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Zusammenfassung

Sei M, der Modulraum der Kurven vom Geschlecht g > 2. In dieser Arbeit beschiftigen
wir uns mit der Untervarietit M,(G) C I, aller Kurven, die eine effektive Gruppen-
wirkung einer gegebenen endlichen Gruppe G besitzen. Wir wollen ihre irreduziblen
Komponenten bestimmen. Dabei kdnnen wir 9t,(G) auffassen als Vereinigung von irre-
duziblen Untervarietiten M, ,(G), in denen fiir alle Kurven C € M, ,(G) die induzierte
Uberlagerung C — C/G =: C’ einen bestmmten topologischen Typ p hat, d.h. es sind
dort die Anzahl d der Verzweigungspunkte, die Gesamtheit der Verzweigungsordnungen
my, ..., my und das Geschlecht g’ der Basiskurve fixiert. Das Ziel ist diese Orte durch eine
feinere numerische Invariante zu unterscheiden und zu untersuchen wann Enthaltungen
auftreten. Wir behandeln beide Fragen fiir spezielle endliche Gruppen.

Formal betrachten wir geeignete Aquivalenzklassen von injektiven Gruppenhomomor-
phismen p : G — Map, in die Abbildungsklassengruppe. Diese operiert auf dem Te-

ichmiiller Raum 77, so dass M, = ]VZT; Wir definieren I, ,(G) als das Bild des Fixlokus

Fix(p(G)) C 7, unter der kanonischen Projektion. Eine solche Aquivalenzklasse von
Abbildungen p nennen wir topologischen Typ. Die Untervarietiten I, ,(G) bestimmen
die folgende feinere Invariante, gegeben durch die Monodromie des unverzweigten Teils
der induzierten G-Uberlagerungen: Fiir jede nicht triviale Konjugationsklasse K von G
betrachten wir die Anzahl der Monodromieelemente, welche in K liegen, modulo der
Operation der Automorphismengruppe von G auf der Menge der Konjugationsklassen
von G. Dieses Datum nennen wir den numerischen Typ v der Uberlagerung. Wir setzen
M, (G) = UM, (G) [v(p) = v}. Die erste Frage mit der wir uns beschéftigen ist ob
M, ,(G) irreduzibel ist, das heillt ob jeder numerische Typ einen topologischen Typ bes-
timmt.

In 7eil I der Arbeit fithren wir in diese Theorie ein und prisentieren einige gruppentheo-
retische Resultate.

In 7eil II beweisen wir das Hauptresultat der Arbeit:

Theorem. Sei G das semidirekte Produkt zweier zyklischer Gruppen von Primzahlord-
nung. Dann sind die Varietiten M, ,(G) irreduzibel.

Dieses Resultat ist eine Weiterfiihrung der Untersuchungen von Catanese, Lonne und
Perroni. Die Autoren haben dasselbe Resultat fiir Diedergruppen G = D, bewiesen, im
Falle dass das Geschlecht der Basiskurve g’ = 0 ist und gezeigt, dass die Aussage fiir
hoheres Geschlecht nicht gilt.

Ein topologischer Typ bestimmt im Allgemeinen keine (maximale) irreduzible Kompo-
nente von I, (G), da fiir verschiedene topologische Typen die entsprechenden Orte in-
einander enthalten sein konnen.

In Teil I1I der Arbeit, eine gemeinsame Arbeit mit Binru Li, beantworten wir die folgende
Frage: Sei G = D, die Diedergruppe der Ordnung 2n. Fiir welche Paare p, o’ von topol-
ogischen Typen gilt dann M, ,(D,) € M, (D,)? Dies vervollstindigt die Klassifikation
der irreduziblen Komponenten von M, (D,) von Catanese, Lonne und Perroni.



Abstract

Let 9Mt, be the moduli space of curves of genus g > 2. In this thesis we consider the
subvariety M, (G) C M, of curves which admit an effective action by a given finite group
G. We want to determine its irreducible components. We can view M,(G) as a union of
irreducible subvarieties M, ,(G) in which for all curves C € M, ,(G) the given G-covering
C — C/G =: C’ has a certain topological type p, i.e. the number d of branching points,
the totality of branching orders m;, ..., m, and the genus g’ of the base curve C’ are fixed.
The goal is to distinguish these loci by a finer numerical invariant and to determine when
containments occur. We treat both questions for special finite groups.

Formally, we consider suitable equivalence classes of injective group homomorphisms

p : G = Map, into the mapping class group. This group acts on Teichmiiller space 7,

T

such that M, = Aﬁ. We define M, ,(G) as the image of the fix locus Fix(o(G)) C 7T,

under the canonical projection. We call such an equivalence class of maps a fopological
ype.

The subvarieties M, ,(G) determine the following finer invariant, given by the monodromy
of the unbranched part of the induced G-coverings: for each non trivial conjugacy class
‘K of G we consider the number of monodromy elements that lie in %, modulo the action
of the automorphism group of G on the set of conjugacy classes of G. We call this datum
the numerical type v of the covering. We set M, ,(G) = U, {M,,(G) [v(p) = v}. The
first question we consider is whether these loci are irreducible, i.e. if each numerical type
determines a topological type.

In Part I of the thesis we introduce this theory and present several group-theoretic results.

In Part II we prove our main result:

Theorem. Let G be a semi-direct product of two cyclic groups of prime order. Then the
loci M, ,(G) are irreducible.

This result carries on results of Catanese, Lonne and Perroni. The authors proved the
same result in case G = D, is a dihedral group and g’ = 0 and showed that it is does not
hold for higher genus.

A topological type does not always determine a (maximal) irreducible component of
M, (G), since for two different topological types the corresponding loci may be contained
in each other.

In Part Il of the thesis, a joint work with Binru Li, we answer the following question:
let G = D, be the dihedral group of order 2n. For which pairs of topological types p, p’
does M, ,(D,) C N, (D,) hold? This completes the classification of the irreducible
components of M, (D,) by Catanese, Lonne and Perroni.
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Introduction

In this thesis we consider the locus 9t,(G) of curves inside M, which admit an effective
action by a given finite group G. Here 9, denotes, as usual, the moduli space of curves of
genus g > 2. Our main interest is to find the irreducible components of M,(G). Given an
effective group action G — Aut(C), the induced covering C — C/G determines several
topological invariants. Namely, the number d of branching points, the branching orders
my, ...,my and the genus g’ of the base curve. We consider loci M, ,(G) inside M, which
consist of isomorphism classes of curves C with fixed data g’, d, my, ..., m; for the induced
coverings. By a result of Catanese these are irreducible. We want to distinguish these loci
by a finer numerical invariant and to understand when containments occur. Both these
questions are treated in this thesis for special finite groups.

We work in the following setting (cf. also Part I). Let X be a compact, connected,
oriented, differentiable, real 2-dimensional manifold of genus g > 2 and let

C(X) := {complex structures on X which induce the given orientation}.

Consider furthermore the group Diff " (£) of orientation-preserving (self-)diffeomorphisms
of X and denote by Diff’(Z) its normal subgroup of (self-)diffeomorphisms which are iso-
topic to the identity. Both act naturally on C(X) via pullback. Define now Teichmiiller
space T, as

. C®
* D)
Let Map(T) := Diff *(X)/Diff°(Z) be the mapping class group. We can view M, as
T,
My = ——=—.
Map(X)

The action of Map(X) is properly discontinuous but not free. Therefore it is an interesting
question to study the fixed loci of finite subgroups of Map(X). Indeed, the singular locus
of M, consists of all loci M,(G), where G is not generated by pseudo-reflections, yielding
that for g > 4 the singular locus of 9, is completely determined by the loci 9i,(G). Now
we fix a finite group G. The irreducible components of 9i,(G) arise in the following way.
Let Map, := Out™(ry) be the group of orientation-preserving outer automorphisms of the
fundamental group of . By the Dehn-Nielsen-Baer Theorem (cf Theorem [[.1.5)) we can
identify this group with Map(X).

Definition. A (unmarked) topological type is the equivalence class of an injective homo-
morphism
p: G — Map,,

where two such maps are equivalent if they differ by conjugation in Map, or by an auto-
morphism of G.

For a topological type p, let 7, ,(G) be the fixed locus of p(G) inside 7, and let M, ,(G)
be its image inside M,. By a result of Catanese (cf. Theorem |I.1.7) the loci M, ,(G) are
irreducible, (Zariski-)closed subsets of Mi,. We can write

M(G) = | M, (G,
el
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where p runs over all possible topological types. However, in general this is not a de-
composition into (maximal) irreducible components, since there may exist [p], [0’], such
that M, ,(G) C M, ,(G). In part III of the thesis we determine all such pairs in the case
G =D,.

Let now p be a topological type and let p : ¥ — ¥’ = /G be the induced topological
covering. By covering space theory, after the choice of a suitable set of generators for the
fundamental group of the complement of the branch locus 7, 4 := 7 (X" \ B,yy) we can
identify p with its monodromy map

Himgq— G.

Moreover, by Riemann’s Existence Theorem, each subvariety i, ,(G) can be identified
with an equivalence class in the orbit set

Ay i(G) = (Epi(ntg 4, G)[Aut(G))/Map,, 4.

Here Epi(ry 4, G) denotes the set of surjective homomorphisms from 7y 4 (with a fixed
set of generators) to G and Map, , is the full mapping class group. Recall the notion of a
Hurwitz vector, which is an element

d+2g’
V:(gl’~"9gd9a1,b17~"9ag’9bg’)EG ga

such that no g; (called monodromy or branching elements) is the identity element of G, its
entries generate the group and Ilg;I1[a;, b;] = 1. We can identify the set Epi(r, 4, G) with
the set Hy 4(G) of G-Hurwitz vectors of length d + 2¢g" and we have an induced action of

Aur(G) and Map,, , (cf. Part I, section .
Let now V € Hy 4(G) be a G-Hurwitz vector. The group Map,, , acts on the monodromy

elements of the /nn(G)-equivalence class of V by conjugation and permutation. Therefore,
the following assignment is constant on Map,, ,-orbits.

Definition. Let (Cy, ...,Ck) be an ordering of the non trivial conjugacy classes of G. A
Nielsen function is the function

7: Hy 4(G) > N§
(gl, sy gd’ al, bl9 ooy ag’7 bg/) = (Vla eoey VK)9
wherev; = #{j| g; € Ci}.

An element @ € Aut(G) induces a permutation of the conjugacy classes Cy, ..., Ck.
Therefore a Nielsen function is in general not constant on Aut(G)-orbits. Now we say that
V,V' € Hy 4(G) have the same numerical type if there exists @ € Aut(G), such that for
the induced permutation 7, € Sg we have 7,(#(V)) = #(V’). This leads to the following
definition.

Definition. Ler v : Hy 4(G) — N be a Nielsen function. A numerical type
v: Hy 4(G) > NE /Aut(G)
is the composition of v with the quotient map q : Njj — N§ [Aut(G).

In this way we obtain an invariant that is constant on the loci M, ,(G).We set

M, (G) = (M p(G) (o) = ).
(o]

v



Leading Questions. Let G be a finite group and v be a numerical type.
1) Is then M, ,(G) irreducible?
2) For which topological types p,p" does M, ,(G) C M, ,(G) hold?

The first question is a reformulation of the following problem: does every numerical
type determine a topological type? This practically means: given a numerical type, does
it determine a whole equivalence class in Ay 4(G)?

The answer is positive for cyclic groups, as proven by Nielsen in [Ni]. In [CLP1] the
authors gave a positive answer for dihedral coverings of P!. In [CLP2] the authors gave a
negative answer for dihedral coverings of higher genus curves.

A split metacyclic group 1s a semi-direct product of two cyclic groups, given by a
presentation
G=Gmnr)=&xy|x"=y"=1yxy ! =x),

such that r* = 1 (m).
We are going to show that for split metacyclic groups with m, n prime numbers, such that
m > 3,n > 2,r > 1, any numerical type determines a topological type, thus the loci

M, ,(G) in N,(G) lie in bijection with numerical types. We obtain the following result
(cf. Theorem|l1.2.19).

Theorem A. Let G = G(m,n,r) be a split metacyclic group, where m,n are prime num-
bers, such that m > 3,n > 2 and r > 1. Then the spaces I, ,(G) are irreducible.

In Part IIT of the thesis, a joint work with Binru Li (cf. [LW])), we treat the second leading
question in the case where G = D, is the dihedral group of order 2n. The problem
is equivalent to the following question: given two subgroups H # H’ of Map,, both
isomorphic to D,,, when does Fix(H) C Fix(H") hold? We refer to Part III for further
introduction. Our result is the following.

Theorem B. Let H,H' be subgroups of Map,, both isomorphic to D, and Fix(H) C
Fix(H"). Then (\cepivw Aut(C) = D, X Z/2 and H corresponds to D, X {0}. The group
H'’ and the topological action of the group G(H) (i.e. its Hurwitz vector) are as listed in
the tables of section of Part I11.

The thesis is organized as follows:
Part I:

We introduce the basic terminology for the moduli space i, of curves of genus g > 2 and
the loci M, (G) C M, of curves with an effective action by a finite group G. We introduce
the notion of topological type and the corresponding loci 9, ,(G). We explain the rela-
tion between effective holomorphic group actions, topological coverings and topological
types. Then we treat the following issue: let H, 4(G) be the set of Hurwitz vectors of
length d +2g" and let V, V' € Hy 4(G). When do the topological coverings, obtained from
V resp. V'’ yield the same point in M,(G)? The answer is if they differ by a different
choice of a set of generators for my 4 := m (X" \ B,yy), or by an automorphism of G. We
introduce the group ]\Fﬁz}?g,,d and show that in case G is not abelian this group contains

\%



exactly those automorphisms ¢ of 7y 4, such that pre-composing a monodromy map with
Y yields coverings of the same topological type. This leads to the identification between
the loci M, ,(G) and the equivalence classes in the quotient set

Ay a(G) = (Hy o(G)/Aut(G))[Map, 4 = Hy 4(G)/(Map,, ; x Aut(G)).

Then we give a precise definition for the notion of numerical type and introduce the loci
M, ,(G).
8,V

In section|l.2|we introduce split metacyclic groups and give several properties that are
important for the study of the action of Map,, , X Aut(G) on G-Hurwitz vectors. In partic-
ular, we prove several results on conjugacy classes and automorphisms of split metacyclic
groups.

Part I1:

In this part we prove Theorem A. Let G = G(m,n,r) be a split metacyclic group as in
the theorem. We prove that the action of the group %g,’d X Aut(G) is transitive on the
subset Hy 4,(G) C Hy 4(G) of G-Hurwitz vectors of a given numerical type. In particular,
we show that all Hurwitz vectors in Hy 4(G) of the same Nielsen type are equivalent by
the action of A//I‘aipg,’ ¢~ The main difficulty is to prove transitivity of the action of the braid
group Br, on Hurwitz vectors V = (g1, ..., 84) € Ho4(G).

In section we consider subtriples T = (g;, gi+2, &i+3) of consecutive elements inside
V, together with the restricted action of Br,, given by Br;. We show that if the prod-
uct g;gi+18i+2 1s not contained in the normal subgroup C,, of G, we find representations
o : H — GL(2,m) of the subgroup H < Br; of braids which preserve the ordering of the
conjugacy classes in 7. Then we show that the image p(H) Cc GL(2,m) contains a sub-
group which is isomorphic to SL(2,m). This enables us to make use of the well-known
fact that SL(2, m) acts transitively on non-zero vectors in IF;

In section we use this fact and the results of section 1 to normalize subtriples 7" as
above and prove several results for quadruples. We develop a procedure with the help of
which we can prove that the action of Br,; X Aut(G) on the set Hy 4,(G) is transitive. Then
we consider the general case g’ > 0 and d > 0. We show that A@g,’d acts transitively
on Hy ((G) (as it was done for general split metacyclic groups by Edmonds (cf. [Ed]).
Finally, we combine the previously proven to show that the group %g,’d X Aut(G) acts

transitively on Hy 4,(G) (cf. Theorem[[1.2.19).

Part III:

In this part we prove Theorem B. We consider the case where
o0y = dim(Fix(H)) < 6y = dim(Fix(H")),

the case of equality was already done in [CLP2]. For H C Map, we define the group
G(H) := Ncerixuy Aut(C), the common automorphism group of all curves in Fix(H).

In section we use a theorem of [MSSV] that classifies the possible G-coverings in
the situation that we have two subgroups H ¢ G of Map, with 6y = 6, which we will
call the cover types. Moreover, by the theorem we have C/G = P! and that, except for one
case, H must be of index two in G. Using Hurwitz’ Formula we can restrict the possible
pairs (0y, 0y ) to few cases. In [[CLP2], the authors proved that there are three types of

Vi



groups G which possess two subgroups H,H' ~ D,, where H # H' and [G : H] = 2.
These we will call group types.

In section for every group type we determine the number and structure of subgroups
which are isomorphic to D,,.

In section we investigate which cover types and group types are compatible. Let G
be of a given group type and V = (g, ..., g4) a G-Hurwitz vector for a given cover type.
We call V admissible for the given group and cover type if the vector V = (g, ..., 84)
(with entries the residue classes modulo H) corresponds to the covering, given by H. We
determine all admissible Hurwitz vectors for every combination of cover type and group
type up to Hurwitz equivalence. Finally, for each admissible Hurwitz vector we determine
a Hurwitz vector for the covering C — C/H’, the genus g(C/H’) and the dimensions 6y
and 6.

In section the results of these calculations are presented via tables.

vii



Part I
General Theory and Basic Facts

I.1 Loci with G-symmetry inside i,

I.1.1 General Approach

By a curve we mean a smooth, irreducible complex projective variety of dimension one,
or equivalently a compact Riemann surface. Furthermore we assume that its genus is
greater than one. For the basic theory on curves we refer the reader to [Mi] and [Fol.
Concerning the theory of moduli spaces of curves that we use, we closely follow [Call],
chapters 6 and 11. A good standard reference for the theory of mapping class groups is
[EM]].

Definition L.1.1. The moduli space of curves M, is the set of isomorphism classes of
curves of genus g > 2.

In fact I, is a (singular), quasi-projective complex variety. The object of our interest
is the following.

Definition I.1.2. Let G be a finite group. Define M (G) to be the set of (isomorphism
classes of) curves inside M, which admit an effective action by the group G. We call
M, (G) the locus of curves with G-symmetry.

Our approach to understanding these loci will be to view 9, as the quotient of 7e-
ichmiiller space by the action of the mapping class group. We shall now introduce these
concepts.

Definition 1.1.3. Let X be a real, oriented, connected, compact two-dimensional differen-
tiable manifold of genus g > 2. Denote by Diff " (X) the group of orientation-preserving
self-diffeomorphisms of £ and by Diff’(X) the normal subgroup of orientation preserving
self-diffeomorphisms that are isotopic to the identity. Define the mapping class group as

Map(Z) := Diff *(Z)/ Diff*(2).

Recall that an almost complex structure on X is an endomorphism J : 7YXz — TZg,
such that J2 = —Id. For a diffeomorphism f : ¥ — X, let df : TSz — TZXz be its
differential. Now f acts on the set of almost complex structures of X by the rule

fJ =dfJdf .

This action restricts to the set of complex structures on X (cf. [Call], 6.4). Let us point
out here that in fact, by the theorem of Newlander-Nirenberg (cf. [Call], Theorem 32),
in complex dimension one every almost complex structure is integrable, thus a complex
structure. We set

C(X) := {complex structures on X that induce the given orientation}
and define Teichmiiller space as
T, := C(2)/Diff (%)

1



and the moduli space of curves of genus g as
M, := C(X)/Diff *(Z).

This definition allows the useful interpretation of i, as the quotient of Teichmiiller
space by the action of the mapping class group, i.e.

M, = T,/Map(X).
We have the following fact (cf. [Call], Theorem 31).

Theorem L.1.4. T is diffeomorphic to a ball in C*73 and the action of Map(X) is properly
discontinuous.

But the action of Map(X) is not free which is responsible for the fact that 9)t, is singu-
lar. Its singular locus consists of loci i,(G) as defined above.
Now we want to introduce the notion of topological type. It is well-known (cf. [Fu], ch.
17) that we can identify the fundamental group of X with the abstract group

g = (a1,Bi, ---,Clg,ﬁg | Hle[ai,ﬁi] =1).

By Lefschetz’ Lemma, given an effective action ¢ : G — Aut(C), the induced action
on the fundamental group of C (which is isomorphic to m,) yields an injective homo-
morphism from Aut(C) to the group Map, := Out*(my) of orientation-preserving outer
automorphisms of 7, (cf. [Call, Lemma 34). (Here an element of Out(n,) is called
orientation-preserving if the induced map on the second homology group H,(7,,7Z) ~ Z
is the identity. On the other hand, a homeomorphism f : ¥ — X induces a homomor-
phism f, € Out(n,). If f is orientation-preserving , i.e. f € Diff "(¥), its induced map on
H,(ry,Z) is the identity).

The following theorem, known as Dehn-Nielsen-Baer Theorem, identifies the groups
Out™(n,) and Map(X) (cf. [EMI, Part 1, Theorem 8.1).

Theorem 1.1.5. (Dehn-Nielsen-Baer) Let  be a closed, oriented surface of genus g with
negative Euler characteristic. Then there is an isomorphism between the groups Map(X)
and Map, = Out™(ry).

We make the following definition.

Definition 1.1.6. A (unmarked) topological type is the equivalence class of an injective
map
p:G— Map,,

where two such map p, p’ are equivalent if they differ by an automorphism of G or conju-
gation in Map,.

For a given topological type p, we define T,,(G) := Fix(p(G)) to be the fixed locus of
p(G) inside T 4. Define M, ,(G) to be its image inside I, under the canonical projection.

The equivalence relation is to be understood as follows. Since we have that Fix(o(G)) =
Fix(p(a(G))) for all @ € Aut(G), pre-composing the map p with an automorphism of G
yields the same locus M, ,(G). On the other hand, choosing a different identification
of the fundamental group of X with 7, (preserving orientation) yields an automorphism
Y : my — m,. Conjugation with ¢ induces an adjoint action of Map, on itself. Now since
Fix(np(Gn™") = n(Fix(p(G))) for all € Map,, this locus also maps to M, ,(G) under

2



the projection.

Catanese showed that the loci M, ,(G) are in fact irreducible, (Zariski-)closed subsets
of M, (cf. [[CLP2]):

Theorem 1.1.7. The triples (C,G,p), where C is a complex projective curve of genus
g = 2 and G is a finite group acting effectively on C with a topological action of type p
are parametrized by a connected complex manifold T, ,(G) of dimension 3(g' — 1) + d,
where g’ is the genus of C' = C/G and d is the cardinality of the branch locus B.

The image M, ,(G) of T, ,(G) inside the moduli space M, is an irreducible closed subset
of the same dimension.

Observe that we have
M (G) = | M (G).
[o]

This, however, is not a complete decomposition into irreducible components, since it
can happen that for given [p], [p’] we have M, ,(G) C M, (G). We are going to inves-
tigate this problem further for G = D,, the dihedral group of order 2n, in part III of the
thesis.

I.1.2 Using covering space theory

What we have seen so far is how an effective group action of a finite group G on an alge-
braic curve C of genus g > 2 determines a topological type. In this subsection we explain
how, given a topological type p : G — Map,, the group G can be realized as a subgroup of
automorphisms of a curve C. The main ingredient here is Riemann’s Existence Theorem
(cf. Theorem|[[.1.T4). We then relate the study of coverings to the study of Hurwitz vectors
and show how topological coverings determine topological types. The basic terminology
and facts that we use about coverings of Riemann surfaces can be found in [Mil], [La] or
[Fol]. For the topological background material we refer to [Mul] or [Ful.

Definition 1.1.8. Let G # {1} be a finite group, acting effectively on the algebraic curve C
and let X be the underlying topological space of C. Then we call the induced topological
Galois covering

p:X-oX/G=Y

a G-cover.

Letp:X — X/G =X be a G-cover and let B = {yy, ..., y,} C X’ its branch locus. The
covering p induces an unramified covering

P\ pT(B) -\ 8 ey

Recall that in this situation, any path y : [0, 1] — X"\ B can be lifted to a path ¥ : [0, 1] —
¥\ B with 7(0) € p"~'(y(0)), such that p’ o ¥ = . Furthermore we can identify the group
of covering transformations of p’ with G. If we fix a base point y, € £’ \ B and a point
Xo € p"'(yo), we have the monodromy map

pm(E N\ B,y) » G,



where pu(y) is uniquely defined by u(y)(xo) := y(1), where ¥ is the lift of y at x,. The
kernel of u is isomorphic to the fundamental group 7;(C \ p~'(B), xo). Indeed we have an
exact sequence

15 mE\p ' (B).x0) S mE \ B,y0) » Go1.

On the other hand, by the correspondence between subgroups of the fundamental
group and covering spaces we have that a surjective homomorphism u : 71, (X'\8B,y) » G
determines a Galois covering with Galois group G as in (1)), whose monodromy map is u
(for further details see [Mi], I11.4.).

Definition 1.1.9. Let X’ be the underlying topological space of an algebraic curve C’ and
B = {yi1,....y4} C X' a finite set of points. Let yi,...,yqs : [0,1] = X'\ B be pairwise
non-intersecting simple loops, where y; runs around y; and no other point of B. Then we
call the set of generators for the presentation

d g
ﬂ-l(z/ \ B»y()) = <)’1, eeey Vd, abﬁl’ eeey a’g’aﬁg’l l_lyl l_[[a,]’ﬁJ] = 1>’
i=1 j=1

where a4, 4, ...,y , By are the standard generators for the fundamental group of X',
a geometric basis for m (X' \ B,yp) .

For a point y; in 8 and a corresponding loop y; € m(X" \ 8,yy) around y;, let m; be
the order of u(y;) in G and write p~'(y;) = {x;1, ..., Xig,}, di = % Then 7 (Z \ p~1(B), xo)
can be generated by the elements {y;;}, where v;; is a simple lolop around x;; which maps
toy; fori=1,...,d, j=1,...,d;. By the Seifert-van-Kampen Theorem (cf. [Fu], Theorem
14.4) we have a surjective homomorphism 7;(Z \ p~'(B), xo) — m1(Z, x), whose kernel
is normally generated by the loops ;;, yielding the exact sequence

1 s<<{y;j} >>—> m(E\ p~'(B), x9) = (T, x0) — 1.
Define the orbifold fundamental group as the quotient
7O B, y0) 1= mi(Z\ B,yo)] << Y,y >>

Then we have the following commutative diagram with exact rows and columns:
1 1
<< f{yij} >> << {y"} >>
’

D. ,
| ——=m(E\ p(B), x0) —=— 1y (2 \ B, yo) ——= G —— 1

| 11 (S ) —2 e 1 OO\ B, yg) e G —— 1




Here i is defined via y on the set of generators and the map p,, maps ¥, ..., ¥ia, to ¥}"
for each i.
Now an element g € G acts on (2, xy) as follows: choose an element 4 € i~!(g) and
let g(y) := p~'(h~'p.(y)h). This is well-defined since p’ is injective and p’.(r;(Z, xo))
is normal in yrlorb(E’ \ B,y). In this way we get an effective action of G on m(Z, x),
well-defined up to conjugation, thus an injective map p : G — Out(m(Z, xo)).
By the upcoming Riemman’s Existence Theorem (cf. Theorem [[.1.1T) we have that after
choosing a complex structure on X’ \ B, the group G acts as a group of holomorphic
covering transformations on C, i.e. it is realized as a subgroup of Au#(C). Now since
holomorphic maps are orientation-preserving, we get an injective map

P . G - OUt+(7T1(Ca xO)) = Mapg’

well-defined up to conjugation. Since the identification of G with the group of covering
transformations of p’ is only up to automorphisms of G, the map p in fact yields a topo-
logical type.

Now conversely, let p : G — Map, ~ Map(X) = % be a topological type. By the
following version of the Nielsen Realization Theorem we have that the group p(G) in fact
acts as a group of orientation-preserving diffeomorphisms on X.

Theorem 1.1.10. (Nielsen Realization) Every finite subgroup of Map(X) may be realized
by a group of orientation-preserving diffeomorphisms of the underlying topological man-
ifold.

Proof. See [B1], p. 33. |

Let T O ¥/G =: ¥’ the differentiable covering, induced by the topological type p.
Using Cartan’s Lemma we see that the map 7 has only finitely many ramification points
(cf. [Call], Lemma 39). Let B denote the branch locus of 7 and let

7 X\7'(B) > X \B

be the restriction of 7 to the complement. Now choose a complex structure on X’ \ B and
by C’ \ 8B the resulting Riemann surface. The unramified covering n” induces a complex
structure on C := X \ 7/~'(B), turning 7’ into a holomorphic covering p’ : € — C’\ B.
By the following theorem, known as Riemann’s Existence Theorem, we can extend this
covering to a branched holomorphic covering, such that G is identified with its group of
covering transformations.

Theorem 1.1.11. (RET) Let C' be a compact Riemann surface and B C C’ a finite set
of points. Suppose C is another Riemann surface and we have a proper, unbranched
holomorphic covering p' : C — C’ \ B. Then p’ extends to a branched holomorphic
covering, i.e. there exists a compact Riemann surface C and a proper holomorphic map
p : C — C', together with a fiber-preserving biholomorphic map ¢ : C \ p~(8) — C.
Moreover, every covering transformation of p’ extends to a covering transformation of p.

Proof. cf. [Fol], Theorems 8.4 and 8.5. O



Definition I.1.12. Let G be a group. A G-Hurwitz vector is an element
V=(81,.8a301,b1,...,ay,by) € G
such that the following holds.
1) gi#lfori=1,..,d.
2) <V>=0G.
3) TIL, & T1%, ;. b)) = 1.

Observe that the images of the generators of a geometric basis under the monodromy
map
prm(C'\B,y) = G

determine a Hurwitz vector.

Remark 1.1.13. Since we have fixed a genus g for M, the possibilities for G-Hurwitz
vectors are restricted by the Riemann Hurwitz Formula (cf. [Mi], chapter 111, Cor. 3.7):

d
1
2 -2=1GI2g' =2+ » (1~ —)],

i=1

where m; is the order of g; in G.

Theorem 1.1.14. (Consequence of RET) Let G be a finite group and C’ a curve of genus
g'. Let B :={yy,...,ya} C C’ be a finite set of points and y, € C' \ B. Let furthermore

V = (gl»---’gd;al’bla ---’ag”bg’)

be a G-Hurwitz vector and i, ..., Y4, @1, P, ..., &y, By be a geometric basis of the group
mi1(C"\ B, yo). Define
u:m(C'\8B,y) > G

by u(y:) = gi u(@;) = a; and u(B;) = b;.

Then there exists a curve C and a holomorphic Galois covering p : C — C’ with
Galois group G that is branched in a subset of B and the ramification order over y; € B
is given by the order of g; in G. Moreover, the monodromy map of the restriction of p to
C \ p~N(B) equals u. Any other such curve C is isomorphic to C as coverings of C'.

I.1.3 The actions of Aut(G) and Z\Ta}g,,d on Hurwitz vectors, numeri-
cal types

Hurwitz-equivalence

Now we come to the question when two monodromy maps p;, 1, determine coverings
of the same topological type. We have two identifications. The first one comes from a
different identification of the group G with the group of covering transformations. The
second one comes from a different choice of a geometric basis.

For the first identification, let @ € Aut(G), such that we have a commutative diagram
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Note that the kernel of u; equals the kernel of u, = @ o u,, thus the respective Galois
coverings agree. Now extending to a holomorphic covering yields biholomorphic curves,
thus the same points in Mi,.

The automorphism group of G acts on Hurwitz vectors componentwise, i.e. for each
a € Aut(G) we have

a(gl, EEEE) gda ai, bla EEEE) ag’7 bg’) = (a(gl)a EEEE) a(gd)7 a(a])a a(b])7 seey G,’(ag/), a(bg'))'

The second identification between monodromies comes from different choices of a
geometric basis. Let

’

8

d
Tgrd = T (C'\ B,yo) = (71,---,)’d,Oll,,Bl,---,Olg',ﬁg'| n%‘ n[aj,ﬁj] =1).

=1 j=1

Define

Aut'(nty g) = (¥ € Aut(ry g) | 0 € Sy Y(y) ~ Yoo i = 1, ..d).

Let u : my 4 — G be a monodromy map. Recall that the branching behaviour of the
so constructed covering is encoded in the elements g; = u(y;) which generate the sta-
bilizer groups and these are conjugate. Thus, loosely speaking, pre-composing u with
W € Aut*(my 4) yields coverings with the same branching behaviour.

Denote by Out*(ny 4) the quotient of Aut* (7, 4) by Inn(ny ;). Now define

M‘/ DiJT(C/,d,yO)
a ’ :: b
Ped = Dig(C'.d. yo)

the group of isotopy classes of self-diffeomorphisms of C* which permute the points of 8
and fix the base point y,. Likewise we define the full mapping class group

" Diff*(C",d)
ap,, , = —————
Ped = Dig(cd)

the group of isotopy classes of self-diffeomorphisms of C’ that permute the points of 8
and do not necessarily fix the base point. There is the following classical result (cf. [Schl],
Thm 2.2.1).

Theorem 1.1.15. Let X, ; be a topological surface of genus g’ with d marked points. Then
the groups Out*(nty 4) and Map,, , are isomorphic.

We want to show that, apart from few exceptions we have an induced isomorphism
between Aut*(ny 4) and Map,, ,.

The Birman Exact Sequence (cf. [FM]) yields an exact sequence
I > ngq— I\Fﬁz})g,,d — Map, 4, — 1.
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Let ¢ : my 4 — Inn(my ) be the homomorphism that sends an element y € 7y 4 to
conjugation by vy, i.e. ¢(y)(B) := yBy~'. Let f be an isomorphism between Map, , and
Out*(ny 4). Then we have the following diagram:

1 Ty .d Map, ,——Map, ,— 1

P i

Il ——Inn(ny g) — Aut*(ny 4) — Out™ (g 4) — 1

By the five lemma the middle arrow is an isomorphism if ¢ is an isomorphism. Clearly
@ is surjective. The kernel of ¢ is Z(7y 4), the center of my 4. But Z(my 4) is trivial if
either g > 2or g’ =0andd >3 orif g = 1andd > 1. Observe that we have the
following: the group mg; is trivial and the group mp, = (y1,¥2ly1y2 = 1) is cyclic. The
group myo = {a1,Billa,B1] = 1) is abelian. Since the monodromy map u : 7y g — G to
the covering group is surjective, we get that in all these cases G must be either trivial or
abelian. Therefore we can conclude

Remark 1.1.16. If we have a non-abelian covering group G, we can assume that the
groups Map,, , and Aut*(nty 4) are isomorphic. In the following we will assume that the
covering groups are non-abelian.

Coming back to monodromies, if we have a non-abelian group G and a commutative
diagram of monodromies

7(C'\ B.yo) = G
(oa
L M2
71(C" \ B, y0)

with o € Aut*(ny 4), o determines an element in ]\Fla;ag,’d. Thus we have a homeomor-
phism f, : C' \ 8 — "\ 8 which fixes the base point yo. Now let p; : C;\ R, - C'\ 8
denote the covering, constructed from the monodromy p;, i = 1,2 and recall that

ker(u;) = (p)(m(C; \ R;, x;)).

Since y; = u, o o we have ker(u,) = o(ker(u;)) and so we get

(P2)(m1(C2 \ R2, x2)) = (for © p1)«(m1(Cy \ Ry, x1)).

Therefore we have an isomorphism between f, o p; and p, as coverings of C’ \ B:

Ci\R — G\ R,
|P1 gop |P2
C'\8B C’'\8B

a

If we now extend these coverings to branched holomorphic coverings C; — C’, the curves
C, and C; yield the same point in M.

Definition 1.1.17. Denote by Hy 4(G) the set of G-Hurwitz vectors
V = (g1, 8d» A1, b1, oo g, by) € G

with d monodromy elements and length d + 2g’.
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Since %g,’ « acts on monodromies, there is an induced action on Hy 4(G) which com-
mutes with the action of Aut(G). However, this action is complicated to describe and we
refer to section for the elements that we use.

We can finally identify the set of loci {9, ,(G)},; with the quotient set
Hy «(G)/(Aut(G) x Map,, ).
In [[CLP2] the authors consider the quotient
(Hy o(G)/Au(G))/Mapy 4.
But one easily verifies that the respective quotient sets are in bijection.

Definition 1.1.18. Let D? be the unit disc in C and B C D? a set of d points. Define the
braid group Br, as
B o Dif f*(D?, 8B,0D?)
" Dif (D2, B,0D%)
the isotopy classes of orientation-preserving diffeomorphisms of the unit disc that permute
the set B and restrict to the identity on the boundary of D?.

By extending an element of Br, identically outside the unit disc, we get a map
J i Brg— Map,,,

so the action of I\Fﬁz})g,’d includes the action of Br,. If g’ = O this is the only action that
occurs.

Proposition 1.1.19. The braid group Br, admits the presentation
Bry={01,...,04-1 | Oi01110; = 0110041, 0,0; = 00, |j— 1| = 2).
The generators of Br; act on Hurwitz vectors (via the map j) as follows:

(o} —1
(gl’ vy &is Bitls s 8d> A1 blv vy Aygry bg’) — (gla v 8i8i+18; »8ir -2 8d> A1, bl’ vy gy bg/)’

1

T
-1
(815 8is Git1s --» 8d> A1, b1, ..., dg, bg/) > (815 eves 8inl» 8i118i&i4 15 --» &d> A1 by, ..., ag, bg/)'

Definition 1.1.20. If we act with an element of Aut(G) or mpg,’d on a Hurwitz vector
V € Hy 4(G), we call this a Hurwitz move. If we act with a single generator o; of Bry, we
call this an elementary braid.

Numerical Types

Definition 1.1.21. Let G be a finite group and (Cy, ..., Cg) be an ordering of the non-trivial
conjugacy classes of G. A Nielsen function is the function

Vi Hy o(G) — NE

(gl, (] 8d, a, bl9 eeey ag” bg/) = (Vla seey VK)9

where vi = #{j | g; € Ci}. We say that V € Hy 4(G) has Nielsen type vV = (vi, ..., vg) if
(V) = (V1,0 Vi)



Observe that by the definition of the group Aut*(r, ;) we have that its elements do not
change the Nielsen type. Therefore we have:

Remark 1.1.22. The Nielsen function is constant on %g,,d—orbits.

The automorphism group of G permutes the set of non trivial conjugacy classes of G.
Thus every automorphism @ € Aut(G) induces an element 7, € Sg. Consequently, we
have an action of Aut(G) on N{f . Observe moreover that if we have two Hurwitz vectors
V,V’ € Hy 4(G) which differ by the action of an element a € Aut(G), the values #(V) and
v(V’) differ by the permutation 7, € S. Let us capture this in the following remark.

Remark 1.1.23. The Nielsen function is Aut(G)-equivariant, i.e. we have

(V) = 7,(W(V))
forall a € Aut(G) and V € Hy 4(G).
Finally, we make the following definition.

Definition 1.1.24. Let G be a finite group and let (Cy, ...,Ck) be an ordering of the non-
trivial conjugacy classes of G. Let v : Hy 4(G) — Ng be the Nielsen function.

1. A numerical type v : Hy (G) — N§ /Aut(G) is the composition of ¥ with the quo-
tient map q : Ng — N§ [Aut(G).

2. We say that an element V € Hy 4(G) has numerical type v = (v1, ..., vk) € N if the
class v(V) € N(’f [Aut(G) can be represented by (vi, ..., vk). Define Hy 4,(G) as the
set of all Hurwitz vectors in Hy 4(G) that have numerical type v.

3. Let p be a topological type, such that all Hurwitz vectors which correspond to
M, ,(G) have numerical type v. Then we say that p has numerical type v, or simply
v(p) = v. Moreover we set

M, ,(G) = (Mg (G | v(p) = V1.
[p]

The following observation is important.

Lemma L.1.25. Let v be a numerical type and let V,V' € Hy 4,(G). Then there exists
a € Aut(G), such that W(a(V)) = »(V").

Proof. This follows directly from the Au#(G)-equivariance of the Nielsen function, since
v(V) = v(V’) implies that there exists @ € Aut(G), such that #(V") = 7,(#(V)) = "(a(V)).
]

Proposition 1.1.26. Let G be a finite (non-abelian) group, v be a Nielsen type and let
v = [V] be the induced numerical type. Let Hy 43(G) C Hy 4(G) be the subset of G-

Hurwitz vectors of Nielsen type v. Then if Map,, , acts transitively on Hy 45(G), we have
that A@g,’ ¢ X Aut(G) acts transitively on Hy 4,(G).

Proof. This follows directly from Lemma O
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1.2 Split Metacyclic Groups

1.2.1 Basic facts

In this section we introduce split metacyclic groups and present basic results that are
important for later use. For further details on split metacyclic groups we refer to [Jol,
chapter 7.1.

Definition I.2.1. A metacyclic group G is a group that possesses a cyclic normal subgroup
C,,, such that the quotient is a cyclic group C,, i.e. G sits inside an exact sequence

1-C,—G—C,— 1.

The group G is called split metacyclic group if this sequence is split exact.

Thus split metacyclic groups are semi-direct products of two cyclic groups. Every meta-
cyclic group admits a presentation with two generators:

G=G(m,n,r,s)={(x,y|xX"=1,y"= )cs,yxy_1 = x").

The split metacyclic groups are exactly those with s = 0. Accordingly, every split meta-
cyclic group admits a presentation

G =G(m,n,r)={x,y|x" =y" = 1,yxy_1 =x"),

where " = 1 (m). Given a presentation as above, it also determines a group of the respec-
tive kind (cf. [Jol], chapter 7.1).

A standard example for a metacyclic group is the quaternion group which admits a
presentation with two generators as Qg = G(4,2,—-1,2). Standard examples for split
metacyclic groups are the dihedral groups D,, = G(m, 2, —1) and the general affine group
GA(1,m) = G(m,m— 1, r), where m is a prime number, for instance GA(1,5) = G(5, 4, 2).

From know on we only deal with split metacyclic groups.

We will write a general element of G in the form x“y’. In analogy to the special case of
the dihedral groups we define:

Definition 1.2.2. Let G = G(m, n, r) be a split metacyclic group and g = x*y* € G. If
b = 0 we call g (generalized) rotation and if b # 0 we call G (generalized) reflection.

Notation. We view the exponents of x as elements in the group Z./mZ and the exponents
of y as elements of Z/nZ. If there is no danger of confusion we will usually omit the
modulus, e.g. we will often write a = b instead of a = b (m). If we want to emphasize the
modulus we write a = b (m).

We quickly summarize our assumptions:
- G is non abelian or equivalently r # 1.

- The number n is the order of r in (Z/mZ)*.
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- We have r,n < m.

Remark 1.2.3. In fact, the inequality n < m follows from the second assumption: since
" = 1 (m) we get that r and m are coprime, so by Euler’s Theorem we have n | ¢(m)
which implies n < m. If n is prime the second assumption is automatic.

Most important for our purpose is the behaviour of elements of G under conjugation.
Observe that for general elements x“y”, xy? € G we have

xaybxcyd(xayb)—l — xcrb+a(1—r‘1)yd.

We denote the greatest common divisor of two natural numbers ny, n, by (ny, ny).

Lemma 1.2.4. Let G = G(m,n,r) be a split metacyclic group and assume that n is the
order of r modulo m. Then

1) The commutator subgroup of G is [G,G] =< x'™" >.
2) The center of G is Z(G) =< x>,

Proof. 1) For any two elements g = x*y*,h = x°y¢ € G one has [g, hl = ghg‘;hl‘1 =
x41=D=e1=") \where we can write a(l — ) —c(1 =) = (1 =@y r —c 3 r).
i=i =i

This implies that [G, G] c< x!™" >. Since [x,y] = x'™" € [G, G], the claim follows.

2) Let h = x°y? € Z(G). Then we must have xhx™! = h, so we get x“* 7" y? = xeyd,
implying r¥ = 1 (m), thus d = 0 (n). Now from yx‘y~! = x° we get c¢(1 —r) = 0 (m),

_m

. m —-m(1-r) .
iy Observing that [y, x@=7] = x@I-n = 1, the statement is

so ¢ is a multiple of
proven.
]

Corollary 1.2.5. For a prime number m, the group G = G(m, n, r) has trivial center.
For later use we give a criterion for three elements of G to commute with each other.

Proposition 1.2.6. Let g, = x“y"', g, := x2y” g3 = x¥y» € G = G(m,n,r) be re-
flections. The elements g1, g, g3 all commute with each other if and only if one of the
following equivalent conditions holds.

1) (ay,ar,a3) € {A(1 =1, 1 =121 =) | A € Z/mZ).
2) One element g; commutes with the other two elements.

Proof. The necessary and sufficient condition for all three elements to commute is the
simultaneous vanishing of the respective commutators. This yields the following linear
system of equations:

ai(1 =) —a(1-r") =0,

a(1 =) —as(1 - 1) =0,

ai(1 - r") —as(1 - r") =0,
which has solutions as claimed in 1). Since the coefficient matrix of the linear system of
equations above has rank two, the vanishing of two of the commutators is sufficient for

all elements to commute. Thus 1) is equivalent to 2).
O
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A direct consequence is:

Corollary 1.2.7. The reflections g, = x“y", ..., g = x*y* € G = G(m, n, r) all commute
with each other if and only if

(@ry.oar) € A1 = 1 =12 ., 1 =) | A€ R,
In particular, g1, ..., gx all commute if and only if one of them commutes with all the others.
We give one more Lemma that we will use later.

Lemma 1.2.8. Let m be prime and g, = x“y"', g, = x2y"?, g3 = x®y" g4, = x*y? € G =
G(m,n,r) be reflections. Then the pairs (g1, £2), (g3, 84) are simultaneously conjugate if
and only if there exists b € Z/nZ, such that

(1 =) a3 — air”) = (as — axr”)(1 = ™).

. . _ b .
Proof. Assume the claimed b exists and set a := “=73= and g := x%y?. Then direct

calculation yields gg,g”' = g3 and gg,g™' = g4. The element g is unique up to central
elements, but since m is prime (and we assume G to be non-abelian) G has trivial center.
O

1.2.2 Structure and number of conjugacy classes

The structure and number of conjugacy classes of a split metacyclic group seems to be
well-known, but hard to find in the literature. Therefore we present a short classification.
For a natural number M, let o(r),, denote the multiplicative order of r in the group
(Z/MZ)*. For an element g € G we denote its conjugacy class by C(g).

Lemma 1.2.9. Consider an element x°y* € G = G(m, n,r). Then

m

cdy| — —_—
CCEY = 0P, - o

(m,1-r%)

where M, = ((m,0),1-r)"

Proof. Observe that we have |C(xy!)| = {cr’ + a(1 = r?) mod m | b € Z/nZ,a € Z/mZ}|.
If we fix by € Z/mZ, we have |{cr” + a(1 —r¥) mod m | a € Z/mZ)| = oS Which is
the additive order of (1 — r%) in Z/mZ. For another element b; # b, the sets

{er’™ +a(l =Y mod m|a e Z/mZ}

and
{er” +a(l =Y mod m|a e Z/mZ)

bl bl

are in bijection if and only if cr” = ¢r®* mod (m, 1 — r?) which is equivalent to 7 = r

lr) - Tf cpbo et mod (m, 1 — ) we get disjoint sets. This proves the claim.

mod emio:
O

An immediate consequence is that for m prime, each power of y already determines a
full conjugacy class of reflections.

Corollary 1.2.10. Let m be a prime number and d # 0. Then every reflection x*y* € G is
conjugate to y°. In particular, the conjugacy class C(y?) has length m.
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Based on Lemma([[.2.9) we can now prove:

Proposition 1.2.11. Let G = G(m, n, r) be a split metacyclic group. Then G has

()
W

=1 dm Mac " i)
. _ (m1-rH
conjugacy classes, where My = PR

Proof. From Lemma we know the length of any single class C(x‘y?). Now for each
d we look at those elements x“y?, x'y? with equally long conjugacy classes. According
to the Lemma this happens if and only if (¢,m) = (¢’,m) and one readily verifies that
e, c'l(c,m) = (¢, m)}| = ¢(%). The statement is proven. O

Example 1.2.12. Consider a Dihedral group D,, = G(m,2,—-1). It is well-known that
here we have N = ’"T” formodd and N = ’”T+6 for m even. Assume m is odd. Then by the
proposition we get

@(7) @(7)
N = ‘ <
2 o) mod (22). m " 2 o(r) mod (&)

clm (c,2) (m 2) clm (c,0)

_ Z o(%) . Z o)
- 4do(r) mod (1):m  £do(r) mod (%)

(m 0)

() o(1)
=1+ < +
c|1;m o(r) mod (%) 1
=1+ m—1 +1
3 m+3
2

In the case where m is prime the formula becomes considerably easier:

Corollary 1.2.13. Let G = G(m,n,r) be a split metacyclic group with m prime. Then G
has

conjugacy classes.

Proof. By the formula in the proposition it remains to verify that n divides m — 1. But this
is due to our assumption that n is the order of r in (Z/mZ)*, as we have seen in Remark

O

I[.2.3 Results on automorphisms

In the case where m and n are prime numbers we have an easy description of the automor-
phism group of G.

Proposition 1.2.14. Let G = G(m, n, r) be a split metacyclic group with m,n prime, r > 1.
Then any automorphism of G is of the form x — x°,y +— xy, where a # 0.
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Proof. Recall from section[[.2]that we have n < m and observe that the order of an element
. _ 1k . .

x4y, b # 0 is n, since (x4y?)k = xa+r .0k — 75 kb and n is the order of y? in G.

Let now @ € Aut(G) be an automorphism. Since m and n are distinct prime numbers and

a respects element orders we must have a(x) = x*,a # 0 and a(y) = x*y¢, ¢ # 0. Recall
that we have the relation yxy~! = x". Now

ayxy™) = (YO () = X = X = a(x).
Therefore we get ar(1 — r~!) = 0 (m) and since a # 0 and n is the multiplicative order of
rinF, we getc = 1.

O

Corollary 1.2.15. Let G = G(m,n,r) be a split metacyclic group with m,n prime, r > 1.
Then Aut(G) respects the conjugacy classes of reflections of G.

Proof. Since m is prime, by Corollary [[.2.10| the exponent of y of a reflection x*y” deter-
mines the whole conjugacy class of this reflection, i.e. C(x%y?) = C(y*) for all a € F,,.
Therefore the statement directly follows from Proposition ([.2.14 O

Corollary 1.2.16. Let G = G(m,n,r) be a split metacyclic group with m,n prime, r > 1.

If
V= (gla -~ 8d> A1, bl’ ---7ag’7bg') € Hg/,d(G)

is a Hurwitz vector where all branching elements g;,i = 1, ...,d are reflections, then the
numerical type of V equals its Nielsen type.

Proof. Recall that the numerical type of V is the equivalence class of the value #(V) € Nf
under relation, induced by the action of Aut(G) on conjugacy classes. So the statement
directly follows from Proposition [[.2.14] m]

We use the following further result on automorphisms of split metacyclic groups,
proven by Edmonds (cf. [Ed], Thm 2.4).

Theorem 1.2.17. Let G be a finite split metacyclic group and g, h, g’,h’ € G, such that
G=<gh>=<g,h>.

Assume that g is conjugate to g’ and h is conjugate to h'. Then there exists @ € Aut(G),
such that a(g) = g’ and a(h) = h'.

Proof. See [Ed], Thm 2.4.
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Part 11

Irreducibility of the Space of G-covers
of a given Numerical Type, where G is
Split Metacyclic with Prime Factors

In this part of the thesis we consider the following problem. Let G be a finite group and
consider the locus

N (G) = M, (G)
o]
of curves that admit an effective action by G. For a given numerical type v, let

M, ,(G) = | (M (G | v(p) = v}
(o]

be the set of all irreducible loci M, ,(G) of topological type p, such that p has numerical
type v. We pose the following question:

e Is I, ,(G) irreducible, i.e. does every numerical type determine a topological type?

e Equivalently, given the set Hy 4,(G) of G-Hurwitz vectors of numerical type v, is
the action of Map,, , X Aut(G) transitive on this set?

We obtain the following result.

Theorem 11.0.1. Let G = G(m,n,r) be a split metacyclic group, where m,n are prime
numbers, such that m > 3,n > 2 and r > 1. Then for every numerical type v, the space
M, ,(G) is irreducible.

Equivalently, all G-Hurwitz vectors of a given numerical type v are equivalent by the
action of the group A?Zpg,d X Aut(G), thus the spaces M, ,(G) are determined by their
numerical types.

We give a short overview of our strategy. Each section separately contains a detailed
explanation of the approach and the methods that we use.

First we consider the case g’ = 0, the solution of which embodies the main difficulty.
The orbit set to consider is
Ho,4(G)/(Brq x Aut(G)).

In section we consider triples of consecutive group elements inside Hurwitz vec-
tors, where, by restriction, we have an action of Br; (see section [[I.1.1). We show that
under certain (mild) conditions we have a linear representation

p: H— GL(2,m),

where H < Br; is the subgroup of braids that do not change the ordering of the conjugacy
classes inside the triple. In section we prove that the matrix group p(H) contains a
subgroup which isomorphic to SL(2, m).
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In section[[[.2) we prove the main result of this part, Theorem[[I.2.19] Starting with the
case g’ = 0, we use the results of section together with the fact that for a prime num-
ber m, the group SL(2, m) acts transitively on 2, \ {0}. We prove a strong result for triples
of reflections (cf. Proposition [.2.2). Then we give several supplementary results on
quadruples. With these preparations we can show that all G-Hurwitz vectors in Ho,d,V(G)
are equivalent by the action of Br, X Aut(G) (cf. Theorem [[.2.14). In section [[I.2.3] we
proceed to the higher genus case. We first show that all Hurwitz vectors in Hy, d(G) are
Mapg ,-equivalent and then prove that Mapg « X Aut(G) acts transitively on Hy 4,(G) for
all numerical types v (cf. Theorem [1.2.19).

Since, as mentioned in the introduction, there are already several results for special
classes of split metacyclic groups, from now on we exclude these classes: the cases for
n = 2 and r = —1 are the dihedral groups which have been treated in [CLP1], [[CLP2].
Even though there exist split metacyclic groups with n = 2 and r # —1 we do not consider
them. Doing so, we can require that m > 3: since we can choose r < m we have two cases
for r if m < 3: either r = 1 which is the abelian case that we do not consider (note that the
cases m = 1 and n = 1 also belong to this type of group). Or r = 2 and so m = 3, yielding
n = 2 which determines a dihedral group.

II.1 The Linear Action of the Braid Group on Branching
Triples

General assumption. Throughout this part of the thesis, if not explicitly mentioned oth-
erwise, we assume that G = G(m, n, r) is a split metacyclic group, where m > 3,n > 2 are
prime numbers and r > 1.

The underlying key fact of this section is the following property of the special linear
group SL(2, m):

Proposition I1.1.1. Let m be a prime number. Then the group SL(2, m) acts transitively
on 2 \ {0}

€ P,%l \ {0} and assume a # 0. Then the matrix A = (Z 1) maps the vector

b

;L alfb;tOthiidan—a_ll’ O
ol ) sisdoneby B={(, ')

Q1

Proof. Let (a)

To make use of this fact we consider triples of consecutive group elements

az b2

= (X", x2yP, x3y")

inside Hurwitz vectors and translate the restricted action of the braid group on such triples,
given by Brj, into a linear action on the exponents of x. Let H < Br; be the subgroup of
braids that leave the ordering of the conjugacy classes, to which the elements of 7" belong,
invariant. We obtain a representation

o H— GL@3,m).

17



Up to one condition on the exponents b; of y, we can reduce p to a representation
o H— GL(2,m).

In subsection we prove that if 7 consists only of reflections, the image p(H) con-
tains a subgroup which is isomorphic to SL(2, m).

II.1.1 Suitable representations

Recall that a generator o-; of Br, acts on Hurwitz vectors by

(o -1
(g19 seey gi’ gi+l7 ceey gda ai, bl9 ceey ag” bg/) = (gl’ ceey gigi+1g[ s gb seey gd’ ay, bla seey ag’, bg’)

and that we call this an elementary braid.

Consider now a G = G(m, n, r)-Hurwitz vector V € H, 4(G) which, up to elementary
braids can be written as

Vo= (x, ., X0, xyP L Xy
where s + ¢ = d is the number of branching points. Let
T = (xaiyb[ xai+|ybf+| xaz+zyb;+2)

be a triple of consecutive elements inside V.

We say that we act on the triple T, if we act on V, using only braids that affect T and fix
the elements of V outside of 7'; namely if we act with the group Br; ~< o, 041 >.

We translate the action of the braid group on such triples by looking at how it acts on
the vector (a;, a;41, a;12) of exponents of x. Doing so, we only want to use those braids in
Bry which leave the ordering of the conjugacy classes in 7T invariant. Recall that for two
general elements x%y”, x‘y? € G we have

C a c - a. C! —rb
(Y ayP () = x T,

Thus conjugation does not change the exponent » of y and in fact, if b # 0 it determines
the entire conjugacy class of the element x*y*. (cf. Corollary . Therefore, if T
contains at least two reflections, a braid o € Br; leaves the ordering of the conjugacy
classes in 7T invariant, if and only if it fixes the vector e = (b;, b;,1, b;1») of exponents of y.
Now for each of the three possibilities for how many conjugacy classes are present in 7',
we have a subgroup H < Br;, where all elements satisfy this property.

In particular: if all b; are equal, the vector e is fixed by the whole group Brs. If only two
of them are equal, say b; = b, the right group to consider is H :=< o7, o2 . > and if all

i+1
b are different it is H :=< 0%, 07

2
10 0700 >

We are going to prove:

Theorem I1.1.2. Let V be a G = G(m, n, r)-Hurwitz vector and consider the set of triples

T = (xaiybi xai+lybi+l xaz+zyb;+2)
2 k]
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of consecutive reflections inside V, where at least one of the a; # 0. Considering the
subgroup H < Brs of elements that act trivially on the vector (b;, bi;1,b;12), there is a

representation
p: H— GL3,m),

given by the induced action of the braid group on the vector (a;, a;;1, a;y2). If additionally
b; + biy1 + by # 0 (n), we have a splitting

F =EaoW,

where W is a two-dimensional invariant subspace for p(H) and the restriction to W yields
a representation
p: H— GLQ2,m).

Because of its length which is due to many matrix calculations and in order to keep a
good overview of the three occurring cases, we split the proof of the theorem into three
lemmas. A short, summarized version of the proof can be found after Lemma The
content of the upcoming lemmas - will be as follows: in each lemma we con-
sider one of the three possibilities for the vector e = (b;, b;y1, b;1») of exponents of y (i.e.
how many elements of e are different), together with the subgroup H =< hy, hy, h; >< Br;
of elements that fix e. Then we determine how the generators of H act on the vector
a = (aj,ai1,0a;4) of exponents of x. We interpret this as a linear action on an and as-
sign matrices to the respective generators. This defines the map p. We determine the
eigenspaces of the matrices p(h;). Doing so, we observe that they have a common fixed
vector (spanning the space E in the theorem). Under the condition that the exponents of
y do not sum up to zero, we find a basis for the p(H)-invariant part of F> which, together
with the fixed vector spans the whole space. Therefore, after change of basis, the matrices
p(h;) can be reduced to 2 X 2 matrices which determines the representation p.

The long-term goal of this section is to verify that if the triple only consists of reflec-
tions, the group p(H) contains a subgroup which is isomorphic to SL(2, m). For a matrix
A € GL(2, m), such that A% # 0 we can construct an element in SL(2, m) as follows.

Definition I1.1.3. Let A € GL(2, m). Then we call A := ——A? its corresponding element

 det()
in SL(2, m).
Note that the corresponding element is indeed an element of SL(2, m), since det(A) =
1 2 _
AW A2 det(‘ll) =1.

We proceed like this: for each of the occurring subgroups H =< hy, hy, hs >, we
consider the images p(h;) and their corresponding elements in SL(2, m). In the next sub-
section we show that these corresponding elements generate SL(2,m). This SL(2,m) is
indeed a subgroup of p(H), due to the fact that SL(2, m) is a perfect subgroup of GL(2, m)
(cf. Lemma[[I.1.T0). In the realm of this strategy we decide to already give the respective
matrices in the upcoming lemmas The last calculation will be to determine
when the corresponding elements in SL(2, m) of p(h;) share an eigenvector which will be
important in order to exclude certain subgroups of SL(2, m) in subsection [II.1.2

For simplicity of notation we assume i = 1 in the following. We postpone the case
where the first element of the triple is a rotation to the end of the section.
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Lemma I1.1.4. Consider the set of triples
T = ()Calyb, xazyb’ xa3yb)

of consecutive reflections, such that not all a; are zero. Let H :=< 0,03 > Then H

admits a representation
o : H— GL3,m),

induced by the action of H on the vector @ = (ay,a,, az) of exponents of x. If n # 3 we
have a splitting
F =EoW,

where W is a two-dimensional invariant subspace for p(H) and the restriction to W yields
a representation
p: H— GLQ2,m).

Moreover, the corresponding elements in SL(2,m) of p(oy) and p(o,) have no common
eigenvectors.

Proof. The generators oy and 0, act on T as follows:
0'1(T) — (xazrb+a1(l—rb)yb’ Xalyb, xagyb), 0_2(T) — (Xalyb, xa3rb+a2(l—rb)yb, xazyb).

The corresponding matrices for the action on the vector (ay, a,, as) are

1- 0 1 0 0
A, =| 1 0 0f, A, =[0 1-r" r*|.
0 0 1 0 1 0

Both are invertible, their determinant being —r* # 0. So we set p(o|) = A,, and

(o) := A,,. The matrix A, has the eigenvalues 1 (double) and —°. The corresponding
eigenspaces are

0) (1 —rb
EAU,,I =<|01],{1]>, EAUI,_,;, =<1 |>,
1) \0 0

where < v > denotes the F,,-span of the vector v.

The matrix A, has the same eigenvalues as A, with eigenspaces

1) (0 0
EA‘TZ’l =<|0}{,[1]>, EA(rz,—rb =<|-r"|> .
0) \1 1
To reduce the given matrices to 2 X 2-matrices consider the set of vectors B, consisting of
1
the common eigenvector v = | 1 | and the respective eigenvectors to the eigenvalue —r’:
1
1 —rb 0
B= 1, { 1|, [~
1 0 1

The set B is a basis for F° if and only if 1 + 7 + r?* = % # 0 (m). This sum is only
trivial if 7** = 1 (m) which, since n is prime, is equivalent to n = 3. Now if n # 3 we can
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take the last two vectors as a basis for the claimed invariant subspace W.

To the basis B correspond the change of basis map and its inverse (which we will need
later on)

1 1 rb r? 1 - 0
— _ b }’b —1:1 1 _ b
p=——F—7 |- L+r) 1 s P r’|.
A (R R 10 1

After change of basis the matrices of oy and o, become

1 0 O 1 0 O
A;_l = QDAO.l(p_l =10 = ¢ s A;_Z = gpAo.z(p_l =10 1 0
0 0 1 01 -

From now on we only consider the reduced matrices

—rb P 1 0
A] .—( 0 1) andAz = (1 —rb)

and set p(o) := Ay and p(0,) := A,. They have corresponding elements in SL(2, m)

1, (- -1 Lo (-7 O
A= _FAIZ( 0 —rlb )andB.: _FAZZ rerI _rb ’

with eigenspaces

1 rb 0 1+
Ej_p» =< (0) >’EA"i =< (1 + r”) >, Ep_» =< (1) >,EB,_th =< ( 1 ) >

They share an eigenvector if and only if

b b

which is only possible if n = 3 which we excluded above. O
Next we consider triples that contain elements of exactly two conjugacy classes.
Lemma I1.1.5. Consider the set of triples
T = (xalybl xazybl xa3yb2)
of consecutive reflections, where by # b, and not all a; are zero. Let H = Bry; =<

o1, 0'% > be the subgroup of Brs that leaves the ordering of the conjugacy classes in T
invariant. Then H admits a representation

p: H— GL3,m),

induced by the action of H on the vector a = (ay, a,, az) of exponents of x.
If 2by + by # 0 (n), we have a splitting

F =EeW,

where W is a two-dimensional invariant subspace for p(H) and the restriction to W yields
a representation
p: H— GLQ2,m).

Moreover, the corresponding elements in SL(2,m) of p(oy) and p(o%) have no common
eigenvectors.

21



Proof. The second generator o5 acts on T as follows:

b1 +b b b b
O'%(T) — (xalybl’ xaz(l—rbl +rP1+02) a3 r01 (11 l)ybl’ xuz(l—r’2)+u3r”1yb2)-

Its induced matrix is

1 0 0
Aa.g =10 1—=rb 40040 i1 — |,
0 1—rh b
with eigenspaces
1 0 0
EA 2,1 =< O ) 1 - rbl > and EA 2,rl’1+b2 =< _rb1 >
75 O 1 _ th 75 1

We set p(oy) := Ay, of Lemma [[I.1.4]and ﬁ(o%) = Agg. A common eigenvector of A,

1 -
andAU% isw=|1-r1]
1—rb2

Assuming 2b; + b, # 0 (n), a suitable basis for the reduction step is

1 - —rh 0
B: 1 —rb‘ , 1 . _rb] .
1 - 0 1

where the second vector is an eigenvector of A,, to the eigenvalue —r*' which, together
with the third vector generates the claimed invariant subspace W. The change of basis
map and its inverse are

1 1 i rb L—rr =0
L AN | 1 —rh A=y, ot ={1-r 1  —].
-7 -1 -1 - -2 0 1

In the new basis A, and A2 become

A:Tl = <PA0-1()0_1 = 0 —rbl }"bl and A:)-Z ‘= QDA(;%SD_I — O 1 O
0 O 1 2 O 1 _ rbz rb1+b2

Again we proceed by considering the reduced matrices

- 1 0
Al = ( 0 1 ),A2 = (1 _ rbz rb1+b2)

and set p(o) := Ay and p(o%) := A,. Their corresponding elements in SL(2, m) are

1 2
A= _WAI =

—rbr -1 1, S 0
( 0 _L al’ld B = —rbl+b2A2 = (]—rbzr)(1+rb|+b2) rb|+b2 .

rb1 P

They have eigenspaces
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1 P 0 | — e
Eapm =< (0) > Ea-g =< (1 +rb‘) > B, =< (1) > Ep :<( - ]~

The criterion for a common eigenvector is 7??1*?2 = 1 (m), or equivalently 2b, +b, = 0 (n)
which we excluded above.
o

Observe that we have chosen an ordering in the triple (by, by, b,) of exponents of y.
In the later sections we sometimes are in the situation that these exponents are ordered as
(b1, by, by). Observe that this change of the exponents only exchanges the generators of
the group H. In particular the induced matrix group stays the same.

Remark I1.1.6. Lemma also holds for the situation

az b2

T = (x"y™, xy™, xy").
Finally, we consider triples that contain elements of three conjugacy classes.

Lemma I1.1.7. Consider the set of triples

ap . .by

= (XYM, x 2y x By

of consecutive reflections where all b; are distinct and not all a; are zero. Let H =

PBr; =< 0'%, 0'%, 0'10'50'1 > be the subgroup of Brs that leaves the ordering of the conju-

gacy classes in T invariant. Then H admits a representation
o H — GL@3,m),

induced by the action of H on the vector a = (ay, a,, az) of exponents of x. If by + b, +b; #
0 (n), we have a splitting
F =EeW,

where W is a two-dimensional invariant subspace for p(H) and the restriction to W yields
a representation
p: H— GLQ2,m).

Moreover, the corresponding elements in SL(2, m) of p(oﬁ) and p(o%) have no common
eigenvectors.

Proof. We have
O-%(T) — (xa1+rbl(a2—a1—(a2rbl _alrbz))ybl xa1+a2r —apr zybz x ybz)
and

010501 (T) = (x¥yP1, x@yP, x5yh),

where

ay = a;(1 — P + 2043y g b (1 — 721 + azr 02 (1 — ),
@ = a; + ar’ — a2,

asy = ay + ayr’ —ar’.

23



| e A S (I D I

The corresponding matrices are A,z = 1-r> r 0],
0 0 1
which has eigenspaces
0) (1-rh —rb
Eqp 0 =<|0[,|1=r|>E, o =<| 1 |>
1 1 0 ] 0
and
1 _ rb] + rb1+b2+b3 rbl(l _ rbl) rb1+b2(1 _ I’b')
AO'IO'%O'I = 1 - rb2 rbl O ’
1 —rbs 0 b

which has eigenspaces

- 0 —rbr(1 = phaths)
, 1 =<|1=-r|>E, o =<|-r|>E, bbby =< 1 - > .
71050 (r]a-z(rl ’ (rlo'zo'l ’
1—rb ? 1 : 1 —rbs

We define the map p as in the last cases. Assuming b + b, + b # 0, an appropriate basis
for the reduction is

11— —rh 0
B= 1 -], 1|, |- ¢},
1 —rbs 0 1

where the first entry is a common eigenvector to the eigenvalue 1 of AU%, A(T% and Amagm .
The claimed invariant subspace W is generated by the last two vectors of 5. The change
of basis map and its inverse are

1 1 rh yhi+b2 - —r 0
— by +b3 b by b -1 _ by by
p=——F"—7|r -1 1-r (1 =r""f, ¢ =|1-r I -7
Al SO T S D R - 0 1

The reduced matrices of A Az and A, 2 after change of basis are

’,.b1+b2 rbz(l _ rb]) 1 0 rb1+b2+b3 0
A ::( 0 1 Ag 1= 1 — b3 phaths Az 1= @ =) P

Also the map p is defined as in the last cases.
We proceed by only using A; and A,. As it turns out later, the corresponding matrices
in SL(2, m) of A; and A, already generate SL(2, m). These are

_b by+b 1

1 b1+by rbz(l rPD)(1+r71772) 1 —-— O

. 2 _ [T by +D; ._ 2 _ P2+b3

A==l 2 Jand Bi= o Ad = | asthastny e |-
r e rba+bs r

rbz +b3

Their eigenspaces are

1 rbz(l _ rbl)(l + rb1+bz)
EA,rbl+1’2 =< (O) >, EA’J)]%bz =< ( 1 _ r2(bl+b2) >
and 2(by+b3)
0 1 — 23
Ep by < (1) >’EB’rb2Lb3 =< ((1 -+ rb2+b3)) .
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One readily calculates that A and B have a common eigenvector if and only if we have
rb1+02+bs = 1 which we excluded.
]

Proof. (of Theorem [I.1.2)) In each of the Lemmas - we have considered one

case for the vector of exponents of y in the triple
T = (xalybl’xazybz’x%ybs)'

In each case we considered the subgroup H < Br;, of elements that fix the vector
e = (b1, by,b3). We defined the representation p, according to how the generators of
the respective subgroup H act on the vector (ay, a», as). One readily verifies that this map
is linear. Observing that the corresponding matrices in GL(3,m) have a common fixed
vector, we performed a change of basis and defined the representation p : H — GL(2, m)
via the reduced matrices after change of basis.

The following table summarizes these results. Since for further use we are only interested
in the representation p, we refer to Lemma - for the representation p and in
the case of three conjugacy classes we only give the matrices for the first two generators

which is sufficient for our purpose.

Exponents of y | by = by, = b3 =: b by =by, # bs by # by # b; # by
H BI"3 Bl’g,l PBV3
Generators h=oc,lh=0y |lh=0,hh=05| h=07,h=03,
hy = o050

—rb b —rbr phithr b2 (1 by
p) ( 0 1) ( 0 1) 0 1

1 0 1 0 1 0
p(hZ) 1 _rb 1 _ rbg rb1+b2 1 _ rbS rb2+b3

O

By a an upper triangular transvection in GL(2, m) we mean an element of the form
i
o 1)4%0

Lemma I1.1.8. Consider triples of the form
T = (x, x"y", x2y"),

where ay, by, by # 0 and by + by # 0. Then the group H, =< 0}, 05 > admits a represen-
tation p : Hy — GL(2,m), such that the image contains an upper triangular transvection.
Ifby = by, =: b #0, the group H, =< 0'%, o, > also admits such a representation.

Proof. For H,: we have

rh 00 1 0 0
AU% =l1-/" 1 0 ,AUg ={0 1—r2 402 o1 =iy,
0 0 1 0 1 —r rh
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The eigenspaces are

0) (0 1
Ey,1=<|1],[0 >,EAUN;7l =<|[-1|>
: 0) \1 1 0
1 0 0
Eq o1 =<|0f,|L=r""| > Ey , oo =<|=1"1| >
? 0) {1+~ " 1

The change of basis map and its inverse are

| I Y 0 0 1
— ) by by -1 _ by by
p=——7—| -1 -1 1-r"|,¢ =|1=-r" —r -1].
L= o g 0 -/ 10

as well as

The reduced matrix of o7 in the new basis is A = (l) r(zl)' The reduced matrix of
) .. phitbr b
o% in the new basis is B = 0 L) We calculate the commutator [A, B] =

1 rb%(l—rbl)(l -r
0 1
transvection is [A, B].

by
))). Since by, b, # 0 this is not the identity matrix. So the claimed

For H,: Here we have

00 1 0 0
Ap=|1-r 1 0[.A,=[0 1=/ /|

0 01 0 1 0

The eigenspaces of A, are as above. For A, we have

1Y (O 0
EA(TZ,l =<101,]1 >’EAU—2,—rbl =<|-rt|> X
0) 1 1

The change of basis map and its inverse are

{ 11/ 0 0 1
=177 -1 -l 1, ¢ =1 -r* -1].

1+ 0 0 I 1 O

The reduced matrix of O'f in the new basis is A = ( ) The reduced matrix of o, in

b

0 1
identity matrix. So the claimed transvection is [A, B].

the new basis is B = ( 1) We have [A, B] = ( T) Since b # 0 this is not the

O
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I1.1.2 The suitable representations contain SL(2, )

In this section we prove:

Theorem I1.1.9. Let H be one of the groups of Lemmas to Then the image
of the respective representation p : H — GL(2, m) contains the group SL(2, m).

Recall that in section|II.1.1| we have shown that given triples
T = (xll]ybl xazybz xa3yb3)

of consecutive reflections inside a G-Hurwitz vector, under the condition by + b, + b # 0
we have a representation
p: H— GL(2,m),

where H < Brj is the subgroup of braids that leave the ordering of the conjugacy classes in
the triple 7" invariant. Then, for each generator /; of H, we assigned to A; := p(h;), B) :=
p(hy) its corresponding elements A = mA%, B= mB% in SL(2, m). In this subsection
we prove that < A, B >= SL(2, m).

Observe that < A, B > is not necessarily a subgroup of < A, B; >, since it might not
be closed under scalar multiplication. But by the following Lemma we obtain that if
< A, B >= SL(2,m), we get that < A, By > contains this group and therefore also p(H),
which is precisely what we want.

Lemma IL1.10. Let Ay, B; € GL(2,m) and A = 5;5;:5A1, B = 5581 € L = SL(2,m)

be their corresponding elements. Then, if L =< A, B >, we have L < < Ay, B| >.

Proof. Let D be the (central) subgroup of scalar matrices in GL(2, m) and observe that we
have < A, B ><< Ay, B}, D >. Recall that for m > 3, the group L = SL(2,m) is a perfect
subgroup of GL(2, m). For simplicity we set G’ := [G, G] to be the commutator subgroup
of a group G. We get

L=L=<A,B><<A,,B;,D>=<A,B; > <<A,B;>.

A first classification and supplementary group-theoretic results

The following theorem is the key result that we use to prove Theorem [[I.1.9] It is taken
from [Sul], p. 404.

Theorem I1.1.11. (Suzuki)

Let V be the two-dimensional vector space over an algebraically closed field F of
characteristic m > 0. Let L = SL(V). Any finite subgroup K of L is isomorphic to one of
the groups in the following list:

(i) A cyclic group.
(ii) The dicyclic group of order 4N, defined by the presentation
oyl =y y ay = 2.
(iii) The special linear group SL(2, 3) over the field of 3 elements.
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(iv) 24, the representation group of the symmetric group a, in which the transpositions
correspond to the elements of order 4.

(v) The special linear group SL(2,5).

(vi) QO < K, Q is elementary abelian and K/ Q is a cyclic group whose order is relatively
prime to m.

(vii) m =2 and K is a dihedral group of order 2d, with d odd.
(viii) The special linear group SL(2, k), where k is a subfield of F.

(ix) An extension of the group SL(2, k), where k is a field of m elements.

We treat the list in the following way. For each group H of subsection let A, B
be the corresponding elements of the image of (two of) its generators under the map
p : H — GL(2,m). Consider moreover the subgroup < A, B >< SL(2,m), generated by
A and B. We want to show that < A, B > is no proper subgroup of SL(2,m). Now every
field k of characteristic m contains the prime field F,, and we have a standard embedding
of SL(2,m) = SL(2,F,,) into SL(2, k) (cf. [Su], p. 405). We view the group < A, B > as
a subgroup of the special linear group over the algebraic closure F of F,,. Then we proof
that this embedded group is not isomorphic to any of the groups (i)-(vii) of the list and
therefore it must be SL(2, k) for some subfield k of the algebraic closure. This proves that
the group < A, B > can not be a proper subgroup of SL(2, m).

In the following we give an overview on how we are going to treat the cases (i) — (vii)
and provide supplementary group-theoretic results for this purpose. In particular, we can
already exclude several groups of the list. Then, analogous to the last section, we treat the
three different cases for the subgroup H < Br; in a separate proposition.

To start, observe that group type (i) is easily excluded by verifying that the generators A
and B do not commute. As it turns out, this is made sure by the fact that » is prime.

For the groups of type (ii) - (v) we look at the orders of A and B. Here we use the following
lemma.

Lemma I1.1.12. The order of an element of the form A = (8 alfl) or B = (Z a(zl) in

SL(2,m) with a # 1, is the multiplicative order of a in F,,.

a'(1-a*)

a(1-db)
. 1-a™2 ]) for k even and for odd k we have

k
Proof. We calculate A* = (% b=

+

a
—2k)

k ak_](l—a

Ax = (C(l) b 1-¢~ ) Since B is the transpose of A the claim follows.
a

O

The largest class of groups to exclude is the one of case (vi). Here we can apply the
following lemma.

Lemma I1.1.13. If K is a group of type (vi) of the list in Theorem[[I.1.11} then all elements
of K have a common fixed point on PHLW.
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Proof. From [Sul], §6,3. (6.7) and (6.8) we know that the elements of Q have a unique

common fixed point P on P]}:m. Now let h € Q, so h(P) = P. Since Q is normal in K we get

(g7 'hg)(P) = P, for all g € K and therefore g(P) is a fixed point of A, yielding g(P) = P.
O

Thus to exclude type (vi) it is sufficient to verify that the matrices A and B do not share
an eigenvector. But recall that when we defined the action p : H — GL(2,m) in we
assumed that the exponents b; of y in the triple 7 don’t sum up to zero. It turned out that
this is sufficient for A and B not to share an eigenvector. Therefore we can exclude this
group type.

Since we assume m > 3, we can also exclude case (vii). We sum up:

Remark I1.1.14. By the results of Lemmas and the general assumption that
m > 3, the group < A, B > cannot be a group of type (vi) or (vii) of the list of Theorem

The case (v) will be excluded by using the classification of the subgroups of SL(2, 5).

Due to lack of a reference and for completeness we present this classification here. Re-
2 2

call that in general we have |[SL(2, m)| = Ck&ml — r=Dewom) — 4y 4 1)(m - 1), so

|y, m—1
ISL(2, 3)| = 24 and |SL(2, 5)| = 120.

Proposition I1.1.15. The group SL(2,5) has exactly the following proper subgroups:
C2’ C3’ C4’ CS’ C69 QS’ ClO, C3 ~ C4’ CS ~ C4’ SL(Z’ 3)
In particular, the largest proper subgroup has order 24.

Proof. Consider the following elements, indexed by their order in SL(2, 5):

(-1 0 (o 2\, (32 _(20
250 18712 -7\ 1% o 3)

. 0 -1 (11
= a)s=b)

The first six claimed subgroups are obtained as C, =< g, >,C3 =< g3 >,Cy =< g4 >,
Cs =< g5 >, C¢ =< g38> > and Cjg =< gsg» >. Observing that gshsg;' = h;', one easily
verifies that < g4, hy >= Qg. We get SL(2, 3) as an order three extension of Qg, where Qg
is not normal (cf. [Su], Chapter 1, §9, and Chapter 2, §7). This is satisfied by the group
< g4, hy, h3 >. Furthermore one verifies that g3 is normalized by A4 and g5 is normalized
by g4. Accordingly we have C; < Cy =< g3,hy > and C5 < C4 =< g5, 84 >.
Now we verify that this list is complete. To start, observe that the number ss of 5-Sylow
subgroups must either be s5 = 1 or s5 = 6. But since Cs is not normal in SL(2, 5) which
can be readily checked, we get ss = 6. Therefore we have 6 - 4 = 24 elements of order
five. The abelian extension group Ci, thus gives 24 elements of order ten. So we have
exhausted 48 non-trivial elements. Now observe that the number of 3-Sylow subgroups
s3 € {1,4,10,40}. A direct matrix calculation shows that C; has more than 4 conjugates,
so s3 > 4. If 53 was 40, we had 80 elements of order three and would exceed the group
order. Thus s3 = 10. Therefore we have 20 elements of order three from the conjugates
of C5 and another 20 elements of order 6 from the conjugates of Cs. We arrived at 88
non-trivial elements. Observe that the number of 2-Sylow subgroups s, € {1, 3,5, 15}. We
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claim that s, = 5. The group Qg =< g4, h4 > is a 2-Sylow subgroup. Consider the quotient
of SL(2,5) by its center SL.(2,5)/C, = As. The group Qg maps to the group V, = C, X C,
in the quotient. But a direct calculation shows that there are exactly five subgroups of
double transpositions in As which intersect trivially, all are conjugate to each other and
isomorphic to V4. Therefore we have five conjugates of Qg in SL(2,5), intersecting in
the center C,. Thus we have 30 elements of order four in SL(2,5). Together with the
order-two and the trivial element we counted exactly 88 + 30 + 2 = 120 elements.

O

Corollary I1.1.16. An element A € SL(2,5) is of order five only if tr(A) = 2.

Proof. As we have seen, an element of SL(2, 5) is of order five if and only if it is conjugate

to a power of g5 = ((1) i), and all these elements have trace two. Since the trace of a

matrix is a similarity invariant, the claim follows. O

Lemma I1.1.17. Let A, B € SL(2,5) be elements of order five. If also the element AB has
order five, then < A, B >= Cs.

Proof. By (the proof of) Proposition [II.1.15| we can assume that, up to conjugation, B =

((1) f)’ where § # 0. Now let A = (Z Z) be an element of order five, such that AB is of

a Ba+b

c Pc+d
geta+d=a+pBc+d=2andsoc =0, yieldingd = a”'. Thus we geta +a! = 2, but
this equation has the unique solution a = 1 in Z/57Z.

order five. By the Corollary, both A and AB = ( ) have trace equal to two. We

O

After this first classification we now proceed to the explicit case by case treatment.

Explicit treatment

Proposition I1.1.18. Let p : H — GL(2, m) be the representation of Lemma Then
p(H) contains the group SL(2, m).

Proof. Here we have H = Br; which is generated by the braids o, 0. Consider their
images A,,, A, under the map p : H — GL(2, m), and their corresponding elements

- -1 —rib 0
=0 ) el )

b

in SL(2,m). We assume b # 0 and 3b # 0, or equivalently n # 3. By Lemma|ll.1.12|both
A and B have the order of —#* in F;,. Since 7" = 1 and n is prime, this order is 2n.

We now treat the list of Theorem |lI.1.11|case by case and show why the group < A, B >
cannot be isomorphic to one of the groups (i)-(vii). Recall that by Remark we are
only left with cases (i) to (v).

Group type (i): The elements A and B commute (and thereby generate the group C»), if

and only if ¥* = 1 (m), i.e. if and only if b = 0 which we excluded above. Thus cyclic
groups are excluded.
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Group type (ii): Observe that from the presentation of the dicyclic group it follows that
x*N = y* = 1. The group K therefore sits inside a (non-split) exact sequence

1->Chpy—>K—>Cy— 1.

If A and B were to generate a group isomorphic to K they had to project non trivially to
C,4, and would therefore have order two or four. But since both A and B have order 2n,
where 7 is an odd prime, this cannot happen. Therefore dicyclic groups are excluded.

The following example shows that if n = 4, A and B do generate a group of type (ii)
for all m. We see that if n is not a prime, then already for very small values of n, the
elements A and B generate a proper subgroup of the special linear group.

Example I1.1.19. Ifn = 4 we have < A, B >~ Qg, the quaternion group.

Proof. From n = 4 we get A* = I and A?> = B> = —I. Furthermore one calculates that
ABA™!' = B!, The group < A, B > is then uniquely identified with Q.
O

Group type (iii): Since |SL(2,3)| = 24 = 2° - 3, A and B can only have order 6 = 2 - 3,
yielding n = 3 which we excluded.

Group type (iv): This type of group is a central C, extension of the symmetric group
%, (cf. [Sul, Def. 9.10, p. 252 and (2.21), p. 301). Since it is of order 48 = 2*.3, A
and B must have order 6 to be contained. But then we must have n = 3 which we excluded.

Group type (v): We have |SL(2,5)| = 120 = 2°-3-5 and therefore A and B must both have
order six or ten in order to possibly generate a group, isomorphic to SL(2,5). Since we
excluded n = 3, it remains to deal with the case that both A and B have order ten, son = 5.
Now from (A%)? = (B°)> = I we get that A3 = B> = —I, since —I is the unique element of
order two in SL(2, m). Furthermore one calculates that the matrix AB has the eigenvalues
r? and =, implying (AB)’ = I. So A® = —A and B® = —B are elements of order five, such
that their product has order five. If (up to isomorphism) they were elements of SL(2, 5),
then, according to Lemma [II.1.17, we had that A and B would generate a cyclic group
which we excluded in (i). So also this group type is excluded. O

Proposition I1.1.20. Let p : H — GL(2, m) be the representation of Lemma Then
p(H) contains the group SL(2, m).

Proof. The group we want to identify is < A, B > < SL(2,m), where

—ybr b 1 0
r r 1 b1 +by
A= ( 0 ! ) and B = ((1_,b2’)(1+r,,1+,,2) rb1+b2)’

o1 7b1+52

and by, by,2b; + b, # 0. Here A has again order 2n. The element B has order n (by
Lemma [[I.1.12)), if and only if b; + b, # 0. Otherwise B is of order m. We note here that
r* # —1 (m) for all k, for if 7* = —1 (m) for some k, we get 2k = 0 (n), and since n is odd
it follows k£ = 0 (n), a contradiction. Therefore B cannot be of order two.

Group type (i): The elements A and B commute if and only if #*'*%2 = —1 (m) which can
only happen if n = 2, as we have just seen. Therefore cyclic groups are excluded.
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Group type (ii): For the dicyclic groups, arguing in the same way as in the case of only
one conjugacy class, we see that for by + b, # 0 (n), ncanonly be 2 or 4. If by + b, =0,
B being of order m then, we must have n = 2 or m = 4, so this group type can be excluded.

Group type (iii): As before, in order to be an element of SL(2,3), A can only have or-
der 6 = 2n, and B can only have order 3, so n = 3. Since b; # b,,2b; + b, # 0 and
by, by # 0 (n), it follows b; + b, = 0 (n). But then the element B is a matrix of order m.
Since the order of B must divide the group order, the prime number m can only be 2 or 3
which we excluded.

Group type (iv): Recall that the group 34 has order 48 = 2*.3. So, since n > 2, we
can only have that A has order six and B has order three. The group sits inside the exact
sequence

1—>C2—>fl4—>24—>1.

If A and B would to generate the group, their images A and B in the quotient 4 would
generate this group. Since X, contains no elements of order six, A and B were of order
three. But since elements of order three in X, have positive sign, they cannot generate the
whole group. Therefore this group is excluded.

Group type (v): Assume A and B are elements of a group, isomorphic to SL(2, 5). Then,
by our assumptions, we have order(A) € {6, 10} and order(B) € {3, 5}.
Assume that A has order six, so n = 3. In (iii) we have seen that then b, + b, = 0 and so B
has order m. Since we excluded m = 3 we can only have m = 5. But a direct check shows
that the equation 7> = 1 (5) is only solved by r = 1. So the group G(m, n, r) was abelian
which we already excluded.
Now assume that A has order ten and therefore n = 5. We proceed by distinguishing
between b; + b, = 0 and b; + by # 0. First assume b; + b, = 0. Then B has order
m, but since we assume m > 3, it can only happen that m = 5. Then we had m = n
which is not possible because n must divide m — 1 (cf. section [[.2)). Finally consider the
case that b; + b, # 0. Then the remaining triples of exponents for y are (by, by, b,) €
{(1,1,2),(2,2,4),(3,3,1),(4,4,3)}. Since they all differ by a (linear) automorphism of
F,, it is sufficient to consider the case (b, b,) = (1, 2). In this case one calculates that the
matrix A*B? has eigenvalues r and 1, so it is of order five. Since both A* = —A~! and B?
are of order five, by Lemma we get < A* B> >~ Cs. But < A*, B> >=< A, B >,
so A and B be would commute which we already excluded.

O

Proposition I1.1.21. Let p : H — GL(2, m) be the representation of Lemma Then
p(H) contains the group SL(2, m).

Proof. The group we want to identify is < A, B > < SL(2, m), where

P2 (1=rP1) (14101 +02 1
Ao rb1+b2 ( rr[’l)f'bz r ) B Tavhy 0
= , =

0 | (=r23)(14+r2+03) Jbabs
b1 +b br+b -
172 2703

and by, by, b3, by + b, + b3 # 0. The order of A and B is the prime number n if by + b,, b, +
b; # 0 (n). If one of these sums is trivial, the respective matrix has order m. As in the
previous case, A and B cannot have order two.
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Group type (i): The generators A and B would commute if and only if we had
(L+ 7)1+ r72%) = 0 (m).

But since 7 is prime, none of the two factors can vanish, therefore, since m is prime, the
product cannot vanish. So we can exclude this group type.

Group type (ii): Is excluded as in the case of two conjugacy classes.

Group type (iii): As for one and two conjugacy classes we see that A and B must have
order three or m. Since we assume m > 3, order m is excluded, since 3 is the largest prime
factor of 24 = |SL(2, 3)|. If A and B have order three we must have n = 3. But then the
exponents by, b,, b3 cannot be nonzero and pairwise different at the same time. So we can
exclude this group type.

Group type (iv): Arguing as in the case for one conjugacy class we can also exclude .

Group type (v): Here, as a prime divisor of 120 = |[SL(2, 5)|, the order of A and B must be
three or five, according to n = 3 or n = 5. We already excluded n = 3 above. For n = 5:
The restriction by + b, + b3 leaves as possibilities for the triple (by, by, b3) the S 3-orbits of
(1,2,3),(1,2,4),(2,3,4) and (1, 3,4). Observe that in all these cases the sum of two of
the entries is equal to five. If these entries are neighboured, we get that either A or B has
order m € {3,5}. Since we assume m > 3 and we have m # n = 5 we are done in this
situation. In the remaining cases we have b, + b; = 0 (n). We calculate that for the matrix
M := A’B* # I we have tr(M) = 2, so its characteristic polynomial is (x — 1)>. Therefore
M has the double eigenvalue one and thus it is of order m which we have just seen to be
impossible. This completes the investigation and we can exclude SL(2, 5). O

Proof. (of Theorem|[I.1.9) In the last three lemmas we have considered the three different
cases for the subgroup H < Br; of elements that fix the vector of exponents of y in the
triple

T = (xalybl,xazybz,xasyh)_
We considered the images of the generators of H under the map p : H — GL(2,m)

and verified that their corresponding elements A, B € SL(2, m) generate the whole group
SL(2, m). We did this by showing that they generate none of the proper subgroups of the

list of Theorem Thus by Lemma we have proven that p(H) contains a
subgroup which is isomorphic to SL(2, m).
mi
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II.2 Determination of Orbits

Let us recall our general assumption.

In the following, if not explicitly mentioned otherwise, we assume that
G=Gmnr)=(xy|x"=y"=1,yxy =x"),
r'" =1, is a split metacyclic group with prime numbers m > 3,n > 2 and r > 1.

In this section we prove our main result. Let v be a numerical type and let moreover
Hy 4,(G) C Hy 4(G) be the subset of Hurwitz vectors of numerical type v. We show that
the set

(Hy.ay(G)/Aun(G))/Map, 4

consists of only one equivalence class, thus we have a transitive action. Recall from
section that the orbit set above lies in bijection with the set

Hy 4,(G)/(Map,, , x Aut(G)).

We prove that A@g « X Aut(G) acts transitively on H, 4,(G). Let us give an overview of
our strategy and the content of the upcoming sections.
By Proposmon .1.26{we know that the group Mapg XAut(G) acts transitively on Hy 4,(G)

if the group Mapg « acts transitively on the set Hy 45(G), where ¥ is a representative
Nielsen type for the numerical type v. Recall that this is due to the fact that the Nielsen
function is Aut(G)-equivariant with respect to the equivalence relation on Nielsen types,
induced by the action of Au#(G) on conjugacy classes. This means that for any Hurwitz
vectors V, V' of the same numerical type, we find an automorphism @ € Aut(G), such that
a(V) and V' have the same Nielsen type (cf. Lemma [[.1.25). Accordingly we will prove
that %g,’d acts transitively on G-Hurwitz vectors of the same Nielsen type.

We start with the case g’ = 0, showing that Br,; X Aut(G) acts transitively on Hy 4,(G)
for every numerical type v. Section [II.2.1| contains technical results, based on the results
of section to prepare the proof of the main theorem for this case. This is Theorem
of section
In section we treat the case d = 0, g’ > 0. We obtain that ]@)g/, 4 acts transitively
on Hy ((G), which is also a corollary of the result of Edmonds (cf. [Ed]). We include this
case for the sake of completeness and because we use the methods to prove it also in the
case d > 0.

In section [[T.2.3.2] we prove our final result, Theorem [[1.2.T9 Based on the results of
section |II 2. 2| and |II 2.3. 1lwe show transitivity of the action of the group Mapg 1 X Aut(G)
on Hy 4,(G), where d, g’ > 0.
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I1.2.1 Supplementary results on branching triples and quadruples

This section contains decisive results on triples and quadruples of consecutive reflections
inside Hurwitz vectors.

Recall the results from section for a triple
T = (xalybl’ xazybz’ xasybs)

of consecutive reflections, we considered the subgroup H < Br; of elements that fix the
vector e = (by, by, b3) of exponents of y. Under the condition b; + b, + b3 # 0, we defined
a representation p : H — GL(2,m) and showed that the image p(H) contains a subgroup
which is isomorphic to SL(2,m). In this subsection we apply these results, combined
with the fact that SL(2, m) acts transitively on F? \ {0} (cf. Proposition|IL.1.1). Based on
this, in Proposition [I[.2.2] we prove that a triple 7" as above has good representatives in
its Brs-orbit, such that in Lemma we can find good representatives for the action of
the braid group on quadruples of reflections. The case b, +b,+b; = 0 is treated separately.

Before we can prove the key result of this section, Proposition [I1.2.2] we need to deal
with the following: observe that the subgroup H < Br; acts trivially on the triple T if all
elements of 7 commute with each other. The following Lemma says that this holds if and
only if the matrix group p(H) acts trivially on F?,.

Lemma I1.2.1. Let V be a G = G(m, n, r)-Hurwitz vector and
T = (xa1yb1 xazybz xa3yb3)

a triple of consecutive reflections inside V, such that by + by + by # 0. Let ¢ : F> — F> be
the respective change of basis isomorphism of section and let @ = (a,a»,as) be the
vector of exponents of x. All elements of T commute with each other if and only if

p(a@) € {(4,0,0)| 1 € F,}.

Proof. First we consider the case that by = b, = b3 =: b. So assume that the elements
x4yb, x2yP x4y® all commute with each other. By Proposition this is equivalent to
a; = a, = as. Recall from section that we have chosen an F,,-basis

1 —rb 0
=211, 11, |-*]},
1 0 1

consisting of the common eigenvector of A, and A,,, an eigenvector of A, and an eigen-
vector of A,,. The vectors of 8B determine the inverse of the change of basis map. The
claim now follows from the observation that ¢~'(1,0,0) = A(1,1,1). Now assume that
we have three exponents by, by, bs of y, at least two of them being distinct. By Propo-
sition the elements x“y”!, x2y?2, ¥y all commute with each other if and only if
(ai,az,a3) € {A(1 =", 1—r"2,1—r) | A € F,,}. In this situation the inverse of the change
of basis map is

1= =0
o l=1-r2 1 -],
| 0 1
which maps (4,0,0) € F? precisely to A(1 — 1,1 —r?, 1 —r?). So the Lemma is proven.

O
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Now we can prove the key result of this section:
Key Proposition 11.2.2. Let V be a G = G(m, n, r)-Hurwitz vector and
T = (x(l]ybl xazybz xu3yb3)

a triple of consecutive reflections inside V, such that < T >= G, x“1yP1x2yP2xbybs % 1
and not all entries of T commute with each other.

1) If by + by + b3 =0, then for any A € F,, the triple T is braid-equivalent to
Tl — (XAybl, xaéybz’ xagyb3)’

where a’, = a2+(A—a1)% and a; = az +(A—ay)

of A € F,, the triple T is braid-equivalent to

(-r’3)
(1-rb1)°

Similarly, for any choice

Ty = (x“iy", x*y?, x5y7) and Ty = (x1y", x4y", x*y™),

where the exponents a’; are uniquely determined by the elements a; and the choice
of A. Furthermore, if the elements in T at position i and j do not commute, the same
holds for the triples Ty, T» and Ts.

2) If by + by + b3 # 0, then exactly for m* — 1 choices of the pair (A, B) € F2, the triple
T is braid-equivalent to a triple

T/ — (xaybl’xAybz’xByb3)’

where a depends on the choice of A and B. Similarly, for exactly m* — 1 choices of
the pair (A’, B') € F2, T is braid-equivalent to a triple

T = (Y7, X%y, x4y,
In particular:

- We can always choose B = 0.
- We can choose (A, B) = (0,0) if a; + a,r” + azr” 2 # 0.
- If we choose B = 0, we can choose A, such that x“yb L xAbe do not commute.
Similarly for A’, B'.
Proof 1) We haVe xalyblxazybzxa3yb3 — xa1+a2rb1 +a3rb1+”2
assume x@y?1 x2yP2 x4y £ 1. So

=: x”, where p # 0, since we
(0'10'2)3k(T) — (xkpxalylnx—kp, xkpxuzybzx—kp’ xkpx¢13yb3x—kp)
— (xu1+kp(1—rhl)yb1’ xa2+kp(l—rh2)yb2’ xa3+kp(l—r”3)yb3).
Since p is non zero, it generates F,, additively. Thus for any A € F,,, there exists &,

such that for one i € {1, 2,3} we have a; + kp(1 —r”) = A (m). The second statement
directly follows from the rule [hg,h™!, hgoh™'] = hlgi, g,]h ! forall h, g, g> € G.
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2) We only give a proof of the statements for the claimed triple 7", the proof for 7"
being very similar.
Consider the vector @ = (ay,as,a3) of exponents of x in the triple and let @ =
(ay, a», az) be its image under the respective change of basis map ¢ of section [[I.1
Observe that in case by = b, = b3 =: b the map

1 - 0
=1 1 -
1 0 1

maps a vector (dp, d,, ds) to a vector (a, A, B) if

i, =A+Br’ —d,(1+r") and ()
Zlg =B- &1. (3)
In the general situation
1—r 0
90_1 =|1-s2 1 —rh

maps (ap, a,, as) to (a, A, B) if

G, = A+ Br” —a,(1 = r**") and 4)
d; = B—a,(1-r™). (5)

Since by assumption not all elements of the triple commute with each other, by
Lemma([[[.2.T|we have (a, a3) # (0,0). By Theorem[[I.1.9|the image p(H) contains
a subgroup, isomorphic to SL(2,m). So, using Proposition we can act tran-
sitively on the second and third component of &, leaving &; invariant. Thus we can
bring @ to &' = (a,, a,, ay), with (@), aj) any nonzero vector in Fi Therefore, up to
one exception, given by the condition (a;, @, a;) # (ai,0,0), we can choose A and
B such that (2) and (3), resp. () and (5)) are satisfied.

From the equations it is now clear that if we choose B = 0, we can adjust A, such
that @ # (@, 0,0).

For the second additional statement recall that in the general situation the change
of basis map ¢ is

1 l rbl rh1+b2

_ by+b3 by 2 !
(P = — 1|7 D — 1 1 —-r rb (1 - rb ) M
el s = 1) 1 = bt

So the first entry of ¢(a;, ay,as) is

ay + axr’ + azrbtt

1 _ rb] +by+b3

&1:

Thus if the enumerator does not vanish, by equations () and (5) we can choose
(A,B) = (0,0) without making (&, a;) become (0,0). Similarly for the special
situation b; = b, = by =: b.

It remains to verify the last additional statement, namely that if B = 0, we can
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find A, such that the first two elements of 77 = (x*y", x4y”2, y**) do not commute.
Assume that we are in the general situation that not all b; are equal. The proof for
all b; being equal is very similar and we omit it. So assume we have chosen B = (.
We bring @ to

(@, A —a(1-r""), -a;(1 - ™)),

which ¢~! maps to (a(A), A, 0), where a(A) = a@;(1 — r*?2b3) — APt The elements
x“ybr | xAyP2 commute if and only if

a(A)(1 - ) —AQ =) = a (1= ") = ) AL - ") = 0. (6)

But this equation has a unique solution in A.

The following Lemma is very strong in the case where we have rotations.
Lemma I1.2.3. Let
T = (0, xybt, xyb)
be a triple with ay, by, b, # 0. Then the triple T is braid-equivalent to a triple
T’ = (x%, xy1, )P,
The exponent a| may be zero.

Proof. Case 1: by + b, #0

By Lemma [II.1.8| we have representations p; : H; — GL(2,m), such that the image con-
1 a

tains a transvection S = (O 1)

a # 0. With § we can act transitively on the first

component of any vector (;C) € 2 \ {0} with y # 0. But since we assume ay # 0 the

change of basis map ¢ (see Lemma [[I.1.8)) does not map (ay, a1, a») to such a vector. Let
now a = (ay,a;,a,) be the image of (ao, a;,a,) under ¢ the case H,. If we change &,
to @, = —ao(l — r2), the inverse map sends the changed vector @ to the claimed vector
(aj,a;,0). Similarly for H,. Therefore we can achieve the claimed equivalence in both
cases. One readily calculates that @} = 0 if x“y” x2yP2 = ybi+b2,

Case2: b1 +b, =0

The case x®x“y” x2yP2 # 1 is proven exactly as Proposition [[1.2.2, 1). Now if
x®xayP x2ybr = 1 we have x“y? x2y?? = x~%_ Thus we are in a situation as in Proposi-
tionll.2.2 1) and can prove similarly that we have the claimed equivalence. O

Now we proceed to quadruples of consecutive elements.
Corollary I1.2.4. (of Proposition|[[.2.2)). Let
0 = (81,82, 83,84) = (X", Xy, x®yP, x4y

be a quadruple of consecutive elements which do not all commute with each other and
by + by + by # 0. Then we can choose A, B € F,,, such that

Q N Ql — (xLI]yb]’ xAybz’ xByb3’ xayb4)’

where x*y"* and xBy"> do not commute and the product of the first three elements is non
trivial.

38



Proof. We assume that b; + b, + b; = 0, otherwise the product of the first three elements
of O’ is automatically non trivial.

We apply Proposition 2) to the triple of the last three elements. Now the claimed
properties of Q" impose two conditions on A and B:

Al =) =Bl =) #0 (7)
ai + Ar"' + Br""* £ 0. (8)

The respective zero sets of the left side of (6) and (7) each define a line in F2, which
contains m elements. But by the proposition we have m? — 1 > 2m (since m > 3) choices
for the pair (A, B).

O

Lemma I1.2.5. Let Q = (g1, 82, 83, 84) be a quadruple of consecutive elements which not
all commute with each other. Then for any pair of indices (i, j) we can assume, up to
elementary braids that g; and g; do not commute.

Proof. We give the proof only for (i, j) = (1,2). Assume that g, and g, commute. Then
by Corollary we have that g, does not commute with g3 or g4, since otherwise all
elements would commute. We can assume it is g3. Now we perform the braid o, twice,
yielding a quadruple Q" = (g1, g5, g5» 84), Where g} = ggl 8283. Now we must have g/ # g».
But by Corollary the element g; can only commute with g, or g5. So the Lemma is
proven.

O

The upcoming Lemma is the decisive ingredient for the determination of the orbits of
the action of the braid group on G-Hurwitz vectors.

Notation. In the following, if we write V.~ V', we mean that the Hurwitz vector V' is
obtained from the Hurwitz vector V by application of a sequence of braid moves.

Key Lemma I1.2.6. Let

Q = (81,8283, 84) = (XUyP1, x2yb2 xBybs | xtybsy

be a quadruple of consecutive reflections, such that not all of them commute with each
other. Then, if we do not have that n = 3 and all b; are equal, we have

Q ~ (x™y"1, x“ybr, ybs b,

where the first two elements do not commute.

Proof. In the following, if we write capital letters A, B or A’, B’ for exponents of x, we
mean that we made a choice. Small letters a,a’ indicate that the respective exponents
depend on this choice.

Consider the following sums of exponents of y:
S1 = b2+b3+b4,S2 = bl +b3+b4,S3 = bl +b2+b4,S4 = bl +b2+b3.

Case 1: 51 # 0.
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By Lemma [[I.2.5| we can assume that g, and g3 do not commute. Now we distinguish
between s4 # 0 and s4 = 0.

Case 1.1: s4 # 0. Write a; = 4,(1 — r*'). We apply Proposition , 2) to the triple of
the last three elements of Q, choosing B = 0 and A # A;(1 — r*). We get

0 ~ (x1y"1, x4y, Ay ),

where x“y?' and x*y* do not commute. Since s4 # 0 we can now apply Proposition
11.2.2] 2) to the triple of the first three elements, choosing B = 0 and A, such that

Q ~ (xyPr, xAyP2, P by

and the first two elements do not commute.

Case 1.2 : 54 = 0. Since s; # 0, by Corollarywe can find A, B, such that
Q ~ Ql — (xalybl’fybz’xByb’j’xayb;‘),

where for the first three elements of Q' we have that the product is non trivial and
x4yP2, xBybs do not commute.

Now we apply Proposition 1) to this triple, conserving the property that the
second and third element do not commute. We want to change A and B, such that

Q/ - (xa;yln , xA’ybz, xB’yb3, xayb4)’

where A’ + B'r?? + ar®>*? # 0. This is possible: let x” # 1 denote the product of the first
three elements. Then 3k-fold application of the braid o0, conjugates this triple with x*?
(cf. the proof of Proposition 1)), yielding A’ = A+ kp(1 — "), B’ = B+ kp(1 — ™).
Thus

A+ B+ ar®™ = A + B + ar”™ + kpr”(1 - )1 - ).

But this term only vanishes for exactly one k.
By our choice of A” and B’ we can now apply Proposition [[1.2.2] 2) to the triple of the
last three elements to achieve

Q/ - (xa/lybl’xa/ybz’yb3’yb4)'

Now we possibly have that the first two elements commute. But x* y”> does not commute
with y”3, since we must have a’ # 0 (because by our choice above we have (A’, B, a) #
(0,0, 0) and the same must hold for (a’, 0, 0), because they differ by a linear isomorphism).
We can therefore apply o' twice (non trivially since @’ # 0) to change @’ to a” # d’, so
that the first two elements do not commute anymore. Then we apply 1) (conserv-
ing the property that the first two elements do not commute) to make the third element
become y* again. So the case s; = 0 is proven and therefore we are done with the case
ST F 0.

Case 2: s # 0.

In this case we first apply the braid o, yielding
Q - Q/ — (xa’zbe,xalybl’x@yh’xa4yb4).
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Then, arguing as in the previous case, we achieve
/ v by dl b by b
Q' ~ (x@y, XMy 7, 3™,

where the first two elements do not commute. Applying o; once more, we have achieved
the claimed form and property.

Case 3: 55 # 0.

We can now assume that s; = 0. First we apply the braid o' once to achieve
Q - Q/ — (xalybl xazybz xa4yb4 xagyb3).

By Lemma we can again assume that the second and third elements of Q" do not
commute. Therefore we can apply Proposition 2) to the triple of the first three
elements. We choose A, B such that we get

) b B_b )
Ql ~ (xaly l’xAy X y4’xa3y 3),

where the last three elements do not commute and their product is non trivial (the proof
that this is possible is similar to the one of Corollary [[I.2.4)). Thus we can apply Proposi-

tion|lI.2.2] 1) (since s; = 0) to get
Q/ - (Xa;ybl, xa’zybz’ xaé"yb4’yb3).

The second and third element still do not commute and since s3 # O we can apply [[1.2.2
2) to the triple of the first three elements to get

Q' ~ (XY, Ny,
with A’, such that the first two elements do not commute.

Case 4: s4 # 0.

This case s4 # 0 is reduced to the case s;3 # 0 in the same way as the case s, # 0 was
reduced to the case s; # 0.
O
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I1.2.2  Br; X Aut(G) acts transitively on Hy 4 ,(G)

Since now we start with explicit calculations, let us recall the terminology.

The Nielsen function ¥ : H, 4(G) — N§ counts, for each conjugacy class C;, the number
of branching elements of a Hurwitz vector V that belong to C;. A numerical type v is
the equivalence class of the value of the Nielsen function under the equivalence relation,
induced by the action of Au#(G) on the conjugacy classes of G. We say that an element
V € Hy 4(G) has numerical type v = (v, ..., vg) € N§ if the class v(V) € N /Aut(G) can
be represented by (vy, ..., vk) (cf. section . Accordingly we set Hy ;4,(G) to be the
subset of H, 4(G) of Hurwitz vectors which have numerical type v.

In this section and in section if not explicitly mentioned otherwise, we make the
following assumptions:

e G=Gmn,r)={(x,y| X" =y"=1,yxy"! = x"), ¥ = 1 is a split metacyclic group
with prime numbers m > 3,n > 2 and r > 1.

o We have fixed a numerical type v.

With the results of section we are now ready to prove our first main result: the
group Br, X Aut(G) acts transitively on the set Hy 4,(G) (cf. Theorem [1.2.14). The deci-
sive result is that Br, acts transitively on Hurwitz vectors of reflections (cf. Proposition
LZ12).

In the following we present several preliminary results, including the solution of the case
d=73.

Recall that for the definition of the Nielsen function we fixed an ordering of the con-
jugacy classes of G. In the case of our considered groups we do this as follows. We
start with the conjugacy class of x, which is C(x) = {x’bl b € F,} (cf. section and
choose x as its representative, setting d; := 1. Then we take the conjugacy class C(x%),
where d, = min{d € N | x¢ ¢ C(x)}, and continue like this until we have ordered the ’”7‘1
conjugacy classes of rotations. Then we order the conjugacy classes of reflections x*y”
lexicographically by the exponents of y (recall that C(x“y”) = C(y*) for all a € F,,). Thus
we have an ordering of the conjugacy classes of G as

(C1,....,Ck) = (C(x™), C(x™), ..., C(x"™), C(H), CHA), ..., CO™M). 9)

Since the braid group acts on the conjugacy classes of G by permutation, we can
always arrange any Hurwitz vector, such that its branching elements are ordered according
to this choice.

General assumption. We assume that the elements of any considered vector
Vo= (X9, x0, xMyn L xyP) € Hy o(G)

of a given Nielsen type are ordered according to (9). In particular, we assume that the
exponents b; are ordered lexicographically.

Preliminary facts and observations

In the case n = 3 we will make use of the following result, the idea of which is taken from
Vassil Kanev (cf. [Ka]).
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Proposition 11.2.7. Let G be a group, V = (g1, ..., g4) a G-Hurwitz vector and suppose V
contains three consecutive elements g;, gi.1, 8i+2, Such that g;, gi+1, gi+va = 1. Then for any
heH:=<gi,...8i-1,8i+3 ---» & > We have

V ~ (g1, 8icts hgih ™' hgi B hgioh™, 8143, v 8a)-

Proof. The proof is done by using elementary braid operations (cf. [KAl, Main Lemma
2.1). m]

Now before we start with explicit computations, recall that the results, given in section
required that not all reflections inside the triple or quadruple commute with each
other. Thus we want to be sure that in every Hurwitz vector V in Hy4,(G) we can find at
least two elements that do not commute. This is possible by the following Lemma.

Lemma I1.2.8. In every G-Hurwitz vector
V=9, ..., x5, x“‘ybl, . x“’yb’) € Hyq(G)
we can assume that not all reflections commute.

Proof. Set
W= (x4yPr, L, xiy™).

If s = 0 we have < W >= G. Therefore, since we assume G to be non abelian, at least
one pair of elements of W does not commute. If s # 0 we may have that all elements of
W commute. But by Corollary it is then sufficient to change the exponents a;. We
achieve this by applying o, twice to the pair (x, x“y"!). O

Because of the product-one condition and because the entries of a Hurwitz vector
generate the group we have.

Remark I1.2.9. Since we consider non cyclic groups we can always assume that any
Hurwitz vector has length at least three.

We obtain the solution of the case d = 3 by the following stronger result, which is a
consequence of Theorem [[.2.17|(cf. [Ed]], Corollary 2.5).

Proposition 11.2.10. Let G be a finite split metacyclic group. Then Br, X Aut(G) acts
transitively on the set H3,(G) of G-Hurwitz vectors of length three of a given numerical

type.
Proof. Let V = (V|,V,,V3),W = (W, W,,W3) € Hyp3,(G). By Lemma we can

assume that V and W have the same Nielsen type. By possibly using elementary braids
we can furthermore assume that V; is conjugate to W;, i = 1, 2, 3. Since

G=<V,V,>=<W,W; >,

we can apply Theorem to find @ € Aut(G), such that a(V;) = W, and a(V,) = W,
and apply « to V. By the product-one condition we also get a(V3) = Ws.
O

So from now on we can assume that any Hurwitz vector we consider has length at
least four.
As a first step we treat the case of Hurwitz vectors that only consist of reflections.
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11.2.2.1 The case of reflections

The following Lemma is an important preliminary step for the proof of the main result
of this section, Theorem Combining it with Lemma we can solve the case
of Hurwitz vectors of reflections (cf. Proposition [.2.12). Recall our notation: V ~ V’
means that V and V’ are braid-equivalent.

Lemma I1.2.11. Consider a Hurwitz vector of reflections of the form
V= (xalybl xazybz xasybs yb4 ybd)

where d > 3. Then ,
V ~ (x—r lybl7xyb2’yb3’yb47 "‘9ybd)'

Proof. We split the proof into the cases n # 3 and n = 3.
Casel:n#3

Observe that not all elements of the quadruple (x“y?', x2y”2, x4y y») commute, since
by the condition < V >= G and the product-one condition, at least two of the exponents
a; must be non zero, so at least two of the first three elements do not commute with y*.
By Proposition we can thus assume that a; = 0.

If we can find i € {3, ..., d}, such that b; + b, + b; # 0 we exchange the corresponding ele-
ment y” with y*3. Using Proposition[[.2.2} 2) we can then make the triple (x“y’t, x%2y"2, y")
become (x~"" y?1, xy2, y*') by the product-one condition. After exchanging back the claimed
form is achieved.

If there is no such i we have

V = (‘xalybl’ xazybz’yb, yb’ ey yb)’

where by + b, + b = 0.

If by = b, = b we can still use Proposition since n # 3 and therefore 3b # 0. It
remains to discuss the cases b, + 2b # 0 and b; + 2b # 0.

Let b, + 2b # 0 and consider the triple (xy"2,y",y?). By Remark we have an
analogue of Proposition[[[.2.2] 2) in this situation. Therefore we have

(x2yP 3P yP) ~ (P, By, xyP)

with A and B, such that x*y”2, x8y* do not commute and the product x“y* x4y xBy> # 1
(in fact we can choose B = 0 and A # —:’Tll). Now since b, + b, + b = 0 we can apply

Proposition[[1.2.2] 1) to get

V ~ (x—rblybl’ xA’ybz’ xB’yb’ xayb,yb’ m’yb).
Since x*'y”2, x¥'y* do not commute (by the additional statement in the Proposition) we can
use Proposition 2) again to make A’ become 1 and B’ become 0. By the product-
one condition we have achieved the claimed form. The case b1+2b # 0 is proven similarly.

Case2:n=3

If not all b; are equal the proof works as in the case n # 3.
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If all b; are equal, by the product-one condition we can assume that d > 6. In fact, by the
arguments we use in the following we can assume that d = 6, so

V= (xalyb’ xazyb’ xagyb’yb’yb,yb)’

We can assume that a;,a, # 0. Since the product of the first three elements is trivial,
under this assumption we have x2y?x%y?? # 1 (else we get a; = 0). We want to perform a
simultaneous conjugation of the first two elements to (x" y?, xy?). By Lemma @I this
is possible if @, = 1 + a; + r*. Assume that this is not the case. By Proposition @ 1)
we can achieve

V ~ (xalyb, Xaéyb, xaéyb’ xa4yb,yb’yb), (10)
where @, = 1 + a; + r’. Note that now as # 0. We assume for now that x5y x%y? # 1,
the other case is treated below. Using|II.2.2] 1) again, we can achieve

a.b al.b al. b a, . b _a.-.b .b
Vo~ (Xy7, xBy7, x5 y7, x4y, x5y, y7),

’

where af is chosen, such that the product of the first three elements is trivial. By Lemma
b ) , .

1.2.8] the element x*, where a = ——* conjugates (x*'y”, x*2y”) simultaneously to (xyb, xyP).

Since a; # 0 or a; # 0, the last three elements generate G. By Proposition we can

thus in fact conjugate the triple of the first three elements with x“. This yields

Vo~ (x—rbyb’ xyb, xag"yb, xa‘,*yb, xagyb’yb)’

but the first two elements are chosen, such that we must have @}’ = 0, yielding
V~ (x_rbyb, xyb, yb, xagyb, Xa;yb,yb)-
After reordering we have
V ~ (x—rbyb’ xyb,yb’yb, xa;(yb’ xa’s’yb).

We can assume that a # 0, else we are done by product one. Applying Proposition[[1.2.2]
1) we get

Vo~ 7yl P Xy ).
We reorder once more to

V ~ (x—rbyb’ xyb,yb’ Xa'yb’ xa’yb’ xa’s’yb).

Now since the product of the first three elements is trivial, also the product of the last three
elements is trivial. Moreover, the first two elements generate G. By Proposition |[I.2.7| we
get

1"

—rb a
Vo~ (7Y x0Ty

and by product-one we have a7’ = 0.

If in the above situation (10) we have x3y’x*y?** = 1, by our choice of @} and the
product-one condition we must have a; = —r’and a, = 1, so

V ~ (x—rbyb, xyb’ xagyb’ xa4yb’yb,yb).
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In this situation we can argue as above.

Assume that in the initial situation we already have a, = 1 + a; + r*. Then if a3 = 0,
as we just discussed, V has the claimed form. If a3 # 0 we use Proposition [[I.2.2 1) to
achieve

V ~ (xal x1+a1+rbyb Xa;yb xayb xayb yb)

such that the product of the first three elements is trivial and a # 0. Now we can argue as
before.
O

Proposition 11.2.12. Let Ry 4,(G) C Hy4,(G) be the subset of G-Hurwitz vectors which
only consist of reflections. Then Br, acts transitively on Ry 4,(G).

Proof. By Proposition [[.2.16] we have that the numerical type of a vector in Ry 4,(G)
equals its Nielsen type, so the elements

V= (x"y", .., x4y € Ry 4,(G)

are distinguished by how many exponents b; of y are equal. Furthermore we can assume
that these exponents are ordered lexicographically. By Proposition [II.2.10|we can assume
that V has length at least four and by Remark we can assume that not all elements
of V commute with each other.

We claim that every such vector is braid-equivalent to the vector

N = (x_rb] yb‘ , xybz, yb3, yb4, - yb").

In the following part of the proof we assume that we do not have that n = 3 and all ele-
ments of V are conjugate.

The idea of the proof is to repeatedly apply Lemma |lI.2.6] starting from the right end
of the vector and then to apply Lemma|ll.2.11

So let
V = (g1, 8a) = (XYP, X272, L, xyPe)

be a Hurwitz vector with d > 4 and consider the quadruple
(h1, o, ha, y) i= (x93 Y0, yazyhiz ylictybict | yaybay

of the last four elements. By Lemmawe can assume that /; and 4, do not commute.
Application of Lemma to the quadruple (hy, hy, h3, hy) yields

V ~ (x"'yb] s Y, h'z,ybd‘l,yb"),

where i} and i, do not commute. Now consider the quadruple (g4-s, g4-4, 1}, h5). Appli-

cation of yields
V ~ (xalybl b g;_s’ g:l—4’ yb“, ybd—Q’ ybd—l , ybd),

where g/, s and g/,_, do not commute. We repeatedly apply this argument until we get
V ~ (xa,lyb] , xaéybz’ be’ yb4’ ey ybd7| , ybd).
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Now we apply Lemma[[I.2.TT|to obtain the claimed equivalence
Vo~ N =0 020 0%, 0.

In the following part of the proof we assume that n = 3 and all elements of V are conju-
gate.

Let
V= (x”‘yb, xazyb, . x“"yb)

be such a vector. Observe that in this case we cannot make use of Proposition 2),
since 3b = 0. The idea is to use 1) instead.

Since not all elements of V are equal (because < V >= G and G is non abelian) we
have at least one triple of elements where the product is not trivial. We can assume that
this holds true for the triple

(hi, ho, hs) = (x2yP, x4ty xdyP)

of the last three elements of V. We can furthermore assume that the elements #;, A,
are different and so (by Corollary they do not commute. Observe that else the
product of the three elements was trivial since n = 3. By Proposition 1) we get that
(hy, hy, h3) ~ (K}, R, y?), where h, and £} still do not commute. As in Lemma we
can arrange the triple (xa-3yb h h}), such that the first two elements do not commute and

apply[[1.2.2] 1) again, yielding

(=yP b, o) ~ (x%3y”, B YP).
We iterate this argument until we reach

VvV = (Xalyb, xazyb, xagyb,yb, ...,yb).
Now by Lemma

’ —rb
Vs 7Y 05 )

and the statement is proven. O
I1.2.2.2 The general case

As a first step we deal with the pure powers of x inside a Hurwitz vector.

Lemma I1.2.13. Let
a b

‘ b b
Vo= (x, ., x5, xMy? Py, L, xByT

be a G = G(m, n, r)-Hurwitz vector. Then for any vector of exponents (dy, ..., d), such that
xi is conjugate to x%, V is braid-equivalent to a vector

’ _ d d, a b ar . b a; . b
Vo= (X, x®, xy? x B2y Xy
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k=1
(cs+ar) 3 b1 . . .
Proof. Let a := (x“xMy? )k = x = y*1. Recall that conjugation of a rotation by a

reflection only depends on the exponent of y of the reflection.
We have o3*(x, xy) = (ax“a™ !, ax®y"a™!) = (x""" x4yP1). Since by is an additive
generator for F,, we can reach every element in the conjugacy class of x“ in this way.
Since the powers of x commute with each other the statement follows.

m]

Now we can prove the final result of this section.
Theorem 11.2.14. The group Br,; X Aut(G) acts transitively on Hy 4,(G).

Proof. The case of Hurwitz vectors that only contain reflections was done in Proposition
For the general case, by Proposition it suffices to prove that all G-Hurwitz
vectors of the same Nielsen type are Br,-equivalent. Now let

ay . .by

. b b
Vo= (x4, . xO, xMy” x Py L Xy,

s +t = d be of a given Nielsen type ¥ = (vy, ..., vk). Please recall the chosen ordering of
the conjugacy classes in (9) above and that we can always assume that the elements of V
are ordered accordingly.

We claim that

Vo (), ()8, X7,y 57, Ly, (1D

where S = ’”7‘1 and a = Zlev,-d,-. Here (x%)” indicates that the element x% appears v;-
times.

Observe that if = 1, by the product-one condition we get b = 0 and thus < V ># G.
Assume f = 2, so
Vo= (x, ., xS, xMyPr, x®yPr)

and we have b, + b, = 0. We apply Lemmal[[I.2.3]to get
Vo~ (x9,..., x5, x“,lyb‘ ,ybz).

If @} = 0 we can change this by applying o, twice. Using Lemma[[.2.13| we achieve

Vs () ey (), )01 3P,
which by the product-one condition proves the claimed equivalence in (TT).
Assume now that t = 3, so

Vo= (2, ., X6, xUyhn xa2ybe x3yPsy),

Application of Lemma [lI.2.3| yields

Vo~ (X, o, X5, xGybr ybr @y,
We exchange y”? and x*y”* and apply the Lemma again to get

a’ by

c c’ b b
Vo~ (X, o, X5, XNyt y7 v,
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Now we apply Lemmal|lI.2.13|until we have
Vs () (), 207 57, 57)
Since the last two elements commute we have proven the claimed equivalence.

The case ¢ > 3 is proven by repeatedly arguing as in the case ¢ = 3.
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11.2.3 Aﬂﬁz})g,’d x Aut(G) acts transitively on H, ;4,(G)

In this section we prove our final result, Theorem We start with the case d = 0.
This case has been solved in more generality by Edmonds (cf. [Ed], Prop. 1.5). We
include it for completeness and because we use the methods to prove it also for the case
d > 0. Note that what we prove for d = 0 is independent of numerical types.

11.2.3.1 The étale case

We are going to use the following Hurwitz moves (for 1-5 see [Zi], for 6) and 7) see
[CLP2])). All elements with indices different from i,i + 1 resp. d are left unchanged.

13) a; > Cl’iﬁitl,ﬁ[ g ,Bi, which also allows a; — a,-,Bf“,ﬁ,- = ﬁbk eZ
1b) @; - a;,B: - Biat!, which also allows @; - @, — ek, k€ Z

2) ai = @i, Bi o Biss
@iy B (@1, Bt il Bin 1

Bis1 P [@ivt, Bivi 17 Bil@ist, Bir1 1;

3) a; > i
Bi = Bin1a; BB} )7
@iv1 = (Bir1 BB B D (Bivr ;B (@i BL))s
Bis1 P Bt (Bin @B (@i Bi));

4) a; - Oliﬁi_lﬁm@;l]ﬁi;
Bi = B aia B\ BB\ Bis
@ip1 & B i B BB B
Bis1 = BinBis

(inverse to 3);

-1.

5) ai ;i Q;

-1.

Bi - afina;;
Qi1 P @

Biv1 — @i, BB

6) a; = u"yaua;;
Ya = (YauaBia; 'u Yy (yaueBie; u) ™l

7) Biv o 'u  yuaB;
ya = (yaule, Bila; u ™ yy(yaulas, Bile; u™)™,

where in 6) and 7) u = TI_ [ax, B].

Notation. In the following, if the Hurwitz vector V' is obtained by the Hurwitz vector V
by application of one of the moves 1) - 7), a braid move or an automorphism, we write
V = V'. To avoid confusion with the exponents of the group elements we will also use the
letters a, B for the elements of the genus part of Hurwitz vectors.
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Theorem 11.2.15. (c¢f. [Ed], Proposition 1.5)
Let

V = (a1,Bi;2,B2; ...; Ay, By)
be a G = G(m, n, r)-Hurwitz vector. Then
V=@, Lx1;1,1;..;1,1).
Proof. Write

Vo= (AP AiyBi ey AyBae ey Be ey B,
We do not relabel the powers of x if not definitely needed.

By using Move 1, a) and b) we see that

Vor (My, XMy, L ey, ).

Observe that in this situation, application of Move 4) in position i makes «@; a pure
power of x and does not change the exponent of y of the other elements involved. Apply-
ing this move from left to right we get

V= (XAI’XA,I;XAZ,){‘&; ...;xAg'*l,xA;'—l;xAg’y’xA;/)’
By application of Move 2) sufficiently often we obtain a reordered vector

Vo (M, xR L e e,
Application of Move 1, a) and b) again yields

V=~ (y,xA;’;x, I;x, 1;..0x 1).

In this situation we use Move 4) to eliminate all but one x. Thus after reordering with
Move 2) we see that

V=~ (y,xA;';x, 1;1,1;..;1,1).

A7, (1-r)

By the condition Hﬁ;l[af i»Bj1 = 1 we must have [y, xA;"] =X = 1, so we get

A, =0.
m]

I1.2.3.2 The general case

In the following we give an overview of our strategy to prove our final result, which is
Theorem We always assume that g',d > 0. Again it suffices to show that all
elements in Hy 4(G) of a given Nielsen type are Map,, ,-equivalent.

We assume that the branching elements of any considered Hurwitz vector of a given
Nielsen type is ordered as in general assumption

Consider an element V € Hy 4(G) of a fixed Nielsen type, which then looks like
V=(x9,...,x°, x“‘yb', x“’yb’; a1, B @2, 525 ... Ay, Byr) (12)
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and set W := (a1,[1; @2,2; ...; @y, By). In Proposition we normalize W without
changing the branching part. This means that we can determine all elements but possibly
one reflection.

If W contains no reflections, the product of the commutators [«;,8;] is trivial, thus also
the product of the branching elements. Therefore we can make use of Theorem [II.2.14
except for the case that s = 0 and all reflections commute. Recall that to change this
situation it suffices to change the exponent a;, (cf. [[.2.7). Lemma [[I.2.18] makes sure that
this is possible.

If W contains reflections, we can not use Theorem to its full extent, since the
elements of the branching part may not have product one. But we can still determine all
of these elements except for one. By the product-one condition it suffices to determine
the remaining reflection in W. By the upcoming Lemma [lI.2.1°/| we can achieve this.

Proposition I1.2.16. Let

V =(g1,..., 84> a1, B1; @2, B2; ---;ag”,Bg’)

be a G = G(m, n, r)-Hurwitz vector where d + 0 and consider the vector

W = (a1, B1; a2, B2; ---;Olg',ﬁg')-

1) If W contains reflections,

V ~ (gb -~-,gd;y,XA;X, 1; 15 1; -"; l’ 1)9
where A € F,, depends on g, ..., g

2) If W does not contain reflections

V(g gax 11,151, 1).

In the above cases, the vectors are to be understood as truncated after position d + 2g’.

Proof. We only work with the vector W. We don’t give new labels if not definitely rele-
vant.

Case 1: W contains reflections.
The proof is precisely the one of Theorem [lI.2.15] except for that the product over the
commutators needn’t vanish.

Case 2: W contains no reflections.
Also this case is proven similarly as Theorem Application of Moves 1, a), b)
yields

W=(x,1;x1;...;x,1).

Using Move 4) from left to right, followed by reordering with Move 2) we get

W=(x1;1,1;1,1;..;1,1).
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Lemma I1.2.17. Let

V =1(g1,..» 8a> a1, 15 @2, B2 .s g, Byr)
be a G-Hurwitz vector and consider the triple T = (g4; a1,51). Then
1) If T = (x%";y, x1), we have T ~ (xy*; x, 1).
2) If T = (x%;y, xY) we have T =~ (x';y, x¥') for any x° € C(x°).

Proof. 1) Observe that in this situation move 6) is multiplication of a; by g, and g, is
sent to a conjugate. Since conjugation does not change the resp. power of y, we can
iterate "b;l times to get (xy”;y, x*) = (x*y”, x5, x*). Then a combination of moves
1) and 2) yields the claimed form.

2) We observe that in this situation Move 7) sends 3; = x* to some x*" and y; = x°

is conjugated by an element x®y~!, whereas a; = y is fixed. Since conjugation of

a power of x only depends on the power of y of the conjugating element, we can
iterate Move 7) until the claimed form is achieved.

O

Lemma I1.2.18. In every G-Hurwitz vector
Vo= (27, o, X, X L XY @, Bl @, Ba; i @y, By) € Hy aG).

g’ > 0 we can assume that not all reflections of the branching part commute with each
other.

Proof. By Lemma[ll.2.§|we are left with the case that s = 0. Assume that all reflections in
the branching part commute. By of Part II it is then sufficient to change a,. Consider
the triple T = (x“y”, a;,;). Using Moves 1 a) and 1 b) we can assume that we are in
situation 1) of Lemma and therefore we can assume T = (x“y”; x,1). Observe
that in the situation T = (y,; x, 1) Move 7) yields

T ~ ((Yax Yyalyax™) ™5 x, x ).

Also by moves 1 a) and 1 b) we have T ~ (x“y”; 1, x). In this situation Move 6) yields

T = (yax)ya(yax)™"s va» %)
Now v, = x“y” can only commute with y,x or y,x~'. This proves the claim. |
We can now prove our final result.
Theorem 11.2.19. The group @g@d X Aut(G) acts transitively on Hy 4,(G).

Proof. We are left to prove the statement in the case where d, g’ > 0. Let
Vo= (X9, o, X, XY XY @, B ag, B @ Be)

be a G = G(m,n, r)-Hurwitz vector with (s, 7) # (0,0), and g’ > 0. Recall that by Lemma
it suffices to show that V' is Map,, ,-equivalent to any Hurwitz vector of the same
Nielsen type v = (vy, ..., vk). Again we achieve this by showing that V is equivalent to a
distinguished Hurwitz vector, whose entries are uniquely determined by the Nielsen type
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of V.
First we treat the case where the branching part contains reflections.
Case 1:t#0

This case splits up into the sub cases where the branching part contains rotations and
where it does not. First we consider the case where we have no rotations.

Case 1.1: s =0

We have

arbr.

b
Vo= (XY L xY an, B g, By i g, Byr).

Recall that in the situation where we only have reflections in the branching part, the
numerical type of V is equal to its Nielsen type (cf. [[.2.16).

By Proposition [lI.2.16| we either have

\ (x“ly”‘, ...,x“’yb’;y,x“;x, 1;1,1;..;1,1) (13)

or

Voa (xMy0, a0y x 151,151, D). (14)

In situation we proceed as follows. If the reflections x“y”!, ..., x¥y"" all commute
we apply Lemma [lI.2.18| and then Proposition |ll.2.16|again. So we can now assume that
x4-1yP-1 x%yb do not commute. This enables us to apply the main result for genus zero,

Theorem [1.2.14] We get

V=~ (x“ybl,xybz,yb3...,yb’;y,xA; x, 1;1,1;..51,1).

Now we bring the element x*y”! to the end of the branching part:

V= (xybz,yb3...,yb’,x“/ybl;y,xA;x, 1;1,1;..;1,1).
We apply Lemma [[1.2.17] 1) to get

V= (xybz,yb3...,yb’,x“”yb‘;x, I;x,1;1,1;..51,1).
By Proposition 2) we have

Vo (o, =y x Yy 11,151, 1 1, D).
Now we bring back x*"y! to its initial position:

V=~ (x”ybl,xybz,yb3...,yb’;x, 1;1,1;1,1;...; 1, 1).

By the product-one condition we get a = —r”'. This exponent is uniquely determined by
the numerical type of V.

Now consider situation (14). Also here we may have that x*y”', ..., x*y” all commute.
By Lemma [I1.2.18| we can again change the exponent a,, such that x“-1y”-1, x¥yb do not
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commute, but observe that now we may have a reflection inside the genus part (cf. the

proof of Lemma [[[.2.18). But combining Proposition [[.2.16] and [[.2.17| we can change
this afterwards as we did in situation (I3]). Therefore by Theorem [[1.2.14] we get

Voa Ty oy 151,151,101 D,
exactly as above.

Case 1.2: s # 0.

We have
V=9, ..., x°, x‘”yb‘ e x“’yb’; a1, Br; @2, 25 ...; Ay, Byr).
Recall that in this situation the numerical type of V does not necessarily equal its
6

Nielsen type (vi,...,vk). But by Lemma [I.1.26| it suffices to show that V' is Map,, ;-
equivalent to any Hurwitz vector of the same Nielsen type.

By Theorem we have

d d b b b b,
Vom (), (X)), X7y, 97 Ly s an, B @, By s @, Ber).

Recall that x% is the chosen representative of its conjugacy class (cf. @ Now, arguing
exactly as in the case s = 0 we have

Vo (), () x Py sy 151, 15 1L 1 1 D,
The exponent a’ = —Zf:lvidi is uniquely determined by the Nielsen type of V.
Case 2: t = 0.

We have
V=" x5 e, B as, B CYg',,Bg')-

Again we are left to show that V is Aﬂfc&?g,’d—equivalent to any Hurwitz vector of the
same Nielsen type.

Observe that since < V >= G, the genus part of V must contain reflections. By Lemma

[1.2.16] 1) we get
V=, L xy, a1 L L DD,

Using Lemma |II.2.17] sufficiently often and the fact that rotations commute with each
other we achieve

Vo (Y o (SYsy, A x 11 1 1D,

Observe that [y, x''] = x**-D. By the condition []%, g ]—[j’flzl[aj, B;1 = 1 we get that
%3 vid; + A’(r — 1) = 0. Therefore A’ is uniquely determined by the Nielsen type of V.
]
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Part I11
The Locus of Curves with D,-Symmetry
inside ),

The following part of the thesis is a joint work with Binru Li (cf. [LW]). We would like
to apologize for several inconsistencies in notation, but since this work has already been
published we prefer not to change the notation anymore.

The standard notation for the dihedral groups is D,, i.e. in the notation of the previous
part of the thesis D, = G(n,?2,—1). Furthermore, a general Hurwitz vector is denoted by
v, not to be confused with the notation v for a numerical type in the previous parts. In fact,
we do not consider numerical types in this part. Moreover, we present a geometric basis
as My, =< 1,1, ... Ay, Bos V1, - ¥r | Hlej, B] - Ily; = 1 >, so the factors in the product
relation are switched. The braid group is denoted by B,.

Introduction Given a finite group H, denote by M, (H) the locus inside M, (the coarse
moduli space of curves of genus g > 2) of the curves admitting an effective action by the
group H. A good approach to understanding the irreducible components of i, (H) is to
view I, as the quotient of the Teichmiiller space 7, by the natural action of the mapping
class group Map,:

n:Ty— T¢/Map, =M.

Observe that
My (H) = My, o (H),
[o]

where p : H < Map, is an injective homomorphism, M, ,(H) is the image of the fixed
locus of p(H) under the natural projection m and p ~ p’ iff they are equivalent by the
equivalence relation generated by the automorphisms of H and the conjugations by Map,.
We call this equivalence class an unmarked topological type (ctf. [CLP2], section 2). Since
each M, ,(H) is an irreducible (Zariski) closed subset of M, (cf. [CLP2|], Theorem 2.3),
in order to determine the irreducible components of i, (H), it suffices to determine the
maximal loci of the form I, ,(H), i.e. to figure out when one locus contains another.
The case where H is a cyclic group was investigated in [Cor] and [Ca2]. In [CLP2]| the
authors have defined a new homological invariant which allows them to tell when two
homomorphisms p and p’ are not equivalent; for the case of H = D,,, the dihedral group,
they also found one representative for each unmarked topological type.

We focus on the case H = D, and solve the following problem: for which p and p’,
does M, ,(D,) contain M, ,(D,)? Hence we determine the loci M, ,(D,) which are
not maximal whence the irreducible decomposition of 9i,(D,). The above problem is
equivalent to the classification of subgroups H, H’ of Map, (g > 2), where H and H’
satisfy the following condition:

(x) H,H = D,,H # H and Fix(H) C Fix(H).

For any finite subgroup H C Map,, set6y :=dimFix(H) and let G := G(H) := (\cepiva) Aut(C)
(Fix(H) corresponds to the complex structures for which the action of H is holomor-
phic, whereas G(H) is the common automorphism group of all the curves in Fix(H)). If

H = G(H) we call H full.
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It is easy to see that condition (*) is equivalent to the condition
(%) H is isomorphic to D, and not full, G(H) has a subgroup H’ which is isomorphic to
D,, and different from H.

For any curve C € Fix(G), we have a Galois cover p : C — C/G =: C’, which
is branched in r (r can be zero) points Py, ..., P, on C’ with branching indices m, ..., m,.
By Theorem in our case C’ is always P!. The cover map p is determined by
a surjective homomorphism f from the orbifold fundamental group T (my,...,m,) =<
Yis oo ¥elly; = 1,y =1 > to G (cf. [Ca2l, section 5). The vector v := (f(y1), ..., f(¥))
is called the Hurwitz vector associated to f (See section 5 for more details). Then two
Hurwitz vectors v and v’ determine the same topological type if and only if they are equiv-
alent for the equivalence relation generated by the action of Au#(G) and by sequences of
braid moves. (See Definition [III.3.1]).

Our main result is the following:

Theorem. Let H, H' be subgroups of Map,, satisfying condition (x). Then G(H) ~ D, X
Z]2 and H corresponds to D,, x {0}. The group H' and the topological action of the group
G(H) (i.e. its Hurwitz vector) are as listed in the tables of section 2.

The structure of this part is as follows:

In section we quote a Theorem from [MSSV] (cf. Theorem which con-
tains the possible cases (which we call cover type) where H € G € Map, and 66 = dy.
From this Theorem, using the Riemann-Hurwitz formula, we obtain pairs of dimensions
(0, 0pr), which can occur under condition (¥*). We will also see that C/G =~ P! and
[G : H] = 2 except for one case.

In section[lII.2)we will understand group theoretically which cases of H and G can happen
under condition (**). This is done by classifying the index 2 subgroups of G, where G
is a finite group containing two distinct index 2 subgroups, which are isomorphic to D,,.
The cases there are called the group types.

In section we classify the equivalence classes of Hurwitz vectors of the map C —
C/G =~ P! for each cover type and group type, by giving one representative vector for
each equivalence class.

In section we present our results through tables.

III.1 A rough Classification

In this section we determine the possible pairs of dimensions (dy, ), for distinct sub-
groups H and H” of Map, which satisfy condition (**).

Given C € Fix(H), assume that C — C/H is a cover branched on r points. We have that
Oy =386/ — 3 + r (cf. [CLP2], Theorem 2.3).

The case 0y = 0y was done in Corollary 7.2 of [CLP2]. We only consider the case
oy <oy

We recall Lemma 4.1 of [MSSV]:

Theorem III.1.1. (MSSV)
Let H & G be two (finite) subgroups of Map,, 6y = 6¢ =: 6. Then one of the following
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holds:

D6y =3, [G:H] = 2, C = C/G is a covering of P' branched on 6 points Py, ..., P,
and with branching indices all equal to 2. Moreover the subgroup H corresponds to the
unique genus two double cover of P' branched on the 6 points.

I 6y = 2, [G:H] = 2, and C — C/G is a covering of P! branched on five points,
Py, ..., Ps, with branching indices 2,2,2,2, cs. Moreover the subgroup H corresponds to
a double cover of P! branched on the 4 points Py, ..., P, with branching index 2.

II]) 6y = 1, there are 3 possibilities:

III — a) H has index 2 in G, and C — C/G is a covering of P' branched on 4 points,
Py, ..., Py, with branching indices 2,2,2,2d,, where dy > 1. Moreover the subgroup
H corresponds to the unique genus one double cover of P' branched on the 4 points
Pl, ey P4.

III — b) H has index 2 in G, and C — C/G is a covering of P' branched on 4 points,
Py, ..., Py, with branching indices 2,2, c3, c4, where c3 < ¢4 and c4 > 2. Moreover the
subgroup H corresponds to a genus zero double cover of P! branched on two points with
branching index 2.

I11-c) H is normal in G, G/H = (Z/2)* moreover C — C/G is a covering of P' branched
on 4 points Py,..., P4, with branching indices 2,2,2,c4, where c4 > 2. Moreover the
subgroup H corresponds to the unique genus zero cover of P' with group (Z/2)* branched
on the 3 points Py, P,, P3 with branching index 2.

We call the cases in Theorem the cover type (of H and G).
Since we have condition (), which implies 6 = Jy, we can apply Theorem [[II.1.1
Moreover we apply the Riemann-Hurwitz formula to each cover type to find the possible
pairs (0g, ).

Corollary III.1.2. Assume (xx) and moreover 5y < 6. Then the following pairs of di-
mensions (0y, Oy) can occur:

1) (3,4), (3,5).
1) (2,3), (2,4).

111 - a)(1,2).
111 -b) (1,2),(1, 3).
111 — c¢) None.

Proof. 1) 6y = 3.
By the Riemann-Hurwitz formula,

1
23(€)-2=1Cl(=2+6-7) = \H'|2(gcim — 1) + k/2)

where k is the number of branching points of C — C/H’.

It is easy to see that (gc/ur, k) = (2,0), (1, 4) or (0, 8), corresponding to 6 = 3,4, 5. Since
we require 0y < dg, the possible pairs are (3,4) and (3,5).

II) 6y = 2.

In this case C/H’ — P! is a double covering branched on at most 5 points. Using
Riemann-Hurwitz, there are two cases:

(1) gcywr =0and C/H' — P! is branched on 2 of the 5 points with branching indices 2,2.
If ¢s = 2 or Ps is not a branching point, we have dy = 3;

Otherwise cs is even and bigger than 2 and Ps is a branching point, we get 6y = 4.
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(i) gcywr = 1 and C/H’ — P! is branched on 4 of the 5 points with branching indices
2,2,2,2.

The only possible case in which 65 > 2 is that c5 is even and bigger than 2 and Ps is one
of the branching points. In this case 6y = 3.

1II) 6y = 1.

11l — a) Similar to case I1), one gets gcypr = 0, and C/H' — P! is a double cover with
one of the branching points P, and 6y = 2.

111 — b) i) If ¢c; = 2, the only possibility is ¢4 even, gc/r = 0 and C/H’ — P! is a double
cover with one of the branching points Py, here 65 = 2.

ii) c3 > 2, there are three possibilities:

@) c3 or ¢4 1s even, one and only one point of P;3,P, is a branching point. This case is
similar to /11 — b) — i), 6y = 2.

B) Both c3 and ¢4 are even, g/ = 0, and C/H' — P! is a double cover branching on
P;,P,. We have 6y = 3.

v) Both ¢3 and ¢4 are even, g¢/pr = 1, and C/H' — P! is a double cover branching on 4
points Py, ..., P,. We have 6y = 2.

11T — ¢) We will give the proof in section[[II.3] Lemma [[I1.3.§] o

Remark: Cor. [[1I.1.2}is valid for any H, H" with the same index in G except for the
case I1I — ¢).

III.2 Index 2 Subgroups of G

From Theorem [lII.1.1) we know that [G:H] = 2 except for I/ — ¢). Such a pair is given
by an exact sequence
1>H->G->7Z/2—>1.

This type of extensions, where H = D,, and G has another subgroup H’ isomorphic to D,,
has been classified in [[CLP2], Proposition 7.4. There are 3 cases, which we call group

types:

Group type 1) G = D,, X Z/2, H corresponds to the subgroup D,, X {0}.

Group type2)n =2d,G = D5, =< z,y|z*"" = y* = 1l,yzy = 27! > H =< x := 22,y >.
Group type 3) n = 4h, where h is odd, and G is the semidirect product of H = D, with
< B, >= 7Z/2, such that conjugation by 3, acts as follows:

y yxz,x - x2l
For each group type, we will determine the index 2 subgroups of G and find out which of
them are isomorphic to D,,.

LIS

Group type 1) Recall the standard presentation D, =< x,y|x" = y* = 1,yxy™' = x~
and let C,, := Z/n.

We have to understand the index 2 subgroups K of D,, such that K <« G, where K corre-
sponds to H N H'.

a) K = C, X 0 (This is the only case when n is odd).

Since G/K = (Z/2)?, there are two more index 2 subgroups H; | :=< K, (e, 1) >,

H\, =<K,(y,1)>= D,.

b) If n = 2d, there are two more cases, K =< (x2,0),(y,0) > or K =< (x%,0), (yx,0) >
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(both isomorphic to D).

Here we have 4 more index 2 subgroups, H;; :=< (x%,0),(y,0),(e, 1) >, Hy 4, =<
(x%,0),(5,0), (x,1) >, Hy5 :=< (x%,0), yx,0), (e, 1) >, Hi 5 :=< (x*,0), (yx,0), (x,1) >.
On checks easily that H; 4 and H, ¢ are isomorphic to D, and that H, 3 and H, 5 are iso-
morphic to D, if and only if d is odd.

Group type 2) Using similar arguments as for group type 1), we obtain 2 more index 2
subgroups: Hy | = Ca,, Hyy =< 72,y7 >= D,,.

Group type 3) There are 6 more index 2 subgroups: Hi; =< C,,(e,B2) >, H3, =<
Co, (,82) >, H33 =< (x%,0),(»,0),(e,2) >, Hzs =< (x*,0),(»,0),(x,32) >, H3s =<
(x2,0), (yx,0), (e, 52) >, H36 =< (x2,0), (yx,0), (x,58,) >, and only Hj 3 is isomorphic to
D, (since H33 =< (y,2), (e, 2) >).

I11.3 Hurwitz Vectors for C — C/G

We start by recalling some general theory of Galois covers of Riemann surfaces (cf. [Call],
section 5).

Let H be a finite group (not necessarily isomorphic to D,) which acts effectively on a
curve C of genus g > 2, we obtain a Galois cover p : C — C/H := C’ branched on
r points with branching indices my,...,m,. Denote by g’ the genus of C’, the orbifold
Sfundamental group of the cover is a group with the following presentation:

T(g'smy,...omy) =< @1,B1, e, A, B3 V1o oo ¥ | MM, i1 - Ty = 1,y =1 >
The cover C — C/H is (topologically) determined by a surjective morphism
f:T(g my,...my) — G,
such that f(y;) has order m; inside G. We call
vi=(flar), f(B), ... flag), f(Be)s f(y1)s s (1))

the Hurwitz vector associated to f.

In this section we study the Hurwitz vectors of each cover type C — C/G in Theorem
Hence we have that C/G ~ P', and we set T(m;, ...,m,) := T(0;my, ..., m,).
Given a morphism f : T(my,....m,) — G, the Hurwitz vector associated to f is not
uniquely determined, since we can choose different presentations for 7' (m;, ...,m,). For
instance consider T'(m;, ..., m,) with the presentation < y,, ...y,[[ly; = 1,/ = 1 >, for any
1 < k < r, we have a set of generators {0;}, where ¢, := a; if i # k,k+ 1; 6; := akak+1a;1
and 041 := q, this induces an isomorphism between T (m;, ...,m,) and T(l,, ..., 1), where
i = mifi # k,k+1; [, = my, and [;,; = my. Different choices of the generators
correspond to the following braid group action on the set of Hurwitz vectors.

Recall that Artin’s braid group on r strands has the presentation
Br =< O'],...,O'r_1|V1 <i< 7"—2, Oi0i+10; = 0-i+10-i0-i+1;v|j_i| > 2,0'1'0']‘ =00 >.
The group B, acts on the set of Hurwitz vectors of length r as follows:
o -1
(V], cees Vis Vigls ey vr) = (V], < ViVitlVy 5 Vi e vr)'

On the other hand, for any & € Aut(G), we can compose f with A, this induces a Aut(G)-
action on the set of Hurwitz vectors: given v = (vy, ..., v,) a Hurwitz vector, define A(v) :=
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(h(v1), ..., h(v;)).
Since these actions (by 8, and by Au#(G)) commute, they induce an action of the group
B, X Aut(G) on the set of Hurwitz vectors of length r.

Definition I11.3.1. Given two G-Hurwitz vectors v,V of length r, we say that v and V' are
equivalent if they are in the same B, X Aut(G)-orbit.

Remark I11.3.2. Two Hurwitz vectors v and v' determine the same unmarked topological
type iff they are equivalent (cf. [[CLP2|], section 2).

Definition II1.3.3. Let C — C/G = P! be a Galois cover of a given group type and
cover type. We call a homomorphism f : T(my,...,m,) — G admissible if it satisfies the
following two conditions:

(1) f is surjective, T(my, ..., m,) is isomorphic to the orbifold fundamental group of C —
C/G and f(y;) has order m; in G.

(2) fy :=ngof: T(my,...,m,) — G/H corresponds to the cover C/H — P!, where
ny : G — G/H is the quotient homomorphism.

Definition II1.3.4. Let f : T(m,,..m,) —» G and " : T(ly,...l,) = G be admissible for
a given cover type and group type. We say f is equivalent to f' if their corresponding
Hurwitz vectors are in the same B, X Aut(G)y-orbit, where Aut(G)y denotes the subgroup
of Aut(G) which leaves H invariant.

Remark II1.3.5. An admissible f determines both the covers C — C/G and C — C/H,
hence we require the equivalence relation to be generated by B, and Aut(G)y. It can
happen that two admissible homomorphisms have equivalent Hurwitz vectors, but are not

equivalent (cf. Remark|lll.3.15|).
Example I11.3.6. Cover type 111 — b) and group type 1) (cf. Corollary|lll.1.2

i) c3 = 2, assume n even and ¢4 = n.

Consider f : T(2,2,2,¢c4) = D,XZ]2: yy — (yx, 1),y - (e, 1), 73 = (¥,0), v4 — (x,0).
Om, = 0ms = 1, 6y, = 2. _

ii) c3 > 2, assume we have an admissible f, it is easy to see that f(y;) = (x%,0),
flya) = (X*,0). fOr), f(y2) € {(x*, 1),k € Z; (X2, 1)(if n is even)}. Since I1f(y;) = 1,
there are only two possibilities:

(@) f(y1), f(y2) = (x"/2,1), which implies Im(f) c< (x,0), (0, 1) >, a contradiction.

(b) f(y1) = (yx'', 1), f(y2) = (yx2,1), which implies Im(f) c< (x,0),(y, 1) >, again a
contradiction.

Now we classify all admissible f’s for the covering C — C/G, in the following way:
For each cover type and group type, we construct all possible Hurwitz vectors according
to their branching behavior, as given in Theorem [[II.1.

Lemma IIL3.7. Group type 2) has no admissible f for any cover type.

Proof. Cover type I)

Assume we have an admissible f : 7(2,2,2,2,2,2) = D,,, then fy(y;)) =1,i=1,...,6,
which implies that f(y;) € {yz**!,z2%*! k,1 € Z}. Moreover f(y;) has order two, thus
f(y) € {yz?**!, k € Z}. We find that Im(f) C H,,, a contradiction.

Cover type II)
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If there exists an admissible f : 7(2,2,2,2,¢c5) — D,,, we get f(y;) € yz*' k€ Z},i =
1,2,3,4 and f(ys) € {z%,1 € Z}(since I1f(y;) = 1), which implies that Im(f) C H,,, a
contradiction.

Cover type III-a)

Given an admissible f : T(2,2,2,2ds) — D,,, we get f(y;) € {yz2**',k € Z},i = 1,2,3,
and f(ys) € {z%*', 1 € Z}. However, I1f(y;) # 1, a contradiction.

Cover type III-b)

i) c3 = 2. Wehave f(y,) = yz2*',i = 1,2, f(y3) = y22 or 2%, f(ya) = 2. I f(y3) = y2
we find I1f(y;) # 1; otherwise f(y3) = z", which implies Im(f) C< yz,z*> >. In both cases
we have no admissible f.

ii) c; > 2. We have (f(y1), f(72), f(y3), f(ya)) = (221!, yz?e*!, 226, 22K). We see
Im(f) c< yz,z*> >, a contradiction. |

Lemma I1L1.3.8. Group type 3) has no admissible f for any cover type.

Proof. First we determine the order 2 elements of type (a, ;) in G. One computes easily
that (x/, 8,)* = (x*", 0) and (yxk, 8,)> = (x**"=242 () £ (e, 0). Therefore we conclude that
(a,f3,) is of order two & a = x/ and j is even.

Cover type 1)

Now assume we have an admissible f, which implies that f(y;) = (x*//,8,). However
these elements are contained in the proper subgroup < (x2,0), (e, 3,) >, we see f can not
be surjective, a contradiction.

Cover type II)

If there exists an admissible f, we must have f(y;) = (x%i, B2),i = 1,2,3,4, and since
I1f(y;) = 1 it follows that Im(f) c< (x?,0), (e, 3,) >, a contradiction.

Cover type IlI-a)

Assume we have an admissible f, we see that f(y;) = (x*,8,),i = 1,2,3. Since
I1£(y;) = 1 it follows that Im(f) c< (x2,0), (e, 3,) >, again a contradiction.
Cover type III-b)

i) c3 = 2. We must have f(y)) = (X*,8,), f(y2) = (¥*2,8), f(y3) = (x*",0) or
(x5, 0), f(ys) = (X1,0),1 # 2h. If f(y3) = (x*,0), then Im(f) c< (x,0),(0,5,) >; if
f(y3) = (yx*,0) we see I1f(y;) # 1. In both cases we can not get an admissible f.

i) c3 > 2. Given an admissible f, we have f(y;) = (xX*,5,), f(y2) = (x*2,5,),
f(y3) = (x%,0) and f(ys) = (x*,0) (ks, ks # 2h). One sees immediately that Im(f) Cc<
(x,0),(0,8,) >, a contradiction. m|

Lemma II1.3.9. Cover type I11 — c) has no admissible f.

Proof. Assume that we have an admissible f : 7(2,2,2,¢c4) — G.

Let (b1, Dy, b3, bs) := (f(y1), f(¥2), f(¥3), f(¥4)). We have

(1) b2 = b3 = b3 = 1. Since by € H and order(bs) = c4 > 2, we see that by must lie in the
cyclic group, say b, = x*, we also find n > 2.

(2) The fact that H is normal in G implies that b;xb; = x%,i = 1,2, 3, therefore x*b; =
bixi i=1,2,3.

(3) b1bybsbys =1 = b1by = X_kb3, moreover (b1b2)2 = x‘kb3x‘kb3 = xkHks

Any element in Im(f) has the form IT._ 3;, where B; € {x*, x7*, by, by, b3}. Since byb,b3by =
1, without loss of generality we can assume ; € {xX, x7*, by, by}, which means that every
element in Im(f) is a word in these four elements.

Using (2), we can “move” the x** terms to the end. Taking (1) into account, we see that
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the elements are of the forms (b1b,)*x', by(b1b,)*x" or (b;b,)°b,x', now use (3), one sees
immediately that elements in Im(f) have the form x/, b;x/, b,x’ or b3x/. It turns out that
H ¢ Im(f), a contradiction. O

From the preceding, we know that the only group type to consider is Group type I).
We denote by (e, 0) the neutral element of D,, X Z/2, where Z/2 is additively generated by
1.

For the action of the braid group on the set of Hurwitz vectors we make use of Lemma
2.1 in [CLP1].

Lemma I11.3.10. Every Hurwitz vector of length r with elements in D,, of the form
v=(», ...,yx“,yxb,yxc, ey V1)

is equivalent to v’ = (vy, ...,yx“',yx“',yxc,, V) orv’ = (v, ...,yx“/,yxb/,yxb/, .y V) Vi
braid moves that only affect the triple (yx“, yx?, yx©).

Lemma II1.3.11. Classification of cover type I)
In this case the only admissible Hurwitz vector for n odd is

v=(0 D, D), x, 1), (vx, 1), (e, 1), (e, 1)).

For n even (n=2m) there are the following possibilities:

v=(, D, , D), x, 1), x, 1), (e, 1), (e, 1)),
v= (0, D, px", D), (yx, 1), (yx, 1), (x", 1), (e, 1)),

v=(O1,x" 1), x% 1), 6x%, 1), (X", 1), (e, 1)), m odd.

For n = 2 there are the following:

v=(, D, D, 1), (x,1),(e 1), (e, 1)),
v=( D, x, 1, (x, 1, (x, D, (x, 1), (e, 1))

Proof. Since the cover C/H — P! branches in 6 points (cf. [MSSV]) we need a Hurwitz
vector with second component equal to 1. So we have

v = (M, D), 6Fx2, 1), 055, 1), 054, 1), 05 x5, 1), 0% xk, 1))

The first observation is that the condition < v >= G implies that there must exist j,
such that k; = 1. Therefore up to automorphism we can assume

v =((y, 1), 072X, 1), 05 x5, 1), 0% x4, 1), 0% x5, 1), 0% xle, 1))

We consider the two cases n odd and n even separately.
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i)

n odd: Not all k; can be equal to 1. Otherwise we cannot generate the element (y, 0).
Now the only element of order two of the form (x/, 1) in G is (e, 1). So because of
the product one condition v either looks like

v = (0, D), (x>, 1), 0x", 1), (2™, 1), (e, 1), (e, 1))

or

v=(0, 1, (, D), (e, 1), (e, 1), (e, 1), (e, 1)),

the latter being excluded, since G #< v >.

The product one condition gives I, + [, = /5 mod n. The condition < v >= G
implies gcd(ly, I3, 14, n) = ged(l,ly,n) = 1. Since the second factor Z/2 of G is
abelian, we can apply Lemma([[II.3.10]to achieve that /5 = l,. Now v looks like

v = (0, D, D), 02", 1), 0, 1), (e, 1), (e, 1)

and again by product one we obtain ;, = 0 mod n and therefore 1 = ged(,, l4,n) =
ng(l47 I’l)

So we can apply the automorphism (x*, 0) — (x,0), (y,0) — (y,0) to v and we can
take

v=( 1,0 D,0x 1), 0x 1), (e 1), (e 1))
as a Hurwitz vector for the covering C — P'.

n even: Recall the general form:

v=((r D, (22, 1), 0525, D), ", 1), 65545, 1), (Fx, 1))

Again, first we distinguish the possible Hurwitz vectors by the (even and positive)
number of k; that are equal to 1. We call the element y*x' a reflection if k = 1(
mod 2).

In the current case there exists m = n/2, which gives the extra order 2 element
(¥",1) € G. As in the odd case, 6 reflections cannot occur. For the case of 2
reflections, assume, up to ordering,

v = (0, D, 2, 1), (65, 1), (4, 1), (65, 1), (65, 1).

As before, (l3,14,15,1ls) = (0,0,0,0) is impossible. In the cases (,l,1s,1ls) =
(m,m,0,0) and (l3,14,15,l¢) = (m,m,m,m) we get I, = 0. In the first case we
can only have < v >= G if n = 2. Also in the second case we must have n = 2
but the elements (y, 1) and (x, 1) cannot generate G since the element (e, 1) is miss-
ing. In the cases (L, 1y, 1s,1ls) = (m,m,m,0) and (l5,14,15,ls) = (m,0,0,0) we get
l, = m, which also implies that n = 2. So if n > 2 these cases don’t occur. The
corresponding Hurwitz vectors are:
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v=(0 D, (. 1), (x 1), (x,1),(e, 1), (e, 1)),
v=(, D, 0x 1D, (x, 1), (x, 1), (x, 1), (e, 1))

and

v=(0,1),x,1),(x,1),(e, 1), (e, 1), (e, 1)),

the third one being equivalent to the second one by an automorphism of G that fixes
D,.

Assume, for the case of 4 reflections, up to ordering

v= (D), 022, 1), 027, 1), 02", 1), (65, 1), (4, 1)),

Here we have the 3 cases: Is =g =m,ls =lg =0and ls = m, [ = 0.

In the first 2 cases from the product-one condition we get [, + [4 = I3 mod n. To
generate G we must have gcd(b, s, Iy, n) = ged(l, Iy, n) = 1.

Using Lemma [[II.3.1| again, we arrive at

v = (0, 1), (x>, 1), x, 1), (2™, 1), (2™, 1), (X", 1))

resp.

v =((, 1), (px2, 1), x", 1), (2™, 1), (e, 1), (e, 1))

and so we get [, = 0 mod n. Now we have gcd(l,, l4,n) = ged(ly,n) = 1 and we
can apply the automorphism x*  x,y + y to v to arrive at

v=(D, D, 0x, D, x, D, ", 1), (", 1))

resp.

v= (v, D, , D), x, D), (yx, 1), (e, 1), (e, 1)).

Using the morphism (e, 1) — (x",1),(y,0) — (yx™,0) we see that these two are
equivalent.

It remains to consider the case [s = m and [; = 0, i.e.

v= (1), (x>, 1), x", 1), (px™, 1), (x™, 1), (e, 1).

We apply Lemma 2.1, [CLP1] again and it follows I, = m. So we get

v= (D), 0x", 1), 0x, 1), o, D, (0, 1), (e, 1))

where ged(l,m) = 1.
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We have two sub cases, i.e. gcd(l,n) = 1 and gcd(l,n) = 2. In the first case we can
use the automorphism x' — x,y — y to obtain

v = (0, D, 0x", D), (vx, D), (yx, 1), (x", 1), (e, ).

In the second case (where m must be odd) we can achieve

v = (0, D, 0", D), 0%, 1), 0, D, (67, 1), (e, 1)

Lemma I1L1.3.12. Classification of cover type 1)
Up to equivalence, the admissible f is given by the Hurwitz vector:
(1)es =2,
v=(, D, 0x 1), x, D), (e 1), (y,0),
(2) s > 2,
v=(0, 1), 1), (e, 1), (e, 1), (x,0)),¢5 =

v=((1), (yxm_l, D,x", 1),(e, 1),(x,0)),n =2m,cs = n,
v=(O1, Gx"2 1), " 1), (e 1), (x*0),n = 2m,mis odd, cs = m,

Proof. Assume we have an admissible f : T(2,2,2,2,¢5) = D, X Z/2.
we must have:

vi=(F), f(r2), f(r3), f(a), f(¥5)) = ((ar, 1), (a2, 1), (a3, 1), (a4, 1), (a5, 0))

There are two cases:

(1) cs =2.

As in the previous argument, we do the classification in terms of the number of reflections
in {a;} which can be either 2 or 4.

(i) There are 2 reflections.

(a) as is areflection, W.L.O.G we can assume a; is another reflection, and a; = yx/, as = y.
ay, as, aq € {e, x"*(if n is even)).

There are 4 cases (up to an order change): @) (az,a3,as) = (e,e,e), B) (ar,a3,a4) =
(x"2,e,e),y) (a2, a3,as) = (X", x"'%, ), 6) (a2, a3, as) = (x"%, x"2, x"1?).

Case «@),0) we get no admissible f since f can not be surjective.

For case f8), ¥) (where n is even) we get f is admissible < n = 2.

(b) as is not a reflection, first we conclude that » must be even and a5 = x
similar arguments as in a), one finds that

/2 Using

V= ((y’ 1)’ (yxl’ 1)’(‘13’ 1)9 (a4’ 1)9 (xn/Z’O)), as,aq € {e’xn/Z}.

There are three cases, and one checks easily that in each case f is admissible if and only
ifn=2.

(i7) There are 4 reflection.

a) as is a reflection. W.L.O.G we assume

v = (", 1), (yx2, 1), 0", 1), (as, 1), (v, 0)), ay € {e, x"*(if n is even)).

Again we apply Lemma [III.3.1] so that we can assume [, = /3. Since f is admissible,
(using similar arguments as in the previous Lemma,) we have:
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Case @) If a4 = e, then [; = 0 (n), gcd(l,, n) = 1. Under the automorphism X x,yey,
we get

Vo~ ((y’ 1)’ (Yx, l)a (yx’ 1)’ (6, 1)’ (y’ 0))

Case f) n = 2m and a4 = x™. One gets [y = m (2m), and gcd(l, — m,2m) = 1. Using the
automorphism x2~"  x, y > y, then we can achieve

v~ (", 1, L D, ™ D, (7, 1), (0, 0)),

Using the automorphism (of G): (x,0) — (x,0), (y,0) — (y,0), (e, 1) — (x™, 1), one finds
that Case ) is equivalent to Case a).

b) as is not a reflection.

In this case n must be even, and v = ((y, 1), (yx2, 1), (x5, 1), (yx*, 1), (¥/2,0)). It is easy
to see that f can not be surjective since (y, 0) is not contained in the image.

Up to now we have got all the admissible f’s for the case n = 2. (Since n = 2 implies that
cs = 2). One checks easily that they are equivalent to each other, since in this case G is
abelian.

2) cs > 2.

as must lie in the cyclic subgroup, say as = x* (k # 5 ifnis even).

(i) There are 2 reflections, W.L.O.G. we assume

v=(( 1), yx', 1), (as, 1), (as, 1), (x*,0)), as,as € {e, x""*(if n is even)}

There are 3 cases:

Case a) (az, a4) = (e, e).

We get [+ k = 0 ( mod n) and gcd(k,n) = 1. Applying the automorphism x* - x, y >y
we get

v~ (0, D, x7 1), (e, 1), (e, 1), (x, 0)).

Moreover we see that c5 = n.

Case B) n = 2m and (asz, aq) = (X", e).

We getl + k =m ( mod 2m) and ged(k,m) = 1.
If gcd(k,n) = 1 (which is the unique case if 2|m),

v~ (s 1D, 0" D, (1), (e, 1), (%, 0))

Here we find ¢5 = n.
Otherwise gcd(k, n) = 2 (which may happen only when 2 { m),

v~ (s 1, 0072 D, (0 1), (e, 1), (2, 0))

and we have c5 = m.
Case y) n = 2m and (a3, aq) = (X", x™).
We getl + k =0 (n) and ged(k,n) = 1.

v~ (D), 0x7L D, (0 1), (7 1), (x, 0), 65 = n

Using the automorphism (x,0) — (x,0), (y,0) = (yx™,0), (e,1) — (¥, 1), one finds
case y) is equivalent to Case a).

(if) There are 4 reflections.

One checks easily that f can not be surjective since (y, 0) ¢ Im(f). O
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Lemma I11.3.13. Classification of cover type Ill-a)
We have that n = 2m and dy = m. Up to equivalence there is a unique admissible f given
by the Hurwitz vector:

v=(D,x7", 1), (e D), (x, D).
Proof. Assume f :T(2,2,2,2d,) — D, X Z/2 is admissible.
vi=(f(y), f(y2), f(y3), f(ya) = (a1, 1), (a2, 1), (a3, 1), (a4, 1)).

dy>1=as=x(k#n/2if nis even).
There can only be 2 reflections among a;, a,, a;. W.L.O.G. we can assume

v=((1), (yxl, 1), (as, 1), (xk, 1)),as € {e,n/2(if nis even)}

Casea)as =e.
We getl+ k=0 ( mod n) and ged(k,n) = 1,

v~ (0, D, 0x7 D), (e, 1), (3, 1)

In this case 2d4 = n, it turns out that » must be even.
Case b) n = 2m and a3 = x™.
We get I+ k = m (2m) and ged(l,n) = 1,

Vv~ ((y’ 1)’ (y-x9 1)’ (xm, 1)’ (xm—l, 1))

Using the automorphism (x,0) — (x~1,0), (y,0) —~ (yx™,0), (e,1) — (¥, 1), we find
that Case b) is equivalent to Case a). O

Lemma I11.3.14. Classification of cover type I1I-b)
We have that c; = 2 and c4 = n. Up to equivalence there is a unique admissible f given
by the Hurwitz vector:

v =(Ox, 1), (e, 1), (,0), (x,0)).

Proof. From Example[[II.3.6)we see if that a type /1] —b) cover has group type 1), c3 must
be 2, combining with the proof of Corollary one obtains that the case (65, 0y) =
(1, 3) does not occur.

Let f:T(2,2,2,c4) = D, XZ/2 be admissible. We must have

vi=(f(r), f(r2), f(v3), f(va)) = (a1, 1), (a2, 1), (a3, 0), (a4,0))

Since ¢; > 2 we get ay = x*. It is obvious that there are two (and only two) reflections
among a;, dz, as.
(1) a3 is not a reflection. n must be even (let n = 2m) and a; = x". W.L.O.G we assume

v=((y, 1), ', 1), (¥, 0), (*,0)).

It is easy to see (v, 0) ¢ Im(f), therefore in this case there is no admissible f.
(2) aj; is areflection. W.L.O.G we assume

V= ((yxl, 1), (ay, 1),(y,0), (xk, 0)),a; € {e,n/2(if nis even)}.
(i) a, = e, we getk =1 (n) and ged(k,n) = 1,
v~ ((yx,1),(e1),(,0),(x,0)),c4 =n.
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(fi)yn =2mand a, = x", we getk =1+ m (2m), gcd(k,n) = 1,
v~ (yx’n+1, 1)5 (-xm’ 1)’ (y’ 0), (-x’ O)), Cq4 = nN.

Using the automorphism (x, 0) — (x,0), (v,0) — (v,0), (e, 1) — (¥, 1), we see that Case
(i) is equivalent to Case (7). O

Remark II1.3.15. If we drop the restriction on fy, it is easy to check that the Hurwitz
vectors in I11 —a) and 111 —b) are equivalent. (Consider the automorphism of G: (x,0) —

(x, 1), (0,0) = (yx,0), (e, 1) = (e, 1))

II1.4 Results

We present our results through tables. There will be one table for each normal form of
Hurwitz vectors for the covering C — C/G, obtained in section 5. For the reader’s con-
venience we present a short list of notation:

v Hurwitz vector for the covering C — C/G
ve;rr Hurwitz vector for the double covering C/H' — C/G = P!
gcywr Genus of C/H’
o0y Dimension of Fix(H")
vy Hurwitz vector for the covering C — C/H’

We will use the following subgroups of D, X Z/2, where D, =< x,y | x" = y* = 1,yxy™! =
x~! > and e denotes the neutral element of D,,.

Subgroup Generators
K (x,0)
H171 K, (6, 1)
H, K, (. 1)

H1,3 (xza 0)’ (y’ 0)5 (e7 1)
H1,4 (XZ, 0)’ ()’, O)’ (X, 1)
Hl,S (XZ’O)’ (Vx, 0)9 (6, 1)
H1,6 (-xz’ O)’ (yx’ 0), (xa 1)

For compactness, we make the following conventions:

Whenever the groups H; 4, H, 6, H; 3, H s occur, we assume that n = 2m, in the last 2
cases we additionally assume m to be odd. If H,; appears we are in the case n = 2. We
identify the groups H;3 and H,s with D, by sending their respective generators in the
given order to x™*!,y, x™.

The cover types are those which appear in Theorem [[1I.1.1

Theorem IIL4.1. Let H, H' be subgroups of Map,, satisfying condition (x). Then G(H) ~
D, X Z/2, H corresponds to D, X {0}. The group H' and the topological action of the
group G(H) (i.e. its Hurwitz vector) are as listed in the following tables.

We obtain immediately the following corollary:
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Corollary I11.4.2. The locus M, ,(D,) is maximal iff its topological type [p] is different
from those which are determined by C — C/H in the following tables.

Remark II1.4.3. Given a cover C — C/H, the data consisting of gc;u and the branching
indices are called the signature of the cover. In [BCGGl, section 3 the authors com-

puted the signatures for the possible non-maximal loci of the form M, ,(D,), which is a
corollary of our result.
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Cover type I)
(0m =3, gc/u =2, C — C/H is unramified)

v =D, . 1), x, 1), vx, 1), (e, 1), (e, 1))

H' VG gcim | 0w Vi
Hi» | (0,00,0,1,1) | 0 5 (Y,Y,Y,Y,YX,Y X, X, yX)
H 3 | (0,0,1,1,00) | 0 5 | (px™, yx™72, ya, yxamt2, X, K, X", 1)
H 4 | (1,1,0,0,1,1) 1 5 (e,Y;¥yX,yX,yX,yX)
Hs | (1,1,0,0,0,0) 0 5 x™, yx™, yx™, yx™, X", X", X", x™)
Hio | OOLLLL | 1 | 4 (CYXY.Y.y.y)
v=(, D, x" 1), (yx, 1), (yx, D), (x", 1), (e, 1)), n=2m
H’ VG/H' gcimw | Om Vi
H, 0,0,0,0,1, 1) 0 5 O, y, yx", XMy, yx, yX, yX, yX)
Hi; 0,1,1,1,1,0) 1 4 (Xl X, yx™, yx™)
Hy4(modd) | (1,0,0,0,0,1) 0 5 X", XMy, yx, yx3, yx, xy, X", x™)
Hys(meven) | (1,1,0,0,1,1) 1 4 (X", XMy yx, yX, yX, yX)
His (1,0,0,0,1,0) 0 5 (ymeT_,yxsz_l,yx’",yxm,yx’”,yx’”,xm,x’")
Hi¢(modd) | (0,1,1,1,0,1) 1 4 (™ xm=ho Xy, y)
H,s(meven) | (0,0,1,1,1,1) 1 4 (e, X" 'y; v, y, Xy, yx™)

v=((, 1), x" 1), (yx% 1), (vx%, 1), (¥, 1), (e, 1)), n = 2m, m odd.

H’ VG/H gc/w | Omw Vi

H, | (0,0,0,0,1,1) 0 5 1 (3, y, X", yx™, yx2, yx*, yx?, yx?)
Hs | (0,1,0,0,1,0) | 0 5 [ xm yxm, yxt yx 3yt yx)
H1,4 (O’O,an’ 1’ 1) 0 5 (y,y,yxm,yxm,yxz,yx2’yx2’yxz)
Hs|1,0,1,1,1,0) 1 4 (xz,x_z;x’",xm,x’"y, x"y)
His | (0,1,0,0,0,1) 0 5 1 (,y, X%y, x%, X%y, yx?, XM, 1)

For n = 2 we have two extra cases:

v=( D, D), 1), (x, 1), (e, 1), (e, 1))

H’ VG/H' gc/u | O Vi

H; |(1,1,0,0,0,0) 0 5 (X, X, X, X, 9,9, 9, Y)
Hy, | (0,0,1,1,1,1) 1 4 (e, x;9,9,9,y)
Hy5 | (0,0,1,1,0,0) 0 5 | (yx,yx, yx, yx, X, X, X, X)
Hy4 | (1,1,0,0,1,1) 1 4 (e,y; x, X, X, X)
Hs|(,1,1,1,0,0) 1 ) (e, yx; x, X, X, X)

H ¢ | (0,0,0,0,1,1) 0 5 VY, 7, 9, X, X, X, X)

v=( D, x, 1, (x, 1), (x,1),(x,1), (e, 1))
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H’ VG/H’ gc/w | Om Vi
H ;| ({,1,0,0,0,0) 0 5 | (X, yx, X, yX, yX, VX, y, V)
H, |(0,0,1,1,1,1) 1 4 (e, e;y,y,yx,yX)
Hs|(©0,1,1,1,1,0) 1 4 (v, y; X, X, yX, yXx)
Hy4 | (1,0,0,0,0,1) 0 5 | (yx,yx, X, X, X, X, X, X, X, X)
Hs | (1,0,1,1,1,0) 1 4 (e,y; x, X, X, X)
Hy¢ | (0,1,0,0,0,1) 0 5 O, ¥, X, X, X, X, X, X, X, X)
Cover type 1I)
0y =2,8cm=1)
(1) cs = 2.
v=((1),0x,1),0x, 1), 1),1,0), vg = (x,x""1y,).
H’ VG/H' 8o | Om Vi
H, | (0,0,0,1,1) 0 3 O, ¥, YX, yX, yX, yX)
H 5| (0,1,1,0,0) 0 3 (px"yxh X XMy, yxmth
H4 | (1,0,0,0,1) 0 3 VX, yx, yX, X, y,y)
H s | (1,0,0,0,1) | 0 31 (X", yx, yx™, yx~t X", x™)
Hy¢| (0,1,1,1,1) 1 2 (e,yx;y,y)
(2) Cs > 2.

v= (D), 0x7, D, (e, 1), (e, 1), (x,0), ¢5 = n, v = (X7, y5.x, %),

H' VG/H 8o | Omw Vi

H, |(0,0,1,1,0) 0 3 (v, v, yx~ 1, yx73, x, x)

H 3| (0,1,0,0,1) 0 4 (yx™, yx~ b, xm, X, X", X, X
Hy4 | (1,0,1,1,1) 1 3 (v, v; X%, yx3, yx)

H s | (1,0,0,0,1) | 0 4 | (yx7tyxm? X, X, X, 2
Hig | (0,1,1,1,1) 1 3 xLyx a2, yx2, y)

v=(1D,Gx" " D), (", 1), (e, 1), (x,0)), n=2m, vyg = ("1, yx™; x, x).
H' VG gojmr | O Vi
Hi, 0,0,1,1,0) 0 3 O, v, yx" 1,y =3, x, x)
H, 3 0,0,1,0,1) | 0 4 | (yx™,yxX"™2, yx, yx, X", X", x72)
Hys(modd) | (1,1,0,1,1) 1 3 (x™ 1 y; 2%, X", x™)
H,4 (meven) | (1,0,1,1,1) 1 3 (yx™, y; X2, yx™m3, yxm+l)
His OLLoD| 1 |3 T,y 2, 0 )
H,s (modd) | (0,0,0,1,1) | 0 4 | (y,yx 2, yxm Lyt X xP)
H,s (meven) | (0,1,1,1,1) 1 3 x Lyt 2, yx2, y)
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v=((1, 2" 21, " 1), (e 1), (% 0), n=2m, modd, cs =m,

-2 2 .2
v = (X", yx"; x%, x°),

Vg
(37, y, yX" 2, yx" 0, &%, x°)
(yxm’yxm—4’ xm’ xm’ x2’ )CZ)
(yxm‘z, yx’”‘é, X", X", X%, x%)
(v, yx‘4, X", XM, X2, x%)
(v, yx~4, X", x™, x%, x%)

H’ VG/H 8c/H
H, |(0,0,1,1,0) 0
Hi;|(0,1,1,0,0) 0
H4 | (1,0,0,1,0) 0
0
0

Hs | (1,0,1,0,0)
His | (0,1,0,1,0)

w| W] w|wl vl

For n = 2 we have one extra case.

v=(0x, D), (x, 1), (e, 1), (e, 1), (0, 0)), viy = (v, yx;y, y).

H VG/H gcim | O Vi

Hy, | (1,0,0,0,1) 0 3 (X, X,5,5,9,9)
H, | 0,1,1,1,1) 1 2 (x, x; yx, yx)
H; | (1,1,0,0,0) 0 3 (x, x, X, X,5,9)
H 4| (0,0,1,1,0) 0 3 | x,yx,x,X,9,9)
H s |(0,1,0,0,1) 0 3 | (yx,yx, X, X, X, X)
Hy | (1,0,1,1,1) 1 2 (yx, yx; x, x)

Cover type I1I-a)
(0w =1,8cu=1)

v=(y,1),x" 1), (e 1),(x, 1), 2ds =n=2m, vg = (x"L,y; x%).

Vi
(0, yx%, yx Ly x%)
(yxm’yx—l’ xm’ xm’ xm+1)
x 1 yx73, x, x)
(yx~ b, yxm=2, X, xm, Kl
(X, X,y,yX°)

H’ VG/H' gcm | O
Hy, | (0,0,1,1) 0
Hy 5| (0,1,0,1)
Hy 4| (1,0,1,0)
Hs | (1,0,0,1)
Hy¢ | (0,1,1,0)

<

OO OO
— N = NN

Cover type 11I-b)
(0w =1, gc/u = 0)

v=(yx,1),(e, 1),(y,0),(x,0)), c4 =n=2m, vyg = (y, yx_Z,x, X).

H VG/H gc/m | O Vi

H, |(0,1,1,0) 0 1 (yx, yx~ ', x, x)
Hi5 | (1,0,0,1) 0 2 (x™, XM, y, yxm=t
Hi4|(0,1,0,1) | 0 2 Oox,yx Ly, y,x%)
His | (0,0,1,1)| 0 2 | (yx",yxh xm xm, mrh
Hye| (1,1,1,1) 1 1 (yx,x;xz)
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