the best current
procedure is a combination of all procedures:

• Weave(m,n) if n odd;

• Bobeven(m,n) if m, n even;

• Near Quadratic(m,n) if n even and m = n− 1;

• Bobodd(m,n) if m odd, n even and m < n− 1;

• Path Algorithm(m,n) if m odd, n even, m < n− 1 and path problem.
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4. Maximum Scatter TSP on an Equidistant Grid

Case Bound optimal?

Odd columns
√
t2 + k2 y

Quad. grid even
√

(t− 1)2 + k2 y

2 rows even col. n ≤ 4
√

(t− 1)2 + k2 y

2 rows even col.
√
t2 + (k − 1)2 y

3 rows even col. k ≤ 1
2(3t2 + 1)

√
t2 + k2 y

3 rows even col. k > 1
2(3t2 + 1)

√
(m− 1)2 + (k − 1)2 y

4 rows even col. k ≤ 1
2(3t2 − 2t+ 1)

√
(t− 1)2 + k2 y

4 rows even col. k > 1
2(3t2 − 2t+ 1)

√
(m− 1)2 + (k − 1)2 y

5 rows even col. k ≤ 1
2(3t2 + 1)

√
t2 + k2 y

5 rows even col. k > 1
2(3t2 + 1)

√
(m− 1)2 + (k − 1)2 y

odd rows even col. k = t+ 1
√
t2 + k2 y

odd rows even col. k ≤ 1
2(3t2 + 1)

√
t2 + k2 ?

odd rows even col. k > 1
2(3t2 + 1)

√
(m− 1)2 + (k − 1)2 p

even rows even col. k ≤ 1
2(3t2 − 2t+ 1)

√
(t− 1)2 + k2 y

even rows even col. k > 1
2(3t2 − 2t+ 1)

√
(m− 1)2 + (k − 1)2 y

Table 4.5.: List of current upper bounds for the Euclidean norm (y = yes, p=partly)
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5. Excursions

This chapter examines three excursions starting from the combinatorial algorithms
of the previous chapter. First we will determine the cases of optimality for two fur-
ther metrics. After that, we develop algorithms which approximate the MSTSP on a
three-dimensional grid. They consist of extensions of Weave(m,n), Bobeven(m,n)
and Bobodd(m,n). Finally, we turn our attention to another kind of optimiza-
tion problem, the TSPN – a classical TSP where only edges with a certain mini-
mum length are allowed. We approximate a solution of this problem for particular
minimum lengths with Weave(m,n), Bobeven(m,n) and Bobodd(m,n) in the
two-dimensional case and also with Weave 3D(l,m, n), Bobeven 3D(l,m, n) and
Bobodd 3D(l,m, n).

5.1. Further Metrics

For different applications, other metrics than the Euclidean norm can be more
suited. In this work, we will consider the 1-norm and the ∞-norm. The 1-norm
is defined as ‖x‖1 =

∑m
i=1 |xi| and the ∞-norm as ‖x‖∞ = maxi=1,...,m(|xi|). We

repeat some of the studies of the case with the Euclidean norm for those two
norms as there are differences in upper bounds, gaps and lengths. Referring to
Weave(m,n), to Bobeven(m,n) and to Bobodd(m,n) we list all edges which
are used there with their different norms in table 5.1.

Considering only the edges which appear in Weave(m,n) we see that for every
mentioned norm, the shortest edges are the (t, k)-edges if n is odd and the (t, k−1)-
edges if n is even. For Bobeven(m,n) and Bobodd(m,n) the shortest edges
depend on the grid size. In the following, we present results about optimality and
gaps for these norms. We can deduce upper bounds by considering the nodes in the
middle of the grid and by finding out if there are lengths of shortest edges which
would certainly lead to subtours.

5.1.1. The 1-Norm

Considering the nodes in the middle of a grid, the upper bounds for the longest
shortest edge in ‖x‖1 can be received in the same way as for the Euclidean norm.
One upper bound is the length of the second shortest incident edge, which is an
(t, k)-edge of length t+ k if m or n is odd and an (t− 1, k)-edge of length t+ k− 1
if m and n are even. In the norm ‖ · ‖1 this valid upper bound cannot be decreased
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5. Excursions

Edge || · ||2 || · ||1 || · ||∞

Weave(m,n), Bobeven(m,n), Bobodd(m,n), Near Quadratic(m,n):

(t, k)
√
t2 + k2 t+ k k

(t, k + 1)
√
t2 + (k + 1)2 t+ k + 1 k + 1

(t− 1, k + 1)
√

(t− 1)2 + (k + 1)2 t+ k k + 1

(m− 1, k)
√

(m− 1)2 + k2 m+ k − 1 max(k,m− 1)

(m− 1, k + 1)
√

(m− 1)2 + (k + 1)2 m+ k max(k + 1,m− 1)

(m− 2, k + 1)
√

(m− 2)2 + (k + 1)2 m+ k − 1 max(k + 1,m− 2)

only when n is even:

(t, k − 1)
√
t2 + (k − 1)2 t+ k − 1 max(k − 1, t)

(t+ 1, k + 1)
√

(t+ 1)2 + (k + 1)2 t+ k + 2 k + 1

(t− 2, k + 1)
√

(t− 2)2 + (k + 1)2 t+ k − 1 k + 1

(m− 1, k − 1)
√

(m− 1)2 + (k − 1)2 m+ k − 2 max(k − 1, t)

used only in Bobeven(m,n), Bobodd(m,n), Near Quadratic(m,n):

(t− 1, k)
√

(t− 1)2 + k t+ k − 1 k

(m− 1, n− 1)
√

(m− 1)2 + (n− 1)2 m+ n− 2 n− 1

(t+ 1, k − 1)
√

(t+ 1)2 + (k − 1)2 t+ k max(k − 1, t+ 1)

(t+ 1, k)
√

(t+ 1)2 + k2 t+ k + 1 max(k, t)

(t+ 1, n− 1)
√

(t+ 1)2 + (n− 1)2 t+ n n− 1

(m− 2, k)
√

(m− 2)2 + k2 m+ k − 2 max(k,m− 2)

(m− 3, k + 1)
√

(m− 3)2 + (k + 1)2 m+ k − 2 max(k + 1,m− 3)

Table 5.1.: Edge lengths for different metrics
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in the same way as for the Euclidean norm because

‖(m− 1, k − 1)‖1 = (m− 1) + (k − 1) ≥ t− 1 + k = ‖(t− 1, k)‖1 (5.1)

always holds and ‖(m−1, k−1)‖1 < ‖(t, k)‖1 only holds for t = 1 which is negligible
for a general reduction of the upper bound. Lower bounds are received from the
combinatorial algorithms, they are t + k if n is odd and t + k − 1 if n is even.
Thus, for the case of an odd number of columns and the case of an even number of
rows and columns, the upper and lower bound (u, and l respectively) coincide and
Weave(m,n) produces an optimal solution. Only in the case of an odd number of
rows and an even number of columns there is a gap between the computed solution
and the optimal solution of absolute value at most 1(= t+ k − (t+ k − 1)), which
is the distance between the closest nodes in the scaled grid. The relative value
(estimated by u−l

u ) therefore diminishes when increasing the number of rows and

columns. So we have an 1
αtk

-approximation with αtk = t+k−1
t+k = 1− 1

t2+k2
. With the

list of used edges in table 4.4 we consider the shortest edges of Bobeven(m,n) and
Bobodd(m,n) and Near Quadratic(m,n). For Bobeven(m,n) the shortest
edge in Bobeven(m,n) is a (t− 1, k)-edge. Thus, the solution of Bobeven(m,n)
is optimal. The shortest edge of Near Quadratic(m,n) with m = n − 1 and
of Bobodd(m,n) with m = 3 is a (t, k)-edge. So in these cases the solutions
are optimal similar to the Euclidean norm. In all other cases Bobodd(m,n) uses
(t − 1, k)-edges with length t + k − 1, so there is a gap between the lower and

upper bound of 1 and we have a t2+k2

t2+k2−1
-approximation like for Weave(m,n).

Proposition 9 summarizes all important results about the 1-norm.

Proposition 9. Let m ≤ n ∈ N for the MSTSP(m,n) with the distances induced
by ‖ · ‖1. The following holds:

i) Weave(m,n) yields an optimal solution if n is odd or m and n are even. Also
the tours for m,n even created by Bobeven(m,n) and the tours for m = 3 or
m = 5 created by Bobodd(m,n) as well as the tours of Near Quadratic(m,n)
for m = n− 1 are optimal solutions.

ii) If m is odd and n is even, the absolute gap between our current upper bound
and Weave(m,n) or Bobodd(m,n) is at most 1 and the two algorithms yield
an approximation of at least (1− 1

m−1
2

+n
2

) times the optimal value.

5.1.2. The ∞-Norm

For ‖x‖∞, the upper bound for an (m× n)-grid is k which is the length of a (t, k)-
edge. We get this bound by considering the central nodes of the grid. For grids
with k > m − 1, the upper bound can be decreased at least to k − 1. We get the
lower bounds by taking the shortest edge of a procedure according to the length
from table 5.1. We see that Weave(m,n) yields k as minimum length for m,n
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5. Excursions

k

k m− 1 k − 1

mm− 1

Figure 5.1.: Shortest edges (‖ · ‖∞) dependent on k for Bobeven(m,n) and
Bobodd(m,n)

odd and k ≤ m − 1. If k > m − 1, the shortest length is k − 1. These bounds are
identical to the upper bounds so the solution of Weave(m,n) is optimal for m,n
odd. If m and n are even, the shortest edge has length t(= k) for the quadratic grid
and length k − 1 for all other sizes, so Weave(m,n) yields in this case an optimal
solution for the quadratic grid and grids with k > m−1. If m is odd and n is even,
the shortest edges always have length k− 1, so the tours are optimal for grids with
k > m− 1.

For Bobeven(m,n) and Bobodd(m,n), the lower bounds are illustrated depen-
dent on k in figure 5.1. For k ≤ m− 1 and for k > m− 1, which covers the whole
variety of grids, Bobeven(m,n) (for m,n even) and Bobodd(m,n) (for m odd, n
even) yield optimal solutions. So we yield an optimal solution for any kind of grid.
When having a look at the shortest edges in the special procedures for m = 3 and
m = n− 1 we realize that they also yield optimal solutions.

In proposition 10 all results are summarized.

Proposition 10. Let m ≤ n ∈ N for the MSTSP(m,n) with the distances induced
by ‖ · ‖∞. The following is true: For any grid size, at least one of the linear-time
procedures yields an optimal solution. Weave(m,n) yields an optimal solution in
the case of n odd, Bobeven(m,n) in the case of m,n even and Bobodd(m,n) in
the case of m odd and n even.

5.2. Extension to a 3D-Grid

Having started from an algorithm for the MSTSP for nodes on a line and extending
it to an algorithm for a 2-dimensional grid, we will now extend some procedures for
an optimal solution to the 3-dimensional grid. We will consider this new algorithm
in more detail later on, but before that we will estimate upper bounds of the shortest
edge of a tour in a 3-dimensional regular grid with Euclidean distances.

Let MSTSP(l,m, n) stand for the MSTSP on a regular 3-dimensional grid with
l layers, each consisting of m rows and n columns with distance 1 between each
two sequential layers, rows and columns. Let r =

⌊
l
2

⌋
, t =

⌊
m
2

⌋
and k =

⌊
n
2

⌋
(see

figure 5.2). If l,m, n are odd, we have one central node which has the distance√
r2 + t2 + k2 to all 8 corners (see figure 5.3(a)). If two of the three components

are odd, there are four corners for each of the two central nodes with the distance√
t2 + k2 + r2 and for one odd component there are still two corners (figure 5.3(b)
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r

t

k

l
m

n

Figure 5.2.: Definition of the 3D grid

and 5.3(c)). For l, m, n even, all central nodes only have one corner with distance√
r2 + t2 + k2 (figure 5.3(d)). Therefore, the following values are upper bounds:

(i)
√
r2 + t2 + k2 if at least one of l,m, n is odd;

(ii)
√

(r − 1)2 + t2 + k2 if l,m, n are even.

Similar to the 2-dimensional grid, the upper bound can be decreased if n is
even and (l − 1)2 + (m − 1)2 + (k − 1)2 < r2 + t2 + k2. The idea behind this is
that there have to be at least two nodes in column k − 1 which are connected to
a node of another column than column n − 1 in order to avoid subtours. Then√

(l − 1)2 + (m− 1)2 + (k − 1)2 is a closer upper bound which is the case

(i) if either l, m, n even and k ≥ 1− 2t− r + 3
2(t2 + r2);

(ii) or if either l odd, m,n even and k ≥ 1− 2t+ 3
2(t2 + r2);

(iii) or if m odd, l, n even and k ≥ 1− 2r + 3
2(t2 + r2);

(iv) or if l,m odd, n even and k ≥ 1
2(1 + 3(t2 + r2)).

The following theorem summarizes all results that we will yield in this section.

Theorem 2. Let l,m, n ∈ N with l ≤ m ≤ n and let r =
⌊
l
2

⌋
, t =

⌊
m
2

⌋
and

k =
⌊
n
2

⌋
. If n is odd, Weave(m,n) is extended to Weave 3D(l,m, n). If l, n are

even, Bobeven(m,n) is extended to Bobeven 3D(l,m, n). If l odd and n even,
Bobodd(m,n) is extended to Bobodd 3D(l,m, n). There is a linear-time algo-
rithm composed of extensions of Weave(m,n), Bobeven(m,n) and Bobodd(m,n)
that specifies a feasible tour for MSTSP(l,m, n) that is

(i) optimal whenever n is odd, or l,m, n even with k ≤ 1
2(3r2 − 2r + 1);
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c

(a) l,m, n odd

c1 c2

(b) l,m odd, n even

c1 c2

c3 c4

(c) l odd, m,n even

c1 c2

c3 c4

c5 c6

c7 c8

(d) l,m, n even

l

m

n

Figure 5.3.: Corners of distance
√
r2 + t2 + k2 from a central node

(ii) an 1
γrtk

-approximation with the values of γrtk from table 5.2;

(iii) optimal for m = 3 or m = 5 with k ≤ 1
2(3t2 + 1) after some modifications of

Bobodd 3D(l,m, n).

5.2.1. Optimal Procedure for an Odd Number of Columns

If n is odd, we divide the layers into pairs as well (and one triple, if l is odd). We
apply the procedures of Weave(m,n) for the 2D case on the rows and columns
l times while changing the layer after every node. To determine the order of the
layers, it turns out that we can shrink each layer to a line and obtain an (l×m ·n)-
grid. We define τ(p) = proji(w(p)).
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Figure 5.4.: Idea of the extension to 3 dimensions

Applying Weave(l,m · n) on the modified grid, τ(p) indicates the order of the
layers. Combining the order of the layers with the order of the rows and columns
yields an optimal solution for the MSTSP as we will see hereafter. We call this
procedure Weave 3D(l,m, n) in the following. Weave 3D(l,m, n) can be defined
as a mapping with identical components to the two-dimensional components. The
basic idea of it is illustrated in figure 5.4.

Definition 9 (Weave 3D(l,m, n)). Let l,m, n be the number of layers, rows and
columns in a 3D grid. Let P = {0, 1, . . . , lmn − 1} be the set of positions in
a tour, L = {0, 1, . . . , l − 1}, M = {0, 1, . . . ,m − 1}, N = {0, 1, . . . , n − 1}.
Weave 3D(l,m, n) is defined as the mapping

g : P → L×M ×N,
p 7→ (h(p), i(p), j(p)) ,

(5.2)

which maps any position p ∈ P to a vertex in an (l ×m× n)-grid.
h(p), i(p) and j(p) are defined in the following way:
If l, m even and n odd, then

h(p) =


y + (p mod 2) · l2 if ymn ≤ p < (y + 1)mn,

y ∈ {0, 1, . . . , l2 − 1}
y − (p mod 2) · l2 if ymn ≤ p < (y + 1)mn,

y ∈ { l2 , . . . , l − 1}

(5.3)

i(p) =
q

2
+ [(p mod (mn)) mod 2] · m

2
if qn ≤ (p mod (mn)) < (q + 2)n

and q ∈ {0, 2, 4, . . . , 2(
m

2
− 1)}

(5.4)

j(p) = (((p+ 1) mod n) mod 2) ·
(

((p+ 1) mod n)− 1

2
+
n+ 1

2

)
+ (1− (((p+ 1) mod n) mod 2)) · (p+ 1) mod n

2
.

(5.5)
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Let now l be odd, then h(p) is replaced by

h(p) =



(p mod 3) · l−1
2 if 0 ≤ p < 3mn and mn mod 3 6= 0

(p mod 3) · l−1
2 if 0 ≤ p < mn and mn mod 3 = 0

((p+ 1) mod 3) · l−1
2 if mn ≤ p < 2mn and mn mod 3 = 0

((p+ 2) mod 3) · l−1
2 if 2mn ≤ p < 3mn and mn mod 3 = 0

y + (p mod 2) · l−1
2 if (2 + y)mn ≤ p < (3 + y)mn,

y ∈ {1, 2, . . . , l−1
2 − 1}

y − (p mod 2) · l−1
2 if (1 + y)mn ≤ p < (2 + y)mn,

y ∈ { l−1
2 + 1, . . . , l − 2}.

(5.6)

Let now m be odd and let η(p) = p mod (mn), η̃(p) = (p + 1) mod (mn). Then
i(p) is replaced by

i(p) =



(η(p) mod 3) · m−1
2 if 0 ≤ η(p) < 3n

and n mod 3 6= 0

(η(p) mod 3) · m−1
2 if 0 ≤ η(p) < n

and n mod 3 = 0

((η(p) + 1) mod 3) · m−1
2 if n ≤ η(p) < 2n

and n mod 3 = 0

((η(p) + 2) mod 3) · m−1
2 if 2n ≤ η(p) < 3n

and n mod 3 = 0
q
2 + (η̃(p) mod 2) · m−1

2 if (q + 1)n ≤ η(p) < (q + 3)n

and q ∈ {2, 4, . . . , 2(m−1
2 − 1)}

(5.7)

and as mn is odd in that case, h(p) is replaced if l is even by

h(p) = y + (p mod 2) · l
2

if 2ymn ≤ p < 2(y + 1)mn

and y ∈ {0, 1, . . . , l
2
− 1}

(5.8)

and if l is odd by

h(p) =



(p mod 3) · l−1
2 if p < 3mn and mn mod 3 6= 0

(p mod 3) · l−1
2 if 0 ≤ p < mn and mn mod 3 = 0

((p+ 1) mod 3) · l−1
2 if mn ≤ p < 2mn and mn mod 3 = 0

((p+ 2) mod 3) · l−1
2 if 2mn ≤ p < 3mn and mn mod 3 = 0

1 + y + ((p+ 1) mod 2) · l−1
2 if (3 + 2y)mn ≤ p < (3 + 2(y + 1))mn,

y ∈ {0, 1, . . . , l−1
2 − 2}.

(5.9)
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We have to prove that this implementation yields a tour through all nodes.

Theorem 3. The mapping in definition 9 is a bijection.

Proof. We have referred to this proof already in previous sections. The technique
is demonstrated for one case but can be applied in the same way to the other cases
(either 2D or 3D). In this proof, we only consider the case of l,m even and n odd.
We have to prove that g is a bijection. By checking the cases, we can easily see that
for every position p there is a unique tuple (h(p), i(p), j(p)). The case is given by the
grid size. We consider the intervals for which h(p) is piecewise defined (equation
(5.3)). For any 0 ≤ y1 ≤ l − 2 let y2 = y1 + 1, then (y1 + 1)mn = y2mn. So
the supremum of one interval is the minimum value of the consecutive interval and
there is no gap between the intervals. As the supremum of each interval is excluded,
no position gets mapped twice. The smallest and the greatest value of p for which
h(p) is defined is 0 and lmn− 1. This covers all positions. For i(p) (equation (5.4))
the situation is identical. For values of p mod (mn) between 0 and mn− 1 there is
a unique definition of i(p) as there are no gaps between the intervals and the right
boundary of the interval is excluded in each interval. j(p) is a function which is
defined for any integer p. For the definitions of h(p) and i(p) in other cases, we can
check it in the same way.

As we know that the number of positions |P| = lmn equals the number of nodes
lmn, it is sufficient to prove either surjectivity or injectivity. We prove injectivity,
i.e. for any node (h, i, j) ∈ L × M × N there is at most one p ∈ P such that
(h(p), i(p), j(p)) = (h, i, j).

Injectivity in a set of n positions: We first have a look at j(p) = 0. This can
only hold for (p+ 1) mod n = 0, that means p = a · n+ n− 1 with a ∈ N0. Let us
now consider p1, p2 ∈ {0, . . . , n− 2}. We prove for this subset that j(p1) = j(p2)⇒
p1 = p2: Let us assume p1 6= p2 with j(p1) = j(p2), that means

((p1 + 1) mod 2) ·
(

(p1 + 1)− 1

2
+
n+ 1

2

)
+ (1− ((p1 + 1) mod 2)) · (p1 + 1)

2

= ((p2 + 1) mod 2) ·
(

(p2 + 1)− 1

2
+
n+ 1

2

)
+ (1− ((p2 + 1) mod 2)) · (p2 + 1)

2
.

(5.10)

If (p1 + 1) mod 2 = 0 and (p2 + 1) mod 2 = 1, we get

(p1+1)
2 = (p2+1)−1

2 + n+1
2 (5.11)

⇔ p1 = p2 + n > n− 2. (5.12)
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5. Excursions

Therefore, p1 is not part of the set {0, . . . , n − 2} in contradiction to our assump-
tion. If (p1 + 1) mod 2 = 1 and (p2 + 1) mod 2 = 0, the result is analogous. The
remaining cases are (p1 + 1) mod 2 = (p2 + 1) mod 2 = 1 where we have

(p1 + 1)− 1

2
+
n+ 1

2
=

(p2 + 1)− 1

2
+
n+ 1

2
⇔ p1 = p2 (5.13)

and ((p1 + 1) mod n) mod 2 = ((p2 + 1) mod n) mod 2 = 0 which also leads to
p1 = p2. We can conclude that j(p) is injective for p ∈ {cn, cn+ 1, . . . , cn+ n− 1}
for a given c ∈ {0, . . . , lm− 1}.

Injectivity in a set of mn positions: Let us now consider i(p). We first prove that
the values of i(p) are always different for p1, p2 in different intervals of the piecewise
defined function. Let q1n ≤ p1 < (q1 + 2)n and q2n ≤ p2 < (q2 + 2)n with q1 6= q2.
We assume i(p1) = i(p2):

q1

2
+ [(p1 mod (mn)) mod 2] · m

2
=
q2

2
+ [(p2 mod (mn)) mod 2] · m

2
. (5.14)

If (p1 mod (mn)) mod 2 = (p2 mod (mn)) mod 2 = 0, we get q1 = q2 which is a
contradiction to the assumption. (p1 mod (mn)) mod 2 = (p2 mod (mn)) mod 2 =
1 yields the same contradiction. Remains

(p1 mod (mn)) mod 2 = 0 and (p2 mod (mn)) mod 2 = 1 (5.15)

and vice versa. In that case q1 = q2 + m and therefore q1 > m − 2, so there is no
interval of positions belonging to q1.

So it remains to show that within one interval from the definition of i(p) the
tuples (i, j) are different. Each interval consists of 2n positions. As the value of
j(p) recurs only each n nodes, it is sufficient to prove that i(p) 6= i(p + n) within
one interval.

Let qn ≤ p mod (mn) < (q + 1)n

i(p) =
q

2
+ ((p mod (mn)) mod 2)

m

2
; (5.16)

i(p+ n) =
q

2
+ (((p+ n) mod (mn)) mod 2)

m

2
. (5.17)

As n is odd and m is even according to our assumptions, p+n is odd if p is even
and vice versa and p mod (mn) is even if p is even and vice versa. So we know that
if p is even p+ n is odd and

i(p) =
q

2
6= q

2
+
m

2
= i(p+ n). (5.18)

Now we know that any node in one plane is at most visited once and therefore
we know for the 2D case that Weave(m,n) yields a tour for an even number of
rows and an odd number of columns. In the 3D case the proof has to be continued.
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Injectivity in a set of lmn positions: For Sy := {s ∈ P : ymn ≤ s < (y + 1)mn}
we know that g|Sy is injective for any y ∈ {0, . . . , l2 − 1} because (i(p), j(p)) is
injective on Sy. Aside from that, we get from the definition of i(p) and j(p) that
both values recur for p1, p2 ∈ P with p2 = p1 + amn with a being any positive
integer number. We first prove that h(p1) 6= h(p2) for p1 and p2 from two different
intervals of h(p) with

y1mn ≤ p1 < (y1 + 1)mn and

y2mn ≤ p2 < (y2 + 1)mn and

y1 < y2 <
l

2
, in particular p1, p2 <

1

2
lmn.

(5.19)

Assume

h(p1) = y1 + (p1 mod 2) · l
2

= y2 + (p2 mod 2) · l
2

= h(p2). (5.20)

If p1 and p2 were both odd or even, y1 would be y2. If p1 was odd and p2 even, we
would get y1 + l

2 = y2, but this contradicts the assumption y2 <
l
2 . The case “p1

even and p2 odd” works analogously. So we get a contradiction in any case. The
proof in the case of p1, p2 ≥ 1

2 lmn works analogously.
Let now p1 <

1
2 lmn and p2 ≥ 1

2 lmn and h(p1) = h(p2):

h(p1) = y1 + (p1 mod 2) · l
2

= y2 − (p2 mod 2) · l
2

= h(p2). (5.21)

If p1 and p2 are both even, we get y1 = y2, if they are both odd, we get y1 + l =
y2 > l − 1 which is not in the feasible set of y. If p1 is even and p2 is odd, we get
y1 = y2 − l

2 and if p1 odd and p2 even, the relation is the same. We conclude that
for two positions p1 and p2 of different intervals of the piecewise defined function
h(p), the value of g(p) = (h(p), i(p), j(p)) can only be the same if p2 = p1 + 1

2 lmn.
Hence, it remains to prove that h(p) 6= h(p+ 1

2 lmn) for p < 1
2 lmn. As l and m are

even, we know that 1
2 lmn is even, so the positions p and p+ 1

2 lmn are either both
odd or both even. Let y∗ be the corresponding y to p. As y∗mn ≤ p < (y∗+ 1)mn,
also (y∗ + l

2)mn ≤ p + 1
2 lmn < (y∗ + l

2 + 1)mn holds. Thus, y∗∗ = y∗ + l
2 is the

corresponding y to p+ 1
2 lmn. We receive the following expressions:

h

(
p+

1

2
lmn

)
= y∗∗ − l

2
= y∗ 6= y∗ +

l

2
= h(p) if p odd; (5.22)

h

(
p+

1

2
lmn

)
= y∗∗ = y∗ +

l

2
6= y∗ = h(p) if p even. (5.23)

This proves Theorem 3 for l, m even and n odd.
If l, n odd and m even, the proof works identical for i and j. It remains to

prove that for any p1 ∈ {0, . . . ,mn − 1} the values of h(p1 + amn) differ for any
a ∈ {0, . . . , l− 1}, that means h(p1 + a1mn) 6= h(p1 + a2mn). We will first consider
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5. Excursions

the positions from 0 to 3mn− 1 and prove the statement for them. Afterwards, we
will consider the intervals of positions with p ≥ 3mn. The second part of the proof
works similar to the proof with l even. In a third step, we will prove that the values
of h from the first 3mn positions and those of the later positions are different.

Let us choose any p1 ∈ {0, . . . ,mn − 1}. First, we prove that h(p1) 6= h(p2),
h(p2) 6= h(p3) and h(p1) 6= h(p3) for p2 = p1 +mn and p3 = p1 + 2mn. We get the
following two expressions for mn mod 3 6= 0:

((p1 +mn) mod 3) · l − 1

2
6= (p1 mod 3) · l − 1

2
6= (p1 + 2mn) mod 3 (5.24)

p2 mod 3 6= p3 mod 3. (5.25)

If mn mod 3 = 0, the following holds:

h(p2) = ((p2 + 1) mod 3) · l − 1

2
= ((p1 +mn+ 1) mod 3) · l − 1

2

= ((p1 + 1) mod 3) · l − 1

2
6= h(p1)

(5.26)

and

h(p3) = ((p3 + 2) mod 3) · l − 1

2
= ((p2 + 2mn+ 2) mod 3) · l − 1

2

= ((p1 + 2) mod 3) · l − 1

2
6= h(p1) and 6= h(p2).

(5.27)

Now we consider p1 and p2 from two different intervals of h(p) with 3mn ≤ p1 <
p2 <

l+3
2 mn. We first prove that h(p1) 6= h(p2). Assume

h(p1) = y1 + (p1 mod 2) · l − 1

2
= y2 + (p2 mod 2) · l − 1

2
= h(p2). (5.28)

If p1 and p2 were both odd or even, y1 would be y2. If p1 was odd and p2 even, we
would get y1+ l−1

2 = y2, but p2 <
l+3
2 mn leads to y2 <

l−1
2 . As y1 ≥ 1, there is no y2

in the required size. For p1 even and p2 odd, the argumentation works analogously.
So we get a contradiction in any case. The proof in the case of p1, p2 ≥ l+3

2 mn
works analogously.

Let now 3mn ≤ p1 <
l+3
2 mn and p2 ≥ l+3

2 mn and h(p1) = h(p2). Then

h(p1) = y1 + (p1 mod 2) · l − 1

2
= y2 − (p2 mod 2) · l − 1

2
= h(p2). (5.29)

If p1 and p2 are both even, we get y1 = y2, if they are both odd, we get y1 + 2 l−1
2 =

y2 > l − 1 which is not in the feasible set of y. If p1 is even and p2 is odd, we
get y1 = y2 − l−1

2 and if p1 odd and p2 even, the relation is the same. In order
to compute the associated positions, we have to count how many positions are
between y1 and y2. Because of the missing value l−1

2 of y (see equation (5.6)), there

are
(
3 + l−1

2 − 1− 3
)
mn =

(
l−1
2 − 1

)
positions in between. We conclude that for
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two positions p1 and p2 with 3mn ≤ p1 < p2 of different intervals of the piecewise
defined function h(p), the value of g(p) = (h(p), i(p), j(p)) can only be the same if
p2 = p1 +

(
l−1
2 − 1

)
mn.

So it remains to prove that h(p) 6= h
(
p+

(
l−1
2 − 1

)
mn
)

for 3mn ≤ p < l+3
2 mn.

As m is even, we know that
(
l−1
2 − 1

)
mn is even, so the positions p+

(
l−1
2 − 1

)
mn

and p are either both odd or both even. Let y∗ 6= y∗∗ be the corresponding y to p
and p+ 1

2 lmn. For the two cases odd and even, we receive the following statements

h(p1) = y∗∗ − l − 1

2
6= y∗ +

l − 1

2
= h(p2) if p1, p2 odd; (5.30)

h(p1) = y∗∗ 6= y∗ = h(p2) if p1, p2 even. (5.31)

Finally, we have to check if the values of h(p) for p ≥ 3mn differ from p < 3mn.
Therefore, we consider the value set of h: If p < 3mn, the value set is {0, l−1

2 , l−1}.
If 3mn ≤ p < l+3

2 mn, the values of h(p) = y + (p mod 2) · l−1
2 are > 0 (y ≥ 1)

and < l − 1 (y ≤ l−1
2 ). If p is even, the largest value is l−1

2 − 1 and the smallest

value for p odd is l−1
2 + 1. If l+3

2 mn ≤ p < lmn, the value set is the same as for

3mn ≤ p < l+3
2 mn. So the value set of positions p < 3mn is disjoint to the value

set of positions p ≥ 3mn. The cases with m even can be proved with the same
procedure.

We now have to consider the lengths of the edges appearing in the tours created by
Weave 3D(l,m, n). As we have already mentioned the distances for Weave(m,n),
we will just consider the number of layers between consecutive nodes. In the follow-
ing, we use the previously defined r =

⌊
l
2

⌋
. Within one pair of layers the distance

is always r. In the triple there are distances of r and 2r. When the pair or triple
of layers is changed, the list of distances between consecutive layers is dependent
on l, m and n.

• If l even and m · n even, the distances are either r − 1 or r + 1.

• If l is odd and m · n even, the distances are either r − 1 or r + 1 or l − 2 or
r − 2.

• If l is even and m · n odd, the distances are either r − 1 or l − 1.

• If l is odd and m · n odd, the distances are either r − 1 or l − 2.

The last move in Weave(m,n) is a (m − 1, k + 1)-move if m is even and a (m −
2, k+1)-move if m is odd. As the changes between pairs and triples of layers always
take place after one or two runs of Weave(m,n), only the last edge is matched
to the previously mentioned layer distances. All other edges of Weave(m,n) get
matched to r. Thus, the candidates for the shortest edge are

• (r, t, k), (r − 1,m− 1, k + 1) if l, m even, n odd;

• (r, t, k), (r − 2,m− 1, k + 1) if l, n odd, m even;
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5. Excursions

• (r, t, k), (r − 1,m− 2, k + 1) if l even, m, n odd;

• (r, t, k), (r − 1,m− 2, k + 1) if l, m, n odd.

For each case, we compute the minimum of both candidates by subtracting the
first squared Euclidean length from the second one and determine whether the
difference is positive or negative. Because of the monotonicity of the square root,
we can determine the smaller edge in that way. For example in the case of l,m
even, n odd this is:

(r − 1)2 + (m− 1)2 + (k + 1)2 − r2 + t2 + k2 = 3t2 + 2k + 3− 4t− 2r

≥ 3t2 + 2t+ 3− 4t− 2t = 3t2 − 4t+ 3︸ ︷︷ ︸
p(t)

∗
≥ 0 (5.32)

* p(1) = 2 > 0, the roots of this polynomial are conjugate-complex (t1/2 = 2
3±
√
−5
3 ),

so p(t) > 0 for t ∈ R.

With analogous transformations we can prove for all four cases that the shortest
edge is the (r, t, k)-edge which yields the deduced upper bound for the 3D grid.
This results in the following lemma.

Lemma 4. Weave 3D(l,m, n) yields an optimal solution to the MSTSP for grids
with n odd.

5.2.2. Approximations for an Even Number of Columns

If n is even, it is not always possible to get an optimal solution by extending our
optimal algorithm of a 2D grid. If l, m, n are even, there are optimal solutions for
certain kinds of grids. We can apply Bobeven(l, n) to the layers and columns while
moving between the rows as the first component of Weave(m, l · n) would do. We
will start at node (1, 1, k + 2). We call this new procedure Bobeven 3D(l,m, n).

Bobeven 3D(l,m, n) is defined as a mapping of previously defined components
of algorithms:

Definition 10 (Bobeven 3D(l,m, n)). Let l ≤ m ≤ n be the number of layers,
rows and columns respectively in a 3D grid with l, n even, m even or odd. Let
P = {0, 1, . . . , lmn − 1} be the set of positions in a tour, L = {0, 1, . . . , l − 1},
M = {0, 1, . . . ,m − 1}, N = {0, 1, . . . , n − 1}. Bobeven 3D(l,m, n) is defined as
the mapping

geven : P → L×M ×N,
p 7→ (h(p), i(p), j(p)) .

(5.33)

In the case of m even, i(p) is defined in the same way as h(p) in equation (5.3)
and as h in equation (5.6) if m is odd (with ←↩ from notation 1):
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h(p) =


0 if p mod l = 0

l − 1 if p mod l = l − 1

r − 1− (p mod 2) ·
(⌊

p mod l
2

⌋)
←↩

+ (1− (p mod 2)) · (r −
⌊
p mod l

2

⌋
) if p mod l ∈ {1, . . . , l − 2}

(5.34)

j(p) =



(k + 1) + q − (p mod 2) · k if ql ≤ p mod (ln) < (q + 1)l,

q ∈ {0, . . . , k − 2}
q − (k − 1) + (p mod 2) · k if ql ≤ p mod (ln) < (q + 1)l,

q ∈ {k − 1, . . . , n− 2}
k − (p mod 2) · k if p mod (ln) = l(n− 1)

(5.35)

if m even

i(p) =


y + (p mod 2) · m2 if yln ≤ p < (y + 1)ln,

y ∈ {0, 1, . . . , m2 − 1}
y − (p mod 2) · m2 if yln ≤ p < (y + 1)ln,

y ∈ {m2 , . . . ,m− 1}

(5.36)

and if m odd

i(p) =



(p mod 3) · m−1
2 if 0 ≤ p < 3ln and ln mod 3 6= 0

(p mod 3) · m−1
2 if 0 ≤ p < ln and ln mod 3 = 0

((p+ 1) mod 3) · m−1
2 if ln ≤ p < 2ln and ln mod 3 = 0

((p+ 2) mod 3) · m−1
2 if 2ln ≤ p < 3ln and ln mod 3 = 0

y + (p mod 2) · m−1
2 if (2 + y)ln ≤ p < (3 + y)ln,

y ∈ {1, 2, . . . , m−1
2 − 1}

y − (p mod 2) · m−1
2 if (1 + y)ln ≤ p < (2 + y)ln,

y ∈ {m−1
2 + 1, . . . ,m− 2}.

(5.37)

Theorem 4. The mapping geven is a bijection.

The proof of theorem 4 works analogously to the proof in the last subsection. We
match the edges of Bobeven(l, n) to the length component of rows. As we have
already introduced both procedures before, this is only shortly mentioned to get
the result for 3D grids.

The shortest edge for grids with k ≤ 1
2(3r2 − 2r + 1) is the (r − 1, t, k)-edge.

The edges with a short move in the second component are (l − 1, t − 1, k + 1)-
edges which are longer than (r − 1, t, k)-edges according to equation (4.16) and
some transformations. The shortest edge of the tour yields in this case the upper
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bound and therefore Bobeven 3D(l,m, n) is optimal for l, m, n even with k ≤
1
2(3r2−2r+ 1). In the appendix C.1, it is proved that the edges which connect two
pairs of rows are always longer than the shortest edge in the algorithm.

For l odd and n even, Bobodd(m,n) can be extended in a similar way. For l odd
and m,n even with l ≥ 5, we can apply Bobodd(l, n) and combine its (l−3, k+1)-
edge to a move between rows of t− 1. In order to terminate with such an edge in
Bobodd(l, n), we shift each p mod (ln) to (p mod (ln) − (l − 3)) mod (ln) in the
current procedure of Bobodd(l, n) (definition 6). For l = 3, the (l− 1, n− 1)-edge
is matched to the (t − 1)-move. The new procedure for the 3D grid will be called
Bobodd 3D(l,m, n) in the following.

When we restrict all constructed tours to combinations of Weave(m,n) and
Bobodd(m,n) or Bobeven(m,n), we receive gaps between the upper bound and
the shortest edge of those tours for most of the remaining grids. Thus, we will
compute the approximation ratio for those grids. For Bobeven 3D(l,m, n) or
Bobodd 3D(l,m, n), we calculate for which k the edges with a (k− 1)-component
become smaller than the (r − 1, t, k)-edge by transforming the inequality of the
squared lengths of the two edges. For certain grids the upper bound changes to
a smaller value as was mentioned at the beginning of this section. The values of
k where either the upper bound or the lower bound changes constitute the three
categories for which we will now compute the approximation ratio.

Let us start with l,m, n even and the case where (r − 1)2 + t2 + k2 > (l − 1)2 +
t2 + (k − 1)2, that means k > 1

2(3r2 − 2r + 1). There are two cases to distinguish:

For k < 1 − 2t − r + 3
2(t2 + r2), the upper bound is still

√
(r − 1)2 + t2 + k2 but

the shortest edge of the tour of Bobeven 3D(l,m, n) is an (l − 1, t, k − 1)-edge,

so Bobeven 3D(l,m, n) yields a
√

(r−1)2+t2+k2

(l−1)2+t2+(k−1)2
-approximation. For greater k,

the new upper bound is
√

(l − 1)2 + (m− 1)2 + (k − 1)2 and Bobeven 3D(l,m, n)

yields a
√

(l−1)2+(m−1)2+(k−1)2

(l−1)2+t2+(k−1)2
-approximation.

For l, n even and m odd, we do the same considerations except that the order of
rows for Weave(m, l · n) differs for m odd.

For l odd and m,n even with l ≥ 7 and k ≤ 1
2(3r2 + 2r), the shortest edge

of Bobodd 3D(l,m, n) is the (r − 1, t, k)-edge, therefore this algorithm yields a√
r2+t2+k2

(r−1)2+t2+k2
-approximation. For 1

2(3r2 + 2r) < k ≤ 1 − 2t + 3
2(t2 + r2), the

shortest edge is the (l− 1, t, k− 1)-edge but the upper bound stays the same which

results in an
√

r2+t2+k2

(l−1)2+t2+(k−1)2
-approximation. For greater k, the upper bound

changes and we get an
√

(l−1)2+(m−1)2+(k−1)2

(l−1)2+t2+(k−1)2
-approximation.

Analogous considerations are done for l, m odd and n even. A list of the inverses
of all approximation ratios is given in table 5.2 (γrtk = Extended Algorithm(l,m,n)

Upper Bound(l,m,n) ). For

a very small number of layers (l < 7 odd), the approximation is closer than stated
in the list as in these cases Bobodd(l, n) yields an optimal solution for the plane,
so the approximation is even better.

If m = 3 or m = 5, we can receive an optimal tour or at least a smaller
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k ≤ a a < k ≤ b k > b

γrtk (Case 1) 1
√

1− 2k−1−3r2+2r
(r−1)2+t2+k2

√
1− 3t2−4t+1

(l−1)2+(m−1)2+(k−1)2

γrtk (Case 2)
√

1− 2r−1
r2+t2+k2

√
1− 2k−1−3r2

r2+t2+k2

√
1− 3t2−4t+1

(l−1)2+(m−1)2+(k−1)2

γrtk (Case 3)
√

1− 2r−1
r2+t2+k2

√
1− 2k−3r2+4r−2

r2+t2+k2

√
1− 3t2

(l−1)2+(m−1)2+(k−1)2

γrtk (Case 4)
√

1− 2r−1
r2+t2+k2

√
1− 2k−1−3r2

r2+t2+k2

√
1− 3t2

(l−1)2+(m−1)2+(k−1)2

Case 1: l,m, n even a = 1
2(3r2 − 2r + 1) b = 1− 2t− r + 3

2(t2 + r2)

Case 2: l odd, m,n even a = 1
2(3r2 + 2r) b = 1− 2t+ 3

2(t2 + r2)

Case 3: m odd, l, n even a = 1
2(3r2 − 2r + 1) b = 1− 2r + 3

2(t2 + r2)

Case 4: l,m odd, n even a = 3
2r

2 + r b = 1
2(1 + 3(t2 + r2)

Table 5.2.: 1
γ -approximation for different cases of 3D grids (l ≥ 7 if l odd)

gap. In the following, we will shortly explain a variation of the defined proce-
dures for the 3D case which yields an optimal solution for some grids with 3
or 5 rows. If m = 3 or m = 5, we apply Bobodd(m,n) and the proper or-
der of the layers is component i of Weave(l,m · n). The proof of the tour can
be done analogously to the representative proof and the shortest edges are ei-
ther (r, t, k)-edges or (r,m − 1, k − 1)-edges. In those cases when (r, t, k)-edges
are the shortest edges of the tour, the lower bound yields the upper bound and
the tour created by this variation is optimal. If (r,m − 1, k − 1) is the shortest

edge of the tour, the variation yields a
√

1 + 2k−1−3t2

r2+(m−1)2+(k−1)2
-approximation. De-

pendent on l being odd or even, the following distinctions can be made for the
approximation. If 1

2(3t2 + 1) < k ≤ 1
2(3(r2 + t2) + 1) (or 1

2(3t2 + 1) < k ≤
1
2(3(r2 + t2) − 4r + 1)), it yields a

√
1 + 3r2

r2+(m−1)2+(k−1)2
-approximation (or a√

1 + 3r2−4r+1
r2+(m−1)2+(k−1)2

-approximation). Some computations in regards to this case

are explained in sections C.2 and C.3. As this extension only concerns very partic-
ular grid sizes, these cases are not mentioned in the general table 5.2.

5.3. Application to the TSP with Forbidden Neighborhoods

Instead of the shortest edge appearing in a tour, we will now consider the length
of the tour in the two dimensional grid. We are interested in the shortest tour
which is an optimal solution for the MSTSP. This question corresponds to one of
the models in section 3: the TSPN.
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Definition 11. The TSPN with mstsp-edge defines the traveling salesman problem
with forbidden neighborhoods (TSPN) where the minimum edge length is the objec-
tive value of the MSTSP. The TSPN with quasi-mstsp-edge defines the the TSPN
where the minimum edge length is the shortest edge of Bobodd(m,n).

The tours of Bobeven(m,n), Bobodd(m,n) and Weave(m,n) are approxima-
tions of the TSPN with mstsp-edge or quasi-mstsp-edge as the lengths of these
constructed tours mainly consist of edges of a “medium length”, i.e. about half of
the rows in vertical direction and half of the columns in horizontal direction. In
this section, we will prove an asymptotical optimality in many cases and we will
examine how close the tour lengths of the combinatorial algorithms are to a solution
of the TSPN with mstsp-edge.

At the time this thesis was written, Fischer and Hungerländer [38] were doing
research on the lengths of the shortest TSP tour when certain edges are forbidden
as was described in section 3.4. While they start at very small minimum lengths
and try to get patterns for combinatorial solutions and bounds, we will start at
the longest possible minimum edge length for which there is a possible tour. With
the tours from our combinatorial algorithms Weave(m,n), Bobeven(m,n) and
Bobodd(m,n), we determine an upper bound for the length of the shortest tour
with mstsp-edge or quasi-mstsp-edge. This section supplements the research of
Fischer and Hungerländer.

5.3.1. Length of Bobeven(m,n), Bobodd(m,n), Weave(m,n) and
Path Algorithm(m,n)

In order to compute the length of the tours constructed by our algorithms, we will
first list the lengths of the edges that are used in our algorithms together with their
frequency in the tour. Then, we will write the formula of the length which is the
sum of all edge lengths, each multiplied with its frequency. We obtained the edges
and their frequency by going through the algorithm and counting the number of
edges. The variables t and k are defined like in the previous sections. We can test
if all edges in a tour have been observed by taking the sum of the frequencies of all
edges in the tour. If the sum is m ·n, the number of edges is appropriate for a tour
through m · n nodes.

We will label the algorithms and list for each of them the appearing edges and
their frequencies:

1. Bobeven(m,n) for m ≥ 6:

• n · (m2 + 1) times (t− 1, k)-edges;

• n · (m2 − 2) times (t, k)-edges;

• n
2 + 1 times (m− 1, k − 1)-edges;

• n
2 − 1 times (m− 1, k + 1)-edges.

2. Bobeven(m,n) for m = 4:

72



• 3n times (t− 1, k)-edges;

• n
2 + 1 times (m− 1, k − 1)-edges;

• n
2 − 1 times (m− 1, k + 1)-edges.

3. Bobodd(m,n) for m ≥ 5:

• n
2 (m+ 1) times (t, k)-edges;

• n
2

(
m−1

2

)
times (t+ 1, k)-edges;

• n
2 − 1 times (m− 1, k − 1)-edges;

• 2 times (m− 2, k)-edges;

• n
2

(
m−1

2 − 2
)

times (t− 1, k)-edges;

• n
2 − 1 times (m− 3, k + 1)-edges.

4. Bobodd(m,n) for m = 3:

• 2n times (t, k)-edges;

• n
2 times (m− 1, k)-edges;

• n
2 − 1 times (m− 1, k − 1)-edges;

• 1 times (m− 1, n− 1)-edges.

5. Near Quadratic(m,n) for m = n− 1:

• n · (2 + m−3
2 ) times (t, k)-edges;

• n
2 + 1 times (t+ 1, k − 1)-edges;

• n
2 − 2 times (t+ 1, k + 1)-edges;

• n · m−3
2 times (t+ 1, k)-edges;

• 1 times (t+ 1, n− 1)-edges.

6. Weave(m,n) for m even, n odd: see table 5.3.

7. Weave(m,n) for m even, n even: see table 5.3.

8. Weave(m,n) for m odd, n odd, n mod 3 6= 0: see table 5.3.

9. Weave(m,n) for m odd, n odd, n mod 3 = 0: see table 5.3.

10. Weave(m,n) for m odd, n even, n mod 3 6= 0: see table 5.4.

11. Weave(m,n) for m odd, n even, n mod 3 = 0: see table 5.4.

12. Path algorithm for m odd and n even:
We also consider the length of the optimal solution of the path version for
m odd and n even, as it seems to be quite close to the optimum. The edges
which appear in the tour are:
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• n
2 (m+ 1) times (t, k)-edges;

• n
2 (m− 2) times (t+ 1, k)-edges;

• n
2 − 1 times (t− 1, k + 1)-edges.

Let T a(m,n) define the tour through an m× n-grid which was created by algo-
rithm a ∈ {1, . . . , 12}, let dij be the Euclidean distance between node i and node
j. We define the length of a tour dependent on t and k:

La : N2 → R+

(m,n) 7→
∑

(i,j)∈Ta(m,n)

dij . (5.38)

Case
Edge 6 7 8 9

(t, k) m(
⌊
n
2

⌋
+ 1) 2m (m− 1)(

⌊
n
2

⌋
+ 1)

⌊
m
2

⌋
(
⌊
n
2

⌋
+ 1)

(t, k + 1) m
2 (n− 2) m(n2 − 2)

⌊
m
2

⌋
(n− 2) + 1

⌊
m
2

⌋
(n− 2) + 1

(t− 1, k + 1) m
2 − 1 m

2 + 1
⌊
m
2

⌋
− 2

⌊
m
2

⌋
− 1

(t− 2, k + 1) 0 0 0 0
(m− 1, k − 1) 0 0 0 0

(m− 1, k) 0 0
⌊
n
2

⌋
+ 1

⌊
n
2

⌋
+ 1

(m− 1, k + 1) 1 0
⌊
n
2

⌋
− 1

⌊
n
2

⌋
− 1

(m− 2, k + 1) 0 0 2 1
(t+ 1, k + 1) 0 m

2 − 1 0 0
(t, k − 1) 0 m(n2 − 1) 0 0

6 = Case of m even, n odd
7 = Case of m even, n even
8 = Case of m odd, n odd, n mod 3 6= 0
9 = Case of m odd, n odd, n mod 3 = 0

Table 5.3.: Edges appearing in Weave(m,n) for m,n ≥ 4 – Part I

For procedure 1, for example, the length of the tour is the following:

L1(m,n) = n ·
(m

2
+ 1
)
·
√

(t− 1)2 + k2 + n ·
(m

2
− 2
)
·
√
t2 + k2

+
(n

2
+ 1
)
·
√

(m− 1)2 + (k − 1)2 +
(n

2
− 1
)
·
√

(m− 1)2 + (k + 1)2.

(5.39)

For the sake of consistency with previous sections, we have defined the edges by
m,n, t, k. As t and k are dependent on m and n, this notation is in accord with
L1(m,n).
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Case
Edge 10 11

(t, k) m− 2 m− 2
(t, k + 1) (m− 1)(n2 − 2) + 2 (m− 1)(n2 − 2)

(t− 1, k + 1)
⌊
m
2

⌋
− 1

⌊
m
2

⌋
(t− 2, k + 1) 1 1
(m− 1, k − 1) n

2 − 1 n
2 − 1

(m− 1, k) 2 2
(m− 1, k + 1) n

2 − 2 n
2 − 2

(m− 2, k + 1) 1 0
(t+ 1, k + 1)

⌊
m
2

⌋
− 2

⌊
m
2

⌋
− 2

(t, k − 1) m(n2 − 1) m(n2 − 1)

10 = Case of m odd, n even, n mod 3 6= 0
11 = Case of m odd, n even, n mod 3 = 0

Table 5.4.: Edges appearing in Weave(m,n) for m,n ≥ 4 – Part II

When we compute the length of the tour for each procedure from 1 to 12, we
derive upper bounds for a shortest tour with the minimum edge of the respective
algorithm.

5.3.2. Lower Bound for a Tour with Forbidden Edges

A trivial lower bound for the tour length is the length of a tour consisting only
of edges of the minimum feasible length. When we consider any of our proce-
dures with a minimum edge of length a, any tour consisting of edges which are
longer than a has at least the length mna. For Weave(m,n), it is mn

√
t2 + k2

if n is odd and mn
√
t2 + (k − 1)2 if n is even. For Bobodd(m,n) with m > 5

and Bobeven(m,n), it is mn
√

(t− 1)2 + k2 for grids with k ≤ 1
2(3t2 − 2t +

1) and mn
√

(m− 1)2 + (k − 1)2 for all other grids. Near Quadratic(m,n),
Bobodd(m,n) for m = 3 or m = 5 and Path Algorithm(m,n) are compared to
the lower bound mn

√
t2 + k2.

For most cases, this lower bound mna cannot be achieved by a tour, but as the
approximate solutions get quite close to this value according to our computations
in section 5.3.3, we assume it to be an appropriate lower bound to determine how
close our approximations get to the optimum. Moreover, this bound can be easily
computed, so we will use this trivial lower bound as the optimum in the following
steps.
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5. Excursions

5.3.3. Comparison of the Lengths of the Approximated Shortest Tours

When we consider the different kinds of edges that are used in Weave(m,n) and
the special cases Bobeven(m,n) and Bobodd(m,n), Near Quadratic(m,n)
and Path Algorithm(m,n), we see that they mainly use edges of similar size.
Particularly for grids with many rows and columns, the difference between the
appearing edges gets tiny in comparison to the edge lengths.

In Weave(m,n) – depending on the case – there are mainly edges in the size of
the shortest appearing edge. The longest edge appears at most one time and has
a length of about 2− 3 times the length of the mstsp-edge. Thus, its influence on
the tour length is negligible. All other edges are much shorter. First, we will only
consider grids with an odd number of columns and its approximation ratio:

αtk =
Tour Length of Combinatorial Algorithm

Lower Bound of Tour Length
. (5.40)

For the TSPN the approximation ratio is αtk according to definition 4 with
αtk = k. We state the following theorem.

Proposition 11. The length of the tour computed by Weave(m,n) in an (m×n)-
grid with m even and n odd is asymptotically optimal for the classical TSP with a

minimum edge length of
√

(m2 )2 + (n−1
2 )2 and is at least a 1.78-approximation.

Proof. Let t =
⌊
m
2

⌋
and k =

⌊
n
2

⌋
as in the previous sections. Thus, if m even and

n odd, m = 2t and n = 2k + 1 and the lower bound for a tour with minimum
edge (t, k) is 2t(2k + 1) ·

√
t2 + k2. We can compute the approximation ratio of

Weave(m,n) for an even number of rows and an odd number of columns in the
following way (the coefficients of the edge lengths can be received by transforming
the coefficients of table 5.3) :

αtk =
2t(k + 1)

2t(2k + 1)
· 1 +

t(2k − 1)

2t(2k + 1)

√
t2 + (k + 1)2

t2 + k2

+
t− 1

2t(2k + 1)

√
(t− 1)2 + (k + 1)2

t2 + k2

+
1

2t(2k + 1)

√
(2t− 1)2 + (k + 1)2

t2 + k2
.

(5.41)

This equals the following:

αtk =
k + 1

2k + 1
· 1 +

2k − 1

2(2k + 1)

√
1 +

2k + 1

t2 + k2

+
1

2(2k + 1)
(1− 1

t
)

√
1 + 2

k − t+ 1

t2 + k2

+
1

2t(2k + 1)

√
1 +

3t2 − 4t+ 2 + 2k

t2 + k2
.

(5.42)
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We calculate the asymptotic behavior of αtk if t, k →∞:

lim
t,k→∞

αtk = lim
t,k→∞

 k + 1

2k + 1︸ ︷︷ ︸
→ 1

2

·1 +
(2k − 1)

2(2k + 1)︸ ︷︷ ︸
→ 1

2

√
1 +

2k + 1

t2 + k2︸ ︷︷ ︸
→0

+
1

2(2k + 1)︸ ︷︷ ︸
→0

(1− 1

t
)︸ ︷︷ ︸

→1

√
1 + 2

k − t+ 1

t2 + k2︸ ︷︷ ︸
→0

+
1

2t(2k + 1)︸ ︷︷ ︸
→0

√
1 +

3t2 − 4t+ 2 + 2k

t2 + k2︸ ︷︷ ︸
<∞

 = 1.

(5.43)

So, the tour computed by Weave(m,n) with m even and n odd is asymptotically
optimal for the TSP with forbidden edges smaller than

√
t2 + k2.

In order to get the ratio of the worst case, we have a look at the behavior of αtk.
We consider the single summands of αtk with 0 < t ≤ k and compute their partial
derivatives with respect to k:

(
k + 1

2k + 1

)′
= − 1

(2k + 1)2
< 0 (5.44)

∂

∂k

(
(2k − 1)

2(2k + 1)

√
1 +

2k + 1

t2 + k2

)
=

=
4k3 + 12t2k2 + 5k2 + 8t2k + k + 4t4 + 3t2

2(2k + 1)2(t2 + k2)2
√

k2+2k+t2+1
t2+k2

> 0

(5.45)

∂

∂k

(
1

2(2k + 1)
(1− 1

t
)

√
1 + 2

k − t+ 1

t2 + k2

)
=

= (1− 1

t
)(

<0︷ ︸︸ ︷
−4k4 + 4k2(t− 1) +

<0︷ ︸︸ ︷
2t2k − 2t2k2−k2 +

<0︷ ︸︸ ︷
2k(t− 1)− 2t2k2−3t2

2(2k + 1)2(t2 + k2)2
√

1 + 2k−t+1
t2+k2

− (4k2 + 2t4 + 4t2(k − t) + 4k2(k − t))

2(2k + 1)2(t2 + k2)2
√

1 + 2k−t+1
t2+k2

) < 0

(5.46)
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∂

∂k

(
(1− 1

t
)

1

2t(2k + 1)

√
1 +

3t2 − 4t+ 2 + 2k

t2 + k2

)
=

−2k4 − 6k3 + k2(−16t2 + 16t− 9) + k(−5t2 + 4t− 2) + t2(−8t2 + 8t− 3)

2(2k + 1)2(t2 + k2)2
√

1 + 3t2−4t+2+2k
t2+k2

< 0.

(5.47)

All summands except the second one are monotonically decreasing if k increases.
The expression under the square root of the second component is also monoton-

ically decreasing as its changing part is monotonically increasing ( ∂
∂k

(
2k+1
t2+k2

)
=

2−k
2+t2−k

(t2+k2)2
< 0). The monotonically increasing coefficient (2k−1)

2(2k+1) <
1
2 is bounded

from above. Therefore, we can estimate the greatest ratio with the smallest possible
k which is t because of m ≤ n and the value 1

2 instead of the coefficient in front of
the square root in the second summand:

αtk ≤
t+ 1

2t+ 1
· 1 +

1

2

√
1 +

2t+ 1

2t2

+
1

2(2t+ 1)
(1− 1

t
)

√
1 +

1

t2

+
1

2t(2t+ 1)

√
1 +

3t2 − 2t+ 2

2t2
= α̃t.

(5.48)

It remains to determine the values of t for which α̃t yields large values and
compute an upper bound for them. Therefore, we consider the behavior of the
summands of α̃t for increasing values of t.

For the first two summands of equation (5.48), it is clear that they are either
independent of t or definitely decreasing, so we only have a look at the last two
summands and compute their derivative:(

1

2t(2t+ 1)

√
1 +

1

t2

)′
=
−2t4 + 4t3 − 3t2 + 5t+ 2

2t4
√

1 + 1
t2

(2t+ 1)2

{
< 0 if t < 2

≥ 0 if t ≥ 2
(5.49)

and (
1

2t(2t+ 1)

√
1 +

3t2 − 2t+ 2

2t2

)′
=

−20t3 + 5t2 − 9t− 4

4t4
√

1 + 3t2−2t+2
2t2

(2t+ 1)2
< 0. (5.50)

Thus, we can do another rough estimation by setting t to 1 in all summands
except in the third one. In the third summand, we set t = 2, which is the local
maximum of this summand. Then, we estimate

αtk ≤
2

3
· 1 +

1

2

√
1 +

3

2
+

1

20

√
1 +

1

4

+
1

6

√
1 +

3

2
≈ 1.78.

(5.51)
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Thus, we get at least a 1.78-approximation for m even and n odd. Furthermore,
the following proposition holds:

Proposition 12. If the solution of the MSTSP (m,n) is not an (m−1, k−1)-edge,
the orders created by Weave(m,n), Bobeven(m,n), Near Quadratic(m,n)
and Path Algorithm(m,n) are asymptotically optimal solutions for the TSPN
with mstsp-edge and the solutions of Bobodd(m,n) are asymptotically optimal for
the TSPN with quasi-mstsp-edge.

Proof. For the case of m odd, n odd we have already proved this in proposition 11.
For the remaining cases, we split the definition of αtk into single summands:

α
alg(m,n)
tk =

∑
e: edges in alg(m,n)

ge ·
√
he (5.52)

with
√
he being the quotient of the length of an edge from the considered algorithm

alg(m,n) ∈ {Weave(m,n),Bobeven(m,n),Bobodd(m,n),

Near Quadratic(m,n),Path Algorithm(m,n)}

and (quasi-)mstsp-edge edge, ge being the quotient of the number of occurrences
of that edge and the complete number of edges of the tour. First, we check if he
converges to 1 or if h is at least finite. Therefore, we consider all edges which appear
in any of the algorithms which we get from section 5.3.1.

Let (t, k) be the shortest edge of the algorithm. Then the quotient of any edge
with (t±x1, k±x2) is 1 + at+bk+c

t2+k2
which converges to 1 for t, k →∞. It remains to

check any edge with (m−x1, k±x2) or (m−x1, n−x2). In this case the quotient has

the following form: 1+ ±at
2±bk2±ct±dk±e

t2+k2
(in the first case b = 0) with a, b, c, d, e ≥ 0.

We determine that its absolute value is finite by

1 +
at2

t2 + k2︸ ︷︷ ︸
<a

2

± bk2

t2 + k2︸ ︷︷ ︸
<b

± ct

t2 + k2︸ ︷︷ ︸
<c

± dk

t2 + k2︸ ︷︷ ︸
<d

± e

t2 + k2︸ ︷︷ ︸
<e

<∞. (5.53)

The same holds for a denominator of (t− 1)2 + k2 or t2 + (k − 1)2.
In a second step, we determine the limit of the coefficients. We realize that for

any rate f from section 5.3.1 which is only dependent on either m and t or n and k

lim
t,k→∞

f

mn
= 0. (5.54)

We then compute the limit of the remaining coefficients. If we sum up the limit of
all coefficients ge of one procedure, we realize that this sum is one for all mentioned
algorithms. Furthermore, we see that the limit of all edges with a positive (> 0)
limit of the coefficient is 1. Thus, we have proved

lim
t,k→∞

Tour length alg(m,n)

Lower Bound
= 1. (5.55)
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5. Excursions

For grids whose upper bound for the MSTSP is the length of an (m− 1, k − 1)-
edge, we have not succeeded in proving an asymptotical optimality with the current
lower bound. Although the coefficients are the same, it was impossible to prove
limt,k→∞

t2+k2

(m−1)2+(k−1)2
= 1. For those grids, it remains open whether the tour from

the new algorithms are asymptotically optimal.

After some theoretical considerations, we will now compute the tour length of
the combinatorial algorithms for several grids and describe the behavior of the
approximation ratio. We computed the length of the tours for grids from 3 to 99
rows and columns and plotted some samples. Having a closer look at figure 5.6(a)
where the approximation ratio is plotted for Weave(m,n) with n odd dependent
on the number of rows and columns of the grid, we see that the computed ratio
points towards a better approximation ratio for the set of samples. The graphs are
monotonically decreasing for all values and even the values for the quadratic grid,
where the single curves start, have monotonically decreasing values for increasing
t = k. However, the graphs differ for an odd and an even number of rows. If m is
odd, the graphs start at a greater ratio which is decreasing for greater values of m.
For grids from 3 to 99 rows and columns, the greatest appearing ratio is < 1.33 for
m,n odd and < 1.114 for m even, n odd.

We received from our computations that for those grids with m > 80 odd, the
approximation ratio is smaller than 1.0133 for the computed grids, for m ≥ 80 even,
it is smaller than 1.0053.

For all evaluated grids, the approximation of the TSPN with mstsp-edge using
Bobeven(m,n) is not worse than a 1.135-approximation. Leaving out the values
of the quadratic grids, we even receive a better approximation ratio than 1.1. For
some different m, the ratio αtk is plotted in figure 5.6(b). From this figure we can
also see that the curves are first decreasing, before they increase again on a certain
interval and finally decrease to 1. The graph of m2 > m1 is below the graph of m1

after the change of the shortest edge.

If a grid has an even number of columns n, the shortest edge differs for grids with
a small number or a large number of columns. This change of the shortest edge
at a certain size of n or k (see table 4.5) can be observed in figures 5.6(b) where
the curve starts to increase. For Bobodd(m,n) the change of the shortest edge is
apparent in figure 5.7(a).

Figure 5.7(a) shows some plotted examples for the ratio αtk for Bobodd(m,n).
We can observe the change of the shortest edge length from

√
(t− 1)2 + k2 to√

(m− 1)2 + (k − 1)2 at the point where the curves start to increase. According to
our computations, all ratios yield values which are smaller than 1.1134. The graph
has the same behavior as described for Bobeven(m,n).

The ratio of the tour length of Near Quadratic(m,n) for grids with n = m+1
columns is monotonically decreasing for an increasing m and therefore n (see figure
5.5). The maximum ratio that is yielded for the tested grid sizes with a minimum
edge length of

√
t2 + k2 is αmax < 1.07 which is better than all other computed

maxima.
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Figure 5.5.: Approximation ratio α of Near Quadratic(m,n) (m = n− 1 and n
even) for the TSPN

We also consider Path Algorithm(m,n) as it contains very few different kinds
of edges with very similar lengths. For this algorithm, we compute the tours for
grids with odd m = 5, . . . , 21 and even n = 6, . . . , 70 (m ≤ n) and compare it with
the lower bound of a path with minimum edge length

√
t2 + k2 . The maximum

ratio of the computed grid sizes is αtk = 1.098. The graph illustrated in figure
5.7(b) is monotonically decreasing and the graph of the ratio of a larger m lies
below the graphs of the smaller m.

Even though we did not succeed to prove that Bobeven(m,n) and Bobodd(m,n)
are asymptotically optimal for tours with edges longer than

√
(m− 1)2 + (k − 1)2,

the figures indicate it. They also point to a much better approximation ratio than
proved in proposition 11.

5.3.4. Approximation of the TSPN in a Three-Dimensional Grid

In this section, we will prove a theorem about the approximation of the TSPN with
mstsp-edge for the three-dimensional grid (l ≤ m ≤ n). As the algorithms for n
involve a lot of case analysis and include the change of the shortest edge length
which we could not prove to be asymptotically optimal in the two-dimensional
case, we restrict our considerations in this section on grids with an odd number of
columns n. The following expression will be used in the following:

81



5. Excursions

Definition 12. Any distance in the three-dimensional grid can be defined by three
components: the l-distance, the m-distance and the n-distance. The l-distance is the
component of the distance which is perpendicular to the plane of rows and columns,
the m-distance is the component perpendicular to the plane of layers and columns
and the n-distance is the component perpendicular to the plane of layers and rows.

We start with a proposition which deals with a grid with an even number of
layers and rows and an odd number of columns.

Proposition 13. Let l even, m even and n odd. Weave 3D(l,m, n) yields an
asymptotically optimal solution to the TSPN with mstsp-edge.

Proof. We will start by listing the edges that appear in Weave 3D(l,m, n): From
table 5.3, we get the edges appearing in Weave(m,n). Considering equation (5.3),
we see that within an interval [ymn, (y+1)mn[ with y ∈ {0, . . . l−1} the l-distances
are r and they are r − 1 at the transition from one interval to the next in the first
half of intervals, as well as at the transition from the first half to the second half
and at the transition from the last interval to the first one. In the second half
of intervals, the l-distance is r + 1. As one interval contains the same number of
positions as one plane of a two-dimensional grid, all edges except the last one of
the algorithm in the plane are combined with an r-move. Thus, we obtain the list
of edges with their respective rate of table 5.5.

As the shortest edge is always an (r, t, k)-edge, the lower bound of a TSP tour
with that minimum edge can be set to l ·m · n ·

√
r2 + t2 + k2 = (2r) · (2t) · (2k +

1) ·
√
r2 + t2 + k2. The approximation ratio is defined as

γrtk =
Length of Weave 3D(l,m, n)

Lower Bound

=
(2r) · (2t) · (k + 1)

(2r) · (2t) · (2k + 1)
·
√
r2 + t2 + k2

r2 + t2 + k2

+
(2r) · t · ((2k + 1)− 2)

(2r) · (2t) · (2k + 1)
·
√
r2 + t2 + (k + 1)2

r2 + t2 + k2

+
(2r) · (t− 1)

(2r) · (2t) · (2k + 1)
·
√
r2 + (t− 1)2 + (k + 1)2

r2 + t2 + k2

+
r + 1

(2r) · (2t) · (2k + 1)
·
√

(r − 1)2 + (2t− 1)2 + (k + 1)2

r2 + t2 + k2

+
r − 1

(2r) · (2t) · (2k + 1)
·
√

(r + 1)2 + (2t− 1)2 + (k + 1)2

r2 + t2 + k2
.

(5.56)

Computing the limit of γrtk leads to
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lim
r,t,k→∞

γrtk = lim
r,t,k→∞

[ → 1
2︷ ︸︸ ︷

k + 1

2k + 1

+
2k − 1

2 · (2k + 1)︸ ︷︷ ︸
→ 1

2

·
√

1 +
2k + 1

r2 + t2 + k2︸ ︷︷ ︸
→1

+

(
1

2 · (2k + 1)
− 1

2t · (2k + 1)

)
︸ ︷︷ ︸

→0

·
√

1 + 2
k − t+ 1

r2 + t2 + k2︸ ︷︷ ︸
<∞

+

(
1

4t · (2k + 1)
+

1

4rt · (2k + 1)

)
︸ ︷︷ ︸

→0

·
√

1 +
3t2 − 4t+ 2(k − r) + 3

r2 + t2 + k2︸ ︷︷ ︸
<∞

+

(
1

4t · (2k + 1)
− 1

4rt · (2k + 1)

)
︸ ︷︷ ︸

→0

·
√

(r + 1)2 + (2t− 1)2 + (k + 1)2

r2 + t2 + k2︸ ︷︷ ︸
<∞


=

1

2
+

1

2
= 1.

(5.57)

Edge Rate

(r, t, k) 2r · 2 · t · (k + 1)
(r, t, k + 1) 2r · t · ((2k + 1)− 2)

(r, t− 1, k + 1) 2r · (t− 1)
(r − 1, 2t− 1, k + 1) r + 1
(r + 1, 2t− 1, k + 1) r − 1

Table 5.5.: Edges in Weave 3D(l,m, n) with l, m even, n odd
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5. Excursions

This can be extended to the following theorem:

Theorem 5. Let l, m be even or odd and n be odd. Weave 3D(l,m, n) yields an
asymptotically optimal solution to the TSPN with mstsp-edge.

Proof. When extending the two-dimensional edges to three-dimensional edges, we
know from the definition of h(p) that nearly all 2D-edges are combined with an
l-distance of r if l is even. Only the edge which completes the tour in the two-
dimensional case can be merged to an l-distance of r− 1, r, r+ 1, m− 2 or m− 1.
The edges within one layer, which are combined with an l-distance of r, appear l
times the frequency that they have in the 2D-procedures. If l is odd, there is also a
greater number of edges which include an l-distance of m−1. However, the number
of these edges is not dependent on the number of layers but only on the numbers
of rows and columns.

When we compute γrtk we sum up the length of all appearing edges multiplied
with their frequency and divide it by a lower bound of the tour length. This lower
bound is lmn times the length of the shortest edge of the current algorithm. Two
important facts need to be considered here:

1. If a 2D-edge has a frequency fe which is not dependent on both dimensions

m and n, limt,k→∞
fe
mn = 0. Then, also limr,t,k→∞

f3de
lmn = 0 with f3d

e being the
frequency of any extension of e to a 3D-edge. The ratio of any edge length of
the tour and the shortest edge length of the tour is always finite.

2. Considering table 5.3 (without case 7) we can state that all edges efin which
complete the tour in Weave(m,n) for grids with n odd have a frequency
that is not dependent on the grid size. These are either (m− 1, k + 1)-edges
or (m− 2, k + 1)-edges in Weave(m,n) with n odd. Those edges which are
dependent on both the number of rows and columns are only the (t, k)-edges
and the (t, k + 1)-edges. When extending them to 3-dimensional edges and
considering their components in γrtk, we can recognize that both expressions
under the square root converge to 1 and each coefficient converges to 1

2 .

Thus, limr,t,k→∞
f3de
lmn = 1.

For the other 3D-procedures, similar studies could be made, but as the shortest
edge is not that easily determined, we leave it open whether the algorithms produce
an asymptotically optimal solution to the TSPN with mstsp-edge.
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(a) Weave(m,n) with odd n
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Figure 5.6.: Approximation ratio α of the grid algorithms for the TSPN – part 1
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Figure 5.7.: Approximation ratio α of the grid algorithms for the TSPN – part 2
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6. Heuristics for the Maximum Scatter
and the Max-Min 2-Neighbor TSP

After the examination of linear time methods for the MSTSP on a regular grid,
we will now have a look at a heuristic which we have deduced and which solves
the MSTSP approximately. This procedure can even be extended to a heuristic
for the MM2NTSP. Currently it is a local search containing solely 2-opt moves.
According to Applegate et al. [6] (chapter 15.1), one of the most successful tour-
finding approaches is the algorithm of Lin and Kernighan. In this section, we will
deal with this heuristic as our local search heuristic could be extended to such a
procedure.

6.1. Background: Lin-Kernighan Heuristic for the Classic
TSP

The description of the Lin-Kernighan heuristic together with its precursors refers
mainly to Applegate et al. [6] (chapter 15) and Reinelt [73] (chapters 2.4 and 7.3)
and there are some parallels to part of my master thesis [47]. The precursor of the
algorithm of Lin and Kernighan is the nearest neighbor algorithm of Flood [39].
Building on Dantzig, Fulkerson and Johnson [31], he solved the assignment relax-
ation of the traveling salesman problem which ignores the constraint of a cycle
without subtours and got the dual solution u0, . . . , un, which he reused to compute
the so called reduced-cost matrix. This matrix consists of the difference between
the original costs of travel for each pair of cities (i, j) and (ui +uj). For the follow-
ing algorithm, the edge cost is the reduced cost of an edge. The algorithm starts at
one city and then proceeds to the closest city that has not been visited yet. Having
thus found a tour, the procedure is followed by an improvement phase. This phase
builds on the fact that in any optimal tour (i0, . . . , in−1) for an n-city TSP, for each
0 ≤ p < q < n, the inequality

cip−1ip + ciqiq+1 ≤ cip−1iq + cipiq+1 (6.1)

is fulfilled with cij being the entries of the reduced-cost matrix. That means that if
two edges are taken from the optimal tour and the adjacent nodes are connected in
another way such that there is again one cycle, the costs of this new cycle cannot
be lower than the original costs.

A special kind of exchange of edges (flip(p,q)) is used in the advanced algorithm
by Croes [30]. If there is a pair of indices (p, q) that violates the previous inequality
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6. Heuristics for Maximum Scatter and Max-Min 2-Neighbor TSP

iq+1 iq

ip−1 ip

iq+1 iq

ip−1 ip

Figure 6.1.: The flip(p, q)-operation [according to Applegate et al. [6],fig. 15.1]

(6.1) in the current tour, the edges (p−1, p) and (q, q+1) are replaced by the edges
(p− 1, q) and (p, q+ 1). This exchange is also called inversion and can be repeated
until all pairs (p, q) fulfill inequality (6.1). Under the assumption that the tours are
oriented, this operation is well defined.

If a flip-operation reduces the cost of the tour, it is a 2-opt move which means
that two edges are removed from the current tour and the resulting paths are
reconnected in the best possible way (Reinelt [73], section 2.4.5). Analogously, also
k-opt moves can be defined. Lin [56] went on with this idea and expanded it. He
provided a very useful framework to describe intersectionless tours and tours which
are optimal with respect to flip-operations. He did not only exchange the edges
between two pairs of adjacent nodes, but took even more pairs together for an
exchange of edges.

A tour is called k-optimal if no abatement of costs is possible by replacing any
k of its edges by any other set of k-edges which is adjacent to the same nodes
(Lin [56]). The algorithm of Lin and Kernighan [57] is “variable k-optimal”, it is
an effective search method to find a sequence of flips, such that the costs at the final
state of the tour decrease compared to the initial state. Every k-optimal move can
be achieved by a number of flips. The length of the sequence varies, as the sequence
is chosen as long as possible. Some of the intermediate tours may have costs that
are greater than those of the initial tour. If an improving sequence is found, the
flips are applied and the algorithm continues with the new tour. Reinelt [73] states
that it takes O(nk) to completely check if there is an improving k-move. In his
implementation he focused on 2-opt moves and node insertion moves, which means
that a node is deleted from the tour and reinserted at the best possible position.

Lin and Kernighan describe the general idea of iterative improvement of a set of
randomly selected feasible solutions in their article [57] on page 499 (C being some
criterion that has to be satisfied in the optimization problem):

1. Generate a pseudorandom feasible solution, that is, a set T that satisfies C.

2. Attempt to find an improved feasible solution T ′ by some transformation of
T .

88



3. If an improved solution is found, i.e., f(T ′) < f(T ), then replace T by T ′ and
repeat from Step 2.

4. If no improved solution can be found, T is a locally optimum solution. Repeat
from Step 1 until computation time runs out, or the answers are satisfactory.

Following the approach of iterative improvement, the last gained locally optimal
tour is changed and set as the new initial order for the next iteration. For the
modifications of the current solution, Martin et al. [61] suggest a double bridge
which is a move replacing four edges (see figure 6.2). This configuration does not
arise from flip-operations as it is not possible to reach it while preserving a tour at
any time. An advantage of this new configuration is that it consists of very similar
edges to the latest locally optimal tour.

Figure 6.2.: Double-bridge [according to Applegate et al.[6], fig. 15.7]

Algorithm 1 is a very short notation of the heuristic of Lin and Kernighan. For
more detailed information, we refer to their paper [57].

For the implementation several components are needed like the selection rule
of the most-out-of place pair, a function which represents the total profit from
a set of exchanges, a stopping rule as well as further criteria such as a criterion
which guarantees that the edges x1, . . . , xk and y1, . . . , yk are disjoint and one which
guarantees a feasible exchange.

There are quite a lot of different implementations. Helsgaun [46] solved trans-
formed equality generalized traveling salesman problems with an effective imple-
mentation of the Lin-Kernighan Traveling Salesman Heuristic which he describes
in [45]. Some further examples are the implementations of Bland and Shallcross [17],
Johnson [49], Mak and Morton [59], Perttunen [69].

Furthermore, Martin et al. [61] combine the Lin-Kernighan heuristic with sim-
ulated annealing and thus create a chained Lin-Kernighan which works for larger
instances. Simulated annealing samples solutions iteratively and stochastically with
a Markov chain. It is a very slow approximation, but is well suited to preserve prop-
erties of previous locally optimal solutions. The classical Lin-Kernighan heuristic
runs faster, but sometimes skips information of near optimal solutions when per-
turbing the tour. Chained Lin-Kernighan does an annealing between locally optimal
tours and has larger Lin-Kernighan steps in between.
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6. Heuristics for Maximum Scatter and Max-Min 2-Neighbor TSP

Algorithm 1 Heuristic of Lin and Kernighan [57]

Let S be the set of edges, xi, yi ∈ S.

1. Generate a random initial solution T .

2. (a) Set i = 1.

(b) Select xi and yi as the most-out-of-place pair at the ith step. This
generally means that xi and yi are chosen to maximize the improvement
when x1, . . . , xi are exchanged with y1, . . . , yi. xi is chosen from T −
{x1, . . . , xi−1} and yi from S − T − {y1, . . . , yi−1}.

(c) If it appears that no more gain can be made, according to an appropriate
stopping rule, go to Step 3; otherwise, set i = i+ 1 and go back to Step
2(b).

3. If the best improvement is found for i = k, exchange x1, . . . , xk with
y1, . . . , yk, to give a new T , and go to Step 2; if no improvement is found,
go to Step 4.

4. Repeat from Step 1 if desired.

Applegate et al. [5] work on the Chained Lin-Kernighan heuristic based on Martin
et al. [61] applying it to larger instances. They state that there are three particular
issues which have a great impact on the efficiency of implementations of Chained
Lin-Kernighan. These issues are the breadth of the Lin-Kernighan search, the
structure of the kick and the choice of the initial tour especially for large instances.
They introduce improvements to the Lin-Kernighan heuristic that enable them to
better cope with these issues. As a result, they are able to compute solutions for
instances with up to 25,000,000 nodes. Estimates for the exact optimal value prove
that these solutions are within 1% of the optimum.

6.2. The Algorithm LS MSTSP

In this section, we will consider a local search method which is an approximation
heuristic for the MSTSP. It could certainly be extended to a Lin Kernighan heuris-
tic. In our current implementation, we focus primarily on a local search algorithm
with exclusively 2-optimal moves and without repeating the procedure several times
with different initial solutions. We stop when the procedure fails to yield an im-
proving flip for the first time. A further modification of the local search methods
for the classic TSP is included in the criteria for flip(p, q)-operations. Only if all
shortest edges can be replaced by longer edges, the objective value increases. Start-
ing from an initial tour, we always take the shortest edge and try to eliminate it by
flip(p, q)-operations. Having found one edge (i, j) of the shortest length, we search
for a second edge (g, h) to do a flip(j, g)-operation. The following inequalities have
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to hold for the pair of edges:

dij < dig (6.2)

dij < dhj (6.3)

with the length of an edge (i, j) being given by dij . After the exchange of edges, the
procedure restarts with the new tour. This is done until there is either no second
edge (g, h) fulfilling the inequalities (6.2) and (6.3) to do a flip(j, g)-operation or a
maximum number of iterations (MAXITER) is reached. A draft of the procedure
is given in algorithm 2.

Algorithm 2 Local search heuristic for the MSTSP (LS MSTSP)

Given: n vertices, initial order (v1, . . . , vn) and distances dij , maximum number
of iterations MAXITER;
iteration counter iter = 0;

while iter < MAXITER do
Find current shortest edge (vis , vis+1) such that

dvis ,vis+1
= min{ min

k∈{1,...,n−1}
{dvik ,vik+1

}, dvin ,vi1};

Find an edge (vit , vit+1) to flip like in figure 6.1 such that the following in-
equalities hold:

dvis ,vit > dvis ,vis+1
(6.4)

dvis+1
,vit+1

> dvis ,vis+1
; (6.5)

if impossible to find such a set of edges then
TERMINATE;

else
Execute a flip-operation (see figure 6.1);
Increment iter;

end if
end while

6.2.1. Analysis and Comparisons

We can state the following proposition

Proposition 14. The complexity of LS MSTSP is O(n3).

One iteration of the LS MSTSP heuristic, which is counted by iter, runs in O(n)
time, n standing for the number of nodes. When storing the edges of the tour in
a heap (Fibonacci heap), it takes O(log n) (O(1)) time to find the shortest edge of
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6. Heuristics for Maximum Scatter and Max-Min 2-Neighbor TSP

the current tour consisting of n edges [29]. But it is not sufficient to receive the
shortest edge in a fast manner. As the reordering after a flip operation requires
O(n) and there are at most n − 2 candidate nodes to reconnect the endpoints of
the shortest edge, it also takes O(n) in each turn to find a suitable edge for a
flip-operation and to conduct a flip. MAXITER has to be somehow adapted to
the maximum size of the problems which are applied such that there is a variety
of possible iterations in which shortest edges can be eliminated. Therefore, it is
dependent on n. If MAXITER is hypothetically set to ∞, the number of iterations
lies in O(n2). The number of all edges between n nodes is n(n−1)

2 . In the worst
case, we start with a tour consisting of the shortest edges and replace them step by
step with the next longer edges. So each single short edge has to be deleted from
the tour. The complexity of this step is O(n2). From Reinelt [73] (section 7.5)
we know that it takes O(nk) to completely check if there is an improving k-move
for the classic TSP; the heuristic of Lin and Kernighan limits the set of exchange
candidates in order to obtain reasonable running times. For a 2-opt move this
would mean a complexity of O(n2). As we fix the first edge to the shortest edge,
we reduce the number of possible checks. LS MSTSP checks all 2-moves in O(n)
in the current version. In the first draft of the implementation the data structure
is not ideally chosen, but this would be changed in an advanced implementation.

LS MSTSP compares both new inserted edges with the current shortest edge
before executing a flip-operation. As for the objective value each single short edge
has a great impact which cannot be compensated by other edges, it is not reasonable
to leave out one of the comparisons or to take the difference of the sum of the initial
and the modified tour as is usually done in the Lin Kernighan heuristic for classical
TSP.

In our current version, we only do 2-opt moves, but the strategy could also be
extended to k-opt moves. In that case, it would not be important to have a shorter
tour after the exchange of edges, but to have included only longer edges than the
previous shortest edge. Within the complete move, there could also be included
shorter edges but they would have to be eliminated again within the move in another
flip. To find out which k to choose and how to restrict the candidate set where
the flip-candidates are searched, further examinations are needed. What we can
state in advance is that the set of candidate nodes for a flip-operation should not
consist of the nearest nodes to an adjacent node of the shortest edge, but of nodes
of a greater distance. Considering the influence of different initial tours on the
approximation could be a further aspect to study in order to improve the heuristic.
As an outlook on possible refinements of LS MSTSP we give an example for a
possible 3-opt move in figure 6.3. In this figure, which does not use Euclidean
distances, the shortest edge in the initial tour is (c, d). By flip(d, e) the even
shorter edge (c, e) is included, but is eliminated in the next flip. Finally, both
shorter edges (c, d) and (e, f) of the initial tour do no longer belong to the tour, all
newly inserted edges are longer than (c, d) and so the shortest edge of the final tour
is longer than the one of the initial tour. It is also possible that the shorter edge
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which is included by a flip-operation is the other edge (in the example edge (d, f)).
The flip-operations which lead to this case should either be rejected or they should
be continued by a further step which eliminates the second included edge if this one
is shorter. This new kind of step, however, would be a non-sequential step. In the
picture this was a flip-operation such as flip(f, g). It is important that all inserted
edges which are shorter than the initial shortest edge get eliminated in the step as
otherwise the objective value deteriorates. The concrete implementation of such a
combined flip is not done in this work.
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Figure 6.3.: A 3-opt move in LS MSTSP

Arkin et al. [7] have introduced a 2-approximation algorithm for the MSTSP on a
complete graph with weighted edges of non-negative lengths satisfying the triangle
inequality, which returns in O(n2) a tour with a shortest edge of at least half the
length of the longest possible shortest edge. A basic theorem for the idea of their
algorithm is theorem 3 of Dirac [33] which states that if the degree of every node
in a connected graph with n nodes is at least

⌈
n
2

⌉
, the graph is Hamiltonian. If we

wanted to ensure our algorithm to yield an 1
2 -approximation, we could combine the

two strategies and first compute an approximation following the strategy of Arkin
et al. [7] and improve their tour by taking it as an initial tour for LS MSTSP.
For the tested samples which are described in the next subsection, we did not
implement this combination but already received solutions which were better than
a 1

2 -approximation for all but 7 samples. As we computed the approximation with
a rough upper bound, the real value is likely to be even better. Arkin et al. [7] also
determined an upper bound ub for the solution of the MSTSP. This bound can be
received by taking all subsets R of nodes containing

⌊
n
2

⌋
nodes. They prove that in

any Hamiltonian cycle there is at least one edge connecting two nodes of R. Their
upper bound is obtained by taking the longest edge within any subset and choosing
the shortest edge of these:

ub = min
R:|R|=bn2 c

{max
i,j∈R

dij}. (6.6)

But as the number of such subsets
( n
bn2 c
)

is exponential
(
n
n
2

)
, the computation of
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6. Heuristics for Maximum Scatter and Max-Min 2-Neighbor TSP

this bound is quite complicated. That is why we use a more imprecise bound which
is easy to compute.

6.2.2. Computational Results

We test LS MSTSP on a set of (m × n)-grids. As we already know an optimal
solution or at least a very close upper bound for all of them, we can better determine
the quality of the approximation which is yielded by LS MSTSP. Moreover, we
apply our procedure on a set of TSP instances from the TSPLIB [72]. For those
samples, we do not know an optimal solution, but we compare the approximate
solution of LS MSTSP to a rough upper bound. We receive this upper bound by
considering for each node the second longest edge to which it is incident. As a tour
visits every node two times, the minimum of these second longest edges is an upper
bound. All results were computed on an OSX 10.9.4 system with a CPU of 2.8
GHZ Intel Core 2 Duo and a stack of 8GB 1067MHz DDR3. The approximation
ratio of the considered grids and of the instances of the TSPLIB are illustrated in
figure 6.4. The computational results of the instances of the TSPLIB are listed in
the appendix in tables D.1 and D.2. The names of the computed instances can be
found in those tables. We define α analogous to αt,k.

We computed the solutions for grids from 2 to 19 rows and from 2 to 99 columns.
The initial order was the enumeration of all nodes from 1 to m · n. For all of the
computed grids except for three relatively small ones (3 × 8, 4 × 5 and 5 × 10),
the approximation ratio ( 1

α) is better than 1.2 (α = 0.83). For greater grids the
approximation ratio decreases. One can argue that the regular grid has a very
special structure, where each distance, especially the small ones, appears several
times. That is why we tested LS MSTSP also on 63 instances from the TSPLIB.
For all tested instances, the coordinates of the nodes are given and the distances
have to be computed as Euclidean distances in the two dimensional space. Even
though we use a general upper bound for the computation of α, our heuristic found
a solution with α > 0.5 ( 1

α < 2) for all but 6 samples. For more than 80% of the
samples α > 0.8 ( 1

α < 1.25) and for half of the instances α > 0.9 ( 1
α < 1.12).

When we consider the ratio between the number of iterations counted by iter in
algorithm 2 and the number of nodes n in our computations, we see that it generally
increases, so the number of iterations increases more than linearly compared to the
number of nodes. The ratio between the number of iterations and the squared
number of nodes seems to decrease. This is consistent with the complexity of the
algorithm which was discussed in the previous section. There is one further use that
we can get from this approximation. When solving the MSTSP formulated as a
linear program with SCIP [2] (default parameters), we can use the approximation as
a lower bound and a feasible solution. The linear program is described in section 3.2.
The solving process was very much accelerated. Some instances, for which SCIP
took several days to yield a close solution, were solved in a few hours with the primal
solution from LS MSTSP. We have not systematically tested it, but the simple
improvements make us suggest this lower bound for the solution. The optimal
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(a) Grid samples

(b) Samples from the TSPLIB

Figure 6.4.: Approximation ratio ( Upper Bound
LS MM2NTSP ) of LS MSTSP for the MSTSP
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solutions or at least the new upper bounds which we got from this computation
were significantly closer to the primal bound from LS MSTSP. For instance, for pr76
the approximation obtains 97% of the upper bound instead of ≈ 71% and pr107
obtains an optimal solution instead of a value of 7% of the upper bound which
differs tremendously. It is not yet known whether pr76 is optimal as after about 7
hours of computation time the primal bound is still the bound from LS MSTSP.
In some cases, we could decrease the upper bound to the solution of LS MSTSP.
These cases are also highlighted in the table.

6.3. The Algorithm LS MM2NTSP

In this section, we will extend the LS MSTSP-heuristic for the MSTSP to the
MM2NTSP with an equal weight 1 of the edges and the 2-edges in the tour as it
was already mentioned in section 3.2. After that, we will do another computational
study with grids and the instances of the TSPLIB. We will first deduce closer upper
bounds for the MM2NTSP on a regular grid.

6.3.1. Upper Bounds for the Max-Min 2-Neighbor TSP

Arkin et al. [7] and Chiang [23] also determined upper bounds for the MM2NTSP.
They stated that for any subset S of

⌊
n
3

⌋
at least one pair of nodes are 2-neighbors

in a Hamiltonian cycle. As the number of subsets is exponential we use a simpler
but looser upper bound which is described in subsection 6.3.3.

Upper bounds on a regular grid can be received in a similar way to the MSTSP.
We consider the nodes in the middle of a grid which we illustrated already when we
examined the upper bounds of Weave(m,n) in figure 4.3. For the MM2NTSP, we
need to consider four edges for each node (instead of two for the MSTSP) as each
node has two neighbors and two 2-neighbors in the tour. Furthermore, we include
the fact that after going from a node in the middle to one at the corners, we have
to get on to a node which is a 2-neighbor of the first node and then to a node which
is a 2-neighbor to the node at the corner. We distinguish the following four cases
with m,n, t, k being defined as in chapter 4.

Theorem 6. Let m,n be the number of rows and columns of a regular grid and
let m ≤ n with m > 1, n > 2. Furthermore, let k =

⌊
n
2

⌋
and t =

⌊
m
2

⌋
. For the

MM2NTSP, the following upper bounds can be claimed considering the distances
between corners and central points as well as the direct distance between a potential
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successor of a central point and the potential successors of the successor:

(x∗, y∗) =



(t, k) if m and n odd, k ≤ 1
2(3t2 + 1)

(m− 1, k − 1) if m and n odd, k > 1
2(3t2 + 1)

(t− 1, k) if m even and n odd, k ≤ 1
2(3t2 − 2t+ 1)

(m− 1, k − 1) if m even and n odd, k > 1
2(3t2 − 2t+ 1)

(t− 1, k) if m odd and n even, k ≤
√
t(3t− 2)

(m− 2, 0) if m odd and n even,√
t(3t− 2) < k ≤ 1 +

√
3t2 − 4t+ 1

(t, k − 1) if m odd and n even, k > 1 +
√

3t2 − 4t+ 1

(t, k − 1) if m,n even, k ≤ 1 +
√

3t2 − 4t+ 2)

(m− 1, 1) if m,n even,

1 +
√

3t2 − 4t+ 2 < k ≤ 1 +
√

3t2 − 2t+ 1

(t− 1, k − 1) if m,n even, k > 1 +
√

3t2 − 2t+ 1).

(6.7)

Proof. The proof is constructive and it is split into four different cases.

m,n odd: If the number of rows and columns are odd, the node in the middle has
the distance

√
t2 + k2 to the four corners of the grid. If k > 1

2(3t2 + 1), the

length of any edge with horizontal length k−1 is shorter than
√
t2 + k2. If we

used only edges of at least the length
√
t2 + k2, we could only move between

the first, the central and the last column as we would have to consider two
predecessors and could not have any horizontal distance of less than k − 1.
So one edge of the tour can be at most as long as the longest edge with k− 1
as horizontal component. For k > 1

2(3t2 + 1) such an edge is shorter than√
t2 + k2. Thus, the upper bound can be reduced to

√
(m− 1)2 + (k − 1)2.

m even and n odd: For an even number of rows and an odd number of columns
we have

√
(t− 1)2 + k2 as an upper bound. If k > 1

2(3t2 − 2t + 1) all edges
of horizontal length k − 1 are shorter than this bound. For the same rea-
son as in the previous case the upper bound can be reduced in this case to√

(m− 1)2 + (k − 1)2.

m odd and n even: For an odd number of rows and an even number of columns the
upper bound is at most

√
(t− 1)2 + k2. There are two central nodes. W.l.o.g.

let us consider the left one of the two. If we try to avoid any (t, k − 1)-move
and smaller moves, we need to chose the successor of the central node and the
successor of the successor in the right column. Also the predecessor of the left
central node and the predecessor of the predecessor have to be chosen from
the right column. So we need to take at least two (m − 2, 0)-edges (see case
a in figure 6.6(a)). For k ≤

√
t(3t− 2), (t − 1, k) is shorter than (m − 2, 0),
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for k >
√
t(3t− 2) it is (m − 2, 0). But if k > 1 +

√
3t2 − 4t+ 1, we avoid

(m − 2, 0)-edges and take (t, k − 1) as an upper bound for the shortest edge
like in case b in figure 6.6(a).

m,n even: If the number of rows and columns are even and m ≥ 4, the longest
edges which can connect central nodes to other nodes but are shorter than√

(t− 1)2 + k2 are either (t − 2, k)-edges or (t, k − 1)-edges. If k > 2t − 3
2 ,

the longer edge of the two is (t − 2, k). We get the constraints for k in this
case and in the following by transformations of an inequality which compares
the lengths of two edges. As for each central node we only have one node
with a distance of

√
t2 + k2 and two with a distance of

√
(t− 1)2 + k2, we

need at least one further node with a shorter edge. Let us first assume that
(t − 2, k) is the longest edge that is used in a tour and that k > 2t − 3

2 .
There are 5 or 4 nodes respectively for m ≥ 6 and m = 4 respectively in the
right column which could be a neighbor of the lower left central node. In
order to keep a shortest edge of

√
(t− 2)2 + k2, two pairs of those neighbors

need to have a distance between them of at least
√

(t− 2)2 + k2. As we
can also see in figure 6.6(b), this is only the case if the (m − 2, 0)-edge is
longer than

√
(t− 2)2 + k2 which would be the case for k ≤

√
3t2 − 4t. This

contradicts the constraint k > 2t− 3
2 . Therefore, there is no optimal tour for

MM2NTSP containing edges of a length of at least
√

(t− 2)2 + k2. However,
we can prove by transformation that an (m− 2, 0)-edge is only strictly longer
than a (t, k − 1)-edge for k < 1 +

√
3t2 − 8t+ 4 and this bound always lies

below the domain with k > 2t − 3
2 which we have restricted. This means

that there is no optimal tour for the MM2NTSP which exclusively consists of
strictly longer edges than a (t, k − 1)-edge.

Therefore, we may start with an upper bound of
√
t2 + (k − 1)2 for all

grids with m,n even, but can even decrease the value for several cases.
In the following, we use the fact that (0, n − 1) is longer than (t − 1, k) for
n > 2:

(n− 1)2 ≥ (t− 1)2 + k2 (6.8)

⇔ 4k2 − 4k + 1 ≥ t2 − 2t+ 1 + k2 (6.9)

⇔ 3k2 − 4k − t2 + 2t ≥ 0 (6.10)

⇔ k(3k − 4)− t(t− 2) ≥ t(3k − 2− t) = t(2k − 2 + k − t) ≥ 0. (6.11)

In grids with n ≤ 2, we have to use even the shortest possible edge, so any tour
is optimal and we do not have to consider them. The following considerations
are structured in figure 6.5. If an (m − 1, 1)-edge is longer than a (t, k − 1)-
edge, that means for k ≤ 1 +

√
3t2 − 4t+ 2, we keep the current upper bound

of
√
t2 + (k − 1)2 as we can connect the left upper corner to the right upper

corner and the first node in column n − 1 to the last node in column n
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√
(m− 1)2 + 1 > | <

√
t2 + (k − 1)2

UB:
√
t2 + (k − 1)2

√
(m− 1)2 + 1 > | <

√
(t− 1)2 + (k − 1)2

UB:
√

(m− 1)2 + 1 UB:
√

(t− 1)2 + (k − 1)2

k ≤ 1 +
√

3t2 − 4t+ 2 k > 1 +
√

3t2 − 4t+ 2

k ≤ 1 +
√

3t2 − 2t+ 1 k > 1 +
√

3t2 − 2t+ 1

Figure 6.5.: Different upper bounds for m,n even

and the distances of the four nodes to the lower left central node is smaller
than

√
t2 + (k − 1)2. For k > 1 +

√
3t2 − 4t+ 2 we can decrease the upper

bound. Candidate edges for a possible shortest edge in a tour are (m− 1, 1),
(t− 1, k− 1) and (t, k− 2). (t− 2, k) is not a candidate as including this edge
does not enable any two connections longer than

√
(m− 1)2 + 1 between the

neighbors. We prove that (t, k − 2) is not immediately a candidate for an
upper bound for the shortest edge when we only consider the neighbors of the
left lower central node.√

t2 + (k − 2)2 ≤
√

(t− 1)2 + (k − 1)2 (6.12)

⇔ t2 + k2 − 4k + 4 ≤ t2 − 2t+ 1 + k2 − 2k + 1 (6.13)

⇔ 0 ≤ −2t− 2 + 2k (6.14)

⇔ k ≥ t+ 1. (6.15)

The only case for which (t, k−2) is longer than (t−1, k−1) is for a quadratic
grid (t = k). But for this grid, we can get all neighbors and 2-neighbors
of the lower left central node with

√
(m− 1)2 + 1 > m − 1 = n − 1 ≥√

(t− 1)2 + k2 =
√
t2 + (k − 1)2. So we can ignore that edge as a candi-

date until there is another reason to decrease the upper bound.

It remains to check which of the two candidate edges is the longer one. By
transformations of the stated inequality, we receive that an (m − 1, 1)-edge
is longer than a (t − 1, k − 1)-edge for k ≤ 1 +

√
3t2 − 2t+ 1. So we get the

cases as they are listed in the theorem.

For m = 2 the considerations do not work in the same way as there are no
(t − 2, k)-edges or others and m − 1 is already 1. Here we see according to
figure 6.6(c) that (t, k−1) is not the closest upper bound and we can decrease
it to (t− 1, k − 1) or (1, k − 2). If k ≥ 2, a closer upper bound is k − 1. In a
(2× 2)-grid, it is

√
1 + (k − 2)2 = 1.
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6. Heuristics for Maximum Scatter and Max-Min 2-Neighbor TSP

Of course, we could still decrease some of the upper bounds by considering
the common neighbors of the central nodes. This is the case if m, n even
and the current upper bound is the length of a (t, k − 1)-edge. Then the
four central nodes do not have enough candidate nodes to connect without
getting subtours or visiting some nodes several times. But we think that
we are close enough to have better upper bounds than before and that the
distinctions would lead to many special cases without gaining a lot of decrease.
Therefore, we stop at that state and use the bounds of theorem 6 for the
following comparisons.

b a

(a) m odd and n even (a for
small n, b for large n)

(b) m,n even (c) m = 2, n even

Figure 6.6.: Upper bounds for the MM2NTSP

6.3.2. Extension of LS MSTSP to the Max-Min 2-Neighbor TSP

We can extend LS MSTSP to the MM2NTSP. The approximation procedure –
called LS MM2NTSP in the following – additionally tests if a flip of edges does
improve the shortest edge between 2-neighbors as well. The shortest edge that is
determined in each iteration is chosen from the set of all edges of a tour and of
all its 2-edges. So a flip(p, q)-operation is only applied if the added edges and
edges between the new 2-neighbors are all longer than the shortest current one.
LS MM2NTSP is defined in algorithm 3. We could choose either the lexicographical
order of the nodes or the solution of the MSTSP or any random order as initial
order.

The parameter c in LS MM2NTSP stands for the weight of the 2-neighbor edges.
For the computational results of the heuristic, it is always set to 1, but for the
samples in CHAMP, it was set to 1.5. This value is chosen if the influence of
2-neighbor edges is not as severe as of the direct edges.

We can deduce the following proposition in the same way as for LS MSTSP.

Proposition 15. The complexity of LS MM2NTSP is O(n3).

As there are more tests in each iteration than in LS MSTSP, the constant however
increases.
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We also used this heuristic in CHAMP. As we thought that the distances between
2-neighbors are less important than the direct edges, we set c = 1.5. Thus, only
the distances between consecutive nodes had to be shorter than the objective value.
When we computed the strategies for the tests at Concept Laser GmbH, the so-
lutions for the MM2NTSP were received by applying the Lin Kernighan heuristic,
starting with the order that is a solution for the MSTSP. Although this was not
the optimal solution for the MM2NTSP, it was an approximation that sufficed to
test if this type of strategy caused less deflection than other strategies. The tests
on real world workpieces will be described in chapter 7. But in the following, we
do the examinations of the approximation ratio only for the MM2NTSP with equal
weights of both kinds of edges as treated in Arkin et al. [7] and Chiang [23].

6.3.3. Computational Results

We also do computations for LS MM2NTSP with the previously mentioned in-
stances. The instances are grids of 2 to 19 rows and 2 to 99 columns and a set of
examples of the TSPLIB. For each instance, we take two different initial orders, one
time the enumeration of the nodes and the second time the approximate solution
of the MSTSP. For the grids, we take the upper bound of theorem 6 being aware
that they are in several cases greater than the optimal value. The upper bound for
the instances of the TSPLIB is the shortest fourth longest incident edge of a node,
a very general bound.

Nevertheless, α ≥ 0.34 for all solutions for the grids for the MM2NTSP. As
for the grids the approximation ratio is identical for both initial orders, we only
illustrate one of the two cases in figure 6.7, the average approximation ratio being
less than 2 (α ≥ 0.52). in both cases. All tested grids with at least 10 rows have an
approximation ratio smaller than 2.3 (α > 0.43). Less than 2% of all tested grids
has a greater approximation ratio than 2.5 (α < 0.4).

For the TSPLIB instances, the approximation ratio is not as good as for the
grids but at least for about 30% of the instances LS MM2NTSP the solution is
better than a 2-approximation (α < 0.5) and less than 5% of the instances had
an approximation ratio greater than 10 (α < 0.1). The approximation ratio 1

α
is illustrated dependent on the number of nodes in figure 6.8. The computation
times, solutions of LS MM2NTSP and the inverse approximation ratio α are listed
in tables D.3 and D.4 for an enumerated initial solution and in tables D.5 and
D.6 with the approximation of the MSTSP as initial solution. For about 60% of
the instances the enumerated initial order leads to a better approximation ratio,
but the difference of the approximation ratio for the same instance with different
initial orders is smaller than 1.9, i.e. the difference between two different values of
α is at most 0.08. So we claim that the two different initial solutions yield similar
results which are a first general approximation to the MM2NTSP but still need
to be improved. Probably some progress could already be gained by decreasing
the current upper bound. The current results do not retain the quality of the
approximate algorithm for the MM2NTSP of Arkin et al. [7] and Chiang [23] which
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6. Heuristics for Maximum Scatter and Max-Min 2-Neighbor TSP

Figure 6.7.: Approximation ratio ( Upper Bound
LS MM2NTSP ) of LS MM2NTSP for regular grids

is at least an 18-approximation in O(n2.5). But nevertheless, our procedure is rather
general yet promising.

102



(a) Samples with trivial initial solution

(b) Samples with initial solution from LS MSTSP

Figure 6.8.: Approximation ratio ( Upper Bound
LS MM2NTSP ) of LS MM2NTSP for samples of

the TSPLIB

103



6. Heuristics for Maximum Scatter and Max-Min 2-Neighbor TSP

Algorithm 3 Local search heuristic for the MM2NTSP(LS MM2NTSP)

Given: n vertices, initial order (v1, . . . , vn) (directed) and distances dij , maximum
number of iterations MAXITER, weight c;
iteration counter iter = 0;

while iter < MAXITER do
Find length of current shortest edge or 2-edge d̃(vis , vj) and the position s of

the first node vis of that edge such that

d̃vis ,vj = min{ min
k∈{1,...,n−1}

{dvik ,vik+1
}, dvin ,vi1 ,

c · dvin−1
,vi1

, c · dvin ,vi2 , min
k∈{1,...,n−2}

{c · dvik ,vik+2
}};

(6.16)

Find an edge (vit , vit+1) for a flip(vis+1, vit) such that the following inequali-
ties hold:

dvis ,vit > d̃vis ,vj ; (6.17)

dvis+1
,vit+1

> d̃vis ,vj ; (6.18)

dvis−1
,vit

> d̃vis ,vj ; (6.19)

dvis ,vit−1
> d̃vis ,vj ; (6.20)

dvis+2
,vit+1

> d̃vis ,vj ; (6.21)

dvis+1
,vit+2

> d̃vis ,vj ; (6.22)

(6.23)

if impossible to find such a set then
TERMINATE;

else
Execute a flip-operation (see figure 6.1);
Increment iter;

end if
end while
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7. Tests and Results of CHAMP

In order to find out the advantages and disadvantages of certain scan strategies
concerning the deflections, it was necessary to conduct tests on the LaserCUSING R©

machines. This chapter deals with the tests that were conducted in CHAMP. We
introduce the geometries of the workpieces and summarize the setup of the tests.
Moreover, we present the results and our conclusions.

7.1. Creation of the Data Transmission File for
LaserCUSING R©

The interface that we used to transmit the order of islands from different strategies
and the control of the laser power to the LaserCUSING R© machine was the Com-
mon Layer Interface (CLI) [21]. This interface is currently the only possibility to
manipulate the island order. The files contain a header and a geometry part. In the
header part, general information about the scaling, the version, and some settings
as well as the different pairs of power and speed is given. After an extension of
the interface during the project, the laser power and the laser speed can now be
included into the file. In the geometry part, the lines of the contour (polyline)
and the scan vectors (hatches) associated with the number of the current layer are
listed. A hatch and a polyline can be a polygon of scan vectors. In order to create
the CLI-file, all single vectors with their lengths have to be computed in advance.
As many islands are only partly covered by the workpiece, there are different sizes
and shapes of areas which have to be filled with scan vectors. Considering the ori-
entation of the scan vectors in the current island, the individual length of the island
is divided by the ideal distance between hatches. Thus, a fractional number of scan
vectors is computed. This number is commercially rounded to the next integer. For
this fixed number of hatches, an equal distance between all hatches of this island is
computed. In a formula with d being the distance between two hatches and l being
the length of the island with perpendicular hatches that distance is

d =
l⌊

l
105 + 0.5

⌋ . (7.1)

The number of hatches n is

n =

⌊
l

105
+ 0.5

⌋
+ 1. (7.2)
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7. Tests and Results of CHAMP

The length of each hatch and the direction and length of the short connecting hatch
between two longer hatches has to be computed with the help of trigonometric
functions.

For the tests in CHAMP, each single workpiece was stored in a separate file.
The files were put together at Concept Laser to build the workpieces in one turn.
Most of our workpieces consisted of a small base and a tile. Support structures,
additional long thin stripes of molten material between the tile and the base plate,
stabilize those parts of the tile that are not seated on the base. There was a division
of responsibility for the creation of the data for the workpiece. The CLI-file, which
I generated, contains only the tile. The base and the support structures were
conceived by Concept Laser and were added on the LaserCUSING R© machine. The
coordinates for the workpieces were fixed in advance such that the left upper corner
always lay in the origin of ordinates.

During the project time, the interface was enhanced according to the needs iden-
tified in the tests. Currently, every scan vector has to be listed as a separate hatch.
The disadvantage of the interface in the current version is that the size of the file
grows quite fast and the machine cannot cope well with data greater than 35 MB.
For example, listing each single scan vector in Workpiece 1 (100 and 121 islands
with a height of 100) takes about 50 MB. As we kept a constant laser power in this
test, we could combine several scan vectors to one hatch and thus, reduce the size
of the data of this workpiece.

In the new extended version, different pairs of power and speed were applied to
one vector. This meant, however, that a vector that should be split into pieces
had to be listed twice with different indices. The indices were matched to a certain
pair of power and speed. But as this was the only way to communicate with the
machine, we had to write the files to be able to test certain strategies. For our
purpose, the possible size of the CLI-file was a bound for the complexity and size of
the workpieces and the number of levels of laser power. If some laser strategy was
regularly applied in the production process, it would be encoded on the machine.
However, for the tests this was not profitable. An example of a CLI-file is given in
the appendix in section E.

7.2. The Workpieces

In this section, we consider the geometries of the workpieces produced during the
project. As all scan vectors had to be computed by us in order to write the CLI-
file, we had to choose rather simple geometries for our workpieces. That is why
we chose only the following four workpieces to test different order strategies in
consultation with Concept Laser. The areas are illustrated in figures 7.1 and 7.2.
With the shift of the island grid, it is useful to create workpieces in which each
layer has the same shapes such that the data is identical for every fifth layer. For
the rectangular workpieces, there are in fact only two kinds of layers concerning the
number of islands, the second to the fifth layer are the same except that the parts
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of the island belonging to the workpiece are different. The effort of computing the
scan vectors can be limited in that way. The first workpiece was chosen because
of its simple geometry: it is just a block and was supposed to be a test for the
procedure and the use of CLI-files. No measurements of the distortions have been
performed for this workpiece as it was completely fixed to the base plate and thus
did not have visible distortions at all.

(a) Contour 1 (b) Contour 4 with base (dotted)

Figure 7.1.: The rectangular workpieces

(a) Contour 2 with base (dot-
ted)

(b) Contour 3 with base (dotted)

Figure 7.2.: The triangular workpieces

The following workpieces were put on a base whose contour is drawn in figures
7.1 and 7.2 with dashed lines (see figure 7.2). Below the part without base, sup-
port structures were put. The support structures are long thin stripes of material
connecting the workpiece partially to the base plate. They are removed after the
production. The generation of the base and the support structures was done by
an employee at Concept Laser as explained in section 7.1. The second workpiece
(figure 7.2(a)) was a triangle with one sharp corner and a base in the middle of
the length of the workpiece. In Workpiece 3 (figure 7.2(b)), the triangular contour
had a larger area and the area of the base was decreased at the same time in order
to facilitate the formation of greater distortions and to better distinguish between
different order strategies. For the same reasons the last workpiece (figure 7.1(b)),
a very long but narrow shape, was chosen. The exact number of islands per layer
and the number of layers are listed in table 7.1.
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7. Tests and Results of CHAMP

Workpiece Height[layers] Area Islands (I) per layer

Workpiece 1 100 10× 10 Every 5th layer: 100 I, the others: 121.
Workpiece 2 200 + 100 10× 3 In turns: 21, 27, 28, 30 and 31 I.
Workpiece 3 200 + 100 20× 6 In turns: 72, 83, 85, 89 and 91 I.
Workpiece 4 200 + 100 30× 1 Every 5th layer: 30 I, the others: 62.

Table 7.1.: Overview on all workpieces

7.3. Tests of the Strategies on Workpieces

During the project, several tests of strategies were conducted on the LaserCUSING R©

machine. The data transmission was tested with Workpiece 1 in Test 1. In the sec-
ond test Workpiece 2 was produced and the distortions were measured. As the
distortions were not significantly different for several strategies and were also very
small, the geometries of Workpieces 3 and 4 were chosen for further tests. As the
first two tests did not yield results, but were the preliminary tests of the approach,
they are summarized in section 7.3.1. In the third test several samples of Work-
pieces 3 and 4 were produced (section 7.3.2). The measured deflections, which were
not significant, made us choose a two-part final test. On the one hand, we wanted
to ensure that there is no significant influence of the island order on the deflection
(section 7.3.3); on the other hand we produced samples with different tour lengths
where the tour is composed of the distances between consecutive islands and not
the lengths within one island. For these samples we measured the scanning time of
single layers (section 7.3.4) in order to test if time saving is possible.

7.3.1. Test 1 and 2

The goal of the first job (Workpiece 1) was to test the application of the CLI and
to find out if there were problems in understanding or in transmitting data. The
workpiece was built with four different strategies. It completely connected to the
base plate and we did not measure the distortions. The height of the workpiece had
to be reduced enormously – from 666 to 100 layers – in order to reach a suitable
file size.

Therefore, the next workpiece had a smaller area with fewer islands and was built
on a base to receive some distortions. Normally, one step in the production is to
place the workpiece in an optimal way such that the area connected to the base
plate is as large as possible and the angles between the perpendicular line to the
baseplate and the workpiece are as small as possible. In our tests, this step was
omitted to obtain greater distortions and to better see differences between different
strategies. In the second test, Workpiece 2 was built eight times with the following
strategies:
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1. MSTSP;

2. MM2NTSP;

3. TSPSID;

4. Serial order in horizontal lines without meandering;

5. Random order;

6. Serial order in horizontal lines with meandering;

7. Serial order in vertical lines without meandering;

8. Serial order in vertical lines with meandering.

Meandering means continuing the strategy in reverse direction at the end of each
line, e.g. left-to-right in the first line, right-to-left in the second line and so on for
serial order in horizontal lines with meandering. The number of islands per layer
were 21, 27, 28, 30, 31 in turns because of the shift of the grid. The solutions of
the MM2NTSP were always approximated with LS MM2NTSP described in section
6.3, because the computation of the exact solution by solving an Integer Program
(IP) would have taken too long. However, approximated solutions are sufficient for
this test. The starting tour for the algorithm was the solution of the MSTSP.

After the production process, the support structures were disconnected from the
base plate such that the workpieces were only connected to the working platform
via their base. At Concept Laser, the distance between the base plate and the top
level of the workpiece was measured by a vernier height gauge at four points (see
figure 7.3) to determine the distortions. The differences in height at the measuring
points were 0.9−1.5% of the planned height of the workpiece. As the rank order of
heights of the workpieces was completely different at every measuring point, it was
not possible to rank the quality of the strategies. Unfortunately, the height had not
been evaluated at any reference point above the base and the measuring points had
not been coordinated with the project partner. The need of a reference point was
communicated for the following workpieces. We did not catch up on the missing
reference point in Workpiece 2 as another measurement method would have been
necessary and the quality of the strategies could not be specified anyway.

Figure 7.3.: Measuring points on Workpiece 2
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7.3.2. Test 3

In addition to a reference point, it was important to have more than one sample
of each strategy. As both production time and material were limited, we decided
to have at least two samples of each strategy and each following workpiece with a
random assignment of position.

The third and the fourth workpiece were designed to receive greater distortions
within the workpieces so that we would be able to distinguish the quality of different
strategies. Workpiece 3 has twice the length and width of the area of Workpiece 2,
but a smaller base and therefore more support structures. The order of islands in
the strategies differed more due to the number of islands being much greater than
in the second workpiece. As the base was quite small (see figure 7.2), we expected
more obvious distortions. A fourth workpiece of a very simple geometry – a base
of one island and an array of 30 islands (see figure 7.1(b)) – was chosen to keep out
various additional effects and to allow us to observe mainly the distortions in one
direction.

In Workpieces 3 and 4, the measuring points were fixed along the long side at
equidistant nodes which are illustrated in figure 7.4.

2 8 14 20
2

(a) Measuring points on Workpiece 3

5 15 25 135

(b) Measuring Points on Workpiece 4

Figure 7.4.: Positions of the measuring points in Workpieces 3 and 4 [mm]

However, the results differed immensely from what we expected. There were
greater distortions in the new workpieces indeed, but they did not show significant
differences for any strategy.

Workpiece 3 was built 14 times with the following seven strategies

1. MSTSP;

2. MM2NTSP;

3. TSPSID;

4. Random order;
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5. Serial order in horizontal lines with meandering;

6. Serial order in vertical lines with meandering;

7. MM2NTSP with a short break after each island.

The last strategy was added in order to get samples in which the heating of the
previous islands has as little influence on the heat in the workpiece as possible.
Like this, we sought to cover all kinds of strategies. On the one hand, this includes
the heating of islands in lines with a great influence of the heat in the surrounding
islands. On the other hand, we used a strategy where the heating of the surrounding
islands should already have spread enough to have a similar situation like at the
beginning of a layer. The MM2NTSP ensures that none of the nearby islands is
the predecessor and because of the break there is more cooling time between the
heating intervals. The break was implemented by a jump delay. Usually this delay
is used for time intervals of less than 1ms, where it can be set very precisely. For
our purposes, we increased the duration of the delay as much as possible in order to
get the longest possible break between the heating of two islands. The maximum
jump-delay is a little less than 1s.

The arrangement of seven samples of Workpiece 3 on the plate is illustrated
in figure 7.5. There were two base plates on which two samples of each strategy
were randomly allocated. After the building process, the support structures were

Figure 7.5.: Arrangement of the samples of Workpiece 3 [Concept Laser GmbH]
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disconnected from the working platform by wire cutting. That is why the samples
had to be positioned in columns. Only the stripe containing the base remained fixed
to the base plate. Unfortunately, the company charged by Concept Laser to do the
wire cutting, disconnected at the wrong positions in one column with three samples.
Therefore, in the workpieces of this column the distortions are not representative
for the according strategies. The measuring was performed by a partner of Concept
Laser with a 3D scanner, a Gom Atos Core 300.

Leaving out the three defective pieces, the differences between the reference point
above the base and the measuring point on the right side were the ones listed in
table 7.2.

Strategy Abs. D [mm] Rel. D [%] Max. V [%]

TSPSID 8.9 98.6 0.6
MM2NTSP 8.6 95.4 0.2
Slowly 2-Nb. 9.0 99.8 0.9

Random 8.9 98.6 0.6

Table 7.2.: Average distortions and differences of distortions at the right hand side
of the samples of Workpiece 3 (D = distortion, V = variation)

The strategies where both samples were cut off correctly showed a difference in
the average distortions of less than 0.4mm, that is 4.4% of the ideal height of the
workpiece. The difference of distortion within one strategy was between 0.2% and
0.9%.

As we can see in figure 7.6, the distortions of the samples which were not cut
correctly are completely different as the reference point is at a different position.
In order to be able to consider the three defective workpieces as well, we computed
the angle between the left end and the right end of a workpiece and for all samples
of one strategy the average angle. The average angle for each strategy was in the
same order of magnitude, which can be gathered from table 7.3.

Strategy MSTSP MM2NTSP TSPSID

Av. Angle[◦] 6.9 7.0 6.7

Horiz. Line Vertic. Line Slowly Random

7.1 6.8 6.7 6.7

Table 7.3.: Average angle in Workpiece 3

Even those samples with completely different strategies – like the ones with serial
order in horizontal direction and samples with breaks in the heating – hardly varied
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Figure 7.6.: Different profiles in Workpiece 3 after cutting the samples off

in distortions. Therefore, we suspected the order of island to only have a non-
relevant influence on the distortions. One possible explanation for that could be
that the island order might have been too similar for the different strategies. In
order to disprove this, we evaluated the different objective functions for each of the
solutions. For every different kind of layer – that means five for the third workpiece
– we evaluated the solution of the MSTSP, the MM2NTSP and the TSPSID. We
do not mention the evaluations of the orders of the horizontal lines in tables 7.4,
7.5, 7.6, 7.7, and 7.8 as they are virtually the same as for the vertical lines. For the
random order it was not possible to evaluate one order, thus we omitted it. As the
values for each objective function differed significantly for different island orders,
we can assume that the orders themselves are also different. Only the solutions
of MSTSP and TSPSID have similar objective values. As the idea of those two
optimization problems is similar, also the objectives do not differ very much.

Solution Objective Value
MSTSP MM2NTSP TSPSID

MSTSP 33.541 7.5 44414.9
MM2NTSP 21.2132 21.2131 62248.7

TSPSID 32.0156 7.5 39388.6
Vertic. Line 5 5 2.7801e+06

Table 7.4.: Objective values for 72 islands

In Workpiece 4 similar strategies were tested but as the solution of the MSTSP
problem coincided at least in one layer with the solution of the TSPSID, only the
former was tested. Furthermore, the vertical and horizontal lines of islands would
also nearly coincide, thus were summarized in the horizontal lines. Ten samples
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Solution Objective Value
MSTSP MM2NTSP TSPSID

MSTSP 38.0789 7.5 42364.7
MM2NTSP 25 23.7171 63892

TSPSID 36.0555 7.5 39358.5
Vertic. Line 5 5 3.24009e+06

Table 7.5.: Objective values for 83 islands

Solution Objective Value
MSTSP MM2NTSP TSPSID

MSTSP 38.0789 7.5 41547.4
MM2NTSP 25.4951 25.4951 59948.8

TSPSID 36.0555 7.5 39991.8
Vertic. Line 5 5 3.28009e+06

Table 7.6.: Objective values for 85 islands

were built one beneath the other on one base plate. There were two samples of
each of the following strategies whose position on the plate was randomly chosen:

1. MSTSP;

2. MM2NTSP;

3. MM2NTSP with a break after each island;

4. Random order;

5. Serial order in horizontal lines without meandering.

Table 7.9 lists the samples with increasing numbers from the top to the bottom of
the working platform.

After the building process and the cooling, the samples were partially removed
from the plate by wire cutting from the right side. Only the island on the left
with the base below it remained fixed to the working platform. As can be seen
in figures 7.7 and 7.8, there were clearly visible distortions. The numbers of the
samples in the figures are referring to table 7.9. The distortions are normalized,
meaning that the distortion of 0 implies that the measuring point has the same
height as the reference point on the base, which is not necessarily the planned
height of the workpiece. Considering the distortions of all samples, we see that two
values of distortions differ at most 9.9% of the planned height of a workpiece, but
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Solution Objective Value
MSTSP MM2NTSP TSPSID

MSTSP 38.0789 7.5 43636.8
MM2NTSP 25 25 69600.7

TSPSID 36.0555 7.5 40158
Vertic. Line 5 5 3.4201e+06

Table 7.7.: Objective values for 89 islands

Solution Objective Value
MSTSP MM2NTSP TSPSID

MSTSP 39.0512 7.5 43827.3
MM2NTSP 28.2843 27.0417 60461.5

TSPSID 36.0555 7.5 40805.9
Vertic. Line 5 5 3.56009e+06

Table 7.8.: Objective values for 91 islands

the distortions are at least 93.7% of the planned height of a workpiece. In table
7.10, the average distortions and the relative difference of distortions are listed for
each strategy. Because of these great heights at the right end of the workpiece with
only little differences according to the strategies, we assumed that the distortions
are not dependent on the order of the islands. Furthermore, this assumption is
based on the outcome that the distortions of workpieces with completely different
strategies, such as the MM2NTSP with breaks and the serial heating of the islands,
do not remarkably differ. This proposition was confirmed by the final test which is
described in the following.

7.3.3. The Final Test I – Distortions for Different Strategies

The final test was solely performed on samples of Workpiece 4. In the part of the
final test in which the non remarkable influence of the island order on the distortions
should be ensured, six samples were produced for each of the chosen strategies and
were placed randomly on three plates.

The following strategies were tested:

1. MM2NTSP;

2. Random order;

3. Serial order in horizontal lines without meandering;
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7. Tests and Results of CHAMP

Pos. Strategy

1. MM2NTSP
2. MM2NTSP with breaks
3. MM2NTSP
4. Serial order
5. MSTSP
6. Random order
7. MSTSP
8. Serial order
9. Random order
10. MM2NTSP with breaks

Table 7.9.: Positions of the samples of Workpiece 4 in the working space

Strategy Abs. D [mm] Rel. D [%] Max. V [%]

MSTSP 8,9 98,6 3,1
MM2NTSP 8,6 95,4 3,4

MM2NTSP with Breaks 9,0 99,8 7,4
Random Order 8,9 98,6 1,3
Serial Heating 9,0 99,6 1,0

Table 7.10.: Distortions and its variations at the rim of Workpiece 4 referring to
the height of the workpiece (D = distortion, V= variation)

4. MM2NTSP in combination with a control of the laser power;

5. Random order in combination with a control of the laser power.

As similar strategies had been examined in earlier tests and we wanted the final
test to consist of several samples of each strategy, we had to reduce the number of
strategies. Therefore, we decided for one optimization strategy, the solution of the
MM2NTSP, which seemed to yield slightly less deflections in Workpiece 4 than the
other optimization strategies. Moreover, we included the random order, and one
trivial strategy, the serial order, into the final test. As the second part of the project
concerned the control of the laser power, we decided to take samples for which only
the new control of the laser power was applied – the order of the islands being
randomly chosen. Other samples were taken whose strategy was a combination of
an optimization strategy and a power control. Some more details about the control
of the laser power can be found in appendix A.

The distortions of the workpieces are visualized in figures 7.9 and 7.10. There
are ten samples on each plate, one below the other. Each sample got a number
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Strategy Abs. D [mm] Rel. D [%] Rel. Max. V [%]

Random order 8.71 96.8 4
Serial order 8.84 98.2 6.1
MM2NTSP 8.52 94.7 3.9

PWR+Random order 8.78 97.6 7
PWR+ MM2NTSP 8.74 97.1 2.9

Table 7.11.: Average distortions at the rim of Workpiece 4 in the final test referring
to the height of the workpiece (Plates 2-4, D=distortions, V=variation,
PWR=control of the laser power)

according to its position, the first digit naming the plate and the others the position
on this plate (e.g. 302 is the second sample on the third plate). The plates have
the numbers 2, 3, 4. Plate 1 contains the workpieces of the second part of the final
test (see section 7.3.4).

The distortions were at least 92.3% of the planned height of the workpiece. The
average distortions for the different strategies as well as the variations of the distor-
tions are listed in table 7.11. The difference between the smallest and the greatest
distortion in any workpiece was 9.7% of the original height of the workpiece, that is
about the same size as the variations within single strategies. So we concluded from
our tests that neither the order of the islands nor the control of the laser power
visibly influences the distortion of a workpiece made of CL20 ES and probably as
well for different kinds of steel.

figure 7.11 gives an idea of how the working platforms with the samples looked
like after removing the support structures from the platform.

7.3.4. The Final Test II – Variation of the Tour length

As neither the control of the laser power nor the order of the islands had an influence
on the distortions, we shifted our focus on different objectives. The control of
the laser power influences the quality of the surface. The examinations about
the surface are considered in the Technical Report of CHAMP [13] and briefly
in appendix A. Concerning the order of islands, we decided to reduce the length
of the tour of the laser by shortening the distances between consecutive islands.
We solve a TSP containing the distances between the centers of the islands. For
sensitive materials or very complicated geometries with very little connection to
the base plate, small edges can be excluded, i.e. the TSPN has to be solved for
some minimum edge length. For a small minimum edge length, the tour within one
layer is much shorter than the average tour of the current production. In the final
test, we wanted to measure the impact of the length of the tour on the production
times. The samples of Workpiece 4 for which the scanning time had to be measured
were placed on a separate plate as the measurement took place at one single day
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7. Tests and Results of CHAMP

and more than one plate a day would not have been practicable. The cases that
we considered were optimal tours with a minimum edge of 10mm, 20mm, 30mm,
40mm. Actually, the laser move between the islands is a path within one layer,
but we computed a tour and started at about the first and last node of the tour in
the following layer. Like this, the computations were easier to implement than the
path version and are still sufficient to our purpose.

We compared the lengths of the tours with a restricted edge set to the average
length of a random tour. A relatively easy way to compute this average length is
introduced in appendix F. As we were not sure whether the expected value would
reflect the tour lengths, we computed the lengths of 300 random tours part of
which were taken for the reference workpieces built with a random order. There
were 60 samples of a rectangle with 30 islands on a line and 240 with two rows and
31 columns reflecting the ratio of layers in the workpiece. For this set of sample
orders, we computed the average deviation of the length from the expected value.
The average deviation from the expected value was 7.8% for the layers with 30
islands and 5.8% for the layers with 62 islands. More than 60% of the tours with
30 islands and more than 80% of the tours with 62 islands had a deviation of less
than 10%. The results of this computation can be found in table 7.12. Thus, in
our samples the random tours had a length close to the expected value.

Number of islands 30 62

Average deviation [%] 7.85 5.75
Max deviation [%] 23.87 22.21

Layers with dev. < 0.05 [%] 33.3 52.9
Layers with dev. < 0.1 [%] 66.7 82.9
Layers with dev. < 0.2 [%] 96.7 99.2

Table 7.12.: Deviation of the length from the expected value of the random tours

The optimal tours with a minimum edge length were computed with Concorde [6].
We set the small and forbidden edges to a large enough value. Computing the aver-
age length of a random tour for both kinds of layers (see section F) and comparing it
to the lengths of the resulting tours computed by Concorde, we see that the lengths
are approximately 20%, 40%, 60% and 90% of the average length of a random
tour considering the distances between the islands. Regarding the lengths of the
tours, only the distances between the centers of consecutive islands are considered,
the scanning path within the islands is neglected even though it is the most time
consuming part. The speed of movement of the laser between islands is between
4100mms and 4200mms . The lengths are listed in table 7.13 and illustrated in figure
7.12.

Two samples of each strategy – including the random order as well – were put
in a random position on the plate (see table 7.14). I spent a day at Concept Laser
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Length of the tour:

Shortest edge 10 20 25 30 40 ALRT[mm]

Layer of 30 I 330 680 860 1040 1400 1550
Layer of 62 I 663,78 1346,15 1645,94 2102,48 2704 3271,87

Length of the tour related to ALRT:

Shortest edge 10 20 25 30 40 ALRT[mm]

Layer of 30 I 21,29% 43,87% 55,48% 67,10% 90,32% 1
Layer of 62 I 20,29% 41,14% 50,31% 64,26% 82,65% 1

Table 7.13.: Length of the tours of plate 1 (ALRT = average length of random
tours, I=islands)

Pos. Strategy

1. Random order
2. Shortest edge 40
3. Shortest edge 30
4. Random order
5. Shortest edge 20
6. Shortest edge 30
7. Shortest edge 10
8. Shortest edge 20
9. Shortest edge 40
10. Shortest edge 10

Table 7.14.: Position of the workpieces on plate 1 in the final test
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7. Tests and Results of CHAMP

GmbH and measured the duration of 55 layers of each sample using a stop-watch.
I distinguished between the five different types of layers due to the shift of the grid
from layer to layer. The first type of layer has only 30 islands, all others have 62,
but the island sizes differ. There are ten to twelve measurements of each layer.

Taking the time was very difficult as it required a very fast response time and
sometimes it was hard to determine the exact moment when the layer of one sample
was finished just by watching. Particularly the duration of the first (and the last)
sample tends to be too long (too short respectively). But as the arrangement of
the samples on the plate was chosen randomly and there were two samples of each
strategy, the results are representative. Occasionally, technical problems occurred,
for example in case I did not push the button at the change of a sample, took
too long to push it or did not see the termination of the workpiece. This resulted
in some erroneous measurements in nearly every kind of layer. Those values were
sorted out, but we still had at least nine values for each kind of layer of each sample
of which we took the average value (see figure 7.13). The samples are sorted in such
a way that those of the same strategy have similar colors and are placed beside each
other. The x-axis goes from the random tour to the tour with the longest minimum
edge to the tour with the shortest minimum edge.

Between every two layers, some time is needed to spread a new powder layer on
the working space, which I did not measure. It is about 15 to 30 seconds. This
time is rather constant as it is always the same amount of powder and the same
movements of the coating blades. What I measured was the scanning duration of
one layer of one sample, involving the time of scanning of the islands, the moves
between consecutive islands and the scanning of the contour.

Considering the production times we see that the difference within one layer is
at most 2 seconds, but a slight decline in the scanning time is recognizable for
strategies with shorter tours. In figure 7.13, one can see that for the second to the
fifth layer the decline is steeper than for the first layer, which can be explained by
the smaller number of islands in that layer. The greater the number of islands and
the more they are spread in the working space, the more optimization strategies
can differ from random tours and this seems to be the case here after our first test.
The very strong decline for sample 10 could possibly be explained by the error in
measurement at its position, but sample 7, which is produced by the same scanning
strategy, has a remarkably smaller scanning time as well. To determine whether the
order of the islands can be relevant to the production time, we computed the relative
scanning time of the layers compared to the average scanning time of samples with
random order. Not skipping the first and the last workpiece, we get a decrease of
3 − 5% for the strategy with a shortest edge length of 10. When we skip the first
and the last sample, there is still a decrease of 2.8− 5.4%. Of course, we may not
forget the constant time required to renew the powder surface, but a reduction of
the scanning time that is around 4−5% is desirable for our project partner Concept
Laser.

Having compared the duration of the production process, we should keep in
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mind that it has to be made sure that the quality of the workpiece concerning the
distortions does not deteriorate. In table 7.15, the distortions of the samples are
listed and they are visualized in figure 7.14. The dimension of the distortions is the
same as for the other samples of Workpiece 4 and there are no significant differences
for different strategies.

Strategy Abs. distortions (mm) Rel. distortions (%)

Min. edge 10 9,1 101
Min. edge 20 9,07 101
Min. edge 30 8,85 98,3
Min. edge 40 9,13 101
Random order 8,89 98,7

Table 7.15.: Average distortions at the free end of the workpieces on plate 1

7.4. Results

Concerning the results of CHAMP, the following needs to be mentioned. According
to our tests, there is no significant impact of the order of the islands and the control
of the laser power on the distortions of the workpieces in the LaserCUSING R©

process. This is contrary to the original hypothesis. However, there were strong
hints that a control of the laser power can improve the quality of the workpiece’s
surface (see appendix A). Furthermore, the travel length of the laser between the
islands can be diminished rigorously, such that a reduction of the production time
can be achieved without increasing distortions. The shorter distances can also lead
to a better preservation of the machines and abrasion can be decelerated.

The results were surprising for us and Concept Laser. To our knowledge, no
one else had stated this before. As we only occupied one alloy of steel, we do not
make any assumptions on whether the order of islands influences the distortions
when other materials are used. If this were the case, we suppose that a focused
heating in one region would deteriorate the quality of the workpiece. Therefore,
we propose the invention of geometry- and material-depending minimum distances
between consecutive islands which have to be considered when the tour of the laser
is determined.

Even though Concept Laser did not immediately implement the new results in
their machines, the results will influence further research and some aspects of the
control of the laser will indirectly appear in further software. Particularly for the
idea of shortening the tour of the laser will also have an effect on the further
development.
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7. Tests and Results of CHAMP

(a) MSTSP

(b) MM2NTSP

(c) MM2NTSP with breaks

Figure 7.7.: Distortions in Workpiece 4 for the optimization strategies
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(a) Random order

(b) Serial order

(c) All strategies

Figure 7.8.: Distortions in Workpiece 4 for random and serial orders and all samples
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7. Tests and Results of CHAMP

(a) Random order

(b) Serial order

(c) MM2NTSP

Figure 7.9.: Distortions in the samples with different order strategies in the final
test (plates 2-4)

124



(a) Control of laser power with random order

(b) Combination of control of laser power and MM2NTSP

Figure 7.10.: Distortions in the combined samples in the final test (plates 2-4)

Figure 7.11.: Image of a working platform from the final test
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7. Tests and Results of CHAMP

(a) Layer 1

(b) Layer 2-5

Figure 7.12.: Tour length in the final test (plate 1) compared to ALRT for different
minimum edge lengths
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(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

(e) Layer 5

Figure 7.13.: Average measurements of the scanning time in different layers
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7. Tests and Results of CHAMP

Figure 7.14.: Distortions within the workpieces on plate 1
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8. Conclusion

We will now summarize the results which were gained in this work. On the one
hand, we yielded exact and approximate solutions for the MSTSP on a regular
grid and upper bounds as well as an approximation for the MM2NTSP. On the
other hand, we gained practical results for additive manufacturing regarding good
scan orders of the islands. Let us first start with the achievements on the MSTSP
and the MM2NTSP. We have deduced a linear-time combinatorial solution to the
MSTSP on a regular grid. For grids with an odd number of columns n or grids
with two rows, this solution can be created by Weave(m,n). For grids with an
even number of rows m and columns n, Bobeven(m,n) yields an optimal tour.
For grids with an odd number of rows and an even number of columns with either
m = 3, or m = 5 or k ≥ 1

2 t(3t + 2), Bobodd(m,n) with its particular cases
returns the optimum. So does Near Quadratic(m,n) for grids with n even and
m = n − 1. We have succeeded in yielding an optimal solution for all grid sizes
except for grids with an odd number of rows m and an even number of columns n
with 5 < m 6= n − 1 and k < 1

2 t(3t + 2). In these cases, the remaining gaps are
always smaller than 1 or, in more general terms, smaller than the distance between
the two closest vertices. Furthermore, Bobodd(m,n) is asymptotically optimal

and has an approximation ratio of
√

t2+k2

t2+k2−2t+1
. We found a further procedure

Path Algorithm(m,n) which is optimal for a Hamiltonian path on the grid with
m odd and n even.

We have also considered the distances of the tours in 1- and ∞-norm. For
the ∞-norm, optimal solutions of the MSTSP can be found for any grid size.
Weave(m,n) is then optimal for n odd, or m = n or m = 2, Bobeven(m,n)
for m, n even and Bobodd(m,n) is optimal for m odd, n even. Considering the
1-norm, we derived optimal solutions for n odd with Weave(m,n), for m and n
even with Weave(m,n) or Bobeven(m,n), for m = 3 or m = 5 and n even with
Bobodd(m,n) and for m = n − 1, n even with Near Quadratic(m,n). The
procedures can even be extended to a three-dimensional grid of layers, rows and
columns by a similar scheme, ensuring that moves between closer layers are com-
bined with long moves between rows and columns. The extension of Weave(m,n)
for n odd yields an optimal solution. Depending on the grid size, the extension of
Bobeven(m,n) can yield an optimal solution.

The two-dimensional tours of Weave(m,n), Bobeven(m,n) and Bobodd(m,n)
are also an approximation of the solution of the TSPN with mstsp-edge or quasi-
mstsp-edge. The tours are asymptotically optimal. Therefore, the created tours
are useful for two optimization problems. In many applications, this approxima-
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8. Conclusion

tion of the length will be sufficient. We proved that Weave 3D(l,m, n) is also
asymptotically optimal for the TSPN with mstsp-edge for grids with n odd.

For more general instances than a regular grid, we have tested first ideas of an
approximation procedure for MSTSP based on local search and the heuristic of
Lin and Kernighan. The procedure does not take into account any information
about specific positions or distances. The first draft runs in O(n3). For general
instances where we had to guess an inaccurate upper bound, the approximation
ratio was worse than for the regular grids where we knew the optimum quite exactly.
Probably the approximation ratio is actually better. We chose this procedure as it
hardly needs information about the instance and works much faster than solving a
mixed-integer program with SCIP [2].

We also applied the local search to the MM2NTSP. In order to get closer upper
bounds for at least the grids, we deduced upper bounds for MM2NTSP, which
could still be improved, but we stopped at a certain point to avoid too much case
analysis.

The new heuristic is promising as the computation times are reasonable did not
exceed too much even if the search sets have not been restricted. So it is worth
putting effort in it.

The reason to start considering the above-mentioned problems was given by
CHAMP where we tested different island orders to understand the influence of
the island strategy on the deflections in the samples and determine the best one.
Instead, we found that the island order does not influence the deflections of a work-
piece. Even though this does not make a particular strategy maintainable, it is
worth focusing on short tours in order to decrease the production time. Moreover,
it is still likely according to long-term experience of Concept Laser that, depend-
ing on the material and geometry, deflections can be reduced by using a careful
strategy which avoids neighboring islands being molten consecutively. Therefore,
we propose the solution of the TSPN as an island order. In most cases, it is likely
sufficient to forbid only the smallest or the smallest few edges. But in the worst
case, when the minimum edge length is around its maximum such that there still
exists a Hamiltonian tour, we could apply our approximation of such a tour to the
island order. There are no concrete implementations on the machines for these
algorithms. Nevertheless, their implementation is likely in the future.

It was an important step to realize the independence of order and deflections.
This enables researchers and developers to concentrate on productivity and requires
them to find a completely new leverage point of how to diminish distortions.
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A. Control of the Laser Power

The second part of project CHAMP, which is only mentioned briefly in this disser-
tation was examined by Simon Bechmann. In this section, I will give a short outline
of his work on the project. The results are described in the Technical Report [13]
and will be published in his dissertation. The hypothesis was that the control of
the laser intensity within the islands during the melting process could influence
the deflection of the workpiece. This control should be combined with the strat-
egy of order that would best diminish distortions. Therefore, Simon modeled the
distribution of heat in a three-dimensional rectangular block which is surrounded
by powder. The resulting optimization problem was a state-constrained optimal
control problem. The optimal strategies were computed with Comsol Multiphysics
3.5 [26] and Matlab2010 [25] a combination of simulation and optimization in cer-
tain parts of the path of the laser. As it is currently not possible to change the
speed of the laser beam within the process, Simon focused on the control of the
laser power. The path of the laser was taken as it is currently used at Concept
Laser, which is a series of anti parallel scan vectors with perpendicular meanders
as a connection.

From a continuous control of the laser power resulting from the optimization
process, he tested many controls with a different number of discrete steps of different
heights and lengths. As a change of the laser power goes along with an overshooting
of the laser, the final strategy was chosen to have only two levels of laser power.
The result was that the melt structures are better visible in this kind of strategy
than in the current procedure with constant laser power.

As already mentioned in section 7.3.3, the deflections in the final test were not
reduced. Nevertheless, the quality of the surface can be significantly improved by
a specific control of the laser power.
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B. Proof concerning the Squared Inverse
Distances

When introducing the TSP with squared inverse distances, we stated that d̃ab = 1
d2ab

does not satisfy the relaxed triangle inequality with dab being the Euclidean distance
between node a and node b. Our proof is presented here.

Proposition 16. There is no τ such that for all a, b, c the following holds:

d̃(a, c) ≤ τ
(
d̃(a, b) + d̃(b, c)

)
. (B.1)

Proof. We prove the proposition by construction. Let an integer τ > 0 be given.

We have to find a d̃(a, b), d̃(a, c), d̃(b, c) such that d̃(a,c)

d̃(a,b)+d̃(b,c)
> τ . We construct

this counterexample in the following way. We set d̃(a, c) = 1 and d̃(a, b) = 1
x2

and d̃(b, c) = 1
(x−1)2

with x > 1 in order to guarantee that the Euclidean distances

d(a, b) = x, d(a, c) = 1 and d(b, c) = x − 1 satisfy the triangle inequality. So we
have to determine a value of x > 1 such that

1
1
x2

+ 1
(x−1)2

> τ. (B.2)

After some transformations of the inequality, we get

0 < x2(x− 1)2 − τ((x− 1)2 + x2). (B.3)

If we set x = 3τ , this inequality holds:

0 < 9τ2(9τ2 − 6τ + 1)− τ(18τ2 − 6τ + 1) (B.4)

⇔ 0 < τ︸︷︷︸
>0

(81τ3 − 72τ2︸ ︷︷ ︸
>0

+ 15τ − 1︸ ︷︷ ︸
>0

). (B.5)

Thus, for every τ ≥ 1 we can determine at least one x > 1 such that inequality B.2
holds.
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C. Computations regarding the
Approximation of MSTSP on a 3D
Grid

C.1. Computations on the Shortest Edges

The following cases of grids with an even number of columns n can be checked to
prove that the edge at the switch of pairs of rows is not the shortest edge in the
algorithm. We always compare the squared length of edges. We start with a claim,
transform it and find a valid statement from which we can deduce the claim.

C.1.1. l, n even, m arbitrary

(l − 1)2 + (t− 1)2 + (k + 1)2 ≥ (r − 1)2 + t2 + k2 (C.1)

⇔ 3r2 − 2r − 2t+ 2k + 2 ≥ 0⇐ r(3r − 2)︸ ︷︷ ︸
≥0

+2 + 2 (k − t)︸ ︷︷ ︸
≥0

≥ 0. (C.2)

C.1.2. l odd, m arbitrary, n even

In the following, the final steps can always be established by computing the zeros
of a polynomial (which are complex conjugated) and choosing any example value
for which the value of the polynomial is greater 0. First, we only consider grids
with more than five layers: l > 5 has to be ensured as otherwise the shortest edge,
to which the edge at the flip is combined, differs.

(l − 3)2 + (t− 1)2 + (k + 1)2 ≥ (r − 1)2 + t2 + k2 (C.3)

⇔ 3r2 − 6r + 5−2t+ 2k︸ ︷︷ ︸
≥0

≥ 0⇐ 3r2 − 6r + 5 ≥ 0. (C.4)

We continue with grids with l = 5:

(l − 3)2 + (t− 1)2 + (k + 1)2 ≥ r2 + t2 + k2 (C.5)

⇔ 3r2 − 8r + 6−2t+ 2k︸ ︷︷ ︸
≥0

≥ 0⇐ 3r2 − 8r + 6 ≥ 0. (C.6)

For grids with l = 3, the following holds:

(l − 1)2 + (t− 1)2 + (n− 1)2 ≥ r2 + t2 + k2 (C.7)

⇔ 3r2 − 4r + 3k2−4k − 2t︸ ︷︷ ︸
≥−6k

+3 ≥ 0⇐ 3r2 − 4r + 1︸ ︷︷ ︸
≥0

+ 3k2 − 6k + 2︸ ︷︷ ︸
≥0

≥ 0. (C.8)
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C. Computations regarding the Approximation of MSTSP on a 3D Grid

We can state the following for Bobeven 3D(l,m, n) and Bobodd 3D(l,m, n):

Lemma 5. For all grids with l odd, m even (resp. odd) and n even, the connecting
edges between pairs of rows are at least as long as one further edge of the tour.

C.2. Computation of the Approximation for l = m = 3, n
Even

If m = 3, the edges which appear in Bobodd 3D(l,m, n) are (r, t, k)-edges, (r,m−
1, k)-edges, (r,m− 1, k− 1)-edges, (r− 1,m− 1, n− 1)-edges, (r+ 1,m− 1, n− 1)-
edges and (r,m− 1, n− 1)-edges. Candidates for the shortest of those are: (r, t, k)
and (r,m − 1, k − 1) as well as (r − 1,m − 1, n − 1). The last one of the three is
never the shortest edge as (r− 1)2 + (m− 1)2 + (n− 1)2 ≥ r2 + (m− 1)2 + (k− 1)2

which is proved in the following.

We transform the squared length of (r − 1,m− 1, k − 1):

(r− 1)2 + (m− 1)2 + (n− 1)2 = r2 + (m− 1)2 + k2 + 3k2 − 4k+ 1− 2r+ 1. (C.9)

As k > k − 1, it suffices to prove 3k2 − 4k − 2r + 2 ≥ 0. It is obvious that
3k2 − 4k + 1 − 2r + 1 ≥ 3k2 − 6k + 2. This parable, which is opened to the top

(coefficient of k2 is positive), equals 0 at k1,2 = 1 ±
√

3
3 and therefore for all k ≥ 2

the inequality holds. If k < 2, n = 2k ≤ 2 as n is even in our considerations. As
this contradicts m < n, this case does not have to be considered.

Thus, the following lemma holds:

Lemma 6. If l = m = 3 and n even, the shortest edges are

(y1, y2, y3) =

{
(r, t, k) if k ≤ 1

2(3t2 + 1) = 2

(r,m− 1, k − 1) else.
(C.10)

For an (3 × 3 × 4)-grid, an optimal solution is yielded. For all other cases, the

special combination for m = 3 yields at least a
√

r2+t2+k2

r2+(m−1)2+(k−1)2
-approximation.

C.3. Computation of the Approximation for l ≤ m = 5 Odd,
n Even

The shortest edges of Bobodd(m,n) are in the 2D case: either (t, k) or (m −
1, k − 1). When applying Bobodd(m,n) in combination with the first component
of Weave(l,mn), we have to ensure that the edge at which the pair or triple of
layers is switched is not the shortest edge of the tour. The change of a pair or triple
of layers, yields at least a (r − 1,m− 3, k + 1)-edge.
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We do the following transformations:

(r − 1)2 + (m− 3)2 + (k + 1)2 (C.11)

= r2 + 4t2 + k2 + 2k + 1− 8t+ 4− 2r + 1 (C.12)

= r2 + t2 + k2 + 3t2 − 8t+ 2k − 2r + 6. (C.13)

When we compute the values of k for which |(r − 1,m− 3, k + 1)| ≥ |(r, t, k)| holds,
it suffices to prove that

3t2 − 8t+ 2k − 2r + 6 ≥ 0 (C.14)

3t2 − 8t+ 6 + 2k − 2r ≥ 3t2 − 8t+ 6 = p(t). (C.15)

The curve is a polynomial and thus continuous, the zeros are complex conjugated
and as there is at least one positive value for p(1) = 1, it is always strictly greater
than 0 and the inequality holds. We can conclude the following:

Lemma 7. The shortest edges are

(y1, y2, y3) =

{
(r, t, k) if k ≤ 1

2(3t2 + 1) = 6.5

(r,m− 1, k − 1) else.
(C.16)

For k ≤ 1
2(3t2 + 1), the upper bound is yielded and therefore the tour is an optimal

solution.
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D. Tables about the Computational
Results of our Local Search Heuristics

Name Time [10−2sec] Iter. Approx. Upper bnd. α

berlin52: 0.0 95 355.01 806.2 0.44
bier127: 0.4 446 2900.62 8004.0 0.36
ch130: 0.3 293 316.43 346.7 0.91
ch150: 0.4 370 328.21 347.3 0.94
d198: 1.7 1206 586.78 2030.1 0.29
d493: 9.8 2930 538.11 1898.4 0.28
d657: 20.0 4692 1230.92 2011.7 0.61
eil51: 0.0 107 33.29 34.2 0.97
eil76: 0.1 227 43.01 44.3 0.97
eil101: 0.3 393 49.65 52.8 0.94
fl417: 7.4 2784 640.29 734.9 0.87
fl1400: 189.7 20006 1042.46 1264.6 0.82
fl1577: 260.3 23918 973.88 1008.5 0.97
fl3795: 2953.3 98606 1943.02 2062.2 0.94
kroA100: 0.1 149 1853.48 2033.3 0.91
kroA200: 0.5 394 1982.08 2033.3 0.97
kroA150: 0.2 216 1829.01 2038.2 0.9
kroB100: 0.1 132 1510.05 1939.1 0.78
kroB150: 0.2 222 1777.01 1923.8 0.92
kroB200: 0.7 488 1897.18 1952.0 0.97
kroC100: 0.1 149 1824.38 1985.0 0.92
kroD100: 0.1 175 1626.42 1947.7 0.84
kroE100: 0.1 121 1649.13 2004.0 0.82
lin105: 0.5 659 1338.9 1504.7 0.89
p654: 32.9 7385 2147.67 2600.3 0.83
pcb442: 15.1 5274 1216.06 1451.0 0.84
pcb1173: 117.9 15720 992.64 1087.3 0.91

Table D.1.: Computations of LS MSTSP on instances of the TSPLIB – part 1

The computational results from the samples from the TSPLIB are listed in this
chapter.
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D. Tables about the Computational Results of our Local Search Heuristics

Name Time [10−2sec] Iter. Approx. Upper bnd. α

pcb3038: 1708.3 83547 1881.18 2104.0 0.89
pr76: 0.2 373 7050.14 7260.1 0.97
pr107: 0.3 425 602.08 602.08 1.0
pr124: 0.5 612 4025.4 4800.4 0.84
pr136: 0.3 270 6133.12 7150.1 0.86
pr144: 0.7 768 4300.59 6550.4 0.66
pr152: 1.0 900 6575.42 7150.4 0.92
pr226: 1.5 1078 6650.17 7550.1 0.88
pr264: 3.5 2140 5550.96 6151.4 0.9
pr299: 2.5 1482 3105.1 3366.1 0.92
pr439: 9.2 2968 2450.94 5950.6 0.41
pr1002: 117.1 17444 6569.21 7914.8 0.83
pr2392: 925.6 55714 4891.88 5190.1 0.94
rat99: 0.3 384 61.85 63.3 0.98
rat195: 1.4 1077 106.25 113.5 0.94
rat575: 22.4 6030 297.98 307.4 0.97
rat783: 47.3 8894 403.0 407.2 0.99
rd100: 0.1 178 482.01 484.8 0.99
rd400: 3.5 1360 505.79 522.1 0.97
rl1304: 103.1 11999 7414.22 9413.9 0.79
rl1323: 117.0 13371 7637.58 9470.4 0.81
rl1889: 251.8 19684 8897.01 9505.8 0.94
rl5915: 3649.2 83059 7901.07 9787.5 0.81
rl5934: 3815.4 85594 8055.32 9781.0 0.82
ts225: 2.4 1583 6000.31 6000.3 1.0
tsp225: 2.2 1567 196.4 260.9 0.75
u159: 0.8 765 2600.31 2600.7 1.0
u574: 28.4 7436 1340.12 1540.0 0.87
u724: 45.9 9541 1365.95 1474.4 0.93
u1060: 136.5 18965 7692.26 8884.0 0.87
u1432: 222.6 23575 2463.26 2731.6 0.9
u1817: 480.9 38545 1397.01 1641.4 0.85
u2152: 764.4 48525 1582.17 1694.7 0.93
u2319: 758.1 47848 2717.4 2865.2 0.95
vm1084: 35.4 5298 8235.98 9376.3 0.88
vm1748: 132.5 11388 8647.72 9452.3 0.91

Table D.2.: Computations of LS MSTSP on instances of the TSPLIB – part 2
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Name Time [10−2sec] Iter. Approx. Upper bnd. α

berlin52: 0.1 46 130.25 736.0 0.18
bier127: 1.3 232 1277.86 6032.0 0.21
ch130: 1.8 203 165.77 340.9 0.49
ch150: 1.2 180 149.6 333.7 0.45
d198: 8.0 625 280.52 2029.9 0.14
d493: 70.7 1671 315.6 1829.9 0.17
d657: 139.8 2284 678.15 2011.0 0.34
eil51: 0.2 82 21.54 31.9 0.68
eil76: 0.5 163 26.68 42.2 0.63
eil101: 1.1 272 34.48 52.2 0.66
fl417: 55.4 1779 350.93 723.3 0.49
fl1400: 1930.4 11435 671.15 1224.9 0.55
fl1577: 2327.5 12249 651.05 1003.2 0.65
fl3795: 32006.2 43728 1222.7 2034.7 0.6
fnl4461: 38264.6 62842 1311.83 2835.2 0.46
kroA100: 0.8 127 891.35 1974.5 0.45
kroA200: 3.1 267 918.45 1996.3 0.46
kroA150: 1.5 196 912.39 2025.5 0.45
kroB100: 0.5 105 755.6 1909.0 0.4
kroB150: 1.7 199 827.04 1915.2 0.43
kroB200: 3.2 239 872.8 1939.1 0.45
kroC100: 1.2 171 887.02 1940.2 0.46
kroD100: 0.5 108 742.01 1880.8 0.39
kroE100: 0.5 109 700.35 1889.2 0.37
lin105: 1.2 302 551.52 1457.8 0.38
p654: 263.4 4040 286.39 2599.8 0.11
pcb442: 90.5 2554 710.04 1415.7 0.5
pcb1173: 859.4 8133 643.09 1074.3 0.6

Table D.3.: Computations of LS MM2NTSP on instances of the TSPLIB with enu-
merated initial order – part 1
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D. Tables about the Computational Results of our Local Search Heuristics

Name Time [10−2sec] Iter. Approx. Upper bnd. α

pcb3038: 13523.1 34271 1038.02 2076.1 0.5
pr76: 0.5 168 2808.01 8400.1 0.33
pr107: 0.9 181 206.65 7650.1 0.03
pr124: 2.0 332 1500.56 4800.4 0.31
pr136: 0.6 127 1817.61 7150.0 0.25
pr144: 3.5 506 2800.19 6550.3 0.43
pr152: 3.3 465 901.98 7150.4 0.13
pr226: 7.1 614 2400.08 7451.5 0.32
pr264: 18.1 1086 405.25 6051.4 0.07
pr299: 12.9 823 1276.51 3365.1 0.38
pr439: 54.2 1542 1356.54 5863.3 0.23
pr1002: 580.1 6553 3204.67 7864.3 0.41
pr2392: 6468.8 19358 2439.63 5167.6 0.47
rat99: 0.8 198 35.69 61.0 0.58
rat195: 6.4 626 68.45 109.2 0.63
rat575: 134.5 3049 177.45 301.7 0.59
rat783: 318.3 4090 236.4 407.2 0.58
rd100: 0.6 104 228.91 481.2 0.48
rd400: 31.9 917 308.95 516.2 0.6
rl1304: 603.7 5301 3878.85 9375.9 0.41
rl1323: 671.4 5255 3953.74 9322.8 0.42
rl1889: 13164.3 7044 4518.52 9472.8 0.48
rl5915: 47402.6 39973 5201.49 9730.3 0.53
rl5934: 38015.4 38678 5128.01 9703.7 0.53
ts225: 7.1 624 3000.04 6000.3 0.5
tsp225: 9.7 816 116.19 252.3 0.46
u159: 4.3 493 811.82 2600.7 0.31
u574: 136.7 3067 678.27 1519.9 0.45
u724: 260.4 4391 735.7 1474.4 0.5
u1060: 775.2 7618 3989.63 8067.2 0.49
u1432: 1960.6 11466 1443.5 2731.3 0.53
u1817: 4589.3 17807 902.46 1632.2 0.55
u2152: 6865.1 21909 992.29 1692.5 0.59
u2319: 7085.3 21049 1634.29 2803.6 0.58
vm1084: 190.3 2725 4060.13 9356.9 0.43
vm1748: 660.4 4860 4368.69 9444.4 0.46

Table D.4.: Computations of LS MM2NTSP on instances of the TSPLIB with enu-
merated initial order – part 2
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Name Time [10−2sec] Iter. Approx. Upper bnd. α

berlin52: 0.2 77 195.92 736.0 0.27
bier127: 1.3 211 1395.52 6032.0 0.23
ch130: 1.9 267 153.67 340.9 0.45
ch150: 2.3 287 162.26 333.7 0.49
d198: 3.6 319 280.19 2029.9 0.14
d493: 23.5 792 294.9 1829.9 0.16
d657: 71.2 1480 625.81 2011.0 0.31
eil51: 0.1 47 22.09 31.9 0.69
eil76: 0.3 83 27.73 42.2 0.66
eil101: 0.6 123 33.3 52.2 0.64
fl417: 34.1 946 361.04 723.3 0.5
fl1400: 401.2 2869 682.32 1224.9 0.56
fl1577: 585.8 3524 639.09 1003.2 0.64
fl3795: 4309.6 10659 1106.56 2034.7 0.54
kroA100: 1.1 201 842.29 1974.5 0.43
kroA200: 4.7 428 805.91 1996.3 0.4
kroA150: 1.5 232 839.12 2025.5 0.41
kroB100: 0.6 141 773.47 1909.0 0.41
kroB150: 1.8 239 839.76 1915.2 0.44
kroB200: 4.6 456 829.69 1939.1 0.43
kroC100: 0.5 134 728.4 1940.2 0.38
kroD100: 0.6 130 743.03 1880.8 0.4
kroE100: 0.6 117 678.17 1889.2 0.36
lin105: 1.1 203 622.35 1457.8 0.43
p654: 138.9 1650 289.52 2599.8 0.11
pcb442: 27.0 1002 700.82 1415.7 0.5
pcb1173: 188.4 2381 594.14 1074.3 0.55

Table D.5.: Computations of LS MM2NTSP on instances of the TSPLIB with an
approximate solution of LS MSTSP as an initial order – part 1
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D. Tables about the Computational Results of our Local Search Heuristics

Name Time [10−2sec] Iter. Approx. Upper bnd. α

pcb3038: 4542.7 11343 1056.86 2076.1 0.51
pr76: 0.4 124 2950.11 8400.1 0.35
pr107: 0.6 125 400.13 7650.1 0.05
pr124: 0.9 155 1500.51 4800.4 0.31
pr136: 1.3 191 1817.77 7150.0 0.25
pr144: 1.9 268 2675.24 6550.3 0.41
pr152: 2.3 298 897.72 7150.4 0.13
pr226: 6.2 420 2300.07 7451.5 0.31
pr264: 8.6 444 404.18 6051.4 0.07
pr299: 15.5 727 1275.01 3365.1 0.38
pr439: 29.2 1018 1262.33 5863.3 0.22
pr1002: 332.8 3861 3261.02 7864.3 0.41
pr2392: 2246.9 9019 2492.76 5167.6 0.48
rat99: 0.5 102 37.44 61.0 0.61
rat195: 3.5 300 70.0 109.2 0.64
rat575: 86.0 1433 183.44 301.7 0.61
rat783: 133.2 2027 221.15 407.2 0.54
rd100: 0.7 152 208.97 481.2 0.43
rd400: 24.6 831 291.39 516.2 0.56
rl1304: 472.1 4031 3593.36 9375.9 0.38
rl1323: 571.6 4750 3901.94 9322.8 0.42
rl1889: 1628.7 7362 4474.07 9472.8 0.47
rl5915: 18272.9 19117 4935.24 9730.3 0.51
rl5934: 20749.9 19287 5069.18 9703.7 0.52
ts225: 8.3 605 3000.12 6000.3 0.5
tsp225: 3.6 321 112.74 252.3 0.45
u159: 1.7 204 1009.48 2600.7 0.39
u574: 80.1 1689 699.9 1519.9 0.46
u724: 119.1 1999 724.62 1474.4 0.49
u1060: 280.8 3275 3754.55 8067.2 0.47
u1432: 378.0 3415 1442.78 2731.3 0.53
u1817: 871.4 4620 840.85 1632.2 0.52
u2152: 1472.8 6351 970.95 1692.5 0.57
u2319: 2688.8 8850 1636.16 2803.6 0.58
vm1084: 280.5 3048 4156.63 9356.9 0.44
vm1748: 1341.9 6620 4529.58 9444.4 0.48

Table D.6.: Computations of LS MM2NTSP on instances of the TSPLIB with an
approximate solution of LS MSTSP as an initial order – part 2
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E. Structure of the CLI-file

Figure E.1.: Layout of a CLI-file

The whole CLI-file of one sample of the final test contains 599860 lines. Each
hatch is indexed in order to match it with the right speed and power of the laser.
This is followed by a value which indicates the number of scan vectors defined in
that line and by the coordinates of the two endpoints. The list of hatches indicates
likewise the scanning order of the hatches. The polyline has as an additional value
as second attribute, which indicates the orientation of the line.
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F. Average Length of a Random Tour

We found the following proposition by construction.

Proposition 17. Let G = (V,E) be a complete graph, n = |V | be the number of
vertices. Let Ω = {T ∈ Nn0 : ai ∈ {0, . . . , n − 1} ∧ Ti 6= Tj for i, j ∈ {0, . . . , n −
1} with i 6= j} be the set of TSP-tours, let the σ-algebra A be the power set of Ω and
p : Ω→ [0, 1], ω 7→ 1

|A| be the probability measure. Let E(T ) = {(i, j) ∈ E : (i = Tk∧
j = Tk+1 for k ∈ {0, . . . , n− 2}) ∨ (i = Tn−1 ∧ j = T0)}. Let dTiTj be the Euclidean

distance between vertex Ti and Tj. Let L : Nn0 → R, T 7→ dTn−1T0 +
∑n−1

i=1 dTi−1Ti be
the length of a TSP tour T . Let the set of all TSP tours be uniformly distributed.
Then the expected value for the length across all tours is

IE[L] =
1

n− 1

∑
(i,j)∈V 2

dij . (F.1)

Proof. In the following, neither permutation nor symmetries are summarized. The
expected value of the tour length is defined as

IE[L] =
1

n!

∑
T :T∈Ω

L(T ) (F.2)

=
1

n!

∑
T :T∈Ω

∑
(i,j)∈E(T )

dij (F.3)

=
1

n!

∑
(i,j)∈V 2

∑
T :(i,j)∈E(T )

dij (F.4)

=
1

n!

∑
(i,j)∈V 2

#{T : (i, j) ∈ E(T )}dij (F.5)

(∗)
=

1

n!

∑
(i,j)∈V 2

n · (n− 2)! · dij (F.6)

=
1

n− 1

∑
(i,j)∈V 2

dij . (F.7)

(*) When we sum up all tours which contain the arc (i, j), there are (n− 2)! tours
which contain (i, j) as the first edge, and the same number for the kth position
(k = 2, . . . , n). The sum of all positions makes n · (n−2)! tours containing the edge
(i, j).
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F. Average Length of a Random Tour

Edge Rate Condition

(0, i) m(n− i) + n(m− i) 1 ≤ i ≤ m− 1
(0, i) m(n− i) m ≤ i ≤ n− 1
(i, i) 2(m− i)(n− i) 1 ≤ i ≤ m− 1
(i, j) 2 [(m− i)(n− j) + (m− j)(n− i)] with 1 ≤ i < j ≤ m− 1
(i, j) 2(m− i)(n− j) with 1 ≤ i < m ≤ j ≤ n− 1

Table F.1.: Distances in an (m× n)-Grid (undirected)

For an (m× n)-grid all kinds of possible edges are listed with their rate in table
F.1; (i, j)-edges and (j, i)-edges are summarized as an (i, j)-edge with i ≤ j. We
distinguish between horizontal or vertical edges, diagonal edges and other edges
which could be turned about 90◦ and those which cannot as i or j is greater than
or equal to m. There are 1

2mn(mn − 1) edges in total, twice the number when
taking the direction of an edge into account. With this table the average length of
random tours can be computed easily by taking the sum of the edge lengths, each
multiplied with its rate. The average length of a random tour in an (m×n)-grid is

2

m · n− 1

(
m−1∑
i=1

i · (m(n− i) + n(m− i)) +
n−1∑
i=m

i ·m(n− i)

+
m−1∑
i=1

√
2i2 · 2(m− i)(n− i)

+
m−2∑
i=1

m−1∑
j=i+1

√
i2 + j2 · 2 [(m− i)(n− j) + (m− j)(n− i)]

+

m−1∑
i=1

n−1∑
j=m

√
i2 + j2 · 2(m− i)(n− j)

 .

(F.8)

This formula was used to compute the average tour length for Workpiece 4 in
CHAMP.
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