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Abstract: In spite of considerable efforts to monitor global vegetation, biomass quantification 

in drylands is still a major challenge due to low spectral resolution and considerable background 

effects. Hence, this study examines the potential of the space-borne hyperspectral Hyperion 

sensor compared to the multispectral Landsat OLI sensor in predicting dwarf shrub biomass in 

an arid region characterized by challenging conditions for satellite-based analysis: The Eastern 

Pamirs of Tajikistan. We calculated vegetation indices for all available wavelengths of both 

sensors, correlated these indices with field-mapped biomass while considering the multiple 

comparison problem, and assessed the predictive performance of single-variable linear models 

constructed with data from each of the sensors. Results showed an increased performance of the 

hyperspectral sensor and the particular suitability of indices capturing the short-wave infrared 

spectral region in dwarf shrub biomass prediction. Performance was considerably poorer in the 

area with less vegetation cover. Furthermore, spatial transferability of vegetation indices was not 

feasible in this region, underlining the importance of repeated model building. This study 

indicates that upcoming space-borne hyperspectral sensors increase the performance of biomass 

prediction in the world’s arid environments. 
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1. Introduction 

Remote sensing is an essential tool to study degradation of vegetation and biomass in arid 

environments [1,2]. However, low vegetation cover and significant background effects make optical 

satellite analysis challenging in these regions [3,4]. The majority of dryland studies apply multispectral 

sensors for biomass quantification [3] but more recently, hyperspectral techniques, using hundreds of 

bands, are considered as a more promising approach [2,5–8]. In arid regions, an important advantage of 

hyperspectral data is that narrowband and derivative indices of hyperspectral sensors are less susceptible 

to soil and illumination impacts [5]. Additionally, the high spectral resolution enables the analysis of the 

vegetation-related red-edge transition which is especially useful for quantification of green vegetation at 

low cover values [9]. Besides spectral properties of green vegetation, hyperspectral sensors are also able 

to capture reflective features of other plant tissue, like lignin or cellulose [7,8,10–12], which may be 

important in detecting vegetation in drylands where significant parts of plants consist of structural  

non-photosynthetic tissue [8,11]. In contrast to these encouraging factors, other sources conclude that 

areas with low vegetation cover cannot be reliably analyzed using hyperspectral data [10,13]. Therefore, 

it is still uncertain if space-borne hyperspectral sensors are able to significantly improve vegetation 

detection in extremely arid regions, and so assessments of their practical viability in comparison to 

broadband sensors are required [7]. 

The application of hyperspectral data with its numerous bands is mostly based on prior knowledge of 

the optimal spectral regions for a specific research question [7]. In contrast to that, particular wavelengths 

or indices related to a given variable may not have been tested for vegetation mapping [14], or may vary 

from one study to another as the spectral signal is dependent on a number of external factors [15]. 

Consequently, the biggest challenge for remote sensing based studies, especially in arid environments 

with increased background noise, is the transferability of methods or appropriate spectral indices in time 

and space [3]. 

To address these essential issues of applied hyperspectral research against a background of the 

forthcoming launches of new hyperspectral sensors (e.g., EnMAP), we test the utilization of NASA’s 

Hyperion sensor for dwarf shrub biomass analysis in the Eastern Pamirs of Tajikistan. This area is 

especially suitable for testing the limits of optical remote sensing satellites as vegetation cover is sparse 

(dwarf shrub cover < 20%), large parts of local plants consist of non-photosynthetic structural materials 

and substrate colors are highly variable [4,16]. As multispectral methods proved to be unsuccessful or 

associated with large uncertainties in the research area [4,17], our main goal is to assess if novel 

narrowband indices of the hyperspectral Hyperion sensor improve the performance of dwarf shrub 

biomass detection in this arid environment compared to the commonly used multispectral sensor Landsat 

OLI. Thereby, spectral regions and indices that are sensitive to dwarf shrub amounts should be identified, 

taking the issue of false positive tests in multiple comparison studies into account. Furthermore, 
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transferability of vegetation indices is assessed by comparison of the most important spectral regions for 

dwarf shrub analysis from scenes of different regions in the study area. 

2. Materials and Methods 

2.1. Research Area 

The Eastern Pamirs of Tajikistan are a high mountain desert plateau with mean altitudes between 

3500 and 5500 meters above sea level (Figure 1). The climate is characterized by low temperatures and 

scarce amounts of precipitation (Murghab annual mean 1998–2012: −1 °C, 94 mm, [18]). These natural 

conditions allow the development of dense, green grass vegetation only in areas with sufficient water 

supply (e.g., riparian vegetation in riverbeds, alpine meadows at very high altitudes). All other areas are 

sparsely covered and dominated by dwarf shrub vegetation adapted to water scarcity (Figure 2, [19]). 

These dwarf shrubs play a vital role in a region where the main economic activity is animal husbandry, 

as they serve both as a source of forage and fuel. The energy importance of shrubs is caused by the fact 

that they are the only local plants that develop woody parts, mainly in the root zone. Extensive 

harvesting, whereby the whole plant is dug up, has raised concerns regarding sustainable development 

of the region [19]. Therefore, a comprehensive assessment of the availability of this resource is needed 

as existing remote sensing approaches are still erroneous [4]. 

 

Figure 1. Overview of the research area, analyzed satellite images and field sites. The two 

Hyperion scenes were acquired on 3 August 2012 (western scene) and on 29 July 2013 

(eastern scene), the Landsat OLI scene on 28 July 2013 respectively. DEM source: METI & 

NASA [20]. 
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Figure 2. Photographs of (a) dwarf shrub stand located within the eastern Hyperion scene 

taken in fall 2014, and (b) dwarf shrub stand located within the western Hyperion scene with 

azonal grass vegetation in the background taken in summer 2013. 

2.2. Data 

Selection of satellite images was based on an acquisition date during the peak of the vegetation period 

to maximize the vegetation related reflectance signal in this arid environment [4]. 

2.2.1. Landsat OLI Data 

A multispectral, terrain corrected image (L1T) with 30 m × 30 m spatial resolution was acquired on 

28 July 2013 by the operational land imager (OLI) sensor of NASA’s Landsat 8 satellite. Visual 

inspection and comparison to GPS measurements showed that geo-referencing of the image was accurate 

and no further adjustment was needed. All eight multispectral bands were included in the analysis. 

2.2.2. Hyperion Data 

Two hyperspectral, terrain corrected images (Level 1T) with 30 m × 30 m spatial resolution were 

acquired on 3 August 2012 (western scene) and 29 July 2013 (eastern scene) by the Hyperion sensor of 

NASA’s Earth Observing 1 Satellite (Figure 1). The sensor spans the spectral range from 356–2577 nm 

with a bandwidth of ~10 nm leading to a total of 242 bands. Exclusion of bad bands (not calibrated, 

redundant, noise from atmospheric water vapor, low signal to noise ratio) left 158 bands for the analysis 

(cf. [21]). These are bands 8–57 (427–925 nm), 79–119 (933–1336 nm), 133–164 (1477–1790 nm),  

183–184 (1982–1992 nm) and 188–220 (2032–2355 nm). Despite automatic terrain correction of Hyperion 

images, a spatial error was present in the data. This error was corrected by matching the image pixels with a 

nearest neighbor resampling algorithm to respective Landsat pixels using a second-order polynomial model 

with 19 control points (3 August 2012 RMSEXY: 3.37 m, 29 July 2013 RMSEXY: 5.02 m). The images were 
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not corrected for other effects such as spectral smile or striping as no generally accepted procedure exists 

as well as to preserve the original spectral characteristics [22]. 

2.2.3. Atmospheric Correction 

All images were recalculated to at-sensor radiance with subsequent atmospheric correction using 

ENVI’s state-of-the-art MODTRAN®-based FLAASH® approach. Aqua AIRS Level 3 Daily Standard 

Physical Retrieval product [23] provided information of daily atmospheric water vapor amounts for each 

scene to select the appropriate FLAASH® atmosphere. 

2.2.4. Field Data 

Sixty dwarf shrub stands (30 field sites in each Hyperion image) with homogenous vegetation cover 

and a minimum area of 60 m × 60 m were mapped in summer 2013 and fall 2014 with a handheld GPS 

device (horizontal RMSE ~5 m) using a study design similar to Zandler et al. [4]. Areas were selected 

preferentially to achieve the following objectives: (i) minimum size requirements [24]; (ii) mapping of 

a broad range of dwarf shrub densities; (iii) homogenous spectral properties and to take accessibility of 

field sites into account (cf. [4]). Furthermore, field sites were placed so that steep terrain is avoided to 

prevent potential spatial errors due to inaccurate terrain correction in Hyperion data. Within the stands, 

two subplots with 4 m side length were placed randomly and circumferences of all dwarf shrub 

individuals were measured inside the subplots. These measurements were used to calculate dwarf shrub 

total biomass using an allometric model developed specifically for the research area and the analyzed 

dwarf shrub species [4]. Results were averaged to represent the mean dwarf shrub biomass in kg·ha−1 of 

the stands. The midpoint between the subplots was taken as reference pixel to extract spectral 

information for each stand. A descriptive comparison of site biomass amounts shows that the western 

Hyperion scene is characterized by higher biomass amounts compared to the eastern scene (Figure 3). 

 

Figure 3. Boxplots showing dwarf shrub biomass amounts of sites located in Hyperion 

scenes of August 2012 and July 2013, respectively. Each scene contains 30 field sites. 
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2.3. Spectral Index Computation and Statistical Analysis 

Previous studies show that several spectral regions may be important in detecting different plant 

materials [7,25]. The most prominent is the red-infrared transition to analyze green vegetation [26] but 

many other spectral regions related to non-green, structural plant parts are mentioned as 

well [9,10,13,14,25,27–30]. For multispectral data, a very large number of vegetation indices potentially 

useful in detecting various plant tissues are available, but in the research area, most commonly used 

indices were shown to be unsuitable for biomass prediction [4]. Furthermore, existing hyperspectral 

indices designed to detect features of non-photosynthetic vegetation, may be inapplicable at low cover 

values on various soils [29]. Therefore, since there is no prior knowledge of hyperspectral indices that 

may be particularly suitable for biomass detection in the research area and to fully exploit the potential 

of the numerous Hyperion bands, all possible unique normalized difference indices (NDIs) were 

computed according to the formula: 

,ܽܫܦܰ ܾ, ܿ ൌ
ܴܽ௖ െ ܴܾ௖
ܴܽ௖ ൅ ܴܾ௖

(1)

where R is reflectance, arranged in a descending order (2355–427 nm); a is the first wavelength and b is 

the reference wavelengths for field site c. This resulted in a total of 12,403 NDIs using Hyperion bands 

and 28 NDIs using Landsat OLI bands, respectively. These NDIs were grouped in four feature sets 

according to appearance of field sites in the two Hyperion scenes and based on the applied sensor: 

Western field sites (n = 30) within the Hyperion scene from 3 August 2012 (H2012), same field sites 

with Landsat data (LS2013a), eastern field sites (n = 30) within Hyperion scene from 29 July 2013 

(H2013) and same field sites with Landsat data (LS2013b). 

The features were paired in the correlation analysis with mean biomass of field sites as the response 

variable. Pearson’s correlation coefficient R was preferred based on preliminary studies showing a linear 

relationship of biomass and vegetation indices in the research area as well as visual inspection of a part 

of the present data [4]. Hypothesis testing to reject the null hypothesis of zero correlation results in a 

multiple testing problem. For instance, performing 10,000 independent hypothesis tests at the 5% level 

of significance would be expected to yield 500 false rejections if all null hypotheses are true. To address 

this problem, the Benjamini-Hochberg procedure [31], successfully applied by Peña et al. [21] in a 

comparable study, was used to control the false discovery rate (FDR) at a level of <5% and to compute 

adjusted p-value thresholds for each feature set. 

Graphical displays were created for visual identification and comparison of spectral regions that are 

sensitive to dwarf shrub biomass amounts. Denomination of spectral regions follows Thenkabail et al. [12]. 

Similar to the multiple testing problem, the highest correlation coefficients obtained in a large family 

of correlations is not indicative of the predictive performance achieved in a situation where optimal 

indices are not known in advance and optimal index selection is therefore part of the data analysis 

process. To assess the performance of different sensors and feature sets in this situation and account for 

the high dimensionality of the data, we therefore used linear regression models built with a single 

stepwise forward variable selection step using Pearson’s correlation as the selection criterion. Larger 

models were not considered due to the small sample size. Predictive performances obtained for different 

feature sets and study areas were estimated using 100-repeated, 10-fold cross-validation. In this 
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estimation method, the data set is randomly subdivided into 10 disjointed subsets or partitions. One 

partition at a time is used as the test set and the other 90% of the data as the training set in building a 

linear regression using the stepwise method. This procedure is repeated for each of the partitions and for 

100 independent partitionings in total. 

To evaluate feature sets, absolute root mean square error (RMSE), relative RMSE (RMSErel) and 

BIAS were calculated as: 

RMSE=ඩ෍ (Yi-Yi෢)² 

n

n=1

n

(2)

RMSErel=RMSE

Yഥ
×100% (3)

BIAS=1

nത
෍

೙

೙సభ

Yi෢-Yi (4)

where Yi is the measured and Yi෢ the predicted value of case i, Yഥ is the observed mean value and n is the 

number of observations. Mean and standard deviation of these error measures over 100 cross-validation 

repetitions are reported. 

3. Results 

3.1. Visual Comparison of Biomass-Index Correlations 

A broad range of spectral indices were significantly correlated with dwarf shrub biomass in both 

hyperspectral images (Figure 4). Comparison of feature sets showed substantial differences in 

correlation for indices calculated from green to far near infrared (FNIR) regions (500–1350 nm), where 

indices of H2012 resulted in a number of significant correlations in contrast to H2013 with almost no 

significant correlations in this spectral region. Indices derived from spectral bands in the early  

short-wave infrared (ESWIR, 1450–1800 nm) regions were more consistent as both H2012 and H2013 

showed numerous strongly significant correlations in this domain. The closest match of results of the 

two feature sets was in the far short-wave infrared region (FSWIR), whereby strongest correlations of 

dwarf shrub biomass exist with indices of wavelengths 1950–2300 nm and associated reference 

wavelengths from 700 to 1800 nm. 

A comparison of hyperspectral feature sets with multispectral feature sets and the same field sites 

showed similar correlations at related wavelengths. However, correlation coefficients of the 

hyperspectral feature sets were higher in most cases. Large differences were visible between the eastern 

multispectral feature set (LS2013b) with higher correlations in the ESWIR and FSWIR in contrast to the 

western multispectral feature set (LS2013a) with higher correlations in the green to near infrared (NIR) 

spectral regions. 
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Figure 4. Absolute values of Pearson’s correlation coefficients R of biomass with indices 

from field sites of feature sets (a) H2012, (b) LS2013a, (c) H2013, and (d) LS2013b. Black 

lines mark significant values controlled at a FDR < 5%. 

3.2. Modeling Performance of Feature Sets 

The western hyperspectral feature set (H2012) performed best in predicting dwarf shrub biomass 

according to the cross-validated modeling results with an RMSE of 1121 kg·ha−1, a RMSErel of 58% 

and an R2 of 0.54 averaged over all repetitions (Table 1). The associated multispectral feature set 

(LS2013a) showed a higher RMSE of 1528 kg·ha−1 (RMSErel 78%) and lower R² of 0.15. Both models 

showed a relatively small bias. Eastern feature sets generally showed poor modeling performance 

ranging from RMSE values of 937–973 kg·ha−1 (77%–80% RMSErel) whereby the hyperspectral feature 

set (H2013) produced slightly lower values and higher R². Furthermore, model bias was higher for the 

eastern feature sets. 
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Table 1. Cross validated modeling performance of the different feature sets averaged over 

all repetitions. 

 
Modeled Mean RMSE 

(kg·ha−1) 

Modeled Mean 

R2 

Modeled Mean 

Bias (kg·ha−1) 

Modeled Mean 

RMSErel (%) 

Hyperion western sites (H2012) 1121 0.54 −23 58 

Hyperion eastern sites (H2013) 937 0.29 69 77 

Landsat OLI western sites (LS2013a) 1528 0.15 11 78 

Landsat OLI eastern sites (LS2013b) 973 0.16 53 80 

3.3. Variable Selection Frequency of Indices 

Stepwise variable selection averaged over all folds and repetitions showed a considerably increased 

occurrence of the best performing NDI compared to other relevant indices over all feature sets (Figure 5). 

The best NDIs of the hyperspectral feature sets showed a strong concentration of FSWIR bands with 

reference wavelengths mostly from the FNIR to the ESWIR. Red–infrared and red edge indices were 

chosen rarely. The three most commonly selected NDIs of the western hyperspectral feature set H2012 

all consisted of bands around 2100 nm with reference bands in the FNIR, whereas the eastern feature set 

H2013 showed higher diversification with bands from 1980–2140 nm and reference bands in the NIR. 

Little conformity was visible between hyperspectral and multispectral feature sets. A comparison of the 

multispectral feature sets showed large differences with an emphasis of the western feature set 

(LS2013a) on the red to infrared region, specifically the index calculated from wavelengths centered at 

865 nm and 655 nm which is identical to the commonly known Normalized Difference Vegetation 

index (NDVI), in contrast to the most frequently selected NDI of the eastern feature set (LS2013b), 

which is composed of FSWIR and FNIR bands. 

 

Figure 5. Cont. 
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Figure 5. Occurrence of the 10 most frequently chosen NDIs according to stepwise variable 

selection from all folds and repetitions (1000 selections) with feature sets (a) H2012, (b) 

H2012, (c) LS2013a and (d) LS2013b. 

4. Discussion 

4.1. Hyperspectral Indices for Dwarf Shrub Biomass Detection 

This is the first study that addresses the sensitivity of hyperspectral narrow bands in the 400–2400 nm 

domain to dwarf shrub biomass in the research area, and to our knowledge, the first to analyze space-

borne hyperspectral biomass detection in regions with cover values well below 20%. We showed that, 

even under these arid conditions, a great number of hyperspectral indices significantly correlate with 

dwarf shrub biomass quantities. Thereby, the green to NIR regions, which are commonly used for 

quantification of green cover, biomass, chlorophyll or leaf area index [7–9,12], were only partly 

correlated with biomass and did not constitute the indices with strongest correlations with the 

hyperspectral feature sets. Although the approximate red edge (700–780 nm), which is stressed as an 

important spectral region at low cover values in other studies [3,9,32], did show significant correlations 

with biomass amounts, it was not among the highest correlating hyperspectral indices. 

However, high correlations commonly occurred in the ESWIR and FSWIR regions with both 

hyperspectral feature sets. These spectral domains are frequently mentioned as indicative of cellulose, 

lignin, wood or shrub material [7,8,10,13,25,27–30,33–37] and are therefore important for the detection 

of structural tissue. Especially the bands around 2020–2220 nm are considered as important for cellulose 

or lignin detection using remote sensing data [13,29,30,36,37] as they are distinctive from soil minerals 

and less affected by atmospheric gasses [37]. These results agree with the observed index selection 

frequencies where the three most important NDIs of H2012 consisted of bands with wavelength centers 

at 2113 nm or 2102 nm, and the second most important NDI of H2013 consisted of the band centered 

at 2143 nm. In previous studies, these bands were used for index computation to map crop residues with 

different reference wavelengths in the FSWIR [29,34,37]. The best performing NDI of H2013 utilized 

the wavelength centered at 1981 nm, a wavelength which may be sensitive to lignin, nitrogen [10,25] or 

plant residues [38]. Similarly, Oldeland et al. [11] state an importance of the SWIR spectral region for 



Remote Sens. 2015, 7 4575 

 

dry-matter analysis in an African savanna. Therefore, hyperspectral narrow-band NDIs, capturing 

spectral features of plant residues, lignin and cellulose, may also be instrumental in predicting dwarf 

shrub biomass in arid environments, as major parts of these plants consist of dry, non-green 

plant materials [4]. 

These results indicate that indices especially designed to separately capture the reflectance signal of 

cellulose in senescent vegetation, are suitable for biomass modeling in arid environments as well. 

However, correlation analysis of established indices for mapping senescent vegetation, like the Cellulose 

Absorption Index (CAI) or the Shortwave Infrared Normalized Difference Residue Index (SINDRI) as 

given in Serbin et al. [34], result only in weak significant correlations with CAI (Pearson’s correlation 

coefficients R 0.49 with H2012 and 0.47 with H2013) and no significant correlation of SINDRI with 

total biomass in our study. Similarly, the Normalized Difference Tillage Index (NDTI), whose equivalent 

showed a higher correlation only partly in our study (LS2013b), was not among the most important 

vegetation indices in modeling dwarf shrub biomass in previous research [4]. The reason for the higher 

correlations at the stated wavelengths may therefore not be a result of cellulose and lignin exclusively. 

Besides influence of aforementioned tissue, another reason for the importance of the ESWIR and FSWIR 

may be that green and woody parts of shrubs result in a strong contrast to the soil and so may have a 

strong influence in this spectral domain [13]. Additional research, incorporating field measured spectra 

of different plant materials, soils and various matter combined [13], could enhance knowledge on the 

nature of biomass reflectance properties and main influencing factors. However, regardless of the exact 

mechanisms and relative contributions of photosynthetic and non-photosynthetic tissue that may be the 

subject of additional research, the ESWIR and FSWIR spectral regions are more suitable for biomass 

detection compared to traditional red-infrared NDIs in our study and may supply important additional 

information in remote sensing based vegetation modeling in drylands. 

4.2. Transferability of Spectral Indices Sensitive to Dwarf Shrub Biomass 

An important objective of this study was the validity of spectral regions and indices to predict dwarf 

shrub biomass throughout different areas of the research area. While there was some agreement between 

the hyperspectral feature sets in the FSWIR, spectral regions of many NDIs that correlated strongly with 

dwarf shrub biomass and frequency of index selection differed noticeably between the feature sets. 

Therefore, a spatial generalization of specific narrow-band NDIs is difficult in this environment and 

individual model development is necessary. This is different to Thenkabail et al. [7], who report good 

agreement in optimal hyperspectral wavebands compared to other studies, but is in agreement with 

results obtained by Entcheva-Campbell et al. [22], who state that best performing hyperspectral NDIs 

for predicting ecosystem properties varied across sites. One reason for this lack in transferability of 

specific wavelengths may be the influence of non-constant factors that cannot fully be accounted for in 

correction algorithms [21]. Another reason may be a low signal-to-noise ratio characteristic of many 

Hyperion bands (cf. [27,32]) and apparent striping in the images. However, the broader 2100 nm region 

seems approximately transferable across hyperspectral sensors in this study, which is encouraging for 

future studies and indicates that an avoidance of indices based on too narrow bands may improve 

regional vegetation analysis [7]. 
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The comparison of correlations and index selection frequencies of multispectral feature sets revealed 

a poor agreement in NDIs even though all field sites were situated in the same scene. An important 

reason may be the sensitivity of common broadband vegetation indices to background effects [39], like 

soil color, which emphasizes the importance of correction algorithms to account for these issues [4]. For 

example, NDVI values are especially sensitive to external interference at low vegetation cover 

values [40]. This may explain the importance of NDVI in the western data set with denser vegetation 

compared to its insignificance in the eastern data set with lower dwarf shrub cover. Another reason may 

be the diverse soil color prevalent in both feature sets, which is increasingly black in the eastern scene 

compared to a bright, brown-beige background in the western scene (Figure 2). In summary, the spatial 

transferability of spectral NDIs is challenging in the research area and this issue has to be considered in 

hyperspectral biomass modeling in drylands. These findings show that repeated variable assessment and 

model building is necessary in different regions and reveal the importance of knowledge discovery 

algorithms for advanced analysis procedures to handle huge hyperspectral datasets. However, the 

conformity of significant correlations comparing hyperspectral to multispectral feature sets with the 

same field sites suggests a high agreement at similar wavelengths between both sensors (cf. [41]). 

4.3. Modeling Performance of Sensors 

The hyperspectral Hyperion sensor showed increased performance in dwarf shrub biomass modeling 

compared to the Landsat OLI sensor. This has been previously shown by results obtained in different 

regions and from varying plant species [7,12,33,42] and suggests a large potential of hyperspectral 

sensors for vegetation analysis in arid environments as well. Furthermore, these results indicate that 

biomass quantification is possible even under the challenging conditions (noisy data, spectral variability) 

of applied, space-borne hyperspectral remote sensing in drylands within certain limits. This study 

supports the findings of Okin et al. [15], who showed that hyperspectral vegetation cover quantification 

in an arid region is possible under a best case scenario with a minimization of disturbing factors. 

However, in the eastern scene, which is characterized by lower biomass values, the performance of the 

hyperspectral sensor was only slightly better than the multispectral sensor. This demonstrates the 

limitations of hyperspectral-based vegetation analysis when cover values fall below a certain threshold. 

This is similar to results of Asner and Heidebrecht [32], who assert that accurate Hyperion-based 

vegetation quantification is only possible with denser vegetation. Finally, although the hyperspectral 

sensor outperformed the multispectral sensor in this study, results of biomass prediction are connected 

to major uncertainties and errors as well, which can be ascribed to the natural conditions of arid 

environments [15]. Nevertheless, extended modeling approaches, incorporating additional variables like 

topography [43], texture [44], soil and color-adjusted vegetation indices [40] as shown by Zandler et al. [4], 

using operational, widely available, space-borne hyperspectral data, can significantly reduce such errors 

in future applications. Furthermore, future research approaches may include variables particularly 

sensitive to photosynthetic vegetation, non-photosynthetic vegetation or both, in a multi variable-model 

after analyzing their relative contribution to the mixed biomass signal. Therefore, as is also expected by 

Asner and Green [2], this study suggests great potential for the upcoming products of new sensors like 

EnMAP or HyspIRI for future remote sensing based research of the world’s drylands. 
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5. Conclusions 

This study showed that hyperspectral Hyperion data provides increased performance in predicting 

biomass in an arid environment compared to the multispectral sensor Landsat OLI. The reason is based 

on the higher spectral resolution, especially in the FSWIR, as highest correlations and best performing 

indices are situated in this region with the hyperspectral feature sets, whereby spectral regions 

intersecting with multispectral bands show similar correlations. The results indicate that sensors 

capturing spectral features of both green and woody material, which may be most distinctive in the 

FSWIR, are more suitable for biomass quantification in drylands that are characterized by plants 

consisting of non-photosynthetic parts to a large extent. Our research also revealed that spatial 

transferability of specific spectral indices is limited or not feasible, owing to the strong influence of 

background effects, underlining the importance of repeated model building and variable exploration in 

areas with different environmental conditions. Finally, substantial modeling errors were still present in 

all hyperspectral feature sets, which demonstrates the limitations of remote sensing based approaches 

and emphasizes the need for additional variables, such as texture or topography, for vegetation 

quantification in arid environments. However, the partly considerable modeling improvement with the 

hyperspectral sensor compared to the modern multispectral sensor in this arid setting indicates that 

upcoming, space-borne, operational hyperspectral sensors may enhance satellite-based vegetation 

analysis in drylands in the near future. 
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