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Cfa Type of climate system after the Köppen classification 
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(see Sträßler, 1998) 

Cfb Type of climate system after the Köppen classification 

(see  Sträßler, 1998) 

CPA Chemical Proxy of Alteration i.e. molar ratio of 

Al2O3/(Na2O + Al2O3) × 100 

CPI Carbon Preference Index 

D Stable hydrogen isotope with atomic mass 2 (Deuterium) 

Dfb Type of climate system after the Köppen classification 

(see Sträßler, 1998) 

drs Diffuse reflectance spectroscopy 

F-AA Floodplain sediments of the ”Austroalpine cover nappes 

area” 

F-BM Floodplain sediments of the “Bohemian Massif area” 

F-Drava Floodplain sediments of the “Drava source area” 

Fed Dithionite-extractable iron fraction 

FOREGS Geochemical data derived from the Global Geochemical 

Baseline Programme of the Forum of European 

Geological Surveys (FOREGS) (Salminen et al., 2005) 

F-WC Floodplain sediments of the “Western Carpathian area” 
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GC Gas chromatograph 

Gt Goethite 

H Stable hydrogen isotope with atomic mass 1 

He-00 Timescale developed by Heslop et al. (2000) for Chinese 

loess-paleosol sequences 

HIRM (IRM0.35T + IRM2T)/2 

Hm Hematite 

Hz Hertz. Si unit of frequency 

INQUA International Union of Quaternary Research 

IPCC Intergovernmental Panel on Climate Change 

IRM Isothermal remanent magnetization 

IRMxT Isothermal remanent magnetization after exposing the 

sample to a pulsed magnetic field of x T.  

IRSL Infrared stimulated luminescence 

JP-99b Timescale for the Koriten section (Jordanova and 

Petersen, 1999) 

ka Kiloannum = 1.000 years 
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LAR Long chain n-alkane ratios 

Lx Loess unit, with x being the stratigraphic number 

LPSS Loess-paleosol sequence 

MD Multidomain 

md-n-alkanes Microbially derived n-alkanes 

MAP Mean annual precipitation 

MIS Marine Isotope Stage 

MPI Micromorphological proxy for soil formation intensity 

MV Prefix for loess and paleosol units of the Mircea Voda site 

M(x) Molar mass of compound x 

n-Cx Unbranched alkane with x carbon atoms 

ODP Ocean Drilling Program 

OEP Odd over even predominance i.e. amount of n-alkanes 

with an odd number of carbon atoms vs. amount of n-

alkanes with an even number of carbon atoms 

pd-n-alkanes plant derived n-alkanes 

P-E Difference of precipitation and evaporation 
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RI Rubification Index according to Harden et al (1982) 

RR Redness Rating according to Torrent et al (1980) 

SD Single-domain 

Sh-90 Timescale derived by correlation to the δ18O record of 

benthic foraminifera at ODP site 677 (Shackleton et al., 

1990) 

SIRM Saturation isothermal remanent magnetization i.e. IRM2T 

SK Prefix for loess and paleosol units of the Stary Kaydaky 

site 

S.l. Sensu latu 

SOM Soil organic matter 

SP Superparamagnetic 

S- ratio IRM2T/IRM0.35T 

Su-06 Timescale derived by correlation to the magnetic 

susceptibility record of Sun et al. (2006) 

Sx Soil unit, with x being the stratigraphic number 

T Tesla. Si unit for the magnetic field strength 

UCC Upper continental crust 
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U-ratio Ratio of the 16-44 µm to 5.5-16 µm grain size fraction 

(Vandenberghe et al., 1998) 

V Prefix for loess and paleosol units of sites in the 

Vojvodina 

XRF X-Ray fluorescence 

δ18O Natural abundance of oxygen isotope 18 expressed as the 

deviation of the 18O/16O isotope ratio of a sample from 

that of a standard, relative to the isotope ratio of the 

standard. Values are given in per mill. 

δD Natural abundance of D expressed as the deviation of the 

D/H isotope ratio of a sample from that of a standard, 

relative to the isotope ratio of the standard. Values are 

given in per mill 

χ Mass specific magnetic susceptibility (m3 kg-1) 

χ(xkHz) Mass specific magnetic susceptibility determined at x 

kilohertz  

χC Background magnetic susceptibility of the parent material 

χfd Frequency dependence of the magnetic susceptibility  

(χfd = χ(0.3 kHz) - χ(3kHz)) 

χfd% χfd normalized to χ(0.3 kHz) : χfd/χ(0.3 kHz) × 100 
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Summary 

Loess-paleosol sequences (LPSS) potentially are valuable archives for past environmental 

conditions. In SE-Central European lowlands thick loess plateaus can be found comprising 

several glacial-interglacial cycles. This work focuses on key sections in the middle and lower 

Danube Basin to i) investigate the origin of the loess and archive genesis, ii) to set up a 

reliable chronostratigraphy and iii) to contribute to the reconstruction of the Mid- and Late 

Pleistocene climate and landscape history of the region by a paleopedological – geochemical 

multi-proxy approach. Furthermore, methodological investigations aim to evaluate the 

validity of various paleoenvironmental proxies especially geochemically based weathering 

indices, as well as biomarker and stable isotope approaches in LPSS research.  

The results from geochemical analyses reveal that alluvial material of the Danube and its 

tributaries represent major sources for the loess in the middle and lower Danube Basin. From 

the geochemical point of view the studied loess can be regarded as a representative sample of 

the upper continental crust altered by at least one sedimentary cycle.  

The chronostratigraphy of the studied sections is based on the correlation of characteristic 

patterns of the magnetic susceptibility to the δ18O record of benthic foraminifera from the 

Ocean Drilling Program site 677, a proxy record for the global ice volume. This is 

supplemented by correlating magnetic susceptibility fingerprints and pedostratigraphic marker 

horizons to previously established chronostratigraphies from profiles in the region as well as 

in China. The results show that the Batajnica/Stari Slankamen LPSS (Serbia) and Mircea 

Voda LPSS (Romania) comprise at least the last 700.000 years of climate history i.e. the last 

17 marine isotope stages.  

The multi-proxy approach for paleoenvironmental reconstruction involves 

micromorphological parameters, silicate weathering intensity as given by element 

composition, grain size proxies for pedogenic clay formation and wind strength, as well as 
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determination of sedimentation rates. As most suitable proxy for silicate weathering in 

calcareous sediments, the molar ratio Al2O3/(Na2O + Al2O3) × 100 is introduced as Chemical 

Proxy of Alteration (CPA) to loess paleosol research. Moreover, diffuse reflectance 

spectroscopy, soil color proxies and rock magnetic proxies are applied to gain 

paleoenvironmental information from the concentration and assemblage of iron minerals. 

Focusing on the warm periods, these proxies reveal a progressive decrease of interglacial 

weathering and soil formation intensity over the Mid - and Late Pleistocene. Also soil 

forming milieu was less oxidative as reflected by the iron mineralogical composition. These 

findings suggest cooling and a decline of rainfall linked to a change in seasonality from a 

Mediterranean type of climate to a more continental steppe climate. Results from n-alkane 

biomarkers support that summer dryness limiting the expansion of trees was a persistent 

feature of interglacial climate in SE-European lowlands. 

 In the obtained proxy dataset, increase of wind strength, gradual cooling as well as decrease 

of rainfall since the early Mid-Pleistocene is also evident for glacial periods. After evaluation 

of potential triggers, this general climatic trend is proposed to be related to Pleistocene uplift 

of Eurasian mountain ranges. Changes in atmospheric circulation and rain shadow effects due 

to mountain uplift (Himalaya, Alps, Carpathians) would provide an explanation for the 

westward expansion of the Eurasian steppe belt into SE-Central Europe.  

Future studies on LPSS may also involve highly innovative proxies such as n-alkane 

biomarker and their D/H isotope signature. However, the methodological investigations on 

modern soil profiles and samples from litterbag experiments suggest that in a LPSS these 

proxies might be biased by microbial reworking. Procedures for correcting n-alkane ratios 

based on the odd over even predominance as reworking indicator have been developed. 

Hence, these studies highlight the limitations but also the persisting potential of innovative 

approaches from organic and isotope geochemistry in paleoenvironmental investigations of 

loess-paleosol sequences.  
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Zusammenfassung 

Löss-Paläoboden-Sequenzen (LPSS) stellen potentiell wertvolle Paläoumweltarchive dar.  

Lössplateaus im südost-mitteleuropäischen Tiefland erreichen mehrere Dekameter an 

Mächtigkeit und dortige LPSS können mehrere Glazial – Interglazial Zyklen umfassen. Die 

vorliegende Arbeit befasst sich mit Schlüsselprofilen im Becken der mittleren und unteren 

Donau. Ziel ist es i) die Lössprovenanz zu untersuchen und somit genauere Erkenntnisse über 

die Archivgenese zu gewinnen, ii) eine verlässliche Chronostratigraphie aufzustellen und iii) 

einen Beitrag zur Rekonstruktion der regionale Klima- und Landschaftsgeschichte während 

des Mittel- und Spätpleistozäns zu liefern. Für Letzteres wurde ein paläopedologischer – 

geochemischer Multiproxy-Ansatzes herangezogen. In methodischen Studien wurden 

verschiedene Proxies wie geochemisch basierten Verwitterungsindizes, Biomarker und 

stabilen Isotopen hinsichtlich ihrer Eignung zur Paläoumweltrekonstruktion evaluiert.  

Die Ergebnisse der geochemischen Analysen zeigen, dass alluviale Sedimente der Donau 

bzw. von Donauzuflüssen die Hauptquelle von Löss im mittleren und unteren Donaubecken 

darstellen. Die geochemische Zusammensetzung des Lösses ähnelt der der oberen 

kontinentalen Kruste, jedoch nach Veränderung durch mindestens einen sedimentären Zyklus.   

Die Chronostratigraphie der untersuchten LPSS basiert auf einer magnetischen 

Suszeptibilitätsstratigraphie und ist gestützt durch pedostratigraphische Marker. Demnach 

umfassen die Profile Batajnica / Stari Slankamen (Serbien) und Mircea Voda (Rumänien) 

mindestens die letzten 700.000 Jahre d.h., die letzten 17 Marinen Isotopen Stufen.  

Der Multiproxy-Ansatz zur Paläoumweltrekonstruktion umfasst mikromorphologische 

Parameter, geochemische Untersuchungen zur Silikatverwitterungsintensität, Untersuchungen 

zur pedogenen Tonbildung, sedimentologische Untersuchungen zur Windstärke und die 

Bestimmung von Sedimentationsraten. Als Proxy für Silikatverwitterung wird das molare 

Verhältnis Al2O3/(Na2O + Al2O3) × 100 als Chemical Proxy of Alteration (CPA) für die Löss-



 

 

XXVIII

Paläoboden-Forschung eingeführt. Darüber hinaus geben bodenfarb-basierte Proxies, diffuse 

Reflektionsspektroskopie und Umweltmagnetik Informationen über die eisenmineralogische 

Zusammensetzung, was ebenfalls Rückschlüsse auf Paläoumweltbedingungen erlaubt. 

Hinsichtlich der Interglaziale weisen die Multiproxy-Daten auf eine progressive Abnahme der 

warmzeitlichen Verwitterungs-, und Bodenbildungsintensität während des Mittel – und 

Spätpleistozäns hin. Auch war das Bodenmilieu während der jüngeren Warmzeiten weniger 

stark oxidativ, wie die eisenmineralogischen Ergebnisse zeigen. Diese Befunde deuten auf 

einen Abkühlungstrend und eine Abnahme der warmzeitlichen Niederschlagsmengen 

während des Mittelpleistozäns hin. Anhand der Daten lässt sich zudem eine Veränderung in 

der Saisonalität von Mittelmeerklima zu kontinental geprägten Klima (Steppenklima) 

ableiten. Die Biomarkerbefunde, deuten nur eine geringe Baumverbreitung während der 

Interglaziale an und bestätigen somit Sommertrockenheit als charakteristisches Merkmal des 

warmzeitlichen Klimas im mittleren und unteren Donaubecken. 

Eine Zunahme der Windstärke, graduelle Abkühlung sowie eine Abnahme der 

Niederschlagsmenge seit dem unteren Mittelpleistozän zeigt sich auch für die Kaltzeiten. 

Nach Evaluierung möglicher Ursachen für diesen klimatischen Trend erscheint die Hebung 

eurasischer Gebirgsketten während des Pleistozäns als mögliche Hypothese. Diese könnte die 

Ausdehnung des eurasischen Steppengürtels bis ins südöstliche Mitteleuropa erklären. 

Fur zukünftige Löss-Paläobodenstudien bieten sich n-Alkan Biomarker oder ihre D/H 

Isotopie als hoch innovative Proxies an. Die methodischen Untersuchungen an verschiedenen 

Bodenprofilen und an Proben aus einem Streuabbauexperiment weisen jedoch darauf hin, 

dass Abbau und Kontamination durch mikrobiell-bürtige Alkane deren ursprüngliches 

Paläoumweltsignal überprägen können. Ein Verfahren zur Korrektur von n-Alkan 

Verhältnissen kann jedoch aufgezeigt werden. Diese Ergebnisse stellen somit einen Beitrag 

dar zur Bewertung von Potential als auch Grenzen dieser innovativen organisch- und 

isotopen-geochemischen Ansätze in der zukünftigen Lösspaläobodenforschung. 
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1 Introduction 

1.1 Rationale 

The scientific consensus expressed in the fourth assessment report of the Intergovernmental 

Panel on Climate Change (IPCC; 2007) pinpoints that human activity affects climate on earth 

in an unprecedented way. To give projections on future environmental conditions it is 

essential to discern and predict their natural baseline fluctuations and validate the predictive 

models. Therefore, from 1990 to 2007, paleoclimate research got more and more in focus of 

the IPCC reports (Caseldine et al., 2010). However, there are still ample white patches on the 

picture of past environmental conditions in space as well as in time. Up to now in Europe only 

few (quasi-) continuous terrestrial climate records are available, which comprise several 

glacial-interglacial cycles and have the potential to capture long-term pattern of climate 

change. These are essentially the pollen sequences from peat profiles in France (Beaulieu et 

al., 2001; Reille et al., 2000) and Greece (Tzedakis and Bennett 1995; Tzedakis et al., 2006). 

Recently, after the fall of the Iron Curtain, the lowlands of the middle and lower Danube 

Basin (Hungary, Serbia, Romania, Bulgaria) as well as the region north of the Black Sea 

Coast in the Ukraine increasingly attracts paleoenvironmental research. This area represents 

the westernmost extension of the Eurasian steppe belt, separating the temperate climate zone 

of central Europe from the Mediterranean climate zone in the S and W Balkan Peninsula. 

Loess-paleosol sequences (LPSS) of several decameters thickness are widely distributed in 

this region with loess formation characterizing glacial or stadial intervals and soil formation 

prevailing in interglacials and interstadials. Hence, this is not only an area potentially 

sensitive for (past) climate change, but it also gives the opportunity to reconstruct the Mid - 

and Late Pleistocene environmental conditions from valuable archives. However, most of the 

existing studies either focus on a single LPSS-section, deal with paleoclimatic records of only 
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the last few glacial cycles, are lacking a reliable stratigraphic model or focus only on a single 

proxy approach (e.g. Jordanova and Petersen, 1999; Kostic and Protic, 2000; Tsatskin et al., 

2001; Panaiotu et al., 2001, Perederji, 2001; Bronger, 2003; Avramov et al., 2006; Marković 

et al., 2006; Jordanova et al., 2007; Antoine et al., 2009; Bokhorst and Vandenberghe, 2009).  

The environmental conditions under which a loess-paleosol sequence developed can be 

derived from the identification and (semi-)quantification of characteristic soil forming 

processes provided their dependency to climate parameters is known. Various methods are 

used such as micromorphological investigations (Tsatskin et al., 1998; Kemp, 1999; 

Mestdagh et al., 1999), grain size analyses (Fang et al., 2003; Antoine et al., 2009; Bokhorst 

et al., 2009) or study of mineralogical (Kalm et al., 1996; Kostic and Protic, 2000; Marković 

et al,. 2004) and geochemical parameters (Schellenberger and Veit, 2006; Bokhorst et al., 

2009). Besides the type and intensity of soil forming processes also microfossils and direct 

proxies of the paleovegetation such as pollen (Rousseau et al., 2001; Wu et al., 2007), 

phytoliths (Lu et al., 2007; Osterrieth et al., 2009) or the isotopic signature of organic carbon 

(Hatté et al., 1999; Zech et al., 2009) provide information on past environmental conditions. 

In recent years, also the lipid biomarker approach was implemented in loess-paleosol research 

and appeared to be promising for discerning different types of vegetation (e.g. forest vs. 

grassland) (Bai et al., 2009; Zech et al., 2009; Zech et al., 2010). Meanwhile, also the 

hydrogen isotopic composition of paleoprecipitation preserved in fossil lipids has been 

recognized as valuable tool for assessing changes in paleotemperature and/or precipitation 

from LPSS (Liu and Huang, 2005). Each approach or proxy has a different sensitivity for 

certain environmental parameters and a different susceptibility for posterior alteration of the 

original signal. Hence, multi-proxy approaches enable cross-validation of the individual 

proxies and allow the most comprehensive reconstruction of past environmental conditions 

(Dodonov and Baguizina, 1995; Derbyshire et al., 1997; Zech et al., 2009).  
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1.2 Objectives  

This dissertation aims to gain information on the Quaternary climate and landscape history of 

the SE-Central European lowlands, involving multi-proxy investigations of LPSS. The focus 

is especially on climatic conditions during past interglacials as preserved in the LPSS sites 

Batajnica/ Stari Slankamen (Serbia), Mircea Voda (Romania) and Stary Kaydaky (Ukraine). 

These sites comprise more than five major loess-paleosol pairs, hence representing potential 

key sections for the Late and Mid-Pleistocene of this area. As climatic conditions differ in the 

middle and lower Danube Basin as well as at the Ukrainian location in terms of aridity and 

continentality, the chosen sections give not only the possibility to detect paleoenvironmental 

change in time, but also in space. However, before playing the music on the tape it is 

necessary to know the peculiarities of the tape i.e. how it was made, how the music was 

recorded and in which velocity it is to play. That means before any paleoclimatic conclusion 

can be derived from the LPSS it is essential to understand the process of archive formation, to 

acquire a reliable chronostratigraphy and to evaluate potential and limits of the applied 

proxies. Hence, the objective of Study 1 is to investigate the origin of the loess building up 

the LPSS and to proof their vertical sedimentary homogeneity. This involves a geochemical 

characterization of the loess and of potential source areas, as well as a reconstruction of 

prevailing wind directions during loess formation. Subsequently, Study 2 is addressed to the 

setup of a chronostratigraphy for the Batajnica, Stari Slankamen, Mircea Voda and Stary 

Kaydaky LPSS. A combined approach will be used based on pedostratigraphy, characteristic 

magnetic susceptibility fingerprints of the pedocomplexes and their correlation to the δ18O 

record of benthic foraminifera from the Ocean Drilling Program (ODP) site 677 as proxy of 

the global ice volume (Shackleton et al., 1990). Study 3 aims towards an evaluation of 

geochemical proxies for silicate weathering in loess as prerequisite for a paleoclimatic 

interpretation of the silicate weathering record in Study 4 and 5. The goal of Study 4 is to 

identify soil forming processes and to give a semi-quantitative measure of their intensity 
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using micromorphology, the elemental composition and grain size distribution. This does not 

only allow a typification of the paleosols, but also to infer changes in paleoclimatic conditions 

from proxies of silicate weathering (geochemically based weathering index) and clay 

formation (clay content, c/f related distribution pattern and b-fabric) as weathering and 

transformation of silicates to clay minerals are sensitive to precipitation and temperature 

(Brady and Carroll, 1994; White and Blum, 1995). The assemblage and concentration of iron 

minerals and their grain size fractions is not only sensitive for the intensity of weathering and 

pedogenesis (e.g. Maher and Thompson, 1995; Cornell and Schwertmann, 2003) but also 

reflects periods of excess soil moisture as well as strongly oxidizing conditions (e.g. 

Thompson and Oldfield, 1986; Yaalon 1997; Cornell and Schwertmann, 2003). Hence, Study 

5 focuses on a characterization of the iron mineralogy by various approaches (rock magnetic 

measurements, soil color proxies, diffuse reflectance spectroscopy). The aim is an integrated 

interpretation of the iron mineralogical proxy records, the records of silicate weathering and 

clay formation as well as paleosol typology in order to address changes in seasonal pattern of 

precipitation. In addition to these investigations of past soil forming conditions, it is intended 

to identify changes in the eolian activity and wind strength based on sedimentation rates 

(Study 2) and grain size analyses (Vandenberghe et al., 1998; Vandenberghe et al., 2004) 

(Study 4). Finally, information on past vegetation changes would substantially contribute to 

the picture of paleoenvironmental history. While the value of pollen analyses in loess is 

limited by far distance transport and selective preservation of palynomorphs (Faegri and 

Iversen, 1989), changes of the on-site vegetation (tree vs. grasses) can be possibly derived 

from n-alkane biomarkers (Zhong et al., 2007; Zech et al., 2009). Long-chain n-alkanes with a 

strong predominance of odd over even homologues are essential components of plant-

cuticular lipids, herewith a dominance of n-C27 and n-C29 is indicative for woody taxa, 

whereas n-C31 and n-C33 prevail in most grass taxa (e.g. Maffei 1996; Zech et al., 2009). 

Due to the relative recalcitrance of long chain n-alkanes, ratios build from these homologues 
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are used to infer tree vs. grass vegetation changes (e.g. Zhang et al., 2006; Bai et al., 2009). 

Furthermore, studying the δD signature of these compounds represents an opportunity to infer 

past climate change rather independent from pedoclimatic conditions (Liu and Huang, 2005). 

The D/H composition of n-alkanes allows to track changes in the δD signature of past rainfall 

or soil water, with higher temperatures, less precipitation and higher evaporation leading to 

less negative δD-values (Gat, 1996; Sachse et al., 2006). Hence, the objective of studies 6 and 

7 is to evaluate potential and limits of these innovative approaches, when applied to LPSS. In 

the former study the applicability of the n-alkane biomarker approach is tested on loess-

paleosol samples of the Mircea Voda site, specifically addressing postsedimentary alteration 

of n-alkane fingerprints. The intention of this study is to evaluate possible ways to recognize 

such effects and to account for them, when interpreting n-alkane records in terms of 

paleovegetation. This is supplemented by Study 7 using a litterbag experiment to track 

alteration of the plant-derived alkane pattern and their δD signature in course of 

degradation/early diagenesis. 

2 Regional setting 

The LPSS Batajnica (44° 55’ 29’’ N, 20° 19’ 11’’ E) and Stari Slankamen (45° 7’ 58’’ N, 20° 

18’ 44’’E) are located in the Vojvodina loess region i.e. in the Serbian part of the Pannonian 

(middle Danube) Basin (Fig. 1-1, Fig. 2-1, Fig. 4-S1). The climatic data of the station 

Belgrade (Fig. 2-2, Fig. 5-1; WMO, 1996), show one period of dryness but no period of 

drought, according to the definition of Walter (1974) and indicate climatic conditions 

characteristic for forest steppe environment. Forest steppe is also described as potential 

natural vegetation of this area by Frey and Lösch (1998). The loess-paleosol record of the 

Vojvodina loess area is a stacked one from the Batajnica section and the Stari Slankamen 
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section, since there is influence of water-logging in the basal part of the former site. Both 

sections are situated at the banks of the Danube River. 

The Mircea Voda site (44° 19’ 15’’ N, 28° 11’ 21’’ E; Fig. 1-1, Fig. 4-S2) is situated at about 

13 km distance from the Danube on the Dobrudja loess plateau (Romania). This loess plateau 

reaches from the Danube River to the Black Sea coast. The potential natural vegetation of this 

area is feather-grass steppe (Fig. 2-1, Frey and Lösch, 1998). Steppe type conditions were also 

confirmed by the climate station of Constanta, showing a clear period of drought and dryness 

(Fig. 2-2, Walter, 1974; WMO, 1996) and also mean annual precipitation of this area is 

substantially lower than at the Serbian sites ( ~ 400 vs. ~ 680 mm) (Fig. 2-2, Fig. 5-1). In both 

the Serbian and Romanian LPSS, more than six major loess-paleosol pairs are outcropped. 

The Stary Kaydaky site (48° 22’ 42’’ N, 35° 07’ 30’’ E) is located in the Dnieper loess area, 

next to Dniepropetrovsk at the Dnieper River (Fig. 1-1). The vegetation of this area is 

described as a wet variant of the feather-grass-steppe (Fig. 2-1; Walter, 1974). The limit of the 

southernmost extend of the Fennoscandinavian ices sheet (Fig. 1-1), is about 50 km north of 

the section. In contrast to the Romanian and Serbian sections, which represent LPSS in 

plateau situation, the outcrops of the Stary Kaydaky site are situated in slope position within a 

system of gullies. The sequence comprises five major loess-paleosol couples.  

3 Methods 

3.1 Nomenclature and sample material 

The nomenclature of the soil and loess units is in accordance with the nomenclative 

systematic widely used for the Chinese loess-paleosol sequences (e.g. Derbyshire et al. 1997, 

Chen et al. 2002). Main paleosols/pedocomplexes are designated with ‘Sx’ and main loess 

layers with ‘Lx’’, with ‘x’ being the stratigraphic number of soil or loess, starting from the 

recent soil at x=0. Subunits of the individual pedocomplexes are named SxSy for a paleosol 
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and SxLy for an intercalated loess layer starting with y=1 for the uppermost soil of a 

pedocomplex. Weak paleosols, intercalated in a main loess unit, were marked with LxSz, 

starting with z=1 for the youngest paleosol of a loess unit. Prefixes designate the locality of 

the section with SK for Stary Kaydaky, MV for Mircea Voda and V for the Vojvodinian loess 

sites. Having established the chronostratigraphy of these LPSS in Study 2, loess-paleosol 

units are regarded as correlatives to Chinese stratotype sections and the prefix for locality is 

not applied in the following studies.  

For mineralogical analyses, grain size analyses, organic and anorganic geochemistry, the 

pedocomplexes were sampled continuously in 10 to 50 cm intervals depending on 

horizontation and thickness. At least three representative samples were collected from each 

intercalated loess units. For micromorphological investigations one representative, 

undisturbed and oriented block was taken from each pedomember horizon. The profiles 

Batajnica and Stari Slankamen were not sampled for micromorphology, as detailed 

micromorphological investigations and paleopedological descriptions of these sites are 

already available (Bronger, 1976; Marković et al., 2009).  

For Study 6, modern forest and grassland soils have been sampled for n-alkane analyses. 

Litterbag samples for Study 7 were provided by Prof. K. Kalbitz (University of Amsterdam, 

Netherlands). The litterbag experiment was conducted in the Fichtelgebirge using litter of five 

different species (Acer pseudoplatanus., Fagus sylvatica, Sorbus aucuparia, Picea abies and 

Pinus sylvestris), which has been exposed in the field for up to 27 months. Details on site and 

experiment design are described in Gerstberger et al. (2004) and Kalbitz et al. (2005). After 

drying and grinding of the collected litter samples, all replicates were combined for further n-

alkane and δD analyses.  
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3.2 Analyses, data exploration and applied proxies 

After drying, all soil samples were finely ground for the further analyses, except the aliquots 

for rock magnetic measurements, n-alkane analyses and of course the samples for 

micromorphological investigations. Litter samples (Study 7) were also finely ground for n-

alkane analyses to make also internal lipids accessible for the extraction solvent. 

3.2.1 Inorganic geochemistry (Study 1 and 3) 

The samples were analyzed for their element composition by J. Eidam (University of 

Greifswald) using a Philips 2404 X-Ray Fluorescence Spectrometer. The sulfur contents were 

measured separately via thermal conductivity detection on a Vario EL elemental analyzer 

(Elementar, Hanau, Germany) and carbonate contents were determined according to the 

procedure of Hedges and Stern (1984) by calculating the difference in C content of the sample 

material with and without HCl fumigation. The measurements were also carried out on a 

Vario EL elemental analyzer.  

For a geochemical characterization of the loess-paleosol sections (Study 1), a discriminant 

analysis was carried out. Furthermore, element ratios (Al/Ti, Fe/Ti, Fe/Al) and the A-CN-K 

diagram (ternary diagram of K2O–CaO* + Na2O–Al2O3, with CaO* referring to silicatic 

bound Ca) according to Nesbitt and Young (1984) were applied allowing to assess 

provenance, as well as selective enrichment or depletion of grain size and mineral fractions of 

silicates. The origin of the loess was evaluated based on its geochemical characteristics and 

comparison to the geochemical composition of potential source areas. The latter is derived 

from published data of floodplain sediments in the Danube catchment (Salminen et al., 2005) 

and the average composition of the Ukrainian and Baltic shield (Ronov and Yaroshevskiy, 

1976). The interpretation of the geochemical composition in terms of provenance (Study 1) is 

supplemented by an evaluation of the background susceptibilities of the loess and of the 
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geomorphodynamic setting such as paleowind direction. For the evaluation of different 

weathering indices (Study 3), all indices were calculated on a molar base.  

3.2.2 Rock magnetic measurements and parameters (Study 2 and 5) 

All rock magnetic measurements were performed on sample material densely packed into 

plastic boxes in order to avoid movement of the particles during the analyses. The magnetic 

susceptibility was determined on a KLY-3 Kappabridge of Agico (Brno, Czech Republic) at 

0.875 kHz and 300 A/m and is given as mass specific susceptibility (χ). The frequency 

dependence of susceptibility (χfd = χ(0.3 kHz) - χ(3kHz)) was measured with a MAGNON 

susceptibility bridge (MAGNON, Dassel, Germany). For the determination of the isothermal 

remanent magnetization (IRM) the sample material was exposed to a pulsed magnetic field of 

2000 (IRM2T) and 350 mT (IRM0.35T) (back field) produced by a MAGNON PM II pulse 

magnetiser. Magnetization was then measured via an AGICO JR-6 spinner magnetometer. 

Measurements of the anhysteretic remanent magnetization (ARM) were performed via a 

Magnon AFD 300 demagnetiser using a 50 µT static and 100 mT alternating field. The 

coercivity of remanence (Bcr) was determined by linear interpolation between the data points 

(acquired IRM vs. applied pulse field) when stepwise imprinting IRM reversely to a prior 

acquired IRM2T.  

χ generally reflects concentration of ferrimagnetica (i.e. magnetite and maghemite) as well as 

changes in their grain size distribution (e.g. Tang et al., 2003). In contrast, χfd and χfd% (= 

χfd/χ(0.3 kHz) × 100)  is exclusively sensitive to the concentration and relative contribution of 

ferrimagnetica in the SP-fraction (~ <0.03 µm), respectively (Banerjee, 1994; Liu et al., 

2007). IRMs are essentially controlled by the concentration of antiferromagnetica (hematite 

and goethite) and of ferrimagnetica in the single-domain (SD) and multidomain (MD) range 

(0.03-10 µm and >10 µm, respectively). While the ratio of  IRM2T/IRM0.35T (S-ratio) is 

applied as proxy for the relative abundance of ferrimagnetica vs. antiferromagnetica (Maher, 
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1986, Wang et al., 2006), the average of both IRMs, the so-called HIRM, is regarded as a 

measure for the concentration of antiferromagnetica (Geiss et al., 2004). As the ARM is 

particular sensitive to the concentration of SD-ferrimagnetica, the ARM/IRM2T ratio is 

applied as proxy for changes in the ratio of SD vs. SD to MD ferrimagnetica (Van Velzen and 

Dekkers, 1999). For further characterization of changes in the grain size distribution of 

ferrimagnetica the SIRM/χfd and ARM/χfd ratio have been introduced, indicative for the ratio 

of SD to MD vs. SP - fraction  and SD - vs. SP – fraction, respectively (see Study 5, Section 

2.2). Bcr generally is controlled by changes in magnetic mineralogy and grain size distribution, 

but also reflects surficial maghemitization of magnetite (van Velzen and Dekkers, 1999; 

Avramov et al., 2006; Deng et al., 2006; Wang et al., 2006). The essential fundamentals for 

the paleoenvironmental interpretation of this set of rock magnetic parameters are that in 

course of pedogenesis especially SP-sized ferrimagnetica are formed. In case of (seasonal) 

excess soil moisture, however, preferentially this fraction is destroyed (Thompson and 

Oldfield, 1986). On the other hand, it is the coarse ferrimagnetic fraction, which is more 

susceptible for hematization in case of strongly oxidizing conditions (Gallagher et al., 1968; 

Chen et al., 2005).  

3.2.3 Soil color measurements and diffuse reflectance spectroscopy (Study 4 and 5) 

Hematite/(Hematite + Goethite) ratios (Hm/(Hm+Gt) were determined via diffuse reflectance 

spectroscopy (drs) following the Torrent et al. (2007) approach. Spectroscopic measurements 

were performed relative to a white HALON (sintered polytetraflourethylene) standard using 

an AgriSpec spectrometer coupled with a Mug-Light A1221000 detector (ASDInc, Boulder, 

Colorado, USA). Besides that, Munsell-color based measures for soil reddening (rubification) 

were applied i.e. the Rubification Index (RI; Harden 1982) and the Redness Rating (RR; 

Torrent et al. 1980; Torrent and Barrón 1993). Munsell colors were determined on dry and 

wet soil clods for each loess-paleosol sample. 
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3.2.4 Grain size and micromorphological analyses (Study 4)  

The grain size analyses were performed using a Malvern Mastersizer S analyzer and wet 

sieving for the >600 µm fraction. Sample pre-treatment followed the procedure proposed by 

Konert and Vandenberghe (1997) comprising i) removal of carbonates by boiling HCl (10%) 

treatment and ii) disaggregation using sodium hexametaphosphate. Prior to laser analyses the 

material was subjected to ultrasonic treatment to ensure complete disaggregation. As proxy 

for the clay content the <5 µm laser fraction was applied, showing the best correlation to 

previously published results from pipette analyses for the Stari Slankamen section (Bronger 

1976). To detect sedimentologically caused grain size changes (e.g. due to changing wind 

strength) the ratio of the 16-44 µm to 5.5-16 µm grain size fraction (U-ratio) was calculated 

(Vandenberghe et al., 1998, Sun et al., 2006).  

3.2.5 Micromorphological analyses (Study 4)  

Thin sections of > 2.8*4.8 cm² size were prepared from undisturbed oriented soil samples 

according to Beckmann (1997). The description of micromorphological features follows the 

nomenclature of Stoops (2003). As the type of “b-fabric” and “c/f related distribution pattern” 

is related to soil forming intensity a micromorphological proxy of soil formation intensity 

(MPI) was implemented transferring both features into numerical values (Study 4, Table 4-

S1). 

3.2.6 n-Alkane analyses (Study 6, 7) and δD measurements (Study 7) 

The extraction and purification of the n-alkane fraction followed the procedure given in Zech 

and Glaser (2008) involving the following steps i) addition of an internal standard (5α-

androstane), ii) lipid extraction with a methanol/toluene mixture (7/3) using 24 h of soxhlet 

extraction for (paleo-)soil and loess samples (Study 6) and accelerated soxhlet extraction 
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(ASE) for litter samples (Study 7), iii) saponification of esters using 0.5 M KOH in methanol, 

iv) purification of the n-alkane fraction via column chromatography (Al-oxide and Silica, 

each 5% deactivated, elution with hexane - toluene mixture 85/15). After concentration and 

addition of a recovery standard (hexatriacontane) separation and quantification of individual 

n-alkane homologues (Study 6) was performed on a HP 6890 gas chromatograph coupled to a 

flame ionization detector (GC-FID).  

δD values of n-C27, n-C29, n-C31 alkanes (Study 7) were measured on a Thermo Scientific 

Delta V Advantage isotope ratio mass spectrometer interfaced to a Thermo Scientific Trace 

GC Isolink and expressed relative to Vienna Standard Mean Ocean Water (VMSOW). 

Samples of spruce and pine were not analysed for isotopic composition as lower n-alkane 

concentration hampered routine δD-measurements.  

4 Results/Discussion 

4.1 Geochemical characterization and origin of the Southeastern and Eastern 

European loess (Study 1) 

The element fingerprint (Fig. 1-6) of the loess in the middle and lower Danube Basin sites as 

well as the Ukrainian site, reveal a composition similar to various other loess regions of the 

world. The element contents are close to values for the upper continental crust (UCC). 

Relative enrichment or depletion factors mostly range between 2 and 0.5, which can be 

attributed to weathering or mineral – and grain size sorting effects on element concentration. 

Further evidence for UCC-like composition of the loess parent material is provided by 

element ratios such as Fe/Ti (Fig. 1-5) and the A-CN-K plot (Fig. 1-4). The A-CN-K plot 

reveals also a high pre-weathering of the loess indicating at least one sedimentary recycling 

phase of the loess source material. Hence, the weathering signal is most likely inherited 
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already from sedimentary source rocks, which is also in agreement with findings from other 

loess regions (Gallet et al., 1998; Jahn et al., 2001). 

4.1.1 The “Dnieper loess” 

According to discriminant analyses, the loess of the Stary Kaydaky site can be distinguished 

from the loess at the Danube Basin sites by higher contents of Si and Zr (Fig. 1-2). Also Hf 

contents are elevated (Fig. 1-3). As glaciofluvial deposits of the Fennoscandinavian ice sheet 

in the Ukraine are characteristically enriched in these elements (Batista et al., 2006; Lis and 

Pasieczna, 2006), this may represent a major potential source for the loess material. 

Additional evidence is given by the A-CN-K plot (Fig. 1-4), indicating grain size - and 

mineral sorting, typical for glaciofluvially reworked material. The high pre-weathering of the 

loess and the UCC-like composition of its parent material points to sedimentary rocks of the 

Russian platform as primary source for these glaciofluvial deposits.  

4.1.2 The “Danube loess” 

Regarding the geochemical composition, the loess from the lower and middle Danube basin is 

very similar to each other and to Danube floodplain sediments (Fig. 1-2, Fig. 1-4, Fig. 1-5, 

Fig. 1-6). This confirms that the loess from both regions derives predominantly from Danube 

alluvium, as proposed by Smalley and Leach (1978). At the Mircea Voda site, however, 

distinctly higher Zr, Hf and especially Si contents suggests a minor but geochemically 

significant contribution of an additional dust source area (Fig. 1-3). Distribution and 

orientation of sand (dune) fields indicate at least periodically prevailing N to NE paleowind 

direction in the Eastern part of the lower Danube basin during periods of high eolian activity 

(Fig. 1-8). Hence, material deriving from the Ukrainian glaciofluvial sediments likely 

contributes to the loess of the Mircea Voda site. This is also corroborated by a trend in 

background magnetic susceptibilities recorded in loess sites from the Black Sea coast 
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northwards (Fig. 1-7). This trend can be explained by an increasing dilution of the magnetic 

signal due to higher quartz contents. From the geochemical point of view, in all of the studied 

loess sites, no prominent down-profile change in dust provenance could be detected. 

4.2 Stratigraphy (Study 2) 

Like in the Chinese loess, the magnetic susceptibility of the LPSS in the Danube and Dnieper 

loess area is elevated in the paleosols compared to the loess (Fig. 2-3) and thus indicates 

pedogenesis. Characteristic magnetic susceptibility pattern match changes in the global ice 

volume as indicated by the δ18O signature of benthic foraminifera at ODP site 677. Besides 

characteristic susceptibility pattern also pedostratigraphic marker horizons have been 

detected. Both allowed the correlation to LPSS with already established chronostratigraphies 

in the region as well as on the Chinese loess plateau. At the Danube Basin sections, such a 

characteristic feature in the magnetic susceptibility record is for example a bend at the top of 

the S1-peak, possibly representing MIS 5a-c and the twin or triple peak of the S2 

pedocomplex, correlating with MIS 7. The S3 pedocomplex typically is the unit with the 

highest magnetic susceptibility values of the South-Eastern European LPSS and formed 

during MIS 9. The underlying S4, S5 and S6 pedocomplexes were attributed to MIS 11, MIS 

13 – MIS 15 and MIS 17, respectively. The strongly developed S5 can be regarded as kind of 

marker horizon, since it is the youngest pedocomplex of the Brunhes-chron with remarkable 

rubification and clay illuviation.  

At the Stary Kaydaky section, the magnetic susceptibility record is biased by pedogenic 

overprint of the loess and several hiati, especially in the older part of the section. Yet, 

pedostratigraphic markers could be well identified allowing correlation to the stratigraphic 

system of the Ukraine. However, there are essentially two main contrasting stratigraphic 

models proposed for loess-paleosol successions of the Ukraine (Table 2-2). The crucial point 

for these regional stratigraphic systems is the chronological placement of the so-called 
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Pryluky and Kaydaky pedocomplexes. Yet, the good concordance of the magnetic 

susceptibility curve with changes in the marine δ18O signal during the last interglacial, 

provides a strong evidence for correlating the S1 (Pryluky/Kaydaky complex) at Stary 

Kaydaky to MIS 5 (Fig. 2-6). This supports the stratigraphic model of Gerasimenko (2004, 

2006). Accordingly, the time scale for the older units of the Stary Kaydaky section could be 

developed. As a result, the lowermost sampled paleosol is attributed to MIS 13 – 15. Hence, 

the time span captured by the studied LPSSs comprise the last 600.000 to 700.000 years (Fig. 

2-5).  

4.3 Evaluating rock-magnetic and geochemical proxies of pedogenesis and 

paleoclimate: the magnetic susceptibility and element ratios (studies 2, 3, 5) 

In loess-paleosol research, magnetic susceptibility is widely applied as pedogenesis proxy, as 

data sets can be obtained with little effort. Furthermore, studying surface soils on the Chinese 

Loess Plateau, Maher et al. (1994) developed a transfer function between magnetic 

susceptibility and mean annual precipitation (MAP). We evaluated the applicability of this 

approach to SE-European loess profiles and found that MAP values calculated for the modern 

soils do not correspond to actual climatological data (Study 2, Table 2-3). Also, neither for 

modern soils nor for paleosols, relative trends between the profiles are reproduced by the 

calculated MAP values. Moreover, the attenuation of the magnetic susceptibility from S4 to 

S6 contrasts intensity of soil development. Several possible explanations for these 

observations are presented in Study 2. Further evaluation with a more extensive rock 

magnetic dataset (Study 5) could relate the attenuation of the bulk magnetic susceptibility in 

the older pedocomplexes to a complex interplay of hematization of MD-ferrimagnetica and 

preferential destruction of SP-ferrimagnetica. Hence, a straight forward interpretation of 

magnetic susceptibility in terms of pedogenesis intensity and precipitation is not possible.  
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As proxies for silicate weathering and also leaching intensity, a variety of element ratios are 

applied in paleopedology. By evaluating different types of geochemical weathering indices 

(Study 3) it could be shown that indices involving Si, Zr or Ti as weathering resistant element 

can be more easily biased by changing parent material composition than those using Al. 

Furthermore, regarding the choice of the mobile element, proxies relying on Ca or Mg are 

likely to be influenced by postpedogenic dynamics of secondary carbonate. This is also true 

for Sr. The case examples from the Mircea Voda, Batajnica/Stari Slankamen and Stary 

Kaydaky site show a significant correlations between Rb/Sr and Ba/Sr ratios and the 

carbonate content (Fig. 3-3). The Index B of Kronberg (Kronberg and Nesbitt, 1981), the 

Chemical Index of Weathering (Harnois, 1988), the Plagioglas Index of Alteration (Fedo et 

al., 1995) and the Chemical Index of Alteration (Nesbitt and Young, 1982) involve silicatic-

bound Ca. Applying to calcium carbonate containing material, sensitivity analyses revealed 

that these indices can significantly suffer from uncertainties in the determination of the 

silicatic Ca fraction (Table 3-2). Moreover, ratios relying on K as mobile element can be 

biased by K-fixation (illitization). Hence, with respect to suitability for loess-paleosol 

samples, the molar ratio of Al2O3/(Na2O + Al2O3) is introduced as Chemical Proxy of 

Alteration (CPA). The CPA is regarded as proxy of silicate weathering and applied as such in 

the following studies.  

4.4 Paleoenvironmental reconstruction (2, 4, 5, 6) 

As the CPA confirmed a multiple pedogenic overprint (soil welding) of major parts of the 

Stary Kaydaky section, and due to several hiati, the LPSS of this site turned out to be not 

suitable for a paleoclimatic transect study. A detailed second field work moreover questioned 

the plateau-character of the paleorelief. Hence, further paleoclimatic investigations focused 

only on the Serbian and Romanian LPSS. Being plateau-sites, a similar relief position and 
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exposition is given for these sequences, allowing spatial comparison of paleopedologic 

characteristics and climate proxies.  

Reconstructing pedogenic processes essentially by means of field observations, 

micromorphology, calcium carbonate measurements, soil color and grain size analysis, 

allowed a tentative typological characterization of the paleosols. For the Mircea Voda site a 

change in typology of interglacial paleosol has been identified (Study 4, Table 4-S2). During 

younger interglacials (MIS 5, MIS 7) soil development peaked in steppe soils as indicated for 

example by a microstructure typical for fossil A horizons. Rubified Cambisols were formed in 

the older warm periods (MIS 13-15, MIS 17) and transitional soils in MIS 9 and 11. A similar 

change in paleosol typology from fossil rubified Luvisols and rubified Cambisols to steppe 

soils during the Pleistocene has been previously described also for the Batajnica and Stari 

Slankamen section (Bronger, 1976; Marković et al., 2009).  

Furthermore, as semi-quantitative measures of soil forming processes the MPI, CPA and <5 

µm fraction have been applied (Study 4). These proxies reveal a significant decrease of soil 

formation intensity, silicate weathering intensity and clay formation intensity over the last 

700.000 years for the middle and lower Danube Basin sites (Fig. 4-1, Fig. 4-S3, Fig. 4-S4). In 

light of present day steppic conditions higher intensity of silicate weathering and clay 

formation in Mid-Pleistocene interglacials likely relate to higher rainfall. The regional climate 

trend between the Vojvodina and the lower Danube Basin appears to have persisted also 

during most of the past interglacials, with higher values of the CPA and the <5 µm fraction 

reflecting the more humid conditions at the Serbian site.  

A more differentiated view on changing paleoenvironmental conditions can be achieved by 

investigating changes of the Fe-mineralogical composition (Study 5). The results show an 

increase in rubification and drs-determined Hm/(Hm+Gt) ratios from Late to early Mid-

Pleistocene paleosols (Fig. 5-7). Furthermore, intensified hematization of maghemite is 

indicated by increasing ARM/SIRM values (Fig. 5-5, Fig. 5-9). Altogether, these parameters 
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point to more oxidizing conditions during older interglacials being indicative for warmer 

and/or dryer summers than at present day.  

According to n-alkane results (corrected for diagenetic alteration) from Mircea Voda (Study 

6, Fig. 6-5), tree abundance was not higher during formation of the fossil Cambisols than in 

the Holocene. Therefore, also the biomarker analyses provide evidence for summer dryness as 

a persistent feature in the Danube Basin, during the warm periods of the last 700.000 years. 

For these reasons, higher rainfall deduced from MPI, CPA and the <5 µm fraction, relates not 

to an increase in summer precipitation, but mainly to higher rainfall in the winter half-year. 

This suggests also a rise of winter temperatures so that winter precipitation becomes 

hydrological active. Hence, regarding the interglacials, the synthesis (Study 5) of the 

paleopedologic multi-proxy dataset reveals a decrease of rainfall and cooling over the last 

700.000 years, which was linked to a shift in seasonality from Mediterranean like conditions 

to a steppe like climate.  

The aridization and cooling trend is accompanied by an increase in dust sedimentation rate 

(Fig. 2-7), as derived from the depth-age relationship of the Mircea Voda site (Study 2). From 

the composite Batajnica / Stari Slankamen section no sedimentation rates were calculated to 

avoid site specific effects of dust deposition. Nevertheless, from applying the U-ratio (Study 

4) for both the lower and the middle Danube Basin sections, an increase of wind strength 

during the Mid- and Late Pleistocene is indicated (Fig. 4-1, Fig. 4-S3, Fig. 4-S4). Hence, 

climate evolution of the SE-European lowlands during the last 700.000 years` interglacials is 

also characterized by an enforcement of the aeolian dynamics.  

Trends of Pleistocene aridization, cooling and increase of wind strength were detected not 

only regarding the interglacials, but also the glacial periods (Fig. 4-1, Fig. 5-9). This 

emphasizes a general climate trend. As similar climate trends can be traced to the East across 

Eurasia in various types of archives and proxies (Fig. 4-2), the aridization and cooling of SE-

European lowlands during the last 700.000 years can be regarded as regional expression of a 
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Eurasian-wide climate feature. Several mechanisms are discussed as potential triggers (Study 

4 and 5), such as changes in solar insolation, atmospheric CO2, global ice volume, and sea 

surface conditions. However, these factors fail to explain a gradual cooling and aridization of 

Eurasian midlatitudes, as none of the relevant proxies exhibit a similar trend (Fig. 4-3). 

Nevertheless, they likely caused some deviations from the general climatic trend as discussed 

in Study 5. Yet, Quaternary uplift of Eurasian mountain ranges is proposed as potential 

trigger, giving the best explanation for the observed gradual climatic shifts in SE-Europe and 

Eurasia, respectively.  

4.5 n-Alkane biomarkers and their δD isotopic signature as novel paleoenvironmental 

proxies in loess-paleosol studies – an evaluation (studies 6, 7) 

n-Alkane ratios and their δD isotopic signature have been recently implemented in loess-

paleosol studies as novel proxies for paleovegetation and paleoclimate (e.g. Xie et al., 2002; 

Liu and Huang, 2005). As an outlook for future paleoenvironmental investigations on SE-

European loess profiles, studies 6 and 7 are addressed to evaluate the applicability of these 

novel proxies to LPSS research.  

Applying the n-alkane approach to the Mircea Voda site (Study 6), a significant correlation of 

the long chain n-alkane ratios (LARs) C27/C31 and C27/C29 with the odd over even 

predominance (OEP) is found in loess-paleosol samples. The results show a decrease of any 

predominance (e.g. C31 over C27, C29 over C27) in the depth profile of the fossil soils going 

along with a decrease in OEP (Fig. 6-5). Low OEP values indicate n-alkanes derived from 

microbial reworking. Microbial derived n-alkanes are furthermore characterized by a low 

ratio of long-chain n-alkanes (≥ C-25) versus short chain n-alkanes (<C-25) (i.e. 

Alk>C25/Alk<C25 ratio). This ratio is covarying with the OEP in paleosol depth profiles (Fig. 6-

5). Therefore, the decrease of long chain n-alkane predominances is likely related to 

increasing dilution of the original plant derived n-alkane signal by microbial derived n-
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alkanes. Investigations on modern soils under various types of vegetation reveal similar 

pattern (Fig. 6-1, Fig. 6-3, Fig. 6-4, Fig. 6-6), indicating a decrease of long chain n-alkane 

predominances with depth resulting from increasing degradation of the plant derived alkanes 

and increasing dilution by microbial derived alkanes. These results highlight postsedimentary 

alteration of the biomarker signal as an important issue to cope with in paleoenvironmental 

research. However, based on OEP - LAR regression functions from modern top soils, a 

correction procedure is proposed (Fig. 6-2, Fig. 6-7) to account for this effect in future n-

alkane studies of loess-paleosol sequences.  

The findings from soil depth profiles are corroborated by the litterbag study (Study 7). Also 

this experiment shows a decrease of initially high OEP values and a convergence of LARs to 

1 with progressive degradation (Fig. 7-1). Mid-chain n-alkanes become enriched relatively to 

long chain n-alkanes. During spring and summer times, when plant derived long chain n-

alkanes are decomposed fastest, mid-chain n-alkanes exhibit the strongest absolute increase 

(Fig. 7-3), indicating the microbial production of n-alkanes. Hence, in course of 

decomposition the long chain plant derived n-alkane pool becomes an increasingly mixed 

pool of microbial derived and plant derived n-alkanes (Fig. 7-4).  

The increase of microbial derived mid-chain n-alkanes in the summer period is furthermore 

accompanied by δD-enrichment of long-chain homologues (Fig. 7-3). In line with the 

previous observations, this suggests that long-chain n-alkanes of (fossil) organic matter do not 

explicitly derive from the degrading leaf-litter, but also from a microbial source, sensitive to 

seasonal δD variations of the precipitation. Thus, the performed degradation studies advise 

caution, when applying the n-alkane biomarker and δD approach in loess-paleosol studies. 

Though these proxies represent potential novel paleoclimatic tools, effects of decomposition/ 

early diagenesis have to be considered.  
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5 Conclusion 

Loess deposits in the middle and lower Danube basin represent valuable archives for the Late 

and Mid-Pleistocene climate evolution. According to their geochemical composition they also 

represent an average sample from the UCC, altered by at least one sedimentary cycle. They 

formed from dust, blown out from alluvial sediments of the Danube and its tributaries and can 

be geochemically distinguished from the loess in the Dnieper region. For the eastern part of 

the lower Danube Basin, glaciofluvial sediments of the Fennoscandinavian ice sheet in the 

Ukraine represent an additional loess source, supplying material via northerly katabatic winds. 

Chronostratigraphic investigations based on correlation of magnetic susceptibility pattern and 

pedostratigraphic marker of the Batajnica/Stari Slankamen and Mircea Voda LPSS revealed 

that these sequences comprise at least the last 700.000 years of climate history in SE-Europe. 

A chronostratigraphy could be also developed for the Stary Kaydaky site (Ukraine). At this 

site, the magnetic susceptibility record could give strong evidences for the chronological 

placement of the Kaydaky soil, a heavily discussed key unit in the Ukrainian 

pedostratigraphy. However, due to hiati, soil welding and the slope position of the paleosols, 

this site turned out to be unsuitable for a paleoclimatic transect study. Hence, paleoclimatic 

investigations focused on the Plateau sites of the lower and middle Danube Basin (Mircea 

Voda, Batajnica/Stari Slankamen). Yet, our findings showed that a straight forward 

interpretation of the magnetic susceptibility in terms of paleorainfall and pedogenesis 

intensity is not applicable at these profiles. Detailed rock magnetic analyses revealed biases 

due to various factors such as hematization as well as reductive dissolution of ferrimagnetica. 

Also geochemical based weathering indices should be evaluated carefully, when applied to 

LPSS. According to sensitivity analyses and the case examples from Mircea Voda, 

Batajnica/Stari Slankamen and Stary Kaydaky, many indices essentially suffer from 

postpedogenic alteration due to dynamics of secondary carbonate, uncertainties in quantifying 

silicatic Ca, illitization in course of diagenesis and changes in parent material composition. 
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The molar ratio of Al2O3 / (Na2O + Al2O3) is introduced as Chemical Proxy of Alteration 

(CPA), representing the most suitable indicator for silicate weathering intensity in LPSS.  

The CPA is one out of several parameters in the applied paleopedological multi-proxy 

approach. For the studied LPSS in the middle and lower Danube Basin, a decrease of rainfall 

from the interglacials of the early Mid-Pleistocene to the Late Pleistocene and Holocene is 

evidenced not only by the silicate weathering intensity but also by micromorphological 

parameters of soil development intensity, as well as a decrease in clay formation intensity. 

Furthermore, soil types changed from fossil Luvisol and Cambisols to fossil steppe soils. At 

the same time, soil color indices, diffuse reflectance spectroscopy as well as rock magnetic 

parameter suggest less oxidative soil environment, reflected in decreasing intensity of 

hematite formation. Therefore, based on the presented multi-proxy dataset, it is to conclude 

that interglacial climate in the lower and middle Danube Basin considerably changed over the 

Pleistocene. A Mediterranean like climate with high summer temperatures and a pronounced 

estival dry period and mild and wet winters prevailed in interglacials of the early and middle 

Mid-Pleistocene. Soil development on loess plateaus peaked in (chromic) Luvisols and 

Cambisols during these interglacials. In subsequent warm periods, (winter-) temperatures as 

well as precipitation decreased, resulting in higher continentality and a steppe-type climate. 

Hence, steppe soils developed on top of loess plateaus. Aeolian activity increased over the 

Pleistocene as evidenced by the U-ratio and sedimentation rates. According to the relative 

intensity of pedogenic proxies, today’s regional trends in aridity between the middle and 

lower Danube Basin were persisting also in most of the Mid-Pleistocene interglacials. From 

the presented findings it is to conclude that summer dryness was a persistent feature of 

interglacial climate in the middle and lower Danube Basin, at least during the last 700.000 

years. This is additionally supported by biomarker results suggesting only a limited expansion 

of trees during the interglacials on the loess plateaus.  
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Also regarding the cold stages our results suggest a progressive cooling, increasing dryness 

and wind strength over the Mid- and Late Pleistocene. These gradual changes of glacial and 

interglacial climate conditions cannot be explained by orbital forcing, changes in global ice 

volume or sea surface conditions of the North Atlantic. Having excluded these factors, 

Quaternary uplift of Eurasian mountain ranges appears as potential trigger for the observed 

climatic trends in SE-Central European lowlands. Following this hypothesis, especially rain 

shadow effects and changes in atmospheric circulation induced by uplift of the Alps and 

Carpathians could be mechanisms explaining the expansion of the Eurasian steppe belt as far 

west as to SE-Europe over the last 700.000 years. Climate changes on shorter scale and 

deviations from this gradual climate trend can be related to triggers such as orbital parameters, 

changes in global ice volume or sea surface hydrography of the North Atlantic.  

To conclude, the present study highlights the potential of a paleopedological – geochemical 

multi-proxy approach to derive information on the natural baseline of environmental change 

in the past, even with respect to changes in seasonality of climate variables.  

The methodological investigations on the n-alkane and D/H isotope approach reveal early 

diagenesis (microbial reworking) as major drawback of these methods. However, an approach 

to account for postsedimentary alteration of n-alkane biomarker ratios is proposed. Therefore, 

ongoing work involves more detailed biomarker and stable isotope (D/H and δ13C) analyses in 

multi-proxy studies of LPSS in the middle and lower Danube Basin. Furthermore, microfossil 

analyses (pollen, phytoliths) will complement the paleoenvironmental reconstruction, 

representing independent proxies for paleovegetation and paleoclimate. Moreover, modelling 

studies are currently conducted to test the sensitivity of SE-European climate to elevation 

changes of surrounding mountain ranges.  

 



 Extended Summary                                                        25 
 

 

6 Contributions to the manuscripts 

This cumulative dissertation includes 7 studies. My contributions comprise the preparation of 

6 manuscripts as first author including the scientific discussion of the results and preparation 

of all illustrations. I contributed as co-author in the scientific discussion of Study 7 and 

preparation of the manuscript. All micromorphological analyses, grain size analyses, diffuse 

reflectance spectroscopic measurements and n-alkane analyses were done in own work. 

Approximate contributions to each study are given as follow:  

 

General 

Sampling: B.Buggle (45%), B. Glaser, (45 %), I. Glaser (5%), Tivadar Gaudenyi und Мladjen 

Јovanović (5%). 

Sample preparation (drying, milling): 50% (B. Buggle), 50% (Ana Malagodi). 

 

Study 1 

Sulfur-Analyses (Vario EL elemental analyzer): B. Buggle (70%, measurement, sample 

preparation), A. Malagodi (30 %, sample preparation). 

Other major and trace elements (XRF-analysis): J. Eidam (100%). 

Statistical analysis/discussion of the results: B. Buggle (100%). 

Manuscript preparation: B. Buggle (100%). 

Comments to improve the manuscript: B. Glaser (30%), U. Hambach (30%), L. Zöller (30), 

M. Zech (7%), S. Marković (3%). 

 

Study 2 

Environmental magnetic analysis: (Agico KLY-3 Kappabridge): B. Buggle (80 %),              

U. Hambach (20%).  

Discussion of the results: B. Buggle (70%), U. Hambach (20%), N. Gerasimenko (10%). 
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Manuscript preparation: B. Buggle (100%). 

Comments to improve the manusript: U. Hambach (60%), B. Glaser (30%), N. Gerasimenko 

(7%), S. Marković (3%). 

 

Study 3 

Determination of carbonate content (Vario El elemental analyzer): B. Buggle (70 %, sample 

preparation, measurement), A. Malagodi (30%, sample preparation).  

Major and trace elements (XRF-analysis): see Study 1. 

Discussion of the results: B. Buggle (100%).  

Manuscript preparation: B. Buggle (100%). 

Comments to improve the manusript: U. Hambach (31%), B. Glaser (23%), N. Gerasimenko 

(23%), S. Marković (23%). 

 

Study 4 

Preparation of thin sections: Th. Beckmann (100 %).  

Interpretation of micromorphological features: B.Buggle (75%), M. Kehl (25%).  

Grain size analyses (sample preparation and measurement on Malvern Mastersizer S): 

B. Buggle (100%). 

Determination of total organic carbon (Vario El elemental analyzer): B. Buggle (70%, sample 

preparation, measurement), A. Malagodi (30 %, sample preparation).  

Discussion of the results: B. Buggle (75%), U. Hambach (15%) M. Kehl (7%) N. 

Gerasimenko (1%), S. Marković (1%), L. Zöller (1%). 

Manuscript preparation: B. Buggle (100%). 

Comments to improve the manusript: U. Hambach (40%), M. Kehl (40%), B. Glaser (15%), 

S. Marković (5%). 
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Study 5 

Determination of soil color proxies: B. Buggle (75%), A. Malagodi (25%).  

Diffuse reflectance spectroscopy (AgriSpec spectrometer): B. Buggle (80% measurement, 

data analyses), K. Müller (20%, measurement).  

Rock magnetic analysis: U. Hambach and co-workers (80%), B. Buggle (20%).  

Discussion of the results: B. Buggle (70%), U. Hambach (27%), S. Marković (3%).  

Manuscript preparation: B. Buggle (100%). 

Comments to improve the manusript: U. Hambach (45%), B. Glaser (30%), S. Marković 

(25%). 

 

Study 6 

n-Alkane analyses (sample preparation, GC-FID measurements): B. Buggle (100%). 

Discussion of the results: B. Buggle (70%), G. Wiesenberg (15%), M. Zech (15%). 

Manuscript preparation: B. Buggle (100%). 

Comments to improve the manusript: B. Glaser (50 %), G. Wiesenberg (50%). 

 

Study 7 

n-Alkane analyses (sample preparation, GC-FID measurements): B. Buggle (100 %). 

Compound specific δD analysis: N. Pedentchouk (100 %). 

Bulk δD analysis of leaf litter: Laboratory of Isotope Biogeochemistry, University of 

Bayreuth (Prof. Gebauer and co-workers) (100%). 

Discussion of the results: M. Zech (32%), B. Buggle (28%), N. Pedentchouk (28%), B. Glaser 

(6%), K. Leiber (6%).  

Manuscript preparation: M. Zech (100%). 

Comments to improve the manusript: B. Buggle (39%), N. Pedentchouk (39%), B. Glaser 

(7%), K. Leiber (7%), K. Kalbitz, (7%), S. Marković (1%).  
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Abstract 

Тhe loess/paleosol sections of Batajnica/Stari Slankamen (Serbia), Mircea Voda (Romania) 

and Stary Kaydaky (Ukraine) were geochemically characterized based on discriminant 

analysis of major and trace elements, the ratios of Al/Ti, Fe/Ti and Al/Fe, the A-CN-K ternary 

plot and element enrichment/depletion relative to the average composition of the upper 

continental crust. The origin of the loess material in the southern Pannonian Basin 

(Vojvodina), the lower Danube Basin/Dobrudja and the Dnieper area was evaluated by 

comparison with the representative element composition of possible source areas and by 

considering the geomorphodynamic setting. Also the background values of initial magnetic 

susceptibility of the loesses were taken into account. For the lower Danube Basin, Dobrudja 

and the Ukraine, paleowind direction was reconstructed based on the geographic distribution 

of sandy soil texture and dunes related to river systems. Finally, loesses were evaluated as 

possible samples of the average upper continental crust. Our results show that Danube and 

Dnieper loess areas can be clearly distinguished. The former reveal higher Al and Fe contents, 

the latter higher Si, Zr, Hf content and indications of effective mineral and grain size sorting. 

We can confirm that Vojvodina loess originated from Danube alluvial material and loess of 

the Dnieper area from glaciofluvial sediments of the Fennoscandinavian ice sheet. The 

Dobrudja loess derived also predominantly from Danube alluvium, but shows significant 

contribution of a second loess source, probably the glaciofluvial sediments of the Ukraine. 

This was forced by northerly katabatic winds from the Fennoscandinavian ice sheet, whereas 

WNW winds prevailed in the Western Walachian plain. The studied loesses reflect the 

average composition of the upper continental crust. Yet, biases exist due to selective 

mineral/element enrichment and depletion in the course of previous sedimentary recycling 

phases, respectively. Material of all studied loess deposits seems to derive originally from 

sedimentary rocks. 
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1 Introduction 

“Loess is not just the accumulation of dust” (Pécsi, 1990). This phrasal originally referred to 

the diagenetic processes involved in the transformation of dust into loess. Beyond this, we 

like to reformulate it to “Loess is not just accumulated dust” emphasizing the multiple 

importance of loess for geosciences. First and foremost to mention is the relevance of loess 

deposits with intercalated paleosols, so–called loess–paleosol sequences, as potential climate 

archives (e.g. Kukla, 1977; Catt, 1991; Derbyshire et al., 1997). Furthermore, distribution and 

origin of loess can give important information about paleowind direction (Pye, 1995; Muhs 

and Budahn, 2006). Even paleowind strength can be reconstructed by grain size distribution 

(Xiao et al., 1995). Loess is also considered as an average sample of wide areas of the earth`s 

surface and thus may be suitable for reconstructing the element composition of the upper 

continental crust (Taylor and McLennan, 1985). However, the origin of loess is seen as 

important for understanding the mechanisms connected with the forenamed multiple archive 

functions of this sediment in a region (Pye, 1995). During the last 15 years, geochemically 

based provenance studies gained increasing attendance (e.g. Muhs et al., 1990; Schnetger, 

1992; Jahn et al., 2001; Muhs and Benedict, 2006). Element fingerprints proved to be a 

powerful tool in evaluating the contributions of different dust source areas, even in a (semi)-

quantitative way (Muhs and Budahn, 2006). Meanwhile, many loess regions of the world are 

geochemically well characterized (e.g. Taylor, et al., 1983; Schnetger, 1992; Gallet et al., 

1996, 1998; Muhs et al., 2001; Smykatz-Kloss, 2003; Muhs and Budahn, 2006). However, 

this is not the case for the Vojvodina loess in the southern Pannonian Basin, the Romanian 

loess in the lower Danube Basin and at the Dobrudja loess plateau and the loess of the 

Dnieper area, though loess deposits of these areas represent extensive, several decameters 

thick and far back reaching sediments of the Quaternary in Europe (Bronger, 1976, 2003; 

Marković et al., 2003, 2006, 2007, 2008; Fuchs, et al., 2008; Buggle et al, 2009). Even the 
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most profound study on the origin of these loesses, given by Smalley and Leach (1978), is 

based mainly on a review of the geomorphodynamic system of the region. We therefore see 

the need for a basic geochemical characterization of these European loesses with respect to 

provenance. Therefore, the objectives of this study are 

1) To establish a geochemical discrimination and characterization of loess deposits in the 

southern Pannonian Basin (Vojvodina, Serbia), in the lower Danube Basin/Dobrudja 

(Romania) and in the Dnieper area. Possible source areas will be evaluated using a 

promising combination of a geochemical and geomorphodynamic approach. Since the 

loesses of the Vojvodina and the lower Danube Basin/Dobrudja should originate 

predominantly from Danube alluvium (Smalley and Leach, 1978), we expect these two 

areas to have a similar geochemical composition. Due to the proximity of the 

glaciofluvial deposits of the Fennoscandinavian ice-sheet, representing a likely dust 

source, the loess of the Dnieper area should show a distinctly different element 

fingerprint. These hypotheses will be tested. 

2) To check whether Taylor and McLennan’s (1985) proposal that loess deposits should 

provide information about the average element composition of the upper continental 

crust, is also valid for the Danube and Dnieper loess areas. 

2 Regional setting 

The Quaternary landscape evolution of the Pannonian (i.e. middle Danube) basin and lower 

Danube basin (including the Walachian Plain), and the adjacent Dobrudja Plateau, 

respectively, was strongly controlled by tectonic processes as well as by the 

geomorphodynamic response to the paleoclimatic settings. Basin inversion with NW–SE and 

N–S compression was the dominant endogenic triggering mechanism, causing uplift of the 

mountains at the basin margin and areas of uplift as well as accelerated subsidence in the 

interior basin (Nádor et al., 2003; Gábris and Nádor, 2007; Ruszkiczay-Rüdiger 2007). In 
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these subsiding areas thick sequences of fluvial sediments transported by the Danube and 

Tisza River accumulated. During cold periods of the Quaternary these rivers behaved as 

braided river systems, which changed several times their position within the Great Hungarian 

Plain due to tectonic activity. However, the Danube river channel remained relatively stable in 

the southern Serbian part of the Pannonian basin (south of the present day Danube-Tisza 

interflow; Gábris and Nádor, 2007; Ruszkiczay-Rüdiger, 2007). This is also true for the lower 

Danube basin upstream of Cernavoda City. Near to this location, the Karasu valley crosses the 

Dobrudja plateau – an upheaval zone between the Walachian Plain and the Black Sea coast. 

This valley is regarded as an ancient channel of the Danube reaching the Black Sea near 

Constanta (Pfannenstiel, 1950). Up to now it is neither clear, when the Danube used this 

channel, nor if the Danube bifurcated at Cernavoda so that a river channel followed the 

Dobrudja – Walachian Plain line further northwards to form a second mouth into the Black 

Sea in the area of the present day Danube delta (Pfannenstiel, 1950).  

Glacial melt waters are an important hydrographic factor controlling the sediment transport 

and the general sedimentary architecture of fluvial systems (e.g. Vandenberghe, 1995; 

Vandenberghe and Woo, 2002) During cold periods of the Quaternary, glaciers within the 

Danube catchment area were extensively developed in the Alps and alpine foreland. In the 

Carpathians, however, they developed only in the highest mountain ranges (Reuther et al., 

2007; Ruszkiczay-Rüdiger, 2007) and probably more widespread in the Late Pleistocene, 

considering the recent high surface uplift rates (Reuther et al., 2007). Through the Moravian 

depression, there was some additional temporary input of glacial melt water, deriving from 

the Fennoscandinavian ice sheet during the southernmost extension of the Saalian and 

eventually also Elsterian glaciation (Smalley and Leach; 1978; Macoun and Králík, 1995; 

Tyráček, 2006). Extensive loess sheets and loess plateaus of several meters thickness 

accumulated in the Pannonian Basin, especially in its southern part, and in the lower Danube 

basin/Dobrudja (Smalley and Leach, 1978; Haase, et al., 2007; Marković et al., 2008). These 
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loesses are intercalated with paleosols, formed during interglacial and interstadial periods, and 

reflect the Quaternary climate evolution of the region (e.g. Bronger 1976; Marković et al., 

2008). 

In the Ukraine, the channel of the middle and lower Dnieper river was already established in 

the Neogene by incision into the rocks of the East European platform. Hence, it`s position did 

not change substantially during the Quaternary (Matoshko, 2002). Since the early Pleistocene, 

the area of the middle and upper Dnieper valley in the Ukraine and neighboring Belarus was 

several times covered by the Fennoscandinavian ice-sheet, which modulated the land surface 

by erosional and depositional processes (e.g. Chugunny and Matoshko, 1995; Gozhik, 1995; 

Matoshko, 1995a, b). The southernmost advance of the ice sheet into Ukraine occurred during 

the Dnieper (i.e. Saalian) glaciation, approaching the Stary Kaydaky site up to about 50 km 

(Fig. 1-1). During cold periods of the Quaternary, an extensive and several meters thick loess 

cover formed in the Ukraine south of about 50 °N. in the western part and south of the Desna 

river in the eastern part, respectively. The Ukrainian loess is connected with the lower Danube 

basin loess in the Southeast and with the loess cover in the Russian part of the East European 

platform (Haase et al., 2007). The loess–paleosol sequences of the Ukraine represent a 

valuable archive for the environmental evolution during the Quaternary (Veklitch, 1982; 

Sirenko and Turlo, 1986; Velichko, 1990; Gerasimenko, 2004; Lindner et al., 2004; 

Bolikhovskaya and Molodkov, 2006) 

The today`s climate of the study areas, is characterized by increasing aridity towards the 

Black Sea coast. Depending on the dryness and drought periods, different kinds of steppe 

vegetation have developed (Buggle et al., 2009).  

As representative sections for the loess regions of Vojvodina (part of the Pannonian and 

middle Danube Basin, respectively), the lower Danube Basin/Dobrudja and the Dnieper area, 

we selected the Batajnica/Stari Slankamen site (Serbia), the Mircea Voda site (Romania) and 

the Stary Kaydaky site (Ukraine, Fig. 1-1).  
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Fig. 1-1. Location of the studied loess-paleosol sequences in a schematic map. Limits of the continental ice 
sheet were taken from Eissmann (2002).  

 

The two Serbian loess-paleosol sections Stari Slankamen (45° 7´ 58´´ N, 20° 18´ 44´´ E) and 

Batajnica (44° 55´ 29´´ N, 20° 19´ 11´´ E, Fig. 1-1) are located in about 30 km distance to 

each other at the right bank of the Danube River between Belgrade in the south and the 

Danube-Tisza confluence in the north. Both sections are situated in the Vojvodina province 

(Serbia) – the southeastern part of the Pannonian (Carpathian) Basin. Eight interglacial 

pedocomplexes were identified in the stacked record of Batajnica/Stari Slankamen, reflecting 

more than 800,000 years of Quaternary climate variability (Kostić and Protić, 2000; Marković 

et al., 2003; Buggle et al., 2009). Six loess-paleosol cycles were sampled in the present study.  

The studied Romanian section at Mircea Voda (44° 19´ 15´´ N, 28° 11´ 21´´ E, Fig. 1-1) is 

situated on the Dobrudja plateau, at about 13 km distance to the Danube, 40 km distance to 
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the Black Sea coast and about 2 km north of the Karasu valley. This loess-paleosol sequence 

comprises probably more than 17 Marine Isotope Stages (MIS) (Buggle et al., 2009). 

The outcrops of the Stary Kaydaky section (48° 22´ 42´´ N, 35° 07´ 30´´ E, Ukraine) can be 

found in a system of gullies near the Dnieper River and about 2 km south of Dniepropetrovsk 

City. According to the stratigraphic frame of Buggle et al. (2009), the section includes 

pedocomplexes reaching back to MIS 13–15.  

3 Methods 

3.1 Sampling and laboratory analyses 

Before sampling, the first decimeters of material were removed from the front face of the 

sampling site and the section was cleaned carefully. Then, depending on the horizontation and 

thickness, each pedocomplex was sampled in 10 – 50 cm intervals by at least 10 samples for 

the pedocomplexes younger than MIS 11. As our further paleopedological investigations will 

be mainly focused on this younger part, older pedocomplexes were sampled with lower 

spatial resolution by at least three representative samples. For each intercalated loess layer 

about three representative samples were collected, since these are more uniform both 

macroscopically and according to magnetic susceptibility (Buggle et al., 2009). At the Serbian 

sections, the units supposed to be younger than MIS 10 were sampled from the Batajnica site. 

In order to avoid the obvious overprint caused by water logging, we switched for sampling of 

the older units to the Stari Slankamen site. Therefore, our loess - paleosol sample set of the 

Serbian section is a composite of the units younger than MIS 10 derived from Batajnica and 

the older ones from Stari Slankamen. Altogether 64, 73 and 68 samples from the 

Batajnica/Stari Slankamen section, Mircea Voda section and Stary Kaydaky section, 

respectively, were collected and stored in air-tight plastic bags. In the following, the whole set 

of samples i.e. soil and loess samples of the sections, are regarded as “bulk samples”. Those 
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samples, which did not show indications of pedogenic alteration macroscopically as well as 

by magnetic susceptibility, are regarded as “pure loess” samples. Thus, 13, 21 and 4 samples 

were taken as representative for “pure loess” of the Serbian, Romanian and Ukrainian section, 

respectively. The low number of such samples for Stary Kaydaky is caused by the occurrence 

of several hiati as well as a initial soil development in some loess units. Since the Chinese 

Loess-Paleosol sequences represent potential stratotype sections of the Quarternary (Kukla 

and An, 1989), also the nomenclature of the lithological units in the presently studied sections 

follows the Chinese system using “S” for paleosols/pedomplexes, and “L” for loess layers. 

Numbers indicate the respective correlatives of the units in the Chinese stratigraphic 

framework, as derived from pedostratigraphy and finger print matching of the magnetic 

susceptibility record by Buggle et al (2009). The main stratigraphic units with the location of 

the samples are also presented in the Appendix (Fig. 1-S1, Fig. 1-S2, Fig. 1-S3). 

For geochemical analyses, the whole sample material i.e. about 400 g/sample was dried at 40 

°C in the laboratory and then finely ground. For each sample, a 2 ccm Eppendorf cup was 

filled with an aliquot of material and send for X-ray fluorescence (XRF) analyses to J. Eidam 

(University of Greifswald, Germany), who provided the element composition using a Philips 

2404 XRF Spectrometer. Only sulfur content was determined separately by thermal 

conductivity detection on a Vario EL element analyzer (Elementar, Hanau, Germany) at the 

University of Bayreuth, using aliquots of 20 mg. 

3.2 Data processing 

The geochemical data were corrected for secondary dilution effects by the minerals calcite 

(CaCO3), dolomite (MgCO3) and gypsum (CaSO4 × 2H2O) as follows.  
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where M(X) is the molar mass of compound X. 

Calcite–Ca contents were corrected for Ca in gypsum and apatite (Ca5(PO4)3(F,Cl,OH)) (Eq. 

4). Samples, which derived from the upper 40 cm below the top of the profiles, were not 

included in the further data exploration in order to avoid artifacts of anthropogenic pollution. 

3.2.1 Discriminant analysis  

All statistical analyses were conducted using Statistica 6 software package (Statsoft Inc., 

2001). To investigate differences and similarities in element composition of the sections 

Batajnica/Stari Slankamen, Mircea Voda and Stary Kaydaky, we first conducted a 

discriminant analyses for the bulk samples. Discriminant analyses require normally 

distributed data. Since trace elements in geologic systems are often distributed logarithmically 

(Batista et al., 2006), we tested natural as well as log-transformed data for normal distribution 

by using the Shapiro-Wilks W test (Statsoft Inc., 2001). Finally, for each element either 
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natural or log-transformed data, depending on optimum satisfaction of normality distribution, 

were compiled in a worksheet and used for further calculation. In order to include as many 

samples as possible for the discriminant analysis, elements with missing data due to the 

detection limit, were excluded (Co, Hf, La, Nd, Ni, Sc and U). 

3.2.2 Element ratios 

The comparison of absolute element contents of sediments can be biased by systematic 

enrichment or dilution effects due to variable amounts of carbonate minerals and quartz. On 

the contrary, element ratios and ternary diagrams were applied successfully in the 

geochemical characterization of sediments and in studies concerning their provenance, 

respectively (e.g. Gallet et al., 1998; Kutterolf, 2001; Muhs and Budahn, 2006).  

For discrimination of the loess sites with respect to the macroelement composition, we choose 

a Fe2O3/TiO2 vs. Al2O3/TiO2 plot and the Al2O3–(CaO* + Na2O)–K2O ternary diagram, with 

CaO* referring to CaO in silicate minerals. The Al2O3/TiO2 ratio was proposed to reflect the 

clay content (Muhs et al., 2001) and the Fe2O3/TiO2 ratio should indicate iron-enriched 

material and clay content variations, as well (Muhs, et al., 2001; Smykatz-Kloss, 2003). Due 

to the intermediate ionic potential of Ti4+, Ti is a low mobility element during weathering 

processes. Thus, it is a suitable denominator in element ratios (Kabata-Pendias and Pendias, 

2001; Kutterolf, 2001; Muhs et al., 1990). Also Fe and Al are hardly mobile in oxidizing 

environments and at pH values above 4.5, respectively. Hence, the ratio of these elements 

should not be significantly affected by selective element removal during weathering. 

The Al2O3–(CaO* + Na2O)–K2O diagram – also known as A–CN–K diagram – was 

introduced by Nesbitt and Young (1984) and successfully applied for the geochemical 

characterization of sediments and weathering profiles (e.g. Nesbitt and Young, 1989; Nesbitt 

et al., 1996). The advantage of this form of presentation is that it displays weathering and 

sorting effects on aluminosilicates. Also information with respect to the initial composition of 
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these elements can be provided (McLennan et al., 1993; Nesbitt et al., 1996). CaO* was 

obtained from measured CaO according to the procedure, described by McLennan (1993), 

which is based on the assumption that the molar CaO/Na2O ratio of silicates is not higher than 

one. In the case of the molar CaO content (corrected for apatite) being less than the molar 

Na2O content, this value was taken as CaO*. In the other case, the CaO content of silicates 

was assumed to be equivalent to the molar Na2O content (McLennan, 1993). The A–CN–K 

diagram was plotted for “bulk samples” i.e. also including paleosol material. 

Further geochemical fingerprinting also including trace elements was carried out by 

comparison of the enrichment/depletion of elements related to the average composition of the 

upper continental crust (UCC). To minimize weathering effects on high and medium mobility 

elements, only “pure loess” samples were used for the UCC normalized element plot. 

3.3 Literature data 

For the average composition of the UCC and of granite and basalt, we took the values given 

by the “map model” of Condie (1993). The position of various minerals, used for orientation 

purposes in the A–CN–K diagram, is in accordance to Nesbitt and Young (1989) and 

McLennan et al. (1993). 

For evaluating the loess origin, representative geochemical datasets of source rocks were not 

available. Thus, we decided to compare the element composition of loess with that of 

floodplain sediments of the Danube catchment, an approach already successfully applied by 

Muhs and Budahn (2006) for Alaskan loesses. This appeared to be promising, since on the 

one hand floodplain sediments were proposed to be an important source of silt sized material 

for the Danube loess province and other loess areas associated to big rivers (Smalley and 

Leach, 1978; Smalley, 1995; Minkov, 1968; Evlogiev, 1993; The references Minkov (1968) 

and Evlogiev (1993) are cited in Jordanova and Petersen, 1999). On the other hand, samples 

of floodplain sediments should, unlike soil samples, represent a mean sample of the 
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catchment basin. Geochemical data of floodplain sediments were taken from the dataset of the 

Geochemical Atlas of Europe (Salminen et al., 2005). In this atlas, the European results of the 

“Global Geochemical Baseline Programme” are published. Since the European part of the 

program was under the auspices of the former Forum of European Geological Surveys 

(FOREGS), the data will be regarded as “FOREGS” data in the following. Floodplain 

samples of the “FOREGS” dataset represent the element composition of large catchment 

Basins (500 – 6000 km²). For further information on sampling, sample preparation and 

analyses, the reader is referred to Salminen et al. (2005). We selected floodplain samples of 

the “FOREGS”-dataset according to following procedure. First, samples of non-Danube 

tributaries were removed from the dataset. Then, several source areas were defined based on 

geographic and lithological aspects. The final sample set comprises only floodplain sediment 

data that are situated within these areas and/or are predominantly composed of material 

derived from these areas. In detail, we defined the following source areas. 

• The “Austroalpine cover nappes area”. This area is characterized by sediments derived 

from the Austroalpine cover nappes. Selected samples comprise floodplain sediments 

of Danube tributaries located either in the area of the Austroalpine cover nappes or in 

the northern Alpine foreland, if the catchment Basin is dominated by glaciofluvial 

sediments. Floodplain sediments of the Inn River are not included, since the Inn also 

contributes material from crystalline central Alpine areas. The floodplain samples of 

the “Austroalpine cover nappes area” are regarded as “F-AA”. 

• The “Drava source area”. This area is characterized by metamorphic rocks of the 

Austrian penninic nappes and crystalline rocks of the Austroalpine basement nappes. 

Selected sample sites are located in floodplain sediments of the Drava River and 

tributaries predominantly draining these areas. Floodplain sediments of the Gail River 

and tributaries, affected by calcareous sediments of the Southern Alpine sedimentary 

rocks are not included. Drava tributaries in Croatia and southern Hungary were taken 
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into account, if they are draining catchments dominated by loess sediments probably 

derived from Drava alluvium. Floodplain samples related to the “Drava source area” 

are regarded as “F-Drava”. 

• The “Bohemian Massif area”. These samples comprise floodplain sediments of 

Danube tributaries (Regen River, Thaya River, Jihlava River) draining the crystalline 

and metamorphic rocks of the Bohemian Massif. The samples are regarded as “F-

BM”. 

• The “Western Carpathian area”. Here, we included floodplain sediments of Danube 

and Tisza tributaries, predominantly derived from the area of the Beskide Mountains, 

high Tatra Mountains, and Slovak Ore Mountains. This source is characterized by a 

high lithological diversity. Samples are regarded as “F-WC”. Unfortunately no data 

from the Romanian part of the Carpathians were available. However, according to the 

distribution of rock types, the floodplain samples deriving from the Western 

Carpathian Mountains are supposed to be geochemically representative for those of 

the East- and South-Carpathian Mountains. 

A compilation of the selected FOREGS-samples is given in the Appendix (Table 1-S1). 

For the Dnieper catchment, no representative floodplain data were available. Thus, we were 

constrained to the major element composition of the Ukrainian and Baltic shield (Ronov and 

Yaroshevskiy, 1976). 

The geochemical compositions of other loess areas are shown for comparison. Data of the 

Kaiserstuhl area (Rhine Valley, Germany), of Kansas/Iowa and the Bank Peninsula (New 

Zealand) were taken from Taylor et al. (1983). For the composition of French and Chinese 

loess areas, the data of various sections given by Gallet et al. (1996), Gallet et al. (1998) and 

Jahn et al. (2001) were averaged. The average composition of worldwide loess derives from 

Schnetger (1992). Loess data were corrected for calcite and dolomite. Note that there might 
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be some bias of the literature data due to different analytical methods for trace elements 

determination. 

Apart from direct geochemical data, we also compiled magnetic susceptibility data of the 

studied loess sections and adjacent sites. The magnetic susceptibility reflects mainly the 

content of the ferrimagnetic minerals magnetite and maghemite, and to a lesser extent the 

content of the antiferromagnetic minerals hematite and goethite (Thompson and Oldfield, 

1986). Susceptibility enhancement is commonly interpreted as pedogenesis proxy (Heller and 

Liu, 1984), see also Buggle et al. (2009) for a basic review about the principles of magnetic 

susceptibility enhancement. Thus, the background magnetic susceptibility, defined by us as 

the minimum magnetic susceptibility of the “pure loess” units, should be a proxy for the 

content of the mentioned minerals in the loess and reflect initial weathering of the source 

material. Background susceptibilities for the sections Batajnica/Stari Slankamen, Mircea 

Voda and Stary Kaydaky (Buggle et al., 2009) and for other loess-paleosol profiles of the 

lower Danube Basin/Dobrudja and other loess areas near the Black Sea coast were taken from 

the literature (Tsatskin et al., 1998; Jordanova and Petersen, 1999; Nawrocki, et al., 1999; 

Panaiotu et al., 2001; Rousseau et al., 2001; Tsatskin et al., 2001; Avramov et al., 2005; 

Dodonov et al., 2006). To ensure the comparability of the data, we gathered profile 

background susceptibilities by reading off the lowest value of each magnetic susceptibility 

record. We estimate a standard error of 2.5 10-8 m3 kg-1 for the procedure. 

4 Results 

Major and trace element composition of the profiles are given in the Appendix (Fig. 1-S1-Fig. 

1-S6). The data are corrected for calcite, dolomite and gypsum, except those of MgO, CaO, S, 

H2O and the loss on ignition at 1000 °C (LOI). The magnetic susceptibility curve was 

redrawn from Buggle et al. (2009).  
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4.1 Discriminant analysis 

The discriminant analysis reveals a clear separation of the three profiles by two discriminant 

functions. Both discriminant functions are statistically significant, according to the “χ2−test of 

successive roots”, with p<0.01 (level of significance) for roots 1 + 2 and root 2. Root 1 

explains about 74 % of the observed variance (eigenvalue of 74.31) and root 2 about 4 % 

(eigenvalue of 4.29). So the latter accounts only for a minor part (5.5 %) of all discriminatory 

power. Plotting the canonical scores of the data points for root 1 vs. root 2 (Fig. 1-2), a clear 

separation of the three sampling locations is revealed. The clearest discrimination was 

obtained by root 1 between the Stary Kaydaky samples and the near Danube profiles. Root 1 

is in particular positively correlated with the variables Al2O3, Ga, Rb, Fe2O3, MnO and Zn and 

negatively with SiO2 and Zr (Table 1-1). Thus, elements of the former group show higher 

contents in the Serbian and Romanian samples, which occur at the positive side of root 1, 

whereas Stary Kaydaky samples are placed at the SiO2 and Zr rich (negative) side of root 1. 

The near Danube sections were only weakly discriminated by root 1, with Batajnica/Stari 

Slankamen samples scoring more to the right of the Mircea Voda samples. Root 2 reveals a 

better separation of the near Danube profiles with the samples of the Serbian sections scoring 

on positive values. This indicates particularly higher Rb and K contents. The samples of the 

Romanian section score inversely on root 2 i.e. towards higher Sr, CaO, MgO, and SiO2 

values. The Stary Kaydaky samples are placed between the two groups of the near Danube 

sites, overlapping with both of them. 
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Fig. 1-2. Scatterplot of the canonical scores. Data points, representing 
individual samples of the loess-paleosol profiles Batajnica/Stari 
Slankamen (B-SS), Mircea Voda (MV) and Stary Kaydaky (SK) are 
plotted on the two discriminant functions root 1 and root 2. For the 
interpretation of the discriminant function we refer to Section 5.1. 
 

Table 1-1. Factor structure matrix: 
The factor structure coefficients – 
equivalent to factor loadings – give 
the strength of correlation between the 
variables and the discriminant 
functions. Asterisks mark variables, 
which were log-transformed for 
discriminant analyses. 

 

4.2 Si-Zr-Hf-association 

For our sections, SiO2 and also Zr are revealed as discriminating variables (Table 1-1). A 

similar factor group, additionally containing Hf, was identified by Batista et al. (2006) in 

European topsoil, subsoil, stream sediment and floodplain sediment samples, which among 

others showed high scores in the areas of glaciofluvial deposits of the Fennoscandinavian ice 

sheet. Therefore, we took a closer look at the contents of SiO2, Zr and Hf, the latter being 

strongly associated with Zr in the mineral zircon (Reeder, et al., 2006). According to the 

“Scheffé test” and “Tukey HSD test for unequal sample numbers” (Statsoft, 2001), all three 

profiles can be significantly distinguished with respect to the SiO2 content of the bulk 

samples. Highest average SiO2 contents are obtained for Stary Kaydaky and lowest values for 

Batainjca/Stari Slankamen (Fig. 1-3). Also Zr and Hf contents are significantly elevated at 
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Stary Kaydaky. Within the near Danube sections, Mircea Voda tends to have higher contents 

of SiO2, Zr and Hf (Fig. 1-3). 

 

 

Fig. 1-3. Average SiO2, Zr and Hf content of the profiles Batajnica/Stari Slankamen (B-SS), Mircea 
Voda (MV) and Stary Kaydaky (SK). Values are normalized to the respective mean element content 
of the upper continental crust (Condie, 1993) for better comparability. The boxes represent standard 
error, whiskers show standard deviation. Significantly different groups are marked by circles. 

 

4.3 Major elements ratios 

In the A-CN-K diagram, samples of Batajnica/Stari Slankamen and Mircea Voda plot closely 

together, at a line parallel to the A-CN join (Fig. 1-4). This is a typical distribution for 

material with different extend of chemical weathering, resulting in a predominant removal of 

silicatic Ca and Na due to the destruction of plagioclase. If plagioclase weathering would be 

in saturation, the weathering line would approach the K-A join, and then be redirected 

towards the A-CN apex, as a result of predominant loss of K by the weathering of potassic 

phases such as K-feldspar, mica or illite (Nesbitt and Young, 1989; Nesbitt et al. 1996). This 

feature was not observed for our profiles. The weathering line for the near Danube sections is 

very similar and can be drawn back to average UCC composition, showing a UCC-like 

K2O/(CaO* + Na2O) ratio of the unweathered sediment. For Mircea Voda, there may be some 
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contribution of material with a lower K2O/(CaO* + Na2O) ratio. The distribution of floodplain 

sediment data for selected source areas resembles that of the near Danube loess samples, with 

a greater variability, however. Also here unweathered source material mostly can be 

characterized by average UCC composition. 

 

 

Fig. 1-4 A-CN-K diagram. Values of bulk samples are plotted for the studied sections (left diagram). Samples of 
the Dnieper and Kaydaky units (MIS 6, MIS 5e) of Stary Kaydaky are highlighted in blue. The composition of 
several possible source materials is given i.e. of the Ukrainian shield and Baltic shield (left diagram) for Stary 
Kaydaky, floodplain sediments of the “Austroalpine cover nappes area” (F-AA), the “Drava source area” (F-
Drava), the “Bohemian Massif area” (F-BM) and the “Western Carpathian area” (F-WC) for the Danube Basin 
loess sections (right diagram). See Section 3.3 for a description of the selected source areas. Characteristic 
values for the upper continental crust (UCC), basalt, granite and the minerals clinopyroxene (Cp.), hornblende 
(Hb.), plagioclase (Pl.) K-feldspar (Ks.), biotite (Bi.), muscowite (Mu.), illite (IL.), smectite (Sm.), kaolinite 
(Ka.) and gibbsite (Gi.) are shown for orientation. 

 

The Stary Kaydaky samples plot at a line between the CN-K junction and the Al2O3 apex, 

being characteristic for sorting (Fig. 1-4). According to Nesbitt et al. (1996), finer material is 

placed closer to the Al2O3 apex due to abundant aluminous clay minerals, coarser material 

vice versa. Therefore, the distribution of Stary Kaydaky samples in the A-CN-K diagram 

shows clear grain size/ mineral sorting effects. As expected, material that is supposed to be 

deposited during the most proximal glacier advance i.e. that of the so-called Dnieper stage 

(penultimate glaciation) is located mostly at the coarse, feldsparic end of distribution. The 

very base of the Dnieper loess (L2) indicates finer, aluminous material, possibly due to 

sedimentation before maximum glacier advance. Some data points of other units, however, 
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are also placed close to the material of the Dnieper loess and the last interglacial soil (the so-

called Kaydaky complex), that developed in the underlying loess. Since scattering of the data 

is not parallel to the A-CN join, no definite initial composition could be deduced. Possible 

K2O/(CaO* + Na2O) ratios may range from typical granitoide to average UCC composition. 

Thus, neither the Ukrainian nor the Baltic shield could be ruled out as source material. 

The Fe2O3/TiO2 vs. Al2O3/TiO2 plot shows a distinct separation of the near Danube profiles 

and the Stary Kaydaky section at the Dnieper River (Fig. 1-5). Aluminum and iron contents of 

bulk samples may be influenced by pedogenesis i.e. clay enrichment and iron migration under 

reducing conditions. Yet, also the “pure loess samples” confirm a lower Al2O3/TiO2 and 

Fe2O3/TiO2 ratio at Stary Kaydaky. The Fe2O3/Al2O3 ratio is between 0.3 and 0.4 for the 

samples of all three profiles, being consistent with UCC values and also shale values, which 

are regarded as average sample of the UCC (Taylor and McLennan, 1985). Thus, this ratio 

does not seem to be significantly influenced by sorting and weathering effects. Hence, for all 

three profiles a source composition similar to that of the UCC is indicated. Looking at specific 

source materials, the Fe2O3/Al2O3 ratio of Stary Kaydaky is close to that of the Baltic shield, 

whereas the Fe2O3/Al2O3 ratio of the Ukrainian shield is distinctly higher. Floodplain 

sediments of possible source areas for the near Danube loess show no distinct difference to 

the Fe/Al ratio of the loess samples. Yet, the Fe2O3/TiO2 ratios of the “Austroalpine cover 

nappes” source (“F-AA”) are remarkably higher. 
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Fig. 1-5. Fe2O3/TiO2 vs. Al2O3/TiO2 diagram. Left plot: loess and soil samples; middle and right plot: only 
“pure loess” samples. Values of floodplain sediments of selected source areas, rock types as well as average 
values for the UCC are given. See Fig. 1-4 and Section 3. for the abbreviations and further explanations. Note, 
the two distinct groups within the dataset for the UCC and basalt can be attributed to Archean- and post-
Archean formation. Ratios of several loess regions of the world are given for comparison.  

 

4.4 Element fingerprint 

The fingerprints of UCC-normalized elements show a very similar patterns for the studied 

sections, also resembling those of other loess areas (Fig. 1-6). Nevertheless, differences in 

absolute enrichment with respect to the UCC composition and some minor deviations in the 

patterns are obvious. Generally, the elements Si, Ti (not at Kaiserstuhl), Hf, La, Nb, Nd and 

Zr are enriched in loess or at least not remarkably depleted with respect to average UCC 

composition. Note that some deviations in pattern and absolute values of the trace element 

compositions compiled from literature may be attributed to different analytic methods. 
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Fig. 1-6. Element fingerprint normalized to UCC composition (indicated by the number sign) for the ”pure 
loess” of the sections Batajnica/Stari Slankamen (B-SS), Mircea Voda (MV) and Stary Kaydaky (SK), as well as 
for various loess regions and for the average composition of worldwide loess. See Section 3.3 for literature 
sources. Whiskers indicate standard errors. Significant differences between the fingerprint curve of Mircea Voda 
section and Batajnica / Stari Slankamen section are highlighted by circles. 

 

The geochemical composition of the Stary Kaydaky section shows mostly an element 

depletion relative to the UCC, except for the Si, Ti, Hf, La, Nb, Nd, Zr – as mentioned before 

– and additionally for Ca, Pb, Th, U and Y. The elements of the near Danube loess are 

enriched with respect to the UCC and the loess of the Stary Kaydaky section. The UCC 

normalized Zr, Hf, Si contents, however, are higher in the Ukrainian section. Minor 

differences between the Batajnica/Stari Slankamen and Mircea Voda site are tested for 

significance. Since neither the natural nor the log-transformed data of the “pure loess” 

samples are normally distributed for all variables, significance was tested using the non-

parametric Mann-Whitney U test (Statsoft Inc, 2001). The results show that loess of the 
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Mircea Voda section is slightly depleted in some elements (see Fig. 1-6), just for Si and Sr a 

significant enrichment relative to the Serbian sections is revealed. Note that not all differences 

in the element concentrations obtained for the “pure loess” are also confirmed by the 

discriminant analysis, since the latter used “bulk material” i.e. also including paleosols. Thus, 

weathering induced-redistribution of elements may bias results.  

4.5 Background magnetic susceptibility 

The background susceptibilities of the Mircea Voda and Batajnica/Stari Slankamen section 

are both in the range of 21 × 10-8 to 22 × 10-8 m3 kg-1, which is two times higher than at Stary 

Kaydaky (7 × 10-8 m3 kg-1, Buggle et al., 2009). The loess deposits of the Black Sea coastal 

area show considerable variations from site to site. However, one can recognize distinctly 

lower values of magnetic background susceptibility in the northern sites near the Dniestr and 

Dniepr (Fig. 1-7).  

 

Fig. 1-7. Background magnetic susceptibility of loess-paleosol sections in the Northern Black Sea area and the 
Ukraine. See Fig. 1-8 for the locations. Standard error was estimated to 2.5 10-8 m3 kg-1. 
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5 Discussion 

5.1 Origin and geochemical characteristics 

Before considering dust sources, we want to outline the general constraints of the applied 

method. The geochemical signature of a sediment can give strong evidence for or against a 

potential source, if the following aspects are taken into account. First, element parameters 

should be evaluated for biasing effects of weathering and sorting. So done, striking 

similarities in the parameter between the sediment and a potential source may confirm the 

origin of the material. Yet, this approach requires that the composition of all other major 

potential source areas is known and also are distinctly different. If not, sources can only be 

ruled out, rather than confirmed in a positive way. A mixture of several end members can 

even complicate the interpretation. Additional information about the geomorphological 

settings may help in such ambiguous situations. Finally, it is very important to stress that this 

geochemical approach cannot detect minor sediment sources, unless they have a very 

characteristic composition. 

5.1.1 Stary Kaydaky section 

5.1.1.1 Glaciofluvial sediments – a loess source for the Stary Kaydaky site 

In the Ukraine and nearby in Belarus, respectively, glaciofluvial sediments are continuously 

present since the Early Pleistocene that means over the whole considered time of loess 

accumulation (Gozhik, 1995). These areas are drained by the Dnieper River, which is close to 

the Stary Kaydaky site. Thus the river alluvium and the glaciofluvial sediments in the 

periglacial desert, at the edge of the ice, are considered as the main dust sources. A 

confirmation for this assumption is given by the discriminant analysis (Fig. 1-2, Table 1-1) 

and the element enrichment relative to the UCC (Fig. 1-6). Accordingly, the eolian sediments 

at Stary Kaydaky are characterized by high contents of the elements Si, Zr and Hf compared 
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to the near Danube loesses, generally reflecting the contents of the minerals quartz and zircon 

(Reeder et al., 2006). A similar factor group was identified by Batista et al., (2006) on the 

FOREGS dataset of European stream sediment, floodplain sediment and soil samples, with 

high factor scores in the area of the Fennoscandinavian ice sheet. The selective enrichment of 

these elements in glaciofluvial deposits can be best attributed to the removal of less 

weathering-resistant minerals during the processes of crumbling and leaching in the sub- and 

proglacial environment (Lis and Pasieczna, 2006). Whether this mineral sorting is also 

accompanied with grain size sorting has finally to be proved by texture analyses. However, 

zirconium and silicon in aeolian sediments are found to be preferentially associated with 

coarser grain size fractions i.e. coarse silt and sand, respectively (Muhs and Bettis, 2000; 

Yang et al.,2006). Further evidence for mineral sorting is given by the A-CN-K plot (Fig. 1-4) 

and a low Al/Ti ratio (Fig. 1-5), indicating selective enrichment of coarser, more feldsparic 

material over more clayey, aluminous material (Eissmann, 2002; Lindner et al., 2002). 

Deposits of the Dnieper stage (MIS 6), when the distance to the glacier was most proximal, 

are not distinctly the coarsest in the A-CN-K plot. This contradicts the expectations, if sorting 

would be controlled by the eolian transport distance. Differences in wind strength due to ice 

topography could be more important than the absolute distance from the ice margin. 

Furthermore, we have to regard the possibility that the mineral sorting is already inherited in 

the glaciofluvial sediments. 

The distribution of sandy and sandy loam soils in the Ukraine (Fig. 1-8) reveals sandy 

deposits, on the one hand locally distributed close to Stary Kaydaky, on the other hand 

extensively distributed in about 300 km distance. These may denote both, possible source 

areas and paleowind direction. The local sand deposits related to rivers are most probably 

blow outs from the river banks during dry and cold periods of the Quaternary, indicating 

northerly, katabatic winds from the ice sheet.  
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Fig. 1-8. Distribution of sand and sandy loam soils (yellow) in the Ukraine, sand and sandy soil texture in 
Moldova and sand dunes in Romania. The map is based on the soil map of the Ukraine, (http://eusoils.jrc.it, 
2006 ), the geomorphologic map of Romania (http://eusoils.jrc.it, 2006 b) and the map of surface sediments of 
Moldova (Akaдemия Hayk Moлдabckoй CCP, 1978) . The locations of loess-paleosol sites, with published 
magnetic susceptibility records are given: 1. Mircea Voda (Buggle et al., 2009; this study), 2. Stary Kaydaky 
(Buggle et al., 2009; this study), 3./ 4.Orsoja/Harletz (Avramov et al., 2005), 5. Mostistea (Panaiotu et al., 2001), 
6. Koriten (Jordanova and Petersen, 1999), 7. Durankulak (Avramov et al., 2005), 8. Novaya Etuliya (Tsatskin et 
al., 2001), 9. Primorskoje (Nawrocki et al., 1999), 10./11./12. Varnitsa/Khadzhimus/Tiraspol (Dodonov et al., 
2006), 13. Kolkotova Balka (Tsatskin et al., 2001), 14. Roxolany (Tsatskin et al., 1998), 15. Vyazivok (Rousseau 
et al., 2001). Arrows indicate proposed paleowind directions during cold stages, according to the distribution of 
the sandy areas with respect to river valleys. For the Western Ukraine and East Romania, where such deposits 
are absent, paleowind directions are based on the orientation of gredas according to Rozycki (1967).  

 

In the western Ukraine, these winds were deflected by the Carpathian mountains towards 

ESE, changing to SE and then to southerly directions at the eastern backside of the 

Carpathians, as can be deduced from the orientation of gredas (Rozycki, 1967). For the large 

sand area in the north of the Ukraine, it is not possible to distinguish Quaternary sands and 

possible autochthonous Paleogene sands. The striking similarity in the zirconium and silicon 

enrichment of the loess south of it and of Northern European glaciofluvial sediments, 

however gives reason to favor predominant Quaternary origin. Both, the Dnieper River and 

the northerly katabatic winds from the ice sheet are seen as responsible for the southward 

transport of glaciofluvially derived material, in the Ukraine.  

5.1.1.2 Origin of the glaciofluvial sediments 

Having confirmed that glaciofluvial deposits of the Fennoscandinavian ice sheet with 

characteristic mineral and grain size sorting are the major loess source, the potential origin of 

this material is to be evaluated. According to petrographic studies (Dorofeev, 1969; Gaigalas, 

1978, 1982; all cited in Matoshko, 1995), far transported material provided by the ice sheet 

originates from the southern part of the Baltic shield i.e. southern Finland and Gulf of 

Finland. However, there are also contributions from sedimentary rocks of the Russian 

platform and locally of crystalline rocks of the Ukrainian shield.  

We firstly focused to rule out one of the remaining crystalline areas, but the separation of the 

potential source areas in the A-CN-K plot was not satisfying. Yet, the Ukrainian shield could 
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be ruled out as a relevant source due to a low Al/Fe ratio. This ratio is believed to be not 

affected by weathering or sorting effects, since it is constant for the Dnieper as well as the 

near Danube loess sections and equal to ratio of the average UCC. The Baltic shield 

composition fits well with Al/Fe ratio of the loess. This would strongly suggest far-

transported material as a major component of the glaciofluvial sediments. Unfortunately, the 

contribution of the mentioned sedimentary rocks could not be directly evaluated, because 

suitable data are lacking. However, due to the high extend of initial weathering of the 

material, we propose that in fact preweathered sediments of the Russian platform account for   

the major proportion of the glaciofluvial-loess source material. This is not necessarily a 

contradiction to the observed geochemical similarity between the loess in the Dnieper area 

and the Baltic shield, showing average UCC like composition, since Taylor and McLennan 

(1985) observed various terrigenous sediments to be good samples for average UCC. See 

Section 5.2 for more detailed explanations.  

5.1.2 Batajnica/Stari Slankamen section 

5.1.2.1 The Danube alluvium – the major source for Danube Basin loess. 

For the Danube Basin, Smalley and Leach (1978) considered the Danube alluvium as the 

important source of loess. This is also supported by the paleowind direction reconstructed by 

Rozycki (1967) and Marković et al. (2008). According to their results based on orientation of 

gredas and loess isopach mapping, respectively, northwesterly and northerly winds prevailed 

in the Pannonian Basin during the periods of loess formation, except for the region southeast 

of the present day Danube-Tisza confluence, for which Marković et al. (2008) reported 

southeasterlies. Silty material potentially could have been uptaken by these winds, and after a 

certain distance of transport deposited to form thick loess plateaus, as they can be found in the 

Vojvodina region (Smalley and Leach, 1978). Lacking any other possible major dust sources 

in the area, we follow this idea. The strong similarities between the element composition of 
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the Serbian and Romanian section are an additional confirmation. Whereas the loess of the 

Dnieper area is characterized by higher Zr, Hf and Si content and mineral sorting, due to 

glaciofluvial reworking of the source material, the near Danube loess show higher contents of 

Al, Fe, Ti, Rb and associated elements, as revealed by discriminant analysis and the UCC 

normalized element fingerprint. In other loess deposits, aluminum content is generally found 

to be enriched with decreasing grain size, especially in the clay fraction. The same holds true 

for Fe, Ti and Rb (Chapman and Horn, 1968; Reeder et al., 2006; Yang et al., 2006). Thus, 

discriminant function 1 can also be interpreted as negative grain size function. Additionally, 

the Fe/Ti and Al/Ti ratios point to a higher clay content (Muhs and Bettis, 2000; Muhs et al., 

2001) of the near Danube loess compared to the Dnieper loess. This fits to the supposed 

alluvial origin (Stoilov, 1984, cited in Jordanova and Petersen, 1999). However, grain size 

analyses would be required to confirm our conclusion. Nevertheless, with the Danube 

alluvium representing the source of the loess material, the exceptional thickness of the 

Vojvodina loess deposits can be explained. In the Vojvodina region, the Danube river turned 

from South to East, during the considered time period of loess formation, as it is today 

(Gábris and Nádor, 2007; Ruszkiczay-Rüdiger, 2007). Exactly here is the transition zone 

between the northerly and southeasterly winds in the southern Pannonian Basin, where 

material of the Danube alluvium potentially could be blown together from two directions.  

5.1.2.2 Sources of alluvial silt 

In their profound work, Smalley and Leach (1978) evaluated the relative contribution of 

different source areas of alluvial silt by considering the settings and processes of the 

geomorphodynamic system of the Danube Basin. 

Our geochemical approach to identify the areas of the Danube catchment that are most 

important for the Pleistocene delivery of silt sized alluvial sediments was partially successful. 

The comparison of the Serbian loess with floodplain sediments could not reveal a dominating 

source area. The major element composition (Fig. 1-4, Fig. 1-5) of the Drava floodplain 
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sediments, originating in the metamorphic, crystalline Eastern Alps (“F-Drava”), showed no 

clear differences to alluvial material of the Bohemian Massif (”F-BM”), the Western 

Carpathians (“F-WC”) and to the Vojvodina loess. With respect to geochemistry, none of 

these source areas could be ruled out as major supplier of sediments into the southern 

Pannonian Basin. However, Danube tributaries, draining predominantly the Eastern Alpine 

cover nappes area and glaciated alpine foreland (“F-AA”), revealed relatively high Fe/Ti 

ratios in the floodplain sediments compared to the Serbian loess. True iron enrichment should 

increase both, the Fe/Ti and the Fe/Al ratio (Smykatz-Kloss, 2003), whereas increasing clay 

content should rise the Fe/Ti as well as the Al/ Ti ratio (Muhs and Bettis, 2000; Muhs et al., 

2001). Since none of both can be observed, a combination of the two effects probably causes 

the Fe/Ti offset of the “F-AA” floodplain samples. Note that the Fe/Al ratio of loess and 

floodplain sediments is mostly in the range of the UCC. Thus, we suppose that reductive 

element removal during fluvial transport did not alter noteworthy the element ratios. To 

conclude, elevated Fe/Ti ratios indicate only a minor contribution of material from the 

Austroalpine cover nappes and deposits of the northern alpine foreland glaciation (not 

including the Inn area) to the Vojvodina loess. 

From the geochemical point of view, the Bohemian Massif may be a possible significant 

source area, supplying silty material produced by frost shattering and thermal weathering. 

Yet, due to the extent of this area and the lack of major melt water streams, we consider its 

relative importance even smaller than that of the “F-AA” source area. The Moravian melt 

water channel situated between the Bohemian Massif and the Carpathian Mountains was 

proposed by Smalley and Leach (1978) as possible source of glaciofluvial material for the 

Pannonian Basin. This melt water channel was active during the Saalian and eventually 

Elsterian glaciation maximum (Macoun and Králík, 1963; Tyráček, 2006). In this case one 

should expect elevated Si, Zr and Hf values – as in Stary Kaydaky and as it is typical for 

glaciofluvial sediments of the Fennoscandinavian shield- in the samples representing Saalian 
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and eventually also Elsterian loess. However, the respective material didn`t stand out against 

the other Serbian samples, regarding the discriminant analyses. Thus, we conclude that 

glaciofluvial material, transported trough the Moravian melt water channel into the Danube 

drainage area, did not significantly contribute to the alluvial loess source material, at least not 

in the southern Pannonian basin. For the Tisza River, draining the Romanian part of the 

Carpathian Basin, no floodplain data were available. However, we assume that the element 

composition of the Western Carpathian floodplain sediments is a representative for this major 

Danube tributary. From the geochemical point of view and also because of their regional 

extension and tectonically accelerated erosion during the Quaternary the Carpathian 

Mountains are a likely source area for contributing silt sized weathering products. Smalley 

and Leach (1978) draw the same conclusion. As further important silt source, we consider 

also the Drava River, supplying glaciofluvial sediments of the Eastern Alps. The 

geochemistry of Inn tributaries was not evaluated, since they are expected to cluster partly 

with the Austroalpine cover nappes (“F-AA”) and partly with the Austroalpine basement 

nappes (“F-Drava”). Smalley and Leach (1978) suggested the Inn River to be a significant 

sediment supplier to the Pannonian Basin, since it is the second largest Danube tributary 

upstream of the Vojvodina and fed by glacial melt water. 

5.1.3 Mircea Voda section 

5.1.3.1 Geochemical evidence 

The loess of the Mircea Voda section reveals a very similar geochemical fingerprint (Fig. 1-6) 

and major element ratios (Fig. 1-4, Fig. 1-5) as the Serbian loess. Therefore, we conclude that 

also for this site the prevailing loess sources were Danube alluvial sediments. Yet, the 

statistical analyses of bulk material show a weakly expressed, but still significant 

discrimination between these two near Danube loess-paleosol sites by discriminant function 2 

(Fig. 1-2). This function has highest negative correlation with CaO, MgO and Sr, implicating 
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higher carbonate content (Reeder et al., 2006) in the Mircea Voda section compared to the 

Serbian one. This probably reflects the aridity trend between the sites (Buggle et al., 2009). 

The Serbian samples load positively on discriminant function 2, which is correlated with K 

and Rb, possibly indicating higher K-feldspar or mica content (Reeder et al., 2006). 

Enrichment of K and Rb in course of pedogenic clay enrichment seems unlikely, since this 

should be also reflected in a higher Al content, which is not observed (Table 1-1). 

Besides K and Rb, small but significant differences in the enrichment of some other trace and 

macroelements over average UCC–omposition for the “pure loess”, indicate minor 

contributions of at least one additional dust source for the Mircea Voda site. More 

specifically, the aeolian sediments at the Mircea Voda site have significantly higher Si 

contents and a trend to higher Zr and Hf contents compared to the Serbian sections (Table 1-

1, Fig. 1-3), whereas most other elements (except those related to carbonates) are depleted. 

Thus, we can conclude a dilution effect due to a higher quartz content for this Romanian 

section and also selective zircon enrichment similar to the Ukrainian section. However, its 

extent is much weaker expressed as in Stary Kaydaky. 

Considering the origin of this quartz and zircon rich loess contribution, we have to evaluate 

additional loess source areas for the lower Danube Basin/Dobrudja. Here, one may suggest 

the Sava River, the largest river entering the Danube River downstream of Belgrade, to 

change the composition of the Danube alluvial sediments. Smalley and Leach (1978) stated 

that, lacking major glaciation and silt deposits, a significant contribution from the Sava 

catchment is not probable. Thus, evaluating sources and transport vectors of quartz rich 

material, we focus on the distribution and orientation of sand dunes and gredas in the lower 

Danube basin and Dobrudja, respectively (Fig. 1-8). These indicate prevailing WNW 

paleowinds in the western part and NNW – NNE paleowinds in the eastern and northern part 

of the plain. The transition zone is west of Mircea Voda between the Mostistea Lake and the 

Olt River. Therefore, a contribution of silt sized material from the glaciofluvial deposits of the 
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Ukraine is likely, but also an input from local sand dune fields is possible. Finally we also 

want to point out that several authors favor additional dust contributions from the Black Sea 

shelf (Conea et al., 1972, cited in Smalley and Leach, 1978) or the Aral and Caspian Sea arid 

lands (Stephens et al., 2003; Avramov et al., 2006). We cannot prove or disprove this by 

geochemistry.  

The obtained results concerning the provenance of the loess in the Dobrudja may also shed 

new light onto the drainage history of the lower Danube during the Pleistocene. With the loess 

of the Dobrudja originating from Danube alluvium, the Danube River should have been 

situated north of the site, considering the paleowind direction. However, the Karasu valley is 

situated south of the loess-paleosol section Mircea Voda and other Mid-, and Late Pleistocene 

loesses of the Dobrudja (Conea 1969; Haase, et al., 2007). Therefore, the Karasu valley is 

unlikely to be the major Danube channel for a long period of the Mid-, or Late Pleistocene. 

Thus, either the Danube bifurcated at Cernavoda in two arms, one using the Karasu-valley 

and the other passing the Dobrudja at its Western and Northern flank (Pfannenstiel, 1950), as 

the present day Danube, or the Karasu channel was already inactive before the deposition of 

the studied loesses started i.e. before MIS 17. Up to now there is now reliable dating of the 

loess deposits within the Karasu valley. 

5.1.3.2 Magnetic susceptibility evidence 

Besides direct geochemical measurements, the magnetic susceptibility of the loess can 

provide further evidences to identify and characterize source areas with respect to magnetite 

and maghemite content and initial weathering, respectively. The available data reveal 

differences in background magnetic susceptibility between the Batajnica/Stari Slankamen, 

Mircea Voda section (22 × 10-8 and 21 × 10-8 m3 kg-1, respectively) and the Stary Kaydaky 

section (7 × 10-8 m3 kg-1). The significant lower values of background magnetic susceptibility 

in the north of the Black Sea coastal area indicate a contribution from an alternative dust 

source. It seems likely that this is the area of glaciofluvial sediments in the middle and 
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northern Ukraine. Dilution by quartz may account for the low magnetic susceptibility in the 

Dnieper and Dniester loess region. The substantial variations within the sites of a region are 

attributed to local effects. As to this, we are generally aware of three possibilities: (1) a 

different degree of initial pedogenetic alteration of the source material available for eolian 

transport leads to different secondary mineralogical composition and/or grain size 

distribution, depending on source locality; (2) a different extend of initial pedogenetic 

alteration of the dust after its accumulation i.e. during loessification; and (3) different local 

sources may provide dust with different primary mineralogical composition and/or grain size 

distribution of magnetic minerals. Also here dilution of iron minerals by quartz can play an 

important role – with locally variable degree – controlled by presence and distribution of 

nearby sand dunes. At Mircea Voda, the additional quartz contribution is probably too weak 

to influence the magnetic susceptibility significantly. 

5.2 Southeastern/Eastern European loess – representative samples of the upper 

continental crust 

As the A–CN–K plot shows, near Danube loess is derived from material with UCC-like 

composition. Though, due to grain size/mineral sorting no clear source composition is 

revealed by this diagram for Stary Kaydaky, initial UCC-like composition is evident by the 

Fe2O3/Al2O3 ratio, also for this site. Hence, loess deposits of the Danube Basin/Drobrudja 

and the Dnieper area represent average samples of the upper continental crust. This result is 

conform with studies from other loess regions of the world (Taylor et al., 1983; Gallet et al., 

1996, 1998). For the loess material at the Dnieper River, originating from glaciofluvial 

sediments of the Fennoscandinavian ice-sheet, the most effective sampling process was 

probably glacial grinding of bedrocks with subsequent mixing of the different rock end-

members. For the lower Danube Basin/Drobrudja loess, source material is proposed to be 

provided by river transport of the Danube River and its tributaries, draining the Eastern Alps 
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and the Carpathian Basin. Since already floodplain sediments of the Danube catchment 

mostly show a UCC-like initial composition, of the unweathered material (Fig. 1-5, Fig. 1-6), 

sampling and mixing occurs by fluvial processes. In both cases, loess is not the primary 

sample of the UCC, however, loess deposits act as archives for UCC samples provided by 

glaciofluvial and fluvial systems, respectively. Yet, the information about UCC composition, 

derived by loess geochemistry, can be biased by several effects such as mineral weathering, 

grain size and mineral sorting and dilution effects by minerals such as quartz (Taylor and 

McLennan, 1985). The A–CN–K plot indicates that the samples of the loess-paleosol-

sequences, also including “pure loess“ samples, are substantially altered by weathering with 

respect to UCC composition. So at least one cycle of erosion/transport (activity phase) and 

sedimentation/weathering (stability phase) has to be proposed for the source material, before 

it is entrained and transported by the wind as dust and finally deposited and archived as loess. 

For the lower Danube Basin loess, this previous recycling phase may either have occurred 

during the material is retained in the fluvial system or already during the formation of the 

various types of clastic sedimentary rocks in the drainage basin. Since for the material of 

Stary Kaydaky the intersect of the sorting trend with the weathering trend of the UCC is 

clearly situated towards lower CaO* + NaO contents (Fig. 1-4), also here at least one phase of 

recycling has to be proposed. For comparison, the composition of a probably prevailing 

original source itself i.e. the Baltic shield, does not reveal remarkable changes with respect to 

the UCC (Fig. 1-4, Fig. 1-5). This was expected, since the Precambrian shields are commonly 

taken as representatives of the average upper continental crust (Ronov and Yaroshevskiy, 

1976; Taylor and McLennan, 1985; Condie, 1993). However, question arises about the timing 

of this weathering phase in the loess material of the Dnieper area. There is no simple answer 

for this, especially with respect to the high extent of weathering, compared to the aeolian 

sediments of the Danube Basin. Following the evolution history of the loess in the Dnieper 

area, we have to start with the uptake of the relativly unweathered bedrock of the Baltic shield 
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into the ice shield. During the phase of the glaciofluvial transport in sub- and proglacial 

streams, material gets further crushed and grinded. Generally, chemical weathering in the 

subglacial environment is thought to be low, according to the Arrhenius relationship between 

temperature and reaction rate. We are aware that significant silicate weathering in subglacial 

systems was observed e.g. by Tranter et al. (2002) and Anderson (2005). The latter regarded 

glaciers even as “flow-through reactors”. In spite of the long transport distance and residence 

time in the subglacial system of the Fennoscandinavian ice sheet, for us subglacial weathering 

does not appear likely to explain such strong initial weathering of loess. Also proglacial 

weathering and alteration during loessification are not expected to act sufficiently strong. 

Therefore, only a combination of all three weathering phases may account for a relatively 

high initial weathering of the Stary Kaydaky loess. Yet, this should then be still reduced 

compared to loess with an alluvial source. Thus, it is to conclude that sedimentary rocks (of 

the Russian platform) with an inherited weathering signal, entering the glaciofluvial system, 

have to be the dominant source of the material and not the Baltic shield. This corresponds also 

to the findings of Gallet et al. (1998) that loess deposits from various parts of the world show 

evidences of previous sedimentary recycling. As to this, also Jahn et al. (2001) emphasized 

the general importance of sedimentary rocks as dust sources. 

Generally, the deviations from the UCC element composition of the “pure loess” mostly 

reflect selective mineral enrichment and depletion, respectively, according to the weathering 

resistance (Schnetger, 1992). In the studied Southeastern/Eastern European loesses, low 

mobility elements such as Si, Ti and some trace elements (e.g. Zr, Hf) (Fig. 1-6), which are 

commonly associated with weathering-resistant minerals such as quartz, rutil and zircon, are 

enriched compared to UCC composition. Conversely, quartz accumulation leads to a dilution 

effect, affecting the concentrations of the other elements, as is well indicated for the Stary 

Kaydaky loess. The enrichment of the relatively mobile elements Ca and Mg compared to 
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UCC is explained by the accumulation of secondary carbonates, leached from the paleosols in 

the underlying loess units. 

6 Conclusions 

1) As already proofed for several other loess regions such as the Chinese loess plateau 

(Gallet et al., 1996, 1998), Western Europe (Gallet et al., 1998) and the Midwest of the 

USA (Taylor et al., 1983), loess of the Danube Basin/Dobrudja and the Dnieper areas 

represent a representative sample of the upper continental crust. 

2) Compared to the upper continental crustal composition, loess shows general evidence 

of at least one previous recycling phase, which probably is an inherited signal from 

sedimentary source rocks. This is particularly obvious from the depletion of some 

elements, reflecting weathering resistance of their host minerals and element mobility. 

Further bias of initial average UCC composition is due to mineral dilution effects 

especially by quartz and – if not corrected for – by secondary carbonates, as well as 

mineral and grain size sorting. 

3) Loess of the Stary Kaydaky site (Dnieper loess area) is most likely derived from 

glaciofluvial sediments of the Fennoscandinavian ice sheet in the Ukraine and adjacent 

areas. Initial source rocks are proposed to be sedimentites of the Russian platform. 

Prevailing cold stage paleowind direction in the Ukraine was WNW to N due to 

katabatic winds descending from the ice sheet. 

4) .In the southern Pannonian Basin (Vojvodina, Serbia), where the course of the Danube 

river turns from South to East, thick loess plateaus build up by dust supply from two 

wind systems: N/NW winds, as they prevail in the main part of the Pannonian Basin 

and SE winds in the Southeastern part of the basin. This loess is confirmed by our 

geochemical results to originate from alluvial sediments of the Danube river. Due to 

the element composition, the area of the northern Alpine cover nappes and foreland 
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glaciations (not including the Inn area), does not seem to be the dominant initial 

source. Weathering products of the Carpathian mountain range, drained by the Tisza 

River and several smaller Danube tributaries, and of the Austroalpine base nappes, 

drained by the Drava River, appear to be more likely source areas with respect to 

element composition. Though not evaluated geochemically, the Inn River is also 

considered as significant sediment supplier into the Pannonian Basin (Smalley and 

Leach, 1978). 

5) As in Serbia, the loess of the Dobrudja plateau (Romania) is predominantly derived 

from Danube alluvium. However, a minor but geochemically significant contribution 

of one or several additional source areas is evident. The prevailing paleowind direction 

was WNW in the Western Walachian plain and N to NE in the Dobrudja and eastern 

Walachian plain. Thus, the additional material input is supposed to be derived from 

the Ukrainian glaciofluvial deposits, probably with strongly variable contributions 

from local sand dune fields. 

6) Further research is needed for a better differentiation between the possible source 

areas of the Southeastern/Eastern Eurpean loesses. Isotope studies (87Sr/86Sr, 

143Nd/144Nd, 187Os/188Os, 187Re/188Os, δ18O of quartz) and element composition of 

different grain size fractions may be promising with this respect (Mizota and 

Matsuhisa, 1995; Hattori et al., 2003; Honda et al., 2004; Nakano et al., 2004). 
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Appendix  

 

Table 1-S1. Floodplain sediment samples of the “FOREGS”-dataset (Salminen et al., 
2005), assigned to respective source areas. F-AA: Floodplain sediments of Danube 
tributaries originating from the area of the Austroalpine cover nappes. F-Drava: 
Floodplain sediments of the Drava River and its tributaries, dominated by crystalline 
or metamorphic material. F- BM: Floodplain sediments of Danube tributaries with 
source in the Bohemian Massif. F-WC: Floodplain sediments of rivers, draining the 
Western Carpathian mountains. For more detailed description of the “source areas” 
see Section 3. 

 



 

 

Fig. 1-S1. Major element composition of Batajnica/Stari Slankamen section. Data are corrected for calcite, dolomite and gypsum according to 1, except for MgO, CaO H2O, and 
LOI (loss on ignition at 1000 °C). Second x-axes (index: n) show normalization of the data on profile maximum value of the respective variable. Magnetic susceptibility (χ) data 
are redrawn from Buggle et al. (2009). 



  

 

 
Fig. 1-S2. Major element composition of the Mircea Voda section. Data are corrected for calcite, dolomite and gypsum according to 1, except for MgO, CaO H2O, and LOI (loss 
on ignition at 1000 °C). Second x-axes (index: n) show normalization of the data on profile maximum value of the respective variable. Magnetic susceptibility (χ) data are 
redrawn from Buggle et al. (2009). 



 

 

 

Fig. 1-S3. Major element composition of the Stary Kaydaky section. Data are corrected for calcite, dolomite and gypsum according to 1, except for MgO, CaO H2O, and LOI 
(loss on ignition at 1000 °C). Second x-axes (index: n) show normalization of the data on profile maximum value of the respective variable. Magnetic susceptibility (χ) data are 
redrawn from Buggle et al. (2009). 



  

 

 
Fig. 1-S4. Trace element composition of Batajnica/Stari Slankamen section. Data are corrected for calcite, dolomite and gypsum according to 1. Second x –axes (index: n) show 
normalization of the data on profile maximum value of the respective variable. Magnetic susceptibility (χ) data are redrawn from Buggle et al. (2009). 



 

 

 
Fig. 1-S5. Trace element composition of the Mircea Voda section. Data are corrected for calcite, dolomite and gypsum according to 1. Second x-axes (index: n) show 
normalization of the data on profile maximum value of the respective variable. Magnetic susceptibility (χ) data are redrawn from Buggle et al. (2009). 



  

 

 

Fig. 1-S6. Trace element composition of the Stary Kaydaky section. Data are corrected for calcite, dolomite and gypsum according to 1. Second x-axes (index: n) show 
normalization of the data on profile maximum value of the respective variable. Magnetic susceptibility (χ) data are redrawn from Buggle et al. (2009). 
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Abstract 

Тhe loess-paleosol sections Batajnica/Stari Slankamen (Serbia), Mircea Voda (Romania) and 

Stary Kaydaky (Ukraine) are presently located in areas of different types of steppe, being 

highly sensitive for recording climatic changes. In this paper, we present a stratigraphy for 

these three Southeastern/Eastern European sections, based on pedostratigraphy and 

correlation of recently obtained susceptibility records with susceptibility data of other sections 

of the area (Koriten, Mostistea, Vyazivok), of the Chinese Loess Plateau and with the benthic 

δ18O record of ODP 677. Six pedocomplexes were studied at the Serbian and Romanian 

section and five at the Ukrainian section. The oldest one being investigated is related to 

Marine Isotope Stage (MIS) 17 to 18 and MIS 13-15 for Stary Kaydaky, respectively. Some 

points of discussion, concerning existing chronostratigraphies of Bulgaria, Ukraine and China 

are developed.  

The comparative study of the profiles allows to trace paleoclimatic and paleoenvironmental 

changes in Southeastern/Eastern Europe in time and space. Reconstruction of 

paleoprecipitation based on susceptibility-rainfall relationship and calculations of 

sedimentation rates are evaluated.  

Keywords: Loess, paleosols, stratigraphy, susceptibility, sedimentation rate, 

paleoprecipitation, Southeastern Europe, Serbia, Romania, Ukraine, Danube, Dnieper.  
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1 Introduction 

Mid-latitudinal loess originated from silty material blown out of sparsely vegetated areas 

during dry and cold periods of the Pleistocene. This so-called glacial periods are characterized 

by extensive glaciations of continental land masses, whereas during the interglacials and 

mostly also interstadials soil formation prevailed. Thus, the alternation of cold and warm 

periods throughout the Quaternary led to the formation of loess-paleosol sequences (LPSS), 

which potentially provide continuous, paleoclimatic and paleoenvironmental information. 

Therefore, LPSS are one of the most valuable terrestrial archives especially for Southeastern 

and Eastern Europe, due to their widespread occurrence along the banks of the Danube and 

Dnieper rivers. Thus, this area was already object of various studies. Origin and distribution 

of Danube loess was reviewed by Smalley and Leach (1978) already almost 30 years ago and 

recently new investigated by Buggle et al. (2008) and Újvári et al. (2008) In Serbia, the first 

description of a LPSS was by Marsigli (1726) (see also Marković et al., 2004a). A milestone 

in regional loess research was the contribution of Marković-Marjanovic (1968) to the 

activities of the INQUA loess commission, attracting attention of the post-war scientific 

community to the Serbian loess sections. Latest works of Kostić and Protić (2000), Marković 

et al. (2004b, c, 2005, 2006, 2007, 2008, 2009) and Fuchs et al. (2008) put the Serbian loesses 

in a Eurasian context. The former presented paleoclimatic implications based on mineralogy 

and grain size analyses of two Serbian sections for a time span of more than 700 ka The latter 

gave paleoclimatic reconstructions using malacology and a revision of the chronology of 

Serbian LPSS based on magnetic susceptibility and amino acid racemization. Also, the 

various works of Bronger (1976; 2003) have to be highlighted, since he presented a detailed 

paleopedological investigation and a classification of the paleosols of the Carpathian basin by 

means of micromorphology. Furthermore, he provided a first attempt of trans-continental 

stratigraphic correlation between European and Asian loess regions. For the lower Danube, 
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one can look back to more than 100 years of loess research (Conea, 1969). For this area 

fundamental descriptions were done by Haase and Richter (1957), Conea (1969) and Minkov 

(1970). Jordanova and Petersen (1999a, b), Panaiotu et al. (2001) and Jordanova et al. (2007) 

presented detailed environmental and rock magnetic research and published one of the first 

stratigraphies for Bulgarian and Romanian sections using magnetic susceptibility. In Ukraine, 

the first prominent study on loess stratigraphy was carried out by Krokos (1932), later being 

extensively developed by Veklitch (1969, 1993). Paleoenvironments of the Ukrainian 

Quaternary have also been profoundly investigated (Matviishina, 1982; Veklich and Sirenko, 

1982; Sirenko and Turlo, 1986; Gerasimenko, 1988; 2004; 2006; Rousseau et al., 2001). 

However, most of the existing studies either focused on a single LPSS-section or dealt with 

paleoclimatic records of only the last few glacial cycles or are lacking of a reliable 

stratigraphic model.  

This study considered LPSS sites in Serbia (Batajnica/Stari Slankamen), Romania (Mircea 

Voda) and Ukraine (Stary Kaydaky). These sites were thought to bear far back reaching 

paleoclimatic records. Since the sections are presently located in areas of different kinds of 

steppe and rather close to the temperate forest and submediterranean types of vegetation (Frey 

and Lösch, 1998), respectively, they are supposed to be sensitive to climatic changes. On the 

one hand, the studied sections cover different types of climate zones following a gradient of 

increasing aridity towards the Black Sea coast. On the other hand, they form a W-E transect 

across the region, thus, giving the possibility of Late and Mid-Pleistocene climate 

reconstruction in space and time. 

Our purposes are 

1) to set up a stratigraphy for these prominent Southeastern European paleoclimate archives 

based on pedostratigraphy and correlations of the magnetic susceptibility records with 

those of Chinese stratotype sections and with the δ18O record of benthic foraminifera of 

ODP 677 as proxy for the global ice volume. The obtained stratigraphy will be validated 
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by correlations to other dated sections of the region and, respectively, may give evidences 

clarifying ambiguous points in existing stratigraphic models of the region. A reliable 

stratigraphy is required for further paleoclimatic studies in this area. 

2) to calculate sedimentation rates and to evaluate their informative value. 

3) to give a tentatively paleoclimatic interpretation of the magnetic susceptibility record and 

to evaluate the use of the susceptibility-rainfall equation of Maher et al. (1994) for the 

Danube and Dnieper loess area. 

2 Principles of susceptibility enhancement in (paleo-)soils 

Generally, the magnetic susceptibility is controlled by the amount and composition of iron-

bearing para-, and ferromagnetic (s.l.) minerals and their grain-size distribution. Focusing on 

iron oxides and oxyhydroxides, as the most common iron-bearing compounds in soils without 

influence of water-logging, special attention has always to be drawn to the so-called 

ferrimagnetic minerals (magnetite and maghemite). The susceptibility of these minerals are 

several magnitudes higher (4-5 10 -4 m³ kg-1) than of the so-called antiferromagnetic minerals 

hematite and goethite (6-7 10-7 m³ kg-1) (Thompson and Oldfield, 1986). Thus, even small 

amounts of these ferrimagnetics, which are predominantly formed during pedogenesis, 

significantly influence total magnetic susceptibility. 

Besides mineralogy, magnetic susceptibility is also controlled by grain size. Intense research 

in Eurasian loesses has demonstrated that magnetic grains of superparamagnetic size (SP) (<~ 

30 nm) are predominant in paleosols, and single-domain (SD) and multidomain-grains (MD) 

(>~ 30 nm) prevail in loesses (Evans and Heller, 2003). The term “single”- or “multidomain” 

grain means that there exist only one or several regions with parallel coupled atomic magnetic 

moments, respectively. Below a certain size, no stable domain can exist 

(superparamagnetism, Thompson and Oldfield, 1986). The susceptibility of a mineral is 

highest in the SP-fraction, because these particles align instantaneously to any ambient field. 
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The susceptibility of magnetite grains with 0.023 µm diameter is, for example, about three 

times higher than that of magnetite grains with 0.5 µm diameter (Tang et al., 2003). Thus, 

magnetic susceptibility can reflect intensity of pedogenesis, as it has been observed at the 

Chinese loess sequences (Heller and Liu, 1984). The models dealing with the enhancement 

processes are essential for understanding the direct mineralogical reasons for magnetic 

susceptibility enhancement. The formation of ferrimagnetic minerals in the course of 

pedogenesis is the most important mechanism. Its rate and the equilibrium between the 

formation of magnetite/maghemite and other Fe-minerals is controlled by conditions in the 

soil environment such as temperature, moisture (alternating wet and dry periods), pH and 

content of organic matter (Evans and Heller, 2001). The most widely accepted model 

(Thompson and Oldfield, 1986; Maher, 1998; Evans and Heller, 2001; Chen et al. 2005;) 

assumes, as first step, alternating reducing and oxidizing conditions leading to a release of 

Fe2+ from the weathering of Fe minerals and subsequent ferrihydrite (5Fe2O3 × 9H2O) 

formation. With excess of Fe2+ in solution an intermediate Fe2+/Fe3+ compound is formed. For 

this step, the relevance of iron-reducing bacteria is stressed by several authors (Chen et al., 

2005; Evans and Heller; 2001; Maher 1998). Prerequisite for this biologically induced 

mineralization is a sufficient content of organic matter for microbial respiration. As third step, 

magnetite of predominantly superparamagnetic size is formed by dehydration of the Fe2+/Fe3+ 

intermediate at moderately oxidizing conditions. Magnetite is still susceptible for dissolution. 

Only further oxidation to maghemite results in a more stable ferrimagnetic mineral (Maher, 

1998). Other mechanisms contributing to susceptibility enhancement of soils are the fire-

induced formation of ferromagnetics, the relative enrichment due to carbonate leaching or 

biologically induced mineralization by magnetotactic bacteria (Evans and Heller, 2001; Tang 

et al. 2003). 
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3 Regional setting 

3.1 Batajnica / Stari Slankamen (Serbia) 

The Batajnica section (44° 55´ 29´´ N, 20° 19´ 11´´ E, Fig. 2-) is situated alongt the Danube 

River bank about 12 km north of Belgrade. The sequence is about 40 m thick and contains at 

least six strongly developed pedocomplexes. The lowermost pedocomplex is already below 

the Danube level and was only outcropped for a short time in a trench. The three lowermost 

pedocomplexes are influenced by water logging. Since this lead to changes in mineralogical 

composition, resulting in a disturbance of the magnetic susceptibility record (Evans and 

Heller, 2001), we sampled these pedocomplexes at Stari Slankamen, where water logging is 

absent. The Stari Slankamen section (45° 7´ 58´´ N, 20° 18´ 44´´ E, Fig. 2-1) is located about 

45 km upstream of Batajnica at the right bank of the Danube river opposite to the confluence 

of the Tisza and Danube river. Below the pedostratigraphic analog to the sixth pedocomplex 

of Batajnica, the Stari Slankamen section contains at least four older loess-paleosol couples 

(Bronger, 1976), which, however, were buried by colluvial deposits and thus only exposed 

during the sampling period. Tertiary lime-, and sandstones form the base of the Quaternary 

sequence (Bronger, 1976).  

Both, the Batajnica and Stari Slankamen site, are situated in the Vojvodina – the Serbian part 

of the Pannonian Basin.  

The climatic data of the nearby station Belgrade (Fig. 2-2) show a mean annual precipitation 

of 683 mm. According to the Köppen classification system (Sträßler, 1998), the area has a 

Cfb climate with strong tendency to Cfa. Despite the absence of a prominent drought period, 

August can be still regarded as a dry period. According to Walter (1974), this is characteristic 

of a forest-steppe type of climate. This kind of vegetation is typical for the dry central 

Pannonian basin. It is replaced by submediterranean and supramediterranean thermophile 

mixed oak forests (Quercion pubescenti) near the Carpathian Mountains (Fig. 2-1). 
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Fig. 2-1. Location of the investigated loess-paleosol sequences; map of current potential vegetation for 
Southeastern Europe (Frey and Lösch, 1998, modified). B5: Mountainous and subalpine coniferous forest and 
krummholz-shrubbery, M1: Thermomediterranean oak forest and olive-carob shrub-forest, M2: 
Mesomediterranean holm- oak forest, M3: Submediterranean and mediterranean xerotherme coniferous forest, 
P1: Forest steppe, P2: Feather-grass steppe, T2: Middle-, and Eastern-European mixed oak forest, T3: 
Submediterranean und supramediterranean thermophile mixed oak forest, T4: West-, Middle -, and 
Southeastern European common beech - and common beech - fir forest, T5: Euxinian orient-oak forest. 

 

3.2 Mircea Voda (Romania) 

The section of Mircea Voda (44° 19´ 15´´ N, 28° 11´ 21´´ E, Fig. 2-1) is located in the 

Dobrudja plateau (Romania) at a distance of about 13 km from the Danube and 40 km from 

the Black Sea coast. About 30 m of Quaternary aeolian deposits including six strongly 

developed pedocomplexes can be observed. The loess-paleosol successions overlie limnic 

sediments of presumably lower Pleistocene age (Domokos et al., 2000) on Tertiary and 

Mesozoic sediments.  

The climatic station of Constanta recorded a mean annual precipitation of 396 mm. Due to 

strong northerly winds prevailing most of the year (Jordanova and Petersen, 1999a), the 
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regional climate is characterized by hot and dry summers, i.e. Cfa-climate with six months of 

dryness and three months of drought (Fig. 2-2). This favors feather-grass steppe vegetation 

(Fig. 2-1, Walter, 1974). According to Mavrocordat (1971), the actual mean annual 

temperature for Mircea Voda (station Cernavoda in about 10 km distance from Mircea Voda) 

was 0.5 °C higher and the mean annual precipitation was 57 mm higher than for Constanta, 

resulting in only 4 months of dryness (in the observation periods 1896-1915 and 1921-1955). 

 

Fig. 2-2. Climate diagrams of a) Belgrade (Serbia), b) Constanta (Romania) and c) Dniepropetrovsk (Ukraine). 
The diagrams were created on basis of the climatological normals for the period 1961-1990 (WMO, 1996). The 
heavily dotted area marks months with average precipitation being less than twice the value of the average 
temperature. This indicates periods of drought according to Walter (1974). The slightly dotted areas show 
months with average precipitation being less than three times the value of average temperature. This 
characterizes periods of dryness. 

 

3.3 Stary Kaydaky (Ukraine) 

The large “balka” (Russian term for gently sloping gully in loess) with its system of younger 

ravines, reaching the Dnieper River near the village Stary Kaydaky (48° 22´ 42´´ N, 35° 07´ 
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30´´ E, about 2 km S from Dniepropetrovsk city, Fig. 2-1), has multiple outcrops of at least 

five different pedocomplexes. Some of the outcrops have been primarily investigated as key 

sections of the Ukrainian Quaternary (Veklitch and Sirenko, 1982). At Stary Kaydaky, special 

care had to be given to hiati. For instance, the Vytachiv pedocomplex (MIS 3) was eroded at 

the main sampling site and, thus, has been sampled separately, few hundred meters aside. The 

climate of the area can be classified as Dfb-type, with a drought period of one month, and a 

period of dryness of three months (Fig. 2-2). This site is climatically intermediate between 

Batajnica/Stari Slankamen and Mircea Voda, which is also reflected by the character of the 

vegetation. Walter (1974) described the area around Dniepropetrovsk as so-called Northern 

feather-grass steppe (Hygroherbeto-Stipetum), relatively wet and rich in herbs. About 120 km 

to the north, the feather-grass steppe is replaced by forest steppe. The aridity gradually 

increases southwards to the Black Sea coast. Together these three locations cover a range of 

different steppe conditions (Fig. 2-1), following precipitation gradients towards the Black Sea 

coast. 

4 Methods 

As further investigations will focus on paleopedology, pedocomplexes were sampled with 

higher resolution than the loesses. Samples of the pedocomplexes were taken in 10 to 

maximum 50 cm intervals, depending on horizontation and thickness of a unit. We took at 

least ten samples for each of the younger paleosols (i.e. the uppermost three interglacial 

pedocomplexes) and at least three samples for each of the older ones. The intercalated loesses 

were sampled by about three representative samples corresponding to individual loess layers. 

All our samples were stored in air-tight plastic bags and dried at 40 °C in the laboratory. The 

material was then packed in 6 cm³ plastic boxes and magnetic susceptibility measurement was 

carried out using a KLY-3 Kappabridge of Agico (Brno, Czech Republic) at 0.875 kHz and 

300 A/m. For normalization on density of the packed material and for better comparison with 
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literature data, the susceptibility values were expressed as mass-specific susceptibility 

(m³/kg). The minimum susceptibilities of the pure loess units of each profile were taken as 

background susceptibilities. 

Field and working nomenclature of the stratigraphic units is similar to the Chinese system, 

using the following abbreviations for the lithological units: Main paleosols/pedocomplexes–

‘Sx’, main loess layers–‘Lx’, with ‘x’ being the stratigraphic number of the soil or loess, 

starting from the youngest soil. For instance, S0 corresponds to the recent soil, S1 to the first 

main pedocomplex from the top, L1 means the main loess unit above S1 and so on. Subunits 

of the individual pedocomplexes are abbreviated as SxSy for a paleosol (also regarded as 

pedomember) and SxLy+1 for an intercalated loess layer, with y=1 for the uppermost soil of a 

pedocomplex. Within main loess units, intercalated weak paleosols are marked with LxSz, 

with z=1 for the youngest paleosol of a loess unit. However, we also added prefixes 

designating to the locality of the sections i.e. SK for Stary Kaydaky and MV for Mircea Voda. 

For Batajnica/Stari Slankamen the prefix V was used, referring to the standard 

pedostratigraphic framework of the Vojvodina region (Marković et al., 2008; Marković et al, 

2009). 

To derive a chronostratigraphy for the studied sections, the magnetic susceptibility curve was 

correlated with the astronomically tuned stacked records of Lingtai and Zhaojiachuan of the 

Chinese Loess Plateau (Sun et al., 2005), and the benthic δ18O values of ODP site 677, 

situated in the Eastern tropical Pacific (1°12´N, 83°,44`W, Shackleton et al., 1990). Wherever 

no clear bench marks in the ODP-record were found for correlating our susceptibility record, 

a δ18O value of 4.5 ‰ was used to determine age boundaries between major warm and cold 

stages, following Vidic et al. (2004). The obtained chronostratigraphy was validated against 

existing chronostratigraphic models of other LPSS in the region such as Ruma (Serbia, 

Marković et al., 2006), Koriten (NE Bulgaria, Jordanova and Petersen, 1999b), Mostistea (SE 
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Romania, 44.16° N, 26.83° E; Panaiotu et al, 2001) and Vyazivok (Dnieper plain, 49° 198` N, 

32° 58.8` E; Rousseau et al., 2001  

For paleoclimatic deductions, paleorainfall we calculated by using Eq. (1) according to Maher 

et al. (1994). 

MAP (mm/yr) = 222 + 199 log 10[(χB - χC) 10 -8 m3 kg-1]                                   (1) 

where χB is the susceptibility of the subsoil and χC the background susceptibility of the loess. 

Sedimentation rates were only calculated for the Mircea Voda section due to several hiati in 

the Stary Kaydaky LPSS and due to the Serbian LPSS, being composed from LPSS of two 

sites with possibly different rates of dust deposition. Calculating sedimentation rates, one is 

generally confronted with the problem that the lower boundary of a soil does not reflect the 

upper boundary of the sediments deposited during the preceding cold and dry period. Hence, 

we calculated sedimentation rates, assuming two different worst case scenarios. Variant A 

took into account the fact that dust accumulation may still exist during soil development 

(synpedogenetic sedimentation) and the thickness of paleosols was completely attributed to 

interglacial dust deposition. Variant B assumed dust accumulation being only restricted to 

cold stages. Consequently, each portion of material comprising both, loess layer and the 

associated overlying pedocomplex, was fully attributed to a cold stage. For better comparison 

with literature data, sedimentation rates were first calculated using the timescale of Koriten 

(JP-99b), developed by Jordanova and Petersen (1999b). To test the sensitivity to 

uncertainties in the age model, calculated sedimentation rates were based on 

1) correlation to the benthic δ18O record of ODP site 677 (Sh-90; Shackleton et al., 1990); 

2) correlation to the susceptibility record of Sun et al. (2006; Su-06); 

3) the timescale of Jordanova and Petersen (1999b) for the Koriten site (lower Danube 

basin, Bulgaria); 

4) the timescale of Heslop et al. (2000) (He-00), derived from the astronomical tuning of the 

Baoji (China) grain size record and the Luochuan susceptibility record; and 
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5) an age model of the marine isotope events, developed at the planktonic δ18O record of 

core MD900963 (Maldives area, Indian Ocean; Bassinot et al., 1994; Ba-94). 

These different timescales represent studies in various regions of the earth with different well 

established methods for setting up a Quaternary climate- and chronostratigraphy. However, 

each of the studied regions and applied methods differs in its sensitivity for recording climatic 

changes. Only for the last glacial cycle a supposably more reasonable and accurate timescale 

for Europe was available in Guiter et al. (2003). In all calculations, age boundaries for MIS 2 

- 5 were taken from this review of various West and Central European terrestrial records. The 

lower boundary of the recent soil was set to 11.5 ka according to the Younger Dryas - 

Preboreal boundary, given by Litt et al. (2001) for Central Europe. Although these compiled 

datasets from more proximal terrestrial records were used, some minor uncertainties cannot 

be excluded, since age boundaries of climatic stages are probably not synchronous within all 

parts of Europe. Furthermore, ages derived from dating of the lower boundaries of paleosols 

are probably overestimating the duration of warm periods as emphasized before. For the 

purpose of clarity no further sensitivity analyses with respect to these aspects was carried out. 

An overview of the applied timescales is given in Table 2-1. 

Table 2-1. Overview on the different timescales for Mid-Pleistocene LPSS and major isotope stages, respectively, 
applied for sensitivity analyses of sedimentation rates. 
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5 Results 

5.1 Magnetic susceptibility variations 

For all three profiles, the magnetic susceptibility record follows generally the lithology (Fig. 

2-3), being enhanced in the paleosols compared to the parent loess. The background 

susceptibility for Batajnica/Stari Slankamen and Mircea Voda are about two times higher than 

for the Stary Kaydaky section, in spite the older loesses at Stary Kaydaky (>SK-L2) showing 

more pedogenic alteration. 

The LPSS of Batajnica/Stari Slankamen has a background susceptibility of 22 10-8 m3 kg-1. 

Pedogenic alteration may be the reason for a relative high susceptibility at the upper and 

lower part of the V-L5. The strongest susceptibility enhancement can be observed in the V-S3 

and the V-S5, whereas relative weak enhancement can be found in V-S6, V-S4 and V-L1S1 

of Batajnica/Stari Slankamen (Fig. 2-3). The susceptibility of the recent soil is measured as 61 

10-8 m³ kg-1. In unit V-L1S1, the susceptibility record shows a double peak. Further 

distinctive peak structures can be observed for the V-S2 pedocomplex, in which the 

uppermost pedomember has a relatively low susceptibility enhancement and is clearly offset 

against the rest of the pedocomplex by a thin loess layer with nearly background 

susceptibility. In general, the high resolution susceptibility record of Batajnica (Marković et 

al., 2009) confirms the patterns of the lower resolved record (Fig. 2-4). The only markable 

difference is a tephra-layer indicated by a sharp peak in unit V-L2, which was not detected 

with the low resolution sampling (Fig. 2-4). Further distinctive peak structures can be 

observed for the V-S2 pedocomplex, in which the uppermost pedomember has a relatively 

low susceptibility enhancement and is clearly offset against the rest of the pedocomplex by a 

thin loess layer with nearly background susceptibility.  
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Fig. 2-3. Variations of magnetic susceptibility (χ) with profile depth and sampling site. The lithology is sketched. Dark layers indicate paleosols (= S-units), light layers indicate 
loess units or weakly (compared to adjacent paleosol units) pedogenetic altered loess (=L-units). Wiggled lines indicate probable hiati. The assumed chronology, related to 
marine isotope stages (MIS), resulted from the magnetic susceptibility stratigraphy and for Stary Kaydaky also from pedostratigraphy (see also Fig. 2-5). Note that the Serbian 
profile is a composite of the Stari Slankamen (bottom) and Batajnica loess-paleosol sequence (top). 
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Fig. 2-4. Comparison of a high resolution magnetic susceptibility record (a, sampling in 5 cm intervals, data 
taken from Marković et al, 2009) and a lower resoolved record (b, sampling in decimeter intervals) for the 
Batajnica section. Note that in graph a there are 14 subcolumns, which are indicated by a change from black to 
grey and vice versa. Values are normalized to the maximum value. 

 

In general, the high resolution susceptibility record of Batajnica (Marković et al., 2009) 

confirms the patterns of the lower resolved record (Fig. 2-4). The only markable difference is 

a tephra-layer indicated by a sharp peak in unit V-L2, which was not detected with the low 

resolution sampling (Fig. 2-4). The background susceptibility of the Mircea Voda record (21 

10-8 m3 kg-1) is similar to that of the Serbian sections. Confirming field observations, 

pedogenic alteration of the intercalated loesses can especially be noted in MV-S2L2 and MV-

S6L1 (Fig. 2-3). Consistent with the results from Serbia, the maximum susceptibility 

enhancement (134 10-8 m3 kg-1) occurs in the MV-S3. Also the MV-S5 shows a relatively 

strong magnetic signal (116 10-8 m3 kg-1). However, in contrast to the Stari Slankamen record, 

the magnetic susceptibility of the MV-S4 (122 10-8 m3 kg-1) is almost as high as that of the 

MV-S3. Only weak enhancement can be found again in the MV-S6 and MV-L1S1. The 

susceptibility of the recent topsoil is about 77 10-8 m3 kg-1. Individual paleosols are 

indicated most expressively by susceptibility patterns in the MV-S6 (two pedomembers) and 
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in the MV-S2 (three pedomembers). The magnetic susceptibility record of the Stary Kaydaky 

section shows remarkable differences in pattern as well as in the absolute values (Fig. 2-3). 

The background susceptibility is 7 10 -8 m3 kg-1. So, it is clearly lower than in the studied 

sections in Serbia and Romania. However, for most of the loess units (SK-L3 and older, as 

well as for the loess above unit SK-L1L1S1), pedogenic overprint is indicated by higher 

susceptibilities. The modern soil is characterized by a magnetic susceptibility of about 50 10 -

8 m3 kg-1, which is also lower than in the modern soils of the Serbian and Romanian sections. 

The maximum susceptibility, found in the Ukrainian S2 and S3, is approximately half that  at 

Batajnica/Stari Slankamen and at Mircea Voda. Only relative weak magnetic susceptibility 

enhancement compared to background values can be observed in the SK-S4, SK-S5 and SK-

L1S1, whereas the incipient soil SK-L1L1S1 does not exhibit enhanced magnetic 

susceptibility at all. Further interesting patterns are the three-partitioned record of the SK-S1, 

the typical peak association of the SK-S2, already described for the Batajnica section, and the 

two susceptibility peaks in the SK-S5 unit. Several peaks of magnetic susceptibility generally 

point towards a discontinuous soil development, forming a pedocomplex, consisting of 

individual pedomembers separated by layers of less intensive or different pedogenesis. 

5.2 Stratigraphy 

The magnetic susceptibility record of our profiles can be used for stratigraphic correlation. 

Though having a relatively coarse sampling design, characteristic susceptibility patterns are 

similar to the high resolution records of the area (Fig. 2-4; Rousseau et al., 2001; 

http://ns.geo.edu.ro/~paleomag/loess-MV.htm). A comparison between the magnetic 

susceptibility record of these profiles and the benthic δ18O dataset of ODP site 677 

(Shackleton et al., 1990), reflecting the global ice volume, exhibits concordance in the general 

patterns (Fig. 2-5). The match of paleosols/pedocomplexes with enhanced susceptibility to 

specific interglacials/interstadials and cold stages with reduced magnetic susceptibility comes 
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out more clearly in comparison with the stacked susceptibility record of Lingtai and 

Zhaojiachuan (Chinese Loess Plateau, Sun et al., 2006, Fig. 2-6). The chronology also 

corresponds well with the records of Koriten (Bulgaria) and Mostistea (Romania) and their 

correlation to the marine δ18O record (Jordanova and Petersen, 1999b; Panaiotu et al., 2001). 

Тhis similarity can be distinctly traced for our profiles Stary Slankamen/Batajnica and Mircea 

Voda. However, for the Stary Kaydaky section, a correlation solely based on the magnetic 

record is in large part ambiguous. Here, the given chronostratigraphy strongly relies on the 

Ukrainian stratigraphic framework (Veklitch, 1993; Gerasimenko, 2004).  

5.2.1 Stratigraphy of Batajnica/Stari Slankamen (Serbia) and Mircea Voda (Romania) 

Above the first strong interglacial pedocomplex (V-S1, MV-S1) weak magnetic enhancement 

within a zone of incipient soil formation points towards an interstadial pedocomplex (V-

L1S1, MV-L1S1) of the last glacial cycle, most probably of the MIS 3. This corresponds also 

to the IRSL dates and amino acid racemization (AAR) chronology of other sections in the 

Vojvodina (Marković et al., 2008) and the chronostratigraphic interpretation of the Batajnica 

section given by Marković et al (2009). The pedocomplex S1 of Batajnica and Mircea Voda 

i.e. F2 according to the older nomenclature of Bronger (1976; see Marković et al., 2008 for 

the parallelization of the F and the S-L nomenclature) shows a dominating magnetic 

susceptibility peak in its basal half, probably representing MIS 5e. This resembles the pattern 

of Koriten, Lingtai/Zhaojiachuan and the trend visible in the ODP record. For the sections 

Durankulak (Romanian - Bulgarian border at the Black Sea coast, 43°43`N, 28°34`E) and 

Harlets (43° 42´16´´ N, 23° 49´55.2´´E). Avramov et al. (2005) reported a weakly expressed 

susceptibility peak at the top of S1 just above the S1 - susceptibility maximum. This feature is 

also indicated by a bend in the record of the profiles Batajnica and Mircea Voda, potentially 

resulting from pedogenesis during MIS 5a and 5c. Additional evidence for assigning the S1 

unit to MIS 5 is its stratigraphic position as the first strongly developed pedocomplex below 
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the surface and above the S2 with its characteristic susceptibility feature of twin or triple 

peaks. Further support comes from the amino acid dating of the V-S1 in Ruma (Marković et 

al.; 2006) and IRSL dates of the loess below and above this pedocomplex in Surduk, a section 

situated in between Batajnica and Stari Slankamen (Fuchs et al., 2008).  

As can be seen in the record of Mircea Voda, Koriten and Mostistea (Fig. 2-5), the S2 

pedocomplex shows actually three peaks, two well expressed peaks at its base and a weak one 

at the top. In some cases, as in Batajnica, the two basal peaks are not separated clearly (Fig. 2-

4). The characteristic magnetic susceptibility patterns of the Serbian and Romanian S2-unit 

can be correlated with corresponding patterns in the susceptibility record of Chinese LPSS 

(Fig. 2-5; Heslop et al., 2000) and with the benthic δ18O record of ODP 677 (Fig. 2-6). This 

pedocomplex is attributed to MIS 7, which is in accordance to the amino acid chronology of 

Ruma (Marković et al.; 2006). MIS 9 shows also a characteristic double peak in the isotope 

curve of ODP 677 and in the magnetic susceptibility curve of Lingtai/Zhaojiachuan (Fig. 2-5). 

For this reason, the Batajnica S3 is correlated to MIS 9. At the Mircea Voda section, this 

feature is not visible, but the magnetic enhancement of the S3 paleosol in this section is the 

strongest one of the observed time interval, the same as in Batajnica, Koriten, Mostistea (Fig. 

2-5) and Ruma (Marković et al.; 2006). This, together with the similar stratigraphic position 

of the S3 in all studied sections, clearly indicates the same range of age of this pedocomplex. 

The obtained chronostratigraphic placement is in accordance to the AAR results of Ruma 

(Marković et al.; 2006). Further down, the magnetic susceptibility peaks in the V-S4, MV-S4 

and V-S5, MV-S5 paleosols are correlated with MIS 11 and MIS 13 - 15, respectively. In the 

Chinese loess-paleosol sequences, magnetic enhancement is continuously observed through 

the whole duration of MIS 13 and 15, and its attenuation during MIS 14 is rather weak (Sun et 

al., 2006; Heslop et al. 2000). The work of Jordanova and Petersen (1999b) on Koriten and 

the pedostratigraphy confirm the correlation of the Serbian and Romanian S4 and S5 with 

these MISs 
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Fig. 2-5. Correlation of the magnetic susceptibility records of the profiles Batajnica/Stari Slankamen, Mircea Voda, Stary Kaydaky with the astronomically tuned benthic oxygen 
isotope record from ODP site 677 (Shackleton et al., 1990); A δ 18O value of 4.5 ‰ was used for the limitations of major isotope stages, following Vidic et al. (2004); 
Comparison with the records of Koriten, Mostistea (redrawn after Jordanova and Petersen, 1999b; Panaiotu et al., 2001) and the stacked normalized magnetic susceptibility curve 
of Lingtai and Zhaojiachuan (Chinese Loess Plateau); data and astronomical tuning for the latter sections were provided by Sun, et al., (2006). 
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Being the youngest and best-developed soil of the Brunhes-chron with remarkable 

rubification and clay illuviation in Stari Slankamen and Mircea Voda, the S5 may serve as a 

marker horizon for MIS 13-15, in this area. The magnetic susceptibility enhancement in unit 

S6 of Stari Slankamen is assigned to MIS 17, also supported by the magnetostratigraphy of 

Marković et al. (2003). At Mircea Voda the magnetic susceptibility record of the MV-S6 

revealed two peaks. The first one resulted from MIS 17, but the chronological placement of 

the second was not clear. A comparison with the magnetic susceptibility records of Koriten 

and the Chinese loess plateau (Fig. 2-5) may point to a MIS 18 interstadial soil. However, 

pedogenesis of this lower pedomember seems to be even stronger than that of the upper one. 

Therefore, at the present state of knowledge, it is attributed to the MIS 17 interglacial (Fig. 2-

5) (see for further discussion Section 6.2.2). Preliminary paleomagnetic investigations of 

Marković et al. (2004c) revealed evidences for the Brunhes-Matuyama (B/M) boundary in the 

L8 of Stari Slankamen. This represents a further support for the correctness of the 

chronostratigraphic model. Contrasting TL dates for the S1 to S4 at Stari Slankamen (Singhvi, 

989) suffer probably from age underestimation due to methodological reasons (Fuchs et al., 

2008).  

5.2.2 Stratigraphy of Stary Kaydaky 

A key in the different stratigraphic models, which are proposed for the LPSS of the Ukraine 

(Gerasimenko, 2004; Gerasimenko, 2006; Lindner et al., 2006; Veklich, 1995, cited in 

Bolikhovskaya and Molodkov, 2006), is the chronological placement of the Kaydaky 

pedocomplex (SK-S1S2) and the Dnieper loess (SK-L2). In the Ukraine, especially at its type 

locality at Stary Kaydaky, the Kaydaky pedocomplex is formed by a dark steppe soil-type 

paleosol over a forest-soil type paleosol overlying the Dnieper loess (SK-L2). The Dnieper 

loess is the unit associated with the moraine of the Dnieper glaciation. In the stratigraphic 

models of the Ukrainian Quaternary, it is generally argued whether this loess and the 
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respective glaciation occurred during MIS 8 or MIS 6. Therefore, the Kaydaky unit is placed 

either in MIS 5e or MIS 7. An overview of the stratigraphic schemes for the Ukraine, 

resulting from the different opinions on the chronological placement of the Dnieper and 

Kaydaky units, is given in Table 2-2. Clarifying this question allows the development of a 

chronostratigraphy for the Stary Kaydaky section on the basis of the respective pedo-, and 

pollen stratigraphic framework of the Ukraine. 

Table 2-2. Compilation of different stratigraphic schemes for the Ukraine. The 
present study favors the scheme of Gerasimenko (2004, 2006). 

 

 

The S1 pedocomplex of Stary Kaydaky contains a forest steppe/steppe-soil type paleosol 

(=Pryluky complex), which is separated by thin pedogenetically altered loess (= Tyasmyn) 

from the typical Kaydaky pedomplex. The three peaked susceptibility record of S1 reflects the 

pattern of the benthic δ18O record of MIS 5 as well as the susceptibility pattern of the S1 

pedocomplex in Mostistea and the Pryluky-, Kaydaky complex in Vyazivok (Rousseau et al., 

2001, Fig. 2-6). This good correspondence suggests that the magnetic susceptibility record at 

least of this younger part of the section reflects paleoclimatic variations and is not affected by 

strong biases as in the older part of the sequence (see below).  
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Fig. 2-6. Correlation of the magnetic susceptibility record of the Stary Kaydaky section to that of the Vyazivok 
section (Ukraine, Rousseau et al. 2001) and the benthic δ18O record of ODP 677 (Shackleton et al. 1994), for 
the last climatic cycle. 

 

With the given susceptibility curve and AAR dates in the range of MIS 6 for the loess below 

the Kaydaky –complex (i.e. Dnieper) in Vyazivok, it appears most reasonable to correlate the 

Pryluky complex (SK-S1S1) with MIS 5a to MIS 5c, the Tyasmyn unit (SK-S1L1) with MIS 

5d and the Kaydaky complex (at its type locality) with MIS 5e. This correlation supports the 

stratigraphic scheme of Gerasimenko (2004, 2006). Having clarified the chronological 

placement of the S1 (Pryluky, Tyasmyn, Kaydaky) allows to develop the chronostratigraphy 

of the other units of the Stary Kaydaky section, above and below, based on the respective 

(pedo-)stratigraphic framework of the Ukraine. At the Stary Kaydaky section, the 

pedocomplex SK-L1S1 (= Vytachiv in the Ukrainian nomenclature) is situated in its 

characteristic stratigraphic position above the last interglacial pedocomplex being separated 

from it by the so-called Uday loess (SK-L1L2). The Vytachiv complex is represented by two 

pedomembers with a layer of weakly pedogenetically altered loess between them. The 

lowermost pedomember is most expressed in susceptibility (Fig. 2-3, Fig. 2-6). Considering 

the placement of the Kaydaky-and Priluki-complex, the Vytachiv complex can be best 
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attributed to MIS 3 (Fig. 2-6, Gerasimenko 2004; Rousseau et al., 2001). This is also in 

agreement with ESR and 14C ages between 30 and 40 ka BP reported for the Vytachev-

complex at other sites in the Ukraine (Gerasimenko, 2006). A line of erosional incision is 

observed between the Vytachiv pedocomplex and the overlying Bug loess (27-18 ka, 

Gerasimenko, 2006). Two soil subunits (SK-L1L1S1 and SK-L1L1S2), separated by loess, 

were found above the erosional incision. In the Kaydaky section, both have been related to the 

Dofinivka unit (Veklitch et al., 1982), though there are two reasons for doubting this 

assignment: a significant thickness of loess between the two subunits, and the presence of a 

set of incipient soils within the lower subunit (SK-L1L1S2). A similar succession of incipient 

soils is discovered in other sections of the Ukraine at the base of the Bug unit (bg1), whereas 

the upper Bug (bg2) is represented by pure loess (Veklitch 1993, Gerasimenko, 2000, 2006). 

Thus, only the uppermost soil (SK-L1L1S1) can be related to the Dofinivka paleosol unit (17-

15 ka, Gozhik et al., 2000). A differentiation between the unit SK-L1L1S1 and the loess 

above does not clearly appear in the susceptibility record of Stary Kaydaky (Fig. 2-3), 

probably due to the low sesquioxide content (Gerasimenko 2000). 

Below the L2 loess (Dnieper, MIS 6), the SK-S2 pedocomplex is formed by a succession of a 

brownish horizon (incipient soil) on top, a pedomember of steppe-soil type paleosol and a 

pedomember of forest/forest-steppe soil type at the base. This succession can be related to the 

Potagaylivka complex i.e. MIS 7 (Gerasimenko, 2004).Thus, the magnetic susceptibility 

pattern should also correspond to the characteristic twin peak association in the Serbian and 

Romanian S2. The underlying loess SK-L3 shows cryofeatures, penetrating into the SK-S3 

paleosol. Thus, despite its pedogenic overprint from the overlying pedocomplex, SK-L3 can 

be attributed to glacial conditions i.e. representing the so-called Orel-loess. The SK-S3 

appears to be the pedocomplex of a strongly developed steppe-soil type paleosol and forest-

soil type paleosol and the SK-S4 is a truncated forest-soil type paleosol. The SK-S3 and SK-

S4 are regarded as upper and lower Zavadivka soil, which can be palynologically correlated 
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with MIS 9 and 11 (Gerasimenko 2004). Similar to the record of Mircea Voda and Batajnica 

section, the SK-S3 shows relatively high magnetic enhancement (Fig. 2-5). In the 

pedocomplex units SK-S4 and SK-S5 the magnetic susceptibility is systematically lower. 

Although currently no explanation is suggested, climatic reasons are excluded, as steppe-soil 

type and forest-soil type paleosols are affected in a similar way. 

The SK-S5 paleosol comprises two pedomembers: the upper one is a dark steppe-soil type 

paleosol and the lower one a brown-red forest-steppe soil type paleosols. Due to this 

association, the SK-S5 probably corresponds to the Lubny pedocomplex, correlating with 

MIS 13-15 (Gerasimenko, 2004). Preliminary investigations by V. Bakhmutov (personal 

communication, 2006) could not detect the geomagnetic polarity change of the B/M boundary 

within the studied part of the profile. 

5.3 Sedimentation rates 

Sedimentation rates were calculated for two worst case models of dust deposition i.e. 

synpedogenetic sedimentation (variant A) and prepedogenetic sedimentation (variant B). 

Furthermore sensitivity analyses concerning the timescale model have been conducted.  

Variant A suggested mostly increased sedimentation rates at the loess units of Mircea Voda 

compared to the adjacent pedocomplexes, regardless of the applied time scale model (Fig. 2-

7). An exceptions is the S2 for the timescales of Bassinot et al. (1994) and Heslop et al. 

(2000). Differences between sedimentation rates of pedomplexes and loess units are most 

expressed for the JP-99b timescale and for the Su-06 and Sh-90 age models. Considering the 

duration of the units, the application of He-00 timescale yields generally lower values for 

pedocomplex units and higher values for loess units than using the other timescales (Table 2-

1). Thus, in this age model, sedimentation rates for loess units tend to be relatively low and 

for pedocomplex units relative high.  
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The JP-99b timescale shows a tendency of decreasing sedimentation rates towards the older 

units of the Mircea Voda section (variant A and B) resembling the pattern of sedimentation 

rates at Koriten (Jordanova and Petersen, 1999b). Remarkably high values can be found for 

the younger loesses L1 to L4 and here especially for the L1L1 and L3. Low sedimentation 

rates are obtained for L5 and L6 (variant A and B). Regarding the paleosols, the pedocomplex 

S5 exhibits the lowest values and relatively high sedimentation rates were found for the S2, 

due to the intercalated loess layers S2L1 and S2L2 (variant A). Furthermore, synpedogenetic 

sedimentation is probably the reason for the high sedimentation rates of the L1L2 using 

variant B, judging from the magnetic susceptibility pattern of the L1S1 (Fig. 2-7). For the 

other units, synpedogenetic sedimentation cannot be excluded. Minimum sedimentation rates 

for the S5 and maximum for either the L1 or the L3 are generally confirmed by the other 

timescale-models (Fig. 2-7). However, not all models produce the lowest sedimentation rate 

of the major loess units for the L5 and L6 of Mircea Voda. This feature is only clearly 

expressed using the JP-99b, timescale (variants A and B), the He-00 timescale (variants A and 

B) and Su-06- timescale (variants A and B). With the latter timescale, the L4 can be 

characterized by low and even slightly lower sedimentation rates than the L5. Applying the 

Sh-90 and Ba-94 age models, the L5 does not exhibit distinctly lower rates of dust deposition 

than the younger loess units. Here, only the L6 shows a clear offset towards lower values 

(variant A and B).  
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Fig. 2-7. Sedimentation rates for the sections Batajnica/Stari Slankamen and Mircea Voda. (I) Sedimentation 
rates for the LPSS Mircea Voda, calculated for the timescale used by Jordanova and Petersen (1999b). This 
timescale was based on correlation of the magnetic susceptibility record of Koriten to the planktonic δ18O record 
of ODP 677. (II) Sedimentation rates for the LPSS Koriten (Jordanova and Petersen (1999b), modified). (III) 
Sedimentation rates for the LPSS Mircea Voda, calculated for a timescale derived by correlation of the 
susceptibility records of Fig. 2- to the benthic δ18O of ODP 677 (Shackleton et al., 1990). (IV) Sedimentation 
rates for the LPSS Mircea Voda, calculated for the age boundaries of the isotope events, developed by Bassinot 
et al., (1994) for planktonic foraminifers of core MD900963 (Indian Ocean). (V) Sedimentation rates for the 
LPSS Mircea Voda, calculated for a timescale derived from correlating the susceptibility records of Southeastern 
Europe to the susceptibility record of Lingtai and Zhaojiachuan (Chinese Loess Plateau). The astronomical 
tuning for these section was done by Sun et al. (2006) using a record of mean grain size of quartz particles 
(MGSQ). (VI) Sedimentation rates for the LPSS Mircea Voda were calculated using the timescale given by 
Heslop et al. (2000) for the loess-paleosol units of the Baoji section (China). (a) Sedimentation rates calculated 
according to variant A (worst case): synpedogenetical sedimentation, the whole thickness of a paleosol is 
attributed to sedimentation during warm stages. (b) Sedimentation rates calculated according to variant B (worst 
case): no sedimentation during warm stages (prepedogenetical sedimentation). The dashed line gives the mean 
sedimentation rate for L1. 

6 Discussion 

As in the Chinese loess records (e.g. Kukla, 1987; Kukla and An, 1989; Maher et al., 1994), 

magnetic susceptibility at the studied LPSS of Serbia, Romania and Ukraine is clearly 

enhanced in paleosols. This is, on the one hand, fundamental for stratigraphic correlations 

based on this proxy of pedogenesis.. On the other hand, it allowed paleoclimatic deductions. 

In this context, the use of the susceptibility-rainfall equation (1), presented by Maher et al. 

(1994), will be discussed. Moreover, the chronostratigraphic model permitted the calculation 

and evaluation of sedimentation rates. In the following section, the stratigraphic units are 

regarded as correlatives of the Chinese loess-paleosol sequences, and the use of locall 

stratigraphic names is avoided if possible.  

6.1 Sedimentation rates 

When calculating the sedimentation rates for LPSS, one is confronted with the following 

questions: (i) what is the appropriate timescale for the calculation, (ii) are there remarkable 

hiati in the profile, and (iii) do soils thicken during their formation (synpedogenetic 

sedimentation) or were sedimentation and pedogenesis non-simultaneous processes 

(prepedogenetic sedimentation)? As to the second point, there is no field evidence indicating 
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remarkable hiati in the profile of Mircea Voda. Regarding the first point, a sensitivity analysis 

for the timescale model was conducted. For the third point, sedimentation rates were 

calculated for the two different models of dust deposition: variant A, i.e. attributing the whole 

thickness of a paleosol/pedocomplex to interglacial and interstadial dust sedimentation, and 

variant B, i.e. attributing the total thickness of a paleosol/pedocomplex to sedimentation 

during the preceding glacial/stadial stage. Both models have their limitations. In the case of 

low sedimentation rates and/or deep downward pedogenic alteration, variant A would 

distinctly underestimate the sedimentation rates for the loess units. However, when 

considering paleosols that clearly grew up or pedocomplexes with intercalated loess layers, 

variant B would overestimate sedimentation rates of the underlying loess units to a greater 

extent. This is the case at the L3 and L1L2 of Mircea Voda and L1L2, L3, L4 of 

Batajnica/Stari Slankamen, (Fig. 2-7). Furthermore, variant B restricts interpretations to the 

level of couples of loess and pedocomplex/paleosol units. Though both variants are per se 

probably unrealistic, they represent worst-case scenarios for the model of dust sedimentation 

with the truth being in between these two extremes. For the Chinese loess plateau, for 

example, Kohfeld and Harrison (2003) proposed that only a certain fraction (2/3) of the soil 

material is deposited synpedogenetically. The use of both worst case scenarios, variant A and 

B, however, provides a tool for the verification of observed patterns and trends in the 

calculated sedimentation rates by testing the robustness of the observed features. Relative 

trends that result in variant A and in variant B can be assumed to be reliable with respect to 

the uncertain extent of synpedogenetic sedimentation. This would be the case for the decrease 

in dust sedimentation rates (variant A and B) towards the older units, which was obtained for 

the Mircea Voda section, using the JP-99b, He-00 and Su-06 timescale. The decrease is 

markedly expressed below the L4 (Jp-99b, He-00) and below L3 (Su-06) (Fig. 2-7). At the 

Koriten site in the Bulgarian part of the lower Danube basin, Jordanova and Petersen (1999b) 

obtained the lowest rates of dust deposition for the older loesses L4 to L6 (Fig. 2-7). At this 
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section there appears to be a trend of decreasing sedimentation rate from one loess unit to the 

next older one, regarding the units L2 to L6. A similar trend can be observed in Mircea Voda 

(L3 to L6) only when applying the same time-scale as Jordanova and Petersen (1999b). One 

may interpret the lower rates of dust deposition in the older loess units L6, L5 and eventually 

L4 in a paleoclimatic sense. It could indicate a change in atmospheric circulation and/or a 

decrease in wind force and/or an increase in humidity towards the older units. Jordanova and 

Petersen (1999b) speculated about a link to the build up of a permanent ice cover of the Arctic 

Ocean with implications on the atmospheric circulation. However, the observed patterns are 

less clear, conducting sensitivity analysis for the applied ages by using other timescale models 

(Table 2-1, Fig. 2-7). Using the Sh-90 and Ba-94 timescale only the L6 shows a distinctly 

lower sedimentation rate. Differences in the timescales may exist due to the method of 

astronomical tuning or difficulties in finding benchmarks at the saw tooth pattern of highly 

resolved marine paleoclimatic records to correlate with less resolved records of terrestrial 

archives. This may lead to differences of more than 100 % in the duration of a period and 

consequently to a high uncertainty of the sedimentation rates. Therefore, the sensitivity 

analysis for the timescale model shows that a trend in sedimentation rates i.e. a gradual 

increase of dust deposition from L6 to L3 or L2 is questionable, though one might have 

interpreted the results of Koriten (Jordanova and Petersen, 1999b) and Mircea Voda in this 

sense, using only the JP-99b timescale. However, at Mircea Voda, the sensitivity analysis 

confirmed that relatively high rates of sedimentation occurred within the period of MIS 2-4 

(=L1), MIS 8 (=L3) and the warm stage MIS 7, whereas the lowest rate of sedimentation in 

cold stages occurred during MIS 16 (L6), and the lowest rate during warm stages in MIS 13-

15 (S5). These findings can be interpreted with respect to paleoclimate or atmospheric 

circulation. 

For the last climatic cycle, no sensitivity analysis with respect to timescale was conducted. 

The applied age model is based on Guiter et al. (2003) and Litt et al. (2001), who compiled 
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the results of several West and Central European studies. Uncertainties, reported in these 

studies, seem to be negligibly small. However, the onsets of climate variations in 

Southeastern Europe are not necessarily simultaneous to those of Western and Central 

Europe. Therefore, and due to the rather diffuse lower boundary of the recent soil, 

sedimentation rates obtained for the Holocene should not be overinterpreted. The short 

duration of this period makes these results sensitive to uncertainties in the thickness of the 

corresponding units. High resolution luminescence dating may provide a suitable tool for a 

more precise determination of the age boundaries of the upper Pleistocene climatic stages in 

the profiles (Lai and Wintle, 2006). 

6.2 Chronostratigraphic revisions 

For setting up a timescale of Mid-Pleistocene terrestrial archives, there is a lack of reliable 

methods of numerical dating. Therefore, relative stratigraphies in combination with 

astronomical tuning are widely used for working out chronostratigraphies of LPSS. 

Correlations and tunings are often ambiguous in detail and highly subjective. Continuous 

validation of existing stratigraphies is crucial for setting up a reliable timescale of the 

Quaternary. These results can provide a useful contribution to ongoing discussions about the 

stratigraphy of the region and it may initiate a new discussion concerning the astronomical 

tuning of Chinese LPSS. 

For Batajnica/Stari Slankamen and Mircea Voda, the stratigraphy is well established by 

correlation of the magnetic susceptibility records to the δ18O record of benthic foraminifera of 

ODP site 677 (Shackleton et al., 1990), to a stacked magnetic susceptibility record of two 

sections from the Chinese Loess Plateau (Sun et al., 2006) and validated by correlations to 

other profiles of the study area (e.g. Jordanova and Petersen, 1999b; Panaiotu et al, 2001; 

Rousseau et al., 2001; Marković et al., 2006;Fig. 2-5, Fig. 2-6). Contrasting TL ages for the 

Stari Slankamen S1 to S4 (Singhvi et al. 1989, cited in Bronger 2003) are probably due to a 
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methodological age underestimation (Dodonov et al., 2006a, Fuchs et al., 2008). For the Stary 

Kaydaky section, the type locality of the Kaydaky pedocomplex, magnetic susceptibility 

correlations to the dated Vyazivok section (Rousseau et al., 2001) and to the ODP 677 proxy 

record of the global ice volume gives an important contribution to clarify contrasting 

stratigraphic frameworks of the Ukraine.  

Here, the focus is on some implications of our inter-profile correlations concerning following 

topics: 1) the S2S1-unit, stratigraphic setting and implications on orbital tuning, 2) the 

division of the S6 and S7 pedocomplexes, 3) the local Ukrainian stratigraphy.  

6.2.1 The S2S1-unit, stratigraphic setting and implications on orbital tuning 

One of the most characteristic magnetic susceptibility patterns of loess profiles covering 

Southeastern-Europe through Tajikistan (Dodonov et al., 2006b) to the Chinese loess plateau 

(Sun et al., 2006) is an association of three peaks (see for example, the Mircea Voda record, 

Fig. 2-5), assigned here to the S2 pedocomplex. Probably due to sampling resolution and/or 

local effects, the two lowermost peaks are not always to distinguish in the profiles (for 

example, the Batajnica record, Fig. 2-5). The uppermost pedomember (unit S2S1) – having 

only weak susceptibility enhancement – is clearly visible in the field. We consider this 

pedocomplex as a formation of MIS 7. Correlating the susceptibility feature of the S2 in 

Southeastern Europe with the stacked astronomically tuned record of Lingtai/Zhaojiachuan, 

we conclude that the units S2S3 and S2S2 match to the susceptibility peaks at 236 and 204 ka 

(hereafter named LZe and LZc+d, Fig. 2-5). The S2S1 is correlated with the benthic δ18O 

peak at 190 ka of ODP 677. There are three possible correspondences of the S2S1 unit in the 

terrestrial records. The first one is a correlation with the upper part of the slightly splitted 

major S2 susceptibility peak in Louchuan (Heslop et al., 2000) and Lingtai/Zhaojiachuan 

(LZc). This does not seem likely, since the susceptibility enhancement in the Southeastern 

European S2S1, as well as the intensity of pedogenesis observed in the field for this unit is 
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generally weak and clearly offset from the S2S2. Furthermore, this correlation is not 

supported by Jordanova and Petersen (1999b) and Panaiotu et al. (2001). The second 

possibility is a correlation with the bend in the top of the major S2 susceptibility peak in 

Louchuan and a peak (Lzb) in the susceptibility record of Lingtai/Zhaojiachuan at an age of 

192 ka (Sun et al., 2006). This possible correlation would be in accordance with the proposed 

position of the S2S1 at the top of the S2 pedocomplex, attributed to MIS 7 (Fig. 2-5, 

Jordanova and Petersen, 1999b; Panaiotu et al., 2001). Here, the third possibility is favored, 

correlating the susceptibility peak of the S2S1 unit with the susceptibility peak of 167 ka 

(LZa) in Lingtai/Zhaojiachuan (Sun et al., 2006). This matches best the susceptibility patterns 

of the Southeastern European sections (Fig. 2-5) and is also in agreement with the correlations 

of Jordanova and Petersen (1999b) and Panaiotu et al. (2001). However, with an age of 167 ka 

following Sun et al. (2006), the S2S1 paleosol would then be assigned to MIS 6. Heslop et al. 

(2000) presented an orbital tuning for the susceptibility record of the Louchuan section, 

showing an age of about 175 ka for the corresponding peak of LZa and S2S1. Both the 

timescales of Sun et al. (2006) and Heslop et al. (2000) seem to underestimate the age of this 

susceptibility peak, when compared to the benthic oxygen isotope record of Shackleton et al. 

(1990, Fig. 2-5). This record, reflecting the global ice volume, gives an age of 188 ka for the 

MIS 6 / MIS 7 boundary and of 190 ka for the most likely counterpart of the S2S1-

susceptibility peak. 

Heslop et al. (2000) present a match of the magnetic susceptibility record of Luochuan, the 

benthic δ18O record of ODP 677 and the insolation curve. This we take as base to suggest an 

improvement of the orbital tuning of the questionable period. Heslop et al. (2000) associated 

three insolation peaks (at about 195, 220, 240 ka) with MIS 7. The lowermost is attributed to 

the counterpart of S2S3 and LZe at Louchuan. The younger two peaks are both correlated 

with the slightly splitted susceptibility peak S2-1 (Heslop et al. 2000), which is the 

counterpart of the Southeastern European S2S2 and LZc+d of the Chinese Loess Plateau. 
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More reasonable, with respect to magnetic susceptibility stratigraphy, seems to be a match of 

the uppermost MIS 7 insolation peak, shown by Heslop et al. (2000), with the susceptibility 

peak at 15 m depth in Louchuan, the LZa in Lingtai/Zhaojiachuan and the uppermost benthic 

δ18O peak of MIS 7. The susceptibility pattern of the MIS 7 (= S2 pedocomplex) of 

Southeastern Europe would then better correspond to the Chinese records. The best Chinese 

counterpart of the S2S1 paleosol would no more belong to MIS 6, due to a back shift in time 

by about 20 ka according to the Heslop et al. (2000) timescale and by about 25 ka according 

to the timescale of Sun et al. (2006). In consequence of this improvement, an overall shift in 

the astronomical tuning of Heslop et al. (2000) and Sun et al. (2006) would not be necessary, 

if the timescale is stretched for the Chinese L2. Further research is needed to clarify the 

questions about the L2/S2 and MIS 6/MIS 7 boundaries.  

6.2.2 Division of pedocomplexes S6 and S7 

At Koriten, Jordanova and Petersen (1999b) found a single pedocomplex (regarded as S6) 

spanning from the L6 to the B/M boundary. Тhere are two reasons to doubt that the Koriten-

S6, in terms of Jordanova and Petersen (1999b), corresponds to the Chinese S6. First, 

susceptibility records of Chinese LPSS (Heslop et al., 2000; Sun et al., 2006) exhibit a similar 

susceptibility pattern, implicating the correlation of the upper part of the Koriten S6 with the 

Chinese S6 (MIS 17), the middle part of Koriten S6 with MIS 18 (interstadial soil 

development), the lower part of Koriten S6 with Chinese S7 (MIS 19). Second, the true 

position of the Brunhes- Matuyama (B/M) boundary is located in the S7, as shown by Zhou 

and Shackleton (1999). Due to the fact that the acquisition of remanent magnetization in loess 

is diagenetically delayed, the B/M boundary is often found in the underlying L8 loess or even 

in the upper part of S8 (Zhou and Shackleton, 1999). Therefore, the B/M boundary in Koriten 

probably indicates the base of the equivalent to the Chinese S7. 
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At the Mircea Voda section, the S6 showed two susceptibility peaks (Fig. 2-3). The lower one 

is most likely to be an interglacial formation, as it is more strongly developed than the upper 

one. Thus, the S6S2 is most probably a soil formation of either MIS 17 or MIS 19. A 

preliminary screening on several orientated samples of the underlying loess by the 

paleomagnetic standard procedure of the laboratory for Paleomagnetism and Environmental 

Magnetism (University of Bayreuth) did not indicate a geomagnetic reversal. Therefore, at the 

present state of research, the lowermost susceptibility peak of the Mircea Voda S6 does not 

seem to represent the Chinese S7, rather the S6 of Mircea Voda is an equivalent of the 

Chinese S6. However, more detailed systematic investigations for detecting the B/M 

boundary in Mircea Voda are required. 

6.2.3 The local Ukrainian stratigraphy 

At the Stary Kaydaky section, erosional capping, pedogenic overprint of loess units and some 

unknown bias on the susceptibility of the older units, required besides the magnetic 

susceptibility record, also pollen- and pedostratigraphic information to develop a 

chronostratigraphy.. However, in the present Ukrainian stratigraphic system, the 

chronological setting of the Kaydaky and Dnieper units is regarded in two different ways 

(Table 2-2): 1) as respective correlatives of MIS 7 and MIS 8 (e.g. Veklitch, 1993; Lindner et 

al., 2006), and 2) as terrestrial equivalents of MIS 5 and MIS 6 (e.g. Rousseau et al., 2001; 

Gerasimenko, 2004; Gerasimenko, 2006; Bolikhovskaya and Molodkov, 2006). The results of 

this research (Fig. 2-6) support the latter model. Having cleared the chronological placement 

of these key-units, it was possible to suggest a chronostratigraphy for the upper and lower part 

of the Stary Kaydaky section. Accordingly the oldest studied pedocomplex is assigned to MIS 

13-15 (see Table 2-2).  

Two versions can be considered for the refined stratigraphy of L1. In the sections of the Black 

Sea coast, the uppermost soil within L1 is dated to Bölling-Alleröd (Gozhik et al., 2000). In 
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the northern and central Ukraine, Bölling-Alleröd deposits are mainly included in the lower 

layers of the thicker Holocene soils, and the uppermost soil within the loess of MIS 2 belongs 

to the Dofinivka unit, dated to 15-17 ka (Gozhik et al. 2000). Furthermore, the underlying 

Bug loess is thick and includes a set of 2-4 incipient soils in its lower part (Gerasimenko 

2006). 

At the Stary Kaydaky section, a similar succession of incipient soils in the lower part of L1 

favors the second version of L1-stratigraphy.  

6.3 Evaluation of the susceptibility-rainfall relationship 

Maher et al. (1994) developed a climate function (Eq. 1) calculating mean annual 

precipitation from the magnetic susceptibility of surface soils of the Chinese Loess Plateau by 

means of least squares regression. The equation was then successfully used in 

paleoprecipitation reconstruction. According to Maher et al. (1994, 2002) and Maher and 

Thompson (1995), this relationship should also be valid for Southeastern and Eastern 

European LPSS. Indeed, Panaiotu et al. (2001) performed a paleorainfall reconstruction based 

on this formula for the Mostistea section. Eq. (1) was applied to the profiles and to the 

susceptibility record of Koriten (Jordanova and Petersen, 1999b). The χCvalue was not strictly 

determined according to Maher et al. (1994), who used the susceptibility data of the parent 

material for pedogenesis i.e. of the respective loess unit below a paleosol as background 

values. However, due to pedogenic alteration of several loess units, in this study the lowest 

susceptibility value of the loess for each profile was selected as characteristic background for 

the respective profile, assuming that initial background composition of highly susceptible 

minerals does not change significantly with depth. Loess units with remarkable pedogenetic 

overprint from the paleosol in the top, as to field observations and elevated susceptibility 

values, were excluded from the calculation (see Table 2-3). To test this assumption, rainfall 

was also calculated by taking the χC-values from the loess unit below the respective paleosol 
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unit, wherever it was possible. In most cases both results are very close (Table 2-3) and lead 

to the same interpretation: The calculated MAP values for the recent soil do not correspond to 

the numerical values derived from the climatological dataset (Fig. 2-2). Only for Stary 

Kaydaky (this study) and for Mostistea (Panaiotu et al., 2001) are the calculated MAP values 

closer to the true ones. The relative MAP relationship between sections is reflected neither in 

the calculated present-day values nor in the reconstructed paleoprecipitation (except for the 

S2 unit). Therefore, Eq. (1) cannot be simply transferred to the study area. However, it might 

be valuable for the comparison of relative precipitation patterns on small regional scale, since 

it reflects relatively well the Mostistea-Mircea Voda relationship. Improvement of Eq. (1) by 

increasing the dataset for the susceptibility-rainfall regression would also not ensure realistic 

values, since the site with the lowest MAP (Mircea Voda) exhibits the highest susceptibility 

enhancement for the modern soil and also for some paleosols.  

For the observed disagreement, several explanations are possible, which are hard to evaluate 

with the available dataset. First, the magnetic susceptibility of a subsoil horizon (as suggested 

by Maher et al.,1994) cannot be used to calculate the present day MAP, since the S0 soils are 

steppe soils lacking of any B-horizon. Susceptibility enrichment effects due to surface 

pollution, cannot be discounted, for example by atmospheric deposition of magnetic spherules 

out of fossil combustion (Thompson and Oldfield, 1986). Also a different fire history may 

disturb the MAP-susceptibility relationship (Maher and Thompson, 1995). Further, it can be 

argued whether the susceptibility of a soil is in equilibrium with the climatic conditions 

during all the time of pedogenesis. Though gleying was not observed, the optimum humidity 

conditions for the formation and sustainment of ferrimagnetic minerals may be exceeded in 

some units. Therefore, the regression function of Maher et al. (1994) has to be critically 

evaluated. Maher et al. (2002) presented a rainfall - susceptibility analysis of several Russian 

steppe soils, which fit well with data from the Chinese Loess Plateau. However, some data 

points of the Russian and Ukrainian steppe, having the same pedogenic susceptibility, show 
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MAP values between about 330 and 510 mm/year. Probably other climatic and/or pedogenic 

factors such as seasonal distribution of precipitation, temperature and time may be responsible 

for this scatter (Maher, 1998; Vidic et al. 2004) and may also disturb the MAP-susceptibility 

relation for these sections. Maher herself found, besides the MAP-susceptibility relation, a 

significant correlation of temperature and susceptibility (Maher et al., 1994). 

Table 2-3. Paleoprecipitation for the profiles Batajnica/Stari Slankamen, Mircea 
Voda, Stary Kaydaky, Koriten, Mostistea. Values were calculated from the magnetic 
susceptibility using Eq. 1, presented by Maher et al. (1994). For Mostistea, the 
results from the calculation by Panaiotu et al. (2001) are shown. Background 
magnetic susceptibility was taken from a reference loess unit (Ref.) for each section. 
Wherever it was possible, rainfall calculations were also conducted for background 
susceptibilities taken from the respective loess unit below a paleosol (results in 
brackets). 

 

 

Altogether in our study area, the use of magnetic susceptibility as a quantitative MAP proxy 

does not seem rational for the comparison of absolute MAP values between the sections. 

However, magnetic susceptibility is sufficiently valid for careful qualitative paleoclimatic 

deductions within one section due to the general mechanisms of susceptibility enhancement 

(Section 2).  
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6.4 Paleoclimatic conclusions 

The magnetic susceptibility records of the studied Southeastern/Eastern European sections 

show high susceptibility values in the paleosols and low values in the loesses (Fig. 2-3), 

reflecting the sequence of interstadial/interglacial and stadial/glacial periods of the Quaternary 

(Fig. 2-5). This is in accordance with the susceptibility enhancement model for the Chinese 

LPSS. Reduction of the magnetic susceptibility of paleosols in comparison to the loess units, 

due to waterlogged conditions or the wind-vigor model – as described for some sections of 

Siberia and Alaska (Evans and Heller, 2001) – could not be found. Focusing on the paleosols 

of Batajnica/Stari Slankamen and Mircea Voda, there is an increase in susceptibility from the 

S1 - in Batajnica, from the S2 - to the S3. The S3 shows strongest susceptibility enhancement 

of the whole LPSS. This is interpreted as an indication of a warmer and wetter climate during 

MIS 9 compared to the younger interglacials/interstadials. This observation corresponds to the 

susceptibility record of other sections of the Northern Black Sea coastal area (Dodonov et al., 

2006a), the lower Danube area (Jordanova and Petersen, 1999b; Panaiotu et al., 2001), as well 

as to the records of the sections Darai Kalon (Dodonov et al., 2006b) and Chashmanigar 

(Ding et al., 2002) in Tajikistan, whereas the Karamaidan section (Tajikistan, Forster and 

Heller, 1994) and the stacked record of Lingtai/Zhaojiachuan (Sun et al., 2006) show different 

susceptibility behavior. A direct climatic trigger mechanism, responsible for these findings, 

could not yet be identified. Local climatic factors may explain why there are paleosols in 

some sections, which do not exhibit the observed trend. Below the S3, there is a trend to 

lower susceptibility values at least upto S6, also described for Koriten by Jordanova and 

Petersen (1999b). Field observations at the Serbian and Romanian sections, the observations 

of Marković et al. (2009), specifically for Batajnica and the study of Bronger on sections of 

the Carpathian basin (1976), especially the Stari Slankamen site, show a trend from more 

steppe-soil type paleosols at the top of the LPSS to stronger developed and more reddish 

(rubificated) paleosols at the bottom, partly with iron and manganese coating. In the 
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Lingtai/Zhaojiachuan record, the S5 is the one having the strongest susceptibility 

enhancement among the Brunhes-chron-paleosols. Therefore, the susceptibility enhancement 

of these older paleosols does not fully reflect the intensity of pedogenesis. At the present state, 

decrease of susceptibility at the paleosols of MIS 11–17 is tentatively explained by an 

increase in humidity, so that the optimum conditions for the formation of ferrimagnetic 

minerals could be exceeded. These results implicate a stronger monsoonal type of climate at 

the beginning of the Mid-Pleistocene, at least for Southeastern Europe. For Stary Kaydaky, a 

climatic interpretation of the susceptibility record is difficult, because the signal is 

significantly diminished in the older units (S4, S5) for some unknown reason. Field 

observations and the susceptibility record of the younger units do not support a trend as in the 

Southeastern European sections. Presumably, the (paleo)-climate of this location is controlled 

by another trigger mechanism. 

Further paleoclimatic and rock magnetic research on LPSS of Southeastern and Eastern 

Europe is necessary to validate these rather preliminary interpretations and to find answers for 

the open questions revealed by this study. 

7 Conclusions 

1) Loess-paleosol sequences of the sections Batajnica/Stari Slankamen (Serbia) and Mircea 

Voda (Romania) comprise at least six and at Stary Kaydaky (Ukraine) at least five 

paleosol/pedocomplexes. Susceptibility enhancement is generally found in paleosols. 

Similar patterns in the susceptibility record allowed spatial correlation of the stratigraphic 

units to profiles in the Chinese loess plateau and also with the benthic δ18O record of 

ODP 677. The Mircea Voda and Batajnica/Stari Slankamen sections bear paleoclimatic 

records at least to MIS 17 and the Stary Kaydaky section probably to MIS 13-15. The 

Kaydaky pedocomplex is correlated with MIS 5e and the underlying Dnieper loess with 

MIS 6. The presented chronostratigraphy for the studied sections is additionally 
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confirmed by pedostratigraphic correlations to other dated loess-paleosol sequences of 

Southeastern and Eastern Europe. It provides the possibility to regard the stratigraphic 

units as correlatives of loess-paleosol units in the Chinese stratotype sections of the 

Quaternary (Kukla and An, 1989) and to avoid the use of (often confusing) local 

stratigraphic names in future studies. 

2) The stratigraphic work suggests a rediscussion of the astronomical tuning of the MIS 6 / 

MIS 7 boundary for the Chinese loess-paleosol sequences. 

3) For the calculation of sedimentation rates, it is strongly recommend to use sensitivity 

analyses with respect to the applied timescale and to the degree of synpedogenetic 

sedimentation in order to interprete reliable results. At Mircea Voda, relatively high 

sedimentation rates were clearly obtained for the younger loess units, especially the L1 

and L3. Lowest rates of dust deposition during a cold stage occurred in MIS 16 (=L6) and 

during a warm stage in MIS 13-15 (=S5). The marine isotope stage 7 was characterized 

by relatively high sedimentation rates for an odd numbered marine isotope stage, 

probably due to intercalated periods of pronounced climate deterioration. 

4) The mean annual precipitation-susceptibility relation obtained by Maher et al. (1994) is 

not valid for this study area, at least not for the large regional scale from Serbia and 

Romania to Ukraine. However,  magnetic susceptibility can be used for qualitative 

interpretations within a single section. 

5) Qualitative paleoclimatic interpretations of the obtained susceptibility dataset indicate a 

gradual increase of paleoprecipitation from the younger to the older warm stages in 

Southeastern Europe. the tentative paleoclimatic interpretation emphasizes the potential 

and need for further research in the study area. 
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Abstract 

Applying geochemical proxies as measure for the weathering intensity of paleosols and 

sediments such as loess, the Quaternary scientist is confronted with various element ratios  

that have been proposed in literature. This paper gives an overview on the principle of 

geochemical weathering indices. Different types of indices are evaluated with respect to the 

suitability for loess-paleosol sequences, regarding the special characteristics of this type of 

sediments and paleosols. Case examples in this study are key sections in Southeastern and 

Eastern Europe: the loess-paleosol sequences Batajnica/Stari Slankamen (Serbia), Mircea 

Voda (Romania) and Stary Kaydaky (Ukraine), which represent archives of the Late and Mid-

Pleistocene climate change of the region. Considering element behavior during weathering or 

diagenesis, the Chemical Proxy of Alteration (CPA) - i.e. the molar ratio Al2O3/(Al2O3+ 

Na2O) × 100 – is proposed as the most appropriate index for silicate weathering. The CPA 

was evaluated against commonly used weathering indices including the ”Chemical Index of 

Alteration” (CIA), the ”Chemical Index of Weathering“ (CIW), the ”Plagioclase Index of 

Alteration“ (PIA), the Index B of Kronberg and Nesbitt, and the Ba/Sr and Rb/Sr ratio. Depth 

profiles of “Sr-type indices” (e.g. Ba/Sr, Rb/Sr) are likely to be influenced by the dynamics of 

secondary carbonate. On the other hand, common “Na-type indices” (e.g. CIA, PIA, CIW) 

may suffer from uncertainties in separating carbonate–Ca from silicate-Ca or from biases due 

to K-fixation (illitization). The CPA is insensitive against such effects. Additionally, using the 

CPA (as with other Na-type indices) gives the possibility to evaluate the homogeneity of the 

parent material regarding the relevant host minerals via the A-CN-K diagram.  

 

Keywords: Weathering Index, Chemical Proxy of Alteration, CPA, Paleosols, Loess, 

Southeastern Europe 
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1 Introduction 

“Loess is a terrestrial clastic sediment, composed predominantly of silt-sized particles, which 

is formed essentially by the accumulation of wind-blown dust” (Pye, 1995). In Northern- and 

mid-latitudes, this dust originated mainly from sparsely vegetated foreland areas of the ice 

sheets and the alluvial plains of large rivers during the Pleistocene cold periods (Smalley and 

Leach, 1978; Buggle et al., 2008; Újvári et al., 2008; Smalley et al., 2009). Also, desert 

regions may represent important dust source areas (e.g. Smalley and Krinsley, 1978). It was 

only during interstadial and interglacial warm periods and more humid periods, respectively, 

when dust deposition decreased or even ceased, so that environmental conditions allowed 

extensive mineral weathering and thus soil formation. Therefore, sequences of relatively 

unaltered loess and more or less well developed paleosols – so-called loess-paleosol 

sequences (LPSS) – reflect land surface stability and Pleistocene climate development. 

Under weathering conditions, the element composition of a given parent material changes. 

Soluble and mobile elements are depleted and less soluble and immobile elements are 

enriched. However, pedogenesis does not only mean weathering of minerals and loss of 

elements, but also mineral transformation and formation of new (secondary) minerals such as 

clay minerals or iron oxides. Amount and composition of iron oxides for example can be 

reflected in mineral magnetic properties as well as the color of a soil sample (Schwertmann, 

1993, Evans and Heller, 2003). As the type and intensity of such pedogenic features 

essentially depend on (soil-) environmental conditions, they can be valuable indicators of the 

(past) climatic characteristics. There are a number of parameters and various proposals by 

paleopedologists for proxies enabling a quantification of paleoclimatic meaningful pedogenic 

processes (e.g. Derbyshire et al., 1997). Maher et al. (1994) for example introduced a 

quantitative relationship between enhancement of the magnetic susceptibility as proxy for the 

pedogenic formation of ferromagnetics and mean annual precipitation. However, in several 

situations this approach has shown to be not straightforward (Evans and Heller, 2003, Buggle 
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et al., 2009). Other widely used measures of pedogenesis intensity are geochemically based 

weathering indices. Although relying on similar concepts, a variety of such indices have been 

published in literature (e.g. Ding et al., 2001; Smykatz-Kloss, 2003; Schellenberger and Veit, 

2006). Especially, non-geochemically specialized Quaternary scientists are often confronted 

with the question: “what is the most appropriate index for a certain LPSS and, respectively, 

LPSS in general?”. From this evolves the motivation to give an overview on the principle of 

geochemical weathering indices aiming towards an answer for this question. The case 

examples for this purpose, use geochemical data of the loess-paleosol sequences 

Batajnica/Stari Slankamen (Serbia), Mircea Voda (Romania) and Stary Kaydaky (Ukraine).  

2 Material and Methods 

The composite loess-paleosol sequence Batajnica and Stari Slankamen (44° 55’ 29’’ N, 20° 

19’ 11’’ E and 45° 7’ 58’’ N, 20° 18’ 44’’ E) is situated in the Vojvodina, the Serbian part of 

the Pannonian (Carpathian) Basin. The two individual profiles are about 40 km distant to each 

other and located along the banks of the Danube River. Each section is about 40 m thick and 

comprises at least six major interglacial pedocomplexes (Buggle et al., 2009; Marković et al., 

2009). Due to a major hiatus in the younger part of the Stari Slankamen site and ground water 

influence at the older part of the Batajnica site, Buggle et al. (2008, 2009) built a composite 

rock magnetic and geochemical record from these two sites using the younger (<MIS 9) part 

from Batajnica and the older (>MIS 9) from Stari Slankamen. The time span represented by 

the composite record includes the last 17 Marine Isotope Stages (Buggle et al., 2009).  

The Mircea Voda loess-paleosol sequence (44° 19’ 15’’ N, 28° 11’ 21’’ E) is located in the 

Dobrudja region (Romania) between the Danube and the Black Sea coast. This site is formed 

by a similar succession of loess and paleosol units as the Serbian one, comprising also the last 

17 MIS.  
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Both, the Serbian and Romanian sections represent LPSS on loess-plateaus, with thick loess 

layers separating the major interglacial pedocomplexes. The main climatic difference between 

both sites is the more pronounced dryness at Mircea Voda (~ 400 – 450 mm mean annual 

precipitation) than in the Vojvodina region (~ 600 – 680 mm mean annual precipitation). 

The outcrops of the Stary Kaydaky site (48° 22´ 42´´ N, 35° 07´ 30´´ E) are situated in a 

system of gullies near to the Dnieper River (Ukraine). The profile comprises the last 15 MIS. 

However, most loess layers separating the interglacial pedocomplexes are eroded and thin. 

While the Serbian and Romanian site contain carbonate throughout the profile, parts of the 

Stary Kaydaky LPSS are completely free of carbonates. Therefore, older loess layers and 

paleosols are partly influenced by pedogenesis and weathering during subsequent 

interglacials.  

For detailed information on the regional setting, description of the loess-paleosol successions, 

the chronostratigraphy, sampling strategy and sample preparation for geochemical analyses 

please refer to Buggle et al., (2008, 2009). Composition of major and trace elements was 

determined using a Philips 2404 X-Ray Fluorescence (XRF) Spectrophotometer. 

Determination of the carbonate content followed the procedure of Hedges and Stern (1984) by 

calculating the difference in C content of the sample material with and without vapor 

fumigation. The measurement was carried out on a Vario EL element analyzer (Elementar, 

Hanau, Germany) at the University of Bayreuth. Element ratios are calculated on molar base.  

The nomenclature of the lithological units follows the Chinese “S-L” system (Buggle et al., 

2009).  
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3 Chemical weathering indices 

3.1 Choosing a chemical proxy of alteration for LPSS? – Principal considerations and 

hypotheses 

The concept of geochemical proxies of mineral alteration (i.e. weathering indices) relies on 

the selective removal of soluble and mobile elements from a weathering profile compared to 

the relative enrichment of rather immobile and non-soluble elements (e.g. Smykatz-Kloss, 

2003; Yang et al., 2004). A number of element indices, based on this principle, have been 

published as proxies of mineral weathering for various kinds of sediments, including LPSS 

(e.g. ; Liu et al., 1993; Chen et al., 1999; Ding et al., 2001; Muhs et al., 2001; Yang et al., 

2004; Schellenberger and Veit, 2006; Tan et al., 2006; Jeong et al., 2008; Bokhorst et al., 

2009). Especially for non-geochemists it is often difficult to decide which index is most 

appropriate for a given weathering profile. The following Section gives some background 

information on element behavior under weathering conditions to deduce the answer of this 

question in the case of LPSS.  

More specifically, two questions must be considered: (i) What is the most appropriate soluble 

and mobile element? And (ii) What is the most appropriate immobile non-soluble element?  

A first step in answering both questions is the classification of the elements according to their 

ionic potential (IP), i.e., the ratio between ionic charge and ionic radius, as shown in . Cations 

having an IP below 3 form only weak bonds with oxygen. Thus, they are preferentially 

released from their host minerals during weathering. In solution, they can be regarded as 

soluble cations, since they are fully hydrated. If the IP is higher (between 3 and 8), the high 

density of the positive charge enables strong bonds with oxygen. Thus, these elements form 

weathering resistant oxides. Furthermore, between an IP of 3 and 10 or 12, (depending on the 

literature source), the density of the positive charge is in the proper range to cause a 

deprotonation of water molecules in the hydration shell of the cation. As a result, insoluble 
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hydroxides or oxyhydrates are formed to achieve charge neutrality. Elements of this category, 

when released during weathering, precipitate quickly as insoluble and immobile hydrolyzates. 

With a further increase of the IP i.e. charge density of the cation, all protons of the water 

molecules are repelled and water soluble anionic complexes are formed (Goldschmidt, 1937; 

Mason and Moore, 1985; Kutterolf, 2001; Railsback, 2003, 2005; Smykatz-Kloss, 2003). 

There are also other factors that can influence the solubility of ions, such as the activity of 

further components in solution, pH-value, redox conditions and temperature. Under near 

neutral and oxidizing conditions, however, the classification according to the IP successfully 

predicts the behavior of the most common elements of interest for weathering indices (e.g. 

alkali-, earth-alkali elements, elements of the Al- and Ti-group), at least in a general way 

(Blumer, 1950; McBride, 1994; Railsback, 2003; Smykatz-Kloss, 2003). 

Concerning question one, all alkali- and earth alkali elements, except for Be, can be 

categorized as soluble cations according to the ionic potential (Fig. 3-1; Wedepohl, 1978; 

Railsback, 2003, Reeder et al., 2006). However, solubility does not always mean mobility. 

With increasing radius, the tendency of an ion for being adsorbed on clay minerals is higher 

and thus, its mobility is reduced (Nesbitt et al., 1980; Smykatz-Kloss, 2003). Therefore, 

weathering indices relying on the mobility of the elements Cs, Rb, Ba, K such as Cs/K, Ba/K, 

Rb/K, K/Zr, K/Ti,, K/Al (Harriss and Adams, 1966; Nesbitt et al., 1980; Liu et al., 1993; 

Muhs et al., 2001) can be expected to be less sensitive for weak pedogenic alteration. 

The earth alkali elements Ca, Mg and Sr, having a smaller ionic radius, are common in silicate 

minerals such as plagioclase, pyroxene, amphibole and biotite, which are susceptible to 

weathering (Nesbitt et al., 1980; Reeder, et al., 2006). As these elements are highly mobile in 

the weathering environment, they appear in several weathering indices like the Ba/Sr, Rb/Sr, 

Sr/K, Sr/Zr, Mg/K, Mg/Ti, Ca/K, Ca/Zr and Ca/Ti-ratio (e.g. Nesbitt et al., 1980; Liu et al., 

1993; Chen et al., 1999; Muhs et al., 2001; Bokhorst et al., 2009). However, in a parent 

material containing carbonate - as in most loess deposits - the mobility of Ca and Mg is 
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predominantly controlled by the behavior of calcite and dolomite. This is also true for Sr, 

which can substitute Ca in carbonates (Wedepohl, 1978; Reeder et al., 2006). Therefore, 

indices relying on Ca, Mg or Sr are not expected to reflect the true weathering and leaching 

intensity of a paleosol, owing to postpedogenetic formation of secondary carbonates. Thus, it 

is advisable to restrict the use of such indices to carbonate-free parent material to avoid the 

problem that effects of silicate weathering are masked by the dynamics of carbonates 

(Smykatz-Kloss, 2003). 

        
 
Fig. 3-1. Classification of the elements according to the ionic potential (IP). Values for the ionic potential and 
ionic radius are taken from Mason and Moore (1985). Cations having an IP below 3 are generally soluble in 
water, whereas cations with an IP between 3 and 10 (according to Mason and Moore, 1985) or 12, respectively 
(Goldschmidt, 1937; Kabata-Pendias and Pendias, 2001), form insoluble, immobile hydrolyzates under near 
neutral-conditions. Elements having a higher IP tend to form soluble anionic complexes. The adsorption to clay 
minerals tends to increase with the radius of the cation (Nesbitt et al., 1980; Smykatz-Kloss, 2003). 
 

As stated above, the distribution of some elements might be controlled by redox conditions,  

also after burial of the paleosol. For this reason, the use of the elements Fe and Mn in 

weathering studies is not recommended. 
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Having checked all those mentioned criteria, Li+ and Na+ appear to be the most suitable 

mobile cations for weathering indices in loess-paleosol sequences. As the former is seldomly 

analyzed, the use of Na+ is proposed. 

Regarding the choice of the immobile element, ions of intermediate ionic potential, i.e. ions 

that tend to form insoluble hydrolyzates (Fig. 3-1) are generally employed. Also Rb, Ba and K 

i.e. ions that can be immobilized by adsorption on clay minerals due to their large ionic 

radius, are often used as immobile references, for example in the Rb/Sr, Ba/Sr or Na/K ratio 

(e.g. Liu et al., 1993; Gallet et al., 1996; Chen et al., 1999; Smykatz-Kloss, 2003; Tan et al., 

2006). However, under intense weathering conditions, significant losses of these “large ionic 

radius elements” can occur during the transformation of micas, feldspars and other host 

minerals into secondary clay minerals (e.g. Gallet et al., 1996; Muhs et al., 2001). Gallet et al. 

(1996) for example, observed a significant loss of Rb in the strongly developed Chinese 

paleosol S5. Thus, the focus should be on elements of the “insoluble hydrolyzate” category, 

especially on Al, Si, Ti and Zr, which are most frequently used in weathering proxies. As a 

criterion for a suitable reference element, the mobile and immobile elements should form “a 

homogeneous mineralogical weathering system”. This means that also the immobile element 

is hosted by the same, mobile element bearing minerals and their weathering residues. The 

reason for such a criterion is to minimize possible effects of down-profile variations in the 

parent material composition. This is especially important in LPSS, where it is not always 

possible to determine the composition of an unaltered parent material for each pedomember. 

Thin stadial loess layers for example are often pedogenetically influenced by succeeding 

periods of soil formation. In that case, the composition of the parent material has to be 

estimated from thicker unmodified loess layers, assuming a uniform composition of the 

different loess units. According to the proposed criterion, Na and Al is a suitable pair of 

elements (in non-saline soils). The main host mineral group of Na and Al in unweathered 

loess protoliths is the feldspar group. Weathering products of this group are clay minerals and 
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as end product under extensive weathering conditions kaolinite (Al2Si2O5(OH4)) or gibbsite 

(Al(OH)3), both aluminous residues (Taylor et al., 1983; Taylor and McLennan, 1985; Reeder 

et al., 2006). In contrast, quartz is an important host mineral for Si. Therefore, a weathering 

index based on Na and Si would be sensitive for inhomogenities in the quartz content 

(Smykatz-Kloss, 2003). The same is true for Zr and Ti, which reside in substantial 

proportions in discrete weathering resistant minerals such as zircon, anatase, rutile, beidellite 

and ilmenite, respectively. These minerals are possibly present in variable amounts within the 

profile sequence due to temporally changing heavy mineral enrichment during transport 

processes (Wedepohl, 1978; Reeder et al., 2006). To conclude, using Na as the mobile 

element of a weathering index, Al is proposed as the immobile counterpart to minimize biases 

due to variable mineralogical composition of the loess parent material. Accordingly, simple 

Al/Na ratios have been used already in earlier studies to characterize the weathering intensity 

of a material or soil horizon (Gallet et al., 1998; Ding et al., 2001; Smykatz-Kloss, 2003). 

Instead of a simple Al/Na ratio we suggest the use of molar Al/(Na+Al) ratio times 100 to 

restrict the index to values between 0 and 100. This avoids out of scale variations and values 

if Na contents are low. This ratio (Formula 1) was formerly applied by Cullers (2000) for 

carbonate rich shales, siltstones and sandstones and introduced as Chemical Index of 

Weathering (CIW`). Cullers used the apostrophe to indicate that his ratio is a modified (Ca-

free) version of the classical CIW, published by Harnois (1988, Table 3-1). To the authors` 

knowledge, the CIW` was never applied to loess deposits previously. However, this index is 

proposed as the most appropriate geochemically based weathering proxy for most LPSS. 

Regarding the main host minerals of Na and Al in loess protoliths, it should indicate feldspar, 

especially plagioclase weathering. In the following, the term Chemical Proxy of Alteration 

(CPA) is used instead of CIW` to avoid any confusion with the classical CIW of Harnois 

(1988). 
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CPA = 100 × Al2O3/(Al2O3 + Na2O) (in molar proportions) (1) 

3.2 Overview on widely used indices of feldspar weathering  

To test the before mentioned hypotheses, the results derived by the proposed CPA were 

compared with the Rb/Sr and the Ba/Sr ratios, which are widely employed to characterize 

weathering intensity in LPSS (e.g. Liu et al., 1993; Gallet et al., 1996; Chen et al., 1999; Ding 

et al., 2001; Tan et al., 2006; Bokhorst et al., 2009), often notwithstanding the above-

mentioned problems concerning these ratios. Furthermore, the CPA was compare to the 

common established indices for feldspar or plagioclase weathering (Table 3-1): the Chemical 

Index of Alteration (CIA; Nesbitt and Young, 1982), the Chemical Index of Weathering 

(CIW; Harnois, 1988), the Plagioclase Index of Alteration (PIA, Fedo, et al., 1995) and Index 

B of Kronberg and Nesbitt (1981) (see also Guggenberger et al., 1998). 

Table 3-1. Weathering indices (molecular proportions). Note, CaO* refers to silicatic Ca. 

 

The rationale of the CIA is to give a quantitative measure of feldspar weathering by relating 

Al, which is enriched in the weathering residues, to Na, Ca and K, which should be removed 

from a soil profile in the course of plagioclase and K-feldspar weathering (Nesbitt and Young, 

1982). Index B of Kronberg and Nesbitt (1981; Guggenberger, et al., 1998) is based on the 

same considerations. In 1988, Harnois modified the CIA. He emphasized that K should not be 

used in weathering indices, since it shows no consistent behavior during weathering, being 

either enriched in the residue, if weathering is weak, or depleted under more intense 
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weathering conditions. Thus, K was eliminated from the CIA and the resulting index of 

feldspar weathering was reported as CIW (Harnois, 1988) or K-free CIA (Maynard, 1992). 

Fedo et al. (1995) introduced a correction of the CIW for the Al content in K-feldspar, 

otherwise rocks rich in K-feldspar would be characterized by misleadingly high CIW values. 

This modified version of the CIW is reported as PIA, indicating plagioclase weathering. The 

CIA, Index B, CIW and PIA index, require all the content of silicatic Ca (=CaO*). This value 

was obtained from measured CaO according to the procedure described by McLennan (1993), 

who assumed that the molar CaO/Na2O ratio of carbonate-free, silicatic material does not 

exceed 1. 

4 Results 

Raw data of the geochemical analyses have been already presented in Buggle et al. (2008). 

This contribution presents the depth profiles of the applied weathering indices and of the 

carbonate content (Fig. 3-2). In the following, “Na-type” weathering indices, refer to the CIA, 

Index B, CIW, PIA, and the CPA, whereas Rb/Sr and Ba/Sr will be regarded as “Sr-type” 

weathering indices. 

At Batajnica/Stari Slankamen, all indices of the Na-type show a similar trend of more intense 

weathering in the older loess units. Regarding the pedocomplexes, strongest weathering 

intensity is recorded in the older units with a maximum in the S5. From the S5 to the recent 

soil, S0, the peak values of the interglacial pedocomplexes generally decreased, except for the 

S1, which exhibits again stronger feldspar weathering than the next older interglacial soil 

formation (S2). The intensity of feldspar weathering in the S6 is lower than in the S5 and 

comparable to the S4, as shown by all Na-type weathering proxies. Also, with respect to the 

detailed patterns, the Na-type feldspar weathering indices resemble each other closely and 

reflect sensitively different phases of pedogenesis within a pedocomplex, mostly consistent 

with patterns of the magnetic susceptibility record. The depth profile of the Sr-type indices 
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shows similarities to the magnetic susceptibility record. However, these patterns also strongly 

follow the calcium carbonate content and exhibit some differences to the “Na-type” indices 

(Fig. 3-2).  

At Mircea Voda, the records of the Na-type indices, on the one hand, are very similar to each 

other and on the other hand, the Sr-type indices resemble each other closely, showing 

parallels to the CaCO3 record (Fig. 3-2). The Na-type indices reveal most intense feldspar 

weathering in the basal pedocomplexes S6 and S5, with the maximum in the lowermost 

pedocomplex. The feldspar weathering intensity of the S4 and S3 is less. Nevertheless Na-

type indices exhibit still a pronounced enhancement in weathering intensity in this paleosols 

compared to the loess. An even lower degree of feldspar weathering is revealed for the S2, S1 

and the recent soil S0. In contrast to these findings, no comparable trend is shown by the 

Ba/Sr and Rb/Sr ratios. Comparing loess units, no clear trend can be recognized in the “Na-

type” weathering record, disregarding the high values for the thin loess unit L6, which are 

possibly caused by the influence of pedogenic alteration during the formation of the S5. 

At Stary Kaydaky (Fig. 3-2), the succession of loess layers and paleosols is especially in the 

lower part of the profile (below S2) hardly reflected by the weathering indices. There, loess 

units are only thin and loess as well as paleosol units show multiply pedogenetic overprinting 

and exhibit enhanced mineral weathering. In accordance with these findings, the profile 

sequence is almost carbonate-free, except for some parts of the L1, L3 and L4. These 

carbonate peaks are also clearly reflected by the Ba/Sr and Rb/Sr record. In the S1, Sr-type 

indices show an upward decreasing trend, which is neither reflected by the Na-type indices 

nor by the carbonate content or by the magnetic susceptibility record. This pattern therefore 

can be best explained by changing composition of the Rb/Sr and Ba/Sr ratio of the parent 

material. A paleoenvironmental interpretation of the presented weathering records and a 

discussion of the dataset with respect to loess provenance is beyond the scope of this study 

and will be given elsewhere.  



 

 



 

 

 



 

 

 

Fig. 3-2. The CPA, CIA, Index B, CIW, PIA, Ba/Sr, Rb/Sr record of a) the Batajnica/Stari Slankamen section in Serbia, b) the Mircea Voda section in Romania, c) the Stary 
Kaydaky section in Ukraine. See Section 3.2. for a more detailed description of these weathering indices. Note that the carbonate content is given with an inverse scale for better 
comparison with the weathering proxy records. The magnetic susceptibility record (Buggle et al., 2009) is shown to facilitate correlation to previous studies (Buggle et al., 2008; 
Buggle et al., 2009; Marković et al., 2009). 
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5 Discussion 

5.1 Evaluation of the geochemical weathering indices 

5.1.1 Sr type vs. Na type indices 

Within the last 15 years, ”Sr-type“ indices including Rb/Sr or Ba/Sr gained increasing 

popularity as weathering proxies, also in LPSS (e.g. Gallet et al., 1996; Chen et al., 1999; 

Ding et al., 2001; Tan et. al., 2006; Bokhorst et al., 2009). The rationale behind this practice is 

the fact that Sr can substitute for Ca in minerals and also shows an analogous behavior to Ca 

in the weathering profile. Accordingly, Sr is easily released into solution and mobilized in the 

course of weathering, whereas Rb or Ba can be regarded as relatively immobile under 

moderate weathering conditions due to strong adsorption to clay minerals (Dasch, 1969; 

Nesbitt et al., 1980; Liu et al., 1993; McLennan et al., 1993; Reeder et al., 2006). For the 

LPSS Mircea Voda, Batajnica/Stari Slankamen and Stary Kaydaky, the depth profiles of „Sr-

type“ indices were compared with those of „Na-type“ indices. The latter rely on the principle 

that Na is easily released from minerals and mobilized during weathering, whereas Al is 

retained in the profile, forming secondary clay minerals and/or Al-oxides (see Section 3.2.). 

As revealed by the depth profiles of the applied weathering indices (Fig. 3-2), all ”Na-type“ 

indices and all ”Sr-type“ indices resemble each other closely, but between these two types of 

weathering indices distinct differences can be observed. A comparison between the depth 

profiles of the Sr-type indices and the distribution of CaCO3 suggests that in most cases low 

and high Ba/Sr and Rb/Sr ratios are connected with high and low carbonate contents, 

respectively. This observation is confirmed by a significant correlation (p <0.05) between the 

”Sr-type“ indices and the carbonate content (Fig. 3-3) in all sections and gives evidence for a 

significant substitution of carbonate-Ca by Sr. Therefore, the initial Rb/Sr and Ba/Sr ratios are 

supposed to be at least partly post-pedogenetically masked by the dynamics of carbonate-
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bound Sr. Hence, it is expected that paleosols altered by the precipitation of secondary 

carbonate, which is leached from overlying loess or paleosols, would exhibit misleadingly 

low Rb/Sr and Ba/Sr ratios. This would cause an underestimation of the weathering intensity 

and would also bias the interpretation of these ratios as proxies of the leaching intensity i.e. 

paleoprecipitation, as also stated by Retallack and Germán-Heins (1994), Retallack (1997) 

and Tan et al. (2006).  

 

Fig. 3-3. Correlation of the Rb/Sr (a) and Ba/Sr ratio (b) with the CaCO3-content 
for all studied profile sequences. The asterisk indicates that the correlation is 
significant at p < 0.05 (t-test, Statistica 6 software package, Statsoft Inc, 2001). 

 

To conclude, it is recommended to restrict the use of ”Sr-type“ weathering indices such as 

Rb/Sr and Ba/Sr to carbonate-free material, where they should reflect the intensity of silicate 

weathering (Dasch, 1969; Nesbitt et al., 1980), keeping in mind that under extreme 

weathering conditions also Rb and eventually even Ba may undergo mobilization (Nesbitt et 

al., 1980; Marques et al., 2004; Reeder et al., 2006). For LPSS, mostly characterized by 

strong carbonate dynamics, it is proposed to employ weathering indices of the „Na-type“, 

such as the CPA.  
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5.1.2 The ”classical“ Na-type weathering indices – uncertainties due to calcium 

carbonate 

The most prominent ”Na-type“ indices of feldspar weathering are the Index B of Kronberg 

and Nesbitt (1981), the CIA (Nesbitt and Young, 1982) and especially for plagioclase 

weathering the CIW (Harnois, 1988) and the PIA (Fedo et al., 1995; see Section 3.2 and Table 

3-1). All of these indices employ the molar content of the silicatic bound Ca, given usually as 

CaO*. For this, one has to know the contribution of the carbonate Ca to the measured CaO, 

when dealing with calcareous material. The most widely used methods to determine the 

carbonate content rely on the ”selective removal technique“, i.e. either on the selective 

removal of the organic carbon from the inorganic carbon during low temperature combustion 

or the selective removal of carbonate during acid treatment (Hedges and Stern, 1984; Bisutti 

et al., 2004, 2007). However, due to an imperfect selectivity of these methods (Froelich, 1980; 

Hedges and Stern, 1984; Bisutti et al., 2004), one may derive erroneous carbonate contents, 

which consequently bias also the calculation of CaO* from total CaO and carbonate-bound 

CaO. 

To avoid the time consuming step of carbonate determination, the CaO* is often estimated 

following the procedure of McLennan (1993), (e.g. Gallet et al., 1998; Yadav and Rajamani, 

2004; Schellenberger and Veit, 2006; Lacka et al., 2007). He suggested to first correct the 

measured molar CaO content for Ca in apatite, as calculated from the P2O5 content, and then 

to compare the resulting value (here termed CaOcorr) with the molar Na2O content. If the latter 

is smaller than CaOcorr, a molar CaO*/Na2O ratio of one is assumed. In the other case, the 

molar CaO* is set equal to the molar CaOcorr. However, this estimation procedure may cause 

uncertainties in calculating CaO*-based weathering indices. Table 3-2 exhibits this for a 1/7 

mixing ratio of the plagioclase end-members anorthite/albite, which can be a realistic value 

for loess (Dultz and Graf von Reichenbach, 1995). Three scenarios were calculated. The first 

one, which assumes a pure mixture of 80 g plagioclase and 20 g calcium carbonate, shows 
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that the CIW calculated from estimated CaO* values is underestimating the ”real“ CIW by 

11.2 units, i.e. 22.4 % deviation from the real value. This is also the case for the second 

scenario applying only 10 g CaCO3. Thus, in both cases the CIW calculated by following the 

procedure of McLennan (1993) is lower than the theoretical value of the unaltered plagioclase 

i.e. the „real“ CIW. Also for the other indices an underestimation of the weathering intensity 

was obtained. Regarding the formula of the CIW, PIA and CIA, the actual error due to CaO* 

estimation should decrease with increasing Al content. Therefore, the third scenario also 

accounts for the presence of other aluminous phases in loess such as K-feldspar or secondary 

clay minerals (see caption of Table 3-2 for a detailed description of this scenario). However, 

also this variant, regarding a composition more realistic for loess deposits, reveals an 

underestimation of the weathering intensity by more than 10%. Consequently, the interpreter 

of these weathering proxy records, would for example overestimate the weathering 

enhancement of a paleosol compared to the underlying loess parent material, if the paleosol is 

carbonate-free and the loess is not.  

To avoid such uncertainties, it is recommended for LPSS studies to apply a ”Na-type“ 

weathering index as CPA , which does not employ Ca. This is in line with Jeong et al. (2008), 

who proposed to omit CaO from weathering indices in LPSS due to the presence of secondary 

carbonates.  

5.1.3 The chemical proxy of alteration (CPA) - an evaluation 

As hypothesized in Section 3.2, the CPA should be a suitable weathering index for LPSS, 

indicating especially plagioclase weathering. Indeed, the good correspondence to the 

“classical” Na-type plagioclase weathering indices, i.e. the CIW and the PIA (Fig. 3-2) 

confirms the proposed interpretation of the CPA as proxy of the plagioclase weathering 

intensity. However, in contrast to the “classical” indices, the CPA does not involve CaO*. 

Therefore, it is free of the CaO* related uncertainties. Though these uncertainties are 
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apparently small in the Serbian, Romanian and Ukrainian sites, they could be remarkable on 

other loess sites depending on mineralogical composition, as shown in Section 5.1.2. 

Table 3-2. Sensitivity analysis for the CIW, PIA, CIA and Index B (see Table 3-1) and the obtained 
error due to the estimation of silicate bound Ca (CaO*) following the procedure of McLennan (1993). 
Three scenarios were calculated. Scenarios 1 and 2 assume a mixture of 20 and 10 g calcite, 
respectively, with 80 g plagioclase. For the plagioclase composition an anorthite/albite mixing ratio of 
1/7 is assumed – a realistic value for loess deposits (Dultz and Graf von Reichenbach, 1995). Scenario 3 
takes also account of other Al phases, such as K-feldspar and secondary Al minerals. To achieve 
realistic element ratios we choose a K-feldspar content of 54.3 g and an additional Al2O3 content (Al2O3-

sec) of 34.8 g. The Al2O3-sec can be regarded as Al of secondary clay minerals or Al-oxides. These preset 
values correspond to an Na2O/K2O ([%]/[%]) ratio of 0.9 and an Al2O3/Na2O ([%]/[%]) ratio of 7.5. 
These values are in between the observed range for most loesses in various parts of the world i.e. 1.3-0.5 
for Na2O/K2O and 6-9 for Al2O3/Na2O (Taylor et al., 1993; Gallet et al., 1996; Gallet et al., 1998, 
Buggle et al., 2008; Újvári et al., 2008). The subscript „tot“ refers to the total content of the oxide, as 
calculated from the preset mineralogical composition. The real content of CaO*, as calculated for each 
scenario, is given as „CaO*real“, whereas CaO*estimated terms the estimated CaO* following McLennan 
(1993). Accordingly, the results present „real“ and „estimated“ weathering indices. Difference between 
both is given in percent of the real value. 
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Fig. 3-2 compares the CPA and other plagioclase weathering indices to the CIA and Index B, 

which have been previously proposed as silicate weathering proxies. The objective of these 

indices is to quantify also weathering of K-feldspar and mica by employing K. However, 

these indices show close similarity to the CIA and CIW (Fig. 3-2). Thus, it is to conclude that 

as long as plagioclase weathering does not reach saturation, K-free indices are also a good 

proxy for the intensity of silicate weathering in general. This is supported by the Al2O3/Na2O 

and Al2O3/K2O depth profiles of the studied sections, showing that K variations mimic the Na 

variations, however, with smaller amplitude (Fig. 3-4).  

 

Fig. 3-4. Molar Al2O3/K2O and Al2O3/Na2O ratios of the studied profiles. Subscript “n” indicates that the data 
are normalized to the lowest value of each section in order to compare the relative changes of the ratios. 

 

These results are in accordance with observations in other weathering studies and theoretical 

considerations of the element behavior, suggesting that K release is small compared to the Na 

release. This is due to stronger weathering resistance of K phases such as K-feldspar and due 

to the fixation of K on clay minerals (Nesbitt and Young, 1984, 1989; Blum, 1994; Smykatz-

Kloss, 2003; Yang et al., 2004; Reeder et al., 2006).  
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Though weathering profiles of the proposed CPA and K-free Na-type indices are consistent 

for the studied sections, this might not be true in other sites with strong K fixation and 

illitization. Harnois (1988) has pointed out that K-fixation can cause an inconsistent behavior 

of this element in the weathering environment and thus, he recommended not to use K in 

weathering indices. The CPA being a K-free index, takes account of this recommendation. 

Furthermore it avoids uncertainties due to determination of CaO* and thus the CPA can be 

applied more general on loess-paleosol sequences. 

As a conclusion, the CPA seems to be the most promising weathering proxy for LPSS. 

However, as with other weathering indices, it requires also certain prerequisites to be fulfilled. 

Dealing with a “Na-type” weathering index, the studied material has to be free of Na salts, 

which would lead to an underestimation of the weathering intensity. Within mid-latitudinal 

loess deposits, significant amounts of these salts are only expected in exceptional settings as 

near to the seashore or in locations with warm-(semi-)arid climate and groundwater near to 

surface, either in the past or in the present time. For the studied sections an influence of Na-

salts is not likely due to the plateau situation of the loess, the lack of a soil structure 

characteristic of a natric horizon (IUSS Working Group WRB, 2006), and the geochemical 

composition (Buggle et al., 2008). The latter does not indicate a relationship of the CPA to the 

dynamics of other salts such as gypsum, but rather to the magnetic susceptibility as 

independent pedogenesis proxy (Fig. 3-2). However, it has to be evaluated by further studies, 

whether the remarkable minimum of the CPA at the lower boundary of the L5 in Mircea Voda 

indeed reflects low weathering intensity due to cold and/or dry paleoclimatic conditions. A 

possible connection to the recent gypsum formation at the front face of the exposure wall in 

the respective depth cannot be excluded. A record of the chlorine content would be useful to 

clarify such inconclusive situations in future studies. 

A second prerequisite for all Na-type indices is the absence of mineral or grain size sorting in 

the sampled material. This can be tested by using an Al2O3-CaO*+Na2O-K2O ternary plot - 
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also known as A-CN-K diagram (Nesbitt and Young, 1984). This diagram informs about 

weathering and sorting effects of aluminosilicates, as well as the initial composition of the 

unweathered material (e.g. Nesbitt and Young, 1989; McLennan et al., 1993; Nesbitt et al., 

1996; Fig. 3-5). A sorting effect, i.e. a selective enrichment of coarser (finer), more 

feldspathic (more clayey and aluminous material), as revealed for the Stary Kaydaky section 

(Fig. 3-5), would cause a decrease (increase) of the Al/Na ratio and the CPA. 

The third prerequisite is common for all types of weathering indices: the homogeneity of the 

parent material. With respect to the CPA, a relatively homogeneous composition of the 

unweathered material regarding the most abundant aluminous Na phase, i.e. albite, in relation 

to the aluminous K phases, i.e. mostly K-feldspar and mica, and to the Ca phase, i.e. anorthite, 

is important. For example, an increasing K-feldspar/albite ratio of the parent material would 

cause a higher Al/Na ratio (Fedo et al., 1995). This would result in a misleading increase of 

the CPA. Also this prerequisite can be tested using the A-CN-K diagram. Variations in the K-

feldspar or mica to plagioclase ratio of the unweathered parent material would be revealed by 

a scatter of the data points parallel to the CN-K – axis (Fig. 3-5). On the other hand, a single 

weathering line would indicate parent material with an invariable composition of 

aluminosilicates, as it is the case for the data points of the sections Mircea Voda and 

Batajnica/Stari Slankamen (Fig. 3-5). The congruence between the CIA, Index B, PIA and K-

free indices as the CIW and CPA gives further reason to assume homogeneity of the 

unweathered loess parent material at the investigated sections, regarding the (K-feldspar + 

mica)/albite ratio. For the Stary Kaydaky site, it is not possible to exclude variations in the 

(K-feldspar + mica)/albite ratio due to the scatter along the sorting line being parallel to the 

CN-K axis (Fig. 3-5). 



Study 3: Evaluation of Geochemical Weathering Indices                                159 
  

 

 

Fig. 3-5. The A-CN-K (Al2O3-CaO*+ Na2O-K2O) - ternary diagram according to Nesbitt and Young (1984). The 
characteristic position of the upper continental crust (UCC), basalt, granite and the minerals plagioclase (Pl.), K-
feldspar (Ks.), biotite (Bi.), muscovite (Mu.), illite (IL.), smectite (Sm.), kaolinite (Ka.), and gibbsite (Gi.) is 
given for orientation. Note that only the upper part of the ternary diagrams is shown, which is of interest for the 
present study. In Fig. 3-5 a) – d) a typical weathering line is presented, emerging from loess source material with 
UCC-like composition, as found to be true for many loess deposits around the world and also the Southeastern 
European loesses (e.g. Taylor and McLennan, 1985; Gallet et al., 1998; Buggle et al., 2008). The first part of the 
weathering line is (sub-)parallel to the A-CN join, representing prevailing Ca and Na removal due to plagioclase 
weathering. With plagioclase weathering being in saturation, i.e. approaching to the A-K join, the second part of 
the weathering line is redirected to the Al2O3-apex as a result of predominantly loss of K by weathering of K-rich 
phases like K-feldspar (Nesbitt and Young, 1984). In Fig. 3-5a, it is shown how biases due to a changing 
composition of the parent material would appear in the A-CN-K diagram. Variations in the K-
feldspar/plagioclase ratio (Ks./Pl. ratio) of the parent material would cause a shift parallel to the CN-K join and 
the datapoints would not plot on the same weathering line. In Fig. 3-5b, the sorting effect is demonstrated. A 
sample enriched in fine and more clayey material due to grain size and mineral sorting plots closer to the Al2O3-
apex and a sample enriched in coarse and less clayey material plots vice versa. Fig. 3-5c shows the effect of 
errors in the CaO* content, for example due to the estimation procedure of McLennan (1993). An overestimation 
of the CaO* would cause a shift from the original weathering line towards the CN apex, an underestimation vice 
versa. Since this line of “CaO* uncertainty” is close to the original weathering line, an erroneous CaO* would 
hardly affect the identification of mineral/grain size sorting and of a variable Ks./Pl. ratio of the source material. 
Fig. 3-5d. Datapoints for loess and paleosol samples from the Batajnica/Stari Slankamen, Mircea Voda and Stary 
Kaydaky sections are shown (modified after Buggle et al., 2008). The samples from the Batajnica/Stari 
Slankamen and Mircea Voda sections plot on a plagioclase weathering line originating from the UCC, not 
indicating a variable Ks./Pl. ratio. Samples from Stary Kaydaky plot on a sorting line, which is possibly modified 
by variable Ks./Pl. ratios. See Buggle et al. (2008) for a more detailed discussion of these features with respect to 
loess provenance. 
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The invariance of the albite/anorthite mixing ratio of plagioclase can be assessed indirectly, 

assuming that it is controlled by the type and composition of the igneous source rocks of the 

loess parent material. This assumption seems plausible, since many loess deposits around the 

world have been identified as recycled sedimentary material (Taylor et al., 1983; Gallet et al., 

1998; Buggle et al., 2008), essentially originating from igneous protoliths. Accordingly, an 

increasing felsic (mafic) character of the idealized protolith would cause higher (lower) 

albite/anorthite ratios. As K is enriched in felsic rocks, an invariant K/Na ratio of the 

protolith, as can be inferred for the Batajnica/Stari Slankamen and Mircea Voda sections, 

should also indicate a relatively stable albite/anorthite ratio of the unweathered protolith. 

If the composition of the parent material changes down-profile, the CPA still could be 

reasonably applied to LPSS using ∆CPA values. ∆CPA values can be obtained by relating 

CPA values of a weathering horizon or paleosol to the CPA value of the respective parent 

material (“background CPA), i.e. the loess layer from which each paleosol developed. These 

∆ CPA values can be interpreted in terms of weathering enhancement.  

Therefore, the application of the Al/(Na + Al) x 100 ratio (CPA, CWI´ according to Cullers, 

2000) is proposed not only for calcareous marine sediments, but also for loess-paleosol 

sequences as a measure of silicate weathering intensity. As with other weathering indices, a 

homogeneous parent material (regarding the relevant host minerals) is required to obtain a 

continuous weathering record. However, using the CPA, this prerequisite can be easily 

evaluated via the A-CN-K diagram not needing UCC normalized plots of trace elements and 

REE. Furthermore, diagenetic effects due to dynamics of secondary carbonate or K-fixation 

(illitization) are no issue in contrast to other indices (Sr-type indices, Na-type indices 

involving CaO* and K2O).  
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6 Conclusions 

Commonly applied weathering indices involving Ti, Zr, and Si are relatively sensitive for 

changes in parent material composition. Other widely used weathering indices relying on Al 

as immobile element such as the CIA (Nesbitt and Young, 1982), the CIW (Harnois, 1988), 

the PIA (Fedo et al., 1995) and the Index B (Kronberg and Nesbitt, 1981) involve 

uncertainties due to diagenetic effects (illitization). Estimation of silicate Ca in calcareous 

material, as common in most loesses, may lead to biased weathering records using these 

indices. Furthermore, carbonate-free element ratios incorporating Sr, such as the Ba/Sr and 

Rb/Sr ratio (e.g. Liu, et al., 1993; Gallet et al., 1996; Bokhorst et al., 2009), can be 

problematic due to interferences of the carbonate and Sr dynamics. To overcome such 

uncertainties, the Chemical Proxy of Alteration CPA (the molar ratio Al2O3/(Al2O3 + Na2O) × 

100) – also known as CIW` (Cullers, 2000) – is proposed as a more appropriate geochemical 

proxy of silicate weathering for LPSS. Homogeneity of the parent material can be checked for 

this index via the A-CN-K diagram.  
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Abstract  

Long, continuous terrestrial records of the Pleistocene climate evolution of Central and SE-

Europe are scarce. Multi-proxy records of the weathering and soil formation history from 

loess-paleosol sequences in the middle and lower Danube Basin document a progressive 

aridization and/or cooling of this region over the last 700 ka. Corresponding trends are 

discernible in climate archives in a W-E transect across mid-latitude Eurasia and linked to the 

uplift of Central-East Asian mountain ranges. Evidence for long-term drying and/or cooling of 

interglacials are expressed in archives within the current steppe belt. During peak 

interglacials, environmental conditions have been close to threshold values for the stability of 

ecozones and the findings demonstrate the sensitivity of this region to past and present 

climate change. 

 

Keywords: Climate change, palaeoclimate, Eurasia, Aridization 
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Study 

In Europe, only few long-term and (quasi-)continuous terrestrial climate archives exist 

extending over the Late and Mid-Pleistocene. In the temperate climate region, these are 

essentially pollen records from the Velay region in France (1, 2), comprising the last 450 ka 

and the pollen records of Tenaghi Phillipon and Ioannina (Greece) for the last ~ 450 and 

1,350 ka from the Mediterranean region (3, 4). Since different ecosystems react in a different 

way to climate change, there is still a need to establish further continental climate records for 

Europe to study interactions between ecosystems and climate change.  

The lowlands of the middle (Pannonian/Carpathian Basin) and lower Danube Basin form the 

westernmost extension of the Eurasian steppe belt. During the Quaternary, decametres of 

loess accumulated in these basins, building up plateau-like landforms. It has been 

demonstrated in several studies that loess-paleosol sequences (LPSS) of this area represent 

sensitive climate archives, allowing regional and transcontinental correlation of paleoclimate 

proxies (e.g. 5-10). Two prominent LPSS are the Mircea Voda sequence (Romania, 

44°19`15``N, 28°11`21``E) and the Batajnica/Stari Slankamen sequence (Serbia, 

44°55`29``N, 20°19`11``E / 45°7`58``N, 20°18`44``E) (see Fig. 4-S1 and Fig. 4-S2 for 

pictures of the profiles). Previous investigations have shown that both sequences comprise 

more than 700,000 years of climate history. Hence, these sites can be regarded as key archives 

for the Quaternary climate development in SE - central Europe (10, 11).  

In the study presented, soil formation and weathering history of the Mircea Voda and 

Batajnica/Stari Slankamen LPSS are reconstructed to gain further insight into the Late and 

Mid-Pleistocene climate evolution of the SE European steppe region. A multi-proxy approach 

is applied comprising micromorphological, geochemical and grain size parameters of 

weathering and soil formation (12).  
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Fig. 4-1 shows the peak values of these proxies for the interglacial pedocomplexes of the 

Mircea Voda and Batajnica/Stari Slankamen sites. For loess layers, the minimum values are 

given. The full record is presented in the supporting material (Fig. 4-S3 and Fig. 4-S4). The 

micromorphological proxy of soil formation intensity (MPI) is implemented as an index for 

groundmass development, as determined by microscopic observations of paleosol thin 

sections (12, Table 4-S1). MPI values for the Mircea Voda site show a significant trend of 

decreasing soil formation intensity from older to younger interglacial pedocomplexes. 

Corresponding trends in the micromorphological aspect of Mid- and Late Pleistocene 

paleosols have been also described by Bronger (13) for the Stari Slankamen site and other 

sections in the Carpathian Basin, but only applying the Kubiena terminology. The <5 µm 

fraction as grain size proxy for pedogenesis, and the Chemical Proxy of Alteration (CPA), as 

proxy for silicate weathering (14), reveal similar trends for the interglacial pedocomplexes 

(Fig. 4-1). For the glacial loess units, trends in weathering intensity and clay formation are 

less significant, but still present in the CPA record of Batajnica and Stari Slankamen and in 

the <5 µm fraction record of Mircea Voda. The sedimentary homogeneity of each LPSS has 

been proven by Buggle et al. (15). Therefore biasing effects on the applied weathering proxies 

due to grain size sorting or changes in mineralogical composition can be excluded.  

As climatic drivers on silicate weathering and pedogenesis generally both temperature and 

precipitation have to be considered. In a seasonally dry climate regime, however, as the 

present day steppe climate of the lower and middle Danube Basin weathering is especially 

hampered by water deficiency during the periods of dryness, when the wet reactive surface of 

the minerals is reduced to hydrological inactive soil compartments (16). Hence, presented 

records of MPI, CPA and <5 µm fraction reflect mainly precipitation but also temperature 

changes in the SE European steppe region. Consequently, the observed trends in our proxy 

dataset indicate a progressive aridization and/or cooling of the middle as well as the lower 
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Danube Basin over the last 600 – 700 ka. The CPA and <5µm records additionally show that 

spatial climatic trends between both regions are pertained during most interglacials. Today, 

the Mircea Voda site and the Serbian sites have about the same mean annual temperature 

(~11.5 °C), but annual precipitation is about 200 - 250 mm lower at the Romanian site (~430 

mm, 11). Except for the S6 pedocomplex (Marine Isotope Stage 17), also during past 

interglacials (MIS 5, MIS 7, MIS 9, MIS 11, MIS 13 - 15) conditions were dryer in the lower 

than in the middle Danube Basin as revealed by the pedogenesis proxies.  

The U-ratio (i.e. ratio of the 16-44 µm fraction to the 5.5-16 µm particle size fraction) reflects 

predominantly variations due to sedimentological effects (17-20). According to this proxy 

record (Fig. 4-1), the aridization and/or cooling trend is accompanied by an increase in wind 

strength. The trend in wind strength is significant for the glacial units and generally more 

significant for the dryer lower Danube Basin. Only there, the U-ratio indicates a weak 

increase of wind strength also during the interglacials.  

Not only weathering intensity or sedimentological properties of the paleosol units changed, 

but also trends in the general type of soil development refer to a continuous aridization and 

cooling. While rubified (Luvic) Cambisols of the older parts (>MIS 13) of the Mircea Voda 

and Batajnica/Stari Slankamen sections indicate a Mediterranean-like climate, younger 

paleosols represent fossil stepp. This temporal pattern in soil development (Fig. 4-2) points 

towards an increasing climate continentality and is typical for loess-paleosol sequences in the 

middle and lower Danube Basin, such as in Hungary (13, 21), Serbia (6, 13, 21, 22, 23), 

Romania (24) and Bulgaria (5, 7). Furthermore, mineralogical (22, 23) and palynological 

investigations (25) on sites and cores in the middle Danube Basin give further evidence for a 

progressive cooling and aridization of Late and Mid-Pleistocene interglacials.  
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Fig. 4-1. Peak values for pedogenesis, weathering and wind strength proxies for the last six 
glacials and interglacials preserved in loess-paleosol sequences of the middle (Batajnica/Stari 
Slankamen site) and lower Danube Basin (Mircea Voda site). For interglacial units (S0-S6), the 
maximum value of each pedocomplex is shown (the lowest value for the U-ratio) and for 
glacial units, the lowest value of each loess layer (L1-L6) is presented (the highest value for the 
U-ratio). The chronostratigraphic placement of the units (11) is given in Fig. 4-S3 and Fig. 4-
S4. of the supplementary material) The Micromorphological Proxy of soil formation Intensity 
(MPI) is a measure for groundmass development of paleosol thin sections (c/f related 
distribution pattern and b-fabric, 12) and reflects pedogenesis intensity. B) The Chemical 
Proxy of Alteration (CPA) gives a record of silicate weathering and C) the <5µ fraction is a 
proxy of pedogenic clay formation. MPI, CPA and the <5µ fraction are sensitive to changes in 
humidity and/or precipitation, whereas the U-ratio is applied as grain size proxy of wind 
strength. Significant trends in peak values are indicated by solid arrows (p<0.05) and dashed 
arrows (p <0.1). The gradual change in peak values of this set of proxies indicates a 
progressive aridization and/or cooling of today’s SE European steppe region.  
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Fig. 4-2. Comparison of climate proxy records from mid-latitude Eurasia over the last six interglacial to glacial 
cycles. All records indicate aridization and/or a decrease of temperature for interglacials partly also glacials over 
the last 600-800 ka. A and B) Paleosol succession of the middle and lower Danube Basin as preserved in the 
loess-paleosol sequence (LPSS) Batajnica/Stari Slankamen (10, 13) and Mircea Voda (see Table 4-S2), 
respectively; C) Mean annual temperature (MAT) and precipitation (MAP) of the NW Black Sea area, as 
reconstructed from paleopedologic and environmental magnetic properties of LPSS using a modern analogue 
approach (44, 45); D) Biogenic Silica content (BS) in Lake Baikal sediments (core BDP 96-2) as proxy of 
summer temperature (46); E and F) Chemical Proxy of Alteration (CPA) record of the Chashmanigar LPSS 
(Tajikistan) and Lingtai LPSS (Chinese Loess Plateau) (47). Silicate weathering intensity reflects mainly 
humidity but also temperature. G) <2 / >10 µ grain size ratio record of the Baoji LPSS (Chinese loess plateau) 
reflecting weathering intensity (hence humidity and/or temperature) and wind strength (32); H) Dust flux record 
in the NW Pacific (core V21-146) as proxy for aridization of eastern Asia (48). Significant trends in peak values 
are indicated by solid arrows (p <0.05) and dashed arrows (p <0.1). Site-specific deviations are mainly recorded 
for MIS 17 and MIS 5. For the Chashmanigar, Lingtai and Baoji record, the S1 has been excluded from trend 
calculation.  

 

As briefly summarized in the “supporting material”(see also Fig. 4-2) the aridization trends 

reported from the steppe region of SE-Europe can be traced eastwards to interior Eurasia 

following climate archives along the mid-latitude steppe. Hence, a common trigger seems to 

be evident. Direct orbital forcing does not account for these trends (see Fig. 4-1). Therefore, 

other mechanisms are needed causing this feature in central Eurasian climate archives. A 

mechanism commonly referred to is uplift of the Himalaya-Tibet ensemble and Central Asian 

mountain ranges (26, 27, 28), which explains the development of B-climates in the Eurasian 

mid-latitudes, according to modelling results (29, 30). Proxy records of other potential 

triggers such as a gradual decline in atmospheric CO2, changes in North Atlantic sea surface 

hydrography and the global ice volume (see Fig. 4-3) cannot explain observed Mid-

Pleistocene aridization and/or cooling trends. Thus, in lack of other plausible mechanisms, we 

focus on the uplift hypothesis, though late Cenozoic uplift rates are still under debate and 

regionally highly variable. For the last 800 ka, values range for example from >0.8 km in the 

SE-Margin of the Tibetan plateau (31), 1 km for the Kunlun Pass area in the Central Tibetan 

plateau and 1.6 - 4 km for the Central Nepalese Himalaya (32), but also lowering of elevation 

has been reported for parts of the Tibetan plateau (33 Notwithstanding the controversial 

discussion concerning the Tibetan plateau, surrounding mountain edges are still growing (33). 
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Fig. 4-3. Comparison of proxy records for potential long-term triggers on Eurasian climate during the last 17 
marine isotope stages. A-D) The daily insolation at 65°N during the summer solstice, the eccentricity of the 
Earth`s orbit, phasing in obliquity and precission of the Earth (49); E) Atmospheric CO2 concentration in parts 
per million by volume (ppmv) (50); F) δ18O values of benthic foraminifera from ODP-site 677 as proxy of global 
ice volume (51). G) Uk`

37 based mean annual sea surface temperature (SST) at the Iberian Margin (cores MD01-
2443 and MD01-2444; 52); H and I) Changes of the summer and winter sea surface temperature in the North 
Atlantic (composite record from ODP site 607 and core V30-97, 53). SST estimates are based on species 
composition of planctonic foraminifera (pl-f). None of these parameters and proxies show trends over the last 
600-700 ka that could indicate a trigger for observed gradual aridization and or cooling in mid-latitude Eurasia. 
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Due to denudation, reported uplift values are somewhat higher than net increase in elevation. 

Moreover, δ18O based approaches of paleoaltimetry suggest for parts of the Tibetan plateau 

and the Himalayas a hypsometry similar as today, already during the Late Miocene. However, 

a standard error of about 20% is given for this method, when estimating high altitudes (34). 

Therefore, Late Cenozoic elevation changes of up to ~ 800 , (Tibetan Plateau) and ~ 1500 m 

(High Himalayas) cannot be excluded by these findings .Yet, it has been shown by climate 

models that already such small changes in elevation (10 or 20% of today’s altitude) of 

Himalaya-Tibet orogen and Central Asian mountain ranges have a significant effect on 

Eurasian climate, also in SE Europe (35, 36). Hence, although the intensity of mountain rise 

cannot exactly be quantified it seems to be a likely trigger for observed cooling and 

aridization trends in the Late and Mid-Pleistocene of interior Eurasia and also SE European 

steppe region (see supporting material for an overview on the climatic implications of the 

uplift hypothesis).  

Following the modelling studies, this trigger should also have an influence on climate in the E 

Mediterranean and eventually also in temperate central Europe, if it is effective in SE 

European steppe regions (29, 36). However, available long-term climate records from central 

Europe such as the Velay Pollen sequence in France (1, 2) or the compilation of loess-

paleosol sites from the Rhine valley in Germany (37) do not reveal a comparable trend in 

interglacial vegetation and paleosol typology. For the Rhine valley, soil development on loess 

sites always peaked in Luvisols during the past four major interglacials (37). Also from the 

pollen record of Tenaghi Phillipon and Ioannina corresponding trends have neither been 

reported in the percentage of temperate tree pollen nor in the relative abundance of individual 

species (3, 4, 38). At the moment, we cannot provide a definite answer on why clear evidence 

of a gradual cooling and aridification during the Mid-Pleistocene in these regions is lacking. 

We propose two explanations. I) Quaternary uplift of alpine orogens in Central and Eastern 
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Europe could have induced changes in regional atmospheric circulation. Today’s SE 

European steppe region is situated E to SE of the Alps and E to S of the Carpathian 

Mountains. Blocking of the westerlies by these mountains is an essential factor promoting 

dryness and a stronger continental influence in the Pannonian and lower Danube Basin. 

Recalculated uplift intensity for the last 800 ka from published Quaternary uplift rates gives 

values of up to 420 m for the Carpathian mountains (39, 40) and 560 m for the Northern 

Calcareous Alps (41). For the time span between two interglacials, this would mean uplift 

values of ~ 50 and ~ 70 m in average, respectively (42). Up to now, it is not evaluated by 

modelling studies how strong changes in elevation in this magnitude enhance rain shadow 

effects on a regional scale. II). Today, the SE European Steppe region is the westernmost 

extension of the Eurasian steppe belt separating the temperate zone of central Europe and the 

Mediterranean ecozone of the S and W Balkan Peninsula. We propose that during Pleistocene 

warm periods, this region was probably always a transitional zone between the temperate, 

Mediterranean and continental ecozone being highly sensitive for climate change. Such a 

transitional zone represents a system at the limits of its stability. It is likely to be highly 

sensitive to climate change. In the case of the Pannonian and lower Danube Basin, cooling 

and aridification of Pleistocene interglacials is reflected by a change from a Mediterranean 

ecozone to a steppe ecozone, which is recorded in paleobotanical and paleopedological-

geochemical parameters (13, 22, 23, 25). The early Mid-Pleistocene Mediterranean ecozone 

of this region was probably close to threshold values in its stability in contrast to the peak 

interglacial ecozones at the Velay site and Rhine area in central Europe, as well as in Tenaghi 

Phillipon.  

Concluding, gradual aridization and cooling of today’s SE European steppe region since the 

late Pleistocene is a regional expression of corresponding trends in interior Eurasia. As 

general trigger we propose the uplift of Central Asian mountain ranges. In Europe, this trend 
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is especially expressed in the today’s steppe region. We suggest that this is caused by i) a 

regional amplification of the aridization trend due to Quaternary uplift of Central-East 

European mountain ranges (Alps, Carpathians) and in particular by ii) the sensitivity of this 

region in reflecting changing climate parameters, since environmental conditions during peak 

interglacials have been close to threshold values in the stability of ecozones (Mediterranean 

vs. continental steppe). The high sensitivity of this region and its ecozones (continental 

steppe, temperate and Mediterranean zone in transition state) to aridification is an issue of 

relevance for decision makers with respect to future climate change projections, which predict 

decreasing summer precipitation for SE Europe (43).  
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Supporting Material 

a) Supporting Text 

S1 Material and Methods 

S1.1 Sampling, laboratory procedures 

For micromorphological analyses one representative, undisturbed sample was taken per each 

pedomember horizon of the Mircea Voda section. Due to already available detailed 

micromorphological investigations and soil descriptions (S1, S2) no further samples were 

taken from the Batajnica and Stari Slankamen section. Samples for grain size measurements 

and geochemical analyses have been taken from all profiles. Younger pedocomplex units 

(MIS 5, Mis 7, MIS 9) were sampled in higher resolution for geochemistry and texture. At the 

Batajnica section (Serbia), the three lowermost pedocomplexes are influenced by water-

logging. Therefore, samples of the older units were taken from the section Stari Slankamen 

and a composite loess-paleosol sequence Batajnica/Stari Slankamen was constructed. Further 

details on sampling strategy are described in a previous study (S3). All samples were stored in 

air-tight plastic bags until drying in the laboratory at 40 °C.  

Thin sections of ≥ 2.8 × 4.8 cm² were prepared by Th. Beckmann (Schwülper-Lagesbüttel, 

Germany) according to the procedures given in Beckmann (S4). Micromorphological 

description follows the terminology of Stoops (S5). Grain size analysis was performed using a 

Malvern Mastersizer S analyzer. Sample pretreatment followed the procedure described in 

Konert and Vandenberghe (S6). The >600 µm fraction was removed by wet sieving and prior 

to laser measurements samples were subjected to ultrasonic treatment for complete 
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disagggregation. The composition of major and trace elements was analyzed via XRF and 

presented in Buggle et al. (S3). 

Determination of soil colors was performed on soil clods in moist and dry conditions, using 

the Munsell soil color charts (S7).  

The chronostratigraphy of the sites has been already established by Buggle et al. (S8) using 

pedostratigraphic marker horizons and correlation of characteristic pattern of magnetic 

susceptibility pattern with the benthic δ18O record from ODP 677 as proxy of the global ice 

volume (S9). The nomenclature of stratigraphic units follows the S-L system applied for 

Chinese loess-paleosol sequences (e.g. S10, S11). 

S1.2 Applied proxies for soil formation and weathering intensity 

S1.2.1 Micromorphological proxies – rational 

In paleopedologic studies micromorphological investigations have been established as tool to 

identify pedogenic processes und thus to characterize and classify fossil soils (S1, S12, S13). 

Micromorphological parameters have also been used to describe the intensity of soil forming 

processes. Especially the type of b-fabric (birefringence-fabric) has shown up as a valuable 

proxy in several studies. Starting from unmodified loess or weak unleached paleosols having 

a calcitic crystalline b-fabric, usually an undifferentiated b-fabric evolves, indicating a 

carbonate-free groundmass with low to moderate clay content. With increasing intensity of 

soil formation stipple-speckled, mosaic-speckled and striated b-fabrics usually develop, 

reflecting higher clay content and mobility of clays due to clay dispersion and orientation in 

clay domains (S5, S14 - S16). Besides the b-fabric also the c/f related distribution was selected 

as parameter, which is likely to reflect intensity of pedogenic clay formation. The c/f related 

distribution describes the relative distribution of coarse and fine fabric units in the 

groundmass and with increasing (pedogenetically formed) clay content the c/f related 
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distribution should evolve from a coarse-fabric supported pattern (e.g. coarse monic, close 

porphyric) to a fine-fabric supported pattern (e.g. open porphyric) (S5). We ranked the 

different types of c/f related distribution and b-fabric according to their appearance with 

increasing groundmass development and assigned numerical values to the different ranks. The 

sum of rank values for the c/f related distribution and b-fabric-type is implemented as 

micromorphological proxy of soil formation intensity (MPI) (see Table 4-S1).  

S1.2.2 Grain size proxies - rational 

As direct proxy of the clay content, we apply the <5 µm size fraction, as determined by laser 

analysis. The <5 µm fraction shows the best correlation (minimum sum of squared residuals) 

with earlier published results (S1) from pipette analysis for the Stari Slankamen section. The 5 

µm cut is slightly below the classically applied 8 µm laser-equivalent to the “pipette-clay” 

content (S6). It is in between the clay-cut published for the Surduk section in Serbia (<4.6 µm 

fraction; S17) and the grain size proxy for pedogenic clay published for other loess-paleosol 

sites in Serbia and Ukraine (<5.5 µm; S18).  

While the <5.5 µm fraction is essentially controlled by pedogenesis, the ratio of the 16–44 µm 

/ 5.5-16 µm fraction (so-called U-ratio) reflects predominantly sedimentary processes (S19, 

S20 and references therein). Hence, in loess-paleosol studies the U-ratio has been commonly 

applied as proxy for aeolian activity and wind strength (e.g. S21-S23). As such the U-ratio is 

also implemented in the present study. 

S1.2.3 Chemical weathering index – rational 

As chemical proxy of silicate weathering, Buggle et al (S24) proposed the molar ratio of 

Al2O3/(Al2O3 + Na2O) × 100 for loess-paleosol sequences. This ratio was initially introduced 

by Cullers (S25) as CIW`and lateron by Buggle et al (S24) implemented for loess-paleosol 
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sequences as Chemical Proxy of Alteration (CPA). In contrast to commonly applied 

weathering indices such as the Rb/Sr ratio or the Chemical Index of Alteration (CIA, S26) it 

does not involve uncertainties due to dynamics of secondary carbonates.  

S2 Results and Discussion 

S2.1 Overview on records of Mid-Pleistocene aridization and cooling trends in mid-

latitude Eurasia 

In the following we give a review on paleoclimate records showing that Mid-Pleistocene 

aridization / cooling can be traced across mid latitude Eurasia from the SE-European steppe 

belt to Central Asia. Starting in vicinity of the lower Danube basin, corresponding shifts in 

soil forming processes and weathering intensity, respectively, can also be found north of the 

Black Sea Coast in the steppe belt of the southern East European Plain. In Moldova, S-

Ukraine and S-Russia, Tsatskin et al. and Velichko et at (S27, S28, S29) found rubified 

paleosols of MIS 13 - 15 and older on several sites, which they interpreted as soils developed 

under a Mediterranean climate. Younger paleosols were identified as fossil Chernozems. 

Using transfer functions of pedological, rock magnetic properties and climate derived from 

modern analogs, decreases in MAT and MAP from ~ 19 to 10 °C and ~ 800 to ~ 500 mm, 

respectively were reconstructed for the area, north of the Black Sea Coast (S27, S28, see Fig. 

4-2). Yet in these studies, no mechanistic explanation is given for the observed climatic 

evolution. Further to the East, in the mid-latitudes of Asia, corresponding climate patterns 

could be deduced from archives in Siberia. In Mid- to Late Pleistocene paleosol successions 

of West Siberia a transition from meadow soils to Chernozem-like soils reflect cooling and/or 

drying (S30). This is also supported by the Pleistocene faunal development of the Baikal 

region (S31) and a weak decrease of biogenic silica content in interglacial periods of the last 

600 ka as revealed in core BDP-96-2 and the stacked BDP-96-2 and GC1 record of Lake 
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Baikal (S32, S33, see Fig. 4-2). This decrease cannot be solely explained by astronomical 

factors, since summer maximum air temperature for Siberia, predicted from energy balance 

modelling, do not reveal a similar trend (S34). However, corresponding trends for cooling and 

drying are reported from many Central Asian and Chinese loess deposits (e.g. Fig. 4-2) based 

on the micromorphological soil development intensity (S35), geochemical weathering proxies 

(S36, S37), iron mineralogy (S38), grain size proxies of weathering or wind strength (S39, 

S40), dust accumulation rates (S41) and pollen records (S42, S43). Though there are site-

specific deviations, mainly recorded for the S6 (negative deviation) and S1 (positive 

deviation), the general trend preserved in this variety of proxies consistently indicates 

aridization and/or cooling of interior Eurasia since the early Pleistocene. Also a gradual 

expansion of C4 vegetation since 850 ka has been reported for Central Asia, which however, 

has been interpreted in terms of increasing summer precipitation (S41). Yet, in light of the 

available palynological data and the weathering records this trend more likely reflects 

aridization. Further evidence for cooling, aridization and increasing atmospheric dynamics of 

interior Eurasia is provided by mass accumulation rate (MAR) records from the northern 

Pacific (Fig. 4-2) showing increasing dust flux over the last 500 ka.  

S2.2 The effect of Himalayan-Tibetan uplift on Eurasian climate – a short overview on 

the “uplift-theory” 

According to modelling results of Ruddiman et al and Broccoli and Manabe (S44, S45), the 

uplift of these mountains has direct impact on atmospheric circulation pattern. It causes a 

diversion of the westerly circulation, weakening of the westerlies north of the uplift region 

due to a low level cyclonic flow and an intensified vertical atmospheric motion. Furthermore, 

due to temperature-snow-albedo feedbacks the uplift areas act as source of cold air masses. 

Hence, an intensification of the central Asian-Siberian high pressure cell in winter, an 
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increased subsidence next to the mountain areas in summer, rain shadow effects and the 

weakening of the westerlies north of the uplift region represent a mechanistic background 

when explaining aridification of Central Asia by the “uplift-theory”. These models 

(“mountain” versus “no mountain” run) suggest explicitly for the Northern Black sea region 

and the Eastern Mediterranean cooler and wetter winters but a more significant decrease of 

temperature and precipitation in summer time due to a decrease in westerly winds, more 

intensified northeasterly winds and increased subsidence. Geological observations from the E 

Mediterranean supporting the validity of this mechanism during the Pliocene are summarized 

in Ruddiman and Kutzbach (1989, S44).  
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c) Supporting Tables and Figures 

Table 4-S1. Groundmass characteristics of soil thin sections and their ranking following increasing groundmass 
development intensity with soil formation (carbonate leaching, clay formation, clay translocation). The 
micromorphological proxy of soil formation (MPI) is obtained from the sum of rank values of c/f related 
distribution pattern and b-fabric. Intermediate rank values are assigned to transitional groundmass types 

Rank value c/f related distribution pattern b-fabric 
0 Close porphyric crystallitic 
5 Single spaced porphyric 

 
undifferentiated 

10 Double spaced porphyric speckled 
15 open porphyric striated  
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Table 4-S2. Summary of paleopedologic characteristics of the pedocomplexes at the Mircea Voda site and soil typological interpretation. The description of 
micromorphological features follows the terminology proposed by Stoops (S5 2003). The abundance of humous matrix and stains, clay cutans, detritic and secondary 
carbonates in thin sections is described semiquantitatively as follows: absent (No), few (I), frequent (II), very frequent (III). Furthermore, the lowest calcium carbonate values 
and highest values of clay content are given for each fossil soil horizon. High resolution records for clay content are presented in Fig. 4-S4, and for calcium carbonate given in 
Buggle et al. (S24). Paleopedologic characteristics and description of the Batajnica/Stari Slankamen site have already been published (S1; S2) and high resolution grain size 
and carbonate records of the Serbian site are shown in Fig. 4-S3 and Buggle et al. (S24). 
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Fig. 4-S1. Picture of Stari Slankamen and Batajnica site (middle Danube Basin, Serbia). Pedostratigraphic units are 
denoted with S according to the S-L nomenclature for Chinese loess-paleosol sequences. The chronostratigraphic 
placement of the pedocomplexes is shown in Fig. 4-S3. 

  

Mircea Voda

 
Fig. 4-S2. Picture of the Mircea Voda site (lower Danube Basin, Romania). The vertical blue line indicates the size 
of a man [~1.8 m] at the base of the profile. Pedostratigraphic units are denoted with S according to the S-L 
nomenclature for Chinese loess-paleosol sequences. The chronostratigraphic placement of the pedocomplexes is 
shown in Fig. 4-S4. 
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Fig. 4-S3. The <5 µm, CPA and U-ratio record of the composite loess-paleosol sequence 
Batajnica/Stari Slankamen (middle Danube Basin, Serbia). The CPA record is taken from 
Buggle et al (S24). The chronostratigraphic placement of the pedocomplexes is based on 
the work of Buggle et al (S8).  

 

 
Fig. 4-S4. The <5µm, CPA and U-ratio record of the composite loess-paleosol sequence 
Mircea Voda (lower Danube Basin, Serbia). The CPA record is taken from Buggle et al., 
S24). The chronostratigraphic placement of the pedocomplexes is based on the work of 
Buggle et al (S8). 
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Abstract 

The loess-paleosol sequences Batajnica/Stari Slankamen (Serbia) and Mircea Voda 

(Romania) represent archives for the climate and landscape development of the middle and 

lower Danube basin during the last 700.000 years. A multi-proxy approach relying on iron 

mineralogical parameters is applied to decipher Quaternary climate evolution in this region. 

For detecting changes in the iron mineralogical composition rock magnetic investigations, 

diffuse reflectance spectroscopy (drs) and Munsell color based proxies are employed. The 

results show that environmental conditions during mid and early Mid-Pleistocene interglacials 

were more favourable for hematite formation, suggesting a more oxidizing pedoclimate as in 

more recent interglacials. This is also reflected in a gradual increase of ARM/SIRM linked to 

a preferential hematization of coarse grained ferrimagnetica and relates to warmer climate 

conditions and a more extended estival dry period. At the same time, rock magnetic 

parameters indicate a preferential destruction of fine grained magnetic particles in older 

paleosols resulting from seasonal excess moisture. Hence, a straight-forward interpretation of 

the magnetic susceptibility record in terms of pedogenesis intensity or rainfall seems not 

appropriate at these profiles.  

A progressive cooling and decrease of rainfall during the Mid- and Late Pleistocene is not 

only evidenced for interglacial pedocomplexes but also for glacial loess layers. This finding is 

in line with previously published proxy records of silicate weathering and clay formation at 

these sites and similar trends reported from mid-latitudinal Eurasia. Relating iron 

mineralogical proxies to paleopedological characteristics and proxies of silicate weathering, 

we could additionally reveal a change in the seasonal pattern of the temperature and 

precipitation regime from a Mediterranean type to a steppe type climate, highlighting the 

potential of such a multi-proxy approach.  
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Discussing potential triggers, the inferred trend of cooling, aridification and increasing 

continentality is best explained by Quaternary uplift of Eurasian mountain belts inducing 

changes in atmospheric circulation. Regarding the lower and middle Danube Basin, this trend 

possibly is regionally amplified by the uplift of the Alps and Carpathians (rain shadow 

effects), providing a driving mechanism for the westward extension of the Eurasian steppe 

belt into Central and SE-Europe.  

Keywords: rock magnetism, diffuse reflectance spectroscopy, hematite, rubification, 

Pleistocene, loess 
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1 Introduction 

Loess-paleosol sequences (LPSS) comprising several glacial-interglacial cycles are widely 

spread along the Danube River in Hungary, Serbia, Bulgaria and Romania. Their potential as 

paleoclimate archives has been proven in previous studies. Pattern of paleoenvironmental 

proxy records have been correlated across Eurasia to well established climate archives, the 

loess sites of Central Asia and China, as well as to marine records of the global ice volume 

(e.g. Jordanova and Petersen, 1999a; Panaiotu et al., 2001; Bronger, 2003; Marković et al., 

2006; Jordanova et al., 2007, Buggle et al., 2009; Balescu et al., 2010). Besides the Pollen 

sequence from the Velay region (France) (Reille et al., 2000; de Beaulieau, 2001), as well as 

Ioannina and Thenagi Phillipon (Greece) (Tzedakis and Bennett, 1995; Tzedakis et al., 2006), 

quasi-continuous terrestrial records for the Late and Mid-Pleistocene climate in Europe can 

only be provided by these archives. Essentially the sites Batajnica and Stari Slankamen 

(middle Danube - i.e. Carpathian-, Pannonian Basin) and Mircea Voda (lower Danube Basin) 

have been regarded as key sections comprising at least 700.000 years of climate history 

(Buggle et al., 2009; Marković et al., 2009; Marković et al., submitted). Hitherto, 

paleoclimatic research on these sites focused on paleopedological proxies such as 

micromorphological indicators of soil development intensity, mineralogy of silicates, grain 

size parameters or geochemical based weathering indices (Kostic and Protic, 2000; Marković 

et al., 2008; Marković et al., 2009; Buggle et al., 2009; Buggle et al., submitted). These proxy 

records revealed a gradual decrease of silicate weathering intensity and pedogenic clay 

formation during the Mid- and Late Pleistocene going along with a change in paleosol 

typology from fossil (rubified) Luvisols and (rubified) Cambisols to fossil steppe soils. As 

reviewed in Buggle et al (submitted) similar trends can be traced in mid-latitudinal Eurasia 

from SE-Europe to the Chinese Loess Plateau, reflecting gradual changes in paleoclimatic 
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conditions. The observed patterns have been predominantly interpreted in terms of increasing 

aridification and/or cooling, possibly triggered by Quaternary uplift of Eurasian mountain 

ranges (Buggle et al., submitted). However, existing data still leave open for discussion 

whether it is a change in the absolute annual sum of precipitation and/or temperature or rather 

a change in the seasonal distribution of rainfall. Therefore, the (first) objective of the present 

study is to provide further evidences helping to elucidate this issue by means of iron 

mineralogical investigations.  

On the one hand, the amount of iron oxides formed during pedogenesis on the one hand 

reflects soil formation intensity. Therefore, chemical as well as rock magnetic based iron 

mineralogical proxies such as the dithionite-soluble iron fraction (Fed) (e.g. Guo et al., 1996; 

Ding et al., 2001) or the bulk magnetic susceptibility (χ) and frequency-dependent 

susceptibility (χfd%) (e.g. Maher and Thompson, 1995; Evans and Heller, 2001; 2003; 

Avramov et al., 2005) are widely applied as proxies for pedogenesis intensity in loess-

paleosol studies. On the other hand, formation and stability of different iron minerals and their 

grain size fractions depend on (soil-) environmental conditions such as soil water content, 

redox potential of soil water (Eh), pH, presence of organic ligands, soil temperature and 

seasonal variations of these parameters (Thompson and Oldfield, 1986; Cornell and 

Schwertmann, 2003; Orgiera and Compagnucci, 2006). Hence, the assemblage of pedogenic 

iron minerals can be a sensitive indicator also for changes in amount and seasonal distribution 

of precipitation. The presence of an intense warm-dry period, for example, promotes 

formation of hematite and can be reflected in soil color proxies of hematite (Bronger, 1976; 

Torrent et al., 1983; Kämpf and Schwertmann, 1983; Yaalon, 1997; Vidic et al., 2004). 

Goethite, in contrast, is the more stable iron species under cooler and wetter conditions or 

with high humus content such as in steppe soils (Cornell and Schwertmann, 2003). Yet, 

quantification of hematite and goethite using visually measured soil color proxies, X-ray 
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diffraction technique and Mössbauer spectrometry is either not very precise or time 

consuming (Torrent and Barrón, 1993; Post et al., 1993; Ji et al., 2002). Recently transfer 

functions have been developed allowing a fast and more precise determination of the hematite 

and goethite content and hematite vs. goethite ratio in loess and paleosols via diffuse 

reflectance spectroscopy measurements (Ji et al., 2002; Torrent et al., 2007). Furthermore, 

rock magnetic techniques are frequently applied to gain insight in the assemblage of iron 

oxides in soils and sediments (e.g. Jordanova and Petersen, 1999a, b; Panaiotu et al., 2001; 

Liu et al., 2007). They allow for example to identify gleyzation and reductive dissolution of 

fine grained magnetic oxides characterising periods of excess soil moisture (Thompson and 

Oldfield, 1986) or help to identify hematization of maghemite, indicative for dry periods with 

strongly oxidizing conditions (Torrent et al., 2006; 2007). Hence multi-proxy approaches 

involving rock magnetic and spectroscopic investigations are proposed to infer paleoclimatic 

information from iron mineralogy (Vidic et al., 2004; Torrent et al., 2007). Here, we apply for 

the first time such a multi-proxy approach on European loess-paleosol sequences. 

Concerning the profiles Mircea Voda, Batajnica and Stari Slankamen, the only existing record 

relating to iron-mineralogy, is the bulk magnetic susceptibility record presented by Buggle et 

al. (2009) and Marković et al. (2009, submitted). These authors found an increase in 

interglacial peak magnetic susceptibility from the modern soil to Marine Isotope Stage (MIS) 

9, reflecting enhanced formation of ferrimagnetica with higher intensity of pedogenesis. 

Buggle et al (2009) hypothesized that the decrease of χ in older paleosols results from 

dissolution of highly magnetic susceptible particles of superparamagnetic size (SP) (~<30 

µm) due to increasing excess of rainfall. The evaluation of this hypothesis via more 

comprehensive rock magnetic analyses is a further objective of the present study.  
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2 Material and methods 

2.1 The sites and sampling 

The regional settings of the sites have been described previously (Buggle et al., 2008, 2009). 

Briefly, the sections Batajnica (44° 55´ 29´´ N, 20° 19´ 11´´ E ) and Stari Slankamen (45° 7´ 

58´´ N, 20° 18´ 44´´ E) are situated at the Banks of the River Danube 15 and 45 km upstream 

of Belgrade in the Serbian part of the Pannonian Basin. The climate of this area can be 

characterized as Cfb type climate with a mean annual precipitation (MAP) of 683 mm and 

mean annual temperature (MAT) of 11.9 °C (station Belgrade). Rainfall maximum is in June 

(90 mm/month) and a second maximum occurs in December (58 mm/month) (Fig. 5-1). 

According to the definition of Walter (1974), there is a dry period of 1 month (August). 

 
Fig. 5-1. Climatic data (WMO, 1996) of stations Belgrade (Serbia) and Constanta (Romania). 
a) temperature and b) precipitation. 

 
The Mircea Voda site is located in the Dobrudja plateau about 13 km east of the Danube 

River in Romania (44° 19´ 15´´ N, 28° 11´ 21´´ E). With 11.5 °C MAT but only ~ 400 mm 

MAP (climate station Constanta) this area is considerably dryer than the Serbian locations 

(Fig. 5-1). Two rainfall maxima with about the same magnitude occur in June and in 

November (~40 mm/month). The climate is of Cfa type with a dry period from ~ May to 
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October and a period of drought from ~ July to September according to Walter`s (1974) 

criteria.  

Due to ground water influence at the older part (>MIS 9) of the Batajnica section and a major 

hiatus in younger part of the Stari Slankamen section, Buggle et al (2009) build a composite 

LPSS from the MIS 1 to MIS 9 sequence of Batajnica and MIS 10 to MIS 17 sequence of 

Stari Slankamen. In the following we refer to this composite sequence as “Batajnica/Stari 

Slankamen” LPSS. Both, the LPSS Batajnica/Stari Slankamen and Mircea Voda comprise 

more than six major loess-paleosol couples corresponding to glacial interglacial cycles. 

Paleopedological descriptions of these sites are available in Conea (1969), Bronger (1976), 

Bronger (2003), Marković et al., (2009) and Buggle et al. (submitted). The chronostratigraphy 

was established by Buggle et al., (2009) and Marković (2009) and confirmed by Timar et al., 

(2009), Balescu et al., (2010) and Schmidt et al (2010). The nomenclature of 

chronostratigraphic units follows the “S-L” system used in Chinese loess-paleosol sequences 

(see Buggle et al., 2009).  

For the present study, we focus on the uppermost six major loess-paleosol couples 

corresponding to the last 17 MIS. Pedocomplexes were sampled continuously and at least 

three representative samples were taken from each intercalated loess unit. Details on sampling 

strategy are described in Buggle et al. (2008, 2009). Samples were stored in air tight plastic 

bags and dried at 40 °C in the laboratory.  

2.2 Rock magnetic proxies: measurement and background 

For rock magnetic measurements the dried material was filled into plastic boxes and 

subsequently compressed and fixed with cotton wool before closing the lid in order to prevent 

movement of sediment particles during the measurements. The sediment mass served as 

normalizer. The low field magnetic susceptibility was measured in an AC-field of 300 A/m at 
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875 Hz using the AGICO KLY-3-Spinner-Kappa-Bridge (AGICO, Brno, Czech Republic) 

and is given as mass specific susceptibility (χ). The data have been previously published by 

Buggle et al., (2009). χ reflects concentration of ferrimagnetic minerals and also grain size 

distribution. Pedogenetically formed fine-grained superparamagnetic (SP) ferrimagnetica 

(<0.03 µm) have a 2-3 times higher χ than single-domain, pseudosingle-domain (SD, PSD; ~ 

0.03-10 µm) and multidomain ferrimagnetica (MD, >~10 µm) (Tang et al., 2003).  

The frequency dependence of susceptibility (χfd%) is a measure for the relative contribution of 

SP-ferrimagnetica close to the SP-SD threshold and is generally applied as proxy for the 

exclusively pedogenetically formed ferrimagnetica (Banerjee, 1994; Liu et al., 2007). The χfd% 

was determined with a MAGNON Susceptibility Bridge (MAGNON, Dassel, Germany) at 

AC-fields of 300 A/m at 0.3 and 3 kHz respectively (χfd% = [χ(0.3 kHz) - χ(3kHz)] / χ(0.3 

kHz) x 100 in %). With χfd we refer to the absolute difference of low to high frequency 

susceptibility values, reflecting the concentration of SP-ferrimagnetica.  

Induced isothermal remanent magnetizations (IRMs) were determined after exposition of the 

samples to a pulsed field of 2000 and 350 mT (back field) respectively along one spatial axis. 

Magnetization was produced using a MAGNON PM II pulse magnetiser and measured via an 

AGICO JR6-spinner magnetometer. The IRM acquired in the 2 T field is regarded as 

saturation isothermal remanent magnetization (SIRM). As the SP-size fraction is defined by 

the absence of magnetic remanence under room temperature, IRMs are essentially controlled 

by the concentration of SD to MD-ferrimagnetica. Furthermore, IRMs depend on the 

mineralogical composition with ferrimagnetica (magnetite, maghemite) being more easily 

magnetized than antiferromagnetica (goethite, hematite) (Evans and Heller, 2001). Therefore, 

the S-ratio (IRM0.35T/SIRM) is indicative for the relative abundance of ferrimagnetica to 

antiferromagnetica and a concentration-independent proxy (Maher 1986, Wang et al., 2006). 

A proxy for the absolute concentration of antiferromagnetica is the HIRM (HIRM = 0.5 x 
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(IRM0.35T +SIRM) (Geiss et al., 2004). As χ is essentially controlled by the concentration of 

SP-ferrimagnetica and SIRM decreases from the SD to MD fraction, the SIRM/χ is sensitive 

for variations in grain size distribution of magnetic minerals, especially the ratio of SD 

fraction vs. SP fraction (Zhou et al. 1990). As χfd is a more specific measure for the 

concentration of SP-ferrimagnetica, we apply the SIRM/χfd  ratio. 

Anhysteretic remanent magnetizations (ARMs) were induced with a 50 µT static field and 

100 mT alternating field (AF) amplitude using a Magnon AFD 300 demagnetiser. The ARM 

was produced along one spatial axis and remanent magnetization was measured via the 

AGICO JR6-spinner magnetometer. Similar as the SIRM, the ARM reflects the concentration 

of remanence carrying magnetic phases. However, the ARM decreases more strongly from 

the SD to the MD-fraction as the SIRM. Therefore, the ARM/SIRM ratio is a useful 

concentration-independent proxy for detecting changes in the ratio SD fraction vs. SD-MD 

fraction (van Velzen and Deckers, 1999; Evans and Heller, 2003). Moreover ARM/χ and 

especially ARM/χfd is sensitive to variations of the SD vs. SP fraction (Oldfield et al., 2009).  

The coercivity of remanence (Bcr) gives the intensity of the backfield necessary to remove an 

acquired SIRM from a sample. Magnetic phases with high coercivity such as 

antiferromagnetica are regarded as magnetic “hard” and phases with low coercivity such as 

magnetite and maghemite are regarded as magnetic “soft”. Hence Bcr is related to magnetic 

mineralogy and can be regarded as a concentration-independent proxy for the 

antiferromagnetica to ferrimagnetica ratio (Evans and Heller, 2003, Wang et al., 2006). Since 

Bcr is highest for the particles of the SD-fraction, lower for the MD-fraction and decreases 

with increasing contribution of SP-particles, also changes in grain size distribution of 

magnetic phases can be detected via Bcr, if mineralogical composition is constant (Avramov et 

al., 2006). Furthermore, high Bcr values are typical for early stages of pedogenesis due to 

internal stress in partially maghemitized MD magnetite (van Velzen and Deckers, 1999; Deng 
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et al., 2006). The Bcr was determined by increasing stepwise acquisition of IRM reversely to a 

prior acquired IRM2T. Bcr was then calculated by linear interpolation between the data points 

(acquired IRM/applied pulse field).  

2.3 Soil color proxies 

Colors were determined on soil clods in wet and dry conditions, using the Munsell color chart 

(Munsell, color company, 1975). As proxy for rubification i.e. soil reddening, indicative of 

hematite, we applied the Rubification Index (RI) proposed by Harden (1982) (see also Vidic 

et al., 2004) and the Redness Rating (RR) according to Torrent et al. (1980) and Torrent and 

Barrón (1993). The RI (Eq. 1) translates the increase in redness between a soil or paleosol and 

its parent material into a numerical value by comparing the changes in hue and chroma. For 

each increase in hue or chroma between the dry or wet colors of the soil and the parent 

material, the RI increases by ten points. Due to the uniform color of the „pure“ loess, we 

followed the approach of Marković et al (2009) and defined a common color value for the 

parent material i.e. the loess at each site. Thus, it was possible to obtain a continuous 

rubification record of each pedocomplex, even if the respective loess unit below is 

pedogenetically overprinted. In contrast to Harden (1982) we allowed also negative values of 

the RI. 

 

(1)
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The RR (Eq. 2) was calculated as average from moist and dry Munsell colors. Both, the RI 

and the RR rely on the positive relation of chroma and the chroma to lightness (i.e. “Munsell 

value”) ratio, respectively, to the total iron oxide content, as well as the power of hue to 

discriminate between hematite and goethite (Hurst, 1977).  

2.4 Diffuse reflectance spectroscopy, background, measurements and calculations 

Up to now there exist essentially two different types of transfer functions for LPSS to assess 

hematite and goethite contents and hematite/goethite ratios from diffuse reflectance spectra. 

The approach of Ji et al. (2002) relies on a multiple linear regression analysis of brightness, 

the violet, blue, green, yellow, orange and red spectra and the hematite and goethite content of 

loess material. However, it has been recently criticized that the regression functions were 

derived from loess material spiked with synthetic iron minerals, having reflectance 

characteristica different from natural hematite (Torrent et al., 2007). Torrent et al (2007) 

showed that the regression functions of Ji et al. (2002) underestimates hematite 

concentrations. Hence in the present study, we apply the approach of Torrent et al. (2007), 

who quantifies goethite and hematite via the band intensity of characteristic absorption bands 

for these minerals i.e. ~ 425 nm (I425) and ~535 nm(I535). Regression functions between 

band intensity and the Hematite/(Hematite+Goethite) ratio (Hm/(Hm+Gt)), as determined via 

differential x-ray diffraction, were derived from 22 samples of Mediterranean Alfisols and 

(2)
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Inceptisols (regression function 1, Eq. 3) and from 83 loess-paleosol samples from the 

Chinese loess plateau (regression function 2, Eq. 4). Subsequently Torrent et al. (2007) 

calculated absolute hematite and goethite contents from the Hm/(Hm+Gt) ratio assuming that 

the dithionite-soluble Fe-fraction (Fed) essentially pertains to these two minerals. Results from 

both regression functions are very similar and Torrent et al (2007) finally adopted the average 

value. Due to the mentioned drawback of Ji et al.`s (2002) regression functions, we applied 

the Torrent et al (2007) approach.  

 
 (3)

(4)

Diffuse reflectance spectra were recorded from 350 to 2500 nm using an AgriSpec 

spectrometer coupled with a Mug-Light A1221000 detector (ASDInc, Boulder, Colorado, 

USA). The sampling interval was 1.4 nm for the spectral region 350-1000 nm and 2 nm for 

the region >1000 nm. Reflectance intensity was measured relative to a white HALON 

(sintered polytetraflourethylene) standard. The spectra were taken from dried, ground sample 

material to reduce effects of grain size variations on brightness. To quantify band intensities 

of hematite and goethite from reflectance spectra we followed the procedure given in 

Scheinost et al, (1998) and Torrent et al,. (2007). First, for each sample, the reflectance 

function was transformed into a remission function applying the Kubelka-Munk theory. 

Subsequently, the second derivative of the remission function was calculated using a 

Savitzky-Golay smoothing. A moving window of 30 data points was adopted for the 

smoothing procedure, because this provided second-derivative spectra with well resolved 
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absorption bands and low background noise. As index for the band intensities we used the 

amplitude between the ~415 nm minimum and ~445 nm maximum for goethite and the ~535 

nm minimum and ~680 nm maximum for hematite (Scheinost et al., 1998). Hm/(Hm+Gt) 

ratios were calculated using regression function 1 and 2. Due to similar results, we adopted 

the average value (Torrent et al, 2007). Only hematite to goethite ratios were calculated and 

no absolute contents, because the application of Fed to estimate the sum of both minerals, 

possibly leads to erroneous results. The Fed fraction is not well defined, depending on 

mineralogy as well as grain size of iron minerals and treatment temperature and time (van 

Oorschot and Dekkers, 1999; Varadachari, et al., 2006). Furthermore, Bronger (1976) 

questions the use of Fed as proxy for pedogenic iron minerals in paleosols using examples 

from the Stari Slankamen section. As Fed values do not correspond to weathering and soil 

formation intensity at this and other sites, postpedogenic alteration affecting the dithionite-

solubility of iron oxides has been postulated (Bronger 1976).  

3 Results/Discussion 

3.1 Concentration related magnetic parameters  

All parameters related to concentration of ferrimagnetic grain size fractions (χfd, ARM, SIRM) 

show an increase from loess to soil (Fig. 5-2). Hence pedogenic enhancement of low field 

susceptibility observed in these SE-European LPSS does reflect formation of SP and SD-

ferrimagnetica. Besides that, systematic higher HIRMs in paleosols reveal pedogenic 

formation of antiferromagnetica such as hematite or goethite. The minimum susceptibility 

values of the loess units at both sites are very similar (21-28 10-8 m3/kg), not regarding the L5 

at Stari Slankamen, where the loess samples are pedogenetically overprinted from the 

overlying S4 pedocomplex (Buggle et al., 2009). Concentration of individual ferrimagnetic 

grain size fractions and of antiferromagnetic minerals, however, increases from younger to 
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older loess units. This trend is well expressed in the χfd, ARM, SIRM and HIRM record of the 

Batajnica/ Stari Slankamen section, but less clear in the Mircea Voda section. Such an 

increasing pedogenic formation of iron minerals is in line with a similar trend in intensity of 

silicate weathering and pedogenic clay formation, as given with the Chemical Proxy of 

Alteration (CPA) record and <5µm grain size fraction record by Buggle et al (submitted; see 

Fig. 5-3). Comparing the maximum values of χ, χfd, ARM, SIRM and HIRM in each 

interglacial pedocomplex of the Mircea Voda site (Fig. 5-2), the S0, S1 and S2 acquired 

similar concentration of antiferromagnetica and ferrimagnetic grain size fractions during 

pedogenesis. The values in these (fossil) steppe soils (Buggle et al. submitted) are remarkable 

lower as in the S3, S4 and S5 (fossil forest steppe soils and fossil Cambisols). This is in line 

with paleopedological and geochemical proxies recording a higher soil development and 

weathering intensity of older pedocomplexes (Buggle et al., submitted, Fig. 5-3). However, χ 

decreases from the S3 to the S6. This contrasts the gradual increase of pedogenesis intensity 

from younger to older pedocomplexes (Buggle et 2009; Buggle et submitted). Our results 

reveal that the decrease of χ is related to a decline in the content of SP- (see χfd), SD (see 

ARM) and SD-MD-ferrimagnetica (see SIRM) from S3 to S6. Ferrimagnetic concentrations 

in the S6 appear to be as low or even lower as in the (fossil) steppe soils S0-S2. Moreover, a 

decline in the content of antiferromagnetica from S3 to S6 can be detected in the HIRM 

record.  

In the Batajnica / Stari Slankamen section there is no distinct contrast between the S0, S1, S2  

and the S3, S4, S5 (Fig. 5-2). The maximum low field susceptibility, along with the content of 

the individual ferrimagnetic grain size fractions, increases more gradually from S0 

downwards to S3. A subsequent decline is less clear as in Mircea Voda due to high 

ferrimagnetica contents in S5 and remarkable low values in S4. The former can be related to 

intensified pedogenesis, since soil formation and weathering proxies also attain maximum 
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values in the S5 of the Batajnica/Stari Slankamen section (Buggle et al., 2009). The low 

ferrimagnetica contents of the S4 and also S6, however, contrast the paleopedological 

characteristics of these units.  

Hence at both sections, the records of concentration dependent rock magnetic proxies, 

including also common proxies of pedogenesis as χfd, do not always correspond to soil 

formation intensity. Understanding the reasons behind, is crucial for a meaningful 

paleoenvironmental interpretation of rock magnetic parameters. Here we introduce a set of 

mechanisms, which could explain this discrepancy, and evaluate in the following chapters 

each process by the available datasets and proxies. Generally, the enrichment of 

ferrimagnetica in (fossil) soils reflects conditions controlling formation and transformation of 

magnetite and maghemite. In detail, possible explanations of the observed trends are 1) 

reduced microbial activity and hence reduced formation of ferrimagnetica via biological 

induced mineralization (extracellular) as well as biological organized mineralization 

(intracellular) (e.g. Maher, 1998; Evans and Heller, 2001), 2) moisture levels exceeding the 

optimum conditions for the formation and stability of ferrimagnetica (Buggle et al., 2009), 3) 

a reduced thermal induced formation of ferrimagnetica due to lower frequency of wild fire 

(e.g. Thompson and Oldfield, 1986), 4) hematization of maghemite in strongly oxidizing 

environment (Torrent et al., 2006; 2007), 5) changes in the detritical concentration of 

ferrimagnetica and 6) dilution of ferrimagnetica by higher carbonate contents (Heller and Liu, 

1984). Hypothesis 6 is refused, since we could not find a significant correlation of χfd and 

carbonate content (presented in Buggle et al., 2010) for the Mircea Voda (R²= 0.20) and 

Batajnica/Stari Slankamen section (R² = 0.41).  
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Fig. 5-2,a), b). Depth profiles of χ, χfd, ARM, IRM0.35T, SIRM and HIRM for the Mircea Voda and Batajnica/ 
Stari Slankamen section. The interpretation of these parameters is indicated at the abscises with c[SP FM] 
referring to the concentration of superparamagnetic ferrimagnetica, c[SD-MD FM] to the concentration of 
ferrimagnetica in the SD-MD range, c[SD FM] to the concentration of ferrimagnetica in the SD range and 
c[AFM] to the concentration of antiferromagnetica. The stratigraphy and lithology is given according to Buggle 
et al., (2009) and Buggle et al, (submitted). Note, that the absence of Ah horizon in units S3, S4, S5 and S6 does 
not imply erosion but that they could not be identified in the paleopedological investigation of Buggle et al 
(submitted). Degradation of organic material rendered field identification of A horizons difficult and sampling 
resolution for micromorphological analysis was low (Buggle et al. submitted).  

 
Fig. 5-3. Depth profiles of the < 5 µm grain size fraction as proxy for pedogenic clay formation and of the 
chemical proxy of alteration (CPA) as proxy for silicate weathering. Data are redrawn from Buggle et al 
(submitted). 

 

In order to check for changes in the composition of the detritical ferrimagnetica (hypothesis 

4), we use a χfd – χ crossplot to determine background susceptibilities of the loess-paleosol 

units, since χfd is a measure for the pedogenetically formed SP-grain size fraction (e.g. Forster 

et al., 1994; Avramov et al., 2006). The results (Fig. 5-4) show that for both sites loess and 

paleosol samples plot on a straight line, therefore significant down-profile changes in parent  

material composition are excluded. The lower background susceptibilities of the Mircea Voda 

site (~16.9 10-8 m3 kg-1 vs. ~19.0 10-8 m3 kg-) are probably due to higher dilution by 
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diamagnetic quartz (Buggle et al., 2008). Parameters sensitive to mineralogy and grain size 

distribution of magnetic particles may shed light on the validity of the remaining hypotheses.  

Besides χ, χfd, ARM, SIRM also the HIRM, conventionally regarded as proxy for 

antiferromagnetica, does not correspond to proxies of silicate weathering in some units 

especially the S3-S6 of Mircea and the S4 and S5 in Stari Slankamen.  

 

Fig. 5-4. χfd – χ crossplot for loess and paleosol samples of the Mircea Voda and 
Batajnica/ Stari Slankamen LPSS. χfd and χ show a significant correlation with R² 
>0.99 for both sections. The regression function for the Mircea Voda site is Y = 7.3 
× X + 16.9 and for the Batajnica/Stari Slankamen site Y = 7.2 × X + 19.0. The 
intercept denotes the background susceptibility i.e. initial susceptibility of the parent 
material before pedogenesis. 

 

Decreasing goethite and hematite content in units with high silicate weathering intensity 

appears curious from a paleopedological point of view, since weathering of iron-silicates 

represent a major source for pedogenic iron oxides (Cornell and Schwertmann, 2003). The 

discrepancy between the HIRM and the CPA could then indicate that rate of iron release from 

silicates is not a limiting factor on hematite and goethite formation, possibly due to the 

presence of a direct non-silicate precursor such as detritical ferrihydrite or magnetite and 
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maghemite (Cornell and Schwertmann, 2003; Torrent et al., 2006; 2007). Alternatively the 

validity of HIRM as hematite and goethite proxy might be questioned. Indeed, the decrease in 

paleosol HIRM from S3 to S6 at Mircea Voda and S4 of Stari Slankamen closely resembles 

the changes in parameters related to the concentration of ferrimagnetica. Hence, in the Mircea 

Voda and Batajnica/Stari Slankamen LPSS interaction of the magnetite and maghemite phase 

in partially oxidized magnetite likely contributes to the HIRM (Liu et al., 2002; Maher, 2004). 

With increasing thickness of the oxidized rim, internal stresses are reduced possibly 

explaining HIRM decrease in highly weathered paleosols (Liu et al., 2005). Additionally, the 

degree of Al-substitution can influence HIRM of antiferromagnetica (Liu and Roberts, 2007), 

which, however cannot be evaluated with the present dataset.  

3.2 Magnetic grain size and mineralogy  

Comparing loess and paleosol units, the χfd%, ARM/χfd, SIRM/χfd and ARM/SIRM indicate a 

relative enrichment of SP over SD over MD particles during pedogenesis (Fig. 5-5). This 

prevalence of SP particles among the pedogenic ferrimagnetica suggests that magnetic 

enhancement in the paleosols is not primarily controlled by the abundance of magnetosome-

forming bacteria, since these produce especially SD ferrimagnetica (Oldfield 2007). A more 

likely explanation is wild fire induced and pedogenic induced magnetic enhancement or a 

combination of both. This would result in the formation of SP and also SD ferrimagnetica 

(Thompson and Oldfield, 1986; Gedye et al., 2000; Evans and Heller, 2003). Lower Bcr in 

paleosols has been commonly observed in European and Chinese loess sections and related to 

the relative increase in pedogenic formed soft ferrimagnetic phases and the presence of 

partially oxidized magnetite in loess (Evans and Heller, 2003; Gendler et al., 2006, Wang et 

al., 2006). 
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Regarding the loess units of the Mircea Voda section, the ferrimagnetic grain size distribution 

of the L1 and especially L2 is characterized by the lowest percentage of fine, 

superparamagnetic particles and highest fraction of coarse-grained MD-particles as indicated 

by minima in χfd% and ARM/SIRM (Fig. 5-5). This is also true for the Batajnica/Stari 

Slankamen section (Fig. 5-5). Additionally, high ARM/χfd values in the L2 loesses underline 

that contribution of the pedogenic derived SP-fraction is small in this unit. These findings 

suggests that climate in MIS 6 has been colder and/or dryer as during formation of the last 

glacial loess and especially the older loess units L3 to L6. At both sections, elevated χfd% 

values of the L3 to L6 points to an increase in the SP-fraction. The interpretation in terms of 

higher moisture levels in older glacial stages would be in line with observed trends in CPA 

and the <5 µm fraction (Fig. 5-3), from which Buggle et al (submitted) concluded gradual 

aridification and/or cooling of the glacial intervals over the Mid-Pleistocene. In Mircea Voda, 

corresponding changes in absolute content of the ferrimagnetic grain size fractions in loess are 

too subtle to be revealed by the depth profiles of χfd, SIRM and ARM, not so at the 

Batajnica/Stari Slankamen LPSS. 

As to the paleosols, the relative contribution of SP particles (χfd%) in pedocomplexes S3-S6 of 

Mircea Voda is elevated compared to the (fossil) steppe soil S0-S2 (Fig. 5-5). On a first 

glance, this seems to correspond to a more intense silicate weathering and pedogenic clay 

formation, characterizing pedocomplexes S3 to S6 (Buggle et al submitted, Fig. 5-3), 

However, the increase in weathering and soil formation intensity towards S5 and S6 

suggested by the χfd% is less pronounced as one would expect from the CPA and <5 µm 

record. The χfd% vs. χlf crossplot (Fig. 5-6) reveals that the relative contribution of SP particles 

approaches saturation at χfd%  values around 12. Saturation of χfd% at values between 10 and 12 

is a commonly observed phenomenon in (fossil) soils (e.g. Jordanova and Petersen, 1999b; 

Liu et al., 2004, Jordanova et al., 2007), suggesting that changes in susceptibility are related 
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to the concentration of SD and SP particles rather than their relative proportion (Liu et al., 

2007). As concentration of all magnetic grain size fractions decrease from the S3 to S6 in 

Mircea Voda (see Fig. 5-2), the slight increase in χfd% appears to be related to a preferential 

enrichment of SP particles in course of ferrimagnetica destruction. Therefore hypotheses one 

and three are less likely. Additionally the steady increase in the ARM/SIRM ratio towards the 

older paleosols suggests an increase in the SD/MD ratio, which in the context of decreasing 

ferrimagnetic concentration refers to a preferential destruction of coarse MD-particles. 

Gallagher et al (1968) and Chen et al., (2005) found that stability of ferrimagnetica against 

oxidation into hematite increases with smaller grain size. Hence, hematization of 

ferrimagnetica likely explains the discrepancy between χ, ARM and SIRM and the weathering 

intensity of the S4-S6 at Mircea Voda. The S-ratio shows a decrease possibly reflecting a 

higher fraction of hematite in S5 and S6. High S values in S4 and low in S2 do not contradict 

enhanced hematization in S4 to S6, because the S parameter is not only sensitive for hematite 

but also for goethite. Bcr is also controlled by several iron phases and its decrease from 

younger to older paleosols follows the trends in χfd%. Hence it predominantly reflects changes 

in the relative content of superparamagnetica (Jordanova et al., 2007).  

Regarding the pedocomplexes of the Batajnica/Stari Slankamen LPSS, χfd% of the S1 and S2 

is higher as in the respective units of the Mircea Voda section (Fig. 5-5). From the χfd% vs. χ 

crossplot (Fig. 5-6) it is visible that already in these fossil steppe soils χfd% is close to 

saturation, whereas at Mircea Voda only pedocomplexes S3 to S6 reach χfd% saturation. This 

suggests a considerably higher humidity at the Serbian sites favouring the pedogenic 

production of SP-ferromagnetica during MIS 7 and MIS 9. In the older units, where χfd% is 

close to saturation at both sites, the rainfall appears to be high enough in the lower Danube 

Basin so that SP formation is not moisture limited anymore. 

 



 

 

 



 

 

 

Fig. 5-5. Depth profiles of the concentration-independent magnetic proxies χfd%, ARM/χfd, SIRM/χfd, ARM/SIRM, Bcr and S-ratio for a) the Mircea Voda and b) the Batajnica/ 
Stari Slankamen section. 
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Fig. 5-6. χfd% – χ crossplot for loess and paleosol samples of the a) Mircea Voda and b) Batajnica/ Stari 
Slankamen LPSS. χfd% approaches saturation in paleosols at values around 12. 

 
Having a closer look on the χfd% depth profile of Batajnica/Stari Slankamen, a somewhat weak 

increase from the S0 to the S5, interrupted by high χfd% values in the last interglacial 

pedocomplex S1, could be detected (Fig. 5-5). This change in grain size distribution is also 

reflected in a decreasing Bcr. Furthermore, the relative increase in the superparamagnetic 

fraction is accompanied by a trend in the ratio of SD over MD ferrimagnetica (see 

ARM/SIRM). These patterns are similar as in the Mircea Voda profile, so that we infer the 

same interpretation i.e. preferential removal of MD - ferrimagnetica due to hematization. 

Correspondingly also the S-ratio tend to decrease from younger to older paleosols, although 

lower values can be caused by higher goethite contents, too. Compared to Mircea Voda, 

trends in concentration-dependent and concentration independent parameters are not as clear 

developed (Fig. 5-5). We relate this to the climatic difference between the sites. Today and 

likely in past interglacials the Serbian site is characterized by higher annual rainfall values as 

Mircea Voda (Buggle et al., 2009; submitted). Hence, pedoclimatic threshold values for the 
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formation and stability of pedogenic ferrimagnetica might have been more easily surpassed in 

periods with enhanced rainfall. An indication for this is that χ, χfd and χfd% of the strongly 

developed pedocomplexes S3 to S5 is lower in the Batajnica/Stari Slankamen LPSS as in the 

Mircea Voda LPSS (Fig. 5-2, Fig. 5-6), whereas it is the other way round in the fossil steppe 

soils S1 and S2. This does not contradict the postulated hematization of MD-ferrimagnetica. 

A pronounced seasonality of rainfall may provide both, strongly oxidizing and reducing 

conditions. The balance of both controls iron mineralogy directly as well as indirectly via 

frequency and intensity of fires. All this complicates paleoenvironmental interpretation of 

individual rock magnetic features at the Batajnica/Stari Slankamen section and additional 

(iron mineralogical) proxies are necessary to avoid speculative conclusions.  

3.3 Diffuse reflectance spectroscopy and soil color proxies for hematite and goethite 

The RI and the RR are widely applied Munsell-color based proxies for hematite content in 

soils and sediments (e.g. Vidic et al., 2004; Marković et al., 2009; Torrent and Barron, 1993). 

At the Batajnica/Stari Slankamen LPSS as well as at Mircea Voda, both indices reveal that the 

S5 and S6 offset from younger interglacial pedocomplexes by higher hematite content (Fig. 5-

7). In Mircea Voda, hematite maximum is recorded in S6 and in Batajnica/Stari Slankamen in 

S6 according to the RI and in S5 according to the RR. The RI shows absence of rubification 

only in the L1, L2, L4 of Batajnica/Stari Slankamen and L2 of Mircea Voda. While there is 

no trend for the loess units, the RI gradually increases from younger to older paleosols at both 

sites. In contrast, the RR is zero in L6 and in all units above S5, indicating the absence of 

hematite in all loess and paleosol units of Mircea Voda and Batajnica/Stari Slankamen 

younger than MIS 13. The discrepancies between both proxies are related to the different 

concepts behind. The most essential differences are 1) that the RR relies not only on chroma 

but on the chroma/lightness ratio to estimate iron oxide content and 2) it is more conservative, 
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assuming the .presence of hematite only if hue is 7.5 YR or redder. By definition hues of 10 

YR or 2.5 Y as they prevail in the loess units and the younger pedocomplexes of the studied 

sites, will result in RR-values of zero. The RI, however, is not restricted to a certain hue range 

and may therefore be sensitive for already very small amounts of hematite, not sufficient to 

produce hues of 7.5 YR. But in the 2.5 Y and 10 YR range, changes in goethite content may 

strongly interfere (Schwertmann, 1993). Nevertheless, the RI appears to be sensitive to 

changes in lithology and soil development intensity (Fig. 5-7, and Marković et al., 2009).  

As a sensitive and more accurate way to determine the presence of hematite we focus on the 

diffuse reflectance spectroscopy (drs). Accordingly, hematite can be identified in all 

interglacial paleosols, except in the Batajnica S0 (Fig. 5-7). This underlines that RR is a too 

conservative estimate of the hematite content. The drs-derived hematite / (hematite + 

goethite) ratio (Hm/(Hm+Gt)) furthermore points to the absence of hematite in most loess 

layers at both sections, revealing that RI values of 10 in the loess units of Mircea Voda are 

likely due to goethite and not due to hematite. As loess layers appear to be free of hematite, 

hematite in paleosols can be regarded to be of pedogenic origin. Therefore, the increase in 

Hm/(Hm+Gt) from the S0 to the S6 in Mircea Voda and from the S0 to S5 at Batajnica/Stari 

Slankamen (Fig. 5-7) express a shift to hematite promoting soil forming conditions. Also a 

significant correlation between the Hm/(Hm+Gt) ratio and ARM/SIRM, SIRM/χfd% and χfd% 

is obtained (Fig. 5-8) , showing a relative decrease of MD-ferrimagnetica and in turn a 

relative enrichment of fine grained SP-ferrimagnetica with increasing hematite to goethite 

proportion. These findings give further support for increasing hematization of ferrimagnetica 

in older paleosols. The absence of a relationship between ARM/χfd% and Hm/(Hm+Gt) (Fig. 

5-8) indicates that the proportion of SP vs. SD ferrimagnetica is not influenced by 

hematization, which is in line with the preferential oxidation of the MD-fraction to hematite.  
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Fig. 5-7, a), b). Depth profiles of the RI (Rubification Index according to Harden 1982) and RR (Redness Rating 
according to Torrent et al 1980 and Torrent and Barron 1993) and the Hematite/(Hematite + Goethite) ratio 
(Hm/(Hm+Gt) for the profiles a) Mircea Voda and b) Batajnica/Stari Slankamen. RR and RI are proxies of 
rubification and soil reddening due to hematite, respectively, and calculated from Munsell colors. Note, negative 
RI values of the modern soil in Mircea Voda reflect soil darkening due to organic matter. The Hm/(Hm+Gt) was 
determined via diffuse reflectance spectroscopy following the Torrent et al (2007) approach. The grey dashed 
lines represent the results using calibration curves derived from Mediterranean soils and a loess-paleosol 
sequence (Torrent et al., 2007). Hm/(Hm+Gt) depth profiles obtained from both calibration curves are similar, 
underlining the robustness of the applied transfer functions. Following Torrent et al (2007), we focused on the 
mean values of both (solid black line) for further interpretation.      

 

 
Fig. 5-8. Crossplot of the Hm/(Hm+Gt) ratio vs. rock magnetic proxies of the ferrimagnetic grain size 
distribution. Only samples with peak Hm/(Hm+Gt) values in interglacial pedocomplexes are shown i.e. peak 
value of S0, S1, S2 and so on. Significant correlation (p < 0.05) were obtained for a) the Hm/(Hm+Gt) vs. 
ARM/SIRM crossplot (R² = 0.94 and 0.86, for Mircea Voda and Batajnica/Stari Slankamen), b) the 
Hm/(Hm+Gt) vs. SIRM/χfd

 crossplot (R² = 0.99 and 0.61), d) the Hm/(Hm+Gt) vs. χfd% crossplot (R² = 0.67 and 
0.90, for Mircea Voda and Batajnica/Stari Slankamen). No, significant relation was found between Hm/(Hm+Gt) 
and ARM/χfd at both sections. 
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Exceptions to the gradual increase in Hm/(Hm+Gt) ratios within the paleosols are the S1, 

showing relatively high hematite proportions at both sections, and the S6 of Stari Slankamen, 

showing relatively high proportions of goethite. These features are also consistent to changes 

in the ferrimagnetic grain size distribution, suggesting a more oxidative soil environment in 

the last interglacial at both sites and less oxidative conditions during MIS 17 at the Serbian 

site.  

Finally it is to note that, from the identified correlations of ferrimagnetic grain size fractions 

to Hm/(Hm+Gt) (Fig. 5-8) we do not preclude hematite formation directly from ferrihydrite, 

in contrast to Torrent et al., (2006) and Hao et al., (2009). As ferrihydrite is a common 

precursor for hematite and goethite, the efficiency of this pathway essentially influences 

hematite – goethite proportions. Due to the relative low content of magnetite and maghemite 

in soils compared to hematite and goethite (Torrent et al., 2007), we conclude that 

hematization of ferrimagnetica should affect Hm/(Hm+Gt) ratios only to a minor degree. 

Hence, the good correlation of Hm/(Hm+Gt) to rock magnetic grain size proxies suggests that 

soil environments suitable for hematite production directly from ferrihydrite provide also 

conditions oxidizing enough to transform ferrimagnetica, especially of the MD-fraction, into 

hematite.  

3.4 Proxies of iron mineralogy vs. silicate weathering – an integrative perspective on 

Quaternary climate change 

The concentration and composition of iron minerals as revealed by various methods such as 

rock magnetism, soil color or spectroscopy have been established as valuable paleoclimate 

proxies in loess research (see Section 1). A different approach to assess paleoclimatic 

information from loess mineralogy or elemental composition is the use of proxies for silicate 

weathering or pedogenic neoformation of silicates. A review on silicate weathering proxies in 
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loess research is given in Buggle et al (2010). As iron mineralogy and silicate weathering 

react in a different way to climate change, it is promising to integrate both approaches to 

achieve a more comprehensive paleoclimatic interpretation.  

The essential fundamentals for this integrated view are the following. Regarding the intensity 

of silicate weathering, in a seasonally dry climate regime as the steppe or the Mediterranean 

and subtropical type, especially intensity and duration of moisture supply over the year 

control weathering intensity. During dry periods the wet reactive surface of the minerals is 

restricted to hydrological inactive soil compartments and mineral weathering is reduced 

(White and Blum, 1995). Besides that weathering intensity depends also from temperature 

during hydrolytic active periods (i.e. seasonality of rainfall) (Brady and Carroll, 1994; White 

and Blum, 1995). While warm and wet conditions provide the best environment for intense 

silicate weathering, the formation of hematite is related to warm, but alternating wet 

(formation of ferrihydrite) and dry (transformation of ferrihydrite to hematite) 

pedoenvironment (Cornell and Schwertmann, 2003). Furthermore, low winter temperatures in 

addition to the estival dry period lead to the accumulation of organic material, high contents 

of which hamper hematite crystallization and favor goethite formation (Cornell and 

Schwertmann, 2003). Therefore, increasing hematite/goethite ratios can not only be indicative 

of higher summer temperatures and dryness but also of higher winter temperatures. As shown 

in the previous Sections rock magnetic parameters do not only allow tracing hematization and 

pedogenesis intensity, but also periods with excess moisture. Under these aspects, we, in the 

following, apply the rock magnetic and drs-data of Batajnica/Stari Slankamen and Mircea 

Voda as well as the silicate weathering records given in Buggle et al (submitted) to infer 

paleoclimatic changes between individual interglacials and also glacials in the lower and 

middle Danube Basin over the last 17 MIS. In detail, the paleoclimatic discussion focus on 

the <5 µm grain size fraction record as proxy of pedogenic clay formation (Buggle et al., 
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submitted), the CPA record as proxy for silicate weathering intensity (Buggle et al., 2010, 

submitted), the Hm/(Hm+Gt) ratio as proxy for hematite vs. goethite promoting conditions, 

and rock magnetic parameters for the concentration and grain size distribution of 

ferrimagnetica (χfd, χfd%, ARM, ARM/χfd, SIRM, SIRM/χfd, ARM/SIRM), allowing to assess 

hematization and excess soil moisture. The following discussion is based on comparing the 

peak values of the individual proxies in each interglacial pedocomplex and glacial loess layer 

respectively (see Fig. 5-9).  

3.4.1 Interglacial climate change  

The modern soil S0 has been described as steppe soil at Mircea Voda as well as Batajnica. 

The CPA and <5 µm fraction are slightly higher at the Serbian site, reflecting the more humid 

conditions, especially the higher amounts of rainfall in early summer (May to July, see Fig. 5-

1). In turn, the differences in Hm/(Hm+Gt) ratio between the sites reflect the more 

pronounced dryness of the Mircea Voda site, promoting hematite formation. In line with more 

intense summer dryness ARM/SIRM and χfd% are higher and SIRM/χfd slightly lower at 

Batajnica indicating more oxidizing conditions resulting in hematization of especially MD-

ferrimagnetica. Though today’s precipitation is lower at the Romanian site, the modern soil of 

Mircea Voda shows higher concentration of ferrimagnetica (χfd, SIRM and ARM) as its 

Serbian counterpart. This peculiarity can be best explained by more frequent grassland fires in 

the relative dry Romanian feather-grass steppe environment promoting formation of SP and 

possibly also SD ferrimagnetica (Gedye et al., 2000). Hence, the set of proxy data is 

consistent with the modern climatic trends in the study area highlighting the potential of the 

approach to reveal past climate change.  
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Fig. 5-9. Peak values for selected rock magnetic parameters (this study), the drs-derived Hm/(Hm+Gt) ratio 
(this study), the CPA (Buggle et al., submitted) and <5 µm fraction (Buggle et al., submitted). For interglacial 
pedocomplexes the maximum value of each parameter is given and for glacial loess layers the minimum values. 
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From S0 to S1, increasing hematite to goethite ratios at both sites could indicate more 

pronounced summer dryness due to higher summer temperature, prolongation of the dry 

period and/or a decrease of summer precipitation. Also, the proxies of the ferrimagnetic grain 

size distribution support increasingly oxidizing conditions and hematization. As silicate 

weathering yields highest rates with rainfall in a warm pedoclimate, enhanced silicate 

weathering intensity do not support a decline of the early summer precipitation maxima. Also 

a warmer winter season, favourable for biological activity and decrease of organic matter 

content, unlikely triggered higher hematite to goethite ratios. The modern soils as well as the 

S1 and S2 have been identified as (fossil) steppe soils (Buggle et al., submitted), so that a 

significant change in the presence of organic ligands disturbing hematite crystallization 

appears not plausible. Moreover, due to mean temperatures of winter months around or 

slightly above zero, increasing cold season precipitation would not explain enhanced 

hydrolytic activity i.e. weathering. Concluding, higher summer temperatures eventually 

accompanied by more pronounced rainfall in spring-to early summer and/or autumn during 

the last interglacial gives the most reasonable explanation for observed changes in silicate 

weathering intensity and hematite –goethite proportion. Summer temperatures higher than 

during the Holocene and stronger seasonality of precipitation are consistent to higher summer 

sea surface temperature records of the North Atlantic and Mediterranean and climate 

modelling results for the Northern Hemisphere and have been related to the orbital 

configuration (Ruddiman et al., 1989; Harrison et al., 1995; Kandiano and Bauch, 2003; 

Matrat et al., 2007; Leduc et al., 2010). Compared to the Holocene, the Eemian climate 

optimum is characterized by large values of eccentricity. Furthermore, perihelion occurred 

during northern summer and tilt of the earth axis was high, resulting in large mid-June 

insolation values, especially in the Northern Hemisphere (Harrison et al., 1995, Berger et al., 

2007, Yin and Berger, 2010). However, environmental implications are not uniform at both 
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sites, as indicated by the presented proxy data. The shift in CPA, <5 µm fraction and 

concentration dependent rock magnetic parameters is more pronounced at the Serbian site, 

suggesting a more intense increase in rainfall in this region. From the Hm/(Hm+Gt) ratio and 

hematization sensitive rock magnetic parameters (ARM/SIRM and χfd%) it appears that not 

only hydrolytic conditions but also oxidative conditions were more enhanced in the middle 

Danube Basin. This is tentatively interpreted in terms of more pronounced seasonality in the 

middle Danube Basin during S1 formation. 

From S1 to S2, CPA, <5 µm fraction, χfd and ARM decrease again at the Batajnica site so 

that rainfall values during MIS 7 optimum probably have been intermediate between those of 

the Eemian and the Holocene optimum. In contrast at the Mircea Voda site, weathering and 

clay formation proxies points to higher non-cold season precipitation as during MIS 5e. 

Hm/(Hm+Gt), ARM/SIRM and χfd%  decrease at both sites, reflecting that summer 

temperatures or duration of summerly dry period is intermediate between the Holocene 

conditions and the Eemian. This is consistent to isotope data from the Spannagel Cave in the 

European Alps revealing cooler conditions and lower equilibrium line altitude of the Alpine 

glaciation as during the MIS 5e (Spötl et al., 2007). Furthermore, in the long Pollen records 

from the Massif Central, France, none of the three MIS 7 warm phases show vegetation 

succession comparable to full interglacial conditions (Reille et al., 2000). Additionally, pollen 

records from Ioannina, Greece, give evidence of relative cool conditions, which however have 

been mainly related to the winter season (Roucoux et al., 2008). Also summer sea surface 

temperatures in the North Atlantic (Ruddiman, 1989; Kandiano, 2003; Matrat et al., 2007), 

atmospheric CO2 concentratio (Lüthi et al. 2008) and global sea level stands (Antonioli et al., 

2004) are lower than during the Holocene, showing that cooler conditions during MIS 7 are 

not only a regional phenomenon. This contrasts a direct forcing by Northern Hemispheric 

(NH) mid-June insolation. The insolation peak during MIS 7 was higher as during MIS 5 and 
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even the highest of the last 500 ka. (Berger et al., 2007). This implies that there is no simple 

relation between NH-summer insolation and summer temperatures and/or duration of summer 

dryness in SE-Europe. Finally, it also argues against the “insolation-driven” hypothesis, we 

presented for the MIS 5. Likely, there are feedback mechanisms, nonlinearities in the 

coupling of ice sheets – ocean - atmosphere and insolation or other types of forcing that 

strongly modulate the direct influence of summer insolation on summer temperature (Paillard, 

2001). It is intriguing that the insolation maxima in MIS 7 is preceded by the lowest 

insolation minimum of the last 900 ka caused by low obliquity. Hence, due to a shift from one 

extreme insolation mode to the other, oceanic heat balance and ice sheet extension possibly 

did not reach steady state equilibrium to peak insolation before the onset of the next low 

insolation mode (Dutton et al., 2009). Notwithstanding the reasons for suppressed sea surface 

temperatures, the good correspondence of the SE-European hematization record to pattern in 

the North Atlantic sea surface temperature regarding the MIS 1, MIS 5 and MIS 7 peak values 

suggest a strong North Atlantic influence on SE-European summer temperatures.  

From S2 to S3, the Hm/(Hm+Gt) ratio increase to values higher as in younger 

pedocomplexes. Also values of ARM/SIRM and χfd% are consistent with more intense 

hematization as during MIS 7. This indicates relative warm summers and/or prolonged 

summer dryness during MIS 9. The paleopedologic characteristics of the S3 at Mircea Voda 

(Buggle et al., submitted) and Batajnica/Stari Slankamen (Bronger, 1976; Marković et al., 

2009) still indicate steppe or forest-steppe environment and hence high organic matter 

contents during time of paleosol formation. Therefore, relieve of the organic matter 

constraints on hematite formation due to higher winter temperatures is less likely. In addition, 

CPA, <5 µm and all concentration related ferrimagnetic grain size parameters show higher 

values as in S0, S1 and S2. Regarding increasingly oxidizing summer conditions favouring 

hematite formation, the strong increase in hydrolytic activity and magnetic enhancement 
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likely reflects more pronounced rainfall in spring to early summer and/or autumn but not 

during the high and late summer dry period. In contrast to the CPA and <5 µm record, the 

enhancement of ARM and especially χfd from S2 to S3 is less pronounced in Batajnica 

compared to Mircea Voda. With respect to lower χfd% and higher SIRM/χfd and ARM/χfd, this 

apparently results from high seasonal moisture exceeding optimum conditions for the 

pedogenic formation and stability of fine magnetic particles. Hence, in line with the silicate 

weathering intensity, this indicates that that similar as today in MIS 9 the Serbian site 

experienced more rainfall as the Romanian one. Also in MIS 9, climatic characteristics in the 

middle and lower Danube Basin, as deduced from the presented rock magnetic, grain size and 

geochemical records, seem not to be directly related to summer insolation intensity. Peak 

insolation during MIS 9 was lower as in MIS 7 and MIS 5 (Berger et al., 2007). Also summer 

sea surface temperatures of the North Atlantic were not higher as during younger interglacials 

(Ruddiman et al., 1989; Kandiano and Bauch, 2003), suggesting that not only insolation but 

also sea surface hydrography fails to explain interglacial climate characteristics of the SE-

European lowlands. Based on modelling results, Yin and Berger (2010) related higher 

Northern Hemispheric summer temperatures to the atmospheric CO2 concentration. However, 

it is questionable if the relatively high CO2 partial pressure in the atmosphere is a forcing for 

or rather a consequence of warmer interglacial conditions. Greenhouse gases presumably 

amplify astronomically induced climate change (Claussen, 2007; Sirocko, 2007). 

Nonetheless, this unlikely explains higher temperatures in MIS 9, because initial forcings 

such as summer insolation as well as duration of the interglacial are not outstanding compared 

to younger interglacials (Sirocko, 2007). Another potential trigger, the global ice volume, 

reflected in benthic δ-18O records, attains a minimum for the last 700 ka (Shackleton et al. 

1990). Although we cannot exclude atmospheric teleconnections, we doubt whether this 

signal is translated to mid-latitude Eurasia, if sea surface temperatures do not react. Hence, we 



Study 5: Iron Mineralogical Proxies and Quaternary Climate Change                                                        
 

 

228

follow the interpretation of Buggle et al. (submitted). They reviewed a trend preserved in a 

variety of climate proxy records from mid-latitudinal Eurasia showing higher summer 

temperatures and more rainfall in MIS 9 and older interglacials compared to the Holocene and 

MIS 7. Buggle et al. (submitted) proposed that this trend is related to Quaternary uplift of 

Eurasian mountains. Specifically for the middle and lower Danube Basin, the relevance of 

Alpine and Carpathian mountain uplift has been highlighted by these authors.  

From the S3 to S4, summer temperature and/or duration of the dry period stays essentially 

unchanged or slightly decreases, as inferred from only subtle decrease in hematite to goethite 

ratio and rock magnetic proxies sensitive for hematization. The silicate weathering and clay 

formation record suggests a further increase in rainfall in MIS 11. In contrast, concentration 

of ferrimagnetica decreases at both sites. The decrease of χfd, ARM and SIRM is pronounced 

at Batajnica/Stari Slankamen, but only slightly at Mircea Voda. Due to a slight shift in the 

relative contribution of SP-particles as indicated by χfd%, we relate this to excess moisture. 

Respective threshold values apparently have been more strongly surpassed in the more humid 

middle Danube Basin as in the lower Danube Basin. Excess moisture is most easily produced 

by intensification of rainfall under low temperature conditions i.e. implying low evaporation. 

This is consistent with only a slight increase of clay formation intensity. Concluding, while 

summer temperature appears to be on a similar niveau in MIS 9 and MIS 11, precipitation 

during the winter half year is higher in MIS 11. In a global context, MIS 11 is the interglacial 

with the lowest peak summer insolation intensity on the northern hemisphere during the last 

700 ka (Berger and Loutre, 1991). However, it is the longest interglacial of this time period. 

This is also reflected in North Atlantic summer sea surface temperatures attaining maximum 

values for the Late and Mid-Pleistocene (Kandiano and Bauch, 2003; Matrat et al., 2007, 

Völker et al., 2010). Apparently summer temperatures in the lower and middle Danube Basin 

do not respond to high sea surface temperatures of the Nordic Seas, respectively. This is in 
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line with long-term European pollen records from Greece and the Portuguese margin, which 

also suggest that the higher summer temperature signal from the North Atlantic does not 

translate into higher continental summer temperatures during MIS 11. No increase in 

abundance of Mediterranean taxa and thermophilous tree pollen taxa compared to younger 

interglacials is recorded in these pollen sequences (Müller and Pross, 2007; Tzedakis et al., 

2009). The increase in precipitation reconstructed for the middle and lower Danube Basin 

loess sections is, however, in line with the tectonic uplift of Eurasian mountain ranges forcing 

dryness and precipitation in this region as postulated by Buggle et al. (submitted). 

From S4 to S5 the Hm/(Hm+Gt) ratio and the ARM/SIRM ratio increase at Mircea and 

Batajnica/Stari Slankamen. This could indicate a further increase in sommer temperature 

and/or duration of summer dryness in MIS 13 and MIS 15. At both sites, no fossil horizon 

giving evidence of strong humus accumulation could be identified in the S5 and the 

paleopedological record as well as magnetic susceptibility pattern do not suggest erosional 

capping of the A horizon (Buggle et al., 2009; submitted). Furthermore, due to intensity of 

weathering, clay formation and clay translocation the S5 has been classified as fossil 

(chromic) Cambisol and Luvisol, respectively (Bronger, 1976; Buggle et al., submitted). In 

contrast to the fossil steppe soils, factors limiting decomposition of organic material must 

have been ineffective during MIS 13 and MIS 15. As our results showed that estival dry 

period became increasingly intense (i.e warmer and or longer) in older interglacials, it is only 

a rise of winter temperatures to values significantly above zero, which can explain changes in 

soil typology i.e. enhanced degradation of organic matter during mild winters. Higher winter 

temperatures could be also a reason for enhanced hematite production in S4 as organic matter 

hampers hematite formation. The CPA, the <5 µm fraction as well as the micromophological 

investigations suggest seasonal increase of rainfall causing stronger weathering and onset of 

lessivation at the Serbian site. (Buggle et al., submitted). Furthermore, an increase in 
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pedogenic magnetic particles in S5 compared to the S4 is indicated by the χfd and ARM and 

especially pronounced in Serbia. Together with higher values of χfd% and at Stari Slankamen 

also lower ARM/ χfd, this suggests a decrease of excess moisture. This is in line with higher 

temperatures inferred for the “rainy” winter half-year, resulting in seasonally reduced 

precipitation – evaporation difference (P-E). Concluding, our findings indicate Mediterranean 

like climate conditions in the lower and middle Danube Basin during MIS 13 and MIS 15. 

This agrees with soil genetic and rock magnetic studies of loess-paleosol sequences further 

east on the northern Black Sea Coast (S-Ukraine and Moldova), which proposed that the 

corresponding pedocomplex Pk4 as well as older paleosols developed under a Mediterranean 

type of climate (Tsatskin et al., 1998, 2001). As reviewed in Yin and Guo (2008) higher 

temperatures and more rainfall in MIS 13-15 compared to younger interglacials is a more 

general phenomenon in terrestrial records from mid-latitudinal Eurasia. The driving 

mechanism is still unclear. Insolation maxima are lower as during the last interglacial and the 

residual ice volume as indicated by benthic δ18O records (e.g. Shackleton et al., 1990) is 

rather high for interglacial conditions. Commonly the outstanding climatic conditions during 

MIS 13 and MIS 15 are related to a strengthened northern hemispheric summer monsoon (see 

Guo et al., 1998; Yin and Guo, 2008). However, low atmospheric methane contents have been 

inferred against stronger monsoonal activity. Instead milder winter conditions caused by 

intensified Atlantic meridional overturning have been recently proposed (Ziegler et al., 2010). 

This theory is questioned by comparably low sea surface temperatures recorded in the North 

Atlantic (Ruddiman et al., 1989). Lower height of Eurasian mountain ranges, might be an 

alternative explanation for milder winter conditions and higher rainfall amounts in mid-

latitudinal Eurasia (Buggle et al., submitted).  

The S6 pedocomplex corresponds to MIS 17 and MIS 19 (Buggle et al., 2009). From the S5 

to S6 the Hm/(Hm+Gt) and ARM/SIRM ratio show a pronounced decrease at the 
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Batajnica/Stari Slankamen site. As this indicates less suitable conditions for hematite 

formation and hematization of ferrimagnetica, respectively, it might point to lower 

temperatures and or more summer precipitation i.e. a less pronounced dry period in the 

middle Danube Basin. As at the same time weathering and clay formation proxies (CPA and 

<5 µm fraction) decrease, higher amounts of summer rainfall can be excluded. A decrease of 

temperature, especially in the winter half year would additionally explain the more extensive 

destruction of pedogenic ferrimagnetica due to excess moisture (higher P-E), which is 

indicated by lower values of concentration dependent rock magnetic parameters and lower 

χfd% and slightly higher ARM/χfd and SIRM/χfd.  Also at the Romanian site the dataset 

indicates higher values of excess moisture. However, in contrast to the Serbian site 

weathering, clay formation and hematite formation in the S6 of Mircea Voda is more intense 

as in the S5. Hence, there are no evidences for substantially lower temperatures during S6 

formation in Romania. Instead during MIS 17, soil environmental conditions at Mircea Voda 

appear to be influenced by a more intense summer dry period promoting hematite formation 

but also more rainfall in the period autumn till early summer promoting weathering intensity. 

Hence, climate during formation of S6 was of more Mediterranean character in the lower 

Danube Basin, while in the middle Danube basin lower temperatures likely reduce intensity of 

weathering and hematite formation. In the pollen record of Thenagi Phillipon (Tzedakis et al., 

2009) the abundance of temperate tree pollen is lower as during younger interglacials. This 

might indicate that relatively cool conditions, probably during the winter season, prevailed 

also in the Philippi Basin and sourrounding mountains during MIS 17. Whether this is a 

overregional signal being related to the relative low peak in northern hemispheric winter 

insolation (Berger and Loutre, 1991) remains speculative, as continental records sensitive for 

the winter temperature in Eurasia are lacking for this marine isotope stage. Notwithstanding 

the trigger for cooler winter conditions in SE-Europe during MIS 17 an eventual winter 
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cooling in the lower Danube Basin was not strong enough to be recorded in the mineralogical, 

geochemical and paleopedologic characteristics of the corresponding pedocomplex at Mircea 

Voda. At the present state, however, factors and mechanisms responsible for these regional 

differences remain unclear.  

3.4.2 Glacial climate change 

As focus of the present study is the reconstruction of interglacial climate conditions and loess 

layers have been sampled only in lower resolution, we discuss in the following only generall 

trends in the depth profiles and not individual loess layers. At both sites, concentration 

dependent rock magnetic parameters show a gradual increase towards older loess units. This 

trend is more pronounced at the Serbian site and likely indicates higher precipitation 

especially during summer time and or higher temperature. Buggle et al., (submitted) came to a 

similar conclusion based on corresponding trends in the weathering intensity. Whether the 

increase of χfd(%) and ARM/SIRM is related to enhanced formation of SP and SD sized 

pedogenic ferrimagnetica or to a relative enrichment of these fractions due to preferential 

hematization of MD-ferrimagnetica cannot be decided from the available data. Though it was 

not possible to identify hematite in loess via diffuse reflectance spectroscopy, this may not 

necessarily preclude the surficial hematization of ferrimagnetica. We are not aware of any 

study evaluating the sensitivity of diffuse reflectance spectroscopy to detect hematite rims on 

maghemite. Nevertheless, accepting the hematization hypothesis, ARM/SIRM and χfd(%) 

would suggest higher summer temperatures during the older interglacials. Concluding, 

stronger magnetic and weathering enhancement possibly refer to an increase in moisture 

eventually preceding a summer dry period i.e. indicating more rainfall in the early summer 

months. Also malacological investigations from the Late and Mid-Pleistocene loess layers at 

the Ruma section (Serbia) revealed more humid environmental conditions in the younger 
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glacials (Marković et al., 2006). Loess formation is essentially controlled by dryness (Pye, 

1995). Pleistocene dust sedimentation rates from the lower Danube Basin give evidence of 

less intensive dust accumulation during older cold stages (Jordanova and Petersen, 1999a, 

Buggle et al., 2009). A cold stage climate characterized by cold and possibly dry winter 

conditions and a summerly dry period, which tends to be shorter but also warmer in the 

middle and early Mid-Pleistocene, would be in line with observed regional trends in loess 

sedimentation.  

4 Conclusion 

1. The combination of rock magnetism, hematite proxies and proxies of silicate weathering 

and pedogenic clay formation is a promising multi-proxy approach in loess-paleosol studies 

allowing to assess paleoclimatic conditions during periods of soil formation, even with 

respect to changes in seasonal patterns. 

2. Munsell color based proxies for hematite such as the Rubification Index or the Redness 

Rating might lead to erroneous conclusions as to the presence of hematite in a loess matrix. 

Diffuse reflectance spectroscopy provides a valuable alternative. 

3. The bulk magnetic susceptibility record of SE-European loess-paleosol profiles reflects a 

complex interplay of several processes and triggers such as pedogenic magnetic enhancement, 

fire-induced magnetic enhancement, preferential dissolution of fine-grained ferrimagnetic 

fractions during periods of excess moisture and preferential hematization of coarse grained 

ferrimagnetic fractions. With the intensity of the individual processes changing with 

paleoenvironmental conditions, a straight-forward interpretation of the magnetic susceptibility 

record in terms of pedogenesis intensity or rainfall seems not appropriate. Also the 

discrepancy between pedogenesis intensity and magnetic susceptibility values characterizing 
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pedocomplexes S4 and older appears to be related to both, a seasonal moisture excess and 

hematization during estival dry periods.  

4. The good correlation of the diffuse reflectance spectroscopy derived Hm/(Hm+Gt) ratios 

and the ARM/SIRM in our data set confirms ARM/SIRM to reflect sensitively hematization 

of ferrimagnetica.  

5. Based on the presented multi-proxy data set, we conclude that interglacial climate in the 

lower and middle Danube Basin considerably changed over the Pleistocene. A Mediterranean 

type climate with high summer temperatures and a pronounced estival dry period and mild 

and wet winters prevailed in interglacials of the early and middle Mid-Pleistocene. decreased 

In subsequent warm periods (winter-) temperatures as well as precipitation decreased 

resulting in higher continentality and a steppe type climate. Also regarding the cold stages our 

results suggest a progressive cooling and aridification trend over the Mid- and Late 

Pleistocene 

6. For most interglacials the reconstructed climate in the lower and middle Danube Basin can 

not be explained by direct insolation forcing. Also when regarding hydrographic conditions of 

the North Atlantic and global ice volume it is not possible to entirely resolve the set of 

triggers forcing Quaternary climate trends in this region. Yet, Pleistocene cooling and 

aridification is not only found in the SE-European loess belt, but also in other climate archives 

of mid-latitudinal Eurasia. These climatic trends would be in line with the implications of 

progressive Eurasian mountain uplift, as proposed by Buggle et al (submitted). Especially 

Quaternary uplift of the Alps and Carpathians could be of relevance for the aridification trend 

in the middle and lower Danube Basin due to regional changes in atmospheric circulation and 

rain shadow effects (see Buggle et al., submitted). Hence, uplift of these mountain ranges 

appears to be a likely driving mechanism for the westward extension of the Eurasian steppe 

belt into Central and SE-Europe.   
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We have clearly to emphasize that this is a tentative explanation as the extend of Quaternary 

mountain rise is still under discussion. However, it appears warrantable to be addressed as at 

the present state no other triggers are evident, which could force such a gradual climatic trend 

over the Pleistocene. Following this idea, the climatic response to insolation forcing, oceanic 

circulation, atmospheric greenhouse gas concentration and (residual) ice volume appears to be 

superimposed on this long term trend of cooling, aridification and increasing continentality in 

the lower and middle Danube Basin. Hence, deviations such as the increase of precipitation 

and summer temperature from MIS 7 to MIS 5 can be explained.  

7. Mineral weathering, transformation and neoformation may not only be controlled by 

climatic conditions, but also by the time available for soil forming processes (i.e. the duration 

of an interglacial period). Hence, further studies employing paleovegetation proxies such as 

pollen, phytoliths, biomarkers and carbon isotopes should be desired to validate and 

complement the paleoeonvironmental picture of Quaternary climate evolution in the lower 

and middle Danube Basin drawn from paleopedology, element composition (weathering 

indices) and (iron) mineralogy.  
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Abstract 

The long-chain n-alkane composition of plant material can significantly differ between plant 

groups e.g. trees and grasses. Due to their relative recalcitrance, they have been employed in 

paleoecological research as molecular proxies for different types of vegetation. Most of those 

paleoenvironmental studies rely on the assumption that characteristic molecular fingerprints 

of plant material are preserved in the fossil organic material without significant alteration. 

However, there exists evidence that n-alkane distributions may change in course of plant litter 

degradation. Here, the authors propose and discuss a conceptual approach to the correction of 

n-alkane patterns in paleosols and terrestrial sediments for postsedimentary alteration effects. 

This might have potential to improve paleoenvironmental reconstructions derived from these 

molecular fossils. In soil depth profiles typically a correlation between the OEP (odd over 

even predominance) and paleoecological valuable long-chain n-alkane ratios (LARs) can be 

found. Similar relationships have been also obtained from n-alkane records in paleosols. With 

the OEP serving as proxy of microbial reworking, the correction procedure applies OEP vs. 

LAR regression functions to correct fossil LARs for degradation effects. The regression 

functions have been derived from modern soils. The application of the procedure and its 

significance for paleoecological interpretations is demonstrated on a case study of a loess-

paleosol sequence (~ 400 - 700 ka) in Romania. It is shown that changes in the C27/C31 n-

alkane ratio at this site are closely related to degradation effects rather than to changes in the 

paleovegetation (e.g. tree vs. grass abundance). However, it was found that the C29/C31 ratio 

is a more suitable paleoenvironmental proxy at the Mircea Voda site. The results indicate that 

there is a future potential to correct fossil n-alkane ratios via the OEP/LAR relationship, 

however at the moment a general straight forward application of this approach might be 

critical due to lack of extended and diverse n-alkane records from modern soils. The need of 
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more systematic n-alkane studies on soil profiles is highlighted to improve knowledge 

concerning dynamics and actual mechanisms of postsedimentary LAR and OEP changes.  

 

Keywords: biomarker, n-alkanes, lipids, CPI, odd over even predominance, degradation, 

loess, paleosol 
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1 Introduction 

Long-chain n-alkanes (>C25) with a pronounced dominance of odd over even homologues are 

essential components of plant cuticular lipids (e.g. Eglinton and Hamilton, 1967). As such 

they are transferred to the soil surface in course of litterfall, eventually blown or washed into 

rivers and finally buried in lacustrine or marine sediments. A significant part of leaf-derived 

lipids will enter the soil organic matter (SOM), which is subsequently either eroded, degraded 

or buried in situ. If preserved in sedimentary archives, these compounds represent valuable 

molecular fossils (e.g. Eglinton and Eglinton, 2008). It has been shown that cuticular lipids 

have a potential for the chemotaxonomical differentiation of plants (e.g. Eglinton et al., 1962; 

Stevens et al., 1994; Maffei 1996a). However due to inter- and intraspecies variability, their 

chemotaxonomical value is restricted and mostly allows only a rough differentiation of 

different plant groups (Borges del Castillo et al., 1967, Schwark et al., 2002). Nevertheless, 

their relative recalcitrance makes long-chain n-alkanes an especially attractive tool in 

paleoenvironmental studies. Thus, they are used e.g. to distinguish between tree- or shrub-

derived plant material with a predominance of mostly n-C27 or n-C29 and grasses with 

mostly n-C31 or n-C33 dominance (Cranwell, 1973; Meyers and Ishiwatari, 1993; Maffei et 

al., 1996a, b; Zhang et al., 2008; Zech et al., 2009b). Hence these compounds are regarded as 

biomarkers and their ratios (e.g. C27/C31, C29/C31, (C27 + C29)/(C31 + C33)) are applied as 

proxies for the source determination of fossil organic material e.g. trees (shrubs) vs. grasses 

(e.g. Schwark et al., 2002; Zhang et al., 2006; Bai et al., 2009; Zech et al., 2009). The 

motivation of using n-alkanes in studies of fossil soils is – beside their relative recalcitrance – 

their complementarity to other methods such as pollen studies (Schwark et al., 2002; Zhang et 

al., 2006). The former should mainly reflect signals of the local, in situ vegetation, whereas 

the latter can be significantly influenced by long distance transport and tend to give a more 
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regional signal of paleovegetation (Farrimond and Flanagan, 1996). Furthermore lipid 

analysis is less time consuming, so that high resolution records can be easily obtained. 

However, up to now most studies applying the n-alkane biomarker approach rely on the 

assumption that pattern of long-chain plant derived n-alkanes (pd-n-alkanes) do not change 

significantly after being incorporated into the sediment or soil organic matter. For a certain 

time interval, this assumption might be valid in anaerobic and/or acidic environments such as 

lake sediments or peat profiles. Under these conditions hydrocarbon degradation and 

microbial activity, respectively, is hampered (Leahy and Colwell, 1990; Meyers and 

Ishiwatari, 1993). However, even in such environments postsedimentary alteration effects on 

acyclic, saturated hydrocarbons have been reported (Cranwell, 1981; Meyers, 1997; Xie et al., 

2004). These should be even more pronounced in an oxic or eutric environment as in many 

(paleo-)soils and loess-paleosol sequences, respectively (Moucawi et al., 1981; Dinel et al., 

1990; Xie et al., 2004a; Bai et al., 2009). As a consequence the recognition of molecular 

fingerprints and a source apportionment (e.g. tree vs. grass) may become inconclusive 

(Mazeas et al., 2002). 

With the intention of overcoming this problem and to account for possible postsedimentary 

alteration effects, when interpreting n-alkane records in sedimentary archives, one has to find 

the answers to the questions:  

1) How can n-alkane distribution patterns change in the course of postsedimentary 

alteration? 

2) How can the extent of postsedimentary alteration be estimated i.e. is there a proxy for 

n-alkane alteration? 

Results and models deriving from lipid analysis of soil depth profiles, mechanistic 

considerations, as well as incubation experiments provide the background to answer the first 
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question. Accordingly, one has to be aware of the following effects, when comparing n-alkane 

patterns of material in different states of decomposition 

a) An enhanced degradation of short-, medium-chain (<C22) pd-n-alkanes as compared 

to long-chain n-alkanes due to higher solubility and thus bioavailability (Cranwell, 

1981; Moucawi et al., 1981; Jambu et al., 1991; Lehtonen and Ketola, 1993; Setti et 

al., 1993; Marseille et al., 1999; Nguyen Tu et al., 2001). 

b)  An increasing contribution of microbially-derived n-alkanes with no pronounced odd 

over even predominance (OEP). This especially affects n-alkanes of short to medium-

chain length (e.g. Cranwell, 1981; Almendros et al., 1996; Huang et al., 1997). 

However, higher molecular homologues of microbial origin have also been found 

(Jones and Young, 1970; Albro, 1976; Weete, 1976; Grimalt et al., 1987 and 

references therein; Jambu et al., 1991; Huang et al., 1996). 

c) An enhanced degradation of the more abundant compounds (“kinetic effect”, 

Marseille et al., 1999; see also Wiesenberg et al., 2004 and references herein). 

For the application of n-alkane records in paleoenvironmental studies (e.g. differentiation of 

grassland vs. woodland) the relative distribution of long-chain homologues with odd carbon 

numbers (n-C27, n-C29, n-C31, n-C33) is especially promising (e.g. Zhang et al., 2006; Zech 

et al., 2008, 2009b). Therefore, degradation effects on short- and medium-chain n-alkanes 

would not concern such paleoecological interpretation (Jansen et al., 2008).Furthermore a 

simple first order kinetic of degradation (“kinetic effect”) would only affect the absolute 

abundance of n-alkane homologues but not n-alkane ratios. However, with decreasing 

abundance, any contamination by long-chain md-n-alkanes (microbial derived n-alkanes i.e. 

n-alkanes synthesized by microorganisms or formed by microbial transformation of other, non 

n-alkane lipids) becomes more significant. The result is a loss or bias of the paleoecological 

information provided by the pd-n-alkane pattern in (fossil) soils and sediments (Freeman and 
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Colarusso, 2001; Huang et al., 1996; Wiesenberg et al., 2008a; Eckmeier and Wiesenberg, 

2009; Zech et al., 2010). Hence the focus of this study is to develop a procedure to correct 

fossil long-chain n-alkane ratios (LARs, e.g. C27/C31, C27/C29, C29/C31) for such 

postsedimentary alteration effects. Alteration here refers to biodegradation of n-alkanes as 

well as the contribution of md-n-alkanes. As a potential indicator for alteration intensity 

measures of the odd over even predominance in n-alkane distributions will be considered such 

as the OEP or the Carbon Preference Index CPI (e.g. Bray and Evans, 1961; Hoefs et al., 

2002; Zhang et al., 2006). This kind of index is generally accepted as an indicator of 

biodegradation, contribution of md- hydrocarbons and maturity of hydrocarbons (Cranwell 

1981; Rieley et al., 1991; Freeman and Colarusso, 2001; Xie et al., 2002, 2004a, b; Zhou et 

al., 2007; Wiesenberg et al., 2008b). Accordingly, several n-alkane records of soil depth 

profiles show a decrease of the CPI with depth, indicating increasing alteration (in the 

previously mentioned sense) (e.g. Huang et al., 1996; Celerier et al., 2009; Jansen and Nierop, 

2009). Besides these trends of the CPI, the records of Huang et al. (1996) indicate furthermore 

a systematic change in characteristic ratios of long-chain (n-C27, n-C29, n-C31, n-C33) n-

alkanes. The LAR records go along with shifts of the CPI in the depth profile and approach 

unity. Yet, such detailed studies on changes of LARs (e.g. C27/C29, C27/C31, C29/C27) in 

soil depth profiles are rare. In Fig. 6-1 the authors`previously unpublished data on previous 

inestigations are presented. These document a similar relation between the OEP and LARs, 

are presented  
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Fig. 6-1. Soil depth profiles of OEP and C27/C31, C29/C31, C29/C27 n-alkane ratios a) for a eutric Cambisol 
(IUSS Working Group WRB, 2006) under beech forest. The site and the studied soil has been previously 
described in Rumpel et al. (2004); b) for a calcaric Regosol (IUSS Working Group WRB, 2006) under grassland 
sampled at the Titel loess plateau 25 km east of Novi Sad (Serbia). All profiles show a decrease of the OEP with 
soil depth and a concomitant approach of long-chain n-alkane ratios towards unity. 

 

Studies on loess-paleosol sequences reveal such trends not only for modern soils, but also in 

paleosols (Xie et al., 2004a; Zhang et al., 2006; Zech et al., 2008). On the one hand, these 

correlations between OEP and LARs suggest that the variations in LARs are mainly caused 

by postsedimentary alteration effects (degradation of pd-lipids, contribution of long-chain md-

n-alkanes), rather than by changes in paleovegetation (Zech et al., 2008). On the other hand, it 

indicates a possibility to setup a correction for these alteration effects in (paleo-)soil depth 

profiles by using correlation functions between LARs and the OEP or CPI of long-chain n-

alkanes. 

In the following the principle and details of the proposed correction procedure will be 

explained its potential and limits discussed. This is done exemplarily for an n-alkane record of 

the loess-paleosol section Mircea Voda (Romania). Comprising Marine Isotope stages 11-17, 

this currently represents the oldest published n-alkane record in European loess-paleosol 

sequences, to the authors` knowledge. 
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2 Material and Methods 

2.1 Sampling, sample preparation and analytical methods 

The loess-paleosol sequence Mircea Voda (44°19`15``N, 28° 11`21`` E) is located on the 

Dobrudja loess-plateau (Romania) between the Danube River and the Black Sea coast. The 

aeolian sediments at this site are about 30 m thick and contain more than six interglacial 

pedocomplexes. The actual vegetation at this site is a steppe grassland. The modern soil is a 

120 cm thick calcic Chernozem (IUSS Working Group WRB, 2006). For more detailed 

information on this site, its geographical setting and the chronostratigraphy, see to Buggle et 

al. (2008a, 2009). For the present study, the fossil pedocomplexes S4, S5 and S6 were 

sampled, as well as the intercalated loess units L5 and L6, for n-alkane analysis. These 

pedocomplexes correspond to Marine Isotope Stages 11, 13-15 and 17-19, respectively 

(Buggle et al., 2009). The paleosols were sampled continuously in 10-50 cm intervals 

according to horizontation and thickness of the paleosol, whereas about three representative 

samples were taken from each individual loess layer. The modern soil was sampled 

continuously in 15 cm intervals (i.e. eight samples).  

The samples were dried at 40 °C and then stored at room temperature until lipid extraction. 

The extraction and purification of the n-alkane fraction followed the procedure of Zech and 

Glaser (2008). Free lipids were extracted with methanol/toluol (7/3) using Soxhlet apparatus. 

The extraction was performed on 100 g of sample material for 24 h. The extracts were 

subsequently concentrated via rotary evaporation, and then saponified for 10 min with 0.5 M 

NaOH in methanol at 100 °C in order to hydrolyze esters. By liquid-liquid extraction with 

hexane, a low-polarity fraction was separated, containing the n-alkanes, from a high-polarity 

fraction (e.g. fatty acids, alcohols) with higher affinity to methanol. The low-polarity fraction 

was then purified via column chromatography with Al oxide and silica gel (each 5 % 
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deactivated) as stationary phases and hexane/toluol (85/15) as eluent. After concentrating the 

hydrocarbon fraction, n-alkanes were separated on a HP 6890 GC and quantified with a flame 

ionization detector (FID). As internal standards and recovery standard 5α-androstane and 

hexatriacontane (n-C36) were used. The odd over even predominance (OEP) was quantified 

according the formular proposed by Hoefs et al. (2002) (Eq. 1). 

 

32302826
33312927

nCnCnCnC
nCnCnCnCOEP

+++
+++

=
 

(1)

2.2 The approach to correct n-alkane patterns for alteration effects  

2.2.1 Principles and assumptions 

The approach to derive a correction function for n-alkane patterns relies on the application of 

the OEP or CPI as a proxy for (bio-)degradation and microbial reworking, respectively. Since 

both parameters reflect the odd over even predominance of n-alkane homologues, consider the 

OEP is considered in the following text. Findings would be similar, when using the CPI (for 

the formular for the CPI see for example Zhang et al., 2006). 

In several soil profiles (see Section 1) a direct or inverse relationship between the OEP record 

and LARs such as C31/(C27 + C31), C29/(C27 + C29) and C31/(C27 + C31) is documented. 

These relationships suggest that odd over even predominance and LARs tend towards unity 

with soil depth. Such a general loss of predominance is in accordance with the hypothesis of 

increasing biodegradation (kinetic effect) combined with increasing input of md-n-alkanes 

with postsedimentary alteration (Huang et al., 1996, Marseille et al., 1999, Freeman and 

Colarusso, 2001 Zech et al., 2009b). The basic idea of the approach is to use this relationship, 

which can be obtained from modern soils, to setup a correction for the alteration effects in 
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paleosols. The general concept of the correction procedure is illustrated in a schematic cross-

plot of a LAR vs. OEP (Fig. 6-2): calculating the correlation coefficient and the respective 

regression function, one can obtain a measure for the covariation of a specific LAR and the 

OEP in a soil depth profile. This regression line in the following is regarded as “alteration 

line” and it is proposed that this line describes the change of LARs with increasing alteration 

intensity. For each LAR of interest (C27/(C31 + C27), C27/(C29 + C27), etc.) and each kind 

of predominance e.g. C31 over C27 and vice versa C27 over C31, one has to set up a separate 

alteration line by studying the n-alkane distribution in suitable soil depth profiles. Suitable in 

this sense means that a) the soil is not significantly disturbed by (bio-) turbation, plowing and 

n-alkane patterns are not significantly biased by input of hydrocarbons from fossil fuel 

combustion, b) there was no major change in vegetation during soil development causing a 

shift of the alkane patterns in the soil depth profile, c) the soil depth profile shows the n-

alkane dominance of interest e.g. grassland soils to derive degradation lines for a C31 over 

C27 dominance or forest soils for a C27 over C31 dominance, and d) soil profiles have a 

substrate similar to each other and also to the paleosols under study for reasons of 

comparability.  

Due to changes in vegetation, organic matter in a paleosol might initially have a different n-

alkane composition than the organic matter of the modern soil. Assuming that the slope of the 

alteration lines for the respective LARs is similar in modern and fossil soils the alteration line 

of the paleosol (“fossil alteration line”) can be obtained by a graphical solution i.e. via parallel 

displacement of the alteration line of the modern soil to the position of the fossil soil in the 

LAR–OEP cross-plot (Fig. 6-2). Then the corrected LAR value of the paleosol can be 

determined by drawing the “fossil alteration line” back to the OEP value of the reference 

sample. In this approach the uppermost (least degraded) sample of the modern topsoil as 
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reference. From this sample the vegetation type under which its alkane pattern developed 

should be known best.  

 

Fig. 6-2. Schematic sketch illustrating the approach to correct fossil LARs (as for example the 
C27/(C27+C31) ratio for degradation effects. Gray points represent hypothetical samples of a 
depth profile of a modern soil with C31 over C27 predominance. Black crosses represent 
hypothetical samples of a paleosol. The regression line of the OEP – used as a proxy for microbial 
reworking – versus LAR for the modern soil, is proposed to describe postsedimentary alteration 
effects on LARs and is therefore regarded as “alteration line”. Assuming that the slope m of the 
alteration line for the paleosol samples is similar to the modern soil, it is possible to reconstruct 
corrected LARs for a sample by parallel displacement of the alteration line. As a corrected LAR 
we regard the hypothetical LAR of a “paleo-sample” with the same intensity of microbial 
reworking (i.e. same OEP) as the modern topsoil. The distance of the parallel displacement is 
regarded as secondary variation with respect to the alteration line of the modern soil. It is proposed 
that these secondary variations reflect variations in initial LAR (here C27/(C27+C31)) of the fossil 
organic matter, indicating changes in the paleovegetation. Accordingly, samples plotting on the 
same alteration line would derive from material with similar initial LAR. For samples with inverse 
LAR predominance (e.g. C27 over C31) a separate alteration line has to be determined in a similar 
way. 

All samples plotting on the fossil alteration line would evolve from the same initial n-alkane 

pattern. If the fossil alteration line is identical with that of the modern soil, this would indicate 

that initial (pd-) n-alkane patterns of paleosol and soil were similar. Initial in this sense refers 

to the same state of low alteration intensity as in modern topsoils. If the intercept of the fossil 

degradation line is different from the modern one, the distance of parallel displacement could 



Study 6: Correcting Fossil n-Alkane Data for Postsedimentary Alteration Effects                                             
 

 

254

be regarded as secondary variation around the modern degradation line. These secondary 

variations reflect the differences in the initial LARs of fossil soil organic matter relative to the 

modern soil and are the parameter of interest when studying for example the relative change 

in the contribution of tree-derived n-alkanes in the geological record.  

In the approach presented, here, a simple linear regression function is proposed, since this 

gives the best fits in the OEP-LARs datasets presented in the following Sections.  

2.2.2 The mathematical procedure 

The graphical reconstruction of corrected LAR values can also be expressed mathematically. 

Using a linear regression function (Eq. 2) the corrected LAR values of a paleosample can be 

calculated from the slope of the regression line according to (Eq. 3).  

LAR0 = m0 × OEP0 + C0 

 

.(2)

with m is the slope of the regression line; C is the intercept of the regression line; 0 is the 

index for the modern soil 

 

LARf, corr = LARf,msd + m0 × ∆OEP                                                                                           (3) 

With f is the index for fossil soils; msd is the index for measured values; corr is the index for 

corrected values 

        ∆OEP =  OEPuppermost sample of modern topsoil – OEPf,msd                                                                                        (4) 
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3 Results and discussion 

3.1 The alteration lines of C27/(C31 + C27), C27/(C29 + C27), C31/(C27 + C31) for the 

profile Mircea Voda  

Raw data of all identified n-alkane homologues in the modern soil of Mircea Voda and in the 

studied paleosol and loess samples are reported in the Appendix (Table 6-A1, Table 6-A2). In 

the following, the focus is only on selected ratios.  

In Fig. 6-3 the depth profiles are presented of the OEP as well as LARs of the n-C27, n-C29 

and n-C31 homologues in the modern soil of the Mircea Voda site. In the upper 50 cm of the 

modern soil (section A), any kind of predominances i.e. the OEP, as well as the C31 over 

C27, the C31 over C29 and C29 over C27 dominance decrease with depth. This feature is in 

line with the data of Huang et al. (1996) and the authors` findings in other soil profiles (see 

Fig. 6-1) and indicates that these changes in LARs are probably controlled by 

postsedimentary alteration effects on the pd-lipids. However in section B (below about 50 cm 

depth), OEP values increase again, suggesting a lower degree of alteration for the long-chain 

n-alkanes. In parallel also the C27/(C31 + C27), C27/(C27 + C29) and C29/(C31 + C29) 

ratios increase again. This atypical depth profile in section B is related to better preservation 

of n-alkanes probably caused by one or several of the following factors: 1) higher dust 

accumulation rates during soil formation and faster burial of the organic material, 2) cooler 

and more arid conditions hampering microbial reworking (referring to both input of md-n-

alkanes as well as biodegradation of pd-n-alkanes), possibly during the early Holocene or 

Younger Dryas (Tomescu, 2000; Bai et al., 2009). However, also a change in the initial pd-n-

alkane patterns cannot be excluded. Therefore, in the first approach (variant A) only the 

uppermost three values were used and in a second approach (variant B) all values of the 

modern soil were used to obtain alteration lines. Since there is no reversal of the 

predominances in the soil profile, it was not necessary to sample other modern soils for 
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setting up alteration lines for reverse predominances e.g. C27 over C31, C29 over C31 and 

C27 over C29. 

 
Fig. 6-3. Depth profile of the OEP and selected LARs for the 
modern soil of the Mircea Voda site. Section A (about the 
upper 50 cm) shows a decrease of the OEP and an increase of 
the LARs with depth. In section B this is vice versa. 

 
In both variants, high correlation coefficients were obtained between the LARs and the OEP 

(see Fig. 6-4) in the modern soil, using linear fits. Except for the C29/(C29 + C31) ratio such 

relationships were also found in the paleosol samples (Fig. 6-4). Probably this ratio is more 

strongly controlled by changes in the alkane patterns of the paleovegetation so that the OEP-

C29/(C29 + C31) relationship in the fossil samples is masked by more pronounced secondary 

variations.  

The slopes of the OEP vs. LAR regression functions for the first 50 cm of the modern soil, the 

whole modern soil and the paleosols are in a similar range. Accepting the OEP as an alteration 

proxy, these findings underline the validity of the LAR correction approach. However, the 

slope of the regression function for the C27/(C27 + C31) ratio of the whole modern soil 

(variant B) differs remarkably from that of the top 50 cm and the loess-paleosol samples (-

4.15 vs. -3.33 and -3.11). This indicates that the regression function deriving only from 

section A of the modern soil is more suitable to describe the influence of postsedimentary 

alteration on the C27/(C27 + C31) ratio. The higher slope obtained from variant B may be 

caused by contributions of n-alkanes with different initial, pd-n-alkane signatures in the 
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deeper and older part of the modern soil (section B). Hence, this feature is probably related to 

a change of vegetation during soil development (section B vs. section A). Thus, for the 

correction of the paleosol n-alkane ratios, the regression line from the uppermost 50 cm of the 

modern soil is applied, where a decrease of predominances indicates an alteration controlled 

change of long-chain n-alkane patterns.  

 
Fig. 6-4. Cross-plot of selected LARs vs. OEP for the modern soil and the loess-paleosol units S4 to S6 of the 
Mircea Voda site. The regression function and correlation coefficients for the OEP vs. LAR relationships are 
given for the upper 50 cm of the modern soil (index A), the whole modern soil (0-100cm; index B) and the 
loess-paleosol samples (index P).   

 

3.2 Corrected vs. uncorrected values 

Similar to the modern soil, the OEP record of the fossil soils S4 and S5 shows a decrease of 

the values with increasing soil depth, reflecting an increase of the alteration intensity (Fig. 6-
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5). In the lower parts of a (fossil) soil, organic material was exposed for a longer time to 

enhanced microbial activity, until the onset of burial by loess under glacial or stadial 

conditions hampered microbial reworking. Correspondingly, the highest alteration intensity of 

the S4 pedocomplex is recorded at the base of the paleosol, whereas in the underlying loess 

layer L5 the OEP is better preserved due to higher burial rates and reduced intensity of 

microbial reworking during cold climate conditions (Xie et al., 2004a, b). Higher odd over 

even predominances in loess and lower OEP values in paleosols have also been recognized as 

characteristic features in several other loess-paleosol sequences (Xie et al., 2004a; Liu and 

Huang, 2005; Zhang et al., 2006). The S5 is the strongest pedocomplex of the Mircea Voda 

profile and formed during two warm, interglacial periods (MIS 13 and MIS 15) under 

Mediterranean-like climate conditions (Buggle et al., 2008b, 2009). Also in this unit, n-alkane 

alteration as indicated by the OEP, increases with soil depth but extends deeper than 

pedogenesis (in sense of mineral transformation) into the loess (unit L6). The lowest OEP is 

even recorded within the loess just below the S5 pedocomplex. No clear patterns of the OEP 

can be observed in the S6 pedocomplex.  

 

Fig. 6-5. OEP and LAR depth profiles for the loess-paleosol units S4 - S6 of the Mircea Voda site. a) 
Uncorrected LAR ratios, b) LAR ratios corrected for degradation effects. The stratigraphy of the loess-paleosol 
sequence is described in more detail in Buggle et al., (2009). Depth values are referred to the top of the whole 
sequence (S0 – S6). 
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As already revealed from the correlation coefficients of LARs with OEP, most of the 

fluctuations of the C27/(C31 + C27) and C27/(C27 + C29) ratio can be inversely related to the 

changes in the OEP, herewith showing typical patterns of a soil depth profile. It is generally 

accepted that the odd over even predominance either expressed as OEP or CPI is an indicator 

for the intensity of microbial or thermal degradation (Johnson and Calder, 1973; Freeman and 

Colarusso 2001; Xie et al., 2002, 2004a, b; Wiesenberg et al., 2008b, 2009). However, studies 

on fresh, terrestrial plant material also report on pronounced variations of the odd over even 

predominance not only between but also within different species (Borges del Castillo, 1967; 

Maffei, 1996a, b; Liu and Huang, 2005; Sachse et al., 2006). Therefore, the question arises, 

whether the trends of the OEP with depth in the modern soil and also in the fossil soils are 

indeed related to postsedimentary alteration or rather to changes in the paleovegetation. To 

answer this question, the ratio of long-chain n-alkanes (≥n-C25) vs. short- to medium-chain 

length n-alkanes (<n-C25) was compared with the OEP. Short to medium chain length n-

alkanes are predominantly derived from microorganisms (Weete 1976; Albro 1976) or 

thermal degradation of organic material (Wiesenberg et al., 2009). Since n-alkane degradation 

in soils is essentially mediated by microorganisms, a stronger alteration intensity of pd-n-

alkanes should be also reflected in this chain length ratio (Xie et al., 2003). Indeed in the 

modern soil and also in most loess and paleosol units the depth profile of the Alk>C25/Alk<C25 

ratio is similar to the OEP record (Fig. 6-6). Lower Alk>C25/Alk<C25 ratio with decreasing OEP 

are related to an increase in the absolute abundance of short-chain homologues mainly in the 

range of C16-C18 going along with decreasing concentrations of long-chain homologues (see 

Appendix for absolute n-alkane contents). This suggests that the OEP in the sample set is 

mainly controlled by the intensity of alteration rather than by changes in paleovegetation. 

Therefore observed patterns and trends in the C27/(C31 + C27) and C27/(C27 + C29) ratios 

are also likely controlled by postsedimentary alteration rather than by changes in 
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paleovegetation, since they are covarying with the OEP. It has to be noted that the OEP values 

in the fossil soils are in a similar range to those in the modern soil, suggesting that alteration 

of the n-alkane pattern is limited after burial of the soils.  

 

Fig. 6-6. Comparison of the OEP and Alk>C25/Alk<C25 ratio in the depth profiles of the modern soil of the Mircea 
Voda section and the loess-paleosol units S4 - S6. 

 

 In the paleosols, the corrected ratios of C27/(C27 + C29) and especially C27/(C31 + C27) 

show only weak secondary variations as they are strongly correlated with the alteration proxy 

OEP. In contrast, the uncorrected C29/(C31 + C29) record exhibits several patterns, which do 

not correspond to changes in the OEP. Pronounced secondary variations are also revealed 

from the corrected C29/(C31 + C29) ratio. According to the proposed model, such secondary 

variation is indicative of variations in the n-alkane distribution of the paleovegetation. 

Following the classical interpretation of C29 vs. C31 as proxy for tree vs. grass vegetation 

(e.g. Zhang et al., 2006), these secondary variations and the corrected C29/(C31 + C29) ratio, 

respectively, would suggest a higher contribution of trees during periods of loess 

accumulation. This is in accordance with the findings from a loess-paleosol sequence in the 

Carpathian Basin by Zech et al. (2009a, 2010), who also intended to take account for 

degradation effects in the interpretation of n-alkane data. However, a thorough interpretation 
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of the Mircea Voda LARs record in terms of paleovegetation needs a survey of n-alkane 

patterns of the potential local vegetation, an evaluation of the climatic influence on plant 

LARs and an evaluation of the results by other bioproxies. Such detailed (paleo-)ecological 

investigations are, however, beyond the scope of this study, but they are topic of the authors` 

ongoing and future research regarding climate and vegetation history of the middle and lower 

Danube basin.  

3.3 Discussing the assumptions – limits and potential of the correction approach  

The approach to correct fossil LARs for postsedimentary alteration effects is essentially based 

on three assumptions: 

a) The OEP reflects degradation intensity of pd-lipids and a contribution by md-n-alkanes. 

Thus it can be used as a proxy of postsedimentary alteration. 

 b) Postsedimentary alteration reduces any kind of predominances in long-chain n-alkane 

pattern due to microbial reworking.  

c) The alteration line obtained from modern soil profiles is valid for paleosols.   

 

 Assumption a) has been already evaluated in Section 3.2. Since OEP values may differ 

strongly between different types of vegetation (e.g. Sachse et al., 2006), it is recommended to 

evaluate this assumption by comparison to other proxies of organic matter degradation or 

microbial reworking (e.g. the ALK>25/ALK<25 ratio). At best, this evaluation is done for every 

loess-paleosol sequence under study.  

Assumption b) the decrease of the odd over even predominance with intensity of 

biodegradation is a commonly observed phenomenon for lipids in plant tissues, soils and 

sediments. Hence, the CPI and OEP values of n-alkanes are generally regarded as indicators 

for degradation (Cranwell 1981; Rieley et al., 1991; Freeman and Colarusso, 2001; Xie et al., 
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2002, 2004a, b; Zhou et al., 2007). Several studies on soil profiles have found not only 

decreasing OEP with soil depth but also a decrease of LARs towards unity (see Section 1). 

Marseille et al. (1999) explained such a decrease of predominances from O layers to A 

horizons by a simple kinetic degradation effect. Also other authors refer to preferential 

degradation, when explaining loss of predominances in n-alkane records from soils and 

sediments (Nishimura and Baker, 1986; Xie et al., 2004a; Jansen and Nierop, 2009, Zech et 

al., 2010). Following most models for soil organic matter degradation, a first order kinetic can 

be assumed for lipid decomposition (Wiesenberg et al., 2004). However such a reaction 

would only affect the absolute abundance of individual homologues but not their ratios. 

Therefore, input from md-n-alkanes (as defined in Section 1) is commonly discussed, when 

explaining loss of preferences with degradation intensity (Huang et al., 1996; Freeman and 

Colarusso, 2001; Xie et al., 2004a). This “contamination” of the pd-n-alkane distribution 

becomes more significant with intensity of degradation i.e. reduced absolute abundances of 

the plant derived homologues. Hence, at least in the studied profiles, microbial reworking is 

probably the most significant process of postsedimentary LAR alteration. Also n-alkane 

pattern of the peaty gley and acid brown earth soil studied by Huang et al. (1996) would be in 

line with this effect and support assumption b. Some incubation experiments suggest that also 

the chain length of n-alkane homologues might be an important factor controlling degradation 

rates (Moucawi et al., 1981; Setti et al. 1993). However at the Mircea Voda site C27/C31, 

C27/C29 and C29/C31 ratios increase with soil depth and decreasing OEP, respectively. 

Hence, it is concluded that at least for this profile preferred degradation of shorter 

homologues is not an issue of significance. Yet, for the approach it is basically not important 

to know the actual mechanisms of n-alkane degradation and microbial reworking, 

respectively, in a soil profile. In any case the regression function between the OEP (proxy for 

degradation and microbial reworking, respectively) and LAR should describe alteration 
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effects empirically and can be used for appropriate corrections. This also includes effects of 

thermal degradation, which will, similar as microbial reworking, result in a decrease of the 

odd over even predominance (Wiesenberg et al., 2009). However, with such different 

processes of postsedimentary alteration slopes of the regression lines are likely to change. 

Hence it is proposed to setup separate regression functions for thermally altered soils by 

studying material of different thermal maturity.  

However, it has to be emphasized that uncertainties in the degradation model increase (e.g. 

linear vs. exponential slope; alteration lines of different initial LARs approach each other) 

when LARs approach 50% and OEP is close to unity (predominances are absent or weak). In 

this case, a reconstruction of initial LARs should be considered critically.  

Assumption c) even though in this study the slope for the OEP - LAR regression lines in the 

modern soil and paleosols is in a similar range (Fig. 6-4.), this is not necessarily true for other 

profiles. Differences between the reconstructed and the real slope of the alteration line would 

cause a systematic over- or underestimation of the true LAR values. Those LAR trends which 

extend over major parts of the depth profile and, which show up only in the corrected values, 

should especially be discussed critically. A possible way to minimize such artifacts might be 

to choose those modern soils for setting up an alteration line, which have similar properties 

like the investigated fossil soils. Similar in this sense refers to soil type, as well as general 

physical and chemical soil parameters (grain size distribution, pH, Eh, etc). Taking a modern 

topsoil as reference and not fresh plant material furthermore avoids problems in collecting 

representative samples of certain types of vegetation, since n-alkane patterns of plant leaves 

may vary seasonally and with growing stage (Herbin and Robins, 1969; Wiesenberg and 

Schwark, 2006; Krimm, 2005). In addition, it is proposed that the regression function be 

based only on data of the mineral horizon and not of the litter layer. n-Alkane degradation in 

the litter layers may also depend on the structure of the litter and accessibility of different 
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types of litter (e.g. needles vs. leaves) to microorganisms. For this reason, the recently 

proposed degradation lines of Zech et al. (2010), which rely on LAR-OEP relationships 

deriving from litter layers and the respective A-horizons, seem less appropriate to correct n-

alkane ratios of fossil mineral soils.  

Unfortunately, studies of n-alkanes in mineral soils comprising whole soil depth profiles and 

not just the uppermost cm of the A horizon are very scarce. Besides the presented datasets 

from the modern Chernozem of the Mircea Voda site and the dystric Cambisol under beech 

forest from the Steigerwald-forest (Germany, see Fig. 6-1) a suitable dataset for setting up 

LAR-OEP regression functions was only found in the study of Huang et al. (1996). The 

slopes of the respective regression functions (Table 6-1) show remarkable differences 

between the Chernozem and the Cambisols, but also between same soil types developed under 

different vegetation with different n-alkane predominances (Cambisol under beech forest vs. 

Cambisol under grassland). These results underline that the slope of the alteration line for a 

C31 over C27 predominance for example, cannot be obtained from the slope for the C27 over 

C31 vs. OEP regression line by simply changing the sign. As long as there are no extensive 

systematic studies on n-alkane patterns in soil depth profiles, no proper evaluation of the 

influence of soil properties on the alteration line is possible. However, the presented dataset 

supports the advice to derive the alteration line of fossil soils from a modern soil with similar 

characteristics. The case example from the Mircea Voda site indicates that there might be a 

future potential to correct fossil n-alkane ratios via the OEP/LAR relationship. However, there 

is a lack of data from modern soils and therefore a lack of understanding of the detailed 

mechanisms of changing n-alkane patterns with soil depth and alteration. Therefore, a wide-

spread straight forward application of the proposed correction procedure might be critical at 

the present state of knowledge. Future systematic studies on soils and paleosol in loess 
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plateaus should help (and are necessary) to decipher effects of pedogenic processes or 

environmental factors on the OEP-LAR relationship.  

Table 6-1. Slopes of LAR - OEP regression lines for the calcic Chernozem of the Mircea Voda site (this study), a 
dystric Cambisol in the Steigerwald forest (Germany) developed under beech vegetation (this study and Rumpel 
et al., 2004) and an acid brown earth under grassland pasture (U.K., Huang et al., 1996). The regression line only 
includes data of the mineral soil horizons and not of the litter layers. Also deeper parts of the profiles, in which a 
shift in LAR ratios and OEP indicates changes in biomass source (different type of vegetation during soil 
development), were not included in the regression line. 

 C27/(C27+C31) C29/(C29+C31) C27/(C27+C29) 
 

Calcic Chernozem     
(this study) 

-3.33 -1.12 -2.38 

 
Cambisol            

(this study & Rumpel et 
al., 2004) 

1.61 1.74 0.67 

 
Acid brown earth       
(Huang et al., 1996) 

-3.74 -2.47 -3.7 

4 Conclusion 

n-alkane ratios from fossil organic matter as preserved for example in paleosols may represent 

valuable proxies for paleovegetation types (e.g. tree vs. grass). However, the original n-alkane 

ratios may be altered due to microbial reworking. The presented data from soil depth profiles 

suggest that this results in a general decrease of predominances. This is most likely due to 

input of md-n-alkanes with low OEP combined with a decreasing abundance of pd-lipids 

(“kinetic effect”). The lack of systematic studies on soil depth profiles has to be admitted, 

resulting in limited knowledge concerning controlling mechanisms on n-alkane alteration and 

especially their dynamics and significance in soils and terrestrial sediments (e.g. loess). 

Hence, a straight forward application of the proposed correction to soils different from those 

investigated in this study is critical, at the present state of knowledge. Nevertheless, for the 

following reasons it is concluded that the proposed correction procedure has a potential to 

improve paleoecological interpretations of fossil n-alkane records in paleosols, in the future. 
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1) Every postsedimentary alteration of LARs induced by microbial reworking should be 

reflected in a correlation between the degradation proxies OEP or CPI and single LARs. Thus, 

regardless of the mechanism causing LAR alteration, the regression line LAR vs. OEP or CPI 

(“degradation line”) should empirically describe the change of LARs with increasing 

alteration intensity.  

2) There exists uncertainty when applying the slope of an “alteration line”, which derives 

from a modern soil, to paleosol samples. However, the proposed empirical approach 

represents an objective and traceable procedure to quantify alteration effects. In contrast, a 

qualitative estimation would require knowledge or assumptions on the processes of LAR 

alteration. Due to a lack of suitable studies on LAR/OEP relationships in modern soils it is 

recommended to present in any case corrected as well as the uncorrected LARs. This allows a 

rediscussion of the data, if new datasets are available. 

3). The suitability of the OEP as proxy of degradation and microbial reworking, respectively, 

can and should be independently evaluated by comparison to the ratio of short vs. long-chain 

n-alkanes or other proxies for intensity of microbial reworking and SOM degradation, 

respectively. Such an evaluation is crucial and strongly recommended for each fossil n-alkane 

record in order to exclude that the OEP record is really reflecting changes in paleovegetation 

and not degradation intensity.  

4) Accepting the OEP as an alteration proxy, the secondary variations of LARs around the 

OEP-LAR regression (i.e. degradation-) line can be determined. Thereafter, it is possible to 

isolate the initial (i.e. plant-derived) changes in n-alkane patterns from artifacts due to 

postsedimentary alteration. Such an approach may be not only promising in loess-paleosol 

sequences, but also in other kinds of sediments. 

The case study concerning the n-alkane record from a 400 to 700 ka old loess-paleosol 

sequence in Romania revealed that changes in C27/C31 n-alkane ratio are closely related to 
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postsedimentary alteration effects, rather than to changes in the paleovegetation (e.g. tree vs. 

grass abundance). The findings highlight that it is essential to consider such alteration effects, 

when interpreting n-alkane patterns as biological fingerprints. The proposed correction 

procedure is regarded as a first conceptual approach to account for this problem. Fig. 6-7 

gives a short guideline for the practical application of the approach. Clearly, the need of more 

systematic, highly resolved studies on soil depth profiles need to be addressed to evaluate the 

presented empirical correction functions and to test whether they can be transferred to other 

sites, (paleo-) soil types and environmental conditions.  
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Fig. 6-7. Guidelines for the application of the n-alkane correction procedure. 
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Appendix 

Table 6-A1. Concentration of n-alkane homologues in the modern soil of the Mircea Voda site. 

Modern 
soil - 
Mircea 
Voda 

 
Sample 
depth 

[m] 
 

C15 
[µg/g] 

C16 
[µg/g]

C17 
[µg/g]

C18 
[µg/g]

C19 
[µg/g]

C20 
[µg/g]

C21 
[µg/g]

C22 
[µg/g]

C23 
[µg/g] 

C24 
[µg/g]

C25 
[µg/g]

C26 
[µg/g]

C27 
[µg/g]

C28 
[µg/g]

C29 
[µg/g]

C30 
[µg/g]

C31 
[µg/g]

C32 
[µg/g] 

C33 
[µg/g] 

0 0.033 0.090 0.106 0.071 0.054 0.039 0.045 0.026 0.053 0.037 0.145 0.068 0.336 0.122 0.623 0.060 0.724 0.044 0.347 
0.225 0.027 0.080 0.079 0.073 0.048 0.042 0.044 0.029 0.046 0.034 0.103 0.047 0.199 0.079 0.336 0.033 0.387 0.024 0.185 
0.375 0.031 0.102 0.094 0.083 0.049 0.040 0.038 0.026 0.044 0.036 0.115 0.066 0.237 0.111 0.358 0.034 0.380 0.029 0.196 
0.525 0.034 0.092 0.094 0.091 0.061 0.048 0.046 0.027 0.047 0.034 0.108 0.068 0.207 0.095 0.265 0.025 0.248 0.019 0.110 
0.675 0.021 0.079 0.086 0.077 0.052 0.045 0.040 0.027 0.039 0.028 0.089 0.055 0.169 0.078 0.231 0.022 0.243 0.019 0.111 
0.825 0.016 0.057 0.068 0.068 0.047 0.038 0.038 0.021 0.038 0.026 0.102 0.065 0.213 0.089 0.305 0.028 0.344 0.029 0.159 

 0.975 0.012 0.054 0.058 0.063 0.043 0.037 0.033 0.018 0.029 0.019 0.049 0.032 0.085 0.035 0.113 0.012 0.121 0.010 0.050 
 



 

 

 

Table 6-A2.  Concentration of n-alkane homologues in the loess-paleosol units S4 – S6 of the Mircea Voda site. 

 
Loess-
Paleosol 
samples  -
Mircea 
Voda  

Sample 
depth 

[m] 
C15 

[µg/g] 
C16 

[µg/g]
C17 

[µg/g]
C18 

[µg/g]
C19 

[µg/g]
C20 

[µg/g]
C21 

[µg/g]
C22 

[µg/g]
C23 

[µg/g] 
C24 

[µg/g]
C25 

[µg/g]
C26 

[µg/g]
C27 

[µg/g]
C28 

[µg/g]
C29 

[µg/g]
C30 

[µg/g]
C31 

[µg/g]
C32 

[µg/g] 
C33 

[µg/g] 

19.2 0.015 0.054 0.064 0.058 0.042 0.029 0.032 0.015 0.024 0.013 0.016 0.020 0.032 0.014 0.112 0.015 0.181 0.011 0.052 
19.5 0.027 0.083 0.107 0.086 0.053 0.062 0.048 0.023 0.026 0.018 0.022 0.032 0.040 0.028 0.101 0.017 0.156 0.013 0.052 
19.85 0.023 0.069 0.103 0.087 0.061 0.054 0.039 0.022 0.029 0.019 0.017 0.027 0.032 0.018 0.073 0.011 0.092 0.011 0.033 
20.75 0.015 0.044 0.049 0.046 0.034 0.027 0.031 0.014 0.028 0.017 0.030 0.038 0.050 0.025 0.205 0.026 0.254 0.018 0.105 
21.95 0.008 0.037 0.064 0.099 0.060 0.052 0.043 0.028 0.033 0.022 0.026 0.030 0.046 0.021 0.158 0.031 0.260 0.012 0.064 
22.35 0.014 0.045 0.048 0.046 0.032 0.026 0.031 0.012 0.025 0.011 0.013 0.026 0.033 0.014 0.118 0.019 0.232 0.014 0.079 
22.7 0.020 0.074 0.097 0.069 0.052 0.034 0.033 0.013 0.020 0.012 0.014 0.019 0.033 0.019 0.086 0.015 0.182 0.010 0.059 
23.2 0.026 0.089 0.111 0.067 0.045 0.040 0.027 0.009 0.014 0.009 0.013 0.016 0.028 0.016 0.078 0.016 0.152 0.011 0.053 
23.7 0.032 0.092 0.097 0.071 0.046 0.022 0.023 0.008 0.014 0.009 0.013 0.020 0.027 0.015 0.066 0.012 0.106 0.007 0.040 
24.2 0.014 0.050 0.069 0.066 0.043 0.038 0.036 0.017 0.027 0.017 0.011 0.029 0.016 0.013 0.033 0.009 0.043 0.006 0.020 

24.575 0.011 0.019 0.030 0.018 0.026 0.021 0.029 0.017 0.024 0.016 0.031 0.019 0.019 0.011 0.037 0.012 0.065 0.010 0.028 
24.85 0.019 0.074 0.116 0.096 0.065 0.057 0.047 0.029 0.031 0.020 0.011 0.017 0.015 0.007 0.036 0.008 0.054 0.006 0.023 
25.2 0.016 0.058 0.076 0.068 0.045 0.040 0.035 0.014 0.019 0.011 0.007 0.014 0.013 0.005 0.035 0.007 0.046 0.007 0.018 
25.5 0.013 0.046 0.057 0.050 0.036 0.027 0.025 0.011 0.016 0.007 0.005 0.015 0.016 0.005 0.036 0.006 0.060 0.007 0.023 

(units S4 
to S6) 

25.9 0.016 0.059 0.091 0.066 0.054 0.035 0.031 0.014 0.019 0.012 0.011 0.017 0.025 0.012 0.050 0.010 0.079 0.009 0.029 
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Abstract 

During the last decade, compound-specific hydrogen isotope analysis of plant leaf-wax and 

sedimentary n-alkyl lipids has become a promising tool for paleohydrological reconstructions. 

However, with the exception of several previous studies, there is a lack of knowledge regarding 

possible effects of early diagenesis on the δD values of n-alkanes. We therefore investigated the 

n-alkane patterns and δD values of long-chain n-alkanes from three different C3 higher plant 

species (Acer pseudoplatanus L., Fagus sylvatica L. and Sorbus aucuparia L.) that have been 

degraded in a field leaf litterbag experiment for 27 months. 

We found that after an initial increase of long-chain n-alkane amounts (up to ~50%), 

decomposition took place with mean turnover times of 11.7 months. Intermittently, the amounts 

of mid-chain n-alkanes increased significantly during periods of highest mass losses. 

Furthermore, initially high odd-over-even predominance declined and long-chain n-alkane ratios 

like n-C31/C27 and n-C31/C29 started to converge to the value of 1. While bulk leaf litter became 

systematically D-enriched especially during summer seasons (by ~8‰ on average over 27 

months), the δD values of long-chain n-alkanes reveal no systematic overall shifts, but seasonal 

variations of up to 25‰ (Fagus, n-C27, average ~13‰). 

These findings suggest that a microbial n-alkane pool sensitive to seasonal variations of soil 

water δD rapidly builds up. We propose a conceptual model that accounts for the decomposition 

of plant-derived n-alkanes and the build-up of microbial n-alkanes. By this model, the measured 

n-alkane δD results can be explained. Since microbial ‘contamination’ is not necessarily 

discernible from n-alkane concentration patterns alone, care may have to be taken not to over-

interpret δD values of sedimentary n-alkanes. Furthermore, since leaf-water is generally D-

enriched compared to soil and lake waters, soil and water microbial n-alkane pools may help 

explain why soil and sediment n-alkanes are D-depleted compared to leaves. 
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1 Introduction 

During the last decade compound-specific hydrogen isotope ratios (δD) of plant-derived n-

alkanes in sediments and soils have become a popular paleoclimate proxy for reconstructing δD 

values of paleoprecipitation and for determining paleoaridity (Huang et al., 2004; Sachse et al., 

2004; Xie et al., 2004; Liu and Huang, 2005; Pagani et al., 2006; Mügler et al., 2008; Zech et al., 

2010b). This boom is based on several factors:  

The isotopic composition of meteoric water (δD and δ18O) was found to depend on climate 

parameters such as temperature, continentality and precipitation amount (Craig, 1961; 

Dansgaard, 1964). 

Albeit with a biosynthetic fractionation factor, plant photosynthetic products have the potential 

to record climate signals because their δD values are related to the source water δD values 

(Sternberg, 1988; Sessions et al., 1999; Sauer et al., 2001; Sachse et al., 2004). 

n-Alkanes are considered to be relatively stable against degradation (Lichtfouse et al., 1998) and 

alkyl hydrogen atoms are less prone to exchange reactions in comparison with other biomarkers 

in geologically young, thermally immature sediments (Sessions et al., 2004; Pedentchouk et al., 

2006; Dawson et al., 2007). 

n-Alkanes originate from specific organisms and hence have the potential to serve as biomarkers 

(molecular fossils). For instance, long-chain n-alkanes with odd-over-even predominance (OEP) 

originate from terrestrial plant leaf waxes (Eglington and Hamilton, 1967; Kolattukudy, 1976), 

whereas short- and mid-chain n-alkanes in lacustrine sediments often serve as aquatic 

biomarkers (Ficken et al., 2000; Zech et al., 2009b; Aichner et al., 2010). 

The methodological improvements allowed the online-coupling of gas chromatographs via a 

pyrolysis oven to isotope ratio mass spectrometers (GC-Py-IRMS) (Burgoyne and Hayes, 1998; 

Hilkert et al., 1999). 
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For a more detailed review about hydrogen isotopes (D/H) in sedimentary organic matter the 

reader is referred to Schimmelmann et al. (2006). 

Several recent studies have identified various potential problems with interpretation of the δD 

values of sedimentary n-alkanes. First, several authors reported large interspecies δD differences 

under the same climatic conditions (Liu et al., 2006; Smith and Freeman, 2006; Hou et al., 2007; 

Feakins and Sessions, 2010). These results provide evidence that care must be taken when 

interpreting the δD values in the absence of knowledge about vegetation history. Second, within 

one plant species, variations among different n-alkanes were found to be up to 50‰. 

Furthermore, pronounced seasonal δD leaf-wax n-alkane shifts with up to 40‰ were reported 

(Pedentchouk et al., 2008; Sachse et al., 2009), which can be attributed to short turnover times 

and suggests that δD values of leaf litter being deposited on soils or in sediments only reflect the 

climatic conditions of the last weeks before leaf senescence. Third, the limited δD data from 

plant-soil/sediment systems (Chikaraishi and Naraoka, 2006; Sachse et al., 2006) indicate that 

long-chain n-alkanes of soils and sediments are depleted (by up to -57‰) compared to the fresh 

plant-derived n-alkanes. This finding can only be partly explained with the above mentioned 

seasonality effect and suggests that soil/sediment organic matter (SOM) formation may cause 

isotopic alterations, which have not yet been considered when reconstruction paleoclimatic and –

hydrologic conditions. Hence, detailed biodegradation and reworking experiments are needed to 

clarify possible isotopic modifications in plant-soil systems. 

In this study we aim to address this open question by presenting and discussing the n-alkane 

concentration patterns and compound-specific δD values of different leaf litter species, which 

have been decomposed in a field litterbag experiment for 27 months.  
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2 Material and methods 

2.1 Litterbag experiment and samples 

The site for the decomposition experiment and further details on the design of the litterbag 

experiment have been described in detail in separate publications (Gerstberger et al., 2004; Don 

and Kalbitz, 2005; Kalbitz et al., 2006). In brief, it is located in the Fichtelgebirge (Northeast 

Bavaria, Germany; 50°08’35’’N, 11°52’10’’E) and was covered by Picea abies for about 160 

years. Elevation is 780 m a.s.l. and soil development has resulted in a sandy loam to loamy Albic 

Rustic Podzol (Wrb, 2006). The climate in the area is characterized by 1100 mm mean annual 

precipitation, a mean annual temperature of around 5 °C and a persistent snow cover during the 

winter season. δD values of the throughfall range from about -87‰ in the winter to -18‰ in the 

summer. 

The litterbag experiment started in June 2001. Air-dried senescent foliage litter from 5 different 

species, including the three broad-leaf species Acer pseudoplatanus L., Fagus sylvatica L. and 

Sorbus aucuparia L. were exposed in the field for 1, 3, 5, 9, 12, 16, 21 and 27 months. The litter 

from coniferous species Picea abies L. (Karst.) and Pinus sylvestris L. was not included in this 

study due to significantly lower n-alkane concentrations, making accurate compound-specific δD 

measurements impossible. The leaf litter was packed in bags made from nylon mesh and 

deposited on the forest floor simulating leaf litter accumulation. In order to account for the 

spatial variability of the decomposition processes, 12 plots (replications) were established at two 

neighbouring sites, resulting in 24 subsamples for each plant species at each harvesting time. The 

litterbags were completely covered by naturally fallen leaf litter after 1.5 years. At the end of 

each collection, leaf litter was cleaned manually to remove fungal hyphae, roots, shoots and 

insects. After drying and grinding, subsamples were combined for n-alkane and δD analyses. 

Together with the fresh non-degraded leaves, the here presented sample batch comprises 27 

mixed samples in total. 
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Kalbitz et al. (2006) found that mass loss over the 27 months ranged from 26% (Fagus) to 58% 

(Sorbus). Estimating the relative contribution of cellulose and lignin and correcting for mass 

losses, they additionally observed a total cellulose decomposition ranging from 51% (Fagus) to 

86% (Sorbus), whereas the total lignin decomposition reached only up to 11% (Sorbus) (Table 7-

1). 

Table 7-1. Mass loss of different leaf litter species (Acer, Fagus and Sorbus), relative depletion of cellulose and total 
cellulose decomposition, relative enrichment of lignin and total lignin decomposition (from Kalbitz et al. (2006)) 
and relative depletion of total n-alkanes (∑(n-C20 to n-C35)) and total n-alkane decomposition after 27 months of leaf 
litter degradation. 

2.2 Analytical procedures 

2.2.1 n-Alkane quantification 

n-Alkanes from the leaf litter samples were prepared according to a slightly modified procedure 

described by Zech and Glaser (2008) in the Laboratory of the Department of Soil Physics, 

University of Bayreuth, Germany. Briefly, the procedure involves extraction of lipids with 

methanol/toluene (7/3) using an accelerated solvent extractor (ASE 200, Dionex, Germering, 

Germany) and purification of n-alkanes on silica/aluminium oxide (both 5% deactivated) 

columns with hexane/toluene (85/15) as eluent. 20 µg of 5α-androstane and 40 µg 
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hexatriacontane (n-C36) were added as internal and recovery standards, respectively. 

Quantification of the n-alkanes was performed on an HP 6890 gas chromatograph equipped with 

a flame ionization detector (FID). Note that sample A3 (Acer, 5 months) revealed inexplicable 

anomalies in the n-alkane pattern as well as in the δD values and was therefore excluded from 

further data evaluation and illustration. Turnover times (T) (mean residence times) for n-alkane 

decomposition were calculated based on a first-order kinetic model according to Eq. 1, 

 

T = 
k
1

−                                                              (1) 

where k is the decomposition rate, which is calculated according to Eq. 2. 

 

k = 
12

12

 t- t
))(t alkaneamount  - )(t alkane(amount ln

                                                                       (2) 

Data points for month 0 were excluded for the determination of the turnover times in order to 

account for the time lag of microbial activity. 

2.2.2 Compound-specific δD analysis 

δD values of n-C27, n-C29, and n-C31 alkanes recovered from the leaf litter samples were 

determined in the Stable Isotope Laboratory at the University of East Anglia, UK using a 

Thermo Scientific Delta V Advantage isotope ratio mass spectrometer interfaced to a Thermo 

Scientific Trace GC Isolink. Individual n-alkanes were separated using an Agilent J&W DB-5 

column (30 m x 0.25 mm x 0.25 µ film thickness). The GC oven was programmed from 50 °C (1 

min) at 20 °C/min to 150 °C (0 min), then at 6 °C/min to 300 °C (5 min). Pyrolysis conversion of 

organic hydrogen to H2 was achieved at 1420 °C. Hydrogen isotopic composition of n-alkanes is 

expressed relative to Vienna Standard Mean Ocean Water (VSMOW) based on an in-house 

reference gas adjusted daily using a squalane standard obtained from A. Schimmelmann, Indiana 
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University, USA. The margin of error for sample n-alkane δD measurements was no greater than 

±5‰.  

2.2.3  Bulk δD analysis 

Bulk δD values of the leaf litter samples were determined in the Laboratory of Isotope 

Biogeochemistry of the Bayreuth Center of Ecology and Environmental Research (University of 

Bayreuth, Germany). For the thermal conversion, a TC/EA oven (HEKAtech, Wegberg, 

Germany) was coupled via a ConFlo III Interface (Thermo Fisher Scientific, Bremen, Germany) 

with a Delta V Plus isotope ratio mass spectrometer (Thermo Fisher Scientific). The standard 

deviation of bulk δD analyses is typically less than ±2‰. All δD values are expressed in per mil 

(‰) relative to the Vienna Standard Mean Ocean Water (VSMOW) based on an in-house 

reference gas (H2 from Rießner-Gase GmbH, 96215 Lichtenfels, Germany, purity 6.0), which 

was calibrated using standards obtained from IAEA (VSMOW2, SLAP2 and IAEA-CH-7). 

3 Results 

3.1 n-Alkane concentrations, absolute n-alkane masses and n-alkane patterns 

Kalbitz et al. (2006) found that mass losses over 27 months range from 26% (Fagus) to 58% 

(Sorbus). Fig. 7-1. illustrates that after starting the field experiment in June 2001, the most 

prominent mass losses occurred during autumn 2001 and autumn 2002, whereas no or less 

significant mass losses took place in March and June 2002 and for September 2003.  

The n-alkane concentration patterns of the three investigated leaf litter species reveal high 

abundances of long-chain n-alkanes in the range from n-C25 to n-C31 with a strong odd-over-even 

predominance (OEP, Fig. 7-2), which is typical for leaf-wax n-alkanes. Acer leaf litter is 

dominated by n-C27 and n-C29, Fagus leaf litter strongly by n-C27 and Sorbus leaf litter by n-C29 

and smaller amounts of n-C31. Although the concentrations of these long-chain n-alkanes vary 
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substantially among the different leaf litter species, both Fig. 7-1 and Fig. 7-2 show that their 

concentrations decreased significantly after 27 months (on average from 154 to 37 µg/g litter). 

This indicates that n-alkanes were more rapidly decomposed compared to other plant-derived 

organic compounds such as lignin and cellulose (Table 7-1). Kalbitz et al. (2006) reported that 

leaf litter lignin had on average almost doubled its concentration in the organic matter after 27 

months. In this study, mean turnover times for long-chain n-alkanes range from 9.3 to 14.5 

months (Table 7-2). 

Interestingly, except for n-C27 of Fagus, the n-alkane concentrations as well as the absolute n-

alkane amount (referenced against the initial absolute n-alkane mass) (Fig. 7-1) did not decrease 

immediately when leaf litter degradation started. Instead, in July and September 2001, absolute 

n-alkane amount in the leaf litterbags increased by up to ~50% (Acer n-C27 and Sorbus n-C31). 

One may try explaining these findings by involving leaf litter sampling inhomogeneity. 

However, given the fact that each sample is a mixture of 24 subsamples from the field and based 

on the observation of the overall steady trends (except for Fagus, September 2001), our results 

suggest that there occurred either an in situ production or an additional input of long-chain n-

alkanes from an external source during the first months. Only in the spring 2002, after 9 months 

of leaf litter degradation, concentrations of all long-chain n-alkanes started to decrease 

dramatically and also amounts fell considerably below the initial values until October 2002. 

After the rate of decrease slowed down in winter 2002/2003 (Fig. 7-1), decomposition 

accelerated again during summer 2003 and by September 2003 on average 85% of the n-alkanes 

were decomposed. Leaf litter degradation was also accompanied by commonly observed changes 

of n-alkane patterns. Originally high OEPs were levelled out (Fig. 7-1) and long-chain n-alkane 

ratios like n-C31/n-C27 and n-C31/n-C29 (Fig. 7-1) were converging to the value 1. This 

observation was recently used in order to suggest and apply models that account for degradation 

effects when reconstructing vegetation changes using long-chain n-alkane ratios in soils and 
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sediments (Zech et al., 2009a; Buggle et al., 2010; Zech et al., 2010a). Strikingly, the mid-chain 

n-alkanes (∑(n-C20 to n-C24)), which are present not only in higher plant leaf-waxes but are 

known to be produced by microbial organisms (Jones, 1969; Grimalt et al., 1988; Ladygina et 

al., 2006), reveal different degradation patterns in comparison with the long-chain n-alkanes.  

 

 

Fig. 7-1. Mass losses a) from Kalbitz et al. (2006) and long-chain n-alkane characteristics for three different leaf 
litter species (Acer, Fagus and Sorbus) during 27 months of leaf litter degradation in a field experiment. b) n-
Alkane concentrations, c) n-alkane amounts, d) odd-over-even predominance and e), f) n-alkane ratios. Bright 
background indicates summer, dark one winter. *Referenced against the initial amount (month 0 = 100%). 
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Fig. 7-2. n-Alkane concentration patterns of three different leaf litter species (Acer, Fagus and Sorbus) before (0 
months) and after (27 months) leaf litter degradation in a field experiment. 

 

Firstly, they occur in lower concentrations (Fig. 7-2 and Fig. 7-3) and show much less decrease 

during 27 months of leaf litter degradation (from 6.1 to 4.9 µg/g litter and mean turnover time of 

34.1 months; Table 7-2). 
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Table 7-2. Rates of decomposition, coefficients of correlation for a first order decay and turnover times for mid- and 
long-chain n-alkanes of three leaf litter species (Acer, Fagus and Sorbus) during 27 months of leaf litter 
degradation. 

Secondly, the trends are often reversed when compared to the long-chain n-alkanes. While in 

spring and summer 2002 the long-chain n-alkanes were decomposed fastest and their decrease 

also accelerated again in summer 2003, the mid-chain n-alkane amounts were increasing during 

these periods (Fig. 7-3). Hence, we suggest that the increase in mid-chain n-alkanes 

concentrations and amounts may be the result of soil microbial activity, whereas the long-chain 

n-alkanes increasingly represent a mixed pool of decomposing plant-derived n-alkanes and in 

situ produced microbial n-alkanes or externally introduced n-alkanes. Further evidence for 

questioning the long established belief that long-chain n-alkanes in soils predominantly derive 

from plants comes from the D/H isotopic signature of the individual long-chain n-alkanes.  

Fig. 7-3. a) Mid-chain n-alkane concentrations (∑(n-C20 to n-C24)), b) mid-chain n-alkane amounts (∑(n-C20 to n-
C24)), c) compound-specific δD-values of the most abundant individual n-alkanes and d) bulk δD-values for three 
different leaf litter species (Acer, Fagus and Sorbus) during 27 months of leaf litter degradation in a field 
experiment. Bright background indicates summer, dark one winter. *Referenced against the initial amount (month 0 
= 100%). 

 



       Study 7: D/H Isotope Ratios of n-Alkane Biomarkers – Degradation Effects 
 

 

288

3.2 Compound-specific δD values of individual n-alkanes 

Fig. 7-3 illustrates that bulk organic matter experienced systematic δD enrichment during leaf 

litter degradation especially in the summers 2002 and summer 2003 (on average from -99 to -

91‰). This can be caused by the preferential removal of relatively D-depleted organic 

compounds, and/or by the exchange of organically bound hydrogen atoms in organic compounds 

with reactive functional groups, such as carboxyl and hydroxyl groups (Schimmelmann et al., 

2006) with D-enriched soil water.  

The long-chain alkanes n-C27, n-C29, and n-C31 in the broad-leaf litter species are significantly 

depleted in deuterium compared to bulk organic matter, with δD values of Acer n-alkanes 

ranging from -145 to -162‰, Fagus from -157 to -182‰ and Sorbus from -162 to -204‰ (Fig. 

7-3). While bulk δD values show no seasonal variations, δD values of all 5 analysed individual 

n-alkanes reveal systematic variations, which are strikingly similar to those of mid-chain n-

alkane concentrations and amounts (Fig. 7-3). On average, n-alkanes become depleted by about 

12‰ from June to November 2001. In March and June 2002, when mid-chain n-alkanes indicate 

in situ production of microbial n-alkanes (Fig. 7-3), mean δD values increase by about 5‰ but 

become more negative again in October (about 6%). In contrast, March and September 2003 are 

characterised by D-enrichment (about 10‰), which is once again accompanied by an increase of 

the mid-chain n-alkanes. Similar to the n-alkane concentration and amount patterns mentioned 

above, the seasonal patterns in the δD values of the n-alkanes also suggest that the long-chain n-

alkanes do not explicitly derive from the degrading leaf litter. Even though the overall absolute 

and relative concentrations of long-chain n-alkanes steadily decrease during the experiment (Fig. 

7-1), the trend may conceal not only the periodic contributions in the spring/summer months, but 

also a gradual build-up of n-alkanes from another source. We argue that there is an additional n-

alkane source, which is sensitive to the seasonal δD variations of the precipitation ranging from 

about -87‰ in the winter to -18‰ in the summer. 
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4 Discussion 

4.1 Absence of D/H exchange reaction and negligible fractionation during biodegradation 

Temporal shifts of bulk organic matter δD values during leaf litter decomposition and diagenesis 

can be explained by the preferential removal of isotopically different labile organic compounds. 

Furthermore, organically bound hydrogen atoms present in certain functional groups (e.g. in 

carboxyl and hydroxyl groups) are prone to hydrogen exchange reactions with surrounding water 

(Schimmelmann et al., 2006). While these processes may account for the observed bulk δD shifts 

in our litterbag experiment, they are unlikely to explain the observed δD variations of individual 

n-alkanes (Fig. 7-3). It is generally accepted that even over geological timescales post-

depositional processes do not significantly affect δD values of sedimentary n-alkanes (Yang and 

Huang, 2003; Sessions et al., 2004; Pedentchouk et al., 2006; Dawson et al., 2007). 

Another possible process, which has to be considered when searching for explanations for our n-

alkane δD litterbag results is fractionation due to biodegradation. Pond et al. (2002) have shown 

in a biodegradation study of crude oil that due to preferential decomposition of D-depleted n-

alkanes, remaining short-chain n-alkanes became D-enriched by up to ~25‰. However, the 

authors also reported that the D/H composition of long-chain n-alkanes was relatively stable. 

Although we cannot completely rule out a minor effect of biodegradation on our n-alkane δD 

results, fractionation cannot explain the seasonal variations, which we found during leaf litter 

degradation.  

4.2 Possible sources of the new long-chain n-alkanes 

In our litterbag experiment, neither the initial increase of long-chain n-alkanes (Fig. 7-1) nor the 

intermittent increase of mid-chain n-alkanes (Fig. 7-3) nor the δD variations of individual n-

alkanes (Fig. 7-3) can be explained solely by the decomposition of plant-derived leaf-wax n-
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alkanes in the litter. Therefore, we argue that a significant pool of additional n-alkanes started to 

affect the amount of leaf litter n-alkanes shortly after the experiment was set up. Both the 

quantitative role and the D/H composition of this additional pool seem to depend on the season.  

Recently, significant seasonal δD shifts of up to ~40‰ were reported for leaf-wax n-alkanes 

(Pedentchouk et al., 2008; Sachse et al., 2009). Furthermore, it is well known that abrasion from 

leaf-surfaces produces aerosols reflecting the leaf-wax lipid composition (Rogge et al., 1993; 

Simoneit, 2005; Andreou and Rapsomanikis, 2009). Consequently, the deposition of these 

aerosols on forest soils and our litterbags may partly account for the observed increases of n-

alkane amounts (Fig. 7-1) and the seasonal pattern of n-alkane specific δD values (Fig. 7-3). 

However, the additional input of higher plant leaf-wax lipids by aerosols can neither explain 

sufficiently the mid-chain n-alkane increases (Fig. 7-3) nor the systematic trends of OEPs and n-

alkane ratios (Fig. 7-1) in our samples. 

Many bacteria produce n-alkane distribution patterns ranging from C11 to C35 often without any 

OEP (Ladygina et al., 2006). By this, n-alkanes from bacterial and higher plant-leaf waxes can 

be distinguished. The n-alkane patterns of many fungi (e.g. Aspergillus sp.) resemble those of the 

bacteria. For instance, Jones (1969) and Weete (1972) reported on many soil microorganisms 

having no OEP and n-alkane patterns maximising in the range from n-C27 to n-C31. Last but not 

least, Grimalt et al. (1988) found that the wet storage of sediment samples produced mid-chain n-

alkanes with no OEP. Distinguishing between these two sources is possible because many 

bacteria produce n-alkane distribution patterns ranging from C11 to C35 often without any OEP 

(Ladygina et al., 2006). Hence we hypothesize that a microbial n-alkane pool in our leaf litter 

samples could be responsible for the observed increases of mid- and long-chain n-alkane 

amounts, the declining OEPs and the seasonal δD variations.  

n-Alkanes mainly of bacterial origin were also detected in throughfall and stem water, 

presumably occurring especially in colloidal dispersion (Colina-Tejada et al., 1996). In the 
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present study, it is not possible to exclude such a contribution from canopy bacteria. However, in 

comparison with in situ microbial activity in soil and the litter layer, this appears as a minor 

source.  

4.3 Modelling leaf litter n-alkane decay and built-up of a microbial n-alkane pool – 

explaining the seasonality of the n-alkane δD results 

While it is argued that the plant leaf-wax n-alkanes in the litter have not undergone any 

significant isotopic shift during biodegradation (Section 4.1), the postulated soil microbial n-

alkane pool (Section 4.2) is not only variable in its amount over time due to its built-up and 

simultaneous decomposition, but also susceptible to variations in δD of precipitation and soil 

water, because soil microorganisms incorporate this isotopic signature during biosynthesis. 

In the following, a conceptual model is set up assessing the effects of the decay of leaf-wax n-

alkanes, the built-up of a microbial n-alkane pool and changes in the total n-alkane pool (Fig. 7-

4). Accordingly, the decay of plant derived n-alkanes starts with a two-month time lag; the 

decomposition rate is decreasing in winter months and increasing in summer months. δD values 

of the plant-derived n-alkanes remain constant at -160‰ over the period of leaf litter 

degradation. It is assumed that there is an increase in the amount of microbial n-alkanes during 

the first several months as well as during the following spring and early summer, when plenty of 

easily degradable organic compounds from fresh leaf litter are available. Slight decreases are 

assumed for the winter months and the year 2003 because of lower temperatures and less 

favourable substrate conditions. Furthermore, the contribution of newly synthesized n-alkanes 

versus ‘old’ microbial n-alkanes is estimated based on expected microbial activity, which is low 

in the winter, high in the spring/summer and gradually decreases from year to year (Fig. 7-4). δD 

values of newly synthesized n-alkanes are calculated by presuming a D-depletion of 

approximately -160‰ during biosynthesis (Sachse et al., 2006) relative to δD of the source water 
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(Fig. 7-4). δD values of total microbial n-alkanes were calculated from newly synthesized and 

‘old’ n-alkanes using a mass balance equation. Finally, the total n-alkane δD values were 

determined by summing up the total microbial and the plant-derived n-alkanes using a mass 

balance equation. 

δD values resulting from this conceptual model for the litterbag experiment show the same 

seasonal trends as the measured δD values. Also amplitudes of δD variations are very similar 

(Fig. 7-4). The only outlier is September 2003, where more positive measured δD values can be 

possibly explained by the 2003 European heat wave. This finding provides support for the idea 

that leaf litter decomposition is accompanied by a simultaneous build-up of a microbial n-alkane 

pool, which can cause seasonal variations of long-chain n-alkane δD values of up to 25‰ in the 

case of n-C27 in Fagus litter (average value 13‰).  

Fig. 7-4. a) and b) Modelled total, plant and microbial n-alkane amounts, c) modelled contribution of newly 
synthesized microbial n-alkanes versus ‘old’ ones, d) modelled δD values for source water, newly synthesized and 
total microbial n-alkanes and e) comparison of modelled total n-alkane δD values with mean measured δD values. 
Bright background indicates summer, dark one winter. 

 



Study 7: D/H Isotope Ratios of n-Alkane Biomarkers – Degradation Effects…-293 
  

 

4.4 Implications for turnover-times, origin of long-chain n-alkanes in soils/sediments and 

δD values of n-alkanes as paleoclimate proxy. 

Seasonal δD variations of leaf-wax n-alkanes have already been reported (Pedentchouk et al., 

2008; Sachse et al., 2009). The authors concluded that n-alkanes in plant leaf waxes have very 

short turnover times (within weeks). For comparison, we calculated mean n-alkane turnover 

times for leaf litter decomposition of around 11.7 months (Table 7-2) and assumed for our model 

the microbial n-alkane pool to be renewed by 60% to 80% within 2 months during summer 

seasons. Nevertheless, we are aware that under steady-state conditions in soils, where more n-

alkanes are protected against degradation e.g. in microaggregates, turnover times will be much 

longer. For instance, Wiesenberg et al. (2004) reported turnover times of n-alkanes in cropped 

soils ranging from 35 to 60 years.  

Sachse et al. (2009) furthermore concluded from their results that the isotopic signal reaching 

soils and sediments represents only the last weeks before leaf senescence. Since D-enrichment 

by evapotranspiration in soil and leaf-water is less pronounced in autumn compared to summer, 

the δD values of n-alkanes in leaf litter are more negative than in fresh leaves. The strong 

influence of D-enrichment in leaf-water due to transpiration on δD values of plant waxes was 

recently also demonstrated by Feakins and Sessions (2010). Accordingly, this finding can partly 

explain the significant D-depletion of up to 94‰ (average 55‰) observed by Chikaraishi and 

Naraoka (2006) for the transition from fresh leaves to soils. However, it can not explain the 

progressive depletion from leaf litter to mold and finally soil. The δD results from our litterbag 

experiment support the idea that microbial reworking during leaf litter degradation is responsible 

for this depletion, because soil microorganisms use soil water as source, whereas plants 

incorporate D-enriched leaf-water. Further studies should explore the extent of seasonal 

variations in δD values of n-alkanes in microbially active topsoils. 
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The n-alkane concentration pattern (Fig. 7-2), the discussion about microbial n-alkane sources 

(Section 4.2) and the model explaining the seasonal δD variations (Section 4.3.) have shown that 

even when n-alkane patterns still look very characteristic for leaf-waxes, significant amounts of 

n-alkanes can be contributed by microorganisms. Furthermore, microorganisms typically reveal 

high abundances of mid-chain n-alkanes and are also able to produce short-chain n-alkanes. 

Hence, virtually all n-alkanes which are used as biomarkers for terrestrial or aquatic plants in 

paleoclimate studies of lake sediments can potentially be influenced by early degradation as well 

as by eroded or leached soil organic matter. Firstly, this may help explaining n-alkane pattern 

differences between lacustrine sediments and dominant vegetation in the catchment as for 

instance described by Sachse et al. (2006). Secondly, these soil microbial n-alkane pools have 

more negative δD values than terrestrial plants (leaf-water D-enrichment) and at the same time 

can be supposed to have more positive δD values (soil water enrichment) than aquatic plants 

except for semi-arid and arid ecosystems like Tibetan Plateau (Mügler et al., 2008). Our results 

suggest that paleoclimate studies using δD values as a proxy for paleohydrology should consider 

not only paleovegetation history (Liu et al., 2006; Smith and Freeman, 2006; Feakins and 

Sessions, 2010), but also potential contribution of organic compounds from microbial biomass 

with different δD signature.  

5 Conclusions 

Aiming at contributing to the discussion whether n-alkane biomarkers and especially the 

paleoclimate proxy δD of long-chain n-alkanes is affected by early diagenesis/decomposition, 

we investigated three different broad-leaf litter species, which have been degraded in the field for 

27 months. From our results and the discussion we draw several conclusions: 

• Concentrations and amounts of plant leaf-wax n-alkanes are decreasing rapidly during leaf 

litter decomposition (~85% in 27 months, mean turnover time around 11.7 months). 
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• Leaf litter degradation is accompanied by characteristic changes of the n-alkane patterns, 

namely the decrease of originally high OEPs and the convergence of long-chain n-alkane 

ratios to the value 1. This should be taken into account when trying to reconstruct vegetation 

changes based on n-alkane patterns (Zech et al., 2009a). 

• Changing n-alkane patterns, initial long-chain n-alkane increases and intermittent mid-chain 

n-alkane increases indicate that a microbial n-alkane pool is rapidly build up and starts to 

overprint the original n-alkane patterns of decomposing leaf litter. 

• The build-up of a microbial n-alkane pool, which is susceptible to δD variations of source 

water, can cause seasonal δD variations in decomposing leaf litter of up to 25‰ (Fagus, n-

C27, average 13‰). A respective conceptual model is proposed and supports this idea. 

• The build-up of a microbial n-alkane pool can be made responsible for the observed shift in 

δD values from fresh leaf litter to soil and sediments. This should be kept in mind when 

applying the n-alkane δD paleoclimate proxy to terrestrial paleosols. 

• Similarly, unless SOM erosion/leaching and early leaf litter degradation can be excluded, 

also δD values of long-chain n-alkanes in lacustrine sediments are likely to reflect a mixed 

plant and microbial signal rather than a solely plant leaf-wax signal. Short- and mid-chain n-

alkanes are not exclusive biomarkers for aquatic plants either, but can be produced by soil 

microorganisms, too. Therefore care must be taken when interpreting δD values of 

sedimentary n-alkanes. 
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