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Abbreviations

bipy bis-pyridine
bpea 1,2-bis(4-pyridyl)ethane
bpee 1,2-bis(4-pyridyl)ethene
bppa 1,3-bis(4-pyridyl)propane
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δ (NMR) Chemical Shift
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dansyl 3-(dansylamido)propyltrimethoxysilane
DEI Direct Electron Ionisation
dmap 4-(dimethylamino)pyridine
DMF N,N ′-Dimethylformamid
dpp 2,6-di(pyrazol-1-yl)pyridine
DSC Differential Scanning Calorimetry
EPR Electron Paramagnetic Resonance
ESI Electrospray Ionisation
Et Ethyl
EtOH Ethanol
γHS HS fraction
Γ/2 Half Width at Half Maximum
Him 1H-Imidazole
HS High Spin
IC Internal Conversion
IR Infra-red
ISC Inter-system Crossing
LD-LISSC Ligand-Driven Light Induced Spin State Change
LIESST Light Induced Excited Spin State Trapping
LS Low Spin
mCi milli Curie
Me Methyl
MeOH Methanol
MRI Magnetic Resonance Imaging
MS Mass Spectrometer
µB Bohr Magneton
µeff Effective Magnetic Moment
µSO Spin-Only Magnetic Moment
NMR Nuclear Magnetic Resonance
NP Nanoparticle
PCA 1-pyrenecarboxaldehyde



Ph Phenyl
phpy 4-phenylpyridine
pina N -(pyrid-4-yl)isonicotinamide
PL Photoluminescence
py pyridine
RhB Rhodamine B
RT Room Temperature
S Spin Number
SCO Spin Crossover
SEM Scanning Electron Microscopy
SQUID Superconducting QUantum Interference Device
ST Spin Transition
T 1

2
Spin Transition Temperature

terpy terpyridine
TGA Thermogravimetric Analysis
THF Tetrahydrofuran
trz 1,2,4-triazole
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1. Abstract/Zusammenfassung

The aim of this work was to gain Fe(II) SCO complexes featuring cooperative STs

(abrupt, with thermal hysteresis) by trying to build a network of short contacts (hydrogen

bonds, π-interactions) in the crystal packing of the complexes in a crystal engineering way.

Firstly, the bridging ligand pina was used in combination with an Fe(II) Schiff base-

like complex to build SCO coordination polymers. The pina ligand is known to build

hydrogels, so it was used in order to build a hydrogen bond network within the crystal

lattice. In total, seven different solvates of the same pina coordination polymer were

obtained when different solvents were used, some presenting remarkable SCO properties

i.e. the sample ([FeL1(pina)]·x MeOH/H2O)n shows a 92 K wide hysteresis, which is, to

the best of my knowledge, the largest hysteresis reported for Fe(II) SCO complexes. The

crystal structure of the sample ([FeL1(pina)]·2 MeOH)n revealed that the pina ligand is

indeed building a dense hydrogen bond network which is responsible for the cooperative

ST observed.

Although SCO complexes with increased cooperativity were obtained by using the pina

ligand, all synthesised compounds contain non-coordinating solvent molecules, making the

SCO properties change upon solvent loss. In order to avoid dependency on the solvent

content, the ligand design was re-oriented to favour π-interactions. New equatorial Schiff

base-like ligands bearing a naphthalene substituent were synthesised and converted into

mononuclear Fe(II) SCO complexes and coordination polymers. From the five monu-

clear SCO complexes, the crystal structure of three could be determined, and enables

a deep understanding of the structure-magnetic properties relationship i.e. the sample

[FeL4(py)2]·py presents a two-step ST (T1 = 80 K, T2 = 150 K) which finds its origin in

the bi-layered crystal structure with two inequivalent Fe(II) centres. Structure-defining

C–H· · · π and C–H· · ·O interactions were found to build an intricate network in all crys-
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1. Abstract/Zusammenfassung

tal structures. For the coordination polymers, different bridging ligands were used (bipy,

bpea, bpee, bppa) in order to further increase the cooperativity. The six new SCO coor-

dination polymers present improved SCO properties in comparison to the corresponding

mononuclear complexes, and the already reported coordination polymers bearing a ben-

zene group. For example, the samples ([FeL3(bpea)]·MeOH)n and ([FeL3(bpee)]·MeOH)n

show both a wide thermal hysteresis (23 K and 47 K, respectively). As no crystal struc-

tures were obtained, it can only be presumed that C–H· · · π and C–H· · ·O interactions in

combination with the building of 1D chains is responsible for the improved SCO proper-

ties.

The π-system of the ligand was then further extended from a naphthalene-ring to a

phenazine-ring. The new Schiff base-like ligand showed luminescent properties and the fo-

cus of the research was then to investigate the possible interactions between the spin state

of the included metal centre and the emission properties. The Ni(II) complex showed that

it was possible to turn on/off the luminescence of the ligand upon Coordination Induced

Spin State Switch (CISSS), between a luminescence diamagnetic square planar geometry

and a non-luminescent paramagnetic square pyramidal geometry. Time-resolved fluores-

cence spectroscopy measurements revealed a non-radiative energy transfer taking place

between the fluorophore and the paramagnetic metal centre. From this point, in order to

gain a better understanding of the phenomenon, the phenazine fluorophore was exchanged

for a phenanthrene-quinoxaline or a [Ru(bipy)2]2+ block. In both cases, no influence of

the spin state on the emission properties were observed. Finally, an Fe(II) metal centre

was included in the phenazine ligand, and converted into the SCO coordination polymer

[FeL1(bipy)]n. The obtained compound presents a wide hysteresis above room tempera-

ture (T 1
2
↑ = 371 K, T 1

2
↓ = 323 K), which was characterised by SQUID, DSC, and X-ray

powder diffraction. The measurement of the emission properties in the solid state shows

a dual emission (λ1, λ2) for which the ratio λ1/λ2 is depending on the spin state of the

metal centre. This unprecedented luminescent Fe(II) SCO coordination polymer opens

a wide new research field and new possibilities for applications in the domain of sensors

and memory devices.
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Das Ziel dieser Arbeit war es, durch die Ausbildung von intermolekularen Wechsel-

wirkungen (Wasserstoffbrückenbindungen, π-Wechselwirkungen) zwischen den Komplexen

in einem ”crystal engineering” Ansatz, Fe(II) Komplexe zu erhalten, die kooperative SCO

(abrupt, mit thermischer Hysterese) zeigen. Zunächst wurde der verbrückende Ligand

pina genutzt um, in Kombination mit einem Fe(II) Schiff Base ähnlichen Komplex,

SCO Koordinationspolymere zu erhalten. Der pina Ligand ist bekannt dafür, Hydro-

gele zu bilden, und wurde daher benutzt, um ein Wasserstoffbrückenbindungsnetzwerk

innerhalb der Kristallpackung aufzubauen. Insgesamt wurden, durch den Einsatz ver-

schiedener Lösemittel, sieben verschiedene Solvate des gleichen pina Koordinationspoly-

mers erhalten. Einige zeigen bemerkenswerte SCO Eigenschaften, z.B. zeigt die Probe

([FeL1(pina)]·x MeOH/H2O)n eine 92 K breite Hysterese, welche, nach meinem Wissen,

die größte bekannte Hysterese für einen Fe(II) SCO Komplex ist. Die Kristallstruktur

der Probe ([FeL1(pina)]·2 MeOH)n zeigte, dass der pina Ligand tatsächlich ein dichtes

Wasserstoffbrückenbindungsnetzwerk bildet, welches für den beobachteten, kooperativen

SCO verantwortlich ist.

Obwohl SCO Komplexe mit erhöhter Kooperativität durch die Benutzung des pina

Liganden erhalten wurden, enthalten alle synthetisierten Verbindungen unkoordinierende

Lösungsmittelmoleküle, weshalb sich die SCO Eigenschaften durch Verlust des Lösungsmit-

tels verändern. Um eine Abhängigkeit des Lösungsmittelanteils zu verhindern, wurde das

Liganddesign umorientiert, um π-Wechselwirkungen zu favorisieren. Neue äquatoriale

Schiff Base ähnliche Liganden mit einem Naphthalenrückrad wurden synthetisiert und

zu einkernigen Fe(II) SCO Komplexen und Koordinationspolymeren umgesetzt. Von den

fünf einkernigen SCO Komplexen konnte von dreien die Kristallstruktur bestimmt wer-

den, und diese ermöglichen ein tieferes Verständnis der Struktur-Eigenschafts Beziehun-

gen, z.B. zeigt die Probe [FeL4(py)2]·py einen zweistufigen SCO (T1 = 80 K, T2 = 150

K), welcher seinen Ursprung in einer zweilagigen Kristallstruktur mit zwei unabhängi-

gen Fe(II) Zentren hat. Strukturbestimmende C–H· · · π und C–H· · ·O Wechselwirkungen

bilden ein kompliziertes Netzwerk in allen Kristallstrukturen. Um die Kooperativität

weiter zu erhöhen wurden verschiedene, verbrückende Liganden (bipy, bpea, bpee,

bppa) für die Synthese von Koordinationspolymeren genutzt. Die sechs neuen SCO Ko-
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ordinationspolymere zeigen im Vergleich mit den dazugehörigen einkernigen Komplexen,

und den bereits bekannten Koordinationspolymeren mit einem Benzenring, verbesserte

SCO Eigenschaften. Zum Beispiel zeigen die beiden Proben ([FeL3(bpea)]·MeOH)n und

([FeL3(bpee)]·MeOH)n eine breite thermische Hysterese (23 K und 47 K). Da keine

Kristallstrukturen erhalten wurden, kann nur angenommen werden, dass C–H· · · π und

C–H· · ·O Wechselwirkungen in Kombination mit der Ausbildung von 1D Ketten für die

verbesserten SCO Eigenschaften verantwortlich sind.

Das π-System des Liganden wurde dann von einem Naphthalenring zu einem Phena-

zinring weiter ausgebaut. Der neuer Schiff Base ähnliche Ligand zeigte lumineszente

Eigenschaften, und rückt nun den Fokus der Forschung auf die Untersuchung von Wech-

selwirkungen zwischen dem Spinzustand des Metallzentrums und den Emissionseigen-

schaften. Der entsprechende Ni(II) Komplex zeigt, dass es möglich ist, die Lumineszenz

des Liganden mittels eines Coordination Induced Spin State Switchs (CISSS), zwischen

einer lumineszenten, diamagnetischen, quadratisch planaren Koordinationsgeometrie und

einer nicht-lumineszenten, paramagnetischen, quadratisch pyramidalen Geometrie ein-

und auszuschalten. Zeitaufgelöste Fluoreszenzspektroskopie Messungen zeigen, dass ein

strahlungsfreier Energietransfer zwischen dem Fluorophor und dem paramagnetischen

Metallzentrum stattfindet. Von diesem Punkt an, um ein besseres Verständnis des Phäno-

mens zu bekommen, wurde das Phenazin Fluorophor gegen einen Phenanthren-quinoxalin

oder einen [Ru(bipy)2]2+ Block ausgetauscht. In beiden Fällen wurde kein Einfluss des

Spinzustands auf die Emissionseigenschaften beobachtet. Letztendlich wurde der Fe(II)

Komplex des Phenazinliganden hergestellt und zu dem SCO Koordinationspolymer [FeL1

(bipy)]n umgesetzt. Die dabei erhaltene Verbindung zeigt eine breite Hysterese oberhalb

von Raumtemperatur (T 1
2
↑ = 371 K, T 1

2
↓ = 323 K), welche mittels SQUID, DSC,

und Röntgen-Pulverdiffraktometrie charakterisiert wurde. Die Messungen der Emission-

seigenschaften im Feststoff zeigen eine duale Emission (λ1, λ2), für welche das Verhältnis

λ1/λ2 von dem Spinzustand des Metallzentrums abhängt. Dieses bisher beispiellose Fe(II)

SCO Koordinationspolymer eröffnet ein weites Feld für neue Forschung und neue Anwen-

dungsmöglichkeiten in Bereichen der Sensorik und Datenspeicherung.
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2. Introduction

2.1 The Spin Crossover Phenomenon

In 1931, Cambi et al. reported a series of N,N’ -alkyl-dithiocarbamate iron(III) com-

plexes for which the magnetisation does not follow the Curie law. [1] The unusual magnetic

behaviour was further investigated and Cambi et al. determined firstly that the type of

the alkyl subsituent influences the behaviour, secondly that the complexes have upper and

lower magnetisation limits corresponding to S = 5
2

and S = 1
2
, and finally came across

the observation that two isomers of the same complex do not present the same magnetic

behaviour (see Figure 2.1). [2] It is only through the development of the Crystal Field

Theory by Hans Bethe [3] and John H. Van Vleck [4] in the 30s, and its later use by coor-

dination chemists in the 50s [5] that this firstly described ”unusual magnetic behaviour”

is understood today as the Spin Crossover (SCO) Phenomenon.

Figure 2.1: ”Unusual magnetic behaviour” of a series of N,N’ -alkyl-dithiocarbamate
iron(III) complexes reported by Cambi et al. [2]

When a transition metal ion with a 3d4–3d7 electronic configuration is the centre of an

octahedral complex, the splitting of the d orbitals into the two levels t2g and e∗g allow two

possible spin states: a high spin (HS) state for which the first rule of Hund is respected
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2.1. THE SPIN CROSSOVER PHENOMENON

(maximisation of S), and a low spin (LS) state which breaks Hund’s rules (depicted in

Figure 2.2 in the case of a 3d6 metal ion). Most complexes have a defined state, either HS

when the total spin pairing energy P is significantly larger than the crystal field strength

∆O (i.e. [Fe(H2O)6]2+), or LS when P << ∆O (i.e. [Fe(CN)6]4−). When P is in the same

order of magnitude as ∆O, SCO is possible, and the complex can switch between the

HS and LS states, classically upon physical stimuli such as temperature change, pressure

application, or light irradiation. [6–8]

Figure 2.2: Schematic representation of the HS and LS state of a 3d6 metal ion in an
octahedral coordination sphere.

Up to day, SCO has been reported for Cr(II), [9–14] Mn(II), [15] Mn(III), [16,17] Fe(III), [1,2,7,18]

Co(II), [7,19,20] and Co(III) complexes [21,22], however Fe(II) SCO complexes [6,7] attract the

most attention as they switch between a paramagnetic HS state (S = 2) and a diamagnetic

LS state (S = 0) and are most frequently observed. Upon SCO, not only the magnetic

properties of the Fe(II) centre changes, but also the electronic properties (i.e. colour)

as the HS and the LS state have different electronic ground states (respectively 5T2 and

1A1). As consequence of the population of the e∗g antibonding orbitals in the HS state,

the volume of the Fe(II) centre increases when transiting from the LS to HS state, which

can be observed on the metal-ligand distances which undergo an elongation of ≈ 0.2

Å. [23] This elongation has further consequences on the vibrational modes of the molecule.

Those changes are often represented either in a Tanabe-Tsugano diagram as function of

the crystal field strength ∆O or in a Jablonski diagram as function of the metal-ligand

distance rML (see Figure 2.3). All those changes offer a wide variety of methods to follow
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2.1. THE SPIN CROSSOVER PHENOMENON

SCO, as the magnetic changes can be followed with a SQUID magnetometer, a NMR

or an EPR spectrometer; the electronic changes can be measured using absorption spec-

troscopy or diffuse reflectance spectroscopy; and the structural and vibrational changes

can be measured with X-ray diffraction (on single crystal and/or on powder), IR spec-

troscopy, Raman spectroscopy, and 57Fe Mössbauer spectroscopy. Finally a spin crossover

complex will take or release energy (heat) upon spin transition (ST) which can be detected

with calorimetric measurement (DSC).

Figure 2.3: Tanabe-Tsugano diagram for a 3d6 metal ion [24] (left) and Jablonski diagram
(right). LS state is represented in blue, HS state in red.

2.1.1 Thermal SCO

The driving force for a temperature-stimulated spin transition lies in the thermody-

namics. If the spin transition is set as a LS to HS reaction:

LS → HS (2.1)

The reaction will take place if the free enthalpy ∆G is negative:

∆G = ∆H − T∆S (2.2)
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2.1. THE SPIN CROSSOVER PHENOMENON

if ∆G < 0 (2.3)

then ∆H < T∆S (2.4)

The enthalpy of the HS state (HHS) is higher than the enthalpy of the LS state (HLS)

because the latter one is stabilised through the complete population of the t2g orbitals.

Therefore, in this reaction, ∆H is positive. The entropy of the HS state (SHS) is bigger

than the entropy of the LS state (SLS), because of the greater disorder of the electron

distribution in the orbitals in the HS state. Therefore, ∆S is also positive. Then the

equation 2.4 can be fulfilled when the temperature T is high enough, that the product

T∆S can overcome the enthalpy term ∆H. At the equilibrium point LS 
 HS, the free

enthalpy ∆G is zero, and the temperature of the equilibrium (T 1
2
) is defined as:

T 1
2

=
∆H

∆S
(2.5)

2.1.2 Light Induced Excited Spin State Trapping

The SCO phenomenon can be triggered with light irradiation, this process is called the

Light Induced Excited Spin State Trapping (LIESST) effect. [6,25] At very low temperature,

a SCO complex in its LS state is irradiated (usually with green light) and it leaves its

ground state 1A1 for an excited state (i.e. 1T). Upon relaxation, a first intersystem

crossing (ISC) can occur, and the complex is now in an intermediate triplet state 3T.

Now the complex can either relax towards its original ground state 1A1, or relax towards

a metastable HS state 5T2. Once in the metastable HS state, at very low temperature,

the molecule is then trapped at the bottom of the potential well and cannot overcome

the energy barrier towards the LS ground state (see Figure 2.4). Upon warming, the

trapped molecule will ascend in the potential well and finally relax towards its LS state.

The reverse process is also possible, the trapping of a metastable LS state at very low

temperature (reverse-LIESST), but then usually the irradiation light used is red. The

colour of the irradiation wavelength come from the energy of the respective metal-centred

transitions.
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2.1. THE SPIN CROSSOVER PHENOMENON

Figure 2.4: Jablonski diagram representing the LIESST (left) and reverse-LIESST (right)
effects. Thermal relaxation happens at high temperature.

Technically, a LIESST experiment is carried out this way: firstly the sample is cooled

down to 10 K; secondly the sample is irradiated, and excited into its metastable HS

state; finally the sample is slowly warmed up and relaxes toward the LS state. The

T (LIESST ) is then measured, which is the temperature at which half of the molecules

have relaxed. A relationship between T (LIESST ) and T 1
2

has been theoratically and

empirically established: [25,26]

T (LIESST ) = T0 − 0.3T 1
2

(2.6)

where T0 is the extrapolated T (LIESST ) when T 1
2
→ 0. It has been found that T0 is

depending on the denticity of the ligand coordinating the SCO metal centre (see Figure

2.5).

2.1.3 SCO in the solid state: cooperativity and hysteresis

SCO can be observed in solution as well as in the solid state, however one system does

not necessarily exhibit ST in both phases. In solution, interactions between the SCO cen-

tres are negligible, and the spin transition follows a temperature-dependent Boltzmann

distribution, in other words: a gradual ST (see Figure 2.6). In the solid state, some
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2.1. THE SPIN CROSSOVER PHENOMENON

Figure 2.5: Variation of T (LIESST ) versus T 1
2

for spin crossover compounds. The region

in gray is meaningless as the T (LIESST ) temperature has to be inferior or at least equal
to T 1

2
. [25]

systems also present gradual SCO, [27] however abrupt STs are also observed, where an

electron-phonon coupling between the transiting molecules leads to a cooperative ST. [28]

One model developed by Spiering et al. [29–31] describes the cooperative phenomenon using

elastic interactions with at its basis the metal-ligand distance change upon ST. It is pro-

posed that such a change at point defects of a solid will lead to an internal pressure which

is then propagated through the crystal lattice via phonon interactions, speeding up the

ST process for the other SCO centres. This model was experimentally confirmed through

the study of dilution effects for the SCO coordination polymer [FexZn1−x(ptz)6](BF4)2

(0.1 ≤ x ≤ 1)(ptz = 1-propyltetrazole). [32] Such cooperative SCO can be transmitted

through the crystal lattice by many means: the formation of coordination polymers, or

metal-organic frameworks can lead to cooperative SCO, but long range interactions can

also lead to abrupt STs when the spin centres interact with each other through hydro-

gen bonds, π-interactions, or Van der Waals interactions. For example, the mononuclear

complex [FeL(Him)2] [33] presents abrupt ST with a 70 K-wide hysteresis, and it was re-

vealed that the dense hydrogen bond network of the crystal lattice was responsible for

the cooperative SCO. [34]
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2.1. THE SPIN CROSSOVER PHENOMENON

Figure 2.6: Different types of SCO: gradual (left), abrupt with hysteresis (centre), stepwise
(right).

Some STs present another effect of high interest: a thermal hysteresis, also known as

memory effect. A thermal hysteresis appears when the HS to LS and LS to HS transition

do not happen at the same temperature (T 1
2
↑ 6= T 1

2
↓). A simple way to explain this

phenomenon is to consider that upon ST, the SCO molecules stabilise their newly acquired

spin state through structural changes i.e. crystallographic phase transition, formation or

breaking of short contacts. This stabilisation may happen upon HS to LS ST, LS to

HS ST, or upon both STs (see Figure 2.7). The mononuclear complex [FeL(Him)2] [33]

examplifies this phenomenon: in the crystal packing, very specific hydrogen bonds connect

1H -imidazole with the first coordination sphere of the Fe(II) centre (Fe–O· · ·H–N). Upon

HS to LS ST, the metal-ligand distance decreases, and therefore the hydrogen bond length

increases, decreasing its electron pulling effect (Fe-O· · · · · ·H–N). As the hydrogen bond

connects directly to the first coordination sphere, this elongation upon SCO has a drastic

influence on the crystal field strength, and leads to the 70 K-wide hysteresis. As well as for

cooperativity, such interactions can be induced by hydrogen bonds, [34] π-interactions, [35]

and Van der Waals interactions. [20,36] It was proposed by Halcrow that not only the volume

change upon SCO can be responsible for a thermal hysteresis, but any structural changes

upon SCO in general, e.g. rotation of a ligand from LS to HS. [37]

2.1.4 Applications

Many potential applications were already proposed for SCO complexes, or SCO composite

materials, but they are depending on the type of ST. Abrupt ST with hysteresis are

particularly indicated for applications in the domain of memory devices and displays, as

11



2.1. THE SPIN CROSSOVER PHENOMENON

Figure 2.7: Jablonski diagram depicting the structural stabilisation(s) responsible for
hysteresis phenomenon.

in the bistable domain, the SCO material can exist in the LS or the HS state at the

same temperature. If one uses the LS state as a 0 and the HS as a 1, the SCO material

becomes a memory device (see Figure 2.8). [38,39] A perfect SCO material would exhibit a

stable 100 K-wide hysteresis around room temperature. Another application domain is

sensorics: a SCO material exhibiting a gradual SCO can be used as thermometer over the

temperature span of the transition. [40] Irreversible spin crossover complexes have recently

been commercialised by Olikrom, and will be used by Airbus as paint for critical parts of

the planes, in order to detect any pressure or temperature changes happening in-flight. [41]

Finally SCO complexes are proposed as MRI contrast agents. [42]

2.1.5 Coordination Induced Spin State Switch

The spin state of Ni(II) complexes can also be switched, however not with a physical

stimulus, but with a chemical stimulus. A diamagnetic (S = 0) square planar Ni(II)

complex turns into a paramagnetic (S = 1) square pyramidal/octahedral complex upon

coordination of (solvent) molecule(s) (see Figure 2.9). The Coordination Induced Spin

State Switch (CISSS), then often observed in solution, is chemically induced and can

be investigated with SQUID magnetometry, UV-Vis spectroscopy, NMR Spectroscopy

(Evans method), often in function of the concentration of ligating molecules. A well

12



2.1. THE SPIN CROSSOVER PHENOMENON

Figure 2.8: Schematics of a screen-printed ST-based display (top left), alumina support
with resistive dots (top right), alumina support with the screen-printed ST-based material
(bottom left), and information written on the display (the ST-based material goes from
purple (LS state) to white (HS state) upon heating. [38,39]

known system for this phenomenon was developed by Herges et al., and consists of a

Ni(II) porphyrin complex with perfluorinated aromatic substituents. [43] The system in

solution exhibits CISSS when in contact with pyridine-based molecules. The system was

then modified to bear an azopyridine arm whose N=N double bond can be photoswitched

reversibly from trans to cis configuration. In the cis configuration, the nitrogen atom of

the pyridine is close enough to the Ni(II) centre to coordinate and induce spin state switch

(see Figure 2.10). [44,45] The chemical stimulus to induce CISSS is then photo-stimulated,

and the phenomenon becomes a Ligand-Driven Light Induced Spin State Change (LD-

LISSC). This system was lately modified to be soluble in water, and was proposed as

MRI contrast agent. [46]
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2.2. SCO AND LUMINESCENCE

Figure 2.9: Scheme of the different spin states of a Ni(II) complex depending on its
coordination sphere.

Figure 2.10: Reversible light-induced magnetic switching of azopyridine-functionalised
Ni(II) porphyrin complex. [45]

2.2 SCO and Luminescence

In the last years, part of the research in the domain of SCO complexes was directed

at synthesising, characterising, and understanding multifunctional systems where a SCO

function is coupled with another feature, i.e. liquid crystallinity, [47] conductivity, [48] mag-

netic ordering, [48] or luminescence. [49] Considering this thesis, the coupling between SCO

and luminescent properties is of particular interest. In literature, two main strategies are

used to couple those two features: the first is to create a composite material made of a
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SCO complex and a luminescent material; the second is to covalently bind a fluorophore

to a SCO complex at the molecular level. In the next sections, a short introduction to

photoluminescence will be given, as well as some relevant examples for both strategies.

2.2.1 Photoluminescence

Photoluminescence is defined as the spontaneous emission of radiation from an elec-

tronically excited species or from a vibrationally excited species not in thermal equilib-

rium with its environment, arising from direct photoexcitation of the emitting species. [50]

With the right irradiation, a luminescent species will absorb the photon and go from its

ground state S0 to its excited state S1. In its excited state, the species can relax towards

its ground state by emitting light (fluorescence), or through an internal conversion (IC,

non-radiative). IC can be seen as relaxation through vibrations or collisions with other

molecules. Some systems, instead of relaxing back to the ground state, undergo an inter-

system crossing (ISC) towards the triplet state T1. From this excited state T1, the system

can either relax by emitting light (phosphorescence), or through an IC. The phosphores-

cent emission is a forbidden transition as it goes from a triplet state to a singlet state.

Therefore the lifetime of the phosphorescent excited states are generally longer. [51] As

the phosphorescent excited state is a triplet state, molecular oxygen in its triplet ground

state will quench phosphorescent emission. In Figure 2.11, the different transitions are

illustrated in a Jablonski diagram, and the corresponding characteristic times are given.

Fluorescence and phosphorescence are extremely sensitive phenomena, particularly to

the environment of the emitting species. Parameters such as temperature, the viscos-

ity or dielectric constant of the used solvent, or the type of the solvent used can have

drastic influences on the position, shape, and intensity of the emission feature. [51] Struc-

tural changes can also influence the emission properties of a molecule: for example, the

monoanion and dianion of the well-known fluorescein are fluorescent, however the neu-

tral and protonated forms are non-emitting. [52] On this basis, a major environmental or

structural change such as a SCO must have an influence on neighbouring fluorophores.
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Figure 2.11: Jablonski diagram of the different phenomena involved in photolumines-
cence. Black arrows represent radiative excitation (absorption), green arrows radiative
de-excitation processes, and red arrows non-radiative processes. Characteristic times
taken from Valeur et al.. [51]

2.2.2 Luminescent SCO composite materials

Electroluminescent thin films doped with a SCO complex

In 2008, Matsuda et al. reported the fabrication of a temperature-dependent electrolu-

minescent device based on a thin film of the SCO complex [Fe(dpp)2](BF4)2 doped with

Chlorophyll a (dpp = 2,6-di(pyrazol-1-yl)pyridine) (depicted in Figure 2.12). [53–55] The

SCO complex [Fe(dpp)2](BF4)2 itself presents an abrupt SCO at T 1
2

= 259 K. [56] It was

demonstrated that the thin film Chlorophyll a:[Fe(dpp)2](BF4)2 in its HS state is electro-

luminescent, but not in the LS state. When the doping material was changed to Nile Red

(9-diethylamino-5-benzo[α]phenoxazinone), the thin film was then always electrolumines-

cent regardless of the spin state. The authors concluded that the on/off switching is due

to a change of the molecular orbital level of the complex [Fe(dpp)2](BF4)2 upon ST.
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Figure 2.12: The fabricated electroluminescent device fabricated by Matsuda et al., [54] and
chemical structure of [Fe(dpp)2]2+ (left), Nile Red (middle), and Chlorophyll a (right).

SCO-core-luminescent-shell nanoparticles

In 2011, Colacio et al. reported the synthesis of core-shell nanoparticles (NPs) for which

the core is made of the complex [Fe(1−x)Znx(Htrz)2(trz)](BF4)2 (x = 0, 0.2, 0.5) (trz =

1,2,4-triazole), and the shell is a silica layer on which is grafted the organic fluorophore 3-

(dansylamido)propyltrimethoxysilane (dansyl) (see Figure 2.13). The SCO core exhibits

an hysteresis with varying T 1
2
↑ and T 1

2
↓ in function of the Fe:Zn ratio. Fluorescence

spectroscopy showed that the emission properties of the NPs are strongly dependent on

their spin state, and that the HS state is emitting up to three times more than the LS

state. Absorption spectra in the HS and the LS states revealed an overlap of the 1A1 →1T

transition of the LS state with the emission peak of the dansyl group, quenching the

emission of the NPs. [57]

Co-crystallisation of SCO complexes with a luminescent partner

In this section, two examples of SCO material where a fluorescent dye was co-crystallised

with a SCO complex will be presented. A first example with a SCO complex of the

triazole family was reported by Matsukiwono et al.: an Fe(II) 1,2,4-triazole chain bearing a

lipophilic rest (4-C12H25OC3H6-trz) was crystallised with the fluorescing 1-pyrenesulfonate

counter-anion (see Figure 2.14). The authors observed the same effect as for the latter
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Figure 2.13: Synthesis scheme of the SCO-core-luminescent-shell nanoparticles (left);
Magnetic measurement of dansyl-SiO2NP⊃[Fe(1−x)Znx(Htrz)2(trz)](BF4)2 (1: x = 1;
2: x = 0.2; 3: x = 0.5) (middle); Thermal variation of the fluorescence intensity at 495
nm upon heating (open circles) and cooling (closed circles) (right). [57]

SCO-core-luminescent-shell NPs: the fluorescence of the counter-anion is quenched in the

LS state due to overlap of the emission peak with the 1A1 →1T transition. [58]

Figure 2.14: Chemical structure of the different SCO complexes and fluorophores used
for the creation of co-crystallised materials.
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A second example was reported by Halcrow et al. in 2015: different solid solutions of the

SCO complex [Fe(dpp)2](BF4)2 and the phosphorescent complex [Ru(terpy)(terpy*)](BF4)2

were prepared by co-crystallisation of both complexes. After demonstrating that only co-

crystals were obtained, the magnetic properties were investigated. The co-crystals exhibit

all SCO, however the authors could not observe any emission upon irradiation in the solid

state, regardless of the spin state of the Fe(II) complex. [59]

2.2.3 Luminescent SCO complexes

The second strategy to couple luminescence and SCO is to covalently bind a fluorophore

with a SCO complex. A first example from the triazole family: Garcia et al. reported

the synthesis of a dinuclear Fe(II) complex (see Figure 2.15) where the triazoles have for

substituent on the fourth position a salicylidene fluorescing group, presenting an abrupt

ST at 150 K. The dinuclear complex exhibits one emission feature at λ = 394 nm in the

LS state, however in the HS state the dinuclear features two emission peaks: one is the

emission feature of the LS state shifted to 414 nm, and a new peak at 510 nm. It also seems

that the evolution of the intensity of the emission features with temperature is irregular in

the region of the ST, however it was not discussed by the authors. The correlation between

the emission wavelength and the magnetic properties, as well as the crystal structure of

the dinuclear complex, and the emission spectra at different temperatures are shown in

Figure 2.15. [60]

Figure 2.15: Crystal structure of the fluorescing Fe(II) dinuclear complex (left), emission
spectra at different temperature (middle), and correlation between the emission wave-
length and the magnetic properties (right). [60]
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Another luminescent example from the triazole family was reported by Wang et al..

The fluorophores 1-pyrenecarboxaldehyde (PCA) and Rhodamine B (RhB) were grafted

on a Fe(II) aminotriazole coordination polymer. The grafted polymers exhibit a rather

gradual SCO with a relatively small 10 K hysteresis between 200 and 300 K. The evolution

of the fluorescence intensity is irregular regards to temperature in the region of the SCO,

and allows to follow the spin crossover through measurement of the emission properties.

In Figure 2.16, the chemical structure of the coordination polymer is depicted, as well as

the plots of the evolution of the intensity of the fluorescence and the first-order derivative

of the magnetic susceptibility temperature product vs. temperature. [61] There are also

examples where a fluorophore was attached to a SCO complex, however no coupling or

correlation between the spin state and the emission properties were observed. [62,63]

Figure 2.16: Synthesis pathway of RhB- and PCA-grafted Fe(II) triazole coordination
polymers (left) and evolution of the intensity of the fluorescence and the first-order deriva-
tive of the magnetic susceptibility temperature product vs. temperature. [61]

2.3 Ligand System

The complexes presented in this work are all based on tetradentate Schiff base-like lig-

ands reported by Jäger et al. in 1966. [64] When deprotonated, the two chelate cycles can

easily bind to a metal centre i.e. V(IV), [65] Fe(II), [33,34,66–92] Fe(III), [66,68,77,93] Co(II), [94]

Ni(II), [64,95] Cu(II), [64,65,95,96] Zn(II). [97] It was quickly observed that some Fe(II) com-

plexes with the N4O2 coordination sphere present SCO. [67] The Schiff base-like ligand

is optimal for the synthesis of SCO complexes as its carbonyl- subsituents allow a fine
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tuning of the crystal field strength. Moreover, the obtained complexes are neutral, which

leaves any counter-anion effects out of the picture. As explained in Section 2.1.3, short-

and long-range interactions between the spin centres are needed to obtain cooperative

SCO. Therefore the starting Schiff base-like ligand was modified to bear different groups

on the phenyl-ring in order to induce the formation of specific interactions in a crystal

engineering way.

Figure 2.17: The Schiff base-like ligands and their different modifications.

The addition of two supplementary chelate arms allowed the synthesis of dinuclear

complexes, and of ladder-like coordination polymers, which showed more cooperative

SCO. [78,79,86,98–100] In an effort to induce hydrogen bond network through the solid latice,

hydroxy-groups were added to the complex. This was successful and SCO coordination

polymers with intricated hydrogen bond networks were obtained. [101–103] However, one

drawback of inducing hydrogen bond network is the rather high probability to include

solvent molecules in the crystal structure, which can make the SCO properties unstable
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upon loss of those solvent molecules. One can also induce lipid layer-like structures by

exchanging the hydroxy- for alkoxy-groups, with different alkyl chain lengths. It was re-

ported that cooperative SCOs are obtained when the lipid layer-like structure is obtained,

which happens to be triggered by the ratio of the length of the alkyl chains regards to the

dimension of the Fe(II) complex head. The complicated relationships between structure,

phase transitions, and SCO properties are still being investigated. [27,36,104,105] In this work,

the ligand design focused on favouring π-interactions between spin centres. The π-system

of the Schiff base-like ligand was then extended first to a naphthalene [106,107], and then to

a phenazine [108]. The latter system exhibits fluorescence and a particular care was given

to the investigation of the possible coupling between SCO and luminescence. In this aim,

the ligand system was once more modified to bear a phosphorescent Ru(II) complex. In

Figure 2.17, the Schiff base-like ligand and its different modifications are presented.
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3. Overview

This thesis comprises six publications, which are presented in Chapters 4–9. The indi-

vidual contributions to joint publications are pointed out in Section 3.2.

3.1 Synopsis

This work started with the motivation to obtain, characterise, and analyse SCO com-

plexes exhibiting cooperative STs, if possible with hysteresis. It is known that cooperative

STs are favoured by the presence of long-range interactions (van der Waals interactions,

π-interactions, or hydrogen bonds) between the SCO centres within the crystal lattice,

thus the idea to try to induce the formation of a hydrogen bond network between the

chains of a SCO coordination polymer arose. For this purpose, the pina (N -(Pyrid-4-

yl)isonicotinamide) was selected as bridging ligand, as the pina itself is reported to form

hydrogels.

In Chapter 4, a series of 1D SCO coordination polymers made of pina as bridging

ligand, and an Fe(II)-containing Schiff base-like ligand is presented. The particularity

of this series is that all compounds only differs in the nature and/or amount of non-

coordinating solvent molecules included in the crystal lattice. Methanol, ethanol, DMF,

THF, and mixture of water and methanol were used in the synthesis process. In the case

of methanol, different synthesis processes were tried (reflux condition and slow diffusion

setup). The samples with 0.5 MeOH, 0.5 EtOH, and 2 H2O included in the lattice, all

obtained from reflux conditions in the corresponding solvent, to the exception of the 2

H2O which was obtained from using THF without previously drying it, are all pure HS

complexes. A comparison of the X-ray powder diffractograms revealed that all three

samples have the same pattern, and consequently the same structure.
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Figure 3.1: Magnetic properties of the different solvates of the pina coordination poly-
mer: ([FeL1(pina)]·x MeOH/H2O)n (A), ([FeL1(pina)]·0.5 MeOH·0.5 H2O)n (B),
([FeL1(pina)]·2 MeOH)n (C), and ([FeL1(pina)]·DMF)n (D). For more detailed in-
formation, see Chapter 4.

A sample with 2 MeOH included in the crystal lattice could be obtained from a liquid-

liquid slow diffusion setup as monocrystal and the X-ray structure could be determined.

The structure revealed the formation of the aimed hydrogen bond linking the 1D chains

of the coordination polymers, directly through a short contact between the peptide hy-

drogen of the pina and the carbonyl-group of the Schiff base-like ligand of a neighbouring

chain, and indirectly through a methanol molecule which acts as acceptor and donor be-

tween chains, leading to the formation of a 2D network through the crystal lattice. The

corresponding magnetic properties reveals first a 34 K wide hysteresis (T 1
2
↑ = 306 K, T 1

2
↓

= 272 K), which gets broader (45 K) and shifts to lower temperature once the solvent

is removed of the sample (T 1
2
↑ = 281 K, T 1

2
↓ = 236 K). Another sample with 1 DMF

molecule included presents a very gradual ST (T 1
2

= 335 K), which once again changes

upon solvent loss, and then presents a 10 K wide hysteresis at lower temperature (T 1
2
↓ =

288 K, T 1
2
↑ = 298 K).
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A sample with an unknown amount of methanol and water molecules (xMeOH/H2O)

presents a huge hysteresis of 88 K (T 1
2
↓ = 240 K, T 1

2
↑ = 328 K), which is stable upon

cycling. The ”unknown” amount has for origin the use of a not completely dry pina ligand

in the synthesis. Indeed the pina ligand is very hygroscopic and much effort has to be

given to keep it dry. Attempts to reproduce this sample in a controlled manner by using

mixture of methanol and water were then unsuccessful. However another interesting phase

was obtained, with 0.5 MeOH and 0.5 H2O included in the crystal lattice. This compound

presents unstable SCO properties. Every time it goes from LS to HS transition at T 1
2
↑ =

321 K, a larger HS fraction is measured in the subsequent HS to LS transition at T 1
2
↓ = 275

K. A detailed DSC and Mössbauer study revealed that supplementary phase transition

are happening before/after each STs. In the end, this series of compounds still shows

that remarkable SCO properties were obtained by combining hydrogen bond network

and a polymeric structure. However, the inclusion of solvent molecule in the crystal

lattice makes the SCO properties, regardless of how good they are, rather unattractive

for potential applications, unless these applications requires irreversible changes of the

SCO properties upon heating. In Figure 3.1, the magnetic properties of the different

solvates of the pina coordination polymer are presented.

In a next step, the Schiff base-like ligand was altered to bear a naphthalene backbone,

with the aim to induce π-interactions in the crystal lattice. This was motivated by

the fact that most of the solvents used for the synthesis of our SCO complexes do not

have a π-system, which could maybe hinder the solvent influence observed on the pina

samples. In Chapter 5, the synthesis of the new naphthalene-based Schiff base-like ligands

is presented, as well as the precursor Fe(II) complexes. A first difference with the original

phenylene-based Schiff base-like ligands is that two of the precusor Fe(II) complexes did

not precipitates as expected with methanol coordinating the axial positions. Instead, they

form a 2D network, where the carbonyl substituents of the ligand act as axial ligand of

neighbouring Fe(II) centres. Then those precursor Fe(II) complexes were converted into

SCO complexes by adding/substituting a N -donor ligand on the axial positions (pyridine,

4-phenylpyridine, and 4-(dimethylamino)pyridine).
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From the resulting ten mononuclear complexes, five exhibit SCO, whereas the remain-

ders stay HS. The compound [FeL4(py)2]·py displays an incomplete two-step transition

at low temperature (T1 = 150 K, T2 = 80 K). The crystal structure could be determined

and has two inequivalent Fe(II) centres in the asymetric unit, as well as non-coordinating

pyridine. The crystal lattice explains well the magnetic properties as the two inequivalent

Fe(II) complexes are forming layers perpendicular to the a axis, the layers being sepa-

rated by non-coordinating pyridine molecules. Intricate face-to-edge π-interactions and

C–H· · ·O short contacts link the complexes with each others within a layer. The samples

[FeL3(py)2]·py, [FeL1(phpy)2], and [FeL4(phpy)2] all present abrupt cooperative ST,

and the two latter compounds exhibit also a 10 K wide hysteresis. The crystal structure of

[FeL3(py)2]·py could be determined in both LS and HS states. The complexes are form-

ing 1D chains through face-to-edge π-interactions between axial pyridine ligands and the

naphthalene rings. Moreover, those 1D chains are then connected with one other through

C–H· · ·O short contacts. The crystal structure of [FeL1(phpy)2] has a similar packing,

except that in this case the 1D chains are formed through C=O· · · π-interactions between

the ester substituents and the naphthalene rings. Finally the sample [FeL1(dmap)2]

presents a two-step SCO, however no crystal structure could be determined. A Möss-

bauer spectrum presents an asymmetric doublet for Fe(II) HS, as well as broad peaks,

indication of that two inequivalent Fe(II) centres are in the compound. All those SCO

complexes shows that π-interactions can be induced in the crystal packing through intro-

duction of the naphthalene rings, and increases the cooperativity of the obtained SCO

properties. In Figure 3.2, the crystal packing of [FeL3(py)2]·py (top), [FeL1(phpy)2]

(middle), and [FeL4(phpy)2] (bottom) are presented.

With the aim to further increase the cooperativity, the new naphthalene-based Schiff

base-like ligand were then used to synthesise Fe(II) 1D coordination polymers with the

bridging ligands bipy (4,4’-bipyridine), bpea (1,2-bis(pyrid-4-yl)ethane), bpee (1,2-bis-

(pyrid-4-yl)ethene), and bppa (1,3-bis(pyrid-4-yl)propane) (See Chapter 6). Of the six-

teen obtained complexes, six complexes are SCO active, the rest stays HS or LS over

the investigated temperature range. As no crystal structures could be determined, the

SCO complexes were investigated not only with SQUID magnetometry, but also with
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Figure 3.2: The different short contacts observed in the crystal packing of [FeL3(py)2]·py
(top), [FeL1(phpy)2] (middle), and [FeL4(phpy)2] (bottom). For more detailed infor-
mation, see Chapter 5.

DSC, X-ray powder diffraction, and Mössbauer spectroscopy. The two most interest-

ing samples are ([FeL3(bpea)]·MeOH)n and ([FeL3(bpee)]·MeOH)n as they both

present SCO with an hysteresis width of 28 K (T 1
2
↑ = 223 K, T 1

2
↓ = 195 K) and 40 K

(T 1
2
↑ = 210 K, T 1

2
↓ = 250 K), respectively. Both samples presents similar powder diffrac-
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tograms as well as similar Mössbauer spectra, which is a hint that both coordination

polymers have the same crystal packing. The difference between the two coordination

polymers arise only from the substitution of the single bond of the bpea ligand for a

double bond in the bpee ligand. The bpee ligand is then more rigid than the bpea

ligand, which leads to a better propagation of the ST though the crystal lattice, and

indeed it was observed that ([FeL3(bpee)]·MeOH)n exhibits a larger hysteresis than

([FeL3(bpea)]·MeOH)n. Another characteristic is that the ligand bpee is a slightly

worse N -donor than bpea, because of the electron-pulling effect of the double bond. As

consequence, the HS state of sample ([FeL3(bpee)]·MeOH)n is slightly more stabilised,

and the STs happen at higher temperatures than for ([FeL3(bpea)]·MeOH)n. The only

big difference between the two coordination polymers is the calorimetric response of the

samples upon SCO. The sample ([FeL3(bpee)]·MeOH)n present an unusual asymmet-

ric response, as upon warming, the LS to HS DSC peak is intense (∆H ↑ = 10.2(12)

kJ·mol−1), and upon cooling the HS to LS DSC peak is rather small (∆H ↓ = 2.7(9)

kJ·mol−1). Usually the enthalpy values of both STs are of the same magnitude, what

could be the reason for this unusual behaviour could be the presence of an endothermic

transition upon cooling and upon heating, which overlap with the STs. Interestingly, the

mononuclear complex [FeL3(py)2]·py (Chapter 5) already showed cooperativity with an

abrupt ST, and the aim of increasing further the cooperativity, the coordination polymers

were synthesised. We can see here with the two compounds ([FeL3(bpea)]·MeOH)n

and ([FeL3(bpee)]·MeOH)n, that the aim was reached as they both display increased

cooperativity. Another aim was to avoid solvent influence on the SCO properties, and was

partially reached. Albeit a majority of the synthesised SCO coordination polymers con-

tain non-coordinating solvent molecules, only a very low influence on the SCO properties

was observed upon solvent loss. In Figure 3.3, the magnetic properties of [FeL3(py)2]·py,

([FeL3(bpea)]·MeOH)n, and ([FeL3(bpee)]·MeOH)n are presented.

In all crystal structures of SCO complexes with the naphthalene-derivated Schiff base-

like ligand, only face-to-edge π-interactions were observed, probably because the naphtha-

lene group is too short to build face-to-face π-interactions. However, we were interested

in building face-to-face π-interactions and see if the cooperativity further increases, and
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Figure 3.3: Magnetic properties of [FeL3(py)2]·py, ([FeL3(bpea)]·MeOH)n, and
([FeL3(bpee)]·MeOH)n. For more detailed information, see Chapter 5 and 6.

therefore the phenazine system was chosen to replace the naphthalene group in the ligand

structure. It was quickly observed that the new phenazine-derived Schiff base-like ligands

are luminescent. The first interesting study to make was to investigate the influence of

the complexation of a paramagnetic or diamagnetic metal centre on the emission proper-

ties. Ni(II), Cu(II), and Zn(II) were selected because Cu(II) is paramagnetic and Zn(II)

is diamagnetic independently of the coordination sphere, and Ni(II) can be switched from

diamagnetic to paramagnetic when changing coordination geometry. The latter phe-

nomenon is called Coordination Induced Spin State Switch (CISSS) and has been subject

to intensive research in the SCO community for the last years. The CISSS phenomenon

is very similar to the SCO phenomenon, but it requires a chemical stimuli instead of a

physical stimuli. In Chapter 7, the absorption and emission properties, as well as the

influence of the spin state of the metal centre on those properties are reported. The study

was done in two solvents: trichloromethane and pyridine. In trichloromethane, the solved

complexes adopt a square planar geometry, which leads to a diamagnetic (S = 0) Ni(II)

complex. In contrast, the Ni(II) complex solved in pyridine adopts a square pyramidal

or an octahedral geometry, as pyridine molecules coordinate the axial positions, and the

complex is paramagnetic (S = 1). The Cu(II) complexes are paramagnetic (S = 1
2
) and

the Zn(II) complexes diamagnetic (S = 0) regardless of the solvent. It was observed that

all complex solutions with a diamagnetic metal centre (Zn(II), Ni(II) in trichloromethane)

were still luminescent, and that the complex solutions with a paramagnetic metal centre

(Cu(II), Ni(II) in pyridine) do not exhibit fluorescence. The crystal structure of the Ni(II)

and Cu(II) complexes revealed that the phenazine group is coplanar with the coordination
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plane of the metal centre, meaning that the metal centre is part of the π-system of the

ligand. Further time-resolved fluorescence spectroscopy measurement showed that the

lifetime of the emission drastically drops when the Ni(II) centre goes from its diamag-

netic to its paramagnetic spin state. This observation, in combination with the structural

data, leads to the conclusion that a non-radiative energy transfer takes place between the

fluorophore and the metal centre when the latter one is in a paramagnetic spin state. To

be more precise, a Dexter electron transfer (DET) is presumed to take place. In Figure

3.4, the structure of the Ni(II) complex, as well as the optical measurement showing the

loss of the emission properties upon CISSS are presented.

Figure 3.4: Crystal structure of the phenazine-derived Ni(II) complex (left), absorption
(centre) and emission (right) spectra of the Ni(II) complex upon CISSS. For more detailed
information, see Chapter 7.

In order to confirm/infirm the DET, two experimental investigations can be done: either

exchanging the phenazine-group for another fluorophore, or exchanging the Ni(II) centre

for another metal centre that can also switch spin state i.e. Fe(II). The exchange of the

fluorophore was done by synthesising a phenanthrene-quinoxaline Schiff base-like ligand.

The ligand and the corresponding Ni(II), Cu(II), and Zn(II) complexes are presented in

Chapter 7. The Ni(II) complex is luminescent but the spin state of the metal centre

does not influence the emission properties of the complex. This hint rather confirms the

DET, but to be sure a third fluorophore was tried: a Ru(II) polypyridine complex was

used. A phenanthroline-derived Schiff base-like ligand was synthesised, which coordinates

a [Ru(II)(bipy)2]2+ block on the phenanthroline side, and a Ni(II) metal centre is then

incorporated in the chelate-cycles. This is the first synthesis of such bimetallic complex.

The emission properties of the Ru(II) metallaligand were then investigated in water and
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pyridine, with and without Ni(II) centre. Here again, the spin state of the Ni(II) complex

seems to have no influence on the emission properties of the fluorophore. An analysis

of the crystal structure of the bimetallic complex showed that, unlike the phenazine-

derivative, the Ni(II) centre is not part of the π-system of the fluorophore, as a steric

hindrance forbids the chelate cycles to be in the same plane as the phenanthroline, which

forbids any DET between the fluorophore and the Ni(II) centre. Nevertheless, the new

bimetallic complex could be modified to avoid this steric hindrance in a future work. The

synthesis, crystal structure, and optical properties of the bimetallic Ru(II)-Ni(II) complex

are described in Chapter 8.

In a further step, the Ni(II) centre from the phenazine-derived complex was exchanged

for an Fe(II) centre. The aim was to observe if the emission properties of the phenazine-

fluorophore could also be influenced by the spin state of an Fe(II) SCO complex. Therefore

a coordination polymer with bipy (4,4’-bipyridine) as bridging ligand was synthesised,

and present a wide thermal hysteresis of 48 K above room temperature (T 1
2
↑ = 371 K and

T 1
2
↓ = 323 K) (See Figure 3.5). The SCO properties were also characterised with DSC

and powder X-ray diffraction, and both analyses show that a major structural change

happens upon SCO, which is causing the wide hysteresis. No single crystal suitable for

X-ray analysis could be grown, however the structure of the corresponding dimer could be

determined (See Figure 3.5). The dimer could then be obtained as bulk material through

fine tuning of the reaction conditions. The emission properties of both coordination

polymer and dimer in the solid state were measured in regard to temperature. The first

observation is that both compounds show dual emission (λ1, λ2) upon photoexcitation.

The dimer has an intense peak at λ2 = 686 nm, and a smaller feature at λ1 = 550

nm, and the ratio between both peaks is constant when changing the temperature. The

coordination polymer, however, shows at room temperature an enhanced peak at λ1 = 550

nm, and a relatively smaller peak at λ2 = 673 nm. Upon SCO, the ratio of the two peaks

change, as in the HS state, both peaks are almost equal in intensity. The evolution of the

ratio λ1/λ2 with temperature, as well as the SQUID data is shown in Figure 3.5. Dual

emission means that two different relaxation processes occur, with different electronic

origins. We made the hypothesis, based on our knowledge on the corresponding Ni(II)
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complexes, that one process is a ligand-centred relaxation (λ1), and the other process is

a metal-centred relaxation after an electron exchange between ligand-based and metal-

based orbitals (λ2). The later process is only possible when the Fe(II) complex is in its

HS state, as the electron exchange is favoured by the presence of unpaired electrons in

the metal-centred orbitals. The synthesis, characterisation, and analyses of the magnetic

and emission properties of both dimer and SCO coordination polymer are presented in

Chapter 9.

Figure 3.5: Crystal structure of the phenazine-derived Fe(II) luminescent dimer (left),
emission spectra at different temperatures of the phenazine-derived Fe(II) luminescent
SCO coordination polymer (centre), ratio λ1/λ2 vs. temperature as well as the magnetic
properties (right). For more detailed information, see Chapter 9.

The original aim of this work was to obtain SCO complexes exhibiting cooperative tran-

sitions by creating short- and long-range interactions in the crystal packing. First the pina

bridging ligand was used to build an hydrogen bond network within the crystal lattice, and

SCO coordination polymers displaying wide thermal hysteresis were obtained. In a second

step, the equatorial Schiff base-like ligand was modified to bear an extended π-system,

and the gained mononuclear complexes and coordination polymers present enhanced SCO

properties. A structural analysis revealed that C–H· · · π and C–H· · ·O interactions were

present between the complexes in the crystal lattice, and therefore responsible for the

enhanced SCO properties. Then the π-system was further extended to the phenazine sys-

tem, in order to maybe favour face-to-face π-interaction, but as the new ligand displays

luminescent properties, the aim was shifted to the study of the interactions between the

metal centre and the emission properties, specially to the effect of a spin state change.
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Figure 3.6: Overview of the different equatorial ligands used or designed in this work,
with the corresponding chapter(s).

As it was revealed that in the case of the Ni(II) complex, the fluorescence could be

turned on/off through Coordination Induced Spin State Switch, where the square planar

diamagnetic Ni(II) complex is emitting, and after coordination of pyridine, the square

pyramidal/octahedral paramagnetic Ni(II) complex is not emitting any more. In a next

step, the exchange of the fluorophore for a phenanthrene-quinoxaline or a [Ru(II)(bipy)2]2+

was done, however no control on the emission properties through spin state change could

be observed. In a last step, the Ni(II) metal centre was exchanged for an Fe(II) centre,

which when converted into a coordination polymer with bipy, becomes SCO active and

displays a wide hysteresis above room temperature. Here again, the emission properties

are influenced from the spin state of the Fe(II) centre. To sum up, this work shows

that through thoughtful design of the equatorial ligand (See Figure 3.6), not only the

SCO properties can be improved, but a new function, luminescence, can be added. The

new multifunctional compounds, where the spin state, and therefore the SCO properties,

are influencing the luminescence properties, open a wide research field, as well as new

potential applications in the domain of sensors.
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3.2 Individual Contributions to Joint Publications

The results presented in this thesis were obtained in collaboration with others and are

published, accepted, or are to be submitted as indicated below. In the following, the

contributions of all co-authors to the publications are specified. The asterisk denotes the

corresponding authors.

Chapter 4

This work was published in Inorganic Chemistry (Inorg. Chem. 2014, 53, 11563–11572)

with the title:

”Large Thermal Hysteresis for Iron(II) Spin Crossover Complexes with N-

(Pyrid-4-yl)isonicotinamide.”

Charles Lochenie, Wolfgang Bauer, Antoine P. Railliet, Stephan Schlamp, Yann Garcia,

Birgit Weber*.

I synthesised and characterised all complexes and ligands presented in this work; car-

ried out a part of the magnetic measurements and wrote the experimental section, result

section and the conclusion. The crystal structure was obtained and solved by Wolfgang

Bauer. Stephan Schlamp carried out part of the magnetic measurements. The Mössbauer

and DSC studies were carried out by myself under the supervision of Antoine P. Railliet

and Yann Garcia at the Université catholique de Louvain (BE). Birgit Weber supervised

this work, contributed to the interpretation of the results, wrote the introduction, and

was involved in scientific discussions and correction of the manuscript.
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Chapter 5

This work was published in Dalton Transactions (Dalton Trans. 2015, 44, 18065–18077)

with the title:

”Iron(II) spin crossover complexes with diaminonaphthalene-based Schiff base-

like ligands: mononuclear complexes.”

Charles Lochenie, Julia Heinz, Wolfgang Milius, Birgit Weber*.

I established the ligand system, wrote the publication, carried out the magnetic measure-

ments, measured and solved all crystal structures, and performed the Mössbauer measure-

ments. The synthesis and characterisation of the ligands and complexes was undergone

by myself or by Julia Heinz under my supervision during her Bachelor thesis. Wolfgang

Milius carried out the X-ray powder diffraction measurements. Birgit Weber supervised

this work, was involved in the scientific discussions, and corrected the manuscript.

Chapter 6

This work was published in New Journal of Chemistry (New J. Chem. 2016, 40, 4687–

4695) with the title:

”Iron(II) spin crossover complexes with diaminonaphthalene-based Schiff base-

like ligands: 1D coordination polymers.”

Charles Lochenie, Andreas Gebauer, Ottokar Klimm, Florian Puchtler, Birgit Weber*.
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I established the ligand system, wrote the publication, carried out the magnetic measure-

ments, treated and interpreted the DSC measurements, and carried out the Mössbauer

study. All ligands and complexes were synthesised and characterised by myself or by

Andreas Gebauer under my supervision during his Bachelor thesis. Ottokar Klimm took

the SEM pictures. Florian Puchtler carried out the X-ray powder diffraction measure-

ments. Birgit Weber supervised this work, was involved in the scientific discussions, and

corrected the manuscript.

Chapter 7

This work was published in Journal of Material Chemistry C ( J. Mater. Chem. C 2015,

3, 7925–7935) with the title:

”Modulation of the ligand-based fluorescence of 3d metal complexes upon spin

state change.”

Charles Lochenie, Kristina G. Wagner, Matthias Karg*, Birgit Weber*.

I established the ligand system, wrote the publication, synthesised and characterised all

ligands and complexes presented, measured and solved all crystal structures, carried out

the absorption spectroscopy measurements. The emission spectroscopy measurements

were performed by myself and Kristina G. Wagner. The fits of the decay curves were

done by Kristina G. Wagner. Matthias Karg and Birgit Weber supervised this work, were

involved in the scientific discussions, and corrected the manuscript.
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Chapter 8

This work is to be submitted with the title:

”Synthesis and analysis of the optical properties of a phenanthroline-derived

Schiff base-like Ru(II)-Ni(II) complex”

Hannah Kurz, Charles Lochenie, Kristina G. Wagner, Matthias Karg, Birgit Weber*.

Hannah Kurz under my supervision during her Bachelor thesis synthesised and charac-

terised all ligands and complexes, performed the absorption spectroscopy measurements,

and wrote a part of the publication. I measured and solved the crystal structures, carried

out the emission spectroscopy measurements, and wrote a part of the publication. The

fits of the decay curves were done by Kristina G. Wagner. Matthias Karg and Birgit

Weber supervised this work, were involved in the scientific discussions, and corrected the

manuscript.

Chapter 9

This work is to be submitted with the title:

”Spin crossover iron(II) coordination polymer with fluorescent properties:

correlation between emission properties and spin state.”

Charles Lochenie, Bernadette Maier, Konstantin Schötz, Fabian Panzer, Florian Puchtler,

Anna Köhler, Birgit Weber*.
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I established the ligand system, wrote the publication, measured and solved all crystal

structures, carried out the magnetic measurements, and treated and interpreted the DSC

measurements. All ligands and complexes were synthesised and characterised by myself

or by Bernadette Maier under my supervision during a practical course. The fluorescence

spectroscopy measurements were carried out by Konstantin Schötz and Fabian Panzer.

Florian Puchtler carried out the X-ray powder diffraction measurements. Anna Köhler

and Birgit Weber supervised this work, were involved in the scientific discussions, and

corrected the manuscript.
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(IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-

la-Neuve, Belgium.

Published in Inorg. Chem. 2014, 53, 11563–11572.

Reproduced with the permission of the American Chemical Society.

Abstract

A new series of iron(II) 1D coordination polymers with the general formula [FeL1(pina)]

·x solvent with L1 being a tetradentate N2O2−
2 coordinating Schiff base-like ligand [([3,3’]-

[1,2-phenylenebis-(iminomethylidyne)]bis(2,4-pentanedionato)(2-)-N,N’,O2,O2’ ], and pina

being a bridging axial ligand N -(pyrid-4-yl)isonicotinamide, are discussed. The X-ray

crystal structure of [FeL1(pina)]·2MeOH was solved for the low-spin state. The com-

pound crystallizes in the monoclinic space group P21/c, and the analysis of the crystal

packing reveals the formation of a hydrogen bond network where additional methanol
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molecules are included. Different magnetic properties are observed for the seven samples

analyzed, depending on the nature of the included solvent molecules. The widest hystere-

sis loop is observed for a fine crystalline sample of composition [FeL1(pina)]·xH2O/MeOH.

The 88 wide thermal hysteresis loop (T 1
2
↑ = 328 K and T 1

2
↓ = 240 K) is centered around

room temperature and can be repeated without of a loss of the spin transition properties.

For the single crystals of [FeL1(pina)]·2MeOH, a 51 K wide hysteresis loop is observed

(T 1
2
↑ = 296 K and T 1

2
↓ = 245 K) that is also stable for several cycles. For a powder

sample of [FeL1(pina)]·0.5H2O·0.5MeOH a cooperative spin transition with a 46 K wide

hysteresis loop around room temperature is observed (T 1
2
↑ = 321 K and T 1

2
↓ = 275 K).

This compound was further investigated using Mössbauer spectroscopy and DSC. Both

methods reveal that, in the cooling mode, the spin transition is accompanied by a phase

transition while in the heating mode a loss of the included methanol is observed that

leads to a loss of the spin transition properties. These results show that the pina ligand

was used successfully in a crystal engineering-like approach to generate 1D coordination

polymers and improve their spin crossover properties.

4.1 Introduction

Iron(II) spin crossover (SCO) complexes belong to a fascinating class of materials that

can be switched between the paramagnetic high-spin state (HS, S = 2) and the diamag-

netic low-spin state (LS, S = 0) by physical stimuli such as temperature, pressure, or

light. [1–17] This transition causes electronic, structural, vibrational, and magnetic changes

that can be monitored by many different physical methods such as 57Fe Mössbauer spec-

troscopy or detected visually due to a color change associated with thermochromism, in

many cases. Since their discovery in 1931 by Cambi et al., [18,19] SCO complexes never cease

to attract interest due to the numerous potential applications as memory devices, dis-

plays, [20–22] or sensors. [23] The possibility to form micro- and nanoparticles, [24–26] gels, [27]

or liquid-crystalline materials, [28] reinforced the interest in SCO materials. [29–31] Of the

different types of spin transitions (gradual, stepwise, incomplete), [3] SCO complexes ex-

hibiting thermal hysteresis are particularly suited for the mentioned applications. Up to

now, the largest hysteresis is a 70 K wide loop for a complex with a Schiff base-like lig-
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and and imidazole as ligands. [32] It was demonstrated that the crystal packing, especially

hydrogen bond network, [33,34] but also structural changes upon spin transition, [35] have

a huge influence on the SCO properties of these complexes. We seek to systematically

improve the SCO properties of our complexes thanks to crystal engineering to obtain wide

and stable hysteresis loops around room temperature. One strategy was to modify the

equatorial Schiff base-like ligand through the introduction of additional hydroxyl groups

in the outer periphery to optimize the preconditions for the observation of hydrogen bond

networks. This strategy was not successful for mononuclear complexes with pyridine or

4-dimethylaminopyridine as axial ligand. [36] However, for the corresponding 1D coordi-

nation polymers with bridging axial ligands as 4,4’-bipyridine or bis(4-pyridyl)ethene, an

increased occurrence of thermal hysteresis loops was observed. [37]

In this work we present an alternative approach to improve the hydrogen network

between the polymer chains of Schiff base-like iron(II) SCO complexes. The objective

was to build the hydrogen bond network through the crystal packing by using the pina

ligand, which itself is known to make a hydrogel. [38] For this, iron(II) complexes made of

a Schiff base-like equatorial ligand and a bridging N -(pyrid-4-yl)-isonicotinamide (pina)

axial ligand were synthesized. It has recently been shown that the solvent or the method

of synthesis can have a crucial influence on SCO complexes of this ligand family [39] and of

other SCO systems. [40,41] Therefore, complex [FeL1(pina)] (1) was synthesized in various

solvents using three different methods. Seven phases that vary in the amount of solvent

included in the crystal packing were obtained. All samples were investigated by SQUID

magnetometry, the most interesting samples being investigated further using Mössbauer

spectroscopy, DSC measurements, and single crystal X-ray diffraction, when appropriate.

4.2 Experimental Section

Synthesis. All reagents were of reagent grade and used without further purification.

MeOH and EtOH were purified by distillation under argon, [42] DMF was dried on molec-

ular sieves and degassed, and THF and water were degassed. All syntheses were carried

out under argon using Schlenk tube techniques. IR spectra were recorded on a Shimadzu
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FTIR-84005 spectrometer using KBr discs at room temperature. CHN analyses were per-

formed at MEDAC Ltd. (U.K.). Mass spectra were recorded with a Jeol MS-700 device,

with DEI+ as ionization method.

The synthesis is performed in two steps starting from iron(II) acetate and a Schiff

base-like ligand H2L1 that are reacted to give a first complex [FeL1(MeOH)2] that is

then converted with pina in the solvent S to give [FeL1(pina)]·xS (Scheme 4.1). The

syntheses of the ligand H2L1, [43] the pina ligand, [38] iron acetate, [44] and the complex

[FeL1(MeOH)2] [45] have been performed as previously described. All syntheses except

that of 1·xMeOH/H2O were reproduced at least once.

Scheme 4.1: General Structure of the Ligands and Complexes: Abbreviations Used and
Synthesis Pathway of the [FeL1(pina)] Complexes.

[FeL1(pina)]·0.5 MeOH (1·0.5 MeOH). A solution of [FeL1(MeOH)2] (0.55 g) and

pina (1.08 g) in methanol (45 mL) was heated to reflux for 1 h. The formation of a

dark violet precipitate was observed in the boiling heat. After cooling and filtration, the

precipitate was washed with methanol (2 × 5 mL) and dried in vacuo. Yield: 0.51g, 74%.

IR (KBr): ν̃ = 3229(w) (NH), 1687(m) (CO), 1647(s) (CO), 1560(vs) cm−1 (CO). MS

(DEI-(+), 70 eV) m/z (%): 382 (70) [FeL1+], 199 (97) [pina+], 106 (100). Elemental

analysis calcd (found) for C29.5H29FeN5O5.5 (597.15): C 59.3 (59.3), H 4.7 (4.9), N 11.4

(11.7).

[FeL1(pina)]·xMeOH/H2O (1·xMeOH/H2O). Amorphous black crystals of the com-

position 1·xMeOH/H2O were obtained by slow diffusion using a homemade Schlenk of
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[FeL1(MeOH)2] (0.11 g, 0.25 mmol) and pina (0.24 g, later analysis revealed that there

were still traces of water in the ligand, for all further approaches the ligand was dried

completely) in methanol solution after 2 weeks. Elemental analysis calcd (found) for

C29H27FeN5O5 (581.40, since the exact solvent composition is unknown, the calculated

values correspond to the solvent-free complex): C 59.91 (58.5), H 4.68 (4.9), N 12.05

(11.7).

[FeL1(pina)]·2MeOH (1·2MeOH). Violet crystals of sufficient quality for X-ray anal-

ysis were obtained by slow diffusion techniques of [FeL1(MeOH)2] (0.12 g) and pina (0.27

g) in methanol solution after 1 week. Elemental analysis calcd (found) for C31H35FeN5O7

(645.49): C 57.7 (57.4), H 5.5 (5.0), N 10.9 (10.8).

[FeL1(pina)]·0.5 H2O·0.5 MeOH (1·0.5 H2O·0.5 MeOH). [FeL1(MeOH)2] (0.5 g)

was dissolved in 20 mL mixture of methanol and water (98:2). Pina (0.22 g) was dissolved

in 20 mL of the same mixture. Then the pina solution was added to the [FeL1(MeOH)2]

solution, and the mixture was stirred 2 h at room temperature. A dark purple powder

precipitated, and was filtered, washed twice with 5 mL of MeOH, and carefully dried in

vacuo. Yield: 0.6 g, 95%. IR (KBr): ν̃ = 3165(b) (OH), 1685(m) (CO), 1593(s) (CO),

1555(vs) cm−1 (CO). TGA on 5.7470 mg at 25 oC: 5.5513 mg at 100 oC (-3.405% -solvent

loss, theory -4.12%), 3.8603 mg at 315 oC (-32.835% -decomposition). Elemental analysis

calcd (found) for C29.5H30FeN5O6 (606.43): C 58.43 (58.4), H 4.99 (4.9), N 11.55 (11.6).

[FeL1(pina)]·0.5 EtOH (1·0.5 EtOH). A solution of [FeL1(MeOH)2] (0.41 g) and

pina (1.85 g) in ethanol (20 mL) was refluxed for 1 h. A dark red powder precipitated,

and was filtered, washed twice with 5 mL of EtOH, and carefully dried in vacuo. Yield:

0.49 g, 87%. IR (KBr): ν̃ = 3234(w) (NH), 1678(m) (CO), 1658(s) (CO), 1574(vs) cm−1

(CO). MS (DEI-(+), 70 eV) m/z (%): 382 (70) [FeL1+], 199 (97) [pina+], 106 (100).

Elemental analysis calcd (found) for C30H30FeN5O5.5 (604.44): C 59.6 (59.3), H 5.0 (4.9),

N 11.6 (11.7).

[FeL1(pina)]·DMF (1·DMF) . A solution of [FeL1(MeOH)2] (0.69 g) and pina (3.1

g) in DMF (20 mL) was refluxed for 1 h. Dark purple crystals appeared after one night

49



4.2. EXPERIMENTAL SECTION

at room temperature, and were filtered, washed twice with 5 mL of DMF, and carefully

dried in vacuo. Yield: 0.51 g, 52%. IR (KBr): ν̃ = 3221(w) (NH), 1675(m) (CO), 1646(s)

(CO), 1559(vs) cm−1 (CO). MS (DEI-(+), 70 eV) m/z (%): 382 (70) [FeL1+], 199 (97)

[pina+], 106 (100). TGA on 25.31 mg at 25 oC; 24.75 mg at 200 oC (-3.2% -solvent

loss), 13.14 mg at 315 oC (-39.9% -decomposition). Elemental analysis calcd (found) for

C32H34FeN6O6 (654.49): C 58.7 (58.6), H 5.2 (5.3), N 12.8 (12.8).

[FeL1(pina)]·2 H2O (1·2 H2O). [FeL1(MeOH)2] (0.62 g) was dissolved in 40 mL of

THF. Pina (2.7 g) was dissolved in 40 mL of THF. Then, the pina solution was added to

the [FeL1(MeOH)2] solution, and the mixture was stirred overnight at room temperature.

A red powder precipitated, and was filtered, washed twice with 5 mL of THF, and carefully

dried in vacuo. Yield: 0.85 g, quantitative. IR (KBr): ν̃ = 3205(w) (NH-OH), 1689(m)

(CO), 1653(s) (CO), 1547(vs) cm−1 (CO). MS (DEI-(+), 70 eV) m/z (%): 382 (70)

[FeL1+], 199 (97) [pina+], 106 (100). Elemental analysis calcd (found) for C29H31FeN5O7

(617.16): C 56.2 (56.24), H 5.0 (4.9), N 11.3 (10.9).

X-ray Structure Analysis. The intensity data of 1·2MeOH were collected on an Ox-

ford XCalibur diffractometer by using graphite-monochromated Mo Kα radiation. The

data were corrected for Lorentz and polarization effects. The structure was solved by

direct methods (SIR-97) [46] and refined by full-matrix least-squares techniques against

F2
o - F2

c (SHELXL-97). [47] All hydrogen atoms were calculated in idealized positions with

fixed displacement parameters. ORTEP-III [48] was used for the structure representation,

and SCHAKAL-99 [49] to illustrate molecule packing. The crystallographic data are sum-

marized in Table 4.2.

X-ray Powder Diffraction. X-ray powder diffraction data were collected at a STOE

StadiP X-ray powder diffractometer in transmission geometry from 5o to 30o(2Θ). Sam-

ples were placed in capillaries, and Cu Kα1 radiation was used for the measurement.

Radiation was detected with a Mythen 1K detector.

Magnetic Measurements. Magnetic susceptibility data were collected using a Quan-

tum Design MPMSR-2 or an MPMSXL-5 SQUID magnetometer under an applied field
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of 0.5 T over the temperature range 2–400 K in the settle mode. Samples were placed

in gelatin capsules held within a plastic straw. Data were corrected for the diamagnetic

contributions of the ligands by using tabulated Pascal’s constants and those of the sample

holder.

57Fe Mössbauer Spectroscopy. Variable temperature 57Fe Mössbauer measurements

were recorded in transmission geometry on a constant-acceleration Wissel spectrometer

loaded with a 45 mCi 57Co(Rh) source from Cyclotron Ltd. The sample was sealed

in a Teflon holder, and low temperature spectra were recorded using an Optistat Oxford

instruments liquid nitrogen cryostat. The spectra were fitted using Recoil 1.05 Mössbauer

Analysis Software. [50] The isomer shift values are given with respect to an α-Fe reference

at room temperature.

Thermogravimetric Analyses. Thermogravimetric analyses were carried out on a

SDT 2960 Simultaneous DSC-TGA under nitrogen atmosphere using alumina sample

holder.

Differential Scanning Calorimetry. Calorimetric measurements sealed in an alu-

minium sample holder were carried out with a PerkinElmer DSC-7 differential scanning

calorimeter at a scan rate of 10 K/min following described procedures. [51]

4.3 Results and Discussion

4.3.1 Syntheses.

The general synthetic pathway for the synthesis of the [FeL1(pina)] coordination poly-

mers is given in Scheme 4.1. Three different synthetic modes were used to prepare the

complex [FeL1(pina)](1) and its solvates: (i) The starting materials [FeL1(MeOH)2] and

pina were mixed in the desired solvent and heated to reflux for 1 h, to afford 1·0.5MeOH,

1·0.5EtOH, and 1·DMF. (ii) By slow diffusion, this method used a homemade Schlenk

tube setup which was, to a given height, separated into two chambers by a dividing wall.
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Table 4.1: Overview of the SCO Behavior, Characteristic χMT Values [cm3·K·mol−1], HS
Residue (γHS) at 150 K, and T 1

2
Values [K].

compound spin state χMT χMT γHS T 1
2

[K]

behavior (350 K) (150 K) (150 K)

1·0.5MeOH HS 3.33 3.24
1·xMeOH/H2O hysteresis, 3.49 0.76 0.2 ↓240, ↑328a

88 K,a ↓224, ↑316b

92 Kb

1·2MeOH complete, hysteresis, 3.64 0.2 0 ↓272, ↑306a

34 K,a 51 K,b ↓245, ↑296b

45 Kc ↓236, ↑281a

1·0.5MeOH incomplete, unstable, 3.23 1.41,a 0.40a ↓275, ↑321a

·0.5H2O hysteresis, 46 K,a 2.07,b 0.59b ↓263, ↑328b

65 K,b 73 Kc 2.29c 0.65c ↓238, ↑311a

1·0.5EtOH HS 3.53 3.46
1·2H2O HS 3.44 3.35
1·DMF solvent release, 3.42 0.08,a 0,a ↑335a,d

hysteresis, 0.64,b 0.19b ↓305, ↑309b

4 K,b 10 Kc 1.08c 0.30c ↓288, ↑298c

aMagnetic measurement: loop 1. bLoop 2. cLoop 3. dSpin transition upon solvent release. The exact

temperature depends on the scan rate.

(iii) The starting iron complex and the axial ligand were dissolved separately in the desired

solvent, and the solutions were then mixed at room temperature.

The syntheses were first carried out in methanol, leading to two different samples,

1·0.5MeOH (reflux condition, powder)and an undefined phase 1·xMeOH/H2O (diffusion

setup, fine crystals). Magnetic measurements (see Magnetic Measurements section) re-

vealed that 1·0.5MeOH is a pure HS complex while the sample 1·xMeOH/H2O is showing

a spin transition with extremely large hysteresis around room temperature. The spin tran-

sition properties and the stability of the sample up to 400 K did raise our interest for

this compound. Only a small amount of sample was obtained from the first diffusion

setup, and the crystals were not of sufficient quality for single crystal X-ray structure

analysis. Therefore, attempts were made to reproduce the synthesis using slow diffusion.

Single crystals of sufficient X-ray quality were obtained but with a different composition

(1·2MeOH). Magnetic measurements reveal SCO behavior with a hysteresis close to room

temperature. The hysteresis loop width, however, is significantly smaller.
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Since solvent has a strong influence on the SCO behavior of this system, the synthesis

was repeated in different solvents: mixtures of water and methanol, ethanol, tetrahydro-

furan (THF), and dimethylformamide (DMF). Mixtures of methanol and water were used

to account for remaining water in the very hygroscopic pina ligand. This is the most

likely reason for the different outcomes of the first and second diffusion setup. Indeed,

in a mixture of a 98:2 ratio of methanol and water, respectively, a new powder sample

1·0.5H2O·0.5MeOH was obtained. Magnetic measurements of this sample show a wide

hysteresis around room temperature, that is, however, not complete and unstable. Fur-

ther syntheses were done with ethanol, THF, and DMF. From the synthesis in ethanol,

one pure HS sample 1·0.5EtOH was obtained, and from synthesis in THF, a further pure

HS sample 1·2H2O. The synthesis in DMF produced an interesting phase 1·DMF which is

undergoing SCO. In Table 4.1, an overview of the synthesized complexes and the charac-

teristic temperatures and χMT values is given. The syntheses of all samples except that

of 1·xMeOH/H2O were reproduced at least once.

4.3.2 X-ray Structure Analysis.

Crystals with the composition 1·2MeOH were of sufficient quality for a single crystal X-

ray structure analysis, and we were able to solve the structure at 173 K where the complex

is in the low-spin state according to the magnetic measurements. The crystal structure

of compound 1·2MeOH describes the first example for coordination polymer with pina

as axial ligand. The crystallographic data are summarized in Table 4.2. Selected bond

lengths and angles are shown in Table 4.3. ORTEP drawing of the asymmetric unit is

given in Figure 4.2.

Compound 1·2MeOH crystallizes in the monoclinic space group P21/c. The observed

bond lengths around the iron center are within the range reported for other octahedral

iron(II) complexes made of this ligand type in the LS state. [7,39,52,53] The average values are

1.90 Å(Fe–Neq), 1.94 Å(Fe–Oeq), and 2.01 Å(Fe–Nax). The observed O–Fe–O angle is with

88.9o clearly indicative of LS iron(II). [7,39,52,53] The axial pina ligand links the iron centers

as bridging bidentate ligand. Analysis of the polymeric structures reveals an infinite

one-dimensional chain with the base vector [100]. The pina ligand is disordered, mainly
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Figure 4.2: ORTEP drawing of the asymmetric unit of 1·2MeOH. Hydrogen atoms and
the disorder of the pina ligand have been omitted for clarity. Thermal ellipsoids are shown
with a 50% probability.

concerning the asymmetric peptide bond. However, the carbonyl oxygen is pointing at

the same direction in both disordered structures. This disorder could be the reason for

the small steps/plateaus observed in the magnetic measurements. The asymmetric unit

additionally contains two methanol molecules, each bound to the peptide bond through

hydrogen bonds. The details for the hydrogen bonds are summarized in Table 4.4 ; an

excerpt of the molecule packing is given in Figure 4.3. In one case, the hydroxy group of

methanol is the donor group (O7-H7A) and the carbonyl oxygen of the peptide bond the

acceptor (O5). In the other case, methanol is the acceptor (O6) of the N-H group of the

peptide bond (N5-H5). This solvent molecule moreover participates in a second hydrogen

bond between its hydroxy group (O6-H6A) and the carbonyl group (O3) of an adjacent

equatorial ligand and, thus, is part of an infinite one-dimensional hydrogen bond chain

(base vector [001], Figure 4.3). One further direct short contact is observed between the

carbonyl group of the equatorial ligand and the nitrogen of the peptide bond. It should

be mentioned that only the axial ligand and substituents of the equatorial ligand are

involved in the hydrogen bond network and no participation of the donor oxygen atom
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Table 4.2: Crystallographic Data of [FeL1(pina)]·2MeOH (1·2MeOH).
1·2MeOH

formula C31H35FeN5O7

M [g·mol−1] 645.49
cryst syst monoclinic
space group P21/c
a[Å] 13.3304(11)
b[Å] 12.9564(11)
c[Å] 21.5188(15)
α[o] 90
β[o] 127.769
γ[o] 90
V [Å3] 2937.9(4)
Z 4
ρ[g·cm−3] 1.459
µ[mm−1] 0.571
cryst size [mm] 0.32 × 0.19 × 0.11
T [K] 173(2)
λ(Mo Kα)[Å] 0.71073
θ range[o] 4.19–25.38
reflns collected 11924
indep reflns (Rint) 5286 (0.0391)
params 391
restraints 24
R(F ) (all data) 0.0516 (0.0924)
wR2 0.1316
GooF 0.960

of the equatorial ligand, as for the corresponding mononuclear imidazole complexes, is

observed.

4.3.3 Powder X-ray Diffraction

In order to verify that the different samples of 1 assume similar structures, the calcu-

lated powder X-ray diffraction pattern of 1·2MeOH is compared with measured PXRD

patterns. The results are given in the Supporting Information, Figure 4.10. Indeed, in

the region 2Θ = 8–8.5o and 2Θ = 26–27o, strong similarities in the diffraction patterns

are observed. This can be used as confirmation that in all cases coordination polymers

were formed with an approximate distance between the iron centers of 13.5 Å and a dis-

tance between the polymer chains in the region of 4 Å. The diffraction pattern of the three

pure HS complexes 1·0.5MeOH, 1·2H2O, and 1·0.5EtOH are almost identical. Apparently
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Table 4.3: Selected Bond Lengths [Å] and Angles [o] of the Structure of 1·2MeOH.
compound Fe–Neq Fe–Oeq Fe–Nax Oeq–Fe–Oeq Nax–Fe–Nax

1·2MeOH 1.904(3) 1.940(2) 2.026(13)a 88.89(10) 174.4(3)a,c

1.93(3)b

1.898(3) 1.947(2) 2.008(11)a 172.6(8)b,c

2.05(3)b

aRelated to N3A. bRelated to N3B; symmetry code. c1 + x, y, z.

Figure 4.3: Crystal packing of 1·2MeOH. View along [100] (left) and along [010] (right).
Hydrogen atoms are omitted for clarity. The hydrogen bonds are given as dashed lines.

they all precipitate in the same packing pattern independent of the cocrystallized solvent

molecules. This assumption is supported further by the fact that the solvent-free sample

of 1·0.5MeOH (after annealing at 100 oC for 5 h under vacuum to remove all methanol)

shows the same diffraction pattern as before.

The diffraction patterns of the three spin transition samples 1·DMF, 1·2MeOH, and

1·0.5H2O·0.5MeOH also show some similarities, especially in the regions 2Θ = 12–15o

and 2Θ = 20–23o. There are, however, also some differences in good agreement with

the different magnetic properties observed in the magnetic measurements. There are

pronounced differences between the diffraction patterns of the pure HS complexes and

the SCO complexes.
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Table 4.4: Summary of the Intermolecular Hydrogen Bonds of 1·2MeOH with d(D· · ·A)
< R(D) + R(A) + 0.5 Å, d(H· · ·A) < R(H) + R(A) − 0.12 Å, D–H· · ·A > 100.0o

compound D H A D–H [Å] H· · ·A [Å] D· · ·A [Å] D–H· · ·A [o]

1·2MeOH N5A H5A O6 0.88 2.19 3.008(6) 155
N5B H5B O6 0.88 2.16 2.893(13) 141
O7 H7A O5A 0.84 2.09 2.887(7) 159
O7 H7A O5B 0.84 1.94 2.771(13) 169
O6 H6A O3a 0.84 2.04 2.865(4) 169
C18 H18A O7b 0.98 2.58 3.458(7) 149
C18 H18C O6c 0.98 2.59 3.327(5) 132

C20A H20A O3b 0.95 2.50 3.217(10) 132

Symmetry codes: ax,− 1
2 − y,

1
2 + z ; b − x, 12 + y,− 1

2 − z ; cx,− 1
2 − y,−

1
2 + z.

4.3.4 Magnetic Measurements.

Of the seven samples investigated, three (1·0.5MeOH, 1·0.5EtOH, 1·2H2O) are pure

HS complexes in the entire temperature range with a χMT product in the range of 3.4

cm3·K·mol−1, typical for HS iron(II). The corresponding plot of the χMT product versus

temperature is displayed in the Supporting Information, Figure 4.11. For the other four

samples SCO behavior is observed, which is described in the following.

The result from the magnetic measurements (plot of the χMTproduct vs T ) of the

undefined sample 1·xMeOH/H2O is displayed in Figure 4.4. The compound shows a

spin transition with a very wide thermal hysteresis around room temperature. At room

temperature the χMT product is with 0.89 cm3·K·mol−1, indicative of a sample with the

majority of the spins in the LS state. Upon cooling, this value remains constant down to

50 K. Upon heating, the compound remains first in the LS state and undergoes an abrupt

spin transition to the HS state above room temperature with T 1
2
↑ = 328 K. At 350 K,

the χMT product is with 3.49 cm3·K·mol−1 in the typical region for HS iron(II) complex.

Upon cooling, a relatively gradual spin transition to the low-spin (LS) state is observed

with T 1
2
↓ = 240 K and a χMT product of 0.79 cm3·K·mol−1 at 150 K. About 20% of the

molecules remain in the HS state. This corresponds to an apparent thermal hysteresis of

88 K. The hysteresis is apparent in the sense that solvent molecules are released during the

first warming process as first identified for [Fe(hyetrz)3](3-nitrophenylsulfonate)2·3H2O. [54]

After heating to 400 K, a second loop of measurement shows that the transition tempera-

tures are shifted to lower temperatures (T 1
2
↓ = 224 K and T 1

2
↑ = 316 K) and the hysteresis
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loop is with 92 K slightly wider. A closer inspection of the curve progression of the second

cycle in the cooling mode reveals the formation of a slight plateau in the region of 224 K;

thus, a two-step spin transition takes place while a one-step spin transition is observed

during heating. The transition temperatures for the two steps are 244 and 209 K. Thus,

for the second step the hysteresis width is 107 K. The difference between the first and

the second cycles is most likely due to a loss of solvent molecules included in the crystal

packing during the heating process. After heating the sample to 400 K for 1 h to remove

all solvent, a third cycle was measured. Upon cooling, the transition temperature is again

shifted to lower temperatures with T 1
2
↓ = 199 K, whereas, upon heating, the transition

temperature remains constant (T 1
2
↑ = 316 K). A thermal hysteresis loop with a width of

117 K is observed! Due to difficulties with the reproduction of this sample, no further

measurements on this material were possible.

Figure 4.4: Plots of the χMT product versus T for 1·xMeOH/H2O (left) and 1·2MeOH
(right). The first loop (black squares) corresponds to measurements starting at room
temperature; the sample is not heated above 350 K. Before the second loop (red circles)
the sample was shortly heated to 400 K, and before the third loop (blue triangles) the
sample was left at 400 K for 1 h to remove all solvent.

Magnetic measurements of 1·2MeOH, displayed in Figure 4.4, reveal SCO behavior

with a hysteresis close to room temperature. The room temperature χMT product of this

sample is with 3.39 cm3·K·mol−1 in the typical region for a HS iron(II) complex. Upon

heating to 350 K, it increases to a value of 3.64 cm3·K·mol−1. Upon cooling, compound

1·2MeOH undergoes a spin transition to the LS state with a T 1
2
↓ = 272 K and a χMT
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product of 0.2 cm3·K·mol−1 at 150 K. For this sample the spin transition is complete.

Upon heating, the compound undergoes an abrupt spin transition back to HS state with

T 1
2
↑ = 306 K, exhibiting a thermal hysteresis of 34 K. Indications for small steps in the

heating and cooling mode are observed. The disorder of the pina ligand observed in

the X-ray structure of this complex is most likely the reason for this behavior. Indeed,

the pina ligand is asymmetric, having an acidside and an amino-side, which gives the

possibility for the iron centers to be coordinated twice to both ends or once to each side.

This situation may result in a slight change in the crystal field strength that could be

responsible for the small steps. Only the average values are considered for the following

discussion. Further loops of measurement (after heating to 400 K for a few minutes and

for 1 h to remove the solvent included in the material) show that the hysteresis is shifted

to lower temperature once the solvent is lost. Again, this is comparable with the behavior

of the first crystalline sample. The loss of the solvent is also accompanied by an increase

of the hysteresis width to 51 K for the second cycle and 45 K for the third cycle.

The results of the magnetic measurements of 1·0.5 H2O·0.5MeOH are displayed in

Figure 4.5. The room temperature χMT product is with 2.94 cm3·K·mol−1 indicative

of an iron(II) complex that is almost completely in the HS state. Upon cooling, the

compound undergoes an incomplete spin transition around 275 K, with a remaining χMT

product of 1.41 cm3·K·mol−1 at 150 K (γHS = 0.4). Upon heating, the χMT product

increases first slowly, than more rapidly, until the compound is back in the HS state in

a two-step transition with an average T 1
2
↑ = 321 K, leading formally to a 46 K wide

hysteresis. As further cycles are measured, the transition temperatures are shifted to

lower temperatures, and an increase of the hysteresis width (up to 73 K for the third

cycle) is observed, in agreement with the results of the previously described samples.

However, for the sample 1·0.5H2O·0.5MeOH a significant increase of the remaining HS

fraction is observed. For the third cycle, γHS = 0.65, only one-third of the iron centers

undergo spin transition. In the Supporting Information, Figure 4.12, the TGA analysis

of the sample is given to confirm the solvent loss upon heating.

The sample 1·DMF (Figure 4.5) is at room temperature almost in the LS state. At 250

K the χMT product is with 0.08 cm3·K·mol−1 characteristic for an iron(II) LS complex.
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Figure 4.5: Plots of the χMT product versus T for compounds 1·0.5H2O·0.5MeOH (left)
and 1·DMF (right).

Upon heating, solvent loss accompanied by a gradual spin transition starting around

300 K and ending at 400 K is observed. The solvent loss was followed by TGA (see

Experimental Section and Supporting Information, Figure 4.12). At 400 K in the HS

state a χMT product of 3.35 cm3·K·mol−1 is obtained. The second cooling/heating cycle

reveals a shift of the spin transition to lower temperatures and a small hysteresis of 4 K

(T 1
2
↓ = 305 K, T 1

2
↑ = 309 K). The χMT product of 0.64 cm3·K·mol−1 at 150 K indicates

that the spin state change is no longer complete but a remaining HS fraction of γHS = 0.19

is obtained. The compound was kept 1 h at 400 K in order to remove the included solvent

completely. This resulted in a shift of the transition temperature to lower temperatures,

an increase of the hysteresis width (10 K, T 1
2
↓ = 288 K, T 1

2
↑ = 298 K), and a higher HS

fraction (χMT = 1.08 cm3·K·mol−1 at 150 K, γHS = 0.30).

All samples showing spin transition have in common that the spin transition is shifted

to lower temperatures upon solvent loss and a slight increase of the hysteresis width is

observed. However, for the first two samples the remaining HS fraction does not change

with repeating heating/cooling cycles while for the latter two samples a significant increase

for the remaining HS fraction is observed. Apparently, for the powder samples the loss of

methanol, water, or DMF molecules causes the formation of defects in the crystal lattice

resulting in a loss of the spin transition properties.
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4.3.5 Mössbauer Spectroscopy and Thermal Analysis

The compound 1·0.5H2O·0.5MeOH was resynthesized in high amount to allow further

investigations of the complex spin transition behavior using differential scanning calorime-

try (DSC) and 57Fe Mössbauer spectroscopy. The DSC measurements were done in order

to track other phase transitions occurring upon cooling and heating that could explain the

unstable ST behavior (Figure 4.6). Upon cooling, a first endothermic transition occurs

around 297 K, which is directly followed by a sharper transition at 291 K. One transition

corresponds to the incomplete HS to LS transition and the other one to another first

order phase transition. Upon warming, one broad exothermic transition is observed with

a maximum at 353 K corresponding to the LS to HS state spin transition, with a weak

shoulder around the boiling point of methanol ('338 K). Thus, one could assume that the

loss of methanol triggers the LS to HS spin state change. Determined values of enthalpy

(∆H ↓ = 33 kJ·mol−1 and ∆H ↑ = 39 kJ·mol−1, assuming that two-third of the iron

centers switch the spin state) and entropy (∆S ↓ = 113 J·mol−1K−1 and ∆S ↑ = 119

J·mol−1K−1) are significantly higher than observed for spin transitions in similar mate-

rials [33] due to the presence of other thermodynamic phenomena occurring at the same

time: another phase transition upon cooling, and the methanol vaporization upon heat-

ing. Obviously, those phenomena are related to the spin transitions. The small difference

of transition temperatures when one compares the DSC results to the SQUID measure-

ment originates from the different measurements modes (sweep for the DSC, settle for the

SQUID).

57Fe Mössbauer spectrometry was used to understand the incompleteness of the spin

transition of the powder phase 1·0.5H2O·0.5MeOH. Mössbauer parameters of all spectra

are summarized in the Supporting Information, Table 4.5. Selected spectra are shown

in Figure 4.7. A plot of the AHS/Atot versus T is shown in Figure 4.8, assuming equal

Debye-Waller factors for the LS and HS ions. The spectrum at 298 K shows two different

signals: one quadrupole doublet corresponding to HS iron(II) ions with a large quadrupole

splitting (δ = 0.92(1) mm/s ; ∆EQ = 2.24(1) mm/s ; Γ/2 = 0.20(2) mm/s ; AHS/Atot

93(3)%) and another quadrupole doublet corresponding to LS iron(II) ions with a smaller

quadrupole splitting (δ = 0.38(2) mm/s ; ∆EQ = 0.84(4) mm/s ; Γ/2 = 0.11(2) mm/s ;
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Figure 4.6: DSC measurement of 1·0.5H2O·0.5MeOH. Measured enthalpy and entropy
values are given in the cooling and warming modes (5 K/min). The values were corrected
by a factor 1.5 as only two-third of the iron centers are involved in the spin transition as
indicated by Mössbauer spectroscopy and magnetic measurements.

ALS/Atot 7(3)%). The hyperfine parameters are similar to reported ones for 1D chains of

complexes with similar ligand system. [55] In the following, the Mössbauer spectra were first

recorded upon cooling down to 78 K, then upon warming up to 348 K. Upon cooling, the

compound undergoes an incomplete spin transition with a T 1
2
↓ = 280 K, with a remaining

HS area of 30% at 78 K. The transition temperature is in good agreement with the results

from the magnetic measurements (275 K) ; however, the spin transition is more complete.

This can be explained because the Mössbauer measurements are done in closed Teflon

capsules at ambient pressure. In contrast to this in the SQUID magnetometer the sample

is in constant vacuum. The results of the SQUID measurements on this sample show that

upon solvent loss the spin transition is less complete. Upon warming, the HS fraction

remains constant up to 298 K. Above 298 K, the LS to HS conversion starts, that is,

however, not complete at 348 K.

The spectrum at 298 K after the first cooling shows a different population of the two

iron(II) states compared to the first spectrum at 298 K. Thus, clear evidence for the

room temperature bistability is obtained. The sample was further heated up to 348 K,

showing an increase of the HS fraction at higher temperatures. The analysis of isomer

shift δ, quadrupole splitting ∆EQ, and half line width Γ/2 with respect to the temperature
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Figure 4.7: Selected Mössbauer spectra of 1·0.5H2O·0.5MeOH. HS FeII signal is depicted
in red, LS FeII in blue. Measurement temperatures are indicated on the spectra.

reveals that all parameters show some modifications upon cooling between 272 and 232

K. Especially, the line width suddenly raises to high values (at 252 K, Γ/2 = 0.28(3)

mm/s for the HS state and 0.34(3) mm/s for the LS state). The plots of the Mössbauer

parameters versus T are shown in Figure 4.9. This sudden jump, which is occurring right

after the spin transition around 250 K upon cooling, is attributed to a phase transition.

This is in good agreement with the results from the DSC measurements that a phase

transition is occurring during the HS to LS spin transition. Mössbauer spectroscopy

therefore allows attributing the DSC peak at 297 K (Figure 4.6) to the spin transition

and the sharper peak at 291 K to the phase transition. However, the exact nature of the

phase transition (changes in the hydrogen bond network, reorientation of the ligand) is

yet to be determined. The results support the tendency that wide hysteresis loops are

observed, when the spin transition is accompanied by pronounced structural changes. [35]
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Figure 4.8: AHS/Atot [%] versus T [K] plot of the Mössbauer spectra measured on the
compound 1·0.5H2O·0.5MeOH.

Figure 4.9: Plots of the isomer shift δ, quadrupole splitting ∆EQ, and half line width Γ/2
vs T for both HS and LS signals of compound 1·0.5H2O·0.5MeOH

One further piece of important information from Mössbauer spectroscopy is that only

one iron site is observed for the HS and the LS state. This implies that the coordination

spheres of the iron centers are not changed after the phase transition or the loss of solvent.

Therefore, the phase transition could be a rearrangement of the hydrogen bond network,
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as it was already discussed for similar systems. [12] Another possibility would be changes

in the orientation of the ligand, e.g., the rotation of the axial ligand from eclipsed to

staggered.

For compound 1·0.5H2O·0.5MeOH, the unstable character of the SCO is most likely

due to the loss of methanol during the LS to HS spin transition. On the basis of the

powder diffraction pattern of 1·0.5H2O·0.5MeOH (partially dried sample) it is difficult

so say if the solvent-free sample is identical to the annealed sample 1 obtained from the

pure HS complexes or if another pure HS phase is obtained.

4.4 Conclusion

We hereby reported the synthesis of seven solvates of the coordination polymer [FeL1-

(pina)](1) showing either spin crossover or being HS depending on the type of solvent

used. Compound 1·xH2O/MeOH, obtained as crystals, shows a very wide hysteresis of

88 K. Attempts to repeat the synthesis of those crystals led to new compound 1·2MeOH,

presenting a wide hysteresis of up to 51 K around room temperature. The crystal structure

of 1·2MeOH was determined, showing 1D coordination polymers linked together by an

hydrogen bond network, therefore creating a 2D network through the crystal packing.

Thus, the pina ligand was used successfully in a crystal engineering-like approach to

improve the spin transition properties of the iron(II) coordination polymers with regard

to the observation of thermal hysteresis loops. The thermal hystereses are wider than those

observed for related complexes with rigid ligands as 4,4’-bipyridine [56] or with modified

equatorial ligands. [37] From other methods of synthesis, the compound 1·0.5H2O·0.5MeOH

was obtained. This latter sample shows also a wide hysteresis loop of 46 K around room

temperature. However, this compound is not stable upon heating, being turned into an

HS compound 1·xH2O upon loss of methanol. The compound 1·0.5H2O·0.5MeOH was

analyzed with DSC and Mössbauer spectroscopy. Finally, the compound 1·DMF was

obtained from synthesis in DMF. This latter compound shows a gradual spin crossover,

but once the solvent is removed under vacuum, it shows a hysteresis of 10 K around

room temperature. All the reported compounds show that their spin crossover properties
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strongly depend on the included solvent molecules and are most likely driven by the

intermolecular interactions through a hydrogen bond network, as expected by choosing the

pina ligand for synthesis of coordination polymers. This work confirms our concept that

hydrogen bonds have the optimal balance between elasticity and rigidity to communicate

the structural changes upon spin transition from one molecule to another. With the

concept of Halcrow, [35] pronounced structural changes are necessary for the observation

of ferroelastic properties (hysteresis [57]) in spin crossover materials. The combination of

equatorial and axial ligands might be especially suited to allow such changes. Next to

changes in the hydrogen bond network, e.g. a rotation of the axial ligand is possible.

Further work is ongoing in the synthesis of derivatives of the pina ligand in order to form

even stronger hydrogen bond networks.
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4.5 Supporting Information

Figure 4.10: Top: Powder X-ray diffraction pattern of the samples discussed in this work.
The red line is the calculated diffraction pattern of the single crystals of 1·2 MeOH.
Bottom: comparison of the powder X-ray diffraction pattern of sample 1·0.5 MeOH and
the annealed sample 1·0.5 MeOH.
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Table 4.5: Mössbauer parameters of [FeL1(pina)]·0.5 H2O·0.5 MeOH (1·0.5 H2O·0.5
MeOH).

T (K) Attribution δ (mm/s) ∆EQ (mm/s) Γ/2 (mm/s) Area/total area

298↓ HS Fe(II) 0.92(1) 2.23(1) 0.19(1) 91(3)%
LS Fe(II) 0.38(2) 0.84(4) 0.11(2) 9(3)%

285↓ HS Fe(II) 0.91(1) 2.29(2) 0.23(2) 70(4)%
LS Fe(II) 0.40(2) 0.90(5) 0.21(4) 30(4)%

272↓ HS Fe(II) 0.90(2) 2.38(3) 0.28(3) 45(4)%
LS Fe(II) 0.42(1) 0.97(3) 0.30(2) 55(4)%

267↓ HS Fe(II) 0.90(2) 2.45(5) 0.29(4) 38(4)%
LS Fe(II) 0.43(2) 0.99(3) 0.31(2) 62(4)%

262↓ HS Fe(II) 0.88(2) 2.48(3) 0.28(3) 36(3)%
LS Fe(II) 0.43(1) 0.96(2) 0.33(2) 64(3)%

252↓ HS Fe(II) 0.90(2) 2.47(3) 0.28(3) 36(3)%
LS Fe(II) 0.45(1) 0.98(2) 0.34(2) 64(3)%

242↓ HS Fe(II) 0.90(2) 2.43(4) 0.25(3) 32(3)%
LS Fe(II) 0.43(2) 1.01(3) 0.33(2) 68(3)%

238↓ HS Fe(II) 0.90(2) 2.45(3) 0.23(3) 33(3)%
LS Fe(II) 0.44(1) 0.98(2) 0.29(2) 67(3)%

232↓ HS Fe(II) 0.90(2) 2.43(3) 0.22(2) 33(3)%
Ls Fe(II) 0.43(1) 0.99(2) 0.28(2) 67(3)%

222↓ HS Fe(II) 0.90(1) 2.38(2) 0.18(2) 32(3)%
LS Fe(II) 0.43(8) 1.01(2) 0.23(1) 68(3)%

212↓ HS Fe(II) 0.93(1) 2.34(2) 0.15(1) 32(2)%
LS Fe(II) 0.41(1) 1.03(1) 0.18(1) 68(2)%

202↓ HS Fe(II) 0.95(1) 2.33(1) 0.13(1) 32(2)%
LS Fe(II) 0.42(1) 1.04(1) 0.16(5) 68(2)%

192↓ HS Fe(II) 0.95(1) 2.33(1) 0.12(1) 31(2)%
LS Fe(II) 0.42(1) 1.03(1) 0.15(1) 69(2)%

182↓ HS Fe(II) 0.96(1) 2.34(1) 0.13(1) 32(2)%
LS Fe(II) 0.42(4) 1.03(1) 0.15(1) 68(2)%

78 HS Fe(II) 0.99(1) 2.39(1) 0.15(1) 30(1)%
LS Fe(II) 0.45(1) 1.00(1) 0.18(4) 70(1)%

267↑ HS Fe(II) 0.92(1) 2.33(2) 0.13(1) 35(3)%
LS Fe(II) 0.39(1) 1.03(1) 0.16(1) 65(3)%

272↑ HS Fe(II) 0.92(1) 2.31(2) 0.14(2) 36(3)%
LS Fe(II) 0.38(1) 1.05(2) 0.16(1) 65(3)%

285↑ HS Fe(II) 0.91(1) 2.32(3) 0.14(2) 34(3)%
LS Fe(II) 0.37(1) 1.05(2) 0.16(1) 66(3)%

298↑ HS Fe(II) 0.92(1) 2.33(3) 0.15(2) 36(3)%
LS Fe(II) 0.37(3) 1.04(2) 0.18(1) 64(3)%

308↑ HS Fe(II) 0.92(2) 2.30(4) 0.16(2) 40(4)%
LS Fe(II) 0.35(2) 0.98(4) 0.21(2) 60(4)%

318↑ HS Fe(II) 0.91(2) 2.30(4) 0.18(2) 45(4)%
LS Fe(II) 0.33(2) 0.95(3) 0.19(2) 55(4)%

328↑ HS Fe(II) 0.94(2) 2.29(3) 0.12(2) 48(5)%
LS Fe(II) 0.33(2) 0.95(4) 0.18(2) 52(5)%

338↑ HS Fe(II) 0.94(1) 2.28(2) 0.12(1) 53(4)%
LS Fe(II) 0.31(2) 0.92(4) 0.19(2) 47(4)%

348↑ HS Fe(II) 0.93(1) 2.30(2) 0.13(1) 60(3)%
LS Fe(II) 0.30(2) 0.85(4) 0.18(2) 40(4)%
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Figure 4.11: Plots of the χMT product versus T for 1·0.5 MeOH, 1·0.5 EtOH and 1·2
H2O.
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Figure 4.12: Results from TGA analysis for 1·DMF (top) and 1·0.5 H2O·0.5 MeOH.
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Abstract

The synthesis of new Schiff base-like ligands with extended π-system and their iron com-

plexes is described. Some of the iron(II) complexes with N-heterocycles as axial ligands

show spin crossover behaviour. The influence of the extended aromatic system on cooper-

ative interactions is investigated by single crystal X-ray structure analysis, X-ray powder

diffraction, and magnetic measurements. A combination of C–H· · · π and C–H· · ·O inter-

actions is made responsible for up to 10 K wide thermal hysteresis loops.
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5.1 Introduction

Molecular switches continue to attract the interest of synthetic chemists due to po-

tential applications in the field of sensing or memory devices. [1–3] Iron(II) spin crossover

(SCO) complexes belong to this class of molecular switches as they can be switched bet-

ween the diamagnetic low-spin (LS) and the paramagnetic high-spin (HS) state. [4,5] This

switching process can be triggered by many different means. Next to physical stimuli like

temperature, pressure, or light irradiation, the interaction with guest molecules [6,7] (espe-

cially for porous materials) or phase transitions [8–11] (e.g. for SCO materials with liquid

crystalline properties) can initiate the spin transition. Of the different types of spin tran-

sition (gradual, abrupt, step-wise, with hysteresis) a special focus is set on spin transition

with hysteresis, as this gives rise to bistability (memory effect) over a certain temperature

region. Cooperative spin transitions with hysteresis are usually only observed in the solid

state (bulk material or nanostructured materials), however it was recently shown that such

phenomenon is also observable in solution. [12] For the display of hysteretic behaviour, in-

termolecular interactions are needed in order to transfer the structural changes associated

with the spin transition from one molecule to another. Different strategies can be used

to realise those intermolecular interactions that were also applied to the Schiff base-like

ligands used in our group. Building short contacts between the complex molecules is one

strategy to design SCO complexes with hysteresis. [13] If wider hysteresis loops are de-

sired, a combination of short range and long range interactions as it is often obtained for

1D coordination polymers or ladder-like compounds is promising. [14,15] In the last years

we investigated in detail the impact of hydrogen bonds on the hysteresis width of SCO

complexes. [16,17] One interaction we have not used in our iron(II) complexes so far is the

π-π-interaction. However, there are examples in literature, where π-interactions between

extended aromatic systems increase the width of the hysteresis loop. One series with

the general composition [Fe(L)2(NCS)2] (with L being a bidentate ligand 2,2’-bipyridine

(bipy), phenantroline (phen), or dipyrido[3,2-a:2’3’-c]phenazine (dpp)) is discussed by

Real and co-workers. [18] The systematic increase of the aromatic part of the ligand leads

to improved π-stacking and by this to wider hysteresis loops. Indeed, for the dpp ligand

a 40 K wide thermal hysteresis loop is observed. [19] Another example of a mononuclear
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complex with a 37 K wide hysteresis loop due to π-stacking was reported by Létard and

co-workers. [20] Consequently we decided to modify our Schiff base-like ligands through

the introduction of a naphthalene based ligand backbone. In Scheme 5.1, the general

structure of the new ligands, their iron complexes, and the used abbreviations are given.

Scheme 5.1: Pathway of synthesis of the SCO complexes described in this work and used
abbreviations.

5.2 Results

5.2.1 Syntheses

The spin crossover (SCO) complexes were produced in a three-step synthesis, whose

synthetic pathway is given in Scheme 5.1. Firstly the new naphthalene-based Schiff

base-like ligands H2Lx (1-4) were synthesised, then the precursor methanol complexes

[FeLx (MeOH)n] (5-8) were formed by reaction with iron(II) acetate, which were finally

converted to the target SCO complexes [FeLx (Lax)2] (9-18). Oxidation of the intermedi-
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ate complexes [FeLx (MeOH)n] (5-8) in the air led to µ-oxido-bridged binuclear iron(III)

complexes [µ-O-(FeLx )2] (19-20).

Ligands The synthesis of the ligands H2Lx (1-4) was achieved by condensing 2,3-

diaminonaphthalene and the corresponding keto-enol ether following a modified method

described by Wolf and Jäger. [21] The four new ligands were obtained in good yield as

yellowish powder and their purity was checked with 1H-NMR and elemental analysis. All

ligands present characteristic 1H-NMR doublet signals around 13 and 8.2-8.5 ppm, ac-

counting for the protons of the –NH enamine and =C–H of the chelate cycles. The rest

of the proton signals can be found in their respective expected region. IR spectra show

two strong characteristic signals for the C=O vibrations, as well as a characteristic N-H

band.

Methanol complexes [FeLx(MeOH)n] The precursor complexes [FeLx (MeOH)n] (5-

8) were synthesised by converting the equatorial Schiff base-like ligands H2Lx (1-4) with

iron(II) acetate, with the acetate acting as a base for deprotonation of the equatorial lig-

and. IR spectra show that the C=O bands shift compared to the free ligand, in agreement

with the coordination of an iron metal centre. Also the colour of the compounds drasti-

cally changes towards dark brown/black in the solid state. This is due to strong charge

transfer between the iron centre and the ligand, as observed for similar compounds in liter-

ature. [22–25] It is usual for this type of complexes that two methanol molecules coordinate

the iron(II) centre on axial positions, as shown for the phenyl-, [26,27] dialkoxyphenyl-, [28,29]

and dihydroxyphenyl- [30,31] derivatives of the same compound class. However, it was found

by elemental analysis that for the naphthalene derivatives discussed in this manuscript

the amount of coordinated methanol is depending on the substituents of the equatorial

ligand. When the substituents are ester functions, like with L1 (R = –OEt) and L4 (R

= –OMe), the complex will have two methanol coordinated to the iron centre. When the

substituents are ketone functions, like L2 (R = –Me) and L3 (R = –Ph), no coordinating

methanol was found. Those results were confirmed by the determination of the crystal

structure of [FeL2].

77



5.2. RESULTS

SCO complexes [FeLx(Lax)2] For the observation of SCO, the crystal field strength

needs to be shifted into the right region. Thus the coordination sphere of the Fe(II)

centre was changed from FeN2O4 to FeN4O2 by placing strong N -coordinating ligands

such as pyridine (py), 4-(dimethylamino)pyridine (dmap), or 4-phenylpyridine (phpy) on

the axial positions. By combining the different equatorial ligands, whose substituents

allow a fine tuning of the crystal field strength, and the three different axial ligands, ten

new potential iron(II) SCO complexes could be synthesised. The synthesis of complexes

[FeL1(py)2] and [FeL3(phpy)2] was not possible so far. The first complex precipitates as

the pentacoordinated specie [FeL1(py)], while the later would not precipitate from the

solution. The exact formula of the complexes was determined with elemental analysis and

mass spectrometry. A list of the different complexes, along with their solvent content, is

shown in Table 5.1.

Oxidation products A crucial point during the synthesis is the identification of pos-

sible Fe(III) species produced during the synthesis of the SCO complexes. Therefore,

mother liquors of the starting methanol complexes were left to slowly evaporate in the

air. In the cases of compounds 5 and 8, a few monocrystals of the corresponding µ-oxido-

bridged binuclear iron(III) complexes 19 and 20 could be obtained. Those were sufficient

for the analysis of the X-ray structures, however, the amount was too small for a further

characterisation of the complexes.

Table 5.1: Overview of the SCO behaviour, characteristic χMT values [cm3·K·mol−1], HS
residue (γHS) at 50 K, and the T 1

2
values [K].

Compound SCO behaviour χMT χMT γHS T 1
2

(300 K) (50 K) (50 K)

9 [FeL2(py)2]·2.5H2O HS 3.87
10 [FeL3(py)2]·py Abrupt 3.19 0.01 0 175
11 [FeL4(py)2]·py Two-step, gradual 2.90 0.84 0.29 150, 80
12 [FeL1(phpy)2] Hysteresis, 10 K 3.65 0.08 0 ↓238, ↑248
13 [FeL2(phpy)2]·2MeOH HS 3.66
14 [FeL4(phpy)2] Hysteresis, 10 K 3.21 0.03 0 ↓250, ↑260
15 [FeL1(dmap)2] Two-step, gradual, 3.12 0.10 0.03 224, 149

abrupt
16 [FeL2(dmap)2] HS 3.39
17 [FeL3(dmap)2] HS 3.32
18 [FeL4(dmap)2] HS 3.31
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5.2.2 Magnetism

The magnetic properties of the ten synthesised potential SCO complexes were inves-

tigated with a SQUID magnetometer, and are summarised in Table 5.1. Out of those

complexes, five (samples 9, 13, 16, 17, 18) are HS compounds with a χMT value around

3.3 cm3·K·mol−1 in the whole temperature range and no indication for SCO. The different

values can be attributed to differences in the spin-orbit coupling. However, especially for

the samples containing non-coordinating solvent molecules, small errors in the sample

weight due to a solvent loss during the sample preparation are also possible. In the ESI,

Fig. 5.10 the plot of χMT vs. T for those complexes is given. Compound 10 presents

at 300 K a χMT value of 3.19 cm3·K·mol−1, typical for iron(II) complexes in the HS

state. [22–34] Upon cooling, this value remains constant down to 175 K where compound

10 undergoes a complete abrupt spin transition (ST) towards the LS state (top left of

Fig. 5.2). Below 160 K the χMT value stays constant with a value of 0.01 cm3·K·mol−1

until 10 K. Upon warming, the compound goes back to the HS state with the same T 1
2

of

175 K. The ST properties of 10 are stable upon several measurement cycles.

Compound 11 exhibits at 300 K a χMT value of 2.90 cm3·K·mol−1 which is in agreement

with an iron(II) complex almost in the HS state (top left of Fig. 5.2). Upon cooling,

the χMT product stays constant until 170 K where compound 11 starts a gradual two-

step SCO until 60 K, with T1 and T2, respectively, equal to 150 and 80 K. The SCO

is incomplete with a residual HS fraction at 60 K of 0.29 (χMT = 0.84 cm3·K·mol−1)

which does not change down to 10 K. Upon warming, the compound 11 presents the

same two-step transition towards the HS state at the same temperatures as upon cooling.

When the compound is warmed above 380 K, the compound no longer exhibits SCO.

Due to the conditions in the SQUID magnetometer (vacuum), uncoordinated as well

as coordinated pyridine molecules could leave the sample, as already observed for other

phenylene-based Fe(II) pyridine complexes. [28,35] The loss of pyridine was confirmed with

a TGA measurement, which is shown in the ESI: Fig. 5.11. As a result, the compound

does not undergo SCO anymore upon cooling. This phenomenon could explain why a

rather high HS fraction was observed for the original sample: a deficiency in pyridine in

the powder, resulting from drying the compound under vacuum after the synthesis, could
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be responsible for the HS fraction at low temperature.

Figure 5.2: Magnetic susceptibility temperature product vs. temperature measurement
for compounds 10 and 11 (top left), 12 and 14 (top right), and 15 (bottom).

Compounds 12 and 14 show very similar SCO properties: at 300 K both present, with

3.65 and 3.21 cm3·K·mol−1, typical magnetic susceptibility with temperature product

values for iron(II) HS complexes (top right of Fig. 5.2). Upon cooling, both show a

rather abrupt ST with T 1
2
↓ = 238 K and T 1

2
↓ = 250 K, respectively, for compound 12

and 14. Their χMT values at 50 K are with 0.08 and 0.03 cm3·K·mol−1 in agreement

with an iron(II) LS centre, and stay constant until 10 K. Upon heating, both samples

show an abrupt ST back to the HS state at, respectively, T 1
2
↑ = 248 K and T 1

2
↑ = 260 K,

revealing for both samples a 10 K hysteresis. As compounds 12 and 14 only differ by one

substituent on the equatorial ligand (–OEt for 12 and –OMe for 14), and show the same

SCO behaviour displaced by 12 K, one could see the direct influence of the substituents

of the equatorial ligand on the crystal field strength of the complexes, but only if 12 and

14 are isostructural. The magnetic properties of 12 and 14 are stable upon heating until
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400 K and can be cycled several times. This is a surprisingly high thermal stability for

mononuclear complexes of this ligand type and can be explained with the results from

X-ray structure analysis.

Compound 15 exhibits at 300 K a χMT value of 3.12 cm3·K·mol−1, corresponding to

an iron(II) HS compound. Upon cooling, the sample undergoes a two-step SCO with a

gradual part starting at 273 K and ending at 189 K with a T1 of 224 K and an intermediate

χMT value of 1.69 cm3·K·mol−1 (γHS = 0.54, γHS was calculated as γHS = (χMT (50

K))/(χMT (300 K))) (bottom of Fig. 5.2). Then the sample undergoes a second abrupt

SCO step with a T2 of 149 K. The magnetic susceptibility product remains constant with

a value of 0.10 cm3·K·mol−1 until 10 K, which is in agreement with an iron(II) centre in

the LS state. Upon several temperature cycles, the magnetic properties of 15 are stable.

5.2.3 X-ray structure analysis

H2L2 (2) Suitable crystals for X-ray diffraction were obtained from water/dioxane

vapour-vapour diffusion setup. The structure of yellow needles of the composition 2·0.5

H2O·0.25 dioxane was determined. Crystallographic data are summarised in Table 5.5.

The compound crystallises in the triclinic space group P1, and the asymmetric unit con-

tains two H2L2 molecules, a water molecule and half a dioxane solvent molecule. An

ORTEP drawing of a H2L2 molecule is displayed in Fig. 5.3. Refinement of the ligand

molecules and dioxane solvent molecule went smoothly, however the hydrogen atoms of

the water molecule could not be refined. The ligand molecule can exist in two different

tautomers: a keto-enamine form or an imino-enol form.

The crystal structure shows the molecule in its keto-enamine form as the C1–C2 and

C15–C16 bonds can be attributed to single bonds (respectively 1.459(6) Å and 1.452(6)

Å), and the C2–C3 and C14–C15 bonds can be attributed to double bonds (respectively

1.380(6) Å and 1.378(5) Å). This observation is in agreement with similar phenylene

Schiff base-like ligand published in literature. [33,36] Two intramolecular hydrogen bonds

are present, both between the nitrogen of the enamine and the oxygen of the ketone (Table

5.2). π-π interactions are present between the stacked ligand molecules, with a distance
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Figure 5.3: ORTEP drawing of 2 (left) and 6 (right). The thermal ellipsoids are shown
at the 50% level. Hydrogen atoms and solvent molecules were omitted for clarity reasons.

of 3.55 Å between the centroids of the first ring of the naphthalene (C4–C5–C6–C11–

C12–C13). This shows that the complexes produced with this ligand have potential to

also form π-π interactions.

[FeL2] (6) Suitable crystals for X-ray diffraction were obtained from the synthesis. The

determination of the structure was of high interest as the elemental analysis showed that

no methanol was present in the compound, and therefore a square planar coordination

sphere could be assumed. The crystallographic data are summarised in Table 5.2. The

sample crystallises in the orthorhombic space group Pbcn. The asymmetric unit contains

half a [FeL2] complex, and the ORTEP drawing of the molecule is shown in Fig. 5.3. The

iron centre lies in an octahedral N2O4 coordination sphere, the ligand serves as equatorial

ligand, and as axial ligand of the neighbouring molecules through its ketone substituents,

forming a 2D coordination network. Selected bonds and angles are presented in Table 5.3.

The angle Oeq–Fe–Oeq is critical in the determination of the spin state of the iron(II), as

its value is about 90o in LS state and about 110o in the HS state. [37,38] The iron(II)centre

is here with 113.0(2) clearly in the HS state, in agreement with its weak field coordination

sphere. The 2D coordination network is located in the [101] plane, where the iron centres

are connected together to form a grid.
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Table 5.2: Summary of the C-H· · ·A short contacts.
Compound D H A D–H H· · ·A D· · ·A D–H· · ·A
2·0.5 H2O N1 H1 O1 0.88 1.87 2.563(5) 135
·0.25 dioxane N2 H2 O2 0.88 1.92 2.712(5) 129

N31 H31 O31 0.88 1.93 2.566(5) 128
N32 H32 O32 0.88 1.89 2.575(5) 133

10HS C12 H12 O3a 0.95 2.50 3.443(6) 169
10LS C12 H12 O3a 0.95 2.41 3.361(6) 174
11 C105 H105 O105b 0.95 2.33 3.20(2) 152

C212 H212 O206c 0.95 2.36 3.22(2) 150
C129 H129 O102d 0.95 2.44 3.32(2) 154
C229 H229 O201 0.95 2.67 3.56∗ 156
C229 H229 O202 0.95 2.67 3.27∗ 122
C224 H224 N302b 0.95 2.58 3.52(2) 175
C126 H126 N502 0.95 2.67 3.64∗ 166
C304 H304 O203e 0.95 2.56 3.33(3) 139
C501 H501 O103f 0.95 2.53 3.36(3) 145

12 C45 H45 O5g 0.95 2.70 3.24∗ 117
C46 H46 O5g 0.95 2.46 3.135(7) 128

19 C20 H20A O5h 0.98 2.43 3.307(7) 148
C23 H23A O3i 0.99 2.44 3.169(7) 130

20 C22 H22B O33j 0.98 2.55 3.359(9) 140

a = -1+x, 5
2 -y, - 12+z ; b = x, 3

2 -y, - 12+z ; c = x, 1
2 -y, - 12+z ; d = 1-x, 1

2+y, 1
2 -z ; e = -x, 1

2+y, 1
2 -z ; f =

1-x, - 12+y, 1
2 -z ; g = 1+x, y, z ; h = 2-x, 1-y, 1-z ; i = x, -1+y, z ; j = -1+x, 1 +y, z. ∗Short contacts

measured with Mercury as the distances or angles exceed the threshold of PLATON.

Each 2D plane is succeeding each other along the axis [010] in a staggered fashion.

Crystal packing pictures of the planes are shown in Fig. 5.4. Solvent accessible voids of

198.9 Å3 per unit cell (10%) were found by PLATON, however no solvent was found in

the structure. Voids pictures are shown in Fig. 5.5. Although the structure shows voids,

they seem to be inaccessible to solvent molecules, as the diameter of the ”channels” is

only 2 Å. Perhaps small gas molecules could be inserted in the network but this study

falls out of the scope of this paper. Powder diffraction proved the bulk material to be

isostructural to the crystals (ESI Fig. 5.12).

FeL3(py)2]·py (10), [FeL4(py)2]·py (11), and [FeL1(phpy)2] (12) Suitable crys-

tals for X-ray diffraction of compounds 10, 11, and 12 were obtained directly from the

synthesis. The structures could be determined in the HS states for 10HS at 180 K and 11

at 175 K, and in the LS state for 10LS and 12 at 133 K. For the determination of 10HS

and 10LS, the same crystal was used. In the case of 11, although complete refinement

of the crystal structure was proven difficult due to incomplete data set (θmax = 17.31o)
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Table 5.3: Selected bond lengths [Å] and angles [o].
Fe–Neq Fe–Oeq Fe–Lax Oeq–Fe–Oeq Lax–Fe–Lax

6 2.095(6) 2.030(5) 2.246(5) 113.0(2) 176.06(19)
10HS 2.063(4) 1.989(4) 2.138(5) 106.98(14) 174.22(17)

2.040(4) 2.018(4) 2.226(5)
10LS 1.908(3) 1.949(3) 1.989(4) 90.49(12) 175.36(15)

1.902(3) 1.953(3) 1.986(3)
11 2.061(12) 2.014(10) 2.205(13) 111.5(4) 169.3(5)

2.088(11) 2.019(10) 2.238(13) 112.6(4) 170.2(4)
2.096(11) 2.004(10) 2.218(12)
2.089(11) 2.012(10) 2.276(12)

12 1.903(4) 1.943(3) 1.996(4) 87.79(14) 173.85(16)
1.906(4) 1.933(3) 2.004(4)

19 2.066(4) 1.951(3) 1.771(3) 92.46(13) 148.18(19)a

2.055(4) 1.965(3) 1.776(3) 92.50(13)
2.051(4) 1.958(3)
2.069(3) 1.961(3)

20 2.037(5) 1.938(4) 1.950(4) 91.59(18) 140.9(2)a

2.055(5) 1.964(4) 1.954(4) 90.18(17)
2.067(4) 1.954(4)
2.064(5) 1.950(4)

aFe–Lax–Fe angle.

Figure 5.4: Crystal packing pictures of 6 along [001] (left) and picture of a single plane
along [010] (right). Hydrogen atoms were omitted for clarity.

because of the low stability of the crystals, a structural motif could be obtained. The

crystallographic data are summarised in Table 5.5. Compounds 10 and 11 crystallise in

the monoclinic space group P21/c and the compound 12 in the triclinic space group P1.

The asymmetric unit of 10 contains one complex molecule and one non-coordinating pyri-

dine solvent molecule, two different iron(II) complexes and two non-coordinating solvent

pyridine molecules in the case of 11, and one complex molecule for 12. ORTEP drawings

of the asymmetric units are displayed in Fig. 5.6. In all structures, the iron centres lie in

84



5.2. RESULTS

Figure 5.5: Solvent accessible voids pictures of 6 along [001] (left) and [100] (right).
Hydrogen atoms were omitted for clarity.

a N4O2 coordination sphere, connected to the equatorial ligand and two (phenyl)pyridine

molecules. The spin state of the iron centres can be determined by the value of the

Oeq–Fe–Oeq angle which goes from '110o in the HS state to '90o in the LS state. [37,38]

Measured Oeq–Fe–Oeq angles for the HS structures (106.98(14)o for 10HS, 111.5(4)o, and

112.6(4)o for 11) and for the LS structures (90.49(12)o for 10LS and 87.79(14)o for 12)

are in agreement with similar compounds in literature. [16,39] Selected bond lengths and

angles are listed in Table 5.3.

Upon SCO, the volume of the cell of 10 is reduced by 2.5%, in agreement with the

volume reduction of the coordination sphere of the iron centre as it switches from HS to

LS state. [40] The complex shows a strong saddle shape with an angle of 11.54o in the HS

and 10.53o in the LS state between the FeN2O2 plane (Fe1–N1–N2–O1–O2) and the plane

containing the naphthalene cycles. The change in the saddle angle comes from changes in

lengths of intermolecular contacts between the complexes. Indeed, C–H· · · π interactions

are observed between the aromatic rings of the naphthalene and aromatic hydrogen atoms

of the axial pyridine ligands, leading to the formation of 1D chains propagating along the

vector [001]. Additionally, the 1D chains are linked through C–H· · ·O bridges linking

the naphthalene ring (C12–H12) to the ketone group (O3) of a neighbouring molecule,

along the vector [100]. Such C–H· · ·O bridges are known to be structure defining in

many cases. [41–46] Contribution from both types of interactions leads to the formation

of a 2D network in the a,c plane of the packing. Crystal packing and a scheme of the
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Figure 5.6: ORTEP drawing 10HS (top left), 11 (bottom left), and 12 (bottom right).
The thermal ellipsoids are shown at the 50% level. Hydrogen atoms and non-coordinating
solvent molecules were omitted for clarity reasons. The overlay of 10HS and 10LS is
represented in the top right corner.

C–H· · · π interactions are shown in Fig. 5.7 and summarised in Tables 5.2 and 5.4. These

intermolecular interactions have an influence on the slight change of the saddle angle of

the molecule during SCO as the distance between the C–H and the aromatic rings partners

in the interaction is increasing with the volume decrease of the coordination sphere.

The crystal packing of 11 presents a bi-layered structure: the different iron(II) com-

plexes form planes perpendicular to vector [010], in a [Fe1Fe1–Fe2Fe2] fashion. The planes

themselves are built by an intricate combination of C–H· · ·O bridges between naphthalene

and methyl ester substituents of neighbouring molecules along [001]; and, along [010], of

C–H· · ·O bridges and C–H· · · π interactions between axial pyridine and two neighbouring

molecules. The latter C–H· · ·O bridges connect to the oxygen atoms of the coordination
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Figure 5.7: Left: crystal packing of 10HS along [0–10], hydrogen atoms not involved in
short contacts were omitted for clarity reasons. C–H· · · π interactions are represented in
dashed yellow lines, C–H· · ·O in dashed pink lines. Right: excerpt of the crystal packing
along [100], hydrogen atoms, non-coordinating solvent molecules, and substituents were
omitted for clarity. Black double arrows indicate the C–H· · · π interactions positions.

Table 5.4: Summary of the X–Y· · · π interactions in crystal structures 10HS, 10LS, 11,
and 12.

Compound X Y Cg Y· · ·Cg X· · ·Cg X–Y· · ·Cg

10HS C35 H35 C4–C6–C11–C13 2.41 3.358(7) 174
C40 H40 C6–C11 2.58 3.497(8) 164

10LS C35 H35 C4–C6–C11–C13 2.42 3.364(6) 170
C40 H40 C6–C11 2.63 3.554(5) 165

11 C131 H131 C104–C106–C111–C113 2.48 3.37(2) 156
C231 H231 C204–C206–C211–C213 2.65 3.48(2) 147

12 C22 O5 C6–C11 3.807(4) 3.560(6) 69.3(3)

sphere, which has been shown to have dramatic influence on SCO properties. [17] The two

different planes (Fe1 and Fe2) actually build the same network, although similar short

contacts do not have the exact same distance, especially regarding C–H· · ·O bridges con-

necting to coordinating oxygen (O101, O102, O201, O202). The non-coordinating pyridine

solvent molecules occupy interplanar position, binding to the planes through C–H· · ·O

and C–H· · ·N bridges. Distances and angles of discussed short contacts are listed in Tables

5.2 and 5.4. The crystal packing of the 2D network is depicted in Fig. 5.8. The crystal

packing of 12 is dominated by two strong interactions. Firstly, C–H· · ·O bridges link one

of the ethyl ester oxygens (O5) to a neighbouring phenylpyridine aromatic ring (C45–H45,

C46–H46) and form a 1D chain of complexes along [100]. Secondly, an unusual overlap
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of the methyl ester group with the nearby naphthalene ring (–O6–C22=O5· · · π) form-

ing pairs of complexes. [43–46] Additional weaker stacking between adjacent phenylpyridine

aromatic rings, and between naphthalene rings creates a complex network between the

Fe(II) spin centres. Crystal packing pictures as well as an ORTEP representation of the

–O6–C22=O5· · · π and C–H· · ·O bridges are shown in Fig. 5.9, distances and angles of

discussed short contacts are listed in Tables 5.2 and 5.4.

Figure 5.8: Crystal packing of 11 along [010] (left), illustrating the 2D network along
[010] (top right) and [001] (bottom right); hydrogen atoms not involved in short contacts
were omitted for clarity reasons. C–H· · · π interactions are represented in dashed yellow
lines, C–H· · ·O in dashed pink lines.

Figure 5.9: Crystal packing of 12 along [001] (left); C–H· · ·O interactions represented in
dashed pink lines; ORTEP representation of the –O–C=O· · · π interactions, the thermal
ellipsoids are shown at the 50% level. Hydrogen atoms were omitted for clarity reasons.

88



5.2. RESULTS

[µ–O–(FeL1)2] (19) and [µ–O–(FeL4)2] (20) µ–Oxido complexes are the usual oxi-

dation product of the iron(II) complexes when in contact with oxygen. Identifying such

potential side-product is critical for the good proceedings of syntheses and analyses. Crys-

tals suitable for X-ray diffraction were obtained from slow evaporation of a methanolic

solution of [FeLx (MeOH)2] in the air. The crystallographic data are summarised in Table

5.5. Both compounds crystallise in the triclinic space group P1, with an asymmetric unit

containing one µ–oxido complex with the two iron(III) centres lying in a N2O3 coordina-

tion sphere. All square based pyramid iron(III) are connected through a µ–oxido bridge.

The ORTEP drawing of the asymmetric units are shown in ESI, Fig. 5.15. Bond lengths

and angles within the coordination sphere are listed in Table 5.3, and are in agreement

with similar published compounds. [29,37] As for the SCO complexes, C–H· · ·O bridges be-

tween ester side substituents can be found in the crystal packings, and the complexes are

stacking in column fashion. Although the conformation of the two bridged iron complexes

19 and 20 are different, the crystal packing is actually similar. Pictures of the crystal

packing are shown in ESI, Fig. 5.16.
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Table 5.5: Crystallographic data of the ligand and the complexes discussed in this work

Compound 2·0.5 H2O 6 10HS 10LS 11 12 19 20
·0.25 dioxane

CCDC 1040379 1040378 1040374 1040375 1040380 104376 104375 104377
Sum formula C46H48N4O10 C22H20FeN2O4 C47H39FeN5O4 C47H39FeN5O4 C37H35FeN5O6 C46H42FeN4O6 C48H48Fe2N4O13 C44H40Fe2N4O13

M [g·mol−1] 816.88 432.5 793.68 793.68 701.55 802.69 1000.60 944.50
Crystal system Triclinic Othorhombic Monoclinic Monoclinic Monoclinic Triclinic Triclinic Triclinic
Space group P1 Pbcn P21/c P21/c P21/c P1 P1 P1
a [Å] 7.8382(10) 11.697(2) 12.179(2) 11.920(2) 28.083(5) 11.5899(7) 13.273(3) 9.027(1)
b [Å] 12.3303(11) 15.864(3) 24.655(4) 24.712(4) 12.058(6) 11.9233(7) 14.292(3) 12.475(1)
c [Å] 21.170(3) 10.566(2) 16.589(2) 16.280(2) 22.071(5) 14.3604(9) 14.510(3) 17.885(2)
α [o] 88.110(5) 90 90 90 90 77.012(5) 63.065(15) 89.132(10)
β [o] 87.730(5) 90 126.153(19) 125.183(19) 112.568(18) 88.090(5) 69.534(15) 85.598(10)
γ [o] 86.920(5) 90 90 90 90 84.122(5) 78.915(16) 85.422(10)
V [Å3] 2040.4(16) 1960.6(14) 4022(2) 3919(2) 6902(3) 1923.4(2) 2297.1(9) 2001.6(4)
Z 2 4 4 4 8 2 2 2
ρ [g·cm−3] 1.330 1.464 1.311 1.345 1.350 1.386 1.447 1.567
µ [mm−1] 0.094 0.801 0.426 0.437 0.490 0.449 0.702 0.801
Crystal size [mm] 0.02 × 0.103 × 0.100 × 0.100 × 0.03 × 0.07 × 0.23 × 0.292 ×

0.09 × 0.114 × 0.163 × 0.163 × 0.100 × 0.100 × 0.24 × 0.309 ×
0.14 0.124 0.262 0.262 0.12 0.19 0.24 0.380

T [K] 100(2) 133(2) 180(2) 133(2) 175(2) 133(2) 133(2) 133(2)
λ(MoKα) [Å] 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073
θ-Range [o] 2.6–22.0 1.28–23.74 1.65–24.59 1.60–24.60 2.252–17.31 1.455–24.584 1.6–24.6 1.638–28.064
Reflns. Collected 12238 24192 47223 45921 26239 22912 27408 25770
Indep. reflns. (Rint) 4998 (0.074) 1858 (0.4395) 6730 (0.156) 6540 (0.165) 4159 (0.154) 6444 (0.182) 7688 (0.134) 8940 (0.104)
Parameters 541 134 514 514 403 514 604 568
R1(F ) (all data) 0.0526 (0.1087) 0.0851 (0.1601) 0.0596 (0.1278) 0.0571 (0.1158) 0.0788 (0.1359) 0.0748 (0.1224) 0.0515 (0.1097) 0.0861 (0.1222)
wR2 0.1299 0.1989 0.1205 0.1112 0.2073 0.1612 0.1049 0.2175
GooF 1.045 0.983 0.928 0.916 1.081 0.941 0.851 0.864
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5.3 Discussion

Intermolecular interactions in the crystal packing result in cooperative interactions

during the spin transition. These can result in abrupt spin transitions, thermal hysteresis

loops, or step-wise spin transitions. Based on the structural data a deeper understanding

of the different spin crossover properties is possible.

Compound 10 shows an abrupt SCO behaviour (Fig. 5.2), which can be due to either

to a phase transition during SCO, or due to other cooperative effects between the com-

plexes in the solid state. The determination of the crystal structure inboth spin states

proved that no phase transition is involved during SCO. Cooperative interactions can arise

from intermolecular contacts, and the packing of the crystal structure of 10 revealed, in

both spin states, the formation of 1D chains through C–H· · · π interactions and C–H· · ·O

bridges between the complexes. Thus the Schiff base-like ligand was modified successfully

and π-interactions are observed and lead to cooperative interactions between the complex

molecules.

Compounds 12 and 14 show both an abrupt SCO with a hysteresis of 10 K. Powder

diffraction of both samples in both spin states showed that no phase transition is involved

through the ST, therefore attributing the hysteresis phenomena observed to cooperative

effects. The powder diffraction patterns are shown in ESI (Fig. 5.13-5.14). In the crystal

packing of 12, strong interactions between complexes are present, especially C–H· · ·O

bridges and –O–C=O· · · π interactions connect all spin centres in a 3D network. This is

responsible for the high cooperativity observed for these mononuclear complexes. It would

have been of course interesting to have the structure of the HS state in order to pinpoint

which interaction plays a determining role in the SCO. Unfortunately the low quality and

low stability of the crystal at high temperature did not allow the determination of the

structure in the HS state. Powder diffractograms of 12 and 14 were compared in order

to determine if the compounds are isostructural, as their SCO behaviour is very similar

and just shifted in temperature. Because of the complexity of the diffractograms, arising

from the low symmetry of the crystal structures, no clear conclusions can be drawn about
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the isostructurality of samples 12 and 14.

Compounds 11 and 15 show both a two-step SCO. Such spin crossover are often related

to different iron sites within the structure of the samples. [47] The crystal structure of 11

confirmed this hypothesis as it shows a bi-layered packing with two different iron(II) cen-

tres arranged in layers separated by layers of non-coordinating pyridine solvent molecules.

As no crystals suitable for X-ray analysis could be obtained for compound 15, a room

temperature Mössbauer spectrum was measured. It shows an asymmetric doublet sig-

nal with the following hyperfine parameters: δ = 0.908(6), ∆EQ = 2.066(12) and γ/2 =

0.174(13), which are in the region for an HS Fe(II) complex. [13,25,47] The asymmetry of

the peaks is characteristic for two slightly different doublet, as the right peak is larger

than the left peak. It was however not possible to correctly fit the doublet signal with

two sites. The Mössbauer spectrum is presented in the ESI, Fig. 5.17.

For the crystal structures of the SCO complexes discussed in this work, C–H· · · π in-

teractions and C–H· · ·O bridges strongly influence the crystal packing. For the related

phenylene based complexes, only C–H· · ·O bridges were observed. [24,25,38,47,48] The ad-

ditional C–H· · · π interactions lead to a more frequent observation of interesting SCO

properties. Out of the 10 naphthalene based complexes presented here, two showed a ST

with a 10 K wide hysteresis and in two cases steps in the transition curve were observed.

For comparison, for the 18 phenylene based mononuclear complexes reported so far, only

one step-wise spin transition and two spin transitions with hysteresis (9 K and 70 K) were

observed. [38,49,50] The 70 K hysteresis does not fit into this comparison due to the use of

imidazole as axial ligand that allowed the formation of an extended N–H· · ·O hydrogen

bond network between the complexes. [49] First attempts to combine the naphthalene based

Schiff base-like complexes with axial ligands suitable for the formation of hydrogen bond

networks (like imidazole) are underway. The results obtained so far for the new ligands

indicate that the use of an extended π-system was successful for the design of complexes

with interesting SCO properties.
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5.4 Experimental section

Synthesis Methanol (MeOH) and ethanol (EtOH) were purified by distillation over

magnesium under argon. [51] Toluene and pyridine were of analytical grade and degassed

under argon, pyridine was kept on a 4 Å molecular sieve. Ethoxymethyleneethylaceto-

acetate, [52] ethoxymethyleneacetylacetone, ethoxymethylenebenzoylacetone, [52] methoxy-

methylenemethylacetoacetate, [33] and iron(II) acetate [53] were synthesised as described

in literature. Dioxane (Sigma, 99+%), 2,3-diaminonaphthalene (Alfa Aesar, 97%), 4-

(dimethylamino)pyridine (dmap ; Merck, 99%), and 4-phenylpyridine (phpy ; Acros, 99%)

were used without further purification. All syntheses with iron(II) were carried out under

argon using Schlenk tube techniques. CHN analyses were measured with a Vario El III

from Elementar Analysen-Systeme. Mass spectra were recorded with a Finnigan MAT

8500 with a data system MASPEC II.

H2L1 (1) 2,3-Diaminonaphthalene (2 g) was dissolved in 40 mL toluene. Ethoxy-

methyleneethylacetoacetate (5.18 g) was dissolved in 40 mL EtOH and added to the

2,3-diaminonaphthalene solution. The brown solution was stirred and refluxed for 2 hours.

The mixture was then allowed to cool down to room temperature, and the solvent was

removed under reduced pressure to give crude H2L1 as brown solid. The latter solid was

dissolved in 50 mL EtOH, stirred and refluxed during 10 min, then allowed to cool down

to room temperature. The beige crystals were filtered off, washed with EtOH (2 × 10

mL) and dried in vacuo. Yield: 3.99 g (72%). IR: ν̃ = 3156(b) (NH), 1654(s) (CO),

1648(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 438 (50) (H2L1+) ; elemental analy-

sis calculated (found) for C24H26N2O6·C2H6O (438.47 g·mol−1) : C 64.45 (60.41), H 5.88

(5.95), N 6.17 (5.93). 1H-NMR (CDCl3, 300 MHz, ppm) δ = 13.03 (d, J = 12 Hz, –NH,

2H), 8.51 (d, J = 12 Hz, =CH, 2H), 7.81 (dd, J3 = 6 Hz, J4 = 3 Hz, Ar–H, 2H), 7.68

(s, Ar–H, 2H), 7.50 (dd, J3 = 6 Hz, J4 = 3 Hz, Ar–H, 2H), 4.29 (qua, J =7 Hz, –CH2–,

4H), 2.60 (s, –CH3, 6H), 1.36 (t, J = 7 Hz, –CH3, 6H).

H2L2 (2) 2,3-Diaminonaphthalene (2 g) was dissolved in 40 mL toluene. Ethoxy-

methyleneacetylacetone (3.96 g) was dissolved in 40 mL MeOH and added to the 2,3-
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diaminonaphthalene solution. The yellow solution was stirred and refluxed for 2 hours.

The mixture was then allowed to cool down to room temperature, and the yellow crystals

were filtered off, washed with MeOH (2 × 10 mL) and dried in vacuo. The crystals were

recrystallized from dioxane to give pure H2L2. Yield: 2 g (42%). IR: ν̃ = 3223(b) (NH),

1689(s) (CO), 1675(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 378 (11) (H2L2+)

; elemental analysis calculated (found) for C22H22N2O4·0.5C4H8O2 (422.47 g·mol−1) : C

68.23 (67.91), H 6.20 (5.88), N 6.63 (6.89). 1H-NMR (CDCl3, 300 MHz, ppm) δ = 13.06

(m, –NH, 2H), 8.24 (d, J = 11 Hz, =CH, 2H), 7.83 (m, Ar–H, 2H), 7.66 (s, Ar–H, 2H),

7.53 (m, Ar–H, 2H), 2.59 (s, –CH3, 6H), 2.42 (s, –CH3, 6H).

H2L3 (3) 2,3-Diaminonaphthalene (2 g) was dissolved in 40 mL toluene. Ethoxy-

methylenebenzoylacetone (6.51 g) was dissolved in 40 mL MeOH and added to the 2,3-

diaminonaphthalene solution. The brown solution was stirred and refluxed for 2 hours.

The mixture was then allowed to cool down to room temperature, and the brown crystals

were filtered off, washed with MeOH (2 × 10 mL) and dried in vacuo. The crystals were

recrystallized from MeOH to give pure H2L3. Yield: 5.04 g (72%). IR: ν̃ = 3204(b) (NH),

1663(s) (CO), 1598(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 502 (78) (H2L3+)

; elemental analysis calculated (found) for C32H26N2O4·0.5CH4O (518.59 g mol−1) : C

75.27 (74.90), H 5.442 (4.8), N 5.402 (5.377). 1H-NMR (CDCl3, 300 MHz, ppm) δ =

12.96 (d, J = 12 Hz, –NH, 2H), 7.92 (d, J = 12 Hz, =CH, 2H), 7.76 (m, Ar–H, 4H), 7.68

(s, Ar–H, 2H), 7.48 (m, Ar–H, 10H), 2.56 (s, –CH3, 6H).

H2L4 (4) 2,3-Diaminonaphthalene (2 g) was dissolved in 40 mL toluene. Methoxy-

methylenemethylacetoacetate (4.39 g) was dissolved in 40 mL MeOH and added to the

2,3-diaminonaphthalene solution. The brown solution was stirred and refluxed for 2 hours.

The mixture was then allowed to cool down to room temperature, and the dark yellow

crystals were filtered off, washed with MeOH (2 × 10 mL) and dried in vacuo. The

crystals were recrystallized from MeOH to give pure H2L4. Yield: 5.15 g (99%). IR: ν̃ =

3265(b) (NH), 1652(s) (CO), 1622(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 410

(100) (H2L4+) ; elemental analysis calculated (found) for C22H22N2O6·0.5CH4O (426.4

g·mol−1): C 63.37 (62.97), H 5.672 (4.765), N 6.569 (6.592). 1H-NMR (CDCl3, 300 MHz,

ppm) δ = 13.67 (d, J = 12 Hz, –NH, 2H), 8.57 (d, J = 12 Hz, =CH, 2H), 7.81 (dd, J3 =
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6 Hz, J4 = 3 Hz, Ar–H, 4H), 7.68 (s, Ar–H, 2H), 7.48 (dd, J3 = 6 Hz, J4 = 3 Hz, Ar–H,

10H), 3.82 (s, –CH3, 6H), 2.60 (s, –CH3, 6H).

[FeL1(MeOH)2] (5) 1 (2 g) and iron(II) acetate (0.95 g) were dissolved in 130 mL

MeOH. The red suspension was stirred and refluxed for 1 hour. The mixture was then

allowed to cool down to room temperature, and the brown crystals were filtered off, washed

with MeOH (2 × 5 mL) and dried in vacuo. Yield: 1.68 g (66%). IR: ν̃ = 1614(s) (CO),

1597(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 492 (100) ([FeL1]+) ; elemental

analysis calculated (found) for C26H32FeN2O8 (556.39 g·mol−1): C 56.13 (55.42), H 5.80

(4.20), N 5.03 (5.20).

[FeL2] (6) 2 (2 g) and iron(II) acetate (1.1 g) were dissolved in 100 mL MeOH. The red

suspension was stirred and refluxed during 1 hour. The mixture was then allowed to cool

down to room temperature, and the black crystals were filtered off, washed with MeOH

(2 × 5 mL) and dried in vacuo. Yield: 1.35 g (60%). IR: ν̃ = 1685(s) (CO), 1584(s)

(CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 432 (100) ([FeL2]+) ; elemental analysis

calculated (found) for C22H20FeN2O4 (432.08 g·mol−1): C 61.13 (60.43), H 4.66 (4.29), N

6.48 (6.36).

[FeL3] (7) 3 (1.5 g) and iron(II) acetate (0.59 g) were dissolved in 100 mL MeOH. The

red suspension was stirred and refluxed for 15 min. The mixture was then allowed to cool

down to room temperature, and the black crystals were filtered off, washed with MeOH

(2 × 15 mL) and dried in vacuo. Yield: 1.22 g (78%). IR: ν̃ = 1629(s) (CO), 1575(s)

(CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 556 (100) ([FeL3]+) ; elemental analysis

calculated (found) for C32H24FeN2O4 (556.39 g·mol−1): C 69.08 (68.37), H 4.35 (3.44), N

5.03 (4.997).

[FeL4(MeOH)2] (8) 4 (1.5 g) and iron(II) acetate (0.76 g) were dissolved in 100 mL

MeOH. The red suspension was stirred and refluxed for 1 hour. The mixture was then

allowed to cool down to room temperature, and the brown crystals were filtered off, washed

with MeOH (2 × 5 mL) and dried in vacuo. Yield: 1.57 g (81%). IR: ν̃ = 1620(s) (CO),

1598(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 528 (100) ([FeL4]+) ; elemental
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analysis calculated (found) for C24H28FeN2O8 (528.33 g·mol−1): C 54.56 (54.17), H 5.34

(5.12), N 5.30 (5.26).

[FeL2(py)2]·2.5H2O (9) 6 (0.2 g) were dissolved in 15 mL pyridine. The red solution

was stirred and refluxed for 30 min. The mixture was then allowed to cool down and then

15 mL H2O was added to the solution. Red crystals precipitated slowly, and the solution

was left to stand at room temperature overnight. The red crystals were then filtered off,

and dried in vacuo. Yield: 0.16 g (56%). IR: ν̃ = 1612(s) (CO), 1596(s) (CO) cm−1 ; MS

(DEI-(+), 70 eV) m/z (%): 432 (100) ([FeL2]+) ; elemental analysis calculated (found)

for C32H35FeN4O6.5 (635.49 g·mol−1): C 60.48 (60.46), H 5.55 (3.912), N 8.82 (7.865).

[FeL3(py)2]·py (10) 7 (0.2 g) were dissolved in 15 mL pyridine. The brown solution

was stirred and refluxed for 30 min. The mixture was then allowed to cool down and then

15 mL H2O was added to the solution, and the solution was left to stand at 277 K during

7 days. The black crystals were then filtered off, and dried in vacuo. Yield: 0.1 g (35%).

IR: ν̃ = 1623(s) (CO), 1584(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 556 (100)

([FeL3]+).

[FeL4(py)2]·py (11) 8 (0.2 g) were dissolved in 15 mL pyridine. The brown solution

was stirred and refluxed for 30 min. The mixture was then allowed to cool down and then

15 mL H2O was added to the solution. Red crystals precipitated slowly, and the solution

was left to stand at room temperature overnight. The red crystals were then filtered off,

and dried in vacuo. Yield: 0.14 g (59%). IR: ν̃ = 1601(s) (CO), 1582(s) (CO) cm−1 ; MS

(DEI-(+), 70 eV) m/z (%): 464 (100) ([FeL4]+) ; elemental analysis calculated (found)

for C35H34FeN5O6 (701.55 g·mol−1): C 63.34 (62.06), H 5.03 (4.59), N 9.98 (9.624).

[FeL1(phpy)2] (12) 5 (0.2 g) and 4-phenylpyridine (1.67 g) were dissolved in 20 mL

MeOH. The dark red suspension was stirred and refluxed for 1 hour. The mixture was

then allowed to cool down and left to stand overnight at room temperature. The black

crystals were then filtered off, and dried in vacuo. Yield: 0.06 g (21%). MS (DEI-(+), 70

eV) m/z (%): 492 (100) ([FeL1]+).
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[FeL2(phpy)2]·2MeOH (13) 6 (0.2 g) and 4-phenylpyridine (2.16 g) were dissolved

in 20 mL MeOH. The dark red solution was stirred and refluxed for 1 hour. The mixture

was then allowed to cool down and left to stand overnight at room temperature. The

black crystalline precipitate was then filtered off, and dried in vacuo. Yield: 0.22 g.

IR: ν̃ = 1614(s) (CO), 1587(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 432 (100)

([FeL2]+); elemental analysis calculated (found) for C36H46FeN4O6 (742.64 g·mol−1): C

66.97 (68.48), H 5.14 (5.74), N 7.103 (6.90).

[FeL4(phpy)2] (14) 8 (0.2 g) and 4-phenylpyridine (1.76 g) were dissolved in 20 mL

MeOH. The dark red solution was stirred and refluxed for 1 hour. The mixture was

then allowed to cool down and left to stand overnight at room temperature. The black

crystalline precipitate was then filtered off, and dried in vacuo. Yield: 0.18 g (61%).

IR: ν̃ = 1612(s) (CO), 1596(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 464 (100)

([FeL4]+) ; elemental analysis calculated (found) for C44H38FeN4O6 (774.64 g·mol−1): C

68.22 (68.68), H 4.94 (5.20), N 7.23 (7.18).

[FeL1(dmap)2] (15) 5 (0.2 g) and 4-(dimethylamino)pyridine (2.44 g) were dissolved

in 20 mL MeOH. The dark red solution was stirred and refluxed for 1 hour. The mixture

was then allowed to cool down and left to stand overnight at room temperature. The

black crystalline precipitate was then filtered off, washed with MeOH (2 × 2 mL) and

dried in vacuo. Yield: 0.18 g (68%). IR: ν̃ = 1603(s) (CO), 1574(s) (CO) cm−1 ; MS

(DEI-(+), 70 eV) m/z (%): 492 (75) ([FeL1]+), 121 (100) (dmap+) ; elemental analysis

calculated (found) for C38H44FeN6O6 (736.64 g·mol−1): C 61.96 (62.35), H 6.02 (5.65), N

11.41 (11.65).

[FeL2(dmap)2] (16) 6 (0.2 g) and 4-(dimethylamino)pyridine (2.44 g) were dissolved

in 20 mL MeOH. The dark red solution was stirred and refluxed for 1 hour. The mixture

was then allowed to cool down and left to stand overnight at room temperature. The

black crystalline precipitate was then filtered off, washed with MeOH (2 × 2 mL) and

dried in vacuo. Yield: 0.1 g(32%). IR: ν̃ = 1606(s) (CO), 1569(s) (CO) cm−1 ; MS

(DEI-(+), 70 eV) m/z (%): 431 (23) ([FeL2]+), 121 (100) (dmap+) ; elemental analysis

calculated (found) for C36H40FeN6O4 (676.59 g·mol−1): C 63.91 (63.74), H 5.96 (5.69), N
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12.42 (12.34).

[FeL3(dmap)2] (17) 7 (0.2 g) and 4-(dimethylamino)pyridine (2.44 g) were dissolved

in 20 mL MeOH. The brown solution was stirred and refluxed for 1 hour. The mixture

was then allowed to cool down and left to stand overnight at room temperature. The

black crystalline precipitate was then filtered off, washed with MeOH (2 × 2 mL) and

dried in vacuo. Yield: 0.22 g (74%). IR: ν̃ = 1617(s) (CO), 1583(s) (CO) cm−1 ; MS

(DEI-(+), 70 eV) m/z (%): 556 (58) ([FeL3]+), 121 (100) (dmap+) ; elemental analysis

calculated (found) for C46H44FeN6O4 (800.72 g·mol−1): C 69.00 (69.73), H 5.54 (5.46), N

10.50 (10.11).

[FeL4(dmap)2] (18) 8 (0.2 g) and 4-(dimethylamino)pyridine (2.44 g) were dissolved

in 20 mL MeOH. The dark red solution was stirred and refluxed for 1 hour. The mixture

was then allowed to cool down and left to stand overnight at room temperature. The

black crystalline precipitate was then filtered off, washed with MeOH (2 × 2 mL) and

dried in vacuo. Yield: 0.26 g (97%). IR: ν̃ = 1614(s) (CO), 1596(s) (CO) cm−1 ; MS

(DEI-(+), 70 eV) m/z (%): 464 (75) ([FeL4]+), 121 (100) (dmap+) ; elemental analysis

calculated (found) for C36H40FeN6O6 (708.58 g·mol−1): C 61.02 (59.20), H 5.69 (5.06), N

11.86 (11.48).

[µ–O–(FeL1)2] (19) Suitable crystals for X-ray diffraction were obtained from slow

evaporation of a solution of 5 in MeOH in the air.

[µ–O–(FeL4)2] (20) Suitable crystals for X-ray diffraction were obtained from slow

evaporation of a solution of 8 in MeOH in the air.

X-ray structure analysis The intensity data of 2·0.5 C4H8O·0.5 H2O were collected

with a Bruker D8 Venture diffractometer, the intensity data of 5, 10HS, 10LS, 11, 12,

19, and 20 were collected with a Stoe IPDS II diffractometer, both diffractometer us-

ing graphite-monochromated MoKα radiation. The data were corrected for Lorentz and

polarization effects. The structures were dissolved by direct methods (SIR-97) [54] and

refined by full-matrix least-square techniques against F2
o - F2

c (SHELXL-97). [55] All hy-
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drogen atoms were calculated in idealised positions with fixed displacement parameters.

ORTEP-III [56,57] was used for the structure representation, SCHAKAL-99 [58] to illustrate

molecule packing and CrystalExplorer [59] for the representation of the voids. CCDC

1040373-1040380 contain the supplementary crystallographic data for this paper.

Magnetic measurements Magnetic susceptibility data were collected using a MPMSXL-

5 SQUID magnetometer under an applied field of 0.5 T over the temperature range 2 to

400 K in the settle mode. The samples were placed in gelatin capsules held within a

plastic straw. The data were corrected for the diamagnetic contributions of the ligands

by using tabulated Pascal’s constants and of the sample holder. [34]

5.5 Conclusion

In this work we presented the synthesis of a new ligand system for iron(II) spin crossover

complexes with an increased potential for the observation of π-interactions due to the ex-

tended aromatic naphthalene unit compared to the previously used benzene unit. Ten

new complexes with a high potential for the observation of spin crossover were synthesised

and 50% of those complexes showed the desired properties. Of those, three showed a co-

operative spin transition with a maximum hysteresis width of 10 K. The X-ray structure

analysis of 10 and 12 revealed C–H· · · π interactions, C–H· · ·O bridges, and –O–C=O· · · π

interactions as reason for the abrupt spin transition, with hysteresis in the case of 12. The

next step will be to extend the aromatic system further, e.g. by going to phenazinederiva-

tives [60] in order to further increase the potential for π-stacking. Another possibility is

to link the naphtalene-based Schiff base-like complexes to 1D chains and by this combine

rigid linkers with π-stacking. This will be part of a following paper.
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5.6 Supporting Information

Figure 5.10: Magnetic susceptibility measurements of compounds 9, 13, 16, 17 and 18,
displayed between 10 K and 300 K.
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Figure 5.11: TGA measurement of sample 11.

Figure 5.12: Powder diffraction patterns of sample 6 as bulk material (black line, room
temperature) and simulated powder diffraction pattern from the crystal structure of 6
(red line, 133 K).
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Figure 5.13: Powder diffractograms of compound 14 in HS state (red line, RT) and in LS
state (blue line, 133 K).

Figure 5.14: Comparison of powder diffractograms of compound 12 (black line, calculated
at 133 K), and compound 14 (blue line, measured at 133 K).
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Figure 5.15: ORTEP drawing of 19 (left) and 20 (right). The thermal ellipsoids are
shown at the 50% level. Hydrogen atoms and non-coordinating solvent molecules were
omitted for clarity reasons.

Figure 5.16: left: crystal packing of 19 along [100], hydrogen atoms for clarity reasons.
Right: crystal packing of 20 along [010], hydrogen atoms for clarity reasons.
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Figure 5.17: Mössbauer spectrum of 15, hyperfine parameters: δ = 0.908(6) mm/s, ∆EQ

= 2.066(12) mm/s, and Γ
2

= 0.174(13) mm/s.

Mössbauer spectrometry: 57Fe Mössbauer spectra were recorded in transmission ge-
ometry on a constant-acceleration using a conventional Mössbauer spectrometer with a
50 mCi 57Co(Rh) source. The samples were sealed in the sample holder under an argon
atmosphere. The spectra were fitted using Recoil 1.05 Mössbauer Analysis Software. The
isomer shift values are given with respect to a α-Fe reference at room temperature.
Recoil Software: K. Lagarec and D. G. Rancourt, Recoil, Mössbauer spectral analysis
software for windows 1.0, Department of Physics, University of Ottawa, Canada, 1998.
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Abstract

The synthesis of iron(II) coordination polymers of new Schiff base-like ligands with ex-

tended π-system is described. In total sixteen new compounds were synthesised. The

complexes were characterised by X-ray powder diffraction and magnetic measurements.

Four of those complexes remain in the low-spin state and six remain in the high-spin

state in the entire temperature range investigated. The remaining six complexes show

spin crossover behaviour with a cooperative spin transition (28 and 40 K wide hystere-
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sis loops) in two cases. The influence of the extended aromatic system on cooperative

interactions is discussed.

6.1 Introduction

Iron(II) spin crossover (SCO) complexes that show a cooperative spin transition (ST)

with hysteresis belong to a class of bistable molecular materials that continue to attract

the interest of many groups all over the world. [1–19] This is due to possible applications

in the field of sensors or memory devices. [19–23] A very attractive aspect special to SCO

materials is that the switching process, which can be triggered by different physical or

chemical stimuli and can be combined with additional properties (e.g. magnetic exchange

interaction, liquid crystalline behaviour, luminescence) leading to multifunctional mate-

rials with synergetic effects between the different properties. [24–29]

In order to achieve cooperative STs with hysteresis, intermolecular interactions, such as

hydrogen bonds, [30,31] van der Waals interactions, [32] or C-H· · · π contacts, [33] are needed

to transfer the structural changes associated with the spin transition from one molecule to

another. A very promising approach is a combination of such short range interactions with

long range interactions as it is often observed for 1D coordination polymers or ladder-like

compounds. [32,34,35] Although, there are examples in literature, that π-interactions be-

tween extended aromatic systems can increase the width of the hysteresis loop, [33,36,37] this

concept of π-stacking was so far not combined with the long range interactions expected

for coordination polymers. Consequently we decided to use our modified naphthalene

based Schiff base-like ligands [38] for the synthesis of iron(II) 1D coordination polymers

and to investigate their spin crossover properties, especially with regard to the observa-

tion of thermal hysteresis loops. In Scheme 6.1, the general structure of the new ligands

and their iron complexes and the used abbreviations are given.
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6.2. RESULTS

Scheme 6.1: Pathway of synthesis of the SCO complexes described in this work and used
abbreviations.

6.2 Results

6.2.1 Syntheses

The spin crossover (SCO) coordination polymers [FeLx(Lax)]n (1–16) were synthesised

from a precursor complex [FeLx(MeOH)m], [38] whose axial methanol ligands were ex-

changed with a bridging N -donating ligand such as 4,4’-bypiridine (bipy), 1,2-bis(4-

pyridyl)ethane (bpea), 1,2-bis(4-pyridyl)ethylene (bpee), and 1,3-bis(4-pyridyl)propane

(bppa). The molecular structures and the synthetic pathway are given in Scheme 6.1.

The different -R substituents allow a fine tuning of the crystal field strength.

All coordination polymers precipitated in the boiling heat as black fine crystalline

material. The dark colour of those complexes, in both, the HS and the LS state, arises

from a strong charge transfer bands usually observed for this type of complexes. [39–42]

This prevents the identification of the spin state of the sample or the occurrence of a

SCO phenomenon upon heating or cooling with the naked eye. In some cases, methanol

was included in the samples, a list of the different complexes, along with their solvent

content, is shown in Table 6.1. All complexes were characterised with IR spectroscopy,
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CHN analysis and mass spectrometry. The solvent contents of the SCO complexes were

calculated from the CHN and TGA data. TGA data of the SCO complexes are presented

in Supporting Information: Figure 6.6. The IR spectra show two strong characteristic CO

bands (1550–1650 cm−1), as well as a large OH band for the compounds with incorporated

methanol (3200–3300 cm−1).

Table 6.1: Overview of the synthesised complexes, their SCO behaviour, characteristic
χMT values [cm3·K·mol−1], HS residue (γHS as χMT (T )/(χMT (HS)-χMT (LS))) at 50 K
and the T 1

2
values [K] (T 1

2
defined as the temperature where half of the SCO active sites

transited).
Compound SCO behaviour χMT χMT γHS T 1

2

(300 K) (50 K) (50 K)

1 ([FeL1(bipy)]·2 MeOH)n Gradual 3.40a 0.13 0.04 330
2 [FeL1(bpea)]n HS 3.38
3 [FeL1(bpee)]n LS 0.12
4 ([FeL1(bppa)]·MeOH)n LS 0.25
5 ([FeL2(bipy)]·2 MeOH)n Gradual 3.50a 0.12 0.03 251
6 ([FeL2(bpea)]·2 MeOH)n HS 3.56
7 ([FeL2(bpee)]·2 MeOH)n HS 3.28
8 ([FeL2(bppa)]·2 MeOH)n HS 3.79
9 [FeL3(bipy)]n HS 3.30

10 ([FeL3(bpea)]·MeOH)n abrupt, hysteresis 3.36b 0.35b 0.10b ↓195, ↑223b

3.37c 0.37c 0.11c ↓205, ↑228c

11 ([FeL3(bpee)]·MeOH)n abrupt, hysteresis 3.74b 0.28b 0.07b ↓210, ↑250b

3.76c 0.30c 0.08c ↓210, ↑247c

12 [FeL3(bppa)]n HS 3.53
13 [FeL4(bipy)]n LS 0.17
14 [FeL4(bpea)]n abrupt 3.36 0.06 0.02 149
15 ([FeL4(bpee)]·1.5 MeOH)n LS 0.42
16 ([FeL4(bppa)]·MeOH)n gradual 2.07b 0.64b 0.18b 276b

2.94c 0.52c 0.15c 206c

a = 400 K; b = first loop; c = after annealing at 400 K.

Scanning electron microscopy images of all probes were measured and are displayed in

the SI, Figures 6.11–6.14. All samples are homogeneous, fine crystalline powders. Samples

1, 2, 4, 5, 9, 10, 11, 12, 14, and 15 have an elongated block-like shape, whereas samples

3, 6, 7, 8, 13, and 16 have a platelet-like morphology. All crystallites have a size between

0.5 and 10 µm.
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6.2.2 Magnetism

The magnetic properties of all synthesised coordination polymers were investigated with

a SQUID magnetometer in the temperature range between 10 and 400 K in the settle

mode. Measurements with higher velocities in the sweep mode did not reveal significant

indications for kinetic effects as observed for other systems. [43] Selected parameters are

summarised in Table 6.1. Out of sixteen synthesised complexes, six (samples 2, 6, 7,

8, 9, 12) are HS compounds which do not show any SCO properties (SI Figure 6.7:

plot of χMT vs T ), in contrast to compounds 3, 4, 13, and 15 which are LS over the

investigated temperature range (SI Figure 6.8: plot of χMT vs T ). This shows that the

use of different substituents R is needed in order to bring the SCO complexes in the

right range of crystal field strength, depending on the different axial ligands used. The

two 4,4’-bipyridine-bridged samples 1 and 5 exhibit a gradual spin crossover, above room

temperature (RT) (T 1
2

= 330 K), and below RT (T 1
2

= 251 K), respectively. The χMT vs

T plot is shown in Figure 6.2. Their magnetic susceptibility with temperature product is

with 3.40 cm3·K·mol−1 and 3.50 cm3·K·mol−1 at 400 K in the typical range for iron(II) HS

complexes. At 50 K, both samples show a small HS residue (0.04 and 0.03) in agreement

with complexes being almost completely in a LS state.

Although both SCO are gradual, the SCO of sample 1 is more abrupt, indicating of

a higher cooperativity through a network of inter-chain contracts (the bridging ligand is

in both cases 4,4’-bipyridine). Interestingly, for the phenylene-based complexes always

an abrupt spin transitions with hysteresis or no spin transition at all was observed if

4,4’-bipyridine was used as bridging ligand. Additionally those samples showed a strong

dependence on the solvent contents in the crystal packing. [39,44,45] In the case of the slightly

larger 3,4-dihydroxyphenylene-based ligands either small hysteresis or only gradual spin

transitions are observed, also depending on the solvent contents. [46] The SCO properties

of 1 and 5 illustrate clearly that the use of a rigid bridging ligand alone is not sufficient

for obtaining abrupt cooperative ST. [34,45] This is in agreement with results obtained for

other SCO coordination polymers as the triazole-based systems, where depending on the

substituents very different SCO properties are observed. [47,48] Both samples contain MeOH

as crystal solvent, however annealing at 400 K under vacuum does not change the SCO
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Figure 6.2: Magnetic susceptibility temperature product vs temperature measurement for
compounds 1 and 5 displayed between 175 and 400 K.

properties. The curve progression is stable and can be repeated several times. Appar-

ently, the increasing size of the equatorial ligands reduces the intermolecular interactions

between the single chains and leads to the gradual spin transitions.

The magnetic measurements of the samples 10 and 11 reveal interesting examples of

spin transition with hysteresis. The corresponding χMT vs T plot is shown in Figure

6.3. Both samples are at room temperature with, respectively, 3.36 cm3·K·mol−1 and

3.74 cm3·K·mol−1 clearly in the region for iron(II) HS centres. Upon cooling, the com-

pounds undergo an abrupt ST towards the LS state with T 1
2
↓ = 195 K and T 1

2
↓ = 210

K, respectively. At 50 K, the compounds are with χMT values of 0.35 cm3·K·mol−1

and 0.28 cm3·K·mol−1 clearly in the LS state. Upon warming, both compounds return

abruptly to their original HS state at T 1
2
↑ = 223 K and T 1

2
↑ = 250 K revealing 28 K and

40 K-wide hystereses. As both samples contain MeOH solvent molecules in the crystal

packing, the magnetic behaviour of the samples was investigated after heating the sam-

ples at 400 K under vacuum. Sample 10 still shows an hysteretic behaviour, but the
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transition temperatures are slightly shifted to higher temperature (T 1
2
↓ = 205 K and T 1

2
↑

= 228 K) with a reduction of the hysteresis width to 23 K. Compound 11 is less sensi-

tive to the loss of included solvent molecules, as it only affects the LS to HS transition

(T 1
2
↓ = 210 K and T 1

2
↑ = 247 K) and reduces the hysteresis span from 40 K to 37 K.

After annealing, the magnetic properties are stable and can be measured several times. A

comparison of the bpee- and bpea-bridged coordination polymers with phenylene-based,

3,4-dihydroxyphenylene-based and naphtylene-based Schiff base-like ligands reveals an

opposite trend compared to the bipy-bridged complexes. The widest hysteresis observed

for those coordination polymers increases from 27 K (phenylene-based with bpea) [45] 19

to 28 K (3,4-dihydroxyphenylene-based and bpee) [46] and the here described 37 K for

11. The results suggest that the ratio between the size of the equatorial ligand and the

size of the axial ligand is important for optimising intermolecular interactions. A similar

observation was already made for the mononuclear SCO complexes of this ligand type [40]

and for the formation and self-assembly behaviour of amphiphilic complexes of this ligand

type. [49,50]

Figure 6.3: Magnetic susceptibility temperature product vs temperature measurement for
compounds 10 and 11, displayed between 150 and 275 K.
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The results from the magnetic measurements of 14 and 16 are shown in Figure 6.4.

Compound 14 is at RT in the HS state (χMT = 3.36 cm3·K·mol−1), and undergoes an

abrupt SCO at 149 K towards LS state (at 50 K, χMT = 0.06 cm3·K·mol−1). Upon warm-

ing up, the compound goes back to the HS state at the same temperature. Compound 16

is at RT, with a χMT value of 2.07 cm3·K·mol−1, in an intermediate state between LS and

HS. Upon cooling, the sample goes very gradually to LS, with a rather high residual γHS

of 0.18. Upon warming, the compound undergoes the same gradual transition towards HS

state, revealing a T 1
2

of 276 K. As included MeOH solvent molecules were revealed by the

CHN analysis, sample 16 was heated at 400 K under vacuum and its magnetic properties

measured again. Upon cooling from 400 K, the compound stays in the HS state (χMT

= 2.94 cm3·K·mol−1) until 275 K, where it starts a gradual two-step transition towards

LS state (T 1
2

= 206 K), displacing the SCO of 70 K towards lower temperatures. The

behaviour of those two bpea and bppa bridged complexes, especially the occurrence of

steps in the transition curve in the case of 16, is similar to those of previously published

SCO complexes with such flexible bridging ligands. [39,44,45,51]

Figure 6.4: Magnetic susceptibility temperature product vs temperature measurement for
compounds 14 and 16, displayed between 50 and 400 K.
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6.2.3 Structural analysis

Growing single crystals suitable for X-ray structure analysis appeared to be difficult, as

all coordination polymers are precipitating very fast. Vapour-vapour as well as liquid-

liquid diffusion setups unfortunately only yielded microcrystals, whose size were far too

small for single crystal X-ray analysis. Therefore, an X-ray analysis has been made of the

powders. Powder diffractograms of the SCO complexes were measured at RT and 133 K

in order to have the structural data of the HS and the LS state of samples 5, 10, 11, 14,

and 16. Sample 1 was only measured at RT in the LS state. The powder patterns are

presented in Figure 6.5. The diffractograms can be analysed in order to, firstly, attest

the polymeric nature of the samples by comparison with other similar Fe(II) coordination

polymers published, [30,45,46] and secondly, gain information about the nature of the SCO,

i.e. if phase transitions are involved in the process. At lower diffraction angles (typically

2θ = 8o–12o), typical strong peaks for the Fe–Fe distance within a chain can be found.

One can see that for the compounds, those peaks are located at higher angle for the

compounds with the shorter axial ligand (i.e. sample 5 with bipy), and at lower angle

for the compounds with longer axial ligand (i.e. sample 16 with bppa), indicating that

the Fe–Fe distance is increasing with the length of the axial ligand. The Fe–Fe distance

is here between ≈9 Å for the sample with bipy (5), and ≈12.5 Å for the sample with

bppa (16). Sample 1 displays more peaks at low diffraction angle, presumably because

of a more complicated crystal structure.

Crystallographic phase transitions associated with the SCO can be at the origin of

a wide hysteresis, [2] and therefore it is interesting to compare the diffractograms of the

compounds in HS and LS state. The powder patterns of samples 5, 14, and 16 show

great similarities between the HS and LS states, as only the peak positions are shifted to

higher diffraction angles. It was then assumed that no crystallographic phase transition

is happening during SCO. The shift corresponds to a reduction of the Fe–Fe distance of

≈0.3 Å for sample 5, ≈0.2 Å for sample 14 and ≈0.05 Å for sample 16. The smaller

shift Fe–Fe distance of the latter sample 16 can be on one hand explained by the fact that

the ligand bppa is a “flexible” ligand, therefore absorbing partially the volume change of

the Fe(II) centre upon SCO, and on the other hand because the compound at RT is not
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Figure 6.5: Powder diffractograms for samples 1, 5, 10, 11, 14, and 16, in the HS state
(red) and LS state (blue)

in a full HS state according to the magnetic measurement.

In the case of samples 10 and 11, one can see the high similarity between the powder

patterns in HS state of the two samples. In the LS state, the patterns also look very

similar; however between the HS and LS state, more differences appear, presumably

indicating phase transition happening during the SCO. A decrease of the Fe–Fe distance

of ≈0.25 Å upon SCO was observed.

Powder diffraction patterns of samples 2, 3, 4, 6, 7, 8, 9, 12, 13, and 15 were also

measured in order to confirm their polymeric structure. All compounds present the same

features as the SCO samples, with strong diffraction peak around 2θ = 8o–12o accounting

for the typical Fe–Fe distance within a chain. The patterns are shown in the SI, Figure

6.9.
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6.2.4 Differential scanning calorimetry

Samples 1, 5, 10, 11, and 16 were investigated with the help of DSC in order to measure

the enthalpy and entropy changes associated to the SCO phenomenon itself, but also anal-

yse the presence of supplementary phase transition related or not with the spin transition.

Sample 14 could not be investigated as the spin transition falls out of the temperature

range of the calorimeter. All DSC measurements are shown in the SI, Figure 6.10. Table

6.2 sums up peak temperatures as well as enthalpy and entropy values integrated from

the heat curve. All samples present an exothermic peak for the HS to LS transition, and

an endothermic peak for the LS to HS transition. For samples 1, 5, 10, and 11 a heat

response could be measured for both HS to LS and LS to HS transitions at tempera-

tures in good agreement with the temperatures from the magnetic measurements taking

into account the different measurement rates. Sample 1 presents rather broad peaks in

agreement with the rather gradual transition, the same observation is made for sample

5, where the peaks are very broad and flat over almost 100 K span, as seen for the spin

transition in the SQUID measurement. Both samples have similar enthalpy and entropy

values for both HS to LS and LS to HS transitions, and those values are similar to those

obtained for other spin crossover complexes from the same class. [30,52]

Table 6.2: Sum up of the peak temperatures, enthalpy, and entropy values for the DSC
measurements of samples 1, 5, 10, 11, and 16.

Compound SCO behaviour T 1
2

[K] ∆H [kJ·mol−1] ∆S [J·mol−1·K−1]

1 ([FeL1(bipy)]·2 MeOH)n Gradual ↑325 3.2(5) 10.7(10)
↓325 3.6(5) 14.3(10)

5 ([FeL2(bipy)]·2 MeOH)n Gradual ↑245 9.1(9) 24.8(16)
↓238 9.1(9) 47(2)

10 ([FeL3(bpea)]·MeOH)n abrupt, hysteresis ↑220 3.9(5) 17.4(13)
↓185 3.5(5) 18.6(12)

11 ([FeL3(bpee)]·MeOH)n abrupt, hysteresis ↑244 10.2(12) 42(3)
↓199 2.7(9) 12.6(16)

16 ([FeL4(bppa)]·MeOH)n gradual ↑331 13.0(5) 41(2)

Samples 10 and 11 presents in the SQUID similar spin transitions with hysteresis,

however in the case of sample 11, the hysteresis is almost 20 K broader. In the DSC

measurement, the same observation was made. Interestingly, for sample 11 the HS to

LS and the LS to HS peaks present a huge discrepancy in their enthalpy and entropy

118



6.2. RESULTS

values. The HS to LS transition upon cooling shows almost no DSC response, with rather

small ∆H = 2.7(9) kJ·mol−1 and ∆S = 12.6(16) J·mol−1·K−1 values, although the LS to

HS transition shows rather big ∆H = 10.2(12) kJ·mol−1 and ∆S = 42(3) J·mol−1·K−1

values. Presumably, a supplementary phase transition, i.e. an order-disorder transition,

with an endothermic response taking place at the same time as the exothermic HS to LS

transition could be responsible for the disappearance of the peak, however it could only

be confirmed by X-ray structure determination at different temperatures.

Sample 16 present an asymmetric peak, which reflects the discontinuous behaviour of

the spin transition upon heating. Upon cooling, no peaks were observed, because of the

very gradual character of the stepwise HS to LS transition after annealing. The enthalpy

and entropy values are in agreement with previously reported compounds. [30,52]

6.2.5 57Fe Mössbauer spectrometry

Room temperature Mössbauer spectra of all samples were taken in order to confirm the

spin state obtained from the magnetic measurements and the purity of the materials (e.g.

absence of penta-coordinated species). In the SI, Figures 6.15–6.17, Mössbauer spectra

from all samples are displayed, and the corresponding hyperfine parameters are listed in

Table 6.3. The samples 1, 4, 13, and 15 present a single Fe(II) LS doublet site with

typical δ ≈ 0.34 mm/s and ∆EQ = 0.90–1.10 mm/s for such octahedral complexes in

LS state. Sample 3 is also in the LS state at room temperature, however the signal was

fitted with two Fe(II) LS sites as the peaks are asymmetric in intensity and width. The

difference between the two sites lies in the quadrupole splitting, with ∆EQ = 0.76(7)

mm/s for one site, and ∆EQ = 1.04(13) mm/s for the other site. Such small changes were

already observed and often originate in different conformations of the pyridine rings of

the axial ligand (perpendicular or coplanar). [53,54] Samples 2, 6, 7, 8, 9, 10, 11, 12, and

14 show a large doublet site with δ ≈ 0.90 mm/s and ∆EQ = 2.10–2.30 mm/s. Those

parameters are typical for octahedral HS iron(II) complexes of this ligand type with N -

heterocycles as axial ligand. [53,54] Sample 5 presents an Fe(II) HS site and an Fe(II) LS

site, as at room temperature the compound is in the middle of a gradual spin transition

(see Figure 6.2). The ratio of the HS area is with 65(8)% in good agreement with a γHS
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value of 0.75 at 300 K. In all cases, no indication for pentacoordinated species or N3O3

coordinated species is found.

Table 6.3: 57Fe Mössbauer hyperfine parameters of all samples at room temperature.
Compound Site δ [mm/s] ∆EQ [mm/s] Γ/2 [mm/s] Area [%]

1 ([FeL1(bipy)]·2 MeOH)n Fe(II) LS 0.346(9) 0.875(17) 0.165(12) 100
2 [FeL1(bpea)]n Fe(II) HS 0.889(9) 2.239(9) 0.136(7) 100
3 [FeL1(bpee)]n Fe(II) LS(1) 0.335(9) 1.04(13) 0.20(2) 59(10)

Fe(II) LS(2) 0.346(8) 0.76(7) 0.14(4) 41(10)
4 ([FeL1(bppa)]·MeOH)n Fe(II) LS 0.335(6) 0.785(12) 0.153(8) 100
5 ([FeL2(bipy)]·2 MeOH)n Fe(II) LS 0.38(5) 1.10(10) 0.31(9) 35(8)

Fe(II) HS 0.94(8) 2.19(10) 0.23(2) 65(8)
6 ([FeL2(bpea)]·2 MeOH)n Fe(II) HS 0.87(2) 2.11(4) 0.17(3) 100
7 ([FeL2(bpee)]·2 MeOH)n Fe(II) HS 0.87(2) 2.06(12) 0.25(9) 100
8 ([FeL2(bppa)]·2 MeOH)n Fe(II) HS 0.86(2) 2.16(13) 0.15(2) 100
9 [FeL3(bipy)]n Fe(II) HS 0.95(3) 2.26(5) 0.17(4) 100

10 ([FeL3(bpea)]·MeOH)n Fe(II) HS 0.95(2) 2.26(2) 0.18(2) 100
11 ([FeL3(bpee)]·MeOH)n Fe(II) HS 0.94(2) 2.21(2) 0.21(2) 100
12 [FeL3(bppa)]n Fe(II) HS 0.95(3) 2.19(2) 0.15(2) 100
13 [FeL4(bipy)]n Fe(II) LS 0.33(5) 1.02(7) 0.15(2) 100
14 [FeL4(bpea)]n Fe(II) HS 0.93(2) 2.23(2) 0.15(4) 100
15 ([FeL4(bpee)]·1.5 MeOH)n Fe(II) LS 0.33(2) 1.15(8) 0.16(2) 100

6.3 Discussion

Of the sixteen newly synthesised coordination polymers, compounds 1 and 5 shows both

a gradual SCO, indication that although a rigid bridging ligand is used, the coordination

polymer does not show cooperativity, most likely due to a lack of intermolecular interac-

tions. Compound 14 shows an abrupt spin transition, thus a cooperative phenomenon,

but as no crystal structure could be obtained yet, the nature of the intermolecular interac-

tions responsible for this can only presumed. As no solvent molecules are included in the

compound, strong C–H· · · π and C–H· · ·O interactions between the complexes could give

raise to cooperativity, as it has been shown for similar mononuclear complexes that such

interactions can be the source of abrupt ST. [38] The coordination polymer 16 showed

a very gradual transition around RT that is then shifted 70 K to lower temperatures

after annealing. Then the sample exhibits a two-step transition. Such behaviour (two-

step SCO or SCO that stops at an intermediate plateau) is very frequently observed for

coordination polymers of those Schiff base-like ligands with flexible bridging axial lig-
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ands. [42,45,52,55] Restraining interactions between the polymer chains are made responsible

for this observation. [45]

It was shown for compounds 10 and 11 that the simple substitution of a single bond

(bpea) for a double bond (bpee) in the axial ligand leads to an increase of 15 K of

the hysteresis width. Indeed, the DSC curves for both samples are quite different, with

compound 11 presumably presenting an accompanying phase transition upon the HS to

LS transition. This transition could be of order-disorder type, or a crystallographic phase

transition as the powder patterns of the HS and LS states change drastically upon SCO.

It was already suggested for other systems with wide hysteresis that a crystallographic

phase transitions are responsible for such properties. [2] Moreover, the sample 11 with bpee

was less sensitive to a loss of the SCO properties upon annealing, leaving the insight that

the included MeOH is not crucial for the exhibition of the wide hysteresis. Interestingly,

the cooperative spin transition is observed for the complexes of the ligand L3 with phenyl

rings as substituent R. The related mononuclear complex with two pyridines as axial

ligands showed an abrupt spin transition due to C–H· · · π and C–H· · ·O interactions. The

step from the mononuclear complex to coordination polymers did help to significantly

increase the hysteresis width. The hysteresis width is wider than those observed for

related 1D chain compounds with phenylene-based Schiff base-like ligands [45] and in the

same order of magnitude as those observed for modified ligands with hydroxyl groups at

the phenylene ring. [46] The extent of the interchain interactions (C–H· · · π and C–H· · ·O)

appears to depend on the ratio between the size of the equatorial ligand and the size of the

bridging axial ligand. A similar observation was already made for mononuclear complexes

of this ligand type. [40] The results of this work highlight one more time that the synthesis

of coordination polymers [56–58] or networks [59,60] is highly suitable for obtaining highly

cooperative spin crossover complexes.

6.4 Experimental Section

Synthesis Methanol (MeOH) was purified by distillation over Mg under argon at-

mosphere. [61] Starting MeOH complexes [FeL1(MeOH)2], [FeL2], [FeL3], and [FeL4
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(MeOH)2] were synthesised as described in literature. [38] 4,4’-Bipyridine (bipy) (Alfa Ae-

sar, 99,9%), 1,2-Bis(4-pyridiyl)ethane (bpea) (Aldrich, 99%), 1,2-Bis(4-pyridiyl)ethylene

(bpee) (Aldrich, 98%), and 1,3-Bis(4-pyridiyl)propane (bppa) (Alfa Aesar, 97%) were

used without further purification. All syntheses with iron(II) were carried out under argon

using Schlenk tube techniques. CHN analyses were measured with a Vario El III from El-

ementar Analysen-Systeme. Mass spectra were recorded with a Finnigan MAT 8500 with

a data system MASPEC II. Samples were dissolved in an acetonitrile-methanol mixture.

IR spectra were recorded with a Perkin Elmer Spectrum 100 FT-IR spectrometer.

([FeL1(bipy)]·2 MeOH)n (1) [FeL1(MeOH)2] (0.2 g) and bipy (0.6 g) were dis-

solved in 20 mL MeOH. After stirring the red solution for a few minutes, a dark purple

crystalline precipitate appeared. The suspension was heated to reflux during 1 hour, then

allowed to cool down. The purple crystalline precipitate was filtered off, and dried in

vacuo. Yield: 0.14 g (63 %). IR: ν̃ = 3250(b) (OH), 1623(s) (CO), 1584(s) (CO) cm−1;

MS (DEI-(+), 70 eV) m/z (%): 492 (100) ([FeL1]+), 156 (43) (bipy+); elemental analysis

calculated (found) for C36H40FeN4O8 (712.57 g/mol): C 60.48 (60.67), H 5.65 (4.88), N

7.86 (7.62).

[FeL1(bpea)]n (2) [FeL1(MeOH)2] (0.2 g) and bpea (0.7 g) were dissolved in 20 mL

MeOH. The red solution was heated to reflux during 1 hour then allowed to cool down.

Upon cooling, a red powder precipitated. The red powder was filtered off, and dried in

vacuo. Yield: 0.08 g (33 %). IR: ν̃ = 1617(s) (CO), 1576(s) (CO) cm−1; MS (DEI-(+),

70 eV) m/z (%): 492 (18) ([FeL1]+), 184 (100) (bpea+); elemental analysis calculated

(found) for C36H36FeN4O6 (676.54 g/mol): C 63.91 (63.75), H 5.36 (4.96), N 8.28 (8.01).

[FeL1(bpee)]n (3) [FeL1(MeOH)2] (0.2 g) and bpee (0.66 g) were dissolved in 20

mL MeOH. After stirring the red solution for a few minutes, a dark purple crystalline

precipitate appeared. The suspension was heated to reflux during 1 hour then allowed

to cool down. The purple powder was filtered off, and dried in vacuo. Yield: 0.09 g (34

%). IR: ν̃ = 1625(s) (CO), 1598(s) (CO) cm−1 ; MS (DEI-(+), 70 eV) m/z (%): 492 (18)

([FeL1]+), 182 (100) (bpee+); elemental analysis calculated (found) for C36H34FeN4O6

(674.52 g/mol): C 64.10 (63.79), H 5.08 (4.86), N 8.31 (8.25).
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([FeL1(bppa)]·MeOH)n (4) [FeL1(MeOH)2] (0.2 g) and bppa (0.7 g) were dis-

solved in 20 mL MeOH. The red solution was heated to reflux during 1 hour, and then

allowed to cool down. Upon cooling, a dark red crystalline precipitate appeared. The

dark red crystalline precipitate was filtered off, and dried in vacuo. Yield: 0.04 g (16

%). IR: ν̃ = 3264(b) (OH), 1631(s) (CO), 1579(s) (CO) cm−1; MS (DEI-(+), 70 eV)

m/z (%): 492 (48) ([FeL1]+), 198 (100) (bppa+); elemental analysis calculated (found)

for C38H42FeN4O7 (722.61 g/mol): C 63.16 (62.57), H 5.858 (5.281), N 7.753 (7.652).

([FeL2(bipy)]·MeOH)n (5) [FeL2] (0.2 g) and bipy (0.7 g) were dissolved in 20

mL MeOH. The red solution was heated to reflux during 1 hour, and then allowed to

cool down. Upon cooling, a dark pink crystalline precipitate appeared. The dark pink

crystalline precipitate was filtered off, and dried in vacuo. Yield: 0.25 g (88 %). IR: ν̃

= 3241(b) (OH), 1636(s) (CO), 1589(s) (CO) cm−1; MS (DEI-(+), 70 eV) m/z (%): 432

(37) ([FeL2]+), 156 (100) (bipy+); elemental analysis calculated (found) for C33H32FeN4O5

(620.48 g/mol): C 63.88 (63.12), H 5.20 (4.62), N 9.02 (9.245).

([FeL2(bpea)]·2 MeOH)n (6) : [FeL2] (0.2 g) and bpea (0.85 ) were dissolved in 20

mL MeOH. The red solution was heated to reflux during 1 hour, and then allowed to cool

down. Upon cooling, a brown powder precipitated. The brown powder was filtered off,

and dried in vacuo. Yield: 0.19 g (60 %). IR: ν̃ = 3256(b) (OH), 1617(s) (CO), 1596(s)

(CO) cm−1; MS (DEI-(+), 70 eV) m/z (%): 432 (17) ([FeL2]+), 184 (100) (bpea+);

elemental analysis calculated (found) for C36H40FeN4O6 (680.57 g/mol): C 63.53 (63.45),

H 5.92 (4.66), N 8.23 (8.09).

([FeL2(bpee)]·2 MeOH)n (7) [FeL2] (0.2 g) and bpee (0.84 g) were dissolved in 20

mL MeOH. The brown solution was heated to reflux during 1 hour, and then allowed

to cool down. Upon cooling, a purple powder precipitated. The purple powder was

filtered off, and dried in vacuo. Yield: 0.27 g (95 %). IR: ν̃ = 3265(b) (OH), 1604(s)

(CO), 1586(s) (CO) cm−1; MS (DEI-(+), 70 eV) m/z (%): 432 (65) ([FeL2]+), 182 (100)

(bpee+); elemental analysis calculated (found) for C36H38FeN4O6 (678.55 g/mol): C 63.72

(63.41), H 5.64 (4.57), N 8.26 (7.93).
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([FeL2(bppa)]·2 MeOH)n (8) [FeL2] (0.15 g) and bppa (0.7 g) were dissolved in

20 mL MeOH. The brown solution was heated to reflux during 1 hour, and then allowed

to cool down. Upon cooling, a brown powder precipitated. The brown powder was

filtered off, and dried in vacuo. Yield: 0.11 g (45 %). IR: ν̃ = 3267(b) (OH), 1611(s)

(CO), 1587(s) (CO) cm−1; MS (DEI-(+), 70 eV) m/z (%): 432 (32) ([FeL2]+), 198 (100)

(bpee+); elemental analysis calculated (found) for C37H42FeN4O6 (694.60 g/mol): C 63.98

(63.36), H 6.09 (5.25), N 8.07 (7.99).

[FeL3(bipy)]n (9) [FeL3] (0.2 g) and bipy (0.6 g) were dissolved in 20 mL MeOH. The

red solution was heated to reflux during 1 hour, then allowed to cool down. Upon cooling,

a dark purple crystalline precipitate appeared. The dark purple crystalline precipitate was

filtered off, and dried in vacuo. Yield: 0.09 g (35 %). IR: ν̃ = 1640(s) (CO), 1598(s) (CO)

cm−1; MS (DEI-(+), 70 eV) m/z (%): 556 (4) ([FeL3]+), 156 (100) (bipy+); elemental

analysis calculated (found) for C42H32FeN4O4 (712.57 g/mol): C 70.79 (70.08), H 4.52

(3.7), N 7.86 (8.16).

([FeL3(bpea)]·MeOH)n (10) [FeL3] (0.2 g) and bpea (0.85 g) were dissolved in 20

mL MeOH. The red solution was heated to reflux during 1 hour, then allowed to cool

down. Upon cooling, a brown crystalline precipitate appeared. The brown crystals was

filtered off, and dried in vacuo. Yield: 0.18 g (65 %). IR: ν̃ = 3254(b) (OH), 1601(s)

(CO), 1587(s) (CO) cm−1; MS (DEI-(+), 70 eV) m/z (%): 556 (68) ([FeL3]+), 184 (100)

(bpea+); elemental analysis calculated (found) for C45H40FeN4O5 (772.67 g/mol): C 69.95

(69.88), H 5.22 (4.43), N 7.25 (7.49).

([FeL3(bpee)]·MeOH)n (11) [FeL3] (0.2 g) and bpee (0.66 g) were dissolved in 20

mL MeOH. The red solution was heated to reflux during 1 hour, and then allowed to cool

down. Upon cooling, a purple crystalline precipitate appeared. The dark purple crystals

was filtered off, and dried in vacuo. Yield: 0.20 g (75 %). IR: ν̃ = 3221(b) (OH), 1603(s)

(CO), 1592(s) (CO) cm−1; MS (DEI-(+), 70 eV) m/z (%): 556 (68) ([FeL3]+), 182 (100)

(bpee+); elemental analysis calculated (found) for C45H38FeN4O5 (770.57 g/mol): C 70.13

(69.46), H 4.97 (5.125), N 7.27 (7.12).
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[FeL3(bppa)]n (12) [FeL3] (0.2 g) and bppa (0.66 g) were dissolved in 20 mL MeOH.

The red solution was heated to reflux during 1 hour, and then allowed to cool down. Upon

cooling, a purple crystalline precipitate appeared. The dark purple crystals was filtered

off, and dried in vacuo. Yield: 0.03 g (8 %). IR: ν̃ = 1604(s) (CO), 1585(s) (CO) cm−1;

MS (DEI-(+), 70 eV) m/z (%): 556 (24) ([FeL3]+), 198 (100) (bppa+); elemental analysis

calculated (found) for C45H38FeN4O4 (754.65 g/mol): C 71.62 (71.87), H 5.08 (4.76), N

7.42 (7.39).

[FeL4(bipy)]n (13) [FeL4(MeOH)2] (0.2 g) and bipy (0.6 g) were dissolved in 20

mL MeOH. After stirring the red solution for a few minutes, a dark purple crystalline

precipitate appeared. The suspension was heated to reflux during 1 hour, and then allowed

to cool down. The purple crystalline precipitate was filtered off, and dried in vacuo. Yield:

0.2 g (56 %). IR: ν̃ = 3214(b) (OH), 1609(s) (CO), 1576(s) (CO) cm−1; MS (DEI-(+), 70

eV) m/z (%): 464 (100) ([FeL4]+), 156 (5) (bipy+); elemental analysis calculated (found)

for C32H28FeN4O6 (620.43 g/mol): C 61.95 (61.76), H 4.55 (4.08), N 9.03 (8.86).

[FeL4(bpea)]n (14) [FeL4(MeOH)2] (0.2 g) and bpea (0.6 g) were dissolved in 20

mL MeOH. After stirring the red solution for a few minutes, a dark purple crystalline

precipitate appeared. The suspension was heated to reflux during 1 hour, and then allowed

to cool down. The purple crystalline precipitate was filtered off, and dried in vacuo. Yield:

0.16 g (61 %). IR: ν̃ = 3278(b) (OH), 1612(s) (CO), 1589(s) (CO) cm−1; MS (DEI-(+),

70 eV) m/z (%): 464 (47) ([FeL4]+), 184 (100) (bpea+); elemental analysis calculated

(found) for C34H32FeN4O6 (648.49 g/mol): C 62.97 (62.64), H 4.97 (4.58), N 8.64 (8.60).

([FeL4(bpee)]·1.5 MeOH)n (15) [FeL4(MeOH)2] (0.2 g) and bpee (0.7 g) were

dissolved in 20 mL MeOH. After stirring the red solution for a few minutes, a dark blue

crystalline precipitate appeared. The suspension was heated to reflux during 1 hour, and

then allowed to cool down. The blue crystalline precipitate was filtered off, and dried in

vacuo. Yield: 0.19 g (70 %). IR: ν̃ = 3221(b) (OH), 1630(s) (CO), 1589(s) (CO) cm−1;

MS (DEI-(+), 70 eV) m/z (%): 464 (69) ([FeL4]+), 182 (100) (bpee+); elemental analysis

calculated (found) for C35.5H36FeN4O7.5 (694.53 g/mol): C 61.39 (60.88), H 5.22 (4.71),

N 8.07 (8.02).
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([FeL4(bppa)]·MeOH)n (16) [FeL4(MeOH)2] (0.2 g) and bppa (0.7 g) were dis-

solved in 20 mL MeOH. The red solution was heated to reflux during 1 hour, and then

allowed to cool down. Upon cooling, a dark purple crystalline precipitate appeared. The

dark purple crystalline precipitate was filtered off, and dried in vacuo. Yield: 0.1 g (35

%). IR: ν̃ = 3236(b) (OH), 1624(s) (CO), 1589(s) (CO) cm−1 ; MS (DEI-(+), 70 eV)

m/z (%): 464 (78) ([FeL4]+), 198 (100) (bppa+); elemental analysis calculated (found)

for C36H38FeN4O7 (694.55 g/mol): C 63.45 (63.12), H 5.17 (4.89), N 8.46 (8.35).

Thermo-gravimetric analysis Thermo-gravimetric analyses were recorded with a

TGA250 instrument from TA instruments at a heating rate of 10 K·min−1 under ni-

trogen flow. The temperature was first increased to 65oC (boiling point methanol, drop

of the sample mass for all samples) and then kept at this temperature for one hour to

check if with time a further mass loss is detected. For the samples 11 and 16, no change

is observed and in the case of 5 a slight drop is observed. The increase of the sample mass

in the case of 1 and 10 with time is most likely due to a slight oxidation of the sample

in the instrument. A complete removal of the included Methanol is only observed after

heating the sample above 65oC.

X-ray Powder Diffraction Powder diffractograms were measured with a STOE StadiP

Powder Diffractometer (STOE, Darmstadt) using Cu[Kα1] radiation with a Ge Monochro-

mator, and a Mythen 1K Strip detector in transmission geometry.

Differential Scanning Calorimetry Calorimetric measurements were carried out with

a differential scanning calorimeter DSC821e from Mettler Toledo, with a scan rate of 5

K·min−1.

Mössbauer spectrometry 57Fe Mössbauer spectra were recorded in transmission ge-

ometry on a constant-acceleration using a conventional Mössbauer spectrometer with a

50 mCi 57Co(Rh) source. The samples were sealed in the sample holder under an argon

atmosphere. The spectra were fitted using Recoil 1.05 Mössbauer Analysis Software. [62]

The isomer shift values are given with respect to α-Fe as reference at room temperature.
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Scanning Electron Microscopy Scanning electron microscopy pictures were gathered

at a Zeiss LEO 1530. Samples were prepared on carbon tape.

Magnetic Measurements Magnetic susceptibility data were collected using a MPMS

XL-5 SQUID magnetometer under an applied field of 0.5 T over the temperature range

2 to 400 K in the settle mode. The samples were placed in gelatine capsules held within

a plastic straw. The data were corrected for the diamagnetic contributions of the ligands

by using tabulated Pascal’s constants and of the sample holder. [63]

6.5 Conclusions

For two of the 1D chain compounds discussed here 28 and 40 K wide hysteresis loops were

observed that are stable for several cycles. An increase of the hysteresis width compared

to related 1D chain compounds with phenylene-based Schiff base-like ligands is observed.

The cooperative interactions are in the same order of magnitude as those observed for

modified ligands with hydroxyl groups at the phenylene ring. Thus the introduction

of the extended π-system in combination with the synthesis of coordination polymers

was successfully used for the rational design of SCO complexes with cooperative spin

transition.
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6.6 Supporting Information

Figure 6.6: TGA measurements of samples 1, 5, 10, 11, and 16.
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Figure 6.7: Magnetic susceptibility measurements of compounds 2, 6, 7, 8, 9, and 12,
displayed between 10 K and 300 K.
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Figure 6.8: Magnetic susceptibility measurements of compounds 3, 4, 13, and 15, dis-
played between 10 K and 300 K.
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Figure 6.9: Powder diffraction patterns of samples 2, 3, 4, 6, 7, 8, 9, 12, 13, and 15 at
room temperature.
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Figure 6.10: DSC plots of samples 1, 5, 10, 11, and 16. Peak temperatures are indicated
on the graphs, as well as the scanning direction.
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Figure 6.11: Scanning electron microscopy images of samples 1–4.

133



6.6. SUPPORTING INFORMATION

Figure 6.12: Scanning electron microscopy images of samples 5–8.

134



6.6. SUPPORTING INFORMATION

Figure 6.13: Scanning electron microscopy images of samples 9–12.
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Figure 6.14: Scanning electron microscopy images of samples 13–16.
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Figure 6.15: Mössbauer spectra of samples 1–6 at room temperature.
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Figure 6.16: Mössbauer spectra of samples 7–12 at room temperature.
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Figure 6.17: Mössbauer spectra of samples 13–15 at room temperature.
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Abstract

Two new Schiff base-like ligands bearing a heteroaromatic fluorophore were synthesised

and converted into the corresponding Ni(II), Cu(II), and Zn(II) square planar complexes.

The Ni(II) complexes were studied with regard to a coordination change-induced spin

state change upon addition of pyridine in solution. An inverse correlation between the

fluorescence properties and the spin state of the metal centre was observed, and investi-

gated with steady state fluorescence and time-resolved spectroscopy.
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7.1. INTRODUCTION

7.1 Introduction

Spin crossover (SCO) complexes are switchable molecules where the change of the spin

state can be triggered by a wide range of physical or chemical stimuli such as temperature,

pressure, light irradiation, or absorption/desorption of guest molecules. This switching

process is accompanied by magnetic, optical, and structural changes that can be coupled to

additional properties (e.g. liquid crystal phase transition). [1–6] Due to their high variability

with regard to the factors triggering the spin transition and the accompanying changes

that can be ”read out”, SCO complexes are one of the most important molecule-based

switchable materials and excellent candidates for technological application. [7–10] Iron(II)

is the most widely used metal centre for the synthesis of SCO complexes. For those

complexes wide hysteresis loops around room temperature [11] — even at nanoscale [10,12,13]

or photoinduced spin state changes [14,15] at high temperatures could already be realised.

However, the phenomenon itself is not limited to iron(II) or other 3d4−7 metal centres

with an octahedral coordination sphere. [16] The coordination induced spin state change

of nickel(II) complexes from diamagnetic (S = 0) square planar to paramagnetic (S =

1) square pyramidal or octahedral coordination sphere shifted recently back into focus.

With respect to potential applications for example in the field of smart contrast agents

for magnetic resonance imaging, it is of interest to realise ligand systems which allow for

light induced switching between these states. Ideally the transitions can be induced at

room temperature in solution and on a single molecule level. [17–21]

The combination of the spin transition with luminescence, if possible in a molecular

system, would provide another ”readout” feature with a high application potential in the

field of drug delivery, biomarkers, or thermometry. Several attempts were already reported

for the realisation of such bifunctional materials, mostly with iron(II). One possibility to

achieve such systems is the synthesis of composite materials such as thin films doped with

SCO complexes for electroluminescence, [22–24] functionalised SCO-core-luminescence-shell

nanoparticles, [25,26] or SCO complexes with fluorescent counter anions. [25,27] Another pos-

sibility is to covalently link the fluorophore to the SCO centre through ligand design. [26,28]

However, this approach is not always successful with respect to a coupling between spin
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7.2. RESULTS

transition and fluorescence. [29–31] So far only one example for a nickel(II) based fluorescent

molecular thermometer is known, where the emission colour and intensity can be switched

through a spin state change. [32]

Here we present a new ligand system that shows a modulation of the fluorescence

intensity upon a spin state change. The fluorescence properties of the free ligands, the

diamagnetic zinc(II) complexes, the paramagnetic copper(II) complexes and the S = 0

↔ S = 1 switchable nickel(II) complexes were investigated with steady-state extinction

and fluorescence spectroscopy as well as time-resolved fluorescence spectroscopy.

7.2 Results

7.2.1 Syntheses

All metal complexes were synthesised in two steps. Starting with the diamines 1 and

4, firstly a condensation with a keto-enol ether forms the chelate cycles, which then react

with metal acetate to give the respective complexes [ML1] and [ML2] (M = NiII , CuII ,

ZnII), the counter anionic acetates acting as bases for deprotonation of the ligand. The

molecular structures and the synthetic pathway are given in Scheme 7.1. All complexes

were obtained as pure powder with the general formula [ML1] or [ML2]. All ligands

and intermediates were characterised with IR, CHN, and 1H-NMR. All complexes were

characterised with IR, CHN analysis, and mass spectrometry.

7.2.2 Crystal structure analysis

Single crystals suitable for X-ray diffraction analysis of [NiL1] and [CuL1] were ob-

tained from a vapour-vapour slow diffusion setup between a trichloromethane solution

of the complex and ethanol. All crystallographic data are given in the ESI: Table 7.5.

While the complex [NiL1] crystallises with the same composition as the bulk material,

the structure of compound [CuL1] was determined as [CuL1(EtOH)]·2 CHCl3. Both

compounds crystallise in the triclinic space group P1, and the asymmetric units contain

one complex molecule. ORTEP drawings of the asymmetric units are displayed in Fig.
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Scheme 7.1: Pathway of synthesis of the metal complexes described in this work and used
abbreviations.

7.2. The nickel(II) centre in [NiL1] lies in a N2O2 square planar coordination sphere. Ni–

N (1.83 Å) and Ni–Oeq (1.85 Å) bond lengths are in agreement with other complexes with

similar coordination sphere. [33,34] The sum of the angles is with Σ = 717o, not far from a

perfect square planar coordination sphere (Σ = 720o). In the case of [CuL1(EtOH)]·2

CHCl3, the copper(II) lies in a N2O3 square pyramidal geometry. Cu–N (1.92 Å), Cu–Oeq

(1.92 Å), and Cu–Oax (2.378(5) Å) bond lengths are generally longer than for the nickel

complex, due to the different geometry of the coordination sphere and the increase of the

covalent radius from 124 pm (Ni) to 132 pm (Cu). Selected bond lengths and angles are

presented in Table 7.1.

The crystal packing of [NiL1] shows the complexes stacked over each other, forming

columns along the vector [100]. π-π interactions between the aromatic rings of the ligand,

as well as metal-aromatic interactions between the nickel centre and the chelate rings of

neighbouring complexes lead to the formation of the columns in the packing. Illustrations

of the packing are shown in Fig. 7.3, and selected distances of the π-π interactions
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7.2. RESULTS

Figure 7.2: ORTEP drawing of [NiL1] (left) and [CuL1(EtOH)]·2 CHCl3 (right).
Thermal ellipsoids are shown at 50% level. Hydrogen atoms are omitted for clarity.

Table 7.1: Selected bond lengths [Å] and angles [o].

Compound M–N M–Oeq M–Oax Oeq–M–Oeq N–M–N N–M–Oeq N/Oeq–M–Oax

[NiL1] 1.837(5) 1.856(4) 85.32(17) 87.1(2) 94.17(19)
1.825(4) 1.848(4) 93.4(2)

178.3(2)
178.73(19)

[CuL1(EtOH)] 1.930(7) 1.905(5) 2.378(5) 90.8(2) 84.8(3) 92.5(5) 91.8(2)
·2 CHCl3 1.921(6) 1.943(5) 90.9(3) 92.0(2)

171.8(3) 95.3(2)
171.9(2) 96.1(2)

are presented in Table 7.2. The crystal packing of [CuL1(EtOH)]·2 CHCl3 shows a

similar stacking than the one observed for [NiL1], with the formation of pairs through

π-π interactions. However, since an ethanol molecule is coordinated axially at the copper

centre, no metal-aromatic interactions are observed. Only the aromatic rings of the ligands

are interacting, with the copper centres looking in opposing directions in a ”head-to-

toes” fashion. Furthermore, hydrogen bonds are present between the trichloromethane

solvent molecules and the complexes, as well as between the coordinating ethanol and

neighbouring complex molecules. Illustrations of the packing are shown in Fig. 7.4,

selected distances and angles of the π-interactions and of the hydrogen bonds are presented

in Tables 7.2 and 7.3, respectively.

Powder diffraction patterns of all investigated complexes were measured; the results are

displayed in the ESI, Fig. 7.9. The diffraction pattern of the powder sample [CuL1] differs
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7.2. RESULTS

Figure 7.3: Illustrations of the crystal packing of [NiL1] along [010] (top) and [100]
(bottom left); scheme of the π-π and M-π interactions involved in the packing (bottom
right).

Figure 7.4: Illustrations of the crystal packing of [CuL1(EtOH)]·2 CHCl3 along [001]
(left) and along [010] (right).

significantly from the calculated one for the single crystals of [CuL1(EtOH)]·2 CHCl3.

This is not unexpected since the additional solvent molecules will strongly influence the

packing pattern. The diffraction patterns of the three solvent-free complexes of L1 show

only little similarities. The packing of the molecules in the crystals is influenced by the

metal centre. In contrast to this the diffraction patterns of [CuL2] and [NiL2] are very
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Table 7.2: Selected distances [Å] and angles [o] of the π-π and M-π interactions. Cg(I)
is the centroid of the ring number I, α is the dihedral angle between the rings, β is the
angle between the vector Cg(I)→Cg(J) and the normal to ring I, γ is the angle between
the vector Cg(I)→Cg(J) and the normal to ring J.

Cg(I) Cg(J) Cg–Cg α β γ

[NiL1]
C4–C5–C6–C13–C14–C15 C4–C5–C6–C13–C14–C15a 4.084(3) 0 33.42 33.42
C4–C5–C6–C13–C14–C15 C4–C5–C6–C13–C14–C15b 4.084(3) 0 33.42 33.42
C6–N3–C7–C12–N4–C13 C6–N3–C7–C12–N4–C13a 4.084(3) 0 32.92 32.92
C6–N3–C7–C12–N4–C13 C6–N3–C7–C12–N4–C13b 4.084(3) 0 32.92 32.92
C7–C8–C9–C10–C11–C12 C7–C8–C9–C10–C11–C12a 4.084(4) 0 32.65 32.65
C7–C8–C9–C10–C11–C12 C7–C8–C9–C10–C11–C12b 4.084(4) 0 32.65 32.65
Ni1–O1–C1–C2–C3–N1 Ni1b 3.301 12.75
Ni1–O1–C1–C2–C3–N1 Ni1a 3.258 11.40

[CuL1(EtOH)]·2 CHCl3
C4–C5–C6–C13–C14–C15 C7–C8–C9–C10–C11–C12c 3.837(5) 1.1(4) 25.66 29.54
C6–N3–C7–C12–N4–C13 C6–N3–C7–C12–N4–C13c 3.807(5) 0 28.68 28.68
C7–C8–C9–C10–C11–C12 C4–C5–C6–C13–C14–C15c 3.838(5) 1.1(4) 29.54 28.66

Symmetry code. a = –1+x, y, z ; b = 1–x, y, z ; c = 3–x, 1–y, 1–z.

Table 7.3: Selected distances [Å] and angles [o] of the hydrogen bonds present in the
packing of [CuL1(EtOH)]·2 CHCl3.

D H A D–H H· · ·A D· · ·A D–H· · ·A
O51 H51 N4a 0.84 2.11 2.820(8) 142
C61 H61 N3b 1.00 2.35 3.297(14) 158
C71 H71 O5 1.00 2.07 3.007(14) 155

Symmetry code. a = –1+x, y, z ; b = x, y, 1+z.

similar, for [ZnL2] the differences are more pronounced. For the ligand L2 with the

extended aromatic system the packing of the molecules in the crystal is mostly influenced

by the ligand and less by the metal centre.

7.2.3 Steady state spectroscopy

The optical properties of the ligands and the complexes were studied by extinction

and fluorescence spectroscopy. First of all the pure ligand systems were investigated in

trichloromethane. Fig. 7.5A compares the absorbance and emission spectra of H2L1

and H2L2. The spectral features of both ligands are very similar. Both ligands show a

pronounced absorption peak at approx. 440 nm and emission with a maximum at approx.

470 nm. Furthermore the absorption peaks show a weak shoulder at lower wavelength,
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as well as a weak shoulder in the emission spectra at higher wavelength as compared

to the peak maximum. These shoulders can be attributed to the equilibrium between

imino-enol/keto-enamine tautomers of the ligands in solution. [34,35]

Figure 7.5: Absorption and emission spectra. (A) Pure ligands. (B) Cu(II) complexes.
(C and D) Zn(II) complexes.

The spectral analyses of the metal complexes (Cu and Zn) are shown in Fig. 7.5B–D.

In order to investigate the influence of the spin state on the absorption and fluorescence,

spectra of the complexes were measured in trichloromethane and pyridine. Fig. 7.5B

compares the absorbance spectra for the Cu(II) complexes [CuL1] and [CuL2]. Com-

paring the spectra measured in trichloromethane similar absorption spectra are observed

with the same number of bands. In contrast to this the absorption peaks are red-shifted

when pyridine is used as solvent (solvatochromism). In case of [CuL2], a weak band

appears at 585 nm in the pyridine solution, that can be attributed to d-d transitions by

comparison with similar complexes. [34] In agreement with many examples for fluorophores
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in literature, fluorescence was not observed for the copper complexes indicating strong

quenching due to the presence of the metal centre. [36–38]

The absorption spectra of the zinc(II) complexes [ZnL1] in trichloromethane and pyri-

dine shown in Fig. 7.5C resemble the spectra of the pure ligand systems. In addition

almost no difference in band position and the number of bands is observed comparing the

spectra in the two solvents. In contrast to this the complex emission is significantly in-

fluenced by changing the solvent from trichloromethane to pyridine. In trichloromethane

the emission maximum is at 473 nm, whereas the emission shifts to 560 nm in pyridine.

The absorption spectrum of [ZnL2] in trichloromethane resembles also the spectrum of

the corresponding ligand, however changes in the number of bands and their position

appear in pyridine solution. The emission spectrum also displays a red-shift as observed

for sample [ZnL1], but with a smaller difference between trichloromethane solution (λem

= 475 nm) and pyridine solution (λem = 529 nm). The optical properties of the nickel(II)

complexes [NiL1] and [NiL2] were investigated by adding a pyridine solution of the

complex into an equimolar trichloromethane solution of the same complex, as the nickel

centre undergoes a spin state change upon coordination change (see Scheme 7.6). [16,32]

Respective absorbance and emission spectra are shown in Fig. 7.7. The trichloromethane

solutions of the nickel complexes show three absorption bands at 365, 414, and 448 nm

for [NiL1], and at 412, 440, and 465 nm for [NiL2]. Upon progressive coordination of

pyridine molecules onto the nickel centre, the absorption spectra dramatically change. In

the case of [NiL1], the bands at 414 and 448 nm tend to disappear whereas the band at

365 nm increases and a new band at 493 nm appears. For the sample [NiL2] the intensity

of the bands at 412 and 440 nm decreases and two new bands at 375 and 500 nm ap-

pear. The drastic changes in the absorbance spectra of the nickel complexes confirm the

change of geometry and by this the spin state upon coordination with pyridine. The spin

state change also affects the fluorescence properties of the complexes (Fig. 7.7B and D).

As pyridine is added to the complex [NiL1], its emission band at 478 nm progressively

red-shifts and its intensity dramatically decreases. The red-shift seems in good agreement

with the emergence of a new band at higher wavelength (493 nm) in the absorption spec-

trum upon addition of pyridine. For the complex [NiL2], a completely different effect
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is observed. Upon addition of the first equivalents of pyridine, the emission band at 491

nm is shifted to 538 nm, and its intensity increases until '400 equivalents of pyridine are

added. Further addition of pyridine leads to a decrease of the emission intensity.

Scheme 7.6: Electronic configuration, spin number, and geometry of the different com-
plexes in equilibrium in solution upon addition of pyridine.

The reversibility of the coordination of the pyridine molecules was investigated with

absorption spectroscopy. First, a pyridine solution of the [NiL1] complex was progres-

sively added to an equimolar trichloromethane solution of the complex. In the next

step, the pyridine concentration of this solution was reduced by addition of the origi-

nal trichloromethane solution. The intensity of the characteristic absorption bands of

the complex in pyridine (λ = 365 nm) and in trichloromethane (λ = 414 nm) varies in

agreement with a reversible coordination of the pyridine molecules to the metal centre.

Fig. 7.10 in the ESI illustrates those results. The absorption spectra of the fluorescent

Ni(II) and Zn(II) complexes were also measured in trichloromethane solutions contain-

ing triethylamine (Et3N) as non-coordinating base, or formic acid (HCOOH), in order

to rule out possible effects due to (de)protonation of the complexes. The corresponding

UV-vis spectra are presented in the ESI: Fig. 7.11. The spectra show that in all cases, no
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Figure 7.7: Absorption and steady state fluorescence measurements of the Ni(II) com-
plexes. The inset in D gives the integrated peak area and λmax as guide for the reading
of the graph.

significant changes are observed for the CHCl3-Et3N solutions, proving that the changes

observed for the pyridine addition are due to coordination of pyridine at the axial posi-

tions of the nickel centre. Spectra of the complexes in CHCl3/HCOOH solutions show a

pronounced red-shift upon protonation of the heteroaromatic N -atoms of the complex.

This is not surprising as phenazine-derivatives are used as pH-indicators (e.g. neutral

red). As the effects of the spin state change on the intensity of the emission properties of

[NiL1] and [NiL2] are extremely different and intriguing, lifetime measurements of the

fluorescence were performed and are discussed further.
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7.2.4 Fluorescence lifetime analysis

In addition to the steady-state fluorescence spectra shown in Fig. 7.7B and D for

the complexes [NiL1] and [NiL2], lifetime measurements were performed on the same

samples at 298 K. The fluorescence decays were analysed using deconvolution fitting

with double exponential decay functions. Fig. 7.8 compares selected fluorescence decays

for complex solutions in trichloromethane and pyridine. It is clearly visible that the

lifetime depends strongly on the type of solvent. In pyridine a significantly faster decay

is observed as compared to trichloromethane. Table 7.4 summarises the results of the

lifetime analysis for all measured solutions. The fluorescence decays for the complexes

show monoexponential behaviour for trichloromethane as solvent with relatively short

lifetimes of τ = 0.7 ns for [NiL1] and τ = 1.3 ns for [NiL2]. For small equivalents of added

pyridine the lifetime decreases in case of [NiL1] and the decays remain monoexponential.

For higher amounts of pyridine, monoexponential decays could not be used to satisfyingly

describe the decay profiles as a second longer lifetime component emerges. However

this second contribution has very small amplitudes except for the highest amount of

pyridine used. In the latter case the data analysis will be less reliable since the fast

component provides lifetimes which are significantly smaller than the half width of the

instrument response function. Therefore no conclusions will be drawn from the latter

analysis result. As a general trend, it can be observed that the first lifetime component

for [NiL1] systematically shortens with increasing amount of added pyridine.

For compound [NiL2], a different trend is observed upon addition of pyridine: the

compound starts with a relatively longer lifetime of τ = 1.3 ns, which slightly increases

upon addition of pyridine, reaching 1.8 ns in pure pyridine solution. For this complex all

fluorescence decays were fitted with a monoexponential model and satisfying χ2 values

were obtained.

7.3 Discussion

The complexes [ML1] and [ML2] were designed with the aim to favour possible non-

radiative energy transfer between the heteroaromatic fluorophore, the donor, and the
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Figure 7.8: Measured fluorescence decays for the nickel complexes. The instrument re-
sponse function (IRF) is represented by the red vertical bars. The solid lines are decon-
volution fits of the lifetime traces.

Table 7.4: Lifetime measurements data with the decay constant τ in ns. The error for
the measured τ values are given in [%].

Py Equivalents τ

[NiL1]
0 (CHCl3 solution) 0.7 [1%]
16 0.6 [2%]
32 0.5 [2%]
60 0.4 [2%]
108 0.3 [4%]
179 <0.2
230 <0.2
528 (Py solution) <0.2

[NiL2]
0 (CHCl3 solution) 1.3 [<1%]
20 1.3 [<1%]
38 1.6 [<1%]
73 1.8 [<1%]
134 2.0 [<1%]
230 2.0 [<1%]
302 1.9 [<1%]
403 1.9 [<1%]
470 1.8 [<1%]
518 1.7 [<1%]
554 1.7 [<1%]
644 1.8 [<1%]
805 (Py solution) 1.7 [<1%]

metal centre, the acceptor. Such design could give a control on the fluorescence prop-

erties of the fluorophore through changes of the spin state of the metal centre. As the
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distance between the donor and the acceptor plays a crucial role in the effectiveness of

a non-radiative energy transfer, [38] two different fluorophores with extended π-systems

were used. The crystal structure of [NiL1] and [CuL1(EtOH)]·2 CHCl3 were suc-

cessfully analysed by X-ray diffraction. The obtained crystal structures present π-π in-

teractions in the packing between the complexes, as well as a hydrogen bond network

in case of [CuL1(EtOH)]·2 CHCl3. In the latter crystal structure, it is observed that

the copper complex crystallises in a square pyramidal geometry, although it is obtained

as square planar complex in the bulk material. It was already observed in corresponding

phenylene-derivatives copper(II) complexes that the metal centre is always trying to break

its square planar symmetry, either by coordinating solvent molecules, or by sitting in a

distorted coordination sphere. [34] Unfortunately no crystals suitable for X-ray diffraction

were obtained for the [ML2] samples, even when using vapour-vapour or liquid-liquid

slow diffusion setups.

The spin state of the different complexes is usually due to their electronic configuration,

with S = 1
2

for the 3d9 Cu(II) complexes, and S = 0 for the 3d10 Zn(II) complexes. In

the case of the Ni(II) complexes, their spin state depends also on the geometry of the

coordination sphere of the Ni(II) centre. In a square planar geometry, the nickel centre

has a spin number of S = 0, with all its electrons paired, however, upon coordination

of pyridine on the axial position(s), the changes on the splitting of the d orbitals will

induce a spin state change (S = 1), as described in the literature. [17–21,33] The magnetic

moment of the complex [NiL1] was determined with the Evans method: an effective

magnetic moment µeff = 0 was measured in CDCl3 solution, in contrast to a µeff = 2.78

in pyridine-d5 solution, in good agreement with a theoretical value of µSO = 2.83 for S =

1.

The investigation of the steady-state fluorescence of [ML1] compounds shows that the

emission properties depend on the spin state of the metal centre. Indeed, diamagnetic

metal centres, Zn(II) or Ni(II) in square planar geometry are fluorescent whereas for

paramagnetic metal centres, Cu(II) or Ni(II) in square pyramidal/octahedral geometry,

the fluorescence is quenched. The presence of unpaired electrons, and therefore partially

filled orbitals, can give rise to an energy transfer between the fluorophore and the metal
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centre. A shortening of the lifetime of a given fluorophore is often observed when an

energy transfer occurs, and this effect is observed for the complex [NiL1], as the emission

lifetime gets shorter upon addition of pyridine, or in other words, upon coordination

change induced spin state change (see Scheme 7.6). It has to be pointed out here that

the sample [NiL1] exhibits a second contribution with a longer lifetime once a certain

amount of pyridine equivalents is reached. The origin of this second component is not

yet well understood and requires further investigations. The type of non-radiative energy

transfer, whether it is a Förster or Dexter type cannot be pinpointed on the basis of the

current investigation and requires further experiments or calculations.

The corresponding Zn(II) complex [ZnL1] displays a strong red-shift (87 nm) of the

fluorescence upon coordination with pyridine. The same effect is observed for sample

[ZnL2] but the red-shift is only in the order of 54 nm, indicating that the metal centre

has a reduced influence on the fluorescence properties of the bigger fluorophore.

The complex [NiL2] presents a very different behaviour than [NiL1] upon addition of

pyridine. Instead of being quenched, its emission properties are actually intensifying upon

the addition of the first equivalents of pyridine. After reaching a maximum, the emission

band intensity is decreasing ; however the sample in pure pyridine solution shows stronger

fluorescence than the sample in pure trichloromethane solution. The opposite trend was

observed for the complex [NiL1]. The lifetime measurements also present different results

for [NiL2] than for [NiL1]. The lifetime of the emission is slightly increasing from 1.3

ns to 2.0 ns upon pyridine coordination. Then as the intensity of the emission peak is

decreasing, the lifetime stays approximately constant (t = 1.7 ns in pyridine solution).

Two hypotheses can be drawn about the big difference in the luminescence properties

of the two nickel complexes. A difference in the nature of the transitions involved in

the fluorophore could be the reason. It is described in literature that phenanthrene, and

phenanthrene-derivatives like the ligand H2L2, undergo forbidden transitions, leading

generally to longer lifetimes. [39] Another reason could be a too long distance between the

metal centre and the fluorophore, preventing any energy transfer. In this case, the effect

observed on addition of pyridine would be of the same nature as solvatochromism. Finally,
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it is also possible that the first excited state of the fluorophore is at a lower energy than

the first excited state of the metal centre, making the energy transfer impossible. Further

investigations about the compound [NiL2], with varying temperature, or changing the

coordinating solvent molecule i.e. for acetonitrile, are needed in order to understand the

luminescence properties. Calculations of the different ground and excited states of the

donor-acceptor pair would also give useful insights.

As complex [NiL1] showed an interesting coupling of the fluorescence properties with

the spin state change, corresponding iron(II) complexes will be investigated in order to

determine if such coupling is also obtained with a thermally-induced spin crossover.

7.4 Experimental Section

Synthesis 2,3-Diaminophenazine (1), 4,5-diamino-NN ’-ditoluene-p-sulphonyl-o-phenyl-

enediamine (2), and ethoxymethylene-ethylacetoacetate were synthesised as described

in literature. [40–43] Methanol, ethanol, trichloromethane, and pyridine were of analyti-

cal grade and used without further purification. Nickel(II) acetate tetrahydrate (99%,

Fluka), copper(II) acetate monohydrate (99%, Fluka), zinc(II) acetate dihydrate (97%,

Alfa Aesar), 9,10-phenanthrenequinone (95%, Alfa Aesar), and sulphuric acid (97%, Sigma

Aldrich) were used without further purification. CHN analyses were measured with

a Vario El III from Elementar Analysen-Systeme. Mass spectra were recorded with a

Finnigan MAT 8500 with a data system MASPEC II. NMR spectra were measured with

a Varian INOVA 300. Toluene was used as reference for the Evans method.

6’,7’-Bis-(toluenesulfonamido)-quinoxaline-[2’,3’-d]-1,10-phenanthrene (3) 4,5-

diamino-NN ’-ditoluene-p-sulphonyl-o-phenylenediamine (2) (2.23 g) and 9,10-phenanthre-

nequinone (1.05 g) were dissolved in methanol (50 mL). The orange solution was refluxed

during 1 h, the colour of the solution changes progressively to yellow during the reflux.

The solution is let to cool down to room temperature and a yellow powder precipitates.

The yellow powder is filtered and washed with ice-cold methanol (3 × 20 mL), and dried

in vacuo to give the pure product 3. Yield: 1.96 g (63%). MS (DEI-(+), 70 eV) m/z

(%): 618 (100) (M+); elemental analysis calculated (found) for C34H36N4O4S2 (618.72
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g·mol−1): C 66.00 (65.97), H 4.24 (4.05), N 9.06 (9.18). 1H-NMR (DMSO, 300 MHz,

ppm): δ = 10.14 (bs, –NH, 2H), 9.04 (d, J = 9 Hz, Ar–H, 4H), 8.64 (d, J = 9 Hz, Ar–H,

4H), 7.79 (s, Ar–H, 2H), 7.76 (m, Ar–H, 8H), 2.34 (s, –CH3, 6H).

6’,7’-Diaminoquinoxaline-[2’,3’-d]-1,10-phenanthrene (4) 6’,7’-Bis-(toluenesulfo-

namido)-quinoxaline-[2’,3’-d]-1,10-phenanthrene (3) (1.29 g) was dissolved in concentrated

sulphuric acid (10 mL) and heated to 100oC during 4 h. A change of colour of the solution

from yellow to purple was observed. The solution was cooled down to 0oC and 50 mL H2O

was added dropwise to the solution, and a brown powder precipitates from the solution.

The brown powder was filtered and washed with 10 mL H2O, then suspended in 20 mL

H2O. Ammonium hydroxide solution (25%) was added to the suspension under vigorous

stirring until its pH reaches 8. The solid turned redbrown during the addition, was then

filtered, washed with H2O (2 × 5 mL), and dried in vacuo to give the pure product 4.

Yield: 0.47 g (72%). MS (DEI-(+), 70 eV) m/z (%): 310 (100) (M+) ; elemental analysis

calculated (found) for C20H14N4 (310.35 g·mol−1) : C 77.40 (77.24), H 4.55 (4.15), N

18.05 (18.25). 1H-NMR (DMSO, 300 MHz, ppm): δ = 9.17 (m, Ar–H, 2H), 8.74 (m,

Ar–H, 2H), 7.73 (m, Ar–H, 4H), 7.12 (s, Ar–H, 2H), 6.11 (bs, –NH2, 4H).

H2L1 2,3-Diaminophenazine (1) (0.5 g) and ethoxymethyleneethylacetoacetate (0.93 g)

were dissolved in 20 mL ethanol. The solution was refluxed during 1 hour, and a brownish

yellow powder precipitated upon reflux. The brownish yellow powder was filtered, washed

with 5 mL cold ethanol. Recrystallisation from ethanol gives the pure product H2L1 as

brownish yellow crystals. Yield: 0.48 g (42%). MS (DEI-(+), 70 eV) m/z (%): 490 (100)

(M+) ; elemental analysis calculated (found) for C34H30N4O6 (490.51 g·mol−1): C 63.66

(66.30), H 5.34 (5.15), N 11.42 (11.65). 1H-NMR (DMSO, 300 MHz, ppm): δ = 12.67 (d,

J = 12 Hz, –NH, 2H), 8.52 (d, J = 12 Hz,=C–H, 2H), 8.25 (s, Ar–H, 2H), 8.18 (dd, J3

= 6 Hz, J4 = 3 Hz, Ar–H, 2H), 7.94 (dd, J3 = 6 Hz, J4 = 3 Hz, Ar–H, 2H), 4.18 (qua,

J = 7.5 Hz, –CH2, 4H), 2.49 (s, –CH3, 6H), 1.32 (t, J = 7.5 Hz, –CH3, 6H).

H2L2 6’,7’-Diaminoquinoxaline-[2’,3’-d]-1,10-phenanthrene (4) (0.17 g) and ethoxymeth-

yleneethylacetoacetate (0.26 g) were dissolved in 10 mL ethanol. The solution was refluxed

during 1 hour, and a yellow powder precipitated upon reflux. The yellow powder was fil-
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tered, washed with 5 mL cold ethanol. Recrystallisation from ethanol gives the pure

product H2L2 as yellow crystals. Yield: 0.24 g (74%). MS (DEI-(+), 70 eV) m/z (%) :

590 (100) (M+) ; elemental analysis calculated (found) for C34H30N4O6 (590.63 g·mol−1):

C 69.14 (69.30), H 5.12 (5.15), N 9.49 (9.65). 1H-NMR (DMSO, 300MHz, ppm): δ =

12.59 (d, J = 12Hz, –NH, 2H), 9.13 (m, Ar–H, 2H), 8.69 (m, Ar–H, 2H), 8.65 (d, J =

12Hz, =C–H, 2H), 7.68 (m, Ar–H, 4H), 7.10 (s, Ar–H, 2H), 4.17 (qua, J = 7.5 Hz, –CH2,

4H), 2.47 (s, –CH3, 6H), 1.33 (t, J = 7.5Hz, –CH3, 6H).

[NiL1] H2L1 (0.2 g) and nickel(II) acetate tetrahydrate (0.12 g) were dissolved in 20 mL

ethanol. The solution was refluxed during 1 hour, and an orange powder precipitated upon

reflux. The orange powder was filtered, washed with 5 mL cold ethanol. Recrystallisation

from ethanol gives the pure complex as orange powder. Yield: 0.20 g (88%). MS (DEI-(+),

70 eV) m/z (%): 546 (100) (M+) ; elemental analysis calculated (found) for C26H24N4NiO6

(547.19 g·mol−1): C 57.07 (56.98), H 4.42 (4.15), N 10.24 (10.42).

[CuL1] H2L1 (0.2 g) and copper(II) acetate monohydrate (0.10 g) were dissolved in 20

mL ethanol. The solution was refluxed during 1 hour, and a brown powder precipitated

upon reflux. The brown powder was filtered, washed with 5 mL cold ethanol. Recrys-

tallisation from ethanol gives the pure complex as brown powder. Yield: 0.21 g (91%).

MS (DEI-(+), 70 eV) m/z (%): 551 (100) (M+) ; elemental analysis calculated (found)

for C26H24N4CuO6 (552.04 g·mol−1): C 56.57 (56.48), H 4.38 (4.23), N 10.15 (10.05).

[ZnL1] H2L1 (0.2 g) and zinc(II) acetate dihydrate (0.11 g) were dissolved in 20 mL

ethanol. The solution was refluxed during 1 hour, and a red powder precipitated upon

reflux. The red powder was filtered, washed with 5 mL cold ethanol. Recrystallisation

from ethanol gives the pure complex as red powder. Yield: 0.18 g (79%). MS (DEI-(+), 70

eV) m/z (%): 552 (100) (M+) ; elemental analysis calculated (found) for C26H24N4O6Zn

(553.87 g·mol−1): C 56.38 (56.29), H 4.37 (4.43), N 10.12 (10.13).

[NiL2] H2L2 (0.2 g) and nickel(II) acetate tetrahydrate (0.10 g) were dissolved in 20

mL ethanol. The solution was refluxed during 1 hour, and an yellow powder precipitated

upon reflux. The yellow powder was filtered, washed with 5 mL cold ethanol. Recrys-
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tallisation from ethanol gives the pure complex as yellow powder. Yield : 0.17 g (76%).

MS (DEI-(+), 70 eV) m/z (%): 646 (100) (M+) ; elemental analysis calculated (found)

for C34H28N4NiO6 (647.30 g·mol−1): C 63.09 (63.16), H 4.36 (4.45), N 9.07 (9.05).

[CuL2] H2L2 (0.2 g) and copper(II) acetate monohydrate (0.08 g) were dissolved in 20

mL ethanol. The solution was refluxed during 1 hour, and a brown powder precipitated

upon reflux. The brown powder was filtered, washed with 5 mL cold ethanol. Recrys-

tallisation from ethanol gives the pure complex as brown powder. Yield: 0.19 g (86%).

MS (DEI-(+), 70 eV) m/z (%): 651 (100) (M+) ; elemental analysis calculated (found)

for C34H28N4CuO6 (652.16 g·mol−1): C 62.62 (62.58), H 4.33 (4.18), N 8.59 (8.65).

[ZnL2] H2L2 (0.2 g) and zinc(II) acetate dihydrate (0.06 g) were dissolved in 20 mL

ethanol. The solution was refluxed during 1 hour, and an orange powder precipitated

upon reflux. The orange powder was filtered, washed with 5 mL cold ethanol. Recrys-

tallisation from ethanol gives the pure complex as orange powder. Yield: 0.12 g (82%).

MS (DEI-(+), 70 eV) m/z (%): 652 (100) (M+) ; elemental analysis calculated (found)

for C26H24N4O6Zn (653.99 g·mol−1): C 62.44 (62.32), H 4.32 (4.27), N 8.57 (8.51).

X-ray structure analysis The X-ray analysis of the [NiL1] and [CuL1(EtOH)]·2

CHCl3 complexes was performed with a Stoe StadiVari diffractometer using graphite-

monochromated MoKα radiation. The data were corrected for Lorentz and polarization

effects. The structures were solved by direct methods (SIR-97) [44] and refined by full-

matrix least-square techniques against F2
o-F

2
c (SHELXL-97). [45] All hydrogen atoms were

calculated in idealised positions with fixed displacement parameters. ORTEP-III [46] was

used for the structure representation, SCHAKAL-99 [47] to illustrate molecule packing.

CCDC 1055605 and 1055606. Powder diffractograms were measured with a STOE StadiP

Powder Diffractometer (STOE, Darmstadt) using Cu Kα1 radiation with a Ge Monochro-

mator, and a Mythen 1K Stripdetector in transmission geometry.

Optical measurements Absorbance spectra were obtained using a Agilent UV-vis

spectrophotometer 8453 (Agilent Technologies, USA) operating in a spectral range of

190–1100 nm. The spectra were measured at 298 K in quartz cells with 1 cm lightpath
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(Hellma, Germany). Fluorescence measurements were performed with a FLS980 (Edin-

burgh Instruments, UK) fluorescence spectrometer equipped with double monochromators

(1800 grooves per mm) in excitation and emission. A Xe lamp (360 W) was used as ex-

citation source for steady-state fluorescence measurements. Time-resolved measurements

were performed with a pulsed supercontinuum fiber laser (WhiteLase SC-400, Fianium,

UK) with a pulse width <10 ps and a repetition rate of 5 MHz. Emission from the sam-

ple was collected at an angle of 90o with respect to the excitation path. The emitted

beam was focused onto a single photon counting photomultiplier (R928P, Hamamatsu,

Japan) or a microchannel plate photomultiplier (MCP-PMT) for steady-state and lifetime

measurements respectively. All spectra were measured at 298 K in quartz cells (Hellma,

Germany) with 1 cm lightpath. The excitation wavelength and time range for lifetime

measurements were selected according to the sample requirements. The time-resolved

fluorescence decays were analysed by deconvolution fits accounting for the instrument

response function (IRF) obtained from a Rayleigh scatterer.

7.5 Conclusion

Two new Schiff base-like ligands bearing a fluorophore were synthesised and successfully

used for complexation of Ni(II), Cu(II), and Zn(II). While for the Cu(II) complexes the

fluorescence is quenched, the Zn(II) and Ni(II) complexes retain the photoluminescent

properties. We have shown that the addition of pyridine induces a change in the geometry

of the complex, and consequently a change of the spin state. While the Zn(II) complexes

only display a red-shift of the emission upon coordination, the nickel(II) complexes exhibit

a more complex behaviour. The sample [NiL1] showed a quenching of its fluorescence

correlated to a coordination change-induced spin state change, with a dramatic decrease of

the intensity and lifetime of the emission band. This is in agreement with the appearance

of non-radiative energy transfer between the fluorophore and the Ni(II) centre in its S =

1 paramagnetic state. The sample [NiL2], bearing a more extended phenanthrene-based

fluorophore, displays a more complex behaviour upon coordination of pyridine which

requires further investigation. This will be addressed in a future work. Corresponding

iron(II) complexes will also be investigated with regard to possible correlation effects
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between fluorescence and thermally-induced spin crossover.
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7.6 Supporting Information

Table 7.5: Crystallographic data.
Compound [NiL1] [CuL1(EtOH)]·2 CHCl3

formula C26H24N4NiO6 C30H32N4Cl6CuO7

CCDC number 1055605 1055606
M [g·mol−1] 547.20 836.83
crystal system Triclinic Triclinic
space group P1 P1
a [Å] 4.084(1) 8.651(1)
b [Å] 12.918(3) 11.798(2)
c [Å] 22.854(6) 18.199(3)
α [o] 101.906(19) 71.833(11)
β [o] 91.82(2) 86.734(12)
γ [o] 94.00(2) 88.122(12)
V [Å3] 1175.6(5) 1761.8(4)
Z 2 2
ρ [g·cm−3] 1.546 1.577
µ [mm−1] 0.877 1.126
crystal size [mm] 0.06 × 0.14 × 0.29 0.084 × 0.103 × 0.115
T [K] 133(2) 133(2)
λ (MoKα) [Å] 0.71073 0.71073
θ-range [o] 1.7–27.8 1.179–28.0
reflns. collected 8045 7594
indep. reflns. (Rint) 4136 (0.084) 3682 (0.173)
parameters 334 434
R (F ) (all data) 0.0497 (0.1498) 0.1176 (0.1779)
wR2 0.0720 0.2963
GooF 0.680 0.988
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Figure 7.9: Powder diffraction patterns of all synthesised complexes.

166



7.6. SUPPORTING INFORMATION

Figure 7.10: Intensity of characteristic absorption bands for the complex [NiL1] in
trichloromethane and pyridine solutions, upon complexation and de-complexation of the
pyridine molecules.

167



7.6. SUPPORTING INFORMATION

Figure 7.11: UV-Vis spectra of [NiL1], [NiL2], [ZnL1], and [ZnL2] in CHCl3/Et3N
and CHCl3/HCOOH mixtures.
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Abstract

A phenanthroline-derived Schiff base-like ligand with a covalently linked Ru(II) phospho-

rescent unit was synthesised and converted into a bimetallic Ru(II)-Ni(II) complex. The

optical properties were studied to examine a possible phosphorescence quenching through

a non-radiative energy transfer upon coordination induced spin state switch. Therefore

the ligand and the Ni(II) complex were studied by UV-Vis and fluorescence spectroscopy

in water and pyridine solutions.
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8.1. INTRODUCTION

8.1 Introduction

Complexes with a 3d4 to 3d7 transition metal centre and an octahedral coordination

sphere can exist in different spin states, which enable the design of switchable, bistable

molecules called spin crossover (SCO) complexes. Mostly, spin transition (ST) is triggered

by external stimuli such as temperature, light irradiation, or pressure and occurs without

a change of the coordination number. [1,2] In contrast, a ST can be observed as well with a

change of the coordination number; this phenomenon is called Coordination Induced Spin

State Switch (CISSS). A well-known example is the switching of Ni(II) complexes from

the diamagnetic (S = 0) square planar to the paramagnetic (S = 1) square pyramidal

or octahedral coordination sphere. This phenomenon can be triggered in solution by the

coordination of (solvent) molecule(s), the CISSS being chemically-stimulated. CISSS can

also be photoinduced when a coordinating partner is covalently linked to the ligand of

the complex (LD-CISSS). [3–6]

A CISSS, which includes a change of the electronic state, is accompanied by a change of

the magnetic, optical, and structural properties. The coupling of these changes with addi-

tional properties such as photoluminescence can lead to multifunctional molecular devices

with possible applications in temperature or chemical sensing. [7,8] Based on this concept

a fluorescent molecular thermometer with a Ni(II) CISSS system was reported, with a

temperature-dependent coordination of acetonitrile. [9] We recently reported a phenazine-

derived Schiff base-like ligand and the corresponding Ni(II), Cu(II), and Zn(II) complexes.

It was demonstrated that complexes with a diamagnetic metal centre like Zn(II) or Ni(II)

(in a square planar coordination sphere) show fluorescence, whereas paramagnetic metal

centres like Cu(II) or Ni(II) (in a square pyramidal or octahedral coordination sphere)

quench the emission properties through a non-radiative energy transfer. The nature of the

energy transfer (Förster or Dexter type) could at this time not be assessed, and required

further experiment. In order to get more information about the type of energy transfer,

we decided to exchange the phenazine fluorophore for another fluorophore and perform

the same experiments. [10]
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8.2. RESULTS AND DISCUSSION

Here we present a new ligand system in which the heteroaromatic fluorophore was

replaced by a phosphorescent Ru(II) unit that is linked covalently to the mentioned Schiff

base-like ligand system. The Ni(II) complex was synthesised to examine the influence of

the spin state of the Nickel metal centre for the emission properties. Therefore, the optical

properties of the new metallaligand and the Ni(II) complex were studied by UV-Vis and

fluorescence spectroscopy in water and pyridine solutions.

8.2 Results and Discussion

8.2.1 Synthesis

The bimetallic Ru(II)-Ni(II) complex is obtained in three steps from 5,6-diamino-1,10-

phenanthroline. [11] The synthesis pathway is depicted in Scheme 8.1. In the first step,

the ligand 1 was obtained from a condensation reaction between the 5,6-diamino-1,10-

phenanthroline and a keto-enol ether, using a method already developed for similar Schiff

base-like ligands. [12–14] The compound was characterised with 1H- and 13C-NMR spec-

troscopy, as well as CHN analysis, mass spectrometry, and IR spectroscopy. In the

1H-NMR, characteristic peaks for the N–H proton at 12.18 ppm, and as well as the

corresponding IR band were found. Also important is the C=O band at 1611 cm−1. The

crystal structure of 1 could be determined and is described further.

In the next step, the phosphorescent Ru(II) centre was formed by ligation of 1 with

[Ru(bipy)2Cl2] (bipy = 2,2’-bispyridine). The resulting orange Ru(II) complex 2 was

precipitated with hexafluorophosphate as counter-anion, and characterised with CHN

analysis, ESI mass spectrometry, and IR spectroscopy. In the IR spectrum, a strong band

at 830 cm−1 for the P–F bond appears, and only a small shift of the C=O bands to 1616

cm−1 was observed. In the mass spectra the [M]2+ and [M+PF6]+ could be identified.

In the last step, the Ni(II) is inserted into the chelate cycles of the ligand. The Ni(II)

is inserted at last, as we could not get a clean product while reacting Nickel(II) acetate

with the ligand 1, there is probably a competition between the phenanthroline and the

chelate cycles of the ligand for the complexation of the Nickel(II). For the complexation,
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8.2. RESULTS AND DISCUSSION

Scheme 8.1: Pathway of synthesis of the Ni(II) complex 3 described in this work.

the Nickel(II) acetate is used as the acetate deprotonates the chelate cycles of 1. The

compound 3 was obtained as red material, and was characterised with CHN analysis, ESI

mass spectrometry, and IR spectroscopy. In the IR spectrum, the P–F band of the counter-

anion is still present, and the C=O band is shifted to 1659 cm−1, in agreement with the

coordination of a metal centre. As for 2, the mass peak for [M]2+ and [M+PF6]+ could be

identified. Single crystals could be obtained from this compound, and the determination

of the structure is discussed further.

8.2.2 Crystal structure analysis

Suitable crystals of 1 for X-ray structure analysis were obtained by slow evaporation of

a methanol solution at room temperature. The structure of the yellowish block crystals

with the composition 1·MeOH·H2O was determined. The crystallographic data are

summarised in Table 8.1. The compound crystallises in the triclinic space group P1. The

asymmetric unit consists of one ligand molecule, one water molecule, and one methanol

175



8.2. RESULTS AND DISCUSSION

molecule as shown in the ORTEP drawing in Figure 8.2. The chelate cycles have two

different tautomeric forms: keto-enamine and imino-enol. Selected bond lengths within

the chelate cycles are presented in Table 8.2. Analysis of the C–C bond lengths clearly

shows that the ligand crystallises as its keto-enamine tautomer as already reported for

other Schiff base-like ligands with similar chelate cycles. [12–14] The molecule twists the

chelate cycles in opposite directions, out of the phenanthroline plane. An explanation for

the non-planarity of the ligand is the steric hindrance between the protons H4(C4) and

H17(C17) of the chelate cycles and the aromatic protons H7(C7) and H14(C14) of the

phenanthroline group.

Table 8.1: Crystallographic data of 1·MeOH·H2O and (3)2· acetone.
Compound 1·MeOH·H2O (3)2· acetone
(unit cell)

description yellowish block red platelet
sum formula C25H28N4O6 C88H72F24N16Ni2O8P4Ru2

M [g·mol−1] 480.52 2381.01
crystal system triclinic triclinic
space group P1 P1
a [Å] 8.5658(8) 14.763(3)
b [Å] 11.4830(11) 18.459(2)
c [Å] 12.4529(12) 20.580(2)
α [o] 72.910(8) 111.282(8)
β [o] 82.776(8) 95.483(12)
γ [o] 88.143(7) 97.412(12)
V [Å3] 1178.6(2) 5120.2(12)
Z 2 2
ρ [g·cm−3] 1.354 1.544
µ [mm−1] 0.098 0.817
crystal size [mm] 0.165 × 0.160 × 0.128 0.198 × 0.170 × 0.074
T [K] 133(2) 140(2)
λ (MoKα) [Å] 0.71069 0.71069
θ-range [o] 1.70–27.47 1.40–24.98
reflns. collected 12190 22768
indep. reflns (Rint) 5252 (0.037) 4202 (0.239)
parameters 335 798
R(F ) (all data) 0.0432 (0.0952) 0.1842 (0.4175)
wR2 0.851 0.4137
GooF 0.820 0.965

The crystal packing of 1·MeOH·H2O is characterised by a hydrogen bond network.

The crystal packing is depicted in Figure 8.3 and selected distances and angles are listed in

Table 8.3. The crystal packing is defined by solvent molecules that form a hydrogen bond
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8.2. RESULTS AND DISCUSSION

Figure 8.2: ORTEP drawing of the asymmetric unit of 1·MeOH·H2O. Thermal ellipsoids
are shown at 50% probability level. Hydrogen atoms are omitted for clarity.

chain with the sequence [MeOH-H2O-H2O-MeOH]n propagating towards [100]. The water

solvent molecule binds with its own image molecule over an inversion centre of the cell,

and with the methanol solvent molecule, which also binds to its image molecule over an

inversion centre. Formally, the propagation of the hydrogen bond chain is incompatible

with the symmetry of the space group, and was refined using disorder commands. In

addition to this chain, the water molecule acts as a donor for the ketonic oxygen O4

of the ligand molecule, which means that each solvent chain is ”decorated” with ligand

molecules. Furthermore, one of the chelate cycles of the ligand molecule makes also an

hydrogen bond with its image over an inversion centre, forming molecule pairs. Here the

nitrogen N1 of the chelate cycle acts as the donor and the oxygen O1 of the chelate cycle

from another ligand molecule acts as the acceptor. As one ”arm” of the ligand molecule

interacts with the solvent chain through its ketonic oxygen, and the other ”arm” with its
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8.2. RESULTS AND DISCUSSION

Table 8.2: Selected bond lengths for the chelate cycle of 1·MeOH·H2O.
Bond Length [Å] Bond Length [Å]

O1–C2 1.234(2) O2–C19 1.241(3)
C2–C3 1.462(3) C19–C18 1.449(3)
C3–C4 1.387(3) C18–C17 1.387(3)
C4–N1 1.330(2) C17–N2 1.339(2)

image, a 2D hydrogen bond network with base vectors [100] and [0-11] is formed. Although

the phenanthroline group presents an extended π-system, no π-interactions were observed.

Figure 8.3: Illustration of the crystal packing of 1·MeOH·H2O along [010] (left) and
[110] (right). Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.
Hydrogen bonds are illustrated as dashed lines.

Table 8.3: Selected distances and angles of the hydrogen bonds of 1·MeOH·H2O.
D–H· · ·A D–H [Å] H· · ·A [Å] D· · ·A [Å] D–H· · ·A [o]

N1–H1· · ·O1 0.88 2.04 2.650(2) 125
N1–H1· · ·O1a 0.88 2.15 2.923(2) 147
N2–H2· · ·O2 0.88 2.00 2.590(2) 123
O53–H53C· · ·O4 0.87(3) 1.92(3) 2.791(3) 176(2)
O53–H53A· · ·O51 1.10(14) 1.85(15) 2.765(3) 138(9)
O51–H51A· · ·O53 0.94(7) 1.99(7) 2.765(3) 139(5)

a = 3-x, 1-y, 1-z

Crystals of 3 for X-ray structure analysis were obtained by slow evaporation of an

acetone solution at room temperature. Although solving the structure went smoothly,

the red platelet with the composition (3)2· acetone were unfortunately too small and of
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too poor quality for a complete refinement of the structure. Only the metal centres and

the oxygen atoms could be set anisotropic, and the PF−6 anions present strong disorder.

The structure is here presented as structural motif, and no conclusions will be made from

the bond lengths or angles. The crystallographic data are summarised in Table 8.1. The

compound crystallises in the triclinic space group P1. The asymmetric unit consists of

two complex molecules, four PF−6 anions, and one acetone molecule. An ORTEP drawing

of one complex molecule is shown in Figure 8.4. The ORTEP drawing illustrates that the

target molecule was obtained, with a Ru(II) metal centre bound to two bipy ligands and

connected to the Ni(II) centre through the phenanthroline-derived Schiff base-like ligand.

Despite the poor quality, the structure shows that the chelate cycles coordinating the

Ni(II) centre are not coplanar with the phenanthroline group binding the Ru(II) centre,

which means that the two metal centres are not part of the same π-system, in contrast

to the phenazine-derived compounds already reported. In the Supporting Information:

Figure 8.7, the asymmetric unit of 1·MeOH·H2O is illustrated.

Figure 8.4: ORTEP drawing of 3. Thermal ellipsoids are shown at 50% probability level.
Hydrogen atoms are omitted for clarity. Only the Ru(II), Ni(II), and the oxygen atoms
are set anisotropic.
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8.2.3 UV-Vis spectroscopy

The optical properties of the metallaligand 2 and the complex 3 were studied by UV-

Vis spectroscopy using water or pyridine as solvent. As pyridine exhibits a high affinity

for coordination on the metal centre and water shows a lower affinity to the metal centre,

the influence of coordinating solvent molecules on the absorption properties can be deter-

mined. In the case of compound 3, it means that the Ni(II) centre lies in a square planar

coordination sphere in water solution, and in a square pyramidal/octahedral coordination

sphere in pyridine. The absorption spectra of 2 show great similarity between the water

and the pyridine solution, with two main peaks at λ = 430 and λ = 457 nm (Figure

8.5A). The absorbance peaks at approximately 457 nm features the highest absorbance

intensity and belongs to the MLCT transition towards the bipy as the MLCT transition of

[Ru(bipy)3]2+ was measured at 455 nm. [15] Similar luminescent phenanthroline-derivative

Ru(II) complexes have shown a MLCT transition around 430 nm, therefore we can at-

tribute the peak at 430 nm to the MLCT transition towards the phenanthroline-derived

Schiff base-like ligand. [16–18]

Sample 3, in contrast to its precursor 2, shows a drastic change of the absorption

properties when solved in pyridine (Figure 8.5C). The main absorption peak at 425 nm in

water is shifted to 454 nm in pyridine, and a new absorption band at 366 nm appears, in

agreement with the coordination of pyridine molecules on the Ni(II) centre. The maximum

absorption wavelength and emission wavelength are given in Table 8.4.

Table 8.4: Maximum absorption and emission wavelength of 2 and 3 in water and pyridine.
sample λabs,1 [nm] λabs,2 [nm] λabs,3 [nm] λem [nm]

2 (water) - 428 456 624
2 (pyridine) 375 431 458 624
3 (water) - 425 - 624
3 (pyridine) 366 454 - 630

8.2.4 Steady-state emission spectroscopy

The fluorescence spectra were measured with irradiation at λex = 455 nm. The emission

data of 2 and 3 are shown in Figure 8.6B and Figure 8.6D. In water, both samples present
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8.2. RESULTS AND DISCUSSION

Figure 8.5: Absorption and emission data of 2 and 3 in water (black line) and pyridine
(red line) solutions.

an emission band at 624 nm, belonging to a radiative MLCT deactivation. In pyridine,

the emission properties of 2 and 3 differ a bit, with a slight shift of the emission maximum

from 624 nm for 2 to 630 nm for 3. When equimolar solutions of 2 and 3 are measured

with the same instrument parameters, one can see that the emission intensity in pyridine

is lower than in water. However, this change appears to be only solvatochromism, as this

effect was observed for both samples 2 and 3, and only 3 contains the Ni(II) centre, which

is coordinated by the pyridine.

8.2.5 Time-resolved emission spectroscopy

In order to investigate a possible photoluminescence quenching through an energy trans-

fer between the Ru(II) and the Ni(II) centres upon coordination the latter one, time-

resolved emission spectroscopy measurements were performed under aerobic and argon
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atmosphere. The lifetime measurements for sample 2 and 3 are presented in Figure 8.6.

In all measurements two lifetimes were observed, a rather long-lived state with τ1 = 350–

750 ns, and a short-lived state with τ2 = 5–200 ns, which indicates the existence of two

deactivation processes. The long-lived state is the triplet state, commonly observed for

Ru(II) polypyridine complexes, the short-lived state could come from fluorescence, or

from another quenching effect taking place. Two observations come out of the measure-

ments: firstly, the lifetimes in both solvents are shorter for the Ni(II) complex 3 than

for the metallaligand 2, leading to the conclusion that metallation of the chelate cycles

partially deactivates the emission. Secondly, the lifetimes in pyridine solutions are shorter

than for the water solutions, but as this effect is seen for both the metallaligand 2 and

the complex 3, this can probably be attributed to solvatochromism. All lifetimes of the

solutions measured under aerobic conditions are shorter than for the solutions measured

under argon atmosphere, confirming that the excited state measured is a triplet state,

quenched in presence of molecular oxygen. All lifetime constants τ1 and τ2 are presented

in Table 8.5.

Figure 8.6: Time-resolved emission measurements of 2 and 3 in water (red line) and
pyridine (black line) solutions.

8.2.6 Discussion

In previous work, we demonstrated that the emission of a phenazine-derived Schiff base-

like Ni(II) complex could be effectively quenched through the coordination of pyridine

182



8.3. EXPERIMENTAL SECTION

Table 8.5: Excited lifetimes τ1 and τ2 of 2 and 3 in water and pyridine under aerobic and
argon atmosphere.

sample τ1 (water) [nm] τ2 (water) [nm] τ1 (pyridine) [nm] τ2 (pyridine) [nm]

2 (aerobic) 401(3) 156(8) 276.6(8) 74(5)
2 (argon) 753(6) 214(4) 504.7(6) 15.6(2)
3 (aerobic) 334(10) 38(5) 227.5(15) 6.2(3)
3 (argon) 458(4) 86(4) 363.6(7) 4.57(10)

molecule on the metal centre, inducing a Coordination Induced Spin State Switch. Time-

resolved fluorescence spectroscopy revealed that a non-radiative energy transfer between

the fluorophore and the paramagnetic Ni(II) centre was the quenching mechanism. The

type of energy transfer (Förster or Dexter) could at this moment not be pinpointed. A

very important point was the inclusion of the Ni(II) complex in the emitting π-system

of the complex. We presented in this work the case of a similar system (sample 3),

where the phenazine fluorophore was exchanged for a phosphorescent polypyridine Ru(II)

unit. However, no evidences of a quenching effect arising from the coordination of the

Ni(II) centre and the subsequent CISSS were found. When analysing structural differences

between the two systems, one can see that in case of sample 3, the Ni(II) centre is not part

of the π-system of the fluorophore, as the chelate cycles bend out of the phenanthroline

plane. In the case of a Dexter electron transfer as quenching mechanism, the inclusion

of the acceptor and the donor in the same π-system is needed to effectively transfer

electrons. As in this case the Ni(II) centre is not included in the π-system of the Ru(II)

unit, it cannot exchange electrons and effectively quench the emission.

8.3 Experimental Section

Synthesis The synthesis of 2 and 3 were carried out under argon using Schlenk tube

techniques. The starting materials 5,6-diamino-1,10-phenanthroline, [11] ethoxymethylene-

ethylacetoacetate, [19] and Ru(bipy)2Cl2·2H2O [20] were synthesised according to literature.

Ammonium hexafluorophosphate (99.5%, Alfa Aesar) and Nickel(II) acetate tetrahydrate

(99%, Fluka) were used without further purification. Methanol and ethanol were of ana-

lytical grade. NMR spectra were measured with a Varian INOVA 300. Elemental analyses

were measured with a Vario El III from Elementar Analysen-Systeme. Mass spectra were
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recorded with a Finnigan MAT 8500 with a data system MASPEC II. IR spectra were

recorded with a Perkin Elmer Spectrum 100 FT-IR spectrometer.

1. 5,6-diamino-1,10-phenanthroline (0.2 g, 0.95 mmol) and ethoxymethylene-ethylaceto-

acetate (0.40 g, 2.89 mmol, 3 eq) were dissolved in methanol (10 mL) and heated to reflux

during 1 h. The solvent of the red solution was reduced and the suspension was stored

at -25oC overnight. The yellow precipitate was filtrated off, recrystallised from methanol

and dried in vacuo. Yield: 0.14 g (35 %). C24H22N4O4·MeOH (462.51 g/mol) found

(calculated): C 61.80 (calc. 64.92); H 5.750 (5.670); N 12.14 (12.11). MS (DEI-(+), 70

eV): m/z = 430 (M+, 33%), 43 (COMe, 100%). 1H-NMR (300 MHz, DMSO, 23oC): δ =

12.18 (d, J = 12.9 Hz, 2 H, N–H), 9.18 (d, J = 3.3 Hz, 2 H, HArom.), 8.41 (d, J = 8.1

Hz, 2 H, HArom.), 8.27 (d, J = 12.9 Hz, 2 H, CH=), 7.90 (dd, J1= 8.1 Hz, J2= 8.4 Hz,

2 H, HArom.), 2.41 (s, 6 H, –CH3), 2.14 (s, 6 H, –CH3). 13C-NMR (300 MHz, DMSO,

23oC) δ = 200 (C2C=O); 195 (C2C=O); 160 (NCH=C); 155 (C2C=C); 151 (NCH=C);

144 (NCC2); 132 (C2CH); 130 (C2C=C); 125 (C2CH); 124 (NCC=C); 52 (CCH3); 47

(CCH3). IR: ν̃ = 3410 (O–H), 3164 (N–H), 1611 (C=O), 1559 (C=O) cm−1.

2. Ru(bipy)2Cl2·2H2O (0.49 g, 1.01 mmol) and 1 (0.52 g, 1.21 mmol, 1.2 eq) were dis-

solved in a mixture of degassed ethanol (10 mL) and degassed water (10 mL). The solution

was heated to reflux during 3 h. NH4PF6 (2.00 g, 12.1 mmol, 10 eq) was solved in water

(10 mL) and the aqueous solution was added to the red, fluorescent solution. The mixture

was stirred for 25 min at room temperature. The orange suspension was stored at room

temperature overnight. The orange precipitate was filtrated off, washed with cold water

and cold diethylether and dried in vacuo. Yield: 0.94 g (82 %). C44H38F12N8O4P2Ru

(1133.84 g/mol) found (calculated): C 41.56 (calc. 46.61); H 3.136 (3.380); N 10.16

(9.88). MS (ESI-(+), 70 eV): m/z = 989.1 ([M+PF6]+, 8%), 422.2 ([M]2+, 21%), 157.2

(bipy, 59%). IR: ν̃ = 1616 (C=O), 1568 (C=O), 828 (P–F) cm−1.

3. 2 (0.40 g, 0.35 mmol) and Ni(OAc)2·4H2O (0.10 g, 0.42 mmol, 1.2 eq) were dissolved

in degassed methanol (15 mL). The solution was heated to reflux during 2 h. After cooling

to room temperature the dark red precipitate was filtrated off, washed with cold water and

cold diethylether and dried in vacuo. Yield: 0.15 g (36 %). C44H36F12N8NiO4P2Ru·H2O
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(1208.53 g/mol) found (calculated): C 41.87 (43.73); H 3.117 (3.170); N 9.16 (9.27). MS

(ESI-(+), 70 eV): m/z = 1045.1 ([M+PF6]+, 12%), 450.0 ([M]2+, 23%), 273.3 ([M2+-

COMe-(bipy)2], 100%), 157.2 (bipy, 11%). IR: ν̃ = 1659 (C=O), 1563 (C=O), 832 (P–F)

cm−1.

X-ray structure analysis The X-ray analysis of 1 and 3 was performed with a Stoe

StadiVari diffractometer using graphite-monochromated MoKα radiation. The data were

corrected for Lorentz and polarization effects. The structures were solved by direct

methods (SIR-97) [21] and refined by full-matrix least-square techniques against F2
o–F2

c

(SHELXL-97). [22] All hydrogen atoms were calculated in idealised positions with fixed

displacement parameters. ORTEP-III [23,24] was used for the structure representation,

SCHAKAL-99 [25] to illustrate molecule packing.

Optical measurements Absorbance spectra were obtained using an Agilent UV-Vis

spectrophotometer 8453 (Agilent Technologies, USA) operating in a spectral range of

190–1100 nm. The spectra were measured at 298 K in quartz cells with 1 cm lightpath

(Hellma, Germany). Fluorescence measurements were performed with a FLS980 (Edin-

burgh Instruments, UK) fluorescence spectrometer equipped with double monochromators

(1800 grooves per mm) in excitation and emission. A Xe lamp (360 W) was used as ex-

citation source for steady-state fluorescence measurements. Time-resolved measurements

were performed with a pulsed supercontinuum fiber laser (WhiteLase SC-400, Fianium,

UK) with a pulse width <10 ps. Emission from the sample was collected at an angle

of 90o with respect to the excitation path. The emitted beam was focused onto a single

photon counting photomultiplier (R928P, Hamamatsu, Japan) or a microchannel plate

photomultiplier (MCP-PMT) for steady-state and lifetime measurements respectively.

The excitation wavelength and time range for lifetime measurements were selected ac-

cording to the sample requirements. The time-resolved fluorescence decays were analysed

by exponential tail fitting.
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8.4 Conclusion

We have shown the synthesis of a new phenanthroline-derived Schiff base-like ligand 1,

the corresponding Ru(II) metallaligand 2, as well as the bimetallic Ru(II)-Ni(II) complex

3. The optical properties of 2 and 3 were investigated with absorption, steady-state

emission, and time-resolved emission spectroscopy, and show that the coordination of

a pyridine solvent molecule on the Ni(II) centre, inducing a CISSS, had no quenching

effect on the emission properties. The crystal motif revealed that the Ni(II) centre is not

included in the conjugated π-system of the emitting unit of the molecule because of steric

hindrance between protons. In the future, a new Schiff base-like ligand will be designed

to tackle this problem and allow the Ni(II) centre to be in the same conjugated π-system

as the fluorophore. Other metal centres such as Cu(II) and Zn(II) will be included in

the place of the Ni(II), as the molecule shows strong structural similarity with published

photocatalytic systems. [26]
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8.5 Supporting Information

Figure 8.7: Illustration of the unit cell of (3)2· acetone. Hydrogen atoms are omitted
for clarity. Colour code: Ru large red, Ni large yellow, C gray, N green, O red, P orange,
F purple.
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Abstract

A spin crossover coordination polymer [Fe(L1)(bipy)]n (where L is a N2O2−
2 coordinat-

ing Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4’-bipyridine) was

synthesized and exhibits a 48 K wide thermal hysteresis above room temperature (T 1
2
↑ =

371 K and T 1
2
↓ = 323 K) that is stable for several cycles. The spin transition was char-

acterized using SQUID magnetometry, Mössbauer spectroscopy, and DSC measurements.

T -dependent X-ray powder diffraction reveals a structural phase transition coupled with
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the spin transition phenomenon. The dimeric excerpt ((µ-bipy)[FeL1(MeOH)]2)·2 MeOH

of the coordination polymer chain crystallizes in the triclinic space group P1 and re-

veals that the packing of the molecules in the crystal is dominated by hydrogen bonds.

Investigation of the emission properties of the complexes regards to temperature shows

that the spin crossover behavior can be followed through measurement of the fluorescence

properties.

9.1 Introduction

Iron(II) spin crossover (SCO) complexes are a class of molecules where the spin state can

be reversibly switched between a paramagnetic high spin (HS) and a diamagnetic low spin

(LS) state upon physical stimuli such as temperature or pressure change, or light irradia-

tion. [1,2] Upon spin transition (ST), the structural, vibrational, electronic, and magnetic

properties of the molecule are changing. This makes the field attractive to researchers

all over the world due to possible applications in the domain of sensors or memory de-

vices. [3–6] Particularly suitable for the latter application are cooperative STs presenting

thermal hysteresis, if possible around room temperature. In order to achieve cooperativity

between the spin centers, intermolecular interactions such as hydrogen bonds, [7–9] van der

Waals interactions, [10–14] or π-interactions [15–17] are needed to propagate the structural

change associated with the SCO phenomenon through the crystal packing of a SCO ma-

terial. We recently reported a series of mononuclear Fe(II) spin crossover complexes and

coordination polymers functionalized with a naphthalene ring, which increased C–H· · · π

and C–H· · ·O interactions within the crystal packing, leading to wider thermal hysteresis

loops in comparison to similar phenyl derivatives. [17,18] In a next step, the naphthalene

π-system was extended further to the phenazine system, which added ligand-based fluo-

rescence to our Schiff base-like system. We have shown that the ligand-based fluorescence

of the corresponding Ni(II) complex could be switched on or off upon Coordination In-

duced Spin State Switch (CISSS) between a diamagnetic square planar geometry and a

paramagnetic octahedral/square pyramidal geometry. [19]
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SCO materials that also exhibit fluorescence would have a supplementary spin state

”read out” possibility and therefore a supplementary interest for applications, as one

could see a change of emitted wavelength and/or emission intensity upon SCO. Until now,

two major strategies are adopted to build such systems: the first is to build a composite

material made of a luminescent material and a SCO compound such as electroluminescent

thin films doped with SCO complexes, [20–22] functionalized SCO-core-luminescent-shell

nanoparticles, [23–25] or SCO complexes with fluorescent counter anion. [23,26] The second is

to covalently bind the spin center to the fluorophore in a single (macro)molecule, however

this approach does not guarantee a coupling between the spin transition and the emission

properties. [24,27–30]

Here we present a 1D SCO coordination polymer built from our phenazine-derived Schiff

base-like ligand, which exhibits a wide thermal hysteresis above room temperature, char-

acterized using magnetic measurements, DSC, and temperature-dependent X-ray powder

diffraction. The emission properties of the SCO coordination polymer as well as of the

corresponding high spin dimer were studied with varying temperature. To the best of

our knowledge, this is the first SCO-luminescent molecular device with thermal hysteresis

reported yet.

9.2 Results

9.2.1 Synthesis

The synthesis pathway of all compounds presented in this work is pictured in Scheme

9.1. The spin crossover coordination polymer [FeL1(bipy)]n (4) was obtained in two

steps from the phenazine-based ligand H2L1. [19] In a first step, iron(II) acetate is used

as metal source to include the iron center in the chelate cycle, using the acetate anions

as base, to give the methanol complex [FeL1(MeOH)2] (2). The complexation of the

iron(II) is accompanied with a typical color change of the solution from yellow to dark

red, in agreement with similar complexes reported in literature. [18,31–35] In the solid state,

compound 2 is a greenish black crystalline material. The purity of compound 2 was

assessed with elemental analysis (CHN) as well as mass spectrometry. Additionally, the
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IR spectrum shows a typical shift of the C=O bands in comparison to the free ligand,

consistent with the coordination of an iron(II) metal center.

Figure 9.1: Pathway of synthesis of the compounds 3 and 4 described in this work.

From the starting compound 2, the dimeric specie ((µ-bipy)[FeL1(MeOH)]2)·2 MeOH

(3) and the coordination polymer [FeL1(bipy)]n (4) can be obtained by substitution of

the axial MeOH ligands with 4,4’-bipyridine (bipy). The dimer 3 was firstly obtained

as single crystals in an attempt to grow single crystals of polymer 4 using a liquid-

liquid slow diffusion setup. 3 could also be obtained in a controlled fashion as a red fine

crystalline material when the starting complex 2 is converted with 0.5 equivalents of bipy

at room temperature. The exact formula of the dimer was determined on the basis of

the elemental analysis, mass spectrometry, and the determined crystal structure. The

formation of dimeric iron(II) complexes instead of the expected coordination polymers

was recently reported to depend strongly on the size ratio of the used equatorial and axial

ligands. [35,36] Upon reflux of starting material 2 with an excess of bipy bridging ligand (10

equivalents), precipitates the black fine crystalline material [FeL1(bipy)]n (4). The exact

formula of 4 was confirmed with elemental analysis and mass spectrometry. The polymeric

nature of the material was assessed with powder X-ray diffraction and is discussed further.
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All attempts to obtain single crystals of 4 using slow diffusion techniques (liquid-liquid)

were so far unsuccessful regardless of the equivalent of bipy. Only single crystals of the

dimer 3 could be obtained. Presumably, the dimer 3 is too insoluble and precipitates

right away, hindering the formation of any polymeric structures.

SEM pictures of 3 and 4 confirmed the purity and assess the morphology of the samples,

(see Supporting Information: Figure 9.11). The dimer 3 forms block-shaped crystallites

with an average size of 1 µm, similar to the monocrystals grown using slow diffusion setup.

The SCO coordination polymer 4 precipitates as platelet-like crystallites, with the smaller

dimension measuring 100–150 nm. The other two dimensions of the platelet measures 500

nm to several mm, the platelets presenting then a large surface.

9.2.2 Magnetism

The magnetic properties of both compounds 3 and 4 were investigated with a SQUID

magnetometer in the range from 50 K to 400 K in the settle mode. The dimer 3 is with

a magnetic susceptibility temperature product(χMT ) value of 7.40 cm3·K·mol−1 at room

temperature in typical range for a complex with two iron(II) HS centers, and stays HS

over the whole temperature range investigated (Supporting Information: Figure 9.10).

This result is not surprising as the FeN3O3 coordination sphere for this ligand system is

too weak and leads to pure HS complexes. [35,36] The χMT versus T plot of 4 is displayed

in Figure 9.2. The coordination polymer 4 is with a χMT value of 0.095 cm3·K·mol−1 at

room temperature in typical range for an iron(II) center in its LS state. Upon warming,

the compound undergoes a first spin transition at T 1
2
↑ = 380 K ending in its HS state

with a χMT value of 3.11 cm3·K·mol−1 at 400 K. Upon cooling, the χMT product stays

constant until 330 K, where the compound transits towards its LS state (T 1
2
↓ = 323

K), revealing a first hysteresis of 57 K. If the compound is heated again, the LS to HS

transition occurs again, however at a lower temperature T 1
2
↑ = 371 K, then upon cooling,

the compound undergoes its HS to LS at the same temperature as in the first cycle,

reducing the hysteresis width to 48 K. This hysteresis is then stable and can be measured

several times. Leaving the sample at 400 K under vacuum in order to remove possible

solvent molecules showed no further influence on the SCO behavior.
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Figure 9.2: Magnetic susceptibility temperature product (χMT ) vs. temperature mea-
surement for compound 4 displayed between 275 and 400 K.

9.2.3 X-ray Structure Analysis

Monocrystals of 3 suitable for X-ray structure determination were obtained from a

liquid-liquid slow diffusion setup between methanolic solutions of 2 and bipy under argon

atmosphere. The structure was determined at 133 K and the crystallographic data are

presented in Supporting Information: Table 9.3. The dimer 3 crystallizes in the triclinic

space group P1 and the asymmetric unit contains half a dimer molecule and one non-

coordinating methanol solvent molecule. An ORTEP drawing of the dimer molecule is

shown in Figure 9.3. The iron center has an octahedral FeN3O3 coordination sphere, with

a methanol molecule and the bridging bipy as axial ligands. The iron center, whose spin

state can be determined by measuring the O1–Fe–O2 angle, which has in the HS state

a value of ≈ 110o, [17,37,38] is here with 107.34(7)o in the HS state, in agreement with the

magnetic data. Selected bond lengths and angles are listed in Table 9.1.

The crystal packing of 3 presents a hydrogen bond network, where the axial methanol

(O3–H3) of the iron center binds to the phenazine nitrogen atom (N5) of a neighboring
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Figure 9.3: ORTEP drawing of the dimer 3. The thermal ellipsoids are shown at 50%
level. Hydrogen atoms and non-coordinating solvent molecules were omitted for clarity
reasons.

Table 9.1: Selected bond lengths [Å] and angles [o] of 3.
Bond [Å] Angle [o]

Fe1–O1 2.0249(19) O1–Fe1–O2 107.34(7)
Fe1–O2 1.9953(18) N1–Fe1–N2 79.78(8)
Fe1–O3 2.2839(19) O3–Fe1–N3 174.40(7)
Fe1–N1 2.070(2)
Fe1–N2 2.083(2)
Fe1–N3 2.279(2)

molecule, which binds back to the first molecule in the same way. A consequence of this

interaction is the formation of 1D chain of the dimers, which propagate along the vector

[1 1 -1]. The chains are further connected through a non-classical hydrogen bond between

the methyl group of the axial methanol (C30–H30C) and one of the oxygen atoms (O6) of

the ester substituents of a neighboring chain. This leads to the formation of a 2D network

with base vectors [1 1 -1] and [0 0 1]. One more hydrogen bond is observed between

the non-coordinating methanol solvent molecule (O51–H51) and the second phenazine

nitrogen atom (N4). The crystal packing is depicted in Figure 9.4 and the D–H· · ·A

distances and angles are given in Table 9.2.
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Figure 9.4: Crystal packing of 3 along vectors [1 0 0] (top) and [0 0 1] (bottom). Hydrogen
atoms non-participating in hydrogen bond were omitted for clarity. Hydrogen bonds are
depicted as pink dashed lines.

Table 9.2: Summary of the D–H· · ·A interactions in the crystal packing of 3. Distances
are given in [Å] and angles in [o].

D–H· · ·A D–H [Å] H· · ·A [Å] D· · ·A [Å] D–H· · ·A [o]

O3–H3· · ·N5a 0.84 2.50 2.874(3) 108
N51–H51· · ·N4 0.84 2.09 2.923(4) 172
C30–H30C· · ·O6b 0.98 2.44 3.411(4) 172

a = 1-x, 1-y, 1-z; b = 1-x, 1-y, 1-z
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9.2.4 Differential Scanning Calorimetry

DSC measurements of 4 were done to determine the enthalpy and entropy changes as-

sociated with the SCO phenomenon itself, but also to investigate the possible presence of

supplementary phase transitions, linked or not, with the spin transition. The DSC mea-

surement is shown in Figure 9.5. Upon heating, the sample presents a sharp endothermic

transition at 375 K, corresponding to the LS to HS spin transition observed in the SQUID

measurement. Upon cooling a relatively broader peak at 327 K corresponding to the HS

to LS spin transition was observed. The transition temperatures are in good agreement

with the magnetic measurement taken into account the different measurement modes and

scanning velocities. The different broadness of the peaks reflects how abrupt the ST is, in

accordance with the results of the SQUID measurement where the HS to LS transition is

less abrupt than the LS to HS transition. Another feature of the SQUID measurement is

the different transition temperatures between the very first LS to HS transition and the

subsequent LS to HS transitions. This feature was also observed in the DSC measurement.

The integrated enthalpy and entropy values are with ∆H = 16.1(3) kJ·mol−1 and ∆S =

44.7(12) J·mol−1·K−1 for the LS to HS transition, and with ∆H = 15.7(2) kJ·mol−1 and

∆S = 47.4(13) J·mol−1·K−1 for the HS to LS transition, similar to the values obtained

for other spin crossover complexes of the same family. [7,8,18,39] The enthalpy and entropy

values of the very first LS to HS transition (∆H = 16.1(3) kJ·mol−1 and ∆S = 44.7(12)

J·mol−1·K−1) and the subsequent LS to HS transition (∆H = 16.3(3) kJ·mol−1 and ∆S

= 43.8(12) J·mol−1·K−1) are in the same order of magnitude. No supplementary phase

transitions were observed in the investigated temperature range (300 K – 400 K).

9.2.5 Temperature-dependent Powder X-ray Diffraction

The X-ray diffraction powder pattern of polymer 4 was measured at 5 different tem-

peratures in the following sequence: 300 K, 350 K, 390 K, 350 K, and 300 K. The powder

patterns of both HS and LS states could then be obtained, as well as in the middle of

the thermal hysteresis at the same temperature (350 K) depending on the history of the

compound. The powder patterns are presented in Figure 9.6. At 300 K, the powder pat-

tern exhibit five strong reflections at 2θ = 6o, 10o, 12.5o, 17.5o, and 24o. Typically, strong
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Figure 9.5: DSC measurement of polymer 4 displayed between 300 and 400 K. The red
line corresponds to the first heating.

reflections in the 2θ range of 8o–12o corresponds to the Fe–Fe distance within a chain, as

previously reported for similar coordination polymers. [7,18,35] In this case, the peak at 10o

would correspond to a Fe–Fe distance of ≈ 9 Å, which is in agreement with the length of a

Fe–bipy–Fe distance. [40] Upon heating, the pattern at 350 K is very similar to the pattern

at 300 K, with minor shifts due to the temperature change. At 390 K, the spin transition

took place and the diffractogram is different. Starting with five reflections in the LS state,

the sample shows now six main reflections in the HS state as the peak at 24o splits into

two peaks at 23.2o and 23.5o. Moreover the reflections at 10o and 17.5o are shifted to a

lower diffraction angle, respectively at 9.6o and 16.7o. A shift of the reflection at 10o in

the LS state to 9.6o in the HS state corresponds a elongation of the Fe–Fe distance of

≈ 1 Å, which is in agreement with the coordination sphere volume increase upon LS to

HS transition. Upon cooling, the pattern at 350 K is still characteristic for the HS state.

This is a further proof of the bistability of the material, as it was measured at 350 K in

both spin states. When the compound is back to 300 K, a diffractogram similar to the

starting diffractogram was recorded, and the sample is back to its LS state.
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Figure 9.6: Temperature-dependent X-ray powder patterns of 4. The HS state is repre-
sented with a red line, the LS state with a blue line. Diffractograms with ↑ were measured
upon heating and with ↓ upon cooling.

9.2.6 Fluorescence Spectroscopy

Emission spectra of the dimer 3 and the polymer 4 in the solid state were measured

with varying temperature between 300 K and 400 K, using a 337 nm nitrogen laser as

excitation. Normalized spectra measured at 300 K, 350 K, and 400 K are presented in

Figure 9.7. The dimer 3 shows a dominant peak at λ2 = 686 nm. In addition, a broad

shoulder with lower intensity, centered around λ1 = 550 nm is observed. The spectra do

not change with temperature, though the overall intensity reduces upon heating. This is

shown in Figure 9.8A.

Similar to the emission spectrum of the dimer 3, the photoluminescence (PL) spectra

of the polymer 4 exhibits two prominent emission features at λ1 = 550 nm and at λ2 =

673 nm. For ease of reference, the spectra of the dimer 3 and the polymer 4 at 300 K and

400 K are compared in the supporting information (Figure 9.12), so that the coincidence

of their spectral features, albeit with different intensities, is particularly evident.
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Figure 9.7: Temperature-dependent emission spectra taken from powders of the dimer 3
(left) and the polymer 4 (right) with λex = 337 nm upon heating(↑) and cooling(↓).

Figure 9.8: Plot of the emission intensity of 3 and 4 against temperature. A: compound 3
for detection at λ2 = 686 nm, B: compound 4 for detection at λ1 = 550 nm, C: compound
4 for detection at λ2 = 673 nm, D: the ratio of λ1/λ2 for compound 4.

When comparing the temperature dependent magnetic susceptibility shown in Figure

9.2 with the temperature dependent photoluminescence spectra of the polymer in Figure
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9.7, it becomes evident that the relative intensities of the peaks λ1 and λ2 correlate with

the spin state of the polymer. At 300 K i.e. in its LS state, the peak at λ1 is more intense

than at λ2. Upon heating, at 350 K, the sample 4 is still in the LS state and the emission

spectrum stays unchanged. At 400 K, after the sample underwent spin transition, the

ratio between λ1 and λ2 changes and λ1 becomes as intense as λ2. Upon cooling, at 350

K, the sample is still in the HS state and the spectrum is similar to the spectrum at 400

K. Finally, when back in the LS state at 300 K, the spectrum is similar to the starting

spectrum. This temperature dependent behavior demonstrates that the spin state of the

sample impacts on the shape of the emission bands, where in the LS state of the sample

the corresponding emission spectrum shows an increased intensity at λ1, while in the HS

state, the emission intensities at λ1 and λ2 are similar.

This behavior is further analyzed in Figures 9.8B–D which display the evolution of the

PL intensity at λ1, λ2, and the ratio of both features in regard to the temperature. Both

features at λ1 and λ2 show the same general trend: their intensity decreases with rising

temperature. However, the trend is not followed in the region from 365 to 380 K upon

heating, and from 330 to 310 K upon cooling. Those regions corresponds to the spin

transition temperatures of 4 (T 1
2
↑ = 371 K and T 1

2
↓ = 323 K). In other words, the SCO

phenomenon can be followed using the fluorescence spectroscopy. One can see on the plot

of the intensities (Figures 9.8B–D) that after a full measurement cycle, the overall PL

intensity at 300 K has slightly diminished. We attributed this effect to photobleaching, as

rather harsh measurement conditions are used (337 nm laser, heating up to 400 K, several

hours of measurements for a full cycle). Non-normalized emission spectra of 3 and 4,

as well as a superposition of the spectra, can be found in the Supporting Information:

Figure 9.12.

9.3 Discussion

The SCO coordination polymer 4 presents remarkable magnetic properties, exhibiting

a 48 K wide hysteresis above room temperature. Wide thermal hystereses are usually

associated with a coupling between the electronic transition and structural changes. This
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is also true for our complex, as the DSC measurement showed that the STs have rather

high enthalpy and entropy values, and the powder X-ray diffraction analysis showed that

the HS and the LS states present different diffractograms. All this indicates that a major

structural change happens upon SCO, however a single crystal X-ray structure analysis

would be needed to confirm this hypothesis. The very first LS to HS ST happens at

a higher temperature as all sub-sequent STs, and this phenomenon was confirmed with

SQUID and DSC measurements. A reason could be that minor structural changes upon

the first ST, i.e. order-disorder phase transition, movement of a substituent upon ST,

happen in an irreversible way, and upon the subsequent HS to LS, the exact original

structure is not recovered. As SCO is an extremely sensitive phenomenon regards to

environmental changes, such minor structural change will have an influence on the SCO

properties.

The emission properties of both dimer 3 and polymer 4 were measured at different

temperatures. From the fact that the peaks at λ1 and λ2 change their intensity depending

on the spin state of the polymer we infer that these two peaks have a different electronic

origin. Since the same two peaks also occur at λ1 and λ2 for the dimer 3, albeit with

different intensity, we suggest that for the high spin dimer, the two peaks can also be

attributed to two electronic origins. In other words, upon photoexcitation, two different

radiative relaxation processes take place. In the case of the corresponding Ni(II) complex,

two relaxation processes were also observed, however only the diamagnetic specie was

luminescent. [19]

The loss of the emission properties for the paramagnetic specie is presumably due to

an electron transfer between the ligand-based π and π∗ orbitals and the metal-centered d

orbitals. For the compounds presented in this paper, the hypothesis that similar processes

occur can be made. We observe that the emission λ1 has similar energy than the emission

of the ligand 1 in solution and its corresponding octahedral Zn(II) complex. [19] The energy

of the λ2 emission feature, is in the range of the crystal field strength (energy splitting

between the t2g and e∗g orbitals) for an iron(II) in the HS state. From those observations,

two hypothetical relaxation processes are proposed: the first one is a ligand-centered

relaxation process in which an electron of a πL ligand-based orbital is excited into a π∗L
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ligand-based orbital, and then relaxes directly back in the original πL ligand-based orbital

and the emission λ1 is observed. The second is a metal-centered relaxation process for

which, after the excitation of an electron into the π∗L orbital, an electron exchange takes

place between the metal-based orbitals and the ligand-based orbital. The excited electron

goes from the π∗L orbital to the e∗g orbital, while an electron of the t2g orbital goes to the

πL orbital. After this electron exchange, the excited electron in the e∗g orbital can relax

towards the t2g orbital by light emission at a wavelength λ2. Both processes in both spin

states are depicted in Figure 9.9.

Figure 9.9: Simplified schema representing the two hypothetical relaxation processes, in
the HS state (left) and LS state (right).

The observation of dual emission is unusual. It would imply that the rates for the two

processes are in competition, with the key parameter being how fast the electron exchange

takes place. The main influence on the electron transfer arises from the spin state of the

iron(II) center, as the crystal field strength is smaller in the HS state than in the LS state.

In the HS state, when the crystal field strength is smaller than the energy gap between

πL and π∗L, energy transfer (for example by dual electron transfer) from the photoexcited
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ligand to the metal would be favorable. However in the LS state, we estimate that the

crystal field strength is larger than the energy gap between πL and π∗L, thus preventing

energy transfer from photoexcited ligand to the metal. Rather, transfer could occur from

the photoexcited metal to the ligand. Overall, the ligand-centered relaxation process at

λ1 would be favored.

Sample 3 does not show any change in the shape of the spectra upon temperature

change, in agreement with the fact that it is a pure HS specie. The hypothesis we

formulated complies with the observed emission properties, where a stronger λ2 emission

peak is observed, resulting from the electron exchange and concomitant energy transfer.

Sample 4 shows both emission peaks in both spin states. In principle, the emission from

the HS state should give a dominant contribution at λ2 analogous to dimer 3, yet we

observe about equal intensities of the peaks at λ1 and λ2. This arises probably from the

fact that the two compounds 3 and 4, when in the HS state, do not have exactly the same

crystal field energy, and therefore the electron transfer rate is more or less favored.

In the LS state, the λ1 peak is enhanced compared to the peak at λ2, confirming

that the ligand-centered relaxation process is favored. The fact that we still observe a

significant contribution from λ2 may be attributed to effects from the HS chain ends.

Sample 4 is a coordination polymer, and usually the properties of such coordination

polymers are analyzed and interpreted taking into account that the polymer chain is of

infinite dimension, and that the contribution of the ends of the polymer chain is negligible.

However, in case of nanosized material, the contribution of the end of the chains (localized

on the surface) is no longer negligible. [41] As the SEM pictures of 4 showed that the SCO

polymer consists of thin platelet-shaped crystals, with a rather high surface, and as during

the PL measurements, the surface of the material is irradiated, and PL typically takes

place from the surface of the investigated materials, it can be speculated that the resulting

spectrum obtained is a superposition of the emission of the surface which is HS and the

emission of the SCO-core. As the dimer 3 can also be considered as a ”polymer chain”

consisting only of two end groups, it is expected that the emission properties of 3 will be

similar to those of the surface of 4.
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To sum up, for the polymer 4, when in the HS state, we observe similar spectra as for the

dimer 3, with the two proposed relaxation processes competing with each other. However

in the LS state, the metal-centered process is not happening in the core of the material, so

that the emission is ligand-centered at λ1 and the λ2 emission observed originates from the

surface of the material. In order to verify the proposed hypothesis, further measurements

are needed. Temperature-dependent measurements of the absorption properties, as well

as the determination of the lifetime of the different relaxation processes would be helpful.

Calculations of the energy of the different orbitals could also give useful formation. Finally,

the growth and measurement of much larger crystallites (µm to cm) could also help

understanding the observed phenomena; however this last possibility is experimentally

difficult to realize.

9.4 Experimental Section

Synthesis Methanol (MeOH) was purified by distillation over Mg under argon atmo-

sphere. [42] Starting ligand H2L1 (1) and iron(II) acetate were synthesized as described

in literature. [19,43] 4,4’-bipyridine (bipy) (Alfa Aesar, 99.9%) was used without further

purification. All syntheses were carried out under argon using Schlenck techniques. CHN

analyses were measured with a Vario El III from Elementar Analysen-Systeme. Mass

spectra were recorded with a Finnigan MAT 8500 with a data system MASPEC II. IR

spectra were recorded with a Perkin Elmer Spectrum 100 FT-IR spectrometer.

[FeL1(MeOH)2] (2) H2L1 (0.2 g) and iron(II) acetate (0.11 g) were dissolved in 40 mL

MeOH. The black solution was refluxed during 2 hours and then allowed to cool down.

Upon cooling a dark green crystalline precipitate appeared. The dark green precipitate

was filtered off, washed with MeOH (2×5 mL), and dried in vacuo. Yield: 0.22 g (88

%). IR: ν̃ = 3246(b) (OH), 1625(s) (CO), 1589(s) (CO) cm−1; MS (DEI-(+), 70 eV)

m/z (%): 516 (100) ([FeL1]+); elemental analysis calculated (found) for C26H28FeN4O8

(580.37 g·mol−1): C 53.81 (53.21), H 4.86 (4.23), N 9.65 (9.62).

((µ-bipy)[FeL1(MeOH)]2)·2 MeOH (3) 2 (0.2 g) and bipy (0.03 g) were dissolved

in 10 mL MeOH. The dark red solution was left to stir at room temperature during 2
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hours. After a few minutes, a red crystalline precipitate appeared in the flask. The red

crystalline precipitate was filtered off, washed with MeOH (2×1 mL), and dried in vacuo.

Yield: 0.16 g (70 %). IR: ν̃ = 3240(b) (OH), 1615(s) (CO), 1596(s) (CO) cm−1; MS

(DEI-(+), 70 eV) m/z (%): 516 (65) ([FeL1]+), 156 (100) ([bipy]+); elemental analysis

calculated (found) for C62H64Fe2N10O16 (1316.94 g·mol−1): C 56.55 (55.98), H 4.90 (4.32),

N 10.64 (10.62).

[FeL1(bipy)]n (4) 2 (0.2 g) and bipy (0.54 g) were dissolved in 20 mL MeOH. The black

solution was refluxed during 1 hour and then allowed to cool down to room temperature.

A black crystalline material precipitated upon cooling. The black crystalline material

was filtered off, washed with MeOH (2×2 mL), and dried in vacuo. Yield: 0.19 g (82

%). IR: ν̃ = 1630(s) (CO), 1587(s) (CO) cm−1; MS (DEI-(+), 70 eV) m/z (%): 516 (13)

([FeL1]+), 156 (84) ([bipy]+); elemental analysis calculated (found) for C34H28FeN6O6

(672.47 g·mol−1): C 60.73 (60.53), H 4.20 (4.376), N 12.50 (12.96).

X-ray Structure Analysis The intensity data of 3 were collected with a STOE Stadi-

Vari diffractometer using graphite-monochromated MoKα radiation. The data were cor-

rected for Lorentz and polarization effects. The structure was solved by direct methods

(SIR-97) [44] and refined by full-matrix least-square techniques against F2
o-F

2
c (SHELXL-

97). [45] All hydrogen atoms were calculated in idealized positions with fixed displace-

ment parameters. ORTEP-III [46,47] was used for the structure representation, SCHAKAL-

99 [48] to illustrate the crystal packing. cif file deposited at the CCDC database (CCDC

1473427).

X-ray Powder Diffraction Powder diffractograms were measured with a STOE StadiP

diffractometer using CuKα1 radiation with a Ge monochromator, and a Mythen 1K

Stripdetector in transmission geometry.

Scanning Electron Microscopy Scanning electron microscopy pictures were gathered

at a Zeiss LEO 1530. Samples were prepared on carbon tape.
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Magnetic Measurements Magnetic susceptibility data were collected using a MPMS

XL-5 SQUID magnetometer under an applied field of 0.5 T over the temperature range

50 to 400 K in the settle mode. The samples were placed in gelatin capsule held within

a plastic straw. The data were corrected for the diamagnetic contributions of the ligands

by using tabulated Pascal’s constants and of the sample holder. [49]

Fluorescence Spectroscopy The emission spectra were measured in a home build

setup. The samples were placed between a fused silica substrate and a coverslip, sealed

with glue under argon atmosphere. A supplementary Indium wire was placed between

the sample and the glue to avoid contact. The metal ring separates powder and glue

thus preventing a reaction of glue and complex. The sample was then placed in an

electrically heatable continuous flow cryostat (Oxford Instruments). It was excited using

a nitrogen laser with 337 nm emission. The light emitted by the complex was focused into

a spectrograph (Andor Technology Shamrock SR303i) and detected with a CCD-camera

(Andor iDus). Each temperature was stabilized during 15 min before measurement in

order to ensure homogeneous temperature of the sample. The emission spectra were

corrected for the transmission through the setup.

9.5 Conclusion

We presented the synthesis of a new dimer 3 and a new SCO coordination polymer 4

based on a phenazine-derived Schiff base-like ligand. The compound 4 presents a 48 K

wide thermal hysteresis which was characterized with SQUID, DSC, and X-ray powder

diffraction. The large hysteresis probably originates from a structural phase transition

coupled with the electronic transition, as HS and LS states present different diffraction

patterns. The emission properties in the solid state were measured and showed that not

only the band structure is depending on the spin state, but the SCO can also be followed

through measurement of the emission intensity. Future investigations of the absorption

spectra with temperature are planned, as well as measurement of the fluorescence prop-

erties in solution/gel matrix.
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9.6 Supporting Information

Figure 9.10: Magnetic susceptibility temperature product vs. temperature measurement
for compound 3 displayed between 50 and 300 K.
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Table 9.3: Crystallographic data of compound 3.
CCDC 1473427
sum formula C62H64Fe2N10O16

M [g·mol−1] 1316.93
crystal system triclinic
space group P1
a [Å] 7.995(4)
b [Å] 13.598(5)
c [Å] 14.964(7)
α [o] 65.731(3)
β [o] 82.036(4)
γ [o] 82.580(4)
V [Å3] 1463.91(11)
Z 1
ρ [g·cm−3] 1.494
µ [mm−1] 0.577
crystal size [mm] 0.182 × 0.174 × 0.163
T [K] 133(2)
λ (MoKα) [Å] 0.71069
θ-range [o] 1.70–27.47
reflns. collected 16292
indep. reflns (Rint) 6866 (0.0826)
parameters 406
R(F ) (all data) 0.0558 (0.0667)
wR2 0.1532
GooF 0.968
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Figure 9.11: Representative SEM pictures of samples 3 and 4.

212



9.6. SUPPORTING INFORMATION

Figure 9.12: Temperature-dependent emission spectra of 3 (top & bottom) and 4 (middle
& bottom).
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[37] B. Weber, Jäger, Eur. J. Inorg. Chem. 2009, 465–477.

[38] B. Weber, Coord. Chem. Rev. 2009, 253, 2432–2449.

[39] W. Bauer, M. M. Dı̂rtu, Y. Garcia, B. Weber, CrystEngComm 2012, 14, 1229–1231.

[40] B. Weber, R. Tandon, D. Himsl, Z. Anorg. Allg. Chem. 2007, 633, 1159–1162.

215



REFERENCES

[41] G. Félix, W. Nicolazzi, L. Salmon, G. Molnár, M. Perrier, G. Maurin, J. Larionova, J. Long, Y. Guari,

A. Bousseksou, Phys. Rev. Let. 2013, 110, 235701.

[42] H. G. O. Becker, Organikum. Organisch-Chemisches Grundpraktikum 19th ed., Johann Ambrosius

Barth, Berlin, DE, 1993.

[43] B. Weber, W. Betz, R.and Bauer, S. Schlamp, Z. Anorg. Allg. Chem. 2011, 637, 102–107.

[44] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giavazzo, A. Guagliardi, A. G. G.

Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 35, 115–119.

[45] G. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.

[46] C. K. Johnson, M. N. Burnett, ORTEP-III, 1996, Oak-Ridge National Laboratory, Oak-Ridge, TN.

[47] L. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.

[48] E. Keller, Schakal-99, 1999, University of Freiburg, Freiburg DE.

[49] O. Kahn, Molecular Magnetism, VCH, New York, N. Y., USA, 1993.

216



10. List of Publications

1. C. Lochenie, W. Bauer, S. Schlamp, P. Thoma, B. Weber, Z. Anorg. Allg. Chem.

2012, 638, 98–102.

”Synthesis and Characterisation of Schiff Base-like Iron(II) Complexes with Imida-

zole as Axial Ligand”

2. W. Bauer, C. Lochenie, B. Weber, Dalton Trans. 2014, 43, 1990–1999.

”Synthesis and characterization of 1D iron(II) spin crossover coordination polymers

with hysteresis”
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