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1 Summary  

Organic light-emitting diodes (OLEDs) have been commercially used in full-colour active 

matrix (AMOLED) displays for a couple of years. Only recently, a new application of 

OLEDs in the field of lighting has been opened up. For white emission monochrome 

systems of the three primary colours red, green and blue need to be combined. The 

major issue from the materials’ point of view is still the lack of stable host-emitter 

systems for blue emission. This thesis deals with the development of new host materials 

for blue phosphorescent emitters.  

The host material has to meet a complex profile of requirements. As most crucial feature 

the triplet energy of the host material has to exceed the triplet energy of the emitter. An 

increase of triplet energy of the host material is achieved by reducing the conjugated π-

system in the host molecule. This thesis describes three synthetic approaches to high 

triplet energies by confining the π-conjugation: by introducing torsion in the molecular 

structure, by choosing a meta-linkage and by a non-conjugated linkage. The first and 

second approach was applied to carbazole-based host materials, whereas the third was 

demonstrated on phosphazene-based host materials.  

In the first approach, the molecular structure of a well-known carbazole-based host 

material, 4,4’-bis(carbazol-9-yl)-2,2’-biphenyl (CBP), was optimised by introducing 

torsion via methyl or trifluoromethyl substituents in the 2- and 2’-positions of the 

central biphenyl moiety to yield twisted CBP-derivatives. By confining the conjugated 

system in combination with selective methyl substitution a series of host materials with 

superior thermal and photophysical properties was obtained. Compared with the triplet 

energy of 2.58 eV for CBP, high triplet energies of 2.95 eV could be realised for the 

twisted CBP-derivatives. In addition, appropriate substitution of the crystalline CBP 

results in amorphous materials with high glass transition temperatures of up to 120°C. In 

cyclic voltammetry the electrochemical properties were studied. Here, it was found that 

the systematic variation of the substitution patterns enables fine-tuning of the energetic 

positions of the HOMO and LUMO. This helps to avoid injection barriers at materials’ 

interfaces in the OLED device. By blocking the activated sites in the host molecules a 

stability of the electrochemically oxidised species against dimerisation could be 

demonstrated.  
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In the second approach, the conjugation in the same parent carbazole-based compound 

CBP was reduced by choosing a meta-type of linkage instead of the common para-

linkage of the carbazole substituents to the central biphenyl unit. As a result of the 

meta-linkage, triplet energies of more than 2.90 eV were achieved. No further increase 

in triplet energy was observed by introducing additional torsion in the molecular 

structure as described in the first approach. Moreover, the thermal properties were 

optimised by selective methyl substitution to yield host materials with glass forming 

properties and high glass transition temperatures of up to 120°C. All host materials were 

tested in a comparative OLED device study in combination with a phosphorescent 

emitter with saturated blue emission. For the best host material of this series an 

external quantum efficiency of 9.7 % and a high brightness of 10 800 cd/m2 were 

achieved. 

Both series of carbazole based host materials – the twisted and the meta-linked CBP-

derivatives – were synthesised by Ullmann reaction of a dihalogenated biphenyl unit 

with two (substituted) carbazole units under classic conditions. Noteworthy is the 

intermediate 5,5’-diiodo-2,2’-dimethyl-biphenyl – a simple and versatile building block in 

the synthesis of materials with confined conjugation. The synthesis by direct iodination 

of 2,2’-dimethylbiphenyl, to the best of our knowledge, has not been described in 

literature before.  

In the third approach, the class of low molecular weight phosphazenes, which is less 

described in the context of OLED-materials, was chosen as hosts for blue 

phosphorescent emitters. As a common characteristic all host materials consist of a six-

membered ring of alternating phosphorus and nitrogen atoms. Each phosphorus atom 

bears two aromatic substituents attached via a non-conjugated linkage. Depending on 

the type of linkage to the central phosphazene core two sets of host materials can be 

distinguished: phenoxy substituted phosphazenes with phosphorus-oxygen bonds and 

phenyl substituted phosphazenes with phosphorus-carbon bonds. The phenoxy 

substituted derivatives were synthesized by nucleophilic substitution of the chlorine 

atoms in hexachlorocyclotriphosphazene with phenolates as nucleophils whereas the 

phenyl substituted derivatives were prepared by cyclocondensation of three equivalents 

of phosphinic amides. Due to their superior thermal properties compared to the 

phenoxy substituted series the phenyl substituted phosphazenes are better suited for 
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the use in OLED devices. They exhibit particularly high triplet energies of up to 3.4 eV. 

Thus, they can be combined with deep blue phosphorescent emitters. Another specialty 

of the phenyl substituted phosphazenes is a balanced charge carrier transport 

characteristic. 

To conclude, each of the three presented approaches yields host materials with triplet 

energies high enough for a combination with blue phosphorescent emitters. Regarding 

the morphological stability the extensively studied carbazole based host materials 

exceed the novel phosphazene based host materials.  

Zusammenfasssung 

Organische Leuchtdioden (OLEDs) finden seit einigen Jahren kommerzielle Verwendung 

in Aktiv-Matrix-Farbdisplays (AMOLEDs). Vor kurzem wurde ein weiteres Einsatzgebiet 

von OLEDs im Beleuchtungssektor erschlossen. Um weißes Licht zu erzeugen, müssen 

monochrome OLEDs der drei Primärfarben Rot, Grün und Blau miteinander kombiniert 

werden. Hierbei liegt die größte Herausforderung aus Materialsicht darin, dass keine 

stabilen Matrix-Emitter-Systeme für blaue Emission verfügbar sind. Diese Arbeit befasst 

sich mit der Entwicklung neuer Matrixmaterialien für blaue Phosphoreszenzemitter. 

An die Matrix wird ein komplexes Anforderungsprofil gestellt. Als wichtigstes Kriterium 

muss das Matrixmaterial eine höhere Triplettenergie aufweisen als der Emitter. Eine 

Erhöhung der Triplettenergie des Matrixmaterials wird erreicht, indem das konjugierte 

π-System im Matrixmolekül verringert wird. Diese Arbeit zeigt drei synthetische 

Herangehensweisen auf, um durch eine Einschränkung der π-Konjugation die 

geforderten hohen Triplettenergien zu realisieren: durch Erzeugung von Torsion im  

Matrixmolekül, durch meta-Verknüpfung und durch nicht-konjugative Verknüpfung. 

Die ersten beiden Konzepte wurden auf carbazolbasierte Matrixmaterialien angewandt, 

wohingegen das dritte anhand von Matrixmaterialien auf Phosphazenbasis gezeigt 

wurde. 

Im ersten Ansatz wurde die Molekülstruktur einer der bekanntesten Matrixmaterialien 

auf Carbazolbasis, 4,4‘-Bis(carbazol-9-yl)-2,2‘-biphenyl (CBP), durch das Einbringen von 

Torsion optimiert. Dazu wird die zentrale Biphenyleinheit an den 2- und 2‘-Positionen 

mit Methyl- oder Trifluormethylgruppen substituiert, um verdrillte CBP-Derivate zu 
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erhalten. Durch Verringerung der Konjugation und durch selektive Methylsubstitution 

entstand eine Reihe von Matrixmaterialien mit verbesserten thermischen und 

photophysikalischen Eigenschaften. Verglichen mit einer Triplettenergie von 2,58 eV für 

CBP konnten im Fall der verdrillten CBP-Derivate hohe Triplettenergien von 2,95 eV 

gemessen werden. Darüber hinaus führt eine geeignete Substitution der kristallinen 

Ausgangsverbindung CBP zu amorphen Materialien mit hohen Glasübergangs-

temperaturen von bis zu 120°C. Bei der Untersuchung der elektrochemischen 

Eigenschaften anhand von Cyclovoltammetriemessungen wurde beobachtet, dass die 

systematische Variation im Substitutionsmuster eine Feinabstimmung der Energielagen 

von HOMO und LUMO ermöglicht. Dadurch können Injektionsbarrieren an 

Materialgrenzflächen innerhalb eines OLED-Bauteils verhindert werden. Außerdem 

konnte gezeigt werden, dass durch die Blockierung aktivierter Positionen in den 

Matrixmolekülen eine Stabilität der elektrochemisch oxidierten Spezies gegen 

Dimerisierung erreicht wird. 

Im zweiten Ansatz wurde die Konjugation derselben carbazolbasierten 

Ausgangsverbindung CBP dadurch eingeschränkt, dass für die Anbindung der 

Carbazolsubstituenten an die zentrale Biphenyleinheit eine meta-Verknüpfung anstelle 

der gewöhnlichen para-Verknüpfung gewählt wurde. Als Folge der meta-Verknüpfung 

liegen die Triplettenergien bei Werten von über 2,90 eV. Durch eine zusätzlich 

herbeigeführte Torsion in der Molekülstruktur – wie im ersten Ansatz beschrieben – 

wurde keine weitere Erhöhung der Triplettenergie beobachtet. Darüber hinaus konnten 

durch selektive Methylsubstitution die thermischen Eigenschaften weiter optimiert 

werden, so dass glasbildende Matrixmaterialien mit hohen Glasübergangstemperaturen 

von bis zu 120°C erhalten wurden. Alle meta-verknüpften Matrixmaterialien wurden in 

Kombination mit einem Phosphoreszenzemitter mit gesättigter, blauer Emission in einer 

OLED-Vergleichsstudie untersucht. Für die beste Matrix dieser Reihe wurden eine 

externe Quanteneffizienz von 9,7 % und eine hohe Leuchtdichte von 10 800 cd/m2 

erzielt.  

Beide Reihen carbazolbasierter Matrixmaterialien – die verdrillten und die meta-

verknüpften CBP-Derivate – wurden in einer Ullmann-Reaktion aus einer 

dihalogenierten Biphenyleinheit und zwei (substituierten) Carbazoleinheiten unter 

klassischen Bedingungen synthetisiert. Erwähnenswert hierbei ist die Zwischenstufe 
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5,5‘-Diiod-2,2‘-dimethylbiphenyl – ein einfacher und vielseitiger Baustein in der Synthese 

von Materialien mit eingeschränkter Konjugation. Die Synthese durch direkte Iodierung 

von 2,2‘-Dimethylbiphenyl wurde unseres Wissens nach bisher noch nicht beschrieben. 

Im dritten Ansatz wurde die für OLED-Materialien noch wenig bekannte Klasse 

niedermolekularer Phosphazenverbindungen als Matrix für blaue Phosphoreszenz-

emitter gewählt. Als gemeinsames Merkmal weisen alle Matrixmaterialien einen 

Sechsring aus alternierenden Phosphor- und Stickstoffatomen auf. Jedes Phosphoratom 

trägt zwei aromatische Substituenten, die durch nicht-konjugative Verknüpfung 

angebunden sind. Abhängig von der Art der Anbindung an den zentralen 

Phosphazenkern können zwei Serien von Matrixmaterialien unterschieden werden: 

phenoxysubstituierte Phosphazene mit Phosphor-Sauerstoff-Bindungen und phenyl-

substituierte Phosphazene mit Phosphor-Kohlenstoff-Bindungen. Die Synthese der 

phenoxysubstituierten Derivate erfolgte über nukleophile Substitution der Chloratome 

in Hexachlorocyclotriphosphazen mit entsprechenden Phenolaten als Nukleophile. Im 

Gegensatz dazu wurden die phenylsubstituierten Derivate durch Cyclokondensation von 

drei Äquivalenten Phosphinamid dargestellt. Durch die günstigeren thermischen 

Eigenschaften im Vergleich zu der phenoxysubstituierten Serie erwiesen sich die 

phenylsubstituierten Phosphazene als besser geeignet für den Einsatz in OLED-Bauteilen. 

Sie zeichnen sich durch besonders hohe Triplettenergien von bis zu 3,4 eV aus und 

können deshalb auch mit tiefblauen Phosphoreszenzemittern kombiniert werden. Als 

weitere Besonderheit zeigen phenylsubstituierte Phosphazene darüber hinaus einen 

ausgeglichenen Ladungsträgertransport. 

Zusammenfassend führt jede der drei vorgestellten Synthesestrategien zu Matrix-

materialien mit den erforderlich hohen Triplettenergien, um mit blauen 

Phosphoreszenzemittern kombiniert werden zu können. Hinsichtlich der 

morphologischen Stabilität sind die umfangreich untersuchten Matrixmaterialien auf 

Carbazolbasis den neuen Materialien auf Phosphazenbasis überlegen. 
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2 Introduction 

In 2011, around 130 years after their commercialisation, incandescent light bulbs are still 

the most widely used light source in private households. Moreover, they are one of the 

most inefficient light sources with only 5 % of the consumed energy being converted 

into light – around 95 % are lost to heat.1 Worldwide, governments are getting aware of 

the great potential to save energy and reduce the emission of greenhouse gases in the 

lighting sector. In 2009, the European Commission adapted a regulation (244/2009) for a 

gradual removal of inefficient incandescent light bulbs between September 2009 and 

September 2012.2

Figure 1

 Meanwhile, within the EU 100 W and 75 W bulbs are no longer 

commercially available. Alternative light sources like fluorescent lamps and compact 

fluorescent lamps have much higher efficiencies than incandescent light bulbs; however, 

they contain toxic mercury vapour. Inorganic light emitting diodes (LEDs) are currently 

among the most efficient light sources. As inorganic LEDs are point sources they can only 

be used as focused spotlight rather than as two-dimensional light source for surface 

illumination. Organic Light Emitting Diodes (OLEDs), which are, up to now, mainly used 

in flat full-colour displays, have been attracting attention for their use as illuminant in 

recent years. OLEDs offer a range of advantages: as their conceptual design differs from 

that of conventional light sources they emit diffuse light over a large area, they are thin 

and have a huge energy saving potential. Besides general lighting, signage, decorative 

and automotive interior lighting are being considered as fields of applications. Lighting 

companies like OSRAM and PHILIPS have already launched first commercial lighting 

panels as shown in . In October 2010, OSRAM further announced to invest about 

50 million Euros in a new OLED lighting pilot production and research facility in 

Regensburg, Germany.3 Due to the flexibility in design, the variety of innovative future 

applications is huge, for example, as lit-up blinds shown in a future study of General 

Electrics. 4

The first white OLED device was presented in 1994 by Kido and co-workers.

   
5 By doping 

red, green and blue fluorescent emitters into a poly(N-vinylcarbazole) matrix white 

emission covering a wide range of the visible spectrum was achieved. Yet, the power 

efficiency below 1 lm/W was still low.  
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Figure 1. First commercial OLED panels and products: a) Orbeos (OSRAM),6 b) PirOLED (OSRAM)7 with five 
ORBEOS panels, c) Lumiblade (PHILIPS),8 8 d) O’Leaf wall light (PHILIPS),  e) Vision of flexible blinds for 
interior illumination by GE.4  

 

Since then much research has been focused on developing white OLEDs with high 

efficiencies to make them competitive and ready for the market. Only recently, a white 

OLED device was presented by the group of Karl Leo in 2009 with an impressive power 

efficiency of 90 lm/W comparable to a fluorescent tube.9

 

 The development of energy 

saving substitutes for incandescent light bulbs is supported by many governments 

worldwide. In this course, the German Federal Ministry of Education and Research 

(BMBF) has been funding the project “OPAL 2008” and its follow up project “TOPAS 

2012” as part of the “OLED 2015 initiative” for energy efficient lighting.  

2.1 Light Emission in Organic Semiconductors  

In an organic semiconductor a conjugated π-electron system with delocalised electrons 

is responsible for the inherent electronic and optoelectronic properties. The conjugated 

system is formed by the overlapping pz-orbitals of sp2-hybridised C-atoms in the 

molecule. Compared to σ-bonds the π-bonds are considerably weaker. Thus, the π-π* 

transition requires the lowest energy of electronic excitation. Due to the rather small 

energy gap (1.5 and 3 eV) between the highest occupied molecular orbital (HOMO) and 
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the lowest unoccupied molecular orbital (LUMO) in organic semiconductors the 

absorption of light in the visible region can lead to the excitation of one electron from 

the HOMO into the LUMO. With increasing extension of the conjugated π-electron 

system the energy gap declines. The possibility of tuning the materials properties by 

chemical modification is an essential advantage of organic semiconductors.10

Light absorption of an organic semiconductor causes an electron to be excited from its 

electronic ground state S0,0 to its first excited electronic state S1,n. Since the nuclei of the 

atoms are substantially heavier than the electrons, the electron transition has no effect 

on the equilibrium position of the potential surface. Therefore, only vertical transition of 

the electron take place into higher vibrationally excited S1,n states (Franck-Condon 

principle). The probability of each transition is determined by the Franck-Condon factor 

and results in fine-splitting of the absorption spectrum. By internal conversion (IC) which 

involves non-radiative deactivation processes the electron relaxes to the lowest 

electronic state S1,0. Usually, radiative decay takes place from the lowest electronically 

excited state S1,0 to the electronic ground state S0,n following again the Franck-Condon-

principle (Kasha’s rule). As a result, the fluorescence spectrum is always red-shifted 

compared to the absorption spectrum. The radiative decay in most organic molecules is 

limited to fluorescence as optical transitions take place under spin conservation. 

  

 The population of the triplet state requires spin flip by intersystem crossing (ISC) from 

the optically excited singlet state. By introducing heavy atoms spin-orbit coupling allows 

for mixing of the singlet and triplet states making ISC an efficient depopulation 

mechanism of the S1,0 state. For example, in transition metal complexes, radiative decay 

takes place from the T1,0 state under the emission of phosphorescence. The electronic 

transitions involved in absorption of light, fluorescence, phosphorescence, internal 

conversion and intersystem crossing are sketched in Figure 2. 

Since intersystem crossing (ISC) involves the vibrational coupling between the S1 and the 

T1 states it becomes more effective, if the energy splitting between S1 and T1, ∆E(S1-T1), 

is small.11 This energy difference results from the interaction of the remaining electron 

in the HOMO with the electron in the LUMO. A smaller orbital overlap of HOMO and 

LUMO leads to a lower energy splitting ∆E(S 1-T1). Thus, it can be significantly decreased 

if the optical transitions involve orbitals with different orientations in space like n-π* 
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transitions or orbitals which are localised at different sites of the molecule. Such 

intermolecular charge transfer processes are common in organometal complexes 

resulting in a significant decrease of the energy splitting from ~1 eV for aromatic 

hydrocarbon compounds to 0.2 - 0.3 eV which leads to efficient intersystem crossing.12

 

 

Figure 2. Left: Jablonski diagram sketching the electronic transitions involved during absorption of light 
(S0-S1), fluorescence (S1-S0) and phosphorescence (T1-S0).13

 

 Right: Potential diagram illustrating the vertical 
transitions following the Franck-Condon-principle, internal conversion (IC) and the intersystem crossing 
(ISC).  

2.2 OLED operation principles  

The basic principle of light emission in an OLED is electroluminescence. It was first 

discovered by Pope et al. in 1963 by applying high voltage to a single crystal of 

anthracene.14

Figure 3

 Electroluminescence can be divided into three basic steps: (1) charge 

carrier injection, (2) charge carrier transport and (3) charge carrier recombination and 

emission of light. In  these steps are sketched in a simple OLED device 

comprising an organic semiconducting layer sandwiched between two electrodes. One 

example of a simple device architecture is the first polymer OLED presented by R. Friend 

and co-workers in 1990.15

 

 The device consists of 70 nm poly(phenylenvinylene) (PPV) as 

active material, an indium-tin-oxide anode and aluminium cathode. 
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Charge carrier injection (1) 

When a voltage is applied between the two electrodes charge carrier injection into the 

organic semiconductors occurs at the two interfaces with the electrodes. From a 

chemical point of view, injection of charge carriers leads to ionic molecular states. At the 

anode an electron is extracted from the HOMO level of the organic material to generate 

a radical cation (hole) while at the cathode a radical anion (electron) is formed by 

accepting an electron into the LUMO level. 

 

Figure 3. a) Energy diagram of a single-layer OLED: χh represents the hole injection barrier from the anode 
into the HOMO level and χe represents the electron injection barrier from the anode into the LUMO level 
of the organic layer. b) Energy level diagram of a single-layer OLED under applying an electric field. The 
three basic steps of light generation are included. c) Schematic of a single-layer OLED device with the 
emission layer sandwiched between a transparent anode and a metal cathode. 

 

For efficient light extraction one of the electrodes needs to be transparent. In an ideal 

setup the contact between the electrodes and the organic semiconductors should have 

nearly no resistance, i. e. ohmic contacts should be formed. Therefore, the anode 

material has to reveal a high work function in order to enable hole injection into the 

HOMO level of the organic material. Here, transparent conductive oxides have proven to 

be suitable materials. Indium tin oxide sputtered on a glass substrate is the most 

common anode material. The work function (φ) of ITO is reported to be in the range of 

4.7 - 5.0 eV depending on the pretreatment.16 Treatment with acids or bases can result 

in a shift of the ITO work function on the order of 1 eV.17  The barrier for hole injection 

from ITO into the HOMO can further be decreased by the deposition of a thin layer of 

hole injection materials with higher HOMO levels like copper phthalocyanine (CuPc, 

HOMO = 5.0 eV18) or the widely used poly(3,4-ethylene-dioxythiophene): poly(4-styrene-

sulfonate) (PEDOT:PSS, HOMO = 5.2 eV19
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level of the organic semiconductor cathode materials with a low work function are 

required, as for example, magnesium (φ ≈ 3.7 eV) or calcium (φ ≈ 3.0 eV).20

20

 As a 

drawback, their low work functions render these materials highly reactive against 

oxygen and water. Because of the superior environmental stability very often high work 

function metals like aluminium (φ ≈ 4.3 eV)  are used as cathode materials. In 

combination with a thin interlayer of metallic lithium or LiF the electron injection barrier 

into the electron transporting material can be lowered.21,22 Instead of using separate 

hole or electron injection layers, the p-i-n technology provides ohmic contacts between 

the organic material and the electrodes by doping strong electron acceptors into the 

hole transporting material (p-doped HTM) and strong electron donors into electron 

transport material (n-doped ETM).23,24,25

Charge carrier transport (2) 

  

Driven by the external electric field injected holes and electrons will migrate through the 

organic semiconductor towards the opposite electrodes. The transport of charge carriers 

within an organic semiconductor is regarded to take place via hopping processes 

between molecule sites.26,27 Since ionic molecular states are involved it can be described 

by a sequence of redox reactions: a hole is transported by receiving an electron from the 

HOMO of a neighbouring neutral molecule. For the transport of electrons one electron is 

transferred from the LUMO level of a radical anion into the LUMO level of a 

neighbouring neutral molecule. The efficiency of charge carrier transport depends on 

the purity and morphology of the organic semiconductors. Impurities may act as trap 

states for holes or electrons,28

Charge carrier recombination and emission of light (3)  

 whereas highly ordered systems, as in the case of defect 

free single crystals, result in higher charge carrier mobility than observed in amorphous 

organic materials.  

Driven by Coulomb attraction, the recombination of electron and hole leads to localised 

excited states (excitons) with a binding energy between 0.4 - 1 eV.10 Due to spin 

statistics in standard quantum mechanics the spins of the hole and electron can be 

coupled to four new combined states: one singlet exciton and three triplet excitons. In 

most purely organic compounds only singlet excitons can decay under emission of 
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fluorescence, as radiative decay of triplet states is spin-forbidden. In these compounds, 

triplet excitons decay non-radiatively and do not contribute to light emission. However, 

by incorporation of a heavy atom strong spin-orbit coupling leads to efficient 

intersystem crossing (ISC) and emission of phosphorescence from the T1,0 state into the 

ground state S0,n becomes an efficient relaxation path. Thus, in many transition metal 

complexes, as for example the green phosphorescent emitter tris(2-phenylpyridinato-

N,C2’-)iridium(III) (Ir(ppy)3), all electrogenerated singlet (25 %) and triplet (75 %) 

excitions can be harvested for light emission. Forrest and Thompson et al. were the 

pioneers in triplet harvesting by incorporating the red phosphorescent emitter platinum 

octaethylporphyrin (PtOEP) into an OLED device.29

 

 Their finding was a breakthrough in 

the development of highly efficient OLED devices.  

Figure 4: Recombination of charge carriers under the formation of 25 % singlet and 75 % triplet excitons. 
The two electron spins, represented by arrows, precess in z-direction. For the singlet exciton the relative 
orientations of the two electron spins are anti-parallel and 180° out of phase whereas they are in phase 
for the three triplet excitons. The quantum number of the spin angular momentum (S) and its z-
component (Ms) are included. 

 

Once formed an exciton can decay radiatively or diffuse according to its lifetime. Triplet 

excitons have a much longer lifetime (in the range of μs to s) than singlet excitons (in the 

range of ns) since the radiative decay from the first excited triplet state to the ground 

state is spin-forbidden. Thus, the triplet diffusion length is much longer (tens of nm) than 

for singlet excitons (< 10 nm). In order to prevent luminescence quenching the triplet 

emitter usually needs to be doped into a host material.  Energy transfer in emitter-host-

systems takes place via Förster energy transfer and Dexter energy transfer. Förster 

energy transfer is a long-range, non-radiative, dipole-dipole coupling of donor (D) and 
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acceptor (A) molecules. It requires spectral overlap between the emission of D and 

absorption of A and it only allows for energy transfer to the singlet excited state of A 

(singlet exciton). In the Dexter transfer the exciton diffuses from D to A sites via 

intermolecular electron exchange between D and A. Therefore, it requires orbital 

overlap between both molecules. Since this short-range process takes place under spin 

conservation both singlet-to-singlet and triplet-to-triplet energy transfer is allowed.30

2.3 OLED fabrication and relevant characteristics  

 

Depending on the nature of the organic materials basically two different fabrication 

methods of OLED devices are applied. Low molecular weight materials are usually 

deposited by thermal evaporation under high vacuum (10-6 mbar) which requires 

expensive technical equipment. On the other hand, polymeric materials are processed 

from solution: on a laboratory scale OLED preparation can be done by spincoating or 

doctor blading. Further developments towards printing techniques could be a way to 

low-cost mass production of large active areas. However, the production of multilayer 

devices with solution-based processes is facing the major problem of redissolving 

previously deposited layers.31

The most practical approach to generate OLEDs with white emission is to combine the 

emission of monochrome red, green and blue systems. Several different OLED 

architectures are possible: the different colour systems can be aligned horizontally as 

single pixels. An advantage is that each colour can be addressed separately for an easy 

colour adjustment while the fabrication of such a structure is not straightforward. In the 

vertical OLED structure the three colours are generated in a layered or in a stacked setup 

with single stacks for each colour. The stacked architecture requires internal electrodes 

whereas the layered structure is less complex, however, colour changes by differential 

aging of the different colours cannot be compensated.

 Therefore, the vapour-deposition technique is the 

prevailing process for OLED fabrication at the moment.  

31 

The light emitted by an OLED device can be described by several characteristics. The 

chromaticity of each colour is classified by its x- and y-coordinates in the CIE-diagram 

(Figure 5) which was developed by the Commission Internationale d’Eclairage (CIE) to 
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describe each colour with respect to the perception by the human eye. Besides the two 

colour approach, white light is most commonly generated by additive colour mixing of 

the three primary colours red, green and blue which span a triangle in the CIE-diagram. 

As each colour within this triangle can be obtained, the inclusion of the white point 

(x = 0.33, y = 0.33) into the triangle is crucial. Also shown is the emission colour of the 

temperature-dependant irradiation of a black body, the Planckian locus, which 

correlates the colour with a certain colour temperature. For lighting the temperature 

range between 3000 – 10 000 K is of interest where colour temperatures below 5000 K 

are regarded as “warm” white and temperatures above 5000 K as “cold” white.32

 

 

Another feature for the description of white light is the colour rendering index (CRI). On 

a scale from 0 to 100 the CRI is a measure for the ability of a light source to resemble the 

colour appearance of test objects in comparison to a standard light source. For the 

application as indoor-lighting source a high CRI ≥ 80 is desired.  

Figure 5. CIE-diagram with the chromaticities of the primary colours RGB (sRGB) defined as standards for 
colour displays, the Planckian locus (black curve) and the monochromatic colour curve (dotted line).  

 

Another important figure-of-merit is the efficiency of an OLED device. OLED displays are 

usually classified by their current efficiency (ηC) given in candelas per ampere (cd/A). 

More common for OLEDs in lighting applications is the power efficacy (ηP) given in 
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lumens per watt (lm/W) which can be calculated from the current efficiency according to 

equation 1 under the assumption of Lambertian emission.  

ηP = ηC · (π/voltage)                        (eq. 1) 

The external quantum efficiency (ηext) is the ratio of the number of photons emitted by 

the device into the viewing direction to the number of electrons injected into the device. 

The external quantum efficiency is dependent on several single efficiencies which are 

taken into account in equation 2.33

ηexternal = ηrecombination · ηspin · φPL · ηoutcoupling = ηinternal · ηoutcoupling                           (eq. 2) 

 

ηrecombination   −  fraction of electrons that recombine with holes to form excitons 

ηspin − fraction of excitons formed which can result in radiative transitions;  

 0.25 for fluorescent emitters and 1 for phosphorescent emitters 

φPL − intrinsic quantum yield for radiative decay of the formed excitons 

ηoutcoupling                   − fraction of emitted photons that escape the device 

2.4 OLED architecture  

The first OLED device developed by Tang and VanSlyke in 1987 consisted of a simple 

two-layer structure with the aromatic amine TAPC as hole conductor and Alq3 as 

electron transport material and emitter.34 For highly efficient OLEDs a well-balanced 

injection and transport of both charge carriers is essential. To optimise these processes 

the OLED architecture has become more complex over the years by the addition of 

functional layers. Fig 6a shows a typical setup of a monochromic OLED device. For 

efficient charge carrier transfer the hole and electron transport materials should reveal 

high charge carrier mobilities. Nowadays, transport layers are usually doped to provide a 

high density of charge carriers and ensure high currents. The emission layer comprises 

the emitter doped host material. As the key step towards high efficiency the emission 

layer consists of a triplet emitter with a high phosphorescence quantum yield doped into 

a host material. Ideally, the host material performs charge carrier transport, charge 

carrier recombination and energy transfer to the emitter. Since the mobility of holes in 

most organic materials is higher compared to that of electrons35 the insertion of an 
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additional hole blocking layer between the emission layer and the electron transporting 

layer helps to confine holes in the emission layer and improves the efficiency of 

recombination of charge carriers.  

In the case of OLEDs with white emission in a layered configuration the design of the 

emission layer is most challenging. In 2009, the group of Karl Leo presented a highly 

sophisticated OLED design for white emission shown in Figure 6b. The emission of white 

light is accomplished by the use of three phosphorescent emitters: Ir(MDQ)2(acac) for 

red, Ir(ppy)3 for green and FIrpic for blue emission. The blue sublayer was located in the 

middle of the emission layer surrounded by red and green sublayers. At the interface of 

the two host materials TCTA and TPBI exciton formation takes place. Förster-type 

transfer is suppressed by 2 nm thin interlayers of pure host materials TCTA and TPBI. 

Additionally, the high triplet energy of TCTA also suppresses diffusion of blue excitons 

into the red emission layer. In contrast, unused triplet excitons from the blue region can 

be harvested by the green emitter by triplet diffusion. As the outcoupling efficiency 

depends on the difference of refractive indices n of the organic material (norg = 1.7-1.9) 

and the glass substrate (nglass = 1.5) losses by total internal reflections on the 

organic/glass interface can be prevented by matching the refractive indices. In this case 

this was accomplished by using high refractive index glass substrates (nglass = 1.78). Light 

which is captured in glass modes can be extracted by using substrates of modified 

shapes like a patterned surface. With this optimised setup in combination with 

outcoupling techniques Leo’s group achieved a power efficiency of 90 lm/W which 

matches the efficiency of a fluorescent tube. By using an additional half-sphere as 

outcoupling aid power efficiencies exceeding 120 lm/W could be demonstrated.9  

  
Figure 6. a) Schematic of a monochromic multi-layer OLED device. b) Layered OLED architecture with 
sophisticated design of the emission layer for white emission.9 
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2.5 Materials for Organic Light Emitting Diodes 

For a low drive voltage of the OLED device, the energy levels of all materials should be 

well-matched to avoid barriers for charge carrier injection and for charge carrier 

transport at the interfaces of two materials. Regarding a fabrication of the OLED device 

by thermal evaporation an important requirement for all small molecule materials used 

is their high thermal stability. Besides the thermal stability, a stable amorphous phase at 

operation temperature is beneficial for the morphological stability of the device.36

28

 In 

addition by forming uniform films amorphous materials help to avoid grain boundaries 

which may act as trap states during transport of charges.  While most small organic 

molecules tend to crystallize readily proper molecular design can lead to small molecules 

with a stable amorphous phase at room temperature. Such molecular glasses can be 

obtained by avoiding strong intermolecular forces like hydrogen bonding or π-π stacking 

between the molecules. A very common design concept for molecular glasses is the 

space-filling starburst topology.37

2.5.1 Hole Transport Materials  

 Furthermore, the intermolecular distance can be 

increased by introducing bulky substituents to hinder packing of molecules and prevent 

crystallisation.  

Hole transporting materials (HTMs) must reveal a low ionisation potential in order to 

facilitate hole injection and hole transport under the formation of radical cations. Typical 

hole transport materials have electron rich moieties and are therefore often based on 

triarylamines. The molecular structures of several conventional hole transport materials 

are shown in Figure 7.  

TPD has a HOMO level of ~ 5.3 eV38 and a high hole drift mobility of 1·10-3 cm2/Vs.39 

However, its low glass transition temperature (Tg) of 60°C40 limits its use in OLED 

devices. The Tg of α-NPD is markedly increased to 100°C41 by replacing two phenyl 

substituent by naphthyl units. In addition, α-NPD has as well a high hole mobility of   

8.8·10-4 cm2/Vs42 38 and its HOMO level of ~ 5.4 eV ,43 is well suited for accepting holes 

from the hole injection layer or anode. A major drawback of both compounds is their 

low triplet energy of ~ 2.3 eV.44 HTMs with triplet energies ∆E(T1-S0) higher compared to 

that of the emitter confine triplet excitons within the emission layer which increases the 
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efficiency of the device. For example, the molecular glass TCTA shows a high triplet 

energy of 2.8 eV9 and a very high Tg of 151°C.45

45

 The outer carbazole substituents lead to 

a deep HOMO level of 5.7 eV  and thus slightly reduced injection properties. Moreover, 

the hole mobility is one order of magnitude lower than for α-NPD and TPD. TAPC is a 

hole transport material with an excellent hole mobility of 1·10-2 cm2/Vs46

43

 and a HOMO 

level of 5.4 eV.  Its high triplet energy of 2.9 eV44 confines triplet excitons within the 

emitting layer. Yet, with a low Tg of 78°C36 its morphological stability is rather poor. 
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Figure 7. Molecular structures of: N,N´-di(naphtha-1-yl)-N,N’-diphenylbenzidine (α-NPD), N,N’-bis(3-
methylphenyl)-N,N’-diphenylbenzidine (TPD), 1,1’-bis(4’-(N,N’-di(p-tolyl)aminophenyl)cyclohexane (TAPC), 
4,4’,4’’-tris(carbazol-9-yl)triphenylamine (TCTA). 

 

2.5.2 Electron Transport Materials 

Electron transport materials (ETMs) facilitate the electron injection from the cathode, 

accept electrons and transport electrons to the emitting layer. Common electron 

transport materials are based on electron deficient heterocycles, like oxadiazoles, 

triazoles, pyridine, pyrimidine, imidazole or triazine. Among ETMs BCP and the metal 

chelate Alq3 are the most commonly used materials. Figure 8 gives an overview of some 

ETMs frequently used in OLED devices.  
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Alq3 has a suitable LUMO level of ~ 3 eV47 to facilitate electron injection from the 

cathode. In Alq3 the electron mobility in the range of 1·10-5 cm2/Vs48,49 is rather low 

while the electron mobility of BCP is one order of magnitude higher.50 BCP is also suited 

as hole blocking material due to its low HOMO level of 6.5 eV.51 However, films of Alq3 

are morphologically more stable due to its high Tg of 172°C.52 The star-shaped molecular 

glass TPQ also forms stable amorphous films (Tg = 147°C)53 and has an electron mobility 

of 1·10-4 cm2/Vs.54 Among the class of triazines, BTB, for example, is known to have a 

high electron mobility of 7·10-4 cm2/Vs.55 Due to their low triplet energy most ETMs 

need to be combined with an additional hole and exciton blocking layer with higher 

triplet energy to confine excitons within the emission layer. When the benzimidazole-

based TBPI with a triplet energy of 2.74 eV56 and the pyridine-based TmPyPB with a 

triplet energy of 2.8 eV are used as electron transport materials triplets should not be 

quenched in green and light blue OLEDs. In addition, TmPyPB is a material with high 

electron mobility of 1·10-3 cm2/Vs.57
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Figure 8. Molecular structures of: tris(8-hydroxychinoline)aluminium (Alq3), 4,4’-bis-(2-(4,6-diphenyl-1,3,5-
triazinyl))-1,1’-biphenyl (BTB), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 1,3,5-(tris-(N-
phenylbenzimidazol-2-yl)-benzene (TPBI), 1,3,5-tris(3-phenylquinoxaline-2-yl)benzene (TPQ), 1,3,5-tri(m-
pyrid-3-yl-phenyl)benzene (TmPyPB).  
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2.5.3 Phosphorescent Emitting Materials 

The concept of triplet harvesting requires emitters with high phosphorescence quantum 

yields and short radiative lifetimes. The first phosphorescent emitter used in an OLED 

was the platinum-porphyrin-complex PtOEP with red emission (λmax = 650 nm).29 As a 

result of its relatively long triplet lifetime of ~ 90 μs58 a significant efficiency roll-off at 

higher current densities was observed. This phenomenon is associated with the process 

of triplet-triplet-annihilation (TTA) in which one excited state is lost for radiative decay.59

Cyclometallated iridium(III) complexes have proven to be perfect candidates for 

phosphorescent emitters in OLEDs. They exhibit high quantum efficiencies and shorter 

lifetimes of the triplet excited states. Moreover, by suitable ligand design their emission 

energy can be shifted to span a large colour range from near infrared to near ultraviolet. 

The first example to be incorporated into an OLED device was the green (λmax = 520 nm) 

iridium complex facial-tris(2-phenylpyridinato-N,C2’)iridium(III) (Ir(ppy)3)

 

In this process the interaction of two triplet excitons leads to the formation of one 

higher excited singlet exciton and one ground state molecule: T1 + T1  Sn + S0. Only the 

singlet exciton - after intersystem crossing into the triplet state - can contribute to light 

emission.  

60 with a short 

radiative lifetime of 2 μs.61 By expanding the π-conjugated system of the phenylpyridine 

ligand the triplet energy can be lowered resulting, for example, in red emission (λmax = 

620 nm) of the complex bis(1-phenylisoquinolinato-N,C2’)iridium(acetylacetonate) 

(piq)2Ir(acac).62 The introduction of electron withdrawing substituents like fluorine or 

cyano groups leads to a blue shift of the emission. The most common blue emitting 

iridium complex is bis(4,6-difluorophenyl)-pyridinato-N,C2’)iridium(III)picolinate (FIrpic) 

with greenish blue emission (λmax = 475 nm).63

9

  However, when using FIrpic as blue 

component in white OLEDs as in the case of the high efficiency white OLED of Leo’s 

group, the generation of light is limited to a rather warm white with CIE colour 

coordinates of x = 0.44 and y = 0.46 and a CRI of 80.  Here, the most crucial point 

towards more flexibility in rendering the whole range of white emission is the 

development of stable deeper blue emission systems. In Figure 9 three examples of 

phosphorescent iridium-complexes with different emission colours are shown. 
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Figure 9. Molecular structures of the phosphorescent emitters bis(1-phenylisoquinolinato-N,C2’)-iridium-
(acetylacetonate) ((piq)2Ir(acac), red, ∆E(T 1-S0) = 1.90 eV, CIE x 0.68, y 0.32), tris(2-phenylpyridinato-
N,C2’)iridium(III) (Irppy3, green, ∆E(T 1-S0) = 2.42 eV, CIE x 0.27, y 0.63) and bis(4,6-difluorophenyl)-
pyridinato-N,C2’)iridium(III)picolinate (FIrpic, blue, ∆E(T1-S0) = 2.65 eV, CIE x 0.16 y 0.32).  

 

2.5.4 Host materials for Phosphorescent Emitters 

Usually, triplet emitters are diluted in an appropriate host material to prevent 

concentration quenching of the emission. Besides charge carrier transport the main task 

of the host material is energy transfer to the emitter. In Figure 10 two possible 

configurations of energy levels of host and emitter are shown.  

 

Figure 10. Energy diagram sketching a) efficient and b) inefficient energy transfer (ET) between host and 
emitter. 

 

In the favoured scenario of efficient energy transfer shown in Figure 10 a) energy can be 

transferred from the singlet and triplet excited states of the host to the singlet and 

triplet excited states of the emitter. By efficient ISC all singlet excitons are converted to 

the triplet state to populate the T1,0 state of the emitter which decays under emission of 

phosphorescence.  In the case of inefficient energy transfer shown in Figure 10 b) the 

T1,0 state of the emitter can be depopulated by energy transfer back into lower lying 
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triplet excited states of the host molecule. Since radiative decay from the T1,0 of the host 

is spin-forbidden, the energy is lost for emission significantly lowering the quantum 

efficiency of the OLED device. Thus, the most crucial requirement for the host material is 

a triplet energy higher compared to the emitter. To confine triplet excitons on the 

turquoise emitter FIrpic (∆E(T1-S0) = 2.65 eV), for instance, the triplet energy of the host 

must be higher than 2.70 eV.64

Figure 11

 For deeper blue emitters host materials with even higher 

triplet energies ∆E(T1-S0) ≥ 2.90 eV are required. The development of host materials for 

deeper blue emitters has proven to be a challenging task. In general, the key to high 

triplet energies is to decrease the conjugation within a host molecule. Therefore, the 

variety of possible building blocks with high triplet energy is rather limited. Several 

design rules are valid for avoiding extended conjugation. In  some trends in 

triplet energy related to the molecular basic structure are shown.  

 

Figure 11. Dependence of the triplet energy ∆E(T1-S0) on the number of phenyl rings and on the type of 

linkage. 

 

With increasing number of phenyl rings the conjugation increases and concomitantly the 

triplet energy decreases. Moreover, in fused ring systems lower triplet energy is 

expected as, for example, in the case of naphthalene (∆E(T1-S0) = 2.64 eV) compared 

with biphenyl (∆E(T1-S0) = 2.82 eV).65
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rings also influence the triplet energy. The para-linkage of the three phenyl rings allows 

for planarization and thus for the most extended conjugation resulting in a low triplet 

energy of ∆E(T1-S0) = 2.55 eV for para-terphenyl. Compared with the ortho-linkage the 

meta-linkage leads to a lower degree of conjugation since the meta-positions are known 

to reveal the lowest electron densities in a phenyl ring. This translates into a larger 

triplet energy of ∆E(T1-S0) = 2.82 eV for meta-terphenyl compared with 2.67 eV for 

ortho-terphenyl.66

The probably largest class of host materials are based on carbazole which is a versatile 

building unit due to its high intrinsic triplet energy of 3.02 eV.

  

67

Figure 12

 Some examples of 

carbazole based host materials are shown in .  
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Figure 12. Molecular structures of carbazole based host materials. 4,4′-bis(carbazol-9-yl)biphenyl (CBP), 
4,4′-bis(carbazol-9-yl)-2,2’-dimethyl-biphenyl (CDBP), bis(4-(carbazol-9-yl)cyclohexane (CBPCH), bis(4-
(carbazol-9-yl)phenyl)ether (CBPE), 1,3-bis(carbazol-9-yl)-benzene (mCP), 3,5-di(N-carbazolyl)tetra-
phenylsilane (SimCP), 9-(4-tert-butylphenyl)-3,6-di-triphenylsilyl)-carbazole (CzSi). 

 

The most commonly used host material is 4,4’-bis(9-carbazolyl)biphenyl (CBP) which is 

reported to have bipolar transport properties.68 Basically, CBP is only suited as host for 
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red and green emitters because of its low triplet energy of 2.56 eV.63 In green OLEDs 

based on Ir(ppy)3 doped into CBP high power efficiencies up to 133 lm/W could be 

achieved.69

63

 Although, in combination with FIrpic (∆E(T1-S0) = 2.65 eV) endothermic 

energy transfer from CBP to FIrpic is partially possible, the efficiencies are unsatisfying.  

Much effort has been made to design host materials with higher triplet energy in order 

to allow for exothermic energy transfer to blue emitters. One strategy to lower the 

conjugation within the molecule is the introduction of torsion shown in the host material 

4,4’-bis(9-carbazolyl-2,2’-dimethylbiphenyl (CDBP).70,71

70

 The steric hindrance caused by 

methyl substituents in the 2- and 2’-positions of the biphenyl unit forces the two phenyl 

rings into a tilted conformation. As a result, the conjugation is limited. Due to the higher 

triplet energy of CDBP (∆E(T 1-S0) = 2.79 eV), the external quantum efficiency in FIrpic-

based OLEDs could be doubled from 5.1 % with CBP to 10.4 % with CDBP as host.  

Another approach to lower the conjugation is to choose non-conjugated linkers between 

the two carbazole units such as a cyclohexyl group in CBPCH or an oxygen-bridge in 

CBPE.72 The high triplet energy of mCP (E(T1-S0) = 2.90 eV) is achieved by replacing the 

biphenyl unit by a single phenyl ring in combination with a meta-linkage of the carbazole 

units.73,74 In contrast to the high crystallisation tendency of mCP (Tg = 55°C), the bulky 

triphenyl silyl groups render SimCP75 and CzSi76

Ideally, the host materials are able to perform both hole and electron transport to gain 

charge carrier balance within the emission layer. So-called bipolar host materials are 

usually tailored by combining electron rich with electron deficient moieties to provide 

suitable energy levels for the injection and transport of both charge carriers. Often used 

functionalities are carbazole units for the donor component and heterocycles or 

phosphine oxide groups as acceptor component. In such donor-acceptor type host 

molecules it is essential to suppress the electron delocalisation between donor and 

acceptor sites in the molecule in order to keep the optical band gap and the triplet 

energy at a high level. Some examples for bipolar host materials are shown in 

 morphologically stable host materials 

with high Tgs of 101°C and 131°C and high triplet energies of 3.01 eV and 3.02 eV, 

respectively.  However, the separation of the conducting units by bulky substituents 

usually has detrimental effects on the charge carrier mobility.  

Figure 13. 
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Figure 13. Molecular structures of the bipolar host materials 2,4,6-tricarbazol-9-yl-1,3,5-triazine (TRZ-3Cz),   
3-(diphenylphosphoryl)-9-(4-(diphenylphosphoryl)phenyl)-9-carbazole (PPO21), 1,3,5-tris(N-(4-diphenyl-
aminophenyl)benzimidazol-2-yl)benzene (TPBI-DA), 2,4-bis(carbazol-9-yl)-6-phenoxy-1,3,5-triazine (TRZ-
2), 2,6-bis(3-(carbazol-9yl)phenyl)pyridine (26DCzPPy). 

 

The star-shaped TPBI-DA is a combination of the well-known electron transporting TPBI-

core and diphenyl amine units.77 Due to its triplet energy of 2.74 eV it is limited to the 

use as host for green phosphorescent emitters. In a simple OLED architecture based on 

the green emitter Ir(ppy)2(acac) a high power efficiency of 70 lm/W was achieved 

compared to 21 lm/W for the control device using TPBI. The triplet energy of the donor 

substituted triazine host material TRZ-3Cz78 of 2.81 eV can be further increased to 

2.96 eV by replacing one carbazole unit by a phenoxy group in TRZ-2. In an OLED device 

with an emission layer comprising FIrpic:TRZ-2 an external quantum efficiency of 12 % 

was reported.79 One of the highest efficiencies of FIrpic-based OLED devices up to now 

was achieved by using the bipolar host 26DCzPPy with pyridine and carbazole 

functionalities. At 100 cd/cm2 an external quantum efficiency of 24 % and a power 

efficiency of 46 lm/W with only low efficiency roll-off at higher current densities were 

stated.80 Among the phosphine oxide containing bipolar materials PPO21 proved to be 
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suited as host for even deeper blue phosphorescent emitters due to its high triplet 

energy of 3.01 eV. The OLED based on the deep blue emitter tris((3,5-difluoro-4- 

cyanophenyl)pyridine)iridium (FCNIr; CIE x 0.15, y 0.16; E(T1-S0) = 2.80 eV) gave more 

than 19 % external quantum efficiency.81

Besides carbazole-based and bipolar host materials the class of ultra high band gap host 

materials (UGH) was developed for the use in deep blue OLED devices.

 

82,83

Figure 

14

 These UGH 

materials are often arylsilane-based and exhibit large optical energy gaps in the range of 

3.8 eV and 4.4 eV and high triplet energies up to 3.5 eV. As a result, the excitation of the 

phosphorescent dopant takes place via direct charge trapping on the emitter. In 

 some examples of UGH materials are shown.  

SiSi SiSi

UGH3 BSB  

Figure 14. Molecular structures of ultra high band gap host materials (UGH). 1,3-bis(triphenylsilyl)benzene 
(UGH3), 4,4’-bis-triphenylsilanyl-biphenyl (BSB). 

 

UGH3 has an undesirable low Tg of 46°C which can be increased to 100°C for the 

compound BSB84

 

 by insertion of a biphenyl unit. However, the triplet energy of BSB is 

concomitantly lowered to 2.8 eV compared to 3.5 eV for UGH3. An OLED device based 

on the blue phosphor bis(4,6-difluorophenylpyridinato)-4-(pyridin-2-yl)-1,2,3-triazolate) 

iridium(III) (FIrpytz; CIE x 0.15, y 0.23, E(T1-S0) = 2.70 eV) gave a high external quantum 

efficiency of 19.3 %. However, in UGH materials the poor charge transporting properties 

due to the large energy band gap result in high drive voltages.  
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3 Aim of the Thesis 

The development of highly efficient blue phosphorescent OLEDs is still one of the major 

obstacles which need to be overcome to realise OLED based lighting. Thus, stable blue 

host-emitter systems have to be found. The objective of this thesis is the synthesis and 

characterisation of novel host materials for blue phosphorescent emitters and their 

application in organic light-emitting diodes. In the design of the host material several 

aspects have to be taken into account: High thermal and morphological stability is 

essential to enable the fabrication by thermal evaporation and to ensure a long-term 

stability against crystallisation. Adequate energy levels help to reduce energetic barriers 

for charge carrier injection. Additionally, the host material should provide balanced 

transport of both types of charge carriers. A major focus, however, is set on the triplet 

energy of the host material which has to be higher compared to the emitter. Efficient 

energy transfer from the host to a blue phosphorescent emitter requires a triplet energy 

of the host of at least 2.8 eV. Therefore, the conjugation within the molecules has to be 

confined. Several approaches to high triplet energies are subject of this thesis. Novel 

host materials based on two classes of materials are considered in this thesis: the well-

known class of carbazoles and the new class of low molecular weight cyclic 

phosphazenes. To gain a comprehensive understanding of structure-property relations 

with regard to thermal behaviour, optical and electronic properties the series of 

different host materials have to be thoroughly characterised. By incorporating the host 

materials in organic light-emitting devices their potential as host materials for saturated 

blue phosphorescent emitters is investigated. 

 
Figure 15. The two different classes of host materials with high triplet energies ΔE(T1-S0) described in the 
thesis. Left: Carbazole-based materials with different linker groups. Right: Cyclic phosphazenes with six 
aromatic subsituents (Ar). 
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4 Overview of the Thesis 

The thesis includes four publications. Three of them are presented in chapters 6 to 8 and 

one appears as appendix in chapter 9. Two publications have already been published, 

one is submitted to Advanced Functional Materials and one is intended for submission 

to Chemistry of Materials. 

All chapters deal with the synthesis and characterisation of host materials for blue 

phosphorescent emitters and their application in organic light-emitting diodes (OLEDs). 

To be considered suitable as host for blue phosphorescent emitters the material has to 

fulfil several requirements. Thus, in the design of all new host materials the following 

aims were pursued: the most crucial requirement for the host materials is the triplet 

energy higher compared to that of the emitter. In the case of blue phosphorescent 

emitters the triplet energy of the host needs to be at least 2.8 eV. Moreover, the host 

materials should reveal morphological stability to ensure homogeneous mixing of the 

emitter in the matrix and to prevent grain boundaries which may act as trap states. In 

the course of this thesis novel host materials of two different classes, carbazole and 

phosphazene based materials, have been developed. The central point leading through 

the thesis is the extension of the triplet energy by confinement of conjugation.  On the 

one hand, high triplet energy host materials based on carbazole were achieved either by 

introducing torsion in the molecular structure or by choosing a meta-linkage of the 

building blocks. On the other hand, in the phosphazene-based host materials a non-

conjugated type of linkage of the substituents to the central phosphazene ring leads to 

high triplet energies.   

All synthesised materials were thoroughly characterised by standard techniques. The 

triplet energies of the host materials were determined by low temperature emission 

spectroscopy. In addition, the electrochemical properties of the compounds were 

investigated by cyclic voltammetry (CV) or ultra-violet photoelectron spectroscopy 

(UPS). The thermal behaviour was characterised by thermogravimetric analysis (TGA) 

and differential scanning calorimetry (DSC). Additionally, computational calculations of 
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the electronic levels were carried out to facilitate the interpretation of experimental 

results. In devices the OLED performance of most of the materials could be tested.  

Carbazole is an often used building block in the design of host materials due to its high 

triplet energy of 3 eV. During my thesis two series of carbazole-based host materials 

were synthesised. Both series comprise derivatives of the well-known host material 4,4’- 

bis(carbazol-9-yl)-2,2’biphenyl (CBP). In the first approach described in chapter 6 the 

molecular structure of the parent CBP was modified with the aim to attain the desired 

properties. By applying a systematic variation of the substitution pattern a series of 

amorphous CBP-derivatives with high triplet energies was obtained. The synthesis of the 

CBP-derivatives was accomplished by Ullmann-coupling reactions of the (un)substituted 

carbazole units with the 4,4’-diiodobiphenyl units with either methyl or trifluoromethyl 

groups in the 2- and 2’-position. The steric hindrance due to the substitution of the 

central biphenyl introduces torsion, thus, leading to confined conjugation and high 

triplet energies of over 2.9 eV. By methyl substitution of the carbazole units 

electrochemical stability against oxidation could be demonstrated. Furthermore, the 

HOMO level of the compounds can be fine-tuned by methyl substitution on the 

carbazole moieties. A detailed study of the photo physical properties of the series of 

twisted CBP-derivatives is provided in chapter 9. 

In the second approach the basic structure of CBP was optimised by choosing a different 

type of linkage. Contrary to the para-linked CBP, in the novel derivatives the carbazole 

units were linked to the central biphenyl unit at the 3- and 3’-positions. This meta-

linkage in combination with a selective methyl substitution leads to a series of materials 

with high triplet energies and high glass transition temperatures. The synthesis was 

done in analogy to the previous series of CBP-derivatives. The design principle of 

introducing torsion from the first approach described in chapter 6 was also adopted, 

however, no further increase in triplet energy was observed. A publication dealing with 

the meta-linked CBP-derivatives can be found in chapter 7. 

Besides the carbazole-based host materials, another class of host materials with 

confined conjugation was investigated. Phosphazene-based host materials for blue 

phosphorescent OLEDs are scarcely described in literature. By attaching substituted 
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phenyl rings to the central phosphazene ring materials with very high triplet energies 

were obtained. The substituents were either linked by phosphorous-oxygen bonds to 

yield phenoxy substituted derivatives or by phosphorus-carbon bonds to yield phenyl 

substituted derivatives. Due to the non-conjugated linkage to the cyclic phosphazene 

ring the conjugation within the molecules is extremely confined. The phenoxy 

substituted cyclic phosphazenes were synthesised by nucleophilic substitution of 

chlorine atoms in hexachlorocyclotriphosphazene with phenolate groups while the 

phenyl substituted cyclic phosphazenes were formed in a cyclocondensation reaction of 

three equivalents of substituted phosphinic amides. The phenyl substituted cyclic 

phosphazenes have superior thermal properties compared to the phenoxy substituted 

derivatives. The detailed results of the phosphazene-based host materials are described 

in chapter 8. 

 

Figure 16. Different synthetic approaches to host materials with high triplet energy ΔE(T1-S0). 

 

In the following the key results of the individual publications are summarised. Detailed 

descriptions of the synthesis and characterisation of the different classes of host 

materials are provided in the respective chapters. 
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4.1 High triplet energy host materials by introducing torsion (Chapters 6 and 9) 

In chapter 6 the synthesis and characterisation of six CBP-based host materials with 

twisted molecular structure is presented. By a systematic variation of the substitution 

pattern the structure-property relations are investigated. The motivation was to modify 

the molecular structure and properties of the well-known host material 4,4’-

bis(carbazol-9-yl)-2,2’-biphenyl (CBP). Since CBP is a crystalline material we tried to 

modify the thermal properties of the new host materials. In addition, the low triplet 

energy limits the use of CBP as host for blue phosphorescent emitters. In order to 

increase the triplet energy the conjugation of the basic CBP-structure was decreased by 

introducing torsion. By attaching methyl or trifluoromethyl groups in the 2- and 2’-

positions of the central biphenyl unit twisted molecular structures are obtained. In 

Figure 17 the chemical structures of CBP and the twisted CBP-derivatives CDBP and 7-11 

are shown. The numbers of the molecules refer to the numbers in the publication.  

NN NN

R 3

R 1

R 2

R 3

R 2

R 1CBP
7-11

CDBP: R1, R2 = H, R3 = CH3
        7: R1= H, R2, R3 = CH3
        8: R1, R2, R3 = CH3
        9: R1, R2 = H, R3 = CF3
       10: R1 = H, R2 = CH3, R3 = CF3
       11: R1, R2 = CH3, R3 = CF3CDBP

 

Figure 17. Chemical structures of CBP and the twisted CBP-derivatives CDBP and 7-11. 
 

The synthesis was carried out by Ullmann-condensation of the 2,2’-methyl or 2,2’-

trifluoromethyl substituted 4,4’-diiodobiphenyl units and carbazole units with optional 

methyl substitution at the 3- and 6-positions. In contrast to the crystalline parent 

compound CBP, the host materials reveal amorphous behaviour as shown in the DSC 

traces in Figure 18. By introducing methyl or trifluoromethyl substituents in the 2- and 

2’-positions of the biphenyl unit the tendency to form molecular glasses is increased. 

With increasing methyl substitution at the outer carbazole units high glass transition 

temperatures up to 121° were obtained.  
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Figure 18. DSC traces of crystalline CBP and the amorphous host materials with methyl (8) and 
trifluoromethyl (11) substituents in the 2- and 2’-position of the central biphenyl, respectively. Shown are 
the first and second heating (red) and cooling (blue) traces at a scan rate 10 K min-1. 
 

The torsion angles obtained by DFT-calculations increases from 33° for the unsubstituted 

CBP to 82° and 73° for the twisted CH3- and CF3-substituted derivatives 8 and 11. Thus, 

the conjugation is effectively limited. This translates into higher triplet energies which 

can be extracted from the highest energy peak of low temperature emission spectra 

shown in Figure 19a. 

In a more detailed spectroscopic study (chapter 9) it was found that the monomeric 

phosphorescence in pure films is superimposed by triplet excimer emission centred at 

around 2.5-2.6 eV (cf. Figure 19 b and c). This unstructured emission from a sandwich-

type carbazole excimer has a much longer radiative lifetime for the more polar CF3-

substituted series than for the CH3-substituted series. Additionally, it was shown that the 

fluorescence of the polar CF3-substituted series is of charge-transfer character causing 

the observed unstructured and red-shifted fluorescence spectra compared to the CH3-

substituted series. These findings were supported by DFT-calculations (cf. Figure 19 d 

and e).  
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Figure 19. a)Phosphorescence spectra of CBP, 8 and 11 in a 10 wt.-% solid solution of PMMA (exc. 355 nm, 
10 K), also shown are the geometry optimised molecular structures of the compounds with the torsion 
angles. b) Phophorescence of 11 in a pure film (blue), in 10 wt.-% solid solution in PMMA (black) and the 
difference spectrum (red). c) Energy diagram illustrating the singlet and triplet energy levels for the 
carbazole monomer, the sandwich-type carbazole excimer and of the emitter FIrpic. d) Fluorescence 
spectra of 8 and 11 (in cyclohexane, exc. 300 nm). e) Scheme of singlet and triplet energy levels based on 
DFT-calculations illustrating the charge-transfer character of the fluorescence of 11. The predominant 
nature of transition is denoted by charge transfer (CT) or ππ* next to the energy levels. 
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In addition, by varying the substitution pattern to lower the energy barriers within a 

device the energy levels can be fine-tuned and adjusted to the neighbouring layer. The 

effects on electronic properties are summarised in Figure 20. By introducing the electron 

withdrawing CF3-substituents the HOMO level of 9 can be lowered by 0.1 eV compared 

to the CH3-analouge CDBP. Another trend to be observed is the increase of the HOMO 

level with increasing amount of methyl substitution at the carbazole units along the 

series CDBP, 7 to 8 as well as 9, 10 to 11. Moreover, the methyl substitution at the 

electroactive 3- and 6-positions of the carbazole unit prevents dimerisation reactions of 

oxidized radical cationic states, thus, leading to host materials which are 

electrochemically stable against oxidation in cyclic voltammetry measurements. 

 

Figure 20. Energy diagram showing the location of the HOMO and LUMO levels of CBP and the twisted 
CBP-derivatives. The triplet energy of each compound is illustrated as coloured bar.  
 

These results show that the thermal, optical and electronic properties of CBP can be 

optimised by applying a systematic variation of the substitution pattern of CBP in the 2- 

and 2’-position of the biphenyl unit and at the 3- and 6-position of the carbazole 

moieties. In an OLED device (setup: ITO//hole injection layer: PEDOT:PSS//hole transport 

layer: 35 nm MoO3-doped DPBIC//20 nm DPBIC//emission layer: 40 nm 8 doped with 

20 % light blue emitter//hole and exciton blocking layer: 2,6-dicarbazolyl-1,5-pyridine 

(PYD2)85//electron transport layer: 50 nm Alq3//LiF//100 nm Al) a peak external 

quantum efficiency of 14.7 % and a high brightness of 61000 cd/m2 could be achieved. 

At 1000 cd/m2 the external quantum efficiency of 14.4 % is still very high. 
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4.2 High triplet energy host materials by meta-linkage (Chapter 7) 

This chapter also deals with the synthesis and characterisation of CBP-derivatives. 

Contrary to the previously presented CBP-derivatives, here the series of CBP-derivatives 

is characterised by a meta-linkage of the carbazole units to the central biphenyl unit 

which is either unsubstituted (1 and 2) or additionally twisted by methyl substituents in 

the 2- and 2’-positions (3 and 4).  

Similar to the para-linked CBP-derivatives described in chapter 6 the synthesis was 

carried out by Ullmann-condensation (cf. Figure 21). The dihalogenated biphenyl units 

were either synthesised in a copper mediated homocoupling of 3-bromo-phenylboronic 

acid or by iodination of 2,2’-dimethylbiphenyl. This direct iodination of the biphenyl unit 

with iodine and iodic acid is a specific feature of the synthesis. It yields 5,5’-diiodo-2,2’-

dimethylbiphenyl – a simple and versatile building block for the synthesis of molecules 

with confined conjugation which to the best of our knowledge has not been described in 

literature before. 
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Figure 21. Synthetic routes to a) meta-linked CBP-derivatives 1 and 2 and b) twisted meta-linked CBP-
derivatives 3 and 4. Reagents and conditions: i) Cu(OAc)2, DMF, 100°C, 90 min; ii) I2, HIO3, H2SO4, H2O, CCl4, 
acetic acid, 80°C, 4 h; iii) Cu, K2CO3, 18-crown-6, o-dichlorobenzene, reflux, 24 h. 

All meta-linked CBP-derivatives 1-4 are thermally stable up to at least 315°C. While 

compound 1 shows crystalline behaviour in the DSC experiment, the introduction of 
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methyl groups at the carbazole and/or the biphenyl renders 2-4 amorphous materials 

with the highest Tg of 120°C for derivative 4. 

In the optical analysis the two pairs 1 and 3 and 2 and 4 show very similar absorption 

and fluorescence spectra since the carbazole chromophor in 1 and 3 and in 2 and 4 are 

identical. Due to the additional methyl substitution at the 3- and 6-position of the 

carbazole units the spectra of 2 and 4 are bathochromically shifted by ca. 13 nm 

compared to 1 and 3. The meta-linkage of the two carbazole units to the biphenyl unit 

provides effective reduction of conjugation as evident by comparing the triplet energies 

of CBP, 1 and 3 in Figure 22.  

Compared to the para-linked CBP, the highest energy peak of the meta-linked derivative 

1 is considerably blue shifted by 65 nm, which corresponds to an increase of triplet 

energy of 2.58 eV for CBP to 2.98 eV for 1. Yet, the additionally introduced torsion into 

the molecular structure as in 3 does not increase the triplet energy any further.  

 

Figure 22. Left: Phosphorescence spectra of the para-linked CBP, the meta-linked derivative 1 and the 
twisted meta-linked derivative 3 in a 10 wt.-% solid solution of PMMA (exc. 355 nm, 10 K). Right: Triplet 
energies of the meta-linked derivatives 1-4. 
 

The electrochemical behaviour was investigated by cyclic voltammetry. As already 

observed in the previous series of carbazole based host materials, methyl protection at 

the electroactive 3- and 6-positions of carbazole renders the material 2 and 4 stable 

against oxidation in cyclic voltammetry.  
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Figure 23. Cyclic voltammograms of 1 and 2 with methyl protection in the electroactive 3- and 6-positions 
of the carbazole units (five scans, scan rate 50 mV/sec, 2·10-3 M in CH2Cl2).  

 

To demonstrate the potential of the meta-linked CBP-derivatives OLEDs were fabricated 

with 1-4 as host materials for the blue phosphorescent emitter Ir(dbfmi). The optimised 

device structure and the obtained external quantum efficiencies versus luminance are 

shown in Figure 24 (for molecular structures see chapter 7). A mixed matrix system was 

chosen to facilitate hole injection from the hole transporting layer DPBIC. The emission 

layer consists of the hosts 1-4 : DPBIC : Ir(dbfmi) in a ratio of 75 : 20 : 5. Saturated blue 

emission was obtained with CIE-coordinates of x = 0.16 and y = 0.18.  The host materials 

2 and 4 gave significantly lower external quantum efficiencies compared with 1 and 3. 

Since the devices employing 2 and 4 with methyl groups at the carbazole units need 

higher operation voltages compared to 1 and 3 with unsubstituted carbazole units worse 

transport properties for 2 and 4 are assumed. The highest efficiency was achieved in the 

case of 3 with an external quantum efficiency of 8.7 % and a power efficiency of 

10.2 lm W-1 (at 100 cd m-2) and 6.1 % and 6.0 lm W-1 (at 1000 cd m-2), respectively. 
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Figure 24. Left: Energy level diagram of the OLED device employing 1 as host for Ir(dbfmi); Ionisation 
potentials and electron affinities are indicated. The dotted lines represent the levels of the emitter 
Ir(dbfmi). Right: External quantum efficiency-luminance characteristics of the devices with 1-4 as host 
material for Ir(dbfmi). 
 

In summary, the meta-linkage is an effective concept in designing host materials with 

high triplet energy. By selective methyl substitution the thermal properties could be 

improved. 

 

4.3 High triplet energy host materials by non-conjugated linkage (Chapter 8) 

Another approach to host materials with high triplet energy is realised in the class of 

phosphazenes. Here, especially the cyclotriphosphazenes are considered comprising a 

six-membered ring of alternating phosphorous and nitrogen atoms with alternating 

double bonds. Each phosphorous atom bears two substituents, in this case 

(un)substituted phenyl rings, which are attached via a non-conjugated type of linkage. 

Two sets of materials were synthesised: in the phenoxy substituted derivatives OP1-OP3 

the substituents are attached via phosphorous-oxygen bonds whereas in the phenyl 

substituted derivatives CP1-CP3 phosphorous-carbon bonds are formed (cf. Figure 25).  
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Figure 25. Synthesis and chemical structures of a) phenoxy substituted cyclic phosphazenes OP1-OP3 and 
b) phenyl substituted cyclic phosphazenes CP1-CP3. Reagents and conditions: i) NaH, abs. THF, 70°C, 48 h 
(catechol: RT, 24 h); i) MgRBr, abs. THF, RT, 2 h; ii) conc. HCl, 80°C, 1 h; iii) thionyl chloride, abs. toluene, 
55°C, 20 min; iv) NH3 (g), 0°C, 10 min; v) PPh3, CCl4, NEt3, benzene, dichloromethane, 40°C, 5 - 22 h. 

 

The phenoxy substituted cyclic phosphazenes were prepared by nucleophilic 

substitution of the six chlorine atoms in hexachlorocyclotriphosphazene with different 

phenolates as nucleophiles while the phenyl substituted cyclic phosphazenes were 

formed in a cyclocondensation reaction of three equivalents of substituted phosphinic 

amides. 

In the thermal analysis the higher mobility due to the phosphorous-oxygen linkage 

causes much lower transition temperatures for the phenoxy substituted than for the 

phenyl substituted phosphazenes. For example, OP1 already melts at 116°C. Due to the 

low Tgs of -12°C and 1°C, films of OP1 and OP2 readily crystallise. Using the bifunctional 

alcohol catechol introduces more rigidity reflected in the higher melting temperature of 

251°C for OP3. However, OP3 does not sublime without decomposition. Thus, the 

phenoxy substituted cyclic phosphazenes are less suited as host materials due to their 
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thermal properties. In contrast, the phenyl substituted phosphazenes CP1-CP3 show 

good thermal stability. Despite their crystalline behaviour in the DSC measurements 

amorphous films of CP1-CP3 can be prepared that are morphologically stable for 

months.  

Since the substituents are attached above and below the central ring plane conjugation 

across the phosphazene ring is prevented. Thus, the host materials reveal very high 

optical band gaps of more than 4.2 eV and as well very high triplet energies of more than 

3.2 eV (see Figure 26). 

 
Figure 26. Left: Geometry optimised structure of CP1. Right: phosphorescence spectra of CP1-CP3 (neat 
films, 5 K); the arrows indicate the small shoulders in the emission spectra taken for the determination of 
the triplet energy of the compounds. 
 

CP2 shows balanced transport properties for holes and electrons in single carrier 

devices. In an OLED with the saturated blue emitter Ir(dbmfi) (∆E(T1-S0) = 2.75 eV) a peak 

luminance of 5000 cd/m2 was reached at 13.5 V. At 100 cd m-2 and 1000 cd m-2 the 

power efficiencies are 4.9 lm W-1 and 2.3 lm W-1, respectively.  
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Figure 27. JV-characteristics of CP2 in e-only device (left) and h-only device (right). 

 

To summarise, phosphazene-based host materials with high triplet energies can be 

achieved by non-conjugated linkage of the substituents to the central phosphazene ring. 

It was shown that the phosphazene materials with phenyl substitution have superior 

properties compared to the materials with phenoxy substitution.  

 

 

Patent application 

In addition to the four publications presented in chapters 6 to 9, one patent was filed 

during the period of the thesis. The patent (WO 2009153276 A1)1

                                                      
1 Inventors: Evelyn Fuchs (BASF SE), Oliver Molt (BASF SE), Nicolle Langer (BASF SE), Christian Lennartz 
(BASF SE), Peter Strohriegl (Universität Bayreuth), Pamela Schrögel (Universität Bayreuth), Applicant: 
BASF SE.  

  was published on 

December 23, 2009 and deals with “Cyclic phosphazene compounds and the use thereof 

in organic light-emitting diodes”. 
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Individual contributions to joint publications 

In the following, the contributions of the individual authors to the papers are specified. 

 

Chapter 6 

This work is published in Journal of Materials Chemistry (2011, 21, 2266) with the title: 

“A Series of CBP-Derivatives as Host Materials for Blue Phosphorescent Organic Light-

Emitting Diodes” 

by Pamela Schrögel, Aušra Tomkevičienė, Peter Strohriegl, Sebastian T. Hoffmann, Anna 

Köhler and Christian Lennartz.  

I synthesised most of the materials for this publication. I characterised all materials, 

investigated the thermal, optical and electrochemical properties and I wrote the 

publication.  

Aušra Tomkevičienė helped with the synthesis of some of the host materials. Sebastian 

Hoffmann carried out the low temperature time-gated spectroscopy. Christian Lennartz 

did the computational calculations. Anna Köhler and Peter Strohriegl supervised the 

project and corrected the manuscript. 

 

Chapter 7 

This work is accepted by Organic Electronics with the title: 

“Meta-linked CBP-derivatives As Host Materials For A Blue Iridium Carbene Complex”  

by Pamela Schrögel, Nicolle Langer, Christian Schildknecht, Gerhard Wagenblast, 

Christian Lennartz and Peter Strohriegl. 
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I synthesized three of the host materials and Nicolle Langer provided one host material 

for this publication. I characterised all materials, investigated the thermal, optical and 

electrochemical properties and I wrote the publication. 

Gerhard Wagenblast was responsible for the low temperature time-gated spectroscopy. 

Christian Schildknecht fabricated the OLED devices and Christian Lennartz carried out 

computational calculations. Peter Strohriegl supervised the project and corrected the 

manuscript. 

 

Chapter 8 

This work is submitted to Chemistry of Materials with the title: 

“Phosphazene-based Host Materials for the Use in Blue Phosphorescent OLEDs” 

by Pamela Schrögel, Matthias Hoping, Wolfgang Kowalsky, Arvid Hunze, Herbert Börner, 

Gerhard Wagenblast, Christian Lennartz and Peter Strohriegl. 

I synthesised and characterised all materials for this publication. I investigated the 

thermal and optical properties and I wrote the publication.  

Matthias Hoping fabricated the OLED devices, Arvid Hunze fabricated the single carrier 

devices and Herbert Börner carried out the ultra-violet photoelectron spectroscopy. 

Gerhard Wagenblast was responsible for the low temperature time-gated spectroscopy 

and Christian Lennartz did the computational calculations. Wolfgang Kowalsky and Peter 

Strohriegl supervised the project and corrected the manuscript.  

 

Chapter 9: Appendix 

This work is published in Journal of Physical Chemistry B (2011, 115, 414) with the title:  

“Triplet Excimer Emission in a Series of 4,4’-bis(N-carbazolyl)-2,2’-biphenyl Derivatives” 



Overview of the Thesis| 45 
 

by Sebstian T. Hoffmann, Pamela Schrögel, Michael Rothmann, Rodrigo Albuquerque, 

Peter Strohriegl and Anna Köhler. 

This work appears as appendix since the major work concerning optical spectroscopy 

was carried out by Sebastian Hoffmann. Sebastian Hoffmann wrote the publication. 

I synthesised the materials which were investigated in this study. I was involved in 

scientific discussion and corrected the manuscript. Rodrigo Albuquerque assisted in the 

computational calculations and Michael Rothmann was involved in scientific discussions. 

Peter Strohriegl and Anna Köhler supervised the project and corrected the manuscript.  
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Abstract 

We report a series of CBP-derivatives with superior thermal and electronic properties for 

the use as host materials for blue electrophosphorescent organic light emitting diodes. 

We applied a systematic variation of the substitution pattern in the 2- and 2’-position of 

the biphenyl unit and the 3- and 6-positions of the carbazole moieties. In contrast to the 

crystalline parent compound CBP, all methyl and trifluoromethyl substituted derivatives 

show amorphous behaviour. Substitution in the 2- and 2’-position of the biphenyl causes 

a twisting of the phenyl rings. Hence, the degree of conjugation of the molecules is 

limited which leads to enlarged triplet energies of approximately 2.95 eV compared to 

2.58 eV for CBP. The methyl substitution at the active 3- and 6-positions of the pendant 

carbazole units yields materials with an electrochemically stable behavior against 

oxidation. 

 

Keywords 

CBP, blue phosphorescent OLEDs, carbazole, host materials, electrochemical stability. 
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Introduction 

Recent developments of efficient emitters for organic light emitting diodes (OLEDs) are 

often focused on phosphorescent transition metal complexes. Due to elementary spin 

statistics 75 % triplet excitons and 25 % singlet excitons are formed on initial charge 

recombination. By fast intersystem crossing all singlet excitons will be efficiently 

converted to the triplet state. Hence, with these phosphorescent emitters the 

theoretical limit of the internal quantum efficiency is 100%.1,2,3 Due to concentration 

quenching effects phosphorescent materials show a loss in efficiency if the neat material 

is used in OLEDs. To avoid self quenching it is necessary to dope the emitters into an 

appropriate host. It is essential that the triplet energy (∆E T1-So) of the host is higher 

than that of the emitter in order to prevent energy back transfer from the 

phosphorescent guest to the host. 4,4’-Bis(9-carbazolyl)-biphenyl (CBP) is a widely used 

matrix material for phosphorescent emitters. Due to its triplet energy ∆E (T1-So) of 

2.55 eV4, CBP is a suitable matrix for green phosphorescent emitters like tris(2-

phenylpyridine)iridium(III) Ir(ppy)3.3,5 Blue emitting materials such as the commonly used 

bis(4,6-difluorophenyl)-pyridinato-N,C2)picolinate-iridium(III) FIrpic (∆E (T1-So) = 

2.62 eV6) require hosts with higher triplet energies. The key to such materials is to 

confine the conjugated system in the host molecules. In N,N´-dicarbazolyl-3,5-benzene 

(mCP) this is accomplished by exchanging the biphenyl group by a single benzene unit in 

combination with meta conjugation instead of para which leads to a triplet energy of 

approximately 2.90 eV.7,8 Another approach to enlarge the triplet energy of CBP based 

materials comprises the attachment of two methyl groups in the 2- and 2’-position of 

the central biphenyl which leads to 4,4’-bis(9-carbazolyl)-2,2’-dimethylbiphenyl (CDBP) 

with a triplet energy of 2.79 eV.4,9,10 Over the years many different carbazole based host 

materials have been described.11,12,13 Ma et al. recently described a series of non-

conjugated carbazole host materials where the linkage groups between two carbazole 

moieties were varied. This leads to a loss of conjugation in the molecules and high triplet 

energies.14  

Another crucial requirement for the successful operation of OLEDs is the ability of the 

materials to form stable amorphous films.15 This property guarantees that the emitter is 

uniformly diluted in the host to minimize the effect of concentration quenching. In 
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addition, the absence of grain boundaries, which may act as trap states, makes the use 

of organic glasses as OLED materials advantageous.16,17 The glass transition temperature 

of materials for OLED applications is ideally above 100°C. In general, the introduction of 

bulky substituents hinders packing of the molecules and leads to an amorphous behavior 

of the material. On the other hand, detrimental effects on the charge carrier transport 

properties are observed. 9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-carbazole (CzSi), 

for example, combines appropriate thermal properties with a confined conjugated 

system; however, the hole mobility of 5 x 10-5 cm2/V·s is rather low.18 By exchanging the 

triphenylsilyl groups by trityl groups the hole mobility rises by one order of magnitude to 

5 x 10-4 cm2/V·s. However, this material shows a stronger efficiency roll off at higher 

current densities than CzSi.19 

We have prepared a series of CBP derivatives in which the substitution pattern in both 

the 2- and 2’-positions of the biphenyl unit and in the 3- and 6-positions of the carbazole 

unit has been systematically varied (Scheme 1). The attachment of the methyl and 

trifluoromethyl groups in these positions leads to amorphous materials with large triplet 

energies making them suitable as hosts for blue phosphorescent emitters. 
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Scheme 1. Chemical structures of the substituted 4,4’-bis(9-carbazolyl)-biphenyls. 

In this work we report the synthesis of five amorphous derivatives of CBP together with 

their thermal and optical properties. The energy levels have been measured by cyclic 

voltammetry and absorption measurements. Furthermore, a detailed cyclic voltammetry 

study of the materials gives insight into the electrochemical stability of the CBP 

derivatives. In addition, DFT calculations were carried out to obtain the ground state 

geometries of the CBP derivatives. 
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Results and Discussion 

Synthesis 

In a two step synthesis 3-methylcarbazole 3 and 3,6-dimethylcarbazole 4 were prepared 

from 4-methyl-phenylhydrazine and cyclohexanone or 4-methyl-cyclohexanone as the 

starting materials in a Borsche reaction (Scheme 2a). The first step yields the 1,2,3,4-

tetrahydrocarbazoles 1 and 2 which are subsequently dehydrogenated with palladium 

on activated charcoal.20,21 
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Scheme 2. Synthetic routes to a) methyl substituted carbazoles b) tilted biphenyls and c) methyl 

substituted CBP derivatives. Reagents and conditions: i) acetic acid, 80°C, 30 min; ii) Pd(C), 1,2,4-
trimethylbenzene, 170°C, 6 h; iii) H2O, HCl, NaNO2, 0-5°C; iv) I2, NaI, dichloromethane, r.t., 24 h; v) Cu, 
K2CO3, 18-crown-6, o-dichlorobenzene, reflux, 24 h. 

 

The synthesis of the diiodobiphenyls is shown in Scheme 2b. 4,4’-Diiodo-2,2’-

dimethylbiphenyl 5 and 4,4’-diiodo-2,2’-bis(trifluoromethyl)biphenyl 6 were prepared by 

diazotation of the corresponding diamine and subsequent reaction with sodium iodide.22 

The carbazole containing host materials 7-11 were prepared via the Ullmann coupling 
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reaction of diiodo compounds 5 or 6 with carbazole or the methylcarbazoles 3 and 4, 

respectively (Scheme 2c). Mass spectrometry, 1H-NMR spectroscopy and 13C-NMR 

spectroscopy were used to identify the materials and the data are given in the 

experimental part. The purity of the materials was monitored by SEC measurements. 

 

Thermal properties 

The thermal properties of the newly synthesised compounds were examined by 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) in a 

nitrogen atmosphere at a scanning rate of 10 K min-1. All materials reveal high thermal 

stabilities, with an onset of weight loss at temperatures (TID) exceeding 310oC, as 

determined by TGA measurements (Table 1).  

In  

Figure 1, the DSC thermograms of CBP, the methyl substituted compound 8 and the 

trifluoromethyl derivative 11 are presented. The parent compound CBP shows a 

crystalline behaviour in the DSC. The melting is observed at 285°C and upon cooling the 

material crystallises at 183°C. In contrast, compound 8 exhibits a melting peak at 277°C. 

In the cooling cycle no crystallisation is observed as the material solidifies in an 

amorphous phase. In the second heating curve the glass transition is observed at 121°C 

followed by a recrystallisation at 200°C. The CF3-substituted derivative 11 remains in the 

amorphous phase after the first melting at 233°C. In the second heating only the glass 

transition at 119°C is observed. 

 

Figure 1. DSC traces of carbazole based compounds CBP, 8, and 11 at a scan rate of 10 K min
-1

, N2 
atmosphere. Shown are from top to bottom: the first heating (black), second heating (black), first cooling 
(grey) and second cooling (grey) traces. 
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These results show that by the introduction of additional methyl- and trifluoromethyl 

groups into the basic CBP structure the thermal properties are improved. While the 

parent compound CBP is highly crystalline, all CBP derivatives 7-11 reveal high glass 

transition temperatures ranging from 94 to 121°C and all materials remain amorphous 

upon cooling (Table 1). For OLED applications materials with high glass transition 

temperatures (Tg ~ 100°C) are advantageous for the operational stability of the device. 

In an morphologically stable amorphous host material the emitter molecules are 

homogenously diluted which prevents concentration quenching. The melting, 

crystallization and glass transition temperatures of all derivatives are summarised in 

Table 1. 

Table 1. Thermal properties of the carbazole-substituted biphenyls CBP, CDBP, and 7-11.
d
 

 Tg /
oC Tm /oC Tcr /

oC TID
a /oC 

CBP -- 283 205 365 

CDBP 94 -- -- 310 

7 106 -- -- 310 

8 121 277 200c 312 

9 100 232 -- 310 

10 105 210b -- 337 

11 119 233b -- 333 
a
 TID is the temperature at which an initial loss of mass was observed in a thermogravimetric experiment 

with a heating rate of 10 K min
-1

 in a nitrogen atmosphere. 
b
 Observed only in the first heating scan. 

c
 Observed during the heating scan.  

d 
Tg: glass-transition temperatures, Tm: melting temperatures, Tcr: crystallization temperatures and TID: 

initial decomposition temperatures.  

 

Optical properties  

The compounds CBP, CDBP and 7-11 were analyzed by UV/Vis, fluorescence and 

phosphorescence spectroscopy. In addition, the molecular structures of all compounds 

were simulated via DFT-calculations to facilitate the interpretation of the experimental 

results. The geometry optimized structures of CBP, 8, and 11 are visualized in Figure 2. 

Due to the steric demand of the subsituents at the 2- and 2’-positions at the biphenyl 
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unit, 8 and 11 reveal twisted molecular structures with torsion angles between the two 

phenyl rings of the biphenyl unit of 82° and 74° which are significantly higher compared 

to the more planar CBP (33°).  

 

Figure 2. Geometry optimized structures of CBP, 8, and 11 (top to bottom) with different torsion angles. 

Figure 3 displays the room temperature absorption and fluorescence spectra taken from 

10-5 M cyclohexane solutions together with the phosphorescence spectra obtained from 

10 wt% solid solutions of CBP, 8, and 11 in PMMA at 10 K. In order to understand how 

the substitutions affect the excited states of these compounds, we first consider the 

effect of the methyl substitution at the central biphenyl unit by comparing CBP and 8. 

For 8, the first and second absorption are at 351 nm and 300 nm which can both be 

assigned to the absorption of the 3,6-dimethylcarbazole units. In the case of CBP, the 

features associated with transitions localized on the carbazole are still present at 339 nm 

and 290 nm. The observed bathochromic shift of approximately 10 nm in compound 8 is 

caused by the additional methyl groups at the carbazole units. In CBP however, there is 

an additional broad absorption centred at about 320 nm. This feature is likely to be 

associated with transitions between orbitals that involve the central biphenyl unit of the 

molecule. In the fluorescence spectra, in contrast, CBP and 8 show very similar 

vibrational structures with a strong maximum at about 355 nm for both compounds. We 
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now consider how changing the substituents on the central biphenyl unit from methyl to 

trifluoromethyl affects the optical transitions. While 8 shows the signature of the 

carbazole-based transitions in the absorption and fluorescence spectra, 11 has an 

additional contribution to the absorption, centred at about 325 nm. As for CBP, we 

consider the additional absorption to involve the central biphenyl unit. The main 

difference of compound 11 compared to CBP and 8 is the observed featureless 

fluorescence centered at 410 nm. The broad bathochromically shifted fluorescence is 

clearly not due to transitions localized on the carbazole. The absence of vibrational fine 

structure rather points to a charge-transfer type transition, for example from the 

carbazole moiety to the central, trifluoromethyl substituted biphenyl rings.  

For applications of compound 7-11 as host materials for blue phosphorescent emitters 

the triplet energies are of major interest. In the phosphorescence spectra of compound 

8 and 11, we observe two sharp peaks at 420 nm and at 450 nm as well as a broad peak 

centred at 480 nm. On the contrary, the emission of CBP is bathochromically shifted by 

60 nm. As a result, 8 and 11 reveal a triplet energy of approximately 2.95 eV (420 nm), 

significantly higher than that of CBP of 2.58 eV (480 nm). Apparently, the conjugation 

between the two phenyl rings is interrupted by introducing CH3 and CF3 substituents at 

the 2- and 2’-positions of the central biphenyl leading to higher triplet energies.  
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Figure 3. Comparison of the absorption (dark grey with circles), fluorescence (light grey with triangles) and 
phosphorescence (black) spectra of CBP, 8, and 11. Absorption and fluorescence were taken in 10

-5 
M 

cyclohexane solutions at 300 K, phosphorescence was measured in 10 wt% solid solutions in PMMA at 
10 K. 

 

All results of the photophysical investigations of compounds CBP, CDBP, and 7-11 are 

summarized in Table 2. With increasing CH3-content on the pendant carbazole units in 

the series CDBP, 7, and 8 as well as in the series of 9, 10, and 11 a small bathochromic 

shift is noticeable in both the absorption and fluorescence spectra. We attribute this to 

the electron donating effect of the CH3-units. All compounds which are twisted by 

substituents at the central biphenyl show triplet energies of approximately 2.95 eV. 

These high triplet energies of the materials CDBP and 7-11 make them suitable host 

materials for deep blue phosphorescent emitters. It should be noted that the triplet 

energies of CBP and CDBP are slightly higher than in neat films reported by Tokito et 

al.4,9,10 as in our case the phosphorescence spectroscopy was carried out in 10 wt-% solid 

solutions of PMMA. 
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Table 2. Optical properties of CBP, CDBP and the CBP-derivatives 7-11.  

 λ EA
a /nm 

solution 

λ EA
b

 /nm 

film 

λ RT
em 

c
 

/nm 

λ 10K
em 

d
  

/nm 

ΔE(S0-S1)e 

/eV 

ΔE(T1-S0) 

/eV 

CBP 350 357 356, 374 477 3.47 2.58 

CDBP 346 353 342, 358 419 3.51 2.95 

7 353 361 349, 366 417 3.43 2.97 

8 357 365 355, 372 421 3.39 2.95 

9 343 350 368 419 3.54 2.95 

10 350 358 373 419 3.46 2.95 

11 353 360 379 420 3.44 2.95 

a
 Edge of absorption measured in 10

-5 
M cyclohexane solutions at room temperature. 

b 
Edge of absorption measured on neat films at room temperature. 

c
 Wavelengths of the intensity maxima of the fluorescence at 300 nm excitation of 10

-5 
M cyclohexane 

solutions at room temperature. 
d
 Wavelength of the highest energy maximum measured on film samples of 10 wt-% compound in PMMA 

at 10 K. 
e 

The optical band gap was determined from the UV/Vis absorption onset of neat films. 

 

Cyclic voltammetry 

 The electrochemical behaviour of the CBP-derivatives was studied by cyclic 

voltammetry in a conventional three-electrode cell using a platinum working electrode, 

a platinum wire counter electrode, and a Ag/AgNO3 reference electrode. In particular, 

the oxidation processes were investigated in dichloromethane solutions. The HOMO 

levels of the compounds were estimated from the half-wave potential of the first 

oxidation relative to ferrocene. The LUMO levels were calculated by adding the optical 

band gap to the HOMO levels. Table 3 lists the values for the HOMO and LUMO levels. In 

the CV-experiments CBP and CDBP show very similar HOMO levels of 5.63 eV and 

5.64 eV. This observation is not surprising as in both molecules the HOMO is mainly 

located on the electron rich carbazole units. In the case of the methyl substitution in the 

3- and 6-positions of the carbazole units the additional +I-effect on the carbazole shifts 

the HOMO levels to slightly higher values. The HOMO level is 5.56 eV for compound 7 
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and 5.52 eV for compound 8. In the case of the compounds 9-11 the strong –I-effect of 

the trifluoromethyl substituents causes a decrease of the HOMO level of approximately 

0.1 eV (5.74 eV for 9) in comparison with CDBP (5.64 eV). By the subsequent 

introduction of methyl groups at the carbazole moieties in compounds 10 and 11 the 

HOMO level rises again to 5.68 eV and 5.65 eV, respectively. In contrast, the LUMO 

levels of all compounds are less affected by the introduction of the substituents on the 

carbazole units. However, in compounds 9-11 the trifluoromethyl substitution at the 

biphenyl lowers the LUMO level slightly by approximately 8 meV compared to 

compounds CDBP, 7, and 8. 

Table 3. Experimentally determined energy levels of the CBP derivatives. 

 HOMOa /eV LUMOb/eV 

CBP 5.63 

5.64 

5.56 

5.52 

5.74 

5.68 

5.65 

2.16 

2.13 

2.13 

2.13 

2.20 

2.22 

2.21 

CDBP 

7 

8 

9 

10 

11 

a
 Estimated from the half-wave potential of the first oxidation in the cyclic voltammetry measurements. 

b
 Estimated from the HOMO values and the optical band gap. 

 

These considerations show that the energy levels of the CBP derivatives can be fine-

tuned to some extent by the variation of the substitution pattern at the connecting 

biphenyl moiety as well as at the pendant carbazoles. Especially, the HOMO levels can 

be varied as can be seen in Figure 4. Thus, with these slight variations in the molecular 

structure the energy levels of the different layers in an OLED can be adjusted to each 

other in order to minimize energy barriers within the device. 



Twisted CBP-Derivatives| 63 

 

Figure 4. Energy diagram showing the location of the HOMO and LUMO levels of the different CBP-
derivatives. The solid line displays the position of the triplet energies ΔE(T1-S0). 

 

Cyclic voltammetry experiments with repeated cycles give an insight into the 

electrochemical stability of the CBP derivatives. As radical cations and anions are 

involved in charge transport processes the electrochemical stability of the materials 

used in electroluminescent devices contributes to the overall stability of the device. 

Figure 5 shows the cyclic voltammograms with five repeated oxidation cycles of CBP, 7, 

and 8 in 2 x 10-3 M dichloromethane solutions.  
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Figure 5. Cyclic voltammograms of CBP, 7, and 8 (five scans, scan rate 50 mV/sec, 2 x 10
-3

 M in CH2Cl2). 

 

CBP reveals an irreversible oxidation behaviour as here oligomerisation reactions of the 

oxidised species can take place at the active 3- and 6-positions of the carbazole units. 

This kind of dimerisation is known from triphenylamine and N-phenylcarbazole. The 
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mechanism is shown in Figure 6.23,24 In the first step the molecule is oxidised at the 

electron lone pair of the nitrogen atom and a radical cation is formed. The radical 

stabilises into the 3-position of the carbazole where recombination of two radical 

molecules takes place under elimination of two protons. 

N

N

N N N

H

-2H+

2

- e-

+ e-

.+

.

+

Figure 6. Formation of the radical cation of N-phenylcarbazole upon oxidation and subsequent 

dimerisation at the active 3-position. 

 

The oligomeric species are oxidised more easily, i.e. at lower voltages. In the cyclic 

voltammogram the emerging signal at 0.6 V to 0.7 V is assigned to the oxidation of the 

newly formed oligomeric species. The electrochemical behaviour of 7 is very similar to 

CBP. However, the signal between 0.4 V and 0.6 V indicating the coupling of two 

carbazole units is growing more slowly compared with CBP, as in compound 7 

oligomerisation can occur only at the unblocked 6-positions. In contrast, compound 8 

reveals a fully reversible oxidation behaviour which can be attributed to the complete 

blocking of the acitve 3- and 6-positions of the carbazole units.  

 

Experimental Section 

Materials 

 All chemicals and reagents were used as received from commercial sources without 

further purification. 2,2’-Bis(trifluoromethyl)benzidine was synthesised according to a 

procedure described by Rogers et al.25 The solvents for reactions and purification were 

all distilled before use. 
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Characterisation 

 1H- and 13C-NMR spectra were recorded with a Bruker AC 300 (300 MHz, 75 MHz) and 

CDCl3 as solvent. All data are given as chemical shifts δ (ppm) downfield from Si(CH3)4. 

For optical measurements, 10-5 M cyclohexane solutions of the materials as well as thin 

films on quartz substrates were prepared. Both, neat films and films with 10 wt% of the 

compound in poly(methylmethacrylate) were prepared by spincoating. The UV/VIS 

spectra were measured in solution and on neat films with a Hitachi U-3000 

spectrometer. Fluorescence spectra in solution were obtained from a Shimadzu 

spectrofluorophotometer RF-5301PC using excitation at 300 nm. The phosphorescence 

spectra were taken with the thin film samples mounted in a continuous flow helium 

cryostat. The temperature was controlled with an Oxford Intelligent temperature 

controller-4 (ITC-502). Excitation was provided by a pulsed, frequency-tripled NdYAG 

laser at 355 nm (3.49 eV) (Spectron SL401). This wavelength corresponds to the red tail 

of the first absorption band in our compounds. The duration of the laser pulses was 6 ns 

and the laser was operated at a repetition rate of 10 Hz by a self made electronic delay 

generator. The light emitted by the sample was dispersed and subsequently detected by 

a time gated intensified CCD camera (Andor iStar DH734-18F-9AM). The measurements 

were taken with a delay time of 500 ns and a gate width of 60 ms. The measurements 

were carried out at an excitation density of about 250 Jcm-2 pulse-1 on films of about 

150 nm thickness as determined by a Dektak profilometer. To increase the signal-to-

noise-ratio, all spectra were obtained by averaging over 2000 laser shots. For differential 

scanning calorimetry measurements (DSC) a Diamond DSC apparatus from Perkin Elmer 

was used (heating/cooling rate 10 K min-1). Thermaographimetric analysis (TGA) was 

performed on a Mettler Toledo TGA/SDTA815e machine at a heating rate of 10 K min-1 

in a nitrogen atmosphere. Cyclic voltammetry measurements were carried out in 

absolute solvents measuring at a platinum working electrode versus a Ag/AgNO3 

reference electrode. Each measurement was calibrated against an internal standard 

(ferrocene/ferrocenium redox system). The purity of the target compounds was checked 

with a Waters size exclusion chromatography system (SEC) for oligomers (analytical 

columns: crosslinked polystyrene gel (Polymer Laboratories), length: 2×60 cm, width: 0.8 
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cm, particle size: 5 µm, pore size 100 Å, eluent THF (0.5 mL min-1, 80 bar), polystyrene 

standard). 

Calculations 

Geometries were optimized using the BP86-functional26,27 in combination with a split-

valence basis set (SV(P)) including polarization functions on all heavy atoms.28 All 

calculations were carried out with the turbomole program package.29 

Synthetic procedures  

General procedure for the preparation of methyl substituted carbazoles 

3-Methyl-6,7,8,9-tetrahydro-5H-carbazole (1). 3-Methylphenylhydrazine hydrochloride 

(10.0 g, 63 mmol) was added to a solution of cyclohexanone (6.2 g, 63 mmol) in acetic 

acid (30 mL) under an argon atmosphere over a period of one hour. After stirring at 80°C 

for half an hour the reaction mixture was extracted with dichloromethane and washed 

several times with 5 % aqueous sodium hydrogen carbonate solution to neutralise the 

acetic acid. After drying the organic layer over anhydrous sodium sulphate the solvent 

was evaporated. Yield: 9.25 g (79 %). EI-MS m/z: 185 (95, M+). 

3,6-Dimethyl-6,7,8,9-tetrahydro-5H-carbazole (2). Compound 2 was prepared according 

to the procedure described for 1. Yield: 93 %. 

3-Methylcarbazole (3). To 9.25 g (50 mmol) of 3-methyl-6,7,8,9-tetrahydro-5H-carbazole 

(1) in 30 mL of 1,2,4-trimethylbenzene was added 10 % palladium on activated charcoal 

(2.66 g, 25 mmol). The mixture was refluxed for 6 h. In order to remove the catalyst the 

mixture was diluted with dichloromethane and filtered over neutral aluminium oxide. 

After the removal of dichloromethane, hexane was added and the product was obtained 

as white precipitate. Yield: (88 %). EI-MS m/z: 181 (100, M+). 1H-NMR (300 MHz, CDCl3), 

δ (ppm): 8.06 (dd, 1H), 7.94 (s, 1H, NH), 7.90 (ds, 1H), 7.41 (m, 2H), 7.35 (d, 1 H), 7.27-

7.21 (m, 2H), 2.55 (s, 3H). 13C-NMR (75 MHz, CDCl3), δ (ppm): 139.82, 137.71, 137.26, 

128.75, 127.18, 125.65, 123.14, 120.26, 120.24, 119.22, 110.55, 110.24, 21.44.  

3,6-Dimethylcarbazole (4). Compound 4 was prepared according to the procedure given 

for 3. Yield: (86 %). EI-MS m/z: 195 (100, M+). 1H NMR (300 MHz, CDCl3), δ (ppm): 
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7.85 (m, 2H), 7.84 (s, 1H, NH), 7.31 (d, 2H), 7.24 (dd, 2H), 2.55 (s, 6H). 13C-NMR (75 MHz, 

CDCl3), δ (ppm): 138.07, 128.48, 126.99, 123.41, 120.18, 110.22, 21.44.  

 

General procedure for the preparation of substituted biphenyls 

4,4’-Diiodo-2,2’-dimethylbiphenyl (5). 2,2’-Dimethylbenzidine dihydrochloride (14.3 g, 50 

mmol) was suspended in 125 mL of water and 15 mL of conc. hydrochloric acid and the 

suspension was cooled to 0-5oC. A solution of sodium nitrite (7.18 g, 100 mmol) in 20 mL 

of water was added drop wise. The resulting cold tetrazonium salt solution was added 

slowly to a well-stirred solution of iodine (30.5 g, 120 mmol) and sodium iodide (30.0 g, 

200 mmol) in 50 mL of water and 100 mL of dichloromethane at a temperature below 

5oC. The mixture was stirred for 24 h at room temperature and the excess of iodine was 

removed by the addition of a sodium thiosulfate solution. The product was extracted 

with dichloromethane and washed several times with water. After drying the organic 

layer over anhydrous sodium sulphate, the solvent was evaporated and the residue was 

purified by column chromatography on silica gel with hexane as eluent to afford 

compound 5. Yield: 16.6 g (76 %). EI-MS m/z: 434 (100, M+). 1H-NMR (300 MHz, CDCl3), δ 

(ppm): 7.63 (d, 2H), 7.55 (dd, 2H), 6.79 (d, 2H). 1.98 (s, 6H). 13C-NMR (75 MHz, CDCl3), δ 

(ppm): 139.99, 138.75, 138.22, 134.81, 130.87, 93.13, 19.47.  

4,4’-Diiodo-2,2’-bis(trifluoromethyl)biphenyl (6). Compound 6 was prepared according to 

the procedure given for 5. Yield: 1.91 g (75 %). EI-MS m/z: 542 (100, M+). 1H-NMR (300 

MHz, CDCl3), δ (ppm): 8.07 (d, 2H), 7.89 (dd, 2H), 6.99 (d, 2H). 13C-NMR (75 MHz, CDCl3), 

δ (ppm): 139.97, 135.88, 135.06, 132.86, 130.32 (q, 2J (C-F) = 30.8 Hz), 122.56 (q, 1J (C-F) 

= 273.0 Hz), 93.55.  

General procedure for the Ullmann condensation 

4,4’-Bis(3-methylcarbazolyl)-2,2’-dimethylbiphenyl (7). 4,4’-Diiodo-2,2’-dimethylbiphenyl 

(5) (1 g, 2.3 mmol), 3-methylcarbazole (3) (1.0 g, 5.52 mmol), potassium carbonate (2.5 

g, 18.4 mmol), copper powder (0.58 g, 9.2 mmol) and 18-crown-6 (0.12 mg, 0.46 mmol) 

were refluxed in 15 mL of o-dichlorobenzene in an argon atmosphere for 24 h. Copper 

and inorganic salts were filtered off and the solvent was evaporated. Column 

chromatography on silica gel with hexane/tetrahydrofurane (20 : 1) as eluent yielded 
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0.72 g (58 %) of 7 as white solid. EI-MS m/z: 540 (100, M+). 1H-NMR (300 MHz, CDCl3), δ 

(ppm): 8.14 (d, 4H), 7.97 (m, 4H), 7.55-7.43 (m, 12H), 7.32-7.27 (m, 4H), 2.58 (s, 6H), 

2.29 (s, 6H). 13C-NMR (75 MHz, CDCl3), δ (ppm): 141.11, 139.83, 139.23, 137.88, 137.11, 

130.78, 129.31, 128.19, 127.24, 125.76, 124.16, 123.57, 123.30, 120.28, 119.72, 109.88, 

109.65, 21.45, 20.17. Tm: --°C; Tg: 106°C. 

4,4’-Bis(9-carbazolyl)-2,2’-dimethylbiphenyl (CDBP), 4,4’-bis(3,6-dimethylcarbazolyl)-

2,2’-dimethylbiphenyl (8), 4,4’-bis(9-carbazolyl)-2,2’-bis(trifluoromethyl)biphenyl (9),30 

4,4’-bis(3-methylcarbazolyl)-2,2’-bis(trifluoromethyl)biphenyl (10), and 4,4’-bis(3,6-di-

methylcarbazolyl)-2,2’-bis(trifluoromethyl)biphenyl (11) were prepared according to the 

procedure given for 7. 

4,4’-Bis(9-carbazolyl)-2,2’-dimethylbiphenyl (CDBP). Yield: 0.59 g (50 %). EI-MS m/z: 512 

(100, M+). 1H-NMR (300 MHz, CDCl3), δ (ppm): 8.20 (d, 4H), 7.58-7.45 (m, 14H), 7.36-7.31 

(m, 4H), 2.31 (s, 6H). 13C-NMR (75 MHz, CDCl3), δ (ppm): 140.96, 140.01, 137.95, 136.92, 

130.81, 128.36, 125.94, 124.34, 123.42, 120.36, 119.94, 109.94, 20.17. Tm: --°C; Tg: 94°C. 

4,4’-Bis(3,6-dimethylcarbazolyl)-2,2’-dimethylbiphenyl (8). Yield: 0.7 g (50 %). EI-MS m/z: 

568 (100, M+). 1H-NMR (300 MHz, CDCl3), δ (ppm): 7.93 (ds, 4H), 7.52-7.40 (m, 10H), 

7.26 (dd, 4H), 2.57 (s, 12H), 2.28 (s, 6H). 13C-NMR (75 MHz, CDCl3), δ (ppm): 139.64, 

139.40, 137.82, 137.32, 130.75, 129.06, 128.01, 127.07, 123.98, 123.46, 120.22, 109.60, 

21.45, 20.19. Tm: 277°C; Tg: 121°C. 

4,4’-Bis(9-carbazolyl)-2,2’-bis(trifluoromethyl)biphenyl (9). Yield: 0.71 g (62 %). EI-MS 

m/z: 620 (100, M+). 1H-NMR (300 MHz, CDCl3), δ (ppm): 8.20 (d, 4H), 8.09 (d, 2H), 7.93 

(dd, 2H), 7.71 (d, 2H), 7.55-7.48 (m, 8H), 7.40-7.35 (m, 4H). 13C-NMR (75 MHz, CDCl3), 

δ (ppm): 140.41, 138.33, 135.32, 133.49, 133.41, 130.90 (q, 2J (C-F) = 31.5 Hz), 129.15, 

126.48, 124.68, 123.83, 123.44 (q, 1J (C-F) = 272.3 Hz), 120.76, 120.60, 109.50. Tm: 232°C; 

Tg: 100°C. 

4,4’-Bis(3-methylcarbazolyl)-2,2’-bis(trifluoromethyl)biphenyl (10). Yield: 0.8 g (55 %). EI-

MS m/z: 648 (100, M+). 1H-NMR (300 MHz, CDCl3) δ (ppm): 8.15 (d, 2H), 8.07 (d, 2H), 

7.99 (m, 2H), 7.86 (dd, 2H), 7.68 (d, 2H), 7.54-7.30 (m, 10H), 2.60 (s, 6H). 13C-NMR 

(75 MHz, CDCl3), δ (ppm): 140.56, 138.66, 138.51, 135.10, 133.37, 130.82 (q, 2J (C-F) = 
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30.8 Hz), 130.22, 128.90, 127.63, 126.20, 124.48, 123.99, 123.74, 123.46 (q, 1J (C-F) = 

273.8 Hz), 120.56, 120.50, 109.45, 109.22, 21.43. Tm: 210°C; Tg: 105°C. 

4,4’-Bis(3,6-dimethylcarbazolyl)-2,2’-bis(trifluoromethyl)biphenyl (11). Yield: 1.4 g (56 %). 

EI-MS m/z: 676 (100, M+). 1H-NMR (300 MHz, CDCl3), δ (ppm): 8.05 (d, 2H), 7.95 (m, 4H), 

7.85 (dd, 2H), 7.66 (d, 2H), 7.42 (d, 4H), 7.30 (dd, 4H), 2.59 (s, 12H). 13C-NMR (75 MHz, 

CDCl3), δ (ppm): 138.82, 138.71, 134.87, 133.34, 130.75 (q, 2J (C-F) = 30.8 Hz ), 130.00, 

128.66, 127.46, 124.25, 123.91, 123.50 (q,  1J (C-F) = 272.3 Hz), 120.46, 109.18, 21.43. 

Tm: 233°C; Tg: 119°C. 

 

Conclusions 

We have described a number of CBP derivatives in which the substitution in the 2- and 

2’-position of the biphenyl and in the 3- and 6-position of the carbazole unit is 

systematically varied. This substitution of the parent crystalline CBP leads to the 

materials 7-11 which have a much lower tendency to crystallise. Their glass transition 

temperatures range from 94 – 121oC. The highest glass transition temperatures were 

determined for 3,6-dimethylcarbazole bearing derivatives 8 and 11 with 121°C and 

119°C, respectively.  

The main effect of the methyl substitution in 2- and 2’-position of the biphenyl unit is a 

twisting of the two central phenyl rings. Due to this electronic decoupling, the 

conjugation length in the molecule is limited which causes an increase of the triplet 

energy ΔE (T1-S0) from 2.58 eV for CBP to 2.95 – 2.97 eV for 7-11.  

Fine-tuning of the energy levels, especially the HOMO levels, can be achieved by a 

suitable choice of substitution pattern of the CBP derivatives. Cyclic voltammetry with 

repeated cycles shows that by introducing substituents at the 3- and 6-positions of the 

pendant carbazole units the oxidation to the radical cation becomes fully reversible and 

thus electrochemical stable host materials are accessible. 
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Abstract 

We present four derivatives of 4,4’-bis(9-carbazolyl)biphenyl (CBP) for the use as host 

materials in blue phosphorescent organic light emitting diodes. By replacing the para-

linkage by a meta-linkage of the carbazole substituents at the central biphenyl unit 

materials with improved thermal and optical properties are obtained. The triplet energy 

of the meta-linked host materials is significantly increased to more than 2.90 eV 

compared to 2.58 eV for the para-linked CBP. Moreover, selective methyl substitution of 

the basic meta-CBP structure leads to materials with high glass transition temperatures 

up to 120°C and electrochemical stability of the oxidised species against dimerisation. In 

a comparative investigation the meta-CBP derivatives are employed in an OLED as host 

materials for the blue phosphorescent emitter mer-tris(N-dibenzofuranyl-N’-

methylimidazole)iridium (III) (Ir(dbfmi)). 
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CBP-derivatives, electroluminescence, blue phosphorescent OLEDs 

 

 

 

 

 

 

 

 

 

 

 

 



Meta-linked CBP-Derivatives | 75  

Introduction 

The presentation of OLEDs based on the electrophosphorescence was a breakthrough in 

device performance. With the introduction of phosphorescent emitters both the 

electrogenerated singlet and triplet excitons contribute to the emission of light. The fast 

intersystem crossing efficiently converts singlet excitons to the triplet state leading to a 

theoretical internal quantum efficiency of 100%.1,2,3  To avoid self-quenching the emitter 

has to be doped into an appropriate host material.4 For an efficient exothermic energy 

transfer from the host to the guest molecules, the triplet energy of the host must be 

higher compared to the emitter. In the case of blue emitters the host’s energy gap 

between the singlet ground state (S0) and the first excited triplet state (T1) has to be at 

least 2.8 eV. To obtain high triplet energies for the host materials the conjugation of the 

materials must be limited. This requirement makes the development of host material for 

blue triplet emitters particularly challenging because lowering the conjugation, i.e. 

increasing the singlet and triplet energies may negatively affect the charge transport 

properties.5

Many organic compounds used as host materials for phosphorescent emitters are based 

on carbazole.

 

6,7,8 One reason is the high intrinsic triplet energy of carbazole of 3.0 eV.9 

The most prominent example for a carbazole based host material is 4,4’-bis(9-

carbazolyl)-biphenyl (CBP) where the N-atoms of the carbazole units are connected with 

a biphenyl unit at the 4,4’-positions. The molecular structure allows for an extended 

conjugation of the carbazole units over the biphenyl structure leading to a decrease in 

triplet energy to around 2.56 eV.10 If the conjugation between the constituting units in 

carbazole derivatives is minimised the triplet energy can be maintained at a high level. 

Many approaches to confine the conjugated system in carbazole derivatives have been 

described in literature. One way to minimise the conjugation in carbazole based host 

materials introduced by Tokito et al. is to attach two methyl groups in the 2,2’-positions 

of the central biphenyl in CBP leading to the host material 4,4’-bis(9-carbazolyl)-2,2’-

dimethylbiphenyl (CDBP).11,12 Due to the steric hindrance the biphenyl is forced into a 

tilted conformation which reduces the conjugation in the molecule and concomitantly 

enlarges the triplet energy to 2.79 eV. We recently reported a series of CBP-based 

materials with high triplet energies using a similar concept by introducing methyl and 
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trifluoromethyl substitutents in the 2,2’-positions of the central biphenyl unit.13,14 

Another design concept is to choose different linkers between the carbazole units such 

as a single phenyl ring instead of biphenyl in N,N’-dicarbazolyl-3,5-benzene (mCP)15,16 or 

non-conjugated units as, for example, an aliphatic cyclohexyl ring or an oxygen-bridge.17 

In mCP another effect reduces the conjugation: instead of the para-connection, the two 

carbazole moieties are meta-linked over the phenyl ring.18,19 A major drawback of mCP 

however is its high crystallinity. Matrix materials with carbazole units linked to a 

biphenyl in the 3,3’-positions have been described in a patent of Adachi and Forrest20 

and a number of following patents. In the scientific literature meta-linked CBP 

derivatives are to the best of our knowledge only reported in a theoretical study about 

heterofluorene linker groups between the two carbazoles as alternatives to biphenyl.21 

Besides the high triplet energy a host material has to reveal a stable amorphous phase at 

device operating temperatures.22 This ensures homogeneous mixing of the emitter 

within the matrix material and minimises the effects of concentration quenching. In 

addition the use of organic glasses in OLEDs helps to avoid grain boundaries which may 

act as trap states.23,24 Organic glasses can be obtained by avoiding strong intermolecular 

forces like hydrogen bonding or π-π stacking between the molecules. A very common 

design concept for molecular glasses is the space-filling star-shaped topology, as in the 

well-known hole transporting organic glass 4,4’,4’’-tris(carbazol-9-yl)triphenylamine 

(TCTA).25 Furthermore, the introduction of bulky substituents leads to a larger 

intermolecular distance and a hindrance in packing and therefore to amorphous 

behaviour. For example, in 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-carbazole 

(CzSi)26 and 3,5-di(N-carbazolyl)tetraphenylsilane (SimCP)27

In this work we describe the preparation, the thermal and optical characterisation along 

with the OLED application of four meta-linked CBP-derivatives. Materials revealing high 

triplet energies and amorphous behaviour with high glass transition temperatures are 

achieved by attaching the carbazole units at the meta-position of the phenyl rings of the 

biphenyl moiety in combination with a selective methyl substitution at the meta-CBP 

structure. Cyclic voltammetry studies and a comparative OLED device study employing 

 packing of the molecules is 

avoided by introducing  bulky triphenylsily groups.  However, the separation of the 

conducting units usually leads to a decrease in charge carrier mobility.  
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the new materials as host for a blue phosphorescent emitter are also presented. The 

molecular structures of the host materials 1-4 are depicted in Figure 1. 
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Figure 1. Chemical structures and synthetic routes to a) meta-linked CBP derivatives 1 and 2 and b) 
twisted meta-linked CBP derivatives 3 and 4. Reagents and conditions: i) Cu(OAc)2, DMF, 100°C, 90 min; ii) 
I2, HIO3, H2SO4, H2O, CCl4, acetic acid, 80°C, 18 h; iii) Cu, K2CO3, 18-crown-6, o-dichlorobenzene, reflux, 
24 h. 

 

2. Results and Discussion 

2.1. Synthesis 

In Figure 1a the synthetic route to the meta-linked CBP derivatives 1 and 2 is depicted. In 

a copper-mediated homocoupling reaction 3-bromophenylboronic acid reacts to 3,3’-

dibromobiphenyl.28

13

 An Ullmann-type reaction of dibromobiphenyl with carbazole or 3,6-

dimethylcarbazole  yields the host materials. 

To obtain the twisted meta-linked CBP-derivatives 3 and 4, first, 5,5’-diiodo-2,2’-

dimethyl-biphenyl was prepared by direct iodination29 of 2,2’-dimethylbiphenyl with 
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iodine and iodic acid in acetic acid (Figure 1b). Via 2D 1H-NMR experiments (see 

Supplementary Information) the selective iodination at the 5- and 5’-positions of the 

biphenyl could be confirmed. Here, the inductive effect of the methyl groups in the 2- 

and 2’-positions of the biphenyl increases the electron density in the 5- and 5’-positions 

and favours the electrophilic attack of I+. We consider this 5,5’-diiodo-2,2’-

dimethylbiphenyl unit as a versatile building block for the synthesis of materials with 

confined conjugation which, to the best of our knowledge, has not been described in the 

literature before. The tilted meta-linked CBP derivatives 3 and 4 were prepared via the 

Ullmann-type reaction of 5,5’-diiodo-2,2’-dimethylbiphenyl with carbazole or 3,6-

dimethylcarbazole.13 

Mass spectrometry, 1H- and 13C-NMR spectroscopy were used to identify the materials. 

The data are given in the experimental part. All materials were purified by repeated 

zone sublimation.  

 

2.2 Thermal properties 

We examined the thermal properties of the meta-linked CBP derivatives 1-4 by thermal 

gravimetric analysis (TGA) and differential scanning calorimetry (DSC) in nitrogen 

atmosphere at a scanning rate of 10 K min-1. All results are summarised in Table 1. 

 

Table 1. Thermal properties of CBP and the meta-linked host materials 1-4. 

 Tg /°C Tm /°C Tcr /°C TID
a /°C 

CBP -- 283 205b 365 

1 -- 271 191b 315 

2 107 270 184c 349 

3 108 237 176c 319 

4 120 212 -- 319 
Tg: glass-transition temperature, Tm: melting temperature, Tcr: crystallization temperature and TID: initial 
decomposition temperature.  
[a] TID is the temperature at which an initial mass loss was observed in a thermogravimetric experiment 
with a heating rate of 10 K min-1

 in a nitrogen atmosphere. 

[b] Observed during cooling scan. 
[c] Observed only during the heating scan. 
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Both the para-linked CBP and the meta-linked 1 show crystalline behaviour in the DSC 

experiment. For the meta-derivative 1 the melting and the crystallisation are observed 

at around 10°C lower temperatures than for CBP. Methyl substitution at the pendant 

carbazoles in 2 leads to a material with a much lower tendency to crystallise. The glass 

transition of 2 is observed at 107°C and the recrystallisation is observed at a high 

temperature of 184°C. In compound 3 the introduction of methyl groups only at the 

central biphenyl unit leads to nearly the same glass transition temperature of 109°C and 

nearly the same recrystallisation temperature of 176°C. The biphenyl substitution in 

combination with the methyl substitution at the carbazoles increases the Tg even to 

120°C for compound 4. Moreover, for compound 4 crystallisation is observed neither in 

the cooling nor in the heating cycle which renders 4 the derivative of the series with the 

highest tendency to form a molecular glass. This thermal investigation shows that the 

introduction of additional methyl groups at the central biphenyl and/or the adjacent 

carbazole moieties of the meta-linked molecular structure has beneficial effects on the 

thermal properties, i.e. amorphous materials with high Tgs in the range of 107°C to 

120°C are obtained.  

 

2.3 Optical properties 

The room temperature UV/Vis absorption and fluorescence spectra of 10-5 M 

cyclohexane solutions of 1-4 are depicted on top of Figure 2. Compounds 1 and 3 as well 

as compounds 2 and 4 show very similar spectra. In each compound the absorption and 

photoluminescence behaviour is dominated by optical transitions localised on the 

carbazole units. Since the chromophor in compounds 1 and 3 and in compounds 2 and 4 

are identical it is not surprising that these two pairs of materials show nearly the same 

absorption and fluorescence spectra. For compound 2 and 4 the additional methyl 

substituents on the chromophor 3,6-dimethylcarbazole cause a bathochromic shift of 

13 nm in the absorption and emission spectra compared to compounds 1 and 3.  
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Figure 1. Top: Absorption and fluorescence spectra of 1-4 taken in 10-5 M solutions in cyclohexane at 
300 K. Bottom: Normalised phosphorescence spectra of CBP and 1-4 measured in 2 wt% solid solution of 
the compounds in PMMA at 5K. 

 

As a prerequisite for the application of 1-4 as host materials, their triplet energy has to 

be higher compared to that of the blue phosphorescent emitter. By measuring 

phosphorescence at low temperatures the triplet energies can be experimentally 

determined as the highest energy peak of luminescence.  

In order to understand how the meta-linkage of the carbazole units affects the triplet 

energy we compare the phosphorescence spectra of the para-linked CBP and the meta-

linked derivative 1-4. The most striking difference in the normalised spectra (see Figure 

2, bottom) is the remarkable blue shift in phosphorescence of 1-4 compared with CPB. 

The emission of 1, for example, is shifted to lower wavelengths by 65 nm compared with 

CBP, corresponding to triplet energies of 2.98 eV for 1 and 2.58 eV for CBP. This is a 
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proof of the design concept of meta-connection to achieve high triplet energies. In fact, 

the methyl substitution at the central biphenyl moiety is expected to lead to even higher 

triplet energies by introducing torsion between the phenyl rings of the biphenyl unit as 

is well known from CDBP. However, in the case of the meta-linked host materials the 

additional twisted molecular structure has only minor effects on the emission 

characteristics. Similar to the emission at room temperature, compounds 1 and 3 and 

compounds 2 and 4 reveal the highest energy peaks at the same wavelength, while the 

shape of the phosphorescence spectra is different. In the case of the twisted methyl 

substituted biphenyl containing compounds 3 and 4 the 0-0 transition is more 

pronounced and the width of the spectra is smaller than for 1 and 2. As an effect of the 

methyl substitution at the 3- and 6-positon of the carbazole units we observe again a 

small bathochromic shift of ca. 10 nm for compounds 2 and 4 compared to 1 and 3.  

All results of the photo physical investigations of CBP and the meta-linked matrix 

materials 1-4 are summarised in Table 2. 

 

Table 2. Optical properties and energy levels of CBP and the meta-linked host materials 1-4. 

 λEA
a 

[nm] 

λEA
b

 

[nm] 

λ RT
em 

c
 

[nm] 

λ 5K
em 

d
 

[nm] 

λ 5K
em 

e
 

[nm] 

HOMO 

 [eV] 

LUMO 

[eV] 

HOMOg 

[eV] 

LUMOh 

[eV] 

 solution film solution film film calculated experimental 

CBP 350 357 356, 374 484 477 -5.58 -1.78 -5.63 -2.16 

1  344 354 340, 357 421 415 -5.71 -1.77 -5.65 -2.15 

2  357 365 353, 370 452f 421 -5.48 -1.71 -5.56 -2.17 

3  346 354 342, 359 423 415 -5.64 -1.51 -5.65 -2.16 

4  358 369 355, 373 431 421 -5.44 -1.47 -5.53 -2.17 

[a] Absorption edge measured in 10-5 M cyclohexane solutions at room temperature. 
[b] Absorption edge measured on neat films at room temperature. 
[c] Wavelengths of the intensity maxima of the fluorescence at 300 nm excitation of 10-5 M cyclohexane 
solutions at room temperature. 
[d] Measured on film samples (100%) at 5 K. 
[e] Measured in 2 wt-% PMMA at 5 K. 
[f] No 0-0 transition is observed.  
[g] Estimated from the half-wave potential of the first oxidation in the cyclic voltammetry experiment.  
[h] Estimated from the HOMO values and the optical band gap (determined from the UV/Vis absorption 
onset of neat films). 
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2.4 Cyclic voltammetry 

The electrochemical behaviour of 1-4 was investigated by cyclic voltammetry in a 

conventional three-electrode setup using a platinum working electrode, a platinum wire 

as counter electrode, and a Ag/AgNO3 reference electrode. Particularly, the oxidation 

behaviour of 1-4 in dichloromethane solutions was studied. From the half-wave 

potential of the first oxidation relative to ferrocene the HOMO value of the compounds 

can be deduced. By adding the optical band gap to the HOMO value the LUMO value can 

be estimated. As the cyclic voltammetry is measured in solution and not in the solid 

state the values of HOMO and LUMO may differ from the solid state values in an OLED. 

Both the experimentally received and the calculated values for the energy levels of CBP 

and of 1-4 are listed in Table 2. The meta-linked compounds 1 and 3 with unsubstituted 

carbazole units reveal almost the same energy levels as for CBP. In contrast, 2 and 4 

show ca. 10 mV higher HOMO levels which can be attributed to the inductive effect of 

the additional methyl groups in the 3- and 6-positons of the carbazole units. The cyclic 

voltammetry experiments show that the behaviour upon oxidation is clearly dominated 

by the molecules’ site with the highest electron density, i.e. the carbazole moieties. 

Contrary to the theoretical expectations, the substitution on the central biphenyl unit 

does not affect the HOMO levels and fairly no effects of the different substitution 

pattern on the LUMO levels are observed.  

Charge transport processes in organic semiconductors involve the formation of radical 

anions and cations. Thus, investigations of the electrochemical stability can give 

information about the stability of the materials in OLED devices. To evaluate the 

electrochemical stability of the materials we carried out multicycle experiments. The 

cyclic voltammograms showing five repeated oxidation cycles of 1 and 2 in 2·10-3 M 

dichloromethane solutions are given as Supplementary Information. In the case of 1, the 

oxidation cycles are not reproducible. After the first reduction into the uncharged 

molecule at 0.88 V an additional reduction at around 0.59 V is observed. The latter can 

be attributed to new oligomeric species formed during dimerisation reactions at the 

active 3- and 6-positions of the carbazole units after the first oxidation of the 

molecule.30,31 As the oligomeric species is oxidised more easily the corresponding 

oxidation process takes place at a lower voltage of around 0.70 V. In contrast, 2 reveals a 
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fully reversible oxidation behaviour. The methyl substitution at the adjacent carbazole 

units blocks the electroactive 3- and 6-positions and renders the oxidised species stable 

against dimerisation in solution. The same stability of the radical cations was also found 

for compound 4 in contrast to 3. 

 

2.5 Phosphorescent Organic Light-Emitting Diodes 

To demonstrate the potential of 1-4 as host materials for blue phosphorescent emitters 

OLEDs were fabricated. First, we tested the materials in the setup shown in Figure 3. On 

top of the ITO glass substrate poly(3,4-ethylene-dioxy-thiophene):poly (styrene-

sulfonate) (PEDOT:PSS) was applied by spin coating as hole injection layer followed by 

10 nm DPBIC p-doped with molybdenum(VI) oxide as hole transporting layer. An 

additional 10 nm thick layer of DPBIC followed as exciton and electron blocker. The 

20 nm emission layer consisted of 5 % Ir(dbfmi) doped into the meta-linked CBP host 

materials. 10 nm of the host material were deposited as hole and exciton blocking layer 

followed by 20 nm of caesium carbonate doped 2,9-dimethyl-4,7-diphenyl-1,10-

phenanthroline (BCP) as electron transporting layer. As cathode 1 nm Cs2CO3 and 

100 nm aluminium were deposited.  

The turn-on voltage at 1 cd m-2 of 4.5 V is quite high and luminances of 100 cd m-2 and 

1000 cd m-2 are achieved at voltages of 5.6 V and 6.8 V, respectively. In some cases we 

observed a small contribution of the hole transporting material DPBIC to the emission. 

This indicates that the exciton formation is shifted towards the hole conducting layer. 

We attribute this to the high energy barrier for hole injection from the DPBIC into the 

emission layer causing as well the high turn-on voltage. In contrast, electrons do not 

have to overcome major energy barriers.  
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Figure 2. Top: Energy level diagram of the OLED device employing 1 as host for Ir(dbfmi); Ionisation 
potentials and electron affinities obtained from calculations are indicated. The grey dotted lines represent 
the levels of the emitter Ir(dbfmi). Bottom: Luminance-voltage plot (filled symbols) and current density-
voltage characteristic (open symbols). 

 

To improve the hole injection into the emission layer we coevaporated the hole 

transporting DPBIC into the emission layer providing a barrier free path for holes. The 

optimised device setup and the molecular structures of the materials used are shown on 

top of Figure 4. 10 nm molybdenum(VI) oxide doped DPBIC as hole transporting layer 

and an additional 10 nm thick layer of DPBIC were used as exciton and electron blocker. 

The 20 nm thick emission layer comprises a mixed matrix system of the carbazole 

containing host materials 1-4 with DPBIC and the blue emitter Ir(dbfmi) in the ratio 

75 : 20 : 5. 2,8-bis(triphenylsilyl)-dibenzofuran (DBFSi) (5 nm) was used as exciton and 

hole blocking material followed by 5 nm BCP and 40 nm BCP n-doped with Cs2CO3. As 

cathode 1 nm Cs2CO3 and 100 nm aluminium were deposited.  
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Figure 3. Top: Energy level diagram of the optimised OLED device employing 1 as host for Ir(dbfmi) with 
chemical structures of the materials used; Ionisation potentials and electron affinities obtained from 
calculations are indicated. The grey dotted lines represent the levels of the emitter Ir(dbfmi). Bottom: 
Electroluminescence spectrum of the devices with 1 as host material for Ir(dbfmi). CIE coordinates: x = 
0.16, y = 0.18. 

 

In the electroluminescence spectrum of the optimised device setup the pure emission of 

the phosphor Ir(dbfmi) can be observed with CIE-coordinates of x = 0.16 and y = 0.18 

(Figure 4, bottom). By decreasing the hole injection barrier in the mixed matrix system 

the exciton formation zone could be successfully separated from the hole transporting 

layer. Moreover, the applied voltages at 100 and 1000 cd m-2 could be significantly 

lowered, to 3.5 V and 4.4 V, respectively, in the case of host 1 (see Figure 5).  
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Figure 4. Top: Luminance-voltage curves (black filled symbols) and current density-voltage characteristics 
(grey open symbols) of the optimised device setup. Bottom: External quantum efficiency-luminance 
curves of the devices with 1-4 as host material for Ir(dbfmi). 

 

Peak luminances are 5300 cd m-2 for 1, 5000 cd m-2 for 2, 10800 cd m-2 for 3 and 

9300 cd m-2 for 4. For hosts 1 and 3 higher luminances are reached at lower voltages 

than for 2 and 4. Comparing the efficiencies of the four meta-linked CBP-derivatives 1-4, 

the compounds 2 and 4 with methyl substituents at the 3- and 6-positions of the 

carbazole units show significantly lower efficiencies than 1 and 3. As evident from the 

current density-voltage-plot in Figure 5, higher operation voltages are needed in the 

devices employing the host materials 2 and 4. We assume that the transport properties 

of 2 and 4 with methyl substituents at the carbazole units are worse compared to 1 and 

3 with unsubstituted carbazole units. In contrast, 1 and 3 give similar performances with 

slightly better values for 3 at higher luminances. The highest efficiency was achieved for 
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3 with an external quantum efficiency of 8.7 % and a power efficiency of 10.2 lm W-1 at 

100 cd m-2 rolling to 6.1 % and 6.0 lm W-1 at 1000 cd m-2, respectively. All performance 

data are summarised in Table 3. 

 

Table 3. Performance data at 100 cd m-2 and 1000 cd m-2 using 1-4 as host materials for the blue emitter 
Ir(dbmfi). 

 at 100 cd m-2 at 1000 cd m-2 

 Voltage 

[V] 

ηC  

[cd A-1] 

ηP  

[lm W-1] 

ηext  

[%] 

Voltage 

[V] 

ηC  

[cd A-1] 

ηP  

[lm W-1] 

ηext  

[%] 

1 3.5 11.5 10.2 8.2 4.4 5.7 4.1 4.1 

2 4.9 0.9 0.6 0.5 6.6 0.6 0.3 0.4 

3 3.7 12.2 10.2 8.7 4.4 8.5 6.0 6.1 

4 4.3 4.5 3.3 2.6 5.3 3.1 1.9 1.8 

ηC: current efficiency; ηP: power efficiency; ηext: external quantum efficiency. 
 

The large differences in device performance as evident from Table 3 are quite surprising 

as the chemical structures of all hosts 1-4 are very similar. These findings show that each 

combination of emitter and host needs to be chosen very carefully as the host-emitter-

system is very sensitive to even small structural variations which may change the charge-

carrier balance in the device or the chemical compatibility of host and emitter. Both 

effects in conjunction with the relatively long triplet lifetime of Ir(dbfmi) of ~20 µsec41 

could negatively influence the device performance. 

 

3. Experimental 

Materials. All chemicals and reagents were used as received from commercial sources 

without further purification. The solvents for reactions and purification were all distilled 

before use.  

Characterization. 1H- and 13C-NMR spectra were recorded with a Bruker AC 300 (300 

MHz, 75 MHz) and CDCl3 as solvent. All data are given as chemical shifts δ (ppm) 

downfield from Si(CH3)4. For optical measurements, 10-5 M cyclohexane (Ultrasolv®) 
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solutions of the materials as well as thin films on quartz substrates were prepared by 

spincoating. The UV/VIS spectra were measured in solution and on neat films with a 

Hitachi U-3000 spectrometer. Fluorescence spectra in solution were obtained from a 

Shimadzu spectrofluorophotometer RF-5301PC using excitation at 300 nm. 

Phosphorescence spectra of thin films have been measured at 5 K (Helium cryostat 

Optistat CF from Oxford Instruments) applying the technique of time-gated spectroscopy 

(with fluorescence and phosphorescence lifetime spectrometer FLSP 920 from 

Edinburgh Instruments). For differential scanning calorimetry measurements (DSC) a 

Diamond DSC apparatus from Perkin Elmer was used (heating/cooling rate 10 K/min, 

nitrogen). Thermogravimetric analysis (TGA) was performed on a Mettler Toledo 

TGA/SDTA815e machine at a heating rate of 10 K/min under nitrogen. Cyclic 

voltammetry measurements were carried out in absolute solvents measuring at a 

platinum working electrode versus a Ag/AgNO3 reference electrode. Each measurement 

was calibrated against an internal standard (ferrocene/ferrocenium redox system). The 

purity of the target compounds was checked with a Waters size exclusion 

chromatography system (SEC) for oligomers (analytical columns: crosslinked polystyrene 

gel (Polymer Laboratories), length: 2×60 cm, width: 0.8 cm, particle size: 5 µm, pore size 

100 Å, eluent THF (0.5 mL/min, 80 bar), polystyrene standard).  

 

Computational Methods. The transport levels of the materials used were determined via 

density functional calculations. For the ionisation potential and the electron affinity first 

the geometry of the neutral as well as the charged states were optimised using the 

BP86-functional32,33 in combination with a split-valence basis set (SV(P)) including 

polarization functions on all heavy atoms34.  For iridium an effective core potential was 

employed.35 For the energetics we performed single point calculations at the optimised 

geometries using the same functional in combination with a TZVP-basis set.36 To account 

for dielectric solid state effects a UPS/IEPS-calibrated version of the conductor like 

screening model (COSMO)37 was used in conjunction with these single point calculations.  

All calculations were carried out with the turbomole program package.38
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Synthetic Procedures. The synthesis of tris[(3-phenyl-1H-benzimidazol-1-yl-2(3H)-yliden-

1,2-phenylene]-irdidium (DPBIC),39  2,8-bis(triphenylsilyl)-dibenzofuran (DBFSi)40

40

, mer-

tris(N-dibenzofuranyl-N’-methylimidazole)-iridium (III) (Ir(dbfmi)) ,41

13

 and 3,6-dimethyl-

carbazole  is described in literature.  

3,3’-Dibromobiphenyl was synthesized according to a procedure reported by Demir et 

al.28 Yield: 43 %. EI-MS m/z: 312 (100, M+), 232 (5), 152 (95). 1H-NMR (300 MHz, CDCl3), δ 

(ppm): 7.70 (dd, 2H), 7.52-7.46 (m, 4H), 7.31 (dd, 2H). 13C-NMR (75 MHz, CDCl3), δ 

(ppm): 142.11, 131.16, 130.74, 130.50, 126.09, 123.33. 

5,5’-Diiodo-2,2’-dimethylbiphenyl. 2,2’-Dimethylbiphenyl (9.9 g, 54 mmol) in 120 mL of 

acetic acid and 5.5 mL of water were heated to 90°C to get a clear solution. After the 

addition of iodine (10.9 g, 43 mmol), iodic acid (5.7 g, 32 mmol), 5.5 mL of sulphuric acid 

and 5.5 mL of tetrachloromethane the solution was stirred at 80 °C for 18 h. The excess 

of iodine was removed by adding a solution of sodium hydrogen sulphide. The product 

was extracted with dichloromethane and washed several times with water. After drying 

the organic layer over anhydrous sodium sulfate, the solvent was evaporated. The 

resulting yellowish oily product was recrystallized from ethyl acetate to yield 6.9 g (16 

mmol, 30 %) of a white solid. EI-MS m/z: 434 (100, M+), 180 (50), 165 (47). 1H-NMR (300 

MHz, CDCl3), δ (ppm): 7.58 (dd, 2H), 7.42 (ds, 2H), 7.00 (d, 2H). 1.99 (s, 6H). 13C-NMR (75 

MHz, CDCl3), δ (ppm): 142.30, 137.65, 136.56, 135.48, 131.83, 90.41, 19.38.  

 

General procedure for the Ullmann- type reaction: 

Dihalogenobiphenyl (2.3 mmol), carbazole (5.06 mmol), potassium carbonate (2.5 g, 

18.4 mmol), copper powder (0.58 g, 9.2 mmol) and 18-crown-6 (0.12 mg, 0.46 mmol) 

were refluxed in 15 mL of o-dichlorobenzene in an argon atmosphere for 24 h. Copper 

and inorganic salts were filtered off and the solvent was evaporated. Column 

chromatography on silica gel with mixtures of hexane/tetrahydrofurane as eluent 

yielded the products 1 – 4 as  white solids.  

3,3’-Bis(carbazolyl)biphenyl (1). Yield: 47 %. EI-MS m/z: 484 (100, M+), 316 (10), 234 

(39). 1H-NMR (300 MHz, CDCl3), δ (ppm): 8.17 (d, 4 H), 7.88 (m, 2H), 7.75 (dt, 2H), 7.70 

(dd, 2 H), 7.60 (dt, 2H), 7.51 (d, 4H), 7.43 (dt, 4H), 7.31 (dt, 4H). (13C-NMR (75 MHz, 
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CDCl3), δ (ppm): 142.42, 141.19, 138.82, 130.84, 126.80, 126.52, 126.39, 126.10, 123.79, 

120.71, 120.40, 110.08. 

3,3’-Bis(3,6-dimethylcarbazolyl)biphenyl (2). Yield: 55 %. EI-MS m/z: 540 (100, M+), 345 

(5), 270 (24). 1H-NMR (300 MHz, CDCl3), δ (ppm): 7.92 (m, 4H), 7.86 (m, 2H), 7.70 (dt, 

2H), 7.66 (dd, 2H), 7.57 (dt, 2H), 7.38 (d, 4H), 7.24 (dd, 4H), 2.56 (s, 3H). 13C-NMR (75 

MHz, CDCl3), δ (ppm):142.38, 139.63, 139.24, 130.70, 129.55, 127.52, 126.41, 126.05, 

125.76, 123.84, 120.56, 109.75, 21.74. 

3,3’-Bis(carbazolyl)-6,6’-dimethylbiphenyl (3). Yield: 50 %. EI-MS m/z: 512 (100, M+), 329 

(8), 257 (17), 166 (12). 1H-NMR (300 MHz, CDCl3), δ (ppm): 8.15 (d, 4H), 7.55-7.39 (m, 

14H), 7.32-7.26 (m, 4H), 2.33 (s, 6H). 13C-NMR (75 MHz, CDCl3), δ (ppm): 142.51 141.25 

135.65, 135.46, 131.85, 127.96 126.45, 126.26, 123.67, 120.65, 120.20, 110.09, 20.11.  

3,3’-Bis(3,6-dimethylcarbazolyl)-6,6’-dimethylbiphenyl (4). Yield: 55 %. EI-MS m/z: 568 

(100, M+), 358 (15), 284 (29), 192 (24). 1H-NMR (300 MHz, CDCl3), δ (ppm): 7.90 (s, 4H), 

7.52-7.45 (m, 4H), 7.41-7.38 (m, 4H), 7.33 (d, 4H), 7.21(d, 4H), 2.55 (s, 12H), 2.30 (s, 6H). 
13C-NMR (75 MHz, CDCl3), δ (ppm): 142.47, 139.72, 136.06, 134.98, 131.70, 129.30, 

127.69, 127.39, 126.10, 123.70, 120.49, 109.74, 21.73, 20.06.  

 

OLED fabrication. The organic layers were deposited by thermal evaporation in high 

vacuum (<10-6 mbar) onto indium-tin-oxide (ITO, 10 ohm/square) precoated glass 

substrates. Prior to use the ITO glass was degreased using organic solvents and cleaned 

using an UV-ozon oven for 30 minutes. The organic layers and the metal cathode were 

evaporated without breaking the vacuum. The current density-luminance-voltage (J-L-V) 

characteristics of the OLEDs were measured by a Keithley source meter 2400 and a 

Konica Minolta CS-200, respectively. EL spectra were taken by a CCD spectral analyser by 

Zeiss. EQEs were calculated from the luminance, current density, and EL spectrum, 

assuming a Lambertian distribution.  
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 4. Conclusions 

We have described a series of CBP derivatives with a meta-linkage of the carbazole 

moieties to the central biphenyl unit. By selective methyl substitution at two sites of the 

basic meta-CBP structure, the 3- and 6-position of the pendant carbazoles and at the 6- 

and 6’-position of the biphenyl unit, the tendency to crystallise could be lowered. Glass 

transition temperatures in the range of 107°C to 120°C were achieved. The meta-linkage 

reduces the conjugation of the molecules effectively, leading to high triplet energies in 

the range of 2.93 eV to 2.98 eV compared with 2.58 eV for CBP. Here, the additional 

twist by the methyl substitution at the biphenyl unit does not increase the triplet energy 

any further, but narrows the phosphorescence spectra of 3 and 4 compared with 1 and 

2. Introducing methyl groups at the 3- and 6-position of the pendant carbazole units in 

the matrix materials 2 and 4 leads to electrochemical stability of the oxidised species in 

cyclic voltammetry. The highest efficiencies were achieved with the twisted meta-linked 

derivative 3 giving external quantum efficiencies of 8.7 % and 6.1 % and power 

efficiencies of 10.2 lm W-1 and 6.0 lm W-1 at 100 cd m-2 and 1000 cd m-2, respectively. 

These first results show that meta-linked CPB-derivatives are suited host materials for 

blue emitters with saturated blue phosphorescence at 450 nm. 
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A: 2D 1H-NMR of 5,5’-diiodo -2,2’-dimethyl-biphenyl 
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B: Cyclic voltammograms of 1 and 2 (five scans, 50 mV/sec scan rate, 2 x 10-3 M in 

CH2Cl2): 
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Abstract 

We present a series of low molecular weight materials based on cyclic phosphazenes for 

the use as host materials in blue phosphorescent organic light-emitting diodes. 

Substituted phenyl rings are attached to the central phosphazene ring either via 

phosphorus-oxygen bonds to yield phenoxy substituted derivatives or via direct 

phosphorus-carbon bonds to yield phenyl substituted derivatives. The phenoxy 

substituted cyclic phosphazenes were prepared by nucleophilic substitution of the six 

chlorine atoms in hexachlorocyclotriphosphazene with phenoxy groups whereas the 

phenyl substituted cyclic phosphazenes were formed in a cyclocondensation reaction of 

three equivalents of substituted phosphinic amides. The phenyl substitution leads to 

materials with superior thermal properties compared to the phenoxy substitution. Due 

to the non-conjugated linkage to the phosphazene core the host materials have very 

high triplet energies of more than 3 eV. In an OLED device using one compound as host 

for the saturated blue phosphorescent emitter Ir(dbfmi) a peak power efficiency of 

7.6 lm W-1 and a peak luminance of 5000 cd m-2 was achieved. 

 

Keywords 

 electrolumenscence, OLED, blue phosphorescence 
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Introduction 

Since the first efficient multi-layer organic light-emitting diode (OLED) was invented by 

Tang and van Slyke in 1987, great advances have been made by extensive development 

of new OLED materials and sophisticated device setups.1,2,3 Nowadays, OLEDs are 

attracting attention because of their capability to realize full color displays and large 

area lighting with high power-efficiency and freedom of design. The key to high 

efficiencies was the discovery of phosphorescent emitters based on organo-transition 

metal complexes that are able to harvest both electrogenerated singlet and triplet 

excitons for light emission. Therefore, the theoretical limit of the internal quantum 

efficiency reaches 100 %.4 In general, the triplet emitters have to be embedded into a 

host to avoid concentration quenching.5 It is essential that the triplet energy of the host 

is larger compared to the triplet emitter to prevent energy back transfer from the 

emitter to the host and to confine triplet excitons on the emitter molecules. This 

restriction becomes particularly challenging when host materials for deep blue 

phosphors are in the focus of interest, where host triplet energies larger than 3.0 eV are 

required. Among the commonly used class of carbazole based host materials, the 

substituted N-phenylcarbazole 9-(4-tert-butylphenyl)-3,6-di-triphenylsilyl)-carbazole 

(CzSi, E(T1-S0) = 3.02 eV)6 and 1,4-bis(4-(carbazol-9-yl)phenyl)cyclohexane (CBPCH, E(T1-

S0) = 3.01 eV)7, for example, show triplet energies close to their intrinsic limit of 3 eV.8  

To provide host materials with even larger triplet band gaps the conjugation of the host 

molecules must be extremely confined which limits the choice of possible building 

blocks. Organosilane compounds have been presented as materials with ultra high band 

gaps (UGH) and successfully employed in OLEDs as host materials for blue 

phosphors.
9,10,11,12

Besides organosilane compounds, several phosphorus containing host materials, such as 

phosphine oxides

  

13,14,15 have been introduced as promising candidates with high triplet 

energies. Another class of phosphorus containing materials interesting for the use in 

organic electroluminescent devices are cyclic phosphazenes. The planar non-conjugated 

6-membered ring consisting of alternating P- and N-atoms reveals high chemical and 

thermal stability and exhibits two bonding sites for substituents on each P-atom. 

Solution-processible dendrimers with various emitters attached to a cyclic phosphazene 
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core have already been reported. Via oxygen-phosphorus bonds emitting fluorescent 

pyrene units or phosphorescent iridium complexes were attached to the phosphazene 

core and rigid spherical molecules with high glass transition temperatures were 

obtained.16,17,18 Very recently, the same research group presented phenoxy-carbazole 

and pyridin-oxy-carbazole functionalized cyclic phosphazene materials and their use as 

host materials for the greenish-blue triplet emitter FIrpic and the green triplet emitter 

Ir(mppy)3 in solution processible OLED devices.19

In this study we present a series of vacuum processible new phosphazene based host 

materials for saturated blue phosphorescent emitters. In these materials substituted 

phenyl rings were either attached via phosphorus-oxygen-bonds (phenoxy substituted 

cyclic phosphazenes) or via phosphorus-carbon-bonds (phenyl substituted cyclic 

phosphazenes). We present the synthesis of symmetrically substituted 

organocyclotriphosphazenes along with their thermal and optical properties. The energy 

levels of the compounds were calculated by density functional theory (DFT) and 

experimentally determined by ultraviolet photoelectron spectroscopy. To demonstrate 

the potential as host material for blue phosphorescent emitters an OLED device 

employing an organocyclotriphosphazene host has been made. In 

 However, due to their high molecular 

weight these dendrimers are not suitable for an OLED-fabrication by thermal 

evaporation.  

Figure 1 the molecular 

structures of the organocyclotriphosphazenes are depicted.  
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Figure 1. Molecular structures of the cyclic phosphazenes OP1-OP3 with phenoxy substitution (top) and 
CP1-CP3 with phenyl substitution (bottom). 
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Experimental Section 

Materials 

All chemicals and reagents were used as received from commercial sources without 

further purification. All solvents for reactions and purifications were distilled once, 

except tetrahydrofuran (THF) which was additionally distilled over potassium. 

Characterization 
1H- and 13C-NMR spectra were recorded with a Bruker AC 250 (250 MHz) and CDCl3 as 

solvent. All data are given as chemical shifts δ (ppm) downfield from Si(CH3)4. Mass 

spectra were taken on a Finnigan Mat 8500, Mat 112 S Varian machine using EI-

ionization. For optical measurements, 10-5 M cyclohexane (Uvasol®, Merck) solutions of 

the materials as well as spin coated thin films on quartz substrates were prepared. The 

UV/VIS spectra were measured in solution and on neat films with a Hitachi U-3000 

spectrometer. Fluorescence spectra were measured on a Shimadzu 

spectrofluorophotometer RF-5301PC using excitation at 220 nm. Phosphorescence spectra 

of thin films have been measured at 5 K (Helium cryostat Optistat CF from Oxford Instruments) 

applying the technique of time-gated spectroscopy (with fluorescence and phosphorescence 

lifetime spectrometer FLSP 920 from Edinburgh Instruments). The photoluminescence 

quantum yield (ηPL) of the 8 % Ir(dbfmi)-doped films of CP1-CP3 was measured under N2 

flow using an integrating sphere excited at 355 nm with a multichannel spectrometer as 

the optical detector. Thermogravimetric analysis (TGA) was performed on a Mettler 

Toledo TGA/SDTA815e machine at a heating rate of 10 K min-1 in a nitrogen atmosphere. 

For differential scanning calorimetry measurements (DSC) a Diamond DSC apparatus 

from Perkin Elmer was used (heating/cooling rate 10 K min-1). The purity of the target 

compounds was checked with a Waters size exclusion chromatography system (SEC) for 

oligomers (analytical columns: cross-linked polystyrene gel (Polymer Laboratories), 

length: 2×60 cm, width: 0.8 cm, particle size: 5 µm, pore size 100 Å, eluent THF (0.5 mL 

min-1, 80 bar), polystyrene standard). For the fabrication of OLEDs the organic layers 

were deposited by thermal evaporation in high vacuum (< 10-6 mbar) onto indium-tin-

oxide (ITO, 10 ohm/square) precoated glass substrates. The organic layers and the metal 

cathode were evaporated without breaking the vacuum.  
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Computational Methods  

The transport levels of the materials used were determined via density functional 

calculations. For the ionization potential and the electron affinity first the geometry of 

the neutral as well as the charged states were optimized using the BP86-functional20,21 in 

combination with a split-valence basis set (SV(P)) including polarization functions on all 

heavy atoms22. For iridium an effective core potential was employed.23 For the 

energetics we performed single point calculations at the optimized geometries using the 

same functional in combination with a TZVP-basis set.24 To account for dielectric solid 

state effects a UPS/IEPS-calibrated version of the conductor like screening model 

(COSMO)25 was used in conjunction with these single point calculations.  All calculations 

were carried out with the turbomole program package.26

 

 

Synthetic procedures 

The synthesis of tris[(3-phenyl-1H-benzimidazol-1-yl2(3H)-yliden-1,2-phenylene]-

irdidium (DPBIC),36 2,8-bis(triphenylsilyl)-dibenzofuran (DBFSi)37 and mer-tris(N-

dibenzofuranyl-N’-methylimidazole)iridium (III) (Ir(dbfmi))37,27

 

 is described in literature.  

General procedure for the synthesis of phenoxy substituted phosphazenes. 

The cyclotriphosphazenes OP1-OP3 were prepared similar to a procedure described in 

reference [28

Hexakisphenoxycyclotriphosphazene (OP1). A suspension of sodium phenolate was 

prepared by adding sodium hydride (0.55 g, 23 mmol) to phenole (2.16 g, 23 mmol) 

dissolved in 40 mL of dry THF under argon. Hexachlorocyclotriphosphazene (1.0 g, 2.88 

mmol) dissolved in 10 mL of dry THF was added drop wise via syringe and the mixture 

was stirred under reflux for two days. After removal of the solvent under reduced 

pressure the residue was stirred in water for 1 hour. The white solid was washed with 

methanol to remove the excess of phenole. Yield: 1.69 g (85%). EI-MS m/z: 693 (M∙+, 71), 

599 (100), 505 (34). 1H-NMR (250 MHz, CDCl3), δ (ppm): 7.21-7.08 (m, 18H), 6.93 (d, 

12H).  

]. 

Hexakis(4-methoxyphenoxy)cyclotriphosphazene (OP2) was synthesized according to the 

route described above. The reaction time was 24 h. Yield: 0.62 g (49%). EI-MS m/z: 873 
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(M∙+, 100), 749 (78), 626 (8). 1H-NMR (250 MHz, CDCl3), δ (ppm): 6.83 (m, 12 H), 6.67 (m, 

12H), 3.79 (s, 18H). 

Tris(phenylenedioxy)cyclotriphosphazene (OP3). 15 mL of dry THF were added to sodium 

hydride (1 g, 41.4 mmol) under argon. Catechol (1.9 g, 17.3 mmol) dissolved in 15 mL of 

dry THF was added dropwise to the NaH solution. After stirring for 90 min at room 

temperature, the blue mixture was transferred into a dropping funnel and added 

dropwise to a solution of hexachlorocyclotriphosphazene (2.0 g, 5.75 mmol) dissolved in 

10 mL of dry THF. After stirring at room temperature for 24 h, the same purifaction 

procedure as described above was used. Yield: 1.88 g (71 %). EI-MS m/z: 459 (M∙+, 100), 

351 (12). 1H-NMR (250 MHz, CDCl3), δ (ppm): 7.12-7.00 (m, 24 H). 

 

General procedure for the synthesis of phenyl substituted phosphazenes. 

Bis(3,5-dimethylphenyl)phosphinic acid (PAc2). 1-Bromo-3,5-dimethylbenzene (13.63 g, 

71.44 mmol) was added dropwise to magnesium chips (1.74 g, 71.44 mmol) in absolute 

THF (80 mL) at room temperature. Once the magnesium was completely dissolved (2 h), 

a solution of N,N-dimethyl-phosphoryl dichloride N(Me)2P(O)Cl2 (4.33 mL, 35.72 mmol) 

in absolute THF (10 mL) was added dropwise by syringe. After 2h the mixture was 

poured into an ice-cooled solution of NH4Cl (30 g) in water (500 mL) for the separation 

of the formed salt. In a distillation setup with Vigreux column the THF was distilled off 

and the residue was treated with conc. HCl (75 mL) at 80°C. The resulting white solid was 

dissolved in aqueous NaOH (5.4 g, 300 mL H2O), and the aqueous layer was twice 

extracted with ether. The clear aqueous layer was again acidified by the addition of 

conc. HCl to precipitate the phosphinic acid PAc2 as white solid. Yield: 6.81 g (70 %). EI-

MS m/z: 274 (M∙+, 100), 259 (39), 136 (5). 1H-NMR (250 MHz, CDCl3), δ (ppm): 11.35 (s, 

1H, OH), 7.35 (d, 4H), 7.11 (s, 2H), 2.28 (m, 12H).  

Bis(4-methoxyphenyl)phosphinic acid (PAc3). The same synthetic procedure as described 

above was used. Yield:  54 % (5.36 g). EI-MS m/z: 278 (M∙+, 100), 263 (19), 247 (8), 107 

(15).1H-NMR (250 MHz, CDCl3), δ (ppm): 7.77 (br s, 1H, OH), 7.62 (dd, 4H), 6.83 (dd, 4H), 

3.79 (m, 6H). 

Bis(3,5-dimethylphenyl)phosphinic amide. (PAm2). Distilled thionyl chloride (0.87 mL, 

12 mmol) was added dropwise to a suspension of bis(3,5-dimethylphenyl)phosphinic 
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acid (1 g, 3.65 mmol) in dry toluene (25 mL) at 55-60°C and stirred for 20 min. After the 

removal of the excess of thionyl chloride by distillation ammonia gas was passed into the 

clear solution for 10 min at 0°C. In order to separate the NH4Cl the organic layer was 

washed with water. Before the extraction with THF the density of the water layer was 

increased by the addition of sodium chloride. The combined organic layers were dried 

over Na2SO4 and the solvent was removed under reduced pressure. The phosphinic 

amide PAm2 was used for the cyclisation reaction without further purification. Yield: 

0.98 g (98 %). EI-MS m/z: 273 (M∙+, 100), 257 (19).1H-NMR (250 MHz, CDCl3), δ (ppm): 

7.53 (d, 4H), 7.11 (s, 2H), 3.01 (br s, 2H, NH2), 2.32 (m, 12H).  

Bis(3,5-dimethylphenyl)phosphinic amide (PAm3). The same synthetic pathway as 

described above was used. Yield: 90 % (0.89 g). EI-MS m/z: 277(M+, 100), 170 (45). 1H-

NMR (250 MHz, CDCl3), δ (ppm): ): 7.83 (m, 4H), 6.92 (m, 4H), 3.81 (m, 3H), 3.08 (br s, 

2H, NH2).  

Hexaphenylcyclotriphosphazene (CP1). A suspension of diphenylphosphinic amide (2.0 g, 

9.22 mmol), triphenylphosphine (2.9 g, 11.1 mmol), carbon tetrachloride (0.89 mL, 

9.22 mmol) and triethylamine (1.3 mL, 9.22 mmol) in dry dichloromethane (25 mL) was 

refluxed for 5 h. The solvent was removed under reduced pressure. Liquid 

chromatography on silica gel with hexane:THF mixtures as eluent gave the product as 

yellowish solid. Yield: 65 % (1.2 g). EI-MS m/z: 597 (M∙+, 100), 520 (74), 299 (12), 260 

(18), 77 (5). 1H-NMR (250 MHz, CDCl3), δ (ppm): 7.76 (dd, 12H), 7.30 (m, 18H). 13C-NMR 

(CDCl3), δ (ppm): 138.55 (dt, CP-bound), 130.86 (ps d, Cmeta), 130.44 (m, Cpara), 127.98 (ps d, 

Cortho). Elemental analysis: Calc.: C: 72.36 %, H: 5.06 %, N: 7.03 %, P: 15.55 %; Found: 

C: 72.38 %, H: 5.08 %, N: 7.07 %, P: 15.49 %. 

Hexa-(3,5-dimethylphenyl)-cyclotriphosphazene (CP2). The same procedure for the 

synthesis as described for CP1 was applied except the reaction time was extended to 

22 h. Yield: 65 % (1.2 g). EI-MS m/z: 765 (M∙+, 100), 660 (45), 382 (10), 105 (10).1H-NMR 

(250 MHz, CDCl3), δ (ppm): 7.40 (d, 12H), 6.98 (s, 6H), 2.21 (m, 36H). 13C-NMR (CDCl3), δ 

(ppm): 138.35 (dt, CP-bound), 137.16 (ps d, Cmeta), 131.97 (d, Cpara), 128.90 (d, Cortho) 21.34 

(s, methyl). Elemental analysis: Calc.: C: 75.27 %, H: 7.11 %, N: 5.49 %, P: 12.13 %; Found: 

C: 75.14 %, H: 7.04 %, N: 5.54 %, P: 12.18 %. 
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Hexa-(4-methoxyphenyl)-cyclotriphosphazene (CP3). The same procedure for the 

synthesis as described for CP1 was applied but the reaction time was extended to 14 h. 

Yield: 50 % (520 mg). EI-MS m/z: 777 (M∙+, 99), 670 (45), 388 (22). 1H-NMR (250 MHz, 

CDCl3), δ (ppm): 7.64 (m, 12H), 6.80 (m, 12H), 3.78 (m, 18H). 13C-NMR (CDCl3), δ (ppm): 

161.24 (m, Cpara), 132.71 (ps d, Cmeta), 130.84 (dt, CP-bound), 113.39 (ps d, Cortho), 55.31 (s, 

methoxy). Elemental analysis: Calc.: C: 64.86 %, H: 5.44 %, N: 5.40 %, O: 12.34 %, 

P: 11.95 %; Found: C: 65.28 %, H: 5.44 %, N: 5.76 %, O: 12.69 %, P: 10.81 %. 

 

 

Results and Discussion 

Synthesis  

The phenoxy substituted phosphazenes OP1-OP3 have been prepared by nucleophilic 

substitution of the six chlorine atoms in hexachlorocyclotriphosphazene (Figure 2a). By 

treatment of the phenols with sodium hydride phenoxylates are formed which replace 

the chlorine atoms by nucleophilic substitution. The synthesis of the phenyl substituted 

derivatives by direct replacement of the six chlorine atoms in 

hexachlorocyclotriphosphazene is rather difficult. Both an approach by Grignard reaction 

and by Friedel-Crafts arylation are known to yield mixtures of several substitution 

products with only small amounts of the hexa-substituted compounds.29,30

Figure 2

 Therefore, 

we devised the synthetic route to phenyl substituted organocyclotriphosphazenes as 

sketched in b. In a Grignard reaction two chlorine atoms of dichloro-N,N-

dimethylphosphinic amide are replaced by the substituted phenyl rings. Acidic workup 

yields the phenyl substituted phosphinic acids31. After treatment with thionyl chloride 

the intermediately formed phosphinic acid chlorides are directly converted into the 

substituted phosphinic amides in an amination reaction with gaseous ammonia. The 

organophosphazenes CP1-CP3 are formed in a cyclocondensation reaction described by 

Appel et al.32 from three equivalents of a phenyl substituted phosphinic amide. 
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Figure 2. Synthetic route to a) phenoxy substituted cyclic phosphazenes OP1-OP3 and b) phenyl 
substituted cyclic phosphazenes CP1-CP3. Reagents and conditions: i) NaH, abs. THF, 70°C, 48 h (catechol: 
RT, 24h); ii) RMgBr, abs. THF, RT, 2h; iii) conc. HCl, 80°C, 1 h; iv) thionyl chloride, abs. toluene, 55°C, 20 
min; v) NH3 (g), 0°C, 10 min; vi) PPh3, CCl4, NEt3, benzene, dichloromethane, 40°C, 5 - 22 h. 
  

 

Thermal Analysis 

We examined the thermal properties of the organophosphazenes OP1-OP3 and CP1-CP3 

by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) in a 

nitrogen atmosphere at a scanning rate of 10 K min-1. 
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For the application in small molecule OLEDs the materials have to be processible by 

thermal evaporation. Therefore, the molecular weight of the compounds should not be 

too high to exclude decomposition during evaporation. As the cyclic phosphazene core 

bears six substituents it is particularly important to choose confined aromatic units as 

substituents. In this study we concentrate on phenyl substituents at the inorganic 

phosphazene core. All results of the thermal characterization are listed in Table 1. 

The phenoxy substituted cyclic phosphazene OP1-OP3 are thermally stable up to at least 

260°C. However, the high rotational freedom given by the oxygen-linkage leads to very 

low glass transition temperature of -12°C and 1°C for compounds OP1 and OP2. Thus, 

films of OP1 and OP2 crystallize readily. In the case of OP3, the bifunctional substituents 

introduce more structural rigidity leading to a much higher melting temperature of 

251°C. Yet, the material does not sublime without decomposition.  

We prepared a second series of cyclic phosphazenes with the substituents being 

attached via direct phosphorus-carbon bonds (CP1-CP3). All materials show high thermal 

stability up to at least 280°C in the TGA measurements and much higher melting 

temperatures than their phenoxy substituted analogues. CP1 melts at 235°C and 

crystallizes at 191°C upon cooling. The observed low supercooling of only 44°C 

demonstrates the high tendency of CP1 to crystallize. CP2 reveals a melting peak at 

214°C and crystallizes upon cooling at 138°C. Compared to CP1 the crystallization 

tendency could be slightly decreased by introducing additional methyl groups as evident 

from the higher supercooling of 76°C. CP3 melts at a temperature of 281°C and 

crystallizes at 221°C upon cooling. Contrary to the twelve methyl groups in CP2, the six 

methoxy groups in CP3 cause only a slight hindrance of crystallization compared to 

hexaphenylcyclotriphosphazene CP1 which is indicated by a supercooling of only 54°C. In 

a second DSC experiment the isotropic melts of the samples were quenched with liquid 

nitrogen before measuring the glass transition temperatures (Tgs). The pretreated 

samples of CP2 and CP3 revealed Tgs of 68°C and 73°C, respectively. Although CP1-CP3 

show crystalline behavior in the DSC measurements amorphous films can be prepared 

from solution and evaporation which are morphologically stable over several months at 

room temperature. To summarize, due to the low glass transition temperatures of OP1 

and OP2 no morphological stable films can be prepared. In contrast, OP3 reveals higher 
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transition temperatures, however, OP3 cannot be sublimed without decomposition. 

Because of their detrimental thermal properties the phenoxy substituted cyclic 

phosphazenes OP1-OP3 were not further considered in this study.  

 

Table 1. Thermal properties of OP1-3 and CP1-3. 

 Tm/°C Tcr /°C Tg /°C TID a/°C 

     OP1 116 38b -12 260 

OP2 107 -- 1 314 

OP3 251 173 -- 271 

CP1 235 191 -- 285 

CP2 214 137 68c 280 

CP3 281 221 73c 337 

Tm: melting temperature, Tcr: crystallization temperature, Tg: glass transition temperature and TID: initial 
decomposition temperature. 
a TID is the temperature at which an initial loss of mass was observed in a thermogravimetric experiment 
with a heating rate of 10 K min-1 under nitrogen. 
b Observed only during the heating scan. 
c Observed only during heating scan after quenching from melt. 
 

 

Optical Analysis 

For the optical characterization we measured the UV/Vis and photoluminescence 

spectra of CP1-CP3 in thin films and in cyclohexane solutions (see Figure 3). All materials 

have an absorption edge in the UV-region between 277 nm and 295 nm. While the 

absorption of CP1 and CP2 are very similar, the absorption of CP3 is of a different shape 

and at slightly higher wavelengths. We assign this to the electron donating effect of the 

methoxy substituents at the para-positions of the phenyl rings. At room temperature we 

did not detect any photoluminescence neither in solution nor in film samples. From the 

wavelength of the absorption edge the optical band gap ΔE(S0-S1) can be calculated. All 

cyclic phosphazenes reveal very large band gaps in the range of 4.2 eV to 4.5 eV. Since 

the exchange energy of many small molecules is typically in the range of 0.7 eV to 1 eV33 

a large triplet energy is expected for CP1-CP3. As estimate for the exchange energy the 

energy difference ∆EST between the singlet and triplet emission transitions is taken.34
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Figure 3. Absorption spectra of thin films of CP1-CP3. 

 

Table 2. Optical properties of the materials CP1-CP3.  

a Absorption edge measured in 10-5 M cyclohexane solution at room temperature. 
b Absorption edge measured on neat films at room temperature. 
c The optical band gap was estimated from the onset of the UV/Vis absorption of neat films. 
d Wavelength of the highest energy shoulder in the phosphorescence spectra of 100 % films at 5 K.  
 

At low temperatures (5 K) we were able to detect phosphorescence. The 

phosphorescence spectra are shown in Figure 4. The emission maxima are centered at 

around 395 nm for CP1 and 410 nm for CP2 and CP3. The highest energy peak is visible 

as a small shoulder at 363 nm for CP1 and 382 nm for CP2 and CP3 corresponding to 

very high triplet energies of 3.41 eV and 3.24 eV, respectively. All results from the photo 

physical investigations are summarized in Table 2. 

 λ EA
a /nm λ EA b/nm ΔE(S0-S1)c/eV λ 77K

d/nm ΔE(T1-S0)/eV 

CP1 278 277 4.5 363 3.41 

CP2 288 288 4.3 382 3.24 

CP3 294 295 4.2 382 3.24 
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Figure 4. Phosphorescence spectra of CP1- CP3 measured on neat films at 5 K; the arrows indicate the 
shoulder in the emission spectra taken for the determination of the triplet energy of the compounds.  

 

Considering the spatial molecular structure of CP1 helps to explain the experimental 

findings. As evident from the geometry optimized molecular structure shown in Figure 5 

the pendant phenyl rings are aligned above and below the central plane formed by the 

P3N3-ring. The calculated dihedral angles between the outer phenyl rings and the central 

ring plane are 48° to 56°. The calculated dihedral angles and bond lengths are consistent 

with experimental crystallographic data of CP1.35

 

 As no conjugation over the central ring 

takes place all phenyl rings are electronically isolated from each other. Thus, in the 

experiments the absorption and emission properties of isolated substituted phenyl rings 

are observed with nearly no influence of the P3N3-core.  

Figure 5. Geometry optimized molecular structure of CP1.  
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Experimental and calculated energy levels 

The energy levels were determined by measuring ultra-violet photoelectron 

spectroscopy (UPS). Very low HOMO levels of 6.51 eV for CP1 and 6.56 eV for CP2 were 

measured. By adding the optical band gap to the HOMO values the LUMO values of 

2.01 eV for CP1 and 2.23 eV for CP2 can be derived.  

 

Table 3. Energy values and triplet energies of CP1-CP3. 

 calculated experimental 

 
HOMOa 

/eV 

LUMOa 

/eV 

HOMOb 

/eV 

LUMOc 

/eV 

CP1 6.47 1.53 6.51 2.01 

CP2 5.98 1.35 6.56 2.23 

CP3 5.71 1.14 -- -- 
a Calculated energy values.  
b Experimentally determined value from UPS measurements. 
c Estimated by adding the optical band gap to the experimental HOMO level. 
 

 

Single carrier devices  

In order to get a more comprehensive understanding about the charge carrier transport 

properties of the novel class of host materials we prepared single carrier devices. 

Because of its high morphological stability we chose CP2 for the single carrier device 

tests. Here, the material in varying thicknesses is sandwiched between two chemically 

doped hole or electron transport layers with high mobilities for holes or electrons. The 

IV-characteristics and the device setup are shown in Figure 6.  

CP2 is a good hole conductor and a current density of 1 mA cm-2 is achieved at 1.6 V for 

holes. For electrons the current density of 1 mA cm-2 is achieved at an even lower 

voltage of 1 V. The JV-characteristics show that CP2 has balanced transport properties 

for both types of charge carriers.  
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Figure 6. JV-characteristics of CP2 in e-only device (left) and h-only device (right). 

 

 

Phosphorescent Organic Light-Emitting Diodes  

We employed CP2 in an OLED device as host material for the saturated blue emitter 

Ir(dbmfi). The device structure is shown in Figure 7. On top of the indium-tin-oxide (ITO) 

anode 120 nm of α-NPD p-doped with 10 wt-% molybdenum(VI) oxide were deposited 

as hole-injection and hole-transporting layer. The additional 10 nm thick hole 

transporting layer of DPBIC36 prevents quenching of triplet excitons at the doped NPD-

layer. On top a double emission layer of 10 nm of DPBIC doped with 8 % Ir(dbfmi) and 

40 nm of CP2 doped with 8 % Ir(dbfmi) was deposited. The electron transport within the 

emission layer takes place over the host CP2. The thin emitter doped DPBIC interlayer 

allows residual electrons to recombine and emit efficiently on the emitter. 10 nm of the 

hole and exciton blocking material 2,8-bis(triphenylsilyl)-dibenzofuran (DBFSi)37

 

 and 

40 nm of the electron-transporting material 1,3,5-tris(2-N-phenylbenz-imidazolyl)-

benzene (TPBi) were deposited. As cathode LiF (0.5 nm)/ Al (100 nm) was used. 
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Figure 7. Energy level diagram of the device with CP2 as host for Ir(dbfmi) and the molecular structures of 
all materials. Ionization potentials and electron affinity levels of the materials are indicated. The dotted 
lines represent the levels of the emitter Ir(dbfmi). All HOMO and LUMO levels were taken from density 
functional theory (DFT) calculations.  
 
 

Figure 8 (top) shows the current density-voltage-luminance characteristics of the device. 

The peak power efficiency of 7.6 lm W-1 is achieved at 5.5 V. A peak luminance of 

5000 cd/m2 was reached at 13.5 V. At 100 cd m-2 and 1000 cd m-2 the power efficiencies 

are 4.9 lm W-1 and 2.3 lm W-1, respectively. To the best of our knowledge, this work 

represents the first report about cyclic phosphazene compounds as host materials for an 

emitter with saturated blue phosphorescence which can be processed by thermal 

evaporation.  
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Figure 8. Top: Current density-voltage characteristics (open squares) and luminance-voltage plot (filled 
squares). Bottom: Power efficiency-luminance plot. 
 

 

Conclusion 

We have described a novel series of host materials based on cyclic phosphazenes. 

Substituted phenyl rings were attached to the central phosphazene core either via 

phosphorus-oxygen bonds (OP1-OP3) or via phosphorus-carbon bonds (CP1-CP3). The 

phenoxy substituted phosphazenes OP1-OP3 revealed high crystallization tendency and 

poor thermal stability. In contrast, the phenyl substituted phosphazenes CP1-CP3 form 

morphologically stable films. Due to the non-conjugated linkage via the central 

phosphazene rings CP1-CP3 exhibit very high triplet energies of more than 3 eV. Thus, 

energy transfer to even deep blue emitters is possible. The phenyl substituted 

phosphazenes reveal balanced transport characteristic for both holes and electrons. In 

an OLED device CP2 was successfully tested as host material for the emitter Ir(dbfmi) 

with saturated blue emission.  
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Abstract 

Carbazole-based materials such as 4,4’-bis(N-carbazolyl)-2,2’-biphenyl (CBP) and its 

derivatives are frequently used as matrix materials for phosphorescent emitters in 

organic light emitting diodes (OLED)s. An essential requirement for such matrix materials 

is a high energy of their first triplet excited state. Here we present a detailed 

spectroscopic investigation supported by density functional theory calculations on two 

series of CBP derivatives, where CH3 and CF3 substituents on the 2 - and 2´- position of 

the biphenyl introduce strong torsion into the molecular structure. We find that the 

resulting poor coupling between the two halves of the molecules leads to an electronic 

structure similar to that of N-phenyl-3,6-dimethyl-carbazole, with a high triplet state 

energy of 2.95 eV. However, we also observe a triplet excimer emission centered at 

about 2.5-2.6 eV in all compounds. We associate this triplet excimer with a sandwich 

geometry of neighboring carbazole moieties. For compounds with the more polar CF3 

substituents, the lifetime of the intermolecular triplet excited state extends into the 

millisecond range for neat films at room temperature. We attribute this to an increased 

charge-transfer character of the intermolecular excited state for the more polar 

substitutents.  
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carbazole, triplet excimer, DFT calculation, OLEDs 

 

 

 

 

 

 

 



Appendix: Triplet Excimer Emission| 123 

Introduction 

While organic semiconductor materials are of current interest for a range of applications 

such as solar cells, displays, sensing or radio-frequency identification tags (RFIDs),1 they 

offer particularly promising opportunities for solid state lighting since they allow for the 

engineering of efficient white organic light emitting devices (WOLEDs).2,3 One approach 

to WOLEDs consists in the use of red, green and blue emissive dopants that are 

incorporated into carefully designed multilayer structures or suitably attached as side 

groups to a polymer backbone.2,3,4  As an alternative method, the incorporation of a 

single emitter with efficient broad excimer emission has been demonstrated 

successfully.5 In either case, the emitters used in WOLEDs require host materials that 

need to fulfill several constraints. To allow for efficient charge injection from both 

electrodes, the energy separating the highest occupied molecular orbital (HOMO) and 

the lowest unoccupied molecular orbital (LUMO) should be not too high. At the same 

time, the energy of the first triplet excited state needs to be high enough so that 

phosphorescence from blue or green emitters is not quenched by energy transfer to the 

host.  

Host materials that are considered suitable and that are therefore used frequently for 

WOLED applications are often based on carbazole structures,5-9 such as CBP (CBP=4,4’-

bis(9-carbazolyl)-biphenyl) or polyvinyl carbazole like polymers.10-15 Approaches to 

obtain high triplet energies include reducing the size of the conjugated system, e.g., by 

replacing the biphenyl bridging between the two carbazoles with a single phenyl as in 

mCP (mCP = 3,5-bis(9-carbazolyl)-benzene),16 or by introducing torsion between the two 

biphenyls as in 4,4'-bis(9-carbazolyl)-2,2'-dimethyl-biphenyl (CDBP).7 This substitution 

leads to good results with respect to emission and efficiency. We have recently reported 

the synthesis of a set of CBP derivatives with triplet excited state energies of about 2.95 

eV.17 As for CDPB, the high triplet energy is obtained by introducing torsion between the 

biphenyls through substitution with a CH3 group or a CF3 group. Further substitution 

with CH3-groups on the carbazole moiety was employed to fine-tune HOMO and LUMO 

levels for optimized charge injection. 
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We present here a detailed spectroscopic and quantum mechanical study on the 

electronic structure of these compounds, focusing on the influence of the electron-

richer CH3 group compared to the electron-withdrawing CF3 group on the nature of the 

optical transitions. In addition to fluorescence and phosphorescence from the monomer, 

we observe phosphorescence that can be attributed to a sandwich excimer of adjacent 

carbazole moieties. While this intermolecular triplet state emission is present for both 

types of compounds, the radiative excimer emission rate is higher for the CH3-

substituted compounds than for the compounds with the more polar CF3 group, where 

the intermolecular excited state seems to acquire a stronger charge-transfer 

component. With a view to the ubiquitous use of CBP derivatives as hosts for WOLED 

applications we note that the well-known propensity of this general class of materials to 

form excimer states (and the polarity dependence of triplet excimer formation) deserves 

more attention. 11,18-28  The presence of poorly emissive triplet excimers by the host can 

easily go unnoticed, in particular when combined with efficient phosphorescent emitters 

that cover a broad spectral range as is the case in WOLEDs. Nevertheless, long-lived 

triplet excimers may present non-radiative decay channels, and they can reduce device 

efficiency and device lifetime if not suitably managed. On the other hand, when the 

radiative decay rate of the host triplet excimer is high enough, they could be 

contemplated as emitter materials for WOLEDs by themselves. In the context of the 

study presented here, we focus on understanding the electronic structure of the CBP 

derivatives by spectroscopic studies in combination with quantum chemical calculations.  

 

Experimental Section 

The series of CBP derivatives were synthesized as described by Schrögel and co-

workers.17 For optical measurements, 10-5 M cyclohexane solutions of the materials as 

well as thin films on quartz substrates were prepared. Both, neat films and films with 10 

wt-% of compound in poly(methylmethacrylate) were prepared by spin coating. The 

ultraviolet-visible (UV/Vis) absorption spectra were measured in solution and on neat 

films with a Hitachi U-3000 spectrometer. Room temperature steady state emission 

spectra from solution and from thin films were obtained from a Shimadzu 

spectrofluorophotometer RF-5301PC using excitation at 300 nm. 
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The phosphorescence spectra were taken with the thin film samples mounted in a 

continuous flow helium cryostat. The temperature was controlled with an Oxford 

Intelligent temperature controller-4 (ITC-502). Excitation was provided by a pulsed, 

frequency-tripled Nd-YAG laser at 355 nm (3.49 eV) (Spectron SL401). This wavelength 

corresponds to the red tail of the first absorption band in our compounds. The duration 

of the laser pulses was 6 ns and the laser was operated at a repetition rate of 10 Hz by a 

self made electronic delay generator. The light emitted by the sample was dispersed and 

subsequently detected by a time gated intensified CCD camera (Andor iStar DH734-18F-

9AM). The measurements were taken with a delay time of 500 ns and a gate width of 60 

ms. The measurements were carried out at an excitation density of about 250 Jcm-

2pulse-1 on films of about 150 nm thickness as determined by a Dektak profilometer. To 

increase the signal-to-noise-ratio, all spectra were obtained by averaging over 2000 laser 

shots. 

Density Functional Theory (DFT) calculations were carried out for the compounds 3 and 

6 using the B3LYP hybrid functional together with the basis set 6-31G*.29,30 The excited 

states were calculated by using Time-Dependent-DFT with the optimized ground-state 

geometries. All DFT calculations were carried out with the Gaussian 03 program. 

 

Results and Discussion 

(i) Absorption and Fluorescence 

We use the widely employed CBP as our reference compound. Figure 1 shows the 

general structure of the compounds along with a table that details the substitution 

pattern. In order to obtain torsion, the 2- and 2’-positions of the biphenyl unit were 

substituted with electron withdrawing CF3 groups or with electron-rich CH3 moieties. In 

order to assess the degree of electronic decoupling obtained by torsion, we compare our 

materials to N-phenyl-3,6-dimethyl-carbazole. The structure for N-phenyl-3,6-dimethyl-

carbazole is also displayed in Figure 1. In order to block the reactive 3 and 6 positions of 

the carbazole unit methyl groups have been introduced. In addition, this leads to a 

further fine-tuning of the electronic structure. Thus, compounds 1-6 form two sets of 

materials, with the group formed by 1 (CDBP), 2 and 3 based on the methyl-substituted 
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biphenyl centre and the compounds 4-6 based on the trifluoromethyl substituted core. 

Within each set, the amount of CH3-substitution on the carbazole unit rises. 

 

Figure 1. Chemical structures of 4,4’-bis(9-carbazolyl)-biphenyl (CBP), the substituted derivatives 1-6 and 
of N-phenyl-3,6-dimethyl-carbazole (compound 7). 

 

To understand how the substitutions affect the excited states of these compounds, we 

first consider the effect of torsion by comparing the compounds CBP and CDBP. CDBP 

differs from CBP only by the presence of the methyl group at the 2,2‘-positions of the 

central biphenyl unit. According to DFT calculations, the methyl group increases the 

ground state torsion angle between the two central phenyl rings from about 33° to 

81°.17 Parts a and b of Figure 2 display the room temperature absorption and 

fluorescence spectra taken from 10-5 M cyclohexane solutions of both compounds. 

Despite the different ground state geometry, both CBP and CDBP display a first 

absorption band at the same energy, that is with a S1←S0 0-0 peak at 3.70 eV and the 0-

1 vibrational replica at 3.88 eV, yet for the more planar CBP the molar extinction of this 

first band is more than twice that found for CDBP. In contrast to CDBP, there is also 

some intensity at 3.95 eV in CBP. The next absorption band with a 0-0 peak at 4.30 eV 

and a 0-1 vibrational sideband at 4.45 eV is at the same energy and at very similar 

intensity for both compounds.  

When considering the absorption spectrum of CDBP, we note a striking similarity to the 

absorption of N-phenyl-3,6-dimethyl-carbazole that is also displayed in Figure 2 for ease 

of comparison. In the same way, the fluorescence spectra of N-phenyl-3,6-dimethyl-
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carbazole and CDBP coincide. In contrast to the absorption, the emission of CBP is red 

shifted compared to CDBP. We attribute this to the planarization of CBP after the 

transition to the excited state, while such a geometric relaxation is not possible for CDBP 

due to the bulkier side groups. From this comparison of the three compounds it is 

evident that the torsion induced by the methyl unit at the central biphenyl reduces 

conjugation between the two parts of the molecule such that the optical transitions in 

CDBP are dominated by just the separate N-phenyl-carbazole moieties. 

 

Figure 2. (a) Absorption spectra and (b) fluorescence spectra, both taken at room temperature for CBP, 
CDBP and the N-phenyl-3,6-dimethyl-carbazole 7 in 10

-5 
M cyclohexane solution. 
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If the biphenyl is substituted with the electron-withdrawing trifluoromethyl group 

instead of the electron-rich methyl unit, we observe only minor changes in the 

absorption, yet an entirely different spectrum in emission. For example, the only 

differences in the absorption of compounds 3 and 6 (Figure 3a) are a slightly higher 

extinction at about 3.85 eV and a significantly reduced extinction in the band around 

4 eV for the CF3 substituted compound while the energetic positions and spectral shapes 

of the absorption features remain essentially unaltered. In contrast, in the fluorescence 

spectra the emission energy and vibrational structure differ strongly. The emission of 

compound 3 closely resembles that of the parent molecule CBP in both energy and 

structure, while the luminescence of 6 consists of a broad unstructured peak centered at 

about 3.25 eV with a small shoulder at 3.55 eV.  

Before considering the difference between the CF3 and the CH3 substituted compounds 

in more detail, we briefly comment on the minor modifications to the excited state 

energies obtained by introducing additional methyl substituents at the pendant 

carbazole moieties. We consider compounds 1 (CDBP), 2 and 3 (Figure 3b). For all 

compounds, we observe a small bathochromic shift with increasing amount of methyl 

substituents. Otherwise the spectra retain the features of the carbazole-emission. We 

attribute this to a slight upshift of the HOMO due to the electron donating character of 

the methyl group, as confirmed by quantum chemical calculations. The same effect 

occurs in the trifluoromethyl series 4, 5 and 6 upon CH3 substitution on the carbazole 

moiety. 
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Figure 3. Room temperature absorption and fluorescence spectra in 10
-5 

M cyclohexane solution (a) for 
compounds 6 and 3, (b) for the CH3- substituted compounds 1 - 3 and (c) for the CF3 substituted 
compounds 4 - 6.  

 

To understand what causes the striking difference in the emission spectra of the CF3-

substituted series compared to the CH3-substituted one, we compare solution spectra 

with spectra taken on thin films. The fluorescence spectra taken from the liquid solution 

(10-5 M of host compound in cyclohexane) are, apart from a very minor bathochromic 

shift of 50 meV, identical to those taken from thin films of solid state solution (10 wt% of 

host compound in poly(methylmethacrylate)). For the neat films, however, we observe 
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an additional broad emission feature in the CH3-substituted compound 3 centered at 

about 2.6 eV. (Figure 4) Such a broad red emission that only occurs in the neat film yet 

not in solutions is typical for an intermolecular excited state. If we correct for the slight 

energy shift between the solid solution spectrum and the neat spectrum and then form 

the difference spectrum between the two, we find that the broad emission centered at 

2.6 eV contributes about 40 % to the overall neat film emission in 3. In contrast for 6, the 

same red emission only becomes evident after forming the difference spectrum as it 

amounts to merely 7 % of the integrated neat film emission.  

 

 

Figure 4. Room temperature steady state emission spectra of neat films (labelled 100%) and solid state 
solution in PMMA (labelled 10 %) normalized to unity (a) for the CH3-substituted compound 3 (b) and for 
the CF3-substituted compound 6.  

 

We carried out DFT calculations of the molecular orbitals and excited state energies for 

the compounds 3 and 6 in order to understand the influence of CF3 substitution on the 
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central biphenyl compared to the CH3 substitution. The HOMO and LUMO electron 

densities are displayed in Figure 5 and the resulting term scheme is shown in Figure 6.  

For compound 3, the torsion between the central biphenyl ring due to the CH3 groups 

leads to a localization of the electron wave function on each of the carbazole units. As a 

result, HOMO and HOMO-1, as well as LUMO and LUMO+1 are nearly degenerate, 

separated by only 1-2 meV. The lowest excited singlet state, S1, involves mainly 

transitions from HOMOLUMO+1 and HOMO-1LUMO. Only the former of the two is 

illustrated in Figure 6. In the HOMO, the lone pair on the nitrogen mixes with the π-

conjugated system of the rings. The transitions contributing to S1 have predominantly a 

π→ π* character and the vertical transition energy is calculated to be at 3.97 eV. At 

slightly higher energy, that is at 4.10 eV, we find the second excited singlet state which 

involves transitions from orbitals localized on the carbazole unit to an orbital localized 

on the central biphenyl section of the molecule, such as the HOMO->LUMO+2 transition 

illustrated in Figure 5. S2 has thus a strong charge transfer character. 

 

Figure 5. The DFT optimized chemical structures and relevant orbitals for compounds 3 (left side) and 6 
(right side). The energies of the orbitals with respect to the vacuum level are also indicated. The arrows 
indicate the transitions into S1 and S2 along with their dominant character. 
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Figure 6. Scheme of the singlet and triplet energy levels based on the DFT calculations for compound 3 
and 6. The predominant nature of the transitions involved, i.e. charge transfer (CT) or ππ*, is indicated 
next to the energy levels.  

 

In contrast to 3, compound 6 is substituted with electron withdrawing CF3 groups on the 

biphenyl. As a result, the orbital localized on the central biphenyl is stabilized and 

becomes the LUMO. LUMO+1 and LUMO+2 are also centered on the biphenyl. Only 

orbitals from LUMO+3 onwards contain some non-negligible electron density on the 

carbazole units. Transitions from a HOMO localized on the carbazole to the LUMO on the 

biphenyl group lead to a singlet excited state with a strong intramolecular charge 

transfer character (and concomitantly a very small oscillator strength) at a vertical 

transition energy of 3.41 eV. The second excited singlet state S2 comprises both 

carbazole-carbazole centered π→π* transitions such as HOMOLUMO+3 and 

carbazole-biphenyl charge-transfer type transitions. With 3.79 eV, it is at energy similar 

than the π→π* based S1 state in 3.  

With these calculations, we can now interpret the absorption and fluorescence spectra. 

Absorption requires reasonable oscillator strength. Consequently, the absorption 

observed experimentally at 3.54 eV takes place into the S1 state of 3 and into the S2 

state of 6. The S1 state of 6 cannot be seen in the absorption spectrum due to the low 

oscillator strength associated with this intramolecular charge-transfer-type transition. 

After absorption, fluorescence in 3 occurs from the same S1 state that has been excited, 

resulting in a small Stokes’ shift and clear vibrational structure that mirrors the 
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absorption band (see Figure 3a). In contrast for 6, fast internal conversion to the lower 

energy S1 takes place, in agreement with Kasha’s rule.31 The intramolecular charge-

transfer character of the S1→S0 transition precludes a vibrational structure and causes 

the broad emission.  

 

(ii) Phosphorescence 

To experimentally observe the triplet state emission, we measured the 10 K 

luminescence from thin films at a delay time of 500 ns after an excitation pulse and 

using a detector with a large gate width of 60 ms. Figure 7 shows the spectra obtained 

for 1 (CDBP), 2 and 3, normalized to unity at about 2.95 eV. The corresponding spectra 

for 4, 5 and 6 are displayed in Figure 8.  

 

Figure 7. Emission spectra taken at 10 K with a delay time of 500 ns and a gate width of 60 ms for the CH3-
substituted compounds 1- 3 (a) in a 10 wt% solid state solution of PMMA and (b) in pure film. The spectra 
are normalized to unity at the first emission peak.  
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Figure 8. Emission spectra taken at 10 K with a delay time of 500 ns and a gate width of 60 ms for the CF3-
substituted compounds 4- 6 (a) in a 10 wt% solid state solution of PMMA and (b) in pure film. The spectra 
are normalized to unity at the first emission peak.  

 

For all spectra taken in a solid state solution (Figures 7a and 8a), we observe two sharp 

peaks at 2.95 eV and at 2.76 eV as well as a broad peak centered at 2.6 eV. The intensity 

of this broad peak reduces when the number of methyl substituents on the pendant 

carbazoles is increased along the series 1 (CDBP), 2 and 3, and along the series 4, 5 and 

6.  

Increasing the concentration by using a pure film of compounds (figures 7b and 8b) does 

not change the spectral shape any further for the series with the methyl substituents on 

the biphenyl, except for a small bathochromic shift with increasing CH3-content. In 

contrast, for the compounds with CF3 at the central biphenyl, the sharp features are lost 

and the emission is entirely dominated by the broad peak now centered at 2.5 eV. 

Furthermore, the spectra do not change with increasing amount of CH3-content, except 

again for a small bathochromic shift.  
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We consider that the broad peak may be associated with intermolecular interactions 

since it reduces in relative intensity when the molecule is in a solid solution (compare 

Figure 8b and 8a), and when the number of bulky CH3 groups on the molecule increases. 

For compound 6, some vibrational structure is clearly visible in the emission from solid 

solution, while the luminescence from the neat film contains only the broad feature. We 

therefore use these two spectra to separate the contributions. Figure 9a shows the 

emission from the solid state solution for compound 6. Also shown is the emission 

obtained from the neat film, scaled to the red tail of the solid state solution spectrum. 

Subtracting the scaled neat film spectrum from the solid state solution spectrum results 

in a well-structured difference spectrum, with a 0-0 peak at 2.95 eV and clear vibrational 

replica at 2.75, 2.60, and 2.44 eV. In Figure 9b, we compare the so obtained difference 

spectrum to the phosphorescence spectrum we found for N-phenyl-3,6-

dimethylcarbazole 7 in a neat film. The spectra are very similar. From this analysis it is 

evident that the emission from compounds 4, 5 and 6 is due to a superposition of the 

well-structured carbazole phosphorescence with the 0-0 peak at 2.95 eV and a broad 

unstructured emission centered around 2.5-2.6 eV that we attribute to intermolecular 

interactions as detailed further below. The same applies analogously to 1 (CDBP), 2 and 

3, albeit with a lower contribution by the intermolecular peak in the neat film. 
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Figure 9. (a) 10 K phosphorescence spectra of compound 6 in a pure film (blue line with triangles) and in a 
10 wt % solid state solution in PMMA (black line with circles), normalized to unity at the first peak of 
emission, along with the difference spectrum between the pure film spectrum and the solid state solution 
spectrum (red line). (b) Comparison of the difference spectrum (red line) with the 10 K phosphorescence 
spectrum from 7 in a pure film (black line with circles). 

 

The well-resolved vibrational structure of the phosphorescence in contrast to the broad 

fluorescence for the CF3-substituted compounds implies that the state giving rise to 

phosphorescence is of a different nature to the state causing the fluorescence. This is 

confirmed by the quantum chemical calculations. The nature of the optical transitions 

directly affects the position of the associated triplet excited states. The exchange 

energy, and thus the energy gap between a singlet and the associated triplet state, is 

well-known to scale with the overlap of the orbitals involved.32 In consequence, π→π* 

transitions result in a larger exchange energy than the charge-transfer type transitions. 

For compound 6 this implies that the π→π* transitions that contribute to S2 lead to a 

large calculated singlet-triplet splitting of 0.77 eV, while the charge-transfer type 
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transitions involved in S1 give rise to a calculated singlet-triplet splitting of only 0.32 eV 

(see Figure 6). In consequence, charge-transfer type transitions cause the second lowest 

triplet excited state ,T2, while the lowest energy triplet excited state, T1, has some π - π* 

character that leads to vibrational structure, as in compound 3.  

To summarize the results obtained so far, we find that the CH3 substituted molecules 

have a first excited singlet state with 0-0 S1→S0 transition energies are in the range from 

3.5 eV to 3.7 eV, depending on the substituents on the carbazole moiety. 

Phosphorescence takes place with the 0-0 T1→S0 transition in the range of 2.9-3.0 eV, 

and it is superimposed by a broad additional emission band. The strong torsion within 

the biphenyl unit implies that the π→π* transition causing the S1 and T1 state is localized 

on the carbazole moieties. As a result, absorption, fluorescence and phosphorescence 

are essentially identical to the spectra reported for N-arylcarbazoles in the pioneering 

works by Klöpffer13 and Johnson.12,18 We have shown this by direct comparison of 1 

(CDBP), 2 and 3 to N-phenyl-3,6-dimethyl-carbazole 7, and by DFT calculations. Our 

calculations only consider the vertical S1←S0 and T1←S0 transitions. In the excited state, 

there is likely to be some degree of planarization, yet the similarity between the 

emission spectra of compounds 1-3 and 7 confirms the essentially localized character of 

the excited states.  

When using CF3 instead of CH3 for the biphenyl substitution, the absorption and 

phosphorescence spectra remain very similar, yet the fluorescence shifts to the red and 

loses all structure. This is because absorption and phosphorescence still involve the π - 

π* transition localized on the carbazole, while fluorescence takes place from an 

intramolecular charge-transfer (CT) state. Essentially, the result of the CF3 substitution is 

to stabilize an unoccupied orbital centered on the biphenyl, so that an intramolecular CT 

transition from the carbazole to the biphenyl moiety requires less energy than the 

carbazole-based π→π* transition. Without the CF3 substitution, this order is reversed.  
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(iii) Excimer emission 

We now consider the broad emission found around 2.5-2.6 eV (Figures 4, 7 and 8) in 

more detail. First we note that for the spectra taken under steady state conditions at 

room temperature (Figure 4), the broad emission is particularly prominent for the CH3-

substituted compound 3, while it contributes only little to the spectrum of the CF3-

substituted compound 6. However, when the emission is recorded at 10K with a delay 

time of 500 ns after the excitation pulse and with a long detector gate width of 60ms 

(Figures 7 and 8), the broad emission features more strongly in the spectra of the CF3-

substituted materials. This difference in intensity is easily resolved when considering the 

detection modes used in more detail. With use of steady state detection all the photons 

emitted from an excited state are integrated, and so excitations that decay with a high 

radiative decay rate show up more strongly. Naturally, these excitations have already 

decayed when waiting for a delay of 500 ns after excitation, and the collected signal 

intensity is mostly due to excitations with a lower radiative decay rate. Comparison of 

Figures 4, 7 and 8 suggests therefore that the broad emission centered at around 2.5-2.6 

eV is present in both classes of materials, yet with a faster decay rate for the CH3-

substituted compounds compared to the CF3-substituted counterparts. To confirm this 

hypothesis we measured the decay time at 2.4 eV in a neat film at room temperature 

(Figure 10). The emission decays in a non-monomolecular fashion to about 1/e of its 

initial value in 240 µs for 3, yet in 1.2 ms for 6.  

 

Figure 10. Normalized decay curves of the photoluminescence intensity for compounds 3 and 6 in neat 
film (where, for example, 1E-3 represents 1 × 10

-3
). 
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Next we draw attention to the fact that the relative contribution of the broad emission 

decreases when the molecule has more bulky substituents on the carbazole or when the 

molecule is diluted into a solid state solution, suggesting that the broad emission is 

associated with intermolecular interactions. Furthermore, there is no corresponding 

absorption feature. We therefore attribute the broad emission to an excimer. We use 

the term excimer to refer to an intermolecular state that is only stable in the excited 

state and that has both, covalent and ionic contributions to the overall excited state 

wave function,  . This can be expressed as 

 

                                          (1) 

 

where A and B refer to different molecules, the symbols  *,+ and – indicate the excited or 

charged state, and c denotes a constant.32 Usually it is understood that the covalent 

contribution, given by the first two terms in equation (1), dominate the character of the 

excited state.  

We now consider the subtle differences between the excimer in the CH3- substituted 

compounds such as 3 and in the CF3-substituted ones such as 6. The energy and shape of 

the emission are identical, yet for 6 compared to 3, the lifetime of the excimer emission 

is about five times longer and the intensity under steady state detection is lower. As 

already mentioned above, this implies a lower radiative decay rate in 6 than in 3. We 

interpret this as an indication that the more polar character of a neat film of 6 increases 

the ionic contribution to the overall excimer wave function expressed in (1). A stronger 

charge-transfer character of the intermolecular state reduces the wave function overlap 

that is needed according to Fermi’s golden rule to give a high radiative decay rate. The 

fact that the substitution with the CF3 group increases the charge-transfer character of 

the intermolecular excitation is a remarkable detail. The relative amount of the covalent 

to the ionic contribution in an intermolecular excitation such as an excimer or, in the 

case of a heterojunction, such as an exciplex is one of the factors that control the 

efficiency of charge separation at the intermolecular interface.33,34 It is therefore 

desirable to be able to fine-tune this property by a simple mechanism such as 

substitution. From the present data we are not able to differentiate whether the longer 



140 | Appendix: Triplet Excimer Emission 

lifetime of the excimer is caused by the increased polarity of the two molecules 

constituting the excimer, or whether it can be attributed to the enhanced polarity of the 

excimer’s environment, or both.35 

We have already shown that the strong torsion in the biphenyl unit in compounds 1-6 

electronically decouples the two halves of the molecule to some degree, resulting in 

absorption and phosphorescence spectra that are identical to those of N-phenyl-

carbazole. N-arylcarbazoles and N-alkylcarbazoles have been studied extensively in the 

past by Klöpffer, Johnson and many others11,18-28, and it is well known that they are 

prone to form excimers. Given the similar electronic structure, it is instructive to 

compare the excimer emission we find for compounds 1-6 with the existing literature on 

excimers in N-arylcarbazoles and N-alkylcarbazoles. These materials can form two 

different kinds of excimers, depending on their geometric arrangement.  

If the carbazoles overlap by only one phenyl ring, a partial overlap excimer is formed. 

This excimer fluoresces in broad unstructured fashion at about 3.1 eV (400nm) 19,26. For 

carbazolophanes that are used as model compounds for the partial overlap excimer, 

Tani and coworkers26 also report phosphorescence, though we note that this 

phosphorescence has vibrational structure with a 0-0 peak about 2.91 eV (425 nm), like 

the corresponding N-ethylcarbazole monomer. Since the triplet is strongly localized, it is 

conceivable that the resonance interaction is not sufficient to form a stable triplet 

excimer. A different conformation is that of a sandwich excimer where the two 

carbazole-derivatives involved overlap fully.19,26,36 Broad and unstructured fluorescence 

and phosphorescence are reported centered at about 2.7 eV (460 nm) and at about 2.5 

eV (500 nm), respectively, for the sandwich excimer.19,26,36 

Triplet excimers are not reported often since the singlet-triplet splitting in excimers is 

small. As a result, triplet excimers are often energetically above the triplet state in the 

monomer and they become quenched by it.32 Triplet excimers can be observed if the 

stabilization energy of the excimer formation is large compared to the S1-T1 energy 

splitting of the monomer, so that the energy level of the excimer triplet is lower than the 

monomer triplet (Figure 11). For carbazole sandwich excimers, this is the case. 24,26,37 

The monomer S1-T1 energy splitting is about 0.7 eV (see Figures 2 and 9 for N-phenyl-

carbazole, or Figure 3 in reference26 for N-ethyl-carbazole). In contrast the energetic 
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stabilization associated with the excimer formation is 0.9 eV, as is evident from the 

change in S1 energy from 3.6 eV to 2.7 eV. We consider that this large stabilization 

energy is associated with a significant wave function overlap of the π-system in the 

carbazole sandwich excimer.  

 

Figure 11. Energy diagram illustrating the singlet and triplet energy levels for the carbazole monomer, for 
the carbazole excimer and of the emitter FIrpic.  

 

If we compare the excimer emission observed in compounds 1-6 to the excimer 

emission reported for N-arylcarbazoles and N-alkylcarbazoles, we find that our excimer 

emission centered at around 2.5 - 2.6 eV is energetically identical to the triplet of the 

carbazole sandwich excimer. Furthermore, the lifetime of the excimer in our compounds 

is on the order of a few hundred microseconds to milliseconds (Figure 10). This is too 

long for a singlet excimer, which is typically in the range of tens of nanoseconds,33,34,38,39 

yet it is consistent with a typical phosphorescence lifetime at room temperature for 

organic solids.40 On this basis we conclude that the excimer emission observed in 

compounds 1-6 can be assigned to a triplet excimer that is localized on two carbazole 

moieties in a sandwich configuration. On passing we remind the reader that we 

attributed the longer lifetime found for the CF3-substituted 6 to a stronger charge-

transfer character of the intermolecular state. This is consistent with reports by 

Haggquist and coworkers who considered how the balance between geminate pair 

recombination, triplet excimer formation and triplet-triplet annihilation in the sandwich 

excimer of N-ethyl-carbazole depends on the dielectric constant of the solvent.36 It also 
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confirms earlier work by Tani et al. on sandwich-type carbazole-derivatives24,26,37 and by 

Lim et al. on triplet excimers in naphtalene-derivatives that arrange in a skewed or L-

shaped geometry.28,41 Both groups pointed out that triplet excimers are stabilized if 

charge resonance adds to the usual electronic resonance associated with excimers, i.e. if 

the third and fourth terms in equation (1) also contribute substantially. This is in contrast 

to singlet excimers, where electronic resonance alone, i.e. the first two terms in 

equation (1), is often sufficient. 

Having established that there is a non-negligible amount of triplet excimers present in 

neat films of compounds 1-6, we may now question whether these materials are 

suitable as hosts for blue triplet emitters. There are a number of reports where 

compound 1, that is CDBP, was used as a host for the Iridium complex FIrpic. The OLED 

performance was found to be very good and certainly superior to that with CBP as host 

material.7,42 The reason for the good performance of 1 (CDBP) may be that FIrpic has a 0-

0 triplet energy of 2.64 eV and the triplet excimer in CDBP is centered at around 2.6 eV, 

i.e. nearly isoenergetic as indicated in Figure 11. The energy transfer rates for forward 

transfer and back transfer therefore have to be very similar. Since the lifetime of FIrpic is 

only in the range of microseconds whereas the triplet excimer lives for several hundreds 

of microseconds this implies that almost all of the excited triplet states still decay from 

the FIrpic site. To which degree this balance shifts when the energy of the triplet in the 

phosphorescent emitter is higher than that in the excimer still needs to be investigated 

in a quantitative fashion.  

 

Summary and conclusion 

We have shown that the substitution on the central biphenyl unit successfully raises the 

triplet T1 energy from 2.58 eV in the more planar CBP to 2.95 eV in the twisted 

compounds 1-6. The monomeric phosphorescence is superimposed by triplet emission 

centered at 2.6 eV from a sandwich type excimer localized on the carbazole moiety. This 

triplet excimer emission can be reduced by increasing the number of bulky substituents 

on the carbazole. When using CF3 instead of CH3 as substituents on the central biphenyl, 

the fluorescence acquires a charge-transfer character, and the radiative recombination 

of the triplet excimer reduces. This is attributed to a larger ionic character of the 



Appendix: Triplet Excimer Emission| 143 

intermolecular triplet excited state for the more polar compounds. It implies that 

depending on the local molecular polarization, the intermolecular excited state may vary 

between having a dominant resonance character (more excimer-like) or a stronger 

coulomb contribution (more charge-transfer like). A partially similar dependence of the 

nature of the intermolecular excited state on the local molecular environment has also 

been observed for molecular heterojunctions, where this effect is known to contribute 

decisively to the recombination or dissociation rate of excited states.35 Given the 

structural similarity of compounds 1-6 to the widely used host materials CBP or mCP and 

the relevant role of long-lived excimer states to device efficiency and lifetime, the 

possible existence of only weakly emissive triplet excimers from the host materials 

needs to be taken into account and requires consideration when evaluating the 

performance of device structures such as WOLEDs. 
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