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Abstract. Reachable sets for nonlinear control systems can be computed via
the use of solvers for optimal control problems. The paper presents a new
improved variant which applies adaptive concepts similar to the framework of
known subdivision techniques by Dellnitz/Hohmann. Using set properties of the
nearest point projection, the convergence and rigorousness of the algorithm can
be proved without the assumption of diffeomorphism on a nonlinear mapping.
The adaptive method is demonstrated by two nonlinear academic examples
and for a more complex robot model with box constraints for four states, two
controls and five boundary conditions. In these examples adaptive and non-
adaptive techniques as well as various discretization methods and optimization
solvers are compared. The method also offers interesting features, like zooming
into details of the reachable set, self-determination of the needed bounding
box, easy parallelization and the use of different grid geometries. With the
calculation of a 3d funnel in one of the examples, it is shown that the algorithm
can also be used to approximate higher dimensional reachable sets and the
resulting box collection may serve as a starting point for more sophisticated
visualizations or algorithms.

1. Introduction and preliminaries

Reachable sets (also named attainable sets or capture basins) being the set of
end points of feasible trajectories of a nonlinear control problem or a differential
inclusion appear in many theoretical works and practical applications. Studies on
robustness, uncertain problems, switched systems or those with state discontinu-
ities are based on reachable sets (see e.g., [22, 8, 2, 23]).

Applications of reachable sets range from the calculation of safety regions of
cars or aircrafts ([32, 1, 20, 43, 4]), the design of discrete controllers for nonlinear
plants [35], maneuvers in space by satellites and multi-boost launchers as in [19,
29, 15, 12] or models on climate change due to greenhouse gas emission [14, 3].

There is a rather big variety of methods, see e.g., the references in [7] giving an
overview on methods applying ellipsoids, polytopes, zonotopes, boxes or apply-
ing the viability kernel algorithm, PDE solvers for the Hamilton-Jacobi-Bellman
equation resp. level sets of reachable sets or support functions for the linear case.
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We will focus on the method based on solvers for optimal control problems in-
troduced in [6, 7] and further developed in [27, 29, 36, 34]. This method has
advantages for those who are already regular users or experts in the application
of optimizers which can be easily applied for these set-valued problems by cal-
culating a series of suitable parametric optimization problems. In comparison to
other approaches, that focus on the different use of optimizers, e.g. SQP methods
[6, 7], interior point methods [27, 29] or approximation methods, based on sup-
port vector machines and reproducing kernel Hilbert spaces [34], we will present
an adaptive technique which leads to a big performance win. This paper develops
several ideas further on, which were already briefly presented in [36], especially
the embedding in the class of subdivision methods is new.

The contents of the paper is as follows: In the remaining part of this section,
we introduce the basic notions, define reachable sets and give a brief overview of
the non-adaptive algorithm on which the idea was based.

In Section 2 we demonstrate, how the mentioned algorithm can be embedded
into a subdivision framework. We will introduce a projection P that maps a
set of points to their best approximations in the reachable set. The subdivision
algorithm is also presented in this section and its convergence is proved.

Section 3 gives an overview of the implementation of the algorithm and the
relation between the previously introduced map P and the end points of the
optimal trajectories for the corresponding optimal control problems which are
calculated by a chosen optimization solver after a suitable discretization. The
flow of the subdivision algorithm is demonstrated on one of the examples and we
will briefly discuss ways to make the algorithm more efficient and robust.

In Section 4, we discuss a selection of nonlinear control problems that were
implemented to test the algorithm. We start with a simple bilinear model to
demonstrate the efficiency of the subdivision algorithm. The model is very fast to
solve and allows us to generate the reachable set even with a rather high number
of grid points and compare both algorithms (with and without subdivision) in a
justifiable amount of time.

The following Kenderov problem is a much more challenging problem to solve
and the computational times are much longer than those in the bilinear prob-
lem, even with the adaptive version. The example demonstrates nicely, how the
chosen Runge-Kutta discretization methods influence the quality of the generated
approximation.

The third problem we introduce is the model of a planar industrial robot. Using
this model, we demonstrate that the algorithm can handle problems with higher
dimensional dynamics and is a viable choice for scenarios, where we want to calcu-
late the reachable set only for some state variables in the dynamics of the system,
or the reachable set of states, that are not directly part of the dynamics of a
system, but are the result of a nonlinear transformation of some of the states. We
show a direct approach to approximate the reachable set of the transformed prob-
lem and compare it to an indirect approach, which first generates the reachable
set of the states, involved in the transformation. We will also use this example to
briefly compare the results, generated by WORPH and Ipopt [13, 41].
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Section 5 is a collection of features which the introduced method offers to gener-
ate reachable sets. We will show the use of different grid geometries, the zooming
into interesting subsets of the reachable set, the automatic generation of a bound-
ing box and the construction of a 3d solution funnel on some examples.

As we have seen in this short summary, we first have to introduce reachable sets
and briefly have to talk about control problems first.

Our goal is to calculate the reachable set of a parametric nonlinear control
system (CP) with constraints of the form

ẋ(t) = f(t, x(t), u(t), p),

x(t0) ∈ X0,

u(t) ∈ U,
pl ≤ p ≤ pu,

gl ≤ g(t, x(t), u(t), p) ≤ gu,

ψl ≤ ψ(x(t0), x(T ), p) ≤ ψu,

for every t ∈ [t0, T ], where x(t) ∈ Rn are the states and u(t) ∈ U ⊂ Rnu are the
controls of the system at time t. Furthermore we have state and control inde-
pendent parameters p ∈ Rnp , the dynamics of the system given by the function
f , nonlinear constraints on states and controls, modelled by the function g and
boundary conditions given by the function ψ. All inequalities in the constraints
of (CP) have to be understood componentwise. The parameter p and the corre-
sponding constraints on p are used e.g., to simulate a free end time, but might
also not be present in the considered control system.

Definition 1.1. The reachable set (sometimes also called attainable set) of a
state-constrained nonlinear control system at a given end time T is defined as the
set of the end points of all feasible trajectories of the control system and can be
written as

R(T ) := {x(T ) ∈ Rn | (x, u, p) is a feasible solution of (CP) }.

The results gathered e.g., in [38, 16, 42], [14, Theorem 2.1.4] and [7, Proposi-
tion 3.2], state various mild conditions under which the reachable set is compact,
nonempty and connected. Key assumptions are e.g. nonemptiness and compact-
ness of the images of the right-hand side of the differential inclusion, the linear
growth condition and local Lipschitzness of the right-hand side.

In this paper we use the approach shown in [7] by constructing the following
parametric optimal control problem (OCP):

Minimize

1

2
‖x(T )− gρ‖22
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subject to

ẋ(t) = f(t, x(t), u(t), p),

x(t0) ∈ X0,

u(t) ∈ U,
pl ≤ p ≤ pu,

gl ≤ g(t, x(t), u(t), p) ≤ gu,

ψl ≤ ψ(x(t0), x(T ), p) ≤ ψu

for t ∈ [t0, T ] which has to be solved for every point gρ ∈ G, where G is a grid in
the state space of the system and ρ is a parameter indicating the mesh size. The
objective function involves the Euclidean norm ‖ · ‖2 for vectors in Rn. The grid
point gρ can be seen as an additional parameter besides p.

To solve this system we have to discretize the ODE with our system dynamics
(e.g., using a Runge-Kutta method with grid points ti = t0 + ih for i = 1, 2, ..., N ,
N ∈ N and stepsize h = T−t0

N
), leading to the following discrete optimal control

problem (OCP)h:
Minimize

1

2
‖xN − gρ‖22

subject to

xi+1 = xi + h · Φ(ti, xi, xi+1, ui, ui+1, p;h), i = 0, 1, . . . , N − 1,

x0 ∈ X0,

ui ∈ U, i = 0, 1, . . . , N,

pl ≤ p ≤ pu,

gl ≤ g(ti, xi, ui, p) ≤ gu, i = 0, 1, . . . , N,

ψl ≤ ψ(x0, xN , p) ≤ ψu.

Here, Φ(·, ·, ·, ·, ·, ·;h) denotes the characterizing function of the discretization
method.

Definition 1.2. The discrete reachable set of the aforementioned discrete optimal
control problem can be written as

Rh(T ) := {xN ∈ Rn | ((xi)i=0,...,N , (ui)i=0,...,N , p) is a feasible solution of (OCP)h}.
We can show for some cases, that the discrete reachable set converges to the

reachable set (in the case of nonlinear control systems see e.g., [21, 40, 14, 9, 10] for
set-valued Runge-Kutta methods and the discussion in [6] as well as [5] for state
constrained differential inclusions) which makes algorithms calculating discrete
reachable sets valuable tools for the approximation of the continuous reachable
sets.

The aproaches in [14, 5, 9, 10, 6, 7, 29] used an equidistant grid Gρ in the state
space. The initial bounding box in the algorithm is usually an n-dimensional
cuboid and can be discretized as

Gρ :=
{
gα = g(l) + (α1 · ρ1, . . . , αn · ρn)T |αi ∈ {0, ..., Ni} ⊂ N0, i = 1, ..., n

}
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with the lower left corner g(l) ∈ Rn and constant step sizes ρ1, ..., ρn ∈ R. The
distance ρ between the grid points is coupled with the stepsize h and the order of
the method Φ used to discretize the ODE with the system dynamics (see [14, 9, 7]).
Using this algorithm to calculate an approximation for the discrete reachable set
of the bilinear problem (Ex. 4.1) with a rather course grid, we get the result shown
in Fig. 1.

3 2 1 0 1 2
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Grid (near)
Grid (far)

Reachable (near)
Reachable (far)

Figure 1. Reachable set of the bilinear problem for a full 33× 33 grid.

Crosses indicate our used grid points, whereas blue and red dots will show
the endpoint of the optimal trajectory from the OCP (also called target point).
As a side effect of the algorithm, we can easily categorize, if a grid point is far
away from the set or if it is inside or at least near to the set. The color at the
grid point gρ and target point z (i.e. the end point x(T ) of the optimal solution
generated from the OCP with parameter gρ) depends on whether dist(gρ, z) > ε
(red) or dist(gρ, z) ≤ ε (blue), for some chosen ε > 0. Therefore we can construct
a rough approximation of the interior of the reachable set and the boundary of
the reachable set for free by seperating these two cases. The black lines in the
plots connect every grid point that is outside the reachable set to its corresponding
target point from the OCP. All plots in this paper were generated using the Python
library Matplotlib [28].

As we can see in Table 1 this algorithm leads to a lot of grid points the finer the
grid gets. The number of grid points also determines the number of optimization
problems we have to solve and has a huge impact on the performance of the algo-
rithm with the actual optimization process being the most expensive part. The
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grid number of grid points

3× 3 9
5× 5 25
9× 9 81

17× 17 289
33× 33 1089
65× 65 4225

129× 129 16641
257× 257 66049

Table 1. Number of grid points for a few different grids.

following section 2 will now introduce the idea for an extension of this algorithm to
reduce the number of needed grid points by using a subdivision algorithm similar
to [17], [26, Secs. 6.3 and 7.5]. Using this algorithm we can generate the reachable
set with much less grid points far away from the reachable set. The left image in
Fig. 2 shows the non-adaptive version with an equidistant 129× 129 grid and the
right image the result created by seven steps of the subdivision algorithm. Both
algorithms approximate the interior of the reachable set with the same density
of grid points, but we can see that the subdivision algorithm chooses the density
according to the distance of the grid point to the reachable set.
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Figure 2. Reachable set of the bilinear problem, generated with
(right) and without (left) the subdivision algorithm.

Furthermore we will prove convergence of this variant of the subdivision algo-
rithm.

2. Grid construction via subdivision

The main goal of this algorithm is to reduce the number of grid points needed
to calculate the reachable set. As seen in Fig. 1 and the left image in Fig. 2 the
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grid points far away from the reachable set are mapped to the boundary of the
set. On the one hand this creates a nice visualization which grid point is mapped
to which target point, but we waste a lot of time creating this dense outline when
we are only interested to get points of the set with a certain distance of each other
like in the interior of the shown sets.

First of all we will introduce a map P by the following definition.

Definition 2.1. Let R ⊂ Rn be the closed and nonempty reachable set of (CP)
and G ⊂ Rn be a compact set. We define the map P as a projection of G onto R,
i.e. every point g ∈ G is mapped to one of its nearest points of the reachable set
R:

P(G) :=
⋃
g∈G

{πR(g)}, πR(g) ∈ ΠR(g) := argmin
z∈R

dist(g, z),

where dist(g, z) = ‖g − z‖2 is the distance function. The set-valued map ΠR

coincides with the optimal-set mapping defined in [37, Example 5.22]. We know
especially

P(∅) = ∅.

Using the previously defined map P we can show some important properties that
are needed to formulate the subdivision algorithm and to prove the convergence.

Lemma 2.2. Let R, G and P be as in Definition 2.1 and assume that R is closed.
Then we can show that

(1) P(G) ⊂ R ∀G ⊂ Rn,
(2) P(G) = ∅ ⇔ G = ∅,
(3) P(G ∩R) = G ∩R,
(4) P(G) ∩G = G ∩R and especially G ∩R 6= ∅ ⇔ P(G) ∩G 6= ∅.
(5) G ⊂ R⇔ P(G) = G and especially P(R) = R, if R is compact.

Proof.

(1) The first part follows directly from the definition of the map P :
argmin
r∈R

dist(g, r) ⊂ R ∀g ∈ G 6= ∅ and therefore πR(g) ∈ R for all πR(g)

from Definition 2.1. This leads to

P(G) =
⋃
g∈G

{πR(g)} ⊂ R. (1)

G = ∅ results in P(G) = ∅ and (1) is obviously true in that case.
(2) For the second part, we use P(∅) = ∅ from the definition of the map,

and only have to prove, that P(G) = ∅ leads to G = ∅. The assumption
G 6= ∅ results in ΠR(g) = argmin

z∈R
dist(g, z) 6= ∅ since R 6= ∅ by definition.

Therefore exists a πR(g) ∈ ΠR(g) and P(G) =
⋃
g∈G

{πR(g)} 6= ∅.

(3) To prove the third equality P(G ∩ R) = G ∩ R we have to look at the
following two cases:
• G∩R = ∅: From the definition of P it follows trivially P(G∩R) = ∅.
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• G ∩R 6= ∅: We can show that for every g ∈ G ∩R

argmin
r∈R

dist(g, r) = {g},

since dist(g, r) > 0 for every r 6= g, but dist(g, g) = 0. Therefore

P(G ∩R) =
⋃

g∈G∩R

{g} = G ∩R.

(4) For the proof of the equality P(G) ∩ G = G ∩ R, we also have to split it
up:
• Assume R∩G 6= ∅: From the first part of the lemma we already know

that P(G) ⊂ R and therefore

P(G) ∩G ⊂ R ∩G.

To show that R∩G ⊂ P(G)∩G we assume, that we have a z ∈ R∩G
with z 6∈ P(G) ∩G.

z ∈ R ∩G⇒ argmin
z̃∈R

dist(z, z̃) = {z}

which leads to πR(z) = z and results in

z ∈
⋃
g∈G

{πR(g)} = P(G).

By assumption z ∈ G holds and therefore

z ∈ P(G) ∩G,

which is a contradiction. Now we can conclude

R ∩G ⊂ P(G) ∩G,

⇒ P(G) ∩G = R ∩G
• R∩G = ∅: We know from the first part of the lemma that P(G) ⊂ R.

Assume there exists r ∈ P(G) ∩G

⇒ r ∈ R and r ∈ G.

But then we have found an element r ∈ R∩G which is a contradiction
to our assumtion that R ∩G = ∅.

⇒ P(G) ∩G = ∅.

We have seen, that

P(G) ∩G = R ∩G,

which naturally includes

R ∩G 6= ∅ ⇐⇒ P(G) ∩G 6= ∅.
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(5) The last part of the lemma can be easily shown by using some of the
previous results.

We have already seen in 3. that P(G ∩R) = G ∩R. If G ⊂ R then

G ∩R = G

and

P(G) = P(G ∩R) = G ∩R = G.

We have also shown in 4. that P(G) ∩G = G ∩R. If P(G) = G then

P(G) ∩G = G

and therefore

G ∩R = P(G) ∩G = G⇒ G ⊂ R.

The equality P(R) = R is trivial, since we may choose G = R.

�

Now we can use the projection from Definition 2.1 to introduce our subdivision
algorithm using a similar approach as in, e.g., [17, 18] and [26, Secs. 6.3 and
7.5]. The goal of the algorithm is to generate a sequence B0,B1, ... of finite,
nonempty collections of compact sets with shrinking diameter, which converges
to the reachable set R, i.e.,

diam(Bk) = max
B∈Bk

diam(B)→ 0 for k →∞,⋃
B∈Bk

B → R for k →∞.

Algorithm 2.3. Subdivision algorithm for reachable sets.
Initialize the algorithm with a bounding set B0 ⊃ R, the collection of sets
B0 = {B0} and set k = 1.

Subdivision: Construct a new collection of sets Sk such that⋃
S∈Sk

S =
⋃

B∈Bk−1

B

and

diam(Sk) = θk · diam(Bk−1),
where 0 < θmin ≤ θk ≤ θmax < 1.

Selection: Define a new collection of sets Bk by

Bk = {B ∈ Sk : P(B) ∩B 6= ∅} (2)

Increase k by 1 and go to Subdivision.

The only difference between this subdivision algorithm and the algorithm in
[17] is the selection step. In practical applications, we usually use box collections
since it is very easy to decide if a point is inside a box or not, but other variants
of set collections are also possible.
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Remark 2.4. It can be shown, that the selection step

B̃k = {B ∈ Sk : ∃B̂ ∈ Bk−1, ∃g ∈ B̂ such that πR(g) ∈ B},

that was used in [36], is equivalent to the selection criterium (2).

Remark 2.5. The algorithm assumes, that the reachable set is compact and
therefore can be bounded by a compact initial bounding set B0 ⊃ R. In case of
a closed but not bounded reachable set R, the algorithm still can be used, but
only to approximate the compact set R ∩ B0. The convergence of the algorithm,
shown in this section, still holds, which can be proved by substituting every R
with R∩B0. The case R∩B0 = ∅ is trivial, since it yields an empty box collection
after the first selection step and we can stop the algorithm at that point and
return ∅ as the result. To avoid confusion with the notation when dealing with
those special cases, we only look at the case of a compact reachable set R and a
bounding box B0 that completely covers R here.

Proving the convergence of the subdivision algorithm for reachable sets is in
some cases similar to the proof seen in [17], since our reachable set R plays a
similar role as the relative global attractor AQ in [17], but also differs in some
parts. One of the most important differences is that the map in aforementioned
paper had to be a diffeomorphism and the projection P we are using here has in
general no inverse. We start with a proposition similar to [17, Lemma 3.2]:

Proposition 2.6. Let R be the reachable set and let B0 be a finite, nonempty
collection of closed subsets with

R ⊂ Q0 :=
⋃
B∈B0

B.

Then the sets

Qk :=
⋃
B∈Bk

B

generated by the subdivision algorithm contain the reachable set R.

Proof. We know by definition, that R ⊂ Q0. Assume there exists r ∈ R ⊂ Qk−1
with r 6∈ Qk for k > 0. Then we can find a set B ∈ Sk that contains r and this
set B is removed in the selection step of the subdivision algorithm, i.e.

P(B) ∩B = ∅.

But this is a contradiction to Lemma 2.2 (4) due to r ∈ R ∩B and therefore

R ⊂ Qk.

�

The implication “B ⊂ P(B) ⇒ B ⊂ R” from [17, Lemma 3.3] is trivial for
Algorithm 2.3.
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Since the subdivision algorithm constructs a nested sequence of compact sets
Qk ⊂ Qk−1 we know that for every l > 0

Ql =
l⋂

k=0

Qk

and we define the limit for the set by

Q∞ :=
∞⋂
k=0

Qk.

The limit set with respect to the Hausdorff distance exists by [37, Exercise 4.3
and Example 4.13].

Our goal is to show that R = Q∞. The strategy shown in [17] would require
the existence of P−1 (and especially πR(g)−1) and cannot be used for our case.
The following theorems will show an alternative route to prove the convergence.

Theorem 2.7. Let R be the reachable set, k ∈ N0 and Qk the compact set gener-
ated by the subdivision algorithm after k steps. Then

Qk ⊂ R + diam(Bk) ·B1(0),

where diam(Bk) ·B1(0) is a ball with radius diam(Bk) around the origin and R+
diam(Bk) ·B1(0) is the Minkowski sum of the reachable set and this ball.

Proof. Take x ∈ Qk. We know from the selection step of the subdivision algorithm,
that we can find a B ∈ Bk and x ∈ B with

P(B) ∩B 6= ∅ Lemma 2.2⇒ R ∩B 6= ∅.

Applying Lemma 2.2 (3),

dist(x,R) ≤ dist(x,R ∩B) = dist(x,P(B) ∩B) ≤ max
y∈B

dist(x, y) ≤ diam(B)

holds and with diam(B) ≤ diam(Bk), the assertion easily follows.
�

This result can now be used to prove the convergence of Algorithm 2.3.

Theorem 2.8. Let R be the reachable set and (Qk)k∈N0 the sequence of compact
sets generated by the subdivision algorithm. Then

Q∞ =
∞⋂
k=0

Qk = R

Proof. In the subdivision step of the algorithm we constructed our new box col-
lections with

diam(Sk) = θk · diam(Bk−1)
and

0 < θmin ≤ θk ≤ θmax < 1
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for all k ∈ N. With θ = max
k∈N

θk, we can construct an estimate for the diameter,

since 0 < θ < 1 and

diam(Bk) ≤ θk · diam(B0)
k→∞−−−→ 0. (3)

Using the result of Theorem 2.7 we get

Q∞ =
∞⋂
k=0

Qk ⊂
∞⋂
k=0

(R + diam(Bk) ·B1(0))

and we can show, that R =
∞⋂
k=0

(R + diam(Bk) ·B1(0)). Although this last equa-

tion seems obvious, we couldn’t find a reference and therefore provide a short
proof:

“⊂” Let r ∈ R be a point of the reachable set, then r ∈ R + diam(Bk) · B1(0)
for every k ∈ N0 and therefore

r ∈
∞⋂
k=0

(R + diam(Bk) ·B1(0)) .

“⊃” Since R is closed, we have dist(r, R) = δ > 0 for every r /∈ R, i.e.,

r ∈ R + δ ·B1(0).

Using the convergence of the diameter in (3) we can find a k0 ∈ N0 with

diam(Bk) ≤
δ

2
for every k ≥ k0. Due to the minimality of δ we know,

that r /∈ R+ diam(Bk) ·B1(0) for all k ≥ k0, hence, r is not an element of
∞⋂
k=0

(R + diam(Bk) ·B1(0)).

Therefore R = Q∞. �

In conclusion, we have seen in this section that the set collections, generated
by the subdivision algorithm, converge to the reachable set. We also have an a
priori estimate, how many steps of the algorithm are needed to achieve a given
accuracy of the representation of the set by the box collection.

3. Implementation

To implement the subdivision-algorithm we need to create an approximation of
the map P defined in the previous section of the paper. Although the subdivision
algorithm allows the usage of a collection of sets with many different shapes, we
use boxes in our implementation, since the computational effort to decide, if a
given point is in the interior of a box or not, is very low. We use the approach
in [6, 7] mentioned in the first section on a course grid on the elements of the box
collections, generated by the subdivision algorithm.

To demonstrate the algorithm, we can take a look at the first few steps of
generating the reachable set of one specific nonlinear example, the bilinear problem
4.1 shown in more detail in Sec. 4, where we collect all of the examples. To initialize
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the subdivision algorithm we start with the box [−3, 2]2 ⊂ R2 and subdivide it
into four smaller boxes as shown in Fig. 3 (i.e., the factor θk from the subdivision
algorithm above is set here to 0.5 for every step). Now, we approximate the map
P using only the corners of the smaller boxes, i.e., we have to solve nine OCPs
using a framework, that can handle problems of the structure shown in Sec. 1 (in
our case, we used Ipopt [41]).

Now we can take the end points of the optimal trajectories, provided by the
optimizer to realize our selection step. We subdivide every box that contains
at least one target point (in our case the orange boxes [−3, 0.5] × [−0.5, 2] and
[−0.5, 2]2 were chosen for further subdivision in the selection step) and skip all
the others (i.e., in our example we drop the two lower boxes [−3,−0.5]2 and
[−0.5, 2]× [−3,−0.5]).
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Figure 3. First step of the subdivision algorithm. Choose an ini-
tial bounding box (left), solve the optimization problems to approx-
imate the map P (middle) and select the boxes for the next step
(right).

Fig. 4 illustrates the further steps of the algorithm until we reach the desired
density of grid points around the reachable set (here the distance between neigh-
boring grid points is ≈ 0.0391 which is equivalent to what can be achieved by
using a full 129× 129 grid) seen in Fig. 5.

Fig. 5 visualizes both approximations of the reachable set that were generated
by the subdivision algorithm, i.e., an inner approximation using the target points
(left) and the outer approximation using the box collection Q7 (right).

For solving the optimal control problems associated to the presented algorithm,
we tested OCPID-DAE1 [24] (used in the computations in [36]) and, after direct
discretization of the optimal control problem, the solution of the discrete non-
linear programming problem by local optimizers as Ipopt [41] and WORHP [13]
as well as by the global methods MCS and PSO from The NAG FORTRAN li-
brary ([39]). Ipopt, based on interior-point algorithms, and WORHP, based on
sparse sequential quadratic programming techniques, are designed for large-scale
optimization problems. MCS uses a multilevel coordinate search based on a local
optimizer, whereas PSO is a particle swarm optimizer.

Numerical experiments [11] showed that the use of local optimizers was sufficient
to provide good approximations for our examples.
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Figure 4. Selection of boxes for the next subdivision steps.
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Figure 5. Inner and outer approximation of the reachable set

Remark 3.1. It has to be noted that a naive implementation of the subdivision
step requires to evaluate some grid points more than once (e.g., the center of
the grid (−0.5, 0.5) shown in Fig. 3 will also be evaluated in the following two
subdivision steps). The optimization process, however, is usually the most expen-
sive step of the whole algorithm, but will yield the same result every time this
point is evaluated. Therefore the computational effort of the algorithm can be
reduced significantly by storing the result of the optimization process after the
first evaluation (in practice we used an AVL tree to store the grid point, its cor-
responding target point and the distance between these two, similar to [17, 18]).
Fig. 6 demonstrates this graphically by showing the second subdivision step for
the bilinear model in detail. On the left we see the result after the first selection
step of the subdivision algorithm, the middle picture shows the nine optimization
problems we have to newly solve in the second step and the right image shows all
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the points stored in the tree that can be taken into consideration for the selection
step now. In the shown case of the second step of the algorithm, we only have to
solve nine optimization problems instead of the 15 that a naive approach would
require. In the next step of the algorithm we can now reuse the results of the
twelve corner points of the shown orange boxes on the right, and so on.
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Figure 6. Demonstration of reusability of the results within the
subdivision algorithm.

Another problem we have in the implementation of Algorithm 2.3 is that we
cannot calculate the mapping πR(g) of every point g in every box, but the box has
to be discretized. Similar to the approach shown in the PhD-thesis of O. Junge
[30], we can change the algorithm in a way to guarantee that we will not cut
away parts of the reachable set, when only mapping and considering the corners
of every box in every step. This also means that we don’t have to look at every
target point generated from the other boxes, but only those we were calculating
in this step which decreases the amount of lookups significantly.

Lemma 3.2. Let B ⊂ Rn be a polygon with corners gi ∈ Rn, i ∈ {1, . . . ,m}, let
m be the number of the corners of B and d = diam(B) > 0 the diameter of the
box B.

Then B ∩R = ∅, if dist(gi, R) >
d

2
for every i ∈ {1, . . . ,m}.

Proof. Since dist(gi, R) >
d

2
for every corner gi, we know, using the minimality of

the distance-function, that there is no r ∈ R with r ∈ d

2
· B1(gi), for every i. We

can also show easily, that B ⊂
⋃
i

d

2
·B1(gi), which leads to

@ r ∈ R with r ∈ B.
�

This can be implemented into the selection step of the algorithm by not only
looking for target points inside the box, but also accounting points which are close
to the box. For the rigorous case, the selection step is changed to

Bk =

{
B ∈ Sk : P(B) ∩

(
B +

diam(B)

2
·B1(0)

)
6= ∅
}
.
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Remark 3.3. In practice, we treat the rigorous enlargement of the box as a
parameter, provided by the user. Numerical examples showed, that for most of
the problems, much smaller values than 1

2
diam(B) are sufficient to provide good

results without increasing the numerical overhead too much, by selecting in general
more boxes in each step.

4. Numerical examples

As a first example in this paper, we take a look at the following bilinear system
already mentioned in Sections 1 and 3.

Example 4.1. Bilinear Problem
The bilinear problem can be described with the two ODEs

ẋ1 = π · x2,
ẋ2 = −π · x1 · u,

where x := (x1, x2) are the states and u ∈ [0, 1] is the control of the system.

The Bilinear Problem is a nonlinear system with no state constraints and bound-
ary conditions, which can be used to demonstrate small-time convexity of the
reachable set (e.g., [7]), but we will only use it as an easy nonlinear introductory
example in this paper. The reachable set can be calculated with the following
parametric OCP:

Minimize
1

2
‖x(T )− gρ‖22

subject to:
ẋ1(t) = π · x2(t),
ẋ2(t) = −π · x1(t) · u(t),
x1(0) = −1,
x2(0) = 0,
u(t) ∈ [0, 1],

 t ∈ [0, T ].

As the result of the algorithm for final time T = 1, we find the sets shown in Fig. 2
for the subdivision algorithm and using an equidistant grid in the state space. We
can use this example to compare the computational effort of both strategies as
seen in Table 2. To discretize the ODE constraints of the system, the usage of
explicit Euler with only 21 timesteps was sufficient to provide good results. We
used Ipopt to solve the optimization problem for every grid point, since it provided
the best results for this specific example.

The next problem we want to discuss was created by Petar Kenderov during his
visit at the University of Bayreuth 2001/2002 (e.g., [14, Example 5.2.1]). Since
the reachable set of this problem is a part of the one-dimensional boundary of a
circle in R2 (i.e., the reachable set of the continuous problem has no interior). It is
very challenging for the optimizer to solve this system, but it has been identified
as a excellent benchmark to demonstrate the influence of the used discretization
scheme on the numerical approximation of the reachable set.
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Number of optimization problems

Grid N S S/N

3× 3 9 9 1
5× 5 25 18 0.72
9× 9 81 41 0.506

17× 17 289 92 0.318
33× 33 1 089 231 0.212
65× 65 4 225 635 0.150

129× 129 16 641 1948 0.119
257× 257 66 049 6822 0.103
513× 513 263 169 25477 0.097

1025× 1025 1 050 625 98040 0.093

CPU time
Grid N S S/N

3× 3 0.13s 0.13s 1
5× 5 0.35s 0.25s 0.714
9× 9 1.2s 0.57s 0.475

17× 17 4.3s 1.24s 0.288
33× 33 16.12s 3.12s 0.194
65× 65 62.74s 8.55s 0.136

129× 129 253.53s 26.29s 0.104
257× 257 1128.09s 92.63s 0.082
513× 513 8234.45s 355.29s 0.043

1025× 1025 94221.4s 1741.58s 0.018

Table 2. Comparison of the computational effort of the algorithm
with (S) and without (N) using the subdivision algorith for a few
different grids.

Example 4.2. Kenderov Problem
The Kenderov Problem is a two-dimensional CP which can be described by the

ODEs

ẋ1 = 8 · (a11x1 + a12x2 + 2a12x2u) ,

ẋ2 = 8 · (−a12x1 + a11x2 − 2a12x1u)

with constants a11 = σ2 − 1, a12 = σ ·
√

1− σ2 and σ = 0.9.

With x(0) = (2, 2) as initial point for this system, we can construct the OCP
for the reachable set in a similar way as shown in the bilinear model.

The plots in Fig. 7 were generated using WORHP, since it gave better results
than Ipopt for this example, especially when using implicit Euler (middle picture,
cpu time: 7 894.26s, see mapping for the grid point (1,−1)) with only a few
timesteps for discretizing the ODE constraints. The use of explicit Euler (left
picture, cpu time: 2 178.26s) yields a set spiraling to the outside, whereas the
implicit Euler generates a set spiraling to the inside. Using the implicit trapezoidal
rule (right picture, cpu time: 730.18s), even with only 16 timesteps, generates
almost the circle we expect as reachable set of the continuous control problem.
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Figure 7. Kenderov problem using different discretization meth-
ods for the ODE-constraints with 16 timesteps each: Explicit Euler
(left), implicit Euler (middle), implicit trapezoidal rule (right).
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Increasing the number of timesteps to 261 will improve the results when using
explizit (left plot, cpu time: 32 655.8s) and implicit Euler (middle plot: cpu-time:
16 190.4s) by reducing the spiraling behavior as seen in Fig. 8, but also increases
the computational effort. Using the implicit trapezoidal rule here (right plot,
cpu-time: 10 282.6s) is the recommended method to find the reachable set of this
system and we can get an almost perfect result in this case.
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Figure 8. Kenderov problem using explicit Euler (left), implicit
Euler (middle) and the implicit trapezoidal rule (right) with 261
timesteps each.

As a more practical example, we can take a look at the robot described in [25,
Sec. 5.2].

Example 4.3. Robot Problem
A planar two-linked robot (see Fig. 9), controlled by two torques (u1, u2) ∈

[−25, 25]2 operating in the joints M1 and M2, can be described by the following
ODEs:

q̇1 = w1, (4)

q̇2 = w1 + w2, (5)

ẇ1 =
J22 (u1 − u2 + J12 sin(q2)w

2
2)− J12 cos(q2) (u2 − J12 sin(q2)w

2
1)

J11J22 − J2
12 cos2(q2)

, (6)

ẇ2 =
J11 (u2 − J12 sin(q2)w

2
1)− J12 cos(q2) (u1 − u2 + J12 sin(q2)w

2
2)

J11J22 − J2
12 cos2(q2)

, (7)

with two angles q1 and q2 between −3 and 3, two angular velocities w1 and w2

between −5 and 5, constants

m1 = 24 [kg], m2 = 15 [kg], m = 6 [kg],
J1 = 1.6 [kgm2], J2 = 0.43 [kgm2], J3 = 0.01 [kgm2],
l1 = 0.4 [m], l2 = 0.25 [m],
a1 = 0.2 [m], a2 = 0.125 [m]

and

J11 = J1 + (m2 +m)l21,

J12 = m2a2l1 +ml1l2,

J22 = J2 + J3 +ml22.



Optimization-based subdivision algorithm for reachable sets 19

x

y

q1

q2

P

M1

M2

l 1

l 2

Figure 9. Illustration of the robot from Ex. 4.3.

As we can see, we have to deal with a four dimensional system, but in practice,
we are only interested in the possible location of a payload at the end point
P ∈ R2 of the robot. The coordinates (x, y) of this point can be described with
the following transformation

P = T (q1, q2) =

(
l1 cos(q1) + l2 cos(q1 + q2)
l1 sin(q1) + l2 sin(q1 + q2)

)
.

Furthermore, we want the robot to stop at the desired final time T , i.e., w1(T ) =
w2(T ) = 0 which can be formulated as a boundary condition

w1(T )2 + w2(T )2 = 0.

As initial values for q1, q2, w1, and w2, we model the scenario to perform an emer-
gency shutdown of the fully accelerated robot arm passing through one point of
the system. The calculated reachable set is the dangerous region, where the robot
arm might come to a halt, whereas the complement is safe. This results in the
following parametric OCP to calculate the reachable set at final time T = 2s:

Minimize

1

2
‖T (q1, q2)− gρ‖22 (8)
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subject to:

q̇1 = w1,

q̇2 = w1 + w2,

ẇ1 =
J22 (u1 − u2 + J12 sin(q2)w

2
2)− J12 cos(q2) (u2 − J12 sin(q2)w

2
1)

J11J22 − J2
12 cos2(q2)

,

ẇ2 =
J11 (u2 − J12 sin(q2)w

2
1)− J12 cos(q2) (u1 − u2 + J12 sin(q2)w

2
2)

J11J22 − J2
12 cos2(q2)

,

qi(0) = 0, i = 1, 2

wi(0) = 5, i = 1, 2

ui(t) ∈ [−25, 25], i = 1, 2

−3 ≤ qi(t) ≤ 3, i = 1, 2

−5 ≤ wi(t) ≤ 5, i = 1, 2

0 ≤ w2
1(T ) + w2

2(T ) ≤ 0,

for every time t ∈ [0, 2] and grid point gρ, using [−1, 1]2 as initial bounding box.
Using the implicit trapezoidal rule (Lobatta IIIA of order 2) with 200 timesteps,

we get the approximation of the reachable set shown in Fig. 10 (distance between
grid points 1

16
as in a full 33× 33 grid) and Fig. 11 (distance between grid points

1
62

as in a full 129 × 129 grid). The use of Euler or implicit Euler would require
a rather fine time discretization/small step size in time which would cause longer
computation times.
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Figure 10. Rough approximation of the reachable set of the robot problem.
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Figure 11. Finer approximation of the reachable set of the robot problem.

The OCP generated by this problem is rather challenging for the used opti-
mizers and the quality of the results depends heavily on the used initial guess.
To demonstrate the difficulty we first look at the reachable set for the angles q1
and q2 (left picture in Fig. 12) and perform the transformation T of the angles q1
and q2 into the coordinates x and y afterwards, when plotting the results (right
picture in Fig. 12).
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Figure 12. Reachable set of the robot without the transformation
in the objective function (left) and the transformed set using the
same results and colorcode (right).
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Figure 13. Objective function of the non-transformed robot prob-
lem (left) and the transformed version (right).

We can see (indicated by the two different colors) that there are two major
strategies (i.e., q2 is positive or negative at final time T ) which generate a partially
overlapping part of the transformed reachable set, but on the right boundary, there
are also some parts that can only be reached by following a trajectory leading to
either a positive or negative angle q2.

The non-transformed problem is a little bit easier to solve for the optimizer
(some fine tuning is still required), since the objective function doesn’t have as
many local extrema as the transformed problem (as we can see in Fig. 13), but we
don’t get a result with almost equidistant target points inside of the reachable set
this way. If we want to directly solve the transformed version of this problem to
generate a nicer approximation, we have to be very careful to not only generate a
part of the reachable set (numerical experiments like Fig. 14 showed that due to
the choice of the initial value, all our used optimizers tend to only generate the
red part in the right picture of Fig. 12 most of the time).

In our case, we circumvented the problem by solving each OCP more than once
with multiple initial guesses which drive the system into both strategies and only
took the result for which the target point had the minimal distance to the grid
point. Although this strategy will raise the computational effort of the program,
it is a better strategy than working with warm starts from former processed grid
points and risking to follow the wrong strategy that way. As initial guesses for the
transformed problem, we chose control sequences, that were generated by using
the non-transformed problem. We reused the results from Fig. 12 for this purpose,
but for practical applications, it is not necessary to generate the non-transformed
reachable set with such a dense grid. We only have to solve the (OCP) for grid
points in the vicinity of problematic regions, to construct appropriate estimates.

In Fig. 15 we show the results we get, if we generate the reachable set with
Ipopt and WORHP. As we can see, both optimizers have some difficulties to find
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the global minimum for some grid points, but we still get a good approximation
of the expected reachable set with both when using various initial guesses.
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Figure 14. Approximated transformed reachable set of the robot
with a less elaborate strategy for initial guesses.
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Figure 15. Reachable set of the robot problem, generated with
Ipopt (left) and WORHP (right).
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5. Advantages of the algorithm

In this section, we will collect some nice features of the subdivision algorithm,
some of which (e.g. zooming and parallelization) also work without subdivision.
Example 4.3 also shows that the algorithm can handle higher dimensional dy-
namics, especially if we are interested in a lower-dimensional projection of the
reachable set. The state discretization is only done for the lower-dimensional
bounding box (in this example 2d), not for the reachable set of the complete sys-
tem (4d). In the robot example these are the x- and y-coordinates of the payload
at the end point of the robot arm.

5.1. Transformed grids. Although most of the examples in this paper only use
boxes in the set collection, the algorithm (with or without subdivision) can also
be used with triangulations of different shapes. A prime example is the robot
problem introduced in Ex. 4.3. Due to physical constraints the feasible region is a
circle around the origin with outer radius l1+ l2 = 0.65 and the different lengths of
the two parts of the arm create a hole in the middle, since the robot cannot reach
the inner circle with radius l2− l1 = 0.15. A natural approach is to use a circular
grid with the bigger radius l1 + l2, since the reachable set has to be a subset of
it (see Fig. 16). The left picture shows the used grid points in this case and the
right picture shows the approximation of the reachable set using the generated
target points.
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Figure 16. Robot model using a circular grid.

The circular grid is created by choosing a box shaped grid (in the robot example:
[−1, 1]2) and transforming it to a circular grid with radius s, using the mapping

x 7−→ x̃ =

{
0 if x = 0,

s · ‖x‖∞‖x‖2 · x if x 6= 0.

It can be easily shown that the inverse of this transformation can be written as

x̃ 7−→ x =

{
0 if x̃ = 0,
1
s
· ‖x̃‖2‖x̃‖∞ · x̃ if x̃ 6= 0
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which allows us to implement the subdivision algorithm for the circular grid very
easily. Subdivision and selection will be performed by using the initial bounding
box [−1, 1]2. A chosen grid point g in this box will be transformed to its respec-
tive point g̃ in the circular grid, we solve the minimization problem “minimize
1
2
‖T (q1, q2)− g̃‖22” and use the inverse to transform the generated end point of the

trajectories back to our used boxes.
Using this method, we can also use grids created by, e.g., a rotation around

some point in the state space, sheared grids, etc., which can be very beneficial
when dealing with oddly shaped reachable sets.

5.2. Zooming. Sometimes, we are not interested in the complete reachable set,
but only want to take a closer look at one specific part of the set. As an example,
we take a closer look at the Kenderov Problem, generated by the algorithm using
the explicit Euler with 16 time steps shown in Fig. 7 (left). We are interested to
see, how the set looks like inside of the box [−1.0, 1.0]× [0.5, 2.0], but a graphical
zoom into that picture does not reveal any detail and we only get a meaningless
collection of points with a huge gap in between as shown in Fig. 17 on the left.

To get a better picture we could generate the whole reachable set with a very
dense grid (as it would be in many other methods approximating reachable sets)
which takes a lot of time, or – more efficiently – we can set the initial bounding
box of Algorithm 2.3 to the interesting region B0 = [−1.0, 1.0] × [0.5, 2.0], start
the subdivision algorithm and only generate the part of the reachable set, that
lies near that box.
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Figure 17. Graphical (left) and computational (right) zoom on
the example of the Kenderov Problem.

5.3. Determination of a bounding box. One restriction of the algorithm is,
that we have to provide an initial bounding box, where we expect the reachable
set. Finding this box is not always an easy task when analytic estimates are not
at hand. The subdivision algorithm provides a good way to automatically find a
suitable bounding box via trial and error which is illustrated in Figs. 18 and 19.

The strategy behind this approach is to start with any box in the state space
and perform the subdivision algorithm. If the reachable set, or parts of it, are
contained within this box, we will get an approximation as shown in the previous
examples. If we have the situation, like shown in Fig. 18 (cpu time: 0.15s), where
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Figure 18. Self-finding of the bounding box.
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Figure 19. Piecewise construction of the whole reachable set, by
choosing new bounding boxes at locations containing target points
from previous runs or cut off looking edges.

the grid points were far away from the reachable set (i.e. B0 ∩ R = ∅ with
B0 = [−4.1,−2.6]× [−2.5,−1.5]), the algorithm will stop after the first selection
step, but we do not have to start with another blind guess again. We can use our
results to create a bounding box around the target points (in our example we only
found the point approximately at (−1, 0)) we got from the failed algorithm, since



Optimization-based subdivision algorithm for reachable sets 27

they are part of the reachable set that we are looking for. We may not find the
whole set with this new bounding box either, but every time we see parts of the
reachable set being cut off by the chosen bounding box or we find target points
outside of the box, we can restart the algorithm again at those locations, until we
find a set that is completely surrounded by target points created from grid points
far away from the set. Fig. 19 shows this strategy for the bilinear problem 4.1,
where new boxes where chosen at [−1.1, 0.4] × [−0.5, 0.5], [0.4, 1.9] × [−0.5, 0.5],
[0.4, 1.9] × [0.5, 1.5] and [−1.1, 0.4] × [0.5, 1.5]. We only translated our initial
bounding box to new locations to achieve a consistent density of grid points,
without having to change the number of subdivision steps. Merging the results
after every step creates the same reachable set as shown in Fig. 2.

5.4. Parallelization. Due to the structure of the algorithm, it is quite easy to
parallelize the algorithm. Most of the effort to generate the reachable set lies in
solving the OCPs at every grid point, but if we are not relying on warm start
strategies, these are all independent of each other. The algorithm without sub-
division can easily be split up into many tasks (the number of tasks that way is
only bounded by the number of grid points in the state space) and those can be
distributed to different threads, processes or even machines which allows us to use
the whole spectrum of parallelization (e.g., OpenMP1, Pthreads2, Open MPI3).
Other parallelization approaches in using optimizers for the calculation of reach-
able sets can be found in [14, Sec. 4.4] (master/slave system with PVM4 and [29,
Chap. 4–6] (parallelization on GPUs with CUDA5).

The subdivision algorithm is a little bit more difficult to parallelize, due to the
fact, that we cannot specify every grid point a priori. A possible – and very crude
but feasible – way to implement parallelization is a similar idea to the one seen
in Sec. 5.3. Every time we reach the selection step of the algorithm, we could
distribute the selected boxes to parallel tasks performing the subdivision and only
collect all the results in the end. As a small scale example, we can recycle the
results from Fig. 19. The four top right boxes can be calculated in parallel and
we were measuring the times spent to create the individual parts (Tab. 3) using a
workstation with a Intel R©CoreTM2 Duo CPU E8600 (3.33GHz) and 8GB RAM.
The whole reachable set, with the same density ( 3

64
in x-direction and 1

32
in y-

direction) of grid points, can be generated in 33.12 s. Although the summed up
times for the smaller boxes is slightly higher, solving the OCPs in the four smaller
boxes in parallel leads to a faster computation finishing after approx. 11 s. Table 3
shows that the computational time for each subregion differs due to skipped load
balancing and the varying number of grid points lying in each subregion.

This idea can also be used for the non-adaptive version, where the complete
set with the same density of grid points can be computed in 70.44 s on the same

1Open Multi-Processing, http://www.openmp.org/
2Native POSIX Thread Library, http://www.opengroup.org/content/posix%C2%AE/
3Open Message Passing Interface, https://www.open-mpi.org/
4Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/
5Compute Unified Device Architecture, http://www.nvidia.com/object/cuda_home_new.

html

http://www.openmp.org/
http://www.opengroup.org/content/posix%C2%AE/
https://www.open-mpi.org/
http://www.csm.ornl.gov/pvm/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
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Times Times
Box (with subdivision) (without subdivision)

[−1.1, 0.4] × [−0.5, 0.5] 7.49 s 18.21 s
[0.4, 1.9] × [−0.5, 0.5] 7.00 s 17.58 s

[−1.1, 0.4] × [0.5, 1.5] 9.35 s 18.12 s
[0.4, 1.9] × [0.5, 1.5] 10.55 s 18.69 s
Table 3. Computational times for generating parts of the reach-
able set with the shown boxes.

machine. Looking at the results in the last column of Table 3, we can see that we
get the set in less than 19 s by splitting it up into four threads. Here, the com-
putational time of each subregion is very similar, since the non-adaptive version
uses a uniform grid and has to solve the same number of optimization problems
to solve on every box.

5.5. Solution funnel in 3d. Another advantage of the algorithm (with and with-
out subdivision) is that we are not restricted to two dimensional grids. As an
example we can expand the bilinear model 4.1 to calculate not only the reachable
set at a fixed time, but the solution funnel of the system (i.e., the reachable set
up to a set time). We can show, that this can be achieved by introducing another
state xt and the (virtual) control ut in the following way:

ẋt = ut,

ẋ1 = ut · π · x2,
ẋ2 = ut · (−π · x1 · u),

with ut ∈ [0, 1] on the time interval [0, 1]. Using the algorithm on this system will
give us target points (now three dimensional) which can be used to describe the
reachable set (as seen in Fig. 20). By considering, e.g., the virtual control

ut(τ) :=

{
1 for τ ∈ [0, 0.5],

0 else,

the corresponding solution x(·) fulfills that xt(τ) = 0.5 and (x1(τ), x2(τ)) lies in
all reachable sets R(τ) for τ ≥ 0.5. This well-known technique to approximate
the union of reachable sets, i.e., reachable points up to the time τ ∈ [0, 1], is also
applied, e.g., in [31].

The subdivision algorithm has the big advantage, that it also creates the box
collections approximating the reachable set which are much easier to handle in
practical applications. Working with the generated point cloud can be rather
difficult, since we cannot assume the set to be convex like in linear control prob-
lems. Even visualization of the results turns out to be a rather problematic task.
Fig. 20 only shows the slices at (xt)i = 1

8
i (i = 0, 1, ..., 8) through the set, i.e.,

the reachable sets of the bilinear problem with final times (xt)i. This was mostly
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Figure 20. Solution funnel of the bilinear problem for T ∈ [0, 1].
The plot only shows the slices at ti = 1

8
· i, i ∈ {0, 1, . . . , 8} to make

it easier to read (cpu-time 103 534s).

done to keep the visualization of the results in this example a little bit more clear.
In the calculation of the funnel the distance between grid points on the xt-axis is
much smaller. When using the box collections, we can see that it is much easier
to handle the generated approximation. If we have to check, if a point is (almost)
reachable, we only have to check if it is contained in one of the boxes (convex
and therefore easy to handle) which were generated by the algorithm. It is also
much easier to export the box collections into a format (e.g., OBJ) that can be
handled by e.g., 3d modelling software or interactive 3d applications, than having
to deal with a point cloud. As an example, we took the final box collection from
the calculation of Fig. 20 and visualized it using the raytracer POV-Ray [33]. The
image in Fig. 21 was created in a very crude way, by putting every generated box
into a POV-Ray union (i.e., a structure that unifies multiple objects into a single
object for the rendering process). One could also postprocess the box collection
first and merge neighboring boxes into bigger objects or remove completely hidden
boxes to save on rendering time by reducing the number of objects in the scene.
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Figure 21. Final box collections of the solution funnel of the bi-
linear problem for T ∈ [0, 1], rendered with POV-Ray.

6. Conclusion

As we can see in this paper, the subdivision algorithm is an extension to the
reachable set algorithm shown in [7] that doesn’t only reduce the computational
effort for most cases, but also generates an additional approximation of the set. We
can show convergence of the set collection, generated by the subdivision algorithm,
to the reachable set and have an a priori estimate about the accuracy. This allows
us to use in practical examples as in 21, e.g., a box collection (instead of a point
cloud which is much more difficult to handle). Due to the subdivision approach,
the algorithm inherits all positive aspects of the subdivision technique, especially
the computational applicability to higher-dimensional control systems if only a
low-dimensional projected reachable set is of interest (see Example 4.3). Even
with the non-adaptive optimization approach, those low-dimensional projected
reachable sets can be calculated, e.g., the single-track model with 7 states and 2
controls in [43, Sec. 2,1] as well as the docking maneuver of a satellite with 13
states and 6 controls in [29, Sec. 7.1].

We have also seen that the algorithm can handle more difficult examples, e.g.,
reachable sets without an interior (Kenderov Problem 4.2) or transformed prob-
lems (Robot 4.3) without changing the subdivision strategy. The main problem
lies in solving the optimization problems which can be, depending on the prob-
lem, more or less tricky. It is imperative to ensure good results of the underlying
optimization process which can be achieved by using one of the many well tested
optimization frameworks available. Some parameter adjustments or trial and error
with initial guesses may be necessary, depending on the difficulty of the problem.
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The examples also were used to demonstrate the differences between the adaptive
and non-adaptive version as well as the influence of the choice of the discretizer
or OCP-solver (i.e., WORHP or Ipopt) on the quality of the results.
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